ISSN 0753-4973
AILRNTTES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
pu
(siscou
+ ve
e In. 4nN9 ARIE
KE 7 AV 993 *
March 1993 Volume 11, N° 1
Source : MNHN, Paris
International Society for the Study
and Conservation of Amphibians
(International Society of Batrachology)
SEAT
Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
BOARD FOR 1993
President: Raymond F. LAURENT (Tucumän, Argentina).
General Secretary: Alain DUBOIs (Paris, France).
Treasurer: Dominique PAYEN (Paris, France). À
Deputy Secretaries: Günter GOLLMANN (Wien, Austria); Stephen J. RICHARDS (Townsville, Australia);
David B. Wake (Berkeley, U.S.A.).
Deputy Treasurers: Janalee P. CALDWELL (Norman, U.S.A.); Annemarie OHLER (Paris, France).
Other members of the Board: Sergius L. KuzMN (Moscow, Russia); Roy W. MCDIARMD
(Washington, U.S.A.).
TARIFFS FOR 1993
Individuals Institutions
Subscription to Alytes alone 250 FF/50$ 500FF/1008$
Subscription to Alytes + ISSCA + Circalytes 270 FF /548 S540FF/108$
Back issues of Alytes: single issue 60 FF/12$ 120FF/245$
Back issues of Alytes: one complete volume (4 issues) 200 FF /405$ 400 FF /805$
Back issues of A/ytes: complete set of volumes 1 to 10 1600 FF / 320$ 3200 FF / 640$
Five-years (1993-1997) individual subscription to A/ytes: 1000 FF / 200 $.
Life individual subscription to Alyres from 1993 on: 5000 FF / 1000 $.
Patron life individual subscription to A/ytes from 1993 on: 10000 FF / 2000 $ or more.
Circalytes is the internal information bulletin of ISSCA. Back issues of this bulletin are also available:
prices can be provided upon request by our Secretariat.
Inclusive Section or Group affiliation to ISSCA: 250 FF / 50 8.
Individual subscription to the ISSCA Board Circular Letters: 200 FF / 40 8.
MODES OF PAYMENT
— In French Francs, by cheques payable to “ISSCA”, sent to our Secretariat (address above).
— In French Francs, by direct postal transfer to our postal account: “ISSCA”, Nr. 1-398-91 L, Paris.
— In U.S. Dollars, by cheques payable to “ISSCA”, sent to Janalee P. CALDWELL, Oklahoma
Museum of Natural History, University of Oklahoma, Norman, Oklahoma 73019, U.S.A.
Source : MNHN, Paris
AIDTTES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
March 1993 Volume 11, N° 1
Alytes, 1993, 11 (1): 1-15. 1
Descripciôn de una nueva especie europea
de rana parda (Amphibia, Anura, Ranidae)
liothèque Centrale Muséum
CL LL
Jordi SERRA-COBO 3. 3001 0011158
Instituto Pirenaico de Ecologia (C.S.I.C.), Apartado 64, 22700 Jaca, España
This paper describes a new species of brown frog, discovered on the
fringes of the Ordesa and Monte Perdido Park (Huesca, Spain). It is a slender,
agile, long-legged and medium sized species with usually a light coloration, a
small tympanum and well-separated nostrils, and it favours torrent habitats. It
lives in clear, cold, oxygenated and reasonably fast-running waters where .it can
find refuge under stones or in tiny fissures. In most cases it is sympatric with
Euproctus asper and, in some cases, with Rana temporaria. Its morphology and
ecology distinguish it from Rana temporaria, Rana iberica and Rana dalmatina.
Its area of distribution is limited, so far, to the Spanish side of the central and
westem Pyrenees.
A finales de verano de 1990, con motivo de un estudio faunistico sobre los
vertebrados del Parque Nacional de Ordesa y Monte Perdido (provincia de Huesca,
España) y su zona periférica, el autor capturé, por primera vez, la especie aqui descrita.
Las ranas se hallaron en un torrente del valle de Ordiso. A partir de la referida fecha, se
realizaron multiples estudios y prospecciones periédicas para determinar y conocer el
alcance del hallazgo. En invierno de 1991 se logré encontrar diversas puestas de dicha
especie, siendo fotografiadas y trasladadas al laboratorio para su ulterior estudio
ontogénico. Posteriormente, la realizacion de campañas prospectivas permitié hallar
diecisiete localidades distintas para la nueva rana, algunas de ellas muy alejadas entre si.
Los resultados obtenidos después de dos años de estudios, indican que las ranas halladas
pertenecen a una nueva especie.
El presente articulo describe la morfologia y algunas de las caracteristicas ecolégicas
de la nueva rana, destacando sus principales rasgos distintivos. Su morfometria, ecologia,
biologia, diferencias aloenzimäticas, cariotipo y desarrollo larvario se trataraän mäs
exhaustivamente en oportunas ulteriores publicaciones, algunas de ellas ya en curof see DU
MUSEUM
PARIS
Source : M
2 ALYTES 11 (1)
(articulo en preparacién sobre morfometria elaborado por DuBois, OHLER & SERRA-
CoBo).
Abreviaciones utilizadas. — MNCN: Museo Nacional de Ciencias Naturales de Madrid
(CSIC); MNHN: Muséum National d'Histoire Naturelle, Paris; MZB: Museu de Zoologia
de Barcelona; DZV: Departament de Biologia Animal, Fac. Biologia, Universitat
Barcelona; IPE: Instituto Pirenaico de Ecologia (CSIC), Jaca-Zaragoza. La notaciôn
utilizada para cada variable, viene indicada en el pie de la Tabla I.
Material de comparaciôn. — Dieciocho adultos de Rana iberica (MNHN 1992.4852-4853,
4857, 4859-4860, 4863, 4865, 4870-4873, 4875, 4878, 4881-4883, 4885-4886) de la Laguna
Grande de Gredos (Âvila, España). Nueve machos adultos de Rana temporaria (MNHN
1979.7510-7514, 7516-7517, 7520, 7522) del Col du Pourtalet (Pyrénées Atlantiques,
Francia). Diez machos de Rana dalmatina (MNHN 1980.1009-1016, 1019-1020) de la
Forêt de Fontainebleau (Seine-et-Marne, Francia).
Metodologia estadistica utilizada. — Todas las variables, excepto SVL, han sido
transformadas en tanto por mil de la longitud hocico-ano antes de ser procesadas
estadisticamente. La Tabla I se ha elaborado a partir de las medidas del holotipo y de los
paratipos (8 hembras y 15 machos). Para comparar las distintas especies se ha considerado
como unidad de tratamiento los individuos adultos de una misma poblacién y mismo sexo
(machos capturados en la Espata: MNCN 16661; MNHN 1993.2502, 2504, 2509-2511,
2514-2516), utilizando el test estadistico de la U de Mann-Whitney (Dupois, 1984a; SIEGEL,
1985; OHLER & KAZADI, 1990).
Rana pyrenaica sp. nov.
(fig. 1-4)
Holotipo. — MNCN 16661, macho adulto capturado el 12 de octubre de 1992, por Jordi
SERRA-CoBo, en la Espata (Villanua, Huesca, España).
Medidas del holotipo. — SVL = 45,3 mm; HW = 339; HL = 337; IFE = 174; FLL =
245; TL = 546; FOL = 574; IN = 86; EN = 71; EL = 91; TYD = 35; TFL = 124;
IMT = 42, ITL = 124; 2TL = 209; 4TL = 515; TT = 253; ABL = 195; LCD = 497;
E = 62.
Paratipos. — Siete hembras adultas (MNHN 1992.5234-5235, 1993.2501, 2507, 2512-2513;
DZV 2766) y siete machos adultos (MNHN 1993.2502, 2504, 2509-2511, 2514-2515)
capturados el 14 de julio de 1992, y un macho adulto (MNHN 1993.2516) capturado el
12 de octubre de 1992, por Jordi SERRA-CoBo, en la Espata (Villanua, Huesca, España).
Dos machos adultos (MNHN 1993.2506, 1992.5236) capturados el 10 y el 12 de octubre
de 1992, respectivamente, por Jordi SERRA-CoBo, en el valle de Bujaruelo (Torla, Huesca,
España). Un macho adulto (MNHN 1993.2505) capturado el 11 de setiembre de 1990, dos
machos adultos (MNHN 1993.2503, 2508) capturados el 15 de julio de 1992, y una hembra
adulta (MZB 92.0167) y un macho adulto (IPE 1992.4040) capturados el 12 de octubre de
1992, por Jordi SERRA-CoBo, en el valle de Ordiso (Torla, Huesca, España).
Etimologia del nombre especifico. — Hace referencia a la cordillera donde se descubri6 la
especie. À
LA Source : MNHN, Paris
-GEe?
>n2
Cr
Eu
Tabla I. — Resumen de los datos biométricos obtenidos para 8 hembras y 15 machos de Rana pyrenaica.
X, media; 5, desviaciôn estandard; V;,, coeficiente de variaciôn de Haldane (HALDANE, 1955; DELAUGERRE & Dumois, 1985); U, resultado
del test de Mann-Whitney (comparaciôn hembras-machos); P, probabilidad asociada al valor de U para un test bilateral. Variables
estudiadas: SVL, longitud morro-cloaca; HW, anchura de la cabeza; HL, longitud de la cabeza; IFE, separaciôn entre la parte anterior
FLL, longitud del antebrazo (desde el codo al borde proximal del tubérculo palmar externo); TL, longitud de la pierna
(desde la articulacién tibio-tarsal a la tibio-femoral); FOL, longitud del pie (desde el borde proximal del tubérculo metatarsiano interno
hasta el extremo del cuarto dedo); IN, separaciôn entre orificios nasales; EN, distancia entre borde anterior del ojo y orificio nasal;
EL, longitud del ojo; TYD, diâmetro del timpano; TFL, longitud tercer dedo de la mano (de la base primer tubérculo al extremo del
dedo); IMT, longitud del tubérculo metatarsiano interno; ITL, longitud primer dedo del pie; IMT/ITL, tanto por mil del tubéreulo
metatarsiano interno respecto a la longitud del primer dedo del pie; 2TL y 4TL, longitudes del 2° y 4° dedos del pie, respectivamente
(medidos desde el borde distal del tubérculo metatarsiano interno, hasta el extremo del dedo); TT, longitud del talôn (desde articulaciôn
tibio-tarsal al borde proximal del tubéreulo metatarsiano interno);, ABL, longitud del brazo (medido por la cara ventral); LCD,
de los ojos;
longitud del muslo (de la cloaca a la rodilla); EE, distancia interorbitaria.
Hembras Machos
Variable Rango x C2 Mediana Va Rango x C2 Mediana Va U P
svL 355.510 433 10,69 33,445,7 420 331 si soi | si >ou0
Hw 323410 350 an 305.365 350 16.97 353 93 | 485 >o10
HL 329-368 346 429 309-357 34 145 337 400 | 36 >o10
IFE 162-198 1 12 166-191 ms 820 174 476 | 45 >010
FLL 212274 243 9.4 222281 258 16,96 262 668 | 37 >010
TL 518-588 557 sn 543619 565 22,87 557 a12 | 525 >ou0
FOL 497-582 550 5.88 539.642 579 2328 519 a | 25 <oos
IN 88-101 93 5.53 84100 9 so 90 sa | 4 >o10
EN 7179 1 447 6284 n 5418 mn 72 | 4 >o10
EL 96-123 109 918 88-124 16 12,4 105 1,85 | 505 >0.10
TD 3148 si a NE 2647 36 578 36 1632 | 33-010
TEL 126-144 136 135,5 an 110-139 Ds 83 128 662 | 27 <oos
IMT 33-50 a 405 14,02 33:51 a sn #2 155 | 56 >010
mL 90-124 ut 15 1023 93-128 u7 102 m1 88 | 375 >0.10
IMTATL 279-480 370 385.5 1818 260-494 36 6324 351 157 | 6 >o10
TL 173-228 212 214 EE 182-239 2 1604 27 735 | 355 >o10
sTL 465-563 su si7 627 480.569 523 24 528 548 | 41 >o10
TT 220-273 251 252.5 543 239-298 257 1460 251 528 | 52 >o10
ABL 162-225 201 206,5 10,38 206 22,82 209 11,26 50 >0,10
LoD 469.565 sir 5155 642 510 2571 509 513 | s5 >o10
EE 57.93 n n 16,05 13 898 mn msi | 55 >o1
OH0D-VHUES
Source : MNHN, Paris
4 ALYTES 11 (1)
Tabla 11. — Comparaciôn morfométrica entre 9 machos adultos de Rana pyrenaica y 18 machos
adultos de Rana iberica. Se considera P la probabilidad asociada al valor de U para un test
bilateral.
Especie Rango X 5 Vu Mediana U P
Longitud del antebrazo (en % de SVL)
Rpyrenaica 245-277 260 13,08 5,17 262
R iberica 202-304 236 21,10 9,36 234 13 <0,002
Diämetro mäximo del timpano (en % de SVL)
R. pyrenaica 26-47 38 5,89 15,93 39
R iberica 42-70 52 7,73 15,08 51,5 8 <0,002
Longitud del tercer dedo de la mano (en %o de SVL)
Rpyrenaica 110-139 125 8,24 6,78 127
R. iberica 143-178 164 8,74 5,48 164,5 0 <0,002
Longitud del primer dedo del pie (en %o de SVL)
R. pyrenaica 93-128 116 11,18 9,91 121
R. iberica 112-151 133 8,58 6,54 133,5 13 <0,002
Longitud del segundo dedo del pie (en % de SVL)
R pyrenaica 182-239 216 18,06 8,59 217
R iberica 222-259 244 987 4,10 247,5 Il <0,002
Longitud del talôn (en % de SVL)
R pyrenaica 243-298 259 1705 6,77 251
R iberica 228-281 245 13,21 5,47 242,5 38 <0,02
Distancia interorbitaria (en % de SVL)
R. pyrenaica 62-86 71 8,42 12,19 72
R: iberica 85-112 95 6,41 6,84 95 Ll <0,002
Diagno — Especie de cuerpo grâcil y talla mediana, inferior a Rana temporaria y R.
dalmatina (Tablas III y IV). Orificios nasales mâs separados entre si y proporcionalmente
mäs distantes del borde anterior del ojo que en R. temporaria y R. dalmatina (Tablas III
y IV). Mancha temporal poco conspicua, menos que en R. iberica, R. temporaria y R.
dalmatina. Timpano muy pequeño y dificil de distinguir (Tabla I). Hocico menos
acuminado que en R. iberica. Antebrazo y pierna relativamente largos respecto a la talla
del cuerpo (Tabla I). Tercer dedo de la mano relativamente menor que en R. iberica y R.
Source : MNHN, Paris
SERRA-COBO
Tabla II. — Comparaciôn morfométrica entre 9 machos adultos de Rana pyrenaica y 9 machos
adultos de Rana temporaria. Se considera P la probabilidad asociada al valor de U para un test
bilateral.
Especie
Rango X 5 Vu Mediana U P
R pyrenaica
R. lemporaria
R. pyrenaica
R. temporaria
R. pyrenaica
R. temporaria
R. pyrenaica
R. temporaria
R. pyrenaica
R lemporaria
R: pyrenaica
R: temporaria
R pyrenaica
R. temporaria
Longitud del hocico-ano (en % de SVL)
390457 43,2 2,50 5,95 43,8
589-703 65,8 3,20 5,00 65,9 0 <0,002
Separaciôn entre la parte anterior de los ojos (en % de SVL)
167-176 172 3,76 2,25 174
133-150 145 5,03 3,57 146 0 <0,002
Longitud de la pierna (en %o de SVL)
543-564 552 6,97 1,30 552
513-555 533 15,84 3,05 530 11 <0,02
Separaciôn entre orificios nasales (en %o de SVL)
86-100 90 4,58 5,23 89
68-80 72 4,22 6,02 72 0 <0,002
Distancia entre orificio nasal y borde anterior del ojo (en %o de SVL)
62-79 71 4,93 7,14 70
54-68 63 4,19 6,84 64 6 <0,002
Diämetro mäximo del timpano (en %o de SVL)
26-47 38 5,89 15,93 39
56-77 70 6,12 8,99 70 0 <0,092
Longitud del segundo dedo del pie (en %o de SVL)
182-239 216 18,06 8,59 217
230-280 257 1892 7,57 257 4 <0,002
dalmatina (Tablas II y IV). Pierna relativamente mäs larga que en R. temporaria (Tabla
JT) y menos que en R. dalmatina (Tabla IV). Articulaciôn tibio-tarsal rebasando el
extremo del hocico cuando se dobla la extremidad posterior hacia adelante. Longitud del
primero y segundo dedos del pie menor que en R. iberica (Tabla II). Dedos de las manos
y de los pies redondeados en su extremo distal. Coloraciôn de la garganta normalmente
jaspeada gris ténue y sin linea media clara como en R. iberica. Coloracion dorsal entre
canela crema y gris olivâceo. Canto grave y débil, mäs flojo que en R. temporaria.
Source : MNHN, Paris
ALYTES 11 (1)
Tabla IV. — Comparaciôn morfométrica entre 9 machos adultos de Rana pyrenaica y 10 machos
adultos de Rana dalmatina. Se considera P la probabilidad asociada al valor de U para un test
bilateral.
Especie
Rango X LA Vu Mediana U P
R. pyrenaica
R. dalmatina
R. pyrenaica
R. dalmatina
R pyrenaica
R dalmatina
R. pyrenaica
R. dalmatina
R pyrenaica
R. dalmatina
R pyrenaica
R. dalmatina
R pyrenaica
R. dalmatina
R pyrenaica
R. dalmatina
R pyrenaica
R. dalmatina
R pyrenaica
R. dalmatina
R pyrenaica
R dalmatina
Longitud del hocico-ano (en % de SVL)
390457 432 2,50 595 43,8
489614 56,1 3,84 7,02 56,7 0 <o,002
Separaciôn entre la parte anterior de los ojos (en %o de SVL)
167-176 172 3,76 2,25 174
147-163 154 5,64 3,75 154 0 <0,002
Longitud de la pierna (en % de SVL)
543-564 552 697 1,30 552
607-631 618 824 1,37 618,5 O0 <0,002
Longitud del pie (en %o de SVL)
539-591 567 15,97 2,13 574
571-603 588 12,21 2,13 588,5 13 <0,02
Separaciôn entre orificios nasales (en %o de SVL)
86-100 90 4,58 5,23 89
71-78 74 23 3,09 74 0 <0,002
Distancia entre orificio nasal y borde anterior del ojo (en %o de SVL)
62-79 71 4,93 7,14 70
60-72 65 3,99 6,29 65 13,5 <0,02
Diämetro mäximo del timpano (en %o de SVL)
26-47 38 5,89 15,93 39
71-88 78 6,43 8,45 75,5 0 <0,002
Longitud del tercer dedo de la mano (en %o de SVL)
110-139 125 8,24 6,78 127
130-143 136 5,15 3,88 136,5 6,5 <0,002
Longitud del cuarto dedo del pie (en %o de SVL)
480-542 510 19,06 3,84 505
513-560 537 15,94 3,04 541 LE) <0,02
Longitud del muslo (en %o de SVL)
476-524 503 14,66 3,00 502
539-585 570 16,44 2,96 576,5 O0 <0,002
Longitud del talôn (en %o de SVL)
243-298 259 1705 6,77 251
268-292 279 7,01 2,58 278 12 <0,02
Source : MNHN, Paris
SERRA-COBO 7
Descripciôn morfolôgica del adulto. — Es un anuro de talla mediana (Tabla I) y de cuerpo
esbelto. La cabeza es ligeramente mäs ancha que larga (Tabla I). La distancia entre los
orificios nasales es superior a la separaciôn interorbitaria (Tabla I). Las oberturas nasales
estän mâs cercanas al extremo del hocico que al borde anterior del ojo (fig. 1). El hocico
es corto, no acuminado, proyectändose ligeramente por delante de la obertura bucal. La
mancha temporal es poco conspicua, prolongändose, en franja estrecha, por delante del
ojo hasta alcanzar el extremo del morro. La parte posterior de la referida mancha estä
delimitada por dos pliegues prominentes: uno supratemporal y otro subtemporal. Los
ojos, no muy saltones, se disponen lateralmente. La pupila es oval. El canthus rostralis es
romo. Sobre el labio superior un repliegue de coloraciôn clara se prolonga hacia la region
subtemporal, rebasando la comisura bucal y, en algunos casos, alcanzando la base de
las extremidades anteriores. En la mayoria de individuos dicha franja clara se inicia
cerca del extremo del hocico. El timpano es pequeño y de dificil observacion (Tabla I),
rasgo caracteristico de la especie (fig. 1-2). Presenta dos series de dientes vomerianos
situadas detrâäs de las coanas y en posiciôn oblicua respecto al eje del cuerpo, mäs
separadas entre si en su extremo distal que en su extremo proximal. La separacion entre
el extremo distal de los dientes vomerianos y las coanas es menor que la longitud de las
series dentarias.
Los miembros anteriores son relativamente largos (sobre todo el antebrazo) y
permiten el levantamiento del torax y la cabeza. El antebrazo es mâs largo que el brazo
(Tabla I). El tercer dedo de la mano es corto (Tabla I), aproximadamente la mitad del
antebrazo. El extremo distal de los dedos de la mano es redondeado. Los tubérculos
subarticulares son romos o ligeramente acuminados, circulares y estän bien desarrollados.
Las manos presentan dos tubérculos palmares alargados (fig. 3).
Las extremidades posteriores son relativamente largas, sobre todo la pierna, respecto
a la talla del cuerpo. AI doblarlas hacia adelante, la articulaciôn tibio-tarsal apenas rebasa
el extremo del hocico. El pie (desde el borde proximal del tubérculo metatarsiano interno
hasta el extremo del cuarto dedo) es aproximadamente igual a la longitud de la pierna
(Tabla I). Los dedos del pie presentan su extremo distal redondeado. La membrana
interdigital es fina y està muy desarrollada, incluyendo en ella la mayor parte de todos los
dedos, excepto la porciôn distal del cuarto dedo. El tubérculo metatarsiano interno es
pequeño, romo, oval y de consistencia blanda, siendo su longitud alrededor de 1/4 a 1/2
de la talla del primer dedo. Los tubérculos subarticulares estän, en general, bien
desarrollados y son circulares, romos o ligeramente acuminados (fig. 4).
La piel es lisa, fina y muy viscosa en animales vivos. Los repliegues dorso-laterales son
estrechos, prolongändose desde la parte posterior del ojo hasta la region anal.
Coloraciôn. — La coloracién dorsal varia entre color canela crema y gris olivâceo,
presentando discretas manchas verdosas. Sin embargo, las referidas moteaduras son poco
conspicuas en animales vivos, ora en la region dorsal, ora en las extremidades anteriores
y posteriores. Algunos ejemplares pueden presentar una mancha en forma de V invertida
en la espalda. Las hembras suelen tener ciertos tonos rojizos en los pârpados, alrededor
de los repliegues dorso-laterales y en la regiôn dorsal de las extremidades posteriores, y su
cuerpo suele ser mäs voluminoso. No obstante, en algunas ocasiones se han observado
machos con tonalidades rojizas, si bien éstas eran ms tenues (holotipo MNCN 16661). El
Source : MNHN, Paris
ALYTES 11 (1)
Fig. 1.- Rana pyrenaica sp. nov., visiôn lateral de la cabeza (MNHN 1992.5236).
5smm
Fig. 2. — Rana pyrenaica sp. nov., vision dorsal de la cabeza (MNHN 1992.5236).
Source : MNHN, Paris
SERRA-COBO 9
Fig. 3. — Rana pyrenaica sp. nov., visiôn ventral de la mano derecha (MNHN 1992.5236).
Fig. 4. — Rana pyrenaica sp. nov., visiôn ventral del pie derecho (MNHN 1992.5236).
Source : MNHN, Paris
10 ALYTES 11 (1)
iris es dorado con pequeñas puntuaciones de color oscuro. La regiôn ventral es muy clara,
existiendo, casi siempre, un ligero jaspeado gris-rosäceo en la garganta, pero en ningün
caso se ha observado una banda clara en la linea media, ni tampoco presenta una banda
transversal. La coloracion ventral a nivel femoral es amarillenta, pudiendo ser azulada en
verano. Durante la época de celo la region femoral de los machos es sonrosada. La
pigmentaciôn tiende a ser bastante homogénea en todos los ejemplares estudiados.
Caracteres sexuales secundarios. — La longitud del tercer dedo de la mano suele ser mayor
en las hembras que en los machos (Tabla I). La longitud del pie tiende a ser mayor en los
machos que en las hembras (Tabla I). Los machos carecen de sacos bucales y su canto es
grave y tenue. Las callosidades palmares de los machos son, generalmente, amarillentas
(fig. 3). Después del letargo, los machos presentan desarrollados pliegues cutäneos en la
region lateral del tronco, en la region dorso-posterior de la cabeza y a nivel femoral, los
cuales devienen conspicuos durante el amplexus.
Puesta y desarollo. — La puesta se efectüa entre finales de invierno y principios de
primavera (febrero-marzo), dependiendo de las caracteristicas climatolôgicas del biotopo,
la altitud de la localidad de puesta y las oscilaciones meteorolôgicas estacionales. Las
puestas son pequeñas, pues suelen estar constituidas por un nümero de huevos
comprendido entre 70 y 110 (se han observado unas 15 puestas), y no forman masas
compactas sino mäs bien racimos. La gelatina envolvente es muy densa, impidiendo la
flotacién. Por el contrario es escaso su espesor protector. La especie tiende a adherir la
puesta bajo las piedras (un 87 % de las puestas observadas), en la vegetacion de fondo o
en las fisuras rocosas de arroyos y, ocasionalmente, sobre fondo lodoso siempre que las
aguas estén quietas. El embriôn es de color pardo-oscuro y relativamente grande respecto
a su envoltura gelatinosa.
La velocidad de desarrollo embrionario estä en funciôn de las condiciones climato-
lôgicas anuales, siendo frecuente el retraso ontogénico como consecuencia de las nevadas
y frios primaverales tardios, tipicos de la regiôn pirenaica occidental. Transcurridas unas
semanas, el embriôn pierde su intensa coloraciôn oscura, adquiriendo un tono grisäceo
claro al Ilegar al estadio en que se forman los esbozos de la cabeza y la cola. Llama la
atenciôn el relativo gran desarrollo de su abdomen y su delgada y delicada piel. La cola
adquiere rapidamente una notable longitud relativa.
Las larvas ya desarrolladas son muy caracteristicas y fâciles de distinguir por su
coloracién oscura, su musculosa aleta caudal y sus manchas de color dorado con
irizaciones (pueden ser mäâs o menos moteadas segün las poblaciones). Tienen aspecto
robusto y a su vez estilizado y elegante. Estän bien adaptadas a los cursos de agua,
disponiéndose en su fondo al amparo de la corriente o nadando a modo de “trucha”.
Distribuciôn y ecologia. — Los adultos y subadultos se alejan poco del agua, situändose
en riberas de arroyos o bien escondiéndose bajo pequeños saltos de agua, piedras situadas
en torrentes o en estrechas fisuras. La especie tiende a ser simpâtrica con Euproctus asper,
siendo muy similares sus residencias ecolôgicas (un 82 % de las 17 localidades donde se ha
hallado a R. pyrenaica también habitaba E. asper). Suele vivir en aguas claras, frias y
oxigenadas, ora pequeños cursos hidricos con poca renovaciôn (siendo simpätrica con R.
temporaria y desovando ambas especies en el mismo lugar), ora en torrentes caudalosos.
Source : MNHN, Paris
SERRA-COBO 11
R. pyrenaica no se ha hallado nunca en aguas estancas. Su gracilidad, agilidad, estrategia
reproductora y anatomia de sus larvas, le permiten poblar biotopos donde a R. temporaria
y al resto de anuros montanos pirenaicos les es dificil residir. Escapa, asi, a una posible
competencia trofica con la rana bermeja, Bufo bufo y Alytes obstetricans, anuros
abundantes en la regin centro-occidental del Pirineo. De las diecisiete localidades
estudiadas, sélo en tres de ellas la especie es simpâtrica con R. temporaria. Los efectivos
de R. pyrenaica suelen dispersarse a lo largo de los cursos de agua, ora referente a los
individuos adultos, ora a las larvas cuyas concentraciones no suelen ser tan elevadas como
en R. temporaria. Dicha menor densidad de renacuajos, cabe atribuirla, en parte, a la
estrategia reproductora seguida por R. pyrenaica, la cual tiende a ser de la K (como en
Alytes obstetricans) y no de la r como en R. temporaria y Bufo bufo, y a la referida
dispersiôn de los individuos adultos reproductores (BEGON, HARPER & TOWNSEND, 1988).
Se ha hallado, a R. pyrenaica, en la franja altitudinal comprendida entre los 1200 y 1700
m s.m. Su distribuciôn se circunscribe, por ahora, a la regiôn pirenaica centro-occidental
española (fig. 5).
Discusiôn. — La ecologia, morfologia y etologia de R. pyrenaica le distinguen bien de R.
temporaria, especie muy abundante en el Pirineo (BOULENGER, 1879, 1898, 1910; LANTZ,
1927; BECK, 1943; BALCELLS, 1956; MERTENS & WERMUTH, 1960; FRETEY, 1975; ARNOLD
& BURTON, 1978; ANDRADA, 1980; PARENT, 1981; DuBois, 1982a-b; MARTINEZ-RICA, 1983;
MARTINEZ-RICA & REINÉ-VINALES, 1988; ESTEBAN, 1990). Menor talla del cuerpo, timpano
mäs pequeño, mancha temporal mucho mäs tenue, parte distal del hocico proporcional-
mente mâs ancha, mayor separaciôn, en relaciôn a la longitud del cuerpo, entre orificios
nasales y entre estos ültimos y el borde distal del ojo, talla relativa de la pierna suele ser
mäs larga (excepto en relaciôn a la rana de Gasser, segün estudio morfométrico realizado
por Duois, OHLER & SERRA-COBO, actualmente en preparaciôn), menor longitud del
segundo dedo del pie respecto a la talla del cuerpo y distinta coloraciôn, son las principales
caracteristicas externas que permiten distinguir R. pyrenaica de R. temporaria (Tabla HI).
A ellas cabe añadir las diferencias existentes entre las puestas y las larvas de ambas
especies. Las puestas de la nueva rana presentan menor nümero de huevos, no flotan (en
R. temporaria si) y el diâmetro de los embriones es relativamente mayor respecto a la densa
envoltura gelatinosa. Por otra parte, los renacuajos de R. pyrenaica siempre son mucho
mäs obscuros, musculosos y con aleta caudal distinta (la parte distal suele ser mâs
lobulada). Igualmente, es diferente la etologia reproductora: R. temporaria suele desovar
en aguas quietas, normalmente estancas, mientras R. pyrenaica es mucho mäs selectiva y
suele poner bajo piedras o en pequeñas grietas de arroyos y torrentes. La mayoria de los
rasgos distintivos, mencionados unas lineas mäs arriba, entre el nuevo taxon y R.
temporaria, sirven también para diferenciar R. pyrenaica (especie mucho mäs pequeña) de
R. temporaria parvipalmata Seoane, 1885, y de la rana de Gasser (DuBois, 1982b, 1983).
No obstante, las referidas diferencias serän tratadas ampliamente en otro articulo (Dugois,
OHLER & SERRA-COBO, en preparaciôn).
Las poblaciones simpätricas de R. pyrenaica y R. temporaria tienen gran interés
ecolôgico y biolôgico, pues confirman la diferenciacion interespecifica. Las localidades
donde cohabitan ambas especies, presentan siempre aguas quietas con cierto flujo
renovador que impide el estancamiento hidrico. Si R. pyrenaica y R. temporaria fuesen
morfos distintos de una misma especie adaptados a diferentes condiciones ecolôgicas, la
Source : MNHN, Paris
12 ALYTES 11 (1)
FRANCE
Q
p»
Q
o
ZARAGOZA
BARCELONA
100Km
Fig. 5. — Distribuciôn de Rana pyrenaica conocida hasta la fecha. La estrella corresponde a la
localidad tipo, mientras los asteriscos indican las localidades donde se ha hallado la especie. El
asterisco mayor agrupa diversas localidades prôximas entre si.
Source : MNHN, Paris
SERRA-COBO 13
variabilidad de los individuos pertenecientes a poblaciones simpätricas seria escasa, como
resultado de fenémenos de hibridacién (habria flujo génico entre poblaciones). No
obstante, en biotopos donde existe simpatria, los individuos adultos, las puestas y las
larvas de ambos taxones continuan diferenciändose claramente, manteniendo las carac-
teristicas propias de las poblaciones alopätricas. Cabe descartar, asi, que se produzca
hibridaciôn entre las dos especies y que la nueva rana sea fruto del acusado polimorfismo
de R. temporaria. Por otra parte, se ha constatado que en las localidades simpätricas, las
larvas de R. temporaria tienden a eclosionar mäs tarde. Asi mismo, las observaciones
realizadas, tanto “in situ” como en laboratorio, parecen indicar que el desarrollo
ontogénico es mâs lento en R. pyrenaica.
La morfologia de R. pyrenaica también es distinta respecto a R. iberica, especie, esta
ültima, que si bien ha sido citada en repetidas ocasiones en los Pirineos (BELLOC, 1893;
PLANTADA Y FONOLLEDA, 1903; SAGARRA, 1916; MALUQUER, 1916; BoscÀ & CASANOVES,
1918; LANTZ, 1927; BECK, 1942, 1943; ANGEL, 1946, 1947; DOTTRENS, 1963; SALVADOR,
1974; FRETEY, 1975; CASTANET, 1978; CASTANET & GUYÉTANT, 1991; BERTRAND &
CROCHET, 1992), los especialistas actuales ponen en duda su existencia en dicha cordillera
(Dusois, 1982b; MaARTiNEZ-RICA, 1983). Teniendo en cuenta la referida opinion,
actualmente no habrian äreas pirenaicas simpâtricas para ambas especies. En comparacion
con R. iberica, R. pyrenaica presenta el hocico menos acuminado, la mancha temporal no tan
conspicua, el timpano mäs pequeño (Tabla II), la coloraciôn de la garganta menos oscura y
sin linea media clara. En relaciôn a la longitud del cuerpo el tercer dedo de la mano es mâs
corto, el antebrazo es mäs largo, el primer y segundo dedos del pie son proporcionalmente de
menor talla, el talôn tiende a ser mayor y la distancia interorbitaria es menor (Tabla Il).
Lamentablemente, los estudios sobre reproducciôn y desarrollo embrionario de R. iberica
son muy escasos (CRESPO & C1, 1973) e impiden un anälisis comparativo.
Respecto a R. dalmatina, el anuro aqui descrito presenta talla mâs pequeña, mayor se-
paraciôn entre el borde anterior de ambos ojos, orificios nasales mâs separados entre si,
mayor distancia entre orificio nasal y borde distal del ojo, diâmetro timpänico mucho me-
nor, mancha temporal menos conspicua, parte inferior del iris mâs clara (ver DuBois,
1984b), hocico menos acuminado, tercer dedo de la mano mäs corto, menor longitud del
muslo, de la tibia, del pie y del talén, el cuarto dedo del pie mâs corto y, en general, aspecto
del cuerpo menos robusto (Tabla IV). Las puestas contienen menor nümero de huevos. Por
otra parte, R. pyrenaica tiene häbitos mâs acuâticos. Hasta la fecha no se ha comprobado la
presencia de R. dalmatina en los Pirineos, si bien se ha citado repetidamente en la literatura
(DesPax, 1941; BECK, 1942, 1943; ANGEL, 1946, 1947; Hvass, 1972).
El hallazgo, en Europa, de una especie vertebrada completamente nueva para la
ciencia con caracteres morfolégicos que permiten distinguirla en el campo (sin necesidad
de recurrir a técnicas mâs complejas de laboratorio), no deja de ser un hecho sorprendente
en nuestros dias.
RESUMEN
El articulo describe un nuevo anuro, Rana pyrenaica, hallado en la zona periférica del
Parque Nacional de Ordesa y Monte Perdido (Huesca, España). Es una rana parda grâcil,
Source : MNHN, Paris
14 ALYTES 11 (1)
ägil, de mediana talla, coloracin normalmente clara, timpano pequeño, orificios nasales
separados, patas relativamente largas, segundo dedo del pie corto, häbitos torrenticolas y
que suele frecuentar aguas claras, frias, oxigenadas y mâs o menos râpidas, refugiändose
bajo piedras o en pequeñas fisuras. En la mayoria de los casos es simpätrica con Euproctus
asper y en ciertas ocasiones con Rana temporaria. Su morfologia y ecologia le distinguen
de R. temporaria, R. iberica y R. dalmatina. Su reparticiôn se circunscribe, hasta la fecha,
a la vertiente española del Pirineo centro-occidental.
AGRADECIMIENTOS
El autor agradece la colaboraciôn prestada por el Dr. E. BALCELLS, tanto a nivel de prospecciones
de campo, como en seguimientos de desarrollo larvario en el laboratorio. Cabe agradecer también al
Prof. A. Dumois sus inestimables consejos e informaciones facilitadas, asi como reconocer el tiempo
dedicado por A. OHLER, J. MAGRANER y R. BOUR a proporcionar material de comparaciôn,
informaciôn bibliogräfica e informätica. Expresar igualmente gratitud, por el soporte logistico de toda
indole, al Laboratoire d'Ecologie de l'Ecole Normale Supérieure (CNRS URA-258) y en particular
al Prof. R. BARBAULT. À B. AMENGUAL, M. Lopez, C. PEDROCCHI, L. MAS y J. E. GOMEZ agradecer
su colaboraciôn en la labor de campo. Finalmente, citar al P. N. de Ordesa y a la Diputaciôn General
de Aragôn los cuales facilitaron el apoyo logistico que permitiô el hallazgo de R. pyrenaica y al
Ministerio de Educacin y Ciencia (becas posdoctorales de formaciôn en el extranjero) y a la
Comunidad Europea (Human Capital and Mobility Programme, Community training project)
quienes financiaron parte de su ulterior estudio. La sede operativa de la investigaciôn tuvo lugar en
el Centre d'Ecologie Montagnarde de Gabas (Université de Bordeaux I).
LITERATURA CITADA
ANDRADA, J., 1980. — Guia de campo de los anfibios y reptiles de la Peninsula Ibérica. Barcelona,
Omega: 1-159.
ANGEL, F., 1946. — Faune de France. 45. Reptiles et amphibiens. Paris, Librairie de la Faculté des
Sciences: 1-204.
— 1947. — Vie et mœurs des amphibiens. Paris, Payot: 1-317.
ARNOLD, E. N. & BURTON, J. A., 1978. — Tous les reptiles et amphibiens d'Europe en couleurs.
Paris-Bruxelles, Elsevier Séquoia: 1-271.
BALCELLS, E., 1956. — Estudio morfolégico, biolôgico y ecolôgico de Rana temporaria, L. Publ. Ins.
Biol. apl., 1-121.
Beck, P., 1942. — Quelques remarques sur la faune batrachologique du département des
Hautes-Pyrénées. Bull. Soc. zool. Fr., 67: 85-87.
En 1943. — Note préliminaire sur la faune herpétologique des Hautes-Pyrénées. Bull. Sect. sci. Soc.
Acad. Hautes Pyrénées, 1: 48-57.
BEGON, H., HARPER, J. L. & TOWNSEND, C. R., 1988. — Ecology: individuals, populations and
il Barcelona, Omega: 1-886.
BELLOC, E., 1893. — Utilisation des cuvettes lacustres pyrénéennes pour la pisciculture. C. r. Assoc.
Jr. Av. Sci, 21 (2): 516-522.
BERTRAND, À. & CROCHET, P.-A., 1992. — Amphibiens et reptiles d'Ariège. Clermont, Association des
Naturalistes de l'Ariège: 1-137.
Bosc, E. & CASANOVES, E., 1918. — Una nueva forma de anfibio urodelo (Molge Bolivari). Bol. r.
Soc. esp. Hist. nat., 18: 58-61.
BOULENGER, G. A., 1879. — Étude sur les Grenouilles rousses Ranae temporariae et description
d'espèces nouvelles ou méconnues. Bull. Soc. zool. Fr., 4: 158-193.
- 1898. — The tailles batrachians of Europe. Part II. London, Ray Society: 211-376.
- 1910. — Les batraciens, et principalement ceux d'Europe. Paris, Doin: 1-305.
Source : MNHN, Paris
SERRA-COBO 15
CASTANET, J., (ed.), 1978. — Atlas préliminaire des reptiles et amphibiens de France. Montpellier,
Société Herpétologique de France: 1-137.
CASTANET, J. & GUYÉTANT, R., (eds.), 1989. — Atlas de répartition des amphibiens et reptiles de France.
Paris, Société Herpétologique de France: 1-191.
Crespo, E. G. & Cri, J. M., 1973. — El ciclo espermatogenético potencialmente continuo de Rana
iberica en Portugal y el interés de su estudio en äreas pirenaicas de simpatria con Rana
temporaria. Pirineos, 110: 47-49.
DELAUGERRE, M. & DuBois, A., 1985. — La variation géographique et la variabilité intrapopula-
tionnelle chez Phyllodactylus europaeus (Reptilia, Sauria, Gekkonidae). Bull. Mus. nan. Hist.
nat. (4), 7 (A): 709-736.
Despax, R., 1941. — Notes batrachologiques. IV. Présence, dans les Pyrénées, de Rana agilis et de
la forme typica de Salamandra maculosa. Bull. Soc. Hist. nat. Toulouse, 76: 91-92.
DoTTRENS, E., 1963. — Batraciens et reptiles d'Europe. Neuchâtel, Delachaux & Niestlé: 1-261.
Duois, A., 1982a. — A propos de l’article de G. H. Parent sur la répartition des amphibiens et
reptiles en France. A/ytes, 1: 12-15.
À, 1982b. — Notes sur les grenouilles brunes (groupe de Rana temporaria Linné, 1758). I.
Introduction. Alytes, 1: 56-70.
es 1983. — Notes sur les grenouilles brunes (groupe de Rana temporaria Linné, 1758). II. Les
grenouilles du Mont Canigou (Pyrénées Orientales). Alytes, 2: 19-26.
—. 1984a. — Sample-size constraints in the use of the nonparametric Mann-Whitney U test for the
comparison of two independent samples: consequences in anuran amphibians systematics.
Alytes, 3: 20-24.
eu 1984b. — Notes sur les grenouilles brunes (groupe de Rana temporaria Linné, 1758). III. Un
critère méconnu pour distinguer Rana dalmatina de Rana temporaria. Alytes, 3: 117-124.
ESTEBAN, M., 1990. — Evoluciôn del género Rana en la Peninsula Ibérica: estudio de la variabilidad
morfolôgica y genética del complejo Rana temporaria L. Tesis Doctoral, Dep. Biologia Animal
1, Fac. Ciencias Biolôgicas, Universidad Complutense Madrid: 1-211, anexo.
FRETEY, J., 1975. — Guide des reptiles et batraciens de France. Paris, Hatier: 1-238.
HALDANE, J. B. S., 1955. — The measurement of variation. Evolution, 9: 484.
Hvass, H., 1972. — Reptiles and amphibians in colour. London, Blandford Press: 1-153.
Lanrz, L. A., 1927. — Quelques observations nouvelles sur l'herpétologie des Pyrénées centrales.
(Suite). Rev. Hist. nat. appl., 8: 54-61.
MALUQUER, J., 1916. — Noves herpetolôgiques. Bull. Inst. cat. Hist. nat., 13: 111-119.
MARTÎNEZ-RICA, J. P., 1983. — Atlas herpetolôgico del Pirineo. Munibe, 35: 51-80.
MARTINEZ-RICA, J. P. & REINÉ-VINALES, A., 1988. — Altitudinal distribution of amphibians and
reptiles in the Spanish Pyrenees. Pirineos, 131: 57-82.
MERTENS, R. & WERMUTH, H., 1960. — Die Amphibien und Reptilien Europas. (Dritte Liste, nach dem
Stand vom 1. Januar 1960). Frankfurt, Kramer: 1-264.
OuLer, À. & KAzADI, M., 1990. — Description d’une nouvelle espèce du genre Aubria Boulenger,
1917 (Amphibiens, Anoures) et redescription du type d’Aubria subsigillata (A. Duméril, 1856).
Alytes, 8: 25-40.
PaReNT, G. H., 1981. — Matériaux pour une herpétofaune de l'Europe occidentale. Contribution à
la révision chorologique de l’herpétofaune de la France et du Bénélux. Bull. Soc. linn. Lyon, 50:
86-111.
PLANTADA Y FONOLLEDA, V., 1903. — Vertebrats del Vallès. Catäleg dels observats en aquesta
comarca. Bull. Inst. cat. Hist. nat., 3: 111-118.
SAGARRA, I. DE, 1916. — Donatius per al Museu. Butll. Inst. catal. Hist. nat., 13: 108.
SALVADOR, A., 1974. — Guia de los anfibios y reptiles esparñoles. Madrid, Instituto Nacional para la
Conservaciôn de la Naturaleza: 1-282.
SIEGEL, S., 1985. — Estadistica no paramétrica aplicada a las ciencias de la conducta. Barcelona, Trillas:
1-344.
Corresponding editor: Alain DuBois.
© ISSCA 1993
Source : MNHN, Paris
Alytes, 1993, 11 (1): 16.
Application for membership of ISSCA
and/or subscription to Alytes
NAME:
Forenames:
Address:
Date of birth:
Nationality:
Profession:
Centers of interest:
Application for: [] Membership of ISSCA
© Subscription to Alytes
Amount paid:
Mode of payment:
Date: Signature:
Send this application to: ISSCA, Laboratoire des Reptiles et Amphibiens, Muséum national
d'Histoire naturelle, 25 rue Cuvier, 75005 Paris, France.
© ISSCA 1993
Source : MNHN, Paris
Alytes, 1993, 11 (1): 17-24. 17
Growth and maturity of brown frogs,
Rana arvalis and Rana temporaria,
in central Poland
Leszek BERGER & Mariusz RYBACKI
Research Center for Agricultural and Forest Environment,
Polish Academy of Sciences, Bukowska 19, 60-809 Poznañ, Poland
Growth of two brown frog species, Rana arvalis and Rana temporaria, was
studied in nature and in captivity. In both species, growth was fastest in the
first two years, maturity was reached in the second year, and gametes were
released after the second hibernation. Individuals of Rana arvalis matured
earlier than those of Rana temporaria, and in some males of Rana arvalis the
sexual features were visible already before the first hibemation.
INTRODUCTION
The two species of brown frogs Rana temporaria and Rana arvalis belong to the
common amphibians in central Europe. Data on their growth and sexual maturity are
numerous, but opinions on this subject are controversial. KRIVOSHEYEV, OPENKO &
SHABANOVA (1960) suggested that they grow most rapidly in the third (Rana arvalis) or in
the fourth year (Rana temporaria), that is, in the year of reaching maturity. Most other
authors state that they grow very quickly in the first and in the second year, whereas
growth decreases after maturation (GIsLÉN & KAURI, 1959; KLEINENBERG & SMIRINA, 1969;
TOMASIK, 1969; VAN GELDER & OOMEN, 1970; LOMAN, 1978; GIBBONS & McCARTHY, 1984;
CHMELEVSKAJA, 1985; RysEr, 1988; among others). They report that the frogs can reach
maturity between the second and the fourth year of their lives and release gametes for the
first time after two to four hibernations.
In 1965 we found a surprisingly small adult Rana arvalis male (37.5 mm, snout-vent
length) in a breeding aggregation, and in 1977 we caught a very small female of Rana
arvalis (39.5 mm) in amplexus, which subsequently laid 404 eggs in an aquarium. These
data prompted us to observe brown frogs more precisely.
In the present paper we review available data and compare them with our results,
which suggest that growth and sexual maturity in these frog species depend not only on
geographical distribution, but also on environmental conditions.
Source : MNHN, Paris
18 ALYTES 11 (1)
MATERIAL AND METHODS
This paper on brown frogs arose as a by-product during the study of European water
frogs (BERGER & BERGER, 1992). The observations are not homogeneous, because they
were carried out in different years (1963-1989), on different populations and in various
environments. The study areas are situated within the drainage of the Warta river in
central Wielkopolska. This region forms a rather homogeneous geographical and climatic
unit (BARTKOWSKI, 1970).
Newly metamorphosed froglets of both species, which are the most common
amphibians in the region (BERGER, 1987), were gathered near water bodies in which they
lived as tadpoles. Individuals were killed and preserved in 3% formaldehyde. They
originated from the vicinity of Poznañ and the Biological Field Station of our Institute in
Turew (about 40 km south of Poznañ), and from Jask6iki near Ostréw Wielkopolski
(about 100 km south-east of Poznan). In two localities the froglets were gathered every two
or three weeks, in the others they were caught during researches of water frogs. We were
not able to gather any data on older brown frogs in nature, because we did not mark them
and it was not possible to estimate their age by their body length.
During some years froglets were reared in captivity. The frogs were measured with an
accuracy of 0.1 mm (snout-vent length) after capture and later on every spring until their
death; some were measured twice in a year (fig. 2). We marked them collectively or
individually by toe-clipping. In 1986, about 20,000 tadpoles of Rana arvalis were put into
10 basins which contained 200-350 1 of water with plants and mud from a pond. The basins
were located in a fenced enclosure of 10 X 10 m in a garden. These tadpoles and frogs
never received any special food during their life-time. It was much easier to keep Rana
arvalis than Rana temporaria. Froglets of the former species were more vital and usually
survived some years in captivity, whereas those of the latter usually perished before or
during the first hibernation.
RESULTS
GROWTH OF FROGS IN NATURE
After metamorphosis, the body length of Rana arvalis and Rana temporaria froglets
was rather similar and averaged about 14-16 mm in the studied localities (fig. 1). In
autumn, individuals of Rana temporaria were much larger than those of Rana arvalis: the
first reached about 35 mm (range 24-42 mm), and the second about 24 mm (range 16-32
mm) in body length. In other localities their body length in autumn was as follows: in
Stawa Wielkopolska near Poznañ (Sept. 14, 1962), Rana arvalis measured 17.2-30.2 mm
(mean 22.45, N = 53), and Rana temporaria 17.8-32.0 mm (mean 24.10, N = 19); in
Zbechy near Turew (Sept. 7, 1978), Rana arvalis measured 22.7-34.0 mm (mean 28.10, N
= 17), and Rana temporaria 24.3-42.5 mm (mean 34.20, N = 28).
Source : MNHN, Paris
BERGER & RYBACKI 19
mm
4 À L B
Rt
30} L
Ra
20] L
10 L
ñ A à Es à
J À s nn A SSES
month
Fig. 1. — Growth of brown frogs in nature. (A) Rogaczewo near Turew, 1978: Rt, Rana temporaria
(N = 59); Ra, Rana arvalis (N = 130); (B) Poznañ-Naramowice, 1963: Rana arvalis (N = 512).
Mean values of body length are joined by lines, extreme sizes of froglets are indicated by vertical
bars.
Froglets after first hibernation were collected in two localities. In Rogaczewo (May
5, 1978), we gathered 66 froglets of Rana arvalis with body length of 18.7-31.0 mm (mean
25.12; see fig 1), and in Turew park (April 20, 1980), we caught froglets of both species:
Rana arvalis measured 29.0-40.0 mm in body length (mean 35.70, N = 3), and Rana
temporaria 36.0-52.0 mm (mean 44.40, N = 65).
GROWTH OF FROGS IN CAPTIVITY
Froglets from nature (fig. 2)
The froglets from Jaskôïki which were caught in autumn (Sept. 5, 1988) were marked
individually, and the others which were caught during metamorphosis were marked
collectively. The following year, initially smaller individuals grew more rapidly than larger
ones (Table I).
In summer after the first hibernation the sexual features appeared in all surviving
frogs of both species, and after the second hibernation all frogs that were left released
gametes. The three females of Rana arvalis from Poznañ-Junikowo measured 41.5, 42.6
and 46.5 mm in body length and laid 141, 168 and 728 eggs respectively; those from
Zbechy measured 44.0, 49.5, 52.0 and 58.0 mm in body length and laid 692, 1077, 1434
and 2055 eggs respectively.
Source : MNHN, Paris
20 ALYTES 11 (1)
80}
R.arv. R.tem.
70f
years
Fig. 2. — Growth of brown frogs in captivity.
R. arv., Rana arvalis from: (a) Zbechy near Turew, 1978 (N = 26); only two individuals survived
the fifth hibernation; (b) Poznañ-Junikowo, 1970 (N = 32); only two frogs survived the
third hibernation; (c) Jaskôiki near Ostrow Wielkopolski, 1988 (one female only).
R. tem., Rana temporaria from: (a) Jaskôki near Ostrôw Wielkopolski, 1988 (N = 20); 11 frogs
survived the first hibernation; (b) Poznañ, 1974 (N = 30); only five frogs survived the
second hibernation.
Individuals of Rana arvalis from Poznañ-Junikowo and Rana temporaria from Poznañ were
measured twice in the second season. Individuals from Jaskôïki were removed from the
rearing area on July 30.
Among Rana temporaria from Poznañ only one female of 63.0 mm body length laid
972 eggs spontaneously with the only male which survived the winter. The other three
females with body length of 56-58 mm were caught and after dissection we found mature
ova in their ovisacs which were ready to be shed (627, 730 and 821 eggs).
The mean body length of Rana arvalis from Poznañ-Junikowo reached 29.9 mm after
the first hibernation, 42.3 mm in July, and 44.0 mm in the spring of the next year; this
Source : MNHN, Paris
BERGER & RYBACKI 21
Table I. — Growth of Rana temporaria individuals in captivity. The frogs are arranged
according to body length at the day of capture in Jask6iki near Ostréw Wielkopolski.
Females Males
No. Body length Growth No. Body length Growth
offrog Sept. 51988 July 30 1989 mm % offrog Sept. 51988 July 30 1989 mm %
16 272 650 37.8 139 14 25.0 550 300 120
20 218 760 482 174 21 252 630 370 147
2 28.0 710 430 154 27 37.8 770 392 104
15 32.0 710 390 122 13 39.5 610 27.5 70
24 340 680 340 100 23 40.0 660 260 65
26 363 715 352 97 le. ni r
_ Means 309 704 39.5 131 35.5 656 319 101
means that within the first period they grew about 12.4 mm and in the second only 1.7 mm.
The Rana temporaria from Poznañ grew in a similar way. They averaged 37.0 mm in body
length after the first hibernation, 51.0 mm on June 12, and 58.5 mm in the spring of the
next year. Within the first period they grew about 22.6 mm and in the second only
14.0 mm.
Froglets from tadpoles reared in captivity
On April 4, 1986, we brought 23 clumps of spawn of Rana arvalis from
Poznañ-Naramowice pond, which contained 1171-2563 eggs (mean 1737). Sixteen clumps
were kept in containers outdoors, the others in the laboratory. During their development
the temperature decreased to 5°C below zero at night. Percentage of embryos which
reached tadpole stage was as follows: in the laboratory 78.6-97.2 % (mean 88.2 %), and
outdoors 8.5-88.1 % (mean 38.1 %). AII tadpoles were mixed and distributed into basins
in the enclosure in Jaskolki in which there were no brown frogs before. The first
metamorphosed individuals appeared on June 2, but in July tadpoles could still be seen in
basins. At the end of September we caught three froglets (40-45 mm in body length) with
typical male features (blue colour and nuptial pads).
The following year, the frogs formed a breeding aggregation in the largest basin, but
by the end of April there were no eggs. In the basin we found 14 adult Rana arvalis males
with 40.0-48.6 mm in body length (mean 44.8), but there were no females. Juvenile
individuals were also found in the rearing area: 23 females with body length of 19.0-42.8
mm and 14 males with body length of 15.5-39.5 mm. The ovaries of these females were in
bud stage, and in the testes of some juvenile males (33.0-39.5 mm in body length) moving
spermatozoa were present.
Source : MNHN, Paris
2 ALYTES 11 (1)
DISCUSSION
The period of metamorphosis of tadpoles of Rana arvalis and Rana temporaria, which
are explosive early spring breeders, is usually very short (VAN GELDER & OOMEN, 1970;
Ryszkowski & TRUSZKOWSKI, 1975). This suggests that individuals of these species should
form compact age groups (KRIVOSHEYEV, OPENKO & SHABANOVA, 1960; GAJZAUSKIENE,
1966; HEUSSER, 1970). However, their growth rates in nature (VAN GELDER & OOMEN,
1970; LomAN, 1978; CHMELEVSKAIA, 1985; fig. 1) and in captivity (SMIRINA, 1980, 1986) are
quite variable and opinions on their age and sexual maturity are often contradictory.
The data of VAN GELDER & OOMEN (1970) and LoMaAN (1978), and our results suggest
that in nature only the yearlings can be identified by body length, whereas the division of
older frogs into age classes is impossible by body length alone. KLEINENBERG & SMIRINA’S
(1969) skeletochronological studies corroborate this conclusion. They found that individ-
uals of Rana temporaria caught near Moscow in June formed three size classes, but only
one class which contained the smallest individuals (after the first hibernation) was
homogeneous, whereas the other two classes contained individuals which were 2-9 years
old. Other authors (MINA, 1974; ISHCHENKO & LEDENTZOV, 1985, 1986) obtained similar
results.
Our observations show that individuals of both species grew most rapidly at the
beginning of the second season (May-June; fig. 2, Table I), or before reaching maturity.
Within yearlings of Rana temporaria in the Wielkopolska region, however, we observed
considerable differentiation in autumn. Their mean body length ranged from 24.10 mm in
Slawa Wielkopolska to 44.40 mm in Turew (see SMIRINA, KLEVEZAL & BERGER, 1986). The
conditions in our rearing area, in which the yearlings reached intermediate body lengths
(fig. 1-2), are therefore likely to have been close to those in nature. To this extent, our
observations on frogs in captivity can be compared with those obtained by others in wild.
Our data with regard to sexual maturity are also not always in agreement with other
authors. Opinions on this problem are differentiated and data which are reported by many
authors refer mostly to Rana temporaria.
According to GiBBoNs & McCaARTHY (1984), in west Ireland most of the individuals
in the breeding aggregations of Rana temporaria were two years old frogs (84 % of the
males and 52 % of the females). In Britain also numerous such frogs were found in the
breeding time (BEEBEE, 1980; CookE, 1981). However, near Moscow in Russia (CHME-
LEVSKAJA, 1985), near Berne in Switzerland (RYsER, 1986, 1988) and in southern Sweden
(Lomaw, 1976, 1978) so young individuals were extremely rarely present in breeding
aggregations. Some others suggest that individuals of this species reach maturity in the
third (HeUSsER, 1970; Mina, 1974) or in the fourth year (KLEINENBERG & SMIRINA, 1969).
In our rearing (fig. 2, Table I), however, Rana temporaria reached maturity during the
second season and after the second hibernation released gametes as two years old frogs.
These results corroborate ToMasik’s (1969) opinion on Polish Rana temporaria.
The data on Rana arvalis are very scanty. ISHCHENKO & LEDENTZOV (1985, 1986)
found that in the breeding populations near Svierdlovsk in Russia only few individuals
Source : MNHN, Paris
BERGER & RYBACKI 23
(about 1 %) were two years old. Tomasik (1969) also supposes that in Poland Rana arvalis
can reach maturity in the second year. According to our results all individuals of Rana
arvalis in rearing reached maturity in the second season. Other authors suggested,
however, that individuals of this species mature later: in southern Sweden in the third or
in the fourth year (LOMAN, 1976, 1978), and in the Netherlands in the third year (VAN
GELDER & OOMEN, 1970). The latter authors report, however, that at the end of the second
season most frogs had more than 40 mm in body length and at that time it was possible
to distinguish males from females. This statement suggests that such frogs were mature and
took part in the breeding aggregations as two years old animals.
The growth of Rana arvalis and Rana temporaria froglets in the first year is highly
differentiated not only in Sweden (LOMAN, 1976, 1978), but also in the Netherlands (VAN
GELDER & OOMEN, 1970), in Russia (CHMELEVSKAYA, 1985) and in Poland. Near Poznañ
in every locality and nearly in every sample, including froglets after the first hibernation,
there were very large and very small individuals. The situation was, however, reversed in
the second year of their life: the growth of small froglets was much faster than that of large
ones (Table I; see also VAN GELDER & OOMEN, 1970). Similar observations which are
consistent with the “compensation growth phenomenon” in animals (MINA & KLEVEZAL,
1976) have been observed in some other anuran species (JAMESON, 1956; BERGER, 1970;
PLyrycz & BiGaï, 1985; BERGER & RyBACKI, unpublished data), which suggests that this
phenomenon may be rather common in Amphibia.
ACKNOWLEDGMENTS
The authors are grateful to Dr. H. HoTz for reading the manuscript and profitable discussion on
some problems, to Dr. G. GOLLMANN for his valuable suggestions in preparing the manuscript to
press, and to Zygmunt PNIEWSKkI for his assistance in the laboratory work.
LITERATURE CITED
BARTKOWSKI, T., 1970. — Wielkopolska i Srodkowe Nadodrze. [In Polish]. Warszawa, PWN: 1-384.
BEEBEE, T. J. C., 1980. — Amphibian growth rates. Brit. J. Herpet., 6: 107.
BERGER, L., 1970. — Some characteristics of the crosses within Rana esculenta complex in postlarval
development. Ann. Zool., 27: 373-416.
S 1987. — Impact of agriculture intensification on Amphibia. /n: J. J. VAN GELDER, H. STRUBOSCH
and P. J. M. BERGERS (eds.), Proc. Fourth Ord. Gen. Meet. SEH, Nijmegen 1987: 79-82.
BERGER, L. & BERGER, W. A., 1992. — Progeny of water frog populations in central Poland.
Amphibia-Reptilia, 13: 135-146.
CHmeLEvskAIA, L. V., 1985. — Individualnoje mecenie travjanych lagusek (Rana temporaria), rost i
ispolzovanie teritorii. [In Russian]. Voprosy Gerpetologi. VI Vsesoj. Gerpet. Konjer., Taskent
18-20 IX 1985: 219-220.
CookE, A. S., 1981. — Amphibian growth rates. Brit. J. Herpet., 6: 179-180.
GAIZAUSKIENE, L. L., 1966. — Materialy po vozrostnomu sostavu populacii travianoj ljaguski (Rana
temporaria) Litovskoj SSR i jejo morfologii. [In Russian]. Trudy Akad. Nauk Litovskoj SSR,
(5), 1 (39): 91-96.
Source : MNHN, Paris
24 ALYTES 11 (1)
Gros, M. M. & McCarTHy, T. K., 1984. — Growth, maturation and survival of frogs Rana
temporaria L. Holarctic Ecology, 7: 419-427.
Giscén, T. & KAURI, H., 1959. — Zoogeography of the Swedish amphibians and reptiles with notes
on their growth and ecology. Acta Vertebratica, 1: 191-397.
Heusser, H., 1970. — Ansiedlung, Ortstreue und Populationsdynamik des Grasfrosches (Rana
temporaria) an einem Gartenweïher. Salamandra, 6: 80-87.
ISHCHENKO, V. G. & LEDENTZOV, A. V., 1985. — Vnutripopulacjonnaja izmencivost vozrastnoj
truktüry u ostromordoj laguski (Rana arvalis). [In Russian]. Voprosy Gerpetologi. VI Vsesoj.
Gerpet. Konfer., Taskent 18-20 IX 1985: 89-90.
1986. — Dynamics of age structure in a population of the moor frog, Rana arvalis Nilss. In: Z.
Roëex (ed.), Studies in herpetology, Prague: 503-506.
JAMESON, D. J., 1956. — Growth, dispersal and survival of the Pacific tree frog. Copeia, 1956: 25-29.
KLEINENBERG, S. & SMIRINA, E., 1969. — A contribution to the method of age determination in
amphibians. [In Russian]. Zoo!. Zhur., 48: 1090-1094.
KRIVOSHEYEV, V. G., OPENKO, Z. M. & SHABANOVA, E. V., 1960. — Contribution to the biology of
Rana temporaria L. and R. terrestris Andrz. [In Russian]. Zool. Zhur., 39: 1201-1207.
LoMaAN, J., 1976. — Growth in Rana temporaria and R. arvalis. Norw. J. Zool., 24: 232-233.
--- 1978. — Growth of brown frogs Rana arvalis Nilsson and R. temporaria L. in South Sweden.
Ekol. Pol., 26: 287-296.
Mina, M. V., 1974. — Age organization of breeding group of Rana temporaria in a small pond in
the Moscow district. [In Russian]. Zoof. Zhur., 53: 1826-1832.
Mina, M. V. & KLEVEZAL, G. A., 1976. — Rost zivotnych. [In Russian]. Moskow, Ser. Problemy
biologii rozvitja, Nauka: 1-291.
Pryrycz, B. & BiGas, J., 1984. — Preliminary studies on the growth and movements of the
yellow-bellied toad, Bombina variegata (Anura: Discoglossidac). Amphibia-Reptilia, 5: 81-86.
RYSsER, J., 1986. — Altersstruktur, Geschlechterverhältnis und Dynamik einer Grasfrosch-Population
(Rana temporaria L.) aus der Schweiz. Zool. Anz., 217: 234-251.
_—— 1988. — Determination of growth and maturation in the common frog, Rana temporaria, by
skeletochronology. J. Zool., Lond., 216: 673-685.
Ryszkowski, L. & TRUSZKOWSkI, J., 1975. — Estimation of the abundance and biomass of
transformed amphibians in a field pond. Bull. Acad. pol. Sci., ser. Biol., 23: 109-113.
SMIRINA, E. M., 1980. - On growth rate and survival of common frogs (Rana temporaria) during the
first years of life. [In Russian]. Zoo!. Zhur., 59: 1831-1840.
_—— 1986. — Some results of the studies of growth in Anura. Jn: Z. ROëEK (ed.), Studies in
herpetology, Prague: 263-266.
SmiriNA, E. M., KLEVEZAL, G. A. & BERGER, L., 1986. — Experimental investigation of the annual
layer formation in bones of amphibians. [In Russian]. Zool. Zhur., 65: 1526-1534.
Tomasik, L., 1969. — The body sizes of adult gras frog (Rana temporaria temporaria L.) and field
frog (R. arvalis arvalis Nilss.). [In Polish]. Przeglad Zool., 13: 94-98.
VAN GELDER, J. J. & OoMEN, H. C. J., 1970. — Ecological observations on Amphibia in the
Netherlands. I. Rana arvalis Nilsson: reproduction, growth, migration and population
fluctuations. Netherl. J. Zool., 20: 238-252.
Corresponding editor: Günter GOLLMANN.
© ISSCA 1993
Source : MNHN, Paris
Alytes, 1993, 11 (1): 25-35. 25
Skin morphology in larval,
paedomorphic and metamorphosed
Alpine newts, Triturus alpestris apuanus
Franco ANDREONE*, Bruno DORE**,
Pasquale Usai** & Adriana PARANINFO**
* Museo regionale di Scienze naturali, Sezione di Zoologia,
via Giovanni Giolitti 36, 10123 Torino, Italy
** Dipartimento di Biologia animale, Università degli Studi di Torino,
via Accademia Albertina 17, 10123 Torino, Italy
Histological data on the skin of larval, paedomorphic and metamorphosed
specimens of the Alpine newt, Triturus alpestris apuanus, have been
and compared with natural history infonmation. The skin of early larvae is
composed of a few cell layers and contains Leydig cells, but lacks exo-
epithelial dermal glands, which appear later during the premetamorphic stage.
In metamorphosed news the skin is typically multilayered and cornified, with
abundant mucous and serous glands. The situation in paedomorphics, which
are branchiate and live in water, is variable: in some cases (corresponding to
immature “giant larvae”’), the skin presents larval aspects (Leydig cells are
present), while in others (usually sexually active and paedogenetic individuals)
it is similar to that of metamorphosed newts. Thus metamorphosis in
paedomorphic newts is not abandoned, but only delayed. The result is a
mosaic of larval and metamorphosed characteristics, which can be related to
the highly plastic ecology of these newts.
INTRODUCTION
The typical life cycle of urodeles is amphibious, with aquatic larvae and metamor-
phosed individuals living in a terrestrial habitat. Nevertheless, paedomorphism (sensu
Dusois, 1987, or neoteny, sensu BREUIL, in press, understood as the retardation in the
development of somatic and/or gonadal features or as the achievement of the sexual
maturity while retaining larval-juvenile characters) often occurs. Paedomorphic newts have
external gills, reach a greater size than larvae, and are totally aquatic. The causes of
paedomorphism are not well known, although ecological constraints are often invoked
(WizBur & CoLLins, 1973). Among the European urodeles, the Alpine newt, Triturus
alpestris (Laurenti, 1768), throughout its range and involving most subspecies, shows a
high incidence of paedomorphism. Recently, as a part of a wider study of paedomorphism
in Italian Alpine newt populations (ANDREONE & Dore, 1991), some preliminary
hypotheses on the ecological basis of the phenomenon were formulated; moreover,
Source : MNHN, Paris
26 ALYTES 11 (1)
information has been gathered on variations in the histology of thyroid glands and gonads
of paedomorphic and metamorphosed individuals (ANDREONE, DORE & Usa, 1991). In the
present paper, as a complement, data on skin morphology during the life cycle are
presented, taking into account that the amphibian integument witnesses the changes from
an aquatic to a terrestrial habitat, acting as a medium for ionic exchange (DUELLMAN &
TRUEB, 1986; Lopi et al., in press).
MATERIAL AND METHODS
The population studied (which belongs to the subspecies Triturus alpestris apuanus),
inhabits an artificial temporary pond located between the towns of Murazzano and
Bossolasco (southern Piedmont, north-western Italy), at an altitude of about 700 m, with
a surface area of about 100 m? and a maximum depth of 1.5 m. No aquatic vegetation
(except Chara algae) is present, while other amphibians living there are the common frog
(Rana temporaria) and the common toad (Bufo bufo). The climate of the area is
Mediterranean (MENNELLA, 1967), with maximum rainfall in May and November. In this
site a remarkable number of aquatic newts are found in the water throughout the year,
even during non-reproductive periods.
Each month, from January 1988 to December 1989, several aquatic newts were caught
by hand-netting (ANDREONE & DORE, 1992). The following categories were examined:
(1) Larvae, ie. branchiate individuals with a total length less than 40 mm, having a
brownish-greenish back, scattered darker spots, and a whitish belly (fig. 1). Sometimes two
age cohorts of larvae may co-exist in the same pond, resulting from two egg depositions
at different times during a year (ANDREONE & DORE, 1992).
(2) Metamorphosed, i.e. sexually mature newts. Such individuals court during the
breeding season, when they display secondary sexual characters (SSC), such as lateral
white stripes, extended dorso-caudal crests and swollen cloacae in males, and a swollen
abdomen and turgid cloaca in females (fig. 2). Although the metamorphosed aquatic
population is mainly represented by adults, juvenile specimens also are found; such
individuals are smaller than sexually mature individuals, do not show SSC and, in some
cases, have a light dorsal line.
(3) Paedomorphics (sensu lato), i.e. individuals with external gills (more or less
developed), larger body size than larvae and with a yellow-orange belly. We refer to
“neoteny” or “paedomorphism” according to KOLLMANN (1884a-c) and Dugois (1987):
“paedomorphic” to indicate branchiate newts without SSC and lacking the courtship
behaviour, corresponding to the “partial neotenic” (sensu BREUIL, in press) (fig. 3), and
“‘paedogenetic” (= “total neotenic”) to indicate the branchiate newts displaying courtship
behaviours and SSC (fig. 4).
After capture, newts were anaesthetized by immersion in a 0.5 % MS 222 Sandoz
solution. Some individuals were dissected to verify their gonadal status, and a portion of
their dorsal and ventral skin was cut off, fixed in cold buffered formalin, dehydrated, and
infiltrated overnight with a glycol metacrylate monomer (“Technovit 7100” Kulzer) in a
Source : MNHN, Paris
Fig. 1. — Larva of Alpine newt (Triturus alpestris apuanus),
characterized by external gills, continuous caudal crests, and
a light brownish scattered back.
Fig. 3. — Paedomorphic (partial neotenic and sexually immature
giant larva) Alpine newt, characterized by a general larval
aspect, undeveloped gonads and by the absence of evident
SsC.
Fig. 2. — Metamorphosed male of Alpine newt during the
breeding season, with well developed secondary sexual char-
acters (SSC), e.g. dorsal and caudal crests, white lateral
stripe, blue back coloration and swollen cloaca.
Fig. 4. — Paedogenetic (totally neotenic) adult male of Alpine
newt, with external gills and well developed secondary sexual
characters.
OANINVUVA # IVSN ‘HO ‘INOHHANY
Lt
Source : MNHN, Paris
28 ALYTES 11 (1)
ice bath. Polymerization was carried out at about 6-10°C to preserve enzymatic activities
(Dore & Usai, 1986; ANDREONE & DORE, 1992). Skin sections of 2 um were stained with
acid fuchsin-toluidine blue (DOUGHERTY, 1981), and with Burstone direct coupling method
of substituted naphtols contrasted with methyl green for Alkaline Phosphatase (APH)
activity (MaAZzi, 1977; LOYDA, GossRAU & SCHLEBER, 1979). APH activity may be
correlated with transcutaneous ionic transport (see Lopi et al., in press). Controls were
carried out in the absence of substratum.
RESULTS
LARVAE
The larval skin is composed of a few cell layers (three or four) lying on a dense layer
of dermis (“basement lamella”, Fox, 1977). In all specimens examined the epithelial basal
cells have an elongated nucleus, are irregular in shape, and penetrate with their apical part
among the overhanging Leydig cells. The latter cells, well known in larvae and neotenic
urodeles (see HAY, 1961; RAFFAELLI, 1989) have a poorly known function, but they
probably are glandular (Fox, 1988) and secrete mucus into subsurface extracellular
compartments of the epidermis (DUELLMAN & TRUEB, 1986). Leydig cells are large and
rounded, with a clear cytoplasm, PAS-positive granules and prominent nucleus, and they
occupy the entire epidermal thickness and press against the common epithelial cells with
their convex surface. We did not observe a general uniformity in the morphology and
disposition of cells in the skin of different larvae. However, in early larvae the Leydig cells
are disposed in two layers (basal and sub-apical) and contain abundant PAS-positive
granules, while in older larvae they form only one layer and have a scarce granulation. The
skin surface is not cornified, and is composed of one or two layers of flattened epithelial
cells, while isolated supporting cells are interposed among the underlying Leydig cells.
Neuromasts of the lateral line are constantly present. In early larvae the dermis is thin and
usually not invaded by glandular (serous and mucous) elements. In some large
premetamorphic larvae or in larvae becoming paedomorphic (see later), precocious gland
buds begin to differentiate (fig. 6). Low APH activity is seen, and — when visible — it is
localized in the most external epithelial cells, whereas it is totally lacking in the dermis,
except in the blood vessels of the subcutaneous layer.
METAMORPHOSED SPECIMENS
The epidermis of metamorphosed Alpine newts (either sexually mature or newly
metamorphosed) is similar to that described for Triturus carnifex (LoDi, 1968; Loni &
Bant, 1971), being about four to six cells thick. Migration of deep cells occurs towards the
surface. Cells of the basal or germinative layer are large and irregularly shaped, generally
columnar or cuboidal, and arrayed in a low palisade. Mitoses are often visible in the
germinative layer, and melanophores are commoner in the dorsal dermis than elsewhere,
but some scattered melanophores may be found in the dorsal epidermis (DUELLMAN &
TRUEB, 1986). Flask cells (involved in the sodium transport; see Fox, 1986a-b; ZACCONE
Source : MNHN, Paris
ANDREONE, DORE, USAI & PARANINFO 29
à LEON
Fig. 5. — Histological structure of the skin in an
Alpine newt larva. Two layers of Leydig
cells with PAS-positive granules are evi-
dent, together with plate superficial cells.
Toluidine blue coloration. The bar corre-
sponds to 10 pm.
Fig. 6. — Late larval skin, with Leydig cells, with
a dermal gland bud. Toluidine blue color-
ation. The bar corresponds to 10 um.
Fig. 7. — Histological structure of the skin in a
metamorphosed Alpine newt. Great exo-
epithelial glands are visible, together with
several cell layers and a cornified surface.
Toluidine blue coloration. The bar corre-
sponds to 10 pm.
Fig. 8. — Metamorphosed skin, with flask cells
shown by means of APH and Burstone’s
method of substituted naphtols contrasted
with methyl green. The bar corresponds to
10 pm.
Fig. 9. — Structure of the skin in a paedomor-
phic immature Alpine newt. Empty Leydig
cells (disposed in a single layer) with scarce
PAS-positive granules are visible. Mitoses
are evident in the cells among Leydig cells.
Toluidine blue coloration. The bar corre-
sponds to 10 um.
Fig. 10. — Skin of a paedogenetic Alpine newt:
the structure and morphology — even with
a reduced superficial cornification — is
similar to the metamorphosed one. Tolui-
dine blue coloration. The bar corresponds
to 10 pm.
Source : MNHN, Paris
30 ALYTES 11 (1)
et al., 1986) are distributed more or less regularly in the subcorneous layer (fig. 7). The skin
surface is cornified, with protruded warts, two or three flattened cells thick. Highly
developed mucous and serous glands are always evident in the spongy thick dermis just
below the epithelium either in the ventral or in the dorsal skin. In metamorphosed newts,
APH activity is similar in the dorsal and in the ventral skin, varying from low to moderate
in the cells of corneous and subcorneous layers, but lacking in the deepest layers. Flask
cells usually show an intense APH activity (fig. 8) in their neck region. In the dermis, a
high APH activity is evident, particularly in the blood vessels and around and inside the
glands.
PAEDOMORPHIC NEWTS
In paedomorphic newts, skin morphology is rather variable and not easily general-
ized. In animals showing non-functional gonads and without evident SSC, histological
organization is roughly intermediate between that of larval and metamorphosed skin. The
superficial cells are relatively loose (somewhere separated by empty spaces), neuromasts
can be seen (even if rarer than in larvae), large exo-epithelial glands are present, and
Leydig cells (FOx, 1988) are not so orderly as in larvae, have a lighter cytoplasm, scarce
granules. In these animals mitoses can be observed in cells interposed among Leydig cells
(fig. 9).
In some paedomorphic specimens (GABRION & SENTEIN, 1986), a mosaic situation can
be noticed: the Leydig cells are still present and abundant in some areas, while in others
they are absent. In other branchiate newts (sexually mature and paedogenetic), the skin is
highly similar to that of the metamorphosed ones, although with a lower surface
cornification (fig. 10). It is sometimes possible to observe empty spaces inside the
epithelium, probably derived from the degeneration of Leydig cells. APH activity in the
more superficial layers is usually scarce or even absent, whereas in the dermis it is localized
in the portion just below the basal layer of the epithelium and more evident around the
glands than elsewhere. Flask cells are present in a few paedogenetic specimens and show
a high APH activity in the portion superficial to the nucleus.
DISCUSSION
Analysis of the organization of skin of Alpine newts throughout the life cycle discloses
high variability from larvae to metamorphosed specimens. The skin of paedomorphic
specimens has a structure which varies from larval-like to metamorphosed-like organiza-
tion; sometimes the skin shows both larval characteristics (e.g. Leydig cells, neuromasts)
and metamorphosed characteristics (e.g. dermic glands, horny surface). This intermediate
situation is also evident in the activity of APH, as has been stressed by Lopi et al. (in
press). These data mainly agree with GABRION & SENTEIN (1976), who observed that
Leydig cells vary in number and shape from totally larval to late paedomorphic palmate
newts (Triturus helveticus), in which the skin closely resembles that of meta-
Source : MNHN, Paris
ANDREONE, DORE, USAI & PARANINFO 31
morphosed individuals. In late paedogenetic Alpine newts, the skin rearrangement extends
also to the empty spaces left by the disappearance of the Leydig cells. The mitoses
observed in the intermediate epithelium can be interpreted as part of a regenerative
process.
The variability reported suggests the persistence (and not the arrest) of metamorphic
phenomena even in paedomorphic Alpine newts, and stresses the difficulty in categorizing
branchiate newts. In fact, by external examination it is possible to observe sexually inactive
paedomorphic individuals which resemble larvae, and others (paedogenetic) which exhibit
a typical mating coloration (more visible in males), and are sexually active, behaving
during the courtship like the typical metamorphosed adults (ANDREONE, 1990; BOVERO,
1991). Natural history observations confirm that gill development and length vary among
paedomorphic individuals of the very same population and that these may — at a certain
moment of their life — metamorphose. Thus, it is not possible to consider the
paedomorphics as a whole and uniform category, because they are part of a continuum,
from larval to metamorphosed newts. In this sense it is worth reaffirming, in contrast to
MoLaA & BERTOLANI (1981), that the presence of Leydig cells is not a constant neotenic
character. Perhaps these authors analyzed the skin of larval-like paedomorphic newts
(giant overwintered larvae”) and not that of the typical paedogenetic newts. The
correlation between morphology and function of the skin has been pointed out by Lopi
et al. (in press): a typical larval organization (with Leydig cells) is characterized by the
absence of active sodium transport, that is evident when the epidermis acquires, at least
in part, the metamorphosed characteristics.
All these considerations indicate how the newt life cycle (and more particularly that
of Triturus alpestris) cannot be rigidly schematized, but that plasticity in life history
characteristics is itself adaptive. In fact, the highly aquatic Alpine newts synchronize their
permanence in the water both to altitude differences (and thus to the duration of their
breeding period) and to desiccation-rain alternation in unpredictable habitats (ANDREONE
et al., in press). An outline of the life history of Alpine newts is represented in fig. 11 —
to interpret the observations on skin morphology and on external features (modified from
VERRELL, 1985, DZuxié et al., 1991, and ANDREONE et al., in press). Typically, newts spend
the first part of their existence as aquatic larvae; thereafter metamorphosis induces some
drastic changes (e.g. in the skin structure) as the newts become terrestrial. Growth until
sexual maturity occurs on land (particularly when the breeding site is temporary), but
juveniles may return to water for non-reproductive reasons, as has been reported for other
species by VERRELL (1985) and ANDREONE & GIACOMA (1989). Nevertheless an alternative
strategy is observed in more stable habitats: adulthood is reached through a direct aquatic
development, and larvae may overwinter in the water (especially those hatched in autumn,
see ANDREONE & DORE, 1992), becoming paedomorphic juveniles. Later they may become
paedogenetic, thus displaying SSC and courtship patterns. Throughout this aquatic
development, skin morphology modifies, although the changes are not so drastic as in the
transformation from water to land in the typical life cycle. For this reason a mosaic
situation is seen, and neotenic individuals may present both larval and metamorphosed
characters. Nevertheless metamorphosis may occur any time in the aquatic development.
Thus, metamorphosed individuals found in the water may result either after growth in a
terrestrial habitat, or by transforming at various stages of their aquatic life, possibly on
Source : MNHN, Paris
32 ALYTES 11 (1)
ALPINE NEWT
LIFE CYCLE
LAND WATER
DISTINCTIVE
FEATURES
LARVAL SKIN WITH
LEYDIG CELLS
UNDEVELOPED GONADS.
SEXUALLY INACTIVE
EXTERNAL GILLS
PAEDOMORPHIC
SUBADULTS
TERRESTRIAL
SUBADULTS
PAEDOGENETIC
ADULTS
SECONDARY
SEXUAL CHARACTERS
MULTILAYERED AND
CORNIFIED SKIN
EXO-EPYTHELIAL
GLANDS
METAMORPHOSED MATURE AND
ADULTS Le FUNCTIONAL GONADS
COURTSHIP BEHAVIOUR
Fig. 11. — Outline of the life cycle in Triturus alpestris apuanus. The left part summarizes the passages
between water and land throughout growth and metamorphosis. The black arrows indicate
habitat changes, but do not suggest any preference, depending on the characteristics and
constraints of each individual and population. The right part summarizes some typical features
of the extreme categories of aquatic newts, from an early larval stage to a final paedogenetic-
metamorphosed phase. Grey arrows indicate the correspondence of phases and biological
features. Between these two extremes several intergrades are present. The distinctive features of
metamorphosed newts, excluding the characteristics related with sexual activity, are common
both to adults and to juveniles.
Source : MNHN, Paris
ANDREONE, DORE, USAI & PARANINFO 33
the occasion of pond desiccation or of water pollution (see ANDREONE & DORE, 1991). The
reasons for this plasticity should be sought in adaptive explanations: paedomorphism —
as remarked by BREUIL (in press) — may lead to earlier sexual maturity, life in a more
stable aquatic habitat, or better utilization of trophic resources (KALEZIÉ, DZUKkIC &
TvRTKOVIÉ, 1990).
RÉSUMÉ
L’histologie de la peau du triton alpestre (Triturus alpestris apuanus) a été analysée et
comparée avec des données concernant l’histoire naturelle de l'espèce. La peau des jeunes
larves est composée d’un nombre réduit de couches cellulaires et contient des cellules de
Leydig, mais pas de glandes extra-épithéliales; celles-ci deviennent visibles plus tard, avant
la métamorphose. Chez les tritons métamorphosés elle est typiquement pluri-stratifiée et
cornifiée, avec beaucoup de glandes muqueuses et séreuses. L'organisation épithéliale des
individus pédomorphiques, qui ont des branchies et vivent dans l’eau, est assez variable:
chez certains exemplaires (correspondant aux larves géantes immatures), la peau présente
des caractéristiques typiquement larvaires (par exemple les cellules de Leydig sont encore
présentes), tandis que chez d’autres (habituellement sexuellement actifs bien que pédogé-
nétiques) elle est très similaire à celle des tritons métamorphosés. Ainsi, chez les tritons
pédomorphiques, la métamorphose n’est pas abolie, mais seulement retardée. Il en résulte
une mosaïque de caractéristiques larvaires et post-larvaires. Ces caractéristiques sont en
relation avec l'écologie plastique du triton alpestre.
ACKNOWLEDGEMENTS
Thanks are due to M. BreuiL for bibliographie support and for the exchange of information
about neoteny, and to two anonymous referees for critical advice. This work was supported by grants
from Ministero della Pubblica Istruzione and Ministero dell'Università e della Ricerca scientifica e
tecnologica (funds 40 % and 60 %).
LITERATURE CITED
ANDREONE, F., 1990. — Variabilità morfologica e riproduttiva in popolazioni di Triturus alpestris
(Laurenti, 1768) (Amphibia: Salamandridae). Doctoral research thesis, University of Bologna.
ANDREONE, F. & DORE, B., 1991. — New data on paedomorphism in Italian populations of the Alpine
newt, Triturus alpestris (Laurenti, 1768) (Caudata: Salamandridae). Herpetozoa, 4 (3/4):
149-156.
—— 1992. — Adaptation of the reproductive cycle in Triturus alpestris apuanus to an unpredictable
habitat. Amphibia-Reptilia, 13: 251-261.
Source : MNHN, Paris
34 ALYTES 11 (1)
ANDREONE, F., DORE, B. & Usai, P., 1991. — Histological and ecological aspects of neoteny in
Triturus alpestris apuanus (Bonaparte). In: G. GHiARA et al. (eds.), Symposium on the evolution
of terrestrial vertebrates, U.Z.I. Selected Monographs and Symposia, Modena, Mucchi Editore,
vol. 4: 413-420.
ANDREONE, F. & GiacomA, C., 1989. — Breeding dynamics of Triturus carnifex at a pond in
north-western Italy (Amphibia, Urodela, Salamandridae). Holaret. Ecol., 12 (3): 219-223.
ANDREONE, F., GlAcOMA, C., CAVALLOTTO, L. & FRANCILLON-VIEILLOT, H., in press. — Le cycle
reproducteur de Triturus alpestris: influence des facteurs externes. Actes du Colloque d'Ecologie
et de Biogéographie Alpines.
BovERo, S., 1991. — Analisi del comportamento riproduttivo in esemplari sintopici — metamorfosati e
pedogenetici — di Triturus alpestris apuanus (Amphibia: Salamandridae). Degree thesis,
University of Turin.
Breuil, M. in press. — La néoténie dans le genre Triturus: mythes et réalités. Bull. Soc. herp. Fr.
Dore, B. & Usai, P., 1986. — Glycol methacrylate embedding for enzyme preservation. Bas. appl.
Histochem., 30 (suppl): 82.
DouGHErTY, W., 1981. — Preparation of semi-thin sections of tissues embedded in water soluble
methacrylate for light microscopy. /n: G. CLARK (ed.), Staining procedures, Baltimore &
London, William & Wilkins, Biological stain commission.
Dumois, A., 1987. — Neoteny and associated terms. Alytes, 4 (4): 122-130.
DuELLMAN, W. E. & TRUEB, L., 1986. — The biology of amphibians. New York, McGraw Hill.
Dzuxié, G., KaLEzié, M. L., Tvrrirvoc, M. & DKPrPvoc, A., 1991. — An overview of the
occurrence of paedomorphosis in Yugoslav newt (Triturus, Salamandridae) populations. BHS
Bull., 34: 16-22.
Fox, H., 1977. — The anuran tadpole skin: changes occurring in it during metamorphosis and some
comparisons with that of the adult. /n: R. IL. C. SPEARMAN (ed.), Comparative biology of the skin,
Symp. zool. Soc. London, London & New York, vol. 39: 269-289.
me 1986a. — Changes in amphibian skin during larval development and metamorphosis. /n: G.
NaLLs & M. BOWNES (eds.), Metamorphosis. Symp. brit. Soc. dev. Biol., Oxford Univ. Press,
vol. 9-87.
ee 1986b. — The skin of Amphi In: J. BEREITER-HAHN, A. G. MATOLTSY & K. S. RICHARDS
(eds.), Biology of the integument, vol. I, Vertebrates, Heidelberg, Springer: 78-135.
ne 1988. — Riesenzellen, globlet cells, Leydig cells and the large cells of Xenopus, in the amphibian
larval epidermis: fine structure and a consideration of their homology. J. submicrosc. Cytol.
Pathol., 20 (2): 437-451.
GABRION, J. & SENTEIN, P., 1976. — Structure histologique de la peau et phénomènes de
dégénérescence chez Triturus helveticus Raz. au cours de la métamorphose. Bull. Soc. zool. Fr.
101, suppl. 5: 33-39.
Hay, E. D., 1961. — Fine structure of an unusual intracellular supporting network in the Leydig cells
of Amblystoma epidermis. J. fBiophys. Biochem. Cytol., 10: 457-463.
KaLezié, M. L., Dzukié, G. & TvrTkovié, N., 1990. — Newts (Triturus, Salamandridae, Urodela)
of the Bukovica and Ravni Kotari regions (Yugoslavia). Spixiana, 13 (3): 329-338.
KOLLMANN, J., 1884a. — Das Ueberwintern von europäischen Frosch und Tritonen Larven und die
Umwandlung des mexikanischen Axolotl. Verh. Naturf. Ges. Basel, (1883): 387-398.
en 1884b. — L'hivernage des larves dé grenouilles européennes et de tritons. La métamorphose de
l'axolotl mexicain. C. r. Assoc. fr. Avanc. Sci., (1883), 12: 567-570, 570-571 (LATASTE’s remarks).
= 1884c. — L'hivernage des larves de grenouilles et de tritons d'Europe et la métamorphose de
l’axolotl du Mexique. Rec. Zool. Suisse, 1: 75-89.
Lot, G., 1968. — Il tegumento del tritone crestato in condizioni sperimentali diverse. Boll. Zool., 35:
415.
LoDt, G., ANDREONE, F., DORE, B., PARANINFO, A., USsat, P. & BicioTri, M. in press. — Active
sodium transport and morpho-functional organization in the skin of the Alpine newt, Triturus
alpestris, during the life cycle. Boll. Zool.
Lot, G. & Bant, G., 1971. — Microscopic, submicroscopic and histoenzymologic features of the
-epidermis of the normal and hypophysectomized crested newt. Boll. Zool., 38: 111-125.
Loypa, Z., GossRAU, R. & SCHLEBER, T. H., 1979. — Enzyme histochemistry. A laboratory manual.
Springer-Verlag.
Source : MNHN, Paris
ANDREONE, DORE, UsAI & PARANINFO 35
Mazzi, V., 1977. — Manuale di tecniche istologiche ed istochimiche. Padova, Piccin.
MENNELLA, C., 1967. — 11 clima d'Italia nelle sue caratteristiche e varietà e quale fattore dinamico del
paesaggio. Napoli, Edart.
MoLa, L. & BERTOLANI, R., 1981. — Osservazioni istologiche e istochimiche sul differenziamento
della cute in esemplari metamorfosati e non di Triturus alpestris apuanus (Bonap.) (Amphibia
Urodela). Arch. ital. Anat. Embriol., 86 (3): 195-207.
RAFFAELLI, J., 1989. — Etat des données sur quelques traits de la biologie des Amphibiens Urodèles.
Bull. Soc. Herp. Fr., 48: 1-21.
VerreLz, P. À., 1985. — Return to water by juvenile amphibians at a pond in southern England.
Amphibia-Reptilia, 6: 93-96.
Wizsur, H. M. & CoLLINS, J. P., 1973. — Ecological aspects of amphibian metamorphosis. Science,
182: 1305-1314.
ZACCONE, G., FAsuLo, S., Lo Cascio, P. & LicaTA, A., 1986. — Enzyme cytochemical and
immunocytochemical studies of flask cells in the amphibian epidermis. Histocemistry, 84: 5-9.
Corresponding editor: Milos KALEZIC.
© ISSCA 1993
Source : MNHN, Paris
Alytes, 1993, 11 (1): 36.
Dates de publication du journal Alytes
(1992)
Alain Dugois
Laboratoire des Reptiles et Amphibiens,
Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
Cette liste fait suite à celles que nous avons déjà publiées (Dugois, 1988, 1989, 1990,
1991, 1992) pour les années 1982-1991, et a été préparée de la même manière.
Volume Fascicule Pages Date figurant Date réelle
sur le fascicule de publication
9 4 89-144 December 1991 27 février 1992
10 1 1-36 May 1992 13 mai 1992
10 2 37-80 September 1992 30 septembre 1992
10 3 81-112 November 1992 27 novembre 1992
10 4 113-144 December 1992 23 décembre 1992
RÉFÉRENCES BIBLIOGRAPHIQUES
Dunois, A., 1988. — Dates de publication du journal Alytes (1982-1987). Alytes, 6: 116.
1989. — Dates de publication du journal Alytes (1988). Alytes, 7: 75.
1990. — Dates de publication du journal Alyres (1989). Alytes, 8: 22.
1991. — Dates de publication du journal Alyres (1990). Alytes,
1992. — Dates de publication du journal Alyres (1991). Alytes,
© ISSCA 1993
Source : MNHN, Paris
AINTTES
International Journal of. Batrachology
published by ISSCA
EDITORIAL BOARD FOR 1993
Chief Editor: Alain DuBois (Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire
naturelle, 25 rue Cuvier, 75005 Paris, France).
Deputy Editor: Günter GOLLMANN (Institut für Zoologie, Universität Wien, Althanstr. 14, 1090 Wien,
Austria).
Other members of the Editorial Board: Ronald G. ALTIG (Mississippi State University, U.S.A.);
Emilio BALLETTO (Torino, Italy); Stephen D. Busack (Ashland, U.S.A.); Alain COLLENOT
(Paris, France); Tim HALLIDAY (Milton Keynes, United Kingdom); William R. HEYER
(Washington, U.S.A.); Walter HôDL (Wien, Austria); Pierre JOLY (Lyon, France); J. Dale
ROBERTS (Perth, Australia); Petr ROTH (Libechov, Czechoslovakia); Ulrich SINsCH (Bonn,
Germany); Marvalee H. Wake (Berkeley, U.S.A.).
Index Editor: Annemarie OHLER (Paris, France).
GUIDE FOR AUTHORS
Alytes publishes original papers in English, French or Spanish, in any discipline dealing with
amphibians. Beside articles and notes reporting results of original research, consideration is given for
Publication to synthetic review articles, book reviews, comments and replies, and to papers based
upon original high quality illustrations (such as color or black and white photographs), showing
beautiful or rare species, interesting behaviors, etc.
The title should be followed by the name(s) and addresses) of the author(s). The text should
be typewritten or printed double-spaced on one side of the paper. The manuscript should be organized
as follows: English abstract, introduction, material and methods, results, discussion, conclusion,
French or Spanish abstract, acknowledgements, literature cited, appendix.
Figures and tables should be mentioned in the text as follows: fig. 4 or Table IV. Figures should
not exceed 16 X 24 cm. The size of the lettering should ensure its legibility after reduction. The
legends of figures and tables should be assembled on a separate sheet. Each figure should be
numbered using a pencil.
References in the text are to be written in capital letters (SOMEONE, 1948; So & So, 1987;
EveryBopy et al., 1882). References in the literature Cited section should be presented as follows:
BourReT, R., 1942. - Les batraciens de l'Indochine. Hanoi, Institut Océanographique de l’Indochine:
ix + 1-547, pl. IV.
GRAF, J.-D. & POLLS PELAZ, M., 1989. - Evolutionary genetics of the Rana esculenta complex. In:
R. M. DawLey & J. P. BOGART (eds.), Evolution and ecology of unisexual vertebrates, Albany, The
New York State Museum: 289-302.
INGER, R. F., Voris, H. K. & Voris, H. H., 1974. - Genetic variation and population ecology of some
Southeast Asian frogs of the genera Bufo and Rana. Biochem. Genet. 12: 121-145.
Manuscripts should be submitted in triplicate either to Alain DuRois (address above) if dealing
with amphibian morphology, systematics, biogeography, evolution, genetics or developmental
biology, or to Günter GOLLMANN (address above) if dealing with amphibian population genetics,
ecology, ethology or life history.
Acceptance for publication will be decided by the editors following review by at least two
referees. If possible, after acceptance, a copy of the final manuscript on a floppy disk (3 4 or 5 %)
should be sent to the Chief Editor. We welcome the following formats of text processing: (1)
preferably, MS Word DOS and Windows, WordPerfect (4.1 to 5.1) or WordStar (3.3 to 5.5); (2) less
preferably, formated DOS (ASCII) or DOS-formated MS Word for the Macintosh.
No page charges are requested from the author(s), but the publication of color photographs is
Charged. For each published paper, 25 free reprints are offered by A/ytes to the author(s). Additional
reprints may be purchased.
Published with the support of AALRAM
tion des Amis du Laboratoire des Reptiles et Amphibiens
du Muséum National d'Histoire naturelle, Paris, France).
Directeur de la Publication: Alain Dusois.
Numéro de Commission Paritaire: 64851.
© ISSCA 1993 Source : MNHN, Paris
Alytes, 1993, 11 (1): 1-36.
Contents
Jordi SERRA-CoBo
Descripcién de una nueva especie europea
de rana parda (Amphibia, Anura, Ranidae) ........................... 1
Leszek BERGER & Mariusz RYBACKI
Growth and maturity of brown frogs, Rana arvalis
and Rana temporaria, in central Poland ............................... 17
Franco ANDREONE, Bruno DORE, Pasquale Usa & Adriana PARANINFO
Skin morphology in larval, paedomorphic and
metamorphosed Alpine newts, Triturus alpestris apuanus ............... 25
Miscellanea
Application for membership of ISSCA
BOOM SUDSCTIPHONALO ALES EU En EE RENE nue 16
Alain Durois
Dates de publication du journal Alytes (1992) ......................... 26
Alytes is printed on acid-free paper.
Alytes is indexed in Biosis, Cambridge Scientific Abstracts, Current Awareness in Biological
Sciences, Pascal, Referativny Zhurnal and The Zoological Record.
Imprimerie F. Paillart, Abbeville, France.
Dépôt légal: 1° trimestre 1993.
© ISSCA 1993
Source : MNHN, Paris.