FR CAM
ISSN 0753-4973
TÈVRES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
June 1995 Volume 13, N° 2
Source : MNHN, Paris
d
| 1!
ISSCA
International Society for the Study
and Conservation of Amphibians
(International Society of Batrachology)
SEAT
Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
BOARD FOR 1995
President: Raymond F. LAURENT (Tucumän, Argentina)
General Seeretary: Annemarie OHLER (Paris, France).
Treasurer: Dominique PAYEN (Paris, France).
Depury Secretaries: Britta GRILLITSCH (Wien, Austria); W. Ronald HEvER (Washington, U.S.A.):
Stephen J. RicnaRDs (Townsville, Australia).
Deputy Treasurers: Jean-Louis DENIAUD (Paris, France); Mark L. WyGoDA (Lake Charles, U.S.A.).
Councillors: Janalee P. CALDWELL (Norman, U.S.A.), Marissa FaBrezi (Salta, Argentina); Sergius
KUzMIN (Moscow, Russia); Jon LOMAN (Lund, Sweden).
TARIFF FOR 1995
Individuals Institutions
Subscription to Alytes alone 250 FF / 50 $ (regular) 500 FF / 100$
125 FF / 25 $ (student)
Subscription to Alytes + ISSCA + Circalytes 270 FF / 54 $ (regular) 540 FF / 108$
135 FF / 27 $ (student)
Back issues of Alptes: single issue 60 FF/125$ 120 FF / 245$
Back issues of Alptes: one complete volume (4 issues) 200 FF / 40 $ 400 FF / 80 $
Back issues of Alptes: complete set volumes 1 to 12 1920 FF / 384$ 3840 FF / 7685
Five-years (1995-1999) individual subscription to Alpes: 1000 FF / 200 S
Five-ÿears (1995-1999) individual subscription to Alytes + ISSCA + Circalyt
Life individual subscription to Alyres from 1995 on: 5000 FF / 1000 $.
Life individual subscription to Alyres + ISSCA + Circalytes from 1995 on: 6400 FF / 1280 S.
Patron individual subscription to Alyres from 1995 on: 10000 FF / 2000 $ or more.
Patron individual subscription to Alytes + ISSCA + Circalytes from 1995 on: 12800 FF / 2560 $ or
more.
350 FF / 270 5.
Circalytes is the internal information bulletin of ISSCA. Back issues of this bulletin are also available:
prices can be provided upon request by our Secretariat.
Inclusive Section or Group affiliation to ISSCA: 250 FF } 50 $.
Individual subscription to the ISSCA Board Circular Letters: 200 FF / 40 $.
MODES OF PAYMENT
— In French Francs, by cheques drawn on a French bank payable to “ISSCA", sent to our
Secretariat (address above).
— In French Francs, by direct postal transfer to our postal account: “ISSCA”, Nr. 1-398-91 L, Paris:
if you use this mode of payment, add 15 FF to your payment for postal charges at our end.
—In US. Dollars, by cheques payable to “ISSCA”, sent to Mark L. WyGoDA, Department of
Biological and Environmental Sciences, P.O. Box 92000, McNecse State University, Lake Charles,
Louisana 70609-2000, U.S.A.
Source : MNHN, Paris
AIRNTTES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
June 1995 Volume 13, N° 2
Alytes, 1995, 13 (2): 45-51. 45
Una nueva especie de Telmatobius
(Anura, Leptodactylidae)
de la ceja de montaña de La Paz (Bolivia)
E. O. LAviLLa * & P. ERGUETA S. **
* Instituto de Herpetologia, CONICET, Fundaciôn Miguel Lillo, Miguel Lillo 251,
4000 Tucumän, Argentina
** Colecciôn Boliviana de Fauna, Instituto de Ecologia, Universidad Mayor de San Andrés, La Paz, Bolivia
A new species of Telmatobius is reported from the humid regions of the
“ceja de montaña” of Kkota Pata, Department of La Paz, Bolivia. This species
is characterized by its large eyes and the structure of the skin, with wide and
protruded semicircular warts.
Bibliothèque Centrale Muséi
a
00111601 0
En la batracofauna de Bolivia se han registrado hasta el momento tres especies de
Telmatobius que son habitantes estrictos de cursos de agua en bosques de montañas:
Telmatobius bolivianus Parker, 1940, T. verrucosus Werner, 1899 y T. yuracare De La Riva,
1994. Por otra parte, T. simonsi Parker, 1940, descripta originalmente para Sucre, en âreas
de valles mesotérmicos, fue citada por DE LA Riva (1990, 1994) en regiones boscosas de
La Siberia, en el Departamento Cochabamba, aunque esta identificaciôn es dudosa.
Entre las formas estrictamente silvicolas, el estado taxonomico de T. verrucosus es
confuso. VELLARD (1951) consideré a T. bolivianus como un sinénimo mäs reciente de esta
especie, y posteriormente (VELLARD, 1970), consider a ambas como subespecies de
Telmatobius marmoratus. En un trabajo reciente (LAvVILLA & DE LA Riva, 1993), basados
en caracteres larvales, se determiné que Telmatobius bolivianus es una buena especie, y la
posiciôn de T. verrucosus es todavia un interrogante abierto.
En un estudio sobre los anfibios de la regiôn de Kkota Pata, en el Departamento La
Paz, encontramos una poblaciôn de Telmatobius en un arroyo de la ceja de montaña, con
Source : MNHN, Paris
46 ALYTES 13 (2)
caracteres notablemente diferentes a los de los restantes Telmatobius conocidos, y en
especial de aquellos que habitan los cuerpos de agua de los bosques de montaña en Bolivia,
lo que nos leva a describirla como nueva.
Finalmente, conviene destacar que las selvas de montaña del oeste de América de Sur
parecen albergar un interesante conjunto de novedades dentro del género Telmatobius, tal
como se desprende de la sintesis presentada por LAURENT (1980) para Argentina y de los
trabajos de DE LA Riva (1990, 1994) para Bolivia y WIENS (1993) para el norte de Perü.
MÉTODOS
La descripciôn que se presenta a continuaciôn ha considerado los caracteres cläsicos
de morfologia externa. El material estudiado fue fijado en formol 10 % en camara hümeda
durante 24 horas y conservado en alcohol etilico de 70°. Un ejemplar macho adulto fue
teñido y diafanizado siguiendo la técnica propuesta por WassERSUG (1976); aunque en el
presente trabajo no se presenta una descripciôn del esqueleto, un caräcter osteolôgico, la
estructura del hümero, ha sido empleado para diferenciar la nueva especie de Telmatobius
Juracare.
Las medidas fueron tomadas bajo lupa binocular, empleando un calibre con precision
de 0,02 mm.
RESULTADOS
Telmatobius jahuira sp. nov.
(fig. 1)
Holotipo. — Coleccién Boliviana de Fauna (CBF) 01675, macho adulto, colectado por
E. LAviLLA y P. ERGUETA el 21 de abril de 1992 en el Rio Chairo, en las proximidades de
la Mina Copacabana (aproximadamente 16°16'S 67°50'W), Kkota Pata, Departamento La
Paz, Bolivia.
Paratipos. — Alotipo: CBF 01676, hembra adulta, mismos datos que el holotipo. Otro
paratipo: CBF 01571, macho adulto, colectado por R. HINOJOsA y S. OTAZU el 21 de abril
1992 en Kkota Pata, Departamento La Paz, Bolivia.
Etimologia del nombre especifico. — Jahuira es un vocablo aymara que significa rio, y
se lo emplea en alusiôn a los häbitos de esta especie. Aqui es empleado como sustan-
tivo.
Diagnosis. — Telmatobius jahuira est caracterizada por el notable desarrollo de sus ojos,
grandes y sobresalientes, y la piel dorsal con verrugas grandes, hemisféricas, separadas
entre si y pigmentadas de negro, lo que hace que la librea aparezca con numerosas
manchas aproximadamente circulares. Las diferencias con los otros Telmatobius que son
habitantes exclusivos de ambientes selväticos estän puntualizadas en la discusion.
Source : MNHN, Paris
LAVILLA & ERGUETA 47
Fig. 1. — (a) Detalle de la cabeza en vista lateral de Telmatobius jahuira. (b) Vista general del holotipo
de Telmatobius jahuira (longitud hocico-cloaca: 55,6 mm).
Descripciôn del holotipo. — Longitud hocico-ano: 55,6 mm. La cabeza es deprimida, con
la regiôn gular plana; es mâs ancha (21,3 mm) que larga (18,1 mm), con indice cefälico de
0,85.
El hocico es redondeado en vistas dorsal y lateral, y su longitud es menor (4,6 mm)
que el diâmetro del ojo (6,5 mm). El canthus rostralis, marcado, es redondeado y la region
loreal es côncava. Los labios estân levemente engrosados, no son glandulares y se
proyectan por sobre la mandibula inferior en todo su perimetro.
Source : MNHN, Paris
48 ALYTES 13 (2)
Los ojos son proporcionalmente grandes (corresponden a aproximadamente el 36 %
de la longitud de la cabeza) y son muy sobresalientes. La comisura posterior de los
pärpados estä mâs lejos de la boca (6,2 mm) que el margen ventral de los orificios nasales
(4,3 mm). La pupila es redonda y la membrana nictitante es transparente, con una banda
pigmentada, en la que alternan secciones grises y amarillas, en el margen libre. El diämetro
del ojo es mayor que la distancia del ojo a la narina (3,7 mm), y la distancia interocular
anterior (tomada entre las comisuras anteriores de los pärpados) equivale al 47 % del
ancho de la cabeza. Los ojos tienen posicin mäs lateral que frontal.
Desde la regiôn posterior del ojo se extiende, hacia aträs y hacia abajo, un pliegue
supratimpänico engrosado y glandular, que termina a la altura de la implantacion del
miembro anterior. Por debajo de este pliegue y por deträs de la boca se ubica una glândula
postcomisural muy marcada, redondeada, elevada, rugosa y sin cornificaciones.
El timpano y el anillo timpänico no estän diferenciados externamente y la region
timpänica es glandular. Los orificios nasales son subcirculares, rebordeados y no estän
elevados. La distancia internasal (3,5 mm) es levemente menor que la distancia naso-ocular
(3,7 mm), y 2,8 veces menor que la distancia interocular anterior. La lengua es redonda,
entera y libre posteriormente.
La region dorsal del cuerpo y la cabeza presentan numerosas gländulas subcirculares,
proporcionalmente grandes, elevadas y sin cornificaciones, que estän separadas entre si
por äreas rugosas. La regiôn dorsal de los miembros anteriores y posteriores es rugosa y
carece de acümulos glandulares elevados. La region ventral es uniformemente lisa, y no
existen cornificaciones nupciales en el pecho.
El orificio cloacal es posterodorsal (ubicado a la altura de la region media de los
muslos) y no existe un pliegue cloacal definido; en su lugar, toda la region pericloacal
aparece estrechamente plisada. El pliegue supracloacal es breve y recto.
Los dedos de las manos poseen falanges terminales redondeadas y levemente
expandidas. El tubérculo metacarpal interno es oval, estrecho, protuberante y 1,4 veces
mäs largo que el externo, suboval y ancho. Entre ambos tubérculos metacarpales existe un
tubérculo grande, que puede ser interpretado como un tercer tubérculo metacarpal, como
un tubérculo palmar hipertrofiado o como un tubérculo supernumerario del dedo I.
Los tubérculos subarticulares son redondeados, sobresalientes y se disponen segün la
formula I (1), II (1), III (2), IV (2). La palma de la mano es lisa, con escasos tubérculos
redondeados y pequeños. La palmeadura estä reducida a un reborde cutäneo en el margen
externo del pollex. La longitud relativa de los dedos es III > IV > I > II.
Los dedos de los pies Ilevan falanges terminales redondeadas y no dilatadas. El
tubérculo metatarsal interno es oblongo y mayor que el externo, que es oval. No existen
tubérculos plantares, y los tubérculos subarticulares, que en general son ovales,
sobresalientes y enteros, se disponen segün la formula I (1), I (1), III (2), IV (3), V (2).
La palmeadura est mejor desarrollada entre los dedos II-III y III-IV, y alcanza su menor
desarrollo entre los dedos I-IT; en todos los casos, alcanza el extremo de los dedos por
medio de rebordes cutäneos. El pliegue tarsal esta medianamente desarrollado en el
margen interno del hallux, y por deträs del tubérculo metatarsal interno se continüa como
una linea clara. En el margen externo del dedo IV existe un pliegue cutäneo que se extiende
Source : MNHN, Paris
LAVILLA & ERGUETA 49
desde el tubérculo subarticular basal hasta el extremo del dedo. Cuando los fémures son
colocados en ängulo recto con respecto al eje axial del cuerpo, los talones se superponen
y cuando la pata es Ilevada hacia adelante, la articulaciôn tibio-tarsal alcanza la mitad del
ojo. La relaciôn entre las diversas regiones del miembro posterior y la longitud total del
cuerpo son: fémur, 53,2 %; tibia-fibula, 54,1 %; tarso, 27,5 %; pie, 58,4 %.
Los caracteres sexuales secundarios se restringen a las callosidades nupciales que se
ubican en el margen interno y la cara dorsal del pollex, y se presentan como escasas
espinas côrneas que dejan amplios espacios no queratinizados entre si.
Coloraciôn en vida: dorso de cabeza, cuerpo y miembros verde oliva; manchas
aproximadamente circulares negras, de limites netos, en el dorso del cuerpo y la cabeza;
regiôn dorsal de los miembros con manchas irregulares; ventralmente grisäceos, con
manchas amarillo-naranja, ms notorias en los miembros anteriores y posteriores y sobre
el pecho.
Coloracion en fijador: dorsalmente gris oscuro con manchas aproximadamente
circulares negras; ventralmente, gris mediano, con manchas beige.
Notas sobre los paratipos. — Se señalän sélo aquellos caracteres morfolôgicos que divergen
del holotipo, y las medidas correspondientes son presentadas mâs abajo.
Alotipo CBF 01676. — El perfil de la region gular es redondeado. Las manchas
negras del dorso del cuerpo y de la cabeza son mâs numerosas, mayores y algunas pueden
presentar contornos irregulares, por coalescencia de manchas proximas. No existen
rebordes cutäneos en el pollex, y los tubérculos palmares son mâs numerosos y estän mejor
definidos que en el holotipo; existe un tubérculo supernumerario en el dedo I (derecha);
no existen callosidades nupciales. En la pata existe un tubérculo plantar entre los
tubérculos metatarsales.
Otro paratipo CBF 01571. — Con excepciôn de los caracteres morfométricos (ver mäâs
abajo), no existen diferencias morfolôgicas de importancia con el holotipo.
Medidas. — Las medidas estän expresadas en milimetros; el primer valor corresponde al
holotipo, el segundo al alotipo y el tercero al otro paratipo. Longitud del cuerpo: 55.6;
58.9; 55.1. Longitud de la cabeza: 18.1; 18.8; 17.1. Ancho de la cabeza: 21.3; 21.2; 19.
Longitud del hocico: 4.6; 4.6; 4.1. Distancia naso-ocular: 3.7; 3.9; 3.8. Distancia internasal:
3.5; 3.9; 3.7. Distancia interocular anterior: 10.0; 9.2; 9.2. Distancia interocular posterio:
17.9; 18.1; 17.3. Tubérculo metacarpal interno: 5.3; 4.5; 5.6. Tubérculo metacarpal externo:
3.8; 3.8; 4.2. Diämetro del ojo: 6.5; 6.8; 6.8. Diämetro del orificio nasal: 0.68; 0.70; 0.56.
Distancia ojo-boca: 6.2; 5.9; 5.7. Distancia nariz-boca: 4.3; 4.6; 3.9. Longitud del fémur:
29.6; 31.6; 28.9. Longitud de la tibia: 30.1; 32.0; 30.1. Longitud del tarso: 15.3; 15.4; 14.8.
Longitud del pie: 32.5; 34.2; 32.2.
Habitat. — La localidad tipo se encuentra en la region de ceja de montaña del
Departamento La Paz, y el clima regional se caracteriza por presentar un régimen hümedo
a perhümedo. Los datos obtenidos de la estacin meteorolôgica de Chururaqui, en el
vecino valle de Zongo, muestran precipitaciones de 3250 mm anuales.
Holotipo y alotipo fueron coleccionados en las primeras horas de la tarde; estaban
inactivos, en el agua y bajo piedras planas, grandes. El esfuerzo de büsqueda indicaria que
se trata de una especie poco abundante en la localidad tipo.
Source : MNHN, Paris
50 ALYTES 13 (2)
DIsCUSIÔN
Las cuatro especies de Telmatobius reportadas para las selvas de montaña de Bolivia
son, como señaläramos en la introducciôn, Telmatobius bolivianus, T. verrucosus, T.
yuracare y la nueva especie que describimos aqui, T. jahuira.
Telmatobius jahuira se diferencia de T. verrucosus (segün las descripciones disponibles
de WERNER, 1899 y VELLARD, 1951) por presentar: (1) el hocico mäs corto que el diämetro
del ojo; (2) el canthus rostralis mâs marcado; (3) las narinas mâs cerca del ojo que del
hocico; (4) el primer dedo de la mano mäs largo que el segundo; (5) la membrana
interdigital poco desarrollada entre los dedos II-III y III-IV de la pata; (6) el pliegue tarsal
vestigial; (7) la mandibula superior proyectada sobre la inferior en todo su perimetro; (8)
un patrôn de coloracién dorsal con color de base verde oliva y manchas circulares negras.
Telmatobius jahuira difiere de T. bolivianus (segün la descripciones de PARKER, 1940
y VELLARD, 1951) por presentar: (1) el hocico redondeado y mäs corto que el diâmetro
ocular; (2) los dedos de las manos con falanges terminales redondeadas, levemente
expandidas; (3) el primer dedo de la mano mäs largo que el segundo; (4) los dedos II y
III de las manos sin reborde cutäneos; (5) los extremos de los dedos de las patas no
dilatados; (6) la membrana interdigital poco desarrollada entre los dedos II-IIT y III-I
(?) el pliegue tarsal vestigial; (8) la articulaciôn tibio-tarsal alcanzando a la mitad del ojo;
(9) la piel con gländulas muy desarrolladas; (10) un patrôn de coloraciôn diferente; (11)
la estructura, abundancia y disposicién de las espinas corneas en los pulgares de los
machos.
Telmatobius jahuira difiere de T. yuracare (segün la descripciôn de DE LA Riva, 1994),
entre otros caracteres, por: (1) carecer de espina humeral en los machos; (2) la orientacion
de los ojos; (3) la estructura de la piel del dorso del cuerpo; (4) la textura de la piel del
dorso del cuerpo; (5) el patrôn de coloraciôn.
Cualquiera sea la posiciôn taxonémica definitiva de los taxa yungueños del género
Telmatobius en Bolivia, se observa claramente que T. jahuira es una especie diferente de
las previamente descriptas.
Desafortunadamente no contamos aün con larvas de esta especie, por lo que no
podemos atribuirla a ninguno de los dos grupos conocidos (LAviLLA, 1985).
LITERATURA CITADA
DE LA Riva, I. 1990. — Lista preliminar comentada de los anfibios de Bolivia, con datos sobre su
distribuciôn. Boll. Mus. reg. Sci. nat. Torino, 8: 261-319.
= 1994. — À new aquatic frog of the genus Te/matobius (Anura: Leptodactylidae) from Bolivian
cloud forests. Herpetologica, 50 (1): 38-45.
LAURENT, R. F., 1980. — Herpetofauna of the forest remnants of North-Western Argentina. National
Geographic Research Reports, 1977 Projects: 417-427.
Source : MNHN, Paris
LAVILLA & ERGUETA 51
Lavizca, E. O., 1985. — Diagnosis genérica y agrupaciôn de las especies de Telmatobius (Anura:
Leptodactylidae) en base a caracteres larvales. Physis, (B), 43 (105): 63-67.
LaviLLa, E. O. & DE La Riva, L, 1993. - La larva de Telmatobius bolivianus (Anura,
Leptodactylidae). Alytes, 11 (2): 37-46.
PARKER, H. W., 1940. — Percy Sladen Trust Expedition to Lake Titicaca under the leadership of Mr.
H. Cary Gilson, M. A. XII. Amphibia. Trans. linn. Soc. London, 3 (1): 203-216.
VELLARD, J., 1951. — Estudios sobre batracios andinos. I. El grupo Telmatobius y formas afines.
Mem. Mus. Hist. nat. “Javier Prado”, 1: 1-89, 8 läm.
WASsERSUG, R. J., 1976. — A procedure for differential staining of cartilage and bone in whole
formalin-fixed vertebrates. Stain. Tech., 51: 131-134.
WERNER, F., 1899. — Beschreibung neuer Reptilien und Batrachier. Zool. Anz., 22 (602): 479-484.
WIENS, J. J., 1993. — Systematics of the leptodactylid frog genus Telmatobius in the Andes of
Northern Peru. Occas. Pap. Mus. nat. Hist. Univ. Kansas, 162: 1-176.
Corresponding editor: Jaime E. PÉFAUR.
© ISSCA 1995
Source : MNHN, Paris
Alytes, 1995, 13 (2): 52-66.
Reassessment of central
Peruvian Telmatobiinae
(genera Batrachophrynus and Telmatobius).
IL. Allozymes and phylogenetic relationships
Ulrich SNscH & Norbert JURASKE
Institut für Biologie, Universität Koblenz-Landau, Rheinau 1, 56075 Koblenz, Germany
Three hypotheses on the phylogenetic relationships among central Peru-
vian Telmatobiinae were tested: (1) the common ancestor of the two
Batrachophrynus species diverged from the telmatobiine stock independentiy
from the common ancestor of the present Telmatobius; (2) B. macrostomus
and B. brachydactylus separated independently from the lineage leading to the
present Telmatobius; (3) the separation of the common Batrachophrynus
ancestor from Telmatobius occurred after the differentiation of the Telmato-
bius stock into geographical lineages. Allozymes clearly indicate the mono-
phvly of Batrachophrynus, and that the southern Peruvian T. culeus is more
closely related to the central Peruvian T. jelskii and T. rimac than to either of
the Batrachophrynus species. AIl available evidence supports the first hy-
pothesis.
INTRODUCTION
Three genera of central Peruvian Telmatobiinae are currently recognized: Telmatobius
Wiegmann, 1835, Batrachophrynus Peters, 1873 and Lynchophrys Laurent, 1983 (FROST,
1985; DUELLMAN, 1993). À taxonomic reassessment of the six species assigned to these
genera indicated that the monotypic genus Lynchophrys is not valid and that Lynchophrys
brachydactyla should be referred to as Batrachophrynus brachydactylus (SiNscH et al.,
1995). In contrast, osteological evidence (LyNCH, 1978) and morphometric data (SINSCH et
al., 1995) continue to support the validity of the genera Batrachophrynus and Telmatobius.
The corresponding phylogenetic hypothesis assumes a monophyletic origin of both genera
(Cet, 1986).
LAURENT (1983), however, proposed an alternative hypothesis. He assumed an early
separation of B. macrostomus, and an independent, but later, separation of B. brachy-
dactylus from the Telmatobius stock. If this was true, the morphometric and osteological
similarities between the two Batrachophrynus species would be convergences and the genus
would be paraphyletic. There is a third possibility, considering the conspicuous general
similarity between the two genera: the separation of the Batrachophrynus ancestor from the
Source : MNHN, Paris
SINSCH & JURASKE 53
central Peruvian Telmatobius stock may have occurred after the splitting of Telmatobius
into a northern and a southern lineage. In this case, the genus Batrachophrynus would be
invalid and its two species would have to be included in the genus Telmatobius.
The aim of our study was to test these alternative hypotheses by analyzing the genetic
similarity among four central Peruvian and a southern Peruvian species of Telmatobiinae.
The stream-dwelling T. jelskii (Peters, 1873), T. rimac Schmidt, 1954 and B. brachydactylus
Peters, 1873, and the lake-dwelling B. macrostomus Peters, 1873, inhabit neighbouring
regions within the Departments of Cerro de Pasco, Junin and Lima. The Titicaca frog T.
culeus (Garman, 1875), which represents another evolutionary lineage within the genus
Telmatobius (VELLARD, 1951, 1953, 1955), was included as a potential outgroup.
Horizontal starch gel electrophoresis of the proteins of blood, muscle and liver
homogenates was used to assess allelic variation in homologous loci among all populations
and species. Our reconstruction of phylogenetic relationships within this Andean group of
Telmatobiinae clearly supports CErs (1986) hypothesis of a monophyletic origin of
Batrachophrynus and Telmatobius.
MATERIAL AND METHODS
We examined 111 frogs representing five species of Telmatobiinae (Leptodactylidae):
(1) Batrachophrynus brachydactylus: 11 males and 11 females from a brook near Ondores
(Dep. Junin, Perü); (2) B. macrostomus: 6 males, 7 females and 8 juveniles from Junin Lake
(Dep. Junin); (3) Telmatobius jelskii: (a) 5 males, 2 females and 14 juveniles from Rio
Shullcas, Palian near Huancayo (Dep. Junin), (b) 6 males and 3 females from Cuyrohuasi
near Tarma (Dep. Junin); (4) T. rimac: (a) 7 males, 7 females and 8 juveniles from Rio
Chillén, Obrojillo near Canta (Dep. Lima, Perü), (b) 9 males, 4 females and 2 juveniles
from Quebrada Huaytara, Canta (Dep. Lima); (5) T. culeus: 1 male from Titicaca Lake
(Dep. Puno, Perü).
Following the morphological classification of specimens (SINsCH, 1986, 1990; SiNscH
et al., 1995), we collected blood samples (about 60 ul per individual) from the vena
angularis of the living frogs (NÔLLER, 1959). Samples were centrifuged at 11,500 rpm for
3.33 min and the cell fraction was dissolved in 20 ul homogenate buffer (tris-EDTA-
NADP at pH 7.0) and stored at -18°C until use. The frogs were sacrificed and liver and
muscle samples were taken and mechanically homogenated in 50-150 pl in tris-EDTA-
NADP buffer at pH 7.0. AIl samples were collected in Perü in 1992 except for the blood
sample of the T. culeus specimen. This individual was kept in the Museum of Natural
History in Bonn, Germany, and was included to look for fixed alleles in the Telmatobius
and Batrachophrynus lineages.
Gels for horizontal electrophoresis were prepared at 12 % with SIGMA starch. Four
buffer systems were used at constant 55 mA and 4°C: (1) tris-citrate (electrode: pH 8.0; gel:
PH 8.7), duration of electrophoresis: 5 h; (2) tris-malate (electrode and gel: pH 8.4), 4h;
(3) tris (electrode and gel: pH 8.6), 5 h; (4) tris-borate (electrode and gel: pH 9), 4 h. Each
Source : MNHN, Paris
s4 ALYTES 13 (2)
gel was sliced into five 2 mm thick slabs for staining. Procedures for staining were those
described by PASTEUR et al. (1988), SHAW & PRASAD (1970) and SHERIF (1990).
Allozymes examined were representative of 12 enzyme systems controlled by a total
of 22 presumptive loci: aspartateamino transferase (1 locus, abbreviation: AAT, E.C. No.
2.6.1.1); adenylate kinase (1, AK, 2.7.4.3); esterase (4, EST, 3.1.1.1); glucosephosphate
isomerase (2, GPI, 5.3.1.9); hexanol dehydrogenase (2, HDH, 1.1.1.56); isocitrate
dehydrogenase (2, IDH, 1.1.1.42); lactate dehydrogenase (2, LDH, 1.1.1.27); malate
dehydrogenase (2, MDH, 1.1.1.37); malic enzyme (1, ME, 1.1.1.40), peptidase (3, PEP,
3.4.1.1); 6-phosphogluconate dehydrogenase (1, 6-PGD, 1.1.1.44); phosphoglucomutase
€, PGM, 2.7.5.1). In addition, we scored the non-enzymatic hemoglobin (Hb).
Multiple loci were numbered from cathode to anode. Presumptive alleles were
designated numerically according to their mobility relative to the most common
electromorph (assigned 100) of the T. jelskii population from Palian. Faster moving
electromorphs were assigned higher values (above 100), slower moving ones lower values
(below 100). For reference, each electrophoretic run included samples of the T. jelskii
population from Palian. Statistical analyses included the calculation of allele frequencies,
of Neïs genetic distance (NEI, 1972), Cavalli-Sforza’s chord distance (CAVALLI-SFORZA &
EbwaRDs, 1967) and Reynolds’s genetic distance (REYNOLDSs et al., 1983) by the program
GENDIST 3.4 (package PHYLIP; FELSENSTEIN, 1985). Average heterozygosity per locus
(Ho = observed frequency; He = expected frequency), proportion of polymorphic loci
(P %), and the mean number of alleles per locus (A) were calculated for each sample
except T. culeus. We used the G-test to detect deviations of observed heterozygosity from
the Hardy-Weinberg equilibrium.
Reconstruction of phylogenetic relationships between the examined populations is
based on four algorithms applied to allele frequencies: (1) UPGMA method (program
NEIGHBOR 3.41); (2) Fitch-Margoliash method assuming equal rates of evolutionary
change in all lineages (KITSCH 3.41); (3) Fitch-Margoliash method without evolutionary
clock (FITCH 3.41); (4) maximum likelihood method (CONTML 4.42). All calculations
are based on the cited programs in the package PHYLIP (FELSENSTEIN, 1985).
RESULTS
ALLELIC VARIATIONS OF PROTEINS
A total of 23 presumptive loci (enzymes: AAT, AK, EST, GPI, HDH, IDH, LDH,
MDH, ME, PEP, 6PGD, PGM; non-enzymatic protein: Hb) was scored in 6 populations
of four central Peruvian telmatobiine species and in one specimen of T. culeus (Table I).
Five loci were monomorphic in all samples: HDH1, LDH2, PEP2.1, 6PGD and PGMI1.
Allele frequencies are listed in Table I. The observed heterozygosity significantly deviated
from the expected heterozygosity of the Hardy-Weinberg equilibrium in all populations
because of a deficit of heterozygotes at all loci (G-test, P < 0.001). The following account
of the loci demonstrates that fixed alleles at the LDH1 locus permit an unequivocal
Source : MNHN, Paris
SINSCH & JURASKE 55
distinction between the genera Batrachophrynus and Telmatobius, and that the southern
Peruvian T. culeus differs from all central Peruvian populations by the presence of an
unusual allele at the MDHI locus.
Aspartateamino transaminase
Following electrophoresis in the tris-malate system, we regularly detected activity in
muscle and liver samples. The Batrachophrynus species are monomorphic for allele 100,
whereas the Telmatobius populations possess a second, more slowly migrating AAT (allele
60). Heterozygotes were not observed.
Adenylate kinase
All blood and liver samples show stainable activity following electrophoresis in the
tris-borate system. The frequencies of the main alleles 100 and 120 are similar in all
samples. One specimen of B. brachydactylus possessed a third allele 75. Heterozygotes were
not observed.
Esterase
We detected four loci which can easily be distinguished by their specific activity in
different tissues and their electrophoretic mobility in the tris system. The most slowly
moving esterase (EST1) usually shows low activity in the liver samples and sometimes also
in the blood samples, whereas EST2 is active in all samples but stains most strongly in the
liver samples. The faster moving esterases (EST3, EST4) produce stainable bands with
about the same activity in all samples. The frequencies of the main alleles 90 and 100 of
the EST1 locus are similar in all populations. Two B. brachydactylus showed a third allele.
Two alleles 90 and 100 of EST2 locus are present in both Batrachophrynus species and in
T. rimac, whereas in T. jelskii this locus is monomorphic. With the exception of two
heterozygotes of the constitution 50/100 (B. brachydactylus) at the EST1 locus, all other
specimens are homozygotes for the four esterase loci.
Glucosephosphate isomerase
In the tris-borate system an anodally migrating GPI was active in blood and liver
samples. Allele 100 dominates in all populations, except for those of T. rimac which are
almost monomorphic for allele 73. No heterozygotes were detected.
Hexanol dehydrogenase
The tris-malate system resolved two systems of HDH, the monomorphic HDH1 locus
being active at similar levels in all tissues and the polymorphic HDH2 locus with stainable
Source : MNHN, Paris
56 ALYTES 13 (2)
activity in muscle and liver samples. The frequency of allele 100 is greater in the
Batrachophrynus species than in the Te/matobius species where allele 75 dominates. A
single heterozygote of the constitution 75/100 (B. macrostomus) was detected.
Isocitrate dehydrogenase
Two polymorphic loci coding for enzymes of considerably different electrophoretic
mobility were detected in the tris-citrate system. Both loci were almost exclusively active
in muscle and liver samples. In Telmatobius the IDH1 locus is monomorphic for the allele
100, whereas in Batrachophrynus a second, rare allele 93 is present. Four alleles are found
at the IDH2 locus with allele 100 dominating in Te/matobius. In Batrachophrynus allele 90
is the most common one. A single heterozygote of the constitution 100/125 (8.
brachydactylus) was detected.
Lactate dehydrogenase
Following electrophoresis in the tris-citrate system, only one band stained in the
muscle and liver samples of all species, whereas in the blood samples up to five bands
appeared. The common stainable band of all tissues is the tetramer of the unit coded for
by the LDHI locus. The five banded pattern was detected only in the blood of the two
Batrachophrynus species, whereas in the blood of the Te/matobius species at most three
bands stained, corresponding to slowly moving tetramers. The LDHI1 locus is diagnostic
for the distinction of the two genera: all Telmatobius are fixed for the allele 100, all
Batrachophrynus for the allele 33. Pure tetramers of the unit coded for by the LDH2 locus
were found in both Batrachophrynus with the same electrophoretic mobility (allele 100).
The poor resolution of the one or two bands of mixed tetramers in Telmatobius does not
permit a reliable estimate of the position of the non-expressed pure LDH2-tetramer.
Malate dehydrogenase
The best resolution of the bands corresponding to two polymorphic MDH loci was
found in the tris-borate system. The MDHI1 locus produces a slowly moving protein which
was exclusively active in blood and liver samples. In contrast, the faster moving product
of the MDH2 locus was present in all tissues, but, especially in the muscle samples,
subbands frequently appeared which were not present in the other tissues of the same
individual. The MDHI locus is diagnostic for the southern Andean T. culeus which
possesses allele 125, whereas only alleles 71 and 100 are present in all central Peruvian
populations. The frequencies of allele 71 are extremely low in both Batrachophrynus, but
considerably greater in Telmatobius. Three alleles are found at the MDH2 locus, the
usually dominating allele 100, the less frequent allele 85 and the rare allele 115. Only one
heterozygote of the constitution 85/100 (T. rimac, Obrojillo) was detected at the MDH2
locus.
Source : MNHN, Paris
SINSCH & JURASKE 5:
Malic enzyme
The polymorphic ME locus accounted for regular activity in all samples following
electrophoresis in the tris-malate system. Allele 100 dominates in all populations and
reaches almost monomorphic frequencies in T. jelskü. T. rimac and the two Batracho-
phrynus differ from this species by a considerably higher frequency of allele 60 and the
presence of the rare allele 20. At this locus we detected 12 heterozygotes: six of the
constitution 20/60 (3 B. brachydactylus, 1 B. macrostomus, 2 T. rimac from Obrojillo), and
another six of the constitution 60/100 (1 B. brachydactylus, 1 B. macrostomus, 3 T. rimac
from Obrojillo, 1 T. rimac from Huaytara).
Peptidase
Following electrophoresis in the tris-citrate system, we identified three PEP loci which
were monomorphic in most populations. The peptidase of the PEP1 locus specifically
digested the dipeptide VAL-LEU and had greater activity in blood and liver samples than
in muscle tissue. The other two peptidases used the tripeptide LEU-GLY-GLY as a
substrate, but the activity of the PEP2.1 locus was restricted to muscle and liver samples
of B. brachydactylus and T. rimac and one specimen of T. jelskii, whereas the PEP2.2 locus
was exclusively active in the blood samples of all populations (except T. culeus). The PEP1
locus is monomorphic in all but one species: B. macrostomus possesses a second allele 83
in low frequency. The PEP2.2 locus is monomorphic in all Telmatobius populations, but
in the two Batrachophrynus species a second allele 115 occurs in low frequency. No
heterozygotes were found at any of the loci.
6-phosphogluconate dehydrogenase
Following electrophoresis in the tris-citrate system, in all tissues we found activity
corresponding to the same allele of a monomorphic locus.
Phosphoglucomutase
Enzyme systems corresponding to two loci were resolved in the tris-malate system.
The monomorphic PGMI locus stained with similar activity in all tissues, whereas the
polymorphic PGM2 locus was detectable exclusively in the muscle and liver samples. In
Telmatobius and B. brachydactylus allele 80 dominates, in B. macrostomus allele 100. A
total of 6 heterozygotes was found: three of the constitution 80/100 (T. rimac from
Obrojillo), one of 80/113 and two of 100/113 (T. jelskii from Palian).
Hemoglobin
In the tris system the distinction of bands corresponding to hemoglobin was best. We
found two alleles present in all central Peruvian populations, allele 100 dominating in the
Telmatobius, allele 120 in the Batrachophrynus. Heterozygotes were not detected.
Source : MNHN, Paris
58 ALYTES 13 (2)
Table L. - Allele frequencies at the polymorphic loci in 7 samples of 5 species of Andean
Telmatobiinae (genera Batrachophrynus and Telmatobius). P %: relative frequency of
polymorphic loci; A: average number of alleles per locus; HL: relative frequency of expected
heterozygosity; H: relative frequency of observed heterozygosity.
© — ————
Locus + B. brachy-| B. macro-| T. jelskii | T. jelskii | T.rimac | T.rimac | T. culeus
(Palian) | (Huaytara) | (Obrojillo)
N=15 à 4
Allles | N=22 | N=21 | N=9 | N=21 N=1
AAT 60] - = 0.143 0.059 | 0.938 0.952 | no activity
100] 1.000 1.000 | 0.857 0.941 0.062 0.048 | detectable
AK 75| 0.052 = = -. . 7 A
100| 0.789 0.900 0.571 0.824 0.813 0833 |roaciiy
120] 0.159 0.100 0.429 0.176 0.187 0167» | 401e0table
ESTI 50| 0.077 = - = . = pe
90! 0.154 0.231 = 0.286 0.083 0.125 =.
100! 0.769 0.769 1.000 0.714 0.917 0.875 1.000
EST2 90| 0.105 0.053 = = 0.125 0.111 .
100! 0.895 0.947 1.000 1.000 0.875 0.889 1.000
EST3 94! O.111 0.421 0.429 0.063 0.125 0.167 .
100! 0.889 0.579 0.571 0.937 0.875 0.833 1.000
EST4 92 - 0.053 = 0.067 0.125 0.412 =
100 1.000 0.947 1.000 | 0.933 0.875 0.589 1.000
GPI 73] 0091 0.050 | 0.333 0.278 1.000 0.950 =
100] 0.909 0.950 | 0.667 0.722 5 0.050 1.000
HDH 75] 0.545 0.395 0.750 0.850 0.875 0.579 no activity
100! 0.455 0.605 0.250 0.150 0.125 0.421 detectable
IDH 93) 0.091 0.050 = = = = no activity
100! 0.909 0.950 1.000 1.000 1.000 1.000 detectable
IDH 90! 0.600 0.400 = = = 0.071 L
100| 0.300 = 1.000 0.667 1.000 0.929 | no activity
11 - 0.400 . 2 - - detectable
125] 0.100 0.200 - 0.333 - -
LDHI 33| 1.000 1.000 . . . =. =.
100 - - 1.000 1.000 1.000 1.000 1.000
MDHI 71] 0.050 0.067 0.444 0.188 0.688 0.556 -
100| 0.950 0.933 0.556 0.912 0.312 0.444 =
125 - - - - - - 1.000
MDH2 85| 0111 0.167 0.500 0.400 0.563 0.262 =
100| 0.833 0.750 = 0.600 0.437 0.643 1.000
115, 0.056 0.083 0.500 - - 0.095 "
ME 20| 0.167 0.026 - - ! 0.053 -
60| 0.286 0.474 “ 0.063 0.438 0.395 -
100| 0.547 0.500 1.000 0.937 0.562 0.552 1.000
PEPI 83 = 0.125 =
100] 1.000 | 0.875 1.000 1.000 1.000 1.000 1.000
PEP2.2 100] 0.714 | 0750 | 1000 | 1.000 | 1.000 | 1.000 [noactiviy
115] 0.286 0:250 - - - - detectable
PGM2 80] 0611 0.400 0.857 0.500 1.000 0.750 ee
0.389 0.600 - 0.333 - 0.250 |n0 activity
18] - - 0.143 0.167 £ s detectable
Hb 100] 0.136 1.000
120| 0.864 “
P% 0.61
A 1.80
He 0:30
He 0.04
Source : MNHN, Paris
SINSCH & JURASKE
59
Table II. - Matrix of genetic distances among six samples of four central Peruvian species of Andean
Telmatobiinae (genera Batrachophrynus and Telmatobius).
A. Neï's genetic distance
B. Cavalli-Sforza's chord distance
Species + B. T. jelskir T. jelskii T: rimac
Species + 3. T. jelskaii T. jelshai T: rimac
Population | macrostomus (Cuyro.) (Palian) (Obrojillo)
3.
Dachpdacphs| 20801 02237 0.1204 0.3177 02613
e E 02304 0.1417 0.3464 0.2874
macrostomus
ne E 0.0661 0.1055 0.1296
(Cuyro.)
ARE - 0.1387 0.1232
(Palian)
T: rimac : NS
(Huaytara)
T. rimac
(Huaytara)
from the data published in WIENS (1993).
Population | macrostomus (Cuyro.) (Palian) (Huaytara) (Obrojillo)
B.
Brachdacyus| 22211 0.5993 0.3667 0.6996 0.5434
B: ; 0.6621 0.4227 0.7768 0.6131
macrostomus
T. jelskii - 0.2349 0.3092 0.3408
(Cuyro.)
T. jelski - 0.3123 0.2641
(Palian) l :
T. rimac p 0.803
(Huaytara) :
C. Reynolds’s genetic distance
Species + B. T. jelskii T. rimac
Population | macrostomus (Palian) (Obrojillo)
8.
Brachydactytus | 0895 0.4575 0.3009 0.5494
B. n 0.4443 0.3174 0.5458
macrostomus
T.jelskii
- 0.2238 03512
(Cuyro.)
T. jelskii ; 03840
(Palian) À
T. rimac
Table III. - Matrix of Neï's genetic distances among four north Peruvian Te/matobius species, calculated
Species Telmatobius latirostris | Telmatobius necopinus | Telmatobius truebae
Telmatobius brevipes 0.9246 0.8504 0.8702
Telmatobius latirostris - 0.4479 0.3411
Telmatobius necopinus - 0.4973
Source : MNHN, Paris
60 ALYTES 13 (2)
Batrachophrynus Telmatobius
brachy. macro. jelskii rimac
_—. € P H 0
e
(=)
où
e]
=
[e}
Neïs genetic distance
0.15
Fig. 1. — UPGMA dendrogram of genetic similarity among six samples of four central Peruvian
species of Andean Telmatobiinae, based on the matrix of Neï’s genetic distances (Table II A).
Batrachophrynus Telmatobius
brachy. macro. jelskii rimac
600) P H 0
0.05
0.10
0.15
0.20
Cavalli Sforza's chord distance
0.25
0.30
Fig. 2. — UPGMA dendrogram of genetic similarity among six samples of four central Peruvian
species of Andean Telmatobiinae, based on the matrix of Cavalli-Sforza’s chord distances (Table
II B).
Source : MNHN, Paris
SINSCH & JURASKE 61
Batrachophrynus Telmatobius
brachy. macro. jelskii rimac
Ci PM. 9
0.00
e e e
2 2 5
ao o a
Reynold's genetic distance
e
ES)
S
0.25
Fig. 3. —- UPGMA dendrogram of genetic similarity among six samples of four central Peruvian
species of Andean Telmatobiinae, based on the matrix of Reynolds’s genetic distances (Table II
©).
Telmatobius rimac
Huaytara
Obrojito 87%
Batrachophrynus Telmatobius
macrostomus jelskii
Pelian
Batrachophrynus
brachydactylus
Fig. 4. — Genetic relationships among six samples of four central Peruvian species of Andean
Telmatobiinae. Due to the absence of an outgroup the tree is arbitrarily rooted at the mean
distance between the most similar populations of Batrachophrynus and Telmatobius. Maximum
likelihood method, based on the allele frequencies (Table I); best tree out of 202 examined in five
runs: In likelihood = 88.3.
Source : MNHN, Paris
62 ALYTES 13 (2)
PHYLOGENETIC RELATIONSHIPS
Allele frequencies (Table I) obtained for the six populations of four central Peruvian
telmatobiine species were used for the calculation of three measures of genetic distances
(Table IT). The reconstruction of the phylogenetic relationships by four commonly used
algorithms was based on either allele frequencies or distance matrices (figs. 1-4).
Independent of the algorithm used for the calculation of the genetic distances among
the populations sampled, the matrices obtained shared the following features: (1) the
genetic differentiation between the two populations of T. rimac and between the two
Batrachophrynus species was low and at the same level; (2) the level of differentiation
between the two T. jelskii populations was 2-3 times greater than between the T. rimac
populations, and the Batrachophrynus species; (3) the Telmatobius species were genetically
more similar to each other than any to the Batrachophrynus species.
All algorithms based on distance matrices produced identical groupings of popula-
tions. Therefore, only the UPGMA-dendrograms are shown as representative examples
(figs. 1-3). The main clusters corresponded to the genera Batrachophrynus and Telmatobius
and conspecific populations were placed together. The unrooted maximum likelihood tree
based on allele frequencies shows a similar grouping of the populations (fig. 4). However,
the T. jelskii populations are placed on different branches of the Te/matobius lineage.
In addition to the four central Peruvian species, we also included the southern
Peruvian T. culeus into the analysis. As the data on the allozymes expressed in this species
are based on one individual, a quantitative approach to the phylogenetic relationships is
not possible yet. Nevertheless, a qualitative reconstruction based on the presence or
absence of alleles was attempted (fig. 5). Four monomorphic loci and several common
alleles at the polymorphic loci justify the common root of the dendrogram. The distinction
between Batrachophrynus and Telmatobius is based on fixed alleles at the LDHI1 locus. T.
culeus differs from T. jelskii and T. rimac by fixed alleles at the MDHI locus. In B.
brachydactylus and B. macrostomus, and in T. jelskii and T. rimac, respectively, we were
unable to find a locus with different fixed alleles. Species distinction is based on the
presence and absence, respectively, of rare alleles at the EST2-locus and the PEP1-locus.
DISCUSSION
The radiation of a late tertiary stock of telmatobiine frogs into the recently uplifted
cordilleran environments led to a differentiation of about 30 presently known species (CE,
1986; DUELLMAN, 1993; FRosT, 1985; WiIENS, 1993). Allopatric populations which inhabit
numerous interandean valleys and streams of the Pacific or Atlantic hydrographic systems
give an idea of the mechanisms of speciation at work. The geomorphologically
complicated Late Pleistocene landscape favoured the formation of disjunct populations
(Ce, 1986). Progressive genetic changes in isolated gene pools probably promoted
allopatric speciation in the Andean Telmatobiinae. The tendency for homozygosity at
almost all loci in the Andean populations already studied is a strong indication of small
Source : MNHN, Paris
SINSCH & JURASKE 63
population size and interrupted gene flow between populations. Large genetic distances
between populations assigned to T. jelskii and inhabiting different river systems
demonstrate that allopatric speciation is still the norm at the present time.
Early attempts to analyze relationships between the Andean Telmatobiinae (VELLARD,
1951, 1953, 1955) mainly reflect groupings assigned by biogeographical convenience to a
poor data base. LyNCH (1978) was the first to use a cladistic approach on a set of
morphological and osteological data. He placed the Andean genera Batrachophrynus and
Telmatobius, along with additional seven genera (A/sodes, Atelognathus, Eupsophus,
Hylorina, Insuetophrynus, Limnomedusa and Somuncuria), into the tribe Telmatobiini
Fitzinger, 1843. All cladograms (based on differing numbers of OTUs) emphasized that
the common ancestor of the lineage leading to the two Batrachophrynus species separated
at a very early stage from the lineage leading to the present Telmatobius species.
Nevertheless, D'UELLMAN’S (1979: 424) statement: “the systematic relationships of the
species of Telmatobius presently are too poorly known to assess fully the historical
biogeography of the group” remains valid in spite of increased knowledge on the Andean
Telmatobiinae accumulated since VELLARD’s pioneer work.
Our attempt to reconstruct phylogenetic relationships of the central Peruvian
Telmatobiinae is based on allozymes. The results correspond to those on northern
Peruvian Telmatobius (21 individuals, 4 species, 19 loci) in terms of low heterozygosity at
most loci (WIEns, 1993). However, the Neï’s distances among the species which we studied
are generally lower than those among four northern Peruvian Telmatobius species (Table
II, calculated from Table 5 in Wiens, 1993). This discrepancy is probably due to
differences in method (e. g., number and kind of loci scored, number of individuals, buffer
systems, resolution of gels). All dendrograms and trees derived from processing allele
frequencies and distance matrices indicate the same sequence of speciation events among
the four species of Batrachophrynus and Telmatobius we examined.
Allozymes clearly support monophyly in Batrachophrynus. The gene pools of B.
brachydactylus and B. macrostomus were surprisingly similar and the genetic distance of
0.03 between the two species is the lowest interspecific Neï’s distance ever reported for
Amphibia (usually 0.1 to 3.0; AvisE & AQUADRO, 1982). LAURENT’s (1983) hypothesis of
an independent derivation from the Telmatobius stock is not supported. This hypothesis
apparently resulted from a misinterpretation of convergent morphological traits in the
stream-inhabiting B. brachydactylus and Telmatobius species.
We were unable to detect any fixed genetic difference between the two Batrachophry-
nus species and even allele frequencies are very similar. Taken alone, allozymes would
suggest that B. brachydactylus and B. macrostomus are conspecific. On the other hand,
these taxa are morphologically well defined, extremely different in size, and they live in
different habitats (PETERS, 1873; SINSCH, 1990; SinscH et al., 1995). Intermediate
individuals between the brachydactylus phenotype and the macrostomus phenotype are not
known. Personal field observations in the area of Lake Junin, where both taxa occur
sympatrically, did not yield any evidence of interbreeding. In conclusion, despite the low
differentiation of the Batrachophrynus gene pool for the allozymes we studied (comparable
to studies on bird allozymes), we do not doubt the specific status of both taxa which we
consider sister species.
Source : MNHN, Paris
64 ALYTES 13 (2)
Batrachophrynus Telmatobius
brachy. macro. jelskii rimac culeus
EST2 (90)
PEP1 (83)
MDH1 (125)
LDH1 (33)
LDH1 (100)
HDH1
PEP2.1
6PGD
PGMi
Fig. 5. — Proposal for the phylogenetic relationships among five species of Andean Telmatobiinae,
based on the presence (dot) and absence (circle), respectively, of alleles at different allozyme loci.
The cluster formed by Telmatobius samples agrees with the morphometric assignment
of populations to the species T. jelskii and T. rimac. The genetic distance between the
conspecific samples correlates with the corresponding geographical distance of localities.
Finally, the low genetic distance between T. jelskii and T. rimac as well as the absence of
diagnostic fixed alleles indicates a close phylogenetic relationship.
The evaluation of fixed alleles and of presence/absence of rare alleles supports the
same tree structure as the quantitative treatment of allele frequencies. Moreover, it allows
for a proposal on the relationships of T. culeus with the central Peruvian taxa (fig. 5). Yet,
the large geographical distance between the current distribution ranges of T. jelskii and T.
rimac on one hand, and T. culeus on the other, indicates a long period of independent
evolution. Nevertheless, the fixed allele at the LDHI1 locus clearly suggests that T. culeus
is a member of the same Te/matobius lineage as are the central Peruvian species. This
shared character state distinguishes Te/matobius from Batrachophrynus and favours the
hypothesis of an early separation put forward by LyNCH (1978). The geographically
distant T. culeus genetically and morphometrically resembles the Batrachophrynus species
more than the neighboring central Peruvian Te/matobius species do. This may indicate that
Batrachophrynus species represent the remnants of an early invasion into the central
Peruvian Andes, whereas the Telmatobius species reached this region during a second, later
invasion. The limited present range of distribution of Batrachophrynus, and the suspicious
Source : MNHN, Paris
SINSCH & JURASKE 65
absence of streams occupied by both B. brachydactylus and a stream-inhabiting
Telmatobius species, suggest that Telmatobius is competitively superior to Batrachophry-
nus. Future field work in the contact zone between B. brachydactylus and T. jelskii in the
streams of the Junin area should reveal whether the two can coexist in the same stream.
Our study supports the taxonomic distinction of the central Peruvian Telmatobiinae
into two genera Batrachophrynus and Telmatobius (PETERS, 1873). The geographical
distribution of Batrachophrynus and Telmatobius species indicates the result of competition
between early and late invaders of this region rather than phylogenetic proximity.
However, the genetic distance between the members of these genera is low. Data from
additional Telmatobius species and from an appropriate outgroup (Alsodes, considered as
sister taxon of Telmatobius) are needed for a final decision on the relationships between
Batrachophrynus and Telmatobius.
RESUMEN
Se revisan tres hipôtesis sobre’el origen filogenético de los Telmatobiinae del Perû
central: (1) el antepasado comün de las dos especies de Batrachophrynus se separé del stock
de Telmatobius antes de su diferenciaciôn en las especies recientes; (2) B. macrostomus se
separé primero, B. brachydactylus mâs tarde del stock de Telmatobius; (3) la separaciôn del
antepasado comün de Batrachophrynus del stock de Telmatobius ocurrié despues de su
diferenciacion. Alocimas demuestran claramente que B. brachydactylus y B. macrostomus
son familiares muy cercanos, y que T. culeus del sur del Perû es relacionado mâs cercano
con T. jelskii y T. rimac del Perû central que con las especies de Batrachophrynus. En
conclusién, todas las pruebas disponibles apoyan la primera hipôtesis.
ACKNOWLEDGEMENTS
We are grateful to Lic. J. CoRDOVA, curator of the herpetological section of the Museo de la
Historia Natural de la Universidad Nacional de San Marcos, Lima, permitting us access to the
Telmatobiinae of the local collection. M. ANTIGNANI, J. ICOCHEA and A. SALAS helped us collect frogs
in the field, W. BÔHME generously permitted us to take blood samples from his T. culeus specimen,
and B. NiLow provided technical assistance. The paper benefited from the comments of E. BALLETTO,
W. R. HEYER and of an anonymous referee on an earlier draft.
LITERATURE CITED
AVIsE, J. C. & AqQuaDRo, C. F., 1982. — A comparative summary of genetic distances in the
vertebrates. Evol. Biol., 15: 151-185.
CavaLLi-SrorZaA, L. L. & EDWARDS, A. W. F., 1967. — Phylogenetic analysis: models and estimation
procedures. Evolution, 32: 550-570.
Cr, J. M., 1986. — Speciation and adaptive radiation in Andean Telmatobius frogs. In: F.
VUILLEUMIER & M. MONASTERIO (eds.), High altitude tropical geogeography, New York, Oxford
Univ. Press: 374-386.
Source : MNHN, Paris
66 ALYTES 13 (2)
DuELLMAN, W. E., 1979. — The herpetofauna of the Andes: patterns of distribution, origin,
differentiation and present communities. In: W. E. DUELLMAN (ed.), The South American
herpetofauna: its origin, evolution and dispersal, Monogr. Mus. nat. Hist. Univ. Kansas, 7:
371-459,
Kansas, 21: 1-372.
FELSENSTEIN, J., 1985. — Confidence limits in phylogenies: an approach using the bootstrap.
Evolution, 39: 783-791.
Frost, D. E., 1985. — Amphibian species of the world. A taxonomic and geographic reference.
Lawrence, Allen Press and Assoc. Syst. Collections: 1-732.
GaRMAN, S. W., 1875. — Exploration of Lake Titicaca. I. Fishes and reptiles. Bull. Mus. comp. Zool.
Cambridge, 3: 273-278.
LAURENT, R. F., 1983. — Heterogenidad del género Batrachophrynus Peters (Leptodactylidae). Acta
zool. lill., 37: 107-113.
LAviLLA, E. O., 1988. — Lower Telmatobiinae (Anura: Leptodactylidae): generic diagnoses based on
larval characters. Occ. Pap. Mus. nat. Hist. Univ. Kansas, 124: 1-19.
LyNCH, J. D., 1978. — A re-assessment of the telmatobiine leptodactylid frogs of Patagonia. Occ.
Pap. Mus. nat. Hist. Univ. Kansas, T2: 1-57.
Neï, M. 1972. — Genetic distance between populations. 4m. Nar., 106: 283-292.
NÔLLER, H. G., 1959. — Eine einfache Technik der Blutentnahme beim Frosch. Pflügers Arch.
Physiol., 269: 98-100.
PASTEUR, N., PASTEUR, G., BONHOMME, F., CATALAN, J. & BRITTON-DAVIDIAN, J., 1988. - Practical
isozyme genetics. Chichester, Ellis Horwood Ltd.
Perers, W., 1873. — Über neue oder weniger bekannte Gattungen und Arten von Batrachiern.
Monatsb. kônigl. preuss. Akad. Wiss. Berlin, 1873: 411-418.
REYNOLDS, J. B., WEIR, B. S. & COCHERHAM, C. C., 1983. — Estimation of coancestry coefficient:
basis for a short-term genetic distance. Genetics, 105: 767-779.
ScHMIDT, K. P., 1954. — Notes on the frogs of the genus Te/matobius with description of two new
Peruvian species. Fieldiana, 34: 277-287.
SHaw, C. R. & PRASAD, R., 1970. — Starch gel electrophoresis. A compilation of recipes. Biochem.
Gen., 4: 297-320.
Smerir, N., 1990. — Electrophoretic analysis of species of the genus Bufo: taxonomy, phylogeny, and
population genetics. Ph. D. thesis, Faculty of Science, Cairo University: 1-103.
SiscH, U., 1986. — Anfibios de la sierra central del Peru. Una clave de identificacion para adultos
y larvas. Bol. Lima, 45: 23-33.
1990. — Froschlurche (Anura) der zentralperuanischen Anden: Artdiagnose, Taxonomie,
Habitate, Verhaltensükologie. Salamandra, 26: 177-214.
SmscH, U., SaLAs, A. W. & CANALES, V., 1995. — Reassessment of central Peruvian Telmatobiinae
(genera Batrachophrynus and Telmatobius). 1. Morphometry and classification. Alytes, 13 (1):
14-44.
VELLARD, J., 1951. — Estudios sobre batracios andinos. I. El grupo Telmatobius y formas afines.
Mem. Mus. Hist. nat. “Javier Prado”, 1: 1-89, 8 pl.
ds 1953. — Estudios sobre batracios andinos. II. El grupo marmoratus y formas afines. Mem. Mus.
Hist. nat. “Javier Prado”, 2: 1-53, pl. I-IV + 2.
cn 1955. — Estudios sobre batracios andinos. III. Los Telmatobius del grupo jelski. Mem. Mus.
Hist. nat. “Javier Prado”, 4: 1-28.
WIEGMANN, A. F. A., 1835. — Siebente Abhandlung. Amphibien. In: F. J. F. MEYEN, Beiträge zur
Zoologie, gesammelt auf einer Reise um die Erde, Nova Acta Acad. Caesar. Leop. Carol, 17:
183-268, pl. XITI-XXII.
WIENS, J.J., 1993. — Systematics of the leptodactylid frog genus Telmatobius in the Andes of
northern Peru. Occ. Pap. Mus. nat. Hist. Univ. Kansas, 162: 1-76.
Corresponding editors: Alain Dusois & W. Ronald HEYER.
© ISSCA 1995
Source : MNHN, Paris
Alytes, 1995, 13 (2): 67-76. 67
Advertisement, aggressive,
and possible seismic signals
of the frog Leptodactylus syphax
(Amphibia, Leptodactylidae)
Adäo J. CARDOsO * & W. Ronald HEYER **
* Departamento de Zoologia, Universidade Estadual de Campinas,
Caixa Postal 6109, CEP 13081-970 Campinas, SP, Brasil
** Department of Vertebrate Zoology, National Museum of Natural History,
Smithsonian Institution, Washington, DC 20560, U.S.A.
Advertisement calls from three geographically isolated populations of
Leptodactylus syphax are remarkably similar. Aggressive calls of L. syphax
sound to the human ear very different from the advertisement calls, although
the basic structural components are similar. À male L. syphax responded with
aggressive calls to a playback of his own advertisement call. The same male
responded to playbacks of his agressive calls with increased rate of aggres-
sive calls and foot pounding behavior. The foot pounding produced audible
clicks and, by its nature, seismic signals. This is the second known instance of
Leptodactylus species producing seismic signals, each produced differently,
however. It is not known whether L. syphax interprets the seismic signals.
Seismic signalling in frogs may be much more common than currently
believed.
INTRODUCTION
Leptodactylus syphax Bokermann, 1969 is restricted to rocky granitic outcroppings
and is known from a few disjunct, widely separated, localities in Brazil (fig. 1). The first
author recently recorded calls from three of these disjunct populations. We analyze the
advertisement calls of the frogs from these three populations to determine whether there
is any significant variation among them. At one locality, the first author was fortunate to
observe and record Leptodactylus syphax aggressive calls and foot-pounding behavior. The
foot-pounding may involve seismic communication, previously reported for the first time
in frogs by Lewis & NARINS (1985). We describe and comment on all of these calls and
behaviors.
Source : MNHN, Paris
68 ALYTES 13 (2)
Fig. 1. — Known distribution of Leptodactylus syphax in South America. Triangles: sites from which
recordings are analysed in this paper (westernmost triangle: Barra do Bugres, Mato Grosso
State; northernmost triangle: Säo Raimundo Nonato, Piaui State; southernmost triangle:
Alpinépolis, Minas Gerais State). Square: site from previously published recording by W. C. À.
BOKERMANN (Chapada dos Guimaräes, Mato Grosso State). Dots: other known localities (note
that southernmost dot, the locality of Serra do Espinhaço, Minas Gerais State, was incorrectly
placed in northeastern Brazil in HEYER, 1970, fig. 21).
Source : MNHN, Paris
CARDOSO & HEYER 69
METHODS AND MATERIALS
Recordings were made using a Uher Report 4000 reel-to-reel tape recorder. The
recording information is:
(1) Tape ASN/AJC (Archivo Sonoro Neotropical/Adäo J. CARDoso) 13, cut 6, Brazil,
Minas Gerais State, Alpinépolis, Fazenda Salto; no voucher specimen; recorded by A. J.
CARDOS0; 11 October 1981; 21.00 hours; 22°C air temperature. Ten advertisement calls are
analyzed from this individual.
(2) Tape ASN/AJC 84, cut 2, Brazil, Mato Grosso State, Barra do Bugres, Reserva
Biolôgica Serra das Araras; no voucher specimen; recorded by A. J. CARDOsO; 19
November 1988; 20.30 hours; 26°C air temperature. Sixteen advertisement calls are
analyzed from this individual.
(3) Tape ASN/AJC 101, cut 2, Brazil, Piaui State, Säo Raimundo Nonato, Parna,
Serra da Capivara, localidade Caldeiräo; voucher specimen ZUEC 8829 (Universidade
Estadual de Campinas); recorded by A. J. CARDoso; 4 March 1990; 20.00 hours; 27.5°C
air temperature. Ten advertisement calls, 9 aggressive calls, and 1 foot pounding are
analyzed from this individual.
The recordings were analyzed with “Canary” software from the Cornell Laboratory
of Ornithology on a Macintosh Ilci computer. The sampling rate used to convert the
analogue signals to digital format was 22,254.5 Hz with 8-bit precision. Filter bandwidths
of 353 Hz and frame lengths of 256 points were used for both audiospectrogram and
spectrogram analyses.
Call terminology follows that defined in HEYER et al. (1990).
RESULTS
ALPINOPOLIS DATA
Three individuals were calling at the recording site. The calling males were separated
from each other by a distance greater than 100 m, far from water, in an area characterized
by large rocks, among which crevices were abundant. The individual recorded was calling
near one of these crevices, into which it fled after being approached to within about 10 m.
Only the advertisement call was recorded; no playback was presented to the frog.
The advertisement call (fig. 2 A), is given at an average rate of 0.8 per second. Call
duration ranges from 59 to 64 ms. The call is frequency modulated with a rapid rise time;
the broadcast frequency range sweeps from 390 to 2110 Hz with maximum broadcast
intensity between 1310 and 1330 Hz. The call is strongly partially pulsed, typically with
3 almost completely defined pulses. Harmonics are present (not particularly visible on
fig. 2 À, but spectrogram analyses of calls [not shown] indicate their presence).
Source : MNHN, Paris
70 ALYTES 13 (2)
$
EE
0
6 7 4 Ë ë
|°
le ge je ë Sr sl
Frequency (kHz)
6 -
lo) ; ë
j É
4 7 F É
j £
f # É.
î:
DE FAR Re PR
1 2 3
Time (s)
Fig. 2. — Audiospectrograms of advertisement calls of Leptodactylus syphax. Upper figure (A)
recorded from Alpinépolis; middle figure (B) recorded from Barra do Bugres; lower figure (C)
recorded from Säo Raimundo do Nonato.
0 ne
Source : MNHN, Paris
CaARDOSsO & HEYER 71
BARRA DO BUGRES DATA
A single individual was calling from this locality, which was characterized by large
sheets of rock and no water systems obvious in the area. Advertisement calls only were
recorded. The individual stopped calling when approached within about 20 m and did not
respond to playback of its call when broadcast from near the calling site.
The advertisement call (fig. 2 B) is given at an average rate of 1.5 per second. Call
duration ranges from 53 to 60 ms. The call is frequency modulated with a rapid rise time;
the broadcast frequency range sweeps from 380 to 2300 Hz with maximum broadcast
intensity between 1800 and 1850 Hz. The call is partially pulsed, with 3 to 5 weakly defined
pulses (the recording has a low frequency component making precise determination of the
number of pulses difficult). Harmonics are present (energy analyses of calls [not shown]
indicate their presence).
SAO RAIMUNDO NONATO DATA
Two individuals were calling at the site, about 200 m from each other. The individual
recorded was calling from an extensive horizontal rock fissure. The opening of the crevice
was about 30 cm high and 5 m long. The crevice extended about 4 m into the rock wall,
on the face of a waterfall, which at the time had little running water.
Initially the advertisement call was recorded without the monitor on, such that the
frog did not hear its own voice. At this time, the calling frog was about 4 m from the
microphone. After the initial recording was made, the monitor button was engaged and the
frog began to hear its own voice from the tape recorder speaker. Immediately after hearing
its own voice, the individual started to emit aggressive calls intermixed with advertisement
calls and jumped to within about 2 m of the tape recorder. The emissions were given at
a very variable rate with considerable irregularity in the bursts of call types. After a while
of recording under these conditions, a section of tape with a series of aggressive calls was
played back to the frog. On hearing the playback of these aggressive calls, the frog
increased its rate of aggressive calls and beat its forelimbs on the ground, thereby causing
the foot pounding sound. The tape recorder was then stopped, recording was begun anew
with the monitor engaged, such that the frog could hear its own sounds from the tape
recorder speaker, including the foot pounding sounds. Soon thereafter, the frog jumped to
the side of the tape recorder, emitted various sounds, and abruptly stopped calling. The
frog was then collected to serve as a voucher for the recordings.
The advertisement call (figs. 2 C, 3), is given at an average rate of 1.2 per second. Call
duration ranges from 56 to 64 ms. The call is frequency modulated with a rapid rise time;
the broadcast frequency sweeps from 390 to 2060 Hz with maximum broadcast intensity
between 1640 and 1680 Hz. The call is either composed of two extremely well-defined
pulses (almost notes), the first with about 3 weakly defined partial pulses, or composed of
about 4 weakly defined partial pulses. Harmonics are present.
Source : MNHN, Paris
72
Amplitude
Magnitude (dB)
ALYTES 13 (2)
r r — r
20 40 60 80 100
Time (ms)
1695
!
-80
-100
3390
5085 6780
-120 1 0
8475
0
-140 NV A ha
r r r r T
2 4 6 8 10
Frequency (kHz)
Fig. 3. — Wave form and energy analysis of advertisement call of Leptodactylus syphax recorded from
Säo Raimundo do Nonato. Upper figure shows wave form (the pulse above the 80 milliseconds
label is interpreted as microphone ringing, not a part of the call); bracket above wave form
indicates portion of call used for spectrogram analysis of lower figure.
Source : MNHN, Paris
CaRDOsO & HEYER 73
The aggressive call (figs. 4, 5) is given at an average rate of 0.7 per second. Call
duration ranges from 162 to 206 ms. The call is frequency modulated in a complex fashion.
There is an initial low intensity fast rise in frequency, the fundamental rising from 220-
480 Hz to 920-1010 Hz, followed by a falling frequency, steeper initially, the fundamental
from about 920-1010 Hz falling to 310-520 Hz. The call is partially pulsed with about
3 weakly defined pulses. There are at least 3 well-defined harmonics which have about as
much broadcast energy as the fundamental.
There is no apparent transition in call when a male switches from advertisement to
aggressive calls (and vice versa); the male utters either one kind or the other (fig. 5).
The pounding of the front foot results in a faint, but audible click (fig. 4), that has
most energy at about 1800 Hz. Foot pounding, by its nature, produces seismic signals as
well.
DISCUSSION
The calls from the three isolated populations of Leptodactylus syphax studied are
remarkably similar, differing only in details that might be expected to occur among
individuals from a single population (see GERHARDT, 1988, for a general discussion and
RyaAN, 1980, for a specific example analyzing fundamental frequency). The calls reported
here are also similar to the call from Chapada dos Guimaräes, Mato Grosso State,
recorded by Werner C. A. BOKERMANN, previously reported (HEYER, 1979), with one
exception. The previously analyzed recording from Chapada dos Guimarâes gave very
little indication of harmonic structure. However, harmonic structure is evident in the wave
forms of the calls analyzed herein (e. g., fig. 3, above), and the spectrogram analysis
indicates the presence of at least 3 harmonics in addition to the fundamental frequency
(fig. 3, below). These differences in harmonic expression may be due to differences of
recording and analytic equipment rather than actual call differences.
The modest differences in advertisement calls among the geographic samples analyzed
are somewhat surprising. We do not know whether these similarities may be due to recent
isolation of the presently disjunct populations of L. syphax or due to selection for
stabilization of the advertisement call among all populations.
The advertisement and aggressive calls are very different sounding (and appearing
when analyzed) calls. They sound as though they were calls of two different species of
frogs. The advertisement and aggressive calls differ in duration and mode of frequency
modulation. The calls do share the characteristics of being frequency modulated, having
overlapping broadcast frequencies, and having harmonic structure. These similarities
suggest that the same physical structural complex is involved in producing both calls and
the differences are produced by a combination of behavioral:controls regulating the
duration of the call and manipulating tension of the laryngeal musculature which causes
changes in the tension of the vocal cords resulting in differences of the physical structure
of the emissions. These behavioral changes are not trivial, however. Lewis & NARINS
(1985) reported similar results for Leptodactylus albilabris. While the advertisement call of
Source : MNHN, Paris
74 ALYTES 13 (2)
Frequency (kHz)
Time (s)
Fig. 4. — Audiospectrogram of two aggressive calls and foot-pounding of Leptodactylus syphax
recorded from Säo Raimundo Nonato. The arrow indicates the foot-pounding sound.
A
6
2
ë
3,2
Ë À es
; 7
0 abat at
L
Time (s)
Fig. 5. — Audiospectrogram of continuous recording of a male Leptodactylus syphax from Säo
Raimundo Nonato, uttering aggressive calls (A) followed immediately by advertisement calls (B)
with no intermediate call structure between the two call types.
Source : MNHN, Paris
CARDOSO & HEYER 75
L. albilabris is short and rises from 1000 to 2300 Hz, the male-male interaction call is
longer and descends from 2300 to 1000 Hz. Perhaps this pattern of frequency modulation
reversal and time differences in advertisement and aggressive calls is common to all
Leptodactylus species with rising whistle-like advertisement calls.
Lewis & NaRINs (1985) and NaRINs (1990) reported that Leptodactylus albilabris
produces and is capable of receiving and interpreting seismic signals. Lewis & NARINS
(1985) speculated that the different arrival times of the simultaneously produced seismic
and airborne waves could provide a temporal clue to the distance from the source and
could be used to help males establish and maintain territories. NARINS speculated that L.
albilabris might be able to integrate the seismic and air-borne advertisement calls “to better
communicate when high-level background noise obscures the acoustic channel” (NARINS,
1990: 273). This could also pertain to L. syphax, as the habitats they call from have noisy
waterfalls during rainy periods.
The mechanism for producing seismic signals in L. albilabris was reported to be the
rapidly expanding vocal sac contacting the ground. Leptodactylus syphax produce seismic
signals by beating their forefeet on the ground. In contrast to the seismic signals of L.
albilabris, which are not audible to the human ear, the foot pounding of L. syphax is
weakly audible to the human ear, and is certainly within the frequency range of the
advertisement call of L. syphax. We assume the audible nature of the foot pounding of L.
syphax is possibly due to the presence of horny spines on the inner thumb of the male. In
contrast to L. albilabris, the seismic signals made by L. syphax are not produced
simultaneously with advertisement or aggressive calls. We do not know whether L. syphax
is processing the air-borne click portion of the foot-pounding, the seismic signals, neither,
or both. However, we report here the second known instance in frogs producing seismic
signals, both within the genus Leptodactylus, but by very different methods. Obviously,
this foot-pounding behavior of L. syphax merits further study as well as detailed study of
other frogs to determine whether seismic signalling is much more common than currently
believed.
ACKNOWLEDGMENTS
A short-term visitor grant to the first author from the Office of Fellowships and Grants,
Smithsonian Institution, provided the initial collaboration that led to this paper. Additional support
to the first author was from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico
(CNPq) and to the second author from the Museu de Zoologia da Universidade de Säo Paulo, the
Neotropical Lowlands Research Program of the Smithsonian Institution’s International Environ-
mental Sciences Program, and the Director’s Office, National Museum of Natural History.
Ronald I. CROMBIE, Smithsonian Institution, reviewed the manuscript for us. Two anonymous
reviewers suggested several improvements.
Source : MNHN, Paris
76 ALYTES 13 (2)
LITERATURE CITED
GerHarDT, H. C., 1988. — Acoustic properties used in call recognition by frogs and toads. Jn: B.
FRiTzsCH, M. J. RyAN, W. WILCZYNSKI, T. E. HETHERINGTON & W. WALKOWIAK (eds.), The
evolution of the amphibian auditory system, New York, John Wiley & Sons: 455-483.
HEYER, W. R., 1979. — Systematics of the pentadactylus species group of the frog genus Leptodactylus
(Amphibia: Leptodactylidae). Smithsonian Contrib. Zool., 301: 1-43.
HEYER, W. R., RAND, A. S., CRUZ, C. A. G., PEIXOTO, O. L. & NELSON, C. E., 1990. — Frogs of
Boracéia. Arg. Zool., 31: 231-410.
Lewis, E. R. & Nains, P. M., 1985. — Do frogs communicate with seismic signals? Science, 227:
187-189.
NaRINS, P. M., 1990. — Seismic communication in anuran amphibians. BioScience, 40: 268-274.
RYAN, M. J., 1980. — Female mate choice in a Neotropical frog. Science, 209: 523-525.
Corresponding editor: Walter HôDL.
© ISSCA 1995
Source : MNHN, Paris
Alytes, 1995, 13 (2): 77-80. 77
Captive maintenance of adults
and juveniles of the genus Triturus
during the terrestrial phase
Verina WAIGHTS
Department of Biology, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom
Two methods for maintaining newts during the terrestrial phase, such that
regular recapture could be effected, were compared. The first method, which
has been used previously by other workers for plethodontids, led to failure to
thrive and absence of breeding condition during the following spring. The
second method, which sought to mimic the natural terrestrial habitat of
species of the genus Triturus, énabled efts to reach sexual maturity in one year
and adults to subsequently come into breeding condition.
INTRODUCTION
The development of a method to maintain newts in the terrestrial phase, whereby
individuals can easily be recaptured, is important for several reasons. Little is known about
growth of juveniles or adults during this phase in the wild, mainly due to the difficulty of
locating individuals (GRIFFITHS, 1984). Enhanced feeding of efts may lead to sexual
maturity within one year which may assist reproductive studies on captive populations
(BAKER, 1988; ELEBERT, 1991). However, raising juveniles to sexual maturity in one year
may not be desirable for programmes where the newts are to be re-introduced into the
wild, as it may impose unnatural selection pressures.
Newts, captured aquatically, can rapidly lose breeding condition. Males often react to
the stress of capture by rapid regression of their crests or tail filaments and both sexes may
cease courtship behaviour. VERRELL (1982) found that these reactions to stress in the male
could be overcome in Notophthalmus viridescens by enhanced feeding but I found this
regime to be unsuccessful for both Triturus montandoni and Triturus helveticus (unpub-
lished data). Maintenance of adults during the terrestrial phase, enabling them to come
into breeding condition the following spring, may facilitate studies of courtship behaviour
in the laboratory.
Workers in North America have maintained plethodontids terrestrially, which
enabled them to observe courtship behaviour for eight months of the year (SEVER &
Houcx, 1985). This method has also been successfully used to rear Notophthalmus efts
(VERRELL, 1983).
Below, two methods are described, which were investigated for maintaining Triturus
species during the terrestrial phase; the first method is based on that used for
plethodontids and the second method is an attempt to mimic the natural terrestrial habitat
of Triturus species.
Source : MNHN, Paris
78 ALYTES 13 (2)
METHODS AND RESULTS
FIRST METHOD
Adult Triturus helveticus were collected from a pond in Bedfordshire, England, and
allowed to mate in tanks (30 cm x 60 cm x 38 cm high, size 1) at 14°C and on a natural
photoperiod. The resulting larvae were fed on Daphnia and Tubifex. At metamorphosis,
the efts were transferred to small, round glass dishes (10 cm diameter X 4 cm high), lined
with moist paper towel, containing crumpled paper for them to hide under and covered
with ‘“parafilm” to maintain the humidity and to prevent their escape. Each week the
moist towel was renewed. The efts were kept at a density of six to a dish and maintained
at 10-12°C with a 12L:12D photoperiod and fed on fruit flies (Drosophila) ad libitum.
After initially emerging from the water onto rocks, the adult newts were observed to
re-enter the water several times before their skins reverted to the terrestrial velvety
condition. They were then transferred to transparent boxes (17 cm x 31 cm x 9 cm high),
at a density of four to a box and maintained under the same conditions as the efts.
The efts failed to thrive; they grew fast initially but then remained at a small size and
subsequently died. None reached sexual maturity. The adults tended to lose weight during
the terrestrial phase, appearing very thin and dark skinned; none came into breeding
condition the following spring.
SECOND METHOD
Triturus alpestris adults were collected in France in 1989, in breeding condition. They
were housed in aquaria (size 1) and maintained at 12°C on an artificial photoperiod that
replicated the natural photoperiod (condition A). The resulting larvae were fed on Daphnia
and Tubifex. Ten larvae metamorphosed during late summer.
Triturus montandoni adults were collected in Poland in 1990, in breeding condition.
However, when they reached the laboratory, the males’ tail filaments had regressed and
they failed to court. The females, which had been ovipositing prior to capture, failed to
deposit any more eggs. Within a few weeks the adults left the water, via rocks emerging
from it, and were transferred to a terrarium.
The efts and adults were kept in terraria consisting of transparent plastic tanks
(21 cm x 40 cm x 25 cm high) covered with a plastic lid containing mesh over the air
holes. A layer of earth, 5 cm deep, was put in the bottom of the tank. Dry leaf litter, which
contained small invertebrates (wood lice, ants, beetles, etc.), was placed on top of the earth
until the tank was half-full, followed by several large stones and some pieces of bark for
the newts to hide under. The terraria were maintained so that the soil base was always
moist and the leaf litter dry. Each terrarium contained up to ten efts or six adults, which
were fed on Drosophila (flies and maggots) and white worms (Enchytraeus albidus) ad
libitum, and maintained at 19-23°C with a natural photoperiod. One corner of the
terrarium was used to maintain the white worms, which were replenished regularly.
Source : MNHN, Paris
WAIGHTS 79
In December, the terraria were transferred to condition À, to simulate winter, and fed
as above. In February, when Triturus vulgaris were migrating to the ponds locally, the
adult T. montandoni were transferred to aquaria (size 1), filled to a depth of 15 cm, and
kept in an unheated shed with a natural photoperiod. The T. alpestris efts had also thrived
and their skins now appeared damp, so they were transferred to tanks identical to the
above. The newts were placed on bricks above the water level.
In the terraria, the newts were often found clustered together under a piece of bark
and the efts were found inside the curled leaves. The adults were also found buried in the
soil, however they could still be seen foraging during the late afternoon and evening.
Within a few days of transfer, the adult T. montandoni became aquatic. Subsequently,
five of the six came into breeding condition, courted and reproduced. Six juvenile T.
alpestris became aquatic during the first day. They also came into breeding condition but,
as all the juveniles were female, no courtship was observed.
DISCUSSION
Looking at the results described above, it appears that the regime used in North
America so successfully for plethodontids is inappropriate for Triturus spp. In the first
method, although the absolute humidity may change as the week progresses due to the
moist towel drying out, the humidity is uniform throughout the box. Little is known about
the humidity preferences of terrestrial newts; therefore, the humidity achieved in the box
may be unsuitable. The diet in this method is also very uniform. SMITH (1951) described
the terrestrial diet of newts as consisting of worms, slugs, snails and insects; therefore, it
is possible that the newts are being deprived of essential nutrients when fed solely on a
single species of insect.
The second method was equally successful for maintaining both efts and adults. The
terrarium was set up so that a humidity gradient existed within it and the newts appeared
able to find an appropriate microhabitat. The diet was more varied, the newts were fed on
Drosophila (flies and maggots), white worms and any invertebrates in the soil and leaf
litter. This diet may be closer to that found in the wild and is therefore more likely
to supply all the nutrients necessary for spermatogenesis and somatic growth. This
method also gave the newts a period of “summer” terrestrial conditions which has been
shown to be a requirement for complete spermatogenesis to occur (SAEZ et al., 1992). The
lack of this “summer” period in the first method may have contributed to the decline of
the newts and may indicate that efts also require these higher temperatures for
development.
Development of a method that facilitates recapture in the terrestrial phase may allow
investigation of differential feeding and growth rates during this phase. Age accounts for
only a small proportion of the total variance in adult body size (HALLIDAY & VERRELL,
1988) and therefore a study of juvenile growth during this phase may help to elucidate
further the variation in subsequent adult body size. BAKER (1992) has shown that crest
height is related to body condition in Triturus cristatus. The above method will enable a
Source : MNHN, Paris
80 ALYTES 13 (2)
study to be undertaken to investigate the relationship between growth and body condition
in the terrestrial phase to the development of secondary sexual characteristics and
subsequent reproductive success in the aquatic phase.
RÉSUMÉ
Deux méthodes pour le maintien en captivité de tritons pendant leur phase terrestre
sont décrites et comparées. La première méthode, qui a été déjà utilisée avec succès avec
des Pléthodontidés, a abouti à un échec en ce qui concerne la croissance des animaux et
leur aptitude à se reproduire au printemps suivant. La deuxième méthode, qui cherche à
reproduire l'habitat terrestre naturel des espèces du genre Triturus, a permis aux jeunes
tritons d’atteindre la maturité sexuelle en un an et aux adultes de retrouver leur condition
reproductive au printemps.
ACKNOWLEDGEMENTS
I thank Herbert MACGREGOR and Leigh GiLLETT for providing the animals, Fred TOATES and
Alain Duois for translating the Résumé into French, John BAKER and Tim HALLIDAY for much
helpful advice and Günter GOLLMANN and two anonymous referees for assistance in revising the
manuscript. This work was supported by the Open University.
LITERATURE CITED
BAKER, J. M. R., 1988. — Maintenance and breeding of Triturus karelini. Brit. herp. Soc. Bull., 25:
42-44.
ee 1992. — Body condition and tail height in great crested newts, Triturus cristatus. Anim. Behav.,
43: 157-159.
ELEBERT, E., 1991. — Precocious newts. Brit. herp. Soc. Bull., 35: 17-19.
GRIFRITHS, R. A., 1984. — Seasonal behaviour and intrahabitat movements in an urban population
of smooth newts, Triturus vulgaris (Amphibia: Salamandridae). J. Zool., Lond., 203: 241-251.
HALLIDAY, T. R. & VERRELL, P. A., 1988. — Body size and age in amphibians and reptiles. J. Herp.,
22 (3): 253-265.
SAEZ, F. J., FRAILE, B., PAZ DE MIGUEL, M. & PANIAGUA, R., 1992. — Effects of low temperature
on testicular cells in the marbled newt, Triturus marmoratus (Caudata, Salamandridae). Herp.
J., 2: 125-132.
Sever, D. M. & Houck, L., 1985. — Spermatophore formation in Desmognathus ochrophaeus
(Amphibia: Plethodontidae). Copeia, 1985: 394-402.
SmirH, M., 1951. — The British amphibians and reptiles. London, Collins: 1-318.
VERRELL, P. A., 1982. — A note on the maintenance of the red spotted newt in captivity. Brit. herp.
Soc. Bull., 5: 28-29.
ee 1983. — A note on the breeding of the red-spotted newt in captivity. Brit. herp. Soc. Bull. 6:
48-49.
Corresponding editor: Günter GOLLMANN.
© ISSCA 1995
Eu) Source : MNHN, Paris
A
AINTTES
International Journal of Batrachology
published by ISSCA
EDITORIAL BOARD FOR 1995
Chief Editor: Alain Durois (Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire
naturelle, 25 rue Cuvier, 75005 Paris, France). )
Depurx Editor: Janalee P. CaLDwELL (Oklahoma Museum of Natural History, University of
Oklahoma, Norman, Oklahoma 73019, U.S.A.).
Editorial Board: Ronald G. ALTIG (Mississippi State University, U.S.A.}: Emilio BALLETTO (Torino,
Italy): Alain COLLENOT (Paris, France), Günter GOLLMANN (Wien, Austria), Tim HALLIDAY
(Milton Keynes, United Kingdom); W. Ronald HEvER (Washington, U.S.A.); Walter HôDL
(Wien, Austria): Pierre JoLY (Lyon, France): Masafumi Maïsur (Kyoto, Japan); Jaime
E. PÉFaUR (Mérida, Venezuela): J. Dale RoBERTs (Perth, Australia); Ulrich Sixsc (Koblenz,
Germany): Marvalee H. WakE (Berkeley, U.S.A.).
Technical Editorial Team (Paris, France): Alain DuBoIs (texts); Roger BoUR (tables); Annemarie
OuLer (figures)
Index Editors: Annemarie OHLER (Paris, France); Stephen J. RicHaRDs (Townsville, Australia).
GUIDE FOR AUTHORS
Alytes publishes original papers in English, French or Spanish, in any discipline dealing with
amphibians. Beside articles and notes reporting results of original research, consideration is given for
publication to synthetic review articles, book reviews, comments and replies, and to papers based
upon original high quality illustrations (such as color or black and white photographs), showing
beautiful or rare species, interesting behaviors, etc.
The title should be followed by the name(s) and address(es) of the author(s). The text should
be typewritten or printed double-spaced on one side of the paper. The manuscript should be organized
as follows: English abstract, introduction, material and methods, results, discussion, conclusion,
French or Spanish abstract, acknowledgements, literature cited, appendix.
Figures and tables should be mentioned in the text as follows: fig. 4 or Table IV. Figures should
not exceed 16 x 24 cm. The size of the lettering should ensure its legibility after reduction. The
legends of figures and tables should be assembled on a separate sheet. Each figure should be
numbered using a pencil.
References in the text are to be written in capital letters (SOMEONE, 1948: So & So, 1987;
EveryBopy et al., 1882). References in the literature cited section should be presented as follows:
BOURRET, R., 1942. - Les batraciens de l'Indochine. Hanoï, Institut Océanographique de l'Indochine:
ix + 1-547, pl. I-IV.
Grar, J.-D. & POLLs PELAZ, M., 1989. - Evolutionary genetics of the Rana esculenta complex. In:
R. M. DaAWLEY & J. P. BOGART (eds.), Evolution and ecology of unisexual vertebrates, Albany, The
New York State Museum: 289-302.
INGER, R. F., Voris, H. K. & Voris, H. H., 1974. - Genetic variation and population ecology of some
Southeast Asian frogs of the genera Bufo and Rana. Biochem. Genet., 12: 121-145.
Manuscripts should be submitted in triplicate either to Alain DuBoIs (address above) if dealing
with amphibian morphology, systematics, biogeography, evolution, genetics or developmental
biology, or to Janalee P. CALDWELL (address above) if dealing with amphibian population genetics,
ecology. ethology or life history. Acceptance for publication will be decided by the editors following
review by at least two referees.
If possible, after acceptance, a copy of the final manuscript on a floppy disk (3 % or 5 W)
should be sent to the Chief Editor. We welcome the following formats of text processing: (1)
preferably, MS Word (1.1 to 6.0, DOS or Windows), WordPerfect (4.1 to 5.1, DOS or Windows) or
WordStar (3.3 to 7.0); (2) less preferably, formated DOS (ASCII) or DOS-formated MS Word for the
Macintosh (on à 3 % high density 1.44 Mo floppy disk only).
No page charges are requested from the author(s), but the publication of color photographs is
charged. For each published paper, 25 free reprints are offered by Alyies to the author(s). Additional
reprints may be purchased.
Published with the support of AALRAM
(Association des Amis du Laboratoire des Reptiles et Amphibiens
du Muséum National d'Histoire Naturelle, Paris, France).
Directeur de la Publication: Alain DuRoïs.
Numéro de Commission Paritaire: 64851.
© ISSCA 1995 Source : MNHN, Paris
Alytes, 1995, 13 (2): 45-80.
Contents
E. O. LaviLA & P. ERGUETA S.
Una nueva especie de Telmatobius (Anura, Leptodactylidae)
de la ceja de montaña de La Paz (Bolivia)
Ulrich SNsCH & Norbert JURASKE
Reassessment of central Peruvian Telmatobiinae
(genera Batrachophrynus and Telmatobius).
11. Allozymes and phylogenetic relationships ........................ 52-66
Adäo J. CARDOsO & W. Ronald HEYER
Advertisement, aggressive, and possible seismic signals
of the frog Leptodactylus syphax (Amphibia, Leptodactylidae) ....... 67-76
Verina WAIGHTS
Captive maintenance of adults and juveniles
of the genus Zriturus during the terrestrial phase ... 77-80
Alytes is printed on acid-free paper.
Alytes is indexed in Biosis, Cambridge Scientific Abstracts, Current Awarèness in Biological
Sciences, Pascal, Referativny Zhurnal and The Zoological Record.
Imprimerie F. Paillart, Abbeville, France.
Dépôt légal: 2°" trimestre 1995.
© ISSCA 1995
Source : MNHN, Paris