6 4 À $ Hs, Fr
GC: L ep p Fioalo ol? 13%
VU J ISSN 0753-4973
AINTTES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
ï fe { JUIL 1996
June 1996 Volume 14, N° 2
Source : MNHN, Paris
International Society for the Study
and Conservation of Amphibians
(International Society of Batrachology)
SEAT
Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire naturelle, 25 rue Cuvier, 75005
Paris, France. — Tel.: (33).(1).40.79.34.87. — Fax: (33).(1).40.79.34.88. — E-mail: ohler@mnhn.fr.
BOARD FOR 1996
President: Raymond F. LAURENT (Tucumän, Argentina).
General Secretary: Annemarie OLER (Paris, France).
Treasurer: Dominique PAYEN (Paris, France). .
Deputy Secretaries: Britta GRILLITsCH (Wien, Austria); W. Ronald HEYER (Washington, U.S.A.);
Stephen RicHarDs (Townsville, Australia).
Deputy Treasurers: Jean-Louis DENIAUD (Paris, France); Mark L. WyGoDpA (Lake Charles, U.S.A.).
Councillors: Janalee P. CALDWELL (Norman, U.S.A.); Marissa FABREZI (Salta, Argentina); Jon LOMAN
(Lund, Sweden).
TARIFF FOR 1996
Individuals Institutions
Subscription to Alytes alone 280 FF / 56 $ (regular) 560 FF /112$
140 FF / 28 $ (student)
Subscription to Alytes + ISSCA + Circalytes 300 FF / 60 $ (regular) 600 FF / 120$
150 FF / 30 $ (student)
Back issues of Alytes: single issue 70FF/14$ 140 FF / 28 $
Back issues of Alytes: one complete volume (4 issues) 225 FF / 45 $ 450 FF / 90 $
Back issues of Alyies: complete set volumes 1 to 13 2340 FF / 468 $ 4680 FF / 9365
Five-year (1996-2000) individual subscription to A/ytes: 1120 FF / 224 $.
Five-year (1996-2000) individual subscription to Alytes + ISSCA + Circalytes: 1500 FF / 300 $.
Life individual subscription to Alytes from 1996 on: 5600 FF / 1120 5.
Life individual subscription to Aytes + ISSCA + Circalytes from 1996 on: 7000 FF / 1400 5.
Patron individual subscription to A/ytes from 1996 on: 11200 FF / 2240 $ or more.
Patron individual subscription to Alytes + ISSCA + Circalytes from 1996 on: 14000 FF / 2800 $ or
more.
Important notice: from 1996 on, any new life or patron individual subscriber to Alptes will be offered a
free complete collection of back issues of Alytes from the first issue (February 1982) until the start of
her/his subscription.
Circalytes is the internal information bulletin of ISSCA. Back issues of this bulletin are also available:
prices can be provided upon request by our Secretariat.
Inclusive Section or Group affiliation to ISSCA: 250 FF / 50 $.
Individual subscription to the ISSCA Board Circular Letters: 200 FF / 40 $.
MODES OF PAYMENT
In French Francs, by cheques drawn on a French bank payable to “ISSCA”, sent to our Secretariat
(address above).
— In French Francs, by direct postal transfer to our postal account: “ISSCA”, Nr. 1-398-91 L, Paris;
if you use this mode of payment, add 15 FF to your payment for postal charges at our end.
— In US. Dollars, by cheques payable to “ISSCA”, sent to Mark L. WyGoDA, Department of
Biological and Environmental Sciences, P.O. Box 92000, McNeese State University, Lake Charles,
Louisiana 70609-2000, U.S.A.
Source : MNHN, Paris
AINTES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
June 1996 Volume 14, N° 2
Alytes, 1996, 14 (2): 53-84. Bibliothèque Centrale Muséum Review paper
3
The amphibian micronucleus test,
a model for in vivo monitoring
of genotoxic aquatic pollution
Laury GAUTHIER !
Centre de Biologie du Développement, UMR 5547 du CNRS, affiliée à l'INSERM,
Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
This review deals with the experiments carried out over the last decade on
the detection of the genotoxicity in aquatic medium (fresh water) using
amphibian larvae. Three amphibian species have been widely used: two
species of urodeles, the Spanish newt or pleurodele (Fleurodeles walti) and
the Mexican axolotl (Ambystoma mexicanum), as well as one anuran, the
South African clawed frog or common platanna (Xenopus laevis). The protocol
carried out on these amphibians, at the Developmental Biology Center in
Toulouse, France, allows the direct detection of genotoxic agents in the
rearing medium of the animals by measuring the induction level of micronu-
cleated erythrocytes of larvae exposed to pure substances, physical agents,
complex mixtures of substances like drinking and surface water, domestic and
industrial wastes, or any aqueous effluent.
After introducing the test procedure and the rearing conditions of the
animals, the results obtained with the amphibian micronucleus assay are
presented with respect to the chronological order of the different steps leading
to the publication of the standardized method in 1992 and to the state of the
art in the field of in vivo eco-genotoxicology of aquatic media, where
amphibians, thanks to the works reported in this paper, play a major role.
Then, the choice of future development areas in the field is discussed in
terms of validity of the use of amphibians as genotoxicity bioindicators in the
aquatic environment, considering the many advantages of this model and its
complementarity with the commonly used in vitro test-systems.
1. Present address: Groupe de Recherche Pluridisciplinaire sur l'Environnement d'Albi (GRePEA),
Université Paul Sabatier, campus d’Albi, 2 avenue Franchet d’Esperey, BP 95, 81003 Albi Cedex, France.
PARIS
Source : MNHIg Pfris
54 ALYTES 14 (2)
INTRODUCTION
Increased environmental pollution can be attributed to a variety of factors resulting
from new industrial and agricultural technologies together with changes in our way of life.
Moreover, the nature of the pollution itself has become more diverse. Whatever the origin
of the pollution, it tends to find its way into the aquatic environment. Genotoxic
pollutants affect the aquatic ecosystem, and their presence in the water can also have
repercussions on non-aquatic species via food chains or simply from drinking the water.
One should therefore be aware of the hidden risks stemming from potential genotoxic
substances in the aquatic environment. Moreover, a considerable time may elapse between
the action of the mutagenic agent and the outward signs of its effects. The relationship
between cause and effect may thus become obscured.
The mutagenic risk is particularly apparent in prokaryotes, and readily discernible in
plants and animals with a rapid rate of reproduction, although it is often not very
perceptible in plants and animals (including humans) with a slower reproduction rate. It
should be remembered that the manufacture and use of aggressive mutagenic substances
is too recent to allow judgment of effects over a relevant number of generations. The
mutagenicity of an unknown substance is usually evaluated by putting it in contact with
a living system, which is then examined for genetic damage. It is generally agreed that it
is difficult to extrapolate results obtained in one living system to another one, or even from
animal to man. Nevertheless, the commonly used tests, as a first step, are based on
bacteria, such as the Ames test (AMES et al., 1975; MaRON & AMES, 1983). The main
advantages are that such tests can be carried out rapidly and are low in cost. One of the
main drawbacks of these bacterial tests for the detection of genotoxic substances in water
is that they are relatively insensitive, and in general they cannot be used on unconcentrated
water samples (WEAVER et al., 1981).
Ideally, one should evaluate the biological hazards of environmental genotoxic
pollutants in situ. In vivo mutagenicity tests applied to unconcentrated water samples
represent a step in this direction (CHOUROULINKOV & JAYLET, 1989; JAYLET & ZOLL,
1990). They give an indication of the overall genotoxic potential of the water under testing.
One example is the micronucleus test adapted to larvae of amphibians that we developed
over the last decade. The larvae can be reared not only in containers filled with
unconcentrated water samples (laboratory conditions), but also in running water of
various sources (effluents of factories, river water or even drinking water).
In amphibian larvae, as in most eukaryotes, chromosome and genome mutations
result in the formation of micronuclei (fig. 1). These micronuclei are small intracytoplas-
mic masses of chromatin resembling small nuclei (fig. 1A). They are formed from
chromosome fragments or complete chromosomes which have not migrated to a spindle
pole during anaphase (fig. 1C). Therefore, the formation of micronuclei stems from either
chromosome fragmentation or a malfunction of the mitotic apparatus. In the former case,
micronuclei correspond to chromosome fragments that, having lost the centromere, have
been unable to connect with the spindle fibers. In the latter case, they arise from complete
chromosomes lagging at anaphase due to spindle abnormalities. Clastogenic compounds
and spindle poisons both lead to an increase in the number of micronucleated cells.
Source : MNHN, Paris
GAUTHIER 55
Fig. 1. — Aspect of the micronucleated erythrocytes of pleurodele larvae during (B, C) and after (A)
cell division. Larvae have been treated during 12 days with BaP (0.5 ppm) and blood smears
were fixed in methanol (5 minutes), stained with Masson’s acid hemalun (12 minutes) and then
placed under running water for 10 minutes.
A. — Four micronucleated erythrocytes (interphase). After treatment with a strong
genotoxic agent, it is not rare to observe cells containing 4 or more micronuclei (cell on the
right), whereas in the control larvae, most of the micronucleated cells contain only one
micronucleus but rarely two or three.
B. — Erythrocyte of pleurodele during metaphase, including 3 chromosomal fragments.
C. — Erythrocyte of pleurodele during anaphase, in which a chromosomal fragment and
probably a whole chromosome are not incorporated to the spindle.
Source : MNHN, Paris
56 ALYTES 14 (2)
Evans et al. (1959) were the first to suggest counting cells containing micronuclei as
a method for the evaluation of cytogenetic damage. Since then, induction of micronuclei
has been widely used for genotoxicity testing. À detailed description of the micronucleus
test using bone marrow polychromatic erythrocytes from small mammals is given by
Scamip (1976). Results from the micronucleus test and recommendations for its practical
application have been reviewed by HEDDLE et al. (1983).
In the animal kingdom, micronucleus formation has been studied mainly in mammals.
In aquatic vertebrates, micronucleus tests using fish have been carried out on different
species: the mudminnow (Umbra limi) and the brown bullhead (/ctalurus nebulosus)
(METCALFE, 1988), the Eastern mudminnow (Umbra pygmaea) (HOOFTMAN & DE RAAT,
1982), the white croaker (Genyonemus lineatus) (CARRASCO et al., 1990) and Heteropneustes
fossilis (Das & NANDA, 1986). In our hands, a similar test, on red blood cells from three
other fish species (Brachydanio rerio, Cyprinus carpio and Nothobranchius rachowi), did not
lead to statistically significant results (unpublished data).
In 1987, KRAUTER et al. demonstrated micronuclei formation in peripheral eryth-
rocytes of Rana catesbeiana tadpoles after irradiation. They proposed this animal for in
vivo genotoxicity studies. Other amphibian species have been designed to score the level
of micronucleated cells in animals exposed to genotoxic substances in water and to
monitor aquatic genotoxic pollutions in the environment.
This paper has two major purposes: to present the procedure of the micronucleus test
applied to 3 amphibian larvae, the pleurodele, the axolotl and the platanna; and to review
the works done until now on the use of these three amphibian species to evaluate the geno-
toxic impact of chemicals or physical agents and to detect genotoxicity in aquatic media.
MATERIALS AND METHODS
THE AMPHIBIAN MICRONUCLEUS TEST
The test procedure has been established in two species of urodeles, Pleurodeles waltl
(the Spanish newt or pleurodele; family Salamandridae) and Ambystoma mexicanum (the
Mexican axolotl; family Ambystomatidae), as well as in the anuran Xenopus laevis (the
South African clawed frog or common platanna; family Pipidae). These three amphibians
are abundant egg-layers: a female of pleurodele or axolotl can lay up to 1000 eggs at once,
while 2000 or 3000 is not rare in platannas. Their rearing and development are now well
described. The details of the test procedure have been described in the publications
mentioned above, and for urodeles documentation sheets have been published by the
French Standards Institute (ANONyMous, 1987, 1992).
Rearing conditions
Urodeles
Similar methods are used to rear both axolotl and pleurodele larvae. After they are
laid, the eggs are placed in an aquarium. The water is normal tap water filtered through
Source : MNHN, Paris
GAUTHIER 57
active carbon or “ultrapure” water reconstituted with salts. The young larvae eat only live
food. After hatching, the animals are fed on freshly hatched artemia (Artemia salina) or
daphnia (any species). Then the food is switched to Chironomus larvae. Usually this latter
food is subsequently used throughout the experiments. The temperature of the water can
range from 12 to 20°C. Within this range, an increase in temperature increases the growth
rate of the animals. It is therefore possible to change the rate of development of animals
depending on requirements, and several groups at different stages of development can be
studied at the same time. However, the temperature dependence of the mitotic index must
be taken into account. AI treatments are carried out at 20°C. They are always carried out
after a 8-day habituation period at this temperature.
Platanna
Xenopus tadpoles are fed on dehydrated aquarium fish food. The temperature of the
water can range from 18 to 23°C; the growth rate also depends on the rearing temperature.
All treatments are carried out at 22°C after a 6-day habituation period at this temperature.
Treatment stage
The size of the larvae must be large enough to allow an easy taking of blood samples.
They must also be at a stage of intense erythropoiesis with a large number of divisions of
the red blood cells in circulating blood. As the rate of growth is a function of temperature,
and as treatment should be carried out when the larvae are in an identical physiological
state, age cannot be used as a reference. An accurate morphological marker is required.
For the axolotl, we have found that treatment must start when the hind limb buds of the
larvae exhibit slight indentation (onset of formation of the two first digits). For pleurodele,
treatment is started when the hind limbs present four well formed digits with an outline
of the fifth (fig. 2A). In both cases, the mean size of the larvae is around 30 mm (about
6 weeks after laying). They reach 40 mm within the next 10 days. The growth of Xenopus
larvae is quicker and the test can begin 2 weeks after laying. At this time, one must choose
larvae at stage 50 (fig. 2B) of the chronological table of NIEUWKOOP & FABER (1956) (hind
limb bud longer than broad, constricted at base).
Experimental design
The treatment procedure is basically the same for all three species. They are treated
. ja groups of twenty in 5-liter flasks filled with 2 liters of the sample (100 ml of water per
larva). Control groups are reared in purified water. The media are renewed and food is
added every 24 hours. At the end of the treatment period (generally 12 days for pleurodele
and platanna and 10 days for axolotl), the animals are anesthetized with 0.02 % tricaine
methane sulfonate. Blood samples are taken by cardiac puncture into heparinized
micropipettes (20 % solution at 5000 IU/ml). Blood smears are made, then fixed in
methanol and stained with hemalun solution. Slides are examined under the microscope
with an immersion lens (X 100). For each animal, the number of micronucleated red
blood cells per 1000 cells is determined (fig. 2C-D). In these conditions, the frequencies of
micronucleated erythrocytes in the control animals is about 0.5 — 1 % for urodeles and
0.1 % for platanna.
Source : MNHN, Paris
58 ALYTES 14 (2)
Significance of the test
For each group of animals, the results (level of micronucleated red cells per 1000)
obtained for the individual larvae are arranged in increasing order of magnitude and the
medians and quartiles calculated (see example in Table III). In most studies, the statistical
method used to compare the medians is based on the recommandations of MAC GILL et
al. (1978). It consists in determining the theoretical medians of samples of size N (where
N > 7) and their 95 % confidence limits expressed by M + 1.57 x IQR / N'!, where M
= median and IQR = Inter Quartile Range (see example in fig. 3). In these conditions,
the difference between the theoretical medians of the test groups and the theoretical
median of the control group is significant to within 95 % certainty if there is no overlap.
The result is then positive. In the absence of statistical calculations, a result is considered
positive if the two following conditions are satisfied : (1) the median of the treated animals
is twice that of controls; (2) the lowest quartile of the treated animals is above the highest
quartile of the controls. A positive result can be taken for any duration of treatment, but
in general 4 to 8 days is long enough for a strongly clastogenic substance used at maximal
concentration (MC). MC is defined as half the lethal concentration within a period of
6 days.
BACTERIAL TEST-SYSTEMS
This paper relates the results obtained in comparative studies including in vitro test
systems on bacteria: the Ames test, detecting point mutation on Salmonella typhimurium,
the fluctuation test, which is a modification of the Ames test where the compounds under
study are exposed to bacteria in a liquid medium instead of the agar plates used in the
Ames assay, and the SOS chromotest, showing primary DNA damage on Escherichia coli.
Fig. 2. — Amphibian larvae used for the micronucleus assay and corresponding erythrocytes showing
micronucleated cells.
A. — Pleurodele larva at the stage of treatment, ie. stage 53b, according to the
chronological development table of GALLIEN & DUROCHER (1957), or stage 45-46 of the
development table of SH1 & BOUCAUT (1995). At this stage of development, the pleurodele larva
is a small aquatic animal (about 35 mm long). Axolotl larva has the same appearance and the
same size as pleurodele larva at the treatment stage.
B. — Xenopus larvae at the stage of treatment. Left, larva at stage 50 of the chronological
table of development of NIEUWKOOP & FABER (1956), corresponding to the beginning of the test.
Right, larva at stage 54, 12 days later, corresponding to the end of the test. During the testing
period, at 22°C, the animals are growing very quickly, increasing in size from 22-26 mm (st. 50)
to 58-65 mm (st. 54).
C. — Blood smear from a pleurodele larva, stained with Masson’s hemalun, showing red
blood cells with their main nucleus and one micronucleated cell. Pleurodele and axolotl
erythrocytes are big ovoid cells (about 30 um in diameter).
D. — Blood smear from a Xenopus larva, stained with hematoxylin, showing one
micronucleated erythrocyte. Xenopus erythrocytes are smaller than those of urodele species
(about 10 um in diameter).
Source : MNHN, Paris
GAUTHIER 59
Source : MNHN, Paris
60 ALYTES 14 (2)
Principles of the tests
Ames test
The most widely used and validated bacterial reverse-mutation test is that devised by
AMES et al. (1975). The Ames test (also called the Salmonella-mammalian microsome test)
employs strains of Salmonella typhimurium, which are unable to produce their own
histidine. Each of these strains bears a specific defect or mutation in the metabolic
pathway to histidine. Reverse mutations restore the ability to synthesize histidine. These
reverse mutations are induced by specific mutagens. Mutagens that cause base pair
substitutions can be distinguished from those that lead to frameshift mutations by the use
of different strains. If the mutant strain (his-), which is unable to grow in media devoid
of histidine, regains the ability to synthesize histidine after being exposed to an extract,
then the extract is assumed to contain a mutagen.
However, unlike mammals, bacteria lack the necessary oxidative enzyme systems that
metabolize foreign compounds to electrophilic compounds that interact with DNA
(indirect mutagens). Bacterial tests are thus carried out in the presence of a liver
microsomal fraction that contains such enzymes. This is usually prepared by ultracentri-
fugation of a cell homogenate of rat liver. The metabolic activity of this fraction (S9
fraction that contains cytochrome P 450 / P 448 oxidases) is enhanced by prior treatment
of the rats for several days with an inducer (usually Aroclor 1254). The so-called S9-mix
is made up from this S9 fraction that is buffered and supplemented with NADP and
glucose-6-phosphate. A standard procedure has been drawn up for this test. Each test is
carried out several times, both with (detection of indirect mutagens) and without metabolic
activation (detection of direct mutagens).
Fluctuation test
GREEN et al. (1976) have developed another mutagenicity test based on the Ames test
that is both simple and sensitive. The same bacterial strains are exposed to the test
substances in a liquid medium. The auxotrophic mutant strains (around 3.107 bacteria) are
placed in a culture medium containing glucose, a small quantity of histidine and the test
substance. Activation medium (S9) may be added later. An overall volume of 5 ml is
generally employed. Fifty independent cultures in 0.1 ml containing around 5.10% bacteria
are then set up. The small bacterial population minimizes the number of preexisting
revertants. The tubes are incubated at 37°C overnight. The bacteria are allowed to grow
until the supply of histidine is exhausted. This is referred to as the period of auxotrophic
growth. The next day, 2 ml of a selective medium (containing glucose, a pH indicator such
as bromocresol, but without histidine) is added to each culture. The tubes are incubated
for a further 2 or 3 days at 37°C. Only the revertants (prototrophic for histidine) are able
to grow. This leads to a fall in pH, and the tubes turn from blue to yellow. This is referred
to as the phase of prototrophic growth. The number of positive tubes are counted
(prototrophic growth = yellow) in a batch of 50 tubes. Using appropriate statistical
methods, the number of positive tubes are compared between the tubes containing test
substances and the control tubes. The test is replicated a number of times, and similar
controls to those used in the classic Ames test are run in parallel.
Source : MNHN, Paris
GAUTHIER 61
SOS chromotest
The genotoxic effects observed in the bacterial tests are often not direct actions of the
agent. They are often the outward signs of the overall responses of the cell to this action.
In Escherichia coli, DNA-damaging treatments can activate a set of functions known as
the SOS responses. This has been exploited by an operon fusion placing lac Z, the
structural gene for B-galactosidase, under control of the sfiA gene, a SOS function
involved in the inhibition of cell division. A simple and direct colorimetric assay of this
SOS response to DNA damage has been developed, called the SOS chromotest
(QUILLARDET et al., 1982; QUILLARDET & HOFNUNG, 1985). Mutagenicity is evaluated
quantitatively in terms of the SOS-inducing potency. Enzyme activity after incubating the
tester strain in the presence of various amounts of the test compound is measured
colorimetrically. Aliquots of a dilution of exponential phase cultures are placed in glass
test tubes containing the compound to be tested. After 2 hours incubation at 37°C with
shaking, B-galactosidase and alkaline phosphatase activities are assayed.
The classic microsomal activation preparation may also be added to the incubation
mixture. To correct for the inhibition of protein synthesis that may be induced by certain
substances, the strain is made constitutive for synthesis of alkaline phosphatase. This
enzyme is non-inducible by DNA-damaging agents. The ratio of the two activities
(B-galactosidase to alkaline phosphatase) is taken as a measure of the specific activity of
B-galactosidase.
RESULTS OBTAINED WITH THE AMPHIBIAN MICRONUCLEUS TEST
GENOTOXICITY OF X-RAYS AND CHEMICALS
Initially, the sensitivity and dose-response of the micronucleus test were evaluated
with X-ray irradiations as well as known physical clastogenic agents and chemicals
exposure, in pleurodele larvae.
SIBOULET et al. (1984) measured the frequences of micronucleated red blood cells in
the animals 6 days after X-ray irradiation. A dose of 6 rad (relatively weak) leads to a
significant effect. The dose-response is approximately linear up to 150 rad, after which the
slope falls and the maximal effect is reached at 600 rad.
Two years later, JAYLET et al. (1986a) determined the most suitable larval stage for
testing chemicals using pleurodele larvae reared in water containing one of the 4 following
compounds: benzo(a)pyrene (BaP), ethyl methanesulphonate (EMS), diethyl sulphate
(DES) and N-ethyl-N’-nitro-N-nitrosoguanidine (ENNG). Response curves as a function
of treatment duration over a period of 16 days were plotted for 3 different concentrations
of the 4 compounds in order to optimize conditions for a low dose micronucleus test.
The same year, GRINFELD et al. (1986) focused on BaP studies. These authors exposed
pleurodele larvae to different concentrations of the substance for various lengths of time.
Frequencies of micronuclei in circulating erythrocytes were determined at different times
after termination of the treatment. The incidence of micronuclei in larvae kept for 8 days
Source : MNHN, Paris
62 ALYTES 14 (2)
Table I. - Summary of the results obtained for different chemical classes and X-rays
with Pleurodeles waltl (from FERNANDEZ et al., 1993).
Number of Positive Negative
chemicals tested responses responses
Chemical class
a
Miscellaneous
Amines (aromatic, aliphatic)
Nitroso compounds
Polycyclic carbocycles
N-, S-, O-mustards
Aziridines
Carbamates
D = » RD D U U w
Oxygenated sulfur
Total
X-Rays 12 doses
S3Ssssccecrw
in BaP containing water displayed a marked increase with dose up to 0.075 ppm and a
more gradual one with higher doses, reaching 158 per 1000 at 0.75 ppm. The lowest dose
at which a significant increase could be discerned was 0.01 ppm. Uptake and release was
studied with tritiated BaP. Larvae concentrated BaP rapidly, attaining maximal levels after
12 hours. The ratio of radioactivity in larvae to that in an equivalent volume of
surrounding water was about 200, independent of the amount of BaP added. The marked
bioaccumulation potential of newt larvae partially explains why it is not necessary to
concentrate mutagenic micropollutants in samples of natural or drinking water to detect
genotoxic effects.
Results with 19 organic compounds have been published by FERNANDEZ et al. (1989).
Most of them were known or suspected mutagenic or carcinogenic substances in mammals.
The results were compared with published data from other tests used to detect the
clastogenic or mutagenic properties of chemicals.
In 1993, FERNANDEZ et al. published results obtained with 47 different chemical
compounds, after 12 days or/and 8 days of exposure in pleurodele, axolotl and Xenopus
larvae. The overall results obtained for the different chemical classes tested with pleurodele
are shown in Table I. For comparative purposes, literature data have been collected on
other short-term genotoxicity tests and on long-term carcinogenicity assays in rodents
(Table IT). In this study, the newt micronucleus assay on pleurodele larvae was found to
agree better with the Ames test (bacterial test) (percent concordance with the newt
micronucleus test: 86 %) than with the rodent micronucleus test (71 %).
Source : MNHN, Paris
GAUTHIER 63
Using pleurodele larvae, the genotoxicity of 7 polycyclic aromatic hydrocarbons
(PAHSs) was compared and the influence of UVA irradiation evaluated by FERNANDEZ &
L'HARIDON (1992). The authors classified the PAHSs in the following order of genotoxicity:
benz(a)anthracene (BA) = 7,12-benz(a)anthraquinone > 7,12 dimethyl-benz(a)anthracene
(DMBA) > 9,10-dimethylanthracene; whereas anthracene, 9,10 anthraquinone and
dibenz(a,h)anthracene were not found to be clastogenic. Under lighting conditions (UVA
irradiations for 24 hours) of the rearing media alone (water containing the tested substance),
and then tested on larvae in the dark, BA (50 and 100 ppm) gave rise to clastogenic
products, whereas DMBA (12.5; 25 and 50 ppb) gave no positive response in the test.
More recently, in the same area of research, DJoMo et al. (1995) studied the
genotoxicity of 4 polycyclic hydrocarbons representing a part of the major fraction of
hydrocarbons found in a crude oil. The authors confirmed the strong genotoxic potential
of benzo(a)pyrene, whereas the genotoxicity of naphtalene was weak. In contrast, the two
other compounds tested, anthracene and phenanthrene, gave negative responses in the
newt micronucleus test.
L’HaRIDON et al. (1993) applied the same test system to evaluate the genotoxicity of
amines and/or potential nitrosating agents (nitrite and nitrate) in vivo. The authors
obtained negative results under varying rearing conditions (lighting conditions, pH 8-6-5)
with atrazine, diethanolamine alone or in combination with sodium nitrite or nitrate.
However, the genotoxicity of N-nitrosoatrazine (NAT) at 7.5 and 15 ppm and
N-nitrosodiethanolamine (NDELA) at 12.5-25 and 50 ppm, was demonstrated. In
conclusion, the authors suggested that, at the concentrations used (close to those which
may be encountered in a polluted natural aquatic environment), if NAT or NDELA are
formed, the amounts produced are probably too low to yield a positive response in the
newt micronucleus test.
The cytogenetic effects of mercury compounds have been widely studied in plants,
Drosophila and tissue culture cells, but to our knowledge they have not been evaluated in
vertebrates in vivo. Pleurodele larvae were raised in water containing low concentrations
of methyl mercuric chloride or mercuric chloride (ZoLL et al., 1988). It should be noted
that a low concentration of the two substances (12 ppb) gave a positive result and that
equivalent concentrations in the water of both mercuric compounds led to similar levels
of micronucleated cells. The test gives positive results for concentrations below those often
found in samples of contaminated water (GIRAUD & GuILLET, 1972). Both chromosome
aberrations and abnormalities in cell division were observed in cells from animals treated
with these two substances. Bioaccumulation of both compounds was also evaluated by
determination of mercury levels in the larvae. After 12 days of treatment, concentration
factors (concentration in the organism / concentration in the water) of 1200 and 600 were
found for methyl mercuric chloride and mercuric chloride respectively.
In order to investigate the generality of the micronucleus test in pleurodele, larvae
from another urodele, the axolotl, were reared in water containing either of the
compounds benzo(a)pyrene (BaP) or ethyl methane sulfonate (EMS) (JAYLET et al.,
1986b). The level of micronucleated erythrocytes on blood smears was compared with
control samples from larvae reared in fresh water. The optimum larval stage for this test
system was determined. The effects of the indirect mutagen (BaP) and the direct mutagen
Source : MNHN, Paris
64 ALYTES 14 (2)
(EMS) were found to depend on both dose and exposure to the clastogen. For BaP,
positive results were obtained after 8 days of treatment at a concentration of 0.025 ppm.
After 10 days of treatment at a concentration of 0.1 ppm, numerous micronuclei were seen
(< 25 %). Positive results were also obtained with EMS after 8 days of treatment at a
concentration of 24 ppm. At 62 ppm, positive results were found after 6 days, while at 124
ppm positive results were found after only 4 days. The results with both these agents show
that the axolotl also holds promise as an in vivo test system for the detection of low
concentrations of clastogens in the aquatic environment. This is not very surprising, since
the axolotl is morphologically and biologically rather similar to the pleurodele at both the
embryonic and larval stages, although not of the same family.
The third species used was Xenopus laevis. It differs in a number of respects from the
previous two species, including its feeding behavior. Three different variables, temperature,
stage of larval development and frequency of renewal of the test substance, were
investigated using EMS as the clastogenic compound. In addition, a dose-response curve
was established for BaP in order to determine the limits of sensitivity of the test (VAN
HUMMELEN et al., 1989). With BaP, the lowest concentration (0.03 ppm) gave a negative
response. From 0.06 ppm up to 0.5 ppm, an approximately linear increase in median value
of cells with micronuclei was observed. This linear response indicates that the test is
Table II. - Comparison of qualitative results obtained for different chemical
substances and X-rays in the newt Pleurodeles waltl, with various short-term
genotoxicity and long-term rodent carcinogenicity tests (from FERNANDEZ et
al., 1993). Abbreviations for chemical substances: AO, acridine orange; Aro,
Aroclor 1254; AT, atrazine; BaP, benzo(a)pyrene; BrFo, bromoform; BHA,
butylated hydroxyanisole; CAP, e-caprolactam; ClFo, chloroform; CP,
cyclophosphamide monohydrate; DEIA, diethanolamine; DES, diethyl sulfate;
DMSO, dimethyl sulfoxide; ECH, epichlorhydrin; EtOH, ethanol; EB,
ethidium bromide; EMS, ethyl methane sulfonate; DBE, ethylene dibromide;
ENNG, N-ethyl-N'-nitro-N-nitrosoguanidine; ENU, N-ethyl-N-nitrosourea;
GSH, glutathione; HEMPA, hexamethylphosphoramide; InM, indomethacin;
MeC, mercuric chloride; 3-MC, 3-methylcholanthrene; MMeC, methyl
mercuric chloride; MCA, monochloramine; NAT, N-nitrosoatrazine; NDEIA,
N-nitrosodiethanolamine; PB, phenobarbital; Py, pyrene; NaF, sodium
fluoride; NaOCI, sodium hypochlorite; NaNO,, sodium nitrate; NaNO,,
sodium nitrite; STS, sodium thiosulfate; TPA, 12-O-tetradecanoylphorbol-13-
acetate; o-TOL, o-toluidine; TCAH, trichloroacetaldehyde hydrate; BA,
benz(a)anthracene; CAF, caffeine; CAN, Captan; CARB, Carbaryl; COL,
colchicine; DMBA, 7,12-dimethylbenz(a)anthracene; ETI, ethyleneimine; FA,
formaldehyde; N-CARB, N-nitrosocarbaryl. Abbreviations for results: +,
positive; (+), weakly positive; -, negative; ?, inconclusive; L.P, limited
positive; L.N, limited negative; E.E, equivocal evidence; +/-, different results
depending on the authors or on the cell types; A, aneuploidy; P, polyploidy.
Source : MNHN, Paris
GAUTHIER 65
Rodents
Newt Carcinome
MN test
MN test in rodents
+
+
+ +
+/P (Hum)
+
+
+
+
+
5
+/-'PIA
a. From UPTON et al. (1984).
b. Percent concordance with newt micronucleus test.
Source : MNHN, Paris
66 ALYTES 14 (2)
reliable, although the lower frequencies of cells with micronuclei at doses above 0.5 ppm
are probably accounted for by a lower rate of growth of the larvae exposed to high doses
of BaP. In fact, above BaP concentrations of 1 ppm the larvae eat less and grow more
slowly than the larvae in the other samples. The mitotic index is thus lower and, since the
production of micronuclei depends on cell division, a fall in the mitotic index results in a
decrease in the number of red blood cells with micronuclei. It is worth noting that a similar
phenomenon occurs for the same concentrations in axolotl and pleurodele with BaP.
Al these results demonstrate the sensitivity and the reliability of the test for known
genotoxic agents experimentally added to the rearing water. It was important to find out
whether the amphibian micronucleus test was also applicable to real-world situations.
GENOTOXICITY IN DRINKING WATER
Using pleurodele larvae, JAYLET et al. (1986c, 1987) evaluated the mutagenic activity
in drinking water taken directly from the tap supplying the laboratory. Groups of larvae
were reared in tap water, while control animals were reared in tap water filtered over sand
and active carbon, to remove micropollutants. Seven separate tests carried out in samples
of tap water taken at different times throughout the year gave positive results of varying
degree depending on the time of the year (see results in Table III and fig. 3). The authors
concluded that this test was therefore able to detect clastogens in normal drinking water
and that it could be used for quality control of drinking water during the various stages
in the treatment of raw water. The aim of these studies was to determine whether the test
was sufficiently sensitive to be used directly on drinking water samples without prior
extraction or concentration of the micropollutants. To our knowledge, this was the first
description of a test system using an aquatic vertebrate for the detection of potential
clastogens in samples of tap water.
To explain the positive results obtained in these previous experiments, various
hypothesis have been formulated. Genotoxic micropollutants in drinking water can come
from a variety of origins. Various possibilities suggest themselves which are not mutually
exclusive. The micropollutants may be (1) residual chlorine from the chlorination processes
used for water disinfection, (2) substances produced by the action of chlorine on organic
matter forming halogenated organic compounds, or (3) even substances present in the raw
water.
(1) In order to examine the first possibility, further experiments were carried out.
GAUTHIER et al. (1989) evaluated mutagenic activity of chlorinated and monochlo-
raminated water devoid of all organic matter on pleurodele larvae. The level of
micronuclei in erythrocytes was compared between a group of larvae reared for 12 days
in chlorinated reconstituted ultrapure water treated with sodium hypochlorite and a
control group reared in just the reconstituted water. Sodium hypochlorite was added when
both the food and medium were changed each day. Chlorine levels of 0.125 and 0.25 ppm
led to significant elevations of micronuclei. The possibility of indirect effects of chlorine
through chemical interactions with the food were also investigated, using the following
scheme: larvae were left for 3 hours in chlorinated reconstituted ultrapure water and then
placed in non-chlorinated water. Food was only introduced when they were transferred to
Source : MNHN, Paris
Table III. - Results of tests on laboratory tap water (expressed as the number of micronucleated cells per thousand) carried out on
pleurodele larvae, over a 8-month period between October 1985 and May 1986 (from JAYLET et al., 1987). +, positive result.
12.10.85 24.10.85 04.12.85 31.01.86 04.03.86 21.03.86 17.05.86
10 24.10.85 to 12.11.85 to 16.12.85 to 19.02.86 to 20.03.86 10 15.04.86 to 23.05.86
Filtered Tap Filtered Tap Filtered Tap Filtered Tap Filtered Tap Filtered Tap Filtered Tap
tapwater water tpwatr water tapwatr Water tpwaer Waler lapwaler Waler tapwater Water tpwater water o
Lower extreme 2 14 4 5 1 5 0 1 Q 4 0 2 0 2 ë
Lower quartile 6.5 20 5.5 14 5 10 2 5 2 10 1 3 4 7 sl
Median 9 31 7 23 7 13 3 6.5 4 12.5 c 4 7 12.5 El
Upper quartile 13.5 45 9° a 11.5 17 4 8 5 19 3 4.5 8 16.5
Upper extreme 21 64 15 105 20 29 7 15 14 36 4 12 12 42
Mean 10.5 343 T4 3141 868 14.1 3.1 12 4.1 14.7 21 43 605 14.05
Results + + + + + + +
Animal number 10 13 15 17 19 19 10 10 20 20 20 20 20 20
S
Source : MNHN, Paris
68 ALYTES 14 (2)
40
o
>
en
_=
= 30
S
e
=
=
=
=
=
ui
20
a
tr
=
<
mm
=
es
2 10!
e
=
a
Ex
1 2 3 4 5 6 7
Fig. 3. — Histograms of median values obtained for various tests on laboratory drinking water
samples. In black, tests using drinking water filtered over sand and carbon; in white, tests over
the same period using non-filtered tap water. Error bars indicate 95 % confidence limits. Date
of tests: N° 1, 12.10.85 to 24.10.85; N° 2, 24.10.85 to 12.11.85; N° 3, 04.12.85 to 16.12.85; N°
4, 31.01.86 to 19.02.86; N° 5, 04.03.86 to 20.03.86; N° 6, 21.03.86 to 15.04.86; N° 7, 17.05.86 to
23.05.86 (from JAYLET et al., 1987).
the non-chlorinated water. This procedure was repeated for 12 consecutive days. Control
larvae were reared in non-chlorinated water throughout this period. In this case, results
were also positive when the larvae were exposed for only 3 hours to the chlorine (0.2 ppm
for 12 days) in the absence of food. The same experiment was carried out with
monochloramine instead of sodium hypochlorite. The level of micronuclei increased with
increasing concentration of monochloramine (0.05, 0.1 and 0.15 ppm) although only the
0.15 ppm concentration gave a statistically significant response. The results of these
experiments indicated that free chlorine and monochloramine were responsible for the
clastogen effect observed in newt larvae.
GAUTHIER et al. (1990) studied dechlorination effects of sodium hyposulfite (Na,S,0;)
on the genotoxic potential of chlorinated water with pleurodele larvae. The animals were
reared both in reconstituted water and in reconstituted water containing 0.22, 0.56 and
1.12 ppm of chlorine (sodium hypochlorite). Chlorinated water samples were then fully
dechlorinated by adding increasing concentrations of sodium hyposulfite (respectively 1,
2.5 and 5 ppm). For each test, the dechlorination was controlled by colorimetric dosage
Source : MNHN, Paris
GAUTHIER 69
of the residual chlorine. The same concentrations of sodium hyposulfite have been tested
with the newt micronucleus test. In these experiments, no positive responses were
observed, neither in dechlorination experiments nor in the water containing sodium
hyposulfite alone. The authors concluded that sodium hyposulfite, a substance that is
widely used in water treatment plants to control the concentration of chlorine in drinking
water, was not genotoxic on pleurodele larvae. Moreover, dechlorination of water
chlorinated with hypochlorite amounts, normally leading to clastogenic effects in the newt,
led to the elimination of the genotoxicity.
These results confirmed previous results observed in water treatment plants by
GAUTHIER et al. (1988) showing that pleurodele larvae reared in water samples taken at
different treatment steps generally gave no positive responses after dechlorination with
sodium hyposulfite, whereas positive responses were observed in chlorinated water samples
partially dechlorinated by physical techniques.
Since ozone is also used to disinfect water (ozone has been increasingly used in
Europe in view of its oxidizing, bleaching and deodorizing properties), JAYLET et al.
(19904) carried out other experiments in which pleurodele larvae were reared in river water
containing different concentrations of ozone. After determination of the ozone demand in
water samples of the river Seine, the following ozone concentrations were tested: 1/4 of the
ozone demand in the raw water, 1/2, the overall and twice the ozone demand. The authors
showed that treatment of Seine river water with low concentrations of ozone (correspon-
ding to 1/4 of the ozone demand) led to a genotoxic effect, whereas ozonation at higher
doses had no significant effect on the level of micronuclei induced. They concluded that
ozonation of surface water with low doses of ozone may lead to genotoxic effects which
are abolished by higher doses of ozone, thus confirming other results obtained with in
vitro test systems (VAN Hoor, 1982; BOURBIGOT et al., 1986; KooL & HRUBEC, 1986).
(2) According to our second hypothesis, genotoxic micropollutants may be substances
produced by the action of chlorine on organic matter present in the raw water.
In order to examine this possibility, LECURIEUX et al. (19954) studied the genotoxic
effects of six halogenated acetonitriles identified in chlorinated waters (monochloro-,
dichloro-, trichloro-, monobromo-, dibromo- and bromochloroacetonitrile), with three
short-term assays: the SOS chromotest (QUILLARDET & HOFFNUNG, 1985; MARZIN et al.,
1986; Xu et al., 1989), the Ames fluctuation test (MARON & AMEs , 1983; HUBBARD et al.,
1984) and the amphibian micronucleus test on pleurodele larvae. In this study, clastogenic
effects on peripheral blood erythrocytes of the animals were detected for all the six
haloacetonitriles tested. The authors noted two structure-activity relationships. The
genotoxic activity of haloacetonitriles containing bromine substituants appeared higher
than the corresponding chlorinated acetonitriles and the clactogenic activity of the
chlorinated acetonitriles increased with the number of chlorine substituents.
In the same way, LECURIEUX et al. (1995b) evaluated the genotoxicity of four trihalo-
methanes (chloroform, bromodichloromethane, chlorodibromomethane and bromoform).
The newt micronucleus assay detected a clastogenic effect on peripheral blood erythrocytes
of pleurodele larvae for bromodichloromethane and bromoform. The authors noted that
the presence of bromine substituent(s), generally led to significant genotoxic activity.
Source : MNHN, Paris
70 ALYTES 14 (2)
(3) Our last hypothesis on the origin of the genotoxic effects observed in drinking
water suggested the responsibility of pollutants and/or micropollutants present in the raw
water before treatment. It was important to find out whether the amphibian micronucleus
test could be relevant to in vivo studies using natural waters taken directly from the
aquatic medium.
MONITORING GENOTOXIC POLLUTION IN THE AQUATIC ENVIRONMENT
There are two different origins for water contamination. It may be due either to the
presence of living organisms, viruses, bacteria and parasites, or it may have chemical
origins. Within chemical contaminants, it is useful to distinguish solid particles in
suspension, inorganic soluble and organic compounds, and radioactive substances. The
genetic impact of pollutants corresponds to the overall effect of the various contaminants
which interact within the aquatic environment and are all very unstable. Attempts to get
a definition of the genotoxic load of polluted waters (waste waters, industrial effluents,
etc.), were most often based on short-term bacterial assays, such as the Ames test,
performed either directly in the waste water or after preconcentration of the organics.
These assays performed directly in water often yield negative or ambiguous results
(WEAVER et al., 1981). An additional problem is that loss of genotoxicity may occur when
the sample is filtered for sterilization. Testing of concentrates will limit the scope of a
survey to that part of the organic matter that can be recovered by concentration
techniques. Many of the problems encountered with the in vitro assays may be
circumvented with direct testing in aquatic organisms. In the past ten years, a number of
tests were developed, either with plants or with aquatic animals (see the reviews of:
CHOUROULINKOV & JAYLET, 1989; JAYLET & ZOLL, 1990; JAYLET et al., 1990b; ZoLL. et al.,
1990; Goper et al., 1993), which can potentially be used to assess the genotoxic potency
of a waste water. The advantages are clear: there is no need to concentrate a sample or
to sterilize it, and the tests can be carried out with intact animals, taking into account
uptake and elimination, internal transport and metabolism.
Until now, few attempts have been made to incorporate in vivo genotoxicity assays
in the quality assessment of effluents. A first comparison between different approaches,
both from the technical point of view (sensitivity, practical use) and from the economic
side, has been made by VAN DER GAAG et al. (1990). In order to make a comparison
between several approaches for the assessment of genotoxic agents in wastewater, the
authors characterized an industrial effluent with three different in vivo assays for
genotoxicity, including sister chromatid exchange (SCE) induction in the fish Nothobran-
chius rachowi (VAN DER GAAG & VAN DE KERKHOFF, 1985; VAN DE KERKHOFF & VAN
DER GAAG, 1985), and the formation of micronuclei in the amphibian Pleurodeles waltl
and in the mussel Mytilus edulis (MAJONE et al., 1987; BRUNETTI et al., 1988; SCARPATO et
al., 1990). The same effluent was tested in the Ames test and in the SOS chromotest. The
genotoxicity assays were also performed in XAD-extracts of this effluent, as well as in the
flow-through of the XAD columns. A number of routine chemical parameters have been
determined in the waste water and in the effluents of the filter and of the XAD columns.
Water samples were taken from an effluent of a biological waste water treatment unit
receiving effluents from various petrochemical industries.
Source : MNHN, Paris
GAUTHIER 71
An 80-liter sample of waste water was taken at the discharge point of the biological
waste water treatment plant. Twenty liters were used for direct in vivo testing and 15 liters
were sterilized with gamma rays (25 kGy) for the tests on bacterial genotoxicity assays. To
check the effect of sterilization, part of this sample was assayed with in vivo test systems.
In order to assess the effectivity of methods that concentrate pollutants from the water,
45 liters of the sample were filtered over a 1 um glass fiber filter, which was then passed
over XAD 4, first at ambient pH and subsequently at pH 2 (according to the technique
of Noorpsy et al., 1983). The organics were eluted from the filter and the XAD columns,
and the final samples concentrated in ethanol. Part of the sample was collected after
filtration and XAD pH 7 adsorption for testing in vivo and in vitro. After XAD pH 2
adsorption, the sample was neutralized with NaOH before testing.
Physico-chemical analysis before and after treatment showed that filtration of the
industrial effluent affected neither the concentration of dissolved organic carbon nor the
concentration of the various organohalides measured. Passing the industrial effluent
through the XAD column at pH 7 only retained 25 % of the dissolved organic carbon;
however it did retain the majority of the organohalides. Chromatography of the pH 7
XAD concentrate showed the presence of a large range of compounds which were
lipophilic to moderately hydrophilic. The outflow from the first XAD column at pH 7
contained 75% of the dissolved organic carbon and 50% of the CaOX fraction
(organohalides absorbed on carbon), but almost the entire EOX fraction (extractable
organohalides) was retained by the resin. Adsorption on the second XAD column at pH
2 retained a further 23 % of the dissolved organic carbon of the sample and 30 % of the
CaOX fraction. Analysis by HPLC showed a predominance of moderately hydrophylic
compounds in this fraction. Finally, after the various treatments, the industrial effluent
still contained more than 50 % of the dissolved organic carbon and about 30 % of the
CaOX fraction.
Genotoxic effects were observed in waste water dilutions with the SCE assay with
Nothobranchius rachowi and the micronucleus assays with Pleurodeles waltl and Mytilus
edulis. The increase in SCE frequency and in incidence of micronucleated cells in
pleurodele was still highly significant at the lowest concentration tested of 32 ml/l of
dilution water. In the mussel, a significant increase only occurred at the highest
concentration tested (100 ml/l). Filtration did not affect the in vivo genotoxicity. A
significant amount of the genotoxic effect observed in the SCE assay was present in the
extract from a 1 um glass fiber filter that was placed before the XAD columns. The
genotoxicity in the SCE assay was not, however, altered by this filtration, suggesting that
a part of the potential genotoxic effect of this effluent was not directly biologically
available. XAD adsorption removed a major amount of the mutagenicity. Both in vivo
tests (SCE in the fish and MN in amphibian), however, still detected a significant
genotoxic effect in the flow-through of the XAD pH 2 column. The more hydrophilic part
of the genotoxic activity could amount 15 to 40% of the biologically available
mutagenicity in this sample, according to the estimates from the SCE and micronucleus
assays. Gamma-irradiation sterilization significantly reduced the genotoxic activity of the
waste water in the SCE assay and in the amphibian micronucleus test.
The bacterial mutagenicity assays only detected effects in the different organic
Source : MNHN, Paris
72 ALYTES 14 (2)
concentrates. Direct testing was carried out only in gamma-ray sterilized samples, but
effects were not observed in the Ames test or in the SOS chromotest.
For the authors, this pilot study was a first clear proof that the analytical chemical
techniques used to monitor waste waters only cover a part of the organic components that
can be a potential risk to health: 30 to 50 % of the genotoxic effect present in the dissolved
fraction of this specific waste water was not recovered on XAD. The yield is even lower
if one accounts for the substantial amount of mutagenicity that was found in the filter
extract, a non soluble fraction that was not directly biologically available. Although the
genotoxic substances in this fraction are not directly taken up by aquatic animals, it is
highly probable that these compounds will finally settle in sediments, and become available
for bioconcentration in the long run if they are not degraded. Furthermore, in this study,
the authors demonstrated that sterilization with gamma rays reduced the genotoxic effect
of the waste water sample in both the SCE and micronucleus assay. These results introduce
an uncertain aspect about those of the bacterial assays: the direct tests were carried out
in gamma-ray treated waste water, and did not detect any mutagenicity at all. Considering
the effectivity of in vivo test systems to detect genotoxic compounds in the industrial
effluent studied, the authors concluded that the sensitivity of the in vivo assays was higher
than that of the bacterial tests. The SCE assay and the micronucleus test could be carried
out directly in dilutions of the sample, while a concentrate had to be made of the organics
to assess the effect in the Ames test and the SOS chromotest. Furthermore, the costs and
duration of the in vivo assays, if carried out on a routine basis, are not very different from
those of bacterial assays.
Following this pilot study, GAUTHIER et al. (1993) published the results of a first
environmental study using the micronucleus test on pleurodele larvae to detect the
genotoxicity of waste waters and industrial effluents. In this study, pleurodele larvae were
exposed to various types of industrial waste waters in order to estimate the ability of the
micronucleus test system to reveal the genotoxic potency of polluted waters. The first test
carried out on effluent from wool and leather industries (tannery effluent) showed that the
newt micronucleus test was clearly able to demonstrate the genotoxicity of river water
contaminated by this type of waste. Furthermore, negative results obtained with water
samples taken at the same point and tested at the same concentration after that a large
anti-pollution campaign has been in operation in the tanning and wool industries (waste
reduction and purification) underlined the ability of the newt micronucleus test to play a
potential role in assessing optimization of waste water treatment. A series of experiments
carried out with an oil-refinery waste gave positive responses on the effluent sampled
directly at the outlet, but not on effluent taken 300 m downstream. It could therefore be
assumed that the genotoxic substances contained in the discharge have been diluted too
much to bring about a positive result in the newt micronucleus test. It is also suggested
that antagonistic relationships exist between certain substances contained in the waste
water and substances present in the water receiving the waste (for example binding to
humic matters or suspended solids). Furthermore, on the same effluent, induction of
micronuclei was also observed when the animals were exposed to the samples for 8 days
instead of 12. At the dilution of 250 ml/l, for both test durations, a positive response of
similar amplitude was obtained, demonstrating that shorter test durations may be possible
without substantial changes in the response. In the same study, other genotoxicity tests
Source : MNHN, Paris
GAUTHIER 73
carried out directly on a Dutch effluent taken in the river Rhine and on XAD extracts of
the industrial effluent, also gave a direct demonstration of the genotoxic activity of waste
from the petrochemical industry. The authors concluded that the experiments carried out
with the newt micronucleus assay on industrial effluent of various origins underlined the
ability of this method to detect the anthropogenic genotoxicity of polluted natural waters
and to evaluate directly the impact of aquatic contamination on the exposed ecosystems.
The simplicity of the test could allow its use in routine monitoring of, for example, the
contamination of a river and in the evaluation of programs intended to reduce pollution.
The newt micronucleus test was therefore considered as a welcome additional tool to help
in decision making by the organizations responsible for supervising the discharge of waste
into watercourses.
More recently, GODET (1994) compared the genotoxic potential of 8 effluents, using
the Ames test and the newt micronucleus assay on pleurodele larvae. He obtained positive
responses with 6 industrial effluents from various origins (metallurgy, chemistry) on
pleurodele larvae and with the Ames test applied to metallic waste samples and to organic
extracts of a paper mill effluent. Trying to identify genotoxic pollutants responsible of the
positive responses observed with the newt micronucleus assay in industrial effluents
containing Fe, Cr II, Cr VI, and Zn, the author focused on the study of these metallic
constituants on pleurodele larvae. Thus, Fe concentrations of 0.6 and 12.5 mg/l led to
positive responses, whereas concentrations of 2.5 and 1 mg/l for Cr III and Cr VI
respectively led only occasionally to positive responses. Previous genotoxic effects
observed on pleurodele larvae with industrial effluents containing different mixtures of
metallic pollutants were explained, considering the different types of effluents tested, either
by the predominent effect of one of the metallic pollutants (Fe for example), or by the
combined action of two of the metallic ions present in the effluent (Fe III and Cr VI). In
conclusion, the author suggested the use of the sensitive newt micronucleus assay to reveal
the possible synergistic effects of pollutants mixtures in water. He also proposed a new
strategy to study the genotoxic potential of effluents, combining the Ames test and the
amphibian micronucleus assay on pleurodele larvae, and suggested to modify the test
procedure to optimize the detection of genotoxic effects in effluents and to help the
development of this assay in a routine use.
In the current use of the amphibian micronucleus assay to evaluate genotoxic impact
of waste water discharged in the environment, other types of effluents have been recently
studied by GAUTHIER (1996). In the framework of an environmental study on the impact
of roadway runfall effluents, the genotoxicity of 6 runfall samples has been eval-
uated during 6 different rainfall periods over a year, on pleurodele larvae. The author
observed positive responses in animals reared in 3 different effluents taken from the
sampling site (a water retention tank receiving runfall effluents of a characterized roadway
section). For each positive effluent, dose-effect responses have been obtained. Physico-
chemical analysis of the water samples have been carried out simultaneously to the
genotoxicity assays, in order to try to correlate the genotoxic effects observed with the
presence of some chemical substances. Even if it is not possible to conclude definitely
from the data obtained, part of the genotoxic effects observed could probably be
attributed to the high level of polycyclic aromatic hydrocarbons measured in the 3 positive
effluents (from 84 to 188 ng/l compared to < 30 ng/l in the non-genotoxic water samples).
Source : MNHN, Paris
74 ALYTES 14 (2)
AIl the environmental studies reported previously have been carried out on pleurodele
larvae. Until now, few studies of environmental interest have been devoted to Xenopus
laevis, in spite of its rearing advantages and ease of use.
In 1987, LEHMAN & MILTENBURGER proposed the use of Xenopus larvae to study
cytogenetic effects of toxicants in water. Micronucleus inducing effects of a waste water
were analysed in poly- and monochromatic erythrocytes, with regard to exposure time.
One of the strongest effects was observed in larvae exposed to the waste water during their
entire larval development (3 months). Although these exposure conditions were incompat-
ible with a routine use of a Xenopus micronucleus assay, these results were the first, from
our knowledge, to report the use of platanna larvae for monitoring the genotoxic potential
of a waste water.
In our laboratory, ZoLL-MOREUX (1995) developed a test procedure on Xenopus
larvae inspired from the protocol of the newt micronucleus assay, that can be applied to
environmental complex mixtures. This author compared the results obtained with the
amphibian micronucleus test, using pleurodele and platanna larvae, on 5 chemicals of
environmental interest and on 5 waste waters from various origins (urban waste and
different industrial effluents). Four of the 5 tested effluents were found genotoxic with the
Xenopus micronucleus test, whereas only 3 were genotoxic in the newt micronucleus assay.
Both organisms are considered quite equally sensitive (with a small advantage to Xenopus
larvae) and the test procedures are similar. In conclusion, the author suggested that, even
if it may be presumptuous to substitute the platanna for the pleurodele micronucleus assay
in environmental genotoxicity studies (because of the lack of data), the undeniable
advantages of the frog provide a good prospect for the use of this animal in future
evaluation of genotoxic effects in the aquatic environment.
MECHANISMS INVOLVED IN THE FORMATION OF MICRONUCLEI IN AMPHIBIANS
Parallel to the in vivo detection of genotoxic effects observed with pure substances in
water or with complex mixtures, several studies have been carried out, in our laboratory,
to help the comprehension of the mechanisms of action involved in the formation of the
micronucleated red blood cells observed in pleurodele larvae.
In 1987, FERNANDEZ & JAYLET demonstrated the antioxidant protection of
the 2(3)-tert-butyl(4)hydroxyanisole (BHA), currently used as a food additive (E 320),
against the clastogenic effects of BaP in pleurodele larvae. BHA was added to the
water at concentrations of 0.5, 1 and 1.5 ppm. It reduced the clastogenic effects of BaP
in the test larvae, with the most marked effect at a concentration of 0.5 ppm. In order to
explain the results observed, the authors assumed that in the newt BHA influences various
stages in the metabolic transformation and/or detoxication mechanisms of BaP. So, it was
likely that metabolites of BaP and secondary reaction products (e.g. oxygenated free
radicals) were responsible for the chromosome damage, leading to the appearance of
micronuclei. BHA could thus act by attenuating the formation of these reactive
intermediates or perhaps preventing them reaching their target(s) (DNA or mitotic
apparatus).
Source : MNHN, Paris
GAUTHIER 75
Two years later, MARTY et al. (1989) investigated the effects of the indirect acting
mutagen BaP, involving the action of hepatic cytochrome P 450 dependent monooxygen-
ases, to explain the mechanisms controlling the formation of the active metabolites in newt
larvae. The authors demonstrated that the pleurodele is capable of metabolizing BaP
into hydroxylated products in a manner not so different from mammals or other aquatic
organisms, of conjugating them with molecules implicated in the formation of polar
derivatives to achieve their excretion and to respond to inducers of the
3-methylcholanthrene (3-MC) type. However, despite the metabolizing capacity in the
pleurodele, accumulation of active metabolites of BaP can occur and is suggested as the
main cause of the clastogenic effect of the compound.
MarTy et al. (1992), working on the enzymatic activity of cytochrome P 450 forms
induced in pleurodele after pretreatment by 3-MC or phenobarbital, showed that the newt
is characterized by a lower level of hepatic cytochrome P 450-dependent activity than the
rat. Variations of enzymatic activities according to sex and season were observed. Specific
activities in newt were characterized by an almost complete insensitivity to induction by
phenobarbital pretreatment. On the other hand, pretreatment by 3-MC resulted in an
increase in the metabolism of several hydroxycoumarin and resorufin derivatives, similar
to the effects observed in rat liver.
DISCUSSION
WHICH SPECIES IS THE BEST SUITED?
From the results presented above, it is possible to compare the performances of the
different amphibian species used in the micronucleus assay to detect genotoxic substances
in water. For the three species, the optimal treatment duration is quite similar and rearing
the breeders does not present any particular problem. Urodele larvae eat exclusively live
prey, whereas Xenopus tadpoles can be fed on dehydrated aquarium fish food. The interval
between egg laying and testing is 6 weeks for urodeles and only 2 weeks for platanna,
giving a technical advantage to the latter species. However, recording micronucleated cells
is somewhat easier in urodeles than in platanna, since red blood cells and micronuclei are
larger in the former ones. Nevertheless, recording micronuclei for all three species is more
straightforward than in the rodent micronucleus test. Pleurodele and Xenopus tests differ
in sensitivity depending on the compound considered. For example, for cyclophosphamide
the detection threshold is 0.5 ppm in pleurodele (FERNANDEZ et al., 1989) and 5 ppm in
platanna. Similarly, for BaP the test is positive with 0.025 ppm in pleurodele (FERNANDEZ
et al., 1989) and 0.06 ppm for platanna (VAN HUMMELEN et al., 1989). Conversely the
detection threshold for methyl mercury is 2.5 ppb in platanna and 12 ppb in pleurodele
(ZoL et al., 1988).
AIl three species can demonstrate the genotoxicity of both direct and indirect
mutagens (i.e. those requiring metabolic activation). Among the three species used for the
test, it is not currently possible to state which is best suited for detection of genotoxic
Source : MNHN, Paris
76 ALYTES 14 (2)
substances in water. Nevertheless, recent work conducted by ZoLL-MoREUX (1995) with
platanna on industrial effluents, together with the easy rearing conditions of the larvae,
promise a future development of this amphibian to study the genotoxic activity of natural
waters.
AMPHIBIANS: A SENSITIVE MODEL?
Al our previous investigations on pure substances added to the rearing medium of the
larvae have shown that the micronucleus test in amphibian is a sensitive and valuable
model for the detection of genotoxic compounds in water. Various factors contribute to
the high sensitivity of our biological model. The larvae strongly accumulate pollutants
from the surrounding medium. This has been well demonstrated for compounds such as
methyl mercury (ZoLL et al., 1988) and BaP (GRINFELD et al., 1986; MARTY et al., 1989).
Studies carried out with various waste waters taken directly at industrial or urban sites
confirm the ability of the amphibian micronucleus assay to reveal the presence of
genotoxic substances discharged in the aquatic environment, even after dilution. In most
cases studied, dose-related responses of the induction of micronucleated erythrocytes were
observed. Furthermore, induction of micronuclei was also observed with test durations
shorter than 12 days, without substantial changes in the response (GAUTHIER et al., 1993).
The sensitivity of the method allows direct testing of water samples without the
requirement for extraction or concentration of the micropollutants (techniques required
for most in vitro studies) leading to the preparation of extracts which are not
representative of the initial water samples (VAN DER GAAG et al., 1990). Because of the
high sensitivity of our test system, genotoxic potential of drinking water has been detected.
Water samples taken directly from the tap or taken at different treatment steps in water
treatment plants were found genotoxic, whereas other test systems probably would not
have revealed any mutagenic activity.
Presently, the amphibian micronucleus assay using pleurodele larvae is the only test
system dedicated to an aquatic vertebrate and sufficiently sensitive to detect the genotoxic
potential in drinking water samples.
IN VIVO AGAINST IN VITRO TEST-SYSTEMS?
We have shown (VAN DER GaAAG et al., 1990) that the techniques of sterilization,
extraction and concentration of organic micropollutants in water required for in vitro
studies lead to the preparation of extracts which are not representative of the initial water
sample. Moreover, the proportion of the genotoxicity arising from chemical pollutants
transformed or neoformed during extraction, compared to that of the original sample,
cannot be evaluated. These problems can be circumvented by the use of in vivo tests giving
a direct evaluation of the genotoxicity of dilute effluents without the requirement for
extraction or concentration of the micropollutants. Apart from this undeniable advantage,
these in vivo tests present others which are also of considerable interest. Firstly, they use
aquatic species which are exposed directly to the water to be tested. Also the species used
are phylogenetically closer to man than are bacteria. Finally, the chromosomal damage is
Source : MNHN, Paris
GAUTHIER TT
evaluated in whole organisms and thus takes into account any interaction that might occur
between micropollutants as well as phenomena of bioavailability and the overall
metabolism of the animal. The responses obtained not only express the complex
phenomena taking place in the whole organism, but also the interactions between the
organism and its environment. Moreover, in vitro tests are not suited for detection of
indirectly acting mutagens. To get around this problem, metabolic-activating systems are
added to the bacterial culture. These are generally in the form of a microsomal preparation
from rat liver, but can lead to problems in the interpretation of the results.
Nevertheless, the use of in vitro assays (tissue culture systems and bacterial tests)
presents some other advantages. They are generally less time-consuming and expensive
than the in vivo tests. They represent suitable early warning systems, although they cannot
supplant the in vivo methods for more accurate evaluation of risks. Moreover, they score
complementary endpoints of those of in vivo test systems. So, it is more and more
proposed to associate in vitro and in vivo detection in a “test battery”, able to reveal the
various types of mutations (genic, chromosomal and genomic), to assess the majority of
the genotoxic fraction in the water samples studied. For example, integration of the
amphibian micronucleus test in a test battery for quality control of the water would help
to the evaluation of risks to human health, as well as to the protection of aquatic
ecosystems. The most commonly used tests, at present, are the in vitro test systems using
bacteria, as they are both cheap and quick, and the in vivo test systems like the mouse
micronucleus test, as it is well developed worldwide. However, this latter is not well
adapted to aquatic environmental studies and was found less sensitive than the newt
micronucleus assay for the detection of some carcinogens in water (LECURIEUX et al.,
1992). In many cases, the risk from genotoxic agents in water is a hidden one. Although
mutagenic micropollutants may not be lethal, they may alter the natural equilibrium in
subtle ways or even sterilize fragile species. An enhancement in the rate of mutation may
also accelerate the process of evolution, leading to a domination of certain species to the
detriment of others, although here the precise risk is hard to estimate. In any event,
extrapolation of the tests’ results to the real-word situation represents an exercise in
judgment.
FUTURE DEVELOPMENT AREAS
Presently, one of the research axes developed in our laboratory deals with
fundamental preoccupations. Recent research (unpublished results) has shown the
possibility to detect aneugenic effects of some genotoxic substances using the amphibian
micronucleus assay. Knowing the close relations between aneuploidy and the initiation of
cancers, it seems important to be able to detect the presence of these specific genotoxic
substances in the aquatic environment. It is clear that the future development of the
amphibian micronucleus test will find its way in environmental research. Up to now, the
pilot studies carried out with this test system on waste waters of various origins underline
the ability of this method to detect the anthropogenic genotoxicity of polluted natural
waters and to evaluate directly the impact of aquatic contamination on the ecosystems
exposed. The simplicity of the test could allow its use in routine monitoring of, for
example, the contamination of a river and in the evaluation of programs of installations
Source : MNHN, Paris
78 ALYTES 14 (2)
intended to reduce pollution. However, in its current form, this in vivo test system remains
a relatively heavy and costly technique, limiting its general diffusion in spite of its ease of
use. For this reason, it seems now necessary to improve the feasibility of the test by
shortening the exposure time of the larvae and helping the scoring of the micronucleated
cells in analyzing the blood smears with a computer. We are therefore trying to develop
in our laboratory an automated method of scoring the micronucleated red blood cells with
a computerized imaging system. Another line of research consists in the extension of the
application field of the amphibian micronucleus assay. Up to now, only the aquatic
compartment has been evaluated using this method. However, it is well known that
genotoxic pollutants, even if they transit in the aquatic compartment, often find their way
in soils or sediments. For instance, the results obtained by VAN DER GAAG et al. (1990)
indicate that part of the genotoxicity in natural water samples was absorbed onto
particulate matter and would only become available to biota during intensive contact, such
as may occur in sediment. In this respect, the genotoxicity may have a serious toxicological
relevance in sedimentation areas. To explore the genotoxicity of contaminated sediments
or soils, using our laboratory test system, new approaches have to be perfected (new
exposure conditions, lixiviation of soil samples).
AMPHIBIANS: WELCOME GENOTOXICITY BIOINDICATORS?
Finally, all the experiments carried out over the last decade on the induction of
micronuclei in the red blood cells of pleurodele, axolotl and platanna larvae confirm our
initial choice of these animals as efficient laboratory detectors of the hidden risks in the
aquatic environment. Up to now, few studies have reported the use of amphibians as real
in situ bioindicators of the genotoxic potential of natural waters. Some trials have been
undertaken on other aquatic vertebrates, like fishes, representing a potential material for
the setting of the micronucleus test, but at the present time the fish micronucleus assay
does not seem capable of constituting a routine test to study the genotoxicity of water
(HOOFTMAN & VINK, 1981; HOOFTMAN & DE RAAT, 1982; CARRASCO et al., 1990).
Programs designed to protect the environment require methods for evaluating the
genotoxic hazards to which the various populations constituting aquatic ecosystems are
exposed. Since such hazards are water-borne, laboratory tests need to be developed that
assess directly the genotoxicity of water, effluents and substances or preparations to
aquatic organisms. However, the in vivo tests on aquatic organisms are not yet widely
accepted, they require more backing to play a major role. They can already be useful at
this time, for instance by including them in Toxicity Reduction Evaluation (TRE) such as
they are advised or prescribed already by different governmental agencies (ANONYMOUS,
1989, 1990; VAN DER GAAG, 1991).
DECLINING AMPHIBIAN POPULATIONS: A WAY OF EXPLANATION?
The populations of many amphibian species, in various habitats worldwide, appear to
be in severe decline (Wake et al., 1991). There is no known single cause for the declines,
but their widespread distribution suggests involvement of both global and local agents
(BLAUSTEIN et al., 1994b; Dugois, 1994), among which habitat destruction, conversion of
Source : MNHN, Paris
GAUTHIER 79
agricultural lands from traditional uses, introduction of predators and competitors,
pollution from pesticides (BERRILL et al., 1993, 1994), mining and logging, acid
precipitation (PouGH & WiLsoN, 1977; TOME & PouGH, 1982; Cook, 1983), increased levels
of ultraviolet irradiation (BLAUSTEIN et al., 1994a), consumption by humans and global
climate change.
In any way, the increasing presence of genotoxic agents in many natural aquatic
media could be considered as a factor contributing to the decline of amphibian
populations. Indeed, the mutagenic risk may affect any cell in the organism. Mutation in
a somatic cell may trigger a process leading to carcinogenesis. Mutagenic agents also exert
their action on germ cells. If the toxicity is severe and many cells are affected, there may
be a lowered or even temporary loss in fertility. If a gamete with a genetic anomaly
contributes to the formation of a zygote, the disorder created in the hereditary material
may be serious enough to lead to the death of the embryo. Although a genetic anomaly
that is compatible with survival of the organism frequently leads to an immediately
obvious anomaly in the phenotype, the effect may be differed and only become apparent
in future generations. This is often the case with equilibrated chromosomal rearrangements
and recessive mutations.
Until now, few studies have been carried out to monitor the behavior of our three
test-organisms after exposure. GRIENFELD et al. (1986) observed an increase in frequency
of micronuclei in pleurodeles larvae 6 days after the beginning of exposure (12 to 48 hours)
to BaP (0.5 ppm) and a progressive decrease of the micronucleated cells from day 6 to day
12. The decrease could be interpreted as the result of several phenomena: the progressive
dilution of the micronucleated erythrocytes with normal cells, the destruction of the
micronucleated cells or of the micronuclei in the damaged cells. What about the real
impact of exposure to genotoxic substances in amphibian erythrocytes with other exposure
times, in other cellular types, especially those involved in the reproduction, in the whole
organism and on the population itself?
At this time, there is no clear evidence to answer these questions on our
test-organisms, because of the lack of data. Most of the work remains to be done and will
constitute the challenge for batrachologists and toxicologists over the next decades, as
expressed by WakE (1991): ‘“‘Amphibians may serve usefully as bioindicators, organisms
that convey information on the state of health of environments. How to read the message
and what to do about it, are timely challenges to scientists and to the public.”
RÉSUMÉ
Cet article constitue une revue des travaux réalisés depuis une dizaine d’années sur la
détection du pouvoir génotoxique des milieux aquatiques (eaux douces) à l’aide de larves
d'amphibiens. Trois espèces ont été plus particulièrement utilisées pour réaliser ces études.
Il s’agit de deux urodèles, le pleurodèle (Pleurodeles waltl) et l'axolotl (Ambystoma
mexicanum), ainsi que d’un anoure, le xénope d’Afrique du Sud (Xenopus laevis). La
technique mise au point sur les larves de ces trois espèces d'amphibiens au Centre de
Biologie du Développement de Toulouse, France, permet de révéler directement la
Source : MNHN, Paris
80 ALYTES 14 (2)
présence de substances génotoxiques dans l’eau d’élevage des animaux en mesurant le
niveau d’induction de micronoyaux dans les érythrocytes des larves exposées à des
substances pures, à des agents physiques ou à des mélanges complexes de substances, tels
que des eaux de boisson, des eaux de surface, des rejets industriels et domestiques, ou tout
effluent aqueux.
Après une présentation du protocole des essais et des conditions d’élevage des
animaux, les résultats obtenus avec le test des micronoyaux sur les larves d'amphibiens
sont rapportés en respectant le déroulement chronologique des différents événements qui
ont abouti, d’une part à la publication de l'essai sous sa forme normalisée en 1992, et
d'autre part aux orientations actuelles des recherches menées dans le domaine de
l’écotoxicologie génétique in vivo des milieux aquatiques, où les amphibiens, grâce
à l’ensemble des travaux rapportés dans le présent article, tiennent une place prépon-
dérante.
Le choix des orientations de travail futures est ensuite discuté en termes de validité de
l'utilisation des amphibiens comme bioindicateurs de génotoxicité en milieu aquatique,
considérant les nombreux avantages de ce modèle et sa complémentarité avec les tests in
vitro qui sont les plus utilisés dans ce domaine.
ACKNOWLEDGEMENTS
This paper is dedicated to the memory of Professor André JAYLET, who was the first to carry out
and to develop the amphibian micronucleus assay. Actually, the newt micronucleus test is also named
the Jaylet test. I would like to thank Dr. V. FERRIER, manager of the group of Environmental Genetic
Toxicology in the Developmental Biology Center of Toulouse, where most of the work described in
this article has been performed. I am very greatful to all my coworkers in the laboratory who designed
and developed the amphibian micronucleus test system over the years, and namely Ms. M.
FERNANDEZ, J. MARTY, C. ZoLL-MOREUX and Mrs. J. E. DJOMO and J. L'HARIDON. I am also greatly
indebted to Mr. Y. LÉvI and Mr. M. A. VAN DER GAAG for their help in field work.
LITERATURE CITED
ANONYMOUS, 1987. — Essais des eaux. Détection en milieu aquatique de la génotoxicité d'une substance
vis-d-vis de larves de batraciens (Pleurodeles waltl er Ambystoma mexicanum). Essai des
micronoyaux. Paris, Association Française de Normalisation, Fascicule de documentation
AFNOR T90-325: 1-12.
Es 1989. — Toxicity reduction evaluation protocol for municipal waste water treatment plants.
Cincinnati, Ohio, Environmental Protection Agency, US-EPA Risk Reduct. Eng. Lab., EPA
600-2-88-062: 1-27.
- 1990. — Biological chemical characterization of industrial waste water. Solna, Sweden, Swedish
National Environmental Protection Board, S-17185: 1-102.
ie 1992. — Essais des eaux. Evaluation de la génotoxicité au moyen de larves de batraciens
(Pleurodeles waltl). Paris, Association Française de Normalisation: 1-15.
AMESs, B. N., MAC CANN, J. & YaMasaki, E., 1975. — Methods for detecting carcinogens and
mutagens with the Salmonellaimammalian microsome mutagenicity test. Mutat. Res., 31:
347-363.
Source : MNHN, Paris
GAUTHIER 81
BERRILL, M., BERTRAM, S., MCGILLIVRAY, L., KOLOHON, M. & PAULI, B., 1994. — Effects of low
concentrations of forest-use pesticides on frog embryos and tadpoles. Environ. Toxicol. Chem.
13: 657-664.
BERRILL, M., BERTRAM S., WILSON A., LOUIS, S., BRIGHAM, D. & STROMBERG, C., 1993. — Lethal
and sublethal impacts of pyrethroid insecticides on amphibian embryos and tadpoles. Environ.
Toxicol. Chem., 12: 525-539.
BLAUSTEIN, A. R., HOFFMAN, P. D., GRANT Hokir, D., KIESECKER, J. M., WALLS, S. C. & Hays, J.
B., 19944. — UV repair and resistance to solar UV-B in amphibian eggs: a link to population
declines? Proc. nat. Acad. Sci. USA, 91: 1791-1795.
BLAUSTEIN, À. R., WAKE, D. B. & SousA, W. P., 1994b. — Amphibian declines: judging stability,
persistence and susceptibility of population to local and global extinction. Conserv. Biol. 8 (1):
60-71.
BouURBIGOT, M. M., HAscoET, M. C., LÉvi, Y., ERB, F. & POMMERY, N., 1986. — The role of ozone
and granular activated carbon in the removal of mutagenic compounds. Environ. Health
Perspect., 69: 159-163.
BRUNETTI, R., MAIONE, F., GOLA, I. & BELTRAME, C., 1988. — The micronucleus test: examples of
application to marine ecology. Mar. Ecol. Prog. Ser., 44: 65-68.
CaRRASCO, K. R., TILBURY, K. L. & Myers, M. S., 1990. — Assessment of the piscine micronucleus
test as an in situ biological indicator of chemical contaminant effects. Can. J. Fish. aquat. Sci.
47: 2123-2136.
CHOUROULINKOV, I. & JAYLET, A., 1989. — Contamination of aquatic systems and genetic effects.
Part 4. /n: A. BouDou & F. S. RIBEYRES (eds.), Aguatic ecotoxicology — Fundamental concepts
and methodologies, Boca Raton, Florida, CRC Press Inc.: 211-235.
Cook, R. P., 1983. — Effects of acid precipitation on embryonic mortality of Ambystoma salamanders
in the Connecticut Valley of Massachusetts. Biol. Conserv., 27: 77-88.
Das, R. K. & NaNDA, N. K., 1986. — Induction of micronuclei in peripheral erythrocytes of fish
Heteropneustes fossilis by mitomycin C and paper mill effluent. Mutat. Res., 15: 65-71.
Dyomo, J. E., FERRIER, V., GAUTHIER, L., ZoLL-MOREUX, C. & MARTY, J., 1995. — Amphibian
micronucleus test in vivo: evaluation of the genotoxicity of some major polycyclic aromatic
hydrocarbons found in a crude oil. Mutagenesis, 10 (3): 223-226.
Duois, A., 1994. — Les amphibiens et la nécessité de leur protection. /n: Gestion et protection des
amphibiens: de la connaissance aux aménagements, Paris, A.F.I.E.: 12-22.
Evans, H. J., NEARY, G. J. & WILLIAMSON, F. S., 1959. — The relative biological efficiency of single
doses of fast neutrons and gamma rays on Vicia faba roots and the effects of oxygen. II.
Chromosome damage, the production of micronuclei. Int. J. Radiat. Biol., 1: 216-229.
FERNANDEZ, M., GAUTHIER, L. & JAYLET, A., 1989. — Use of newt larvae for in vivo genotoxicity
testing of water: results on 19 compounds evaluated by the micronucleus test. Muragenesis, 4:
17-26.
FERNANDEZ, M. & JAYLET, A., 1987. — An antioxidant protects against the clastogenic effects of
benzo(a)pyrene in the newt in vivo. Mutagenesis, 2: 293-296.
FERNANDEZ, M. & L'HARIDON, J., 1992. — Influence of lighting conditions on toxicity and
genotoxicity of various PAH in the newt in vivo. Murat. Res., 298: 31-41.
FERNANDEZ, M., L'HARIDON, J, GAUTHIER, L. & ZoLL-MOoREUx, C., 1993. — Amphibian
micronucleus test(s): a simple and reliable method for evaluating in vivo genotoxic effects of
fresh water pollutants and radiations: initial assessment. Mutat. Res., 292: 83-99.
GALLIEN, L. & DUROCHER, M., 1957. — Table chronologique du développement chez Pleurodeles
waltlii Michah. Bull. biol. Fr. Belg., 91: 97-114.
GAUTHIER, L., 1996. — Suivi de la qualité des eaux de ruissellement sur chaussée autoroutière, autoroute
A9, Florensac. Publications du Service d'Etudes Techniques des Routes et Autoroutes
(SETRA), in press.
GAUTHIER, L., LÉVI, Y. & JAYLET, A., 1988. — Génotoxicité de l'eau révélée par le test micronoyau
triton. Conférence du 68°" Congrès de l'Association Générale des Hygiénistes et Techniciens
Municipaux, Avignon: 369-383.
eu 1989. — Evaluation of the clastogenicity of water treated with sodium hypochlorite or
monochloramine using a micronucleus test in the newt larvae (Pleurodeles wall). Mutagenesis,
4: 170-173.
Source : MNHN, Paris
82 ALYTES 14 (2)
ES 1990. — Application du test micronoyau triton à l'étude directe de la génotoxicité des procédés
de désinfection des eaux. J. fr. Hydrol., 21 (1): 147-157.
GAUTHIER, L., VAN DER GAAG, M. A., L'HARIDON, J., FERRIER, V. & FERNANDEZ, M., 1993. —
In vivo detection of waste water and industrial effluent genotoxicity: use of the newt
micronucleus test (Jaylet test). Sci. total Environ., 138: 249-269.
GmAUD, M. & GuILLET, H., 1972. — Teneur en mercure des milieux naturels. /n: La pollution par
le mercure et ses dérivés, Rapport du Ministère de l'Environnement, France: 1-55.
Goper, F., 1994. — Evaluation de la génotoxicité des effluents, étude comparative des tests d’Ames
et micronoyaux triton. Cahiers Techniques Inter-Agences, 29: 1-53.
Goper, F., VASSEUR, P. & BABUT, M., 1993. — Essais de génotoxicité in vitro et in vivo applicables
à l’environnement hydrique. Revue des Sciences de l'eau, 6: 285-314.
GREEN, M. H. L., MURIEL, W. J. & BRIDGE, B. A., 1976. — Use of a simplified fluctuation test to
detect low levels of mutagens. Mutat. Res., 38: 33-42.
GRINFELD, S., JAYLET, A., SIBOULET, R., DEPARIS, P. & CHOUROULINKOV, I., 1986. — Micronuclei
in red blood cells of the newt Pleurodeles walil after treatment with benzo(a)pyrene dependence
on dose, length of exposure, postreatment time and uptake of the drug. Env. Mutagenesis, 8:
41-51.
HEDDLE, J. A., HiTE, M., KIRKHART, B., MAVOURNIN, K., MAC GREGOR, J. T., NEWELL, G. W.
& SALAMONE, M. F., 1983. — The induction of micronuclei as a measure of genotoxicity. A
report of the U. S. Environmental Protection Agency, gene-tox program. Mutat. Res., 123:
61-118.
HooFTMAN, R. N. & DE RaAT, W. K., 1982. — Induction of nuclear anomalies (micronuclei) in
the peripheral blood erythrocytes of the eastern mudminnow Umbra pygmaea by ethyl methane
sulphonate. Mutat. Res., 104: 147-152.
HOOFTMAN, R. N. & VINK, G. J., 1981. — Cytogenetic effects on the eastern mudminnow Umbra
Pygmaea, exposed to ethyl methanesulfonate, benzo(a)pyrene and river water. Ecotoxicol.
Environ. Saf., 5: 261-269.
HuBBARD, S. A., GREEN, M. H. L., GATEHOUSE, D. & BRIDGES, J. W., 1984. — The fluctuation test
in bacteria. In: B. J. KirBEy, M. LEGATOR, W. NicHoLs & C. RAMEL (eds.), Handbook of
mutagenicity test procedures, Elsevier Science Publisher BV: 1-36.
JAYLET, A., DEPARIS, P., FERRIER, V., GRINFELD, S. & SIBOULET, R., 19864. — A new micronucleus
test using peripheral blood erythrocytes of the newt Pleurodeles waltl to detect mutagens in
fresh-water. Mutar. Res., 164: 245-257.
JAYLET, A., DEPARIS, P. & GASCHIGNARD, D., 1986b. — Induction of micronuclei in peripheral
erythrocytes of axolotl larvae following in vivo exposure to mutagenic agents. Mutagenesis, 1:
211-215.
JAYLET, A., GAUTHIER, L. & FERNANDEZ, M., 1987. — Detection of mutagenicity in drinking water
using a micronucleus test in newt larvae (Pleurodeles walt). Mutagenesis, 2: 211-214.
JAYLET, A., GAUTHIER, L., FERNANDEZ, M., MARTY, J. & FERRIER, V., 1986c. — A micronucleus
test for the detection of mutagenic activity in drinking water using erythrocytes from newt
larvae. Proceedings of the XV‘ Annual Meeting of EEMS: 137-144.
JAYLET, A, GAUTHIER, L. & LÉvI, Y., 19904. — Detection of genotoxicity in chlorinated or
ozonated drinking water using an amphibian micronucleus test. In: M. D. WATERS et al. (eds.),
Genetic toxicology of complex mixtures: short term bioassays in the analysis of complex
environmental mixtures, 6, New York, Plenum Press: 233-247.
JAYLET, AÀ., GAUTHIER, L. & ZoLL, C., 1990b. — Micronucleus test using peripheral red blood cells
of amphibian larvae for detection of genotoxic agents in freshwater pollution. /n: S. S. SANDHU
et al. (eds.), /n situ evaluations of biological hazards of environmental pollutants, New York,
Plenum Press: 71-80.
JAYLET, A. & ZoLz, C., 1990. — Tests for detection of genotoxins in freshwater. /n: R. ANDERSON
et al., (eds.), Reviews in aquatic sciences, 2 (2), Boca Raton, Florida, CRC Press Inc.: 151-166.
KooL, H. J. & HRUBEC, J., 1986. — The influence of an ozone, chlorine and chlorine dioxide
treatment on mutagenic activity in drinking water. Ozone Science and Enginiering, 8: 217-234.
KRAUTER, P. W., ANDERSON, S. L. & HARISSON, F. L., 1987. — Radiation-induced micronuclei in
peripheral erythrocytes of Rana catesbeiana: an aquatic animal model for in vivo genotoxicity
studies. Environ. Molec. Mutagen., 10: 285-291.
Source : MNHN, Paris
GAUTHIER 83
LECUREUX, F., GAUTHIER, L., ERB, F. & MARZIN, D., 1995b. — Use of the SOS chromotest, the
Ames fluctuation test and the newt micronucleus test to study the genotoxicity of four
trihalomethanes. Mutagenesis, 10 (4): 333-341.
LECURIEUX, F., GILLER, S., GAUTHIER, L., ERB, F. & MARZIN, D., 1995a. — Study of the genotoxic
activity of six halogenated acetonitriles using the SOS chromotest, the Ames fluctuation test
and the newt micronucleus test. Mutat. Res., 341: 289-302.
LECURIEUX, F., MARZIN, D. & ERB, F., 1992. — Genotoxic activity of three carcinogens in peripheral
blood erythrocytes of the newt Pleurodeles wall. Mutat. Res., 283: 157-160.
LEHMANN, M. & MILTENBURGER, H. G., 1987. — Cytogenetic effects of mutagens and waste water
in frog larvae, Xenopus laevis. Mutat. Res., 182 (5): 285-286.
L'HARIDON, J., FERNANDEZ, M., FERRIER, V. & BELLAN, J., 1993. — Evaluation of the genotoxicity
of N-nitrosoatrazine, N-nitrosodiethanolamine and their precursors in vivo using the newt
micronucleus test. War. Res., 27 (5): 855-862.
MAC Gi, R., TuckEey, J. W. & LARSEN, W. A., 1978. — Variations of box plots. 4m. Statist.,
32: 12-16.
MAIONE, F., BRUNETTI, R., GOLA, I. & LEWIS, A. G., 1987. — Persistence of micronuclei in the marine
mussel, Mytilus galloprovincialis, after treatment with mitomycin C. Mutar. Res., 191: 157-161.
MaRON, D. M. & AMEs, B. N., 1983. — Revised method for the Salmonella mutagenicity test.
Mutat. Res., 113: 173-215.
MarTY, J., LESCA, P., JAYLET, A., ARDOUREL, C. & RIVIÈRE, J. L., 1989. — In vivo and in vitro
metabolism of benzo(a)pyrene by the larva of the newt, Pleurodeles waltl. Comp. Biochem.
Physiol., 93c (2): 213-219.
MaRTY, J., RIVIÈRE, J. L., GuINAUDY, M. J., KREMERS, P. & LeEsCA, P., 1992. — Induction and
characterization of cytochromes P-450 IA and -IIB in the newt, Pleurodeles waltl. Ecotoxicol.
Environ. Saf., 24: 144-154.
MaRZIN, D., OLIVIER, P. & VorHi, H., 1986. — Kinetic determination of enzymatic activity and
modification of the metabolic activation system in the SOS chromotest. Murat. Res., 164:
353-359.
METCALFE, C. D., 1988. — Induction of micronuclei and nuclear abnormalities in the erythrocytes
of mudminnows (Umbra limi) and brown bullheads (/ctalurus nebulosus). Bull. environ. Contam.
Toxicol., 40: 489-495.
NIEUWKooP, P. D. & FABER, J., 1956. — Normal table of Xenopus laevis. Amsterdam, North
Holland Publishing Company: 1-243.
NoorDsu, A., VAN BEVEREN, J. & BRANDT, A., 1983. — Isolation of organic compounds from water
for chemical analysis and toxicological testing. Int. J. environ. anal. Chem., 13: 205-217.
PouGH, F. H. & WILSON, R. E., 1977. — Acid precipitation and reproductive success of Ambystoma
salamanders. Water Air Soil Pollut., 7: 307-316.
QUILLARDET, P., HUISMAN, O., D'ARI, R. & HOFNUNG, M., 1982. — SOS chromotest, a direct assay
of induction of a sos function in Escherichia coli K12 to measure genotoxicity. Proc. nat. Acad.
Sci. USA., 79: 5971-5975.
QUILLARDET, P. & HOFNUNG, M., 1985. — The SOS chromotest, a colorimetric bacterial assay for
genotoxins procedures. Mutar. Res., 147: 65-78.
SCARPATO, R., MIGLIORE, L., ALFINITO-COGNETTI, G. & BARALE, R., 1990. — Induction of
micronuclei in gill tissue of Mytilus galloprovincialis exposed to polluted marine waters. Mar.
Poll. Bull., 21: 74-80.
ScHmD, W., 1976. — The micronucleus test for cytogenetic analysis. /n: A. HOLLAENDER (ed.),
Chemical mutagens, 4, New York, Plenum Press: 31-53.
Si, D. L. & BouCAUT, J.-C., 1995. — The chronological development of the urodele amphibian
Pleurodeles walt! (Michah.). Int. J. dev. Biol., 39 : 427-441.
SIBOULET, R., GRINFELD, S., DEPARIS, P. & JAYLET, A., 1984. — Micronuclei in red blood cells of
the newt Pleurodeles waltl (Michah.): induction with X-rays and chemicals. Mutat. Res., 125:
275-281.
ToME, M. & POUGH, F. H., 1982. Responses of amphibians to acid precipitation. /n: Proceedings
of the International Symposium on Acidic Precipitation and Fisheries Impact in Northeastern
North America, Cornell University, Ithaca, NY, Bethesda, Maryland, American Fisheries
Society: 245-254.
Source : MNHN, Paris
84 ALYTES 14 (2)
UPTON, A. C., CLAYsON, D. B., JANSEN, J. D., ROSENKRANZ, H. S. & WILLIAMS, G. M., 1984.
— Report of ICPEMC task group 5 on the differentiation between genotoxic and
non-genotoxic carcinogens. Mutat. Res., 133: 1-49.
VAN DE KERKHOFF, J. F. J. & VAN DER G44G, M. A., 1985. — Some factors affecting optimal
differential staining of sister-chromatids in vivo in the fish Nothobranchius rachowi. Mutat. Res.
143: 39-43.
Van Der GA46, M. A., 1991. — Ecotoxicology, an effective instrument for water quality
management. Eur. Water Pollut. Cont., 1 (2): 7-12.
VAN DER G44G, M. A., GAUTHIER, L., NooRDsu, A., LÉVI, Y. & WRISBERG, M. N., 1990. —
Methods to measure genotoxins in waste water : evaluation with in vitro and in vivo tests. Jn:
M.S. WATERS et al. (eds.), Genetic toxicology of complex mixtures: short term bioassays in the
analysis of complex environmental mixtures, 6, New York, Plenum Press: 215-232.
Van Der GaaG, M. À. & VAN DE KERKHOFF, J. F. J., 1985. — Mutagenicity testing of water with
fish: a step forward to a reliable assay. Sci. total Environ., 47: 293-298.
Van Hoor, F., 1982. — Formation and removal of mutagenic activity in drinking water by
ozonation. Aqua, 5: 475-478.
VAN HUMMELEN, P., ZoLL, C., PAULUSSEN, J., KIRSCH-VOLDERS, M. & JAYLET, A., 1989. — The
micronucleus test in Xenopus: a new and simple in vivo technique for detection of mutagens in
fresh water. Mutagenesis, 4: 12-16.
WAKE, D. B., 1991. — Declining amphibian populations. Science, 253: 860-861.
Wake, D. B., MOROWITZ, H. J., BLAUSTEIN, A., BRADFORD, D., BURY, R. B., CALDWELL, J., CORN,
P.S., Dumois, A., HARTE, J., HAYES, M., INGER, R., NETTMANN, H.-K., RAND, A. S., SMITH,
D., Tvcer, M. & Virr, L., 1991. — Declining amphibian populations — a global phenomenon?
Findings and recommendations. Alytes, 9: 33-42.
Weawe, D. L., HOPkE, J. B., JOHNSTON, J. B. & PLEWA, M. J., 1981. — Mutagenicity of Chicago
municipal sewage sludge in the Salmonella microsome reverse mutation assay. Environ.
Mutagen., 3: 350-356.
XU, H,, Durka, B. J. & ScHURR, K., 1989. — Microtitration SOS chromotest: a new approach in
genotoxicity testing. Toxicity Assess., 4: 105-114.
ZoLz, C., FERRIER, V. & GAUTHIER, L., 1990. — Use of aquatic animals for monitoring genotoxicity
in unconcentrated water samples. /n: A. Kappas (ed.), Mechanisms of environmental
mutagenesis-carcinogenesis, New York, Plenum Press: 233-244.
Zorr, C., SAOUTER, E., BOUDOU, A., RIBEYRE, F. & JAYLET, A., 1988. — Genotoxicity and
bioaccumulation of methyl mercury and mercuric chloride in vivo in the newt Pleurodeles waltl.
Mutagenesis, 3: 337-343.
ZoLL-MorEUx, C., 1995. — Etude comparative entre le test Jaylet (test micronoyau triton) et le test
micronoyau xénope. Cahiers Techniques Inter-Agences, 44: 1-317.
Corresponding editor: Alain COLLENOT.
© ISSCA 1996
Source : MNHN, Paris
Alytes, 1996, 14 (2): 85-100. 85
Morfologia de los oocitos en diplotene
de Melanophryniscus stelzneri
(Weyenbergh, 1875) (Anura, Bufonidae)
Maria Fernanda RocA & Dinorah Diana ECHEVERRIA
Facultad de Ciencias Exactas y Naturales (UBA), Departamento de Cencias Biolôgicas,
Laboratorio de Vertebrados, 1428 Buenos Aires, Argentina
Five stages of the oogenesis, with eight substages of the diplotene oocyte
development, are identified applying histological and transmission electron
microscopy techniques. Based on the internal morphology of the oocytes, the
following features were taken into account: yolk vesicles, yolk platelets,
cortical granules and pigment appearance, morphological variations of the
nuclear envelope and nucleoli.
INTRODUCCION
La distribuciôn geogräfica de las especies del género Melanophryniscus Gallardo, 1961
se halla restringida a Sudamérica. Cri (1980) mencioné la existencia de cuatro subespecies
de M. stelzneri, de las cuales M. s. stelzneri habita en las sierras de Cérdoba y San Luis.
Es frecuente hallar ejemplares de M. s. stelzneri activos durante el dia, luego de fuertes
Iluvias, cerca de arroyos o pequeños cuerpos de agua de zonas serranas, entre los 900 y
2.000 m. La época de reproducciôn de la especie abarca desde mediados de octubre a fines
del verano (GALLARDO, 1987).
Debido a lo restringido de su distribuciôn y a que estos animales son comercializados
como mascotas, se hallan entre las especies que la IUCN (Uniôn Internacional para la
Conservaciôn de la Naturaleza) y la FVSA (Fundacion Vida Silvestre Argentina)
coinciden en Ilamar raras (especies sujetas a riesgo) y comercialmente amenazadas,
respectivamente. La extracciôn de estos animales de su medio ambiente, Ilevada a cabo en
forma indiscriminada, podria afectar, por ejemplo, la abundancia y distribucion de las
poblaciones de M. s. stelzneri en los ambientes serranos.
El estudio de la oogénesis en los anuros ha sido objeto de numerosas investigaciones,
que en su mayoria han destacado la variacién morfolgica de los oocitos en el ovario
adulto durante el periodo reproductivo de la especie. La caracterizaciôn histolégica de los
oocitos del ovario se ha efectuado en diversas especies. Se pueden mencionar, por ejemplo,
los trabajos de BOUIN (1901) en Rana sylvatica, KING (1908) en Bufo lentiginosus, ALLENDE
(1938), VALDEZ TOLEDO & PisAN (1980) y ECHEVERRIA (1988) en Bufo arenarum, KEMP
Source : MNHN, Paris
86 ALYTES 14 (2)
(1953) en Rana pipiens, IWASAWA (1969) en Rana ornativentris, DUMONT (1972) en Xenopus
laevis, LAMOTTE et al. (1973) en Nectophrynoides occidentalis, y IWASAWA et al. (1987) en
Rana nigromaculata.
El proceso mâs evidente de la maduracion de los oocitos es la vitelogénesis. Se han
propuesto distintos modelos para explicar la formaciôn del vitelo. Tanto WALLACE (1985)
como DUMONT (1972) han expresado que el principal proceso de adquisicin de vitelo en
los oocitos de Xenopus laevis es la micropinocitosis. OPRESKO et al. (1980) propusieron un
modelo de compartimentalizaciôn endocitica de las proteinas en oocitos de X. laevis. En
varias especies de anfibios se ha descrito la formacion de inclusiones cristalinas dentro de
las mitocondrias en oocitos que fueron interpretadas como progenitoras de los cristales
formados dentro de las plaquetas (WARD, 1962; KARASAKI, 1963; WALLACE & KARASAKI,
1963; LANZAVECCHIA, 1968; WALLACE & DUMONT, 1968; MASssOvER, 1971; WALLACE et al.,
1972). Años después, WaRD et al. (1985) concluyeron que las formaciones cristalinas no
eran precursoras del vitelo. En oocitos jovenes se ha observado la presencia de cuerpos
multivesiculares (LANZAVECCHIA, 1968) que han sido relacionados con la sintesis endégena
de vitelo (WALLA£ÇE, 1985). VILLECCO et al. (1992) han observado en Ceratophrys cranwelli
la formaciôn de cuerpos multivesiculares como precursores de las plaquetas vitelinas, que
se originan de la fusién de endosomas.
Es una caracteristica sobresaliente de los oocitos de anfibios la presencia de una gran
cantidad de nucléolos en ciertas etapas del crecimiento. Estos nucléolos son formados a
partir de genes del ADN ribosomal, que se hallan amplificados en los oocitos de anfibios
(BROWN & DawiD, 1968; AMALDI et al., 1973; SCHEER & DABAWALLE, 1985).
En Rana temporaria y Bufo arenarum, al cabo de tres años los oocitos finalizan su
desarrollo y la hembra alcanza la madurez sexual (GRANT, 1953; ECHEVERRIA, 1988).
VALDEZ TOLEDO & PisanN6 (1980) han convenido en clasificar las fases de la oogénesis de
Bufo arenarum en cinco estadios. Se pueden distinguir cuatro estadios inmaduros
(previtelogénesis, vitelogénesis temprana, vitelogénesis tardia y oocito en auxocitosis) que
conducen al estado final postvitelogénico de oocito ovulable (ECHEVERRIA, 1988).
El propésito de este trabajo radica en caracterizar los estadios de la oogénesis en
M. s. stelzneri como primeros pasos hacia el conocimiento de la biologia reproductiva de
la especie en cuestiôn que, sumado a otras investigaciones, permitirian implementar una
buena y eficiente estrategia de conservacion de M. s. stelzneri.
MATERIAL Y MÉTODOS
Se capturaron 17 hembras de Melanophryniscus stelzneri en las localidades de Tanti,
provincia de Cordoba y El Trapiche, provincia de San Luis, en los meses de octubre,
diciembre y febrero.
Los animales fueron adormecidos con éter y luego colocados con el abdomen abierto
en distintos fijadores.
La muestra const de trozos de ovario de aproximadamente 5 mm x 5 mm de
espesor y de oocitos aislados de cada una de las hembras.
Source : MNHN, Paris
RocA & ECHEVERRIA 87
A fin de conocer el aspecto general de los oocitos se realizé el examen con
microscopio estereoscopico. Se implementaron dos técnicas complementarias.
TÉCNICAS HISTOLOGICAS GENERALES (SEGÜN ECHEVERRIA, 1988)
— Liquidos fijadores: formol al 10 %; solucion de Bouin; liquido de Zenker.
— Inclusién: en parafina 56-58°.
— Técnicas de coloracién e histoquimicas (DRURY & WALLINGTON, 1967; PEARSE,
1972): hematoxilina - eosina; tricromico de Masson; coloracion de Mann; reaccion del
äcido peryédico Schiff (PAS) - hematoxilina; PAS - azul Alciän (pH 3,5); PAS - diastasa;
verde de metilo-pironina.
TÉCNICAS DE MICROSCOPIA ELECTRÔNICA DE TRANSMISION
Fijaciôn con glutaraldehido 3 % en buffer cacodilato de sodio 0,1 M (pH 7,2-7,4);
refijacion con tetréxido de osmio 2 %; coloraciôn en bloque con acetato de uranilo 2 %;
deshidrataciôn en alcoholes de graduaciôn ascendente, con liquido intermediario 6xido de
propileno; impregnaciôn e inclusién en Polybed.
Se realizaron cortes de 500 À que se recogieron en grillas y se colorearon
sucesivamente con solucion de Reynolds (acetato de uranilo al 2 %, citrato de plomo)
segün REYNOLDS (1963, fide MERCER & BIRBECK, 1979), y nitrato de bismuto en soluciôn
de tartrato de sodio.
Se han establecido los estadios de desarrollo de los oocitos segün ECHEVERRIA (1988),
teniendo en cuenta diferentes caracteristicas anatomicas e histolégicas que se mencionan
en la Tabla I.
Los estadios de la oogénesis se identificaron a partir de las observaciones de los
oocitos desprovistos de la teca externa y de la serosa, y se dividieron en subestadios para
facilitar las observaciones del progreso de la oogénesis.
RESULTADOS
ESTADIO 1. PREVITELOGÉNESIS
Son los oocitos de tamaño mäs pequeño (subtipo a), entre 22 y 50 um de diametro.
Se ubican por fuera de la teca externa, cubiertos por la serosa que envuelve al ovario.
Presentan un citoplasma transparente a través del cual se observa el nücleo ocupando gran
parte de la célula. El contenido citoplasmätico, de apariencia granular, es levemente
basofilo. El nücleo es esférico y central, con la membrana lisa. En la periferia del nücleo
se disponen prominentes nucléolos esferoidales y de contorno irregular, en un nümero que
Source : MNHN, Paris
88
Tabla 1. - Caracteres morfolégicos y métricos para la identificaciôn de los estadios del desarrollo de los oocitos de Melanophryniscus stezneri en cortes
histolégicos. A, anulares; B, bipartitos; C, central; E, esferoidales; G, plegada; L, lisa; O, ondulada; $, saculada; P, polarizado; V, vacuolados:
+, presencia; #, escasos y aislados; *, ordenados; -, ausencia.
Nücleo Citoplasma
Diémetro Membrana
inimo- M Gränul teli
En Posiciôn embrana | Nniécios Vitelo Pigmento | dr
méximo k
nuclear corticales
22-50 c L E : 2 = _ a
s
50-150 c L E a à : : Ce
Sd
150-270 c o E 3 . ; ”. si
S
a 270-310 c s B u 5 : + 5
F ê
b 310-350 ce s B + . ; + 8
a 350-650 c A,B,E + +4 +
3 b 650-740 c s ByE + + +4 &
e 750-900 P leve s ByV + P+ +4 +
4 900-1200 P G EyV P+ P+ ++ + |
5 1200-1400 P G EyV + + ++ + |
Source : MNHN, Paris
ROCA & ECHEVERRIA 89
varia entre cinco y diez. El nucleoplasma presenta densas granulaciones intensamente
coloreadas que permiten asociarlas con el estado de diplotene temprana de la profase de
la meiosis (fig. 1). Rodeando a cada oocito, en contacto con la membrana celular se
disponen las células foliculares de nücleo prominente.
A partir de los 50 um de diämetro los oocitos se hallan rodeados por las tecas. En los
oocitos cuyos diâmetros estän comprendidos entre los 50 y 150 im (subtipo b), la basofilia
del citoplasma se ve incrementada notablemente. El nücleo presenta en la zona periférica
una mayor cantidad de nucléolos. A medida que el diämetro celular aumenta, los
nucléolos tienden a disminuir el volumen. La membrana nuclear manifiesta leves
ondulaciones. Ocupando todo el volumen del nücleo se observan los cromosomas en
diplotene temprano (fig. 2). Aumentan las células foliculares alrededor de los oocitos.
Los oocitos que presentan un diämetro comprendido entre los 150 y 270 um (subtipo
c), se observan levemente opacos. En los cortes histolôgicos el citoplasma evidencia zonas
densas, continuas o irregulares alrededor de nücleo, con gran afinidad por los colorantes
bâsicos, que denominamos zonas basôfilas del citoplasma. El nücleo conserva la posiciôn
central. La membrana nuclear presenta ondulaciones que se hacen mâs notorias a medida
que aumenta el tamaño del oocito. En la zona cortical del nücleo es evidente el aumento
del nümero de los nucléolos esferoidales. Los cromosomas que pierden su afinidad por los
colorantes bäsicos pueden observarse en el ârea central del nücleo. La membrana vitelina
comienza a visualizarse como una delgada y discontinua envoltura PAS positiva rodeando
a los oocitos, por debajo de las células foliculares.
ESTADIO 2. VITELOGÉNESIS TEMPRANA
Los oocitos que inician el proceso de vitelogénesis y cuyos diämetros estän
comprendidos entre 270 y 310 um (subtipo a) se caracterizan por un color blanco opaco.
El citoplasma exhibe vesciculas en la zona periférica, que dan reaccién PAS positiva, y
contactan con la membrana celular (figs. 3-4). Zonas basôfilas se disgregan alrededor del
nücleo. La vesicula germinal manifiesta una membrana excesivamente saculada que se
proyecta hacia el citoplasma. Los nucléolos se disponen ocupando la mayor parte del
nücleo. Son evidentes nucléolos bipartitos, constituidos por dos zonas de distinta afinidad
por el colorante. Las zonas menos densas pueden repetirse en la estructura del mismo
nucléolo y disponerse alternadamente en forma lineal o como brotes sobre la esfera mâs
densa, generalmente de mayor volümen (fig. 5). La membrana vitelina continüa su
desarrollo envolviendo totalmente al oocito.
Los oocitos de color ocre claro con un diâmetro que oscila entre los 310 y 350 um
conforman el subtipo b. Las observaciones histolôgicas ponen de manifiesto la presencia
de vitelo de apariencia granular en la zona cortical del oocito, que se destaca del resto del
citoplasma por su gran afinidad por los colorantes âcidos (fig. 6). Se ha estudiado con
MET esta zona del oocito, pudiéndose identificar pequeñas plaquetas vitelinas y vesiculas
cuyo contenido central es de forma irregular (premelanosomas, segûn DUMONT, 1972),
dispersas en el citoplasma. La membrana oocitaria manifiesta un gran desarrollo de
microvellosidades que se proyectan hacia la membrana vitelina.
Source : MNHN, Paris
90 ALYTES 14 (2)
Fig. 1. — Oocito de estadio la. S, serosa; T, teca interna; Te, teca externa. Tricromico de Masson.
Escala: 20 um.
Fig. 2. — Vista general de oocito de estadio 1h. F, nücleo de célula folicular. Tricrémico de Masson.
Escala: 30 pm.
Fig. 3. — Vista general de oocito de estadio 24. Triängulos blancos, citoplasma periférico. B, zonas
basôfilas. Tricromico de Masson. Escala: 100 um.
Fig. 5. — Nucléolos bipartitos en el nücleo de un oocito de estadio 2a. Verde de metilo-pironina.
Escala: 20 pm.
Fig. 8. — Nucléolos en anillo. Azul de metileno. Escala 20 pm.
Source : MNHN, Paris
ROCA & ECHEVERRIA 91
Fig. 4. — Citoplasma periférico de oocito de estadio 2a con zonas irregulares PAS positivas (sagitas
negras cortas) adyacentes a la membrana vitelina (sagita negra larga). T, teca interna; Te, teca
externa. PAS - azul Alciän. Escala: 20um.
Fig. 6. — Secciôn de un oocito de estadio 2h con una banda periférica de vitelo (V). B, zonas
basôfilas; N, nücleo; P, plaquetas vitelinas de un oocito adyacente en vitelogénesis tardia.
Tricrémico de Masson. Escala: 50 pm.
Fig. 7. — Oocito de estadio 3a. Plaquetas vitelinas (P) invadiendo el citoplasma (C). N, nücleo.
Coloraciôn de Mann. Escala: 50 um.
Fig. 9. — Corte semifino de un oocito de estadio 3a coloreado con azul de metileno. F, nücleo de
células foliculares; G, grânulo cortical; I, pigmento; M, membrana vitelina; P, plaquetas
vitelinas. Escala: 20 um.
Source : MNHN, Paris
92 ALYTES 14 (2)
ESTADIO 3. VITELOGÉNESIS ACTIVA
A partir de los 350 y hasta 650 um, el vitelo se encuentra organizado en plaquetas
vitelinas, ocupando las dos terceras partes del citoplasma (subtipo a). A medida que
progresa la vitelogénesis se observa un gradiente en la forma y tamaño de las plaquetas;
las mâs pequeñas se ubican en la zona subcortical de la célula, mientras que las mâs
internas son de mayor tamaño. El citoplasma sin plaquetas queda restringido a una franja
perinuclear (fig. 7). Las vesiculas PAS positivas, localizadas en la zona mäs externa de la
banda de vitelo, aumentan en nümero y tamaño. El nücleo conserva las caracteristicas del
estadio anterior y los nucléolos se hallan distribuidos en todo el volumen nuclear; aparecen
nucléolos con distinta morfologia. Se identifican tres tipos: nucléolos bipartitos; nucléolos
en forma de anillo, constituidos por cuentas, que se observan con frecuencia en la zona
mäs central (fig. 8); y nucléolos esferoidales simples periféricos. En la zona cortical del
citoplasma se evidencia la presencia de gränulos de pigmento y de gränulos corticales de
2,5 um, cercanos a la membrana celular (figs. 9-10); éstos son esféricos y su contenido es
homogéneo.
Los oocitos cuyo diämetro oscila entre los 650 y 740 um se caracterizan por presentar
un color castaño en toda su superficie (subtipo b). El citoplasma se halla invadido por
plaquetas vitelinas, las cuales alcanzan el nücleo. La franja perinuclear de citoplasma
basôfilo queda reducida a un anillo de grosor variable inmerso en el vitelo. Los gränulos
de pigmento se distribuyen homogeneamente en toda la regiôn cortical de la célula
(fig. 11). La disposiciôn de los nucléolos se modifica. Los nucléolos bipartitos se agrupan
en el centro del nücleo y nucléolos esferoidales se localizan en la periferia.
A partir de los 750 um de diämetro, comienza a distinguirse un desplazamiento
gradual del pigmento (subtipo c). Las plaquetas vitelinas de mayor tamaño se ubican en
el centro del hemisferio vegetativo, por debajo de la vesicula germinal. Los gränulos
corticales se hallan distribuidos en una amplia franja de citoplasma cortical entre las
plaquetas vitelinas. El nücleo migra hacia la zona mâs pigmentada del oocito, el hemisferio
animal. La morfologia del mismo se modifica de esférica a oval, y su eje mayor se dispone
paralelo al ecuador del oocito. En la zona periférica del nücleo aparecen nucléolos
esféricos de aspecto vacuolar o vacuolados (segün DUMONT, 1972) que contienen äreas de
material de menor afinidad por los colorantes bäsicos.
ESTADIO 4. VITELOGÉNESIS TARDIA
Estos oocitos presentan una visible polarizacion del pigmento. El hemisferio animal,
castaño oscuro, contrasta con el hemisferio vegetativo de color castaño claro. El diâmetro
està comprendido entre los 900 y 1200 um. La figura 12 muestra una vista general de un
corte de un oocito de estadio 4. El citoplasma estä totalmente ocupado por plaquetas
vitelinas que se distribuyen segün un gradiente de tamaño. Alrededor del nücleo son
evidentes las de menor tamaño. La membrana nuclear manifiesta una serie de pliegues
hacia el interior del nücleo que se hacen mäs numerosos y profundos hacia el lado del
hemisferio vegetativo. Los nucléolos periféricos se observan con mayor frecuencia entre los
pliegues de la membrana nuclear. En el centro se agrupan nucléolos esferoidales de menor
Source : MNHN, Paris
RoCA & ECHEVERRA 93
Fig. 10. — Regiôn cortical de un oocito en estadio 3a. C, membrana citoplasmätica; F, nücleo de
célula folicular; G, gränulo cortical; 1, pigmento; M, membrana vitelina; P, plaqueta vitelina.
Aumento: 7000 x.
tamaño y de apariencia homogénea. Los cromosomas comienzan a visualizarse en la zona
central al aumentar su afinidad por los colorantes bäsicos. El nücleo presenta un halo
subnuclear de material basôfilo y PAS positivo, en intimo contacto con los pliegues de la
membrana. El tratamiento con diastasa produce una reacciôn PAS negativa. Con MET se
observa que estä constituido por mitocondrias y un material electro-opaco que podria
asociarse con glucogeno y ribosomas (fig. 13). Los gränulos corticales se disponen
ordenados debajo de la membrana plasmätica. Presentan un diämetro aproximado de
3um. En el hemisferio animal, los grânulos de pigmento se hallan por debajo de los
grânulos corticales.
ESTADIO 5. OOCITO OVULABLE O MADURO
En estos oocitos, cuyos diämetros oscilan entre 1200 y 1400 um, se acentüa la
diferencia de coloraciôn entre el hemisferio animal y el vegetativo. El hemisferio animal,
Source : MNHN, Paris
94 ALYTES 14 (2)
Fig. 11. — Vista general de oocito de estadio 3b. Pigmento (1) distribuido en la regiôn cortical y banda
de material perinuclear basôfilo (triängulos blancos). Hematoxilina de Harris - eosina. Escala:
200 um.
12
Fig. 12. — Vista general de un oocito de estadio 4. Polo animal (PA) con pigmento. H, halo
subnuclear; PV, polo vegetativo. Hematoxilina de Harris - eosina. Escala: 300 um.
Source : MNHN, Paris
ROCA & ECHEVERRIA 95
Fig. 13. — Citoplasma subnuclear de oocito de estadio 4. K, mitocondrias; M, membrana nuclear.
Aumento: 22500 x.
Fig. 14. — Regiôn cortical del polo animal de un oocito de estadio 5. D, complejo de Golgi; G,
gränulo cortical, I, grânulos de pigmento; K, mitocondrias; M, membrana vitelina; P, plaqueta
vitelina. Aumento: 6000 x.
Source : MNHN, Paris
9%6 ALYTES 14 (2)
de color castaño oscuro, presenta una zona circular en el polo animal con menos
pigmento. La disposiciôn de las plaquetas vitelinas en el citoplasma es semejante a la del
estadio 4. En el hemisferio vegetativo, las plaquetas alcanzan una longitud mäxima de
10 um. El anillo subnuclear persiste en estos oocitos. En el nücleo se observa una
reducciôn del nümero de nucléolos. Los nucléolos periféricos aumentan de tamaño
alcanzando un diämetro de 9 um. En este estadio los cromosomas son poco visibles con
las técnicas de coloracién utilizadas. Los gränulos corticales conservan la forma esférica,
se hallan situados por debajo de la membrana celular y alcanzan un diâmetro de 4 um. Las
microvellosidades oocitarias se hallan retraidas y el espacio perivitelino se ve aumentado
(fig. 14).
DisCUSIÔN
Para establecer los estadios de la oogénesis se han utilizado distintos criterios. En
Rana pipiens, estän basados principalmente en el tamaño del oocito o en la cantidad y
distribucién del vitelo y del pigmento (GRANT, 1953; Kemp, 1953), aunque otros autores
utilizaron solamente la morfologia de los cromosomas (DURYEE, 1950). En Xenopus laevis,
la identificacién de los estadios se basa en el aspecto externo de los oocitos y en las
observaciones histolôgicas de los mismos (DUMONT, 1972; CALLEN, 1984). En este trabajo
se han considerado los caracteres morfolégicos externos e internos de los oocitos,
integrando las diferentes propuestas aludidas, que permite establecer cinco estadios de la
oogénesis con ocho subestadios que se sintetizan en la Tabla I. Los cinco estadios se
consideran suficientes y convenientes para establecer el curso de la oogénesis.
El pigmento ha sido considerado como un producto catabélico y comienza a aparecer
cuanto mäs activo es el metabolismo del oocito (VALDEZ TOLEDO & PisAN6, 1980). En Bufo
arenarum, la formacién del pigmento se evidencia en el estadio de vitelogénesis primaria,
distribuido en todo el citoplasma (VALDEZ TOLEDO & PiSAN6, 1980; ECHEVERRIA, 1988). La
acumulacién de la melanina en oocitos de Xenopus laevis se incrementa durante los
estadios de vitelogénesis temprana y tardia hasta el estadio V (DUMONT, 1972). En
Melanophryniscus stelzneri, el pigmento es escaso y de color castaño a diferencia de las
especies anteriormente mencionadas, en las cuales éste es negro y abundante. El pigmento
aparece al comienzo del estadio de vitelogénesis activa distribuido homogeneamente en el
citoplasma cortical. À partir del estadio 4 se acumula en el hemisferio animal, siendo
caracteristica la presencia de la mancha polar en el polo animal en el estadio 5.
El inicio del proceso de vitelogénesis se evidencia en Melanophryniscus stelzneri en el
estadio de vitelogénesis temprana (2.a) con la aparicion de pequeñas vesiculas en la zona
cortical del citoplasma. Las plaquetas vitelinas se organizan al finalizar la vitelogénesis
temprana (estadio 2.b), ubicandose en la periferia de la célula. Todas las plaquetas
vitelinas son homogéneas independientemente de su ubicaciôn y tamaño, es decir, no se
distingue en ellas un cuerpo principal cristalino como se describe en las especies estudiadas
(WISCHNITZER, 1957). DUMONT (1972) y OPRESKO et al. (1980) proponen que el aumento
de tamaño de las plaquetas vitelinas es ocasionado por la fusion de vesiculas endociticas
a las plaquetas ya formadas. En M. stelzneri, se ha podido observar con microscopio
Source : MNHN, Paris
RoCA & ECHEVERRIA 97
electrénico de transmisiôn grupos de pequeñas plaquetas que se contactan; este hecho
podria interpretarse como un proceso de fusiôn. El crecimiento de las plaquetas
posiblemente se produzca a expensas del material presente en el citoplasma.
La mayoria de los autores asocia la aparicién de las vesiculas de vitelo y de los
grânulos corticales con formaciones PAS positivas y menciona que la aparicin de éstas
se produce en forma simultänea.
En Rana pipiens, Xenopus laevis y Bufo arenarum, los gränulos corticales se observan
por primera vez en el cortex del oocito, durante el estadio de vitelogénesis temprana o
primaria (WarD & WarD, 1968; DUMONT, 1972; VALDEZ TOLEDO & PisAN6, 1980).
BALINSKY & Davis (1963) describieron a los gränulos corticales como cuerpos con matriz
granular de aspecto homogéneo, de 2um de diâmetro que aparecen durante la
vitelogénesis primaria. En M. stelzneri, se evidencian durante la etapa de vitelogénesis
activa, a la vez que se observa un aumento de los complejos de Golgi y de las vesiculas
de vitelo. Las observaciones con microscopio electrénico de transmisiôn mostraron
similitudes en cuanto al aspecto de la sustancia que compone los gränulos corticales pero,
con respecto al tamaño de los mismos, no se hallaron coincidencias respecto de las especies
aludidas (KEMP & IsTOK, 1967; ANDREUCCETTI & CAMPANELLA, 1980), siendo los gränulos
corticales de M. stelzneri los mäs desarrollados.
Si bien la actividad ovärica de las hembras adultas de X. laevis y B. arenarum no son
equivalentes (CALLEN et al., 1986; ECHEVERRIA & GONZALEZ, 1994), se debe destacar que
M. stelzneri comparte, con las especies mencionadas, los patrones generales del ciclo de la
vitelogénesis. En los oocitos de M. stelzneri, una banda de material basdfilo perinuclear se
hace evidente al final de la previtelogénesis y en los oocitos en vitelogénesis temprana, y
un halo subnuclear de caracteristicas basôfilas se halla en los oocitos maduros. Una banda
discontinua de material citoplasmätico similar a la hallada en M. stelzneri ha sido puesta
de manifiesto en Bufo lentiginosus (KING, 1908) y en B. arenarum (ECHEVERRIA, 1974, 1987)
con técnicas histolégicas generales y reacciones histoquimicas para condrioma. TOURTE et
al. (1984) confirman por primera vez en X. laevis la presencia de mitocondrias en el
citoplasma agrupadas en una corona perinuclear. Cabe señalar que X. laevis y M. stelzneri
presentan mitocondrias agrupadas por fuera de la membrana nuclear que se denominan
corona (“crown”, ToURTE et al., 1984) y halo subnuclear respectivamente. El halo
subnuclear contiene, ademäs, gränulos de glucogeno que podrian motivar la respuesta
positiva a la reaccién de PAS, mientras que las zonas basôfilas del citoplasma de
M. stelzneri, anälogas a la corona perinuclear de X. /aevis, no reaccionan con PAS.
Tanto el nümero como la morfologia de los nucléolos de los oocitos de M. stelzneri
presentan variaciones en el transcurso del desarrollo. En oocitos muy jovenes y en los
maduros, los nucléolos presentan una forma esferoidal, pero en estadios intermedios, éstos
pueden adoptar distintas morfologias: bipartitos, anulares y vacuolados. Se han descrito
nucléolos en forma de collar y de anillo en diferentes especies de anfibios como Plethodon
cinereus (MACGREGOR, 1965), Ambystoma mexicanum (CALLAN, 1966) y Notophthalmus
viridescens (LANE, 1967), siendo poco frecuente la descripcién de estos nucleélos en los
anuros. En Bufo arenarum, ECHEVERRÏA (1980) los describe con una morfologia semejante
a los que hemos hallado en M. stelzneri. LANE (1967) y VAN GANSEN & SCHRAM (1972)
propusieron que la variacién morfolégica aludida es producida por cambios en la
Source : MNHN, Paris
98 ALYTES 14 (2)
distribucién en el ADN y por la segregaciôn de los constituyentes granulares y fibrilares
del nucléolo respectivamente. Los nucléolos bipartitos hallados en M. stelzneri son
equivalentes a los nucléolos vacuolares descritos en B. arenarum por ECHEVERRiA (1980).
Se utilizé el término bipartito debido a que presentan por lo menos dos partes con distinta
afinidad por los colorantes bâsicos, a fin de distinguirlos de los nucléolos vacuolados
hallados en X. laevis por DUMONT (1972) y en M. stelzneri, que contienen areas de material
con menor afinidad por los colorantes bâsicos.
RESUMEN
En hembras maduras de Melanophryniscus stelzneri (N = 17) de las Sierras de
Cordoba (Tanti) y de San Luis (El Trapiche), se identifican cinco estadios de la oogénesis
con ocho subestadios (subtipos) estructurados sobre la base de la apariciôn de vesiculas de
vitelo, plaquetas vitelinas, gränulos corticales y de pigmento, variaciones morfolôgicas de
la membrana nuclear y de los nucléolos.
AGRADECIMIENTOS
A la Dra. Gladys N. PELLERANO de la Câtedra de Histologia Animal, Facultad de Ciencias
Exactas y Naturales de la Universidad de Buenos Aires, por la lectura critica del manuscrito, a la Lic.
Luisa E. FIORITO por su contribuciôn con material de Tanti, Cérdoba, al Dr. Mario RIVERO por el
apoyo técnico en el uso del microscopio electrénico, y al Sr. GONZALEZ del Servicio de Microscopia
del Depto. de Ciencias Biolôgicas (FCEN, UBA).
LITERATURA CITADA
ALLENDE, J. L. C. DE, 1938. — Ciclo sexual del Bufo arenarum hembra. Rev. Soc. arg. Biol. Cérdoba,
14: 515-522.
AMALDI, F., LAVA-SANCHEZ, P. A. & BOUNGIORNI-NARDELLI, M., 1973. — Nucleolar DNA content
variability in Xenopus laevis: a redundancy regulation common to all gene families. Nature, 242:
615-617.
ANDEUCCETTI, P. & CAMPANELLA, C., 1980. — Origin and cytochemistry of the animal dimple
granules in Discoglossus pictus (Anura) eggs. J. Embryol. exp. Morph., 56: 239-252.
BALINSKY, B. I. & Devis, R. J., 1963. — Origin and differentiation of cytoplasmic structures in the
oocytes of Xenopus laevis. Acta Embryol. Morph. exp., 6: 55-108.
Bouin, M., 1901. — Histogenèse de la glande génitale femelle chez Rana temporaria. Arch. Biol., 17:
201-381.
BROWN, D. D. & Dawi, I. B., 1968. — Specific gene amplification in oocytes. Science, 160: 272-280.
CALLAN, H. G., 1966. — Chromosomes and nucleoli of the axolote, Ambystoma mexicanum. J. Cell
Sci., 1: 85-108.
CALLEN, J.-C., 1984. — Biogenèse des mitochondries au cours de la différenciation de l'ovocyte de
Xenopus laevis. Thèse, Univ. Paris XI.
CaLLen, J.-C., DENNEBOUY, N. & MOoUNoLOU, J.-C., 1986. — Early onset of a large pool of previ-
tellogenic oocytes and cyclic escape by vitellogenesis: the pattern of ovarian activity of Xenopus
laevis females and its physiological consequences. Reprod. Nutr. Dével., 26 (1 A): 13-30.
Source : MNHN, Paris
ROCA & ECHEVERRIA 99
Ci, J. M. 1980. — Amphibians of Argentina. Monit. zool. ital., Monogr. 2: 1-609.
DruRY, R. A. B. & WALLINGTON, E. A., 1967. — Carleton's histological techniques. Edinburgh, Neil
& Co. Ltd.: 1-432.
DUMONT, J. N., 1972. — Oogenesis in Xenopus laevis. Stages of oocyte development in laboratory
maintained animals. J. Morph., 136 (2): 153-180.
DuryEr, W. R., 1950. — Chromosomal physiology in relation to nuclear structure. Annals New York
Acad. Sci., 50 (8): 920-953.
ECHEVERRiA, D. D., 1974. — Morfologia de la oogénesis en Bufo arenarum. Biblioteca FCE y N, Univ.
Buenos Aires: 1-48.
—— 1980. — Morfologia de los nucléolos de los oocitos de Bufo arenarum (Anura). Physis, (C), 39
(6): 1-7.
1987. — Organogénesis en Bufo arenarum. Desarrollo de la génada. Tesis, Biblioteca FCE y N,
Univ. Buenos Aires: 1-248.
—— 1988. — Oogénesis en las hembras juveniles de Bufo arenarum (Anura, Bufonidae). Rev. Mus.
arg. Cs. nat. Bernardino Rivadavia, Zool., 15 (5): 57-75.
ECHEVERRIA, D. D. & GONZALEZ, B. N., 1994. — Variaciôn estacional en la proporciôn relativa de
los estadios de la oogénesis en Bufo arenarum (Anura: Bufonidae). Cuad. Herp., 8 (1): 30-38.
GALLARDO, J. M., 1987. — Anfibios argentinos. Guia para su identificaciôn. Buenos Aires, Biblioteca
Mosaico: 1-98.
GRANT, P., 1953. — Phosphate metabolism during oogenesis in Rana temporaria. J. exp. Zool., 124:
513-543.
IWasaWa, H., 1969. — Gonadal development in young frogs of Rana ornativentris, with special
reference to sex differentiation and sex ratio. Annot. zool. jap., 42: 183-192.
IWasaWA, H., NakAzAWA, T. & KoBayasHi, T., 1987. — Histological observations on the
reproductive organs of growing Rana nigromaculata frogs. Sci. Rep. Niügata Univ, (D)
(Biology), 24: 1-13.
KARASAKI, S., 1963. — Studies on amphibian yolk. 5. Electron microscopic observations on the
utilization of yolk platelets during embryogenesis. J. ultrastruct. Res., 9: 225-247.
Kemp, N.E., 1953. — Synthesis of yolk in oocytes of Rana pipiens after induced ovulation. J. Morph.,
92: 487-511.
KEMP, N. E. & Istock, N., 1967. — Cortical changes in growing oocytes and fertilized or pricked eggs
of Rana pipiens. J. Cell Biol., 34: 111-122.
KinG, H. D., 1908. — The oogenesis of Bufo lentiginosus. J. Morph., 19: 369-437.
LAMOTTE, M., GLAÇON, R. & XAVIER, F., 1973. — Recherches sur le développment embryonnaire de
Nectophrynoides occidentalis Angel, amphibien anoure vivipare. II. Le développement des
gonades. Ann. Embr. Morphog., 6 (3): 271-296.
LAN, N. J., 1967. — Spheroïidal and ring nucleoli in amphibian oocytes. Patterns of uridine
incorporation and fine structural features. J. Cell Biol., 35: 421-434.
LANZAVECCHIA, G., 1968. — Problems of the yolk formation in amphibia. Arti Simp. Accad. naz.
Lincei, 104: 101-109.
MACGREGOR, H. C., 1965. — The role of lampbrush chromosomes in the formation of nucleoli in
amphibian oocytes. Avat. J. microse. Se., 106 (3): 215.
Massover, W. H., 1971. — Intramitocondrial yolk. Crystals of frog oocytes. J. Cell Biol., 48: 266-279.
MERCER, E. H. & BIRBECK, M. S. C., 1979. — Manual de microscopia electrônica para biélogos.
Segunda ediciôn. Rosario, España, H. Blume: 1-134.
OPREsKO, L., WiLLEY, H. S. & WALLACE, R. A., 1980. — Differential postendocytotic compartmen-
tation in Xenopus oocytes is mediated by a specifically bound ligand. Cell, 22: 47-57.
PEARSE, A. G. E., 1972. — Histochemistry: theoretical and applied. Third edition. London, Churchill
Livingstone: 1-1054.
Revnouns, E. $., 1963. — The use of the lead citrate at high pH as electron opaque stain in electron
microscopy. J. Cell Biol., 17: 208-212.
, V. & DABAUVALLE, M. C., 1985. — Functional organization of the amphibian oocyte nucleus.
In: L. W. BROWDER (ed.), Developmental biology, 1, Calgary Univ., Alberta, Canada: 385-430.
ToURTE, M., MIGNOTTE, F. & MOUNOLOU, J.-C., 1984. — Heterogeneous distribution and replication
activity of mitochondria in Xenopus laevis oocytes. Eur. J. Cell Biol., 34: 171-178.
SCHEEL
Source : MNHN, Paris
100 ALYTES 14 (2)
VaLpez ToLepo, C. L. & PISAN6, A., 1980. — Fases ovogenéticas en Bufo arenarum. Reproducciôn,
4: 315-330.
VAN GANSEN, P. & SCHRAM, A., 1972. — Evolution of the nucleoli during oogenesis in Xenopus laevis
studied by electron microscopy. J. Cell Sci., 10: 339-367.
Viiceco, E., SÂNCHEZ RIERA, À. & SANCHEZ, S., 1992. — Plaquetas vitelinas y sus membranas
durante la vitelogénesis de Ceratophrys cranwelli. Resümen IX Jornadas Cientificas, Sociedad de
Biologia de Tucumän: resmen N°19.
WALLACE, R. A., 1985. — Vitellogenesis and oocyte growth in nonmammalian vertebrates. /n: L. W.
BROWDER (ed.), Developmental biology, 1, Calgary Univ., Alberta, Canada: 127-177.
WALLACE, R. A. & DUMONT, J. N., 1968. — The induced synthesis and transport of yolk proteins and
their accumulation by the oocytes in Xenopus laevis. J. Cell Physiol., 72 (suppl. 1): 73-89.
WALLACE, R. A. & KARASAkI, S., 1963. — Studies on amphibian yolk: the isolation of yolk platelets
from the eggs of Rana pipiens. J. Cell Biol., 18: 153-166.
WALLACE, R. A., NikoL, J. M., Ho, T. & JARED, D. W., 1972. — Studies of amphibian yolk. X. The
relative roles of autosynthetic and heterosynthetic processes during yolk protein assembly by
isolated oocytes. Dev. Biol., 29: 255-272.
War, R. T., 1962. — The origin of protein and fatty yolk in Rana pipiens. IL. Electron microscopical
and cytochemical observations of young and mature oocytes. J. Cell Biol., 14: 309-341.
WaRD, R. T., OPRESKO, L. & WALLACE, R. A., 1985. — A comparison of the proteins of yolk platelets
and intramitochondrial crystals in the oocyte of the bullfrog, Rana catesbeiana. Dev. Biol., 112:
56-65.
WaRD, R. T. & WarD, E., 1968. — The origin and growth of cortical granules in the oocytes of Rana
pipiens. J. Microse., 7: 1021-1030.
WIsCHNITZER, S., 1957. — The ultrastructure of yolk platelets of amphibian oocytes. J. Biochem.
Biophys. Cytol., 3: 1040-1041.
Corresponding editor: Alain DuBois.
© ISSCA 1996
BIBL. DU
MUSÉUM
PARIS
Sourèg SMAHN, Paris
AUNVTES
International Journal of Batrachology
published by ISSCA
EDITORIAL BOARD FOR 1996
Chief Editor: Alain Dugois (Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire
naturelle, 25 rue Cuvier, 75005 Paris, France)
Deputy Editor: Janalee P. CALDWELL (Oklahoma Museum of Natural History, University of Oklahoma,
Norman, Oklahoma 73019, U.S.A.).
Editorial Boar -Louis ALBARET (Paris, France); Ronald G. ALniG (Mississippi State University,
U.S.A.); Emilio BALLETTO (Torino, Italy); Alain COLLENOT (Paris, France); Günter GOLLMANN (Wien,
Austria); Tim HALLIDAY (Milton Keynes, United Kingdom); W. Ronald HevEr (Washington,
U.S.A.); Walter HôDL (Wien, Austria); Pierre JoLY (Lyon, France), Masafumi Maïsui (Kyoto,
Japan); Jaime E. Péraur (Mérida, Venezuela); J. Dale RoBERTS (Perth, Australia); Ulrich SINSCH
(Koblenz, Germany); Marvalee H. Wake (Berkeley, U.S.A.).
Technical Editorial Team (Paris, France): Alain DuBois (texts) Roger BoUR (tables): Annemarie
Ouen (figures).
Index Editors: Annemarie OuLer (Paris, France); Stephen J. RICHARDS (Townsville, Australia)
GUIDE FOR AUTHORS
Alytes publishes original papers in English, French or Spanish, in any discipline dealing with
amphibians. Beside articles and notes reporting results of original research, consideration is given for
publication to synthetic review articles, book reviews, comments and replies, and to papers based upon
original high quality illustrations (such as color or black and white photographs), showing beautiful or rare
species, interesting behaviors, etc.
The title should be followed by the name(s) and addresses) of the author(s). The text should be
typewritten or printed double-spaced on one side of the paper. The manuscrit should be organized as
follows: English abstract, introduction, material and methods, results, discussion, conclusion, French or
Spanish abstract, acknowledgements, literature cited, appendix.
Figures and tables should be mentioned in the text as follows: fig. 4 or Table IV. Figures should not
exceed 16 x 24 cm. The size of the lettering should ensure its legibility after reduction. The legends of figures
and tables should be assembled on a separate sheet. Each figure should be numbered using a pencil.
References in the text are to be written in capital letters (BOURRET, 1942; GRAF & POLLS PELAZ, 1989;
INGER et al., 1974). References in the literature cited section should be presented as follows:
BoURRET, R., 1942. — Les Batraciens de l'Indochine. Hanoï, Institut Océanographique de l'Indochine: i-x
+ 1-547, pl. I-IV.
GRAF, J.-D. & POLLS PELAZ, M., 1989. — Evolutionary genetics of the Rana esculenta complex. In: R. M.
Dawey & J. P. BoGART (eds.), Evolution and ecology of unisexual vertebrates, Albany, The New York
State Museum: 289-302.
INGeR, R. F., Vois, H. K. & Voris, H. H., 1974. — Genetic variation and population ecology of some
Southeast Asian frogs of the genera Bufo and Rana. Biochem. Genet., 12: 121-145.
Manuscripts should be submitted in triplicate either to Alain Dumois (address above) if dealing with
amphibian morphology, systematics, biogeography, evolution, genetics or developmental biology, or to
Janalee P. CALDWELL (address above) if dealing with amphibian population genetics, ecology, ethology or
life history. Acceptance for publication will be decided by the editors following review by at least two
referees.
If possible, after acceptance, a copy of the final manuscrit on a floppy disk (3 % or 5 %4) should
be sent to the Chief Editor. We welcome the following formats of text processing: (1) preferably, MS Word
(1.1 to 6.0, DOS or Windows), WordPerfect (4.1 to 5.1, DOS or Windows) or WordStar (3.3 to 7.0); (2) less
preferably, formated DOS (ASCII) or DOS-formated MS Word for the Macintosh (on a 3 ‘4 high density
1.44 Mo floppy disk only).
No page charges are requested from the author(s), but the publication of color photographs is
charged. For each published paper, 25 free reprints are offered by Alyres to the author(s). Additional reprints
may be purchased.
Published with the support of AALRAM
(Association des Amis du Laboratoire des Reptiles et Amphibiens
du Muséum national d'Histoire naturelle, Paris, France).
Directeur de la Publication: Alain DuBois.
Numéro de Commission Paritaire: 64851.
© ISSCA 1996 Source : MNHN, Paris
Alytes, 1996, 14 (2): 53-100.
Contents
Laury GAUTHIER
The amphibian micronucleus test, a model for
in vitro monitoring of genotoxic aquatic pollution ................... 53-84
Maria Fernanda Roca & Dinorah Diana ECHEVERRIA
Morfologia de los oocitos en diplotene de
Melanophryniscus stelzneri (Weyenbergh, 1875)
CADUÉARBLHONITAE) EE ARC ue tendue a ee 85-100
Alytes is printed on acid-free paper.
Alytes is indexed in Biosis, Cambridge Scientific Abstracts, Current Awareness in Biological
Sciences, Pascal, Referativny Zhurnal and The Zoological Record.
Imprimerie F. Paillart, Abbeville, France.
Dépôt légal: 2° trimestre 1996.
© ISSCA 1996
Source : MNHN, Paris.