D 6445 a
ALYTES
Décembre 1986 Volume 5, fascicule 4
Source : MNHN, Paris
SOCIÉTÉ BATRACHOLOGIQUE DE FRANCE
(Société pour l’Étude et la Protection des Amphibiens)
SIÈGE SOCIAL
Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France.
CONSEIL D'ADMINISTRATION POUR 1987
Président : Jean-Jacques MORÈRE.
Vice-Président : Jean-Louis AMIET.
Secrétaire général (renseignements et demandes d'adhésion) : Alain DUBOIS.
Trésorière : Dominique PAYEN.
Membres : Alain COLLENOT, Michel DELAUGERRE, Edouard LEMÉE, Luck MARTIN-BOUYER, Manuel
POLLS PELAZ et Jean-Paul RISCH.
ADHÉSION
La S.B.F. est ouverte à toute personne française ou étrangère intéressée par l'étude et la protection des Amphibiens ;
écrire au Secrétaire général. La cotisation inclut le service du Bulletin d’information Circalyres.
TARIFS 1987
LIEU DE RÉSIDENCE
France Etranger
Membres de la S.B.F. :
Cotisation seule 100 F 100 F
Cotisation + abonnement à Ajyres 170 F 180 F
Cotisation membre associé (conjoint, etc.) .......... 40 F 40F
Abonnement à Alyres pour les non-membre:
Individus 100 F 130 F
Institutions... 200 F 260 F
Supplément pour expédition d’Alyres par avion (membres et non-membres) .…… - 50F
Achats au numéro et rachats d’anciennes séries d’Alyres : écrire au Sécrétaire géi
ral pour information.
MODALITÉS DE RÈGLEMENT
FRANCE. — Par chèque postal ou bancaire à l’ordre de “Société Batrachologique de France”, adressé à notre Tré-
sorière, ou par virement postal sur notre C.C.P. : “Société Batrachologique de France”, C.C.P. 7976 90
K, Paris.
EUROPE. — Exclusivement par virement postal ou mandat postal, libellé en Francs Français et adressé à notre
Compte Chèques Postal : “Société Batrachologique de France”, C.C.P. 7976 90 K, Paris.
OUTSIDE EUROPE. — Please write to our General Secretary for information.
Source : MNHN), Paris
ALVTES
Bulletin trimestriel Volume 5
Décembre 1986 Fascicule 4
Alytes, 1986, 5 (4): 153-164. 153
Diets of tadpoles living in a Bornean rain forest
Bibliothèque Centrale Muséum
MON
3
3001 00110039 4
Field Museum of Natural History,
Roosevelt Road at Lake Shore Drive,
Chicago, Illinois 60605-2496, U.S.A.
Diets of 16 larval forms of Bornean anurans are generally similar to those
of tadpoles from other regions : gut contents consist mainly of small algae and
other protists. Despite broad overlap, there appear to be differences between diets
of some co-occurring species in size and type of food ingested. Five feeding types
are represented by these 16 kinds of tadpoles : obligate benthic, macrophagous,
midwater suspension, surface film, and bottom suspension feeders. All except
the last are associated with morphological specializations that appear to be func-
tionally related to the size or kind of food particles ingested. Modes of feeding
are related to differences in microhabitat distribution and to some of the diffe-
rences in composition of the diets. It is this relationship that lends significance
to food resource partitioning as an element in the organization of this Bornean
tadpole community.
INTRODUCTION
Most of the recent spurt in non-taxonomic study of larval anurans, aside from
developmental and neurobiology, has been focused on morphology and function of the
buccopharynx (e.g., KENNY, 1969 ; SEALE & WASSERSUG, 1979 ; VIERTEL, 1985 ;
WASSERSUG, 1980 ; WASSERSUG & HOFF, 1979) or on population ecology (e.g., HEYER,
1979 ; MORIN, 1983 ; WILBUR, 1984). Studies on the diets of free-living tadpoles are
less numerous and usually concerned with one or two species (e.g., COSTA & BALASU-
BRAMANIAN, 1965 ; JENSSEN, 1967 ; SAVAGE, 1952 ; SEALE, 1980). HEYER (1973), who
examined the gut contents of 17 larval forms in Thailand, found much overlap in the
type of food ingested by tadpoles having keratinous beaks and denticles and a broader,
though still overlapping, spectrum of food types in larvae lacking keratinous mouth
Source : MNHN, Paris
154 ALYTES 5 (4)
parts (Microhylidae). DIAZ-PANIAGUA (1985) related the modest differences among the
diets of five species of tadpoles in Spain to differences in their distribution within the
water column of ponds.
In this paper, I report observations on the diets of 16 species of tadpoles living
in a Bornean rain forest at Nanga Tekalit, Sarawak. Twelve of these larval forms live
in small streams where they occupy a variety of microhabitats : torrents around large boul-
ders and rocks, shallow riffles over gravel, quiet open pools and areas of shingle rock,
areas of leaf drifts trapped by eddies, shallow side pools cut off from the main current,
and potholes in rocky banks. The remaining four larval forms live in pools distant from
streams : either rain filled floor depressions made by forest pigs or tanks formed by anas-
tomosing buttresses of three trunks. These 16 kinds of tadpoles are a subset of the 36
now known from Nanga Tekalit (INGER, 1985), occupy almost the entire array of micro-
habitats known to be used by tadpoles there, and represent 8 of the 14 genera.
This report has the nature of a preliminary survey. Sample sizes (see below) are
not large enough to provide definitive descriptions of the larval diets of the individual
species. However, even these limited samples reveal relationships among diet, morpho-
logy, and microhabitat distributions and the possibilities for food resource partitioning
within a complex assemblage of tadpoles.
One of the difficulties in some studies of tadpole diets (and in the present one as
well) is that objects identified as food may not be the actual sources of nourishment. Some
protists, e.g., blue-green algae, other algae, Volvox, etc., are known to pass through the
gut of tadpoles undamaged (COSTA & BALASUBRAMANIAN, 1965 ; SAVAGE, 1952). Con-
ceivably, the true food may be bacteria or viruses, unseen and unrecorded, as suggested
by HEYER (1973). Nonetheless, any systematic differences between species in either taxo-
nomic category or size of items in the gut indicate at least differences in feeding habits.
MATERIALS AND METHODS
Processing of larvae in the field is described in INGER, VORIS & FROGNER (1986).
To obtain samples of food, I cut half a centimeter of the foregut of a tadpole close to
the esophagus and teased its contents on to a glass slide. I removed the gut wall and visi-
ble portions ofits lining and added several drops of Melzer’s solution (iodine and chloral
hydrate). After spreading the gut contents as thinly as possible, I placed a cover slip over
it and sealed the edges. I scanned the entirety of each smear within a few days of prepara-
tion, using a compound microscope equipped with an ocular grid.
Every item that was identifiably organic and had reasonably intact cell boundaries
was measured (maximum diameter), recorded, and in the great majority of cases identi-
fied to major category (e.g., diatom, blue-green alga, fragment of tracheoid plant, etc.).
It was not possible to identify food items to genus or species. About half of the cases
in which identification was not possible involved small rod-like or spherical organic bodies
that I classified as “protists.”
Foregut smears were made from a total of 32 individuals. To minimize the risk
of confounding differences between days or microhabitat sites with differences between
species, wherever possible gut samples were taken from tadpoles of several species col-
Source : MNHN, Paris
INGER 155
Table I. — Microhabitat distribution, size, and stage of development of Bornean tadpoles used as
sources of gut smears.
Head-body
Species Microhabitat Stage* length (mm)
Tadpoles from stream microhabitats
Leptobrachium gracilis riffle 35 23
Leptobrachium montanum shingle 26 19
open pool 26 22
Megophrys nasuta riffle 26 10
shingle 34 11
Bufo divergens side pool 37,37,39 7
Ansonia longidigita leaf drift 36 5
Microhyla petrigena pothole 29,35 4,7
Amolops phacomerus torrent 35,37 12,14
Rana blythi leaf drift 26,39 7,10
side pool 28 8
pothole 26 8
Rana ibanorum side pool 36 9
pothole 28,33 8,10
Rana chalconota side pool 26,28,40 8,14,15
Rana signata leaf drift 38 13
Rhacophorus bimaculatus riffle 36 9
Tadpoles from microhabitats away from streams
Microhyla borneensis pig wallow 37 6
Rhacophorus dulitensis pig wallow 27,36 16,17
Rhacophorus nigropalmatus pig wallow 26 14
Rhacophorus harrissoni buttress tank 27 11
“Stages according to GOSNER (1960).
lected on the same day at the same site. The following constituted such “multispecies”?
samples of foregut smears from cooccurring tadpoles :
— Ansonia longidigita + Rana blythi, 2 samples of each from leaf drifts ;
— Bufo divergens + Rana chalconota, 2 samples of each from side pools ;
— Bufo divergens + Rana blythi + R. chalconota + R. ibanorum, 1 sample of each
from a side pool ;
— Rana blythi + R. ibanorum, 1 sample of each from a pothole ;
— Microhyla borneensis + Rhacophorus dulitensis, 2 samples of each from pig wallows.
Stages, sizes, and microhabitat sources of the tadpoles from which the food sam-
ples came are given in Table I.
Description of the general environment, full definitions of stream microhabitats,
and microhabitat distributions of stream tadpoles appear in INGER, VORIS & FROGNER
(1986) and descriptions of all larvae and definitions of non-riparian microhabitats in INGER
(1985).
Source : MNHN, Paris
156 ALYTES 5 (4)
Table II. — Frequency distribution of food particles of various sizes in smears from foreguts of
Bornean tadpoles. Number of smears per species given in Table I.
Species Food particle size (mm)
<:03 .03-05 06-10 .11-15 .16-20 .21-30 .31-40 >.4 mean*
Tadpoles from stream microhabitats
Leptobrachium gracilis 2 : Re 3 1 6 2 2 GT
Leptobrachium montanum 13 13 12 6 7 8 33 .188
Megophrys nasuta 36 8 10 4 LI ln 4 .050
Bufo divergens 121 40 86 8 4 9 041
Ansonia longidigita 3% 30 13 1 1 1 035
Microhyla petrigena 190 17 24 à 1 À 1 .026
Amolops phaeomerus 456 386 21 3 1 7 029
Rana blythi 30 52 88 38 21 23 5 6 .080
Rana ibanorum 43 48 55 32 16 13 # 5 .069
Rana chalconota 17 51 36 14 8 il 4 7.037
Rana signata Su. 12 17 2 4 7 1 075
Rhacophorus bimaculatus 40 34 1 028
Tadpoles from microhabitats away from streams
Microhyla borneensis 2 15 5 2 1 1.063
Rhacophorus dulitensis 2 73 48 28 8 7 1 10 .071
Rhacophorus harrissoni 29 F 52 8 10 20 3 4 081
Rhacophorus nigropalmatus 10 10 73 1 6 6 1 1 083
*Means calculated from class mid-points converted to logs. Assumed mid-point of smallest class = .02.
Differences in food size-frequency distributions were analyzed by means of the
Kolmogorov-Smirnov test. The G test was used for comparing types of food, with uniden-
tified items omitted.
RESULTS
Most of the gut samples include a wide spectrum of food types and sizes (Tables
Il and III). The community as a whole appears to be supported by a diet of very small
organisms, mainly single-celled protists and short strands (usually <16 cells) of algae and
fungi. Fragments of higher plants form the next most frequent category. There were also
miscellaneous fragments of invertebrate cuticle, several butterfly scales, and pieces of
arthropod exoskeleton.
The multispecies samples (see Merhods) yield the following :
— Ansonia longidigita x Rana blythi : both sets show the same trend, i.e., food size
smaller in À. longidigita (P <.01), and more tracheoid plant fragments eaten by R. blythi
(P<.001).
— Bufo divergens x Rana blythi : food size smaller in B. divergens (P = .005) ; more
tracheoid plant fragments eaten by R. blychi (P<.001).
Source : MNHN, Paris
INGER 157
Table III. — Frequency of food types in smears from foreguts of Bornean tadpoles. Number of smears
per species given in Table I.
Species Food types*
AL DI FN CI EU AM PR TP RO MS æ
Tadpoles from stream microhabitats
Leptobrachium gracilis 1 3 13 7
Leptobrachium montanum 18 8 54 4 8
Megophrys nasuta 35 7 2 20 4 25
Bufo divergens 35 10 2 4 64 100 9 1 3
Ansonia longidigita 47 4 3 5 ul
Microhyla perigena 5 I 6 8 sl
Amolops phacomerus 807 12 2 3 38
Rana blythi AB CA TEE T e 8 LI 65 14 74
Rana ibanorum 15-MNTS 397 No MN 2 24 7 48
Rana chalconota 90 14 16 1 T7 2 108 23 3 2 44
Rana signata DS MANS (ES; 1 6 2 1
Rhacophorus bimaculatus 43 32
Tadpoles from microhabitats away from streams
Microhyla borneensis 10 1 6 3, À 3
Rhacophorus dulitensis 68 39 4 3 I 1 19 12 1 4 14
Rhacophorus harrissoni 1e 20202 4 2 5 0.21
Rhacophorus nigropalmatus 16» “6 3 OL 07 3 1 6 À" 6° 25
* AL = algae, mainly blue-green ; DI = diatoms ; FN = fungi ; CI = ciliates ; EU = euglenoids ; AM = amoe-
bae ; PR = miscellaenous protists ; TP = tracheoid plant fragments ; RO = rotifers ; MS = miscellany, includ-
ing insect and crustacean exoskeleton fragments ; ? = unknown.
— Bufo divergens x Rana chalconota : food size smaller in R. chalconota in 2 sets
(P<.01) but not the third ; no significant difference in type of food eaten.
— Bufo divergens x Rana ibanorum : food size smaller in B. divergens (P < .001) ;
more tracheoid plant fragments eaten by R. ibanorum (P <.001).
— Rana blythi x R. ibanorum : food size smaller in R. ibanorum in one set (P < .03),
but not in the other ; no significant difference in type of food eaten.
— Rana blythi x R. chalconota : no significant difference in size or type of food.
— Rana ibanorum x R. chalconota : no significant difference in size or type of food.
— Rhacophorus dulitensis x Microhyla borneensis : no significant difference in size
or type of food eaten.
The 12 species from stream microhabitats fall into three groups on the basis of food
particle size (Table IT) : 2 (Leptobrachium gracilis and L. montanum) that fed on relatively
large objects (mean particle size > .12 mm), with heavy emphasis on fragments of tracheoid
plants ; 3 (Rana blythi, R. ibanorum, and R. signata) that had ingested a high proportion
of medium-sized items (means .069-.08 mm) ; and 7 that contained a high proportion of
very-Ssmall items (means .026-.05 mm). For convenience I term these three groups macro
meso-, and microphagous types, respectively. Différences within the microphagous group
Source : MNHN, Paris
158 ALYTES 5 (4)
are not significant (P >.10, Friedman 2- way ANOVA), but each of them differed signifi-
cantly from each of the mesophages in pair-wise comparisons of food size-frequency dis-
tributions (P<.01, Kolmogorov-Smirnov test). However, I doubt the position of Rana
chalconota with the microphagous species and the reality of the differences between it and
R. blythi and R. ibanorum because of the results with multispecies samples (see above).
The size-frequency distributions of the two species of Leprobrachium differ significantly
(P<.05) in pair-wise tests with all others except for the L. gracilis x R. signata pair. The
three mesophagous forms do not differ among themselves in size of food.
The two larval Leprobrachium are among the largest Bornean tadpoles (Table I and
data in INGER, 1985) and have large beaks. They occur mainly in open pools (L. monta-
num) and riffles (L. gracilis). The three larval Rana constituting the mesophagous group
are smaller (Table I) and have weaker beaks. One of them, R. ibanorum, lives primarily
in side pools and potholes and the other two, blyrhi and signata, mainly in leaf drift.
The microphagous stream larvae are heterogeneous in size, phylogenetic relations,
and ecological distribution. They include a small microhylid (Microhyla petrigena)
lacking beaks and labial denticles, a medium-sized, funnel-mouth pelobatid (Megophrys
nasuta), two small, generalized bufonids (Ansonia longidigita and Bufo divergens), a large,
heavy-beaked ranid (4molops phaeomerus), and a moderate-sized, heavy-beaked rhacopho-
rid (Rhacophorus bimaculatus). The diversity of microhabitat distribution within this group
is evident in Table I.
The four larval types collected away from streams do not differ significantly
among themselves in size or general type of particles ingested. The rain-filled pig wallows
in which three of them occurred had fine, silty bottoms and relatively few dead leaves.
Microhyla borneensis, which we saw occasionally near the surface of the turbid water, is
much smaller than the two rhacophorids (Table I) and lacked their horny beaks and
denticles. We did not see the two rhacophorids near the surface unless we disturbed the
water with nets. The buttress tank from which the sampled tadpole of Rhacophorus
harrissoni came had a deep layer of dead leaves at the bottom.
DISCUSSION
MODES OF FEEDING
Direct observations on the behavior of free-living tadpoles provide information on
where and roughly how seven forms feed : Megophrys nasuta, Bufo divergens, Microhyla
petrigena, M. borneensis, Amolops phaeomerus, Rana ibanorum, and R. chalconota. In
addition, we have reliable information on where in the water column nine additional forms
spend most of their time and, presumably, where they feed : Leprobrachium gracilis,
L. montanum, Ansonia longidigita, Rana blythi, R. signata, Rhacophorus bimaculatus,
R. dulitensis, and R. nigropalmatus.
Five of the six modes of larval feeding defined by SATEL & WASSERSUG (1981) are
recognizable in this community : (1) obligate benthic feeding, (2) creation of suspensions
over the bottom (=“generalist” of SATEL & WASSERSUG), (3) macrophagous, (4) midwater
suspension feeding, and (5) particulate surface film feeding.
Source : MNHN, Paris
INGER 159
(1) Larval Amolops phaeomerus cling to rocks by means of an abdominal sucker and
graze on the epilithic film of protists. The tadpoles are large enough to watch as they slowly
move across rocks in clear water. Rhacophorus bimaculatus, which has a cup-like, suctorial
oral disk, lives in the interstices of bottom rocks (INGER, 1985) and belongs in this category.
(2) Larval Rana chalconota, R. ibanorum, and Bufo divergens move slowly and irre-
gularly over bottom debris in shallow side pools and potholes. Often an individual pauses
in a snout-down, tail-elevated position, presumably creating and ingesting suspensions imme-
diately above the interface of water and substrate. Larval Rana blyrhi, R. signata, and Ansonia
longidigita live mainly within the layers of dead leaves that constitute leaf drifts and, given
their gut contents, appear to feed by creating bottom suspensions. Larval Rhacophorus
harrissoni, though living in tree buttress tanks, are like the preceding four species in living
on and within mats of dead leaves. The broad spectrum of food types and sizes found
in the sample from this species (Table II and III) suggests a similar mode of feeding. The
two rhacophorids from pig wallows, Rhacophorus dulitensis and R. nigropalmatus, also appear
to fit this feeding category.
(3) Larval Leprobrachium montanum and L. gracilis clearly ingest significant amounts
of relatively large fragments of tracheoid plants (Table II and III). They apparently obtain
much of their food by snipping off pieces of decaying vegetation. When larval L. monta-
num being reared in a field laboratory were offered dead leaves, they attacked the leaves
around the margins, not on a broad surface.
(4) Only two larval types, Microhyla borneensis and M. petrigena, are midwater sus-
pension feeders, a mode they share with other Asian microhylids (HEYER, 1973). Microhyla
petrigena was easily and frequently observed in small, clear potholes with individuals dis-
tributed throughout the water column and remaining fixed in position unless disturbed.
Although it was more difficult to see M. borneensis in the silty water of pig wallows, enough
individuals were seen near the surface to suggest behavior similar to that of M. perrigena.
(5) Megophrys nasuta is the only larval form in this series that feeds at the surface
film. Tadpoles of species of Megophrys have long been known to feed in this manner (e.g.,
SMITH, 1926 ; POPE, 1931 ; LIU, 1950).
MORPHOLOGICAL RELATIONS
Although this study did not involve critical investigation of functional relations,
there appear to be some associations of oral and buccopharyngeal morphology with diets
and mode of feeding for all except one group, those larvae that create and ingest bottom
suspensions. The obligate benthic feeding Amolops phaeomerus and Rhacophorus bimacu-
latus share a number of features : (a) a suctorial device — an abdominal sucker in the
former and the oral disk in the latter ; (b) heavy beaks with thick, coarse, marginal serra-
tions and ribbed outer surfaces ; (c) long, scoop-shaped denticles sharply angled towards
the mouth and having many marginal cusps (INGER, 1985 : fig. 33) ; (d) regular, pro-
nounced decrease in size of denticles from inner to outer rows of both lips ; (e) modifica-
tion of the anterior walls of the internal nares to form forwardly projecting flaps (INGER,
1985 : fig. 34) ; (f) no lingual papillae ; (g) few or no pustules in the interiors of buccal
roof and floor arenas. Characters (a), (b), (d), (e), and (g) are unique to these two larval forms
Source : MNHN, Paris
160 ALYTES 5 (4)
among those dealt with in this paper. The form of their beaks and the length, angulation,
and cusp wear pattern of their denticles suggest both these tadpoles use beaks and den-
ticles to scrape rocks, which is consistent with their gut contents (Table III) and observed
behavior of À. phaeomerus.
The macrophagous larval Leptobrachium have many rows of laterally compressed,
sharply pointed denticles (INGER, 1985 : fig. 1) and very heavy, sharp beaks that seem
suited to snipping bits of decaying vegetation. The array of large papillae in the buccal
cavities of both L. gracilis and L. montanum (INGER, 1983) may serve to shunt large food
particles away from the branchial baskets and glottis. Surface feeding Megophrys larvae
hang from the surface film by means of their upturned funnel mouth (SMITH, 1926). LIU
(1950) has described how the large palps and flaps just inside the mouth of M. minor act
to block entrance of large objects. Similar structures occur in the buccal cavity of larval
M. nasuta (INGER, 1985 : figs. 5-6), which has a much more slender beak than do tad-
poles of other genera of Oriental pelobatids (see illustrations in POPE, 1931, and Liu, 1950).
Mean food particle size is relatively small in M. nasuta (Table II). In common with other
larval Microhylidae, the midwater suspension feeding tadpoles of Microhyla borneensis and
M. petrigena lack beaks and denticles. Both have very large branchial baskets with dense
filter ruffles (INGER, 1985 : fig. 16), suggesting filtration of small particles, though the
food sample of only perrigena substantiates this suggestion (Table II). HEYER (1973) sug-
gested that the method of feeding used by microhylid tadpoles is less discriminating both
with respect to taxonomy and size of food items, but this idea is not borne out by the
Bornean data (Tables II and III).
The tadpoles feeding on bottom suspensions are a mixture taxonomically and mor-
phologically. Their morphological variation has no obvious functional or ecological cor-
relation. The one feature they share — beaks of moderate thickness having finely serrated,
sharp margins — is their only morphological distinction from all the other feeding types
in this assemblage. Other morphological characters either vary widely within this group
or overlap with one or several of the other feeding modes. For example, although all the
bottom suspension feeders have many pustules (20-100) in the interior of buccal roof arena,
so do the macrophagous larvae of Leptobrachium. Denticles of 5 of the 9 bottom feeders
are set with many (> 12)triangular marginal cusps and have the end and sides of the shaft
curved towards the mouth, features also found in the two obligate benthic feeders.
MICROHABITAT DISTRIBUTION
Modes of feeding and microhabitat distribution (Table I ; see also INGER, VORIS
& FROGNER, 1986) are clearly related. The obligate benthic feeders are excluded from
microhabitats, such as leaf drifts and silty side pools, where bottom cover would prevent
development of the epilithic flora these tadpoles graze on. Bottom suspensions would be
lost to tadpoles creating them in moderate or strong current, limiting distribution of this
mode of feeding to standing water (e.g., pig wallows used by Rhacophorus dulitensis) or
areas of weak current (e.g., side pools used by Bufo divergens). Similar physical constraints
limit midwater suspension feeders to potholes along stream banks (Microhyla petrigena)
or pools of standing water on the forest floor (M. borneensis). In contrast to the pre-
Source : MNHN, Paris
INGER 161
ceding types, the macrophagous Leprobrachium larvae are not restricted by either their
basic food source, dead leaves, or their mode of feeding. However, only one of these lar-
vae, L. montanum, actually has a wide microhabitat range (INGER, VORIS & FROGNER,
1986). Surface film feeding is apparently possible anywhere except in the most turbulent
areas ; larval Megophrys nasuta used almost the entire range of stream microhabitats from
riffles to potholes (INGER, VORIS & FROGNER, 1986).
TYPE OF FOOD
The dominant kinds of food in the diets of these Bornean tadpoles, as a group, resem-
ble those of other assemblages. The main food source consists of small algae and other
protists for larval communities investigated by SAVAGE (1952) in England, by HEYER (1973)
in Thailand, by SEALE (1980) in Central United States, and DIAZ-PANIAGUA (1985) in
Spain, as well as in the Bornean one. Interspecific variation within this framework can
be described in only broad terms because of difficulties associated with specific
identifications of food and with measurements and counts of food items. Hyla meridio-
nalis and Rana perezi ingested much more Cyanophyta than the other three larvae from
Spain (DIAZ-PANIAGUA, 1985). Diatoms were an important element in the food of all Thai
larvae except those of Kaloula pulchra (HEYER, 1973). Cyanophyta were more
important in gut contents of larval Amolops phaeomerus than in the other Bornean
tadpoles (Table III).
Fragments of tracheoid plants were relatively common in both the Bornean (Table
III) and Spanish assemblages (DIAZ-PANIAGUA, 1985), but were not reported for the Thai
samples (HEYER, 1973). SAVAGE (1952) said that “higher plants appear to be almost use-
less as food for tadpoles..?” because though “..aten in large quantities by starving ani-
mals. [they]... do not support growth?” SAVAGE’S statement is probably related to the short
time food is in the digestive tract of tadpoles (4-8 hrs in ones he studied) and the inability
of tadpoles to break down cellulose (SAVAGE, 1952). Nonetheless, apparently healthy Bor-
nean tadpoles ingest significant amounts of tracheoid plant matter, though they may be
digesting microorganisms growing on those fragments.
Animal matter appeared only sporadically in food remains in all these samples,
although SAVAGE thought that ingestion of micro-crustaceans had a significant positive
effect on growth rates. SAVAGE interpreted “fairly common” appearance of tadpole den-
ticles in the gut contents as evidence of feeding on dead larvae. Single denticles found
in foregut smears of four Bornean tadpoles were clearly from conspecifics and indicate
that tadpoles may sometimes swallow their own worn, shed denticles. This interpretation
seems particularly apt for one of these four, a larval Amolops phaeomerus, for it is difficult
to visualize how a tadpole of this species could feed on an object having the shape of a
dead tadpole.
CONCLUSION
The role of diet in organizing tadpole communities has been minimized (HEYER,
1976 ; TOFT, 1985 ; DIAZ-PANIAGUA, 1985), partly because attention has centered on taxo-
nomic composition of the diet. Given the overwhelming importance of protists as a food
source for all these communities and the coarse level of food identification in most
Source : MNHN, Paris
162 ALYTES 5 (4) -
studies, the observed high overlap between species in composition of the diet is expected.
To be sure, the weak indications of specific differentiation (see above) might be strength-
ened by improved identifications of algae. However, that advance would be offset by the
complications of temporal and microgeographic variation in algal blooms and microhabi-
tat and temporal distributions of tadpoles. Differences among diets, in terms of size of
food particles, exist (HEYER, 1973 ; this study, p. 156), although there is much overlap
between species (Table IT) and little relation to microhabitat distribution or larval size.
With improvements in measurement and identification of food and expansion of
studies to other larval assemblages, composition of diets may ultimately help us under-
stand organization of these communities. However, even with the present limitations of
our data, it is evident that mode of feeding is an important factor in mediating the struc-
ture of tadpole communities (INGER, VORIS & FROGNER, 1986). HEYER’s (1973) obser-
vation of three modes of feeding — bottom suspension feeders, midwater filter feeders,
and surface film feeders — accounts for most of the variation in positions in the water
column of the Thai tadpoles. The five feeding modes of the Bornean community (see
p. 158) are related to differences in microhabitat distributions and to some of the diffe-
rences in diet composition.
Those observations, however, leave an unanswered question : is the community
structure that is revealed by diets, feeding modes, and microhabitat distributions main-
tained by ecological forces such as competition ? Differences among species within com-
munities in modes of feeding and associated morphological specializations are correlated
with taxonomic boundaries, at least in the Thai and Bornean samples, which have the
largest arrays of species and genera. In Southeast Asia an abdominal sucker associated
with obligatory benthic habits is confined to tadpoles ofthe genus Amolops and expanded
suctorial lips limited to benthic feeding tadpoles of the Rhacophorus bimaculatus species
group. Sharp beaks and compressed, knife-like denticles are found only in macrophagous
pelobatid larvae (those of Leptobrachium, in this case) among Asian tadpoles. Surface fee-
ding by means of “funnel” mouths is restricted to larval Megophrys and certain species
of Microhyla in Southeast Asia, though these two groups have radically different bucco-
pharyngeal structures (WASSERSUG, 1980) and presumably very different ways of pro-
cessing food particles. Larvae of species groups (or subgenera) of Asian Rana show limi-
ted within-group morphological and behavioral variation (cf., HEYER, 1973 ; INGER, 1985 ;
POPE, 1931). Given this broad correspondence between taxonomic boundaries and modes
of feeding and morphology, the relation of feeding biology to organization of tadpole com-
munities appears to owe more to phylogenetic events than to contemporary ecological
forces.
ACKNOWLEDGEMENTS
Jam grateful to Richard J. WASSERSUG for many stimulating discussions on the biology of
tadpoles. Both he and Harold K. VORIS made helpfül critical suggestions on the manuscript. Four
colleagues, J. P. BACON, K. J. FROGNER, W. HOSMER, and F. W. KING, participated in the collec-
tion of tadpoles at various times. Field and laboratory work were partially supported by National
Science Foundation grants G20867 and GB7845X and a grant from the Allen-Heath Memorial
Foundation.
Source : MNHN, Paris
INGER 163
RÉSUMÉ
Les régimes alimentaires des têtards de 16 espèces d’Anoures vivant en forêt dense
humide, à Bornéo, sont étudiés. D’une manière générale, ils s’avèrent similaires à ceux
des têtards d’autres régions : les contenus digestifs sont principalement composés de peti-
tes algues et autres protistes. Malgré un large chevauchement, des différences sont consta-
tées entre les régimes alimentaires de certaines espèces qui se rencontrent ensemble ; ces
différences portent sur la taille et le type d’aliments ingérés. Cinq modes d’alimentation
sont représentés parmi ces 16 types de têtards : l'alimentation benthique stricte, la macro-
phagie, l'alimentation à partir de particules en suspension en pleine eau, l’alimentation
à partir du film en surface de l’eau et l’alimentation à partir de suspensions créées au-
dessus du fond. Tous ces modes d’alimentation, sauf le dernier, sont associés à des modifi-
cations morphologiques qui sont en rapport fonctionnel avec la taille ou le type des parti-
cules alimentaires ingérées. À divers modes d’alimentation correspondent également des
différences dans les microhabitats fréquentés par les têtards et certaines des différences
observées dans la composition des régimes alimentaires. Ces corrélations indiquent que
le partage des ressources alimentaires joue un rôle dans l’organisation de cette commu-
nauté de têtards de Bornéo.
(Résumé rédigé par 3.7. MORÈRE)
LITERATURE CITED
Cosra, H. H. & BALASUBRAMANIAN, S., 1965. — The food of the tadpoles of Rhacophorus cruciger
cruciger (Blyth). Ceylon J. Sci., 5 : 107-109.
Diaz-PANIAGUA, C., 1985. — Larval diets related to morphological characters of five anuran spe-
cies in the Biological Reserve Donana (Huelva, Spain). Amph.-Repr., 6 : 307-322.
HEYER, W. R., 1973. — Ecological interactions of frog larvae at a seasonal tropical location in Thai-
land. 7. Herper., 7 : 337-361.
—— 1976. — Studies in larval amphibian habitat partitioning. Smithsonian Contr. Zool., 242 : iii
+ 1-27.
— 1979. — Annual variation in larval amphibian populations within a temperate pond. 3. Was-
hingion Acad. Sci., 69 : 65-74.
INGER, R. EF, 1983 — Larvae of Southeast Asian species of Leprobrachium and Leprobrachella (Anura :
Pelobatidae). In : RHODIN, A. & MIYATA, K. (eds.), Advances in herpetology and evolutionary
biology, Cambridge, Museum of Comparative Zoology : 13-22.
es 1985. — Tadpoles of forested regions of Borneo. Fieldiana : Zool., (n.s.), 26 : i-v + 1-89.
INGER, R. EF, VORIS, H. K. & FROGNER, K. J., 1986. — Organization of a community of tadpoles in
rain forest streams in Borneo. %. Tropical Ecol., 2 : 193-205.
JENSSEN, T. A., 1967. — Food habits of the green frog, Rana clamitans, before and during meta-
morphosis. Copeia, 1967 : 214-218.
KENNY, J. S., 1969. — Feeding mechanisms in anuran larvae. . Zoo!. London, 157 : 225-246.
Liu, C. C., 1950. — Amphibians of Western China. Fieldiana : Zool. Mem., 2 : 1-400.
MORIN, P. J., 1983. — Predation, competition, and the composition of larval anuran guilds. Ecol.
Monogr., 53 : 119-138.
Source : MNHN, Paris
164 ALYTES 5 (4)
Pope, C. H., 1931. — Notes on amphibians from Fukien, Hainan, and other parts of China. Bull.
Amer. Mus. Nat. Hist., 61: 397-611.
SATEL,S. L. & WASSERSUG, R.J., 1981. — On the relative sizes of buccal floor depressor and eleva-
tor musculature in tadpoles. Copeia, 1981 : 129-137.
SAVAGE, R. M., 1952. — Ecological, physiological and anatomical observations on some species of
anuran tadpoles. Proc. Zool. Soc. London, 122 : 467-514.
SEALE, D. B. & WASSERSUG, R. J., 1979. — Suspension feeding dynamics of anuran larvae related
to their functional morphology. Oecologia, 39 : 259-272.
SMITH, M. A., 1926. — The function of the “funnel” mouth of the tadpoles of Megalophrys, with
a note on M. aceras Boulenger. Proc. Zool. Soc. London, 1926 : 983-988.
Torr, C. A., 1985. — Resource partitioning in amphibians and reptiles. Copeia, 1985 : 1-21.
VIERTEL, B., 1985. — The filter apparatus of Rana temporaria and Bufo bufo larvae (Amphibia,
Anura). Zoomorph., 105 : 345-355.
WASSERSUG, R. J., 1980. — Internal oral features of larvae from eight anuran families : functional,
systematic, evolutionary, and ecological considerations. Misc. Publ. Mus. Nat. Hist. Univ.
Kansas, 68 : i-iv + 1-146.
WASSERSUG, R. J. & HOFE, K., 1979. — A comparative study of the buccal pumping mechanism
of tadpoles. Biol. J. Linnean Soc, 12 : 225-259.
WILBUR, H. M., 1984. — Complex life cycles and community organization in amphibians. Jn :
PRICE, P. W., SLOBODCHIKOFF, C. N. & GAUD, W. S. (eds), À new ecology : novel approaches
10 interactive systems, New York, Wiley : 195-224.
Source : MNHN, Paris
Alytes, 1986, 5 (4): 165-172. 165
Growth and metamorphosis of anuran larvae :
effect of diet and temperature
Ashok K. HOTA* & Madhab C. DASH**
* P. G. Department of Zoology, G. M. College,
Sambalpur — 768004, Orissa, India
#* School of Life Science, Sambalpur University,
Jyoti Vihar, Burla — 768017, Orissa, India
A diet that favours tadpole growth also quickens the onset of metamor-
phosis and promotes a greater transformation size. Within the range of 27°. 37°C
metamorphosis is accelerated by increased temperature more than growth is
and the larvae tend to transform at a lower size limit. At 15°C, growth was favou-
red over metamorphosis and the larvae grew beyond the normal upper limit sho-
wing a tendency toward facultative neoteny.
INTRODUCTION
Growth rate at each stage of development is an important part of a species life his-
tory strategy (COLE, 1954 ; GADGIL & BASSERT, 1970). In poikilothermic animals body
size and growth rate are controlled by environmental conditions. Among aquatic animals
body size and rate of growth are functions of the volume of water in which the animals
are raised (HOGG, 1854 ; ALLEE, 1931) as well as of the more usual analyzed environ-
mental factors of food supply and temperature. In general ectotherms grown at lower
temperature are larger than those grown at higher temperature (HOWE, 1967 ; LOCK &
MCLAREN, 1970).
Anuran metamorphosis, as a developmental process, involves both growth and dif-
ferentiation and it is very difficult to separate the two processes. The concept of a meta-
morphic threshold size (WILBUR & COLLINS, 1973 ; SALTHE & MECHAM, 1974 ; DASH
& HOTA, 1980 ; HOTA, 1984) indicates that conditions that affect the growth rate of lar-
val anurans also affect the time of and body size at metamorphosis. In a study on the
influence of food quality and quantity on early larval growth of two anuran species, STEIN-
WASCHER & TRAVIS (1983) reported that growth was greatest at the highest ratio of pro-
tein to carbohydrate offered in the diet but not at the highest food level in Hyla chrysosce-
lis. However larval growth of Rana clamitans was unrelated to the specific protein / car-
bohydrate ratio in the diet but responded proportionately to change in protein content
and food level. According to SMITH-GILL & BERVEN (1979), “environmental tempera-
ture is a major proximal factor in the growth, differentiation and overall life history pat-
terns observed in amphibians”. Given these considerations, in this study, we attempt to
evaluate the effect of diet and temperature on growth and metamorphosis of Rana tige-
rina (Daudin) and Bufo melanostictus Schneider larvae.
Source : MNHN, Paris
166 ALYTES 5 (4)
METHODS
The methods of spawn collections were the same as described by HOTA & DASH
(1981). The eggs were allowed to hatch in laboratory conditions and the hatchlings were
mixed to assure uniformity in initial genetic and developmental conditions before being
assigned at random to experimental treatment.
Experiments were started soon after the hatchlings begin to feed. Tap water, con-
ditioned with sodium thiosulphate at a concentration of 8 mg/4.5 1 (NACE & RICHARDS,
1972) and filtered, was used as the culture medium. According to GROMKO, MASON &
SMITH-GILL (1973) the cube root of tadpole volume is the best estimator of larval size.
MCNAB (1970) and BARTHOLOMEW (1977) argued in favour of weight as the best size
measurement. In this study body mass has been used to estimate larval growth. Body
mass was determined in a chemical balance sensitive to 0.001 g precision, by weighting
one or more individuals (after blotted on a cloth towel) in a preweighed beaker containing
10 ml of clear distilled water. All weighings were done in duplicate.
The larvae were selected at random from the homogeneous population of both spe-
cies and were assigned to the following experimental treatments.
(1) R. tigerina larvae in group of 5 and B. melanostictus larvae in group of 20, in
triplicate sets were reared in different diets : (i) boiled Amaranthus tricolor leaves, (ii) boi-
led Basella alba leaves, (iii) cooked minced goat meat, (iv) boiled chicken egg yolk and
(v) boiled Amaranthus leaves, boiled chicken egg yolk and cooked minced goat meat mixed
in the proportion of 5 : 1 : 1. The larvae were fed ad libitum. Such food qualities were
chosen with an aim to develop suitable culture method of anuran larvae and to produce
healthy froglets and toadlets for dispersal as part of a frog farming programme.
(2) Groups of 5 and 20 of R. rigerina and B. melanostictus larvae, respectively, were
reared at temperature 15°, 27°, 33° (room temperature in June and July) and 37°C with
sufficient food (above mentioned diet type v).
The tadpoles in the experiments were allowed to progress to metamorphic climax
stage. The emergence of first forelimb was taken as the criterion of onset of metamorpho-
sis and complete resorption of tail was taken to indicate termination of metamorphic events.
Metamorphosing individuals (froglets and toadlets with emergent forelimbs) were remo-
ved from the cultures into amphibious environments where they were allowed to com-
plete metamorphosis to emerge as juveniles. The cultures were examined daily to deter-
mine the survival. The dead individuals were removed from the cultures and were exclu-
ded from analysis. Thrice weekly the culture pots were cleaned, water renewed and new
food was added. Twice a week the masses of all larvae were determined to ascertain the
mean growth rates. All statistical analyses were done according to SOKAL & ROHLF (1969).
RESULTS
GROWTH
A simple F, max test of the body mass of R. rigerina and B. melanostictus shows that
the variances among groups reared in different diet are not significantly different (Tables
J'and Il). But oneway analysis of variance indicates that the means are significantly diffe-
rent from one another (Tables I and Il). À posteriori test suggests that each diet types
are significant in their effects on growth of R. rigerina larvae (Table I), whereas the effects
Source : MNHN, Paris
HOTA & DASH 167
Table I. — Test of variances among R. rigerina larvae after 15th days growth as a function of diffe-
rent diet.
: Average body
Nos. Diet weight (8) SD.
1. Boiled Amaranthus tricolor leaves 0.1690 0.0042
2. Boiled Basella alba leaves 0.2138 0.0093
3. Cooked minced goat meat 0.2746 0.0296
4. Boiled egg yolk 0.3600 0.0147
5. Mixed diet 0.4412 0.0151
F, max = 75.53 (ns)
Anova table
Variation df S.S. MS. F:
Treatments 4 0.30415 0.07604
267.45 **
Error 10 0.00284 0.00028
Total 14 0.30699
Coeff. det. = R2 = 0.98
#* Significant at 0.001 level
A posteriori test (S.N.K. test)
3 4 5
Q 3.15 3.88 433 4.66
L.SR. 0.0304 0.0374 0.0418 0.045
1<2<3<4<5
of each pair of diet types on growth of B. melanostictus larvae are similar (Table Il). It
is evident that the final mass of larvae of both the species increased with the supplemen-
ted carnivorous diet. After 35th day of rearing with a strictly plant diet, heavy mortality
and deformities were observed amongst R. tigerina larvae.
At lower temperature the larvae of both species were larger at any given stage
(fig. 1). The apparent decline in weight at 15°C in both species was due to heavy morta-
lity of larger animals causing a drop in the average weight.
METAMORPHOSIS
Table III summarises the effect of diet on size and time of metamorphosis. In exclu-
sively plant diet, not a single R. rigerina larva from the replicate pots developed fore-
limbs. In contrast B. melanostictus larvae reached metamorphic climax at around the 15th
day after hatching with all diets tested in this experiment. But there was distinct varia-
Source : MNHN, Paris
168 ALYTES 5 (4)
@ R.tigerina at 17th day
© B. melanostictus at 10th day
0.6
O5
[e)
=
z 04
©
ui
3 03
>
Q
O
2 02
0.1
5 10 15 20 25 30 35 40
TEMP. °C
Fig. 1. — Temperature dependent growth of individual R. tigerina and B. melanostictus larvae.
Source : MNHN, Paris
HOTA & DASH 169
Table II. — Test of variances among B. melanostictus larvae after 10 days growth as a function
of different diet.
Nos. Diet Average body S.D.
mass (2)
1. Boiled Amaranthus tricolor leaves 0.086 0.017
2. Boiled Basella alba leaves 0.096 0.007
3. Cooked minced goat meat 0.109 0.009
4. Boiled chicken egg yolk 0.120 0.005
5. Mixed diet 0.137 0.008
F, max = 75.53 (ns)
Anova table
Variation df S.S. MS. F.
Treatments 4 0.00485 0.001213
LLTO**
Error 10 0.00103 0.000103
Total 14 0.00588
Coeff. det. = R2 = 0.83
#* Significant at 0.01 level
À posteriori test (S.N.K. test)
3 4 5
Q 3.15 3.88 4.33 4.66
L.S.R. 0.0184 0.0227 0.0253 0.0273
1<2<3<4<5
tion in metamorphic size. À comparison of Tables I, II and III suggests that the diet
that favours growth also favours quickening of the onset of metamorphic events and pro-
motes a greater size at transformation.
Table IV enumerates the effect of temperature on the time of metamorphosis and
metamorphic size. Within the range of 27° to 37°C lower temperature favoured greater
transformation size in both species. But the larvae reared at 15°C grew for a long time
into giant larvae and did not metamorphose, developing neotenic tendency. Ultimately
they could not adapt to permanent neoteny and died.
DISCUSSION
In frogs and toads there is usually a drastic change from aquatic herbivory to ter-
restrial carnivory, demanding reorganization of the gut during metamorphosis. Rana tige-
rina undergoes a “first metamorphosis” in the middle of its larval life when it changes
from being a herbivore to being a carnivore (VARUTE, 1970). Probably because of this
first metamorphosis in the. middle of larval life, the growth of the R. rigerina larvae with
Source : MNHN, Paris
170 ALYTES 5 (4)
Table III. — Metamorphic size and the time of metamorphosis as a function of diet.
Diet .. R. tigerina LE B. melanostictus
X(g) + S.D. Timein days X (8) + S.D. Time in days
Boiled À. tricolor leaves Did not metamorphose 0.129 + 0.007 15
Boiled B. alba leaves -do- 0.144 + 0.006 15
Cooked minced goat meat 0.751 + 0.016 34 0.164 + 0.009 15
Boiled egg yolk 0.755 + 0.026 28 0.180 + 0.008 15
Mixed diet 0.855 + 0.025 28 0.215 + 0.011 15
Table IV. — Metamorphic size and time of metamorphosis as a function of temperature.
Temperature es R. tigerina Fa B. melanostictus
°C X (g) + SD. Time in days X (g) + S.D. Time in days
37 0.750 + 0.035 28 0.130 + 0.009 16
33 0.858 + 0.016 28 0.137 + 0.002 15
27 0.050 + 0.048 29 0.169 + 0.012 15
15 Did not metamorphose.After Did not metamorphose. After
64th day high rate of mortality 48th day high rate of mortality
was observed and experiment was observed and experiment
was discontinued. was discontinued.
plant diets is checked and they cannot attain the minimum threshold size for completing
the second metamorphic step. In nature, this does not happen. R. rigerina larvae can satisfy
their carnivorous habits with a variety of insect larvae or other microinvertebrate prey
during this period. So in this study the mixed diet gave best results. In contrast, the gut
reorganization in the larvae of R. clamitans occurs after the emergence of the forelimbs,
when they stop feeding (JENSSEN, 1967). In this case the first and second metamorphic
processes are not distinguishable. In our experiment B. melanostictus larvae behaved like
R. clamitans, so that the plant diet did not affect the transformation as the gut reorganiza-
tion which occurs after metamorphosis is initiated.
In this study the results with controlled temperature follow the trend reported for
R. pipiens by SMITH-GILL & BERVEN (1979). Here also, the results show that the envi-
ronmental temperature is a major proximal factor in the growth of R. rigerina and B.
melanostictus larvae. As in the case of R. pipiens (SMITH-GILL & BERVEN, 1979) either
direct temperature effects on the developing tissue or indirect temperature effect media-
ted by thyroxine, are sufficient to explain temperature dependence of growth in these
two species.
It has been shown that metan:orphosis and the effects of thyroid hormones on other
species tadpoles are completely inhibited below temperature 5°C (HUXLEY, 1929 ; LYNN
& WACHOWSKI, 1951 ; FRIEDEN, WAHI.BORG & HOWARD, 1965 ; ASHLEY, KATTI &
Source : MNHN, Paris
HOTA & DASH 171
FRIEDEN, 1968). Similarly, in this study metamorphosis is inhibited at 15°C. The tro-
pical climate of Sambalpur provides a mean daily temperature of 20°C in winter, 30°C
in summer (maximum being 42°- 45°C), and also 30°C in the rainy season. So this rise
in the lower temperature tolerance of metamorphic process of R. tigerina and B. melanos-
tictus might be a compensatory adaptation to tropical climate. The length of the larval
stages of the American bull frog in nature increases with the length and severity of the
winters (WILLIS, MOYLE & BASKETT, 1956). ETKIN (1964) has observed that within the
range of 15°- 30°C metamorphosis is accelerated by increased temperature and the ani-
mals metamorphose at a small size. This appears to be partly true also with R. rigerina
and B. melanostictus. In this study, within the range of 27°- 37°C the lower temperature
favoured transformation at a greater size and higher temperature hastens the initiation
of metamorphic events and favours the transformation at a lower size. However, in this
investigation unlike that of the American bull frog, there is no significant increase in the
larval period at low temperature.
ACKNOWLEDGEMENT
The authors wish to thank Dr. Ilan MCLAREN for his critical comments. Finan-
cial support for this study from University Grants Commission, New Delhi (Grant No.
057/Bio-Scs/76) is greatefully acknowledged.
RÉSUMÉ
L'influence de l’alimentation et celle de la température sur la croissance et la méta-
morphose des larves d’Anoures sont étudiées à partir d'expériences effectuées sur Rana
tigerina et Bufo melanostictus. Cinq types de régimes alimentaires (composés uniquement
de végétaux, de viande, de jaune d’œuf, ou mixte) sont testés. Les meilleurs résultats sont
obtenus avec un régime mixte. Une alimentation qui favorise la croissance des têtards
a pour effet également d’accélérer le déclenchement de leur métamorphose et d’entraîner
une plus grande taille des métamorphosés. Entre 27° et 37°C un accroissement de la tem-
pérature accélère l’apparition de la métamorphose plus que la croissance larvaire de sorte
que les têtards ont tendance à se transformer à une taille inférieure. À 15°C la croissance
est favorisée aux dépens de la métamorphose de sorte que les larves grandissent au-delà
des valeurs limites habituelles et qu’elles manifestent une tendance vers la néoténie
facultative.
(Résumé rédigé par J.-J. MORÈRE)
LITERATURE CITED
ALLEE, 1931. — Animal aggregation. Chicago, Univ. Chicago Press.
ASHLEY, H., KATTI, P. & FRIEDEN, E., 1968. — Urea excretion in the bullfrog tadpole ; effect
of temperature, metamorphosis and thyroid hormones. Devel. Biol., 17 : 293-307.
BARTHOLOMEW, G. À., 1977. — Energy metabolism. In : M. C. GORDON (ed), Animal physiology :
principle and adaptation, 3 rd. ed., New York, MacMillan.
COLE, I. C., 1954. — The population consequences of life history phenomena. Quart. Rev. Biol.,
29 : 103-107.
DasH, M. C. & HoTA, A. K., 1980. — Density effects on the survival, growth rate, and metamor-
phosis of Rana tigrina tadpoles. Ecology, 61 : 1025-1028.
Source : MNHN, Paris
172 ALYTES 5 (4)
ETKIN, W., 1964. — Metamorphosis, /n : J. A. MOORE (ed.), Physiology of the Amphibia, New
York & London, Academic Press : 427-468.
FRIEDEN, E., WAHLBORG, A. & HOWARD, E., 1965. — Temperature control of the response of
tadpoles to triiodothyronine. Nature, 205 : 1173-1176.
GADGIL, M. & BASSERT, W., 1970. — Life historical consequences of natural selection. Am. Nar.,
104 : 1-24.
GrOMKO, M. H., MASON, F. S. & SMITH-GILL, S. J., 1973. — Analysis of the crowding effect
in Rana pipiens tadpoles. 7. exp. Zool., 186 : 63-72.
HoGG, J., 1954. — Observations on the development and growth of the water snail (Limnaeus sta-
gnalis). Quart. 3. Micr., 2 : 91-103.
HoTA, À. K., 1984. — Growth, production and energetics of the tadpoles of Rana tigrina (Daud.) and
Bufo melanostictus (Bloch and Schneider). Ph. D. Thesis, Sambalpur University.
Hora, A. K. & DASH, M. C., 1981. — Growth and metamorphosis of Rana tigrina larvae : effects
of food level and larval density. Oïkos, 37 : 349-352.
HOwE, R. W., 1967. — Temperature effects on embryonic development of insects. Ann. Rev. Ento-
mol., 12 : 15-42.
HUXLEY, J. S., 1929. — Thyroid and temperature in cold blooded vertebrates. Nature, 123 : 712.
JENSSEN, T. A., 1967. — Food habits of the green frog Rana clamitans, before and during meta-
morphosis. Copeia, 1967 : 214-218.
Lock, A. R. & MCLAREN, I. A., 1970. — The effects of varying and constant temperatures on
the size of the marine copepods. Limnol. Oceanogr., 15 : 638-640.
Lynn, W. G. & WacHOwski, H. E., 1951. — The thyroid gland and its function in cold blooded
vertebrates. Quart. Rev. Biol., 26 : 123-168.
MCNA8, B. K., 1970. — Body weight and energetics of temperature regulation. ÿ. exp. Biol., 53 :
329-348.
NACE, G. W. & RICHARDS, C. M., 1972. — Living frogs. 3. Tadpoles. Caroline Tips, Burlington,
North Carolina, XXXV, No. 12.
SALTHE, S. N. & MECHAM, J. S., 1974. — Reproductive and courtship patterns. In : B. LOFTS
(ed.), Physiology of Amphibia, vol. II, New York & London, Academic Press : 309-521.
SMITH-GILL, S. J. & BERVEN, K. A., 1979. — Predicting amphibian metamorphosis. Am. Nar.,
113 : 563-585.
SokaL, R. R. & ROHLF, F. J., 1969. — Biometry : the principle and practice of statistics in biological
research. San Francisco, Freeman.
STEINWASCHER, K. & TRAVIS, J., 1983. — Influence of food quality and quantity on early larval
growth of two anurans. Copeia, 1983 : 238-242.
VARUTE, À. T., 1970. — 8 - glucaronidase in the alimentary canal of herbivorous and carnivorous
anuran tadpoles and adults. Comp. Biochem. Physiol., 33 : 143-148.
WieuR, H. M. & COLLINS, J. P., 1973. — Ecological aspects of amphibian metamorphosis. Science,
182 : 1305-1314.
Wizuis, Y. L., MOYLE, D. L. & BASKETT, T. S., 1956. — Emergence, breeding, hibernation, move-
ments and transformation fo the bullfrog, Rana catesbeiana, in Missouri. Copeia, 1956 : 30-41.
Source : MNHN, Paris
Alÿtes, 1986, 5 (4) : 173-174. 173
Miscellanea nomenclatorica batrachologica (XIV)
Alain DUBOIS
Laboratoire des Reptiles et Amphibiens,
Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
The family-group name “Oreolalaxinae” Tian & Hu, 1985, which should
be emended to Oreolalaginae, is a strict synonym of Leptobrachiinae Dubois,
1980. This subfamily includes the genera and subgenera Leptobrachium, Lepto-
lalax, Scutiger, Oreolalax, Aelurolalax, and also Leptobrachella, which was erro-
neously placed by Tian & Hu (1985) in the Megophryinae.
TiAN & HU (1985) ont proposé la création d’une nouvelle sous-famille des Peloba-
tidae, regroupant les genres (ou sous-genres) Leptobrachium, Leptolalax, Scutiger, Oreola-
lax. Pour cette sous-famille, ils ont créé le nom “Oreolalaxinae”, fondé sur le nom géné-
rique Oreolalax.
11 faut tout d’abord noter que le nouveau nom de sous-famille est mal formé, et
doit être émendé en “Oreolalaginae”. En effet le nom Oreo/alax est fondé sur le mot grec
AGAGË, dont le génitif est A&\wyos, et le radical de ce nom générique est donc Oreolalag-.
De toute manière, ce nom du groupe-famille n’aura pas lieu d’être utilisé, car il
s’agit d’un strict synonyme plus récent du nom Leptobrachiinae Dubois, 1980. Ce der-
nier nom fut d’abord proposé (DUBOIS, 1980 : 471) sous la forme Leptobrachiini, pour
la tribu regroupant les genres à tétards ‘‘généralisés”” des Megophryinae, opposée à la
tribu des Megophryini, dont les têtards ont une bouche en entonnoir. Ce taxon fut élevé
au rang de sous-famille Leptobrachiinae par DUBOIS (1983 a : 272), et mentionné à diverses
reprises par la suite (DUBOIS, 1983 b : 147-148, 1984 : 29, 1985 : 74, 1987 : 13 ; FROST,
1985 : 409).
Notons enfin que c’est à tort que TIAN & HU (1985) incluent le genre Leptobra-
chella dans la sous-famille des Megophryinae : le têtard de Leprobrachella mjobergi décrit
en détail par INGER (1983) s’avère très proche des têtards de Leprolalax, ce qui indique
que la place de Leprobrachella est au sein des Leptobrachiinae.
Les Leptobrachiinae comportent donc les genres et sous-genres suivants (DUBOIS,
1987) : Leptobrachium Tschudi, 1838 (dont Vibrissaphora Liu, 1945 est synonyme) ; Lep-
tolalax Dubois, 1980; Leptobrachella Smith, 1925 ; Scuriger Theobald, 1868 ; Oreolalax
Myers & Leviton, 1962 ; et Aelurolalax Dubois, 1987.
Source : MNHN, Paris
174 ALYTES 5 (4)
RÉFÉRENCES BIBLIOGRAPHIQUES
Dugois, A., 1980. — Notes sur la systématique et la répartition des Amphibiens Anoures de Chine
et des régions avoisinantes. IV. Classification générique et subgénérique des Pelobatidae
Megophryinae. Bull. Soc. linn. Lyon, 49 : 469-482.
1983 a. — Classification et nomenclature supragénérique des Amphibiens Anoures. Bull. Soc.
linn. Lyon, 52 : 270-276.
x 1983 b. — Note préliminaire sur le genre Leprolalax Dubois, 1980 (Amphibiens, Anoures), avec
diagnose d’une espèce nouvelle du Vietnam. Alyres, 2 : 147-153.
— 1984. — La nomenclature supragénérique des Amphibiens Anoures. Mém. Mus. natn. Hist.
nat., (A), 131 : 1-64.
1985. — Miscellanea nomenclatorica batrachologica (VII). Alyres, 4 : 61-78.
1987. — Miscellanea taxinomica batrachologica (1). Alytes, 5 : 7-95.
FROST, D. R., 1985. — Amphibian species of the world. À taxinomic and geographical reference. Law-
rence, Kansas, Allen Press & A.S.C. : [i-iv] + i-v + 1-732.
INGER, R. F., 1983. — Larvae of Southeast Asian species of Leprobrachium and Leptobrachella
(Anura : Pelobatidae). In : A. RHODIN & K. MIYATA (éds.), Advances in herpetology and evo-
lutionary biology, Cambridge, Mass. : 13-32.
TiaN, W. & HU Q., 1985. — Taxonomical studies on the primitive Anurans of the Hengduan
Mountains, with descriptions of a new subfamily and subdivision of Bombina. Acta herpet.
sin., 4: 219-224.
Source : MNHN, Paris
Alytes, 1987, 5 (4) : 175-176. 175
Miscellanea nomenclatorica batrachologica (XV)
Alain DUBOIS
Laboratoire des Reptiles et Amphibiens,
Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
The generic name Ranixalus Dubois, 1986 is a synonym of Indirana Lau-
rent, 1986, which was proposed independently and published a few months ear-
lier. The name Ranixalini Dubois, 1987 remains the valid name for the tribe which
includes Indirana, Nyctibatrachus and Nannophrys.
Nous avons récemment (DUBOIS, 1986) décrit sous le nom Ranixalus gundia une
nouvelle espèce de Ranoïidea du Karnataka, dont nous avons ensuite (DUBOIS, 1987) mon-
tré qu’elle appartenait à un genre de Ranidae endémique du sud de l’Inde, comprenant
Polypedates beddomii Günther, 1876 et les espèces voisines. Pour ce genre, nous avons
initialement (DUBOIS, 1987) retenu le nom Ranixalus Dubois, 1986, mais le nom généri-
que /ndirana Laurent, 1986, proposé indépendamment et publié quelques mois plus tôt
par LAURENT (1986 : 761) pour Polypedates beddomiï et les espèces voisines, s’avère avoir
priorité. Toutes les espèces placées par DUBOIS (1987) dans le genre Ranixalus doivent
donc être rapportées au genre Indirana. Notons toutefois que quelques-unes des espèces
rapportées par LAURENT (1986) à ce genre appartiennent en fait à d’autres genres (pour
plus de détails, voir DUBOIS, 1987).
A l’examen des descriptions et figures que GÜNTHER (1876) et INGER et al. (1984)
ont donné de /ndirana brachytarsus (Günther, 1876) il nous paraît que cette espèce pour-
rait être la même que /ndirana gundia (Dubois, 1986), mais jusqu’à présent nous n'avons
pas eu la possibilité d'examiner les types de Polypedates brachytarsus, ou d’autres spéci-
mens rapportés à cette espèce.
En ce qui concerne enfin la nomenclature supragénérique, la mise en synonymie
de Ranixalus n'implique nullement la nécessité d'abandonner le nom Ranixalini Dubois,
1987, qui reste le nom valide de la tribu comportant les genres Zndirana, Nyctibatrachus
et Nannophrys (voir DUBOIS, 1987).
Source : MNHN, Paris
176 ALYTES 5 (4)
RÉFÉRENCES BIBLIOGRAPHIQUES
Dugois, À., 1986. — Diagnose préliminaire d’un nouveau genre de Ranoidea (Amphibiens, Anou-
res) du sud de l’Inde. A/yres, 4 : 113-118.
_— 1987. — Miscellanea taxinomica batrachologica (I). Ayres, 5 : 7-95.
GÜNTHER, À., 1876. — Third report on collections of Indian Reptiles obtained by the British
Museum. Proc. zool. Soc. Lond., 1875 : 567-577, pl. LXIII-LXVI.
INGER, R. F., SHAFFER, H. B., KOSHY, M. & BAKDE, R., 1984. — A report on a collection of
Amphibians and Reptiles from the Ponmudi, Kerala, South India. 7. Bombay nat. Hist. Soc.,
81 : 406-427.
LAURENT, R. F., 1986. — Sous-classe des Lissamphibiens (Lissamphibia). Systématique. /n : P.-
P. GRASSÉ & M. DELSOL (éds.), Traité de zoologie, Tome XIV, Batraciens, Fasc. 1-B, Paris,
Masson : 594-797.
Source : MNHN, Paris
Veste
ALYTES
Volume 5
("1986")
INDEX
Annemarie OHLER et Alain DUBOIS
Contents
Dates of publication of issues
Authors and titles index
Systematic index ..…
Index of new taxons
Subjects index
Geographic index
Referees
Source : MNHN, Paris
ü ALYTES
DATES OF PUBLICATION OF ISSUES
N° 1-2, "Mars-juin 1986" (pages 1-96):
13 May 1987.
N° 3, "Septembre 1986" (pages 97-152):
15 September 1987.
N° 4, “Décembre 1986" (pages 153-176):
1st October 1987.
AUTHORS AND TITLES INDEX
Dugois, A. - Miscellanea taxinomica
batrachologica (I)... 7-95
Dugois, A. - Miscellanea nomenclatorica
batrachologica (XII) 97-98
Dugois, A. - Living amphibians of the
world: a first step towards a
comprehensive checklist 99-149
Dugois, A. - Miscellanea nomenclatorica
batrachologica (XII) ............. 150
Dugois, A. - Miscellanea nomenclatorica
batrachologica (XIV) 173-174
Dugois, A. - Miscellanea nomenclatorica
batrachologica (XV) 175-176
HorA, A. K. & DaAsH, M. C. - Growth
and metamorphosis of anuran larvae:
effect of diet and temperature
. 165-172
INGER, R. F. - Diets of tadpoles living in
a Bornean rain forest .…... 153-164
LAURENT, R. F. - The systematic
position of the genus Afrixalus
Laurent (Hyperoliidae) 1-6
BOOK REVIEW
AMET, J.-L. - Un livre sur
les Amphibiens d'Australie
occidentale …................. 151-152
ANNOUNCEMENT
First World Congress of Herpetology . 96
Source : MNHN, Paris
Abrana: 130
cotti: 130
Acanthixalus: 4
Acris: 135-136
Adenomera: 128
marmorata: 128
ADENOMINAE: 24-25
Aelurolalax: 14, 173
Aelurophryne
brevipes: 22
gigas: 21-22
glandulata: 22
maculata: 16, 18
mammata: 17, 19, 21-22
tainingensis: 17
Afrixalus: 1-5, 35, 133
laevis: 3
Allophryne: 25, 122
ALLOPHRYNIDAE: 118, 122, 124
ALLOPHRYNINAE: 25, 122
Alsodes: 128
monticola: 128
ALSODINI: 118, 124
Altiphrynoides: 27
malcolmi: 27
Altirana: 39, 114
ALYTAE: 11
Alytes: 7, 12, 128
cisternasii: 12
muletensis: 12
obstetricans: 12
talaioticus: 12
Alytes (Alytes)
obstetricans: 12
obstetricans boscaï: 12
obstetricans maurus: 12
INDEX VOL. 5 ji
SYSTEMATIC INDEX
obstetricans obstetricans: 12
Alytes (Ammoryctis)
cisternasii: 12
Alytes (Baleaphryne)
muletensis: 12
talaioticus: 12
ALYTIDAE: 11, 124
ALYTINAE: 12
ALYTINI: 12
Ambystoma: 128, 136, 142
kl. platineum: 142
kl. tremblayi: 142
platineum: 142
AMBYSTOMATIDAE: 118, 124, 134, 138,
142
AMBYSTOMATOIDEA: 118, 120
AMBYSTOMATOIDEI: 120
Amietia: 49-50
Ammoryctis: 12
Amolops: 39-40, 51, 53, 57, 64, 76, 141,
162
afghanus: 141
chapaensis: 51
kaulbacki: 141
longimanus: 51
monticola: 142
phaeomerus: 155-161
torrentis: 53
AMPHIBIA: 7, 101-106, 108-109, 114,
117-118, 120-121, 126, 134, 139-
140, 142, 144
AMPHIGNATHODONTINAE: 29, 124
AMPHIUMIDAE: 124, 134, 138
AMPHIUMOIDEA: 118, 120
AMPHIUMOIDEI: 120
Ansonia: 25
longidigita: 155-159
ornata: 130
Source : MNHN, Paris
ANURA: 11, 105, 132, 134, 138, 140
APODA: 118
ARTHROLEPTIDAE: 1, 34-35, 123-124,
134, 138
ARTHROLEPTINA: 123
ARTHROLEPTINAE: 34, 123
Arthroleptis: 2, 100, 123
ASCAPHIDAE: 118, 124
ASTEROPHRYINAE: 34, 118, 124
Asterophrys: 128
ASTYLOSTERNINAE: 2, 34, 124
Atelognathus: 141
ATELOPODIDAE: 118, 124
ATELOPODINAE: 25
Atelopus: 25
Atympanophrys: 22-23, 114-115
Aubria: 39, 66, 114
subsigillata: 66
Babina: 42, 130
Baleaphryne: 12, 115, 128
muletensis: 12
Barbourula: 12, 130
busangensis: 130
busuangensis: 130
BATRACHIA: 117
Batrachophrynus: 2
patagonicus: 141
BATRACHYLINI: 118, 124
Batrachylodes: 39-40, 101
Bolitoglossa: 115
BOLITOGLOSSINI: 118, 124
Bombina: 12, 97-98
Bombina (Bombina)
bombina: 97
orientalis: 97
variegata: 97
Bombina (Grobina)
fortinuptialis: 98
maxima: 98
microdeladigitora: 98
ALYTES
Bombinator
australis: 133, 135
maximus: 97
sikimmensis: 19-20
BOMBINATORIDAE: 11, 118, 124
BOMBINATORINA: 11
BOMBINATORINAE: 11-12, 120
BOMBINATORINI: 12
BOMBINIDAE: 118, 124
BOMBININAE: 120
BOMBITATORES: 11
Boophis: 127
Bourretia: 61-62
BRACHYCEPHALIDAE: 100, 118, 124,
134, 138
Brachycephalus: 2
Brachymerus
bifasciatus: 136
Brachytarsophrys: 22-23, 114-115
BREVICIPINA: 126
BREVICIPITINA: 126
BREVICIPITINAE: 34, 123-124, 126
Buergeria: 127
Bufo: 25, 29, 115, 141
andersoni: 19
anotis: 27
arabicus: 130
beddomii: 130
bufo formosus: 140
divergens: 155-160
glaberrimus: 130
himalayanus: 140
hololius: 130
Jjaponicus: 140
Kelaartii: 141
koynayensis: 130
mammatus: 21-22
melanostictus: 165-171
orientalis: 130
osgoodi: 26
sikkimmensis: 20
stomaticus: 141
sulphureus: 130
vertebralis group: 29
Source : MNHN, Paris
INDEX VOL. 5
vulgaris: 104
Bufoides : 25
BUFONIDAE: 2, 7, 24, 28, 49, 122, 128,
130, 134, 138, 140
BUFONINAE: 25
C
CACOSTERNINAE: 122, 124
Caecilia
bivittata: 133
bivittatum: 133
glutinosa: 133, 135
hypocyanea: 133
CAECILNDAE: 117, 122, 124
CAECILUNAE: 117, 124
Calamita
tinctorius: 130, 133
Callixalus: 4
Callula
triangularis: 131
CALYPTOCEPHALELLINI: 118, 124
Capensibufo: 25-26
Cardioglossa: 2
Carpophrys: 129
Cassina: 37
obscura: 35, 38
wealii: 35-36
Cassiniopsis: 37
CAUDATA: 117-118
Caudiverbera: 135-136
peruviana: 135-136
CECILNDAE: 117, 122, 134, 139
CECILINNAE: 117
CENTROLENIDAE: 107, 124, 134, 138
CERATOBATRACHIDAE: 58
Ceratobatrachus: 2, 57, 67, 101
CERATOPHRYDES: 122, 127
CERATOPHRYIDAE: 122, 124
CERATOPHRYINAE: 124
Ceratophrys: 2, 130
boiei: 131
Chiromantis: 129
Chrysobatrachus: 4, 136
cupreonitens: 136
Clinotarsus: 42
COLODACTYLI: 11
COLODACTYLIDAE: 11
Colodactylus: 11
Colostethus: 136
Conraua: 2, 39, 50, 57
Cophophryne
alticola: 17, 18
sikkimensis: 19, 20
COPHYLIDAE: 127
COPHYLINAE: 34, 127
Cornufer: 52, 141
baluensis: 52-54
xizangensis: 53-54, 65
CORNUFERINAE: 38, 57-58
Crepidophryne: 25
Crinia: 127
bilingua: 141
deserticola: 141
remota: 141
signifera: 141
CRYPTOBRANCHIDAE: 124, 134, 138
CRYPTOBRANCHOIDEA: 118, 120
CRYPTOBRANCHOIDEI: 120
Cryptothylax: 4
CYCLORAMPHINI: 117, 120
Cycloramphus: 127, 131
Julginosus: 131
fuliginosus: 131
CYCLORANINAE: 118, 124
Cynops: 128
CYSTIGNATHI: 122
CYSTIGNATHIDAE: 124
Cystignathus
nodosus: 128
rhodonotus: 131
senegalensis: 37
D
DACTYLETHRIDAE: 121
Source : MNHN, Paris
vi ALYTES
DACTYLETHRINAE: 117, 120, 122, 124
Dendrobates: 2, 130, 133, 141
DENDROBATIDAE: 118, 121, 124, 127-
128, 130, 134, 138, 141
Dendrophryniscus: 25
DERMOPHIIDAE: 117, 120, 124
DERMOPHIINAE: 117-118, 124
DESMOGNATHIDAE: 118
DESMOGNATHINAE: 118, 124
DICAMPTODONTIDAE: 123, 134, 138
DICAMPTODONTINAE: 127
DICROGLOSSIDAE: 58
DICROGLOSSINI: 57, 64, 66-67
Dicroglossus: 57-58
adolfi: 57
Didynamipus: 25
Discodeles: 52-53, 57, 67, 101
ventricosus: 131
vogti: 131
DISCOGLOSSIDAE: 7, 11-12, 118, 121,
124, 128, 130, 132, 134, 138
DISCOGLOSSINAE: 12
DISCOGLOSSOIDEI: 11
Discoglossus: 11-12
Duellmania: 32
DYSCOPHIDAE: 127
DYSCOPHINAE: 34, 124
Dyscophus: 136
insularis: 136
E
Echinotriton: 11, 103, 129, 142
Elachistocleis: 128
Elachyglossa: 57
ELEUTHERODACTYLINI: 7, 23, 118, 124
Eleutherodactylus: 23-24, 115
auriculatus group: 23-24
coqui: 24
gaigei: 131
gaigeae: 131
jasperi: 23
lineatus: 131
orcutti: 24
ELOSHIDAE: 122
ELOSIINAE: 118, 120, 124
Engystoma: 128
marmoratum: 131
rugosum: 136
ENGYSTOMATINAE: 123
Eodiscoglossus: 12
EPICRNDAE: 117, 120, 134, 139
EPICRINAE: 117, 120
Eremiophilus: 37, 128
EUBAPHIDAE: 141
Euchnemis
fornasinii: 133
Euphlyctis: 2, 39, 57-60, 130, 134, 141
Euphlyctis line: 39-40, 54, 56-57, 66
Eupsophus: 134
Exaeretus: 133
caucasicus: 133
F
Fejervarya: 60-62, 142
G
GASTROPHRYNAE: 123
Gastrophryne: 133, 136
Gastrotheca: 7, 29-30, 32-33, 133, 136
argenteovirens: 33
argenteovirens group: 33
aureomaculata: 33
ernestoi: 31
marsupiata group: 32
medemi: 31
plumbea group: 32-33
Gastrotheca (Duellmania)
argenteovirens: 33
argenteovirens group: 33
aureomaculata: 33
cavia: 33
lojana: 33
Source : MNHN, Paris
INDEX VOL. 5
monticola: 33
psychrophila: 33
riobambae: 33
riobambae group: 33
Gastrotheca (Gastrotheca)
chrysosticta: 32
gracilis: 32
marsupiata: 32
peruana: 32
Gastrotheca (Opisthodelphys)
andaquiensis: 31
angustifrons: 31
bufona: 31
christiani: 31
cornuta: 31
cornuta subgroup: 31
dendronastes: 31
ernestoi: 31
excubitor: 31
Jissipes: 31
galeata: 31
griswoldi: 31
griswoldi group: 31-32
helenae: 31
humbertoi: 31
longipes: 31
longipes subgroup: 31
medemi: 31
microdiscus: 31
nicefori: 31
ochoaï: 31
orophylax: 32
ovifera: 31
ovifera group: 30
ovifera subgroup: 31
plumbea: 32
plumbea group: 32-33
testudinea: 31
viridis: 31
walkeri: 31
weinlandii: 31
williamsoni: 31
yacambuensis: 31
GENYOPHRYNINAE: 34, 120-121, 124,
vii
127
Glandula: 97
Glyphoglossus: 129
molossus: 131
Gorhixalus: 72
GRIPISCINI: 118
Grobina: 97
GRYPISCINI: 117, 120, 124
GYMNOPHIONA: 118, 132, 134, 139-140
H
Hammatodactylus: 128
HELEOPHRYNIDAE: 124, 132, 134, 138
HEMIDACTYLHNI: 120, 124
HEMIDACTYLINI: 117-118, 120
Hemidactylium: 127
HEMIMANTIDAE: 121
HEMIMANTINAE: 121
Hemimantis: 121, 141
HEMIPHRACTINAE: 29, 127
Hemiphractus: 2, 128, 136
spixii: 136
HEMISIDAE: 34, 124, 134, 138
Hemisus: 2
obscurus: 136
HERPELINAE: 118, 124
Heterixalus: 4
Hildebrandtia: 39, 55-56, 114
Hildebrandtia (Hildebrandtia)
macrotympanum: 56
ornata: 56
ornatissima: 56
Hildebrandtia (Lanzarana)
largeni: 56
Hoplobatrachus: 60-61
ceylanicus: 60
HOPLOPHRYNINAE: 123, 125
Hydromantes: 129
Hydromantoides: 129
Hydrophylax: 42
Hyla: 9, 109, 115, 141
albovitrata: 130
Source : MNHN, Paris
vii ALYTES
argenteovirens: 32
aurifasciata: 71
boans: 139
chinensis: 139
chrysoscelis: 165
cinerea: 130
erythraea: 130
iris: 143
leucotaenia: 130
marsupiata: 32, 136
meridionali.
reinwardi
strigilata: 136
zonata: 136
Hyla (Pseudacris)
nigrita floridensis: 141
HYLAEDACTYLI: 123
Hylambates: 1, 3-4, 36-37
leonardi: 38
viridis: 130
Hylaplesia: 133, 141
borbonica: 130
Hylarana: 39-40, 42, 50, 54, 57, 65, 73,
113, 130, 142
mindanensis: 63
Hylarthroleptis: 141
HYLIDAE: 7, 29, 107, 118, 120, 125,
128, 130, 134, 138, 141
HYLINAE: 118, 125
Hylodes: 122
lineatus: 130-131, 133
HYLODIDAE: 122
HYLODINAE: 119-120, 122, 125
HYLOIDEA: 23
Hylorana
longipes: 80-81
Hymenochirus: 136
HYNOBIIDAE: 119-120, 125, 134, 138
Hynobius: 128
HYPEROLNDAE: 1-5, 34, 127-128, 130,
134, 138
HYPEROLIINAE: 2, 4-5, 34-35
HYPEROLINI: 3-4, 34, 125
Hyperolius: 1-5, 109, 152
houyi: 143
Hysaplesia: 133, 141
I
ICHTHYOPHIIDAE: 117, 120, 125, 127
ICHTHYOPHNNAE: 117, 125
Ichthyophis: 133, 135
hasselti: 133
hasseltii: 135
Indirana: 175
brachytarsus: 175
gundia: 175
Ingerana: 64-65
baluensis: 64-65
liui: 64-65
mariae: 64
tasanae: 64-65
tenasserimensis: 64-65
xizangensis: 64
Ingerana (Ingerana):
baluensis: 65
mariae: 65
sariba: 65
tasanae: 65
tenasserimensis: 65
Ingerana (Liurana)
liui: 65
xizangensis: 65
Ixalus
beddomii: 132
chalazodes: 132
diplostictus: 132
fuscus: 51, 53-54
jerdonii: 73
nasutus: 132
opisthorhodus: 51, 53, 132
sarasinorum: 52-54
silvaticus: 51, 53-54
Source : MNHNI, Paris
Kalophrynus: 128
Kaloula
pulchra: 141, 161
KALOULIDAE: 122
Kassina: 1-5, 35-38, 128
arboricola: 37
cochranae: 37
lamottei: 37
senegalensis: 35
wealei: 36
Kassina (Kassina)
arboricola: 37
cassinoides: 37
cochranae: 37
decorata: 37
fusca: 37
kuvangensis: 37
lamottei: 37
maculata: 37
maculosa: 37
mertensi: 37
parkeri: 37
senegalensis: 37
wealii: 37
wittei: 37
Kassina (Paracassina)
Kkounhiensis: 38
obscura: 38
Kassina (Phlyctimantis)
keithae: 38
leonardi: 38
verrucosa: 38
KASSININAE: 1, 125
KASSININI: 1, 3-4, 7, 34-37
Kassinula: 3-4, 35-37, 115, 136
wittei: 136
Kirtixalus: 72
Lacerta
INDEX VOL. 5 ix
caudiverbera: 135
salamandra: 137
subviolacea: 136
Ladailadne: 23-24
jasperi: 24
Lanzarana: 39, 55-56, 115, 141
Latonia: 12
Laurentomantis: 136, 141
ventrimaculata: 139
Laurentophryne: 27
LEIOPELMATIDAE: 132, 134, 138
Leptobrachella: 13, 129, 173
mjobergi: 173
LEPTOBRACHIINAE: 13, 119, 125, 173
LEPTOBRACHINI: 173
Leptobrachium: 13, 18, 127, 158, 160-
162, 173
boringii: 131
boulengeri: 16-17
gracilis: 155-160
montanum: 155-161
pullum: 131
pullus: 131
LEPTODACTYLIDAE: 7, 23, 120, 122,
126-128, 130, 134, 138, 141
LEPTODACTYLINAE: 125
Leptodactylus: 109, 133
Leptolalax: 7, 13, 18, 173
dringi: 13-14
heteropus: 13-14
oshanensis: 129
pelodytoides: 14
Leptomantis: 75-16
bimaculata: 75
LEPTOPELINAE: 125, 127
LEPTOPELINI: 4, 34, 38
Leptopelis: 2, 4, 152
brevirostris: 38
Leptophryne: 25, 134
Limnodynastes: 133
peronii: 139
LIMNODYNASTINAE: 119, 125
Limnodytes
phyllophila: 51, 53-54
Source : MNHN, Paris
x ALYTES
Limnomedusa: 134 rugulosus: 60
Limnonectes: 43, 57-58, 60, 62-64, 130, tigerinus: 60
134, 141 tigerinus group: 60-61
cancrivorus: 61 verruculosus: 60
doriae: 61-62 Limnonectes (Limnonectes)
finchi: 62 acanthi: 63
grunniens: 62 arathooni: 63
grunniens group: 62 blythii: 63
hascheanus: 64 corrugatus: 63
kohchangae: 61 dammermani: 63
Kuhlii group: 62 diuata: 63
limborgii: 63 Jinchi: 63
macrodon: 62 fragilis: 63
microdiscus group: 62 grunniens: 63
tigerinus group: 60 grunniens group: 63
Limnonectes (Bourretia) heinrichi: 63
dabanus: 62 ibanorum: 63
doriae: 62 ingeri: 63
kohchangae: 62 Kenepaiensis: 63
macrognathus: 62 Khammonensis: 63
mawphlangensis: 62 Khasiensis: 63
pileatus: 62 kuhliï: 63
plicatellus: 62 kuhlii group: 63
toumanoffi: 62 laticeps: 63
Limnonectes (Fejervarya) leytensis: 63
andamanensis: 61 macrocephalus: 63
greenii: 61 macrodon: 63
Kkeralensis: 61 magnus: 63
limnocharis: 61 malesianus: 63
murthii: 61 micrixalus: 63
nepalensis: 61 microdiscus: 63
nilagirica: 61 microdiscus group: 63
pierrei: 61 microtympanum: 63
rufescens: 61 modestus: 63
syhadrensis: 61 namiyei: 63
teraiensis: 61 nitidus: 63
vittiger: 61 palavanensis: 63
Limnonectes (Hoplobatrachus) paramacrodon: 63
cancrivorus: 60 parvus: 63
crassus: 60 timorensis: 63
demarchii: 61 tweediei: 63
occipitalis: 61 visayanus: 63
occipitalis group: 61 woodworthi: 63
raja: 60 Limnonectes (Taylorana)
Source : MNHN, Paris
INDEX VOL. 5
hascheanus: 64
limborgii: 64
LISSAMPHIBIA: 117-118
Lithodytes: 130, 133-134
Litoria: 115, 127, 152
bicolor: 152
microbelos: 152
nasuta: 152
rothii: 152
tornieri: 152
Liurana: 65
Lynchophrys: 2
M
MANTELLINAE: 34, 67, 114, 125
Mantidactylus: 115
MEANTES: 118
Megalixalus: 1, 128
fornasinii congicus: 133
MEGALOPHREIDINA: 123
Megalophrys: 15
boulengeri: 15, 17
weigoldi: 14
MEGOPHRYIDAE: 123
MEGOPHRYINAE: 13, 22-23, 102, 114,
119-120, 125, 129, 173
MEGOPHRYINI: 173
Megophrys: 13, 22-23, 114, 130, 159-
160, 162
minor: 160
montana: 131
monticola: 23, 131
nasuta: 155-161
oshanensis: 129
pachyprocta: 131
pachyproctus: 131
parva: 131, 141
Megophrys (Atympanophrys)
shapingensis: 23
Megophrys (Brachytarsophrys)
carinensis: 23
Megophrys (Megophrys)
xi
montana: 23
pachyproctus: 23
MELANOBATRACHINAE: 34, 123, 125
Melanophryniscus: 25
Mertensiella: 133
Mertensophryne: 28-29, 141
micranotis: 28-29, 49
rondoensis: 141
Micrarthroleptis: 141
MICRHYLIDAE: 125
Micrixalus: 39-40, 51-54, 57, 64, 141
borealis: 52-53, 59
diminutivus: 53, 59
Juscus: 52, 55
magnapustulosus: 53
mariae: 53-54
nudis: 52-53, 55
opisthorhodus: 54
phyllophilus: 54-55
saxicola: 55
silvaticus: 55
thampii: 52-53, 55
torrentis: 53
Microhyla: 128, 162
borneensis: 155-160
ornata: 141
petrigena: 155-160
MICROHYLIDAE: 2, 10, 34, 119-120,
122, 127-128, 131, 134, 138, 141,
154, 160
MICROHYLINAE: 34, 119, 127
MICROHYLOIDEA: 33
Microphryne: 136, 141
malagasia: 136
Mocquardia: 35, 38
MOLGINAE: 120
MYCETOGLOSSINI: 117, 120
MYOBATRACHIDAE: 125, 127, 134, 138,
141
MYOBATRACHINAE: 127
Source : MNHN, Paris
xii ALYTES
N Nyctimantis papua: 136
Nyctixalus margaritifer: 139
Nannobatrachus: 67-68 Nyctymystes: 136
anamallaiensis: 68
Nannophrys: 66-68, 175
ceylonensis: 68 oO
guentheri: 68
marmorata: 68 Occidozyga: 53, 57-60, 64
Nanorana: 39, 114 cyanophlyctis: 59
Nectophryne: 27 hexadactyla: 59
afra: 27 lima: 58-59
tornieri: 26 Occidozyga (Euphlyctis)
Nectophryne line: 25, 27 cornii: 59
NECTOPHRYNINI: 27, 29 cyanophlyctis: 59
Nectophrynoides: 25-27, 141 ehrenbergii: 59
cryptus: 26 hexadactyla: 59
malcolmi: 27 Occidozyga (Occidozyga)
minutus: 26 lima: 58
occidentalis: 9, 27 ODONTOPHRYNINI: 119, 125
osgoodi: 9 Ololygon: 133, 136
tornieri: 26 Onychodactylus: 127
viviparus: 26 Ooeidozyga: 53, 58
Necturus: 133 Ophryophryne: 13, 22-23, 114, 130
lateralis: 133 microstoma: 23, 130
Nimbaphrynoides: 27 poilani: 23
liberiensis: 27 Opisthodelphys: 30
occidentalis: 27, 49 Opisthothylax: 2, 4
Notaden: 2 Orchestes: 71, 142
Notodelphys: 30 OREOLALAGINAE: 173
ovifera: 30 Oreolalax: 13-15, 18-19, 113, 130, 173
Notokassina: 4, 35, 37 OREOLALAXINAE: 173
Nyctibatrachus: 66-69, 175 Oreophrynella: 25
aliciae: 68 Osornophryne: 25
beddomii: 68 Osteocephalus: 136
deccanensis: 68 taurinus: 136
humayuni: 68 Osteopilus: 134
Khempholeyensis: 68 Oxydozyga: 58
major: 68 Oxyglossus
minor: 68 laevis: 58
modestus: 68
sanctipalustris: 68
sanctipalustris var. modestus: 68
sinensis: 63
sylvaticus: 68
Source : MNHN, Paris
INDEX VOL. 5 xii
P
Paa: 40, 43-45, 60, 130
Palmatorappia: 57, 101
Paracassina: 35, 37-38
kounhiensis: 35
obscura: 35
Pararthroleptis: 141
nanus: 141
Parkerana: 55-56, 130
Pedostibes: 25, 128
tuberculosus: 130
Pelobates: 13
PELOBATIDAE: 7, 13, 22, 114, 123, 125-
126, 129, 131, 134, 138, 141, 173
PELOBATINA: 126
PELOBATINAE: 13
PELOBATOIDEA: 13
PELODRYADIDAE: 119, 125
PELODRY ADINAE: 119, 125
PELODYTIDAE: 125, 132, 134, 138
PELODYTINAE: 125
Pelophryne: 25
Peltophryne: 25, 134
Petropedetes: 121
PETROPEDETINAE: 117, 121-122, 125
PHILAUTINAE: 125, 127
PHILAUTINI: 69
Philautus: 68-72, 142
annandalii: 142
aurifasciatus: 69-70, 72
dubius: 73
hosii: 70
lissobrachius: 72
microtympanum: 73
pleurostictus: 73
schmackeri: 72
Philautus (Gorhixalus)
hosii: 72
Philautus (Kirtixalus): 74, 76
dubius: 73
Jerdonii: 73
microdiscus: 73
microtympanum: 73
pleurostictus: 73
Philautus (Philautus)
acutirostris: T2
aurifasciatus: 72
emembranatus: 72
leucorhinus: 72
lissobrachius: 72
nasutus: 72
parvulus: 72
schmackeri: 72
surdus: 72
Phlyctimantis: 1-4, 35-38
Phryniscus
australis: 135
PHRYNOBATRACHINAE: 34, 117, 121, 125
Phrynobatrachus: 2, 121, 141
Phrynoglossus: 52-53, 57-59
baluensis: 59
borealis: 52, 59
borealis group: 59
celebensis: 59
diminutivus: 52, 59
floresianus: 59
laevis: 59
laevis group: 59
magnapustulosus: 59
martensii: 59
semipalmatus: 59
vittatus: 59
Phrynohyas: 133, 136
PHRYNOMERIDAE: 125
PHRYNOMERINAE: 34, 125
Phrynomerus: 136
Phyllobates: 128
bicolor: 130
latinasus: 136
PHYLLOBATIDAE: 125
PHYLLOMEDUSIDAE: 119, 125
PHYLLOMEDUSINAE: 119, 125
Physalaemus
biligonigerus: 141
biligonigerus group: 141
cuvieri group: 141
nattereri: 141
Source : MNHN, Paris
xiv ALYTES
Pipa: 2
PIPIDAE: 120, 122, 125, 131, 134, 138
PIPINAE: 125
PIPOIDEI: 13
PIPRINA: 127
PLATYMANTINAE: 58, 125
PLATYMANTINI: 39, 57
Platymantis: 40, 52, 57, 64, 101, 141
liui: 53-54
Plethodon: 128, 135
serratus: 143
PLETHODONTIDAE: 125, 127, 134, 138
PLETHODONTINAE: 125
PLETHODONTINI: 125
PLETHODONTOIDEA: 118, 120
PLETHODONTOIDEI: 120
Pleurodeles: 7, 10-11, 142
walil: 10
Pleurodeles (Echinotriton)
andersoni: 11
asperrimus: 11
chinhaiensis: 11
hainanensis: 11
Pleurodeles (Pleurodeles)
poireti: 11
waltl: 11
Pleurodeles (Tylototriton)
kweichowensis: 11
taliangensis: 11
verrucosus: 11
PLEURODELINAE: 10
Pleurodema: 127
Polypedates: 74-76, 127, 135
appendiculatus: 70, 74-75
beddomii: 132, 175
biscutiger: 84
brachytarsus: 132, 175
cavirostris: 132
formosus: 51, 132
hascheanus: 52, 63
Jjerdonii: 73, 132
leucomystax: 131, 142
maculatus: 142
microtympanum: 52, 69-70, 72, 74
nasutus: 132
rufescens: 132
saxicola: 51, 53
POLYPEDATIDAE: 119, 125
PROTEIDAE: 125, 134, 139
PROTEOIDEA: 118, 120
PROTEOIDEI: 120
Proteus: 136
anguinus: 136
Pseudacris: 9, 133, 136, 141
nigrita verrucosa: 141
Pseudarthroleptis: 141
PSEUDIDAE: 107, 125, 132, 134, 138
Pseudobufo: 25, 128
Pseudohemisus: 136
Pseudophryne: 2, 133, 135
australis: 133
semimarmorata: 135
vivipara: 25
Pseudotriton: 127, 135-136
nigra: 135
Ptychadena: 39, 55-56, 114, 130, 152
PTYCHADENINI: 55
PYXICEPHALINI: 66
Pyxicephalus: 39, 66, 114, 127
adspersus: 66
delalandii: 56
fodiens: 57
frithi: 57, 61
pluvialis: 57
Ramanella: 131
simbiotica: 131
symbioitica: 131
symbiotica: 131
Rana: 38-42, 44, 50, 52-53, 55, 57, 60,
64-65, 67, 76, 100-101, 113-115,
130-131, 135, 141-142, 158, 162
aenea: 43
agricola: 60-61
aliilabris: 61
Source : MNHN, Paris
areolata group: 41
assimilis: 61
beddomii: 52
beddomii group: 67
berlandieri group: 41
bicolor: 130
blanfordii: 142
blythi: 155-159
bombina: 97
bonaspei: 131
boulengeri: 44
bourreti: 47
boylii group: 41
bragantina: 60
breviceps group: 40, 142
brevipalmata: 61
burkilli: 60
catesbeiana group: 41
chalconota: 155-159
clamitans: 165, 170
clamitans group: 41
conspicillata: 63
cornuta: 130
crassa: 142
dalmatina: 131
dauchina: 131
daunchina: 131
delacouri: 48, 139
dobsonii: 57
doriae group: 61
esculenta: 142
esculenta group: 41, 142
esculenta synklepton: 105
fasciata: 133
fasciculispina: 48
feae: 45-47
Jusca: 63, 104, 133, 142
Jfuscigula: 139
Juscigula group: 42, 50
gibbosa: 128
gracilis: 61
gracilis var. nicobariensis: 61
gracilis var. pulla: 60-61, 132
grunniens group: 142
INDEX VOL. 5
gryllus: 135-136
holsti: 130
hubeiensis: 143
humeralis: 142
hydraletis: 60
hydromedusa: 63
ibanorum: 155-159
kl. esculenta: 142
kuhlii: 60, 62, 130, 139
leptodactyla: 52, 68-69
leschenaultii: 59, 130
leucorhynchus: 57, 142
liebigit: 46, 130
liebigii group: 43-44
lima: 58
limnocharis: 61, 131
limnocharis group: 40
limnocharis mysorensis: 61
lineata: 130, 133
longimanus: 51
macrodon complex: 142
macrodon var. leporina: 63
mascareniensis: 55
mediolineata: 48
microdisca: 62
microdisca superspecies: 62
microlineata: 48
moluccana: 139
montezumae group: 41
moodiei: 60
mortenseni: 131
muta: 150
nantaiwuensis: 60
nigrita: 136
nigrovittata: 131, 142
occipitalis subgroup: 60
ovalis: 128
palavanensis: 42
Palmipes group: 41-42
paradoxa: 63
parambikulamana: 61
perezi: 161
phrynoides: 45, 47
picta: 60
Source : MNHN, Paris
bPipiens: 170
Pipiens complex: 41, 142
Pipiens group: 41, 142
polunini: 142
pullus: 52, 132
pygmaea: 68, 132
quadrana: 113, 131
quadranus: 48, 131
rostandi: 46
rufescens: 40
rufescens group: 40, 142
sanguinea: 139
sariba: 52-54
sauriceps: 61, 142
schlueteri: 60
scutigera: 81
semipalmata: 68-69
shini: 142
sichuanensis: 47
signata: 155-159
sikimensis: 142
spinosa: 47-48, 60, 142
spinosa group: 44
spinosa supergroup: 48
spinosa verrucospinosa: 44
subsaltans: 63
swani: 57
taipehensis: 142
tarahumarae group: 41
tasanae: 52-54
temporaria: 39-40, 150
temporaria group: 41
tenasserimensis: 52-54, 64-65
tibetana: 44
tigerina: 165-171
tigerina subgroup: 60
tigrina var. angustopalmata: 60
tigrina var. pantherina: 60
tinctoria: 130, 133
toumanoffi: 61
travancorica: 68
typhonia: 133
umbraculata: 42
ALYTES
unculuana: 113, 131
unculuanus: 131
variegata: 57
ventricosa: 131
ventricosus: 131, 143
verrucosa: 132
vertebralis: 42, 49-50
wasl: 61
yunnanensis: 45-47
yunnanensis group: 44
Rana line: 39-40, 54-56
Rana (Amietia)
umbraculata: 49
vertebralis: 49
Rana (Chaparana)
fansipani: 131
Rana (Euphlyctis)
cyanophlyctis group: 58
Keralensis: 131
tigerina group: 60
Rana (Hylarana): 73, 76
Rana (Paa)
aenea: 43
annandalii: 43
arnoldi: 43, 131
blanfordii: 43
boulengeri: 43-44
bourreti: 46
conaensis: 43, 49
delacouri: 44, 47-49
delacouri group: 44, 47
ercepeae: 43
exilispinosa: 43
fasciculispina: 44, 47
feae: 43, 46
hazarensis: 43, 131
liebigii: 43
liebigii group: 43-44
liebigii supergroup: 43
liui: 150
maculosa: 43
maculosa group: 43
minica: 43, 131
polunini: 43
Source : MNHN, Paris
quadranus: 44, 47, 49
rara: 43
rostandi: 43
shini: 43
sichuanensis: 47
sikimensis: 43, 49
sikimensis group: 43
spinosa: 43
spinosa group: 43-44
spinosa supergroup: 43-44, 47
sternosignata: 43-45
vicina: 43
yunnanensis: 43, 45-46
yunnanensis group: 43-44, 150
Rana (Rana)
amieti: 42
angolensis: 42
areolata group: 42
aurora group: 41
berlandieri subgroup: 42
boylii group: 41
catesbeiana group: 41
clamitans group: 41
desaegeri: 42
dracomontana: 42
Juscigula: 42
Juscigula group: 42
Jjohnstoni: 42
kl. esculenta group: 41
lateralis: 42
lateralis group: 42
montezumae subgroup: 42
nigrolineata: 42
Palmipes group: 42
palustris subgroup: 42
Pipiens group: 41
Pipiens subgroup: 42
pleuraden: 41
pustulosa group: 42
rugosa: 42
rugosa group: 42
ruwenzorica: 42
shuchinae: 42
sylvatica: 41
INDEX VOL. 5 xvii
tarahumarae group: 42
temporaria group: 41
tientaiensis: 42
unculuanus: 42, 49
wittei: 42
Rana (Strongylopus)
bonaespei: 50, 131
fasciata: 50
grayii: 50
hymenopus: 50
wageri: 50
Ranae
beddomianae: 66
Ranae chalconotae: 51
Ranae grunnientes: 61-62
Ranae hexadactylae: 58
Ranae kuhlianae: 62
Ranae tigrinae: 58
RANIDAE: 7, 34, 38, 67, 69, 102, 119-
120, 125, 129, 131, 134, 138, 141,
175
Ranidella: 141, 152
RANINAE: 7, 34, 38-40, 42, 54-57, 64,
66-67, 73, 76, 101-102, 113-114,
119, 125
RANINI: 39-40, 50, 54-55
RANIXALINAE: 67
RANIXALINI: 66-67, 175
Ranixalus: 64, 66-67, 69, 175
beddomii: 67, 69
brachytarsus: 69
diplostictus: 69
gundia: 66-67, 69, 175
leithii: 69
leptodactylus: 69
phrynoderma: 69
semipalmatus: 67, 69
tenuilingua: 69
RANOIDEA: 7, 33-34, 66, 175
RANOIDEI: 23
RHACOPHORIDAE: 34, 51-52, 69, 114,
119-120, 125, 129, 132, 134, 138,
142
Source : MNHN, Paris
xvii ALYTES
RHACOPHORINAE: 7, 10, 34, 69, 73-74,
119
RHACOPHORINI: 74
Rhacophorus: 19, 51, 70, 74-78
appendiculatus: 76
bimaculatus: 75, 155-159
bimaculatus group: 74-75, 162
buergeri chapaensis: 51
dubius: 73
dulitensis: 155-160
everetti: 70, 74
gauni: 75
harrissoni: 155-159
hosei: 70
hosii: 69-70, 72
Jjavanus: 76
Kajau: 70, 74-75
leucomystax: 18-79, 81
leucomystax megacephalus: 85
macrotis: 80
maculatus: 78-80, 84-86
maculatus himalayensis: 78, 81, 85
maculatus maculatus: 78-79, 84, 86
maximus: 142
microdiscus: 73
microtympanum: 10
moschatus: 76, 132
mutus: 80
naso: 75
nigropalmatus: 155-159
oxycephalus: 75
pleurostictus: 73
taeniatus: 79
translineatus: 716
verrucosus: 75
zed: 86
Rhacophorus (Leptomantis): 76
bimaculatus: 76
gauni: 76
oxycephalus: 76
sp. KB: 76
sp. NT: 76
Rhacophorus (Rhacophorus)
annamensis: 77
appendiculatus: 77
appendiculatus group: 77
arboreus: 77
bipunctatus: 77
bisacculus: 77
calcadensis: 77
chenfui: 77
chenfui group: 77
colletti: 77
cruciger: 17
dennysii: 77
dennysi group: 77
dugritei: 77
dugritei group: 77
dulitensis: 77
eques: 17
fasciatus: 77
fasciatus group: 77
feae: 77
georgii: 77
harrissoni: 17
hungfuensis: 77
kajau: 77
leucomystax: 77, 19
leucomystax group: 77-78
leucomystax leucomystax: 80
leucomystax megacephalus: 81
leucomystax teraiensis: 81
longinasus: 77
macrotis: 77
maculatus: 77, 82
maculatus biscutiger: 84
maculatus himalayensis: 84
maculatus maculatus: 83
malabaricus: 77
malabaricus group: 77
maximus: 77-78
moltrechti: 77
mutus: 77
nigropalmatus: 77
notater: 77
omeimontis: 77
otilophus: 77
owstoni: 717
Source : MNHN, Paris
INDEX VOL. 5 xix
pardalis: 77
pardalis group: 77
prasinatus: 77
prominanus: 49, 77
reinwardtii: 71
reinwardtii group: 77
rhodopus: 77
schlegelii group: 77
taeniatus: 77, 79
taipeianus: 77
verrucopus: T7
viridis: 77
yaoshanensis: 77
zed: 86
Rhamphophryne: 25
Rhinatrema: 133
RHINATREMATIDAE: 125, 127, 134, 139
Rhinoderma: 2
RHINODERMATIDAE: 125, 134, 138
RHINOPHRYNIDAE: 119, 125, 134, 138
Rhinophrynus: 2
dorsalis: 119
RHYACOTRITONIDAE: 123
RHYACOTRITONINAE: 125, 127
Rothschildia: 35, 38
Kkounhiensis: 35
S
Salamandra: 136-137
genei: 129
maculosa: 136
subfusca: 135-136
SALAMANDRIDAE: 7, 10, 119, 125, 134,
139, 142
SALAMANDROIDEA: 118, 120
SALAMANDROIDEI: 10, 120
Scaphiophryne: 136
marmorata: 136
SCAPHIOPHRYNIDAE: 34
SCAPHIOPHRYNINAE: 126
SCAPHIOPODIDAE: 119, 126
SCAPHIOPODINAE: 13, 119, 126
Scaphiopus: 13, 130
bombifrons: 130
Schismaderma: 28-29
carens: 28
Schoutedenella: 2
SCOLECOMORPHIDAE: 119, 126, 134, 139
Scutiger: 2, 7, 13-16, 19-20, 113, 130,
173
adungensis: 15, 18
alticola: 17-18
boulengeri: 15-16, 18
glandulatus: 15
mammatus: 15, 18, 22
mammatus group: 16
nepalensis: 15-16
nyingchiensis: 15-16, 19
occidentalis: 19
pingit: 15, 130
15-16, 18, 21
sikimmensis group: 15-16
sikkimensis: 19
weigoldi: 15
Scutiger (Aelurolalax)
weigoldi: 15
Scutiger (Oreolalax)
popei: 15
Scutiger (Scutiger)
boulengeri: 16
glandulatus: 22
mammatus: 21
mammatus group: 21
nepalensis: 21
nyingchiensis: 19
sikimmensis: 19
sikimmensis group: 16
Semnodactylus: 35, 37
thabanchuensis: 35
wealii: 35
SIPHONOPIDAE: 117, 120
SIPHONOPINAE: 117
Source : MNHN, Paris
xx ALYTES
Sirena
maculosa: 133
SIRENIDAE: 126, 134, 139
Sminthillus: 2
Somuncuria: 136
SOOGLOSSIDAE: 134, 138
SOOGLOSSINAE: 127
Spea: 130
Sphaenorhynchus: 128
Sphaeroteca: 56-57
strigata: 56-57
SPHENOPHRYNINAE: 120-121, 126
Spinophrynoides: 26-27
osgoodi: 26
Staurois: 39-40, 57, 64, 141
Stenorhynchus: 141
Stephopaedes: 27-29
anotis: 28
STEPHOPAEDINAE: 29
STEPHOPAEDINI: 27
Stombus: 130
Strongylopus: 39-40, 50, 101, 114-115,
127, 133, 135
Synapturanus: 135
Systoma: 129
T
Tachycnemis: 1-2, 4, 133
Taylorana: 63-64
TELMATOBII: 127
TELMATOBIIDAE: 126
TELMATOBIINAE: 23, 38, 127
TELMATOBINI: 126
Telmatobius
somuncurensis: 136
Theloderma: 127
Tomopterna: 39-40, 56, 101, 113-114,
141-142
breviceps: 56
rolandae: 56
strachani: 57
Tomopterna line: 39-40, 56
Tomopterna (Sphaeroteca)
breviceps: 57
labrosa: 57
rolandae: 57
Tomopterna (Tomopterna)
cryptotis: 56
delalandii: 56
krugerensis: 56
marmorata: 57
natalensis: 57
tuberculosa: 57
TOMOPTERNINI: 56
Tornierella: 3-4, 35-38, 115, 137
pulchra: 137
Tornieriobates: 25
TORNIERIOBATINAE: 7, 25
TORNIERIOBATINI: 25, 29
Trachycephalus: 128
Trachymantis: 129, 141
TRACHYSTOMATA: 118
Triton: 137
cristatus: 137
major: 135
palmatus: 104
TRITURINAE: 120
Triturus: 129, 137
Tylototriton: 11, 142
verrucosus: 10
TYPHLONECTIDAE: 126-127, 134, 139
U
Uperodon: 131
globulosus: 141
Uperoleia: 2
URAEOTYPHLINAE: 126
URODELA: 10, 117, 119, 132, 134, 138
140
Vibrissaphora: 173
Source : MNHN, Paris
INDEX VOL. 5 xxi
Werneria: 27
Wolterstorffina: 27
XENOPINAE: 122
XENOPODA: 121
XENOPODINAE: 117, 120, 122, 126
Xenopus: 105
boettgeri: 136
bunyoniensis: 131
(laevis) bunyoniensis: 131
wittei: 131
INDEX OF NEW TAXONS
Aelurolalax: 14
Altiphrynoides: 27
Amietia: 49
Bourretia: 61
Duellmania: 32
Gastrotheca (Duellmania)
group: 33
Gastrotheca (Opisthodelphys) griswoldi
group: 31
Gorhixalus: 72
Grobina: 97
Ingerana: 64
Kirtixalus: 63
Ladailadne: 23
Leptolalax dringi: 13
Liurana: 65
Nimbaphrynoides: 27
PTYCHADENINI: 55
Rana (Paa) bourreti: 46
Rana (Paa) delacouri group: 44
Rana (Paa) liui: 150
Rana (Paa) maculosa group: 43
Rana (Paa) sichuanensis: 47
Rana (Paa) spinosa group: 43
Rana (Paa) yunnanensis group: 43
Rana (Rana) fuscigula group: 42
Rana (Rana) lateralis group: 42
Rana (Rana) rugosa group: 42
riobambae
RANIXALINI: 66
Rhacophorus (Rhacophorus) appen-
diculatus group: 77
Rhacophorus (Rhacophorus) chenfui
group: 77
Rhacophorus (Rhacophorus) dennysii
group: 77
Rhacophorus (Rhacophorus) dugritei
group: 77
Rhacophorus (Rhacophorus) fasciatus
group: 77
Rhacophorus (Rhacophorus) leucomystax
group: 77
Rhacophorus (Rhacophorus) leucomystax
teraiensis: 81
Rhacophorus (Rhacophorus) malabaricus
group: 77
Rhacophorus
group: 77
Rhacophorus (Rhacophorus) reinwardtii
group: 77
Rhacophorus
group: 77
Rhacophorus (Rhacophorus) zed: 86
Spinophrynoïdes: 26
STEPHOPAEDINI: 27
Taylorana: 63
TOMOPTERNINI: 56
(Rhacophorus) … pardalis
(Rhacophorus) schlegelii
Source : MNHN, Paris
xxii ALYTES
SUBJECTS INDEX
Altitude: 13, 17-21, 30-33, 81-86
Amplexus: 5, 29, 49
Aneuchrony: 8, 30, 58
Anus: 48, 49
Body mass: 166-171
Buccopharingeal morphology: 13, 30-32,
69, 71-73, 153, 159, 160
Call: 71
Catalogue: 99-145
Chromosomes: 5
Classification: 7-86
Co-ossification: 78-82, 86
Colour: 5, 15, 18, 46, 78-86
Development: 8, 9, 23-27, 29, 30, 32,
33, 54, 62-65, 69, 70-74
Diet: 5, 37, 38, 153-163, 165-171
Distribution: 13, 15-21, 31-33, 38, 41,
42, 44-48, 50-57, 66, 67, 78-86
Ecology: 8, 12, 18, 34, 37, 50, 56, 75,
84, 153
Eggs: 4, 25-27, 54, 55, 62-65, 69, 71-74
Evolution: 25, 71
Eye: 5, 50
Faunistics: 151-152
Feeding behavior: 158-159
Fertilization: 24, 29, 30, 49
Food particle size: 156-158
Forelimbs: 3, 5, 46, 55, 64, 71-73
Fossil: 12
Genetics: 8
Glands: 2, 4, 5, 14, 15, 55, 64, 66, 67,
73
Growth rate: 165, 166
Habitat: 50, 154, 155, 160-162
Head: 16, 21, 46-48, 50, 61, 78-86
Hindlimbs: 5, 15, 45-48, 50, 58, 64, 71-
73, 78-86
Hybridizability: 9
Hybridization: 10, 12
Incubation pouch: 29-32
Intersexuality: 44, 45, 59
Larvae: 13, 22, 25-28, 32, 33, 50, 55,
58, 59-61, 66, 67-70, 74-76, 79,
152-163, 165-171
Larval anatomy: 13, 28
Larval feeding modes: 158, 159
Larval teeth: 4, 5, 26, 27, 50, 75, 76
Lateral line: 58, 60
Life history: 8, 165
Limbs: 5, 29
Metamorphosis: 165-171
Morphological variation: 18, 20, 33
Morphology: 8, 12, 23, 34
Musculature: 2, 4, 5, 25, 27, 71-74
Nomenclature: 7-86, 97-98, 150, 173,
175
Nomenclature family group taxons: 9, 10
Oral morphology: 28, 55, 58, 68, 69,
153, 159, 160
Osteology: 1, 3, 4
Paedomorphosis: 2-4
Pectoral girdle: 3, 5, 25, 27, 39, 40, 50,
53-55, 57, 59, 60, 64, 66, 71, 72
Pelvic girdle: 55, 56
Phylogeny: 1-5,8, 35, 39, 40, 56, 57, 66,
67
Reproduction: 8, 9, 23-27, 29, 30, 32,
33, 54, 63, 65, 70, 71
Reproductive behavior: 62
Review: 99-145, 151-152
Sampling: 154, 155
Secondary sexual characters: 14, 15, 16,
26, 29, 44, 45, 47-49, 55, 59-61,
63, 64, 67, 71-73, 78-86
Size: 1, 5, 13-16, 21, 22, 30, 32, 44-48,
50-52, 54, 58, 64, 65, 73, 74, 78-
86, 165
Skin: 5, 16, 18, 46-48, 54, 55, 64
Source : MNHN, Paris
INDEX VOL. 5 xxiii
Skull: 2-5, 32, 39, 50, 52, 55, 56, 57,
59, 60, 63, 66, 71, 72
Species recognition: 80-86
Systematics: 1
Taxinomy: 7-86
Teeth: 2, 5, 14, 15, 18 54, 59, 64, 71, 72
Temperature: 165-171
Toe dilatations: 3, 5, 14, 34, 36, 38, 40,
46-48, 54, 58, 59, 61, 64, 65
Tongue: 15, 54, 58, 59, 64, 65
Tympanum: 14, 15, 47, 54, 59, 64
Vertebral column: 2, 3, 5, 55, 71-73
Vocal sacs: 1-5, 14, 16
Webbing: 3, 5, 14-16, 18, 36, 46, 47,
50, 54, 58, 59, 64, 65
GEOGRAPHIC INDEX
Afghanistan: 44, 45
Africa: 25, 29, 35, 38-42, 55, 56, 57,
66, 152
America: 41
Argentina: 30, 32
Asia: 38, 40, 42, 56, 57, 102, 162
Australia: 151
Bangla Desh: 82
Bhutan: 20
Borneo: 13, 52, 53, 69, 70, 74, 75, 80,
81, 153-163
Brasil: 31
Burma: 46, 51, 53, 82
Cameroon: 66
Central Africa: 152
Central America: 56
Ceylon: see Sri Lanka
China: 15-19, 21, 22, 41, 45-47, 53, 75,
80, 81, 85, 100
Colombia: 30, 31, 33
Congo: 66
East Asia: 100
Ecuador: 30, 31, 33
England: 161
Ethiopia: 27
India: 19, 20, 51-54, 56, 66, 70, 73, 78,
79, 82-85, 171, 175
Indochina: 80, 85
Java: 80
Liberia: 66
Madagascar: 56, 67
Majorca: 12
Malaya: 13, 70, 80, 81
Nepal: 18-21, 78, 79, 81, 83-86
Nimba Mountain: 27
North America: 41
Pacific: 42
Pakistan: 44
Panama: 31
Peru: 30-33
Philippines: 53, 69, 70, 72, 80
Puerto Rico: 23
South Africa: 29, 50, 151
South East Asia: 24, 75, 162
Spain: 154, 161
Sri Lanka: 52, 67, 70, 84
Sumatra: 80
Tanzania: 26
Thailand: 43, 53, 153, 161
Tropical Asia: 57, 100
United States: 161
Venezuela: 31
Vietnam: 45-48, 80, 81
Western Australia: 151, 152
Source : MNHN, Paris
xxiv ALYTES
REFEREES
The editors of Alytes thank warmly the following colleagues, who accepted to
read, study and comment the papers submitted for publication in Alytes from 1st July
1985 to 30 June 1987:
Edouard-Raoul BRYGO0 (Paris) Pierre JOLY (Lyon)
Stephen D. BUSACK (Urbana) Raymond F. LAURENT (Tucumän)
Ronald I. CROMBIE (Washington) Jan MCLAREN (Halifax)
William E. DUELLMAN (Lawrence) Annemarie OHLER (Wien)
Carl GANS (Ann Arbor) Georges PASTEUR (Montpeller)
Jacqueline GAVAUD (Paris) Manuel POLLS PELAZ (Paris)
Jean-Daniel GRAF (Genève) Jean-Paul RisCH (Luxembourg)
Claude P. GUILLAUME (Montpellier) Josef Friedrich SCHMIDTLER (München)
W. Ronald HEYER (Washington) Richard WASSERSUG (Halifax)
Marinus S. HOOGMOED (Leiden) Earl WERNER (Ann Arbor)
© ISSCA 1993
Source : MNHN, Paris
AINTES
Journal International de Batrachologie
International Journal of Batrachology
édité par la Société Batrachologique de France
Rédacteurs : Alain DUBOIS et Jean-Jacques MORÈRE.
Adresse : Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire naturelle, 25 rue Cuvier,
75005 Paris, France.
Comité de rédaction : Jean-Louis AMIET (Yaoundé), Stephan D. BUSACK (Urbana), Benedetto LANZA
(Firenze), Raymond F. LAURENT (Tucumän), Michael J.TYLER (Adelaide), Richard J.
WASSERSUG (Halifax).
Recommandations aux auteurs. — Alytes publie des articles originaux en français ou en anglais, consa-
crés aux Amphibiens. Les manuscrits doivent être dactylographiés et accompagnés d’un résumé
en anglais (abstract). Les articles en anglais seront suivis d’un résumé assez complet en fran-
çais (pour ceux qui le souhaiteraient, les rédacteurs acceptent de revoir les résumés en fran-
çais à partir d’un texte en anglais). Tableaux et figures doivent comporter un titre. Les figu-
res, exécutées à l’encre noire, ne devront pas dépasser le format 16 x 24 cm. Indiquer leur
numéro au crayon ; légendes sur feuille séparée. Présenter les références bibliographiques
conformément au dernier numéro d” A/yres paru (les références de livres doivent comporter
la pagination). Adresser les manuscrits en trois exemplaires aux rédacteurs. L’acceptation
d’un article pour publication est décidée par les rédacteurs après lecture critique de celui-ci
par deux lecteurs ou plus.
Instructions to authors. — Alytes publishes original papers in English or in French, dealing with Am-
phibians. Manuscrits should be typewritten, and preceded by an English abstract. Papers in
English should be followed by a detailed French summary (for those who may wish so, the
editors accept to revise such French summaries on the basis of an English text). Tables and
figures should possess titles. Figures should be drawn in black ink and should not exceed
16 x 24 cm in size. Their numbers should be written in pencil. Figure captions should be
assembled on a separate sheet. Bibliographic references should be presented as in recent issues
of Alytes (book references should include the pagination). Send the manuscripts in triplicate
to the editors (address above). Acceptance for publication will be decided by the editors fol-
lowing review by two referees or more.
Tirés à part. — 25 exemplaires gratuits par article. Au-delà, les tirés à part seront facturés par tran-
ches de 25 exemplaires.
Publié avec le concours du Muséum national d'Histoire naturelle.
Directeur de la Publication : Alain DUBOIS.
Numéro de Commission Paritaire : 64851.
Source : MNHIN, Paris:
6 OCT. 1987
Alytes, 1986, 5 (4) : 153-176.
SOMMAIRE
Robert F. INGER
Diets of tadpoles living in a Bornean rain forest ..…
Ashok K. HOTA & Madhab C. DASH
Growth and metamorphosis of anuran larvae : effect of diet and
temperature
Alain DUBOIS
Miscellanea nomenclatorica batrachologica (XIV) ............
Alain DUBOIS
Miscellanea nomenclatorica batrachologica (XV) .............
Photocomposition/Photogravure : Alexandre, Paris. 42 46 17 57.
Imprimé aux Ateliers de la Couronnerie, 45750 Saint-Pryvé Saint-Mesmin, France.
Dépôt légal : 3° trimestre 1987.
153
165
173
175
Source : MNHN, Paris: