. Septembre 1988 Volume 7, N° 3.
Source : MNHN, Paris.
Amphibiens, IS; Re ed ÿ
25 rue Cuviers 75005 Péris, Frince.
CONSEIL D'ADMINISTRATION POUR 1988
Président : Jean-Jacques MORÈRE.
Vice-Présidents : Jean-Louis AMIET, Jean COLLEAU.
Secrétaire général (renseignements et demandes d'adhésion) : Alain DuBos.
isorière : Dominique PAYEN. 6
CoLLENOr, Edouard LEMÉE, Luck MaRrN-BouYER, Poser Ru
La S.B.F. est ouverte à toute personne française ou étrangère | intéressée par!
phibiens ; écrire au Secrétaire général. La cotisation inclut le service du Bul
de ex la protection des An
d'information Circalyres.
TARIFS 1988
Lieu de résidence
France Etranger
Membres de la S.B.F. : 5
Cotisation seule 100 F 100 F
Cotisation + | ‘abonnement à “bytes 170F 180 F
Cotisation membre associé (conjoint, etc.) . 40F 40F
Abonnement à Alytes pour les non-membres : È
Individus .… . 100 F 130F
Institutions -. 200F 260 F
Supplément pour expédition d’ Are En avion es et non-membres) . ce S0F
Achats au numéro et rachats d'anciennes séries d'Alyues : écrire au Sécrétaire ei pour information.
MODALITÉS DE RÈGLEMENT L
FRANCE. - Par chèque postal ou bancaire à | Re de “Société Batrachologic de France”, adressé à notre
Trésorière, ou par virement postal sur notre C.C.P. : “Société Batrachologique de France”, C.CP..
7976 90 K, Paris. $ :
EUROPE. - Exclusivement par virement postal ou mandat postal, libellé en Francs Français et adressé à
notre Compte Chèques Postal : “Société Batrachologique de France”, C.C.P. 7976 90 K, Paris.
OUTSIDE EUROPE. - Please write to our General Secretary for information.
AIRTTES 2°;
INTERNATIONAL JOURNAL OF BATRACHOLOGY
Septembre 1988 Volume 7, N° 3
Alytes, 1988, 7 (3): 77-89. 77
Deux nouvelles espèces du genre Telmatobius
(Anura: Leptodactylidae) en provenance de
El Moreno (Province de Jujuy, Argentine)
E.O. LaviLLa & R.F. LAURENT
Instituto de Herpetologia, CONICET, Fundacién Miguel Lillo,
Miguel Lillo 251, 4000, Tucumän, Argentine
Two new species of Telmatobius (Anura: Leptodactylidae) are described, based
on specimens from El Moreno, Jujuy, Argentina. For the first time, two species of this
genus are recorded living in sympatry in Argentina.
En 1901, l'expédition suédoise d’Earland NORDENSKIOLD a recueilli une série de Tel-
matobius qui fut ultérieurement rapportée par ANDERSSON (1906) à Telmatobius jeslkii (Pe-
ters). Cependant, cette espèce n’a jamais été signalée ailleurs qu’au Pérou, ce qui incita BAR-
BOUR & NOBLE (1920) à mettre en doute l’identification d’ANDERSSON et à attribuer, à titre
d’hypothèse, ce matériel à Telmatobius hauthali Koslowsky, 1895. GALLARDO (1962) se ran-
gea à l’opinion de BARBOUR & NOBLE, mais rien n’a été fait pour résoudre réellement le pro-
blème.
En février 1987, l’un de nous a pu refaire en partie l'itinéraire de l’expédition suédoise
grâce à la carte publiée par son archéologue (VON ROsEN, 1957) et pu localiser le village ap-
pelé El Moreno (23° 52'S 65° 48'W). Grande fut notre surprise de trouver dans la région deux
espèces, ce qui constitue le premier cas de sympatrie connu pour le genre en Argentine. Toutes
deux sont nouvelles et décrites ci-après.
Nous n’avons pu localiser la Stockholm Hogskola, lieu où fut déposé le matériel exa-
miné par ANDERSSON et il nous est donc impossible de dire à quelle espèce ou quelles espèces
il appartient.
liothèque Centrale luséum
LL
3 3001 0011
Source : MNHN, Paris
78 ALYTES 7 (3)
Fig. 1.— Telmatobius platycephalus (FML 03763), vue latérale de la tête.
Telmatobius platycephalus sp. nov.
(fig. 1-7)
Holotype. - FML 03763, femelle adulte. El Angosto, 6 km S de El Moreno, Province de
Jujuy, Argentine, 3600 m. 12/11/87. Col. E. LAviLLA, À. MARCUS, R. MONTERO.
Etymologie du nom spécifique. - De m\arés, aplati et xepaAn, tête.
Diagnose. — Diffère par la structure de la peau dorsale des autres espèces argentines, celle-ci
étant complètement lisse chez T. stephani et T. ceiorum, complètement verruqueuse chez T.
marmoratus, T. atacamensis et T. oxycephalus, complètement épineuse chez T. scrocchi, T.
laticeps et T. pisanoï, pourvue de rares épines et verrues dispersées chez T. schreiteri, et ayant
un aspect poreux chex T. contrerasi. De T. hauthal il diffère par l’absence des glandes post-
oculaires chez la femelle.
Fig. 2. - Telmatobius platycephalus, vue dorsale de la tête.
Source : MNHN, Paris
LAVILLA & LAURENT 79
Longueur totale (SVL) : 61 mm. Tête déprimée, à région gulaire plate, plus longue
(21,8 mm) que large (20,9 mm). Indice céphalique : 0,96. Largeur de la tête environ 2,9 fois
et longueur 2,8 fois dans la longueur du corps (distance museau-anus).
Museau quelque peu arrondi à légèrement pointu en vue dorsale, arrondi en vue la-
térale, plus court que le diamètre oculaire (distance narine-bout du museau/diamètre de
lPœil : 0,79). Canthus rostralis arrondi, peu différencié et région loréale concave. Lèvre non
glandulaire, mince, plus saillante antérieurement. Pupille ronde, membrane nictitante trans-
parente, ornée d’une mince bande pigmentée sur son rebord libre ; diamètre de l'œil (5,2 mm)
supérieur à la distance œil-narine (4 mm) ; distance entre les angles antérieurs des yeux en-
viron 2,6 fois dans la largeur de la tête. Pli supratympanique mince, non glandulaire et lé-
gèrement oblique, s’étendant depuis l’angle postérieur de l’œil jusqu’à la région médio-dor-
sale de la glande postcommissurale, au-dessus et en avant de la base du membre antérieur.
Glande postcommissurale subcirculaire, saillante, avec pustules peu visibles et sans excrois-
sances cornées. Tympan et anneau tympanique invisibles ; pli suprahuméral absent. Orifices
nasaux circulaires, non saillants, à bords légèrement en relief, dirigés dorsalement et situés
environ à mi-distance de l’œil et du bout du museau. Distance internasale (3,8 mm) infé-
rieure à la distance naso-oculaire (4 mm) et 1,2 fois inférieure à la distance interoculaire.
Langue ronde, non échancrée et libre en arrière. Dents prémaxillaires et maxillaires aigües
et minces ; dents vomériennes présentes ; choanes ovales.
Région dorsale de la tête et région centrale du dos lisses ; périphérie et partie posté-
rieure de la région dorsale du corps parsemées de pustules basses, petites, abondantes et sans
excroissances cornées ; flancs et région ventrale du corps lisses ; plis gulaire et thoracique
absents. Région postérieure des cuisses avec pustules similaires à celles du dos ; le reste lisse.
Plis glandulaires latéraux absents. Ouverture cloacale postéro-dorsale, au niveau de la région
médio-dorsale des cuisses. Pli cloacal petit et festonné, n’arrivant pas à couvrir l’ouverture.
Pli supracloacal glandulaire et bien apparent ; région péricloacale plissée avec quelques pus-
tules.
Doigts arrondis et non dilatés au bout. Tubercule métacarpal interne elliptique et non
saillant, 1,6 fois plus long que le tubercule métacarpal externe qui est ovale et aplati. Tu-
bercules sous-articulaires hémisphériques, saillants et entiers, de formule I(1), II(1), III(2),
IV(2). Palmure réduite à un pli cutané vestigial sur le bord interne des 2ème et 3ème doigts.
Paume avec granulations de taille variable. Longueur relative des doigts du plus long au plus
court : 33-41-72.
Orteils arrondis et non dilatés au bout, les 4ème et 5ème légèrement plus étroits dis-
talement. Tubercule métatarsal interne elliptique et saillant ; tubercule métatarsal externe
petit, conique, également saillant. Tubercules sous-articulaires hémisphériques, entiers et
saillants, selon formule I(1), II(1), II(2), IV(3), V(2). Plantes pourvues de nombreux gra-
nules petits et bas. Plis tarsal et métatarsal présents, allant de la moitié du tarse au bout du
ler orteil. Formule de la palmure : I(1), II(2-1/2), IHI(2-1), IV(2-1), V(1/3). Relation entre
la longueur du pied et la taille (SVL) : 0,43. Talons non en contact quand les cuisses sont
à angle droit avec le corps. Articulation tibio-tarsale atteignant le coin de la bouche quand
la patte est étendue vers l'avant. Tibia 2,9 fois plus long que large, représentant 40 % de la
taille.
Source : MNHN, Paris
80 ALYTES 7 (3)
Tableau I. — Telmatobius platycephalus, mesures des paratypes.
MA : longueur du corps ; LT : longueur de la tête ; IT : largeur de la tête ; NM : narine — bout
du museau ; NO : narine — œil ; DN : distance internasale ; DO : distance entre les bords antérieurs
des yeux ; Tmc : tubercule métacarpal ; Tce : tubercule carpal externe ; Tmi : tubercule métatarsal
interne ; Tme : tubercule métatarsal externe ; © : diamètre oculaire ; TB : longueur du tibia ; ITB :
largeur du tibia ; PD : longueur du pied (depuis le bord postérieur).
03769 03765 03790
MA 60.0 56.0 50.0
LT 22.0 20.4 17.8
IT 21.2 19.6 16.7
NM 44 4.4 4.2
NO 3.8 3.9 3.9
DN 3.7 37 2.96
DO 8.1 8.2 6.7
Tme 3.9 3.7 3.3
Tce 2.89 2.65 2.54
Tmi 2.80 2.78 2.02
Tme 1.44 1.38 1.40
Oo 4.9 45 44
TB 2521 25.1 21.1
ITB 8.3 6.7 7.0
Pd 26.8 25.7 21.5
Coloration. — Dos gris verdâtre (gris moyen dans l'alcool) avec petites taches plus
sombres, de forme irrégulière et distribuées au hasard, anastomosées dans la région centrale
du dos et formant des taches plus grandes. Ventre de couleur crème, avec zones jaunes sous
les pattes et de petites taches grises irrégulières dans la région axillaire.
Allotype. - FML 03764. Mâle adulte. San José de Chañi, versant occidental du Massif du
Chañi, entre El Moreno et Abra de Palomar, Prov. Jujuy, Argentine, 3750 m. 13/11/87. Coll.
E. LAViLLaA, A. MARCUS, R. MONTERO.
On signale ici seulement les différences avec l’holotype. Longueur totale 54 mm. In-
dice céphalique : 0,98. Distance narine-bout du museau : 93 % du diamètre oculaire. Dis-
tance entre les coins antérieurs des yeux + 2,6 fois dans la largeur de la tête. Glande post-
commissurale avec excroissances cornées.
Texture de la peau semblable à celle de l’holotype, mais verrues pourvues chacune d’une
pointe de kératine. D’une aisselle à l’autre, une bande couverte de minuscules épines cor-
nées. Un pli gulaire.
Tubercule métacarpal interne 1,74 fois plus long que l’externe. Pouce pourvu d’épines
nuptiales petites et nombreuses formant une plaque à peu près continue. Longueur du pied
sur la longueur du corps (SVL) : 0,45. Tibia 2,8 fois plus long que large, représentant 42 %
de la longueur du corps.
Autres paratypes. - FML 03769, El Angosto, Jujuy, Argentine, 12/11/87, LAVILLA — MARCUS
— MoNTERO col. ; FML 03790, San José de Chañi, Jujuy, Argentine, 13/11/87, LAVILLA —
MARCUS — MoNTERO col.; FML 03765, El Moreno, Jujuy, Argentine, 11/11/87, LAVILLA —
MONTERO — MARCUS col.
Les caractères sexuels sont confirmés par les paratypes. Voir variation dans le Tableau I.
Source : MNHN, Paris
LaAVviLLA & LAURENT 81
Fig. 3. Telmatobius platycephalus, vue dorsale du crâne.
Ostéologie (fig. 3 à 7). — Caractérisation préliminaire, basée sur le squelette d’une seule fe-
melle (FML 04371) provenant d’El Moreno, Jujuy, Argentine. Préparation du squelette se-
lon WaASSERSUG (1976).
Crâne (fig. 3). — Fronto-pariétaux soudés en arrière, séparés en avant par une fonta-
nelle en forme de V, donnant l'impression d’un seul fronto-pariétal bifide. Portion frontale
couvrant les bords du sphénethmoïde sur toute leur longueur, laissant à découvert la région
médiane. En arrière, fronto-pariétal soudé aux prootiques mais non aux exoccipitaux, n’at-
teignant pas le foramen magnum, non en contact avec le squamosal ni avec les nasaux. Na-
saux subtriangulaires, transversalement orientés, à bords irréguliers, proches l’un de l’autre
et en contact avec le sphénethmoïde, leur processus maxillaire n’atteignant pas la pars facia-
lis du maxillaire. Prémaxillaires non soudés entre eux, ni avec les maxillaires. Processus la-
minaires irréguliers, obliques et convergents. Pars dentalis portant 4 à 6 dents. Pars palatina
avec un processus maxillaire court. Maxillaires très longs, les trois quarts antérieurs portant
de 24 à 26 dents. Pars palatina laminaire étroite, réduite le long de la portion édentée de l’os.
Pars facialis avec processus préorbital bien développé, mais sans processus postorbital. Au-
Fig. 4. — Telmatobius plasycephalus, ceinture scapulaire (surface en pointillé = cartilage).
Source : MNHN, Paris
82 ALYTES 7 (3)
Fig. 5. Telmatobius platycephalus, hyoïde (surface en pointillé = cartilage).
cun contact avec la branche zygomatique du squamosal ni avec le ptérygoïde. Quadrato-jugal
court et arrondi, en étroit contact avec le squamosal, non superposé au maxillaire ; carré non
ossifié (fig. 7). Parasphénoïde à processus cultriforme long, dépassant de peu l’extrémité an-
térieure du sphénethmoïde, non en contact avec les palatins (fig. 6). Ailes plus courtes que
le processus cultriforme, couvrant quasi complètement les capsules otiques, et très légère-
ment le bord antérieur des exoccipitaux. Prévomers non en contact avec un autre os. Aile
antérieure nettement plus grande que l'aile postérieure. Processus odontophore à peu près
perpendiculaire à l’axe antéro-postérieur, muni de 3 ou 4 dents. Palatins en forme de ba-
guette mince, un peu élargie à son extrémité latérale, perpendiculaires à l’axe longitudinal,
séparés du sphénethmoide. Septomaxillaires bien développés, situés un peu au-dessous du
processus dorsal des prévomers. Extrémité antérieure du ptérygoïde superposée à l’extrémité
latérale du palatin. Branche postérieure plus longue que la branche médiale, celle-ci non en
contact avec les prootiques mais superposée à eux. Branche postérieure séparée du complexe
formé par le quadrato-jugal et le squamosal. Branches antérieure et postérieure longues, sig-
moïdes. Squamosal à branche otique très courte, n’atteignant pas les prootiques ; branche
inférieure en étroit contact avec le quadrato-jugal, plus longue que le processus zygoma-
tique, celui-ci aplati. Sphénethmoïde court (environ 1/3 de la longueur de l'orbite), continu
dorsalement, mais incomplet ventralement, le vide étant cependant couvert par le processus
cultriforme du parasphénoïde. Septum internasal non ossifié. Exoccipitaux séparés des proo-
tiques, ceux-ci séparés l’un de l’autre et sans ornementation dorsale. Condyles occipitaux se-
milunaires. Columelle ossifiée.
Ceinture scapulaire (fig. 4). — Arcifère. Omosternum cartilagineux ; clavicules ar-
Fig. 6. Telmatobius platycephalus, détail de la région du sphénethmoide, en vue ventrale.
Source : MNHN, Paris
LaAviLLA & LAURENT 83
Ü
Fig. 7.— Telmatobius platycephalus, détail de la région du quadrato-jugal, en vue ventrale.
quées, non soudées à l’omoplate et séparées des coracoïdes par un cartilage légèrement cal-
cifié. Omoplate à pars acromialis plus large que la pars glenoidalis, celle-ci bicipitale, séparée
de la suprascapula par une bande cartilagineuse bien visible. Cleithrum bifurqué dorsale-
ment, la branche antérieure la plus longue. Epicoracoïdes cartilagineux. Métasternum
constitué d’une plaque large et carrée à côtés concaves, et partie distale fendue.
Main. — Cubital et radial libres, le dernier plus grand. Central proximal libre, pres-
qu’aussi grand que le radial. Carpiens externes (3ème, 4ème et 5ème) soudés au 2ème cen-
tral. 2ème carpien libre s’articulant avec les deux centraux et le 2ème métacarpien. Prépollex
de 5 phalanges, la dernière la plus petite. Tous ces éléments sont cartilagineux, mais pré-
sentent des centres d’ossification.
Pied. — Tibial et péronéal unis par un cartilage commun, minéralisé proximalement et
distalement. Trois premiers tarsiens libres et cartilagineux. Préhallux de 4 phalanges, car-
tilagineux.
Hyoïde (voir fig. 5). — Processus antéromédiaux bien développés et thyrohyaux bien
séparés.
Telmatobius hypselocephalus sp. nov.
(fig. 8-14)
Holotype. - FML 03768, femelle adulte. El Angosto, 6 km S de El Moreno, Jujuy, Argen-
tina. 3600 m. 12/11/1987. Coll. E. LaviLLa, A. MARCUS, R. MONTERO.
Etymologie du nom spécifique. - De ubnAos, haut et xepaAn, tête.
Diagnose. - Diffère de T. platycephalus par le profil globuleux de la tête, et des autres espèces
argentines par la présence d’épines et pustules cornées limitées aux flancs et la région pos-
térieure du dos.
Longueur totale (SVL) : 62 mm. Tête haute, à région gulaire convexe, un peu plus
large (20,7 mm) que longue (20,2 mm). Indice céphalique : 1,02. Largeur de la tête environ
2,9 fois et longueur à peu près 3,1 fois dans la longueur totale.
Museau arrondi en vues dorsale et latérale, plus court que le diamètre oculaire (dis-
tance narine-bout du museau/diamètre de l’œil : 0,83). Canthus rostralis arrondi, peu dis-
tinct, et région frénale concave. Lèvres non glandulaires, minces et uniformément saillantes.
Pupille ronde. Membrane nictitante transparente, ornée d’une bande pigmentée sur son bord
libre ; diamètre oculaire (5,2) supérieur à la distance oculo-nasale (2,93) ; distance entre les
coins antérieurs des yeux environ 2,7 fois dans la largeur de la tête. Pli supratympanique
Source : MNHN, Paris
84 ALYTES 7 (3)
7N &
Fig. 8. Telmatobius hypselocephalus (FML 03768), vue latérale de la tête.
mince, glandulaire et légèrement oblique, s’étendant depuis le coin postérieur de l’œil jus-
qu’à la base du membre antérieur, au-dessus et devant. Glande postcommissurale peu dé-
veloppée, non saillante, avec quelques verrues portant des excroissances kératinisées. Tym-
pan absent ; anneau tympanique visible, plus à gauche qu’à droite ; pli suprahuméral absent.
Orifices nasaux circulaires, à bords légèrement en relief, non saillants, dirigés dorsalement,
et situés plus près de l’œil que du bout du museau. Espace internasal (3,7) supérieur à la
distance oculo-nasale (2,93), environ la moitié de la distance interoculaire. Langue arrondie,
non échancrée, libre en arrière. Dents prémaxillaires et maxillaires minces et acérées, dents
vomériennes très réduites ; choanes ovales, transversalement orientées.
Fig. 9.- Telmatobius hypselocephalus, vue dorsale de la tête.
Source : MNHN, Paris
LaAVviLLA & LAURENT 85
Région centrale de la tête lisse, les paupières granuleuses. Peau dorsale couverte de
verrues basses, celles des côtés et de l’arrière avec pustules cornées. Flancs et ventre avec
pustules kératinisées plus petites et plus rares. Pli gulaire peu développé ; pli thoracique ab-
sent. Partie postérieure et antérodorsale des cuisses pourvue de rares granulations ; le reste
lisse. Plis glandulaires latéraux absents.
Ouverture cloacale postérodorsale, au niveau de la région médio-dorsale des cuisses.
Pli cloacal petit et festonné, n’arrivant pas à couvrir l’ouverture. Pli supracloacal glandulaire
et bien visible. Région péricloacale plissée, verruqueuse.
Doigts arrondis au bout, non dilatés. Tubercule métacarpal interne elliptique et non
saillant, 1,6 fois plus long que le tubercule métacarpal externe, celui-ci ovale et aplati. Tu-
bercules sous-articulaires hémisphériques, entiers et saillants selon formule I(1), II(1), IHI(2),
IV(2). Palmure réduite à un pli vestigial sur le bord interne des 2ème et 3ème doigts. Paume
couverte de granulations hémisphériques, petites et saillantes. Longueur relative des doigts
du plus long au plus court: 3-4-1-72.
Orteils arrondis au bout, non dilatés, les 4ème et 5ème légèrement plus étroits dista-
lement. Tubercule métatarsal interne elliptique et aplati. Tubercule métatarsal externe petit,
hémisphérique et saillant. Tubercules sous-articulaires hémisphériques, saillants, non di-
visés, selon formule I(1), 11(1), II(2), IV(3), V(2). Plante avec quelques granulations petites
et basses. Plis métatarsal et tarsal présents, allant du bout du ler orteil à la moitié du tarse.
Formule de la palmure I(1), II(2-1), III(2-1 3/4), IV(3 1/4-3), V(1). Pied environ 40 % de la
longueur du corps. Tibia 2,9 fois plus long que large, représentant 40 % de la taille.
Coloration. - Dorsalement brun verdâtre sombre, uniforme ; ventralement verdâtre
clair, avec quelques taches orangées dans la région fémorale, brun grisâtre en alcool.
Allotype. - FML 03767, mâle adulte. El Angosto, 6 km S de El Moreno, Jujuy, Argentina.
3600 m. 12/11/87. Coll. E. LavizLa, A. MARCUS, R. MONTERO.
Diffère de l’holotype par les traits suivants:
Longueur totale 60 mm. Tête plus longue (21,5 mm) que large (20,8 mm). Indice cé-
phalique 0,97. Distance narine-bout du museau/diamètre oculaire 0,70. Distance entre les
coins antérieurs des yeux environ 2,7 fois dans la largeur de la tête. Glande postcommissu-
rale développée. Anneau tympanique non visible.
Verrues dorsales peu développées, mais excroissances cornées présentes. Flancs et ventre
lisses avec de minuscules épines cornées dispersées dans la région pectorale. Pli supracloacal
peu marqué et région péricloacale sans glandes. Tubercule métacarpal interne 1,12 fois plus
long que l’externe. Epines nuptiales du pouce petites, très nombreuses et denses. Talon at-
teignant la commissure, quand la patte postérieure est étendue en avant. Longueur du pied
sur la longueur du corps 0,41. Tibia 3,0 fois plus long que large, représentant 40 % de la
longueur totale.
Autres paratypes. - FML 03766/D, 03766/E, 03766/F, 03766/G, 03766/H et 03766/J, El Mo-
reno, Jujuy, Argentine, 13/11/87, LAVILLA — MARCUS - MONTERO col.
Les caractères sexuels sont confirmés par les paratypes. Voir variation dans le Tableau
II.
Source : MNHN, Paris
86 ALYTES 7 (3)
Tableau II. — Telmatobius hypselocephalus, mesures des paratypes.
MA : longueur du corps ; LT : longueur de la tête ; IT : largeur de la tête ; NM : narine — bout
du museau ; NO : narine — œil ; DN : distance internasale ; DO : distance entre les bords antérieurs
des yeux ; Tme : tubercule métacarpal ; Tce : tubercule carpal externe ; Tmi : tubercule métatarsal
interne ; Tme : tubercule métatarsal externe ; © : diamètre oculaire ; TB : longueur du tibia ; ITB :
largeur du tibia ; PD : longueur du pied (depuis le bord postérieur).
03766D 03766E 03766F 03766G 03766H 03766]
MA 55.0 50.0 68.0 60.0 59.0 58.0
LT 18.2 17.4 23.0 19.7 19.7 17.7
IT 17.9 16.8 26.2 20.0 20.0 18.3
NM 4.5 3.9 5.0 4.0 4.0 3.8
NO 3.1 3.1 3.8 2.73 2.95 2.70
DN 2.94 3.0 44 3.6 4.2 34
DO 74 4 9.2 7.8 LE 2 7.0
Tmc 2.82 3.0 4.5 3.5 2.61 2.86
Tce 2.68 2.80 2.43 2.49 2.65 2.04
Tmi 2:53 2.45 2.70 2.48 2.52 2.12
Tme 1.44 1.40 1.10 1.53 1.40 1.23
Oo 4.6 4.9 6.7 54 ab sy
TB 22.7 22.0 29.4 24.1 22.4 22,4
ITB 8.0 8.1 92 9.0 8.9 7.9
PD 23.9 22.8 28.4 25.6 242 23.3
Ostéologie (fig. 10 à 14). - Comme on n’a préparé qu’un seul squelette de cette espèce (fe-
melle adulte, FML 04372) ainsi que de la première, la caractérisation ostéologique reste pré-
liminaire et on notera seulement les différences avec Telmatobius platycephalus. Squelette
préparé selon WAssERSUG, 1976.
Fig. 10. — Telmatobius hypselocephalus, vue dorsale du crâne.
Source : MNHN, Paris
LAVILLA & LAURENT 87
Fig. 11. - Telmatobius hypselocephalus, ceinture scapulaire (surface en pointillé = cartilage).
Crâne (fig. 10). - Fontanelle fronto-pariétale en forme de U et non de V, moins large.
Portion frontale couvrant seulement la base du sphénethmoïde, celui-ci presque complète-
ment exposé. En arrière, fronto-pariétaux soudés aux exoccipitaux et aux prootiques. Na-
saux subquadrangulaires, à bords internes convexes, les autres concaves, proches l’un de
l’autre, recouvrant largement le sphénethmoïde. Prémaxillaires portant de 5 à 7 dents.
Maxillaires portant environ 20 dents, en contact avec l'extrémité antérieure du ptérygoïde.
Quadrato-jugal long et pointu, en étroit contact avec le squamosal, son quart antérieur lon-
geant le maxillaire. Processus cultriforme du parasphénoïde couvrant à peu près les deux tiers
du sphénethmoïde. Prévomers à processus odontophore portant une seule dent ; son aile
postérieure fortement réduite. Palatins en contact avec les maxillaires, leur tiers interne re-
couvrant le sphénethmoïde. Carré ossifié ; ptérygoïde, carré, quadrato-jugal et squamosal en
contact (fig. 14). Branche otique du squamosal en contact avec le prootique et plus courte
que la branche inférieure. Sphénethmoïde fort développé, formant une structure continue
aussi bien dorsalement que ventralement ; partie antérieure en forme de prisme trapézoïdal,
atteignant les choanes (fig. 13). Côtés du chondrocrâne ossifiés. Exoccipitaux soudés aux
prootiques, ornementés.
Fig. 12.- Telmatobius hypselocephalus, hyoïde (surface en pointillé = cartilage).
Source : MNHN, Paris
88 ALYTES 7 (3)
7
Fig. 13. Telmatobius hypselocephalus, détail de la région du sphénethmoïde en vue ventrale.
Ceinture scapulaire (fig. 11). — Clavicules soudées à l’omoplate et séparées des cora-
coïdes par un cartilage calcifié. Pars acromialis et pars glenoidalis de l’omoplate subégales.
Omoplate séparée de la suprascapula par une étroite bande de cartilage. Cleithrum bifurqué,
les deux branches à peu près égales. Epicoracoïdes largement calcifiés. Métasternum trapé-
zoïdal, fendu à la base, fortement calcifié.
Main. — Diffère seulement de celle de Telmatobius platycephalus par son ossification
complète et la présence d’un os sésamoïde elliptique entre le radius et le radial.
Pied. — Diffère seulement de celui de Telmatobius platycephalus par son ossification
presque complète (seules les 3 phalanges distales du préhallux restent cartilagineuses), le ti-
bial et le péronéal soudés à leurs extrémités.
Hyoïde (fig. 12). — Processus antéro-médiaux absents et thyrohyaux rapprochés.
Et
Fig. 14. Telmatobius hypselocephalus, détail de la région du quadrato-jugal en vue ventrale.
RÉSUMÉ
Deux nouvelles espèces du genre Telmatobius (Anura : Leptodactylidae) sont décrites
d’après un matériel provenant de El Moreno, Jujuy, Argentine. Ceci revêt un intérêt par-
ticulier car c’est la première fois qu’on observe deux espèces de ce genre vivant en sympatrie
en Argentine.
Source : MNHN, Paris
LAVILLA & LAURENT 89
RÉFÉRENCES BIBLIOGRAPHIQUES
ANDERSSON, L.G., 1906. — On batrachians from Bolivia, Argentina and Peru, collected by Erland Nor-
denskiôld, 1901-1902, and Nils Holmgren, 1904-1905. Arkio. f. Zool., 3 (12) : 1-19, 1 pl.
BARBOUR, T. & NOBLE, G.K., 1920. - Some amphibians from northwestern Peru, with a revision of
the genera Phyllobates and Telmatobius. Bull. Mus. Comp. Zool., 63 (8) : 395-427, 3 pl.
GALLARDO, J.M., 1962. — Los géneros Telmatobius ÿ Batrachophrynus en la Argentina (Anura : Lepto-
dactylidae). Neorropica, 8 (26) : 45-58.
Von RosEN, E., 1957. - Un mundo que se va. Opera Lilloana, 1 : i— xxiü + 1-307, 45 pl.
WASsERSUG, R.J., 1976. — À procedure for differential staining of cartilage and bone in whole formalin
fixed vertebrates. Stain Tech., 51 : 131-134.
Source : MNHN, Paris
Alytes, 1988, 7 (3): 90-96.
À new species of Telmatobius
(Anura : Leptodactylidae)
from Catamarca (Argentina)
E.O. LaviLia & R.F. LAURENT
Instituto de Herpetologia, Fundaciôn Miguel Lillo,
y Programa de Herpetologia, CONICET,
Miguel Lillo 251, 4000 Tucumän, Argentina
A new species of Telmatobius, T. pinguiculus, is described from the mountains
of Catamarca Province, Argentina. A preliminary key to the species of Telmatobius from
this province is given.
INTRODUCTION
As currently understood, the Argentinian fauna of Telmatobius consists of 13 species,
four of which are reported from Catamarca Province. AI of them are stream dwellers and
have restricted, not overlapping ranges : Telmatobius hauthali is found in one thermal spring
at Aguas Calientes (27° 14S 68° 16°W), T. scrocchii at Campo El Arenal (27° 06’S 66° 20°W),
T. stephani in the isolated mountain range of El Manchao (28° 08’S 65° 54°W) and T. ceiorum
in the forested areas of Nevados del Anconquija (27° 08S 66° 02’W).
Field work in the mountains of this province has continued to reveal undescribed spe-
cies of frogs and lizards, including the one herein described from La Cienaga (about 27° 30°S
67° 00°W), near Medanitos (27° 32’S 67° 36W).
Specimens used for descriptions are housed at Fundaciôn Miguel Lillo Collections
(ML).
Telmatobius pinguiculus n.sp.
(fig. 1-8)
Holotype. - FML 03910. Adult female.
Etymology of the specific name. — This name is a diminutive of the Latin word pinguis, mean-
ing somewhat fat.
Diagnosis. - Done in relation with the other species of Telmatobius inhabiting Catamarca
province. Spiny skin of T. pinguiculus sets the difference with T. hauthali (granular), T. ceiorum
and T. stephani (smooth). The absence of suprahumeral fold and the presence of postcom-
missural gland in T. pinguiculus set the differences with T. scrocchiüi, which has the opposite
condition in both characters.
Source : MNHN, Paris
LaAviLLA & LAUREN 91
Fig. 1. Telmatobius pinguiculus, lateral view of the holotype.
Description. — Snout-vent length (SVL) 56.0 mm. Head wider (18.6) than long (16.1) ; ce-
phalic index 1.15. Head width about three times, and head length about 3.5 times in SVL.
Snout rounded in dorsal and lateral view, and shorter than eye diameter (snout
length/eye diameter : 0.66). Canthus rostralis indistinct and rounded ; loreal region nearly
flat and inclined laterally. Pupil circular and palpebral membrane pigmented only in a nar-
row strip in the free margin ; interocular distance about 2.3 times in head width. Tym-
panum and tympanic ring indistinct ; supratympanic fold rather glandular, with small cor-
neal projections, running from posterior corner of eye to the dorsal border of post-commissural
gland. Nostrils rounded, flanged and not protruding, without projections or inflections, di-
rected dorsolaterally and placed closer to eye (3.3) than to tip of snout (3.5) ; internasal dis-
<è dog
Fig. 2. Dorsal view of the holotype.
Source : MNHN, Paris
92 ALYTES 7 (3)
tance (3.1) shorter than naso-ocular distance, and 2.5 times less than interocular distance.
Tongue circular. Premaxillary and maxillary teeth small and sharp ; vomerine teeth present.
Skin on back and limbs with flat warts and small corneal spines ; ventrally smooth,
with few corneal spines on borders. Cloacal opening at about mid-level of thighs ; anal fold
small, not covering the cloaca.
Body moderately stout. Tip of fingers rounded and not expanded. Outer metacarpal
tubercle almost quadrangular, about the same size (3.2) as the inner, elliptical, metacarpal
tubercle (3.3) ; latter in contact with a round, flat, palmar tubercle, forming a heart-shaped
structure. Subarticular tubercles hemispherical, protruded and not divided ; number of tu-
bercles on each digit follows the formula I(1) — II(1) — III(2) — IV(2), the one on the pollex
being the greatest. Palmar tubercles present. Webbing absent ; no dermal folds on fingers.
Relative length of digits, from longer to shorter : 3>4>1>2.
Tibio-tarsal articulation reaching the forearm ; heels in contact when femurs bent at
right angle to body. Low fold from the tip of hallux to tibio-tarsal joint. Inner metatarsal
tubercle elliptical and slightly protruding, larger (2.72) than the rounded, outer metatarsal
tubercle (1.52). Subarticular tubercles hemispherical, protruding and not divided ; number
of tubercles on each digit follows the formula I(1) — II(2) — III(2) — IV(3) — V(2). A single
palmar tubercle at the base of each toe ; supernumerary tubercles on toes III, IV and V. Tip
of toes rounded. Relative length of digits, from longer to shorter 4>5>3>2>1. Palmar for-
mula : I(1) ; II(2 — 1) ; II(2 — 2) ; IV(3 — 3) ; V(1). Plantar surface spiny. Ratio of foot
length/SVL : 0.46. Tibia 3.3 times longer than wide, 46% of SVL.
Coloration (in alcohol). - Dorsally dark brownish-gray, with small, darker spots scat-
tered ; ventrally pale gray.
Allotype. - FML 03920. Adult male. The same data as for the holotype.
Only the main differences with the holotype are pointed out.
SVL 53.0 mm. Head longer (17.3) than wide (16.2) ; cephalic index 0.93. Head width
about 3.3 times, and head length about 3.1 times in SVL.
Snout shorter than eye diameter (snout length/eye diameter : 0.72), and interocular
distance about 2.2 times in head width. Nostrils placed closer to eye (3.0) than to tip of snout
(3.6) ; internasal distance (2.94) slightly shorter than naso-ocular distance (3.0) and about
2.4 times less than interocular distance.
Body slenderer, with a greater number of horny spines on chest. Inner metacarpal tu-
bercle (3.0) about the same size as the outer (2.94), and not in contact with single plantar
tubercle. Nuptial pad on the inner surface of pollex, consisting of a slightly cornified plate
with numerous, strong, conical spines.
Forelimbs proportionally longer ; tibio-tarsal articulation reaching the posterior corner
of eye ; tarsal fold shorter and more evident, reaching the distal 1/3 of tarsus ; supernu-
merary tubercles only on the fifth toe. Palmar formula : I(1) ; II(2 — 1); II[(2 — 1)
@-1 3/4)] ; IV(G3 - 2) ; V(). Ratio of length of foot/SVL 0.41. Tibia 3.1 times longer than
wide, representing 44.5% of SVL.
Source : MNHN, Paris
LAVILLA & LAURENT 93
Table I. - Measurements (in millimeters) of holotype, allotype and other paratypes of Tel-
matobius pinguiculus.
H : holotype ; À : allotype ; 1 to 7 : other paratypes ; SVL : snout-vent length ; HL : head
length ; HW : head width ; SL : snout length (from anterior border of nostril to tip of snout) ; NO :
naso-ocular distance (from posterior border of nostril to anterior border of eye) ; IN : internasal dis-
tance ; IO : interocular distance ; IMT : inner metacarpal tubercle ; OMT : outer metacarpal tu-
bercle ; Imt : inner metatarsal tubercle ; Omt : outer metatarsal tubercle ; E : eye diameter ; T : tibia
length ; t : tibia width ; F : foot length.
H A 1 2 3 4 $ 6 7
SVL 56.0 53.0 50.0 55.0 52.0 51.0 51.0 53.0 50.0
HL 16.1 17.3 17.0 17.4 14.5 16.0 16.3 15.6 16.8
HW 18.6 16.2 16.7 17.0 15.6 16.2 16.8 18.1 16.3
SL 3.5 3.6 3.1 3.5 3.1 3.8 3.8 3.6 3.3
NO se 3.0 3.2 2.39 2.78 3.2 34 34 2.92
IN 3.1 2.94 2.78 3.3 2.69 2.63 3.2 SEL 2.95
10 7.9 72 + 7.1 7.2 73 7.8 8.3 7.2
IMT 3.3 3.0 2.80 2.87 2.76 2.82 2.93 3.6 32
OMT #3 2.94 2.61 2.56 2.52 2.72 2.55 3.0 2.56
Imt 2.72 2.21 2.34 2.65 2.35 2.46 2.68 2.48 2.25
Omt 1.52 0.74 1.30 1.08 1.20 1.24 1.26 1.24 1.02
E 58 5.0 si à 54 4.9 5.5 44 43 48
ELA 23.6 23.6 22.7 23.9 22.9 22.6 22.8 24.1 21.3
t 7.1 7.7 7.2 6.7 7.2 72 7.9 8.0 74
F 26.0 25.3 24.2 26.4 25.0 24.1 27.0 23.0 23.0
Other paraiypes. - FML 03921/1 to 5, adult females ; FML 03921/6 and 7, adult males ; the
same data as for the holotype.
The sexual characters and degree of morphological variation between the holotype and
allotype are confirmed by the paratypes. See variation in measurements in Table I.
Osteology (fig. 3 to 8). - The following description, based on only one adult female (FML
04373), is considered preliminary. General features of the skeleton are designed in fig. 3 to
Fig. 3. - General view of skull (scale = 5 mm).
Source : MNHN, Paris
94 ALYTES 7 (3)
Fig. 4. — Detail of quadratojugal area (scale = 5 mm).
8, and only the most noticeable characters are noted. Skeleton for study was prepared fol-
lowing WaAssERSUG’s (1976) technique.
Skull. - Frontoparietal a single bone, with frontal region bifurcated. Premaxillary,
maxillary and prevomer toothed. Palatines in contact with pterygoid and sphenethmoid ; the
latter, as a complete ring, expanded anteriorly and laterally, with a wing-like process at each
side. Ventrally, the sphenethmoid projecting posteriorly at about 1/3 the length of cultriform
process of parasphenoid.
Pterygoid and squamosal in close contact with a strong quadratojugal ; pars articularis
of quadrate separated from the jugal projection (this bizarre condition observed bilaterally).
Medial ramus of squamosal noticeably short.
Hyoid. - Hyoglossal sinus strong ; anterior process of hyale poorly developed but ob-
servable ; alary process and posterolateral process well developed ; posteromedial process
ossified, without stalk.
Pectoral girdle. - Omosternum cartilaginous ; sternum bilobed and strongly mineral-
ized ; epicoracoids mineralized. Clavicle fused with scapula ; the latter firmly attached to
coracoid by means of mineralized tissue.
RES
Fig. 5. Detail of sphenethmoidal region (scale = 5 mm).
Source : MNHN, Paris
LaAviLLA & LAURENT 95
N
Fig. 6. - Hyoid (stippled area : cartilage ; scale = 5 mm).
Carpus (nomenclature according to ANDERSEN, 1978). — Os centrale postaxiale artic-
ulating with metacarpals III, IV and V ; os distal carpale 2 free, articulating with metacarpal
I and os centrale postaxiale ; the latter articulating with the basal prepollical element. Ul-
nare and radiale independent ; an elliptical sesamoid on the radiale. Prepollex with five ele-
ments, the distal two cartilaginous.
Tarsus (nomenclature according to ANDERSEN, 1978). - Only three distal tarsal ele-
ments present. Os distal tarsale 1 articulating with prehallux ; os distal tarsale 2 articulating
with metatarsal II and os distal tarsale 3 articulating with metatarsals III and IV.
PRELIMINARY KEY FOR THE SPECIES OF TELMATOBIUS
FROM CATAMARCA PROVINCE (ARGENTINA)
La. Dorsal skin granular ; postocular protuberances evident … T. hauthali Koslowsky, 1895.
b. Dorsal skin smooth or spiny ; postocular protuberances absent ..................... 2
Fig. 7.- Pectoral girdle (stippled area : cartilage ; scale = 5 mm).
Source : MNHN, Paris
96 ALYTES 7 (3)
Fig. 8. Carpus (scale = 5 mm).
2.a. Dorsal skin smooth, with definite, big spots ; ventrally pigmented ................. 3
b. Dorsal skin spiny ; when spots present, usually small and rounded ; ventrally pig-
mented only on thighs ................................... CRE DR A EAST 4
3.a. Tympanum evident ; with round, white edged spots on dorsum and a constant intra-
ocular spot ; ventrally dark gray with yellow, irregular spots scattered
T. ceiorum Laurent, 1970.
b. Tympanum indistinct, with enlarged, dark spots on dorsum ; ventrally gray mottled
on belly and thighs T. stephani Laurent, 1973.
4.a. Suprahumeral fold thick and glandular ; postcommissural gland absent
T. scrocchii Laurent & Lavilla, 1986.
b. Suprahumeral fold absent ; postcommissural gland evident ....T. pinguiculus sp. nov.
RÉSUMÉ
Une nouvelle espèce du genre Telmatobius est décrite d’après un matériel provenant de
la province de Catamarca, Argentine. Une clef préliminaire des espèces de Telmatobius de
cette province est donnée.
LITERATURE CITED
ANDERSEN, M.L., 1978. — The comparative myology and osteology of the carpus and tarsus of selected
anurans. Unpubl. PhD Thesis Univ. Kansas : 1 — 235, atlas.
WassERSUG, R.J., 1976. — A procedure for differential staining of cartilage and bone in whole
formalin fixed vertebrates. Stain. Tech., 51 : 131 — 134.
Source : MNHN, Paris
Alytes, 1988, 7 (3): 97-100. 97
Leptobrachium parvum Boulenger, 1893
(Amphibia, Anura) : proposed conservation
Alain DuBois
Laboratoire des Reptiles et Amphibiens,
Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
The valid name under the Rules of the species now known as Megophrys parva
(Boulenger, 1893) is in fact Megophrys monticola (Günther, 1864). In order to avoid the
problems caused by this priority, the International Commission on Zoological Nomen-
clature is asked to use its plenary powers to place the name Leptobrachium parvum
Boulenger, 1893 on the Official List of Specific Names in Zoology.
Note. — This paper was submitted on 27 May 1981 to the Secretary of the International Com-
mission on Zoological Nomenclature for publication in the Bulletin of zoological Nomenclature, but, de-
spite repeated requests since then, has still not been published in this journal. The problem it raised
has therefore remained unresolved. This paper is therefore published here as it was submitted, except
that a few recent references have been incorporated.
(1) The genus Megophrys was created by KUHL & VAN HASsELT (1822) for a single spe-
cies of frogs from Java. In the original description, the name of this species was mentioned
twice, but under two different spellings : montana (p. 102) and monticola (p. 104). During a
little more than a century, the name montana was universally considered as the valid name
of this species, and was the only one to appear in the scientific literature, until the work of
SMITH (1931 : 12), where this author suggested to use the name monticola for this species.
As was shown and discussed in more details elsewhere (DuBois, 1982), this action was in-
correct, because GRAVENHORST (1829 : 47), acting as first reviser (“first author to have cited
together the competing spellings and to have chosen one as the spelling to be used”), had
chosen the name montana. The name montana Kuhl & Van Hasselt, 1822 must therefore be
reinstated as the valid name of the type-species by monotypy of Megophrys Kuhl & Van Has-
selt, 1822. The name “monticola Kuhl & Van Hasselt, 1822” must therefore be considered
as an incorrect original spelling and, as such, is not an available name. The name monticola,
which was used for this species by most authors after SMITH’s (1931) work, must therefore
be considered as an unjustified emendation of montana Kuhl & Van Hasselt, 1822, and be
credited to SMITH (1931 : 12). (For a more lengthy discussion of this case, see DuBoIs, 1982).
(2) The fact that the name “monticola Kuhl & Van Hasselt, 1822” cannot be consid-
ered as being available under the Rules has a secondary nomenclatural consequence. GÜNTHER
(1864 : 414) created the genus Xenophrys for a single new species, which he called Xenophrys
monticola. BOULENGER (1893 : 344) described this species again, on the basis of new mate-
rial, under the name Leptobrachium parvum. Later, BOULENGER (1908 : 419) considered both
names as synonyms and transferred the species to which they both apply into the genus Me-
Source : MNHN, Paris
98 ALYTES 7 (3)
galophrys Wagler, 1830 (an unjustified emendation of Megophrys Kuhl & Van Hasselt, 1822).
For this species he used the name parva Boulenger, 1893, presumably because he considered
the name monticola Günther, 1864 to be preoccupied in this genus by “monticola Kuhl & Van
Hasselt, 1822” — although for this latter species he used the correct name montana Kuhl &
Van Hasselt, 1822! AI subsequent authors have admitted both the synonymy of monticola
Günther, 1864 and parva Boulenger, 1893, and the need of using the second of these names
for this species, the first one being considered preoccupied in the genus Megophrys. Since
however, as shown above, the name “monticola Kuhl & Van Hasselt, 1822” has no status in
nomenclature, the name monticola Günther, 1864 is in fact valid, and monticola Smith, 1931
(replacement name of montana Kuhl & Van Hasselt, 1822) is a junior secondary homonym
of this name. It would therefore be necessary to reinstate the name monticola Günther, 1864
as the valid name of the species currently known as Megophrys parva (Boulenger, 1893). This
action would be most inappropriate, for three reasons :
(a) The specific name monticola Günther, 1864 has not been in use since its replace-
ment by BOULENGER (1908) by the name parva Boulenger, 1893.
b) The specific name parva Boulenger, 1893 has been widely used since then (see
e.g. : ANNANDALE, 1908 : 305, 1912 : 29, 1917 : 155 ; HoRA, 1922 : 9, 1923 : 582, 1928 :
139 ; NIEDEN, 1923 : 57 ; NOBLE, 1927 : 75 ; BOURRET, 1942 : 203 ; KRIPALANI, 1953 : 60 ;
Liv & Hu, 1961 : 66 ; DANIEL, 1962 : 667 ; TAYLOR, 1962 : 299 ; GoRHAM, 1966 : 21, 1974 :
43 ; INGER, 1966 : 19 ; WALTNER, 1973 : 22 ; Dugois, 1974 : 353, 1976 : 12, 1977 : 113,
1980 a : 165, 1980 b : 472, 1981 : 69 ; ANONYMOUS, 1977 : 28 ; FROST, 1985 : 416).
(c) The resurrection of the name monticola Günther, 1864 for this species would be
liable to create a confusion with the name “monticola Kuhl & Van Hasselt, 1822” which,
although improperly, has since SMITH’s (1931) work been widely used for the species the
valid name of which is shown above to be montana Kuhl & Van Hasselt, 1822.
G) Accordingly, I request the International Commission on Zoological Nomencla-
ture :
(1) to use its plenary powers to suppress the specific name monticola, as published
in the combination Xenophrys monticola Günther, 1864 (: 414), for the purposes of the Law
of Priority but not for those of the Law of Homonymy ;
(2) to place the specific name monticola, as published in the combinations Megophrys
monticola Kuhl & Van Hasselt, 1822 (: 104), Xenophrys monticola Günther, 1864 (: 414) and
Megophrys monticola Smith, 1931 (: 12), on the Official Index of Rejected and Invalid Specific
Names in Zoology ;
(3) to place the specific name parvum, as published in the combination Leptobra-
chium paroum Boulenger, 1893 (: 344), on the Official List of Specific Names in Zoology ;
(4) to place the specific name montana, as published in the combination Megophrys
montana Kuhl & Van Hasselt, 1822 (: 102) (type-species by monotypy of Megophrys Kuhl &
Van Hasselt, 1822), on the Official List of Specific Names in Zoology ;
(5) to place the generic name Megophrys Kuhl & Van Hasselt, 1822 (: 102), type-
species, by monotypy, Megophrys montana Kuhl & Van Hasselt, 1822, on the Official List of
Generic Names in Zoology.
Source : MNHN, Paris
Dugois 99
RÉSUMÉ
Le nom valide, selon le Code, de l’espèce d’Anoures actuellement connue sous le nom
de Megophrys parva (Boulenger, 1893), s’avère être en fait Megophrys monticola (Günther,
1864). De manière à éviter les problèmes pausés par cette priorité, il est demandé à la
Commission Internationale de Nomenclature Zoologique de faire usage de ses pleins pou-
voirs pour supprimer le nom spécifique Xenophrys monticola Günther, 1864 et de placer le
nom Leptobrachium paroum Boulenger, 1893 sur la Liste Officielle des Noms Spécifiques en
Zoologie.
LITERATURE CITED
ANONYMOUS, 1977. — [Systematic keys 10 the Amphibians of China]. (In Chinese). Beijing, Kexue Chu-
panche : [i-iv] + iv + 1-93, pl. I-XVIL.
ANNANDALE, N., 1908. — Notes on some Batrachia recently added to the collection of the Indian Mu-
seum. Rec. Indian Mus., 2 : 304-305.
- 1912. - Zoological results of the Abor expedition 1911-1912. I. Batrachia. Rec. Indian Mus., 8 :
7-36, pl. II-IV.
-- 1917. - Zoological results of a tour in the Far East. Batrachia. Mem. Asiat. Soc. Beng., 6 : 119-
156, pl. V-VI.
BOULENGER, G.A., 1893. — Concluding report on the Reptiles and Batrachians obtained in Burma by
Signor L. Fea, dealing with the collection made in Pegu and the Karin Hills in 1887-88. Ann.
Mus. Stor. nat. Genova, (2a), 13 : 304-347, pl. VII-XII.
= 1908. — A revision of the oriental pelobatid Batrachians (genus Megalophrys). Proc. zool. Soc. Lond.,
1908 : 407-430, pl. XXII-XXV.
BourRET, R., 1942. — Les Batraciens de l’Indochine. Hanoï, Institut océanographique de l’Indochine :
x + 1-547, 4 pl.
DanIEL, J.C., 1962. - Notes on some Amphibians of the Darjeeling area, West Bengal. 7. Bombay nat.
Hist. Soc., 59 : 666-668, pl. I-IV.
Dugois, A., 1974. — Liste commentée d’Amphibiens récoltés au Népal. Bull. Mus. nat. Hist. Nat.,
(3), 213 (Zool. 143) : 341-411.
--- 1976. - Les grenouilles du sous-genre Paa du Népal (famille Ranidae, genre Rana). Cahiers né-
palais-Documents, Paris, CNRS, 6 : i-vi + 1-275.
= 1977. - Chants et écologie chez les Amphibiens du Népal. /n : Himalaya. Ecologie-Ethnologie, Col-
loques internationaux du CNRS, 268, Paris, CNRS : 109-118.
-- 1980 a. — L'influence de l’homme sur la répartition des Amphibiens dans l’Himalaya central et
occidental. C.R. Soc. Biogéogr., 55 : 155-178.
“ee 1980 b. — Notes sur la systématique et la répartition des Amphibiens Anoures de Chine et des ré-
gions avoisinantes, IV. Classification générique et subgénérique des Pelobatidae Megophryinae.
Bull. Soc. linn. Lyon, 49 : 469-482.
s 1981. — Biogéographie des Amphibiens de l'Himalaya : état actuel des connaissances. Zn : Paléo-
géographie et biogéographie de l'Himalaya et du sous-continent indien, Paris, CNRS, Cahiers népa-
lais : 63-74.
ss 1982. — Le statut nomenclatural des noms génériques d’Amphibiens créés par Kuhl et Van Hasselt
(1822) : Megophrys, Occidozyga et Rhacophorus. Bull. Mus. natn. Hist. nat. (4), 4 (A) : 261-280.
FRosT, D.R. (ed.), 1985. - Amphibian species of the world. Lawrence, Allen Press & Assoc. Syst. Coll. :
Liv] + iv + 1.732.
GorHaM, S.W., 1966. — Liste der rezenten Amphibien und Reptilien. Ascaphidae, Leiopelmatidea (sic),
Pipidae, Discoglossidae, Pelobatidae, Leptodactylidae, Rhinophrynidae. Das Tierreich, 85 : i-xvi
+ 1-222.
Source : MNHN, Paris
100 ALYTES 7 (3)
- 1974. - Checklist of world Amphibians up to January 1, 1970. Saint-John, The New Brunswick Mu-
seum : 1-173.
GRAVENHORST, J.L.C., 1829. - Deliciae Musei Zoologici Vratislaviensis. Fasciculus primus, continens Che-
lonios et Batrachiae. Lipsiae, Sumptibus Leopoldi Vossii : i-xiv + 1-106, pl. I-XVII.
GONTHER, A., 1864. — The Reptiles of British India. London, Ray Society : i-xxvii + 1-452, pl. I-XXVI.
Hora, S.L., 1922. - Some observations on the oral apparatus of the tadpoles of Megalophrys parva Bou-
lenger. 7. & P. Asiat. Soc. Beng., (n.s.), 18 : 9-15.
-— 1923. - Observations on the fauna of certain torrential streams in the Khasi Hills. Rec. Indian Mus.,
25 : 579-599.
= 1928. — Further observations on the oral apparatus of the tadpoles of the genus Megalophrys. Rec.
Indian Mus., 30 : 139-145, pl. III.
INGER, R.F., 1966. — The systematics and z0ogeography of the Amphibia of Borneo. Fieldiana : Zool.,
52 : 1-402.
KRIPALANI, M., 1953. — On two remarkable tadpoles from the Darjiling distict. Everyday Sci.,
Hoshiarpur, 2 : 57-61.
KuuL, H. & VAN HASsELT, J.C., 1822. — Uittreksels uit brieven van de Heeren Kuhl en Van Hasselt,
aan de Heeren C.J. Temminck, Th. Van Swinderen en W. De Haan. Algemeene Konst- en Letter-
Bode, 7 : 99-104.
Liv, C.-C. & Hu, S.-C., 1961. — [The tailles Amphibians of China.] (In Chinese). Shanghai : i-xvi +
1364, pl. I-VI + I-XXVIIL.
NiepEN, F., 1923. — Amphibia. Anura I. Subordo Aglossa und Phaneroglossa, sectio 1 Arcifera. Das
Tierreich, 46 : i-xxxii + 1-584.
NoBLe, G.K., 1927. - The value of life history data in the study of the evolution of the Amphibia.
Annals N.Y. Acad. Sci., 30 : 31-128, pl. IX.
Smrrm, M.A., 1931. — The herpetology of Mt. Kinabalu, North Borneo, 13,455 ft. Bull. Raffles Mus.,
5 : 3-32, pl. I-II.
TayLoR, E.H., 1962. - The Amphibian fauna of Thailand. Univ. Kansas Sci. Bull., 63 : 265-599.
WALTNER, R.C., 1973. — Geographical and altitudinal distribution of Amphibians and Reptiles in the
Himalayas. Part I. Cheetal, 16 : 17-25.
Source : MNHN, Paris
Alytes, 1988, 7 (3): 101-104. 101
Hyla reinwardtii Schlegel, 1840(?)
(Amphibia, Anura) : proposed conservation
Alain DuBois
Laboratoire des Reptiles et Amphibiens,
Muséum national d’Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
As shown elsewhere in detail (DUBOIS, 1982), the valid name under the Rules
ofthe species now known as Rhacophorus reinwardtii [Schlegel, 1840(?)] is in fact Rha-
cophorus moschatus Kuhl & Van Hasselt, 1822. Accordingly, the International
Commission on Zoological Nomenclature is asked to use its plenary powers to protect
the well-known name reinwardtii.
Note. — This paper was submitted on 27 May 1981 to the Secretary of the International
Commission on Zoological Nomenclature for publication in the Bulletin of zoological Nomenclature, but,
despite repeated requests since then, has still not been published in this journal. The problem it raised
has therefore remained unresolved, despite other mentions of it in subsequent works (DuBoIs, 1981 ;
FRosr, 1985 : 547). This paper is therefore published here as it was submitted, except that a few recent
references have been incorporated.
(1) The problem of the validity of the generic name Rhacophorus Kuhl & Van Hasselt,
1822 and of the specific names Rhacophorus reinwardtii Kuhl & Van Hasselt, 1822 and Rha-
cophorus moschatus Kuhl & Van Hasselt, 1822 has been the matter of several previous dis-
cussions (see in particular : STEJNEGER, 1907, 1925 ; SMITH, 1927 ; WOLF, 1936 ; BRON-
GERSMA, 1942). Recently however, I have presented a new analysis of this case (DuBois, 1982),
which solves all problems associated with it, except one, for which an action of the Inter-
national Commission on Zoological Nomenclature is necessary.
(2) As already recognized by SMITH (1927), WoLr (1936) and BRONGERSMA (1942), it
is clear that the short diagnosis given by KUHL & VAN HASsELT (1822) for their new genus
Rhacophorus is sufficient to make this name available as of KUHL & VAN HASSELT (1822) -
and not as of SCHLEGEL (1827), as suggested by others (e.g. STEJNEGER, 1907).
(3) Some authors (e.g. WoLF, 1936 ; BRONGERSMA, 1942 ; LIEM, 1970) have suggested
that the type-species of Rhacophorus was Hyla reinwardtii Schlegel, 1840(?) by subsequent
designation of WoLr (1936), while others (e.g. STEJNEGER, 1907 ; NIEDEN, 1923) have
considered that it was Hyla palmata Daudin, 1803 by subsequent monotypy in SCHLEGEL
(1827). Both these interpretations are incorrect.
(4) When creating their genus Rhacophorus, KUHL & VAN HASSELT (1822) associated
two specific names with this generic name. The first of these names, Rhacophorus reinwardti,
being devoid of any description, definition, or indication, is a nomen nudum and is not
available as of KUHL & VAN HASSELT (1822). This specific name became available only with
Source : MNHN, Paris
102 ALYTES 7 (3)
the publication by SCHLEGEL [1840(?) : pl. 30] of a plate of drawings of a species of frogs
which he named Hyla reinwardtii. On the other hand, the second specific name proposed by
KunL & VAN HASSELT (1822), Rhacophorus moschatus, is accompanied by a very short in-
dication (statement that this species produces a smell of musk) which, although open to some
discussion as to its biological relevance (see WoLr, 1936 and BRONGERSMA, 1942), is suffi-
cient, in the meaning of the Code, to make the name moschatus available as of KUHL & VAN
HASsELT (1822). This name being the only available specific name associated with the ge-
neric name Rhacophorus in the original description of this genus, Rhacophorus moschatus Kuhl
& Van Hasselt, 1822 is the type-species of Rhacophorus Kuhl & Van Hasselt, 1822 by mono-
typy. Therefore all subsequent designations of type-species for this genus, including the ones
mentioned above in (3) and the overlooked designation of reinwardtii made by FITZINGER
(843 : 31) are invalid.
(5) A last problem remains to be dealt with. It concerns the status of the name mos-
chatus. This name has been considered by all authors until now as a nomen nudum, and
consequently has never been used as the valid name of a species. For a long time this name
was believed to have been proposed by KUHL & VAN HASsELT (1822) for a species distinct
from the one named reinwardti by these authors. Several authors (e.g. VAN KAMPEN, 1923 :
254 ; AHL, 1931 : 148 ; WoLr, 1936 : 187) suggested with doubt that this species might be
the same which was later called Hyla margaritifera by SCHLEGEL (1844 : 107) and even later
Rhacophorus javanus by BOETTGER (1893 : 338). However, after a detailed inquiry, BRON-
GERSMA (1942) gave good arguments to support the idea that this name had in fact been pro-
posed for a (probably young) specimen of the species which is now known as Rhacophorus
reinwardti. Therefore the names moschatus and reinwardti appear to be synonyms. However,
since the first one is available as of KUHL & VAN HASSELT (1822) and the second one as of
SCHLEGEL [1840(?)], the first one would under the Rules have to replace the second one as
the valid name of the species. This would be most unfortunate both because the name mos-
chatus has never been used as a valid specific name since 1822, and because the name rein-
wardtii has been universally used as the valid name of the species to which they both apply
since 1822 (see e.g. DUMÉRIL & BIBRON, 1841 : 532 ; FITZINGER, 1843 : 31 ; GÜNTHER,
1859 : 82 ; BOULENGER, 1882 : 88 ; VAN KAMPEN, 1923 : 264 ; SMITH, 1927 : 213 ; AHL,
1931 : 170 ; Wor, 1936 : 211 ; BoURRET, 1942 : 446 ; BRONGERSMA, 1942 : 342 ; LIU &
Hu, 1961 : 255 ; INGER, 1966 : 294 ; LI1EM, 1970 : 100 ; GRANDISON, 1972 : 75 ; GORHAM,
1974 : 171 ; BERRY, 1975 : 107 ; ANONYMOUS, 1977 : 52 ; DRING, 1979 : 216 ; FROST, 1985 :
547). An action of the Commission is therefore necessary to protect the name reinwardtii.
(6) Accordingly, I request the International Commission on Zoological Nomencla-
ture :
(1) to use its plenary powers to rule that the specific name reinwardtii, as published
in the combination Hyla reinwardtii Schlegel, 1840(?) (: pl. 30), is to be given precedence
over the specific name moschatus, as published in the combination Rhacophorus moschatus Kuhl
& Van Hasselt, 1822 (: 104), by any author who considers that both specific names apply to
a single biological species ;
@) to place the specific name reinwardti, as published in the combination Hyla rein-
wardtii Schlegel 1840(?) (: pl. 30), on the Official List of Specific Names in Zoology, with an
endorsement that it is to be given precedence over the specific name moschatus, as published
Source : MNHN, Paris
Dugois 103
in the combination Rhacophorus moschatus Kuhl & Van Hasselt, 1822 (: 104), by any author
who considers that both specific names apply to a single biological species ;
G) to place the specific name moschatus, as published in the combination Rhaco-
Dhorus moschatus Kuhl & Van Hasselt, 1822 (: 104) (type-species by monotypy of Rhacopho-
rus Kuhl & Van Hasselt, 1822), on the Official List of Specific Names in Zoology, with an
endorsement that any author who considers that this name and the name reinwardtii, as pu-
blished in the combination Hyla reinwardtii Schlegel, 1840(?) (: pl. 30), apply to a single bio-
logical species, is to use the latter name for this species ;
(4) to place the generic name Rhacophorus Kuhl & Van Hasselt, 1822 (: 104), type-
species, by monotypy, Rhacophorus moschatus Kuhl & Van Hasselt, 1822, on the Official List
of Generic Names in Zoology.
RÉSUMÉ
Ainsi que nous l’avons démontré ailleurs en détail (DuBois, 1982), le nom valide, se-
lon le Code, de l'espèce d’Anoures actuellement connue sous le nom de Rhacophorus rein-
wardtii [Schlegel, 1840(?)] est en fait Rhacophorus moschatus Kuhl & Van Hasselt, 1822. En
conséquence, il est demandé à la Commission Internationale de Nomenclature Zoologique
de faire usage de ses pleins pouvoirs pour protéger le nom reinwardtii, très connu et d'emploi
universel.
LITERATURE CITED
ANONYMOUS, 1977. — [Systematic keys 10 the Amphibians of China]. (In Chinese). Beijing, Kexue Chu-
panche : [i-iv] + i-v + 1-93, pl. I-XVIL.
AL, E., 1931. — Anura III. Polypedatidae. Das Tierreich, 55 : i-xvi + 1-477.
BERRY, P.Y., 1975. — The Amphibian fauna of peninsular Malaysia. Kuala Lumpur, Tropical Press : i-
x + 1-130.
BOETTGER, O., 1893. - Neue Reptilien und Batrachier aus West Java. Zool. Anz., 16 : 334-340.
BOULENGER, G.A., 1882. - Catalogue of the Batrachia Salientia s. Ecaudata in the collection of the British
Museum. London, Taylor & Francis : i-xvi + 1-503, pl. I-XXX.
BourRer, R., 1942. Les Batraciens de l’Indochine. Hanoï, Institut océanographique de l’Indochine :
ix + 1-547, 4 pl.
BRONGERSMA, L.D., 1942. - On two Rhacophorus species mentioned by Kuhl & Van Hasselt. Arch.
néerl. Zool., 6 : 341-346.
Drin6, J.C.M., 1979. - Amphibians and Reptiles from northern Trengganu, Malaysia, with descrip-
tions of two new geckos : Cnemaspis and Cyriodactylus. Bull. Brit. Mus. nat. Hist. (Zool.), 34 :
181-241.
Dugoïs, A., 1981. - Liste des genres et sous-genres nominaux de Ranoidea (Amphibiens Anoures) du
monde, avec identification de leurs espèces-types : conséquences nomenclaturales. Monit. zool.
ital., (n.s.), 15, suppl. : 225-284.
9 1982. — Le statut nomenclatural des noms génériques d’Amphibiens créés par Kuhl & Van Hasselt
(1822) : Megophrys, Occidozyga et Rhacophorus. Bull. Mus. natn. Hist. nat., (4), 4 (A) : 261-280.
DumérIiz, A.-M.-C. & BIBRON, G., 1841. — Erpétologie générale ou histoire naturelle complète des Reptiles.
Tome 8. Paris, Roret : i-vii + 1-792.
FiTzINGER, L., 1843. — Systema Reptilium. Fasc. 1. Amblyglossae. Vindobonae, Braumüller & Seidel :
1-106 + i-ix.
Source : MNHN, Paris
104 ALYTES 7 (3)
FRosr, D.R. (ed.), 1985. - Amphibian species of the world. Lawrence, Allen Press & Assoc. Syst. Coll. :
Li-xv] + iv + 1-732.
GorHaM, S.W., 1974. — Checklist of world Amphibians up to January 1, 1970. Saint-John, the New
Brunswick Museum : 1-173.
GRANDISON, À.G.C., 1972. - Reptiles and Amphibians of Gunong Benom with a description of a new
species of Macrocalamus. Bull. Brit. Mus. nat. Hist. (Zool.), 23 : 43-101.
GUNTHER, À., 1859. — Catalogue of the Batrachia Salientia in the collection of the British Museum. Lon-
don, Taylor & Francis, 1858 (1859) : i-xvi + 1-160, pl. I-XII.
INGER, R.F., 1966. — The systematics and zoogeography of the Amphibia of Borneo. Fieldiana : Zool.,
52 : 1-402.
Kuxz, H. & Van HAasseLT, J.C., 1822. — Uittreksel uit brieven van de Heeren Kuhl en Van Hasselt,
aan de Heeren C.J. Temminck, Th. Van Swinderen en W. De Haan. Algemeene Konst- en Letter-
Bode, 7 : 99-104.
LIEM, S.S., 1970. - The morphology, systematics, and evolution of the Old World treefrogs (Rhaco-
phoridae and Hyperoliidae). Fieldiana : Zool., 57 : i-vii + 1-145.
Liv, C.-C. & Hu, S.-C., 1961. — [The tailless Amphibians of China.] (In Chinese). Shanghai : i-xvi +
1-364, pl. I-VI + I-XXVIIL.
NIEDEN, F., 1923. - Amphibia. Anura I. Subordo Aglossa und Phaneroglossa, sectio 1 Arcifera. Das
Tierreich, 46 : i-xxxii + 1-584.
SCHLEGEL, H., 1827. — Erpetologische Nachrichten. Isis von Oken, 20 : 281-294.
eus 1840(?). — Abbildungen neuer oder unvollständig bekannter Amphibien. Düsseldorf, Arnz & Comp.
Atlas : pl. 21-30.
—— 1844. — Ibid. Text : 105-141 + i-xiv.
SmitH, M.A., 1927. - Contributions to the herpetology of the Indo-Australian region. Proc. zool. Soc.
Lond., 1927 : 199-225, pl. I-II.
STEJNEGER, L., 1907. - Herpetology of Japan and adjacent territory. Bull. U. S. nat. Mus., 58 : i-xx
+ 1-577, pl. -XXXV.
RE 1925. - Chinese Amphibians and Reptiles in the United States National Museum. Proc. U. $. nat.
Mus., 66 (25) : 1-115.
VAN KAMPEN, P.N., 1923. — The Amphibia of the Indo-Australian archipelago. Leiden, Brill : i-xüi + 1-
304.
Wor, S., 1936. — Revision der Untergattung Rhacophorus (ausschliesslich der Madagaskar-Formen).
Bull. Raffles Mus., 12 : 137-217.
Source : MNHN, Paris
Alytes, 1988, 7 (3): 105-112. 105
A multivariate analysis of habitat determinants
for Triturus vulgaris and Triturus carnifex
in north western Italy
Ivana PAVIGNANO
Dipartimento di Biologia Animale,
Via Accademia Albertina 17,
10123 Torino, Italy
The distributions of Triturus vulgaris and Triturus carnifex were studied at 80 ponds
in north western Italy, in relation to a number of specific habitat features.
To establish what ecological characters can discriminate between used and un-
used breeding sites, several environmental factors were measured at each of these ponds
and analyzed by multivariate methods. Discriminant variables for both species are : open
water surface, percent vegetation around the pond, terrestrial habitat occurring near the
pond, age ofthe pond and human interference. For T. carnifex both pond depth and sur-
face also emerged as discriminant factors.
Differences between breeding site characteristics for the two species can be sum-
marized as follows : T. carnifex prefers larger and deeper ponds.
T. carnifex is present with T. vulgaris only in deep ponds, larger and with more
open water surface.
INTRODUCTION
With respect to habitat preferences, Triturus vulgaris and Triturus carnifex are among
the most selective Amphibian species found in Piedmont (north western Italy) (PAVIGNANO
& Giacoma, 1986).
T. carnifex, formerly considered an Italian endemic subspecies of T. cristatus, actually
represents a separate species, like all other “subspecies” of the crested newt (BUCCI-INNo-
CENTI et al., 1983).
Even though habitat features may well influence the distribution of newt species, only
a few studies on the characteristics of breeding sites are available. These studies, however,
did not make it possible to predict which environmental features may be responsible for the
choice of breeding sites, at least in a general and comparable way (GIACOMA, 1985).
What is known, is that Triturus vulgaris is present in a wide range of pond habitats,
while T. cristatus is more specialized, preferring larger and deeper ponds (HAGSTROM, 1979;
DoLMEN, 1983a). DOLMEN (1983) assumes that the warty newt requires the open water with
a minimum of 1 m depth.
BELL (1970) and BEEBEE (1973) consider small pools to be typical smooth newt breed-
ing sites in respect to warty.
Source : MNHN, Paris
106 ALYTES 7 (3)
Both smooth and warty newts tend to be associated with well-weeded sites, which give
spawning places as well as food and cover from predators. However, they can also be found
in ponds without vegetation (FUHN & FREYTAG, 1961 ; DOLMEN, 1983a).
T. cristatus is only occasionally found in the absence of T. vulgaris (BELL, 1979 ; PRESTT
et al., 1974). Where they coexist in the same pond, T. vulgaris is nearly always more abun-
dant than T. cristatus (BELL, 1979 ; GLANDT, 1978, 1982). Warty newts prefer ponds with a
high proportion of open water surface (COoKE & FRAZER, 1976).
Concerning water quality, T. cristatus is apparently far less tolerant of acidic waters
than T. vulgaris, and rarely breeds in more acidic than neutral conditions (CREED, 1964 ;
HAGsTRÔM, 1979), even if FUHN & FREYTAG (1961), OKLAND (1979) and HAGSTROM (1979)
found T. cristatus breeding in acid waters. The smooth newt can be present in metal-rich
waters, particularly in those with a high calcium content. Both species, however, are com-
mon in hard waters (COOKE & FRAZER, 1976).
The two species therefore show a wide ecological amplitude with respect to water qual-
ities and pond types.
In this study I have carried out multivariate analysis to identify which habitat features
are characteristic for T. vulgaris and T. carnifex (ecological variables for T. carnifex have been
compared with T. cristatus ones, because T. carnifex is the nearest species to T. cristatus as
regards systematic data) and also to point out which ecological factors make it possible to
differentiate used and unused breeding sites into separate groups.
1 have also tried to quantify ecological variables by using statistical data that can be
generalized and compared with those from different geographic areas.
Multivariate analysis has long been used for ecological studies in general (ALATALO &
ALATALO, 1977 ; ORLOCI, 1966), and, i.e., for bird communities (RICE et al., 1983 ; WiL-
LIAMS, 1978). BEEBEE (1983) used discriminant analysis to identify the most important eco-
logical features for five amphibian species. PAVIGNANO et al. (1989) described the use of sev-
eral methods of multivariate analysis applied to amphibian communities.
MATERIALS AND METHODS
During the early spring of four consecutive years (amphibian breeding seasons from
1985 through 1988), 80 ponds were sampled at three separate areas in north western Italy
(Piedmont).
All sites are temporary ponds, either located in fields or in deciduous mesophilous
woodlands. Most of them are artificial ponds.
Field methods employed to identify the use of ponds by amphibian species, or to
measure various habitat parameters, have already been described in a previous work (PA-
VIGNANO & G1acoMA, 1986). Ponds were classified by the following parameters : (1) surface
area, (2) depth, (3) extent of aquatic vegetation cover, (4) percent of vegetation around the
pond (vegetation covering the ground around the pond), (5) age of the pond, (6) pH, (7)
water hardness, (8) NO;, (9) NO3, (10) NH, (11) HS, (12) PO; (continuous variables),
(13) type of terrestrial habitat occurring near the pond (deciduous woodland, arable, meadow,
scrub) and (14) level of human interference (discreet variables).
Source : MNHN, Paris
PAVIGNANO 107
Level of human interference was estimated by observing the various kinds of human
activity, and giving to each of them a score : 0 = no activity ; 1 = water used for home pur-
poses ; 2 = water used for field irrigation ; 3 = periodic mowing of edges by farmers ;
4 = cleaning of edges and shaping of bottom ; 5 = full artificial dry-up.
Chemical water parameters were measured by (FARMATRON) volumetric kits on
field ; pH was measured with a portable HANNA HI 8424 PH Meter, fitted with an auto-
matic temperature compensator. Kits sensitivity was : water hardness 0 — 6°F, NO; 0 — 10
mg/l, NO; 0 — 0.05 mg/l, NHä 0 — 0.05 mg/l, HS 0 — 0.5 mg/l, PO; 0 — 0.01 mg/l.
Discriminant analysis is a multivariate technique capable of classifying and predict-
ing : it allows to distinguish between the groups so that future subjects may be correctly
grouped. Discriminant analysis, together with multivariate variance analysis and cluster
analysis, is therefore a method based on the differences among groups of objects. Only dis-
criminant analysis, however, gives either the classification or the predictivity of the classi-
fication itself.
Discriminant analysis was carried out using SYSTAT Package.
RESULTS
In the studied area, T. vulgaris inhabits 56 ponds (70 % of the total) ; in 35 of these
(44 % of the total), T. carnifex was also found. The latter species, therefore, was never en-
countered alone.
Used and unused breeding sites for each of the two species were studied by discrim-
inant analysis (fig. 1 ; Tables I and II).
Figure 1 demonstrates how the discriminant function separates habitats according to
the presence or the absence of newt populations.
Group centroids are the average discriminant scores for each group. Transformation
of Wizks’ lambdas into x? values (Table 1) shows that all the discriminant functions ob-
tained are statistically highly significant.
In Table II it is shown by the criterion of classification accuracy, that success ranged
from 94 % of sites being correctly allocated in the case of T. vulgaris, to 92 % for T. carnifex.
Three ponds apparently suitable for T. vulgaris, and three for T. carnifex were inhabited by
no newt. Five ponds apparently suitable for both species were inhabited only by T. vulgaris.
This may depend in the first case on the occurrence of geographical barriers (i.e. a large street,
a hill). In the second case, the absence in two sites of T. carnifex may be explained by the
relatively small pond area being at least 1 meter deep. 5 % of unsuitable ponds were inhab-
ited by T. vulgaris, 8 % by T. carnifex, 14 % by both species.
Significant variables for both species are : open water surface, percentage of vegetation
around the pond, age of the pond, terrestrial habitat occurring near the pond, and level of
human interference. For Triturus carnifex only, depth and surface of the pond also proved
significant.
Water chemical characteristics proved to be non-significant (values of these variables
do not significantly differ among the various ponds) (Table III).
Source : MNHN, Paris
108 ALYTES 7 (3)
TVULGARIS T.CARNIFEX
N° SITES
2 -2 + ô DISCRIMINANT
SCORES
Fig. 1. Discriminant grouping patterns.
Sites are grouped at interval widths of .2 units.
Sites without species are grouped above the discriminant score line and those with the species
are below.
© and € represent group centroids.
In order to discriminate between ponds used by T. vulgaris only, or by T. vulgaris and
T. carnifex together, another discriminant analysis was carried out only on used ponds (fig.
2, Tables I and Il).
In this case the difference between groups also proved highly significant.
The most important variables are : surface area, depth and open water surface. T. car-
nifex is present with T. vulgaris only in deeper and larger ponds, having less aquatic vege-
tation.
The distribution of both species in relation to the habitat characteristics of breeding
sites is shown in Table IV.
T. carnifex was found in 35 out of 50 large sites (area of 100-1000 m? and > 1000 m?),
in 35 out of 55 deep ponds (depth of 50-100 cm and > 100 cm) and in 20 out of 28 sites
with little aquatic vegetation (< 20 %).
Table I. - Significance of discriminant analysis.
Species Canonical À WILKS x Significance
correlation
T. vulgaris 0.652 0.574 30.506 0.000
T. carnifex 0.639 0.592 28.835 0.000
T. vulgaris and 0.825 0.319 30.847 0.000
T. carifex
Source : MNHN, Paris
PAVIGNANO 109
Table II. — Success rates of discriminant classification.
Site numbers observed refer to those known to be used (+) or unused (—) by the two species.
Predicted numbers are shown as those expected to be used or unused on the basis of discriminant func-
tion.
% correct refers to site numbers observed/site numbers predicted.
Species Site numbers observed Site numbers predicted % correct
+ S + æ
T. vulgaris 56 24 59 21 94
T. camnifex 35 45 38 4 92
T. vulgaris and 35 45 40 40 87
T. camifex
Table III. - Chemical water factors.
Variables (n sites = 80) M Min Max sp
pH 7.1 6.5 7.5 0.30
Water hardness (°F) 12.5 12.0 14.0 0.01
NO; (mg/l) 0.05 0.00 0.06 0.14
NO; (mg/l) 0.02 0.00 0.01 0.01
NHi (mg/l) 0.02 0.00 0.02 0.01
HS (mg/l) 0.05 0.01 0.13 0.02
PO;" (mg/l) 0.01 0.00 0.02 0.01
Table IV. - Characteristics of breeding sites and presence of newts.
Variables All sites Sites with only Sites with
T. vulgaris T. vulgaris and
T. camifex
Surface (m?)
< 50 17 il :
50-100 13 10 e
100-1000 25 17 17
> 1000 25 18 18
Depth (em)
< 50 25 21 :
50-100 29 20 20
> 100 26 15 15
% extent of aquatic vegetation cover
<20 28 21 20
20-50 20 13 13
> 50 32 2 ù
Total numbers of sites 80 56 35
Source : MNHN, Paris
110 ALYTES 7 (3)
T. VULGARIS
1 o 1 2
2 DISCRIMINANT
SCORES
N. SITES
TVULGARIS
T CARNIFEX
Fig. 2. Discriminant grouping patterns. Sites with T. vulgaris and sites with both T. vulgaris and T.
carnifex.
T. vulgaris seems to be indifferent either to the extent or the depth of the ponds, re-
quiring in any case a great quantity of aquatic vegetation. Deciduous woodlands and scrubby
terrestrial habitat structure are optimal for both species.
The breeding sites preferred by the two species are ponds with heterogeneous vege-
tation and with low level of human interference.
DISCUSSION
The use of discriminant analysis made it possible to distinguish between habitats used
and not used by the two species of Triturus as breeding sites. The most important habitat
characters for both species are : extent of aquatic vegetation cover, vegetation around the
pond, terrestrial habitat, human interference and age of pond.
For T. carnifex only, pond depth and surface are also discriminant.
The chemical parameters of studied ponds, in opposition to northern Europe (COOKE
& FRAZER, 1976), do not vary so much to influence the distribution of newrts.
In northern Europe T. cristatus seems to prefer bog localities or farming/clay areas and
to be nearly absent from lakelets, forest ponds, rock-pools and reed-bed tarns while T. vul-
garis occupies a wide range of locality types (DOLMEN, 1980). In northern Italy both species
avoid the ponds in fields, because of the strong human interference.
According to CookE & FRAZER (1976) and DOLMEN (1983a) differences between
breeding sites of the two species would be the following: both species tend to colonize the
well-weeded sites, which give spawning places, food and cover from predators ; but T. cris-
tatus prefers large, deep ponds, with more open water surface.
Source : MNHN, Paris
PAVIGNANO 11]
T. vulgaris breeds in a wider range of habitats ; for this reason it may be considered a
“more eurycious” (that is, it shows a wider ecological amplitude as regards pond types) spe-
cies than T. carnifex.
Many ponds are apparently suitable for both species and coexistence is frequently ob-
served, but only in deeper and larger ponds.
DoLMEN (1980, 1983b), GRIFFITHS (1987), GRIFFITHS & MYLOTTE (1987), HAGSTRÔM
(1979) and STRIJBOSCH (1979, 1980) observed in syntopic populations a microhabitat parti-
tioning : T. cristatus occupies the centre of the pond, where it is deeper and there is more
open water surface.
Various studies have shown habitat features for these two species, but the results are
often difficult to compare because of considerable differences in the methodological ap-
proach. These results are often very complex and different ; the use of statistical analysis
could give values in a general and comparable way.
ACKNOWLEDGEMENTS
I wish to thank Prof. Cristina GIACOMA and Prof. Emilio BALLETTO for their helpful advice.
LITERATURE CITED
ALATALO, R.V. & ALATALO, R.H., 1977. - Components of diversity multivariate analysis with inter-
action. Ecology, 58 : 900-906.
BEBBEE, T.]J.C., 1973. - Observations concerning the decline of British Amphibians. Biological conser-
vation, 5 : 20-24.
-- 1985. - Discriminant analysis of amphibian habitat determinants in south-east England. Amphibia-
Reptilia, 6 : 35-43.
BELL, G., 1970. - The distribution of amphibians in Leicestershire, with notes on their ecology and
behaviour, Trans. Leicester Lit. Soc., 54 ; 122-143.
is 1979. — Populations of crested news, Triturus cristatus, in Oxfordshire, England. Copeia, 1979 :
350-353.
Bucci-INNOCENTI, S., RAGGHIANTI, M. & MANCINO, G., 1983. — Investigation of karyology and hy-
brids in T. boscai and T. vittatus with a reinterpretation of the species groups within Triturus
(Caudata : Salamandridae). Copeia, 1983 : 662-672.
CREED, K., 1964. — À study of newts in the New Forest. British J. Herp., 3 : 170-181.
Cooke, A.S. & FRAZER, J.F.D., 1976. - Characteristics of newt breeding sites. 7. Zool. Lond., 178 :
223-236.
DoLMEN, D., 1980. - Distribution and habitat of the smooth newt Triturus vulgaris and the warty newt
Triturus cristatus in Norway. Proceedings of European Herpetological Symposium : 127-139.
ee 1983a. — A survey of the Norwegian newts (Triturus, Amphibia), their distribution and habitat.
Meddelelser fra Norsk Viliforskming, 3 (12) : 1-71.
—- 1983b. — The rhythms and microhabitat preference of the newts Triturus vulgaris and Triturus cris-
tatus at the northern border of their distribution area. . Herp., 17 : 23-31.
Fun, LE. & FREYTAG, G.E., 1961. - Taxonomische und ükologische studien über Triturus cristatus
in Rumänien. Zoologischer Anzeïger, 5-6 : 159-173.
GracoMa, C., 1985. - The ecology and distribution of newts in Italy. Ann. It. Mus. Zool. Univ. Na-
poli, 26 : in press.
Source : MNHN, Paris
112 ALYTES 7 (3)
GLAnDT, D., 1978. — Notizen zur Populationsükologie einheimischer Molche (Gattung Triturus).
Salamandra, 14 : 9-28.
ES 1982. - Abundanzmessungen an mitteleuropäischen Triturus-Populationen (Amphibia, Salaman-
dridae). Amphibia-Reptilia, 4 : 317-326.
GRIFFITHS, R.A., 1987. - Microhabitat and seasonal niche dynamics of smooth and palmate newts, Tri-
turus vulgaris and T. helveticus, at a pond in mid-Wales. 7. anim. Ecol., 56 : 441-451.
GRIFFITHS, R.A. & MYLOTTE, V.J., 1987. - Microhabitat selection and feeding relations of smooth and
warty newts, Triturus vulgaris and T. cristatus, at an upland pond in mid-Wales. Holarctic Ecol-
og, 10 : 1-7.
HAGSTRÔM, T., 1979. — Population ecology of Triturus cristatus and Triturus vulgaris (Urodela) in SW
Sweden. Holarctic Ecology, 2 : 108-114.
OkLanD, J., 1969. - Om forsuring av vassdrag og betydming av surhetsgraden (Ph) for fiskens noer-
ingsdry i ferskvam. Holarctic Ecology, 22 : 140-147.
OrLoct, L., 1966. — Geometric models in ecology I. The theory and application of some ordination
methods. 7. Ecol., 54 : 193-215.
PAVIGNANO, I. & GIacomA, C., 1986. — Osservazioni sulla distribuzione e sul comportamento ripro-
duttivo degli anfibi presenti in un’area della pianura piemontese. Rio. piem. St. nat, 7 : 153-171.
PAVIGNANO, I., GIACOMA, C. & CASTELLANO, S., 1989. — À multivariate analysis of amphibian habitat
determinants in north western Italy. Amphibia-Reptilia, submitted.
PRESTT, L., COOKE, A.S. & CorBETT, K.F., 1974. — British amphibians and reptiles. In : D.L. HAWk-
sworT (ed.), The changing flora and fauna of Britain, London, Academic Press : 1-461.
RICE, T.C., OHMART, R.D. & ANDERSON, B.S., 1983. — Habitat selection attributes of an avian com-
munity : a discriminant analysis investigation. Ecol. Mong., 53 : 263-290.
STRIJBOSCH, H., 1979. - Habitat selection of amphibians during their aquatic phase. Oikos, 33 : 363-
372.
-— 1980. - Habitat selection by amphibians during their terrestrial phase. Brit. J. Herp.…., 6 : 93-98.
WILLIAMS, J.D., 1978. — Multivariate analysis of avian vocalization. Ÿ. theor. Biol., 74 : 83-107.
Source : MNHN, Paris
Alytes, 1988, 7 (3): 113-114. 113
Un cas d’accouplement dorsal inverse
chez Rana perezi
E.G. CREsPo*, M.E. OLIVEIRA** & M. PAILLETTE***
*Departamento de Zoologia e Antropologia,
Faculdade de Ciéncias de Lisboa,
Bloco C-2, 3° Piso,
1700 Lisboa, Portugal
**Serviço Nacional de Parques, Reservas e Conservaçäo da Natureza,
Divisäo de Conservaçäo,
Rua da Lapa, 73 — 1200 Lisboa, Portugal
##*Laboratoire de Biologie et Génétique Evolutives,
C.N.R.S., 91 GifYvette, France
We found a couple of Rana perezi in inverse dorsal amplexus among a dense and
vocally active population during the spauning period, in the region of Tourém (north of
Portugal).
We make comments about the possible ethological and evolutionary meaning of
this behaviour.
La récente description d’un cas d’accouplement ventral chez Rana kl. esculenta (POLLS
PELAZ, 1987) nous a amenés à faire connaître un autre cas d’accouplement anormal que nous
avons observé chez Rana perezi.
Cette observation a été faite pendant le jour (17h, 20 mai 1988, temp. de l’air : 24° C),
au sein d’une population abondante et dense de Rana perezi à Tourém (nord du Portugal).
Le couple en question se trouvait en accouplement dorsal inverse. Le mâle sur le dos
de la femelle, mais sa tête tournée vers la partie postérieure de sa partenaire, la maintenait
fortement embrassée dans la région inguinale.
Le couple a été repéré dans l’eau en compagnie de nombreux autres mâles qui coas-
saient et de quelques autres couples en amplexus dorso-axillaires normaux. Nous l'avons placé
sur le sol, pour la photo. Il y est resté de lui-même pendant environ une demi-heure avant
de retourner dans l’eau, toujours dans ce même amplexus.
Il nous semble évident que cet amplexus inversé est le résultat d’une “erreur” justifiée
probablement par la grande densité de la population sexuellement active.
Dans ces conditions, comme cela a déjà été observé auparavant (ANGEL, 1947 ; NOBLE,
1954 ; etc.), les mâles sont souvent saisis d’une “fureur génésique” qui leur fait saisir, pour
s’accoupler, un objet quelconque ou une espèce animale parfois fort différente de la leur.
Cette circonstance peut conduire à la formation de couples aberrants et ceux-ci peuvent
même dans certains cas être stables (DELSOL, 1986).
On peut admettre que dans un premier essai le mâle ait essayé l’amplexus axillaire nor-
mal, mais qu’en face d’une réaction de rejet de la femelle, ou parce qu’il y avait déjà un autre
mâle en amplexus, il ait pris, après l’abandon du rival, la position décrite ici.
Source : MNHN, Paris
114 ALYTES 7 (3)
Il se peut que l’ambiance dense et vocalement active où le couple se trouvait, et peut-
être une probable fatigue de la femelle due à des amplexus ou des pontes préalables, aient
fonctionnés comme facteurs inhibiteurs de la réaction naturelle de rejet par la femelle.
On ne doit pas exclure non plus la possibilité que l’amplexus, bien qu’inguinal et in-
versé, ait contribué lui-même à réduire la réaction de rejet. Il est probable que, même dans
ces conditions, les interactions qui jouent dans la reconnaissance des partenaires sexuels —
les mouvements respiratoires, les vibrations thoraciques, la rythmicité de l’amplexus (RABB,
1973 ; DUELLMAN & TRUEB, 1986) — aient été effectives, bien que d’une façon plus atténuée.
Les manifestations épisodiques d’amplexus aberrants peuvent être plus ou moins fré-
quentes dans les cas de mâles jeunes, dont les dimensions sont très différentes de celles des
femelles avec lesquelles ils veulent s’accoupler.
Dans ces accouplements aberrants, plus que le comportement des mâles, ce qui est
biologiquement intéressant est l’apparente réduction de la réaction de rejet de la femelle, dont
il serait intéressant de mieux préciser à l’avenir les raisons globales.
En raison de la haute spécificité des interactions de reconnaissance des partenaires
sexuels au moment de l’amplexus (RABB, 1973), celles-ci constituent un mécanisme impor-
tant d'isolement pré-reproducteur (WELLS, 1977).
Quelque rupture transitoire de l'efficacité de ce mécanisme peut, à l’occasion, prendre
une signification genétique-évolutive, car, en certaines circonstances (notamment de sym-
patrie et de synchronisation des cycles reproducteurs des espèces en présence), elle peut
aboutir à des phénomènes d’hybridation.
REMERCIEMENTS
Nous remercions le Dr. A. DUBoIs et les lecteurs pour leurs suggestions.
RÉFÉRENCES BIBLIOGRAPHIQUES
ANGEL, F., 1947. — Vie et mœurs des Amphibiens. Paris, Payot : 1-317.
DeELsoL, M., 1986. — Les types fondamentaux de la reproduction. Zn : P.-P. GRASSÉ (dir.), Traité de
Zoologie, T. XIV (1B), Batraciens, Paris, Masson : 321-388.
DUELLMAN, W.E. & TRUEB., L., 1986. — Biology of Amphibians. New York, McGraw — Hill : i-xix +
1-670.
NoBLe, G.K., 1954. — The biology of the Amphibia. New York, Dover : 1-577.
PoLLs PELAZ, M., 1987. - Un accouplement ventral chez Rana kl. esculenta. Alytes, 6 : 85-87.
Rass, G.B., 1973. — Evolutionary aspects of the reproductive behavior of frogs. Jn : J.L. VIAL (ed.),
Evolutionary biology of Anurans, Columbia (U.S.A.), Univ. Missouri Press : 213-227.
WeLs, K.D., 1977. - The courtship of frogs. In: D.H. TayLor & S.I. GUTTMAN (eds.), The repro-
ductive biology of Amphibians, New York, Plenum Press : 233-262.
Source : MNHN, Paris
Alytes, 1988, 7 (3): 115-123. 115
Developmental rate of Rana synkl. esculenta
(Ranidae, Anura) embryos from different
crosses: consequences on the evolution
of the populations
Annemarie OHLER
Laboratoire des Reptiles et Amphibiens,
Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
Crosses between different members of the Rana synkl. esculenta show a great
variability concerning ontogenetic parameters. For this study developmental rate until
stage 25 (GOSNER, 1960), v(25), and time interval to pass through this stage, dt(25), are
used to measure differences between progeny of naturally observed combinations. For
esculenta X esculenta progeny, mortality at this stage is very high: often all larvae of a
cross die. Retardation of gene expression and nucleocytoplasmic incompatibility in early
development could be the explanation of the differences in developmental rate. Mortal-
ity of esculenta homotypic crosses could be related to clone selection and not to accu-
mulation of lethal genes : evolution by increasing variation and selection is not inhibited
by reproduction without recombination. Clonally inherited genomes of esculenta that
show high vitality in combination with lessonae genomes, give inviable progeny in hom-
otypic crosses.
INTRODUCTION
European green frogs (Rana synkl. esculenta Linné, 1758) (DuBois & GÜNTHER, 1982)
are a very particular group of vertebrates. This group inludes two “good” species (Rana
ridibunda Pallas, 1771 ; Rana lessonae Camerano, 1882) and their hybrid (Rana kl. esculenta
Linné, 1758) (BERGER, 1967 ; TUNNER, 1973). Rana kl. esculenta remains in the hybrid state
by a particular type of gametogenesis called hybridogenesis (TUNNER, 1974).
Consequently a frog with hybrid somatic cells produces gametes which are in their nu-
cleotic and also in major part of their cytoplasmic component of parental type (generally ri-
dibunda) (VOGEL & CHEN, 1976 ; GRAF, KARCH & MOREILLON, 1977). Nevertheless sub-
stances produced by somatic cells and transferred into the oocytes, like yolk, might have a
hybrid nature and cause the differences observed between these eggs and eggs of the cor-
responding parental species concerning development and survival of progeny.
Green frogs populations not only contain individuals of different species, but also in-
dividuals of different ploidy levels. They can produce a great genetic variety in gametes and
still a greater genetic variety in zygotes should be observed. But investigations on genotypes
Source : MNHN, Paris
116 ALYTES 7 (3)
of frogs found in natural populations show only certain genotypes, the others having been
eliminated before or shortly after metamorphosis (GÜNTHER, 1983).
Crossing experiments among green frogs have shown an important mortality and a high
number of anomalous larvae in certain combinations (BERGER, 1967 ; OGIELSKA-NOWAK,
1985). Developmental anomalies can be of two kinds : disturbances can be of short term for
the population, like morphological anomalies of embryos and larvae and mortality at differ-
ent developmental stages ; or they can be long term defaults modifying survival and fertility
of adults.
Evolutionary success of asexual, clonal and hemiclonal species is doubtful (MULLER,
1932 ; MAYNARD SMITH, 1974). Asexual and clonal reproduction permits a quicker diffusion
of an established genotype, but lowers variation and elimination of deleterious mutant alleles
by default of recombination.
For this work I have chosen stage 25 (GOsNER, 1960), since larvae of this develop-
mental stage are particularly affected in green frogs (BERGER, 1967 ; BLANKENHORN, HEUS-
SER & VOGEL, 1971 ; BINKERT, 1981). Ontogenetic events occurring in this stage seem to
play an important part in the success of the different crossings. Similar developmental dis-
turbances have been observed in green frog larvae from different populations all over Eu-
rope. Indications from these developmental patterns for evolution of hemiclonally repro-
ducing esculenta will be discussed.
MATERIAL AND METHODS
The green frogs of this study came from eastern Austria (Seewinkel, Burgenland ; Lo-
bau and Donauinsel, Vienna) and from central France (Brenne, Indre) (Table I). Parents of
the crosses and tadpoles are kept in the collection of the Paris Muséum national d'Histoire
naturelle (MNHN 1986.1763-1790) or in the author’s collection.
Eggs were obtained from frogs without hormone injection so as to avoid damaging the
eggs. Generally couples were taken in the natural environment (crosses number 1 — 10,
12 - 14 and 17 — 19) or reproductively active frogs were put together in the laboratory where
they spontaneously amplected (crosses number 11, 15, 16 and 20). The whole clutches (900
to 3000 eggs) were transferred to indoor plastic containers (40 X 60 X 20 cm) and divided
into portions of 20 to 30 eggs to assure oxygen supply. The embryos and larvae were reared
at indoor temperature (water temperature : 18-22°C). About 300 small embryos were kept
in a container. Development was controlled with a dissecting microscope and determined
following the staging table of GOsNER (1960). When the larvae reached stage 25, the number
of surviving larvae was limited to 50 by container (2 larvae / liter of water). They were fed
a mixture of dried Urtica dioica and Tetra Min fish food. Dead and anomalous larvae were
fixed in 4 % formalin.
Rate of development, v(25), is expressed as 100 divided by time in days to stage 25
@/T X 100) for the first embryo which reached this stage. This measurement gives the op-
timal development rate observed for a specific cross. The period during which stage 25 larvae
could be observed, dt(25), is given in days. For every kind of crosses, the mean (m), the
standard deviation (s) and the coefficient of variation following HALDANE (1955), Va (DE-
Source : MNHN, Paris
OHLER 117
LAUGERRE & DuBois, 1985), were calculated. The different crosses were compared by the
non-parametric Mann-Whitney U-test (ELLIOTT, 1971). The correlation coefficient r was cal-
culated with the statistical program package SPSSx (SCHUBO & UEHLINGER, 1986).
RESULTS
The two parental species differ in their developmental rates (Table I) (U-test : U=0 ;
n=4 ; n,=4 ; p<0.05). Rana ridibunda progeny takes a longer time to reach stage 25, but
usually larvae get through this stage quickly. Rana lessonae embryos develop more quickly
until stage 25, but a greater variation concerning the time requested to pass through this
stage is observed.
Progeny of esculenta female X esculenta male shows a high variation in developmental
rate (m=8.30 ; s=1.78; n=6 ; Vy=21.45) ; the extremes cover the developmental rates of
progeny of Rana ridibunda (U-test : U=9 ; n,=4 ; n,=6 ; p>0.05) and Rana lessonae (U-
test : U=4 ; n,=6 ; n,=4 ; p>0.05). The interval during which stage 25 larvae can be ob-
served is very large.
Developmental rate of lessonae female by esculenta male embryos (m=7.42 ; s=0.39 ;
n=2) resembles that of Rana ridibunda progeny (m=7.16 ; s=0.42 ; n=4), but stage 25 lar-
vae are present during a much longer period. The progeny of the reciprocal cross (esculenta
female X lessonae male) has a very high developmental rate (m=10.07 ; s=1.01 ; n=3) which
is similar to that of Rana lessonae embryos (m=10.33 ; s=0.98 ; n=4). Here too the time
interval during which stage 25 larvae are observed is very large.
At stage 25, especially in homotypic crosses of esculenta female X esculenta male, a high
mortality of tadpoles was observed. All larvae of crosses (8) and (11) died ; only a few de-
veloped small buds of the hindlimbs. The larvae showed no particular anomalous features,
but they were transparent and smaller than viable tadpoles of the same age. High lethality
was observed only in esculenta homotypic crosses.
For green frogs from Austria, developmental rate is highly correlated with the date of
reproduction (r=0.61 ; f=14 ; p<0.01). Rana ridibunda, which generally reproduces earlier
in the year, has a lower developmental rate than Rana lessonae which is the latest of the green
frogs to reproduce. In France, breeding of green frogs is earlier in the year than in Austria,
but developmental rates of the crossings correspond to what was observed in Austrian lar-
vae.
DISCUSSION
Stage 25 in anuran development is the product of embryogenesis and the starting point
for larval development which gives the basis of parameters at metamorphosis (age, size)
(WiLBur & CoLLins, 1973 ; TRAVIS, 1981). In the beginning stages, development depends
on maternal factors stocked in the oocyte. Only in late blastula stages are paternal genes ex-
pressed (WRIGHT & MOYER, 1968). This is often a critical point in hybrid ontogeny and var-
ious disturbances can be observed : development stops in these stages or expression of pa-
Source : MNHN, Paris
118
ALYTES 7 (3)
Table I. - Developmental rate of different crosses within Rana synkl. esculenta. (L, locali-
ties : V, Vienna ; B, Burgenland ; I, Indre ; date, date when eggs were laid ; M, male ;
F, female ; v(25), rate of development ; I(25), age interval in days of stage 25 larvae ;
dt(25), time interval during which stage 25 (GOsNER, 1960) tadpoles were observed ;
R, Rana ridibunda ; E, Rana kl. esculenta ; L, Rana lessonae ; m, mean ; s, standard
deviation ; Vy; HALDANE coefficient of variation).
Cross L Date M F v@5) I(25) dt(25)
a) V11.5.1983 R R 13-15 2
@) V 11.5.1983 R R 15-17 2
G) V 11.5.1983 R R 14 - 26 12
(a) \ 6.5.1984 R R 14-16 2
m=4,50
s=5.00
Va= 11.11
6) V28.4.1983 R E 19-81 6
(6) B 28.5.1983 E E 15-49
@) B 28.5.1983 EN ME. 11-59
(8) B 28.5.1983 E E 9-18
€) B 6.6.1984 E E 14-27
ao) B 17.6.1984 E E 11-16
an I 4.5.1986 E E 15-50
a2) B 28.5.1983 LE 10-35 25
@3) B 28.5.1983 ÉN RE 11-56 45
4) B 28.5.1983 LE 9-23 14
5) I 5.5.1986 EAN 13 - 50 37
(6) I 7.5.1986 EAN 14-49 35
an B 31.5.1983 LT 1.11 9-23 14
(8) B 31.5.1983 Le JE 9.09 11-47 36
(9) B 31.5.1983 LT il 9-17 8
@0) I 8.5.1986 NN E 10.00 10 - 34 24
m=10.33 m=20.50
s=0.98 s=12.26
Vu=9.46 Vu= 59.80
Source : MNHN, Paris
OHLER 119
ternal genes is delayed or inhibited (WmiTT, CHO & CHiLDERS, 1972) ; morphological
anomalies (e.g. exogastrulae : DELARUE et al., 1985 ; ELINSON, 1981 ; HENNEN, 1963 ;
HERTWIG, RUHLAND & WEIss, 1958) can be the epigenetic reflection of these disturbances.
Usually the embryonal phase ends without new disturbances, but anomalous embryos can
be observed in tailbud stage or later ; these morphological disturbances should be regarded
as a consequence of difficulties in the gastrula phase. In stage 25 transition to active larval
life takes place, which includes physiological modifications (nutrition).
Different time intervals required to reach stage 25 (Table I) reflect events in embry-
onic development (retardations, etc.). Variation in the time necessary to pass through stage
25 (Table I) can be related to hybrid genome constitution of esculenta progeny and might
therefore reflect developmental difficulties in the transition from embryonic to larval life. In
lessonae larvae it might rather be a consequence of genetic variation, perhaps due to lack of
competition with esculenta larvae in mixed populations.
In the hybridogenetic taxon esculenta, gametogenesis results in oocytes with a non-re-
combined genome which consists entirely of chromosomes of one parental type (ridibunda :
VoGEL & CHEN, 1976 ; GRAF, KARCH & MOREILLON, 1977 ; or lessonae : GÜNTHER 1983 ;
BERGER & GÜNTHER, 1988). To a large extent, their cytoplasm resembles that of the oocytes
of this parental species.
Zygotes produced by homotypic esculenta crosses have been shown to contain two sets
of the same parental genome and a corresponding cytoplasm, like in homotypic crosses of
the parental species. But the genomes did not pass through recombination. On the other
hand, when esculenta eggs are fertilized by lessonae sperm, the resulting zygotes have a hy-
brid genome and a cytoplasm of ridibunda type. This could appear to be a rather unbalanced
situation, but in fact this combination is very successful.
The observations on different crosses of green frogs can be studied in the light of their
cytogenetic constitution. The rather homogeneous developmental rate of the crosses where
parental species are involved (Table I) is interpreted as a consequence of recombination and
gene flow in these populations. Only ridibunda tadpoles get through stage 25 very quickly
(Table I). In lessonae crosses, tadpoles usually have delayed development at these stages. On
the other hand, the variation in developmental rate in esculenta homotypic crosses has been
interpreted as a consequence of clonal inheritance of the genomes in the involved taxon which
should lead to accumulation of deleterious genes (BERGER, 1976 ; GRAF & MULLER, 1979 ;
Horz, 1983 ; BINKERT, BORNER & CHEN, 1982). Embryos of these crosses are also affected
by various morphological anomalies (“esculenta developmental syndrom”, OGIELSKA-No-
WAK, 1985 ; OHLER, 1987).
Only in homotypic esculenta crosses, the developmental disturbances can be lethal for
all larvae within a cross. These lethal crosses are very numerous in populations where les-
sonae and esculenta live in sympatry and where esculenta entirely depends upon lessonae for
its reproduction, whereas they are less important in populations where lessonae is absent. In
the latter, the genetical basis for hybrid state conservation is different, and triploid esculenta
play an important role in producing gametes of lessonae type (GUNTHER, 1983).
Very similar developmental phenomena concerning homotypic esculenta crosses are ob-
served in geographically distant populations (BERGER, 1967 ; BLANKENHORN, HEUSSER &
VoGEL, 1971 ; GÜNTHER, 1973 ; OHLER, 1987 ; TUNNER, 1979, 1980 ; WiJNANDS, 1979). If
Source : MNHN, Paris
120 ALYTES 7 (3)
they are related to genetic load of esculenta hemiclones, it would mean a very wide distri-
bution of these lineages. Also, genetic load does not seem to be superior in green frogs from
clonal lineages where recent hybridization can be excluded (HoTz, 1983). Various hy-
potheses about evolutionary dead-end or success of clonally (asexual) reproducing species have
been or can be proposed ; particularly two of them are worthy of discussion : MULLER’s
ratchet mechanism and a model of evolution in asexual populations.
MULLER's ratchet mechanism (1932) explains that in asexually reproducing species the
load of mutations cannot decrease below that already present in the least loaded clone, but
that it can increase. In consequence, mutations, that should be mostly deleterious ones, will
accumulate in clonally inherited genomes and such lineages are rather condemned to ex-
tinction over long term evolution.
This is true within a clone, but not for a clonally reproducing “species” which includes
a series of different clones. There are two sources for the variation among clones : multiple
origins and mutation (ANGUS & SCHULTZ, 1979). Recombination provides a much greater
variation than mutation alone can do. This is the major advantage of sexual reproduction.
It accelerates evolution very substantially, particularly in large populations (MAYNARD SMITH,
1974). But in sexually reproducing species a given genotype is lost for the next generation
and is unlikely to reappear. Clonal inheritance of the genome prevents the loss of a certain
combination of genes. This can be favorable despite the shortage of variation, for example
in small colonizing populations. Asexual reproduction can assure the rapid increase of a given
genotype. As shown by mathematical models, evolution is not stopped by asexual repro-
duction, but evolution rate may be reduced under certain conditions (MAYNARD SMITH, 1974).
Variation in esculenta clonal lineages comes from primary hybridization in areas where
the two parental species occur in sympatry, and from mutation. There is still an other pos-
sibility for increasing variation in regions where only lessonae and esculenta occur : some of
the progeny of esculenta homotypic crosses can survive to sexual maturity ; these individuals
may have ridibunda genotypes and can act as founders of new hybridogenetic lineages.
The very similar developmental pattern of esculenta X esculenta germs from popula-
tions of all over Europe reflects rather a cytoplasmic inconvenience or an incompatibility of
regulatory genes than an accidental accumulation of lethal genes and their subsequent dis-
persion in hemiclonal lineages. In regions where primary hybridization can still occur, es-
culenta X esculenta crosses show a high variability in developmental pattern (BERGER, 1967).
On the other hand, the variability of developmental pattern is reduced where primary hy-
bridization founded clonal lineages long time ago (HoTz, 1983). The different esculenta lin-
eages will be selected that assure a successful development in esculenta X lessonae crossings
and that assure the maintenance of the hybrid.
Lethality at stage 25 in esculenta homotypic crosses means an important loss of gametes
for the population. But as these germs die before feeding they don’t compete with vital lar-
vae of the other combinations concerning food, and also space (crowding). As their death
coincidates with the starting of feeding of the vital larvae and as green frog larvae may be
cannibalistic, especially on feeble tadpoles, they could be a source of food, and their unsuc-
cessful development would allow the transmission to these larvae of a great part of the sub-
stances of the esculenta oocytes.
To estimate the influence of life-history parameters of a population, the combination
Source : MNHN, Paris
OHLER 121
of a series of facts must be considered. The loss of gametes by esculenta homotypic crosses
can be leveled out by the subsequent consumption of the larvae by the other members of
the population. This supplementary food source should favour their larval development and
metamorphosis.
Hybrid embryos of esculenta type (from esculenta X lessonae crossings) are as successful
as lessonae larvae in developmental rate and in passing through stage 25. In E-L populations,
larvae of the two types have equal ontogenetic potential. Developmental success of larvae
from homotypic esculenta crosses is extremely reduced. Nevertheless, the esculenta genetic
system seems very stabilized, which permits the large radiation observed in these frogs. The
maintenance of Rana kl. esculenta is assured by cytoplasmic compatibility in hybrid zygotes,
success of larval development and a variety of genetic mechanisms for meiosis in different
population systems.
RÉSUMÉ
Les produits des croisements réalisés entre différents membres du synklepton de Rana
kl. esculenta manifestent une grande variabilité en ce qui concerne leurs paramètres onto-
génétiques. Pour cette étude, deux indices, le taux de développement jusqu’au stade 25 de
GosnER (1960), v(25), et la durée de l'intervalle nécessaire pour traverser ce stade, dt(25),
ont été utilisés pour mesurer les différences entre les descendances obtenues à partir de di-
verses combinaisons parentales observées dans la nature. La mortalité au stade 25 est très
élevée dans la descendance issue des croisements homotypiques esculenta X esculenta : sou-
vent toutes les larves d’un croisement meurent. Ces différences développementales pour-
raient être dues à des retardations dans l'expression de certains gènes et des incompatibilités
nucléocytoplasmiques au début du développement. La mortalité observée dans les croise-
ments homotypiques esculenta pourrait être due à la sélection des clones et non pas à l’ac-
cumulation des gènes léthaux : l’évolution par augmentation de la variation et sélection n’est
pas supprimée par la reproduction sans recombinaison. Les génomes esculenta transmis de
manière clonale qui montrent une vitalité élevée en combinaison avec les génomes lessonae,
donnent une descendance inviable dans les croisements homotypiques.
ACKNOWLEDGEMENTS
T thank Doz. Dr. Heinz TUNNER for his guidance throughout the completion of my thesis in
Vienna, Mag. Evelyn WAGNER for her help in the field and in the laboratory, Prof. E.-R. BRYGO0 for
welcoming me in his laboratory, and Dr. A. DuBoIs for collecting the French frogs and for his very
helpful comments on the manuscript. Comments by two anonymous reviewers were also very useful.
The work in 1986 in France was made possible by a scholarship of the Bundesministerium für Wis-
senschaft und Forschung, Austria.
Source : MNHN, Paris
122 ALYTES 7 (3)
LITERATURE CITED
ANGus, R.A. & SCHULTZ, R.J., 1979. — Clonal diversity in unisexual fish populations. Amer. Natur.,
115 : 531-550.
BERGER, L. 1967. - Embryonal and larval development of F1 generation of green frogs different com-
binations. Acta zool. Cracoviensis, 12 : 123-162.
= 1976. - Hybrids of B, generation of European water frogs (Rana esculenta complex). Ann. Zool.,
Warszawa, 33 : 201-214.
BERGER, L. & GUNTHER, R., 1988. — Genetic composition and reproduction of water frog populations
(Rana kl. esculenta Synklepton) near nature reserve Serrahn, GRD. Arch. Nat.-schutz Landsch.-
forsch., Berlin, 28 : 265-280.
BINKERT, J.A., 1981. - Untersuchungen über die Le lität der inter-se-Kreuzungen von Rana esculenta. Ph.
D. Thesis, Universität Zürich, Schweiz : i-iii + 1-194.
BINKERT, J.A., BORNER, J. & CHEN, P.S., 1982. — Rana esculenta complex : an experimental analysis
of lethality and hybridogenesis. Experientia, 38 : 1283-1292.
BLANKENHORN, H. J., HEUSSER, H. & VOGEL, P., 1971. - Drei Phänotypen von Grünfrôschen aus dem
Rana esculenta Komplex in der Schweiz. Rev. suisse Zool., 78 : 1242-1247.
DELARUE, M., DARRIBERE, T., AIMAR, C. & BOUCAUT, J.-C., 1985. - Bufonid nucleocytoplasmic hy-
brids arrested at the early gastrula stage lack a fibronectin-containing fibrillar extracellular ma-
tix. Roux’s Arch. Dev. Biol., 194 : 275-280.
DELAUGERRE, M. & DuBois, A., 1985. - La variation géographique et la variabilité intrapopulation-
nelle chez Phyllodactylus europaeus (Reptilia, Sauria, Gekkonidae). Bull. Mus. nain. Hist. nat.,
(4), 7 (A), n° 3 : 709-736.
Dusois, A. & GUNTHER, R., 1982. - Klepton and synklepton : two new evolutionary systematics cat-
egories in zoology. Zool. Jb. Syst., 109 : 290-305.
ELINSON, R.P., 1981. — Genetic analysis of developmental arrest in an amphibian hybrid (Rana cates-
beiana, Rana clamitans). Dev. Biol., 81 : 167-176.
ELLIOTT, J.M., 1971. — Statistical analysis of samples of benthic invertebrates. Freshwater Biol. Assoc.,
Sci. Pub., 25 : 1-148.
Gosner, K.L., 1960. — A simplified table for staging anuran embryos and larvae with notes on iden-
üfication. Herpetologica, 16 : 183-190.
GRAF, J.D., KaRCH, F. & MOREILLON, M.C., 1977. - Biochemical variation in the Rana esculenta com-
plex. À new hybrid form related to Rana perezi and Rana ridibunda. Experientia, 33 : 1582-1584.
GRAF, J.D. & MULLER, W.P., 1979. - Experimental gynogenesis provides evidence of hybridogenetic
reproduction in the Rana esculenta complex. Experientia, 35 : 1574-1576.
GONTHER, R., 1973. - Über die verwandschaftlichen Beziehungen zwischen den europäischen Grün-
frôschen und den Bastardcharakter von Rana esculenta. Zool. Anz., 190 : 250-285.
re 1983. - Zur Populationsgenetik der mitteleuropäischen Wasserfrôsche des Rana esculenta-Syn-
kleptons (Anura, Ranidae). Zool. Anz., 211 : 43-54.
HALDANE, J.B.S., 1955. - The measurement of variation. Evolution, 9 : 484.
HENNEN, $., 1963. — Chromosomal and embryological analysis of nuclear changes occurring in em-
bryos derived from transfer of nuclei between Rana pipiens and Rana sylvatica. Dev. Biol., 6 :
133-183.
HERTWIG, G., RUHLAND, G. & Weiss, [., 1958. - Die Kerngrôsse triploider Krôtenbastarde mit ex-
perimentell verdoppeltem mütterlichem Genom. Zschr. mikrosk.-anat. Forsch., 64 : 129-158.
Horz, H., 1983. — Genic diversity among water frog genomes inherited with and without recombination. Thesis,
Universität Zürich : i + 1-137.
MaYNaRD SMITH, J., 1974. — Recombination and rate of evolution. Genetics, 78 : 299-304.
MULLER, H.J., 1932. - Some genetic aspects of sex. Amer. Natur., 66 : 118-138.
OGIELSKA-Nowak, M., 1985. — Stages of normal and spontaneous abnormal development of the natural
hybrid Rana esculenta L. (Amphibia, Anura). Zool. Polon., 32 : 37-62.
OHLER, A., 1987. - Zur Ontogenie von Rana synkl. esculenta. Thesis, Universität Wien : 1-266.
ScauBd, W. & UEHLINGER, H.M., 1986. - SPSSx. Handbuch der Programmversion 2.2. Fischer, Stutt-
gart & New York : 1-659.
Source : MNHN, Paris
OHLER 123
Travis, J., 1981. — Control of larval growth variation in a population of Pseudacris triseriata (Anura,
Hylidae). Evolution, 35 : 423-432.
TUNNER, H.G., 1973. - Demonstration of the hybrid origin of the common green frog Rana esculenta
L. Die Naturwissenschafien, 60 : 481-482.
_— 1974. - Die klonale Struktur einer Wasserfroschpopulation. Z. zool. Syst. Evolut.-forsch., 12 : 309-
314.
= 1979. - The inheritance of morphology and electrophoretic markers from homotypic crosses of the
hybridogenetic Rana esculenta. Mitt. Zool. Mus. Berlin, 55 : 89-109.
ns 1980. - Kreuzungsexperimente mit Wasserfrôschen aus ôsterreichischen und polnischen Misch-
populationen (Rana lessonae + Rana esculenta). Z. zool. syst. Evolut.- forsch., 18 : 257-297.
VoGEL, P. & CHEN, P.S., 1976. - Genetic control of LDH izosymes in the Rana esculenta complex.
Experientia, 33 : 1285-1287.
WatT, G.S., CHo, P.L. & CHiLDEeRs, W.F., 1972. — Preferential inhibition of allelic isozyme synthesis
in an interspecific sunfish hybrid. J. exp. Zool., 179 : 271-282.
Wunanns, H.E.J., 1979. — Partial ecological isolation of Rana lessonae and Rana esculenta as a mech-
anism for maintenance of the hybrid form, Rana esculenta (Anura, Ranidae). Mit. Zool. Mus.
Berlin, 55 : 131-142.
Wizsur, H.M. & Coins, J.P., 1973. — Ecological aspects of amphibian metamorphosis. Science, 182 :
1305-1314.
WRIGHT, D.A. & MOYER, F.H., 1968. — Inheritance of frog lactate deshydrogenase patterns and the
persistence of maternal isozymes during development. 7. exp. Zool., 167 : 197-206.
Source : MNHN, Paris
Alytes, 1988, 7 (3) : 124.
HAVE YOU EVER SEEN A
TADPOLE OF REPTILE?
No?
And. furthermore, you doubt that you’ ever find one?
Then, vou are a potential supporter of batrachology, as à distinct discipline
The existence of a tadpole stage, followed by à metamorphosis, is one of the characteristics shared by
most modern Amphibia, and which, among others, distinguish them from Reptiles. The Amphibia are consi-
dered to constitute a distinct class of Vertebrata by all zoologists, whatever their philosophy of classification
Therefore, why are the study of Amphibia and that of Reptiles usually referred o a single discipline, called
“herpetology"? We believe it is simply a matter of historical tradition
On the basis of this observation, a group of French zoologists in 1982 started the first batrachological
society in the world. This society was founded in Paris, hence its name “Société Batrachologique de France”
(S.B.F.), but it is open worldwide to all scientists and amateurs interested in the study and conservation of
Amphibia. It publishes two quarterly journals. One, Circalytes, is mostly intended for amateur batracholo
gists. The other one, Alytes, is intended for professional scientists
Alytes is now an international journal, with international printing standards and an international edi
torial board. It publishes papers in English and in French, dealing with all aspects of Amphibian biology. The
following titles are drawn from the contents of the last two volumes (5 and 6)
G. ALBERTINI & B. LANZA: Rana catesbeiana Shaw, 1802 in Italy.
J.L. AMIET.: Aires disjointes et taxons vicariants chez les Anoures du Cameroun: implications paléo-
climatiques.
M. BREUIL & G.H. PARENT : Essai de caractérisation des populations du Triton alpestre hellénique.
À. DUBOIS : Miscellanea taxinomica batrachologica:
AK. HOTA & M.C. DASH: Growth and metamorphosis of anuran larvae : effect of diet and tempe-
rature
R.F. INGER: Diets of tadpoles living in a Bornean rain forest
P. JOLY : Le régime alimentaire des Amphibiens : méthodes d'étude.
R.F. LAURENT: The systematic position of the genus Afrixalus Laurent (Hyperolidae).
Until now, the S.B.F. has developed mosily in France, but we think that the society and its journal
Alytes must be much more widely opened to all batrachologists. We are therefore sending here à double
call
(1) for new subscribers to Alytes and to the S.B.F.:
(2) for papers for Alytes: good quality papers are wanted from all fields of study on Amphibians, not
only systematics, faunistics, zoogeography and ecology, but also others, like behavior, ecophysiology, de-
velopmental biology, genetics, which are not so strongly represented in traditional “herpetological” journals
Tariffs in French Francs for 1988 (volume 7 of Alytes) are as follows:
Subscription to S.B.F. (including CIRCALYTES) + ALYTES
{only individuals) .
Subscription to ALYTÉS alone: individuals .
institutions
Additional charge for airmail postage of ALYTES
Payments should be made in French Francs by checks, payable to “Société Batrachologique de France”,
sent with the order to “Société Batrachologique de France, Laboratoire des Reptiles et Amphibiens, Muséum
national d'Histoire naturelle, 25 rue Cuvier, 75005 Paris. France”, or by international money order directly
to one of the following accounts:
{1) Postal account No. 7976 90 K Paris.
(2) Bank account No. 30004 01697 00000748056 37, B.N.P. Assas, Paris.
Source : MNHN, Paris
biens, Muséum national d'Histoire naturelle, 25 rue Cuvier,
| Comi i de res Jean-Louis AMIET, tes Stepher Busack to (Ce).
LANZA Re Na F.L (Tucumän), ard J. WasSERSUG (Halifax).
les : Pr après lecture | critique de Hu nn où ue
Instructions 10 authors. — Alytes publishes vriginal papers in English or in French, dealing with Am-
. Manuscripts should be typewritten, and preceded by an English abstract. Papers in
English should | os by. LT de dos those who may ne the ed-
_itors accept t such French summaries on the basis of an English text). Tables figures
au ssess titles. Figures should be drawn i As and should not | exceed 16 X 24 cm
Their
“dress above). Acceptance for publication will be decided by the editors following re
referees or more.
Tiré à ie — 25 exemplaires gratuits par article. Au-delà, les tirés à part seront facturés par tranches
25 exemplaires.
Publié avec le concours du Muséum national d'Histoire naturelle.
Directeur de la Publication : Alain DUBoIs.
Numéro de Commission Paritaire : 64851.
j à ï Source : MNIHN, Paris
nee Fou RUE
conservation . Moore
Alain Dusors ; \ UE
Hyla reinwardtii Schlegel, 1840(?) eu ie propos j
CONSOVANOR ere ss.
Ivana PAVIGNANO
À multivariate analysis of habitat determinant
and Triturus carnifex in north western Italy .
IG. Cresro, M.E. OLiveIRA & M. PAILLETTE È Re U
Un cas d’accouplement dorsal inverse chez Rana perezi 113 Pie
Annemarie OHLER &
Developmental rate of Rana synkl. esculenta (Ranidae, Anura) :
embryos from different crosses : pe on the celnen of the
populations ARR REEs
RO A ON nn LE)
24
Have you ever seen a tadpole of reptile ?
Imprimerie Fotek, St.-Niklaas, Belgique.
Dépôt légal: Zème trimestre 1989, l
- à R o ource : MNHN, Paris