Hole
ISSN 0753-4973
AIDTTES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
January-October 1990 Volume 8, N° 3-4
Source : MNHN, Paris
International Society for the Study
and Conservation of Amphibians
(International Society of Batrachology)
SEAT
Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
BOARD FOR 1990
President: Raymond F. LAURENT (Tucumän, Argentina).
General Secretary: Alain Dumois (Paris, France).
Treasurer: Dominique PAYEN (Paris, France).
Assistant Secretary, Europe: Pierre JoLY (Lyon, France).
Assistant Treasurer, Europe: Annemarie OHLER (Paris, France).
Assistant Secretary, outside Europe: David B. WAKE (Berkeley, U.S.A.).
Assistant Treasurer, outside Europe: Janalee P. CALDWELL (Los Angeles, U.S.A.).
Other members of the Board: James P. BoGART (Guelph, Canada); Jean-Louis FIsCHER (Paris,
France); David M. GREEN (Montreal, Canada); James I. MENZIES (Boroko, Papua New Guinea);
Richard WaASssERsUG (Halifax, Canada).
TARIFFS 1990
Subscription to
ISSCA Circalytes Alytes Total
Individuals
ISSCA direct members 50 FF 50 FF 130 FF 230 FF
ISSCA group or section members* 15 FF 50 FF 130 FF 195 FF
Non-members _ _ 150 FF 150 FF
Institutions
ISSCA direct members 100 FF 100 FF 260 FF 460 FF
ISSCA group or section members* 30 FF 100 FF 260 FF 390 FF
Non-members 7 300 FF 300 FF
* Members through a group or section of ISSCA (Société Batrachologique de France; Société
Lémanique de Batrachologie; Working Group on Oriental Amphibians).
MODES OF PAYMENT
— In French Francs, by cheques payable to “ISSCA”, sent to our Treasurer (address above).
— In French Francs, by direct postal transfer to our postal account: ISSCA”, Nr. 1 398 91 L, Paris.
— In French Francs, by direct bank transfer to our bank account: “ISSCA”, Nr. 10207-00014-
04014048104-97, BICS Paris-Monge.
- In U.S. Dollars: please write to our General Secretary (address above) for further information.
Source : MNHN, Paris
January-October 1990 Volume 8,
AIVTES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
Alytes, 1989-1990, 8 (3-4): 61-74.
N° 34
61
Nomenclature of parthenogenetic, gynogenetic and
“hybridogenetic” vertebrate taxons: new proposals*
Bibliothèque Centrale Muséum
a MU
Muséum national d'Histoire naturelle, 3 3001 00111
25 rue Cuvier, 75005 Paris, France
In order to homogenize, standardize and simplify the nomenclature of
parthenogenetic, gynogenetic and “hybridogenetic” vertebrate taxons, new
proposals are made, which rely on a clear separation between the need of a
single nomenclatural system at the species level for all living animals, and that
of a distinction between different kinds of evolutionary units in nature.
Three major kinds of species-rank taxons can be distinguished in animals:
(1) species (s. str.), or bisexual species, with sexual reproduction (including
normal meiosis, usually with recombination, fertilization of egg by sperm, and
non-clonal inheritance); (2) kleptons, which depend on sexual parasitism for
their reproduction, and which include zygokleptons (with sexual reproduction,
“hybridogenetic” meiosis, fertilization of egg by sperm, and hemiclonal
inheritance) and gynokleptons (with parasexual reproduction, modified meio-
sis or ameiosis, gynogenesis, and clonal inheritance); (3) klonons, with
parasexual or asexual reproduction, modified meiosis or ameiosis or absence
of gametes, parthenogenesis or absence of germ, and clonal inheritance. AIl
these evolutionary systematics categories are considered here to be of the
same nomenclatural rank within the Linnaean system, that of species, and
names of the corresponding taxons should be submitted to the same rules,
those of the International Code for Zoological Nomenclature for species
names. To distinguish kleptons and klonons from species (s. str.), it is
suggested to add the abbreviations “kl.” and “kn.”, respectively, between the
generic and the specific names.
* This paper was presented during the symposium on “Nomenclatural treatment of hybrid-derived vertebrate
taxa”
the
organised by Andrew H. PRICE as part of the Combined Meeting of the Society for the Study of
Amphibians and Reptiles, the Herpetologists’ League, Early Life History Section, AF!
Elasmobranch Society, with the American Society of Ichthyologists and Herpetologi
Michigan, U.S.A., 23-29 June 1988).
American
(Ann Arbor,
Source : MNHN, Paris
62 ALYTES 8 (3-4)
INTRODUCTION
Many papers have recently been devoted to the study of several vertebrate “forms”
of hybrid origin and that display particular modes of reproduction and of inheritance, such
as parthenogenesis, gynogenesis, and ‘“hybridogenesis”. The “forms” studied belong to the
bony fishes (Poecilia and Poeciliopsis: see e.g. SCHULTZ, 1977, MONACO, RASCH &
BALSANO, 1984, MOORE, 1984 and VRIJENHOEK, 1984; Phoxinus: see DAWLEY, SCHULTZ &
GoppaRp, 1987), the urodeles (Amhystoma: see e.g. BOGART, 1982, BOGART & LicT, 1986
and BOGART et al., 1985, 1987), the anurans (Rana: see e.g. DuBois, 1977 and GRAF &
PoLLs PELAZ, 1989) and the saurians (Lacerta and Cnemidophorus: see e.g. COLE, 1975,
UzzeLc & Darevsky, 1975 and DESSAUER & COLE, 1986; Lepidodactylus: see e.g. INEICH,
1988).
Some, at least, of these “forms” have genetic and evolutionary particularities which
distinguish them from “normal species”, and several authors have found it necessary to
formally recognize these particularities by giving them special “names” or even by
ascribing them to new taxinomic! categories. The proposals in this respect are diverse,
including refusal of any particular nomenclature (MASsLiN, 1968; UZZELL, 1982; FROST &
WRIGHT, 1988), the use of letters or numbers (SCHULTZ, 1961, 1966, 1967; ZWEIFEL, 1965;
CoLe, 1985; WaLkER, 1986; INEICH, 1988), the use of compound Latin names (SCHULTZ,
1969, 1977; Cook & GORHAM, 1979; GÉNERMONT, 1980; Lowcock, LICHT & BOGART,
1987), the use of normal simple Latin names between quotation marks (HuBes & HuBBs,
1932; GÜNTHER, 1973; GÜNTHER & HÂHNEL, 1976; DuBois, 1977, 1979; KOREF-
SANTIBAREZ, 1979; BOGART, 1980) and the use of normal simple Latin names preceded by
a special mark or sign (Dugois & GÜNTHER, 1982).
This diversity of approaches is understandable in the first period of a research, but I
feel that we have now reached the time where some standardization is necessary. The
proposals made in the present paper are a new contribution towards this aim, which comes
after a few other ones and benefits from the comments of various authors (MASLIN, 1968;
LAZELL, 1971; Cook & GorHAM, 1979; MISHLER & DONOGHUE, 1982; COLE, 1985;
WALkER, 1986; Lowcocx, LiCHT & BOGART, 1987; FRosr & WRIGHT, 1988; ECHELLE,
1990 a-b; Frost & HiLLis, 1990) on this controversial question.
SOME DESIRABLE PROPERTIES OF TAXINOMIC SYSTEMS
Why should we name things? I do not think that it is in order to express their
ence”, but rather in order to be able to communicate about them, to carry some
information about these things, and in this respect the best nomenclatural system will be
the one having the highest generality and universality.
1. use the correct spellings “taxinomy” and “taxinomic” instead of “taxonomy” and ‘“taxonomic”,
following PasrEUR (1976) and FiscHEr & REY (1983).
Source : MNHN, Paris
Dugois 63
Systematics is the discipline of biology which has the purpose of classifving living
beings, that is of ascribing them to raxons?, and of naming them.
Systematics is not, or should not be, an intellectual game, or a simple search for
intellectual elegance. All biologists need a taxinomic system (that is, a classificatory and
nomenclatural system) to be able to communicate about the living beings they study, and
to carry some information about these things.
To be theoretically satisfactory and acceptable by all biologists, any taxinomic system
should have some properties, among which the following ones can be stressed: unicity,
universality, univocality, homogeneity and stability.
(1) Unicity: there should be a single taxinomic hierarchy for all living beings, not
several.
(2) Universality: the taxinomic system should be devised in such a way as to be able
to accomodate all living beings ever to be found in the real world, not only some of them.
This means that taxinomic concepts must bear some determined relationship to universally
observable patterns and particularities of the organisms of the real world (or of the natural
processes involved in the evolution of these organisms), rather than being derived solely
from some general theory, such as a theory of evolutionary process, or a theory of
biological classification.
(3) Univocality: the classificatory and nomenclatural system should be univocal, that
is, any given living being should unambiguously be ascribed to a given and single place in
the system.
(4) Homogeneity: there should be some equivalence, by some criteria, between various
taxons ascribed to the same category within the taxinomic hierarchy.
(5) Stability: the taxinomic system should display at least rather important stability,
so that every new discovery should not be liable to modify it partly or totally. This stability
should concern both the classificatory pattern and the nomenclature.
THE LINNAEAN SYSTEM
Many different classificatory and nomenclatural systems have been proposed since the
beginnings of biology. The only one to have survived for more than two centuries and
which, despite various criticisms, is still very healthy, is the Linnacan system of taxinomic
hierarchy (a hierarchy of categories) and of Latin binominal nomenclature. Despite its
unavoidable limitations, this system has shown until now a great flexibility and has been
used with success by biologists having widely divergent ideas of what biological
classification should be. Until a better system is ever proposed and shown to be better, any
2. Terms such as “taxon”, “phenon”, “klepton” or “phylum” are not true ancient Greek or Latin names
but modern terms which only bear a formal resemblance to old Greck or Latin names. They should therefore
be given normal plurals like “taxons” or *’phylums”, not artificial ancient Greek or Latin plurals like "taxa"
or “phyla”. This suggestion follows the advice given in this respect by The Oxford Guide to the English
Language (ANONYMOUS, 1984: 27): “IL is recommended that the regular plural (in -s) should be used” [for
such words], “even though some are found with cither type of plural”. Furthermore, for a sake of
homogeneity, the term phylon should be preferred to *phylum”.
Source : MNHN, Paris
64 ALYTES 8 (3-4)
taxinomic discussion and proposal should clearly place itself within the frame of the
Linnaean system of taxinomic hierarchy and of Latin binominal nomenclature, such as it
is recognized and formalized by the International Codes of Nomenclature. This implies in
particular that taxons should have names, Latin names following the International Rules,
and on the reverse that such names should not be given to entities which do not qualify
as taxons.
On the other hand, acceptance of the Linnaean system does not imply any particular
choice as to the philosophy of classification to be used, be it the empiricist, the pheneticist,
the cladistic or the evolutionary one. These philosophical choices only have consequences
in what concerns classification, but not, at least not directly, nomenclature.
TAXON, PHENON, GENON, PHYLON
When we deal with taxinomy, we deal with the recognition, delimitation, ordering and
naming of taxons, or taxinomic units. The question must therefore be asked: what is a
taxon? According to MAyR (1969: 4), a taxon is a group of organisms which is considered
by taxinomists as “sufficiently distinct to be worthy of being assigned to a definite
[taxinomic] category”. This definition is rather vague and does not help us very much to
distinguish taxons from other types of “groups of organisms”. But, as a matter of fact, if
we ask for more precise definitions, systematists will give us different ones according to the
“school” of taxinomy in which they belong. In this respect, it will be useful to examine
briefly a few different kinds of “groups of organisms” which may be recognized by
systematists.
One such kind is the phenon. MAYR (1969) has used this term for a phenotypically
reasonably homogeneous sample at the species level. The term morphospecies has also been
used by some authors for the same category. In a strictly phenetic approach to systematics,
the terms taxon and phenon would be equivalent. On the other hand, systematists who
take it for granted that a meaningful and “natural” classification of living beings is
possible only if based on the study of the phylogenetic and evolutionary relationships
between them, that is, cladists and evolutionary systematists, reject the strict correspond-
ence between taxon and phenon, and point to many cases where this correspondence does
not hold at all. Several different phenons may be part of a single taxon (the simplest
example being that of the males and females of the same species), while on the reverse
several different taxons may belong to the same phenon (for example, different dualspecies
or sibling species; see BERNARDI, 1980).
Another kind of units which is not often recognized by systematists, but which is of
particular relevance to the problems being discussed here, consists of those units which can
be recognized on the sole basis of structural genetic similarity. For such genetic units, the
new term genon would appear convenient. Similarity of genotypes is most unlikely to be
a result of convergence between different lineages, and therefore usually a genon is also a
taxon. However, in all cases where hybridization is involved, similar genotypes can occur
repeatedly through independent hybridization events, and in such cases a genon may not
correspond to a single taxon — at least for cladists and evolutionary taxinomists, who
Source : MNHN, Paris
Duois 65
consider that different lineages should be referred to different taxons. Examples of genons
which would not, for them, correspond to taxons, would be interspecific hybrids between
two species obtained independently by several hybridization events, or, more narrowly,
groups of parasexual or asexual individuals shown to have identical electrophoretic
markers at some loci, but without evidence (for example from skin grafting experiments)
that they originated from the same founder event.
Other kinds of units may be recognized by biologists. I will mention only two
examples: (1) “ecotypes” or ‘“ecospecies”, characterized by their ecological niches or
adaptive zones; and (2) phylons, that is, complete lineages or historical entities. The latter
are considered by cladists as strictly equivalent to taxons, while for evolutionary
systematists taxons are also based on lineages but do not automatically correspond to
complete phylons or lineages (whenever genetic, phenetic and ecological divergence has
occurred during the history of a phylon, the latter may correspond to several taxons).
NOMENCLATURE OF PARTHENOGENETIC,
GYNOGENETIC AND ‘“HYBRIDOGENETIC” TAXONS
Let me now approach the specific problem of the nomenclatural treatment of
parthenogenetic, gynogenetic and “hybridogenetic” vertebrate taxons on the basis of these
general statements.
First of all, it must be stressed that the problem is: how should we name some
particular taxons? This excludes from this discussion particular organisms which do not
qualify as taxons. Thus, “hybrids as such”, that is, organisms which arose as the individual
results of phenomena of hybridization between species or between hybrids, but which do
not give rise to particular lineages separated from those of their parental species, do not
qualify as parts of independent entities or taxons. They should therefore not be given
taxons names, that is Latin binominals written in italics and composed of a generic name
and of a specific name, even if these are presented as “informal names”. Therefore, for
example, instead of Ambystoma laterale-jeffersonianum, the corresponding animals should
be designated as simple hybrids, as follows: Ambystoma laterale X jeffersonianum. Xf
“informal systems” are proposed for the designation of individual organisms, these
systems should be devised in order to avoid any possible confusion between taxons and
non-taxons: therefore they should be based for example on letters or numbers rather than
on Latin binominals.
Secondly, for those entities which qualify as taxons, general rules of nomenclature
must be devised. These rules must be compatible with the Linnaean system of taxinomic
hierarchy and Latin binominal nomenclature, in order to maintain the unicity, universality
and homogeneity of this system. They must make sure that al/ the peculiar taxons in
question be included in the system, even those which appear rather “atypical” as compared
with the “traditional” species concept.
One must avoid confusing two different problems. On one hand, for philosophical
reasons of unicity, universality and homogeneity, the nomenclatural system cannot consist
of several different, independent and parallel, hierarchies: that is, a simple hierarchy is
Source : MNHN, Paris
66 ALYTES 8 (3-4)
required, and, in the Linnaean binominal system, any organism should at least be referable
to one taxon of rank genus and to one taxon of rank species. This means that any living
organism should be liable to be given a specific name (or two or several, linked by crosses,
in the exceptional cases of “hybrids as such”). On the other hand, these philosophical
constraints on nomenclature do not bear at all on our understanding of biological
phenomena as they occur in nature. There is no philosophical or biological reason why all
organisms in nature should belong in similar biological historical entities governed by
similar laws: it is perfectly understandable and acceptable that some organisms belong to
bisexual species, while others belong to asexual or parasexual taxons. The only constraint
which our adherence to the Linnaean system implies is that these asexual or parasexual
taxons should in nomenclature be given the rank of species. Homogeneity in the
nomenclatural treatment of taxons of the same rank does not imply that these taxons are
biologically identical or homogeneous.
Bisexual species and asexual or parasexual “pseudospecies”” (as DOBZHANSKY, 1970,
called them) all usually belong to well-defined genera. The nomenclature of any of these
species-rank taxons consists therefore of a generic name followed by a specific name. The
latter should in all cases conform with the rules of the /nternational Code of Zoological
Nomenclature (ANONYMOUS, 1985), including all the rules about conditions of availability
of names, use of type-specimens, priority and homonymy, etc. In many cases, asexual or
parasexual taxons of the species rank have been recognized, described and named long
before their biological particularities were discovered, and in all these cases, they should
retain the names first given to them. In other cases, these taxons should be named by the
same procedures as “normal” species.
However, since different types of species-group taxons of the species rank may be
recognized in the living world, differing in particular in their modes of reproduction and
of inheritance, it appears useful and justified to indicate some of these differences by
writing the names of these taxons in a special way. In this respect, several suggestions have
been made for the nomenclature of asexually or parasexually reproducing forms, especially
among vertebrates of hybrid origins. Some of these suggestions, for example the use of
letters such as À, B or C, or of symbols such as Cx, Cy or Cz, may be rejected immediately,
as non-Linnaean. Other ones include the placement of the species-group name of these
taxons between quotation marks, and the use of compound names indicating the basic
genotype of these forms. I discussed elsewhere with Rainer GÜNTHER the reasons for
rejecting these proposals, and we proposed another system (Dugois & GÜNTHER, 1982).
We suggested that names of “atypical” species-rank taxons such as kleptons should be
simple, not compound, Latin names, but that attention should be drawn to the
particularities of these taxons by placing a special symbol between the generic name and
the specific name of such taxons. Thus for example, in the case of kleptons, the
abbreviation “kl.”: Rana kl. esculenta.
THREE DIFFERENT KINDS OF SPECIES-RANK TAXONS
How many different types of species-rank taxons can we recognize in animals? I
suggest that, despite the vast diversity of local and particular situations, all cases can be
Source : MNHN, Paris
DuBois 67
referred to three major categories, one of which itself includes two rather distinct
subcategories. However, before presenting these categories in more detail, I wish to make
two preliminary comments.
The first comment concerns the use of the term Aybridogenesis. This use is extremely
confusing for several reasons. First of all, this term has been used for a very long time in
the biological literature to designate the simple phenomenon of appearance of a hybrid
through hybridization of two organisms belonging to two different taxons. On the other
hand, SCHULTZ (1969) proposed to use the same term to designate a particular type of
reproduction, which occurs in some Poeciliopsis of hybrid origin. This second meaning is
completely different from the original one. For this reason, BORKIN & DAREVSKY (1980)
proposed the replacement name creditogenesis for the concept called hybridogenesis by
ScHULTZ (1969).
But, besides this homonymy problem, both SCHULTZ's hybridogenesis and BORKIN &
DaREvskY's creditogenesis are confusing for a second reason: they are defined as “a
reproductive mechanism”, and most authors tend to view them as concepts similar to those
of gynogenesis or parthenogenesis, which bear similar names. But the latter concepts
designate particular modes of starting the development of an egg, and they do not imply by
themselves any particular kind of meiosis: while gynogenetic or parthenogenetic taxons do
indeed have particular kinds of meioses, which give rise to particular types of eggs,
parthenogenesis or gynogenesis can also occur sometimes spontaneously, or can be
artificially induced, in normal bisexual species and in normal eggs. On the other hand,
hybridogenetic reproduction involves only a particular kind of gametogenesis, while the
starting of egg's development follows a normal pattern (with fertilization). For this reason,
I think it useful to dissociate the concept of “reproductive mechanism” into two distinct
concepts: (1) mode of formation of gametes, or gametogenesis; and (2) mode of starting of
egg’s development, for which I propose the general term of germinogenesis (from the Latin
germen, which gave “germ”, the term by which embryologists call the active egg starting
its development, divisions, etc.). Usually germinogenesis occurs by fertilization, which
gives rise to a zygote, and can also be called zygogenesis. Other kinds of germinogenesis
are gynogenesis (the sperm stimulating the egg to develop without true fertilization) and
parthenogenesis (development of a virgin egg, which can be started by various factors).
In what follows, I am provisionally retaining the term hybridogenesis, since it is now
well established, but in a restricted sense: rather than a “mode of reproduction”, it means
here a particular type of gametogenesis which, whatever its cytological mechanisms may
be (actually there apparently exist several of them, and even rather distinct ones), results
in the exclusion of one complete (or almost complete) parental chromosome set and in the
formation of a gamete having a pure (or almost pure) chromosomal complement from the
other parental species.
Now to the second comment. What should be the criterions for deciding that a
particular asexual or parasexual form, with clonal or hemiclonal inheritance, is a taxon of
species rank? These criterions will depend on the philosophical school of biological
classification chosen. For systematists of the phenetic school, overall phenetic and genetic
similarity will be the major criteria. For systematists of the cladist school, any lineage
resulting from a given founder event will be afforded taxinomic recognition, and iineages
Source : MNHN, Paris
68 ALYTES 8 (3-4)
resulting from distinct founder events will be considered distinct taxons. Finally, for
evolutionary systematists, the latter condition also applies, but on the other hand when a
major phenetic, genetic and/or ecological shift has occurred within a single lineage as a
result of mutation, it may be warranted to recognize distinct taxons within this lineage.
Now I shall present briefly the three major types of species-rank taxons which I
suggest to distinguish in animals, and which I had already pointed out briefly in a previous
paper (Duois & GÜNTHER, 1982: 294-295). Despite the vast array of particular cases
observed in nature, it seems that the three categories here defined (including one with two
rather distinct subcategories) cover all possible cases in existence in the real world.
(1) Species (s. str.), or bisexual species.
(2) Kleptons, with two subcategories:
(a) “Hybridogenetic"' and zygogenetic kleptons, or zygokleptons, with zygogene-
sis and hemiclonal mode of inheritance.
(b) Gynogenetic kleptons, or gynokleptons (or klonokleptons), with gynogenesis
and clonal mode of inheritance.
(3) Klonons, that is, all kinds of uniparental “species” with clonal heredity not
depending on sperm for their reproduction, including, both, species with truly asexual
reproduction (for example vegetative reproduction), and species with parasexual or asexual
clonal reproduction (for example, autofertilization, thelytoky).
Dugois & GÜNTHER (1982) also proposed to recognize as a synklepton a group of
forms including both one (or several) klepton(s) and the “good species” from which it
(they) originated. Similarly, I propose here to call spnklonon any group of forms including
both one (or several) klonon(s) and the “good species” which gave birth to it (them).
If one accepts DuBois & GÜNTHER's (1982) proposal to use a sign, intercalated
between the names of generic and specific rank, to recognize these special species-rank
taxons, different signs should be used for the different types of taxons, in order to avoid
any possible confusion. DuBois & GÜNTHER (1982) proposed the abbreviations “kl.” and
“synkl.” respectively for klepton and synklepton; these signs, or one of them, were used
by a few authors since then (Dugois, 1982, 1983, 1984; GÜNTHER, 1983, 1987; GÜNTHER
& KOREF-SANTIBANEZ, 1983; BURNY & PARENT, 1985; MONNEROT, DUBOIS & TUNNER,
1986; OHLER, 1987, 1989; PoLLs PELAZ, 1987, 1988; BERGER & GÜNTHER, 1988; GÜNTHER
& PLÔTNER, 1988; PLÔTNER, GÜNTHER & SCHADE, 1988; CRESPO, OLIVEIRA & PAILLETTE,
1989; GRAF & PoLis PELAZ, 1989; PoLcs PELAZ & GRAF, 1989). I here propose the
abbreviations “kn.” and “synkn.” respectively for klonon and synklonon.
The principal characteristics of interest to systematists of the types of taxons defined
above are shown in Table I. Both species (s. str.) and klonons are reproductively
independent, while both zygokleptons and gynokleptons depend on sexual parasitism for
their reproduction (and for their survival) and are therefore not reproductively independ-
ent. Both gynokleptons and klonons display a clonal mode of inheritance, while
zygokleptons have a hemiclonal one.
Source : MNHN, Paris
Dugois 69
Table I. — The principal genetic and reproductive characteristics of the different
evolutionary taxinomic categories of species rank: species (s. str.), klepton (zygo-
klepton and gynoklepton) and klonon.
Name and Species Klepton (KL) Klonon (kn.)
symbol (s. str.) Zygoklepton Gynoklepton
Gykl.) (@ykl.)
Examples Poeciliopsis, Poeciliopsis Cnemidophorus,
Rana Laceria
Sexes Both 9 or both Le 9
Free Yes No No No
intrabreeding
Reproduction Sexual Sexual Parasexual Parasexual or
asexual
Gametogenesis Normal meiosis “Hybridogenesis”: Modified meiosis Modified meio-
(usually with modified meiosis or ameiosis sis or ameiosis
recombination) or ameiosis or absence of
gametes
Germinogenesis _ Zygogenesis Zygogenesis Gynogenesis Parthenogenesis
(fertilization) (fertilization) (pseudo- or absence of
fertilization) germ
Sperm necessary Yes Yes Yes No
Sexual No Yes Yes No
parasitism
Reproductive Yes No No Yes
independence
Mode of Not clonal Hemiclonal Clonal Clonal
inheritance (recombination (clonal inheritance
between parental of one parental
genomes) genome)
FINAL QUESTIONS
Two remaining problems are worth discussing before concluding.
(1) Should gynogenetic forms be included in the category klepton or in the category
klonon? A purely formal genealogical approach to taxinomy would lead to include them
in the category klonon, since they have the same clonal mode of inheritance as
parthenogenetic forms. For those who would favor such an approach, the categories and
subcategories listed above and shown in Table 1 could be arranged differently, as follows:
(D) species; (2) zygokleptons (or kleptons s. str.); (3) klonons, with two subcategories, (a)
gynoklonons (or kleptoklonons), equivalent to gynokleptons in Table I, and (b) partheno-
klonons, equivalent to klonons in Table I.
But, as an evolutionary systematist, Î think that the fact that gynogenetic forms
depend on the sperm of another species and are therefore not reproductively independent
is very important and should be stressed by placing them in the category klepton: their
Source : MNHN, Paris
70 ALYTES 8 (3-4)
dependence on the sperm of another species implies for these forms the inability to escape
from the geographical range of that species, and the extinction of the latter also results in
their own extinction. True parthenogenetic forms are very different from them in not
having these limitations.
Furthermore, gynogenetic forms use sperm for their reproduction, and there is always
some danger in using sperm: even if you don't want to, you run the risk of being fertilized,
and this is indeed what occurs for example in some Phoxinus gynokleptons or in some
Ambystoma.
Finally, it should be stressed that the same synklepton can include both zygokleptons
and gynokleptons (see for example the Poeciliopsis occidentalis synklepton), which stresses
the fact these two kinds of taxons are closely related and that the passage from one to the
other one is easy.
(2) Should zygokleptons be considered taxons of the species-rank or of a lower rank?
This question may be asked if we consider for example WiLey’s (1978) definition of the
evolutionary species as “a lineage of ancestral descendant populations which maintains its
identity from other such lineages and which has its own evolutionary tendancies and
historical fate”. Strictly speaking, zygokleptons are not true lineages but half-lineages’,
and for their “second half” they do not maintain identity from the lineage which provides
the genetic material; nor do they have their fully independent evolutionary tendancies and
historical fate, since their history is directly related to the history of the species on which
they depend for their perpetuation. I can see three possible solutions to this problem.
One would consist in considering a klepton as formally being part of the ancestral
bisexual species which provided the part of its genome which is clonally transmitted in the
Kklepton. Another one would consist in considering it as formally being part of the bisexual
species which allows its perpetuation (and which is also usually, but not always, one of the
ancestral species from which it arose by hybridization). In both these symmetrical cases,
the klepton category would be a category of subspecific, and not specific, rank, and names
of kleptons would be written in the following way: Rana lessonae KI. esculenta.
The third solution, which I already advocated (Dugois & GÜNTHER, 1982), is to consider
kleptons as taxons of specific rank, but to indicate the fact that they belong in a wider genetic
system by referring them, as well as the bisexual species with which they interact genetically,
to more comprehensive taxons, of a rank intermediate between genus and species, and which
we proposed to call synkleptons: Rana (synkl. esculenta) ki. esculenta.
This system has the advantage of allowing for the possibility of still recognizing taxa
of subspecific rank within kleptons (see MASsLiN, 1968 and DuBois & GÜNTHER, 1982),
which the first one does not allow. Furthermore, it poses no particular problems within the
3. L'here disal grec es ECHELLE (1990 a- ch who Lrecentlÿ suggested that “’hybridogens” are full lincages,
b cestral hybrid individual by haploid
, but the same group is also connected
1h which has ie Drckerusé at generation: anÿ “hybridogenetic” 0 spring derives its
genome from two parents. It is irrelevant in this respect to point that *
by the species providing the ‘borrowed' genome are not entrained in the germ line
(ECHELLE, 1990 a: 111). These traits are also transmitted by a germ line, that of the
We should not forget that we are classifying living organisms, not germ lines, or, put in other words
the object of taxinomy is the soma, not the germen.
leages)” (ÉCE
Source : MNHN, Paris
Duois 71
frame of Linnaean nomenclature, while the first one poses problems when the kleptic name
happens to be nomenclaturally older than the specific one (this is the case in the example
used above: lessonae Camerano, 1882 would have priority over esculenta Linné, 1758). For
these reasons, I here maintain my support to the nomenclatural system first proposed by
Dugois & GÜNTHER (1982).
CONCLUSION
The recognition of the three distinct evolutionary taxinomic categories of species (s.
str.), klonon and klepton (the latter with the two subcategories of zygoklepton and gyno-
klepton), three categories considered here to be of the same nomenclatural rank (that of
species), should clarify discussions on the problems of nomenclature of taxons belonging to
the second and third of these categories. The proposals made here, in particular that of ad-
ding a sign (kn. or kl.) between the generic and specific name, are currently not acceptable
within the rules of the Code now in force (ANONYMOUS, 1985). Such rules are however liable
to be modified, if zoologists feel that the proposals made above are useful, and apply to the
International Commission on Zoological Nomenclature for such a modification. The rules
have already been changed many times to incorporate new proposals, for example, recently,
concerning the nomenclature of some infrageneric and supraspecific taxons (see e.g. BER-
NARDI, 1980), and could well be modified as well in this case.
RÉSUMÉ
De manière à homogénéiser, standardiser et simplifier la nomenclature des taxons
parthénogénétiques, gynogénétiques et “hybridogénétiques” de Vertébrés, de nouvelles
propositions sont faites, qui s'appuient sur une séparation nette entre le besoin d’un
système nomenclatural unique pour tous les animaux au niveau spécifique, d'une part, et
celui d'une distinction entre différents types d'unités évolutives existant dans la nature,
d'autre part.
Trois types principaux de taxons de rang spécifique peuvent être distingués chez les
animaux: (1) les espèces (s. str.) ou espèces bisexuées, à reproduction sexuée (comportant
une méïose normale, avec habituellement recombinaison génétique, fécondation de l'oeuf
par un spermatozoïde et hérédité non-clonale); (2) les kleptons, qui dépendent d’un
parasitisme sexuel pour leur reproduction, et qui comportent d'une part les zygokleptons
(à reproduction sexuée, avec méiose “hybridogénétique”, fécondation de l'oeuf par un
spermatozoïde et hérédité hémiclonale) et d'autre part les gynokleptons (à reproduction
parasexuée, avec méïose modifiée ou absente, gynogen: et hérédité clonale); (3) les
klonons, à reproduction parasexuée ou asexuée, avec méïose modifiée ou absente ou
gamètes absentes, parthénogenèse ou absence de germe, et hérédité clonale. Toutes ces
catégories de systématique évolutive sont ici considérées comme étant du même rang
nomenclatural au sein du système linnéen, le rang spécifique, et les noms des taxons
correspondants devraient être soumis aux mêmes règles, celles du Code International de
Nomenclature Zoologique pour les noms spécifiques. Pour distinguer les kleptons et les
Source : MNHN, Paris
72 ALYTES 8 (3-4)
klonons des espèces (s. str.), il est suggéré d'ajouter les abréviations “kl.” et “kn.”,
respectivement, entre les noms générique et spécifique.
ACKNOWLEDGEMENTS
For their suggestions and comments on first drafts of this manuscript, | am grateful to Claude
Dupuis, Anthony A. ECHELLE, Annemarie OHLER, Manuel POLLS PELAZ and an anonymous reviewer.
LITERATURE CITED
ANONYMOUS, 1984. — The Oxford Guide 10 the English Language. London, Guild Publishing: i-xxiii
+ 1-577.
us 1985. — International code of zoological nomenclature. Third edition. London, International
Trust for zoological Nomenclature: i-xx + 1-338.
BERGER, L. & GÜNTHER, R., 1988. — Genetic composition and reproduction of water frog
populations (Rana ki. esculenta synklepton) near nature reserve Serrahn, GDR. Arch. Nat.
schutz. Landsch. forsch., Berlin, 28: 265-280.
BERNARDI, G., 1980. — Les catégories taxonomiques de la systématique évolutive. Mém. Soc. zool.
France, 40: 373-425.
BoGarT, J. P., 1980. — Evolutionary implications of polyploidy in Amphibians and Reptiles. /n:
W. H. Lewis (ed.), Polyploidy, biological relevance, New York, Plenum Press: 341-378.
a 1982. — Ploidy and genetic diversity in Ontario salamanders of the Ambystoma jeffersonianum
complex revealed through an electrophoretic examination of larvae. Can. J. Zool., 60: 848-855.
BoGaRT, J. P. & LicuT, L. E., 1986. — Reproduction and the origin of polyploids in hybrid
salamanders of the genus Ambystoma. Can. J. Genet. Cytol., 28: 605-617.
BoGaRT, J. P., LICHT, L. E., OLDHAM, M. J. & DARBYSHIRE, S. J., 1985. — Electrophoretic
identification of Ambystoma laterale and Ambystoma texanum as well as their diploid and
triploid interspecific hybrids (Amphibia: Caudata) on Pelce Island, Ontario. Can. J. Zool., 63:
340-347.
BoGarT, J. P., Lowcock, L. A., ZEyL, C. W. & MABLE, B. K., 1987. — Genome constitution and
reproductive biology of hybrid salamanders, genus Ambystoma, on Kelleys Island in Lake Erie.
Can. J. Zool., 65: 2188-2201.
BORKIN, L. J. & DAREVSKY, I. S., 1980. — Reticulate (hybridogenous) speciation in vertebrates. Zh.
Obshch. Biol., 41: 485-506.
BURNY, J. & PARENT, G. H., 1985. — Les Grenouilles vertes de la Belgique et des régions limitrophes.
Données chorologiques et écologiques. Alytes, 4: 12-33.
Cour, C. J., 1975. — Evolution of parthenogenetic species of reptiles. /n: R. RrINBoTH (ed.),
Intersexuality in the animal kingdom, Berlin, Springer-Verlag: 340-355.
ma 1985. — Taxonomy of parthenogenetic species of hybrid origin. Syst. Zool., 34: 359-363.
Cook, F. R. & GorHaM, S. W., 1979. — The occurance of the triploid form in populations of the
blue-spotted salamander, Ambystoma laterale, in New Brunswick. J. New Brunswick Mus.,
1979: 154-161.
CRespo, E. G., OLIVEIRA, M. E. & PAILLETTE, M., 1989. — Un cas d’accouplement dorsal inverse chez
Rana perezi. Alytes, 7: 113-114.
DAWLEY, R. M., SCHULTZ, R. J. & GopDARD, K. A., 1987. — Clonal reproduction and polyploidy
in unisexual hybrids of Phoxinus eos and Phoxinus neogaeus (Pisces; Cyprinidae). Copeia, 1987:
275-283.
DEssAUER, H. C. & CoiE, C. J., 1986. — Clonal inheritance in parthenogenetic whiptail lizards:
biochemical evidence. J. Hered., TT: 8-12.
DOBZHANSKY, T., 1970. Genetics of the evolutionary process. New York & London, Columbia
University Press: i-ix + 1-505.
Source : MNHN, Paris
Duois 73
Duois, A., 1977. — Les problèmes de l'espèce chez les Amphibiens Anoures. Mém. Soc. zool. France,
39: 161-284.
—— 1979. — Anomalies and mutations in natural populations of the Rana “esculenta” complex
(Amphibia, Anura). Mitt. zool. Mus. Berlin, 55: 59-87, pl. I.
_—— 1982. — Notes sur les Grenouilles vertes (groupe de Rana kl. esculenta Linné, 1758). I.
Introduction. A/ytes, 1: 42-49.
1983. — A propos de cuisses de Grenouilles. Alytes, 2: 69-111
1984. — L'anomalie P des Grenouilles vertes (complexe de Rana kl. esculenta Linné, 1758) et les
anomalies voisines chez les Amphibiens. Jn: C. VaGo & G. MATZ (eds.), Comptes rendus du
Premier Colloque International de Pathologie des Reptiles et des Amphibiens, Angers, Presses de
l'Université d'Angers: 215-221.
Duois, A. & GÜNTHER, R., 1982. — Klepton and synklepton: two new evolutionary systematics
categories in zoology. Zool. Jb. Syst., 109: 290-305.
ECHELLE, À. E., 1990 a. — In defense of the phylogenctic species concept and the ontological status
of hybridogenetic taxa. Herpetologica, 46: 109-113.
1990 b. — Nomenclature and non-Mendelian (‘“clonal”) vertebrates. Syst. Zool., 39: 70-78.
FIsCHER, J.-L. & REY, R., 1983. — De l'origine et de l'usage des termes taxinomie — taXonomie. In:
Documents pour l'histoire du vocabulaire scientifique, Paris, C.N.R.S., Institut national de la
langue française, 5: 97-113.
Frost, D. R. & Hicuis, D. M., 1990. — Species in concept and in practice: herpetological
applications. Herpetologica, 46: 81-104.
Frosr, D. R. & WRIGHT, J. W., 1988. — The taxonomy of uniparental species, with special reference
to parthenogenetic Cnemidophorus (Squamata: Teïdae). Sysr. Zool.. 31: 200-209.
GÉNERMONT, J., 1980. — Les animaux à reproduction uniparentale. Mém. Soc. zool. France, 40:
287-320.
GRAF, J.-D. & PorLs PELAZ, M., 1989. — Evolutionary genetics of the Rana esculenta complex. In:
R. M. DAWLEY & J. P. BOGART (eds.), Evolution and ecology of unisexual vertebrates, Albany,
The New York State Museum: 289-302.
GüNTHER, R., 1973. — Über die verwandtschaftlichen Bezichungen zwischen den europäichen
Grünfrôschen und den Bastardcharakter von Rana esculenta L. (Anura). Zool. Anz., 190:
250-285.
ee 1983. — Zur Populationsgenetik der mitteleuropäischen Wasserfrôsche des Rana esculenta-
Synkleptons (Anura, Ranidae). Zoo!. Anz., 211: 43-54.
---- 1987. — Nomenklatur und Trivialnamen der europäischen Wasserfrôsche (Anura, Ranidae). Jb.
Feldherp., V: 99-113.
GÜNTHER, R. & HÂHNEL, S., 1976. — Untersuchungen über den GenfluB zwischen Rana ridibunda
und Rana lessonae sowie die Rekombinationsrate bei der Bastardform Rana ‘“esculenta”
(Anura, Ranidae). Zool. Anz., 197: 23-38.
GÜNTHER, R. & KOREF-SANTIBAREZ, S., 1983. — Die LDH-B-Isoenzyme von Wasserfrôschen (Anura,
Ranidae) aus verschiedenen Teilen Europas und Mittelasiens. Zoo/. Anz., 210: 369-374.
GÜNTHER, R. & PLÔTNER, J., 1988. — Zur Problematik der klonalen Vererbung bei Rana kl. esculenta
(Anura). Jb. Feldherp., Beïheft 1: 23-46.
Husss, C. L. & Huges, L. C., 1932. — Apparent parthenogenesis in nature, in a form of fish of
hybrid origin. Science, 76: 628-630.
INEICH, L., 1988. — Mise en évidence d’un complexe unisexué-bisexué chez le gecko Lepidodactylus
lugubris (Sauria, Lacertilia) en Polynésie française. C. r. Acad. Sci., (3), 307: 271-277.
KOREF-SANTIBANEZ, S., 1979. — The karyotypes of Rana lessonae Camerano, Rana ridibunda Pallas
and of the hybrid form Rana “esculenta” Linné (Anura). Mit. zool. Mus. Berlin, 55: 115-124,
pl. -IV.
LazeLL, J. D. Jr., 1971. — Taxonomic recognition of triploid Ambystoma salamanders. Herper. Rev.
3: 53-54.
Lowcock, L. A. Lic
Ambystoma (Urodel
Zool., 36: 328-336.
Masuin, T. P.. 1968. — Taxonomic problems in parthenogenctic vertebrates. S
MAY, E., 1969. — Principles of systematic zoology. New York, MeGraw-Hil
L. E. & BOGART, J. P., 1987. — Nomenclature in hybrid complexes of
Ambystomatidae): no case for the crection of hybrid “species”. Syst
ol, 17: 219-231.
i + 1-428.
Source : MNHN, Paris
74 ALYTES 8 (3-4)
Zool., 1:
Mister, B. D. & DoNoGnur, M. J., 1982. — Species concepts: a case for pluralism. Sysl
491-503.
MONACO, P. J., RasCH, E. M. & BALSANO, J. S., 1984. — Apomictic reproduction in the Amazon
molly, Poecilia formosa, and its triploid hybrids. /n: B. J. TURNER (cd.), Evolutionary geneties
of fishes, New York & London, Plenum Press: 311-328.
MoxwerorT, M. Dunois, A. & TUNNER, H., 1986. — Mitochondrial DNA polymorphism among
Rana ridibunda, Rana lessonae and Rana k]. esculenta: preliminary study. Alytes, 4: 101-112.
Moore, W. S., 1984. — Evolutionary ecology of unisexual fishes. /n: B. J. TURNER (cd.), Evolutionary
genetics of fishes, New York & London, Plenum Press: 329-398.
OHLER, A., 1987. — Zur Ontogenie von Rana synkl. esculenta. Thesis, Universität Wien: 1-266.
--- 1989. — Developmental rate of Rana synkl. esculenta (Ranidae, Anura) embryos from different
crosses: consequences on the evolution of the populations. Alytes, 7: 115-123.
PasTEUR, G., 1976. — The proper spelling of taxonomy. Syst. Zool., 25: 192-193.
PLÔTNER, J, GÜNTHER, R. & SCHADE, R., 1988. — Immunologische Untersuchungen zur
Verwandtschaft zwischen den mitteleuropäischen Wasserfrôschen des Rana kl. esculenta
Synkleptons (Amphibia, Anura) und anderen Anuren-Taxa. Mit. zool. Mus. Berlin, 64:
323-330, pl. I-IL.
PoLLS PELAZ, M., 1987. — On the identity of the s4 Iled “algae like cells” in tadpole cultures of
European green frogs (Rana ridibunda). Alytes, 6: 23-26.
us 1988. — Un accouplement ventral chez Rana kl. esculenta. Alytes, 6: 85-87.
PoLLs PeLaz, M. & GRAF, J.-D., 1989. — Erythrocyte size as an indicator of ploidy level in Rana
kl. esculenta before and after the metamorphosis. Alyte. 53-61.
SCHULTZ, R. J., 1961. — Reproductive mechanisms of unisexual and bisexual strains of the viviparous
fish Poeciliopsis. Evolution, 15: 302-325.
ee 1966. — Hybridization experiments with an all-female fish of the genus Poeciliopsis. Biol. Bull.,
130: 415-429.
es 1967. — Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science, 157: 1564-1567.
ve 1969. — Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Pocciliidac) and
other vertebrates. Amer. Nat., 108: 605-619.
ee. 1977 — Evolution and ecology of unisexual fishes. £vol. Biol., 10: 277-331.
UZZELL, T., 1982. — Introgression and stabilization in Western Palearctic species of water frogs. /n:
D. Mossakowski & G. ROTH (eds.), Environmental adaptation and evolution, Stuttgart & New
York, Gustav Fischer: 275-295.
., T. & DAREvVSKY, [. S., 1975. — Biochemical evidence for the hybrid origin of the
parthenogenetic species of the Lacerta saxicola complex (Sauria, Lacertidae), with a discussion
of some ecological and evolutionary implications. Copeia, 1975: 204-222.
VRUENHOEK, R. C., 1984. — The evolution of clonal diversity in Poeciliopsis. In: B. J. TURNER (ed.),
Evolutionary genetics of fishes, New York & London, Plenum Press: 399-429.
WaLkEr, J. M. 1986. — The taxonomy of parthenogenctic species of hybrid origin: cloned hybrid
populations of Cnemidophorus (Sauria: Teïidac). Syst. Zool., 35: 427-440.
O., 1978. — The evolutionary species concept reconsidered. Sysr. Zool., 27: 17-26.
L, R. G., 1965. — Variation in and distribution of the unisexual lizard, Cnemidophorus
tesselatus. Amer. Mus. Novit., 2235: 1-49.
Corresponding editor: Andrew H. PRICE.
© ISSCA 1991
Source : MNHN, Paris
Alytes, 1989-1990, 8 (3-4): 75-89. 75
The Biological Klepton Concept (BKC)*
Manuel POLLS PELAZ
Université de Genève,
Station de Zoologie Expérimentale,
154, route de Malagou,
1224 Chêne-Bougeries,
Geneva, Switzerland
The proposal of DuBois & GÜNTHER (1982) to create a new systematic
category (klepton) embracing the hybridogenetic and gynogenetic taxa (sensu
lineages, genealogies) is analyzed. Such taxa can be considered neither as
simple hybrids nor as good species.
Biological trends for all known kleptons in the Ambystoma, Rana,
Phoxinus, Poecilia and Poeciliopsis complexes are summarized, and their new
associated terms discussed.
Kleptons are historical entities, but not of the classical Biological Species
Concept (BCS sensu Mayr, 1982), but showing equally ecological, genetical,
and evolutionany relevances as their associated “ good ” species.
From an epistemological point of view, the fact that so-called kleptons
are not subject to cladistic laws (because kleptons are polyphyletic), must not
be considered as and argument for ignoring the existence of those taxa, either
biologically or taxonomically.
Klepton evolutionary rules, as parallel species pathways, are discussed:
we conclude that not all evolutionary processes take place in the species
context.
The Biological Klepton Concept (BKC) is proposed: a klepton is a
community of populations with a hybrid genome derived from the same
parental species, reproductively dependent upon sympatric species that play
the rôle of sexual host.
“ But what about viruses ? Can they be classified in Linnean fashion ? (...) The only
attribute of life possessed by viruses is reproduction with genetic continuity and the
possibility of mutation. Evolution can therefore occur.”’ (GOODHEART, 1969: 38).
* This paper was presented during the symposium on “Nomenclatural treatment of hybrid-derived
vertebrate taxa ” organised by Andrew H. PRICE as part sF the Combined Meeting of the Society for the
Study of Amphibians and Reptiles, the Herpetologists * . Early Life History Section, ÂFS, the
American Elasmobranch Society. with the American Socies of Ichthyologists and Herpetologists (Ann
Arbor, Michigan, U.S.A. 23-29 June 1988).
Source : MNHN, Paris
76 ALYTES 8 (3-4)
NATURAL TAXA MUST BE NAMED
1 suppose all evolutionary biologists agree with this statement, in spite of rare
biological characteristics or atypical reproductive modes in taxa of certain lineages. The
example of viruses is very clear: we don’t know if it can be said that viruses are alive (they
have no intrinsic metabolism), but viruses do have names becauses they constitute
historical entities (acting as genetical cell parasites of animals and plants), and names are
needed to facilitate studies on them.
Parthenogenetic, gynogenetic, and hybridogenetic populations constitute special taxa
in the Animal Kingdom. Briefly it can be said that parthenogenetic unisexual females
reproduce without sperm, whereas gynogenetic unisexual females need sperm of associated
species for reproducing, the genome of which is not included into the egg after
fertilization; finally, hybridogenetic taxa need either the sperm or the ovocytes of
associated species for reproducing, the genome of which is incorporated into the egg. The
analogy with respect to viruses is clear: as viruses are genetic parasites of cells (the
biological unit, MAYR, 1982), thus gynogens and hybridogens are genetic parasites of
“ good ” species (the unit of evolution, MAYR, 1982).
Nomenclature of parthenogenetic, gynogenetic, and hybridogenetic taxa is a system-
atic topic currently of major interest, due to biological paradoxes in those populations
which put in question the classical concept of species. Discussions at the Ann Arbor
meeting made evident that:
(1) Parthenogenetic population must be named and considered separately from
gynogenetic and hybridogenetic populations.
(2) Parthenogenetic populations are genetically autonomous, constituting taxa with
clonal genetic inheritance, and frequently with hybrid origin as their primary speciation
event (see discussions in CUELLAR, 1987). Parthenogenetic reproduction is asexual (sensu
MAYNARD SMITH, 1986) and automitic (sensu MOGIE, 1986).
(3) Gynogenetic and hybridogenetic populations do not constitute genetically
autonomous taxa. They reproduce sexually, with well-established mechanisms of mating
choice (see for instance BLANKENHORN, 1977; KEEGAN-ROGERS & SCHULTZ, 1988).
(4) Gynogenetic and hybridogenetic populations cannot be included in the Biological
Species Concept (BSC, sensu MaAyR, 1942, 1982).
Itis my wish to consider in this paper only nomenclatural treatment for gynogenetic
and hybridogenetic taxa. Biological characteristics concerning reproductive modes,
gametogenetic mechanisms, hybrid genome composition, ploidy, and sexual parasitism,
for different gynogenetic and hybridogenetic taxa are reviewed and summarized as they
occur in fishes and amphibians.
Major controversies concerning nomenclatural treatment of gynogenetic and hybrido-
genetic taxa have originated from ambiguous discussions on their conformance (or not)
with the unitary concept of species. I here show that the biological characteristics of those
taxa are quite unitary, but far different from those of the BSC. Accordingly, 1 propose
Source : MNHN, Paris
POLLS PELAZ 77
herein a Biological Klepton Concept (alternative to BSC). Kleptons are regarded as
distinct, natural, and real biological entities, extrapolating from the term and systematic
category created by DuBois & GÜNTHER (1982).
THE DEFINITION OF KLEPTON
GIVEN BY DuBois & GÜNTHER (1982)
The aim of these two authors was “ ...to provide a general name and nomenclatural
rules for some particular animal ‘forms’ which cannot be properly considered as
‘biological * species, such as gynogenetic and hybridogenetic unisexual fish of the genus
Poeciliopsis, gynogenetic unisexual fish of the genus Poecilia, gynogenetic unisexual
salamanders of the genus Ambystoma, and hybridogenetic (or leaky hybridogenetic) frogs
of the genus Rana. All these forms, despite their diversity, have the following features in
common: they are of hybrid origin; their heredity is clonal or hemiclonal; for their
reproduction such forms depend on the gametes of a distinct ‘ good ” species. ” (DuBois &
GÜNTHER, 1982: 290).
From a practical point of view, creation of the new term klepton provides simplicity,
ready dichotomy, university of application and a precedent for naming further, still
unknown categories of taxa.
From an evolutionary point of view, the term klepton excludes the Biological Species
Concept, and connotes a new one, the Biological Klepton Concept.
From a genetical, ecological, and ethological point of view, the term klepton implies
the hybrid genetic character of its taxa, as well as their reproductive modes that involve a
genetical parasitism of hybrids on their “ good ” associated parental species. Special mate
choice ethograms and ecological niches are involved in the klepton concept.
All of these biological characteristics are entailed in use of the term klepton, which
nomenclaturally can just be introduced as an abbreviation between the binomial terms, i.e.:
Rana KI. esculenta, Poscilia kl. formosa.
KLEPTONS ARE NOT SPECIES
“ Species are groups of actually or potentially interbreeding natural populations
which are reproductively isolated from other groups.” (MAYR, 1942: 120).
“ An evolutionary species is a lineage (an ancestral-descendant sequence of popula-
tions) evolving separately from others and with its own unitary evolutionary role and
tendencies. ” (SIMPSON, 1961: 153).
“ A species is a reproductive community of populations (reproductively isolated from
others) that occupies a specific niche in nature.” (Mayr, 1982: 273).
To my knowledge, Ernst MAYR never considered specifically in his works the cases of
hybridogenetic and gynogenetic populations. In fact findings concerning these taxa are
very recent and their biological interest remains still ignored in general zoological books.
Source : MNHN, Paris
78 ALYTES 8 (3-4)
However, the father of the BSC clearly separated parthenogenetic taxa from parameters of
the unitary species: “ The biological species concept is based on the reproductive isolation
of populations. The concept, therefore, cannot be applied in groups of animals and plants
that have abandoned bisexual reproduction.” (MAyRr, 1982: 283).
In contrast to MAYR, several authors (as FROST & WRIGHT, 1988) have proposed
solutions for naming parthenogenetic taxa, considering them as species, from cladistic
points of view: “ … a lineage concept, later redefined by WiLey (1978) as the largest
monophyletic group whose components are not irretrievably on different phylogenetic
trajectories ”. Reading WiLEy (1978), however, one concludes that FROST & WRIGHT
(1988) merely present an interpretation of WiILEv’'s evolutionary concept of species
(modified from SIMPsON, 1961), not of anatomically unisexual taxa.
The systematic protocol for hybridogenetic and gynogenetic populations thus remains
indeterminate. Those taxa are neither asexual as parthenogens, nor reproductively isolated
bisexual populations as species. Nevertheless, it is true that some gynogenetic populations
reproduce clonally, in analogy to parthenogens. But gynogenetic populations cannot
reproduce alone and reproductive isolation is the major biological requirement of
autonomous population taxa. The point of major importance in classification is the mode
of reproduction (that is, genetic parasitism common to hybridogens and gynogens), not
the mode of conservation of the genotypes (clonal as in gynogens and parthenogens,
hemiclonal or clonal in hybridogens).
BIOLOGICAL CHARACTERISTICS IN KLEPTONS
Kleptons are real entities.
Biological trends in all known gynogenetic and hybridogenetic vertebrate hybrid taxa
are summarized in Table I, showing clear analogies between various fish and amphibian
complexes. Some very interesting findings concerning “ before meiosis ”, “ pre-meiotic ”,
and * ameiotic ” cytogenetic events, for different complexes, are of major cytological and
evolutionary interest. These phenomena could be interpreted as convergent solutions to
hybridity (from a darwinistic point of view), or as a result of neutral mutations in
ancestors, before hybridization, well utilized after casual hybridization by gynogens and
hybridogens for their reproduction (random walk evolution of the parental species
genome, sensu KING & JuKkEs, 1969, followed by natural selection on hybrids, sensu
DoBzHANSKY, 1937).
Itis worth noticing that constant presence of some parental genomes have been found
in all complexes (the genome “ laterale ” in Ambystoma kleptons, as well as the presence of
the genome “ridibunda ” in all Rana kleptons, or the presence of the genome “ monacha ”
in all Poeciliopsis kleptons).
In all cases, the presence of a sexual host associated with each klepton is a clear and
distinct fact for all these hybrid taxa.
However, no gynogenetic or hybridogenetic taxa have yet been found in reptiles,
where are least 30 parthenogenetic lizard taxa exist (CUELLAR 1987).
Source : MNHN, Paris
PoLLS PELAZ 79
Another meaningful reason for considering a common nomenclatural treatment for
gynogens and hybridogens is that the Poeciliopsis complex includes both hybridogenetic
and gynogenetic taxa (see Table I). Likewise it appears (as inferred from the results of
BoGaRT et al., 1987) that gynogenetic and hybridogenetic reproductive modes occur in the
very same hybrid individuals, in some populations of Ambystoma.
A NEW, MORE GENERALIZED DEFINITION OF KLEPTON :
THE BIOLOGICAL KLEPTON CONCEPT (BKC)
The definition of klepton given by DuBois & GÜNTHER (1982) was based on three
conditions that do not always take place in all hybridogenetic and gynogenetic hybrid
taxa. For instance recombinant gametes occur in low frequencies in some rare Rana kl.
esculenta hybridogenetic populations, as well as diploid gametes containing both parental
genomes (GRAF & PoLLs PELAZ, 1989). In these cases the original definition of klepton
would not apply.
Thus I propose a more extensive Biological Klepton Concept: “ A klepton is a
community of populations with a hybrid genome derived from the same parental species,
reproductively dependent upon sympatric species that play the role of sexual host ”. An
equivalent definition would be: “ A klepton is an evolutionary systematic category
(parallel to the species pathway) including hybrid populations reproducing by hybridogen-
esis and gynogenesis ”.
I nevertheless agree completely with Mayr (1982) in considering the species as the
unit of evolution, as well as the cell is the functional biological unit of life. The analogy of
viruses and kleptons, stated previously, reminds how carefully the evolutionary relevance
of both groups must be considered, especially of retroviruses and allopolyploid kleptons.
NAMED, AND STILL UNNAMED KLEPTONS
“I don't like to see descriptions of the Evolution as the mean of survival and
multiplication of DNA. (...) It would be as absurd as to propose explanations of Eastern
literature as the means of survival of the points on the letter i.”” (translated from
MARGALEF, 1980: 93).
Kleptons could be named in the same way as viruses, using combined numbers or
letters referring to their prevailing genomes (transmitted clonally, hemiclonally, or
recombined). But kleptons are animals, they are clearly alive, and they have phenotypes
analogous to those of the “ good ” species described by LINNAEUS.
In fact one of the reasons prompting DuBois & GÜNTHER (1982) to propose the new
term klepton was the fact that binomials at the Linnaean fashion already exist for many of
those taxa. That is, some kleptons were named as species, and their morphological
description and names were available before the discovery of their hybrid character and
Source : MNHN, Paris
08
Table I. - Biological trends for some gynogenetic and hybrid genetic taxa. Major papers and reviews concerning each topic are referred to by
numbers:
(1) Scxuzrz (1969) : (2) FErRIS (1984) : (3) VRUENHOEK (1984) : (4) Cimino (1972a) ; (5) Cimio (1972b) ; (6) ScHuLTZ (1977) : (7) MooRE (1984) ; (8) HuBes
& Husss (1932) ; (9) RASCH et al. (1982) ; (10) Monaco et al. (1984) : (11) DaWLEY et al. (1987) ; (12) DAWLEY & GopDarD (1988) ; (13) GoDDARD et al. (1989) :
(14) BERGER (1977) ; (15) Grar & MÜLLER (1979) ; (16) HriCH et al. (1982) ; (17) POLLS PELAZ (1991) ; (18) TUNNER (1974) ; (19) GRAF & POLLS PELAZ (1989) :
(20) GRar et al. (1977) ; (21) UZZELL & HoTz (1979) : (22) UZZELL (1964) ; (23) MASLIN (1968) : (24) Lowcock et al. (1987) : (25) KRAUS (1985) ; (26) BOGART et
al. (1989) : (27) UzzeLL & GoLDBLaTT (1967) : (28) SERVAGE (1979) : (29) UZZELL (1970) ; (30) MacarEGor & UZZELL (1964) : (31) CUELLAR (1976) ; (32)
Dowxs (1978) ; (33) UZZELL & GoLDBLATT (1967) : (34) LYNCH (1984) : (35) UZZELL (1969) ; (36) Morkis & BRANDON (1984) ; (37) BOGART et al. (1985) ; (38)
BoGarT & LicHT (1986); (39) Morkis (1985).
Kieptic nomenclature Parental genome Gametogenesis Reproduction mode Sexual host
Fishes: Poeciliopsis complexes
Precedent nomenclature: hyphenated names,
Poeciliopsis kl. monachalucida Schultz, 1969, 2n Premeotic Hybridogenesis,,, P. lucida,,
mon., lue, exclusions, ;
3n Endomitosi, Gynogenesis, P. lucida, P. monacha
Poeciiopsis Ki. monachaoccidentalis Schultz,1971, 2 mon., occid., Prem. exclusions, Hybridogencsis,, P. occidentalis,,
Poeciliopsis kl. monachalatidens Schultz,1971, … 2n mon latid., Prem. exclusion, Hybridogenesis,, P. latidens,s
Unnamed_Poeciliopsis Klepton 2n (monvir), luc, Prem. exclusion? Hybridogenesis,s, P. lucida 4;
Unnamed Poeciliopsis Klepton 3 mon. vir, luc, Endomitosis ? Gymogenesis,, P. viriosass
Fishes: Poecilia complex
ii ï , e . P. mexicana
Poecilia K. formosa (Girard, 1859), p ps PR nee, p, means
Fishes: Phoxinus complexes
Unnamed Phoxinus klepton 2 Gynogenesis,i 2 P. eos
à 3n cos, neogaeusiiumn (?) Hybridogenesis %n P. eos, P. neogaeus
(b-£) 8 SALATV
Source : MNHN, Paris
Amphibians: Rana complexes
Precedent nomenclature: formal names,
Rana Ki. esculenta Linnaeus, 1758,
Unnamed_Rana klepton
Unmamed_Rana klepton
Amphibians: Ambystoma complexes
Precedent nomenclature: formal names, ;
and hyphenated names,
Ambystoma KI. nothagenes Kraus, 1985
Ambystoma KI. platineum (Cope, 1867),
Unnamed Ambystoma Klepton
Unnamed Ambystoma Klepton
Unnamed Ambystoma Klepton
2n
EU
2n
2n
3nssdnu
Anar nd
2n,3n3a0 46
ns
Inn
rid.. less
rid., perezix
rid., bergeri-,
lat., tex., tigr.
lat, je
lat, texsru
lat. jeff, tigrs
lat. jeff, 16x56
Before-meiosis
exclusions;
+ endomitosis,s
Idem, and
ameiosis,;
B-meiosis excl. ?
B-meiosis excl. ?
o .
Endomitosis; 2 ss
Hybridogenesiss
Hybridogenesis,
Hybridogenesis;
Oo.
Hybridogenesis,;
Gynogenesis
Parthenogenesis
RRRRE
> >» >>»
. ridibunda
: lessonae,s
kl. esculenta
perezi
bergeri
tigrinum? A. laterale ?s
digrinum ? À. texanum ?;; ss
jeffersonianum 7:
maculatum ?
laterale ? texanum ?;;
ZVTd ST10d
18
Source : MNHN, Paris
82 ALYTES 8 (3-4)
reproductive mechanism (hybridogenesis or gynogenesis). It was the case of Rana kl.
esculenta Linnaeus, 1758, Ambystoma (Cope, 1867), and Poecilia kl. formosa (Girard,
1859). Current authors continue to use those ancient names, and DuBois & GÜNTHER
(1982) proposed simply to introduce the abbreviation “ kl. ” in the binomial to distinguish
them from species.
Thus the major nomenclatural controversies that now occur concern kleptons that
still are unnamed.
Several papers have been published concerning these topics, and the dilemma involves
two major alternatives: the use of hyphenated names as proposed by SCHULTZ (1969), and
the use of DuBois & GÜNTHER’s (1982) klepton nomenclature.
Hyphenated nomenclature consists in giving all parental names of genomes com-
posing the hybrid, each one being preceded by a number indicating the ploidy level of each
genome (for instance Ambystoma laterale-(2)jeffersonianum-tigrinum). This is a genetic
systematic point of view.
I choose the klepton nomenclature because I consider that system as most practical
from an evolutionary, general biological and phenotypical points of view. The klepton
nomenclature lets us treat separately each case with different binomial, just introducing the
particle “ k1. ”” between. But it also implies that authors studying different hybridogenetic
and gynogenetic hybrid taxa must undertake careful description of all known kleptons.
Fully complete description is needed, including morphology. For instance in European
complexes of Rana there are two quite well genetically known kleptons yet unnamed. That
constitutes an additional difficulty for people concerned for their conservation, ecological
study and zoogeographical considerations.
In the absence of complete descriptions of kleptic taxa, provisional names could be
employed. For instance GRAF & POLLS PELAZ (1989) utilize Rana kl. RP (Rana ridibunda-
perezi sensu SCHULTZ 1969) for referring to one still unnamed Southern Europe hybrid.
Either SCHULTZ's hyphenated names or other lettered or numbered nomenclatures could
be provisionally accepted until formal kleptic names are substituted, once complete
descriptions of those taxa are provided.
WHEN IS A NEW KLEPTON JUSTIFIED ?
THE PROBLEM OF POLYPLOIDS
Biological characteristics of Ambystoma kl. nothagenes Kraus, 1985, are noted in
Table I. 1 know that Canadian workers on the Ambystoma complex disagree with
consideration of this taxon as a separate species (BOGART & LicHT, 1986; Lowcocx et al.,
1987). They are correct. It is not a species but a klepton. Kleptic nomenclature and the
BKC concept should substitute for the BSC. The case is a classic illustration of conditions
justifying the erection of a new klepton.
As a klepton is the result of hybridization between two or more species, all new
discoveries of hybrids should be nomenclaturally recognized. Thus the discovery by
KRAUS (1985) of triploid hybrids with parental genomes of Ambystoma laterale, A.
Source : MNHN, Paris
POLLS PELAZ 83
texanum, and À. tigrinum was a biological novelty (no other combination of those parental
genomes was known before in the Ambystoma complex) and the erection of a new name
was required and fully justified. A question arises, however, because Ambystoma Kkl.
nothagenes populations include both triploid and tetraploid gynogenetic and hybridogenetic
individuals, just as Rana kl. esculenta includes diploid, triploid, and diploid-triploid
populations.
I propose that all different ploidy combinations with the same parental genomes be
included in the same klepton. The main reason is that genetic flow exists between different
ploidy forms. For instance diploid Rana kl. esculenta females in Germany produce both
diploid and triploid progeny, thus preventing consideration of diploids and triploids as
separate taxa. On the other hand, recent studies of BOGART & LiCHT (1986) showed how
diploid, triploid, and tetraploid progenies were from the same Ambystoma triploid females
in Lake Erie. Obviously, separate nomenclature for different ploidy levels would be
biologically inacceptable. For these very same reasons I consider Ambystoma tremblayi
Comeau, 1943 (Ambystoma 2 laterale-1 jeffersonianum, sensu SCHULTZ, 1969) a junior
synonym of Ambystoma kl. platineum (Cope, 1867) (Ambystoma 1 laterale-2 jeffersonianum,
sensu SCHULTZ, 1969) (see Table I).
KLEPTONS TOWARD THE STATUS OF SPECIES
Kleptons become species either when they become genetically autonomous, or when
their hybrid origin is concealed, by accumulative mutations (sensu lato). The phenomena
could be compared to diploidization of tetraploid new species after entire genome
duplication (OHNo, 1970).
As some peripheral subspecies are involved in speciation processes, thus some kleptic
populations could be considered in speciation process, too. Such appears to be the case for
some Rana kl. esculenta populations of East Germany. In these populations esculenta
hybrids seem to be autonomous with respect to the species Rana ridibunda (see a review in
GRAF & PoLLs PELAZ, 1989). I understand these situations as speciation events (or perhaps
only attempts), and I propose to consider these cases as examples of “ good ” species
arising from a kleptic origin (fig. 1).
Perhaps speciation events in Xenopus (by allopolyploidy, KoBEL & DU PASQUIER,
1986) are analogous to current hybridogenetic processes in Rana kl. esculenta (see DuBois,
1977). As a matter of fact, derivation of new species from hybrid origin really seems to be
related to the tetraploid level (MURAMOTO & OHNO, 1968; OHNO, 1970; CoMINGS, 1972;
BoGaRT, 1980; FisHER et al., 1980; ALLENDORF & THORGAARD, 1984). Autotetraploids
frequently show tetrads in aberrant meiosis, whereas allotetraploids with an equilibrated
parental genome hybrid dosage could constitute a double number of bivalents, and
“ordinary ” meiosis could happen; therefore mixis of diploid gametes could originate a
new gonochoric species of tetraploid hybrid origin. Triploids giving diploid gametes could
be an intermediate step between kleptons and species in the Rana kl. esculenta complex.
Source : MNHN, Paris
84 ALYTES 8 (3-4)
3 4
Fig. 1. - Some evolutionary trees illustrating different genetical sytems in the Palearctic populations
of Rana kl. esculenta complex: 1 (the so-called L-E system); 2 (the so-called R-E system); 3 (all-
male allotriploid genealogies in Fontainebleau forest); and 4 (Serrahn pure esculenta
populations). Circles indicate hemiclonally transmitted genomes. Abbreviations refer to the
following genomes: R = R. ridibunda; L = R. lessonae; RL, RLL = R. kl. esculenta. For more
explanations see the review of GRAF & POLLS PELAZ (1989).
INTROGRESSION, MOSAICISM,
AND CLONAL-HEMICLONAL DIVERSITY IN KLEPTONS
Kleptons seem to play an important rôle as a genetic vector of introgression both
between their associated “ good ” species, and between other involved klepton. For
instance high introgression levels of Poeciliopsis viriosa genes into the monacha hybrido-
Source : MNHN, Paris
POLLS PELAZ 85
genesis-inducer genome have been found in Rio Moccorito’s Poeciliopsis monacha-viriosa
hybrid populations. In those populations recombinant monacha-viriosa haploid gametes
occur, becoming inductors of hybridogenesis when crossed with sympatric individuals of
Poeciliopsis lucida. Thus diploids of Poeciliopsis (monacha-viriosa)-lucida become separate,
hemiclonal hybridogenetic taxa in reproductive dependence on the “ good ” species P.
lucida (VRWENHOEK & SCHULTZ, 1974). This unnamed klepton seems to have evolved as a
separate unit, perhaps much closer to the species level than Rio Grande triploid kleptons
of trihybrid monacha-viriosa-lucida genome dosage. I conclude that high levels of
introgression should be reflected with the use of separate names. Low levels of
introgression (for instance in some populations of Rana kl. esculenta complex, see a review
in GRAF & PoLis PELAZ, 1989) are irrelevant for consideration of separate taxa.
Mosaicism occurs in Phoxinus kleptons (DAWLEY & GoDDARD, 1988) as well as in
some “ good ” species (SERRA, 1965), and findings of this kind must not be considered
problematic for using kleptic nomenclature for hybrids with hybridogenetic or gynogenetic
reproduction.
Hemiclonal and clonal diversities in Rana and Poeciliopsis kleptons have been
reviewed respectively by HoTz (1983) and VRUENHOEK (1984). This would constitute a
problem for nomenclatural systems based only on genome dosage (because each clone is a
“ separate ”, self-evolving genome). But no problem is encountered in kleptic nomencla-
ture, which provides for different degrees of polymorphism between populations.
KLEPTONS AND EVOLUTION
“The species are the real units of evolution.” (MAYR, 1982: 621).
It could be that all genotypes in tetrapod vertebrate taxa have a common ancestor
(500 Myr ago) in which duplication at least once of the entire genome took place (OHNO,
1970). In some cases in entire families, as salmonids (ALLENDORF & THORGAARD, 1984)
and catostomids (FERRIS, 1984), as well as at least twelve more fish species (ALLENDORF &
THORGAARD, 1984), a trace of “ recent ” (in catostomids 50 Myr) polyploidization events
still remains. Polyploid amphibians and reptiles are surprisingly common (Dugois, 1977;
BoGaRT, 1980). In some cases, as in the entire genus Xenopus, evidence of allopolyploidy
remains (KoBez & Du PASQUIER, 1986). In other case, as for instance in the triploid-
tetraploid Carassius auratus complex, hybrid origins are likely, because the parental
species are allopatric, and divergent evolution of the taxa has taken place (LIEDER, 1955;
CHerras, 1966; KoBayasi, 1971; KOBAyaASI et al., 1970).
But it is clear that hybridization could be the basis of polyploidy (BOGART &
WASSERMAN, 1972; Dugois, 1977), perhaps in the way proposed by SCHULTZ (1969), by (1)
the origin of a triploid strain (hybridogenetic or gynogenetic, unisexual or not), followed
by (2) occasional fertilization of the triploid by normal diploid to produce fertile
tetraploids.
Gametogenetic mechanisms are involved. CUELLAR (1987) reviewed all meiosis
variants for parthenogenesis (sensu lato, including hybridogenesis and gynogenesis) in
plants and animals, in discussing “ Spontaneous versus Hybridization controversy ”. In
Source : MNHN, Paris
86 ALYTES 8 (3-4)
fact meiotic, premeiotic, and before-meiosis extravagancies (Table I) are at the origin of all
gynogenetic and hybridogenetic hybrid populations. I conclude that at least some kleptons
could be considered as hybrid taxa currently evolving toward the status of polyploid
“ good ” species. The process could be favored by heterosis (BULGER & SCHULTZ, 1979;
MookE 1976, 1984), and hemiclonal-clonal adaptation of hybrids to intermediate
environments (THIBAULT, 1978; THIBAULT & SCHULTZ, 1978).
PERSPECTIVE IN THE USE OF KLEPTIC TERMINOLOGY
The history of taxonomy is an evolutionary event, too, and it is not evident whether
kleptic nomenclature will be accepted by the international scientific community. Some
European authors routinely use this system of nomenclature for the Rana kl. esculenta
complex. The advanced state of knowledge in Poeciliopsis, Phoxinus and Poecilia
complexes seems to be adequate for the full use of kleptic nomenclature, although names
are needed for taxa as yet unnamed.
The 1985 Code authorizes interpolation — as the proposal for interpolation of “ kl. ”
in scientific names — although to be sure in a different context, viz. species-groups and
subspecies-groups. The principle is the same, however, if the insertion of “kl.” is
proposed (see the Code, Art. b, p. 10, H. M. SMITH, in litteris).
Canadian zoologists working on the Ambystoma complex seem to be in mutual
accord for the use of hyphenated names. Since knowledge of some unnamed Ambystoma
taxa is still inadequate (for instance we do not know if parthenogenesis occurs, even after
recent papers published by BOGART and colleagues), it seems consistently proper to
continue to use provisional terms.
It was LINNAEUS who first used binomial names for species. But that concept was
erected thousands of years earlier by Grecians such as ARISTOTELES. And the BSC needed
around two centuries from LINNAEUS to MAYR in order to become formally constituted.
The klepton sytematic-evolutionary category was proposed only in 1982 by DuBois &
GÜNTHER, from which the BKC is available; its fate may require decades to be finalized.
ACKNOWLEDGEMENTS
L thank Dr. Jean-Daniel GRAF for comments on the manuscript, as well as Dr. Alain Dupois for
discussion of these topics over the last several years. I am indebted to Dr. Hobart M. Smiru for his
review of my English text.
LITERATURE CITED
ALLENDORF, F. W. & THorGaarD, G. H., 1984. — Tetraploidy and the evolution of salmonid fishes.
In: E.J. TURNER (ed.), Evolutionary genetics of fishes, New York, Plenum Press: 1-57.
# 1977. - Systematics and hybridization in the Rana esculenta complex. In: D. H. TAYLOR
(ed.), The reproductive biology of Amphibians, New York, Plenum Press: 367-388.
BERG
Source : MNHN, Paris
POLLS PELAZ 87
BLANKENHORN, H., 1977. — Reproduction and behavior in Rana lessonae-Rana esculenta mixed
populations. In: D.H. TAYLOR (ed.), The reproductive biology of Amphibians, New York,
Plenum Pre: 89-410.
BoGarT, J.P., 1980. - Evolutionary implications of polyploidy in Amphibians and Reptiles
Im: H. L. Lewis (ed), Polyploidy: biological relevance, New York, Plenum Press: 341-369.
1982. — Ploidy and genetic diversity in Ontario salamanders of the Ambystoma jeffersonianum
complex revealed through an electrophoretic examination of larvae. Can. J. Zool., 60: 848-855.
BOGART, J.P. & Licur, L.E., 1986. — Reproduction and the origin of polyploids in hybrid
salamanders of the genus Ambystoma. Can. J. Genet. Cytol., 28: 605-617.
BOGART, J.P., LiCHT, L.E., OLDHAM, M.J. & DARBYSHIRE, S.J., 1985. — Electrophoretic
identification of Ambystoma laterale and Ambystoma texanum as well as their diploid and
triploid interspecific hybrids (Amphibia: Caudata) on Pelee Island, Ontario. Can. J. Zool., 63:
340-347.
BOGaRT, J. P., Lowcock, L. A., ZEvi, C. W. & MABLE, B. K., 1987. —- Genome constitution and
reproductive biology of hybrid salamanders, genus Ambystoma, on Kelley's Islands in Lake
Erie. Can. J. Zool., 65: 2188-2201.
BOGART, J. P. & WASSERMAN, À. O., 1972. - Diploid-polyploid cryptic species pairs: a possible clue to
evolution by polyploidization in anuran amphibians. Cyrogeneties, 11: 7-24.
BULGER, A. J. & SCHULTZ, R. J., 1979. — Heterosis and interclonal variation in thermal tolerance in
unisexual fishes. Evolution, 33: 848-859.
CHerras, N. B., 1966. — Natural triploidy in females of the unisexual form of the silver carp (goldfish)
(Carassius auratus gibelio Bloch). Genetika, 5: 16-24. [Not seen: cited fide ALLENDORF &
THORGAARD, 1984].
CimiNo, M. C., 1972 a. — Meiosis in triploid all-female fish (Poeciliopsis, Poeciliidae). Science, 175:
1484-1486.
Le 1972 b. - Egg-production, polyploidization and evolution in a diploid all-female fish of the genus
Poeciliopsis. Evolution, 26: 294-306.
CoLE, J. C., 1985. - Taxonomy of parthenogenetic species of hybrid origin. Syst. Zool., 34: 359-363.
Comincs, D.E., 1972. — Evidence for ancient tetraploidy and conservation of linkage groups in
mammalian chromosomes. Nature, 238: 455-457.
CueLLar, O. 1976. — Cytology of meiosis in the triploid gynogenctic salamander Ambystoma
tremblayi. Chromosoma, 58: 335-364.
2 1987. - The evolution of parthenogenesis: a historical perspective. /n: P. B. MOENS (ed.), Meiosis,
Orlando, Academic Press: i-xi + 1-383.
DAWLEY, R. M. & GopDarpD, K. A., 1988. — Diploid-triploid mosaics among unisexual hybrids of the
minnows Phoxinus eos and Phoxinus neogaeus. Evolution, 42: 649-659.
DAWLEY, R. M., ScHuLrz, R.J. & Gopparp, K. A., 1987. - Clonal reproduction and polyploidy in
unisexual hybrids of Phoxinus eos and P. neogaeus (Pisces; Cyprinidac). Copeia, 1987: 275-283.
DoBzHANSKY, T., 1937. — Genetics and the origin of species. New York, Columbia University Press:
x + 1-364.
Dowws, F. L., 1978. — Unisexual Ambystoma from the Bass Islands of Lake Erie. Occ. Pap. Mus.
Zool. Univ. Michigan, 685: 1-36.
Dusois, A., 1977. — Les problèmes de l'espèce chez les Amphibiens Anoures. Mém. Soc. zool. Fr., 39:
161-284.
Dusois, A. & GÜNTHER, R., 1982. — Klepton and synklepton: two new evolutionary systematic
categories in zoology. Zool. Jb.. Syst. 109: 290-305.
FERRis, S. D., 1984. - Tetraploidy and the evolution of the catostomid fishes. /n: B. J. TURNER (ed.),
Évolutionary genetics of fishes, New York, Plenum Press: i-xvii + 1-636.
FISHER, S. E., SHAKLEE, J. B., FERRIS, S. D. & Wuirr, G.S., 1980. — Evolution of five multilocus
isozyme systems in chordates. Genetica, 52: 73-85
FRosT, D. R. & WRIGHT, J. W., 1988. - The taxonomy of uniparental species, with special reference
to parthenogenctic Cnemidophorus (Squamata: Teïdae). S. Zool., 37: 200-209.
GopparD, K. A., DAWLEY, R. M. & DOWLING, T.E., 1989. - Origin and genetic relationships of
diploid, triploid and diploid-triploid mosaic biotypes in the Phoxinus cos-neogaeus complex. Jr:
R. A. DAWLEY & J. P. BOGART (eds.), Evolution and ecology of unisexual vertebrates, Albany,
New York State Museum: 268-280.
Source : MNHN, Paris
88 ALYTES 8 (3-4)
GoopHrarT, C. R., 1969. — An introduction to virology. Philadelphia, W. B. Saunders Company: i-
viii + 1-423.
GRAF, J. D., KARCH, F. & MOREILLON, M. C., 1977. — Biochemical variation in the Rana esculenta
complex: a new hybrid form related to Rana perezi and Rana ridibunda. Experientia, 33: 1582-
1584.
GRAF, J. D. & MÜüLLER, W. P., 1979. - Experimental gynogenesis provides evidence of hybridogenetic
reproduction in the Rana esculenta complex. Experientia, 35: 1574-1576.
GRAF, J. D. & PoLLs PELAZ, M., 1989. — Evolutionary genetics of the Rana esculenta complex. In:
R. M. DAWLEY & J. P. BOGART (eds.), Evolution and ecology of unisexual vertebrates, Albany,
New York State Museum: 289-302.
HEppiCH, S., TUNNER, H. G. & GREILHUBER, J., 1982. - Premeiotic chromosome doubling after
genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor. Appl.
Genet., 61: 101-104.
Horz, H., 1983. - Genic diversity among water frog genomes inherited with and without recombination.
Ph. Dr. Inaugural Dissertation, Univ. Zürich: 1-136.
Husss, C. L. & Hupss, L. C., 1932. - Apparent parthenogenesis in nature, in a form of fish of hybrid
origin. Science, 76: 628-630.
KEEGAN-ROGERS, V. & SCHULTZ, R.J., 1988. — Sexual selection among clones of unisexual fish
{Poeciiopls Poeciliidae): genetic factors and rare female advantage. Amer. Natur., 132: 846-
KING, J. L. & JUKES, T. H., 1969. - Non-Darwinian evolution. Science, 164: 788-798.
KoBayast, H., 1971. - À cytological study on gynogenesis of the triploid ginbuna (Carassius auratus
langsdorfi). Zool. magaz., 80: 316-322.
KoBayasi, H., KAWASHIMA, Y. & TAkEUCHI, N., 1970. - Comparative chromosome study in the
genus Carassius, especially with a finding of polyploidy in the ginbuna (C. auratus langsdorfii).
Jpn. J. Icthyol., V7: 153-160.
KoBEL, H.R. & DU PASQUIER, L., 1986. — Genetics of polyploid Xenopus. TIG, 1986: 310-315.
KRAUS, F., 1985. — À new unisexual salamander from Ohio. Occ. Pap. Mus. Zool. Univ. Michigan,
709: 1-24.
LiEDER, U., 1955. - Männchenmangel und natürliche Parthenogenese bei der Silberkarausche
Carassius auratus gibelio (Vertebrata, Pisces). Naturwissenschaften, 42: 590.
Lowcock, L. A., LICHT, L.E. & BOGART, J. P., 1987. - Nomenclature in hybrid complexes of
Ambystoma (Urodela, Ambystomatidae): no case for the erection of hybrid “ species ”. Spsr.
Zool., 36: 328-336.
LyncH, M., 1984. — Destabilizing hybridation, general-purpose genotypes and geographic partheno-
genesis. Q. Rev. Biol., 59: 257-290.
MACGREGOR, H.C. & Uzzeui, T. M, 1964. - Gynogenesis in salamanders related to Ambystoma
jeffersonianum. Science, 143: 1043-1045.
MARGALEF, R., 1980. - La biosfera: entre la termodinamica y el juego. Barcelona, Omega: i-xii + 1-
236.
MasLin, T. P., 1968. - Taxonomic problems in parthenogenetic vertebrates. Syst. Zool., 17: 219-231.
MAYNARD SMITH, J. M., 1986. - Contemplating life without sex. Nature, 324: 300-301.
MAYR, E., 1942. — Systematics and the origin of species. New York, Columbia Univ. Press.
us 1982. — The growth of biological thought. Cambridge, Belknap Harvard Univ. Press: i-xi + 1-961.
MOGIE, M., 1986. — Automixis: its distribution and status. Biol. J. Linn. Soc., 28: 321-329.
Monaco, P.J., RASCH, E. M. & BALSANO, J.S., 1984. - Apomictic reproduction in the Amazon
Molly, Poecilia formosa, and its triploid hybrids. In: B. J. TURNER (ed.), Evolutionary genetics of
fishes, New York, Plenum Press: 311-328.
Moore, W.S., 1976. - Components of fitness in the unisexual fish Poeciliopsis monacha-occidentalis.
Evolution, 30: 564-578.
— 1984. - Evolutionary ecology of unisexual fishes. /n: B. J. TURNER (ed.), Evolutionary genetics of
fishes, New York, Plenum Press: 329-398.
Morris, M. A. 1984. - Comparison of erythrocyte sizes in Ambystoma texanum, À. laterale, and 4.
jefersonianum. J. Herpet.. 18: 197-198.
Source : MNHN, Paris
POLLS PELAZ 89
= 1985. — A hybrid Ambystoma platineum * Ambystoma tigrinum in Indiana. Herpetologica, 41:
263-271.
MorRis, M. A. & BRANDON, R. A., 1984. - Gynogenesis and hybridization between Ambystoma
platineum and Ambystoma texanum in Illinois. Copeia, 1984: 324-327.
MURAMOTO, J.-I. & OHNo, S., 1968. - On the diploid state of the fish order Ostariophysi.
Chromosoma, 24: 59-66.
Omwo, S., 1970. — Evolution by gene duplication. Berlin, Springer-Verlag: i-xvi + 1-151.
PoLLs PELAZ, M., 1991. - Unisexualité mâle dans un peuplement hybridogénétique de Grenouilles vertes.
Génétique, éthologie, évolution. Thèse, Muséum National d'Histoire Naturelle, Paris (in prep.).
RaAsCH, E.M., MONACO P.J. & BALSANO, J.S., 1982. - Cytophotometric and autoradiographic
evidence for functional apomixis in a gynogenetic fish, Poecilia formosa and its related, triploid
unisexuals. Histochemistry, 73: 515-533.
RasCH, E. M., PREHN, L. M. & RasCH, R. W., 1970. — Cytogenetic studies of Poecilia (Pisces). II.
Triploidy and DNA levels in naturally occurring populations associated with the gynogenetic
teleost, Poecilia formosa (Girard). Chromosoma, 31: 18-40.
SCHULTZ, R.J., 1969. — Hybridization, unisexuality and polyploidy in the teleost Poeciliopsis
(Poeciliidae) and other vertebrates. Amer. Natur., 103: 605-619.
see 1977. — Evolution and ecology of unisexual fishes. Evol. Biol
SERRA, J. A., 1965. - Modern genetics. London, Academic Press:
SERVAGE, D. L., 1979. — Biosystematics of the Ambystoma jeffersonianum complex in Ontario. M. Sc.
Thesis, Univ. Guelph, Guelph, Ontario: 1-116. [Not seen: cited fide Lowcock et
Stmpson, G. G., 1961. — Principles of animal taxonomy. New York, Columbia Univ. Press:
247.
THIBAULT, R., 1978. - Ecological and evolutionary relationships among diploid and triploid unisexual
fishes associated with the bisexual species, Poeciliopsis lucida (Cyprinodontiformes: Poeciliidae).
Evolution, 32: 613-623.
THIBAULT, R.E. & SCHULTZ, 1978. — Reproductive adaptations among viviparous fishes
(Cyprinodontiformes: Poeciliidae). Evolution, 32: 320-333.
TUNKNER, H. G., 1974. — Die klonale Struktur einer Wasserfroschpopulation. Z. Zool. Syst. Evol.-
Jorsch., 12: 309-314.
Uzzer, T.M., 1963. — Natural triploidy in salamanders related to Ambystoma jeffersonianum.
Science, 139: 113-115.
pe 1964. — Relations of the diploid and triploid species of the Ambystoma jeffersonianum complex
(Amphibia, Caudata). Copeia, 1964: 257-300.
= 1969. - Notes on spermatophore production by salamanders of the Ambystoma jeffersonianum
complex. Copeia, 1969: 602-612.
_— 1970. — Meiotic mechanisms of naturally occurring unisexual vertebrates. Amer. Nat.
104: 433-445.
UZzELL, T. M. & GoLD8LaTT, S. M., 1967. - Serum proteins of salamanders of the Ambystoma
Jeffersonianum complex and the origin of the triploid species of this group. Evolution, 21: 345-
ïi + 1-540.
UzzeL, T. M. & Horz, H. J., 1979. — Electrophoretic and morphological evidence for two forms of
green frogs (Rana esculenta complex) in peninsular Italy (Amphibia, Salientia). Mit. zool. Mus.
Berlin., 55: 13-27.
VRUENHOEK, R. C., 1984. - The evolution of clonal diversity in Poeciliopsis. In: B. J. TURNER (ed.),
Evolutionary geneties of fishes, New York, Plenum Press: 355-415.
VRUENHOEK, R. C. & SCHULTZ, R. J., 1974. — Evolution of a trihybrid unisexual fish (Poeciliopsis,
Poeciliidae). Evolution, 28: 306-319.
Wicey, E.O., 1978. - The evolutionary species concept reconsidered. Syst. Zool., 27: 17-26.
Corresponding editor: Andrew H. PRICE.
© ISSCA 1991
Source : MNHN, Paris
Alytes, 1989-1990, 8 (3-4): 90-98.
Mating pattern in pure hybrid populations of water
frogs, Rana kl. esculenta (Anura, Ranidae)*
Rainer GÜNTHER & Jôrg PLÔTNER
Museum für Naturkunde der
Humboldt-Universität zu Berlin,
1040 Berlin, Invalidenstr. 43, Germany
The existence of pure hybrid populations is one of the most interesting
phenomena within the Rana kl. esculenta synklepton. The aim of our
investigations, carried out on two esculenta populations, was to clarify
whether particular genotypes are favoured during mating. À comparison
between the theoretical frequencies of every mating combination (diploid
male x diploid female, diploid male x triploid female, triploid male x
diploid female, triploid male X triploid female), calculated on the basis of the
population structure, and the observed frequencies vielded no significant
differences. This indicates that diploid and triploid individuals have equal
chances to mate. Triploid females probably play a secondary role in the
population structure as their frequencies amounted to only 5.5% in the
population À and to 6.6 % in the population B. Diploid males were found in a
relatively high proportion in the population A (19.5 %), while they amounted to
only 6.6 % of individuals in the population B. While in population A the mating
combinations, diploid male X diploid female and triploid male x diploid
female, had nearly the same frequencies, in population B most matings
occurred between triploid males and diploid females.
Moreover, we found no clear evidence for mating choice in relation to
body size.
PROBLEM
In Central Europe the hybridogenetic edible frog, Rana kl. esculenta, mainly lives in
populations together with only one of its two parental species, either Rana lessonae or
Rana ridibunda. For its reproduction esculenta is fundamentally dependent on these
parental forms. Due to their hybridogenetic gamete producing system the hybrids mainly
give rise to pure parental gametes, while genetic recombination and introgression occur at
a very low level (UZZELL & BERGER, 1975; TUNNER & DoBRoWSKY, 1976; UZZELL et al.,
1977; GÜNTHER, 1973). Surprisingly, pure hybrid populations exist in several parts of
Europe, for example in Germany, Poland, Sweden and probably Denmark (see GÜNTHER,
1973, 1974, 1975, 1990; EBENDAL, 1979; EIkHORST, 1984; BERGER, 1988).
In the pure esculenta populations it could be shown that a certain number of frogs
were triploid (GÜNTHER, 1975). Moreover, by means of morphological, serological and
enzymological studies it became evident that these hybrids had two genetic compositions:
one with two /essonae genomes and one ridibunda genome (LLR) and a second with one
* This paper was presented during the symposium on “Modified sexual systems: parthenogenesis and
hybridogenesis” convened and moderated by John WRIGHT and Rainer GÜNTHER as part of the First World
Congress of Herpetology (University of Kent at Canterbury, United Kingdom, 11-19 September 1989).
Source : MNHN, Paris
GÜNTHER & PLÔTNER 91
lessonae genome and two ridibunda genomes (LRR). The latter are very rare in most
hybrid populations in Germany (GÜNTHER, UZZELL & BERGER, 1979; GÜNTHER, 1983;
BERGER & GÜNTHER, 1988).
While the reproductive system of mixed populations has been more or less well
elucidated, the mechanisms for the maintenance of pure hybrid populations have not yet
been clarified in all their details. Considering the joint occurrence of six different genotypes
(LR males, LR females, LLR males, LLR females, LRR males, LRR females)
theoretically nine different mating combinations may occur. The aim of our study was to
clarify whether mating occurs by chance or whether mating preferences between certain
genotypes exist. In this context relations between the observed mating frequencies of
different genotypes and the genotypic structure of the population are discussed.
Besides, we investigated the significance of body size of water frog males and females
for mating choice.
MATERIAL AND METHODS
The study was performed on individuals from two populations: population A was
found in an eutrophic garden pool in Berlin, population B lives in a small pond in a
meadow near Boltenhagen, at the shore of the Baltic Sea. In both populations only
esculenta phenotypes were found. In the population A 15 pairs were captured on May
18th, 1988 and 22 additional pairs on May 26th of the same year. In the population B 18
pairs were caught on May 20th, 1975. AIl pairs were in amplexus.
Besides, in both populations non-paired individuals were collected at random at the
same dates (population A: 16 males and 38 females, population B: 16 males and 10
females). Ploidy was determined indirectly by means of cytomorphological parameters
(mean length, width and surface of erythrocytes; see GÜNTHER, 1977).
For all individuals the snout-vent-length (s.v.1.), the length of the first toe (d.p.1.) of
the metatarsal tubercle (c.int.l) and of the tibia (t.1.), as well as the distance between the
nostril and the caudal eye edge (d.n.e.) and the head width (h.w.) were measured. The
ratios, s.v.l./c.int.l., d.p.l./cint.l, tI./int.l., h.w./c.int.. and d.n.e./c.int.1., constituted the
basis for determining genotype together with the cytomorphological parameters.
In the analysis of the data the Chi-square test, to test goodness of fit between
observed (f,) and expected frequencies (f), was utilized.
GENOTYPIC STRUCTURE
The results of the ploidy analysis and sex ratios in populations A an B are
summarized in Table I. In both populations the relation of males to females deviates from
the expected 1:1 ratio. However, these deviations are not significant (population A:
2 = 3.78, d.f. = 1, p > 0.05; population B: ;? = 0.58, d.f. = 1, p > 0.05).
Source : MNHN, Paris
92
ALYTES 8 (3-4)
60-
&
> 8
diploid males and females
ë
5
D
L SE 2Ndé
10 20 30 40 50 60 70 80 9% 10
totai of triploids É
8
(AI
2 à
8 à
3Ndd
8
DANS
»
3 8
triploid males and females
Gi ë
10 20 30 40 50 60 70 80 90 10
“.
total of triploids Es
Fig. 1. - Proportion of observed 2N males, 2N males and 3N females in relation to the total of
triploids (males + females) in pure esculenta populations. Data were taken partly from:
GÜNTHER, 1975; BERGER, 1988; BERGER & GÜNTHER, 1988. The functions are empirically fitted
to the data.
Table I. - Proportion of different genotypes in populations A and B (m, males; f, females;
2N, diploid; 3N, triploid).
l Proportion of genotypes Sex ratio
Sample n 2N 3N 2Nm 2Nf 3Nm 3Nf m:f
A m8 93 35 25 68 28 4 1: 1.42
(21%) (213%) (195%) (531%) (19%) (55%)
B 6 2 3 4 24 2 4 1: 0.82
459%) (541%) (66%) (393%) (475%) (66%)
Source : MNHN, Paris
GÜNTHER & PLÔTNER 93
The proportion of triploid individuals in populations A and B are significantly
different (x? = 12.83, d.f. = 1, p > 0.001). In the population A only 27.3 % triploid
individuals were found, while in the population B their frequency was 54.1 %.
While the proportion of triploid females in both populations was quite similar (5.5
and 6.6 %), the high triploid rate in the population B can be attributed to the relatively
large number of triploid males (47.5 %).
As fig. 1 shows, in pure esculenta populations the proportion of triploid individuals
can be due mainly to the high proportion of triploid males. In most esculenta populations
examined up to now, there exists an excess of males among triploid individuals. Only when
Table II. - Morphological parameters of diploid (2N) and triploid (3N) Rana kl. esculenta
from populations A and B in comparison to the same parameters of central European
Rana lessonae and Rana ridibunda. n, number of individuals; s.v.l., snout-vent-length;
c.int.l., callus internus length; d.p.l., digitus primus length; t.l., tibia length; h.w., head
width; d.n.e., eye-nostril distance.
Ratio
Genotype nn svl/ dpi./ t/ hw./ dun.e./
c.int.l. c.int.l. cint.l. cint. c.int.l.
Rana Kkl. esculenta
Sample A
2N males 21 13.6-17.5 1.8-2.5 6.9-9.0 5.3-6.7 2.6-3.5
(5.8Æ#1.10) (2.240.19) (7.9+0.60) (5940.41) (3.04 0.22)
2N females 48 14.4-18.6 1.9-2.7 6.6-9.4 4.5-6.8 2.5-3.5
(6.0+1.13) (2240.18) (7740.60) (5740.52) (2940.24)
3N males 21 13.7-16.5 1.6-2.2 6.7-7.8 5.0-6.1 2.6-3.2
(5040.78) (2040.16) (7340.37) (5.540.26) (2940.16)
3N females 5 15.3-16.1 1.9-2.2 7.1-7.8 5.1-5.8 2.9-3.0
(5.740.35) (2040.10) (7540.24) (5840.04) (2.940.04)
Sample B
2N males 3 15.6-17.4 22-24 7.683 5.5-5.8 2.8-3.0
(16.34 1.0) (2340.10) (7940.35) (5.64 0.18) (2.9+0.1)
2N females 24 15.4-20.2 2.2-2.9 73-93 5.7-7.2 2.6-3.6
(78+1.24) (2640.19) (8.4+0.52) (6.240.37) (3.1+0.22)
3N males 28 14.3-18.0 2.0-2.4 6.9-8.3 5.0-6.4 2.4-3.4
(16.1+0.94) (2.2+0.13) (7.7+0.36) (5.64 0.32) (3.0+0.20)
3N females 4 16.3-19.5 2.2-2.5 7.1-9.0 5.6-6.5 2.8-3.5
(7441.52) (3.340.20) (8.1+0.60) (6.0+0.36) G.1+0.28)
Rana lessonae
19 10.0-14.3 13-17 5.1-6.7 3.5-5.3 2.2-2.8
(23Æ#1.17) (1540.10) (5940.41) (4.5+0.45) (2640.18)
Rana ridibunda
41 174-254 2.3-3.9 9.2-14.2 63-93 3.1-4.7
@0.7+1.93) (3040.36) (ILI+1.06) (764080) (3.840.39)
Source : MNHN, Paris
94 ALYTES 8 (3-4)
the proportion of triploids reaches about 80 % does the ratio 3N males / 3N females seem
to become more or less balanced again. Moreover, it is noteworthy that in all populations
examined up to now, there was a clear excess of females among the diploid individuals.
Morphological parameters of the investigated individuals are given in Table IL. In
both populations the values of these parameters were slightly lower in the triploid than in
the diploid individuals. Compared with the parental species the values of the diploid as
well as the triploid individuals were more similar to those of Rana lessonae. This fact, the
frequency-distribution of the morphological parameter and cluster-analyses, carried out
on the basis of these ratios, lead to the assumption, that with one possible exception all
triploid individuals possess one ridibunda and two lessonae chromosome sets (LLR
genotype) (PLÔTNER, unpublished). The ratios of one female (No. 45) from population B
showed values that are ridibunda specific. However, the metatarsal tubercle exhibited a
shape typical for diploid Rana kl. esculenta. Possibly this female was of the genotypic
composition LRR.
MATING FREQUENCIES OF INDIVIDUAL GENOTYPES
Due to the existence of four different genotypes: 2N [LR] males, 2N [LR] females,
3N [LLR] males and 3N [LLR] females in both populations, the following four mating
combinations can occur:
I.2N[LR] male x 2N[LR] female
2.2N[LR] male x 3N [LLR] female
3.3N [LLR] male x 2N[LR] female
4.3N [LLR] male * 3N [LRR] female
In order to clarify the question whether certain mating combinations occur more
frequently than others, the expected frequencies (f.) of individual combinations must first
be calculated on the basis of the genotypic structure of each population. As the proportion
of each genotype was estimated from a random sample, f, only represents an approximate
value. f, was calculated according to the formula:
mi un
nn AT, where
'm ne
n — number of male genotypes of the corresponding combination,
5 = number of female genotypes of the corresponding combination,
il
total of males in the mated and unmated subsample,
total of females in the mated and unmated subsample,
n, = total of pairs captured in the population.
=
[l
Table III shows the expected and observed frequencies of all mating combinations.
The differences between the observed and expected frequencies are not statistically
significant, neither in population A (4? = 0.94, d.f. = 3, p > 0.05) nor in population B
CG = 3.85, d.f. = 3, p > 0.05).
Source : MNHN, Paris
GÜNTHER & PLÔTNER 95
Table III. - Observed (f,) and expected (f.) frequencies of all possible mating combinations
in populations À and B (m, male; f, female; 2N, diploid; 3N, triploid).
DES Population A n, = 37 Population B n, = 18
Combination Observed Expected Observed Expected
frequency £, frequency £, frequency f, frequency £,
2N x 2N 18 15.825 1 1.868
2N x 3N 1 1.628 0 0.311
3N x 2N 17 17.723 17 13.558
3N x 3N 1 1.824 0 2.259
In order to test whether the carriers of certain genotypes exhibit mating preferences,
the frequencies of genotypes in paired and single adults were compared (Table IV). While
in population À no significant deviations were found between the observed and the
expected frequencies (x? = 7.46, d.f. = 3, p > 0.05), in population B these differences were
significant at a 5 % level (4? = 10.21, d.f. = 3). This latter fact depends mainly on a
greater number of observed 2N mated females than was theoretically expected. However,
as the sample size in population B was relatively small, this result should be viewed
cautiously. It can therefore be concluded that, in principle, all the genotypes possess equal
mating chances.
Table IV. - Observed (f,) and expected (f.) frequencies for mated and unmated individuals
of different genotypes in samples A and B (2N, diploid; 3N, triploid).
Sample A Sample B
Mated Unmated Mated Unmated
Genotype individuals individuals individuals individuals
Ë fé É f. p f. fé £.
2N male 19 1445 6 10.55 1 23% 3 1.64
2N female 35 3931 33 2869 18 416 6 9.84
3N male 18 1619 10 181 17 1711 12 11.89
3N female 2 4.05 5 295 0 236 4 1.64
In esculenta populations, LR males normally form haploid R gametes while LR
females can produce haploid R as well as diploid LR gametes. Triploid individuals of LLR
genotype mainly form gametes with one /essonae genome and triploid ones of LRR
genotype mainly form gametes with one ridibunda genome (see GÜNTHER, UZZELL &
BERGER, 1979; GÜNTHER, 1983; BERGER & GÜNTHER, 1988).
The hypothesis sustained up to now that the structure and stability of esculenta
populations is based mainly on crosses between triploid males and diploid females (see
GÜNTHER, UZZELL & BERGER, 1979; GÜNTHER, 1988) seems to be valid only for such
populations in which the proportion of triploids lies between 30 and 70 %. From such
crosses diploid LR and triploid LLR individuals can originate. In populations consisting
Source : MNHN, Paris
96 ALYTES 8 (3-4)
J JL
absolute frequency
©
absolute frequency
absolute frequency
œ
2 r—
| =
St 99 59163 67 AN 75 7 91 4
body length mm]
. — Distribution of body length in members of pairs captured in amplexus in population A.
a: 18 diploid males (combination 2N male x 2N female and 2N male x* 3N females);
18 triploid males (combination 3N male xX 2N female and 3N male x 3N female);
c: 35 diploid females (combination 2N male x 2N female and 3N male x 2N female).
mainly of diploid individuals, most crosses should correspond to the combination 2N
male X 2N female, while in those populations with a high proportion of triploids, the
combination 3N male X* 3N female should prevail (see fig. 1).
In most esculenta populations from Germany, the majority of triploid individuals are
of LLR genotype and form gametes with one lessonae genome (see GÜNTHER, UZZELL &
BERGER, 1979; GÜNTHER, 1983; BERGER & GÜNTHER, 1988). From crosses between two
Source : MNHN, Paris
GÜNTHER & PLÔTNER 97
o œ 8 À
&
absolute frequency
ä
o >
absolute frequency
51 55 59 62 67 71 75 79 83 87
body length [om
Fig. 3. - Distribution of body length in members of pairs captured in amplexus in population B. a: 17
triploid males (combination 3N male x 2N female); b: 18 diploid females (combination 2N
male x 2N female and 3 male X 2N female).
LLR individuals mainly /essonae (LL) genotypes result. It is known that these, just as the
RR genotypes from LR x LR crosses, do not survive in esculenta populations. It follows
that in esculenta populations with an increasing proportion of triploid individuals, either
the rate of reproduction decreases and the population reaches an “end stage”, or the LLR
females must form, besides haploid L gametes, a certain number of diploid LR ones (see
GÜNTHER, UZZELL & BERGER, 1979; GÜNTHER, 1983).
BODY SIZE OF MATING PARTNERS
In the mean, females in population A were 11 % and in population B, about 14 %
larger than their male partners. The greatest difference (31 %) between the body length of
a female (74 mm) and that of its male (51 mm) partner was found in population A in a
pair of the 2N male x 2N female combination. The reverse situation also appeared in
population À, in a combination 3N male x 2N female. Here the body length of the male
Source : MNHN, Paris
98 ALYTES 8 (3-4)
was 70 mm, that of the female, 62 mm; this corresponds to a difference of 11 % in favour
of the male.
Among the 55 pairs captured in amplexus the male was larger than the female in only
four pairs (7.3 %) although, according to the distribution of body length (fig. 2a-c, 3a and
b) at least in the population A, a higher proportion could have been possible. While in
population B all the diploid females of the pairs were larger than the triploid males, in
population A there was an overlap between the distribution of body length of the male
and female partners. Although males seem to prefer larger to smaller females there is no
clear evidence for significant size related mating preferences.
How mating choice takes place in European water frogs has not yet been clarified in
detail.
LITERATURE CITED
BERGER, L., 1988. - An all-hybrid water frog population persisting in agrocenoses of Central Poland
(Amphibia, Salientia, Ranidae). Proc. Acad. Nat. Sci. Philadelphia, 149: 202-219.
BERGER, L. & GÜNTHER, R., 1988. - Genetic composition and reproduction of water frog populations
(Rana ki. esculenta Synklepton) near nature reserve Serrahn, GDR. Arch. Nat. schutz Landsch.
forsch., Berlin, 28: 265-280.
EBENDAL, T., 1979. — Distribution, morphology and taxonomy of the Swedish green frogs (Rana
esculenta complex). Mitt. zool. Mus. Berlin, 55: 143-152.
EiknoRsT, R., 1984. — Untersuchungen zur Verwandischaft der Gri he. Verbreitung, Struktur und
Stabilität von reinen esculenta-Populationen. Diss., Univers Bremen.
GüNTHER, R., 1973. — Über die verwandtschaftlichen Bezichungen zwischen den europäischen
Grünfrôschen und den Bastardcharakter von Rana esculenta L. (Anura). Zool. Anz. Leipzig,
190: 250-285.
ne 1974. - Neue Daten zur Verbreitung und Ükologie der Grünfrôsche (Anura, Ranidae) in der
DDR. Mitt. cool. Mus. Berlin, 50: 287-298.
--- 1975. - Zum natürlichen Vorkommen und zur Morphologie triploider Teichfrôsche, “ Rana
esculenta” L., in der DDR. (Anura, Ranidae). Müitt. zool. Mus. Berlin, 51: 146-158.
1977. — Die ErythrozytengrôBe als Kriterium zur Unterscheidung diploider und triploider
Teichfrôsche, Rana ‘esculenta”" L. (Anura). Biol. Zbl., 96: 457-466.
ee 1983. - Zur Populationsgenetik der mitteleuropäischen Wasserfrôsche des Rana esculenta-
Synkleptons (Anura, Ranidae). Zool. Anz., Jena, 211: 43-54.
Le 1990. — Die Wasserfrôsche Europas. Die Neu Brehm Bücherci, A. Ziemsen Verlag, Wittenberg-
Lutherstadt.
GÜNTHER, R., UZZELL, T. & BERGER, L., 1979. - Inheritance patterns in tripoid Rana ‘esculenta”
(Amphibia, Salientia). Mitt. zool. Mus. Berlin, 55: 35-37.
TUNNER, H.G. & Dosrowsky, M.T., 1976. - Zur morphologischen, serologischen und enzymologi-
schen Differenzierung von Rana lessonae und der hybridogenetischen Rana esculenta aus dem
Scewinkel und dem Neusiedlersee (Üsterreich, Burgenland). Zool. Anz., Jena, 197: 6-22.
Uzzeuz, T. & BERGER, L. 1975. - Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and
their hybridogenetic associate, Rana esculenta. Proc. Acad. Nat. Sci. Philadelphia, V27: 13-24.
T. GÜNTHER, R. & BERGER, L. 1977. — Rana ridibunda and Rana esculenta: à leaky
ybridogenetic system (Amphibia Salientia). Proc. Acad. Nat. Sci. Philadelphia, 128: 147-171.
Corresponding editor: Alain Dusois.
© ISSCA 1991
Source : MNHN, Paris
Alytes, 1989-1990, 8 (3-4): 99-104. 99
Images d’Amphibiens camerounais.
IL L’enfouissement et la phonation bouche ouverte
chez Conraua crassipes (Buchholz & Peters, 1875)
Jean-Louis AMIET
Université de Yaoundé,
Faculté des Sciences, Laboratoire de Zoologie,
B.P. 812, Yaoundé, Cameroun
Four photos of the ranid Conraua crassipes taken in Cameroon are
commented upon. They show the burying behaviour of the species, already
described by KNOEPFFLER (1965), and the emission of calls, whistlings which
are produced with the mouth half-opened. Until now, phonation with the
mouth opened was known in anurans only for distress calls, but not for nuptial
calls.
Avec ses 8 cm de taille maximale, Conraua crassipes paraît bien modeste à côté de ses
deux autres congénères camerounaises, C. robusta (15 cm) et C. goliath (30 cm). Un
habitus assez banal, une livrée terne variant du jaunâtre au brunâtre (fig. 1) et des mœurs
discrètes n’en font pas, a priori, un sujet d'étude très attractif pour le batrachologue
séjournant au Cameroun, où bien d’autres espèces sortant de l'ordinaire peuvent solliciter
son attention.
La distribution géographique de C. crassipes n’offre pas non plus de motif d’intérêt
particulier: l'espèce est largement répandue dans l’Afrique centrale forestière, depuis le
Nigéria jusqu’à l’ouest de la cuvette congolaise. Au Cameroun, sa présence peut être
décelée dans la plupart des petits cours d’eau permanents, pourvu qu’ils coulent en sous-
bois sur un fond de sable ou de gravier, au moins par endroits, et que l’eau y soit limpide
et bien aérée.
Observée dans son milieu, cette grenouille à première vue anodine a pourtant révélé
des particularités comportementales qui la distinguent des autres Batraciens camerounais
et même, sur un point, de l’ensemble des Anoures.
LE COMPORTEMENT D’ENFOUISSEMENT
Une première contribution à la connaissance de l’éthologie de C. crassipes a été
fournie par KNOEPFFLER (1965).
Cet auteur a décrit en particulier, à partir d'observations faites à Makokou (Gabon),
le comportement d'enfouissement de cette espèce: effrayée, C. crassipes saute à l'eau mais,
au lieu de se blottir sur le fond, s’enfouit en un clin d'œil dans le sable, le gravillon ou le
limon qui le tapisse. Ce comportement perrnet à l’animal de se dissimuler dans des cours
Source : MNHN, Paris
ALYTES 8 (3-4)
Conraua crassipes, Kala, 19-IX-80. Sur la cuisse et la jambe les fins plis cutanés
ctéristiques des Conraua sont bien visibles. Comme il arrive fréquemment, un Diptère
hématophage se nourrit sur le dos de l'animal qui ne paraît pas importuné par la piqûre.
Fig. 2. — Conraua crassipes, Kala, 16-VII-79. Après s'être enfouie, la grenouille s'apprête à sortir et
pointe le museau hors du sable
Source : MNHN, Paris
AMIET 101
4
Fig. 3. — Conraua crassipes, Kala, 6-X11-76. Mâle photographié juste au moment où il émêt son
sifflement, en appui sur les membres antérieurs et l’arrière-corps immergé. La production du
son n’est précédée que d’un faible gonflement du corps. L'animal est en butte aux attaques de
plusieurs Diptères piqueurs concentrés sur les parties émergées.
ss 11-77, Mieux que le précédent, ce cliché permet d'observer les
deux excroissances de la mâchoire inférieure et l'espace qui les sépare.
Source : MNHN, Paris
102 ALYTES 8 (3-4)
d’eau dont la faible profondeur (quelques centimètres) et l’habituelle limpidité ne sauraient
le soustraire à la vue d’un prédateur. Les mouvements d’enfouissements sont analysés et
illustrés de plusieurs photos dans l’article de KNOEPFFLER (1965) auquel je renvoie le
lecteur désirant plus de précisions!.
L'’alerte passée, la grenouille, qui n'était recouverte que par une mince couche de
sédiment, s'échappe prestement après avoir d’abord fait pointer son museau: c’est cet
instant de la sortie qu’a fixé la photo de la figure 2.
Au Gabon, KNOEPFFLER (1965) a d’autre part remarqué que, pendant la nuit, C.
crassipes se tient souvent au sommet d’une accumulation de sable tronconique, affleurant
à la surface de l’eau et haute d’une dizaine de centimètres au plus, d’où elle peut s’élancer
pour capturer une proie. Je n’ai jamais observé de telles constructions au Cameroun,
probablement parce que les caractéristiques granulométriques et mécaniques des substrats
ne s’y prêtent pas. KNOEPFFLER (1965) rapporte d’ailleurs que les spécimens qu'il avait
ramenés en France n’ont pas construit d’édifice, ce qu’il attribue à la nature du sable mis à
leur disposition et le conduit à estimer qu’“il ne s’agit pas d’édification volontaire”.
A ma connaissance, l’enfouissement immédiat et systématique dans le fond meuble
des cours d’eau, tel que le pratique C. crassipes, n'existe pas chez d’autres espèces
d’Anoures camerounais, y compris chez ses deux proches parentes C. robusta et C. goliath.
C. crassipes, comme on va le voir, ne se singularise pas seulement de cette façon.
LES VOCALISATIONS ET LEUR MODE D’ÉMISSION
Les appels de C. crassipes sont des sifflements brefs, puissants, généralement
redoublés et d’une tonalité très pure. Le plus souvent, ils sont séparés par des intervalles
atteignant la minute, mais ils peuvent se succéder plus rapidement si un autre individu se
trouve dans les parages. Les mâles sifflent le long de petites rivières ou de ruisseaux,
souvent sur des bancs de sable ou de gravier entourés d’eau peu profonde, et toujours en
sous-bois. L'activité vocale, dans le cycle circadien, débute au lever du jour puis décline
rapidement; durant la journée, il n’y a que de brèves phases d'émission ou des sifflements
isolés; l’activité connaît un second maximum avant la tombée de la nuit, vers 18 h. Le plus
souvent, les mâles sont très dispersés, distants de plusieurs mètres ou dizaines de mètres,
mais lorsque le site et le moment sont favorables, ils peuvent être plus rapprochés: à l’aube
et au crépuscule les sifflements se succèdent alors sans relâche, mais ces phases d’excitation
vocale durent peu. Au Cameroun, C. crassipes se fait entendre surtout en début et fin de
grande saison sèche (décembre-janvier, mars-avril) et en petite saison sèche (juillet).
1. C. crassipes ne montre aucun caractère adaptatif en rapport avec ce comportement d'enfouissement, qu'il
vaudrait mieux ne pas confondre avec le comportement fouisseur pratiqué en milieu terrestre, surtout dans
les régions à substrat meuble, par d'assez nombreuses espèces d'Anoures.
Source : MNHN, Paris
AMIET 103
La qualité acoustique des cris de C. crassipes est bien plus avienne qu’amphibienne et
l’origine des appels est très difficile à localiser. Je ne me sens donc pas gêné d’avouer qu'il
m'a fallu plus d’un an après le début de mes recherches batrachologiques au Cameroun
pour acquérir la conviction que les doubles coups de sifflet que j'entendais si souvent en
forêt, invariablement émis près d’un petit cours d’eau, ne pouvaient provenir que de
C. crassipes. Mais il ne s’agissait encore que d’une conviction et c'est seulement deux ans
plus tard (précisément le 14 décembre 1973, lors de ma 305ème sortie de nuit) que je pus
voir au crépuscule un mâle moins craintif que les autres — ou peut-être plus motivé par la
proximité d’un rival ! — en train d'émettre ses sifflements. L'animal fut alors observé de
dessus, précision qui, on le verra, a son importance...
Au moment où ma présomption se trouvait ainsi confirmée je ne me doutais pas que,
à quelques centaines de kilomètres de là, au Gabon, d’autres chercheurs étaient tenus en
échec par ce mystérieux siffleur. Dans son ouvrage La vie dans la forêt équatoriale, BROSSET
(1976) relate de façon très vivante ses tentatives infructueuses d'identification: “Lors de
mes premières prospections en forêt gabonaise, j'avais été frappé par un sifflement
mélancolique et pur, souvent entendu au bord des marigots dans les parties les plus
sombres du sous-bois. L'auteur me parut en être un Oiseau, et j'essayai de découvrir
l'identité de ce chanteur remarquable. Tous mes efforts furent vains; l'animal, excessive-
ment farouche et doué d’une étonnante acuité visuelle ou auditive, détectait les approches
les plus précautionneuses; de longs affûts immobiles, près du repaire du chanteur, ne me
permirent ni de le voir à l’œuvre, ni de reconnaître son espèce. J'interrogeai un chasseur
qui, ayant écouté, déclara péremptoire: ‘C'est le Crabe’ ….”.
C'est grâce à un enregistrement sonore réalisé à Makokou que me fit entendre un
autre ornithologue, C. CHAPPUIS, que je pus fournir aux collègues du Gabon la solution de
l'énigme.
Les appels de C. crassipes sont a priori si peu imputables à un Amphibien que des
batrachologues aussi chevronnés que PERRET et KNOEPFFLER sont bien excusables de
l'avoir créditée de vocalisations plus en rapport avec les usages vocaux des Anoures du crû:
pour le premier en effet le mâle “peut... émettre des sons ventriloques” (PERRET, 1966)
tandis que pour le second “le chant nuptial est un grognement peu intense répété
plusieurs fois” (KNOEPFFLER, 1965).
Je ne pensais pas, en élucidant l'énigme du cri de C. crassipes, que les vocalisations de
cette grenouille me réservaient encore une surprise.
Le 4 décembre 1975, soit deux ans après avoir vu siffler un mâle pour la première fois,
j'eus la possibilité d'en observer un autre se livrant à la même activité mais, cette fois, de
profil. J'eus alors l’étonnement de constater que les sons étaient émis /a bouche ouverte.
Cette observation put ensuite être répétée plusieurs fois sur des sujets différents.
C. crassipes se révèle ainsi décidément non conformiste car, chez tous les autres
Anoures, les vocalisations sont produites (sauf les cris de détresse) avec la bouche fermée.
Les clichés des fig. 3 et 4 illustrent cette trouvaille inattendue. Pris juste au moment de
l'émission du sifflement, ils montrent que la bouche n'est pas largement béante mais
entrouverte, ce qui permet de distinguer (fig. 4) les deux protubérances dentiformes portées
par la mandibule.
Source : MNHN, Paris
104 ALYTES 8 (3-4)
Le processus de production des sons utilisé par C. crassipes reste à élucider, ce qui ne
sera peut-être pas facile. Il faudrait de plus savoir si les autres Conraua émettent leurs
appels de la même façon: à en juger par leur qualité acoustique chez les espèces dont les
vocalisations sont connues (C. alleni, C. derooi, C. robusta), il est probable qu’elles
procèdent comme C. crassipes.
Le cas de C. crassipes illustre une démarche apparemment paradoxale de l’évolution:
l'abandon d’une méthode de phonation éprouvée, dont l’efficacité est démontrée par la
quasi totalité des Anoures, au profit d’une méthode nouvelle, toute différente, mais dont le
résultat est le même. Il est peu concevable en effet que la lignée des Conraua ait retenu à
elle seule un mode de phonation primitif des Anoures ni que, ses ancêtres ayant de tout
temps été muets, elle ait adopté, parallèlement à l’ensemble des autres Anoures, un
procédé de phonation différent. On doit plutôt supposer que le mode d'émission bouche
ouverte s’est développé dans une lignée qui avait auparavant perdu la capacité d'émettre
des sons par la méthode habituelle des Anoures, ce dont quelques espèces muettes nous
fournissent des exemples dans la faune actuelle.
Le sifflement de C. crassipes témoignerait ainsi d’un “repentir de l’évolution” assez
comparable aux branchies secondaires relayant les cténidies chez les Nudibranches, à la
pseudoconque suppléant à la disparition de la coquille primitive chez les Ptéropodes du
genre Cymbulia, où encore aux voies d’accouplement inhabituelles se substituant, chez
certaines Punaises, à un orifice génital dont se satisfont des centaines de milliers d’autres
espèces d’Insectes !
RÉSUMÉ
Quatre photos de Conraua crassipes (Ranidae) prises au Cameroun sont commentées.
Ces photos montrent le comportement d'enfouissement de l’espèce, déjà décrit par
KNOEPFFLER (1965), et l'émission des appels, sifflements produits la bouche entrouverte.
Jusqu'ici, la phonation bouche ouverte était connue chez les Anoures pour les cris de
détresse, mais non pour les appels nuptiaux.
RÉFÉRENCES BIBLIOGRAPHIQUES
BRosser, A., 1976. — La vie dans la forêt équatoriale. Paris, Nathan: 1-126.
KNOEPFFLER, L.-P., 1965. - Le comportement fouisseur de Conraua crassipes (Amphibien Anoure) et
son mode de chasse. Biologia Gabonica, 1 (3): 239-245.
PERRET, J.-L., 1966. - Les Amphibiens du Cameroun. Zoo!. Jb. Syst., 8: 289-464.
Corresponding editor: Alain DuBois.
©ISSCA 1991
Source : MNHN, Paris
Alytes, 1989-1990, 8 (3-4): 105-106. 105
Information complémentaire sur les Telmatobius
(Leptodactylidae) de El Moreno (Jujuy, Argentine)
R.F. LAURENT & E. O. LAVILLA
Instituto de Herpetologia, Fundacién Miguel Lillo - CONICET,
Miguel Lillo 251, 4000 Tucumän, Argentina
Argentinian populations of Telmatobius established at El Moreno (Jujuy),
originally considered as T. jelskii (sensu ANDERSSON, 1906, non PETERS, 1875),
actually belong to T. platycephalus Lavilla & Laurent, 1989. Information
conceming the nomenclatorial history of the species and a chreso-synonymy
are also presented.
La chronologie des contributions à la connaissance des deux espèces sympatriques du
genre Telmatobius vivant à el Moreno s'établit comme suit:
(1) ANDERSSON (1906) attribue à Telmatobius jelskii Peters, 1875 le matériel récolté à
El Moreno par l'expédition d’Erland NORDENSKIOLD (1901-1902).
(2) BarBouR & NOBLE (1920), sans avoir vu les spécimens, estiment cette identifica-
tion peu probable, étant donnée la distance considérable entre El Moreno et le
Département de Junin (Pérou) d'où proviennent les types de Telmatobius jelskii, et croient
bon d'attribuer les spécimens de El Moreno plutôt à Telmatobius hauthali Koslowski,
1895, décrit de la Province de Catamarca (Argentine), beaucoup moins éloignée.
(3) Cet (1980), pour des raisons similaires, les rapporte à Telmatobius marmoratus
Duméril & Bibron, 1841, espèce effectivement citée par GALLARDO (1961) de la Province
de Jujuy (Argentine).
(4) LAVILLA & LAURENT (1989), ayant obtenu des exemplaires de El Moreno,
distinguent parmi eux deux espèces nouvelles vivant en sympatrie: Telmatobius platycepha-
lus et Telmatobius hypselocephalus, toujours sans avoir vu les spécimens étudiés par
ANDERSSON.
(5) Cette série fut originellement déposée à la Stockholm Hogskola, institution qui
n'existe plus aujourd’hui. Après de laborieuses recherches, elle fut retrouvée au Musée de
Stockholm (Naturhistoriska Rijkmuseet). Elle consiste en 4 adultes (NRM NNN
1901428.3139) et 8 larves (NRM NNN 1901428.4139). Les caractères diagnostiques
coïncident avec ceux que LAVILLA & LAURENT (1989) ont décrits pour T. platycephalus, en
particulier ceux qui distinguent cette espèce de T. hypselocephalus qui vit en sympatrie
avec elle. Les larves n’ont pu être identifiées, parce qu'elles n’ont pas encore été décrites,
lacune que le matériel de NORDENSKIÔLD ne permet pas de combler, faute de comprendre
une série complète de développement.
Source : MNHN, Paris
106 ALYTES 8 (3-4)
La chréso-synonymie (SMITH & SmiTH, 1972) de T. platycephalus doit donc s'établir
comme suit:
Telmatobius platycephalus Lavilla & Laurent, 1989
1906. Telmaiobius jelskii (non Peters, 1875): ANDERSSON, 1906: 4.
1920. Telmatobius hauthali (non Koslowsky, 1895): BarBour & NoBLe, 1920: 410.
1980. Telmaiobius marmoratus (non Duméril & Bibron, 1841): Cri, 1980: 255 [part.].
1989. Telmatobius platycephalus Lavilla & Laurent, 1989: 78.
REMERCIEMENTS
C'est grâce à l'amabilité de plusieurs personnes que nous avons pu examiner le matériel
d'ANDERSSON. En tout premier lieu, Andrew SPARE, consul de Suède à Tucumän, nous a mis en
relation avec le personnel de l'Ambassade de Suède à Buenos Aires, lequel nous orienta vers le Musée
d'Histoire Naturelle de Stockholm, et le Dr. Erik AHLANDER rechercha pour nous le matériel en
question, le trouva et voulut bien nous le confier.
RÉFÉRENCES BIBLIOGRAPHIQUES
ANDERSSON, L. G., 1906. - On batrachians from Bolivia, Argentina and Peru, collected by Erland
Nordenskiôld, 1901-1902, and Nils Holmgren, 1904-1905. Arkiv. f. Zool., 3 (12): 1-19, 1 pl.
BARBOUR, T. & NOBte, G. K., 1920. - Some amphibians from northwestern Peru, with a revision of
the gencra Phyllobates and Telmatobius. Bull. Mus. Comp. Zool., 63 (8): 395-427, 3 pl.
Ce, J.M., 1980. - Amphibians of Argentina. Monit. zool. Ital. (N.S.), Monogr. 2: + 1-609.
GALLARDO, J. M., 1962. — Los géneros Telmatobius y Batrachophrynus en la Argentina (Anura:
Leptodactylidac). Neorropica, 8 (26): 45-58.
LaviLa, E. O. & LAURENT, R. F., 1989. - Deux nouvelles espèces du genre Telmatobius (Anura:
Leptodactylidae) en provenance de el Moreno (Province de Jujuy, Argentine). Alytes, 7
(3): 77-89.
Surru, H. M. & Smirn, R. B., 1972. — Chresonymy ex synonymy. Syst. Zool., 21: 445.
Corresponding editor: Alain DuBois.
@ISSCA 1991
Source : MNHN, Paris
Alytes, 1989-1990, 8 (3-4): 107-120. 107
Miscellanea nomenclatorica
batrachologica (XVIII)
Alain DuBois
Laboratoire des Reptiles et Amphibiens,
Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
The generic name Siren and the specific name Siren lacertina are tradi-
tionally credited to LiNNé (1766 or 1767). It is shown here that these names
were first published by LINNÉ’s student ÜstERDAM (1766), who is therefore their
author, in the nomenclatural sense of the term. The chronology of the first
scientific publications dealing with this strange animal is discussed.
INTRODUCTION
La famille nord-américaine des Sirenidae Gray, 1825 a récemment attiré l'attention de
plusieurs batrachologues: en effet, en dépit de travaux répétés, la position phylogénétique
de ce groupe au sein des Urodèles est encore fort problématique et discutée (DUELLMAN
& TRUEB, 1986; LAURENT, 1986).
Le genre-type de cette famille, Siren, qui comporte deux espèces, est connu des
scientifiques depuis 1766. Tous les auteurs actuels (p. ex.: MARTOF, 1973, 1974; FROST,
1985) attribuent le nom générique Siren et le nom spécifique Siren lacertina à LiNNÉ (1766
ou 1767 selon les auteurs). Or il s'avère que l’histoire de ces noms est plus complexe qu'il
et que la paternité, au sens nomenclatural, de ces noms, ne doit pas être attribuée
à LINNÉ — même s’il fut probablement l’auteur, au sens trivial, de ces derniers. Il a donc
paru utile de retracer ici de manière quelque peu détaillée l'histoire de la découverte de cet
animal étrange et de son entrée dans le monde de la classification et de la nomenclature
zoologiques.
LINNÉ (1766, 1767)
MARTOF (1973, 1974) et BRAME (in FROST, 1985: 618) attribuent les noms Siren et
Siren lacertina à LINNÉ dans l'addenda non paginé qui figure à la fin du Tomus 1, Pars IL,
de la douzième édition du Systema Naturae. Or le volume en question est paru en 1767,
et non pas, comme ils l'écrivent, en 1766. Par ailleurs, dans cet addenda, LINNÉ (1767:
[xxxvi]) fait référence à deux autres mentions antérieures de ces noms, comme suit: ‘de qua
Source : MNHN, Paris
108 ALYTES 8 (3-4)
pag. 371. lin. ult. & Dissert. Siren. Upsal. 1766. c. fig.”. Il indique que l'espèce a été
découverte en Caroline par GARDEN.
Comme l'a noté par exemple BROWN (1908: 127), le nom Siren lacertina apparaît en
effet, associé à une courte caractérisation, en note infrapaginale en bas de la page 371 du
Tomus I, Pars I, de la douzième édition, volume qui est bien paru, lui, en 1766. Dans cette
note, LINNÉ fait déjà mention (“conf. diss. nostr. de Sirene 1766”) de la “dissertation”
également citée en 1767, qui était donc parue avant ce Tomus I, Pars I.
Dans ces deux brefs textes, LINNÉ (1766, 1767) reste indécis quant à la nature réelle
de cet animal: adulte d’une espèce et d’un genre nouveau, ou larve d’une espèce de Lacerta
(genre dans lequel LINNÉ incluait les Urodèles)? En 1767 toutefois, il estime manifestement
avoir plus probablement affaire à l’adulte d’un animal d’un type complètement nouveau,
pour lequel il propose l'emploi formel, non seulement d'un nom générique et d’un nom
spécifique distincts, mais encore d’un nouveau nom d'ordre, celui des Meantes. Cet ordre
viendrait s'ajouter, au sein de sa classe des Amphibia, à ceux des Reptiles, des Serpentes
et des Nantes. Le nom de Siren qu'il adopte pour cet animal évoque manifestement les
caractères qu'il lui prête (deux mains pourvues d'ongles et une voix chantante), comme le
notent DUMÉRIL, BIBRON & DuMÉRIL (1854: 192): “Pour le désigner, il emprunta à la
Mythologie ce nom de Sirène voulant indiquer un être à deux mains, avec une queue de
poisson, produisant, comme on le lui avait annoncé, une sorte de voix ou de chant.” Après
avoir été tournées en ridicule par plusieurs auteurs, les observations de GARDEN sur
lesquelles s'appuyaient ces remarques ont du reste été confirmées: il est vrai que les deux
espèces actuellement reconnues dans le genre Siren peuvent produire des sons, qui
ressemblent même parfois à des chants lointains de Rainettes Hyla cinerea (CARR, 1940;
MasLiN, 1950; NEILL, 1952; GEHLBACH & WaALkER, 1970).
OsrerDaM (1766, 1769, 1789)
A l'exception de quelques-uns (p. ex.: SCHNEIDER, 1799: 48; DAUDIN, 1803: 272;
MERREM, 1820: 188; HOLBROOK, 1842: 102; DUMÉRIL, BIBRON & DUMÉRIL, 1854: 192-193),
la plupart des auteurs postérieurs à LINNÉ ont ignoré la “dissertation” (thèse) à laquelle
celui-ci faisait allusion. Celle-ci a bel et bien été publiée, une première fois avant les textes
de LiNNÉ qui en font mention, puis de nouveau deux fois après: il en existe trois versions
distinctes au Muséum national d'Histoire naturelle de Paris.
Cette thèse fut soutenue à Uppsala (Suède) le 21 juin 1766 par Abrahamus (Abraham)
OsTERDAM ou OEsTERDAM. La première version (ÔsTEeRDAM, 1766; fig. 1-2) est datée de
1766 et fut manifestement publiée peu après la soutenance. La deuxième version
(ÔsrerDaM, 1769) figure dans un recucil de thèses soutenues sous la présidence de LINNÉ,
publié en 1769. Le texte en diffère en plusieurs endroits du texte original de 1766. La
troisième version (OESTERDAM, 1789), identique à la deuxième, figure dans la deuxième
édition du même recueil, publiée en 1789.
Après une longue introduction, DAM (1766, 1769, 1789) fait mention d'un
animal étrange, récemment envoyé de Caroline par GARDEN, et dont il donne une
Source : MNHN, Paris
DuBois 109
description très détaillée, ainsi qu’un dessin (fig. 2-3)!. Il rapporte que, selon GARDEN, cet
animal vit dans les marais de la Caroline du sud, et que lorsque ces marais s’assèchent cet
animal chante d’une voix plaintive, presque semblable à celle des jeunes canards mais plus
aigüe et plus claire (“cum exsiccantur paludes, ubi hospitatur, (..), canit voce querula,
anatum juniorum fere simile, sed acuta magis atque clara”; ÔsrERDAM, 1766: 12). Pour
finir, ÔsTERDAM développe des considérations sur la place de cet animal dans le “Système”
de son Maître LINNÉ. Dans le texte de 1766, après de longues hésitations quant à la nature
réelle de cet animal (adulte ou larve?) et d’intéressantes remarques sur les phénomènes
biologiques de la vie larvaire, de la métamorphose et de la néoténie, ÜsTERDAM (1766: 15)
propose le nom générique Siren et le nom spécifique /acertina pour cet animal; il ajoute que
si cet animal s’avérait ne pas être une larve, il faudrait créer pour lui un nouvel ordre, au
sein de la classe des Amphibia de LINNÉ, mais ne propose pas de nom pour cet ordre.
Dans la planche jointe au texte original de 1766 (fig. 2), OSTERDAM figure non
seulement l’espèce Siren lacertina décrite dans le texte, mais également une autre espèce,
Siren bartholini. Ce nom latin n’apparaît pas tel quel dans le texte, mais renvoie sans aucun
doute à l’animal décrit et figuré par BARTHOLIN (1654 a: 162-166; 1654 b: 169-173; 1654
c: 186-191), dans un ouvrage auquel ÔsTERDAM (1766: 4; 1769: 314; 1789: 314) fait
expressément référence. Cet animal, qui pour ÔSTERDAM correspond manifestement à la
sirène de la mythologie, avait été récolté dans la ‘mer du Brésil”, disséqué par P. Pavius
(P. PAW), de Leiden, et figuré (fig. 4): il s’agit très vraisemblablement d'un Lamantin (genre
Trichechus).
Dans le texte publié en recueil, ÔsTERDAM (1769: 325; 1789: 325) va plus loin. Il
reconnaît formellement un ordre des Meantes, avec un seul genre, Siren. Si dans le texte
il ne mentionne que l'espèce nominale Siren lacertina, en revanche sur la planche (fig. 3)
et également dans la légende de celle-ci figurent les deux noms Siren lacertina et Siren
bartholini; dans la légende de la planche, cette dernière espèce est toutefois présentée
comme “peut-être inventée” (“forte ficta”’). Il est donc clair qu'OSTERDAM avait quelques
doutes sur l'existence de cet animal marin, mais aucune certitude à cet égard: dans le doute,
il préférait reproduire la figure que BARTHOLIN (1654 a: 164; 1654 b: 171; 1654 c: 189) en
avait donnée, renvoyer à la description de cet auteur, et donner un nom latin formel à cette
espèce, qu’il plaçait dans le même genre nominal que l’animal de Caroline qu'il avait sous
les yeux.
Ecuis (1767)
Une remarque intéressante figure après le nom de Siren lacertina à la fin du texte
d'ÔsTERDAM publié en recueil: “Hujus, post hoc editum opusculum, novam historiam, cum
optima figura, edidit acutissimus D. Ellis in Act. angl. vol. 56. p. 189. t. 9.” (“De celle-ci,
. La planche reproduite ici en fig. 2 est tirée d’un exemplaire de l'édition originale de 1766 qui se trouve
à la Bibliothèque Nationale de Paris. L'exemplaire de cette même thèse qui se trouve à la Bibliothèque
centrale du Muséum national d'Histoire naturelle de Paris est dépourvu de planche, celle-ci ayant
manifestement été perdue. La planche reproduite i est tirée d’un exemplaire de l'édition de 1789
qui se trouve à la Bibliothèque centrale du Muséum national d'Histoire naturelle de Pa On notera
l'existence de quelques différences entre les deux planches, dont la plus notable concerne la longueur des
branchies de Siren lacertina.
Source : MNHN, Paris
110 ALYTES 8 (3-4)
après la publication de cet opuscule, le très clairvoyant D. Ellis a donné une nouvelle
histoire avec une excellente figure in Act. angl. vol. 56. p. 189. t. 9.) (ÜsrERDAM, 1769:
325, 1789: 325).
Le texte dont il est ici question a lui aussi été ignoré par la plupart des auteurs
ultérieurs, bien qu'il ait été cité par quelques-uns d’entre eux (p. ex.: LA CÉPÈDE, 1788 a:
611, 1788 b: 381; SCHNEIDER, 1799: 49; DAUDIN, 1803: 272; MERREM, 1820: 188; GRaY,
1825: 216; HOLBROOK, 1842: 102; DUMÉRIL, BIBRON & DUMÉRIL, 1854: 193). Il s'agit d'un
texte qui fut lu par John ELLis le 5 juin 1766 devant la Royal Society de Londres. Ce texte
permet de reconstituer l'ensemble de l’histoire qui amena un spécimen de cette espèce
devant les yeux de LINNÉ et de son élève OsTERDAM. Selon ELLis (1767), c'est durant l'été
de 1765 qu'il reçut d’Alexander GARDEN, “of Charles-town South Carolina”, trois
spécimens (un grand et deux petits) de cet animal extraordinaire et jusqu'alors inconnu des
naturalistes. Ces animaux sont décrits et deux d’entre eux figurés (fig. 5); à titre de
comparaison, des larves de Tritons d'Angleterre sont également représentées. Incertain
quant au statut de ces animaux (larves ou adultes?), et à la demande de GARDEN, ELLIS
envoya à LiNNÉ, à Uppsala, un des deux petits spécimens et la description détaillée du
grand spécimen par GARDEN. La réponse de LINNÉ, datée du 27 décembre 1765 à Uppsala
(Upsal), et probablement traduite du latin par ELLIS (1767: 191-192), est la suivante:
%E ived Dr. Garden’s very rare two-footed animal with gills and lungs. The animal is probably
the larva of some kind of lacerta, which 1 very much desire that he will particularly enquire into.
If it does not undergo a change, its belongs to the order of Nantes, which have both lungs and
gills: and if so, it must be a new and very distinet genus, and should most properly have the name
of Siren
1 cannot possibly describe to you how much this two-footed animal has exercised my thoughts:
ifitis a larva, he will no doubt find some of them with four feet.
It is not an easy matter to reconcile it to the larva of the lizard tribe, its fingers being furnished
with claws: all the larvas of lizards, that 1 know, are without them (digitis muti
Then also the branchiae or gills are not to be met with in the aquatic salamanders, which are
probably the larvas of lizards.
Further, the croaking noise or sound it makes does not agree with the larvas of these animals;
nor does the situation of the anus.
no créature that ever 1 saw, that 1 long so much to be convinced of the truth,
ainly turn out to be.
as what this will ce:
ELLIS (1767) lui-même n'emploie pas le nom générique Siren dans le texte de son
travail, mais ce nom apparaît sur la planche qui illustre celui-ci (fig. 5). HuNTER (1767),
qui est l’auteur d’un deuxième article consacré au même animal paru dans le même
volume, ne mentionne pas ce nom. Toutefois, en vertu de l'Article 50 du Code (ANONYME.
198$), la publication par ELLIS (1767), dans le même travail, d’une description et de dessin
de l'animal, et du nom générique Siren, ferait de lui, et bien qu'il attribue expressément ce
nom à LiNNÉ, l'auteur, au sens nomenclatural du terme, de ce nom générique, si son travail
avait été publié avant celui d'ÜsrERDAM (1766). Les dates respectives de publication de ces
deux travaux doivent donc être établies.
Source : MNHN, Paris
Dusois 11
S. À N.
SIREN
LACERTINA,
DISSERTATIONE ACADEMICA
ORBI ERUDITO DATA
QUAM VENIA NOB. er EXPFRIENT. FAC. MED.
AD REG. ACAD. UPSAL.
PRÆSIDE
FIRO NOPIZI5SiM0 et EXPERIENTISSIMO
D:0o Docr. CAROLO
a LINNE,
EQUITE AURATO DE STELLA FOLARI;
S:Æ R:æ Airis Surc. ARCHIATRO,
Mo. sr BoTas. PROFESSORE Rec. ET Op. AcaD. PARIS.
Perropor. [mper. M. C. Hotm. Ursar.
Lonv, AnGL. Fior, Brroc. Monsr. ‘l'ozos, BERxENS. Epis,
Nionos. MEMBRO,
PUBLICE VENTILANDAM SISTIT
SriPenDrarius REGIUS
ABRAHAMUS ÔSTERDAM ,
HozutensIs
IN AUPITORIO CAROT.INO MAJORI
DIE XXI JUNIJ ANNI MDCCLXVI.
H 4 M C
UPSALIZÆ.
Fig. 1. — Reproduction de la page de garde de l'édition originale de la dissertation d'OsTERDAM
(1766) sur Siren lacertina (Bibliothèque du Muséum national d'Histoire naturelle, Paris).
Source : MNHN, Paris
112 ALYTES 8 (3-4)
CHTREAT Lacertine
|
ren Bartichné
Bal ms fo di” Le
C'Beyrot ok |
Fig. 2. — Reproduction de la planche de l'édition originale de la dissertation d'Üsrerpam (1766) sur
Siren lacertina (Bibliothèque Nationale, Paris).
Source : MNHN, Paris
Düois 113
PUY 07e
Fig. 3. — Reproduction de la planche V de la troisième version de la dissertation d'OESTERDAM (1789)
sur Siren lacertina (Bibliothèque du Muséum national d'Histoire naturelle, Paris).
Source : MNHN, Paris
114 ALYTES 8 (3-4)
Fig. 4. — Reproduction de la planche de la page 189 de BARTHOLIN (1654 c) montrant une “sirè
recucillie dans la “mer du Brésil”, cet animal en train de nager et une dissection d’une “main”
de celui-ci (Bibliothèque du Muséum national d'Histoire naturelle, Paris).
Source : MNHN, Paris
Duois 115
TL IT TAB Ep 89
Fig. 5. — Reproduction de la planche IX de l'article d'E
du Muséum national d'Histoire naturelle, Paris).
LIS (1767) sur Siren lacertina (Bibliothèque
Source : MNHN, Paris
116 ALYTES 8 (3-4)
CHRONOLOGIE DE CES PUBLICATIONS
La communication orale d'ELLIS fut faite à Londres le 5 juin 1766, tandis
qu'ÔsrERDAM soutint sa thèse à Uppsala le 21 juin 1766. Toutefois, comme nous l'avons
vu, dans la deuxième version publiée de sa thèse, ÜsrerDaM (1769: 325, 1789: 325) précise
que le travail d'ELLIS est paru après la première publication de sa propre thèse. Ceci semble
confirmé par la page de garde du volume 56 ("For the year 1766”) des Philosophical
transactions, qui porte la date de publication de 1767, comme l'ont noté DUMÉRIL, BIBRON
& DumÉriL (1854: 193). Cette dernière date est du reste très vraisemblable, puisque ce
volume, qui fut apparemment publié en une seule fois, comporte des communications qui
ont été lues à la Royal Society du 23 janvier au 18 décembre 1766: il est donc peu probable
que le volume ait pu paraître en 1766. En l'absence d'indications plus précises sur les dates
de publication de ces travaux, il faut suivre l'Article 21 du Code (ANONYME, 1985), qui
précise que la date à retenir est celle du “dernier jour de l’année” de publication, soit le
31 décembre 1766 pour le travail d'OsrERDAM et le 31 décembre 1767 pour ceux d’ELLIS
et de HUNTER. Par ailleurs, comme nous l’avons vu, il faut considérer le travail de LINNÉ
(1766) comme postérieur à celui d'ÔsrERDAM (1766), qui y est cité en page 371: afin de
respecter cette priorité, il faut dater le travail d'OsTERDAM (1766) du 30 décembre 1766 au
plus tard et celui de LINNÉ (1766) du 31 décembre 1766. Dans ces conditions, il faut
admettre qu'OsTERDAM (1766) est l’auteur, au sens nomenclatural, des noms Siren et Siren
lacertina. H en résulte que le type porte-nom de cette dernière espèce est le spécimen
qu'ELLis avait fait parvenir à LINNÉ et qui est figuré dans le travail d'OsTERDAM (1766,
1769, 1789), qui en est donc l’holotype et type unique, et non pas les spécimens décrits et
figurés par ELLIS (1767).
Quant au nom du groupe-classe (sensu DuBois, 1984) Meantes, il est apparu pour la
première fois dans le livre de LINNÉ (1767), qui en est donc l’auteur au sens nomenclatural:
en effet ce nom ne figure pas dans la première version du travail d'ÔsTERDAM (1766) et
n'apparaît que dans la deuxième version de ce travail (ÔsrERDAM, 1769: 325, 1789: 325),
postérieure au livre de LiNNÉ (1767). Ce nom n’est pas actuellement considéré comme
valide, mais pourrait l'être dans l'avenir, pour désigner un sous-ordre des Urodèles
(reconnu par exemple par DUELLMAN & TRUEB, 1986 et par LAURENT, 1986, sous le nom
de Sirenoidea, pour la seule famille des Sirenidae), ou même un ordre à part, comme l’ont
suggéré certains auteurs (p. ex. GoIN & Goin, 1962).
PROBLÈMES NOMENCLATURAUX
Deux dernières questions méritent discussion d’un simple point de vue nomenclatural.
L'Article 9(11) du Code actuel (ANONYME, 1985) précise que “le dépôt d’un document
(tel qu'une thèse) dans une collection de documents, une bibliothèque ou d’autres
archives” n’a pas ‘valeur de publication au sens du Code”. La thèse d'ÔsTeRDAM (1766)
a-t-elle valeur de publication? Ceci ne saurait faire de doute: il s’agit d'un opuscule
Source : MNHN, Paris
DuBois 117
imprimé, qui fut manifestement envoyé à toutes les grandes institutions scientifiques de
l'époque, et qui est expressément cité par LINNÉ (1766: 371; 1767: [xxxvi]) lui-même. Ce
texte a ensuite été repris, avec quelques modifications, dans des recueils de thèses soutenues
sous la présidence de LINNÉ, recueils qui ont eu eux aussi une large diffusion. A cette
époque toutes les thèses une fois soutenues étaient imprimées et diffusées dans le monde
comme des publications à part entière. Il ne saurait être question d'appliquer à une thèse
publiée à cette époque l'Article 9(11) actuel, qui n’a été ajouté dans la dernière édition du
Code que pour éviter les problèmes nouveaux créés par la tendance récente de certains
auteurs à introduire des noms scientifiques nouveaux dans des thèses ronéotypées et ne
faisant l’objet d'aucune diffusion publique.
Le deuxième point problématique est celui de l’espèce-type du genre Siren. Bien que,
dans le texte original de sa thèse, ÔsTERDAM (1766) ne mentionne que l'espèce Siren
lacertina, sur la planche qui accompagne ce texte sont figurées deux espèces, Siren lacertina
et Siren bartholini. Ce deuxième nom a-t-il un statut en nomenclature zoologique? La
question se pose parce que l'Article 1(b)(1) du Code (ANONYME, 1985) précise que “les
dispositions du Code ne sont pas applicables aux noms proposés (...) pour des concepts
hypothétiques”. Comme nous l’avons vu et comme en témoigne son texte ultérieur (1769,
1789), ÔSTERDAM était manifestement incertain de la nature, réelle ou fictive, de cette
dernière espèce. Il renvoyait expressément à la description de BARTHOLIN (1654 a-b-c) et
reproduisait une des figures de cet auteur. Ce renvoi bibliographique et cette figure
constituent manifestement des “indications”, au sens de l'Article 12(b) du Code (ANONYME,
1985). De plus, cette description et ces figures s'appuyant manifestement sur un spécimen
réel, qui avait été capturé et même disséqué, le nom Siren bartholini est indubitablement
disponible pour l'espèce de Mammifère marin à laquelle appartenait ce spécimen. Le nom
Siren bartholini d'ÜsTERDAM (1766) ne s'applique donc pas à un “concept hypothétique”
et n’est pas non plus un nomen nudum. Il faut donc considérer que le genre nominal Siren
a été créé avec deux espèces nominales incluses, Siren lacertina Osterdam, 1766 et Siren
bartholini Osterdam, 1766, dont aucune n'était désignée comme espèce-type du genre dans
la description originale. L’espèce-type du genre sera donc la première de ces deux espèces
nominales à avoir été désignée comme telle par un auteur ultérieur. En l'occurrence, et par
chance, il s’agit de Siren lacertina, expressément désignée comme type de Siren pour la
première fois par HARLAN (1826: 321).
CONCLUSION
On trouvera ci-dessous une récapitulation des statuts nomenclaturaux des noms
actuellement considérés valides pour désigner les différents taxons auxquels sont attribuées
les trois espèces reconnues au sein de la famille des Sirenidae. Ainsi que cela a déjà été noté
(Dusois, 1987: 126), c'est par erreur que BRAME (in FROST, 1985: 617) écrit au sujet du
nom Sirenidae: “As first formed the group name was Serenina.” Il est vrai que le nom
subfamilial Serenina apparaît en p. 216 du travail de GRAY (1825), mais en p. 215 du même
travail figure le nom Sirenidae avec son orthographe valide actuelle! En ce qui concerne
le nom spécifique Siren intermedia, qui fut longtemps attribué à LE CONTE (1828), SMITH,
SMITH & SAWIN (1975) ont établi qu'il devait être attribué à BARNES (1826).
Source : MNHN, Paris
118 ALYTES 8 (3-4)
Sous-ordre MEANTES Linné, 1767: [xxxvi], addenda non paginé. — Genre-type par
monotypie: Siren Osterdam, 1766.
Famille SIRENIDAE Gray, 1825: 215. — Genre-type par désignation étymologique
implicite: Siren Osterdam, 1766.
Genre Pseudobranchus Gray, 1825: 216. — Espèce-type par monotypie: Siren striata
Le Conte, 1824.
Pseudobranchus striatus (Le Conte, 1824: 53).
Genre Siren Osterdam, 1766: 15. — Espèce-type par désignation subséquente de
HARLAN (1826: 321): Siren lacertina Osterdam, 1766.
Siren intermedia Barnes, 1826: 269.
Siren lacertina Osterdam, 1766: 15.
REMERCIEMENTS
L'auteur remercie vivement Henri DELORME et Pierre Duois, qui lui ont permis de disposer
d’une traduction intégrale des deux textes latins d'OsTERDAM. Cette traduction est conservée au
Laboratoire des Reptiles et Amphibiens du Muséum national d'Histoire naturelle, où elle est à la
disposition de tous les collègues intéressés.
L'auteur remercie également Roger BouR et un lecteur anonyme pour leurs commentaires
enrichissants, et Annemarie OHLER pour la préparation des figures illustrant ce travail.
RÉFÉRENCES BIBLIOGRA PHIQUES
ANONYME, 1985. — Code international de nomenclature zoologique. Troisième édition. London,
International Trust for zoological Nomenclature: i-xx + 1-338
Barnes, D. H., 1826. — An arrangement of the genera of batracian [sic] animals, with a description
of the more remarkable species: including a monograph of the doubtful reptils [sic]. Amer. J.
Sci, 11: 268-297.
BARTHOLIN, T., 1654 a. — Historiarum anatomicarum rariorum. Centuria 1 et IL. Hagae, Adriani
Vlacqz fi-xvi] + 12314 + [i-vi], 9 pl.
_—…— 1654 b. Historiarum anatomicarum rariorum. Centuria Let I. Amstelodami, loannem Henri
fi-xvi] + 1-326 + [iix], 9 pl.
en 1654 c. — Historiarum anatomicarum rariorum. Centuria L et IL. Hasni
Hixvi] + 12360 + [i-vii], 9 pl.
BROWN, À. E., 1908. — Generic types of nearctic Reptilia and Amphibia. Proc. Acad. nat. Sci. Phil.
60: 112-127
Carr, A. F. Jr, 1940. — A contribution to the herpetology of Florida. Univ. Florida Publ. Biol.
Ser., 31-118.
, Academis Martzani:
Source : MNHN, Paris
DuBois 119
DauDIN, F. M., 1803. — Histoire naturelle, générale et particulière des Reptiles. Tome huitième. Paris,
Dufart: 1-439, 8 pl.
Dumois, A., 1984. — La nomenclature supragénérique des Amphibiens Anoures. Mém. Mus. nain.
Hist. nat., (A), 131: 1-64.
—— 1987. — Living amphibians of the world: a first step towards a comprehensive checklist. 4/ytes,
5: 99-149.
DUELLMAN, W. E. & TRUEB, L., 1986. — Biology of Amphibians. New York, McGraw-Hill: i-xix +
1-670.
Dumériz, A.-M.-C., BiBroN, G. & DUMÉRIL, A., 1854. — Erpétologie générale ou histoire naturelle
complète des Reptiles. Tome 9. Paris, Roret: i-xx + 1-440.
Erus, J., 1767. — An account of an amphibious bipes. Phil. Trans., Lond., 56: 189-192, pl. IX.
FROST, D. R. (réd.), 1985. — Amphibian species of the world. Lawrence, Allen Press & Assoc. Syst.
Coll.: [iv] + iv + 1-732.
GEHLBACH, F. R. & WALkER, B., 1970. — Acoustic behavior of the aquatic salamander, Siren
intermedia. BioScience, 20: 1107-1108.
Goin, C. J. & Goin, O. B., 1962. — Introduction to herpetology. San Francisco & London, Freeman
& Co: i-ix + 1-341.
GAY, J. E., 1825. — A synopsis of the genera of Reptiles and Amphibia, with a description of some
new species. Ann. Philos., (2), 10: 193-217.
HARLAN, R., 1826-1827. — Genera of North American Reptilia, and a synopsis of the species. J.
Acad. nat. Sci. Phila., 1826-1827, 5(2): 317-324 [December 1826] + 325-356 [January 1827] +
357-372 [February 1827].
HoLBrook, J. E., 1842. — North American herpetology: or, a description of the reptiles inhabiting the
United States. Volume V. Philadelphia, J. Dobson: i-vi + 5-118, pl. 1-38.
HUNTER, J., 1767. — A supplement to the account of an amphibious bipes. Phil. Trans., Lond., 56:
307-310.
La Cépèe, [B. G. E.] DE, 1788 a. — Histoire naturelle des quadrupèdes ovipares et des serpens. Tome
premier, éd. 26 cm. Paris, Hôtel de Thou: 1-18 + 1-651, pl. I-XLI, 1 tabl. h. t.
Que 1788 b. — Histoire naturelle des quadrupèdes ovipares et des serpens. Tome second, éd. 16 cm.
Paris, Hôtel de Thou: [i-iv] + 1-464, pl. I-XV.
LAURENT, R. F., 1986. — Sous-classe des Lissamphibiens (Lissamphibia). Systématique. /n: P.-P.
GRaASsÉ & M. DELSOL (réds.), Traité de zoologie, 14, Batraciens, Fasc 1-B, Paris, Masson:
594-797.
LE CONTE, J., 1824. — Description of a new species of Siren, with some observations on animals of
a similar nature. Ann. Lyc. nat. Hist. New York, 1: 52-58, pl. IV.
- 1828. — Description of the Siren intermedia n. sp. Ann. Lyc. nat. Hist. New York, 2: 133-134, pl.
L
Linné, C. À, 1766. — Systema Naturae per regna tria naturae, secundum classes, ordines, genera,
species, cum characteribus, differentiis, synonymis, locis. Editio duodecima, reformata. Tomus I,
Pars I. Holmiae, Laurentii Salvii: 1-532.
En 1767. — Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum
characteribus, differentiüs, synonymis, locis. Editio duodecima, reformata. Tomus 1, Pars IL.
Holmiae, Laurentii Salvi: 533-1327 + [i-xxxvii].
MarTOr, B. S., 1973. — Siren lacertina Linnacus. Cat. Amer. Amph. Rept., S.S.A.R.: 128.1-128.2.
--- 1974. — Siren Linnaeus. Cat. Amer. Amph. Rept., S.S.A.R:: 152.1-152.2.
MASLiN, T. P., 1950. — The production of sound in caudate amphibia. Univ. Colo. Stud. Ser. Biol.
1: 29-48.
MERREM, B., 1820. — Versuch eines S\
+ [1-188] x 2 + 189-191, 1 pl.
NElLL, W. T., 1952. — Remarks on salamander voices. Copeia, 1952: 195-196.
Osrerpam, A. 1766. — Siren lacertina. Dissertatione academica, Upsaliac: [i-iv] + 1-16, 1 pl.
--—— 1769. Siren lacertina. In: C. À LiNNË (réd.), Amoenitates Academicae, Volumen septimum:
311-325, pl. V.
siems der Amphibien. Marburg, Krieger: i-vi + [vii-xv] x 2
Source : MNHN, Paris
120 ALYTES 8 (3-4)
OESTERDAM, A., 1789. — Siren lacertina. In: C. A LiNNÉ (réd.), Amoenitates Academicae, Volumen
septimum, Editio secunda: 311-325, pl. V.
SCHNEIDER, I. G., 1799. — Historiae Amphibiorum naturalis et literariae. Fasciculus primus. Jena,
Frommann: i-xv + 1-264, pl. I-II.
Smira, H. M., SmiTH, R. B. & SAWIN, H. L., 1975. — The authorship and date of publication of Siren
intermedia (Amphibia: Caudata). Great Basin Nat., 35: 100-102.
Corresponding editor: Pierre JoLY.
© ISSCA 1991
Source : MNHN, Paris
AIN7TES
International Journal of Batrachology
published by ISSCA
EDITORIAL BOARD FOR 1990
Chief Editor: Alain Dugois (Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire
naturelle, 25 rue Cuvier, 75005 Paris, France). &
Deputy Editor: Pierre JoLY (Laboratoire de Biologie animale et Écologie, Université Claude Bernard
Lyon I, 69622 Villeurbanne Cedex, France).
Other members of the Editorial Board: Jean-Louis AMIET (Yaoundé, Cameroun); Stephen D. BuSACK
(Ashland, U.S.A.); Günter GOLLMANN (Wien, Austria), Tim HALLIDAY (Milton Keynes, United
Kingdom); William R. Heyer (Washington, U.S.A.); Walter HôpL (Wien, Austria); Milos
KaLEzrC (Beograd, Yugoslavia): Raymond F. LAURENT (Tucumän, Argentina); Borja SANCHIZ
(Madrid, Spain); Dianne B. SEALE (Milwaukee, U.S.A.).
Index Editor: Annemarie OuLER (Paris, France).
GUIDE FOR AUTHORS
Alytes publishes original papers in English, French or Spanish, dealing with Amphibians.
Beside papers reporting results of original research, consideration will be given for publication to
review articles, comments and replies.
The title should be followed by the name(s) and address(es) of the author(s). The text should be
organised as follows: English abstract, introduction, method, results, discussion, conclusion, French
or Spanish abstract, acknowledgements, literature cited.
Figures and tables should be mentioned in the text as follows: fig. 4 or Table IV. Figures
should not exceed 16 X 24 cm. The size of the lettering should ensure its legibility after reduction.
The legends of figures and tables should be assembled on a separate sheet. Each figure should be
numbered using a pencil.
References in the text are to be written in capital letters (SOMEONE, 1989; EVERYBODY et al.,
1980; So & So, 1987). References in the literature cited section should be presented as follows:
— when in a périodical:
KaLezié, M. L., DZuxié, G., CRNOBRNIA, J. & TVRTKOVIÉ, N., 1987. - On the Triturus vulgaris
schreiberi problem: electrophoretic data. Alytes, 6: 18-22.
— when in a multi-authors book:
GarCIA-PARIS, M. & MARTIN, C., 1986. — Amphibians of the Sierra del Guadarrama (1800-
2430 m altitude). /n: Z. RotEK (ed.), Studies in herpetology, Prague, Charles University Press: 135-
138.
— when a book:
BOULENGER, G. A., 1882. — Catalogue of the Batrachia Salientia s. Ecaudata in the collection of the
British Museum. London, Taylor & Francis: i-xvi + 1-503, pl. I-XXX.
Manuscripts should be submitted in triplicate to Alain DuBois (address above) if dealing with
amphibian systematics, biogeography, evolution, genetics or developmental biology, or to Pierre JOLY
(address above) if dealing with amphibian ecology, ethology, life history or physiology.
P Acceptance for publication will be decided by the editors following review by at least two
referees.
No page charges are requested from author(s), but the publication of color photographs is
charged. For each published paper, 25 free reprints are offered by A/ytes to the author(s). Additional
reprints may be purchased by multiples of 25.
Published with the support of
the Muséum national d'Histoire naturelle (Paris, France)
and of the Société Batrachologique de France.
Directeur de la Publication: Alain Dumois.
Numéro de Commission Paritaire: 64851.
© ISSCA 1991 Source : MNHN, Paris
25 FEV. 1991
Alytes, 1989-1990, 8 (3-4): 61-120.
Contents
Alain DuBois
Nomenclature of parthenogenetic, gynogenetic and “hybridogenetic”?
VérteDrale sAXONS ENEWAPEOPOSAIS un. mn Mme eee 61
Manuel POLLS PELAZ
The Biological Klepton Concept (BKC) ........................... 75
Rainer GÜNTHER & Jôrg PLÔTNER
Mating pattern in pure hybrid populations of water frogs, Rana
RME CANUTA RER ANIARC) EE 27 eme lie seine de ve 90
Jean-Louis AMIET
Images d’Amphibiens camerounais.
IL. L’enfouissement et la phonation bouche ouverte chez Conraua crassipes
(BUCRHOIZ AG APELENS al RTS) ne ANS TA PERL AU NUE Rent 99
R.F. LAURENT & E.O. LAVILLA
Information complémentaire sur les Telmatobius (Leptodactylidae)
déEIRMorepoN(tiuy PArgentine) 20e NPA MN EE nent) 105
Alain Dupois
Miscellanea nomenclatorica batrachologica (XVIII) .................. 107
Alytes is indexed in the following data bases: Biosis, Cambridge Scientific Abstracts,
Current Awareness in Biological Sciences and The Zoological Record.
Imprimerie F. Paillart, Abbeville, France.
Dépôt légal: 1 trimestre 1991.
©ISSCA 1991
Source : MNHN, Paris