NATE:
ISSN 0753-4973
AIDTES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
March 1991 Volume 9, N° 1
Source MNHN, Paris
International Society for the Study
and Conservation of Amphibians
(International Society of Batrachology)
SEAT
Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
BOARD FOR 1991
President: Raymond F. LAURENT (Tucumän, Argentina).
General Secretary: Alain DuBois (Paris, France).
Treasurer: Dominique PAYEN (Paris, France).
ant Secretary, Europe: Günter GOLLMANN (Wien, Austria).
ant Treasurer, Europe: Annemarie OHLER (Paris, France).
Assistant Secretary, outside Europe: David B. WakE (Berkeley, U.S.A.).
Assistant Treasurer, outside Europe: Janalee P. CALDWELL (Los Angeles, U.S.A.).
Other members of the Board: Jean-Louis FISCHER (Paris, France); David M. GREEN (Montreal,
Canada); Roy W. McDiarmiD (Washington, U.S.A.); James I. MENZIES (Boroko, Papua New
Guinea), Richard WassErsUG (Halifax, Canada).
TARIFFS 1991
Subscription to
ISSCA Circalytes Alytes Total
Individuals
ISSCA direct members 60 FF 60 FF 200 FF 320 FF
ISSCA group or section members* 25 FF 60 FF 200 FF 285 FF
Non-members r _ 220 FF 220 FF
Institutions
ISSCA direct members 120 FF 120 FF 400 FF 640 FF
ISSCA group or section members* 50 FF 120 FF 400 FF 570 FF
Non-members - _- 440 FF 440 FF
* Members through a group or section of ISSCA (Société Batrachologique de France; Société
Lémanique de Batrachologie; Working Group on Oriental Amphibians).
Tariff for the inclusive Section or Group affiliation to ISSCA: 250 FF.
Tariff for individual subscription to the ISSCA Board Circular Letters: 200 FF.
MODES OF PAYMENT
In French Francs, by cheques payable to “ISSCA”, sent to our Treasurer (address above).
— In French Francs, by direct postal transfer to our postal account: “ISSCA”, Nr. 1 398 91 L, Paris.
— In French Francs, by direct bank transfer Lo our bank account: “ISSCA”, Nr. 10207-00014-
04014048104-97, BICS Paris-Monge.
- In U.S. Dollars: please write to our General Secretary (address-above) for further information.
Source : MNHN, Paris
AIVTES
INTERNATIONAL JOURNAL OF BATRACHOLOGY
March 1991 Volume 9, N° 1
Alytes, 1991, 9 (1): 1-14. 1
Batrachology
as a distinct scientific discipline
liothèque Centrale Muséum
Laboratoire des Reptiles et Amphibiens, ULN
Muséum national d'Histoire naturelle,
25 rue Cuvier, 75005 Paris, France
Although amphibians and reptiles have been considered as two distinct
classes of vertebrates for more than 150 years, the study of both groups is still
traditionally referred to a single scientific discipline, “herpetolog”. It is here
argued that, both for scientific reasons and in order to have a better efficiency
in the field of conservation, it is necessary to recognize two discrete scientific
disciplines: “herpetology” for the study of reptiles and “batrachology” for that
of amphibians. The first steps in the direction of this distinction already taken
by some zoologists are outlined.
A general trend in science today is towards greater specialization. This has become
more and more necessary as the amount of knowledge already accumulated and the
bibliographical corpus have been growing, as techniques have been multiplying and
becoming increasingly sophisticated, and as it has become impossible for any single
scientist to master all problems, methods and results.
Whereas this trend is unavoidable, it also implies the risk that biologists might lose
sight of the unity of biology. In order to minimize this risk, it is important that they both
reach a high specialization in their own research work (a condition for efficiency of the
latter) and keep a certain encyclopaedism of the mind and of general knowledge (a
condition for being able to put their own research back in a more general context).
Zoology is one of the domains of biology where specialization of research and of
knowledge has been growing progressively from the beginning. The specialization
movement has developed in three major directions, which correspond to three major
approaches to zoology.
(1) The first approach may be qualified of “systematic”. Following the increasing
subdivision of the animal kingdom into distinct groups, each of these became the object
Source : MNHN, Paris
2 ALYTES 9 (1)
of a particular sector of zoology, such as malacology for molluses or entomology for
insects. Each of these disciplines is centered on the animal group studied, on the peculiar
characters separating it from related groups, on its internal diversity and variability, and
on its history and evolution.
(2) In the second approach, the accent is not put on the animal groups themselves or
on their peculiarities, but rather on the study of general structures, patterns and processes
irrespective of the groups where they occur. Disciplines such as embryology (study of
development) or ethology (study of behaviour), to take only two examples, tend to use the
animals as a “material”, devoid, in itself, of any particular interest, but allowing the
discovery of (more or less) general laws. These disciplines are not alternative to those of
the first kind, but rather orfhogonal to them, since a behavioural study of a bird, for
example, both belongs to the field of ethology and to that of ornithology.
G) Finally, the important multiplication of zoological methodologies and the growing
sophistication of many techniques has made necessary the development of “disciplines”
such as histology or karyology, which do not correspond in fact to conceptual fields, but
to technical ones. Although for practical reasons of information inflation these “disci-
plines” have their own specialists, teachings, journals, they lack specific problems and are
only at the service of the disciplines of the first two categories.
Whereas disciplines of the second kind described above tend to be dominant in current
zoology, it should be clear that those of the first one are to be firmly defended. They allow
insights into the evolutionary biology of organisms and prevent zoology from becoming
purely reductionist. This need is recognized by many zoologists. However, even acknowl-
edgement of the need leaves the question of how many different ‘‘systematic” zoological
disciplines should be distinguished. In this respect, there is the question rarely addressed
until now, whether there should be a single zoological discipline, “herpetology”, for both
reptiles and amphibians, or two disciplines, “herpetology” for reptiles and “batrachology”
for amphibians. In this paper 1 will address the justification of the latter distinction.
AMPHIBIANS AND REPTILES
Amphibians and reptiles have not always been recognized as two distinct groups of
the same hierarchical rank (class) within the taxinomic system.
LINNÉ (1758) did not recognize these two groups as classes. He recognized a class
Amphibia, with three orders, each of which contained several genera: Reptiles (Testudo,
Draco, Lacerta and Rana), Serpentes (Crotalus, Boa, Coluber, Anguis, Amphisbaena and
Caecilia) and Nantes (Petromyzon, Raja, Squalus, Chimaera, Lophius and Acipenser). In
the light of our current knowledge, these orders and genera are highly heterogeneous, and
the Amphibia of LINNÉ are an assemblage of reptiles, amphibians and of various groups
of “fishes”. Later, LINNÉ (1767) recognized a fourth order of Amphibia, Meantes, for the
single species Siren lacertina (see Dugois, 1991).
LAURENTI (1768) recognized a class Reptilium, with three orders: Salientia (Pipa,
Source : MNHN, Paris
Dusois 3
Bufo, Rana, Hyla and part of Proteus!), Gradientia (part of Proteus!, Triton, Salamandra,
Caudiverbera, Gekko, Chamaeleo, Iguana, Basiliscus, Draco, Cordylus, Crocodylus, Scincus,
Stellio and Seps) and Serpentia (Chalcides, Caecilia, Amphisbaena, Anguis, Natrix,
Cerastes, Coronella, Boa, Dipsas, Naja, Caudisona, Coluber, Vipera, Cobra, Aspis, Con-
strictor and Laticauda). As can be seen from this list of genera, while his Salientia
contained only amphibians, both his Gradientia and his Serpentia were a mixture of am-
phibians and reptiles.
It is only in 1799 when Alexandre BRONGNIART (in a paper first published, in two
parts, in 1800; see Dupois, 1984: 10) presented to the French Academy of Sciences the first
classification separating, at the ordinal level, the amphibians (under the name Batraciens)
from the other “reptiles” (maintained in three distinct orders: Chéloniens, Sauriens and
Ophidiens). BRONGNIART's Batraciens contained both the anurans and the urodelans, but
not the gymnophiones (then all classified under the generic name Caecilia), which this
author considered to be insufficiently known to be properly given a place in his system.
DumékiL (1808: 317) was the first author to point to the high similarity of Caecilia
with the batrachians, and his student OPPEL (1810: 409) was the first to clearly place this
genus in the order Batracii, which he still considered part of the class Reptilia.
Another student of DUMÉRIL, [DUCROTAY] DE BLAINVILLE (1816 a-b, 1818), was the
first author to give the amphibians (including Caecilia) and the reptiles the same rank in
classification, since he considered these groups to be either two subclasses (Ornithoïdes and
Ictyoïdes) of the class Reptiles, or two independent classes (Squammifères and Nudipel-
lifères). He did not choose between these two possibilities in his 1816 a-b and 1818 works,
but he did so in his 1822 book, where he was the first author to clearly recognize a class
Reptiles and a class Amphibiens. MERREM (1820) also recognized these two classes, but
under the names Pholidota and Batrachia (Amphibia s. str.). GRAY (1825), in a famous
paper, also distinguished a class Reptilia and a class Amphibia (including Caecilia). Since
then, except for a few exceptions in the early years, all authors have adopted this
classification, which is still in use today, at least for living forms (some difficulties arise for
assigning some fossil forms, but these need not be discussed here).
It is therefore more than 150 years since the amphibians and reptiles were last
considered a single group of vertebrates. On the other hand, during the same period, the
study of both kinds of animals has been referred to a single discipline of zoology, that of
herpetology, and only recently has this been challenged. It is therefore justified to look for
the reasons of this long period of stability.
L. LAURENTT (1768) work provides an extraordinary example of non truly hierarchical classification, which
has been overlooked by most authors until now: his genus Proteus straddles his two orders Salientia and
Gradientia, with one species (P. raninus) in the former, and two (P. tritonius, P. anguinus) in the latter. The
nomenclatural status of the generic name Proteus was only fixed by STENEGERS (1936) subsequent
designation of P. anguinus as its type species, a fact which was ignorcd in Frosr's (1985) checklist (see
Dusois, 1987 b).
Source : MNHN, Paris
4 ALYTES 9 (1)
THE HISTORICAL REASONS FOR THE LONG MAINTENANCE
OF HERPETOLOGY AS A SINGLE DISCIPLINE
In my opinion, the primary reason for the long maintenance of herpetology as a single
discipline is to be found in both the relatively low number of species of amphibians and
reptiles, and in the low level of interest long given, even by scientists themselves, to these
animals. Furthermore, amphibians and reptiles are superficially very similar, which
explains that they were first placed in a single group, and once a historical tradition has
been well entrenched it is difficult to change.
In 1985, the number of recognized species was fewer than 3500 amphibians and 6000
reptiles (Dugois, 1988: 62), thus less than birds (more than 9000) and “fishes”’ (more than
21000), and only comparable to the number of known species of mammals (more than
4000). Besides, most species of amphibians and reptiles have little or no direct economic
interest or value, in contrast to fishes, birds and mammals. Amphibians and reptiles have
long been considered “inferior” vertebrates, of much less interest than mammals, which
are “closer to man”, “more evolved” and more useful for medical and other applied
reasons.
As a result, the number of scientists studying amphibians and reptiles has long been
very low, with few positions available in academic or private institutions for their study.
In many museums, a single person is in charge of the collections of both groups (and
sometimes also of others) and has to deal with scientific problems pertaining to both.
As a consequence of the few specialists working on amphibians and reptiles, the
number of scientific publications dealing with these animals has remained relatively low as
well, and the knowledge of these groups has lingered far behind that of the other groups
of vertebrates. Furthermore, the (relatively) few specialists on these animals have tended
to group themselves in learned societies devoted to the study of both groups, and which
have started, one after another, the publication of scientific journals also dealing with both
groups (and sometimes also of others). Whereas the groups amphibians and reptiles have
clearly been considered distinct since the beginning of the XIXth century, the discipline
“herpetology”, dealing with both amphibians and reptiles, has become established as a
“natural” discipline of zoology.
SOME TERMINOLOGICAL PROBLEMS
The name herpetology was coined by KLEIN (1755), under the form herpetologia, for
the branch of zoology dedicated to the study of snakes and serpentiform animals. This
term is derived from the Greek épretév, meaning, according to the authors, either reptile
or snake. It was used again by BONNATERRE (1789), under the form erpétologie, for the
study of ‘“snakes and reptiles” (the latter including the amphibians), by RAFINESQUE[-
SCHMALTZ] (1814 a: 47, 1815: 39, erpétologie; 1814 b-c-d, erpetologia) and a few other
authors of this period, but it became widely used only with the publication of DUMÉRIL &
Source : MNHN, Paris
DuBois s)
BiBRON [& DumÉRiLJ's Erpétologie Générale (1834-1854). The spelling starting with an h,
which had first been introduced by KLEIN (1755) but had then been abandoned, was
reintroduced by English-speaking authors such as HOLBROOK (1842), and has since then
won general acceptance.
Although most authors until now have referred the study of both amphibians and
reptiles to a single discipline “herpetology”, there were some exceptions, even as far back
as more than one century ago. For example, STEINDACHNER clearly distinguished between
herpetological (STEINDACHNER, 1867, 1870, 1891, 1895, 1901 a-b, 1907) and barrachological
studies (STEINDACHNER, 1864 a-b, 1882). The term batrachology is derived from the name
Batrachia, a latinization (first used by Ross & MACARTNEY, 1802: tabl. III) of the French
name Batraciens, created by BRONGNIART (1800 a: 82) for the order including all recent
amphibians. BRONGNIART (1800 a) may have based his new name either on the Latin name
Batrachi, proposed by BaTscH (1788: 437) for a taxon of the rank family, or directly on
the Greek name GBérpxyos, meaning frog, which is also the root of BATSCH’s name (see
Dusois, 1984).
Another term, that of amphibiology, has been used incidentally by a few authors, both
in the XIXth century (e.g. RAFINESQUE, 1840; BONAPARTE, 1845, 1850, 1852 a-b) and in the
XXth century (e.g. TAyLOR, 1947). This name is based on the name Amphibia, derived
from the Greek name äupi6toc (“which lives in two elements, on the ground and in
water”). The name Amphibia was the name given by LINNÉ to one of his classes of
vertebrates, and which has been retained by the subsequent authors for the class
containing the anurans, urodelans and gymnophiones.
Dusois (1984) proposed to stabilize the use of the names Amphibia and Batrachia, the
first one being retained for the class as a whole, and the second one for the subclass
including all living amphibians. For the latter, the name Lissamphibia (created by
HAECKEL, 1866) has also been used by a few authors (following ROMER, 1966), but the
name Batrachia has been used much more and is universally known, so that it should be
retained (see Dugois, 1984). If this is done, the use of the term batrachology is warranted
for all studies dealing with all amphibians belonging to the three living orders of the class
Amphibia (not only anurans). The name amphibiology, on the other hand, would be the
correct term for the field covering the study of all amphibians, including all fossil groups.
The creation of the journal Alytes in Paris in 1982 led to a wider usage of the terms
batrachology, batrachologist and batrachological. This runs counter to the direction
described above. Let us then examine the reasons for such a change.
THE NEED OF BATRACHOLOGY
The major reason for recognizing batrachology as a distinct discipline is not a simple
demand for intellectual rigour and elegance, but the need of a better efficiency in research
and conservation. Specialization permits a better communication among scientists
studying these animals and among those interested in their conservation and in that of
their environment.
Source : MNHN, Paris
6 ALYTES 9 (1)
Table I. — Number of papers dealing with the five major groups of Vertebrates listed in
the Zoological Record from 1953 to 1987.
Year Pisces Amphibia Reptilia Aves Mammalia
1953-57 5775 2717 3087 10903 8595
1958-62 8752 4719 4317 11309 11474
1963-67 10561 6493 5838 18728 25859
1968-72 22214 6720 6986 22514 30681
1973-77 24567 5092 8540 35338 27883
1978-82 32112 6110 12147 42542 36570
1983-87 38673 7397 12440 49314 46390
A first remark of some relevance is that the number of papers dealing with
amphibians is much lower than those for the other four major groups of vertebrates (see
Table I and fig. 1). However, relative progression of scientific research dealing with
amphibians has been very strong in the recent years, similar to those for the other
vertebrates (see Table II and fig. 2). The current increase in the number of species of
amphibians described yearly in the world is still very strong: its curve is still far from
reaching the plateau characteristic of such sigmoidal curves (STEYSKAL, 1965), which
means that there remains, in amphibians, a very high number of species to describe and
of systematic problems to solve (Dugois, 1977 b). The same is true in all other domains
of the biology and evolution of these animals, where our knowledge is still very
incomplete. Therefore amphibians, which have long been considered of little interest and
importance, are attracting more and more attention. As such, their study should be
highlighted by the recognition of a specific discipline devoted to it.
That living amphibians are monophyletic now seems to be admitted by all authors
(RAGE & JANVIER, 1982; MILNER, 1988). This group is relatively small and homogeneous,
which makes it possible for a single researcher or team to have a rather complete and general
approach of the knowledge accumulated on these animals in any given field of research (Du-
BOIS, 1977 b). Actually, comparative studies in various fields of research (morphology, ana-
tomy, phylogeny, genetics, biochemistry, physiology, ethology, ecology, etc.), are much
more effective, meaningful and instructive within a homogeneous group. But besides this set
of reasons, which also apply to other “systematic” disciplines of biology as defined above,
the recognition of batrachology as a discrete discipline is also strongly supported by other
arguments, which rely on the unique properties of amphibians among vertebrates.
Amphibians share indeed many strange peculiarities lacking in other vertebrates and
which make this group very special. Let us just stress some of them.
Amphibians, as their name indicates, usually go through a double life, with a larval
stage separated from a post-larval stage by a metamorphosis. This has made the
amphibians crucial for the study of development, which is true from the beginnings of
embryology as a scientific discipline. From the XVIIIth century, embryologists have
studied amphibian embryonal and larval development, and noted their peculiarities when
contrasted with other vertebrates. Physiologists have long been interested in amphibian
Source : MNHN, Paris
DuBois 7
Table II. — Relative increase in the number of papers dealing with the five major groups
of Vertebrates listed in the Zoological Record from 1953 to 1987 (measured as the
ratio to the number of papers listed for the period 1953-57, the latter being given the
value 100). (Based on the data in Table I).
Year Pisces Amphibia Reptilia Aves Mammalia
1958-62 ETES 170 140 104 133
1963-67 183 234 189 172 301
1968-72 385 242 226 206 357
1973-77 425 183 277 324 324
1978-82 556 220 393 390 425
1983-87 670 266 403 452 540
metamorphosis, which has no counterpart in other tetrapods, and in its anomalies
(neoteny, paedogenesis, etc.).
Particularly relevant to the present discussion is the observation that, of the very large
number of papers dealing with amphibian development and metamorphosis, and with va-
rious kinds of aneuchrony (Dugois, 1987 a) in these animals, published in this century, only
a very few appeared in “herpetological” journals. The reason is simple to understand: for
developmental biologists, there is little relevance in a “discipline” associating the amphi-
bians with the reptiles. If embryologists were to associate the reptiles with another animal
group, no doubt it would be the birds, and, if amphibians had by all means to be grouped
with other animals, the least bad choice would be “fishes”. This is certainly one of the rea-
sons, although not the only one, why embryologists and physiologists have tended to publish
their works on amphibian development in journals of general zoology, of experimental z00-
logy or of developmental biology, rather than in “herpetological” ones (another reason for
this is clearly the fact that developmental biologists tend to believe that they are studying
general phenomena that cross major taxa). This tendency has been disastrous with respect to
the synthetic appraisal of amphibian biology as a whole: most “herpetologists” who have
dealt with the general features of amphibian biology have ignored, or grossly under-
exploited, the literature dealing with the biology of development of these animals.
It is very striking for example to realize that the classic and historical papers of
embryologists of amphibians as important as F. BALTZER, E. BATAILLON, L. BOUNOURE,
J. BRACHET, R. BRIGGS, A. DALCQ, G. FANKHAUSER, M. FISCHBERG, L. GALLIEN, E.
Hapor\, G. & O. HERTWIG, J. HOLTFRETER, R. R. HUMPHREY, T. J. KING, J. ROSTAND,
W. Roux, H. SPEMANN or E. WITsCHI do not appear in the bibliography of an important
recent treatise on the biology of amphibians. Similarly, it cannot be denied that submission
of papers dealing with the developmental biology of amphibians to traditional “herpeto-
logical” journals often leads to very feeble reviews, including irrelevant comments or
suggestions. Many of the editors of such journals have few contacts with the world of
developmental biology and little knowledge in this discipline. Developmental biology of
amphibians is not only absent, or almost so, from “herpetological” journals, but also from
“herpetological” meetings, congresses and courses.
Source : MNHN, Paris
8 ALYTES 9 (1)
N
4
50000
Pisces
Amphibia —
Reptilia —
Aves -
Mammalia —..—
40000
30000 +
20000 -|
10000 -|
0 Year_,
TT T T FLE EE U
1953-57 58-62 63-67 68-72 73-77 78-82 83-87
Fig. 1. — Number (N) of papers dealing with the five major groups of Vertebrates listed in the
Zoological Record from 1953 to 1987. (From the data in Table I).
Source : MNHN, Paris
Dusois 9
RI
Pisces
Amphibia ————
Reptilia
Aves
600! Mammalia
500
400+ où
300+
»
2004
100. —- T —- T —er,
do53Ës7 OSp62 ©6367 GH72 711 182 8387
Fig. 2. — Relative increase (RI) in the number of papers dealing with the five major groups of
Vertebrates listed in the Zoological Record from 1953 to 1987 (measured as the ratio to the
number of papers listed for the period 1953-57, the latter being given the value 100). (From the
data in Table II).
Source : MNHN, Paris
10 ALYTES 9 (1)
If the biology of amphibians is to become a unified field, this situation must change
drastically. The association, in a single journal, of papers dealing with the developmental
biology of amphibians and of the other aspects of the biology of these animals, would
certainly be extremely profitable to all amphibian biologists, whatever their specialization.
The existence of a larval stage in amphibians is not only interesting for embryologists.
Amphibian larvae have long been ignored by biologists, both as animals in themselves and
as parts of aquatic ecosystems. Recently however, more and more attention has been given
to the fact that tadpoles are full organisms that have their own morphology, anatomy,
physiology and behaviour, and that the two stages vital cycle of amphibians poses peculiar
problems to the study of their ecology. Amphibian larvae represent an important fraction
of the total animal biomass in some aquatic ecosystems, and play a significant rôle in the
filtration of these waters, possibly comparable to that of earthworms in the ground. Until
now, such factors have been underestimated by limnologists and other ecologists, possibly
because tadpoles, being “only” larvae, tend rarely to be considered as significant
components of ecosystems: in temperate countries (where many biologists live), tadpoles
of a number of species only occur seasonally in aquatic ecosystems.
The peculiarities of the life cycle and of the ecology of amphibians entail other
consequences, especially as concerns the conservation of the populations and species of
these animals. Because most species of amphibians breed in fresh water, the disappearance
of lakes, ponds, marshes, torrents, streams, or their modification (through pollution or
through other changes, usually caused by man: see e.g. DuBois, 1980), is usually a major
threat to amphibians. Some of these facts have not been given the proper attention
previously. For example, whereas the effects of the pollution of continental waters by acid
rain and other sources are being more and more studied, little interest has been devoted
to the effect of the recent important increase of the introduction of fishes into closed
continental waters, particularly of salmonids into mountain lakes, on amphibian
populations and species. Amphibians may also be threatened by other factors (collecting
for consumption of frog legs, for teaching and research; modification and pollution of
terrestrial, not only aquatic, ecosystems; introduction of alien species into ecosystems, and
even displacement of amphibians, leading to genetic or faunistic pollution) (see e.g.:
Dusois, 1976, 1977 a, 1983a-b, 1985; Dupois & MorÈRE, 1980). Altogether, the worldwide
situation of amphibians is extremely worrying. It is more than time for specialists of these
animals to assemble the information they have accumulated, and to work together to try
and find solutions to the acute problems amphibians face, to propose actions and measures
to governments and other organizations and agencies, and to see that these are carried out.
Consequently, recognition of batrachology as a discrete discipline, besides its purely
scientific reasons, has the most important justification of greatly increasing the efficiency
of their conservation. This aim is certainly worthwhile, indeed critical, if some amphibians
are to survive into the next century.
Source : MNHN, Paris
Dugois Il
FIRST STEPS TOWARDS THE RECOGNITION OF BATRACHOLOGY
The idea of the recognition of batrachology has been “in the air” for a long time, and
1 can remember having heard or supported it in conversations with colleagues more than .
20 years ago. However, the first official act was the creation (in February 1982 at the Paris
Museum) of Alytes as the first journal in the world to be specifically devoted to the biology
of amphibians. This was followed in November 1982 by the foundation of the Société
Batrachologique de France (S.B.F.), which accepted the task of publishing A/ytes, and
later, in November 1988, by the foundation of the International Society for the Study and
Conservation of Amphibians (ISSCA), to which the journal was again transferred.
The statutory aims of ISSCA are “to contribute on a world scale:
— to the study and knowledge of amphibians (batrachology);
— to the conservation of amphibians and to that of their environment;
— to the establishment, reinforcement and facilitation of bonds among batracholo-
gists;
— to the promotion of batrachology as an independent scientific discipline.” (Article
2.1 of the Statutes of ISSCA).
However the recognition of batrachology as a distinct scientific discipline cannot be
the work of a single society and a single journal. It will become a fact only if this idea is
supported by multiple specialists of amphibians, as well as of specialists of reptiles. The use
of the terms “batrachology” and “batrachologist” in the scientific literature, and,
complementarily, that of the terms “herpetology” and “herpetologist” in a restrictive
sense, referring only to the study of reptiles, will help achieve this recognition.
Organization of meetings dealing only with batrachological or herpetological topics will
also play a positive rôle in this direction.
Many biologists still are working on both groups of animals and, in all events,
specialists on these two groups will continue to collaborate for many kinds of studies
(particularly in the fields of ecology and faunistics). However, recognition of two distinct
fields of research is likely to help rather than hinder this collaboration. It is also clear that
the collaboration is likely to be fruitful between batrachologists and specialists of still other
groups, in particular ichthyologists, limnologists, or all other biologists working on animal
groups in which larvae and metamorphoses do occur: possibly, in the future, a new
biological discipline, “larvology”, could slowly emerge. But this is another story.
RÉSUMÉ
Bien que les Amphibiens et les Reptiles soient considérés comme deux classes
distinctes de Vertébrés depuis plus de 150 ans, l'étude des deux groupes est encore
traditionnellement rapportée à une seule discipline scientifique, l’“herpétologie”. Il est ici
suggéré qu'il est désormais nécessaire, à la fois pour des raisons scientifiques et pour
Source : MNHN, Paris
12 ALYTES 9 (1)
pouvoir avoir une meilleure efficacité dans le domaine de la conservation, de reconnaître
deux disciplines scientifiques distinctes: l'“‘herpétologie” pour l'étude des Reptiles et la
“batrachologie” pour celle des Amphibiens. Les premiers pas déjà effectués dans cette
direction par certains zoologistes sont soulignés.
ACKNOWLEDGEMENTS
For their comments on previous versions of this paper, I am extremely thankful to Carl Gans,
Tim HALLIDAY, Raymond F. LAURENT, Hobart M. SMirH, Richard WASsSERSUG and an anonymous
reviewer. However, their agreement with parts or all of the ideas presented above is not implied.
T'also want to express my most sincere thanks to Anne-Marie VACHOT for collecting the data in
Table I, and to Dominique PAYEN for drawing the figures.
LITERATURE CITED
Batscu, À. J. G. C., 1788. — Bersuch einer Anleitung, zur KenniniB und Geschichte der Thiere und
Mineralien. Erster Theil. Jena, Akademischen Buchhandlung: + 1-528, pl. IV
BONAPARTE, C. L., 1845. — Specchio generale dei sistemi erpetologico ed anfibiologico. /n: Atti della
sesta riunione degli scienzati italiani, tenuta in Milano in Settembre del MDCCCXLIV. Milano,
Luigi di Giacomo Pirola: 376-378.
1850. — Conspectus systematum herpetologiae et amphibiologiae. Lugduni Batavorum, Brill: 1 pl.
1852 a. — Conspectus herpetologiac et amphibiologiae. Nuovi Ann. Sci. nat. Bologna, (3), 5: 89-96.
1852 b. — Conspectus herpetologiae et amphibiologiac. (Continuazione). Nuovi Ann. Sci. nat.,
Bologna, (3), 5: 477-480.
BONNATERRE, Abbé, 1789. — Tableau encyclopédique et méthodique des trois règnes de la nature.
Erpétologie. Paris, Panckoucke: i-xxviii + 1-70, pl. 1-7 + 1-6 + 1-12.
BRONGNIART, À. 1800 a. — Essai d'une classification naturelle des Reptiles. Première partie.
Etablissement des ordres. Bull. Sci. Soc. philom., 2: 81-82.
che 1800 b. — Essai d'une classification naturelle des Reptiles. Deuxième partie. Formation et
disposition des genres. Bull. Sci. Soc. philom., 2: 89-90.
DE BLAINVILLE, H., 1816 a. — Prodrome d’une nouvelle distribution systématique du règne animal.
Bull. Sci., Soc. philom. Paris, 1816: [113]-124.
E 1816 b. — Prodrome d'une nouvelle distribution systématique du rêgne animal. J. Phys. Chim.
His. nat. Arts, 83: 244-267.
_ 1818. — Vorläufige Anzcige einer neuen systematischen Eintheilung des Thierreichs. /sis von
Oken, 1818: 1365-1384.
Dusois, À., 1976. — A propos de la protection des Amphibiens et des Reptiles. Première partie: les
problèmes. Bull. Sect. paris. Soc. herp. Fr., 1: 13-22.
ne 1977 a. — A propos de la protection des Amphibiens et Reptiles. Deuxième partie: conclusions
et suggestions. Bull. Soc. herp. Fr., 1: 18-24.
en 1977 b. — Les problèmes de l'espèce chez les Amphibiens Anoures. Mém. Soc. zool. France, 39:
161-284.
-— 1980. — L'influence de l'homme sur la répartition des Amphibiens dans l'Himalaya central et
occidental. C. R. Soc. Biogéogr., 35: 155-178.
1983 a. — A propos de cuisses de Grenouille. Protection des Amphibiens, arrêtés ministériels,
projets d'élevage, gestion des populations naturelles, enquêtes de répartition, production,
importations et consommation: une équation difficile à résoudre. Les propositions de la Société
Batrachologique de France. Alpes, 2: 69-111.
1983 b. — Renforcements de populations et pollution génétique. C. r. Soc. Biogéogr., 59: 285-294.
1984. — La nomenclature supragénérique des Amphibiens Anoures. Mém. Mus. natn. Hist. nat.
(A), 131: 1-64.
Source : MNHN, Paris
DuBois 13
- 1985. — A nouveau sur les cuisses de Grenouilles. Circalytes, 1 (8): 1-21.
- 1987 a. — Necoteny and associated terms. A/ytes, 4: 122-130.
- 1987 b. — Living amphibians of the world: a first step towards a comprehensive checklist. A/ytes,
5: 99-149.
-— 1988. — The genus in zoology: a contribution to the theory of evolutionary systematics. Mém.
Mus. natn. Hist. nat., (A), 140: 1-123.
rl 1991. — Miscellanea nomenclatorica batrachologica (XVIII). Alytes, 8: 107-120.
Dusois, À. & More, J.-J., 1980. — Pollution génétique et pollution culturelle. C. r. Soc. Biogéogr..
56: 5-22.
Ducroray DE BLAINVILLE, H. M., 1822. — De l'organisation des animaux, ou Principes d'anatomie
comparée. Tome premier, contenant la Morphologie et l'Aistésologie. Paris, Levrault: [i-üii] +
i-lix + 1-574, 10 tabl. h. 1.
DumériL, A.-M.-C. & BiBRON, G., 1834. — Erpétologie générale ou histoire naturelle complète des
Reptiles. Tome 1. Paris, Roret: i-xxiv + 1-447.
me 1835. — Erpétologie générale ou histoire naturelle complète des Reptiles. Tome 2. Paris, Roret: i-iv
+ 1-680.
1836. — Erpétologie générale ou histoire naturelle complète des Reptiles. Tome 3. Paris, Roret: i-iv
+ 1-518.
ue 1837. — Erpétologie générale ou histoire naturelle complète des Reptiles. Tome 4. Paris, Roret:
+ 1-572.
1839. — Erpétologie générale ou histoire naturelle complète des Reptiles. Tome 5. Paris, Roret:
i-vii + 1-855.
— 1841. — Erpétologie générale ou histoire naturelle complète des Reptiles. Tome 8. Paris, Roret: i-vii
+ 1-792.
_——— 1844. — Erpétologie générale ou histoire naturelle complète des Reptiles. Tome 6. Paris, Roret: i-xii
+ 1-610.
DumériL, A.-M.-C., BIBRON, G. & DUMÉRIL, A., 1854 a. — Erpétologie générale ou histoire naturelle
complète des Reptiles. Tome 7 (1). Paris, Roret: i-vii + [i-iv] + i-xvi + 1-780.
—— 1854 b. — Erpétologie générale ou histoire naturelle complète des Reptiles. Tome 7 (2). Paris,
+ 781-1536.
— 1854 c. — Erpétologie générale ou histoire naturelle complète des Reptiles. Tome 9. Paris, Roret:
i-xx + 1-440.
Dumériz, C., 1808. — Mémoire sur la division des Reptiles Batraciens en deux familles naturelles.
Mag. encycl., J. Sci. Lett. Arts, 1808 (2): 308-329.
FROST, D. R. (ed.), 1985. — Amphibian species of the world. Lawrence, Allen Press & Assoc. Syst.
Coll: [iv] + iv + 1-732.
Gray, J. E., 1825. — A synopsis of the genera of Reptiles and Amphibia, with a description of some
new species. Ann. Philos., (2), 10: 193-217.
HaëckeL, E., 1866. — Gencrelle Morphologie der Organismen. Zweïter Band. Allgemeine Entwicke-
lungsgeschichte der Organismen. Berlin, Georg Kramer: i-clx + 1-462, pl. I-VIIL.
HOLBROOK, J. E., 1842. — North American herpetology; or, a description of the reptiles inhabiting the
United States. Philadelphia, J. Dobson: vol. 1: i-xv + 17-152, pl. 1-24; vol. 2: i-vi + 9-142, pl.
1-20; vol. 3: i-ii + 3-128, pl. 1-30; vol. 4: + 7-138, pl. 1-35; vol. 5: ivi + 5-118, pl. 1-38.
KL, J. TL. 1755. — Tentamen herpetologiae. Leidae & Gottingae, Eliam Luzac: i-iv + 1-72, pl. ILII.
LAURENT, J. N., 1768. — Specimen medicum, exhibens synopsin Reptilium emendatam cum
circa venena et antidota Reptilium austriacorum. Viennae, Joan. Thom. Nob. de
Tratinern: iii + 1-215, pl. I-V.
Linné, C. A, 1758. — Systema Naturae per regna tria naturae, secundum classes, ordines, genera,
species, cum characteribus, differentiüs, synonymis, locus. Editio decima, reformata. Tomus L.
Holmiac: i-iv + 1-824.
ema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum
characteribus, differentiüs, synonymis, locis. Editio duodecima, reformata. Tomus 1, Pars II.
Holmiae, Laurentii Salvii: 533-1327 + Li-xxxvii].
MERREM, B., 1820. — Versuch eines Systems der Amphibien. Marburg, Krieger: i-vii + [viïi-xv] x 2
+ [1-188] x 2 + 189-191, 1 pl.
MILNER, À. R., 1988, — The relationships and origin of living amphibians. /n: M. J. BENTON (ed.),
Source : MNHN, Paris
14 ALYTES 9 (1)
The phylogeny and classification of the tetrapods, vol. 1, Amphibians, reptiles, birds, Oxford,
Clarendon Press, The Systematics Association Special Volume 35A, i-x + 1-377: 59-102.
OPrel, M., 1810. — Second mémoire sur la classification des Reptiles. Ann. Mus. Hist. nat., 16:
394-418.
RAFINESQUE, C. S., 1815. — Analyse de la nature ou Tableau de l'univers et des corps organisés.
Palerme, Barravecchia: 1-224, 1 pl.
me 1840. — The good book. — Number I. Amenities of nature, or annals of historical and natural
sciences. Philadelphia, Printed for the Eleutherium of Knowledge: 1-84.
RAFINESQUE-SCHMALTZ, C. S., 1814 a. — Principes fondamentaux de somiologie ou les loix [sic] de la
nomenclature et de la cl ‘ation de l'empire organique ou des animaux et des végétaux,
contenant les règles essentielles de l'art de leur imposer des noms immuables et de les classer
méthodiquement. Palerme, Abate: 1-52.
ee 1814 b. — O quadro del metodo sinottico di somiologia. Specchio Sci., Giorn. encicl. Sic
11-15.
1814 c. — Prodrono [sic] di Erpetologia Siciliana. Specchio Sci., Giorn. encicl. Sicilia, 2: 65-67.
1814 d. — Fine del Prodromo d'Erpetologia Siciliana. Specchio Sci., Giorn. encicl. Sicilia, 2:
102-104.
RAGE, J.-C. & JANVIER, P., 1982. — Le problème de la monophylie des amphibiens actuels, à la
lumière des nouvelles données sur les affinités des tétrapodes. Géobios, Mém. spéc. 6: 65-83.
ROMER, A. S., 1966. — Vertebrate paleontology. Third edition. Chicago & London, The University
of Chicago Press: i-ix + 1-468.
Ross, W. & MACARTNEY, 1802. — Lectures on comparative anatomy. Translated
G. Cuvier. Vol. I. On the organs of motion. London, Longman & Re:
ia, 1:
from the French of
-x1 + 1-542, tables
I-IX.
STEINDACHNER, F., 1864 a. — Batrachologische Mittheilungen. Verhandl. zool.-bot. Ges. Wien, 14:
239-288, pl. IX-XVII
— 1864 b. — Zusätze und Berichtigungen zu den batrachologischen Mittheilungen. Verhandl.
sool.-bot. Ges. Wien, 14: 551-552.
- 1867. — Herpetologische Notizen. Sher. kaiserl. Akad. Wiss. Wien, 55: 263-273, pl. I-IV.
1870. — Herpetologische Notizen (I). Sber. kaiserl. Akad. Wiss. Wien, 62: 326-350, pl. I-VII.
1882. — Batrachologische Bciträge. Sber. kaiserl. Akad. Wiss. Wien, 85: 188-194, pl. I-III.
1891. — Ueber neue und seltene Lacertiden aus den herpetologischen Sammlungen des k. k.
näturhistorischen Hofmuseums. Ann. k. k. naturhistorischen Hofmuseums, 6: 371-378, pl.
XI-XIT.
2, 1895. — Bericht über Dr. Sturany's herpctologische Ausbeutc in der Umgebung der Plitvicer Scen
in Croatien. Ann. k. k. naturhistorischen Hofmuseums, 10, Notizen: 78-19
— 1901 a. — Expedition S. M. Schiff “Pola” in das Rothe Meer (nôrdliche und südliche Hälfte),
1895/96 und 1897/98. Zoologische Ergebnisse. XVII. Bericht über die herpetologischen
Aufsammlungen. Denkschrift. k. Akad. Wiss. Wien, Math.-Naturwiss. CI., 69: 325-335, pl. 1-IL.
es 1901 b. — Herpetologische und ichthyologische Ergebnisse ciner Reise nach Südamerika mit
einer Einlcitung von Therese Prinzessin von Baiern. Anziger k. Akad. Wiss. Wien, 18: 194-196.
ee 1907. — Herpetologische Notizen (II). Sber. kaiserl. Akad. Wiss. Wien, 116: 1-6, 1 pl.
SrENEGER, L., 1936. — Types of the Amphibian and Reptilian genera proposed by Laurenti in 1768.
Copeia, 1936: 133-141.
SrevskaL., G. C., 1965. — Trend curves of the rate of species description in zoology. Science, 149:
880-882.
Tayuor, E. H. 1947. — A bibliography of mexican amphibiology. Univ. Kansas Sci. Bull. 31:
543-580.
Corresponding editor: Pierre JOLY.
© ISSCA 1991
Source : MNHN, Paris
Alytes, 1991, 9 (1): 15-22. 15
Images d’Amphibiens camerounais.
IIL. Le comportement de garde des œufs
Jean-Louis AMIET
Université de Yaoundé,
Faculté des Sciences, Laboratoire de Zoologie,
B.P. 812, Yaoundé, Cameroun
The eggs are guarded by one of the parents in six genera of Cameroonian
Amurans. Seven photos illustrate this behaviour in the genera Petropedetes,
Alexteroon, Phrynodon, Nectophryne and Hemisus. In several, if not all, cases,
the hypothesis of a protection against predators does not seem to be
acceptable.
Sur 39 genres d’Anoures représentés au Cameroun, 9 comprennent des espèces qui
accordent des soins à leur descendance. Ceux-ci se ramènent à deux types de comporte-
ments parentaux : la surveillance des œufs et la construction de nids. Fait curieux, la
batrachofaune camerounaise — et plus généralement africaine — montre un “ vide
éthologique ” en ce qui concerne deux autres types de comportements plus ou moins
fréquents ailleurs: le transport des œufs et/ou des larves et les soins accordés aux têtards.
Les photos des figures 1 à 7 montrent des exemples de la garde des œufs. Elles
fourniront l’occasion d’une mise au point sur les 6 genres d'Anoures camerounais qui
pratiquent ce comportement (le cas des constructeurs de nid sera examiné dans un autre
article).
LE GENRE PETROPEDETES
La plupart des espèces de Perropedetes, comme l'indique leur nom générique, sont
rupicoles, au moins en période de reproduction. Les œufs sont déposés en plaques,
atteignant parfois une quinzaine de centimètres de plus grande dimension, sur des rochers
recouverts d’un très mince film d’eau, plus rarement sur un support végétal, base de tronc
d'arbre ou grande feuille. Les têtards, hygropétriques, broutent le revêtement de
micro-organismes tapissant les rochers.
Chez P. newtoni (Bocage, 1895), P. parkeri Amiet, 1973, et P. cameronensis Reichenow,
1874 j'ai pu constater que, /a nuit, il y a toujours, à proximité d’une plaque d'œufs, un mâle
qui se tient immobile et qui, apparemment, en assure la garde (fig. 1: P. newtoni).
Source : MNHN, Paris
16 ALYTES 9 (1)
Fig. 2. — Cette femelle d'Alexterodn obstetricans (AI, 1931) a été trouvée à proximité de sa ponte
et ramenée au laboratoire. En {errarium, elle est restée auprès de ses œufs, ou sur eux, jusqu'à
la sortie des têtards. Ototomo, I11-73.
Source : MNHN, Paris
AMIET
PARIS
4
Fig. 3. —
tade, les têtards, déjà
munis de bourgeons de pattes postérieures, s à se r. Kala, X-70.
Fig. 4. — Dans une lune grosse rac ace du sol, un mâle de Nectophryne
afra Buchholz & Pete appuyé sur ses membres antérieurs et aux deux tiers immergé,
brasse l'eau où a été déposée la ponte. L'orifice du gîte était masqué par un morceau de bois
tombé qui a
Source : MNHN, Paris
ALYTES 9 (1)
7
Un couple d'Hemisus guincensis Cope, 1865 vient de se former après une journée de pluie
dans les savanes d’Obala, au nord de Yaoundé. On remarquera que l’accouplement est lombaire,
ce qui doit faciliter les déplacements du couple dans le sol où sera creusée la chambre de ponte.
Obala, 3-I11-72
6. — Dans la paroi meuble d’un trou d'extraction de sable, un coup de pelle vient de mettre à
jour une femelle d'A. guincensis sur sa ponte. Minkama, 6-111-78
Fig. 7. — Oeufs d'Hemisus guineensis dans la chambre de ponte, après enlèvement de la femelle.
Minkama, 6-I11-78.
Source : MNHN, Paris
AMIET 19
Un mâle d’une autre espèce, P. johnstoni (Boulenger, 1887), dont les têtards sont
probablement terrestres, a été observé près d’une ponte dans la matinée mais je ne peux
pas dire si, chez les espèces précitées, les pontes sont surveillées aussi pendant la journée,
car l’approche de l’observateur peut déclencher la fuite du mâle avant même qu'il ait pu
être repéré.
Il est cependant probable que, chez les espèces rupicoles, les pontes ne soient gardées
que la nuit.
LE GENRE PHRYNODON
Jusqu'ici, ce genre ne comprend qu’une seule espèce nommée, P. sandersoni Parker,
1935, répandue dans la plaine littorale ainsi que sur le versant et le rebord ouest du Plateau
sud-camerounais, mais il existe aussi deux espèces orophiles non nommées sur les reliefs
de la Dorsale camerounaise. P. sandersoni n’est pas rare dans les collines de la région de
Yaoundé où il se localise dans les fonds de vallon en forêt de type primaire.
Dans un travail consacré à la biologie de cette espèce (AMIET, 1981), j'ai déjà relaté
comment la femelle monte chaque soir sur sa ponte, déposée sur une feuille à quelques
dizaines de centimètres (parfois jusqu’à 2 m) au-dessus de zones mouilleuses, et la “couve”
jusqu’au lendemain matin.
Ce comportement se manifeste pendant toute la période de développement des œufs,
soit une douzaine de jours. Les œufs, au nombre de 12 à 17, mesurent 2,3 mm de diamètre
et sont disposés sur une seule couche. La gangue gélatineuse qui entoure chaque œuf est
d’abord peu épaisse mais elle va gonfler progressivement, en même temps que s’élargit la
cavité occupée par le jeune têtard. De ce fait, la ponte finit par ressembler à une masse
mamelonnée atteignant 3 cm de plus grande dimension. L’attitude de la femelle est alors
assez comique car, même en écartant largement ses membres, elle n’arrive plus à recouvrir
complètement son encombrante progéniture (fig. 3).
Une femelle ne paraît pas capable de reconnaître sa propre ponte : elle peut, en
captivité, accepter une autre ponte que la sienne, même si elle n’est pas au même stade de
développement. En revanche, si on présente une ponte à une femelle non ‘“‘incubante”, elle
s’en désintéresse.
LE GENRE ALEXTEROON
Chez 4. obstetricans (Ah, 1931), espèce placée auparavant dans le genre Hyperolius,
les œufs sont pondus, au nombre d’une cinquantaine, sur une feuille surplombant le cours
d’une petite rivière, à au moins 1,5 m de la surface de l'eau (AMIET, 1974).
Il est assez paradoxal que chez cette espèce peu commune, difficile à capturer, le
Source : MNHN, Paris
20 ALYTES 9 (1)
comportement de garde des œufs soit connu depuis près de 90 ans. BRANDES &
SCHOENICHEN ont en effet publié en 1901 une photo (reproduite dans AHL, 1931) qui
représente une femelle surveillant ses œufs déposés sur une feuille.
J'ai pu refaire cette observation et constater que la femelle se tient pendant la journée
à proximité de sa ponte, sur laquelle elle se place durant la nuit. Je l’ai vue “ratisser” à
l'aide de ses membres postérieurs la surface de la ponte: il est possible, mais non certain,
que ce comportement ait pour effet d’aider les têtards à sortir de la gelée qui les entoure!.
LE GENRE NECTOPHRYNE
La ponte et le développement de N. afra Buchholz & Peters, 1875 ont été décrits par
SCHEEL (1970). J'ai pu refaire les mêmes observations sur cette espèce ainsi que sur N.
batesi Boulenger, 1913 et découvrir de plus quels sites de ponte elles utilisent dans la
nature.
Les Nectophryne pondent leurs œufs, réunis en cordon comme chez les autres
Bufonidae mais entièrement blancs et assez volumineux, dans des petites cavités d’arbre
contenant de l’eau. Ces cavités n’occupent pas toujours une situation élevée : celle qui a
permis de réaliser la photo de la figure 4 se trouvait dans une racine affleurant à la surface
du sol. Il est possible que d’autres “aquariums naturels” soient utilisés, en particulier les
bases de pétiole de Macabo, où peut s’accumuler une quantité d’eau suffisante pour le
développement des minuscules têtards de cette espèce, mais j'ai prospecté en vain ce type
de biotope. En revanche, on m'a apporté une ponte trouvée dans une boîte de conserve
abandonnée sur le sol où s'était accumulé un peu d’eau!
La surveillance des œufs est assurée par le mâle. Comme l’a montré SCHEEL (1970),
la garde est permanente et, de plus, le mâle, en s'appuyant sur ses mains aux parois de la
cavité, “pédale” dans l’eau avec ses pattes postérieures, ce qui a probablement pour effet
d’aérer la ponte.
LE GENRE TRICHOBATRACHUS
PERRET (1966) rapporte qu'il a trouvé un mâle de grenouille poilue, T. robustus
Boulenger, 1900, “immergé à environ 60 cm de profondeur sous un fort courant d’eau dans
un trou rocheux alors qu'il semblait protéger une masse d'œufs avec des embryons déjà
bien avancés”.
1. Le nom donné par Au (1931) à cette espèce doit s'inspirer d'une observation similaire rapportée par
Branpts & SCHOENICHEN (1901), dont je n'ai pas eu l'article en mains et que je cie ici d'après PERRET (1988).
e d'autre part que le nom générique Alexteroon, dont il est l'auteur, est dérivé du grec
” = œuf. Peu d'espèces doivent avoir un nom générique et un nom spécifique
Source : MNHN, Paris
AMIET 21
LE GENRE HEMISUS
Remarquablement adapté à la vie fouisseuse, ce genre est représenté au Cameroun par
deux espèces savanicoles, H. marmoratus sudanensis Steindachner, 1863 et H. guineensis
Cope, 1865. Grâce à WAGER (1965), on sait que les Hemisus pondent leurs œufs dans une
chambre creusée dans la berge d’une mare et que la femelle reste sur sa ponte. Les têtards,
après l’éclosion, rejoignent le milieu aquatique grâce à une galerie de sortie forée par leur
mère.
J'ai eu la chance de pouvoir observer une femelle d’H. guineensis juchée sur ses œufs,
dans une cavité de la grosseur du poing à peu près, creusée dans la paroi d’un trou d’extrac-
tion de sable. Les clichés des figures 5 à 7 montrent cette femelle photographiée juste après
que la chambre de ponte eût été éventrée (fig. 6), ainsi que la masse d'œufs sur laquelle elle
était installée (fig. 7).
Il est difficile de se représenter comment la chambre de ponte est creusée car la femelle,
nécessairement, n’y arrive pas seule mais portant un mâle solidement agrippé à son arrière-
train (l’accouplement se fait en effet à la surface du sol, comme le montre la photo 5). D'au-
tres points restent à élucider : le mâle, après l’accouplement, quitte-t-il la chambre de ponte
par la galerie empruntée auparavant par le couple ou en fore-t-il une autre? La voie suivie par
les têtards n'est-elle pas la galerie de sortie du mâle plutôt qu'une galerie creusée par la
femelle?
DISCUSSION
Dans ce qui précède, les termes de “garde” ou de “surveillance” des œufs ont été
utilisés faute de mieux. Ils ont l'inconvénient de laisser supposer que le parent concerné
puisse exercer une protection de la ponte contre d'éventuels prédateurs ou agresseurs. Cette
fonction, en fait, est très improbable pour les raisons suivantes.
— Bien que DUELLMAN & TRUEB (1986) mentionnent divers animaux susceptibles de se
nourrir de pontes d’Anoures (Opilions, Araignées, Crabes et Serpents) je n'ai pu déceler jus-
qu'ici de cas semblables au Cameroun, où j'ai pourtant effectué près de 1 200 sorties de nuit? .
— Même si de tels prédateurs existent, on ne voit pas comment de petits Batraciens,
eux-mêmes sans défense, pourraient protéger efficacement leur ponte contre un agresseur.
Chez Phrynodon, et probablement Petropedetes, les pontes restent d’ailleurs abandonnées à
elles-mêmes pendant la journée.
— Beaucoup d’autres Anoures de la faune camerounaise ont des pontes aériennes très
apparentes (“pontes suspendues”) auxquelles ils n’assurent aucune protection.
— La femelle, en se plaçant sur ses œufs comme elle le fait chez Phrynodon et Alexte-
roon, doit attirer l'attention des prédateurs mieux que ne le fait la ponte seule.
En fait, la présence d’un des parents sur ou à proximité de la ponte peut avoir une fonc-
tion tout autre que la protection.
2. Au Gabon, les pontes aériennes de Chiromantis rufescens, déposées dans une masse d'écume battue,
peuvent être pillées par un petit oiseau, Nigrita bicolor, ainsi que l'a montré Brosser (1976). Cela se produit
aussi au Cameroun, mais très rarement.
Source : MNHN, Paris
22 ALYTES 9 (1)
— Chez Phrynodon, le rôle de la femelle semble être d’humecter les œufs, non pas pour
les protéger de la dessiccation, peu à craindre là où vit l'espèce, mais pour entraîner le gonfle-
ment de la gangue gélatineuse qui les entoure. J’ai constaté en effet (AMIET, 1981) que, en
l'absence de femelle, les pontes fraîchement déposées montrent un début de développement
des œufs mais que leur gangue reste mince: les embryons, comprimés dans leur enveloppe,
dépérissent alors. Les pontes récoltées dans la nature à un stade plus avancé de gonflement
ont une évolution normale, même en l'absence de femelle.
— En brassant l’eau avec ses pattes postérieures, le mâle de Nectophryne contribue pro-
bablement à aérer la ponte. Même si ce comportement a en réalité une autre fonction, il est
difficile d'imaginer qu'il soit destiné à éloigner d'éventuels agresseurs.
— La présence de la femelle Hemisus dans la chambre de ponte (en elle-même protec-
tion efficace contre les prédateurs) peut s'expliquer par la nécessité de forer une voie d’accès à
l’eau pour les têtards.
Ainsi, l'humectation des œufs chez Phrynodon, leur aération chez Nectophryne, le forage
de la galerie de sortie chez Hemisus suffisent à justifier la présence d’un des parents. La ques-
tion reste posée pour les Petropedetes, Alexteroon et Trichobatrachus mais, là encore, une
fonction de protection contre les prédateurs semble peu plausible.
RÉSUMÉ
La ponte est gardée par l’un des parents dans six genres d’Anoures camerounais. Sept
photos illustrent ce comportement chez les genres Petropedetes, Alexteroon, Phrynodon,
Nectophryne et Hemisus. Dans plusieurs cas, sinon dans tous, l'hypothèse d’une protection
contre les prédateurs ne paraît pas pouvoir être retenue.
RÉFÉRENCES BIBLIOGRAPHIQUES
Au, E. 1931. — Amphibia, Anura, III, Polypedatidae. Das Tierreich, 55: 1-45.
Amiër, J.-L. 1974. — Le têtard d'Hyperolius obstetricans Ahl (Amphibien Anourc). Bull. L.F.A.N.,
(A), 36 (4): 973-981.
— 1981. — Écologie, éthologie et développement de Phrynodon sandersoni Parker, 1939 (Amphibia,
Anura, Ranidae). Amphibia-Reptilia, 2: 1-13.
BRANDES, G. & SCHOENICHEN, W., 1901. — Die Brutplege der schwanzlosen Batrachier. 4bh.
h. Ges. Halle, 22: 394-461 (in PERRET, 1988).
sr, A, 1976. — La vie dans la forêt équatoriale. Paris, Nathan: 1-26.
DUELLMAN, W.E. & TRuën, L., 1986. — Biology of Amphibians. New York, McGraw Hill: ixix +
1-670.
PERRET, J.-L. 1966. — Les Amphibiens du Cameroun. Zoo!. Jb. Syst., 8: 289-464.
1988. — Sur quelques genres d'Hyperoliidae (Anura) restés en question. Bull. Soc. neuchat. Sc.
nat., LU: 35-48.
Senerz, J.J., 1970. — Notes on the biology of the African trce-toad, Nectophryne afra Buchholz &
Peters, 1875 (Bufonidae, Anura) from Fernando Po. Rev. Zool. Bot. afr., 91 (3-4): 225-236.
WaGER, VA. 1965. — The Frogs of South Africa. Cape Tow & Johannesburg, Purnell & Sons: 1242.
Corresponding editor: Alain DuBois.
© ISSCA 1991
Source : MNHN, Paris
Alytes, 1991, 9 (1): 23-32. 23
Faunal deficit of anurans
in tropical farmland of Amazonian Peru
Manfred AICHINGER
Institut für Zoologie, Universität Wien, AlthanstraBe 14, 1090 Wien, Austria
Fifty-eight (= 89.2 %) of 65 identified anuran species at Panguana, a study
site in the upper Amazon Basin in east-central Peru, occur in primary
rainforest, 35 (= 53.9 %) in secondary forest, 21 (— 32.3 %) at the forest edge,
8 (= 12.3 %) at the margin of the Rio Llullapichis, and 9 species (= 13.8 %)
in farmland. The diversity of anuran reproduction in forest habitats was 2.3
times higher than in areas under cultivation. The faunal impoverishment of
84.5 % in relation to the number of species living in primary forest is caused
by unfavorable environmental conditions, by the absence of appropriate
habitats, and by changes in diet supply.
INTRODUCTION
In the humid environments of tropical rainforests, anurans have developed a great
diversity of reproductive modes (DUELLMAN, 1988; HôDL, 1990). Because of the different
environmental conditions it seems reasonable to compare forest and non-forest habitats
with respect to species composition and reproduction.
A study area at the lower Rio Llullapichis in the upper Amazon Basin in east-central
Peru disposed the required characteristics: (1) an area of about 2 km? mainly covered with
unexploited primary forest and (2) adjacent areas under cultivation. The Panguana site
(fig. 1b) was founded in 1968 by H.-W. KoEPCKE (Hamburg). Between 1959 and 1984 the
areas under cultivation rapidly increased (compare fig. la, b). Within a few years the
rainforest plot of Panguana will be surrounded by farmland if rainforest destruction
continues at the present rate.
Seventy-three anuran species occur at Panguana (DUELLMAN & TorT, 1979;
SCHLÜTER, 1979, 1981, 1984; HôDL 1990; personal observations). Eight species of the
genus Eleutherodactylus are still unidentified. According to the classification system of
DUELLMAN & TRUEB (1986), the 65 identified species show 8 of 29 described reproductive
modes: (mode 1) eggs deposited in open water with feeding tadpoles (25 species); (mode
3) eggs and early larval stages in constructed basins, subsequent to flooding feeding
tadpoles in streams (Hyla boans); (mode 4) eggs and feeding tadpoles in water in tree holes
(Phrynohyas resinifictrix, supposed for Osteocephalus leprieurii); (mode 14) eggs on ground,
feeding tadpoles are carried by adult to water (7 species); (mode 17) eggs deposited out of
water with direct development (13 species, 8 species unidentified, supposed for /schno-
Source : MNHN, Paris
24 ALYTES 9 (1)
Le) 1000 2000m
[|
Fig. 1. — Distribution of farmland at the mouth of the Rio Llullapichis in 1958 (a) and 1984 and
location of Panguana (b). Stippled areas: under cultivation. The circle in b marks the investigated
farmland pond site. (Drawn after photographs taken by the Peruvian air-force in June 1958 and
August 1984). The course of the river and the situation of islands changed between 1958 and
1984.
Source : MNHN, Paris
AICHINGER 25
cnema quixensis); (mode 18) eggs on vegetation above water, eggs hatching into tadpoles
that drop into water (8 species, supposed for Hyla rossalleni); (mode 21) eggs in foam nests
in burrows, subsequent to flooding, feeding tadpoles in ponds or streams (6 species); (mode
22) eggs in foam nests on land, non feeding tadpoles complete development in nest (2
species).
Because many anuran species with a variety of reproductive modes occur in such a
small area in tropical rainforest it seems especially interesting to know: (1) how many and
which species inhabit the different habitats; (2) if species do exist that are restricted to open
areas; and (3) which reproductive modes are favoured by the environmental conditions in
farmland.
DESCRIPTION OF STUDY SITE
Panguana is located on the south bank of the lower Rio Llullapichis, a tributary of
the Rio Pachitea, in the upper Amazon Basin, 9°37' S, 74°56° W, at an elevation of 260 m
(fig. 1b). From November 1981 through October 1982, the total annual precipitation was
2635 mm. The rainfall is seasonal, with a marked dry period lasting from mid-March to
mid-September (AICHINGER, 1987). On sunny days, daily maximum temperatures were
about 6°C higher in farmland than in primary forest. Minimum relative humidity was
between 35-40 % in farmland whereas it was seldom below 90% in the forest
(CHANAGARTH, 1981).
The investigation area of Panguana is mainly covered with unexploited primary
forest. Vegetation at sites of abandoned cultivated areas (compare fig. la, b), along a
temporary stream, at the border of the Rio Llullapichis, and at the forest edge are assigned
to secondary forest. The edge of the forest is characterized by dense vegetation near
ground level. The settlers around Panguana gain farmland by clearing primary forest.
After burning the areas are planted with maize and subsequently with grass for
cattle-breeding.
The two investigated ponds are situated about 2.8 km northwest of Panguana near the
Rio Pachitea in farmland belonging to Elvio MODENA (fig. 1b). The rainforest in this area
was cleared in the late fifties; since then it has been used for cattle-breeding. The two ponds
are surrounded by a dense vegetation of high grass and low “Niejilla” palm trees (Bactris
sp.). They are about 300 m away from primary forest. Their maximum diameter was
reached in January and measured about 8 m.
METHODS
The study on annual activity patterns of anurans at Panguana, lasting from
November 1, 1981 until October 31, 1982 (AICHINGER, 1987), included observations at two
farmland ponds. I compare the anuran fauna of 4 different forest habitats (primary forest,
secondary forest, forest edge, border of the Rio Llullapichis) with that of the farmland.
Source : MNHN, Paris
26 ALYTES 9 (1)
In primary and secondary rainforest I investigated the anuran fauna in six plots of 100
m° each which were established at different aquatic sites (AICHINGER, 1987). The temporary
pond at the forest edge had about the same size as the two farmland ponds (maximum
diameter about 8 m). The border of the Rio Llullapichis was observed along the limit of
the study area. The course of the river and subsequently the situation of islands changed
between 1958 and 1984 (compare fig. la, b).
Species are treated according to their reproductive modes. According to the number
of ovarian eggs, coloration, and egg diameter (AICHINGER, 1985), the reproductive modes
of {schnocnema quixensis and Hyla rossalleni are preliminarily assigned. No observations
on the egg-deposition site of O. leprieurii could be made. This large hylid frog calls
dispersed in primary forest and did not aggregate at aquatic sites. I assume that this
species, like Phrynohyas resinifictrix, deposits its eggs in water-filled tree holes (HÔDL, in
press; ZIMMERMANN & HÔDL, 1983). Dendrophryniscus minutus, which lays strings of eggs
on low vegetation up to 50 cm above water level, is assigned to mode 14.
Data for uncommon species observed only a few times or not at all during the course
of this study are supplemented by CRUMP (1974), DUELLMAN (1978), ToFr & DUELLMAN
(1979), and SCHLÜTER (1984).
RESULTS
The habitat distribution of 65 anuran species is given in Table I. Fifty-eight species (=
89.2 %) inhabited the primary forest. Twenty-seven species (= 41.5 %) were restricted toit.
Twenty-nine species living in primary forest also occurred in secondary forest, which pro-
vided a habitat for 35 (= 53. 8 %) species. At the forest edge I found 21 species (= 32.3 %)
at a temporary pond (AICHINGER, 1985, 1987): all also occurred in secondary forest, 17 in
primary forest. Eight species (= 10.8 %) were found at the Rio Llullapichis. Bufo marinus,
B. typhonius, and Hyla boans called during the dry season along the Rio Llullapichis. In
mid-September (early in the 6 month rainy season), Leptodactylus pentadactylus called at the
river bank where no other anurans were found throughout the whole rainy season.
Nine species (= 13.8 %) occur at the two farmland ponds. They belong to the families
Hylidae (8 species) and Leptodactylidae (1 species). I observed frogs only in the dense
vegetation surrounding these ponds. No anurans were found in the pasture. Eight of the
farmland species were also common in secondary forest. Phyllomedusa tarsius was
observed in primary forest too. Ololygon rubra also occurred in the palm-leave roofs of
native huts. Bufo marinus, most common near houses, hunting after insects attracted to
artificial light, called at the river’s edge and was not observed in farmland.
The distribution of the reproductive modes of 65 anuran species at 5 habitats is shown
in Table Il. I included only species which were actually breeding (calling males and/or
gravid females). Thus 3 species observed at the river edge (Adenomera hylaedactyla, Bufo
glaberrimus, Leptodactylus wagneri) were excluded. Species occurring in primary forest
used 7 modes of reproduction. Poison-dart frogs (mode 14) and species of the genus
Eleutherodactylus (mode 17) occurred predominantly in primary forest. The number of
Source : MNHN, Paris
AICHINGER 27
species with oviposition in water increased in secondary forest. Fourteen (= 66.7 %) out
of 21 species found at the forest edge laid their eggs in water (mode 1). At the border of
the Rio Liullapichis, 60 % of the species underwent complete aquatic development.
The 9 species found at the two farmland ponds showed 3 reproductive modes. Five
species (= 55.6 %) represent mode 1. Two species laid their eggs on vegetation above
water (Hyla leucophyllata, Phyllomedusa tarsius). Arboreal oviposition is also supposed for
H. rossalleni. The foam-nest producing Leptodactylus wagneri (mode 21) was heard calling
at these aquatic sites. In farmland no species of poison-dart frogs (mode 14) or of the
genus Eleutherodactylus (mode 17) occurred.
DISCUSSION
Of 65 anuran species known from Panguana, only 9 species (13.8 %) were found at
the two farmland ponds. Only habitat generalists breed at these aquatic sites. No anuran
species occurs exclusively in areas under cultivation. This faunal impoverishment seems to
be due to changes in microclimate, habitat diversity, and food supply.
Microclimatic conditions in farmland favor only few amphibians. In open areas, high
maximum temperatures correlated with low humidity restrict the occurrence of amphib-
ians. Due to intensive sun irradiation, maximum temperatures are higher and humidity is
lower in farmland than in forest habitats (HANAGARTH, 1981). The danger of desiccation
forces the anurans living in farmland to hide during daytime in shady shelter sites. During
night hours, when temperatures and humidity of rainforest and farmland are nearly equal
(HANAGARTH, 1981), anurans become active. All species breeding in open areas are
nocturnal (HEYER, 1976). The closed canopy of primary rainforest reduces sun irradiation
and maintains high humidity; this is important for all anurans, especially those with
terrestrial development.
Species with egg deposition directly in water (with subsequent development occurring
there as well) represent the primitive mode of reproduction (DUELLMAN & TRUEB, 1986).
These species are less dependent on the high humidity provided by a forest than those
depositing eggs in terrestrial environments where all needed water is extracted from the air
(Lyc, 1979). Environmental conditions in farmland favor species depositing many eggs
in open water. Reproductive generalists with high fecundity are better adapted for
unpredictable environments (DUELLMAN, 1978). The mean egg number of the 5 aquatic
breeding farmland species examined by AICHINGER (1985) ranged between 394 (Hyla
riveroi) and 1170 (Ololygon rubra) (n = 10 — 15).
Four species at the farmland ponds do not deposit their eggs directly in the water. The
species were less abundant than aquatic breeders. Two species lay their eggs on vegetation
above water. This mode is also assumed for Hyla rossalleni. Development is endangered
by a possible desiccation of eggs. Phyllomedusa tarsius encloses the egg mass with leaves.
The top and the bottom of the clutch consist mainly of eggless capsules providing
protection from sun irradiation (CRUMP, 1974). Hyla leucophyllata lays its eggs on leaves
on low vegetation (up to a height of 50 cm), where humidity from the evaporating water
surface may prevent desiccation. Leptodactylus wagneri reflects the primitive Leptodactylus
Source : MNHN, Paris
28
ALYTES 9 (1)
Table I. — Distribution of 65 anuran species in 5 different habitats. PF = primary forest,
SF = secondary forest, FE = forest edge, RE = river edge, FL = farmland. Categories corre-
spond to reproductive mode numbers according to DUELLMAN & TRUEB (1986), * indicates
species where data are supplemented by CRUMP (1974), DUELLMAN (1978), TOFT & DUELLMAN
(1979), and SCHLÜTER (1984).
SPECIES
LEPTODACTYLIDAE
1. Adenomera andreae
2. À. hylaedactyla
3. Ceratophrys cornuta
4. Edalorhina perezi
5. Eleutherodactylus acuminatus
6. E. altamazonicus
7. E. carvalhoi
8
9
E. diadematus
. E. imitatrix
10. E. lacrimosus
11. E. mendax
12. E. ockendeni
13. E. peruvianus
14. E. sulcatus
15. E. toftae
16. E. ventrimarmoratus
17. Ischnocnema quixensis
18. Leptodactylus pentadactylus
19. L. rhodomystax
20. L. wagneri
21. Lithodytes lineatus
22. Physalaemus petersi
BUFONIDAE
23. Bufo glaberrimus
24. B. marinus
25. B. typhonius
26. Dendrophryniscus minutus
DENDROBATIDAE
27. Colostethus marchesianus
28. C. peruvianus
29. Dendrobates quinquevittatus
30. Epipedobates femoralis
31. E. petersi
32. E. pictus
33. E. trivittatus
only
21
SF
22
FE
22
21
21
FL
RE ponds
2
21
21 21
Source : MNHN, Paris
AICHINGER
HYLIDAE
34. Hyla boans
35. H. brevifrons
* 36. H. calcarata
37. H. fasciata
38. H. geographica
39. H. granosa
40. H. leucophyllata
41. H. marmorata
42. H. minuta
43. H. parviceps
44. H. rhodopepla
45. H. riveroi
46. H. rossalleni
47. H. sarayacuensis
48. Ololygon cruentomma
49. O. funerea
50. O. garbei
51. O. rubra
52. Osteocephalus leprieurit
53. O. taurinus
54. Phrynohyas coriacea
* 55. P. resinifictrix
56. P. venulosa
* 57. Phyllomedusa palliata
58. P. tarsius
59. P. tomopterna
60. P. vaillanti
CENTROLENIDAE
61. Centrolenella midas
62. C. munozorum
MICROHYLIDAE
63. Chiasmocleis ventrimaculata
64. Ctenophryne geayi
65. Hamptophryne boliviana
RENE ©
18
18
Sé gets
29
3
18
LL
ll il ll
18 18
1
il
1
1 ||
18
18
[l 1
ll l
ll ll
1
18
18
Source : MNHN, Paris
30 ALYTES 9 (1)
Table II. — Distribution of reproductive modes (after DUELLMAN & TRUEB, 1986) in 5 different
habitats.
Primary
Reproductive Primar: Secondar: Forest- River- Farmland
mode Que font Pet font edge cd ponds
= 1 23 354% 21362% 4154% 19500% 1466.7 % 3 600% 5 55.6 %
1 15% 1 26% 1 200%
4 ER 234% 1 38% 1 26%
14 T 108% 7121% 7269%
17 13 200% 13224% 9346% 3 79%
18 11 169% 8138% 3115% 6158% 4190% 3 333%
À 6 92% 6103% 2 77% 410.5% 2 95% 1 200% 1 111%
22 2 11% 1 17% 1 38% 1 26% 1 48%
Total 65 1000% 5889.2% 2741.5% 3553.8% 21323% 5 77% 9 138%
pattern (HEYER, 1969) in that a foam nest is placed on top of the water. Eight gravid females
of L. wagneriexamined by AICHINGER (1985) contained a mean number of 1726 eggs.
Tropical rainforests provide a great diversity of habitats. Anurans are well adapted to
live in leaf litter, bushes, or in the forest canopy. At Panguana no anuran species with
terrestrial breeding (Dendrobatidae, Eleutherodactylus spp., Adenomera hylaedactyla)
occurs in farmland. These species require leaf litter as oviposition and shelter sites. AIl are
restricted to forest habitats where leaf litter is abundant and humidity high throughout the
day. Many anurans, especially hylid frogs, are adapted to the dense vegetation of bushes.
In farmland this microhabitat was found only around the two investigated ponds. In forest
habitats, 40 anuran species were found in bushes, whereas in farmland only 8 species
occurred in this microhabitat. Even the species diversity of birds was remarkably higher
in undisturbed primary forest than in cacao or coffee plantations (TERBORGH & WESKE,
1969). In California, logging of redwood forest opened the forest canopy and apparently
favored only a few amphibian species to the detriment of the majority — the
forest-dependent species (BURY, 1983).
Farmland habitats favor only broad-niched species. Leptodactylus wagneri is well
adapted to changing environments and probably an excellent colonizer species (HEYER &
BELIN, 1973). This seems also to be true for Ololygon rubra, which was found especially
at ephemeral watersites.
Diet supply for food specialists, such as certain leaf-litter frogs (TorT, 1980), may limit
the existence in farmland. There, compared with primary forest, abundances of ants and
termites are remarkably reduced; beetles, grasshoppers and crickets, however, are more
abundant (HANAGARTH, 1981). The ant fauna is nearly completely destroyed by the cutting
and burning of forests (VERHAAGH, in press).
Rainforest destruction leads to a reduction in the numbers of individuals of those
species bound to primary rainforest (JACOBS, 1988). At Panguana environmental
Source : MNHN, Paris
AICHINGER 31
conditions, shortage of food supply, and a remarkable deficit of habitat types in farmland
result in a faunal impoverishment of 84.5 % compared with the anuran species living in
primary forest.
RESUMEN
58 especies de batracios (= 89,2 %) de 65 especies identificadas de Panguana, una
estacion de estudios en la parte alta de la cuenca amazénica central, ocurren en el bosque
primario, 35 (= 53,9 %) en el bosque secundario, 21 (= 32,3 %) en el borde del bosque,
8 (= 12,3%) en la orilla del Rio Llullapichis y 9 especies (= 13,8 %) en los campos
cultivados. La diversidad de reproduccién de los batracios en los habitates selväticos fue
2,3 veces mäs alto que en los campos cultivados. El empobrecimiento faunistico de 84,5 %
en relaciôn al nümero de especies que viven en el bosque primario es posiblemente causado
por las condiciones desfavorables del ambiente, la ausencia de habitates apropriados y los
cambios de la provisién alimenticia.
ACKNOWLEDGEMENTS
Thanks are due to Prof. H.-W. KorPCKE (Univ. Hamburg) for permission to carry out the study
at Panguana and to W. HôpL and W. MORAWETZ for reviewing the manuscript. Financial support
was provided by “ ôsterreichischer Fonds zur Fôrderung der wissenschaftlichen Forschung ” (Project
P6399B) and by the Austrian ministry for science and research.
LITERATURE CITED
AicHinGer, M., 1985.— Niederschlagsbedingte Aktivitätsmuster von Anuren des tropischen Regenwal-
des: eine quantitative Studie durchgeführt im Forschungsgebiet von Panguana (Peru). Wien,
Univ. Diss.: 1-68.
ee 1987. — Annual activity patterns of anurans in a seasonal ncotropical environment. Oecologia,
71: 583-592.
BURY, R. B., 1983. — Differences in amphibian populations in logged and old growth redwood forest.
Northwest Sci., 57: 167-178.
Crume, M. L., 1974. — Reproductive strategies in a tropical anuran community. Misc. Publ. Mus.
Nat. His. Univ. Kansas, 61: 1-67.
DuëLiMAN, W. E. 1978. — The biology of an equatorial herpetofauna in Amazonian Ecuador. Misc.
Publ. Mus. Nat. Hist. Univ. Kansas, 65: 1-352.
= 1988. — Patterns of species diversity in anuran amphibians in the American tropics. Ann.
Missouri Bot. Gard. 75: 79-104.
DUELLMAN, W. E. & TRUEB, L., 1986. — Biology of Amphibians. New York, MeGraw Hill: 1-670.
HANAGARTH, W., 1981. — Vergleichend-ükologische Untersuchungen an epigäischen Arthropoden aus
Naturbiotopen und Kulturland im tropischen Regemwald Perus. - Ein Beitrag zur Agrarëkologie
der Tropen. Hamburg, Univ. Diss. Nr. 125: 1-240.
Hever, W.R., 1969. — The adaptive ecology of the s
(Amphibia, Leptodactylidac). Evolution, 23: 421-428.
pu 1976. — Notes on the frog fauna of the Amazon Basin, Acta Amazonica, 6: 369-378.
ecies groups of the genus Leprodactylus
Source : MNHN, Paris
3 ALYTES 9 (1)
Hever, W. R. & BeuiN, M.S., 1973. — Ecological notes of five sympatric Leptodactylus (Amphibia,
Leptodactylidae) from Ecuador. Herpetologica, 29: 66-72.
Hôp, W., 1990. — Reproductive diversity in Amazonian lowland frogs. Fortschritte d. Zoologie, 38:
41-60.
ass in press. — Phrynohyas resinifictrix (Hylidae). Calling behaviour. Wiss. Film.
Jacoss, M., 1988. — The tropical rainforest. À first encounter. R. Kruk, Berlin, Heidelberg, New
York, London, Paris, Tokyo, Springer Verlag: 1-295.
LYNCH, J. D., 1979. — The amphibians of the lowland tropical forests. /n: W. E. DUELLMAN (ed.), The
South American herpetofauna: its origin, evolution, and dispersal, Monog. Mus. Nat. Hist.
Univ. Kansas, T: 189-215.
SCHLÜTER, A., 1979. — Bio-akustische Untersuchungen an Hyliden in einem begrenzten. Gebiet des
tropischen Regenwaldes von Peru (Amphibia: Salientia: Hylidae). Salamandra, 15: 211-236.
en 1981. — Erstnachweis von Bufo glaberrimus Günther, 1868 für Peru. Stud. Neotrop. Fauna and
Environment, 16: 221-223.
Le 1984. — Ükologische Untersuchungen an einem Stillgewässer im tropischen Regenwald von Peru
unter besonderer Berücksichtigung der Amphibien. Hamburg, Univ. Diss.: 1-300.
TERBORGH, J. & WESskE, J.S., 1969. — Colonization of secondary habitats by peruvian birds.
Ecology, 50: 765-782.
Torr, C. A., 1980. — Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical
environment. Oecologia, 45: 131-141.
Torr, C. A. & DUELLMAN, W.E., 1979. — Anurans of the lower Rio Llullapichis, Amazonian Peru:
a preliminary analysis of community structure. Herpetologica, 35: 71-77.
VERHAAGH, M. in press. — Clearing a tropical rainforest — effects on the ant fauna. /n: W. ERDELEN,
N. IsHWARAN & P. MÜLLER (eds), Tropical Ecosystems, Saarbrücken, Proc. Symp.,
15-18.6.1989, in press.
ZIMMERMANN, B. & HôDL, W., 1983. — Distinction of Phrynohyas resinifictrix (Goeldi, 1907) from
Phrynohyas venulosa (Laurenti, 1768) based on acoustical and behavioral parameters. Zoo!.
Anz., 211: 341-352.
Corresponding editors: Walter Hôp & Alain DuBois.
(© ISSCA 1991
Source : MNHN, Paris
AINTTES
International Journal of Batrachology
published by ISSCA
EDITORIAL BOARD FOR 1991
Chief Editor: Alain Dumois (Laboratoire des Reptiles et Amphibiens, Muséum national d'Histoire
naturelle, 25 rue Cuvier, 75005 Paris, France).
Deputy Editor: Günter GOLLMANN (Institut für Zoologie, Universität Wien, Althanstr. 14, 1090 Wien,
Austria).
Other members of the Editorial Board: Jean-Louis AMIET (Yaoundé, Cameroun); Stephen D. BUSACK
(Ashland, U.S.A.); Tim HarriDAY (Milton Keynes, United Kingdom); William R. HEYER
(Washington, U.S.A.); Walter Hôp (Wien, Austria); Pierre JOLY (Lyon, France); Milos
KaALEzIC (Beograd, Yugoslavia); Raymond F. LAURENT (Tucumän, Argentina}; Petr ROTH
(Libechov, Czechoslovakia), Borja SANCHIZ (Madrid, Spain); Dianne B. SEALE (Milwaukee,
U.S.A.); Ulrich SINsCH (Bonn, Germany).
Index Editor: Annemarie OHLER (Paris, France).
GUIDE FOR AUTHORS
Alytes publishes original papers in English, French or Spanish, dealing with amphibians. Beside
papers reporting results of original research, consideration will be given for publication to review
articles, comments and replies, and to papers based upon original high quality color photos of
amphibians, showing beautiful or rare species, interesting behaviors, etc.
The title should be followed by the name(s) and address(es) of the author(s). The text should be
organized as follows: English abstract, introduction, method, results, discussion, conclusion, French
or Spanish abstract, acknowledgements, literature cited.
Figures and tables should be mentioned in the text as follows: fig. 4 or Table IV. Figures
should not exceed 16 x 24 cm. The size of the lettering should ensure its legibility after reduction.
The legends of figures and tables should be assembled on a separate sheet. Each figure should be
numbered using a pencil.
References in the text are to be written in capital letters (SOMEONE, 1989; EVERYBODY et al.,
1980; So & So, 1987). References in the literature cited section should be presented as follows:
= when in a periodical:
INGER, R. F., Voris, H. K. & Voris, H. H., 1974. - Genetic variation and population ecology of some
Southeast Asian frogs of the genera Bufo and Rana. Biochem. Genet, 12: 121-145.
— when in a multi-authors book:
GRAF, J.-D. & PoLLs PELAZ, M., 1989. — Evolutionary genetics of the Rana esculenta complex. In:
R. M. DAWLEY & J. P. BOGART (eds.), Evolution and ecology of unisexual vertebrates, Albany, The
New York State Museum: 289-302.
— when a book:
BOURRET, R., 1942. - Les Batraciens de l'Indochine. Hanoï, Institut Océanographique de l’Indochine:
i-x+1-547, pl. I-IV.
Manuscripts should be submitted in triplicate to Alain DUBois (address above) if dealing with
amphibian morphology, systematics, biogeography, evolution, genetics or developmental biology, or
to Günter GOLLMANN (address above) if dealing with amphibian population genetics, ecology,
ethology or life history.
Âcceptance for publication will be decided by the editors following review by at least two
referees.
No page charges are requested from author(s), but the publication of color photographs is
charged. For each published paper, 25 free reprints are offered by A/ytes to the author(s). Additional
reprints may be purchased.
Published with the support of
the Muséum national d'Histoire naturelle (Paris, France).
Directeur de la Publication: Alain Dumois.
Numéro de Commission Paritaire: 64851.
@©ISSCA 1991 Source : MNHN, Paris
Alytes, 1991, 9 (1): 1-32
Contents
Alain Dumois
Batrachology as a distinct scientific discipline
Jean-Louis AMIET
Images d’Amphibiens camerounais.
III. Le comportement de garde des œufs .......................... 15
Manfred AICHINGER
Faunal deficit of anurans in tropical farmland of Amazonian Peru .. 23
Alytes is indexed in the following data bases: Biosis, Cambridge Scientific Abstracts,
Current Awareness in Biological Sciences and The Zoological Record.
Imprimerie F. Paillart, Abbeville, France.
Dépôt légal: 1“ trimestre 1991.
©ISSCA 1991
Source : MNHN, Paris