world
biodiversity
association
o n n u s
www biodiversityjoiirnaLcom
ISSN 2039-0394 (Print Edition)
ISSN 2039-0408 (Online Edition)
SEPTEMBER 2011, 2 (3): 105-160
intb thfl support n£
FOR NATURALISTIC RESEARCH
AND ENVIRONMENTAL. STUDIES
Asp arago p sis armata Harvey, 1855 - S Hem a (M a ila)
3
Cover. Asparagopsis armata, Malta, Sliema, 7 m
depth, 30.V11I.201 1. 1) Siganus luridus, Gozo,
Xlendi, 6 m depth, 30/07/2011. 2) Melibe viridis,
Comino, Stanley, 12 m depth, IX. 2011. 3)
Rhopilema nomadica, Malta, Sikka 1-Bajda, 4 m
depth, XI.2004.
ALIEN SPECIES IN THE MEDITERRANEAN SEA. Allochthonous or alien
species are those organisms introduced outside their natural distribution, present or
past, across a direct action (intentional or unintentional) by man. The Mediterranean
Sea is particularly susceptible to alien species invasion. In addition to the Strait of
Gibraltar which is a well-known access route to the Mediterranean, the opening of the
Suez Canal in 1869 has fostered, over the years, the introduction of tropical or
subtropical species from the Red Sea, a phenomenon which was named, by the engineer
F. M. De Lesseps who designed the canal, lessepsian migration. Other principal vectors
of the alien species introduction are the mariculture, shipping and or the increase in
average water temperature occurred in recent years. Alien species, often invasive
species, have out-competed or replaced native species, and are considered pests or
cause nuisance.
The Mediterranean sea is a veritable hotspot for such introductions in view of its
geographical position and vessel traffic which traverses it. In recent decades, more than
950 new alien species have been encountered in the coastal environments of the eastern
Mediterranean Sea.
The influx of marine allochthonous species within the Mediterranean is inexorable
indeed, with some benthic invasive alien species (IAS), including the green alga
Caulerpa racemosa (Forsskal) J. Agardh, 1873 (Caulerpaceae) and the red alga
Asparagopsis armata Harvey, 1855 (Bonnemaisoniaceae) now having colonised large
swathes of the basin. Even the fish, with a number of pelagic species, most notably
Fistularia commersonii Riippell, 1838, bluespotted cornetfish (Fistulariidae),
Sphyraena viridensis Cuvier, 1829, the yellowmouth barracuda (Sphyraenidae) and
Siganus luridus Riippell, 1829, dusky spinefoot (Siganidae), are regularly caught by
fishermen through most of the Mediterranean. Other invasive species are the
nudibranch Melibe viridis (Kelaart, 1858) (Tethydidae), the marine gastropod mollusk
Bursatella leachii (Blainville, 1817), the ragged sea hare or shaggy sea hare
(Aplysiidae), the crab Percnon gibbesi (H. Milne Edwards, 1853) (Plagusiidae), and the
scyphozoan jellyfish Rhopilema nomadica Galil, 1990 (Rhizostomatidae), a real trouble
for fishermen, bathers and power station operators in the eastern part of the
Mediterranean sea.
Alan Deidun, Senior Lecturer Physical Oceanography Unit, Room 315, Chemistry Building 3rd Floor,
University of Malta, Msida, MSD 2080, Malta - alan.deidun@gmail.com.
Biodiversity Journal, 2011, 2 (3): 107-114
Some aspects on the reproductive cycle of European conger eel, Conger
conger (Linnaeus, 1758) (Osteichthyes, Anguilliformes, Congridae)
captured from Western Algerian coasts: a histological description of
spermatogenesis.
Abi-ayad Sidi-Mohammed El-Amine* 1 , BensahlaTalet Ahmed 2 , Ali Mehidi Small 3 , Dalouche Fatiha 4 , & Meliani Fethia Meriem 5
Laboratoire Aquaculture & Bioremediation (AQUABIOR). Department of Biotechnology, Department of Biotechnology Faculty of Sciences
(I.G.M.O.), Oran University, Oran; Algeria. 1 a.abi-ayad@hotmai I .com, 2 ahmedbensahla@yahoo.ff, 3 alimehidis@gmail.com, 4 fdalouchc@yahoo.fr,
5 mimi3s5@hotmail.com - Corresponding author
ABSTRACT The aim of this work was to study the annual reproductive cycle of European conger eel ( Conger conger,
Linnaeus, 1758) through analysis and description of spermatogenesis. A sample of 168 males was captured
between September 2008 and August 2009 from the Western coast of Algeria, from Beni Saf. Fish length and
weight varied between 26.20-112 cm and 0.45-3.44 kg, respectively.
Condition factors (K), gonadosomatic index (G.S.I.) and hepatosomatic index (H.S.I.) were calculated
monthly. Factor K reached the minimum in August/September (0.10%) corresponding to reproductive period
and a maximum in January (0.18%). Although G.S.I. values revealed to be statistically not significant, there
were two peaks for G.S.I., the first in March, denoting the beginning of spermatogenesis, and the second in
August/September, indicating the reproduction period. H.S.I. reached a peak in December (1.90%), then the
value decreased to a minimum in April.
Histological analysis of testis allowed us to distinguish 5 stages summarized as follows: Stage 1:
Spermatogonia A; Stage 2: Spermatogonia B; Stage 3: Spermatocytes and spermatids; Stage 4: Spermatocytes,
spermatids and spermatozoa (cytodifferentiation of spermatids into spermatozoa); Stage 5: Spermatozoa
(spermiogenesis or cytodifferentiation of spermatids into spermatozoa).
KEY WORDS Condition factor, Conger conger , G.S.I., H.S.I., reproduction, spermatogenesis.
Received 16.05.2011; accepted 05.07.2011; printed 30.09.2011
INTRODUCTION
The European conger eel ( Conger conger ) is
distributed in the Eastern North Atlantic Ocean
from Norway to Senegal (including the Canary
Islands, Azores and Madeira), in Mediterranean
and western Black Sea (F.A.O., 2011). Specimens
spawn, probably once in lifetime in summer (Cau
& Manconi, 1984), in the Mediterranean and in
the eastern North Atlantic around Azores
(McCleave & Miller, 1994; Vallisneri et al.,
2007). In Mediterranean Sea, males are usually
smaller than females, with males rarely exceeding
100 cm in length and females reaching over 200
cm (Cau & Manconi, 1984). Since a decade,
European conger eels (C. conger ) constitute an
important and valuable fishery resource
(Figueiredo et ah, 1996; Morato et ah, 1999;
O’Sullivan et ah, 2003) in Mediterranean
countries (Relini et ah, 1999) and, particularly, in
Algeria. However and to our knowledge, no
studies on eco-biology of this important benthic
species (Vallisneri et ah, 2007) from South shore
of Mediterranean Sea have been published.
Moreover, there is evidence of declining stocks of
the species (Menezes & Silva, 1999; O’Sullivan
108
Abi-ayad S.-M. E.-A., Bensahla Talet A., Ali Mehidi S., Dalouche F. & Meliani F. M.
et al., 2003) and there has been no detailed
published study on its reproductive biology and
especially on the dynamics of spermatogenesis.
According to F.A.O. (2011), total world catch of
C. conger was estimated in 2009 to 17,229 tons.
It is clear that conger species are subject to
overfishing (Menezes & Silva, 1999; Mochioka
& Tokai, 2001), which caused a drastic fall in its
capture. Moreover, C. conger is very sensitive to
exploitation and constitutes an important species
in fish biodiversity and in biodiversity’s balance
(Correia et al., 2006).
The objective of the present study was to
elucidate the process of male maturation of
European conger eel (C. conger ) by examination
of annual changes in condition factor K,
gonadosomatic and hepatosomatic indexes
(G.S.I. and H.S.I., respectively) and gonadal
histology. This latter constitutes the first detailed
information on the species in Mediterranean.
MATERIAL AND METHODS
Fish samples: Conger conger employed for
this study were captured from the Western coast
of Algeria, from Beni-Saf, at a depth ranging
between 100 and 150 meters. Total of 168 males
were sampled, 60 in autumn, 33 in winter, 35 in
spring and 40 in summer. Fresh specimens,
collected by fishermen, were examined in
laboratory. Total length (cm) and weight (g) and
liver and gonad weight were measured for all
individuals. Total length varied between 26.20
and 1 12 cm and total weight varied between 0.45
and 3.44 kg. Note that in May and June 2009,
samples contained only female specimens.
Indices of fish condition : In this study, we
calculated, monthly, values of:
• Condition factor K [K = (total weight / total
length 3 ) x 100],
• Gonadosomatic index [G.S.I. = (gonad
weight / total weight) x 100],
• Hepatosomatic index [H.S.I. = (liver weight /
total weight) x 100].
Histological study: A 1 cm fragment from the
gonad of each fish was removed and fixed in
Bouin’s solution, then dehydrated and embedded
in paraplast. For histological examination, the
tissues were cut into sections of 5 microns and
stained with a trichrome method according to
Langeron (1942): Regaud’s haematoxyline at 57
°C, phloxine and green light. Histological
descriptions of gonadal developmental stages
were based on the criteria reported by Yamamoto
et al. (1972) and Grier (1981).
Statistical Analysis: All data were expressed
as mean ± standard deviation and were
statistically compared by one-way variance
analysis or ANOVA 1 (for condition factor K and
Gonadosomatic index or G.S.I.) and by non
parametric variance analysis of Kruskal-Wallis
and Mann-Withney U - test (for hepatosomatic
index or H.S.I.) (d’Hainaut, 1975a, b).
RESULTS
Indices of fish condition
Condition factor K: Condition factor K (Fig. 1)
remained stable between September and Decem-
ber 2008, then increased significantly (p<0.05)
and reached a maximum (0.18% ± 0.03%) in
January 2009. Between February and August
2009, K factor decreased significantly (p<0.05).
Gonadosomatic (G.S.I.) and hepatosomatic
(H.S.I.) indexes: Statistical comparison by
ANOVA 1 of G.S.I. showed no significant
differences among data obtained. As a
description of G.S.I. results, in terms of absolute
value, G.S.I. decreased not significantly (p>0.05)
steadily and continuously between October 2008
and February 2009. In March 2009, G.S.I.
reached a high value (2.92% ± 3.36%), then
decreased not significantly (p>0.05) between
April and July. Note that in May and June, only
female specimens were caught. In September
2008 and August 2009, G.S.I. increased not
significantly (p>0.05) again and reached a high
value 3.97% ± 4.10% and 3.37% ± 5.23%,
respectively (Fig. 2). Because of important
differences between the raw values, standard
deviation was high and in some cases higher than
mean. Indeed, in September 2008, March and
August 2009 G.S.I. raw values varied between
0.34%- 12.29%, 0.24%- 10.02% and 0.15%-14.16%,
respectively. This can explain the results
Some aspects on the reproductive cycle of European conger eel, Conger conger ( Linnaeus , 1758) 109
(Osteichthyes, Anguilliformes, Congridae) captured from Western Algerian coasts: a histological description of spermatogenesis
K Factor (%)
0,05
0
i
Months
Sep Oct Nov Dec Jan Feb Mar Apr May June July Aug
4 2008 ^ <4 2009 ^
Figure 1: Time evolution of the condition factor K (mean ± standard deviation expressed in %) in male European conger eel (Conger conger).
Figure 2: Time evolution of G.S.l. (mean ± standard deviation expressed in %) in male European conger eel (Conger conger).
obtained which, however, were not significant at
all from a statistical point of view.
The value of H.S.I. increased to a maximum
in December 2008 (p<0.05), then decreased
significantly and continuously (p<0.05) until
February 2009. Between February and August
2009 (Fig. 3), H.S.I. value remained stable and
the data revealed no significant variations
(p>0.05). Similarly, data on H.S.I. were not
available in May and June 2009 because of lack
of male specimens during this period.
Histological parameters
Histological stages of sperm cells varied
significantly according to period of sampling.
Stage 1: This stage was observed between
November and December 2008 and was
characterized by the presence of spermatogonia
A (Fig. 4). The nucleus presented a clear
appearance after staining and cytoplasm
presented a patch of dense granular and fibrillar
material called “cloud”, usually near the nuclear
membrane.
110
Abi-ayad S.-M. E.-A., Bensahla Talet A., Ali Mehidi S., Dalouche F. & Meliani F. M.
Figure 3: Time evolution of H.S.l. (mean ± standard deviation expressed in %) in male European conger eel (Conger conger).
Figure 4: Flistological section
representative of spermatogonia A
(800x) during early sperma-
togenesis (November-December) in
European conger eel (C. conger).
G.S.I. = 0.93%.
Figure 5: Histological section
representative of spermatogonia
B (800x) during spermatogenesis
initiation (December-February) in
European conger eel C. conger).
G.S.I. = 1.05%.
Some aspects on the reproductive cycle of European conger eel, Conger conger ( Linnaeus , 1758) HI
(Osteichthyes, Anguilliformes, Congridae) captured from Western Algerian coasts: a histological description of spermatogenesis
Stage 2: This stage was observed from
December until February and indicated the
beginning of spermatogenesis, with the
occurrence of spermatogonia B. These cells were
smaller and more intensely colored than
spermatogonia A (Fig. 5).
Stage 3: This stage was observed in March
2009 and was characterized by the occurence of
spermatocytes (Fig. 6) at various stages
(spermatocytes I and II). Spermatocytes have a
great round or oval nucleus. During this stage,
we observed the meiotic phase characterized by
the occurrence of spermatids.
Stage 4: This stage was observed between
July and October 2009 and indicated the
occurrence of spermiogenesis. Because of lack
of male specimens in samples of May and June
2009 we were unable to determine at what
month this stage exactly begins. The testes
contained spermatocytes, spermatids and the
maturing cells representative of the
differentiation of spermatids into spermatozoa
(Fig. 7). These curved-shaped cells (average
length: 3.84 pm) were strongly stained with
haematoxyline.
Stage 5: This stage was observed in
September 2008 and only in one specimen. The
testis showed only the maturing cells repre-
sentative of the differentiation of spermatids into
spermatozoa (Fig. 8).
Figure 6: Histological section
representative of spermatocytes
and spermatids (800x) at the end
of spermatogenesis (March-
April) in European conger eel
(C. conger). G.S.l. = 5.84%.
Figure 7: Histological section
representative of spermatocytes,
spermatids and spermatozoa in
differentiation (800x) during
spermiogenesis (August) in
European conger eel (C. conger).
G.S.l. = 13.30%.
112
Abi-ayad S.-M. E.-A., Bensahla Talet A., Ali Mehidi S., Dalouche F. & Meliani F. M.
Figure 8: Histological section
showing spermatozoa in diffe-
rentiation (800x) during sper-
miogenesis (September) in
European conger eel (C. conger).
G.S.I. = 4.60%.
DISCUSSION
Little data exist on reproductive biology of
conger species and especially C. conger (Relini
et al., 1999; Sbaihi et al., 2001), so comparisons
are difficult to make. The condition factor K of
Conger conger was highest in winter, in January
2009, and lowest in summer, during September
2008 and August 2009. The decrease in the value
of this factor in summer probably resulted in a
weight loss for the fish, indicating that fishes
used most of somatic energy reserves during
migration and reproductive development. In Irish
coastal waters, O’Sullivan et al. (2003) showed,
in female C. conger , the highest and the lowest
values of condition factor, in autumn and winter,
respectively. The difference resulted probably
from the coldest temperature observed in
Oceanic waters (Irish waters) compared to south
Mediterranean waters (present study).
In this study, gonadosomatic index (G.S.I.)
presented two peaks, the first in summer and the
second in spring. Although these data were not
statistically significant, nevertheless, the first
peak could be explained by prespawning and
spawning period. Indeed, many studies showed
that European conger eel spawn in summer
(Relini et al., 1999; Vallisneri et al., 2007; Abi-
ayad et al ., personal unpublished data). In
addition, Utoh et al. (2004) showed that captive
Japanese conger eels (C. myriaster ) had a
spermiation period from May to September with
G.S.I. peak mean value of 5.3% ± 3.0% and a
highest G.S.I. value of 9.3% measured in a
specimen in June. In this study, the highest mean
value of G.S.I. was measured in September 2008
(3.97% ± 4.10%) and August 2009 (3.37% ±
5.23%) and the highest and lowest G.S.I. raw
values, 14.16% and 0.15%, were measured in
August 2009. These latter results can explain that
in many cases standard deviation values were
higher than means values. After breeding, we
measured a decrease in testicular weight
justifying the reduction in value of the G.S.I.
(Abi-ayad et al., 2004; Utoh et al., 2004).
However, in coldest waters, Hood et al., (1988)
and O’Sullivan et al., (2003) showed lowest and
highest G.S.I. during autumn and late
winter/spring in C. oceanicus and C. conger ,
respectively. In this study, a second high G.S.I.
was obtained in spring (March 2009). This was
probably due to the presence of males in
advanced stages of spermatogenesis. The decline
of G.S.I. in April and July 2009 may be due to
the migration of males, by that time ready for
breeding, to spawning area at great depths.
The H.S.I. was highest in early winter
(December 2008). This coincided with hepatic fats
deposits due to intense feeding activity during
summer period and, probably, useful for fish
gonad maturation. In April 2009, H.S.I. was at its
lowest level. This could indicate that the reserves
stored in the liver during summer/autumn were
invested in the development of sexual products,
but also used as energy source when fish reduce
their feeding during migration to the breeding
area. This is confirmed by microscopic
examination of gonads which showed that
Some aspects on the reproductive cycle of European conger eel, Conger conger ( Linnaeus , 1758) 113
(Osteichthyes, Anguilliformes, Congridae) captured from Western Algerian coasts: a histological description of spermatogenesis
spermatogenesis of European conger eel started in
March. Histological study of testis confirmed
lobular structure in the European conger eel, also
observed in the European eel ( Anguilla anguilla )
and in many teleosts species (Todd, 1980). In this
study, we classified the process of
spermatogenesis into five stages. The testicular
structure showed that spermatogonia A (stage 1)
occurred in November and December 2008 and
spermatogonia B (stage 2) from December 2008
to February 2009, when G.S.I. was lowest and K
factor was highest. This may be related to trophic
phase which is completed before maturation (Cau
& Manconi, 1984; Utoh et al., 2004). Meiotic
divisions of spermatocytes started in March (stage
3) and corresponded to the first peak of G.S.I. In
wild winter flounder ( Pleuronectes americanus )
G.S.I. was high before appearance of spermatozoa
(Harmin et al., 1995). In the present study we do
not know when this stage ends, because of lack of
male specimens in samples of May and June 2009.
Histological examinations performed between
August and October, when G.S.I. was at its second
highest level, showed spermatocytes, spermatids
and spermatozoa in final maturation (stages 4 and
5). This corresponded to the phase of late
spermatogenesis and spermiogenesis. Indeed,
Utoh et al., (2004) showed that G.S.I. remained at
high levels in the late phase of spermatogenesis,
during spermiation in reared Japanese conger
(C. myriaster).
In conclusion, the rational management of fish
biodiversity and fishery necessitates understanding
on eco-biology of target species. This study
showed a (although statistically weak) relation
between biometrics parameters and spermatoge-
nesis’s dynamics in European conger eel.
Furthermore, these results provide the first
information on reproductive biology of C. conger
captured in Western Algerian coasts (North African
area) and report observations on cytodifferentiation
of spermatids into spermatozoa (spermiogenesis) in
male wild European conger eel (C. conger).
ACKNOWLEDGEMENTS
The authors thank the Algerian Ministry of
Higher Education and Scientific Research (MESRS)
which funded this experimental study within the
framework of CNEPRU project No F0 18200900 18.
REFERENCES
Abi-ayad S.-M. E.-A., Kestemont P. & Melard C., 2004.
Variations saisonnieres des lipides et des acides gras
chez les geniteurs de perche ( Perea fluviatilis )
maintenus en captivite. Sciences et Technologies, 21:
53-59.
Cau A. & Manconi P., 1984. Relationship of feeding,
reproductive cycle and bathymetric distrubution in
Conger conger. Marine Biology, 81: 147-151.
Correia A., Faria T. R., Alexandrino P., Antunes C., Isidro E.
J. & Coimbra J., 2006. Evidence for genetic
differentiation in the European conger eel ( Conger
conger ) based on mitochondrial DNA analysis.
Fisheries Science, 72: 20-27.
d’Hainaut L., 1975a. Concepts et methodes de la
statistiques. Tome 1. Education 2000, Edition Labor
(Bruxelles) et Fernand Nathan (Paris). 369 pp.
d’Hainaut L., 1975b. Concepts et methodes de la
statistiques. Tome 2. Education 2000, Edition Labor
(Bruxelles) et Fernand Nathan (Paris). 384 pp.
F.A.O., 2011. Fisheries and Aquaculture Department.
FIGIS: Species Fact Sheets. Species Identification and
Data Programme. Chapter: Conger conger, www.
fao.org/fishery/species/2994/en.
Figueiredo M.J., Figueiredo I. & Correia J., 1996.
Caracterizacao geral dos recursos de profundidade em
estudo no IPIMAR. Relatorios Tecnicos e Cientificos.
Instituto Portugues de Investigacao Maritima, 21: 50 pp.
Grier H. J., 1981. Cellular organization of the testis and
spermatogenesis in fishes. American Zoologist, 21 : 345-
357.
Harmin S.A., Crim L.W. & Wiegand M.D., 1995. Plasma
sex steroid profiles and the seasonal reproductive cycle
in male and female winter flounder, Pleuronectes
americanus. Marine Biology, 121: 601-610.
Hood P.B., Able K.W. & Grimes C.B., 1988. Biology of the
conger eel Conger oceanicus in the Mid- Atlantic Bight.
Marine Biology, 98: 587-596.
Langeron M., 1942. Precis de microscopie: Technique-
Experimentation-Diagnostique. Edition Masson et Cie
(Paris). 1339 pp.
McCleave J.D. & Miller M.J., 1994. Spawning of Conger
oceanicus and Conger triporiceps (Congridae) in the
Sargasso Sea and subsequent distribution of
leptocephali. Environmental Biology of Fishes, 39: 339-
355.
Menezes G. &. Silva H.M., 1999. Cruzeiros dirigidos as
especies demersais nos Azores. Relatorio da 16 a Semana
das Pescas dos Azores. 1997: 195-218.
Mochioka N. & Tokai T., 2001. Fisheries biology and
fisheries of white-spotted conger-eel Conger myriaster.
Kaiyo Monthly, 33, 525- 528.
Morato T., Sola E., Gros M.P. & Menezes G., 1999. Diets of
Korkbeard ( Phycis phycis) and conger eel {Con get-
conger) of the azores during spring of 1996 and 1997.
Arquipelago. Life and Marine Science, 17: 51-64.
O’Sullivan S., Moriarty C., Fitzgerald R.D., Davenport J. &
Micahy M.F., 2003. Age, growth and reproductive
114
Abi-ayad S.-M. E.-A., Bensahla Talet A., Ali Mehidi S., Dalouche F. & Meliani F. M.
status of the European conger eel, Conger conger in the
Irish coastal water. Fisheries Research, 64: 55-69.
Relini, G., Bertrand J & Zamboni A., 1999. Sintesi delle
conoscenze sulle risorse da pesca dei fondi del
Mediterraneo Centrale (Italia e Corsica). Biologia
Marina Mediterranea, 6: 174-179.
Sbaihi M., Fouchereau-Peron M., Meunier F., Elie P., Mayer
I., Burzawa-Gerard E., Vidal B. & Dufour S., 2001.
Reproductive biology of the conger eel from the south
coast of Brittany, France and comparison with the
Europe eel. Journal of Fish Biology, 59, 302-318.
Todd, P. R., 1980. Size and age of migrating New Zealand
freshwater eels ( Anquilla spp.). New Zealand Journal of
Marine and Freshwater Research, 14; 283-293.
Utoh T., Okamura A., Yamada Y., Tanaka S., Mikawa N.,
Akazawa A., Horie N., H.P. Oka FI. P., 2004.
Reproductive cycle in reared male common Japanese
conger, Conger my riaster. Aquaculture, 240: 589-605.
Vallisneri M., Scapolatempo M. & Piccinetti C., 2007.
Preliminary biological data on the northeast
Mediterranean conger eel ( Conger conger ). Boletin
Instituto Espanol De Oceanografia, 23: 111-114.
Yamamoto K., Hiroi O., Hirano T. & Moriolca T., 1972.
Artificial maturation of cultivated male Japanese eels by
synahorin injection. Nippon Suisan Gakkaishi, 38:
1083-1090.
Biodiversity Journal, 2011, 2 (3): 115-120
Exploring the vegetation dynamics and community assemblage in
Ayubia National Park, Rawalpindi, Pakistan, using CCA
Sheikh Saeed Ahmad* & Qurat Ul Ann
Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
* corresponding author: drsaeed@fjwu.edu.pk, 00 92 321 5167726.
ABSTRACT The relationship between species diversity and overall community assemblage was identified in two different
zones in Ayubia National Park (Rawalpindi, NE-Pakistan) which is recognized as protected area. Canonical
Correspondence Analysis (CCA) was used to find con-elation of environmental variables with species
abundance/richness. Results showed that in Zone 1 species were rather scattered due to the less availability of
organic matter and soil moisture as they occupy the less dense forest cover. Whereas Zone 2 showed the
opposite trends. Finally the overall zones showed that maximum number of quadrats included Zone 2 species
due to a great forest cover with excess amount of organic matter and soil moisture. The study highlighted the
importance of dynamic nature and composition of vegetation and stressed the need of conservation of native
flora for future generations.
KEY WORDS Canonical Correspondence Analysis, Species richness, Soil moisture, Ayubia National Park, Pakistan.
Received 27.05.2011; accepted 10.08.2011; printed 30.09.2011
INTRODUCTION
A National park is an area set aside by a
national government for the preservation of the
natural environment. The World Conservation
Union defines a National park as a natural area
designated to protect the ecological integrity of
one or more ecosystems for present and future
generations. In Pakistan, the earlier ecological
studies were generally observational. The earlier
studies, generally appeared in 1950’s, were
confined to visual description of the vegetation,
and no attempts were made to recognize
community types and to correlate them with the
relevant environmental factors. On the contrary,
advanced multivariate techniques of ordination
and cluster analysis had been routinely used in
Europe and other parts of the world. There are
numerous ordination methods accessible in plant
bionetwork, some of which have been extensively
used, e.g. Principal Component Analysis (PCA)
and Detrended Correspondence Analysis (DCA)
(Hill & Gauch, 1980), whereas some others only
sporadically used (Zhang, 2004). A series of
studies using different ordination techniques were
carried out in Pakistan by Ahmad et al., 2009;
Ahmad, 2009; Jabeen & Ahmad, 2009; Pirzada et
al., 2009; Ahmad et al., 2010a, b; Ahmad, 2011.
In Canonical Correspondence Analysis (CCA) the
floristic statistics and the environmental variables
can be assimilated within the ordination (Kashian
et al., 2003). Within the Ayubia National Park, the
study area was the moist temperate forest in
Rawalpindi, NE-Pakistan (Fig. 1), showing a high
diversity of susceptible plant and animal species.
The geographical location of the park is 330° 52'
N and 730° 90' E (Farooque, 2002).
The aim of this research was to quantify the
vegetation in Ayubia National Park using
ordination techniques and to determine the soil-
vegetation relationship to provide basic awareness
for preservation of nationally significant native
flora.
A list of plant species present in the study area
is provided in Table 1. Apart from their
importance from ecological point of view few
species are used as medicinal herbs by local
inhabitants. Observed biodiversity of occuring
species indicate that this area can be used for
conservation of native flora.
116
Sheikh Saeed Ahmad & Qurat ul ann
Figure 1. The geographical location of the Ayubia National Park, Rawalpindi, NE-Pakistan.
MATERIALS AND METHODS
For the clear communities demarcation study
area was divided into two zones. Zone 1 was
located about 1 m from the walking track. 60
quadrats were laid down along both sides (30
quadrats on each side). Quadrat method was used
for the collection of vegetation data. Quadrat size
of 1 x 1 m was selected because a high number of
herbs and shrubs were present in the area. Within
each quadrat, cover values of plants were
recorded by visual estimation according to
Domin Cover Scale (Kent & Coker, 1995).
Nomenclature was as in Nasir & Rafiq (1995).
Soil variables include pH, organic matter
(Nikolskii, 1963) and soil moisture (Allen, 1974).
Principal Component Analysis (PCA) and
Canonical Correspondence Analysis (CCA)
ordination methods were applied for data
quantification and analysis.
RESULTS
The most important way of exploring the
multivariate data sets is based on the ordination
results. In fact, the first ordination axis is frequently
correlated with one environmental variable, thus
helping in identifying the abundance and
occurrence of individual species related to
environmental factors. Different or multiple
approaches can depict such a relation including the
response curve of species along the moisture
gradient. In Zone 1 classification of species was
based upon soil moisture content within 30
Quadrats. Biplot of species and environmental
variables against soil moisture divided it into four
classes i.e. Class Moisture 1 included 13 Quadrats,
Class Moisture 2 included 4 Quadrats, Class
Moisture 3 included 10 Quadrats and Class
Moisture 4 included 3 Quadrats. The results showed
that Zone 1 species mostly fall into class moisture 1
due to availability of thick forest cover and high
contents of organic matter. The distance between
the symbols in the diagram approximates the
different distribution of relative abundance of the
species across the area.
Points resulting very close to each other
correspond to species often occurring together.
Segmentation of these symbols into slices was
based on currently active classification of
samples. Relative size of particular pie-slice
corresponds to relative importance (measured
either by number of presences or sum of
Exploring the vegetation dynamics and community assemblage in Ayubia National Park, Rawalpindi, Pakistan, using CCA 117
Species name
Families
Vinca major Linnaeus (1789)
Apocynaceae
Hedera nepalensis K.Koch (1753)
Araliaceae
Polygonatum verticillatum All. (1754)
Aspargaceae
Cichorium intybus Linnaeus (1753)
Asteraceae
Taraxacum officinale Wigg. (1881 )
Asteraceae
Asparagus gracilis Royle (1753)
Asteraceae
Thlaspi griffithianum (Boiss.) Boiss (1753)
Brassicaceae
Cardamine impatiens Linnaeus (1753)
Brassicaceae
Sisymbrium decomposita Linnaeus (1753)
Brassicaceae
Cannabis sativa (Linnaeus) (1753)
Canabinaceae
Viburnum foetens Decaisne ( 1753 )
Caprifoliaceae
Cerastrium fontanum Baumg. (1753)
Caryophullaceae
Dipsacus strictus D. Don (1754)
Dipasaceae
Euphorbia wallichii Hook.f. (1753 )
Euphorbiaceae
Indigofera heterantha Wall ex. Brand. (1753)
Fabaceae
Erodium cicutarium (Linnaeus) L, Herit ex Ait. (1789)
Geraniaceae
Mentha longifolia (Linnaeus) All. (1753)
Lamiaceae
Calamintha vulgaris Linnaeus (1754)
Lamiaceae
Nepeta connata Linnaeus (1753)
Lamiaceae
Lonicera quinquelocularis Hardw. (1753 )
Linaceae
Oxalis corniculata Linnaeus (1753 )
Oxalidaceae
Plantago major Linnaeus (1753)
Plantaginaceae
Poa pratensis Linnaeus (1753)
Poaceae
Cynodon dactylon (Linnaeus) Pers. ( 1753 )
Poaceae
Polyphyllum hexandrum I. (1753 )
Podophyllaceae
Rumex nepalensis Spreng. ( 1753)
Polygonaceae
Adiantum caudatum Forsk ( 1753)
Pteridaceae
Dryopteris ramose (Hope) C.Chr. (1753)
Pteridaceae
Adiantum capillus-veneris Linnaeus (1753)
Pteridaceae
Clematis grata Wall. (1754 )
Ranunculaceae
Aquilegia pubi flora Wall ex Royle (1754 )
Ranunculaceae
Fragaria vesca Lindley ex Lacaita (1753 )
Rosaceae
Fragaria nubicola Lindley ex Lacaita (1753)
Rosaceae
Duchesnea indica (Andr.) Focke ( 1811 )
Rosaceae
Potentilla gerardiana Lindley ex Lehm. (1753 )
Rosaceae
Galium aparine Linnaeus (1753 )
Rubiaceae
Bergenia himalaica Boriss. (1974)
Saxifragaceae
Bergenia ciliate (Haw.) (1831 )
Saxifragaceae
Scrophularia decomposita Royle ex Benth (1753 )
Scrophulariaceae
Urtica dioica Linnaeus ( 1753 )
Urticaceae
Valeriana jatamansi Jane ( 1 805)
Valerianaceae
Valerianella dentatam (L.) Poll. (1754)
Valerianae eae
Viola canescens Wall. ex Roxb. ( 1753 )
Violaceae
Table 1 : List of plant species in Ayubia National Park, Rawalpindi, Pakistan.
118
Sheikh Saeed Ahmad & Qurat ul ann
abundances) of the current species in the particular
class of samples (Fig. 2).
Similarly, figure 3 explains the classification
of species of Zone 2 in relation to soil moisture
content. Soil moisture was separated into four
classes i.e. Class moisture 1 included 8
Quadrats, Class moisture 2 included 7 Quadrats,
Class moisture 3 included 9 Quadrats and Class
moisture 4 included 6 Quadrats, the maximum
number of samples occurring in Class moisture
3. This analysis depicts that Zone 2 species fall
in class moisture 3 because of more availability
of organic matter and maximum forest cover in
that area. Overall species of both zones
classification respect to soil moisture was
analyzed. It showed that Class moisture 1
included 18 Quadrats, Class moisture 2 included
24 Quadrats, Class moisture 3 included 5
Quadrats and Class moisture 4 included 13
Quadrats. The analysis of these results showed
that a high number of Quadrats comprised Zone
2-species due to dense forest canopy resulting in
more availability of raw material for the
formation of organic matter (Fig. 4).
CO
o
Plan.maj
o
- 0.8
Cich.int
Poa.prat
Cann.sat Mention
Bern. him.
Gall, apa
Cala.vul
Frag, nub
Poll. hex
Frag.ves
Scro.dec
Urti. dio
Dryo.ram
Poly.ver
Pote. ger
SPECIES PIES CLASSES
□
Moisture-1
□
Moisture-2
□
Moisture-3
■
Moisture-4
Figure 2: Pie symbols plot of (Zone 1)
species over classes of samples with
different soil moisture.
©
Duch. ind
Loni.qui
Berg.cif
Clenrgra Erod.cic f inc.maj
Dips djtr J ale.jatcyno, ,dac
Thal.gri
Vioi . i
Pot .,
Rume.nep
n.maj
SPECIES PIES CLASSES
□
Moisture-1
■
Moisture-2
■
Moisture-3
■
Moisture-4
- 0.6
0.6
Figure 3: Pie symbols plot (Zone 2) of
species over classes of samples with
different soil moisture.
Exploring the vegetation dynamics and community assemblage in Ayubia National Park, Rawalpindi, Pakistan, using CCA 119
Scro.dec
SPECIES PIES CLASSES
EJ
Moisture-1
■
Moisture-2
■
Moisture-3
□
Moisture-4
-0.4 0.8
Figure 4: Pie symbols plot (Both Zones) of
species over classes of samples with
different soil moisture.
DISCUSSIONS
Multivariate analysis technique called Canonical
Correspondence Analysis (CCA) was used in this
study in Ayubia National Park to identify the
correlation between species occurrence/abundance
and environmental variables. This ordination
technique assumed that species abundance was
unimodally distributed along environmental
gradients. Species richness is mostly correlated
with soil moisture and pH. Organic matter was the
factor strongly correlated with species richness in
dense vegetation (Welle et al., 2003). Soil pH can
also be correlated with species richness, high
species richness results in declining as pH declines
(Gough et al., 2000; Roem & Berendse, 2000). The
study area was divided in different zones i.e. Zone
1 and Zone 2, CCA was applied to classify the
species richness. Results of Zone 1 were
completely different from Zone 2 as the soil
moisture and organic matter were highest in Zone 2
due to dense vegetation. Same results were revealed
when overall species data were employed for CCA
analysis. The most of the researches revealed that
high temperature as well as irrigation manipulations
exhibit unusual level of impact on diverse taxa
moreover, they may influence species abundance
and species richness in a complementary way. Soil
is the most species rich component in many
terrestrial ecosystems (Adams & Wall, 2000; Andre
et al., 2002) and also plays significant function
within ecosystem, affecting processes including
plant growth as well as decomposition (Coleman &
Hendrix, 2000). Results of present study stress the
need of conservation and preservation of native
flora.
REFERENCES
Adams G.A. & Wall D.H., 2000. Biodiversity above and
below the surface of soils and sediments: linkages and
implications for global change. Bioscience, 50:
1043-1048.
Ahmad S.S., 2009. Ordination and classification of
herbaceous vegetation in Margalla Hills National Park
Islamabad Pakistan. Biolological Diversity and
Conservation, 2: 38-44.
Ahmad S.S., 2011. Canonical Correspondence Analysis of
the relationships of roadside vegetation to its edaphic
factors: a case study of Lahore-Islamabad motorway
(M-2). Pakistan Journal of Botany, 43: 1673-1677.
Ahmad S.S., Fazal S., Valeem E.E., Khan Z.I., Sarwar G. &
Iqbal Z., 2009. Evaluation of ecological aspects of roadside
vegetation around Havalian city using Multivariate
techniques. Pakistan Journal of Botany, 41: 53-60.
Ahmad S.S., Wahid A. & Alcbar K. F., 2010a. Multivariate
classification and data analysis of vegetation along
Motorway (M-2), Pakistan. Pakistan Journal of Botany,
42: 1173-1185.
Ahmad I., Ahmad M.S.A., Hussain M., Ashraf M. &
Hameed M.Y. & Hameed M., 2010b. Spatiotemporal
Aspects of plant community structure in Open Scrub
Rangelands of Sub-Mountainous Himalayan Plateaus.
Pakistan Journal of Botany, 42: 3431-3440.
Allen S.E., 1974. Chemical analysis of ecological
materials. Blackwell scientific publications, Oxford.
London, 565 pp.
120
Sheikh Saeed Ahmad & Qurat ul ann
Andre H.M., Ducarme X. & Lebrun P., 2002. Soil
biodiversity: Myth, reality or conning? Oikos, 96: 3-24.
Coleman D.C. & Hendrix P.F., 2000. Invertebrates as
Webmasters in Ecosystems. Institute of Ecology, CABI
Publishing, New York, 352 pp.
Farooque M., 2002. Management Plan of Ayubia National
Park 2002-2007. Natural resource conservation project,
Galiat, Abbotabad, 11-12.
Gough L., Shaver G.R., Carrol J., Royer D.L. & Laundre
J.A., 2000.Vascular plant species richness in Alaskan
arctic tundra: The importance of soil pH. Journal of
Ecology, 88: 54-66.
Hill M.O. & Gauch H.G., 1980. Detrended correspondence
analysis, an improved ordination technique. Vegetatio,
42: 47-58.
Jabeen T. & Ahmad S.S., 2009. Multivariate analysis of
environmental and vegetation data of Ayub National
Park, Rawalpindi. Soil and Environment, 28: 106-112.
Kashian D.M., Barnes B.V. & Walker W.S., 2003.
Ecological species groups of landform-level ecosystems
dominated by jack pine in northern Lower Michigan,
USA. Plant Ecology, 166: 75-91.
Kent M. & Coker P., 1995. Vegetation Description and
Analysis: a practical approach. Belhaven Press, London,
363 pp.
Nasir Y J. & Rafiq R A., 1995. Wild Flowers of Pakistan.
Oxford University Press., Karachi, 298 pp.
Nikolskii N.N., 1963. Practical soil sciences. Tech Services,
U.S., Department of Commerce, Washington, 240 pp.
Pirzada H. Ahmad S.S. & Audil R., 2009. Monitoring of
soil lead pollution using roadside plants ( Dalbergia
sissoo and Cannabis sativa) utilizing multivariate
analysis. Pakistan Journal of Botany, 41: 1729-1736.
Roem W.J. & Berendse F., 2000. Soil acidity and
nutrient supply ratio as possible factors determining
changes in plant species diversity in grassland and
healthland communities. Biological conservation,
92: 151-161.
Welle V., Marlies E.W., Peter V., Gaius R. & Frank B., 2003.
Factors determining the species richness in Alaska
arctic tundra. Journal of Vegetation Science, 14: 711-
720.
Zhang J.T., 2004. Quantitative Ecology. Science Press,
Beijing, China: 516-522.
Biodiversity Journal, 2011, 2 (3): 121-144
A check list of the freshwater algal flora of Sierra Leone, Tropical West
Africa. I. Cyanophyceae to Conjugatophyceae (exclusive of Bacillariophyceae)
Silvia Alfinito
Department of Environmental Biology, University of Rome “La Sapienza”, 00185 Rome, Italy; e-mail: silvia.alfinito@uniromal.it
ABSTRACT Up to present, this is the first check list of the non marine algal flora of Sierra Leone. In this first part 468 taxa,
exclusive of diatoms, are reported. For each taxa, the updated nomenclature and the finding localities with refe-
rences are given.
KEY WORDS Check list, freshwater algae, Sierra Leone, Tropical Africa.
Received 27.05.2011; accepted 10.08.2011; printed 30.09.2011
INTRODUCTION
The first publication on the freshwater algal
flora of Sierra Leone (Tropical West Africa)
dates back to O’Meara (1876) who, during a
meeting of the Dublin Microscopical Club,
reported the finding of some Coscinodiscus (cen-
tric diatoms) in samples from Rockett River.
After that only in 1958 Woodhead & Tweed in a
check list of the algal flora of the West Africa
reported some algae themselves collected in
Sierra Leone, Sula Hills (Woodhead & Tweed,
1958); in subsequent papers these authors (1959;
1960) described several new species, that for the
extremely poor quality of iconography were con-
sidered suspected and in any case invalidly pub-
lished (Gronblad et al., 1968; Gerrath & Denny,
1979). All the records of Woodhead & Tweed
(loc. cit.) except for the newly but invalid
described taxa, were not substantiated by any
illustration. For all these reasons in this check list
the species reported in their papers will not be
taken into account.
The first data that can be considered valid for
the compilation of this check list are those
reported in Molder (1962) who listed several
diatoms collected in Kangari and Sula. Brand-
ham (1967) described a new species of Micros te-
rms from the samples in the collection of Wood-
ehead & Tweed; Gronblad et al. (1968) pub-
lished the desmid flora of Njala and Kabala, with
several species new to science and Whitton
(1968) a list of Cyanophyceae from the North
and North West Area.
From 1979 to 1994 several researches were
carried out on the freshwater algal flora of Sierra
Leone: Alfinito & Mazzoni (1986); Alfinito et al.
(1989; 1990; 1994); Carter & Denny (1982;
1987; 1992); Gerrath & Denny (1979; 1980;
1980a; 1988; 1989); Fumanti (1994); Fumanti et
al. (1990); Mazzoni (1986); Ricci & Alfinito
(1994) and Ricci et al. (1990).
Altogether 14 taxa were described as new:
Cystodinium sonfonense Gerrath et Denny, 1980
Actinotaenium wollei (Gronbl.) Teiling v.
latius Croasdale in Gronblad et al. 1968
Cosmarium exiguum Archer f. ocellatum
Gronblad et Croasdale in Gronblad et al., 1968
Cosmarium rossi Ricci in Ricci & Alfinito, 1994
Cosmarium wenmanae Croasdale in Gron-
blad et al., 1968
Docidium lomaense Alfinito et Mazzoni, 1986
Euastrum divaricatum Lundell v. ugandanum
Gronblad in Gronblad et al., 1968
Micrasterias echinata Brandham, 1967
Micrasterias mahabuleshwarensis Hobson v.
comperei Coute et Rousselin v. semireducta
Scott et Croasdale in Gronblad et al., 1968
122
Silvia Alfinito
1 3° W
+
12° W
+
11°W
+
10° N
+ 9° N
8° N
+ 7°N
Figure 1. Map of Sierra Leone showing the investigated sites.
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
123
Penium cylindraceum Forster f. majus Croas-
dale in Gronblad et al., 1968
Staurastrum contectum Turner f. concavum
Scott et Croasdale in Gronblad et al., 1968
Staurastrum histrix Ralfs v. granulatum Ricci
in Ricci et al., 1990
Staurastrum setigerum Cleve v. pectinatum
West et West f. paucispiniferum Croasdale in
Gronblad et al., 1968.
Staurastrum spiculiferum Borge v. glabrum
Gerrath et Denny, 1988
MATERIAL AND METHODS
This first part of the check list, concerning 25
localities, lists all the algal groups, exclusive of
diatoms, for a total of 468 taxa, distributed as
follows in the different algal classes: Cyano-
phyceae: 38; Chrysophyceae: 2; Xanthophyceae:
1, Raphidophyceae: 1; Cryptophyceae: 2; Dino-
phyceae: 7; Euglenophyceae: 73; Prasinophy-
ceae: 1; Chlorophyceae: 55; Conjugatophyceae:
288.
All the taxa reported only as “sp.” or with
“cfr.” but with an iconographic documentation,
were taken into account. Those genera cited only
as “spp.” were counted only as genera.
In the check list, the classification of the
algae, given in van den Hoek et al. (1995), was
followed at classes level.
For taxa nomenclature checking references
used were:
Cyanophyceae: Anagnostidis & Komarek,
1989, 1990; Komarek & Anagnostidis, 1999;
2005; Komarek & Hauer, 2011.
Chrysophyceae: Starmach, 1985.
Xanthophyceae: Ettl, 1978.
Raphidophyceae and Cryptophyceae: Huber-
Pestalozzi, 1950.
Dinophyceae: Popovsky & Pfiester, 1990.
Euglenophyceae: Huber-Pestalozzi, 1955.
Prasinophyceae: Ettl, 1983.
Chlorophyceae, Volvocales: Ettl, 1983.
Chlorophyceae, Tetrasporales: Ettl & Gartner,
1988.
Chlorophyceae, Chlorococcales: Komarek &
Fott, 1983.
Chlorophyceae, Chaetophorales: Printz, 1964.
Chlorophyceae, Oedogoniales: Mrozinska,
1985.
Chlorophyceae, Conjugatophyceae: Coesel &
Meester, 2007; Croasdale et al., 1983; Forster,
1982; Prescott et al., 1972; 1975; 1977; 1981;
1982; Ruzicka, 1977; 1981.
Investigated localities
Bambawo, stream at
Bathurst Falls (Fig. 2)
Freetown
Fourah Bay College, Freetown.
Guma Dam (Fig. 3)
Kabala, river at
Kambia
Kania, pools near (Fig. 4)
Kenema, swamp at
Lake Gambia
Lake Mabesi
Lake Malen
Lake Mape
Lake Popei
Lake Sonfon
Lake Tibi
Loma Mnts, Peak Bintimani (Figs. 5-7)
Njala
River Jong
River Malen
River Sewa
River Waanje
Rokupr
Waterloo
York, swamp at (Fig. 8)
References for Sierra Leone freshwater algae
(numbers in bracket after each locality)
1: Brandham, 1967.
2: Gronblad et al., 1968.
3: Whitton, 1968.
4 : Gerrath & Denny, 1979.
5: Gerrath & Denny, 1980.
6: Gerrath & Denny, 1980a.
7: Alfinito & Mazzoni, 1986.
8 : Gerrath & Denny, 1988.
9 : Alfmito et al., 1989.
10 : Gerrath & Denny, 1989.
11 : Alfmito et al., 1990.
12 : Ricci et al., 1990.
13: Ricci & Alfinito, 1994.
124
Silvia Alfinito
Fig-2
Fig.3
Fig.4
Fig.5
Fig. 6
Fig.7
Figure 2. Bathurst Falls (photo W. Rossi).
Figure 3. Gurna Dam, pool on lateritic soil (photo W. Rossi).
Figure 4. Little pools near Kania (photo W. Rossi).
Figure 5. Loma Mountains, Peak Bintimani (photo W. Rossi).
Figure 6. Loma Mountains, NE slope of Peak Bintimani, sampling area (photo W. Rossi).
Figure 7. Loma Mountains, NE slope of Peak Bintimani, 1650 m a.s.l., small pools on granitic rock (photo W. Rossi).
Figure 8. Swamp near York (photo W. Rossi).
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
125
CHECKLIST
CYANOPHYCEAE
CHROOCOCCALES
Aphanocapsa Nageli, 1849
A. elachista West et West, 1894
- Lake Tibi, Lake Sonfon (6)
Aphanothece Nageli, 1849
A. stagnina (Sprengel) A. Braun, 1863
- Kambia (3); Lake Sonfon (6)
Chroococcus Nageli, 1849
C. turgidus (Kiitz.) Nageli, 1849
- Without localities (6)
Eucapsis Clements et Shantz, 1909
E. alpina Clements et Shantz, 1909
- Lake Sonfon (6)
Gloeocapsa Kiitzing, 1843
G. aeruginosa Kiitzing, 1843
- Waterloo (3)
Merismopedia Meyen, 1839
M. punctata Meyen, 1839
- Lake Mape, River Jong, River Sewa, Lake
Popei, Lake Sonfon (6)
NOSTOCALES
Anabaena Bory ex Bomet et Flahault, 1886
A. fuellebornii Schmidle, 1902 - GumaDam(3)
A. promecespora Fremy, 1930 forma - Lake Popei (6)
A. torulosa (Carm.) Lagerheim ex Bomet et Flahault, 1888 - Rokupr (3)
Anabaena spp. - Lake Mape, River Jong, Lake Popei, Lake
Sonfon (6)
Calothrix Agardh ex Bomet et Flahault, 1886
C. stagnalis Gomont, 1895 - River Jong, Bambawo, Lake Sonfon (6)
Cylindrospermum Kiitzing ex Bomet et Flahault, 1888
C. majus Kiitzing ex Bornet et Flahault, 1888 - Freetown (3)
C. licheniforme (Bory) Kiitzing ex Bomet et Flahault, 1888 - Freetown (3)
Nodularia Mertens ex Bomet et Flahault, 1886
126
Silvia Alfinito
N. harveyana Thuret ex Bomet et Flahault, 1888
Scytonema Agardh ex Bomet et Flahault, 1886
S. hyalinum Gardner, 1927
Tolypothrix Kiitzing ex Bornet et Flahault, 1886
T. byssoidea (Hassal) Kirchner, 1878
T. distorta Kiitz. ex Bom. et Flah., 1888
v. symplocoides Hansgirg, 1892
T. fragilis (Gardner) Geitler, 1932
T. mangini (Fremy) Geitler, 1932
OSCILLATORIALES
Arthrospira Stitzenberger ex Gomont, 1892
A. gigantea (Schmidle) Anagnostidis, 1998
= Spirulina gigantea Schmidle, 1902
A.jenneri Stitzenb. ex Gomont, 1892
= Spirulina jenneri (Stizenb.) Geitler, 1925
Geitlerinema (Anagn. et Komarek) Anagnostidis, 1989
G. calcuttense ( Bis w.) Anagnostidis, 1989
= Oscillatoria calcuttensis Biswas, 1932
G. splendidum (Grev. ex Gom.) Anagnostidis, 1989
= Oscillatoria splendida Greville ex Gomont, 1892
Lyngbya Agardh ex Gomont, 1892
L. birgei G.M. Smith, 1916
L. corticicola Briihl et Biswas, 1923
L. martensiana Meneghini ex Gomont, 1892
L. nigra Agardh ex Gomont, 1892
L. spiralis Geitler, 1932
Oscillatoria Vaucher ex Gomont, 1892
O. variabilis Rao, 1936
= 0. raoi De Toni, 1939
NOTE: 0. variabilis is one of the unrevised species
of Phormidium in Komarek & Anagnostidis (2005).
0. princeps Vaucher ex Gomont, 1892
0. subbrevis Schmidle, 1901
0. tenuis Agardh ex Gomont, 1892
Phormidium Kiitzing ex Gomont, 1 892
- Lake Tibi (6)
- Freetown (3)
- Fourah Bay College (3)
- Fourah Bay College (3)
- Rokupr (3)
- Guma Dam (3)
- Lake Gambia, Lake Popei, Lake Mabesi (6)
- Lake Sonfon (6)
- Guma Dam (3)
- Freetown (3); Lake Sonfon (6).
- Lake Mape, River Jong (6)
- Kambia (3)
- Lake Mape, Bambawo, Lake Sonfon (6)
- Kambia (3)
- Rokupr (3)
- Kambia (3)
- Lake Mape, Lake Sonfon (6)
- Lake Mape, Lake Mabesi, River Jong, River
Sewa, Lake Sonfon (6)
- Lake Popei, River Jong, Lake Sonfon (5)
P. digueti (Gom.) Anagnostidis et Komarek, 1988 - Lake Sonfon (6)
= Lyngbya digueti Gomont, 1895
P. kuetzingianum (Kirchn.) Anagnostidis et Komarek, 1988 - Kambia (3)
= Lyngbya kuetzingiana Kirchner, 1878
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
127
P. okeni (Agardh ex Gom.) Anagnostidis et Komarek, 1988
= Oscillatoria okeni Agardh ex Gomont, 1892
Spirulina Turpin ex Gomont, 1892
- Freetown (3)
S. major Kiitzing ex Gomont, 1892
Symplocastrum (Gomont) Kirchner, 1898
- York (3); Lake Mape, Lake Popei (6).
S. muelleri (Nageli ex Gomont.) Anagnostidis, 2001
=Schizothrix muelleri Nagel i ex Gomont, 1892
- Kambia(3)
STIGONEMATALES
Hapalosiphon Nageli in Kiitzing ex Bornet et Flahault, 1886
H. arboreus West et West, 1894
H. flexuosus Borzi, 1892
- Lake Sonfon (6)
- Lake Popei (6)
CHRYSOPHYCEAE
OCHROMONADALES
Dinobryon Ehrenberg, 1835
D. sertularia Ehrenberg, 1838
D. sertularia v. protuberans (Lemm.) Krieger, 1930
- Lake Tibi (6)
- Lake Gambia, River Waanje, Lake Tibi,
Lake Mape (6)
XANTHOPHYCEAE
MISHOCOCCALES
Ophiocytium Nageli, 1849
0. majus Nageli, 1849
- Lake Sonfon (6)
RAPHIDOPHYCEAE
VACUOLARIALES
Gonyostomum Diesing, 1866
G. semen (Ehr.) Diesing, 1866
- Lake Sonfon (6)
128
Silvia Alfinito
CRYPTOPHYCEAE
CRYPTOMONADALES
Cryptomonas Ehrenberg, 1831
River Malen, Lake Sonfon (6)
Lake Mape, River Waanje, Lake Popei, Lake
Tibi, River-Jong, Lake Sonfon (6)
C. marssonii Skuja, 1848
C. ovata Ehrenberg, 1832
DINOPHYCEAE
PERIDINIALES
Ceratium Schrank, 1793
C. brachyceros Daday, 1907
C. hirundinella (0. F. Muller) Dujardin, 1841 forma
Gymnodinium Stein, 1878
G. fuscum (Ehr.) Stein, 1878
Peridinium Ehrenberg, 1832
P. umbonatum Stein, 1883
= P. inconspicuum Lemmermann, 1899
- Lake Sonfon (6)
- Lake Mape, River Waanje, River Jong (6)
- Lake Tibi, Lake Gambia (6)
- Lake Mape, River Waanje, Lake Gambia (6)
DINOCOCCALES
Cystodinium Klebs, 1912
C. sonfonense Gerrath et Denny, 1980
Stylodinium Klebs, 1912
S. globosum Klebs, 1912
= S. cerasiforme Pascher, 1927
Tetradinium Klebs, 1912
T. javanicum Klebs, 1912
- Lake Sonfon (6)
- Lake Sonfon (6)
- Lake Sonfon (6)
EUGLENOPHYCEAE
EUGLENALES
Astasia Dujardin, 1841
A. torta Pringsheim, 1942
Entosiphon Stein, 1878
- Lake Sonfon (4)
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
129
E. sulcatum (Dujardin) Stein, 1878
Entosiphon sp.
Euglena Ehrenberg, 1838
- Lake Sonfon (4)
- Lake Sonfon (4)
E. acus Ehrenberg, 1838
E. charkowiensis Swirenko, 1913
E. geniculata Dujardin, 1841
E. gracilis Klebs, 1 883
E. limnophila Lemm., 1898 v. lemmermannii Drezelpolsky, 1925
E. oblonga Schmitz, 1884
E. spirogyra Ehrenberg, 1838 v. suprema Skuja, 1932
E. viridis Ehrenberg, 1830
Euglena sp. 1
Euglena sp. 2
- Lake Tibi, Lake Mabesi, Lake Sonfon (4)
- River Waanje, Lake Gambia, Lake Tibi,
Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Malen (4)
Gyropaigne Skuja, 1939
G. lefevrei Bourrelly et Georges, 1951 - Lake Sonfon (4)
Lepocinclis Perty, 1849
L. acuta Prescott, 1949
L.fusiformis (Carter) Lemm. em. Conrad, 1934
v. fusiformh f. fusiformis
L. fusiformis v. fusiformis f. lemmermannii (Conrad)
Huber-Pestalozzi, 1955
= L. fusiformis (Carter) Lemm., 1901 v. lemmermanni Conrad, 1935
L. fusiformis v. amphirltynchus Nygaard, 1949
L. marssonii Lemmermami em. Conrad, 1935
L. ovum (Ehr.) Lemmermann, 1910 v. ovum
L. ovum v. angustata (Defl.) Conrad, 1935
L. ovum v. globula (Perty) Lemmermann, 1910
L. texta (Dujardin) Lemmermann em. Conrad, 1935
Lepocinclis sp.
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Tibi (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
Menoidium Perty, 1852
M. gracile Playfair, 1921 - Lake Sonfon (4)
Notosolenus Stokes, 1884
Notosolenus sp.
Phacus Dujardin, 1841
P. acuminatus Stokes, 1885 forma
P. atraktoides Pochmann, 1942
P. brachykentron Pochmann, 1942 forma
P. brevicaudatus (Klebs) Lemmermann, 1910
P. contortus Bourrelly, 1952 v. complicatus Bourrelly, 1952
P. ephippion Pochmann, 1942
P. glaber (Defl.) Pochmann, 1942
P. hamatus Pochmann, 1942
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Gambia (4)
- Lake Sonfon (4)
- Lake Mape (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
130
Silvia Alfinito
P. inflexus (Kisselew) Pochmann, 1942
P. longicauda (Ehr.) Dujardin, 1841 v. longicauda
P. longicauda v. major Swirenko, 1915
P. longicauda v. rotunda (Pochm.) Huber-Pestalozzi, 1955
P. meson Pochmann, 1942
P. onyx Pochmann, 1942
P. orbicularis Hiibner, 1896
P. pleuronectes (Muller) Dujardin, 1841 forma
P. polytrophos Pochmann, 1942
P. pseudonordstedtii Pochmann, 1942
v. minuscola (Conrad) Huber-Pestalozzi, 1955
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Sonfon (4)
- Lake Mabesi (4)
- Lake Mabesi (4)
- Lake Sonfon (4)
- River Waanje, Lake Sonfon (4)
- Lake Mabesi, Lake Sonfon (4).
- Lake Sonfon (4)
- Lake Sonfon (4)
P. stokesii Lemmermann, 1910
- Lake Sonfon (4)
P. tortus (Lemm.) Skvortzow, 1928
- Lake Malen, Lake Sonfon (4)
P. undulatus (Skvortz.) Pochmann, 1942
- Lake Sonfon (4)
P. viguieri Allorge et Lefevre, 1930
- Lake Sonfon (4)
Phacus sp. 1
- Lake Sonfon (4)
Phacus sp. 2
- Lake Sonfon (4)
Strombomonas Deflandre, 1930
S. fluviatilis (Lemm.) Deflandre, 1930
- Lake Mabesi (4)
S. schauinslandii (Lemm.) Deflandre, 1930
- Lake Mabesi, Lake Malen (4)
S. tambowika (Swir.) Deflandre, 1930
- Lake Mabesi (4)
S. tetraptera Balech et Dastugue, 1937
- Lake Mabesi (4)
S. verrucosa (Daday) Deflandre, 1930
v. zntiewika (Swir.) Deflandre, 1930
- Lake Mabesi (4)
Trachelomonas Ehrenberg, 1833
T. abrupta Swirenko em. Defl., 1926
- River Waanje, River Jong, Lai
T. armata (Ehr.) Stein, 1833
- Lake Mabesi, Lake Sonfon (4'
T. crispa Balech, 1944
- Lake Sonfon (4)
T. dubia Swirenko em. Deflandre, 1926
- Lake Sonfon (4)
T. globularis (Awer.) Lemmermann, 1910
v. punctata Skvortzow, 1917
- Lake Sonfon (4)
T hispida (Perty) Stein, 1883 v. hispida
- Lake Sonfon (4)
T. hispida v. crenulatocollis (Masked) Lemmermann, 1910
- Lake Sonfon (4)
T. hispida v. duplex Deflandre, 1926
- River Jong (4)
T. intermedia Dangeard, 1902
- Lake Sonfon (4)
T. janczewskii Drezelp., 1921 var. minor Drezelpolski, 1925
- Lake Sonfon (4)
I naviculiformis Defl., 1926 v. bourrelyi Huber-Pestalozzi, 1955
- Lake Sonfon (4)
T oblonga Lemmermann, 1899
- Lake Mape, Lake Sonfon (4)
T scabra Playfair, 1915 forma
- Lake Mabesi (4)
T. speciosa Deflandre, 1926
- Lake Sonfon (4)
T superba Swirenko em. Deflandre, 1926
- Lake Sonfon (4)
T. volvocinopsis Swirenko, 1914
- Lake Mape, Lake Sonfon (4)
T. woycickii Koczwara, 1915
- Lake Sonfon (4)
T. zinger i Roll, 1925
- Lake Sonfon (4)
PRASINOPHYCEAE
POLYBLEPHARIDALES
Pyramimonas Schmarda, 1 849
P. tetrarynchus Schmarda, 1849
- Lake Sonfon (5)
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
131
CHLOROPHYCEAE
VOLVOCALES
Chlamydomonas Ehrenberg, 1833
C. pseudotarda Bourrelly, 1951
Chlamydomonas sp.
Eudorina Ehrenberg, 1831
E. elegans Ehrenberg, 1831
Pandorina Bory, 1824
P. morum (0. F. Miiller) Bory, 1824
- Lake Sonfon (5)
- Lake Sonfon (5)
- Lake Malen, River Jong (5)
- River Jong, Lake Sonfon (5)
TETRASPORALES
Chlamydocapsa Fott, 1972
C. ampla (Kiitz.) Fott, 1972 - Lake Sonfon (5)
= Gloeocystis ampla (Kiitz.) Lagerheim, 1883
Stylosphaeridium Geitler et Gimesi, 1925
Stylosphaeridium stipitatum (Bachm.) Geitler et Gimesi, 1925 - Lake Sonfon (5)
= Characium stipitatum (Bachm.) Wille, 1911
CHLOROCOCCALES
Ankistrodesmus Corda, 1838
A. bibraianus (Reinsch) Korsikov, 1953
A. fusiformis Corda, 1838
A. gracilis (Reinsch) Korsikov, 1953
Bo tryo co ecus Kritzing, 1849
B. braunii Kiitzing, 1849
Characium A. Braun in Kiitzing, 1849
C. ensiforme Hermann, 1863
= C. ambiguum Hermann, 1863
C. rostratum Reinhard ex Printz, 1914
Coelastrum Nageli, 1849
C. cambricum Archer, 1868
- Lake Mape, Lake Gambia, Lake Tibi, Lake
Popei, Lake Sonfon (5)
- Lake Tibi, Lake Popei, Lake Sonfon (5)
- Lake Sonfon (5)
- River Jong, Lake Gambia, Lake Popei, Lake
Sonfon (5)
- Lake Gambia (5)
- Lake Sonfon (5)
- River Waanje, River Malen, Lake Gambia,
Lake Tibi, Lake Popei, Lake Mabesi, Lake
Mape, Lake Sonfon (5)
132
Silvia Alfinito
C. sphaericum Nageli, 1849
Coenochloris Korsikov, 1953
C. pyrenoidosa Korsikov, 1953
Crucigenia Morren, 1830
C. quadrata Morren, 1830
Dictyosphaerium N ageli , 1849
D. pulchellum Wood, 1872
- Lake Tibi, Lake Popei, River Jong, Lake
Sonfon (5)
- Lake Tibi (5)
- Lake Tibi (5)
- Lake Gambia, Lake Popei, Lake Tibi, River
Jong, River Malen, Lake Sonfon (5)
Dimorphococcus A. Braun, 1855
D. lunatus A. Braun, 1855
Gloeocystis Nageli, 1849
G. major Gemeck ex Lemmermann, 1915
Gloeocystis sp.
Kirchneriella Schmidle, 1893
K. lunaris (Kirchner) Mobius, 1894
Micractinium Fresenius, 1858
M. pusillum Fresenius, 1858
Monoraphidium Komarkova-Legnerova, 1969
M. contortum (Thuret) Komarkova-Legnerova, 1969
M. convolutum (Corda) Komarkova-Legnerova, 1969
M. griffithii (Berkeley) Komarkova-Legnerova, 1969
M. irregulare (G. M. Smith) Komarkova-Legnerova, 1969
Oocystis A. Braun, 1855
O. borgei Snow, 1903
O. solitaria Wittrock, 1879
= 0. crass a Wittrock, 1880
Palmodictyon Kiitzing, 1845
P. lobatum Korsikov, 1953
- Lake Tibi, Lake Mape, Lake Sonfon (5)
- Lake Sonfon (5)
- Lake Gambia (5)
- Lake Tibi, Lake Sonfon (5)
- Lake Sonfon (5)
- Lake Sonfon (5)
- Lake Sonfon (5)
- Lake Tibi (5)
- Lake Sonfon (5)
- Lake Gambia, Lake Sonfon (5).
- Lake Sonfon (5).
- Lake Sonfon (5)
Pediastrum Meyen, 1829
P. angulosum (Ehr.) Meneghini, 1840 v. asperum Sulek, 1969 - River Waanje, River Jong, River Malen,
Lake Mape, Lake Popei, Lake Tibi (5)
P. biradiatum Meyen, 1829 - River Waanje, Lake Sonfon (5)
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
133
P. boryanum (Turpin) Meneghini, 1840
P. duplex Meyen, 1829
P. tetras (Ehr.) Ralfs, 1844
Scenedesmus Meyen, 1829
- River Waanje, River Malen, Lake Mape,
Lake Sonfon (5)
- River Waanje, River Jong, River Malen,
Lake Mape (5)
- River Waanje, River Jong, River Sewa,
Lake Tibi, Lake Gambia, Lake Popei, Lake
Sonfon (5)
S. acuminatus (Lagerh.) Chodat, 1902
S. armatus Chodat, 1913
S. brasiliensis Bohlin, 1897
S. ecornis (Ehr.) Chodat, 1926
S. gutwinskii Chodat, 1926 v. heterospina Bodrogskozy, 1950
S. kissii Hortobagy, 1975
= S. quadricauda (Turp.) Brebisson, 1835 v. biornatus Kiss, 1939
S. quadricauda (Turpin) Brebisson, 1835
- River Jong, River Malen, Lake Mape, Lake
Sonfon (5)
- River Malen, Lake Mape, Lake Sonfon (5)
- Lake Sonfon (5)
- Lake Sonfon (5)
- Lake Sonfon (5)
- Lake Tibi, Lake Popei, River Jong (5)
- River Waanje, Lake Mape, Lake Tibi, Lake
Gambia, River Jong, Lake Popei (5)
Sphaerocystis Chodat, 1897
S. schroeteri Chodat, 1897
- River Jong , Lake Mape, Lake Mabesi, Lake
Sonfon (5)
Tetraedron Kiitzing, 1845
T. regular e Kiitzing, 1845
Tetrallantos Teiling, 1916
T. lagerheimii Teiling, 1916
Westella de Wildeman, 1897
- Lake Sonfon (5)
- Lake Tibi, Lake Sonfon (5)
W. botryoides (W. West) de Wildeman, 1897
- Lake Sonfon (5)
CHAETOPHORALES
Chaetosphaeridium Klebahn, 1892
C. pringsheimii Klebahn, 1893 - Lake Tibi, Lake Popei (5)
Microspora Thuret, 1850
M. aequabilis Wichmann, 1937 v. minor Wichmann, 1937 - Lake Sonfon (5)
Microthamnion Nageli, 1849
M. strictissimum Rabenhorst, 1863 - Lake Mape, Lake Sonfon (5)
Oligochaetophora G. S. West, 1911
134
Silvia Alfinito
0. simplex G. S. West, 1911
- Lake Sonfon (5)
Ulothrix Kiitzing, 1836
U. amphigranulata Skuja, 1948
U. subtilis Kiitzing, 1845
- Lake Sonfon (5)
- Lake Sonfon (5)
Uronema Lagerheim, 1887
U. confervicolum Lagerheim, 1887 v. africanum (Borge) Printz, 1964
= U. africanum Borge, 1928
- Lake Sonfon (5)
OEDOGONIALES
Bulbochaete Agardh, 1817
Bulbochaete spp.
- Lake Mape, Lake Tibi, Lake Popei, Lake
Sonfon (5)
Oedogonium Link, 1 820
0. mammiferum Wittrock, 1874
O.patulum Tiffany, 1934
0. reinschii Roy ex Cook, 1884
Oedogonium spp.
- Lake Sonfon (5)
- Lake Sonfon (5)
- Lake Sonfon (5)
- River Jong, River Sewa, Lake Mape, Lake
Gambia, Lake Tibi, Lake Popei, Lake
Sonfon (5)
CONJUGATOPHYCEAE
ZYGNEMATALES
Cylindrocystis Meneghini ex de Bary, 1858
C. brebissonii Menegh. ex de Bary, 1858 v. brebissonii
C. brebissonii v. minor West et West, 1902
C. cr asset de Bary, 1858
Mougeotia Agardh, 1824
- Lake Sonfon (5); Kania (9); Bathurst
Falls (11); Guma Dam (12); York (13)
- Lake Tibi (5)
- Lake Sonfon (5)
Mougeotia spp.
- Lake Mape, River Jong, Bambawo, Lake
Gambia, River Sewa, Lake Tibi, Lake Popei,
River Malen, Lake Sonfon (5)
Netrium (Nag.) Itzsigson et Rothe em. Liitkemiiller, 1902
N. digitus Itzsigson et Rothe, 1856 v. digitus
N. digitus v. lamellosum (Breb.) Gronblad, 1920
N. digitus v. rhomboideum Gronblad, 1920
N. oblongum (de Bary) Lutkemiiller, 1902 v. oblongum
N. oblongum v. cylindricum West et West, 1903
- Kabala (2); Njala (2); River Sewa (5); Loma
Mnts (7); Kania (9); Bathurst Falls (11)
- Njala (2)
- Njala (2); York (13)
- Loma Mnts (7)
- Kabala (2)
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
135
Spirogyra Link in Nees, 1820
Spirogyra spp.
DESMIDIALES
Actinotaenium Teiling, 1954
A. capax (Joshua) Teiling, 1954 v. minus (Schmidle) Teiling, 1954
A. clevei (Lundell) Teiling, 1954
A. crassiusculum (de Bary) Teiling, 1954
A. cucurbita (Breb.) Teiling, 1954 v. cucurbita
A. cucurbita v. cucurbita f. rotundatum (Krieger) Teiling, 1954
A. cucurbita (Breb.) Teiling, 1954 forma
A. cfr. cucurbita (Breb.) Teiling, 1954
A. cucurbitinum (Bisset) Teiling, 1954 v. cucurbitinum
A. cucurbitinum v. truncatum (Krieger) Teiling, 1954
Actinotaenium sp. ad A. phymatosporum (Nordst.)
= Penium sp. Kouwets et Coesel, 1984 acced.
ad 72 phymatosporum Nordstedt, 1876 acced.)
A. subglobosum (Nordst.) Teiling, 1954
A. wollei (West et West) Teiling, 1954 v. wollei
A. wollei v. latius Croasdale in Gronblad et al., 1968
Bambusina Kiitzing ex Kiitzing, 1849
B. borreri (Ralfs) Cleve, 1864
Closterium Nitzsch ex Ralfs, 1848
C. abruptum W. West, 1892 v. angustissimum (Schmidle) Roll, 1915
C. abruptum v. brevius (West et West) West et West, 1904
C. acerosum (Schrank) Ehrenberg ex Ralfs, 1848
C. cfr. attenuatum Ralfs, 1848
C. baillyanum (Breb.) Brebisson, 1856
C. closterioides (Ralfs) Louis et Peeters, 1967 v. closterioides
= C. libellula Focke, 1847 v. libellula, invalidly published
according Ruzicka (1977) art. 13 ICBN
C. closterioides v. intermedium (Roy et Bisset.) Ruzicka, 1973
= C. libellula Focke, 1847 v. intermedium (Roy et Bisset)
G. S. West, 1914
C. cornu Ehrenberg ex Ralfs, 1848
C. costatum Corda ex Ralfs, 1848 forma
C. cynthia De Notaris, 1867
C. cynthia De Notaris, 1867 forma
C. dianae Ehrenberg ex Ralfs, 1848 v. dianae
C. dianae v. minus Hieronymus, 1895
C. dianae v. pseudodianae (Roy) Krieger, 1932
- Lake Mape, River Jong, River Waanje, Lake
Tibi, Lake Popei, Lake Sonfon (5)
- Loma Mnts (7)
- York (13)
- Guma Dam (12); York (13)
- Njala (2); Loma Mnts (7); Lake Sonfon (8);
Kania (9); Bathurst Falls (11); York (13)
- Njala (2); York (13)
- Lake Sonfon (8)
- Njala (2)
- Njala (2)
- York (13)
- Njala (2)
- Njala (2); Kabala (2); Guma Dam (12).
- York (13)
- Njala (2); Kabala (2); Lake Sonfon (8);
Guma Dam (12)
- Guma Dam (12)
- Lake Mabesi (10)
- Loma Mnts (7); Lake Sonfon (8); York (13)
- River Waanje (10)
- Njala (2)
- Njala (2)
- Njala (2); Kania (9)
- Njala (2); Kania (9); River Jong,
Lake Tibi (10); Bathurst Falls (11)
- Kania (9)
- Lake Mabesi (10)
- Njala (2); Lake Sonfon (8); Kania (9); River
Jong, Lake Popei (10); Bathurst Falls (11);
Guma Dam (12); York (13)
- Njala (2)
- Njala (2)
- Njala (2); Lake Sonfon (8); River Waanje,
Lake Gambia, Lake Tibi, Lake Popei (10);
Guma Dam (12); York (13)
- Njala (2); Kabala (2)
136
Silvia Alfinito
C. directum Archer, 1862 - Bathurst Falls (11)
= C. ulna Focke, 1847, invalidly published according Ruzicka
(1977) art 13 ICBN
C. ehrenbergii Menegh. ex Ralfs, 1848 v. ehrenbergi
C. ehrenbergii v. ehrenbergii forma
C. ehrenbergii v. malinvernianum (De Notaris) Rabenhorst,
C. gracile Breb. ex Ralfs, 1 848
C. incurvum Brebisson, 1856
C. infractum Messikommer, 1929 v. rotundatum Gronblad,
C. kuetzingii Brebisson, 1856
C. moniliferum (Bory) Ehrenberg ex Ralfs, 1848
C. navicula (Breb.) Lutkemiiller, 1902
C. nematodes Joshua, 1886
C. parvulum Nageli, 1849 v. parvulum
C. parvulum v. angustum West et West, 1900
C. praelongum Brebisson, 1856
C. psudolunula Borge, 1909
C. pusillum Hantzsch in Rabenhorst, 1861 v. laticeps Gronblad.
C. ralfsii Brebisson ex Ralfs, 1848 v. hybridum Rabenhorst,
C. rostratum Ehrenberg ex Ralfs, 1848
C. setaceum Ehr. ex Ralfs, 1 848
C. striolatum Ehrenberg ex Ralfs, 1848
C. subulatum (Kutz.) Brebisson, 1856
C. tumidum Johnson, 1895
Closterium sp.
Cosmarium Corda ex Ralfs, 1848
- Lake Sonfon (8); River Jong (10)
- Njala(2)
1868 - Njala(2)
- Lake Sonfon (8); River Jong, Lake Mabesi
(10)
- River Jong (10)
1947 - Njala(2)
- Lake Sonfon (8); River Waanje, Lake
Mabesi (10)
- Njala (2); Kabala (2); Bambawo (10)
- Njala (2); Kabala (2); Lake Sonfon (8)
- Njala (2)
- Njala (2); Kabala (2)
- Njala (2); Lake Popei, River Jong (10)
- Lake Sonfon (8); Lake Mape, Lake Gambia,
Lake Malen (10)
- Njala (2)
1942 - Loma Mnts (7)
1863 - Lake Sonfon (8); Guma Dam (12)
- Njala (2)
- Njala (2); Kabala (2); Lake Mape, River Jong
(10)
- River Sewa (10); Bathurst Falls (11); Guma
Dam (12)
- River Jong (10)
- Lake Popei (10)
- Njala (2)
C. amoenum Brebisson ex Ralfs, 1848
C. anceps Lundell, 1871
C. angulosum Brebisson, 1856 v. angulosum
C. angulosum v. concinnum (Rabenh.) West et West, 1901
C. cfr. asphaerosporum Nordstedt, 1879
C. binum Nordstedt, 1880
C. bioculatum Brebisson ex Ralfs, 1848
C. bioculatum Brebisson ex Ralfs, 1848 forma
C. bipunctatum Borgesen, 1890
C. boeckii Wille, 1880
C. capense (Nordst.) De Toni, 1889 v. nyassae Schmidle, 1902
C. candianum Delponte, 1877
= C. circulare Reinsch, 1867
C. commissurale Breb. ex Ralfs, 1848 v. crassum Nordstedt, 1870
C. connatum Brebisson ex Ralfs, 1848 v. connatum
C. connatum v. constrictum Bourrelly, 1961
C. conspersum Ralfs, 1848 v. latum (Breb.) West et West, 1892
C. contractu m Kirchner, 1872 forma
C. decoratum West et West, 1895
C. decoratum West et West, 1895 forma
C. emarginatum West et West, 1895 forma
- Njala (2)
- Kania (9)
- Lake Sonfon (8)
- Lake Sonfon (8)
- Njala (2)
- Njala (2); Kabala (2); Lake Sonfon (8);
Bathurst Falls (11)
- Kania (9)
- Njala (2)
- Kabala (2)
- Njala (2)
- Lake Sonfon (8)
- Lake Sonfon (8)
- Bathurst Falls (11)
- York (13)
- York (13)
- Njala (2)
- Njala (2)
- Njala (2); Guma Dam (12); York (13)
- Njala (2)
- Lake Sonfon (8)
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
137
C. exiguum Archer, 1864 v. exiguum f. ocellatum Gronblad
et Croasdale in Gronblad et al., 1968
C. exiguum v. subrectangulum West et West, 1908
C. exiguum Archer, 1864 forma 1
C. exiguum Archer, 1864 forma 2
C. cfr. exiguum Archer, 1864
C. freemanii West et West, 1902 v. ocellatum Krieger, 1932 forma
C. geminatum Lundell, 1871 forma
C. hammeri Reinsch, 1867 forma
C. humile (Gay) Nordstedt, 1889 forma
C. javanicum Nordstedt, 1880
C. laeve Rabenhorst, 1868 v. leave
C. laeve v. messikommeri Croasdale in Prescott et al., 1981
= C. laeve Rabenhorst, 1868 v. rotundatum Messikommer, 1935
C. laeve v. westii Krieger et Gerloff, 1969
= C. laeve Rabenhorst, 1868 v. septentrionale Wille in Taylor, 1934
C. loefgvenii Borge, 1918 forma
C. mansangense West et West, 1907 v. africanum Fritsch et Rich, 1924
C. meneghini Brebisson ex Ralfs, 1848
C. minimum West et West, 1895
C. moniliforme Turpin ex Ralfs, 1848
C. nitidulum De Notaris, 1867
C. obsoletum (Hantzsch) Reinsch, 1867
C. orthostichum Lundell, 1871 v. pumilum Lundell, 1871
C. polymorphum Nordst., 1870 v. africanum Bourrelly, 1957
C. polymorphum v. africanum Bourrelly, 1957 forma
C. porrectum Nordstedt, 1870
C. portianum Archer, 1860 v. nephroideum Wittrock, 1872
C. pseudamoenum Wille, 1884 v. inornatum (Joshua)
Croasdale in Gronblad et al, 1968
C. pseu dobroomei Wo 1 1 e , 1884
C. pseudoconnatum Nordstedt, 1870
C. pseudopyramidatum Lundell, 1871 v. pseudopyramidatum
C. pseudopyramidatum v. oculatum Krieger, 1932
C. pseudoretusum Ducellier, 1918 v. africanum (Fritsch)
Krieger et Gerloff, 1962
C. punctulatum Breb., 1856 v. subpunctulatum (Nordst.)
Borgesen, 1894
C. pyramidatum Brebisson ex Ralfs, 1948 v. pyramidatum
C. pyramidatum Brebisson ex Ralfs, 1948 v. pyramidatum forma
C. pyramidatum v. stephani (Irenee-Marie) Krieger et Gerloff, 1965
C. quadratum Ralfs, 1848 v. africanum Fritsch et Stephens, 1921
C. quadrum Lundell, 1871 v. quadrum
C. quadrum v. minus Nordstedt, 1873
C. ralfsii Brebisson ex Ralfs, 1848 v. montanum Raciborski, 1885
C. regnelli Wille, 1884 v. regnelli
C. regnelli v. minimum Eichler et Gutwinski, 1894
C. rossii Ricci in Ricci & Alfmito, 1994
C. salisburii Fritsch et Rich, 1937 forma
C. sexangulare Lundell, 1871 v. minus Roy et Bisset, 1886
= C. sexangulare Lundell, 1871 f. minima Nordstedt, 1887
C. subconstrictum Schmidle, 1902
C. subcostatum Nordstedt, 1876
C. subcostatum Nordstedt, 1876 forma
C. subprotumidum Nordstedt, 1876
- Njala (2)
- York (13)
- Njala (2)
- Njala (2)
- Njala (2)
- Njala (2)
- Lake Sonfon (8)
- Njala (2); Kabala (2)
- Njala (2)
- Loma Mnts (7)
- Njala (2); Bathurst Falls (11)
- Lake Sonfon (8)
- Njala (2)
- Njala (2)
- Loma Mnts (7); Bathurst Falls (11)
- Njala (2)
- Lake Sonfon (8)
- Njala (2)
- Kania (9)
- Njala (2); Loma Mnts (7)
- Njala (2)
- Lake Sonfon (8)
- Njala (2)
- York (13)
- Lake Sonfon (8)
- Njala (2)
- Bathurst Falls (11); York (13)
- Bathurst Falls (11)
- Njala (2); Kania (9)
- York (13)
- Lake Sonfon (8); Bathurst Falls (11); York (13)
- Njala (2)
- Lake Sonfon (8)
- Lake Sonfon (8)
- Loma Mnts (7)
- Kania (9)
- Kabala (2)
- York (13)
- Loma Mnts (7)
- Lake Sonfon (8)
- Kania (9)
- York (13)
- Lake Sonfon (8)
- Lake Sonfon (8)
- Lake Sonfon (8)
- Njala (2)
- Njala (2)
- Kania (9)
138
Silvia Alfinito
C. succisum G. S. West, 1992 f. jaoi Krieger et Gerloff, 1962
C. tenue Archer, 1868
C. venustum (Breb.) Archer ex Pritchard, 1862
C. wenmanae Croasdale in Gronblad et al., 1968
C. westii Bernard, 1908
C. zonatum Lundell, 1871 v. subcylindricum Gronblad et
Scott in Gronblad et al, 1958
Cosmarium sp. 1
Cosmarium sp. 2
Cosmocladium Brebisson, 1856
C. tuberculatum Prescott, 1935
Desmidium Agardh ex Ralfs, 1848
D. aequale West et West, 1896 f. elliptica West et West, 1896
D. cfr. aptogonum Brebisson ex Kiitzing, 1849 forma
D. gracilipes (Nordst.) Lagerheim, 1886
D. gracilipes (Nordst.) Lagerheim, 1886 forma
Docidium Brebisson ex Ralfs, 1848
D. baculum Brebisson ex Ralfs, 1848
D. lomaense Alfinito etMazzoni, 1986
Euastrum Ehrenberg ex Ralfs, 1848
E. abruptum Nordstedt, 1869 v. lagoense (Nordst.) Krieger, 1937
E. ansatum Ehrenberg ex Ralfs, 1848 v. ansatum
E. ansatum v. dideltiforme Ducellier, 1918
E. ansatum v. javanicum (Gutw.) Krieger, 1937
E. bidcntatum Nageli, 1 849 forma
E. binale (Turp.) Ehrenberg ex Ralfs, 1848
v. cosmarioides (West et West) Krieger, 1937 forma 1
E. binale v. cosmarioides (West et West) Krieger, 1937 forma 2
E. binale v. groenbladii (Messik.) Krieger, 1937
E. binale v. groenbladii (Messik.) Krieger, 1937 forma
E. binale v. pseudopapilliferum Forster, 1963
E. bombayense Brandham, 1967 v. gracile Brandham, 1967
E. brasiliense Borge, 1903 v. simplicius Borge, 1903
E. denticulatum (Kirchner) Gay, 1884 v. denticulatum
E. denticulatum v. quadrifarium Krieger, 1937
E. cfr. denticulatum (Kirchner) Gay, 1884
E. didelta Ralfs ex Ralfs, 1 848 v. didelta
E. didelta v. bengalicum Lagerheim, 1888
E. divaricatum Lund., 1871 v. uguandanum Gronblad in
Gronblad et al., 1968
E. gemmatum Brebisson ex Ralfs, 1 848 v. gemmatum
E. gemmatum v. tenuius Krieger, 1937
E. germanicum (Schmidle) Krieger, 1937
E. humbertii Bourrelly et Leboime, 1946
E. inerme (Ralfs) Lundell, 1871
E. ivoirensis Bourrelly, 1961
- Lake Sonfon (8)
- Njala (2)
- Lake Sonfon (8)
- Njala (2); Bathurst Falls (11)
- Loma Mnts (7)
- Njala (2)
- Njala (2)
- Njala (2)
- Lake Sonfon (8); Lake Tibi (10)
- Njala (2)
- Njala (2)
- Guma Dam (12)
- Njala (2)
- Lake Sonfon (8)
- Loma Mnts (7)
- River Jong (10)
- Lake Sonfon (8)
- Njala (2)
- Lake Sonfon (8)
- Njala (2)
- Njala (2)
- Njala (2)
- Loma Mnts (7)
- Njala (2)
- Loma Mnts (7)
- River Sewa (10)
- Loma Mnt (7)
- Lake Sonfon (8); River
Waanje, River Jong (10), Bathurst Falls (11)
- Lake Tibi, Lake Mabesi, Lake Mape (10)
- Njala (2); Kabala (2)
- Lake Sonfon (8); Bathurst Falls (11)
- Lake Tibi, Lake Popei, Lake Mabesi (10)
- Njala (2)
- Guma Dam (12)
- Kania (9)
- Njala (2)
- Njala (2)
- Njala (2)
- Bathurst Falls (11); Guma Dam (12)
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
139
E. ivoirensis Bourrelly, 1961 forma
E. luetkem uelleri D ucel . , 1918 v. carniolicum (Liitkem.) Krieger, 1937
E. luetkemuelleri v. carniolicum (Liitkem.) Krieger, 1937 forma
E. platycerum Reinsch, 1875 v. exintium Gronblad, 1958
f. clausum Gronbl. et Scott in Gronblad et al., 1958
NOTE: this taxon is invalidly published, art. 37 ICBN,
according Ruzicka (1981)
E. pulchellum Brebisson, 1856 v. retusum West et West, 1905
E. pseudosinuosum Forster, 1964
E. serratum Joshua, 1886 v. crenulatum Hirano, 1967 forma
E. sibiricum Boldt, 1885 v. exsectum (Gronbl.) Krieger, 1937
E. sinuosum Lenormand 1861 v. scrobiculatum (Nordst.) Krieger, 1937
E. sinuosum v. subjenneri West et West, 1902
E. spinulosum Delponte, 1876 var. aequilobium (West et West)
Krieger, 1937
E. subbinalc Messikoramer, 1956
E. subhexalobum West et West, 1898 v. subhexalobum
E. subhexalobum v. scrobiculatum Gronblad, 1945
E. sublobatum Brebisson ex Ralfs, 1848 v. incrassatum Scott et
Prescott, 1961
E. sublobatum Brebisson ex Ralfs, 1 848 variety?
E. triggiberum West et West, 1895
E. truncatiforme G.S. West, 1907 v. africanum Bourrelly, 1957
E. truncatiforme v. africanum Bourrelly, 1957 forma
E. truncatum Joshua, 1886 v. trifolium (Cohn) Krieger, 1937 forma
E. validum West et West, 1896 v. validum
E. validum West et West, 1896 v. validum forma
E. validum v. subvalidum (Behre) Bourrelly, 1961 forma
NOTE: this taxon is invalidly published, art. 33 ICBN, according
Ruzicka (1981)
Euastrum sp.
Gonatozygon de Bary, 1856
G. aculeatum Hastings, 1892
G. kinahani (Arch.) Rabenhorst, 1868
G. monotaenium de Bary, 1856
Groenbladia Teiling, 1952
G. fennica (Gronbl.) Teiling, 1952
G. inflata Scott et Gronblad, 1957
G. neglecta (Racib.) Teiling, 1952
cfr. v. elongata Scott et Gronblad, 1957
Haplotaenium Bando, 1988
H. minutum (Ralfs) Bando, 1988 v. gracile (Wille) Bando, 1988
= Pleurotaenium minutum (Ralfs) Delp., 1877 v. gracile (Wille)
Krieger, 1932
Hyalotheca Ehrenberg ex Ralfs, 1848
H. dissiliens (Sm.) Breb. ex Ralfs, 1848 v. tatrica Racib., 1885
Lake Sonfon (8)
York (13)
Njala (2)
River Sewa, River Jong (10)
Njala (2)
Kania (8); York (13)
York (13)
Lake Sonfon (9)
York (13)
Bathurst Falls (11); York (13)
River Sewa (10)
Kania (9)
Lake Sonfon (8)
Njala (2)
Njala (2)
Njala (2)
Lake Tibi, Lake Popei (10)
York (13)
Lake Sonfon (8)
York (13)
Njala (2)
Njala (2)
Njala (2)
Njala (2)
Lake Mape, River Waanje, River Jong (10)
Lake Sonfon (8); Lake Mape, Lake Tibi (10)
Kabala (2); River Sewa (10)
Njala (2)
Njala (2)
Njala (2)
Bathurst Falls (11); York (13)
Njala (2); York (13)
S S ^ ^ S s S ^ s S S S S: S S s s s
140
Silvia Alfinito
Micrasterias Agardh ex Ralfs, 1848
ambadiensis (Gronbl. et Scott) Thomasson, 1960
americana Ehrenberg ex Ralfs, 1848 v. americana forma
americana v. bimamillata Bourrelly et Coute in Coute &
Rousselin, 1975 forma
americana v. hybrida Woodhead et Tweed, 1959
NOTE: this taxon has been validated by Gerrath &
Denny (1998) designating as neotype their fig. 49 (Gerrath &
Denny, loc. cit., pag. 47)
crux-melitensis (Ehr.) Hassall ex Ralfs, 1848
decemdentata (Nag.) Archer, 1861
echinata Brandham, 1967
foliacea Bailey ex Ralfs, 1848
furcata Ralfs, 1848
= M radiata Hassall, 1845
jenneri Ralfs, 1848 v. simplex W. West, 1890 forma
mahabuleshwarensis Hobson, 1863 v. comperei Coute et
Rousselin, 1975
mahabuleshwarensis v. semireducta Scott et Croasdale in
Gronblad et al., 1968
pinnatifida Kiitz. ex Ralfs, 1848 v. poly morph a Bourrelly in
Bourrelly & Manguin, 1949
radians Turner, 1892
thomasiana Archer, 1892 v. notata (Nordst.) Gronblad, 1920
tropica Nordstedt, 1870 v. elongata Schmidle, 1898
truncata (Corda) Brebisson ex Ralfs, 1 848 v. truncata
truncata v. crenata (Breb.) Reinsch, 1 867
River Waanje, River Jong (10)
Njala (2)
River Jong (10)
Lake Sonfon (8); River Jong (10)
Lake Sonfon (8); River Jong (10).
Lake Sonfon (8)
Kenema (1); River Jong, River Sewa (10);
York (13)
River Jong, Lake Gambia, Lake Popei,
River Sewa, Lake Tibi (10)
Njala (2); River Jong (10)
River Jong (10)
River Waanje, River Jong, Lake Popei,
River Sewa, (10)
Njala (2)
River Jong (10)
River Waanje, River Jong (10)
River Jong (10)
Lake Sonfon (8)
Njala (2)
Loma Mnts (7)
Penium Brebisson ex Ralfs 1848 em. Kouwets et Coesel, 1984
P. cylindraceum Porster, 1965 v. cylindraceum f. majus Croasdale
in Gronblad et al., 1968
P. cylindrus (Ehr.) Brebisson ex Ralfs, 1848
P. margaritaceum (Ehr.) Brebisson ex Ralfs, 1848
P. multicostatum Scott et Gronblad, 1957
P. polymorphum (Perty) Perty, 1 852
Njala (2)
Bathurst Palls (11); Guma Dam (12); York (13)
Njala (2)
Kania (9)
Njala (2)
Pleurotaenium Nageli, 1849
P. coronatum (Breb.) Rabenhorst, 1868 v. fluctuatum W. West, 1892
P. ehrenbergii (Breb.) de Bary, 1858 v. ehrenbergii
P. ehrenbergii v. curtum Krieger, 1937
P. ehrenbergii v. undulatum Schaarschmidt, 1883
P. moniliferum West et West, 1895
P. nodulosum (Breb.) de Bary, 1858
P. ovatum Nordstedt, 1877
P. sintplicissimum Gronblad, 1920
P. subcoronulatum (Turn.) West et West, 1895 v. subcoronulatum
Guma Dam (12)
Njala (2); Loma Mnts (7); Lake Popei, River
Jong (10); Bathurst Palls (11); Guma Dam (12)
Njala (2)
Njala (2); York (13)
Lake Sonfon (8)
York (13)
Njala (2); River Jong (10)
Lake Sonfon (8)
Njala (2); Lake Mape, Lake Popei, River
Sewa, Lake Tibi (10)
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
141
P. subcoronulatum (Turn.) West et West, 1895 v. subcoronulatum forma
P. subcoronulatum v. africanum (Schmidle) Krieger, 1937
P. subcoronulatum v. detum West et West, 1896
P. subcoronulatum v. detum West et West, 1896 forma
P. trabecula Nageli, 1 849 v. trabecula
P. trabecula v. crassum Wittrock, 1872
P. truncatum (Breb.) Nageli, 1849
Staurastrum Meyen em. Ralfs, 1848
S. avicula Brebisson ex Ralfs, 1848
S. brachiatum Ralfs, 1848
S. brebissonii Archer ex Pritchard, 1861
S. cerastes Lundell, 1871 v. pulchrum Scott et Gronblad, 1957 forma
S. contectum Turner, 1892 f. concavum Scott et Croasdale in
Gronblad et al., 1968
S. dilatatum (Ehr.) Ralfs, 1 848 v. dilatatum
S. dilatatum v. hibernicum West et West, 1912
S. disputatum West et West, 1912 v. sinense (Liitkm.) West et West, 1912
S. distentum Wolle, 1892 forma
S. forficulatum Lundell, 1871 v. minus (Fritch et Rich) Gronblad
et Scott in Gronblad et al., 1958 forma
S. furcatum (Ehr.) Brebisson, 1856 v. furcatum
S. furcatum v. asymmetricum Gronblad et Scott in Gronblad et al., 1958
S. gladiosum Turner, 1885
S. hystrix Ralfs, 1848 v. granulatum Ricci in Ricci et al., 1990
S. inconspicuum N ordstedt, 1873
S. leptopus Krieger, 1932 forma
S. longibrachiatum (Borge) Gutwinski, 1902 v. africanum
Bourrelly, 1961
S. margaritaceum (Ehr.) Meneghini ex Ralfs, 1848 forma
S. manfeldtii Delponte, 1876 v. africanum Hodgett, 1926
S. micron West et West, 1896
S. orbiculare (Ehr.) Ralfs, 1848 v. depressum Roy et Bisset, 1886
S. pelagicum West et West, 1902
S. pinnatum Turner, 1892 v. hydra Krieger, 1932
S. pseudotetracerum (Nordst.) West et West, 1895
S. quadrangulare (Breb.) Ralfs, 1848
S. quadrangulare (Breb.) Ralfs, 1848 forma
S. quadricornutum Roy et Bisset, 1886
S. setigerum Cleve, 1864 v. pectinatum West et West, 1896
f. paucispiniferum Croasdale in Gronblad et al., 1968
S. setigerum v. pectinatum West et West, 1896 forma
S. spiculiferum Borge, 1918 v. glabrum Gerrath et Denny, 1988
S. subindentatum West et West, 1907 v. ornatum Bourrelly, 1961 forma
S. teliferum Ralfs, 1848 v. ordinatum Borgesen, 1894
S. tetracerum Ralfs, 1 848
S. wildemanii Gutwinski, 1902 v. wildemanii f. quadrispinum
Thomasson, 1966
S. wildemanii v. horizontal Scott et Prescott, 1956
S. wildemanii v. majus (West et West) Scott et Prescott, 1956
Njala (2); Kabala (2)
River Sewa (10)
Njala (2)
Njala (2)
Lake Sonfon (7); River Waanje (10)
York (13)
York (13)
Loma Mnts (7)
Lake Sonfon (8)
Lake Sonfon (8)
Njala (2)
Njala (2)
Njala (2); Kabala (2)
Njala (2)
Njala (2)
Lake Sonfon (8)
Njala (2)
Bathurst Falls (11); Guma Dam (12)
Njala (2)
Njala (2); Kabala (2); Lake Sonfon (8)
Guma Dam (12)
Lake Sonfon (8)
Njala (2)
Njala (2)
Kabala (2)
York (13)
Kabala (2)
Njala (2); Lake Sonfon (8)
Guma Dam (12)
Njala (2)
Lake Sonfon (8); York (13)
Njala (2)
Kabala (2)
Lake Sonfon (8)
Njala (2)
Njala (2)
Lake Sonfon (8)
Njala (2)
Guma Dam (12)
Njala (2); Kabala (2); Kania (9); Bathurst
Falls (11)
Njala (2)
Njala (2)
Njala (2)
142
Silvia Alfinito
Staurodesmus Teiling, 1948
S. cuspidatus (Breb.) Teiling, 1967
= Staurastrum cuspidatum (Breb.) Ralfs, 1848
S. glaber (Ehr.) Teiling, 1967
= Staurastrum glabrum (Ehr.) Ralfs, 1848
S. incus (Breb.) Teiling, 1967 formal
= Arthrodesmus incus (Breb.) Ralfs, 1848 forma 1
S. incus (Breb.) Teiling, 1967 forma 2
= Arthrodesmus incus (Breb.) Ralfs, 1848 forma 2
S. incus (Breb.) Teiling, 1967 forma 3
= Arthrodesmus incus (Breb.) Ralfs, 1848 forma 3
S. omearii (Arch.) Teiling, 1948 forma
= Staurastrum o’mearii Archer, 1858 forma
S. patens (Nordstedt) Croasdale, 1957 v. patens f. inflatus
(W. West) Teiling, 1967
Teilingia Bourrelly, 1964
T. excavata (Ralfs) Bourrelly, 1964
= Sphaerozosma excavatum Ralfs, 1848
T. granulata (Roy et Bisset) Bourrelly, 1964
= Sphaerozosma gram latum Roy et Bisset, 1886
Tetmemorus Ralfs ex Ralfs, 1 848
- Njala(2)
- Njala (2)
- Njala (2)
- Njala (2)
- Kabala(2)
- Njala (2); Kabala (2)
- Lake Sonfon (8)
- Njala (2)
- Njala (2); Lake Sonfon (8)
T. granulatus (Breb.) Ralfs ex Ralfs, 1848
T. laevis (Kiitz.) ex Ralfs, 1848 v. laevis
T. laevis v. borgei Forster, 1965
- Loma Mnts (7)
- Kania (8): Guma Dam (12); York (13)
- Kania (9)
Xanthidium Ehrenberg ex Ralfs, 1848
X. octocome (Ehr.) Ralfs, 1848 - Njala (2)
= Arthrodesmus octocornis (Ehr.) Ralfs, 1848
X. urniforme (West et West) Scott et Croasdale in Gronblad et al., 1968 - Njala (2); Guma Dam (12); York (13)
A check list of the freshwater algal flora of Sierra Leone, Tropical West Africa. I. Cyanophyceae to Conjugatophyceae
143
AKNOWLEDGEMENTS
The author wishes to thank prof. Walter Rossi
(Department of Environmental Sciences, Univer-
sity of L'Aquila) for providing the photos of
some of the sampling sites.
REFERENCES
Alfinito S. & Mazzoni A., 1986. Some desmids (Chloro-
phyta) from Sierra Leone. Quademi Accademia Nazio-
nale dei Lincei, 260: 97-104.
Alfinito S., Fumanti B. & Ricci S., 1989. Freshwater algae
from Kania (Sierra Leone, West Tropical Africa).
Rivista di Idrobiologia, 28: 167-178.
Alfinito S., Fumanti B. & Ricci S., 1990. Freshwater algae
from Sierra Leone: desmids from Bathurst Falls. Qua-
demi Accademia Nazionale dei Lincei, 265: 15-26.
Alfinito S., Fumanti B. & Ricci S., 1994. Diatoms from
York, Sierra Leone (West Africa). Quademi Accademia
Nazionale dei Lincei, 267: 65-79.
Anagnostidis K. & Komarek J., 1989. Modern approach to
the classification system of Cyanophytes. 4- Nostocales.
Algological Studies, 56: 247-345.
Anagnostidis K. & Komarek J., 1990. Modern approach to
the classification system of Cyanophytes. 5- Stigonema-
tales. Algological Studies, 59: 1-73.
Brandham RE., 1967. Three new desmid taxa from West
Africa, including two asymmetrical forms. British Phy-
cological Bullettin, 3: 189-193.
Carter J. R. & Denny P., 1982. Freshwater algae of Sierra
Leone IV. Bacillariophyceae; Part (i) diatoms from the
river Jong (Taia) at Njala. Beiheft zur Nova Fledwigia,
73: 281-331.
Carter J. R. & Denny P., 1987. Freshwater algae of Sierra
Leone IV. Bacillariophyceae; Part (ii) diatoms from the
coastal region of the southern province. Nova Hedwi-
gia, 44: 229-275.
Carter J. R. & Denny P., 1992. Freshwater algae of Sierra
Leone IV. Bacillariophyceae; Part (iii) diatoms from the
lake Sonfon region and from Lake Popei. Nova Hedwi-
gia, 54: 159-211.
Coesel P. F. M. & Meester K. J., 2007. Desmids of the Low-
lands. KNNV Publishing. Zeist, The Netherlands, 35 1 pp.
Croasdale H., Bicudo C. E. & Prescott G. W., 1983. A synop-
sis of North American Desmids. Part II. Desmidiaceae:
Placodermae, sect. 5. The filamentous genera. Univer-
sity Nebraska Press, Lincoln and London. 117 pp.
Ettl FI., 1978. Xanthophyceae 1 Teil. In: Ettl H., Gerloff J.,
Fleynig H. & Mollenhauer D., Susswasserflora von Mit-
teleuropa, Bd 3. G. Fischer Verl., Jena, Stuttgart, 530 pp.
Ettl H., 1983. Chlorophyta I. Phytomonadina. In: Ettl H.,
Gerloff J., Heynig H. & Mollenhauer D., Susswasser-
flora von Mitteleuropa, Bd 9. G. Fischer Verl., Jena,
Stuttgart, 807 pp.
Ettl FI. & Gartner G., 1988. Chlorophyta II. Tetrasporales,
Chlorococcales, Gloeodendrales. In: Ettl H., Gerloff J.,
Fleynig H. & Mollenhauer D., Susswasserflora von Mit-
teleuropa, Bd 10. G. Fischer Verl., Jena, Stuttgart, 436 pp.
Forster K., 1982. Conjugatophyceae, Zygnematales und
Desmidiales (excl. Zygnemataceae). In: Elster H. &
Ohle W., Die Binnengewasser, Bd 16/8. E. Schweizer-
barf sche Verl. Stuttgart, 543 pp.
Fumanti B., 1994. Freshwater algae from Sierra Leone: dia-
toms from Bathurst Falls (Western Area). Quademi
Accademia Nazionale dei Lincei, 267: 51-64.
Fumanti B., Ricci S. & Alfinito S., 1990. Freshwater algae
from Sierra Leone: Diatoms from Guma Valley. Qua-
derni Accademia Nazionale dei Lincei, 265: 27-47.
Gerrath J. F. & Denny P., 1979. Freshwater Algae of Sierra
Leone I. Euglenophyta. Nova Fledwigia, 31: 525-565.
Gerrath J. F. & Denny P., 1980. Freshwater Algae of Sierra
Leone II: Chlorophyta, exclusive of Desmidiales. Nova
Hedwigia, 33: 445-463.
Gerrath J. F. & Denny P., 1980a. Freshwater Algae of Sierra
Leone III: Cyanophyta, Chrysophyta, Xanthophyta,
Chloromonadophyta, Cryptophyta, Dinophyta. Nova
Hedwigia, 33: 933-947.
Gerrath J. F. & Denny P., 1988. Freshwater Algae of Sierra
Leone V. Desmids from the Lake Sonfon region. Nova
Hedwigia, 47: 39-58.
Gerrath J. F. & Denny P., 1989. Freshwater Algae of Sierra
Leone VI. Desmids ( Gonatozygon to Pleurotaenium)
from the Southern Province. Nova Hedwigia, 48: 167-
186.
Gronblad R., Scott A. M. & Croasdale H., 1968. Desmids
from Sierra Leone, Tropical West Africa. Acta Botanica
Fennica, 78: 1-41.
Hoek C. van den, Mann D. G. & Jahns H. M., 1995. Algae.
An introduction to phycology. Cambridge University
Press, Cambridge, 623 pp.
Huber-Pestalozzi G., 1950. Das Phytoplankton des Siiss-
wasser. 3 Teil. Cryptophyceae, Chloromonadinen, Peri-
dineen. In: Thienemann A., Die Binnengewasser, Bd
16/3. E. Schweizerbarfsche Verl. Stuttgart, 310 pp.
Huber-Pestalozzi G., 1955. Das Phytoplankton des Suss-
wasser. 4 Teil. Euglenophyceae. In: Thienemann A., Die
Binnengewasser, Bd 16/4. E. Schweizerbarfsche Verl.
Stuttgart, 606 pp. + 114 plates.
Komarek J. & Anagnostidis K., 1999. Cyanoprokaryota 1
Teil: Chroococcales. In: Ettl H., Gerloff J., Heynig H. &
Mollenhauer D., Susswasserflora von Mitteleuropa, Bd
19/1. G. Fischer Verb, Jena, Stuttgart, 548 pp.
Komarek J. & Anagnostidis K., 2005. Cyanoprokaryota 2
Teil: Oscillatoriales. In: Ettl H., Gerloff J., Heynig H. &
Mollenhauer D., Susswasserflora von Mitteleuropa, Bd
19/2. G. Fischer Verl., Jena, Stuttgart, 759 pp.
Komarek J. & Fott B., 1983. Das Phytoplankton des Siiss-
wasser. 7 Teil. Chlorophyceae, Chlorococcales. In:
Thienemann A., Die Binnengewasser, Bd 16. E.
Schweizerbarfsche Verl. Stuttgart, 1044 pp.
Komarek J. & Hauer T., 2011. Cyano DB. cz. On-line data-
base of cyanobacterial genera. World-wide electronic
publication, University of South Bohemia & Institute of
Botany AS CR, http://www.cyanodb.cz
Mazzoni A., 1986. Freshwater diatoms from Dankale River
(Sierra Leone). Quademi Accademia Nazionale dei Lin-
cei, 260: 105-119.
144
Silvia Alfinito
Molder K., 1962. Diatomeen aus den Gebirgen Sula und
Kangari in Sierra Leone, Westafrika. Bulletin de la
Commission Geologique de Finlande, 198: 7-48.
Mrozinska T., 1985. Chlorophyta VI. Oedogoniophyceae:
Oedogoniales. In: Ettl H., Gerloff J., Heynig H. & Mol-
lenhauer D., Stisswasserflora von Mitteleuropa, Bd 14.
G. Fischer Verb, Jena, Stuttgart, 624 pp.
O’Meara E., 1876. Diatomaceous forms from Rockett
River, Sierra Leone. Proceedings of the Societies.
Dublin Microscopical Club, 20th april, 1876. Quarterly
Journal of the Microscopical Society, 16: 414.
Popovsky J. & Pfiester L. A., 1990. Dinophyceae. In: Ettl
H. , Gerloff J., Heynig H. & Mollenhauer D., Susswas-
serflora von Mitteleuropa, Bd 6. G. Fischer Verl., Jena,
Stuttgart, 272 pp.
Prescott G. W., Bicudo C. E. & Vinyard W. C., 1982. A
synopsis of North American Desmids. Part II. Desmi-
diaceae: Placodermae, sect. 4. University Nebraska
Press, Lincoln and London, 700 pp.
Prescott G. W., Croasdale H. & Vinyard W. C., 1972. North
American Flora. Ser. II. Part 6. New York Botanical
Garden Ed., New York, 84 pp.
Prescott G. W., Croasdale H. & Vinyard W. C., 1975. A
synopsis of North American Desmids. Part II. Desmi-
diaceae: Placodermae, sect. 1. University Nebraska
Press, Lincoln, 275 pp.
Prescott G. W., Croasdale H. & Vinyard W. C., 1977. A
synopsis of North American Desmids. Part II. Desmi-
diaceae: Placodermae, sect. 2. University Nebraska
Press, Lincoln, 413 pp.
Prescott G. W., Croasdale H., Vinyard W. C. & Bicudo C. E,
1981. A synopsis of North American Desmids. Part II.
Desmidiaceae: Placodermae, sect. 3. University
Nebraska Press, Lincoln, 720 pp.
Printz H., 1964. Die Chaetphoralen der Binnengewasser.
Eine systematische Ubersicht. Hydrobiologia, 24: 1-376.
Ricci S. & Alfinito S., 1994. The desmid flora of York,
Sierra Leone (West Africa). Quaderni Accademia
Nazionale dei Lincei, 267: 81-96
Ricci S., Alfinito S. & Fumanti B., 1990. Desmids from
Guma Valley (Sierra Leone, West Africa). Hydrobiolo-
gia, 208: 235-247
Ruzicka J., 1977. Die Desmidiaceen Mitteleuropas, Bd 1/1.
E. Schweizerbart’sche Verl. Stuttgart, 292 pp. + 44 plates.
Ruzicka J., 1981. Die Desmidiaceen Mitteleuropas, Bd 1/2.
E. Schweizerbart’sche Verl. Stuttgart, pp. 292-736
+ plates 45-117.
Starmach K., 1985. Chrysophyceae und Haptophyceae. In:
Ettl H., Gerloff J., Heynig H. & Mollenhauer D., Suss-
wasserflora von Mitteleuropa, Bd 1. G. Fischer Verb,
Jena, Stuttgart, 515 pp.
Whitton B. A., 1968. Blue-Green Algae from Sierra Leone.
Nova Hedwigia, 15: 203-209.
Woodhead N. & Tweed R. D., 1958. A check list of tropical
West African Algae. Hydrobiologia, 11: 299-395.
Woodhead N. & Tweed R. D., 1959. Freswater algae of
Sierra Leone. I. New and unusual algae from the Sula
Hill. Hydrobiologia, 12: 181-225.
Woodhead N. & Tweed R. D., 1960. Freswater algae of
Sierra Leone. 3 . The algae of Rokupr and great Searcies
River. Revue Algologique, 5: 116-150.
Biodiversity Journal, 2011, 2 (3): 145-148
Crocidura sicula Miller, 1900 (Mammalia, Soricidae): a possible
new record from Comino island (Maltese Islands)
Gaetano Aloise 1 , Alfred E. Baldacchino 2 & Giovanni Amori 3
1 Museo di Storia Naturale della Calabria e Orto Botanico, University of Calabria, Via P. Bucci, s.n., 1-87036 Rende, Italy. 2 Kestrel in Melita
House, Notaiy Zarb Street, Attard, Malta. 3 CNR - Institute of Ecosystem Studies, c/o Department of Biology and Biotechnology "C. Darwin",
Sapienza University - Zoology, Viale dell'Universita 32, 1-00185 Rome - Italy
ABSTRACT The presence of Crocidura sicula Miller, 1900 is reported for the first time from the Comino island. Two spe-
cimens were obtained from the analysis of Long-eared Owl Asio otus (Linnaeus, 1758) pellets.
KEY WORDS Crocidura sicula; Comino; Maltese islands.
Received 02.09.2011; accepted 16.09.2011; printed 30.09.2011
INTRODUCTION
The Sicilian shrew Crocidura sicula Miller,
1900 is a Mediterranean species, endemic to the
Siculo-Maltese archipelago. This species is
widely distributed in the island of Sicily and it
also occurs in the neighbouring Egadi islands
(Marettimo, Favignana and Levanzo) and in
Ustica island. In the Maltese archipelago this
species is recorded only from the island of Gozo.
Though fossilized bones have been discovered
on the island of Malta, confirming its past pres-
ence, it seems that it has now become extinct
from the main island for unknown reasons (Hut-
terer, 2005).
Taxonomy and distribution of shrews of Mal-
tese islands have been debated for a long time. In
the past Suncus etruscus (Savi, 1 822) was known
as the only species occurring in Malta and Gozo,
while Crocidura suaveolens (Pallas, 1811) and
C. russula (Hermann, 1780) were recorded only
in Gozo. On the basis of current knowledge S.
etruscus occurs in Malta and Crocidura in Gozo
(Schembri & Schembri, 1979). During the last
decades a number of authors agreed to classify
the Gozo populations as C. suaveolens (Schem-
bri & Schembri, 1979; Hutterer, 1991). During
the same time, the Crocidura spp. populations of
Sicily were debated, often controversially, on
their taxonomic status and also on the number of
species occurring in the island (Sara, 2008). Cur-
rently all the populations occurring in the Siculo-
Maltese archipelago belong to the endemic
species C. sicula (Vogel, 1988; Vogel et al.,
1990; Contoli et al., 1989; Sara et al., 1990).
Hutterer (1991) identified a distinct taxon for
Gozo: C. sicula calypso , which is different from
those of Egadi Islands (C. sicula aegatensis Hut-
terer, 1991) and from those of Sicily (C. sicula
sicula). Such subspecific subdivision has not
been recognized by Sara (1995) and Sara & Vit-
turi (1996).
RESULTS
Some pellets (n = 3) and other pellet frag-
ments have been collected during April 2005 on
the small island of Comino from beneath the nest
of a Long-eared OsnXAsw otus (Linnaeus, 1758),
(J. Azzopardi and M. Sammut leg.), although the
nest was occupied and used the previous year
(Baldacchino & Azzopardi, 2007).
The species identified from the analysis of
this material were Oryctolagus cuniculus (Lin-
naeus, 1758) (n = 2), Mus mus cuius Linnaeus,
1758 (n =3) and Rattus rattus (Linnaeus, 1758)
(n =1), already known from the island, and also
146
G. Aloise, A.E. Baldacchino & G. Amori
two specimens of C. sicula. The record of C. sic-
ula is the first record of the occurrence of this
species from Comino.
Table 1 gives some cranial measurements of
two specimens from Comino. The two specimens
from Comino showed values similar to those
reported in Sara (2008) from Gozo.
DISCUSSION AND CONCLUSIONS
The Maltese islands are located in the centre
of the Mediterranean, just 96 km south of Sicily,
290 km from North Africa, 1836 km from
Gibraltar, and 1519 km from Alexandria Egypt,
making them Europe’s southernmost outpost
(Schembri, P.J., 1993). The Maltese archipelago
is made up of three major inhabited islands:
Malta, the largest; Gozo (Ghawdex) and
Comino, the smallest (Kemmuna). Besides,
around these, there are other scattered uninhab-
ited islets and rocks. The total surface area of the
Maltese islands is 316 km 2 . This geographical
location of the Maltese islands gives them unique
ecological characteristics (Fig. 1).
Comino has a smaller islet adjacent to it:
Cominotto (Kemmunett). The surface area of
Comino is 2.8 km 2 , while that of Cominotto is
only 9.9 ha. These two islands are entirely made
up of upper coralline limestone, one of the five
sedimentary layers which form the archipelago.
This layer reaches its maximum thickness at
Comino.
Like most of the northern and north-eastern
coastline of the island of Malta and that of the
east coast of Gozo, the north and the south facing
ZW
PL
m,-m 3
E
COH
Comino, specimen 1
5.82
7.37
3.65
0.92
4.27
Comino, specimen 2
—
7.23
3.68
—
4.26
Gozo (Sara, 2008)
5.71 ±0.11
7.36 ±0.24
3.73 ±0.12
0.90 ± 0.05
4.36 ±0.11
Table 1. Some cranial measurements expressed in cm of Crocidura sicula from the Maltese islands.
ZW = zygomatic width, PL = palate length, Mj-M 3 = mandibular molar row length, E = width of articular condylum, COH = Coronoid height.
Figure 1 . Map of Maltese Archi-
pelago (latitude 35° 48' 28" - 36°
05’ 00" North, longitude 14° IE
04" - 14° 34’ 37" East). Surface
area of each island: Malta 245.7
km 2 , Gozo 67.1 km 2 , Comino 2.8
kni 2 , St. Paul’s Islands 10.1 ha,
Cominotto 9.9 ha, Filfla 2.0 ha,
Fungus Rock 0.7 ha, Maltese
islands 316 km 2 .
Crocidura siculci Miller, 1900 (Mammalia, Soricidae): a possible new record from Comino island (Maltese Islands )
147
coasts of Comino are gently sloping rock. About
a century ago, there were approximately 100
inhabitants cultivating small-scale scattered
patches, even on the smaller island of Cominotto.
Today there are only two inhabitants living on
Comino, but there is also a hotel which is very
active during the peak touristic season, and a pig
farm which is slowly being phased out.
The vegetation of the island of Comino con-
sists predominantly of coastal steppes and
garigue. The latter is the most common, charac-
terized by such species as Thymbra capitata (L.)
Cavanilles, Anthyllis hermanniae L., Teucrium
fructicans L., and the endemic Euphorbia
melitens Parlatore. Despite the smallness of the
island, in one of the small bays on Comino, there
is a sand dune which has been almost obliterated
by mismanagement, including a very degraded
saline marshland. There are also two very small
tree reserves, one at the area known as Il-Hazina
which is c. 5,000 m 2 , and the other at Il-Qala ta’
Santa Marija c. 11,000 m 2 (Ministry for the Envi-
ronment, 1999).
The terrestrial mammals occurring in the
Maltese islands, and also recorded from Comino
are: Rattus norvegicus (Berkenhout, 1769), R.
rattus , M. musculus, Apodemus sylvaticus (Lin-
naeus, 1758), O. cuniculus and the bat Pipistrel-
lus kuhlii (Kuhl, 1817) though not excluding
other migratory bat species.
Terrestrial mammals occurring in the Maltese
islands but not yet recorded from Comino are:
Atelerix algirus fallax (Dobson, 1882), C. sicula,
S. etruscus and Chiroptera which are not consid-
ered to be migratory such as Rhinolophus hip-
posideros minimus (Bechstein, 1800), R. fer-
rumequinum (Schreber, 1774), Myotis blythi
punicus (Tomes, 1857), Plecotus austriacus (J.B.
Fischer, 1829) and Pipistrellus pygmaeus
(Leach, 1825). The Mustela nivalis (Linnaeus,
1766) is not recorded on Comino either (Bal-
dacchino & Schembri, 2002).
Comino is also rich in endemics or suben-
demics of both flora and fauna. Amongst these is
the subendemic (Malta, Comino and Lampe-
dusa) flora Daucus lopadusanus Tineo, the
Pelago-Maltese endemic Linaria pseudolaxiflora
Lojac. in Lojac., a still undescribed Limonium
Miller, 1754 species, the rare Darniella meliten-
sis (Botschantzev) Brullo, two Hybleo-Maltese
endemics: Senecio pygmaeus DC. and the grass
Desmazeria pignattii Brullo & Pavone and the
last population of Althea hirsuta L. Furthermore,
Comino supports a population of two species of
land snails endemic to the Maltese islands,
namely Trochoidea spratti perplanata Pilsbry
1893 and Trochoidea schembrii (L. Pfeiffer,
1846). The Maltese Wall Lizard Podarcis fil-
folensis maltensis Mertens, 1921, is also
recorded on Comino (Ministry for the Environ-
ment, 1999).
Because of its ecological importance, Comino
is a legally protected Bird Sanctuary, a Special
Area of Conservation, and an EU Natura 2000 site.
The size of Comino (2.8 km 2 ), is smaller than
the territory of Asio otus in non-insular habitat
(Galeotti et al., 1997; Henrioux, 2000), but the
hunting area of the Long-eared Owl can vary sub-
stantially depending on food supply. Birds with
young can hunt up to 2.5 km from nest. However,
when food is abundant, territory can be as small
as 50 to 100 ha (Oxford CD-Rom, 1998).
Thus the short distance from the island of
Gozo (approximately 840 meters) does not
exclude the possibility that C. sicula were preyed
upon in the latter island. The easy availability of
prey on Comino could reduce the territory of A.
otus (Henrioux, 2000). During the nesting season
these owls use the territory in the vicinity of the
nest (Craig et al., 1988). The abundance of prey,
even of large mammals like rabbit O. cuniculus ,
and rats M. musculus and R. rattus on Comino,
species identified from pellets collected from the
immediate surroundings of the nest, could sup-
port the hypothesis that the Sicilian Shrew (C.
sicula) has been caught on the island itself.
Further investigations on the presence and
abundance of the population of C. sicula on
Comino island are required also for the conserva-
tion of the species in the Maltese Archipelago.
REFERENCES
Baldacchino A.E. & Azzopardi J., 2007. L-Ghasafar li jbejtu
fl-ambjent naturali tal-gzejjer Maltin. Malta University
Publishers Ltd., Msida, Malta.
Baldacchino A.E. & Schembri P.J., 2002. Amfibji, rettili u
mammiferi tal-gzejjer Maltin. Sensiela Kullana Kulturali,
Nru. 39. Pubblikazzjonijiet Indipendenza: Pieta, Malta.
Contoli L., Benincasa-Stagni B. & Marenzi A.R., 1989.
Morfometria e morfologia di Crocidura Wagler 1832
(Mammalia, Soricidae) in Italia, Sardegna e Sicilia, con
148
G. Aloise, A.E. Baldacchino & G. Amori
il metodo dei descrittori di Fourier: primi dati. Hystrix
(n.s.), 1: 113-129.
Craig E.H., Craig T.H. & Powers L.R. 1988. Activity pat-
terns and home-range use of nesting long-eared owls.
The Wilson Bulletin, 100: 204-213.
Galeotti P., Tavecchia G. & Bonetti A., 1997. Home-range
and habitat use of Long-eared owls in open farmland
(Po Plain, Northern Italy), in relation to prey availabil-
ity. Journal of Wildlife Research, 2: 137-145.
Henrioux F., 2000. Home range and habitat use by the
Long-Eared Owl in northwestern Switzerland. Journal
of Raptor Research, 34: 93-101.
Hutterer R., 1991. Variation and evolution of the Sicilian
shrew: Taxonomic conclusions and description of a pos-
sibly related species from the Pleistocene of Morocco
(Mammalia: Soricidae). Bonner zoologische Beitrage,
42: 241-251.
Hutterer R., 2005. Order Soricomorpha. In: Wilson D.E. &
Reeder D.A.M.. Mammal Species of the World. A taxo-
nomic and geographic reference (third edition). Johns
Hopkins University Press. Vol. 1, 220-311.
Oxford CD-Rom, 1998. Cramp’s The Complete Birds of the
Western Palearctic. Oxford University Press.
Sara M., 1995. The Sicilian ( Crocidura sicula) and the
Canary (C. canariensis ) shrew (Mammalia, Soricidae):
peripheral isolate formation and geographic variation.
Bollettino di Zoologia, 62: 173-182.
Sara M., 2008. Crocidura sicula Miller, 1900. In: Amori G.,
Contoli L., Nappi A., Fauna d’ltalia II. Mammalia: Eri-
naceomorpha, Soricomorpha, Rodentia, Lagomorpha.
Calderini ed., Bologna, 210-218.
Sara M. & Vitturi R., 1996. Crocidura (Mammalia, Sorici-
dae) populations from the Sicilian-Maltese insular area.
Hystrix, 8: 121-133.
Sara M., Lo Valvo M. & Zanca L., 1990. Insular variation in
central Mediterranean Crocidura Wagler, 1832 (Mam-
malia, Soricidae). Bollettino di Zoologia, 57: 283-293.
Schembri P.J., 1993. Physical geography and ecology of the
Maltee Islands: a brief overview. Options Mediter-
raneennes, Ser. B/n°7 - Malta: Food, Agrilculture, Fish-
eries and The Environment: 27-39.
Schembri P.J. & Schembri S.P., 1979. On the occurrence of
Crocidura suaveolens Pallas (Mammalia, Insectivora)
in the Maltese Islands with notes on other Maltese
shrews. Central Mediterranean Naturalist, 1: 18-21.
Ministry for the Environment, 1999. State of the environ-
ment report for Malta 1998. Floriana, Malta: Environ-
ment Protection Department, 448 pp.
Vogel P., 1988. Taxonomical and biogeo graphical problems
in Mediterranean shrews of the genus Crocidura (Mam-
malia, Insectivora) with reference to a new karyotype
from Sicily (Italy). Societe Vaudoise des Sciences
Naturelles. Bulletin., 79 (1): 39-48.
Vogel P., Schembri P.J., Borg M. & Sultana J., 1990. The
shrew ( Crocidura sp.) of Gozo, a probable survivor of
the Pleistocene fauna of Mediterranean islands.
Zeitschrift fur Saugetierkunde, 55: 357-359.
Biodiversity Journal, 2011, 2 (3): 149-150
Notes on the distribution of Castnia invaria penelope Schaufuss,
1 870 (Lepidoptera, Castniidae)
Roberto Vinciguerra
Via XX settembre, 64 - 90141 Palermo, Italy; e-mail: rob.vinciguerra@tiscali.it
ABSTRACT The finding of Castnia invaria penelope Schaufuss, 1870 in Ecuador (Rio Napo) is highlighted, thus exten-
ding the body of knowledge on the distribution of the ssp. Additional information on the genus and the conge-
neric species is also provided.
KEY WORDS Lepidoptera, Castniidae, Castnia.
Received 18.09.2011; accepted 24.09.2011; printed 30.09.2011
INTRODUCTION
The Castnids are nocturnal lepidoptera with
diurnal (or crepuscular) habits. They are distrib-
uted mainly in the Neotropical region. Data con-
cerning their distribution are fragmentary at best,
and they are under-represented in institutional and
private collections (Gonzalez, 2004; Lamas, 1995;
Vinciguerra & Racheli, 2006; Vinciguerra, 2011).
Several recent studies have extended the taxo-
nomic body of knowledge on the family with the
description of a new taxon ( Athis pirrelloi Vin-
ciguerra, 2011), the male of this interesting species
was located twelve years after the capture of the
holotype and it is also currently being described.
Three species have shown a more extensive
geographical distribution than previously
thought Divana diva hoppi (Hering, 1923), pre-
viously known to exist only in Colombia and
now discovered also in Ecuador (Esmeraldas)
(Vinciguerra, 2010); Athis palatinus staudingeri
(Druce, 1896) described in Panama and captured
in Costa Rica (Corcovado) (Vinciguerra &
Gonzalez, 2011) and, lastly, Amauta hodeei
kruegeri (Niepelt, 1927) also considered
endemic to Colombia and now located in
Ecuador (personal data).
Castnia invaria Walker, 1854 is a widely stud-
ied species mainly because of its pest status on
pineapple ( Ananas spp., Bromeliaceae) planta-
tions. This is a widely distributed species in South
America and four sub-specific entities are recog-
nized: C. invaria invaria Walker, 1854, C. i.
penelope Schaufuss, 1870, C. i. trinitatis Lathy,
1925, C. i. volitans Lamas, 1995 (Lamas, 1995).
Castnia invaria penelope Schaufuss, 1870
The distribution of Castnia invaria penelope
(Figs. 1-2) includes Argentina, Bolivia, Brazil
and Paraguay. The taxonomic rank of the afore-
mentioned subspecies requires further research
because their status could be considered unclear
due to a significant polymorphism. As all the ssp.
known, the larvae feed on several Bromeliaceae,
including pineapples ( Ananas spp., Bromeli-
aceae). The imago has diurnal habits and the
adults of Castnia invaria penelope have been
observed flying (Paraguay) between 11 am and
noon (Rios & Gonzalez, 2011).
We point out the presence of this species also
in Ecuador (Rio Napo) on the basis of two spec-
imens, collected in this region in 1974.
ACKNOWLEDGEMENTS
I would like to extend a special thanks to J. M.
Gonzalez (Texas A & M University) for com-
ments given during the drafting stage of this
short note.
150
Roberto Vinciguerra
Figure 1. Castnia invaria penelope female, Ecuador, Rio Napo, 04.1974, width 80 mm.
Figure 2. Castnia invaria penelope male, Ecuador, Rio Napo, 04.1974, width 120 mm.
REFERENCES
Gonzalez J.M., 2004. Castniinae (Lepidoptera: Castniidae)
from Venezuela. VI. The genus A this. Diagnosis and
comments. Caribbean Journal of Science, 40: 408-413.
Lamas G., 1995. A critical review of J.Y. Miller’s Checklist
of the Neotropical Castniidae (Lepidoptera). Re vista
Peruana de Entomologia, 37: 73-87.
Rios S. & Gonzalez J.M., 2011. Synopsis of the Castniidae
(Lepidoptera) of Paraguay. Zootaxa (in press).
Vinciguerra R. & Gonzalez J.M., 2011. Observations on
distribution of Athis palatinus staudingeri (Druce,
1896) (Lepidoptera: Castniidae). Shilap Revista de
Lepidopterologia, 39: 155-159.
Vinciguerra R. & Racheli L., 2006. Note sulla distribuzione
di alcuni Castnidi in Peru (Lepidoptera, Castniidae),
Berichte des Kreises Numberger Entomologen V, 22:
27-39.
Vinciguerra R., 2010. Osservazioni sulla distribuzione di
Divana diva hoppi (Hering, 1923), (Lepidoptera:
Castniidae). Shilap Revista de Lepidopterologia, 38:
379-383.
Vinciguerra R., 2011. Observations on the genus Athis Hiibner,
[1819] and description of a new species from Pem (Lepi-
doptera, Castniidae), Biodiversity Journal, 2: 97-102.
Biodiversity Journal, 2011, 2 (3): 151-152
A case of cannibalism in Podarcis siculus campestris De Betta,
1 857 (Reptilia, Lacertidae)
Mauro Grano 1 , Cristina Cattaneo 2 & Augusto Cattaneo 3
1 Via Valcenischia 24 - 00141 Roma, Italy; e-mail: elaphe58@yahoo.it - 2 Via Eleonora d’Arborea 12 - 00162 Roma, Italy; e-mail: cristina.
cattaneo76@libero.it - 3 Via Cola di Rienzo 162 - 00192 Roma, Italy; e-mail: augustocattaneo@hotmail.com
ABSTRACT A case-report of cannibalistic behaviour in Italian wall lizard Podarcis siculus campestris De Betta, 1857 is
described here along with the first photographic record
KEY WORDS Cannibalism, food spectrum, Italian wall lizard, Podarcis siculus, predation.
Received 25.09.2011; accepted 29.09.2011; printed 30.09.2011
INTRODUCTION
Podarcis siculus (Rafinesque-Schmaltz,
1810) s.l. is considered among the Mediterranean
Lacertid lizards the species more adapted to
inhabit a wide variety of habitats (Corti et ah,
2011). The distribution area of P. siculus includes
Italy, Corsica and the coastal regions of Croatia,
Slovenia and Montenegro.
Naturalized populations have been found in
Spain and Balearic Islands, Portugal, France,
Turkey, Tunisia, Libia and United States. This
highly polytypic species is represented in Lazio
by ssp. campestris De Betta, 1857 (Capula &
Ceccarelli, 2003).
In Italy, this lizard generally occurs in low-
land and coastal areas, and also in anthropized
areas such as urban park of large towns. It is
found from sea level up to 1000 m and excep-
tionally up to 2200 m (Mount Etna, Sicily) (Tur-
risi & Vaccaro, 2001; Corti et ah, 2011).
This species is often sympatric with Podar-
cis muralis (Laurenti, 1768), occupying sunny
and more exposed microhabitats respect to this
latter; also, no interspecific competition seems
to occur between these species (Bologna et ah,
2007). However, in some urban environments
has been observed as the communities of
Podarcis muralis e P. siculus are organized
through specific ecological needs of each
species rather than by species interactions
(Capula et ah, 1993).
Many studies have focused the feeding
habits of P. siculus; the results showed that its
preys spectrum can be interested by significant
variations in relation to the different environ-
mental contexts (Corti & Lo Cascio, 2002). It
preys upon invertebrates and mainly insects,
but occasionally vegetal matter and small ver-
tebrates can complete the diet. Some studies
have showed that most of Italian Lacertids eat
really all the occurring invertebrates in their
habitats in proportion on their availability
(Scali et ah, 2008).
Other studies (Lo Cascio & Capula, 2011) on
Podarcis raffonei (Mertens, 1952) from
Scoglio Faraglione (Aeolian Archipelago, NE
Sicily) indicate that diet composition is not
directly influenced by prey availability and tem-
poral prey abundance and that this species can
operate a hierarchical choice within the range of
prey items constituting its prey spectrum.
Several cases of partial and/or true cannibal-
ism have been reported in literature for this
species (see e.g. Mertens, 1934; Kramer, 1946;
Ouboter, 1981; Burke & Mercurio, 2002).
152
M. Grano, C. Cattaneo & A. Cattaneo
RESULT AND CONCLUSIONS
On 17 th July 2011, at 10.46 a.m. on Tolfa’s
Mountains, Lazio (Italy), two of the Authors have
surprised and photographed an adult male of Ital-
ian wall lizard during predation against a young
conspecific. After attacking the small lizard on
hind legs, limiting its mobility and preventing its
escape, the predator carried away the prey in
order to consume it hidden in a near bush (Fig. 1).
Recently, Cattaneo (2005) stated adult Podar-
cis siculus feed on the eggs and young of the
same species and also the congener Podarcis
muralis nigriventris Bonaparte, 1836; Capula &
Aloise (2011) reported two unusual cases of pre-
dation, respectively, of a young conspecific and
of a small-sized gecko Hemidactylus turcicus
(Linnaeus, 1758); in the same paper is also given
the photo of a P. siculus retaining in the mouth a
dead specimen of Suncus etruscus (Savi, 1822)
(Mammalia, Soricidae).
The observation contained in this work is a
further contribution to the knowledge of canni-
balism in Podarcis siculus and allows to confirm
both the reports by Cattaneo (2005) and also by
Capula & Aloise (2011).
Figure 1 . Specimen of Podarcis siculus campestris (adult male) to prey a
young of the same species (Tolfa’s Mountains, Lazio, Italy, July 2011).
REFERENCES
Bologna M.A., Salvi D. & Pitzalis M., 2007. Atlante degli
Anfibi e dei Rettili della Provincia di Roma. Provincia
di Roma, Gangemi Editore, Roma, 192 pp.
Burke R.L. & Mercurio R.J., 2002. Food habits of a New
York population of Italian Wall Lizard, Podarcis sicula
(Reptilia, Lacertidae). American Midland Naturalist,
147: 368-375.
Capula M. & Aloise G., 2011. Extreme feeding behaviors in
the Italian wall lizard, Podarcis siculus. Acta Herpeto-
logica, Firenze University Press, 6: 11-14.
Capula M. & Ceccarelli A., 2003. Distribution of genetic
variation and taxonomy of insular and mainland popula-
tions of the Italian wall lizard, Podarcis sicula.
Amphibia-Reptilia, 24: 483-495.
Capula M., Luiselli L. & Rugiero L., 1993. Comparative
ecology in sympatric Podarcis muralis and P. sicula
(Reptilia: Lacertidae) from the historical centre of
Rome: what about competition and niche segregation in
an urban habitat? Bollettino di Zoologia, 60: 287-291.
Cattaneo A., 2005. L’Erpetofauna della Tenuta Presiden-
ziale di Castelporziano (Roma). Atti del Museo di Sto-
ria Naturale della Maremma, 21: 49-77.
Corti C. & Lo Cascio P., 2002. The Lizards of Italy and
Adjacent Areas. Chimaira Verlag, Frankfurt am Main,
165 pp.
Corti C., Biaggini M. & Capula M., 2011. Podarcis sicu-
lus (Rafinesque-Schmaltz, 1810). In: Capula M.,
Luiselli L., Razzetti E., Sindaco R. (eds.), Fauna
d’ltalia: Reptilia, Vol. XLV. Edizioni Calderini de II
Sole 24 ORE, Editoria Specializzata S.r.l., Bologna:
407-417.
Lo Cascio P. & M. Capula, 2011. Does diet in lacertid
lizards reflect prey availability? Evidence for selective
predation in the Aeolian wall lizard, Podarcis raffonei
(Mertens, 1952) (Reptilia, Lacertidae). Biodiversity
Journal, 2011, 2: 89-96.
Kramer G., 1946. Veranderungen von Nachkommenziffer
und achlommengrossen sowie der Alters-verteilung
con Inseleidechsen. Zeitschrift fur Naturforschung, 1 :
700-710.
Mertens R.,1934. Die Inselreptilien, ihre Ausbreitung,
Variation und Artbildung. Zoologica, 32: 1-209.
Ouboter P.E., 1980. The ecology of the island lizard Podar-
cis sicula salfir. correlation of microdistribution with
vegetation coverage, thermal environment and food
size. Amphibia-Reptilia, 2: 243-257.
Scali S., Spadola F., Di Toro F., Gentili A., Mangiacotti M.,
Tettamanti S. & Cavigioli L., 2008. Plasticita trofica di
due Lacertidi italiani: casi di predazione anomala in
Lacerta bilineata e Podarcis muralis. In: Corti C. (ed.),
Herpetologia Sardiniae. Societas Herpetologica Italica,
Edizioni Belvedere, Latina: 435-438.
Turrisi G. F. & Vaccaro A., 2001. Distribuzione altitudinale
di Anfibi e Rettili sul Monte Etna (Sicilia orientale).
Atti 3° Congresso Nazionale di Erpetologia. Pianura,
13: 335-338.
Biodiversity Journal, 2011, 2 (3): 153-159
A new subspecies of Perotis lugubris Fabricius, 1 777 from Southern Italy
(Coleoptera, Buprestidae).
Francesco Izzillo 1 & Ignazio Sparacio 2
'Via O. Buccini, 10 - 81030 Orta di Atella, Caserta, (I); e-mail: franco.izzillo@gmail.com. 2 Via E. Notarbartolo, 54 int. 13 - 90145 Palermo, (I);
e-mail: isparacio@inwind.it.
ABSTRACT A new subspecies of Coleoptera Buprestidae, Perotis lugubris meridionalis n. ssp. from Southern Italy, is
described, illustrated and compared with related taxa.
KEY WORDS Coleoptera, Buprestidae, Perotis lugubris meridionalis n. ssp., Southern Italy.
Received 14.06.2011; accepted 20.08.2011; printed 30.09.2011
INTRODUCTION
Perotis lugubris Fabricius, 1777 s.l. is a
Coleoptera Buprestidae of the subfamily
Chrysochroinae Laporte, 1835 tribe Dicercini
Gistel, 1848 widely distributed in Central Asia
(Turan)-SE Europe (Kuban, 2006).
The nominal subspecies (locus typicus:
Austria) is widespread in many Central and
Eastern European states, Balkan Peninsula and
Turkey; the ssp. mutabilis Abeille, 1896 is
known for Iran, Iraq, Lebanon, Syria and
Turkey; the ssp. longicollis Kraatz, 1880 from
Azerbaijan, Armenia, southern Russia, Iran,
Iraq, Turkmenistan and the ssp. transcaspica
Semenov, 1891 is reported for Iran and
Turkmenistan (cfr. Kuban, 2006).
In Italy there is the nominal subspecies in
Friuli Venezia Giulia, Marches, Liguria,
Tuscany, Latium, Campania and Apulia (Lecce)
(Luigioni, 1929, Porta, 1929; Curletti, 1985;
Platia & Gobbi, 1995). An old report from
Sardinia (Porta, 1929) was never confirmed
(Curletti, 1985; Gobbi & Platia, 1995); a citation
for Sicily was made by Romano (1849), although
remained unknown or at least never reported by
other authors.
Bertolini (1899) and Reitter (1906) signalized
in southern Italy Perotis xerses v. viriditarsis
Schaufuss, 1879; Luigioni (1929) and Porta
(1929) reported this quote but Obenberger (1926)
considered this variety a synonymous of P.
xerses Marseul, 1865 from Asia Minor and
excluded it from italian Coleoptera; moreover,
Obenberger himself (1924-1932) acknowledged
this quote was wrong.
The examination of material collected from
Southern Italy, Basilicata in particular, has
allowed us to highlight some morphological
peculiarities in these populations that can be
described as a new subspecies.
ACRONYMS. The materials used for this study
are deposited in the following Museums and
private collections: F. Angelini, Francavilla
Fontana (Brindisi), Italy (CA); M. Bollino, Lecce,
Italy (CB); P. Crovato, Naples, Italy (CC); D.
Gianasso, Castelnuovo Don Bosco (Asti), Italy
(CG); M. Gigli, Rome, Italy (CMG); Istituto
Nazionale di Entomologia, Rome, Italy (INER);
F. Izzillo, Orta di Atella (Caserta), Italy (Cl); A.
Liberto, Rome, Italy (CL); G. Magnani, Cesena,
Italy (CM); C.O. Manci, Iasi (Romania) (CCM);
E. Migliaccio, Rome, Italy (CEM); Museo
154
Francesco Izzillo & Ignazio Sparacio
Civico di Storia Naturale di Genova, Italy
(MSNG); Museo Civico di Zoologia, Rome,
Italy (MCZR); D. Sechi, Quartu Sant’Elena
(Cagliari), Italy (CS); I. Sparacio, Palermo, Italy
(CIS).
Where not specified, the collector is the same
owner of the collection.
Perotis lugubris meridionalis n. ssp.
Examined material. Holotypus male: Italy,
Basilicata (Matera): Policoro, 26.VI.1989, legit F.
Izzillo (Cl). Allotypus female: same data as
holotypus (CIS); Paratypi: Italy, Basilicata
(Matera): Policoro, 27.VI.1991, legit F. Izzillo, 1 ex
(CIS); idem, 8.VII.1989, legit F. Izzillo, 2 exx
(CIS); idem, 8.VII.1989, legit P. Crovato, 2 exx
(CIS); idem, 18.VII.1990, legit F. Izzillo, 1 ex
(CIS); idem, 5.VI.1989, legit N. Fiantonio, 1 ex
(CIS); idem, 10.VII.1989, legit P. Crovato, 1 ex
(CIS); idem, 5.VII.1989, 1 ex (Cl); idem,
6.VII.1989, 2 exx (MSNG); idem, 6.VII.1989, 1 ex
(Cl); idem, 6.VII.1989, legit N. Fiantonio, 1 ex
(Cl); idem, 8.VII.1989, legit N. Fiantonio, 1 ex
(Cl); idem, 10.VII.1989, 1 ex (Cl); idem,
23 .VI. 1990, 2 exx (Cl); idem, 10.VII.1990, legit I.
Izzillo, 2 exx (Cl); idem, 11. VII. 1990, 1 ex (Cl);
idem, 2 l.VII. 1990, legit F. Angelini, 1 ex (Cl);
idem, 23.VII.1991, 1 ex (Cl); idem, 25.VII.1991, 3
exx (Cl); idem, 25.VII.1991, legit N. Fiantonio, 1
ex (Cl); idem, 27.VII.1991, 1 ex (Cl); idem,
27. VII.1991, legit N. Fiantonio, 1 ex (Cl); idem,
AVI. 1992, 2 exx (Cl); idem, 6.VI.1993, 2 exx (Cl);
idem, 26.VI.1994, 1 ex (Cl); idem, 3. VII. 1994, 2
exx (Cl); idem, 10.VII.1994, 1 ex (Cl); idem,
23 .VII. 1994, 2 exx (Cl); idem, 4.VI.1995, 2 exx
(Cl); idem, 16.VI.1996, 1 ex (Cl); idem,
13. VII. 1996, 1 ex (Cl); idem, 26.IV. 1999, 1 ex (Cl);
idem, 10.VII.1989, legit F. Izzillo, 1 ex (CA); idem,
28. VII.1990, lex (CA); idem, 24.VII.1994, 1 ex
(CA); idem, 26.VI.1989, legit F. Izzillo, 1 ex (CG);
idem, 23 .VII. 1991, legit F. Izzillo, 1 ex (CM); idem,
25.VII.1991, legit F. Izzillo, 3 exx (CM); idem,
27.VII.1991, legit F. Izzillo, 1 ex (CM); idem, 4-
5.VII.1992, 2 exx (CM); idem, 23 .VII. 1994, legit F.
Izzillo, 1 ex (CS); idem, 10.VII.1989, legit F.
Izzillo, 1 ex (CF); idem, 3.VII.1994, legit F. Izzillo,
1 ex (CF); idem, 18-20.VI.1996, legit A. Fiberto, 2
exx (CF); idem, 6.VII.1989, legit F. Izzillo, 1 ex
(CC); idem, 8.VII.1989, 1 ex (CC); idem,
23 .VI. 1990, legit F. Izzillo, 1 ex (CC); idem,
23.VI.1990, 1 ex (CC); idem, 6.VI.1993, legit F.
Izzillo, 1 ex (CC); idem, 5.VII.1994, 2 exx (CC);
idem, 23 .VII. 1994, legit F. Izzillo, 1 ex (CC).
Apulia (Fecce): Ugento, Fido Marini
(Macchia Rottacapozza), 8-10.V.1993, legit M.
Portalatina, 2 exx (CB).
Holotypus, allotypus and paratypi are
deposited in the cited collections.
Description of holotypus male. Fength 19
mm; width (near elytral base) 7 mm; body ovoid,
large, convex; bronze-green. Frons, antennae,
legs and ventral surface with short, sparse and
white pubescence.
Epistome concave. Frons large, slightly
convex, with big and irregular puncture; intervals
are microreticulated and irregularly raised. Eyes
big, protruding, converging dorsally.
Antennal cavities large, oblique and deep.
Antennae short, serrate from fifth segment;
first antennomere short and rounded, a little
dilated anteriorly, second one little and short,
about half as long as the first; third
antennomere is about twice as long as the
second; fourth little longer than the third,
slightly denticulate anteriorly; fifth denticulate;
segments 6-10 widely sub-squared with obtuse
outer angles; terminal antennomere rounded,
little elongated.
Pronotum convex, trasverse, 1.7 times as
wide as long, lateral margins converging
anteriorly, maximum pronotal width at basal
third, posterior angles straight and protruding,
anterior angles slightly protruding; anterior
pronotal margin slightly bisinuate, posterior
margin bisinuate and distinctly lobate in the
middle. Pronotal sculpture consisting of rounded,
deep and little dense punctures that are gathered
and irregular at the sides of pronotum; interspace
between punctures is microreticulated.
Scutellum small and transverse. Elytra 1.8
times as long as wide, slightly wider than
pronotum at humeral part, wide and arched at
basal third, narrowed at elytral apices; humeral
swellings small but well-developed; apex of
elytra obliquely truncate, not tighten.
Elytral sculpture consisting of irregular striae
of deep punctures, interspace between punctures
is microreticulated; intervals represented by
some remarks smooth, irregular, fragmented and
absent on the sides of the elytra and at the apex.
A new subspecies of Perotis lugubris Fcibricius, 1777 from Southern Italy (Coleoptera, Buprestidae)
155
Fig. 1
Fig. 3
Fig. 2
Fig. 4
Figure 1. P. lugubris meridionals n. ssp. from Italy, Matera, Policoro (length 20 mm).
Figure 2. P. lugubris lugubris from Slovakia, Hegy Farok (length 20 mm).
Figure 3. P. lugubris lugubris from Italy, Rome, Castelfusano (length 21 mm).
Figure 4. P. lugubris lugubris from Greece, Attica, Legrena (length 22 mm;).
156
Francesco Izzillo & Ignazio Sparacio
Large and distinct elytral epipleura, reaching
apex of elytra.
Legs relatively long, protibiae with a tooth
anteriorly, metatibiae curved on the outside; 1-4
segments of tarsi dilated, the first one narrower
than the other three, fifth flat and rectangular.
Prosternum with big and dense punctuation,
prosternal process with a median and smooth
prominence and with big and sparse punctures;
the sides of prosternal process are dilated and
angled, apex truncate and rounded.
Metasternum with punctures and a deep
median furrow; between posterior coxae there
are two prominences close and slightly divergent
posteriorly, extending up the 1 st sternite without
reaching the back edge.
Sternites microreticulated with big and
irregular punctures, sometimes thickened; anal
sternite truncated at apex.
Aegeagus little enlarged at apical third with
parameres narrow and elongated anteriorly;
median lobe pointed apically.
Variability. The length of the specimens
examined varied from 14 to 25 mm; the width
from 5.5 to 11 mm. The dorsal surface is always
green, sometimes very notable. Anal sternite of
the males sometimes more or less concave. The
females have the same characteristics of the
males but are usually larger and more convex
dorsally.
Etimology. From southern Italy, particularly
Basilicata and Apulia (Salento) where this new
taxon was collected.
Biology and distribution. P. lugubris s.l. is
a quite rare species in Italy. Its findings are
sporadic, generally discontinuous and
occasional. This species seems to prefer the
Mediterranean maquis as elective habitat,
although occurring, at very low frequencies and
at low altitudes, in the most exposed areas of
mesophilic forests and cultivated areas, given
certain conditions. In particular, it is present in
cultivated fields where intensive farming
techniques are not employed, where agricultural
cultivation is followed by relatively long
periods of stasis, and that are interspersed with
areas of natural vegetation (Authors’ personal
observations).
The forest Pantano-Sottano di Policoro, the
main site of collection of the new subspecies, in
the last two decades has undergone a profound
transformation due to altered environmental
conditions occurred as a result of the barrage
with dams upstream of some rivers (particularly
of Sinni river); these works have gradually led
primarily to a drastic reduction of water intake
and, subsequently, to depletion of groundwater
beneath the forest. This situation has greatly
affected vegetation of the area and actually has
impoverished the rich population of arthropods
occurring therein.
Over the years, starting from the peripheral
areas of the forest, there has been a gradual
regression of hygrophilous plants such as ash,
poplar (white and black), willow, alder, as well as
the elm trees [these latter also because of Dutch
elm disease (DED)]. At the same time, several
species peculiar of the Mediterranean maquis or,
however, of xeric areas such as mastic, myrtle,
Phyllirea and Crataegus gradually moved
forward and, as a further sign of a progressive
drying up of the area, it is now possible to come
across a few plants of maritime pine and Quercus
sp (= xerophytes), recently settled. In such an
environment and in the most exposed areas at the
edge of the forest we found, quite frequent,
Perotis specimens.
In line with what already reported in other
countries (Lebanon, Greece and Crete), we
observed specimens of the subspecies
meridionalis often in flight from bush to bush or,
more or less hidden, clinging to small diameter
branches, behaving similarly as congeneric
beetles. At Policoro, in particular, P. lugubris
meridionalis seem to be present at all the shrubs
of the Mediterranean maquis, without any
particular preference (but we never observed it
on Juniper). We have seen a few couplings on
Quercus sp. and Crataegus sp.; during mating
animals stood motionless on twigs, half-
concealed, with no detectable activities, just like
other taxa of the family.
Only once we observed it gnawing the apical
part of a small branch of a young oak tree. If it
feels in danger, P. lugubris meridionalis tends to
turn around the branch or drop down, and, more
rarely, it can fly away quickly. As all taxa
belonging to the family Buprestidae, it is a
phytophagous species the larva of which is
A new subspecies of Perotis lugubris Fcibricius, 1777 from Southern Italy (Coleoptera, Buprestidae)
157
polyphagous and radicicolous on trees and
shrubs; Curletti et al. (2003) reported it as host of
Arbutus unedo, Malus sp. and Pistacia lentiscus,
but, within broad-leaved trees, the taxon
certainly feeds on a broader spectrum of plants
than established so far.
At present, P. lugubris meridionalis is known
for some coastal places of Basilicata and Apulia
(Salento).
Comparative notes. P. lugubris meridionalis
n. ssp. appears to be well differentiated from
neighboring populations attributable to the
nominal subspecies, by many characters as
follows: the body is narrower and greenish in
colour (Fig. 1), pronotum with lateral margins
narrowed anteriorly and with the punctures
smaller and little dense, the shape of the antennae
(Fig. 5) with 4 th and 5 th articles less denticulate, a
minor extension of residual elytral intervals, the
shape of the prostemal process (Fig. 9), the
punctuation of abdominal sternites and aedeagus
(Fig. 13). In P. lugubris lugubris , the body is
wider, more convex, bronze, rarely with green
tinge (Fig. 2), pronotum is wider and convex
with maximum width in the middle and
punctures bigger and dense; antennae (Fig. 6)
with 4 th and 5 th articles more denticulate, 7 th - 10 th
larger, straight or slightly rounded at comers, 11 th
more elongated; elytra wider and curved at the
sides with the greater extent of residual elytral
intervals; prostemal process wider at the base
and rounded at the sides (Fig. 10), sternites with
punctuation bigger, dense, irregular and
confluent; aedeagus (Fig. 14) more dilated
anteriorly with curved sides.
These morphological characters have been
observed in the populations from Central and
Eastern Europe (locus typycus: Austria) and,
with some minor variations, even in the Italian
populations of Latium and N-Apulia (Figs. 3, 7,
11, 15). For Campania we observed only one
small male specimen that seems similar to the
nominal subspecies.
The populations from Greece, however, show
major differences from the nominal subspecies
(Figs. 4, 8, 12, 16), especially in shape of prostemal
process and aedeagus. The ssp. prolongata
described by Obenberger (1918) from Greece,
without precise location, is considered just a form
of no taxonomic validity by Muhle et al. (2000).
Examined material. Perotis lugubris
lugubris Fabricius, 1777.
SLOVAKIA. Hegy Farok, 27. VI. 1972, legit O.
Marek, 2 exx (CIS); Plast’ovce 12- 1 5. V. 1999,
legit V. Krivan, 3 exx (CS); Kamenica n. Hronom,
legit L. Klima, 5.VI.1983, 3 exx (CS); Kamenica
n. Hronom, 30. IV. 1994, legit S. Baron, 1 ex (CS);
Sturovo, 20.VI.1993, legit S. Baron, 1 ex (CS);
Slovacchia, 30.V.1988, legit V. Mikes, 1 ex (CS);
Sturovo, 9.V.1977, legit J. Hala, 1 ex (CM);
Sturovo, 15.V.1976, legit J. Hala, 1 ex (CM).
ROMANIA. Oltenia-Mehedinti Gura Vaii (near)
clearing, 44.675421/22.539392, 120 m, 16.VI.2003,
1 ex (CCM); Dobrogea-Tulcea, Babadag (near),
Babadag forest, 44.817756/28.750953, 100 m,
17. VII.2008, 1 ex (CCM).
BULGARIA. Volcanic Hill “Kozhuh” (Petrich),
11.IV.2004, 1 ex (CEM).
GREECE. Attica, dintomi Legrena, 25/30.
IV. 1991, legit A. Liberto, 3 exx (CIS); idem, 1 ex
(CG); Legrena littoral, 26.IV. 1991, legit A.
Liberto, 5 exx (CIS); Ahaia (Peloponnesos),
Halandritsa, 3. VII. 1993, 1 ex (CEM); Etolia,
Lessini, 1-3 .VII. 1993, 2 exx (CEM); Attica,
dintomi Lavrio, 10.V.1991, legit A. Liberto, 1 ex
(CG); Attica, dintomi Kalivia, 22.IV. 1988, legit A.
Liberto, 1 ex (CG); Trikala, Meteora, 18.V.1977, 1
ex (CG); Ahaia, Kalavrita, 1-3 .VII. 1996, 2 exx
(CM); Thessalia, Stomion, VI. 1984, legit J. & M.
Slama, 1 ex (CM); Argolida, Epidauros, 2.V.1999,
2 exx (CA); Ahaia, Kalavrita, 17-21. VI. 1998, 2
exx (CA); Limnos Island, Thanos Beach, 28-
29.VII.2006, 1 ex (CS); Attica, Legrena, 16.V.
1995, 4 exx (Cl); idem, 17.V.1995, 3 exx (Cl);
idem, 18.V.1995, 14 exx (Cl); Attica, Capo Sounio,
16.V.1995, 13 exx (Cl); Attica, Mandra,
19.V.1995, 1 ex (Cl); Ahaia, Kalavrita, 3. VII. 1996,
3 exx (Cl); idem, 18.VI.1998, 3 exx (Cl); idem,
24.VI.1998, 1 ex (Cl); Korinthia, Killini Oros,
23.V.2004, 1 ex (Cl); Argolida, Asini, 24.V.2004, 1
ex (Cl).
TURKEY. Akhisar, 28.V.1974 (CEM); idem,
18. VI.1974 (CEM).
ITALY. Marches. Pesaro, VIII. 1951, legit
Berardi, 1 ex (INER).
Tuscany. Grosseto, Follonica dintorni,
VI. 1962, legit Bianciardi, 2 exx, coll. G. Gobbi
(MCZR); Livorno, VI. 1938, 1 ex coll. Cermti
(INER).
Latium. Roma, Castelfusano, 7.VII.1955,
legit G. Montelli, 2 exx (CEM); idem, 1 ex,
Francesco Izzillo & Ignazio Sparacio
158
Fig. 5
Fig. 9
Fig. 13
Fig. 6
Fig. 10
Fig. 14
Fig. 7
Fig. 11
Fig. 15
5 mm
Fig. 8
Fig. 16
Figures 5-8. Antennae of P. lugubris meridionalis n. ssp. from Italy, Matera, Policoro (5), P. lugubris lugubris from Slovakia, Hegy Farok
(6), P. lugubris lugubris from Italy, Rome, Castelfusano (7), P. lugubris lugubris from Greece, Attica, Legrena (8).
Figures 9-12. Prostemal process of P. lugubris meridionalis n. ssp. from Italy, Matera, Policoro (9), P. lugubris lugubris from Slovakia, Hegy
Farok (10), P. lugubris lugubris from Italy, Rome, Castelfusano (11), P. lugubris lugubris from Greece, Attica, Legrena (12).
Figures 13-16. Aedeagus of P. lugubris meridionalis n. ssp. from Italy, Matera, Policoro (13), P. lugubris lugubris from Slovakia, Hegy Farok
(14), P. lugubris lugubris from Italy, Rome, Castelfusano (15), P. lugubris lugubris from Greece, Attica, Legrena (16).
A new subspecies of Perotis lugubris Fcibricius, 1777 from Southern Italy (Coleoptera, Buprestidae)
159
Perotis lugubris Fabr., det. F. Tassi, 1961; idem,
VII. 1955, legit C. Saraceni, ex coll. S. Cafaro, 1
ex (CEM); idem, VII. 1955, 1 ex (CEM); idem,
VI. 1956, legit S. Cafaro (CEM); Castelfusano,
VII. 1962, legit Ramaccini, 1 ex, coll. G. Gobbi
(MCZR); idem, VII. 1963, 1 ex, coll. G. Gobbi
(MCZR); idem, 22.VI.1969, 1 ex, coll. G. Gobbi
(MCZR); idem, VI.1955, legit G. Montelli, 1 ex,
coll. G. Gobbi (MCZR); idem, VII.1965, legit D.
Ruggiu, 1 ex, coll. G. Gobbi (MCZR); idem,
6.VII.1954, legit E. De Maggi, 2 exx (MCZR);
idem, 24.VII.1954, legit E. De Maggi, 1 ex
(MCZR).
Roma, Maccarese, 4.VI.2009, 1 ex (CMG).
Porto Anzio, VII. 191 8, 1 ex, legit Straneo,
Perotis lugubris F., det. Obenberger.
Campania. Napoli, Villa Comunale, VIII. 1911,
legit Anguis (MCZR).
Apulia. Apricena dintomi (Foggia), 1.VI.2001,
legit W. Pagliacci, 5 exx (CM).
CONCLUSION
Although Perotis lugubris s.l. is a polytypic
species with a certain degree of intraspecific
variability, nevertheless P. lugubris meridionalis
ssp. is clearly differentiated and morphologically
distinguishable from all other known
populations, particularly those geographically
close. Future research should be aimed at a
reassessment of all taxonomic populations of
Perotis lugubris s.l. and at a better definition of
the presence of P lugubris meridionalis n. ssp. in
Southern Italy.
ACKNOWLEDGEMENTS
We thank all the friends and colleagues who
have provided data and/or material in their
possession facilitating the preparation of this
work, particularly: Ferdinando Angelini
(Francavilla Fontana, Brindisi, Italy), Maurizio
Bollino (Lecce, Italy), Paolo Crovato (Naples,
Italy), Domenico Gianasso (Castelnuovo Don
Bosco, Asti, Italy), Maurizio Gigli (Rome, Italy),
Andrea Liberto (Rome, Italy), Gianluca Magnani
(Cesena, Italy), Cosmin Ovidiu Manci (Iasi,
Romania), Enrico Migliaccio (Rome, Italy), and
Daniele Sechi (Quartu Sant’Elena, Cagliari,
Italy).
A special thanks to Marcello Romano
(Capaci, Palermo, Italy) for photographs and to
Gianluca Magnani for helpful suggestions.
REFERENCES
Bertolini S., 1899. Catalogo dei Coleotteri d’ltalia. Ed.
Rivista Italiana di Scienze Naturali, Siena, 144 pp.
Curletti G., 1985. I Buprestidi d’ltalia. Catalogo
Tassonomico, Sinonimico, Biologico, Geonemico.
Monografie di Natura Bresciana, 19, Ed. Vannini,
Brescia, 318 pp.
Curletti G., Rastelli M., Rastelli S. & Tassi F., 2003.
Coleotteri Buprestidi d’ Italia. Piccole Faune. Museo
Civico di Storia Naturale di Carmagnola (Torino) e
Progetto Biodiversita Comitato Parchi - Centro Studi
(Roma), CD-ROM.
Gobbi G. & Platia G., 1995. Coleoptera Polyphaga VII
(Elateroidea, Buprestoidea). In: Minelli A., Ruffo S. &
La Posta S. (eds), Checklist delle specie della fauna
italiana, 52. Calderini, Bologna.
Luigioni P., 1929. Catalogo dei Coleotteri d’ltalia. Memorie
della pontificia Accademia Scienze Roma, 13: 1-1160.
Kuban V., 2006. Buprestidae: Chrysochroinae Dicercini,
346-350 pp. In: Lobl I. & Smetana A. (ed): Catalogue of
Palaearctic Coleoptera, 3. Apollo Books, Stenstrup, 690
pp.
Miihle H., Brandi P. & Niehuis M., 2000. Catalogus Faunae
Graeciae: Coleoptera, Buprestidae. Augsburg,
Selbstverlag, 254 pp.
Obenberger J., 1918. Ein weiterer Beitrag zur Kenntnis der
palaearktischen Buprestiden. Entomologische Blatter,
14: 19-25.
Obenberger J., 1924-1932. Buprestidae. In: Winkler A.,
1924-1932. Catalogus Coleopterorum regionis
palearcticae. Wien, 620-663.
Obenberger J., 1926. Buprestidae I. In: Junk W. &
Schenkling S., Coleopterorum Catalogus, pars 84. W.
Junk, Berlin, 212 pp.
Porta A., 1929. Fauna Coleopterorum italica. Vol.III,
Diversicornia - Stabilimento Tipografico Piacentino,
Piacenza, 466 pp.
Reitter E., 1906. Neue Coleopteren aus der palaearktischen
fauna. Wiener Entomologische Zeitung, 25: 31-37.
Romano B., 1849. Coleotteri della Sicilia raccolti e
posseduti da Baldassare Romano. Tipografia F. Lao,
Palermo, 28 pp.