www.biodiversityjournal.com
Biodiversity
Journal
ISSN 2039-0394 (Print Edition) JUNE 2015, 6 (2): 495-670
ISSN 2039-0408 (Online Edition) 7 v 7
with the support of
w o r I c
biodiversity
association
o n I u s
FOR NATURALISTIC RESEARCH
AND ENVIRONMENTAL STUDIES
Cytisus aeolicus Guss. - Vulcano, Eolie Islands, Italy
BIODIVERSITY JOURNAL
20 1 5, 6 (2): 495-670
Quaternly scientific journal
edited by Edizioni Danaus,
via V. Di Marco 43, 90 1 43 Palermo, Italy
www.biodiversityjournal.com
biodiversityjournal@gmail.com
Official authorization no. 40 (28. 1 2.20 1 0)
ISSN 2039-0394 (Print Edition)
ISSN 2039-0408 (Online Edition)
Soil microbial diversity has an impact on plant diversity and safeguard. Bacterial and Archaeal
communities play a key role in biogeochemical cycles of C, N, S and P and are main players in ecosystem
functioning. Nevertheless, only generic information is available on diversity of prokaryotes in water and soil
ecosystems and microbial diversity is not on the biodiversity conservation agenda. One reason for this
oversight is due to the opinion that microbes are generally resistant to physico-chemical fluctuations and
resilient to perturbations, moreover their functions are considered redundant and not menaced by loss of
biodiversity. Assessing microbial diversity, however, is a challenge due to microscopic size and to the fact
that only 1% of the actual microbial diversity is represented as cultured organisms while the characteristics
and functions of the remaining 99% are largely unknown. Recently, molecular techniques have contributed
to open the black box of microbial diversity in natural ecosystems and helped linking taxonomic and
functional diversity. Among the ecosystem services provided by prokaryotes nitrogen fixation is the most
exclusive and crucial for life on earth. Symbiotic nitrogen fixing bacteria fix atmospheric nitrogen in the
plant root nodules thus providing nitrogen nutrition to cultivated and spontaneous legumes. Spontaneous
legume shrubs such as Anagyris foetida , Genista spp., Calicotome spp., Spartinmjunceum , Astragalus spp.,
play an important role for the conservation of soils, especially during the primary and secondary succession.
Soil is a key natural resource that is threatened by desertification and pollution and its protection is essential
to human health, to return land to agriculture and to increase the pool of soil carbon in order to mitigate
climate change. In semi-arid Mediterranean ecosystems shrubby legumes have great potential for
rehabilitation of degraded/anthropogenic soils as they establish mutualistic symbiosis not only with N-fixing
rhizobia but also with mycorrhizal fungi that contribute to P uptake and plant fitness. Both symbiosis are
highly specific and soil disturbance can prevent the formation of beneficial plant-microbes symbiosis. Most
of the rhizobia isolated from Sicilian native and endemic shrub legumes, Genisteae in particular, are slow-
growing rhizobia phylogenetically affiliated to the genus Bradyrhizobium. A strict specificity was evidenced
between Cytisus aeolicus and its root symbionts that differ by effectiveness and competition ability for
nodule occupancy. C. aeolycus is an endangered plant species strictly endemic of Aeolian Archipelago
(South Tyrrhenian Sea, Italy). Due to differences from other species and sharp taxonomic isolation it is
considered a relic species. The reintroduction of selected specific microbial symbionts may thus improve
plant survival and help spreading rare legumes. Once identified, these beneficial symbiosis can be exploited
for rehabilitation of arid, low productive and human-impacted soils of the Mediterranean area. To preserve
and exploit the diversity of rhizobia a collection from wild Mediterranean legumes is maintained at the
laboratory of Microbial Ecology & Environmental Microbiology of the Dept. STEBICEF at the University
of Palermo: a little effort to preserve, understand and protect the huge diversity of the unseen majority.
Cover photo by A. Troia. Up: Root
nodules of Anagyris foetida (photo T.
LaMantia)
Colonization Etna lavas by endemic
species Astragalus siculus and Genista
aetnensis (photo T. La Mantia)
Paola Quatrini & Tommaso La
Mantia, University of Palermo, Italy;
email: paola.quatrini@unipa.it;
tommaso.lamantia@unipa.it
Biodiversity Journal, 2015, 6 (2): 497-504
Checklist of aphyllophoroid fungi (Basidiomycota) of the
Ekenas Archipelago National Park, Southern Finland
Panu Kunttu '*,Jorma Pennanen 2 & Heikki Kotiranta 3
'University of Eastern Finland, School of Forest Sciences. P.O. Box 111, FI-80101 Joensuu, Finland; email: panu.kunttu@uef.fi
2 Pentbyntie 1 A 2, FI-10300 Karjaa, Finland; email: jhpennanen@gmail.com
3 Finnish Environment Institute, Biodiversity Unit, P.O. Box 140, FI-0025 1 Helsinki, Finland; email: heikki.kotiranta@ymparisto.fi
’Corresponding author
ABSTRACT This is the first checklist of aphyllophoroid fungi (Basidiomycota) of the Ekenas Ar-
chipelago National Park on the Finnish south coast. The focus is on wood-dwelling poly-
pores and corticioids. The material was collected in the years 1989, 1990, 2010 and 2012,
respectively, during one or a few days each year. The field work was carried out on the two
largest islands: Algo and Jussaro. The number of species detected was 150, which is 20%
of all the Finnish polypores and corticioids. Eight of the species are nationally or regionally
threatened.
KEY WORDS aphyllophorales; corticioids; fungal diversity; polypores; species richness.
Received 28.02.2015; accepted 22.06.2015; printed 30.06.2015
INTRODUCTION
For the polypores and corticioids the term
aphyllophorales is used solely for pragmatic
reasons. Both of the groups are highly diverse and
polyphyletic (Hibbett et al., 2014). In this study we
concentrated on species which are saprobes,
parasites or mycorrhizal, but for instance the clav-
arioid taxa and soil dwelling hydnaceous fungi
(e.g., Banker a Coker & Beers ex Pouzar, Hydnellum
P. Karst., Hydnum Linnaeus) are excluded.
In the checklist of Kotiranta et al. (2009) 756
corticioids and polypores are reported from Finland,
and 489 of them occur on the southwestern coast of
Finland where our study islands are situated. After
this Finnish checklist numerous papers have been
published with new records of aphyllophoroid fungi
(e.g., Kunttu et al., 2010; 2012; Kotiranta &
Shiryaev, 2013; Spirin et al., 2013a). There is only
one earlier large scale biogeographical study of
aphyllophorales from the Finnish southern ar-
chipelago (Kunttu et al., 2015).
The Ekenas Archipelago National Park was
founded in 1989. One part of the national park was
former Jussaro Strict Nature Reserve which was
established in 1956. The national park contains a
few hundreds of islands or skerries, and the land
area is 844 hectares and sea area 4577 hectares
(Nordstrom & Tainio, 2012). It is also a part of the
large Natura 2000 conservation area, dominated by
sea and archipelago landscapes (Nordstrom &
Tainio, 2012).
The national park is situated in the Gulf of
Finland (approx. 59° N, 23° E) in the hemiboreal
vegetation zone (Ahti et al., 1968) in sectionlb (see
e.g., Kotiranta et al., 2009, p. 7 or Rassi et al., 2010,
p. 27). It belongs to the Uusimaa biogeographical
province (Hansen & Knudsen, 1997).
The national park extends from larger forested
islands near the mainland out to rugged skerries and
498
Panu Kunttu etalii
open seascapes of the Gulf of Finland. The park is
divided into inner, middle and outer archipelago
zones (Hayren, 1948). The larger islands inhabit
also old-growth forests suitable for pretentious
wood-decayers. Small islands have been saved
from intense forestry but household use for build-
ing, fodder for domestic animals and collecting of
firewood have occurred. Small islands are mainly
poor, rocky Scots pine ( Pinus sylvestris Linnaeus)
dominated, and in general the forests are mainly
barren Cladina-, Calluna-, Empetrum-Vaccinium-
and Myrti 1 1 us-s i te- ty p e heath forests with only some
patches of herb-rich forests (Bonn & Routasuo,
1997; Nordstrom & Tainio, 2012).
As a whole, the national park contains high biod-
iversity with rare and threatened species and habitat
types, like 13 Natura 2000-habitat types according
to the European Union's Habitat Directive, and 61
threatened or near-threatened species (Nordstrom
& Tainio, 2012; Metsahallitus, 2014).
MATERIAL AND METHODS
This study was carried out on the two largest is-
lands of the national park: Algo (698 hectares) and
Jussaro (134 hectares). Inventories were concen-
trated in the southern parts of Algo (48 hectares)
and the western parts of Jussaro (66 hectares).
Heikki Kotiranta (HK) surveyed and collected
material during the autumns 1989 and 1990, Panu
Kunttu (PK) 2010 and Jorma Pennanen (JP) 2012.
Altogether these inventories contained eight days
of field work.
The authors PK and JP used the inventory
methods according to Junninen (2009), which is
widely used in polypore inventories in the state
owned forests. The focus was on rare, red-listed and
old-growth forest indicators. HK sampled extens-
ively both polypores and corticioids, but PK and JP
concentrated more on polypores and collected
corticioids only occasionally and selectively (large,
hydnoid species). PK and JP made most of their
inventories in the forest stands with the highest
volume of dead wood, and generally these were
Norway spruce, Picea abies (Linnaeus) H. Karsten,
dominated forests.
The island of Algo is located on the northern
boundary of the national park (Fig. 1). It is the
largest island of the park with some small lakes, and
is mostly covered with coniferous forests inter-
mixed with deciduous trees, like birches ( Betula
spp. Linnaeus) and aspen ( Populus tremula Lin-
naeus) (Fig. 2). On the stony shores and other wet
places black alder ( Alnus glutinosa (Linnaeus)
Gaertner) is common. Selectively loggings in
spruce forests were made 40 years ago but part of
these forests have been restored recently (Nord-
strom & Tainio, 2012).
The island of Jussaro is located on the eastern
boundary of the national park (Fig. 1), and is the
second largest in the park. Such forested inlands are
unusual in the outer archipelago zone. It is divided
into two parts: the western part is dominated by old-
growth forests with up 150 years old spruces (Fig.
3), and it has been untouched for decades, and the
eastern side is strongly affected by mining, which
was practised over hundred years until 1960’s
(Nordstrom & Tainio, 2012).
The specimens were identified by the authors
themselves. Voucher specimens are deposited in the
herbaria of Universities of Turku (TUR), Helsinki
(H) and/or private collections of the authors HK and
JP. The nomenclature follows mainly Kotiranta
et al. (2009), but of the genus Hyphodontia sensu
lato Hjortstam & Ryvarden (2009). Some recent
combinations are according to Miettinen & Larsson
(2011), Miettinen et al. (2012) and Spirin et al.
(2013b). The Finnish national red-listing evaluation
of the IUCN red list categories is according to
Kotiranta et al. (2010).
RESULTS
A total of 150 species are listed in Table 1 in
alphabetic order regardless of their systematic
position. This is ca. 20% of all known species of
these species groups in Finland and ca. 30% of
species found from the hemiboreal oak zone
(section lb). The list comprises 66 polypores, 83
corticioids and one wood inhabiting hydnaceous
species ( Mucronella bresadolae). It is a matter of
taste weather one species belongs to polypores or
corticioids. For instance Schizopora paradoxa and
the poroid Trechispora species are here included
in corticioids. The most species-rich genera are
Phellinus (9 species), Peniophora (7 species),
Postia (7 species), Skeletocutis (5 species) and
Trechispora (5 species).
Checklist of aphyllophoroid fungi (Basidiomycota) of the Ekenas Archipelago National Park, S-Finland
499
Following red-listed species were found: Amy-
locorticium subincarnatum (VU), Skeletocutis
stellae (VXJ), Aporpium canescens (NT, RT),
Fomitopsis rosea (NT, RT), Onnia tomentosa (NT),
Phlebia centrifuga (NT, RT), Sidera lenis (NT, RT)
and Skeletocutis odora (NT, RT). All these species
grow almost solely in old-growth forests, and
nowadays their survival is dependent on protected
areas.
The list of species contains three virgin forest
indicators (VFI) and 1 1 old-growth forest indicators
(OFI) of pine and spruce dominated forests (Table
1). According to the classification of old-growth
forest indicators by Kotiranta & Niemela (1996)
these two forest areas reach 13 points for spruce
dominated forests and 1 0 points for pine dominated
forests.
DISCUSSION
The number of species (150) found in the
Ekenas Archipelago National Park is an expected
number of species in Southern Finland if compared
to the consumed time and studied area (ca. 1 0% of
the whole land area of the national park). It is well
known that fungi do not fruit every year (Straatsma
et al., 2001) and species occupying narrow ecolo-
gical niches may have been overlooked (Juutil-
ainen et al., 2011). So, many more species could
be found with more intensive field work, because
the forests of the national park offer wide range of
tree species, diversity of habitats and high volume
of dead wood. Especially the corticioids are under-
represented in this material and quite common
species, like Amphinema byssoides (Pers.: Fr.) J.
Eriksson, are lacking from our list. For example,
from the near-situated Archipelago Sea National
Park 303 polypores and corticioids were listed
(Kunttu et al., 2015).
We studied quite little barren and rocky Scots
pine dominated forest habitats and therefore some
specialist species living in kelo trees have not been
found in our study. Kelos are dead and old age
trunks of Scots pine, and their surface is grey, hard
and decorticated. Scots pine can become kelo tree
mainly on dry and barren forest habitats (Leikola,
1969; Niemela et al., 2002). It is known that kelo
trees sustain specific fungal diversity (Niemela et
al., 2002). Also a comprehensive inventory of black
Algo
59 ° 50 ' “
Sweden
Finland
Jussaro
Gulf of Finland
23 ° 30 '
I
2 kfn
Figure 1. Location of the study islands: Ekenas Archipe-
lago National Park, Southern Finland.
Figure 2. Mixed forest near the shore on the island of Algo.
Figure 3. Old-growth spruce forest on the island of Jussaro.
500
Panu Kunttu etalii
Species and authors
Status
Alutaceodontia alutacea (Fr.) Hjortstam et
Ryvarden, 2002
Amylocorticium subincarnatum (Peck) Pouzar,
1959
VU
Amylostereum chailletii (Pers.) Boidin, 1958
Amylostereum laevigatum (Fr.) Boidin, 1958
Antrodia serialis (Fr.) Donk, 1 966
Antrodia sinuosa (Fr.) P. Karsten, 1881
Antrodia xantha (Fr. : Fr.) Ryvarden, 1973
Antrodiella pallescens (Pilat) Niemela et Mietti-
nen, 2006
Antrodiella serpula (P. Karst.) Spirin et Niemela,
2006
Aphanobasidium pseudotsugae (Burt) Boidin et
Gilles, 1989
Aporpium canescens (P. Karst.) Bondartsev et
Singer, 1944
NT, RT
Asterodon ferruginosus Patouillard, 1 894
OFI
Athelia acrospora Jiilich, 1972
Athelia arachnoidea (Berk.) Julich, 1972
Athelia epiphylla Persoon, 1 822
Basidioradulum radula (Fr.) Nobles, 1967
Bjerkandera adusta (Willd.: Fr.) P. Karsten, 1879
Botryobasidium botryosum (Berk, et M.A. Curtis)
J. Eriksson, 1958
Botryobasidium subcoronatum (Hohn. et Litsch.)
Donk, 1931
Bulbillomyces farinosus (Bres.) Julich, 1974
Byssomerulius corium (Fr.) Parmasto, 1967
Ceraceomyces eludens K.H. Larsson, 1998
Ceriporiopsis balaenae Niemela, 1985
Cerrena unicolor (Bull.: Fr.) Murrill, 1903
Chondrostereum purpureum (Pers.: Fr.) Pouzar,
1959
Cinereomyces lindbladii (Berk.) Julich, 1982
Climacocystis borealis (Fr.) Kotlaba et Pouzar,
1958
Conferticium ochraceum (Fr.: Fr.) Hallenberg,
1980
Coniophora arida (Fr.) P. Karsten, 1868
Coniophora olivacea (Pers.: Fr.) P. Karsten, 1879
Coniophora puteana (Schumach.: Fr.) P. Karsten,
1868
Corticium roseum Persoon, 1794
Cylindrobasidium evolvens (Fr.) Jiilich, 1 974
Cytidia salicina (Fr.) Burt, 1924
Daedaleopsis confragosa (Bolton: Fr.) J. Schroter,
1888
Datronia mollis (Sommerf.) Donk, 1966
Eichleriella deglubens (Berk, et Broome) D.A.
Reid, 1970
Exidiopsis calcea (Pers.: Fr.) K. Wells, 1962
Fomes fomentarius (L.: Fr.) Fr., 1849
Fomitopsis pinicola (Sw.: Fr.) P. Karsten, 1881
Fomitopsis rosea (Alb. et Schwein.: Fr.) P.
Karsten, 1881
NT,RT,
OFI
Galzinia incrustans (Hohn. et Litsch.) Parmasto,
1965
Ganoderma applanatum (Pers.) G.F. Patouillard,
1887
Ganoderma lucidum (M.A. Curtis: Fr.) P. Karsten,
1881
Globulicium hiemale (Laurila) Hjortstam, 1973
Gloeocystidiellum porosum (Berk, et M.A. Curtis)
Donk, 1931
Gloeophyllum odoratum (Wulfen: Fr.) Imazelti,
1943
Gloeophyllum sepiarium (Wulfen: Fr.) P. Karsten,
1882
Gloeoporus dichrous (Fr.: Fr.) Bresadola, 1912
Heterobasidion parviporum Niemela et Korhonen,
1998
Hymenochaete fuliginosa (Pers.) Bresadola, 1 846
Hymenochaete tabacina (Sowerby) Leveille, 1846
Hyphodontia alutaria (Burt) J. Eriksson, 1958
Hyphodontia arguta (Fr.) J. Eriksson, 1958
Hyphodontia pallidula (Bres.) J. Eriksson, 1958
Hypochnicium albostramineum (Bres.)
Hallenberg, 1985
Hypochnicium bombycinum (Sommerf. et Fr.)
J. Eriksson, 1958
Hypochnicium multiforme (Berk, et Broome)
Hjortstam, 1998
Inonotus obliquus (Pers.: Fr.) Pilat, 1942
Inonotus radiatus (Sowerby: Fr.) P. Karsten, 1881
Ischnoderma benzoinum (Wahlenb.: Fr.) P.
Karsten, 1879
Junghuhnia nitida (Pers.: Fr.) Ryvarden, 1972
Laxitextum bicolor (Pers.: Fr.) Lentz, 1956
Leptoporus mollis (Pers.: Fr.) Quelet, 1886
OFI
Leptosporomyces galzinii (Bourdot) Jiilich, 1972
Leucogyrophana romellii (Fr.) Ginns, 1978
Lobulicium occultum K.H. Larsson et Hiortstam,
1982
Megalocystidium leucoxanthum (Bres.) Boidin,
1978
Checklist of aphyllophoroid fungi (Basidiomycota) of the Ekenas Archipelago National Park, S-Finland
501
Meruliopsis taxi cola (Pers.: Fr.) Bondartsev, 1959
OFI
Mucronella bresadolae (Quel.) Comer, 1970
Oligoporus rennyi (Berk, et Broome) Donk, 1971
Oligopoms sericeomollis (Romell) Bondartsev,
1983
OFI
Onnia tomentosa (Fr.) P. Karsten, 1889
NT
Peniophora cinerea (Pers.: Fr.) Cooke, 1879
Peniophora incarnata (Pers.: Fr.) P. Karsten, 1889
Peniophora limitata (Chaillet ex Fr.) Cooke, 1879
Peniophora nuda (Fr.) Bresadola, 1950
Peniophora pithya (Pers.) J. Eriksson, 1950
Peniophora polvgonia (Pers.: Fr.) Bourdot et
Galzin, 1928
Peniophora violaceolivida (Sommerf.) Massee,
Peniophorella praetermissa (P. Karst.) K.H.
Farsson, 2007
Peniophorella pubera (Fr.) P. Karsten, 1889
Phaeolus schweinitzii (Fr.) Patouillard, 1900
OFI
Phanerochaete sanguinea (Fr.) Pouzar , 1973
Phanerochaete velutina (DC.: Fr.) P. Karsten, 1968
Phellinus alni (Bondartsev) Parmasto, 1976
Phellinus cinereus (Niemela) Parmasto, 1976
Phellinus conchatus (Pers.: Fr.) Quelet, 1886
Phellinus ferrugineofuscus (P. Karst.) Bourdot, 1932
OFI
Phellinus igniarius (F .: Fr.) Quelet, 1886
Phellinus laevigatas (P. Karst.) Bourdot et Galzin,
1928
Phellinus pirn (Brot.: Fr.) A. Ames, 1913
OFI
Phellinus punctatus (P. Karst.) Pilat, 1942
Phellinus tremulae (Bondartsev) Bondartsev
et Borisov, 1953
Phlebia centrifuga P. Karsten, 1881
NT,
RT,VFI
Phlebia radiata Fr., 1821
Phlebia tremellosa (Schrad.: Fr.) Nakasone, 1984
Phlebiella cf. subnites (Bourdot et Galzin)
K.H. Farsson et Hjortstam, 1987
Phlebiella sulphurea (Pers.: Fr.) Ginns et
Fefebvre, 1993
Phlebiella tulasnelloidea (Hohn. et Fitsch.)
Ginns et Fefebvre, 1 993
Piloderma fallax (Fiberta) Stalpers, 1984
Piptoporus betulinus (Bull.: Fr.) P. Karsten, 1881
Polyporus brumalis (Pers.: Fr.) Fr., 1818
P ostia alni Niemela et Vampola, 2001
Postia caesia (Schrad.: Fr.) P. Karsten, 1881
Postia fragilis (Fr.) Jiilich, 1982
Postia leucomallella (Murrill) Jiilich, 1982
OFI
Postia ptychogaster (F. Fudw.) Vesterholt, 1996
Postia stiptica (Pers.: Fr.) Jiilich, 1982
Postia tephroleuca (Fr.) Jiilich, 1982
Pseudotomentella mucidula (P. Karst.)
Svrcek, 1958
Pycnoporellus fulgens (Fr.) Donk, 1971
OFI
Pycnoporus cinnabarinus (Jacq.: Fr.) P. Karsten,
1881
Radulomyces confluens (Fr.: Fr.) M.P. Christensen,
1960
Resinicium bicolor (Alb. et Schwein.: Fr.)
Parmasto, 1968
Resinicium furfuraceum (Bres.) Parmasto, 1968
Rigidoporus populinus (Schumach.: Fr.) Pouzar,
1966
Schizopora paradoxa (Schrad.: Fr.) Donk, 1967
Scytinostroma odoratum (Fr.) Donk, 1956
Scytinostroma portentosum (Berk, et M. A. Curtis)
Donk, 1956
Serpula liimantioides (Fr.: Fr.) P. Karsten, 1885
Sidera lenis (P. Karst.) Miettinen, 2011
NT, RT,
VFI
Sistotrema sernanderi (Fitsch.) Donk, 1956
Skeletocutis amorpha (Fr.) Kotlaba et Pouzar, 1958
Skeletocutis biguttulata (Romell) Niemela, 1998
Skeletocutis carneogrisea A. David, 1982
Skeletocutis odora (Sacc.) Ginns, 1984
NT,RT,
OFI
Skeletocutis stellae (Pilat) Jean Keller, 1979
VU, VFI
Spongiporus undosus (Peck) A. David, 1980
Stereum hirsutum (Willd.: Fr.) Gray, 1800
Stereum rugosum Pers.: Fr., 1794
Stereum sanguinolentum (Alb. et Schwein.: Fr.)
Fr., 1838
Subulicystidium longisporum (Pat.) Parmasto,
1968
Trametes hirsuta (Wulfen: Fr.) Pilat, 1939
Trametes ochracea (Pers.) Gilbertson et Ryvarden,
1987
Trametes pubescens (Schumach.: Fr.) Pilat, 1939
Trametes velutina (Fr.) G. Cunningham, 1965
Table 1/1 . Aphyllophoroid fungi of the Ekenas Archipelago
National Park. Red list status in Finland: VU = Vulnerable,
NT = Near Threatened, RT = Regionally Threatened.
Indicator species: VFI = Virgin Forest Indicator, OFI = Old-
growth Forest Indicator (continued).
502
Kunttu et alii
Species and authors
Status
Trechispora cohaerens (Schw.) Julich et Stalpers,
1980
Trechispora farinacea (Pers.: Fr.) Liberta, 1966
Trechispora hymenocystis (Berk, et Broome)
K.H. Larsson, 1994
Trechispora mollusca (Pers.: Fr.) Liberta, 1974
Trechispora subsphaerospora (Litsch.) Liberta,
1973
Trichaptum abietinum (Pers.: Fr.) Ryvarden, 1972
Trichaptum fuscoviolaceum (J.C. Schmidt: Fr.)
Kreisel, 1972
Tubulicrinis accedens (Bourdot et Galzin) Donk,
1956
Tylospora fibrillosa (Burt) Donk, 1960
Vesiculomyces citrinus (Pers.) E. Hagstrom, 1977
Vuilleminia comedens (Nees: Fr.) Maire, 1902
Xylodon asperus (Fr.) Hjortstam et Ryvarden, 2009
Xylodon brevisetus (P. Karst.) Hjortstam et
Ryvarden, 2009
Table 1/2. Aphyllophoroid fungi of the Ekenas Archipelago
National Park. Red list status in Finland: VU = Vulnerable,
NT = Near Threatened, RT = Regionally Threatened.
Indicator species: VFI = Virgin Forest Indicator, OFI = Old-
growth Forest Indicator.
alders could reveal more aphyllophoroid species,
therefore that black alder hosts many rare or little
collected species in Finland (Kunttu et al., 2011;
2012; 2014).
Based on the indicator points of Jussaro and
Algo, these are valuable in the view of nature
conservation. Particularly on Jussaro, the spruce
dominated old-growth forest is very valuable in the
sense of forest biodiversity. It has been estimated
to be one of the most representative old-growth
forests on the south coast of Finland (Nordstrom &
Tainio, 2012). Remote location and early protec-
tion in 1956 have saved forests of western Jussaro.
Also in general, isolated location have saved some
archipelago areas from large-scale intensive
forestry and this explains why certain forests in the
archipelago have a high degree of naturalness.
Precisely 11% of land area of the Ekenas Ar-
chipelago National Park is boreal natural forest
according to Natura 2000-habitat type definition
(Metsahallitus, 2014).
Relatively many aphyllophoroid fungi found
here have a preference, or are even depending on
old-growth forests. Many of these are today
common only in protected areas in northern or
eastern Finland (Renvall, 1995; Lindgren, 2001;
Sippola et al., 2005). It is obvious that the distri-
bution of these species has earlier covered almost
the whole Finland, but as a result of forceful
forestry with large clear-cuttings these species have
viable populations nowadays only in the large
protected areas in northern and eastern Finland.
Small old-growth forest fragments are maybe not
large enough to preserve the most pretentious
virgin forest species. This is especially alarming
since the dispersal ability of many fungal species
with specialised resources and habitat requirements
is weak; it affects the occurrences of these species
in fragmented landscapes (Norros et al., 2012) and
therefore colonization of species can be slow after
disturbance (Kouki et al., 2011). The Finnish
southern archipelago is far away from the present
occurrence sites of these wood-inhabiting fungi
with strict habitat requirements related to natural
characteristics of forests and thus the returning of
these species can be a long process.
ACKNOWLEDGMENTS
Metsahallitus, Parks & Wildlife Finland is
thanked for good cooperation in the field work as
well as the help of The Finnish Border Guard for
transportation to Jussaro. We also thank Sanna-Mari
Kunttu for drawing the map.
REFERENCES
Ahti T., Hamet-Ahti L. & Jalas J., 1968. Vegetation zones
and their sections in northwestern Europe. Annales
Botanici Fennici, 5: 169—211.
Bonn T. & Routasuo P. (Eds.), 1997. Tammisaaren saa-
riston kansallispuiston kasvillisuus ja kasvisto.
Metsahallituksen luonnonsuojelujulkaisuja A 67.
Metsahallitus, Vantaa, 90 pp.
Hansen L. & Knudsen H. (Eds.), 1997. Nordic macro-
mycetes 3. Heterobasidioid, aphyllophoroid and
gastromycetoid basidiomycetes. Nordsvamp, Copen-
hagen, 444 pp.
Hibbett D.S., Bauer R., Binder M., Giachini A.J., Hosaka
K., Justo A., Larsson E., Larsson K.H., Lawrey J.D.,
Miettinen O., Nagy L.G, Nilsson R.H. & Thom R.G.,
2014. Agaricomycetes. In: McLaughlin D.J. &
Spatafora J. W. (Eds.) 2014. The Mycota, A Compre-
Checklist of aphyllophoroid fungi (Basidiomycota) of the Ekenas Archipelago National Park, S-Finland
503
hensive Treatise on Fungi as Experimental Systems
for Basic and Applied Research. Vol. VII. Systematics
and Evolution, 2nd Edition. Springer- Verlag, Berlin
Heidelberg, 373-429.
Hjortstam K. & Ryvarden L., 2009. A checklist of names
in Hyphodontia sensu stricto - sensu lato and Schizo-
pora with new combinations in Lagarobasidium,
Lyomyces, Kneiffiella , Schizopora and Xylodon.
Synopsis Fungoram, 26: 33-55.
Hayren E., 1948. Skargardens langzoner. In: Lindberg H.
(Ed.) 1948. Skargardsboken. Nordenskiold-Samfun-
det i Finland, Helsingfors, 242-256.
Junninen K., 2009. Kaapakartoitusten yleisohje. Met-
sahallitus Natural Heritage Services, 3 pp.
Juutilainen K., Halme R, Kotiranta H. & Monkkonen M.,
2011. Size matters in studies of dead wood and wood-
inhabiting fungi. Fungal Ecology, 4: 342-349. DOI:
10.1 01 6/j.funeco.201 1.05. 004
Kotiranta H. & Niemela T., 1996. Threatened polypores
in Finland. 2nd revised edition. Finnish Environment
Institute & Edita, Helsinki, 184 pp. (In Finnish with
English summary)
Kotiranta H. & Shiryaev A., 2013. Notes on Aphyllo-
phoroid fungi (Basidiomycota) in Kevo, collected in
2009. Kevo Notes, 14: 1-22.
Kotiranta H., Saarenoksa R. & Kytovuori, I., 2009.
Aphyllophoroid fungi of Finland. A Check-list with
ecology, distribution, and threat categories. Norrlinia,
19: 1-223.
Kotiranta H., Junninen K., Saarenoksa R., Kinnunen J.
& Kytovuori I., 2010. Aphyllophorales & Hetero-
basidiomycetes. In: Rassi P., Hyvarinen E., Juslen A.
& Mannerkoski I. (Eds.) 2010. The 2010 Red List of
Finnish Species. Ministry of the Environment &
Finnish Environment Institute, Helsinki, 249—263.
Kouki J., Hyvarinen E., Lappalainen H., Martikainen P.
& Simila M., 2011. Landscape context affects the
success of habitat restoration: large-scale coloniza-
tion patterns of saproxylic and fire-associated species
in boreal forests. Diversity and Distributions, 18:
348-355. DOI: 1 0. 1 1 1 1/j. 1472-4642.20 1 1 .00839.x
Kunttu P., Kulju M. & Kotiranta H., 2010. Rare corticioid
fungi in Finland - records of new and little collected
species (Basidiomycota). Karstenia, 50: 35-44.
Kunttu P., Kulju M. & Kotiranta H., 2012. New national
and regional biological records for Finland 2.
Contributions to the Finnish aphyllophoroid funga
(Basidiomycota). Memoranda Societas Fauna Flora
Fennica, 88: 61-66.
Kunttu P., Kulju M. & Kotiranta H., 2015. Checklist of
aphyllophoroid fungi (Basidiomycota) of the Ar-
chipelago Sea National Park, Southwest Finland.
CheckList, 11(2): 1587. DOI: 10.15560/11.2.1587.
Kunttu P., Kulju M., Pennanen J., Kotiranta H. & Halme
P., 2011. Additions to the Finnish aphyllophoroid
fungi. Folia Cryptogamica Estonica, 48: 25-30.
Kunttu P., Pennanen J., Kekki T., Kulju M. & Suominen
M., 2014. Noteworthy records of aphyllophoroid
fungi in Finland (Basidiomycota). Acta Mycologica,
49: 221-235. DOI: 10.5586/am.2014.017
Leikola M., 1969. On the termination of diameter growth
of Scots pine in old age in northernmost Finnish
Lapland. Silva Fennica, 3: 50-61. (In Finnish with
English summary)
Lindgren M., 2001. Polypore (Basidiomycetes) species
richness and community structure in natural boreal
forests of NW Russian Karelia and adjacent areas in
Finland. Acta Botanica Fennica, 170: 1-41.
Metsahallitus 2014. Metsahallituksen selvitys Suomen-
lahden merikansallispuistojen taydentamistarpeista
ja-mahdollisuuksista. Metsahallitus, Helsinki, 105 pp.
Miettinen O. & Larsson K.-H., 2011. Sidera, a new genus
in Hymenochaetales with poroid and hydnoid
species. Mycological Progress, 10: 131-141. DOI:
10. 1007/s 11557-010-0682-5
Miettinen O., Spirin V. & Niemela T., 2012. Notes on the
genus Aporpium (Auriculariales, Basidiomycota),
with a new species for temperate Europe. Annales
Botanici Fennici, 49: 359-368. DOI: 10.5735/085.
049.0607
Niemela T., Wallenius T. & Kotiranta H., 2002. The kelo
tree, a vanishing substrate of specified wood-inhab-
iting fungi. Polish Botanical Journal, 47: 91-101.
Nordstrom M. & Tainio E., 2012. Tammisaaren saariston
ja Hangon itaisen saariston hoito- ja kayttosuun-
nitelma. Metsahallituksen luonnonsuojelujulkaisuja
C 78. Metsahallitus, Jyvaskyla, 144 pp.
Norros V., Penttila R., Suominen M. & Ovaskainen O.,
2012. Dispersal may limit the occurrence of special-
ized wood decay fungi already at small spatial scales.
Oikos 121: 961-974. DOI: 1 0. 1 1 1 1/j . 1 600-0706.
2012.20052.x
Rassi R, Hyvarinen E., Juslen A. & Mannerkoski I.
(Eds.), 2010. The 2010 Red List of Finnish Species.
Ministry of the Environment & Finnish Environment
Institute, Helsinki, 685 pp.
Renvall P., 1995. Community structure and dynamics of
wood-rotting Basidiomycetes on decomposing con-
ifer trunks in northern Finland. Karstenia, 35: 1—51.
Sippola A.-L., Monkkonen M. & Renvall P., 2005.
Polypore diversity in the herb-rich woodland key
habitats of Koli National park in eastern Finland.
Biological Conservation, 126: 260-269. DOI:
10.1016/j .biocon.2005 .06.002
Spirin V., Vlasak J., Niemela T. & Miettinen O., 2013b.
What is Antrodia sensu stricto? Mycologia, 105:
1555-1576. DOI: 10.3852/13-039
Spirin V., Miettinen O., Pennanen J., Kotiranta H. &
Niemela T., 2013a. Antrodiahyalina, a new polypore
from Russia, and A. leucaena, new to Europe.
504
Panu Kunttu etalii
Mycological Progress, 12: 53-56. DOI: 10.1007/
s 1 1557-012-08 15-0
Straatsma G., Ayer F. & Egli S., 2001. Species richness,
abundance, and phenology of fungal fruit bodies over
21 years in a Swiss forest plot. Mycological Research,
105: 515-523. DOL10.1017/S0953756201004154
Biodiversity Journal, 2015, 6 (2): 505-512
Pontoscolex corethrurus (Muller, 1 857) (Oligochaeta Glosso-
scolecidae) in forest transformation system in Bungku Village,
Jambi, Indonesia
Andy Darmawan 1 ,Tri Atmowidi 1 , Wasmen Manalu 2 & Bambang Suryobroto 1
'Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor
16680, Indonesia
department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, Indonesia
^Corresponding author, e-mail: and.darm@gmail.com
ABSTRACT Pontoscolex corethrurus (Muller, 1 857) (Oligochaeta Glossoscolecidae) is a widely distributed
exotic earthworm. We showed that P corethrurus completely dominated the secondary forest
and agricultural plantations in Bungku Village, Jambi Province, Sumatra, Indonesia. Bungku
Village in Jambi consists of the forest undergoing transformation into oil palm plantation,
rubber plantations, and rubber jungle. Purposive random sampling with hand-sorting method
was conducted to extract P. corethrurus. We found that all of 940 recovered earthworms were
P corethrurus. Their density was not significantly different in the four systems. Our result
showed that P corethrurus abundance was significantly influenced by soil physical factor,
mineral content, and texture. We propose that anthropogenic practice in Bungku Village
caused the condition which does not support the native earthworms. Pontoscolex corethrurus
which have better tolerance than the native earthworms are favored by anthropogenic
practice.
KEY WORDS earthworm; exotic; oil palm; rubber; soil.
Received 12.03.2015; accepted 22.05.2015; printed 30.06.2015
INTRODUCTION
Pontoscolex corethrurus (Muller, 1857) (Oligo-
chaeta Glossoscolecidae) is a widely distributed
exotic earthworm (Brown et al., 2006; Gonzalez et
al., 2006; Hendrix et al., 2006). This endogeic
earthworm is originally native in South America
and is the commonest earthworm in Brazil (Hendrix
& Bohlen, 2002). Nowadays, it is quite dispersed
up to South Africa and Asia Pacific regions as alien
species (Plisko, 2001; Blakemore, 2010). Its dis-
persal is probably related to the introduction of rub-
ber plant, Hevea brasiliensis (Willd. ex A. Juss.)
Mull. Arg.), from Brazil (Murdiyarso et al., 2002;
Nath & Chaudhuri, 2010) or pine seedling (Pinus
sp.) (Plisko, 2001). Frequently, it becomes invasive
competing with the native earthworms or coloniz-
ing the disturbed habitat where the native earth-
worms are reduced (Gonzalez et al., 2006).
Anthropogenic transformation of forest results
in unfavorable and reduced resources for native
earthworms (Hendrix et al., 2006; Marichal et al.,
2010). Pontoscolex corethrurus density increases
with the increase in the age of disturbed habitat
while the density of native earthworms decreases
(Nath & Chaudhuri, 2010). The native earthworms
tend to disappear and P. corethrurus fills the niche
(Gonzalez et al., 2006; Marichal et al., 2010).
506
Andy Darmawan et alii
Although direct competition with native earth-
worms is common, the extirpation of natives is not
easily demonstrated (Hendrix et al., 2006). On the
other hand, Hendrix et al. (2006) stated that exotic
earthworms invade ecosystem even in the absence
of obvious human disturbance. Therefore, it re-
quires more study to conclude that the anthropo-
genic influence is necessary for P. corethrurus to
sucessfully invade the area.
Indonesia experienced almost half million hec-
tare net loss of forest area in 2000-2010 (FAO,
2010). Central Sumatra had annual deforestation
rate of 3. 2-5. 9% (Achard et al., 2002) and Jambi is
undergoing a rapid primary forest transformation
into agricultural system (Murdiyarso & Wasrin,
1995). Bunglcu Village in Jambi consists of the
forest undergoing transformation into oil palm
plantation, rubber plantation, and rubber jungle.
Here, we showed that P. corethrurus completely
dominated the secondary forest and agricultural
plantations in Bungku Village, Jambi Province,
Sumatra, Indonesia. Moreover, we also analyzed
the soil parameters affecting their abundance.
precipitation of 2700 mm (BPPD, 2010). Sampling
area comprised of 1 5 year-old oil palm plantation
(S 01° 54' 33.8", E 103° 15' 56.3"), 11 year-old rub-
ber plantation (S 01° 54' 39.6", E 103° 15’ 59.3"),
19 year-old rubber jungle (S 01° 55' 39.9", E 103°
15' 32.0"), and secondary forest (S 01° 54' 52.1", E
103° 15' 57.3"). The coordinates were taken in the
outer side of each system.
Dominant plants in oil palm plantation were
oil palm, Elais guineensis Jacq., and grass
(Gramineae). Rubber plantation consisted of only
rubber, Hevea brasiliensis . Rubber jungle was
dominated by rubber, Asian melastome, Melastoma
candidum D. Don., grass, and billian, Eusider-
oxylon zwageri Teijsm. et Binn. Meanwhile, sec-
ondary forest was dominated by tempinis, Sloetia
elongata Koord., medang, Litsea firma (Blume)
Hook, f., and bamboo (Bambusoideae). Vegetation
analysis using profile method revealed that the
structure of old jungle rubber and secondary forest
are similar (Gouyon et al., 1993).
Pontoscolex corethrurus extraction
MATERIAL AND METHODS
Study sites
Sampling was conducted on November 2012 in
wet season in Bungku Village, Batanghari Regency,
Jambi (1°1 5 , -2°20’ south latitude - 120°30 , -104°30’
east longitude) (Fig. 1). This area had average
annual temperature of 25.5 °C and cumulative
Bungku Village
w
Fig. 1. Study site in Jambi Province, Indonesia.
Purposive random sampling was conducted to
extract P. corethrurus. Three sets of sampling sites,
about 20 m apart from each other, were placed in
each system. Each set consisted of 25 of 30 x 30 cm
and 30 cm depth plots placed randomly 1 m apart
from each other, making total of 75 plots in each
system. Hand-sorting method was carried out.
Pontoscolex corethrurus were cleansed with paper
towel prior to recording the biomass and fixation in
70% ethanol. Due to insensitivity of the weight scale,
we only measured the adult P corethrurus biomass.
Identification and description of P corethrurus were
conducted by following Blakemore method (2010).
Pontoscolex corethrurus with and without clitellum
were classified into adult and juvenile, respectively.
Meanwhile, P. corethrurus without anterior part was
classified into unknown stage.
Pontoscolex corethrurus in this study showed
the following characteristics: length 60-80 mm.
Width approximately 3 mm. Segments 173-230
with secondary annulations. Unpigmented with
yellowish clitellum. Prostomium retracted (pre-
served specimen). Dorsal pore absent. Setae 8 per
segment, quincunx in posterior. Nephropores dif-
ficult to see, clear from segment 10/11. Clitellum
saddle shaped, 15-22,23. Male pores and female
Pontoscolex corethrurus in forest transformation system in Bungku Village, Jambi, Indonesia
507
pores difficult to see. The first spemathecal pores
in 6/7. Genital markings on 19-21. Septa thick on
6/7, 7/8, 8/9. Dorsal blood vessel single. Hearts in
10 and 11 look strong. Gizzard spherical and
muscular in 6. Calciferous glands three pairs, under
the thick septa in 7-9. Intestine origin in 13 or 14.
Nephridia holoic. Testes probably in 10. Seminal
vesicles elongated in 12. Prostate absent. Sper-
mathecae three pairs in 7-9.
Soil parameter
Human disturbance may cause changes in soil
physical and chemical properties (Guariguata &
Ostertag, 2001) viz. temperature, pH, water, min-
eral content, and texture, which are directly related
to the P. corethrurus abundance (Edwards, 2004).
Soil parameters observed were soil physical factors
(temperature, pH, water content), mineral content
(C organic, P, Ca, Mg, K, Na), and texture (sand,
silt, clay).
Soil physical factors were assessed in each plot.
Soil temperature was measured using soil thermo-
meter. Meanwhile, soil pH and water contents were
measured using soil pH and humidity tester.
Soil mineral content and texture were assessed
following compositing method. Soils from each set
of sampling site were sampled, making total of 12
soil samples for 4 systems (3 samples for each
system). Five hundred grams of soil was air dried
prior to analyzing its C organic, P, Ca, Mg, K, Na
contents, and texture. The soils were analyzed for
organic content and texture following Walkley-
Black and Pipette method, respectively. Mean-
while, soil Ca, Mg, K, and Na contents were
analyzed using neutral 1 M ammonium acetate
(NH 4 OAc) method. Afterward, soil phosphorus
was analyzed using solution of HC1 25% (Sarkar
& Haidar, 2005). Soil analysis was conducted in
Laboratory of Department of Soil Science and
Land Resource, Faculty of Agriculture, Bogor
Agricultural University.
Statistical analysis
Data analysis was conducted using R 2.11.0
software (Ihaka & Gentleman, 1996; R Develop-
ment Core Team, 2010). Kruskal-Wallis test in
‘agricolae’ package (Mendiburu, 2010) was used
to assess P. corethrurus density, adult biomass, and
soil parameters in all systems. Soil factors influen-
cing P corethrurus abundance was analyzed by
constructing generalized linear model as the abund-
ance followed Poisson distribution (Zuur et al.,
2009). Pontoscolex corethrurus abundance as
response, soil factors as predictors. Soil factors
were transformed logarithmic naturally to meet the
normality assumption. Outliers were removed
from analysis. Collinearity among soil factors was
assessed using Variance Inflation Factors, and the
value of 3.00 was set as threshold. The model was
simplified using drop 1 . The final model used was:
P corethrurus abundance ~ pH + water content +
C organic + Na + salt. Homogeneity of variance
was assessed on model residual vs. fitted value and
independence of soil factors was assessed on
model residual vs. soil factors plot. No clear pat-
tern on those plots indicated that the model met
homogeneity of variance and independence as-
sumption.
RESULTS
Domination, density, and adult biomass of
P. corethrurus in four land systems
A common effect of anthropogenic disturb-
ance into agricultural system is domination of
exotic earthworm like in Tripura, India, where P
corethrurus successfully dominated rubber plan-
tation with >70% frequency (Chaudhuri et al.,
2008; Chaudhuri & Nath, 2011). We also found P.
corethrurus in Bungku Village. All of 940 re-
covered earthworms there were P. corethrurus.
Previous study by Bignell et al. (2000) found only
two earthworm species in neighboring 1 5 years old
monoculture rubber plantation and one species in
secondary forest in Pasir Mayang, Jambi. However,
they found five species in jungle rubber of Pan-
curan Gading, Jambi, which contained rubber trees
and secondary forest regrowth with liana. Unfor-
tunately, they did not mention the earthworm
species. They concluded that earthworms had low
diversity in Jambi except in Sengon (Paraserian-
thes) plantation and jungle rubber. In comparison,
the other study conducted by Darmawan et al.
in undisturbed forest in West Java recovered
more than six earthworm species including P.
corethrurus (unpublished data).
508
Andy Darmawan et alii
Pontoscolex corethrurus density was not signi-
ficantly different in the four systems (Table 1). All
of our results were lower than previous study in
Tripura, India, which found a P. corethrurus density
of 78-88 ind/m 2 (Chaudhuri et al., 2008; Chaudhuri
& Nath, 2011).
The adult biomasss ± SD of P. corethrurus in oil
palm plantation, rubber plantation, rubber jungle,
and secondary forest were 7.56 ± 6.25a, 4.74 ±
3.49b, 7.56 ± 6.23a, and 5.45 ± 4.15b g/m 2 respect-
ively (p-value < 0.01). The values with the same
letter are not different.
Soil parameters in four land systems and
their influence on P. corethrurus abundance
Oil palm and rubber plantation had high value
of soil phosphorus and potassium as the con-
sequences of being fertilized with NPK (nitrogen,
phosphate, potassium) by the land owner (Table 2).
Conceptually, tree plantations may affect earth-
worm community structure through alteration of
soil physical and chemical properties (Gonzalez et
al., 1996; Sarlo, 2006; Nadeem et al., 2007). How-
ever, rubber plantation and mixed forest which had
similar soil properties consisted of different earth-
worm community structures in Tripura, India
(Chaudhuri & Nath, 2011). As earthworm abund-
ance is affected by soil parameters, our result
showed that P. corethrurus abundance was signific-
antly influenced by soil physical factor, mineral
content, and texture (Table 3).
DISCUSSION
Severely disturbed habitat caused by anthropo-
genic practices such as deforestation or transforma-
tion into agricultural system often lead to
soil inhabitation by exotic earthworm (Nath &
Chaudhuri, 2010). If the disturbance is severe, it is
possible that the native species be extirpated leaving
only the exotic species (Gonzalez et al., 2006) as in
our study. In that case, the native earthworms were
reduced because of failure to adapt to the new
environment, and then the niche was colonized by
exotic earthworms.
Colonization of P corethrurus in Bungku
Village might be also associated with the plant
species in the area i.e., rubber and oil palm planta-
tions, which do not support the other earthworm
species (Sarlo, 2006). In addition, P. corethrurus
has better tolerance to fill the niche left by the nat-
ives (Gonzalez et al., 2006). Most earthworms
tolerate narrow range of temperature. However, P
corethrurus can tolerate approximately 13-27 °C of
temperature (Kale & Krishnamoorthy, 1979) and
even up to 29 °C in the present study. Pontoscolex
corethrurus is characterized as having constant oxy-
gen consumption without diurnal rhythm and toler-
ance for low oxygen availability (Chuang & Chen,
2008). The epidermal cells of P. corethrurus consist
of more granules, so it can secret more mucus to
provide the protection from UV light as compared
to Amynthas gracilis and Metaphire posthuma
(Chuang et al., 2006; Gonzalez et al., 2008).
Parthenogenesis also occurs in P corethrurus and
it can enhance their colonization (Hendrix &
Bohlen, 2002). They are also able to enter diapause
and regenerate the lost posterior segment regardless
of soil moisture (Fragoso & Lozano, 1992).
Our result showed no significant difference of
P corethrurus density in the four systems, and this
was not in agreement with previous study which
mentioned that earthworm density was higher in
forest than plantation (Marichal et al., 2010;
Chaudhuri & Nath, 2011). Concerning the overall
lower density of P. corethrurus than that reported
in previous study, we speculate that it might be due
to the higher soil pH (6.5) as P. corethrurus prefers
lower pH (< 5.0) (Chaudhuri et al., 2008; Nath &
Chaudhuri, 2010). We also found boar tracks in the
secondary forest. Hence, we hypothesize that in
secondary forest, predation by wild boars, Sus scrofa
Linnaeus, 1758, caused a lower P corethrurus
density in Jambi, as predation can become a lim-
iting factor for the exotic earthworms to invade new
habitat (Hendrix et al., 2006). Consequently, their
lower density caused lower biomass. Moreover,
we only assessed the adult P corethrurus biomass.
For comparison, the previously mentioned P.
corethrurus from Tripura, India, had biomass of 26-
30 g/m 2 (Chaudhuri et al., 2008; Chaudhuri & Nath,
2011 ).
Our result showed that soil pH and water
content were important soil physical factors. Most
earthworms prefer normal soil pH (Edwards, 2004),
and few of them can live in acidic soil (Ismail &
Murthy, 1985). Pontoscolex corethrurus is an
earthworm which can tolerate or even prefer acidic
Pontoscolex corethrurus in forest transformation system in Bungku Village, Jambi, Indonesia
509
System
Stage
T otal
Juvenile
Adult
Unknown
X UlCU
Oil palm plantation
7.85 ± 10.30
22.22 ± 19.55
7.11 ±9.95
37.33 ±21.51
Rubber plantation
5.78 ±8.04
20.44 ± 17.90
5.93 ±8.82
32.15 ±20.31
Rubber jungle
8.74 ± 10.38
23.56 ± 18.08
4.44 ± 7.08
36.74 ±25.20
Secondary forest
6.67 ±9.13
20.00 ± 13.30
6.67 ±9.13
33.33 ± 18.63
P-value
0.24
0.64
0.41
0.48
Table 1 . Kruskal- Wallis test of Pontoscolex corethrurus density in each system.
The values are mean of P. corethrurus abundance/m 2 ± SD.
System
Oil palm plantation Rubber plantation
Rubber jungle
Secondary forest
All systems
Temperature (°C)
29.76 ±1.46 a
27.81 ±1.06 b
26.54 ± 1.14 d
27.47 ± 0.90 c
27.90 ±1.65
pH
6.67 ± 0.15 a
6.51 ± 0.18 b
6.44 ± 0.1 6 C
6.47 dt 0.23 bc
6.52 ±0.20
Water content (%)
61.47 ± 20.53 a
46.80 ±12.88 c
38.1 1 ± 8.05 d
51.88 ± 12.65 b
49.56 ±16.51
C-organic (%)
1.91 ±O.I3 b
1 .86 ± 0.17 c
1 .72 ± 0.33 d
2.79± 0.07 a
2.07 ±0.47
P (ppm)
97.93 ± 1.44 a
95.10 ±3.56 b
81 .9 ± 4.3 l d
93.57 ±4.00 c
92.12 ±7.05
Ca(me/100g)
2.02 ± 0.3 l a
4.80 ± 4.35 a
0.66 ±0. 1 6 C
1 .62 ± 0.47 b
2.28 ±2.67
Mg (me/lOOg)
0.61 ± 0. 14 b
0.49 ±0.15°
0.30 ± 0.03 d
0.94± 0.02 a
0.58 ± 0.26
K (me/lOOg)
0. 1 5 ± 0.02 b
0.16 ± 0.01 a
0.1 1 ±0.01 d
0.14 ± 0.01 c
0.14 ±0.02
Na(me/100g)
0.33 ± 0.05 b
0.33 ± 0.07 b
0. 1 9 ± 0.02 c
0.44± 0.01 a
0.32 ±0.10
Sand (%)
20.18 ±2.25 c
23.41 ±2.61 b
26.10 ±4.44 a
26.77 ±10.67 a
24.11 ±6.54
Silt (%)
47.95 ±3.52 a
46.22 ± 4.76”
38.95 ± 9. 14 d
41.93 ±6.92 c
43.76 ±7.33
Clay (%)
31.87 ± 4.19 a
30.30 ±4.15 a
34.95 ±8.16 a
31.30 ±3.80 a
32.12 ±5.63
Table 2. Kruskal- Wallis test of soil parameters in each system. Mean ± SD, values with
the same letter in a row are not significantly different (p-value < 0.05).
510
Andy Darmawan et alii
Soil parameter
Slope
Std. Error
Z value
P- value
pH
-2.888
1.168
-2.473
0.013
Water content
0.303
0.110
2.760
0.006
C organic
0.551
0.190
2.901
0.004
Na
-0.505
0.125
-4.049
<0.001
Sand
-0.482
0.124
-3.900
<0.001
Null deviance: 307.16 on 289 degrees of freedom
Residual deviance: 263.77 on 284 degrees of freedom
AIC: 1084.20
Table 3. Soil parameters affecting Pontoscolex corethrurus abundance.
soil (Nath & Chaudhuri, 2010). Hence, negative
influence of soil pH in our result was in agreement
with that theory. For positive influence of soil water
content, it is not peculiar as water is essential to
maintain P. corethrurus moisture.
Meanwhile, soil C organic and Na content were
important soil mineral factors. As organic matter is
the main source for earthworm diet (Ismail &
Murthy, 1985; Edwards, 2004), it is not surprising
to have higher abundance of P. corethrurus in soil
containing higher C organic. Na showed negative
influence on P corethrurus abundance. Na is
influenced in Na-K pump which regulates internal
fluid (Barrett et al., 2005). Excess of Na causes
unbalance of internal fluid.
High sand fraction was not preferred by P.
corethrurus. Sandy soil cannot hold the water
well and earthworms are susceptible to drought
(Edwards, 2004). Therefore, the negative influence
of sand fraction supports the positive influence of
soil water content to P corethrurus abundance.
In summary, we propose that anthropogenic
practice in Bungku Village causes the condition
which does not support the native earthworm’s
survival. Pontoscolex corethrurus which have
better tolerance than the native earthworms are
favored by anthropogenic practice. Therefore,
they are able to fill the niche left by natives and
completely dominating oil palm plantation, rub-
ber plantation, rubber jungle, and secondary forest
in Bungku Village. Their abundance is influenced
by soil pH, water, C organic, sodium, and sand
content. Sampling in larger area is needed to
study about P. corethrurus domination in Indone-
sian disturbed forest.
ACKNOWLEDGMENTS
This work was partly funded by Collaborative
Research Center, George August Universtat
Gottingen, Germany. Thank you to R. J. Blakemore
for confirmation of the earthworm species.
REFERENCES
Achard F., Eva H.D., Stibig H.J., Mayaux R, Gallego J.,
Richard T. & Malingreau J., 2002. Determination
of deforestation rates of the world’s humid tropical
forests. Science, 297: 999-1002.
Barrett K., Brooks H., Boitano S. & Barman S., 2005.
Ganong’s Review of Medical Physiology. 23rd ed.
McGraw-Hill, New York, 715 pp.
Bignell D.E., Widodo E., Susilo F.X. & H. Suryo, 2000.
Soil macrofauna: Ground-dwelling ants, termites,
other macroarthropods and earthworms. In: Gillison,
Pontoscolex corethrurus in forest transformation system in Bungku Village, Jambi, Indonesia
511
A.N. (Ed.). Alternatives to slash-and-burn: above
ground biodiversity assessment working group: sum-
mary report 1996-99: impact of different land uses
on biodiversity. International Centre for Research in
Agroforestry, Nairobi, 91-127.
Blakemore R.J., 2010. Cosmopolitan Earthworms - an
Eco-Taxonomic Guide to the Peregrine Species of
the World. 4th ed. Verm Ecology, Yokohama, 839
pp.
BPPD (Badan Perencanaan Pembangunan Daerah),
2010. Jambi in Figures. Pemerintah Daerah dan
Badan Pusat Statistik Provinsi Jambi, Jambi, 660 pp.
Brown G.G., James S.W., Pasini A., Nunes D.H., Benito
N.P., Martins P.T. & Sautter K.D., 2006. Exotic, per-
egrine, and invasive earthworms in Brazil: diversity,
distribution, and effects on soils and plants. Carib-
bean Journal of Science, 42: 339-348.
Chaudhuri P.S., Nath S. & Paliwal R., 2008. Earthworm
population of rubber plantations ( Hevea brasiliensis)
in Tripura, India. Tropical Ecology, 49: 225-234.
Chaudhuri P.S. & Nath S., 2011. Community structure of
earthworms under rubber plantations and mixed
forests in Tripura, India. Journal of Environmental
Biology, 32: 537-541.
Chuang S.C., Lai W.S. & Chen J.H., 2006. Influence
of ultraviolet radiation on selected physiological re-
sponses of earthworms. The Journal of Experimental
Biology, 209: 4304-4312.
Chuang S.C. & Chen J.H., 2008. Role of diurnal rhythm
of oxygen consumption in emergence from soil at
night after heavy rain by earthworms. Invertebrate
Biology, 127: 80-86.
Edwards C.A., 2004. Earthworm Ecology. 2nd ed. CRC
Press, Boca Raton, 424 pp.
FAO (Food and Agricultural Organization), 2010. Global
Forest Resources Assessment 2010 Country Report
Indonesia Forest Resource Assessment (FRA)
2010/095 (Rome: UNFAO).
Fragoso C. & Lozano N., 1992. Resource allocation
strategies imposed by caudal amputation and soil
moisture in the tropical earthworm Pontoscolex
corethrurus. Soil Biology and Biochemistry, 24:
1237-1240.
Gonzalez G., Zou X. & Borges S., 1996. Earthworm
abundance and species composition in abandoned
tropical croplands: comparisons of tree plantations
and secondary forests. Pedobiologia, 40: 385-391.
Gonzalez G., Huang C.Y., Zou X. & Rodriguez C., 2006.
Earthworm invasions in the tropics. Biological Inva-
sions, 8: 1247-1256.
Gonzalez G., Huang C.Y. & Chuang S.C., 2008.
Earthworms and post-agricultural succession. In:
Myster R.W. (Ed.). Post-Agricultural Succession in
Neotropics. 2008. Chapter 5. Springer, New York,
115-138.
Gouyon A., Forestade H. & Levang P., 1993. Does
‘jungle rubber’ deserve its name? An analysis of rub-
ber agro forestry systems in southeast Sumatra. Agro-
forestry Systems, 22: 181-206.
Guariguata M.R. & Ostertag R., 2001. Neotropical
secondary forest succession: changes in structural
and functional characteristics. Forest Ecology and
Management, 148: 185-206.
Hendrix P.F. & Bohlen P.J., 2002. Exotic earthworm
invasions in North America: ecological and policy
implications. BioScience, 52: 801-811.
Hendrix P.F., Baker G.H., Callahan M.A.Jr., Damoff
G.A., Fragoso C., Gonzalez G., James S. W.,
Lachnicht S.L., Winsome T. & Zou X., 2006. Inva-
sion of exotic earthworms into ecosystems inhabited
by native earthworms. Biological Invasions, 8: 1287—
1300.
Ihaka R. & Gentleman R., 1996. R: A language for data
analysis and graphics. Journal of Computational and
Graphical Statistics, 5: 299-314.
Ismail S.A. & Murthy V.A., 1985. Distribution of
earthworms in Madras. Proceeding of the Indian
Academy of Sciences (Animal Sciences), 94: 557-566.
Kale R.D. & Krishnamoorthy R.V., 1979. A comparative
account of coelomocytes and haemocytes of five
species of earthworms. Proceedings of the Indian
Academy of Science Section B, 88: 329-337.
Marichal R., Martinez A.F., Praxedes C., Ruiz D.,
Carvajal A.F., Oszwald J., Hurtado M.Del.P., Brown
G.G., Grimaldi M., Desjardins T., Sarrazin M.,
Decaens T., Velasquez E. & Lavelle P., 2010. Inva-
sion of Pontoscolex corethrurus (Glossoscolecidae,
Oligochaeta) in landscapes of the Amazonian de-
forestation arc. Applied Soil Ecology, 46: 443-449.
Mendiburu F.De., 2010. Agricolae: Statistical Procedu-
res for Agricultural Research. R package version
1.0-9.
Murdiyarso D. & Wasrin U.R., 1995. Estimating land use
change and carbon release from tropical forests
conversion using remote sensing technique. Journal
of Biogeography, 22: 2591-2525.
Murdiyarso D., Van Noordwijk M., Wasrin U.R., Tomich
T.P. & Gillison A.N., 2002. Environmental benefits
and sustainable land-use options in the Jambi
transect, Sumatra. Journal of Vegetation Science, 13:
429-438.
Nadeem A., Sarwar M., Iqbal M.K. & Sahifiq T., 2007.
Habitat preference of earthworms relative to different
fruit trees. Punjab University Journal of Zoology, 22:
33-39.
Nath S. & Chaudhuri P.S., 2010. Human-induced biolo-
gical invasions in rubber (Hevea brasiliensis) plant-
ations of Tripura (India) - Pontoscolex corethrurus as
a case study. Asian Journal of Experimental Biolo-
gical Science, 1: 360-369.
512
Andy Darmawan et alii
Plisko J.D., 2001. Notes on the occurrence of the intro-
duced earthworm Pontoscolex corethrurus (Muller,
1857) in South Africa (Oligochaeta: Glossoscol-
ecidae). African Invertebrates, 42: 323-334.
R Development Core Team, 2010. R: A language and
environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria.
Sarkar D. & Haidar A., 2005. Physical and Chemical
Methods in Soil Analysis. New Age International (P)
Ltd, New Delhi, 176 pp.
Sarlo M., 2006. Individual tree species effects on
earthworm biomass in a tropical plantation in
Panama. Caribbean Journal of Science, 42: 419-427.
Zuur A.F., Ieno E.N., Walker N.J., Saveliev A. A. & Smith
G.M., 2009. Mixed Effects Models and Extensions
in Ecology with R. New York, Springer, 574 pp.
Biodiversity Journal, 2015, 6 (2): 513-516
Field survey of freshwater fishes in Upper Wang River, North
Thailand
Nidsaraporn Petsut 1 & Sitthi Kulabtong 2 *
'Department of Agricultural Technology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand; email:
nidsaraporn@ru.ac.th
2 Save wildlife volunteer Thailand, Wangnoi District, Ayuttaya Province 13170, Thailand; e-mail: kulabtong2011@hotmail.com
* Corresponding author
ABSTRACT The present paper reports a fields survey of freshwater fish in Upper Wang River, at Jae Horn
District, Lumpang Province, North Thailand in September 2013. We found 11 families and
16 species of freshwater fishes. Hampala macrolepidota Kuhl et van Hasselt, 1823 and
Mystacoleucus marginatus (Valenciennes, 1842) (Cypriniformes Cyprinidae) are dominant
in transparent and running fast stream ecosystem while Pangio anguillaris (Vaillant, 1902)
(Cypriniformes Cobitidae) is a dominant in turbid and running slowly stream ecosystem.
One species, Channa cf. gachua (Hamilton, 1822) (Perciformes Channidae), still has an
unclear taxonomic status. The Thai local names and distribution data of freshwater fishes
are provided.
KEY WORDS freshwater fishes; Wang River; Lumpang Province; Thailand.
Received 03.04.2015; accepted 19.05.2015; printed 30.06.2015
INTRODUCTION
Wang River is a tributary of Chao Phraya Basin,
it originates at the Phi Pan Nam Mountain Range,
Wiang Pa Pao District, Chiang Rai Province, North
Thailand. The river flows from north to south, from
Chiang Rai Province to Lumpang Province,
southward passing into the Tak Province, North-
west Thailand. The Wang River System is alto-
gether 335 kilometers (208 miles) long. It joins the
Ping River near Ban Tak District, Tak Province and
The Ping River is itself a tributary of the Chao
Phraya River System (Vidthayanon et al., 1997).
The Wang Basin is part of the Ping Basin and
the Chao Phraya Watershed. The total land area
drained by the Wang River and its tributaries is
10,792 square kilometres (4,167 square miles). The
geography of upper Wang River is a plain hill and
a little flat land, but the lower area is relatively flat
(The Working Group of the Office of Natural Water
Resources Committee of Thailand, nd.). Upper
Wang River is characterized by its own ecological
features which differentiate it from the other river
systems of Thailand. Although it is certainly of in-
terest, nevertheless is poorly investigated and little
is known about freshwater fishes occurring in this
area. The survey project on freshwater fishes of the
Upper Wang River at Jae Horn District, Lumpang
Province, North Thailand (Figs. 1-3) was carried
out in September 2013. We separated this area into
3 regions in accordance to the ecosystems; namely:
1. Main stream under Kio Kho Ma Dam (Fig.
2). The average width of the stream is about 15 m,
average depth is less than 1 m, the bottom is a com-
bination of sand, gravel and large rock, the stream
is transparent and running fast.
2. Main stream in Ban Hui Sa Nao, Jae Horn
District, Lumpang Province (Fig. 3). The average
514
Nidsaraporn Petsut & SlTTHI Kulabtong
3
Figures 1-3. Study area, Upper Wang River, Lumpang
Province, North Thailand.
width of the stream is about 20 m, average depth
is about 1 m, the bottom is a combination of clay
and sandy mud, the stream is turbid and running
slowly.
3. Main stream in Ban Mae Ta Lung, Jae Horn
District, Lumpang Province. The average width of
the stream is about 10 m, average depth is less than
1 m, the bottom is a combination of sandy mud and
gravel, the stream is rather transparent (trans-
parency is about 70 cm) and running fast.
ACRONYMS. Standard length (SL).
RESULTS
SYSTEMATICS
Order OSTEOGLOSSIFORMES L.S. Berg, 1940
Family NOTOPTER1DAE Bleelcer, 1859
Notopterus notopterus (Pallas, 1769)
Bronze featherback
Distribution. This species is known from India
Sub-continent to South East Asia
Thai local name. Pla sa lad.
Order C YPRINIF ORMES Bleeker, 1859
Family CYPRINIDAE Cuvier, 1817
Hampala macrolepidota Kuhl et van Hasselt, 1 823
Hampala barb
Distribution. This species (Fig. 4) is known
from Chao Phraya Basin, Thailand; Mekong Basin,
Indochina; Malay Peninsula and Indonesia.
Remarks. This species is dominant in trans-
parent and running fast streams. In Thailand, H.
macrolepidota is a fish predominantly of clear and
fast flowing streams and rivers, but sometimes can
be found in reservoir and standing water (Kottelat,
2001 ).
Thai local name Pla kra soob ked.
Mystacoleucus marginatus (Valenciennes, 1842)
Indian river barb
Distribution. This species (Fig. 5) is known
from Myanmar to Indonesia.
Fields survey of freshwater fishes in Upper Wang River, North Thailand
515
Remarks. This species is dominant in trans
parent and running fast streams. In Thailand, M.
marginatus can be found in many hill streams with
sand, gravel or large rocks and can be found in
reservoir and large running fast rivers (Kottelat,
1998).
Thai local name. Pla kee yok or Pla num lung.
Labiobarbus siamensis (Sauvage, 1881)
Long finned barb
Distribution. This species is known from Chao
Phraya Basin and Bankpakong, Thailand; Mekong
Basin, Indochina.
Thai local name. Pla sar.
Family COBITIDAE Swainson, 1838
Acanthopsoides gracilentus (Smith, 1945)
Horseface loach
Distribution. This species is known from Chao
Phraya Basin and Maeklong Basin, Thailand;
Mekong Basin, Indochina.
Thai local name. Pla larg kluy kae.
Pangio anguillaris (Vaillant, 1902)
Loach
Distribution. This species is known from Chao
Phraya Basin, Thailand; Mekong basins, Indochina;
Malay Peninsula; Sumatra and Borneo, Indonesia.
Remarks. This species is dominant in turbid and
running slowly streams. In the nature, P. anguillaris
lives in peat swamp, inhabits sand, mud or leaf-litter
in slow running streams (Rainboth, 1996).
Thai local name. Pla sai thong.
Order SILURIFORMES Cuvier, 1816
Family BAGRIDAE Bleeker, 1858
Hemibagrus nemurus (Valenciennes, 1840)
Yellow mystus
Distribution. This species is known from
Myanmar; Thailand; Indochina; Malaysia and
Indonesia.
Thai local name. Pla kod luang.
Mystus singaringan (Bleeker, 1846)
Long fatty finned mystus
Distribution. This species is known from
Thailand; Indochina; Malay Peninsula; Sumatra,
Borneo, and Java, Indonesia.
Thai local name. Pla ka yang bai kow.
Order BELONIFORMES L.S. Berg, 1937
Family BELONIDAE Bonaparte, 1835
Xenentodon cancila (F. Hamilton, 1822)
Freshwater garfish
Distribution. This species is known from India
Sub-continent to Southeast Asia. Introduced in
America.
Thai local name. Pla kra tung hav.
Order SYNBRANCHIFORMES J.S. Nelson, 1994
Family MASTACEMBELIDAE
Figures 4, 5. Dominant species of freshwater fishes found
in study area. Hampala macrolepidota , 141 mm SL (Fig. 4)
and Mystacoleucus marginatus, 98 mm SL (Fig. 5).
516
Nidsaraporn Petsut & SlTTHI Kulabtong
Mastacembelus favus Hora, 1924
Tire track eel
Distribution. This species is known from Thai-
land to Malay Peninsula.
Thai local name. Pla kra ting.
Order PERCIFORMES Bleeker, 1859
Family AMBASSIDAE Klunzinger, 1870
Parambassis siamensis (Fowler, 1937)
Siamese glassfish
Distribution. This species is known from In-
dochina to Malay Peninsula; introduced in Singa-
pore and Indonesia.
Thai local name. Pla pan ghav.
Family NANDIDAE Bleeker, 1852
Pristolepis fasciata (Bleeker, 1851)
Malayan leaffish
Distribution. This species is known from
Myanmar to Indonesia.
Thai local name. Pla mor chang yab.
Family OSPHRONEMIDAE Bleeker, 1859
Trichopsis vittata (Cuvier, 1831)
Croaking gourami
Distribution. This species is known from
Myanmar to Indonesia.
Thai local name. Pla sev kvay.
Family ELEOTRIDAE Bonaparte, 1835
Oxyeleotris marmorata (Bleeker, 1852)
Marble goby
Distribution. This species is known from Thai-
land to Philippines.
Thai local name. Pla bu sai.
Family CHANNIDAE Fowler, 1934
Channa cf. gachua (Hamilton, 1822)
Dwarf snakehead
Distribution. This species is known from India
Sub-continent to Southeast Asia.
Remarks. In Thailand, the taxonomic status of
this taxon is still unclear, being reported from time
to time as C. gachua or C. limb at a.
Thai local name. Pla gung.
Channa striata (Bloch, 1793)
Striped snakehead
Distribution. This species is known from
Pakistan, India Sub-continent to Southeast Asia and
China; introduced in Europe, Africa, America,
Philippines, Papua New Guinea and Korea.
Thai local name. Pla chon.
ACKNOWLEDGMENTS
The authors are grateful to reviewers for re-
viewing this manuscript and special thanks are
given to all partners for supporting this survey.
REFERENCES
Kottelat M., 1998. Fishes of the Nam Theun and Xe
Bangfai basins, Laos, with diagnoses of twenty-two
new species (Teleostei: Cyprinidae, Balitoridae,
Cobitidae, Coiidae and Odontobutidae). Ichthyolo-
gical Exploration of Freshwaters, 9: 1-128.
Kottelat M., 2001. Fishes of Laos. WHT Publications,
Colombo, 198 pp.
Rainboth W.J., 1996. Fishes of the Cambodian Mekong.
FAO Species Identification Field Guide for Fishery
Purposes. FAO, Rome, 265 pp.
The Working Group of the Office of Natural Water
Resources Committee of Thailand, nd. Chao Phraya
River Basin, Thailand, pilot case studies: a focus on
real-world examples. UNESCO, 399 pp.
Vidthayanon C., Kamasuta J. & Nabhitabhata J., 1997.
Diversity of freshwater fishes in Thailand. Office of
Environmental and Planning, Bangkok, 120 pp.
Biodiversity Journal, 2015, 6 (2): 517-520
The mole crab Hippa marmorata (Hombron et Jacquinot,
1 846) (Crustacea Anomura Hippidae): a first record from
Indonesian waters
Yusli Wardiatno 1 *, Puji Utari Ardika 2 , Achmad Farajallah 2 , Ali Mashar 1 & Ismail 3
'Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Bogor,
Jawa Barat, Indonesia
department of Biology, Faculty of Mathematics and Science, Bogor Agricultural University, Bogor, Jawa Barat, Indonesia
3 Sorong Marine and Fisheries Polytechnic, Sorong, West Papua, Indonesia
^Corresponding author, e-mail: yusli@ipb.ac.id
ABSTRACT Specimens of Hippa marmorata (Hombron et Jacquinot, 1 846) (Crustacea Anomura Hip-
pidae) were collected from several coastlines of Indonesia (Sulawesi, Lombok, Tual Island,
and West Papua). The specimens represent the first record of this species in Indonesia and
confirm its presence in the Wallacea Line region and to its eastern fringes. Its systematic and
morphological characteristics (i.e., anterior median lobe of carapace having two lobes and
left antenna having two to three articles) are described. This finding provides new information
on the geographical distribution of the species in Indonesian waters.
KEY WORDS Anomura; first record; mole crab; Hippidae; Indonesia.
Received 18.04.2015; accepted 01.06.2015; printed 30.06.2015
INTRODUCTION
Mole crabs of the family Hippidae are distrib-
uted from the Indo-West Pacific (eastern coast of
North America, the Red Sea, and Indonesia in the
east) to the Atlantic region (Boyko & Harvey,
2002). These mole crabs commonly live in inter-
tidal areas (swash zones) and engage in quick sand
digging (Lastra et al., 2002).
The presence of mole crabs of the family Hip-
pidae in Indonesia is well known, but few studies
have been carried out on this group. Many members
of the family Hippidae are present along Indonesia’s
seashore, including species of the genera Hippa
(Fabricius, 1787) and Emerita (Scopoli, 1777).
Other species include H. admirabilis (Thallwitz,
1892) in Papua and H. celaeno (de Man, 1896) in
Makassar, Sulawesi and Ambon, Moluccas (de
Man, 1896). Information on the existence of mole
crabs in the genus Emerita was reported by Efford
(1976) during an expedition in Bengkulu, Sumatra.
Members of Hippidae are also widely distrib-
uted along the west coast of Sumatra and the south
coast of Java. The abundance of H. marmorata
(Hombron et Jacquinot, 1 846) has been important
in the field of exploration, which has contributed
information on the geographical distribution of
species of sand crab in Indonesia. Hippa marm-
orata is distributed across Tanzania, Hawaii, New
South Wales in Australia, China, Japan, Western
California, Panama, and the Galapagos Islands (Ef-
ford, 1972). However, the occurrence of this mole
crab in Indonesia has not previously been recorded.
The finding of H. marmorata documented in this
report is the first in Indonesian territorial waters.
518
Yusli Wardiatno etalii
MATERIAL AND METHODS
Figure 1 provides a map showing the locations
where the specimens were collected. All specimens
in each location were obtained by digging the
sand in their habitat. The collected specimens were
photographed with a Lumix G3 camera (Panasonic,
Tokyo, Japan). They were preserved in 70% alcohol
that was replaced with 96% alcohol in the labor-
atory, and then drawn using a camera lucida. Spe-
cimens were deposited in the Museum Zoologicum
Bogoriense, Research Institute for Biology, In-
donesian Institute of Science (LIPI) to obtain a
registration number.
SYSTEMATICS
Infraorder ANOMURA Macleay, 1838
Family HIPPIDAE Stimpson, 1858
Genus Hippa Fabricius, 1787
Hippa marmorata (Hombron et Jacquinot, 1846)
Remipes pacificus Dana, 1852 (junior synonym)
Type material. West Papua. Sorong, Jefman Is-
land: 3 females, 3 males (MZB Cru 4153), 0°55’S,
131°07’E, coll. Fatmawati, 7 Feb 2015.
Diagnosis. The carapace of H. marmorata was
wide and flat (Figs. 2, 6). The submarginal com-
prises 20 to 40 rows. The carapace grooves were
transverse and cream in colour, with short anten-
nules and two median lobes (Fig. 3). The dactyl was
not acute (obtuse) (Fig. 4). The antennules com-
prised two articles (Fig. 5).
Examined material. Lombok. Gili Meno Is-
land, North Lombok, Gili Indah: 1 male, 1 female,
3 ov. females (MZB Cru. 4125), 8°20'S, 116°03'E,
coll. Y. Wardiatno, A. Mashar, A. Farajallah, 22
Sept 2014. Sulawesi. Banggai Islands: 1 male, 2 ov.
females (MZB Cru. 4126), 1°36’S, 123°29’E, coll.
M. Sataral, 1 Nov 2013. Kei Islands. Tual: 3 males,
1 female, 6 ov. females (MZB Cru. 4127), 5°43'S,
132°42'E, coll. IPB, Aug 2014. West Papua.
Sorong, Jefman Island: 3 females, 3 males (MZB
Cru. 4153), 0°55S, 131°07E, coll. Fatmawati, 7 Feb
2015.
Remarks. The systematics followed is that of
Boyko et Harvey (1999). In total, 24 specimens
were collected. Fresh specimens exhibited a white
(cream) and grey pattern on the carapace (see figure
2), a round to oval shape, and a carapace length of
2.0 to 2.5 cm. The anterior median lobe comprised
two lobes (similar to H. celaeno), and 20 to 40
setose pit rows were present on the submarginal
carapace. The main distinctive characteristic of
these specimens was the number of left antennae
with two articles (Osawa et al., 2010). The ocular
peduncle was shorter than that in H. adactyla. The
first pereopod commonly differed in length between
the right and left sides.
DISCUSSION AND CONCLUSIONS
Hippa marmorata are closely related to H. ovalis
(Osawa et al., 2010), and the two species have sim-
ilar antennulae, comprising two to three segments.
The morphological characteristics of the specimens
in this study were consistent with those of the
Taiwan species Hippa and Hippa marmorata
(Osawa et al., 2010). Hippa marmorata is in the
family Hippidae and has been reported in Taiwan
and Australia as a possible synonym of H. pacifica
(Haig, 1974).
The species inhabits swash zones and engages
in sand digging. It has been found along the west
coast of Lombok, Banggai, Tual Island, and West
Papua. No previous reports describe the discovery
of this species in Sundaland. Its distribution is thus
spread across regions around the Wallacea Line and
to its eastern fringes. The Hippa marmorata collec-
ted from each location exhibit similar charac-
teristics and colours. This species is also morpho-
logically identical to H. ovalis , which is found in
Sulawesi (Osawa et al., 2010). The specimens
found in Papua displayed different carapace colour
patterns in the male and female; the female speci-
men was relatively uniformly coloured, whereas the
male was patterned.
Based on the distribution of this species in
Taiwan (Osawa et al., 2010), its distribution is pos-
sibly affected by sea currents and various biological
factors. The substrate textures of the west coast of
Sumatra and of the south coast of Java are nearly
identical, whereas the sand from Sulawesi, Lom-
bok, and Papua differs and is white, similar to the
colouring of the carapace of H. marmorata. The
colour of the crabs’ carapace is generally influenced
The mole crab Hippa marmorata (Crustacea Anomura Hippidae):a first record from Indonesian waters
519
Figure 1. Map of Indonesia. Red circles indicate the locations where the specimens were collected. Figure 2. Specimen of
Hippa marmorata (male) from Jefman Island, West Papua, Indonesia (scale: 1.0 mm). Figure 3. Hippa marmorata (26.50
mm) anterior carapace (length ratio = 20.78 mm). Fig. 4. Idem, dactyl (dorsal view). Fig. 5. Idem, antennulae. Fig. 6. Idem,
submarginal carapace. Scale: Figs. 3, 6 = 4.0 mm, Figs. 4, 5 = 1.0 mm.
520
Yusli Wardiatno etalii
by the colour of the sand in their particular habitat
(Wenner, 1972). More female than male specimens
were found in this study. Ovigerous female species
were dominant, indicating that the species is in
regeneration (Forward et al., 2007).
The scarce information on the biology and
distribution of H. marmorata does not provide any
clear indication of the geographical distribution of
this species in Indonesia. Further study is required
to better understand its distribution, and phylogeo-
graphic analysis would be helpful in elucidating the
source of this population in Indonesian intertidal
zones.
ACKNOWLEDGMENTS
The research was funded by Indonesian Govern-
ment through Directorate General of Higher Edu-
cation, Ministry of Education and Culture from
Fiscal Year 2014.
REFERENCES
Boyko C.B. & Harvey A. W., 1999. Cmstacea Decapoda:
Albuneidae and Hippidae of the tropical Indo-West
Pacific region. Memoires du Museum National d’
Histoire Naturelle. Musorstom 20, 379-406.
Boyko C.B. & Harvey A. W., 2002. Case 3106. Remipes
pacificus Dana, 1852 (currently Hippa pacifica;
Crustacea, Anomura): proposed precedence over
Remipes marmoratus Jacquinot, 1846. The Bulletin
of Zoological Nomenclature, 59: 12-16.
De Man J.G., 1896. Bericht liber die von Herrn Schiff-
scapitan Storm zu Atjeh, and den westlichen Kusten
von Malakka, Borneo und Celebes sowie in der Java
See gesammelten Decapoden und Stomatopoden.
Vierter Theil. Zoologische Jahrbuecher Systematik,
9:459-514.
Efford I.E., 1972. The distribution of the sand crabs,
Hippa strigillata (Stimpson) and Hippa pacifica
(Dana) in the eastern Pacific Ocean (Decapoda,
Anomura). Cmstaceana, 23: 119-122.
Efford I.E., 1976. Distribution of the sand crab in the
genus Emerita (Decapoda, Hippidae). Cmstaceana,
30: 169-183.
Fabricius J., 1787. Mantissa insectorum sisten eorum
species nuper detectan: ajectis karakteribus genericis,
diferencis, specifis, emedationibus, observanibus
[downloaded on 2013 Des 12] 1 (348. Available in:
http://cms.biota.biodiv.tw/node/232
Forward R.B. Jr., Thaler A.D. & Singer R., 2007.
Entrainment of the activity rhythm of the mole crab
Emerita talpoida. Journal of Experimental Marine
Biology and Ecology, 34: 10-15.
Lastra M, Dugan J.E. & Hubbard D.M., 2002. Burrowing
and swash behavior of the pacific mole crab Hippa
pacifica in tropical sandy beaches. Journal of Crusta-
cean Biology, 22: 53-58.
Haig J., 1974. A review of the Australian crabs of the
family Hippidae (Cmstacea, Decapoda, Anomura).
Memoirs of the Queensland Museum, 71: 175-189.
Osawa M., Boyko C.B. & Chan T.Y., 2010. Part I.
Hippoidea (Mole crabs). In: Chan, T.-Y. (Ed.).
Cmstacean Fauna of Taiwan: Crab-like Anomurans
(Hippoidea, Lithodoidea and Porcellanidae). National
Taiwan Ocean University, Keelung, 1-41.
Wenner A.M., 1972. Sex ratio as a function of size in mar-
ine Cmstacea. The American Naturalist, 106: 321-350.
Biodiversity Journal, 2015, 6 (2): 521-528
On Parthenina monozona (Brusina, 1 869) and its variability
(Gastropoda Heterobranchia Pyramidellidae)
Pasquale Micali 1 *, Italo Nofroni 2 , Riccardo Giannuzzi Savelli 3 , Francesco Pusateri 4 & Stefano Bartolini 5
'Via Papiria 17, 61032 Fano, Pesaro-Urbino, Italy; e-mail: lino.micali@virgilio.it
2 Via B. Croce 97, 00142 Roma, Italy; e-mail: italo.nofroni@uniromal.it
3 Via Mater Dolorosa 54, 90146 Palermo, Italy; e-mail: malakos@tin.it
4 Via Castellana 64, 90135 Palermo, Italy; e-mail: francesco@pusateri.it
5 Via E. Zacconi 16, 50137 Firenze, Italy; e-mail: stefmaria.bartolini@libero.it
‘Corresponding author
ABSTRACT Study of type material of Parthenina monozona (Brusina, 1 869), preserved at Croatian Natural
History Museum (CNHM), consisting of four specimens, three of which well preserved, has
proved that this species is senior synonym of Parthenina intermixta (Monterosato, 1884).
Brusina’s name has priority over Monterosato’s name, because it is older. The polymorphism
of this species is discussed.
KEY WORDS Pyramidellidae; Parthenina', monozona', type; recent; Mediterranean Sea.
Received 26.04.2015; accepted 05.06.2015; printed 30.06.2015
INTRODUCTION
Study of type material is the only way to know
some species not properly described/figured,
because apart from personal interpretations of the
various Authors, really some species have never
been clarified. The present work illustrates the
result of Parthenina monozona (Brusina, 1869)
type material investigation. Even if the result of the
study, that is the synonymy between P. monozona
and P. intermixta (Monterosato, 1884), has been
mentioned by most Authors (e.g. Aartsen, 1977;
Linden & Eikenboom, 1992; Penas et al., 1996), it
was based on personal interpretations, without any
study of typical or Author’s named material.
SYSTEMATICS
Subclass Heterobranchia J.E. Gray, 1840
Order Heterostropha P. Fischer, 1885
Superfamily Pyramidelloidea J.E. Gray, 1 840
Family PYRAMIDELLIDAE J.E. Gray, 1840
Subfamily Chrysallidinae Saurin, 1958
Genus Parthenina B.D.D., 1883
Type species: Odostomia interstincta Montagu,
1 803 = Turbo interstinctus J. Adams, 1797, European
Seas by original designation
Parthenina monozona (Brusina, 1869)
Odostomia monozona Brusina, 1869: 240
Odostomia monozona - Monterosato, 1872a: 31
Odostomia monozona - Monterosato, 1872b: 42
Odostomia monozona - Aradas & Benoit, 1874: 240
Odostomia monozona - Monterosato, 1875: 32
Odostomia monozona - Monterosato, 1877a: 39
Odostomia ( Pyrgulina ) monozona - Monterosato,
1877b: 35
522
Pasquale Micali et alii
Odostomia ( Pyrgulina ) monozona - Monterosato,
1877c: 421
Odostomia monozona - Monterosato, 1878: 93
Odostomia monozona - Stossich, 1876: 79
Odostomia ( Parthenina ) jeffreysi B.D.D., 1883:
170, pi. 20, figs. 8-10 (var.)
Odostomia monozona - Bucquoy et al., 1883: 173,
pi. 20, figs. 12, 13 (see discussion)
Pyrgulina monozona - Monterosato, 1884: 87
Pyrgulina intermixta - Monterosato, 1884: 87
Pyrgulina monozona - Monterosato, 1885: 81
Pyrgulina intermixta - Monterosato, 1885: 81
Odostomia monozona - Brasina, 1886: 31
Parthenina monozona - Locard, 1886: 235
Parthenina intermixta - Locard, 1891: 144
Parthenina monozona - Locard, 1891: 145
Parthenina monozona - Ancey, 1898: 53
Odostomia intermixta - Pallary, 1900: 341
Parthenina monozona - Kobe It, 1903: 117-118
Odostomia intermixta - Pallary, 1912: 133
Parthenina intermixta - Cerulli-Irelli, 1914: 435, pi.
54, figs. 7-9
Pyrgulina monozona - Monterosato, 1917: 17
Pyrgulina monozona var. attenuata Monterosato -
Monterosato, 1917: 17
Pyrgulina ( Parthenina ) intermixta - Fekih, 1969:
19, pi. 3, fig. 3
Chrysallida monozona - Parenzan, 1970: 125, fig. 45
Parthenina intermixta - Parenzan, 1970: 125
Chrysallida monozona - Ghisotti, 1972: 102
Chrysallida (. Parthenina ) monozona - Nordsieck,
1972: 93, pi. PI fig. 12 (see discussion)
Chrysallida (. Parthenina ) intermixta - Nordsieck,
1972: 93, pi. PI, fig. 10
Chrysallida ( Parthenina ) intermixta - Di Gero-
nimo, 1975: 104
Chrysallida monozona - van Aartsen, 1977: 57-58
Chrysallida intermixta - van Aartsen, 1977: 57-59,
pi. 3, fig. 21
Chrysallida intermixta - Ruggieri, 1982: 260
Chrysallida intermixta - Rolan Mosquera, 1983:
fig. pag. 297, 298
Chrysallida intermixta - Mietto & Quaggiotto,
1983: 137, pi. l,fig. 18
Chrysallida intermixta - van Aartsen et al., 1984:
49 n. 238
Ch?ysallida intermixta - Ballesteros et al., 1986: 43
Chrysallida intermixta - Martin-Sintes et al., 1990:
452
Chrysallida intermixta - Poppe & Goto, 1991 : 49, 200
Chrysallida monozona - Riedl, 1991: 270, pi. 105
Chrysallida intermixta - Barash & Danin, 1992: 164
Chrysallida intermixta - van der Linden & Eiken-
boom, 1992: 20, fig. 33
Chrysallida rara - Gaglini, 1992: 149, fig. 130
Chrysallida intermixta - Cachia et al., 1993: 37
Chrysallida intermixta - Mifsud, 1994: 34, fig. 27
Chrysallida intermixta - Cecalupo & Quadri, 1996:
95, 118
Chrysallida intermixta - Penas et al., 1996: 22, figs.
40, 42
Chrysallida intermixta - Giribet & Penas, 1997: 53
Chrysallida intermixta - Cachia, 1999: 97, fig. pag.
98
Chrysallida intermixta - Oztiirk & Cevik, 2000: 37
Chrysallida intermixta - Cachia et al., 2001: 87, pi.
13, fig. 11
Chrysallida intermixta - Oztiirk et al., 2004: 60
Chrysallida intermixta - Micali & Nofroni, 2004: 179
Chrysallida intermixta - Coppini et al., 2005: 3
Chrysallida intermixta - Brunet Navarro & Cap-
devila, 2005: 36, 79 fig. 307
Chrysallida intermixta - Penas et al., 2006: 44
Chrysallida intermixta - Trono, 2006: 61
Chrysallida monozona - Trono, 2006: 61
Chrysallida intermixta - Mazziotti et al., 2008: 78
Chrysallida intermixta - Cecalupo et al., 2008: 32,
pi. 71, figs. 10-13.
Chrysallida monozona - Cosentino & Giacobbe,
2008: 166
Chrysallida intermixta - Vazzana, 2010: 71
Chrysallida monozona - Cossignani & Ardovini,
2011: 347
Chrysallida intermixta - Cossignani & Ardovini,
2011: 347
Chrysallida intermixta - Penas & Rolan in Gofas
et al., 2011: 373 (with SEM photos)
Chrysallida intermixta - Chirli & Micali, 2011: 34
Parthenina intermixta - Trono & Maori, 2013: 36
Chrysallida monozona - Trono & Maori, 2013: 36
Chrysallida intermixta - Oztiirk, 2014: 28
Parthenina monozona - Giannuzzi-Savelli et al.,
2014: 19, 67, figs. 163-168
Original description. Brusina (1869: 240): “O.
testa subulato-turrita obtusiuscula, nitida, lactea;
anfractibus 5 V 2 convexiusculis, sutura satis
profunda disjunctis, longitudinaliter plicata, plicis
subcontinuis, rectis, interstitia aequantibus, basi
evanidis; cingulo transversali ad basin anfractuum
On Parthenina monozona (Brusina, 1869) and its variability (Gastropoda Heterobranchia Pyramidellidae)
523
ornata; apertura ovata, tertiam totius longitudinis
partem non aequante. - Long. 2 % mill., lat. 1 mill. 9 *
[shell elongate-turriculate, with blunt top, clear,
white; 5 V 2 whorls, quite convex, separated by very
deep suture, axial ribs near aligned from one whorl
to the other, straight, as large as the interspaces,
evanescent on the base; one spiral ridge in the
abapical portion of the whorls; aperture ovate; less
than one third of the whole height. Length 2 % mm,
breadth 1 mm"].
Type material. It is preserved at Croatian
Natural History Museum (CNHM), with register
number 1374. The material includes four speci-
mens, three of which are in good conditions (Figs.
1-5), while one (Fig. 6) is quite eroded but possibly
conspecific with the others. Specimen at figures
1-3 is designated as lectotype and the other three
specimens are then paralectotypes. The well pre-
served specimens are clearly conspecific with P. in-
termixta, showing also the characteristic spiral
striature in the interspaces between axial ribs. Brus-
ina’s name, that is older, has the priority and P. in-
termixta becomes junior synonym of P. monozona.
Type locality. Mica cape, Melada (Molat)
island, Croatia. The Museum’s label (Fig. 7) indic-
ates this locality: “P Med. Mulat, Zadar”.
Description of type material. Shell conical,
semi-transparent, white color. The protoconch is
heterostrophic, making an angle of about 150° with
the axis of the teleoconch (type B). The teleoconch
is composed of about 5 whorls, flat, slightly gradate
at the adapical suture, while abapically are angu-
lated by the spiral on the initial whorls, gently curved
in the last whorls and restricted toward the suture.
The teleoconch whorls are covered by robust axial
ribs, large as the interspaces, orthocline, straight.
The ribs are in number of 20-22 on the last two
whorls. The ribs extend, slightly attenuated, on the
base. The spiral sculpture consists in a spiral rib
placed at about % of whorl height from abapical
suture, present in all whorls. In the interspaces and
on the base is present a microscopic spiral striature.
The base is convex, covered by the extension of the
axial ribs and the concentric spiral striature. Aper-
ture oval. The columella is angulated in the middle.
The columellar lip is slightly expanded. The inner
lip forms a thin film over the adapical part of the
aperture and joins the outer, to form a continuous
peristome. The columellar plica is oblique, well
developed, reaching the margin of columellar lip
about at the middle of it. The outer lip is simple,
with external sculpture visible in transparency. Seen
from the side, the outer lip is a little arched, fol-
lowing the flexuous profile of the axial ribs.
Variability. Protoconch: the angle of the
protoconch ranges between 135° and 150° in the
Adriatic specimens, while specimens from other
areas normally show an angle of 135°. Outline and
whorl profile: outline is conical, more or less
slender (compare Fig. 8 with Fig. 11). The whorls
may be flat, curved toward the adapical suture,
angulated at the spiral rib and restriced toward the
abapical suture (Figs. 9, 10, 12) or more regularly
curved toward the sutures (Figs. 1-4, 8). Some-
times the adapical suture is coronate by the ribs,
other times the ribs become weaker toward the
suture, and it is linear (compare Figs. 8 and 12
with Figs. 9, 10, 11).
Axial ribs: in the type series the axial ribs are
orthocline. Linden & Eilcenboom (1992) indicate
that “ Mostly the ribs incline to the left [i. e. proso-
cline], sometimes they are almost vertical, but they
never incline to the right [i. e. opisthocline]”. In the
studied material all the three cases have been
observed, even if opisthocline only rarely (Fig. 9).
Presence of axial ribs on the base: the type series
and all specimens from Vela Luka (Korcula island,
Croatia) (Fig. 8) as well as the specimen from
Otranto (Fig. 12) have the axial ribs extending all
over the base, while specimens from other areas
normally have the the ribs ending at the periphery
and only concentric striature on the base. Linden &
Eilcenboom (1992) states that the ribs are “ seldom
decreasing or even continuing to the base ”.
The specimens of P. monozona having elongate
ouline, well spaced ribs, spiral striature and deep
suture may be easily separated from P. interstincta.
The type series, as well as specimens found in other
points of Middle and North Adriatic Sea has a form
tending towards P. interstincta , from which may be
separated (Fig. 13) for the more pointed apex,
stronger axial ribs and spiral rib, spiral rib posi-
tioned more distant from the suture, presence of
microscopic spiral striature in the ribs interspaces
and on the base.
Distribution. The species is distributed in the
whole Mediterranean sea and along european coasts
from Portugal to NW Spain (fide Linden & Eiken-
boom, 1992). Record of Rolan Mosquera (1983) for
524
Pasquale Micali et alii
Vigo was based on P. inter stincta (Rolan pers. com.,
mail dated 26.08.2014). Not reported for west
Africa. As fossil it occurrs in the Pliocene of
Tuscany and Tunisia and in the Pleistocene of
Latium and Sicily.
DISCUSSION
First investigated matter is the origin of syn-
onymy with P. intermixta. Synonymy originates
from Aartsen (1977) statement that “the two species
which Nordsieck described and figures with the
name of intermixta (Monterosato) and monozona
(Brusina) are in really only one species’’’’ and the
indicated synonymy. Possibly even Aartsen felt that
the synonymy was not well proved, and this could
be the reason for not using Bmsina’s name, which
has priority. Nordsieck (1972: 93, pi. PI fig. 12)
drawing of monozona is based on a specimen from
Ibiza, therefore this is no more than a Nordsieck’s
personal interpretation of the species. Nordsieck’s
(1972) drawing shows a specimen without spiral
rib on the whorls, possibly following the name
ethymology of “ monozona ” which may be trans-
lated as “ single zone”.
About Nordsieck’s drawings Ronald Janssen,
curator of molluscs at Senckenberg Museum,
Franlcfurt/M (pers. comm, to R. Giannuzzi Savelli)
tells us: “ You need to have always in mind that
Nordsieck's « descriptions » are not necessarily
based on his own specimens but a compilation also
from literature! Also his drawings most often are
«free style» compositions using also figures from
the literature. This explains why only rarely speci-
mens can be found which match his figures ”.
In addition to be highlighted that Brusina’s
original description states “ cingulo transversali ad
basim anfractuum ornata ”, where “ anfractuum ” is
in the plural, therefore the spiral rib is indicated as
present along all the whorls. What above does not
prove at all the synonymy.
In the original description Brusina (1869)
compares the new species only with his Odostomia
turbonilloides Brusina, 1869 non Deshayes, 1861
(today the valid name is Partulida incerta (Milas-
chewitch, 1916)) from which it is anyway so dif-
ferent that a comparison is not needed.
Aradas & Benoit (1874) report that this species
has been found in various Sicilian localities and
state that it is similar to C. interstincta but “ Quan -
tunque la specie del Montagu presenti molte
varieta, nessuna di quelle che abbiamo avuto per
le mani, offre gli anfratti cost arrotondati e la
sutura cosi profonda come nella specie del
Brusina .” [Notwithstanding the several varieties of
Montagu’s species, no one of those we had in our
hands, has inflated whorls and deep suture as the
Brusina’s species]".
Monterosato (1872b) only lists the name as
"var." of P. interstincta, specifying “(ex typ.)”, to
indicate that he examined the type material. How-
ever in this list also P suturalis and P. emaciata are
considered varities of P interstincta. Monterosato
(1875) only lists the name as "var. 3" of P. inter-
stincta, while later on (Monterosato, 1878) the
species is listed as valid.
B.D.D. (1883: 173, pi. XX, figs. 12 and 13)
describe and draw Odostomia monozona, but they
do not mention the study of type material or the
origin of material. The description mentions “On
remarque en outre sur les intervalles des cotes
plusieurs rangees de trabicules qui entourent la
partie inferieure des tours et se prolongent sur la
partie mediane du dernier ” [in the interspaces of
the ribs there are some rows of nodules that encircle
the lower part of the whorls and extend up to the
central part]". Kobelt (1903) considers that B.D.D.
erroneously inteipreted Bmsina’s species and base
his new species Parthenina dollfusi on monozona
sensu B.D.D., “nee Brusina”. In B.D.D. it is not
mentioned the study of monozona type material,
therefore it is not surprising that these Authors
wrongly interpreted Bmsina’s species.
Monterosato (1884) states that he examined the
type material, but includes, without any comment,
the B.D.D. ’s reference and indicates that this
species is quite abundant. We suppose that he
realised B.D.D. ’s mistake, but due to good relation
with these malacologists he avoided to highlight.
In proposing the new name Pyrgulina inter-
r
mixta, Monterosato states: “E la forma littorale
Mediterranea erroneamente confusa con la P
interstincta, Mtg. che ha un maggiore numero di
coste piii sottili ed una forma piu tarchiata. Varie
forme; piuttosto frequente [This is a Mediterranean
litoral species, erroneously confused with P. inter-
stincta, Mtg., that has more numerous and narrower
axial ribs, and a stouter profile. Various forms; quite
frequent]”.
On Parthenina monozona (Brusina, 1869) and its variability (Gastropoda Heterobranchia Pyramidellidae)
525
Figures 1-7. Parthenina monozona , Melada (= Molat) island (Croatia), syntypes. Figs. 1-3: lectotype, H = 2.2 mm. Fig. 1 :
front view. Fig. 2: lateral view. Fig. 3: dorsal view. Fig. 4: paralectotype “A”, H = 1.9 mm. Fig. 5: paralectotype “B”, H =
2 mm. Fig. 6: paralectotype “C”, H = 1.9 mm. Fig. 7: Museum’s label. Figures 8-12. Parthenina monozona. Fig. 8: Vela
Luka (Korcula island, Croatia), -26/32 m, FI = 1.9 mm. Fig. 9: Algeciras (E), -3/6 m, FI = 2.1 mm. Fig. 10: Umag (Croatia),
beach, H = 2.2 mm. Fig. 1 1 : Portopalo (Sicily, Italy), -3 m, H = 2.3 mm. Fig. 12: Otranto (South Adriatic Sea), -20 m, H =
2.7 mm. Figure 13. Parthenina interstincta, Marina di Camerota (Tyrrhenian Sea), - 25 m, H = 2.1 mm.
526
Pasquale Micali et alii
Pallary (1900) mentions P. monozona for Al-
gerian coast.
Nordsieck (1972: 93, pi. PI, fig. 12) draws an
un-realistic specimen of Chrysallida monozona
from Ibiza, completely lacking spiral cords.
As discussed above, van Aartsen (1977: 58)
considers P. monozona synonym of P. intermixta
(Monterosato, 1884) only based on Nordsieck’ s
drawings, but this is not correct from a taxonomic
point of view, because the name monozona is much
older therefore has the precedence over Pyrgulina
intermixta Monterosato, 1884, that is a new name
for Odostomia ( Parthenina ) jeffreysi B.D.D., 1883,
non Koch & Weichmann, 1872 [ Turbonilla ], nee
Bell A., 1871 [Menestho]. Really the B.D.D.’s
name is not a secondary homonym of the others,
therefore could be used. According to art. 23.9.1 of
ICZN, dealing with the prevailing usage, it seems
that the B.D.D.’s name has been immediately
forgotten once Monterosato proposed the new
name, therefore conditions of art. 23.9.1.1 “ the
senior synonym has not been used as valid name
after 1899 ” and 23.9.1.2 “the junior synonym has
been used (omissis) in at least 25 works published
by at least 10 authors in the immediately preceding
50 years and encompassing a span of not less than
10 years'’’ are both complied with, therefore O. ( P. )
jeffreysi Bucquoy et al., 1883 is nomen oblitum,
while P. intermixta is nomen protectum. Anyway
this situation does not protect intermixta when it is
proved to be junior synonym of monozona.
From what above it is clear that, apart the
mistakes, many Authors, except Monterosato and
possibly Pallary, feel that P. monozona (Brusina,
1869) is synonym of P. intermixta Monterosato,
1884, but they do not prefer Brusina’s name
because of the poor knowledge of his species.
Monterosato is the only one who saw the type
material, and is also the Author of P intermixta, a
species surely well known to him, who had close
contacts with Dautzenberg. Monterosato (1884: 87)
makes two sections under Pyrgulina and in the
“group A” includes the species with axial ribs
evanescent on the base: P. monozona, P. intermixta,
P. suturalis, P. emaciata and P. brevicula Monterosato
nomen nudum: = P. monterosatii (Clessin, 1900).
As stated above, P monozona is indicated as quite
abundant. By comparing the above list with real
situation and considering the indicated frequency,
the result is that P monozona is applied to the
species normally determined as P. interstincta,
because the latter name is not mentioned. Really it
is not possible to know if Monterosato had speci-
mens by Brusina, if he saw the material and, due to
the remarkable difference from Sicilian form,
considered Brusina’s species different from his P.
intermixta, or if Brusina mixed together P mono-
zona and P. interstincta specimens, due to similarity
and lacking of comparison with this latter species.
Similarly, Pallary (1900) mentions for Algerian
coast P. monozona and P jeffreysi, but not P. inter-
stincta, which cannot be missing in that area.
From what above it is clear that some Authors
used the name monozona for the species actually
named interstincta.
Chrysallida rara Gaglini, 1992 ex Monterosato
ms, based on material from Sfax (south Tunisia),
clearly falls inside the range of variability of P.
monozona, showing remarkable similarity with
Sicilian forms, and is considered synonym.
ACKNOWLEDGEMENTS
We are grateful to Vesna Stamol (CNHM) for
the loan of type material, Marco Oliverio (La
Sapienza University, Roma, Italy) for his support.
We thank Serge Gofas (Universidad de Malaga,
Spain) for the useful discussions and Emilio Rolan
(Museum de Historia Natural, Santiago de Compo-
stela, Spain) for the informations.
REFERENCES
Aartsen J.J. van, 1977. European Pyramidellidae: I.
Chrysallida. Conchiglie, 13: 49-64.
Aartsen J.J., Menkhorst H.P.M.G. & Gittenberger E.,
1984. The marine Mollusca of the Bay of Algeciras,
Spain, with general notes on Mitrella, Marginellidae
and Turridae. Basteria suppl. 2: 1-135 .
Ancey C.F., 1898. List of marine shells collected at
Port Gueydon, Kabylia, with description of a new
Cyclostrema. The Nautilus, 12: 52-57 .
Aradas A. & Benoit L., 1874. Conchiliologia vivente
marina della Sicilia e delle isole che la circondano.
Atti Accademia Gioenia di Scienze Naturali (3), 6:
113-226 + pis. 3,4.
Ballesteros M., Barrajon A., Luque A. A., Moreno
D., Talavera P. & Templado J., 1986. Contribucion
al conocimiento de los Gasteropodos marinos de
Almeria. Iberus, 6: 39-55.
On Parthenina monozona (Brusina, 1869) and its variability (Gastropoda Heterobranchia Pyramidellidae)
527
Barash A. & Danin Z., 1992. Fauna Palestina. Annotated
list of Mediterranean molluscs of Israel and Sinai.
Jerusalem, Academy of Sciences and Humaties, 405
pp. + 372 figs.
Brunet Navarro J. & Capdevila M., 2005. Atlas mala-
cologic del Delta de l'Ebre. Joan Brunet Navarro,
Sant Carles de la Rapita, 198 pp.
Brusina S., 1869. Gasteropodes nouveaux de l’Adri-
atique. Journal de Conchy liologie, 17: 230-249.
Brusina S., 1886. Ueber die Mollusken-Fauna Oester-
reich-Ungams. Mittheilungen des Naturwissenschaft-
lichen Vereins fur Steiermark, 22 (1885): 29-56.
Bucquoy E., Dautzenberg Ph. & Dollfus G., 1882-1886.
Les mollusques marin du Roussillon. Tome 1,
Gasteropodes. J. B. Bailliere & Fils., Paris, 570 pp.
[pp. 85-196, 1883].
Cachia C., 1999. II Molluski ta Malta. Kullana kulturali
N 5. Publ. PIN, Pieta, Malta, xii + 113 pp.
Cachia C., Mifsud C. & Sammut P.M., 1993. An annot-
ated checklist of the marine Mollusca of the Maltese
Islands. Erste Vorarlberger Malakologische Gesell-
schaft: 1-80.
Cachia C., Mifsud C. & Sammut P.M., 2001. The marine
Mollusca of the Maltese Islands. Part Three. Subclass
Prosbranchia to subclass Pulmonata, order Basom-
matophora. Backhuys Publishers, Leiden, 182 pp., 26
pis.
Cecalupo A., Buzzurro G. & Mariani M., 2008. Con-
tribute alia conoscenza della malacofauna del Golfo
di Gabes (Tunisia). Quaderni della Civica Stazione
Idrobiologica di Milano, 31: 1-175 pp., 92 pis.
Cecalupo A. & Quadri P., 1996. Contributo alia cono-
scenza malacologia per il nord dell’isola di Cipro
(Terza e ultima parte). Bollettino malacologico, 31
(1995): 95-118.
Cerulli Irelli S., 1914. Fauna Malacologica Mariana.
Parte 7. Palaeontologia Italica, 20: 183-277.
Chirli C. & Micali P., 2011. Malacofauna Pliocenica To-
scana. Vol. 8. Pyramidelloidea. C. Chirli, Tavarnelle,
pp. X+131, 40 pis.
Coppini M., Cuneo F., Margelli A. & Campani E., 2005.
Gastropoda e Scaphopoda del porto di Livorno.
Bollettino malacologico, 41: 43-50 [erroneously
paginated 1-8].
Cosentino A. & Giacobbe S., 2008. Aspects of epizoo-
biontic mollusc assemblages on Pinna shells. II. Does
the Mediterranean P. nobilis represent an isle of biod-
iversity? Cahiers de Biologie Marine, 49: 161-173.
Cossignani T. & Ardovini R., 2011. Malacologia Medi-
terranea. L’Informatore Piceno, Ancona, 536 pp.
Di Geronimo I., 1975. La malacofauna Siciliana del
Ciaramitaio (Grammichele, Catania). Conchiglie, 11:
101-137.
Fekih M., 1969. Pyramidellidae recoltes dans le Pliocene
de l’Oued El Galaa (Menzel Bourguiba). Notes de
Service Geologique, 29: 5-58.
Gaglini A., 1992. Terze Spigolature... Monterosatiane.
Argonauta, 7: 125-180.
Ghisotti F., 1972. Le conchiglie del Golfo di Gabes parte
seconda. Conchiglie, 8: 101-113.
Giannuzzi-Savelli R., Pusateri F., Micali P., Nofroni I. &
Bartolini S., 2014. Atlante delle conchiglie marine
del Mediterraneo. Vol. 5 (Heterobranchia). Edizioni
Danaus, Palermo, 111+91 pp., 363 figs.
Giribet C. & Penas A., 1997. Fauna malacologica del
litoral del Garraf (NE de la Peninsula Iberica). Iberus,
15: 41-93.
Kobelt W., 1903. Iconographie der schalentragenden
europaischen Meeresconchylien, 3. C.W. KreideFs
Verlag, Wiesbaden, pp. 25-200.
Linden van der J. & Eikenboom J.C.A., 1992. On the
taxonomy of the Recent species of the genus Chrysal-
lida Carpenter from Europe, the Canary Islands and
the Azores (Gastropoda, Pyramidellidae), Basteria,
56: 3-63.
Locard A., 1886. Prodrome de malacologie Franqaise
mollusques marins. Annales de la Societe d’Agricul-
ture et d’Histoire Naturelle de Lyon, 8: 1-216.
Locard A., 1891. Les coquilles marines des cotes de
France. Annales de la Societe Linneenne de Lyon, 37:
1-385.
Martin Sintes D., Dantart L. & Ballesteros M., 1990.
Moluscos de las concreciones de algas calcareas del
litoral Catalan (NE Espana). Lavori S.I.M., 23: 445-
456.
Mazziotti C., Agamennone F. & Tisselli M., 2008.
Checklist della malacofauna delle Isole Tremiti
(Medio Adriatico). Bollettino malacologico, 44: 71-
86 .
Micali P. & Nofroni I., 2004. On the specific validity of
Chrysallida penchynati (B.D.D, 1883) and descrip-
tion of Chrysallida rinaldii n. sp. Bollettino malaco-
logico, 39 (2003): 177-180.
Mietto P. & Quaggiotto E., 1983. Molluschi nuovi o poco
noti dell'isola d'Elba (Mare Tirreno). Bollettino ma-
lacologico, 19: 127-140.
Mifsud C.,1994. On some living Mollusca from Maltese
waters. La Conchiglia, 26 (272): 29-36.
Monterosato T.A. di Maria, 1872a. Notizie intomo alle
conchiglie fossili di Monte Pellegrino e Ficarazzi.
Uff. Tip. M. Amenta, Palermo, 44 pp.
Monterosato T.A. di Maria, 1872b. Catalogo delle
Conchiglie Mediterranee. Uff. Tipografia M. Amenta,
Palermo, 61 pp.
Monterosato T.A. di Maria, 1875. Nuova rivista delle
conchiglie mediterranee. Atti Accademia Palermitana
di Scienze, Lettere e Arti, Palermo, 2: 1-50.
Monterosato T.A. di Maria, 1877a. Note sur quelques
coquilles provenant des cotes d’Algerie. Journal de
Conchyliologie, 25: 24-49.
528
Pasquale Micali et alii
Monterosato T.A. di Maria, 1877b. Catalogo delle
conchiglie fossili di Monte Pellegrino e Ficarazzi
presso Palermo. Bollettino del R. Comitato Geolo-
gico d'ltalia, 1-2: 28-42.
Monterosato T.A. di Maria, 1877c. Notizie sulle
conchiglie della rada di Civitavecchia. Annali del
Museo Civico di Genova, 9: 407-428.
Monterosato T.A., di Maria, 1878. Enumerazione e
sinonimia delle conchiglie mediterranee. Giornale di
Scienze Naturali ed Economiche, Palermo, 13: 61-
115.
Monterosato T.A. di Maria, 1884. Nomenclatura generica
e specifica di alcune conchiglie mediterranee.
Stabilimento Tipografico Virzi, Palermo, 152 pp.
Monterosato T.A. di Maria, 1885. Conchiglie litorali
mediterranee. II Naturalista siciliano, 3: 80-84.
Monterosato T.A. di Maria, 1917. Molluschi viventi e
quaternari raccolti lungo le coste della Tripolitania
dall’Ing. Camillo Crema. Bollettino della Societa
Zoologica Italiana, 4: 1-28.
Nordsieck F., 1972. Die Europaischen Meeresschnecken
(Opisthobranchia mit Pyramidellidae; Rissoacea).
Vom Eismeer bis Kapverden, Mittelmeer und
Schwarzes Meer. Gustav Fischer Verlag. Stuttgart.
327 pp.
Oztiirk B., 2014. Shelled marine Molluscs of the Turkish
Coasts. Informal group “Lower Heterobranchia”
(Mollusca-Gastropoda). Ege University Press.
Publications of the Faculty of Fisheries n° 81, 131
pp., 118 figs.
Oztiirk B., Buzzurro G. & Benli H.A., 2004. Marine
molluscs from Cyprus: new data and checklist.
Bollettino malacologico, 39 (2003): 49-78.
Oztiirk B. & £evik C., 2000. Molluscs Fauna of Turkish
Seas. Club Conchylia Informationen, 32: 27-53.
Pallary P., 1900. Coquilles marins du littoral du departe-
ment d’Oran. Journal de Conchyliologie, 28: 211-
434.
Pallary P., 1912. Catalogue des Mollusques du littoral
Mediterraneen de FEgypte. Memoires de l'lnstitut
egyptien, 7: 69-200.
Parenzan P., 1970. Carta d’identita delle conchiglie del
Mediterraneo. vol. 1, ed. Bios Taras, Taranto, 286
pp.
Penas A. & Rolan E., 2011. Familia Pyramidellidae,
Amathinidae y Murchisonellidae. In: Gofas S.,
Moreno D. & Salas C. (Eds.). Moluscos marinos de
Andalucia. Malaga: Servicio de Publicaciones e
Intercambio Cientifico, Universidad de Malaga,
365-398,.
Penas A., Templado J. & Martinez J.L., 1996. Contribu-
tion to the knowledge of the Pyramidelloidea
(Gastropoda, Heterostropha) in the Spanish Mediter-
ranean coasts. Iberus, 14: 1-82.
Penas A., Rolan E., Luque A., Templado J., Moreno D.,
Rubio F., Salas C., Sierra A. & Gofas S., 2006.
Moluscos marinos de la isla de Alboran. Iberus, 24:
23-151.
Poppe G.T. & Goto Y., 1991. European Seashell. Vol. I.
(Polyplacophora, Caudofoveata, Solenogastra,
Gastropoda). Verlag Christa Hemmen, Wiesbaden,
352 pp.
Riedl R., 1991. Fauna e flora del Mediterraneo. Padova,
Muzio, 777 pp.
Rolan Mosquera E., 1983. Moluscos de la Ria de Vigo.
I. Gasteropodos. Revista de Ciencias del Mar
Thalassas, 1: 1-183.
Ruggieri G., 1982. Segnalazione di Parastrophia
(Gastropoda, Caecidae) nel Pliocene della Sicilia.
Bollettino malacologico, 18: 255-262.
Stossich A., 1876. Prospetto della Fauna del mare Adri-
atico. IV Mollusca. Bollettino della Societa adriatica
di scienze naturali in Trieste, 5: 55-184.
Trono D., 2006. Nuovi dati sulla malacofauna del Salento
(Puglia meridionale). Bollettino malacologico, 42:
58-84
Trono D. & Maori G., 2013. Malacofauna del Salento
(Trono, 2006): corrigenda e addenda. Bollettino ma-
lacologico, 49: 26-48.
Vazzana A., 2010. La malacofauna del Circalitorale di
Scilla (Stretto di Messina). Bollettino malacologico,
46: 65-74.
Biodiversity Journal, 2015, 6 (2): 529-592
Monograph
Worldwide checklist of the island mutillid wasps (Hymenop-
tera Mutillidae)
Pietro Lo Cascio
Nesos, via Vittorio Emanuele 24, 98055 Lipari, Messina, Italy; e-mail: plocascio@nesos.org
ABSTRACT The family of Mutillidae includes 776 taxa among species and subspecies recorded for 311
islands worldwide, whose distribution is provided in the present checklist. A brief review of
some traits that characterize the insular faunas of these hymenopteran parasitoids is given.
The main constraints to the dispersal on islands are due to the apterogyny and the occurrence
of suitable hosts. Species richness is generally correlated with island size. Although probably
still underestimated, the greatest number of species is found on Sri Lanka (82), Borneo (77),
Madagascar (70) and Taiwan (61). Endemics are more than half (55%) of the whole insular
mutillids and are found mostly in the oceanic islands and in those that have undergone to
a long-time isolation. On the contrary, endemic genera are represented only on few islands
(Madagascar, Sri Lanka and, secondarily, New Guinea, Sulawesi and Canary).
KEY WORDS Hymenoptera; Mutillidae; islands of the world; checklist; biogeography.
Received 26.04.2015; accepted 21.06.2015; printed 30.06.2015
INTRODUCTION
The family Mutillidae includes 210 genera
(Lelej & Brothers, 2008; see also Williams & Pitts,
2009; Williams et al., 2011; Brothers, 2012; Tu et
al., 2014) and more than 4,300 species so far
described. These latter are estimated to be about
6,000 (according to Lelej & Brothers, 2008), but
their number is rather uncertain pending for further
investigations that could lead to establish several
new synonymies, because many species, and even
a few genera, are still known only for one sex.
The strong sexual dimorphism typical of the
members of this hymenopteran family makes
indeed difficult the association between males
(mostly winged) and females (all apterous), that is
generally based on the direct observations of
mating, although have been also used alternative
methods such as live-caught females to attract
conspecific males (Manley, 1999) and molecular
analysis (Pilgrim & Pitts, 2006).
Despite the uncertainty that still persists about
the amount of true species belonging to this fam-
ily, 428 (about 10% of those actually described),
as well as 1 3 genera, are known to be exclusively
distributed on islands. That confirms once again
as the islands contribute disproportionately to the
global biodiversity (Whittaker & Fernandez-Pala-
cios, 2006).
The occurrence of mutillids wasps on islands is
however constrained by two morphological and
biological traits: i) the low dispersal ability of the
wingless females, and ii) their dependence on
finding of suitable hosts, because Mutillidae are
parasitoids that develop mainly on immature stages
of other Hymenoptera (Brothers, 1989).
Consequently, the number of species on the
islands presumably decrease with increase of their
530
Pietro Lo Cascio
degree of isolation, and thus the species richness
should be greater on the continental islands rather
than on the oceanic. By contrast, these latter could
be more often characterized by processes of specia-
tion and adaptive radiation.
The first information on insular mutillids is
due to Fabricius (1775), who described Mutilla
antiguensis from “insula Antigua” (Lesser Antilles,
Caribbean Sea), a species still considered as valid
although included among the taxa incertae sedis by
Nonveiller (1990). Just few records were added
during the first decades of the 19th century by
Spinola (1839, 1841), Ghiliani (1842), Westwood
(1843) and Lepeletier de Saint-Fargeau (1845),
while several are those published since the second
half of this century, thanks to the significant
increase of the scientific expeditions to the islands
carried out, among others, by naturalists such as
Alfred Russell Wallace.
More recently, several studies specifically
concerning the insular faunas of Mutillidae or that
provide extensive faunal lists have been published
(Arnone & Romano, 1995; Brothers, 2012;
Brothers et al., 2011; Esaki, 1938; Hammer, 1950;
Invrea, 1940, 1952c, 1955a, 1960, 1966; Krombein,
1949a, 1971, 1972; Lo Cascio & Romano, 2004; Lo
Cascio et al., 2012; McCallan, 1990, 1991a;
Mickel, 1928b, 1933, 1934, 1935; Nonveiller, 1972;
Olsoufieff, 1938; Schembri, 1983; Strumia &
Pagliano, 2014; Strumia et al., 2008; Terayama,
2005; Terayama et al., 2011; Tsuneki, 1972a,
1972b; Tsuneki et al., 1993, Turner, 1914; Turrisi,
1999a), but a comprehensive and updated overview
of all the available data, often scattered in papers
not eminently dealing with this hymenopteran
family, is still lacking.
The aim of the present paper is to provide a
checklist of the faunal records of Mutillidae for the
islands worldwide (including the estuarine but
excluding fluvial and lacustrine ones). A wide liter-
ature has been therefore checked in order to achieve
a list as exhaustive as possible, even if cannot be
excluded that some data may have been neglected,
hence reporting of any omissions or mistakes,
as well as that of new records, is enthusiastically
welcomed.
In light of the available data, it was also possible
to outline the main biogeographical traits of the
island faunas, which are briefly analyzed and dis-
cussed in a separate paragraph.
MATERIAL AND METHODS
Geographical setting
310 islands distributed between 55°N and 42°S
where Mutillidae have been recorded are listed and
grouped in alphabetical order with in the respective
ecoregions in Table 1 ; another island (High Island)
has been mentioned in Table 2 but not in Table 1
(see below).
Ecoregions follow the geographic boundaries
given by Olson et al. (2001) with the only exception
of Palearctic which is here subdivided in two dif-
ferent regions (Western and Eastern), and are listed
in clockwise order from East of Greenwich and
from North to South (see also Fig. 1).
As the boundary between Indo-Malay and
Australasia is still debated (see Simpson, 1977;
New, 2002; Halloway, 2009 and references therein),
in the present paper the Weber line was adopted
following the proposals given by Holt et al. (2013).
According to Echenique-Diaz et al. (2009), all the
Japanese islands that lie south of latitude 3 1 ° N
(Ryukyu or Nansei Archipelago) are assigned to the
Indo-Malay, while Ogasawara (or Bonin) Islands
belong to the Oceania.
Island’s name and localization have been checked
using both the Island Directory provided by UNEP
(islands.unep.ch/isldir.htm) and the GeoNames
Search facility of the US National Geospatial-
Intelligence Agency (geonames.nga.mil/ggmagaz/).
Some Japanese islands were named using al-
ternatively the suffix -shima or -jima. Asterisks
after the name indicate *) that the island is artifi-
cially connected to the mainland (or to the nearest
main island), **) it is composed by two sub-islands
(data given in the next columns concern the overall
island), ***) the toponym quoted in literature
without further indications concerns an island
group (whose name is reported into square
brackets), hence geographical data are referred to
its larger island.
Two-letter code of the country is given accord-
ing to the International Organization for Standard-
ization (www.iso.org). Surface and elevation are
respectively indicated in Km 2 (with 0.5 approxima-
tion) and in m a.s.l. Isolation index was calculated
according to the proposals given by Dahl (1991 ; see
also islands.unep.ch/isldir.htm) and successively
assigned to a numerical class (e.g. values ranging
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
531
from 1 to 10 are included in the class 10, from 11
to 20 in the class 20, etc.).
Data sources
Data were gathered through the examination of
a wide literature which includes worldwide or
regional catalogues and monographs (Andre, 1 899—
1903, 1902; Baltazar, 1966; Bischoff, 1920-1921;
Blake, 1871; Brothers et al., 2011; Cameron, 1892;
1897, 1898, 1900; Dalla Torre, 1897; Krombein,
1972, 1979b; Lelej, 1985, 2002, 2005; Lepeletier
de Saint-Fargeau, 1845; Mickel, 1928a; Nonveiller,
1990; Olsoufieff, 1938; Ramakrishna, 1916; Sichel
& Radoszkowski, 1869-1870), reviews of genera
and/or species groups (Bradley, 1916a; Lelej &
Krombein, 2001; Ljubomirov, 2011; Manley &
Pitts, 2007; Mickel, 1938, 1939, 1941; Nonveiller,
1979a, 1994, 1995a, 1995b; Nonveiller & Cetko vie,
1995, 1996; Petersen, 1988; Pitts & McHugh, 2002;
Radoszkowski, 1885; Reck Bartholomay, 2014;
Suarez, 1988; Tu et al., 2014; Williams & Pitts,
2007, 2013; Williams et al., 2012), or museum col-
lections (Andre, 1896a, 1896b, 1898, 1907-1908,
1908a, 1908b, 1909; Casolari & Casolari Moreno,
1980; Hashimoto &Nakanishi, 1997; Ljubomirov,
2006; Matteini Palmerini, 1992; Pagliano, 2005;
Smith, 1855, 1879; Spooner, 1942; Starr, 1993;
Suarez, 1959a; Taeger et al., 2005; Zavattari,
1910a).
Other relevant references which have been con-
sulted are:
W-Palearctic. Alicata et al. (1975), Archer
(1986, 2014), Arnone & Romano (1995, 1998),
Baez & Ortega (1978), Baldock (2014, 2015),
Berland (1925), Bigot (1958), Bischoff (1928,
1933), Bischoff & Nonveiller (1965), Bordoni
(1980), Broad (2014), Canovai et al. (2000),
Cecconi (1895), Cocquempot & Chambon (1992),
Cocquempot & Rungs (2009), Compte Sart (1959),
Costa (1856-1860, 1882, 1883, 1885, 1887),
Deschamps (1898), De Stefani-Perez ( 1 885—
1886,1887a, 1887b, 1897), Edwards (1997), Failla
Tedaldi (1887), Garcia Mercet (1913), Garcias Font
(1953), Generani et al. (2001), Ghiliani (1842),
Gribodo (1880), Grimshaw (1913), Haeseler
(2008), Hammer (1950), Hohmann et al. (1993), In-
vrea (1940, 1941b, 1942, 1951, 1952a, 1952b,
1952c, 1953, 1954, 1955a, 1955b, 1957, 1958, 1960,
1962, 1964, 1966), King (1915), Lelej et al. (2003a),
Leo (1989), Lo Cascio (2000, 2014), Lo Cascio &
Romano (2004), Lo Cascio et al. (1998), Mantero
(1905, 1909), Masi (1933), Mellor (1932), Mingo
& Compte (1963), Monastra (1989, 1990), Nagy
(1972), Nonveiller (1972, 1979b), Nonveiller et al.
(1998), Pagliano (2003, 2011), Pagliano & Matteini
Palmerini (2014), Pagliano & Strumia (2000, 2007,
2013), Richards (1980), Riggio (1885), Riggio &
De Stefani-Perez (1887), Romano (2004, 2012),
Saunders (1880, 1881, 1896, 1901, 1904), Schem-
bri (1983, 1984), Schulthess (1929), Spicer (1873),
Spinola (1839), Stelfox (1933), Strumia & Pagliano
(2014), Strumia et al. (2008), Suarez (1959b, 1970,
1975), Turrisi (1999a, 1999b), Valletta (1971,
1979), Villarubia & Espanol (1933), Yarrow (1954),
Yeo & Corbet (1995), and Zavattari (1910b, 1912).
Afrotropic. Andre (1895, 1899, 1901a, 1903a,
1903b, 1904, 1905, 1908b), Atkins & Webb (2013),
Brancsik (1891), Friese (1900), Garcia Mercet
(1903), Gerstaecker (1871), Invrea (1941a),
Krombein (1939, 1951), Lelej & Harten (2006), Lo
Cascio et al. (2012), McCallan (1991a), Nonveiller
& Petersen (1995), Olsoufieff (1936), Paulian
(1950), Saussure (1890-1892, 1891), Schulthess
(1919), Schulz (1912), Seyrig (1936), and Viette
(1957, 1978).
Indo-Malay. Andre (1907a, 1907b), Ashmead
(1905a, 1905b), Bingham (1895, 1897), Brown
(1906), Cameron (1902a, 1902b, 1903, 1909), Chen
(1957), Cockerell (1927), Dammermann (1923,
1948), Easton (2001), Garcia Mercet (1903), Green
(1912), Hammer (1962), Haneda (1982), Ikudome
& Yamane (2009), Invrea (1943), Krombein (1978,
1979a, 1981, 1982), Krombein & Lelej (1999),
Krombein et al. (1999), Lelej (1993, 1995, 1996b),
Matsumura & Uchida (1926), Mickel (1933, 1934),
Motschulslcy (1863), Murota (1973a, 1973b), Pag-
den (1938), Rohwer (1910), Sakagami et al. (1996),
Saussure (1867a, 1867b), Smith (1857-1858, 1858,
1861a), Sonan (1931), Tennent (1859), Terayama
(2005), Terayama et al. (2011), Tsuneki (1972b,
1972c, 1982a, 1982b, 1993a, 1993b), Tsuneki et al.
(1993), Turner (1911), Wickwar (1908), Williams
(1919), Yamane (1983), Yamane et al. (1992, 1999),
Yasumatsu (1934), and Zavattari (1913a).
E-Palearctic. Fukasawa & Miyano (2010),
Haneda (1979), Hisamatsu (2004), Lelej (1996a,
2012), Lelej & Yamane (1992), Lelej et al. (2001),
Matsumura (1911), Mickel (1936), Miyamoto
532
Pietro Lo Cascio
(1959), Nagase (2004), Nagase & Kawashima
(2012), Ogawa et al. (2012), Paik (1994, 1995),
Sakagami (1980), Sakagami et al. (1982), Smith
(1873, 1874), Takahashi (1993), Terayama (2005),
Terayama et al. (2011), Tsuneki (1962, 1972a,
1973), Tsurusaki et al. (2012), Vertyankin (2010),
Yasumatsu (1931, 1937), and Yoshida (1989).
Australasia. Andre (1901b, 1905), Brothers
(1971, 2012), Cameron (1901, 1907), Hill (1955),
Jennings et al. (2013), Krombein (1971), Mantero
(1900), Mickel (1935), Montague (1914), Smith
(1859, 1861b), Turner (1912, 1914), Valentine &
Walker (1983), Villemant (2011), Westwood
(1843), Williams (1945), and Zavattari (1913b).
Indo-Malay and Australasia. Mickel
(1937), O’Toole (1975), Pagden (1949), Smith
(1861-1862, 1864a, 1864b, 1865), and Smith &
Wallace (1873).
Oceania. Esaki (1938), Krombein (1949a),
Sugiura et al. (2013), Takahashi & Shimizu (2007),
Tsuneki (1984), and Yasumatsu (1936, 1950).
Nearctic. Bradley (1916b), Cockerell (1915),
Cooper (1953), Deyrup & Manley (1986), Hurd
(1951), McAlister & McAlister (1993), Ortiz
(1976), Seavey (1892), and Wilson & Pitts
(2009).
Neotropic. Alayo Dalmau (1975), Ashmead
(1896, 1900), Askew (1980, 1994), Cambra &
Quintero Arias (1992, 1993), Cresson (1865), Dow
(1931), Elliott & Elliott (1994, 1996), Elliot et al.
(2002), Evans (1972), Fox (1900), Genaro (1997),
Genaro & Torres (1999), Krombein (1949b),
Lenko (1964), McCallan (1942, 1950, 1990,
1991b), Mickel (1926, 1928b, 1952, 1961), Perez-
Gelabert (2008), Pitts (2007), Portuondo Ferrer
& Fernandez Triana (2004), Quintero Arias &
Cambra (2001), Schuster (1946), Snelling (2005),
Spinola (1841), Starr & Hook (2003), and William
(1926).
Finally, the checklist includes data from the list
of the specimens identified by the late B. Petersen
and kept in the Zoological Museum of the Univer-
sity of Copenhagen (hereafter ZMUC, available at:
www.zmuc.dk/EntoWeb/collections-databaser/
Hymenoptera); from the distributional maps of
BWARS (www.bwars.com); unpublished records
for Gavdos Island which are based on specimens
identified by the late G. Nonveiller and kept in the
Natural History Museum of Crete (A. Trichas, in
litteris 20. i. 1999); some other unpublished records
have been given in details in Table 3.
Statistical analysis
The effects of geographical predictors on faunal
ensembles were assessed by using simple linear
regression analysis with 95% confidence limits and
performed with the open source software PAST
version 3.04 (Hammer et al., 2001). Evaluation of
diversity indices and UPGMA analysis were done
using MVSP® (Multivariate Statistical Package),
version 3.22. Numbers that follow ± are referred to
standard error.
CHECKLIST
In Table 2, 719 species and 49 subspecies of
Mutillidae are listed in alphabetical order with the
respective insular distribution. Also, 8 species are
indicated only at generic rank as quoted in literat-
ure; the only exception concerns “ Ephutomorpha ”
sp. from New Guinea, recorded by Andre (1896a)
and Mantero (1900) as the Australian Ephutomor-
pha morosa (Westwood, 1843), that according to
Mickel (1935) probably represents a yet undes-
cribed species.
Taxonomy and nomenclature follow those
adopted by the most recent literature (see Data
source), except for the genus Smicromyrme Thom-
son, 1870 which has been considered here as
feminine gender (Romano & Lo Cascio, in prepar-
ation). For the species whose generic placement is
still considered doubtful, genus name is indicated
in quotes. That is the case, for instance, of the
Madagascan species referred to genus Trogaspidia
Ashmead, 1899 (see Brothers et al., 2011); or the
whole genus Ephutomorpha Andre, 1902, appro-
priately defined by Krombein (1971) as a “por-
tmanteau”, which currently includes many
Australasian species that should be assigned to
other genera yet undescribed (see also Brothers,
2012 ).
In the next column “E” indicates when a taxon
is exclusively distributed on islands (specifying
whether it is an endemic subspecies). Ephucilla
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
533
viet (Lelej, 1995) and Glossotilla illudens Invrea,
1941 are known only for Dang Kho (Vietnam) and
Koyaama (Somalia), respectively, but it is unlikely
that are really endemic of these small coastal
islands and their distribution range probably in-
cludes neighboring continental areas. Conversely,
Smicromyrme mauromoustakisi Invrea, 1940 from
Cyprus is treated as endemic, because a record for
Palestine (Invrea, 1965) should be referred to an
yet undescribed species (P. Lo Cascio, unpubl.
data). Also, Wallacidia vicina (Sichel et Ra-
doszkowski, 1870) is considered endemic of some
Australasian islands because a record for India
given by Andre (1894) was not confirmed by Lelej
(2005).
Species and records excluded from the checklist
Records of Mutillidae have been taken into
account in the checklist when identified at least at
generic rank and excluding those as: the “velvet
ants” mentioned by Weiskittle (2004) for Pea
Island (35.42N, 075. 30W; code: US; surface:
127.5 Km 2 ; max elevation: 10 m a.s.l.; isolation:
10); an unspecified number of mutillids found on
Coiba Island (7.28N, 081.46W; PA; 503.0; 425;
20) reported by Nieves- Aldrey & Fontal-Cazalla
(1997); one unidentified morphospecies recorded
byElliot & Elliot (1984) for Cat Island (24.24N,
075.3 1W; BS; 386.5; 122; 50); two unidentified
morphospecies recorded by Pizarro-Araya et al.
(2014) for Chanaral Island (29.01S, 071.34W; CL;
5.0; 145; 10); twenty-four (according to Callan
et al., 2011) or even twenty- five unidentified
morphospecies (according to www.padil.gov.au:
80/barrow-island/) found during recent faunal
investigations on Barrow Island (20.47S, 1 15.24E;
AU; 234.0; 64; 10).
From the checklist have also been excluded:
Dasylabris lybica (Invrea, 1940), recorded for
Malta in the list of ZMUC collections (see
www.zmuc.dk/EntoWeb/collections-databaser/
Hymenoptera), whose occurrence needs to be con-
firmed; Ephutomorpha gaudens Zavattari, 1913,
described for New Guinea but successively
neglected by Mickel (1935), whose taxonomic
value needs hence to be clarified; Hoplomutilla
gabbii (Blake, 1879), whose old records for Ja-
maica are due to the erroneous label of a specimen
kept in the British Museum collections (Mickel,
1939); Krombeinidia unifasciata (Smith, 1855),
whose record for Sulawesi (Smith, 1858; see also
Smith & Wallace, 1873) is doubtful (Lelej, 2005);
Mutilla marginata Baer, 1848, recorded for Sicily
by Andre (1899-1903) but not confirmed by
Turrisi (1999); Myrmosa macrocephala Olivier,
1811, described from Java, which belongs to the
family Tiphiidae (see Lelej, 2005); Odontomutilla
urania (Smith, 1857), whose terra typica is
Melaka (Peninsular Malaysia) and not Borneo
(Lelej, 2005); Petersenidia gribodoi (Magretti,
1892), whose records for Sumatra and New Gui-
nea (Mantero, 1 900) are due to erroneous identi-
fications (Mickel, 1935); Petersenidia subanalis
(Magretti, 1892), Trogaspidia aulica (Smith,
1855), T. pilosella (Magretti, 1892), T. fortinata
(Cameron, 1899), and T. pulchriceps (Cameron,
1892), whose records for Sri Lanka (Andre, 1903a,
1907a; Bingham, 1897; Wickwar, 1908) have not
been verified by Lelej (2005) and need to be con-
firmed; Physetopoda discreta (Cameron, 1897),
whose record for Philippines (Bingham, 1897) is
doubtful (Lelej, 2005); Sinotilla decora (Smith,
1879), whose record for Java (Zavattari, 1913a) is
doubtful (Lelej, 2005); Trogaspidia analis (Lepe-
letier, 1845), whose records for Sri Lanka, Borneo,
Sumatra, Bali, Sulawesi, Sumbawa, Ambon,
Halmahera, Morotai, Ternate and Taiwan (Andre,
1907a; Zavattari, 1913b; Pagliano, 2005) have not
been confirmed by Mickel (1935) and Lelej
(2005); Trogaspidia catanensis (Rossi, 1794),
whose record for Zanzibar (Zavattari, 1910a) must
be certainly referred to another species; Tro-
gaspidia floralis (Klug, 1829), whose record for
Zanzibar (Bischoff, 1920-1921) is due to erro-
neous identification (Nonveiller & Petersen,
1995); Trogaspidia rubripes (Andre, 1901), recor-
ded for Cyprus and supposed to be the opposite
sex of Neotrogaspidia hammeri (Suarez, 1959) by
Suarez (1959b), but recently treated as valid
species by Lelej (2002), who however has ex-
cluded this island from its distribution range; Tro-
gaspidia repraesentans (Smith, 1855), erroneously
recorded by Smith & Wallace (1873) and Zavattari
(1913b) for Borneo and Java, respectively (Mickel,
1935; Lelej, 2005); Wallacidia sexmaculata (Swe-
derus, 1787) recorded by Lepeletier de Saint -
Fargeau (1845) for Java from a specimen kept in
the Spinola’s collection (Regional Museum of
Natural Sciences, Turin) doubtfully identified as
534
Pietro Lo Cascio
Mutilla fuscipennis Fabricius, 1804, but not con-
firmed by Lelej (2005; see also Pagliano, 2005).
Furthermore, from the distribution of some
species included in the checklist have been omit-
ted the following doubtful records: Blakeius
bipunctatus (Latreille, 1792) for Cyprus by Andre
(1899-1903), not confirmed by Invrea (1940) and
Hammer (1950); Dasylabris maura carinulata
(Dalla Torre, 1897) for Rhodes by Pagliano
(2005), which need to be confirmed; “ Ephuto -
morphcT australasiae (Fabricius, 1804) and
“ Ephutomorpha ” fausta (Smith, 1863), given
respectively for New Britain and New Guinea
by Andre (1898), which need to be confirmed;
Krombeinella thoracica (Fabricius, 1793) for
Sicily by several authors, not confirmed by Sua-
rez (1988); Myrmilla mutica (Andre, 1903) for
Cyprus by Bogusch (2006), not confirmed by
Ljubomirov (2011); Mutilla europaea Linnaeus,
1758 for Sardinia by Costa (1887), not confirmed
by Arnone & Romano (1998); the same for the
“Inner Hebrides” and “Outer Hebrides” without
further information, respectively by the Scottish
Aculeate List (www. hbrg.org.uk/SAL/index.
html) and the Outer Hebrides Biological Recor-
ding (http://www.ohbr.org.uk); Myrmilla erythro-
cephala (Latreille, 1792) for Kerkyra, not confirmed
by Ljubomirov (2011); Myrmilla lezginica (Ra-
doszkowski, 1885) for “Cyclades” without further
information by Andre (1899-1903); Physetopoda
halensis (Fabricius, 1 787) for Lampedusa by Pagliano
(2003), that has been successively referred to an-
other species (see Pagliano, 2011); Physetopoda
pusilla (Klug, 1835) and P. scutellaris (Latreille,
1792) for Cyprus, respectively, by Bischoff
(1933) and Invrea (1940) and by Hammer (1950),
which need to be confirmed; Platymyrmilla quinque-
fasciata (Olivier, 1811) for Sicily by Pagliano &
Strumia (2007) on the basis of a doubtful record
from Spinola’s collection (see also Pagliano,
2005); Ronisia ghilianii (Spinola, 1843) for Cyprus
by Hammer (1950), which need to be confirmed;
Smicromyrme rufipes (Fabricius, 1878) for Malta
by Pagliano (2005) and Pagliano & Strumia
(2007), which need to be confirmed; Smi-
cromyrme vladani Nonveiller, 1972 for Malta,
given in the list of ZMUC collections (see
www.zmuc.dk/EntoWeb/collections-databaser
/Hymenoptera), that should be confirmed; Timulla
mediata persa Mickel, 1938 for Trinidad by
Nonveiller (1990), as the same island is inhabited
by the nominal subspecies; Trogaspidia rhea rhea
(Mickel, 1933) for “Japan” by Mickel (1933)
without further information; Trogaspidia subin-
trans (Sichel et Radoszkowski, 1870) for Taiwan
by Zavattari (1913a), not confirmed by Lelej
(2005), as well as those for Timor (Sichel & Ra-
doszkowski, 1869-1870), Sumatra and Borneo
(Zavattari, 1913b), although not mentioned by
Lelej (2005), need to be confirmed; Wallacidia
merops (Smith, 1860), for New Guinea by Andre
(1896a) and Mantero (1900), that according to
O’Toole (1975) are due to erroneous identifica-
tions; Wallacidia oculata (Fabricius, 1804) for
Bali, Flores, Sumba and Palawan by Zavattari
(1913b), need to be confirmed; Yamanetilla
taiwaniana (Zavattari, 1913) for “Japan” in
the ZMUC material (www.zmuc.dk/EntoWeb/
collections-databaser/ Hymenoptera) without
further information.
On the contrary, the checklist includes a record
of Myrmosa unicolor Say, 1824 given by Bradley
(1917) for High Island (Outer Banks, Virginia, US);
this latter belongs to a group of barrier islands
whose number changes through time due to dy-
namic processes or violent stomis and its name has
not been localized in the recent maps, thus the
island is not listed in Table 1 .
Although often the toponym “Cayenne” was used
in past to indicate also continental areas of French
Guiana, data given by Spinola (1841) have been
included in the checklist because the author refers
explicitly to specimens collected by Leprieur “ dans
les regions inexplorees de cette ile ” (see Spinola,
1840). For the same reason, the checklist takes into
account also the data given by Lepeletier de Saint-
Fargeau (1845) concerning this estuarine island.
A separate discussion concerns Myrmilla re-
unionis described by Zavattari (1909), that accord-
ing to Brothers et al. (2011) is likely not from
Reunion Island. Pagliano (2005) has reported two
specimens kept in the Spinola’s collection labelled
as “Mutilla doueyi ” (a female) and “ Mutilla douei ”
(a male) and indicated to be from “Isola di Bour-
bon” (the former name of Reunion) without further
information; the female was sent in loan in 1999 to
Guido Nonveiller and probably has been lost.
Waiting for a confirmation of the occurrence of
mutillids on this island, the above records have not
been included in the checklist.
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
535
Island
Localization
Code
Surface
Elevation
Isolation
W- PALE ARCTIC
Andros
37.S0N 24.52E
GR
371.0
994
10
Anglesey*
53.30N 04.40W
GB
654.0
222
10
Antikythera
35.5 IN 23. 18E
GR
21.0
379
20
Asmara
41.04N 08.28E
IT
51.0
408
20
Astypalea
36.34N 26.22E
GR
97.0
506
30
Bagaud
43. DON 06.2 I E
FR
0.5
69
10
Baltrum
53.43N 07.23E
DE
7.0
10
10
Brat
43.34N I6.65E
HR
395.5
778
10
Budclli
41.16N 09.20E
IT
1.5
87
20
Capraia
43.05N G9.90E
IT
19.5
447
10
Capri
40.55N 14.25E
IT
10.5
585
10
Cavallo
4L22N 09. 1 5E
FR
1.0
32
20
Chergui (Chergtiia)
34.43N 11.1 3E
TN
99.0
13
10
Chios
3 8.23 N 26.02E
GR
822.5
1297
10
(jovo
43.30N 16.17E
HR
28.0
218
10
Com i no
36.00N I4.20E
MT
3.5
75
30
Conigli
35.30N 12.33E
IT
0.05
26
30
Corsica
42.15N 09.15E
FR
8741.5
2706
30
Cres
44.90N 14.45E
HR
406.0
650
10
Crete
35.20N 25.00E
GR
8336.0
2456
30
Cyprus
35. ION 33.40E
CY
9234.5
2021
30
Djerba
33.47N 10.53E
TN
523,0
53
10
Elba
42. SON 10.25E
IT
223.5
1019
10
Embiez
43.04N 05.47E
FR
1.0
57
10
Euboea (Evvoia)
38.50N 24.00E
GR
3670.0
1743
10
Favignana
37.55N 12.19E
IT
20.0
302
10
Filicudi
38.34N 14.33E
IT
9,5
774
20
Folegandros
36.37N 24.54E
GR
32.0
455
20
Fuerte ventura
28.42N 14.00W
ES
1633.5
807
30
Gataya el Bahria
33.43N I0.42E
TN
1.5
6
10
Gavdos
3 4. 5 ON 24.05 E
GR
33.0
345
30
Giannutri
42.15N II.06E
IT
2.5
93
10
Giglio
42.21N 10.54E
IT
21.0
498
10
Gomera
28.1 IN 17.20W
ES
359.0
1487
50
Gorgona
43.25N 09.54E
IT
2.5
255
10
Gozo (Ghawdex)
36.G2N 14.15E
MT
67.0
191
30
Table 1/1. Islands’ list with geographical data (continued).
536
Pietro Lo Cascio
Island
Localization
Code
Surface
Elevation
Isolation
W-P ALE ARCTIC
Gran Canaria
27.95N 15.62W
ES
1530.0
1426
40
Great Britain
55.00N 02.00 W
GB
209331.0
1333
20
Gremdi
34.45N 1I.19E
TN
2.0
3
10
Hay! mg’
50.78N 00.9 6 W
GB
30.0
15
10
llerm
49.47N 02,45 W
GB
2.0
106
20
Hierro
27.75N 18.00W
ES
290.5
1500
50
Ilvar
43.14N 1 6.80 E
HR
297.5
626
10
Ireland
53.0ON 08.00 W
JE/GR
81638.0
1032
30
Ischia
40.73N 13.95E
IT
46.5
792
10
Jahtah (Galita)
37.3 IN 08.56E
TN
9.0
391
20
Karpathos
35.37N 27.0SE
GR
31 L0
1215
20
Kassos
35.23N 26.55E
GR
69.5
550
20
Kastellorizo (Megisti)
36.08N 29.35 E
GR
12.0
273
10
Kea
37.36N 24.20E
GR
129.0
560
20
Kefalonia
38.12N20.36E
GR
775.5
1628
20
Kerkyra
39.36N 19.5 IE
GR
626.0
906
10
KorCula
42.95N I6.90E
HR
271.5
502
20
Kornat
43.44N I5.22E
HR
32.5
207
10
Kos
36.49 N 27.08E
GR
288.0
846
10
Krk
45.12N 14.65E
HR
405.0
569
10
Kylhera
36.14N 22.59E
GR
278.0
525
10
La Maddalena
4I.13N 09.24E
IT
20.0
156
20
Lampedusa
35.30N I2.35E
IT
20.0
133
30
La Palma
28.68N 1 7.85 W
ES
690.0
2423
50
Lavezzu
41.20N 09.15E
FR
0.5
40
20
Levanzo
37.59N I2.20E
IT
5.5
277
10
Linosa
35.5 IN 12.52E
IT
5.5
195
40
Li pari
38.29N I4.56E
IT
37.5
602
20
LoStnj
44.35N 14.23E
HR
52,5
588
10
Mallorca
39.62N 03.00E
ES
3667,0
1445
40
Malta
35.90N 14.45E
MT
246.0
253
40
Man
54.23N 04.55W
GB
572.5
621
30
Marettimo
37.58N 12.03E
IT
12.0
684
20
Menorca
39.95N 04.10E
ES
692.0
355
40
Milos
36.4 IN 24.27E
GR
151.0
758
20
Table 1/2. Islands’ list with geographical data (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
537
Island
Localization
Code
Surface
Elevation
Isolation
W-P ALE ARCTIC
Mljet
42.44N 1 7.31 E
HR
98.0
514
10
Mykonos
37.26N 25,23 E
GR
107.5
372
20
Naxos
37.03N 25.29E
GR
436.0
1008
20
Nisyros
36.35N 27 JOE
GR
41.5
698
10
Norderney
53.42N 07J4E
DE
27.0
10
10
Pan area
38.38N 15.04E
IT
3.5
421
2C
Pa no Koufonissi
36.56N 25.36E
GR
4.0
1 14
2C
Pantelleria
36.47N M.59E
IT
83.0
836
3C
Paros
37.03N 025.1 IE
GR
191.0
771
20
Pi ana dell’Asinara
40.58N 008. 13E
IT
1.5
24
20
Pianosa
42.34N 010.04E
IT
10.0
27
20
Poros
37.32N 023.28E
GR
31.0
358
10
Porquerolles
42.59N 006. 12E
FR
1.0
142
10
Rah
44.46N 014.46E
HR
86,0
408
10
Rava
44.01 N 015. 04E
HR
3,5
98
10
Rhodes
36.MN 027.56E
GR
1410.0
1215
20
Salina
38.33N 014.50E
IT
26.5
962
20
Samolhraki
40.27N 025.3 5E
GR
184.0
1600
20
San Domino
42.06N 015.29E
IT
2.0
116
10
Sant'Antioco"
39.05N 008.40E
IT
109.0
271
20
Santa Maria
41.1 7N 009.22E
IT
2.0
49
30
San Pietro
39.1 5N 008.28E
IT
51.5
211
20
Sardinia
40. 10N 009. 10E
IT
23949.0
1834
40
Sicily
37.55N 014. 25E
IT
25710.0
3350
10
Skiathos
39. 1 ON 023.27E
GR
49.5
436
20
Skopelos
39.07N 023.4 IE
GR
90.0
680
20
Skyros
38.51N024.33E
GR
212.5
792
20
Salta
43.22N 016.18E
HR
58.0
238
10
Spargi
41.14N 009.20E
IT
4.0
155
30
Stromboli
38.47N 015.12E
IT
12.0
920
20
Syros (Syra)
37.25N 024. 54E
GR
94.0
422
20
Tavolara
40.54N 009.42E
IT
6.0
564
20
Tenerife
28.25N016.58W
ES
2008.0
3718
50
Thassos
40.40N 024.39E
GR
386.0
1203
10
Thira
36.24N 025.26E
GR
73,0
565
20
Table 1/3. Islands’ list with geographical data (continued).
538
Pietro Lo Cascio
Island
Localization
Code
Surface
Elevation
Isolation
W-PALEARCTIC
Tinos
3 7.35 N 025.08E
GR
193.0
650
20
Ugtjan
44.04N Q15.Q9E
HR
51,0
286
10
Uslica
38.42N 013. 10E
IT
8.5
239
20
Vis
43.02N 016.09E
HR
90.0
587
10
Vulcano
38.23N 014.58E
IT
21.0
499
20
Wangeroogc
53.47N 007.54E
DE
9,5
10
10
Wight
50.67N 001.3 1W
GB
391,5
395
20
Zakymhos
37.47N 020.46E
GR
419.5
756
10
AKROTROP1C
Bioko (Fernando Poo. Macias Nguema)
03. SON 008.70E
GQ
1935.0
3008
20
Fun do
05.03S 039.38E
TZ
9.5
10
20
Grande Comore (Njazidja) [ Comoros J"
1 1.38S 043. 20E
KM
1013.0
2631
60
Inhaca
26.00S 032.56E
MZ
52.0
104
to
Koyaama (Coiama)
00.38S 042.20E
SO
4.5
9
10
Madagascar
I9.00S 047.00E
MG
587713.5
2876
60
Mafia (Chole Shamba)
07.5 IS 039.47E
TZ
422.2
53
to
Nosy Be
13.19S 048. 15E
MG
290.5
214
50
Nosy Boraha (Sainte Marie)
I6.53S049.55E
MG
222.0
150
50
Nosy Komba
13.28S048.20E
MG
30,0
570
30
Pemba (A) Kuh Dra)
05.13S 039. 77E
TZ
890.0
95
20
Principe
01.60N 007.40E
ST
148.5
948
40
Sam ha
12.09N 053. 02 E
YE
41.0
779
30
Sao Tome
00.25N 006.62 E
ST
855,0
2024
40
Socotra
12.28N 053. 54E
YH
3625.0
1526
30
Zanzibar (Unguja)
06.08S 039.20E
TZ
1574.5
195
20
1NDO-MALAY
Amami Oshima
28.17N 129.23E
JP
712.5
694
60
Anak Krakatau
06.05S IQ5.25E
ID
2.5
181
40
Balabae
07.95N 117.50E
PH
319.0
568
50
Bail
08.40S 1 15.20E
ID
5416,5
3031
40
Basil an
06.50N 1 22.00 E
PH
1265.5
101 1
50
Balbatan (Guintacan)
I1.28N 121.54E
PH
1 1.0
90
50
Bifiran
1 1.58N I24.47E
PH
501,0
1340
50
Table 1/4. Islands’ list with geographical data (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
539
Island
Localization
Code
Surface
Elevation
Isolation
1NDO-MALAY
Borneo
01. DON 113.00E
ID/MY
748168.0
4095
50
Cebu
I0.30N 123.75E
PH
4467.5
1097
50
Con Dao (Con Soon)
08.41 N 106.37E
VN
51.5
577
10
Dang Kho (Dong Cong)
21.06N 107.36E
VN
20.0
190
10
Flores
08. 70S 1 21.00E
ID
14154.5
2370
40
Hainan
I4.I6N 109.40E
CN
33210.0
1840
20
Hainan
I4.16N 109.40E
CN
33210.0
1840
20
Jriomote-jima
24.20N I23.48E
JP
289.5
469
60
Ishigaki-jiina
24.46N 124.20E
JP
221,0
526
60
two-jima
30.47N I30.17E
JP
11.0
703
40
Java (Jawa)
07.50S U0.00E
ID
138793.5
3676
50
Kakero m aj i ma ( Kager oma )
28.07N 129.I4E
JP
77,0
326
60
Kangean
06.90S 115.35E
ID
188.0
390
40
Kuchi noshim a
29.58N 129.55E
JP
13,5
628
60
Lahuan
05.18N 115.I3E
MY
75.0
85
40
Leyte
I0.80N 125.00E
PH
7367.5
1349
50
Lombok
08. 60S 1 16.36E
ID
4625.0
3726
50
Luzon
16.00N I22.00E
PH
109965.0
2934
50
Mactan
10.17N I23.57E
PH
62.0
10
30
Magong (Hokoto, Penghu)
23.34N 1 19.37E
TW
90.0
56
30
Mindanao
07. 5 ON I25.00E
PH
97530.0
2954
70
Mindoro
12.90N 121 JOE
PH
10572.0
2585
50
M iy a koj ima ( Naaku)
24J6N 132.18E
JP
55.5
1 15
60
Negros
10.00N I23.00E
PH
13074.5
2435
50
Okinawa-] ima
26.50N 128.00E
JP
1200.0
498
60
Palawan
10.00N 118.70E
PH
12188.5
2085
60
Pali at
Q6.58S 115.37E
ID
42.0
287
40
Panaitan
06.35 S 105J2E
ID
118.5
187
40
Pa n ay
1 LION I22.60E
PH
12011.0
2049
60
Peucang (Ujung Kulon)
06.44S 105J5E
ID
4.5
70
20
Phong Vong (Hon Vong)
09.55 N 1 04.0 0E
VN
0.5
65
10
Polillo
14.85N 12 1.95 E
PH
629.0
327
40
Rakata Besar (Krakatau)
06.09 S 105.26E
ID
11.5
813
40
Rakata Keeil
06,05 S 105.27E
ID
2.5
42
40
Samar
1 1.90N 125.30E
PH
12849,5
850
60
Table 1/5. Islands’ list with geographical data (continued).
540
Pietro Lo Cascio
Island
Localization
Code
Surface
Elevation
Isolation
INDO-MALAY
Sertung
06. OSS 10S.22E
ID
7.5
182
40
Sibuyan
12. SON 122.60E
PH
465.0
2057
40
Simeulue (Simalu)
02.65N 006. 10E
ID
1754.0
481
20
Singapore (Pulau Ujong)
01.35N I03.80E
SG
536.5
163
10
Solor [Solor]’"
08.28S 123.00E
ID
1292.0
1737
40
South Andaman
I1.95N 092.67E
IN
1211.0
366
40
Sri Lanka
07.80N 080.60E
LK
67654.5
2524
20
Sulawesi (Celebes)
02.00$ 121.00E
ID
180681.0
3455
60
Sumatra (Sumatera)
00. SOS 102.00E
ID
443066.0
3804
20
Sumba (Soemba)
06.65S I20.00E
ID
10710.5
1225
50
Sumbawa (Soembawa)
08. 50S 1 18.00E
ID
14386.0
2722
40
Takes hima
30.48N I30.25E
JP
4.0
220
40
Taiwan (Formosa)
23.38N 12L07E
TW
34506.5
3952
40
Tanegashima
30.36N 13Q.59E
JP
447.5
282
40
Tawi Tawi
05.20N I20.00E
PH
580.5
549
40
Thanh Lan (Thanh Lam)
2 1.0 IN 107.49E
VN
13.5
250
10
Thao Thu
09.17N 103.28E
VN
10.0
200
30
Timor
09.30S 125.50E
ID
28418.0
2963
40
Tokunoshima
27.46N 128.57E
JP
105.0
645
50
Yak us hima
30.20N 130.3 IE
JP
500.5
1935
40
E PALEARCT1C
Haehijo-jima
33.06N 139.3 7 E
JP
62.5
854
40
Hokkaido
43. 00N 142.50E
JP
78719,5
2290
40
Honshu
3 6. 5 ON 138.00E
JP
225800.5
3776
30
Izu Oshima
34.44N 139.24E
JP
91.0
764
30
Jeju (Cheju. Quel part)
3 3.23 N I36.23E
KR
1848.0
1950
30
Kunashir
44. 10N 145.90E
RU
1612.0
1820
40
Kyushu
32.60N 131.1 0E
JP
37437.0
1788
30
Namhae
34.48N 127.46E
KR
300.0
786
L0
Okushiri
42.09N 139.28E
JP
143.0
584
40
Sakhalin
50. 00N 142.50E
RU
72493,0
1609
10
Shikoku
33.40N 133.40E
JP
18554.5
1981
40
Shimoshima [Amakusa]"
32.23N 130.06E
JP
924.0
460
30
Tsushima "
34.40N 129.09E
JP
708.5
649
30
Table 1/6. Islands’ list with geographical data (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
541
Island
Localization
Code
Surface
Elevation
Isolation
AUSTRALASIA
Ambon (Amboina)
03.64S 128.19E
ID
806,0
1031
50
Bacan (Bachian, Bat] an)
00.57S 127.58E
ID
1900.0
201 1
50
Baronga (Paronga)
Q6.15S 150.28E
PG
2.0
30
30
Biak
01.00S 136.00E
ID
1832.0
740
30
Bougainville
06.20S 155.50E
SO
9318.0
2792
70
Buka
05.30S 154.70E
SO
682,5
365
60
Bunt (Boeroe)
03.45S 126.56E
ID
8473.0
2700
50
Choiseul
07.0 IS I56.56E
SO
2970.5
1067
70
Daru
09.05 S 143.12E
PG
14.5
27
30
Espiritu Santo
15.39S 1 66.85 E
VU
3955.5
1877
70
Gebe (Gebeh)
00.04S 129.26E
ID
420.0
396
50
Gizo (Ghtzo)
08.07S 156.75E
SO
35,0
<100
70
Grande Terre
21.40S I65.50E
NC
16648.5
1628
90
Guadalcanal
09.60S 1 60.20E
SO
5353.0
2447
80
llalmahera (Gilolo)
00.50N 128.00E
ID
18039.5
1635
60
Hermile
20.27S 1 15,3 IE
AU
10.0
54
10
Kai (Nubu Yuut)
05, 60S 133.00E
ID
549,5
801
50
Kiriwina
08. SOS 15 LOSE
PG
266,5
55
50
Kolombangara (Nduke)
07.95 S 157.05E
SO
688.0
1768
70
Larat (Tanimbar)
07.17S 131.81E
ID
216.0
55
40
Lihir (Ntolam, Gerril Denys)
03.14S I52.62E
PG
320,0
700
60
Makira (San Cristobal)
10. 60S 161.85E
SO
3190.5
1250
80
Malaita
09.00S 161.00E
SO
3836.0
1433
80
Misool (Mysol)
01.87S 130.17E
ID
2033.5
561
50
Mono [Treasury]"
07.21 S 155.34E
SO
36.0
350
70
Morotai (Morly)
02.34N I28.50E
ID
2266.5
1090
50
New Britain
05, 70S 150.90E
PG
35144.5
2334
50
New Georgia
08.25S 157.60E
SO
2036.5
860
80
New Guinea
06.00S I40.50E
ID/PG
785753.0
5030
40
New Ireland
03. 70S I52.50E
PG
7404.5
2150
50
New Hanover (Lavongai)
02.30S 150.15E
PG
1800.0
900
50
Nggela (Florida)
09.08S I 60.25E
SO
386,0
<200
80
Normanby (Duau)
lO.OOS 151.00E
PG
1040.0
1 100
40
North Island
38.00S I76.00E
NZ
111583.0
2796
90
Pavuvu [Russell] *
09, OSS 159.10E
SO
120,0
543
80
Pins (Kounie)
22. 60S I47.67E
NC
141.5
MO
60
Table 1/7. Islands’ list with geographical data (continued).
542
Pietro Lo Cascio
(stand
Localization
Code
Surface
Elevation
Isolation
AUSTRALASIA
Ranongga (Ronongo, Ganonga)
08.05S I56.55E
SO
148.0
869
70
Rendova
08.55S 157.30E
SO
4] 1.5
1060
80
Roon (Ron)
02.23S I34.33E
ID
18.0
200
20
Salawati
01.I5S 130.92E
ID
1623.0
925
40
Santa Isabel (Bughotu. Santa Ysabe!)
08. DOS 159.10E
SO
3665.0
1219
80
Savo
09.17S 1 59.83 E
SO
30.0
485
80
Seram (Ceram)
03.26S I29.50E
ID
1 7454.0
3027
50
Taliabu fSula]"
01.83S 1 24.88 E
ID
2960.0
1638
50
Tanahbesar (Wokam) fAruj"
05.79S 134.53E
ID
1604.0
239
30
Tasmania
42.00S I46.50E
AU
65022.0
1617"
40
Ternate
00.84N 127.42E
ID
11 1.5
1721
40
Trimouille
20.23S 115.33E
AU
5,0
36
10
Tulagi (Tulaghi)
09.06S 160.08E
SO
5.5
200
70
Umboi (Rooke)
05.38S 147.55E
PG
930,0
1655
30
Vella Lavdla (Mbilua)
07.75S 156.65E
SO
629.0
808
70
Waigeo (Amberi)
00.22S 130.84E
ID
3153.5
993
50
Woodlark (Muyuw)
09.1 OS i 52.80E
PG
874.0
225
60
Yapen (Japen, Jobi)
0LS5S 136.34E
ID
2278.0
1496
20
Yule
08.48S 146.3 IE
PG
16.0
33
20
OCEANIA
Chiehi-jima
27.04N 142. 12E
JP
25.0
324
90
Nishi-jima
27.07N 142. 10E
JP
0.5
100
90
Peleliu (Beltliou)
07.23N 134.25E
PW
13.0
30
90
NE ARCTIC
Anacapa
34. 00N 119.37W
US
3.0
279
20
Bay harm*
37.43N 122.13W
US
16.0
20
10
Catalina (Santa Catalina)
33.39N 118.43W
US
193.0
648
20
Cedar Key*
29.08N 083. 02 W
US
2.5
5
10
Cumberland
30.5 1 N 081. 26 W
US
147.5
20
10
Fishers
41.16N 07I.59W
US
1 1.0
5
10
Gardiners
41.05N072.06W
US
12.0
15
10
Long island*
40.48N 073.1 1W
US
3629.0
122
10
Matagorda
28.09N 096.44 W f
US
157.5
7
10
Table 1/8. Islands’ list with geographical data (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
543
[stand
Localization
Code
Surface
Elevation
Isolation
NE ARCTIC
Nantucket
41.28N 070. SOW
US
272.5
9
10
Padre
26.50N 097.23 W
US
541.0
15
10
Penikese
41.27N 070.5 5 W
US
0.5
25
10
Sanibel*
26.26N 082.06W
US
86.0
1
10
Santa Cruz
34.00N M9.74W
US
256.0
753
20
St. Simon’s
31.09N08l.23W
US
46.0
3
10
Tybee*
32.00N 080.50 W
US
7.0
3
to
Vancouver
49.67N 125.50W
CA
31848,5
2192
10
NEOTROPIC
Antigua
I7.04N 061. 47W
AG
277,0
402
50
Arapiranga
01.20S 048.34W
BR
44.0
30
10
Baltra (South Seymour)
00.45 S 090.25 W
EC
27.0
100
60
Cartas
07.24N 080. 19W
PA
7.5
30
10
Cayenne
04.52N 052. 19W
GF
207.0
234
10
Coiba
07.29N 08I.45W
PA
493.0
400
20
Cuba
21. SON 079.00W
CU
105805.5
1975
40
Dominica
I5.45N 061. 45W
DM
787.5
1447
50
Hleuthera
25.04N 076.08W
BS
518.0
60
50
Great Ex uni a
23.32N 075.50W
BS
204.5
39
50
Grenada
12. 10N 06I .70W
GD
323,0
840
40
Guadeloupe"
16.20N 061. TOW
GP
1496.5
1467
40
Guana
I8.30N 064.3 7 W
VG
3.5
30
50
Hispaniola
I9.00N 071.00W
DO/1 IT
73929.0
3098
50
juvemud (Pinos)
21.65N 082.78 W
CU
2237.5
310
40
Jamaica
18.20N 072.25W
JM
1 1189.5
2256
50
Little Cayman
I9.70N 080.00W
KY
28,0
14
50
Marajo
00.55S 049, 40 W
BR
40100.0
40
to
Marco (Ilha do Marco)
00.35S 047.26W
BR
15.0
12
10
Maria Mad re
21.60N 106.5 8 W
MX
145.0
616
20
Martinique
14.65N 061. 00W
MQ
1 166.5
1397
50
Mustique
12.52N 06l .l0W r
VC
5.5
150
50
Puerto Rico
18.20N 066.45W
PR
9100,0
1338
50
Rey
08.22N 078.53W
PA
234.0
86
20
Santa Cruz (Indefatigable)
00. 60S 090.35 W
EC
986.0
864
70
Table 1/9. Islands’ list with geographical data (continued).
544
Pietro Lo Cascio
Island
Localization
Code
Surface
Elevation
Isolation
NEOTROPIC
Santo Amaro"
23.56S 043.21 W
BR
143.0
4
10
St. Croix
17.75N 064.75W
V]
214.0
355
40
St. John
I8.35N 064.75W
VI
50.0
389
40
St. Vincent
I3.15N 061.1 IW
VC
381.0
1234
40
T aboga
08.47N 079.33 W
PA
12.0
300
20
Trinidad
10.40N 061. 30W
TT
5008.5
940
20
Table 1/10. Islands’ list with geographical data.
SPECIES
ISLANDS
Acrophotopsis eurygnatha Schuster, 1958
Maria Madre
Ancistrotilla aenigmatica Brothers, 2012
Grande Terre, Pins
E
Ancistrotilla azure a Brothers, 2012
Espiritu Santo
E
Ancistrotilla bluensis Brothers, 2012
Grande Terre
E
Ancistrotilla caledonica (Andre, 1896)
Grande Terre, Pins
E
Ancistrotilla carbonaria (Smith, 1855)
Tasmania
E
Ancistrotilla nigra Brothers, 2012
Grande Terre
E
“ Andreimyrme ” annexa (Cameron, 1909)
Borneo
E
Andreimynne davicli (Andre, 1898)
Taiwan
Andreimyrme neaera (Mickel, 1935)
Borneo
E
Andreimynne sarawakensis Lelej, 1996
Borneo
E
Andreimynne substriolata (Chen, 1957)
Taiwan
“ Andreimyrme ” viriata nitela (Mickel, 1934)
Mindanao, Negros, Samar
E (ssp)
“ Andreimyrme ” viriata viriata (Mickel, 1934)
Biliran, Luzon, Mindanao, Panay, Samar, Sibuyan
E (ssp)
“ Andreimyrme ” volupia (Mickel, 1935)
Borneo
E
Artiotilla biguttata (Costa, 1858)
Brae, Corsica, Cyprus, Hvar, Korcula, Rhodes,
Sicily
Ascetotilla carinata (Smith, 1859)
Morotai, New Britain, New Guinea, Tanahbesar
E
Ascetotilla clypeata Brothers, 1971
New Guinea
E
Ascetotilla ferruginata Brothers, 1971
New Guinea
E
Ascetotilla francae Brothers, 1971
New Guinea
E
Ascetotilla inermis Brothers, 1971
New Guinea
E
Ascetotilla notidana Brothers, 1971
New Guinea
E
Ascetotilla stanleyi Brothers, 1971
New Guinea
E
Ascetotilla uncinata Brothers, 1971
New Guinea
E
Aureotilla dispilota (Sichel et Radoszkowski, 1869)
Madagascar
E
Aureotilla hebraea (Bischoff, 1920)
Madagascar
E
Table 2/1. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
545
SPECIES
ISLANDS
Aureotilla madecassa (Saussure, 1890)
Madagascar, Nosy Be
E
Aureotilla preclara (Bischoff, 1920)
Madagascar
E
Aureotilla tulearica (Olsoufieff, 1938)
Madagascar
E
Australotilla modesta (Smith, 1855)
Hermite, Trimouille
Bethsmyrmilla alticola Krombein et Lelej, 1999
Sri Lanka
E
Bischoffitilla aesyca (Cameron, 1902)
Borneo, Java
E
Bischoffitilla ardescens (Smith, 1873)
Am ami Oshima, Yakushima, Honshu,
Izu Oshima, Kyushu, Shikoku, Tsushima
E
Bischoffitilla aspera (Cameron, 1900)
Sri Lanka
E
Bischoffitilla brachynota (Chen, 1957)
Taiwan
E
Bischoffitilla byblis (Mickel, 1934)
Luzon, Sibuyan
E
Bischoffitilla calliopeia (Mickel, 1935)
Borneo
E
Bischoffitilla carclea (Mickel, 1935)
Borneo
E
Bischoffitilla carinulifera (Andre, 1908)
Taiwan
E
Bischoffitilla cebuensis (Tsuneki, 1 993)
Cebu
E
Bischoffitilla clypealis (Mickel, 1935)
Borneo
E
Bischoffitilla concava (Mickel, 1934)
Mindanao
E
Bischoffitilla denticollis (Motschulsky, 1863)
Sri Lanka
E
Bischoffitilla deserta (Smith, 1 879)
Java, Kangean, Luzon, Sulawesi
E
Bischoffitilla dictynna (Mickel, 1934)
Mindanao
E
Bischoffitilla disjuncta (Mickel, 1934)
Luzon
E
Bischoffitilla duplisquamata (Chen, 1957)
Taiwan
E
Bischoffitilla edolata (Cameron, 1900)
Sri Lanka
E
Bischoffitilla eminula (Mickel, 1 934)
Luzon
E
Bischoffitilla erdae (Zavattari, 1913)
Taiwan
E
Bischoffitilla ernesti (Cameron, 1900)
Sri Lanka
E
Bischoffitilla facilis (Smith, 1860)
Sulawesi
E
Bischoffitilla formosana (Zavattari, 1913)
Taiwan
E
Bischoffitilla fiicosa (Mickel, 1934)
Mindanao
E
Bischoffitilla galatea (Mickel, 1934)
Luzon
E
Bischoffitilla imparilis (Mickel, 1934)
Luzon
E
Bischoffitilla indecora (Cameron, 1898)
Sri Lanka
E
Bischoffitilla indocila (Cameron, 1900)
Sri Lanka
E
Bischoffitilla koxiana (Chen, 1957)
Taiwan
E
Bischoffitilla mickeli (Chen, 1957)
Taiwan
E
Bischoffitilla muiri (Mickel, 1935)
Java
E
Bischoffitilla multidentata (Andre, 1896)
Simeulue, Sumatra
Bischoffitilla murotai (Tsuneki, 1993)
Amami Oshima, Okinawa-jima
E
Bischoffitilla oblectabilis (Mickel, 1934)
Luzon
E
Table 2/2. Checklist and island distribution of the species (continued).
546
Pietro Lo Cascio
SPECIES
ISLANDS
Bischoffitilla ocypote (Mickel, 1934)
Luzon
E
Bischoffitilla palaca (Cameron, 1902)
Borneo, Sumatra
E
Bischoffitilla persuasa (Cameron, 1900)
Sri Lanka
E
Bischoffitilla puerilis (Cameron, 1897)
Sri Lanka
Bischoffitilla puliensis (Tsuneki, 1972)
Taiwan
E
Bischoffitilla pungens (Smith, 1873)
Yakushima, Hachijo-jima, Honshu, Kyushu,
Shikoku
E
Bischoffitilla roxane (Mickel, 1934)
Negros
E
Bischoffitilla saffica (Zavattari, 1913)
Sulawesi
E
Bischoffitilla sauteri lingnani (Mickel, 1933)
Hainan
Bischoffitilla sauteri sauteri (Zavattari, 1913)
Taiwan
E (ssp)
Bischoffitilla subdebilis (Mickel, 1934)
Luzon
E
Bischoffitilla subtriangularis (Mickel, 1934)
Mindanao
E
Bischoffitilla sulpicilla (Mickel, 1934)
Borneo, Mindanao
E
Bischoffitilla teuta mindanaonis (Tsuneki, 1993)
Mindanao
E (ssp)
Bischoffitilla teuta teuta (Mickel, 1934)
Luzon
E (ssp)
Bischoffitilla teuta vicinaria (Mickel, 1 934)
Negros
E (ssp)
Bischoffitilla tritub erculat a (Mickel, 1933)
Taiwan
E
Bischoffitilla tumidula (Mickel, 1934)
Taiwan
Bischoffitilla umbrosa (Mickel, 1934)
Luzon
E
Bischoffitilla venatrix (Mickel, 1935)
Borneo
E
Blakeius bipunctatus (Latreille, 1792)
Chergui, Corsica
Blakeius chiesii chiesii (Spinola, 1839)
Asmara, Corsica, Sant’ Antioco, Sardinia
E (ssp)
Blakeius chiesii negrei (Suarez, 1958)
Sicily
Blakeius leopoldinus (Invrea, 1955)
Comino, Gozo, Levanzo, Lipari, Malta, Marettimo,
Salina, Sant’ Antioco, Sardinia, Sicily, Vulcano
Cephalotilla suarezi Nonveiller, 1979
Bioko
E
“ Ceratotilla ” dolosa zanzibarensis (Garcia Mercet, 1903)
Zanzibar
E (ssp)
Ceratotilla sp.
Inhaca
Chrysotilla analis (Olsoufieff, 1938)
Madagascar
E
Chrysotilla antongilana Bischoff, 1920
Madagascar
E
Chrysotilla chauvini (Olsoufieff, 1938)
Madagascar
E
Chrysotilla consobrina (Andre, 1901)
Madagascar
E
Chrysotilla elongata (Olsoufieff, 1938)
Madagascar
E
Chrysotilla grandidieri (Saussure, 1890)
Madagascar
E
Chrysotilla honesta (Andre, 1898)
Madagascar, Nosy Boraha
E
Chrysotilla irradiata (Olsoufieff, 1938)
Madagascar
E
Chrysotilla menavudia (Olsoufieff, 1938)
Madagascar
E
Chrysotilla moerens (Andre, 1899)
Madagascar
E
Chrysotilla nataliae (Olsoufieff, 1938)
Madagascar
E
Table 2/3. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
547
SPECIES
ISLANDS
Chrysotilla pretiosa Bischoff, 1920
Madagascar
E
Chrysotilla saussurei (Olsoufieff, 1938)
Madagascar
E
Chrysotilla sihanaka (Saussure, 1890)
Madagascar
E
Chrysotilla testacea (Olsoufieff, 1938)
Madagascar
E
Chrysotilla vadoni (Olsoufieff, 1938)
Madagascar
E
Chrysotilla variabilis (Olsoufieff, 1938)
Madagascar, Nosy Boraha
E
Ctenotilla porcella (Turner, 1911)
Sri Lanka
“ Ctenotilla ” spiculata (Andre, 1908)
Bioko
E
Cystomutilla ruficeps (Smith, 1855)
Corsica, Great Britain, Sardinia, Sicily
Cystomutilla teranishii Mickel 1935
Hokkaido, Honshu, Shikoku, Tsushima
Dasylabris angelae Suarez, 1959
Gran Canaria
E
Dasylabris argentipes (Smith, 1855)
Sri Lanka
Dasylabris atrata (Linnaeus, 1767)
Lampedusa
Dasylabris biblica Invrea, 1950
Crete, Cyprus, Rhodes
Dasylabris canariensis Suarez, 1970
Fuerteventura
E
Dasylabris deckeni signaticeps Andre, 1906
Koyaama
Dasylabris deponsa Bischoff, 1921
Madagascar
E
Dasylabris hurei Andre, 1903
Madagascar
E
Dasylabris juxtarenaria Skorikov, 1935
Djerba, Lampedusa
Dasylabris manderstiernii cypria
(Sichel et Radoszkowski, 1870)
Crete, Cyprus, Gavdos, Rhodes
Dasylabris maura carinulata (Dalla Torre, 1897)
Asinara, Corsica, Piana dell’ Asmara, Santa Maria,
San Pietro, Sardinia
E (ssp)
Dasylabris maura maura (Linnaeus, 1758)
Brae, Comino, Euboea, Hvar, Korcula, Krk,
Levanzo, Lipari, Malta, Sicily, Syros, Thassos
Dasylabris porphyrea (Gerstaecker, 1873)
Zanzibar
Dasylabris rubripilosa Bischoff, 1921
Madagascar
E
Dasylabris rubroaurea
(Sichel et Radoszkowski, 1869)
Madagascar
E
Dasylabris rugosa (Olivier, 1811)
Sri Lanka
Dasylabris scutila Skorikov, 1935
Crete, Gavdos
Dasylabris seyrigi Olsoufieff, 1938
Madagascar
E
Dasylabris trunciceps Krombein, 1972
Madagascar
E
Dasylabris unipunctata Bischoff, 1921
Inhaca
Dasylabris voeltzkowi Bischoff, 1921
Madagascar, Nosy Be, Nosy Komba
E
Dasymutilla alesia Banks, 1921
Long Island
Dasymutilla araneoides (Smith, 1862)
Canas, Rey
Dasymutilla asopus bexar (Blake, 1871)
Long Island
Dasymutilla aureola (Cresson, 1865)
Catalina
Dasymutilla bioculata (Cresson, 1865)
Padre, Sanibel
Dasymutilla bouvieri (Andre, 1898)
Hispaniola
E
Table 2/4. Checklist and island distribution of the species (continued).
548
Pietro Lo Cascio
SPECIES
ISLANDS
Dasymutilla californica clio (Blake, 1879)
Vancouver
Dasymutilla canella (Blake, 1871)
Gardiners, Long Island
Dasymutilla coccineohirta (Blake, 1871)
Bay Farm, Catalina
Dasymutilla cypris (Blake, 1871)
Sanibel, St. Simon's
Dasymutilla gibbosa (Say, 1836)
Fishers, Long Island, Nantucket, Penikese
Dasymutilla gloriosa (Saussure, 1868)
Matagorda
Dasymutilla insulana Mickel, 1926
Cuba, Juventud, Little Cayman
E
Dasymutilla interrupt a Banks, 1921
Fishers, Long Island
Dasymutilla lepeletierii (Fox, 1899)
Long Island, Penikese, St. Simon's, Tybee
Dasymutilla macilenta (Blake, 1871)
Cedar Key, Sanibel
Dasymutilla macra (Cresson, 1865)
Long Island
Dasymutilla melancholica (Smith, 1879)
Hispaniola
E
Dasymutilla militaris militaris (Smith, 1855)
Jamaica
E (ssp)
Dasymutilla militaris nigriceps (Cresson, 1865)
Cuba, Great Exuma, Hispaniola, Little Cayman,
Martinique
E (ssp)
Dasymutilla mutata (Blake, 1871)
Long Island, St. Simon's
Dasymutilla nigripes (Fabricius, 1787)
Long Island
Dasymutilla occidentalis occidentals (Linnaeus, 1758)
Long Island, St. Simon's
Dasymutilla quadriguttata (Say, 1823)
Long Island, Nantucket
Dasymutilla scaevola (Blake, 1871)
Long Island
Dasymutilla spiniscapula Manley et Pitts, 2007
Hispaniola
E
Dasymutilla vesta (Cresson, 1865)
Cumberland, Long Island, St. Simon's
Dasymutilla waco (Blake, 1871)
Padre
Dentilla curtiventris (Andre, 1901)
Antilcythera, Crete, Euboea, Gavdos, Kefalonia,
Kythera, Paros, Poros, Rhodes, Sicily, Zakynthos
Dentilla purcharti Lo Cascio, Romano et Grita, 2012
Samha, Socotra
E
Dentilla socotrana Lo Cascio, Romano et Grita, 2012
Socotra
E
Dolichomutilla sycorax (Smith, 1855)
Fundo, Pemba, Zanzibar
Eosmicromyrmil la srilankensis
Lelej et Krombein, 200 1
Sri Lanka
E
Eotrogaspidia amans arnans (Andre, 1909)
Java, Kangean
E (ssp)
Eotrogaspidia auroguttata (Smith, 1855)
Hainan, Okinawa-jima, Taiwan
Ephucilla bacbo (Lelej, 1996)
Borneo
Ephucilla drola drola (Zavattari, 1913)
Taiwan
E (ssp)
Ephucilla drupa (Zavattari, 1913)
Taiwan
E
Ephucilla guentheri (Zavattari, 1913)
Taiwan
E
Ephucilla naja (Zavattari, 1913)
Ishigaki-jima, Taiwan
E
Ephucilla poonaensis (Cameron, 1892)
Sri Lanka
Ephucilla thalia (Mickel, 1933)
Taiwan
E
Ephucilla undata (Chen, 1957)
Taiwan
E
Ephucilla viet (Lelej, 1995)
Dang Kho
(E)
Table 2/5. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
549
SPECIES
ISLANDS
Ephucilla yuliana (Tsuneki, 1972)
Taiwan
E
Ephuta cubensis (Blake, 1871)
Cuba
E
Ephuta emarginata Mickel, 1952
Trinidad
Ephuta festal a M i eke 1 , 1928
Cuba
E
Ephuta flavidens Mickel, 1952
Trinidad
Ephuta furcillata Mickel, 1928
Cuba
E
Ephuta prima Genaro, 1997
Hispaniola
E
Ephuta puteola ( Blake, 1879)
Long Island
Ephuta rubriceps (Cresson, 1865)
Cuba
E
Ephuta singularis (Spinola, 1841)
Cayenne
Ephuta tholosa Dow, 193 1
Cuba
E
Ephuta trinidadensis Ashmead, 1904
Trinidad
E
Ephutomma fletcheri (Turner, 1911)
Sri Lanka
E
Ephutomma montarcense (Garcia Mercet
inGinerMari, 1944)
Mallorca
“ Ephutomorpha ” aerata (Andre, 1 896)
New Guinea
E
“ Ephutomorpha ” agilis (Smith, 1865)
New Guinea
E
“ Ephutomorpha ’ ’ amoenola Turner, 1914
Tasmania
E
“ Ephutomorpha ” australasiae (Fabricius, 1804)
Tasmania
“ Ephutomorpha ” azurea (Mantero, 1900)
New Guinea
E
“ Ephutomorpha ” biroi Andre, 1905
New Guinea
E
“ Ephutomorpha ” bivulnerata (Andre, 1901)
North Island
“ Ephutomorpha ” blanda (Erichson, 1 842)
Tasmania
“ Ephutomorpha ” concinna (Westwood, 1 843)
Tasmania
E
“ Ephutomorpha ” cordatiformis Turner, 1914
Tasmania
E
“ Ephutomorpha ” cyan e iceps A n dre , 1901
Kai
E
“ Ephutomorpha ’ ’ damia (Smith, 1863)
Seram
E
“ Ephutomorpha ” dorsigera (Westwood, 1843)
Tasmania
E
“ Ephutomorpha ” elegans (Westwood, 1843)
Tasmania
“ Ephutomorpha ” extranea (Andre, 1 896)
New Guinea, Yule
E
“Ephutomorpha” faust a (Smith, 1863)
Misool
E
“Ephutomorpha” fulgida (Andre, 1896)
New Guinea
E
“ Ephutomorpha ” incisa Andre, 1905
New Guinea
E
“Ephutomorpha” inclyta (Andre, 1 896)
New Guinea
E
“Ephutomorpha” lateralis (Westwood, 1 843)
Tasmania
E
“Ephutomorpha” manteroi Zavattari, 1913
New Guinea
E
“Ephutomorpha” melanota (Andre, 1 896)
Morotai
“Ephutomorpha” mirabilis (Smith, 1863)
New Guinea, Waigeo
E
“ Ephutomorpha ” morosa (Westwood, 1843)
Hermite
“Ephutomorpha” no tabilis (Smith, 1879)
Tasmania
E
Table 2/6. Checklist and island distribution of the species (continued).
550
Pietro Lo Cascio
SPECIES
ISLANDS
“ Ephutomorpha ” novoguineana Zavattari, 1913
New Guinea
E
“Ephutomorpha” pagdeni Mickel, 1935
Guadalcanal, Malaita, Pavuvu
E
“Ephutomorpha” pallidipes (Andre, 1896)
New Guinea
E
“Ephutomorpha” paradisiaca Zavattari, 1913
New Guinea
E
“Ephutomorpha” porrecticeps Turner, 1914
Tasmania
“Ephutomorpha” postica Turner, 1914
Tasmania
E
“Ephutomorpha” praestans Andre, 1905
New Guinea
E
“Ephutomorpha” soluta (Erichson, 1841)
Tasmania
E
“Ephutomorpha” splendida (Smith, 1879)
New Guinea
E
“ Ephutomorpha ” subcristata Turner, 1914
Tasmania
E
“Ephutomorpha” uniform is Andre, 1903
Tasmania
“Ephutomorpha” sp.
New Guinea
?
Eurymutilla curta (Andre, 1896)
Ambon, Burn, New Guinea, Seram, Taliabu
E
Eurymutilla sumbawae (Zavattari, 1913)
Sumbawa
E
Eurymutilla thera (Smith, 1863)
Seram
E
Glossotilla adelpha (Andre, 1898)
Bioko, Sao Tome
“Glossotilla” atricolor ochraceomaculata (Andre, 1904)
Sao Tome
E (ssp)
Glossotilla illudens Invrea, 1941
Koyaama
(E)
“Glossotilla” luctif era (Andre, 1903)
Sao Tome
Glossotilla principis (Andre, 1904)
Principe
E
Glossotilla suavis (Gerstaecker, 1871)
Zanzibar
Hemutilla hoozana (Zavattari, 1913)
Taiwan
Hildebrandetia hildebrandti (Saussure, 1890)
Madagascar
E
Hoplocrates cephalotes (Swederus, 1787)
Santo Amaro
Hoplo crates pompalis Mickel, 1941
Trinidad
Hoplomutilla derasa (Fabricius, 1804)
Cayenne
Hoplomutilla melana (Spinola, 1841)
Cayenne
Hoplomutilla opima Mickel, 1939
Trinidad
Indratilla gynandromorpha Lelej, 1993
Sri Lanka
E
Karlissaidia medvedevi Lelej, 2005
Sri Lanka
E
Karlissaidia turneri Lelej, 2005
Sri Lanka
E
Karunaratnea dilecta (Cameron, 1897)
Sri Lanka
Karunaratnea palatupanae Lelej, 2005
Sri Lanka
E
Krombeinella beaumonti (Invrea, 1953)
Sicily
Krombeinella thoracica (Fabricius, 1793)
Corsica, Sant’Antioco, Sardinia
Krombeinidia albopunctata (Andre, 1907)
Sri Lanka
E
Krombeinidia bagrada (Cameron, 1902)
Borneo
E
Krombeinidia depressicornis (Mickel, 1935)
Borneo
E
“Krombeinidia” foveat a (Cameron, 1900)
Sri Lanka
E
Table 2/7. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
551
SPECIES
ISLANDS
Krombeinidia griseomaculata (Andre, 1898)
Bali, Con Dao, Java, Thao Thu
Krombeinidia ira ira (Cameron, 1902)
Borneo
Krombeinidia ira palawana (Mickel, 1934)
Palawan
E (ssp)
Krombeinidia lilliputiana (Andre, 1894)
Sri Lanka
Krombeinidia nallinia (Zavattari, 1913)
Bali, Java
E
“ Krombeinidia ” oglana (Cameron, 1900)
Sri Lanka
Krombeinidia peterseni Lelej, 1996
Sri Lanka
E
Krombeinidia subfossata (Chen, 1957)
Borneo
Kudakrumia mirabilis Krombein, 1979
Sri Lanka
E
Kurzenkotilla visrara (Cameron, 1898)
Sri Lanka
E
Labidomilla rufocephala Olsoufieff, 1938
Madagascar
E
Labidomilla tricuspis (Andre, 1895)
Madagascar
E
Lehritilla lanka Lelej, 2005
Sri Lanka
Leucospilomutilla cerbera (Klug, 1821)
Cayenne
Liomutilla canariensis Andre, 1 907
Gomera, Gran Canaria, Hierro, La Palma, Tenerife
E
Lophomutilla triguttata Mickel, 1952
Trinidad
Macromyrme bezdeki Lo Cascio, Romano
et Grita, 2012
Socotra
E
Macromyrme sinuata (Olivier, 1811)
Cyprus
Mickelomyrme aborlana aborlana (Tsuneki, 1993)
Palawan
E (ssp)
Mickelomyrme aborlana zamboangae (Tsuneki, 1993)
Mindanao
E (ssp)
Mickelomyrme bakeri (Mickel, 1934)
Balabac, Labuan, Palawan
E
Mickelomyrme bicristata (Chen, 1957)
Hainan
E
Mickelomyrme bidentata (Tsuneki, 1993)
Luzon
Mickelomyrme hageni (Zavattari, 1913)
Iriomote-jima, Ishigaki-jima, Okinawa-jima,
Taiwan; Hachijo-jima
Mickelomyrme ilanica (Tsuneki, 1972)
Taiwan
E
Mickelomyrme norna (Zavattari, 1913)
Taiwan
E
Mickelomyrme palawanensis (Mickel, 1934)
Palawan
E
Mickelomyrme semperi nigrogastra (Mickel, 1934)
Luzon, Palawan
E (ssp)
Mickelomyrme semperi semperi (Ashmead, 1904)
Luzon, Negros, Panay
E (ssp)
Mickelomyrme tanoi (Tsuneki, 1 972)
Borneo
E
Mickelomyrme zebina (Smith, 1860)
Borneo, Cebu, Luzon, Mactan, Mindanao,
Negros, Bacan
E
Mutilla alticola (Andre, 1904)
Sao Tome
E
“ Mutilla ” antiguensis Fabricius, 1775
Antigua
Mutilla astarte astarte Smith, 1855
Mafia
Mutilla astarte orientalis Bischoff, 1920
Zanzibar
Mutilla auriger Krombein, 1951
Madagascar
E
Mutilla berlandi Krombein, 1972
Madagascar
E
Table 2/8. Checklist and island distribution of the species (continued).
552
Pietro Lo Cascio
SPECIES
ISLANDS
Mutilla bilunata (Gerstaecker, 1857)
Zanzibar
M util la dentidorsis Andre, 1908
Zanzibar
Mutilla diselena s.l. Sichel et Radoszkowski, 1870
Pemba
Mutilla diselena germanica Bischoff, 1920
Zanzibar
Mutilla europaea Linnaeus, 1758
Great Britain, Nordemey, Sicily, Wangerooge
Mutilla mikado Cameron, 1900
Hokkaido, Honshu, Jeju, Kyushu, Sakhalin, Shikoku
“Mutilla” oberthuri Andre, 1907
Zanzibar
“Mutilla” pygidialis Gerstaecker, 1871
Zanzibar
E
Mutilla quinquemaculata Cyrillus, 1787
Astypalea, Budelli, Cavallo, Ciovo, Corsica, Crete,
Cyprus, Elba, Euboea, Gavdos, Kassos, Kefalonia,
La Maddalena, Lampedusa, Mallorca, Malta,
Menorca, Pianosa, Rhodes, Sant’Antioco,
Sardinia, Sicily
Mutilla scabrofoveolata Sichel et Radoszkowski, 1869
Inhaca
“ Mutilla ” straba Gerstaecker, 1871
Zanzibar
“Mutilla” sp. 1
Zanzibar
E?
“ Mutilla ” sp. 2
Anak Krakatau, Panaitan, Peucang, Rakata Besar,
Rakata Kecil, Sertung
Myrmilla calva (Villiers, 1789)
Asmara, Brae, Corsica, Crete, Elba, Giglio, Gor-
gona, Gran Canaria, Kerlcyra, Korcula, La Madda-
lena, Lipari, Mallorca, Pianosa, Rhodes, Sant’An-
tioco, Sardinia, Sicily, Ustica, Vis, Vulcano
Myrmilla capitata (Lucas, 1 846)
Asmara, Corsica, Favignana, La Maddalena,
Lampedusa, Levanzo, Pianosa, Sant’Antioco,
San Pietro, Sardinia, Sicily, Syros
Myrmilla caucasica (Kolenati, 1 846)
Cyprus, Kos, Nisyros, Rhodes
Myrmilla corniculata (Sichel et Radoszkowski, 1869)
Kerkyra, Slcopelos, Syros, Tinos
Myrmilla erythrocephala (Latreille, 1792)
Brae, Corsica, Giglio, Hvar, Korcula, La
Maddalena, Sardinia, Sicily, Ugljan, Vis
Myrmilla georgiae Pagliano et Matteini
Palmerini, 2014
Djerba, Gataya el Bahria
Myrmilla glabrata (Fabricius, 1775)
Cyprus, Euboea, Kerkyra, Pano Koufonissi,
Slcyros, Syros
Myrmilla lezginica (Radoszkowski, 1885)
Cyprus
Myrmilla mavromoustakisi Hammer, 1950
Cyprus
E
Myrmilla mutica (Andre, 1903)
Crete, Hvar, Kefalonia, Kerkyra
Myrmilla troodosica Hammer, 1950
Cyprus
E
Myrmilla vutshetishi Skorikov, 1927
Chios, Kerkyra
Myrmilla sp.
Socotra
Myrmosa atra atra Panzer, 1801
Anglesey, Corsica, Elba, Great Britain,
Man, Sardinia, Sicily, Wight
Myrmosa atra erytrocephala Yarrow, 1954
Ireland
E (ssp)
Myrmosa eos Lelej, 1981
Jeju, Namhae
Myrmosa unicolor Say, 1824
“High Island” (= unidentified islet of Outer Banks)
Nanomutilla vaucheri (Toumier, 1 895)
Sardinia
Nemka chihpenchia (Tsuneki, 1972)
Taiwan
E
Table 2/9. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
553
SPECIES
ISLANDS
Nemka curvisquamata (Chen, 1957)
Taiwan
E
‘ ‘Nemkd ’ fallaciosa (Cameron, 1898)
Sri Lanka
E
Nemka limi nanhai (Chen, 1957)
JTainan
E (ssp)
“Nemka” litigiosa (Cameron, 1898)
Sri Lanka
E
Nemka cfr. philippa (Nurse, 1903)
Peucang, Rakata Kecil, Sertung
Nemka pondicherensis (Sichel et Radoszkowski, 1 870)
Luzon, Sri Lanka, Timor
“Nemka” stulta (Cameron, 1898)
Sri Lanka
E
Nemka taiwanensis (Mickel, 1933)
Taiwan
Nemka viduata insulae (Invrea, 1940)
Cyprus
E (ssp)
Nemka viduata macquarti (Lepeletier, 1 845)
Crete, Gavdos
E (ssp)
Nemka viduata tunensis (Fabricius, 1804)
Jalitah
Nemka viduata viduata (Pallas, 1773)
Brae, Comino, Corsica, Elba, Euboea, Favignana,
Giglio, Gozo, Karpathos, Kea, Kefalonia, Kerkyra,
Korkula, Kos, Kythera, Lipari, Mallorca, Malta,
Marettimo, Menorca, Naxos, Pano Koufonissi,
Pianosa, Rhodes, Samothraki, San Pietro, Sardi-
nia, Sicily, Skiathos, Stromboli, Vis, Vulcano
Nemka wotani (Zavattari, 1913)
Magong, Sumbawa, Taiwan, Tanegashima,
Yakushima; Honshu, Kyushu
Neotrogaspidia haemarrhoa (Zavattari, 1913)
Lombok, Sumbawa
E
Neotrogaspidia hammeri (Suarez, 1959)
Cyprus
Neotrogaspidia pustulata (Smith, 1873)
Amami Oshima, Iwo-jima, Miyakojima, Taiwan,
Takeshima, Tanegashima, Yakushima, Hachijojima,
Honshu, Izu Oshima, Jeju, Kyushu, Namhae,
Shikoku, Shimoshima, Tsushima, Chichi-jima,
Nishi-jima
Neotrogaspidia serafica (Zavattari, 1913)
Lombok, Solor, Sumbawa; Ambon
E
Nonveilleridia bataviana (Andre, 1909)
Java
Nordeniella pinguicula (Turner, 1911)
Sri Lanka
E
Nordeniella praestabilis (Andre, 1907)
Sri Lanka
E
Nordeniella thermophila (Turner, 1911)
Sri Lanka
E
Nordeniella wickwari (Turner, 1911)
Sri Lanka
E
Odontomutilla apiastra Mickel, 1935
Bacan, Halmahera
E
Odontomutilla aspratilis Mickel, 1935
Borneo
Odontomutilla ceramensis Mickel, 1935
Seram
E
Odontomutilla cordigera (Sichel et
Radoszkowski, 1870)
Borneo, Java, Sumatra
Odontomutilla disparimaculata (Sichel
et Radoszkowski, 1 869)
Sao Tome
Odontomutilla familiaris anonyma (Kohl, 1882)
Sumatra
E (ssp)
Odontomutilla familiaris familiaris (Smith, 1857)
Basilan, Borneo, Luzon, Mindanao, Negros,
Samar, Singapore, Sumatra
Odontomutilla grossa Mickel, 1935
Borneo
E
Odontomutilla haematocephala (Andre, 1896)
Sumatra
Odontomutilla herpa (Cameron, 1 902)
Borneo
E
Table 2/10. Checklist and island distribution of the species (continued).
554
Pietro Lo Cascio
SPECIES
ISLANDS
Odontomutilla inanis Mickel, 1935
Darn, New Britain, New Guinea
E
Odontomutilla manifesto, (Smith, 1859)
New Guinea, Tanahbesar
E
Odontomutilla mickeli Lelej, 2005
Borneo, Sulawesi
E
Odontomutilla papuana Zavattari, 1913
New Guinea
E
Odontomutilla perelegans (Cameron, 1 897)
Sri Lanka
Odontomutilla pompalis Mickel, 1935
Borneo
E
Odontomutilla rubrocapitata Mickel, 1935
Borneo
Odontomutilla semifasciata (Andre, 1 896)
Solor, Sulawesi; New Guinea
E
Odontomutilla smithi Mickel, 1935
Sulawesi
E
Odontomutilla subinterrupta Zavattari, 1910
Borneo, Java, Simeulue, Timor
E
Odontomutilla tamensis (Cameron, 1907)
New Guinea
E
Odontomutilla thyme le Mickel, 1935
Borneo
E
Odontomutilla trichocondyla (Andre, 1 894)
Sri Lanka
Odontomutilla zimrada maxima Bischoff, 1920
Zanzibar
Orientidia cavicola (Tsuneki, 1993)
Mindanao
E
Orientidia circumcincta (Andre, 1896)
Sumatra
Orientidia dayak (Lelej, 1996)
Borneo
E
Orientidia nigerrima (Mickel, 1934)
Biliran, Luzon, Mindanao, Samar
E
Orientidia proserpina proserpina (Smith, 1857)
Basilan, Borneo, Java, Mindanao, Negros, Panay
E (ssp)
Orientidia proserpina sibuyanensis (Mickel, 1934)
Sibuyan
E (ssp)
Orientidia proserpina tibiata (Mickel, 1934)
Basilan, Borneo, Mindanao, Negros,
Palawan, Sibuyan
E (ssp)
Orientilla aureorubra (Sichel et Radoszkowski, 1 870)
Sri Lanka
Orientilla desponsa (Smith, 1855)
Hainan, Taiwan
Orientilla kallata (Nurse, 1902)
Sri Lanka
Orientilla remota (Cameron, 1897)
Sri Lanka
E
Pagdenidia erato (Mickel, 1935)
Borneo
E
Pagdenidia selene (Pagden, 1949)
Java
E
Pagdenidia sondaica (Pagden, 1949)
Java
E
Paramyrmosa brunnipes (Lepeletier, 1 845)
Asinara, Corsica, Crete, Mallorca,
Rhodes, Sardinia, Sicily
Pertyella decora Mickel, 1952
Trinidad
“ Petersenidia ” boopis (Kohl, 1882)
Sulawesi
E
Peters enidia dercetis (Mickel, 1935)
Borneo
E
“ Petersenidia ” dohertyi (Zavattari, 1913)
Sumbawa
E
Petersenidia fukudai (Tsuneki, 1972)
Amami Oshima, Kakeromajima, Okinawa-jima,
Tokunoshima, Yakushima, Kyushu, Shikoku
E
Petersenidia hylonome (Mickel, 1935)
Borneo
E
Petersenidia javanica (Dalla Torre, 1 897)
Java
E
Petersenidia macassarica (Zavattari, 1913)
Sulawesi
E
Table 2/11. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
555
SPECIES
ISLANDS
Petersenidia nedyme (Mickel, 1935)
Borneo
E
Petersenidia neglecta (Smith, 1860)
Sulawesi
E
Petersenidia olbia (Cameron, 1902)
Borneo
E
Petersenidia pfafneri (Zavattari, 1913)
Taiwan
E
Petersenidia psecas (Mickel, 1935)
Borneo
E
Petersenidia rapa (Zavattari, 1913)
Okinawa-jima, Taiwan
Petersenidia spatale (Mickel, 1935)
Borneo
E
Petersenidia spiracularis dilutemacula (Chen, 1957)
Taiwan
E (ssp)
Petersenidia Stella (Zavattari, 1913)
Sumatra
E
Petersenidia sticticornis nigridia (Mickel, 1934)
Mindanao, Samar
E (ssp)
Petersenidia sticticornis sticticornis (Mickel, 1934)
Mindanao, Samar
E (ssp)
Petersenidia sumatrensis (Andre, 1 896)
Sumatra
E
Petersenidia temeraria (Mickel, 1934)
Luzon
E
Petersenidia thoracica (Smith, 1860)
Sulawesi
E
Physetopoda cingulata (Costa, 1858)
Corsica
Physetopoda consociata (Cameron, 1898)
Sri Lanka
E
Physetopoda daghestanica (Radoszkowski, 1885)
Corsica, Krk, Mallorca, Sicily
Physetopoda jumigata (Turner, 1911)
Sri Lanka
E
Physetopoda fusculina (Invrea, 1955)
Lavezzu, Sant’Antioco, San Pietro, Sardinia
E
Physetopoda halensis (Fabricius, 1787)
Bagaud, Krk, Malta, Rab, Sicily
Physetopoda lampedusia (Invrea, 1957)
Gremdi, Lampedusa, Mallorca, Sicily
Physetopoda ligustica (Invrea, 1951)
Mallorca, Malta, Sicily
Physetopoda lucasii (Smith, 1855)
Corsica, Elba, Pantelleria, Pianosa, Sardinia,
Sicily, Ustica
Physetopoda mendizabali (Suarez, 1956)
Asinara, Sardinia
Physetopoda mirabilis (Hammer, 1962)
Sri Lanka
Physetopoda nuptura (Garcia Mercet, 1905)
Malta, Sicily
Physetopoda punctata (Latreille, 1792)
Comino, Corsica, Lampedusa, Linosa, Malta,
Sardinia, Sicily
Physetopoda pusilla (Klug, 1835)
Asinara, Corsica, Elba, Gorgona, Lampedusa,
Levanzo, Lipari, Mallorca, Malta, Pianosa,
Sardinia, Sicily, Vis
Physetopoda scutellaris (Latreille, 1792)
Corsica, Krk, Pianosa, Sicily
Physetopoda sericeiceps (Andre, 1901)
Asinara, Corsica, Mallorca, Sant’Antioco, Sardinia
Physetopoda silviae Pagliano, 2011
Lampedusa
E
Physetopoda trioma (Invrea, 1955)
Asinara, Corsica, Lavezzu, Sant’Antioco, Sardinia
E
Physetopoda unicincta (Lucas, 1 846)
Malta, Menorca
Platymyrmilla quinquefasciata (Olivier, 1811)
Andros, Crete, Kaipathos, Kerkyra, Rhodes, Syros
Pristomutilla ianthis (Turner, 1911)
Sri Lanka
Pristomutilla kibweziana Bischoff, 1920
Zanzibar
Pristomutilla octacantha (Garcia Mercet, 1903)
Bioko
Table 2/12. Checklist and island distribution of the species (continued).
556
Pietro Lo Cascio
SPECIES
ISLANDS
Pristomutilla pauliani (Krombein, 1951)
Madagascar
E
Promecidia bonthainensis (Andre, 1896)
Sulawesi
E
Promecidia mamblia (Cameron, 1902)
Borneo
Promecidia rubrocyanea (Mickel, 1935)
Borneo
E
Promecidia saturnia samawangensis (Mickel, 1935)
Borneo
E (ssp)
Promecidia saturnia saturnia (Mickel, 1935)
Singapore
Promecidia yamanei Lelej, 1996
Borneo
E
Promecilla calliope (Smith, 1857)
Borneo
E
Promecilla cyanosoma Turner, 1911
Sri Lanka
E
Promecilla delia (Mickel, 1935)
Borneo
E
Promecilla hyale (Mickel, 1934)
Mindanao
E
Promecilla philippinensis Lelej, 2005
Luzon, Mindanao
E
Promecilla yerburghi (Cameron, 1892)
Sri Lanka
Protrogaspidia celebensis (Andre, 1905)
Sulawesi
E
Protrogaspiclia volatilis (Smith, 1858)
Sulawesi
E
Pseudolophotilla alluaudi (Andre, 1907)
Madagascar
E
Pseudolophotilla argenteopicta (Sichel
et Radoszlcowski, 1 869)
Madagascar
E
Pseudolophotilla venustula (Saussure, 1890)
Madagascar, Nosy Be
E
Pseudomethoca argyrocephala (Gerstaeker, 1874)
Cuba, Guana, Puerto Rico, St. John
Pseudomethoca cf. tournieri (Kohl, 1882)
Trinidad
Pseudomethoca crepera (Cresson, 1902)
Trinidad
Pseudomethoca flaviceps (Andre, 1906)
Hispaniola
E
Pseudomethoca grilloi Genaro, 1997
Cuba
E
Pseudomethoca merengue Genaro, 1997
Hispaniola
E
Pseudomethoca olgae Schuster, 1946
St. Croix
E
Pseudomethoca plagiata (Gerstaecker, 1874)
Trinidad
Pseudomethoca propinqua (Cresson, 1865)
Long Island
Pseudomethoca said Mickel, 1928
Cuba
E
Pseudomethoca simillima (Smith, 1855)
Long Island
Pseudomethoca unicincta A shmead, 1900
St. Vincent
E
Pseudomethoca willei Mickel, 1969
Canas, Coiba, Taboga
Pseudophot op sis armeniaca (Skorikov, 1935)
Cyprus
Pseudophot op sis aurea (Klug, 1829)
Socotra
Pseudophotopsis komarovii (Radoszkowski, 1885)
Cyprus
Pseudophotopsis maura Bischoff, 1920
Socotra
Pseudophotopsis obliterata (Smith, 1855)
Cyprus
Pseudophotopsis schachruda (Skorikov, 1935)
Cyprus
Pseudophotopsis syriaca (Andre, 1900)
Tinos
Table 2/13. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
557
SPECIES
ISLANDS
Radoszkowskitilla ceylonica (Lelej, 1993)
Sri Lanka
Radoszkowskitilla sinhala Lelej, 2005
Sri Lanka
E
Radoszkowskitilla tamila Lelej, 2005
Sri Lanka
E
Rhopalomutilla javana Pagden, 1938
Java
E
Rhopalomutilla oceanica Mickel, 1935
Borneo
E
Ronisia barbara (Linnaeus, 1758)
Comino, Conigli, Gozo, Lampedusa, Linosa,
Malta, Pantelleria
Ronisia barbarula (Petersen, 1988)
Mallorca
Ronisia brutia brutia (Petagna, 1787)
Capraia, Capri, Corsica, Elba, Euboea, Favignana,
Filicudi, Folegandros, Giannutri, Giglio, Gorgona,
Hvar, Ischia, Kastellorizo, Kefalonia, Kerkyra,
Korcula, Krk, Kythera, La Maddalena, Lavezzu,
Levanzo, Lipari, Malta, Marettimo, Milos, Naxos,
Panarea, Paros, Pianosa, Rhodes, Salina, San Do-
mino, Sant’ Antioco, Sardinia, Sicily, Skiathos,
Syros, Thira, Ugljan, Vis, Vulcano, Zakynthos
Ronisia brutia minoensis Nonveiller, 1972
Astypalea, Crete, Karpathos
E (ssp)
Ronisia brutia valca (Petersen, 1988)
Cyprus
E (ssp)
Ronisia ghilianii (Spinola, 1843)
Asmara, Capraia, Corsica, Gorgona, La Madda-
lena, Lipari, Mallorca, Menorca, Panarea, Pianosa,
Sant’ Antioco, Santa Maria, San Pietro, Sardinia,
Sicily, Spargi
Ronisia marocana (Olivier, 1811)
Djerba, Lampedusa, Malta, Sicily
Serendibiella trunconomalica (Radoszkowski, 1885)
Sri Lanka
E
Seriatospidia biseriata (Saussure, 1891)
Zanzibar
Seyrigilla cloitrei (Olsoufieff, 1938)
Madagascar
E
Seyrigilla holomelaena (Andre, 1 899)
Madagascar
E
Seyrigilla nigroaurea (Sichel et Radoszkowski, 1869)
Madagascar, Nosy Be
E
Seyrigilla olsoufieffi (Krombein, 1972)
Madagascar
E
Seyrigilla splendida (Olsoufieff, 1938)
Madagascar
E
Seyrigilla sylvicola (Krombein, 1 972)
Madagascar
E
Sigilla dorsata (Fabricius, 1798)
Corsica, Embiez, Porquerolles,
Sant’ Antioco, Sardinia
Sinotilla gracillima (Smith, 1857)
Borneo
E
Sinotilla gribodoana (Invrea, 1943)
Borneo
E
Sinotilla lambirensis Lelej, 1996
Borneo
E
Sinotilla petina (Mickel, 1937)
Borneo
E
Sinotilla runcina (Zavattari, 1913)
Borneo
E
Sinotilla serpa (Zavattari, 1913)
Taiwan
E
Sinotilla yakushimensis ( Yasumatsu, 1934)
Yakushima
E
“ Smicromyrme ” adusta (Andre, 1908)
Zanzibar
E
Smicromyrme aponis Tsuneki, 1993
Mindanao
E
Smicromyrme asinarensis Pagliano et Strumia, 2007
Asmara, Sardinia
E
Table 2/14. Checklist and island distribution of the species (continued).
558
Pietro Lo Cascio
SPECIES
ISLANDS
Smicromyrme ausonia Invrea, 1950
Asmara, Corsica, Cyprus, Elba, Kerkyra, Lipari,
Pianosa, Sicily
Smicromyrme autonoe Mickel, 1934
Palawan
E
Smicromyrme basalis annularis Mickel, 1934
Luzon
E (ssp)
Smicromyrme basalis basalis (Smith, 1879)
Borneo, Mindanao
E (ssp)
Smicromyrme borneo Lelej, 1996
Borneo
E
Smicromyrme caecina (Cameron, 1903)
Borneo
E
Smicromyrme caerulea Mickel, 1934
Samar
E
Smicromyrme calacuasana Tsuneki, 1993
Palawan
E
Smicromyrme chuchiana Tsuneki, 1993
Taiwan
E
Smicromyrme coromandelica (Motschulsky, 1863)
Sri Lanka
Smicromyrme corriasi Pagliano, 2013
Sardinia
E
Smicromyrme cristinae Lo Cascio, 2000
Pano Koufonissi
E
Smicromyrme dardanus dardanus (Smith, 1857)
Borneo
Smicromyrme dardanus salacia Mickel, 1935
Borneo
E (ssp)
Smicromyrme deidamia (Smith, 1857)
Borneo
E
Smicromyrme desiderata (Turner, 1911)
Sri Lanka
E
Smicromyrme devia (Cameron, 1909)
Borneo, Simeulue
E
Smicromyrme electra Mickel, 1935
Sulawesi
E
Smicromyrme esterina Pagliano, 1983
Sicily
Smicromyrme fura anthracipes Mickel, 1934
Luzon
E (ssp)
Smicromyrme fura fura Mickel, 1934
Basilan, Luzon, Mindanao, Negros, Panay,
Samar, Sibuyan
E (ssp)
Smicromyrme gineri Invrea, 1953
Djerba
Smicromyrme herophile Mickel, 1935
Java
E
Smicromyrme hombucciana Tsuneki, 1982
Taiwan
E
Smicromyrme ilerda ilerda (Cameron, 1902)
Borneo
E (ssp)
Smicromyrme ilerda sparsilis Mickel, 1934
Mindanao
E (ssp)
Smicromyrme jacobsoni (Andre, 1907)
Java
E
Smicromyrme kuanfuana Tsuneki, 1972
Taiwan
E
Smicromyrme lavinia atrata Mickel, 1934
Samar
E (ssp)
Smicromyrme lavinia lavinia Mickel, 1934
Luzon, Mindanao, Palawan
E (ssp)
Smicromyrme lewisi Mickel, 1935
Iwo-jima, Kuchinoshima, Tanegashima, Hokkaido,
Honshu, Izu Oshima, Kunashir, Kyushu, Namhae,
Okushiri, Sakhalin, Shikoku, Tsushima
Smicromyrme lochia Mickel, 1937
Borneo
Smicromyrme maculofasciata (Saussure, 1867)
Sri Lanka
E
Smicromyrme mauromoustakisi Invrea, 1940
Cyprus
E
Smicromyrme meator Mickel, 1935
Borneo
E
Smicromyrme melanolepis (Costa, 1884)
Asinara, Corsica, Gorgona, Lipari, Marettimo,
Sardinia, Sicily
Table 2/15. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
559
SPECIES
ISLANDS
Smicromyrme minahassae (Zavattari, 1913)
Sulawesi
E
Smicromyrme mindanaonis Tsuneki, 1993
Mindanao
E
Smicromyrme monticelli (Zavattari, 1910)
Zanzibar
Smicromyrme neglecta Hammer, 1962
Sri Lanka
Smicromyrme nigriceps Nonveiller, 1959
Crete, Gavdos
Smicromyrme ocellata (Saussure, 1867)
Sri Lanka
Smicromyrme opistomelas Invrea, 1950
Sardinia
Smicromyrme palacala Tsuneki, 1993
Palawan
E
Smicromyrme partita (Klug, 1835) sensu lato
Comino, Lampedusa, Lipari, Mallorca, Malta,
Sicily
Smicromyrme perisii (Sichel et Radoszkowski, 1870)
Asinara, Cavallo, Corsica, Sant’Antioco, Sardinia
E
Smicromyrme posthuma (Cameron, 1898)
Sri Lanka
E
Smicromyrme pulawskii Suarez, 1975
Rhodes
Smicromyrme punctinota Mickel, 1935
Borneo
E
Smicromyrme riccardoi Pagliano et
Matteini Palmerini, 2014
Djerba
Smicromyrme ruficollis ceresae Invrea, 1952
Asinara, Corsica, San Pietro, Sant’Antioco,
Sardinia
E (ssp)
Smicromyrme ruficollis ruficollis (Fabricius, 1793)
Cres, Giglio, Gozo, Hvar, Kos, Krk, Lipari,
Mallorca, Malta, Pianosa, Rab, Sicily, Stromboli,
Vulcano
Smicromyrme rufipes (Fabricius, 1787)
Baltrum, Corsica, Giglio, Great Britain, Hayling,
Herm, Hvar, Krk, Pianosa, Wight
Smicromyrme rufisquamulata Bischoff, 1921
Inhaca
Smicromyrme scitula Mickel, 1935
Borneo
E
Smicromyrme sexmaculata Hammer, 1962
Sri Lanka
Smicromyrme sicana (De Stefani, 1887)
Corsica, Elba, Komat, Krk, Malta, Pianosa,
Sardinia, Sicily
Smicromyrme strandi (Zavattari, 1913)
Taiwan
Smicromyrme suberrata Invrea, 1957
Asinara, Lampedusa, Mallorca, Malta, Sicily
Smicromyrme sulcisia Invrea, 1955
Corsica, Elba, Lipari, Mallorca, Sardinia, Sicily,
Vulcano
Smicromyrme thia Mickel, 1933
Taiwan
E
Smicromyrme trinotata (Costa, 1858)
Corsica, Lipari, Sardinia, Sicily
Smicromyrme turanica (Morawitz, 1 893)
Crete, Rhodes
Smicromyrme vladani Nonveiller, 1972
Crete
E
Smicromyrme sp. 1
Gran Canaria
Smicromyrme sp. 2
Korcula, Vis
“ Smicromyrme ” sp. 3
Inhaca
Sphaerophtalma cargilli Cockerell, 1895
Jamaica
E
Sphaeropthalma galapagensis (Williams, 1926)
Baltra, Santa Cruz (EC)
E
Sphaeropthalma gulltopp Williams et Pitts, 2007
Trinidad
Sphaeropthalma retifera (Dow, 1931)
Hispaniola
Table 2/16. Checklist and island distribution of the species (continued).
560
Pietro Lo Cascio
SPECIES
ISLANDS
Sphaeropthalma unicolor (Cresson, 1 865)
Anacapa, Santa Cruz (US)
Spilomutilla consolidata (Cameron, 1900)
Sri Lanka
Spilomutilla eltola (Cameron, 1898)
Sri Lanka
E
Spilomutilla lanka Lelej, 2005
Sri Lanka
E
Spilomutilla sri Lelej, 2005
Sri Lanka
E
Squamulotilla exilipunctata Chen, 1957
Jeju
Stanclfussidia taprobane Lelej, 2005
Sri Lanka
E
Stenomutilla argentata (Villers, 1789)
Asinara, Corsica, Sant’ Antioco, San Pietro,
Sardinia, Sicily
Stenomutilla bicornuta Nonveiller, 1994
Cyprus
E
Stenomutilla bizonata (Smith, 1855)
Euboea, Hvar, Rhodes
Stenomutilla collaris (Fabricius, 1787)
Djerba, Sicily
Stenomutilla freyi (Brancsilc, 1891)
Madagascar, Nosy Be
E
Stenomutilla hottentotta (Fabricius, 1804)
Comino, Favignana, Gozo, Levanzo, Malta,
Marettimo, Sicily
Stenomutilla intermixta Krombein, 1972
Madagascar
E
Stenomutilla lavaudeni ambilobe Krombein, 1972
Madagascar
E (ssp)
Stenomutilla lavaudeni lavaudeni Olsoufieff, 1938
Madagascar
E (ssp)
“ Stenomutilla 1 ’ manni Krombein, 1971
Makira
E
Storozhenkotilla aurofasciata (Andre, 1907)
Sri Lanka
Storozhenkotilla cicatricifera (Andre, 1 894)
Sri Lanka
Strangulotilla dioscoridea Lo Cascio, Romano
et Grita, 2012
Samha, Socotra
E
Strangulotilla krombeini Lelej, 2005
Sri Lanka
E
Strangulotilla minor (Andre, 1905)
Sao Tome
E
Sylvotilla globithorax (Olsoufieff, 1938)
Madagascar
E
Sylvotilla globiventris (Olsoufieff, 1938)
Madagascar
E
Sylvotilla robinsoni (Olsoufieff, 1938)
Madagascar
E
Sylvotilla touvenoti (Olsoufieff, 1938)
Madagascar
E
Taimyrmosa cara Lelej, 2005
Taiwan
E
Taimyrmosa mongolica (Suarez, 1974)
Honshu, Jeju, Sakhalin, Shikoku
Taimyrmosa nigrofasciata (Yasumatsu, 1931)
Yakushima, Hokkaido, Honshu, Kyushu,
Okushiri, Shikoku
E
Taiwanomyrme friekae (Zavattari, 1913)
Taiwan
Taiwanomyrme taiwana (Tsuneki, 1993)
Taiwan
E
Timulla absentia Mickel, 1938
Canas, Rey
Timulla ashmeadi Mickel, 1938
Grenada, Guadeloupe, Jamaica, St. Vincent
E
Timulla bitaeniata (Spinola, 1841)
Cayenne, Trinidad
Timulla byblis Mickel, 1937
Trinidad
Timulla centroamericana (Dalla Torre, 1897)
Taboga
Timulla dominica Mickel, 1938
Dominica
E
Table 2/17. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
561
SPECIES
ISLANDS
Timulla eriphyla Mickel, 1938
Trinidad
Timulla ferrugata (Fabricius, 1804)
Long Island; Eleuthera
Timulla guadeloupensis Mickel, 1937
Guadeloupe
E
Timulla leona (Blake, 1871)
Padre
Timulla leucippe Mickel, 1938
Marajo
Timulla mediata mediata (Fabricius, 1805)
Grenada, St. Vincent, Trinidad
Timulla mediata persa Mickel, 1938
Marajo
Timulla nisa Mickel, 1938
Trinidad
Timulla odice Mickel, 1938
Santo Amaro
Timulla rectanguloides Mickel, 1938
Grenada, Mustique, St. Vincent
E
Timulla rectangula (Spinola, 1841)
Cayenne, Trinidad
Timulla rufiventris (Klug, 1821)
St. Vincent
Timulla rufogastra (Lepeletier, 1845)
Trinidad
Timulla rufosignata (Bradley, 1916)
Long Island
Timulla runata Mickel, 1938
Taboga
Timulla senex (Guerin-Meneville, 1 844)
Cuba, Juventud
E
Timulla trimaculosa Mickel, 1938
Jamaica
E
Timulla vagans vagans (Fabricius, 1798)
Long Island
Timulla zonata (Spinola, 1841)
Cayenne
Traumatomutilla americana (Linnaeus, 1758)
“West Indies” (Ashmead, 1900)
Traumatomutilla incerta (Spinola, 1841)
Cayenne
Traumatomutilla indica (Linnaeus, 1758)
Cayenne, Marco, Trinidad
Traumatomutilla latona Mickel, 1952
Trinidad
Traumatomutilla oculifera (Smith, 1855)
Arapiranga, Marco
Traumatomutilla sphegea (Fabricius, 1804)
Cayenne, Marajo, Marco, Trinidad
Traumatomutilla vidua (Klug, 1821)
Marco
Tricholabioides apicipennis (Cameron, 1897)
Sri Lanka
E
Trispilotilla indostana (Smith, 1855)
Sri Lanka
Trogaspidia agapeta (Cameron, 1902)
Borneo, Sumatra
E
Trogaspidia albertisi (Andre, 1 896)
Misool, New Guinea, Roon, Salawati, Seram,
Tanahbesar, Waigeo
E
Trogaspidia albibrunnea Chen, 1957
Taiwan
Trogaspidia alecto leucotricha (Bischoff, 1920)
Zanzibar
Trogaspidia andamana Hammer, 1962
South Andaman
E
Trogaspidia anthylla (Smith, 1860)
Ambon, Bacan, Halmahera, Seram
E
“ Trogaspidia" aurantissima Olsoufieff, 1938
Madagascar
E
“ Trogaspidia ” aurolimbata (Andre, 1901)
Madagascar
E
“ Trogaspidia ” aurovittata (Andre 1899)
Madagascar
E
Trogaspidia bakeri (Mickel, 1934)
Basilan, Mindanao, Samar
E
Table 2/18. Checklist and island distribution of the species (continued).
562
Pietro Lo Cascio
SPECIES
ISLANDS
Trogaspidia bicincta (Saussure, 1867)
Sri Lanka
E
Trogaspidia boniensis (Mickel, 1935)
Sulawesi
E
Trogaspidia bryanti (Mickel, 1937)
Borneo
E
Trogaspidia castellana castellana (Garcia
Mercet, 1903)
Luzon
E (ssp)
Trogaspidia castellana islandica (Mickel, 1934)
Basilan, Biliran, Mindanao, Samar
E (ssp)
Trogaspidia castellana princesa (Mickel, 1934)
Palawan
E (ssp)
Trogaspidia castellana sandakanensis (Mickel, 1935)
Borneo, Labuan
E (ssp)
Trogaspidia castellana tayabasensis (Mickel, 1934)
Luzon, Polillo
E (ssp)
Trogaspidia castellana visayensis (Mickel, 1934)
Batbatan, Negros, Panay, Sibuyan
E (ssp)
Trogaspidia castellana whiteheacli (Mickel, 1934)
Luzon
E (ssp)
Trogaspidia catanensis (Rossi, 1792)
Rava, Sicily
Trogaspidia chiaiensis Tsuneki, 1993
Taiwan
E
Trogaspidia cooki (Andre, 1895)
New Guinea
Trogaspidia cressida (Cameron, 1900)
Sri Lanka
E
Trogaspidia cydippe (Mickel, 1935)
Borneo
E
Trogaspidia depressula (Mickel, 1934)
Luzon
E
“ Trogaspidia ” clitissima (Andre, 1905)
Madagascar
E
Trogaspidia doricha (Smith, 1860)
Ambon, Bacan, New Guinea, Seram
E
Trogaspidia eremita eremita (Mickel, 1934)
Basilan, Biliran, Luzon, Mindanao, Negros,
Panay, Polillo, Samar
E (ssp)
Trogaspidia eremita umbra (Mickel, 1934)
Luzon, Polillo
E (ssp)
Trogaspidia esakii Yasumatsu, 1950
Peleliu
E
Trogaspidia exilis (Smith, 1859)
Ambon, Kai
E
Trogaspidia fervida (Smith, 1860)
Sulawesi
E
Trogaspidia formosana (Matsumura, 1911)
Taiwan
Trogaspidia fuscipennis concava (Mickel, 1933)
Taiwan
E (ssp)
Trogaspidia greeni Hammer, 1962
Sri Lanka
E
Trogaspidia hoffmanni (Mickel, 1933)
Hainan
Trogaspidia ianthea ianthea (Smith, 1860)
Bacan, Halmahera, Temate
E (ssp)
Trogaspidia ianthea rubiginosa (Andre, 1896)
Ambon, Seram
E (ssp)
Trogaspidia implicata (Mickel, 1935)
Sulawesi
E
“ Trogaspidia ” incerta Olsoufieff, 1938
Madagascar
E
Trogaspidia indagatrix indagatrix (Mickel, 1935)
Ambon
E (ssp)
Trogaspidia indagatrix menadoensis (Mickel, 1935)
Sulawesi
E (ssp)
Trogaspidia intermedia (Saussure, 1867)
Sri Lanka
Trogaspidia iphis (Mickel, 1925)
Java
E
Trogaspidia kauarae (Cameron, 1892)
Sri Lanka
Trogaspidia kinabalensis Tsuneki, 1972
Borneo
E
Trogaspidia lanceolata Chen, 1957
Taiwan
E
Table 2/19. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
563
SPECIES
ISLANDS
Trogaspidia lignani (Mickel, 1933)
Hainan
Trogaspidia lodina (Cameron, 1905)
Borneo
E
Trogaspidia luzonica luzonica (Radoszkowski, 1885)
Luzon
E (ssp)
Trogaspidia luzonica panayensis (Mickel, 1934)
Negros, Panay, Sibuyan
E (ssp)
“ Trogaspidia ” magnifica (Bischoff, 1920)
Madagascar
E
Trogaspidia major Nonveiller et Petersen, 1995
Inhaca
Trogaspidia manilensis (Brown, 1906)
Basilan, Borneo, Luzon, Mindanao, Negros,
Palawan, Panay
E
“ Trogaspidia ’ ’ mariaebogdanovi Olsoufieff, 1938
Madagascar
E
Trogaspidia medon (Smith, 1855)
Zanzibar
“ Trogaspidia ” micheli Olsoufieff, 1938
Madagascar
E
Trogaspidia nereis (Kohl, 1882)
Java
E
Trogaspidia nodoa (Mickel, 1933)
Hainan
Trogaspidia oceanica oceanica (Andre, 1 896)
Baronga, Biak, Lihir, New Britain, New Guinea,
New Ireland, Umboi, Yapen
Trogaspidia oceanica papuana (Krombein, 1971)
Kiriwina, New Guinea, Normanby, Woodlark, Yule
E (ssp)
Trogaspidia oceanica tulagiensis (Mickel, 1935)
Bougainville, Buka, Choiseul, Gizo, Guadalcanal,
Kolombangara, Malaita, New Georgia, Nggela,
Pavuvu, Ranonga, Rendova, Santa Isabel, Savo,
Tulagi, Treasury, Vella Lavella
E (ssp)
Trogaspidia oceanitis (Mickel, 1935)
Sulawesi, Ambon
E
Trogaspidia orestes orestes (Krombein, 1971)
New Guinea
E (ssp)
Trogaspidia orestes trobriandensis (Krombein, 1971)
Kiriwina, Normanby, Woodlark
E (ssp)
Trogaspidia ovatula aurifera (Mickel, 1934)
Luzon
E (ssp)
Trogaspidia ovatula ovatula (Mickel, 1934)
Sibuyan
E (ssp)
Trogaspidia pacifica Tsuneki, 1972
Taiwan
E
Trogaspidia pentheus (Smith, 1860)
Bacan, New Guinea
E
“Trogaspidia” politana (Bischoff, 1920)
Madagascar
E
Trogaspidia probabilis Hammer, 1962
South Andaman
E
“ Trogaspidia ” pulcherrima (Andre, 1905)
Madagascar
E
“ Trogaspidia ” radachkovskii Olsoufieff, 1938
Madagascar
E
Trogaspidia rhea rhea (Mickel, 1933)
Hainan, Taiwan
E (ssp)
“ Trogaspidia ” sanctaemariae (Andre, 1901)
Nosy Boraha
E
Trogaspidia sansibarensis Bischoff, 1920
Zanzibar
Trogaspidia sarawaka (Mickel, 1935)
Borneo
E
Trogaspidia saussurei Lelej, 2005
Sri Lanka
E
Trogaspidia scapus (Mickel, 1937)
Borneo
E
“ Trogaspidia ” seyrigiana Olsoufieff, 1938
Madagascar
E
Trogaspidia tethys prodiga (Mickel, 1935)
Borneo
E (ssp)
Trogaspidia tethys melanesia (Mickel, 1935)
Ambon
E (ssp)
Trogaspidia tethys tethys (Mickel, 1934)
Negros, Palawan, Taiwan
E (ssp)
Table 2/20. Checklist and island distribution of the species (continued).
564
Pietro Lo Cascio
SPECIES
ISLANDS
Trogaspidia themis (Peringuey, 1898)
Inhaca
“ Trogaspidio ” tricolora Olsoufieff, 1938
Madagascar
E
Trogaspidia tridepressa Tsuneki, 1993
Luzon
E
Trogaspidia vallicola Tsuneki, 1993
Taiwan
E
“ Trogaspidia ” venustulaeformis (Bischoff, 1920)
Madagascar
E
Trogaspidia vetustata (Bingham, 1911)
Grande Comore, Inhaca
Trogaspidia villosa (Fabricius, 1775)
Sri Lanka
“ Trogaspidia ” vitsika Olsoufieff, 1938
Madagascar
E
Trogaspidia yasumatsui maai (Krombein, 1971)
New Hanover, New Ireland
E (ssp)
Trogaspidia yasumatsui yasumatsui (Krombein, 1971)
New Britain, Umboi
E (ssp)
Trogaspidia yuliensis Tsuneki, 1972
Taiwan
E
“ Trogaspidia'' zanacaeformis Bischoff, 1920
Madagascar
E
Tropidotilla cypriadis Invrea, 1940
Cyprus
Tropidotilla grisescens (Lepeletier, 1 845)
Brae, Crete, Korcula, Sicily
Tropidotilla litoralis (Petagna, 1787)
Brae, Cres, Crete, Elba, Euboea, Giglio, Kerkyra,
Korcula, Kos, Lipari, Losinj, Mljet, Mykonos,
Pianosa, Rava, Rhodes, Sant’ Antioco, San Pietro,
Sardinia, Sicily, Solta, Syros, Tavolara, Vulcano
Tsunekimyrme fluctuata (Smith, 1865)
Borneo, Mindanao, Negros, Samar, Tawi Tawi,
Morotai
E
Vanhartenidia tricolor (Klug, 1829)
Djerba
Wallacidia conversa (Chen, 1957)
Taiwan
Wallacidia humbertiana (Saussure, 1867)
Sri Lanka
Wallacidia itambusa (Cockerell, 1927)
Luzon
E
Wallacidia kangeana (Pagden, 1949)
Kangean, Paliat
E
Wallacidia laratense (Mickel, 1935)
Larat
E
Wallacidia leytense (Tsuneki, 1993)
Leyte
E
Wallacidia melmora (Cameron, 1905)
Borneo, Java, Rakata Besar, Sulawesi, Sumatra
E
Wallacidia merops (Smith, 1860)
Bacan, Gebe, Halmahera, Morotai, Temate
E
Wallacidia oculata (Fabricius, 1804)
Dang Kho, Hainan, Phong Vong, Taiwan,
Thanh Lan
Wallacidia opulenta (Smith, 1855)
Sri Lanka
Wallacidia paloeana (Pagden, 1949)
Sulawesi
E
Wallacidia philippinense (Smith, 1855)
Balabac, Borneo, Cebu, Luzon, Mindanao,
Mindoro, Negros, Palawan, Panay, Polillo, Solor,
Sulawesi, Ambon
E
Wallacidia retinula (Chen, 1957)
Taiwan
Wallacidia rosemariae (O'Toole, 1975)
Flores, Lombok, Sumbawa
E
Wallacidia singapora (Mickel, 1935)
Singapore
Wallacidia sumbana (Pagden, 1949)
Sumba
E
Wallacidia timorense (O'Toole, 1975)
Timor
E
Wallacidia vicina (Sichel et Radoszkowski, 1870)
Ambon, New Guinea, Seram, Yule
E
Table 2/21. Checklist and island distribution of the species (continued).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
565
SPECIES
ISLANDS
Xystromutilla cornigera (Cresson, 1902)
Trinidad
Xystromutilla turrialba Casal, 1969
Taboga
Yamanetilla andromeda (Mickel, 1934)
Luzon, Mindanao, Negros, Samar
E
Yamanetilla cassiope (Smith, 1857)
Borneo
Yamanetilla nipponica (Tsuneki, 1972)
Honshu, Kyushu, Shikoku
E
Yamanetilla pedaria (Mickel, 1934)
Basilan, Mindanao, Palawan
Yamanetilla taiwaniana (Zavattari, 1913)
Taiwan
Zavatilla gutrunae gutrunae (Zavattari, 1913)
Taiwan
E (ssp)
Zavatilla logei (Zavattari, 1913)
Taiwan
E
Zeugomutilla bainbriggei (Turner, 1911)
Sri Lanka
E
Zeugomutilla horni (Andre, 1907)
Sri Lanka
E
Zeugomutilla recondita (Cameron, 1900)
Sri Lanka
E
Table 2/22. Checklist and island distribution of the species.
Species
Examined material
Blakeius bipunctatus (Latreille, 1792)
Chergui (TN), 20.IV.2005, R. Vilardo leg. (1 ex., PLC).
Blakeius leopoldinus (Invrea, 1955)
Salina (IT), 26.VII.20 12, Fossa delle Felci, P. Lo Cascio and
F. Grita leg. (3 exx., PLC).
Dasylabris juxtarenaria Skorikov, 1935
Djerba (TN), Ras al-Kastil, 13.IV.2005, P. Lo Cascio leg.
(2 exx., PLC).
Dolichomutilla sycorax (Smith, 1855)
Pemba (TZ), 1.2015, F. La Piana leg. (1 ex., PLC).
Mutilla diselena Sichel et Radoszkowski, 1870
Pemba (TZ), 1.2015, F. La Piana leg. (1 ex., PLC).
Mutilla quinquemaculata Cyrillus, 1787
Astypalea (GR), 25.IV.1999, P. Lo Cascio leg. (1 ex., PLC);
Kassos (GR), 16-18.X.2000, P. Lo Cascio leg. (1 ex., PLC).
Myrmilla caucasica (Kolenati, 1 846)
Nisyros (GR), 30.IV. 1999, P. Lo Cascio leg. (1 ex., PLC).
Myrmilla georgiae Pagliano et Matteini Palmerini,
Gataya el Bahria (TN), 10.IV.2015, P. Lo Cascio & P. Ponel
2014
leg. (1 ex., PLC).
Myrmilla glabrata (Fabricius, 1775)
Pano Koufonissi (GR), IX. 1997, P. Lo Cascio leg. (1 ex.,
PLC).
Nemka viduata viduata (Pallas, 1773)
Pano Koufonissi (GR), IX. 1997, P. Lo Cascio leg. (3 exx.,
PLC); Stromboli (IT), Rina Grande, 30.VII.20 15, P. Lo Cascio
leg. (3 exx., PLC).
Physetopoda halensis (Fabricius, 1787)
Bagaud (FR), 3.VI.2013, P. Ponel leg. (1 ex., PP).
Physetopoda lampedusia (Invrea, 1957)
Gremdi (TN), 27.III.2014, P. Ponel leg. (1 ex., PP).
Ronisia brutia brutia (Petagna, 1787)
Folegandros (GR), IX. 1997, P. Lo Cascio leg. (1 ex., PLC);
Panarea (IT), Punta del Corvo, 11.V.2008, P. Lo Cascio leg.
(1 ex., PLC); Salina (IT), Fossa delle Felci Mount,
26.VII.2012, P. Lo Cascio and F. Grita leg. (1 ex., PLC).
Ronisia brutia minoensis Nonveiller, 1972
Astypalea (GR), Aghios Ioannis, 26. IV. 1999, P. Lo Cascio
leg. (1 ex., PLC).
Sigilla dorsata (Fabricius, 1798)
Embiez (FR), 22.IV.20 13, P. Ponel leg. (1 ex., PP).
Table 2/22. Table 3. Unpublished records included in the checklist. The acronyms are as follows: PLC,
Pietro Lo Cascio collection, Lipari (Italy); PP, Philippe Ponel collection, Marseille (France).
566
Pietro Lo Cascio
FAUNAL AND BIOGEOGRAPHICAL OUT-
LINES
The records of Mutillidae on islands concern
11 A among species and subspecies (including 8
identified at generic rank), equal to about 18% of
those currently accepted as valid. Of course, this
number is provisional, because many islands are
still unexplored or their faunal knowledge cannot
be considered as exhaustive. For instance, accord-
ing to Brothers (2012) the fauna of New Caledonia
includes 4 species so far described, but also a large
number (probably 14 more) not yet identified; and
Portuondo Ferrer & Femandez-Triana (2003) es-
timated the probable occurrence of 1 6 species on
Cuba, where hitherto only 1 1 have been recorded.
The same is also strongly suggested by the note-
worthy discrepancy between the number of species
known for Sicily (42) and for New Guinea (36), a
tropical island thirty times larger and moreover con-
sidered one of the global biodiversity hotspots.
Despite this gap in knowledge, on the basis of
the data provided in the checklist is anyhow pos-
sible to delineate an overview of the main biogeo-
graphical features of the island faunas, which are
briefly discussed in the following paragraphs.
Dispersal
As already stated in the Introduction, the main
limits to the dispersal of Mutillidae on islands are
related to some traits of their natural history, and
primarily to the apterogyny. This would be indir-
ectly supported by the fact that several genera
whose males are also wingless, such as the Oriental
Ticoplinae Cameronilla Lelej in Lelej & Krombein,
2001 and Hindustanilla Lelej in Lelej & Krombein,
2001, or the Afrotropical Sphaeropthalminae
Brachymutilla Andre, 1901 and Apteromutilla
Ashmead, 1903, are fully absent on oceanic islands.
Sri Lanka is inhabited by the endemic monospecific
genus Indratilla Lelej, 1993 as well as by some
species of Spilomutilla Ashmead, 1903 with males
apterous or having rudimentary wings (Lelej, 1993,
2005), but this island is geologically part of the
Indian subcontinent and was in land connection
to mainland India during the Pleistocene sea-regres-
sions (Voris, 2000). Also, the Myrmillinae Blakeius
chiesii (Spinola, 1839), B. leopoldinus Invrea, 1955
and Mynnilla capitata (Lucas, 1 846) are found on
Mediterranean islands that generally lie near to
the mainland or, such the rather isolated Sardinia
and Corsica, represent fragments of continental
landmass (Advokaat et al., 2014).
Except for the cases above mentioned, the fe-
males may expand the range of dispersal through
the phoretic copulation, and Mutillidae have col-
on- ized remote insular groups such as Solomons
(Mickel, 1935; 1937; Krombein, 1971), New Cale-
donia (Andre, 1896a; Brothers, 2012), New Zea-
land (Valentine & Walker, 1983), Ogasawara
(Yasumatsu, 1936), Palau (Esaki, 1938), Vanuatu
(Brothers, 2012) and, in the other side of the Pa-
cific, the Galapagos (Williams, 1926). Some of
them belonging to ancient continental landmasses,
although characterized by long-term isolation (e.g.
New Caledonia), but others have indeed volcanic
origin and have never been connected to the
neighboring mainland. Vanuatu, that lies 1 ,900 Km
far from Australia, represents a remarkable case of
isolation, although the sea barrier between these
islands and the nearest continent is interrupted by
intermediate steps (New Caledonia); is not by
chance that the only species found on Espiritu Santu
belongs to the genus Ancistrotilla Brothers, 2012,
the same occurring on New Caledonia and whose
distribution is also extended to Australia and New
Guinea (Brothers, 2012).
Conversely, Kuhlmann (2006) has high lighted
the rapid loss of Mutillidae as well as other groups
of parasitic Hymenoptera eastwards of Melanesia,
while Zimmermann (1942) and Williams (1947)
remarked the lack of this family on large archipela-
goes such as Polynesia, Hawaii, and most part of
Micronesia (see also Krombein, 1949a). The same
has been observed by Beqtaert (1929) for the
Archipelago of Bermuda (N- Atlantic), as confirmed
also by more recent surveys (see Hilburn et al.,
1990).
While the absence of mutillids is then rather
understandable for these extremely remote islands,
as well as for Bermuda, Azores and St. Helena in
the Atlantic, Chagos, Seychelles and Mauritius in
the Indian Ocean, it is not so easily explained for
other less distant from the continental landmasses:
for instance, Fernando de Noronha (370 Km),
Madeira and Cape Verde (both around 600 Km) in
the Atlantic, or Lord Howe (750 Km) in the Pacific.
This latter, despite its very small area (<15 Km 2 ),
is inhabited by 225 species of parasitoids and
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
567
predatory wasps belonging to 3 1 families, many of
which are brachypterous or even apterous (Jennings
& Austin, 2015), but curiously not by Mutillidae,
although the island could have both suitable hab-
itats and hosts.
Is therefore to believe that isolation is not just a
question of distance, but related to the nature of
wind system, as observed for the Antillean butter-
flies by Spencer-Smith et al. (1988), or of course
even stochastic.
An intriguing example for understanding time
and space scales of the island colonization is given
by that of the volcanic micro-archipelago of
Krakatau (Indonesia) after the devastating eruption
occurred in 1883. Forty years later, Dammermann
(1923) recorded the occurrence of females belong-
ing to two unidentified species (only one on
Sertung, both on Ralcata Besar) not found during
previous surveys (see Jacobson, 1909), and once
again Dammermann (1948) reported two and three
unidentified species, respectively, for these islands.
O’Toole (1975) remarked that at least one of them,
Wallacidia melmora (Cameron, 1905), is able to
overcome narrow sea barriers (about 50 Km) thanks
to the peculiar morphology of the genitalia that
ensures a prolonged female phoresy during the
mating, assuming however as the colonization of
new islands must necessarily occurred after the
settling of its potential hosts.
Also passive dispersal (by human-mediated,
accidental introductions) may play a role in the oc-
currence of mutillids wasps on insular environ-
ments. The Australian “ Ephutomorpha ” bivulnerata
(Andre, 1901) not long ago recorded for North
Island has been interpreted in this sense (Valentine
& Walker, 1983). Furthermore, two females and one
male of Sphaeropthalma pensylvanica (Lepeletier,
1845) were recently found yet in New Zealand
during the reclamation of used vehicles imported
from United States (Toy, 2007); the latter record
was anyway not included in the present checklist
because it concerns an unnatural context. Likewise,
Sugiura et al. (2013) considered Neotrogaspidia
pustulata (Smith, 1873) an alien species in the
Ogasawara Islands.
Species richness
As shown in figure 1, the islands of the Indo-
Malay ecoregion host the highest number of
species (356), some of which are also distributed
in the neighboring regions (7 shared with Aus-
tralasia, 7 with E Palearctic, and 1 with this latter
and Oceania). Mutillidae are generally character-
ized by a greater diversity in the tropical and sub-
tropical regions of the world (Lelej & Brothers,
2008), while in the northern areas their number
strongly decrease, and this pattern seems to be con-
firmed also on islands when comparing Nearctic to
Neotropic, or W-Palearctic to Afrotropical. It
should be noted that two of the three species oc-
curring in Great Britain have been included among
the “notable” at national level due to their relative
rarity (Falk, 1991). However, the noteworthy
species richness of Indo-Malay may be explained
also by the fact that this region includes the islands
characterized by the highest number of species (Sri
Lanka and Borneo, respectively with 82 and 77),
as well as countries where occur a large number of
islands (Indonesia and Philippines).
A highly significant correlation between island
size and number of species (log species - log area : r =
0.569, P = 0.0004) was found for N = 39 islands
with a surface >10,000 Km 2 (excluding North
Island, where the only occurring species has been
surely introduced; Great Britain, Ireland, Vancouver
and Sakhalin, whose faunal impoverishment real-
istically reflects a latitudinal constraint; and Marajo,
that according to the literature has not been ad-
equately investigated) (Fig. 2).
Likewise, highly significant correlations were
found for Mediterranean (excluding those not ad-
equately investigated, N = 47: r = 0.830, P =
0.0001) (Fig. 3), Japanese and Nansei (N = 21: r =
0.758, P = 0.0001) (Fig. 4), Indo-Malay (excluding
Nansei, N = 49: r = 0.7 1 7, P = 0.000 1), Australasian
(excluding North Island, N = 54: r = 0.511, P =
0.0002; including Australia, N = 55: r = 0.640, P =
0.0001), Caribbean (N = 19: r = 0.615, P = 0.004)
(Fig. 5), and Afrotropic islands (N = 15: r= 0.721,
P = 0.003) (Fig. 6).
Highly significant linear correlations were also
found between number of species and island eleva-
tion, that may give an indirect indication of the
environmental heterogeneity of such territories, for
Mediterranean (r = 0.840, P = 0.0001), Indo-Malay
(r = 0.586, P = 0.0001), Japanese and Nansei (r =
0.850, P = 0.0001), Australasian (r = 0.614, P =
0.0006), and Caribbean (excluding Trinidad, N =
18: r = 0.695, P= 0.001).
568
Pietro Lo Cascio
W Palearctic (107)
Australasia (88)
<
(7)
Afrotropicat (121)
Oceania (2)
(7)
Indo-Malay (356)
#
Nearctic (31 )
m
(1)
E Palearctic (15)
#
Neotropic (71)
m
(U
Figure 1. Number of species recorded for islands within each ecoregion. The overlapping circles and the
relative number correspond to the species in common between different ecoregions.
Few islets with a surface less than 1 Km 2 are
home to mutillids, and their localization is gene-
rally very close to the mainland: Phong Vong (<
0.5 Km 2 ) belongs to the small coastal archipelago
of Phu Quoc (southern Viet Nam); Penilcese (0.3)
lies in the Buzzard Bay (Massachusetts, US);
Embiez (0.9) is a strongly anthropized coastal
islet of southern France, while Bagaud (0.45)
belongs to the Hyeres Archipelago; Lavezzu (0.7),
together with the nearby Cavallo (1.2), belongs to
an island group not far from the southern coast of
Corsica, with which it was connected until recent
times; Conigli (0.04), that can be considered the
smaller example of viable surface, represents a
fragment of the adjacent Lampedusa Island
(Channel of Sicily, Mediterranean) and both were
in connection to North Africa during the Last
Glacial Maximum.
The only tiny oceanic islet inhabited by mutil-
lids is Nishi-jima (0.49) in the Ogasawara Ar-
chipelago (Japan), but the only species found there
is the same occurring on the nearby Chichi-jima.
Species to genus ratio
Species to genus ratio (S/G) has long been re-
cognized as measure of the taxonomic disharmony
of insular faunas (see Gillespie & Roderick, 2002),
but in the case of Mutillidae it seems rather an
indirect indicator of how the island faunas are de-
pauperate in comparison to those of the neighboring
continental areas.
Although not easily verifiable for many of the
islands listed in Table 1 , due to the uncertainties that
still concern the status of some genera on the whole
(such as Ephutomorpha ) or their representatives in
some areas (e.g. Trogaspidia in the Malagasy
region), average S/G is clearly found to decrease on
islands when comparing Japan (1.2 ± 0.13) and
Nansei (1.33 ± 0.23) to China (3.62 ± 0.66: data
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
569
larger islands
Mediterranean islands
Japanese and Nansei islands Caribbean islands
Figure 2. Species-area plot (log species -log area )for islands > 10,000 Km 2 . Numbers are as follows: 1) Sardinia; 2) Sicily; 3)
Madagascar; 4) Borneo; 5) Flores; 6) Hainan; 7) Java; 8) Luzon; 9) Mindanao; 10) Mindoro; 1 1) Negros; 12) Palawan; 13)
Panay; 14) Samar; 15) Sri Lanka; 16) Sulawesi; 17) Sumatra; 18) Sumba; 19) Sumbawa; 20) Taiwan; 21) Timor; 22)
Hokkaido; 23) Honshu; 24) Kyushu; 25) Shikoku; 26) Grande Terre; 27) Halmahera; 28) New Britain; 29) New Guinea;
30) Seram; 31) Tasmania; 32) Cuba; 33) Hispaniola; 34) Jamaica.
Figure 3. Species-area plot (log species -log area ) for Mediterranean islands. Numbers are as follows: 1) Asinara; 2) Brae; 3)
Budelli; 4) Cavallo; 5) Comino; 6) Conigli; 7) Corsica; 8) Crete; 9) Cyprus; 10) Djerba; 11) Elba; 12) Euboea; 13) Gavdos;
14) Giannutri; 15) Gorgona; 16) Gozo; 17) Hvar; 18) Kerkyra; 19) Korcula; 20) Krk; 21) La Maddalena; 22) Lampedusa;
23) Lavezzu; 24) Levanzo; 25) Linosa; 26) Lipari; 27) Mallorca; 28) Malta; 29) Marettimo; 30) Menorca; 31) Panarea; 32)
Pano Koufonissi; 33) Pantelleria; 34) Piana dell’ Asinara; 35) Pianosa; 36) Porquerolles; 37) Rava; 38) Rhodes; 39) San
Domino; 40) Sant’Antioco; 41) Santa Maria; 42) San Pietro; 43) Sardinia; 44) Sicily; 45) Syros; 46) Vis; 47) Vulcano.
Figure 4. Species-area plot (log species -log area ) for Japanese and Nansei islands. Numbers are as follows: 1) Amami Oshima;
2) Iriomote-jima; 3) Ishigaki-jima; 4) Iwo-jima; 5) Kakeromajima; 6) Kuchinoshima; 7) Miyakojima; 8) Okinawa-jima; 9)
Takeshima; 10) Tanegashima; 11) Tokunoshima; 12) Yakushima; 13) Hachijo-jima; 14) Hokkaido; 15) Honshu; 16) Izu
Oshima; 17) Kyushu; 18) Okushiri; 19) Shikoku; 20) Shimoshima; 21) Tsushima.
Figure 5. Species-area plot (log species -log area ) for Caribbean islands. Numbers are as follows: 1) Antigua; 2) Cuba; 3)
Dominica; 4) Eleuthera; 5) Great Exuma; 6) Grenada; 7) Guadeloupe; 8) Guana; 9) Hispaniola; 10) Juventud; 11) Ja-
maica; 12) Little Cayman; 13) Martinique; 14) Mustique; 15) Puerto Rico; 16) St. Croix; 17) St. John; 18) St. Vincent; 19)
Trinidad.
570
Pietro Lo Cascio
Figure 6. Species-area plot (log species -log area ) for Afrotropi-
cislands. Numbers are as follows: 1) Bioko; 2) Fundo; 3)
Grande Comore; 4) Inhaca; 5) Koyaama; 6) Madagascar; 7)
Mafia; 8) Nosy Be; 9) Nosy Boraha; 10) Nosy Komba; 11)
Principe; 12) Samha; 13) Sao Tome; 14) Socotra; 15) Zan-
zibar.
from Lelej, 2005; Tu et al., 2014), while respect to
this latter the most “continental” Taiwan has a S/G
only slightly lower (3.16 ± 0.75); Sri Lanka (2.54
± 0.37) to India (5.07 ± 1.44: data from Lelej,
2005); Socotra (1.40 ± 0.24) to Yemen (2.05 ± 0.33:
data from Lelej & Harten, 2006, 2014); Sicily (2.33
± 0.59) and Sardinia (2.00 ± 0.55) to Italy (2.66 ±
0.65: data from Pagliano & Strumia, 2007); Crete
(1.60 ± 0.26) and Cyprus (1.63 ± 0.43) to, respect-
ively, Greece (2.55 ± 0.58: data from Lelej et al.,
2003a, 2003b; Pagliano, 2009) and Turkey (3.09 ±
0.56: data fromYildirim & Lelej, 2012).
Furthermore, S/G for the above Mediterranean
islands seems to decrease in proportion to their
size with a significant difference (Kruslcal- Wallis:
H = 7.343, P = 0.03). A similar trend, albeit not
statistically significant, is found both within the
Greater Antilles (Cuba: 2.75 ± 0.85; Hispaniola:
2.00 ± 0.70; Jamaica: 1.33 ± 0.33) and in compar-
ison to the smaller but “continental” Trinidad
(2.33 ± 0.64).
Faunal affinities
Average linkage cluster analysis (UPGMA)
using Jaccard’s coefficient was performed in order
to evaluate the faunal similarity within four island
groups.
Australasian islands (Fig. 7) constitute a clearly
distinct group from Lesser Sundas and Sulawesi
and are characterized by two main clusters: in the
first are included Maluku and the coastal islands
of western New Guinea (Biak, Misool, Roon,
Salawati, Umboi, Waigeo, Yapen), while in the
other are grouped New Guinea, its eastern satellites
(Baronga, Darn, Kiriwina, Lihir, Normanby,
Woodlark, Yule) and Bismarck Archipelago (New
Britain, New Ireland, New Hanover). The greater
faunistic affinity found between Papuan and
Bismarck islands is due to their geographical prox-
imity, but also to the fact that their faunas represent
fractions of the high diversity of New Guinea.
Within the Sunda Islands (Fig. 8), where some
islands (Sulawesi, Borneo, Java) host a large num-
ber of single-island endemics (SIEs), there is a very
low degree of similarity. Borneo and Sumatra are
grouped in one of the two main clusters, while the
other includes Java, Lesser Sundas and, slightly
separate, Sulawesi.
On the contrary, Japanese islands (Fig. 9) are
characterized by a remarkable faunistic affinity and,
secondarily, have a certain similarity with Nansei
group and Sakhalin. With this latter, Japanese islands
share some Palearctic elements widely distributed in
the continental areas, namely Mutilla Mikado
Cameron, 1900, Cystomutilla teranishii Mickel,
1935 and Taimyrmosa mongolica (Suarez, 1974),
that conversely are lacking in the Nansei. Although
Nansei belong to the Indo-Malay region, it should be
noted that these islands are more closely related to
Japan than to Taiwan, whose isolated cluster fits well
to its noteworthy faunal distinctiveness.
Finally, the clusters of the Mediterranean area
(Fig. 10) seem to reflect mainly the geographical
closeness of the islands: the greater similarities
were found between Corsica and Sardinia, which
indeed belong to a distinct western insular group
that includes also Sicily; for Malta and Lampedusa,
that lie in the Channel of Sicily and relatively close
to North Africa; and for Crete and Rhodes, both
placed in the Aegean Sea. Probably due to its eastern-
most and isolated localization, Cypms shows a very
low degree of similarity with all these islands.
Endemism
Endemism at generic rank occurs only in a re-
stricted number of larger islands. Five distinctive
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
571
Sulawesi
' Lesser Sunda
I W New Guinea
j S Maluku
' N Maluku
I E New Guinea
' Bismarck
' New Guinea
-tL2 0 (U 0.4 U U 1
7
Taiwan
Sakhalin
Nansei
* Hokkaido
Shikoku
Kyushu
Honshu
-02 S 02 OA o!i 1
9
Sulawesi
Lesser Sunda
Java
Sumatra
Borneo
-o'. 2 6 0.2 0.4 CL 6 o!« 1
8
r Cyprus
Rhodes
■ Crete
r Lampedusa
Malta
Corsica
Sardinia
I Sicily
-0^2 0 02 CM CM CL8 1
10
Figures 7-10. Dendrograms obtained by UPGMA clustering of some Australasian (Fig. 7), Sunda (Fig. 8), Japanese and
Nansei (Fig. 9) and Mediterranean islands/island groups (Fig. 10) according to the Jaccard index similarity matrix.
genera occur both on Sri Lanka ( Beths my rmilla
Krombein et Lelej, 1999; Indratilla Lelej, 1993;
Kudakrumia Krombein, 1979; Serendibiella Lelej,
2005; Standfussidia Lelej, 2005) and Madagascar
( Aureotilla Bischoff, 1920; Hildebrandetia
Ozdikmen, 2005; Pseudolophotilla Nonveiller et
Cetkovic, 1995; Seyrigilla Krombein, 1972; Sylvo-
tdla Viette, 1978), but should be noted that at least
1 9 Madagascan species currently ascribed to genus
Trogaspidia Ashmead, 1899 are however belonging
to other genera yet undescribed (see Brothers et al.,
2011), hence the number of endemics for this island
is underestimated. Endemic genera inhabit also
Sulawesi {Protrogaspidia Lelej, 1996) and New
Guinea and its adjacent islands (Ascetotilla
Brothers, 1971) (Fig. 11), although Brothers (2012)
stated that some species occurring on this latter and
assigned to Ephutomorpha could belong to other ge-
nera yet undescribed. Within the W Palearctic, the
only insular distinctive genus is known for the Ca-
nary Archipelago (Liomutilla Andre, 1907). Finally,
Jamaitilla Casal, 1965, described for Jamaica, has
been synonymized by Quintero & Cambra (2001).
Conversely, more than half (55.8%) of the
species and subspecies occurring on islands or
island group sis endemic. SIEs are widely represen-
ted among specific and infraspecific taxa inhabiting
large or small islands, but particularly on these latter
rate of endemism may reach very high percentage
values, as consequence of to their lower faunal
richness. This is the case, indeed, of islands such as
Fuerteventura, Principe, Leyte, South Andaman,
Sumba, Espiritu Santo, Makira, Dominica, St.
Croix, or archipelagoes such as New Caledonia and
572
Pietro Lo Cascio
Galapagos, for which the only/few recorded species
is/are strictly endemic/s.
Figure 12 shows as the values may vary remark-
ably depending on the island typology. Among the
larger ones, Madagascar confirms its peculiar char-
acter by hosting a wholly unique fauna, that sim-
ilarly than other taxonomic groups reflects its
ancient isolation (Goodman & Benstead, 2004).
High values are also found in some Greater Antilles
(75% on Hispaniola, 70.8% on Cuba) and some
Australasian and Indo-Malay large islands (70.8%
on Sulawesi, 69.4% on New Guinea, 66.6% on
Tasmania, 64.9% on Borneo).
The highly significant correlation (r = 0.856,
P = 0.0001) found between isolation index and
percentage of endemism for several islands or
Figure 11 . Ascetotilla uncinata Brothers, 1971, a remarkable endemic species of New Guinea
(courtesy of Denis J. Brothers).
South Andaman
Bioko
Gran de T erre
Yakushima
Socotra
Hispaniola
Seram
Hainan
Sumatra
Cuba
Tasmania
Cyprus
Java
Sulawesi
Sardinia
Mindanao
New Guinea
Luzon
Taiwan
Madagascar
Borneo
Sri Lanka
Figure 12. SIEs percentages (in dark grey) in comparison to the whole number of occurring species
(in light grey) on selected islands.
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
573
archipelagoes (Fig. 13) suggests that speciation
processes may be largely influenced by geograph-
ical factors, such the distance from mainland. SIEs
have usually low values both in the continental
islands and in those placed in closed basins (e.g.
Sardinia and Cyprus in the Mediterranean). Despite
the remarkable number of distinctive genera occur-
ring on Sri Lanka, 40% of the species is indeed
distributed also in the mainland. Furthermore, SIEs
are absent from many Lesser Sundas (Bali, Flores,
Lombok and smaller islands), in the larger Japan-
ese islands such as Honshu, Hokkaido and Kyushu,
in most of the W Palearctic and in all the Neartic,
which were part of continental landmasses until re-
cent time (Last Glacial Maximum). However, con-
sidering separately each island from its insular
group, not always at an oceanic origin corresponds
a high level of endemism: for instance, among the
Nansei only Yakushima hosts SIEs, with a value
just equal to 14%.
When considering the endemics with an intra-
island/archipelago distribution range, the higher
percentages are found for those most isolated and
inhabited by few species (e.g. Galapagos and
Solomons) (Fig. 14). Fairly high percentages also
occur for the islands of Gulf of Guinea, Canary and
Lesser Antilles (excluding Trinidad), while both on
Japanese and Nansei the endemics are <50%.
Despite their geographical closeness, northern
Maluku (which include Ambon, Bacan, Burn,
Gebe, Halmahera, Morotai, Seram, Taliabu and
Ternate) harbor a large number of species than the
southern islands of the same group (Kai, Larat and
Tanahbesar), but also twice of percentage of endem-
ics (see Fig. 14). Southern Maluku derived from
eastern Gondwana margin (northern Australia and
southern New Guinea), while the Halmahera block
(N Maluku) is thought to have originated on the
Pacific plate and moved westward along the New
Guinea margin to its present position (see Heads,
2013 and references therein). The different histor-
ical geography would then to account for the signi-
ficant difference found in the rate of endemism for
these sub-archipelagoes.
Niche shift
As evidenced by Brothers (1989), records given
in literature about the hosts of Mutillidae concern a
very low number of species, and in general the bio-
Figure 13. The relationship between isolation index (see
Table 1 ) and percentage of endemism for some islands or
archipelagoes. Numbers are as follows: 1) Sardinia; 2) Si-
cily; 3) Great Britain; 4) Canary; 5) Madagascar; 6) Borneo;
7) Hainan; 8) Java; 9) Sri Lanka; 10) Sulawesi; 11) Sumatra;
12) Philippines; 13) Taiwan; 14) Japanese; 15) Nansei; 16)
Sakhalin; 17) Grande Terre; 18) Espiritu Santo; 19) N Ma-
luku; 20) New Guinea; 21) Solomons; 22) Tasmania; 23)
Vancouver; 24) Cuba; 25) Hispaniola; 26) Galapagos; 27)
Jamaica.
45 . 4 *
2 Q •
416 %
Figure 14. Intra-archipelago endemics percentages (dark
grey columns) in comparison to the whole number of occur-
ring species (light grey columns) on selected islands’ groups.
Lesser Antilles are here considered excluding Trinidad.
logy of these hymenopteran is little known, so even-
tual examples of “island rule” (sensu Gillespie &
Roderick, 2002) within mutillid wasps must be
viewed with caution. Nevertheless, a case of niche
shift from the usual hosts (other Hymenoptera)
occurring in an insular environment has been
574
Pietro Lo Cascio
1 Helix Heimburgi m 2-Atys treyi m S.Buhtmnus exxornsj m. A-MacrocHa
mys Schmidti ttl 5-SpHecins Freyi HandL 6.Nassa Freyi m. 7 MutoHalreyi m.
8. NympHali s Freyi m.
Ckrcmeliih.il Drizckz ThJannwarth, f/ien.
Figure 15. Stenomutilla freyi Branksic, 1891 from the original plate published
by Branksic (1891: plate 7, fig. 7).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
575
Figure 16. Some mutillids described from Tasmania by Westwood (1843: plate LIII),
currently assigned to the genus Ephutomorpha.
576
Pietro Lo Cascio
/
j
*
. i
Vtt/t/itt
1 '(// > '(/ fif, . I'lf/t- ti Mr fit liti
« * * r
f/tti/tht'Hiiitt ft . Stitts
■wiv. S- ms' . (V.
htfitlf'/ft , . ‘hit.- it
twf/tlfit , . Jl ut . i fii
it, MttU/fi /ft t/tt in i -/t./ . iii/i .
ili‘,t'ltilfr.r. ,W.<
1 1 'it n tit -it fit. fit . K a
tffytrii*.ui , .Kins
< Or/ti'/tit/tit , i Jit. .
Figure 17. Some species from Sri Lanka described and illustrated by Saussure (1867b: plate 8, figs. 1-6): Mutilla egregia
(1) has been synonymized with Orientilla aureorubra (Sichel et Radoszkowski, 1870); M. humbertiana (2) is now placed
in the genus Wallacidia; M. soror (3) and M. bicincta (4) are now placed in the genus Trogaspiclia\ M. ocellata (5) is now
placed in the genus Smicromyrme; M. hexaops (6) has been synonymized wiihTrogaspidia villosa (Fabricius, 1775).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
577
documented by Seyrig (1936) and concerns the
Madagascan Stenomutilla freyi (Brancsik, 1891
(Fig. 15) as parasitoid of the larva of Parasa
reginula Saalmuller, 1884 (Lepidoptera Limaco-
didae). Although some species have been observed
to parasitize immature stages of other orders of
insects, such as Diptera, Coleoptera and Blattodea
(see Amini et al., 2014 and references therein), this
is so far the only record of host association with a
moth.
ACKNOWLEDGEMENTS
I wish to sincerely thank Arkady S. Lelej and
Marcello Romano for the critical review of the
manuscript and their valuable suggestions; David
Baldock, Rolf Niedringhaus, Guido Pagliano, James
R Pitts and Denis J. Brothers, who provided useful
literature; once again the latter, who kindly gave the
permission to use his beautiful drawing of Asceto-
tilla carinate. I’m also indebted to Apostolos
Trichas (Natural History Museum of Crete, Herak-
lion) and Philippe Ponel (Institut Mediterraneen de
r
Biodiversite et d’Ecologie marine et continentale,
Marseille) for the unpublished data about mutillids
of some Mediterranean islands.
REFERENCES
Advokaat E.L., Hinsbergen D.J.J. van, Maffione M.,
Langereis C.G., Vissers R.L.M., Cherchi A.,
Schroeder R., Madani H. & Columbu S., 2014.
Eocene rotation of Sardinia, and the paleogeography
of the western Mediterranean region. Earth and
Planetary Science Letters, 401: 183-195.
Alayo Dalmau P, 1975. lntroduccion al estudio de los
hymenopteros de Cuba. Scolioidea. Serie Biologica,
58: 1-19.
Alicata P, Caruso D., Costa G. & Motta S. 1975. Richer-
che eco-etologiche sulla fauna delle dune costiere di
Porto Palo (Siracusa). I. Smicromyrme viduata (Pall.)
(Hymenoptera, Mutillidae): ritmi di attivita, mi-
grazioni e accoppiamento. Animalia, 1: 89-108.
Amini A., Lelej A.S., Sadeghi H. & Karimi J., 2014. First
records of the velvet ants (Hymenoptera: Mutillidae)
reared from puparia of the ber fruit fly Carpomya
vesuviana (Diptera: Tephritidae) in Iran. Zootaxa,
3861: 585-590.
Andre E., 1894. Contribution a la connaissance des
mutilles de l’Inde. Journal of the Bombay Natural Hi-
story Society, 8: 462M84.
Andre E., 1895. Especes nouvelles de mutilles africaines.
Annales de la Societe entomologique de France, 63:
669-682.
Andre E., 1896a. Etude sur les mutillides existant dans
les collections du Musee civique de Genes. Annali
del Museo Civico di Storia naturale di Genova, 1 7 :
66-104.
Andre E., 1896b. Mutillides nouveaux ou imparfaitement
connus faisant partie des collections du Musee
National de Hongrie. Termeszetrajzi Fiizetek, 19: 9-
25.
Andre E., 1898. Etude sur les mutillides du Museum de
Paris. Annales de la Societe entomologique de
France, 67: 1-79.
Andre E., 1899. Mutilles nouvelles de Madagascar.
Bulletin du Museum d’Histoire Naturelle de Paris, 5:
34-37.
Andre E., 1899-1903. Species de Hymenopteres d’
Europe & d’Algerie. Tome Huitieme. Les Mutillides.
V. Dubosclard & Hermann, Paris, 480 pp.
Andre E., 1901a. Description de cinq nouvelles especes
de mutilles de Madagascar. Zeitschrift fur Systemat-
ische Hymenopterologie und Dipterologie, 1: 137—
144.
Andre E., 1901b. Nouvelle contribution a la connaissance
des mutillides de l’Australie. Memoires de la Societe
Zoologique de France, 14: 467-513.
Andre E., 1902. Hymenoptera, Family Mutillidae.
In: Wytsman P. (Ed.). Genera Insectorum, ll.L.
Desmet-Verteneuil, Bruxelles, 77 pp.
Andre E., 1903a. Mutillides noveaux ou imparfaitement
connus de divers pays. Annales de la Societe ento-
mologique de France, 72: 417-459.
Andre E., 1903b. Mutillides d’Afrique nouveaux on im-
parfaitement connus. Zeitschrift fur Systematische
Hymenopterologie und Dipterologie, 3: 81-88, 137—
144, 232-239.
Andre E., 1904. Voyage de feu Leonardo Fea dans F
Afrique occidentale. Mutillidae. Annali del Museo
civico di Storia naturale di Genova, 1: 221-252.
Andre E., 1905. Mutillides nouveaux ou peu connus de
FAncien Monde et de FAustralie (Hym.). Zeitschrift
fur Systematische Hymenopterologie und Dipterolo-
gie, 5: 201-216, 265-277.
Andre E., 1907a. Liste des mutillides recueillis a Ceylan
par M. le Dr. Walter Horn et description des especes
nouvelles (Hym.). Deutsche Entomologische Zeits-
chrift, 3: 251-258.
Andre E., 1907b. Description d’une nouvelle espece de
mutillide de Java (Hym.). Zeitschrift fur Systemat-
ische Hymenopterologie und Dipterologie, 7: 207-
208.
578
Pietro Lo Cascio
Andre E., 1907-1908. Description d’especes nouvelles
des mutillides appartenant au Museum d’Histoire
Naturelle de Paris (Hym.). Zeitschrift fur Systemat-
ische Hymenopterologie und Dipterologie, 7: 337—
352; 8: 14-18.
Andre E., 1908a. Description de quelques nouveaux
mutillides du Musee National de Hongrie. Annales
Musei nationalis Hungarici, 6: 375-383.
Andre E., 1908b. Especes nouvelles de mutillides afri-
cains faisant partie des Collections du Musee zoolo-
gique de Berlin (Hym.). Zeitschrift fur Systematische
Hymenopterologie und Dipterologie, 8: 65-80, 129—
137.
Andre E., 1909. Mutillides nouveaux ou imparfaitment
connus du Musee royal d’histoire naturelle de Leide.
Notes from the Leyden Museum, 31: 171-180.
Archer M.E., 1986. The aculeate wasps and bees (Hy-
menoptera: Aculeata) of Herm and Sark, Channel
Islands. Entomologist’s Gazette, 47: 53-59.
Archer M.A., 2014. The Vespoid Wasps (Tiphiidae,
Mutillidae, Sapygidae, Scoliidae and Vespidae) of the
British Isles. Handbook for the Identification of
British Insects, Vol. 6 Part 6. Royal Entomological
Society, St. Albans, 82 pp.
Arnone M. & Romano M., 1995. Hymenoptera Mutill-
idae e Apterogynidae. In: Massa B. (Ed.). Arthropoda
di Lampedusa, Linosa e Pantelleria (Canale di Sicilia,
Mar Mediterraneo). II Naturalista siciliano, 19
(suppl.): 739-752.
Arnone M. & Romano M., 1998. Nuovi reperti di
Chrysididae e Mutillidae in Sicilia e Sardegna
(Hymenoptera). II Naturalista Siciliano, 22: 19-24.
Ashmead W.H., 1896. Notes on the Hymenoptera collec-
ted by the Bahama Expedition from the State Univer-
sity of Iowa. Bulletin from the Laboratories of
Natural History of the State University of Iowa, 4:
28-32.
Ashmead W.H., 1900. Report upon the aculeate Hymen-
optera of the islands of St. Vincent and Grenada, with
additions to the parasitic Hymenoptera and a list of
the described Hymenoptera of the West Indies. Trans-
actions of the Entomological Society of London,
(1900): 207-367.
Ashmead W.H., 1905a. Description of new genera and
species of Hymenoptera from the Philippine Islands.
Proceedings of the United States National Museum,
28 (1387): 127-158.
Ashmead W.H., 1905b. Addition to the recorded hymen-
opterous fauna of the Philippine Islands, with de-
scriptions of new species. Proceedings of the United
States National Museum, 28 (1413): 957-971.
Askew R.R., 1980. The insect fauna of Little Cayman.
Atoll Research Bulletin, 241: 97-114.
Askew R.R., 1994. Insects of the Cayman Islands. In:
Brunt M.A. & Davies J.E. (Eds.). The Cayman
Islands. Natural History and Biogeography. Kluwer
Academic Publ., The Netherlands, 333-356.
Atkins A. & Webb E., 2013. Frontier -Tanzania Forest
Research Programme. Utende Village, Mafia Island,
Tanzania. TZF 132 Science Report 1. http://www.
frontier, ac . uk/Publications/Files/2 0 1 3_08_ 1 2_ 1 3 41_
28_772.pdf.
Baez M. & Ortega G., 1978. Lista preliminar de los
himenopteros de las Islas Canarias. Boletin de la
Asociacion espanola de Entomologia, 2: 185-199.
Baldock D., 2014. A provisional list of the wasps and
bees of Mallorca, Balearic Islands, Spain (Hymenop-
tera Aculeata: Chrysidoidea, Scolioidea, Vespoidea,
Apoidea). Entomofauna, 35: 333-404.
Baldock D., 2015. Additions and alterations to a provi-
sional list of the wasps and bees of Mallorca, Balearic
Islands, Spain (Hymenoptera aculeata: Chrysidoidea,
Scolioidea, Vespoidea, Apoidea). Entomofauna, 36:
65-76.
Baltazar C.R., 1966. A catalogue of Philippine Hymen-
optera (with a Bibliography, 1758-1963). Pacific
Insects Monograph, 8: 1-488.
Beqtaert J., 1929. The folded-winged wasps of the Ber-
mudas, with some preliminary remarks on insular
wasp faunae. Annals of the Entomological Society of
America, 22: 555-582.
Berland L., 1925. Faune de France 10. Hymenopteres
vespiformes. I (Sphegidae, Pompilidae, Scoliidae,
Sapygidae, Mutillidae). Lechevalier, Paris, 364 pp.
Bigot L., 1958. Notes entomologiques et biogeograph-
iques sur Tile de Corse. Vie et Milieu, 9 (3): 361-378.
Bingham C.T., 1895. On a collection of hymenopterous
insects from the Philippines. Annals and Magazine
of Natural History, 16: 440-441.
Bingham C.T., 1897. Hymenoptera. Vol. I. Wasps and
bees.In: Blanford W.T. (Ed.). Fauna of British India,
including Ceylon and Burma. Taylor & Francis, Lon-
don, xxix+579 pp.
Bischoff H., 1920-1921. Monographic der Mutilliden
Afrikas. Archiv fur Naturgeschichte, 86A: 1-480,
481-830.
Bischoff H., 1928. Zoologische Streifzuge in Attika,
Morea und besonders auf der Insel Kreta. Abhandlun-
gen Naturwissenschaftlicher Verein Bremen, 27: 89.
Bischoff H., 1933. Remarks on Smicromyrme pusilla
(Klug) (Hym. Mutillidae). Stylops, 2: 73-74.
Bischoff H. & Nonveiller G., 1965. Beschreibung des
vermutlichen mannchen von Platymyrmilla 5-
fasciata 01. (Hymenoptera, Mutillidae). Bollettino
della Societa entomologica italiana, 95: 22-26.
Blake C.A., 1871. Synopsis of the Mutillidae of North
America. Transactions of the American Entomolo-
gical Society, 3: 217-265.
Bogusch P., 2006. The velvet ants (Hymenoptera: Mutil-
lidae) of the Czech republic and Slovakia: an identi-
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
579
fication key and annotated checklist. Acta Musei
Moraviae, Scientiae Biologicae, 91: 103-148.
Bordoni A., 1980. Su alcuni mutillidi e mirmosidi italiani
(Hymenoptera). Bollettino della Societa entomolo-
gica italiana, 112: 177-185.
Bradley J.C., 1916a. A revision of Ephuta Say, a genus
of Mutillidae equivalent to the species group scrupea
of Fox. Transactions of the American Entomological
Society, 42: 187-198.
Bradley J.C., 1916b. The Mutillidae of Eastern United
States. Transactions of the American Entomological
Society, 42: 309-336.
Bradley J.C., 1917. Contribution toward a Monograph of
the Mutillidae and their allies of America North of
Mexico. IV. A review of the Myrmosidae. Transac-
tions of the American Entomological Society, 48:
247-290.
Brancsik K., 1891. Beitrage zur Kenntniss Nossibe’s und
dessen Fauna nach Sendungen und Mittheilungen des
Herm P. Frey. Evkonyve a Trencsen Varmegyei
Termeszettudomanyi Egylet, 13-14: 123-167.
Broad G.R., 2014. Checklist of British and Irish Hymen-
optera. Introduction. Biodiversity Data Journal, 2:
el 1 13.
Brothers D.J., 1971. Ascetotilla, a new genus of Mutil-
lidae from New Guinea (Hymenoptera). Pacific
Insects, 13: 471-485.
Brothers D.J., 1989. Alternative life-history styles of
mutillid wasps (Insecta: Hymenoptera). In: Bruton
M.N. (Ed.). Alternative life -history styles of animals.
Kluwer Academic Publishers, Norwell, 279-291.
Brothers D.J., 2012. The new genus Ancistrotilla n. gen,
with new species from Vanuatu and New Caledonia
(Hymenoptera, Mutillidae). Zoosystema, 34: 223-
251.
Brothers D.J., Lelej A.S. & Madl M., 2011. Annotated
catalogue of the Mutillidae (Hymenoptera: Vesp-
oidea) of the Malagasy Subregion. Linzer biologische
Beitrage, 43: 115-149.
Brown R.E., 1906. A Catalogue of Philippine Hymen-
optera, with description of new species. Philippine
Journal of Science, 1: 683-704.
Callan S.K., Majer J.D., Edwards K. & Moro D., 2011.
Documenting the terrestrial invertebrate fauna of
Barrow Island, Western Australia. Australian Journal
of Entomology, 50: 323-343.
Cambra T.R.[A] & Quintero Arias D., 1992. Velvet ants
of Panama: distribution and systematics (Hymen-
optera: Mutillidae). In: Quintero [Arias] D. & Aiello
A. (Eds.). Insects of Panama and Mesoamerica.
Selected Studies. Oxford University Press, Oxford-
New York-Tokio, 460^478.
Cambra T.R.A. & Quintero [Arias] D., 1993. Studies on
Timulla Ashmead (Hymenoptera, Mutillidae): new
distribution records and synonymies, and descrip-
tions of previously unknown allotypes. Pan-Pacific
Entomologist, 69: 299-313.
Cameron P, 1892. Hymenoptera Orientalia, or contribu-
tions to a knowledge of the Hymenoptera of the
Indian Zoological Region. Part IV. Memoirs and Pro-
ceedings of the Manchester Literary and Philosoph-
ical Society, 35: 97-137.
Cameron P, 1897. Hymenoptera Orientalia, or contribu-
tions to a knowledge of the Hymenoptera of the
Oriental Zoological Region. Part V. Memoirs and
Proceedings of the Manchester Literary and Philo-
sophical Society, 41: 1-144.
Cameron P., 1898. Hymenoptera Orientalia, or contribu-
tions to a knowledge of the Hymenoptera of the
Oriental Zoological Region. Part VII. Memoirs and
Proceedings of the Manchester Literary and Philo-
sophical Society, 42: 1-84.
Cameron P., 1900. Hymenoptera Orientalia, or contribu-
tions to the knowledge of the Hymenoptera of the
Oriental Zoological Region. Part IX. The Hymenop-
tera of the Khasia Hills. Part II. Section I. Memoirs
and Proceedings of the Manchester Literary and
Philosophical Society, 44: 1-114.
Cameron P, 1901 . On the Hymenoptera collected in New
Britain by Dr. Arthur Willey. Proceedings of the Zo-
ological Society of London, 1: 224-248.
Cameron P., 1902a. On the Hymenoptera collected by
Mr. Robert Shelford at Sarawak, and on the Hy-
menoptera of the Sarawak Museum. Journal of
the Straits Branch of the Royal Asiatic Society, 37:
29-131.
Cameron P., 1902b. Descriptions of New Species of
Aculeate Hymenoptera from Borneo. Journal of the
Straits Branch of the Royal Asiatic Society, 37: 1 32—
140.
Cameron P., 1903. Descriptions of new genera and
species of Hymenoptera taken by Mr. Robert Shelford
at Sarawak, Borneo. Journal of the Straits Branch of
the Royal Asiatic Society, 39: 89-181.
Cameron P., 1907. Hymenoptera I (all families, except
Apidae and Formicidae). In: Nova Guinea. Resultats
de F expedition scientifique neerlandaise a la
Nouvelle-Guinee en 1903 sous les auspices de Arthur
Wichmann. Vol. V. Zoologie. E.J. Brill, Leiden, 41-
65.
Cameron P., 1909. Description of two new species of
Mutilla from Kuching, Borneo. Entomologist, 42:
146-147.
Canovai R., Giannotti P., Giannetti S., Loni A., Raspi A.,
Santini L., Dellacasa M., Generani M., Pagliano G.,
Strumia F., Scaramozzino P.L., Zuffi M., Baldaccini
N.E., Puglisi L., Battesti M.J. & Brocard E., 2000.
Biodiversita: compilazione delle specie dell’entomo-
fauna e dei piccoli vertebrati della Corsica e della
Toscana marittima. Progetto Interreg II Toscana-
580
Pietro Lo Cascio
Corsica 1997-1999. Ricerca 4.2.8. Edizioni ETS,
Pisa, 75-86.
Casolari C. & Casolari Moreno R., 1980. Cataloghi.
I - Collezione imenotterologica di Massimiliano
Spinola. Museo regionale di Scienze Naturali, Torino,
165 pp.
Cecconi G., 1895. Ricordi zoologici di un viaggio
allTsola di Candia. Bullettino della Societa entomo-
logica italiana, 27: 169-222.
Chen C., 1957. A revision of the velvet ants or Mutillidae
of China. Quarterly Journal of the Taiwan Museum,
10: 135-224.
Cockerell T.D.A., 1915. New Mutillidae from California.
Entomologist, 48: 249-250.
Cockerell T.D.A., 1927. Hymenoptera from Lucban,
Philippine Islands. Philippine Journal of Science, 33:
272-277.
Cocquempot C. & Chambon J.-P., 1992. Contribution a
Tinventaire des arthropodes terrestres de la Reserve
Naturelle des lies Lavezzi (Corse du Sud). Travaux
scientifiques du Parc Naturel Regional et des
Reserves Naturelles de Corse, 39: 71-83.
Cocquempot C. & Rungs C., 2009. Liste des arthropodes
terrestres recenses dans la Reserves Naturelles des
lies Cerbicale et Lavezzi (France, Corse-du-Sud).
Biocosme Mesogeen, 26: 1-56.
Compte Sart A., 1959. Sobre los esfecidos de Mallorca.
Graellsia, 17: 129-140.
Cooper K.W., 1953. The wasps of Penikese Island,
Buzzard Bay, Massachusetts (Hymenoptera). Ento-
mological news, 64: 29-36.
Costa A., 1856-1860. Fauna del Regno di Napoli, ossia
enumerazione di tutti gli animali che abitano le
diverse regioni di questo Regno e le acque che le
bagnano e descrizione de’ nuovi o poco esattamente
conosciuti con figure ricevute da originali viventi e
dipinte al naturale. Imenotteri aculeati. Famiglia de’
Mutillidei, Mutillidea.Tipografia G. Sautto, Napoli,
36 pp.
Costa A., 1882. Notizie e osservazioni sulla geo-fauna
sarda. Memoria prima. Risultamento di ricerche fatte
in Sardegna nel settembre 1881. Atti della Reale
Accademia di Scienze fisiche e matematiche di
Napoli, 9: 1-41.
Costa A., 1883. Notizie e osservazioni sulla geo-fauna
sarda. Memoria seconda. Risultamento di ricerche
fatte in Sardegna nella primavera del 1882. Atti della
Reale Accademia di Scienze fisiche e matematiche
di Napoli, 1: 1-109.
Costa A., 1885. Notizie e osservazioni sulla geo-fauna
sarda. Memoria quarta. Atti della Reale Accademia
di Scienze fisiche e matematiche di Napoli, 1: 1-31.
Costa A., 1887. Prospetto degli Imenotteri italiani, da
servire di prodromo di imenotterologia italiana. Parte
seconda. Pompilidei, Dolicuridei, Scoliidei, Sapi-
gidei, Tifiidei e Mutillidei. Tipografia dell’ Acca-
demia Reale delle Scienze, Napoli, 170 pp.
Cresson E.T., 1865. On the Hymenoptera of Cuba. Pro-
ceedings of the Entomological Society of Phil-
adelphia, 4: 1-200.
Dahl A.L., 1991. Island Directory. UNEP Regional Seas
Directories and Bibliographies No. 35. UNEP,
Nairobi, 573 pp.
Dalla Torre C.G. de, 1897. Catalogus hymenopterorum
hucusque descriptorum, systematicus et synonimicus.
Volumen VIII: Fossores (Sphegidae). G. Engelman,
Lipsiae, 750 pp.
Dammermann K.W., 1923. The fauna of Krakatau,
Verlaten Island and Seseby. Treubia, 3: 61-112.
Dammermann K.W., 1948. The fauna of Krakatau, 1888—
1933. Verhandelingen der Koninklijke Neder-
landse Akademie van Wetenschappen, Afdeling
Natuurkunde, 44: 1-594.
Deschamps E., 1898. Note sur Mutilla maura L. et M.
maculata Cyrille, de Tile de Chypre. Bulletin de la
Societe zoologique de France, 23: 90-92.
De Stefani T., 1885-1886. Raccolte imenotterologiche
sui monti di Renda e loro adiacenze. II Naturalista
siciliano, 5: 41-43, 112-114, 138-142, 168-172,
181-186.
De Stefani T., 1887a. Aggiunte al prospetto degli
imenotteri italiani. 11 Naturalista siciliano, 7: 24-25.
De Stefani T., 1887b. Un nuovo genere di crabronidi e
altri imenotteri nuovi o poco cogniti raccolti in Si-
cilia. II Naturalista siciliano, 6: 59-62, 85-90, 110-
114, 143-147.
De Stefani-Perez T., 1897. Note per servire alio studio
delle mutille di Sicilia. 11 Naturalista siciliano, 2: 77-
85.
Deyrup M.A. & Manley D.G., 1986. Sex-biased size
variation in velvet ants (Hymenoptera: Mutillidae).
Florida Entomologist, 69: 327-335.
Dow R., 1931. Two new Mutillidae from the West
Indies. Occasional Papers of the Boston Natural
History Society, 8: 1-4.
Easton E.R., 2001. Identification guide to the Aculeata
of the Nansei Islands, Japan. Oriental Insects, 35: 28-
48.
Echenique-Diaz L.M., Kawata M. & Yokoyama J., 2009.
Japan’s Islands, Biology. In: Gillespie R.G. & Clague
D.A. (Eds.). Encyclopedia of Islands. University of
California Press, Berkeley-Los Angeles-London,
497-500.
Edwards R. (Ed.), 1997. Provisional Atlas of the aculeate
Hymenoptera of Britain and Ireland. Part 1. Biolo-
gical Records Centre, Huntingdon, 139 pp.
Elliot H.J., Bashford R., Jarman S.J. & Neyland M.G.,
2002. Foliage insect diversity in dry eucalypt forests
in Eastern Tasmania. Papers and Proceedings of the
Royal Society of Tasmania, 136: 17-34.
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
581
Elliott N.B. & Elliott W.M., 1994. Preliminary compar-
isons of wasp faunas of the Great and Little Bahama
Banks (Hymenoptera: Tiphiidae, Scoliidae, Pompil-
idae, Mutillidae, Sphecidae, Vespidae). In: Kass L.B.
(Ed.). Proceedings of the Fifth Symposium on the
Natural History of the Bahamas. Bahamian Field
Station, San Salvador, 29-32.
Elliott N.B. & Elliott W.M., 1996. Biogeography of
bahamian wasps. In: Elliott N.B., Edwards D.C. &
Godfrey P.J. (Eds.). Proceedings of the Sixth
Symposium on the Natural History of the Bahamas.
Bahamian Field Station, San Salvador, 101-108.
Esaki T., 1938. The occurrence of a mutillid wasp in
Micronesia. Annotationes Zoologicae Japoneses, 17:
431-432.
Evans H.E., 1972. Bredin-Archbold- Smithsonian biolo-
gical survey of Dominica: aculeate wasps (Hymen-
optera: Scolioidea, Vespoidea, Pompiloidea,
Sphecoidea). Smithsonian Contributions to Zoology,
115: 1-19.
Fabricius I.C., 1775. Systema Entomologiae, sistens in-
sectorum classes, ordines, genera, species, adiectis
synonymis, locis, descriptionibus, observationibus.
Officina Librariae Kortii, Flensburgi et Lipsiae, 832
pp.
Failla Tedaldi L., 1887. Escursione entomologica
allTsola di Lampedusa. 11 Naturalista siciliano, 6:53-
56, 69-73, 102-104, 157-162.
Falk S., 1991 . A review of the scarce and threatened bees,
wasps and ants of Great Britain. Research & Survey
in Nature Conservation No. 35, NCC, Peterborough,
ii+344 pp.
Fox W.J., 1900. Arrangement of the extra- American
species of Mutilla (described by Cresson and Blake)
according to my classification of the genus. Entomo-
logical News, 11: 400M01.
Friese H., 1900. Hymenoptera von Madagaskar. Apidae,
Fossores un Chrysididae. Abhandlungen der
Senckenbergischen Naturforschenden Gesellschaft,
26: 259-268.
Fukasawa S. & Miyano S., 2010. [Fauna of the aculeate
Hymenoptera (Insecta) from the Izu Islands,
Japan], Chiba Kenritsu Chuo Hakubutsukan shizenshi
kenkyu hokoku [Journal of the Natural History
Museum and Institute, Chiba], 11: 11-28. (in Ja-
panese)
Garcia Mercet R., 1903. Descripcion de himenopteros
nuevos. Boletin de la Real Sociedad Espanola de
Historia Natural, 3: 98-104.
Garcia Mercet R., 1913. Mutilidos nuevos de Africa y
Canarias. Boletin de la Real Sociedad Espanola de
Historia Natural, 13: 257-264.
Garcias [i] Font L., 1953. Himenopteros de Arta (Mal-
lorca). Bolleti de la Societat d’Historia natural de les
Balears, 1: 7-10.
Genaro J.A., 1997. Tres especies nuevas de mutilidos de
Cuba y la Republica Dominicana (Insecta: Hymenop-
tera). Caribbean Journal of Sciences, 33: 263-268.
Genaro J.A. & Torres J.A., 1999. Redescripcion de la
hembra y descripcion del macho de Pseudomethoca
argyrocephala (Hymenoptera: Mutillidae). Carib-
bean Journal of Science, 35: 153-155.
Generani M., Pagliano G., Scaramozzino PL. & Strumia
F., 2001. Gli Imenotteri delle isole di Capraia,
Giglio, Gorgona, Pianosa e Montecristo (Arcipelago
Toscano) (Insecta: Hymenoptera). Frustula Entomo-
logica, (n.s.) 24 (37): 51-74.
Gerstaecker [K.E.]A., 1871. Beitrag zur Insektenfauna
von Zanzibar. IV. Hymenoptera. Archiv fur Nat-
urgeschichte, 37: 349-357.
Ghiliani V., 1842. Insetti di Sicilia determinati dal sig. F.
Ghiliani nel suo viaggio in questa isola, anno 1839.
Atti dell’Accademia Gioenia di Scienze naturali, 18:
23-48.
Gillespie R.G. & Roderick G.K., 2002. Arthropods on
islands: colonization, speciation, and conservation.
Annual Review of Entomology, 47: 595-632.
Goodman S.M. & Benstead J.P. (Eds.), 2004. The natural
history of Madagascar. The University of Chicago
Press, Chicago, 1728 pp.
Green E.E., 1912. On a remarkable mimetic spider. Spo-
lia Zeylanica, 8: 92-93.
Gribodo G., 1880. Sopra alcuni Imenotteri della Tunisia.
Annali del Museo civico di Storia naturale di
Genova, 15: 399-404.
Grimshaw P.H., 1913. Mutilla europaea, Linn., at Brae-
mar. The Scottish Naturalist, 18: 142.
Haeseler V., 2008. Ameisen, Wespen und Bienen der
Ostfriesischen Inseln (Hymenoptera: Aculeata). In:
Niedringhaus R., Haeseler V. & Janiesch P. (Eds.).
Die Flora und Fauna der Ostfriesischen Inseln -
Artenverzeichnisse und Auswertungen zur Biod-
iversitat. Schriftenreihe Nationalpark Niedersachs-
isches Wattenmeer 11, Wilhelmshaven, 299-314.
Halloway J.D., 2009. Wallace’s line and other biogeo-
graphic boundaries. In: Gillespie R.G. & Clague D.A.
(Eds.). Encyclopedia of Islands. University of Cali-
fornia Press, Berkeley-Los Angeles-London, 967-
971.
Hammer K., 1950. On the insect fauna of Cyprus. Results
of the expedition of 1939 by Harald, Hakan and PH.
Lindberg VI. Hymenoptera aculeata. II. Chrysididae,
Scoliidae und Mutillidae der Insel Cypem. Societas
ScientiariumFennica Commentationes biologicae,
10: 1-17.
Hammer K., 1962. Mutilliden (Insecta: Hymenoptera) aus
dem Indischen Museum in Calcutta. Records of the
Indian Museum, 58: 1-51.
Hammer 0., Harper D.A.T. & Ryan P.D., 2001. PAST:
Paleontological statistics software package for
582
Pietro Lo Cascio
education and data analysis. Palaeontologia Electron-
ica, 4(1), http://palaeo-electronica.org/2001_l/past/
issuel_01.htm.
Haneda Y., 1979. A new species of Myrmosa (Hymenop-
tera, Tiphiidae) from Japan. Kontyu, 47: 540-542.
Haneda Y., 1982. [Aculeate Hymenoptera of the Island
of Amami-Oshima, collected in 1981], Hymenoptera
Communication (Mishima), 14: 43-56. (in Japanese)
Hashimoto T. & Nakanishi A., 1997. A list of the type-
specimens of Hymenoptera described by K. Tsuneki
in the Museum of Nature and Human Activities,
Hyogo (MNHAH). Catalogue of Collections in the
Museum of Nature and Human Activities, Hyogo, 2:
1-5+1-47.
Heads M., 2013. The Biogeography of Australasia: a
molecular analysis. Cambridge University Press,
Cambridge, xii+493 pp.
Hilbum D.J., Marsh P.M. &Schauff M.E., 1990. Hymen-
optera of Bermuda. Florida Entomologist, 73: 161—
176.
Hill F.L., 1955. Notes on the natural history of Monte
Bello Islands. Proceedings of the Linnean Society of
London, 165: 113-124.
Hisamatsu M., 2004. [List of Hymenoptera recorded in
Ibaraki Prefecture]. Bulletin of Ibaraki Nature
Museum, 7: 125-164. (in Japanese)
Hohmann H., La Roche F., Ortega G. & Darquin J., 1993.
Bienen, Wespen und Ameisen der Kanarischen
Inseln. Band I.Veroffentlichungen aus dem Ubersee-
Museum Bremen Naturwissenschaften, 12: 14-712.
Holt B.G., Lessard J.-P., Borregaard M.K., Fritz S.A.,
Araujo M.B., Dimitrov D., Fabre P.-H., Graham
C.H., Graves G.R., Jonsson K.A., Nogues-Bravo D.,
Wang Z., Whittaker R.J., Fjeldsa J. & Rahbek C.,
2013. An update of Wallace’s zoogeographic regions
of the world. Science, 339: 74-78.
Hurd P.D. Jr., 1951. The California velvet ants of the
genus Dasymutilla Ashmead (Hymenoptera: Mutill-
idae). Bulletin of the California Insect Survey, 1 : 89-
114.
Ikudome S. & Yamane S., 2009. Ants, wasps and bees of
Take-shima, Northern Ryukyus, Japan (Hymenop-
tera, Aculeata). Bulletin of the Institute Minami-
Kyushu Regional Science, Kagoshima Women’s
Junior College, 25: 1-8.
Invrea F., 1940. Mutillidi dell’isola di Cipro raccolti dal
Sig. G.A. Mauromoustakis. Bollettino della Societa
entomologica italiana, 72: 118-122.
Invrea F., 1941a. Studi sui mutillidi e crisidi delTA.O.I.
V. Mutillidi nuovi deHTmpero e indicazioni di altre
specie etiopiche. Memorie della Societa entomolo-
gica italiana, 20: 5-18.
Invrea F., 1941b. Mutillidi raccolti dal Principe Della
Torre e Tasso nelle isole italiane delTEgeo. Bollettino
della Societa entomologica italiana, 73: 38-40.
Invrea F., 1942. Nuovi contributi alia conoscenza della
fauna delle isole italiane delTEgeo. 17. Mutillidae e
Chrysididae (Hymenoptera). Bollettino del Labor-
atorio di Zoologia generale e agraria di Portici, 32:
104-117.
Invrea F., 1943. A proposito di una Smicromyrme dell’
Isola di Borneo, nota tassonomica e cambiamento di
nome (Hymenoptera, Mutillidae). Annali del Museo
civico di Storia naturale di Genova, 61 (1942): 191-
193.
Invrea F., 1951. Mutillidi nuovi o notevoli del bacino
mediterraneo (Hymenoptera Mutillidae). II parte.
Bollettino della Societa entomologica italiana, 8 1 :
34-43.
Invrea F., 1952a. I Mirmosidi d’ltalia (Hymenoptera:
Myrmosidae). Memorie della Societa entomologica
italiana, 3 1 : 5-2 1 .
Invrea F., 1952b. Imenotteri raccolti da L. Ceresa in
Sardegna. I. Crisidi, Mirmosidi e Mutillidi. Atti della
Societa italiana di Scienze naturali, 91: 220-228.
Invrea, F. 1952c. Primo contributo per lo studio dei
mutillidi dell’ isola di Sardegna. Bollettino del Labor-
atory di Zoologia agrariae Bachicoltura del R. Isti-
tuto superiore agrario di Milano, 18: 81-86.
Invrea F., 1953. Mutillidi nuovi o notevoli del bacino
mediterraneo (Hymenoptera Mutillidae). Ill Nota.
Bollettino della Societa entomologica italiana, 83:
9-17.
Invrea F., 1954. Mutillidi della Dalmazia e del litorale
montenegrino. I. Memorie della Societa entomolo-
gica italiana, 32: 143-159.
Invrea F., 1955a. Imenotteri raccolti da L. Ceresa in
Sardegna, II. Altri reperti di Mutillidi e Mirmosidi
con quattro nuove specie. Atti della Societa italiana
di Scienze naturali, 94: 233-254.
Invrea F., 1955b. Osservazioni e rilievi su Myrmilla
cliiesii (Spin.) e descrizione di una nuova specie (Hy-
menoptera, Mutillidae). Bollettino della Societa
entomologica italiana, 85: 98-107.
Invrea F., 1957. Nota preliminare sui Mutillidi e Crisidi
dell’isola di Lampedusa (Hymenoptera). Bollettino
della Societa entomologica italiana, 87: 14-17.
Invrea F., 1958. Mutillidi nuovi o notevoli del bacino
mediterraneo. VI Nota (Hymenoptera Mutillidae).
Bollettino della Societa entomologica italiana, 88:
143-147.
Invrea F., 1960. Mutillidae. In: Zavattari E. (Ed.).
Biogeografia delle Isole Pelagie. Rendiconti dell’
Accademia nazionale dei Lincei, 11: 364-366.
Invrea F., 1962. Brevi note sulla Ronisia barbara (L.) del
Nord Africa. Bollettino della Societa entomologica
italiana, 92: 93-94.
Invrea F., 1964. Fauna d’ltalia V. Mutillidae - Myr-
mosidae. Calderini, Bologna, xii+303 pp.
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
583
Invrea F., 1965. Studi sugli Apterogynidi e Mutillidi della
Palestina (Hymenoptera). Memorie della Societa
entomologica italiana, 44: 53-93.
Invrea F., 1966. Mutillidi di Malta (Hymenoptera). Bol-
lettino dell’Accademia Gioenia di Scienze naturali,
8: 664-668.
Jacobson E.R., 1909. Die nieuwe fauna van Krakatau.
Jaarverslag van den Topographischen Dienst in
Nederlandsch-Indie, 4: 192-211.
Jennings J.T. & Austin A.D., 2015. Synopsis of the
hymenopteran fauna of Lord Howe Island with a
preliminary checklist of species. Zootaxa, 393 1 : 423-
432.
Jennings J.T., Krogmann L. & Burwell C., 2013. Review
of the hymenopteran fauna of New Caledonia with a
checklist of species. Zootaxa, 3736: 1-53.
King J.J.F.X., 1915. Mutilla europaea at Ballater. The
Scottish Naturalist, 45: 287-288.
Krombein K.V. 1939. Description of a new Madagascan
Lophotilla (Hymenoptera: Mutillidae). Annals of the
American Entomological Society, 33: 316-317.
Krombein K.V., 1949a. The Aculeate Hymenoptera of
Micronesia. I. Scoliidae, Mutillidae, Pompilidae and
Sphecidae. Proceedings of the Hawaiian Entomolo-
gical Society, 13: 367—4 1 0.
Krombein K.V., 1949b. Notes on two West Indian
Mutillidae (Hymenoptera). Entomological news, 60:
72-73.
Krombein K.V., 1951. Notes on some Madagascan
Mutillidae with description of two new species (Hy-
menoptera, Scolioidea). Memoires de l’lnstitut Scien-
tifiques de Madagascar, 5: 285-294.
Krombein K. V., 1 97 1 . A monograph of the Mutillidae of
New Guinea, Bismarck Archipelago and Solomon
Islands, Part I: Mutillinae (Hymenoptera, Aculeata).
In: Asahina S. et al. (Eds.). Entomological essays:
to commemorate the retirement of Professor K.
Yasumatsu. Hokuryukan Publ. Co. Ltd., Tokyo, 25-
60.
Krombein K.V., 1972. Monograph of the Madagascan
Mutillidae (Hymenoptera). Part I: Myrmillini, Mu-
tillini and Smicromyrmini. Annales du Musee Royal
d’Afrique Centrale, Serie in-8°, Sciences Zoologique,
199: i-x+1-61.
Krombein K.V., 1978. Biosystematic studies of Ceylonese
wasps, III. Life history, nest and associates of Paralep-
tomenes mephitis (Cameron) (Hymenoptera, Eumen-
idae). Journal of Kansas Entomological Society, 5 1 :
721-734.
Krombein K.V., 1979a. Biosystematic studies of Ceylonese
wasps, IV. Kudakrumiinae, a new subfamily of
primitive wasps (Hymenoptera, Mutillidae). Trans-
actions of the American Entomological Society, 105:
67-83.
Krombein K.V., 1979b. Superfamily Scolioidea. In:
Krombein K.V., Hurd P.D. Jr., Smith D.R. & Burks
B.D. (Eds.). Catalog of Hymenoptera in America
North of Mexico. Vol. 2. Apocrita (Aculeata).
Smithsonian Institution Press, Washington, 1253—
1321.
Krombein K.V., 1981. The Smithsonian insect project in
Sri Lanka, 1969-1975. Spolia Zeylanica, 35 (1980):
119-133.
Krombein K.V., 1982. A preliminary analysis of affinities
and derivation of the wasp fauna of Sri Lanka (Hy-
menoptera: Aculeata). Entomologia Generalis, 8: 43-
50.
Krombein K.V. & Lelej A.S., 1999. Biosystematic
studies of Ceylonese wasps, XXII. Bethsmyrmilla, a
new genus of mutillid wasps (Hymenoptera: Mutill-
idae: Myrmillinae). Proceedings of the Entomologi-
cal Society of Washington, 101: 143-148.
Krombein K.V., Norden B.B., Rickson M.M. & Rickson
F.R. 1999. Biodiversity of the domatia occupants
(ants, wasps, bees, and others) of the Sri Lankan
myrmecophyte Humboldtia laurifolia Vahl (Fabaceae).
Smithsonian Contributions to Zoology, 603: i-iv+1-
34.
Kuhlmann M., 2006. Fauna and biogeography of the bees
and wasps of the Cook Islands (Hymenoptera
Aculeata). Journal of Hymenoptera Research, 15: 26-
37.
Lelej A.S., 1985. Osy-nemki (Hymenoptera, Mutillidae)
fauny SSSR i sopredelnykh stran [Mutillids (Hymen-
optera, Mutillidae) of the URSS and neighboring
countries], Nauka, Leningrad, 268 pp. (in Russian)
Lelej A.S., 1993. A new genus of velvet ants from Sri
Lanka (Insecta, Hymenoptera, Mutillidae). Spixiana,
16: 233-236.
Lelej A.S., 1995. To the knowledge of East Asian species
of the tribe Smicromyrmini Bischoff, 1920 (Hymen-
optera, Mutillidae) with description of four new
genera and eight new species. Far Eastern Entomo-
logist, 13: 1-28.
Lelej A.S., 1996a. To the knowledge of the East Asian
species of tribe Trogaspidiini Bischoff, 1920 (Hy-
menoptera, Mutillidae) with description of eight new
genera and two new species. Far Eastern Entomolo-
gist, 30: 1-24.
Lelej A.S., 1996b. Mutillid wasps collected in Malaysia
and Indonesia by Dr. Sk. Yamane (Hymenoptera,
Mutillidae). Tropics, 6: 91-104.
Lelej A.S., 2002. Catalogue of the Mutillidae (Hymen-
optera) of the Palaearctic region. Dalnauka, Vla-
divostok, 172 pp.
Lelej A.S., 2005. Catalogue of the Mutillidae (Hymen-
optera) of the Oriental Region. Dalnauka, Vla-
divostok, 250 pp.
584
Pietro Lo Cascio
Lelej A.S., 2012. 58. Sem. Mutillidae. In: Lelej A.S.
(Ed.). Annotirovannyy katalog nasekomykh Dal’-
nego Vostoka Rossii. 1 . Pereponchatokrylykh [An-
notated Catalogue of the insects of the Russian Far
East. 1. Hymenoptera]. Dalnauka, Vladivostok, 406-
407. (in Russian)
Lelej A.S. & Brothers D.J., 2008. The genus-group
names of Mutillidae (Hymenoptera) and their type
species, with a new genus, new name, new syn-
onymies, new combinations and lectotypifications.
Zootaxa, 1889: 1-79.
Lelej A.S. & Harten A. van, 2006. A review of the
Mutillidae (Hymenoptera) of Yemen. Zootaxa, 1226:
1-50.
Lelej A.S. & Harten A. van, 2014. Order Hymenoptera,
family Mutillidae. Genus Physetopoda Schuster,
1949. In: Harten A. van (Ed.) Arthropod fauna of the
United Arab Emirates. Vol. 5. Dar al Ummah, Abu
Dhabi, 505-520.
Lelej A.S. & Krombein K.V., 2001. Review of the Ori-
ental mutillid wasps of the subfamily Ticoplinae (Hy-
menoptera, Mutillidae). Far Eastern Entomologist,
99: 1-18.
Lelej A.S. & Yamane S., 1992. Interesting velvet ants
(Hymenoptera, Mutillidae) from Japan and Korea.
Japanese Journal of Entomology, 60: 625-632.
Lelej A.S., Choi J.-K. & Tripotin P., 2001. Review of the
mutillid wasps (Hymenoptera, Mutillidae) of Korea.
Far Eastern Entomologist, 96: 1-15.
Lelej A.S., Standfuss L. & Standfuss K., 2003a. To the
knowledge of the mutillid wasps of Greece (Hy-
menoptera, Mutillidae). Entomofauna, 24: 121-140.
Lelej A.S., Standfuss L. & Standfuss K., 2003b. To the
knowledge of the mutillid wasps of Greece (Hy-
menoptera, Mutillidae): Addition. Entomofauna, 24:
305-308.
Lenko K., 1964. Hoplocrates mystica (Gerstaecker,
1874) sinonimo de Hoplocrates cephalotes (Swe-
derus, 1787) (Hymenoptera, Mutillidae). Revista
brasileira de entomologia, 11: 91-96.
Leo P., 1989. Segnalazioni faunistiche italiane. 162. Myr-
mosa longicollis Tournier 1889 (Hymenoptera, Myr-
mosidae). Bollettino della Societa entomologica
italiana, 121: 234.
Lepeletier de Saint-Fargeau A., 1845. Histoire naturelle
des Insectes. Hymenopteres. Tome Troisieme. Lib-
rairie Encyclopedique de Roret, Paris, 646 pp.
Ljubomirov T., 2006. The mutillid wasp collection of the
National Museum of Natural History in Sofia (Hy-
menoptera: Mutillidae). Historia naturalis bulgarica,
17: 81-92.
Ljubomirov T., 2011. Range re-evaluation and morpho-
logical recognition in two West Palaearctic species of
Myrmilla Wesmael, 1851 (Insecta: Hymenoptera:
Mutillidae). Annalen der Naturhistorischen Museums
in Wien, (B) 112: 19-72.
Lo Cascio P., 2000. A new species of Smicromyrme from
the Cyclades Islands (Hymenoptera, Mutillidae).
Fragmenta entomologica, 32: 305-311.
Lo Cascio P., 2014. Physetopoda fusculina (Invrea,
1955), new record for the Corsican Islands (Hy-
menoptera Mutillidae). II Naturalista siciliano, 38:
385-386.
Lo Cascio P. & Romano M., 2004. Mutillid wasps of the
Italian minor islands (Hymenoptera Mutillidae). Bol-
lettino della Societa entomologica italiana, 136: 227-
250.
Lo Cascio P., Sforzi A. & Boni Bartalucci M., 1998. I
mutillidi del Parco Naturale della Maremma (Hymen-
optera Aculeata: Mutillidae). Frustula entomologica,
20: 127-135.
Lo Cascio P., Romano M. & Grita F., 2012. New species
and new records of mutillid wasps of the Socotra
Archipelago (Hymenoptera: Mutillidae). In: Hajek J.
& Bezdek J. (Eds.). Insect biodiversity of the Socotra
Archipelago. Acta Entomologica Musei Nationalis
Pragae, 52 (suppl. 2): 535-544.
Manley D.G., 1999. Synonymy of Dasymutilla nocturna
Mickel (Hymenoptera: Mutillidae). Pan-Pacific
Entomologist, 75: 18-22.
Manley D.G. & Pitts J.P., 2007. Tropical and subtropical
velvet ants of the genus Dasymutilla Ashmead
(Hymenoptera: Mutillidae) with description of 45
new species. Zootaxa, 1487: 1-128.
Mantero G., 1900. Viaggio di Lamberto Loria nella
Papuasia orientale. XXV. Mutillidae e Scoliidae. An-
nali del Museo civico di Storia naturale di Genova,
20: 580-592.
Mantero G,, 1905. Materiali per una fauna dell’Arcipelago
Toscano. IV. Isola del Giglio. Catalogo degli Imenot-
teri. Parte I. Annali del Museo civico di Storia nat-
urale “G. Doria”, 42: 40-86.
Mantero G., 1909. Imenotteri dell’Isola dell’Asinara
raccolti dal Signor Silvio Folchini. Bullettino della
Societa entomologica italiana, 41: 56-83.
Masi L., 1933. Raccolte entomologiche nell’Isola di
Capraia fatte da C. Mancini e F. Capra (1927-1931).
III. Hymenoptera Aculeata. Memorie della Societa
entomologica italiana, 11:18 1-205 .
Matsumura S., 1911. Shin Nihon senchu zukai [The illus-
trated thousand Insects of Japan], Toko-Shoin, Tokio,
147 pp. (in Japanese)
Matsumura S. & Uchida T., 1926. Die Hymenopteren-
Fauna von den Riukiu Inseln. Insecta Matsumurana,
1: 35-53, 63-77.
Matteini Palmerini M., 1992. Mutillidae del Museo
civico di Storia naturale di Verona (Hymenoptera)
(Contributo alia conoscenza dei mutillidi paleartici).
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
585
Bollettino del Museo civico di Storia naturale di
Verona, 16 (1989): 187-226.
McAlister W.H. & McAlister M.K., 1993. A naturalist’s
guide: Matagorda Island. University of Texas Press,
Austin, 354 pp.
McCallan E., 1942. A note on Timulla ( Timulla ) eriphyla
Mickel (Hym., Mutillidae), a parasite of Tachysphex
blatticidus F.X. Williams (Hym., Larridae), from
Trinidad, B.W.I. Proceedings of theRoyal Entomolo-
gical Society of London, 17: 18.
McCallan E., 1950. Observations on tropical wasps in
Trinidad. Proceedings ofthe 8th International Con-
gress of Entomology (Stockholm, 8-14 August,
1948), 204-206.
McCallan E., 1990. Mutillidae of Trinidad. Sphecos, 19:
21 - 22 .
McCallan E., 1991a. Mutillidae of Inhaca Island,
Mozambique. Sphecos, 21: 13.
McCallan E., 1991b. Nesting behavior and prey of sand
wasps in Trinidad (Hymenoptera: Sphegidae: Nysson-
inae). The Entomologist, 110: 134-138.
Mellor J.E.M., 1932. Observations on Insects from
Mount Troodos in Cyprus. Proceedings of the Ento-
mological Society of London, 7: 62.
Mickel C.E., 1926. A new species of Dasymutilla from
Cuba (Hymenoptera: Mutillidae). Entomologische
Mitteilung, 15: 197-198.
Mickel C.E., 1928a. Biologic and taxonomic investiga-
tions of the mutillid wasps. United States National
Museum Bulletin, 143: 1-351.
Mickel C.E., 1928b. The Mutillidae of Cuba (Hym.).
Psyche, 35: 16-28.
Mickel C.E., 1933. The Mutillidae of Formosa. Annals
of the Entomological Society of America, 26: 381—
423.
Mickel C.E., 1934. The Mutillidae of the Philippine
Islands (Hymenoptera). Philippine Journal of Sciences,
54: 91-219.
Mickel C.E., 1935. The mutillid wasps of the islands of
the Pacific Ocean (Hymenoptera: Mutillidae). Trans-
actions of the Royal Entomological Society of Lon-
don, 83: 177-312.
Mickel C.E., 1936. A new species of Smicromyrme from
Japan (Mutillidae, Hymenoptera). Mushi, 9: 52-54.
Mickel C.E., 1937. New species and records of Mutill-
idae (Hymenoptera) from Borneo and the Solomon
Islands. Annals and Magazine of Natural History, 19:
441^156.
Mickel C.E., 1938. The neotropical mutillid wasps of the
genus Timulla Ashmead (Hymenoptera: Mutillidae).
Transactions of the Royal Entomological Society of
London, 87: 529-680.
Mickel C.E., 1939. A monograph of the neotropical mu-
tillid genus Hoplomutilla Ashmead (Hymenoptera:
Mutillidae). Revista de Entomologia (Rio de Janeiro),
10: 337-403.
Mickel C.E., 1941. Monograph of the South American
genus Hoplocrates Mickel (Hymenoptera: Mutill-
idae). Revista de Entomologia (Rio de Janeiro), 12:
341-414.
Mickel C.E., 1952. The Mutillidae wasps of British
Guiana. Zoologica, 37: 105-150.
Mickel C.E., 1961. The unknown males of three mutillids
described from Jamaica (Hymenoptera: Mutillidae).
Proceedings of the Royal Entomological Society of
London, 30: 103-106.
Mingo E. & Compte [Sart] A., 1963. Los Scolioidea de
Baleares (Hymenoptera). Boletin de la Real Sociedad
espanola de Historia natural, 61: 69-96.
Monastra A., 1989. Nuovi dati sui mutillidi e mirmosidi
italiani. I. Mutillidae: Mymillinae Bisch. (Hymenop-
tera). Bollettino della Societa entomologica italiana,
121:204-212.
Monastra A., 1990. Nuovi dati sui mutillidi e mirmosidi
italiani. II. Mutillidae Cystomutillinae Invr., Mutill-
inae Bisch., Trogaspidinae Bisch., Smicromyrminae
Bisch., Dasylabrinae Skor. e Myrmosidae Myrmosa
Latr. (Hymenoptera). Bollettino della Societa ento-
mologica italiana, 122: 133-140.
Montague P.D., 1914. A report on the fauna of the Monte
Bello Islands. Proceedings of the Zoological Society
of London, 625-652.
Motschulsky V.I., 1863. Essai d’un catalogue des In-
sectes de File Ceylon. Bulletin de la Societe
Imperiale des Naturalistes de Moscou, 36: 1-153.
Murota T., 1973a. [Some aculeate Hymenoptera collec-
ted in the Amami group of the Ryukyus]. Life Study,
17: 100-102. (in Japanese)
Murota T., 1973b. [Sphecidae, Mutillidae, Scoliidae and
Chrysididae collected in Formosa in 1972], Life
Study, 17 (3-4): 115-120. (in Japanese)
Miyamoto S., 1959. Biological notes on Mutilla euro-
paea mikado. Akitu, 8: 85-90.
Nagase H., 2004. Hymenoptera (excl. Formicidae). In:
Insect fauna of Kanagawa. Ill (Mecoptera, Siphonap-
tera, Diptera, Lepidoptera, Trichoptera, Hymenop-
tera). Kanagawa Konchu Danwakai, Odawara,
1241-1326. (in Japanese)
Nagase H. & Kawashima I., 2012. On a gynandromorph
specimen of Bischoffitilla pungens (Smith), which
reveals two synonyms in japanese mutillid wasps
(Hymenoptera, Mutillidae). Japanese Journal of
Systematic Entomology, 18: 31-33.
Nagy C.G., 1972. Records on the genus Smicromyrme
Thoms, from Greece (Hym. Mutillidae). Biologia
Gallo-Hellenica, 4: 27-31.
New T.R., 2002. Neuroptera of Wallacea: a transitional
fauna between major geographical regions. Acta Zo-
ologica Academiae Scientiarum Hungaricae, 48
(suppl. 2): 217-227.
Nieves-Aldrey J.L. & Fontal-Cazalla F.M., 1997. Los
insectos de la isla de Coiba (Panama). Abundancia
586
Pietro Lo Cascio
y dinamica estcional. Analisis del caso del los
himenopteros (Hexapoda, Hymenoptera). In: Castro-
viejo S. (Ed.). Flora y fauna del Parque Nacional de
Coiba (Panama). Inventario preliminar. AECI,
Madrid, 239-361.
Nonveiller G., 1972. Mutillides de File de Crete, re-
coltees lors d’un voyage en automne 1959 (Quat-
rieme contribution a la connaissance des mutillides,
Hymenopteres). Acta entomologica Jugoslavia, 7:
3-23.
Nonveiller G., 1979a. Recherches sur les mutillides de
EAfrique (Hymenoptera, Mutillidae). VIII. Revision
des genres Ctenotilla, Cephalotilla et Pseudoceph-
alotilla sensu Bischoff. Memoires publies par l’lnsti-
tut pour la Protection des Plantes de Beograd, 13
(1978): 1-185.
Nonveiller G., 1979b. La Glossomyrme mervensis (Ra-
doszkowski) 1893 ( Smicromyrme fertoni Invrea
1953) est-elle l’autre sexe de YArtiotilla biguttata
(Costa) 1858? (Hymenoptera, Mutillidae). Neuvieme
contribution a la connaissance des Mutillides palearc-
tiques. Acta entomologica Jugoslavia, 15: 5-18.
Nonveiller G,, 1990. Catalogue of the Mutillidae, Myr-
mosidae and Bradynobaenidae of the Neotropical
region including Mexico (Insecta, Hymenoptera).
Hymenopterorum Catalogus (nova editio), SPB
Academic Publ., Den Haag, 150 pp.
Nonveiller G., 1994. Revision des males du genre Stenomu-
tilla de la Palearctique occidentale avec description
d’especes nouvelles (Hymenoptera, Mutillidae).
(lleme contribution a la connaissance des Mutillides
palearctiques). Bollettino del Museo civico di Storia
naturale di Verona, 18 (1991): 137-194.
Nonveiller G., 1995a. Recherches sur les Mutillides de
EAfrique XVII. Note pour servir a la connaissance
du genre Pristomutilla Ashmead, 1903 avec descrip-
tion du male encore inconnu du genre, d’espece
nouvelle du genre et des nouveaux sous-genres
Diacanthotilla et Acanthomutilla (Hymenoptera, Mu-
tillidae). Entomofauna, 16: 29-119.
Nonveiller G., 1995b. A preliminary approach to a revi-
sion of the Afrotropical representatives of the genus
Trogaspidia Ashmead, 1899 (sensu Bischoff, 1920)
(Hymenoptera, Mutillidae) (Third contribution to
the knowledge of the Afrotropical Trogaspidia ).
Annales de la Societe entomologique de France, 32:
349-368.
Nonveiller G. & Cetkovic A., 1995. Recherches sur les
Mutillides de EAfrique (Hymenoptera, Mutillidae).
XIX. Revision du genre Lophotilla Bischoff, 1920.
Etude des males. Nouvelle Revue d’Entomologie,
(n.s.) 12(2-3): 161-185.
Nonveiller G. & Cetkovic A., 1996. Seriatospidia n. gen.
with a description of three new species (Hymenoptera
Mutillidae). Tropical Zoology, 9: 305-314
Nonveiller G. & Petersen B., 1995. Recherches sur les
Mutillides de EAfrique (Hymenoptera, Mutillidae).
XIX. Remarques concemant la Trogaspidia floralis
(Klug, 1829) et formes ou especes apparentees, deja
connues ou nouvelles. (Deuxieme contribution a la
connaissance du genre Trogaspidia de EAfrique).
Beitrage zur Entomologie, 45: 181-198.
Nonveiller G., Perovic F. & Gjerapic G., 1998. Resultats
des recherches recentes sur les mutillides de Croatie
avec une liste des especes constatees a ce jour en
Croatie (Hymenoptera, Mutillidae). Entomologia
Croatica, 3: 13-31.
Ogawa H., Nosaka M., Hashii N., Yokoyama M. & Tsur-
usaki N., 2012. [Records of faunal survey of insects
of Tottori Sand Dunes in 201 1 with comments to the
fauna of Sakyu Oasis]. Natural History Research of
San’in, 7: 31-40. (in Japanese)
Olson D.M., Dinerstein E., Wikramanayake E.D.,
Burgess N.D., Powell G.V.N., Underwood E.C.,
D’Amico J.A., Itoua I., Strand H.E., Morrison J.C.,
Loucks C.J., Allnutt T.F., Ricketts T.H., Kura Y.,
Lamoreux J.F., Wettengel W.W., Hedao P. & Kassem
K.R., 2001. Terrestrial ecoregions of the world: a new
map of life on Earth. BioScience, 51: 933-938.
Olsoufieff G., 1936. [communication about Mutilla
hildebrandti, without title]. L’Echo du Sud, Organe
independent des interets generaux du Sud de Mada-
gascar, 383: 8.
Olsoufieff G., 1938. Revision systematique des Mutilles
de Madagascar. Bulletin de EAcademie Malgache,
(n.s.) 20: 171-217.
Ortiz A.R., 1976. The effect of human activity on the
insect fauna of Padre Island. MS Thesis, Texas A & I
University, Kingsville, 71 pp.
O’Toole C.,1975. The systematics of Timulla oculata
(Fabricius) (Hymenoptera, Mutillidae). Zoologica
Scripta, 4: 229-251.
Pagden H.T., 1938. On a new species of Rhopalomutilla
(Hym. Mutillidae) from Java. Journal of the Feder-
ated Malay States Museums, 18: 213-217.
Pagden H.T., 1949. Description and records of Austro-
Malaysian Methocidae and Mutillidae (Hymenop-
tera). Transactions of the Royal Entomological
Society of London, 100: 191-231.
Pagliano G., 2003. Ricerche imenotterologiche nelle
isole di Lampedusa e Pantelleria (Hymenoptera
Apocrita). II Naturalista siciliano, 27: 115-149.
Pagliano G., 2005. I Mutillidae della collezione Spinola
(Hymenoptera). Bollettino del Museo regionale di
Scienze naturali di Torino, 23: 267-322.
Pagliano G., 2009. Physetopoda rameli, nuova specie di
Mutillidae di Grecia (Hymenoptera). Bollettino della
Societa entomologica italiana, 141: 179-186.
Pagliano G., 2011. Ricerche imenotterologiche nell’isola
di Lampedusa con descrizione di una nuova specie di
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
587
mutillide (Hymenoptera, Mutillidae). Fragmenta en-
tomologica, 43: 215-224.
Pagliano G. & Matteini Palmerini M., 2014. Contributo
alio studio dei mutillidi della Tunisia (Insecta Hymen-
optera Mutillidae). Quaderno di Studi e Notizie di
Storia naturale della Romagna, 39: 175-209.
Pagliano G. & Strumia F., 2000. Imenotteri Chrysididae,
Mutillidae e Myrmosidae della Corsica .Acte du
Congres International “Environment et identite en
Mediterranee” (Universite Pascal Paoli, Corte, 13-
16 Juin 2000), 209-212.
Pagliano G. & Strumia F., 2007. Contributo alia conoscenza
dei Mutillidae italiani (Hymenoptera, Scolioidea).
Bollettino del Museo regionale di Scienze naturali di
Torino, 24: 25-110.
Pagliano G. & Strumia F., 2013. Smicromyrme corriasi
n. sp. from Sardinia and new data on some Italian
Smicromyrme and Stenomutilla (Hymenoptera,
Mutillidae). II Naturalista valtellinese, Atti del Museo
civico di Storia naturale di Morbegno, 24: 55-66.
Paik J.C. (Ed.), 1994. Report academic survey on the
insects of the Chejudo (Quelpart Island). Chejudo
Folklore and Natural History Museum, Chejudo, 212
pp.
Paik J.C. (Ed.), 1995. Insects of Quelpart Island. Chejudo
Folklore and Natural History Museum, Chejudo, 614
pp.
Paulian R., 1950. Recherches sur les insectes d’impor-
tance biologique de Madagascar. IX. Stenomutilla
splendida Ols. (Hymen. Mutill.). Memoires de F
Institut Scientifique de Madagascar, 3: 389-391.
Perez-Gelabert D.E., 2008. Arthropods of Hispaniola
(Dominican Republic and Haiti): A checklist and
bibliography. Zootaxa, 1831: 1-530.
Petersen B., 1988. The Palaearctic Mutillidae of I.C.
Fabricius and some related material (Insecta, Hymen-
optera, Aculeata). Steenstrupia, 14: 129-224.
Pilgrim E.M. & Pitts J.P., 2006. A molecular method for
associating the dimorphic sexes of velvet ants
(Hymenoptera: Mutillidae). Journal of the Kansas
Entomological Society, 79: 222-230.
Pitts J.P., 2007. Description of the female of Sphaerop-
thalma galapagensis Williams and notes on Morsyma
Fox and Caenotilla Pitts and Manley (Hymenoptera,
Mutillidae). Pan-Pacific Entomologist, 83: 95-100.
Pitts J.P & McHugh J.V., 2002. Review of Acrophotopsis
Schuster (Hymenoptera: Mutillidae: Sphaeropthal-
minae), with description of a new species from Baja
California. Journal of Hymenoptera Research, 11:
338-349.
Pizarro-Araya J., Alfaro F.M., Cortes-Contreras M.,
Rivera C., Vargas-Talciani P. & Ojanguren-Affilastro
A. A., 2014. Epigean Insects of Chanaral Island
(Pinguino de Humboldt National Reserve, Atacama,
Chile). Journal of Entomological Research Society
16: 39-50.
Portuondo Ferrer E. & Fernandez-Triana J.L., 2003.
Sistematica del los himenopteros de Cuba: estado de
conocimiento y perspectivas. Bolletin de la Sociedad
entomologica aragonesa, 32: 29-36.
Portuondo Ferrer E. & Fernandez-Triana J.L., 2004. Biod-
iversidad del orden Hymenoptera en los macizos
montanosos de Cuba oriental. Boletin de la Sociedad
entomologica aragonesa, 35: 121-136.
Quintero Arias D. & Cambra T.R.A., 2001. On the iden-
tity of Scaptopoda F. Lynch Arribalzaga, new taxo-
nomic changes and new distribution records for
neotropical Mutillidae (Hymenoptera), with notes on
their biology. Transactions of the American Entomo-
logical Society, 127: 291-304.
Radoszkowski O., 1885. Revision des armures copu-
latrices des males de la famille de Mutillides. Horae
Societatis Entomologicae Rossicae, 19: 3-49.
Ramakrishna T.V.A., 1916. A catalogue of new wasps
and bees (Fossores, Diploptera and Anthophila)
described from the Indian Region since 1 897. Journal
of the Bombay Society of Natural History, 24: 539-
560.
Reck Bartholomay P, 2014. Taxonomia de Traumatomu-
tilla Andre, 1901 (Hymenoptera: Mutillidae): grupos
de especie e a fauna da Amazonia brasileira. Pos-
Gradua9ao Dissertat^ao em Ciencias Biologicas
(Entomologia), Instituto Nacional de Pesquisas da
Amazonia, Manaus, 107 pp.
Richards O.W., 1980. Scolioidea, Vespoidea and
Sphecoidea. Hymenoptera, Aculeata. In: FittonM.G.
(Ed.). Handbooks for the identification of British
Insects. Vol. VI, Part 3(b). Royal Entomological
Society of London, London, 118 pp.
Riggio G., 1885. Materiali per una fauna entomologica
dell’isola di Ustica. Prima contribuzione. II Natur-
alista siciliano, 5: 52-56.
Riggio G. & De Stefani-Perez T., 1888. Sopra alcuni
imenotteri dell’isola di Ustica. II Naturalista siciliano,
7: 145-150.
Rohwer S.A., 1910. Some new hymenopterous insects
from the Philippine Islands. Proceedings of the
United States National Museum, 37: 657-660.
Romano M., 2004. Smicromyrme agusii e il maschio di
Smicromyrme ( Eremotilla ) perisii (Hymenoptera,
Mutillidae). Bollettino della Societa Entomologica
Italiana, 136: 173-178.
Romano M., 2012. Nanomutilla vaucheri in Sardegna,
prima segnalazione per 1 ’Italia (Hymenoptera Mutil-
lidae). Bollettino della Societa entomologica italiana,
144: 23-27.
Sakagami S.F., 1980. Bionomics of the halictine bees in
northern Japan. I. Halictus ( Halictus ) tsingtouensis
(Hymenoptera, Halictidae) with noted on the member
of origins of eusociality. Kontyu, 48: 526-536.
588
Pietro Lo Cascio
Sakagami S.F., Ebmer A.W., Matsumura T. & Maeta Y.,
1982. Bionomics of the halictine bees in the Northern
Japan. II. Lasioglossum ( Evylaeus ) sakagamii (Hy-
menoptera, Apoidea, Halictidae) with taxonomic
notes on allied species. Kontyu, 50: 198-211.
Sakagami S.F., Ebmer A. W. & Tadauchi O., 1996. The
halictine bees of Sri Lanka and the vicinity. III. Sudila
(Hymenoptera, Halictidae). Part 1. Esakia, 36: 143—
189.
Saunders E., 1880. Synopsis of the British Heterogyna
and Fossorial Hymenoptera. Transactions of the
Royal Entomological Society of London, [1880]:
201-304.
Saunders E., 1881. Aculeate Hymenoptera at Hayling
Island and Bournemouth. Entomologist’s monthly
Magazine, 18: 113-114.
Saunders E., 1896. The Hymenoptera Aculeata of the
British Islands: a descriptive account of the families,
genera, and species indigenous to Great Britain and
Ireland, with notes as to habits, localities, habitats,
etc. L. Reeve & Co., London, 391 pp.
Saunders E., 1901. Balearic Insects. Hymenoptera
Aculeata. Entomologist’s monthly Magazine, 12:
208-211.
Saunders E., 1904. Hymenoptera Aculeata from Majorca
(1901) and Spain (1901-2). Transactions of the Royal
Entomological Society of London, 52: 591-666.
Saussure H. de, 1867a. Reise der osterreichschen
Fregatte Novara um die Erde in den Jahren 1857,
1858, 1859 unter den Befehlen des Commodore B.
von Wiillerstorf-Urbair. Zoologischer Theil. Zweiter
Band. Hymenoptera. Familien der Vespiden,
Sphegiden, Pompiliden, Crabroniden und Hetero-
gynen. C. Gerold’s Sohn, Wien, 138 pp.
Saussure H. de, 1867b. Mutillarum no varum species ali-
quot. Annales de la Societe entomologique de France,
7: 351-364.
Saussure H. de, 1890-1892. Histoire naturelle des
Hymenopteres. In: Grandidier A. (Ed.). Histoire
physique, naturelle et politique de Madagascar.
Volume XX. Imprimerie Nationale, Paris, (1): i-
xxi+1-176; (2): 177-590.
Saussure H. de, 1891. Hymenopteres nouveaux de
Madagascar. Bulletin de la Societe Entomologique
Suisse, 8: 253-269.
Schembri S.P., 1983. The Mutillidae of the Maltese
Islands, remarks and additions (Hymenoptera,
Aculeata). Bollettino della Societa entomologica
italiana, 115 (1-3): 25-30.
Schembri S.P., 1984. Notes on the subspecies of Ronisia
barbara (Hymenoptera: Mutillidae) in the Maltese
Islands. Central Mediterranean Naturalist, 1: 60-62.
Schulthess A. von, 1919. Verzeichnis von Dr. K.
Friederichs in Madagaskar erbeuteter Hymenopteren.
In: Friederichs K. (Ed.). Beobachtungen iiber einige
solitare Wespen in Madagaskar. Mitteilungen aus
dem Zoologischen Museum in Berlin, 9: 46-50.
Schulthess A. [de], 1929. Hymenopteres. In: Ghigi A.,
Issel R., Brian A., Santucci R., Citterio V. & Alzani
F. (Eds.). Ricerche faunistiche nelle isole italiane
dell’Egeo. Archivio zoologico italiano, 12-13: 263-
271.
Schulz W.A., 1912. Zweihundert alte Hymenopteren.
Zoologische Annalen, 4: 1-220.
Schuster R.M., 1946. A new species of Pseudomethoca
(Mutillidae) from the West Indies. Bulletin of the
Brooklyn Entomological Society, 40: 7-8.
Seavey F.A., 1892. Insects of Catalina Island. Zoe, 3:
262-263.
Seyrig A., 1936. Un mutillide parasite d’un lepidoptere:
Stenomutilla Freyi. In: Livre Jubilaire de M. Eugene-
Louis Bouvier. Firmin et Didot, Paris, 313-316.
Sichel J. & Radoszkowski O., 1869-1870. Essai d’une
monographic des Mutilles de l’ancien continent.
Horae Societatis Entomologicae Rossicae, 6: 139—
172, 173-309.
Simpson G.G., 1977. Too many lines; the limits of the
Oriental and Australian zoogeographic regions.
Proceedings of the American Philosophical Society,
121: 107-120.
Smith F., 1855. Catalogue of hymenopterous insects in
the collection of the British Museum. Part III. Mutil-
lidae and Pompilidae. Taylor & Francis, London, 206
pp.
Smith F., 1857-1858. Catalogue of the hymenopterous
insects collected at Sarawak, Borneo, Mount Ophir,
Malacca, and at Singapore, by A.R. Wallace. Journal
of the Proceedings of the Linnean Society, Zoology,
2:42-88, 89-130.
Smith F., 1858. Catalogue of hymenopterous insects col-
lected at Celebes by Mr. A.R. Wallace. Journal of the
Proceedings of the Linnean Society, Zoology, 3: 4-
27.
Smith F., 1859. Catalogue of hymenopterous insects col-
lected by Mr. A.R. Wallace at the Islands of Aru and
Key. Journal of the Proceedings of the Linnean
Society, Zoology, 3: 132-178.
Smith F., 1861a. Descriptions of new species of hymen-
opterous insects collected by Mr. A.R. Wallace at
Celebes. Journal of the Proceedings of the Linnean
Society, Zoology, 5: 57-93.
Smith F., 1861b. Catalogue of hymenopterous insects
collected by Mr. A.R. Wallace in the islands of
Bachian, Kaisaa, Amboyna, Gilolo, and at Dory in
New Guinea. Journal of the Proceedings of the
Linnean Society, Zoology, 5: 93-143.
Smith F., 1861-1862. Catalogue of hymenopterous in-
sects collected by Mr. A.R. Wallace in the islands of
Ceram, Celebes, Ternate, and Gilolo. Journal of the
Proceedings of the Linnean Society, Zoology, 6:36-
48, 49-66.
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
589
Smith F., 1864a. Catalogue of hymenopterous insects
collected by Mr. A.R. Wallace in the islands of
Mysol, Ceram, Waigiou, Bourn and Timor. Journal
of the Proceedings of the Linnean Society, Zoology,
7: 6-18.
Smith F., 1864b. Notes on the geographical distribution
of the aculeate Hymenoptera collected by Mr. A.R.
Wallace in the Eastern Archipelago. Journal of the
Proceedings of the Linnean Society, Zoology, 7: 109—
145.
Smith F., 1865. Descriptions of new species of hymenop-
terous insects from the Islands of Sumatra, Sula,
Gilolo, Salwatty, and New Guinea, collected by Mr.
A.R. Wallace. Journal of the Proceedings of the
Linnean Society, Zoology, 8: 61-94.
Smith F., 1873. Description of aculeate Hymenoptera of
Japan, collected by Mr. George Lewis at Nagasaki
and Hiogo. Transactions of the Entomological
Society of London, (1873): 181-206.
Smith F., 1874. Description of new species of Tenthredin-
idae, Ichneumonidae, Chrysididae, Formicidae, etc.
of Japan. Transactions of the Entomological Society
of London, (1874): 373-409.
Smith F. & Wallace A.R., 1873. A catalogue of the
aculeate Hymenoptera and Ichneumonidae of India
and Eastern Archipelago. Journal of the Linnean
Society of London, 11 (56): 285-348.
Smith F., 1879. Descriptions of new species of Hymen-
optera in the collection of the British Museum. Taylor
& Francis, London, xxi+240 pp.
Snelling R.R., 2005. Wasps, ants, and bees: aculeate Hy-
menoptera. In: Lazell J. (Ed.). Island: Fact and
Theory in Nature. University of California Press,
London, 283-296.
Sonan J., 1931. [Some wasps and bees of Hokoto
(Pescadores)]. Transactions of the Natural History
Society of Formosa, 21 (112): 6-8. (in Japanese)
Spencer-Smith D., Ramos S.J., McKenzie F., Munroe E.
& Miller L.D., 1988. Biogeographical affinities of the
butterflies of a “forgotten” island: Mona (Puerto
Rico). Bulletin of the Allyn Museum, 121 : 1-35.
Spicer W., 1 873. Notes on new or rare Hampshire insects.
1. Mutilla europaea (bee-ant). Journal of Proceedings
and Annual Report of the Winchester and Hampshire
Scientific and Literary Society, 1: 176-177.
Spinola M., 1839. Compte-rendu des Hymenopteres
recueillis par M. Fischer pendant son voyage en
Egypte, et communiques par M. le Docteur Waltl a
Maximilian Spinola. Annales de la Societe entomo-
logique de France, 7 (1838): 437-546.
Spinola M., 1840. Hymenopteres recueillis a Cayenne en
1839 par M. Leprieur, pharmacien de la Marine
Royale. Annales de la Societe entomologique de
France, 9: 129-204.
Spinola M., 1841. Hymenopteres recueillis a Cayenne en
1839 par M. Leprieur, pharmacien de la Marine
Royale. Seconde partie. Porte-aiguillons.Annales de
la Societe entomologique de France, 10: 86-149.
Spooner G.M., 1942. The Hymenoptera Aculeata in the
Dale Collection. 1. Introduction and notes to the
families Mutillidae to Pompilidae. Entomologist’s
Monthly Magazine, 78: 5-12.
Starr C.K., 1993. Mickel paratypes at the University of
the West Indies. Sphecos, 24: 21.
Starr C.K. & Hook A. W., 2003. The aculeate Hymenop-
tera of Trinidad, West Indies. Occasional Papers of
the Department of Life Sciences, University of the
West Indies, 12: 1-31.
Stelfox A.W., 1933. Some recent records for Irish Hy-
menoptera. Entomologist’s monthly Magazine, 69:
47-53.
Strumia F. & Pagliano G., 2014. Imenotteri Mutillidae
dell’Arcipelago Toscano. In: Lenzi A., Leoni L.,
Baldacci C., Brizzi B., De Santi C., Dell’Agnello P,
Domenici V., Feri E., Lenzi P, Montesarchio E.,
Piombanti P.P. & Santinelli M. (Eds.). Codice Ar-
monico 2014 - Quinto congresso di scienze naturali
- Ambiente toscano. ETS, Pisa, 250-254.
Strumia F., Pagliano G. & Wolf H., 2008. Mutillidae,
Chrysididae e Pompilidae dell’isola dell’Asinara
(Sardegna, Italia) (Hymenoptera). Frustula entomo-
logica, 30 (43): 47-53.
Suarez F.J., 1959a. Mutillidos espanoles nuevos o in-
teresantes de la collection del Instituto Espanol de
Entomologia (Hymenoptera). EOS, 35: 97-112.
Suarez F.J., 1959b. Especies nuevas o poco conocidas de
la fauna mediterranea. II nota (Hym. Myrmosidae,
Mutillidae). EOS, 35: 283-300.
Suarez F.J.,1970. Tres nuevos mutilidos espanoles
(Hym., Mutillidae). Graellsia, 25: 245-259.
Suarez F.J., 1975. Especies nuevas o poco conocidas de
la fauna Mediterranea. IV. Tres nuevas Smicromyrme
de la zona oriental (Hymenoptera, Mutillidae).
Archivos del Instituto de Aclimatacion, 20: 155-17 1 .
Suarez F.J., 1988. Mirmosidos de la Peninsula Iberica
(Hymenoptera, Myrmosidae). Graellsia, 44: 81-158.
Sugiura S., Tsuru T. & Yamaura Y., 2013. Effects of an
invasive alien tree on the diversity and temporal
dynamics of an insect assemblage on an oceanic is-
land. Biological Invasions, 15: 157-169.
Taeger A., Gaedike H. & Blank S.M., 2005. Katalog der
primaren Hymenopteren-Typen des DEI (unter
Auschluss der Symphyta und Sphecidae s.l.).
Beitrage zur Entomologie, 55: 151-250.
Takahashi H., 1993. Flower- visiting activities of the
aculeate wasps on Hachijo-jima Island of the Izu
Islands. Okinawa-Seibutsu-Gakkai shi [Biological
Magazine Okinawa], 31: 1-6.
590
Pietro Lo Cascio
Takahashi H.& Shimizu A., 2007. [Notes on a collection
of Hymenoptera from the Ogasawara Islands, in the
Insect Collections of the Laboratory of Systematic
Zoology, Tokyo Metropolitan University]. Ogas-
awara Research, 32: 9-20. (in Japanese)
Tennent J.E., 1859. Ceylon: an account of the island
physical, historical and topographical with notices of
its natural history, antiquities and productions.
Volume 1. Longman & Green, London, 659 pp.
Terayama M., 2005. [Taxonomic guide to the Japanese
aculeate wasps. 2. Family Mutillidae], Tsunekibachi,
4: 1-18. (in Japanese)
Terayama M., Suda H., Murota T., Haneda Y. & Tano
T., 2011. [The velvet ants (Mutillidae) of Japan],
Gekkan-Mushi, 481: 12-25. (in Japanese)
Toy S. (Ed.), 2007. Import Risk Analysis: vehicle and
machinery. Ministry of Agriculture and Forestry,
Biosecurity New Zealand, Wellington, 364 pp.
Tsuneki K., 1962. [The aculeate Hymenoptera collected
on the Island of Amami-Oshima, the Ryukyus]. Life
Study, 6: 1-9. (in Japanese)
Tsuneki K., 1972a. Studies on the Mutillidae of Japan
(Hymenoptera). Etizenia, 61: 1-26.
Tsuneki K., 1972b. Mutillidae collected in Formosa in
1966 and 68 (Hymenoptera). Etizenia, 64: 1-25.
Tsuneki K., 1972c. Two new species of Mutillidae from
Borneo (Hymenoptera). Life Study, 16: 17-21.
Tsuneki K., 1973. New and the first recorded species and
subspecies of Sphecidae and Mutillidae from Japan,
with taxonomic notes on some species (Hymenop-
tera). Etizenia, 65: 1-28.
Tsuneki K., 1982a. Studies on the new material of
Sphecidae, Chrysididae and Mutillidae of Formosa
and the Southern Ryukyus (Hymenoptera). SPJHA
(Special Publications of the Japan Hymenopterists
Association), 23: 15-45.
Tsuneki K., 1982b. A referenced list of the species of the
Sphecidae, Chrysididae, Scoliidae and Mutillidae
hitherto known from the Ryukyu Archipelago, with
the distribution table (Hymenoptera). SPJHA
(Special Publications of the Japan Hymenopterists
Association), 23: 53-77.
Tsuneki K., 1984. Solitary wasps newly in the Ogasawara
or the Bonin Islands (Hymenoptera). SPJHA (Special
Publications of the Japan Hymenopterists Associ-
ation), 28: 1-12.
Tsuneki K., 1993a. On some Taiwanese Mutillidae, col-
lected in 1976 by Mr. T. Murota, with description of
new taxa (Hymenoptera). SPJHA (Special Publica-
tions of the Japan Hymenopterists Association), 41:
39-50.
Tsuneki K., 1993b. A new and an unrecorded species of
Mutillidae from Is. Okinawa, the Ryukyus (Hy-
menoptera). SPJHA (Special Publications of the
Japan Hymenopterists Association), 41: 51-55.
Tsuneki K., Nozaka C., Tano T., Kurokawa H. & Murota
T., 1993. Mutillidae recently collected in the Philip-
pines (Hymenoptera). SPJHA (Special Publications
of the Japan Hymenopterists Association), 41 : 1-38.
Tsurusaki N., Tanaka Y., Morimoto T., Ishida H. &
Yamada K., 2012. [Records of faunal survey of in-
sects in Tottori Sand Dunes in 2010 and distribution
of some wasps of Aculeata in the sand dune area].
Natural History Research of San’in, 7: 25-30. (in
Japanese)
Tu B.B., Lelej A.S. & Chen X.X., 2014. Review of the
genus Cystomutilla Andre, 1896 (Hymenoptera: Mu-
tillidae: Sphaeropthalminae: Sphaeropthalmini), with
description of the new genus Hemutilla gen. nov. and
four species from China. Zootaxa, 3889: 71-91.
Turner R.E., 1911. New Hymenoptera from Ceylon. Mu-
tillidae and Scoliidae. Spolia Zeylanica, 7: 141-154.
Turner R.E., 1912. Notes on fossorial Hymenoptera, VI.
On the species collected in New Guinea by the ex-
pedition of the British Ornithologist’s Union. Annals
and Magazine of Natural History, 9: 194-202.
Turner R.E., 1914. Notes on fossorial Hymenoptera, XIV.
On the Mutillidae of Western Australia and Tasmania.
Annals and Magazine of Natural History, 84: 429-
450.
Turrisi G.F., 1999a. Contributo alia conoscenza dei Mu-
tillidae di Sicilia ed isole circumsiciliane (Hymenop-
tera, Scolioidea). Bollettino delTAccademia Gioenia
di Scienze naturali, 31(354): 119-155.
Turrisi G.F., 1999b. Un caso di ginandromorfismo in
Myrmillci bison (A. Costa 1887) (Hymenoptera Mu-
tillidae). Bollettino delTAccademia Gioenia di
Scienze naturali, 31(354): 331-334.
Valentine E.W. & Walker A.K., 1983. Three families of
Hymenoptera new to New Zealand. New Zealand
Entomologist, 7: 397-400.
Valletta A., 1 97 1 . A preliminary list of the Hymenoptera
Aculeata (excluding ants) of the Maltese Islands. En-
tomologist’s monthly Magazine, 107: 45-46.
Valletta A., 1979. Second contribution to the Hymenop-
tera Aculeata (excluding ants) of the Maltese Islands.
Entomologist’s monthly Magazine, 114: 215.
Vertyankin A.V., 2010. Novyie nakhodki os-nemok (Hy-
menoptera: Mutillidae) na Sakhaline [New records of
velvet ants (Hymenoptera: Mutillidae) on Sakhalin],
Vestnik Sakhalinskogo muzeya [Proceedings of
Sakhalin Museum], 17: 325-326.
Viette P., 1957. Hymenopteres Mutillidae. Memoires de
TInstitut Scientifique de Madagascar, (E) 8: 319.
Viette P., 1978. Les types des mutilles malgaches decrites
par G. Olsoufieff (Hym. Mutillidae). Bulletin de la
Societe entomologique de France, 82: 224-228.
Villarubia A. & Espanol F., 1933. Entomologia de
Menorca. Bulletin de la Institucio Catalana d’Historia
Natural, 33: 306-315.
Worldwide checklist of the island mutillid wasps (Hymenoptera Mutillidae)
591
Villemant C., 2011. Focus on bees and wasps. In:
Bouchet P., Le Guyader H. & Pascal O. (Eds.). The
natural history of Santo. Patrimoines Naturels 70,
Museum d’Histoire naturelle-IRD-Pro Natura Inter-
national, Paris-Marseille, 131-141.
Voris H.K., 2000. Map of Pleistocene sea levels in
Southeast Asia: shorelines, river system an time
duration. Journal of Biogeography, 27: 1153-1167.
Westwood J.O., 1843. On the mutillae of New Holland.
In: Westwood J.O. (Ed.). Arcana entomologica; or
illustrations of new, rare, and interesting insects. Vol.
II. W. Smith, London, 17-19.
Whittaker R.J. & Fernandez-Palacios J.M., 2006. Island
Biogeography. Ecology, Evolution, and Conserva-
tion. Oxford University Press, Oxford-New York-
Tokio, 416 pp., 2nd edition.
Wickwar O.S., 1908. Hymenoptera new to Ceylon, with
description of new species. Spolia Zeylanica, 5: 1 15—
125.
Weiskittle J.E., 2004. Public-use internship with Pea
Island National Wildlife Refuge Outer Banks, North
Carolina. Internship report, Miami University,
Oxford (Ohio), 106 pp.
Williams F.X., 1919. Philippine Wasp Studies. II. De-
scription of new species and life history studies. Bul-
letin Reports of Work of the Experiment Station of
the Hawaiian Sugar Planters’ Association, Entomo-
logical series, 14: 19-186.
Williams F.X., 1926. Expedition of the California
Academy of Sciences to the Galapagos Islands,
1905-1906. XVIII. The bees and aculeate wasps of
the Galapagos Islands. Proceedings of the California
Academy of Sciences, 2 (18): 347-357.
Williams F.X., 1945. The aculeate wasps of New Cale-
donia, with natural history notes. Proceedings of the
Hawaiian Entomological Society, 12: 407-451.
Williams F.X., 1947. Aculeate wasps of Fiji. Occasional
papers of Bernice P. Bishop Museum, 18 (21): 317—
336.
Williams K.A. & Pitts J.P., 2007. New species of the pre-
dominately temperate velvet ant genera Lomcichaeta
Manley and Sphaeropthalma Blake from Central and
northern South America (Hymenoptera: Mutillidae).
Transactions of the American Entomological Society,
133 (3): 297-326.
Williams K.A. & Pitts J.P., 2009. Eight new species of
Lomcichaeta Mickel and the synonymy of Smicromu-
tilla Mickel (Hymenoptera: Mutillidae). Journal of
Hymenoptera Research, 18: 227-243.
Williams K.A. & Pitts J.P., 2013. Carribean and Mexican
additions to the Dasymutilla bioculata species-group
(Hymenoptera: Mutillidae). Annals of the Entomolo-
gical Society of America, 106: 429-436.
Williams K.A., Brothers D.J. & Pitts J.P., 2011. New
species of Tobantilla Casal, 1965 and a new genus
and species, Gogoltilla chichikovi gen. et sp. nov.,
from Argentina (Hymenoptera: Mutillidae). Zootaxa,
3064: 41-68.
Williams K.A., Manley D.G., Deyrup M., Dohlen C. von
& Pitts J.P., 2012. Systematic review of the Dasymu-
tilla monticola species-group (Hymenoptera: Mutil-
lidae): using phylogenetics to address species-group
placement and sex associations. Zootaxa, 3224: 1-
24.
Wilson J.S. & Pitts J.P., 2009. Species boundaries of
Sphaeropthalma unicolor (Hymenoptera: Mutill-
idae): is color useful for differentiating species?
Journal of Hymenoptera Research, 18: 212-226.
Yamane S., 1983. The aculeate fauna of the Krakatau
Islands (Insecta, Hymenoptera). Reports of the
Faculty of Sciences, Kagoshima University (Earth
Sciences & Biology), 16: 75-107.
Yamane S., Abe T. & Yukawa J., 1992. Recolonization
of Krakataus by Hymenoptera and Isoptera (Insecta).
GeoJoumal, 28: 213-218.
Yamane S., Ikudome S. & Terayama M., 1999. Identific-
ation Guide to the Aculeata of the Nansei Islands,
Japan. Hokkaido University Press, Sapporo, i-xii+
831 pp.
Yarrow I.H.H., 1954. The Irish form of Myrmosa atra
Panz. (Hym., Tiphiidae). Journal of the Society for
British Entomology, 5: 43.
Yasumatsu K., 1931. Description of a new species of
Myrmosa from Japan (Hymenoptera, Myrmosidae).
Sapporo Hakubutsu Gakkai kaiho [Transactions of
the Sapporo Natural History Society], 11: 221-226.
Yasumatsu K., 1934. Les Hymenopteres de File Yak-
ushima. Mushi, 7: 61-67.
Yasumatsu K., 1936. Hymenoptera of the Bonin Islands.
Transactions of the Natural History Society of
Formosa, 26: 356-363.
Yasumatsu K., 1937. Hymenoptera of Tsushima (First
report). Fukuoka Hakabutsugaku Zasshi [Journal of
Fukuoka Natural History Society], 2: 59-74.
Yasumatsu K., 1950. Vespoidea of Micronesia. 3. Pacific
Science, 4: 116-117.
Yeo P.F. & Corbet S.A., 1995. Solitary wasps. Natur-
alists’ Handbooks Vol. 3. Richmond Publ. Co.,
Slough, 70 pp., 2nd edition.
Yildirim E. & Lelej A.S., 2012. The distribution and bio-
geography of Mutillidae (Hymenoptera: Aculeata) in
Turkey. Entomofauna, 33: 289-304.
Yoshida M., 1989. Mutillidae. In: Hirashima Y., (Ed.). A
checklist of Japanese Insects. Isseido, Fukuoka, 650-
651. (in Japanese)
Zavattari E., 1909. Descrizione di una nuova specie di
mutilla dell’isola Riunione. Bollettino dei Musei di
Zoologia ed Anatomia comparata della Reale Uni-
versity di Torino, 25 (613): 1-2.
592
Pietro Lo Cascio
Zavattari E., 1910a. Catalogo delle mutille del Museo
zoologico di Napoli, con osservazioni critiche e
sinonimiche e descrizione di nuove specie. Annuario
del Museo zoologico della Reale Universita di
Napoli, (n.s.) 3 (9): 1-16.
Zavattari E., 1910b. Imenotteri dell’Isola d’Elba. Bollet-
tino dei Musei di Zoologia ed Anatomia comparata
della Reale Universita di Torino, 25 (628): 1-5.
Zavattari E., 1912. Escursioni zoologiche in Sardegna del
Dr. Enrico Festa. I. Imenotteri. Bollettino dei Musei
di Zoologia ed Anatomia comparata della Reale Uni-
versita di Torino, 27 (661): 1-4.
Zavattari E., 1913a. H. Sauter’s Formosa- Ausbeute. Mu-
tillidae (Hym.). Archiv fur Naturgeschichte, 79A: 19-
42.
Zavattari E., 1913b. Mutille austro-malesi. Bollettino
della Societa entomologica italiana, 45: 61-114.
Zimmennann E.C., 1942. Distribution and origin of some
eastern oceanic insects. American Naturalist, 76:
280-307.
Biodiversity Journal, 2015, 6 (2): 593-596
Three new records of freshwater fishes (Cypriniformes
Cyprinidae, Atheriniformes Phallostethidae and Perciformes
Osphronemidae) from Thailand
Siriwan Suksri 1 , Sitthi Kulabtong 2 ', Somprasong Witta/anupakorn 3 , Chirachai Nonpa/om 4 & Somsak
Thonghul 5
'Reference Collection Room, Inland Fisheries Resources Research and Development Institute, Department of Fisheries, Thailand
10900; email: Siriwan.suksri@gmail.com
2 Save wildlife volunteer Thailand, Wangnoi District, Ayuttaya Province 13170, Thailand; email: kulabtong201 l@hotmail.com
3 184, Suan Khan, Chang Klang District, Nakhon Si Thammarat, Thailand, 80250; email: nongbeerbio@hotmail.com
4 534/26 Soi Phaholyothin 58 Phaholyothin Rd. Sai Mai, Bangkok, Thailand; email: sornl33@hotmail.com
5 Nakhonsawan Inland Fisheries Research and Development Center, Nakhonsawan Province, Thailand; email: somsakthonghul@
yahoo.com
"■Corresponding author
ABSTRACT A priapium fish, Neostethus lankesteri Regan, 1916 (Atheriniformes Phallostethidae) is newly
recorded from the estuary of Maeklong Basin and estuary of Chao Phraya Basin, Central
Thailand; the mouthbrooder betta, Betta prima Kottelat, 1994 (Perciformes Osphronemidae)
is newly recorded from the small stream in Chonburi Province, East Thailand, and Rasbora
daniconius (Hamilton, 1 822) is a new record for Tenasserim Basin, west Thailand. Description
and distribution data of the three freshwater fish are provided here.
KEY WORDS Neostethus lankesteri; Betta prima; Rasbora daniconius; Phallostethidae; Osphronemidae.
Received 01.05.2015; accepted 29.05.2015; printed 30.06.2015
INTRODUCTION
The mouthbrooder betta, Betta prima Kottelat,
1994 is distributed in Southeast Basin, Thailand and
some areas of Mekong basin in Thailand, Cambodia
and Laos. First record of B. prima in Thailand was
reported by Kottelat (1994) in Creek on the road to
Nam Tok Phliu, after leaving Chantaburi-Trat
highway in Chantaburi Province. Currently, in
Thailand, B. prima was reported in Southeast Basin
(Rayong Province; Chantaburi Province; Trat
Province) (Sontirat et al., 2006).
The priapium fish genus Neostethus Regan,
1916 is distributed in Southeast Asia only (Myers,
1928; Parenti, 1984). First record of Neostethus in
Thailand was reported by Myers (1937: sub N. sia-
mensis), where Siam refers to the old name of Thai-
land, from the estuary of Chantaburi River,
Southeast Basin, Thailand, this species was con-
sidered a junior synonym of N. lankesteri Regan,
1916 (Parenti, 1989). Currently, in Thailand, N.
lankesteri Regan, 1916 is known only from estuary
of Chantaburi River, Southeast Basin and estuary of
Petburi Basin, Thailand (Kunlapapuk et al., 2012).
The cyprinid fish, Rasbora daniconius (Hamilton,
1822) is distributed from India to Indochina. In
Thailand, R. daniconius is known only from
Chaophaya Basin, Mekong Basin, Salween Basin
and Suratthani Province, South Thailand.
In a survey project involving second author
(K.S.) in Maeklong and Chao Phraya Basin, Central
594
SlRIWAN SUKSRI ET ALII
Thailand during February- August 2013, the author
found several specimens of N. lankesteri in the
estuary of Maeklong Basin, Meuang District, Samut
Songkhram Province and estuary of Chao Phraya
Basin, Meuang District, Samut Prakan Province,
Central Thailand, which is a new record of N.
lankesteri in this region.
Moreover, during a survey project, carried out
from October 2013 on Chon Buri Province, East
Thailand, involving the second author (K.S.), it was
found two specimens of B. prima in a small hill
stream of Khao Krew mountain, Srisacha District,
Chon Buri Province. These specimens are new re-
cord of B. prima in Chon Buri Province. Currently,
the specimens of N. lankesteri and B. prima are
deposited into the reference collection room, Inland
Fisheries Resources Research and Development
Institute, Department of Fisheries, Thailand (NIFI),
and the authors re-examined all specimens of the
cyprinid fishes R. daniconius stored in NIFI. The
authors found that the specimens of R. daniconius
from Tenasserim Basin, west Thailand is a new re-
cord for the region.
ACRONYMS AND ABBRE VATION S . Stand-
ard length: SL; head length: HL; Inland Fisheries
Resources Research and Development Institute,
Department of Fisheries, Thailand: NIFI.
RESULTS
SYSTEMATICS
Order ATHERINIFORMES Rosen, 1966
Family PHALLOSTETHIDAE Regan, 1913
Neostethus lankesteri Regan, 1916
Examined material. NIFI 04975, 25 speci-
mens, estuary of Maeklong Basin, Meuang District,
Samut Songkhram Province, Central Thailand, II-
IX. 2013, legit Sitthi Kulabtong (Fig. 1); NIFI
04976, 7 specimens, estuary of Chao Phraya Basin,
Meuang District, Samut Prakan Province, Central
Thailand, II-X.2013, legit Sitthi Kulabtong.
Description. Neostethus lankesteri is compress,
body depth is 26.6-29.3 %SL. Body width is 8.6-
11.2 %SL. Scales in lateral series are medium to
large, lateral series scales include 24-27 scales, pre-
dorsal scales are 10-12. Head length is 26.8-31.1
%SL. The eyes is large, eye diameter is 35.7-37.9
%HL (8.6-11.1 %SL). Post orbital length is 43.8-
46.4 %HL (10.1-14.6 %SL), snout length is short,
with 17.9-20.1 %HL (5.0-7. 1 %SL) and interor-
bital width is 46.9-50.4 %HL (10.9-11.8 %SL).
Dorsal fin origin is anterior anal fin origin, pre-
dorsal fin length is 57.7-62.8 %SL, prepectoral fin
length is 30.6-32.2 %SL, prepelvic fin length is
46.5-5 1 . 1 %SL and preanal fin length is 64. 1-66.9
%SL. Caudal peduncle depth is 10.0-10.9 %SL.
Pectoral fin is short not reaching beyond anus, the
pectoral fin length is 14.3-16.2 %SL and 8-9
branched fin rays. Pelvic fin is short not reaching
beyond anus, the pelvic fin length is 8. 0-9. 2 %SL
with 7 branched rays. Anal fin base is longer than
dorsal fin base, the anal fin base length is 10.6-13.4
%SL, dorsal fin with 2 unbranched rays and 7
branched rays and anal fin with 3 unbranched rays
and 5 branched rays. The dorsal fin base length is
8. 3-9. 5 %SL.
Biology and Distribution. In this study all
specimens of N. lankesteri were found in mangrove
and estuary (salinity more than 20 ppt; depth about
1 m or more, mud on the bottom). In Thailand, this
species is known only from estuary of Chantaburi
River, Southeast Basin and estuary of Petburi Basin,
Thailand. It is a new record for estuary of Maeklong
and Chao Phraya Basin, Central Thailand.
Order PERCIFORMES Bleeker, 1859
Family OSPHRONEMIDAE Bleeker, 1859
Betta prima Kottelat, 1994
Examined material. NIFI 04977, 2 specimens,
small hill stream of Khao Krew mountain, Srisacha
District, Chon Buri Province, East Thailand, X.
2013, legit Sitthi Kulabtong (Fig. 2).
Description. Betta prima is compress, body
depth is 35.6-36.3 %SL. Body width is 8.7-12.1
%SL. Scales in lateral series are medium to large,
lateral series scales are 26-28, predorsal scales are
21-22. Head length is 31.8-32.1 %SL. The eyes are
large, eye diameter is 30.7-31.9 %HL (9.5-10.3
%SL). Post orbital length is 50.1-52.4 %HL (16.2-
16.6 %SL), snout length is short, with 19.2-19.4
%HL (6.2-7. 1 %SL). Dorsal fin origin is anterior
anal fin origin, predorsal fin length is 67.5-67.8
Three new records of freshwater fishes from Thailand
595
Figures 1. Neostethus lankesteri, 22 mm SL (male) from Maeklong Basin, Central Thailand. Figures 2. Betta prima, 32
mm SL from Khao Krew mountain, Chon Buri Province, East Thailand. Figures 3. Rasbora daniconius, 52 mm SL from
Tenasserim Basin, West Thailand.
596
SlRIWAN SUKSRI ET ALII
%SL, prepectoral fin length is 32.6-33.7 %SL, pre-
pelvic fin length is 40.5-42.4 %SL and preanal fin
length is 53.7-54.6 %SL. Caudal peduncle depth
is 18.0 - 19.1 %SL. Pectoral fin is long reaching
beyond anus, the pectoral fin length is 23.3-24.7
%SL. Pelvic fm is long reaching beyond anus, the
pelvic fin length is 35.2-35.7 %SL. Anal fin base
is longer than dorsal fm base, the anal fin base
length is 44.7-45.6 %SL and dorsal fin base length
is 12.3-12.5 %SL.
Biology and Distribution. Betta prima were
found at a small hill stream in the Khao Krew
mountain. The stream is transparent, running
slowly, average depth about less than 50 cm, stream
ground is made of rough sand. In Thailand, this
species is known from Southeast Basin in Rayong
Province, Chantaburi Province and Trat Province.
It is a new record for Khao Krew mountain, Chon
Buri Province, East Thailand.
Order CYPRINIFORMES Bleeker, 1859
Family CYPRINIDAE Cuvier, 1817
Rasbora daniconius (Hamilton, 1822)
Examined material. NIFI 03044, 2 specimens,
Tenasserim Basin, Thailand, no collecting date,
legit Dr. Chavalit Vidthayanon (Fig. 3).
Description. Rasbora daniconius is compress,
body depth is 24.6-29.1 %SF. Body width is 7.6-
10.4 %SF. Scales in lateral series are medium to
large, lateral series scales are 24-27, predorsal
scales are 28-33. Head length is 25.4 - 29.3 %SF.
Snout length is 28.4-32.1 %HF and interorbital
width is 45.7-51.1 % HE. Dorsal fin origin is
posterior anal fin origin, predorsal fin length is
56.7-58.2 %SF, prepectoral fm length is 26.5-26.8
%SF, prepelvic fm length is 52.5-52.7 %SF and
preanal fin length is 77.3-78.9 %SF. Caudal ped-
uncle depth is 10.2-13.3 %SF. Pectoral fm is short
not reaching beyond anus, the pectoral fin length is
14.2-16.5 %SF. Pelvic fin is short not reaching
beyond anus, the pelvic fm length is 16.1-16.4
%SF. Anal fm base is shorter than dorsal fm base,
the anal fm base length is 9.5-10.1 %SF and dorsal
fm base length is 16.3-17.1 %SF.
Biology and Distribution. In Thailand, this
species is known only from Mekong Basin, Chao
Phraya Basin, Salween Basin and Peninsular Thai-
land. It is a new record for Tenasserim Basin, west
Thailand.
ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers for their
invaluable editorial advice. Avery special thank to
Dr. Chavalit Vidthayanon for collecting some
specimens employed in this study, and to the Save
wildlife volunteer Thailand Team for providing help
during the field survey. Finally we are grateful to
all partners for their support.
REFERENCES
Kottelat M., 1994. Diagnoses of two new species of
fighting fishes from Thailand and Cambodia (Tele-
ostei: Belontiidae). Ichthyological Exploration of
Freshwaters, 5: 297-304.
Kunlapapuk S., Kulabtong S. & Nonpayom C., 2012.
Two new records of freshwater fishes (Cyprini-
fonnes, Balitoridae and Atheriniformes, Phallostethi-
dae) from Thailand. Biodiversity Journal, 3: 119-122.
Myers G.S., 1928. The systematic position of the
phallostethid fishes, with diagnosis of a new genus
from Siam. American Museum Novitates, 295: 1-12.
Myers G.S., 1937. Notes on phallostethid fishes. Pro-
ceedings of the United States National Museum, 84:
137-143.
Parenti L.R., 1984. On the relationships of phallostethid
fishes (Atherinomorpha), with notes on the anatomy
of Phallostethus dunckeri Regan, 1913. American
Museum Novitates, 2779: 1-12.
Parenti L.R., 1989. A phylogenetic revision of the phal-
lostethid fishes (Atherinomorpha, Phallostethidae).
Proceedings of the California Academy of Sciences,
46: 243-277.
Sontirat S., Tunchareon S. & Soothornkit Y., 2006. Fish
species diversity in the areas of national parks and
wildlife sanctuaries in the five eastern provinces of
Thailand. The 44th proceeding of the Kasetsart
University conference, pp. 60-67.
Biodiversity Journal, 2015, 6 (2): 597-632
Diversity and distribution of bats (Mammalia Chiroptera) in
Burkina Faso
Napoko Malika Kangoye 1 *, Adama Oueda 1 , Laurent Granjon 2 , AdjimaThiombiano 3 , Wendengoudi Guenda 1
& Jakob Fahr 4
'Laboratoirc de Biologie et Ecologie Animates, UFR/SVT, Universite de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso
2 IRD, UMR CBGP (INRA/IRD/CIRAD/Montpellier SupAgro), 755 avenue du campus Agropolis, CS30016 34988 Montferrier
sur lez Cedex, France
3 Faboratoire de Biologie et Ecologie Vegetates, UFR/SVT, Universite de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso
4 Max Planck Institute for Evolutionary Anthropology, Germany
"■Corresponding author, e-mail: kangoyemalika@yahoo.fr
ABSTRACT Herein we review available information on the bat fauna of Burkina Faso, synthesizing data
on a considerable number of museum specimens collected in the country between 1964 and
2010. We aim to give an exhaustive review of the locally occurring taxa and their distribution
overlaid on different phytogeographic areas. To achieve this objectives, available information
about bats in Burkina Faso were gathered to a database from scientific publications and
museums from 1964 to 1993. This database was complemented by new field collections from
2002 to 2009. In total, 3,480 bat specimens, collected over a period of 46 years from 164
localities and belonging to 5 1 species, were examined. The different taxa are distributed into
24 genera and nine families. The fauna includes the following families: Pteropodidae (seven
species), Hipposideridae (seven species), Emballonuridae (three species), Nycteridae (five
species) and Molossidae (six species) and occur in all phytogeographical zones in Burkina
Faso. However, Rhinolophidae (three species) were absent in the North-Sahelian zone but
occur in the other parts of the country. Similarly, Vespertilionidae ( 1 7 species) were absent in
the South-Sahelian. Rhinopomatidae (two species) were only present in the extreme north
and the extreme south of the country, while the Megadermatidae (one species) were present
only in the Sudanian zone.
KEY WORDS Bat; Burkina Faso; distribution; species richness; West Africa.
Received 05.05.2015; accepted 11.06.2015; printed 30.06.2015
INTRODUCTION
Significant collections of bats from Burkina
Faso are preserved in several museums. The most
important one is found in the National Museum of
Natural History at Washington D.C. (USNM) and
comprises more than 1,100 specimens. They come
from a project on mammal collection, the Smithso-
nian Institution African Mammal Project conducted
between 1961 and 1972 in 20 countries of North,
West and South Africa (Schmidt et al., 2008).
The first publication referring to bats from Burk-
ina Faso was made by Koclc (1969), who mentioned
three species from Nouna. The second one was
produced by Poche (1975) who mentioned six
species, including five new ones for Burkina Faso,
among USNM specimens collected by the Smithso-
nian Institution African Mammal Project. A year
later, another species from Bobo-Dioulasso was
quoted by Adam & Hubert (1976). The first study
which dealt specifically with bats of Burkina Faso
was conducted by Koopman et al. (1978). They
598
Napoko Malika Kangoye et alii
listed a total of 27 species including 1 8 new ones
for the country. Then, Green (1983) collected nine
species in Burkina Faso including one new for the
country. Between 1980 and 1981, another major
study of bats from Burkina Faso was conducted by
Koch-Weser (1984). She published 24 species
including six first records for Burkina Faso. Two
species deposited at USNM in 1965 and 1968 were
published in 2006 by African Chiroptera Project
(2006). By 1984, 36 species of bats had already
been identified in Burkina Faso. Since the late
1980s, no first record has been reported from Burk-
ina Faso. Meanwhile, many other species have been
reported in neighboring countries (Kock et al.,
2002; Djossa, 2007; Weber & Fahr, 2007; Fahr,
2008). Also, the principal study for West African
bats species made by Rosevear (1965) mentioned a
lot a species present in West Africa and not yet
encountered in Burkina Faso. In addition, it is now
well established that only intense and long term
sampling can lead to accurate estimations of species
richness and abundance (Kalko et al., 1996;
Simmons & Voss, 1998; Bergallo et al., 2003; Sam-
paio et al., 2003), which in turn represent important
indices in biodiversity conservation planning (Lim
& Engstrom, 200 1 ; Andelman & Willig, 2002).
Therefore, our study will be based on this work
and will consist initially in gathering all existing
information on bats of Burkina Faso, conducting
field trips for capturing and identifying the various
species, multiplying opportunities of capturing new
species for the country and particularly, in establish-
ing the geographical coordinates of areas in which
species are captured or observed. It will thus in-
crease for sure the number of species of bats present
in Burkina Faso and especially a significant in-
crease of geographical coordinates of species
because the results achieved will be used later for
modeling the distribution of bats in the country.
This modeling will help to have an idea of the
variation in the richness of species across the entire
national territory and therefore, to identify areas
with high potential, that is to say, areas that contain
a great variety of bats. Since it is from the modeling
results that measures will be taken for the conser-
vation of bats in Burkina Faso, it was necessary to
identity the various areas to prospect for a wide cov-
erage, to put a particular emphasis on areas that can
potentially contain a large number of species and
manage to identify different sites in these areas
where sampling will be made. And for that, we
formulated the following assumptions.
Weather determines the richness of species
(Hawkins et al., 2003). Indeed, according to Tews
et al. (2004), the majority of studies shows that
there is a positive correlation between habitat het-
erogeneity and diversity of species (August, 1983).
From the North to South of Burkina Faso, there is
an increase in rainfall and hence an improvement
of vegetation with the savanna which gets gradually
grassy and shrubby, tending towards a woodland in
the far Southwest. The North of the country which
is less watered and thus covered by sparse vegeta-
tion will be therefore less rich in species than the
south which is well watered and with more de-
veloped vegetation. Climate is not the only factor
influencing species richness and may not explain
the diversity pattern for all taxonomic groups
(Hawkins et al., 2003). Indeed, availability, abund-
ance and distribution of food resources are also
significant factors that affect the organization and
dynamism of bats (Kalko et al., 1996; Kalko, 1997,
1998). Since there is an increase in biomass in Burk-
ina Faso from north to south, we can conclude that
diversity is higher in the South thanks to the in-
crease of this biomass that will allow each species
to find the resources needed for their food.
As observed by some authors (Bernard, 2001;
Lim & Engstrom, 2001; Kalko & Handley, 2001;
Sampaio et al., 2003), there is a positive correlation
between complexity of habitat and diversity of bats,
complexity of habitat being the vertical develop-
ment of vegetation (August, 1983). In addition,
complex habitats can provide more nests and allow
the exploitation of environmental resources in
various ways and thus increase species diversity
(Bazzaz, 1975). And as the South of the country has
a set of specific habitats such as the various protec-
ted forests, gallery forests and the numerous rock
formations such as the cliffs of Banfora, peaks of
Sindou and the range of Gobnangou that increase
the complexity of the environment, we believe that
this area can contain bats in abundance. Indeed,
these rock formations provide additional shelters to
bats through the various cracks and caves they have.
As already shown by Fahr & Kalko (2010), the
diversity of bats increases with environmental
heterogeneity and habitat complexity. Added to
availability of food resources, the South may poten-
tially contain a great diversity of bats. In addition,
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
599
all existing information on bats in Burkina Faso
from publications and museums indicate that many
areas had not yet been visited or had been poorly
studied especially in the Southwest. That’s why we
naturally put a particular focus on this part of the
country to fill the sampling gaps. For this, the latest
publication referring to bats from Burkina Faso was
made by Kangoye et al. (2012). She captured 45
species among which 15 species including 2 frugi-
vorous and 13 insectivorous were recorded for the
first time in Burkina Faso. These new species
recorded increased the bats diversity of Burkina
Faso from 36 to 51.
MATERIAL AND METHODS
Study area
Burkina Faso is a Sahelian country with a total
area of 274,200 km 2 and landlocked in the heart of
West Africa. It occurs between 9°20'-15°3' N and,
2°20'E-5°3' W. It is bounded by Niger, Mali,
Ghana, Ivory Coast, Benin and Togo. The majority
(about 75%) of the country occurs on crystalline
Precambrian basement rock, which gives a gener-
ally flat terrain (Ministere de l’Environnement et
de l’Eau, 1999). The hydrographic network is
relatively dense despite the precarious weather
conditions (Dipama, 2010). Burkina Faso is char-
acterized by a tropical climate, precisely a Sudano-
Sahelian one, generally alternating two seasons: a
long dry season from October to April and a short
rainy season from May to September. The larger
portion of the countiy lies in the Sudanian climatic
zone, including central and southern parts. The
northern area is under the influence of Sahelian
climate (Ministere de l’Environnement et de l’Eau,
1999).
According to Guinko (1984) and Fontes &
Guinko (1995), we distinguish two major phytogeo-
graphic areas on the basis of climate, vegetation and
fauna: the Sahelian and the Sudanian areas, each
divided into two sectors (north and south) (Fig. 1).
-8
-6
-2
Recent sampled sites
Previous sampled sites
Vegetation zones
I I North Sahelian
I I South Sahelian
□□ North Sudanian
I I South Sudanian
Country
— 1 Burkina Faso
Figure 1. Previous and recent sampling sites of bats in Burkina Faso in relation to vegetation zones.
600
Napoko Malika Kangoye et alii
Sahelian phytogeographical vegetation area in-
cludes tree and shrub steppes, grassy steppes, tiger
bush and riparian formations (Ganaba, 2008).
North-Sahelian area lies north of the fourteenth par-
allel and is characterized by a set of species typical
of the Sahara and Sahel that rarely occur further to
the south in the country. South- Sahelian zone ex-
tends between the thirteenth and fourteenth parallel.
This is the area where interfere many Sudanian ubi-
quitous species, but the general appearance of ve-
getation, low enough, is dominated by the Sahelian
and Saharan elements. The Sudanian phytogeo-
graphic area is located south of the thirteenth
parallel.
The vegetation is characterized by a set of savan-
nas (from woodland to grassland). North- Sudanian
area is located between the thirteenth and twelfth
parallel (13° and 11° 30'). Savannas have the look of
rustic landscapes. South-Sudanian sector is the area
below the parallel 11° 30'. The vegetation is dense.
Savannah is generally higher and better covering.
Data collection
The first phase of this work consisted in gather-
ing all publications made on the bats of Burkina
Faso. At this level, information about all species as
well as areas where the species were found, espe-
cially geographic coordinates have been collected
and integrated to a data base. Secondly, data from
museums hold specimens from Burkina Faso were
used to complete our data base. Specimens from
Burkina Faso are conserved in museums including:
American Museum of Natural History, New York
(AMNH); Natural History Museum, London
(BMNH); Museum d’Histoire naturelle Geneve
(MHNG); Museum national d’Histoire naturelle,
Paris (MNHN); Musee Royal de l’Afrique Centrale,
Tervuren (MRAC); Royal Ontario Museum, Toronto
(ROM), Senckenberg Museum, Frankfurt/M.
(SMF), and National Museum of Natural History,
Smithsonian Institution, Washington, DC (USNM).
Most collections have been personally reviewed by
Dr. Jakob Fahr (BMNH, MHNG, MNHN, and
USNM). Sampling sites and coordinates are presen-
ted in Table 1 .
Recently, new data were collected by Laurent
Granjon and his colleagues either during field trips
mainly devoted to rodent sampling (from 2002 to
2005), or within the framework of the FSP (Fonds
de Solidarity Prioritaire) project N° 2002-87 “Ges-
tion durable des ressources sylvo-pastorales et pro-
duction fourragere dans l’Ouest du Burkina-Faso”
(from 2006 to 2008) These specimens are housed
at the University of Braunschweig in Germany and
IRD Bamako. Sampling sites, coordinates, dates of
capture, number of nets used and capture effort
made are presented in Table 2. Finally, the most
recent data were collected by the BIOTA project
(Biodiversity Monitoring Transect Analysis in
Africa) from 2008 to 2009. This last data, that
represents the main contribution to this paper,
permitted to fill sampling gaps and leaded to the
description of some species new for Burkina Faso
(Kangoye et al., 2012). The corresponding speci-
mens are housed in the University of Ouagadougou,
Burkina Faso. Sampling sites, coordinates, dates of
capture, number of nets used and capture effort
made are presented in Table 3. All collection local-
ities are mapped in figure 1 .
During BIOTA collect, we captured bats with
Japanese nylon or polyester nets of Vohwinkel mark
(length: 6 m or 12 m, height: 2.80 m, 5 floors, mesh:
16 mm, denier 70/2) black. A Garmin GPS 12 was
used to take the coordinates of the sites visited. The
nets have been installed and open, either all night
from 6 pm to 6 am, 6 pm to 12 pm and from 4 am
to 6 am, or part of the night from 6 pm to 12 pm
depending on the movement of bats. The nets were
visited regularly to remove the bats captured ac-
cording to the intensity of capture. Each captured
bat was placed individually in a capture cotton bag.
Each bat was then weighed with a Pesola weighing
machine with an accuracy of 0.25 g, lg or 2 g de-
pending on the size of the specimen. The forearm
of the bat was measured with a Mahr caliper 1 6U
with an accuracy of 0. 1 mm.
The following parameters were recorded: sex,
age (juvenile, sub-adult, young-adult or adult) ac-
cording to Antony (1988), the reproductive status
(testicles in the abdomen or testicles in the scrotum
for males; nulliparous, pregnant, lactating or post-
lactating for females) according to Racey (1988).
Bats were therefore identified using the keys of
Rosevear (1965), Hayman & Hill (1971) and the
compilation of Bergmans (2002). Once identified,
bats were released on site.
Species which were difficult to identify and
other specimens were conserved in alcohol 70% to
verify identification, to confirm their presence in
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
601
Locality
Latidude
Longitude
Publications
Aribinda
14.200
-0.867
Koch-Weser, 1984
Arli River
11.517
1.467
Green, 1983
Arli-NP
11.550
1.450
Koopman et ak, 1978; Green, 1983
Arly
11.583
1.467
Poche, 1975; Green, 1983; Bergmans, 1988;Van Cakenberghe & De Vree, 1993
Bal-y-ata
14.283
-0.100
Koch-Weser, 1984
Banfora
10.633
-4.767
Bergmans, 1988
Barga
13.783
-2.267
Poche, 1975; Koopman et ah, 1978
Barga (9 km NE)
13.833
-2.200
Koopman et al, 1978; Van Cakenberghe & De Vree, 1998
Bigou River
11.500
0.583
BMNH
Bobo Dioulasso
11.200
-4.300
Koch-Weser, 1984; Bergmans, 1988
Bokouongou River
11.500
1.550
Green, 1983
Bontioli (Bougouriba River)
10.883
-3.067
Hill & Harrison, 1987
Boro mo
11.750
-2.933
Koopman et al., 1978; Koch-Weser, 1984
Bossey-Dogabe
14.533
-0.300
Koch-Weser, 1984
Bourzanga
13.683
-1.550
Koch-Weser, 1984; Kock et al., 2001
Boussouma (5 km N)
12.967
-1.083
Koopman et al., 1978; Bergmans, 1988
Celia (1 km N)
11.617
-0.367
Koopman et ak, 1978; Bergmans, 1989
Comoe River
9.950
-4.633
Hill & Harrison, 1987
Dedougou
12.467
-3.467
Koch-Weser, 1984
Deux Bales (Black Volta River)
11.667
-3.000
BMNH
Diebougou
10.967
-3.250
Koch-Weser, 1984; Kock et ak, 2001
Dinderesso
11.217
-4.433
Hervy & Legros, 1981c
Dio
13.333
-2.633
Koopman et ak, 1978; Sakamoto et ak, 1979; Van Cakenberghe & De Vree, 1998
Diomga
14.067
-0.050
Koch-Weser, 1984; Kock et ak, 2001
Djibo
14.100
-1.617
Koch-Weser, 1984; Aulagnier et ak, 1987
Djipologo
10.933
-3.117
Koopman et ak, 1978; Robbins et ak, 1985; Bergmans,1988; Van Cakenberghe & De Vree,
1993; Van Cakenberghe & De Vree, 1998
Dori
14.033
-0.033
Koch-Weser, 1984; Aulagnier et ak, 1987
Fada N'Gourma
12.067
0.350
Robbins et ak, 1985
Fo
11.883
-4.517
Poche, 1975; Koopman et ak, 1978; Bergmans, 1988; Bergmans, 1989; Bergmans, 1991;
Koch-Weser, 1984
Foret de Lera
10.600
-5.317
Hervy & Legros, 1981c
Founzan
11.450
-3.233
Koopman et ak, 1978; Van Cakenberghe & De Vree, 1985; Bergmans,! 988; Van
Cakenberghe & De Vree, 1993; Van Cakenberghe & De Vree,1998
Gandefabou
14.767
-0.700
Koch-Weser, 1984
Goden
12.200
-2.300
Poche, 1975; Koopman et ak, 1978; Robbins et ak, 1985; Van Cakenberghe & De Vree,
1985; Van Cakenberghe & De Vree, 1993
Gorgadji (17 km E)
14.033
-0.367
Koopman et ak, 1978
Gorom-Gorom
14.433
-0.233
Koch-Weser, 1984
Karliguela (near Banfora)
Kaya
10.689
13.083
-4.809
-1.083
SMF
Koumbia (Bobo Dioulasso)
1 1.233
-3.700
Adam & Hubert, 1976 [as from "Bobo-Dioulasso"]
Koutoura
10.350
-4.833
Koch-Weser, 1984; Bergmans, 1991
Koutoura (5 km SW)
10.317
-4.867
Koopman et ak, 1978; Bergmans, 1988; Van Cakenberghe & De Vree,1993;Van
Cakenberghe & De Vree, 1998
Markoye
14.650
0.033
Koopman et ak, 1978
Menegou
14.367
-0.283
Koch-Weser, 1984
Natiaboani
1 1.700
0.500
Koopman et ak, 1978; Sakamoto et ak, 1979; Robbins et ak, 1985; Van Cakenberghe & De
Vree, 1985; Bergmans, 1988; Van Cakenberghe & De Vree, 1985;Van Cakenberghe & De
Vree, 1998; Csorba et ak, 2003
Nayoure (3 km SE)
12.250
0.267
Koopman et ak, 1978, Sakamoto et ak, 1979; Van Cakenberghe & De Vree, 1985; Csorba et
ak, 2003
Nazinga [Foret Classee de Nazinga]
1 1.167
-1.417
Bergmans, 1988
Nobere (1 km S)
11.533
-1,200
Koopman et ak, 1978; Van Cakenberghe & De Vree, 1993; Csorba et ak, 2003
Nobere ( 1 1 km S)
11.450
-1.200
Koopman etak, 1978
Nobere (12 km S)
11.433
-1.200
Koopman et ak, 1978
Nobere (2 km S)
11.533
-1.200
Koopman et ak, 1978
Nobere (9 mi S)
11.417
-1.200
Koopman et ak, 1978; Van Cakenberghe & De Vree, 1985
Nouna)
12.733
-3.867
Kock, 1969; Koch-Weser, 1984; Kock et ak, 2001
Orodara
10.983
-4.917
Koopman etak, 1978; Koch-Weser, 1984
Table 1/1. Gazetteer of previously records: data from publications and museums from 1964 to 1993 (continued).
602
Napoko Malika Kangoye et alii
Locality
Latidude
Longitude
Publications
Orodara (27 km ENE)
11.100
-4.683
Koopman et al., 1978; Van Cakenberghe & De Vree, 1985; Bergmans, 1989; Bergmans,
1997; Van Cakenberghe & De Vree, 1993; Van Cakenberghe & De Vree, 1998; Csorba et
at, 2003
Ouagadougou
12.367
-1.517
Koopman et at, 1978, Koch-Weser 1984, Robbins et at, 1985, Bergmans 1988; Volleth,
1989; Volleth & Heller, 1994 ;Kock et at, 2001
Ougarou
12.150
0.933
Koopman et at, 1978; Robbins et at, 1985; Bergmans, 1988
Koopman et at, 1978; Van Cakenberghe & De Vree, 1993; Van Cakenberghe & De Vree,
Oulo
11.900
-2.983
1998
Oursi
14.683
-0.450
Koch-Weser, 1984; Aulagnier et at, 1987
Petoye
14.583
-0.367
Koopman et at, 1978; Koch-Weser, 1984; Robbins et at, 1985
Piyiri (7 km N) [= Pigahiri]
11.317
-1.133
Koopman et at, 1978
Po-NP (Red Volta River)
11.333
-1.167
Koopman et at, 1978
Saba
14.717
-0.767
Koch-Weser, 1984; Van Cakenberghe & De Vree, 1994
Saouga
14.367
-0.150
Koch-Weser, 1984
Seguenega (6 km SE)
13.417
-1.933
Koopman et at, 1978
Koopman et at, 1978; Koch-Weser, 1984; Bergmans, 1988; Bergmans, 1989; Bergmans,
Sideradougou
10.667
-4.250
1991; Van Cakenberghe & De Vree, 1993
Sintao
13.717
-1.600
Koch-Weser, 1984
Soumousso
11.017
-4.050
Hervy & Legros, 1981a; 1981b
Takaboungou
14.650
0.150
Koch-Weser, 1984
Tambao
14.800
0.083
Koch-Weser, 1984; Van Cakenberghe & De, Vree 1994
Tassamakat
14.350
-0.417
Koch-Weser, 1984
Tatarko
13.467
-0.317
Koopman et at, 1978; Koch-Weser, 1984; Van Cakenberghe & De Vree, 1998
Tazawat (Oursi) [= Tasamakat?]
14.350
-0.417
MNHN
Terhar
14.683
-0.867
Koch-Weser, 1984
Tin-A-kof
14.967
-0.167
Koch-Weser, 1984
Tin-Ediar
14.667
-0.567
Koch-Weser, 1984
Toni
12.650
-3.983
Koch-Weser, 1984
Tounte
14.650
-0.900
Koch-Weser, 1984
Voko
11.633
-1.267
Bergmans, 1991
Table 1/2. Gazetteer of previously records: data from publications and museums from 1964 to 1993.
Locality
Site
Latitude
Longitude
Date
# of nets
Total capture effort
Nazinon River (near)
along river
11.8200
-1.6733
17-18.4.2002
2
16
Djibo
near pond
14.1071
-1.6157
29.10.2004
!
5
Oursi
Near Oursi pond
14.6680
-0.4750
31.10- 1.11.2004
2
6
Markoye
next to inselberg
14.6242
0.0432
3.1 1.2004
1
3,5
Karfiguela (Comoe River, near Banfora)
gallery forest of Comoe rivere
10.6890
-4.8085
27.2.2005
1
4
Bama
orchard (pawpaw)
11.3974
-4.4022
1.3.2005
!
12
Dafra (gallery forest)
gallery forest
11,1102
-4.2505
1.12.2006
2
6
Hameau de Dafra (Koro village)
village
11.1000
-4.2333
1.12.2006
DR
Dafra
near river & orchards
11.1083
-4.2500
3.12.2006
2
6
Cascade de Kou (Koro village)
forest
11.1523
-4.2072
4.12.2006
2
6
Kourouma (gallery forest)
dry forest close to gallery forest
11.6581
-4.7470
7. 12.2006
2
24
Kourouma (village)
village
11.6159
-4.7992
9.12.2006
DR
Toussiana (Banfora cliff)
gallery forest
10.8443
-4.5987
25.4.2008
2
6
Toussiana (near)
degraded gallery forest
10.8478
-4.6001
26.4.2008
!
3,5
Koba River (gallery forest, near Dounonso)
10.8466
-4.1075
30.4.2008
2
8
Koba River (savanna, near Dounonso)
savanna
10.8460
-4.1062
1.5.2008
2
15
10
16
17
23
121
Table 2. Sampling sites, dates of capture, number of nets used and capture effort made from 2002 to 2008. Capture
effort = the number of hours during which a 12 m-net was open overnight; # of nets = number of nets used; DR = day roost.
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
603
Locality
Site
Latitude
Longitude Description
Date
# of nets
Capture
effort
Site 1
9.9560
-4.6768 Folonzo village
21.4.2008
6
30
Site 2
9.9323
-4.6085 near Comoe river
22.4.2008
4
48
F.C. & R.P.F. Comoe-
Site 3
9.9958
-4.8217 near termite mound
23.4.2008
5
60
Leraba
Site 4
9.8935
-4.74 1 1 near water way
24.4.2008
5
48
Site 5
9.7613
-4.5908 near dense forest at Guibourtia copalifera
25.4.2008
4
48
Site 6
9.7043
-4.5866 near Confluent Comoe-Leraba
26.4.2008
4
96
F. C. Niangoloko
Site 1
10.2149
-4.9644 near road
28.4.2008
6
72
Site 2
10.2427
-4-91 1 8 in front of cave
29.4.2008
4
32
Site 1
12,3975
- 1 .489 1 near Khaya senegalensis
17.6.2008
4
32
P.U. Bangr-Weoogo
Site 2
12.3963
-1.4927 near pond
18.6.2008
4
30
Site 3
12.3967
-1-4890 near pond
19.6.2008
2
24
Site 1
10.9437
-4.4776 near road
7.8.2008
2
12.5
F.C. Peni
Site 2
10.9315
- 4.4779 shrubby savanna
8.8.2008
4
20
Site 3
10.9301
-4-4912 woodland
9.8.2008
5
55
Site 1
11.5624
^ shrubby savanna
11-
12.8.2008
12
132
R.B. Mare aux
Site 2
1 1.5435
-4.1053 woodland ( near forest)
13.8.2008
6
66
1 lippopotames
Site 3
11.5393
-4-1042 shrubby savanna(near forest)
14.8.2008
6
66
Site 4
11.5460
-4.1041 dense forest
15.8.2008
6
66
F.C. KLou
Site 1
1 1.1828
woodland (near forest)
16-
17.8.2008
8
72
Site 2
11.1956
- 4.44 1 g shrubby savanna (near forest)
18.8.200S
4
44
F.C. Niouma
Site 1
12,9228
-2.6798 shrubby savanna
30.10.2008
4
22
Site 2
12.9363
-2.6880 clear forest
31.10.2008
6
45
Site 3
12.9198
-2-6986 near pond
1.11.2008
6
54
Site 1
12,7528
-2.3830 near pond
2.11.2008
5
40
F.C. Toesse
Site 2
12.7825
-2.3977 near stream
3.11.2008
6
46.5
Site 3
12.7534
-2.3829 near pond
4.11.2008
4
31
Site 1
12.6537
-3.3201 shrubby savanna
24.11.2008
4
39.3
F.C. Sa
Site 2
12,6329
-3.2664 gallery forest (except forest)
25.11.2008
6
52
Site 3
12.6570
-3.3 1 86 woodland (near river)
26.11.2008
6
45
F.C. Toroba
12-5120
, gallery forest (near river)
28-
29,1 1.2008
13
152.8
Site 1
12.434!
-3-1122 shrubby savanna
30.1 1.2008
4
36
F.C. Kari
1
Site 2
12.4772
3 1366 8 aller y forest (near river)
2.12.2008
15
180
F.C. Tisse
12.2487
-2.8692 gallery forest (near river)
3.12.2008
7
82.3
F.C. Oualou
12.3922
-2.8672 gallery forest
5.12.2008
8
46
Karfiguela (Cascades de
Banfora)
Site 1
10.7232
-4.8222 Cave ’ hil1 ’ river
17-
18.2.2009
14
47.5
Site 2
10.7215
-4.8211 cave, hill, river
19.2.2009
7
10.5
Pics de Sindou
10.6535
-5.1536 herbaceous steppe with some woody
21.2.2009
7
21.9
10.6542
-5,3894 hill (along stream)
23.2.2009
4
3.5
Negueni
Cave 1
10.6545
-5.3890 hill, cave
23.2.2009
DR
Cave 2
10.6656
-5.4075 hill, cave
23.2.2009
DR
Site 1
10.8466
-4.5978 gallery forest (along stream)
25.2.2009
5
15.5
Toussiana
Site 2
10.8442
-4.5978 gallery forest, hill, stream
26.2.2009
4
9
Site 3
10.8446
-4.5987 dense forest
27.2.2009
6
20
Galgouli
Site 1
9,9678
-3.4438 herbaceous steppe (along stream)
28.4.2009
7
29.8
Site 2
9.9689
-3-3735 gallery forest (along stream)
29.4.2009
6
12,4
Loropeni
Site 1
10.3040
-3.4832 gallery
30.4.2009
4
20
Site 2
10.3120
-3.5323 woodland (along dam)
1.5.2009
6
31.5
Batie
Site 1
9.8630
-2.9171 woodland (along dam)
2.5.2009
5
23.8
Site 2
9.8771
-2.9336 woodland (rupicolous bar)
3.5.2009
4
18
Mouhoun River
9.5535
-2.760 1 gallery forest (along river)
4.5.2009
5
25
F.C.Koulbi
9.6522
-2.8376 gallery forest (along river)
5.5.2009
6
25.5
Bambassou
9.9837
-2.9059 gallery forest (along river)
6.5.2009
6
31.5
Tikitianao
10.5570
-3.3130
7.5.2009
DR
Parc National du W
Site 1
11.5160
2.0701 gallery forest
1 1 .8.2009
5
11.3
Site 2
11.5117
2.0723 gallery forest
12.8.2009
6
53.3
Saboarkori 1
1 1.6720
1.5617 shrubby savanna (along mountain chain)
14.8.2009
7
38.5
Saboarkori 2
1 1.6919
1 .5842 woodland (along mountain chain)
15.8.2009
5
56.3
Chaine dc Gobnangou
Yirini
1 1.7354
1.6616 shrubby savanna (along mountain chain)
16.8.2009
6
33
Yirini, cave
1 1.7105
1.6055 cave
17.8.2009
DR
Tindangou
1 1 .6922
1.5842 cave
17.8.2009
DR
Table 3/1. Sampling characteristics for the BIOTA project data collection from 2008 to 2009 (see belove) (continued).
604
Napoko Malika Kangoye et alii
Locality
Site
Latitude
Longitude
Description
Date
# of nets
Capture
effort
Diapaga
12.0765
1.7871
18.8.2009
DR
Pama
1 1.3207
0.7241
woodland (near pond)
19.8.2009
4
22.5
Outourou
Site 1
10.6145
-5.4100
gallery (between hill)
18.9.2009
9
35
Site 1
10.6086
-5.3094
gallery forest
19.9.2009
4
27.5
F.C. Lera
Site 2
10.5973
-5,3130
gallery forest
20.9.2009
8
24
Site 3
10.5976
-5.3049
gallery forest
21.9.2009
8
22
Site !
10.7532
-5.2834
gallery forest
22.9.2009
8
40
Kankalaba
Site 2
10.7660
-5.3056
gallery forest
23.9.2009
9
42.5
Site 3
10.7685
-5,3055
gallery forest
24.9.2009
8
39
Niofila
Site 1
10.6917
-5.0991
shrubby savanna (between dam and
mountain)
27.9.2009
8
96
Site 2
10.7095
-5.1162
woodland (near mountain)
28.9.2009
4
18
Site 3
10.6859
-5.1270
forest
29.9.2009
9
108
32
72
74
399
2937.3
Table 3/2. Sampling characteristics for the BIOTA project data collection from 2008 to 2009 (sampling sites, capture dates,
number of nets used and capture effort). F.C.: Protected forest; R.P.F.: Partial wildlife reserve; P.U.: Urban park; B.R.:
Biosphere reserve; DR: day roost. # of nets = number of nets. Capture effort = number of hours during which a net of 12 m
is open overnight (i.e. this number is divided by two for a 6m-net).
the various areas, for the preparation of measure-
ment Tables and reference collections of the Uni-
versity of Ouagadougou.
Body measurement (accuracy 0.1 mm) and
cranial measurements (accuracy 0.01 mm) were
conducted on these specimens. The cranial meas-
urements are performed under a binocular magni-
fying glass branded Leica MZ8. Body meas-
urements are: HB (head and body length from tip
of snout to posterior margin of anus); Tail (length
of tail from posterior margin of anus to tip of tail);
Tot (total length, HB + Tail); Ear (length of ear from
lower margin of conch to tip of ear); Trag (length
of tragus along posterior margin from base to tip);
FA (length or forearm including carpals); 3Met
(length of metacarpal of third digit, excluding
carpals); 3Phl (length of first phalanx of third
digit); 3Ph2 (length of second phalanx of third
digit); 3Ph3 (length of third phalanx of third digit);
4Met (length of metacarpal of fourth digit, exclud-
ing carpals); 4Phl (length of first phalanx of fourth
digit; 4Ph2 (length of second phalanx of third digit);
5Met (length of metacarpal of fifth digit, excluding
carpals); 5Phl (length of first phalanx of fifth digit);
5Ph2 (length of second phalanx of fifth digit);
Tib: length of tibia; HF (length of hind foot, includ-
ing claws). Cranial measurements are: C-C - width
across crowns of upper canines, Mn-Mn - width
across crowns of posterior upper molars, C-Mn -
length of upper (maxillary) tooth row from front of
canine to back of posterior molar.
Mapping of species distribution
To develop distribution maps of each species
across the country, the Quantum GIS 1.8.0 software
was used. Country limits and phytogeographic
areas according to Fontes & Guinko (1995) were
also used. These information were used in Quantum
GIS 1.8.0 to produce a background map. On this
map, we added thereafter, for each species, the
locations where species was recorded (captured or
observed).
RESULTS
Data collected between 1964 and 1993 include
1,669 specimens belonging to 36 species, collected
at 77 sites.
Recent data (between 2002 and 2009) were col-
lected during two phases; between April 2002 and
May 2008 at 16 sites with 172 specimens belonging
to 17 species identified; and between April 2008 and
September 2009 (72 sites) with 1,639 specimens
belonging to 45 species identified.
The combination of previously and recent data
represent 164 sites with a total of 3,480 specimens
examined. Their total give 5 1 species derived from
the 46 years of observation. These 5 1 species were
spread over 24 genera and 9 families, including
one frugivorous and 8 insectivorous families.
Insectivorous have greater species diversity com-
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
605
pared to fmgivorous. Frugivorous have 7 species
in a single family, Pteropodidae and Insectivorous
have 44 species distributed into 8 families: Hip-
posideridae (7), Megadermatidae (1), Rhino-
lophidae (3), Rhinopomatidae (2), Emballonuridae
(3), Nycteridae (5), Molossidae (6) and Vesper-
tilionidae (17).
Family PTEROPODIDAE
Genus Eidolon Rafmesque, 1815
Eidolon helvum (Kerr, 1792)
This species is found in almost all phytogeo-
graphic zones of Burkina Faso (Fig. 2). It is a mi-
gratory species (Thomas, 1983; Richter & Cum-
ming, 2008; Ossa et al., 2012). Eidolon helvum
moves from the forest zone during the wet season
to northern woodlands and savannas, and may even
reach the edge of the desert (Horacek et al., 2000).
It forms colonies of thousands of individuals,
which are frequently located near cities or villages.
From 2009 to 2014 each year a large colony roosts
in the urban park Bangr-Weoogo in downtown
Ouagadougou. Some individuals have been ob-
served during the month of May in the Southwest
in the village of Tikitianao but the entire colony had
not yet arrived. Another colony was also observed
in August in the city of Diapaga in the Southeast.
Genus Epomophorus Bennett, 1836
Epomophorus gambianus (Ogilby, 1835)
Epomophorus gambianus is widely distributed
in the Sudanian zone of Burkina Faso, though with
fewer localities in the northern part (Fig. 2). The
species is commonly found in West Africa and
widely distributed in both Guinean and Sudanian
savannas while only a few specimens have been
found in the Sahelian zone. The latter zone with
Acacia and deciduous shmbs seems to represent the
northern limit of the species (Boulay & Robbins,
1989).
Genus Hypsignathus Allen, 1861
Hypsignathus monstrosus FI. Allen, 1862
Hypsignathus monstrosus has been recorded
from the southwest of the South- Sudanian area
(Fig. 2). This species is mainly found in the forest
zone, but extends into savannas along gallery
forests and forest islands (Bergmans, 1989; Fahr et
al., 2006). As such, localities in southern Burk-
ina Faso are probably near its range northern limit
(Koopman et al., 1978).
Genus Lissonycteris K. Andersen, 1912
Lissonycteris angolensis (Bocage, 1898)
This species occurs in the southwestern part of
Burkina Faso (Fig. 2). Its presence is probably due
to the fact that it is a species extending from the
forest areas of West Africa to the wet savannas. In
this part of the countiy, Lissonycteris angolensis is
mainly found in hilly areas and cliffs that provide
suitable day roosts such as caves and rock over-
hangs. We located several day roosts in the cliffs of
Banfora.
Genus Micropteropus Matschie, 1899
Micropteropus pusillus (Peters, 1868)
Micropteropus pusillus is less widely distributed
in Burkina Faso than Epomophorus gambianus,
with most records from woodlands of the Sudanian
zone and only few records in the North-Sudanian
area (Fig. 2). Although this species ranges up to
14°N in West Africa (Owen- Ashley & Wilson,
1998), no specimens have been captured so far in
the Sahelian area of Burkina Faso.
Genus Nanonycteris Matschie, 1899
Nanonycteris veldkampii (Jentink, 1888)
Nanonycteris veldkampii was captured in the
Sudanian zone (Fig. 2). This species migrates
during the wet season from the forest zone to the
northern Sudanian zone (Thomas, 1983). In
agreement with this, all captures were made
during the wet season in protected forests, gallery
forests along Gobnangou range and next to water
points.
Averages of body measurements (except Ear,
Tib, and HF) and cranial measurements of males
are smaller than the measurements of females. The
maximum measurements of the forearm and wings
and the cranial measurement (MM) of males are
lower than the minimum measurements of females
(Table 4). The wings of females are longer than
those of males.
606
Napoko Malika Kangoye et alii
Figure 2. Distribution of Pteropodidae in Burkina Faso.
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
607
Eidolon helvum
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
3
2S8.0
24,7
27.6
115.2
81.0
50.1
83.2
79.9
39.7
52.3
68.5
33.0
36.0
49.6
28.4
10.45
17.23
21.90
Epomophorus gamhianus
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
X
127.8
138.1
6.8
27.6
89.7
65.9
40.5
53.7
62.6
30.7
32.7
63.3
30.5
30.4
39.3
21.0
10.14
14.09
21.13
33
Min
120.0
127.5
4.6
26.4
88.8
64.7
39.6
49.6
61.8
29.2
30.2
62.2
28.9
29.0
37.8
20.1
9.97
13.77
20.26
Max
144.0
143.7
9,3
29.6
92.1
67.1
41.7
56.5
63.4
31.3
34.2
64.0
31.2
31.9
40.5
21.7
10.49
14.65
21.80
n=
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
X
87.5
132.2
8.3
26.7
86.1
64.0
40.0
51.9
60.8
29.6
32.5
61.8
30.2
29.1
36.9
20.7
9.57
13.74
19.92
99
Min
64.0
125.6
6.0
25.2
84.0
61.2
39.1
50.3
58.4
27.3
31.3
59.5
29.0
27.9
36.2
19.6
9.27
13.29
18.64
Max
112.0
137.8
10.1
28.3
88.7
66.5
41.1
53.1
63.4
31.5
33.5
63.3
31.9
30.2
37.4
22.3
9.79
14.57
20.84
n=
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Lissonycteris angolensis
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Mel
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
X
55.0
104.2
13.1
20.8
69.6
50.6
34.8
42.0
49.0
26.0
27.2
47.9
22.6
24.5
30.0
19.9
7.44
10.84
13.81
± SD
4.1
6.8
1.0
1.0
2.8
2.1
1.7
2.1
1.8
1.2
1.0
1.8
1.0
1.4
1.3
1.6
0.22
0.52
0,69
t?9
Min
46.0
98.3
11.2
19.1
66.3
47.9
32.3
39.4
46.1
24.1
25.7
45.0
20.5
22.0
27.9
18.1
7.16
10.19
13.11
Max
58.0
119.5
14.2
22.3
73.3
55.1
38.0
45.7
51.8
27.7
29.1
50.6
23.8
26.2
32.0
23.0
7.74
11.76
14.87
n=
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
6
6
Micropteropus pusillus
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3Ph2
3Ph3
4 Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
X
29.8
78.2
7.9
16.3
51.9
38.6
23.7
31.4
38.1
17.4
20.3
37.5
17.6
18.5
22.7
13.3
6.16
10.03
9.14
± SD
2.6
4.0
0.9
0.6
1.1
1.3
0.6
1.4
1.1
0.5
0.7
0.9
0.5
0.9
0.5
0.7
0.21
0.39
0.39
Min
27.0
72.9
6.9
15.4
50.2
36.4
22,7
28.8
36.2
16.6
19.3
36.0
16.7
17.0
22.2
11.9
5.80
9.40
8.42
Max
34.0
84.2
9.0
16.9
53.2
40.1
24.6
32.6
39.5
18.1
21.4
38.5
18.2
19.7
23.2
13.9
6.46
10.60
9.50
n=
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
X
25.6
77.1
7.3
16.7
51.3
37.7
24.1
31.8
37.4
17.4
20.2
36.5
17.5
18.3
21.7
13.6
5.93
9.25
8.63
99
Min
21.0
71.7
6.4
15.8
49.3
36.7
23.0
29.5
36.0
16.7
19.4
34.7
17.1
17.8
20.9
13.3
5.61
8.86
8.22
Max
34.0
82.4
8.3
17.7
54.2
39.1
25.6
32.5
39.1
18.9
21.2
37.9
18.2
19.0
23.2
14.0
6.09
9.90
9.29
n=
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Nanonycteris veldkampii
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
m 3 -m 3
C-M 3
X
19.4
67.3
5.6
16.3
46.7
34.5
22.0
28.0
33.6
16.1
17.9
33.8
15.3
15.3
19.0
12,7
5.03
6.95
7.13
± SD
3.1
4.2
1.0
1.0
1.3
1.0
0.9
1.8
1.1
0.7
0.9
1.3
0.8
0.8
0.9
0.4
0.16
0.21
0.21
33
Min
15.0
61.9
3.9
14.7
45.4
32.4
21.1
25.7
31.6
15.2
16.3
31.7
14.2
14.2
18.0
11.9
4.87
6.64
6.86
Max
26.0
76.3
6.7
17.7
48.9
35.8
23.7
30.9
35.0
17.1
19.2
36.2
16.8
16.8
20.6
13.2
5.31
7.22
7.54
n=
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7
7
7
9
28.0
74.9
7.3
17.4
54.5
41.8
26.4
34.1
40.7
18.4
19.6
40.8
17.8
18.0
22.6
13.0
5.46
7.26
7.68
9
21.0
69.1
5.8
15.8
50.8
39.4
24.5
31.9
37.3
17.9
19.7
37.5
17.3
17.5
18.9
12.7
5.31
7.34
7.36
Rousettus aegyptiacus
Sex
BM
TL
T
E
TR
FA
3 Met
3 Phi
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
X
144.8
136.1
22.1
21.7
98.0
64.8
42.4
58.3
63.0
33.6
36.8
60.7
30,9
28.3
45.1
26.0
9.41
13.50
17.29
Min
130.0
133.6
18.0
20.9
93.5
63.0
41.9
54.6
61.0
32.3
36.0
58.3
30.7
28.1
42.8
20.0
8.93
13.28
16.86
Max
162.0
139.7
26.2
22.5
101.3
66.3
42.9
60.5
64.3
35.7
37.7
62.6
31.1
28.4
48.0
30.2
10.12
13.63
17.65
n=
4
3
4
4
4
3
3
3
3
3
3
3
3
3
4
4
4
4
4
Table 4. Measurements of Pteropodidae from Burkina Faso.
Genus Rousettus Gray, 1821
Rousettus aegyptiacus (E. Geoffroy, 1810)
Rousettus aegyptiacus was recorded from the
western and eastern part of the South-Sudanian
zone (Fig. 2). In the Sudanian zone, R. aegyptiacus
has been captured in rocky formations that provide
a wide variety of day roosts for this cave-dwelling
species (Hayman, 1967; Qumsiyeh, 1985). Indeed,
several specimens have been captured in the cliffs
of Banfora where their shelters have been observed
and where one of the caves contained about 500 to
2000 individuals. Two other specimens have been
captured along Gobnangou range.
It looks like Lissonycteris angolensis but the
averages of body measurements (except Ear, HF)
and cranial measurements of L. angolensis are
lower than those of R. aegyptiacus. In addition,
maximum measurements (except Ear, HF) of L.
angolensis are below the minimum measurements
of R. aegyptiacus (Table 4).
Family HIPPOSIDERIDAE
Genus Asellia Gray, 1838
Asellia tridens (E. Geoffroy, 1813)
Asellia tridens is particularly found in North and
Northeast Africa (Hayman, 1967; Horacelc et al.,
2000). This desert species extends into the North-
Sahelian zone of Burkina Faso (Fig. 3), which is
probably its southern limit.
608
Napoko Malika Kangoye et alii
Genus Hipposideros Gray, 1831
Hipposideros abae J. A. Allen, 1917
Hipposideros abae is known in forest areas as
well as in woody savannas (Aellen, 1952). Accord-
ing to Koopman et al. (1978), it probably reaches
its Northern limit in Burkina Faso. Indeed, all
specimens are located only in the Southwest in the
South- Sudanian zone (Fig. 3). Most specimens
captured during the BIOTA collect come from a
cave where H. tephrus, H. ruber, Nycteris macrotis
and Rhinolophus landeri were also captured. Hip-
posideros abae is known to present two color
phases, gray and red, like the other members of the
family (Rosevear, 1965). However, all specimens
captured during the late BIOTA collect were shows
almost the same orange-yellow color except one
specimen captured at Kankalaba which shows a
darker color tending towards red.
Males are not different from females (Table 5)
Hipposideros cy clops (Temminck, 1853)
Hipposideros cyclops is located in the extreme
Southwest in the South-Sudanian zone (Fig. 3). All
three specimens have been captured in the protected
forest and partial wildlife reserve of Comoe-Leraba,
next to a dense forest at Guibourtia copalifera and
not far from the Comoe-Leraba confluence. This
forest species (Rosevear, 1965) is common in the
gallery forests and forest islands of the National
Park of Comoe in Ivoiry Coast. However, it extends
from forests into savannas (Fahr, 1996). It would
therefore be extended into this part of Burkina Faso
near the Ivorian border. The number of our speci-
mens does not allow us to conclude a sexual di-
morphism (Table 5). However, sexual dimorphism
is pronounced, with females being larger than males
(Decher & Fahr, 2005).
Hipposideros jonesi Hayman, 1947
This species has been found in the southwest
(Sudanian zone) of the country and in the extreme
southeast of the South-Sudanian zone (Fig. 3). One
orange-yellow phase was observed on the captured
specimens.
Hipposideros ruber (Noack, 1893)
Hipposideros ruber is widely distributed and is
located in all phytogeographic areas (Fig. 3). It is
more common in the South being gradually rare to-
wards the North. The specimens have been captured
in an arborous savanna along a rupicolous bar in a
mountain range, at the entrance to a cave, in a
gallery forest, the cliffs of Banfora, a wooded
savanna along a dam, a shrubby savanna between a
mountain and a dam, a wooded savanna near a
mountain and a cave, and in a wooded savanna next
to a managed water point near the Nazinon river and
not far from a water point. The captured specimens
showed two phases of color: some were brown and
others orange-yellow. The cytochrome b from sev-
eral specimens has been sequenced by CBGP (J.-F.
Cosson & S. Chollet, unpubl. data). According to
these data, two specimens from Dafra, one specimen
from Djibo and one specimen from Koba River
belong to clade D1 as designated by Vallo et al.
(2009), while seven specimens from Toussiana
belong to clade Cl. Twenty-two individuals (2
males, 19 females, 1 unsexed, none sequenced) from
Toussiana, site 1, called at 140.8±1.0 (138.5-142.3)
kHz. One male from Karfiguela called at 140.2 kHz.
Hipposideros tephrus Cabrera, 1906
It is located in the West and South of the country
(Fig. 3). It is present in all phytogeographic zones
except in the North- Sahelian one. A specimen has
been captured in a forest at the entrance to a cave
where Hipposideros abae, H. ruber, Nycteris mac-
rotis and Rhinolophus landeri live together. The other
specimens have been captured in a pocket of forest
on a rocky substratum rich in Raphia palm and next
to the Nazinon River. All specimens that we captured
were presenting a single orange-yellow phase.
Hipposideros tephrus is smaller than H. ruber.
The averages of body measurements and cranial
measurements of H. tephrus are lower than those of
H. ruber. However, there is an overlap on all body
measurements (except HB). Nevertheless, cranial
measurements reveal that the maximum values of
H. tephrus are smaller than the minimum values of
H. ruber (Table 5). A specimen from waterfalls of
Kou is member of clade A2 following the designa-
tion adopted by Vallo et al. (2009), which should be
named//, tephrus.
Hipposideros vittatus (Peters, 1852)
It is the largest of Hipposideridae among those
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
609
Figure 3. Distribution of Hipposideridae in Burkina Faso.
610
Napoko Malika Kangoye et alii
found in Burkina Faso (see Table 5). Present in
branches of trees as well as in caves (Pye, 1972;
Vaughan, 1977), it is located west of the Sudanian
zone (Fig. 3). The specimens have been captured in
woodland, next to a gallery forest, in a shrubby and
arborous savanna and in an herbaceous steppe
located along a river.
Body measurements show that males are not dif-
ferent from females. On the other hand, the max-
imum values of cranial measurements of females
are lower than the cranial measurements of males
(Table 4). All captured specimens were yellow.
Family MEGADERMATIDAE
Genus Lavia Gray, 1838
Lavia frons (E. Geoffroy, 1810)
This species is found in savannas and semi-
wooded areas (Vaughan & Vaughan, 1986) but not
widely distributed in Burkina Faso, where it
has been recorded from a few areas in the southern
part of the country (Fig. 4). In eastern Kenya, it
regularly roosts in thorny Acacia trees (Vaughan &
Vaughan, 1986; Vaughan, 1987); hence it is surpris-
ing that there are no records from northern Burkina
Faso. Some specimens have been captured near
water points.
Males are not really different from females.
Body measurements and cranial measurements do
not enable to separate them (Table 6).
Family RHINOLOPHIDAE
Genus Rhinolophus Lacepede, 1799
Rhinolophus alcyone Temminck, 1853
Rhinolophus alcyone was distributed in the
extreme southwest of the South-Sudanian zone
(Fig. 5). In Burkina Faso, this forest species
probably depends on gallery forests that provide
similar conditions to rainforests further south. All
captured specimens were gray, resembling that of
R. fumigatus.
Averages of body measurements (except 3Phl,
5Ph2, Tib and HB) and cranial measurements of
males from R. alcyone are smaller than those of
males from R. fumigatus. Only the maximum value
of the ear of males from R. alcyone species is less
than the minimum value of the ear of males from
R. fumigatus. And the minimum value of the tibia
of R. alcyone is higher than the maximum value of
the tibia of R. fumigatus. All other values are not
distinctly separated. As regards females, all values
(except 5Ph2) of R. alcyone are smaller than the
averages of R. fumigatus. Moreover, all values
(except HB, Tail, 3Phl, 5Ph2 and Tib) of R. alcyone
are smaller than the minimum values of R. fumig-
atus (Table 7).
Rhinolophus fumigatus Riippell, 1 842
In Burkina Faso, Rhinolophus fumigatus has
been recorded in the Sudanian zone, with several
localities in the north of the South-Sudanian zone
and few localities in the western North- Sudanian
zone (Fig. 5). Rhinolophus fumigatus is present in
more open habitats than R. alcyone (Rosevear,
1965), which explains its wider distribution in Burk-
ina Faso than R. alcyone. Like R. landeri, R. fumig-
atus does not live only in caves. According to
Koopman et al. (1978), they were captured in huts.
Some specimens were observed during the BIOTA
collect in a large rock cleft in the Gobnangou
range.
Five males called at 54.2 ± 0.4 (53.4-54.4) kHz.
Two collected specimens had a horseshoe width of
11.3 and 11.5 mm, respectively. Averages of body
measurements do not help to distinguish males from
females. On the other hand, the averages of cranial
measurements of males are higher than those of fe-
males (Table 7).
Rhinolophus landeri Martin, 1838
Rhinolophus landeri occurs in almost all phyto-
geographic zones of Burkina Faso except in the
North- Sahelian zone (Fig. 5). Day roosts are caves,
house of worship, bridges, and wells (Aellen, 1952;
Menzies, 1973; Koopman et al., 1978; Kock et al.,
2002), and the dependency on cave-lilce structures
might explain the concentration of records in the
southwest of the country, with its numerous rocky
formations. The ability to roost in environments
other than caves might explain its presence in other
parts of the country, and this species probably
occurs throughout most of Burkina Faso. It would
therefore not be surprising to find it almost every-
where in Burkina Faso, particularly in rock forma-
tions in the South-East. Most specimens have been
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
611
Hipposideros abac
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
Tib
HF
c-c
m 3 -m !
C-M !
X
14.7
63.0
32.4
20.8
59.7
41.9
18.4
19.6
40.8
12.3
10.4
36.8
15.3
11.4
24.3
10.9
5.98
8.93
8.76
± SD
1.0
1.6
2.1
1.0
1.5
1.1
0.7
1.1
1.3
0.5
0.6
1.0
0.5
0.6
0.7
0.4
0.15
0.15
0.15
<?<J
Min
12.0
58.9
27.5
19.1
56.7
39.5
16.9
17.4
37.7
11.0
9.2
34.9
14.2
10.7
22.8
9.6
5.77
8.66
8.53
Max
17.5
65.2
36.3
22.5
62.6
43.9
19.5
21.9
44.4
13.3
11.8
39.8
16.5
12.7
25.6
11.6
6.44
9.16
9.11
n=
25
25
25
25
18
25
25
25
25
25
25
25
25
25
25
25
24
25
24
X
18.0
61.8
31.7
20.4
60.1
44.1
18.9
20.6
42,9
13.0
10.8
38.9
15.4
12.0
24.6
10.5
5.92
8.99
8.76
±SD
4.3
3.6
1.3
0.9
2.3
1.4
0.8
1.0
1.8
0.6
0.8
1.1
0.7
0.8
1.1
0.6
0.13
0.17
0.15
99
Min
13.0
57.4
30.2
19.1
56.4
42.6
17.9
19.1
41.0
12,1
9.5
37.8
14.7
10.4
23.3
9.1
5.74
8.78
8.53
Max
26.3
69.0
34.0
21.7
63.0
47.3
20.1
22.4
46,6
13.9
11.6
41.2
16.4
12.8
26.6
11.3
6.11
9.36
9.03
n=
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
H ipposideros cy clops
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Met
5Phl
5Ph2
Tib
HF
C-C
m 3 -m 3
C-M 3
6
34.0
77.5
25.7
32.8
70.1
55.5
20.1
27.4
57.4
14.2
14.2
55.5
16.5
15.0
30.4
17.5
8.01
11.27
9.80
9
49.0
75.4
29.5
32.1
70.3
59.7
21.2
27.2
59.2
15,8
15.0
57.6
18.2
15.4
35.9
18.3
7.80
11.25
10.29
9
44.0
76.9
29.5
30.9
70.6
56.7
21.0
22.2
59.3
14.7
15.2
57.5
16.5
14.5
35.8
17.9
7.78
10.70
10.00
Hipposideros jonesi
Sex
BM
TL
T
E
TR
FA
3 Met
3 Phi
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
Tib
HF
C-C
M-’-M 5
C-M 3
X
7.2
48.9
23.2
23.4
46.7
34.0
14.7
16.9
35.8
10.9
8.7
32.8
12.3
10.1
21.7
7.8
3.68
5.83
5.93
± SD
0.3
2.5
2.7
1.4
0.8
0.6
0.5
0.8
0.7
0.4
0.5
0.9
0.4
0.3
0.9
0.3
0.12
0.16
0.09
Min
7.0
46.2
17.8
21.6
44.9
33.1
14.2
15.5
34.5
9.9
8.0
31.6
11.8
9.6
20.3
7.3
3.48
5.63
5.82
Max
8.0
54.5
26.4
25.2
47.3
34.8
15.8
17.6
36.5
11.2
9.2
34.1
12,8
10.5
22.8
8.2
3.84
6.03
6,07
n=
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
Q
6.0
43.7
22.6
20.5
44.4
32.2
14.5
15.8
33.9
10.0
8.2
31.6
11.9
9.5
20.2
7.2
3.27
5.50
5.68
Hipposideros ruber
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
Tib
HF
C-C
M-’-M 5
C-M !
X
9.9
52.1
30.0
15.7
49.1
37.2
16.2
16.3
36.2
11.2
9.1
32.7
13.9
9.9
20.6
9.0
4.90
7.20
7.03
<?9
± SD
1.3
2.1
3.2
0.9
1.3
1.9
0.7
1.0
2.3
0.5
0.6
1.7
0.5
0.5
0.8
0.6
0.25
0.23
0.19
Min
7.0
48.0
23.0
13.4
46.5
33.6
14.8
14.1
32.0
10.2
7.7
29.6
12.9
9.1
19.0
7.8
4.29
6.58
6.66
Max
13.5
58.3
38.8
17.6
52.4
41.4
17.7
18.4
41.9
12.1
10.2
36.3
14.8
11.0
22.7
10.8
5.26
7.80
7.44
n=
48
48
48
48
97
48
48
48
48
48
48
48
48
48
90
88
74
89
89
Hipposideros vittutus
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
Tib
HF
C-C
M 3 -M 3
C-M 3
<?
82.0
104.
37.4
30.4
109.
81,0
37.5
44.5
78.1
28.8
16.6
78.7
29.4
18.4
45.8
22.2
10.93
13.52
13,36
<?
120.0
109.
32.2
29.7
102.
77.2
34.8
39.8
75.5
28.8
16.2
73.2
28.8
15.8
43.0
20.9
11.16
13.68
13.32
X
77.0
99.9
33.1
27.6
96.5
70.9
32.4
38.9
69.5
26.6
15.4
68.3
27.3
16.6
38.8
20.0
9.86
12.80
12.47
± SD
9.0
2.9
4.0
1.3
2.9
2.3
1.0
2.1
2.2
1.1
0.8
2.4
1.4
0.9
1.1
1.2
0.10
0.30
0.22
99
Min
63.0
96.4
26.0
25.4
93.6
67.7
30.6
36.0
66.0
25.2
14.3
65.5
25.4
15.1
37.3
18.5
9.73
12.30
12.17
Max
93.0
104.
38.4
29.7
102,
74.7
33.9
42.0
72.6
28.9
16.5
73.0
30.1
17.8
40.9
21.7
10.00
13.16
12.91
n=
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
Hipposideros tephrus
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
Tib
HF
C-C
m 3 -m 5
C-M 3
X
6.3
45,2
28.6
13.3
44,9
33.3
14.6
15.8
33.0
9.9
8.8
29.3
12.5
10.2
18.2
7.9
3.67
5.68
5.57
± SD
1.1
2.2
0.5
1.2
1.0
0.5
0.5
1.0
0.3
0.4
1.2
0.4
0.4
0.7
0.4
0.10
0.14
0.09
<?$
Min
5.5
43.6
25.2
12.9
42.0
32.0
13.9
15.2
31.9
9.6
8.0
28.1
11.9
9.6
16.9
7.1
3.48
5.36
5.31
Max
7.0
46.8
31.2
14.2
47.0
35.1
15.3
16.6
35.0
10.4
9.2
31.7
13.0
10.8
19.4
8.6
3.84
5.91
5.70
n=
2
6
6
6
21
6
6
6
6
6
6
6
6
6
22
7
16
17
18
Table 5. Measurements of Hipposideridae from Burkina Faso.
La via fro ns
Sex
BM
TL
T E
TR
FA
3Met
3 Phi
3Ph2
3Ph3 4Met
4Phl
4Ph2
5 Met
5 Phi
5Ph2
TB
HF
C-C
m 3 -m 3
C-M 3
<J
23.5
66.7
40. 1
25.1
61.6
45.7
25.5
39.4
48.9
16.1
14.1
51.8
16.8
16.5
34.4
16.5
5.85
8.86
9.47
<7
22.3
69.1
43.6
23.4
60.8
44.6
24.0
40.5
47.8
16.0
15.5
50.7
16.6
15.9
33.8
16.8
5.87
9.18
8.67
X
28.5
70.2
42.8
26.5
61.3
45.7
25.4
42.1
49.8
15.9
14.9
52.1
17.2
16.7
34.5
16.7
6.25
9.09
9.23
$?
Min
26.3
66.0
41.8
25.1
60.0
45.1
25.1
41.3
49.5
14.4
14.6
51.4
16.7
16.6
33.7
15.5
6.22
8.74
9.05
Max
31.0
74.2
44.3
28.0
62.3
46.3
25.8
42.7
50.4
17.4
15.2
53.1
17.9
16.8
35.1
17.2
6.28
9.44
9.40
n=
'j
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
Table 6. Measurements of Megadermatidae from Burkina Faso.
612
Napoko Malika Kangoye et alii
Figure 4. Distribution of Megadermatidae in Burkina Faso. Figure 5. Distribution of Rhinolophidae in Burkina Faso.
Rhinolonhus alcvone
Sex
BM
TL
T
n
TR
FA
3 Met
3 Phi
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5 Phi
5Ph2
TB
1 IF
c-c
M’-M-'
C-M 3
S3
X
13.1
56.7
26.3
19.8
50.4
36.6
17.4
26.6
2.7
41.6
8.8
16.4
40.1
1 1.9
14.9
23.6
12.1
6.31
8.42
8.67
Min
12.0
55.5
22.8
19.7
49.5
35.1
16.9
24.6
2.7
41.0
8.0
15.2
39.2
1 1.4
14.2
23.2
1 1.4
6.01
8.15
8.28
Max
14.0
57.6
30.6
19.9
51.1
38.0
18.1
28.2
2.8
42.5
9.3
17.3
42.1
12.3
15.6
24.4
13.0
6.50
8.66
8.84
n=
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
12.0
54.8
25.4
20.2
48.8
35.7
16.3
26.7
2.7
40.4
8.4
15.2
40.2
1 1.8
13.8
22.5
10.5
5.47
8.09
8.12
Rhinolonhus himhjattis
Sex
BM
TL
T
E
TR
FA
3 Met
3 Phi
3 Ph2
3Ph3
4Met
4Ph1
4Ph2
5 Met
5 Phi
5Ph2
TB
1 IF
C-C
C-M 3
3 3
X
16.1
64.2
27.0
24.4
53.4
39.4
17.0
29.4
3.1
41.9
10.3
17.8
42.5
13.1
14.2
21.6
1 1.6
6.79
8.97
8.88
± SD
1.6
5.4
2.4
1.8
1.5
1.0
0.7
1.4
0.3
1.0
0.7
0.9
0.9
0.7
1.2
1.3
1.0
0.29
0.33
0.27
Min
12.0
57.0
23.3
21.7
50.4
37.5
16.2
26.3
2.5
39.9
9.3
16.3
40.7
1 1.8
12.8
18.6
10.1
6.26
8.35
8.29
Max
17.5
74.6
31.0
27.0
55.4
40.5
18.3
30.9
3.5
43.3
11.5
19.2
43.7
14.1
16.2
22.9
13.6
7.24
9.39
9.07
n=
9
9
9
9
9
8
8
8
5
8
8
8
8
8
8
8
9
6
6
6
9 ?
X
15.2
60.6
28.0
24.3
53.0
39.5
16.4
28.5
3.4
42.3
10.0
17.8
42.7
12.7
13.7
22.3
1 1.1
6.64
8.70
8.56
Min
10.0
57.0
23.5
22.9
50.3
38.5
15.7
27.8
3.2
41.8
9.9
17.0
42.4
12.3
13.5
22.0
10.7
6.43
8.25
8.30
Max
18.0
67.0
34.0
25.0
55.7
40.4
17.1
29.2
3.6
42.7
10.1
18.5
42.9
13.0
13.9
22.5
12.0
6.80
9.03
8.66
n=
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
4
3
3
5
Rhinolonhus landeri
Sex
BM
TL
T
F.
TR
FA
3 Met
3 Phi
3 Ph2
3Ph3
4Met
4Ph 1
4Ph2
5 Met
5 Phi
5Ph2
TB
HF
C-C
M’-W
C-M 3
S3
X
5.9
45.3
23.4
17.1
41.4
28.4
12.8
19.2
31.7
6.4
11.9
30.6
9.0
1 1.6
17.9
8.4
4.72
6.72
6.54
± SD
0.6
3.8
1.8
0.8
1.5
1.3
0.4
1.9
1.9
0.4
1.2
2.0
0.4
0.7
0,6
0.1
0.19
0.12
0.14
Min
5.0
42.9
20.3
16.2
39.1
26.6
12.0
16.3
29.6
5.9
10.0
27.9
8.3
10.7
17.0
8.1
4.50
6.54
6.44
Max
6.9
53.7
25.9
18.5
44.1
30.4
13.2
21.9
34.8
6.7
13.2
33.4
9.4
12.7
18.6
8.6
5.04
6.85
6.82
n=
6
6
6
6
6
5
5
5
5
5
5
5
5
5
6
6
5
5
5
99
X
7.4
44.9
24.3
16.5
41.5
28.4
12.9
19.9
31.3
6.5
12.6
30.4
9.0
12.1
17.4
8.3
4.37
6.58
6.45
± SD
1.2
2.6
2.0
0.9
1.0
1.0
0.5
1.5
1.2
0.4
0.7
1.3
0.6
0.6
0.6
0.6
0.28
0.14
0.1 1
Min
5.5
41.2
21.1
14.9
40.0
26.7
1 1.9
16.9
29.4
5.8
10.5
28.4
7.3
1 1.0
16.4
7.3
3.93
6.23
6.19
Max
9.5
54.1
30.2
18.0
43.4
31.1
14.0
22.8
34.0
7.4
14.1
33.0
10.1
13.4
18.4
10.3
4.96
6.86
6.67
n=
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
21
21
21
Table 7. Measurements of Rhinolophidae from Burkina Faso.
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
613
captured from a cave where we placed nets at the
entrance. Several other species were also present,
including Hipposideros abae, H. ruber , H. tephrus
and Nycteris macrotis. All specimens that we
captured were orange-yellow; which makes it easier
to distinguish it from R. alcyone and R. fumigatus.
One male was calling at 108.5 kHz. It had a horse-
shoe width of 7.0 mm and well-developed reddish-
brown axillary tufts. A female called at 105.6 kHz
with a horseshoe 7.3 mm wide.
Family RHINOPOMATIDAE
Genus Rhinopoma E. Geoffroy, 1818
Rhinopoma cytops Thomas, 1903
Hulva et al. (2007) restrict R. hardwickii to Asia
and R. cystops to Africa and Western Asia. Rhino-
poma cytops, found in the Northern Sahara
(Horacek et al., 2000) is a species from desert to
semi-desert areas (Hill, 1977; Van Cakenberghe &
De Vree, 1994). In Burkina Faso, it has been found
in the northern Sahelian as well as in the South-
Sudanian zone, suggesting a rather loose associ-
ation with climatic areas in the country (Fig. 6). In
the South-Sudanian area, its presence seems to
be linked to the presence of rocky formations and
rugged topography.
Averages of body measurements (except HB,
3Phl, 3Ph2, 4Ph2 and 5Ph2) of males are smaller
than those of females. On the other hand, averages
of cranial measurements of males are higher than
those of females (Table 8). The tail being actually
longer than the forearm, one can distinguish it from
R. microphyllum.
Rhinopoma microphyllum (Briinnich, 1782)
Rhinopoma microphyllum seem to occur in sim-
ilar habitats as R. cystops (Qumsiyeh, 1985). In Burk-
ina Faso, R. microphyllum has been recorded from
the North- Sahelian zone (Fig. 6). Although this
Rhinopoma cystops
Sex
BM
TL
T
E
TR
FA
3Met
3Ph 1
3Ph2 3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HE
c-c
M ; -M 5
C-M J
X
9.8
62.0
69.0
19.2
7.5
57.1
39.0
9.5
14.8
33.7
12.5
10.1
39.1
10.1
8.8
25.5
12.6
4.23
7.78
6.01
Min
8.5
54.0
64.5
18.3
6.8
54.9
37.6
8.5
12.1
31.8
11.8
9.1
37.0
9.1
7.5
23.0
11.2
4.14
7.66
5.97
36
Max
10.5
68.1
71.8
20.7
8.3
58.4
40.9
10.2
16.0
35.6
12.8
11.2
40.6
10.5
9.6
27.3
13.5
4.31
7.91
6.07
n=
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
X
11.5
60.5
71.0
19.6
7.2
59.4
41.5
8.7
14.3
34.6
12.6
9.7
40.7
10.8
8.4
27.0
13.0
4.21
7.66
5.86
99
Min
9.5
58.1
68.8
18.1
Os
bo
57.2
38.6
7,7
13.7
32.5
11.5
9,0
38.5
9.5
8.0
24.7
12.6
4.09
7.49
5.79
Max
14.0
62.1
74.5
20.5
7.8
60.6
43.5
9.3
15.1
36.1
13.2
10.5
42.0
12.1
8.9
28.3
13.2
4.28
7.79
5.96
n=
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Table 8. Measurements of Rhinopomatidae from Burkina Faso.
Figure 6. Distribution of Rhinopomatidae in Burkina Faso.
614
Napoko Malika Kangoye et alii
species has often been encountered in the same day
roosts as R. cy stops (though usually in smaller num-
bers) (Schlitter & Qumsiyeh, 1996), no specimen
was recorded in the Sudanian zone of Burkina Faso.
Family EMBALLONURIDAE
Genus Coleura Peters, 1867
Coleura afra (Peters, 1852)
Rarely seen in West Africa, Coleura afra is loc-
ated in the southwest in the South- Sudanian zone
(Fig. 7). This cave-dwelling species has been cap-
tured only in this part of the country. Thousands of
individuals have indeed been observed in this cave
located on a hill at Negueni. It is the smallest of
Emballonuridae present in Burkina Faso (Table 9).
As observed by Goodman et al. (2008), males
differ from females. Indeed, averages of body
measurements and cranial measurements of the fe-
males are larger than those of males. In addition,
maximum cranial measurements (M3 -M3 and C-
M3) of males are smaller than the minimum cranial
measurements of females (Table 9).
Genus Taphozous E. Geoffroy, 1818
Taphozous nudiventris Cretzschmar, 1830
Also known in the North of Sahara (Horacek et
al., 2000), Taphozous nudiventris is particularly loc-
ated in the North-Sahelian zone (Fig. 7). However,
this species widely distributed in the dry areas of
African savannas (Koopman, 1975) has just been
located in the extreme southwest in the South-
Sudanian zone. Its presence could be explained by
the nature of the area in which these specimens
have been captured. Indeed, the peaks of Sindou
represent specific formations with veiy little veget-
ation and water with a lot of cracks that can lodge
this species. As indicated by Benda et al. (2006),
this species is often captured in its lodgings, in nar-
row shelters and in cracks. Actually in the peaks of
Sindou, T. nudiventris has been captured at the top
of the peaks, in cracks of rocks serving as shelters.
Body measurements (except 4Ph2 and 5Ph2)
and all cranial measurements show that T. nudi-
ventris is larger than T. perforatus (Table 9).
Taphozous perforatus E. Geoffroy, 1818
Found in the northern Sahara (Horacek et al.,
2000), Taphozous perforatus is widely distributed
in the Sahelian zone (Fig. 7). Also present in the W
park bordering Niger (Poche, 1975), it was not
surprising to encounter it in this part of Burkina
Faso. Indeed, T. perforatus has just been located in
the extreme South-East in the South- Sudanian zone.
But unlike the specimens captured by Poche
(1975) in the hollow of a baobab, specimens cap-
tured in Burkina Faso during the BIOTA collect
come from a cave. These have been captured on the
Gobnangou range in the presence of a colony of
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
615
Coleura a fra
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 5 -M 3
C-M J
X
9.8
64.0
17.8
15.3
6.0
51.1
44.9
16.3
17.2
36.8
12.6
6.5
32.6
13.2
5.8
18.2
10.2
4.13
7.83
7.02
Min
9.5
63.2
16.3
15.2
5.5
49.9
43.1
15.1
16.7
35.3
12.2
5.9
32.3
12.8
5.4
18.1
10.1
4.10
7.77
6.96
S3
Max
10.5
64.4
20.3
15.5
6.8
52.1
45.9
17.2
18.1
37.8
12.9
7.4
33.0
13.9
6.1
18.4
10.3
4.17
7.88
7.12
n=
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
X
11.2
66.4
17.9
15.8
6.3
52,7
48.2
17.7
17.4
38.8
13.2
7.1
33.8
14.0
5.9
19.0
10.6
4.25
8.17
7.33
Min
10.5
65.8
16.9
15.5
6.2
51.1
46.4
17.6
16.4
37.3
12.9
6.7
33.0
13.9
5.4
18.2
10.2
4.14
8.16
7.24
Max
11.5
67.3
20.0
16.3
6.5
54.0
49.9
17.8
18.3
39.7
13.4
7.4
34.8
14.1
6.6
20.2
10.8
4.32
8.18
7.39
n=
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Taphozous nudiventris
Sex
BM
TL
T
E
TR
FA
3Met
3 Phi
3Ph2
3Ph3
4Mel
4Phl
4Ph2
5Met
5 Phi
5Ph2
TB
HF
C-C
M J -M 3
C-M J
$
60.0
105.3
38.9
20.8
6.1
80.5
74.6
31.7
30.5
60.8
16.8
9.6
52.3
16.6
9.8
32.3
16.2
6.22
11.22
11.51
3
61.5
108.2
37.2
21.0
6.7
73.4
67.7
28.5
30.2
55.4
16.6
8.9
47.2
16.0
9.2
31.2
17.9
6.63
11.07
11.08
9
53.0
102,9
40.3
19,9
6.2
75.9
70.6
29.9
31.8
56.1
16.2
6.8
46.9
16.3
9.2
32.3
14.7
5.69
10.55
11.34
Taphozous perforatus
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4 Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-C
m 5 -m 3
C-M 3
<J
20.3
70,1
26.7
18.8
5.0
63.7
56.9
20.5
21.5
46.6
12.8
9.6
38.0
13.9
9.2
25.9
12.2
3.89
8.17
8.42
(?
18.0
73.5
25.5
19.2
6.1
62.5
56.4
19.9
21.6
46.0
13.1
9.0
37.2
13.5
8.5
24.5
13.0
3.76
8.48
8.42
$ (YAD )
16.3
67.0
27.7
16.8
5.0
61.4
55.1
18.5
19.8
44.5
11.6
8.3
36.0
13.5
8.2
23.9
12.1
3.71
8.15
8.38
Q
19.5
72.1
25.5
18.0
5.5
63.4
57.1
20.0
21.5
46.3
12.5
9.1
37.2
13.9
9.6
24.3
12.8
3.76
8.29
8.34
Table 9. Measurements of Emballonuridae from Burkina Faso.
about a hundred specimens. Others have been cap-
tured just at a cave entrance in an old attic in the
presence of some Rhinopoma cystops. Like R.
cystops, the presence of T. perforatus in this part of
Burkina Faso seems to be linked to the presence of
caves. It would therefore not be surprising to find
specimens in the caves of the Southwest.
Family NYCTERIDAE
As pointed by Van Cankenberghe & De Vree
(1998), Nycteris thebaica and N. gambiensis are
species difficult to distinguish. Indeed, the meas-
urements do not allow us to separate the few speci-
mens collected during 2002 to 2009. They have
been captured in a shrubby savanna next to a moun-
tain assembly line, in a gallery forest along a river,
in a gallery forest close to a depression, in a house
and in the palaces of Senoufo kings.
Genus Nycteris Cuvier etE. Geoffroy, 1795
Nycteris gambiensis (K. Andersen, 1912)
Nycteris gambiensis is mainly found in savannas
of West Africa (Van Cakenberghe & De Vree,
1998). In Burkina Faso, it is particularly located in
the western Sudanian zone with a few areas in the
east (Fig. 8).
Nycteris grandis Peters, 1865
Nycteris grandis is located in the extreme
Southwest in the South- Sudanian zone (Fig. 8). In
Burkina Faso, it is easily distinguished from other
Nycteridae by its large size (Table 10). Unlike
Adam & Hubert (1976), who stated that it cannot
be found outside the Guinean zone; or Van Caken-
berghe & De Vree (1993) who said that N. grandis
is restricted to rainforests, its presence in the
protected forest of Lera in a gallery forest,
confirms the statement of Rosevear (1965) accord-
ing to which N. grandis can also be present outside
the rainforest, in dense and moist gallery forest.
Also, in Southern and Central Africa, this species
is well known to occur outside of the rainforest
zone (Monadjem et al., 2010).
Nycteris hispida (Schreber, 1774)
Present in the woody Guinean and Sudanian
areas, Nycteris hispida is widely distributed in the
West of the Sudanian zone with a few specimens in
the East (Fig. 8). Although Rosevear (1965) thinks
that it could spread further into the Sahelian areas,
no specimen was captured in this part of Burkina
Faso. All specimens captured in BIOTA project
were brown. Some females captured during the
month of September were carrying their young.
616
Napoko Malika Kangoye et alii
Nycteris macrotis Dobson, 1876
Known in the forests and savannas of West
Africa (Adam & Hubert, 1976; Van Calcenberghe
& De Vree, 1985), Nycteris macrotis is located in
all phytogeographic zones in Burkina Faso (Fig. 8).
The diversity of its habitats composed of hollow
logs, hollowed termitarium, wells and even simple
holes in the ground (Adam & Hubert, 1976), en-
ables this species to be found in all parts of Burkina
Faso. However, it is more present in the South-
Sudanian zone with a reduction of its presence in
the North. Five specimens were captured in the pro-
tected forest of Niangoloko at the entrance to a cave
with other species such as Hipposideros abae, H.
tephrus , H. ruber and Rhinolophus landeri. All spe-
cimens collected during our study had two colors.
Some were brown and other orange-yellow.
Figure 8. Distribution of Nycteridae in Burkina Faso.
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
617
Nycteris grandis
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3Ph2
3Ph3
4Met
4Phi
4Ph2
5 Met
5 Ph 1
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
6
22.0
69.1
66.9
30.1
6.4
55.5
44.0
28.1
29.2
5.2
47.7
16.4
13.0
50.7
15.9
14.8
29.0
12.5
6.93
10.16
9.32
24.0
69.8
63.5
30.4
6.3
57.4
44.3
28.8
29.9
5.5
49.0
16.1
13.9
52.0
16.4
14.5
30.5
13.4
6.65
10.33
9.06
Nycteris hispida
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
X
6.3
45.1
45.5
21.0
4.8
38.9
31.9
21.9
21.1
3.1
33.9
12.2
7.7
34.0
12.1
9.4
19.4
8.5
4.24
6.49
5.83
± SD
0.4
0.9
0.9
0.8
0.3
1.0
0.6
0.7
0.7
0.7
0.5
0.5
0.7
0.7
0.3
0.2
0.8
0.7
0.20
0.13
0.15
66
Min
5.8
43.5
43.9
19.7
4.3
37.6
30.8
20.9
20.1
1.7
32.8
11.3
6.4
33.2
11.6
9.1
18.2
7.4
4.03
6.31
5.54
Max
7.0
46.1
46.7
22.3
5.1
40.9
32.5
23.0
22.1
4.1
34.5
12.9
8.5
34.9
12.7
9.7
20.8
9.5
4.55
6.76
5.96
n=
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
2
6.5
45.5
52.1
23.4
5.1
39.2
33.0
22.7
22.8
3.2
36.0
13.4
9.3
35.1
13.5
9.9
18.8
9.0
4.53
6.81
5.85
Nycteris macrotis
Sex
BM
TL
T
E
TR
FA
3Mel
3Phl
3Ph2
3Ph3
4Met
4PhI
4Ph2
5Mel
5 Phi
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
X
12.5
55.6
55.0
30.7
8.0
47.9
37.7
24.8
24.3
4.7
41.2
13.8
11.7
43.3
13.4
12.7
23.6
11.4
5.77
8.29
7.46
± SD
1.2
1.2
2.7
1.7
0.3
2.2
1.4
1.2
1.0
0.8
1.5
0.8
0.9
2.7
0.7
1.1
0.9
0.9
0.18
0.26
0.24
66
Min
11.0
54.0
50.3
28.6
7.5
44,1
36.1
22.8
22.5
4.0
39.5
12.6
9.9
39.1
12.0
10,4
21.9
9.8
5.45
7.87
7.15
Max
14.5
57.4
58.8
33.4
8.6
51.4
40.5
26.3
26.0
6.0
44.6
15.2
13.0
48.3
14.4
14.2
24.6
12.6
6.00
8.72
7.81
n=
8
8
8
8
8
8
8
8
8
7
8
8
8
8
8
8
8
8
8
8
8
X
14.5
58.6
57.3
31.9
7.9
48.6
38.9
26.1
25.4
4.5
43.2
14.5
11.7
44.5
14.0
12.7
24.4
11.5
5.68
8.43
7.51
22
±SD
1.9
2.7
3.7
1.8
0.5
1.6
1.2
0.6
1.6
0.9
1.0
0.6
0.7
1.3
0.5
0.8
0.7
0.8
0.19
0.25
0.16
Min
12.0
55.6
51.5
29.0
6.9
46.3
36.6
24.6
23.1
2.5
41.6
13.5
10.6
42.2
13.0
11.2
23.2
10.3
5.27
7.94
7.26
Max
18.0
64.7
63.9
35.2
8.6
51.4
41.2
27.3
28.5
5.8
44.5
15.5
12.5
46.7
14.8
14.0
25.3
12.8
6.12
8.96
7.85
n=
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
12
13
Nycteris thebaica and N. gambiensis
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3Ph2
3Ph3
4Met
4Ph 1
4Ph2
5Mel
5Ph 1
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
X
7.0
47.1
50.0
26.8
7.5
41.1
32.6
22.5
21.2
3.8
35.2
12.6
9.3
35.5
12.5
10.4
22.2
9.2
4.18
6.58
6.22
± SD
0.8
0.8
3.0
1.1
0.3
1.6
1.2
0.7
1.1
0.4
1.2
0.9
0.5
1.3
0.8
0.4
0.8
0.5
0.10
0.20
0.14
66
Min
6.5
46.1
45.8
25.1
7.0
38.9
30.3
21.2
19.4
3.3
32.9
11.6
8.6
33.4
11.4
9.9
21.0
8.4
4.06
6.35
6.06
Max
8.5
48.4
53.4
28.1
7.7
43.5
33.5
23.3
22.8
4.4
36.1
13.8
9.9
36.9
13.7
11.2
23.4
9.8
4.34
6.92
6.45
n=
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
2
10.0
50.2
52.6
30.8
7.7
43.8
36.5
25.1
26.2
38.0
13.4
11.1
39.3
13.9
12.4
22.7
9.9
4.74
7.22
6.71
§L_
8.0
48.3
52.5
30.1
7.1
43.0
32.2
22.4
35.6
12.9
9.1
36.6
12.6
11.1
22.6
9.2
4.41
6.87
6.44
Table 10. Measurements of Nycteridae from Burkina Faso.
Nycteris thebaica E. Geoffroy, 1818
Found in all phytogeographic zones, even the
desert and the Arabian Peninsula except rainforests
and central Sahara (Van Cakenberghe & De Vree,
1993), Nycteris thebaica is present in all phytogeo-
graphic areas in Burkina Faso (Fig. 8). Indeed, this
anthropic species lives in habitats such as millet
granaries as well as in trees (Adam & Hubert,
1976). However, it seems less present in the South-
Sudanian zone than the rest of the country.
Family MOFOSSIDAE
Genus Chaerephon Dobson, 1874
Chaereplion major (Trouessart, 1897)
Even if they captured it in only two areas,
Koopman et al. (1978) had already suggested that
Chaerephon major was probably widespread in
Burkina Faso (Fig. 9). Indeed, as a typical African
savanna species (Koopman, 1975; McFellan,
1986), C. major is present in all phytogeographic
areas of Burkina Faso except in the South-Sahelian
zone. Fodged in crevices, cracks or in aggregates
of rocks in rivers, hollow trees and holes in houses
(Rosevear, 1965), it would therefore not be surpris-
ing to find it in the South-Sahelian zone. All three
new specimens have been captured in the protected
forest of Niouma in a shrubby savanna and in an
open forest. Chaerephon major is smaller than C.
nigeriae. The maximum values of body meas-
urements (Bm, HB, FA, 3Met, 4Met, 5met, 5Phl
and 5Ph2) and cranial measurements of C. major
are lower than the body measurements and cranial
measurements of C. nigeriae (Table 11).
618
Napoko Malika Kangoye et alii
Chaerephon nigeriae Thomas, 1913
Chaerephon nigeriae is located in Southcentral
and extreme Southwestern part in Sudani an zone
(Fig. 9). The five specimens have been captured in
a gallery forest along a stream at Galgouli and in an
open forest and shrubby savanna in the protected
forest of Niouma. It is the largest Chaerephon found
in Burkina Faso.
The measurement of the forearm helps to sep-
arate it from others present in Burkina Faso (Table
11 ).
Chaerephon pumilus (Cretzschmar, 1830)
Chaerephon pumilus is the most easily found
species in Burkina Faso among Molossidae. It is the
smallest Chaerephon in Burkina Faso. It is there-
fore recognizable by its size. Present in a variety of
habitats, in semi-arid areas in the North to the forest
areas of the South (Happold, 1987), C. pumilus is
present in all phytogeographic areas in Burkina
Faso, even though it is mainly located in the Su-
danian zone (Fig. 9). Only a few specimens are
known from the Sahelian zones. Very often found
in roofs of houses, C. pumilus finds in southern
Burkina Faso, a variable and high number of hab-
itats, able to serve as its lodging places.
Genus Mops Lesson, 1842
Mops condylurus (A. Smith, 1833)
Found in the Sahelian areas and even in rain-
forests, Mops condylurus has no preference for any
particular habitat (Rosevear, 1965). In Burkina
Faso, it is located in the Sudanian zone (Fig. 9). The
specimens have been captured in a shrubby savanna
on the edge of a forest, in a shrubby savanna near a
mountain assembly line, and next to a pond.
Measurements of body and cranial meas-
urements do not help in distinguishing males from
females (Table 11).
Mops demonstrator (Thomas, 1903)
Rarely seen in West Africa, it is the second time
that Mops demonstrator is reported in Burkina
Faso. The four specimens examined by Koopman
et al. (1978), have been captured near the river
Nazinon. The specimen examined during the BIOTA
collect has also been captured along a stream in a
grassy steppe. All specimens have been located in
the extreme South in the South-Sudanian zone (Fig.
9). It is easily comparable to M. condylurus.
Cranial measurements do not allow to distin-
guish them, but the body measurements (Tail, FA,
3 Met, 3 Phi, 3Ph2, 4Met, 4Phl, 4Ph2, 5Met, Tib
and HF) of M. demonstrator are smaller than those
ofM condylurus (Table 11).
Mops midas (Sundevall, 1843)
Mops midas is a species of African savannas
(Koopman, 1975) and particularly isolated in the
forests of savannas (Peterson, 1972). Like all other
Mops found in Burkina Faso, it is located in the Su-
danian zone (Fig. 9). Only two specimens are repor-
ted from Burkina Faso. These specimens, examined
by Koopman et al. (1978), have been captured near
the river Nazinon, almost the same environment
from where they reported M. demonstrator. This is
the only area of presence of this species known to
date in Burkina Faso, as no other specimen of M.
midas has yet been captured.
It is the largest of Mops found in Burkina Faso.
Aside from the measurement of tragus of M. midas
which is below the minimum values of M. condy-
lurus and those of M. demonstator , all other meas-
urements of M. midas are superior to the maximum
values of M. condylurus and the measurements of
M. demonstrator (Table 11).
Family VESPERTILIONIDAE
Genus Glauconycteris Dobson, 1875
Glauconycteris variegata (Tomes, 1861)
Glauconycteris variegata is located in West
Central area in the North- Sudanian zone (Fig. 10).
As noted by Rosevear (1965) this is a species that
inhabits open areas rather than rainforests.
Genus Myotis Kaup, 1829
My otis bocagii (Peters, 1870)
Myotis bocagii has been found in the southwest
and southeast of the Sudanian zone (Fig. 10). It is a
forest species also found in the gallery forests along
rivers, in savanna areas (Green, 1983). All speci-
mens captured during BIOTA collect are from the
cliffs of Banfora. This is the second area where the
species is identified.
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
619
Genus Neoromicia Roberts, 1926
Neoromicia capensis (A. Smith, 1829)
Neoromicia capensis is located at the extreme
southwestern area in South- Sudanian zone (Fig.
10). The specimen has been captured in a gallery
forest along a stream between hills.
Measurements of body and cranial measure-
ments of N. capensis exceed the maximum meas-
urements (except Bm, 3Ph3, HF of males and
except Bm, 3Ph3, HF, CC, and CM of females) of
N. somalica. They are also higher than the maximum
values (except 3Ph2, 3Ph3, Tib, HF of males and
except HB, Tail, 3Ph3, 4Phl and HF of females) of
N. guineensis (see Table 13 and 14). Body meas-
urements do not really allow distinguishing them.
However, measurement of the forearm of N. capen-
sis is larger than that of N. somalica and N. guineen-
sis (Table 12).
Figure 9. Distribution of Molossidae in Burkina Faso.
620
Napoko Malika Kangoye et alii
Chaerephon major
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5 Phi
5Ph2
TB
1 IF
c-c
M 3 -M 3
C-M 3
X
15.1
66.7
34.3
17.1
3.5
43.0
44.0
19.0
17.7
8.3
42.2
15.6
12.2
27.4
13.4
5.1
13.4
8.3
4.97
8.20
7.01
± SD
0.2
0.3
2.6
0.7
0.1
0.8
1.3
0.9
0.6
1,2
1.2
0.5
0,7
1.0
0.3
0.5
0.7
0.6
0.08
0.07
0.17
S3
Min
14.8
66.2
31.1
16.0
3.4
42.0
42.2
18.0
16.7
7.1
41.0
14.9
11.2
25.9
13.0
4.6
12.3
7.6
4.84
8.14
6.74
Max
15.3
66.9
36.9
17.8
3.7
44.2
45.8
20.1
18.5
10.0
43.9
16.1
13.0
28.4
13.9
5.5
14.3
9.4
5.06
8.31
7.21
n=
3
4
4
4
4
5
4
4
4
4
4
4
4
4
4
4
5
5
4
4
4
9 (USNM 452890)
40.4
[2.0
8.2
5.07
7.82
6.65
Chaerephon nigeriae
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-G
M 3 -M 3
C-M 3
3
18.5
73.0
41.4
21.3
3.0
48.7
50.0
20.4
20.9
8.5
47.9
16.4
13.2
30.7
15.0
6.5
15.0
9.1
5.43
8.96
7.60
3
20.3
74.8
40.1
21.6
3.0
49.6
49.9
21.1
20.5
9.5
47.5
16.9
12.7
30.2
15.7
5.8
15.9
8.8
5.90
8.83
7.64
9
18.8
72.2
34.9
17.5
3.4
47.7
48.0
19.4
18.4
8.7
47.5
15.3
12.4
30.1
14.6
5.6
14.7
8.5
5.33
8.79
7.43
Chaerephon
pumilus
Sex
BM
TL
T
E
TR
FA
3 Met
3 Phi
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
m 3 -m 3
C-M 3
X
8.6
53.3
30.7
15.5
3.2
36.1
36.4
IS.l
14.9
6.5
35.4
12.6
10.3
23,3
11.1
4.0
11.7
6.7
4,19
7.20
5.90
± SD
0.8
1.7
1.5
1.0
0.3
0.8
1.4
0.7
0.5
0.7
1.1
0.5
0.6
0.9
0.8
0.3
0.6
0.5
0.20
0.16
0.12
S3
Min
7.5
50.7
27.3
14.2
2.8
34.1
34.5
14.1
13.8
5.2
33.7
11.7
9.3
21.7
[0.0
3.4
10.6
5.7
3.82
6.94
5.63
Max
10.0
57.0
33.4
17.6
3.7
37.5
38.7
16.2
15.6
7.4
37.3
13.4
11.2
24.8
12.4
4.4
12.7
7.8
4.47
7.49
6.10
n=
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
X
8.6
53.0
31.4
15.5
3.4
36.4
36.3
15.3
15.1
6,2
34.8
12.5
10.6
22.8
11.1
4.1
11.9
6.5
3.92
6.90
5.79
99
± SD
0.9
1.9
2.0
0.7
0.4
0.6
1.2
0.6
0.7
0.5
l.l
0.6
0.7
0.8
0.7
0.2
0.8
0.5
0.08
0.21
0.11
Min
7.0
50.7
28.5
13.8
2.9
35.5
34.7
14.0
14.0
5.4
33.3
11.5
9.3
21.4
9.7
3.7
10.3
6.0
3,78
6.53
5.58
Max
10.0
57.7
34.7
16.6
4.3
37.6
38.4
16.3
16.4
7.1
37.1
13.4
11.6
24.2
12.4
4.5
12.9
7.7
4.06
7.18
6.09
n=
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
Mops condylar us
Sex
BM
TL
T
E
TR
FA
3 Met
3 Phi
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
3 (SAD)
23.0
69.2
36.0
18.4
3.4
48.5
51.1
22.9
21.1
9.3
48.9
18.0
14.6
34.1
14.0
5.3
16.8
11.0
5.74
9.38
7.51
3
23.8
69.8
39.4
18.9
2.8
48.2
48.8
23.4
22.2
10.3
47.5
18.9
15.8
34.0
14.6
5.5
17.2
11.0
5,68
8.78
7.15
X
24.8
67.6
39.6
18.1
3.0
46.6
48.3
22.6
22.0
9.4
47.0
18.1
15.7
32.8
13.5
5.5
16.6
10.8
5.34
8.82
7.35
99
Min
23.5
66.6
37.5
17.5
2.8
45.3
47.5
21.7
21.9
8.2
46.3
17.2
15.2
32.0
13.4
5.2
16.2
10.6
5.15
8.74
7.14
Max
26.0
69.4
42.5
18.6
3,2
48.4
50.2
23.3
22.2
10.6
48.4
18.6
16.3
33.6
13.7
5.8
17.1
11.2
5.55
9.05
7.53
n=
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Mops demonstrator
Sex
BM
TL
T
E
TR
FA
3 Met
3 Ph 1
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
Q
25.8
71.8
34.1
17.7
3.8
43.4
44.1
18.6
17.5
7.6
42.6
14.4
12.0
26.0
13.5
5.8
15.0
8.8
5.55
9.18
7.53
Mops midas
Sex
BM
TL
T
F.
TR
FA
3Met
3 Phi
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M-’-M-’
C-M 3
o AD (USNM 503956)
100
47
28
2
63.3
18.9
13.6
8.30
11.84
10.44
Table 11. Measurements of Molossidae from Burkina Faso.
Neoromicia guineensis (Bocage, 1889)
Neoromicia guineensis is present in almost all
phytogeographic areas of Burkina Faso. It is widely
distributed in the Sudanian zone with a few speci-
mens in the North-Sahelian zone (Fig. 10).
It is easily comparable to N. somalica. Although
the weight (WB) of N. guineensis is greater than the
weight of N. somalica , averages of body measure-
ments (except Tail 3 Phi, 3Ph2, 3Ph3, 5Phl, 5Ph2)
of males from N. somalica are higher than those of
males from N. guineensis and averages of body
measurements (except Tail, 3 Phi, 3Ph2, 4Phl, 4Ph2,
5Phl, 5Ph2 and Tib) of females from N. somalica
are higher than those of females from N. guineensis.
The body measurements of males (except Bm and
FIB) from N. somalica and N. guineensis overlap, as
well as those of females. Body measurements do not
allow to distinguish them. However, the minimum
cranial measurements of N. somalica are higher than
the maximum cranial measurements of N. guineensis
(Table 12). Only cranial measurements thus enable
separating them. Averages of body measurements
(except Ear, 3Ph2) and cranial measurements of fe-
males are higher than those of males.
Neoromicia nana (Peters, 1852)
Neoromicia nana is located in the South-Su-
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
621
danian zone (Fig. 10). The specimens have been
captured in a gallery forest along a water stream, in
the cliffs of Banfora, in a woody savanna along a
rupicolous bar, next to a dam and along a stream at
the end of the hills.
Neoromicia rendalli (Thomas, 1889)
It is located in the South-East in the South-
Sudanian zone (Fig. 10). It seems to be essentially
present in dry areas of Guinean, Sudanian and
Sahelian open forests (Rosevear, 1965). The speci-
men has been captured in a woody savanna near a
managed water point. It seems to be essentially
present in dry areas of Guinea, Sudanian and
Sahelian open forests (Rosevear, 1965). Neoromicia
rendalli is easily distinguishable from other Neor-
omicia by the white color of its wings and its
forearm which is longer than that of others present
in Burkina Faso (Table 12).
Neoromicia somalica (Thomas, 1901)
Neoromicia somalica is less distributed than N.
guineensis. This species is particularly located in
the South- Sudanian zone (Fig. 10).
The averages of body measurements (except
Tra, 3 Phi, 4Phl, 4Ph2, 5Ph2 and HF) and cranial
measurements (except CM) of females are larger
than those of males. These are mainly measure-
ments of the forearm and cranial measurements,
especially those of the upper incisors show a slight
difference between males which are slightly smaller
than females (Table 12).
Genus Nycticeinops Hill et Harrison, 1987
Nycticeinops schlieffenii (Peters, 1859)
Nycticeinops schlieffenii is present in almost all
phytogeographic zones (Fig. 10). Although no spe-
cimen has been captured in the South-Sahelian
zone, this small bat inhabits open woodlands and
drier areas (Rosevear, 1965). Its presence in the
North-Sahelian zone shows that it will therefore not
be surprising to capture it in the South-Sahelian
zone.
The averages of body measurements (except
Tra, 3Ph3) and cranial measurements (except CM)
of females are slightly higher than those of males
(Table 12).
Genus Pipistrellus Kaup, 1829
Pipistrellus deserti Thomas, 1902
Pipistrellus deserti is located in the South-cent-
ral zone in South-Sudanian area (Fig. 10). Only one
specimen has been captured in Burkina Faso
(Koopman et al., 1978). This species is rarely found
in West Africa. Its presence was unexpected in Burk-
ina Faso particularly because it is known to be a
northern Sahara species (Horacek et al., 2000; Fahr
et al., 2006).
Pipistrellus inexspectatus Aellen, 1959
Pipistrellus inexspectatus is located in the south-
west in the South-Sudanian zone (Fig. 10). Only
two specimens have been captured in a wooded
savanna along a rupicolous bar and in a gallery
forest in a protected forest.
Pipistrellus nanulus Thomas, 1904
Like Pipistrellus deserti, only one specimen of
P nanulus has been captured in Burkina Faso. It is
located at the Centre in the North- Sudanian zone
(Fig. 10).
It is more easily comparable to P. rusticus whose
body measurements, in particular the measurements
of the forearm do not help in the distinction. The
best measurements to separate them remaining the
cranial ones which clearly show that P nanulus is
smaller than P rusticus. Indeed, the cranial meas-
urements of P. nanulus are below the minimum
measurements of P rusticus (Table 12). It is the
smallest Pipistrellus found in Burkina Faso.
Pipistrellus rusticus (Tomes, 1861)
Pipistrellus rusticus is located in the Southwest
in the South-Sudanian area and at the center in the
North-Sudanian zone (Fig. 10). The specimens have
been captured near a pond, in the cliffs of Banfora,
along a stream at the end of the hills and in an
orchard.
Pipistrellus rusticus is smaller than P. inex-
spectatus. Only body measurements (HB, Tail, Ear,
Tra, 3Ph3 and HF) of P inexspectatus are below the
maximum measurements of the body of P. rusticus.
The other body measurements in particular meas-
urement of the forearm and wings and cranial meas-
622
Napoko Malika Kangoye et alii
Figure 10/1. Distribution of Vespertilionidae in Burkina Faso.
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
623
Figure 10/2. Distribution of Vespertilionidae in Burkina Faso.
624
Napoko Malika Kangoye et alii
Glauconvcteris variegata
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3PK2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
9 (SAD)
10.5
53.1
51.0
13.3
6.2
44.8
41.8
16.1
21.6
3.7
40.1
11.6
11.0
39.5
10.0
7.9
20.6
8.1
4.62
7.06
4.87
Myoth bocagii
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
<3
5.5
52.5
38.4
15.1
7.5
34.7
36.6
14.2
10.9
5.8
35.1
10.2
7.6
33.9
8.8
6.3
17.2
10.6
3.83
5.77
5.61
9
6.5
53.1
39.2
14.2
7.2
37.7
37.0
15.7
10.8
6.1
37.6
11.6
7.7
34.4
10.1
6.7
18.6
10.9
3.98
5.87
5.78
Neoromicia capensis
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3Ph2
3Plt3
4Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-C
m 3 -m 3
C-M 5
c3
4.3
50.9
33.8
15.4
6.8
32.3
31.6
12.2
10.6
6.8
30.1
10.4
10.3
30.0
10.0
7.0
12.8
6.2
4.30
5.66
4.74
Neoromicia guineensis
Sex
BM
TL
T
E
TR
FA
3Met
3 Ph 1
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Met
5 Ph 1
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
X
3.0
36.7
30.5
10.3
4.5
27.2
26.2
10.2
8.8
6.2
25.7
9.0
6.1
25.6
7.4
4.1
10.9
5.5
3.18
4.57
3.72
± SD
0.3
1.4
1.8
0.8
0.4
1.4
1,0
0.5
0.7
0.5
1.0
0,5
0.3
1.1
0.5
0.4
0.7
0.4
0.11
0.15
0,09
66
Min
2.5
34.5
25.5
8.9
4.0
25.4
24.4
9.2
7.5
5.2
24.3
8.2
5.2
23.7
6.6
3.1
9.8
4.6
2.99
4.36
3.53
Max
3.5
39.2
35.5
12.0
5.2
31.2
27.8
1 1.4
10.8
7.1
27.8
10.3
6.7
27.6
8.4
5.0
13.5
6.6
3.39
4.92
3.87
n=
24
24
24
24
24
25
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
X
3.6
39.1
32.2
10. 1
4.6
28.2
27.4
10.7
9.3
6.2
27.2
9.5
6.3
26.8
7.9
4.3
11.2
5.6
3.35
4.67
3.78
± SD
0.3
1.7
2.0
0.4
0.3
0.7
1.2
0.4
0.5
0.6
1.3
0.6
0.5
1.2
0.5
0.4
0.6
0.5
0.14
0.14
0.10
99
Min
3.0
36.0
28.5
9.4
3.9
27.0
25.2
9.9
8.3
5.2
25.5
8.5
5.4
24.3
7.0
3.5
9.8
4.4
3.13
4,47
3.61
Max
4.3
42.1
35.6
10.9
4.9
29.6
29.4
11.5
10.0
7.2
29.3
10.4
7.1
28.5
8.5
4.9
12.0
6.3
3.61
4.95
3.95
n=
11
12
12
12
11
14
12
11
11
It
12
11
11
12
11
11
14
14
14
14
14
Neoromicia
nana
Sex
BM
TL
T
E
TR
FA
3 Met
3Plil
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
m 3 -m 3
C-M 3
X
3.3
38.0
29.9
9.7
3.6
27.6
26.8
8.7
7.4
4.6
26.5
7.3
5.2
26.0
6.4
3.5
10.0
5.6
3.25
4.37
3.62
± SD
0.6
1.4
2.2
0.4
0.4
1.1
1.0
0.5
0.5
0.5
1.0
0.5
0.5
0.8
0.4
0.3
0.4
0.3
0.10
0.14
0.09
<39
Min
2.4
34.7
24.7
8.9
2.9
25.8
25.4
7.9
6.5
3.2
25.0
5.8
4.2
24.4
5.9
2.9
9.2
4.9
3.02
4.16
3.44
Max
4.0
40.9
33.8
10.7
4.9
30.1
29.2
10.0
8.4
5.5
28.9
7.9
6.1
27.6
7.5
4.0
10.6
6.1
3.40
4.62
3.79
n=
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
Neoronticia rendaiii
Sex
BM
TL
T
E
TR
FA
3 Met
3 Pill
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
9 (SAD)
6.8
46.6
37.8
11.4
4.7
35.2
34.4
11.3
8.5
5.8
34.0
10.5
6.0
32.6
8.0
4.3
12.8
6.8
4.15
5.90
4.47
Neoromicia somalica
Sex
BM
TL
T
E
TR
FA
3 Met
3Ph 1
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
X
4.4
43.9
27.8
11.3
5.2
28.2
27.1
10.1
8.6
6.2
26.5
9.2
6.3
26.7
7.0
4.1
10.8
6.1
4.00
5.36
4.45
±SD
0.3
1.3
1.5
0.4
0.3
0.6
0.8
0.4
0.3
0.6
0.9
0.4
0.2
0.7
0.5
0.2
0.3
0.2
0.15
0.14
0.09
33
Min
4.0
42.4
25.6
10.9
4.7
27.1
25.4
9.5
8.0
5.4
24.7
8.4
6.0
25.0
6.5
3.8
10.4
5.8
3.83
5.16
4.35
Max
4.8
46.6
29.6
11.8
5.7
29.0
28.0
10.7
9.1
7.3
27.7
9.8
6.6
27.2
7.9
4.4
11.1
6.5
4,22
5.54
4.60
n=
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
6
6
X
5.3
45.9
30.0
11.4
4.9
29.3
28.4
10.0
8.7
6.4
27.9
9.2
6.3
27.9
7.3
3.9
10.9
5.8
4.09
5.39
4.41
± SD
0.8
1.7
1.4
0.4
0.4
1.0
0.9
0.4
0.5
0.5
1.0
0.6
0.3
1.0
0.4
0.2
0.4
0.4
0.12
0.14
0.08
99
Min
4.3
41.2
28.1
10.9
4.3
27.3
27.2
9.4
8.2
5.5
26.6
8.3
5.8
26.5
6.7
3.5
10.3
5.2
3.96
5.16
4.25
Max
6.5
48.7
32.6
12.0
5.4
31.1
29.6
10.7
9.9
7.2
29.5
10.1
6.9
29.3
8.1
4.3
11.6
6.3
4.37
5.67
4.54
n=
13
13
13
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
Nycticeinops schlieffenii
Sex
BM
TL
T
E
TR
FA
3Met
3 Ph 1
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
33
X
5.1
44.1
30.9
11.3
4.7
30.8
30.5
11.6
9.4
6.3
30.1
10.2
6.5
30.0
7.5
4.5
12.2
6.3
3.94
5.43
4.36
± SD
0.4
1.8
2.5
0.5
0.3
1.1
1.3
0.7
0.7
0.8
1.0
0.6
0.5
1.1
0.5
0.3
0.5
0.4
0.14
0.15
0.12
Min
4.5
41.9
26.4
10.4
3.9
29.3
27.8
10.6
8.4
5.1
28.8
9.1
5.7
27.7
6.7
4.1
11.4
5.5
3.73
5.17
4.18
Max
6.0
47.2
35.4
12.1
5.1
32.5
32.6
12.9
10.9
7.7
31.8
11.1
7.4
31.7
8.6
5.2
12.9
7.3
4.15
5.61
4.60
n=
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
X
5.7
46.3
33.3
11.5
4.6
31.9
31.4
12.0
9.8
6.2
30.9
10.8
7.1
30.6
8.0
4.7
12.8
6.6
3.98
5.48
4.32
± SD
0.6
1.0
1.9
0.5
0.3
1.7
1.8
0.8
0.7
0.6
1.7
0.7
0.5
1.8
0.6
0.4
0.9
0.1
0.15
0.08
0.10
99
Min
5.0
43.8
30.6
10.4
4.1
29.0
28.0
10.6
8.4
5.3
27.6
9.6
6.0
27.0
6.6
4,0
11.0
6.5
3.70
5.30
4.18
Max
7.0
47.3
35.9
12.1
5.0
33.6
34.5
13.5
10.4
7.4
34.1
11.7
8.0
33.6
8.9
5.4
13.6
7.0
4.24
5.58
4.49
n=
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
Pipistrel! us inexspectatus
Sex
BM
TL
T
E
TR
FA
3Met
3 Ph 1
3Ph2
3PH3
4 Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M ! -M 3
C-M 3
9
5.3
46.8
35.1
11.9
4.8
32.6
31.6
12.1
11.4
5.2
30.4
10.8
8.8
30.1
8.0
6.4
13.3
5.6
3.98
5.32
4.42
9
5.5
47.2
37.3
11.9
5.0
32.8
31.3
12.5
10.5
6.8
30.8
10.5
8.8
30.1
7.7
6,1
13.2
5.8
3.96
5.21
4.51
Table 12/1. Measurements of Vespertilionidae from Burkina Faso.
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
625
Pipistrel! us nun ulus
Sex
BM
TL
T
E
TR
FA
3Met
3Ph 1
3Ph2 3Ph3 4 Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
c-c
M 3 -M 3
C-M 3
3 (AD) USNM
454669
4.0
44
25
9
1 26.4|
8.9
4.6
3.64
4.85
3.90
Pipistrellus rusticus
Sex
BM
TL
T
E
TR
FA
3Mct
3Ph 1
3Ph2 3Ph3 4Met
4Phl
4Ph2
5Mct
5Phl
5PK2
TB
HF
C-C
M 3 -M 3
C-M 3
X
4.0
42.0
31.1
10.9
4.8
27.5
27.3
9.9
7.8
5.5
27.0
9.0
6.2
26.5
6.5
3.6
10.1
5.5
3.80
5.09
4.04
± SD
3.6
6.8
0.8
0.4
1.1
0.4
0.5
0.3
0.4
0.4
0.4
0.3
0.3
0.3
0.6
0.7
0.4
0.03
0.06
0.08
<??
Min
3.8
38.1
26.8
10.0
4.2
26.1
26.5
9.1
7.2
4.8
26.4
8.4
5.8
26.2
6.1
2.8
8.5
5.0
3.76
5.02
3.92
Max
4.5
47.3
46.1
12.2
5.3
29.9
27.9
10.6
8.1
6.0
27.6
9.4
6.8
27.2
6.9
4.2
10.7
6.2
3.86
5.16
4.12
n=
4
6
6
6
6
7
6
6
6
6
6
6
6
6
6
6
7
7
5
5
5
Scotoecus ulhofuscus
Sex
BM
TL
T
E
TR
FA
3Met
3Phl
3Ph2
3Ph3
4 Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M J
C-M 3
6
8.0
60.6
32.9
11,7
4.9
31,7
32.6
11.9
8.5
6.0
32.1
10.9
6.3
31.0
6.8
4.4
11.9
8.5
4.79
6.47
4.97
3
8.5
60.2
31.5
11.9
4.8
33.9
31.6
11.4
8.7
5.2
31.5
10.2
6.6
30.6
8.0
4,6
12.7
6.6
5.32
7.04
5.36
X
7.6
56.4
33.6
1 1.6
4.4
30.5
30.4
11.5
8.7
6.4
30.2
10.6
6.9
29.0
7.9
4.4
1 1.9
7.3
4.54
6.46
4.75
± SD
0.4
3.4
1.1
0.4
0.3
0,3
0.9
0.3
0.3
0.3
1.4
0.3
0.5
1.2
0.4
0.3
0.3
0.6
0.06
0,07
0.11
99
Min
7.0
50.3
32.3
11.2
4.0
30.2
29.5
11.1
8.4
6.1
29.1
10.2
6.4
28.1
7.4
4.1
11.6
6.4
4.44
6.34
4.56
Max
8.0
60.3
35.2
12.2
5.0
31.1
32.1
11.9
9.1
6.7
32.9
11.0
7.7
31.3
8.5
4.9
12.2
8.1
4.62
6.54
4.87
n=
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Scotoecus hiruiulo
Sex
BM
TL
T
E
TR
FA
3Mel
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M 3
C-M 3
3
10.8
51.4
35.8
13.8
5.2
33.7
32.1
12.0
9.3
6.4
32.0
11.4
6.8
31.8
7.4
5.1
12.7
8.0
4.65
6.82
5.59
s
9.0
51.2
32.2
12.8
4.5
32.8
33.3
11.2
9.2
6.5
32.5
11.0
6.4
31.9
7.3
5.2
12.2
8.1
5.12
6.59
5.06
X
10.7
51.8
32.5
13.0
4.8
32.2
31.6
11.3
8.7
6.3
31.2
11.1
6.8
30.3
7.4
4.9
11.7
7.7
4.86
6.57
5.07
99
Min
9.5
50.0
32.5
12.7
4.4
30.9
30.8
11.2
8.2
5.7
30.5
10.8
6.0
30.0
7.2
4.3
11.3
6.6
4.71
6.44
4.98
Max
11.8
52.6
32.6
13.5
5.2
33.3
33.0
11.5
9.0
7.1
32.1
11.4
7.3
30.8
7.5
5.5
11.9
8.4
4.94
6.84
5.13
n=
4
4
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Scotopliilus dinpanii
Sex
BM
TL
T
E
TR
FA
3 Met
3Ph1
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Met
5Phl
5Ph2
TB
HF
C-C
m 3 -m j
C-M 3
9
26.0
73.8
56.7
20.1
10.4
56.7
56.3
19.9
16.2
8.1
55.3
15.3
10.1
50.6
10.3
6.5
24.0
10.8
7.66
9.74
7.52
9
27.5
74.6
61.4
18.5
7.7
55.7
56.4
20.8
15.8
8.2
50.9
15.4
10.8
49.9
9.7
7.9
24.7
13.0
7.72
9.98
7.41
Scotopliilus leucopuster
Sex
BM
TL
T
E
TR
FA
3 Met
3Ph 1
3Ph2
3Ph3
4Met
4Phl
4Ph2
5 Met
5Phl
5Ph2
TB
HF
C-C
M 3 -M J
C-M 3
33
X
20.3
67.0
47.9
14.5
7.4
49.6
46.2
16.9
14.1
7.8
45.8
12.9
8.8
42.5
8.7
5.7
19.4
9.1
6.39
8.37
6.32
± SD
1.4
2.1
2.6
0.9
0.5
1.1
0.9
0.7
0.7
0.4
0.9
0.5
0.8
1.0
0.5
0.7
1.1
0.5
0.19
0.20
0.18
Min
18.0
62.9
43.1
13.2
6.2
47.7
44.4
15.5
12.3
7.2
43.4
12.0
7.2
40.6
7.9
4.5
17.4
8.6
6.06
8.05
6.03
Max
22.5
70.8
51.6
16.1
8.2
52.0
48.3
18.4
15.4
8.5
46.8
13.9
11.1
44.4
9.6
7.0
20.8
10.2
6.73
8.80
6.66
n=
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
X
23.0
70.0
48.8
14,6
7.6
51.2
48.0
17.4
14.1
8.2
47.4
13.2
8.9
44.8
9.2
5.8
19.6
9.3
6.37
8.35
6.18
± SD
3.2
3.2
3.0
0.8
0.4
1.4
1.5
0.6
0.6
0.5
1.6
0.5
0.6
1.5
0.5
0.7
1.0
0.6
0.15
0.17
0.15
¥$
Min
18.3
63.1
42.9
13.1
6.8
48.1
45.9
16.3
13.2
7.3
44,0
12.3
7.9
42.7
8.5
4,4
18.2
8.2
6.10
8.09
6.00
Max
33.0
80.2
54.3
15.8
8.3
54.2
53.0
18.5
15.8
8.9
51.9
14.5
11.1
49.2
10.3
7.5
21.6
10.5
6.69
8.83
6.58
n=
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
Scotopliilus viridis
Sex
BM
TL
T
E
TR
FA
3 Met
3Phl
3Ph2
3Ph3
4Met
4Phl
4Ph2
5Met
5Phl
5Pti2
TB
HF
c-c
M 3 -M 3
C-M- 3
X
14.1
59.9
47.0
14.6
7.1
45.3
42.2
15.4
12.6
7.3
41.4
11.9
7.9
39.1
8.1
5.0
18.5
8.9
5.68
7.75
5.72
i SD
3.2
1.9
2.1
0.6
0.4
1.0
1.7
0.5
0.7
0.6
1.4
0.7
0.5
1.6
0.5
0.6
0.5
0.9
0.16
0.20
0.11
Min
10.0
57.1
43.1
13.8
6.5
43.6
40.0
14.1
11.0
5.8
39.2
10.4
7.0
37.1
7.3
4.1
17.4
7.3
5.40
7.37
5.55
Max
23.5
64.5
51.1
15.6
7.9
47.4
46.8
16.3
13.6
8.0
45.2
12.9
8.9
43.1
9.3
6.1
19.3
10.2
6.01
8.06
5.91
n=
17
17
17
17
16
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
X
16.7
60.8
48.1
14.6
7.2
45.3
42.3
15.6
13.0
7.4
42.2
12.3
8.4
39.3
8.6
5.1
17.3
8.9
5.75
7.73
5.80
± SD
2.6
1.9
3.0
0.7
0.4
1.1
1.7
0.7
0.4
0.6
1.9
0.4
0.8
1.6
0.4
0.5
1.0
0.8
0.10
0.14
0.14
??
Min
11.0
58,4
43.4
13.9
6.3
43.5
40.5
14.2
12.3
6.7
40.1
11.5
7.0
37.7
8.1
4.5
16.3
8.1
5.65
7.52
5.56
Max
20.3
63.2
52.4
15.7
7.6
46.4
45.6
16.8
13.7
8.3
45.4
12.8
9.6
42.6
9.1
6.0
19.2
10.4
5.90
8.00
6.05
n=
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
Table 12/2. Measurements of Vespertilionidae from Burkina Faso.
626
Napoko Malika Kangoye et alii
urements of P inexspectatus are larger than the max-
imum measurements of P. ructicus (Table 12).
Genus Sc o to ecus Thomas, 1901
Scotoecus albofuscus (Thomas, 1890)
Scotoecus albofuscus is located in the extreme
Southwest in the South-Sudanian zone (Fig. 10). All
specimens have been captured near rock formations
and in the presence of water in the cliffs of Banfora,
next to a water point near hills and in shrubby
savanna between a mountain and a dam. Their
presence seems to be linked to the topography and
the presence of water.
Body and cranial measurements do not help to
clearly separate males from females. Only the fore-
arm and cranial measurements (CC and MM) of
males is higher than the maximum values of fe-
males (Table 12).
Scotoecus hirundo (de Winton, 1899)
Scotoecus hirundo is located in the extreme
Southwest in the South-Sudanian zone (Fig. 10).
The specimens have been captured in a gallery
forest located along a stream and in a woody savanna
in the protected forest of Peni. Like S. albofuscus ,
S. hirundo inhabits open woodlands (Hill, 1974).
Measurements of body and cranial measure-
ments do not help to distinguish S. hirundo from S.
albofuscus and cannot also help to distinguish
males from females (Table 12). Nevertheless, the
maximum values of cranial measurements (CC and
CM) of female from S. albofuscus are below the
minimum values of cranial measurements from S.
hirundo. Especially the white wings of S. albofu-
scus contribute to distinguish them.
Genus Scotophilus Leach, 1821
Scotophilus dinganii (A. Smith, 1833)
Specimens have been captured in the extreme
Southwest in the South-Sudanian zone (Fig. 10).
Indeed, Scotophilus dinganii is found in most areas
of savanna vegetation, from large forests until the
beginning of Sahelian savannas (Robbins et al.,
1985).
It is the largest Scotophilus fond in Burkina
Faso. Measurements of the forearm reveal that it is
larger than S. leucogaster and S. viridis (Table 12).
Scotophilus leucogaster (Cretzschmar, 1826)
Commonly encountered species, Scotophilus
leucogaster is widespread and present in almost all
vegetation zones except in the South- Sahelian zone
(Fig. 10).
It is smaller than S. dinganii. The averages of
body measurements (except 3Ph3) and averages of
cranial measurements of S. leucogaster are below
the measurements of S. dinganii. However, there is
an overlap, because all the maximum values of S.
leucogaster (BM, HB, 3Ph2, 3Ph3, 4 Met, 4Ph2,
5Phl and 5Ph2) are not inferior to the measure-
ments of S. dinganii. However, all the maximum
values of the forearm and cranial measurements of
S. leucogaster are lower than the measurements of
the forearm and cranial measurements of S. dinganii
(Table 12). The measurement of forearm and cranial
measurements are better suited to differentiate
them. The averages of body measurements (except
3Ph2) of males are smaller than those of females.
However, the averages of cranial measurements
of males are higher than those of females. Among
insectivorous bats this is the most widespread
species in Burkina Faso.
Scotophilus viridis (Peters, 1852)
Scotophilus viridis is present in all areas of
African savanna but absent or rare in the driest areas
of Sudanian and Sahelian savannas (Robbins et al.,
1985). Indeed, In Burkina Faso, it is present only in
the Sudanian zone (Fig. 11). It is therefore less
widespread than S. leucogaster.
It is the smallest of Scotophilus found in Burk-
ina Faso (Table 12). The averages of body meas-
urements (except Ear, FA, Tib and HF) and cranial
measurements (except MM) of males are smaller
than those of females. They do not really help to
separate them. The averages of body measurements
(except Ear) and cranial measurements of S. viridis
are lower than those of S. leucogaster. However,
only maximum values (FA, CC and CM) of males
from S. viridis are below the minimum values of
males from S. leucogaster. In addition, only the
maximum values (FA, 3 Met, CC and MM) of fe-
males from S. viridis are below the minimum values
of females from S. leucogaster. The measurement
of the forearm remains the best measurement to
separate the two species.
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
627
Distribution at the family level
The families Pteropodidae, Hipposideridae,
Emballonuridae, Nycteridae and Molossidae were
present in all phytogeographic areas in Burkina
Faso. However, Rhinolophidae were absent in the
North- Sahalian zone but present in the rest of the
country. Similarly, Vespertilionidae were absent in
the south-Sahelian zone but present in the rest of
the country. Rhinopomatidae were only present in
the extreme north and the extreme south of the
countiy, while Megadermatidae were present in
the Sudanian zone only. Of the 5 1 species found in
Burkina Faso, only 3 species are exclusively located
in the Sahelian zone against 32 in the Sudanian
zone. The remaining 16 species are found both in
the Sahelian and Sudanian areas (Table 13).
DISCUSSION
Of the 36 species already reported since the late
1980s, five species were not captured again and
other 1 5 species have been identified for the first
time in Burkina Faso (Kangoye et al., 2012). Most
specimens have been captured in the southern part
of the country with a particular emphasis on the
Southwest which had been under-sampled. Among
the five species already reported in Burkina Faso
Species
Phytogeographic
zones
Species
Phytogeographic
zones
Species
Phytogeographic zones
Sudanian zone only
Sahelian zone only
Sahelian and Sudanian zones
Pipislrellus nanulus
NSud
Asellia tridens
NSah
Epomophorus gambianus
NSah
SSah
NSud
SSud
Micropteropus pusillus
NSud
SSud
Rhinopoma microphyllum
NSah
Hipposideros ruber
NS ah
SSah
NSud
SSud
Nanonycteris veldkampii
NSud
SSud
Glauconycteris variegata
SSah Nycteris macrotis
NS ah
SSah
NSud
SSud
Hipposideros jonesi
NSud
SSud
Nycteris thebaica
NSah
SSah
NSud
SSud
Hipposideros vittatus
NSud
SSud
Chaerephon pumilus
NSah
SSah
NSud
SSud
Lavia frons
NSud
SSud
Eidolon helvum
NS ah
NSud
SSud
Rhinoloplms fumigatus
NSud
SSud
Chaerephon major
NSah
NSud
SSud
Nycteris hispida
NSud
SSud
Neoromicia guineensis
NSah
NSud
SSud
Chaerephon nigeriae
NSud
SSud
Nycticeinops schlieffenii
NS ah
NSud
SSud
Mops condylurus
NSud
SSud
Scotophilus leucogaster
NS ah
NSud
SSud
Neoromicia somalica
NSud
SSud
Taphozous perforatus
NSah
SSah
SSud
Pipistrellus rusticus
NSud
SSud
Hipposideros tephrus
SSah
NSud
SSud
Scotophilus viridis
NSud
SSud
Rhinoloplms landeri
SSah
NSud
SSud
Hypsignathus monstrosus
SSud
Nycteris gambiensis
SSah
NSud
SSud
Lissonycteris angolensis
SSud
Rhinopoma cystops
NSah
SSud
Rousettus aegyptiacus
SSud
Taphozous nudiventris
NS ah
SSud
Hipposideros abae
SSud
Hipposideros cyciops
SSud
Rhinolophus ctlcyone
SSud
Coleura afro
SSud
Nycteris grandis
SSud
Mops demonstrator
SSud
Mops midas
SSud
Myotis bocagii
SSud
Neoromicia capensis
SSud
Neoromicia nana
SSud
Neoromicia rendalli
SSud
Pipistrellus desert i
SSud
Pipistrellus inexspectatus
SSud
Scotoecus albofuscus
SSud
Scotoecus hirundo
SSud
Scotophilus dinganii
SSud
32
3
16
Table 13. Distribution of bats species by phytogeographic zone. Nsah: North-Sahelian,
Ssah: South-Sahelian, Nsud: North- Sudanian, Ssud: South-Sudanian.
628
Napoko Malika Kangoye et alii
and which have not been captured during 2002
to 2009, two species of whom A. tridens and R.
microphyllum are reported only in the North-
Sahelian zone. Hypsignathus monstrosus although
present in the South-Sudanian zone has not been
captured. In addition, M. midas and P. deserti ,
two species captured previously next to the river
Nazinon have not also been captured. Pipistrelllus
nanulus although already collected by the Smithso-
nian Institution African Mammal Project and
present at USNM, had yet been published later by
African Chiroptera Report, 2006. Although it had
not been captured during this study.
The 15 new species captured between 2002 to
2009 are: N. veldkampii and R. aegyptiacus (Ptero-
podidae); C. afra (Emballonuridae); R. alcyone
(Rhinolophidae); H. cyclops (Hipposideridae);
C. nigeriae and M. condylurus (Molossidae); N.
grandis (Nycteridae); G. variegata, N. capensis, N.
rendalli, P. inexspectatus, S. albofuscus, S. hirundo
and S. dinganii (Vespertilionidae).
Hipposideros cyclops , N. grandis and R. alcyone
are forest species. They are located in the extreme
south-western Burkina Faso, where there are
the wettest areas of the country. Nanonycteris
veldkampii , is also a forest species that is found in
Burkina Faso during rainy seasons only. Although
P. nanulus is a forest species, the only specimen
collected thus far comes from the Centre. Roussetus
aegyptiacus and C. afra are cavemicolous species.
They are both located in the South and have all been
captured in rock formations that constitute their
resting places. Chaerephon nigeriae and M. con-
dylurus, although they are synanthropic species
because of the fact that they are often found in
homes have been only located in the South. Neoro-
micia capensis, N. rendalli, P. inexspectatus, S.
albofuscus, S. hirundo and S. dinganii are species
of moist savannas. They are all located in the
Southwest in the South-Sudanian zone except N.
rendalli which is located in the Southeast. As for G.
variegata, also a species of humid savannas, it is
present in the North- Sudanian zone.
After this study, a total of 5 1 species were found
in Burkina Faso. And, compared with other coun-
tries, the diversity of bats in Burkina Faso can be
described as being average. In countries like Ivory
Coast, where we find 87 species of bats (J. Fahr
unpublished data), Ghana, 86 species (Weber &
Fahr, 2007) and Cameroon, 72 species (Bakwo,
2009) diversity can be explained by the fact that
these countries are near the coast. In addition to the
forest areas, these countries, also have the Guinean
zone. And this Guinean zone is a transition zone
that contains a wide variety of species (Fahr &
Kalko, 2010). This study helped to collect many
new pieces of information on the distribution of
many species. However, studies using different
capture methodologies are needed to obtain
complete inventories of the diversity of bats (Kalko
et al., 1996; Bergallo et al., 2003) and as already
noted by Kalko (1997), insectivores are species
which are difficult to capture and the combination
of several methods particularly acoustic methods
are used to identify them at the species level (Kalko
& Handley, 2001). It would therefore not be surpris-
ing to capture other species in Burkina Faso so as
to contribute more to a better understanding of the
ecology of bats for better conservation approaches.
Epomophorus gambianus, H. ruber, N. mac-
rotis, N. thebaica and C. pumilus are species that
have a wider distribution across Burkina Faso, as
they have been captured in all phytogeographic
areas. These species are also widely distributed in
West Africa (African Chiroptera Report, 2012).
Eidolon helvum, T. perforatus, C. major, N.
schlieffenii, N. guineensis and S. leucogaster have
atypical distributions. Eidolon helvum, C. major, N.
schlieffenii, N. guineensis and S. leucogaster are
present everywhere except in south- Sahelian zone.
About T. perforatus, it is present everywhere except
North- Sudanian zone. Seen how these species are
distributed in Burkina Faso, they should all be
present on the entire territory of Burkina Faso.
Hipposideros tephrus, R. landeri and N. gam-
biensis are located in all phytogeographic areas ex-
cept in the North-Sahelian zone. It is in fact, species
that are often encountered in savanna (Koch-Weser,
1984; Van Cakenberghe & De Vree, 1998).
Species located in two phytogeographic areas
(M. pusillus, N. veldkampii, H. jonesi, H. vittatus,
L. frons, R. fumigatus, N. hispida, C. nigeriae, M.
condylurus, N. somalica, P rusticus and S. viridis)
are mainly present in the Sudanian zone except T.
nudiventris and R. cystops which have been located
in extreme north and extreme south of the country.
Most bats species present in Burkina Faso, 23
in total (A. tridens, R. microphyllum, G. variegata,
P. nanulus, H. monstrosus, L. angolensis, R. aegyp-
tiacus, H. abae, H. cyclops, R. alcyone, C. afra, N.
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
629
grandis, M. demonstrator , M. midas, M. bocagii, N.
capensis, N. nana, N. rendalli , P. deserti, P. inex-
spectatus, S. albofuscus, S. hirundo and S. dinganii )
are rarely captured. Probably these species have
small populations and restricted distributions within
the country because they are found in only one of
the four phytogeographical areas. The majority of
these species (19) is located in South- Sudanian
zone against one in North- Sudanian (P nanulus )
area, one in the southern Sahelian zone ( G . varie-
gata) and two in the North-Sahelian zone (A. tri-
dens and R. microphyllum). Above 60% of Burkina
Faso is under the influence of Sudanian climate
(Ministere de l’Environnement et de l’Eau, 1999)
including the Centre and South. This can explain
partly that 32 of the 51 species found in Burkina
Faso, are exclusively recorded in the Sudanian
zone. Nevertheless, favorable climatic conditions
in South-Sudanian zone of Burkina Faso are the real
reason of the higher species diversity in this area.
Rough conditions in the Sahelian zone justify that
only 3 species are exclusives of this area. Neverthe-
less 1 6 other species were found in this area (as well
as in the Sudanian zone), proving that this area can
provide suitable habitats, shelter, water and food for
important diversity of bats species. Exclusive
species indicated the importance in biodiversity
conservation of this area, generally neglected in
conservation programs.
This study has allowed us to highlight the geo-
graphical distribution of bats in Burkina Faso. Al-
though bats were captured in all phytogeographic
areas in Burkina Faso, distribution patterns change
depending on species and even families. Results
highlight the importance of each phytogeographic
area as unique habitat for some species. It is then
important, for conservation and management, to
give equal consideration to each area. Habitats
condition is likely the factor influencing the species
distribution. A further step in bat studies in Burkina
Faso could be the modeling of species distribution
based on environmental variables, which could
give some useful information for species man-
agement.
ACKNOWLEDGMENTS
This article is dedicated to the memory of Pro-
fessor Elisabeth K.V. Kalko. Our thanks go to the
University of Ouagadougou technicians, Cyrille
Sinare, Sidilci Bourgou, and the drivers Appolinaire
Samne and Yacouba Guinko who contributed to the
BIOTA data collection phase. We also thank the
IRD technicians Chaka Kone, Yves Papillon and
Doulcary Abdoulaye, and the drivers Ibrahima
Sidibe and Mamadou Doumbia. We thank Jean
Cesar (Cirad) coordinator of the FSP project N°
2002-87 « Gestion durable des ressources sylvo-
pastorales et production fourragere dans l’Ouest du
Burkina-Faso», who allowed the use of Laurent
Granjon’s bat collection data in this paper. Finally,
we are grateful to the “BIOTA West Africa” that
funded this research.
REFERENCES
Adam F. & Hubert B., 1976. Les Nycteridae (Chiroptera)
du Senegal: Distribution, biometrie et dimorphisme
sexuel. Mammalia, 40: 597-613.
Aellen V., 1952. Contribution a F etude des Chiropteres
du Cameroun. Memoires de la Societe Neuchateloise
des Sciences Naturelles, 8: 1-121.
African Chiroptera Report, 2006. African Chiroptera
Project, Pretoria, 1198 pp. (Available from: http://
www.Africanbats.org).
African Chiroptera Report, 2012. African Chiroptera
Project, Pretoria, 4474 pp. (Available from: http://
www. Africanbats.org).
Andelman S.J. & Willig M.R., 2002. Alternative config-
urations of conservation reserves for Paraguayan
bats: Considerations of spatial scale. Conservation
Biology, 16: 1352-1363.
Anthony E.L.P., 1988. Age determination in bats. In:
Kunz T.H. (Ed.), 1988. Ecological and behavioral
methods for the study of bats. Smithsonian Institution
Press, Washington, D.C., 47-58.
August P.V., 1983. The role of habitat complexity and
heterogeneity in structuring tropical mammal
communities. Ecology, 64: 1495-1507.
Aulagnier S., Coquillart H., Thonnerieux Y. & Garcin R.,
1987. Notes sur quelques chauves-souris du Burkina.
Science et Technique, 17: 77-79.
Bakwo E.M., 2009. Inventaire des chauves-souris de la
reserve de biosphere du Dja, Cameroun. Le Vespere,
2 : 11 - 20 .
Bazzaz F.A., 1975. Plant species diversity in old-field
successional ecosystems in southern Illinois.
Ecology, 56, 485-488.
Benda P., Andreas M., Kock D., Luean R.K., Munclinger
P., Nova P., Obuch J., Ochman K., Reiter A., Uhrin
M. & Weinfurtova D., 2006. Bats (Mammalia:
Chiroptera) of the Eastern Mediterranean. Part 4. Bat
630
Napoko Malika Kangoye et alii
fauna of Syria: Distribution, systematics, ecology.
Acta Societatis Zoologicae Bohemicae, 70: 1-29.
Bergallo H.G., Esberard C.E.L., Mello M.A.R., Lins V.,
Mangolin R., Melo G.G.S. & Baptista M., 2003. Bat
species richness in Atlantic Forest: What is the
minimum sampling effort? Biotropica, 35: 278-288.
Bergmans W., 1988. Taxonomy and biogeography
of African fruit bats (Mammalia, Megachiroptera).
1. General introduction; material and methods;
results: The genus Epomophorus BENNET, 1836.
Beaufortia, 38: 75-146.
Bergmans W., 1989. Taxonomy and biogeography of
African fruit bats (Mammalia, Megachiroptera). 2.
The genera Micropteropus Matschie, 1899, Epomops
Gray, 1870, Hypsignathus H. Allen, 1861, Nanonyc-
teris Matschie, 1899, and Plerotes Andersen, 1910.
Beaufortia, 39: 89-153.
Bergmans W., 1991. Taxonomy and biogeography of
African fruit bats (Mammalia, Megachiroptera). 3.
The genera Scotonycteris Matschie, 1894, Casinyc-
teris Thomas, 1910, Pteropus Brisson, 1762 and
Eidolon Rafmesque, 1815. Beaufortia, 40: 111-176.
Bergmans W., 1997. Taxonomy and biogeography of
African fruit bats (Mammalia, Megachiroptera). 5.
The genera Lissonycteris Andersen, 1912, Myonyc-
teris Matschie, 1899 and Megaloglossus Pagen-
stecher, 1885; general remarks and conclusions;
annex: Key to all species. Beaufortia, 47: 11-90.
Bergmans W., 2002. Les chauves-souris (Mammalia,
Chiroptera) de Benin: Compte rendu preliminaire.
UICN-CBDD. The Netherlands Committee of IUCN,
Amsterdam, 41 pp.
Bernard E. 2001. Vertical stratification of bat communit-
ies in primary forests of Central Amazon, Brazil.
Journal of Tropical Ecology, 17: 115-126.
Boulay M.C. & Robbins C.B., 1989. Epomophorus
gambianus. Mammalian Species, 344: 1-5.
Csorba G., Ujhelyi P. & Thomas N., 2003. Horseshoe
Bats of the World (Chiroptera: Rhinolophidae).
Bishop's Castle, Shropshire, UK: Alana Books,
160 pp.
Decher J. & Fahr J., 2005. Hipposideros cy clops. Mam-
malian Species, 763: 1-7.
Dipama J.M., 2010. L’hydrographie. In: Thiombiano A.
& Kampann D. (Eds.), 2010. Atlas de la biodiversite
de l’Afrique de l’Ouest, Tome II: Burkina Faso.).
Ouagadoufou & Frankfurt/Main, 134-137.
Djossa B.A., 2007. Gestion des Essences Agroforestieres
Spontanees et Role des Roussettes dans la Dispersion
de leurs Semences dans la Reserve de Biosphere de
la Pendjari (Benin). Universite d’Abomey-Calavi:
These de doctorat, 193 pp.
Fahr J. & Kalko E.K.V., 2010. Biome transitions as
centres of diversity: Habitat heterogeneity and di-
versity patterns of West African bat assemblages
across spatial scales. Ecography, 33: 1-31.
Fahr J., 1996. Die Chiroptera der Elfenbeinkuste (unter
Beriicksichtigung des westafrikanischen Raumes):
Taxonomie, Habitatpraferenzen und Lebensgemeinsch-
aften. Julius-Maximilians-Universitat Wurzburg:
Diploma-Thesis, 204 pp.
Fahr J., 2008. Diversity Patterns and Taxonomy of West
African Bat Assemblages: Effects of Spatial
Scale and Habitat Structure. Ulm University: Ph.D.
dissertation, 315 pp.
Fahr J., Djossa B.A. & Vierhaus H., 2006. Rapid assess-
ment of bats (Chiroptera) in Dere, Diecke and Mt.
Bero classified forests, southeastern Guinea; includ-
ing a review of the distribution of bats in Guinee
Forestiere. In: Wright H. E., Mccullough J., Alonso
L. E. & Diallo M.S. (Eds.), 2008. A Rapid Biological
Assessment of Three Classified Forests in South-
eastern Guinea, RAP Bulletin of Biological Assess-
ment, Vol. 40, Conservation International, Washing-
ton, D.C, 16-180.
Fontes J. & Guinko S., 1995. Carte de la vegetation et de
Toccupation du sol du Burkina Faso. Ministere de la
cooperation frangaise, projet Campus, Toulouse, 68
pp.
Ganaba S., 2008. Caracterisation, utilisations, tests de
restauration et gestion de lavegetation ligneuse au
Sahel, Burkina Faso. These d’Etat, Universite Cheick
Anta Diop.
Goodman S.M., Cardiff S.G. & Ratrimomanarivo F.H.,
2008. First record of Coleura (Chiroptera: Embal-
lonuridae) on Madagascar and identification and
diagnosis of members of the genus. Systematics and
Biodiversity, 6: 283-292.
Green A.A., 1983. Rodents and bats of Arli and Pendjari
National Parks, Upper Volta and Benin. Nigerian
Field, 47: 167-184.
Guinko S., 1984. La vegetation de la Haute Volta. These
de doctorat. Universite de Bordeaux III, 318 pp.
Happold D.C.D., 1987. The Mammals of Nigeria.
Oxford: Clarendon; partim, nur Chiroptera, 402 pp.
Hawkins B.A., Field R., Cornell H.V., Currie D.J.,
Guegan J.-F., Kaufman D.M., Kerr J.T., Mittelbach
G.G., Oberdorff T., O'Brien E.M., Porter E.E. &
Turner J. R. G., 2003. Energy, water, and broad-scale
geographic patterns of species richness. Ecology, 84:
3105-3117.
Hayman R.W., 1967. Preliminary identification manual
for African mammals. In: Meester J. (Ed.), 1967. II.
Chiroptera. Smithsonian Institution, Washington,
D.C., 1-155.
Hayman R.W. & Hill J.E., 1971. Order Chiroptera. In:
Meester J. & Setzer H.W. (Eds.), 1971. The Mam-
mals of Africa, an Identification Manual. Smithso-
nian Institution, Washington, D.C., 1-73.
Hervy J.-P. & Legros F., 1981a. Enquete sur la circulation
d’ arbovirus dans plusieurs milieux boises de la region
Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso
631
de Bobo-Dioulasso (Haute- Volta). II. Prelevements
de petits mammiferes: Lots constitues en 1980.
Organisation de Coordination et de Cooperation pour
la Lutte contre les Grandes Endemies, Centre Muraz,
Section d’Entomologie, Bobo-Dioulasso, Burkina
Faso, 9 pp.
Hervy J.-P. & Legros F., 1981b. Enquete sur la circulation
d’arbovirus dans plusieurs milieux boises de la region
de Bobo-Dioulasso (Haute- Volta): Lots de Culicidae
et prelevements de petits vertebres realises en 1981.
Organisation de Coordination et de Cooperation pour
la Lutte contre les Grandes Endemies, Centre Muraz,
Section d’Entomologie, Bobo-Dioulasso, Burkina
Faso, 15 pp.
Hervy J.-P. & Legros F., 1981c. Enquete sur la circulation
d'arbovirus en foret de Lera, Sud-Ouest de la Haute-
Volta (du 17 au 23 aout 1981). Organisation de
Coordination et de Cooperation pour la Lutte contre
les Grandes Endemies, Centre Muraz, Section d’
Entomologie, Bobo-Dioulasso, Burkina Faso, 17 pp.
Hill J.E., 1974. A review of Scotoecus Thomas, 1901
(Chiroptera: Vespertilionidae). Bulletin of the British
Museum (Natural History) Zoology 27: 167-188.
Hill J.E., 1977. A review of the Rhinopomatidae (Mam-
malia: Chiroptera). Bulletin of the British Museum
(Natural History). Zoology, 32: 29-43.
Hill J. E. & Harrison D. L., 1987. The baculum in the
Vespertilioninae (Chiroptera: Vespertilionidae) with
a systematic review, a synopsis of Pipistrellus and
Eptesicus and the desriptions of a new genus and
subgenus. Bulletin of the British Museum (Natural
History). Zoology, 52: 225-305.
Horacek I., Hanak V. & Gaisler J., 2000. Bats of the
Palaearctic Region: A taxonomic and biogeographical
review. In: Woloszyn B.W. (Ed.), 2000. Proceedings
of the VUIth EBRS, Vol. 1: Approaches to Biogeo-
graphy and Ecology of Bats. Krakow: Institute of
Systematics and Evolution of Animals PAS; 11-157.
Hulva P., Horacek I. & Benda P, 2007. Molecules,
morphometries and new fossils provide an integrated
view of the evolutionary history of Rhinopomatidae
(Mammalia: Chiroptera). BMC Evolutionary
Biology, 7: 165, 15 pp.
Kalko E.K.V. & Handley Jr. C.O., 2001. Neotropical bats
in the canopy: Diversity, community structure and
implications for conservation. Plant Ecology, 153:
319-333.
Kalko E.K.V, 1997. Diversity in tropical bats. In: Ulrich
H. (Ed.), 1997. Tropical Biodiversity and System-
atics. Proceedings of the International Symposium on
Biodiversity and Systematics in Tropical Ecosystems.
Bonn: Zoologisches Forschungsinstitut und Museum
Alexander Koenig, pp. 13-43.
Kalko E.K.V., 1998. Organisation and diversity of trop-
ical bat communities through space and time.
Zoology, 101: 281-297.
Kalko E.K.V., Handley Jr. C.O. & Handley D., 1996.
Organization, diversity and long-term dynamics of a
Neotropical bat community. In: Cody M.L. &
Smallwood J. (Eds.), 1996. Long-Term Studies in
Vertebrate Communities. Los Angeles: Academic,
503-553.
Kangoye N.M., Oueda A., Thiombiano A. & Guenda W.,
2012. Bats (Chiroptera) of Burkina Faso: Preliminary
list with fifteen first records species. International
Journal of Biological and Chemical Sciences, 6:
6017-6030.
Koch-Weser S., 1984. Fledermause aus Obervolta, W-
Afrika (Mammalia: Chiroptera). Senckenbergiana
Biologica, 64: 255-311.
Kock D., Al-Jumaily M.M. & Nasher A.K., 200 1 . On the
genus Rhinopoma E. Geoffroy 1818 and a record
of Rh. muscatellum Thomas 1903 from Yemen.
Senckenbergiana Biologica, 81: 285-287.
Kock D., 1969. Die Fledermaus-Fauna des Sudan. Abhand-
lungen Der Senckenbergischen naturforschenden
Gesellschaft, 521: 1-238.
Kock D., Barnett L., Fahr J. & Emms C., 2002. On a
collection of bats (Mammalia: Chiroptera) from the
Gambia. Acta Chiropterologica, 4: 77-97.
Koopman K.F., 1975. Bats of the Sudan. Bulletin of the
American Museum of Natural History, 154: 353-444.
Koopman K.F., Mumford R.E. & Heisterberg J.F., 1978.
Bat from Upper Volta, West Africa. American
Museum Novitates, 2643: 1-6.
Lim B.K. & Engstrom M.D., 2001. Bat community struc-
ture at Iwokrama Forest, Guyana. Journal of Tropical
Ecology, 17: 647-665.
Me Lellan L.J., 1986. Notes on bats of Sudan. American
Museum Novitates, 2839: 1-12.
Menzies, J.I. 1973. A study of leaf-nosed bats (. Hippos -
ideros coffer and Rhinolophus landeri ) in a cave in
northern Nigeria. Journal of Mammalogy, 54: 930-
945.
Ministere de l’Environnement et de l’Eau, 1999. Mono-
graphic nationale sur la diversite biologique au Burk-
ina Faso. Secretariat permanent du conseil national
pour la gestion de Tenvironnement, Ouagadougou,
Burkina Faso, 180 pp.
Monadjem A., Taylor P.J., Cotterill F.P.D. & Schoeman
M.C., 2010. Bats of Southern and Central Africa: a
biogeographic and taxonomic synthesis. University
of the Witwatersrand, Johannesburg, 596 pp.
Ossa G. Kramer-Schadt S., Peel A. J., Scharf A.K. & Voigt
C.C., 2012. The Movement Ecology of the Straw-
Colored Fruit Bat, Eidolon helvum, in Sub-Saharan
Africa Assessed by Stable Isotope Ratios. PLoS ONE
7(9): e45729. doi: 10. 137 1/joumal.pone. 0045729
Owen-Ashley N.T. & Wilson D.E., 1998. Micropteropus
pusillus. Mammalian Species, 577: 1-5.
632
Napoko Malika Kangoye et alii
Peterson R.L., 1972. Systematic status of the African
molossid bats Tadarida congica, T. niangarae and T.
trevori. Contributions, 85: 1-32.
Poche R.M., 1975. The bats of National Park W, Niger,
Africa. Mammalia, 39: 39-50.
Pye J.D., 1972. Bimodal distribution of constant frequen-
cies in some hipposiderid bats (Mammalia: Hippos-
ideridae). Journal of Zoology, 166: 323-335.
Qumsiyeh M.B., 1985. The bats of Egypt. Special Pub-
lications of the Museum of Texas Tech University,
23: 1-102.
Racey P.A., 1988. Reproductive assessment in bats. In:
Kunz T.H. (Ed.), 1988. Ecological and behavioral
methods for the study of bats. Smithsonian Institution
Press, Washington, D.C., 31-43.
Richter H.V. & Cumming G.S., 2008. First application of
satellite telemetry to track African straw-coloured
fruit bat migration. Journal of Zoology, 275: 172-176.
Robbins C.B., De Vree F. & Van Cakenberghe V., 1985.
A systematic revision of the African bat genus
Scotophilus (Vespertilionidae). Annales du Musee
Royal de l’Afrique centrale (Sciences Zoologiques),
246: 53-84.
Rosevear D.R., 1965. The Bats of West Africa. Trustees
of the British Museum (Natural History), London,
418 pp.
Sakamoto C.J., Jorgensen C.D. & Herrin C.S., 1979.
Haemolaelaps (Acarina: Laelaptidae) of the
northwest Ethiopian Region. International Journal of
Acarology, 5: 39-62.
Sampaio E.M., Kalko E.K.V., Bernard E., Rodriguez-
Herrera B. & Handley Jr. C.O., 2003. A biodiversity
assessment of bats (Chiroptera) in a tropical lowland
rainforest of Central Amazonia, including methodo-
logical and conservation considerations. Studies on
Neotropical Fauna and Environment, 38: 17-31.
Schlitter D.A., Robbins L.W. & Buchanan S.A., 1982.
Bats of the Central African Republic (Mammalia:
Chiroptera). Annales of the Carnegie Museum, 51:
133-155.
Schlitter D. A. & Qumsiyeh M. B., 1996. Rhinopoma
microphyllum. Mammalian Species, 542: 1-5.
Schmidt D.F., Ludwig C.A. & Carleton M.D., 2008. The
Smithsonian Institution African Mammal Project
(1961-1972), An annotated gazetteer of collecting
localities and summary of its taxonomic and geo-
graphic scope. Smithsonian Contributions to Zoology
(628), 320 pp.
Simmons N.B. & Voss R.S., 1998. The mammals of
Paracou, French Guiana: A neotropical lowland rain-
forest fauna. Part 1. Bats. Bulletin American Museum
of Natural History. 237: 1-219.
Tews J., Brose U., Grimm V., Tielborger K., Wichmann
M.C., Schwager M. & Jeltsch F., 2004. Animal
species diversity driven by habitat heterogeneity/
diversity: The importance of keystone structures.
Journal of Biogeography, 31: 79-92.
Thomas D.W., 1983. The annual migrations of three
species of West African fruit bats (Chiroptera:
Pteropodidae). Canadian Journal of Zoology, 61:
2266-2272.
Vallo P., Guillen-Servent A., Benda P., Pires D.B. &
Koubek P., 2009. Variation of mitochondrial DNA in
the Hipposideros caffer complex (Chiroptera: Hip-
po sideridae) and its taxonomic implications. Acta
Chiropterologica, 10: 193-206.
Van Cakenberghe V. & De Vree F., 1985. Systematics
of African Nycteris (Mammalia: Chiroptera). In:
Schuchmann K.-L. (Ed.), 1985. Proceedings of an
International. Symposium on African Vertebrates.
Bonn: Zoologisches Forschungsinstitut und Museum
Alexander Koenig, pp. 53-90.
Van Cakenberghe V. & De Vree F., 1993. Systematics of
African Nycteris (Mammalia: Chiroptera). Part II.
The Nycteris hispida group. Bonner Zoologische
Beitrage, 44: 299-332.
Van Cakenberghe V. & De Vree F., 1994. A revision of
the Rhinopomatidae Dobson, 1872, with the descrip-
tion of a new subspecies (Mammalia: Chiroptera).
Senckenbergiana Biologica, 73: 1-24.
Van Cakenberghe V. & De Vree F., 1998. Systematics of
African Nycteris (Mammalia: Chiroptera). Part III.
The Nycteris thebaica group. Bonner Zoologische
Beitrage, 48: 123-166.
Vaughan T.A., 1977. Foraging behaviour of the giant
leaf-nosed bat (Hipposideros commersoni ). Ecology
African Wildlife Journal, 15: 237-249.
Vaughan T.A., 1987. Behavioral thermoregulation in the
African yellow- winged bat. Journal of Mammalogy,
68: 376-378.
Vaughan T.A. &Vaughan R.P., 1986. Seasonality and the
behavior of the African yellow-winged bat. Journal
of Mammalogy, 67: 91-102.
Volleth M., 1989. Karyotyp evolution und Phylogenie der
Vespertilionidae (Mammalia: Chiroptera). Friedrich-
Alexander Universitat. Ph.D. dissertation Erlangen-
Numberg, 262 pp.
Volleth M. & Heller K.-G., 1994. Phylogenetic relation-
ships of Vespertilionid genera (Mammalia: Chirop-
tera) as revealed by karyological analysis.
Zeitschrift fur Zoologische Systematik und Evolu-
tionsforschung, 32: 11-34.
Weber N. & Fahr J., 2007. A rapid survey of small mam-
mals from Atewa Range Forest Reserve, Eastern
Region, Ghana. In: McCullough J., Alonso L.E., Na-
skrecki P., Wright H.E. & Osei-Owusu Y. (Eds.),
2007. A Rapid Biological Assessment of the Atewa
Range Forest Reserve, Eastern Ghana. Arlington, Vir-
ginia: Conservation International, 90-98; 178-180
(RAP Bulletin of Biological Assessment, V. 47).
Biodiversity Journal, 2015, 6 (2): 633-636
Effects of climate changes on agriculture
Parinesa Moshefi 1 &Ata Bahojb-Almasi 2 *
'Department of Geology, Maragheh branch, Islamic Azad University, Maragheh, Iran; e-mail: parinesa.moshefi@yahoo.com
"Master of Agronomy, University of Tabriz, Iran; e-mail: Ataalmasi@yahoo.com
^Corresponding author
ABSTRACT This paper reviews literature concerning a wide range of processes through which climate
change could potentially impact agriculture. Agriculture is strongly influenced by weather
and climate and, at present, the aggregate impacts of climate change on global-scale agricul-
tural productivity cannot be reliably quantified.
KEY WORDS agriculture; climate; climate change.
Received 19.05.2015; accepted 20.06.2015; printed 30.06.2015
INTRODUCTION
Climate change has many elements, affecting
biological and human systems in different ways.
Global average temperature increases mask con-
siderable differences in temperature rise between
land and sea and between high latitudes and low;
precipitation increases are very likely in high lati-
tudes, while decreases are likely in most of the
tropics and subtropical land regions (IPCC, 2007).
Climate change is inevitably resulting in changes
in climate variability and in the frequency, intensity,
spatial extent, duration, and timing of extreme
weather and climate events (IPCC, 2012). Changes
in climate variability and extremes can be visualized
in relation to changes in probability distributions,
shown in figure 1 (IPCC, 2012). Current observa-
tions and climate projections suggest that one of the
most significant impacts of climate change is likely
to be on the hydrological system, and hence on river
flows and regional water resources (Strzepek &
McCluskey, 2007; Bates et al., 2008).
Principal climate variables affecting water avail-
ability are precipitation, temperature and potential
evaporation. Precipitation is the source of all fresh-
water resources and determines the level of soil
moisture, which is essential in the formation of
runoff and hence river flow. Soil moisture is de-
termined not only by the volume and timing of
precipitation, but also by a complex interaction and
feedbacks with evaporation and temperature (IPCC,
2001). Consequently, the likely impacts of climate
change on the agricultural sector have prompted
concern over the magnitude of future global food
production (Bindi & Olesen, 2000).
DISCUSSION
Effects of increased temperatures
Temperature often determines the potential
length of the growing seasons for different crops,
and generally has a strong effect on the timing of
the development processes and on the efficiency
with which solar radiation is used to make plant
biomass (Monte ith, 1981). Recent increases in
climate variability may have affected crop yields in
countries across Europe since around the mid-1980s
(Porter & Semenov, 2005) causing higher inter-
634
Parinesa Moshefi &Ata Bahojb-Almasi
annual variability in wheat yields. Changes in short-
term temperature extremes can be critical, especially
if they coincide with key stages of development.
Only a few days of extreme temperature at the
flowering stage of many crops can drastically reduce
yield (Wheeler et al., 2000).
Bryant et al. (2008) report the change of Corn
Heat Units under climate change scenarios in their
analysis on the economic impacts of climate change
on cash crop farms in Quebec. Wollenweber et al.,
(b)
Increased variability
(c) Charged shape
Figure 1 The effect of changes in temperature distribution
on extremes. Different changes of temperature distributions
between present and future climate and their effects on
extreme values of the distributions: (a) Effects of a simple
shift of the entire distribution towards a warmer climate; (b)
effects of an increase in temperature variability with no shift
of the mean; (c) effects of an altered shape of the distribu-
tion, in this example a change in asymmetry towards the hot-
ter part of the distribution. From IPCC (2012).
(2003) found that the plants experience warming
periods as independent events and that critical tem-
peratures of 358 °C for a short-period around an-
thesis had severe yield reducing effects. However,
high temperatures during the vegetative stage did
not seem to have significant effects on growth and
development.
In general, the conclusion is that increased mean
annual temperatures in mid- to high-latitude re-
gions, if limited to one to three degrees, across a
range of C0 2 concentrations and rainfall changes
can have a small beneficial effect on the main cereal
crops, notwithstanding that such simulations are
highly uncertain (IPCC, 2007).
Effects of rainfall
Climate changes remote from production areas
may also be critical. Irrigated agricultural land com-
prises less than one-fifth of all cropped area but pro-
duces between 40 and 45 per cent of the world’s
food (Doll & Siebert, 2002), and water for irrigation
is often extracted from rivers which depend upon
distant climatic conditions.
With no change in precipitation (or radiation),
slight warming (+1°C) might reduce average yields
by about 5-4%; and a 2°C warming might reduce
average yields by about 10-7%. In addition, reduced
precipitation could also decrease yields of wheat
and maize in these breadbasket regions. A com-
bination of increased temperatures (+2°C) and re-
duced precipitation could lower average yields by
over a fifth (Warrick et al., 1986). In a study looking
at the impacts of current climate variability, Ket-
tlewell et al. (1999) showed that heavy rainfall in
August was linked to lower grain quality which
leads to sprouting of the grain in the ear and fungal
disease infections of the grain.
Effects of C0 2 fertilisation
Increases in C0 2 concentration would increase
the rate of plant growth. A doubling of C0 2 may
increase the photosynthetic rate by 30 to 100%,
depending on other environmental conditions such
as temperature and available moisture (Pearch &
Bjorkman, 1983).
As well as influencing climate through radiative
forcing, increasing atmospheric C0 2 concentrations
can also directly affect plant physiological pro-
Effects of climate changes on agriculture
635
cesses of photosynthesis and transpiration (Field et
al., 1995). Therefore any assessment of the impacts
of C0 2 -induced climate change on crop productiv-
ity should account for the modification of the cli-
mate impact by the C0 2 physiological impact.
Many studies suggest yield rises owing to this C0 2 -
fertilization effect and these results are consistent
across a range of experimental approaches includ-
ing controlled environment closed chambers, green-
house, open and closed field top chambers, and
free-aircarbon dioxide enrichment experiments
(Tubiello, 2007). Despite the potential positive
effects on yield quantities, elevated C0 2 may,
however, be detrimental to yield quality of certain
crops. For example, elevated C0 2 is detrimental to
wheat flour quality through reductions in protein
content (Sinclair et al., 2000). There are, however,
important differences between the photosynthetic
mechanisms of different crops and hence in their
response to increasing levels of C0 2 .
Effects on pest and diseases
Studies suggest that temperature increases may
extend the geographic range of some pests currently
limited by temperature. In cool temperate regions,
where insect pests and diseases are not serious at
present, damage is likely to increase under warmer
conditions. Fungal and bacterial pathogens are also
likely to become more severe in areas where pre-
cipitation increases (Zhou et al., 1995).
Indications suggest that pests, such as aphids
and weevil larvae (Staley & Johnson, 2008), re-
spond positively to elevated C0 2 . Increased tempe-
ratures also reduced the overwintering mortality of
aphids enabling earlier and potentially more wide-
spread dispersion (Zhou et al., 1995). Over the next
10-20 years, disease affecting oilseed rape could
increase in severity within its existing range as well
as spread to more northern regions where at present
it is not observed (Evans et al., 2008).
Adaptation to climate change
Smith (1997) distinguishes between anticipatory
and reactive adaptation, in which anticipatory ad-
aptation forecasts climate change and acts before it
unfolds, while reactive adaptation changes beha-
viour only after climate change has taken place. Ac-
cording to Mendelsohn (2010), efficient adaptation
results in the actual net damages (damages minus
the cost of adaptation) being less than the potential
damages from climate change. Thus, if farmers
adapt their behaviour to new climatic conditions,
then the net impact to the farm and the sector can
be lessened. Adaptation through cropping pattern
change can in some cases ease the exposure of
plants to critical higher temperatures; for example
by introducing winter types that may benefit from,
or are less susceptible to, higher temperatures
(Peltonen-Sainio et al., 2011). As regards precip-
itation changes and water shortage, farmers can
adjust by improving soil water-holding capacity by
adding crop residues or manure, or by adopting
conservation tillage such as reduced tillage or no-
till (Smith & Olesen, 2010).
CONCLUSIONS
An increase in mean temperature can be confid-
ently expected, but the impacts on productivity may
depend more on the magnitude and timing of
extreme temperatures. Agricultural impacts in some
regions may arise from climate changes in other
regions, owing to the dependency on rivers fed by
precipitation, snowmelt and glaciers some distance
away. Few studies have assessed the response
of crop yields to C0 2 fertilization under actual
growing conditions, and consequently model pro-
jections are poorly constrained.
All these results are subject to significant uncer-
tainties under the most likely climate change. A
strong incidence of extreme events could increase
the variability of production in a way that is not cap-
tured by the standard estimations in the literature.
Farmers may significantly adapt farming practices,
or different degrees of adaptation to climate change
could be observed.
REFERENCES
Bates B.C., Kundzewicz Z.W., Wu S. & Palutikof J.P.,
2008. Climate Change and Water. Technical Paper of
the Intergovernmental Panel on Climate Change,
IPCC Secretariat, Geneva, 210 pp.
Bindi M. & Olesen J.E., 2000. “Agriculture”. In: M.L.
Parry (Ed.), Assessment of Potential Effects and Ad-
aptations for Climate Change in Europe: The Europe
ACACIA Project. Norwich, United Kingdom: Jackson
Environment Institute, University of East Anglia.
636
Parinesa Moshefi &Ata Bahojb-Almasi
Bryant C., Singh B., Thomassin P., Baker L., Desroches
S., Savoie M., Delusca K., Doyon M. & Seyoum E.,
2008. Evaluation of Agricultural Adaptation Processes
and Adaptive Capacity to Climate Change and Variab-
ility: The Construction of New Adaptation Planning
Tools and with Stakeholders and Farming Communit-
ies in the Saguenay-Lac-Saint-Jean and Monteregie
Regions, Project number A1332 submitted to Natural
Resources Canada, Climate Change Impacts and
Adaptation Program, Universite de Montreal and
McGill University Research Team, June 2008.
Doll P. & Siebert S., 2002. Global modeling of irrigation
water requirements. Water Resources Research, 38:
8.1-8.10. DOE10.1029/ 2001WR000355
Evans N., Baierl A., Semenov M.A., Gladders P. & Fitt
B. D.L., 2008. Range and severity of a plant disease
increased by global warming. Journal of Royal
Society, 5: 525-531. D01:10.1098/rsif.2007.1136
Field C., Jackson R. & Mooney H., 1995. Stomatal re-
sponses to increased C0 2 : implications from the plant
to the global scale. Plant, Cell and Environment, 18:
1214-1255.DOI:10.1111/j. 1365-3040.1995. tb00630.x
IPCC., 2001. Climate Change 2001: The Scientific Basis.
Contribution of Working Group I to the Third Assess-
ment Report of the IPCC. J.T. IToughton, Y. Ding,
D.J. Griggs, M. Noguer, J. van der Linden, X. Dai,
K. Masked and, C.A. Johnson (Eds.). Cambridge
University Press, UK., 944 pp.
IPCC., 2007. Climate Change 2007: impacts, adaptation
and vulnerability, summary for policy makers. Avail-
able at: www.ipcc.cg/SPM13apr07.
IPCC., 2012. Managing the risks of extreme events and
disasters to advance climate change adaptation. In: A
Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change, Field
C. B., Barros V., Stocker T.F. et al. (Eds.), Cambridge
University Press, Cambridge, NY, USA.
Kettlewell P.S., Sothern R. & Koukkari W.L., 1999. UK
wheat quality and economic value are dependent on
the North Atlantic oscillation. Journal of Cereal
Science, 29: 205-209. DOI: 10. 1006/jcrs. 1999.0258
Mendelsohn R., 2010. Agriculture and economic adapt-
ation to agriculture, COM/TAD/CA/ENV/EPOC
(2010)40/FINAL, OECD, Paris.
Monteith J.L., 1981. Climatic Variation and the Growth
of Crops. Quarterly Journal of the Royal Meteorolo-
gical Society, 107: 749-774.
Pearch R.W. & Bjorkman O., 1983. Physiological Ef-
fects. In: Lemon E.R. (Ed.), Cdeg.2 and Plants: The
Response of Plants to Rising Levels of Atmospheric
Cdeg.2, Westview Press, Boulder, Colorado, 65-105.
Peltonen-Sainio P., Hakala K. & Jauhiainen L., 2011. Cli-
mate Induced Overwintering Challenges for Wheat
and Rye in Northern Agriculture. Acta Agriculturae
Scandinavica, Section B, Soil and Plant Sciences, 61 :
75-83.
Porter J.R. & Semenov M.A., 2005. Crop responses to
climatic variation. Philosophical Transactions of the
Royal Society, 360: 2021-2035. DOI:10.1098/rstb.
2005.1752
Sinclair T.R., Pinter P.J. Jr., Kimball B.A., Adamsen F.J.,
La Morte R.L., Wall G.W., Hunsaker D.J., Adam N.,
Brooks T.J., Garcia R.L., Thompson T., Leavitt S. &
Matthias A., 2000. Leaf nitrogen concentration of
wheat subjected to elevated (C0 2 ) and either water
or N deficits. Agriculture, Ecosystems and Environ-
ment, 79: 53-60. DOE10. 1016/S0167-8809(99)
00146-2
Smith J.B., 1997. Setting Priorities for Adapting to Climate
Change. Global Environmental Change, 7: 251-264.
Smith P. & Olesen J.E., 2010. Synergies Between the
Mitigation of, and Adaptation to, Climate Change
in Agriculture. Journal of Agricultural Science
Cambridge, 148: 543-552.
Staley J.T. & Johnson S.N., 2008. Climate change
impacts on root herbivores. In: S.N. Johnson & P.J.
Murray (Eds.), Root Feeders: an ecosystem perspect-
ive. Wallingford, UK: CABI.
Strzepek K. & McCluskey A., 2007. The Impacts of
Climate Change on Regional Water Resources and
Agriculture in Africa.Policy Research Working Paper
4290. World Bank, Washington, DC.
Tubiello F.N., 2007. Crop response to elevated C0 2 and
world food supply-a comment on “Food for
Thought” by Long et al. Science, 312: 1918-1921,
2006. European journal of agronomy, 26: 215-223.
DOI: 10. 1016/j.eja.2006. 10.002
Warrick R.A., Gifford R. & Parry M.L., 1986. C0 2 ,
Climatic Change and Agriculture. In: Bolin B., Doos
B.R., Jager J. & Warrick R.A. (Eds.), The Greenhouse
Effect, Climatic Change and Ecosystems, SCOPE 29,
John Wiley and Sons, Chichester, 393^173.
Wheeler T.R., Craufurd P.Q., Ellis R.H., Porter J.R. &
Prasad P.V.V., 2000. Temperature variability and the
yieldof annual crops. Agriculture, Ecosystems and
Environment, 82: 159-167. DOI: 10. 10 16/SO 167-
8809(00)00224-3)
Wollenweber B., Porter J.R. & Schellberg J., 2003. Lack
of interaction between extreme high-temperature
events at vegetative and reproductive growth stages
in wheat. Journal of Agronomy and Crop Science, 1 89:
142-150. DOI: 10. 1046/j.l439-037X.2003. 00025.x
Zhou X.L., Harrington R., Woiwod I.P., Perry J.N., Bale
J.S. & Clark S.J., 1995. Effects of temperature
onaphid phenology. Global Change Biology, 1 : 303-
313. DOI: 1 0. 1 1 1 1/j . 1 365-2486. 1 995 .tb00029.x
Biodiversity Journal, 2015, 6 (2): 637-662
Contribution to the knowledge of the Longhorn Beetles
(Coleoptera Cerambycidae) of the Syrian Coastal Region
Khaldoun Ali 1 *, Pierpaolo Rapuzzi 2 & Sleiman Ihsan'f
'Plant Protection Department, Faculty of Agriculture, Tishreen University, Latakia, Syria
2 Via Cialla 48, 33040 Prepotto, Udine, Italy; e-mail: info@ronchidicialla.it
^Corresponding author, e-mail: ali86klialdoun@gmail.com
ABSTRACT 51 species including 10 subspecies belonging to 37 genera from 25 tribes are reported from
the Syrian Coastal Region (SCR). Nine species were recorded for the first time in Syria. The
status of 2 subspecies previously recorded was considered doubtful, and alternatives were
suggested. Modern classification of the identified species is given; type species and some
synonyms of taxa are also mentioned. A checklist of Cerambycidae fauna of the SCR is
suggested.This knowledge of the Cerambycidae in SCR was a result of the study and exam-
ination of a total of 1224 specimens collected from 173 sites distributed across the different
areas of the SCR during the period from 2011 until 2014. Collected specimens were prepared,
examined, and then identified. All specimens were curated and permanently preserved in
Entomology Laboratory of Tishreen University. Available chorotypes, distribution ranges of
the identified species are provided; relating remarks, personal observations, and, sometimes,
suggestions are also supplied.
KEY WORDS Syria; Syrian Costal Region; Cerambycidae; new data; faunistics.
Received 19.05.2015; accepted 23.06.2015; printed 30.06.2015
INTRODUCTION
The Syrian Coastal Region (SCR) is considered
as the most important region of Syria, providing a
narrow window to the Mediterranean Sea, and
featuring an ideal Mediterranean environment,
with mildly cold winters, and relatively hot and dry
summers. These environmental characteristics
combined with fertile plains that stretch from sea
level and elevate gradually up to higher hills and,
eventually, relatively high mountains, associated
with a highly diversified flora, provide SCR with
rather various ecological niches that host rich fauna
communities.
Among the Syrian fauna, insects comprise a
major component, with Coleoptera at a high-profile
status of biodiversity. Coleoptera, generally
speaking, is the largest group of insects, including
families of worldwide distribution (Gillot, 2005).
Cerambycidae, more commonly known as “Long-
horn Beetles”, is considered as one of the largest
and most diverse families in Coleoptera, with more
than 35000 described species included in approx-
imately 4000 genera with global ranges of distri-
bution (Hanks, 1999; Alekseev, 2007; Evans et al.,
2007). The distinctively high diversity of longhorn
beetles is more accentuated by the great variance
in their morphology, size, and coloration, which
implies a corresponding variance in life histories
and host plant preferences as well (Twinn &
Harding, 1999; Paulino-Neto et al., 2005; Teledo
et al., 2007).
638
Khaldoun Ali et alii
Although Cerambycidae beetles reveal a primary
affinity to tropical and subtropical regions, they do,
in fact, inhabit almost all zoogeographical regions
of the planet (de Vaio et al., 1985; Awal, 2005). In
general, climatic factors in association with the
availability of suitable host plants act as the main
factors that determine the distribution of this Family
in the world today (Linsley, 1959). Furthermore,
behavior and reproductive strategies of the adults
are shaped by the host requirements of the larval
stages, with which the host plant conditions are
closely correlated (Flanks, 1999).
All Family members are phytophagous, with
different host plant preferences among species and
genera (Bily & Mehl, 1989). Larval Cerambycidae
of most species (86%) are xylophagous (e.g.
feeding inside living, moribund, or even decompo-
sing wood), while, in some certain species (14%),
larvae feed in stems or roots of some herbaceous
plants (Susana, 2009; Gnjatovic & Zikic, 2010).
These feeding habits emphasize not only the
economic importance of this family (e.g. being
pests of heavy damage) in agricultural ecosystems,
but also their ecological importance (e.g. serving as
wood decomposers) in natural ecosystems as well
(Paulino-Neto et al., 2005; Evans et al., 2007).
Furthermore, Cerambycidae are considered as
potentially significant indicators for the forest healt
hand biodiversity (Allison et al., 2004). In this ac-
cord, the changes in some sylviculture pratices have
led to a sheer decline in the populations of some cer-
tain species, especially in Europe, which rendered
some species indangered, and, accordingly; many
species were red-listed (Evans et al., 2007).
It is now established that taxonomy, biology, and
biogeography of Cerambycidae are well studied in
Europe and North America (Allison, 2004); how-
ever, the knowledge of this family in the Eastern
Mediterranean, specifically the Far East, is still
inchoate, but more attention has been drawn towards
this diversity-rich region recently (Cowling et al.,
1996; Sama, et al., 2010). In Syria, actually, the
knowledge of biology, taxonomy, and biodiversity
of longhorn beetles is still not well established, and
their complete fauna is far from fully known. In fact,
there is a painful dearth in local studies, and the avail-
ability of pertinent resources is quite limited. Fur-
thermore, most of the species recorded in Syria have
been collected, identified, and accounted for by
researchers who come from abroad (Hariri, 1971).
In this study, which comes to be the first of its
kind locally, we tried to deduce the biodiversity of
Cerambycidae in SCR as much thoroughly as
possible, in an attempt to bridge some of the gaps
that hinder a broader knowledge of their taxonomy,
and status in addition to clarifying some vague
aspects about their biodiversity and zoogeograph-
ical affinity as a stepping stone towards the know-
ledge of Cerambycidae in the whole of Syrian Arab
Republic.
MATERIAL AND METHODS
Study Area
The Syrian Arab Republic is situated on the
eastern coast of the Mediterranean Sea, bordered by
Turkey from the north, Iraq from the east, Palestine
and Jordan from the south, and by Lebanon and the
Mediterranean from the west.
The Syrian Coastal Region (SCR), which is also
commonly known as “The Coastal Strip”, is located
along the Mediterranean Sea, occupying the
western portion of the country.lt spans between 35°-
45° E, and 36°- 43° N with an estimated area of
5100 km 2 , representing less than 2.5% of the Syrian
territory.
The Coastal Region is considered as one of the
scarce natural resources of Syria, providing a
narrow window to the Mediterranean Sea for such
a relatively large country, with only 183 km of
coastline. From an administrative point of view, the
Coastal Region is partitioned into two coastal gov-
ernorates (provinces), namely: Latakia and Tartus.
Each of which consists of areas, arranged in the
following order:
- Latakia Province: congregating four areas,
namely: Latakia Area; Jableh Area; Qardahah Area;
Haffa Area.
- Tartus Province: congregating five areas, namely:
Tartus Area, Baniyas Area; Salita Area; Shayk-Badr
Area; Draykish Area.
The climate in the Syrian Coastal Region is
typically Mediterranean, with dry summers, and
wet and windy winters and springs. Annual precip-
itation ranges between 800-900 mm. The geo-
graphy is quite heterogenous; the shoreline consists
of sandy bays, alternating with rocky headlands and
low cliffs. The coastal mountain chains separate
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 639
Syria's interior from the Mediterranean coast, with
slopes originally covered in forests of oaks
(Quercus sp.) and pines (. Pinus sp.). On the coastal
slopes of the mountains north to Latakia sprout
some of the best natural forests of the country.
South to Latakia, the coastal strip widens into fertile
plains (Plains of Jableh), to the east of the third
major coastal city, Jableh. The strip then narrows
again and is interrupted by spurs of the mountains
immediate to the east in the sector between Banyias,
the fourth coastal city, and Tartous, the second
major coastal city. South to Tartus, the narrow
coastal strip then widens into the fertile “Sahl
'Akkar” (Plain of 'Akkar), which continues south
across the Lebanese border.
Collection, preservation, and identification
Specimens of adult Cerambycid beetles were
collected, by the first author, from different sites and
localities scattered all across the different areas of
SCR. The study began in 2011 and lasted until the
end of 2014, with the sampling process beginning at
the first of March and spanning all through the end
of December (e.g.10 months) of each year of study.
Collection techniques and tools were multiple,
ranging from the collection by hand, especially for
large specimens, to the sweeping of grasses and
herbaceous plants with entomological nets, (35 cm
in diameter), especially for small specimens. Sweep-
ing and hand-picking were achieved exploiting
different plant parts (e.g. truncks, twigs, branches,
park, stems, leaves, flowers, ...).
Some other passive sampling techniques were
also adopted, with the exploitation of light traps,
consisting of light source (e.g. a mercury light bulb
160 Watts) against a white sheet, these structures
were set near fruit-tree orchards and forest sites and
monitored during the early hours of the evening.
Pitfall traps (e.g. open plastic containers amended
with a slippery substance i.e. Vaseline) were also
applied, specifically in forest sites and fruit-tree
orchards. Paited traps fixed to tree banches and
hung at 1.5 - 2 m were also applied in some fruit-
tree orchards. The structure of these traps was
simple, it consisted of a plastic bottle with the
upper-third portion cut off, and then inversely glued
back to the body of the bottle. A lateral opening was
partially carved out with a knife leaving a part at-
tached to the body of the bottle to keep the opening
closed when the trap is in-action, so that the open-
ing could be used for the exratction of the speci-
mens. Different bait compositions were tried, in
some traps sweet wine was applied, in others a com-
bination of ripe banana with non-alcoholic beer was
used (Chalumeau & Touroult, 2005). Coordin-
ates and elevation were recorded for each collecting
site using a GPS device.
Some specimens were collected by chance, i.e.
intercepting some samples in Tishreen University
Campus, or encuntered on walls near light sources
during visits to some country houses.
After collection, specimens went through many
stages of preparation, identification and, eventually,
curation and preservation. First of all, specimens
were killed using killing jars charged with NaCN
(big specimens), or ethyl acetate (small specimens).
After killing, specimens were put in a sealed con-
tainer with a Styrofoam at the bottom to hold the
specimens, then frozen (0° Celsius) for 48-72 h, and
sometimes even for a longer period of time. Freez-
ing served as a temporary preserving technique
(Triplehom & Johnson, 2005; Gullen & Cranston,
2010), especially when the number of specimens
being prepared for studying was rather high, so that
the specimens will be kept intact until the time
comes for their handling. Moreover, freezing, as we
observed later on, helped in prolonging the “box-
life” of specimens in permanent preservation boxes
(i.e. no fowl smells, and less degradation). After
freezing, specimens were pinned using entomolo-
gical pins (No. 6), then spread of a Styrofoam, then,
finally, dried at the room temperature for 5-7 days.
After properly handled and prepared, specimens
were examined and identified using KONUS ST-
30-2L and NIKON SMZU microscopes. Identifica-
tion was done according to: Bense (1995), Bily &
Mehl (1989), Duffy (1952), Lorenc (1999), Ozdik-
men & Turgut (2009a, b, c, d, e), Ozdikmen &
Turgut (2010a, b), Picard (1929), Villiers (1978),
Wang & Leschm (2003), Zomoroka & Panin (2011).
Identification was followed by a labeling pro-
cedure, and then specimens were transferred to
wooden boxes equiped with glass frontal panels for
permanent preservation. Every box was amended
with Naphthalene pellets and a desiccant material
to help prolong the preservation period. All boxes
and specimens are kept in the Entomology Labor-
atory in Plant Protection Department in the Faculty
of Agriculture in Tishreen University, Syria.
640
Khaldoun Ali et alii
Due to some fading of specimens’ colors, with
storage, and due to some pests that might wreak
havoc to the specimens, each specimen was pic-
tured by Olympus SP 800 UZ digital camera.
All throught the period of this study, we re-
viewed all available studies relating to Ceramby-
cidae in both Syria and neighboring countries (e.g.
Iraq Jordan, Lebanon, Palestine, and Turkey), to
establish a solid background about taxonomy, biod-
iversity and biogeography of Cerambycid beetles.
RESULTS AND DISCUSSION
During this study a total of 5 1 species including
10 subspecies and belonging to 37 genera in 25
tribes were reported.
Reported taxa are listed below. With the follow-
ing arrangement:
- The classification system follows Danilevsky
(2015).
- Collection sites and localities with their geogra-
phical data (e.g. latitude, longitude, and altitude) are
provided in alphabetical order.
- Chorotype data, when available, are provided and
referenced (Villiers, 1978; Katbeh-Bader, 1996;
Doychev & Georgiev, 2004; Awal, 2005; Sama, &
Rapuzzi, 2006; Sama, 2008; Sama et al., 2010a, b;
Sakenin et al., 2011; Dascalu et al., 2012; Peris-
Felipo & Jimenez-Peydro, 2012; Ozdikmen, 2014;
Danilevsky, 2015).
- Bionomics, when available, are given, based on:
Bense (1995), Sama et al. (2010a, b), Hoskovec &
Rejzek (2013).
- Remarks, personal observations, and suggestions
relating to each taxon are also provided.
Family CERAMBYCID AE Latreille, 1802
Subfamily Prioninae Latreille, 1802
Tribe Aegosomatini J. Thomson, 1861
Genus Aegosoma Audinet-Serville, 1832
Type species: Cerambyx scabricornis Scopoli, 1763
1. Aegosoma scabricorne Scopoli, 1763
Examined material. Latakia Province. Latakia
Area: Al-Ghasaniah, 668.0 m, 36° 7'20.63"E, 35°
3'50.39"N, 5. VI. 2013 (1 male, 1 female)/Al-
Yaghansah, 31.0 m 35°51'57.75"E, 35°33'20.03"N,
8.XI.2014 (1 male)/Latakia City-Park, 20.0 m,
35°46'51.7"E, 35°31'47.1"N, 20.X.2014 (1 male,
lfemale)/Serskieh, 55.0 m, 35 o 55'10.40"E,
35°42'19.84"N, 16.V.2012 (1 female); 10.V.2013
(1 male). Jableh Area: Helbakko, 1100.0 m,
36°10'5.35"E, 35°20'0.39"N, 12.VIII.2012 (1
female); 4. VI. 2014 (2 males).
Tartus Province. Tartus Area: Al-Marana, 578.0
m, 36°5T4.71"E, 35°12'50.69"N, 10.XI.2014 (1
male).
Chorotype. Turano-European (Ozdikmenand
& Turgut, 2009c).
Bionomics. Polyphagous on deciduous trees:
Populus , Sal Lx, Junglans, Acer , Quercus, Alnus,
Tilia, Prunus, Platanus, Fagus, Ulmus, Celtis,
Fraxinus, Morus, Aesculus, Carpinus, Castanea,
Prunus, Malus, Eucalyptus', life cycle usually takes
3 years at least; adults are usually encounterd
between June- August.
Remarks. Not frequently encounterd in SCR,
and its distribution covers both lowlands and re-
latively highlands. In 2014 (uncommonly hot and
dry year) a specimen was colleted in autumn i.e.
November. Most of specimens were from light traps
situated near forests of broadleaf trees, and some-
times picked from walls near light sources.
Tribe Ergatini Fairmaire, 1864
Genus Callergates Lameere, 1904
Type species: Er gates gaillardoti Chevrolat, 1854
2. Callergates gaillardoti Chevrolat, 1854
Examined material. Latakia Province. Latakia
Area: Demsarkho, 17.0 m, 35°46'36.8"E, 35°33T2.6"N,
29.IX.2011 (1 male, 1 female); Serskieh, 55.0 m,
35°55T0.40"E, 35°42T9.84"N, 16.V.2012 (1 male,
1 female). Jableh Area: Ain Al-Dilb, 440.0 m, 36°
3'14.17"E, 35°13'40.87"N, 16. IX. 2012 (1 female)/
Besaysin, 29.0 m, 35°57T2.27"E, 35°20’53.43"N
17.X.2013 (1 male).
Tartus Province. Sheik Badr Area: Ash-Shayk
Badr, 491.0 m, 36°4’52.70"E, 34°59’25.23"N,
10.IX.2011 (1 female).
Chorotype. E-Mediterranean/Palestino-Taurian
(Ozdikmen & Turgut, 2009c)
Bionomics. Usualy monophagus on pine
( Pinus ); life cycle usually takes less than three
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 641
years; adults are usually encountered between
June-August.
Remarks. Relatively hard to find, and is a rather
rare species in SCR. Specimens were collected by
hand from trunks and twigs of pine ( Pinus spp.)
trees, usually in the evening. Its close relative
Ergates faber (Linnaeus, 1761), which usually ac-
companies it (Hoslcovec & Rejzek, 2013), has never
been encounterd during the period of this study.
Tribe Macrotomini J. Thomson, 1861
Genus Prinobius Mulsant, 1 842
Type species: Prinobius myardi Mulsant, 1842
3. Prinobius myardi atropos Chevrolat, 1854
Examined material. Latakia Province. Latakia
Area: Al-Bahlouliyah, 224.0 m, 35°57'20.7"E,
35°38'0.6"N, 13.VIII.2011 (2 females); 16.X.2014
(1 male); 12.XI.2014 (1 male)/Al-Qanjara,
72.45 m, 35°52'25.1"E, 35°30'43.4"N, 16.X.2014
(1 female)/Demsarkho, 17.0 m, 35°46'36.8"E,
35°33T2.6"N, 3.XI.2011 (2 females); 31.XI.2011
(1 male); 13.IX.2012 (1 male)/Mashqita, 88.0 m,
35°53'51.0"E, 35°39'34.1"N, 13.IX.2014 (1 male)/
Serskieh, 55.0 m, 35°55T0.40"E, 35°42T9.84"N,
16.IX.2012 (2 females); 18.IV.2012 (1 male)/Zak-
izkanieh, 54.0 m, 35°48'29.85"E, 35°31'47.30"N,
15. XI.2013 (1 female). Jableh Area:Ain Al-Beida,
6.0 m, 35°53'34.2"E, 35°39'28.7"N, 13.VIII.2011
(1 female); 26.IX.2011 (1 male)/ Bustan Al-Basha:
33.0 m, 35°56'3.35"E, 35°25'26.46”N, 7.X.2013 (2
males)/Jableh, 20.0 m, 35°8'43.4"E, 35°15'55.2"N,
23.X. 2013 (1 male, 1 female); 20.X.2014 (1 fe-
male); 25.XI.2014 (2 females)/Ras Al-Ain, 133.0
m, 36°0'38.71"E, 35°19'26.72"N, 19.IX.2012 (2
females). Qardahah Area: Bshilama, 265.0 m,
36°3'35.50"E, 35°26'53.57"N, 7.X.2014 (1 male)/
Fakhoura, 183.0 m, 35°58T7.46"E, 35°29'7.54"N,
16. XI.2012 (2 males). Haffa Ai-ea: Al-Haffah, 272.0
m, 36° 1'59.38"E, 35°35'41.57"N, 20.IX.2012
(2 females)/Aramo, 821.0 m, 36°8'5.77"E,
35°37'47.77"N, 28.XI.2013 (1 male)/Mzeraah,
515.0 m, 36°4T9.18"E, 35°31'59.55"N, 7.IV.2013
(1 male); 23.X.2014 (1 female); 16.XI.2014 (1 male)/
Sirna, 710.0 m, 36°6'24.03"E, 35°36'59.04"N,
27.VIII.2011 (1 female); 5.IX.2012 (1 female)/Shiek
Hussamo, 631.0 m, 36°5'46.01"E, 35°35'45.99"N,
13.VII.2013 (1 female).
Tartus Province. Tartus Area: Hosain Al-
Bahir, 162.0 m, 35°54'27.30"E, 34°58'57.66"N,
20. IX. 20 11 (2 females)/Matin Bouria, 240.0 m,
35°57'4.38"E, 35°2T0.67"N, 16.IV.2014 (1 male)/
Tartus, 14.0 m, 35°52'59.51"E, 34°53'1.01"N,
25.IX.2013 (2 females). Baniyas Area: Al-Qadmus,
919.0 m, 36°9'40.13"E, 35°6'6.53"N, 13.X.2013 (1
male, 2 females)/ Baniyas, 3.0 m, 35°56'24.85"E,
35°10'56.97"N, 11.XI.2012 (2 females)/Kherbet
Al-Sansel, 242.0 m, 35°58'20.48"E, 35°10'2.15"N,
1. IX. 2012 (2 females); 1.XII.2013 (2 females).
Safita Area: Al-Kashfeh, 334.0 m, 35°59'21.61"E,
35°4'52.91"N, 11.VIII.2013 (2 females). Shayk-Badr
Area: Ash-Shayk-Badr, 491.0 m, 36°4'52.70"E,
34°59'25.23"N, 13.VIII.2011 (1 male, 1 female);
4.IX.2013 (2 females); 14.XI.2014 (1 male, 1 female)/
Blawzeh, 462.0 m, 36°1'5.23"E, 35 o 8'59.40"N,
25.VIII.2012 (3 females).
Chorotype. W-Palearctic, or Turano-Mediter-
ranean (Ozdikmenand & Turgut, 2009c).
Bionomics. Polyphagous on deciduous trees:
Acacia , Casuarina, Ceratonia siliqua L., Citrus,
Eucalyptus, Quercus calliprinus L., Q. ilex L., Q.
ithaburensis Decne., Q. suber L., Pyrus, Acer,
Fraxinus, Alnus, Morus alba L., Olea, Populus,
Platanus, Salix; life cycles usually takes several
years; adults are usually encounterd between June-
August.
Remarks. Widely spread species, its distribution
pattern covers almost all the area of SCR. Speci-
mens were collected by hand, or from the walls near
light sources in some countryside houses.
Tribe Prionini Latreille, 1 802
Genus Mesoprionus Jakovlev, 1887
Type species: Prionus asiaticus Faldermann, 1837
A. Mesoprionus lefebvrei Marseul, 1856
Examined material. Latakia Province. Latakia
Area: Al-Yaghansah, 31.0 m, 35°51'57.75"E,
35°33'20.03"N, 2.XI.2014 (1 male)/Baksa, 89.0 m,
35°49T8.33"E, 35°34T5.2"N, 12.IX.2012 (1 male)/
Bisnada, 21.0 m, 35°48T4.97"E, 35°32'52.65"N,
24.VJ.2011 (2 males); 13.VI.2011 (1 male)/Demsarkho:
17.0 m, 35°46'36.8"E, 35°33T2.6"N, 17.X.2012 (1
male)/Fidio, 36.0 m, 35°51'43.87"E, 35°29'31.46"N,
10.X.2012 (1 male); 15.X.2012 (1 male)/Janatah,
642
Khaldoun Ali et alii
108.0 m, 35°49'49.4"E, 35°35'01.9"N, 1.X.2011
(1 female)/Jbariuon, 15.0 m, 35°53'20.43"E,
35°34'22.27"N, 30.VI.2014 (1 male); 9.X.2014 (1
male)/Kamlieh, 242.0 m, 35°54'6.06"E, 35°40'5.31"N,
17.IX.2013 (1 male)/Mashqita, 88.0 m, 35°53'51.0"E,
35°39'34.1"N, 3.VIII. 2012 (1 male, 1 female)/
Tisheen University Campus, 31.0 m, 35°48'25.7"E,
35°31'29.0"N, 5.VI.2013 (1 male). JablehArea: Ain
Al-Dilb, 440.0 m, 36°3'14.17"E, 35 o 13'40.87'’N,
16.V.2014 (1 male)/Al-Kalaie: 185.0 m, 36°2’31.34"E,
35°21'17.62"N, 15.VIII.2011 (1 male)/Beit Yashut,
1145.0 m, 36°11'42.93"E, 35°16'41.29"N,
19.IX.2013 (1 male)/Siano, 78.0 m, 35°59'39.73"E,
35°22'12.64"N, 13.XI.2011 (1 male); 10.IX.2014 (2
males); 25. XI. 20 14 (2 males). Qardahah Area:
Al-Qardahah, 310 m, 36°3'36.19"E, 35°27'28.76"N,
13.IX.2014 (2 males)/ Istamou, 73 m, 35°54'8.48"E,
35°29'51.27"N, 10.VII.2014 (1 male). Haffa Area:
Al-Qastal, 155.0 m, 36°1T4.81"E, 35°39'9.59"N,
30.X.2011 (1 male)/As-Samia, 197.0 m, 35°59'20.56"E,
35°33'16.80"N, 28.VIII.2011 (1 male)/Mzeraah,
515.0 m, 36°4'19.18"E, 35°31'59.55"N, 6.X.2011
(1 female)/ Slunfeh, 1056.0 m, 36°10'44.28"E,
35°36'0.81"N, 4.IV.2013 (1 male).
Tartus Province. Tartus Area: Tartus, 14.0 m,
35°52'59.51"E, 34°53T.01"N, 4.XII.2011 (1 male).
Baniyas Area: Al-Qadmus, 919.0 m, 36° 9'40.13"E,
35°6'6.53"N, 30.XI.2014 (1 female)/Baniyas, 3.0
m, 35°56'24.85"E, 35°10'56.97"N, 25. IX. 2014 (2
males); 4. XI. 20 14 (1 male)/Kherbet Al-Sansel,
242.0 m, 35°58'20.48"E, 35°10'2.15"N, 15.V.2014
(2 males). Safita Area: Safita, 310.0 m, 36° 7'5.14"E,
34°49'1.75"N, 3.XI.2013 (1 female). Draykish Area:
Draykish, 470.0 m, 36° 8'3.44"E, 34°53'50.65"N,
10.XI.2012 (1 male).
Chorotype. Anatolian (Ozdikmenand & Turgut,
2009c).
Bionomics. Unknown host plants; biology is
still unknown; adults are usually encounterd
between June-August.
Remarks. Frequently encountered and wide-
spread in SCR, most of specimens were collected
by hand, from trunks and branches of deciduous
trees, few samples were collected from wine traps
hung at 1.5-2 m above the ground.
Genus Prionus Geoffroy, 1762
Type species: Cerambyx coriarius Linnaeus, 1758
5. Prionus komiyai Lorenc, 1999
Examined material. Latakia Province. Latakia
Area: Al-Hannadi, 73.5 m, 35°52'53.5"E,
35°30T0.5"N, 12.XI.2013 (2 males); 7.VIII.2014
(1 male)/Al-Wadi, 470.0 m, 36° 3'0.21"E,
35°47'34.64"N, 26.VIII.2014 (2 males)/ Serskieh,
55.0 m, 35°55T0.40"E, 35°42T9.84"N, 9.V.2012 (1
male). JablehArea: Hmimim, 40.0 m, 35°57'1.30"E,
35°22'34.65"N, 14.IX.2012 (2 males)/Ras Al-Ain,
133.0 m, 36° 0'38.71"E, 35°19'26.72"N, 18.VII.2014
(2 males)/Siano: 78.0 m, 35°59'39.73"E, 35°22T2.64"N,
9.X. 2011 (1 male); 1.XI.2011 (1 male); 7.X.2012
(2 females); 7.XI.2012 (1 male). Qardahah Area:
Istamou, 73.0 m, 35°54'8.48"E, 35°29'51.27"N,
16. VII. 20 14 (1 male)/Ain Al-Arous, 65.0 m,
35°57T5.84"E,35°26T9.20"N, 18.Vm.2011 (2 females).
Haffa Area: Slunfeh, 1056.0 m, 36°10'44.28"E,
35°36'0.81"N, 17.VII.2013 (1 male)/Terjano, 110.0
m, 35°59'15.20"E, 35°31'44.06"N, 29.IX.2012 (2
males); 20.X.2013 (2 females).
Tartus Province. Tartus Area: Tartus, 14.0 m,
35°52'59.51"E, 34°53T.01"N, 21.XI.2014 (1 male).
Baniyas Area: Wadi Al-Saki, 519.0 m, 36° 5'26.53"E,
35°6'2.64"N, 7.VII.2014 (1 male). Shayk-Badr
Area: Ash Shayk Badr, 491.0 m, 36°4'52.70"E,
34°59'25.23"N, 4.X.2014 (1 male).
Chorotype. The chorotype is SW-Asiatic/Syro-
Anatolian (Ozdikmenand & Turgut, 2009c).
Bionomics. Unknown.
Remarks. Frequently encounterd in SCR. Spe-
cimens were usually collected by hand, from trunks
and twigs of deciduous trees. Two specimens were
collected from banana and beer traps situated in
fruit-tree orchards.
Tribe Remphanini Lacordaire, 1868
Genus Rhaesus Motschulsky, 1875
Type species: Rhaesus persicus Motschulsky, 1875
(= Prionus serricollis Motschulsky, 1838)
6. Rhaesus serricollis Motschulsky, 1838
Examined material. Latakia Province. Latakia
Area: Ain Al-Beida, 6.0 m, 35°53'34.2"E, 35°39'28.7"N,
10.IX.2013 (2 females); 7.XI.2014 (2 females)/Al-
Bahlouliyah, 224.0 m, 35°57'20.7"E, 35°38'0.6"N,
15. XI. 2013 (2 females); 11.XI.2014 (1 male, 3 females).
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 643
Jableh Area: Ain Shkak, 61.0 m, 35°58'54.93"E,
35°23'2.60"N, 7.IX.2012 (1 female)/Besaysin, 29.0
m, 35°57'12.27"E, 35°20'53.43"N, 4.X.2011 (1 male);
16.IX.2013 (2 males); 10X2013 (3 males); 11X2013
(2 females); 19.IX.2014 (3 males); 16.X.2014 (1
male, 2 females); 29. X. 2014 (1 male, 1 female)/
Jableh, 20.0 m, 35°8'43.4"E, 35°15'55.2"N,
5.IX.2013 (2 females); 19.VII.2014 (2 females)/ Ras
Al-Ain, 133.0 m, 36° 0'38.71"E, 35°19'26.72"N,
11. X.2013 (2 males, 1 female); 15. XI. 2014 (2 fe-
males). Qardahah Area: Al-Qardahah, 310.0 m,
36°3'36.19"E, 35°27'28.76"N, 3. X. 2011 (1 male,
1 female); 7.XI.2011 (4 females). Haffa Area:
Roimieh, 48.0 m, 35°55'57.70"E, 35°29'44.00"N,
12. XI.2010 (1 female); 16.VII.2013 (1 male);
12.X.2013 (2 females).
Tartus Province. Baniyas Area: Faresh Kaebieh,
301.0 m, 36° 1T8.71"E, 35°11'20.04"N, 6.X.2012
(1 female); 17.V.2014 (1 female)/Wadi Al-Saki,
519.0 m, 36° 5’26.53"E, 35°6’2.64"N, 4.X.2014 (1
female); 13.XI.2014 (1 female); 10.XI.2014 (1
male, 2 females).
Chorotype. Sibero-European+Turano-Europeo-
Mediterranean (Ozdikmenand & Turgut, 2009c).
Bionomics. Polyphagous on deciduous trees:
Fagus, Celtis, Platanus, Quercus, Castanea, Tilia ,
Junglans, Salix; life cycle usually takes several
years; adults are usually encountered between July-
September.
Remarks. Frequently encountered in SCR. Its
emergence is often late, with higher numbers being
ecountered during September. Samples were
collected by hand, from trunks and branches of
Juglans trees, especially during the evening. Some
specimens were attracted to light traps situated near
walnut trees. Larvae usually fed on the wood of live
walnut trees {Juglans sp.).
Subfamily Lepturinae Latreille, 1802
Tribe Lepturini Latreille, 1802
Genus Stictoleptura Casey, 1924
Type species: Leptura cribripennis LeConte, 1859
7. Stictoleptura ( s . str.) cordigera Fuessly, 1775
Examined material. Latakia Province. Latakia
Area: Al-Bahlouliyah, 224.0 m, 35°57'20.7"E,
35°38'0.6"N, 17.XI.2012 (2 females)/Kirsana, 63.0
m, 35°49'38.4"E, 35°37'4.34"N, 3.IV.2013 (2 males)/
Wadi Qandil, 48.0 m, 35°50'28.9"E, 35°43'20.7"N,
2.IX.2012 (1 male, 1 female). Haffa Area: Ghomata,
246.0 m, 35°59'42.00"E, 35°33'35.95"N, 7.VIII.2103
(1 female).
Tartus Province. Tartus Area: Majdaloun Al-Bahr,
60.0 m, 35°56'21.57"E, 34°51T9.22"N, 3.IX.2014
(1 male, 1 female). Baniyas Area: Hreisoun, 14.0
m, 35°57'23.63"E, 35°14'8.88"N, 7.IX.2014 (1 male,
1 female).
Chorotype. Turano-European (Ozdikmen, 2008).
Bionomics. Polyphagous on deciduous trees
{Castanea, Fagus, Pistacia, Pinus, Quercus)', life
cycle usually takes 2-3 years; adults are usually
encunterd between June-July.
Remarks. Not frequently encounterd in SCR. It
is usually collected from flowers, especially during
spring.
Genus Vadonia Mulsant, 1863
Type species: Leptura unipunctata Fabricius, 1787
Genus Neovadonia Kaszab, 1938: 151
Type species: Leptura unipunctata Fabricius, 1787
8. Vadonia unipunctata syricola Holzschuh, 1993
Examined material. Tartus Province. Baniyas
Area: Kirkafti, 77.0 m, 35°56'55.35"E, 35° 4'32.53"N,
16.X.2014 (1 female).
Chorotype. Unknown. Distribution: Lebanon,
and Syria.
Bionomics. Biology unknown, probably similar
to the nominal form; adults are usually encounterd
between May- August.
Remarks. Rather a rare species in SCR; the spe-
cimen was collected by hand, from flowers of
Euphorbia plants. The chorotype is unkown, but the
pattern of distribution of this subspecies suggests
endemism to Syria.
Subfamily Spondylinae Audinet-Serville, 1832
Tribe Asemini J. Thomson, 1861
Genus Arhopalus Audinet-Serville, 1834
Type species: Cerambyx rusticus Linnaeus, 1758
644
Khaldoun Ali et alii
9 . Arhopalus ferus Mulsant, 1839
Examined material. Latakia Province. Latakia
Area: Zighrin, 44.0 m, 35°52'35.97"E, 35°42'55.45"N,
5. VI. 2011 (3 females); 17.VII.2013 (1 male, 1 fe-
male). Qardahah Area: Al-Qardahah, 310.0 m, 36°
3'36.19"E, 35°27'28.76"N, 29.VI.2013 (1 female);
19.IX.2013 (1 male,l female); 20.X.2013 (1 male,
2 females).
Tartus Province. Baniyas Area: Zoubeh, 407.0
m, 35°58'45.50"E, 35°7'14.92 ,, N, 19.XI.2014 (1 fe-
male); 23.VII.2014 (2 females).
Chorotype. Sibero-European and the Turano-
Europeo-Mediterranean (Ozdikmen & Turgut,
2006).
Bionomics. Monophagous on pine {Pinus spp.)
but might rarely feed on spruce ( Picea ); life cycle
usually takes 2-3 years; adults are usually en-
countered between May-August.
Remarks. Frequently encountered in SCR,
especially near pine (Pinus sp.) forests, and usually
attracted to light; few specimens were collected by
sweeping herbaceous plants.
10. Arhopalus syriacus Reitter, 1895
Examined material. Latakia Province. Latakia
Area: Bdamioun, 66.0 m, 35°54'38.57"E,
35°35'33.84"N, 3.X.2012 (3 males)/ Latakia, 20.0
m, 35°46'51.7"E, 35°31'47.1"N, 1.XII.2014
(1 female)/Zighrin, 44.0 m, 35°52'35.97"E,
35°42'55.45"N, 11. IX. 20 14 (2 females); 17.X.2014
(2 females). Jableh Area: Al-Kabou, 20.0 m,
35°53'20.65"E, 35°27'43.20"N, 9.VIII.2013 (1 fe-
male)/Jableh, 20.0 m, 35°8'43.4"E, 35°15'55.2"N,
20. VIII. 2014 (1 male, 1 female). Qardahah Area:
Dibash, 447.0 m, 36°4'13.50"E, 35°30’50.08"N,
27.IX.2011 (2 males); 20.IX.2013 (2 females).
Tartus Province. Baniyas Area: Srijis, 585.0 m,
36°10'59.04"E, 34°55'55.51"N, 21.VIII.2014 (2
males)/Wadi Al-Saki, 519.0 m, 36°5'26.53"E, 35°
6'2.64"N, 12.IX.2013 (2 males).
Chorotype. S-European+E-Mediterranean/Pa-
laestino-Cyprioto-Taurian (Ozdikmenand & Turgut,
2006).
Bionomics. Usually monophagous on pine (e.g.
Pinus pinaster , P. salzmanni, P. laricio , P. halepen-
sis ); life cycle usually takes 2-4 years; adults are
usually encountered between June-September.
Remarks. Closely related to Arhopalus ferus
Mulsant, 1839 and usually accompanies it.
Subfamily Cerambycinae Latreille, 1 802
Tribe Achrysonini Lacordaire, 1868
Genus Icosium P.H. Lucas, 1854
Type species: Icosium tomentosum P.H. Lucas, 1854
11. Icosium tomentosum atticum Ganglbauer, 1882
Examined material. Latakia Province. Latakia
Area: Bisnada, 21 m, 35°48T4.97"E, 35°32'52.65"N,
14.VI.20 12 (2 females).
Tartus Province. Baniyas Area: Baniyas, 3.0 m,
35°56'24.85"E, 35°10'56.97"N, 19.XI.2014 (2
males, 1 female). Shayk-Badr Area: Al-Msherfeh,
270.0 m, 35°59'57.49"E, 35° 9'40.74"N, 3.VI.2012
(2 females)/Qamsyiah, 398.0 m, 35°59'31.46"E,
35° 3T1.38"N, 22.X.2013 (2 males).
Chorotype. Mediterranean (Ozdikmen, 2008).
Bionomics. Oligophagous on various Cupres-
saceae: Cupressus sempervirens L., C. propinqua,
Tetraclinis articulata (Vahl) Mast., Juniperus
oxycedrus L., Thuja , Callitris ); life cycle usually
takes 2-3 years; adults are usually encountered
between June-August.
Remarks. This is the first record of this species
in Syria. Its activity is usually nocturnal; some spe-
cimens were collected from light traps, especially
near forests, other specimens were collected by
hand, from branches of some deciduous trees.
Tribe Callichromatini Swainson et Shuclcard, 1 840
Genus Aromia Audinet-Serville, 1834
Type species: Cerambyx moschatus Linnaeus, 1758
Terambus Gistel, 1848b [unnecessary substitute name]
12. Aromia moschata ambrosiaca Steven, 1809
Aromia melancholica Reitter, 1895
Aromia notaticollis Pic, 1928
Aromia rosara P.H. Lucas, 1 847
Aromia rosara A. Costa, 1855 ( Cerambyx )
Examined material. Latakia Province. Latakia
Area: Bdamioun, 66.0 m, 35°54'38.57"E,
35°35'33.84"N, 28.XI.2011 (1 male). Jableh Area:
Qutaolabyah, 215 m, 36°1'8.98"E, 35°17T3.14"N,
24.XI.20 12 (3 males).
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 645
Chorotype. Palearctic (Ozdikmen, 2014).
Bionomics. Ecologically, it is strictly associated
with willow ( Salix spp.), it rarely feeds on other de-
ciduous trees: Populus nigra L., Sorbus, Alnus,
Acer; life cycle usually takes 3 or more years; adults
are usually encountered between May-September.
Remarks. Very attractive to collectors, but
rather rare in SCR. Specimens were collected by
hand form tree trunks of willow trees ( Salix sp.). It
is known to emit an aromatic scent that smells like
attar (Linsley, 1959).
Tribe Callidiini Kirby, 1837
Genus Phymatodes Mulsant, 1839
Type species: Cerambyx variabilis Linnaeus, 1760
(= Cerambyx testaceus Linnaeus, 1758)
Subgenus Paraphymatodes Plavilstshikov, 1934
Type species: Callidium fasciatum Villers, 1789
13. Phymatodes {Paraphymatodes) fasciatus
Villers, 1789
Paraphymatodes unifasciatus Olivier, 1790 {Callidium)
Paraphymatodes unifasciatus Rossi, 1790 {Callidium)
Examined material. Latakia Province, Latakia
Area: Zakizkanieh, 54.0 m, 35°48'29.85"E,
35°31'47.30"N, 4.V.2014 (1 male).
Chorotype. Unknown. Distribution: Europe
(Austria, Bosnia-Herzegovina, Bulgaria, Croatia,
Czeck Republic, France, Greece, Hungary, Italy,
Lativa, Macedonia, Moldavia, Poland, Romania,
Slovakia, Spain, Slovenia, Switzerland, Ukraine,
Serbia, and Montenegro), Asia (Cyprus, Limassol,
Troodos mountains, Kato Platres, Sama leg.;
Palestine, Tel Dan, Kravchenko leg.; Turkey, Anta-
lya, Perge and Igel, Qamliyayla, Sanaa’s collection).
New record for Cyprus, Turkey and Palestine.
Bionomics. Monophagous on grapevine Vitis
vinifera L., but it is also reported on other deciduous
tress: e.g. Parthenocissus quinquefolia (L.) Planch.,
Clematis, Populus alba L., Quercus robur L., Salix
alba L.; life cycle usually takes one year; adults are
usually encountered between May-June.
Remarks. This is the first record of this species
in Syria. It is very rare in SCR; the specimen was
encountered on a wall near a light source.
Tribe Cerambycini Latreille, 1802
Genus Cerambyx Linnaeus, 1758
Type species: Cerambyx cerdo Linnaeus, 1758
14. Cerambyx cerdo Linnaeus, 1758
Cerambyx heros Scopoli, 1763
Examined material. Latakia Province, Latakia
Area: Al-Bahlouliyah, 224.0 m, 35°57'20.7"E,
35°38'0.6"N, 14.XI.2014 (2 males). Jableh Area:
Jableh, 20.0 m, 35°8'43.4"E, 35°15'55.2"N,
16.VIII.2014 (1 male)/ Ras Al-Ain: 133.0 m,
36°0'38.71"E, 35°19'26.72"N, 5.IV.2014 (2 males,
1 female).
Tartus Province. Tartus Area: Zarkat, 100.0 m,
35°57T4.82"E, 34°50'31.49"N, 21.X.2014 (1 male).
Baniyas Area: Al-Qadmus, 919.0 m, 36° 9'40.13"E,
35°6'6.53"N, 2.XI.2014 (1 female). Safita Area:
Safita, 310.0 m, 36°7'5.14"E, 34°49'1.75"N,
16.VI.2012 (2 males); 17.V.2014 (1 female).
Chorotype. Turano-Europeo-Mediterranean
(Ozdikmenand & Turgut, 2009b).
Bionomics. Polyphagous on deciduous trees
(e.g. Quercus, Junglans, Ceratonia), it is reported
probably by occasional adaptation for other
broadleaf trees {Fraxinus, Castanea, Ulmus); life
cycle usually takes 3 years at least; adults are
usually encountered between May-August.
Remarks. Widely spread in SCR. The sub-
species C. cerdo acuminatus Motschulsky, 1853 is
recorded in countries of the Middle East (including
Syria), but it is rather a doubtful subspecies. We
prefer not to indicate the subspecies before a study
on the whole genus Cerambyx from the East Medi-
terranean. Specimens were collected by hand from
trunks and branches of deciduous trees (usually
from orchards). The flight of this species is rather
slow.
15. Cerambyx dux Faldermann, 1837
Examined material. Latakia Province, Latakia
Area: Ain Al-Laban, 68.0 m, 35°53'47.99"E,
35°35'36.83"N, 8.XI.2013 (1 male, 1 female)/Al-
Bahlouliyah, 224.0 m, 35°57'20.7"E, 35°38'0.6"N,
14.XI.2012 (2 males, 2 females); 25.X.2013 (1
male); 3.IX.2014 (3 males)/Al-Qanjara, 72.45 m,
35°52'25.1"E, 35°30'43.4"N, 22.X.2013 (2 fe-
males)/Al-Safkoun, 206.0 m, 35°59'17.57"E,
646
Khaldoun Ali et alii
35°38'57.24"N, 15.X.2011 (2 females)/Al-Shil-
fatiyah, 45.0 m, 35°53'57.6"E, 35°32'21.5"N,
20.X.2012 (1 male, 1 female)/Balloran, 193.0 m,
35°53'35.30"E, 35°46'40.52"N, 3.VIIL2011 (1 fe-
male); 11.X.2012 (1 male)/Bisnada, 21.0 m,
35°48'14.97"E, 35°32'52.65"N, 14.IV.2012 (2
males); 24.IV.2012 (3 males); 27.V.2014 (2 males)/
Bouka, 62.0 m, 35°48'32.26"E, 35°32'17.80"N,
16.XI.2013 (1 male); 7.XI.2013 (3 males)/Dem-
sarkho, 17.0 m, 35°46'36.8"E, 35°33'12.6"N,
25.IX.2012 (2 males); 16.X.2012 (1 male)/Dibba,
32.0 m, 35°54'36.18"E, 35°32'18.46"N, 1.V.2013
(1 female); 26.IX.20 13 (2 males); 7.IV.2014 (2 males)
/Jbariuon, 15.0 m, 35°53'20.43”E, 35°34'22.27"N,
14.IX.20 14 (3 females)/Khreibeh, 816.0 m, 36°
6'11.91"E, 35°17'26.83"N, 26.X.2014 (2 males)/
Klouf: 120 m, 35°51'45.74"E, 35°38'33.34"N,
17.IV.20 14 (1 male, 1 female)/Latakia, 20.0 m,
35°46'51.7"E, 35°31'47.1"N, 11.XI.2011 (1 male)/
Rodo, 38.0 m, 35°51'5.65"E, 35°33'40.16"N,
16.IX.2013 (2 males)/Serskieh, 55.0 m, 35°55'10.40"E,
35°42'19.84"N, 16. V. 2013 (1 male, 1 female)/Sin-
jwan, 81.0 m. 35°49'28.7"E, 35°32'46.9"N,
14.VIII.2012 (1 male)/ Tisheen University Campus,
31.0 m, 35°48'25.7"E, 35°31'29.0"N, 3.IV.2013
(2 males)/Zeitouneh, 468 m, 36°8'37.49"E,
35°48'27.15"N, 13.IX.2014 (2 females). Jableh
Area: Ain Al-Dilb, 440.0 m, 36°3'14.17"E,
35°13'40.87"N, 6.IV.2014 (1 male, 2 females)/
Al-Eidia, 40 m, 35°58'33.97"E, 35°17'9.67"N,
30.IX.2014 (3 males, 1 female)/ Al-Klouh, 8.0 m,
35°57'3.08"E, 35°15'2.05"N, 29.V.2013 (3 males);
1 1 .X.2014 (1 male)/Al-Louzeh, 24.0 m, 35°56'27.99"E,
34°48'29.73"N, 11.X.2011 (1 male); 13.X.2011 (2
males, 1 female)/Babdah, 505.0 m, 36°3'15.47"E,
35°14'22.16"N, 15.X.2012 (2 males)/ Besaysin, 29
m, 35°57'12.27"E, 35°20'53.43"N, 17.VIIL2011
(1 male); 3.X.2012 (2 females); 7.IX.2014 (2
males); 13.IX.2014 (2 females); 16.IX.2014 (1
male, 2 females)/ Btimazah Mountain, 1280.0 m,
36°13'57.59"E, 35°13'11.66'’N, 1.XL2014 (3
males, 2 female s)/Burj an, 48.0 m, 35°58'44.66"E,
35°17'31.22"N, 11.X.2011 (2 females); 10.XL2011
(1 male)/Bustan Al-Basha, 33.0 m, 35°56'3.35"E,
35°25'26.46"N, 4.V.2013 (2 males); 7.V.2013 (1 fe-
male)/ Jableh, 20.0 m, 35°8'43.4"E, 35°15'55.2"N,
14.XL2012 (1 female)/Kfar Dbil, 110.0 m,
36°0'38.76"E, 35°22'48.90"N, 1.XL2013 (4 males)/
Qutaolabyah, 215.0 m, 36°1'8.98"E, 35°17'13.14"N,
6.IV.2014 (1 male, 1 female); 18.V.2014 (1 male)/
Rahbieh, 8.0 m, 35°57'22.07"E, 35°15'30.94"N,
6.V.2013 (1 male, 1 female)/Ras Al-Ain, 133.0 m,
36°0'38.71"E, 35°19'26.72"N, 22.VII.2012 (2
males); 20.IX.20 13 (2 females)/Rmelieh, 14.0 m,
35°55'26.93"E, 35°22'54.71"N, 17.VIIL2014 (1
male, 1 female)/Sarabion, 362.0 m, 36°1'8.00"E,
35°14'12.12"N, 19.IX.2012 (1 male, 2 female);
12.IX.2013 (1 male, 1 female); 21.X.2013 (2 females)
/Zama, 274.0 m, 36°4'30.32"E, 35°20'48.18"N,
21.XL2012 (2 males). Qardahah Area: Al-Qardahah,
310.0 m, 36° 3'36.19"E, 35°27'28.76"N, 23.XI.2011
(1 male); 1.XL2012 (1 male)/Istamou, 73.0 m,
35°54'8.48"E, 35°29'51.27"N, 15.X.2014 (2 males)/
Qulmakho, 160.0 m, 35°59'19.85"E, 35°27'46.22"N,
3. XI. 2011 (1 male). Haffa Area: Al-Haffah, 272.0
m, 36°1'59.38"E, 35°35'41.57"N, 8.VIII.2011 (1
male, 1 female)/ As-Samia, 197.0 m, 35°59'20.56"E,
35°33'16.80"N, 15.IX.2014 (2 females)/Marj
Khokhah, 834.0 m, 36°9'14.37"E, 35°41'29.50"N,
23.X.2013 (2 males)/Mzeraah, 515.0 m, 36°4'19.18"E,
35°31'59.55"N, 25.IX.2011 (2 females); 16.V.2012
(2 males); 13.IX.2014 (2 males); 2.XI.2014 (3
males, 2 females)/Shiek Hussamo, 631.0 m,
36°5'46.01"E, 35°35'45.99"N, 3.X.2012 (2 females)/
Talla, 178.0 m, 35°58'42.70"E, 35°38'14.99"N,
10.X.2012 (2 males).
Tartus Province. Tartus Area: Al-Karimeh, 185.0
m, 36°2'31.34"E, 35°21'17.62"N, 7.V.2013 (2
males, 1 female); 3.V.2014 (2 males)/As-Sifsafeh,
130.0 m, 36°2'55.04"E, 34°43'57.80 H N, 18.V.2013
(1 male)/Beit Alian: 56.0 m, 35°56'17.91"E,
34°51'13.93"N, 26.X.2014 (1 male, 3 females)/Tartus,
14.0 m, 35°52'59.51"E, 34°53'1.01"N, 15.X.2011
(1 male); 20.X.2011 (1 male)/Kherbet Al-Mezeh,
154.0 m, 36°1'43.98"E, 34°48'6.31"N, 23.X.2014
(2 males)/Marqueh, 55.0 m, 35°55'5.27"E,
35°1'56.45"N, 20.IX.2012 (1 male)/Saya, 216.0 m,
35°56'55.30"E, 35°2'46.23"N, 8.IX.2013 (2 males);
17.VIII.2014 (1 male, 2 females); 3.X.2014 (3
males, 1 female). Baniyas Area: Al-Qadmus, 919.0
m, 36°9'40.13"E, 35°6'6.53"N, 1.V.2013 (2
males)/Al-Roudah, 150.0 m, 35°54'53.46"E,
35°4'2.91"N, 13.IX.2013 (2 males, 1 female);
16.VIII.20 14 (1 male, 2 females)/Balloutieh, 460.0
m, 36°2'40.17"E, 35°11'2.14"N, 5.X.2011 (1 female)/
Baniyas, 3.0 m, 35°56'24.85"E, 35°10'56.97"N,
15. X.2012 (2 males)/Bustan Al-Hamam, 337.0 m,
36°2'0.50"E, 35°12'25.81"N, 7.IV.2013 (1 male);
16. VII. 2014 (1 male, 1 female)/Deir Al-Bishl,
101.0 m, 35°58'56.27"E, 35°11'48.97"N, 16.V.2013
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 647
(2 females)/Hreisoun, 14.0 m, 35°57'23.63"E,
35°14'8.88"N, 16.IX.2014 (2 males, 1 female)/
Hamam Wasel, 642.0 m, 35°59'42.00"E,
35°33'35.95''N, 9.IX.2013 (2 males)/ Isqublh, 690.0
m, 36°3'39.70"E, 35°9'54.14"N, 6.IV.2013 (1
male)/Kherbet Al-Sansel, 242.0 m, 35°58'20.48"E,
35°10'2.15 H N, 4.IV.2013 (1 male, 2 females); 3.V.2013;
15.V.2013 (1 male, 1 female)/Khirbit Al-Sindiana,
851 m, 36°11'40.29"E, 35°13'31.47"N, 17.VI.2014
(1 male, 1 female)/Mourid, 120.0 m, 35°56'19.04"E,
35°6'19.51"N, 17.IV.2014 (1 male)/Taenita, 471.0
m, 36°3'42.95"E, 35 0 6'42.87"N, 19.X.2011 (1 male,
1 female)/Zillo, 235.0m, 36°1'33.56"E, 35°12T.37"N,
8.VIII.2012 (2 females). Safita Area: Safita, 310.0
m, 36°7'5.14"E, 34°49'1.75 , ’N, 20.X.2011 (1 males);
7.X.2012 (2 males); 17.X.2012 (2 females); 22.XI.2012
(2 males); 25.X.2012 (1 males); 17.X.2013 (1
male); 12.X.2014 (3 female); 9.IX.2014 (3 males);
29.X.2014 (1 male, 1 female). Shayk-Badr Area:
Blawzeh, 462.0 m, 36°1'5.23"E, 35°8'59.40"N,
23. VII. 2011 (1 male, 1 female)/Kafroun, 675.0 m,
36°14'18.96"E, 34°51'58.57"N, 2.X.2011 (1 fe-
male)/Ash Shayk Badr, 491.0 m, 36°4'52.70"E,
34°59'25.23"N, 4. VIII. 2012 (3 males); 22.X.2013
(2 males, 1 female); 23.XI.2013 (1 male, 1 female);
7.IX.2014 (2 males)/Kfarieh, 368 m, 36°4'20.62"E,
34°58'17.16"N, 15.X.2012 (2 females). Draykish
Area: Draykish, 470.0 m, 36°8'3.44"E, 34°53'50.65"N,
6.V.2011 (1 male); 16.VI.20 12 (2 males); 16.V.2013
(2 males); 5.VIII.2013 (2 males); 1.X.2014 (3
males, 2 females); 3.X.2014 (1 female).
Chorotype. Turano-Mediterranean/Turano-
Balkan (Ozdikmenand & Turgut, 2009b).
Bionomics. Polyphagous on fruit and orna-
mental trees, and sometimes bushes: e.g. Prunus,
Elaeagnus, Crataegus, Pyracantha crenatoserrata
(Hance) Rehder); life cycle usually takes 3-4 years;
adults are usually encountered between May-July.
Remarks. Exteremely widespread in SCR, and
usually encountered everywhere, especially in
Prunus sp. orchards. Collection was usually con-
ducted by hand, or by entomological nets. Few
samples were obtained from ripe banana and sweet
wine traps. This species is considered as a major
pest to Prunus sp. orchards, inflicting heavy dam-
ages to fruit orchards. It is also considered as a no-
torious insect, and is often killed by farmers
whenever and wherever spotted.
16. Cerambyx nodulosus Germar, 1817
Examined material. Latakia Province. Latakia
Area: Al-Bahlouliyah, 224.0 m, 35°57'20.7"E,
35°38'0.6"N, 25.IX.2014 (1 male)/Al-Shilfatiyah,
45.0 m, 35°53'57.6"E, 35°32'21.5 ,, N, 20.X.2012
(1 male, 2 females)/Al-Tarquia, 81.0 m,
35°57'12.55"E, 35°39'51.55"N, 31.VII.2013 (1
male, 2 females)/Bisnada, 21.0 m, 35°48'14.97"E,
35°32'52.65"N, 29.XI.2014 (1 male)/Kirsana, 63.0
m, 35°49'38.4"E, 35°37'4.34"N, 16.IX.2014 (2
males); 2.X.2014 (1 male). Jableh Area: Bustan Al-
Basha, 33.0 m, 35°56’3.35”E, 35°25'26.46"N,
8. IX. 20 14 (1 male); 15. IX. 20 14 (1 male)/Dwaer
Baabda, 606.0 m, 36°2'41.58"E, 35°14'54.99"N,
7. XI. 2014 (1 male)/Jableh, 20.0 m, 35°8'43.4"E,
35°15'55.2"N, 26.X.2011 (1 male)/Qutaolabyah,
215.0 m, 36°1'8.98"E, 35°17T3.14"N, 30.X.2012
(2 males, 1 female); 7.X.2014 (2 males). Qardahah
Area: Deir Hanna, 221.0 m, 36°2'2.82"E,
35°25'47.94"N, 22.X.2012 (2 males). Haffa Area:
Al-Haffah, 272.0 m, 36°1'59.38"E, 35°35'41.57"N,
15. IX. 2014 (2 males).
Tartus Province. Tartus Area: Yahmour, 65.0
m, 35°57'44.44"E, 34 0 48'57.66''N, 6.VI.2012 (2
males). Baniyas Area: Annaza, 553.0 m,
36°3'58.56"E, 35°11'47.31"N, 3.V.2013 (1 male)/
Kherbet Al-Sansel, 242.0 m, 35°58'20.48"E,
35°10'2.15"N, 7.V.2013 (2 males); 16.IX.2014 (2
males). Safita Area: Safita, 310.0 m, 36°7'5.14"E,
34°49'1.75"N, 16.VI.2012 (2 males, 1 female);
25.VII.20 13 (2 males). Shayk-Badr Area: Ash
Shayk Badr, 491.0 m, 36°4'52.70"E,
34°59'25.23"N, 23.XI.2014 (1 male).
Chorotype. East-Mediterranean.
Bionomics. Polyphagous on deciduous trees:
Prunus, Pyrus, Malus, Crataegus, Acer, life cycle
usually takes 3-4 years; adults are usually en-
countered between May-July.
Remarks. Usually associated with Cerambyx
dux, but much less spread, and less frequently
ecountered. Specimens were collected from stone
fruit orchards {Primus sp.) usually by hand, very
few were attracted to wine traps.
17. Cerambyx welensii Kuster, 1845
Examined material. Latakia Province. Latakia
Area: Latakia, 20.0 m, 35°46'5L7"E, 35°31'47.1"N,
648
Khaldoun Ali et alii
12. X.2011 (1 male)/Qismin, 191.0 m, 35°54T8.6"E,
35°38'1.2"N, 6.X.2013 (1 female). Jableh Area:
Siano, 78.0 m, 35°59'39.73"E, 35°22T2.64"N, 23.
VIII. 2014 (1 female). Qardahah Area: Al-Qardahah,
310.0 m, 36°3'36.19"E, 35°27'28.76"N, 3.X.2012 (2
females); 23.IX.2013 (1 male); 13.IX.2014 (1 fe-
male). HaffaArea: Mzeraah, 515.0m, 36° 4'19.18"E,
35°31'59.55"N, 13.XI.2014 (1 male).
Tartus Province. Tartus Area: Tartus: 14.0 m,
35°52'59.51"E, 34°53'1.01"N, 23.X.2013 (2 males)/
Yahmour, 65.0 m, 35°57'44.44"E, 34°48'57.66"N,
16.V.2014 (1 male). Baniyas Area: Al-Qadmus,
919.0 m, 36°9'40.13"E, 35°6'6.53"N, 17.VIII.2012 (1
female); 16.IX.20 14 (2 males); 30.XI.20 14 (2 males).
SafitaArea: Safita, 310.0m, 36° 7'5.14'E, 34°49T.75"N,
16.IX.2014 (1 female); 8.X.2014 (1 male).
Chorotype. S-European (Ozdikmenand & Tur-
gut, 2009b).
Bionomics. Polyphagous on deciduous trees
(e.g. Quercus, Platanus, Ceratonia ), but mostly on
Quercus ilex , Q. ithaburensis, and Q. calliprinos;
life cycle usually takes three years at least; adults
are usually encountered between June-July.
Remarks. Frequently encountered in SCR. The
subspecies C. welensii centurio Czwalina, 1891 is
recorded in the countries of the Middle East (in-
cluding Syria), but it is rather a doubtful subspecies,
since it is little different from European subspecies;
accordingly, we prefer not indicate the subspecies
before a study on the whole genus Cerambyx from
the East Mediterranean.
Tribe Certallini Fairmaire, 1864
Genus Certallum Dejean, 1821
Type species: Saperda ruficollis Fabricius, 1781
(= Cerambyx ebulinus Linnaeus, 1767)
18. Certallum ebulinum Linnaeus, 1767
Examined material. Latakia Province. Jableh
Area: Siano, 78.0 m, 35°59'39.73"E, 35°22T2.64"N,
13. VIII.2013 (1 male).
Tartus Province. Shayk-Badr Area: Al-Msh-
erfeh, 270.0 m, 35°59'57.49"E, 35°9'40.74"N,
16.IX.2012 (1 female).
Chorotype. Turano-European-Mediterranean
(Ozdikmen, 2008).
Bionomics. Polyphagous on herbaceous plants
(e.g. Brassicaceae), and also recorded on Raphanus,
Raphanistrum, Raphanistrum arvense (All.) Merat;
life cycle takes usually two years; adults are usually
encountered between March-July.
Remarks. It is rather a rare species in SCR; spe-
cimens were collected by hand from flowers of
Astreraceae plants.
Tribe Clytini Mulsant, 1839
Genus Chlorophorus Chevrolat, 1863
Type species: Callidium annulare Fabricius, 1787
19. Chlorophorus varius damascenus Chevrolat, 1854
Examined material. Latakia Province. Latakia
Area: Kirsana, 63.0 m, 35°49'38.4''E, 35°37'4.34"N,
6.X.2013 (1 male, 1 female).
Chorotype. Palearctic (Ozdikmen & Tugrut,
2009e).
Bionomics. Polyphagous on deciduous trees
(e.g. Vitis,Acer, Quercus, Populus, Malus, Cratae-
gus, Junglans, Robinia, Elaeagnus, Ficus, Ses-
bania, Prunus, Pyrus, Morus, Castanea, Ulmus,
Alnus, Fraxinus, Pistacia, Paliurus, Spartium, Cer-
cis siliquastrum L., Pistacia atlantica Desf.); life
cycle usually takes 2-3 years; adults are usually en-
countered between June-September.
Remarks. It is a rare species in SCR. The spe-
cimen was collected by hand from the flowers of an
Apiaceae plant.
20. Chlorophorus sartor O.F. Muller, 1766
Examined material. Tartus Province. Baniyas
Area: Kirkafti, 77.0 m, 35°56'55.35"E, 35°4'32.53"N,
14. XI. 2014 (1 male).
Chorotype. Turano-European (Ozdikmen &
Turgut, 2009e).
Bionomics. Polyphagous on deciduous trees
(e.g. Paliurus, Quercus, Ulmus, Crataegus, Elae-
agnus, Castanea, Robinia, Ficus, Cytisus, Pistacia,
Ceratonia, Salix, Fagus, Ostrya, Gleditsia ); life
cycle usually takes two years; adults are usually en-
countered between May-August.
Remarks. Rare species in SCR, the specimen
was collected from the flowers of an Asteraceae plant.
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 649
Genus Clytus Laicharting, 1784
Type species: Leptura arietis Linnaeus, 1758
21. Clytus rhamni Germar, 1817
Clytus innormalis Pic, 1927
Clytus paliuri Depoli, 1940
Examined material. Tartus Province. Baniyas
Area: Dahr Safra, 226.0 m, 35°55T7.81"E,
35°4'42.10"N, 10.XI.2014 (1 male).
Chorotype. European (Ozdikmen & Turgut,
2009f).
Bionomics. Polyphagous on deciduous trees;
life cycle usually takes two years; adults are usually
encountered between May-August.
Remarks. It is a quite rare species in SCR.The
pattern of its distribution suggests European-
Anatolian/Mediterranean chorotype. The specimen
was collected by the hand from the flowers of an
Asteraceae plant.
Genus Plagionotus Mulsant, 1 842
Type species: Leptura detrita Linnaeus, 1758
22. Plagionotus bobelayei Brulle, 1832
Examined material. Latakia Province. Latakia
Area: Al-Bahlouliyah, 224.0 m, 35°57'20.7"E,
35°38'0.6"N, 224.0 m, 35°57'20.7"E, 35°38'0.6"N,
13.XI.2014 (1 male)/Bisnada, 21.0 m, 35°48T4.97"E,
35°32'52.65"N, 7.VI.2013 (2 males); 8.VIII.2013 (1
male, 1 female). Jableh Area: Qutaolabyah, 215.0 m,
36°1'8.98"E, 35°17T3.14"N, 20. XI. 2012 (2 males, 1
female)/Siano, 78.0 m, 35°59'39.73”E, 35°22T2.64 H N,
28.IV.2014 (1 male).
Tartus Province. Baniyas Area: Baniyas, 3.0 m,
35°56'24.85"E, 35°10'56.97"N, 3.0 m, 35°56'24.85"E,
35°10'56.97"N, 13.V.2014(1 male, 1 female)/Mourid,
120.0 m, 35°56'19.04"E, 35°6T9.51"N, 7.IV.2014 (1
female).
Chorotype. Turano-European/Turano-Sarmato-
Pannonian (Ozdikmen & Turgut, 2009d).
Bionomics. Ecologically associated with Mal-
vaceae (e.g. Alcea , Malva), larvae usually feed on
roots; life cycle usually takes one year; adults are
usually encountered between May-July.
Remarks. It is usually encountered, especially
during spring (e.g. April and May). Specimens were
collected by hand from the flowers of some Aster-
aceae plants, or by sweeping some Malvaceae
plants.
Genus Xylotrechus Chevrolat, 1860
Type species: Clytus sartorii Chevrolat, 1860
23. Xylotrechus ( s . str.) stebbingi Gahan, 1906
Examined material. Tartus Province. Baniyas
Area: Kirkafti, 77.0 m, 35°56'55.35"E, 35°4'32.53"N,
3.X.2014 (1 male).
Chorotype. Mediterraneo-Sindian+Oriental
(Ozdikmen & Tezcan, 2011).
Bionomics. Polyphagous on deciduous trees
(e.g. Alnus, Celtis australis , Ceratonia siliqua.
Ficus , F. carica, Juglans, Koelreuteria paniculata
Laxm., Morus alba , Populus , Ulmus ); life cycle
usually takes two years; adults are usually en-
countered between May-November.
Remarks. This is the first record of this species
in Syria. It is rather a rare species in SCR; the spe-
cimen emerged from a dead branch of a walnut tree
{Juglans sp.).
Tribe Hesperophanini Mulsant, 1839
Genus llesperophanes Dejean, 1835
Type species: Callidium sericeum Fabricius, 1787
24 . Hesperophanes sericeus Fabricius, 1787
Examined material. Latakia Province. Latakia
Area: Wadi Qandil, 48.0 m, 35°50'28.9"E,
35°43'20.7"N, 29.X.2011 (1 male). Jableh Area: Bit-
shah, 920.0 m, 36°5'59.67"E, 35°14'48.47"N, 27. IX.
2012 (2 males); 25.X.2013 (1 female). Haffa Area:
Al-Haffah, 272.0 m, 36°1 , 59.38 ,, E, 35°35'41.57"N,
25. XI.2011 (1 male, 1 female); 15.XI.2012 (2 males)/
Mzer3ah, 515.0 m, 36°4T9.18"E, 35°31'59.55"N,
16.X.2011 (4 males); 27.X.2011 (2 males).
Tartus Province. Shayk-Badr Area: Al-Msherfeh,
270.0 m, 35°59'57.49"E, 35°9'40.74"N, 27.X.2011
(1 male, 1 female).
Chorotype. Mediterranean (Ozdikmen, 2008).
Bionomics. Polyphagous on deciduous trees
(e.g. Junglans, Ficus, Pistacia, Vitis, Olea,
Platanus, Quercus, Halocnemum ); life cycle
usually takes 2-3 years; adults are usually en-
countered between June-September.
650
Khaldoun Ali et alii
Remarks. This is the first record of this species
in Syria; it is distributed in almost all SCR. It is
ususally encountered at night (nocturnal). Speci-
mens were collected by hand from branches of
deciduous trees usually at dusk, and some samples
were attracted to ligh traps situated near forest sites.
Genus Stromatium Audinet-Serville, 1834
Type species: Callidium barbatum Fabricius, 1775
25. Stromatium unicolor Olivier, 1795
Examined material. Latakia Province. Latakia
Area: Al-Bahlouliyah, 224.0 m, 35°57'20.7"E,
35°38'0.6"N, 27.XI.2013 (2 males); 12.X.2014 (2
males)/Al-Karkit, 135.0 m, 35°58'48.62"E,
35°37'20.13"N, 13.VII.2013 (2 males, 3 females)/
Bisnada, 21.0 m, 35°48T4.97"E, 35°32'52.65"N,
3. VIII. 20 12 (1 male); 28.VII.2013 (2 males);
19.IX.2013 (1 male); 14.X.2014 (2 males)/Latakia,
20.0 m, 35°46'51.7"E, 35°31'47.1"N, 3.X.2014
(1 male)/Kamlieh, 242.0 m, 35°54'6.06"E,
35°40'5.31"N, 15.VII.2013 (1 male, 1 female)/Ras
Al-Basit, 21.0 m, 35°50'21.33"E, 35°50'47.86"N,
3.IV.2013 (2 males)/ Sett Markho, 134.0 m,
35°51'9.29"E, 35°35'8.83"N, 20.X.2011 (2 male). Ja-
bleh Area: Ain Shkak, 61.0 m, 35°58'54.93"E,
35°23'2.60"N, 2.XI.2013 (1 male, 1 female)/Al-
Baraem, 358.0 m, 36 o l'26.30"E, 35°16T9.27"N,
21.VIII.2010 (2 females)/ Al-Hwaiz, 107.0 m, 36°
0'27.93"E, 35°20'20.17"N, 24.X.2013 (2 males)/Be-
saysin, 29.0 m, 35°57T2.27"E, 35°20'53.43"N,
10.IX.2012 (3 males); 16.IX.2013 (2 males)/Beit Ya-
shut, 1145.0 m, 36°11'42.93"E, 35°16'41.29"N,
5 .XI. 2014 (1 male)/Jableh, 20.0 m, 35°8'43.4"E,
35°15'55.2"N, 20.XI.2013 (1 male)/Ras Al-Ain,
133.0 m, 36°0'38.71"E, 35°19'26.72"N, 6.X.2013 (1
male)/Wadi Al-Kalem, 35.0 m, 35°58'6.69"E,
35°15'3.17"N, 10.X.2012 (2 males). Qardahah
Area: Al-Qardahah, 310.0 m, 36°3'36.19"E,
35°27'28.76"N, 29.XI.2011 (2 females). Haffa Area:
Al-Haffah, 272.0 m, 36°1'59.38"E, 35°35'41.57 H N,
15.IX.2011 (1 male); 14.IV.20 14 (2 males)/Mzeraah,
515.0 m, 36°4T9.18"E, 35°31'59.55"N, 30.V.2013
(1 male); 7.XI.2014 (1 male, 1 female)/ Sima: 710.0
m, 36°6'24.03"E, 35°36'59.04"N, 12.VIII.2011 (1
male, 1 female); 17.VIII.2011 (1 male)/Slunfeh,
1056.0 m, 36°10'44.28"E, 35°36'0.81"N, 18.V.2011
(2 males).
Tartus Province. Tartus Area: Tartus, 14.0 m,
35°52'59.51"E, 34°53T.01"N, 13.VII.2012 (1 male);
13.IX.2013 (2 males, 2 females). Baniyas Area:
Al-Klouh, 8.0 m, 35°57'3.08"E, 35°15'2.05"N,
18.VI.20 13 (2 males)/Al-Mawsheh, 254.0 m,
35°58'40.36"E, 35° 3'51.05"N, 15.VIII.2011 (2 males)/
Baniyas, 3.0 m, 35°56'24.85"E, 35°10'56.97"N,
15.VIII.2013 (2 males, 2 females)/Isqublh, 690.0 m,
36° 3'39.70"E, 35°9'54.14"N, 20.XI.2013 (1 fe-
male)/Kherbet Al-Sansel, 242.0 m, 35°58'20.48"E,
35°10'2.15"N, 7.IV.2013 (3 males, 1 female)AVadi Al-
Saki: 519.0 m, 36° 5'26.53"E, 35° 6'2.64"N, 3.XI.2014
(1 male, 1 female); 3.X.2014 (1 female). Shayk-Badr
Area: Ash Shayk Badr, 491.0 m, 36°4'52.70"E,
34°59'25.23"N, 19.IX.2014 (1 male). Draykish Area:
Himmin, 365.0 m, 36°2'35.84"E, 34°54T1.12"N,
10.VIII.2013 (1 female).
Chorotype. Subcosmopolitan/Nearctic+Neo-
tropic+Mediterranean+Centralasiatic (Ozdikmen,
2008b).
Bionomics. Polyphagous on deciduous trees
(e.g. Quercus, Celtis, Ulmus , Cytisus, Pistacia,
Junglans , Fagus, Morus, Cassia, Ficus, Corylus,
Platanus, Tarix, Robinia, Primus, Tilia, Carpinus,
Castanea, Salix, Alnus, Citrus, Eucalyptus, Pinus,
Cupressus ); life cycle usually takes 2-4 years;
adults are usually encountered between May-
August.
Remarks. Widely spread across SCR, and very
frequenty encountered. Some specimens were col-
lected by hand from trunks or branches of decidu-
ous trees, other specimens were attracted to light.
Genus Trichoferus Wollaston, 1 854
Type species: Trichoferus senex Wollaston, 1854
26. Trichoferus griseus Fabricius, 1793
Examined material. Latakia Province. Latakia
Area: Al-Sheer, 38.0m, 35°51T6.8"E, 35°31'38.3"N,
13.IX.2014 (2 females)/Al-Sanobar, 32.0 m,
35°53'7.05"E, 35°28'45.82"N, 14.X.2012 (2 males);
6.X.2104 (2 males)/Tisheen University Campus,
31.0 m, 35°48'25.7"E, 35°31'29.0"N, 3.V.2013
(2 males). Qardahah Area: Al-Qarer, 15.0 m,
35°54'46.29"E, 35° 8'8.52"N, 9.IX.2103 (2 males)/
Siano, 78.0 m, 35°59'39.73"E, 35°22T2.64"N,
12.XI.2010 (2 females); 7.IX.2013 (2 males, 2 fe-
males). Haffa Area: Sharifa, 300.0 m, 36°0'45.11"E,
35°37'28.03"N, 11.X.2014 (2 males).
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 651
Chorotype. Mediterranean (Ozdikmen, 2008a).
Bionomics. Usually monophagous on Ficus ca-
rica\ life cycle usually takes one year; adults are
usually encountered between June-August.
Remarks. Widly spread in SCR; samples were
collected by hand from Ficus carica L. trees, or by
intercepting traps situated in some orchards contai-
ning Ficus sp. trees.
Tribe Hylotrupini Zagajlcevitch, 1991
Genus Hylotrupes Audinet-Serville, 1834
Type species: Cerambyx bajulus Linnaeus, 1758
27 . Hylotrupes bajulus Linnaeus, 1758
Examined material. Latakia Province. Latakia
Area: Serskieh, 55.0m, 35°55T0.40"E, 35°42T9.84"N,
17.VII.014 (2 males, 1 female).
Tartus Province. Baniyas Area: Kherbet Al-
Sansel, 242.0 m, 35°58'20.48"E, 35°10'2.15"N,
7.V.2014 (1 male).
Chorotype. Subcosmopolitan (Ozdikmen, 2008b).
Bionomics. Larvae usually feed on dead wood
of Pinus, Picea , Abies', life cycle usually take 2-9
years; adults are usually encountered between
June-S eptember.
Remarks. Not frequently encountered in SCR,
the first species was collected from a wall near a
light bulb during the night; the other specimen
emerged from a dying Vitis sp. vine.
Tribe Molorchini Gistel, 1848
Genus Molorchus Fabricius, 1793
Type species: Necydalis umbellatarum Schreber,
1759
Subgenus Caenoptera C.G. Thomson, 1859
Type species: Necydalis minor Linnaeus, 1758
28. Molorchus ( Caenoptera ) juglandis Sama, 1982
Examined material. Latakia Province. Latakia
Area: Mashqita, 88.0 m, 35 o 53'51.0"E, 35°39'34.1"N,
16. VI. 2013(1 male).
Chorotype. E-Mediterranean (Palestino-Tau-
rian) or SW- Asiatic (Ozdikmen, 2014a).
Bionomics. Monophagous on walnut trees
( Juglans regia L.); life cycle usually takes 1-2 years;
adults are usually ecountered between May-June.
Remarks. This is the first record of this species
in Syria. The specimen was collected by the hand
from the flowers of an Apiaceae plant.
Tribe Phoracanthini Newman, 1 840
Genus Phoracantha Newman, 1 840
Type species: Stenocorus semipunctatus Fabricius,
1775
29. Phoracantha recurva Newman, 1840
Examined material. Latakia Province. Latakia
Area: Al-Bahlouliyah, 224.0 m, 35°57'20.7"E,
35°38'0.6"N, 3.VIII.2014 (2 males)/Al-Bassa, 27.5
m, 35°50'51.9"E, 35°29'59.2"N, 3.V.2013 (1 male,
2 female)/Demsarkho, 17.0 m, 35°46'36.8"E,
35°33T2.6"N, 16.IV.2013 (1 male)/ Fattiro, 111.0
m, 35°51T1.3"E, 35°37'21.7 ,, N, 21.X.2013 (3
males)/Kirsana, 63.0 m, 35°49'38.4"E, 35°37'4.34"N,
21. XI. 2011 (2 males)/Tisheen University Campus:
31.0 m, 35°48'25.7"E, 35°31'29.0"N, 21.XI.2011
(2 males). Jableh Area: Jableh, 20.0 m, 35°8'43.4"E,
35°15'55.2"N, 11.X.2012 (2 females)/Sakhabe,
148.0 m, 36° 1'54.53"E, 35°19'5.58"N, 13.IX.2013
(2 males). Haffa Area: As-Samia, 197.0 m,
35°59'20.56"E, 35°33'16.80"N, 16.VII.2011 (2
males); 12.XI.20 12 (2 males)/Mzeraah, 515.0 m,
36°4T9.18"E, 35°31'59.55"N, 13.XI.2014 (3 males).
Tartus Province. Tartus Area: Al-Sawda, 314.0
m, 35°56'37.80"E, 34°58'55.93"N, 1.X.2011 (2
males, 1 female)/Tartus, 14.0 m, 35°52'59.51"E,
34°53T.01"N, 25. X. 2012 (2 males). Baniyas Area:
Baniyas, 3.0 m, 35°56'24.85"E, 35°10'56.97"N, 16.
VI. 2012 (1 male). Safita Area: Safita, 310.0 m, 36°
7'5.14"E, 34°49'L75"N, 16. V. 2013 (2 males).
Chorotype. Cosmopolitan (Ozdikmen, 2011).
Bionomics. Monophagous on Eucalyptus spp.;
life cycle usually takes one year; adults usually en-
countered between April-October.
Remarks. This is the first record of this species
from Syria. It frequently encounterd in SCR, espe-
cially on or near Eucalyptus sp. stands, specimens
were collected by hand from the trunks of some de-
ciduous trees; some specimens were collected from
light traps.
652
Khaldoun Ali et alii
30 . Phoracantha semipunctata Fabricius, 1775
Examined material. Latakia Province. Latakia
Area: Bisnada, 21.0 m, 35°48T4.97"E, 35°32'52.65"N,
13.IX.2012 (1 male).
Chorotype. Cosmopolitan (Ozdikmen, 2011).
Bionomics. Monophagous on Eucalyptus spp.;
life cycle usually takes one year; adults are usually
encountered between April-October.
Remarks. It is a very rare species in SCR; as a
result, it is usually, erroneously, identified as Phor-
acantha recurva. The specimen was collected by
hand from the wall of a house near a light source.
Tribe Purpuricenini J. Thomson, 1861
Genus Purpuricenus Dejean, 1821
Type species: Cerambyx kaehleri Linnaeus, 1758
31. Purpuricenus budensis Gotz, 1783
Examined material. Latakia Province. Latakia
Area: Al-Bahlouliyah, 224.0 m, 35°57'20.7"E,
35°38'0.6"N, 5.X. 2104 (2 females); 8.X.2014 (2
males); 25. X. 20 14 (3 males)/Kamlieh, 242.0 m,
35°54'6.06"E, 35°40'5.31"N, 15. VIII. 2011 (2
males); 16.IX.20 12 (2 males)/Qismin, 191.0 m,
35°54T8.6"E, 35°38T.2"N, 25.XI.2014 (2 males,
1 female)/Latakia, 20.0 m, 35°46'51.7"E,
35°31'47.1"N, 6.XI.2014(2males, 1 female)/Tisheen
University Campus, 31.0 m, 35°48'25.7"E,
35°31'29.0"N, 25.XI.2014 (1 male, 2 female).
Tartus Province. Baniyas Area: Faresh Ka3bieh,
301.0 m, 36° 1T8.71"E, 35°11'20.04' , N, 25.X.2014
(3 males)/Kirkafti, 77.0 m, 35°56'55.35"E, 35°
4'32.53"N, 2.X. 2014 (3 males)/Srijis, 585.0 m,
36°10'59.04"E, 34°55'55.51"N, 6.X.2014 (3 fe-
males); 22.X.2014 (2 male). Safita Area: Safita,
310.0 m, 36° 7'5.14"E, 34°49T.75"N, 28.XI.2014
(2 females).
Chorotype . Turano -Europ e an-Mediterranean
(Ozdikmen, 2011).
Bionomics. Polyphagous on deciduous trees
(e.g. Prunus , Quercus, Salix, Pistacia, Ulrnus ); life
cycle usually takes 2-3 years; adults are usually en-
countered between May-August.
Remarks. Widely spread in SCR. Specimens
were collected by hand from trunks and branches
of deciduous trees, especially oak ( Quercus spp.)
trees.
32. Purpuricenus dalmatinus Sturm, 1843
Examined material. Latakia Province. Latakia
Area: Kamlieh, 242.0 m, 35°54'6.06"E, 35°40'5.31"N,
16.X.2014 (2 males).
Tartus Province. Tartus Area: Beit Alian, 56.0
m, 35°56T7.91"E, 34°51T3.93"N, 4.X.2014
(1 female). Baniyas Area: Srijis, 585.0 m,
36°10'59.04"E, 34°55'55.51"N, 5. VI. 2013 (1 male).
Chorotype. E-Mediterranean (Ozdikmen, 2011).
Bionomics. Monophagous on oak trees (e.g.
Quercus coccifera L., Q. conferta Kit.; life cycle
usually takes 2-3 years; adults are usually en-
counterd between May-July.
Remarks. Relatively rare in SCR. Specimens
were collected by hand from oak ( Quercus spp.)
forests.
Tribe Stenopterini Gistel, 1848
Genus Lampropterus Mulsant, 1862
Type species: Necydalis femoratus Germar, 1824
33. Lampropterus femoratus Germar, 1824
Examined material. Tartus Province. Baniyas
Area: Beit Al-Marj, 516.0 m, 36° 4'58.55"E, 35°
6'34.81"N, 18.VI.2014 (1 male, 1 female).
Chorotype. E-Mediterranean or S-E European
(Ozdikmen, 2014)
Bionomics. Polyphagous on deciduous trees,
e.g. Quercus , Q. ithaburensis , Q. calliprinos Webb.,
Delonyx regia (Bojer ex Hook.) Raf., Acer, Ulrnus;
life cycle usually takes 1-2 years; adults are usually
encountered between May-July.
Remarks. This is the first record of this species
from both Syria, and Asia. It is an extremely rare
species in SCR, larvae and adults were obtained
from a live Prunus sp. tree.
Genus Stenopterus Illiger, 1804
Type species: Necydalis rufa Linnaeus, 1767
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 653
34. Stenopterus flavicornis Kiister, 1846
Examined material. Tartus Province. Baniyas
Area: Al-Marana, 578.0 m, 36° 5T4.71"E,
35°12'50.69"N, 7.VIII.2012 (1 male).
Chorotype. E-European (Ozdikmen, 2011).
Bionomics. Polyphagous on deciduous trees
(e.g. Ceratonia siliqua, Cercis siliquastrum, Citrus
cinensis L., Cotoneaster franchetii Bois, Pistacia
atlantica , Quercus ithaburensis, Quercus callipri-
nos; life cycle usually takes two years; adults are
usually encountered between May-August.
Remarks. Rare species in SCR; the specimen
was collected by hand from the flowers of an Api-
aceae plant.
35. Stenopterus rufus syriacus Pic, 1892
Examined material. Tartus Province. Shayk-
Badr Area: Al-Msherfeh, 270.0 m, 35°59'57.49"E,
35° 9'40.74"N, 15.VIII.2012 (1 male, 1 female).
Chorotype. E-Mediterranean/Palestino-Taurian
(Ozdikmen, 2011).
Bionomics. Polyphagous on deciduous trees
(e.g. Quercus , Castanea , Robinia, Junglans, Prunus,
Salix, Paliurus, Pistacia, Ulmus, Ficus, Ostrya);
life cycle usually takes two years; adults are usually
encountered between May-August.
Remarks. Relatively a rare species in SCR; spe-
cimens were collected by hand from the flowers of
an Asteraceae plant.
Subfamily Lamiinae Latreille, 1825
Tribe Acanthocinini Blanchard, 1 845
Genus Acanthocinus Dejean, 1821
Type species: Cerambyx acdzVA Linnaeus, 1758
36. Acanthocinus griseus Fabricius, 1793
Examined material. Latakia Province. Qardahah
Area: Al-Qardahah, 310.0 m, 36°3'36.19"E,
35°27'28.76"N, 16.IX.2013 (1 male, 1 female)/ Deir
Hanna, 221.0 m, 36° 2'2.82"E, 35°25'47.94"N, 17.
X. 2014 (1 female).
Chorotype. Sibero-European (Ozdikmen, 2011).
Bionomics. Oligophagous mainly on coniferous
trees (e.g. Pinus, Picea, Abies)', life cycle usually
takes 1-2 years; adults are usually encountered
between April- August.
Remarks. This is the first record of this species
in both Syria and the Middle East.
It is a rather rare species in SCR; the specimen was
collected on the trunk of a pine tree Pinus sp.
Genus Leiopus Audinet-Serville, 1835
Type species: Cerambyx nebulosus Linnaeus, 1758
37. Leiopus (s.str.) syriacus Ganglbauer, 1884
Leiopus major Pic, 1898
Examined material. Latakia Province. Latakia
Area: Salib al-Turkmen: 52.0 m, 35°48'49.98"E,
35°41T4.76"N, 16.IV.2014 (1 male).
Chorotype. The chorotype is East-Mediter-
ranean/Palaestino-Taurian (Ozdikmen, 2008b).
Bionomics. Oligophagous deciduous trees; life
cycle usually takes 2 years; adults are usually en-
countered between April-June.
Remarks. It is a rather rare species in SCR; the
specimen was collected on the trunk of an oak tree
Quercus sp.
Tribe Agapanthiini Mulsant, 1839
Genus Agapanthia Audinet-Serville, 1835
Type species: Cerambyx cardui Linnaeus, 1767
38 .Agapanthia (s. str.) lais Reiche et Saulcy, 1858
Examined material. Latakia Province. Jableh
Area: Bustan Al-Basha, 33.0 m, 35°56'3.35"E,
35°25'26.46"N, 5.V.2013 (2 males, 1 female).
Tartus Province. Tartus Area: Doir Sheik Saad,
104.0 m, 35°55'0.23"E, 34°55'2.54"N, 18.IX.2014
(2 males).
Chorotype. E-Mediterranean/Palaestino-Taurian
(Ozdikmen, 2013).
Bionomics. Oliphagous on various Asteraceae
plants, it is also recorded on Onopordon macroceph-
alum Eig in Syria; life cycle usually takes one year;
adults are usually encountered between May-June.
Remarks. Frequently encountered in SCR. Spe-
cimens were encountered on Apiaceae and Aster-
aceae plants.
654
Khaldoun Ali et alii
39 . Agapanthia (5. str.) suturalis Fabricius, 1787
Examined material. Latakia Province. JablehArea:
Besaysin, 29.0 m, 35°57T2.27"E, 35°20'53.43"N,
20.IV.2012 (2 males)/Kirfis, 210.0 m, 35°59'17.31"E,
35°16'5.79"N, 13.V.2012 (1 male).
Chorotype. Mediterranean (Ozdikmen, 2013).
Bionomics. Polyphagous on herbaceous plants:
Valeriana officinalis L., Salvia pratensis L., Knautia
arevensis (L.) Coulter, Jasonia montana L., Cirsium ,
Carduus , Melilotus , etc.; life cycle usually takes one
year; adultus are usually encountered between
March-July.
Remarks. Relatively rare in SCR. Specimens
were collected on Lamiaceae plants. This species
was previously regarded as a form of Agapanthia
cardni (Linnaeus, 1757), but has recently been con-
sidered a distinct species (Sama et al., 2010).
Subgenus Epoptes Gistel, 1857
Type species: Lamia asphodeli Latreille, 1804
40. Agapanthia ( Epoptes ) coeruleipennis Frivald-
szky, 1878
Examined material. Latakia Province. Jableh
Area: Dairon, 381.0 m, 36° 8T9.82"E, 34°59'2.40"N,
16.VII.2014 (2 males).
Chorotype. SW- Asiatic (Ozdikmen, 2013).
Bionomics. Monophagous on Gundelia tourne-
fortii L. (Asteraceae); life cycle usually takes one
year; adults are usually encounterd between May-
June.
Remarks. Very rare in SCR, the specimen was
encountered on the host plant.
Al. Agapanthia {Epoptes) pustulif era Pic, 1905
Examined material. Latakia Province. Latakia Area:
Janatah, 108.0 m, 35°49'49.4"E, 35°35'01.9"N,
16.VII.2011 (1 male)/Kirsana, 63.0 m, 35°49'38.4"E,
35°37'4.34"N, 7.X.2013 (1 male, 1 female).
Jableh Area: Besaysin, 29.0 m, 35°57'12.27"E,
35°20'53.43"N, 20.IV.2012 (1 male); 7.VI.2012
(1 female). QardahahArea: Deir Hanna, 221.0 m, 36°
2'2.82"E, 35°25'47.94"N, 10.X.2012 (1 male).
Chorotype. Unkown. Distribution: Asia (Jordan,
Lebanon, Palestine, and Syria).
Bionomics. Developes in stems and stalks of
herbaceous plants: e.g. Asphodelus sp., Carduus ,
Carthamus, Eremostachys laciniata (L.) Bunge,
Centaurea iberica Trevir. et Spreng.; life cycle
usually takes one year; adults are usually en-
countered between May-June.
Remarks. Realtively widespread in SCR. Spe-
cimens were collected on herbaceous plants.
Genus Calamobius Guerin-Meneville, 1 847
Type species: Saperda gracilis Creutzer, 1799
(= Saperda filum Rossi, 1790)
42. Calamobius filum Rossi, 1790
Examined material. Latakia Province. Jableh
Area: Bustan Al-Basha, 33.0 m, 35°56'3.35"E,
35°25'26.46"N, 5.V.2013 (2 males, 1 female).
Chorotype. Turano-European-Mediterranean
(Ozdikmen et al., 2010).
Bionomics. Oligophagous on various Poaceae:
Hedysarum, Hordeum , Triticum, Arrhenaterum,
Calamogrotis, Dactylis; life cycle usually takes one
year; adults are usually encountered between April-
July.
Remarks. Not quite frequently encountered in
SCR; specimens were collected by hand from
Graminceae plants.
Tribe Batocerini J. Thomson, 1864
Genus Batocera Dejean, 1835
Type species: Cerambyx rubus Linnaeus, 1758
43. Batocera rufomaculata DeGeer, 1775
Examined material. Latakia Province. Latakia
Area: Ain Al-Beida, 6.0 m, 35°53'34.2"E,
35°39'28.7"N, 11.IX.2012 (2 males)/Al-Bahlouliyah,
224.0 m, 35°57'20.7"E, 35°38'0.6"N, 28.X.2012
(1 male); 9.XI.2012 (2 males, 1 female); 15. VI. 2013
(2 males); 4.IX.2014 (2 males)/Al-Hannadi, 73.5 m,
35°52'53.5"E, 35°30T0.5"N, 6.VIII.2012 (1 male);
3.IX.2013 (2 males, 1 female)/Dibba, 32.0 m,
35°54'36.18"E, 35°32T8.46"N, 8.VIII.2013 (1 male,
1 female); 15.VIII.2014 (2 female)/Fakhoura,
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 655
183.0 m, 35°58'17.46"E, 35°29'7.54"N, 29.X.2014
(3 males)/Bouka, 62.0 m, 35°48'32.26"E,
35°32'17.80 H N, 9.X.2012 (2 female); 13.IX.2014
(1 female)/Bisnada, 21.0 m, 35°48'14.97"E,
35°32'52.65"N, 1.VII.2013 (3 males); 7.X.2013
(1 male); 16.VIII.2014 (2 males); 29.IX.2014
(2 males)/Bdamioun, 66.0 m, 35°54'38.57"E,
35°35'33.84"N, 15.X.2012 (1 male); 18.IX.2014 (1
male)/Baksa, 89.0 m, 35°49'18.33"E, 35°34'15.2"N,
16.X.2012 (1 male)/Al-Tarquia, 81.0 m,
35°57'12.55"E, 35°39'51.55"N, 10.X.2014 (3 males);
3.VII.2014 (1 male, 1 female)/Al-Sanobar, 32.0 m,
35°53'7.05"E, 35°28'45.82"N, 18.X.2013 (3 males);
21.XI.2013 (2 males, 1 female)/ Al-Shabatliyah, 178.0
m, 35°49'38.8"E, 35°41 , 10.3 ,, N, 16.X.2012 (1 male);
7.X.2013 (1 male, 1 female)/Al-Shilfatiyah,
45.0 m, 35°53'57.6"E, 35°32'21.5"N, 26.IX.2013
(1 male, 4 female)/Al-Sheer, 38.0 m, 35°51'16.8"E,
35°31'38.3"N, 13.X.2013 (1 male, 2 females)/
Al-Qanjara, 72.45 m, 35°52'25.1"E, 35°30'43.4 H N,
25.V.2013 (2 males)/Al-Mrouj , 5.0 m, 35°45'35.6"E,
35°34'41.1"N, 21.X.2011 (1 female); 7.IX.2013
(3 males)/Demsarkho: 17.0 m, 35°46'36.8"E,
35°33'12.6"N, 28.VI.2011 (1 male); 11.X.2012
(1 male); 7.X.2014 (1 male, 1 female); 13.X.2014
(2 males, 1 female)/ Jbariuon, 15.0 m, 35°53'20.43"E,
35°34'22.27"N, 16.X.2012 (1 male); 29.X.2012 (1
male)/Kamlieh, 242.0 m, 35°54'6.06"E, 35°40'5.3 1 "N,
15.X.2011 (1 male)/Kirsana, 63.0 m, 35°49'38.4"E,
35°37'4.34"N, 26.IX.2014 (1 male, 1 female)/
Latakia, 20.0 m, 35°46'51.7"E, 35°31'47.1"N,
20.XI.2014 (3 males)/Mashqita, 88 m, 35°53'51.0"E,
35°39'34.1"N, 8.VII.2011 (1 female), Mazar
Al-Qatria, 142.0 m, 35°55'32.1"E, 35°30'56.0"N,
15.X.2013 (1 male)/Qismin, 191.0 m, 35°54'18.6"E,
35°38'1.2"N, 2.X. 2011 (3 males); 17.IV.2013
(1 male, 1 female)/ Ras Al-Basit, 21.0 m,
35°50'21.33"E, 35°50'47.86"N, 10.XI.2 (2 males)/
Sit-Klieris, 55.0 m, 35°54'4.01"E, 35 o 34'10.43"N,
25.VII.2012 (2 males); 15.IX.2013 (1 male);
19.IX.2014 (3 males)/Sqoubin, 116.0 m,
35°49'52.8"E, 35°33'35.2'’N, 17.X.2011 (2males)/Ti-
sheen University Campus, 31.0 m, 35°48'25.7"E,
35°31'29.0"N, 1. XI. 20 12 (2 males); 3.IV.2013 (1
female); 19.X.2104 (2 males); 15.XI.2014 (2
males)/Tishreen Suburb, 66.0 m, 35°48'19.81"E,
35°32'3.46"N, 27.VII.2014 (1 male)/Zobar, 160.0
m, 35°58'53.81"E, 35°37'14.55"N, 26.X.2011
(1 female). Jableh Area: Ain Shkak, 61.0
m, 35°58'54.93"E, 35°23'2.60"N, 15.X.2012
(2 males)/ Al-Barzin, 370.0 m, 36°1'21.46"E,
35°15'14.05"N, 5.X.2013 (4 males)/Al-Eidia, 40.0
m, 35°58'33.97"E, 35°17'9.67"N, 6.XI.2014 (3
males)/Al-Hwaiz: 107.0 m, 36°0'27.93"E,
35°20'20.17"N, 13.IX.2013 (3 males); 25.X.2014
(2 males)/ Al-Kalaie, 185.0 m, 36°2'31.34"E,
35°21'17.62"N, 6.V.2011 (3 males); 2.IX.2012
(1 male, 1 female); 6.VIII.2013 (2 males); 7.IX.2014
(1 male)/Besaysin, 29.0 m, 35°57'12.27"E,
35°20'53.43"N, 7.X.2013 (2 females); 17.X.2013
(1 male, 1 female); 12.IX.2014 (2 males); 13.X.2014
(1 male); 12.XI.2014 (3 males); 16.XI.2014 (2 males,
1 female)/Ghnieri, 146.0 m, 36°1'0.01"E,
35°21'6.01"N, 5.X.2012 (2 males); 2.X.2011 (1 male,
3 females)/ Hmimim, 40.0 m, 35°57'1.30"E,
35°22'34.65"N, 12.VIII.2014 (2 males)/Jableh, 20.0
m, 35°8'43.4"E, 35°15'55.2"N, 1.XII.2011 (1 male);
25.VII.2013 (3 males, 2 females); 15.IX.2013 (1 fe-
male); 21.IX.2013 (4 males, 2 females); 23.IX.2013
(3 males); 16.X.2013 (3 males, 1 female)/Kirfis,
210.0 m, 35°59'17.31"E, 35°16'5.79"N, 31.VIII.2014
(3 males, 1 female)/ Qutaolabyah, 215.0 m, 36°
1'8.98"E, 35°17'13.14"N, 27.IX.2013 (1 male, 1 fe-
male); 20.X.2013 (6 males, 2 females); 23.X.2013
(1 male); 25.X.2013 (3 males); 7.X.2014 (1 male)/
Ras Al-Ain, 133.0 m, 36° 0'38.71"E, 35°19'26.72"N,
20.VII.2011 (2 females); 9.X.2011 (2 males);
18.IV.2014 (2 males); 13.IX.2014 (2 males)/
Rmelieh, 14.0 m, 35°55'26.93”E, 35°22'54.71"N,
11.XI.2013 (2 males)/Siano, 78.0 m, 35°59'39.73"E,
35°22'12.64"N, 17.X.2012 (2 males); 13.IX.2014 (2
males). Qardahah Area: Al-Qardahah, 310.0 m, 36°
3'36.19"E, 35°27'28.76"N, 5.VII.2013 (1 male);
5.X.2013 (3 males); 22.X.2013 (2 males); 13.X.2014
(2 males)/ Al-Qarer, 15.0 m, 35°54'46.29"E, 35°
8'8.52"N, 10.XI.2012 (1 male)/Istamou, 73.0 m,
35°54'8.48"E, 35°29'51.27"N, 3.IV.2014 (1 male)/
Yerti, 380.0 m, 36° 2'53.76"E, 35°31'5.68"N,
7.X.2014 (1 male); 16.X.2014 (1 male, 1 female).
Haifa Area: Ain Al-Tieneh, 644.0 m, 36° 5'37.51"E,
35°33'45.76"N, 15.IX.2012 (1 female)/ Al-Haffah,
272.0 m, 36° 1’59.38"E, 35°35’41.57"N, 2.V.2011
(1 male); 7.IX.2013 (2 males)/Ghomata, 246.0 m,
35°59'42.00"E, 35°33'35.95"N, 3.IV.2013 (1 male);
15.X.2013 (1 male)/Manjila, 75.0 m, 35°55'16.19"E,
35°32'56.26"N, 22.IX.2013 (2 males)/Mzeraah,
515 m, 36°4'19.18"E, 35°31'59.55"N, 25.X.2013 (1
male); 5.IV.2014 (2 males); 13.X.2014 (2 males)/
656
Khaldoun Ali et alii
Salma, 720.0 m, 36°8T2.32"E, 35°41'22.85"N,
24.X.2011 (1 male)/Slunfeh, 1056.0 m, 36°10'44.28"E,
35°36'0.81"N, 2.XL2013 (2 males); 16.XI.2013 (1
male, 1 female)/ Terjano, 110.0 m, 35°59'15.20"E,
35°31'44.06"N, 25.IX.2014 (2 males); 20.X.2013 (3
males).
Tartus Province. Tartus Area: Al-Karimeh, 185.0
m, 36°2'31.34"E, 35°21T7.62"N, 6.X.2011 (4
males)/As-Sifsafeh, 130.0 m, 36°2'55.04"E,
34°43'57.80"N, 4.V.2013 (1 male)/Matin Bouria,
240.0 m, 35°57'4.38"E, 35° 2'10.67"N, 7.IX.2013 (1
male); 16.V.2014 (1 male)/Nakib, 168.0 m,
35°59'3.16"E, 34°51T6.23"N, 7.XL2014 (1
male)/Saya 216.0 m, 35°56'55.30"E, 35° 2'46.23"N,
26. X.2014 (2 males)/ Tartus, 14.0 m, 35 0 52'59.51"E,
34°53T.01"N, 18.VI.2012 (1 female); 3.VI.2013 (2
males, 3 females). Baniyas Area: Al-Mawsheh, 254.0
m, 35°58'40.36"E, 35°3'51.05"N, 9.XL2012 (2
males); 15.IV.2013 (2 males)/Al-Qadmus, 919.0 m,
36°9'40.13"E, 35°6'6.53"N, 9. X. 2012 (1 male);
17.V.2013 (1 male); 14.X.2014 (2 males)/Al-
Roudah: 150.0 m, 35°54'53.46"E, 35°4'2.91 ,r N,
15.V.2013 (2 males)/Baniyas: 3.0 m, 35°56'24.85"E,
35°10'56.97"N, 10.VIIL2011 (1 male); 6.X.2011 (3
males); 10.X.2012 (1 male); 29.X.2012 (1 male);
29.X.2012 (1 male); 16.VIII.20 13 (3 males, 2 fema-
les); 29.X.2013 (3 males); 16.IX.2014 (3 males, 1 fe-
male); 28.IX.2014 (2 males)/Btilleh, 145.0 m,
35°59'44.17"E, 35°12'31.74"N, 10.X.2012 (1
male)/Deir Al-Bishl: 101.0 m, 35°58'56.27"E,
35°11'48.97"N, 7.V.2013 (1 male)/Faresh Kaebieh,
301.0 m, 36° 1'18.71"E, 35° 11 '20. 04 "N, 16.VIL2014
(1 male)/ Isqublh: 690.0 m, 36°3'39.70"E, 35°
9'54.14"N, 9.X.2013 (1 male)/Hreisoun, 14.0 m,
35°57'23.63"E, 35°14'8.88"N, 3.X.2013 (1 male);
17.IX.2014 (4 males); 12.X.2014 (3 males);
6.XII.2013 (2 males); 8.VIIL2014 (2 females);
27. X.2014 (2 males); 15.XI.2014 (3 males)/Mihourti,
131.0 m, 35°58'45.84"E, 35°14'53.08"N, 3.XL2012
(2 males, 3 females)/Srijis, 585.0 m, 36°10'59.04"E,
34°55'55.51"N, 4.XI.2011 (2 males); 14.IX.2012 (2
males)/ Wadi Al-Saki, 519.0 m, 36°5'26.53"E, 35°
6'2.64"N, 26.VL2014 (2 males)/Zoubeh, 407.0 m,
35°58'45.50"E, 35°7T4.92"N, 4. IX. 2013 (3 males,
2 females); Q 6.IX. 013 (3 males). Safita Area: Safita,
310.0 m, 36°7'5.14"E, 34°49T.75"N, 22.IX.2012 (1
male); 19.XI.2012 (2 females); 23.XI.2012 (1 male);
19.X.2013 (2 males, 1 female); 9.XI.2014 (5 males);
14.XI.2013 (4 males). Shayk-Badr Area: Ash Shayk
Badr, 491.0 m, 36°4'52.70"E, 34°59'25.23"N,
19.IX.2013 (4 males, 2 females)/ Darti, 278.0 m,
35°59T8.70"E, 35° 4'48.29"N, 15.V.2013 (2 males)/
Kfarieh: 368.0 m, 36°4'20.62"E, 34°58T7.16"N,
15.X.2013 (2 males, 3 females)/Qamsyiah: 398.0 m,
35°59'31.46"E, 35° 3T1.38"N, 16.IX.2012 (1 male,
1 female). Draykish Area: Draykish, 470.0 m, 36°
8'3.44"E, 34°53'50.65"N, 16.V.2012 (1 male);
5.VI.2014 (1 female).
Chorotype. Afrotropico-Indo-Mediterranean+
Neotropic (Ozdikmen et al., 2010).
Bionomics. Oligophagous on deciduous trees:
Ficus rubiginosa Desf. ex Vent., Morns alba , Avo-
cado, Ceratonia siliqua; life cycle usually takes one
year; adults are usually encountered between June-
September.
Remarks. Extremely widespread, and its distri-
bution covers the whole area of SCR. Specimens
were collected in large numbers from light traps and
from walls near light sources in almost every area
of the Coastal Strip, other specimens were collected
by hand from tree trunks and branches, especially
Ficus spp. trees.lt is one of the most destructive
pests to the fig trees in SCR, and often considered
noxious and often killed by farmers.
Tribe Monochamini Gistel, 1 848
Genus Monochamus Dejean, 1821
Type species: Cerambyx sutor Linnaeus, 1758
44. Monochamus galloprovincialis tauricola
Germar, 1818
Examined material. Latakia Province. Qarda-
hah Area: Al-Qardahah, 310.0 m, 36°3'36.19"E,
35°27'28.76"N, 16.VIII.2012 (1 male).
Chorotype. Sibero-European (Ozdikmen, 2008).
Bionomics. Monophagous on pine ( Pinus spp.);
life cycle usually takes 1-2 years; adults are usually
encountered between May-September.
Remarks. This is the first record of this species
in Syria.lt is a very rare species is SCR; the speci-
men was collected by hand from the trunk of a pine
Pinus sp. tree.
Tribe Phytoeciini Mulsant, 1839
Genus Oberea Dejean, 1835
Type species: Cerambyx linearis Linnaeus, 1760
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 657
45. Oberea ( s . str.) oculata Linnaeus, 1758
Oberea borysthenica Mokrzecki, 1900
Oberea inoculata Heyden, 1892
Oberea quadrimaculata Donisthorpe, 1913
Oberea tomensis Kiseleva, 1927
Examined material. Latakia Prov., Latakia Area:
Al-Hannadi, 73.5 m, 35°52'53.5"E, 35°30T0.5"N,
16.VI.2014 (1 male).
Chorotype. Palaearctic (Ozdikmenet al., 2009).
Bionomics. Monophagous on willow ( Salix
spp.); life cycle usually takes 1-2 years; adults are
usually encountered between June-September.
Remarks. Not widely spread in SCR, and can
be cosiderd rare, the specimen was collected by the
hand from a willow ( Salix sp.) tree.
Genus Phytoecia Dejean, 1835
Type species: Cerambyx cylindricus Linnaeus, 1758
46. Phytoecia {s. str.) caerulea bethseba Reiche
et Saulcy, 1858
Examined material. Latakia Province. Qarda-
hah Area: Al-Qardahah, 310.0 m, 36°3'36.19"E,
35°27'28.76"N, 13.IX.2011 (1 male).
Tartus Province. Safita Area: Safita, 310.0 m,
36° 7'5.14"E, 34°49T.75"N, 16.V.2012 (1 male).
Chorotype. Unknown. Distribution: Asia (Jordan,
Lebanon, Palestine, and Syria).
Bionomics. Oligophagous on various Brassicaceae
and Boraginaceae: Sinapis , Sisymbrium , Rapistrum,
Echium, Cerinthe, Cynoglossum, Anchusa , Sym-
phytum, Lithospermum, Lappula , Lycopsis); life
cycle ususally takes one year; adultus are usually
encountered between April-June, and sometimes
earlier between February-May.
Remarks. Not frequently encountered in SCR;
specimens were collected by the hand from the
flowers of Brassicaceae plants. The current pattern
of distribution suggests an E-Mediterranean choro-
type.
47. Phytoecia ( s . str.) rufipes latior Pic, 1895
Examined material. Latakia Province. Haffa
Area: Slunfeh, 1056.0 m, 36°10'44.28"E,
35°36'0.81"N, 16.VIII.2013 (1 male).
Chorotype. Unkown. Distribution: Syria, and
Turkey.
Bionomics. Host plants are unknown; life cycle
usually takes one year; adults are usually en-
countered between May-June.
Remarks. Quite a rare species in SCR. The spe-
cimen was collected by sweeping herbaceous plants
with an entomological net. The current pattern of
distribution suggests a SW- Asiatic /Syro- Anatolian
chorotype.
Subgenus Helladia Fairmaire, 1864
Type species: Saperda flavescens Brulle, 1832
48. Phytoecia {Helladia) alziari Sama, 1992
Examined material. Tartus Province. Safita
Area: Safita, 310.0 m, 36° 7'5.14"E, 34°49T.75"N,
22.V.2014 (2 males).
Chorotype. SW-Asiatic, or E-Mediterranian
(Ozdikmen, 2010b).
Bionomics. Monophagous on Dittrichia viscosa
(L.) Greuter (Asteraceae); life cycle is unkown;
adults are usually encountered between March-
May.
Remarks. Not frequently encounterd in SCR;
specimens were collected by hand from the host
plant (Asteraceae).
49. Phytoecia {Helladia) humeralis humeralis
Waltl, 1838
Examined material. Latakia Prov., Latakia Area:
Bisnada, 21.0 m, 35°48T4.97"E, 35°32'52.65"N,
16.VII.2013 (1 male).
Tartus Province. Shayk-Badr Area: Darti, 278.0
m, 35°59T8.70"E, 35° 4’48.29"N, 3.VII.2013 (1 fe-
male).
Chorotype. SW-Asiatic, or E-Mediterranian
(Ozdikmen, 2010b).
Bionomics. Monophagous on Centaurea hyalo-
lepis Boiss.; life cycle usually takes one year; adults
are usually encountered between April-June.
Remarks. Not frequently encounterd in SCR;
specimens were collected by sweeping herbaceous
plants with an entomological net.
658
Khaldoun Ali et alii
Subgenus Pilemia Fairmaire, 1864
Type species: Phytoecia tigrina Mulsant, 1851
50 . Phytoecia (Pilemia) griseomaculata Pic, 1891
Examined material. Tartus Province. Ban-
iyas Area: Mihourti, 131.0 m, 35°58'45.84"E,
35°14'53.08"N, 31.V.2013 (3 males, 1 female).
Chorotype. SW-Asiatic/Syro- Anatolian (Ozdik-
men, 2010a): Syria, and Turkey.
Bionomics. Monophagous on Anchusa cf. bar-
relieri (All.) Vitman (Boraginaceae); life cycle
usually takes one year; adults are usually en-
countered during June.
Remarks. Rather rare in SCR. Specimens were
collected from the flowers of aherbaceous plant late
in autumn.
Tribe Pteropliini J. Thomson, 1 860
Genus Niphona Mulsant, 1839
Type species: Niphona picticornis Mulsant, 1839
51. Niphona ( s . str.) picticornis Mulsant, 1839
Examined material. Latakia Prov. Latakia Area:
Al-Hannadi, 73.5 m, 35°52'53.5"E, 35°30T0.5"N,
20.X.2013 (4 males)/Al-Shamyiah, 55.0 m,
35°48'27.8"E, 35°38T3.3"N, 3.VI.2014 (2 males,
2 females)/ Balloran, 193.0 m, 35°53'35.30"E,
35°46'40.52"N, 14.X.2011 (2 males)/Bisnada,
21.0 m, 35°48T4.97"E, 35°32'52.65’’N, 13.IV.2013
(1 male)/Dahtour, 23.0 m, 35°47'33.18"E,
35°33T3.22"N, 25.X.2014 (1 male)/Kamlieh,
242.0 m, 35°54'6.06"E, 35°40'5.31"N, 2.X.2012
(2 males)/Khreibeh: 816.0 m, 36°6'11.91"E,
35°17'26.83"N, 5.IV.2013 (1 male)/Kirsana:
63.0 m, 35°49'38.4"E, 35°37'4.34"N, 12.XI.2013
(1 male)/Latakia, 20.0 m, 35°46'51.7"E,
35°31'47.1"N, 24.X. 2014 (2 males); 11.IX.2014
(1 male)/Raboueh, 700.0 m, 35°58'54.48"E,
35°54'31.40"N, 12.XI.2014 (1 male)/Zakizkanieh,
54.0 m, 35°48'29.85"E, 35°31'47.30"N, 7.X.2013
(1 male). Jableh Area: Al-Louzeh, 24.0 m,
35°56'27.99"E, 34°48'29.73"N, 21.X.2014 (1
male)/ Bustan Al-Basha, 33.0 m, 35°56'3.35"E,
35°25'26.46"N, 7.IX.2014 (2 males)/Dairon, 381.0
m, 36°8T9.82"E, 34°59'2.40"N, 3.IV.2014 (2
males)/Dwaer Baabda, 606.0 m, 36° 2'41.58"E,
35°14'54.99"N, 6. XI. 2014 (2 males, 1 female)/
Hmimim, 40.0 m, 35°57T.30"E, 35°22'34.65"N,
3. XI. 2014 (2 males)/ Jableh, 20.0 m, 35°8'43.4"E,
35°15'55.2"N, 13.X.2011 (3 males); 1.X.2014 (3 males)/
Siano, 78.0 m, 35°59'39.73"E, 35°22T2.64"N,
16.VIII.2013 (2 males); 17.V.2014 (1 male). Qar-
dahah Area: Al-Qardahah, 310.0 m, 36° 3'36.19"E,
35°27'28.76"N, 7.IX.2013 (2 females)/Dibash,
447.0 m, 36° 4T3.50"E, 35°30'50.08"N, 20.X.2014
(1 male). Haffa Area: Al-Haffah, 272.0 m, 36°
1'59.38"E, 35°35'41.57"N, 16.V.2014 (2 males).
Tartus Province. Tartus Area: Al-Khreibat, 82.0
m, 35°56'8.38"E, 34 0 53'24.19"N, 16.VII.2013 (1
male)/Tartus, 14.0 m, 35°52'59.51"E, 34°53T.01"N,
9.X.2011 (3 males); 7.X.2013 (2 males). Baniyas
Area: Baniyas, 3.0 m, 35°56'24.85''E, 35°10'56.97"N,
7. XI.2013 (3 males, 2 females); 16.VI.2014 (1 male,
1 female)/Baamrael, 122.0 m, 35°59'0.84"E,
35°11'47.78"N, 2.XI.2011 (2 males)/Deir Al-Bishl,
101.0 m, 35°58'56.27"E, 35°11'48.97"N, 6.V.2013 (1
female). Safita Area: Safita, 310.0 m, 36° 7'5.14"E,
34°49T.75"N, 25.IX.2011 (2 females); 30.IX.2012
(1 male, 1 female); 2.IX.2013 (1 male); 5.XI.2013
(2 males). Shayk-Badr Area: Al-Msherfeh, 270.0 m,
35°59'57.49"E, 35° 9'40.74"N, 12.XI.2012 (2 males);
8. X.2014 (2 males, 2 female)/ Ash ShaykBadr, 491.0
m, 36° 4'52.70"E, 34°59'25.23"N, 19.X.2014
(1 male); 17.XI.20 14 (1 male). Draykish Area:
Draykish, 470.0 m, 36° 8'3.44"E, 34°53'50.65"N,
22.X.2012 (1 male); 4.IX.2013 (1 male).
Chorotype. Mediterranean (Ozdikmen, 2008).
Biomomics. Broadly polyphagous species:
Spartium , Pistacia, Robinia, Castanea, Ulmus,
Punica granatum L., Morns, Prunus, Quercus ilex,
Q. suber, Calycotome, Sambucus, Laurus, Cercis,
Euphorbia dendroides L., Rhamnus, Phoenix,
Genista ; life cycle usually takes two years; adults
are usually encountered between April-October.
Remarks. Widely spread, and its distribution
covers all the area of SCR. Specimens were collec-
ted by hand from trunks and twigs of Ficus sp.
trees, and some specimens were collected by swee-
ping herbaceous plants near forests and orchards.
CONCLUSIONS
In total 51 species, incuding 10 subspecies, from
37 genera, 25 tribes and 5 subfamilies of Longhorn
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 659
Beetles have been found to inhabit Syrian Coastal
Region (Table 1). The complete number of Ceramby-
cid species inhabiting Syria is still unknown.
This study resulted in the first record for 9
species and one subspecies in Syria.
All species mentioned are recorded for the first
time in the study area.
Analysis of the biodiversity among Ceramby-
cidae collected from Syrian Coastal Region (e.g.
number of identified taxa in each given subfamily)
revealed the following data: the biodiversity of the
identified subfamilies was analyzed, resulting in
49% of taxa belonging to the subfamily Ceramby-
cinae, 31% to the subfamily Prioninae, 12% to the
subfamily Lamiinae, 4% to subfamily Spondylidi-
nae, and 4% to the subfamily Lepturinae (Fig. 1).
Analysis of the biodiversity in study areas of
Syrian Coastal Region (e.g. number of identified
taxa in each given area) revealed the following data:
biodiversity was highest in Latakia area with 20%
of taxa collected from that area, followed by
Baniyas Area with 17%, followed by Jableh Area
with 15%, followed by Tartus Area with 11%,
followed by Qardahah Area with 10%, followed by
Haffa Area with 9%, followed by Shayk-Badr Area
with 8%, followed by Safita Area with 7%, and
finally Draykish Area with 3% (Fig. 2).
According to the aforementioned results, we
suggest the following checklist for Cerambycidae
in Syrian Coastal Region:
Subfamily Prioninae
1. Aegosoma scabricorne Scopoli, 1763
2. Callergates gaillardoti Chevrolat, 1854
3. Prinobius myardi atropos Chevrolat, 1854
4. Mesoprionus lefebvrei Marseul, 1856
5. Prionus komiyai Lorenc, 1999
6. Rhaesus serricollis Motschulslcy, 1838
Subfamily Lepturinae
1. Stictoleptura (s. str.) cordigera Fuessly, 1775
2. Vadonia unipunctata syricola Holzschuh, 1993
Subfamily Spondylinae
1 . Arhopalus ferus Mulsant, 1839
2. Arhopalus syriacus Reitter, 1895
Subfamily Cerambycinae
1. Icosium tomentosum atticum Ganglbauer, 1882
2. Aromia moschata ambrosiaca Steven, 1809
3. Phymatodes ( Paraphymatodes ) fasciatus Villers,
1789
4. Cerambyx cerdo Linnaeus, 1758
5. Cerambyx dux Faldermann, 1837
6. Cerambyx nodulosus Germar, 1817
7. Cerambyx welensii Kuster, 1845
8. Certallum ebulinum Linnaeus, 1767
9. Chlorophorus varius damascenus Chevrolat,
1854
10. Chlorophorus sartor OP. Muller, 1766
1 1 . Clytus rhamni Germar, 1817
Taxa
8 %
3%
7%
17 %
10 %
9%
21 %
10 %
Latakia Area
a Jableh Area
Qardahah Area
d
m Haffa Area
Tartus Area
15%
■ Baniyas Area
1
w
Safita Area
Shayk-Badr
Area
Draykish Area
Figure 1. Taxa percentage among Cerambycidae
subfamilies of Syrian Coastal Region.
Figure 2. Percentage of taxa collected from the
different area of Syrian Coastal Region.
660
Khaldoun Ali et alii
12. Plagionotus bobelayei Bralle, 1832
13. Xyloterchus ( 5 . str ) stebbingi Gahan, 1906
14. Hesperophanes sericeus Fabricius, 1787
15. Stromatium unicolor Olivier, 1795
16. Trichoferus griseus Fabricius, 1793
17. Hylotrupes bajulus Linnaeus, 1758
18. Molorchus ( Caenoptera ) juglandis Sama, 1982
19. Phoracantha recurva Newman, 1840
20. Phoracantha semipunctata Fabricius, 1775
21. Purpuricenus budensis Gotz, 1783
22. Purpuricenus dalmatinus Sturm, 1843
23. Lampropterus femoratus Germar, 1824
24. Stenopterus flavicornis Kuster, 1846
25. Stenopterus rufus syriacus Pic, 1892
Subfamily Lamiinae
1 . Ac anthocinus griseus Fabricius, 1793
2. Leiopus {s. str ) syriacus Ganglbauer, 1884
3. Agapanthia (s. str ) lais Reiche et Saulcy, 1858
4. Agapanthia (s. str. ) suturalis Fabricius, 1787
5. Agapanthia ( Epoptes ) coeruleipennis Frival-
dszky, 1878
6. Agapanthia {Epoptes) pustulifera Pic, 1905
7. Calamobius Jilum Rossi, 1790
8. Batocera rufomaculata DeGeer, 1775
9. Monochamus galloprovincialis tauricola Ger-
mar, 1818
10. Oberea (s. str.) oculata Linnaeus, 1758
11. Phytoecia (s. str.) caerulea bethseba Reiche et
Saulcy, 1858
12. Phytoecia {s. str. ) rufipes latior Pic, 1895
13. Phytoecia (Helladia) alziari Sama, 1992b
14. Phytoecia {Helladia) humeralis humeralis
Waltl, 1838
15. Phytoecia ( Pilemia ) griseomaculata Pic, 1891
16. Niphona {s. str.) picticornis Mulsant, 1839
Although the study area is relatively small
(roughly 2.5% of the total area of the country), its
diversity richness is rather obvious as the results
indicate, and it is highly likely that more and further
studies relating to Cerambycidae beetles will reveal
new taxa and more data to the Syrian fauna of this
family.
ACKNOWLEDGEMENTS
We are sincerely grateful to all researchers who
kindly shared their knowledge, and sometimes,
unpublished work. We are very grateful to M.
Danilevsky (Moscow, Russia) for his greatly help-
ful comments and remarks; and to S. Ihsan for his
honest support and exceptional trust from the very
moment work put us together up until the sad
moment death set us apart. To his deep and indelible
impact shall this work be dedicated.
REFERENCES
Alekseev V.I., 2007. Longhorn Beetles (Coleoptera:
Cerambycidae) of Kaliningrad Region. Acta Biolo-
gica Universitatis Daugavpiliensis, 7: 37-62.
Allison J.D., Borden J.H. & Seybold S.J., 2004. A Re-
view of The Chemical Ecology of The Cerambycidae
(Coleoptera). Chemoecology, 14: 123-150.
Awal M.M., 2005. A Contribution to The Longhorned
Beetles fauna (Coleoptera: Cerambycidae) of Khir-
asan Province, Iran. Turkish Journal of Zoology, 29:
273-278.
Bense U., 1995. Longhorn Beetles, Illustrated key to the
Cerambycidae and Vesperidae of Europe. Margraf
Verlag, Germany, 512 pp.
Bily S. & Mehl O., 1989. Longhorn beetles (Coleoptera,
Cerambycidae) of Fennoscandia and Denmark. Brill.
Vol. 4. The Netherlands ISBN 9004086978,
9789004086975.
Chalumeau F. & Tourroult J., 2005. Les longicornes des
Pettites Antilles (Coleoptera: Cerambycidae): Tax-
onomie, Ethologie, Biogeographie. Pensoft Series
Faunistica No. 51, Bulgaria, 241 pp.
Cowling R.M., Rundel P.W., Lamont B.B., Arroyo M.K.
& Arianoutsou M., 1996. Plant diversity in Mediter-
ranean-climate regions. Trends in Ecology and Evol-
ution, 11: 362-366.
Danilevsky M.L., 2015. Catalogue of Palaearctic
Cerambycoidea: http://www.zin.ru/Animalia/
Coleoptera/rus/cer _edit.htm (last update05.03.2015).
Dascalu M.M., Sama G. & Ramel G., 2012. A report on
the Cerambycidae species from the lake Kerkini
National Park, Northern Greece. Analele Stiintifice
ale Universitatii, Alexandra loan Cuza” din IaSi, s.
Biologie animala, Tom LVIII.
de Vaio E.S., da Silva A., Crivel M., Postiglioni A.,
Ponce de Leon R. & Leira M.S., 1985. Comparative
description of male meiosis in two species of Ceramby-
cines (Coleoptera: Cerambycidae). Revista Brasileira
de Genetica, 3: 263-269.
Doychev D. & Georgiev G., 2004. New and rare
longhorn beetles (Coleoptera: Cerambycidae) in
Bulgaria. Acta Zoologica Bulgarica, 56: 167-174.
Duffy E.A., 1952. Cerambycidae (Coleoptera): Keys to
genera and species. Handbooks for Identification of
British Insects, 5: 1-19.
Contribution to the knowledge of the Longhorn Beetles (Coleoptera Cerambycidae) of the Syrian Coastal Region 661
Evans H.F., Morral L.G. & Pajares J.A., 2007. Biology,
Ecology, and Economic Importance of Buprestidae
and Cerambycidae, pp. 447-474. In: Bark and Wood
Bring Beetes in Living Trees in Europe; a Synthesis
(F. Lieutier et al. editors). Springer, The Netherlands,
569 pp.
Gillot C., 2005. Entomology. Springer, 3rd Edition, The
Netherlands, 831 pp.
Gnjatovic I & Zikic V., 2010. Cerambycids of Southeast
Serbia (Coleoptera: Cerambycidae). Biologica Nys-
sana, 1: 111-115.
Gullen P.J. & Crantson P.S., 2010. The Insects: an outline
of Entomology. Wiley-Blackwell, 4th Edition, Hong
Kong, 565 pp.
Hanks L.M., 1999. Influence of the larval host plant on
reproductive strategies of cerambycid beetles. Annual
Review of Entomology, 44: 483-505.
Hariri G., 1 97 1 . A List of Recorded Insect Fauna of Syria.
Allepo University Press, Aleppo-Syria. 306 pp.
Cerambycidae: 222-230.
Hoskovec M. & Rejzek M., 2013. Longhorn Beetles
(Cerambycidae) of the West Palaearctic Region:
http:// www.cerambyx.uochb.cz/ (Visited on 15. 2.
2015).
Katbeh-Bader A., 1996. Cerambycidae (Coleoptera) of
Jordan. Zoology in The Middle East 13: 93-98.
Linsley E.G., 1959. Ecology of Cerambycidae. Annual
Review of Entomology, 4: 99-138.
Lorenc J.A., 1999. New species of Prionus (Coleoptera:
Cerambycidae) from Syria. Folia Heyrovskyana, 7:
13-17. *
Ozdikmen H., 2007. The Longicorn Beetles of Turkey
(Coleoptera: Cerambycidae) Part I - Black Sea Region.
Munis Entomology & Zoology 2: 179-422.
Ozdikmen H., 2008a. The Longicorn Beetles of Turkey
(Coleoptera: Cerambycidae) Part III - Aegean Region.
Munis Entomology & Zoology 3: 355-436.
Ozdikmen H., 2008b. The Longicorn Beetles of Turkey
(Coleoptera: Cerambycidae) Part IV - Mediterranean
Region. Munis Entomology & Zoology, 6: 6-145.
Ozdikmen H., 2011. Longhomed beetles of Bolu province
in Turkey (Coleoptera: Cerambycidae). Munis Ento-
mology & Zoology, 6: 210-240.
Ozdikmen H., 2013. Turkish Agapanthiini Mulsant, 1839
with identification keys (Coleoptera: Lamiinae).
Munis Entomology & Zoology, 8: 9-40.
Ozdikmen H., 2014a. Turkish Red List Categories of
Longicorn Beetles (Coleoptera: Cerambycidae) Part
V - Subfamily Stenopterinae. Munis Entomology &
Zoology, 9: 483-493.
Ozdikmen H., 2014b. A synopsis of Turkish Callichro-
matini (Coleoptera: Cerambycidae). Munis Entomo-
logy and Zoology, 9: 554-563.
Ozdikmen H. & Cihan N., 2005. Twenty-six new species
group taxa records of longhorned beetles for Cau-
casus fauna from Artvin Province (NE Turkey)
(Coleoptera: Cerambycidae. Turkish Journal of Zo-
ology, 29: 273-278. '
Ozdikmen H. & Tezcan S., 2011. A synopsis of turkish
Xylotrechus Chevrolat, 1860 with a new record,
Xylotrechus stebbingi Gahan, 1906 (Coleoptera:
Cerambycidae: Cerambycinae). Munis Entomology
& Zoology, 6: 276-281.
Ozdikmen H. & Turgut S., 2006. A zoogeographical
review of Spondylidinae in Turkey (Coleoptera:
Cerambycidae). Munis Entomology & Zoology, 1 :
279-288.
Ozdikmen H. & Turgut S., 2009a. A review on the genera
Pseudovadonia Lobanov et al., 1981 and Vadonia
Mulsant, 1863 (Coleoptera: Cerambycidae: Leptur-
inae). Munis Entomology & Zoology, 4: 29-52.
Ozdikmen H. & Turgut S., 2009b. On Turkish Cerambyx
Linnaeus, 1758 with zoogeogrephical remarks
(Coleoptera: Cerambycidae: Cerambycinae). Munis
Entomology & Zoology, 4: 301-319.
Ozdikmen H. & Turgut S. 2009c. A synopsis of Turkish
Vesperinae Mulsant, 1839 and Prioninae Latreille,
1802 (Coleoptera: Cerambycidae). Munis Entomo-
logy & Zoology, 4: 402-423.
Ozdikmen H. & Turgut S. 2009d. A short review on
the genus Plagionotus Mulsant, 1842 (Coleoptera:
Cerambycidae: Cerambycinae). Munis Entomology
& Zoology, 4: 457-469.
Ozdikmen H. & Turgut S., 2009e. A synopsis of Turkish
Chlorophorus Chevrolat, 1863 with zoogeographical
remarks (Coleoptera: Cerambycidae: Cerambycinae).
Munis Entomology & Zoology 4: 577-595.
Ozdikmen H. & Turgut S., 2009f. A synopsis of Turkish
Clytus Laicharting, 1784 and Sphegoclytus Sama,
2005 with zoogeographical remarks (Coleoptera:
Cerambycidae: Cerambycinae). Munis Entomology
& Zoology, 4: 353-370.
Ozdikmen H. & Turgut S., 2010a. An over view on the
Palaearctic subgenus Phytoecia ( Pilemia ) Fairmaire,
1864 with a new species Phytoecia ( Pilemia ) samii
sp. n. from Turkey (Coleoptera: Cerambycidae: Lami-
inae). Munis Entomology & Zoology 5: 90-108.
Ozdikmen H. & Turgut S., 2010b. An overview on the
W-Palaearctic subgenus Phytoecia (Helladia) Fair-
maire, 1864 with a new subspecies Phytoecia {Hel-
ladia) humeralis caneri ssp. n. from Turkey
(Coleoptera: Cerambycidae: Lamiinae). Munis Ento-
mology & Zoology, 5: 317-343.
Ozdikmen H., Ali M.A. & El-Hamadani N., 2014. New
records for longhorn beetles fauna of Iraq (Cole-
optera: Cerambycidae). Pakistan Journal of Zoology,
46: 267-270.
Ozdikmen H., Giiven M. & Goren C., 2010. Longhorned
beetles fauna of Amanos Mountains, Southern Tur-
key (Coleoptera: Cerambycidae). Munis Entomology
& Zoology, 5 (suppl.): 1141-1167.
662
Khaldoun Ali et alii
Ozdikmen H., Turgut S. & Guzel S., 2009. Longhorned
beetles of Ankara region inTurkey (Coleoptera:
Cerambycidae). Munis Entomology & Zoology, 4:
59-102.
Paulino-Neto H.F., Romero G.Q. & Neto J.V., 2005.
Interactions Between Oncideres humeralis Thomson
(Coleoptera: Cerambycidae) and Melastomalaceae:
Host-Plant Selection and Patterns of host Use in
South East Brazil. Neotropical Entomology, 34: 7-
14.
Peris-Felipo F.J. & Jimenez-Peydro R., 2012. Ceramby-
cidae (Coleoptera) richness in Mediterranean land-
scapes of Spain: diversity and community structure
analysis. Biodiversity Journal, 3: 59-68.
Picard F., 1929. Coleopteres Cerambycidae. Faune de
France, Lechevalier, Paris, 167 pp.
Sakenin H., Samin N., Beitollahi S.M., Ezzatpanah S.,
Hacaskary M., Rastegar J., Valizadeh A. & Shakouri
M.J., 201 1 . A Study on The Longhorn Beetles (Cole-
optera: Cerambycidae) from North-Western Iran.
Calodem, 143: 143-149.
Sama G., 2008. Preliminary note on the Cerambycidae
fauna of North Africa with the description of new
taxa. Quaderno di Studi e Notizie di Storia Naturale
della Romagna 27: 217-245.
Sama G. & Rapuzzi P., 2006. Preliminary report on a
recent survey of the Egyptian Cerambycidae, with
description of three new species. Quaderno di Studi
e Notizie di Storia Naturale della Romagna, 23: 179—
194.
Sama G., Buse J., Orbach E., Friedman A.L.L., Rittner
O. & Chikatunov V., 2010a. A new catalogue of the
Cerambycidae (Coleoptera) of Israel with notes on
their distribution and host plants. Munis Entomology
& Zoology, 5: 1-55.
Sama G., Rapuzzi P. & Kairouz A., 2010b. Catalogue
commente des Cerambycidae du Liban (An annot-
ated catalogue of the Cerambycidae of Lebanon).
Quaderno di Studi e Notizie di Storia Naturale della
Romagna, 30: 131-201.
Susana R., 2009. Observations on The Larval Biology in
The Genus Calydon (Coleoptera: Cerambycidae) in
Patagonia Argentina. Revista de la Sociedad Ento-
mologica Argentina, 68: 391-396.
Teledo V.H., Corona A.Ma. & Morme J.J., 2007. Track
Analysis of The Mexican Species of Cerambycidae
(Insecta, Coleoptera). Re vista Brasileira de Ento-
mologia, 51: 131-137.
Triplehorn C.A. & Johnson, N.F. 2005. Borror and De-
long’s introduction to the study of insects. Thomson,
7th Edition. USA, 866 pp.
Twinn P.F.G. & Harding, PT. 1999. Provisional Atlas of
The Longhorn Beetles (Coleoptera: Cerambycidae)
of Britain. Huntingdon: Biological Records Centre,
Great Britain, 96 pp.
Villiers A., 1978. Faune des Coleopteres de France-1.
Cerambycidae. Editions Leche Valier S.A.R.L. Paris,
France, 611 pp.
Wang Q. & Leschen, R.A.B. 2003. Identification and
distribution of Arhopalus species (Coleoptera:
Cerambycidae: Aseminae) in Austria and New
Zealand. New Zealand Entomologist, 26: 53-59.
Zamoroka A.M. & Panin R.Yu., 2011. Recent records of
rare and new for Ukainian Carpathians species of
Longhorn beetles (Insecta: Coleoptera: Ceramby-
cidae) with notes on their distribution. Munis Ento-
mology and Zoology, 6: 155-165.
Biodiversity Journal, 2015, 6 (2): 663-668
Germination of Atriplex halimus Linnaeus, 1 753 (Caryophyllales
Chenopodiaceae) in North West Algeria
Kerzabi Rachida, Abdessamad Merzouk*, Stambouli-Meziane Hassiba & Benabadji Noury
Laboratory of ecology and management of natural ecosystems, Department of Biology, Faculty of Sciences, Universite Abou Bekr
Belkaid Tlemcen, BP 119, 13000, Algeria
‘Corresponding author, e-mail: as_merzouk@yahoo.fr
ABSTRACT In arid and semi-arid ambients, soil salinity is a constraint for the development of plants and
a threat for balanced diet. Current data in the Mediterranean basin report up to 16 million
hectares of salt soil, 3.2 million of which in Algeria. Germination in vitro of seeds of Atriplex
halimus Linnaeus, 1753 (Caryophyllales Chenopodiaceae) in both synthetic media (nutrient
agar, and Mueller Hinton) reached rates of 80% at 25 °C and 50% at 5 °C. The taxon shows
a good resistance to salt; because of high salinity treatments (500 to 600 meq/1), there is a
delay in germination but not complete inhibition of the process.
KEY WORDS Atriplex halimus', germination, salinity; North West Algeria.
Received 01.06.2015; accepted 24.06.2015; printed 30.06.2015
INTRODUCTION
From the physiological point of view, germina-
tion is a process that translates the passage of the
slow life of a seed to active life in the optimum
conditions for germination. Several Authors (Come,
1970; Mazliak, 1982; Suszka et al., 1994) divide the
process of germination in two phases including:
- a first phase of entry of water into the seed
(imbibition) which is accompanied by a resumption
of intense metabolic activity;
- a second phase of turgidity of the seed which
induces root elongation and therefore germination
sensu stricto.
But all these steps occur only if certain intrinsic
(conservation of the power of germination, lack of
inhibition) and extrinsic (temperature, humidity, vent-
ilation, and, sometimes, light) factors come together.
Given the importance of the germinal phase for
the later stages of growth and development of any
plant species, it is essential to study the germ beha-
vior under various environments conditions. If
some works have addressed the germination pro-
cess of Atriplex halimus Linnaeus, 1753 (Caryo-
phyllales Chenopodiaceae) (Belkhodja & Bidai,
2004), however little work has been done on the
rootlets in synthetic culture media. This has led us
to approach throughout this work:
- Seed germination of Atriplex halimus in dif-
ferent culture media
- Germination of seeds of Atriplex halimus and
salt stress.
I. GERMINATION IN DIFFERENT CUL-
TURE MEDIA
Material and methods
As plant material used in this experimental
work, we employed seeds of Atriplex halimus
collected in the fields.
664
Kerzabi Rachida etalii
The laboratory equipment was composed of
Boxes of Petri dishes, oven set at 25 °C and 35 °C,
sterile forceps, bleach, 95% ethyl alcohol, nutrient
agar flask, flask of Mueller Hinton, cotton wool,
distilled water.
Each culture medium was prepared from a
dehydrated medium (20 g/1), incorporated in one
litre of distilled water; all being heated to boiling.
The medium was then put in autoclaved bottles for
20 minutes at 120 °C (Table 1).
Disinfection of the plant material is always
difficult and uncertain. The degree of infection of
tissue on the surface is highly variable.
The method of disinfection of seeds was done
according to the following protocol:
- washing under running water,
- immersion in a 80% solution of chlorine
bleach for four minutes,
- rinsing with sterile distilled water for thirty
seconds,
- soaking of seeds in 95% ethyl alcohol for ten
seconds,
- three washes with sterile distilled water.
Then culture medium was liquefied by bath-
marie and poured (in supercooling) in Petri dishes
between two benzene bees.
The boxes were kept open to prevent the forma-
tion of water droplets on the cover. After disinfec-
tion, ten seeds were placed in Petri dishes by
sterilized pliers. The boxes were then closed to
avoid contamination.
All manipulations took place under hood (in
sterile conditions). As controls, seeds were seeded
on a cotton ball moistened with distilled water.
The number of repetition was six for each
medium. The boxes were then placed at three
different temperatures: 5 °C (refrigerator), 25 °C
(room temperature) and 35 °C (oven) to test the
effect of temperature on germination.
Results and interpretations
Germinated seeds were counted per week regu-
larly, taking as criteria of germination the envelopes
pierced by the radicle; this allowed us to plot
germination curves describing the course of ger-
mination, cumulative over time.
In our experience, we had a germination rate
appreciable with a percentage of 80% (nutrient
agar), 70% (distilled water and Mueller Hinton) at
room temperature. But at cold temperature, ger-
Nutrient agar
Mueller Hinton
Peptone
15 g
beef infusion solids
300 g
meat extract
2g
casein hydrolysate
10.9 g
NaCl
5g
Starch
1.5 g
Agar Agar
15g
Agar
IVg
Distilled water 1 000 ml
Distilled water
1000 ml
pH
7.6-7.S
pH
7.4
Table 1 . Chemical composition of two culture media.
mination percentage was lower reaching 40% (for
Mueller Hinton), 50% (agar), and 70% (in distilled
water) (see Tables 2, 3; Figs. 1, 2).
II. GERMINATION AND SALT STRESS
Halophytes develop naturally in strongly saline
environments and their seeds do appear to express
a certain tolerance to salt at the germination stage
(Binet, 1988).
In Halophytes seeds germination in saline condi-
tions is variable and species specific (Ungar, 1978).
We have undertaken this work to determine the
critical response to germination of Atriplex halimus
in a saline environment since its seeds have a great
potential for germination.
Material and methods
The Petri dish (es) used were sterile boxes of
19 cm in diameter and 3 cm thick. In each of the
boxes, were placed ten seeds on cotton balls
soaked in saline solutions at different concentra-
tions. Each treatment included five boxes contain-
ing 10 seeds each. Petri dishes were kept with main
parameters (temperature, photoperiod, humidity)
helping to ensure a good environment relatively
favourable to germination.
The seeds were selected based on size and
health status. They were separated manually from
fruit valves, then sterilized according to the follow-
ing protocol:
- washing under running water,
- soaking in alcohol at 70% for 25 seconds,
- soaking in 80% bleach solution for 15 minutes,
- three washes with sterile distilled water, 10
minutes each.
Germination of Atriplex halimus (Caryophyllales Chenopodiaceae) in North West Algeria
665
1 st week
2nd week
3 r d week
4 th week
Number
%
Number
%
Number
%
Number
%
Distilled water
2
20
4
40
6
60
7
70
Nutrient agar
3
30
4
40
6
60
8
80
Mueller Hinton
2
20
3
30
5
50
7
70
Table 2. Number of Atriplex halimus seeds germinated at 25 °C.
1 st week
2 nd week
3 r d week
4 th week
Number
%
Number
%
Number
%
Number
%
Distilled water
0
0
0
0
6
60
7
70
Nutrient agar
1
10
2
20
4
40
5
50
Mueller Hinton
0
0
1
10
2
20
4
40
Table 3. Number of Atriplex halimus seeds germinated at 5 °C.
90
fweek 2°week 3°week 4°week
Figure 1. Atriplex halimus seed germination in
various culture media at 25 °C.
By mixing equal volumes of two different salts:
Sodium chloride (NaCl) and Calcium chloride
(CaCl 2 ) (VNaCl = VCaCl 2 ), prepared in one litre of
distilled water, we prepared six different concen-
trations (100, 200, 300, 400, 500, 600 meq.l' 1 ).
Distilled water was employed as control.
Results and interpretations
Tolerance of plants to salt stress varies at dif-
Figure 2. Atriplex halimus seed germination in
various culture media at 5 °C.
ferent stages of development (Rev & Freeman,
1976, 1976). Germination appears to be a stage of
high sensitivy to salt stress (Zid & Boukhris, 1977).
Seeds of Atriplex halimus have a great ability to
germinate under high salinity conditions.
For treatments at 100 meq./l, 200 meq./l and
300 meq./l there is a respective decrease in germin-
ation of 10, 30 and about 40% compared with the
control. For treatment at 400 meq./l, 500 meq./l and
600 meq./l, the germination was seriously affected,
666
Kerzabi Rachida etalii
ranging from 4 to 22% of germination rate. Germin-
ation occurred two days later for treatments at 300
meq./l, 400 meq./l and 500 meq./l, and four days
later for treatment with solution at 600 meq./l
Therefore salinity of waters and soils not only
results in inhibition of germination, but also in a
very net delay of the process itself.
DISCUSSION
Germination appears to be a stage of high sens-
itivity to salt stress (Zid & Boukhris, 1977). Changes
in salinity degree strongly affect on germination,
growth and cellular anatomy of plants. Inhibition
of germination of the seeds of Atriplex halimus is
caused by the presence of high concentrations of
sodium chloride. Stroconov (1964) confirms by his
works that the response of seed to salinity is an
indicator of tolerance of the plant.
Salinity can affect germination in two ways:
- decreasing the input speed of the amount of
water absorbed by seed, the increase in the osmotic
pressure of the water where the inhibition is too high.
- increasing the penetration of the ions that can
accumulate in the seed at doses that become toxic
Riyad (1987).
Atriplex halimus support concentrations of
meq.l' 1
100
200
300
400
500
600
NaCl
(mM)
100
200
300
400
500
600
g/1
5.84
11.68
17.53
23.37
29.22
35.06
CaCl 2
(mM)
100
200
300
400
500
600
g/1
5.54
11.08
16.64
22.19
27.74
33.29
Table 4. Composition of saline solution.
Treatment
B1
B2
B3
B4
B5
average
deviation
standard
deviation
Witness
8
7
6
7
8
7.6
0.94
Tl
6
5
7
7
6
6.2
0.83
T2
5
4
3
5
5
4.4
0.89
T3
3
3
2
4
4
3.2
0.83
T4
2
2
3
2
2
2.2
0.44
T5
1
1
1
0
1
0.8
0.20
T6
1
0
0
1
0
0.4
0.42
Table 5. Number of sprouts in different salinity conditions. B1-B5: Boxes or Petri dishes; Treatments: 100 meq/1 (Tl),
200 meq/1 (T2), 300 meq/1 (T3), 400 meq/1 (T4), 500 meq/1 (T5), 600 meq/1 (T6).
Germination of Atriplex halimus (Caryophyllales Chenopodiaceae) in North West Algeria
667
Differences
between
averages
calculated
t
Tests
of
significance
Ml -M2
1.4
*
Ml -M3
3.2
*
M1-M4
4.6
*
M1-M5
5.4
**
M1-M6
6.8
**
M1-M7
7.2
**
M2-M3
1.8
*
M2-M4
3.2
*
M2-M5
4
*
M2-M6
5.4
**
M2-M7
5.8
**
M3-M4
1.4
*
M3-M.5
2.2
*
M3-M6
3.6
*
M3-M7
4
*
M4-M5
0.8
NS
M4-M6
2.2
*
M4-M7
2.76
*
M5-M6
1.4
*
M5-M7
1.8
*
M6-M7
0.4
NS
Figure . Average number of Atriplex halimus germinated
seeds at different salinity conditions.
Table 6. Pairwise comparison between germination Figure 4. Percentages of germinated seeds at different
averages (M1-M7, in %); t = standard deviation. salinity conditions.
Treatement
germination
Witness
T1
T2
T3
T4
T5
T6
1
day
0
0
0
0
0
0
0
2
day
10
26
6
0
0
0
0
3
day
30
36
12
8
6
2
0
4
day
40
41
20
10
12
3
0
5
day
50
44
22
14
16
4
2
6
day
60
52
33
25
20
5
3
7
day
76
62
44
32
22
6
4
Table 7. Percentages of Atriplex halimus seed germination in different salinity conditions.
668
Kerzabi Rachida etalii
sodium chloride similar as that found in seawater
(Ben Ahmed et al., 1996).
This is consistent with our results where the
high salinity treatments at 500 meq./l and 600
meq./l, cause a delay in germination, but not a
complete inhibition. It would be necessary much
higher concentrations to really observe inhibition
of germination of the seeds of Atriplex halimus.
Clemens et al. (1983) showed that at different
daline concentrations there are differences in the
germination rate of the seeds. These differences
would likely come from the exogenous NaCl effect
in general, which causes a reduction of the ger-
mination process.
The final stage of germination or inability of
seeds to germinate seems to mean that with increas-
ing salt concentration, the toxicity effect dominates
due to the accumulation of sodium in the embryo
by installing an osmotic inhibition (Guerrier, 1983;
Bliss et al., 1986). Tolerance of Atriplex halimus
to salt stress is often attributed to the presence of
trichomes, on the surface of the leaves. The os-
motic pressure of cell content is very high which
is due to the massive mineral salts (sodium)
accumulation or to the synthesis of large amount
of organic substances.
CONCLUSIONS
This study was carried out to highlight the ger-
mination capability of Atriplex halimus in various
synthetic media. Germination in vitro in two
synthetic media (nutrient agar and Mueller Hinton)
and different temperatures (5 °C and 25 °C) shows
that Atriplex halimus are characterised by a consid-
erable germination rate.
According to our results, seeds seem to support
a variable temperature range noting that cold
induced retardation of germination, without how-
ever affecting the final germination percentage.
Atriplex halimus has a resistance to saline stress,
despite the observed delay, there was a germination
rate that varies between 8 and 22% at a concentra-
tion of 600 meq./l. As already well underlined by
Belkhoudja & Bidai (2004), our results confirm
that confirm that Atriplex support high salinity
conditions which allows to cultivate it on soils and
waters generally considered unsuitable for agri-
culture.
REFERENCES
Belkhodja M. & Bidai Y., 2004. Reponse des graines
d Atriplex halimus L., a la salinite au stade de la ger-
mination. Secheresse, 15: 331-337.
Ben Ahmed H., Zid E., El Gazzah M. & Grignon C., 1996.
Croissance et accumulation ionique chez d Atriplex
halimus L. Cahiers d' Agricultures, 5: 365-372.
Binet R, 1988. Metabolisme et adaptations des vegetaux
superieurs aux contraintes. Plant Physiology and
Biochemistry, 26: 609-614.
Bliss R.D., Platt-Aloia K.A. & Thomson W.W., 1986.
The inhibitory effect of NaCl on barley germination.
Plant, Cell and Environment, 9: 727-733.
Clemens S., Campbell L.C. & Nurisjah S., 1983. Ger-
mination d ' Atriplex halimus dans des milieux salins.
Cahiers d' Agricultures, 6: 159-167.
Come D., 1970. Les obstacles a la germination. Masson
& Cie, Paris, 162 pp.
Guerrier G., 1983. Capacite germinative des semences en
fonction des doses graduelles en NaCl. Importance
des transferts sur milieux sodes ou temoin. Revue
generate de Botanique, 90: 3-21.
Heller R., 1990. Physiologie vegetate. Masson Ed., Paris,
Tome II, 266 pp.
Mazliak R, 1982. Croissance et developpement. Physiolo-
gie vegetale n. Hermann ed., Paris, Collection Methodes,
465 pp.
Rev R.C. & Freeman M., 1976. Salt problems in relation
to irrigation. Coe, agron. Wisconsin, 998 pp.
Riyad A.F., 1987. Etude et selection de jeunes plantes
d 'Eucalyptus tolerant au sel des populations de divers
niveaux de variability These de Doctorat Universite
de Nancy, 246 pp.
Suszka B., Muller C. & Bonnet-Masimbert M., 1994.
Graines des feuillus forestiers : de la recolte au semis.
Ed. INRA, Paris, 292 pp.
Ungar I.A., 1978. Halophyte seed germination. Botanical
Review, 44: 233-264.
Zid E. & Boukhris M., 1977. Quelques aspects de la
tolerance de V Atriplex halimus au chlorure de
sodium: Multiplication, croissance, composition
minerale. Oecologia Plantarum, 12: 355-362