CRYPTOGAMTE
PUBLICATION TRIMESTRIELLE Juillet 199
oS MNI
CRYPTOGAMIE
Bryologie-Lichénologie
ANCIENNE REVUE BRYOLOGIQUE ET LICHÉNOLOGIQUE
Fondéc par T. Husnot en 1874.
Directeur de la publication : Dr Héléne Bischler-Causse
Rédaction :
Bryophytes : Dr Hélène Bischler & M. Denis Lamy, Laboratoire de Cryptogamie, 12 rue
Buffon, F-75005 Paris. Tel. 01.40.79.31.84 — Fax : 01.40.79.35-94 Email : lamy
@ mnhn.fr
Lichens: Dr Chantal Van Haluwyn, Laboratoire de Botanique et de Cryptogamie, Faculté
de Pharmacie, B.P. 83, F-59006 Lille Cedex. Tél. 0320964040 —
Fax : 03.20.95.90.09
Editeur : A.D.A.C. — 12 rue Buffon F-75005 Paris
COMITÉ DE LECTURE
Bryologie : J. Berthier (Clermont-Ferrand), B. Bodo (Paris), R.B. Buck (Bronx), J.L. De Sloover
(Namur), P. Geissler (Genève), S.R. Gradstein (Utrecht), J.P. Hébrard (Marseille), 5. Jovet-Ast
(Paris), A. Lecointe (Caen), M.C. Noailles (Paris), R. Ochyra (Kraków), C. Suire (Bordeaux),
B.C. Tan (Cambridge, USA).
Lichénologie : J. Asta (Grenoble), A. Bellemére (Paris), T. Bernard (Rennes), B. Bodo (Paris), Ј.С.
Boissière (Paris), P. Clerc (Genève), W.L. Culberson (Durham), S. Déruelle (Paris), P. Diederich
(Luxembourg), M.C. Janex-Favre (Paris), J. Lambinon (Liége), M.A. Letrouit-Galinou (Paris), X.
Llimona (Barcelone), L. Nimis (Trieste), G. Rambold (Munich), Cl. Roux (Marseille), M.R.D.
Seaward (Bradford), A. Sérusiaux (Liège), Н. Sipman (Berlin), E. Stocker-Wörgötter (Salzburg),
V. Wirth (Stuttgart).
MANUSCRITS
Les manuscrits doivent étre adressés (en 3 exemplaires) à la Rédaction de Cryptogamie,
Bryologie-Lichénologie. L'avis du Comité de Lecture sera requis avant accord pour publication.
Bien que Cryptogamie soit une revue de langue française, les manuscrits rédigés en français, en
anglais, en allemand, en espagnol et en italien, sont pris en considération dans la limite des
possibilités de la Rédaction à trouver des lecteurs compétents dans ces langues. Les disquettes de
micro-ordinateurs (IBM, IBM compatible et MacIntosh) sont vivement souhaitées. Les instruc-
tions aux auteurs sont publiées dans le fascicule 1 de chaque tome. Les auteurs recevront
25 tirés-à-part gratuits ; les exemplaires supplémentaires seront à leur charge.
TARIFS DES ABONNEMENTS Tome 18, 1997
CRYPTOGAMIE comprend trois sections : Algologie, Bryologie-Lichénologie, Mycologie.
Pour une section : France : (350 F ht) 357,35 F ttc Étranger : 380,00 Е
Pour les 3 sections : (950 F ht) 970,00 F ис Étranger: 1050,00 F
VAT Registration number : FR29302655170
Paiement par chéque bancaire ou postal à l'ordre de : A.D.A.C. — CRYPTOGAMIE (CCP La
Source 34 764 05 S) ; adressé à : A.D.A.C. , 12 rue Buffon, F-75005 Paris. :
Cryptogamie, Bryologie-Lichénologie est indexé par Biological Abstracts, Current Contents,
Index of Fungi et Bibliography of Systematic Mycology, Publications bibliographiques du CNRS
(Pascal).
Copyright © 1997. CRYPTOGAMIE-ADAC.
Couverture : Pore de Marchantia foliacea Mitt. (cliché Н. Bischler)
Source : MNHN, Paris
CRYPTOGAMIE
BRYOLOGIE LICHENOLOGIE
TOME 18 FASCICULE 3 1997
CONTENTS
БООН + б Толе SR MER ER he esp cre td, de e e жи TI
Claritza E. GRADSTEIN-SERNA — Atribute from Colombia to Helen Bischler
in Colombian) ps: tac di lr
David С. LONG — Studies on the genus Asterella P. Beauv. II: Asterella cruciata
(Steph.) Horik. in Eastern Asia аена cine retener
S. Rob GRADSTEIN and Patricia GEISSLER — Not
jeunea (Hepaticae)
Suzanne JOVET-AST — A proliferous Riccia from Australia: Riccia pullulans
sp. nov. (Subgenus Ricciella) (in French)
Riclef GROLLE and M. L. SO — Plagiochila bischleriana, a new species from
лт c HM E ce EE EC с + E]
Tamas PÓCS — New or little known epiphyllous Liverworts, УП. Two new
Lejeuneaceae species from the Mascarene Islands.....................
Benito C. TAN and Jian-Cheng ZHAO — New Moss records and range extensions
of some xeric and alpine moss species in China .......................
Cecilia SERGIO and Ana SÉNECA — The first report of Cryptothallus mirabilis
Malmborg (Hepaticae, Aneuraceae) in Southern Europe (Portugal) . . . .
S. Rob GRADSTEIN — Bromeliophila helenae, a new species of Lejeuneaceae
Tromtüe NEOUODIEH POIL рата V aes ANA RT ee
Barbara M.THIERS — Lejeunea bischlerae, a new species of Lejeunea subgenus
Microlejeunea from Australia ia lisses
William R. BUCK and Bruce ALLEN — Ordinal placement of the Fontinalaceae.
Jan-Peter FRAHM — Which function have the hyalocysts of the leaves of Dicra-
пасове (lpGephan) dem ire er este ee
3
167
169
177
183
191
195
207
213
217
223
227
Bibliothèque Centrale Muséum
3001 00037812 2
Source : MNHN. Paris
IM490T4j
ЭСТОН Я
амура de ЧМР
EDITORIAL
Ce fascicule a été réalisé à l'occasion du départ à la retraite d'Hélène Bischler-Causse. Les
contributions correspondent à une partie de son activité scientifique: systématique des
bryophytes, bryophytes des régions tropicales.
Qu'Héléne considére ce fascicule comme le témoignage de notre profonde et sincére amitié
Denis Lamy
Marie-Catherine Boisselier-Dubayle
This issue has been done in honour of Héléne Bischler-Causse, just retired. The contribu-
tions represent some aspects of her scientific activity: bryophyte systematics, bryophytes
from the tropical area.
This issue should be considered as a mark of our deep and heartfelt friendship.
Denis Lamy
Marie-Catherine Boisselier-Dubayle
Source : MNHN. Paris
= panne à
AREA ате pd. sig ^
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 167-168 167
UN TRIBUTO DE COLOMBIA A HELENA BISCHLER
Claritza E. GRADSTEIN-SERNA
Que la criptogamia colombiana esté ligada a nombres como Humboldt, Lindig,
Bischler, Cleef, entre otros, es muy cierto. Lo que no se puede asegurar es que muchas de
las especies por ellos colectadas hace unos años, aún existan hoy, especialmente en
aquellas regiones exploradas por Helena Bischler.
A los 24 años llegó a Colombia con un morral, un español impecable y una vida
por vivir. Para entonces ya se había refugiado en la ciencia. Fuerte, de caminar erguido y
de mirada profunda, Helena Bischler se dió tiempo para vivir lo que ella llama “mis años
en Colombia”. Helena como Humboldt y con el mismo propósito de aportar su grano de
arena a la ciencia, recorrió el territorio colombiano desde Antioquia hasta Vaupés
(incluyendo las hoy intendencias del Casanare y Guaviare), en tiempos en que el país
atravesaba por una seria crisis política, social y económica debido a las tensas relaciones
entre los dos partidos tradicionales, el gobierno y la sociedad civil, situación ésta que
reinaba tanto en la vida urbana como rural.
Corría el año 1956 cuando Helena y un grupo de destacados investigadores
colombianos, entre ellos Jesús Idrobo y Polidoro Pinto, emprendieron cordillera arriba su
misión. Unas veces en mula, otras en canoa y muchas otras a pie, atravesando ríos,
montañas y sobreviviendo a la inclemencia del tiempo y los mosquitos, en pleno río
Guayabero en la intendencia del Meta, por nombrar solo un lugar; acamparon, desvelaron
y colectaron en sectores en los que hoy nadie se atreve a penetrar, no por lo espeso de la
selva, como en aquel entonces, sino por que hoy día son regiones ligadas a las palabras que
tan mal nombre le han dado a Colombia: Violencia, guerrilla, coca, subversión y otros
calificativos que nada tienen que ver con investigación y ciencia.
Pues a estas zonas antaño aisladas, despobladas y “pobres” donde predominaba
como actividad de subsistencia la caza, la pesca, el maíz, el plátano, como en el caso del
Casanare (en esa época parte del departamento de Boyacá y considerada ahora como la
región petrolera de Colombia), la “bonanza de la coca” trajo por la generalización de su
cultivo sustanciales cambios en la región y de hecho importantes transformaciones
socio-culturales en la población. La producción, elaboración y comercialización de la hoja
atrajo a muchos colonos, comerciantes, vendedores y toda clase de aventureros que venían
con la esperanza de entrar en una empresa incierta pero que los “sacara de la pobreza”.
Esta nueva población y los mismos colonos ya no ofrecen sus cerdos, las gallinas,
el ganado, las pieles; la gente en éstas tierras ya no sabe de plátanos, yucas, arroz, de perros
de cacería, hasta el transporte en canoa y a caballo fue cambiado por el de avionetas y
helicópteros. Los campesinos que antes recibían al extranjero con una sonrisa amable y
una taza de guarapo (bebida fermentada de la caña de azúcar) son los mismos que hoy con
un arma en la mano, desconfiados, silenciosos y dispuestos a lo que sea, no admiten al
visitante,
Source : MNHN. Paris
168 C. E. GRADSTEIN-SERNA
Pero todo este aparente “florecimiento” no persistió pues actualmente es una de
las regiones mas conflictivas del país, (como muchas otras afectadas por el fenómeno de la
coca) a donde ya nadie se atreve a acercarse ni siquiera en beneficio de la cienci
La inefectiva intervención estatal y de algunos institutos sólo ha dejado una
cantidad considerable de papel, tratos, negociaciones, convenios, acuerdos y comités que
han actuado no como instrumento de ayuda y progreso sino como medio de represión y
discordia en la población.
A Helena le debemos gran parte de la colección de criptógamas existentes en el
Herbario Nacional Colombiano. Helechos, líquenes, briofitas de muchas regiones del
país: Antioquia, Boyacá, Cundinamarca, Huila, Meta, Quindío, Risaralda, Santanderes,
Tolima, Valle y Vaupés. Este material recobra su importancia y sigue siendo objeto de
estudio aunque muchas de estas especies ya no existen pues factores como la tala de los
bosques, el cultivo de la coca y la amapola, los bombardeos accidentales e intencionados
а los oleoductos, las “barridas” que realiza el gobierno y todas las acciones por sanear la
región, se han encargado de que la fauna y la flora hayan ido desapareciendo.
Es decir que en 40 años el país no sólo ha cambiado en cuanto a su división
política; también han cambiado sus gentes, sus recursos, su economía y hasta sus costum-
bres. Faltaria preguntarle a Helena que opina de la Colombia de hoy, será que todo tiempo
pasado fue mejor? Pues sin duda y aunque 40 años no son mucho y la tierra todavía este
allí, no sería fácil reconocer y encontrar las mismas especies.
Quizá lo único que queda hoy es el recuerdo y el regalo de un par de científicos
y las colecciones en los herbarios que afortunadamente dejan prueba que allí existió un
paisaje sano, de gentes buenas que jamás imaginaron que una semillita alteraría tanto sus
vidas.
Estoy plenamente segura que ni con el boom de la conservación y explotación
racional de los recursos naturales y todos los tratados habidos y por haber, podrán
salvarse ya muchas especies.
Source : MNHN. Paris
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 169-176 169
STUDIES ON THE GENUS ASTERELLA P. BEAUV. III*:
ASTERELLA CRUCIATA (STEPH.) HORIK. IN EASTERN ASIA.
David G. LONG
Royal Botanic Garden, Edinburgh EH3 SLR, Scotland, U.K.
email: d.long@rbge.org.uk — fax: (0044) 131 552 0382
ABSTRACT — The neglected name Fimbriaria cruciata Steph. is lectotypified and its status clarified
as Asterella cruciata (Steph.) Horik. A. odora S.Hatt., A. chichibuensis Shimizu & S.Hatt. and A.
mitsuminensis Shimizu & S. Hatt. are reported as new synonyms. Evidence from gametophyte
morphology and spore ornamentation is used to support this synonymy. The species is a very rare and
highly localised species, newly reported from China (Yunnan and Sichuan) and elsewhere restricted to
Japan (Honshu) and Korea.
Key моко: bryophyte, liverwort, Asterella, SEM, spores, synonymy, typification, Japan, Korea,
China.
INTRODUCTION
Prior to Volumes 1 and 6 of Stephani’s Species Hepaticarum (Stephani 1898-
1900, 1917-1925), no Asterella (syn. Fimbriaria) was reported from Japan. Stephani
reported two species from Japan, F. pilosa Taylor collected by Faurie and the new species
F. cruciata Steph. based on a collection by Uematsu. Localities or other collection details
were not given by Stephani. Until the revision of Japanese Asterella by Shimizu & Hattori
(1952, 1953a), the genus remained neglected in Japan, except for the description of А.
odora by Hattori (1944).
Shimizu & Hattori (1952, 1953a) adopted a rather narrow species concept within
Asterella which resulted in the description of five new Japanese species. One of these, A.
mitsuminensis, was soon synonymised by them in the second part of their revision, under
A. odora S.Hatt. They only considered Japanese material and did not compare taxa from
other parts of E Asia. A. cruciata (Steph.) Horik. was treated only briefly in their revision
as they were unable to locate any material collected by the cited collector, Uematsu, and
the species remained as a doubtful one. They did, however, refer to two specimens in G
determined as F cruciata by Stephani but collected by Sakurai. One of these they
redetermined as Reboulia hemisphaerica (L.) Raddi and the other as Asterella odora
S.Hatt.
* paper П in this series was published in Journal of Bryology (1994) 18: 287-295.
Source : MNHN, Paris
170 D.G. LONG
In their key to Japanese species, A. cruciata was placed next to A. crassa Shimizu
& S.Hatt. on account of its “stalk of female receptacle on a short obovate ventral branch".
This diagnostic character was taken from the unpublished drawing of F. cruciata made by
Stephani in Geneva, now published as a microfiche (Stephani, 1985). However, this
appears to be a misinterpretation of Stephani's drawing which in fact does not show the
branch bearing the archegoniophore as ventral but as a short terminal branch. This
interpretation agrees with Stephani's description ‘Pedunculis....in ramulo exiguo lateralis
terminalis’ which translates as “peduncle terminal on a weak lateral branch', with no
reference to any ventral insertion. Hence the whole question of the identity and rela-
tionships of Е cruciata deserves re-evaluation.
This study of A. cruciata is part of an on-going revision of Eurasian taxa of
Asterella which has taken a somewhat broader view of species limits as well as attempting
to study all taxa in the field and using SEM of spores and comparing Japanese taxa with
related species from Europe and other regions of Asia. The present study of A. cruciata
aims to (a) typify Fimbriaria cruciata and characterise the taxon, and (b) to establish its
synonymy and status in Asia,
MATERIALS AND METHODS
The present study is based largely on herbarium material, incl uding relevant type
specimens, from a range of herbaria (see acknowledgments). Observations on these
specimens were supplemented by a field trip to Honshu, Japan in 1993 on which all the
taxa known from Honshu were observed and collected.
Preparation of spores for SEM studies follows Taylor et al. (1974), using
herbarium material. A few spores were removed from a ripe capsule using a fine moistened
brush and attached to an aluminium SEM stub using double-sided adhesive tape or a
carbon disc. Stubs were coated with gold/palladium in a sputter-coater prior to study
using both a JEOL JSM T200 Scanning Electron Microscope and a Zeiss DSM 962
Digital Scanning Electron Microscope. The scanning voltage was normally 5kV or 10kV.
Images were photographed on Ilford Technical Pan Film.
THE IDENTITY OF FIMBRIARIA CRUCIATA
For all other Fimbriaria species described by Stephani, ori iginal material has
been located in his herbarium in Geneva. Despite careful searching, no material labelled Е.
cruciata collected by Uematsu could be located in G or elsewhere, although the Sakurai
material mentioned above has survived. A likely explanation is that Stephani’s (1917)
citation of Uematsu as collector is erroneous, as in most instances his specimen citations
were very scanty and not infrequently inaccurate.
The Sakurai specimen identified by Shimizu and Hattori as A. odora S.Hatt. was
annotated by Stephani as ‘F. cruciata St. sp. nov.’ It was collected nine years before he
described Fimbriaria cruciata and he probably had it in his possession when describing the
species in 1917. It should therefore be considered as part of the original material, and thus
Source : MNHN, Paris
ASTERELLA CRUCIATA IN EASTERN ASIA m
eligible as a lectotype (Art. 9). The other Sakurai specimen, identified as Reboulia
hemisphaerica (L.) Raddi (Shimizu & Hattori, 1953a), can be excluded as a possible
lectotype as it clearly conflicts with the original description in lacking a pseudoperianth,
although part of the protologue may be based on this specimen (see below).
It is concluded that Stephani cited the collector erroneously in Species Hepati-
carum. The annotation on his illustration of Е cruciata (Stephani, 1985) offers no
additional clues as to the collector as it merely cites ‘Japan’; however in several important
respects it agrees with his description and the Sakurai specimen. This illustration and
description of the thallus and ventral scale strongly resemble those of Asterella Subg.
Brachyblepharis (Grolle 1976, 1989), particularly the broad thin thalli 7-8mm broad and
0.75mm thick with attenuate wings and the single broad appendage of the ventral scales.
In fact, this type of scale appendage is diagnostic for only one member of
Japanese Marchantiales: the plant described under the names Asterella odora by Hattori
(1944) and A. chichibuensis by Shimizu & Hattori (1952). No other genus or species has
identical scale appendages; in Marchantia, Conocephalum and Lunularia the appendages
can be rounded but are auriculate at their insertion; those of Wiesnerella denudata (Mitt.)
Steph. are quite similar but are crenately toothed (Inoue, 1976). In all other Japanese
Marchantiales the appendages are acute and often more than one per scale (Inoue, 1976;
Mizutani & Hattori, 1969; Shimizu & Hattori, 1953b, 1953c, 1954),
Character Lectotype specimen | Stephani Description | Stephani Illustration |
Thallus t.s. Broad, thin Flat, thin, 7-8 x|Broad, thin
0.75 mm
No. ventral scale |1 1 1
appendages b. 5 ا
[Shape ventral scale | Broadly ovate, obtuse | Ovate-elliptic or subro- | Sub-rotund, obtuse
appendage wt tund
Position of archego- Terminal on main | Terminal on weak late- | Terminal on short ter-
niophore _ branch | ral branch minal braneh
Stalk length 1.5-3 mm |10 mm 9 mm
Carpocephalum shape | Umbrella-shaped |Subhemispheric or | Bluntly conical
infundibuliform
Spore reticulations Crenately toothed Crenate-dentate Not illustrate
Tabl. 1. — Diagnostic characters of the lectotype of Fimbriaria cruciata compared with Stephani's
description and illustration
The diagnostic characters given in Stephani's description and illustration are
compared with those of the Sakurai specimen (proposed below as lectotype) in Table 1.
The only serious discrepancies are in the archegoniophore length and receptacle shape. It
is possible that Stephani's description of these is partly based on the Reboulia specimen
which he also identified as Fimbriaria cruciata. However, as discussed above, his descrip-
tion of the thallus could only be based on an Asterella not Reboulia.
Apart from Subg. Brachyblepharis, only two other Asterella species are known
fom Japan (excluding Ryukyu Islands), A. crassa Shimizu & S.Hatt. from Honshu and 4.
gracilis (F.Weber) Underw. from Honshu and Hokkaido; these are both ruled out as the
possible identity of F. cruciata by several characters, such as their thicker more xeromor-
Source : MNHN. Paris
172 D.G. LONG
phic thalli, their lanceolate acute ventral scale appendages and non crenate-dentate spore
reticulations. Within Subg. Brachyblepharis, the only species known to occur in Honshu at
the time of Species Hepaticarum was F. cruciata. The other Japanese members of Subg.
Brachyblepharis (described by Shimizu & Hattori as A. pusilla, A. sanoana, and A.
umbelliformis), were not collected on Honshu before 1951 and no Japanese collections of
these taxa exist in Stephani's herbarium in G. The present species, on the other hand, was
collected as early as 1908 by Sakurai, and is the most commonly-collected species of
Asterella in Honshu.
In spite of the discrepancies mentioned above, most of the available evidence
points to the same conclusion, that the Sakurai material represents one of the original
gatherings of the plant Stephani intended to describe as Fimbriaria cruciata. It is accor-
dingly lectotypified below.
SYNONYMY AND TYPIFICATION OF ASTERELLA CRUCIATA
Asterella cruciata (Steph.) Horik., Hikobia 1: 79, 1951.
Basionym: Fimbriaria cruciata Steph., Species Hepaticarum 6: 12, 1917. Type citation:
“Japan, leg. Uematsu.’ Type specimen: ‘Fimbriaria cruciata St. n.sp. Japonia,
Tokyo, 28 ii 1908, Sakurai 9, (G-15200, lectotype selected here).
Synonyms: Asterella odora S.Hatt., Botanical Magazine ( Tokyo) 58: 44, 1944. Type
citation: "Tokyo: Koisikawa-ku, Kamihuzimae-tyo (S. Hattori, no. 2505, 21. Oct.
1938; по. 3124-typus, 23. Dec. 1939, cum spor.).’ Type specimen: Japan, Honshu,
Tokyo, Koishigawa, Kamifujimaye, on soil, 23 xii 1939, S. Hattori 3124 (NICH-
15906, holotype); syn. nov.
A. chichibuensis Shimizu & S.Hatt., Journal of the Hattori Botanical Laboratory 8: 46,
1952. Type citation: [Japan, Honshu] 'Saitama Prefecture: Chichibu, Hashitate,
ca. 350 m. alt., on rocks and on soil in the calcareous region, Oct. 25, 1950, Coll.
D. Shimizu, no. 18650-Typus! in Herb. Hattori Bot. Lab.’. Type specimen: Japan,
Honshu, Saitama Prefecture, Hashitate, ca. 350m alt., on rocks, 25 x 1950, D.
Shimizu (NICH-18650, holotype); syn. nov.
A. mitsuminensis Shimizu & S.Hatt., Journal. of the Hattori Botanical Laboratory 8: 48,
1952. Type citation: “Japan [Honshu]. Saitama Prefecture: Chichibu, Mt. Mitsu-
mine, ca. 600m. alt., on rocks, Nov. 25, 1951, Coll. D. Shimizu, no. 19642-Typus!
in Herb. Hattori Bot. Lab’. Type specimen: Japan, Honshu, Saitama Pref.,
Chichibu Mts., Mt. Mitsumine, ca. 550 m alt., on rock, 25 xi 1951, coll. D.
Shimizu (NICH-19642, holotype); synonymised with A. odora by Shimizu &
Hattori (1953a).
Following Shimizu & Hattori's identification of the Sakurai material as A.
odora, the above lectotypification of F. cruciata means that Asterella odora S.Hatt.
becomes a synonym of А. cruciata. Two further taxa are also considered to be synonyms
of A. cruciata:A. chichibuensis Shimizu & S.Hatt. and A. mitsuminensis Shimizu & S. Hatt.
In describing A. chichibuensis and A. mitsuminensis, Shimizu & Hattori (1952)
distinguished them primarily on the number of cell rings in the epidermal pores (3-4 and
Source - MNHN. Paris
ASTERELLA CRUCIATA IN EASTERN ASIA 173
2 rings respectively); the scaliness of the archegoniophore stalk (scaly and non-scaly) and
shape of androecia (large, elongate and small, ovate). All these are characters which vary
even within single populations of A. cruciata. A. mitsuminensis was quickly synonymized
under A. odora by Shimizu & Hattori (1953a). The great similarity of A. chichibuensis to A.
odora was already noted by Inoue (1976). The proposed synonymy is supported by SEM
study of spores of the type specimens of the three taxa (Fig. 1), and by the par-autoicous
sexual condition, with the androecia located close to the base of the archegoniophore on
the main thallus branches.
A. cruciata has been described and illustrated in several works: Shimizu &
Hattori (1952) as A. chichibuensis and A. mitsuminensis; Hattori (1944); Shimizu & Hattori
(1953a); Miyoshi (1966) and by Inoue (1976) as A. odora. Because of its broad thin delicate
thalli, ventral scales with a single appendage, relatively flattened carpocephalum and
yellow reticulate spores with dissimilar sculpturing on distal and proximal surfaces, it can
be confused only with other members of Subg. Brachyblepharis (Grolle 1976, 1989).
Within Subg. Brachyblepharis the par-autoicous sexual condition considerably
narrows the field of taxa related to A. cruciata: in east Asia the only related species is A.
khasyana (Griff.) Pande et al., in Europe A. africana (Mont.) A.Evans, in Africa A.
dissoluta (Steph.) Grolle, in America A. chilensis (Nees & Mont.) A.Evans and A. venosa
(Lehm. & Lindenb.) A.Evans and in Australasia A. tenera (Mitt.) R.M.Schust. Of these
only A. africana and A. dissoluta have a deeply-lobed carpocephalum; all have more
lanceolate acute ventral scale appendages, all have much longer archegoniophores and
none has the highly crenate-dentate spore areolations of A. cruciata.
DISTRIBUTION AND ECOLOGY
Asterella cruciata is a highly localised species. In Japan it is restricted to the
Chichibu Mountains of Saitama Prefecture to the west of Tokyo (Shimizu & Hattori 1952,
1953a). Its distribution in Japan was mapped by Inoue (1976). Within this restricted area,
however, it is locally abundant in suitable habitats.
It has not previously been reported from China, where it is known from only two
collections, one from Yunnanfu [=Kunming], Yunnan collected by Handel-Mazzetti in
1915 and the other from Chungking, Sichuan collected by P.C. Chen in 1940. Hence its
present status in China requires clarification. The Yunnan collection was reported by
Herzog (1930) as ‘Fimbriaria spec. zollingeri Steph. et viridis Steph. affinis’ but correctly
identified in 1977 by Grolle as A. odora. The Sichuan specimen was misidentified as
Sauteria alpina (Nees) Nees.
The status in Korea is equally uncertain. It has been reported from Mt. Gyerong
by Choe (1975) as Asterella chichibuensis and the specimen in JE may be from this locality.
Further information is much needed.
In the Chichibu Mountains of Honshu 4. cruciata is restricted to calcareous
metamorphic substrates, where it grows in the broad-leaved forest zone, on damp shady
rocks and banks, often in stream valleys, sometimes on terrace walls of cultivated slopes.
Recorded altitudes are from 350 to 900m. In Sichuan the species is recorded from clay soil,
and in Yunnan from a clay wall at 1920m. Like other members of Subg. Brachyblepharis,
A. cruciata shows no xeromorphic adaptations and is restricted to moist shaded habi-
tats.
Source : MNHN, Paris
ASTERELLA CRUCIATA IN EASTERN ASIA 175
SPECIMENS STUDIED (EXCLUDING TYPES)
JAPAN, HONSHU: Japonia, No. 1562 as Asterella minuta Lindb. ex herb
Lindberg (BM, S); Prov. Tokyo, 21 xi 1909, H. Sakurai s.n. (YE); Tokyo Prefecture, foot of
Mt. Tenso, along R. Akigawa, alt. 600-700m, deciduous forest, on moist shaded limestone
rock, 10 x 1979, S. R. Gradstein & H. Inoue 3094 (U); Saitama Pref., Chichibu, Kagemori,
25 xi 1950, D. Shimizu NICH 58650 (JE); Saitama County, Ochiai of Otaki, Chichibu
Mts., 480m, on rock crevices and on soil in shade, 31 viii 1952, Shimizu in Hep. Jap. Exsicc.
Ser. 6, 252 (B, BM, G, H, JE, L, LD, NY, S, TENN, UBC, W); Saitama Pref., Chichibu
Mts., 600m, 2 xi 1952, Hikuma NICH-64335 (JE); ibid., 570m, 2 xi 1952, Hikuma NICH
60725 (JE), 60726 (JE); Saitama Pref., Chichibu Mts., 570m, 1952, Hikuma NICH 60725
(JE); Saitama Pref., Chichibu Mts., Mt. Mitsumine, 900m alt., on wet rock in shady places
with Conocephalum conicum, x 1959, Inoue s.n. (S); Saitama Pref., Chichibu Mts., Mt.
Mitsumine ca. 800m, Inoue 8523 (TENN); Saitama Pref., Chichibu-gun, Hinata-ohya
below Mt. Ryokami, 705m, terraced cultivated slope, on base of wall, 5 ix 1993, Long & Т.
Furuki 24716 (E); Saitama Pref., Chichibu-gun, Ohwa, Arakawa River below Mt. Mitsu-
mine, 375m, forested rocky river bank, on damp mossy rocks by road, 6 ix 1993, Long &
Furuki 24789 (E).
CHINA, SICHUAN PROV: Hwa-lung-chiao prope Chungking, in terra
argillosa, skiophila, v 1940, PC. Chen s.n. (JE-H3346); YUNNAN PROV.: in urbe
Yünnanfu, muris, 1920m, 22 xii 1915, Н. Handel- Mazzetti 8603 (E, JE, W, WU).
KOREA: Korea, 13 xii 1978, S. Hattori (JE-H2444).
ACKNOWLEDGMENTS — The author is grateful to the Curators of Bryophytes at B, BM, H, G,
JE, L, LD, NY, S, TENN, U, UBC, W and WU, for loan of specimens. T. Furuki, Chiba, Japan is
thanked for arranging field work in Honshu, Riclef Grolle, Jena and Helene Bischler-Causse, Paris
are thanked for generous help with the Asterella research project. Sally Rae, Edinburgh, is thanked for
technical assistance with SEM work.
REFERENCES
CHOE D.M., 1975 — Floral Studies on the Hepaticae of Korea, Report of the Science and Technology
Ministry of Korea 75-70: 1-25.
GROLLE R., 1976 — Verzeichnis der Lebermoose Europas und benachbarter Gebiete. Feddes
Repertorium specierum novarum regni vegetabilis 87: 171-279.
ОВОШЕ R., 1989 — Über Asterella subg. Brachyblepharis in Lateinamerika. Wissenschaftliche
Zeitschrift der Friedrich-Schiller-Universitát Jenal Thüringen. Mathematischnaturwiss-
enschaftliche Reihe 38: 231-239.
Fig. 1. — Spores of Asterella cruciata and its synonyms. a,b, c, f, g, lateral view; d, distal view; e,
proximal view; h, detail of distal view. a — Fimbriaria cruciata, lectotype (С); b — A. odora, holotype
(NICH); е — A. chichibuensis, holotype (NICH); d-e — A. mitsuminensis, holotype (NICH); f — A.
odora, Japan, Hikuma NICH-60725 (JE); а — A. odora, Yunnan, Handel- Маггені 8603 (WU); h —
A. odora, Japan, Long & Furuki 24716 (E). Scale: a-f, bar = 50 um; g, bar = 20 jim; h, bar = 5 шп.
Source : MNHN, Paris
176 D.G. LONG
HATTORIS. 1944 — Hepaticarum species novae et minus cognitae nipponenses III. The Botanical
Magazine, Tokyo 58: 38-46.
HERZOG T., 1930 — Marchantiales. In: Handel-Mazzetti, H. Symbolae Sinicae 5: 1-6.
INOUE H., 1976 — Illustrations of Japanese Hepaticae. Vol. 2. Tokyo: Tsukiji Shokan. 193 p.
MIYOSHI N., 1966 — Spore morphology of Hepaticae in Japan. Bulletin of the Okayama College of
Science 2: 1-46.
MIZUTANI M. & HATTORI S., 1969 — Check list of Japanese Hepaticae and Anthocerotae.
Miscellanea Bryologica et Lichenologica 5: 33-43.
SHIMIZU D. & HATTORIS., 1952 — Studies on the Japanese species of Asterella (1). Journal of the
Hattori Botanical Laboratory 8: 46-54.
SHIMIZU D. & HATTORI S., 1953a — Studies on the Japanese species of Asterella (2). Journal of
the Hattori Botanical Laboratory 9: 25-31.
SHIMIZU D. & HATTORI S., 1953b — Marchantiales of Japan, I. Journal of the Hattori Botanical
Laboratory 9: 32-44.
SHIMIZU D. & HATTORI S., 19530 —Marchantiales of Japan, (2). Journal of the Hattori Botanical
Laboratory 10: 49-55.
SHIMIZU D. & HATTORI S., 1954— Marchantiales of Japan. Ш. Journal of the Hattori Botanical
Laboratory 12: 53-75.
STEPHANI E, 1898-1900 — Species Hepaticarum. Vol. 1. Genàve, Bále & Lyon: Herbier Boissier.
STEPHANI E, 1917-1925 — Species Hepaticarum. Vol. 6. Genéve, Bále & Lyon: Herbier Boissier,.
STEPHANI Е, 1985 — Icones Hepaticarum. 165 microfiches. Zug, I.D.C.
TAYLOR J., HOLLINGSWORTH PJ. & BIGELOW W.C., 1974 — Scanning electron microscopy
of liverwort spores and elaters. The Bryologist 77: 281-327.
Source : MNHN. Paris
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 177-182 177
NOTES ON THE GENUS LEUCOLEJEUNEA (HEPATICAE)
S. Rob GRADSTEIN! & Patricia GEISSLER?
! Systematisch-Geobotanisches Institut der Universitát Góttingen,
Untere Karspüle 2, D-37073 Góttingen (Germany)
? Conservatoire et jardin botaniques de la Ville de Genéve,
C. P. 60, CH-1292 Chambésy (Switzerland)
ABSTRACT — The status of 7 poorly known species of Leucolejeunea is discussed. New synony-
mies: L. ecuadorensis — Archilejeunea ludoviciana, L. quitensis — Anoplolejeunea conferta, L. trista-
niana — L. unciloba, Archi-Lejeunea erronea (South Africa) — L. clypeata. The latter synonymy
suggests a label error, since L. clypeata is endemic to North America. Furthermore, Cyrtolejeunea
inermis from SE Brazil is referred to Leucolejeunea (as L. sp.) and Leucolejeunea rotalis from St.
Helena is transferred to Aureolejeunea as A. rotalis. The latter constitutes the first record of
Aureolejeunea from the Old World.
RÉSUMÉ — Le statut de 7 espéces mal connues du genre Leucolejeunea est discuté. Synonymies
nouvelles: L. ecuadorensis = Archilejeunea ludoviciana, L. quitensis = Anoplolejeunea conferta, L.
tristaniana = L. unciloba, Archi-Lejeunea erronea (Afrique du Sud) = L. clypeata. Cette dernière
synonymie suggère une erreur d'étiquette, étant donné que L. clypeata est une plante endémique de
l'Amérique du Nord. En plus, Cyrtolejeunea inermis du Sud-Est du Brésil est considérée comme étant
une espèce du genre Leucolejeunea (comme L. sp.) et Leucolejeunea rotalis de St. Helena est transférée
dans le genre Aureolejeunea (A. rotalis). Tl s'agit ici de la première indication d' Aureolejeunea dans
l'Ancien Monde.
Leucolejeunea Evans is a small genus of the Lejeuneaceae subfamily Lejeuneoi-
deae with a pantropical distribution. The genus has never been monographed although
useful regional treatments have been published for the New World by Schuster (1980), for
South East Asia by Grolle & Piippo (1990) and for Africa by Jones (1974). Twenty five
species have been validly described in Leucolejeunea , including twenty that were described
before 1974 and are therefore listed in Index Hepaticarum (Geissler & Bischler, 1985) as
well as five that have been described more recently. They are the following species
(references are given for names not appearing in Index Hepaticarum and for those no
longer accepted in Leucolejeunea; accepted names are in bold face).
L. antiqua Grolle (fossil in Dominican amber, Grolle, 1983a, 1990).
L. caducifolia Gradst. & Schäf.-Verw. (Brazil, Gradstein & al., 1993)
L. capensis S.W.Arnell = L. xanthocarpa (Jones, 1974)
L. clypeata (Schwein.) A.Evans
L. conchifolia (Evans) A.Evans
Source : MNHN, Paris
178 S.R. GRADSTEIN & P. GEISSLER
L. decurrens (Steph.) Mizut. (New Guinea, Grolle & Piippo, 1990)
L. ecuadorensis Steph.
L. flavescens (S.Hatt.) S.Hatt. = Thysananthus flavescens (S.Hatt.) Gradst. (Gradstein,
1991)
L. gradsteinii Grolle & Piippo (New Guinea, Grolle & Piippo, 1990)
L. japonica (Horik.) Verd.
L. knysnana S.W.Arnell = L. unciloba (Arnell, 1961a)
L. loriana (Steph.) Mizut.
L. nana S. Winkl.
L. paroica N. Kitag.
L. planifolia Horik. = Lopholejeunea kiushiana Horik. (Mizutani, 1961; Thiers $: Grads-
tein, 1989)
. quitensis Steph.
L. rotalis (Hook.f. & Taylor) S. Arnell
L. rotundistipula (Lindenb. ex Lehm.) A.Evans
L. sellowiana (Steph.) Steph. = L. unciloba (Evans, 1907)
L. subalpina S. Най. = L. japonica (Mizutani ,1961)
L. suprema Grolle & Piippo (New Guinea, Grolle & Piippo, 1990)
L.
L.
E
І.
м
. tristaniana S.W.Arnell
. turgida (Mitt.) Verd.
. unciloba (Lindenb.) A.Evans,
. xanthocarpa (Lehm. & Lindenb.) A.Evans.
It thus appears that at this moment 19 species remain in Leucolejeunea. A further
species, L. brunneorhiza R.M.Schust. from Venezuela (Schuster, 1980), has never been
validly described, and L. hossei (Steph.) “Verd.” and L. sikkimensis (Steph.) “Verd.”, cited
by Mizutani (1976) as synonyms of the Asiatic L. turgida, are invalid names because
Verdoorn (1934) did not actually make these combinations.
In this paper we would like to present the results of our study of the types of 5
species of Leucolejeunea which were not treated in recent revisions and whose status has
therefore remained dubious: Leucolejeunea ecuadorensis, L. nana, L. quitensis, L. rotalis,
and L. tristaniana, Furthermore, we will deal with the identity of two further species that
belong to Leucolejeunea but were described in the wrong genus: Archi-Lejeunea erronea
and Cyrtolejeunea inermis.
1. Leucolejeunea ecuadorensis Steph., Spec. Hep. 4: 737. 1912,
"Type: Ecuador. Prov. Azuay: Gualaquiza, “in silva montis Sapotilla ad truncorum putri-
dum" 2 Sep 1909, Allioni s.n. hb. Levier 6523 (G-25350, holotype) syn. nov.
= Archilejeunea ludoviciana (De Not. ex Lehm.) Geissler & Gradst. subsp. ludoviciana
Good material, mostly dioicous (male) shoots as usual in this species. In addi-
tion, a single autoicous plant with juvenile gynoecia and with androecia on separate
branches, was observed. The occurrence of autoicous sex distribution had not yet been
reported in this species.
2. Leucolejeunea nana S. Winkl., Rev. Bryol. Lichénol. 35: 326. “1967” 1968.
Type: El Salvador. "SE-hang des Cerro Miramundo bei der Hazienda Montecristo,
Metapan, Dep. Santa Ana, 2240m, А/5/4 “, leg. S. Winkler (ULM slide, holotype). The
Source : MNHN, Paris
NOTES ON LEUCOLEJEUNEA (HEPATICAE) 179
other (paratype) collection cited by Winkler in his original publication could not be
located (A. Lücking, pers. comm.)
The type material of Leucolejeunea nana consists of a sterile shoot-fragment, +
3 mm long, 0.5 mm wide. The leaf lobes are suborbicular and deeply concave, upto0.3mm
long, rounded at apex and with a + plane ventral margin; the lobules are very large,
semicircular, ca. 2/3-3/4 x the length of the lobe, the free margin of the lobule is plane, and
the apical margin of the lobule is oblique, continuing slightly into the ventral margin of the
lobe, and has 1-2 short teeth, the second tooth being located at the apex and being smaller
than the first one, sometimes rudimentary developped only. The leaf cells are + isodia-
metrical and rather small, ca. 16-20 um long in the leaf middle, with subquadrate lumina
and uniformily thickened walls (trigones lacking or minute). The underleaves are rather
small and suborbicular, ca. 3 x stem width.
Leucolejeunea nana seems to be a genuine member of the genus Leucolejeunea.
The species seems to differ from other described species of the genus by its huge 2-toothed
lobule and its very small size. Due to the poorness of the type material the identity of L.
nana remains doubtful, however. The possibility that the plant is a mere branchlet of
another described neotropical species cannot be ruled out.
3. Leucolejeunea quitensis Steph., Spec. Hep. 4: 738. 1912.
Type: Ecuador. Prov. Pichincha: Quito, Jameson s.n. (G-25351, holotype) syn. nov.
= Anoplolejeunea conferta (C.F.W.Meissn.) A.Evans
1 The type specimen consists of only a single shoot fragment, with a few androe-
cia.
4. Leucolejeunea rotalis (Hook.f. & Taylor) S.W.Arnell, Svensk Bot. Tidskr. 55: 210. 1961.
(Jungermannia rotalis Hook.f. & Taylor 1845; for further homotypic synonymy see Wig-
ginton & Grolle, 1996).
Type: St. Helena. Dianas Peak. 2500 *, terricola, Febr. 1840, unknown collector (G-25286,
isotype). Further isotypes were seen in S and W by Grolle (Wigginton & Grolle, 1996)
= Aureolejeunea rotalis (Hook.f. & Taylor) Gradst. & Geissler, comb. nov.
Plants (pale) brown in the herbarium. Leaves imbricate, nearly flat, leaf apex
rounded. Lobules oblong, inflated near the base, keel straight to slightly convex, in lower
leaves continuous with free dorsal lobe margin, the free margin of the lobule flat to slightly
incurved with a blunt apical tooth. Median cells ca. 16-20 um wide, + isodiametric,
trigones bulging and becoming confluent at the leaf margin, intermediate thickenings
scarce. Underleaves about 4 x the stem width, orbicular, decurrent, with a circular
insertion line.
Autoicous. Androecia on short lateral branches, bracteoles limited to the base
(see also Arnell, 1961b). Gynoecia on short lateral branches with one lejeuneoid innova-
tion, perianths almost eplicate.
The isotype in G consists of 9 stem fragments, 5 of which are fertile. The
brownish colour of the plants and the lejeuneoid (instead of pycnolejeuneoid) innovations
indicate that this species belongs in Aureolejeunea rather than in Leucolejeunea. The
lejeuneoid innovation of Aureolejeunea rotalis has already been noted by Thiers (1985, sub
Archilejeunea rotalis (Hook. & Taylor) Steph) and by Grolle (in Wigginton & Grolle,
1996). Aureolejeunea rotalis seems most closely related to the widespread neotropical A.
Source : MNHN, Paris
180 S.R. GRADSTEIN & P. GEISSLER
fulva R.M.Schust., but the leaves of the latter are much more convex and the underleaves
somewhat larger.
The genus Aureolejeunea (5-6 spp.) is widespread at high elevations in Tropical
America and, in addition, occurs in southern Chile. This is the first record of the genus
from the Old World.
5. Leucolejeunea tristaniana S.W.Arnell, Christophersen, Results Могу. Sci. Exped. Tris-
tan da Cunha 1937-38, 42: 15. 1958.
Type: Tristan da Cunha. Inaccessible Island: Plateau at W. end, steep rock face, 475m, leg.
E. Christophersen de Y. Mejland, n.2493, 23/2/1938. (S, isotype) syn. nov.
=L. unciloba (Lindenb.) A.Evans
Leucolejeunea tristaniana seems to be a robust form of L. unciloba. The plants
are about 2 mm wide.
The isotype from S consists of a nice patch of whitish to light brown plants,
resembling Brazilian populations which are generally more vigorous than those of North
America.
6. Archi-Lejeunea erronea Steph., Hedwigia 27: 113. 1888
Type: “South Africa. Cape of Good Hope, leg. Ecklon” [?, probably label confusion]
(G-11008, holotype) syn. nov.
= Leucolejeunea clypeata (Schwein.) Evans
Already Gradstein & Buskes (1985) reported that the type specimen belongs to
the genus Leucolejeunea, probably to Leucolejeunea rotundistipula (Lindenb.) Steph.
Grolle (1995) published the formal synonymy and noted the difficulty to determine the
identity of the scrappy type specimen. Our study of the specimen revealed that the lobules
never bear a discrete tooth, they are ovate-triangular, only slightly inflated; the lobes are
flat, the keel is nearly straight and in an almost continuous line with the dorsal lobe
margin. These features correspond more to Leucolejeunea clypeata than to L. rotundisti-
pula; in fact the plants are inseparable from L. clypeata. We therefore cannot agree with the
synonymy published by Grolle (1995). It is quite improbable that Leucolejeunea clypeata,
endemic to eastern North America, should occur in South Africa besides L. rotundistipula
and L. xanthocarpa. We presume that some specimens were confused by Stephani during
herbarium manipulations and that a label error is at hand.
Archilejeunea (Spruce) Schiffn. has not yet been conserved against Archi-
Lejeunea Steph. 1888, created by a 'descriptio generico-specifica', and therefore the
publication of a conservation proposal becomes urgent (Grolle, 1983b, 1995).
7. Cyrtolejeunea inermis Herzog, Memoranda Soc. Fauna Fl. Fenn. 25: 70. 1949.
Type: Brazil, 540 Paulo, Estaçäo Biologica do Alto da Serra, epiphyll, Е C. Hoehne 561
p.p. (JE, holotype)
— Leucolejeunea sp.
Like Leucolejeunea nana, the type material of Cyrtolejeunea inermis consists of
a sterile shoot-fragment with ca. 12 pairs of leaves, + 4 mm long, 0.5 mm wide. The leaf
lobesare ovate, up to 0.3 mm long, rounded at apex and with a + hollow (but not inflexed)
ventral margin; the lobules are subrectangular , ca. 1/2 x the length of the lobe, the keel is
almost straight and forms a wide angle of ca. 140? with the ventral margin of the lobe, the
Source : MNHN, Paris
NOTES ON LEUCOLEJEUNEA (HEPATICAE) 181
free margin of the lobule is plane, the apical margin of the lobule is truncate, and the apex
is broad and blunt (a discrete tooth is lacking). The leaf cells are slightly elongated, ca.
25-30 um long in the leaf middle, with ellipsoid lumina and distinct trigones. The under-
leaves are rather small and suborbicular, 3-4 x stem width.
By thecharacters of its leaf lobules and cells, Cyrtolejeunea inermis appears to be
a member of Leucolejeunea rather than Cyrtolejeunea. The same conclusion was drawn by
Grolle (in sched.). Although similar in size to L. nana S. Winkler, Cyrtolejeunea inermis is
quite different from L. nana by its lobule and its leaf cells (see descriptions). Like L. nana,
the identity of Cyrtolejeunea inermis remains doubtful due to the poorness of the material;
this problem may be resolved in the framework of a careful study into the variation of the
neotropical species of the genus Leucolejeunea. It could well be that the specimen is a mere
branchlet of L. conchifolia since we have observed that the lobule tooth may be poorly
developed in secondary shoots of the latter species.
ACKNOWLEDGEMENTS — We are grateful to Dr. Andrea Lücking (ULM) for the loan of the
type of Leucolejeunea nana, to Dr. H.-J. Zündorf, curator of the Herbarium Haussknecht (JE) for the
loan of Cyrtolejeunea inermis, and to Dr. L. Hedenás and Dr. U. Malmgren (S) for the loan of
Leucolejeunea tristaniana.
REFERENCES
ARNELL S., 1961a — Notes on South African Hepaticae VI. Botaniska Notiser 114 (4): 400-402.
ARNELL S., 1961b — Some new American species of hepatics. Svensk Botanisk Tidskrift 55:
205-210.
EVANS A. W., 1907 — Leucolejeunea, a new genus of Hepaticae. Torreya 7: 225-229.
GEISSLER P. & BISCHLER H. (eds.), 1985 — Index Hepaticarum 10 (Lembidium to Mytilopsis).
Vaduz — Genéve.
GRADSTEIN S. К. & BUSKES G.M.C., 1985 — A revision of neotropical Archilejeunea (Spruce)
Schiffn. Beihefte zur Nova Hedwigia 80: 89-112.
GRADSTEIN S. R., 1991 — Diversity and distribution of Asian Lejeuneaceae subfamily Ptychan-
thoideae. Tropical Bryology 4: 1-16.
GRADSTEINS. R., GROLLE R. & SCHÁFER-VERWIMP A., 1993 — Two interesting species of
Lejeuneaceae from Brazil. Journal of the Hattori Botanical Laboratory 74: 59-70.
GROLLE R., 1983a — Leucolejeunea antiqua n. sp., das erste Lebermoos aus Dominikanischem
Bernstein. Stuttgarter Beitráge zur Naturkunde, Ser. B, 96: 1-9.
GROLLE R., 1983b — Nomina generica Hepaticarum. Acta Botanica Fennica 121: 1-62.
GROLLE R., 1990 - Leucolejeunea antiqua (cin Lebermoos in Dominikanischem Bernstein) erstmals
mit Gynözium, Perianth und Andrózium. Nova Hedwigia 50: 473-479.
GROLLE R. & РПРРО S., 1990 — Bryophyte flora of the Huon Peninsula, Papua New Guinea.
XXXVII. Leucolejeunea (Lejeuneaceae, Hepaticae). Annales Botanici Fennici 27: 119-129.
GROLLE R., 1995 — The Hepaticae and Anthocerotae of the East African Islands. An annotated
Catalogue. Bryophytorum Bibliotheca 48: 1-178.
JONES E. W., 1974— African Hepatics. XXIV. Lejeuneaceae: some new or little-known species and
extensions of range. Journal of Bryology 7: 545-561.
MIZUTANI M., 1961 — A revision of Japanese Lejeuneaceae. Journal of the Hattori Botanical
Laboratory 30: 115-302.
MIZUTANI M., 1976 — Studies of little known Asiatic species of Hepaticae in the Stephani
herbarium. 9. Some little-known species of the family Lejeuneaceae. Journal of the Hattori
Botanical Laboratory 40: 441-446.
Source : MNHN, Paris
182 S.R. GRADSTEIN & P. GEISSLER
SCHUSTER R. M., 1980 — The Hepaticae and Anthocerotae of North America. New York, vol. IV:
1-1334.
THIERS B. M., 1985 — Branching in Lejeuneaceae III: Ptychanthoideae. Beihefte zur Nova Hedwi-
gia 80: 31-61.
THIERS B. M. & GRADSTEIN S.R.,1989 — Lejeuneaceae (Hepaticae) of Australia. I. Subfamily
Ptychanthoideae. Memoirs of the New York Botanical Garden 52: 1-82.
VERDOORN Е, 1934 — Studien über asiatische Jubuleae. Annales Bryologici 4 (suppl.): 1-231.
WIGGINTON M. J. & GROLLE R., 1996 — Catalogue of the Hepaticae and Anthocerotae of
Sub-Saharan Africa. Bryophytorum Bibliotheca 50: 1-267.
Source : MNHN. Paris
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 183-189 183
UN RICCIA PROLIFÈRE D'AUSTRALIE :
RICCIA PULLULANS SP. NOV. (SOUS-GENRE RICCIELLA)
Suzanne JOVET-AST
Résidence Cháteau d'Arcadie, 34 bis, avenue de la République
F-64200 BIARRITZ — FRANCE
RÉSUMÉ — Description d'une nouvelle espéce récoltée par O. Volk dans le Western Australia.
Principaux caractéres : épiderme dorsal couvert d'une mince pellicule transparente et granuleuse ;
pores nombreux sur la face dorsale ; cellules épidermiques proches des cellules annexes des pores
contenant un corps orangé ; multiplication végétative par la face ventrale d'un thalle mère d’où prend
naissance une suite de thalles fils de plusieurs générations successives.
SUMMARY — Description of a new species collected by O. Volk in Western Australia. Principal
characters : dorsal epidermis covered with a thin, transparent, granulose pellicle ; epidermal pores
numerous ; epidermal cells close to the annexed cells of pores containing an orange body. The species
displays a unique type of vegetative multiplication : from the ventral face of mother thallus arises a
succession of young thalli each one born on the ventral face of the previous one.
Parmi les Riccia australiens, une espéce, inconnue jusqu'alors, se distingue par
son comportement biologique qui se traduit par une multiplication végétative non obser-
Vee chez les autres espèces du genre Riccia (Jovet-Ast, 1991). A ce mode très particulier de
croissance végétative, l'espéce nouvelle doit son nom « pullulans ».
Riccia pullulans sp. nov.
TYPE — Australie, Western Australia, noch feuchter Boden an der Basis einer grossen
Granitglatze, frisch-trocken nitratreich (Mist), offen sehr grosse Fláchen deckend. « The
Humps » bei Heyden. pH: 6.3. Leg. Otto Volk, 23.3.1979, n? 071. (PC, holotype).
Diagnose latine — Thallus monoicus. Lobus albidus vel cyanescens in sicco, 3-5 mm longus,
2-3.5 mm latus, crassus, paulo bulbosus, lucens, translucida pellicula obtectus. Epidermidis
pori numerosi, 55 um diam. Epidermis cellulae proximae ab annexis cellulis pori aurantia-
cum corpus includunt. Squamae hyalinae, aequales margine lobi. Sporae 72-77-(80) um
diam. ; ala irregulariter dentata, 2.5-5 um lata ; distalis superficies cum 8-10 alveolis in
Source : MNHN. Paris
184 S. JOVET-AST
diametro ; proximalis superficies cum triradiata nota distincta, alveolis et tuberculis conspi-
cuis.
Description — Thalle (Pl.1 ; PI. 2, fig. 1-6) monoique, en grandes plaques composées de
lobes grégaires. Sur le sec, lobes blanchátres ou gris bleuté, un peu bulleux, brillants, à face
dorsale couverte d'une trés mince pellicule finement granuleuse, incolore, transparente,
chatoyante, recouvrant méme les pores alors visibles par transparence, se déchirant par les
chocset par l'áge ; à bifurcation basale profonde ; certains courtement bifides au sommet ;
longs de 3-5 mm, larges de 2-3.5 mm, épais, étalés en 2 ailes à la partie supérieure puis
brusquement et longuement rétrécis ; à sillon très étroit au sommet puis s'élargissant et
délimitant une partie médiane un peu bombée. Face dorsale à pores nombreux. Pores de
55 um de diamètre environ, bordés de 6 cellules annexes ; les cellules épidermiques qui
entourent les cellules annexes contiennent un gros corps brun orangé. Faces latérales
obliques, portant des écailles atteignant le bord du lobe mais ne le dépassant pas, à cellules
violettes ou rouge sombre, éparses parmi des cellules incolores ou formant de grandes
taches violettes surtout vers la marge.
Face ventrale couverte de très nombreux rhizoides lisses et tuberculés.
Section transversale 2 fois plus large que haute, parfois à peine plus large que haute,
comprenant : a) sous la fine pellicule granuleuse, la section des cellules annexes du pore et
celle des cellules épidermiques ; dans les cellules épidermiques situées contre les cellules
annexes, un corps brun orangé ; b) le tissu dorsal composé de 2-4 assises de chambres
aériféres limitées par un réseau de cloisons épaisses d'une seule cellule, soit, dans les parties
les plus larges du lobe, de hauts tubes aérifères s'ouvrant directement à l'extérieur ; c) le
tissu ventral dense à cellules petites et à parois minces. Anthéridies trés abondantes sur le
type ; archégones beaucoup plus rares.
Spores (P1. 2, fig. 8-11 ; Ph.1-4) brun rouge, de 72-77-(80) pm diam. ; aile irrégulièrement
dentée, large de 2.5-5 um, à 3 pores trés petits ; face distale à 8-10 alvéoles dans le diamétre,
à murets assez hauts, portant des tubercules dans les angles ; face proximale à marque
triradiée nette, à facettes portant des alvéoles de 4-5 um de diamètre, un peu plus petites
que celles de la face distale, à murets assez élevés munis, aux angles, de tubercules saillants.
Multiplication végétative — Chez le type, elle s'est effectuée selon trois modes :
1) selon le mode déjà observé chez quelques espéces du genre Riccia. Sur la face ventrale
d'un lobe mére, nait un lobe fils qui posséde la méme structure que la mére et qui se libére
rapidement (Pl. 3, fig. 1, 2).
2) par des lobes à structure particuliére (P1. 3, fig. 3-7) détachés de leur mere, mesurant 2
mm de hauteur, larges de 2.5 mm. Ils se composent de différents tissus : un tissu dorsal
dense formé de files paralléles de cellules, entouré de chambres aériféres ; un tissu ventral
de petites cellules compactes ; au-dessous, un pied incolore sur le sec, haut de 1 mm,
cylindrique, composé de longues cellules de 60-100 x 25-38 jim, à parois minces ; à la base
de ce pied, une masse de cellules isodiamétriques, de 50-60 x 50 um, à parois minces, qui
semblent provenir de la face ventrale du lobe mére.
3) par multiplication en chaine (P1. 3, fig. 8), forme curieuse jamais observée chez d'autres
Riccia. Un lobe bien développé porte, sur la face ventrale, un lobe fils un peu plus petit que
lui. Ce dernier ne se libére pas, devient, à son tour, un lobe mére donnant naissance à un
lobe fils sur sa face ventrale. Dans le cas observé, cette multiplication se produit 5 fois de
suite, Il en résulte la formation d'une masse allongée, un peu gélatineuse, dure, liée au lobe
mère d'origine, formée d'une chaîne de petits lobes solidement attachés les uns aux autres.
Cette masse trés résistante ne se brise pas : il faut couper les lobes pour les séparer.
Source : MNHN, Paris
Pl. 1 — Riccia pullulans sp. nov. Australie, Volk 071 (type). 1, 2 : lobes, face dorsale. Les points
représentent les pores vus par transparence. 3, 4 : sommets de lobes, face dorsale. 5 : aspect d'un
fragment de face dorsale, vu en plan. Les cercles représentent les pores ; les points, les fins granules de
la pellicule couvrant la face dorsale d'un lobe. 6-13 : sections transversales de lobes.
Source : MNHN, Paris
PI. 2— Riccia pullulans sp. nov. Australie, Volk 071 (type). 1 : section transversale d'un lobe au niveau
de chambres aériféres. 2 : section transversale d'un lobe dans une partie ayant des canaux aériféres.
3: un pore épidermique entouré des cellules annexes et des cellules épidermiques, vu en plan. Corps
orangés, en pointillé, sous la paroi des cellules épidermiques. 4, 5 : pores, cellules annexes et cellules
épidermiques, vus en plan. 6, 7 : pores, cellules annexes et cellules épidermiques contenant le corps
orangé, en section transversale. 8 : spore, face distale. 9 : alvéoles et tubercules de la face distale d'une
spore. 10, 11 : spores, face proximale à deux mises au point différentes.
Source : MNHN, Paris
30y m
Pl. 3 — Riccia pullulans sp. nov. Australie, Volk 071 (type). — Multiplication végétative. 1, 2: lobes fils
nés sur la face ventrale d'un lobe mère (mode 1). 3 : lobe fils détaché d’un lobe mere (mode 2). 4, 5:
section transversale du lobe de la fig. 3. 6: cellules du pied des lobes 4 et 5. 7: cellules du pied et cellules
de la base du pied des lobes 4 et 5. 8: un chaine de 5 lobes fils (2 à 6) nés sur un lobe mere (1), (mode
3). m : lobe mère ; f : lobe fils ; td ; tissu dorsal ; tv : tissu ventral ; p : pied ; ca : canaux aériféres.
tv: tissu ventral ; саб : chambre aérifére ; el : canal aérifère ; p : pore ; ca : cellule annexe ; cé : cellule
épidermique ; b : corps orangé dans des cellules annexes ; pg : pellicule granuleuse couvrant l'épi-
derme ; r : par transparence, limite d'une chambre aérifère.
Source : MNHN. Paris
188 S. JOVET-AST
Photos 1-4 — Riccia pullulans sp. nov. Australie, Volk 071 (type). 1, 2 : spore, face distale. 3, 4: spore,
face proximale. Diamètre : 75 шт.
Distribution — Australie, Western Australia, The Humps, prés de Hyden (le type).
Comportement biologique — D'aprés l'étiquette de récolte de O. Volk, R. pullulans
occupait au sol une grande surface. Les belles dimensions du spécimen recueilli et la
densité des thalles le prouvent. Ce Riccia était dans un état de reproduction sexuée et de
multiplication végétative intenses. Il vivait donc dans une station écologiquement favora-
ble, suffisamment humide. Sa localisation dans le Western Australia en grande partie
désertique peut surprendre, mais la récolte a été effectuée prés de Hyden situé dans la
pointe sud-occidentale du Western Australia. Les pluies d'été de cette région qui abrite des
foréts déterminent un climat favorable au R. pullulans, espéce hygrophile, peut-étre méme
hydrophile.
Affinités — R. pullulans appartient au sous-genre Ricciella (Braun) Boulay. On peut le
classer dans le sous-groupe Vesiculosa créé par Na-Thalang (1980) et qui rassemble 6
espèces à lobes étroits (larges de 2-4 mm) et spores petites (75-85 um de diamètre),
terrestres, hygrophiles, souvent résistantes à la chaleur.
Source : MNHN, Paris
RICCIA PULLULANS SP. NOV. 189
Trois espéces monoiques de ce sous-groupe sont proches de R. pullulans :
a) К. muscicola Steph., mais cette езресе, localisée dans les New South Wales, a des lobes
trés minces (4-5 fois plus larges que hauts) ; des spores dont le diamétre mesure 75-80 um
et méme 100 um ; des alvéoles au nombre de 12 dans le diametre de la face distale et 14
d'aprés la photographie D, planche 3, de la publication de Na-Thalang (1980).
b) R. deserticola Howe distinct de R. pullulans par ses lobes minces, par ses spores à aile
étroite (2 um) et ses pores épidermiques bordés de 4 cellules annexes.
c) R. crassa Steph. différent de R. pullulans par ses lobes trés caverneux et ses pores
épidermiques bordés de 4 cellules annexes.
Le corps orangé contenu dans certaines cellules épidermiques rappelle les idio-
blastes présents chez trois espéces de Riccia : R. macrocarpa Lev., R. campbelliana Howe,
R. dictyospora Howe. Il n'indique cependant aucune affinité précise avec ces trois espéces
саг R. pullulans appartient au sous-genre Ricciella alors que les autres espéces se classent
dans le sous-genre Riccia.
CONCLUSION
Le type de R. pullulans est remarquable d'une part par sa vitalité peu commune
attestée par l'abondance de ses thalles juxtaposés, par l'intensité de sa reproduction sexuée,
la particularité de sa multiplication végétative, d'autre part par la présence, dans certaines
cellules épidermiques, d'un corps orangé rappelant les idioblastes présents chez quelques
Riccia.
R. pullulans contribue à mettre en lumiére la richesse et la diversité du genre
Riccia en Australie et la valeur exceptionnelle des récoltes de Otto Volk.
BIBLIOGRAPHIE
JOVET-AST S., 1991 — Riccia (Hépatiques, Marchantiales) d'Amérique Latine, Taxons du sous-
genre Riccia. Cryptogamie, Bryologie-Lichénologie 12 (3) : 189-370.
NA-THALANG O., 1980 — A revision of the genus Riccia (Hepaticae) in Australia. Brunonia 3 :
61-140.
Source : MNHN, Paris
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 191-193 191
PLAGIOCHILA BISCHLERIANA, A NEW SPECIES FROM NEPAL
R. GROLLE ! and M. L. SO?
"Institut für Spezielle Botanik, Friedrich-Schiller-Universität, D-07743 Jena, Germany
?Biology Department, Hong Kong Baptist University, 224 Waterloo Road, Hong Kong
ABSTRACT — Plagiochila bischleriana spec. nov. is described from Nepal. It is recognized by the
following characteristics: 1) plants large, 2) leaves triangularly ovate, 3) leaf margin with long ciliate
teeth, 4) leaf apex subacute, 5) leaf-cells without trigones and 6) perianth long cylindrical with dorsal
keel narrowly winged.
In 1989 D. G. Long (E) gathered a large collection of bryophytes in Nepal. We
are indebted to him for sending us the Plagiochila specimens for study. Although botanists
from N. Wallich (1786-1854) up to some recent Japanese expeditions have collected
bryophytes extensively in Nepal, Long's material contained a handsome, easily distinguis-
hable new species of Plagiochila, that is described and figured here. We are pleased to name
itin honour of our colleague Dr. Hélène Bischler-Causse (Paris).
Plagiochila bischleriana Grolle & M.L.So sp. nov.
Plagiochilae fuscae Sande Lac. similis, sed differt 1) foliis triangulatim ovatis
(non /ate ovatis), 2) cellulis foliorum trigonis nullis vel minutis (non trigonis distinctis
subnodulosis), 3) perianthio dorsaliter humiliter alato (non exalato).
HOLOTYPE: NEPAL, N-facing slope of Dobala Danda above Kabeli Khola, ravine in
wet mossy oak/laurel forest; on mossy boulders, 2350 m, 1989, Long 17412; E (c. per.).
ISOTYPE in JE.
Further specimen studied: Same locality, Long 17380; E (sterile).
Plants large, soft-textured, occurring in loose tufts, 10-12 cm long and 5.9-
6.4 mm wide with leaves, light green, somewhat glossy, no creeping rhizomatous caulid
seen; sparingly branched, branches exclusively lateral-intercalary; stem 280-300 um thick,
light brown, 18-20 cells across, cortical cells in 2 layers, moderately thick-walled, oblong to
rectangular, 16-20 x 20-24 шт, medullary cells 20-24 x 24-36 um, thin-walled, trigones
minute; rhizoids only at the bases of shoots.
Leaves delicate, almost membranous, moderately imbricate to contiguous, obli-
quely to horizontally spreading, never secund nor revolute, oblong-ovate to ovate, dis-
tinctly longer than wide (length/width ratio 1.3-1.71:1), 2.62-2.8 mm long, 1.6-1.9 mm
Source : MNHN, Paris
192 R. GROLLE & M.L. SO
dee
Bra os
аа ze z
Fig 1. — Plagiochila bischleriana sp. nov. — a. Portion of plant, dorsal side. — b. Portion of plant,
ventral side. - c, d. Leaves. — e. Female bract. - f. Marginal tooth of leaf, — g. Perianth. — h. Median
cells of leaf. All drawn from holotype (Long 17412). Scale bars: A = 1 mm (ae, g), B = 0.1 mm (f, h).
Source : MNHN. Paris
PLAGIOCHILA BISCHLERIANA SP. NOV. 193
wide, widest near the base; dorsal margin distinctly arched, with 9-11 spinose teeth, leaf
base moderately decurrent along dorsal midline, leaving stem surface widely exposed; leaf
apex broadly rounded to truncate, with 5-8 ciliate-spinose teeth, ventral margin arched,
moderately ampliate at the base, bearing 12-14 spinose teeth, ventral stem surface com-
pletely hidden, leaf-base hardly decurrent, teeth 24-26 in total, spinose-dentate, 2-6 cells
long in a uniseriate row, and 2-3(4) cells wide at the base, terminal cell elongated,
sometimes deciduous, 12 x 72 um and almost 6 x as long as wide; cells along the leaf apex
30-36 x 30-36(40) um, those in the leaf middle to base 36-40 x 46-60(76) um, vitta absent,
walls evenly thickened throughout, trigones absent or small, cuticle smooth. Underleaves
absent. Paraphyllia absent. Asexual reproduction not seen.
Male plants not seen. Female inflorescence terminal on stem with 2 innovations
arising from the bases of bracts, bracts in 2 pairs, almost similar to leaves in shape and
marginal dentation, but much larger, measuring 3.05 mm long, 2.38 mm wide. Perianth
long cylindrical, 3.77 mm long, 1.30 mm wide, cells of perianth similar to that of leaves,
without trigones, mouth bilabiate, arched, irregularly spinose — dentate, with over 40
teeth, teeth slightly longer than those on the leaves, dorsal keel narrowly winged. Sporo-
phytes not seen.
Superficially, this species resembles an over-sized P. denticulata Steph. because
of the longciliate-spinose teeth along the whole margin of the leaf, and the evenly, slightly
thickened walls of leaf cells, But Р. denticulata is only 1/10 of the size of P. bischleriana, is
dark brown, soft in texture and glossy in appearance. P bischleriana also resembles
members of the Ciliatae in having long ciliate teeth, almost translucent leaves and large
leaf cells. But the Ciliatae have distinct trigones in the leaf cells and the cells are mostly
thin-walled.
In size, P. bischleriana more resembles P. gymnoclada Sande Lac. (Java, Philip-
pines, Sri Lanka, Japan, New Guinea) and Р. fusca Sande Lac. (Java, Celebes, Philippines),
both belonging to section Plagiochila (Inoue, 1984), but these species are very rigid in
texture and the leaves are broadly ovate with a broadly rounded apex. Furthermore, the
total number of teeth is 20-35 per leaf and the leaf cells have + large nodulose trigones.
The three closely related species in the section Plagiochila can be separated by the
following key:
l. Plants soft in texture, leaves triangularly ovate, ventral leaf base ampliate, teeth
spinose-dentate, 2-6 cells long, terminal cell 6 x as long as wide, dorsal keel of perianth
narrowly winged P. bischleriana
1. Plants rigid in texture, leaves broadly ovate, ventral leaf base not ampliate ....... 2
2. Plants very glossy, teeth small, 2-5 cells long, terminal cell 1.1-1.5 x as long as wide,
dorsal keel of perianth with a distinct wing . P gymnoclada
2. Plants dull green to brown, teeth 5-9 cells long, terminal cell 34. 5 xas long as wide,
keels of perianth unyiged ha ER VOOR LR Eh ДИЛ ead P. fusca
REFERENCES
INOUE H., 1965 — Contributions to the knowledge of the Plagiochilaceae of Southeastern Asia.
VII. Synopsis of Plagiochila Dum. in the Himalayan region. Bulletin of the Naional
Science Museum (Tokyo) 8: 375-403.
INOUE H., 1984 — The genus Plagiochila (Dum.) Dum. in Southeast Asia. Tokyo. 142 p., 76 pls.
Source : MNHN, Paris
me e MOST RETAMA E: ОТОК.
ES Re НИ HG айу baron
Аел debeis биде sos rm foot
dls (адып loa йыш
too а meu lathes? ЦИ oe
ien N O cq
, Bop Vise:
eee hol seht gts x
dida xij daga ГАС УМ фо МЕ а
кайыын кива йн айа Es
BER ee ama ai for а 1
н т сил adnot elles 3-2 dai
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 195-205 195
NEW OR LITTLE KNOWN EPIPHYLLOUS LIVERWORTS,
VII. TWO NEW LEJEUNEACEAE SPECIES
FROM THE MASCARENE ISLANDS
Tamás PÓCS
Eszterházy Teachers'College, Dept. of Botany, EGER, Pf.43,H-3301,
HUNGARY, Fax: (36)36-321-016, e-mail: colura@gemini.ektf.hu
RÉSUMÉ — Colura mauritiana et Drepanolejeunea helenae, hépatiques épiphylles et corticoles des
Mascareignes, sont décrites comme espèces nouvelles pour la science. Colura mauritiana, de l'ile
Maurice, appartient à la section Harmophyllum bien qu'elle ait une ressemblance superficielle avec C.
meijeri, membre asiatique de la section Gamolepis. Drepanolejeunea helenae, de Vile de la Réunion, est
affine de D. ankasica de l'Afrique occidentale (Ghana). Sa place dans un sous-genre demeure
indéterminée. Les deux espéces sont restreintes à une aire limitée sur les iles concernées et semblent
endémiques.
SUMMARY — Colura mauritiana and Drepanolejeunea helenae are described as new to science.
Both species occur as epiphyllous and corticolous in the Mascarene islands, the first from Mau-
ritius and the second from Réunion. Colura mauritiana belongs to the section Harmophyllum
although showing superficial resemblance to C. meijeri, an Asian member of section Gamolepis.
Drepanolejeunea helenae is related to the West African (Ghana) D. ankasica. Its subgeneric place is
uncertain. Both species are restricted to a small area within the concerned islands and seem to be
endemic.
Key worps: epiphylls, Lejeuneaceae, Colura, Drepanolejeunea, Mascarenes.
The bryological exploration of the Mascarene Islands is the part of the Bryolo-
gia Africana project initiated by Prof. P.W. Richards (1984). I paid special attention to the
rich hepatic flora of the Indian Ocean islands (recently catalogued by Grolle 1995), which,
according to studies made by different authors in the last two decades, is still quite
underexplored and may yield many novelties (Pócs, 1993, 1995).
Members of our Department made intensive studies on the bryoflora of Mas-
carene Islands, in collaboration with the Muséum d'Histoire Naturelle de Saint Denis,
Réunion, with the Conservatoire Botanique and with the Université de la Réunion,
France and with the Herbarium of Sugar Research Institute, Mauritius. In 1994, 1995 and
1996 three consecutive collecting trips took place in Réunion and two on Mauritius
Island. Our aim, apart from the floristic and taxonomic exploration, was to study in detail
the cryptogamic vegetation of Réunion Island. The present publication deals with 2 new
species resulting from these studies, when numerous relevés were made (cf. also Pócs &
Tóthmérész in press) and hundreds of samples were identified.
Source : MNHN, Paris
196 T. PÓCS
By the description of the habitats of new species, the nomenclature of accom-
panying species is according to Grolle (1995), Wigginton & Grolle (1996) and O'Shea
(1995), where the authors' names also can be found.
Colura mauritiana Pócs sp. nov. (Sectio Harmophyllum Grolle)
Pl. 1 (Figs. 1-9)
Diagnosis — Planta epiphylla vel ramicola pallide virens vel flavovirens caulibus
irregulariter ramosis, ad 5 mm longis, 50-90 um crassis et cum foliis 1.5-2 mm latis. Folia
contigua, 0.6-1.2 mm longa et 0.3-0.5 mm lata sacculis claviformibus apicibus late hemis-
phaericis. Clypeus late orbicularis cellulis 7-11 centralibus et 14-15 marginalibus composita.
Amphigastria acutilobata lobis 4-5 cellulae lata. Gemmae 32 cellulosae. Ceterae desunt.
Holotypus: Mauritius, Pócs 9530/H (EGR; Isotypi: MAU, PC). Paratypi: Pócs
95291BJ (EGR) et 9531/C (EGR).
Description — Epiphyllous or ramicolous, pale or yellowish green with solitary
or slightly branching shoots of 1.5-2 mm width and up to 5 mm length or forming 2-3 mm
large, dense patches. Stems 50-90 um thick, with 7 rows of cortical and 3 rows of
medullary cells (4 rows near the leaf insertion), with evenly thickened walls. Lobes with
entire margin, sac claviform, with a broad hemisphaeric and sometimes crestlike, conically
protuberant group of cells. Lobe and sac cells 20-30 x 30-40 um, with heart-shaped
trigones and 1-3 intermediate thickenings per wall. Valve broad ovate or orbicular, with
14-15 hyaline marginal, 6-10 central cells and with 1 basal median cell. Hinge formed by
3 cells, frame around the valve by 7-9 cells and with a hyaline papilla.
Underleaves with 60-95 um broad, lanceolate lobes that are 4-5 cells wide at their
bases, Gemmae of 32 cells, with 4 growing points. Gametangia and sporophyte not
observed.
Specimens examined — Mauritius: Perrier Nature Reserve in the neighbourhood of Mare
aux Vacoas, submontane Sideroxylon thicket with Trochetia and with Cyathea borbonica, at 540 m
alt., 20°21/50” S, 57°29’30” E. epiphyllous, on Syderoxylon puberulum leaf, associated with Cheilole-
jeunea serpentina, Ch. surrepens, Cololejeunea marginata, C. cristata, Colura digitalis, C. heimii, C.
obvoluta, Diplasiolejeunea cavifolia, D. comorensis, Drepanolejeunea madagascariensis, D. trematodes
and all transitions between the two, Lejeunea tabularis s.l., L. caespitosa, Leptolejeunea maculata and
others (S.& T. Pócs 9529/BJ, Paratypus, EGR). Black River Gorges National Park: Le Petrin Nature
Reserve. Philippia brachyphylla heath with scattered trees, at 650 m alt. 209255, 57*28/20" E, creeping
on Philippia twigs, accompanied by Cheilolejeunea trifaria, Drepanolejeunea vesiculosa, Frullania
onraedtii, F. serrata, Leucoloma dichelymoides and by Leucoloma grimmioides (T. Pécs 9530/H,
Holotype: EGR, Isotypes: MAU, PC). Macchabée Upland Climax Forest Reserve in the canopy with
Labourdonnaisia at 640 m alt. near the road junction, 2024/30” S, 57%27'50” E. Epiphyllous on
naturalized Psidium cattleyanum leaves, accompanied by Cololejeunea zenkeri and by Frullania
purpurea and corticolous, accompanied by Drepanolejeunea cambouena and by Jamesoniella
contracta (T. Pócs 9531/С , Paratypus in the microslide collection of EGR).
All the above collections were made on the 17th March, 1995, when we were with
my wife guided and accompanied by Mr. Joseph Guého and by Miss Danielle Florens,
from the National Herbarium in Mauritius Sugar Industry Research Institute, Réduit.
Colura mauritiana has a superficial resemblance to the Asian Colura meijeri
Jovet-Ast, but the latter belongs to Section Gamolepis, which according to Jovet-Ast
(1953) has a valve fused to the hinge and of many more (40-60) cells. The valve of C.
Source : MNHN, Paris
TWO NEW LEJEUNEACEAE SPECIES 197
PL 1— Colura mauritiana sp. nov., Mauritius. 1: Ventral view of shoot. — 2: Conically protuberant
sac cells, — 3: Leaf, dorsal view. — 4: Valves (in different magnifications). — 5: Cells of lobe margin.
6: of lobe centre. — 7: of the sac. — 8: Underleaves. — 9: Gemma. (Figs 1, 2 and 4 upper two are
drawn from Pócs 9529/BJ and all others from the Holotype: Pócs 9530/H).
Source : MNHN. Paris
198 T.PÓCS
mauritiana is very easily detachable and is composed of fewer (20-35) cells. Their under-
leaves are also different, C. mauritiana having underleaf lobes 4-6 cells broad well above
their mid length while the underleaf lobes of C. meijeri from a 4 cells broad base
immediately taper to 2 cells width. The closest relatives of our new species are probably the
Asian Colura hemisphaerica Jovet-Ast and Colura cymbalifera Herz. from the Section
Harmophyllum, but these species differ again by the much higher number of valve cells
(40-60) and by the different shape of their underleaves. Colura mauritiana has no relatives
in Africa and seems to be an endemic species in Mauritius, with Asian affiliation and
origin, strengthening the Asian affinities of the flora of Indian Ocean islands (Pócs, in
press).
Drepanolejeunea helenae Pócs sp. nov.
PI. 2-4 (Figs. 10-29), Photo
Diagnosis — Planta autoica, corticola vel epiphylla, in statu vivo prasina ocellis
lucentibus, sicca flavovirens. Caules 50-70 um crassi, cum foliis 0.6-0.85 mm lati, irregulari-
ter ramulosi, caespites densi diametro 5-40 mm formans. Folia falcata, apice acuminato,
margine irregulariter obtuse eroso-dentata. Cellulae medianae 15-25 x 28-40 um, ocelli 2-25,
cellulas alias lobi aequantes.
Lobulus oblonge ovatus, margine quatrocellularis saepe incurvo. Dens primus
lobuli unicellularis falcatus, dens secundus obtusus. Papilla hyalina inter dentes duos ad
marginem lobuli crescens. Amphigastria biloba caulibus 3-4-plo latiora lobis acuto-
lanceolatis sinu obtuso.
Androecia in spicis lateralibus saepe sub gynoecio, 2-4 jugis antheridiis singulis.
Perianthia 0.6-0.7 x 0.4 mm, obconica, quinquecarinata carinis spinoso-crenulatis saepe
cornuta. Rostrum elongatum (ad 100 um) apice dilatata. Seta articulata, capsula diametro
250 um, elaterae unispiralae.
Species nova in honorem Doctoris Helenae Bischler-Causse, investigatoris illustris-
simae Drepanolejeunearum Neotropicae dedicata.
Holotypus: Réunion, Pócs 9651/DH (EGR; Isotypi: REU, G, H, JE, PC, MAU,
MO, NY). Paratypi:Vojtkö 9433/AN (microslide collection of EGR); Kis & Vojtkó
9651/CC (EGR).
Description — Autoicous, forming vivid green, 5-40 mm large patches on bark or
more scarcely on living leaves. The glistening dots of the numerous ocelli well visible even
by a handlens. When dry, in herbarium, yellowish green and the ocelli hardly visible.
Shoots 0.6-0.85 mm wide, loosely attached to the substrate. Stems irregularly branching,
50-70 um thick, composed of 7 cortical and 3 medullary cells with evenly thickened walls,
as usual in Drepanolejeunea (Bischler, 1967). Leaves contiguous or imbricate, 3-500 um
long and 2-300 um wide, asymmetric, falcate, with undulately obtuso-dentate margin and
acuminate, often incurved apex ending in 1-2 short cells. Leaf base variable, well exceeding
the stem or just reaching its median line and parallel to it. Central lobe cells 15-25 x
28-40 um, with irregular intermediate thickenings. Ocelli 2-25 (in most cases 10-16) per
leaf, similar to ordinary lobe cells in size but their walls almost evenly thickened, 2 ocelli
usually forming a short basal vitta above the lobule margin, others solitary or geminate
and scattered or arranged in a few irregular lines; ocelli in living plants containing one
large, strongly refractive, slightly granulose oil body of the Leptolejeunea type (in sense of
Kis & Pécs, 1997), while the normal lobe and lobule cells have 1-6 Calypogeia type oil
Source : MNHN, Paris
PI. 2— Drepanolejeunea helenae sp. nov., La Réunion. 10: dorsal view of shoot. On the lower piece the
position of ocelli is shown. — 11: Ventral view. — 12: Underleaves. — 13: Lobule with incurved free
margin. — 14: Part of shoot with male branches. Ventral view. — 15: Male branches with antheridia.
15а: Crest of a male bract. (All drawn from the Holotype).
Source : MNHN. Paris
PI. 3 — Drepanolejeunea helenae sp. nov., La Réunion. 16: Leaves with ocelli. — 17: Oil bodies of
ocelli and of a normal lobe cell. In the third cell the chloroplasts are shown. — 18: Lobules with the
variation of lobule teeth and papilla position. — 19: Underleaf. (All drawn from the Holotype with
the exception of 17:G Kis 9651/CC).
Source : MNHN. Paris
p
Ф
go
no
№
©
PL 4 — Drepanolejeunea helenae sp. nov., La Réunion. 20: Female branch with perianth and
pycnolejeuncoid subfloral innovation (perichaetial leaves removed for better visibility). — 21: Peri-
chaetium. — 22: Perichaetial leaves. — 23: Perianths, — 24: Perianth beak. — 25: Perianth horn. —
26: Keel of a perianth. — 27: Sporophyte. — 28: Elater. — 29: Sporangium wall thickenings. (All
drawn from the type).
Source : MNHN. Paris
202 T. PÓCS
Photo — Type specimen of Drepanolejeunea helenae alive, with well visible ocelli. (Photo Andras
Szabó).
bodies (in sense of Gradstein et al., 1977). Leaf apex and margins with smaller, rectangu-
lar cells of 12-20 um.
Lobules oblong ovate, inflated and with often incurved, 4-celled free margin.
Lobule cells similar to lobe cells but intermediate thickenings more scarce. First (distal)
tooth unicellular, acute and falcate, second (proximal) tooth blunt and separated from the
first tooth by one cell, which usually develops at the inner margin surface and is adnate to
the first tooth. Hyaline papilla in the notch between the first or second teeth or on the tip
of the intermediate cell. Base of the distal lobule margin usually with a cell bulging,
opposing the apex of the falcate first tooth (Fig. 18).
Underleaves bilobed with acute lobes of 2-3 cells width at their base and with a
wide open sinus between them. Adhesive disk rarely developing, from the median cells of
underleaf base (Fig. 12), a real paramphigastrium (Bischler, 1969) not observed.
Androecia on short branches, often more than one near to a gynoecium or on
sterile parts of the stem, with 2-4 pairs of bracts, each with one antheridium of 55-70 um
diameter, upper bracts usually with a crest of protuberant cells; 2-3 bracteoles present
(Fig. 14).
Gynoecia (Pl. 4) on short side branches, each with one pycnolejeuneoid innova-
tion (Fig. 20). Perichatium about half the length of the perianth, with one pair of
unequally bilobed bracts with a few large, irregular teeth. Bracteole acutely bilobed,
Source : MNHN, Paris
TWO NEW LEJEUNEACEAE SPECIES 203
partially connate with the bracts, in cases with an additional tooth and a hyaline papilla.
Perianth obconic or urne-shaped, 0.6-0.7 x 0.4 mm, with scattered ocelli, almost truncate
above with an elongated (up to 100 um), dilatate beak and with 5 spinoso-crenulate keels
ending often in an acute horn.
Seta strongly articulate. Capsule 250 um in diameter, capsule wall with very pale,
irregular thickenings (Fig. 29). Elaters 180 um long, with well developed unispiral band
(Fig. 28). Spores unknown.
The new species is dedicated to the Dr. Héléne Bischler-Causse, well known
monographer of the Neotropical species of genus Drepanolejeunea and many other critical
groups of Hepaticae.
Specimens examined — Réunion: W of Ste Anne, epiphyllous in remnants of tropical
rainforest in the valley around “le Grand Etang”, at 500-550 m altitude, 214/42" S, 5593850" E, 29
Aug.1994. Associated with Ceratolejeunea belangeriana, Cololejeunea af. bebourensis, C. borbonica,
С. duvignaudii, C. marginata, C. obliqua, C. tanzaniae, Colura digitalis, Diplasiolejeunea cavifolia, D.
cornuta, Drepanolejeunea madagascariensis, D. trematodes and all transitions between the two,
Lejeunea caespitosa, Frullania apicalis, Taxilejeunea furciornuta and others. A. Vojtkó 9433/AN (Рата.
type, in the microslide collection of EGR). SSW slope of Piton de la Fournaise volcano, at the W edge
of Basse Vallée. Secundary, naturalized Psidium cattleyanum stand with remnants of former montane
rain forest trees along the trail GR R2 leading towards Piton Lardé, at 750 m alt., 21919'S, 55°41'Е.
Corticolous on the smooth bark of small Psidium cattleyanum and Aphloia theaeformis trees in open
or in shade. Accompanied by Ceratolejeunea, Diplasiolejeunea, Lopholejeunea and Marchesinia spp.
Acrolejeunea aulacophora, Bazzania nitida, Drepanolejeunea vesiculosa, Frullania usambarana, Lep
dolejeunea delesserti, Plagiochila repanda and others, (T. Pécs 9651/DH, 23 July 1996, Holotype:
EGR; Isotypes: REU, G, H, JE, PC, MAU, MO, NY; G Kis & A. Vojtkó 96511CC, 16 July 1996, from
the same site, Paratype, EGR).
The appearence of this plant in the field and under microscope at the first glance
suggested an unknown Harpalejeunea species because of the falcate, pointed leaves with
basal twin ocelli and underleaves with shallow lunate incision. However, Dr. Riclef Grolle
(Jena) was kind to call my attention to the pycnolejeuneoid innovations below the
perianths, which indicate obviously its proper place in the genus Drepanolejeunea. There is
only one species within the genus, which shows closer affinity to our species: Drepanolejeu-
nea ankasica E.W. Jones (in Jones & Harrington, 1983), described from Ghana, West
Africa. The two species have several important features in common, including the falcate
leaves with acute, often incurved apex, the irregularly dentate leaf margin, the geminate
basal ocelli, four-celled free lobule margin, and the arrangement of the lobule teeth. The
autoicous sex distribution (rare feature within Drepanolejeunea, cf. Bischler, 1964) is also
shared by the two species. Other characters, like the ocellate, obconical perianths and the
bulging, distal lobule keel cell opposite the first tooth occur in many other species too (cf.
Bischler, 1964, 1968; Herzog, 1930, 1934, 1937, 1939).
The combination of characters of the two species makes it difficult to interpret
their subgeneric position. Due to their lobule teeth arrangement, subgen. Kolpolejeunea
Grolle (Grolle, 1976) is out of question. The free lobule margin formed by four cells.
suggests subgen. Drepanolejeunea Grolle, but the many ocelli (at least in D. helenae), the
gynoecial arrangement and the leaf shape are typical for subgen. Pristolejeunea Grolle,
especially the tropical Asian Drepanolejeunea thwaitesiana and its relatives (Mizutani,
1990). From these, the two African species are well distinguished by the four-celled free
lobule margin, the totally different underleaf lobes. These are horizontally widely sprea-
ding in D. thwaitesiana group, trapezoid to V shaped in the two African species, like in the
Species group VI of Bischler, 1964) of neotropical Drepanolejeunea. Further studies might
Source : MNHN. Paris
204 T. PÓCS
justify to delimitate a new subgenus or at least a section to accommodate D. ankasica and
D. helenae.
The new species, which seems to be endemic in la Réunion, differs sufficiently
from D. ankasica by the many (up to 25) ocelli in the leaf lobe (only 2-3 in D. ankasica), by
the very different shape of underleaves (obtrapeziform with widely diverging lobes in D.
ankasica, V shaped with narrower lobes in D. helenae), the different perianth keels and
beak and by the ocelli in perianth (not reported in D. ankasica).
ACKNOWLEDGEMENTS — I wish to recognize with thanks the funding of our field research in the
Indian Ocean Islands by the following sponsoring agencies: National Geographic Society (USA),
Grant 5201/94; Hungarian National Science Foundation, Grants No. OTKA 1/3-941, OTKA U
18611, OTKA W 015072 and the Hungarian Ministry of Education and Culture, K & F (Research
and Development) Grant.
We are very grateful to the local scientific institutions and to the persons for organizing and
helping our activities in the field, especially to Dr. Sonja Ribes, Conservateur Principal du Muséum
d'Histoire Naturelle de la Réunion, Philippe Pagezy, Directeur Régional de l'Office National des
Foréts, la Réunion, France and to Mr. Joseph Guého and to Miss Danielle Florens, from the National
Herbarium in the Sugar Industry Research Institute, Réduit, Mauritius and to many others. Finally
Tam specially indebted to Drs. Riclef Grolle and 5. Rob Gradstein for their advise in the treatment of
the new species.
REFERENCES
BISCHLER H., 1964 — Le genre Drepanolejeunea Steph. en Amérique Centrale et Méridionale.
Revue Bryologique et Lichénologique 33 (1-2): 15-179.
BISCHLER H., 1967 — Recherches sur l'anatomie de la tige chez les Lejeuneaceae. Ш. Les
sous-familles Lejeuneoideae, tribu Lejeuneeae, et Tuyamaelloideae. Revue Bryologique et
Lichénologique « 1966 > 1967, 34 (3-4): 601-675.
BISCHLER H., 1968 — Le genre Drepanolejeunea Steph. en Amérique Centrale et Meridionale. П.
Revue Bryologique et Lichénologique « 1967 » 1968, 35 (1-4): 95-134.
BISCHLER H., 1969 — Notes sur l'anatomie des amphigastres et sur le développement du param-
phigastre et des rhizoides chez Drepano-, Rhaphido- et Leptolejeunea. Revue Bryologique et
Lichénologique « 1968 » 1969, 36 (1-2): 45-55.
GRADSTEINSR., CLEEF A.M. & FULFORD M.H., 1977 — Studies on Colombian cryptogams.
Hepaticae — Oil body structure and ecological distribution of selected species of tropical
Andean Jungermanniales. Proceedings of the Koninklijke Nederlandse Akademie van
Wetenschappen, Ser. C, 80 (5): 377-420.
GROLLE R., 1976 — Drepanolejeunea Subgen. Kolpolejeunea — Fine neue Untergattung aus der
Paläotropis. Journal of the Hattori Botanical Laboratory 40: 191-216.
GROLLE R., 1995 — The Hepaticae and Anthocerotae of the East African Islands. An Annotated
Catalogue. Bryophytorum Bibliotheca 48, 178 p.
HERZOG Th., 1930 — Studien über Drepanolejeunea 1. Annales Bryologici 3: 126-149.
HERZOG Th., 1934 — Studien über Drepanolejeunea 11. Annales Bryologici 7: 57-94.
HERZOG Th., 1937 — Studien über Drepanolejeunea ШТ. Annales Bryologici 9: 115-130.
HERZOG Th., 1939 — Studien über Drepanolejeunea IV. Annales Bryologici 12: 98-122.
JONES E.W. & HARRINGTON A.J., 1983 — The hepatics of Sierra Leone and Ghana. Bulletin of
the British Museum (Natural History), Botany series 11 (3): 215-289.
JOVET-AST S., 1953— Le genre Colura. Hépatiques. Lejeuneaceae, Diplasiac. Revue Bryologique et
Lichénologique 22 (3-4): 206-312; supplément. Revue Bryologique et Lichénologique 23
(1-2): 1-22.
Source : MNHN, Paris
TWO NEW LEJEUNEACEAE SPECIES 205
KIS G. & PÓCS T., 1997 — Ой body studies on African Hepaticae. Journal of the Hattori Botanical
Laboratory 81: 175-242.
MIZUTANI, M., 1990 — Notes on the Lejeuneaceae. 16. Drepanolejeunea thwaitesiana and its
related species from Asia. Journal of the Hattori Botanical Laboratory 68: 367-380.
O'SHEA B., 1995 — Checklist of the mosses of sub-saharan Africa. Tropical Bryology 10: 91-198.
PÓCS T., 1993 — New or little known epiphyllous liverworts, IV. Two new Cololejeuneoideae from the
i Comoro Archipelago. Journal of the Hattori Botanical Laboratory 14: 45-57.
PÓCS T., 1995— East African bryophytes, XIV. Hepaticae from the Indian Ocean islands. Fragmenta
Floristica et Geobotanica 40: 251-277.
PÓCS T., in press — The distribution and origin of the foliicolous bryophyta in the Indian Ocean
islands. Proceedings of the ТАВ & IAL Symposium of Foliicolous Cryptogams, 29 August —
2 September 1995, Eger, Hungary. Abstracta Botanica.
PÓCS T. & TOTHMERESZ B,, in press — Foliicolous bryophyte diversity in tropical rainforests.
Proceedings of the IAB 4 IAL Symposium of Foliicolous Cryptogams, 29 August — 2
September 1995, Eger, Hungary. Abstracta Botanica.
RICHARDS PW, 1984 — The bryologically under-worked regions of the world, with special
reference to West Africa and a proposal for a Bryologia Africana. Journal of the Hattori
Botanical Laboratory 55: 165-172.
WIGGINTON M.J. & GROLLE R. (supplemented by A. Gyarmati), 1996 — Catalogue of the
Hepaticae of Sub-Saharan Africa. Bryophytorum Bibliotheca 50, 267 p.
Source : MNHN, Paris
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 207-212 207
NEW MOSS RECORDS AND RANGE EXTENSIONS
OF SOME XERIC AND ALPINE MOSS SPECIES IN CHINA
Benito C. TAN! & Jian-cheng ZHAO?
"Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, USA 02138
"Department of Biology, Hebei Normal University, Shijiazhuang, Hebei, China 050016
ABSTRACT — Crossidium crassinerve, Crossidium seriatum and Polytrichastrum sexangulare are
three mosses reported new to China. Range extension and correction of several rare, xeric and alpine
moss taxa in China are reported. Tortula scotteri and Polytrichum crassilamellatum are proposed as
synonyms of Hilpertia velenovskyi and Polytrichastrum sexangulare respectively.
Our study of many collections of bryophytes made recently from arid and alpine
localities in western and northern China, notably Qinghai and Xinjiang Provinces, yielded
significant range extensions for seven rare mosses in China. Of these, Crossidium crassi-
nerve, C. seriatum and Polytrichastrum sexangulare are new to China. Hilpertia velenovskyi
is new to Xinjiang and Qinghai. Grimmia subanodon, G. obtusifolia and Schistidium chenii
are three new moss records for Qinghai Province. In addition, reports of Crossidium
chloronotos from Gansu, Xinjiang and Inner Mongolia are corrected to C. crassinerve.
Lastly, Tortula scotteri (=Hilpertia velenovskyi) and Polytrichum crassilamellatum (=Poly-
trichastrum sexangulare) are two new synonyms proposed.
1. Crossidium seriatum Crum and Steere and C. crassinerve (De Not.) Jur.
Chinese record of Crossidium was first recorded by P.-C. Chen who reported C.
chloronotos (Brid.) Jur, from Gansu Province (P.-C. Chen et al., 1963). Chen and subse-
quent Chinese authors have overlooked the incorrect application of C. chloronotos ЕС
squamiferum (Viv.) Jur.] on European specimens of C. crassinerve in the old literature. This
taxonomic confusion was later clarified by Delgadillo (1975). Unaware of this report,
Zhao (1993) continued to use the incorrect name when he reviewed the morphology and
ecological adaptation of C. chloronotos in China and published a nation-wide distribution
map for this species. Following Delgadillo (1975), Redfearn et al. (1 996) synonymized the
name with C. squamiferum (Viv.) Jur. and, inadvertently, included the provinces of Gansu,
Inner Mongolia, Sichuan and Xinjiang in the range of C. squamiferum for China. Recently
Z.-H. Zhang (1996) reported C. squamiferum from the Huangguoshu karst area in
Guizhou Province.
Source : MNHN, Paris
208 B.C. TAN & JIAN-CHENG ZHAO
According to Delgadillo (1975) and Cano et al. (1993), Crossidium squamiferum
differs from C. crassinerve in having very thick-walled upper laminal cells. Frey and
Kürschner (1984) further observed that the terminal cell of the leaf costal chlorophyllose
filaments of C. crassinerve has 1 to 2 low papillae whereas that of C. squamiferum has 2 to
5 high papillae. To clarify the situation, we re-examined specimens of C. chloronotos from
Gansu, Xinjiang and Inner Mongolia and found them to be C. crassinerve (De Not.) Jur.
Our conclusion is supported further by the illustrations and descriptions of C. chloronotos
published in P. C. Chen er al. (1963), Tung (1963) and Zhao (1993); all of which represent
clearly C. crassinerve. Thus, the total range of C. crassinerve in China encompasses the arid
provinces of Gansu, Inner Mongolia, Xinjiang, and in addition, Qinghai (Tan 95-1698b,
FH, PE). The Sichuan and Guizhou records of C. chloronotos (=C. squamiferum)
published in Redfearn et al. (1994) and Zhang (1996) need confirmation.
Crossidium seriatum, a species distinguished from other congeners by the pre-
sence of 4 to 8 c-shaped papillae per leaf cell, is also found in Qinghai Province (Tan
95-1731, FH, PE). It is a new addition to the moss flora of China. Although the Qinghai
specimens comprise only young sporophytes, the leaf outline with a long hyaline awn and
the morphology of the costal filaments of the leaves clearly identify the specimen as C.
seriatum. Furthermore, the leaf cells bear the characteristically c-shaped papillae (cf.
Delgadillo, 1975). The discovery of C. seriatum on the Qinghai-Tibetan plateau has
extended the Old World range of this species from western Asia eastward to western
China.
2. Hilpertia velenovskyi (Schiffn.) Zand. [Tortula scotteri Zand. & Steere; Hilpertia scotteri
(Zand. & Steere) Zand., syn. nov.] — Figs 1-16.
The genus Hilpertia was proposed by Zander (1989) to accomodate two pottia-
ceous taxa, the Eurasian Tortula velenovskyi Schiffn. and the North American T. scotteri
Zand. & Steere. Both taxa are characterized by (1) a strongly revolute, chlorophyllose leaf
margin and (2) the nearly smooth laminal cells, except those at the leaf margins. According
to Zander and Steere (1978), the two species differ primarily in the presence of a few teeth
near leaf apex in H. velenovskyi (absent in H. scotteri), and also in the rostrate opercular lid
in the former and a conical lid in H. scotteri. Two recent collections from Xinjiang
Province (J.-C. Zhao 5676, 5679, HBNU, FH) and several collections from Qinghai
Province (Tan 95-1703, 95-1723, 95-1725, FH, PE) were determined with difficulty as H.
velenovskyi because the specimens show a suite of combined characters of H. velenovskyi
and Н. scotteri.
The Xinjiang collections are from Qira Xian in Kunlun Mountains and the
Qinghai collections are from Yushu Prefecture bordered with Sichuan to the south. The
plants are common on calcareous walls around villages and on exposed soil growing mixed
with species of Aloina and Crossidium. Individual plants are 1 to 2 cm high. The stem cross
section shows a large central strand with one layer of colored, thick-walled epidermis.
Leaf apices are mostly entire, with a few leaves showing a few teeth at the base of the long
awn. The opercular lids are long-conical, although a few are conical. The same variation
in opercular lid shape can be observed in the holotype of Tortula velenovskyi Schiffn.
preserved at FH. The isotype of Tortula scotteri Zand. & Steere from northern Canada
preserved at BUF has a few individual plants with a long conical lid. Considering the
overlapping morphological variation exhibited by the two species under comparison, we
think that it is meaningless to maintain Н. scotteri as a separate species.
Source : MNHN, Paris
NEW MOSS RECORDS IN CHINA 209
16
:25mm 13 14
pum 4 15
16
Figures 1-16 — Hilpertia velenovskyi (Z.-C. Zhao 5676). — 1: Plant habit. 2: Capsule. 3: Peristome
tooth. 4: Spores. 5-12: Leaves. 13. Leaf apex. 14. Cross-section of leaf. 15. Middle leaf cells. 16. Lower
leaf cells.
Source : MNHN, Paris
210 B.C. TAN & JIAN-CHENG ZHAO
Prior to our study, Hilpertia velenovskyi was known from central and eastern
Europe, Siberia (Ignatov and Afonina, 1992) and Inner Mongolia of China (Tung, 1963;
Bai, 1987). We report it here new to the provinces of Xinjiang and Qinghai. Its occurrence
in arid habitats in the neighboring provinces of Gansu, Shaanxi and Xizang can be
expected. As now recognized, the genus is monotypic with a broad northern boreal range.
The report of H. velenovskyi from South America in Bai (1987) is a typographical error for
North America.
3. Polytrichastrum sexangulare (Floerke ех Brid.) G. L. Smith [Polytichum crassilamellatum
W.-X. Xu & R.-L. Xiong, syn. nov.)
A recently collected polytrichaceous specimen (R.-L. Hu 95-80b, FH, SHNU)
from No. 1 Glacier Research Station in the Tianshan Range of Xinjiang Province proved
to be Polytrichastrum sexangulare, a new record for the province, and China as well.
Polytrichastrum sexangulare is distinguished from all other congeners in China
by its somewhat cucullate leaf apex and entire to weakly toothed leaf margins. The
presence of small teeth or appendages on the abaxial side of the leaf costa near the apex is
an additional diagnostic feature. In cross section, the apical cells of the leaf lamellae are
typically pyriform and with smooth, thick, distal cell walls.
The Xinjiang specimen was originally identified as the Tibetan endemic, Poly-
trichum crassilamellatum W.-X. Xu & R.-L. Xiong. However, a critical review of published
descriptions and illustrations of these two taxa (Osada, 1966 as Polytrichum norvegicum
Hedw.; Nyholm, 1969; Lawton, 1971; Xu and Xiong, 1984; Li, 1985; Ignatov and
Smith-Merrill, 1995) and careful examination of herbarium specimens, including the
isotype of Polytrichum crassilamellatum preserved at K UN, did not reveal any meaningful
gametophytic differences between P. crassilamellatum and Polytrichastrum sexangulare.
Although sporophyte is unknown in Р. crassilamellatum, we believe that the two taxa are
conspecific.
Specimens of Polytrichastrum sexangulare can easily be confused with sterile
plants of Polytrichum sphaerothecium (Besch.) C. Muell., which has a similar leaf lamellar
morphology. According to Osada (1965), the leaf sheath of P. sexangulare, seen in the
Xinjiang specimens and in the isotype of Polytrichum crassilamellatum, is more expanded
than the leaf sheath of Polytrichum sphaerothecium. In contrast, Schofield (1966), who
had observed the variation of leaf characters in British Columbian plants of P. sphaero-
thecium, concluded that many specimens would be indistinguishable from P. sexangulare
on gametophytic characters alone. Not withstanding, fruiting individuals of Р sphaero-
thecium differ distinctively from P. sexangulare in having round, non-angular capsules
(Schofield, 1966). Seen in this light, the newly described Polytrichastrum altaicum Ignatov
& Merr. from the Russian Altai (Ignatov and Smith-Merrill, 1995) is more closely related
to P. sphaerothecium than to P. sexangulare.
Polytrichastrum sexangulare is a circum-arctic and alpine species growing on
moist soil in open tundra and in late snow areas. Its presence near a glacier at 3500 m
elevation in Xinjiang, China, is typical of its habitat preference.
Source : MNHN, Paris
NEW MOSS RECORDS IN CHINA 21
4. Schistidium chenii (H.-S. Lin) T. Cao, C. Gao & J.-C. Zhao [syn. Grimmia himalayana
Chen, nom. inval.]
A population of grimmiaceous plants with entirely immersed capsules was
collected from a creek bank in a limey gorge above 4000 m elevation in Nanggen Xian,
Qinghai Province (Tan 95-1612, FH, PE). The specimen has imbricate, concave, and
broadly ovate leaves with obtuse and cucullate leaf apices. A hyaline apical mucro is
observed on several perichaetial leaves. Bistratose areas also appear sporadically across
the upper 1/3 of the lamina and along the leaf margins. The collection was identified as
Schistidium chenii, a Chinese endemic known previously from Xizang (Tibet) and Xinjiang
provinces. Qinghai is the third province for this distinctive, rare Chinese endemic. Cao et
al. (1992) have published a good illustration for this species.
5. Grimmia obtusifolia C. Gao & T. Cao and Grimmia subanodon Ochyra [syn. Schistidium
obtusifolium Irel. & Crum]
A small grimmiaceous specimen with the leaf apex obtuse from Qinghai Pro-
vince (Tan 95-176, FH, PE) was confirmed to be Schistidium obtusifolium (=Grimmia
subanodon Ochyra), formerly an eastern North American endemic known only from
Quebec, Canada. Both the Chinese and Canadian specimens were collected from dry,
calcareous substrates. The leaves of the Qinghai plants, which are unistratose and ovate-
oblong to oblong-lingulate, compare well with the illustration of the leaves published in
the protologue of the type species (Ireland and Crum, 1984). The Qinghai specimen is the
second Chinese collection of this disjunctive eastern North American and western Chi-
nese species. Its first Chinese report was made by Bai and Hao ( 1996) who collected the
species from Inner Mongolia.
Another Qinghai specimen (Tan 95-198, FH, PE), with a similar obtuse leaf apex
but with multi-stratose leaf lamina, proves to be Grimmia obtusifolia, a Chinese endemic
reported from Inner Mongolia, Sichuan, Xinjiang and Xizang (Redfearn er al., 1996). Cao
and Vitt (1985) had discussed and illustrated well the differences between this taxon and
Grimmia subanodon. A new record for the province, the Qinghai collection of G. obtusifo-
lia, as in all other collections, does not have sporophytes. However, the specimen bears
several perigonia, indicating a dioicous sexual condition.
ACKNOWLEDGEMENTS — We are grateful to Dr. D. Boufford for reading and correcting the
English text. Mr. Jia Yu of Beijing Herbarium (PE) helped in the preparation of final illustrations.
Field assistance of Prof. Mamtimim Sulayman of Xinjiang University, Prof; R.-L. Hu of East China
Normal University and Prof. Lu Xie-Feng of Northwest Plateau Institute of Biology are appreciated.
Funding provided by the National Geographic Society for the expeditions to Xinjiang and Qinghai
provinces is equally acknowledged.
REFERENCES
BAI X.-L., 1987 — Preliminary report of the mosses in Inner Mongolia, China. Acta Scientiarum
Naturalium Universitatis Intramongolicae 18: 311-350.
Source : MNHN. Paris
212 B.C. TAN & JIAN-CHENG ZHAO
BAI X.-L. & HAO L.-F, 1996 — Some moss species new to China. Acta Scientiarum Naturalium
Universitatis Nei-Monggol 27: 412-416.
CANO M.J., GUERRA J. & ROS R.M., 1993 — A revision of the moss genus Crossidium (Pottia-
седе) with the description of the new genus Microcrossidium. Plant Systematics and
Evolution 188: 213-235.
CAO T., GAO C. & ZHAO J.-C., 1992 — Studies of Chinese bryophytes (3). Revision of Grimmia
chenii Lin (Bryopsida, Grimmiaceae). Journal of the Hattori Botanical Laboratory 7:
69-73.
CAO T. & VITT D.H., 1985 — A taxonomic assessment of Grimmia obtusifolia Gao et Cao and
Schistidium obtusifolium Irel. et Crum. The Bryologist 88: 362-364.
CHEN P-C. et al., 1963 — Genera Muscorum Sinicorum, Pars Prima. Beijing, Science Publisher.
DELGADILLO C.M., 1975 — Taxonomic revision of Aloina, Aloinella and Crossidium (Musci). The
Bryologist 78: 245-303.
IGNATOV M.S. & AFONINA O.M., 1992 — Checklist of mosses of the former USSR. Arctoa 1:
1-85.
IGNATOV M.S. & SMITH-MERRILL G.L., 1995 — Bryophytes of Altai Mountains. VI. The
family Polytrichaceae (Musci). Arctoa 5: 61-97.
IRELAND R.R. & CRUM H.A., 1984 — Schistidium obtusifolium, a new species of the Grimmia-
ceae from Quebec. The Bryologist 87: 371-373.
FREY W. & KÜRSCHNER H., 1984 — Studies in Arabian bryophytes 3:Crossidium asirense
(Pottiaceae), a new species from Asir Mountains (Saudi Arabia). Journal of Bryology 13:
25-31.
LAWTON E., 1971 — Moss Flora of the Pacific Northwest. Nichinan, Hattori Botanical Laboratory.
LI X.-J. (ed.), 1985 — Bryoflora of Xizang. Beijing, Science Press.
NYHOLM E., 1969 — Illustrated Moss Flora of Fennoscandia. 11. Musci. Fasc. 6. Lund, Natural
Science Research Council.
OSADA T, 1965 — Japanese Polytrichaceae. I. Introduction and the genus Pogonatum. Journal of the
Hattori Botanical Laboratory 28: 171-201.
OSADA T., 1966 — Japanese Polytrichaceae. П. The genera Polytrichum, Oligotrichum, Bartramiop-
sis and Atrichum and phytogeography. Journal of the Hattori Botanical Laboratory 29:
1-52,
REDFEARN PL.JR., ALLEN B. & HE S., 1994 — New distributional records for Chinese mosses.
The Bryologist 97: 275-276.
REDFEARN PLIR., TAN B.C. & HE S., 1996 — A newly updated and annotated checklist of
Chinese mosses. Journal of the Hattori Botanical Laboratory 79: 163-357.
SCHOFIELD W.B., 1966 — The identity of Polytrichum sphaerothecium (Besch.) Broth. Miscellanea
Bryologica et Lichenologica 4; 33-35.
TUNG C.-K., 1963 — Notes on some xerophytic mosses in China. Acta Scientiarum Naturalium
Universitatis Intramongolicae 2: 73-85.
XU W.-X. & XIONG R.-L., 1984 — Taxa nova polytrichacearum sinensium. Acta Botanica Yunna-
nica 6: 173-184.
ZANDER R.H., 1989 — Seven new genera in Pottiaceae (Musci) and a lectotype for Syntrichia.
Phytologia 65: 424-436.
ZANDER В.Н. & STEERE W.C., 1978 — Tortula scotteri, sp. nov. from the Northwest Territories of
Canada. The Bryologist 81: 463-467.
ZHANG Z.-H., 1996 — Contributions to the bryoflora of Guizhou, SW China: new records and
habitat notes on mosses from Huangguoshu karst area. Journal of Bryology 19: 149-152.
ZHAO J.-C., 1993 — A preliminary study on the morphological characters and geographical
distribution of Crossidium chloronotos (Brid.) Limpr. Arid Zone Research 10: 49-52.
Source : MNHN. Paris
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 213-215 213
THE FIRST REPORT
OF CRYPTOTHALLUS MIRABILIS MALMBORG
(HEPATICAE, ANEURACEAE)
IN SOUTHERN EUROPE (PORTUGAL)
Cecilia SÉRGIO! & Ana SÉNECA?
"Museu, Laboratório e Jardim Botánico, Rua da Escola Politécnica,
58, 1294 Lisboa Codex, Portugal.
? Instituto de Botánica Dr. Gongalo Sampaio, Rua do Campo Alegre 1191, 4100 Porto, Portugal.
ABSTRACT — Cryptothallus mirabilis Malmborg was discovered in Sphagnum communities in the
central eastern part of Portugal. The presence of C. mirabilis in Portugal extends the range of the
species to southern Europe and to the vicinity of the Mediterranean area.
RÉSUMÉ — Cryptothallus mirabilis Malmborg a été trouvé au centre du Portugal. Cette découverte
étend l'aire de répartition de C. mirabilis au Sud de l'Europe.
Key wonps: Cryptothallus mirabilis, Portugal.
During a field work on Sphagnum communities in June 1995, Cryptothallus
mirabilis Malmborg was discovered in the area of a Natural Park, in the central eastern
part of Portugal.
This plant is neither reported from any country of South Europe, nor from any
Iberian locality.
C. mirabilis, first described in 1933 by Malmborg from Scandinavia, is conside-
red to be a North Oceanic hepatic (Duell, 1983). At present, it is known only from the
British Isles, Denmark, Finland, Norway, Sweden. Some new localities have been added
by Dickson & al. (1975) from Russia (Leningrad and Karelia) and recently from Brittany
(Bates & Hodgetts, 1995). However, the majority of records still belong to the British Isles
(Hill & al., 1991). The species has also a very restricted distribution in North America and
Western Greenland (Petersen, 1972).
C. mirabilis is a very interesting parasitic liverwort (Pocock & Duckett, 1984)
inhabiting typically mires and bogs, under Sphagnum or associated to Molinia litter (Hill
& al., 1991).
The first locality in Portugal is located in the Sào Mamede Natural Park. The
area includes a great part of Säo Mamede mountain (altitudes from 1025 m to 350 m,
average 500m) and presents a complex physiography. The highest points occur on ridge
formations made up of quartzites (Devonian) and the bedrock is predominantly formed
Source : MNHN, Paris.
214 C. SÉRGIO & A. SÉNECA
Fig. 1 — Cryptothallus mirabilis Malmborg. Small male plants (A), antheridium (B). Specimen:
Sérgio de Séneca 9727 (LISU).
by granites and schists. The climate shows a wide diversity: mean temperatures range from
5.8 C to 8.5" C in January and 21.5? C to 23.3? С in July, with annual rainfall of 1000 to
1200 mm. The flora is diverse, ranging from Mediterranean to Atlantic oak forests. These
forests consist mainly of Quercus suber L., Q. rotundifolia Lam., Q. pyrenaica Willd. but a
large part of the area is covered by plantations of Pinus pinaster Aiton. Deciduous forests
with Quercus robur L., Q. faginea Lam. and Castanea sativa Miller still cover important
areas of the Park.
Because of the wide diversity of habitats, the bryophyte flora of this area is
particularly rich, not only for Mediterranean elements, but also for Atlantic bryophytes. It
corresponds to the southern limits of the geographical distributions in Portugal of many
bryophytes, such as Lophozia excisa (Dicks.) Dum. and Racomitrium elongatum Frisvoll
(Sérgio & al., 1994).
The vegetation of the new locality of Cryptothallus mirabilis is an conifer
plantation (Pinus pinaster Aiton) and the substrate is on the acid litter at the margin of a
stream near a small pond with Salix atrocinerea Brot., Molinia caerulea (L.) Moench,
Erica ciliaris L., Erica tetralix L., Juncus effusus L., J. tenageia L. fil., Ulex minor Roth,
Calluna vulgaris (L.) Hull., Pteridium aquilinum (L.) Kuhn, Lobelia urens L., Blechnum
spicant (L.) Roth, Wahlenbergia hederacea (L.) Reichenb., Potentilla erecta (L.) Ráuschel,
and Pinguicula lusitanica L. On dried margins of the pond, there Drosophyllum lusitani-
cum (L.) Link and Mediterranean species such as Lavandula stoechas L. subsp. luisieri
(Rozeira) Rozeira and Cistus spp. are present.
The margins of the stream and pond have a rich bryophyte flora with Calypogeia
arguta Nees & Mont., C. suecica (Н. Arn. & J. Perss.) К. Muell., Cephalozia bicuspidata
(L.) Dum., Jungermannia gracillima Sm., Fissidens curnovii Mitt., F. polyphyllus Wils. ex
B., 5. & G., Pseudotaxiphyllum elegans (Brid.) Iwats. and different forms of Sphagnum
auriculatum Schimp.
Source - MNHN. Paris
CRYPTOTHALLUS MIRABILIS IN PORTUGAL 215
The population which was first found consisted of small male plants. Later in the
same locality, two larger colonies without sporophytes were discovered (Fig. 1).
The presence of Cryptothallus mirabilis in Portugal extends the range of the
species to southern Europe and to the vicinity of the Mediterranean area.
The species is easily overlooked because of its subterranean growth (Schuster,
1992). More collections are needed, especially from Atlantic parts of the Iberian Penin-
sula, to elucidate the present distribution of this interesting species.
Specimens: PORTUGAL. Alto Alentejo: Parque Natural da Serra de Sáo
Mamede, entre a Cruz dos Cumes e a Feiteira, 750 m, 298 PD415, 26.06.1995, Sérgio &
Séneca 9727 (LISU); ibidem, 13.07.1995, Sérgio 9738 (LISU).
ACKNOWLEDGMENTS — Our sincerest thanks to M. P. Jones for correcting the English text.
Thanks are also due to the authorities Natural Park and to Eng. Castro Antunes for assistance during
the field work.
REFERENCES
BATES J. W. & HODGETTS N. G., 1995 — New and interesting Bryophyte records from Brittany
including Cryptothallus mirabilis, Ulota calvescens and Weissia perssonii new to France.
Cryptogamie, Bryologie-Lichénologie 16(3): 191-211.
DICKSON J. H., KOPONEN T. & ULVINEN T., 1975 — Cryptothallus mirabilis Мать, löydetty
jälleen Suomesta. Luonnon Tutkija 79: 53-56.
DUELL R., 1983 — Distribution of European and Macaronesian Liverworts (Hepaticophytina).
Bryologische Beitraege 2: 1-115.
HILL M. О., PRESTON C. D. & SMITH A. J. E., 1991 — Atlas of the Bryophytes of Britain and
Ireland. vol. 1 Liverworts ( Hepaticae and Anthocerotae). Colchester, 351p.
PETERSEN P. M., 1972 — Cryptothallus mirabilis Malmb. found on Disko Island, West Greenland
(6091 5" N., 53934" W). Lindbergia 1: 189-190.
POCOCK K. & DUCKETT J. G., 1984 — A comparative ultrastructural analysis of the fungal
endophytes in Cryptothallus mirabilis Malmb. and other British thalloid hepatics. Journal
ы of Bryology 13: 227-233.
SERGIO C., BRUGUES M. & CROS R., 1994 — Duas espécies boreais, encontradas no Parque
Natural da Serra de São Mamede. Lophozia excisa (Dicks.) Dum. nova para Portugal, е
Racomitrium elongatum (Ehrh.) Frisvoll primeira referéncia para o sul do Tejo. In:
SERGIO C., Notulae Bryoflorae Lusitanicae VA. Revista de Biologia (Lisboa) 15: 197-198.
SCHUSTER R. M., 1992 — The Hepaticae and Anthocerotae of North America. Vol. 5. Chicago,
Field Museum of Natural History, 854 p.
Source : MNHN, Paris
Eo PER TI AAA
re arado sien Канае do
Созмо Stow o
wir DE E
ы aim
Я.
SUMME |
ê ou
air aê
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 217-221 217
BROMELIOPHILA HELENAE,
A NEW SPECIES OF LEJEUNEACEAE FROM THE NEOTROPICS
S. Rob GRADSTEIN
Systematisch-Geobotanisches Institut, University of Góttingen,
Untere Karspüle 2, D-37073 Góttingen, Germany
SUMMARY — Bromeliophila helenae Gradst. sp. nov. (Lejeuneaceae), described and illustrated,
based on recent collections from the Guayana Highland (Venezuela) and Dominica (Lesser Antilles),
is the second species of this unique neotropical liverwort genus occuring exclusively in the leaf axils of
bromeliads. The new species differs from the type species B. natans (Steph.) Schust. (SE Brazil) by its
rounded leaf apex and rather short leaf cells. The hyaline papilla in the genus appears to be
“proximal”, not “distal” as was suggested previously. The species of Bromeliophila are morphologi-
cally highly variable and some forms are difficult to separate from Lejeunea, The generic status of
Bromeliophila should therefore be considered critical.
Bromeliophila is a unique genus of the Lejeuneaceae that occurs exclusively in
the leaf axils of bromeliads. The genus was described by Schuster in 1994 and contains a
single species, B. natans (Steph.) Schust., endemic to the “Mata Atlantica” of southeas-
tern Brazil. Bromeliophila is related to Lejeunea but is recognized by the leaf lobes that are
usually much longer than wide, having conspicuously elongated cells and a very long
insertion line, and by the long-stalked perianths with 5 double-winged keels. Plants with
shorter, ovate leaves do occur as well, however, and these become almost inseparable from
Lejeunea. Bromeliophila is usually copiously fertile, with gynoecia and numerous slender
male spikes occurring side by side on the stem. The gametoecial arrangement and the long
leaf-insertion are also characteristic of Potamolejeunea and other rheophytic Lejeunea-
ceae, and are probably adaptations to their aquatic habitat.
Among specimens collected on the Macizo del Chimanta in the Guayana
Highland, Venezuela by J. Steyermark and O. Huber in 1983 and sent to me for naming
some ten years ago, is a second species of Bromeliophila. It is very similar to B. natans in
general habit but has rounded leaf apices; in B. natans the leaves are acuminate. Very nice
material of the new species, with sporophytes, was recently collected on the island of
Dominica in the West Indies by A. Scháfer- Verwimp and his wife.
I wish to dedicate the new Bromeliophila to Dr. Héléne Bischler-Causse in
honour of her birthday and as a token of our lasting friendship.
Source : MNHN. Paris
218 S.R. GRADSTEIN
Bromeliophila helenae Gradst., sp. nov. (Fig. 1).
Bromeliophila rotundata Gradst., A Guide to the bryophytes of Tropical America 1.
Liverworts and hornworts (draft version), p. 115, 1995. Brussels, nom. nud.
Type — Venezuela. State of Bolivar, District Piar: Macizo del Chimantá,
"altiplanicie en la base meridional de los farallones superiores del Aparacá-tepui, sector
Norte del Macizo,” 5° 20’ N, 62° 12’ W, ca. 2200 m alt., 30 Jan — 1 Feb 1983, Julian A.
Steyermark, Otto Huber & Victor Carreño E. 128383 (holotype, GOET; isotypes, U,
VEN). Paratype — West Indies. Dominica: “Weg von Laudat zum Valley of Desolation,
in exponierten Bromelientrichtern am Rande des Gratweges oberhalb des Valley of
Desolation, meist submers, 880 m," 24 May 1996, Alfons Scháfer- Verwimp & Inge Verwimp
17887 (СОЕТ, hb. Schäfer-Verwimp).
A B. natans differt foliis apice rotundatis et cellulis foliorum brevioribus.
Description — Plants long and slender, 1.5-2 mm wide, pale yellow-green,
turning dark brownish to black when dry, creeping or floating in water, the older stem
parts often devoid of leaves. Stems flaccid, with hyalodermis; ventral merophyte 2 cells
wide. Leaf lobes wide-spreading, plane or convex, sometimes squarrose, distant to subim-
bricate, highly variable in outline, in some plants narrowly oblong, in others asymmetri-
cally broad-ovate, sometimes both types of leaves on one plant, lobes 0.8-1.3 x 0.35-1.1
mm, 1.2-2 times longer than wide, with a long insertion line (11-16 cells long), apex
rounded, plane or recurved, margins + sinuate to crenulate. Cells in the narrow-oblong
leaves conspicuously elongated throughout the lobe (from base to apex), 50-70 x 25-35 um,
(1.5-)2 times as long as wide, in the broad-ovate leaves shorter, mostly as long as wide,
elongated only towards the base of the lobe, all cells + thin-walled, without trigones,
cuticles smooth; oil bodies unknown; ocelli lacking. Lobules ovate-triangular with a broad
base, small, 1/5-1/3 times lobe length, slightly swollen, insertion line long (ca. 8-10 cells),
keel straight ot slightly curved, forming an almost straight line with the ventral margin of
the lobe, free margin crenulate, with (1-)2(-3) bluntish, 1-celled teeth formed by projecting
cells, the first tooth largest, hyaline papilla inserted at the inner side of the proximal margin
of the first tooth, in a small sinus between the first tooth and the adjacent free margin cell.
Underleaves obovate-orbicular, small, ca. 3 times stem width, 0.25-0.3 mm wide, bifid to
1/3 (-1/2), tips blunt, one-celled, insertion line shallowly curved.
Autoicous, usually copiously fertile, with numerous short-specialized male spi-
kes and a few gynoecia. Male branches tiny, usually shorter than the leaves, with 3-8 pairs
of strongly swollen bracts, each bract with 2 antheridia; bracteoles tiny, limited to the base
of the spike. Gynoecia terminating a short or long branch, with 1-2 lejeuneoid innova-
tions, the innovations usually sterile, female bracts and bracteoles in one series, bracts +
similar to adjacent vegetative leaves but usually with larger lobules, bracteole conspi-
cuously elongated, oblong to ligulate, apex entire or short-bifid with rounded tips, the base
Fig. | — Bromeliophila helenae Gradst. — A. Habit. B. Mid-leaf cells. C. Underleaf. D. Leaf, ventral
view. E. Leaf, dorsal view. F. Leaf apex. G. Lobule, showing first tooth and proximal hyaline papilla.
H. Gynoecium with long-stalked perianth. I. Portion of stem with 2 male branches. All from the type
(drawn by E. M. Reiner-Drehwald).
Source : MNHN Paris
EAS
MNHN. Paris
Source
220 S.R. GRADSTEIN
of the bracteole sometimes connate with a bract on one side. Perianths obpyriform,
usually longly stalked at the base, inflated, 5-keeled, the keels undulate and conspicuously
double-winged, beak short. Sporophytes lejeuneoid, with pale-colored valves that remain
almost erect after dehiscence, valve surfaces with irregular knot-like thickenings in the
middle and upper part, turning slightly brownish in the middle of the valve; elaters 18 per
capsule, 4-5 per valve, attached to upper valve margins, spirals reduced, rudiments of
spiral thickenings becoming more conspicuous and brownish near the free tips of the
elaters. Vegetative reproduction unknown.
Distribution and ecology — Bromeliophila helenae is thus far known only from
Dominica and Venezuela. Its distribution suggests that the species is more widespread in
the Neotropics and has been overlooked. Like the Brazilian B. natans, B. helenae occurs
exclusively in the water-filled leaf axils ("tanks") of Bromeliaceae, in rather open environ-
ments. Often, the species grows submerged. Bromeliophila natans is a lowland species
(0-800 m) and has exclusively been found in terrestrial bromeliads, including Vriesea
glutinosa, Aechmea nudicaulis, and Quesnelia arvensis. Most of the collections are from
open sites in coastal rain forest on sandy soil (“restinga“). Bromeliophila helenae, on the
other hand, is a montane species and has been found associated with terrestrial as well as
epiphytic bromeliads. In the Guayana Highland it occurred submerged in the water-filled
leaf axils of terrestrial Brocchinia hechtioides, in a wet, swampy rock-savanna at ca. 2200
m. On Dominica, the species occurred scattered in terrestrial and epiphytic bromeliads on
a mountain ridge at about 880 m.
Discussion — The most striking feature of Bromeliophila helenae is probably the
variation of leaf shape and cell areolation. In the type specimen the leaf lobes are always
narrowly oblong and the cells are narrowly elongated throughout the leaf. In the material
from Dominica, however, the leaf lobes are mostly broad-ovate and with short cells that
are scarcely longer than wide (elongated only near the base of the lobe). Only some weaker
shoots have elongated leaves and cells as found in the type specimen. A somewhat similar
variation in leaf shape was observed by Schuster (1994) in B. natans. Since elongated leaves
and cells are the main feature separating Bromeliophila from Lejeunea, some doubt ma
be cast on the status of Bromeliophila as a separate genus. This matter requires further
study.
Bromeliophila helenae and B. natans can be distinguished at first glance by their
very diferent leaf apex (rounded versus acuminate). In addition, the leaf cells in B. helenae
seem to be shorter and broader than those in B. natans. In the latter leaf cells are
13.5-16 um wide and up to 4.5 times longer than wide (Schuster, 1.c.). In B. helenae,
however, they are wider, 25-35 шт wide, and at most 2 times longer than wide.
According to Schuster (l.c.), in B. natans the lobule tooth bearing the hyaline
papilla (= first tooth) is situated almost at the keel apex. He therefore interpretes the
position of the hyaline papilla as "distal" (even though the associated tooth is not
reduced). In B. helenae, however, the first tooth is always inserted at some distance from
the keel apex, as usual in the Lejeuneaceae, and the hyaline papilla is clearly “proximal”.
It should be noted that in one of Schuster's figures (Fig. 3-9) a “normal” position of the
first tooth in B. natans, as found in B. helenae, is shown. Apparently, the position of the
first tooth in Bromeliophila is variable. Since the first tooth is never reduced (as is the case
in species of Lejeuneaceae with a "distal" papilla), Bromeliophila should rather be
considered as having a proximal papilla like in Lejeunea.
Source : MNHN. Paris
BROMELIOPHILA HELENAE SP. NOV. 221
ACKNOWLEDGMENT — I am grateful to Dr. E. Reiner-Drehwald for the figures of B. helenae and
for critically reading the manuscript.
REFERENCE
SCHUSTER R. M., 1994 — Studies on Lejeuneaceae, I. Preliminary studies on new genera of
Lejeuneaceae. Journal of the Hattori Botanical Laboratory 75: 211-235.
Source : MNHN. Paris
L uisehad To uni
Of
gy nutes. S
an Loses, $
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 223-226 223
LEJEUNEA BISCHLERAE, A NEW SPECIES OF LEJEUNEA
SUBGENUS MICROLEJEUNEA FROM AUSTRALIA
Barbara M. THIERS
New York Botanical Garden, Bronx, NY 10458 U.S.A.
fax: 718-562-6780; email: bthiers@nybg.org
SUMMARY — Lejeunea bischlerae, a new species of Lejeunea subgenus Microlejeunea from Aus-
tralia is described and illustrated. A key to the five species of Lejeunea subgenus Microlejeunea in
Australia is also provided.
Lejeunea sensu lato is a genus of probably at least 200 species, most of which
occur in tropical or subtropical regions of the world. The genus has never been monogra-
phed on a worldwide basis, nor is there widespread agreement on the limits of the genus.
Microlejeunea was accepted as an autonomous genus by authors earlier this century
(Evans, 1900; VandenBerghen, 1948) but the trend in recent times has been to reduce it to
subgeneric status (Schuster, 1980; Mizutani, 1962; Grolle, 1976). The characteristics of the
subgenus were summarized by Schuster (1980) as: a stem cortex of three cells (as viewed in
cross-section); erect to narrowly spreading leaves; the tendency of leaf cells to be small and
have equally thickwalled cells; ocelli (in some species); a leaf lobule that is large relative to.
the leaf lobe, and the tendency for the gynoecial bract keels to be winged.
In the course of work on a treatment of the Lejeuneaceae for the Flora of
Australia project (Thiers, 1990), I have encountered approximately 25 species of Lejeunea,
including an undescribed species of subgenus of Microlejeunea.
Lejeunea bischlerae B. Thiers, sp. nov.
TYPE: AUSTRALIA. Queensland. Yungaburra, Gillies Road, near Mt. Nomico, 8 Sept.
1985, G. A. M. Scott s.n. (holotype: MUCV 6939; isotype: NY).
Latin diagnosis — Ab aliis Lejeunea speciebus apice folii cucullatis, lobis ocellatis,
lobulo magno, cellula magna sinus lobuli necnon androeciis bracteolatis distinguenda.
Description — Monoicous to paroicous. Plants 0.4-0.5 mm wide. Stems pros-
trate, loosely interwoven over substrate. Green to yellow in the dried condition. Stems 50.
um in diam., epidermal cells 7, cortical cells 3. Leaves narrowly spreading, somewhat
uplifted from substrate when dry, distant to imbricate; lobe strongly convex when moist,
orbicular, 0.2-0.3 mm long, 0.2-0.3 mm wide, apex rounded, cucullate, margin entire,
acroscopic base cuneate, basiscopic base straight, incurved (figs. 1, 4, 7); cells isodiametric
Source : MNHN. Paris
Lejeunea bischlerae B. Thiers. 1. Fertile stem sector, ventral view, — 2. Perianth and bracts, dorsal
view. — 3. Underleaf. — 4. Lateral leaf. — 5. Androecium. — 6. Apex of leaf lobule. — 7. Fertile stem
sector, ventral view. — 8. Gynoecial bracteole, — 9. Cells of leaf base showing ocelli. — Figs. 1, 2, 4,
5, 7, 8: standard line = 0.15 mm. Figs. 3, 6, 9: standard line = 30 ит. a = lobule tooth; s= sinus cell
adjacent to tooth; o= ocelli. (All from the type, МОСУ 6939).
Source : MNHN. Paris
LEJEUNEA BISCHLERAE SP. NOV. 225
to oblong, 15-25 um long, 15-30 um wide, walls uniformly thin, cells weakly to strongly
rounded; ocelli present in lateral leaves, forming a basal group, 1-3 per leaf. Lobules
uniform in shape, ovate to dimidiate, 0.2-0.23 mm long, 0.1-0.14 mm wide, as long as leaf
lobe, inflated basally but abruptly flattened above, apex attenuate; free margin sinus
narrowly v-shaped, bordered by 2-3 cells, sinus cell adjacent to tooth 2-3 x larger than
other apical sinus margin cells, free margin tooth 1-celled, oblong to slightly falcate (fig. 6);
lobule keel rounded. Underleaves on vegetative stems distant, oblong, plane, 0.1-0.123 mm
long, 0.075-0.08 mm wide, 2 x stem length, bifid, sinus extending 0.5 underleaf length,
v-shaped, lobes parallel, linear to triangular, lobes 3-4 cells wide at base, apex acute, lateral
margins crenulate, base cuneate, flanking cells not differentiated from other basal cells
(fig. 3).
Androecia terminal, antheridial bracts in 3-6 pairs, bract lobules epistatic,
bracteoles present throughout (fig. 5). Gynoecia restricted to short branches, innovations
present throughout, always single, sterile, leaf sequence lejeuneoid; gynoecial bract lobe
spathulate, 1.5-2 lateral leaf length, apex rounded, gynoecial bract lobe margins entire or
crenate; lobule ligulate, 0.6-0.75 x bract lobe length, apex rounded, gynoecial bract lobule
margins entire to crenulate, keel length 0.75-1 x lobule length, lobule keels winged (wing
1-4 cell wide); gynoecial bracteole oblong, 2-3 x underleaf length, bracteole apex bifid,
sinus extending 0.3 bracteole length, v-shaped, bracteole margins entire to crenulate;
perianths exserted beyond bracts, clavate, circular in cross-section, perianth keels 5, all
keels equally well-defined, extending 0.5 perianth length, keels and perianth surface
smooth.
Paratype — Australia. Queensland. Millaa Millaa, Zillies Falls Rd., 6 Sept.
1985, G. A. M. Scott s.n. (MUCV 7068).
Discussion — Lejeunea bischlerae is a very distinctive species because of its very
large leaf lobules and the cucullate leaf apex. The presence of androecial bracteoles
throughout the androecium is also unusual in subgenus Microlejeunea, although this
feature is characteristic of other subgenera of Lejeunea, namely Apolejeunea and Nanole-
jeunea (Schuster, 1980). In leaf shape, L. bischlerae is reminiscent of Austrolejeunea
bidentata B. Thiers (Thiers, 1985). However, the lateral leaf is very narrowly inserted in A.
bidentata, the lobule bears two teeth on the lobule, and the underleaf lobes are filiform
(i.e., one to two cells wide).
It is a pleasure to name this species for Héléne Bischler, in recognition of her
great contributions to bryology, including work on Australian Microlejeunea (Miller et al.,
1967). It is a pleasure to have her as a colleague and a friend.
Key to Species of Lejeunea subgenus Microlejeunea in Australia
1 — Leaves lanceolate, 2 x longer than wide, apices sharply acute to acuminate ........
vom L. microstipula Steph.
l — Leaves ovate or oblong, 5 x longer than wide, apices broadly acute to rounded.
2 — Cells of lobe midportion and base more or less homogeneous in size and
wall thickness (i.e., no evidence of ocelli).
3 — Lobule tooth acutely pointed, underleaves orbicular, 1.5 x stem
width, sinus extending 0.3 underleaf length, lobes erect, bracts
triangular, gynoecial innovation leaf sequence pycnolejeuneoid. . .
Т Р до MEL ЕБ L. cucullata (Reinw. et al.) Nees
3 — Lobule tooth bluntly pointed, underleaves orbicular to oblong, 2x
Source : ММНМ Paris
226 B.M. THIERS
stem width, sinus extending 0.5 underleaf length, lobes divergent,
narrowly triangular, gynoecial innovation leaf sequence lejeu-
neoid.. L. primordialis (Hook. f. & Tayl.) Gott. et al.
2 — Cells of lobe midportion and base not homogeneous in size and wall
thickness (i.e., ocelli present).
Leaf apex cucullate, lobule as long as leaf, lobule sinus cell
adjacent to tooth 2-3 x larger than other apical sinus
margin cells; androecial bracteoles present throughout
o A L. bischlerae B. Thiers
4 — Leaf apex plane, lobule up to 0.5 lobe length, lobule sinus
cell adjacent to tooth not distinctly larger than other sinus
margin cells; androecial bracteoles at base of androecium
only (1 or 2 bracteoles)......... L. ulicina (Tayl.) Tayl.
Acknowledgments — I gratefully acknowledge the Research Council of the Adelaide Botanic Gar-
dens for a grant that supported my field and herbarium work in Australia in 1984. I thank Roy E.
Halling or his assistance with my fieldwork, and J. Eggers, R. Grolle, G. A. M. Scott, I. Stone and Н
Streimann for making collections of Australian Lejeuneaceae available to me. The curators of FH, G,
JE, L, MELU, MUCY, NICH, and NSW provided loans of specimens critical to this study.
BIBLIOGRAPHY
EVANS A. W, 1900 — The Hawaiian Hepaticae of the tribe Jubuloideae. Transactions of the
Connecticut Academy of Arts and Sciences 10: 387-462.
ОВОШЕ R., 1976 — Verzeichnis der Lebermoose Europas und benachbarter Gebiete. Feddes
Repertorium 86: 71-74.
MILLER H., BONNER C. E. B. & BISCHLER Н. 1967 — Studies in Lejeuneaceae VIII. Microle-
jeunea in Asia and Australia. Nova Hedwigia 14: 61-67.
MIZUTANI M., 1962 — A revision of Japanese Lejeuneaceae, Journal of the Hattori Botanical
Laboratory 24; 115-302.
SCHUSTER R. M., 1980 — Hepaticae and Anthocerotae of North America east of the Hundredth
Meridian. vol. 4. New York, Columbia University Press.
THIERS B. M., 1985 — Austrolejeunea bidentata, a new species of Lejeuneaceae subfamily Tuya-
maelloideae from Australia. The Bryologist 88: 350-352.
THIERS B. M., 1990 — An overview of the Lejeuneaceae in Australia. Tropical Bryology 2: 273-283.
VANDEN BERGHEN C., 1948 — Genera des Lejeuneaceae. Lejeunea Memoirs 6: 1-59.
Source : MNHN. Paris
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 227-234 227
ORDINAL PLACEMENT OF THE FONTINALACEAE
William R. BUCK! & Bruce ALLEN?
“Institute of Systematic Botany, New York Botanical Garden,
Bronx, NY 10458-5126, U.S.A. E-mail: bbuck@nybg. org
? Missouri Botanical Garden, PO. Box 299,
St. Louis, MO 63166-0299, U.S.A. E-mail: ballen@admin.mobot.org
ABSTRACT — The relationships of the Fontinalaceae have been difficult to discern because of the
extreme morphological modifications to an aquatic habitat undergone by the plants. The family is
shown to possess creeping primary stems with reduced leaves that turn ca. 90? from the substrate to
form the leafy secondary stems. A creeping stem is continued from an adventitous bud near the base
of the secondary stem. This type of branching is indicative of a relationship within the Leucodonta-
les. Stem anatomy of the three genera and paraphyllia in Brachelyma indicate a relationship to the
Climaciaceae.
INTRODUCTION
Fontinalis and its allies, Dichelyma and Brachelyma, have garnered much atten-
tion because of the rarity of truly aquatic mosses. These three genera are held together, in
addition to their habitat preference, by the unusual peristomial feature of a trellised
endostome, otherwise approached only in the Timmiaceae and, to a lesser extent, in the
Prionodontaceae. The exostome teeth are linear with the dorsal (outer) and ventral (inner)
lamellae equally wide. The dorsal lamellae are vertically elongate, but deposition is thicker
on the ventral rather than the dorsal surface with the ventral trabecullae especially heavily
thickened. Both surfaces are papillose rather than horizontally striate. For SEM photo-
graphs see Vitt & Glime (1984). This type of exostome is encountered in a number of
unrelated mosses and also is closely approximated by the “daltoniaceous” exostome type
found in many genera of the Hookeriales. This exostome type curves inward when the
teeth are dry and outward when they are moist (i.e., hygrocastique). The mode of action of
the teeth is therefore opposite that of the “hypnaceous” exostome type which curves
outward when dry and inward when moist (i.e., xerocastique). This functional difference
may be responsible for the parallel derivation in a number of widely separated mosses with
the exostome type found in the Fontinalaceae.
Philibert (1888a, 1888b, see Taylor, 1962) was the first to precisely describe the
morphology of the Fontinalaceae endostome. As in other endostomes it is a two-layered
structure consisting of thickenings and wall remnants deposited by the primary peristo-
mial layer (PPL) on the outer (dorsal side) and by the inner peristomial layer (IPL) on the
inner (ventral side) surfaces of the endostome. Unlike most other endostomes, secondary
Source : MNHN. Paris
228 WR. BUCK & B. ALLEN
thickening is relatively heavy and as a result the endostome is firm rather than membra-
nous. But, secondary deposition is extremely localized and occurs primarily on the outer
surface at and very near the wall pair sutures on the PPL. Deposition on the inner surface
occurs only where the cell walls of the IPL cells are contiguous to the thickenings
deposited by the PPL. Thus, as stated by Philibert, it is PPL that has determined the
direction and location of thickening on the Fontinalaceae endostome. A significant
difference between the Fontinalaceae endostome and that of most other endostomes is its
homogeneous structure, i.e., there is no division of the endostome into the basal mem-
brane and the segment/cilia complex (see Vitt & Glime, 1984, figs. 10 & 11). Asa result of
its localized thickening and its homogeneous structure, the Fontinalaceae endostome
resembles a net consisting of 16 vertical filaments (each corresponding to the median line
on a normal endostomial segment) that are connected by nearly equidistant horizontal
filaments (each corresponding to an anticlinal wall-pair) (see Vitt & Glime, 1984, figs.
10-12). The entire net-like structure is termed a trellis,
When all the wall pair sutures on the PPL of a Fontinalaceae endostome are
secondarily thickened, an unbroken net called a perfect trellis is formed (see Vitt & Glime
1984, figs. 10 & 11). However, when some wall pair sutures lack secondary thickening, an
imperfect trellis results. Whether the trellis is perfect or imperfect, all trellises have 16
secondarily thickened vertical wall pair sutures. Thus, imperfect trellises are formed when
some (as a rule basal) horizontal wall pair sutures are unthickened. Regardless of the
condition of the trellis, the cellular pattern on the PPL can always be determined because
the 16 vertical wall pair sutures are present. This cannot be said for the cellular pattern on
the IPL since its pattern is irregular and reconstructing it depends upon observing wall
fragments deposited on the inside of the horizontal and vertical wall pair sutures. But, if
the endostomes of species with perfect trellises, e.g., Dichelyma falcatum (Hedw.) Myrin
and Fontinalis antipyretica Hedw., are examined it can be seen that the number of cells in
the IPL varies from 32 to 48 or 64, i.e., with 2, 3, or 4 cells between each pair of vertical
filaments. Vastly more important than the number of cells in the IPL is the observation
that the vertical wall pairs on the PPL align with vertical wall pairs on the IPL. Thus, the
vertical filaments of the endostome have median lines on both the front and back surfaces
(see Fig. 1, especially the far left filament). In contrast, most moss endostomes have
vertical wall pairs (a median line) on the PPL that straddle the middle of a single column
of IPL cells. This offsetting of the IPL cellular pattern so that some IPL vertical wall pairs
line up with the median line on the PPL, although uncommon, is also encountered in
Funaria, Encalypta, Splachnum, Orthotrichum, Mittenia (see Edwards, 1984, fig. 7) and
Timmia (see Shaw & Rohrer, 1984, figs. 15 & 17). The combination, however, of an
offsetting IPL cellular pattern, and a firm endostome having a homogeneous structure
consisting of vertical filaments connected by equidistant horizontal filaments makes the
Fontinalaceae endostome unique within the mosses.
Taxonomic work on the group has focused primarily at the species level, and
little attention has been given to relationships of the family. It was first described by
Schimper (1855) to include Fontinalis and Dichelyma. Shortly thereafter he (Schimper,
1860) segregated Dichelyma (and the North American Brachelyma) into a separate family,
but retained all three genera in the same “Tribus” as the Fontinalaceae. No relationships
were discussed, but the tribe was the first one listed within the pleurocarps and immedia-
tely preceded the Cryphaeaceae (included in a tribe with the Leptodontaceae, Neckera-
сеае, and Leucodontaceae).
In 1879 Lindberg placed Fontinalis and Dichelyma with Climacium in the subfa-
mily Meteorieae within the Neckeraceae. No explanation was provided, but this is the
Source : MNHN, Paris
ORDINAL PLACEMENT OF THE FONTINALACEAE 229
Fig. 1. — Portion of the endostome of Dichelyma falcatum (Allen, Fontinalaceae Exsiccatae 3, MO)
viewed with a light microscope and showing cellular pattern of the IPL (dotted lines) superimposed
on the cellular pattern of the PPL (solid lines). Scale bar = 0.05 mm.
origin of the association of the Fontinalaceae with the Climaciaceae. Brotherus (1905) in
the first edition of Die natürlichen Pflanzenfamilien, followed Lindberg in claiming a
relationship between the Fontinalaceae and Climacium. The reasons he provided are
3-sided branches as viewed in transverse section, decurrent leaves with lax, hyaline
thin-walled alar cells and thin-walled, elongate laminal cells, brown-red exostome teeth
with papillose dorsal plates, low basal membrane, segments perforate ladder-like, and the
long, somewhat twisted calyptra covering the whole capsule.
Subsequently Fleischer (1908) followed Brotherus' (1905) lead, but offered no
new information. However, since neither the Fontinalaceae nor the Climaciaceae occur in
Java it is not surprising that Fleischer treated the two in a superficial manner. In the second
edition of Die natürlichen Pflanzenfamilien Brotherus (1925) went a step further and
Source : MNHN. Paris
230 WR. BUCK & B. ALLEN
placed the Fontinalaceae and the Climaciaceae in their own suborder, nestled between the
Racopilaceae and the Hedwigiaceae. However, such a placement engenders a certain
amount of distrust because today both the Racopilaceae and Hedwigiaceae are conside-
red to be acrocarpous (Buck & Vitt, 1986; De Luna García, 1992).
The acceptance of a relationship between the Fontinalaceae and Climaceae has
not been universal. Andrews (1954: 261) was very blunt with his dissention. He argued for
a possible relationship for the Climaciaceae with the Hylocomiaceae because “Any
possible indication of a closer relationship of the Climaciaceae to anything should be
welcome, as the current idea that it stands near the Fontinalaceae has always seemed to the
present writer the height of the impossible." Following Andrews, Crum and Anderson
(1981) placed Climacium near the Hylocomiaceae (Hypnales) but kept the Fontinalaceae
within the Leucodontales between the Leucodontaceae and the Pterobryaceae.
The composition of the Climaciaceae has been called into question and is
beyond the scope of this paper. However, we agree with Ireland (1968) that Pleuroziopsis
is not very closely related to Climacium. However, it should be noted that Pleuroziopsis
also has a leucodontalean branching pattern, and despite the horizontal capsule and
cross-striolate exostome teeth, it is probably not properly placed in the Hypnales. A similar
situation can be cited in the Neckeraceae where Porothamnium has cross-striolate exos-
tome teeth.
Most recently Buck & Vitt (1986) placed the Fontinalaceae in the Hypnales in its
own superfamily. Their justification was linear leaf cells, well developed alar cells, and an
interpretation of the endostomial nodal projections as amplified lateral walls of the IPL,
as well as a north temperate distribution.
Curiously, monographers of the Fontinalaceae have not addressed the problems
of the family's relationships. Cardot (1892), followed by Welch (1960), only treated the
taxa within the family. Cardot, in addition to the three genera discussed here, Fontinalis,
Dichelyma, and Brachelyma, also included Hydropogon, Hydropogonella (as Cryptan-
gium), and Wardia in the family. Welch (1943), excluded the latter three genera into the
Hydropogonaceae and the monogeneric Wardiaceae.
What kinds of evidence might we look for in determining the relationships of the
Fontinalaceae to other families?
ORDINAL PLACEMENT
Recently Buck (1997) found that the character that best binds the families of the
Leucodontales into a coherent group is branching pattern. Basically, there is a creeping
primary stem with reduced, often hyaline leaves. The primary stem eventually turns about
90* from the substrate and differentiates into an erect, leafy, often branched, upright stem
(the secondary stem). Subsequently an adventitious bud forms near the bend of the stem,
elongates and continues the creeping stem. This branching pattern would best be defined
as sympodial sensu La Farge-England (1996). Every family of Leucodontales examined
has this branching pattern although not every genus of every family does. In contrast, the
Hypnales show a creeping stem with or without differentiated leaves, but never with
reduced, hyaline leaves. Most often the leaves of the creeping stem are larger than those of
subsequent levels of branching. Branches are formed laterally from branch primordia or
from buds in leaf axils. The creeping stem is more or less indeterminate. This pattern is
referred to as monopodial (La Farge-England, 1996).
Source : MNHN, Paris
ORDINAL PLACEMENT OF THE FONTINALACEAE 231
| YA
Fig. 2-8. — Diagramatic sketches of stems of Fontinalaceae. — Fig. 2-3. — Fontinalis duriaei
(Buck 30061). Fig. 2. Branching pattern. Fig. 3. Portion of transverse section of creeping stem. — Fig.
-— Fontinalis novae-angliae var. latifolia (Buck 30113), branching pattern. — Fig. 5-6. — Fontinalis
welchiana. Fig. 5. Branching pattern (Buck 30055). Fig. 6. Branching pattern (Buck 30059). — Fig. 7.
— Brachelyma subulatum (Buck 30083), branching pattern. — Fig. 8. — Dichelyma capillaceum
(Buck 30088), branching pattern. All specimens at NY.
Source : MNHN, Paris
232 WR. BUCK & B. ALLEN
Fontinalis, and to a lesser extent Dichelyma and Brachelyma, live in environments
which require that plants be securely anchored to their substrates in order to prevent being
swept away by water currents. As a consequence, herbarium material of Fontinalaceae
rarely includes creeping stems because substrate is rarely collected, especially that which
seems to support what appears to be juvenile plants. Therefore, we made a special field trip
into southeastern Missouri, U.S.A. in late March-early April, 1996 specifically to collect
Fontinalaceae still attached to their substrates. Dichelyma capillaceum (With.) Hartm.,
Brachelyma subulatum (P. Beauv.) Card., and four species of Fontinalis, Е. duriaei Schimp.,
F. novae-angliae Sull. var. latifolia Card., F. sullivantii Lindb., and F. welchiana B. Allen,
were collected, all of which but F. sullivantii provided suitable material for study. In the
laboratory, material was rehydrated and individual stems were removed from the substra-
tes (usually rock but sometimes wood) under the dissecting microscope.
In every specimen examined (Figs. 2, 4-8), typical leucodontalean branching was
found. In the cases where typical hynalean branching was exclusively found, the creeping
stems did not have reduced leaves and were interpreted as secondary stems that were not
erect. Sometimes (e.g., Figs. 5-7) hynalean branches arose from leucodontalean creeping
stems. On creeping primary stems of the leucodontalean type, leaves were widely spaced,
hyaline, and greatly reduced, usually less than the length of typical leaves.
Transverse sections of the primary stems were particularly interesting. In the
Fontinalaceae there is no central strand. In the upright shoots the relatively large, thin- to
firm-walled interior cells are surrounded by 2-4 rows of small, thick-walled cells, the
thickest being the outermost. However, in the creeping stem the outermost row of cells are
somewhat thinner-walled than the rows immediately subtending them. Each of these
epidermal cells seems to be capable of becoming a rhizoidal initial (Fig. 3). As a conse-
quence, rhizoids can be found all around the stems for their entire lengths. Only after the
stems bend and become secondary stems does the anatomy change and the rhizoids
disappear. The ability to form rhizoids along the length of the stems is also a character of
the Leucodontales. In the Hypnales rhizoids typically are formed in discrete patches.
Axillary hairs of all material were also examined. In every case the hairs had 1-2
quadrate to short-rectangular, brown basal cells and (3-)4-12 hyaline apical cells. The
distinguishing feature of the axillary hairs, though, was the length of the hairs. They
ranged from 350 um to 860 um long. These elongate axillary hairs are yet another
leucodontalean feature. In the Leucodontales axillary hairs are often very elongate,
whereas in the Hypnales (and Hookeriales) they are typically quite short.
Therefore, branching pattern, rhizoid-associated stem anatomy, and axillary
hairs all point toward a position within the Leucodontales for the Fontinalaceae.
FAMILIAL ALLIANCES
The Fontinalaceae are highly modified in response to their specialized habitats.
Therefore, many of their unique features (synapomorphies), such as the trellised endos-
tome, are of little use in assessing possible relationships to other mosses. Rather, we need
to look for other kinds of characters.
Recently Allen (1995) noted the presence of paraphyllia in Brachelyma.
Although his illustration (fig. 1, no. 4) and even his discussion might lead one to think the
structures to which he referred are pseudoparaphyllia, this is not the case. They are not
clustered around branch primorida but rather are scattered along the stems. Curiously
Source : MNHN, Paris
ORDINAL PLACEMENT OF THE FONTINALACEAE 233
they also occur on decurrent leaf bases. Within the Leucodontales paraphyllia are rare and
might be suggestive of a relationship.
The stem anatomy where every epidermal cell can become a rhizoidal initial is
also unusual. If another group could be found with such a feature it could be significant.
Within the Leucodontales branching of the upright, secondary stems usually
results in a frondose-stipitate habit. In other words, branching only occurs in a single plane
and not all around the stem. True dendroid branching is relatively rare. However, in the
Fontinalaceae branches emerge from all sides of the stem. Not uncommonly the branches
bend shortly thereafter in order for the plant to be more or less flat, presumably in order to
be more streamlined in the water, but the branches truly do emerge from all sides of the
stem.
The only genus found in the Leucodontales which combines paraphyllia, the
distinctive stem anatomy, and a dendroid habit is Climacium. Interestingly, this conclusion
is based on evidence entirely independent from those features that convinced Brotherus
(1905) of a relationship. Among those characteristics listed by Brotherus, the long, twisted
calyptra covering the entire capsule seems most significant.
In Climacium the creeping stem is typically leucodontalean, with the primary
stem becoming an erect, secondary stem, and then a new primary stem originating from an
adventitious primordium at the base of the secondary stem. The secondary stem is
dendroidly branched.
In transverse section the primary stem is similar to that of the Fontinalaceae. In
common with the Fontinalaceae every cell can become a rhizoidal initial and rhizoids
emerge from all sides, all along the stem. The difference is that in the Fontinalaceae the
epidermal cell itself elongates so that each rhizoid is more or less embedded in the stem
(Fig. 3). In Climacium the rhizoids arise from atop the epidermis with the epidermal cells
themselves not elongating. This difference may reflect the greater need of the Fontinala-
ceae for secure attachment to the substrate.
Although the peristome of Climacium has some similarity to that found in the
Fontinalaceae, overall it is significantly different. As in the Fontinalaceae, the exostome
teeth are dark red and papillose rather than striate. However, the outer lamellae are
narrower, relatively wider and more heavily thickened than the inner lamellae, the inner
trabeculae are weakly thickened, and the teeth are relatively broad at base. The endostome,
as in the Fontinalaceae, is dark red to orange, firm, and often united at the tips of the
segments. But, unlike the Fontinalaceae endostome, that of Climacium is differentiated
into 16 segments (cilia are absent) and a low basal membrane. The segments are broadly
perforate and there are 32 cells in the IPL. Most significantly, the IPL cells are not offset so
that, as in most other mosses, the median line on the segments straddles a single column of
IPL cells.
In conclusion, despite peristomial dissimilarities, the original speculation of
Lindberg (1879) that the Fontinalaceae are related to Climacium still seems to be the most
reasonable phylogenetic hypothesis. At least, a relationship between the two is the most
logical based on morphological evidence. This problem seems an ideal one for molecular
investigation. Although molecular data can also be deceiving, sometimes it can resolve
problems where morphological modification has been extreme.
Source : MNHN. Paris
234 WR. ВОСК & B. ALLEN
LITERATURE CITED
ALLEN В, 1995 — The distribution of Brachelyma subulatum (P. Beauv.) Schimp. ex Card. with
notes on its paraphyllia. Evansia 12 (1): 40, cover 3.
ANDREWS A. L., 1954 — Taxonomic notes. XII. The families Rhytidia
The Bryologist 57: 251-261.
BROTHERUS V. F, 1905 — Fontinalaceae. Climaciaceae. In: Engler A. & K. Prantl, Die natürlichen
Pflanzenfamilien 1 (3). Leipzig, Wilhelm Engelmann, pp. 722-736.
BROTHERUS V. Е, 1925 — Unterreihe Fontinalineae. In: Engler A. & К. Prantl, Die natürlichen
Pflanzenfamilien, ed. 2, 11. Leipzig, Wilhelm Engelmann, pp. 54-66.
BUCK W. R. & VITT D. H., 1986 — Suggestions for a new familial classification of pleurocarpous
mosses. Taxon 35: 21-60.
BUCK W. R., 1997 — Pleurocarpous mosses of the West Indies, Memoirs of the New York Botanical
Garden 82: in press.
CARDOT J., 1892 — Monographie des Fontinalacées. Mémoires de la Société Nationale des Sciences
Naturelles et Mathématiques de Cherbourg 28: 1-152.
CRUM Н. A. & ANDERSON L. E., 198] — Mosses of eastern North America. Volume 2. New York,
Columbia University Press, 1328 p.
DE LUNA GARCÍA J. F. E., 1992 — Developmental evidence of acrocarpy in Hedwigia ciliata
(Musci: Hedwigiaceae). Chapter 2. In: Developmental and systematic studies in the Hedwi-
giaceae (Musci), Ph.D. dissertation, Duke University, Durham, North Carolina, Duke
University, pp. 35-53.
EDWARDS S. R., 1984 — Homologies and inter-relationships of moss peristomes. In: Schuster К.
M. (ed.), New Manual of Bryology 2. Nichinan (Japan), Hattori Botanical Laboratory, pp.
658-695.
FLEISCHER M., 1908 — Fontinalaceae. Climaciaceae. In: Die Musci der Flora von Buitenzorg 3.
Leiden, E. J. Brill, pp. 720, 721.
IRELAND R. R., 1968 — Pleuroziopsidaceae, a new family of mosses. Journal of the Hattori
Botanical Laboratory 31: 59-64.
LA FARGE-ENGLAND C., 1996 — Growth form, branching pattern, and perichaetial position in
mosses: cladocarpy and pleurocarpy redefined. The Bryologist 99: 170-186.
LINDBERG S. O., 1879 — Musci Scandinavici in systemate novo naturali dispositi. Upsaliae, Jesaiae
Edquist, 50 p.
PHILIBERT H., 1888a — Études sur le péristome. Septième article (suite), Le péristome interne: ses
variations. Revue Bryologique 15: 37-44.
PHILIBERT H., 1888b — Études sur le péristome. Septième article (suite). Le péristome interne: ses
variations. Revue Bryologique 15: 50-56.
SCHIMPER W. P., 1855 [1856] — Corollarium Bryologiae Europaeae, conspectum diagnosticum
familiarum, generum et specierum, adnotationes novas atque emendationes complectens.
Stuttgartiae, E. Schweizerbart, 140 p.
SCHIMPER W. P., 1860 — Synopsis Muscorum europaeorum praemissa introductione de elementis.
bryologicis tractante. Stuttgartiae, E. Schweizerbart, 735 p.
SHAW J. & ROHRER J. R., 1984 — Endostomial architecture in diplolepideous mosses. Journal of
the Hattori Botanical Laboratory 57: 41-61.
TAYLOR E. C. SR., 1962 — The Philibert peristome articles. An abridged translation. The
Bryologist 62: 175-212.
VITT D. H. & GLIME J. M., 1984 — The structural adaptations of aquatic Musci. Lindbergia 10:
95-110.
WELCH W. H., 1943 — The systematic position of the genera Wardia, Hydropogon, and Hydropo-
gonella. The Bryologist 46: 25-46.
WELCH WH., 1960 — А monograph of the Fontinalaceae. The Hague, Martinus Nijhoff, 357 p.
ае and Hylocomiaceae.
Source : MNHN, Paris
Cryptogamie, Bryol. Lichénol. 1997, 18 (3): 235-242 235
WELCHE FUNKTION HABEN DIE HYALOCYTEN
IN DEN BLATTERN DER DICRANACEAE ?
Jan-Peter FRAHM
Botanisches Institut der Rheinischen Friedrich-Wilhelms Universität, Meckenheimer Allee
170, D-53115 Bonn, Germany, e-mail frahm@uni-bonn.de
ABSTRACT — The function of the hyalocysts of Leucobryum and other Dicranaceae (Paraleuco-
bryum, Campylopus) is still dubious. As possible explanations, (1) water storage, (2) protection of the
enclosed chlorocysts against desiccation, (3) a rôle for gas exchange, (4) a rôle for nutrient uptake and
(5) an increased evaporation for the concentration of nutrients are discussed.
The fact that predominantly species of wet habitats possess hyalocysts, which do not need to
store water, seems to indicate that water storing is not the main function of this anatomical structure.
The observation that species with hyalocysts of mesic habitats compete with species without hyalo-
cysts without having an advantage seems to indicate that such structures were evolved under different
ecological conditions than today.
Protection of the enclosed chlorocysts against desiccation works only for a short period
when the water stored in the hyalocysts is already evaporated but the chlorocysts are not yet dried out.
It is therefore also not a sufficient explanation for its function. Air bubbles observed in the hyalocysts
are not a result of photosynthesis as suggested in the literature but a result of dehydration.
Cation exchange was so far regarded as a method for nutrient uptake typical for Sphagnum.
Cation exchange experiments with Sphagnum palustre, 5. fimbriatum, Leucobryum glaucum, Dicra-
num scoparium and Mnium hornum revealed that all these species have about the same cation exchange
capacity regardless their different structures of their leaves. Thus the special anatomy of Sphagmum
leaves does not increase the cation exchange.
Evaporation of a Leucobryum tuft is not higher than that of a water table. However, the
amount of water stored is 2.3 times higher than that of Mnium hornum and the desiccation takes 3
times as long. During desiccation, the leaves undergo three phases with the hyalocysts filled with
water, with air bubbles and with air, which provide different conditions for gas exchange. It is not yet
known, whether the prolongation of the period of desiccation balances or succeeds the net photo-
synthesis reduced by the diffusion of gas through the water filled hyalocysts as compared with other
mosses.
The function of hyalocysts may perhaps be explained as a combination of the different
explanations mentioned above. The enormous water uptake made possible by the hyalocysts princi-
pally extends the time of desiccation by factor three. Photosynthesis is reduced as long as the
hyalocysts are filled with water but is suboptimal when the hyalocysts are filled with air bubbles and
optimal when the empty hyalocysts protect the chlorocysts from desiccation. This could finally result
in a higher net-photosynthesis as compared with other mosses growing in the same habitat.
ZUSAMMENFASSUNG — Die Funktion der Hyalocyten in den Blatter von Leucobryum und
anderen Dicranaceen (Paraleucobryum, Campylopus) ist weitgehend unklar. Als mégliche Erklárun-
gen werden (1) Wasserspeicherung, (2) Austrocknungsschutz, (3) eine Rolle fiir den Gasaustausch, (4)
Source : MNHN, Paris
236 J.-P. FRAHM
eine Rolle für die Náhrstoffaufnahme und (5) eine gesteigerte Verdunstung zur Konzentration der
Nährstoffe diskutiert.
EINLEITUNG
Hyalocyten sind vergrößerte tote Zellen, Sie finden sich in der Stengelrinde
(Hyalodermis) von einigen aber nicht allen Arten der Gattungen Sphagnum, Drepanocla-
dus, Hypnum und anderen Laubmoosgattungen. Sie finden sich zudem in den Bláttern der
Sphagnaceae, den Blattbasen von Encalyptaceae, Calymperaceae und einigen Pottiaceae
und in der Rippe von Dicranaceae (Campylopus z.Tl., Paraleucobryum und speziell den
Leucobryoideae).
Hyalocyten kónnen dabei in einigen systematischen Gruppen perforiert sein. So
sind die Hyalocyten von einem Teil der Sphagnen, von Calymperaceae, Encalyptaceae
oder Tortula in den áuBeren Zellwánden, die der Leucobryaceae in den inneren Zellwán-
den perforiert.
Hyalocyten sind phylogenetisch offenbar schon eine sehr alte Struktur, die
bereits in Moosen des Paläozoikums vorhanden war. Smoot & Taylor (1986) publizierten
Photographien von Gesteinsdünnschliffen aus dem Perm der Antarktis, die Querschnitte
von breiten Rippen mit mehrschichtigen Hyalocyten zeigen.
Obgleich Hyalocyten ein auffálliges Element in der Blattanatomie sind, ist ihre
Funktion weitgehend unklar. Manche Autoren von Lehrbüchern (van der Wijk, 1932;
Watson, 1978; Schofield, 1985) geben nur morphologische Beschreibungen aber keine
Erklárungen der Funktion. Und in dem jüngsten und wohl umfangreichsten Kompen-
dium zur Bryologie, dem *New Manual of Bryology" (Schuster, 1983), ist die Physiologie
oder funktionelle Morphologie der Bryophyten (welche der wesentlichste Aspekt zum
Verstándnis dieser Pflanzengruppe ist) nicht einmal eingeschlossen. Daher sollen hier
einige Hypothesen zur Funktion dieser Hyalocyten diskutiert werden.
HYPOTHESEN ZUR FUNKTION DR HYALOCYTEN
1. Wasserspeicherung
Bereits Goebel (1915) bemerkte, daB die Calymperaceae und Leucobryaceae
besonders typisch für die tropischen Tieflánder sein und daB daher Einrichtungen zur
Wasserspeicherung an einem permanent feuchtem Standort ohne VerdunstungsstreB
keinen Sinn machen. Goebel (1915) führte ferner an, daB die Hyalocyten die Chlorocyten
vor der Austrocknung schützen. Das wiederum macht aber physiologisch keinen Sinn, da
die von Hyalocyten eingeschlossenen Chlorocyten den Gasaustausch herabsetzen.
Wie bereits Goebel (1915) bemerkte, kommen Hyalocyten sowohl in Moosen
von feuchten als auch von trockenen Standorten vor. Das scheint anzudeuten, daB die
Funktion bei den Pflanzen beider Standorte nicht dieselbe ist. Torfmoose sind Beispiele
für Moose mit Hyalocyten von nassen Standorten. Bei ihnen muB bezweifelt werden, ob
Source : MNHN. Paris
FUNKTION DER HYALOCYTEN 237
Hyalocyten wirklich Mechanismen für die Wasserspeicherung sind, da diese Arten
teilweise im Wasser wachsen, keine Wasserdefizite haben und auch (vielleicht mit Ausna-
hme von auf Waldboden wachsenden Arten) auch keiner Austrocknung unterliegen
Daher erscheint eine Wasserspeichereinrichtung bei Arten nasser Standorte paradox zu
sein.
Auch bei Campylopus sind die Arten mit den größten ventralen Hyalocyten (z.B.
Campylopus pittieri Williams, C. albidovirens Herz., C. cavifolius Mitt., C. shawii Wils. in
Hunt.) charakteristisch für nasse oder moorige Standorte. Im Gegenteil dazu besitzen
Arten von trockenen Standorten, die eine Wasserspeicherung nótig hátten, keine Hyalo-
cyten, wie z .B. die wenigen epiphytischen Arten in dieser Gattung. Bei Paaren nah
verwandter Arten, von denen die eine Art epigáisch lebt, die andere epiphytisch (z.B. C.
cuspidatus (Hornsch.) Mitt. — C. valerioi Allen , C. andersonii (C. Müll.) Jaeg. — C.
atlanticus Allen , C. flexuosus (Hedw.) Brid. — C. flagelliferus (C. Müll.) Jaeg.), hat die
epiphytische Art ventrale Stereiden, die epigäische aber ventrale Hyalocyten.
Vielfach kommen auch Arten mit und ohne Hyalocyten in der Natur an dem-
selben Standort vor (z.B. in Mitteleuropa Paraleucobryum longifolium (Hedw.) Loeske and
Dicranum fulvum Hook. auf Silikatblócken, Leucobryum glaucum (Hedw.) Aongstr. und
Campylopus flexuosus (Hedw.) Brid. auf stark sauren Waldbóden). In diesen Fällen
konkurrieren die Arten mit und ohne Hyalocyten im Rippenquerschnitt an demselben
Standort, ohne daß eine Art von beiden offensichtlich einen Vorteil von seiner Anatomie
hätte. Das könnte darauf schließen, daß solche anatomischen Strukturen wie Hyalocyten
sich unter anderen ökologischen Bedingungen gebildet haben und daß sie unter den
heutigen ökologischen Bedingungen keinen Vorteil mehr bilden.
2. Schutz der Chlorocyten
Goebel (1915) argumentierte, daß viele der Leucobryaceen in den Tropen Epi-
phyten sind. Ihre weißliche Farbe, die in manchen Gattungsnahmen (Leucobryum, Leu-
cophanes) und Artnamen (albidum) ihren Ausdruck findet, soll nach Goebel belegen, daß
die Hyalocyten in der Regel nicht wassergefüllt sondern luftgefüllt sind. Dadurch sollen
die Hyalocyten als Schutz für die Chlorocyten gegen Austrocknung und als Isolation
gegen Insolation und die dadurch hervorgerufene Aufhitzung dienen. Diese Hypothese
scheint dadurch gestützt zu werden, daß die Hyalocyten der Leucobryaceen im Gegensatz
zu den Sphagnen keine Poren in den äußeren Zellwánden besitzen.
3. Gasstoffwechsel
Robinson (1985, 1990) interpretierte die Rippenstruktur der Leucobryaceae
unter einem neuen stoffwechselphysiologischen Aspekt. Er führte aus, дай die Hyalocyten
der Leucobryaceae nicht nur Wasser sondern auch Gasblasen enthielten und schrieb
dazu:: “the characteristic leucocyst-chlorocyst cellular pattern in the moss family Leuco-
bryaceae depends functionally on the presence of air inside the leaf. Such leaves prove
basically different in structure and function from those of other mosses, including the
leucocyst-containing Sphagnum”. Diese Hypothese schien so interessant und neu zu sein,
daB sie den Anlaß zu der vorliegenden Studie gab. Nach Robinson kann man davon
ausgehen, daß die Hyalocyten eine spezielle Funktion für den Gasaustausch haben.
Source : MNHN Paris
238 J.-P. FRAHM
Dadurch wird suggeriert, daB die Hyalocyten über Tag mit O, als Produkt des Gasstof-
fwechsels gefüllt werden und nachts CO, aufnehmen und speichern und somit einen
Gaspuffer bilden.
Um diese Hypothese zu testen wurden Polstern von Leucobryum glaucum mit
Wasser gesättigt und in einer Plastikdose direktem Sonnenlicht ausgesetzt. Zur Kontrolle
der Gasblasen wurden Blátter entnommen und direkt unter dem Mikroskop studiert ohne
zusützliches Wasser zuzugeben. Es zeigte sich, daB die Blatter trotz starker Nettophoto-
synthese keine Gasblasen in den Hyalocyten enthielten. Auch wenn das PlastikgefáB mit
einer Aluminiumfolie umwickelt wurde und die Pflanzen 16 Stunden lang im Dunkeln
gehalten wurden, zeigten sich keine Gasblasen in den Hyalocyten. Gasblasen wurden erst
gebildet, wenn die Pflanzen abtrockneten. Damit ist erwiesen, daß Gasblasen sich nicht
durch den Gasstoffwechsel bilden sondern erst wenn das verdunstete Wasser in den
Hyalocyten durch Luft ersetzt wird. In diesem Stadium kónnen sie allerdings den Gass-
toffwechsel erleichtern.
4. Nührstoffaufnahme
Auffälligerweise sind alle Dicranaceae mit Hyalocyten in den Rippen (wie auch
Torfmoose) starke Acidophyten, die an nährstoffarmen Standorten wachsen. Hyalocyten
würden — ähnlich wie bei Torfmoosen — die für die Nahrstoffaufnahme zur Verfügung
stehende Oberfläche vergrößern und in eine effektivere Nährstoffaufnahme ermöglichen.
Basierend auf der Beobachtung, daß Sphagnum-Arten das 20-30fache ihres Trocken-
gewichtes an Wasser aufnehmen können, postulierte erstmalig Sachs (zitiert nach Goebel,
1915), daß Torfmoose in der Lage sein müßten, größere Nährstoffmengen aus dem
nährstoffarmen Milieu aufzunehmen. Das betrifft insbesondere Sphagnum-Arten von
Hochmooren, die fast ausschließlich von Regenwasser als Nährstoffquelle abhängig sind.
Im Prinzip betrifft die Abhängigkeit von der Nährstoffversorgung aus dem Regen jedoch
auch die Epiphyten, von denen speziell Leucobryaceae und Calymperaceae über Hyalo-
cyten verfügen. Jedoch besitzen die meisten epiphytischen Moose keine Hyalocyten und
kommen damit gut aus. Ferner besitzen die Hyalocyten von Torfmoosen Poren in den
äußeren Zellwánden, die der Leucobryaceen jedoch in den inneren Zellwänden, was an
eine unterschiedliche Funktion denken läßt. Daß die Poren der Sphagnen zur Wasse-
raufnahme dienen, wird daraus ersichtlich, daB die Poren bei aquatischen Modifikationen
reduziert werden oder ganz fehlen.
Wenn die Hyalocyten von Leucobryum zur Nährstoffaufnahme áhnlich wie bei
Sphagnum dienen, müßte der Kationenaustausch von beiden auch ähnlich sein. Um diese
Hypothese zu testen, wurden Ionenaustauschversuche mit Leucobryum glaucum (Hedw.)
Aongstr. durchgeführt. Zum Vergleich wurde Sphagnum fimbriatum Wils. und 5. palustre
L. und als Vertreter von Moosen ohne Hyalocyten Dicranum scoparium Hedw. und
Mnium hornum Hedw. herangezogen.
Für den Ionenaustauschversuch wurde Material der genannten Arten in einem
Wald nahe Eupen (Belgien) gesammelt. Für den Versuch wurden nur die lebenden oberen
Pflanzenteile benutzt. Das Pflanzenmaterial wurde bei 50° C 24 Stunden getrocknet,
gewogen und in ein Glasrohr gefüllt. Durch das Glasrohr wurde 0.005mol CaCl,.-Lésung
gegossen. Dabei wurde darauf geachtet, daB der DurchfluB immer etwa dieselbe Zeit
(150-160 sec.) dauerte. In der durchgeflossenen Lósung wurden pH und Leitfáhigkeit
gemessen und titrimetrisch Kalzium bestimmt. Die Ergebnisse wurden auf das Trocken-
gewicht bezogen.
Source : MNHN. Paris
FUNKTION DER HYALOCYTEN 239
Überraschenderweise war der Kationenaustausch bei allen untersuchten Arten etwa
derselbe ungeachtet der unterschiedlichen anatomischen Strukturen ihrer Blátter (Tab. 1).
Aqua CaCl, Sphagnum Sphagnum Leuco- Dicranum Mnium
dest. palustre fim- bryum scopa- hornum
briatum — glaucum. rium
Gewicht(g) 3,36 422 10,26 5,36 547
pH 7,25 6,24 3,56 3,64 3,42 3,35 3,58
Leitfähigkeit 1,54 1058 933 962 903 984 939
(uS)
absorbiertes Ca 8,62 9,81 545 10,10 9,00
(mg)
absorbiertes Ca 256 232 53 187 164
(mg/100g)
Tab. 1 — Ergebnisse von Ionenaustauschversuchen von Moosen mit und ohne Hyalocyten. / Results
of cation exchange experiments with mosses without and with hyalocysts. ]
Der pH wurde von urspriinglich 7.25 bei Sphagnum palustre auf 3,56, bei S.
fimbriatum auf 3,64, bei Leucobryum glaucum auf 3,42, bei Dicranum scoparium auf 3,35
und bei Mnium hornum auf 3,58 gesenkt. Die Leitfähigkeit sank von ursprünglich 1058 uS
auf 933 uS bei Sphagnum palustre, 962 uS bei S. fimbriatum, 903 uS bei Leucobryum
glaucum, 984 uS bei Dicranum scoparium und 939 uS bei Mnium hornum. Die Kalzium
aufnahme betrug 8.62 mg bei Sphagnum palustre, 9.81 mg bei S. fimbriatum, 5.45 mg bei
Leucobryum glaucum, 10.1 mg bei Dicranum scoparium und 9 mg bei Mnium hornum.
Auffällig ist, daß die Kalziumaufnahme bei Leucobryum trotz des Vorhandenseins von
Hyalocyten am geringsten ist und nicht nur geringer als bei Sphagnen sondern auch
geringer als bei Mnium hornum und Dicranum scoparium.
Die Ergebnisse stimmen mit denen von Clymo (1963) überein, nachdem der
höchste Ionenaustausch abgesehen von Sphagnum bei Mnium hornum zu verzeichnen war,
der geringste bei dem (partiell endohydrischen) Polytrichum commune Hedw. Es ist zu
berücksichtigen, daß die für den Ionenaustauschversuch verwendeten Sphagnen aus
einem Wald stammen, da nach Clymo (1963) die Ionenaustauschkapazitát bei Hoch-
moorsphagnen am größten ist. Dennoch ist festzuhalten, daB der Ionenaustausch bei
Sphagnum im Verháltnis zu der durch die Hyalocyten viel gróBeren Oberfláche nicht sehr
wesentlich größer ist als bei Leucobryum mit Hyalocyten, aber ohne äußere Poren, und bei
Dicranum und Mnium ohne Hyalocyten. Eine Verbesserung der Nährstoffaufnahme
durch Hyalocyten ist daher keine ausreichende Erklárung für ihre Funktion.
5. Verdunstung
Die Speicherung von gróBeren Wassermengen kónnte auch zu einer gróBeren
Verdunstung führen. Wenn nährstoffarmes Wasser (wie z.B. Regenwasser) aufgenommen
wird, so ist die Náhrstoffkonzentration zunáchst sehr niedrig. Die Konzentration würde
durch Verdunstung steigen.
Source : MNHN. Paris
240 J.-P. FRAHM
—*—— Mnium
D
——©—— Leucobryum
70%
= %
3 60 4 z a
g 50 7 à
E 40 A 2 B
à 30 + >
| = н п o = п m =
20 4 9,
B а
10 + D
© © © ш e
гяазвеззезвзвв
110
120
150
140
150
hours
Fig. | — Austrocknung von Polstern von Mnium hornum und Leucobryum glaucum. | Desiccation of
tufts of Mnium hornum and Leucobryum glaucum. J
Um die unterschiedliche Wasserabgabe von Moosarten mit und ohne Hyalocy-
ten zu testen, wurde die Verdunstung von Polstern von Leucobryum glaucum im Vergleich
zu Mnium hornum bei Raumklima (21? C + 1% and 45 % rH) gemessen (Fig. 1). Mnium
hornum trocknete innerhalb 54 Stunden vóllig aus und reduzierte dabei sein Gewicht auf
26%. Leucobryum brauchte hingegen 93 Stunden um 26% seines Nafgewichtes zu
erreichen und war erst nach 142 Stunden vóllig ausgetrocknet. Zu diesem Zeitpunkt
betrug das Trockengewicht nur noch 12 % des NaBgewichtes. Die Wasserspeicherkapazi-
tüt von Mnium hornum betrug das Dreifache des Trockengewichtes, was der Mittelwert für
die meisten Moose ohne spezielle Wasserspeichereinrichtungen darstellt, da derselbe
Faktor auch bei Untersuchungen zur Wasserspeicherkapazitát von tropischen
Regenwaldmoosen gemessen wurde (Frahm, 1990). Leucobryum glaucum speichert hin-
gegen das Siebenfache des Trockengewichtes und verdunstet die Feuchtigkeit in der
dreimal längeren Zeit. Daraus geht hervor, daß eine hohe Wasserspeicherkapazität, wie sie
bei Moosen mit Hyalocyten gegeben ist, nicht auch gleichzeitig eine hohe Verdunstung
einschlieBt, da diese über eine lángere Zeit geht.
Erst durch Gasstoffwechselversuche kónnte getestet werden, ob die Verlánge-
rung der turgeszenten Phase durch eine langsame Austrocknung nach der Befeuchtung
von Leucobryum (also z.B. nach einem Regenfall) in einer hóhere Nettophotosynthese
resultiert, welche die Reduktion der Photosynthese durch die Diffusion von CO, durch die
Source : MNHN, Paris
FUNKTION DER HYALOCYTEN 241
wassergefüllten Hyalocyten wieder ausgleichen würde. Bei der Befeuchtung und an-
schlieBenden Austrocknung von Leucobryum Blátter konnten drei unterschiedliche Pha-
sen beobachtet werden:
1. Die Blátter sind mit Wasser vollgesogen und die Hyalocyten sind mit Wasser gefüllt. Die
Photosynthese ist durch die Lage der Chlorocyten in der Mitte der Rippe, eingeschlossen
durch die wassergefüllten Hyalocyten, eingeschránkt.
2. Steigende Austrocknung führt zu einer Verdunstung in den Hyalocyten. Das Wasser in
den Hyalocyten wird durch Luftblasen ersetzt, die sich allmählich vergrößern. Es kann
angenommen werden, daB die Photosynthese durch bessere Verfügbarkeit von CO, steigt.
3. SchlieBlich ist das Wasser in den Hyalocyten vóllig verdunstet, die Chlorocyten bleiben
jedoch noch eine Zeit lang turgeszent. Das diirfte die optimale Phase fiir die Photosyn-
these sein.
Die Frage bleibt, ob Arten mit Hyalocyten im Endeffekt eine hóhere Nettopho-
tosynthese haben als Arten ohne Hyalocyten. Die Antwort hángt vermutlich weitgehend
von den ókologischen Bedingungen ab. Wenn Hyalocyten durch feuchtes Klima und
dauernde Befeuchtung immer wassergefüllt bleiben, so ist das sicher ein Nachteil. Es
kónnte ein Vorteil sein, wenn das Klima oft zwischen trockenen und feuchten Phasen
wechselt. Unter diesem Aspekt ist es aber unverstándlich, warum die meisten Leucobrya-
сееп in den Feuchttropen vorkommen. Auch wenn man postuliert, daB die Leucobryaceen
in temperaten Klimaten entstanden sind und erst spáter in die Feuch ttropen vorgedrungen
sind, so ist es kaum verständlich, daß sie unter diesen Bedingungen diese Strukturen nicht
reduziert hátten, wenn sie einen Nachteil bedeutet hátten. Im Gegenteil haben sich in den
Tropen neue Gattungen gebildet.
Berechungen aus dem Verdunstungsversuch zeigen, daf ein Quadratmeter von
Leucobryum etwa 17 Liter Wasser speichert. Die Verdunstungsrate eines Leucobryum
Polsters von 100 cm? betrágt zwischen 0,6 g/h und 2,6 g/h, im Durchschnitt 1,6 gh
wáhrend der ersten 54 Stunden und weniger gegen das Ende der Austrocknung. Die
durchschnittliche Verdunstung wáhrend der gesamten Austrocknung betrágt 1,3 g/h/
100 cm”. Auf diese Weise verdunstet Leucobryum zwischen 100 und 200 ml Wasser per
Stunde und m? unter Testbedingungen (21? C, 45% rH). Die Verdunstungsrate von
Mnium hornum ist ungefáhr dieselbe wie bei Leucobryum glaucum. Ein Polster von 100 cm?
verdunstet im Schnitt 1,2 g/hr, hat aber eine Verdunstungsperiode, die nur ein Drittel so
lang ist wie bei Leucobryum. Unter denselben Bedingungen verdunstet eine Wasserfláche
von 100 cm? zwischen 1,1 and 1.8 g/h. Daher ist die Verdunstung eines Moospolsters nicht
signifikant höher als die einer gleich großen Wasserfläche. Sphagnen sollen nach Oltmanns
(zitiert nach Goebel, 1915) fünf mal so viel Wasser verdunsten wie eine entsprechende
Wasserfläche.
DISKUSSION
Zusammenfassend kann man sagen, daB die Funktion der Hyalocyten nicht
befriedigend erklárt ist. Wie ausgeführt wurde, kann man Vorteile durch Wasserspeicher-
ung, einen besseren Kationenaustausch oder besseren Gasaustausch ausschließen. Ein
Vorteil für die Photosynthese müßte belegt werden. Es könnte allenfalls sein, daß eine
Kombination der genannten Faktoren einen Vorteil für Moose mit Hyalocyten haben.
Vielleicht spielen auch ganz andere Gründe eine Rolle. Zum Beispiel haben
Source : MNHN. Paris
242 J-P. FRAHM
Arten mit groBen Hyalocyten (Leucobryum, Paraleucobryum, bei Campylopus nur die
Arten mit großen Hyalocyten wie C. pittieri) auffálligerweise keine Flavonoide. Das
kónnte andeuten, daf diese Arten einen anderen Stoffwechsel haben, in denen die Hyalo-
cyten eine Rolle spielen.
Eine sehr spekulative Erklärung könnte auch sein, daß Hyalocyten ursprünglich
für endophytische Algen, Cyanobakterien oder Bakterien angelegt wurden. Endophyt-
ische Algen wurden in den Zellen von mehreren Moosarten gefunden und wurden auch in
den Hyalocyten von Campylopus aureonitens (C. Müll.) Jaeg. aus Malawi gefunden.
Eine letzte Erklärung könnte sein, daß diese anatomische Struktur der Hyalo-
cyten unter anderen ökologischen Bedingungen als heute gebildet wurde und heute keine
spezielle Funktion mehr hat. Diese Erklärung drängt sich speziell auf bei an demselben
Standort koexistierenden Arten mit und ohne Hyalocyten, wie sie für Leucobryum glau-
cum und Campylopus flexuosus sowie Paraleucobryum longifolium und Dicranum fulvum
geschildert wurden.
Ich danke Herrn H. Ibsch, Anorganische Chemie der Universität Duisburg, für die Durchführung
der lonenaustauschversuche, und B.J. O'Shea für die Durchsicht des Abstract.
LITERATUR
CLYMO R.S., 1963 — Ion exchange in Sphagnum and its relation to bog ecology. Annals of Botany
27: 309-324.
FRAHM J.-P, 1990 — The ecology of epiphytic bryophytes on Mt. Kinabalu, Sabah (Malaysia).
Nova Hedwigia 51: 121-132.
GOEBEL K., 1915 — Organographie der Pflanzen, Zweiter Teil Spezielle Organographie, 1 — Heft
Bryophyten. Jena.
ROBINSON H., 1985 — The structure and significance of the leucobryaceaeous leaf. Monographs of
the Missouri Botanical Garden| 1: 111-120.
ROBINSON H., 1990 — A functional evolution of Leucobryaceae. Tropical Bryology 2: 223-238.
SCHOFIELD W.B., 1985 — Introduction to Bryology. New York.
SCHUSTER R.M., 1983 — New Manual of Bryology. 2 vols. Nichinan.
SMOOT E.L. TAYLOR T.N., 1986 — Structurally preserved fossil plants from Antarctica: II. A
permian moss from the transantarctic mountains. American Journal of Botany 73: 1683-
1691.
WATSON E.V., 1978 — Structure and Life of Bryophytes. 3rd. ed. London.
WIJK R. van der, 1932 — Morphologie und Anatomie der Musci. /n: F. Verdoorn (ed.) Manual of
Bryology, The Hague, pp. 1-40
BIBL.DU.
MUSEUM
PARIS
*
Commission paritaire 15-9-1981 - N° 58611 - Dépôt légal 3° trimestre 1997 - Imprimerie F. Paillart
Sortie des presses le 31 juillet 1997 - Imprimé en France.
Éditeur : A.D.A.C. (Association des Amis des Cryptogames)
Lamy ; Secrétaire : B. Dennétière
- Directeur de la publication : H. Causse
Source : MNHN, Paris
=
Société Francaise de Systématique <3
La Société Française de Systématique réunit les systématiciens ou les personnes
intéressées par la Systématique et les informe en publiant un Bulletin. Elle convie ses
membres à des colloques annuels transdisciplinaires, au cours desquels les systématiciens
et d'autres scientifiques peuvent s'exprimer et débattre.
Cotisation annuelle: 100F
Demande d'adhésion à adresser au:
Secrétariat de la Société Française de Systématique, 45 rue Buffon, F-75005 Paris.
CCP 7-367-80 D PARIS
La Société édite aussi la série Biosystema.
Prix TTC du Biosystema (France, Etranger): 150 FF, membre SFS : 100 FF.
Biosystema 1 - Introduction à la systématique zoologique - (Concepts. Principes, Méthodes) par
L. Matile. P. Tassy & D. Goujet. 1987.
Biosystema 2 - Systématique Cladistique - Quelques textes fondamentaux. Glossaire. Traduction
et adaptation de D. Goujet, L. Matile, P. Janvier & J.P. Hugot. 1988
Biosystema 3 - La systématique et l'évolution de Lamarck aux théoriciens modernes. par
S. Lovirup. 1988.
Biosystema 4 - L'analyse cladistique: probléme et solutions heuristiques informatisées, par
M. d'Udekem-Gevers. 1990.
Biosystema 5 - Les introuvables de J.B. Lamarck- Discours d'ouverture du cours de zoologie et
articles du Dictionnaire d' Histoire naturelle. Edition préparée par D. Goujet. 1990.
Biosystema 6 - Systématique et Ecologie, par R. Barbault, Cl. Combes, F. Renaud, N. Le Brun
& A. Dubois. Edition coordonnée par J.P. Hugot. 1991.
Biosystema 7 - Systématique et Biogéographie Historique. Textes historiques et
méthodologiques. Traduction et adaptation de P. Janvier, L. Matile & Th. Bourgoin.
1991.
Biosystema 8 - Systématique et Société. Edition coordonnée par G. Pasteur. 1993.
Biosystema 9 - Les Monocotylédones, par J. Mathez. 1993.
Biosystema 10 - Systématique botanique : problémes actuels. Edition coordonnée par O. Poncy.
1993,
Biosystema 11 - Systématique et Phylogénie: modéles d'évolution biologique. Edition
coordonnée par P. Tassy et H. Leliévre. 1994.
Biosystema 12 - Phylsyst: logiciel de reconstruction phylogénétique, par I. Bichindaritz,
S. Potter & B. Sigwalt *. 1994.
Biosystema 13 - Systématique et Biodiversité. Edition coordonnée par Th. Bourgoin. 1995.
Biosystema 14 - Systématique et Informatique. Edition coordonnée par J. Lebbe. en préparation.
Le Conseil de la SFS. XII 1995
Source : MNHN, Paris
SOMMAIRE
Editorial
Claritza E. GRADSTEIN-SERNA — Un tributo de Colombia a Helena Bischler .
David С. LONG — Studies on the genus Asterella P. Beauv. III Asterella cruciata
(Steph.) Horik. in Eastern Asia.
S. Rob GRADSTEIN and Patricia GEISSLER — Notes on the genus Leuco-
lejeunea (Hepaticae)
Suzanne JOVET-AST — Un Riccia prolifére d'Australie: Riccia pullulans sp. nov.
AE AS оди за ee АЛДЕ
Riclef GROLLE and M. L. SO — Plagiochila bischleriana, a new species from
NN ET AR TER N ree atari ee ср лгы
Tamas PÓCS — New or little known epiphyllous Liverworts, VIL. Two new
Lejeuneaceae species from the Mascarene Islands .
Benito C, TAN and Jian-Cheng ZHAO — New Moss records and range exten-
sions of some xeric and alpine moss species in China..................
Cecilia SERGIO and Ana SÉNECA — The first report of Cryptothallus mirabilis
Malmborg (Hepaticae, Aneuraceae) in Southern Europe (Portugal) ....
5. Rob GRADSTEIN — Bromeliophila helenae, a new species of Lejeuneaceae
from the Neotropics.
Barbara M.THIERS — Lejeunea bischlerae, a new species of Lejeunea Ed
Microlejeunea from Australia .
William R. BUCK and Bruce ALLEN — Ordinal placement of the Fontinalaceae.
Jan-Peter FRAHM — Welche Funktion Haben die Hyalocyten in den Bláttern
Cryptogamie, Bryologie-Lichénologie 1997, 18(3): 165-242.
167
169
177
183
191
195
207
213
217
223
227