geodiversitas fait suite.
avec la même tomaison, au Bulletin du
Muséum national d'Histoire naturelle,
4® série, section C. Sciences de la Terre.
Directeur de la publication :
J.C Moreno, Administrateur provisoire du
Muséum national d'Histoire naturelle
Rédacteur en chef :
Hervé Lelièvre
Conseil éditorial :
Annemarie Ohler (Nomenclature)
Assistante de rédaction :
Florence Kerdoncuff
Corrections-relecture :
Hélène Bertini
Comité scientifique :
Jean Broutin (UPMC, Paris)
Bruno David (CNRS, Dijon)
Jean-François Deconinck (USTL, Lille)
Patrick De Wever (MNHN, Paris)
Jean Marcoux (U. Denis Diderot, Paris)
Christian Ravenne (IFP, Paris)
Indexed in
GeoRef (Online Database for Bibliography and Index of
Geology), Biological Abstracts, ASFA (Aquatic Sciences and
Fisheries Abstract), Pascal, Zoological Record
geodiversitas est un trimestriel publié par les Publications Scientifiques du Muséum, Paris
geodiversitas /s a quarterly published by Publications Scientifiques du Muséum, Paris
Abonnement pour l’année 1999 (prix HT)
Annual subscription rates 1999 (excluding VAT)
1000 FF (152,45 euros)
Geodiversitas peut être obtenu par voie d’échange. Pour toutes informations s’adresser à :
Geodiversitas may be obtained on an exchange basis. For further information please write to:
Service des périodiques et des échanges de la Bibliothèque centrale
du Muséum national d’Histoire naturelle
38 rue Geoffroy Saint-Hilaire
75005 Paris
Tél. ; (33) (0)1 40 79 36 41
Fax ; (33) (0)1 40 79 36 56
Les Publications Scientifiques du Muséum publient aussi :
The Publications Scientifiques du Muséum aiso publish:
adansonia
Abonnement / Subscription : 500 FF (76.22 euros)
zoosystema
Abonnement / Subscription : 1000 FF (152,45 euros)
Abonnement général / General subscription (adansonia + geodiversitas + zoosystema) : 1800 FF (274 euros)
geodiversitas
Publications Scientifiques du Muséum, Paris
© Publications Scientifiques du Muséum
Photocopies :
Les Publications Scientifii^ues du Muséum adhèrent au Centre
Français d’Exploitation du Droit de Copie (CFC), 20 rue des
Grands Augustins, 73006 Paris. Le CFC est membre de
X International Fédération of Reproduction Rights Organisations
(IFRRO). Aux États-Unis d’Amérique, contacter le Copyright
Clearance Center, 27 Congress Street, Salem, Massachusetts 01970.
national d'Histoire naturelle, Paris, 1999
Photocopies:
The Scientific Publications of the Muséum adhéré to the Centre
Français d'Exploitation du Droit de Copie (CFC), 20 rue des Grands
Au^stins, 75006 Paris. The CFC is a member of International
Fédération of Reproduction Rights Organisations (IFRRO).
In USA, contact the Copyright Clearance Center, 27 Congress Street,
Salem, Massachusetts 01970.
Introduction
Ce volume spécial est le troisième et dernier de la
série des volumes publiés par Geodiversitas dans le
cadre du Programme internationaJ Péri-Tcthys. Il
est consacré aux données obtenues par les scienti¬
fiques russes ayant participés au programme. Les
collaborations établies avec les collègues de la
Communauté des Etats Indépendants (CEI)
représentent un des apports originaux et impor¬
tants de ce programme. En effet» ils ont permis
des échanges d’informations mais aussi de
méthodes. Le résultat est à Tactif du programme.
Certains des résultats scientifiques sont publiés
sous tormes d’articles de corrélations stratigra-
phiques, dans les voluinc.s publics par le program¬
me {Geodiversitas ou Mémoires du Muséum
national d’Histoire naturelle). D’autres acquis
apparaissent sur les cartes paléogeographiques
(Atlas Péri-Téthys a paraître en 2000) qui synthé¬
tisent et illastreni cette Irucuicuse coopération.
Afin de présenter un cn.semble homogène corres¬
pondant aux exigences de qualité requise par le.s
responsables des publications du Muséum, toute.s
les figures de ce volume ont etc redessinées ou
reprises partiellement par les éditeurs. Cerre
tâche a été facilitée par l'intervention d'E. Cam-
breleng (Laboratoire de Géologie, MNHN),
nous lui sommes reconnaissants de l'aide quelle
a apportée.
Nous sommes très redevables au Muséum natio¬
nal d’Histoire naturelle qui nous a permis de
concrétiser cette collaboration avec les collègues
russes. Enfin, nous sommes heureux d’exprimer
notre amicale gratitude à Hervé Lelièvre, rédac¬
teur en chef, et Florence Kerdoneuff, assistante
de rédaction pour leur compétence et leur profes¬
sionnalisme.
Ce volume s’intégre dans la série des publications
du Programme international Péri-Téthys :
This spécial issue is the third artd bist of the sérié
published hy Geodiversitas within the Jimneivork
of the hnernational Peri-Tethys Programme. !t is
devoted to the data ohtamed by the Russiaa scieri’
tists irivolved in the Piagramrne. The çoHaborntions
established ivith r/te colkagncs of the Indépendant
States Community accoum for one of the original
and main contributions of t/te Programme- Indeed.
they allowed exchanges of informations and
metl)üdi, Some remlts are published as stiatigaphic
comlaiioris papers in the spécial volumes published
by the Programme (Geodiversitas and Mémoires
du Muséum national d'Histoirc naturelle^. Some
others appear on the palâeogeogaphic maps (Péri-
Ihthys Atlas will he published in 2000) which syn¬
thétisé and illustrate this fi'ui^l coopération.
In order to présent an homogeneous set which cor¬
responds to the qiiality requests of the Muséum
publication team^ ail the figures were redrawn or
picked again by the editors. We thank for her help
for this Work E. Cambreleng (Laboratoire de
Géologie. MNHN),
We are indehted to the Muséum national dHistoire
naturelle for his contribution in the concrétisation
of the collaboration with our Russian colleagues.
Finally, we would Like to express our friendly gati-
tude ro Hervé Lelievre, Editor in Chief and
Florence Kerdoncujf assistant editor. for their com¬
pétence atîd professionalism.
This volume fits in the sérié of Peri-Tethys Inter¬
national Progamme publications.
GEODIVERSITAS • 1999 • 21 (3)
289
Introduction
Roure F. (ed.) 1994. — Peri-Tethyan Platforms: Proceeding of the IFP Peri-Tethys Research Conférence held in
Arles, France, Mar ch 23, 1993. Technip, Paris, 275 p.
Ziegler P. A. & Horwath F. (eds) 1996, — Peri-Tethys Memoir 2: Structure and prospects of Alpine Basins
and Forelands. Mémoires du Muséum national d'Histoire naturelle, Paris 170, 547 p.
Crasquin-Soleau S. & De Wever P. (eds) 1997. —Peri-Tethys: stratigraphie corrélations 1. Geodiversitas 19
(2) : 169-499.
Crasquin-Soleau S. &: Barrier E. (eds) 1998. — Peri-Tethys Memoir 3: Stratigraphy and évolution of Peri-
Tethyan Platforms. Mémoires du Muséum national d’Histoire naturelle, Paris 177, 262 p.
Crasquin-Soleau S., Izarr A., Vaslet D. & De Wever P. 1998. — Peri-Tethys; stratigraphie corrélations 2.
Geodiversitas 2Q (4) : 519-730.
Crasquin-Soleau S. Barrier E. (eds) 1998. — Peri-Tethys Memoir 4: Epicratonic basins of Peri-Tethyan mar-
gins. Mémoires du Muséum national d’Histoire naturelle, Paris 179, 294 p.
Crasquin-Soleau S. & Barrier E. 1999. — Peri-Tethys Memoir 5: New data on Peri-Tethyan sedimentary
basins. Mémoires du Muséum national d’Histoire naturelle, Paris 182, sous presse.
Sylvie Crasquin-Soleau & Patrick De Wever
290
GEODIVERSITAS • 1999 • 21 (3)
Corrélations between Tatarian (Permian) type
section (Russie) and the Sait Range (Pakistan):
palynology and palaeomagnetism
Alexei V. GOMANKOV
Geological Institute of the Russian Academy of Sciences,
7, Pyzhevsky, Moscow, 109017 (Russia)
gomankov@ginran.m5k.su
Boris V. BUROV
Geological Department, Kazan State University,
18, Kremliovskaya St., Kazan, 420008 Tatarstan (Russia)
Gomankov A. V. & Burov B. V. 1999. — Corrélations between Tatarian (Permian) type sec¬
tion (Russia) and the Sait Range (Pakistan): palynology and palaeomagnetism, in
Crasquln-Soleau S- & De Wever P. (eds), Peri-Tethys: stratigraphie corrélations 3,
Geodiversitas 21 (3) : 291-297.
KEYWORDS
Palaeomagnetism,
palynolog)’,
stratigraphie corrélations,
Permian,
Suit Range.
Rus.sian Plattbrin.
ABSTRACl
The po.sition of palaeomagnctic zones cogether wirh the occurrence of some
miospore species in ihe section of Sait Range cnables its ctirrelation wich the
référence .sections of Tatarian on ihc Russian Plaiform. So chc Wargal
Limestone œrresponds roughl)' to rhe Vishkilsk)' Horizon (newly proposée!
name inste;ul of Sevedrodvinsky Horizon) both boundaries of rhe former
being slighrly younger than the corresponding boundaries of the lutter. The
analogs of the lower pan of VishkÜsky Horizon and of the whole carly
Tatarian are seemingly absent in the Sait Range. The Amb Formation is
most probably of Kazanian âge.
MOTS CLÉS
Palcomagnétismc,
palynologie,
corrélations strarigr^hique.s,
Permien,
Sait Range,
Platc-formc rusye.
RÉSUMÉ
Corrélatiofis entre Lj coupe type (Russie) du Tatarian (Permien) et le Sait Range
(Pakistan) : palynologie et paléomagnétisme.
La position des zones paJéomagncriques associée à la présence de quelques
espèces de miospores dans une coupe du Sait Range, permet des corrélations
avec les coupes de réference du Tataricn de la Pl.ue-fbrme russe. Ainsi le cal¬
caire de Wargal correspond à l’horizon de Vishkilsky (nouveau nom de
l'horizon de Sevedrodvinsky) dont les limites sont légèrement plus jeunes que
celles du calcaire de Wargal. Les analogues de la partie inférieure de l'horizon
de Vishkilsky et de l'ensemble du Tataricn .sont absents dans le Sait Range.
La Formation Amb est plus ptobablemeni datée du Kazanien.
GEODIVERSITAS • 1999 • 21 (3)
291
Gomankov A. V. & Burov B. V.
INTRODUCTION
The well'known section of Permian and Triassic
in thc Salr Range (Pakistan) is in two respects of
great importance for the palynostratigraphy.
Firstly> it yiclds abundanc and wcll-preserved
miospores along with normal marine fauna. And
although the calibration of chis section in terms
of common Tcthys scalc is not quiie distinct as
yct (Foster ^ Jones 19^)4), it srill provides a hope
on thc corrélation between marine and
non-marine scales of Upper Permian and Lower
Triassic.
Secondly, since thc Basic work by Balme (1970)
it is évident, that rlie miospore assemblages from
the Sait Range dcmonsiratc a mixture of forms
rypical For different phylochoria of lhe past
including ihose of botli northern and Southern
hémisphères. It proves to he very usefiil For inter¬
regional palynostratigraphic corrélations proper,
especially in the Late Permian conditions of the
highest jihytogeographical diFFerenriarion of the
Earth. So, Foster (1982) outlined the palynologi-
cal corrélation of the Sidt Range wiih the Easterii
Australia whilc Gomankov (1992) did the same
tor thc Sait Range and the Russian Platform.
The last corrélation may be however defincd
much more exactiy due to the data on the
palaeomagnetism of the section of Nammal
Gorge (Sait Range) published by Haag & Heller
(1991).
PALYNOLOGICAL AND
PALAEOMAGNETIC CORRELATIONS
The Tatarian of the Russian Platform is usually
suhdivided inio two subsiages and three horizons
(from beiow upwards): Uizhumsky» Vishkilsky
[the name ""Vishkilsky Horizon” was receiitly
proposed insread of the name “Severodvinsky
Horizon”, which turned to be invalid by nomen¬
clature reasons (Gomankov 1997)], and Vyàtsky,
the first of them being early Tatarian and the rwo
others being latc làtarian. Bcsides thaï the type
sccuon oF thc Tatarian ar the Vyatka River was
divided by Forsch (1963) into cIcA^en tinits callcd
“beds” each of them having received ics own geo-
graphical name (Fig. 1). Due to the numerous
palaeomagnetic studics of the Russian Platform
Permian (e.g.^ Boronin 1979, 1990; Burov étal.
1996b), six palaeomagnetic zones were recogni-
sed in the Tararian, three of them (R, R R^R R^P)
being of fcvcrsal polaricy» onc (NRP) of variable
polarity, and two (N,R N,P) of normal polarity
(see Fig. 1 for relaiionship of this zonation with
the above menrioncd subdivisions of the
Tatarian).
The bouiidane.s of ihe palaeomagnetic zones in
the Sait Range may be localiscd as following
(Burov et ai 1996a, b). R,P and NRP zones are
not rcvealcd. Fhe R^P/N,P boundary lies in the
lower part ol Wargal Limestone (berween rhe
tinirs 24 and 27 of Nammal Gorge section). The
NtP/RtP boundary lies* in thc upper part of
Wargal Limestone (between the units 17 and
18). The R^P/NiP boundary lies in rhe upper
part of Chhidru Formation (in the lower part of
rhe unir 72. approximately 18 m below the rop
of rhe formation), rhe structure of the upper
zone being analogous to chat of the R,P zone of
the Russian rcference section.
As miospores are concerned, the Wargal/Amb
boundary is characterised hy the disappearance
of Hamiapollenites and Corhaccites pollen grains
a.s well as by rhe first appearance ot Lueckispontes
virkkiiie Poronie & Klaus Ihere and below ail
ranges of niiospore taxa in the Sait Range are
adduced according to Balme (19"'0)]. At the
Russian Pluvforin IhUniapolUnites and Omsac-
r/Zer do not occur above thc Tatarian/Kazautan
boundary, At the same boundary appears
Lîieckisporite^ virkkiae (Fig. 2A). which ranges
then throughoLit the wholc Tatarian. Conse-
quently only K.rzanian (in any cas’e Pre-Tafarjan)
âge may be ascribed to rhe Amb Formation, the
stratigraphie gap being assumed at rhe
Watgal/Amh boundary corresponding at Icast to
the wholc early Tatarian. The présence of this
gap çan be confirmed by the data on fauna as
well. Thus according to E. Ya. Leven (pers,
comm.), thc Amb Formation corresponds by its
fauna to the Bolorian and the Wargal Limesione
to thc Midian of thc Teihys marine scale,
whcrcas thc fauna of Murgahian type was not
found at ail in the Sait Range.
It is inceresting that pollen grains of
Sulcatisporites nilsoni Balme disappear at the
292
GEODIVERSITAS • 1999 • 21 (3)
Tatarian palynology and palaeomagnetism
Russian Platform
Sait Range
>« c
O
w N
II
-C ô
IX
E O
1 y
^ O
ü X
Z)
Nefyodovskye beds
Bykovskye beds
Kalininskye beds
Pootyatinskye beds
Yurpalovskye beds
Filibskye beds
Slobodskye beds
Syryanskye beds
Belokholoonitskye beds
Ealyeanskye beds
Maximovskye beds
Chhidru
Formation]
KAZANIAN
upper assemblage
lower assemblage
Wargal Limestone
Amb Formation
Normal palaeomagnetic polarity
I I Reversai palaeomagnetic polarity
K\1 Variable palaeomagnetic polarity
Fig. 1 . — Correlating chart for the Upper Permian of Russian Plafforrrr and Sait Range.
Wargal/Amb boundary as well. These miospores
demonstrate a striking similarity with \lassic”
forms of Vcskaspora ex gr. mûgnalis (Andrcycva)
Harr (Fig. 3A) observed in the Kazanian of
Russian Platform (Meyen 6c Gomankov 1971),
and for instance rhey hâve rhe same split-like sul-
cus> whereas pollen grains of V ex gr. mupialis
frorn the Taiarian does not possess siich a sukus
(Fig. 3C). It m:iy be assumcd rhar in rhe
Kazanian and Tatarian ot ihc Rii.ssian Platform
the pollen grains dcsignatcd as V. ex gr. rnagtîdlis
belonged in lact to two diTcrcnt spccie.s bcing
rhcrcforc of a big stratigraphie importance. If is
also charactcristic ihat ihe.se dilferent types of
pollen grains vverc attrîbutcd to different species
oi Phylladodermit'. (1) the Kazanian one — to
P. meridionalis S. Mcycn and P. arberi Zalessky
(Meyen Gomankov 1971; Gomankov
Meyen 1980; Anonymous 1986); (2) the
Tatarian one - ro the .species of subgenus Aecjtm-
tomia (Anonymous 1986).
Other palynolijgical changes indicated by Balme
(1970) at the Wargal/Amb boundary (i.c. ihe
disappearance of Verrucosispontes cf. pluniverru-
catus Imgrund and Pyrarnidosporites racemosus
Balme as well as the appearance of Puncta-
tisporites cf. rninuttis Ibrahim) give nothing for
the corrélation with the Russian Platform, where
the mentioned species are absent,
rhe Chhidru/Wargal boundary finding itself on
the palaeomagnetic grounds in the lower part of
N^P zone lies therefore .somewhere near the
boundary of Vyatsk}’’ and Vishkilsky horizons. In
palynological respect it is characterised by the
disappearance of the qua^imonosaccate pollen
grains of Poîonksporhes notneus Bhatadwaj and
the appearance of the monolete spores of
f.imngat{nporitvs cdltosus Balmev l^)lypodi7Spor}les
nmtabilis Balme, Lunnlasporttes vulgétris Wilson
and pollen grains of Dcnsipollenites indicus
Bharadwaj (infraturma Monopolsacciti),
Klaimpalleriites schatihergcri (Potonie iSc Klaus)
Jansonius, Cedripitespriscus Balme (infraturma
Disacciatrileti), Potfiniesporites nticroçorpus
(Schaarschmidt) Clarke (infraturma Striatiti) and
Marmpipollenites Lriradiatus Balme 6c Hcnnelly
(infraturma Piaecolpati). Of these species L caP
losusr P mutdhilis, L. vulgitris^ D. indiens^
P microcorpub and M. triradiatus are not known
at the Russian Platform. K, schaubergeri appears
GEODIVERSITAS • 1999 • 21 (3)
293
Gomankov A. V. & Burov B. V.
Fig. 2. — Miospores from the Kazanian and Talarian of Russian Plalform Ail specimens are kept In the Geological Institule of the
Russian Academy of Sciences. Moscow. Russia. A. LueckisporUes virkkiae Polonie & Klaus, spec. 4100/100-4*213. Urzhumsky
Horizon: B, HamIapoHenites sp., spec. 4492/32b. the Kazanian, C. Cordaittna sp, (quasimonosaccate pollen grain), spec. 4388/1-3-
1-1, Vyatsky Horizon; D. Kraeuselisporiles sp.. spec. 4552/371-4-184, Vyatsky Horizon; E. Limatulasporites (= Nevôsisporites) fos-
sulatus (Balme) Helby & Foster, spec. 3774/3-X-49-22. Vyatsky Horizon; F, Osmundacidites senectus Balme, spec. 438B/1 *3-2-4 12.
Vyatsky Horizon; G, Calamospora aff. landiana Balme, spec. 4552/371-4-70, Vyatsky Horizon. Scale bar: A, B, D-G, 0.02 mm; C,
0.04 mm.
294
GEODIVERSITAS • 1999 • 21 (3)
Tatarian palynology and palaeomagnetism
Fig. 3. — Miospores from the Kazanian and Tatarian of Russian Platform. AH specimens are kept in the Geological Institute of the
Russian Academy of Sciences. Moscow, Russia. A. Vesicaspora ex gr. magnalis (Andreyeva) Hart, pollen grain with a split-like sul-
cus, spec. 3775/246b-14. the Kazanian; B, Falcisporites sp., spec. 3774/3x-a(5A). Vyatsky Horizon; C, Vesicaspora ex gr. magrialis
(Andreyeva) Hart, pollen grain without split-like sulcus, spec. 4552/371-4-47, Vyatsky Horizon; D, Cedripites priscus Balme,
spec. 4552/371-4-148. Vyatsky Horizon: E, Fimbraesporites ? sp., spec. 4552/177-2-32. Vyatsky Horizon. Scale bar; A-C. E. F,
0.02 mm; D, 0.04 mm.
trustworthy at the Russian Platform ouly in chc
Vetluzhskaya Formation of Triassic âge, i.e., ic
lias confidently anorh£r stratigraphie range.
Quasimonosaccaie pollen grains (Fig. 2C) occur
rhroughouT ihc Tatarian^ although its abundance
decreases strongly upwards and it bccomes excep-
tionally rare in the Vyatsky Horizon. As Cedri¬
pites prisctis i.s concerned, rhe very sirnilar pollen
grains (Fig. 30) are highly abundani ar the socal-
Icd oxbow-lake level in the middie of Vyatsky
Horizon, which yiclds most of palynologLcal
saïuples of Vyatsky âge. However, Cedripites is
also known in Isady locality of Vishkilsk)' âge.
Miospore assemblage from the base of Vyatsky
GEODIVERSITAS • 1999 • 21 (3)
295
Gomankov A. V. & Burov B. V.
Horizon was dcsaibed only once by Molin &
Koloda (1972) froin Kalikino locality. ’l'his
contains quasimonosaccate pollen Floriniîes Itibc'
me Samoilovitch (though as a single specinien)
and scemingly lacks pollen which conld be assi-
gned ro Cedrijutes. Oh these grouruis, one may
consider the Chhidru/Wargal boiindary lyîng
slightiy higher than the ba.sc of Vyatsky Horizon
but still lower than the oxbow-lake level, vvhere
scvcral t’orms r>'pical for the uppermost Chhidru
Formation appear (see below).
It is notewortiiy that the uppermost Chhidru
Formation is chanicteriscd by a pcculiar miospo-
re assemblage, whicli play.s an imporiant part in
the interregional ctirnelations, espccially conccr-
ning Gondvvana (Fosccr 1982; Fosicr & Joncs
1994). The exact posftion ol this assemblage in
the "Russian” scalc was impossible ro déterminé
by pure palynological means since several spccies
(Nevesisporitt's fossulatus Ruime, Kmeusclisporites
sp., Osmiimladdnes senectus Balme, CaUmospom
Imîdiami Balme, PretHcolpipollenites hfutmdtvaji
Balme, Fimhmesporites ? sp.. Falchporiies stabilis
Balme), typical fijr it, were .similar ro miosporcs
known from rhe Vyatsky Horizon (Figs ID-C,
3B, E, F), while oihers \Densoîsporît€S sp.,
Ltmdhladispora ahsoleta Balme, Cnetaceuepol-
lenites siuuosus (Balme & Hennelly) Bharadwaj,
Taeniaesporiies notntudensh LeschikJ appeared at
the Russian Platform only from the base of
Vetluzhskaya Formation (though pollen grains of
Ephedripites are known in rhe Russian Platform
Kazanian, in fan they do noi occur in the
Tatarian and appear in noticeable amounts also
in the Vetluzhskaya Formation only). Balme
(1970) did noT dcfinc ihe précisé range of this
uppermost Chhidru assemblage, but it seems
very likcly, that ihcre is a rather hig unsampled
interv'al bcns'een tbc uppermost samplcs of lower
Chhidru assemblage and the lowermost samples
of upper Chhidru assemblage. So the oxhow-lake
level, from which rhe main large amounl of paly-
nological samples of Vyatsky Florizon cornes,
may well find itscll in this unsampled incerval of
the Sale Range section. To judge from the distri¬
bution of Balmc’s samples in the Nammal Gorge,
ail samples wirh the upper assemblage corne (rom
the palaeomagnecic zone R 3 P, while oxbow-lake
level lies in the upper part of zone N 2 P (at the
boundary between rhe Bykovskye and
Netyodovskye beds). The boundary between the
upper and the lower palynological assemblages of
Chhidru Formation finds thus itself somewhere
inside the Nefyodovskyc beds.
As a resuit the stratigraphie corrélation between
the Russian Platform and the Sait Range may be
represented as shown in the Figure 1.
Acknowledgeraents
The authors want to thank Prof. H. Kerp from
Munster University (Gcrmany) for his constructi¬
ve rcmarLs on die first dralt of the paper.
RTFERENCES
Anonymous 1980. — Theory and practice of the paly^
nolodcal investigations ofPerrnian and Triassic of the
USSR. Manuscripr deposited at VINI I E Syk-
tyvkar. No. 4839-B, 192 p. [in Russian],
Bdlmc B. L. 1970. — PaJynology ul Pemiian and
l'riassic strata iri tbc Sait Range and Siirghar
Range, Wesr Pakiswn in Kummel R. &Teicherr C.
(t-ds), StYMi^apInc boundary prùhlems: Rermum and
Triasilc of West Pakistan, University of Kattsas
Prt-'.ss: 30^-4 5.5.
Bomnin V. P. (cd.) 1979. — Methods ofpalaeomu^ne-
tic uudics (if red'Colored rocks (by the exampîe of
Upper Pcrinian and Lou>et Triassic of castern areas of
Ru\Ftan Plaiform). Ka/anian Hniver.siry Press,
Kdz.an, 132 p. (in Russian).
— 1990. — l^alacomagnetic zones ofTatarian in the
basin ofVy.itka River: 7-1 ^ (in Ru.s.sian], in Aspects
of incthudic and interprétation ofgeophysical investi
gâtions. Kazan University Pres.s. Kazan.
Burov B. V.. Nurgilicv (X K. Hcllei F. 1996a. —
F^obicnis of palacomagnctic correlatioii of the
L'ppcr Pcrmiin in the stracutype and marine for¬
mations of Tethys; 93-iOO [in Russian]. in The
PWntian of Tatarian Reptddir Ka/an
Burov B. V.> Zharkriv I Y:i, Niirgaliev D. K. et al.
Î996b. — Magnetostraiigraphic eharacterisiics of
the Upper Permian of Povolzhie and Prikainie;
390-424 (in Russian), in Stratotyj>ey and rtference
seetunv ofPovolzhic and Pnkamu\ Kazan.
lorsch N. N. 1963. —■ On the straiigraphit division
und corrélation of die Tatarian sections of the cast
of the Rtissian platForin b)' the complex of Ivrho-
siratigraphic, palaeomagneric and palaeonrniogic
data: 175-211 (in Russian], in Palaeonmgneiic stra-
îigmphir tnvestigünons. Collection of papers.
‘Tîostoptekhizdat" Press, Leningrad.
Foster C. B. 1982. — Spore-pollen assemblages of the
296
GEOD»VERSITAS • 1999 • 21 (3)
Tatarian palynology and palaeomagnetism
Bowen Basin, Queensland (Australia): their rela-
tionship co rhe Permian/Triassic boundary. Review
of Palaeobotany and Palynology 36: 165-183.
Foster C. B. & Jones P. J, 1994. — Corrélation bet-
ween Australia and the type Tatarian, Russian plat-
form, evidence from palynology and Conchostraca:
a discussion. Permophiles 24: 36-43.
Gomankov A. V. 1992. — The interregional corréla¬
tion of the Tatarian and the problcm of the
Permian upper boundary. International Geological
Review ?>A\ 1015-1020.
— 1997. — The Permian (Tatarian) Flora from the
Kotelnich Vertebrate locality (Kirov Oblast).
Stratigraphy and Geological Corrélation 5: 309-318
[both Russian and English versions exist].
Gomankov A. V. & Meyen S. V. 1980. — On the
relationships of the assemblages of plant mega- and
microfossils in the Permian of Angaraland.
Paleontologichesky ZhurnalA: 11-122 [in Russian].
Haag M. & Heller F. 1991. — Late Permian to Early
Triassic magnetostratigraphy. Earth Planetary
Science Letters 10: 42-54.
Meyen S. V. & Gomankov A. V. 1971. — New data
on the systematics and the geographical distribu¬
tion of phylladoderms. Doklaay Akademii Nauk
SSSR 198: [in Russian].
Molin V. A. & Koloda N. A. 1972. — The Upper
Permian spore-pollen assemblages from the north
of the Russian Platform. “Nauka” Press, Leningrad,
76 p. [in Russian].
Suhmitted for publication on 22 April 1997;
accepted on 30 June 1998.
GEODIVERSITAS • 1999 • 21 (3)
297
Permian and Triassic exotic limestone blocks
of the Crimea
Galina V. KOTLYAR
All-Russian Geological Research Institute (VSEGEI),
Sredny pr., 74, St. Petersburg, 199106 (Russia)
vsegei @ mail.wplus.net
Aymon BAUD
Musée de Géologie, BFSH2-UNIL,
CH-1015, Lausanne (Switzerland)
aymon. baud@sst.unil. ch
Galina P. PRONINA
All-Russian Geological Research Institute (VSEGEI),
Sredny pr., 74, St. Petersburg, 199106 (Russia)
vsegei @ mail.wplus.net
Yuri D. ZAKHAROV
Far East Geological Institute, Far East Branch of Russian Academy of Sciences,
Pr. 100-letya, 159, Vladivostok-22, 690022 (Russia)
fegi@online.marine.su
Valéry Ja. VUKS
All-Russian Geological Research Institute (VSEGEI),
Sredny pr., 74, St. Petersburg, 199106 (Russia)
vsegei @ mail.wplus.net
Merlynd K. NESTELL
Department of Geology, University of Texas at Arlington.
Arlington, TX 76019 (USA)
nestell@uta.edu
Galina V. BELYAEVA
Far East Geological Institute, Far East Branch of Russian Academy of Sciences,
Pr. 100-letya, 159, Vladivostok-22, 690022, (Russia)
fegi@online.manne.su
Jean MARCOUX
Sciences Physiques de la Terre, Université Paris VII,
Tour 24/25, V étage, 2 Place Jussieu,
F-75251 Paris cedex 05 (France)
marcoux @ ipgp.jussieu.fr
GEODIVERSITAS • 1999 • '1 (3)
299
Kotlyar G. V., Baud A.. Pronina G. P., Zakharov Y. D.. Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
KEYWORDS
Upper Triassic,
Rliiielidil,
Permian,
exotic blocks»
Crimea,
foraminifers,
fusulinids,
brachiupods.
ammonoitls,
sphinctozoans.
Kotiyar G. V., Baud A,, Pronina G. P.. Zakharov Y. D., Vuks V. Ja., Neslell M. K., Belyaeva
G. V. & Marcoux J 1999. — Permian and Triassic exotic limestone blocks of the Crimea, in
Crasquln-Soleau S. & De Wever P. (eds), Peri-Tethys: stratigraphie corrélations 3.
Geodiversitas 2^ (3) : 299-323.
ABSTRACT
Exotic lime.'îconc blocks of Pemiia» and Tria.ssic âge occur in the Middle
Triassic-Middle Jurassic Crimean olbtüstiüfne complex ol the Marta and
Alma River basin.s and in the Simferopol area. Ricli assemblages of small
foraminifers, fu.sulinid.s, brachiopods, rare ammonoids» and sphinctozoans
occur in thèse blocks. Fo.s.sÜs front Permian blocks indicate ihc prcsence of
zonal as.scmblages for the BoJorian, Kubcrgandian> Murgabian> Mîdian,
D/hulHan, and Dorashamian stages. The Neoschtoagerhia ümf>lex fusullnid
zone i& cxterided upward ba.scd on the pre.seuce in our rnateriaJ of Kuber-
gandian ammonoids wlth Neoschwagerirut simplex a. Comparlson ol the
faunj from Triassic blocks to a.sscmblage.s from other régions of the Tethys
indicates chat che âge is Late Triassic Rhaecian correspondlng to the
Vandaites sturzenbaumi ammonoid zone.
MOTS CLÉS
Trias siméricur»
Kht'ticn,
Permien,
blocs exotiques,
Crimée,
foraminiftres,
fusulinides,
brachiopf.jdes,
ammonoïdes,
sphinctozoaires.
RÉSUMÉ
Les blocs exotiques calcaires du Permien et du Trias en Crimée.
Les blocs exotiques de calcaire permien.s et triasiques de la Crimée appartien¬
nent à rnnirc olistostromale d'Eskiordin (Trias mo>^n-Jura.ssique nio^'en) et
ont etc trouvés dans les bas.sins-vcr.sant des rivières de Marta, d'Alma et dans
la région du lac (réservoir) de Simferopol. Les blocs permiens contiennent
des petits foraminiferes et des fusulines ainsi que des bracliiopodes, de rares
ammonoïdes et des sphinaozoaire.s dont nous présentons rinvcnuire. La dis¬
tribution des asstniblages fossilifères couvre la fin du Pernhen inferieur
(Boloricn) ainsi que tout le Permien supérieur, du Kuhergandien au
Dorashamien. La présence conjointe d ammonoïdes et de brachiopodes d’âge
Kubetgandiai avec Neosçhwageritui simplex Ozavs'a est signalée. L’analyse des
micro- er mncrofauncs des blocs triasiques ainsi que des comparai.sons avec
les lûunes semblables d'autres régions téthysîcnncs pçnnettcni d'attribuer aux
assemblages décrits un âge rhétien.
INTRODUCTION
For this study, our team investigated Permian
and Triassic exotic limestone blocks occurring at
several localitiès in the area bettveerv Simferopol
and the Marta River Basin. Limestone samples
containing remains of several different faunal
groups were obtained. Carbonate microfacies
were studied by A. Baud. small foramintlers by
G. P. Pronina (Permian and Triassic) and V. Ja.
Vuks (Triassic), brachiopods by G. V. Kotlyar,
ammonoids by Y. D. Zakharov, sphinctozoans by
G. V. Belyaeva, and fusulinids by V. 1. Davydov
and M. K. Nestell.
HISTORY
Fokhc (1901) studied the oldest deposits then
known from the Crimea. He named the
*Taurida Beds”, and dared them as Late Triassic.
Moiseev (1939) named the Eskiorda Formation,
300
GEOOIVERSITAS • 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
a shallow-waier conglomcme (Rhaerian-Liassic)
fades présent in the northern part of the Kacha
uplifi. Muratov U 949) divided the Taurida heds
into chrcc parts: (1) a lower unir of Latc Triassic
âge; (2) a middie unir, the Eskiorda Formation;
(3) an upper unir, both of early and middie
Liassic âge. Logvinenko et al, (1961) proposed a
more detailcd subdivision ot die Taurida Sériés
and considered the lowcr part to be of Early and
Middie Triassic âge.
Srudy of outerops in the valley of the right tribu-
tary ot the Bodrak River (Dagis Ôd Shvanov
1965; Shvanov 1966) lias shown rhat the Taurida
Sériés rock ranges in age from Middie Triassic to
Early Jurassic. The most commun subdivision
scheme ot the Taurida Séries has been given in
“Geology of the USSR” (Anonymous 1969),
where the Upper Triassic, Lower Taurida and the
Liassic Upper Taurida (Eskiorda) formations
\vere proposed with two t)^es of livhotacics fur
each unit. Koronovslcy 6c Mileev (1974) conduc-
lcd rcscarch on the Eskiorda Formarion in the
Bodrak River Valley and proposed a broader
Carnian-Pleinsbachian stratigraphie range for it
On this basis, they increased rhe rank of this unit
to a Sériés and considered it as an équivalent of
the Taurida Séries rock; they aiso staced, thar the
Eskiorda Formation (or Sériés) in the Bodrak
River area represented a tectonic mélangé.
CEOLOGICALSETTING (Fig. 1)
The oldest stratigraphie unit cropping out in the
GEODIVERSlTAr « 1999 • 21 {3)
301
Kotlyar G. V., Baud A., Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nescell M. K., Belyaeva G. V. & Marcoux J.
Crimean Mountains is ihe Taiirida flysch of
Middle Triassic to Toarcian âge (Shalimov I960,
1963). The underlying units and basement hâve
never been observed, but gcophysîcal seismic
data indicaies a ihin carbonate-<lastic unir over-
lying graniiic basement (Muraiov et ai 1984).
The laui'ida flysch is ovcrlain wiih a struciural
unconfonnicy either by Upper Jums.sic deposits
in the souih and easc of rhe Kacha uplift, or by
Lower CretaceoLis deposits in che north and
west. In some parts of the Kacha uplift, the
Taurida flysch is allochthonousiy overlain by the
Eskiorda unit. The 'l'aurida flysch makes up the
core of the Kacha uplift. Mileev et al. (1989) dis-
tinguished the Alma unit for rhe proximal flysch
in the core of the upliffv and the overlying Paril
unit for the distal flysch. The Alma unit is expo-
sed in the Belbek, Kacha. Maria. AJma. Salgir
and Bodrak River valleys le consi.stvs of predomi-
nantly gray, rhin beJded fine sand-stone -and shale
with reworked coalified plants débris.
Commonly, the Alma unit is exposed only in
river valley floors; in tbc Bodrak River Valley it is
recorded in the middle and upper parts uf slopes,
and there Is overthrusting the Patil unit. In the
Alma River (Drovyanka Village and ncar
Partizanskoc Village) and Salgir River basins, the
Alma unit contains a Carnian and lower Norian
fauna. Near Drov)'^anka Village (Alma Rivet
Basin), middle Liassic fbraminifas occiir in che
shale. Near the mouth of the Marta RiA^er,
Pliensbachian crinoids occim and in the flysch of
rhe Perropavlovsk quarry, bivalve molluslcs of
Toarcian-lower Rajocian âge bave been described.
The âge of the Alma unit is considered to be
Middle J’riassic to Bajocian. The Patil unit is
exposed only in rhe Bitdrak Rjver Valley and dif-
fers front the /\Jma unit by a grcater rhickness of
flysch couplets with mudsione dominating the
couplet.s. A middle Liassic to Aalenian fauna
occurs near Prochladnoe Village.
The Taurida fly.sch and its Aalenian to Eocene
stratigraphie cover arc separated front ihc North
Crimean covèr units (Jurassic-Eocene) by ihc
north dipping Eskiorda unit. Originally named
and intc-rpreted as the basal part of rhe Taurida
flysch by Moiseev (1932), and later by Shalimov
(I960, 1963), this unit has been recently map-
ped in detail and reinterpreted by Mileev et al.
(1989) as a composite and dismembered recronic
Lomplex. It is the best exposed witbin che
Lozovaya shear zone of the Kacha uplift (nor-
(hern pan of the core) and north of ir, but it aiso
Occurs ovenhru.si above the Taurida flysch in vhe
Bodrak and Marta River valleys. According to
the lithological and biostratigraphical contents,
thèse auihors subdivided the Eskiorda tcctonic
complex inio the Mendcr (Ladinian-Sine-
murian), D/hidair (Rajocian), Kichik (Norian),
Chenk (Middle-Upper Triassic?), Saraman (Lare
Triassic-Bajücian) and Bitak (Toarcian-
BathonianJ suhunits. The lîthology consists
mainly of fine ro coarsc terrigenous clasiics. The
rurbiditic flysch sequence characterises the lower
subunits and was probably deposited in shallow
marine conditions because coal and course sand-
stone occurs in rhe upper barantnn subunir
(.Mileev et iil. 1989). These amliors regard rhe
Eskiorda complex as équivalent in âge to the
Taurida unit.
Most uf the exotic limestone blucks occur in the
Mender subunit and some in the Saraman sub¬
unit. They are interpreted as olisdiolkhs (olist-
stronies for rhe oldcr Carboniferous to Sine-
murian part), and as tcctonic incorpoiated
blocks (mélangé) for the younger Latc Liassic-
Crctaccoiis part. Their origin is stÜl controver-
sial. Some geologists bclievc rh.it they uriginated
from the north (sourh of Scyrhian Plate margin),
vvhereas uthers consider that they werc tianspor-
ted from the suuth.
The Mender subunit (Ladinian-Sincmiirian) is
composed mainly of shalc with thin beds of fine-
grained qtiartzitic sandstone. Ir occurs in rhe
northwe.stern part of the Kacha uplift, in che
Bodrak, Aima and Salgir River valley.s. Lhe
Saraman subunit is composed of highiy mature,
Hglu gtay, ma.ssive. quarr/itic sanclstone with
beds of fine- and mediunvpebbly conglomcratc
and with rare siliy clay interbeds. it occurs on
tbc northçrn slopc and on the Southern limh of
the Kacha uplift, in the Salgir, Alma, Bodrak and
Marta River valleys. Based on macro- and micro-
fauna occurrences (Mileev et al. 1989), the
Saraman is Late Triassic-early Bajocian in âge.
302
GEODtVERSITAS • 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
HISTORY AND THE AGE
INTERPRETATION OF THE EXOTIC
BLOCKS
Fokht (1901) firsc recorded the occurrence of
Permian limesrone blocks within the Triassic-
Jurassic complex. Previous researchers hud assi-
gned chese blocks ro different siruiigraphic
horizons of the Permian System. Toumansky
(1931. 1935, 1937a, b) distinguished anirponoid,
fusulinid, and rrilobire assemblages in certain
blocks, and suidied the Permian launas from these
exotic blocks in the most detail. She considered
them ro belong to the bio.sirarigraphic ‘‘horizons”:
Bodrakian, Soramanian, Burnian, and Martian.
Initially» she presiimed that the Soramanian
assemblage was similar ro thaï found in the
Gaptank Formation in West ’lexas and to be of
Late Carboniferous âge [Uddenitiîs zone).
Subsequeiuly, ‘Foumanslcy (1941) concluded that
the limestonc with this animonoid assemblage
corresponded to ihe lowcr part of the Permian
Leonard Formation in West Texas ol Norih
America, rhe lowcr paît of the Ritauni Formation
on ’Fimor Island, and rhe upper part ot Buzterc
beds in the Sourheastern l’amirs. In hcr srudy of
Permian aminonoids of the Central Pamirs,
Toumansky (1963) correlated the Burnian and
Martian ammonoid assemblages of the Crimea
with the Kubergandian assernblage from the
Pamirs. According to Bogoslovskaya (1984), the
Burnian assemblage is similar to the ammonoid
assemblage in the Kuherganda Formation of the
Pamirs. and is Roadian in âge. I he so-callcd
“Martian (Martovsky or Martinsky)'' assemblage
is considered to be Wordian.
The Lare Ifiassic âge of certain lîmestone block
is mainly derived from occurrences of Anisian
and Norian-Rliaetian brachiopods (Dagis 1963;
Dagis & Shvanov 1965).
CRIMEA-PONTIDES (NORTHERN
TURKEY) TENTATIVE CORRELATIONS
(FIGS 2,3)
The Crimean Mountains and the central Pon-
lides (Turkeyj represent the conjugate rift margin
of the Western Black Sea oceanic basin (Fig. 3).
Fig. 2. — Early Jurassic reconstruction, following openîng of
Kùre/Taurida basins; schematic and not scale (simplified and
modified from Banks 1997).
Prior ro the opening ot the Western Black Sea
oceanic basin initiared in Barremian-Aptian rime
and completcd in Cenomanian time (Gorur
1988). Southern Crimea atid central Pontides
occupied neighbouring po.sitions (Fig. 2, sec also
reconstruction schemes recenily proposed hy
Banks and Robinson in Banks 1997L
In the Crimea (this paperl as well as in the central
Pontides (Aydin et ai 1986; Yilmâz et al. 1997),
there are occurrences of flyschoids .successions. In
the Crimean Mountains and lhe central Pontides,
the oldest rocks exposed are à scqiiencc of basinal
tufbidiric mudstones and .siltstones of similar age
(Triassic-Early Jurassic). These formations were
disrupted during the Cimmerjan orogenesis at
the end of the Middle jurassic (Sengür 1984).
As was proposed before (Marcoicx 8e Baud 1996;
Marcoux et al. 1993) the équivalent of rhe
“Taurida flysch” from the Crimea would corres¬
pond tü the Küre séries, of the Akgol Formation
(Aydin et ai 1986; Yilmaz et al. 1997) from die
central Pontides. This hypoihcsis was proposed
again recently (Robinson ôc Kerusov 1997).
At the moment, only Triassic exotic blocks (olisto-
liths) hâve been described within rhe Küre/
Akgol sériés, for instance Hallstatt fades Ümes-
tones of late Anisian and Ladinian (Onder 1990;
L. Krystyn, pets. comm. 1992). Future detail
GEODIVERSITAS • 1999 • 21 (3)
303
Kotlyar G. V., Baud A., Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
Fig. 3. — Schematic structural cross section of the eastern part of the western Black sea from northern Turkey (Central Pontldes) to
Crimea Mountains (South Ukraine) (simplifiée! and modified from Banks 1997).
investigations mighr also demonstrare the occur¬
rence of Late Palaeo7x>ic blocks, similar in âge to
those from the Crimea described in this paper.
PERMIAN EXOTIC BLOCKS
Permian exoüc blocks were studied in the Marta
and Alma River basins and in the Simferopol
area. Corrélation of these blocks and locations of
fossils are shown in Table 1.
Marta Rivfr Basin
In lime.stone exposed on the .slopes of Kichkhi-
Burnu Mountain in ihc Marta River Basin,
Toumansky (1941) recorded two "horizons with
fauna” (fusulinids, ammonoids, trilobites) which
she called Burnian and Martian. She correlated
the Burnian “horizon" with the upper part of the
Leonardian, and the Martian “horizon’' with the
Wordian in later stiidies, it was ascertained that
these so-called “horizons" were noc valid, and the
assemblages were correlated to rhe Permian
Murgabian» Darvazian and Pamirian stages
(Einor & Vdovenko 1959; Licharesv 1966),
In the Marta River Basin, rhe largest Permian
block (65 X 35 X 15 m) is lotated on the right
flank of one of the right rributaries of rhe Marta
River, 5 km upsrream from the Verkhorechye
Village (Loc. 110; Eigs 4A, 5). Elerc light gray
and pinkish-gray noa bedded algaEhrsuHnid
(reefogenic?) limestone forms Kichkhi-Burnu
Mountain. Several smaller blocks located near-
by, also contain abundant and diverse foramini-
fers, brachiopods, trilobites, gastropods, and
ammonoids. Some of these blocks contain dis¬
tinct lithologies separatcJ by b recela zones and
contain different fossiJ remains. Peripheral pans
display dasiic rexrurcs (rounded and semiroun-
ded fragments of gray boundstone with light-
colored carbonate ccmcni), as wcll as micritic
limesione of a pinki.sh or beige tint. The north-
western margin ol the main block appear.s to
contain the oldest sédiments.
Loc. îîOharnple 1
The limestone of this samplc is a wcll-sorccd ske-
Icral grainstonc containing calcarcous algae, fora-
minifets, gasiropods, calcarcous sponges and
btachiopod fragments. Ir is tnterprered as being
deposiied in a high energy, shallow marine
pa I aeoen vi ronme n t.
Small foraminifers, collosu Rcltlinger,
Mendipsid conili (Nguyen Duc l ien), Endnthyra
sp,.^, CUmacamniioo ocih'uliooides I a nge,
Deckerelln sp. 2, Tetrotaxis sp., GlobivolvuUna
grncca Reichel, Paliieotextularm pivg^uoemis Lin,
P. sp.(= P. hngnrprata Lipina />; Zlieng 1986),
Pachyphloto sphnertiln Sosnina, Loogclla sp.,
Neodisens N. m 'tUflaides M.-Maday.
Fusulinids. ParafiisuUna vinogradaid Leven,
cf P. mnltiseptata (Schelwien), P^ afl. P. naka-
migtivai Morikawa Ôd Horiguchl, P. ait. P. yxm-
ruinlca Sheng. P. enUsispira Leven,
P. munitkekovi l.even, P. undulato Chen,
Annenhia asidtiut Leven, A. kannav (Kochansky-
Devide & Ramovs), A. salgirica A. M.-Maday,
304
GEODIVERSITAS • 1999 • 21 (3)
Permian and Trîassic exotic blocks of the Crimea
Tethyan
scale
ieven 1980. 1996
Kotlyar & Pronina
1995
Aasem-
biages
Toumansky
1931. 1941.
1963
Marta River Basin
Alma River Basin
Simferopol area
110
129
112
122
WTül
111
B
E
B
B
E
B
B
B
B
m
g
B
B
B
D
B
E
E
E
B
E
E
B
B
B
Dorashamian
1
i
1
1
1
1
1
1
Dzhutfian
e
g
B
B
1
1
1
1
1
1
1
1
1
1
Yabeina
J
1
1
1
1
B
1
Neo-
schwagerina
margaritae
Martian
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
B
1
1
i
B
i
1
1
1
Neo-
scOwagerina
craticulifera
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Kuhergandiari
Nec-
schwaqerina
simplex
Praesumalrina
Bumian
SF
F
Br
A
ST
gj
1
1
1
1
SF
F
Br
1
1
SF
F
Br
1
1
1
1
1
1
1
1
1
1
Cancellina
cutalensis
B
1
1
1
1
1
1
1
1
1
1
1
B
1
r
1
1
1
1
B
B
B
B
1
1
y
Misellina
claudiae
Soramanian
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
B
1
1
1
1
1
1
1
Table 1. — Distribution of fossil localitles and corrélation of Permian exotic blocks in the Crimea. SF, small foraminifers; F, fusulinids;
A. ammonoids; Br, brachiopods; ST. sphinctozoans.
A. sphaera (Oz;iw3), Cancellina cl. C primigena
Haydcn, C. prueneoschwagerinoides Lcven,
C, phlonghprabeusis Toriyama àc Kanmera,
Neoschivageririit siynplex tenxiis Toriyama &
Kan niera. N. aff. N. simplex Ozawa,
Praesumntrina schellwtertî (Deprat).
Sphîactozoans. Colospongia sp., Crymocoelia
zacharovi Bclyacva, Vesicotubulnria prima
Bclyaeva, Paradenîngeria martaensis Belyacva,
Süllasia sp.
Brachiopods. Avosarinn sp., Rugaria moterigraaffi
( B ro i I i ), Vrushtenia mu rina ( G ra n r),
Neaplicatijera sp., Comuquia cf. C. modesta
Grant. Marginif'era carniolica (Scbeliwien),
TramennaPia gratma (Wuagen). Bihtina aawtba
(Waierhouse ik l'iyasin), Litioproductus aff.
L. kaseti Grant, Compressoproductus mongoikus
(Waagen), Ogbirna dzhngrensis Sarytchevat
Vncmunelhym siculus (Gemmellaro), Auomaloria
gtomcrosa Grant, Pcrmopbricodotbyris caroli
(Gemmellaro), Maniuia ceres (Gemmellaro).
Ammonoids. Propirtacoceras sp., Prostacheoceras
tauricum (Toumansky), Cardiclla kussica
(Toumansky). Apparently, the ammonoids des-
cnbcd by Toumansky (1931) also originated
from Locality 110/1. These were identified as
Parapronorites konincki Gemmellaro, Propina-
coceras galilaei Gemmellaro, PP soramanse
Toumansky, P?. rzAwewre Toumansky, Medlicottuû
volgi Toumansky, Thalassoeeras kurpinskyi
Toumansky, Agathiceras sxiessi Gemmellaro,
A. planum doumansky, A, hodraki doumansky,
A. katscht Toumansky, A. bachui Toumansky,
A. anceps Gemmellaro. Cardiella kussiat
(Toumansky). Neocrimites {Sosiocrimites) hiassa-
lensis Toumansky, Arivoceras ail. A. etnifer
(Gemmellaro), Palerrnites cf-. P. distefatiui
(Gemmellaro), Prostacheuceras muhidentattun
(Toumansky), P. huruense (Toumansky),
Staclmceras mediterraneum crimeuse Toamanskyr
S. andrussoioi îbumansky, S. bosei doumansky.
S, borissinki ToiimanskV) S. vogii doumansky,
5. cf S tictzei Gemmellaro, 5. tepense
Toumansky, Tauroceras wmvieri (Toumansky),
T. serobicNlatifs martonis (doumansky). Para'
celtites boefori sopbiensis Toumansky.
Trilobites and single fragments of isolated tctra-
corals belonging to the family Plerophyllidae
(most likely to the généra Pentaphylluni and
Ufimia) where noted by Toumansky (1935),
whü also Indicated that small bivalves and gastro-
pods were also présent at this locality.
GEODIVERSITAS • 1999 • 21 (3)
305
Kotlyar G. V., Baud A., Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nestell M. K., Belyaeva G. V. &c Marcoux J.
Fig. 4. — A, map of the study area with localities of the Permian and Triasslc exotic blocks: B, location of Permian exotic blocks In
the Alma River Basin- C. location of the upper Midian (Capitanian) and Dzhulfian limestone blocks on the right side of Izvestnyakovy
Creek In the Alma River Basin. Site is on the left side of a trail going up ftom the Alma Resen/oir and is in dense foresl.
Loc. llOhample 4
This sample, locaced at the northern margin of
the block (Fig. ‘î), consists of medium sorted ske-
letal grainstonc, with Lithocùdiunu coaied grains,
intraclasts, forâminifers, gastropods and other
shell frâgnu'nis.
Small forâminifers. Valneolextularia sp.,
DeckerelUt sp. 2^ CLimacatynnivn tmlvuUnQides
Lange, l\îliie(fspiroplecuim>nmti ex gr. P. conspccta
Reitlinger, Polytaxh sp.> Orthovertella sp.,
Neodisem N. milldoides A. M.-Maday.
Fusulinids. MinojapanelLi .sp., Pûmjvsidina cinc-
ta Reichel, P, cl, P. erratoseptatn Kling, P. emssi-
septata Leven, P. cf. P. undulata Chen,
P. japonica (Guembel), P. nakamigawai
Morikawa & Horiguchi, Psetidofusulina aff.
P. hisamatsui Morikawa.
Loc. llQharnple 2
This sample is a reefoidal boundstone with
encrusted skeletal éléments and cavities fîlled
with biosiltite.
Loc. llOhcLmple 3
This sample is from a small (about 0.7 m across)
block. l'he limestone consists of a well-sorted
skeletal grainstone with intraclasts and with coa-
ced grains formed from calcareou.9 sponges. lora-
minifers, gastropods, brachiopod spines and
bryoïoâns.
Fusulinids. Ncofusulina funnda (Ozawa),
yangehrenia cf Y. compressa (Ozawa), Para-
fusulina cincta RcichcL Armenma sphaera
(Ozawa). Neosthwagerimi simplex Ozawa, N, sim¬
plex tenais 'loriyama Kanmera, Praesumatrina
neoscfrwagenmHdes ( r3e p rar)-
Brachiopods. Acostirina sp., NeopUcatifera sp.,
Trayisennatia gt-atiosa (WaagenJ, IJncinunellina cf.
U, anior (Gemmellaro).
Loc. llOhampUs 6, 7
These samples consist of a poorly sorted calciru-
dite, with biocalcarenite packstone pebbles, frag¬
ments of oncoidal trust, calcareous algac,
forâminifers, gastropods, bryo/oans, bracliiopods
and sheil fragments. Internai fissures are filled
with fine-grained calcarenite. The environment
of déposition is intcrprcccd as marine fbrcrccf.
Small forâminifers. Tuberitina collosa Reitlinger,
Mendipsia conili (Nguyen Duc Tien), M. sp.,
306
GEODIVERSITAS • 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
Fig. 5. — Location of collection sites at the Kichkhi-Burnu
Permian limestone blocks in tho Maria River Basin (Loc. 110).
Matrix consistfi ol the Soraman sandstone (Pllensbachian)
Lasiodiscus 'ip. 1. Palaeottxtul^ria sp. (= P. long!-
septata Lipin.i in Zheng 1986), Deckerella media
permiana Wang, Palaeospivopkciarnmina ex gr.
P. conspecîa Rcrirlingef, Tetrataxis }naxima
Schellwien, T. sp., Globivalvulina graeai RcichcJ,
Calcivertella sp., Orthiweriella sp.> Ncodiscus aiV.
N. milliloides h. M.-Maday, Paçhyphhia sphami-
la Sosninai A ovata (Lange), Nodoinvolutaria
jiiinica Han.
Fusulinids. Ncoschwagerina simplex Ozawa,
Cancellina sp., Pracstimatrina rossica A. M.-
Maday, NeoftmilinclLi nana A. M.-Maday.
Loc. îlO/samplc 5
This sample consists of a poorly sonect biocald-
rudite, wirh calcareous algae, foraminifers, aggre-
gates and encrusiing laminated microbial mats
ISphearacodium).
Small foraminîfers. Globïvalvulina sp., Palaeo-
textîdariida indct.
Fusulînîds. Yangchienia baydeni Thompson,
y. roÀ/c’r/Thompson, Parajusulina sapperi (Staff*),
P. japonica (Gumbd), P. nakarnigauuti Morikawa
& Horigucbi, PseudofusuUna cf. P. iienoensis
Kobayashi, Arnunina sarabtiriensh To.r)^3ma fit
Kanmera, Verbeekina verbeeki (Geinitz), CanceP
Ima iephnpttti Kanmera & Totiyama, Neoschwa-
gerina colaniae (3zawa, N. ex gi. N. pinguis
Skinner, N. crativulifera (Schwager), Pseudo-
doliolhia ozawai Yabe & Hau/awa, and Prae-
sumatrina grandis Leven.
Loc. llOkample W
At tliis locality ncar ihe eastcrn side of the block,
the talus is composcd of slightly marly gray
limestone yielding remains of brachiopods,
ammonoids atid irilobites.
Brachiopods. Entelrtes cf, E. sublacvis Waagcn,
E. geniculatîis Lichârew, Linoproductus aff.
L. kttseti Grant, üghinia dzhagrensiy Sarytdteva.
Sphinctoxoans. Colospongia sp., Cyymocoelia
zacharovi Belyaeva, Vesicotubulatia prima
Belyaeva, Paradeningeria martaensis Belyaeva,
Sollasia^. sp.
Ammonoids. Propinacoceras sp., Prostachcoceras
tanriciim (Toumansky), Cardiella kussica
(Toumansky).
Loc. }l0/samplt‘s9,20. 21
Sûutheast of the main block ai this locality there
is a sinallcr block cxposcd along the Glybovy
Crcck (hig. 5). The lithology of the block
consists of a poorly sorted calciruditc to calcare-
nicc packstonc, with rcefboundsconc clasts, frag¬
ments of oncoidal crusc, calcareous algae,
foraminîfers, crinoids, bryozoans, brachiopods
and shell fragments. Internai fissures are filled
with micrire. This lithology and fàuna indicate a
marine forereef palaeoenvironmcni.
Small foraminîfers- Tuberitinn coUosa Rcitlingcr,
Atjussclla sp., Mendipsia sp., Dagrnarita sp.,
Glohivalvulina sp., Neodiscus aff N. milliloidcs
A. M.'Maday.
Fusulinids. Neo^fusulinella lantenohi Deprat,
N. saralnmensE Toriyama, Kanmera &: fngevat,
TV, nana A. M -Maday, Armaüna salgirica
A. M.^Maclay, Armentnn prisen Toriyama &
Kanmera, Verbeekina sp-, Praesumatrina neosvb-
wagerinoides (Deprar), Cancellina prtmigena
Haydcn, C. samburiensh Kanmera &c Toriyama,
C. (Sbengella) cllipvica Yang, Neoscbwagerina sim-
plex Ozawa, Parafusulina granumavenae
(Roemer), P. aff. P. tebuenkovi Leven, P. aff
P. yabei Hanzawa, Chiisenella Engi Sheng.
Brachiopods. Neoplicattfera sp., Marginifera car-
nioUca (Schellwien), Rostranteris inflatum
(Gemmellaro).
Limestone of the main body of ihe Marta block
(Loc. 110) is characterised by cwo assemblages of
fusulinids: an assemblage of the Ncoschwagerina
GEODIVERSITAS • 1999 • 21 (3)
307
Kotlyar G. V., Baud A., Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
simplex zont (Loc. 110/1, 3, 4. 9, 20, 21) and
the assemblage of the Neoschwa^erinu cnuiaitife-
ra zone (L.oc. 110/5). According to Bogoslov-
skaya (1984), two ammonoid assemblages arc
rccorded in the Marta block: (l) an oldcr one uf
Roadian (Burnian) âge; (2) a younger one of
Wordiaa (Martian) âge. Zakharov (this wurk)
found only ihe Roadian ammonoid assemblage
(Loc. 100/1, 10). Simll foraniinders (Loc. 110/
1, 2, 4, 6> 7, 9, 20, 21) axe Roadian or Kuber-
gandian. The brachiopod assemblage (Loc. 110/
T3, 9, 10, 21), is most probably also of a samc
âge. The Roadian ammonoids, sniall tbraminifers
and brachiopods occur with fusulinids of the
Neoschwugerina simplex zone.
Alma Rivek Basin
Exotic blocks and pebbics of Permian limestonc
within Eskiofda Scrie are also rccorded in the
Alma River Basin, in the areas of the Bodrak
River, and Izvesrny.Tkovy and Niknik creeks
(Fig. 4B).
Loc. 129
Many blocks of different âges hâve been observed
in the Bodrak River area. Here vve are describing
a new Permian block (Loc. 129) discovered in
1996 (Fig. 4A). ’Fhis isolatcd block is locared on
the right bank of the river near Trudolubovka
Village.
The block from which this samplc (Loc. 129)
was obtaincd Ls about 0.5 ni across. It is a biocal-
ciruditc with carbonare-quarrziric cernent and
rounded millimétré ro centimètre sized pebble
clasts of lime rnudsione. calcareou.s sponges,
radiolarian lime mudstonc, cotais, and foramini-
fers. There are also .single ooids in ihe mairix.
This texture indicates an exposure ol a Permian
sequcnce reworked in a high-energy shallow plat-
form marine environment with quarr/.itic terrige-
nous in pur.
Small foraminifers. Lasunliscus tennis Reichel,
Globivûlvulina sp., Agathammina sp., Nodosaria
caucasien mirabilis K. M.-Maclay, Pachyphloia
cukurkoyi Civrieux & Dessauvagie.
Loc. 122
On the right bank of Izvestnyakovy Creek, about
350 m upstream from its mouth, several blocks
(Luc. 122) of gray and light gray crinoid limcsto-
ne (about 15 X 6 m) werc discovered (Fig. 4C).
They contain remains of algae, and sphincto-
zoans — Colospongia cl. C. salinaria (Waagcn &
Wentzel), Vesicotubnlaria prima Belyaeva.
Loc. I22a
This sample consists of a clast-supportcd calciru-
diie with eiicrustcd microbial cléments and bio-
calcarenitc with foraminifers. Diagenesis showing
radiaxal cernent and internai filled cavities of
silty mudstone indicates an upper shoreface
marine dcpositional environment.
Small foraminifers. Pornberitina reiiHiigerae
A. M.-Maclay, Mendipsia conili (Nguyen Duc
Tien), Lasiodiscus Tennis Rcichcl, Lasionvehus sp.,
Postendothyra sp., CÂimacammina sp., Palaeo-
spiroplectammina sp., Dagmarita sp., and
Geinitzina sp.
Lac ]22b
This sarnpie is a cla.st-siipported calcirudite from
a pcrircetal environment containing foraminifers,
calcareous aJgae. bryozoans and brachiopods.
Small foraminifers. Eotuheritinn reitlingerae
A. M.-Macby, Tuberitinu collnsa Rcitlingcr,
Lasiodiscus tennis Reichcl, Neoendothyrn sp.,
Postendothyra sp., Palaeoiexinlaria sp. 3,
CAimacammina sp. 1, C. verbeeki Lange, C ex gr.
C Viitvulinoidc^ Lange, Deckerella sp., Palaeo-
spiroplectammina sp., Tetrataxis sp., Abadehella
sp., Agathammina sp., Multidiscm sp., Nodosaria
sagitta K. M.'Maday, N. pLmocamerata Sosnina,
IjtngdLt perfonna langei C'ivrieux & De.ssauvagie,
Geinitzina aiaxensis G. BroninUi G. spandeli
Tchcrdynzcv». G, uralka simplex Iv. M.-Maclay,
Pachyphloia rohmta K, M.-Maclay, Pseudotristix
solida Reitlinger, Ichtyolaria primitiva Civrieux &
Dessauvagie, and Hubeirobuloides sp.
Fusulinids. Cüdonojusu'lla cf. C. erki Rauscr, and
Reichelina changhsingvnsts Sheng &: Chang.
Loc. 122e
This sample is a reefal houndstonc with a
Microcodium type of encruscation and radiaxal
cernent.
Small foraminifers. Lasiodiscus minor Reichel,
Neoendothyra sp.y Globivalvulina sp., Hemigordius
sp-, and Geinitzina sp.
308
GEODIVERSITAS • 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
Fusulînids. Yangchienin cf. Y. thompsoni Skinner
& Wilde, Chusenella sp., Nankinella cf. N. ovata
A. M.-Maday, and Reichelina crihroseptata Erk.
Lac. Î22d
This samplc is a calciruditc ol poorly sorted bro-
ken clasts in a biodastic Jnatrix.
Small foramioifers. Mendipsia conili (Nguyen
Duc Tien), Tuberitina collosa Rcîtlinger,
Lnsiodiscus rninor Rcichcl, Deckerella sp.,
Endoteba controversft Vachard Ei Razgallah,
Dagmarhd sp., GlobivalvuUna cyprïat ReichcJ,
G. vonderschmitti Reidiel, Pasiendothyra noviz-
kiana (Sosnina), P. micula (Sosnina), Neoaido-
thyra ornata Sosnina, Tetrataxh conictx
Scheliwien, AhadebelLl sp., Orthovertellû sphaeri-
ca G. Pronina, Bdisttlina pulchra Rcitlinger,
Sphairioniû (Pseudosplmirionia) lienit (i. Pronina,
Nodosaria cf N. pdrtisauii Sosnina, Pseudo-
LtngelLi gertuitmensîs G. Pronina. P. filiamformn
G. Pronina, P. dzhagadzurensis G. Pronina,
Rectoglandulina gerkei Sosnina. Pachyphloia rtmii-
Id Sosnina, P. cukurkoyi Civricux & Dessauvagie,
P. minutissima Sosnina, Partisania sp. 1, and
Rcctostipxdina .sp.
Fusulinids, Raxtserella sp., Reichelina cribrosepta-
ta Erk, Danbarula ruina Kochansky-Devide &
Ramovs, Lantchichites cf niinirnus Chen,
CodonofusielLt cf C. kaeichowrnsis Sheng,
Yangchienia thornpsoni Skinner & Wilde,
Chusenella cf Ch. splendens (Skinner)^ Ch. cf
Ch. cyri (Skinner)- Kahlerina pachytheca
Kochansky-Dévide & Ramovs, Verheekina cf
V. furnishi Skinner & Wilde, Neoschwagerina
schuberti Kochansky-Devide, TV. haydeni
Dutkevich Khabakov, N. kojensis Tomnansky.
Loc. 113
On the lefc bank of Izvcstnyakovy Creek about
550 m upstream Rom the mouth (Fig. 2B), vve
foLind a small block (40 cm X 80 cm) of gray
microcrystalline limestone.
Loc. 113 is a calcirudite wiih ooid grainstone
and wirh biowackestonc clasts. The skcletal clé¬
ments consist of sponges, shell fragments and
foraminifers.
Small foraminifers. Deckerella aff. D. elegans
Morozova, Climacammina valvulinoides Lange,
Endoteba controversa Vachard & Razgallah,
Postendothyrn gunngxiemis (l-in), Abadehelln cf
A. conifnnnis Okimura & Ishii, Globivalvulina
graeca Reichel, G', vonderschmitti Reichef
Agathammina ex gr. A, rosella G. Pronina,
Mididla zanineîtiae (iAltincr), Multidlscus .sp. 1,
A/, sp. Z, Calcitornella sp. 2, Nodosaria cf N.glo-
bocutaris Sosnina, N. dorachamensis G. Pronina,
N. mirabilis çaucaska K. M.-Maday, Pachyphloia
ex gr. P. pigmohesa Wang, P. paraovata K. M.-
Maday, A angtdata K. M.-Maday, Pseudotristix
sp., Geinitzina sp , Colanhila ex gr. C. minima
Wang, and C. ex gr. C lepidn Wang.
Fusulinids. MinojapayxelhP sp., Pscudodunbarula
minirna (Sheng bc Chang), P. aff P. arpaensis
Chedija, Paradunharula z/rtZ/yf Skinner, and
Reichelina changhsingensis Sheng bz Chang.
Loc. 112
On the opposite side of the Alma River Valley
(Fig. 4B) along Niknik Creek (Loc. 112), gray
fme-grained sandstonc crops eut which conrains
an isolatcd block (about 3 m across) of gray brec-
ciated limc.stone wirh ‘Toulder” jointing wirh
ammonoid rcmains.
Ammonoids. Propmacoceras sp., P. sp. inder.,
Agathkeras sp., A. sp. indet., Cardiella kussica
(Toumansky), Adrianitesl sp., Tauroceras sp.,
Paraceltites'i sp. This assemblage is Roadian or
Kubergandian agc.
SiMJ-EROPOL AREA
The geology of the Simfcropol area is de.scribed
in Moiseev^ (1937)* During this study the cxotic
blocks were examined ar Cape Dzhien-Safu, near
Marjino Village, and east of Simleropol
Réservoir (Fig. 6A).
Loc. 111
On rhe western end of Cape Dzhicn-Safu ai
Simferopol Réservoir (Loc. III) thcrc is a large,
northwesc trending, clongace block of limestone
(Fig. 6). Ir is about 180 m along ihe long axis.
On the marginal parts, it is composed of black
and dark gray microcrystalline limestone which
is massive, fissured, and contains pocket.s of
accumulations of fusulinid shells (Loc. 111/1).
Loc. 111/sample 1
Fusulînids. Parafusulina crassispira Leven, P. aff
GEODIVERSITAS • 1999 • 21 (3)
309
Kotlyar G. V., Baud A., Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
Fig. 6. — A. location of the Permian limestone block (Cape
Dzhien-Safu) and pebbles (Marjino Village) near lhe Simteropol
Réservoir; B. collection sites at the lower Midian (Wordian)
limestone block (Loc. 111) in the western part of Cape Dihien-
Safu.
P. dronovi Lcvcn, Chusendh sp., Eapolydkxodina
aff. E. zidumurtemis Lcven, Armenina utlgirica
A. M.-Maday, Verb^ek/na verbeeki (Geinitz).
Cancellim pracneoichwagerïmïdes. Levcn, C. enta-
lensis Leven, C. tenuitesta Kanmera, Neo-
schwagenna simplex Ozawa, Pmesumntrina rossica
A. M.-Maday, PseudodolioUria ozawai Yabe &
Hanzawa. The âge is Kubergandian.
Loc. lîîhample?
Small foramînifers. Tuberitina collosa Reitlinger,
Mendipsia conili (Nguyen Duc Tien),
Cdobivalvulinn vonderschmltti Rcichd, Postendo-
tbym sp., letrataxis ex gr. T. iinea Ozawa, and
Abadehelbi sp.
Fusulinids. Sumatrina sp„ Rauserclk sp., and
Cancellimi cf. C primigena (Hayden), The âge is
early Midian.
Loc. ] I l/samples 2, 3, 3a
These samplcs consist of dense biocalcarenite
packstonc witb foraminifers and intraclasts, and
ate interprered to be depo.sitcd in a marine inner
shcU environment.
Small loraminifers. Eotuheritina reitlingerae
A. M.-Maday, luheritina collosa Reitlinger,
Mendipsia conili (Nguyen Duc Tien), M. sp.,
Telrataxis maxirna SchclUvicn, T. scita Lin,
T. linca Ozawa, Abadehella hunanensis (l.in),
Globivalvulina vonderschmitti Reichel, G. aff.
G. pemiiana Tcherdynzev, Postendothyra noviz-
kiana (Sosniiia), P. ussurica (Sosnina), Calci-
vericlla sp,.
Fusulinîds. Afghanella cf. A. sumatrinaeformis
(Gubler), Sumatrina rossica A. M.-Maday,
Kahlerhui sp., and Ranserella sp. The âge is early
Midian.
Loc. 123
At Marjino Village (Loc. 123), several small
blocks of fossiliferoiLS limestone were found (near
the foundation of a house under construction
and not available for future study) among coarse-
grained Lias-sic tuRogcnic sandstonc and conglo-
inerate (l’ig. 6A). These samples consist of
calcaccous quartziric sandstone with foraminifers.
Loc. 123/sample 2
Fusolinids. Chusenella deprati Ozawa, N. cf
N. kojensis Toumansky, N. pinguis Skintier,
M aff. N. rninaensis Deprat, CoUtnià aff C. aka~
sakensis (Morikawa & Suzuki), Yahtina opirna
Sldnncr, Y. urcbaica Dutkevlch, K cf Y, glohosa
Yabe, Y. orbiculata Chedîja. K inonyei Deprat,
and Neoschwugcrina craticidifera (Schwager). TKis
assemblage is of late Midian âge.
Loc. 123/sample3
Northwards, at the margin of the village on the
hill slope, we found a separate limestone block
measuring about 0.5 X 0.5 m (Fig. 6A).
310
GEODIVERSITAS • 1999 • 21 (3)
Permian and Triassîc exotic blocks of the Crimea
Fusulinids. Nfoftisulipjellu sitraburiensis
Toriyama, Kanmera & Ingcvdt, Misellina aliciae
(Deprar), M. otakiensts (Huzimoio), A/, aft.
M. ternïmi (Deprat), and M. cLtudiue (Dcprac).
This assemblage is of Bolorian âge.
Loc. 125
Along the eastern side of Simferopol Réservoir
(Loc. 125), two limesrone blocks were found on
the watershed (Fig, 2A). 'Fhe First onc is about
0.8 X 0.5 m. and the second onc about 0.5 X
0.5 m. Based of the fusulinid data, the âge of
limesrone from locaJity 125 is Kubergandian.
Loc. 125fsmnplc l
This block îs composed of dark gray, almost
black microcrystalline limescone. The micro-
faciès consiscs of a mud-siipporced biocalcarenice
rich in foraminifers,
Sntall foraminifers. Tubenthm collosa Reirlinger,
AtjusseUa gtmidh G. Pronina, Diplosphaerim aff
D. waljavkini (Mikhalov), Mtndipsia sp-,
Endothyra saucra (Lin), GlohivalvuUna graeca
Reichel, Pnlffeospiropkcî^mmina ex gr P. ronspec-
ta Reitlinger, Calcitornella sp. 1, Cnlcth'ertelLi sp.,
Agathammina sp., Neodiscui aff. N. milliloides
A. M.-Maday, Nodosarîa sp. (= N. longissirnn
Suleimanov in Zheng 1986), Pachyphloia ovatn
(Lange).
Fusuliaîds. Yangchienia cf. Y. compressa
(Ozawa), Diinbcirulcû cf. D. vascadensh
(Thompson, Wheclcr &C Danner), Chnsenella
schrvagerintieformis Sheng, Armenina afl A. prisca
Toriyama Kanmcra, A. sphaera (Ozawa),
A. saraburiensis Toriyama fie Kanmcra, Misellina
ovalis (Deprat), M. aff M. confiagaspira Leven,
M. termieri pamirensis (DutktMch), Al. ctandiae
(Deprat), Canctllina primigena (Ha\ den), C. aff.
C. praeneoschwagerinoides Levenj C. dutkevitchi
Leven, C. catalensis Leven, C. paynirka Leven,
and Praesumatrina nmchwagerinoides (Deprat).
Loc. 125lsampk 2
Fusulinids. Yangchienia sp., Sichotenella} sp.,
Neofiisulinella lantawisi Deprat, DunbaruUü sp.,
Chusenella chihsiaams (Lee), Armenina asiatica
Leven, CanceUina dutkevitchi Leven, C cutalensis
Leven, C. zarodcmis Sosnina, C sphaera A. M.-
Maclay, C verae (Toumansky), C. aff C nippo-
nica (Ozawa), Neoschwagerina simplex tenais
dbriyania & Kanmera, and Praesumatrina neo-
schwagerinoides (Deprat).
ANAI.YSîÿOr PMINAI. AS.SFMBLAGES
Ammonoids
The Early Permian (probably, Bolorian) and the
Lace Permian (Kubergandian or Roadian)
(Loc. 110/Il 10) âge of the CWmca limestone
blocks is cstablished based on the ammonoid
data. As was correctiy noted by Toumansky
(1931, 1937a, 1963), clic oldest ammonoids of
the Crimea blocks are forms of the Soranianian
assemblage, thaï she discovered in one of dark
gray limestone blocks of Kichik-Soraman
Mountain. Tins assemblage i-s tomprised of
représentatives of Propinacoceras. Skanites,
Agathkeras, Gastrwçerataçeae, Almites}, Cardiella,
and Crhnites. The Early Permian âge of the
assemblage is conllrmed by the presence of repre-
senvacives of Crimites-C, gemmeUarot, C, haniclï,
C sp indet., and apparently Almites-
/!.? pigneum. Species of the genus Cardklta are
pot found in deposits older than Bolorian.
Therefore, it would he rnost logical to a.ssume
that the limestone blocks containing these
ammonoids bclong to the Bolorian stage of the
Lower Permian.
The geiietic composition of ammonoids Irom
limestone blocks on the right side of one of the
tributarics ol the Marta Rivet in the area of
Kichkhi-Burnu Mountain [ParapronoriieSy
Propinacoceras, Aledlicottiat.. Thalassocerasy
Agathkeras, Cardiella, Neocrimites (Snsiocrimites)^
Aricoceras, Patermites., Prostiîcheoccnis., Taurocerns,
and Paraceltites] (with respect to our new évi¬
dence) is almost identical to the Kubergandian
assemblage, thar confinn.s the relevant conclu¬
sion initially drawn by 'foumansky (1963).
Noting the similariry of this assemblage with
ammonoids from limestone of the Sosio Permian
blocks, Toumansky (1963) correctiy noted che
absence of rcliable représentatives of Waagcno-
ceras as well as Hyattoceras, Doryccrcu^ Clinolobus,
Epighphiocvras (ail known from Sictly). This Jist
can bc extendcd by the following genera:
Arisîoeeratoidess Altudoceras^ Hoffhrannia. and
Sizdires. Mosc of these genera arc olso not tbund
in the stratotype of Kubergandian stage.
GEODIVERSITAS • 1999 • 21 (3)
311
Kotlyar G. V., Baud A.. Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
We assume ihat the light grey limestone of
Kichkhi-Burnu Mountain is ot Kubergandian
âge [forms iroin the Kubergandian deposits of
Souiheastern Pamirs dcfined by Toumansky
(1935) and Bogoslovskaya (Chedija et ai 1986)
as Popanoceras aie assigned ro rhe genus
Tauroceras in chc prcsciit paperj. Grey limestone
on the right-bank of chc Alma River (Niknik
Creck) yiclding Propiiuicoceras, Agathiceras^
Cardîelhi. A^lrianites^ Stiicheaceras. and Para-
celtites^. is apparently of Kubergandian âge.
Small fommintfers
Analysis ol the Permian small foraminifers shows
that therc are five assemblages of different âges.
The oldcst .assemblage is found in two locaiitîcs:
in the Marra River Basin (l.oe. 110/1, 2, 4. 6, 7^
9, 20, 21), and on the eastern llank of the
Simferopül Réservoir (Luc. 125/1; Figs 4A, 5).
The most typical spedes ol the assemblage are
Neodheus aff. N. millîUndei A. M.-Maday and
Nodoinvohitaria jilinicu Han. The first occur.s in
the lowcr part of rhe Gnishik Formation (the
Neodisens milliloides zone) of Transcaucasia
(Pronina 1990), and in the Qixia Group
(Eolasiodiscus-Neodiscus mnoplngensis zone) of
Daxiakou, Xingshan County,. Hubei Province,
China (Zheng 1986). However, it has been iden-
tificd there as Neodiuits rnaopingeiîds Watig &c
Sun and Glowasptra duplicata Lipina. Nodo-
hivoliitaria pllnka Han fias been known pre-
viously from the Miaoling Formation of
northeascern China, that belongs to rhe
Neoschwagerina zone (Han 19S2). In addition to
Neodiscus aff. N. rnillUoides A. M.-Maday, the
following specics are in commun within the
Qixia Group - PaLieoiextitUiria piugguoemis Lin,
P. sp. (=■ P. loiigmptata Lipina) and Endothyra
saucra (Lin) (Zheng 1986). The presenee of
Neodisens aff. N milliloides A. M.-Maday in this
assemblage, ,i /,on.al species and index of the same
named zone of Transcaucasia, permirs us ro cor-
relate the assemblage of small foraminifers from
Loc. 110 (cxccpt Loc. 110/5) and Lot. 125/1 to
the Neodisens milliloides zone ol Transcaucasia,
and to the Eolasiodiseus-Neodiscus maopingensis
zone ol Hubei Province of China. The lasi zone
is correlared to the small foraminifer Pseudo-
vidalina delicata-Langella-Neodiscus maopingensis
zone and the fusulinid Neoschioageriva stmpkx-
Cancellrna neoschivagerinoides zone of the
Xiangboan Stage of China (Sheng & Jin 1994),
that correspond to ihe Kubergandian stage of the
Tetfiyan seule or ihc Roadian of chc scand-ard
scale.
The second assemblage of small foraminifers bas
been recogniscd in rhe limestone of Cape
L>zhicn-Safu, Simferopol Réservoir (Loc. 111/2,
3, 7;. Fig. 6B)- Atnong tbe numerous foraminifers
présent, rhe following .spccie.s arc diagnostic -
Tetratnxis scita L-in, 7*. linea Ozawa, Abadehcdla
htinanvnsis (Lin), Globivalvulina vonderschmitti
ReichcL C7. aff. G. permiana Tcberdynzev,
Postendothyrn novizkmna (Sosnina), and P. tissu-
rica (Sosnina). Ail species of tbis a.ssociaiion
occur in rhe Arpa Formation of Tr.mscaucasia
(Kotlyar/“Z *;/. 19S9J \n uAhadehella
hunanensis (Lin) and Tetrataxis seiut Lin are
known from the Douling Formation of the
Chinesc Province of Hubei and correlaled with
the upper part ot the Maokou Formation of
China (Lin 1985). Thus, the assemblage of small
toramiiiifers from Cape Pzhien-Safü is conside-
red to bc early Midian ot the Techyàn scalc or
laie Wordian of the standard seule.
’Fhc third assemblage ot small foraminifers was
found in rhe limestone block on the right sidc of
Izvcscnj^coty Creek in the /\lma River Basin at
Loc. 122d (Fig. 4C). This assemblage contains a
mixed launa whlch occurs in the Arpa Formation
[specics: Sphainotda [Psendosphairionid) rienii
G. Pronina, PseiidolangeHa geranossesisis
G. Pronina, P, dzhagadzurensis G. Pronina, and
P, füutfnfbrmh G. Pronina), .tnd in the KJiachik
Formation (species: Deekcrella sp. 1, Gtohi-
vahntlina cyprica Rctchel, G. vondenchmitti
ReicheL Orîhvvertella sphuerica G. Pronina,
Biiisedina pulchra Rchlinger, Septagathammina
sp., Rectoglandulina gerkei Sosnina, Pachypfdnia
eimula So.snina» and Parrisania sp. 1) of
4>anscauca.sia (Kotlyar et al. 1989; Pronina
1990). l’hc age of rhe association Irom
Loc. I22d is most likely lare Midian ol the
l'ethyan scale or Capitanian of the standard
scale. The early Midian species are probably
reworked.
312
GEODIVERSITAS ■ 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
The fourth assemblage üf small foraminifers was
found in ilie limescone block ai localiry 122b
(Fig. 4C). This association is represented by spe-
cies occurring in the uppermost Khachik and
Dzhulfa formations, and in the lower part of the
Akhura Formation of Transcaucasia (Korlyar et
al. 1989; Pronina 1990). Thereforcv rhe âge of
this assemblage is consldered to be Dzhtdfian.
The fifrh and ihe youngest association of small
foraminifers has been found in a limestone block
from Izvescnyakovy Creek in the Alma River
Basin (Loc. 113; Fig. 4B). This assemblage
contains a mixed fauna, thar occurs in rhe upper¬
most Kliachik and Dzhnlfa formations and the
lower part of the Akhura Formation {DeckerelLt
aff D elegarts Morozova, Nodosaria mirabilis
caucasien K. M.-Maday, J^gathammina ex gr.
A. rosella G. Pronina, and Mnltidiscm 1), and
in the Dorasham and the upper part of the
Akhura Formations [Postendoshyra gunngxiensis
(Lin), Nodosaria dorachamemis G Pronina,
Pachyphloia paraomta K. M.-Maday, P. ex gr.
P. pigmobesa Wang, Pscndolmigclla doraehamemis
G. Pronina, Colaaklla ex gr. C. minhna Wang,
and C. ex gr. C, Itpida Wang] of Iraoscaucasia
(Pronina 1990). Therefore, it is impossible to
establish the exact âge, but most likcly, this
assemblage is Dorashamian (Changsingian), and
the Dzhulfian species are reworked,
Fusidinids
Fusulinids from the Crimea Permian exotic
blocks bave been siudied by various workers
(Toumansky 1941; Hinor 6c Vdovenko 1959;
Miklukho-Maklay 1963), and they bave been
corrdated ro various stratigraphical levêls of
Early Permian to Laie Permian âge. Duvydov
(1991) investigated fusulinids from 13 exotic
blocks and numerous limcstonc pcbbles. Hc
rccognized ihc following biosiraiigtaphic levels:
(1) Misellina alicia^ M. dandine of upper
Bolorian âge (Loc. 123/3); (2) Caïudliua enta-
lensis of Kubergandian âge (Loc. 125);
(3) Praestimairina^ Neoschuuigerinn simplex
(Loc. 110/1, 3, 4, 9, Loc. lU/l) of Lower
Murgabian age; (4) Neoschwagerina craticulifera,
Afghanella, Sumatrina ot Murgabian age
(Loc. 110/5); (5) Neoschwagerina rnargaritae
Midian age (Loc. 110/la); (6) Yabeina opima of
Midian age (Loc. 123/2); (7) Pseudodiinbarula
minima^ Paradunbarula dallyi of Dzhulfian age
(Loc. 113). According to Datydov (1991), rhe
Crimea fusulinid succession ranging from
Bolorian (Kungurian) to Lace Permian
(Dzhulfian) are typicul Tethyan assemblages and
are very similar to rhe fusulinid faunas from
Elbiirz> Iran (Lys et al. 1978), The fusulinids
from several Crimean exotic blocks
(Loc. 110/20, 21, Loc. 122a-d) hâve been stu-
died recently by Nestell (Pronina Nestell
1997).
Six fusulinid assemblages appear to be présent in
the Crimean blod^j.
The First assemblage occuj'S in a small limestonc
block ac the raargin of rhe Marjino Village
within Simfèropol area (Loc. 123/3). The most
important forms are: Misellina cl-iindine (Deprat),
M. aliciae (Deprat), M. otakiensis (Fujimoto),
M. aff M. ermieri (Deprat). According to
Dav)dov (1991) and Leven (1980) chese species
are most characteristic for lace Bolorian.
’l'hc second onc is the most diverse and abun-
dant. It occurs in the largest limcstone block
exposcd in Marra River Basin (Loc. 110, except
Loc. 110/5), and in a small block on the eascern
side of rhe Simfèropol Réservoir (Loc. 125/1, 2,
Loc. 111/1). The most important and typical
species of this assemblage are: Neoschwagerina
simplex Ozawa, Cancellina (Shengella) ellipiica
Yang, Cancellina sp., Praesumotrtnn neoschwage-
rinoules (Deprat), Chmenella schwageriniformis
Shengv Ch. ebihstaensis (Lee), ParafitsttUna sp..
and F.opvlydiexodina sp. Tliis assemblage belongs
ro the Neoschioiigerina simplex-CancelUna neoscb-
wageu)ioides zone of ihe Xiangboan Stage ol
China (Sheng &: Jin 1994). 'Fhe age is most like-
[y lare Kubergandian.
The third assemblage occurs on the top of the
largest limcstone block from the Kichkhi-Burnu
Mountain (Loc. 110/5). With tlie exceptit)n uf
.some oldcr reworking species such as Armenina
sarabnriensis Toriyama &: Kanmera, Cancellina
sethapîiti Kanmera 6c Toriyama and others, this
GEODIVERSITAS • 1999 • 21 (3)
313
Kotlyar G. V., Baud A., Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nesteil M. K., Belyaeva G. V. & Marcoux J.
assemblage contains the rypical Murgabian and
even early Miclian forms. Amoiig them are
Verbeeklna verbeeki (Geinirz), Neoschivagerina
craticulifira (Scliwager), N. colaniae O/awa,
N. ex gr. N. pingiiii Skinnei, Afganella icht-nki
Tbompst)ii, Suntairina sp. l'hcrcfore, che âge of
rhis assemblage is considered lo be Murgabian.
The founli assemblage occurs in a limestone
block at Cape Dzhien-Safu, Simferopol
Réservoir (Loc 1 11/2, 3a). The most cbarac-
teristic speties are Eopolydiexodimi sp., AJgbanella
cf. A. siiWiitrinaefarmis (Gubler), A. sp.,
Sumatrina rossica A. M.-Maday, 5. longissima
Deprai, S. bmds Levcn« and Knhlerimi sp. Thèse
specics are early Midian in âge in spire of che pré¬
sence of older taxa {Nvoschwagerind simplex^
Verbeekina. Armenina). Tliere is possibly some
reworking of older forms in tliis block. However.
there is clearly a dednite internai stratigraphie
succession présent in parts ol ihis block and imiil
closely spaccd sampics are studied, che précisé
âge of rhe block is not dear.
The fifth assemblage bas been recognised in the
limestone block on the righr bank of Izvestnya-
kovy Crcck in the Alma River Basin (Loc. I22d).
The assemblage cunsist.s of mixed early Midian
date Woidian) and late Midian (Capitanian) spe-
cies. MüSt likely, the âge is laie Midian or
Capitanian. A late Midian (Capitanian) assem¬
blage also bas been found in .sinall pcbbles ncar
Marjino Village (Loc. 123/2). Présent in these
pebblcs are Neoschtoagerinn irtiticiilifem
(Schwager), N, cf. N. kojensis Toumansky,
N. phigitis Skinner, Ytdmna opima Skinner, K cl.
K Yabe, and V nrbîculata ChcdVyà.
The sixth fusulinid assemblage is from the lime-
stone block ar localicies 122b and 113. Ir is pro-
bably Drhtdfian is âge and contains Codono-
fiisiella cf C. erki Rauser and Reichel'tna changh-
Sheng iR. Chang.
Brachiopods
Permian brachiopods are confined to the largest
limestone block in the Marra River Basin thar is
named Kichkhi-Burnu Mountain (Fig. 5). The
analysis of brachiopod associations from separate
parts of this block permits two assemblages to be
distinguished.
The oldest and most représentative assemblage is
characterisric of most of the Marta River block
(Loc. 110/1-3, 7, 9- 10. 21). These assemblages
are chatacieriscd by a prédominance of Bolorian-
Kubergandian spccics. Ragaria mtdcngraaffi
(Broili), Urmhtenia nuttina (Granc), Coninquia
modi'sra Grant, Tramenmtïa gmtiosa (Waagen),
Bdptina avantha (Waterbuuse & Piyasin),
Lwoproductiis kijseti Cirant, Amnnalona gUmrerosa
Grant. Phricodotbyris annika (Cibao) occiir in the
Rat Ruri Limestone of Th.iiland (Grant 1976).
Rtigaria nwkngraaffi (Broili) is described from
the Bitauni block of Timor (Broili 1915),
EvtcUtes gemcLiliUis Licharew, lichinaamcbm jns-
daUn (Kiitorga). Phrkodntbyris asiatka (Cbau),
Hfwiptycbina durvasicn Tsclicrnyschew are
known from Rolorian-Kubergandian deposits of
the Darvaz, Izchînoconchus fnsduim (Kutorga)
and Matgiinferit x'^irniolkti (Schellwicn) - from
the Trogkold I imestone ol vhe (garnie Alps and
Karawanken (hcbelKvien 1900). A number of
spccies bave also been described from Murgabian
and Midian deposits in .somc régions of the
Tetbys. Oghlnia dzlmgrensh Saryicheva is known
(rom che Gnishik Formation ol Trauscaucasia
(NeoschwdgeriH£î simplex and N. cmticulifera
zones), and EnteietC}, uihhievh Waagen is from the
Wargal Formation in Sali Range of Pakistan,
Martifjiti ceres (Gemmcllaro), Rostrnntcris infla-
îum (Cïcmmelhuo) îs from the Sosio Permian
blocks of Itvdy. However, these species are also
freqiienrly recorded in deposits older than
Murgabian and Midian, This iLS.scmblagc occurs
with rhe small foraminifcrs and fusulinids ol the
Neoschwiigmnü simplex- Cûnccllim neoschwt'Jgerk
noides zone, fhat is attributed to the CTihsian
Sériés (Sheng & Jin 1994) and with
Kubergandian (Roadinn) ammonoids. So, the
âge brachiopod .assemblage from the above-
mentioned localitics is most lîkely latc Kuber-
gandian.
rhe second assemblage occurs only at the top of
Kiebkhi-Burnu Mountain (Loc. 1 10/8). It is
extremely scarce and is represented only by a few
species — Ogbinia dzhagrensis Saryteheva,
Transennatia gratiosa (Waagen), Undynmellina cf
GEODIVERSITAS • 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
U. arnor (Geminellaro), and Per^nophricadothyris
pîilcherrima (Gemmellaro). AU of the species are
characterisric of Mijrgabian and lowcr Midiaa (or
Upper Wordian) deposics in the Techyan Realm,
although rhcy aiso occur in oldcr formauons.
Ilowever, it should be added that prcviously
other Midian and younger species hâve becn
reporied from rhe Marta River block. Species of
Dorashamian âge, such as GeyereUa tschernysche-
îvi Licharew, Plictttifetd* cf. ""PP hi'ijnrimassi
Licharcw, Richthofenia ccnicasica Licharew,
Leptodiis ricbihofini Kayser, Canumphorïa para-
nae Gemmellaro, and Jisuina nikitini
Gemmellaro, hâve becn rcportcd (Einor &
Vdovenko 1959; Licharcw 1966). lherefore.
within Kichkhi-Burnu Mountain there are pro-
bably blocks of varions âges, even of younger âge
than Midian.
Sphinctozoans
Permian sphinctozoans of the Crimea are repre-
senced by five généra - Colospongia Lalibc,
Crymncoelia Belyaeva, Vesicotubulafm Belyaeva,
Paradeningeriii Senowbary-Daryan 6c Schafer,
1979 and, SoUïtsia Steinmann, 1882. Repré¬
sentatives ot Colospojjgia are wide-spread in
Upper Carboniferous-Upper Triassic deposits of
the former USSR. Species of this genus occurring
in the Crimea are very similar in the shapc of
chambers, character of their fonction, size and
abundance ot vesicles to C, salinana (Waagen &
Wentzcl) known froni the Upper Permian nf
China and India, as well as from the Upper
Triassic of North America, and ihc European
Alps.
i'he species Crynunoelïa zavharovi BeKfacva, the
type species of the recemly established genus,
was described from ihc Permian of rhe Crimea,
and représentatives of the genus are as yet un-
known from oiher places. The nanire of rhe
porosity of the caienulace branches of this retro-
siphonate type allows the Crimean form ro be
assigned to the family Sebargasiidae. Wiihin this
family, thèse forms are niosi similar ro
Amblysiphonella Steinmann, 1882. That genus is
the most abundant among fossil sphinctozoans
from a systematic viewpoint and its âge ranges
from the Ordovician to the Upper Triassic.
However, Cryniocoelia, unlike closely similar
forms, is noted for a complex porosity of the
siphon Wall, that is very rare for sphinctozoans.
Vesicotîibnlaria prima Belyaeva was also First des¬
cribed from the Crimea and is similar to the pre-
vious genus. These forms are very pecuÜar
sphinctozoans, where an important part of the
skelctal structure is their vesicular fbubble) tis-
suc. Rcpresentaiives of the genus Vvsicocaulisy
parricularly V. alpirms Ott from the Upper
Triassic of the Alps is noted for an aporate cha¬
racter. Such taxa aie most closely relaied to the
described Crimean form in their shapc and skele-
cal structure. Représentatives ot rhe genus Vesi-
cocaulh are known only from Triassic deposits ot
rhe Alps, Pamirs and a fcw other régions.
Until reccntly, the gcnu.s Paradeningeria was
knowm only from the Upper ‘Lrias.sic of the
Pamirs, Alps, Himala}'as, and North America.
Permian représentatives Paradeningeria in the
Crimea belong to the recently established spe¬
cies, P. martae-nsh Belyaeva. Species of rhe genus
Sûllasiit are prévalent in the LTpper Permian of
Cambodia, Tunisia, Sicily, Venezuela. Texas, and
the Far East part of Asia. Isolâted occurrences are
known in the Triassic of the North Oaucasus and
the Far East.
Gencrally, the collection of sphinctozoans from
the Permian of the Crimea is rather small and,
thus, is probably poor in ternis of its systematic
composition. I hc taxa, Crymocoelia zacharovi
and Vesicotubularia prima, are noi diagnostic for
determining rhe âge of invosrigated blocks. As far
as rhe other taxa are concerned, Colospongia cf.
C salinaria, représentatives of the généra
Paradeningenn and Sollasia hâve a wide âge dis-
uibution from Late Permian to Late Triassic.
SUMMARY OF THE PeRMIAN
L StLidy of Crimean Permian exotic limestone
blocks denionstrates that carbonate sédimenta¬
tion from rhe late Bolorian to practicalfy the end
of the Permian occurred in the basin from which
rhese blocks were derived. A depositional envi¬
ronment on a shallow carbonate shelf is indica-
ted for these limestone blocks are predominandy
reefogenîc.
2. The analysis of ail faunal groups from the
GEODIVERSITAS • 1999 • 21 (3)
315
Kotiyar G. V., Baud A., Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
Permian exotic blocks and pebbics shows rhat
rhey contain rich assemblages of primarily small
foraminifcrs and fijsulinids. Brachiopods, ammo-
noids, trilobires, and sphinctüz.üarvs are minor
constituenrs of ihese assemblages.
3- The distrilTiirion of fossils points not only to
differenr âges lor ilie various isolaied blocks, but
also in certain bloclo» to different âges of varions
parts of rhe samc block. Somctinics an internai
stratigraphie structure is évident in the larger
blocks, fer example, at the large block at Dzhien-
Safu. Mtxing of zonal species h often observed,
that interfères with précisé âge détermination,
even to stage level (Loc. 122).
4. The taxonomie composition of ail studied
groups definitcly points to rhe Tethyan composi¬
tion of the faiitias. vVImost ail zona] assemblages
of the Bolorian, Kubergandian, Murgabian,
Midian, as well as of rhe Dzhultian and
Dorashamian are présent. Pusulinid assuciaiions
display the greate^i ximilatity to the Hlburz
assemblages of northern Iran (Da\ydov 1991).
Small foraminifers arc comparable with those
found in similar âge sédiments in China, the Far
East and ’lranscaucasia. The brachiopods arc hkc
those from Sicily, Thailand and Iran, and amnto-
noids arc comparable with Sicily and Central
Asia assemblages.
5. A new Permian small block was discovered on
the righr bunk of the Bodrak River with a small
foraminifers fauna, l’he âge of the assemblage
from ühis block is most likely Dzhulfian or
Dorashamian (Chang-singian)
6. New data concerning the stage |o which the
Neoschwagennn simjAex-l^aestoHatrina neoschiua-
gerinaides zone belongs is most important.
Ammonoids huind together with a Insulinid
assemblage of this zone are clearly Kubergan¬
dian or Roadian, according to Zakharov. A
Kubergandian (Roadian) age is al-so confirmed by
the small foraminifers of the Ncoschwagerina sim¬
plex zone and, to a certain exrent, by brachiopods
whose assemblage is dominatctl by Bolorian and
Kubergandian species. This data of the conclu¬
sion fully confirms previoiis researctiers concer¬
ning assignment of chc Neoschwagerina
simpleX'Praestimart'ina neoschwagerinoides zone to
the Kubergandian (Sheng Ôc Jin 1994; Kotiyar &
Pronina 1995).
F(g. 7. — Locations of collection sites at the Triassic exotic
blocks along Izvestnyakovy Creek in the Alma River Basin;
A. locailty 117. B, locaüty 119. Matrix consists of the deposits of
the Mender subunit (Eskiorda Complex).
TRIASSIC EXOTIC BLOCKS
Alma Ri\'er basin
Triassic limestone blocks occur mainly in the
area of l/vcstny.ikovy Creek and in ihe Bt>drak
River area in the Alma River Basin (Fig. 4B). On
Izvestnyakovy Creek (Fig. 4R) thcrc arc lour
localitics (Locs 116-119) Irom which Pronina &
Vuks (1996) have dcscrîbcd the ferarninifera. In
rhe Bodrak River at Shvanov Ravine (Loc. 132),
a brachiopt>d assemblage has been determined by
Dagis (Dagis Shvanov 1965).
Lüc. 116
'fhis localily crops ont on ihc Iclt bank of
izvestnyakovy C'^reek about 750 m from ics
mouth. There arc blocks of grcy and lighr gray
micritic limcstone in size up to 4.5 m across. The
main block is a-calcilurite waekestone coiitaining
small Iragnicius of echinoids and criiïoido. Other
éléments are foraminifers and brachiopods.
316
GEODIVERSITAS • 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
ForaminiFers. Tolypanimimi irregularis (Salaj,
Borza & Samuel), Pilamminella gemeika (Salaj),
Gaudryina triadica Kristan-lbllmann, Malay-
spirinn ex gr. A/, alpina (Zaninetii &l Broen-
nimann), ''Çalcitornelld' gebzeensh Dagei,
Coronipora etrnscu (Pirini). Semiitwoliita bicari-
natn Blau» ,S. clari Kristan, Lamelliconus tunis
(Frenticen), Arenovidalina chialingchiangeyisis Ho,
Ophthalmidlurn luçidtmi (Irifonova), O, triadi-
cuni (Kjisian), Sig^milim bystrickyi Salaj, Borza
& Samuel, Nodosaria cf« N. dipartita Kristan-
Tollmann, N. sp. \ , Pseudonodosaria cf. P. vulga-
ta miilticamernta {Kriscan-Tollmann), Pachy-
phloides} sp., Austrocohmia camlknlata (Kristan-
'lollmann), Dmtalina zlambachcnsis Kristan,
Lenticulina rectafîghla Kristan Tollmann,
Dtwston?Ina sp.
Brachîopods. Etixiriella aimiolica (Bittner),
Laballn suessi (Winkler), L. slavini Dagys,
SiriHx'osîa emmrichi (Suess), Zugrnuyerclla koesse-
nensis (Zugmayer), Oxycolpella oxycolpos
(Emmrich), Nearetzia superbescens (Bittner),
Amphiclinn intermedia Bittner, A. tanrica
Moiseev, Rbaetina turneu (Bittner), Triadithyris
gregariafonnis (Zugmayer), Zeilleria bukowski
(Bittner), AuLtcothyropsh ahnensis (Moiseev).
Loc. } 17 (Fig. 7B)
This is a giant ÜmesLone block (100 m X 60 m),
occuring on rhe left bank of Izvesinyakovy Creek
about 1.5 km upstream from Loc. 116, and sho-
wing an inhomogeneous texture. Due to the non-
stratified aspect ol the block, ihe general micritîc
matrix pink colorcd in some part, and the présen¬
ce of numerous cavitics vvith geopetal calcitic
cernent, we consider char this block is part of a
mudmound. iTree sampled siie.s hâve been ana-
lysed from this block.
Loc. liyhample î
ForaminiFers. Tolypammina irregularis (Salaj,
Borza & Samuel), T. gregaria Wendt, Spiro-
plectarnmina spiTstlîs Salaj, Borza & Samuel.
Trochammina almfalensis Koehn-Zaninetei,
Duotitxis inflatus (Kristan-lollmann), Tèxîularia
ex gr. T. exigti/i (Schwager), Endotehn knepperi
(Oberhauser), Malnyspbina sp.,. MeandrosphrUn'^
sp., Semiinvoluia-bicanmiia Blau, S. -clari ICristan,
Arenovidalina chialingehiangensis Ho, Nodosaria
simplex (Terquem), ^Frondicularia woodwardr
Howehin, Austtocolomia .sp., Lcnticulina goettin-
gensis polygonata (Franke), Diphtremina astrofim-
brkita Kristan-Tollmann, Dimtomina sp.
Brachîopods. Euxinella anatolica (Bittner),
Cnmrhynchiu kiparisovae üagys, Laballa slaintii
Dagys, Zugrnayerella koesseriensis (Zügmaycr),
Shîucosfa emmrichi (Suess), Oxycolpella oxycolpos
(Emrnrich), Neoretzia superbescens (Bittner),
Amphiclina intermedia Bittner, A, tanrica
Moiseev, Rhaetina tanrica Moiseev, Triadithyris
gregariafimnis (Zugmayer). Besides these, Dagis
(1963, 1974) determined Rhaetina cf R. pyrifor-
mis (Suess), Æ tnrciça (Bittner), Zeilleria bukow-
ski (Bittner), Aulacùthyropsis abnensis (Moiseev).
Loc. ilJhample 2
A brachiopod assemblage analogous to locali-
ty 117/1 has been collecred from pink micrinc
limestone Only three species - Amphidma inter¬
media Bittner, Rhaetina taurwa (Bitrner), and
Zeilleria bukowski (Bittner) - are absent from
chose listed in Loc. 117/1.
Loc. 11 Jhample 3
ForaminiFers. Tolypammina irregularis (Salaj,
Borza àc Samuel), T. gregaria Wendt, Ammo-
baculites .sp., Dnotaxis inflatus (Kristan-
Fo 11 rn a n n ), Gau dry i n a t ri a d ictj Kristan-
Tollmann, ^7. racema Trifnnova, Phiniinvoluta
dejlexa Lei.schner, Semiinvolntn hicarinata Blau,
Angulodiscus parallelus (Kristan-Tollmann),
Arenovidalina chialhigcbiungensh Ho, A. depressa
(Lupcrco), Ophthabnldium carinatum Lcisclitier,
O. Jusiformis (Trifonova), O. cf. O. martanurn
Farinacci, G. tari Zaninetri & Broennimann,
Sigrnoilina schaeferae Zaninetti, Altiuer, Dager &
Ducrcc, Nodosaria cf. N. angulocameraia
Efimova> N. cf. N. clongaia (Salaj, Borza &
Samuel), N. aff. N. shablensis Trifonova,
Lenticulina sp., Astacolus sp., Turtispirillina sp.
Braebiopods. Euxinella anatolica (Bittner),
Robimonella nmstakunensis Moiseev, Laballa stavi-
ni Dagys, Zugrnayerella koessenensis (Zugmayer),
SinucQsta emmrichi (Suess), O.yycolpclla o.xycolpos
(Emmrich), Neoretzia stipcrbescens (Bittner),
Rhaetina pyrifonnis (Suess), R. gregana (Suess),
Zeilleria maisseieia Dag}^, Z austrica (Zugmayer).
Ammonoîds. MegaphyUites sp.
Crinoids and corals are also présent.
GEODIVERSITAS • 1999 • 21 (3)
317
Kotlyar G. V., Baud A., Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
Loc. ns
This block (4.5 m X 2.0 m) is located 135 m
upstream from Loc. 117 on Izvesuiyakovy Creck
and is composed of light gray micritic limcstone.
It has yielded the following brachiopods —
Rbaetina taurica fvloiseev, Neoretzia stiperbescens
(Bittner), Zeilleria ausfrica (Zugmayer).
Loc. 119
Down thc creck from locality 117, four limesto-
ne blocks ranging from 1.5-5 m across were
found, as well as smaller angular limestone frag¬
ments (Fig, 7A),
Loc. 119/sample L 929-1
This is thc lat^sr block, about 5 m across, and
consists of a coarse biocalcarenite grainstone with
radiaxal cernent and mud late infilling. The ske-
letal cléments are crinoids, brachiopods, cchi-
noids, gastropod.s, sponges, loramiaifers and
intraclast.s. The environment is ol a shallow,
high-energy carbonate platform.
Foraminifers. Tnlypummina gregaria Wendt,
Trochammhm ahntalensis Koehn-Zaninceti, T. jau-
nensis Broennimann Page, Duotaxis inflatus
(Kristan-Tollmann), D. meiula Kristan,
Gaudryina maâtea Kristan- Ibllmann, G. trumica
Trifonova, PabeoHtuoifellû inendionalis (L.uperto),
Textuiariu ex gr. T. exigitti (Schwager), f.udotrha
nustrotriadlcu (Oberhauser), £. kuepperi
(Oberhauser),, Malayspirina bicameratn (Salaj),
M. wirtzi (Koelm-Zaninetii), ''CakLUmielld' geb~
zeensis Dager, ïHaniinvolula cannatu Leischner,
Coronipota eirusca (Pirini), Seniihwoluta bicarimta
Blau, S. dari Kristan, S. vtolae Blau, Lamellicanus
tiirris (Frentzen), L. inuhispirus (Oberhauser),
TrochojielLi ^anosa (ï'Tcntùùn)^ Arcmindalina chia-
lingchiangcmis Ho, Ophthal-midium exiguum
Koehn-Zaninetti, O. fitsifortHis (Trifonova), O. Id-
schneri (Kristan-Tollmann), O, lucidum
(Trifonova), O, trtadicinn (Kjistan), Sigmoilirm
bystrickyi Salaj, Borza & SamueL 5. plectosptm
(Oravecz-SchefFer)) Gnlcantlla pantkae Zaninetti
& Broen ni man n, MilUdipora cuvillieri
Broennimann & Zaninetti, OphtnhniponP sp.,
Nodosaria sp. 1. ScputiriguHna cl. S. iHmsepta Hc
&r Norling, Aastymolomin ex gr. A, cnnaliculata
(Kristan-Tollmann), Lenticulina rectangiila
Kristan-Tollmann, Astacolus sp., Duostomina sp.
Brachiopods. Oxycolpella oxycolpos (Emmrich),
Hhaetwa pyriformis (Suess).
Loc. 119lsamplc2, 929-2
This sample is a llne-grained, mud supported
biocalcilurite with crinoids, foraminifers, thin-
shelled ostracods and bryozoan fragments. The
numert)tis cavitics with light mud infilling are
typicol of a mudmound on a shallow slope.
Foraminifers. Gaudryina tiiassica Trifonova,
Coronipora etrusca (Pirini), Scmuuvolutu hicari-
fjata Blau, Anguladiscus ex gr. A. expansus
(Krisran-Tollivann), Paraophthalmidium sp.,
Ophthahnidium jiisiformis (Trifonova), O. cf.
O. martanum Farinacci, O. sp. 1, Quinquelocu-
lind^. nnddformis Kristan-Tollmann, Sigmoilina
bystrickyi Salaj, Borza Sc Samuel, S. plectospira
(Oravecz-Schctfcr), 5. ichaeferae Zaninetti,
Altiner, Dagcr 6c Ducret,. Nodosaria cf. N. clon-
gata (Salaj, Borza & Samuel), N, uhida elovgata
Franke, '‘'Frondiru/aria uoodîoardr Howehin,
Atistrocolûuna canallculata (Kristan-Tollmann),
A. wz/;ï(7vf///Oberhau.scr, Lenticulina sp.
Brachiopods. HuxincUa anaiolica (Bittner),
Sepudiphoria fissicostaui (Suess), Cturirhynchia
klptîrisuvae Dagys, Lahalla sut'ssi (Winklcr),
Oxyco/pdia oxycolpos tEmmrichj, Ü. robinsoni
Dagys, Amphidina laurica Moiseev, Triadithyris
gregariafarmis (Zugmayer).
Loc. I19tsamplv 3
This block consists (»f graded, resedimented
pinkish fine waekestone — coarse skcletal pack-
stone with echinoids, crinoids, brachiopods and
foraminifers. l'iii.s is a considered to bc a distal
slope deposit.
Foraminifers. Tolypammina gregaria Wendt,
Coronipora etrusca (Pirini), Semiinvoluta hicari-
nata Blau, Lamdliconm îurris (Frentzen),
Ophthahnidium leischrieri (Kristan-Tollmann),
O. lucîdmn (Trifonova), Sigmoilina bystrickyi
Salaj, Borza 6i SanmeJ, S. schneferae Zaninetti,
Altiner, Dager 6c Ducret, Miliolipora cuvillieri
Broennimann & Zaninetti, Nodosaria sp. 1,
Reciogliindnlinnt sp., Lenticulina sp., Duostomina
sp., Turrispinllina^, licia llcia Blau.
Loc. 12la
Numerous exode blocks of gray limestone occur
318
GEODIVERSITAS • 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
near Drovyanka Village. The species Monotis
caucasica (Wittenburg) and M. haiieri Kittl were
found (détermination of A. Moiseev and
I. Polubotko).
Loc\ 132
A brachiopod assemblage of Shvanov Ravine
contains Costirhynchia mentzeli (Buch),
Hirsutella hirsuta (Albcrti), Mentzelin sp.,
Koevcskallina koeveskalliensts (Boeckh).
Punctospirella cf. P. frügilis (Schlotheim),
Costispiriferinu cf. C. manca (Bittner),
Angîistothyris nngustaeformis (Boeckh). This
assemblage is of Anisian âge. However, \vc can-
not confirm that this assemblage is coming from
an exotic block, and not from the matrix.
SiMFEROPOL AREA
Loc. 130
rhe second important location of Triassic exotic
blocks is in the Salgir River Basin in the
Simferopol area (Pig. 4A). Sonic blocks, sépara-
ted from each other, were observed near
Petropavlovka Village (Loc. 130) in ihe sandsto-
ne and conglomeraie of ihe Lskiorda Sériés.
The block of Loc. 130 is a crinoid and algal
lime-packsione yielding abiindunt bnicbiopods,
single amnionoids, bivalves, and gastropods. The
brachiopod a.ssemblage contains - Eiixinella ana-
tolica (Bituier), Laballü seessi (Winklcr)> i. davi'
ni Dagys, Sinucosta cmmrichi (Siiess),
ZugniayereHa koasensn (Zugmayer), Oxycolpella-
oxycolpos (Pmmrich), AviphtcUna taurica
Moiseev, Rhnetina uiurka Moiseev, Lohothyris
sp., Zeilteria hukowski (Bittner), Aidacothyropsis
elmensis (MoiscevT This data is compiled from
earlicr workers {Moiseev 1932; Dagis 1963,
1974; Shalimov 6c Slavin 1973),
The following ammonoids occiir with these bra-
chiopods: Pamcladhcites diuUirnum Mojsisovich,
Arceitei ex gr. A. intuslahiatns Mojsisovich, and
Platites sp. Shevyrev (1990) corrclated ro the
Lipper Rhaetian or the Choristocents rnarshi zone
of rhe standard scale.
An/Mysis of faunal assemblages
Ammonoids
.Ammonoids are rare in the pink limcstone ont-
cropping on the upper part of Izvestnyakovy
Creek (Loc. 1 17/3). Only one shell, Mega-
phyllUes sp., was preserved well enough to bc-
deterraincd by us. Représentatives of this genus
are rccorded from rhe upper part of the Lower
Triassic into the Upper Triassic. Wirliin the
Alpine Région, they are known only from the
upper Anisian to Rhaetian.
Forammifers
Pronina & Vuks (1996) gave the first detailed
information about Triassic foraminifers of the
Crimea. Ail of the foraminifers that were .studied
occur in exotic blocks (l.ocs 1 16, 117, 119:
Figs 4B, 7). The assemblages are of sim'ilar gene-
ric and spécifie composition, which allows them
to be considered ihe same âge. They arc charac-
terized by the presence of miliolids and involuti-
nids, the most significance foraminifers for
dating Lower Mesoz-oic deposits.
In this assemblage,, rhe following species arc-
known m Norian-Rhaetian deposits: Semiinvolîtta
clarï Krisran, Angulodiscns pamllelus (Kristan-
Tollmann), A. ex gr. A, expansus (Kristan-
Tollmann), Sigmodina hystrichyi Salaj, Borza 6i
Samuel, S. schaejhne Zaninetti, Altincr, Dagcr &
Ducret, Galeanella panticae Zaninetti &
Broennimatin, MUtolipora aivillieri Broennimann
Zaninetti. In addition, species are présent thaï
occur in deposits not oldcr than the Rhaetian, and
sometimes even in younger deposits: Semunvaluta
bicarinata Blau, Trovhoneila granosa Frentzen.
Ophthalmidium leischneri (Kristan-Tollmann),
SeptalinguHna tetrasepta He Norling, and
TunupinlliniP Hcia livin Blau.
Considered togeihcr, ihc foramlniferal assem¬
blages of the Crimea arc similar: to the lare
Norian (Scvarian)-Rhaetian ofthe Khodz Group
of the Northwest Caucasus (Efimovâ 1975;
Anonymous 1991); to the late Norian (Lacian-
Sevatian) Mîliolipom cUvillieri standard zone of
the Carpathian-Balkan and Hellenic Realm
(Salaj et ai 1983, 1988); to ihc upper Norian
Kocagedik unit of Turkey (Ahiner 6c Zaninetti
1981): and tu the Norian-Rhaetian Asinepe
Limcstone of Serani, Indonesia (Al-Shaibani et
ai 1983).
Accordingly, we conclude that the age of the
foraminiferal assemblages of the Crimea can be
either late Norian or Rhaetian. Most likely, the
GEODIVERSITAS • 1999 • 21 (3)
319
Kotlyar G. V., Baud A., Pronina G. P., Zakharov Y. D., Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
âge is Rhaetian, bccause species are in the asso¬
ciations whose distribution is Ümited to the
Rhaetian. However une Rhaetian index spccies,
Triasina hantkeni Majzon, was nor found in the
Crimea blocks.
Brachiopods
Moiseev (1926, 1932) siudied the first Triassic
brachiopods from exotic blocks of the Crimea.
Later, the numerous brachiopods collected by
Moiseev, Shalimov, and Slavin wcrc determincd
and partiy described by Dagis (1963, 1974). The
brachiopod assemblages were considered to be
the of mixed Norian-Rhaetian agc.
Dagis identified the Middle Triassic brachiopod
assemblage in Shvanov Ravine in the Bodrak
River Basin (Loc, 132). It contains Costirhym'hia
mcfitzeli (Buch), Hirsutella hlrsuta (Alberti),
Mentzclia sp , Koeveskallhia koeveskalUensis
(Boeckh), Pufjçtospirella cf. P. fnigUis
(Schlotheim), Costispiriferiva cf. C. rnauca
(Bittner), and Angustothyris afigustaeforrnîs
(Boeckh). These brachiopods arc of Anisian agc
(Dagis &: Shviinov 1965). However, wc cannot
confirm that thLs assemblage is characteristic of
the exolic blocks, and iioi rhe tnairix.
New investigation of dic brachiopod assemblages
from chc numerous Ümestone blocks and pcbbles
of the Crimea confirms che spécifie composition,
and more precisely, defines their stage and zonal
position. Analysis of ail Triassic brachiopod asso¬
ciations from invesrigated exotic blocks sho^vs that
there is only onc distinctive brachiopod assembla¬
ge of Rhaetian âge. h occurs in che large
(Loc. 117) and smailcr (Locs 116, 118, 119)
limestonc blocks and pebble.s exposed in ihe Alma
River Basin, and in the valley of Izvestnyakovy
Creek (Fig. 4B. The sanie brachiopod assem¬
blage has heen found in the Salgir River Basin
near Perropavlovka Village (Loc. 1.30).
Rhaetian species Irom dilfereni régions of the
West Tethys domiiiate thîs assemblage. They are
— Ro hî Nso licllct in as takau eyn is Moiseev,
Septalîphoria fissicastaia (Sue.ss), Lahalln nmsi
(Winkler)v Zugrnayerdla koessenemts (Zugmayer),
Sinucostit emmrichi (Stiess), Oxycolpella oxycolpos
(Emmrich), Neoretzia superbescens (Bittner),
Rhacîhia gregaria (Suess), R. pyrifonnis (Suess),
Triitdiihyris gregariaformh (Zugmayer), ZeiUma
austrica (Zugmayer), and Z. bukoivski (Bittner).
The Crimea brachiopod assemblage is most simi-
lar to rhe Rhaetian brachiopods from the
Koe.ssen hed.s of Alps (Dagis 1974). The lollow-
ing species are comniou - Septaliphçria fhsicosta-
ta (Suess), Laballa suessi {Winldcr), Zugmayerella
kuesieriemis (Zugmayer), Sinucosta rmmrichi
(Sues.s), Oxycolpella oxycolpos (F.mmrich),
Rhiictina gregaria fSuesx), and Triadithyris gn-ga-
riaformis fZugmaycr). The Crimea brachiopod
assemblage is also similar to Rhaetian brachio¬
pods of l.lrnava Slovenia. The commun forms
arc SepiuUforia fissicostata (SueSs), Laball-a suessi
(Winklct). Zugnuiyêrtlla koessenerish fZugmayer),
’^iimuosUi cmyntichî {Sue.ss)^ Neoretzia superbescens
(Bittner), Rhactinapyriformis (Suess), Triaditlyris
gregioiaformis (Zugmayêr), and Zcilleria austi'ica
(Zugmayer) (Dagis 1974). Likewise, the a.ssem-
blapc is comparable to Majkopella rnarizavini
beds of Turkey. The commun forms are
Euxiuella anatolica (Bittner), Labalia suessi
(Winklcr), Sinucosta ennnrichi (Suess.), Rbaetina
turcica (Bittner), ZciUeria austrica (Zugmayer),
and Z. hiikowski (Bittner) (Bittner 1892). Finally,
Uiey are similar to the brachiopods collected
from exotic blocks of Balkanian. The common
forms are Zugtnayerella koessenensis (Zugmayer),
Sinucosta ematrichs (Suess), OxycolpelLi oxycolpos
(Emmrich), Amphiclina iniermedta Bittner,
Rbaetina gregaria (Suess), and R. nm'ica (Bitlner)
(Dagis 1963h
rhe red Hmestone of the upper part of the
Khodz Group of die Northwest Caucasus, that
lies ahove beds with Monotis caucasicay is the
same âge as the Crimea exotic blocks. They both
contain species in common - Euxinella anawlica
(Bittner), Crurirhynchia kiparisovae Dagys,
Zugmayerella koessenensis (Zugmayer), Sinucosta
emmrichi (Suess), Oxycolpella oxycolpos
(Emmrich). Neoretzia superbescens (Bittner),
Amphiclina intermvdïa Bittner, A. ranrica
Moiseev, Rbaetina turcica (Bittner), R. pyriformis
(Suess), Zeilltria bukoivski (Bittner), and Z. mois-
selevi Dag\*N.
Ail ihc above-mentioned brachiopod assem¬
blages,. considered carlicr as Norian-Rhaetian, are
actually the youngest Rhaetian associations. We
320
GEODIVERSITAS • 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
agréé with Shevryev (1990, 1995) that they can
bc attributed to rhe Vandüites sturzenbaurni zone.
Co-occurrence of these brachiopod assemblages
and such ammonoid spccics as Paracladiscites
diuturntis Mojsisovidi, Arcestes ex gr. A. intudii-
hiaius Mûjsisovich, and Platites sp., that werc
establishcd as bcds wirh Platites-RhacophyUim
neur Petropavlûvka Village (Shevyrev 1995),
allow us to specily thc stage and zona! position of
this association. An analogoiis, but more diverse,
ammonoid association occurs rogeiher wirh
Rhaetian brachiopods in other régions of the
Techys, inclüding thc Northwest Caucasus in rhe
upper part of thc Khodz Group. It is represented
by the présence of Paraclad'iscites diiiturnus
Mojsisovich, Megaphyllites i)7sectm iMojsisovich),
Stenarcesm leiost^'acus Mojsisovich, Arcesies ex gr.
A - intuslahiatus Rhacopbyllifes dehilis
(Haucr), Platites polydactilm {Mojsisovich)
(Shevyrev 1995). Evcr\whcrc in the West Tethys,
Rhaetian brachiopod assemblages usually occur
in pink or red limestone.
The Norian-Rhaetian, but not Rhaetian age, ot
the above-menrioned mixed brachiopod associa¬
tion has been derermined by the présence in
these beds of Norian ammonoids. However,
Shevyrev ( 1990) believes that thc appcarancc and
great development ol^ heteromorph ceratites is an
important event in thc Lare Triassic ammonoid
succession. It allows one To consider the Rhaetian
as important in the development of Triassic
ammonoids. Nevertheless, we are following
Dagis (Dagis & Dagis 1990) in drawing the
Rhaetian lower boundary at the base of the
Cachloceras suessi zone.
StIMMARY OF TME TRlASbJC
1. Triassic exotic blocks contain rich as.semblages
of foraminifers, brachiopods, rarer ammonoids,
bivalves, and sphictozoans. Reworked forms are
practically absent.
2. rhe taxonomie composition of the brachio¬
pods and ammonoids shows the greatest similari-
ty to Rhaetian assemblages of ihe West Tethys,
the Northwest Caucasus, thc Alps, the
Carpathians, and Turkey. The foraminifers are
most similar lo ihose in the Northwest Caucasus,
the Carpathian-Balkan and Hellenic Realm,
Turkey, and Indonesia.
GEODIVERSITAS • 1999 • 21 (3)
3, Some limestone blocks (Loc. 121a) containing
abundant MoTWtis belong to the Sagenites quin-
quepunctatiis zone of thc Scvatian (Dagis &
Dagis 1990), or to the upper part of the Norian.
4, l'hc analysis ol faunal éléments from Triassic
exotic blocks (Locs 116-119, 130) allows us to
consider that they arc ol Rhaetian age and accor-
ding to Dagis & Dagis (1990) belong to the
Vandaites sntrzenbaumi zone.
5, The Anisiaii faiina Irom the Bodrak River
Basin probably does not corne from an exotic
block.
Acknowledgements
This research was made possible by a grant from
the Peri-Terhys Program (Grant No. 95-17). Wc
arc grateful to thc Gcological Insritutc of the
Acaderny ot Sciences of the Ukraine for their
help in arranging invitations and support. Dr A.
Dvoret.sk}' in Simfcropol provided valuable logis-
cical support for visiting localities. Our thanks
are due to I. Chedija and G. Kropatcheva for
their help in the field collecting. We would also
like ro rhanks Yu. S. Biske (SPB University) and
N N. Makarov for licld 3.ssi.stance and consulta¬
tions. Dr E. Yochelson critically rcad the manus-
cript and Prof. F. Cordey (Lyon) gave help for
the chapter “Crimea-Pontides”.
REFERENCES
Aldncr D. Ô: Zaninettl !.. 1981. — t.e Trias dans la
région de Pinarbasi, Taurus oriental, Turquie: uni¬
tés lithologiqucs. niicropaléontologie, milieux de
dépôt. Rhnstii îtnliana di Paleoïitolvgia 86 (4):
705-760.
Al-Shaibani K., Carter D. J.. Zaninetti L. 1983. —
Gcological and micropaleontological investigations
in the Upper Triassic (Asinepe Limestone) of
Seram, Outer Banda Arc, Indonesia. Archive des
5a>«m36 (2): 297-313.
Anonyraous 1969. — Geologiytt USSR. Krimea. f. 8.
Nedra, Moscow. 339 p. fin Russianj.
Anoiwmous ]99]. — Pr.ictical manual on niicrofau-
na of rhe USSR, Jn Mesozoic Foramwifrru, volume
5. Leningrad, 373 p. [in Russian],
Aydin M. et iiL 1986. — Tlie geolog}' of the area bei-
ween BiiUidag and Cangaldag (Kasi«irnonu). Bulletin
oftbe Gevlogical Society of Turkty 29 (2): 1 -16.
Banks C. J. 1997. — Me.sozoic Stiike-Slip Back-Arc
Basins of thc Western Black Sea Région, in
Robinson A. G. (ed.), Régional and Petroleum
321
Kotlyar G. V., Baud A., Pronina G. P.. Zakharov Y. D., Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
Geolog)' of tlic Bl;uk-Sca and Surrounding Région,
Memoir of ihe Atnerictin Anociaiion of Petroleum
Geologuts fïS: 53-62.
Bittner A. 1892. — Brachiopoden der Alpinen.
Abhandlhungen der Kaherlich-Koniglich Geolo-
gnchen Jieichsansuüt, 14, 335 p.
BogoslovskaYa M. F. J984. — Ammonoids: 248-257
[in Ruwian), in Kotirar G. V. & Siepanov D. L.
(cdvs). Main features of StriUtgrafdiy of Permian
System in îhe USSR, Nauka, Leningrad.
Broili F. 1915. — Paniische Brachiopoden der Insel
Letti. in Mnlengraafti G. A. F. (ed.), De Geoiog)'
van hcc FJIand I crti, Ducch East Indies, Dienst,
Mijn JtiarburgMijnwezen 79/*?, 43 (5): 187-210.
Chedija I. O.. Bogoslüvskaya M. F., L'iavydov V. I. et
al. 1986. — Fusuiinids and .Ammonoids in rhc
Kubergandian stracotype (Southeascern Pamir.s).
Ezhegodnik VPO 29: 28-53 [in Russian].
Dagis A. S. 1963. — Lîpper Triassic brachiopods ol
the South of the USSR. Nedra, Alostow, 248 p. [in
Russian].
— 1974. — Triâssic brachiopods. Iransactions of
Institut of Geoh^ and Geophysic, Novosibir.sk, 214,
323 p. Iin Russian).
Dagis A. S & Dagis A. A. 1990. — In favour of the
Rhaeiian. Geology and Geophysic 5: 35-44 [in
Russian).
Dagis A. S. iSi 8hvanov V. N. 1%5. — About disco-
very of the Middle 'l‘riassic within the Faurida
Formation of rhc Crimea. Doklady Academy of
Science USSR, Earth Sciences 164 (I): 23, 24.
Davydov V. L 1991. — Permian deposits of the
Cri me j: A37-38, in Chuvasho\’ B. l- & N ai ni
A. E. M. (cds), Perrnian System of the World.
Program and Abstract, ESRI, Columbia SC, USA.
Eflmova N. A. I9‘^5. — Foraminifera from dcposiis
of Khodz Group of the Northwestern Caucasus
(Tkhach River), Tmdy VNIGNI 171: 47-61 [in
Russian].
Einor O- L. & Vdovenko M. V. 1959. — New data
on the Upper Paleozoic fauna of the Crimea.
Natikovi ztipiski KS (6): 49-67 (in Ukrainian).
Fokht K. K. 1901. — O drevniidi osadochnykh obra-
zovaniyakh Kryma, Trudy St-Petersbitrgskogo
Ohshcheslm EsiestvoispytateUy 32 (1): 39-44 [in
Russian).
Gorür N. 1988. — Timing of opcfiing of the Black
Sea Basin. Tectonophysks l47: 247-262.
Grant R. F.. 1976. — Permian Brachiopods from
Southern T\\m\,\uA. Journal rf Paienntolog)' 50 (3),
269 p.
Han T. 1982. — The Laie Eatly Permian Foranii-
nifera in the North part of Northern China.
Bulletin Slwnyang Institut ofGeido^» 3 (4): 99-112.
Koronovsky N. \7 S: Milcev V. S. 1974. — O .soot-
noshenii odozheiiyi tavricheskoi .serii î eskiordin.s-
koi svity V doîine i. Bodrok (Gorny KA m). Vestntk
Moskovskogo Universiteta A (1): 80-87 [in Russian).
Kotlyar G. V. & Pronina G. P. 1995. — Murgabian
and Midian Stages of the Tethyan Reaim.
Pcnnophilesll: 23-26.
Kotlyar G’. V., Zakliarov Yu. D., Kropatchcv'a G. S.,
Pronina Ci. P., Chedija l. O. & Burago V. I.
J 989. — Evolution of the Latest Permian Biota.
Midian régional stage in tbc USSR, Nauka,
Leningrad. 185 p. (in Russian).
Leven £. Ya. 1980. — E^p/anatory note to the strati¬
graphie seule of Permian deposiu ofthe Tethyan area.
VSEGFd. I-cningiad, 51 p. [m Ru.ssian|.
— 1996. — Midian Stage of the Permian and its
boundaries. 'stratigraphy and Geolagiealcarrefation 4
{6):20-.ll.
Licliareav B. K. (ed.). 1966. — Stratigrapby ofthe
USSR Permian System. Nedra, Moscow. 536 p. [in
Russian).
Lin T. 1985. — Lace Early Permian Foraminifera and
its poJeoecology in Jiahe, Hunan, Bulletin Yichang
Iiistitute of Ge(dog^' and Alineral Resources CL4GS 9:
43-52.
Logvinenko N. V.. Karpova f. V. & Shaposhnikov
D. P, 1961. — Lirhology and gencsis ofthe
Taurida Formation of rhe Crimea. Kharkov
Uriiversity, Kharkov, 400 p. |in Russian).
Lys M., Stampfli G. & Jenny J. 1978. —Biostrati¬
graphie du Carbonifère et du Pertnien de FF.lbourz
oriental (Iran du NE). Notes du Laboratoire de
pedéontolo^dc de rUnnrrsjtè de Genet^el : 63-99.
Marcoux J, & Baud A. 1996.— Late Permiau o» Late
Tria.vsic Palaeocnvironrtienrs. Three snapshm.s: late
Murgabian, late Anisian, late Norian: 153490 in
Nairn X.. Ricou L. fi., Vrîdinck B. fie T4tTcourt J.
(cds). rhc Tethys océan. Plénum Pre.ss, New York
and L.ondon.
Marcoux J.. Baud A., Ricou L. F., Gactani M.,
Kry.srvn L., RcJlion Y.. Guiraud R., Bcs.se Gallet
Y., Jaillard E., Moreau C. fie Theveniaut H.
1993. ■— Late Norian (212-214 Ma): 35-53, in
L^ercourt )., Ricou L. E. fie Vrielynck B. (eds),4r/(Ær
Tethys, Paldeoenoironmenuil mups. explanaiory notes.
Gauthier-Villars, Paris.
Vliklukho-Maklay A, D. 1963.— Upper Paleozoic of
the Middle Asia. LGü, Leningrad, 328 p. [in
Russian).
Milecv V. S., Vishnevsky L. E. Frolov L"). K.
1989. — Tfiassic and Jurawiic Systetn: 5-66 [in
Russian], in Mazarmich O. A. &r Milecv V. S.
(eds), Gèologica! stYueture of the Kiieba Uplift ofthe
Gorny Crimea. Nedrâ, .Mosco^v.
Moiseev A. S. 1926. — About Tria.ssic limestones
near Beshui Village in the CYimeà. [zi^esth* GeoLgis-
cheskogù Gomiteta 45 (7): ~47-'^54 im Rtusslan).
—- 1032. —About the Fauiu and llora oi Vriassic
deposits of the Salgir River Basin in the Crimea.
Jzvestia Vsc^oyusnogo Geologo-Razvedoehinogo
olTedineuiya 51 (39): 5yi-i>06 [in Russian).
— 1937. — From Simleropol to Yalta: 23-3**. in
Moiseev A. S (ed.), The Southern exeursion, the
Crirnean autononwus Soviet Socialist Republic . I7th
322
GEODIVERSITAS • 1999 • 21 (3)
Permian and Triassic exotic blocks of the Crimea
International geologicdl Congre^i. Moscow. Chief
Editorial Office, Leningrad.
— 1939. — New data about che Upper Triassic of
the Nortii Oaucisus and Criniean ASSR. Doklady
AN USSR. M 0 .SC 0 W 23 (8): 816-817 [in Russian].'
Muratov M- V. 1949. —Tecionic and Geological
Histof)' of the AIpyniaii geûS)Ticlinal région or the
South European part of the USSR and ajaceni
coiinrries, in ïekwnika USSR. Volume 2. Moscow-
Leningrad, SK) p. iin Rus-'vian).
Muralov M. V., Arkhipov I. V. & L^penskaya Ye. A.
1984. — Srructura) évolution of the Crimean
Mountains and compaii.son with the western Cau*
casus and the eastern Balkan Range. Jnkrnational
Geologica! Revieiif 26: 1259-1266,
Onder F. 1990. — Rcmanpics. taxonomiques .sur les
conodontes de la foiniafinn triasique de Kayab.asi.
Cumhuriyer ÜnhcrsUt'ü Afübendidtk l'akultesi
Dergisi, SeneA Yermlimleri, Sivas, C 5 (1 ): 67-69.
Pronin.i G. P. 1990. — îhe Sniall Foraminifera oj the
Üpper Fermtan of Tnwscaucaiuî and thnr strattgra-
phic sigriifit'ani.f. Thesis of di.ssenation, extended abs-
traa, VSEGEL Leningrad, 22 p. [in Rnssi.an].
rVonina G. P. N. Vuk.s V. Ja. 1996. — New daca on
the Triassic Furaniinif'ers of Crimea, in Braga G..
Finotti F. & Piccoii Ci, (eds), Report ofthe Shallotv
Tethysd. Supplemtnco agli Annali dci Musei Civici
di Rovereco. Scrione: Arrheologia, Storia c Sckn/e
naturalc, 11; 215-228.
Pronina G. 1'. &C Nesicll M. K. 1997- — Middle and
Late Pcrnii.in Foraminifera from cxotic limescone
blocks of the Alma River Basin, CYimea, in Ross
C. A., Ross J. R. P. ÔC Brcnckle P. L. (eds), late
Paieozok Fonitni-nitera: tlteh' hmteatig^'ciphy, eoolu-
rion, and paltonohgy, and the MidAJarhomfernus
honndary. C’iuhmân Foundarion foi Foraininiferal
Research. Spec. Publ. 36: 111-114.
Robinson A. G. & Kerusov H, 199^. — Siratigraphic
and strutiural dcvclopincnr of the Ciulf of Odessa,
Llkrainian Black Sea: implications for petroleuin
exploration, tn Robinson A. G. (ed.), Rcgional and
Petroleum Geolugy of chc Blat:k-.Sca and
Surroundiag Région. Menioir ofthe American
Association of Petroleum CieologiiTs 68: 183 226.
Sala] J., Borza K. & Samuel O. 1983. — Triassic
Forarninifers of the West Carpathtans. Bratuslava,
213 p.
Salaj J., Trifonova F.., Gheorghian D. C7oroncou V.
1988. — The Triassic Foraminifera miciobiostrari-
graphy of the Carpatlrian-Baikaii and I lellenic
realm. Miueutlin Slov/tquia 20 (5) 3fi'^-41 5.
SchcMwien F. 1900. — Die F.uina dtr Trogko-
felschichren in den Karnischen Alpen und den
Karawanken. F. 1. Die Brachiopoden. Ah-handlun-
gen des Geobgisches Reichsansialt 16(1), 122 p.
Sengôr A. M. C. 1984. — The Cimmetide C9rogenic
System and the tectonics of Eura.sia. Geologicat
Society of America, Spécial Paper 195: 1-82.
Shalimov A. I. 1960. — New data on the Upper
Triassic, Low'er and MiddJc Jurassic straiigraphy of
the Southwest part of the Gorny Crimea. Doklady
Academy of Science USSR^ Earrh Sciences, 132
fl-6): 558-561 [in Rus.si;in|,
— 1963. — Voprosy srratigrafîi i proiskho/hdeniya
flishevoi Tavricheskoi Strii (Gorny Krym). Frudy
Leningradshogo Ohshehestva F.stestvoispytateley 73
(Ij; 54-64 [in Rus.sian].
Shalimov A. I. Slavin V. I. 1973. — The Crimea-
(.’aucasian Gcosyncline; 343-357 [in Russian], in
Stratigraphy of the USSR Triassic System. Ncdra,
Moscow.
Sheng J. &C |in Y. 1994. — Corrélation of Permian
deposits iii Ciiina, Pataeoworld4: 14-113.
Shevyrev A. A, 1990 — Ammonotds and chronoslratT
g>'apby of üte Triassic. Nauka, Moscow, 179 p. [in
Russian).
— 1995. — Triassic ammonites ofthe Northivest
Caueasus. Nauka, Moscow, 1"^4 p. |in Rassianb
Shvanov V. N. 1966. — Lithostraiigraphy and srrac-
uire of the Faurida Formation in the Bodrak River
Basin of the Crimea. Vestrnh Leningradskogo
I[nwersittsa Geologp 6 11 ): 153-156 [in Russian).
Touinansky O. Cj. 1931. — Cephalopoda,
Arnrnonoidea. in The PermO’Carboniferom ueds of
the Crimea Pl. 1. Gcological Survey, I.eningrad-
Mo.scow. 117 p. |in Ru.ssian].
— 1935. — The Pcrmo-C:trbunifcrou.s trilobitcs of
the Crimea, tn The Perrno-Carhonfferous heds ofthe
Crimea. Pt. 2. Geological Survey, Leningrad-
Moscow, 63 p. [iu Russian).
— 193“^a, — La stratigraphie du système Permien
d’apros les -ainmonce.s: 93 [in French), in JJrh
International ^eohgieal Congress^ Moscow. abstract
volume. C'hief Editorial Office. Moscow.
— 1937b. — Les dépôts permiens de Crimée: 108. in
Inicrnationai gei>lt>gtcjl Congress, Mo.scow, abstract
volume (in 1-rcnch] and; 47()-472 [in Russian], in
Problerns ojSoifictgeofogy, fome VIL 5-6.
l'otiniansky O (.i 1941. — K sirangragü pcmi.skikh
otlozhenyi Kryma. Doklady AN USSR f2 (4):
259-262 [in Ru.vsian].
— 1963. — Permian Arnrnonoidea of the Middle
Pamirs and its strarigraphical signiricance. Nauka,
Mixscow, 119 p. [în Russian).
Yilma/. \Tüysü/. O., Yigilcbus I:., Gcnc C. a< Sengôr
A. M. C. 1997. — Gcology and Tcctonic
Evolution of the Pontides, in Robinson A. G. (ed.),
Régional and rVtroleuni Gcology of rhe Black-Sca
iiiul SurmuiKling Région Alt nioir of ihe American
Asmeiation aj Petroleum Geoiogists 68: 183-226.
Zheng M. 1986. — Fhe smalJ foraminifera fauna in
Qixia stage (Early Permian) of Daxiakou, Xingshan
County, Hubei Province. Earrh Science Journal.
Wuhan College oj Gcology ] 1 (4); 489-498.
Submittedjorpuhltcatton on 26 September 1997;
accepted on 30 june 1998.
GEODIVERSITAS • 1999 • 21 (3)
323
Upper Permian and Triassic of the Precaspian
Dépréssion: stratigraphy and palaeogeography
Dmitri A. KUKHTINOV
Palaeontology Department, Faculty of Geology, University of Saratov,
83 Astrakhanian St., Saratov 410071 (Russia)
ccvg @ mail.saratov.ru
Sylvie CRASQUIN-SOLEAU
CNRS, UPRESA 7073, Université Pierre et Marie Curie, Département de Géologie sédimentaire,
T. 15-25, E. 4, case 104, F-75252 Paris cedex 05 (France)
crasquin@ccr.jussieu.fr
Kukhtinov D. A. & Crasquin-Soleau S. 1999. — Upper Permian and Triassic of the
Precaspian Dépréssion: stratigraphy and palaeogeography, in Crasquin-Soleau S. &
De Wever P. (eds), Peri-Telhys: stratigraphie corrélations 3, Geodiversitas 21 (3) : 325-
346.
KEYWORDS
Precaspian Depre.s.sion,
Upper Permian,
T riassic,
stratigraphy,
palaeogeography.
ABSTRACT
The stratigraphie scrie of the Precaspian Dépréssion during the Upper
Permian and the Triassic is analysed. Data from seismic sections and from
numerous boreholes are used. The lithological composition and the palaeon-
tological content are cleared for ail rhe time inrerval. Three palaeogeographi-
cal maps are drawing for che Kazanian, the Lower Triassic and the Mîddle
Triassic. The évolution of palaeoenvironments is restored in relation to the
tectonic events and the fluctuations of the Boréal Sea and the Palaeo-Tethys
Océan.
MOTS CLÉS
Dépression Précaspienne,
Permien supérieur,
Trias,
stratigraphie,
paléogéographie.
RÉSUMÉ
Le Permian supérieur et le Trias de la Dépression Précaspienne : stratigraphie et
paléogéogaphie.
La série stratigraphique de la Dépression Précaspienne est analysée pour le
Permien supérieur et le Trias. Le.s donnée.s de profils sismiques et de nom¬
breux forages sont utilisées. La composition Üihologiquc et le contenu
paléonrologique sont précisés pour l’intervalle de temps considéré. Trois
cartes paléogéographiques sont établies pour le Kazanicn, le Trias inférieur et
le Tria.s moyen. L’évolution de.s paléoenvironnements est établie en relation
avec les événements tectoniques et les fluctuations de la mer Boréale et de
l’océan Paléo-Téthysien.
GEODIVERSITAS • 1999 • 21 (3)
325
Kukhtinov D. A. & Crasquin-Soleau S.
INTRODUCnON
The Uppcr Permian and the Triassic of the
Precaspian Dépréssion and adjacent areas are
represented by marine and continental deposits.
The compicx original rclaiionships becween these
deposits hâve bcen modified by ihe sait tectono-
genesis. The sali dômes are widely distribuied
(Fig. 1 ) and dic uppcr part is oftcii eroded. The
most complété sections are in ihe dépréssions
between the dômes. We présent hcre new data
which complote the previous work (Kukhtinov
1976, 1984) on stratigraphy and deposirional
conditions.
STRATIGRAPHY (Table 1)
The Upper Permian (Pd
The Upper Permian deposits are irregularly stu-
died. They were drllled during the oil and ga.s
prospecting, mainly on rhe borders of the
Dépréssion (Figs 2-5). (n the ceMural part oi ihe
basin, in the Aralsor 1 horchole (localîty 2 on
Figs 6, 7)t the Uppcr Permian succession is rcco-
gnized benveen 6806 and 5492 ni., The base of
the Uppcr Permian is nor reached. The most
complète sequence is located on the easiern bor¬
der of the Dépréssion where ail substages are cha-
racteriscd by lheit palaeontological content
(cxamplc Lugov boreholc. No. 45 on Figs 6, 7).
The UfiTnmii (Put)
In the eastern part of the Dépréssion, two terri-
genous units were rccognised (Fig. 6). The lower
one (Piui) is grey (200-300 m) and has not clear
bovmdarv wicK ihc underlying Kiingurian. Ir is
composed of finc-grained sandstoncs, claystones
and aleurolites — aleurolires is more or Icss équi¬
valent ro silrstone in Riissian üteraiure. The
upper unir (Piu:) i.s red (200-300 m) and is
mainly represented by sandstones, lu both units,
anhydrites and sait lenscs arc someiimcs inter-
layered and typical o.stracod.s of the Darwimtla
angusUi zone from the Russian platform Ufimian
(see for example Molotovskaya 1997) are a-cove-
r e d {D a r tif i n nia ht b imo vue K a s h c v a r o v a,
D. angusta Mandelstam, D. lanzetiforrnis
Kashevarova, D. fainaehcXoxxsowz, D. burajevoen-
sis Palanc. D. cf. trita Paiani, D. cf. pyriformis
Kashevarova). The bivalve Palaeomutiia cf. stego-
cephalum Nechaev, as well as miospores and
conchostraceans> permit the corrélations with the
synchronous deposits of Aktjubian Pre-Uralian
zone.
In ihc central part of the Dépression, the red
argilites and sandstones with inclusions of anhy-
dritc drilled in rhe Aralsor well (6630-6806 m)
are related co the Ufimian (Fig. 6). The thickest
Ufimian deposits (more rhan 581 m) were
drilled in l.injovka S well (locality 43 on Fig. 7)
on the northern edge. They arc composed of
grey and red terrigenous, carbonated and sulfate-
halogcnous rocks with non marine ostracods
(D(irwinubz nhandii Mandelstam, D. acervalis
Mandelstam, D. aff. pnrplH’novae Belousova,
D. sifhaclhns Zhernakova), bivalves (Palaeo-
mutc4a ex gr. ovataeformh Gussev, P. cf. pseii-
doumbanain Gussev, Anthraconaia rhomboïdes
Netschajev), conchostraceans, fishes and charo-
phyres.
In northern and western edges of rhe I3epre.ssion,
chc Ufimian is defined between ihe Kungurian
anhydrites and ihc Kazanian clays and carbo-
iiaiesî 30 to 70 m of red and grey sulphate-ierri-
genous, halogenic and rarely carbonates rocks are
recognised. In rhe south-western part, the
Ufimian terrigenous deposits (63 lo 1242 m) are
disringuished by spores and polleas. The .spore
and pollen .spccira shows prédominance oi snia-
tïti (up Uï 52%) and Viuaiina (27 to 37%).
These deposits arc includcd in the Volozhkov-
skaya suite (wi'ihout subdivision) from Ufimian-
Kazanlan (Pronicheva & Savinova 1982).
The Kitzonuw Stage (Pjkz)
It is represenred by two sut>stagcs (lower and
upper) in moM of îlie Preaispian [Répression and
its northern and western adjacent areas.
Lower Kazanian substage (p2kz,), The
Kalmovskaya suite is composed of clays, dolo¬
mites, liincstones, rarely sandstones with marine
macro- and microfauna' brachiopods \Camrï-
nclia caticrlni Verneuil, Beecheria netsehaevi
Grigorieva, Cleiothyridina reussiana (Keiserling),
C. pectinifera (Sowerby)], bivalves Pseudomonotis
326
GEODIVERSITAS • 1999 • 21 (3)
Upper Permian and Triassic of the Precaspian Dépréssion
45E 55”E
Fig. 1. — Tedonic charl of lhe Precaspian Dépréssion, Tectnnic fealures 1 Akhtubirisk-Palassowski megamound;
2, D 2 hanybeckoe rise; 3. Altatinsk-Nikolskiy mouncJ: 4. Karachaganak-Koblandinskay upltfl; 5, Temirskiy dôme. 6. Kzyloshafskiy
dôme: 7. Zharkamyssiy dôme: 8. Oosaorskiy iroucjh 9 Biikzhalskiy dôme; 10. South Emba uptift: 11. Gunev dôme, 12, Karaton-
Tengiz uplîH; 13. ZhayksKiy dôme; 14, North-Caspian dôme; 15, Akkolskiy dôme; 16, Mynlobinskay uplift 17, Kobyakcvskoe uplift;
18, Octyabrskoe uplitt; 19. Azgirskoe uplift; 20, Astrakan dôme: 21, Suvodskaya uplift: 22. ÛlKhovskay dépréssion; 23. Archedino-
Don mound: 24. Zhirnovsko-Umetuvskiy mound, 25, AntipovsKo-Shefbakovskîy mound 26, Tersinskaya dépréssion: 27. Zolotovsko-
Karnenskaya uplift: 28, KaramyshsKaya uplift. 29, Eishano-Sergievskiy mound; 30, Stepnovskiy mound: 31, Voskeresenskaya
dépréssion; 32. Saratov displacements. 33. Kazanlinskiy monud. 34. Pugachevskiy dôme; 35, Marievskaya upüft, 36, Balakovskaya
uplift; 37, Klinisovskay uplitt; 38. Kamellk-Chaganskiy mound, 39. Zemiyanskiy mound: 40. Syrtovskiy mound,
elengatula Netschujev, Parallelodon kingi Verneuil,
P. cf. strÛHUs (Schlocbeim), Bdmondia elongata
House, BakevcUia (Bakevellia) cerataphaga
(Schlorheim)]i bryozoa \^DyscYitel!a hnrustaia
Morozova]> foraminifcras \Palcieonuhecïdana
uniserialfs Reitlinger, P fîtixa Reiilingcr,
Geinit 7 >Piii pu^illa Grov-dilova. G. spundeti
Tscherdyn/ev, G. cf. postcarbonicti Spandcl,
Nodosarina ehibugae Tschcrdynzcv, TV. netscbevi
Tscherdynzcv, Spandelli)ia ex gr. cordiformis
Gerce], ostracods [Healdia subtriangula
Kotschetkova, U. simplex Roimdy, Healdianelbi
vulgata Kotschetkova, H. parallela Knight, //. ex
gr. osagensis Kellett, H. ex gr. panda
Kotschetkova, Cavelliniû et. univa Kotschetkova,
C. ex gr. edmistonae (Harris & Lalicker)]. The
ihickness varies tram 0 to 168 m.
In elle soiuh-wcstcrn part of the Dépréssion, the
upper Volozhkovskaya suite is composed of red
and grcy terrigenous rocks. In the south, the
Zhambay 22 \yell (nored 3 on Fig. 7) shows
untler the Triassic, terrigenous rocks with bra-
chiopods, pelecypods, ostracods {Danainula sp.,
Mùorea d. fadlis Schneider) of lower Kazanian
substage. In ihc east of the Precaspian Depres-
sion, the séries (700 m), composed oF regularly
interlaid sandscones, aleurolites, argilites and
limestones with locally sait lenses, is synchronous
GEODIVERSITAS • 1999 • 21 (3)
327
Kukhtinov D. A. & Crasquin-Soleau S.
1
STAGE
HORIZON
SERIE
SUITE
West
Centre and North-West
East
T3
Kusankudukian
Tsks
Koktinskaya
T2
Chobdian
Tach
Aralsorskaya
Barmantsakskaya
Chobd*nçkava-T;kfi|
J2ak
Sarpinskaya
Akmamykskaya
Masfôksaiskian
Tams
MasleksaisKava
Anisian
Inderlan
Tzin
Akmaiskaya
Taak
Inderiskava
Inderskava
k’MvLcuc. lasshii-skaya
Eltonian
Taei
Eltonskaya
Btonskaya
Tjiw
T1
Otenelyan
Baskuntchakian
Tibs
Zhulidovskaya
Akzharsajskaya
T^kz
Aktubinskaya
Induan
Ershovian
Tier
Prikaspinjskaya
Bugrinskaya
Ershovskaya
Kokzhidinskaya-Tivr
Sorkoiskaya-T’sk
P2
Viatkian
P£vt
Batyrmolinskaya
Viatkian
Severodvlnian
P?5d
Sererodvinian
Sererodvinian
Urzhmian
P2ut
Urzhumian
mgi
P2kr£
Volozhkovskaya
Upper Kazanian
upper Kazanian
tower Kazanian
Pakzi
Kalinovskaya
Kalinovskaya
Ufimlari
P2u
upper Uflmian
P2u2
Sheshmian
Sheshnnian-P 2 sh
lower Ufimian
P2u1
Solikamian
Soljkamian-P 2 si
Table 1. — Upper Permian and Triassic stratigraphie subdivisions of the Precaspian Dépréssion.
with the Knlinovslayn suite. Tlie organic remains
are crinoid.s, oscrucods (Sinmuella cf. ignoia
Spizharskyi, Darwinula varsaviffievae Belousova,
D. irinae Bclousova, D. i^elica Starojilova.
D. accomodatü StarojUova, D, ex gr. tichivinskaje
Bclousova, Sut'honelU onegi'i Bclousova, S. belehei-
ca Bclousova, S. sacmaremis Starojilova,
Darwimiloide^ ednnstonae Bclousova, D. sentja-
kensis Sharapova, D. iriangida Bclousova), non
marine pelecypods, miospores. Fhey allow the
comparison with the Akjubian (low'cr Kazaniaii
or Kazanian) ot Pre-Ural and Russian platform.
Upper Kazanian substage (P 2 kz 2 ). The upper
Kazanian substage is evcrtwhere represented by
terrigenous rocks. To the east of the Dépréssion,
the sériés is composed of sandstones with conglo-
merate at the boicom and argilitc interbedded
(mainly in the upper part). In this séries (400-
500 m), rhey arc quite often non-marine bivalves
[Palaeomutela ex gr. krotûvi Nechaev, P. ex gr.
doratioformis Gussev, P, ef. iimhonata (Fischer).
P. cf. vjatkensis Gussev, Palaeanodonta rhomboi-
dea (Nechaev)], ostracods [Darwimda varsanofie-
var Bclousova, D. innocurovi Bclousova, D. ncco-
rfiüdiita Starojilova, D, inornalina Bclousova,
D. ulexandripiae Bclousova, Suchonella helebeica
Bclousova, 5. onega Bclousova, 5. snpttLi Belou-
sova, Darwinulüides stntjakensh Sharapova,
D. edniistonae Bclousova. D. tnnnguUt Bclousova,
SinusKcIltt ignota Spizharskyi], spores and pollen
which arc charactcxistic of the whole Kazanian
stage or of its upper substage iu the most areas of
the Russian platlorm.
In tlie centrai part of the Dépression, the upper
Kazanian substage is composed of red aleurolites
and argilites with marine and non-marine ostra-
cüds [Healdia sp., IJealdianelh vulgnta
Kotschetkova, Hmldiandln sp.. Monôcemtinci aff.
exith (Schneider), Schnehierta ex gr. kotschetkovae
Starojilova, Darwinula sp., Snchondta sacnnnensis
Starojilova, 5. Hehwinskaja (Belousova), Ptaddea
sp., Tomielta sp.|. 'fhc thickness rcaches 345 m.
On the northern Dépréssion border, on che
Kidinovskaya suite, the red atgiliies with anhy-
drite and sait inclusions, could be palaeontologî-
cally correlatcd with che upper Kazanian deposits
328
GEODIVERSITAS • 1999 • 21 (3)
GEODIVERSITAS • 1999 • 21 (3)
SE/W
E/SW
SE/NNW
Kamishin
Nicolaev-Levchunov
Upryamov
34
33
4 3 1
1
Fig. 2, — Geological-geophysical cross section SP 052 (location on Fig. 7). Western margin-Centra) part of Precaspian Dépréssion, PR3A/d. Upper Precambrian-Vendian;
FR, Rtphean; S. Silunan; D. Devonian; DI. Early Devonian; D2. Middie Devonîan; D3. Late Devonian; D3fr. Frasntan; D3f1. early Frasnian; D3f2. middie Frasnian; D3f3. laie
Frasnian: D3fm, Famennian; Cl, Early Carboniferous; C2. Middie Carbontferous. C3. Late Carboniterous; C1t. Tournaisian; C1v. Visean; C1v2. late Visean; C1v3, laie Visean;
C2b1, early Bashkirîan, C2b2, late Bashkirlan: C2m1, early Moscovian; C2m2. late Moscovian: PI. Early Permian; P2. Laie Permian; P1a, Asselian; Pis. Sakmarian;
Plar, Artinskian; Plk, Kungurian; P2kz. Kazanian; T Triasslc; Tl, Early Tnassic: J. Jurassic; K, Cretaceous; K1, Early Cretaceous; K2. Laie Cretaceous; Pal, Palaeogene; N2, laie
Neogene; III. 112.113, the three main dîscontinuilies; F. major fault.
Upper Permian and Triassic of the Precaspian Dépréssion
Kukhtinov D. A. & Crasquin-Soleau S.
of the Orenburg Pre-Ural adjacent area.
In other areas, chère are no data reliable to the
upper Kazanian substage.
The Tatarlan Stage (Pj^)
Lower Tatarian substage (Pat,). In the eavStern
part of the Dépréssion, the lower Tatarian is
represenred by red clays (600-800 m). The osera-
cods are non-marine [Darwinula elongata
Lunjak, D teodorovichi Belousova, D. tichonovi-
chi Belousova, D. (ragtliformh Kashevarova,
D. elegantelln Belousova, D. perlonga Sharapova,
D. torensis Kotschetkova, Sucbouella nasalis
Sharapova, Daywinuloides dohrinkaemis Kashe¬
varova). Sortie non marine pciccypods wcrc
found (Palaeanadopttit mvalis Nechaev, P. ver-
neuili (Amaltisky), P, cf. longissima Nechaev,
P fischeri Amalfisky, Pnlneirmiittda vjatkemis
Gussev, /? plana Amaltisky, Authraemaia sp.,
Microdontella sp.). Spores and pollens confirtn
the stratigraphie attribution.
In the central part, the Arasol well (localicy 2,
Figs 6, 7) présents, in ihe inierval 6045-5875 ni,
red-brovvn aleurolires and argiliies with the non-
marine ostracods {^Darwinidoides djurtjulensis
Palant, Volganellu sp.) atttibuted to the lower
Tatarian.
In the north-western pan of the Dépression, the
sériés is forined of red clays> alcurolites, sand-
stones with anhydrite inclusions. It contains cha-
rophytes froin ihc Taiatian and ostracods from
the lower Tatarian [Darwinula fragiliformis
Kashevarova, Z), elongaia Liinjak, Snchnnella
nasalis Sharapova! and from the upper Tatarian
(Suchonellina inornata Spizharskyi, S. parallela
Spizharskyi, Suihonctla stebnachovi Spi/har.slc)'i).
The thickness varies from 0 to 2030 m. Ourside
of the Dépression, siinilar deposits were obser-
ved, with both substage ostracod assemblages,
and hâve a thickness of 0 to 300 m.
In the sou ch-western part, the red terrigenous
deposits (about 1200 m) are rclaied to the
Tatarian Batyrmolinskaya suite by ihc presence
of spores and pollens (complex j) as well as the
ostracod Sttcbonellirui.
Upper Tatarian substage (^ 2 * 2 )* clearly
defined on the inner border of the ea-Stern part of
the Dépression, where it is represented by sand-
stones and clays (up to 600 m) with ostracods
{Suchonellina inornata Spizharskyi, S. panillela
Spizharskyi, Suchonella stelnuirhom Spizharskyi,
Volgtinella magma Spizharskyi) characteristic of
the North Dvinian horizon and which allow the
corrélations with Southern Urals (Molostovskaya
1907).
In the central parr, in the Aralsor well (58^5-
5492 m) (locality 2 on Figs 6, 7), the upper
Tatarian présents red and grcy sandsrones, aleu-
rolites, argillites and clay maris svith ostracods of
uhc Viatkian horizon (Darwinutoides tataricus
Posncr, D. svijnzhicus Sharapova).
As a wholc, the Upper Permian has not been stu-
died in full. h is mainly represented by red cerri-
genous deposits. which are trnditionally regarded
as continental. In general in Ru.s.sia, ihc lower
Kazanian is marine. On the lOepression periphe-
ry. there are red interbeds with marine fauna.
The maximum thickness of the Upper Permian
is located on eastern and Southern horder.s ol the
Dépression.
Lowhr TlUÂSSic (T,)
The Lower Triassic deposits of the Precaspian
Dépression and its adjacent areas overlay with
unconformity varions Permian levels. In the cen¬
tral part ot fhe Dépréssion, the contact between
Permian and Triassic is not known.
The Lower Triassic corresponds hcrc to chc inter¬
national subdivisions (Induan and Olcneldan). At
the régional scale (Anonymous 1982), it is referred
Lo the Frshovian and Baskunchakian horizons
(Table I).
The Ershovian (T^^J
It is accuraiely defined. It consists of continental
red terrigenous deposits laleurolites, argilites and
rare sandstones; Figs 8. 9) with ostracods
\Darwiniilla ovalis Glebovskaya. D. quadrata
Mischina, D. dubia Starojilova. D. regia
Mischtna, D. ^n?r/y Mischina, D. pseudoinomata
Belousova. D. postparallda Mischina, Gcrdalia
weîliigensis Belou.sova, Snchonella postt)’pica
Stafojilova. S. circula Starojilova, S, rykovi
vStarojilovâ (Darwinula quadrata-D. dubia zone)J,
conchostracans {Vertex/a tauriconis Lutkevich,
Cyclôtungtézites guffa Lurkcvich], charophytes
[Vladirniriella globosa {Sâidâkovsky), V wetlugen-
330
GEODIVERSITAS • 1999 • 21 (3)
i\\ni:iinn»sisffli
SW/NW
SE/N
S/NW
SE/NNE
SSW/NE
Stepnov
Lubimov
Erusian
Karpen
Vladimirov
Timofeev
101 33
20 19 15 5 8
3 2
4 20 519 7
19 14
2
1
Wm
îi:>;j\^. I j>ik+P2k|_ A '
^^♦02+n^^'
— C2b+m1
jmî
Fig. 3. — Geological-geophysical cross section GG 07 (location on Fig. 7). North-western margin-central part of Precaspian Dépréssion. Legend: see Fig. 2
Kukhtinov D. A. & Crasquin-Soleau S.
i-zV SaidakovskyK spores and pollen.
Vertexia îatiricornis are aiso kjiown in dcposits of
middle parr of the Vetluzlikaya séries of the
Moscow syncline, tlie Kopanskaya suite of the
Volgo-Ural anticline, in the niiddlc part of the
Korenevskaya suite of the Prypiat trough ot the
Russian platform and in lower variegated sand-
stone in Germany (Nordhausen and Bernburg
suites).
In the eascern part of the Dépréssion (Blacktykol
well; lotaliry 46 on Figs H, 10)j the
Blacktykolskaya, Sorkolskaya and Kokzhidin-
skaya suites are clearly ideniified. The
Blacktykolskaya suite (maximum ut tliickness
90 m) overlics with unconlormity the Permian.
It begins by a conglomerare Icvel following by
sandstoncs and clays. To the cast, rhis suite is
absent and the Sorkolskaya suite lies on the
Permian (Kenkiyak well; loeality 44 on Figs 8,
10) with a maximum tliickness oi 87 m. The
Kokzhidinskaya suite Table 1; up to
140 m) is composed of clay sandsrones with clay
interbeds.
In others areas, the Ershovian horizon is undiffe-
rentiated, with red sandy clay deposits. The
thickne.ss varies front 0 to 340 m.
The Baskunchakuni (
This horizon combines the marine deposits of
the Baskunchakian suite (Table 1) and its conti¬
nental analogue. In Bolshoi Bogdo Mountain
(the only outaop in the area) four suites (West
in Table 1) arc distinguished.
The Busulukskaya suite. 96 ni of red and grey
sandstones without organic rcmains.
The Akhtubinskaya suite. 64 m ot red aleiiroli-
te clays with numeious lossUs.
Charophytes: Porochara triassicit (Saidakovsky).
Ostracods: Clinocypris trias^iai (Schneider),
C. elongata (Schneider), Darwinula oblonga
Schneider, Gerdalui longa Beluiisova.
Co n c h os t ra ce a n s : Cyclotu nguzites gutta
(Ltitkevich), Lioesthena Novojilov.
Ichtyofauna; Csnathorhiza trlassicii haskuntschU’
kensis h'linich, C7. bogdoemis Minich, G. otschevî
Minich, CenUodui rnnUicrislatus feodorensis
Minich (sec also Minikli & Minlkli 1997).
Bivalves: Bakewellia lipatovae Kiparisova.
The Bogdoninskaya suite. 24 to 100 m of
variegated clays following by grcy clays with
limestoues interbedded.
Ccpbalopods: TiroUtes cassietnus (Quenstedt),
Dorikranites bogdounus (Buch.), D. acutus
(Mojsisovich).
Pelecypods: Mytilui tuarkyrensis Kiparisova,
Myijl'ma dakilamae (Verneuil), Unionites fassaen-
sis (Wis.smann), U. canalerisis (Catullo).
Brachiopods: Lingula.
letrapods: Parotosuchus bogdoamis S. Woodward.
Fishes; Cemtodus midticriUatus mxdticrhtatus
Minich, Gnathorïza triassica haskuntchûkensis
Minich, G. bogdemis Minich.
Ostracods; TriassinelLi chramovi Schneider,
Clinùiypri> cognata Siarojilova, C couferta
Starojilova, C. oleneca Kukhtinov, Darwinula
mîundnta Luber, D. parm Schneider, D, nota
Schneider, D. acuta Mischina, Gerdalia dactyla
Bclousova, Uogdoella delicata (Starojilova),
B. antiqua Starujilora.
Charophyces: various Porochara and lot the first
rime Auerbachichara.
Conodonis, conchostracans, plants, spores and
pollen.
The Enotajevskaya suite. 57 m of grey and
variegated sand-clays with charophytes
{Porochara Vladimirella) and ostracods domi-
nared by Gerdalia {Gerdalia dactyla zone).
Laterally chc Alchtubinskaya and Bogdiiiskaya
suites (Table 1) arc gcncrally combined in a clay
unit ol 400 m rhick. On the eastem border, the
Ak/arsajskaya suite ovciiays it in contormity and
is rq^resented by red sand clays up to 150 ni. On
the üuter edges, to ihe rtorth, the Krasnokut-
skaya suite consisted of sandsrones following by
cUys (273 m) and to the west the Berezovskaya
and Lipovskayâ (or only Lipovskaya) suites (0-
256 m) arc transgressive and overlay the Permian
or Upper Carbonilerous. Ail thèse suites arc
referred to the Baskunchakian horizon.
The corrélations could be well-cstablished bet-
ween Ba.skunchakian horizon and synchronous
deposits of the Russian Platform by fishes
(Minikh & Minikh 1997). l'he fauna of
Payoîostichus is found also in the sections of
Volgo-Uralian anticline, Preuralian and Pripyat
throughs, Moscow and Mezensk synclines and in
332
GEODIVERSITAS • 1999 • 21 (3)
GEODIVERSITAS • 1999 • 21 (3)
Fig. 4. — Geological-geophysical cross section GG 051 (location on Fig. 7). South-eastern part of Precaspian Dépréssion. Legend: see Fig. 2.
U)
fpper Permian and Triassic of the Precaspian Dépréssion
Kukhtinov D. A. & Crasquin-Soleau S.
the variegared sandstone of German basin. The
ammonites Dorikranitcs and TiroHtes allow to
correlate wirh the upper Olenekian ofRussia and
with the Campile beds o( Alpine Triassic and the
Spathian Tirolites zone (Shevyrev 1990).
Middlf Trtassic (T^)
The Akmajskaya and the lower Aralsordkaya
sériés are artributed to the Middle Triassic
(Table l).
The Akmajskaya séries
It is distribured in most part of the Precaspian
Dépréssion. The basal boundary is marked by
the change of the Baskunchakian clay in the
sandstones of the Middle Triassic. Two suites are
recogniscd: the Eltonskaya and the Inderskaya
(Fig. 9).
The Eltonskaya suite (T2ei). le begins with
sandstones follovved by clays and limestones. fhe
total thickness varies from 100 to 400 m.
The lowci part, terrigenous, contains the transi-
tional complex with mainly l.owcr Triassic .spc-
cies and lew' Middle Triassic species {Dartvinula
recondita Schleifer, D, Ltuta Schleifer, D. acmayi-
ca Schleifer, D. postinornata Schleifer, Suchonella
flexuosa Starojilova Irom ihe Dutwwula lanta
zone).
The upper part, clay and carbonates, is typical
from the Middle Triassic (iMtkevichinella involn-
ta Schneider, L bmttanae Schneider, L. minora
Starojilova, Pulvivlla iwalis Schneider, Trkminella
^ubkini Schleifer, (2hrocypris vasilievi Schleifer,
forming ihc LutkevichineUa brunanae zone).
The Eltonskaya suite contains tetrapods as
Plagioseutum ochevi Shishkin, Capitosauridae,
referring to L'ryosUi’htft w^hich is wcll correlated
with fauna of Central Europe (Shishkin &
Ochev 1992).
The Inderskaya suite (Tjj^). It présents clays
and carbonates on a thickness ot 100 to 250 m.
Both suites (Eltonskaya and Inderskaya) are cha-
racterised by a single Middle Triassic Darwinu-
locopida ostracods assemblage (DarwinuLt obesa
Schleifer, D. kiptschakensis SchleOer, D. lenta
Schleifer, D. lanta Schleifer, D. recondita
Schleifer, D. acmayica Schleifer) but by diHerent
Cytherocopina ostracod assemblages. In the
lower suite, there are Gloridnella inderica
Schleifer, Renngarte7iella distinvia Starojilova,
Cytherissinella orispa Schleifer from the
Glorianellcl inderica zone. Tn the upper .suite, the
tollowing species Irum the Pulvielht aralsofica
zone occur: Pulinelh aralsoriça Schleifer, P obola
Schleifer, P. lubimovae Schleifer, P, directa
Starojilova, P marimie Starojilova, Speluncelia
auerbachi Schleifer, .S. spiriosa Schneider,
Inderelln usimica Schleifer, Aralsorella uralica
Scldcifer. Moreover, there are bivalves and ga.stro-
pods Lhiionites fassaensis (Wissmann), (/. rriuens-
teri (Wissmann), Cryptunerita elliptica Kittl,
Actaeonina mediuculcis Ilohensiein, vcftebrares
Mtistodmnaurîis torims Konzhukuva, Plapoicutam
caspiense Shishkin, which allow the corrélation
with the lower Kcuper of the Central Europe
(Shishkin Ôc Ochev 1992).
To the south-w'estern part of the Dépréssion, the
.\kmajskaya sériés présents mainly clays and the
thickness groAvs up to 1200 m. To the west, on
the borders, ic changes in variegated terrigenous
deposits of chc Morovovskaya suite (275 m) with
charophyres, ostracods and in some layers
Cytherocopina of Inderskaya suite. To the cast,
the Akmajskaya suite is complerely replaced by
the variegated .sand-clay Ta-shtiskaya suite (l'zts;
230 m; Fig. 3) whh charactcrisdc non-marine
ostracods and charophyres. Outside of the
Depression to the north and to the east, the
Middle Tna.ssic is mlssing.
The Arahnrskaya p.p.
This sériés contains grey to variegated terrige¬
nous and calcareous deposits from Middle and
Upper Triassic (Figs 1 T 12). The Lower Jurassic
Re.sobinskaya suite overlays it with important
uncorformity (Shclcchova et al. 1989). The
Aralsorian is subdivided in six suites:
Masteksajskaya, Almamyskaya, Chodinskaya (the
three from rhe Middle Triassic), Koktinskaya,
Shalkarskaya and Kusankudukaya (the three
from the Llpper'rfia.ssic).
The Masteksajskaya suite (T2„,j). h is compo-
sed of grey to Black clays, aleurolites, rarely sand¬
stones and limestones (210 m). Il overlies the
Akmajskian sériés {Pulviella araLoria zone). Its
red analogous deposits extend to the east through
334
GEODIVERSITAS • 1999 • 21 (3)
Kukhtinov D. A. & Crasquin-Soleau S.
the boundaries of rhc Dépréssion to chc DoneU
Through and the Prc-Ural. l'he suirc is characre-
rised by a rich ostracod assemblage where the
species known in the undcrlying levels
{Darwinuln laMta SchJcifèrr, D. oheîû Schleifer,
D. inféra SchJeifer, D. kiptschakensis Schleifer,
Pulviella araborica Schlcifcr, P. ohola Schleifer,
P. directa StarojÜova, Spelnncella spinosa
Schneider) arc associated with spccics occurring
for the tirst time {Gemmanetla schweyeri
Schneider, G. magtna Ko/.ur. G. grammi Kozur,
G. rnovsrhovichi Kozur, G’, densistriata Kozur,
G. meyevi Ko/.ur, G. tuberculata Schleifer,
Spelnncella ascedens Diebel, Cytherissinella okra-
jantei Schleifer, C. wkoloaae Schneider,
GlorianeUa efforrn (Glebovskaya), G. mtriovae
Schneider. Renngartenelln anerbadn Schneider,
Casachstanella shungayica Schleifer, Telocythere
fischeri Kozur, Luthevichiriella pseudopusilla
Kozur].
The Almamy.skaya suite It is represented
by grey and variegated rerrigenous rocks (0 ro
425 m) wich Middlc Triassic ostracods (Gernnui-
nella schweyeri Schneider,. Pulviella ovalis
Schneider, Spelnncella spinosa Schneider, S. f/e-
gans (Bturler & Grund), GlorianeUa mirtovae
Schneider» G. ejforta (Glebovskaya), Retingarte-
nelLt avdtmni Schncidci, Cytherissinella okrajant-
ci Schneider, C cf elongata Schneider, Casachs¬
tanella shungnyica Schleifer, Darwinubi sp.) and
miospores.
The Chodinskay^ suite (T,^^). It is dlvided in
rwo parts (Shclechova et al. 1988). The lower
parc is massive (Khodlnskaya s.s.) and the upper
part, which lies with uncnnformiry, is the
Khodinsicaya siiiic. In the west, the Barmanrsak'
skaya suite (Movshovich 1994) is équivalent to
the Khodlnskaya suite jr.r. These sutte.s are com-
posed of grcy and variegated clay, with inrerbeds
of aleuroliresv sandsuïnes with siderire concré¬
tions and végétal crumbs. In the norrh-easr of
the Dépréssion, there are some coal incerlayers.
The thickness varies from 0 to 304 m. In the
Barmantsakian suite, there are Middie Triassic
ostracods (Cytherissinella schleiferae Starojilova,
Darwinula acrnayica Schleifer, Suchonella ex gr.
flexuosa Starojilova, Spelnncella ex gr. spinosa
Schneider, S. ex gr. alata levis Kozur), as well as
foraminiferas and charophytes. It can be note
a
Fig. 6. — The Uppçr Permian ot the Precaspian Dépréssion
iilustrated by some représentative borehoies (Lugovskaya 1,45
on Fig. 7; Aralsor 1. 2 on Fig. 7: Vetelkin 8. 1 on Fig. 7).
Legende: a, sand, sandstone; b. siltstone; c, shale; d, limesto-
ne’ e, anhydrite; f, sait; g, carbonated shale: h, coal; î, red
rocks, j. number of borehotes on palaeogeographic maps
(Figs?, 10.12).
chat Speltincclla alata levis is relaied ro the
German basin ac the top of upper ceraricic beds
(Ladinian) (Kozur 1973).
The only section of rhc Aralsorian Middie Tnassic
sériés is presenr in the Zaburunian trough in the
South of the Dépréssion where 1200 m of sand-
clay deposits with some interbeds of limcstones
[with ostracods as well as pelecypods Triganodus
336
GEODIVERSITAS • 1999 • 21 (3)
Upper Permian and Triassic of the Precaspian Dépréssion
50‘E 55‘E
45°E 50°E 55“E 57°E
b
---- - C
+ + d
★ e
0 f
0 g
^ h
I (J |i
cr3o j
Cb k
c8 I
@ m
Ar n
l-^lo
P
• • • q
■ r
ü s
^ t
845 ^
- U
V
Fig. 7. — Kazanian liîhologicaJ and palaeogeographical schéma of the Precaspian Dépréssion. A. alluvial plain episodically floocîed
by the sea; B, C, area o* marine (during lower Kazanian-kzl} and lacustTine (during upper Kazanian-kzS) carbünate clasüc (B) and
salty carbonate (C) déposas. Legend forait the paJaeogeograph^c maps: a, carbonates; b, shtles, c. sandstones: d. sali, e, reddlng:
f. marine ostracods, g, non-manns osiracods; h. pelecypods; (, cephalopods; j. fishes; k. brachiopods; I, foraminiferas; m. charo-
phytes; n, vertebrates; o. Precaspian Basin boundaries; p, limits of lithological-paiaeogeographical domains, q, liants of recent depo-
sil abundance; r. borenoles: s. boreholes fîgured on figs 6. 8, 9. 11; l. number of boreholes {in the upper part number of the
borehote; in the lower pari, in Italie, ihickness) u, c;oss section of Figs 2>5; v. direction of detriticai supplies, List ot boreholes;
1, Vetekin; 2, Aralsor; 3. Zhambay ; 4. Sambay , 5, Karabulak ; 6, Kokzhide ; 7, Mujunkum ; 8. Kulsary ; 43, Linevka , 45. Lugov.
(?) praelongus Kiparisova, T. sandbergeri sand-clay deposics (0-124 m) in the Aralsor,
Schafljaeîitlia silesiaca Assmann, Myophoriopsis Kusankuduk and Prorvin troughs (rcspectively
gyrgaroides {V\\\\\pŸ\)\ are drilled. central, eastern and south-castern parts of rhe
Dépréssion; Table J, Fig. 11). Shclechova (1988)
Upper TkiasSIC (T 3 ) = AkALSORSKAVA SERIESyï.y». described rwo palyno-complex Chasmatosporhes-
The Kôktinskaya, Shalkar^kaya and Kusankuduk- Podosporhes and Camarozanosporites’Gibeospo-
skaya suites rites. The first onc is dcscribcd in the transi üonal
The Upper Triassic part of the Aralsorskaya sériés interval of Middie-Upper Triassic and the second
lies with unconformity on Triassic or Permian. is characterîstic of the middle and upper Keuper
The Kôktinskaya suite (T 3 |j^), It is composed of of the German Basin, the Carnian-Rhaetian
GEODIVERSITAS • 1999 • 21 (3)
337
Kukhtinov D. A. & Crasquin-Soleau S.
Fig. 8. — The Lower and Middie Triassic of the Precaspian Dépréssion illustrated by some représentative boreholes (Kenkiyak 14,
44 on Fig. 12; Blaktykol 1,46 on Fig. 12; Inder 4, 40 on Fig. 12; Skar-Tsaryn 1,48 on Fig. 12). Legend: see Fig. 6.
338
GEODIVERSITAS • 1999 * 21 (3)
Upper Permian and Trtassic of the Precaspian Dépréssion
deposits oi the Eascern Alps, Caucasus and
Donbas (Shelechova et ai 1988).
The Shalkarskaya suite (T 3 ^jj), le ha,s also a sandy
clay composition (Table U Eig. 11). Sandstones
predominate In the lowcr part and clays in the
upper part. The chickness varies from 0 (area bet-
ween the Lirai and Volga rivers, western and nor-
thern borderlands of the Dépréssion) to 84-228 m
to the east. Diftbrein fossils are recognised: Icaf-
prints of Clathropteris mcfuscoides Brongniart
(Carnian-Liassic) and palyno-complex
Neoraismckla taykmi-ijiheosporites (C'arnian), Late
Triassic conchostracans Lioestheria kido't
(Kobayshi), ihimamurat (Kobayshi),
Pscudfstheriti (SphiUropùs) îanii (Kobayslii), P. tur-
kcstanii'a Novojilov àC Kapelku» P gissaric^f
Novojilov & Kapelka, Splhfewtheri/î koreana
(Ozawa 6c Watanabe)» CJfypfoasftimta mniygenica
Novojilov 6c Kapelk.a, Laxomicmglypta kobaynshi
Novojilov 6c Kapelka, Liynmîdin gontsharnvi
Kapelka, Liogj’apu r/î;?r/;/£7ïî« Novojilov.
The Kusankudukskaya suite (T^j^^). It is com-
posed of sandstones, aleurolircs, clays, mainly
grey with somc layers rcaching 12-16 m (Table !,
Fig. 11). The total thickness is 0-300 m. The
Rhaerian age of rhe suite is clearly esiablished on
miospores (Kukhtinuv 1984): présence at the
bottom ol Zehrasporiîes laevigaïus Schcicchova,
Z. interstripiiis (Tbiergart) Klaus, vvhich arc
usually absent in Noriaii. The NorianTUiactian
palyno-complex Kyrîomhporites-Ztbrüsporitts is
described by Schcicchova et al. (1988). These
authors showed rhat the Kusankudukskaya suite
is absent in rhe uUra-deep Aralsor wcll (Fig. 4),
in the central part ol the Dépréssion. So, ir
appears that the Kusankudukskaya suite and the
Upper Triassic are absent from the mosi part of
the western half of the Dépréssion. Between the
Ural and Emba nvers lower courses (Kukheinov
1984), the Middie Triassic pan of rhe Aral-
sorskaya sériés is missing and the Akniajskaya
sériés (or Older Triassic) are overlay by Upper
Triassic (about 220 m). Here, the Pcrmo-Triassic
sériés is more tectonically deformed th;in in other
areas of rhe Depres'sion. To the south (Prorva
area) the analogues of rhe Akmajskaya hâve
important thickness (to 407 m). more rcgular
structure and display maris wlchin sandy clays.
Outside of the Dépréssion, to the north, to the
West and to the east, the Akmajskaya sériés is not
subdivided as well as the underlying Akmajskaya
séries. The overlying Jurassic begins here only in
the middie Bajocian.
PALAEOGEOGRAPHY OF THE
PRECASPIAN DEPRESSION DURING
LATE PERMIAN AND TRIASSIC
We are looking here to the Precaspian
Dépréssion and Jts adjacent areas, l'his territory
is located at the south-castem pan of the Russian
platform bordered by the Uralian and Donets-
UstjLirt Hcrcynidcs. The palacogcography is
controlicd by icctonic and climatic changes
(from high and dunng the Kungurian, to arid
during the Late Permian and Early Triassic and
humid during Middle-Latc Tria.ssic). The gro-
wing ol sait doinc.ç during ihc Llfimian lias signi-
Ficant inOucnce on the deposionai conditions.
Taking In accouni all the sections of rhe Upper
Permian in the south and east of the basin, there
is no signiFicant lirhological changes at the serie.s
bouudaries.
The base of rhe Ufimian is represenred by grey
sédiments. The red coloration increases Utile by
littlc when wc going up in the serie.s. The présen¬
ce of sulphatc inclusions and of halogenous rocks
(in sonie places) can bc attributed to the deve¬
lopment of chc Ufimian basin and residual sait
lakes; the geoclicmi.stry of the Kungurian and
Llfimian (Solikamian) are very .similar
(Kukhtinov 1984). The main change occurs
during .Sheshmian. The progressive disappearan-
ce of chc Kungurian sali-bearing sea lakcs place.
The présence of grey sédiments, végétal débris
and autigenic pyrite prove rhe restorarion of nor¬
mal depositional environments.
The Lirais is the basic source of débris, The
débris sîze and saiid fraction content of the rocks
increase to the east (Dmirrievskij 1966). The
minerai composition of rhe Upper Permian
derriral fractions is characterised by feldspathic
graywakc association and is represented by quartz
(20-35%). feldspar (15-32%), fragments of effu-
sivc and carbonate.s rocks (45-48%) and rarely of
metamorphic rocks (2-5%). In the central part of
the basin, the quartz content increases.
GEODIVERSITAS • 1999 • 21 (3)
339
Kukhtinov D. A. & Crasquin-Soleau S.
Fig. 9. — The Lower Triassic of the Precaspian Dépréssion illustrated by sortie représentative boreholes (Aralsor 1, 2 on Fig. 10;
Kurilov 1,9 on Fig. 10; South Ershov 5, 37 on Fig. 10; Erulsan 5, 42 on Fig. 10). Legend: see Fig. 6.
340
GEODIVERSITAS • 1999 • 21 (3)
Upper Permian and Triassic of the Precaspian Dépréssion
50'E 55“E
Fig. 10. — Lower Triassic Ilthological and palaeogeographlcal schéma of the Precaspian Dépression. A. area of alluvial and proluvial
deposits; B. alluvial plaln, flooded episodlcally by the sea; C. epicontinental marine deposits, Legend: see Fig. 7. List of boreholes:
2. Aralsor; 3, Zhambay; 5. Karabulak; 8. Kulsary; 9, Kurilov; 10, Sadovaya: 11, Bugrin; 12. Stepnov; 13, Zavolzh; 14, Ushtobe;
16, Chinarev; 17. Mertvye Soli; 10, Akzhar; 19, Tuskum, 21, Nikolaev; 22, Podgornen; 37, Ershov; 40, Inder; 42. Erusian:
44, Kenkiyak; 46, Biakiykol; 48, Shar-Tsaryn.
The second half of the Ufimian is defined by the
accumulation of red sédiments. The red colora¬
tion is conditioned by incrcasc ot aridiry entails
by wide development of red eluviuni sédiments
enriched în ferrigenous pigment, l'his is the
resulr of Fe déposition in clay minerais of mont-
morillonite and illite groiips The hydration
degrcc oF Ferrie oxides and lhe intensiry oF ochre
increasing in cluvium are dcfmcd by tempéra¬
ture. It is not accidentaliy iF the red coloration is
developed in the arid stcppe.s and desert areas of
Kazakhstan and develop a hrown coloration lo
the north. The coloration of rodes is defined by
the Fe^*/Fe^* ratio (Janov 1956): with a value up
to 3 it is red-brown to brown-red, berween 1.6
and 3 it is violet to rcd-brick, lower than 1.6 it is
green-grey to grey, 0 is black.
Probably in the basin sédimentation, prédomi¬
nance of oxidation conditions contributes to the
préservation or subséquent increase of red colora¬
tion in the sédiments. The oxidation conditions
are confirmed by the low content of organic
remains. The non marine bivalves and ostr.icods
(Darwinulacea, which arc rcprc.seinative ol 2-
3 m water deep. no more than 10 m) give évi¬
dence of the ba.sin .shallowness. On shorc areas,
in esruaries, ilic colonial algae (cyanophyceae)
wide development in Akeubinsk Fre-Ural and
probably in Precaspian Dépréssion proves this
assessment. In the miospore complex, the alloch-
tonous éléments corne from etmifers grown on
the high lands.
During the Ufimian, the uplifi of de.struction
areas and the development of sait dômes begin in
the trough. At the same time, in che dépréssions
between the sait dômes, syn-sedimentary lakes
appear quire often, due to che washing of sait by
underground waters. Such sédimentation rakes
place now in Inder Lake. The sédimentation in
GEODIVERSITAS • 1999 • 21 (3)
341
Kukhtinov D. A. & Crasquin-Soleau S.
E
W-NW SE
@ ®
Chobda 1 Kusankuduk 35 Aralsor 1 E. Prorva 77
Fig. 11. — The Middie and Upper Triassic (Aralsorskaya suite) of the Precaspian Dépréssion illustrated by some représentative
boreholes (Chobda 1, 32 on Fig. 12; Kusankuduk 35, 34 on Fig. 12; Aralsor 1, 2 on Fig. 12; East Prorva 77, 47 on Fig. 12). Legend:
see Fig. 6.
the basin is controlled by différence between
heightening zones (dômes) and trough zones
(between dômes).
The Kazanîan (Fig. 7) begins with the boréal sea
transgression which follows rhe Urals to reach
the norihern Precaspian territory. Fhin mainly
carbonated rocks with shallow marine fauna
(foraminifera, osiracods» bivalves, bryozoas, ...)
are developcd in the western, central and lesser in
the eastern parts of the Dépréssion. In the south
(Zhambaj area) the sédiments are represented by
interbedding red and grey terrigenoas sédiments
with somc marine rcmains. The analogous rocks
with marine ostracods were detected between
Volga and Ural rivets (Aralsor well). The terrige-
nous material cornes from the south, from
Karpinski uplift and its eastern extension, and
hinders rhe carbonate development. From time
to time, the sca sirctchcs far to the east, to
Kenkijak and Makat (South Emba). Between red
rocks, the inrerbeds of grey sédiments contain
foraminifera, crinoids and radiolarians
(Kukhtinov 1984).
In the eastern part of the Dépréssion, as far as its
présent boundary, an alluvial plain spreads out
and, from time to time, is flooded by the sea. A
thick sequence of aleuroüte and argilite which
contains only one bed of limcstonc, corresponds
hcre lo the marine Ümestonc deposits. Fine dctritic
marcrial is accumulared in the lake.s without flow.
During the Late Kazanian, the régression is cau-
sed by the Uraliun orogenic moveincrits. I he late
Kazanian succession is composed of terrigenous
342
GEODIVERSriAS • 1999 • 21 (3)
Upper Permian and Triassic of the Precaspîan Dépréssion
50’E 55"E
Fig. 12. — Upper Triassic llthological and palaeogeographical scheme of the Precaspian Dépréssion. A, alluvial piain, flooded episo-
dically by the sea; B. C, carbonate>clastic (B) and clastiC'Carbonale (C) deposits of shallow epicontinental sea. Legend: see Fig. 7.
List of boreholes: 1. Vetekin: 2, Aralsor; 3, Zhambay; 5. Karabulak; 10. Sadovaya: 17. Mertvye Soli; 24, Jusa; 25. Zhanazhol;
26, Chikembay; 27. Mashiy; 28. Suishbek; 29, Chumyshty: 31, Zhu&alysay; 32. Chobda; 33, Matenkozka; 34, Kusankuduk;
35. Pavlov; 36. Teplov; 37, Ershov: 38, Shungay; 39. Novonikol; 40, Inder; 41. Shubarkuduk; 47, East Prorva.
sédiments with coarse dctrirics including gric-
stones and conglomérâtes. These last ones are
especially characterisric from the areas siirround-
ing the dômes.
In the residual \vater réservoirs of northern and
western parts of the Dépréssion, rerrigenous sul-
phates and halogenous sédiments are accumula-
ted. in other areas, the sédimentation is
terrigenous with alluviah lacustrine and deltaic
accumulations.
The continental basins contain a rich fauna of
crustaceans and bivalves and numerous algae
which characterise shallow environment. The
salinity is no negligible judging ro the Sr/Ba rario
equal to 2.3.
The total thickness of the Kazanian (about
1200 m) on the eastern pan of the Dépréssion
shows thaï U large trough is présent, compensa-
ted by detritic material from the lirais,
Mugodzhar and South-Emba uplifts.
The Tatarian is characterised by continental
environments. The alluvial North Caspian piain
sinks slowly and is filled by sédiments from lakes,
rivers and temporal water streams. The Sr/Ba
ratio falls from 2.3 to l.3'l-l, this is typical an
indicaror of brackish water. Major inhabirant.s
are non marine pelecypods, ostracods, algae (cha-
rophytes, red, brown, bushy cyanophyceae). The
shallow basins are often dried (présence ot mud
cracks). The frequent cross-beddings arc charac-
teristic of the active hydrodynamic régime. The
dôme arc eroded. Remains of Kungurian ânhy-
dritc are présent in the carly Tatarian sériés. In
some places, especially in the south ol Aktubinsk
Pre-Ural area^ the lake deposits are common —
chemogenic Hmestones, clay with abundant
organic matrer. There are numeroas charophytes
and small fauna of bivalves.
A proluvial piain spreads out along the Urals area
destruction. Detritical fan of temporal flows
GEODIVERSITAS • 1999 * 21 (3)
343
Kukhtinov D. A. & Crasquin-Soleau S.
reaches thc Shubarkuduk area, cspccially during
the late Tatarian. Cross-bedded sandstonefi of
channel and delta types are developed in
Kenkiiak and Mortuk areas, ’l'he intraformatio-
nal washing <uit of the lararian is an indication
of sédimentation above the basis ol érosion (ncar
dôme area), l'hc fine graincd .sand-alcurolite and
pelitic material arc accumulatcd in the lakes of
the central areas.
In the surrounding emerged Innds, there is an
almost constant uplift which indutes an intensi¬
fication of érosion and formation of frequent
interbeds of detriîic material. It obviousiy cakes
place during Severodvinian when coarse detriti-
cal deposits begin to be widely distributed.
At the end of die Permian, rhe eastern and South¬
ern areas of the Dépréssion are învolved in the
uplift which entails érosion of accumulatcd sédi¬
ments and induces rhe unconformity of the
Triassic on the Permian.
At the beginning of rhe Triassic (Fig. 10), thc
sédimentation area is considerably smaller than
the Permian one. In fact rhe structure of the sédi¬
mentation basin cbanged: in the early stages, the
major sedimentary layers were locared in the easr-
ern parc, lacer rhey are concentrated in the cen¬
tral part of the Dépression. The eastern,
Southern, sourh-western and probably northern
peripheral pans of the Precaspian Dépression
were considerably uplifred and represenr a baring
area. The Tatarian and, someiinies in the .sourh
rhe Kazanian rocks were washed oui. At the same
lime, the central pari of thc basin vvas noi inver-
tcd. This is why thc unconformity docs occur
between Permian and Triassic on the borders.
Slowly, the expansion of the sédimentation basin
takes place. The présence of conglomérâtes and
cross-bedded sandscones in the eastern and
south-eastern parts of thc Dépression is duc to
the development of alluvial and proluvial depo¬
sits, step by step cransformed into submarinc-
deltaic and lake deposits (Dmittijevskij &C
Proshljakuv 1970). In thc eastern part of thc
Dépréssion, ehannel flows, in thc a sublatitudinal
direction, eut (Mortuk, Kenkijak, Kokshide) or
walk around (Shengelshij) thc dômes which are
uplifted (Pronicheva & Savinova 1980). When
thc dômes arc cutting, a wide development of
coarse deiritics rocks probably causcd by the for¬
mation of a hlind delta is ob.scrvcd. On the
whole a piedmont-(an type of detrital material
distribution is nianifestcd in this area,
in thc central régions, thc deposits arc represen-
ted mainly by finc-graincd sands, more oficn by
alcurolites and pciites duc to the multiple rede-
positiuns and transfers during rhat rime.
Therefore, the rocks hâve high mineralogical
(quartz and feldspar cornent reaches 80-90%)
and textural maturity.
The Harly ’lriassic deposits bave a high content
of epidote in beavy fraction Corning froni the
érosion of metamorphic rocks of Dral and
Mugod'/har, following by a rapid burying.
The water réservoirs are mainly fresh water
(St/Ba = 0.7 - Demehuk étal. 1971) with charo-
phyies, osiracods and other crustacean. The pré¬
sence of mud-cracks, worm accîvity cracks, and
other emphasise the shallowncss. Dépressions
with lack of drainage and sait lake types were
well developed.
From the Olenekian, a clear change in climatic
conditions cakes place. The transgression coming
from rhe south, i.e. from Caucasus and IVthys,
induces an increasing of the humidity. The sea
envers rhe south-western pan of the Dépression;
from lime to lime it widens its boundaries down
to ihe Southern periphery and Biikjal, in the east
(Fig. 10). Al this time, carbonate and sandy clay
sedimentvS accumulared here. At fir.st, thc basin is
connected with fethys and ic contains tiormal
marine fauna — brachiopods, ammonoids. fora-
minileras. conodontSv fishes, ostricods with
généra of Cypridacea and Cytheracea (C/hio-
ry/j/vj, Spifwcyprh and espcciall)' TMssinella). In
thc South, the ostxacods Bairdia, Bairdiacyprh
and ticaldianellci arc very comnion. In other
times, thc basin bas poor connections with the
océan. The basin is a slightiy salted one (Sr/Ba =
0.9). The fauna is represeuted by ostracods,
bivalves, gastropods, worms, ilshes and charo-
phytes. Along the coasts, the xcrophytes of
Pleitromtia and lycopodiacea type are growing.
The coast lands are flat-hiily plain, alluvial and
proluvial sédiments seule. Close to the desrruc-
344
GEODIVERSITAS • 1999 • 21 (3)
Upper Permian and Triassic of the Precaspian Dépréssion
don areas, coarser deposirs occur on a piedmont
pluin. The detrical marenal cornes from che éro¬
sion of lirais to the east and from the Voronesh
anticline and the Doners fbld sysrem to the west
and to the souih (Movshovich 1977; Janochkina
& Startsev 1977). The upward sait dômes oF
Upper Permian arc additional source rocks. In
Baskunchak and Inder Lakes area, there are rela-
tively coarse deposits formed by drag flows
(Movshovicli & T^ebenko 1974). The syn-
sedimentary uplift of dômes leads to the change
ol the erosional bases and ro intraformarional
washing out in the sections. The tracks as pebble
gravel lenscs occur espccially offert in the upper
part ol the Bashkuchakian sériés.
Eolian formations are présent in rhe Early
Triassic deposits: in sandstones and clays, the
quartz grains hâve characteristic blunr surface
and striations.
Sandstones and aleurolires wich bad granulométrie
sorting and heterogenciry of fragmcncary grain.s
.iTC due to the dilfcrcnt sources ol érosion mate-
rial. The présence of wcll-presetvcd Carbonlferous
rocks in the Lower and MiddJe Triassic sédiments
at Matenlcozha (Icft bank of Ural River) suggests
thar not only the Permian but aiso the
Carboniferous rocks from upliited surrounding
areas are eroded (Kukhtinov et ai 1982).
The existed water basins are quite shallow. In
rocks, numerous cracks from drying arc found,
stream bedding and organic remains, adapted to
cnvironmcni with lemporary drying-up -
amphibians, osttacods, fishes, concho.straceans.
Oxidising conditions prevailing hcrc. Only in
the middie Olenekian marine basin, with clay
and limestone deposits, the environment changes
to regenerating. More active processes ol Chemi¬
cal érosion lake place. Jtidging to the ostracod
distriburion» multicolouied and red sédiments
are formed not only in conrinenta! environments
but also in the periphery of salty basin.
At the end of rhe Early Triassic. the sca régresses
and continental régime dominâtes.
l'he Middie 'Friassic (Fig. 12) is characterised by
a new incursion of the sea and irs area of distri¬
bution is quite rhe same than prcviously. The
great change between Lower and Middie Triassic
deposits is probably due to ingression along river
channcls. The normal transgressive sequencc —
sandstones, clays, limestones - of the
Akmajskaya seric.s and variegated rerrigenous
deposits of the surrounding ilatlands are dcvelo-
ped. The rcmains of ostracods, molluscs, fishes
and charophnes, not clcarly marine, indicate rhe
hindered connection wich the occân. The
Sravropol uplift of Northern Cauca.sus, of
Middie Caspian, of Karabogaz and Buzachink
domains, the cnierged eruptive massifs of
Mangyshlak as well as organogénie buildings
could be- considered as palaeogeographic barriers.
During the second half of tfie Middie Triassic.
carbonate deposits are occasionak Almost every-
where, grey and rarely variegated sand.s, aleuro-
htes and clays are depo.siied. The area of
distribution is considcrably extended outside uf
the Dépréssion, i.c. into the Southern Pre-Und
and Pre-Ur.dian trough. In the north-cascern part
ol the Dépression, rhe marine environments arc
episodically replaced by transitional zones (Coas¬
tal plains with coal accumulation.s). Numerous
ostracods, including the brachihaline Gemma-
nella genus, are associated wich chese deposits
(Aralsorîan sériés). Single marine euhaline
Hiurdia genus is found with them.
During the Late Triassic, approximaicly rite same
situation is preserved. Under a humid climate,
i herc is great abundance of hygrophytes on insular
and Coastal lands, conifers with fern underbrush
and pteridosperms on high lands. în the rransirio-
nal areas, herbaccous sss^ips and overgn>wn lalces
arc widcly dcvcloped. In the basin, the conditions
are changed time to time into oxidising shallow
water environments. The irregular intcrbcddmg of
sands and clay.s shows rhe euscaric movements.
The central areas of the Dépréssion subside inten-
sivcly with important filling. The increase of terri-
genous matcrial shows the uplift of emerged areas.
The régression continues and the continental
environments dominatc.
At the end of the Triassic-beginning of the
Jurassic, ihe Precaspian Dépréssion, especially its
western part and the adjacent areas, are uplifted
and bccome érosion lands.
Acknowledgements
The authors are very grateful to the reviewers
GEODIVERSITAS • 1999 • 21 (3)
345
Kukhtinov D. A. & Crasquin-Soleau S.
who coiuributed to the iniprovcment of the text:
Prof. (j. B. Vai (Bologne) and Prof F. Feinbcrg
(Paris). We are indebted lo Mrs A. Cambreleng
(Laboratoire de Géologie, MNHN) for the dra-
wing of the profiles and palaeogeographic maps.
REFERENCES
Anonymous 1982. — Conclusion of the Interdepart-
mental meeting on the Triassic of the Eastern
European platform with régional strati^uiphic scheme.
MSK, Leningrad. (A p.
Demehuk !.. V.. Zofkina V. A. et aL 1971. — The
histor)' o( the Prccaspian deptession at Mesozoic
time. F^roceeding of VNIGNI, Nedra, Moscow, 109,
120 P- (in Rusdan).
Dmitriejcvskij A. N. 1906. — Litbology, mineralogy
and origin of lipper Permian and Lower Triassic
deposits on the eastern part of the Preenspian
Dépréssion in regard w tneir oil and gas présente.
Abstract of candidate dissertation. MIKKH and
GP, Vtoscow. 21 p. |in Rus.sunf
Dmitricjcvsldj A. N. \Si. Pro.shijakov B. K. 1970, —
Palaeogeography of rhe eastern part ol the
Precaspian Depres.siun at the Late Permian and
Triassic tîine; 120-127 |iii Riissian|, in Oil and gas
search in sait dôme areas. Ncdta, Moscow.
Janochkina Z. A. & Srarisev V. F. 1977. — Chain-
size ujnrcnr of sand-alcurolirc Tria.ssic rocks of the
Preca.spian Depres.sion as their genesis index.
Prohlems of Geohgy of Southern Usai and Volga
région {Povolzhjeh Publication of Satainv Univer-
sity, 14: ■^2-84 [in Rus-sian]-
Janov E. N. 1956. — On the origin of rhe red and
grey cuiour of depositional rodes. Reports of the
Acadi tny oj Sciences Of IFSSR 3 (6)- 22-24 [in
Russian],
Kozur H, 1973. — Die Bedeutung triassischer
Osrracoden fur stratigraphische und Palaokolo-
gische Untersuchungen. A'Iittellungen der GeselT
schaft der Géologie und Eerghaustudentin in
Osîerrekb. Innsbruckil; 623-660.
Kukhtinov D. A. 1976. — Bwstratigraphy of Triassic
deposits of the Precaspian dépréssion on ostracods.
Ncdra, Moscow, 99 p. (in RussianJ.
— 1984, — The Upper Penninn and Triassic of Aral-
Caspuin areas (ostracods, stratipaphy, palaeogeogra¬
phy). Ab.straci of docior dissertation, VSECiEL
Leningrad, 37 p. [in Russian).
Kukhtinov D. A., Alckscjeva V. 1. & Kalniykova
A. G. 1982. — On the rc-deposition of palaeonto-
logical remains during rhe Permian and ’Lriassic in
the Precag^ian dépréssion and its possible causes.
Reports of Academy of Sciences of USSR 264 (3):
672-674 [in RussianJ.
Miiiikh M. G. & Minikh A. V. 1997. — Ichtyofaunal
corrélation of ihc Triassic deposits from the north-
ern Qs-Caspian and Southern Cis-Ur.il régions, in
Ciasquin-Solcau S. & De Wever P. (eas). Péri-
Teihys: stratigraphie corrélations h Geodtuersitas
19 12): 279-292.
Molosiovskaj^a i. l. 1997. — Stratigraphie corrélation
of rhe Upper Permian deposits from ihc South of
the Cis-Ural marginal 1 rough and the adjacent
arca.s of the Russian Plate, m Gnsquin-Solcau S. Ôc
De Wever P. (eds), Pen-Tethys: stratigraphie corré¬
lations 1, Geodiversitas 19(2) : 247-259.
Movshovich E. V. 1977, — PaUtogeogutphy and
palaeotectonic of the Lower Volga Région (PovobJyje)
during Permian and Triassic. Pnblicarion ofSararov
Umversiiy, Sararov, 241 p (in Russian].
— 1994. — Problcms ofUpper Permian and Triassic
stratigraphy of western parr of Norih-Caspian oil
.^nd gas basin. Nedra Povolzhja i Prtkaspia,
NVNIIGCL Sararov 6: 33-37 [in Russian].
Mov'shovich E. V. ^ Tsebenko l. N. 1974. — On
the prahlcm of pnlaeogeogaphy of Kalmyk-
Asirakhanian Precaspitin Triassic. Prohiem of geoche-
misiry of f'recaspian-. 97-104 (in Russian].
Publication of Kalmyk Universit)', Elisra.
Oche\' V. G. &; Shishkin M. A. (1989). — On ihe
principles of global corrélation on ihe continental
Triassic Tetrapods. Acta F^tlacontologica Polonica,
\Var7awa34 il): 149-173.
Pronicheva M. V. & Savinovâ G. N. (1982). —
Palaeogeonwrphobgicdl analysis of oil and gas bcaring
areas. Nedra, Moscou', 254 p. fin Ru.ssianj.
Shelechova M. N., Miisikhin V. P. ^ Kukhtinov
D. A. (1989). — Relative lo Bcsobinian formation
définition in Lower Jurassic deposits of the
Preca.spian depres.sion. Palaeontological volume,
Lvov 26: 43-49 [in RussianJ.
Shelechova M. N.j Volchegurskij L. F., Volosaev
V. A-, Musikhin V. P., Perevozchikova I. V. Ôc
Jakovlcv L. P. (1988). — Bii>stratigraphy ul Middlc
and Upper Triassic dqnïsits of Eastern Precaspian.
Palaeontological volume, Lvov 25: 84-91 [in
Russian).
Slicvyrcv A. A. 1990. — Armnonotds and cbronostratT
graplfy of the Triassic. 1-179 (in Russian). Nauka,
Moscow.
Shishkin M. A. & Ochev V. G 1992. — On the age
EriosJichus and Mastodonzaurus faiina of verte-
brates of the Eastern Europe. Transactions of the
Academy of Sciences USSR, Gcological sériés,
Moscow 7: 28-35 (in Rus.sian].
Siibmitted for publication on 22 April 1997;
accepted on 30 July 1998.
346
GEODIVERSITAS • 1999 • 21 (3)
New stratigraphie and palaeogeographic data on
Upper Jurassic to Cretaceous deposits from the
eastern periphery of the Russian Platform
(Russia)
Valentina S. VISHNEVSKAYA
Institute of the Lithosphère, Russian Academy of Science, ILSAN,
22 Staromonetny. Moscow. 109180 (Russia)
valentina@ilsan.msk.ru
Patrick DE WEVER
Laboratoire de Géologie, Muséum national d’Histoire naturelle,
43 rue de Buffon, F-75231 Paris cedex 05 (France)
dewever@mnhn.fr
Evgeniy Yu. BARABOSHKIN
Moscow State University, Geological Faculty,
Vorobjovy Gory, 119899 Moscow (Russia)
barabosh @ geol.msu.ru
Nikita A. BOGDANOV
Institute of the Lithosphère, Russian Academy of Science, ILSAN,
22 Staromonetny, Moscow, 109180 (Russia)
bogdanov@ilsan.msk.ru
Nikita Yu. BRAGIN
Geological Institute of Russian Academy of Science.
Pyzhevsky per., 7, Moscow, 109017 (Russia)
bragin@ginran.msk.ru
Lubov G. BRAGINA
Geological Institute of Russian Academy of Science.
Pyzhevsky per., 7, Moscow, 109017 (Russia)
bragin@ginran.msk.ru
Alesia S. KOSTYUCHENKO
Technical University.
Leningradskoe shosse 112-1-1-211, Moscow, 125445 (Russia)
valentina@ilsan.msk.ru
Emmanuelle LAMBERT
Laboratoire de Géologie, Muséum national d’Histoire naturelle,
43 rue de Buffon, 75231 Paris cedex 05 (France)
geolhote@mnhn.fr
GEODIVERSITAS • 1999 • 21 (3)
347
Vishnevskaya V. S., De Wever P., Baraboshkin E. Yu. et al.
Yuriy M, MALINOVSKY
Institute of the Lithosphère, Russian Academy of Science, ILSAN,
22 Staromonetny, Moscow, 109180 (Russia)
barejko@iIsan.msk. ru
Kulyash M. SEDAEVA
Moscow State University, Geological Faculty,
Vorobjovy Gory, Moscow, 119899 (Russia)
koozminov@mtu-net.ru
Galina A. ZUKOVA
Simbirsk Geological Survey,
3a Dovatora, Uljanovsk, 432000 (Russia)
Vishnevskaya V. S.. De Wever P., Baraboshkin E. Yu. eiai 1999. — New stratigraphie and
palaeogeographic data on Upper Jurassic to Cretaceous deposits from the eastern peri-
phery of the Russian Platform (Russia). m Crasquin-Soleau S. & De Wever P. (eds). Peri-
Tethys: stratigraphie corrélations 3, Geodiversitas 21 (3) : 347*363.
KEYWORDS
Jurassic,
Cretaceous,
strarigiaphy,
ammonites,
radiolarians,
foraminifera,
nannofossiU,
palaeogeographical map.
ABSTRACT
The Late Jurassic and Late Cretaceous were periods when, after prolonged
continental érosion, stable marine sedimentarion took eftect on the Russian
Platform. The sédiments which accuniulated hâve diverse lithological com¬
positions iuid a mixture ot rransient and endemic faunas. Lithological diversi-
ty and a widc varierv of faciès lias led to problcms in stratigraphical
corrélation of Late Mc.sozoic séquences and discrepancie.s in palacogeographi-
cal reconstructions. DifFerenr faunal groups belonging to a wide variery of
palaeozoogeographic provinces exist within these deposits. rherefore> wc use
ail available microfossils (radiolarian.s, foraminiferas, nannoplankton) and
macrofossil groups (aimuonites, buchias, inoceraniidcs) in order to cstablish
the synchronicity of anoxie and other events, to propose biostratigraphic
zonations and model the palaeogeography for Late Jurassic: lower
Kimmeridgian and middle Volgian as well as Cretaceous rime. We suggest
that the Peri-Tethys Eastern Europe is a unique area in which to solve the
problem of stratigraphie corrélation as it incorporâtes both Boréal and
Transicional roTcthyan palacoclimatic provinces.
RÉSUMÉ
Nouvelles données stratigraphiques et paléogéographiques sur les dépôts juras¬
siques et crétacés de l'extrémité orientale de la Plate-forme russe (Russie).
Le Jurassique supérieur et le Crétacé forment une période où, après une
longue érosion continentale, une sédimentation marine stable s'installe sur la
plate-forme russe. Les sédiments accumulés ont des lithologics variées et pré¬
sentent un mélange de faunes endémiques ou transitionnelles. La diversité
lithologique et la grande variété de faciès ont rendu complexes les corréla¬
tions stratigraphiques pour ces séries du Mésozoïque tardif et ont même créé
des désaccords dans les reconstitutions paléogéographiques. Différents
groupes fauniques, appartenant à une grande variété de provinces paléobio-
348
GEODIVERSITAS • 1999 • 21 (3)
Upper Jurassic-Cretaceous of eastern Russian Platform
MOTS CLÉS
Jurassique,
Crétacé,
stratigraphie,
ammonites,
radiolaires,
foraminiferes,
tiannofossilcs,
carte paléogéogfaphique.
géographiques existent dans ces depots. De ce fait, nous avons été conduits à
utiliser tous les groupes disponibles de microfossiles (radiolaires, foramini'
feres, nannoplancton) et de macrofossiles (ammonites, buchias, inocéia-
mides) afin d'érablir le synchronisme des événements, anoxiques ou aurres,
pour proposer des zonations biostratigraphiques et des modèles paléogéogra-
phiques pour le jurassique supérieur : Kirnméridgien inférieur et Volgien
moyen ainsi que pour le Crétacé. Nous pensons que la partie péri-téthy-
sicnne de TEuropc orientale est un endroit unique pour résoudre les pro¬
blèmes de corrélation strarigraphique puisqu’il incorpore des éléments fau¬
niques de provinces boréales et de la transition vers le.s provinces
paicoclimatiques téchysiennes.
INTRODUCTION
Our research team bas undertaken field work in
Volga River Basin (August 1995, members of
field work team werc as follow: E. Baraboshkin,
N. Bragin, £. Lambert, V. Visbnevskaya,
G. Zukova; August 1997, V. Vishnevskaya,
G. Zukova) and in the Tiinan-Pechora Basin
(September 1995, A, Kosiyuchenko, G. Sedaeva,
V. Vishnevslcaya).- Ali prcviously publishcd and
unpublishcd data concerning of thcsc régions
were reviscd and taken inco account.
The aim of our field trips was to collect précisé
and well-Iocated samples with fossil material in
order to estabÜsh accuratc biostradgrapbical cor¬
rélations and ro propose palaeogcographic
reconstructions which could provide a basis for
modelling of palaeogcographic map.s.
During die field workv wc investigated and sara-
pled the following areas in detail: (1) Kim-
meridgian-Volgian portion of the standard
Gorodische .Section of Volga River Ba.sin and
Ukhta outerop as well as 21 outciops and
52 boreholcs of the Volga-Kama and Timan-
Pechora Basin (Figs 1-5); (2) middlc Volgian-
Haucerivian sections near Gorodische and New
Berdianka villagc-s (Figs 2, 3); (3) Aptian-AJbian
sections from borehole.s of the Penza région
(10 km of Penza town, west of Volga River);
(4) Barremian-Turonian section to the norch of
Uljanovsk city; (5) Cenomanian-Maastrichtian
sections ncar Shilovka scttlcmcnc (50 km south
of Uljanovsk city).
MAIN LITHOFACIES AND STRATIGRA-
PHY OF THE KIMMERJDGIAN
The lower Kimmcridgian Js represented by orga-
nie shale (Fig. 5, borehole 18) with clay (Fig. 5,
boreholes 15'17, 19. 20, 22. 23, 25-27), glauco-
nitic sandsl'one, aleurolite (almost équivalent ro
silt-stone in Russian litcrature) and clay (Fig. 5,
boreholes 24, 28), and micrite in the outerops ol
the Uldita section. Rare phosphatic pcbblcs and
pyricic concrétions werc also tound.
The time interval investigated corresponds to the
early Kimmeridgiaii in ternis of standard ammo¬
nite zonation for the Boréal Realm of rlie
Russian Plate. Withiii the Bareiits-Pechora area,
the Amoe/pf/ceras raimi zone and in the Volga-
Kama-Oka Basin, the A. kitchmu zone are pré¬
sent. Other characreristic ammonites are Rasenia
trimera Oppel and R. stephunoides Oppel.
Kimmeridgian straca, which yieJded radioIarian.s
(Kozlova 1994; Vislinevskaya 1997), are well
reprcvscnted in the Timan-Pechora Basin. The
Pcchota-Volga sedimentary basin was probably
produccd by a Lare Jurassic phase of rifeing
(Kostiuchenko 1993), and was filled with radio-
larian-bearing clay and shale deposirs m a sub-
platforni environment.
The Kimmeridgian clay of Pechora and Ukhta
region.s is also rich in glauconite and moritmo-
rillonite. Glauconite (15-30%). montmorillonitc
(10-30%), hydromica (10-30%) and chloritc (5-
10%) arc the dominant components in
Kimmeridgian bituminous clay whereas glauco-
GEODIVERSITAS • 1999 • 21 (3)
349
Vishnevskaya V. S., De Wever P., Baraboshkin E. Yu. et al.
50" 54° 58° 62°
Fig. 1. — The location of investigaîed boreholes and outcrops of Timan-Pechora Basin (the numbers correspond to their official
record).
nite (30-40%), kaolinite (25-30%), and mont- the total fauna. Practically ail taxa présent are
morillonite (20-30%) predominate in the known in the Boréal province of the Russian
organic-rich Volgian shale. Platform and Circum-Pacific Rim. The lower
The Kimmcridgian chay (5-45 m) from the Kimmeridgian radiolarian assemblage of the
Pechora and Ukhta régions has a conformable Parvicin^da vera zone ol the Barents-Pcchora-
stratigraphic contact with the underlying strata Ukhta région includes: Archaeocenosphaera
(Fig. 5) and demonstrates a succession of irans- inequtilh (Rust), Praeconocaryommd ex gr. sphae-
gressive and régressive characiers up to Volgian rocofUis (Rust), Pseudocrucelln aff pniva Blome,
strata. Crucella crassa (Kozlova), C :;quama (Koziova),
Radiolarian taxa make up only a minor part of C. aff. mexicana Yang, Orbiculiforrna cf. iniqua
350
GEODIVERSITAS • 1999 • 21 (3)
Upper JurassiC'Cretaceous of eastern Russian Platform
)
^ 0 km 30
. Dubki / J '
Undory .. '
|Gorodisc)ie|
I Novaya •: [
■ r
VShHovkæv
f '\ i
LEGEND
10 cm
r ■
[H]
Breccia
Sands
Sandstones
Siltstones
Clays
Oil shales
Argillites
Maris, clayei maris
Limestones
Carbonate clays
Phosphorites
Bioturbation
Shell detrite
Erosional surfaces
Softgrounds
PiQ 2. — The location of investigated sections of Volga Basin and stratigraphie column of the Volgian stage of the Gorodische
Section.
GEODIVERSITAS • 1999 • 21 (3)
351
Vishnevskaya V. S., De Wever P., Baraboshkin E. Yu. et al.
Blome, O.? renisa (Koziovu), PatUaneilium ünra-
blankaense Pessagno McLcad, Parvicingula
inornata Blomc, P. cl. blinvi Pessagno, P haevkeli
(Pantanclli), P burnensis Pessagno & Whalcn,
P pizhmica Kozlova, P pusilla Kozlova, P papula-
ta Kozlova. P siintabarbarerms Pessagno, P?, enor-
mis Yang, /?? blackhorncmis Pessagno Whalen,
ExcinguliP bifaria Kozlova.
The lowcr Kimmeridgian Paraicingula vera zone
of the Barents-l'iman-Pechora Basin (Vish-
nevskaya & De Wc\'et 1996) is probably équiva¬
lent to the lovver Kimmeridgian Crucella crassa
assemblage of Kozlova (1994) and corrclaces wich
the Buchîit concentrica zone, A. ravni ammonite
zone and Epntvmina unzhemE foratniniferal zone
as well. This interval probably corresponds to the
Kimmeridge Clay H/drocarbon Formation of
the North Sea which Contains abundant P jonesi
(Dyer & Copestake 1989).
A srudy Parvicingula distribution shows a pré¬
dominance ofthis genus in the Kimmeridgian of
the Timan-Pechora and Barents régions. Species
of this genus are represented bv a wide range of
morphotypes. The co-occurrence of Arcco-Boreal
foraminiferal assemblages tugether wiih Juras.sic
radiolarians and Buchias confirms the possibility
of using Panncingnbt as palaeoclimaric indicacor
(Vishnevskaya 1996). For example, the main
Kimmeridgian représentatives of the Moscow
région are Parvicingula vera Pessagno & Whalen,
P inoymata Blome, P elcgayis Pessagno &: Whalcn.
Parvicingulides- prcvail, comprising 50% of this
assemblage and in the middlc Volgian of the
Moscow Bàsin, arc represented by P haeckeli
(Pancanelli), P hexagonaux (Heitzer) (Bragin
1997).
In the Gorodische Section (Volga Basin)
Parvichigula jonesi (Pessagno) is the dominant
species în the Kimmeridgian and the percentage
of parvicingulides in the total radiolarian fauna
reaches 50-60%.
Radiolariaii-bearing organic black shale and bitu-
minous clay which were deposired in anoxie
environments are assigned to the lower
Kimmeridgian [Cyrnodoce zone). This interval
exhibits black shale layers with a high TOC
(more 10%) content and good perroleuni poten-
tial (Baudin et al. 1996). Ammonite horizons
containing P densicostata and P baylei can be
Zones GORODISCHE
inversas
>
cr
LU
1—
O
c
X
[L
ce
O
3:
O
_l
£î^
-i ~—Z
4-1
20
syzranicus
S
‘ - •. * F •
6-
0.5
nodiger
CO
Z
<■
a
O
>
cb
<.
cc
a.
Z)
5
subditus
* e O*
8-7
0-0.2
fulgens
' « ' a
0.5-
0.8
nikitini
\ V ■ ■« ' V ‘
. ' to . d ’ •
7/
0.3-
0.5
virgatus
• c * .c ' V.'*
ù ■ i?. i? *
20-
22
0.8-
1
panderi
jpav/ow 2 arays/cens.
OJ
Z
<
O
r —I *
n/Ès -
— t?)
58-
23
6-
9
r O
>
P— _
- 0 Z_^_Q _ ^
c 9
61-
59
0.5-
2.5
pseuofo-
scvthica
sokolovi
klimovi
Z
<
3
O
>
-
-•4 ^ — 'î P —
73-
62
3.5-
6
eudoxus
CvJ
s
Z—Z-^Z^
80-
72
12-
18
cymodoce
l'.'. ; -1 Sand | \
(3^ Clay r@~l
I i ' li Limestone | ^ g]
Oil shale f ^ I
^ \ Phosphaticpebbles
Radiolaria
Nannoplankton
Ammonites
Buchia
Fig. 3. — Composite column of the Kimmeridgian-Hauterivian
stages of the Gorodische Section.
recognised in the lowermost part of Kim¬
meridgian ol the Gorodische Standard Section
{Baylei zone of the Standard Scale).
352
GEODIVÉRSITAS • 1999 • 21 (3)
Upper Jurassic-Cretaceous of eastern Russian Platform
Samples Total amount of samples
Species diversity
Y 95/11-10-4
Y 95/11-10-2
Y 95/11-22
OS Y 95/11-24, 10-
Y 95/11 -25-
OS Y 95/11-2
Y 95/11-31
OS Y 95/11-3;
OS Y 95/11-4
Y 95/11-41
Y 95/11-43-
SIZE-FREQUENCY DISTRIBUTION
OFLoripes fischerianus
(sample Y 95/10-2)
SIZE-FREQUENCY DISTRIBUTION
OF Loripes fischerianus
(sample Y 95/11-26)
SIZE-FREQUENCY DISTRIBUTION
OF Scurria maeotis
(sample Y 95/11-36)
SIZE-FREQUENCY DISTRIBUTION
OF Dorsoplanites sp.
(sample Y 95/11-26)
Fig. 4. — The distribution of sampling and percentages of macrofauna in the Gorodische Section.
GEODIVERSITAS • 1999 • 21 (3)
353
Vishnevskaya V. S., De Wever P., Baraboshkin E. Yu. et al.
The upper Kimmeridgian (Eitdoxus-Auris'
siodoremis ammonire zones) sequences o( the
Gorodischc Section arc represented hy clay mari
with abondant nannofossils. Ter^esîielh jnargerelU
Watznanaia communù and W hritamilca are the
dominant species. The characteristic species are
Slephanolithian bigoti^ DisCurhabdus tuhus^
Podorhabdus cylindratusy P. demssutiis, P. cuvHlieri^
as well as the smallest individuals oi Nunnoconus
steinmânnl (= N. adomï). This nanaoplankton
assemblage is similar to the NW European
Vekshindla stradneri assemblage ot Bernard & Hay
(1974). A more précisé Kimmeridgian radiolarian
zonation may be developed in the near future.
The North Caucasus Kimmertdgian-Tithonian
assemblages include only rare P dhimenaensis
(Baumgartner) and Berriassian assemblages in¬
clude P. boesii (l^arona) (V^Lshnevskaya et al. 1990).
The content of parvierngulides is less than 3% of
the total assemblage in the Tethyan Realm.
VOLGIAN BTOSTRATIGRAPHY OF THE
PECHORA BASIN AND GORODISCHE
STANDARD SECTION
Volgian strata hâve a transgressive character in
the Pechora région (Fig. 5). Among radiolarians
which occiir within the middlc Volgian
Dorsoplariite!: panderl ammonite zone,
Parvicirigtiln papulaia Kozlova, P. conica
(Khabakov), P. crinatn Kozlova. P. rtigosa
Ko/lova, P simplicim Kozlova arc the dominant
species. Parvicingulidcs again comprise up to
90% of launas in the Barents-Pechora région.
Ammonites, bnchias and foramitiilera are also
abundant in these strata.
The Gorodische Standard Section is the section
which has been iTUjsr completely processcd for
macro- and microlauna (Figs- 2-4).
Studies of the macrofaimal assemblage from rhe
Gorodische Section show (cf. Mivta 1993), ihat
strata in the section can be confidenriy assigned
to two ammonite snbzone.s of the (niiddle
Volgian) Dorsoplaniti^a panderi zone: î he
Pavlovia piwhvi boitom subzone and ZMraiskiies
zarajskensis top subzone, which were established
by Gera^imov & Michailov (1966).
The pavlovi subzone (layers 61-59) is characteri-
sed by clayey-carbonate succession wirh thin
phosphonte and marcasite horizons (Fig. 3).
Several erosional surfaces arc rccognised in the
subzone. Other anirnonites include Ztiraiskites
sp., Z, cf. tschernyschovfy Z. cf rnichalskii,
Dorsoplanitei aff pamierb D, sp., Pavlovia sp-,
numerous rostrums of LagonibeUis {L) parvula
togciher with a bcnthic Kuinal assemblage of the
bivalves Loripes fischeriaaus^ Buchia rüsslensis,
Oxytoma sp.> Protocardia cont'ijîfut. Gresslya
aldtiiniy gastropods Eueyclm sp., Apporbais sp.,
brachîopods Lingula sp-, Rusiella sp.,
Rhynchnnella loxie\ .scaphopods Laevidentalium,
as well as serpnlids. Fhcsc a.sscmblagcs permit us
to characterise sedimentary conditions as wcakly
anoxie shallow water
A somevvhar rieber fossil coniplex is présent in
the z-tzrajskensis ^nhzow (layers 58-23). The rocks
of this 5ubzor»e hâve rhythmical structure.
Rh)Thms u-sually begin with horizons of rework-
ed .^nd dissolvctl fauna. l'hey arc ovcrlain by car¬
bonate days coppcd with oil siialc. The quantity
of organic matter increases from 1-1.5 ’Mj up to
almost 22% ar the background ot decreasc of
carbonate matter (Fig. 3). Rhythmic changea in
the benthic assemblage occur from a prevalence
of benrhüs to an upseciion increase of nekton
(Fig. 4). In rhe oil shales young populations of
lost Loripn pscheTuinus and Scurria maeoth usual-
ly prevail, together with nepioiiic ammonites.
This demonstrares a strong anoxie impulse
during the oil shale lormaiion. The tollosving
faunal assemblage was dciermincd from that
interval: ammonites Zitrahkiies cf. scyibicus^
Z. pillcensis, Z. quenUedùi. Z. stchukivensis,
Dorsoplanifespanderh belemnires lagimhetm {L.)
magiiifica^ {Rolcobeloides) vplgemis^ L {L ) cf.
rosanovp bivalves Astane sp., Gresslya alduini,
Buchia mosqueusisy B. russirasis, Oxytoma sp.,
Loripes fjscherianusy Nucula sp.v Panopea .sp.,
Limaxula consobrintu Liostrea plaslicax giisrropods
Scurria maeotisy Eucychts sp.; scaphopods
Laevidenuilium sp.; hrachiopods Lingula sp.,
Rhynchonclla rotiillkri and oihcr tauna.
'l'he radiolarians Orbiculiforma ex gr. mclanghli-
ni Pcs.sagno, StichocapSiP devorata (Rust),
Pbormocampe favosa Khudyaev, Parvicingula
hexagonata (Heitzer), P. crïstata Kozlova, 7? conica
(Khabakov), P aff. alata Kozlova, P. nndtipora
354
GEODIVERSITAS • 1999 • 21 (3)
GEODIVERSITAS • 1999 • 21 (3)
Ig g Ammonites
Radiolarîans
Belemnites
Anceline
Bioturbations
Fig. 5. — The distribution of Jurassic faciès within the sections of the north-eastern part of the Russian Platform. For the location of boreholes see in Fig. 1. For legend of columns 1 -
14 see Vishnevskaya (1998), 29-52 see Vishnevskaya & Sedaeva (1999). P, Permian; T, Triassic; J, Jurassic; K, Cretaceous; Q, Tertiary; a, Aptian; al, Albian; h-b, Hauterivian-
Barremian; bs-v, Berriassian-Valanginian; ne, Neocomian; v, Volgian; ox-km, Oxfordian-Kimmeridgian; cl. Callovian.
U)
\j\
Upper Jurassic'Cretaceous of eastern Russian Platform
Vishnevskaya V. S., De Wever P., Baraboshkin E. Yu. étal.
(Khudyaev), P. uff. haecktii (PantancJli), P. aU'.
spinosa (Grill & Kozur). PLithycryphalus} pumilus
Rust, Lithocampe cf. ternkeriata Riist werc reco-
vercd fiom within the Donoplanites panderi
ammonite zone in rhe Z. înmpbenuî siib/nne —
the Lippcrmost part ol^ nannolossÜ Wntznaueria
communis zone ot rhe Gorodisclic Section, where
dominant specics ot coccoÜths are W. murtelae,
W. sîrigosâ, W tubulatû, W. oiutta.
Higher in the section (layers 22-20) thin mem-
bers of quariz-glauconiric sands and sandstones
build up the succession. They contain horizons
with rewofked phosphoriics. b'aüna.s are located
predominanrly in rewa.shed pebbics. In layer 20,
remains ot stroogly reworked zonal index
Virgatites gtTasnvtovi were fourid tugether with
Loripes sp. and dissolved rostrums of Lagonihelus
{H.) volgensn. There are many radiolarians
reworked from the Z. Zitrajskmsis su\y7.onc within
the phosphoriie pebbles.
Ammonites Irom the succeeding Virgathes uirga-
tus next zone were not discovered. However, on
the basis of stratigraphie position in a detailcd
section, this zone most likely occurs between
layers 18 and 20.
The uppermosT part of section is comprises
dense thin memhers ol carbonate sandstones
with huge ammonites Epïvirgaîites btplkiformh
and E, nikitini (layers 17-12) from the middlc
Volgian £ nikitini zone
Sandstones of rhe upper Volgian Knchpurites fid'
gens zone lie above an erosional surface. They
contain Craspeditcs nekrassovh C sp. and Kach-
purites fulgens associated with Buchia piochiis
B. sp., bclemnites Acroteuthis (A.) mssiensis and
A, {A.) rnosquensis^ which were found in layers 11
and 10.
Overlapping layers 7, 8 also lie above erosional
surfaces érosion and arc characteriscd by rework¬
ed Craspedites cf okensis. which i.s the diagnostic
form of the upper V^olgian Craspedites siibditus
zone. The bclemnites Acroteuthis (A.) mosquensis
and bivalve Buchiapiochii and B, tenuicollis occur
together with chese ammonites. Radiolarian .spe¬
cics P. crisiata Kozlova, P alata Kozlova, P. blnwi
(Pessagno) and Sticbocapsa dcvorctia (Rust) are
common within thèse strata in which the parvi-
cingulid content is 50-60%.
No ammonite fauna was found in layers 6-5 , but
based on extsting Ütcraturc (Mcsczhnikov 1984),
thèse strata can be correlated with the upper
Volgian Craspedites nodiger zone and lower
Valanginian Temnoptychites syzranicus zone I he
iLppcrmo.st part ol Volgian stage i.s char.tcterised
by appearancc, within the radiolarian microf.iuna,
of the Mediierrancan spccies P hoeni (Parona).
l'hc appearancc of this Mcditerranean species
taxon notwithstanding, radiolarian assemblages
are dominantly Borcal in character and ihc tj'pes
of radiolarian assemblages presem bave not been
described previousJy. The proposcd middie
Volgian Parvidngnla haeckeli zone is closelv cor¬
related ro the ParvicinguLt papulata zone of the
Pechora Région (Kozlova 1994). le cortclates
with the ammonite Dorsoplanires panderi zone
which can, tn turn, be correlated with the
Euolurinella ernetjnnzevP TraciMnvninn sepientrio-
nuits or Sarûcenclria praimLlvlevi foraminilcral
zone (Kozlova 1994) in the Pechora Basin,
Lemiculma biexcauata zone (l.jurov 1995) in the
cSysola hydrocarbon Basin, and Parhabdolithus
embergeri nannoplankton zone in Middlc Volga
hydrocarbon Basin. Wc can trace lasi zone
through both Southern England and North
France (Vishnevskaya De Wever 1996). Due
to the présence of index .species> it is possible to
corrclatc rhis interval with buchias Buchia mos-
quensis-B. mssiensis zone ol the Russian Platlorm
(Sey & Kalacheva 1993).
The proposcd upper Volgian ParvicinguLi blowi
zone probabi) corresponds co rhe Psevdo-
crolanium pinnocephala assemblage of rhe
Pechora and North Siberia régions which was
established by Kozlova (1994) and can be corre-
laced with Buchia piochii-B. tervbratuhndes zone
ol the Russian Plaiform (Sey ÔZ Kalacheva 1993).
JURASSIC PALAEOGEOGRAPHY
The Jurassic stratigraphie sequences in the
4 irnan-Pechora Basin (Fig. 5) clearly show a
transgressive dcposliional System scarting with
Early-Middie lurassic sands and deepening
Lipward to ilie accumulation of ilie higher grade
source rocks in rbe Volgian lime. The mass
extinction, observed herc and espccially in the
Gorodische Section ol the Volga-Urals Basin
356
GEODIVERSITAS • 1999 • 21 (3)
Upper Jurassic-Crefaceous ofeastern Russian Platform
Fig. 6. — Schematic palaeofacies location map of the Kimmeridgian time (adopted after Sedaeva & Vishnevskaya 1995). 1, Coastal
marine sandstone and siltstone; 2, marine clay; 3, anoxie organic shale; 4, lignite coal and organic détritus; 5, phosphate; 6, sup-
posed land; 7, location of sections from Fig. 5 (number in circle); 8, location of the Gorodische outerops (letter in clrcle).
GEODIVERSITAS • 1999 • 21 (3)
Vishnevskaya V. S., De Wever P., Baraboshkin E. Yu. et al.
(only about 40 species of ammonites» 20 species
of aucellids, 22 species of bcnihic foraminifcras
and 20 species of planktonic foraminifcras,
10 species of bclemnites, 5-40 calcareous nanno-
fossil taxa, 20 species of radiolarians and sevcral
species of algae were recognised wichin Dorso-
planitespanderi ionç)y probably rcsulted from tlie
cumulative cffects of a constani alternation of
transgressive and régressive épisodes. Tins type of
sédimentation and palaeoenvironments survivcd
into late Vbigian lime, but a change of condi¬
tions had alrcady appeared by thc end of Volgîan
time.
l'he proposed schematic pakeogeographic maps
of rhe Kimmeridgian and Vbigian lime (Figs 7»
8) indicate the location of the eastern rim of
shallovv sea witli excellent environments for oil
and fuel-ricli organic source rocks (Figs 5, 6).
Similar to Recent seas and to an ancient sca, for
cxamplc, thc Devonian Sca (Vishnevska)^ 1093).
thc maximum concentrations of phytoplankton.
siliceoLis plankton and benthos, carbonaceous
plankton, nekton and bemhos were found in ihe
water imincdiatcly boidcring thc continent, l'his
type of relative incrcasc in the proportion of lipid
rich organic matter in thc botvom scdimcnis and
its good pre.servation probably took place in res-
ponse to the preservative characccr of phospho-
rus, the coiueiu of which is very high in these
strata (Bauditi trt al. 1996).
It is well-known that in the Techyan Rcalm the
genus Parvîchigula is rare whcrcas thc content of
this genus in thc Boréal (Khydjaev 1931; Sedaeva
& Vishnevskaya 1995) and Ausiralian provinces
(Baumgartner 1993) is much greater. From these
data, \ve can assume thar cold water environ-
ments dominated lhe north-easiern Rti.s.sian
Plarform Jurassic oil-shale-bearing basin. ’Fhe
prépondérance of parvicingiilides possibly indi*
cates upwelling conditions which bave could
existed offshore (Figs 6-8). The abundant
remains of sponge spiculés, which settled along
rhe shelfedge confirm this conclusion.
JURASSIC BIOSTRATIGRAPHY AND
PALAEOGEOGRAPHY
Detailed analysis of taxonomie variety of faunal
assemblages and some morphological peculiari-
ties of shclls allow us to escablish bioscratigraphic
corrélations and to reconsrnici the possible
bathymétrie and topographie fcaiures of sedi-
menrary basins. One would notice that Jurassic
radiolarian fauna was firstly found from rhe
Corodische Standard Section of the Volga Basin.
It represents new data on the palaeonrological
characceristic.s of the Upper Jurassic Russian
Régional Vbigian Stage. Fhc lower Kimmcrid-
gian ammonite Amoeboceras kitchini (Salfcld) is
cypical of the Arcdc (Northern Siberia, Subpolar
Urals) and Boreal-Atlanîic Provinces (European
Ru.ssia). Buchia is a charactcristic clément of
Arctic and Boréal reairns. Eoraminiteras arc also
cypical of the Borcal-yVtlantic Province. A ly'pical
feaiurc til radiolarian assemblages (abundance
and high taxonomie diversity ol thc genus
Parvicingîda) indicates Borcal affinity. The pré¬
sence of thc genus AsphiocertU In the Volga-Oka
Basin, well-known in the Western Europe and
Mediterranean Région, is the only indicator of
possible letbyan influence.
Sonic pccuUarities were conimon for sédiments
of thc Pechora and Volga baslns:
1. Scdinicntary lithologies and cheir thicknesses
indicate uneven subsidence on thc periphery of
Russian Platfbrm.
2. Alternation of deep-water and shallow-water
sédiments and numerous gaps indicate custatic
variations.
3. Geochemical data exhibit enrichment in orga¬
nic matter.
New siliceous microfossil radiolarian assemblages
hâve bcen obtaîned from the Volgian as dated by
ammonites and calcareous narinofossils.
The co-occurrcncc ol radiolari.ins wilh calca-
reous narinofossils represenrs the firsc well-dated
radiolarian assemblage ol this âge at such a high
latitude on the Russian Platlorm.
As might be expecred many new radiolarian spe¬
cies of the Boréal Province are encouniercd.
LOWER CRETACEOUS STRATIGRAPHY
OF ULJANOVSK-PENZA REGION
Berriasian strata are probably reworked in the
Gorodische Section, although they were niarked
358
GEODtVERSITAS • 1999 • 21 (3)
Fig. 7. — A detail palaeogeographic map of the Volgian time. 1. mari; 2, sand; 3, clay; 4, limestone; 5, oil shale; 6, land; 7, sponge;
8, aucelfine; 9, ammonite; 10. foraminifera; 11, radiolaria; 12, bivalve; 13, glauconite; 14, phosphate; 15, buchia; 16, gypsum.
GEODtVERSITAS • 1999 • 21 (3)
359
Vishnevskaya V. S., De Wever P., Baraboshkin E. Yu. et al.
(?mapped) açcording to Mese/hnikov (1984).
From oiir point of view, fhe pn^sence of Berria-
sian deposits here is improbable because the sec¬
tion is srrongly condensed. Most probably, Bcr-
riasian ammonites which are présent in these
strata wcrc rcworkcd inco thc base ot \ alanginian.
'Fhe section is terminated by black clays
(layers 4-1) witb sidcrite and Jimonite concré¬
tions, containing large weathered ammonites
Speetonicems (5.) .versicolor and S. (S,) suhinver-
surriy which arc ascribcd to tbc Speetoniceras
inversum zone ol thc top Hautcrivian.
An anoxie event occurted within the lower
Aptian Deshayeütes deibayeü The remainder
of the lower and middle Aptian is characterised
by anaérobie conditions. A late Albian radiola-
rian assemblage was Ibiind amongsr the Albian
black clay of Ulianovsk Sec tion. It is rcpre.scnied
by Orbiculifarma multanguLi Pessagno, Théo-
campe cylindrica Smirnova Alicw Oheliscoites
iiirris (Squinabol).
The Barremian-.'Vlbian jnter\'a!s wcrc also investi-
gated in rwo (7, 10) borcholes in the Penza area.
At a depih ot 89 m in borehole 10, the radiola-
rians Orbiculiforma nuixima lV.ssaguo> Disrylo-
capsa micropora (Squinabolj> simdar to laie
Albian Tethyan forms (O' Dogherty 1995);
Dictyomhni communis (Squinabol) and Obesa-
capsula sp. cf O. zamoramsk Pessagno were reco-
vered, At a depth of 105.5 m in the sarne
boreholcv rypical late Albian radiolarian spccics
Porodisens kavUJeuiensis Aliev, Archaeodictyomitra
simplex Pessagno, Dictyomiîra gracilis (Squi¬
nabol), Dictynmitra feroiia àngusia Smirnova,
Theocampe cylindrica Smirnova Ôi Aliev were
recognised. Ar a depth of 106.8 m within bore¬
hole 10, the radiolarian fauna is characterised by
Spumellaria only.
Within borehole 7, ai a depth ol 113.3 m, radio-
larians Orbiculiforma nevadaensis Pessagno,
Oheliscoites perspicutts Squinabol, O. cf. vinassai
(Squinabol), Xiîus antelopensis Pessagno,
X? asymbatos Forcman, ^v^lich arc characteristic
species of thc Albian to carly Cenomanian, were
found. At a depth of 120 m (boretiole 7) radiola-
rians are represented by the species Orbiculi¬
forma nevadaensis Pessagno and typical late
Albian Theocampe cylindrica Smirnova & Aliev,
T simplex Smirnova & Aliev.
I 360
Between 123-45 and 123.50 m, the radiolarians
Porodiscui inflatus Smirnova &: Aliev, Oheliscoites
lurris (Squinabol) arc présent.
.At a depth of 133.15 co 133.25 m the radiola-
tians Dictyomiîra ferosia angusta Smirnova and
Stichomitra communis vSquinabol were recovered.
Within the interval 129.75 lo 129.90 m, Albian
spedes Crolanium cuneatum (Smirnova & Aliev),
C tritjuetrum Pessagno, Porodiscus inflatus
Smirnova ik .AJiev were inet.
At a depth of 136 m. the only .specîes recovered
was Orbiculiforma multangula Pe.ssagno occurred.
From the above data we consider that the
Aptian-Albian Crolanium cunattutn zone can be
recognised in rhe Uljuuovsk-Pcnza Région.
UPPER CRETACEOUS BIOSTRATIGRAPHY
OF VOLGA BASIN
Upper Cretaceous radiolarians were .studied Irom
rhe Shilüvka Section in the Uljanovsk Région
and from cure sections of borcholes (28, 502)
From the Volgograd Région. Three radiolarian
assemblages w^re determined: Archaeospongo-
prunnm hipartiturn-Alieviu m su per bu m
(Tumnian-Coniacian), Pseiidnanlophacus floresen-
sis-Euchitonia santon ica (lace Goniacian-
Santonian or Santonian) and Arnphipyndax
tylotm-Patellubi plunoconvexa (late Campanian).
Age data were supported by loraminiferal and
nannoplankron assemblages, which bave aftînity
with Europeari unes. These as.semblages arc simi-
iar to Western Siberian Boréal associaiion.s. but
include .somc Tethyan Taxa.
Tlic early Santonian Euchitonia santonica-
Alievium praegallotViiyi zone was established by
Vishnevsloiya (1997). It is a cbaracterisrit Boréal
zone and is widespread both in Siberian, Russian
platforms and in the Prc-Caucasus. Within the
Shilovka Section, it corresponds to the foramini-
lcral Gavelinella infrasantonica zone or nanno¬
plankron Marthasîerites (urcatus zone, l hc tare
Santonian-early Campanian foraminiferal
(hwclinclla stelligera zone can be correUted with
the Oiincutifbrma quadraia-Lïthostrobus rostovze-
vi zone. Phe upper part of this zone may be cali-
brated with the nannoplankron Arkhangelskiella
specillata zone in the Shilovka and Tushna sec-
GEODIVERSITAS * 1999 • £1 (3)
Vishnevskaya V. S., De Wever P., Baraboshkin E. Yu. et al.
tions. Campanian Prunohmchium articulati^m
zone (Lipman 1952) or Arnphibrachtum sibert-
cum zone and Spongoprunum angustum zones
(Amon & De Wever 1994) hâve no analogues in
the Terhyan Région. Nevertheless, the Tethyan
species Afens liriodes Riedcl & Sanfilippo was
found in the inrcrval of this zone within the
Shilovka Section.
CONCLUSION
The proposcd biostratigraphic subdivisions based
on new palacontological data are clcarly defi-
nable. They hâve a proven widc géographie dis¬
tribution and can bc usefuJ for corrélation of
sedimentary séquences as well as biotic and abio-
tic events.
The direct corrélation of Peri-Tethyan radiolarian
zonations with oceanic oncs and tliose of lhe
Tethyan région is very difficuli owing to provin-
ciality of species. Only one Jurassic zone, the
Lipper Volgian-lower Berriasian Parvicingula
blowi zone, can probably be compared with
zonations of Baumgartner (1993) for the Argo
Basin. The upper Berrlasian-lower Valanginian
Parvicingula khabakovi-Williriedellnm saltimicnm
zone (Vishnevskaya 1996), which is widespread
in the Rassian and Siberian platlorms within the
ammonite Bojttrkid mesczhnikovi zone^ can be
compare with some Tethyan ones owing to the
presence of numerous Parvicingula hoesii.
Biostratigraphic cofrelaiions oi microfossils
(radiolarians, forauiinifoas and nannoplankron)
and macrofbssils (ammonites, buchias) is propo-
sed in order to cstablish the synchronicity of
events and conscqucntly of more general geologi-
cal processes.
Acknowledgements
We express our gratitude to Professer
A. Nikishin and anonymous reviewers for their
stimulating cornmenis and criücism on the
paper. We arc gracefui to J. Aitchison who hclped
us to improve the English. Spécial thanlcs are due
to Peri-Tcthys Programme (grants 9518 and 95-
96/18) and Russian Foundation for Basic
Research for Financial support (Grant RFFl 97-
05-65566) and to CNRS-ESA 7073.
RFTERF.NCES
Amon E. 6i De Wever P. 1994. — Upper Cretaceous
biostratigraphy of the borders of the Ural belts:
Western Siberian and Eastern Volga-Ural Basins:
229-i62, in Roure F. (ed,), Peri-Tethyan Pbitforvis.
l'echnip ed., Paris.
Baudin F., HariTzperguc P.. Vlitta V., Olfcriev A. &
Zakharov V. 1996. — Biostratigraphic corrélations
and black shaie deposits of the Upper Jurassic from
the Rassian PJatform. Alniracts oj Peri- Tethys
Conférence. Amsterdanu 7. 8.
Bauingartner P. O. 1993. — Lower Cretaceous radio¬
larian biostratigraphy and biogeograpliy *)! nurth-
wesieni Anstralian (OOP -sites 765 and "*66 and
DSDP site 261), Argo Abys-sal Plain and lower
Exni45iiih Plateau. Proceedings oj îhe ÜDP, Scimtific
Resttlh, Washington 123: Z99-342.
Bernard I . & IJay W. 1974. — On Jurassic cocco-
lirhs; lenunve zonation of the Juiassit of Somhern
F-ngland and Korrh France. Edogae gtolo^cea hdve-
ticae, Basel 67 (3): 563-585.
Bragin N, Y. 1997. — Radiobria htmi rhe phospho-
rites basal horizons of the V'oigian Stage in the
Mûscow région. Revue de Mirrùfnilcintfologre. Paris
40 (4) : 285-296.
Dyer R. 66 Cope.srakc P. 1989. — A review of latest
jurassic to earlicst Cretaceous Radiolaria and their
bio.stratigr.iphic potcntial to petrolcum exploration
in the North Sca. Northwest European Micro-
pakontology andPolynohp. London: 214-235.
CsetasimoY P. A. N. Mikhoifov N P. I9c»6. — Volgian
Stage and the gcostratigraphical scalc for rhe Upper
Scriç-s of rhe Jcii ussic System. Proceeding ofAcadetny
of Sciences USSR, ser. geol., Moscow, No. 2: 118-
138 fin Russian].
KhudyaevJ. 1931. — C^n the Radiolaria in phos-
pb ares io the région of rhe Syssola River.
Tramai'tiofH oJ the Geoingical and Pro^pecting Settnee
ifU.S S.R.y Moscow. Fasçicle 46: 1-48.
Kostiucheiikti S. L. 1993, — The continental plate
tectonic mode! of the Timan-Pechora province
based on imegrâred deep geophysical study.
Zonenshtisn niemorial Conférence on Plate Tectonicsy
tiEOMAR, Kiel: 85, 86. '
Koziosa G. E. 1994. — Mesozoic radiolarian assem¬
blage of the Timan-Pcchora otl ficld. Proceeding of
Sankt-Petershurg International Conférence, St-
Perersburg: 60-75.
Lipman R. X. 1952. — Materials on monographie
srtidy of Upper Crctaceoirs radiolarian.s from
Russian pLirlorm. Paleontology and Stratigraphy,
GosgeoJisdai, Moscow; 24-51 [in Russian].
L.jurov .S. B. 1994. — Divi.sion of Jura.ssic .séquences
of rhe Middle Vichegda. Abstracts of International
Symposium *7imtnitigraphy ofoil f!elds'\ December
1994, St'Pc'tcrsburg: 59, (lO.
Mesezhnikov M. S. 1984. — Excursion 060.
Boundary beds of Jurassic and Cretaceous in the
362
GEODIVERSITAS • 1999 • 21 (3)
Upper Jurassic-Cretaceous of eascern Russian Platform
MiddJe Povolzhie and Riazanian région: 38-49, in
The Central régions of European part of the
RSFSR. The summary gnidebook of excursions 059,
060, 066 XXVII International Geolo^cal Congress.
Nauka, Moscow.
Mitta V. V. 1993. — Ammonites and zonal sti'atigra-
phy of the Middle Volgian of Central Russia.
Naukova Dunika, Kiev, 132 p. [in Russian].
O’Dogherry L 1995. — Biochronologv' and paleon-
tology of Mid-Cretaceous radiolarians from
Northern Apennincs (Italy) and Bctic Cordillera
(Spain). Mémoires de Géologie^ Lausanne, n” 21,
415 p.
Sedaeva G. M. & Vishnevskaya V. S. 1995. —
jurassic paleoenvironments of the North-Eastern
European platform. Zonenshain Conférence on Plate
Tectonics, GEOMAR, Kiel: 205.
Sey I. I. & Kalacheva E. D. 1993. — Buchiids and
zonal stratigraphy of the Upper Jurassic deposits of
the northern Far East of Russia. Geologia and
Geofizica, Novosibirsk, 34 (8)> 12 p. [in Russian].
Vishnevskaya V. S. 1993. — Model ol sedinientar)^
basin for the Domanik-rype deposits: new version.
Zonenshain memorial Conférence on Plate Tectonics,
GEOMAR, Kiel: I5M52.
— 1996. — Parvicingula as indicator of Jurassic to
Early Cretaceous paleogeographical and sedimento-
logical paleoenvironments within North Peri-
Tethys. Abstracts of Moscow PerTTethys Workshopy
Moscow: 30, 31.
— 1998. — The domanikoid faciès of the Russian
platform and basin paleogeography, in Crasquin-
Soleau S. & Barrier E. (edsh Peri-Tethys memoir 3:
Stratigraphy and évolution of Peri-Tethyan
Plarforms, Mémoires du Muséum national d'Histoire
naturelle, Pari.s, 177 : 45-69.
Vishnevskaya V. S., Agarkov Yu. V., Zakariadze G. S.
& Sedaeva K. M. 1990. — Late Jurassic-
Cretaceous radiolarians of the Gréai Caucasus as
key to détermine age and paleoenvironment of the
Lesser Caucasus ophiolites. Reports of Russian
Academy of Science, Moscow 310 (6): I4l7-l421.
Vishnevskaya V. S. & De Wever P. 1996. — About
possibility to corrclate North Peri-Terhyan radiola-
rian events with others zonations. Abstracts of
Moscow Peri-Tethys Workshop, Moscow: 31, 32.
Vishnevskaya V. S. & Sedaeva K. M. 1999. -—
Reconstructions of sedimenrary paleoenvironments
of the north-eastern European platlorm and adjoi-
ning areas for some intervals ol Jurassic: 94-98, in
Geology and minerai resources of European North-
Eastern Russia: New results and new perspectives,
Proceeding ofXIIl Geological Congress of Komi
Respublica. Volume 2. Geological Institute of
Uralian Branch of Russian Academy of Sciences,
Siktivkar.
Submittedfor publication on 22 April 1997;
acceptedon 30June 1998.
GEODIVERSITAS • 1999 • 21 (3)
363
Some features of the Early Cretaceous sédimen¬
tation in the Cis-Caucasia reflected in magnetic
properties of the sedimentary cover
Andrew Y. GUZHIKOV & Edward A. MOLOSTOVSKY
Institute of Geology, Saratov State University,
Moskovskaya Street, 161, Saratov 410750 (Russia)
guzhikovay@info.sgu.ru
Guzhikov A. Y. & Molostovsky E. A. 1999. — Some features of the Early Cretaceous sédi¬
mentation in the Cis-Caucasia reflected in magnetic properties of the sedimentary cover, in
Crasquin-Soleau S. & De Wever P. (eds), Peri-Tethys: stratigraphie corrélations 3,
Geodiversitas 2^ (3) : 365-385.
KEYWORDS
Petromagnetism,
scalar magnetic characteristics,
magnetic suscepribility,
Para-Tcchys,
Early Cretaceous.
ABSTRACT
This paper présent the resulcs from pctromagnetic studies of the Noi th
Caucasus-Lower Cretaceous deposirs. Analyses of rhe magnetic properties of
rocks in base sect.ion.s hâve allowed to rcveal scvcral impulses of tectonic acti¬
vation in the Hauterivian and Barremian. The impulses were accompanied
by transport of magnetic terrigenous material from the magnetic complexes
of the Centrai Ridge into the Cis-Caucasian Basin.
MOTS CLÉS
Péiromagnétisme>
caractéristiques magnétiques,
susceptibilité magnétique,
Para-Tétnys,
Crétacé inférieur.
RÉSUMÉ
Quelques caractéristiques de la sédimentation du Crétacé inférieur en Cis-
Caucasie a travers les propriétés pétromagnétiques de la couverture sédimentaire.
Cet article présente les résultats d’une étude pétromagnétique sur les dépôts
du Crétacé inférieur du Nord Caucase. Les analyses des propriétés magné¬
tiques des roches ont montré plusieurs poussées de Tactivité tectonique
durant THauterivien et le Barrëmien. Ces impulsions se sont accompagnées
d’un transport du matériel terrigène depuis les complexes magnétiques de la
ride centrale jusque dans le bassin Cis-Ouralien.
QEODIVERSITAS • 1999 • 21 (3)
365
Guzhikov A. Y. & Molostovsky E. A.
INTRODUCTION
The resulrs of pecromagnetic research on the
Lower Cretaceous deposics from the central and
eascern parts of the North Caucasus are presen-
ted with rhe géologie interpreradons. Six référen¬
cé sections from Dagestan, Chechnya, Kabarda
and the Minerai Water District were examined
(Fig. 1). They contain carbonate and terrigenous
faciès of the marine Lower Cretaceous (Ber-
riasian to Albian).
The géologie history of the région \a considered
in voluminous literature, with the early stage of
its development being analysed both from the
positions of classical fixism, and on the basis of
more récent mobijistic ideas.
The fixisi conception States that the Caucasus
was developing according to the classic geosyncli-
ne schemc, with the principal structural éléments
inherited from the end of the Palaeozoic-begin-
ning of the Mesozoic (Shevehenko Ik Re/anov
1978; Sholpo 1978). The mobilistic models pré¬
sent the geodynamie évolution of the Caucasian
région as rcsulcing from continental plates cru-
shing and moving apart, and rhe Benioff zones
rifting and subsequently migrating southwards
(Khain 1975; Adamiya ef ^ 7 /. 1982).
The analyses of the lichofacics spatial divisions
and thicknes.s of the Lower Cretaceous rocks,
hâve revealed the principal structures forming
the frame of the North Caucasian Région
(Sholpo 1978): (1) ihe elevaied Southern margin
of the Scythian Plate, conjugated with the trans¬
versal Sravropol high; (2) an intensive submer-
gence zone, spatiall}- concurrent with the
Terek-Caspian pied mont trough; (5) the éléva¬
tion of rhe Créât Caiic.isus (Fig. 1).
The nature of these structures is înterpreted in
different wavs. Some aurhors regard the zone of
the Grcat Caucasus as an inherited horsr-aniicli-
norium Mesozüic (Shevehenko îk Rezanov 1978;
Sholpo 1978), others - as an islaud arc (Khain
1975; Adamiya et ///. 1982). The Terek-Caspian
trough is accordingly interpreted as a geosyncline
axial zone or a marginal island-arc basin.
For our reconstructions, ir is important to note,
that irrespective of palaeotectonic inrerprera-
tions, two geomorphologically distinct sourcc-
lands, the northern and the Southern ones exist
in the Early Cretaceous, with an intermediate
zone of intensive submergence; chis latter one
acting as an area of active marine sédimentation
in the Early Cretaceous. The Mesozoic palaeo-
geography of rhe North Caucasus is generally
being analysed at rhe Icvel of major sedimenta-
tion-tecionic cycles, frequently uniting several
géologie periods and epochs (Khain 1968;
Doiduev 1989). Konyukhov & Olenin (1955)
and Konyukhov (1961) recognised an indepen-
dent Lower Cretaceous -Stage in the géologie
development of the eascern Cis-Caucasia; rhis is
pcculiar for a prolonged transgression, that has
started in the Berriasian and continued through
the Late Albian. Carbonaie-tcrrigcnous sédimen¬
tation prevailed durliig the early stage of the
Lower Cretaceous transgression (Berriasian-
Valanginian). Terrigenous deposits are characte-
riscic of the Barremian, Aprian and Albian.
The détermination ot the terrigenous inlTow
sources m the Cis-Caucasian Basin présents one
of the debatabic probicms for the Mesozoic
palaeogeography of the Norrh Caucasus. This
problem is discusscd in detail in a number of
important papers on the litbology of the
Mesozoic sedimentary complexes' from the
région, but the authors hâve different conclu¬
sions. Konyukhov (1961) considered the North¬
ern Land to hâve been the principal distributive
province during ihe wholc of the Lower
Cretaceous. Grossgeim (1961) deed the éléva¬
tions ol the Great Cauca.süS as the main distiibu-
tivc province. Expanding Grossgeiins scheme
(1961), Sholpo (1978) supposes, thaï in the
Callovian, rhe Caucasus ha.s undergonc active
érosion, that has practically .sioppcd in the
Ncocomian, resumed in ihe lare Barremiun and
reached its maximum in the Aptian and Albian.
In thi.s paper, the authors gor some addiriunal
palacogeographic information while analysing
the data on scalar magnetic cliaracteristics of the
Lower Cretaceous beds from rhe North Cau¬
casus. The petramagnetic data Ict us to carry out
the dccailed analyse.s of sédimentation in the
Early Cretaceous, to specify the importance of
the northern and .Southern distributive provinces
and 10 evaluate the changes of the palaeogeoche-
rnical conditions in die course of transgression
development.
366
GEODIVERSITAS • 1999 • 21 (3)
Magnetic properties of Early Cretaceous in Cis-Caucasia
40“ 42“ 44* 46”
Fig. 1. — Location map. Sections: 1, Kislovodsk City; 2. the Baksan River; 3. the Urukh River; 4, the Assa River; 5, Gergebil Village;
6, Akusha Village. I, the Southern margin of the Scythian Plate (Stavropol High); II. the Terek-Caspian piedmont trough; III, élévation
of the Great Caucasus.
RESULTS
Magnetic measuiemcnts oF the rocks from 1500
stratigraphie Icvels werc performed in six Lower
Cretaceous reference sections (Fig. !). Petro-
magnetic sampling from rwo sections (Kis¬
lovodsk and Gergebil) wa.s diiplicared in the
adjacent outerops of the same âge. Various fades
were examined; limestones, maris, sandstones,
alcurolices and clays, A significanr speerrum of
magnetic features was analysed in the course of
laboratory experiments: magnetic susceptibility
(k), natural rémanent magnétisation (Jn), réma¬
nent saturation magnétisation (Jrs), destructive
field of rémanent saturation magnétisation
(H’es), and magnetic susceptibility measured
upon heating tbe rocks up ro 500° in air
medium (k^). The variation^ in the dk = k^-k
parameter reflect the concentration changes of
initially nonmagnetic iron sulphides. Pyrite and
marcasitc change into magnecite upon heating,
which resulrs in increasing magnetic suscepeihi-
lity. Thus, dk increase reflects the contents of
newly generated magnetite, and conscqucntly,
the concentrations of original FeSj.
The data summari.sed hâve shown many magne¬
tic characteristics to render generally similar
information. To avoid the unnecessary duplica¬
tion, only the k and dk parameters are used in
the présent paper.
Opiical meihods and thermodifferential analyses
hâve dcmonstraled dctrital magnerite to bc the
principal magnetic medium in the bulk of
samples. Its présence is diagnoscd in thermoma-
gnctic curves from disappearance of remanetir
magnétisation around 580 (magnetite Curie
point) (Fig. 2A-C). Magnetic satuiaiions ol die
samples hâve revealcd the magnetically mild
GEODIVERSITAS • 1999 * 21 (3)
367
Guzhikov A. Y. & Molostovsky E. A.
Fig. 2. — Results of magneto-mineralogic analyses for the Lower Cretaceous deposits from the North Caucasus.
Thermodemagnetisation curves: A, clay (Aptian, Gergebi! Village); B, llmeslone (Haulerivian, Gergebil Village); C. differential ther-
momagnetic analysis curve for aleurolite (Hauterivian, lhe Baksan River): D. magnelic saturation and démagnétisation curves; I, for
aleurolite (Berriasian, the Assa River); II. for sandstone (Barremian, Akusha Village).
phase Hs = 32-64 A/m, H’cs = 24-50 inagnetite
(Fig. 2D). The data of immersional analyses tes-
tify to allorhigenic nature of magnetite. The
coarsest Fe^O^ grains are angrilar and possess clear
traces of transportation by water; .scratches and
hatching on the sides and edges.
GrossgcinVs data (1961) confirm the conclusion,
that magnetic features ol the Lower Cretaceous
beds from the Cis-Caucasia were controlled
mainly by detrital magnetism.
Carbonate beds are peculiar for extreniely low
magnetism. Terrigenous complex is characterised
by considérable variations in magnetic suscepti-
biliries. Their levels are pracrically independent
on rock lirhologies or stmctural-textural features,
but are generally determined by the spatial-struc-
tural positions of the sections and by the strati¬
graphie positions of the scquences.
According to its petromagnetic properties, the
Lower Cretaceous terrigenous complex from the
368
GEODIVERSITAS • 1999 • 21 (3)
Magnetic properties of Early Cretaceous in Cis-Caucasia
k
(10’^SI units)
Fig. 3. — Palaeontologic and petromagnetic corrélations of the Hauterivian deposits from the North Caucasus. a, corrélation lines
according to palaeontological data; b, idem according to petromagnetic data; c, petromagnetic intervals highiy magnetic; d, idem low
magnetic. For legend of lithology and gap, see Appendix 1.
GEODIVERSITAS • 1999 • 21 (3)
369
Guzhikov A. Y. & Molostovsky E. A.
North Caucasas may bc divided into two distinct
parts (Appendixes 1-6) in ail the sections, extept
the Kislovodsk one (Appendix l). The Hauce-
rivian-Rarremian becis stand ouc againsi rhc
general background due to higher magnetism
and great dispersion oF magnetic values.
Alternaring groups of highiy and low magnetic
layers are retognised wirhin rhe sections, with the
thickness of 10 to 100 m and the magnitudes of
Jn and k varying bettveen 1-65.HP ST units and
0.2-3.10 -^ A/m, rcspccrivcly.
A certain scqucnce may be outlined in distribu¬
tion of fhc petromagnetic intervals over the stra¬
tigraphie section: the highiy magnetic intervals
correspond to tlic lower parts of biozones or sub¬
stages, and the low magnetic ones-to the upper
parts. Thus, ail the Hauterivian biozones (except
the Acanthodhvm radiatxu one) and Barremian
substages correspond to binomial petromagnetic
rhythms (PR), with the boundaries defined front
sharp (by the factors ot mo, three or more) diffé¬
rences in Jn and k values (Appendixes 1-6).
The numher of rliythms and the thicknes.s are
not constant and dépend on ihe section comple-
teness and sédimentation races in various structu-
ral-facies zones. On the basis of ail the
considered data, at least three petromagnetic
rhythms are recognised in the Hauterivian
(Fig. 3). Ail of them occupy somc dcfinicc strati¬
graphie positions and may be used for dccailed
section divisions and corrélations, évaluation of
wa.shoucs and sédimentation gaps (Fig. 3).
Another peculiarity of the Hauccrivian-
Barrcmian scdimencation consists in distinct
structural-spatial différentiation of the sédiments
according to their magnetic properties.
The littoral-marine sandstoncs froin the
Hauterivian Stage of the Minerai Water Région,
are characterised by low and uniform magnetism
(k = 0-3.10’^ SI unies). The Hauterivian bed
magnetism increases up to 10-20.10SI units to
the south-easf, in the Baksan Sectiori The values
reach their maxima in the Urukh River Basin,
where mosr of the samples having k varying het-
ween 15'50.10'^ SI units over the whole of rhe
Hauterivian and Barremian sections. In souih-
eastern Dagestan, the highiy magnetic horizons
are separated and localised in fairly narrow inter¬
vals of the section (Fig. 4).
The Cis-Caucasian Aptian and Alhian bed.s form
an independent lithological-magnetic complex,
sharply different from rhe Hauterivian-
Barremian one by irs low magnetism (Fig. 4). In
the Aptian deposits, the k values vary within 1-
12 .lO '^ SI units withour any significant différen¬
tiation over rhe section.
The Alhian deposits are even lower magnetic (k =
1 -10.10 *' SI units). Neverrheless, in Dagescan
sections, four binomial petromagnetic rhythms
may bc outlined from vatiadons in magnetic sus-
cepribility. In the référencé section of the Albian
near the Akusha Village, the First rhythm (K 1)
covers the lower and the middie substages, the
K 2 — the Dipolocrras rmunum-Hysterocems vari-
cosum zones, the K 3 — the Mortaniceras mjîatum
zone, and the K 4 — rhe SloUczkaia ciispar zone
(appendix 6). In the lower rhythm, the boundary
bcTV'ecn the low and moderately magnetic inter¬
vals coïncides with the O. royssianumIA. interme-
dim biozone boundary.
A pcciiliar feature of the Aptian-Albiun petroma¬
gnetic cornplex consists in a sharp increa.se of the
rock magnetic susceptibilities in certain stratigra¬
phie intervals, upon heaüng up to 500".
The Lower Aptian and lowermosr Middie Aptian
(rhe Epicbelontcey'as subnodosocostatum zone] beds
do nof rcvcal any significant increasc in magnetic
susceptibility (Fig. 4).
An anomalous burst of dk values (up to 450.10 ^
SI units) is associated in ail the sections with the
boundary beeween the Middie Aptian zones
E, sulmodosocostatum and Parakoplites melchioris
(Fig. 4).
The thermokappamerric diagrams for the depo¬
sits from the P. mekhiorh zone, Upper Aptian
and Albian, have individual pcculiaritics in cach
of chc sections (Fig. 4).
In the vicinity of Kislovodsk, high dk values (up
to 400.10'^ SI units) are recorded only in the
lower part of rhe 7? melchioris zone.
In the basin of the Urukh, high values of magne¬
tic susceptibility are characceristic both, of the
Upper Aprian and of the Alhian complexes (dk =
150-450-10'^ SI units and dk = 100-400.10 ^ SI
units, respeciivdy).
In Dagestan, anormal dlc values arc charactcri.stic
of the uppetmost Aptian and of the Albian.
However, in the section near Gergebil, the
370
GEODIVERSITAS • 1999 • 21 (3)
Guzhikov A. Y. &c Molostovsky E. A.
Albian is markcd with higher dk values (to
300.10'^ SI Linits)» than tlie upper Aprian, while
the reverse is observed iiear Akusha.
Variations in magnctic susceptibility increase are
associated with the paJaeontological boundaries.
Thus, in the AJbian Section from Akusha, rhe
smoothed dk curve (the dk curve was smoothed
by means of calculating dte sJiding arithmctic
mean from five samples, at a step ofone samplc,
Appendix 6) demonstrated distinct rhythms,
while ihree of its intervals with the dk > dkav
stratigraphically coïncide with the zones
PseudostmneraTiii eoelentata^Oxytropidocems roys-
siamim, H. orbignyi'H. varkosïmi and Stoliczkaia
dispar^ respectively.
As seen in Figure 4, the values ol k and dk para-
meters reveal clear inverse rclationship: the high-
ly magnetic I iauterivian-Barremian parts of the
sections are characterized by minimal increases of
magnetic susceptibility; on ihe contr.ary, rhe
highest dk values are recorded in the low inagne-
tic Aptian-Albian sequences.
PALAEOGEOGRAPHIC INTERPRETATION
OF THE DATA
Rock magnetic propetties are primarily determi-
ned by the compositions and concentrations of
allothigenic or/and authigenic ferromagnetic
minerais; ihese vary depending on sédimentation
settings. From this follow the previously formu-
latcd postulâtes for the géologie interprétation of
petromagnetic data (Molostovsky 1986;
Guzhikov Molostovsk)' 1995).
The following iheses are relevant to the présent
theme:
1, The magnétisation iniensity of sedimentary
rocks, contuining allothigenic ferromagneticS) is
determined by tbe pulaeogeographic and tecionic
factors, controlling Ivaring, drifting and précipi¬
tation of terrigenous marerials, Petromagnetic
différentiation of the la^^ers in a stratigraphie sec¬
tion reflects déposition rhythms and changing
sédimentation settings, resuiting from geodyna-
mic reconstructions in baring areas, and, mostly,
from the sourceland changes.
2. Variations in the dk parameter adcquately
reflect changing geochemical settings and hydro-
gen-sulphide contamination of the bortom silts
or its absence.
Complex analyses of the magnetic properties,
and of the materials on Hthofacies stratigraphie
distrihutions on fossil biocoenoses, textural-
structural feattites of the rocks, allow co obtain a
fairly complété idea of rhe évolution of sédimen¬
tation sctting.s in rhe Cls-Caucusian Basin during
die Early Crctaccous.
Ail rhe data combined, provide the grounds for
recognising the independent Lower Crciaceous
step in rhe géologie development of rhe North
Caucasian Région, comprising several major
stages, each one from 10.5 to 27.^ million ycars
long.
The firsr stage, eqtiivvdenr to the Berriasian and
Valanginian, coïncides with the bcginnlng of a
major transgression, marked by chiefly carbonare
sédimentation. Déposition took place in the set-
riags of a relariveJy shaJlow and wcll-oxygcnated
warm basin (Konyukbov ^ Olcnin 1955;
Konyukhov 1961; Khain 1968). The limited ter¬
rigenous inpur and cxrrcmcly low magneri.srn of
the rocks tesdly co chc lowland terrain in pro¬
bable soLircclands. and low magnetism of the
source rocks.
The Hauterivian bas opened a new stage in the
Ëariy Creraceous sédimentation cycle. The
consistent sea transgression northwards, coinci-
ded with lectoiiic activation of the Great
Caucasus and élévation of the Southern margin
of the Scyrhian Plate.
The increased magnetism of the Haurerivian-
Barremian part of the section, indicate.s, chat the
principal sourceland did not lie in the Northern
Land with ihe low magnetic sedimentary cover
being washed ouc, but was situated in rhe Great
Caucasus cerntory, characieriscd by wide deve¬
lopment of the Upper Palaeozoic and Jurassic
intrusions and of the dike complex of basites
(Afanasycv 1968).
Jiidging from the characters of petromagnetic
sections, the rerntory of the Central Caucasus
was the principal magnetic maierial supplier to
rhe Lower Crctaceous basin. The bulle of ihe
magnetic terrigenous inpur was accumulated
wilhin the Oseiin syncline, in che basins of the
Baksan and Urukh. The eastern part of the Great
372
GEODIVERSITAS • 1999 • 21 (3)
Magnetic properties of Early Cretaceous in Cîs-Caucasia
Caucasus was less important in this respect. The
Western Caucasus, with its granicoid intrusions
of Malkinskaya group, did not exert any obvious
influence on thc sédimentation in the Cis-
Caucasian Basin. The Southern part of the
Scythian Plate and thc adjacent Stavropol projec¬
tion (Fig. 1) served as the main distributive pro¬
vinces for the western part of the Central
Cis-Caucasia. l’his is indicated by low and uni-
form magnétisation of rhe Hauterivian arkoses
from the Minerai Water District (Fig. 4), practi-
cally devoid of ferromagnetic matetials.
The petromagnetic differentiarion of the sédi¬
ments over the stratigraphie section, being adé¬
quate to sédimentation rhythms, testifies to
pulsatory characrer of déposition and uccasional
changes of sourcclands. Chronologie coïncidences
of thc petromagnetic rhythms and biov.ones are
indicative of the event nature of magnetic and
palaeontologic buundaric.s, and of iheir paragene-
ric dependence on the régional geodynamic
events. Thls inference is con.sistent with the idea
of thc funaional dependence of many biocoeno-
tic shifts upon changing sédimentation settings
(Zhizhhcenko l969;Zubakov 1990).
Stabili.sing rectonic settings in rhe région of the
Créât Caucasus at che beginning of tlie Aptian,
bave led to rapid decrease in lerromagnetic inpui
to ihe Cis-Caucasian Basin and, consequcnily, lo
sharp magnétisation decrea.se in borrom sédi¬
ments. Starting from the Aptian, the Southern
Land was no longer important as a sourceland.
Thus, during the las'i stage of the Aptian-Albian
sédimentation, the Northern Land, structurally
linked to the margin of rhe Scythian Plarc>
bccomes the principal distributive province,
rhe Aptian sequence Ls practicallv not difteren-
tiated according to scalar magnetic characteris-
tics, which, imder certain assumptions, may be
interprered as indicative of relarively stable tecto-
nic settings. Judging from insignificant magne-
rism variations in rhe Albian sections, some
activation bas probably laken place in the end of
the Early Cretaceous {Appcndixe.s 5, b, Fig. 4).
The régional redo.v potenrial réduction of déposi¬
tion environment, constirutes a distinctive fea-
ture of the Aptian-Albian sédimentation within
che Norch Caucasus. Anormally high concentra¬
tions of disseminated pyrite, reliably recorded
from sharp k, incrcases, arc observed in ail the
sections studied, and testiiy to periodical conta¬
minations of the bottom scdinients in the Cis-
Caucasia with hydrogen sulfide in the end of the
Aptian [P. mekhiom zone and the upper substa¬
ge) and thc Albian.
The magnitudes and durations of thcsc process
manifestations varied within widc ranges.
Various inrcnsiiies of dk in distant sections of the
same âges (Fig. 4) are indicative of the changes in
redox settings to hâve been peculiar in each of
the faciès zone (Fig. 4). In the Minerai Water
District, ihe hydrogen-sulphide environment
existed tÜI thc middle of che P. melch'wm time.
Within thc Osetiu syticlinc (thc Urukli River)
and Dagestan. it persisted rill the end of thc
Albian.
The coincidences of thermokapp;unecric and
biostratigraphic nuits, registered in the Aptian-
Albian beds from Dagestan (Appendixes 5, 6),
seem quite logical. The changes in ihe redox
potenrial of rhe déposition environment, as well
as che hydrogen-.sulphide contamination, are
known to be controllcd by palaeoclimatc feaiures
and cLisiatic oscillations. The same factors
influence biota évolution and ihe relaiionship
between planktunic and benthic organîsms in the
palaeobasin. Thu.s, vertical distributions of the
dks, docuntenr tfie changes of fimnal sequences
within the sections considered.
As shown in Ingure 4, the values of k and dk
demonsiratc obvious reverse rclaiionships: the
highly magnetic Hauterivian-Barremian parts ol
dic sections are characcerised by minimal increases
of magnetic susceptibllity, while, on the contraiy,
the highest dk values are recorded in the low
magnetic Aptian-Albian sequences. The négative
corrélations berween the k and dk diagrams are
accounred ft)r by the oxidising environment in the
palacübasin during the periods of tectonic activa¬
tions, and by the favourable conditions for redu-
cing settings in rhe deep parts of the réservoir
during the periods of tectonic stabilisation.
CONCLUSION
The set of géologie and petromagnetic data pro¬
vides the grounds for subdividing the Lower
GEODIVERSITAS • 1999 • 21 (3)
373
Guzhikov A. Y. & Molostovsky E. A.
Cretaceous Stage in the development of the
North Caucasian Région into three steps, rcflec-
ting peculiar geodynamic and geochemical set-
rings in varions intervals of géologie time.
The fîrst onc-, the Rerriasian-Valanginian srep, is
peculiar for mainly carbonate déposition. The
insignificant amouiii of détritus in the Berriasian
deposits. and its alniost complote absence from
the Valanginian scquences, are indiaitive ol quiet
palaeorectonic setiings and low érosion bases
both, in the Southern» and the Northern lands.
The second, the Haurerivian-Rarromian step,
was characrerised by intensive terrigenoas drift
against the hackground of general tcctonic acti¬
vation. The central part of the Great Caucasus
becomes then one ofibe principal sourcclands,
with fairly cornmonly dcvelopcd granité and
basitc bodies — the main suppliers ol magnetic
matcrials to the région ol marine accumulation.
The Hauterivian-Barremian tectonic activation
of the (jreat Caucasus might be a régional rcflcc-
tion of the final stage ol the Lare Kimmerian lec-
togencsis phase (Kunin & Sardonnilcov 1976).
The thifd one, the Aprian-Albian srep, coïncides
with tectonic stabilisation ol rhe région assoda-
ted with lurther norrhward transgression deve-
lopmenr. The Gréai Caucasus chen has probably
lost its importance as a supplier of terrigenous
material, and the marginal régions of the
Scythian Plate have once more becomc the prin¬
cipal distributive provinces. During that stage,
the déposition was taking place in reducing
hydrogen-sulphide settingvS. A correspondence
can’t be ruled out betw'een the noied peculiarify
of the Lower Cretaceous palaeogeochcmistry in
the basin, and the global anoxie events at rhe
Early/Lace Cretaceous boundary (Dale et ai
1992).
Acknowledgements
The authors are grateful to Prof. Van der Zwan
(The Netherlands) for his helpfui review on the
first drah of the papen
REFERENCES
Adamiya Sh. A., Asanidze B. Z. & Pechersky D. M.
1982. — Geodynamics of the Caucasus (an
aitempt ol palinspastic reconstructions): 23-37 fin
Rusiian]. hi Sheina l. P. (ed.), The Cauiosus geody-
namkprobknn. Na^lka^ Moscow-
Alanasycv G. D- 1968. — MaginatLsm development
.stages. 550-554 |in Ru.sskn], tn Andruschuk V. L.
(ea.). Ckologv of ihv USSR. The North Caucasus.
Pan I. Géologie dcscripnon. Ncdra, Moscoxv.
Paie L. A., Chaitanya S.. Block J., Wilson M. 6: Wall
J. 1992. -— An anojcit event at the Albian-
Cenonianian boundary ihe Fish Scalc Market Bed,
lUirthcrn Alberta, Canada- Paiatogeography,
Palfieoiiimatolù^. Pt/laeaecokgi 92 iX-ZY 1.^9^166.
Üorducv 5- I. 1989. — Meso-Cenozoic geodynamics
in the Greater CaiicaHUî: 82-02 [in Russian), /w
Sheina L.P. (ed.), The Cdtuaius geodv^idmics.
Moscow, Nauka .
Grossgeini V. A. 1961. — Hisiéïry of terrigenous
minerais in the Mesozoie and Ccnozoïc from the
North Caucasus and Cis-Caucasia. VNIGRI
Proceaiirig 180, 376 p. [in Russian].
Guzhikov A. Y. & Molostovsky K A. 1995 —
Sirarigraphic significance ol .scalar magnede charac-
terisrics of sedimenrary rocks (methodical aspects).
MOIP BuHethu Geologital dcparimcnc 70 (1):
32-41 |in Russian).
Flarland W. B.. Cox A. V.. LIewcIlvn l\ G., Pickton
C. A. G., Smith A. G. & Walters R. 1982. — A
géologie time Haie. Cambridge University Press,
Cambridge, England, I28p,
Khain V. L. 1968. — Géologie development history;
676-700 fin Russian), /// Andruschuk V. L. (ed.),
Gealogÿ of tbe USSR. d'Iie North Caucasus. Part l.
Géologie desetiption. Nedra, Moscow.
— 1975. — Prindp.îl srages in the tcctonic-magmatic
development of the Caucasus: an artempr ol geody-
namic interprétation. Geotectonica (1): 13-27 [in
Russian].
Konyukhov î. A. 1961. — Lirhoiog)' of the Mesozoie
deposits from the Eastern Cis-CjiutaNi.i as relared to
oil and gas conrrnis, //; Brod I. O. (ed.). Gcology
and oil and gas contents in the south ol the USSR.
Strarigraphy and Üthology of rhe oÜ- and gas-bca-
ring scquences from the Ea.stcrn Cis-Caucasia.
KYLiGE Prmcfdingt Leningrad Branch, Leningrad
.3: 7-398 |iji Ru.-isian].
Konyukhov 1. A. & Olenin B. V. 1955. —
Palcogeography of the northerti slope of the Main
Caucasian Range and rhe: E-astern Cis-Gaucasia in
the l.ower Crctaceou.s epoch, Sovjetskaya geologiya
(451:27-38 (in Russian],
Kunin N. Ya. & Sardonnikov N. M. I9'76. — Global
cycles in tcctonic jnotion.s. MOIP Bulletin,
Geological deparrment 51 (3): 5-27 [in Rus.sian].
Molüsruvsky V. A. 1986. — Rock scalar magnetic
cbaracicristics as indicaior.s of .sédimentation condi¬
tions: 180-196, [in RussianJ, in Kumpan A. S.
(ed.). Rock wagncfisni use in geological survey.
Nedra, Lcningiad.
Shevehenko V. I. 6c Rezanov 1. A. 1978. —
374
GEODIVERSITAS • 1999 • 21 (3)
Magnetic properties of Early Cretaceous in Cis-Caucasia
Development regularities of the géosynclinal région
from the south of the European part of the USSR.
News of higher educational institution. Geology and
exploration (12): 3-14 [in Russian].
Sholpo V. N. 1978. —Alpine geodynamics in the Great
Caucasus. Nauka, Moscow, 176 p. [in Russian].
Zhizhhcenko B. P. 1969. — Methods for stratigraphie
researh in oil and gas-bearing régions. Nedra,
Moscow, 373 p. [in Russian].
Zubakov V. A. 1990. — Global climatic events in the
Neogene. Gidrometeoizdat, Leningrad, 220 p. [in
Russian].
Submitted for publication on 22 January 1997;
accepted on 27 September 1998.
GEODIVERSITAS • 1999 • 21 (3)
375
Magnetic properties of Early Cretaceous in Cis-Caucasia
APPENDIX
C/D
c ï
ü ^
ZE
0
20
40 ■
60
80
100
120 ■
140
160
180
200
300 -
0
O)
CO
CO
0
O)
0
CO
3
CO
Zone
Albian
upp
low
Hypacanthoplites
_ jacobi
Acanthohopliîes
nolani
Parahoplites
mefchioris
Dufrenoya furcata
D. deshayesi
D. weissi
C.securiformis
Imerites giraudi
Crioceratites
nolani
Epichebniceras
subnodosocosîatum
Holcodiscus kiliani
Acanthodiscus radiatus
Valanginian
DD
O
k(io®si
units)
0 20 0
Ak(10'^SI units)
200
300
. I I
400
Increase of
magnetic
susceptibility
Magnetic
susceptibility
Clays
Aleurolites
Sandstones
Appendix 1 . — Petromagnetic characteristics of the Hauterivian-Aptian deposits from Kislovodsk Section.
GEODIVERSITAS • 1999 • 21 (3)
377
Guzhikov A. Y. & Molostovsky E. A.
A
38i
Magnecic properties of Early Cretaceous in Cis-Caucasia
B
Appendix 4. — A, B, petromagnetic characteristics of the Berriasian-Albian deposits from Urukh Section. For legend of llthology and
gap, see Appendix 1.
GEODIVERSITAS • 1999 • 21 (3)
(Subzone)
Hysteroceras
orbignyi
Dipoloceras
cristatum
EuhopHtes lauius
Anahopates
intermediüs
Hop/ftes spêtfii
Lyejli^
Leymerlêila
tardefurcêta
*•§_ Hypacanthopliles
=3
iHïSitTa
melchioris
Epicheloniœms
subnodo$(xostatum
D. furcata
0 I D. deshayesi
O
I D. weissi
n Hemihophtes
ridzewskyi
0 Colchidiîes
g; securiformis
=3 +
fmerites
giraudi
0 Holcodiscus
5
Appendix 6. — A, B, I
and gap, see Appendi:
385
Régional magnetic zonality scheme for the
Berriasian-lower Aptian from the North
Caucasus
KEYWORDS
Magnetostratigraphy,
polarity,
rémanent mametisation,
Lower Cretaceous,
Caucasus.
MOTS CL^
Magnétostratigraphie,
polarité,
aimantation rémanente,
Crétacé inférieur,
Caucase.
Andrey Yu. GUZHIKOV & Vital! N. EREMIN
Institute of Geology, Saratov State University,
Moskovskaya Street, 161, Saratov 410750 (Russia)
guzhikovay@info.sgu.ru
Guzhikov A. Yu. & Eremin V. N. 1999. — Régional magnetic zonality scheme for the
Berriasian-lower Aptian from the North Caucasus, in Crasquin-Soleau S. & De V\/ever P.
(eds), Peri-Tethys: stratigraphie corrélations 3. Geodiversitas 21 (3) ; 387-406.
ABSTRACT
Palaeomagneric rescarch was carried out in rhe Nordi Caucasas, Azerbaijan,
Mouncainous Mangyshlak and Central Kopetdag. The ten most complété
marine sections of the Lower Cretaceous werc selected. They provided
opportunity to make reliable references of palaeomagnetic coIumn.s to the
ammonite zones from the general stratigraphie scale. About 7500 oriented
samples were selected from outerops. The data on rhe Berriasian-lower
Aptian deposits magnetism in the North Caucasus and the Western Central
Asia comhincd with other aurhors data provide the material for révision of
Neocomian palaeomagnetic structure.
RÉSUMÉ
Zonation magnétique régionale pour le Bérriaüen-Aptien inférieur du Nord
Caucase.
Des recherches paléomagnériques ont été poursuivies dans le Nord Caucase,
en Azerbaïdjan, dans les montagnes du Mangyslhak et dans le Kopetdag cen¬
tral. Les dix coupes les plus complètes du Crétacé inférieur ont été sélection¬
nées. Elles offrent la possibilirc de dresser des colonnes palcomagnétiques de
référence, corrclable.s aux échelles standard d'ammonites. Environ
7500 échantillons orientés ont été prélevés. Les données sur le magnétisme
des dépôts du Berriasien-Aptien inférieur dans le Nord Caucase et l’Asie cen¬
trale de rOuest, combinées avec les données bibliographiques, permettent
une révision de la structure paléomagnétique du Néoconiien.
GEODIVERSITAS • 1999 • 21 (3)
387
Guzhikov A. Yu. & Eremin V. N.
INTRODUCTION
The maicrials obtained consiiruted the basis for a
composite section of the Berriasian-lower Aptian
of the North Caucasus; four relarively large
magnetozoncs wiih ahernating, normal and
mainly reverse polancy were recorded within this
section, fheir stratigraphie ranges (stage, sub-
stage) correspond to ihe onhozones from the
general palaeomagnctic seule (Anonymous
1992). Each orrhozoae ts characterised by a
rather cornplicated .structure owing ro subordina-
te sub- and microzones of opposite polarities.
Palaeomagnctic units, which coiurary to
palaeontological ones, are stable on global scale,
in certain cases may be used as a measunng rule
for parallélisations of stratigraphie scales from
distant régions.
Magnetostratigraphic corrélation of the
Berriasian deposits from the Caucasus and the
stratotype région has made it possible to reveal
the interrelaiions benveen the ammonite scales
from the two régions, and furrhermorc, ro esta-
blish the approxirnate locations of calpionellid-
zone boundaries in the sections on the Caucasus.
Correlalioti.s ot magnetostratigraphic sections
from Mangyshlak, the northern Mediterranean
and the English hypostratorype made it possible
to consider the corrélations between the ammo¬
nite and calpionellid scales of the Valanginian.
WORKING METHODS
The study was focuscd on the most complété
Berriasian-lower Aptian marine sections from the
North Caucasus and Central Kopetdag (Fig. 1)
providing reliable refercncing of the palaeoma-
gnetic Cülumns to the ammonite zones in the
general stratigraphie scale.
The sections were commonly described in coopé¬
ration with hiostratigraphers, which allowed
strict géologie and palaeonrologic control of the
palaeomagnctic arrangements.
Frequencies of the oriented sample sélection were
determincd by ihc thicknesses of elle deposits
studied. Sampling intervals varied from 0.5 to
3.5 m in the sections tlirough fblded areas and
from 0.2 to 0.75 m in the platform.
As a rule, onc sample was selectcd from each
stratigraphie levcl; later on. it was sawcd in 4-
6 tubes, 24 or 20 mm on edges.
Palaco- and pcrromagnetic studies were accom-
panied by the standard complex of laboratory
Work. Magnetic suscepiibilities (k) and natural
remanenr magnétisation (NRM. Jn) were raeasu-
red; magnetic clcaning was carried ont with tem¬
pératures and alternating magnetic fîelds; normal
mugnetisarion curves were drawn with subse-
quenr measuring of ihc rémanent saturation
magnétisation (Jrs), détermination of satunation
Rcids (Hs) and destroying fields of remarient
saturation magnétisation (H es). Thermo-
magnetic and differcniial therniomagnetic ana¬
lyses (TMA and DTMA) were widcly used to
diagnose magnetic phases. A number of samples
from each section were studied by means of op-
tical miucralogy.
Rémanent magnétisations were mcasured by
lON-l V JR-3> jR-4 devices, magnetic susceptibi-
lities-by IMV-2 and KT-5.
Température magnetic cleantng was performed
in rhe non-magnetic Rirnaces within four or five-
layer permalloy screens or within a llclmholtz
ring unit. Successive hearing was carried out in
the range of 100-500 ‘'C at température incré¬
ment of 50-100 ”C during one to lour hours, To
consider possible rock biasing. at Ic.ist rwo cubes
from each sample were put into tlic lurnace:
chose with imituaJly antiihetic oncnt.'itions in ail
the three componcnc? of magnétisation vectors.
Sorne samples underwent cleaning with alterna¬
ting magnetic ficld within Flelmholtz ring Sys¬
tem in the range of 16-40.10 -'' A/m.
The analyses of normal magnétisation parame-
ters (Hs, Jrs, HTs) and the TMA and D l'MA
data (Sec fig. 2 in Guzhilov & Molostovsicy, this
volume) make it possible to conclude, thar
magneti.sation of the rocks studied, was caused
mainly by magiietite. li.s pre.sence is easily dia-
gnosed by means of thermomagneiic curves:
rémanent magnétisation vanishes from the
région of 580 ”C (magnetite Curie point). The
sample magnetic saturations hâve rcvcaled the
magncticallv soft phase typical of tlnely dispersed
magnetite (Hs = 32-64.10*^ A/m, ll'c.s = 24-
50.'i0 'A/m).
Zijderveld diagrams were constructed for com-
388
GEODtVERSITAS • 1999 • 21 (3)
Lower Cretaceous magnetostratigraphy in Caucasus
40° 42° 44° 46°
S Borderof States p ~ '1 Borderof Russian régions Mountainsranges | 0 | Sections
Fig. 1. — Location map. I, Great Caucasus; II, Balkhan; III, Kopet-Dag. Sections: 1, Kislovodsk City; 2, the Baksan River; 3, the
Urukh River; 4. the Assa River; 5, Gergebil Village; 6, Akusha Village; 7, Nardaran Village (Northern Azerbaijan); 8, Tyuyesu
Mountains (Mangyshlak); 9, the Segiz-Yab River (Central Kopetdag).
GEODIVERSITAS • 1999 • 21 (3)
^«0
Guzhikov A. Yu. &C Eremin V. N.
ponent analyses of rémanent magnétisation vec-
tors. The rypical diagram presented in Figure 3.
testifies lo the siabiliiy of resulting Jn irends:
over ihe whole teinpcratiife interval after des¬
truction of rhc secondary componcnts, thc vector
changes along the straight line directed tcnvards
the centre of co-ordinates-
Magnétisation of the rocks considered, is charac-
terised by cwo components: the primary onc,
revcaling tes treiid after mild thermal cleaning
and preserving it up to 500 °C (Fig. 2)v and the
secondary onc. of probable viscous nature. The
latter face is affîrmed by thc majority of Jn vec-
tors clusrenng after in situ measuremenrs about
the trend of rock remagnetisation by the présent
field (Appendix lA). After a sériés of successive
t°- and H'tieanings, the remagnetisation rrends
were regularly clustering in the First quadrant of
thc low'er hcmlsphcrc or in the ihird quadrant ol
the Lipper onc (Appendix IB). These sets were
interpreted ns thc normal and reverse polatity
interval-s, re.spectively.
To substantiate the jn priority, numeroas gcolo-
gic-geophysics criteria and tests were applicd,
which made it possible to judge the age of
magnétisation in major rock complexes. Somc of
thèse indicarions are considered below.
1. Onc of thc important indications of a Jn sign
being rclaied wil h the poUrily of an ancient field,
consists in orientation indcpendence of magnéti¬
sation vector.s upon lithologie-minéralogie charac-
teristics. In dre majorir)^ of rbc- sections srudicd,
the magnétisation crends arc obviously indift’erent
to various rock types (Appendixes 3-8).
2. Another evidence of magnétisation priority
lies in the lack of interrelations between polarity
signs and scalar magneiic characferistics. In
many sections studied, several diverse-polarity
zones were recognised wiihin sequences undifVe-
rentiated with respect to k or Jn. Sinnlar .situa¬
tion is übservcd, for instance, in the Valanginian
beds on the Tyuycsu Mountain (Appendix 3). In
the Barremian section near the village of
Gergebil, on the contrary, a normal polarity zone
embraces both, the weakiy magnetised (k = 3-
10.10 ^ SI unies, Jn - 0.5-1.2.10’Vm), and scron-
gly magnetised (k = 20-50.tO '* SI units, Jn ^
2-4.10 A/m) intervals (Appendix 4).
3. The immersional analyses data show allothige-
nic magnetite lo be présent in the rocks. The
coarsest Fe^O^ varieties hâve anguJar grains with
obvious signs of transporiaiion by water
(scratches and grooves on faces and edges), which
confirms rheir terrigenous origin. To a certain
extent, this arguments for detriral nature of
magnétisation. Firni grounding of this statement
is idenrical to N RM priority proof.
Low values of Kenigsberger ratios (Q = Jn/Ji =
0.05-0.5) and low inter-sample clustering of the
trends of stable NRKi components (k = 5-30),
characteristic of DRM (or PDRM), are regarded
as the indirect palaeomagneiic évidences in
favour of oricntational (or posrorienrational)
genesis of magnétisation.
4. Corrélation of rhe palaeomagnetic structures
of the similar-aged beds from distant hcterofacial
section.s-, may certainly serve as a strong argu¬
ment for substantiating thc gcophysical nature of
magnetozones. The overwhclming majority of
thc magnetozones recognised. meet this criterion
and are laterally craccd in certain stratigraphie
intervals within vaiious lithoJogical-magnctic
lock t\'pes that have been formed in diverse geo-
chemical setrings (Fig. 3). It is piactically impos¬
sible to imagine, that self-rcvcrsal or secondary
rcmagnetisarion processes, able to re.sult in dis-
tortion of NRM polarity, 111 . 1 / be manilcsted
synchronously over vast territories and in rocks
of diverse types. l’hc indication ofextenor corré¬
lation beœmcs cspccially pondérable when sinii-
lar magnetic pobrit)' zone'iare recognised wirhin
similar-aged stratigraphie intervals From the
régions characierised by different géologie histo¬
riés. For exaniple, ihe rever.se polarity subzone
Rjap is recognised in the base of the lower
Aptian substage, both in the North Caucasus
and in the Kopetdag. The comparison.s of the
palaeomagnetic columns from the objccts stu¬
died with the magnetostraiigiaphic sections from
Siberia, Central A.sia, West Europe and other
régions lying apart (Fig. 3), have revealed good
corrélation of the palaeomagnetic data.
Each of the above criteria indircctiy confirms,
but does not prove priority of Jn. An important
evidence jn favour of thes hypothesis, however,
lies in the sum of independenr observations
conforming ro the suggestion of the ancient
nature of NRM.
390
GEODIVERSITAS • 1999 • 21 (3)
Lower Cretaceous magnetostratigraphy in Caucasus
Fig. 2. — Zljderveld diagrams. NRM vector projection in horizontal (I) and vertical planes (II) within lhe sample coordinate System.
Samples: A, clay (Hauterivian, Gergebil Village); B, timestone (Hauterivian. Gergebil Village): C. aJeuroIfte (Berrlasian, the Urukh
River); D. aleurollte (Barremian, Gergebil Village); E. aleurolite (Barremian. the Segiz-Yab River); F, sandstone (Aptian, Kislovodsk
City).
REGIONAL SCHEME OF THE
NEOCOMIAN (BERRIASIAN-LOWER
APTIAN) MAGNETIC ZONALITY
IN THE NORTH CAUCASUS
The working magnetosrratigraphic scheme of the
Lower Cretaceous in the North Cauca-sus (Fig. 3)
is based on palaeoioagnccic study results from
ren outerops of the marine Lower Cretaceous;
their géographie positions are presented in
Figure l. Dr ail sections, the magnetozones reco-
gnised were rcliably rcfcrenccd to the ammonite
zones in the general stratigraphie scale (Fig. 4),
compilcd from the data provided by numerou.s
researchers (Proz-orovsky 1989). On tlie total, the
magnetostratigraphic scheme is characrcrised by
-7500 oriented samples from mure than
1600 stratigraphie levels.
Composite palaeomagnetic columns for each of
the Lower Cretaceous stages are described below.
In conclusion, generalised characteristic of the
régional Neocomian magnetic scheme is presen¬
ted for the North Caucasus.
The Berkiasian SrAGi-,
The Berriasian beds, represenred by alrernating
carbonate (limestones, maris) and terrigenous
(clays, aleurolites) rocks, were studied in the
North Caucasus on the Assa and Urukh rivets
(Eremin 1991) (Fig. 4). In the First section,
Sakharov (1976) has established ail the ammonite
zones of the Berriasian: each of them, ejccepi
Pseudosuhfdanites ponîkus zone, is further subdivi-
ded intü two .subzones. On t(ie Urukh River,
according to the fmds of the corresponding index
species, Tirnovella occitanica, Euthymiceras etithy-
GEODIVERSITAS • 1999 • 21 (3)
391
Guzhikov A. Yu. & Eremin V. N.
Gergebil
Kislovodsk Urukh Village Akusha
City River £») Village
mi and Riasanites tjnsamnsis zones wcrc rccognised
(the P. ponticus lower zone, was not tound there).
The composite Berriasian magnetoscradgraphic
section from the North Caucasian Région
consists ol five alternating subzones: threc oncs
of reverse polarity (R|b, R 2 b, R^b) and cwo of
normal polarity (N|b, N^b) (Eremin 1991)
(Figs 3, 4).
The Vai anginian Stage
Palaeoinagnetic study of the Valanginian beds
was performed in the Trans-Caucasia (northern
Azerbaijan, near the village of Nardaran)
(Eremin & Guzhikov 1991) and in Mang}^shlak
(in dyuye.su Mountains) (Fig. 3, Appendix 3).
1ji the first section, rhe uppermost of the
Babadagslcaya suite was exposed, represented by
terrigcnous-carbonate flysch (maris, clays, aleuro-
lires, sandstoncs). The Valanginian âge of the
rocks was determined on the basis of microfaunal
dara (AJicv 1965).
The Valanginian Stage in Tuyesu Mountains is
represented mostly by fine-grained sandstones.
The two substages are recognised according to
392
GEODIVERSITAS • 1999 • 21 (3)
Lower Cretaceous magnetostratigraphy in Caucasus
Fig. 3. — Régional magnetic ronality scherne lor the Berriasian-lower Aptian from lhe North Caucasus. A. quantity oï sludied strati¬
graphie levels/ThIckness (motres): B, corrélative Unes of biostratigraphlc stages, subslages and zones: C. oorrelative Unes ot palaeo*
magnelic subzones. Absolule ege from Harland et ni. (1982). a. Harland et ait (1962); b. Molosrtovsky & Khramov (1964) and
Khramov (1982); c, Tarduno et. at (1992); d. j, Pospelova (1976); e. l Lowrie. Alvarez efat (1960) and Lowne, ChanneÜ & Alvarez
(1980). f, Grishanov (1984), g, Pechersky (1970) h. Treîyak et ai. (1976), i, Bralower(i967)i k. Guseynov (1988)* m, Channeil etai.
(1979): n. Ramazanov & Dedova (1990). o. Channeil (1967). p. Ramazanov (1987). q. RzhevsKy (1966); r. Pospeiova & Lationova
(1971); s. Besse et ai f19a6). t. Uowrie & Channell (1983); u. Galbrun (1985); v. Eremin (1991). For lilhology, see legend on
Appendjjt 4 .
the macrofaunal complex, including ammonites
(Bogdanova 1983).
The palacomagnetic column of the Mangyshlak
Section consiscs of two subzones: alternating
(RNv) and normal (Nv) polarities. (Fig. 3,
Appendix 3).
The Babadagskaya suite is encompassed by a
major normal polarity magnetozone, complica-
ted by five thin r-intervals (Eremin & Guzhikov
1991) (Fig. 3).
GEODIVERSITAS • 1999 • 21 (3)
393
Guzhikov A. Yu. & Eremin V. N.
The Haui'erivian Stage
The Hauterivian beds were studied on rhe
Baksan and Urukh rivers, near the village ot
Gergebil (Nortli Caucasus) and in the vicinity of
Nardaran Village (norrhern Azerbaijan) (Eremin
& Guzhikov 1991 ).
The finst iwo sections arc composcd of clays,
aleurolites and sandstones with subordinate mari
and limestonc inrerJayers. The Gergebil Section
is represented by alternating terrigenous (clays,
sandstones) and carbonate (limestones) mem-
bers. The section near Nardaran consists of calca-
reous clays exclusivcly.
In the Central Cis-Caucasla (sections on the
Baksan and Urukh rivers), deposits of ail the
Hauterivian biozoncs occur, which is confirmcd
by ammonite index spccies (Egoyan & Tkachiik
1965). In Gergebil, only the uppei Hauterivian
substage is recognised from ammonite fauna
(Mordvilko 1960-1962). The underlying limc-
stone sequence according to macrotauna is refer-
red to the Hauterivian without further
subdivision, and the lowermost section, devoid
of organic remains, is referred to the Hauterivian
Stage conventionally.
The Hauterivian âge of the deposits near
Nardaran is bascd on microfaunal data (Aliev
1965).
In each of the sections studied, three subzones
were recognised; cwo of chiefly reverse (Rn) and
one of normal (N) polarities (Eremin &C
Guzhikov 1991) (Fig. 3).
In the palaeomagnecic columns of ail the four
sections through the Hauterivian, despite its
complexity, clear prédominance of reverse polari-
ty NRM is recorded (Fig. 4).
The Barrumian Sta(.;l'
The Barremian beds were studied on the Urukh
River, in the vicinity of Gergebil and Akusha
(North Caucasus) and on the Segiz-Yab River
(Central Kopetdag) (Fïg. 3> Appendices 4-7).
The Barremian from the North Caucasus is
represented by sandstones, aieuroliies and, to a
lesser extent, by clays. The Kopetdag Section
consists mainly of limestones and maris.
In ail the sections, both Barremian substage.s arc
recognised from the macrofaunal complex,
ammonites included (Druzchiz & Michailova
1960; Mordvilko 1960-1962; Anonymous
1985). In rhe section of the Urukh, the upper
Barremian deposits are condensed in a limestone
layer 0.5 m ihick.
The composite magnetostratîgraphic section of
ihc Barremian from the North Caucasus consists
of three major subzoncs: chose of reverse (R),
normal (N) and alternating (RN) polarities
(Fig. 3).
The palaeomagnetic column of the Kopetdag
Section consists of two major subzones: tfiose of
reverse (R) and alternating (RN) polarities
(Fig. 3, AppendLx 7), The luwer R-subzone cor-
icsponds to the lower half of the lower
Barremian substage. The RNbr subzone encom-
passes' the uppermost of rhe lower Barremian and
the upper substage. The analogues' of the North
Caucasian normal poJarity subzone arc mlssing
from rhe Segi/.-Yab Section due to the early
Barremian wash-oui, that has not been previous-
ly recognised in this région, but is clearly pro-
nounced in ihe adjacent Paroundag Range
(Ammaniyazov et al, 1987).
The lower An ian substage
The lower Aptian deposits were studied in four
sections: near the lown of Kislovodsk, in the vici¬
nity of Gergebil and Akusha (ail in the North
Caucasus) (Eremin 6c Guzhikov 1991) and on
the Segiz-Yab River (Kopetdag).
The lower Aptian in the North Caucasus is
represented by terrigenous rocks excJusively:
sandstones, aleurolites and clays. In the Segiz-Yab
Section, the lower Aptian consists mainly of aleu-
roliics with subordinate incerlayers of limestones,
maris and sandstones. In the Volga Région, the
lower Aptiat) structures arc composed chiefly of
clays and clayey sands,
The lower Aptian beds are saturated with ammo¬
nite fauna remains (Druzchiz 6c Michailova
I960; Mordvilko 1960-1962; Anonymous 1985;
Mosks'in 1986).
Only the lower Aptian Deshayesites weissi and
D. dâshayesi zones are palaeomagncdcally sam-
pled in the Caucasus.
On the .Segiz-Yab, the âges of ail ihc lower
Aptian beds, accuratc wirhin subscages, were sub-
stantiated by macrofauna (Ammaniyazov et ai
1987).
394
GEODIVERSITAS • 1999 • 21 (3)
Lower Cretaceous magnetostratigraphy in Caucasus
B
0)
c
O
NI
CO
êo
C
(D
C
CO
CO
.to
c?
ce
I
Qi
üj
CD
C
O
N
n
D
CO
, T
üjernas
P. ponticus
Subzone
(magnetozone
Polarity
R3b
N2b
i
R2b
N1b
R1b
3
Synihei
Norlh
Caucasus
Berriasian slratotype section
Fig. 4. — Magnetostratigraphical corrélations of Berriasian deposits of North Caucasus (A) and between North Caucasus Région
and the Berriasian stratotype section (B). For lithology, see legend on Appendix 4.
GEOOIVERSITAS • 1999 • 21 (3)
395
Guzhikov A. Yu. & Eremin V. N.
Table 1 . — Corrélations of the Berriasian ammonite scales from stratotype régions and North Caucasus.
North Caucasus
after Druzchiz & Michailova 1960
Stratotype
North Caucasus
after palaeomagnetic data
Zone
Subzone
Zone
Subzone
(caipwneSides)
Zone
Subzône
Riasanites
Fauriefla
boissieri
Berriasefta
calfisto
Berriaseila
picteti
Riasanites
Fauneila
boissieri
rjasanensis
R. rjasanensis
s.str.
FaurieKa
boissieri
Calpionelliopsis
(zone D)
rjasanensis
R. rjasanensis
s.str
■IM
E euthymi
s.$tr.
Fiithyminera:^
Tirnovella
berriassensis
Malbosiceras
paramimoufjum
euthymi
Tirnovelia
berriassensis
BBB
Tintinnopsella
(zone C)
Dalmasiceras
daimasi
Dalmasiceras
daimasi
Tirnovella
Daîmastceras
daimasi
Rmovella
occitamca
T occitanica
Tirnovelia
occitanica
Berriaseila
privasensis
occitanica
s.str.
Tirnovella
occitanica
Calpioneila
Pseudosubplamites
Pseudosubplamites
ponticus
Pseudosubplamites
aranais
(zone B)
ponticus
In ail tlic exarained sections from rhe CauL-a^us
and the Kopetdag, the lowermost Aptian is dis-
tinguished for a reverse polarity magneiozone
(R^ap) (Fig. 3, Appendixes 4-8). rhLs magncio-
zone is srrarigraphically équivalent to the
D. weissi biozonc* and the lower parc of che
Deshayesites deshayesi.
It may be seen from the corrélation of the mate-
rials available (Fig. 3), that four reladvely large
zones of alcernaring, normal and chiefly reverse
polarities correspond lo rhe Lower Cretaceous
portion in che composite palaeomagnetic section
from the North Caucasus. The gap witbin rhe
Valanginian parc of magnetostratigraphic scale
(no Valanginian beds were sampled in the North
Caucasus) was climinated owing to palaeoma¬
gnetic snidies of the .sections from Mangy.shlak
and Azerbaijan) (Fig. 3). Their stratigraphie
ranges (stage, substage) correspond to the ortho-
zones Irom the general palaeomagnetic scale
(Anonymous 1992). Eaeh orthozonc is characte-
rised by a rather complicared structure owing to
subordinare sub- and microzones of opposite
polarities.
The Lower Cretaceous palaeomagnetic scale
opens with the altcrnating polarity orthozone
RNb-Vp embracing the Berriasian Stage and the
lowermost lower Valanginian substage.
The normal polaritj^ orthozone Nv^ characcerises
che uppermosi of the lower Valanginian and the
upper Valanginian subsrage.
The chietly reverse polarit)^ orthozone, Rnh-br,,
comprises the Hauierivian stage and che base of
che Barrcmian* The studies of rhe Hauterivian
reference sections from the North Caucasus,
liave, for the first time, rcvcalcd che correspon-
dence between the determined magnetozones
and the ammonite zones of general stratigraphie
scale.
The alrernating polarity orthozone RNbtj-apj is
strarigraphically équivalent to the uppermost of
che lower Barremian, upper Barremian and lower
Aptian.
COMPARISON OF THE REGIONAL AND
GLOBAL DATA ON THE LOWER
CRETACEOUS
The carrent ideas of che Lower Cretaceous
magnetic zonality are based upon the data on
linear magnetic anomalies, as well as upon fairly
numerous, but unequally informative data on the
Lower Cretaceous palaeomagnetism from various
régions ofEurasia.
In the known models of the Phanerozoic general
magnetostratigraphic scale (Khramov 1982;
396
GEODIVERSITAS • 1999 • 21 (3)
Lower Crecaceous magnecostratîgraphy in Caucasus
Stage
Substage
Zone
(ammonites)
Polarity
Valanginian
upper
Teschenites
callidiscLis
Himantoceras
tnnodosum
Saynoceras
verrucosum
lower
VTurmamiœfas
carrpyiotoxus
Vaianginianofthe
hypostratotype
of Angles
ai
0 )
U)
S
c5
D
CO
Aptian
ço
c
O)
c
ço
CD
Berria-
sian
>>
O)
O
O
Mt. Tyue-su
(Mangyshlak)
Stage
Zone
(nannofossils)
Polarity
C
CO
’c
’O)
T. verenae
c
CO
Stage
Zone
(calpionellids)
Polarity
Valanginian
Calpionellites
:
Calpionellcpsis
Cismon
(South Alps)
Fonte del Giordana
(South Alps)
Fig. 5. — Magnetostratigraphical corrélations between the Valanginian hypostratotype section of Angles (Besse et al. 1986),
Mangyshlak Région and South Alps Région (Bralower 1987; Cirilli étal. 1984). For lithology, see legend on Appendix 4.
Molostovsky & Khramov 1984), 3 ls well as in the
scalc by Harland et al. (1982), the Lower
Crctaceous is sharply ditfcrentiatcd Lato two
parts. The Neocomian belongs to rhe altcrnating
pülarity interval. whLle the Apti:m and the Albiati
stages correlatc with the cpoch of stable normal
polarity field. Thus, the boundary between two
major magnetostratones is established within the
base of the Aptian: between the NR-Gissar and
N-Djalal hypen:ones (Khramov 1982; Molo¬
stovsky & Khramov 1984).
The Berriasian Stage
The commonly accepted views upon the
Berriasian magneric zonality as an altcrnating
polarity interval, are bascd on research results
from varions continents [the stratotype section
from Southern France included (Galbrun 1985)]
and on the data from oceanic magnetometric
surveys (Fig. 3).
Fhc results of ihe présent srudy are in complété
accord with the ideas of sign-changing magnetic
zonality of the Berriasian, with slight R-polarity
prcvalence.
Analogues of the palaeomagnetic zones distingui-
shed by Galbrun (1985) in die Berriasian strato¬
type section (Fig. 4), are recognised the
sequences from the Caucasus, which has made il
possible to reveal the corrcladons -among ammo¬
nite scales h'om the t\s'o régions, and, moreover,
to record the approximate positions of calpLonel-
lid zones the Assa and Urukh sections.
'Fhe right side of Table 1 .show.s parallelizarion
results for the Berriasian palaeontologic uniis
from the scratotype and the North Caucasian
régions (the left side of the Table, corrélations
GEODIVERSITAS • 1999 • 21 (3)
397
Guzhikov A. Yu. & Eremin V. N.
among ammonite biozones and subzones, pre-
viously accepted by palaeontologists, are given
for comparison (Prozorovsky 1989).
The Vaiancïnian Siace
The Valanginian magnetic zonaliU' shows somc
problcm. Alternating polarity is recordcd in cbc
scale ot oceanic anomalies and in the North
Mediterranean sections. At the same time, the
data on the stage Angles bypostraroiype (Besse et
al. 1986) tesrify' to ihe normal polarity dominan¬
ce in the latc V'alanginian.
Comparisons ol the VaJanginian magneiosirati-
graphic sections Itom Mangyshiak, North
Mediterranean (Cirilli et al. 1984; Bralower
1987) and the Angles stxatotypc, hâve made It
possible, in the first place, to présent an explana-
tion for rhe reason ol discord among magnetos-
tratigraphic data on ihe Valaiiginian, and then tu
consider the interrelaiions among the ammonite
and calpionellid scalt*s of rhe stage.
In the South Alpine sections, provided with
microfaunal grounding, the Valanginian is cha-
racterised by alternating polarity (Fig. 5). In the
parastratütype and Mangyshiak sections, divided
according ro ammonites, an abitormal polarity
orthozone corre.spond.s lo the upper substage
(Fig. 5). An alrernaiing pt)lancy subzone (Fig. 5)
corresponds to the knver Valanginian sequence in
the Tyuyesu Mountains Section. Regretfiilly> the
lower Valanginian deposits from England were
not described in terms of magnetic polarity.
The above data coasidered, we may suppose the
deposits iVom ihc Calpioncllhes zone and from
the uppermosi of the Calpionelliopsh in Umbria,
to be analogous lo rhe lower Valanginian sub¬
stage. This inference is in agreement with Kent
& Gradstein (1985) data on corrélations between
the Valanginian calpionellid and ammonite zones.
In rhe scale of linear magnetic anomalies, rhe lar-
gest normal polariry clinm (MlON) is probably
analogoas to rhe Nv orrhozonc.
The Hauterivian S iage
The Hauterivian is characteriscd by sign-chan-
ging magnetic polarity.
The data on the Hauterivian palacomagnetic
structure in the Caucasus, is in accordance with
Harland et al. materials on linear magnetic ano-
I 398
malles /90/, with those by Pospelova &
Larionova (1971) from West Siberia, Ramazanov
(1987) and Ramazov &: Dedova (1980) from
lurkmenia, Pçchersky (1970) Irom nortii-east
Russia, Bralower (1987) from South Alps. In ail
the listcd régions, the Hauterivian palacomagne¬
tic columns show reverse over normal polarity
dominance, and record ar least eighr magnetic
field reversais (Fig. 3),
In the oceaniq scale (Harland et al. 1982), the
only major normal polarity chrori (M4) is regis-
tered in the middle of the Hauterivian interv;d of
the scale (Fig. 3)- In the composite rnagneto-
straügraphic section Irom the Caucasus, this may
bc analogous to the Nh subzone, associaied with
chc substage boundary.
Polarity distributions within rhe North Italian
Captiolü and Xausa sections, are a little bit diffe¬
rent Irom the above sketch, according lo
Cliannell tt al. (1979), normally magnetised
rocks obviousiy prevaÜ there (Fig. 3). This fact
bas not yet been unequivocally explained.
The Bakremian SïAt'.t
According lo ibe currem views, the Barremian
vSiage is characteriscd by complcx magnetic zona-
licy (Fig. 3).
Our resulis on alternating magnetic polariry of
the Barremian from the North Caucasus and
Kopetdag, are, on the whole, in good accord
with the data by I.owrie et al. (1980) and
Bralower (1987) on the South Alpine sections of
Umbria, Cismon, Gubbio, etc.» with the lower-
mosc of the srage corresponding to a probable
analogue of the Rbr subzone (Fig. 3).
At the same time, according co Channell et al.
(1987) définitions for the North Iralian sections
of Capriülo and Xausa major normal polarity
magnetozones correspond to rhe lowermost of
rhe Barremian Stage (Fig 3).
The comparisons ol the composite magneiostra-
tigraphic section from the North Caucjisus and
Kopetdag with Harland et al. (1982) scale, do
not deny corrélation of the Rbr subzone with the
M2 anomaly, or rhat of the RNbr subzone with
M1 and M l n chrons (Fig. 3).
The Aptian Stage
In ail the examined sections from the Caucasus,
GEODIVERSITAS • 1999 • 21 (3)
Lower Cretaceous magnetostratigraphy in Caucasus
Kopetdag and Volga Région, the lowermost of
the Apiian are distinguished fora reverse polarity
magnerü7.one, most probably analogous to the
MO chron of rhe anomaly scale (Harland et al.
1982) (Fig. 3).
CONCLUSION
Comparisons of the régional and global data on
the Berriasian-lower Aprian hâve shown the
results obtained ro accord in principle with the
magnelostraiigraphic matcrials known. The
results allow to hâve more précise ideas of the
Neocomian part o( the palacomagnetic scale.
In the stratigraphie aspect, the magnetozones
recognised are reliable stratigraphie bench marks
for synchronous corrélations of the deposits,
both on the régional and global scales.
Acknowledgements
The authors are grateful to Prof. Van der Zwan
(The Netherlands) for his helpflxl review on the
first draft of the paper.
REFERENCES
Aliev K, S. 1965. — Radiolarians from Loiver
Cretaceous beds of North~East Azerbaijan. AN
AzSSR publishing, Baku, 124 p. [in Russian].
/Vmmaniya/ov K. N., Sniirnova T. N., Dutalov V. L
et ai 1987. - Strarigraphy of Lower Cretaceous
beds ffom CenriuJ Kopetdag: 3-27 |in Russian], in
Geobgy of furkmemstan. Ylym, AJikhabad.
Anonymous 1985. — The Lourr Cretaceous in the
South of the USSR. Nauka, Moscow, 224 p. [in
Russian].
Anonymoiis 1992. — Stratigraphie Code. VSEGEI
Publication. Saint-Pererburg, 120 p. lin Russian].
Besse J., Boisseau L, Arnaud-Vanneau A., Arnaud
U., Mascle G. & Tlueuloy J. 1986. —
Sediment.iry modificarion.s, bannal rencwal and
magnetic sield polarity reversais in rhe VaUnginian
of the hypo.srratoiypc of Angles. Bulletin du centre
de Recherche Exploration-Production Elf Aquitaine
10(2) : 365-368.
Bogdanova T. N. 1983. — Valanginian of
Mangyshlak. Nauka, Moscow, 120 p. [in Russian].
Bralower T. ]. 1987- — Valanginian to Aprian calca-
reous nannofossil stratigraphy and corrélation with
rhe upper M-sequence magnetic anomalies. Marine
Mia'opalaeontology 11: 293-310.
Channeu J. E. 1'., Lovvrie W. & Medizza F. 1979. —
Middle itnd Early Cretaceous magnetic stratigraphy
from the Cismon secrion, Northern Ttaly. Earth
Planetary Sciences Letter (42): 153-166.
Channell J. E. T., Bralower T. J. àc Grandeso P.
1987. — Biostrattgraphy correlarion of Me.sozoic
polarity chron.s CMl to CM23 at Capriolo and
Xausa (Southein AJps, Iraly). Earth Planetary.
Sciences Letter {^Sy, 203-22L
Cirilli S., Marton P. & Vigli L. 1984. — TmpÜcationvS
of 3 tombincd biosiratigraphic and palaeomagnetic
srudy of rhe aumbrian Maiolica Formation. Earth
Planetary Sciences Letter (69): 203-214.
Druzehiz V. V. lèc JVIithailova 1. A. I960. — l.ower
Cretaceous Inostraiigraphy of Northern Caucasus.
Moscow Lfoiversity publishing, Moscow, 190 p. [in
Russian).
Egoyan V. L 5c Fkachuk G. A. 1965. — Stratigraphy
of Haucerivian of North Caucasus: 244-285 [iri
Russian], in Egoyan V. L. (ed.), Eaunu. stnttigrapby
and lithology of Mewzoiç and Cenozok beds frorrl the
Krasuffdarrégion. Ncdra, Leningrad.
Ercmin V. N. 1991. — Magnetostrjtigtaphy of ihe
Beiriasiân deposics of the North East Caucasus.
VIN'ITL N3725-B91. 10 p. fin Russian].
Eremin V. N. Gu/hikov A. Vu. 1991. — Results ol
magnctostnuigraphical rc.scarch of the Haucerivian
beds from Caucasus. V7A777, N154-B91, 11 p. [in
Russian].
— 1991. — Maguetostratigraphy of the Aptian beds
No.-rh-E3.sr Caucasus. KAV/77, N155-B91, 16 p.
[in Russian].
Galbrun B. 1985* — Magnetostratigraphy of ihe
Beniasian srraiotype .section (Berrias, France).
Earth Planetary Sciences Letter (74) : 130-136.
Glazunova A. E. 1973. — Palaeontology and stratigra-
phy of Cri'taceous deposits in the Volga Région: l.oiver
Cretaceous. Ncdra, Moscow, 324 p. (in Ru.s.sian].
Gri.shanov A. N. 1984. — Palaeomagnetic section of
C]reraceous deposits hom the right hank ot Volga
near Saratov city: 56-62 (in Russian], in Artemev
V. L, Bamlin G- L, Vosuyakov A V. et al. (cds),
Geohgical studies of the South Urals and Volga
région. SrraTigraphic and hihologic investigations.
Saratov IJnivcrsity, Saratov.
Guseyiiov A. N. 1988. — PaLteomagnetism of Jurassic
and Cretaceous deposits of the East 1 rans-CanCfisus.
IGANA, Baku, 19 p. [in Russian],
Harland W. B., CoxA. V.» Llewellyn P. G., Pickton
C. A. Smith A. G, Sc Walters R, 1982- ~ A
géologie time scale. Cambridge University Press,
Cambridge, England, 128 p.
Kent 13. V. &: (irad.srein F. M, 1985. — A
Crctacxious anil Jurassic gcochronology. Bulletin of
Gcoiagical Society of America 96: 1419-1427.
Khramov A. N. 1982. — Palaeomdgnetism. Nedra,
Leningrad, 312 p. [in Russian].
Lowrie W., Alvarez W., Silva L P. & Monechi S.
GEODIVERSITAS • 1999 • 21 (3)
399
Guzhikov A. Yu. & Eremin V. N.
1980. — Lower crctaceoas magnetic srratigraphy
in Umbrian pelagic carbonate rocks. Geophysical
Journal of Royal asUonomical Society 60: 263-281.
Lowrie W. & Channell J. E. T. 1983. — Magneto-
stratigraphy of the Juras.siC'Cretaceou.s boundary in
the Maiolica limestone (Unibria, Iraly). Geology
(12): 44-47.
Lowrie W.j Channell J. E. T. & Alvarez W. 1980. —
A revicw of magnetic stradgraphv investigations in
Cretaceous pelagic carbonate rodes. Journal of geo¬
physical research 85 (B7): 3597-3605.
Molostov.sky E. A. & Khramov A. N. 1984. —
Palaeomagnetic scale oF Phanerozoic and problems
of magnetostratigraphy. Transactions of XXVII
Înternaîioanl Geological Congress, Moscow, 1: 16-24
[in Russian].
Mordvilko T. A. 1960-1962. — Loiver Cretaceous of
Northern Caucasus and Precaucasus. Academy of
Sciences of USSR publishing, Moscow-Lcningrad,
T. 1, 240 p., T. 2, 296 p. [in Russian].
Moskvin M. M, 1986. — Stratigraphy of the USSR
The Cretaceous System, T. 1. Nedra, Moscow, 340 p.
[in Russian].
Pechersky D. M. 1970. — Palacomagnctism and
palaeomagnetic corrélation of Mesozoic deposits of
the North-East U.S.S.R. Reports of SVK NIC
Magadan 37: 58-99 |tn Ras-sianj.
Pospelova G. A. 1976. — Palaeomagnetic scale of
Jurassic and Lower Cretaceous time: 27-46 [in
Russian], in Palaeomagnetism of Mesozoic and
Cenozoic of Siheria and Far East. SO AN USSR,
Novosibirsk.
Pospelova G. A. & Larionova G. Ya. 1971. —
Palaeomagnetic zones of Hauterivian. Geology and
geophysics 8: 62-71 [in Russian].
Prozorovskv V. A. 1989. — Zones of Cretaceous System
in the USSR. Lower sériés. Nauka publishers
Leningrad Branch, Leningrad, 242 p. [in Russian].
Ramazanov S. A. 1987- — About the Régional
Magnetostratigraphy Scale of Jurassic and
Cretaceous of Turkménistan: 61, 62 [in Russian],
in Ammaniyazov A. (ed.). Géologie Science of
Turkménistan. Ylym, Ashkhabad.
Ramazanov S. A. & Dedova I. 1. 1990. —
Magnetostratigraphy of well 3 of the Egribogaz
field. Report of the Turkménistan Academy of
Sciences 5; 104-106 [in Russian].
Rzhev.sky Yu. S. 1968. — Investigations of rémanent
niagnetization of Lower Cretaceous oj Tadjikistan
dépréssion for solution of some questions of tectonics.
Leningrad, 27 p. [in Russian).
Sakliarov A. S. [976. — A key Berria.se stage section
of the North-East Caucasus. Proceeding of the
USSR Academy of Sciences, Sérié Geology 1: 38-46
[in Russian].
Tarduno J. A., Lowrie W., Slitcr W. V. et. al.
1992. — Reversed Polarity Characteristic
Magnetizarions in the Albian Contessa Section,
Umbrian Appennines, Ttaly: Implications for the
Existence of a Mid-Crecaceous Mixed Polarity
j nterval. Journal of geophysical research 97: 241 -271.
Treryak A. N., Vigilyanskaya L. l. &C Shcmpelcv A. G.
1976. — Palaeomagnetic section of Lower
Cretaceous of the North-West Caucasus: 33-42 [in
Russian], in Palaeomagnetism, magnethm, geoma-
gnetic field. Naukova dumka, Kiev.
Submitted for publication on 22 January 1997;
accepted on 27 September 1998.
400
GEODIVERSITAS • 1999 • 21 (3)
Guzhikov A. Yu. & Eremin V. N.
Kuli-Mejirskaya antecline
Gergebil antecline
Jn (NRM) - natural rémanent magnétisation
k - magnetic susceptibility
N, n - normal polarity Jn
R, r - reverse polarity
interval of normal polarity (N)
interval of reverse polarity (R)
absence of deposits or
absence of polarity data
ctays
sandstones
limestones
maris
aleurolites
absence of deposits
gap
I ^ I NRM vector projection
I-1 in the lower hemrsphere
I ~ I NRM vector projection
I———I in the upper hemisphere
~ I trend of rock remagnetisation
—-—I by the présent geomagnetic field
Appendix 4. — Palaeo- and petromagnetic characteristics of the Barremian-lower Aptian deposits from Gergebil Village.
404
GEODIVERSITAS • 1999 • 21 (3)
Lower Cretaceous magnetostratigraphy in Caucasus
Appendix 5. — Palaeo- and petromagnetic characteristics of the Barremian-lower Aptian deposits from Akusha Village. Same legend
as Appendix 4.
Appendjx 6. — Palaeo- and petromagnetic characteristics of the Barremian deposits from the Urukh River. Same legend as
Appendix 4.
GEODIVERSrîAS • 1999 • 21 (3)
405
Cretaceous sedimentary units of Mangyshiak
Peninsula (western Kazakhstan)
Ludmila F. KOPAEVICH, Alexander S. ALEKSEEV &
Evgenii Yu. BARABOSHKIN
Geological Faculty, Moscow State University,
Vorobievy Gory, 119899 Moscow (Russia)
barabosh@geol.msu.ru
Vladimir N. BENIAMOVSKII
Geological Institute Russian Academy of Sciences,
Pyzhevsky per., 7, Moscow 109017 (Russia)
ben@ginran.msk.su
Kopaevich L. F., Alekseev A. S., Baraboshkin E. Yu. & Beniamovskii V. N. 1999. —
Cretaceous sedimentary units of Mangyshiak Peninsula (western Kazakhstan), in
Crasquin-Soleau S. & De Wever P. (eds), Peri-Tethys: stratigraphie corrélations 3,
Geodiversitas 2^ (3) : 407-419.
KEYWORDS
Mangyshiak,
Kaz^oistan,
Cretaceous,
stratigraphy,
imconformity,
palaeobiogeography.
ABSTRACT
The Cretaceous succession of the Mangyshiak Région is reviewed. Two pe-
riods in the geological history of this région are recognised. Sedimentary
units are determined for period on the base of derailed stratigraphy. UsuaJly
the units are separated by unconformities, differing in range and significance.
The time of terrigenous sédimentation extends from the earliest Cretaceous
to the early Turonian, The Neocomian succession was lormed under chan-
ging Tethyan/Boreal influence. The main interruption in marine sedimenta-
tion took place in the early Hauterivian (which is probably missing in the
region)-Barremian interval, during which continental sédiments were deposi-
ted. Aptian to early Turonian deposits were formed within the European
Palaeobiogeographical Région with a few Boréal invasions. The time of car¬
bonate sédimentation in the “Chalk sea” Basin of the European
Palaeobiogcographic Région began in the late Turonian and continued
through the Maastrichtîan.
GEODIVERSITAS • 1999 • 21 (3)
407
Kopaevich L. F., Alekseev A. S., Baraboshkin E. Yu. & Beniamovskii V. N.
MOTS CLÉS
Man^'.shlak.
Kazaîuixraîi,
Crciacév
stratigraphie,
discordance,
paléobiogéographie.
RÉSUMÉ
Les unités sédinicnMires crétacées de la péninsule du Man^'shlak (Kazakhstan
occidental).
La série crétacée de la région du Mangyshlak est revue. Deux périodes dans
l’hisroire géologique de cette région sont reconnuCvS. Les unités sédimeniaires
sont déretminées sur la base d’une stratigraphie détaillée. Habicuellcmeni, les
unités sont scparée.s par des di.scordaiice.s, d’%e et de signification différents.
La sédimentation terrigène s’érend du Crétacé basal au Turonien inférieur.
La succes.sion du Néocomlen .s’est formée sous le changement d’influence
boréale-réthysienne. La principale interruption dans la sédimentation marine
a lieu dans rintervalle de I I lauterivien Inférieur (qui manque probablement
dans la régionj-Barrémien, durant lequel se déposent des sédiments conti¬
nentaux. Les dépôts de rAlbien-ruroiiieii înléricur se M»nr formés dans la
province palcobiogéographiquc européenne avec quelque.s inva.sions boréales.
La sédimentarion carbonatée du bassin de la » Mer de la craie ■) du bassin
paléobiogéographique européen débute au rutonien supérieur et se poursuit
pendant le Maastrichtien.
INTRODUCTION
This report includes biostratigraphic data
concerning Cretaceous high resolution stratigra-
phy of tlic Mangyslilak Mountains (Fig. 1). The
data werc collected diiring their field trips by
Naidin, Beniamovskii and Kopaevich (1980-
1986), and by Barabo.shkin (1989-1995). Thcy
were impicmented by data from the gcological
literature.
The stratigraphie data are based or correlatcd
with the standard biostratigraphical scheme for
western "BorcaJ’* turope, taken from recent
publications (Carter & Hart 1977; Robaszynslci
et al. 1982; Birkcliind et al. 1984; Wood et al.
1984; Robaszynski 1987; Schoenfeld 1990;
Rawson et ai 1996). We are not discussing
details and problcms of ihese stratigraphie corré¬
lations, which fall outside ihe scope of the pré¬
sent report.
STAGE BOUNDARIES
Investigation of palaeogeography and
sequence/evenc stratigraphy must be based on a
précisé and reliable zonal stratigraphical scheme
wirh preferably a wide corrélation potential. For
their investigations, rhe prevîous Russian authors
bave used the standard zonal scale for the Lower
Cretaceous (Luppov (?/. 1976, 1983, 1988;
Saveliev 1992; Baraboshkin 1992, 1996, 1997)
and for rhe Upper Cretaceous rhe stratigraphical
scheme of the Mangyshlak, where the loraniini-
fera zonal scheme is closely correlated wirh zonal
schemes based on macrofauna (Naidin et al.
1984a, K 1995).
Lower Cretaceous
The Lower Cretaceous of Mangy'shlak is charac-
terised by a terrigenous déposition In shallow
water ro near-shore and continental environ-
ments. The stratigraphy of the Lower Cretaceous
of Mangj^shlak is based mainly on ammonite dis¬
tribution (Fig. 2). It was mainly devcloped by
Semenov, Luppov, Sokolov, Saveliev, Bogdanova.
The biosrrarigraphic scale based on bivalves is
particularly iiseful and was devcloped by
Mordvilko, Nikiiina, Saveliev, Bogdanova. The
forarninifera scale resulis from research by
Myatlyuk and Vasilenko. Application of a fora-
minifera .scale is limitcd foi the Neocomian
because of stroiig faciès control, but is very useflil
for the Aptian-Albian interval.
408
GEODIVERSITAS • 1999 • 21 (3)
Cretaceous of Mangyshlak
Rg. 1. — Geological map of Mangyshlak.
The Jurassic/Cretaceous boundary coinddes with
a major unconformity. Berriasian sédiments are
represented by a shallow water sandy-silty succes¬
sion, with mari and limestonc intercalations, and
oysrer banks. Thcsedimems are irrcgularly disiri-
bured because of lacer érosion. The Jurassic/
Cretaceous boundary in Mangyshlak is determi-
ried by the appearance of ammonites of rhe
Tethyan family Berriasellidae: Riasamtcs Spath,
Neocosmoceras Blanchec, Subalpinitcs Mazenot,
etc. and of some représentatives of the Boréal
family Craspedltidae.- Siiritcs Sasonov (Luppov et
al. 1988). The bentbic assemblage aiso concains
U mixture of Boréal and Tethyan bitMives, gastro-
pod.s, bracliiopods and orher launa: Buchia voR
gensis (Lahusen), B. okensis (Pavlow), B, unci-
toîdes (Pavlow) (Boréal); Myophorella loewinsnn-
Icssingi (Rcnngartcn), Ruiitrigonia laevisrnla
(Lycett) (Tethyan) and others. It is interesting,
that foraminifera data demonstrate the absence
of Boréal éléments (Luppov et al. 1988). The
fauna indicates the presence ol the upper
Berriasian only and the absence of the Volgian to
middie Berriasian intcrval. The faunal assem¬
blage ÀUggesrs thar marine conditions disappea-
red near the Jurassic/Cretaceous boundat)^ and
after a short Tethyan traiisgres.sion, Boréal water
penetrated in the area.
The base of chc Valanginian is marked by an cro-
sional unconformity and by the presence of
phosphoritic conglomérâtes, h was recognised by
the appearancc of Boréal Valanginian ammonites
and buchiids. Valanginian sédiments were for-
med in shallow water environmcnt.s. Tlicy are
represented by various terrigenous faciès with
intercalations of carbonates. The Valanginian is
characcerised by tlic development of a Boréal
ammonite fauna: Nikltlnoceras Sokolov,
Polyptychites Pavlow, Dichotomites v. Koenen
(Luppov et ai 1983). There is the only évidence
lor die presence of Icthyan iauna is the upper
Valanginian ammonite Neohoploceras sp., figured
GEODIVERSITAS • 1999 • 21 (3)
409
Kopaevich L. F., Alekseev A. S., Baraboshkin E. Yu. & Beniamovskii V. N.
STAGE
SUBSTAGE
MEDITERRANEAN SCALE
(Hoedemaeker et al. 1995,
simplified)
MANGYSHLAK
(Saveliev et al. 1963: Saveliev 1992:
Luppov et aJ. 1983,1988; wrth changes
bv Baraboshkin, this paper)
ZONE, SUBZONE
ZONE, SUBZONE
ALBIAN
UPPER
Stoliczkaia
dispar
Stoliczkaia ($.) dispar
Pleurohaplites studeh
S. (F.) blancheti
Callihoplites \traconensis
Mortoniceras
inflatum
Mortonicems (Mortoriiceras) inl^tum
Senienovites (Semenovites) mtchaiskii
Semenovites (Planihoplites)
pseudocoelonodus
Semenovites (Semenovites)
tamalakensis
LOWER MIDDLE
Euhoplites lautus
Anahopittes rossicus
Hoplites (H.) perarmatus
Euhopiites loricatus
Daahestanites daphestanensis*
Anahoplites intermedius
Hoplites
dentatus
Hoplites spathi
Hoplites (H ) spathi
Lyelliceras lyelli
Lyelliceras (L.) lyellt
Douvilleiceras
mammitlatum
Pseudosonneratis (Isohcphtes} ecdeniaia'
Otûhoobtescxassus
Protohopfiies (H.) puzosianus
Sonneratia (Eosonnerafia) caperata
Sonneratia ttosonneratia) roluia
Sokplnvi^ subdraaunovt*
Sor)neraiia (Eosonneratia) scitda
Sanneratia fGlotx>snnneratia) perinHaa
Leymeriella
îardefurcata
Anadesmoceras stranaulatvm
Levmepeüa (Levrnetielia) aa^iœGtaîà'
ArcthopHtes (SubfOhvitites) protsjs"
A/cthoplites (Afcttioplitostpchrofnimsis
Leyrnerielia (Levmetiella) nkdiœstiTta’
APTIAN
UPP.
Mvpacanthopiites lacooi
M 1 S S 1 N G
AcanThohoptiies notant
Nolaniceras nolani
Acanthohoplites aschiltaensis
MID.
Parahopiites melchions
Parahopiites melchioris
^ictjeiomceras
sumodosocosfaiOm
i^icnetoniceras
suWoaosocostMim
LOWER
üufrertova turcafa
Dufrenova furcata
Deshavestîes aeshavesi
Deshavesites desha\,e5i
Deshayesites weisst
Deshayesites weissi
Deshavesites tuarkvricus
BARREMIAN
CONTINENTAL
FACIES
HAUTERIV.
ü_
Q.
3
_J
9
MISSING
VALNGINIAN
cr
LU
NeocomitesfTeschenites)
oaenmeranus '
Dichotomites bidichotomus
Saynoceras verrucosum
Œ.
Busnardoifes campylotoxus
Polyptychites polyptychus
Thurmanniceras pertransiens
Nikitinoceras hopliioides'
Thurmanniceras otopeta
BERRIASIAN
UPPER
Fauriella boissieri
Riasanites rjasanensls*
"Euthymiceras sp.
Transcaspiites transfigurabilis*
ci
Q
S
Tirnovella occitanica
MISSING
i
Berriasella jacobi
Fig. 2. — Ammonite zonation of Lower Cretaceous of Mangyshiak. Stars mark ammonite zones, revised or proposée! for the first time
in this paper.
410
GEODIVERSITAS * 1999 • 21 (3)
Cretaceous of Mangyshlak
from Mang\'.shlak by Gordccv {1971). The ben-
chic assemblage is rnixed and contains both
Boréal and Terhyan éléments, bivalves: Buchia
keyserlin^ (Lahusen), 5. sibirica (D. N. Sokoiov)
(Boréal), lotrigonia sca^iha (Agassi/), Litsch-
kovin'tgonia tcfnihuhenulata Saveliev; corals:
Thamnastvria digitata I-romeincI, Siereocoenia
colUrmria (Fronientel) (Tethyan).
The Vidanginian/Hauterivian boundar}'^ is very
difficult to reœgni.se in Mangyshlalc, and in the
whole Peri-Caspian Région. The lower
Hauterivian was traditionally described from
Mangyshlak according to Saveliev. He cited
records of Dichotoniites hïdkhuUnnus (kcynierie)
(Saveliev 1958; Saveliev & Vasilenko 1963).
According to up-co-date interprétation, this
ammonite should bc referred to the upper
Valanginian of mainly Boréal Province. Luppov
et al. (1983) referred shell-rich beds and sand-
stoncs to the Idautcrivian on the base of dïe pré¬
sents of the brachiopods Cyclùthym irregularis
(Pictec). C gillierani (Pictet) and of the corals
Actinostreâ cotliculosa Traulschold (in East
Karatau). The only record of the lower
Hauterivian Lyticocerus sp. us from the Peri-
Caspian Région (Koltypin 1970). We assume
that this idcmification was a erroneous, because
the inadéquate underscanding oi Lyticocerus
Hyatt, 1900 in the stratigraphie litcraturc of chat
time. If this were the câsc ihcn thcrc is no real
évidence for the existence of lower Hauterivian
sédiments in that area. The ochcr rcason for the
absence of lower Hauterivian in Mangyshlak is
the general palaeogeography. SedinientLS of chat
âge are missing over rnost of the Russian
Platform (In the north), in the norihern part of
the Scythian IMarform (to the wesr); in
Kazakhstan and Turkmenia (to chc south-cast)
rhey are présent mainly in continental faciès. In
the Tuarkyr area (situaied between the Great
Balkhan and Mangyshlak) the lower Hauterivian
is also missing. This is supported mainly by
oscracod data (Aleksceva et al. 1972).
The presence of upj)er Hauterivian in
Mangyshlak is can bc disctisscd, but is more
plausible, bccause .sédiments of that age cover the
eastern part ol the Russian Platform (including
the Peri-Caspian) and the Scythian Platform. It
is possible that part of the continental red-colou-
red unit (Barremian, according to tradicional
stratigraphy) belongs to chc upper Hauterivian as
was suppused by Saveliev & Vasilenko (1963).
The Haucerivian/Barremiuti boundary is noc
characterised by ammonites in Mangyshlak.
Usuallyin the Peri-Caspian area the boundary is
placed ar the disappearance of the upper
Hauterivian Boréal ammonites Simbirskitcs
Pavlow and Craspedx}dhcus Spath and the appea-
rance of the beleinnite Oxyteuthis Siolley. The
Barrernian age of red- and rainbow-coloured
sands, silts ând clays (Kugüscm Formation) is
supported by a spécifie foraminiferal assemblage:
Cyroldhwides sokolovae Mjatliuk and Conorbi-
nopsls hanemicus (Mjatliuk) by comparison witb
Peri-Caspian sections (Myatlyuk 1980) and by
ostracod data (KorockoV & Shilova 1982).
Sedinicnts of that type are widely distributed in
the 'iuranian Platform area. Ir was the time of
séparation from the Russian Platform Basin cnii-
sed by sca-level fil] and followed by the fresh-
ening of the water.
The Barremian/Aptian boundary is recognised
more easily in the région by the appearance of
rbe lower Apriaii ammonite Deshayesites
Kasansky. The ba.se of the Apdan coïncides witb
a régional transgressive surface and condensed
beds with Deshayesites deshayesi (Lcymcric in
d’Orbigny), A dechyl (Papp), Tropaeum sp. and
orher norrhern Tethyan fininal éléments (SavelicA'^
&: Vasilenko 1963). The Aptian succession is
reprcsenied by a sandstone-.sili.stone shallow
marine unit witb clays at the base, containing
niimerous sniall unconformiiies. The thrcc
Aptian substages are pre.sented in this area, but
the upper Aptian succession is condensed in rbe
basal phosphoric horizon of the lower Albian.
The ammonite assemblage kaown Irom
Mangyshlak {Deshayesites Kasansky, Parahoplites
Anthula. F.pichelaniceras Casey, Acanîbohoplites
Sinzow) demonstrates rbe influence of norrhern
Tethyan water.
The Aprian/Albian boundary is deflned ai ihc
base of Leyrneriella rardefutrata zone, which is
widely disrributed in the région. The Alhian suc¬
cession is formed by shallow-marinc and near-
shore terrigenous deposirs. Il was investigated in
detail (Saveliev 1973, 1992). Records of
Arcthoplites jachromensis (Nikitin) rogether with
GEODIVERSITAS • 1999 • 21 (3)
411
Kopaevich L. F., Alekseev A. S., Baraboshkin E. Yu. & Beniamovskii V. N.
leymeriellids (Saveliev 1*^73) arc very important
for characterising the short-ccrm influence ol
Boréal scas and rhis taxon is a good for correla-
ting Arctic and Tethyan scales (Baraboshkin
1992, 1996). The launal assemblage is very rich
in ammonites and contains mainly European
forms {Lcymcriella Spath. SoHnenitnt Bayle,
Otohoplitcs Steinmann, Hoplites Neiimayr,
CallihopUtes Spath, etc.). The Tethyan influence
is clearly visible in ihe lowêr Albian {Douvil’
leiceras Grossouvre abundance), lower middle
Albian (appearance of rare Lyellicems) and from
the middle iipper Albian onv^ards (where
Mortonlcerus Meek, Stoliczkaia Neumayr and
heteromurphs occur frequently). At tfic saine
time, an endémie évolution took place (the lower
upper Albian. wlien Semenaintes Clasunova was
widely distributed). The launal distribution indi-
cates a relative sea séparation. The Albian succes¬
sion is Very complote in terms of ammonite
stratigraphy (Saveliev 1992), but contains niime-
rous small stratigraphical gaps, marked usually
by phosphorites. The style of déposition during
the Albian changed from shallow open marine in
the beginning to near-shore in the end ty'pical for
Peri-Caspian (Baraboshkin 1996, 1997). The top
of the Albian is regionally eroded and some of
the Albian ammonites are found reworked, in
condensed basal phosphoritic horizon of lower
Cenomanian.
Upper CRi-iACEOiis
The Cenomanian/Turonian boundary is at the
top of dic Sciponocertis p'avilâ zone. The belcmni-
te Praeactinocamitx plenus (Blainvillc) is aiso cha-
racteristic for the terminal part of the Ceno¬
manian. The lower Turonian boundary position
practically corresponds to appearance ol the
Mytiloides inoceramid I incage and this level is an
event which can bc iraced throughout the
Tethyan and Borcal rcalms.
The Turonian/Coniacian boundary coincides
with the First appearance of (Zremnoceramus
Yotundütm {%emu Tfôgcr non Ficgc; Kauftman et
al. 1996). This level is lower than the firsc
Cremnonrantus deformis (Meek), which was men-
tioned in previous Russîaii scheme.s.
The Coniaciaii/Santonian boundary coincides
with the base of the Cladoceramus undulatoplica-
tiis zone. It is a very good level, hecause the
remains of this taxon is very easily identified,
1 he Santonian/Campanian boundary is at the
base of the Goniotenthh granidaui tjiuidnua zone
Ln Avestern “Borcal” Europe. This level coincides
almost exactiy with the disappcarance of
MarsiiPites testudinariîis {Sch 1 othcim) in
Mangyshlak as elsewhcre. Zonal species of
belcmnites not been lound here. Gonioteuthis
Bayle species do noi extern to the easr beynnd
the Donecs Basin. Assemblages of other belem-
nites, Aitinoaimdx latvigatus Arkhangelsky,
détermine the âge ol this Interval as early
Campanian (Naidin et 1984b).
The Campaniau/Maastrichrian boundar)'^ is very
sharp: mass fîndings ol Belemnitella langei
Jelerzky group are suddeuly teplaced by mass fin-
dings of Belemnella.
The Maastrichvian/Danian boundary is very
sharp aIso, because a stratigraphical gap is présent
and shown by the disappcarance of many macro-
fauna) groups: ammonites, belentnices, inocera-
mids.
The micropalaeontological scheme for the Upper
Creiaceous of Mangyshlak is very derailed and
contains 26 foraminiferal subdivisions (Fig. 3).
The identification of zones is based on rracing
species assemblages. At different time intervals
the représentatives of different généra took a lea-
ding stratigraphie signrficance: Gavelinella
Brotzen for the Cenomanian/Turonian, Sten-
sioeina Broizen for ilie Couiacian-Saruonian,
Botiinnoides Cushman for the Campanian/
Maastrichtian.
The corn mon occurrences of Gavelinella cenoma-
nica (Broizen) and Rotalipora appeninnka (Renz)
arc relcrred to the lower C^cnomaniaii, and
appcar.mce ol Lingolagavelinellti glohasa (Brotzen)
is rclatcd to the middlc-upper txnomanian.
The lower Ilironian inten'al ofioniminifera évo¬
lution is marked by the présence of large
Hedbergella Broennimann & Brown and Whitei-
nella Pessagno (zone à Grandes Globigcrincs »),
whilc the middle-uppcr Turonian interval is
determined by appearance and évolution of
Margsnotruncana sp. and Gavelinella monilifor-
mis (Reuss).
l'he abundaiice of Mitrginotruncima Hofker or
“Grandes Rosalines” increases ncar the Turonian-
412
GEODIVERSITAS • 1999 • 21 (3)
Crecaceous of Mangyshlak
Coniacian boundary deposits. This boundary is
determined by the mass appearance of
Gaveli ne Ha p raei nfrasa n ton ica ( M j a 1 1 i u k )
(- G. afF, vombensis). Remsella kelleri Vassilenko
and also by small Stemioeina. Mass occurrence of
rypical Stensioehui gramdata granulata ( Olbcrtz) >
GaveVmella thalmanni (Brotzen)> G, imnbemis
(Brorzen) (= G. infrasantônica). Osmgtdatia ivhi-
tei whitei (Broizen) are à lypical for the upper
Coniacian. Stemioeina excalpui exculpta (Reuss)
appcars in the terminal part of the Coniacian
and is cspccially numerous in the lower San-
tonian.
The Santonian/Campanian boundary is conside-
red to be wirhin the Bolivinoides strigillatus zone.
The appearance and mass occurrence of
Stensioeina pommerana Brotzen, Gawliyiella cle-
mentianii clemtntiana (d’Orbigny), Bolivinoides
decoratus (Joncs) are typical for the lower
Campanian, thosc oi Brotzenella monterelemis
(Marie) for the middie Campaniaiv The upper
Campanian is determined by the appearance of
Cihicidoides voltzianus (d’Orbigny) followed
by Bolivinoides draco miliaris Hütermann &c
Koch, Bolivina kalifiini (Vassilenko) (= B. menu-
sata (Reuss), narrow spécimens), upwards by
Brotzeîiella taylorensis (Carsey) and in the most
terminal part by Angulogavelinella gracHis
(Marsson).
The Campanian/Maascrichtian boundarv'^ is deter¬
mined on the basis of the appearance of
Ncoflahellina rettculata (Reuss) and Bolivina decur-
rens (Ehrenbetg), but also on the présence of
A^vmàdim AngulogaveltnclLt gracîlis (Marsson). The
middie part oi the lowet Maastrichdan is ditferen-
tiared by Brotzenella compLinata (Reuss) and the
upper part by Bolivinoides draco draco (Marsson)
and Anonialinoides subcarinatus (Cushman &
Deaderick). The upper Maasrrichtian is characte-
rised by the appearance of Brotzenella praeacuta
(Vassilenko) and of Anonialinoides pinguis
(Jennigs) and in ics terminal part by the of occur¬
rence of Hanzmma ekblomi (Brotzen) and of
Pseiidatextiilana elegans (Rzehak).
This stratigraphical schemc allows corrélation of
ail Upper Cretaceous sections in Mangyshiak
wirh chose of many areas of western part of
"Boréal" Europe; Anglo-Paris Basin, western
Germany and lowland part of Poland.
GEODIVERSITAS • 1999 • 21 (3)
THE SUCCESSION OF SEDIMENTARY
UNITS
‘‘Sedimentary units” stand for relatively confor-
mable succession of genetically related strata
bounded at the top and base by utteonformities
or by corrélative conformities. 'Phis is a modifica¬
tion of an earlier usage by Sloss (1976), There
are many dilferent visible and invisible gaps and
unconfurmities in the investigated area (Savcliev
1971; Naidin 1987; Naidin & Kopacvich 1988).
LoWHR CrF.TACROUS SF.DIMEIsriARV ÜNITS
The Lower Cretaceous succession contains many
different stratigraphical gaps and several large
unconformiries- Mosily they are erosional in ori-
gin because of shallow conditions of the whole
succession. The main gaps and flooding surfaces,
which separarc different sedimencary unies, could
be determined in the following leveis (Fig. 3).
The lower Berriasian; a gap appeared during
significant palaeogeographical rebuiîding and
interrupting of sédimentation. Hencc, an uncon-
formity is visible at the base of che upper
Berriasian (it overlies different parts of the
Mesozoic or Palaeozoic sequence). There are
many small gaps inside the Berriasian interval
which are only of local signifiçance.
The gap and unconformity berween the upper
Berriasian and lower Valanginian extend over 1-
2 ammonite zones. Usually, this Icvel is marked
by erosional surface with phospliorîtcs. Also typi-
cai for Mangyshiak is that the lower Valanginian
overlays the Middie Jurassic, and highly conden-
sed phosphoric horizons were deposited. The
highest condensation is seen in the Nikitinoceras
hoplitoules zone, but the base of the Valanginian
(-an analogue of the Neotollia klimovskiensis zone
ofSiberia) is missing.
In the Valanginian-Barrcmian interva] a hiatus
includes the complété lower Hauterivian. The
gap is usually indicated by a tbin b.isal level with
phûsphorites, softground and an ero.sional surfa¬
ce development. The existence and complereness
of other parts of rhe Hauterivian/Barremian suc¬
cession is under discussion and needs additional
palaeotuological evidence.
The Barremian/Aptian boundary hiatus extends
over 1-3 ammonite zones. It is represented by a
413 I
Kopaevich L. F., Alekseev A. S., Baraboshkin E. Yu. & Beniamovskii V. N.
Symbol
Zone
Hamawaia ekblomi, Anomalinoides pinguis, Gavelinella ex gr. danica, Pseudotexîularia varians, P. ele-
gans
XXVI
Brotzenella praeacuta, Cibiddes kurganicus, Gavelinella perfusa, Tappanina selmensis
XXV
Bolivinoides draca draco, Colelfes crispas. Gavelinella rnidwayensis. Sfensioeina caucasica
XXIV
m,2
Brotzenella comptanata. Spjrvplectawmina suiuraiis. Gaveltneila weilen. Anomalinoides suùcarinatus,
Bolivtna incrassata incrassata, B. incrassata crassa
XXIII
Angutogavelinella graciUs stellaria, Neoflabelitna reticuiata. Osangulans nava^oana, Gyroidina globo-
53. Cibicfdpides bernbw. Bolivina decurens, Bolivinoides deticafulus. B. petersscmi, Reussella minuta
XXII
cPa"
Brotzenella (aylorensis. Neoflabeilina praereliculata, Bolivina incrassala incrassata, Pseudouvigerina
chstata, Bolivinoides giganievs
XXI
cPa^
Bolivinoides draca miliêris. Bponides frankei, E conspectus, Gavelinella cayexi mangyshiakensis,
Bolivina kalininl. Gemellides ordnus, Rugagfobigerina rugosa
XX
cPa’
Cibicidoides voiUianus Heterostomella foveofata, Plectina ruthenica, Globoratalites emdyensis,
Gavelinella clementiana laevigata. Globolrvncana worozovae
XIX
CP2
Brotzenella monterelensis, B. rrrenneri, Gavelinella clementiana usakensis, Arenobulimina convexoca-
merata, HelerostomeHa praefoveolata, Orbignyna sacheri. 0. ovata, Voloshinovella tertia. V. laffitei
XVIII
cPi"(up)
Cibicidoides aktüiagayenais, Ptectha convergeas
XVII
CPi3(|oWj
Cibicidoides temirensis. C. montanus. Eponides biconvexus. Bolivinoides laevigalus laevigatus.
Boiiviniteffa galeata
XVI
CPi2
Bolivinoides decoratus decoratus, B. granulatus, Osanguiaria cordienana, Globigerinelloides volutus
XV
cp,'
Gavetineila clementiana clementiana, G. dalnae Neoflabellina nigosa, Stensioeina pommerana,
Reussella pseudospinulosa. Bolivinoides laevigalus finitima. Globotruncana area
XIV
sVcp,*
Bolivinoides strigillatus, Ataxophragmium orbignynaefonmis, Gavefinella stelligera, Globotruncana arca-
formis
XIII
Stj
Osanguiaria whttei potycamerats. O. whitei crassa, 0. wnîtei wnitei. GaveJtnetla ex gr. stelligera.
Cibiddes excavatus
XII
St,
Stensioeina granulata perfecta. S. granulata incondita, S. exsculpta gracflis
XI
cnj-st,
Stensioeina exsculpta exsculpta, Gavelinella vombensis, G. umbilicatula, Cibicidoides enksdalensis
X
CRa
Stensioeina granulata granulata. Spiropieciammina embaensis. Valvulineria iaevis. Gyroidina turgida,
Qlûborotaktes rnicheiinianus. Osanguiaria whitei whitei. Gavelinella vcmbensis{=^ G. infiasantonica),
G. Ihalmanni, G. costulata. Bolivinjta eleyi
IX
cni
Reuasella kelleri, Gavelinella praeinfrasantonica, Gavelinella kellerl, G. costulata, Stensioeina granulata
kelleri. Margmotruncana coronala
VIII
Ataxophragmium nautiloides. Gavelinella ex gr. costulata, Cibicidoides praeeriksdalensis,
Marginotruncana æmi
VII
«2
Gavelinella monitiformis, G ammonoides. Spiroplectammina praeionga Gaudryina vahabUis,
GloborotaiitQS mulUsephts, Reussella carinata. Marginotruncana iapparenli, M. marginata, Hedbergella
agalarovae
VI
ti(up)
Cloborotalites hançensis. Spiroplectammina cunenta. Gaudryina subserrata, Gyroidina nitlda.
Valvulineria leniicula. Gavelinella vesca. Cibicidoides apprima
a
ti(IOW)
Hedbergella hoUli, H. portsdownensis. WhiteinoHa bdttonensis, W archeocretacea, W baltica,
Giobigennelfoldes oentonensis
IV
cm2.3
Ungulogavelinella globosa.Brotzenella berthelini. Gavelinella vesca
■■
cm^
Gavelinalla cenomanica, G. baltica. Ungulogavelinella orbiculata. Cibiddes polyrraphes polyrraphes,
Neobulimina numerosa, Hedbergella caspia, Thalmanninella appenninica
Fig. 3. — Foraminifera zonation of Upper Cretaceous of Mangyshiak.
414
GEODIVERSITAS • 1999 • 21 (3)
Cretaceous of Mangyshlak
condcnsed horizon containing small phosphatic
pcbbles with reworked lower Aptian fauna.
The Aptian/Albian boiindary gap including the
iipper Aptian-ba.sal lowcr Albian (2-3 ammonite
zones to the wholc middlc-upper Aptian and basal
Albian). It is an important unconlormity marked
by a strong erosional and environmentaJ brcalc.
Traces of upper Aprian are recognisable in rewa-
shed phosphatic pebbics in Mangyshlak sections.
There is an unconformity in the toprnnst Albian
(usually less than one ammonite zone, but in
some Mangyshlak sections - hall of the stage is
missing). A gap séparâtes Lower and Upper
Cretaceous sequences. It is easily recognisable by
a thick pliosphoritic horizon and by an uncon-
tormity at uhe base. Ail hiatuscs are more extensi¬
ve in easterly direction in che marginal parts ol
the basin. Because of the gaps mentioned above,
the following sequences were recognised in the
Lower Cretaceous of Mangyshlak.
Upper Berria.sian-Valanginian unir (T): rhe unir is
separated by a very strong unconformity at the
base of che upper Berriasian and by an erosional
surface at the top of che V^ilanginian. It is a very
complex member with many small gaps, especial-
ly in the lower Valanginian part. I his unit begins
with coarse-grained near-shore sédiments and
fmishes with rclativcly deep-water clayey sédi¬
ments for ibe latesi stage of scquence develop¬
ment. It is important that the unit was formed
mainly under Boréal waier influence with shori-
lerm peneiraiiori of Tethyan water at its begin-
ning.
Upper Haurerivian (r)-Barremian unit (II): the
unit includes mainly subaeral sédiments. There is
an erosional surface ai ihe base of ihe scquence
and another erosional surface at iis top.
Apcian unit (111): rhe unir scarcs at the transgres¬
sive part of the lowcr Aptian with an erosional
surface and an unconformity at its base. The
upper limic of unit HT is an erosional surface
with the condcnsed upper part ol ihc Aptian
stage. This unit was formed during a tran.sgressive-
regressive cycle, finished during the late Aptian
in near-shore ta subaeral (partially) environ-
ments. The deepest condirions followed by an
anoxie event exisred during the latesi early-mid-
dle Aptian. The déposition took place under
Tethyan water influence.
Albian unit (IV) is characterLsed by a rapid trans'
gression and a slow late early to latest Albian
shallowing. It is separated by an erosional surface
front che Aptian. At the top. there is a strong
unconformity with erosional surface and plios-
phoric condensation overlain bv the Ceno-
manian. Unit IV is represenced by a trans-
gre.ssive-rcgres.sive cycle with a change of condi¬
tions ai the end of the carly AJbian-bcginning ol
the middlc Albian. During this rime, rhe sandy
to .silty-claycy shallow marine .sédimentation
changed into a near-shore environment. The
Albian development of Mangyshlak Basin was
affcctcd by Borcal influence at ihc beginning, by
séparation front oihet basins in the early lare
Albian and by an increased influenec of Tethyan
waters in the late.st Albian.
Ul'l'F.R Crftackoüs sedimentary units
Six ■sedimenrar)’^ units compose the succession of
the Upper Cretaceous in Mangyshlak (Fig. 4).
Units I-II are differenriated from those with ter-
rigenoLis composition: sands. sandstones and
clays. Units IIl-VI contain carbonate clays, maris
and chalk. There are “black beds” on ilic
Cenomanian/Turonian boundary in the siraii-
graphically complété sections.
There i.s only ont* régional unconformity in the
Upper Cretaceous .succession of Mangyshlak
area: ar the Cenomanian/Turonian boundary,
but rclacively complète sections aiso exisr. Many
small hiaiu.ses .similar to hard grounds are visible
in the carbojvaie pan ol ail sections of
MangysWak (Naidin & Kopaevich 1988). The
genesis of ihe.se hardground.s is explained by a
combincd effcct of climatic and cusracic agents.
It is suggested iliai carbonate rocks containing
hardgrounds are a modification of rhythmically
bedded strata.
The clay intercalations or “clays” differ from the
carbonate sédiments above and below in rhe
abrupt dccrcasc in the CaCO^ amounr. It is assu-
med that the "clays’’ resuit from submarinc carly
carbonate biogcochemical dissolution at the sca
floor caused by an abrupt increase in biological
produciivily of the pciagic zone (Naidin 6c
Kopaevich 1988).
The Upper Cretaceous interval in Mangyshlak
can be divided in six units. These units and their
GEODIVERSITAS • 19&9 • 21 (3)
415
Kopaevich L. F., Alekseev A. S., Baraboshkin E. Yu. & Beniamovskii V. N.
Fig. 4. — Sedimentary units of lhe Cretaceous of Mangyshiak. 1. clayey sands: 2. clays, siltstone and sandstone alternations;
3. sands, siltstone and sandstone alternations; 4. soft sandstones; 5, clayey siltstones; 6. sandy maris; 7. clayey maris; 8. maris;
9, dolomitised maris; 10. marls-sandy mari alternations; 11. clayey dolomites: 12. dolomites; 13, llmeslones; 14, carbonated clays;
15. main stratigraphical unconformities; 16. cross-bedding; 17. bioturbation; 18. conglomérâtes; 19, phosphoric nodules and pebbles
{phosphorite horizon); 20. erosional surface; 21. hardground. Roman numerals agréé with sedimentary units.
416
GEODIVERSITAS • 1999 • 21 (3)
Cretaceous of Mangyshlak
boundaries were formed vmder the influence of
sea-level changes, but some of them hâve a tecto-
nic origin.
Unit I (Cenomanian-lower Turonian): the
rcmain.s of oystcrs, other bivalves and phosphatic
nuclei of ammonites are usually présent. The
foraminifera zones I-IÎI characterise this séquen¬
ce. This unit contains a very pour assemblage of
benthic foraminifera, but the Cenomanian/
Turonian boundary inrerval is characterised hy
large Hedbergella-Whiteinella planktonic forami¬
nifera associarion.
Unir 11 (middle-upper Turonian-lower Conia-
cian) lias a hiaru-s in its base. îts sue is different
in diflerent parts of the area - sometimes a part
of the Cenomanian or ail of the middle-upper
Cenomanian and the lower part of the lower
Turonian arc missing. Thcrc i.s a phosphatic hori¬
zon at the base of unit II. This Ls a condenscd
section, which was formed partly under the
influetice of sea-level changes (Hancock 1992).
The beginning of this unit may coincide with
mark 89.8 Ma in the curve of shorc onlap of
Haq et al. (1987) (Naidin 1995). Inoceramids,
brachiopod.s, rare ammonites and echinids are
présent. The foraminifera zones lY-VIII charac-
terisc this succession. Bcnthic/planktonic forami¬
nifera ratio is aiways high. but decreases near
Turonian/Coniacian boundary ("Grandes
Rosalines” intcrval).
Unit tll (upper Coniacian-Santonian) was for¬
med duriiig an unstable custatic situation. There
is a sharp hardground surface at the base of this
unit. Traces of eustatic transgression arc visible
towards the end of thLs unit, its beginning raay
coincide with mark 85 Ma of rhe main curve of
Haq et al. (1987). This is rhe "Marsupites trans¬
gression'’ in Western Europe and in Mangyshlak.
Remains of inoceramids and erînoids are usually
pre.sent hcre. The foraminifera zones IX-XIII
characterise these units. Bcnthic/planktonic fora¬
minifera ratio is also high.
The boundary of units 111 and IV (or Santonian-
Campanian boundary) shows a small condensa¬
tion at this level. Belemnite rostra are abundant
and remains of inoceramids are rare inside rhis
unit (Lower Campanian). Many small echinids
{Offaster Desor, Galeola Klein) are found in the
lower part of this unit. The upper part is charac-
GEODIVERSITAS • 1999 • 21 (3)
terised by belemnite.s, rare ammonites and abtm-
danc small and large echinids also. Very rich
assemblage of foraminifera is présent, benthic
foraminifera prevatl. The beginning of Unir V
(middlc Campanian) coincides with mark
77-5 Ma. The eustatic rise of sea-lcvel took place
at this time and tlie transgression peak prohably
coincide with mark 7.3.5 Ma of Hancock (1992)
(Naidin 1995).
Unit VI consi.sts of chaJk of Maastrichiiari âge in
Mangyshlak. The lower boundary of this unit is
different in different places; a continuous transi¬
tion or a small or big hiatus in the Southern
Aktau Mountains. The upper Maastrichtian part
of the unit bas a régressive character with short
transgressive impulse towards the end. so callcd
'^elegans transgrcssioïC (mark 67.5 or 68.5 Ma:
Wicher 1953). The bcnthic/planktonic foramini¬
fera ratio decreases sharply at this level. This Late
Maastrichtian short but intensive transgression is
clearly reA^ealcd by scdimeniological and structu¬
ral properties and was also shown by the last out-
burst in the appearancc of new globotruncanid
taxa (Maslakova 1978). Many different fossil
remains exist tn this unit: bclemnitcs, ammo¬
nites, oviters-, braclTiopods, echinids. The top ol
unit VI coincides with the eustatic fall of the sea-
level at the Maastrichrian/Danian boundary. The
biological crisis is fixed at this boundary, al!
remain.s ot ammonites, belemnites, inoceramids
and practically ail planktonic foraminifera disap-
peared. Ail the sections show a hiatus in the base
ot the Danian. only two Mangyshlak sections
(Koshak and Kj^lsai) arc marked by “boundary
clay” with iridium in this intcrval.
CONCIUSION
From the data presented, the following stages in
rhe development of Mangyshlak during the
Cretaceous can be recognised.
K A time of terrigenous sedimenration:
- sédimentation in a basin with longitudinal
connections with strong boréal influence and
smaller Tethyan invasions: upper Berriasian-
Valanginian;
— sédimentation in continental conditions: upper
(?) Hauterivian-Barremian;
417 I
Kopaevich L. F., Alekseev A. S., Baraboshkin E. Yu. & Beniamovskii V. N.
- sédimentation in a basin wich longitudinal to
latitudinal connections, with Tethyan influence:
Aptian;
- sédimentation in a basin longitudinal to latitu-
dinaJ, but prcdominanrly latitudinal connections
with shon Borcal and Tethyan incursions and
with partial basin isolation: Albian;
- sédimentation in a laritudinal-oriented basin of
European Palaeobiogcographic Région:
Cenomanian-carly Turonian.
2. A pcriod of carbonate sédimentation in the
“Chalk sea” Basin of European Palaeo-
biogeographic Région: middle Turonian-
Maastrichtian.
Acknowledgein en ts
The authors are grateful to Prof. W. Kuhnt
(Universiry Kiel, Germany) and Prof.
E Robas'/ynsky (haculté Polytechnique de Mons,
Belgium) for constructive comments on the
manuscript. The work was undertaken with the
support of Peri-Tethys Program.
REFERENCES
Alekseeva L. B., Korotkov V. A. 6c Shilova D. D.
1972. — On the age of Ky/.ylkyr Formation of
Tuarkyr (West Turkmenia): 41-45 [in Russian], in
Mesozoic bwstrangraf>hy ofotl- and gas-fieUs of the
USSR, Nauka, Moscow,
Baraboshkin E. J. 1992, — The Lower Albian of
Central parts of the Russian Piarform: 20-36, (jn
Russian], />/ Shik S. M. (ed.), The Phanerozokstra-
tigraphy of the centra! piirt of the East-European
Platjorm. Centrgeologia. Moscovv.
— 1996. — Russian Platform as a controller of the
Albian Ttthyan/Borcal ammonite migration.
Geolùgivii Cafp(Hhn'it A7 (5): l-IO.
— 1997. — The Tcthyan/Borcal Problem as the
resuit ol puliicobiogcographical change.s: Early
Cretueeous exauiplcs froni the Russian Platform.
MinercfHit Siovara 29 (4-5): 250-,15?.
Beniamovskii V. N, Kopaevich I .. F. 1997. — Late
Santonian-Maastrichtian benthic foraminiferal
zonation in the Europe;in palaeobiogcographical
area (EPA). Mtneralia Slovacn 29 (4-5): 328-330.
Birkelund T., Hancock J. M., Hart M. B., Rawson
P. F., Remanc J., Roba.szyaski F., Schmid F. &
Surlyk F. 1984. — Cretaceous stage boundaries-
proposais. Bulletin of the Geological Society of
Denmark^^: 3-20.
Gordeev N. (. 1971. — On the ammonites froin the
Polyptycintcs horizon of Neocomian of Mangyshiak.
Transactiom InsttHite Geology and Geophy^ics 2:
190-198 [in Rus.sian].
Hancock ). M. 1992. —Transatlantk corrélations in
the Campanian Maascrichdaii stages by cusratic
changes of sea-level. Geological Society of London,
Spécial Publier non s 70; 241-256.
Haq B. U., H.irdenbol |. & Vail P. 1987. —
Chronolûgv of the flucruaung sea JeveJ sinct the
Triassic. Sfience 235 (4/93): 1 ! 56-1167.
Kauffman E. G., Kennedy W. J. & Wood C. J.
1996. — l’hc Coiiiacian Stage and Substage boun-
darie.s, m Rawson P. F., Dhondt A. V., Hancock
J. M, 6c Kennedy W-J, (ed-s). Second Iiuernationai
Symposium on Cretaceous Stage Boundaries,
Bnissels 8-16 ,September 1995, Bulletin de l'Institut
Rnyal des Sciences mjturelles de Belgique, Scierurs de
la Terre 66 :31 -43*
Kolt)'pin S. N. 1970. — Cretaceous. Peri-Caspian
dépréssion, />r Geulogy of USSR, Ncdra, Moscow
12: 544-596 [in Russian].
Korotkov V. A. & Shilova D. D. 1982. — On the
problem of the âge of Kuguseni Formaiiou of
Mangyshiak: 36-39 fin Russian), in Benttenson
V, A. (ed.), Sp’Utigtaphy andpalaeoçeopâphy ofoiT
and gas~ftt'ld reg/oni of the yonng pLztfmm. Kauka,
Moscow.
Luppov N. P., Alekseeva L. V., Bogdanova T. N.,
K<irûtkov V. A., Dzhalllov M. R., Lobacheva S. V.,
Kuzmicheva E. F, Akopian V. T. 6c Smimova .S. B.
1983. — Yalangiuuin of Mangyshlah. Nauka,
Moscow, 120 p. [in Russian).
Luppov N, P., Bogdanova T. N.. Lobacheva S, V.,
Akopyan V. T, DzhalÜov M. R., Korotkov V, A.,
Myatlyuk E. V. & Poretskaya L. S. 1988. —
Beniasian of Mangyshiak. Nauka. Leningrad. 240 p.
[in Russian).
Maslakova N. 1. 1978. — Glohotruncumds of Southern
part of USSR. Nauka, Moscow, 166 p. [in Russian].
Myarlvuk L. V. 1980. — On the imporrauce of
Foraminifera from the epicruttituntai basin of
Russian Platform for the élaboration of a zonal
scheme for the Barremian. Prohlems of Micro-
palaeontology 2y. 12‘’'-138 [m Russian).
Natdin D. P. 1987. — The “Hardgrounds” in epi-
conrinciiral carbonate sections of Upper
Cretaceous: 242-262 [in Russian], in Milanovsky
E. £. 6c Dobruskina I. .A. feds). Hbtorical Geology:
results and perspectives. Moscow State Universiry,
Mo.scow,
— 1995. — Eutitasy at Epicontinetiial Seas of East-
European Phulorm. 2- [.ate Cretaceous Plarfonn
sequences. Biylititien Moskovskogo Obchestva
îsphatelei Prirody. Otdcl Geologu 70 (5): 49-65 [in
Ru.ssian].
Naidin D. P., Beniamov-skii V. N. tk. Kopaevich L. F.
1984a. — Methods of studying transgression and
régression cycles (examplified by West Kazakhstan sec-
418
GEODIVÊRSITAS • 1999 • 21 (3)
Cretaceous of Mangyshiak
tions). Moscow State University, Moscow, 162 p.
[in Russian].
— 1984b. — Biosrraiigraphic classification on the
Upper Cretaceous of the European Palaeo-
biogeographic Région. Vestnik Moskovskogo Univer-
sitetUy seryageolo^a 39 (5): 3-15 [in Russian].
— 1993. — Palaeogeographical base for stratigraphical
subdivisions. Moscow State University» Moscow,
136 p. [in Russian].
Naidin D. P. & Kopaevich L. F. 1988. —
Synsedimentary gaps in Upper Cretaceous of
Mangyshiak. Moscow State University, Moscow,
128 p. [in Russian].
Rawson P. F., Dhondt A. V., Hancock J. M. &
Kennedy W. J. 1996. — Proceedings of Second
International Symposium on Cretaceous Stage
Boundaries, Brussels 8-16 September 1995.
Bulletin de llnstitut Royal des Sciences Naturelles de
Belgique^ Sciences de la Terre (>(y : 1-123.
Saveliev A. A. 1958. — The Lower Cretaceous
Trigoniidae of Mangyshiak and Western
Turkmenia. Trudy Vsesojuznogo Nauchno-
Issledovatelskogo Geologo-Razvedocïmogo înstituta
125: 1-515 [in Russian].
— 1971. — On stratigraphical unconformines in the
Lower Cretaceous of Mangyshiak. Biyllutien
Moskovskogo Obchestva Ispitatelei Prirody. Otdel
Geologii 46 (2): 68-72 [in Russian].
— 1973. — Lower Albian srratigraphy and ammo¬
nites of the Mangyshiak (Leymeriella tardefurcata
and Leymeriella regularis Zones). Trudy Vse-
sojîiznogo Nauchno-Issledovatelskogo Geologo-
Razvedochnogo Instituta 323: 1-340 |in Russian].
— 1992. — Lower Albian ammonites of Mangyshiak,
their phylogeny and importance for Albian zonal
stratigraphy of South of the USSR {Cleoniceras
mangyschlakense Superzone). Nedra, Saint
Petersburg, 223 p. [in Russian].
Saveliev A. A., Vasilenko V. P. 1963. — The faunistic
basis ol the Lower Cretaceous stratigraphy of
Mangyshiak. Trudy Vsesojuznogo Nauchno-
Issledovatelskogo Geologo-Razvedochnogo Instituta
218: 248-300 [in Russian].
Schoenfeld J. 1990. — Zur Stratigraphie und Okolo-
gie benthischer Foraminiferen im Schreibkreide-
Richtprofil von Lâgerdorf/Holstein. Geologisches
Jahrbuchy Hannover, A 117: 1-139.
Sloss L. L. 1976, — Areas and volumes of cratonic
sédiments, Western North America and Eastern
Europe. GeologyA (5): 272-276.
Wicher C. A. 1953. — Micropalaontologishe
Beobachtungen in der hôheren borealen Ober-
kreide, besonders im Maastricht. Geologisches
Jahrbuch 1-26.
Submitted for publication on 22 April 1997;
accepted on 30 June 1998.
GEODIVERSITAS • 1999 • 21 (3)
419
Configuration of the Palaeogene deposits
of Southern Russia
Eleonora P. RADIONOVA, Irina E. KHOKHLOVA & Tatiana V. ORESHKINA
Geological Institute, Russian Academy of Sciences.
Pyzhevsky per. 7, Moscow. 109017 (Russia)
khokhlova® ginran.msk.su
oreshkina@ginran.msk.su
Radionova E. P., Khokhlova I. E. & Oreshkina T. V. 1999. — Configuration of the
Palaeogene deposits of Southern Russia. in Crasquin-Soleau S. & De Wever P. (eds), Peri-
Tethys: stratigraphie corrélations 3. Geodiversitas 21 (3) : 421*428.
KEYWORDS
Palaeogene,
microplankton,
srratigraphy,
paJaeogeography.
ABSTRACT
Tectonic and custaric history of the Ea.st European Plate strongly influenced
the accumulation of Palaeogene sédiments. Due to thèse factors, lower part
of Palaeogene deposits is disrrihuted in an elongated area with an axis
stretches N-S, and the upper strata in an area that extends E-W.
Micropalaeontological investigation of diversified Palaeogene lithofacies allo-
wed U.S to subdivide and correlare Palacocene and middle Eocene sédiments
of the East European (Russian) Plate and to propose the picture of its évolu¬
tion during the Palaeocene-middle Eocene time.
MOTS CLÉS
Paléogène,
microplancton,
stratigraphie,
paléogéügraphic.
RÉSUMÉ
Configuration des dépôts paléogènes de la Russie méridionale.
L'histoire tectonique et eu.statique de la plaque est-européenne a profondé¬
ment influencé l’accumulation des dépôts paléogènes. En relation avec ces
deux facteurs, la partie inférieure des dépôts du Paléogène est répartie sur une
aire allongée de direction N-S, et la partie supérieure avec une direction E-
W. Les recherches micropaléontologique.s sur différents lirhofaciès du
Paléogène nous permettent de diviser et de corréler les sédiments du
Paléocène et de PÉocène moyen de la plaque est-européenne (russe) et de
proposer une image de son évolution durant le Paléocène-Éocène moyen.
GEODIVERSITAS • 1999 • 21 (3)
421
Radionova E. P., Khokhlova I. E. & Oreshkina T. V.
INTRODUCTION
Within ihe Ru.ssian Plate, Palaeogenc deposits
are classed into rwo lithologie types — Ukrainian
and Volgian - differing essentially in lithology
and stratigraphie range. Ukrainian-lype sections
are found to lhe west, and Volgian-iype deposits,
to the east of rhe Ulyaitovsk-Saratov zone
(Leonov 1964).
The Palaeogene deposits display an E-W zona¬
tion. As far north as the latitude of Volgograd,
Palaeogenc deposits are reptesented by ail the
sériés and show lithologie similariry to carbonate
terrigenous, North Caucasus-type sections. Tn
more northerly areas, Palaeogene sections are
incomplète and are dorninated by ^iliteous-
terrigenous faciès. The bonndary of the area
occupied by the Southern, Caucasian faciès coin-
cides witlî che junction zone between chc south
flank of the Easi Eiiropean craion and the posc-
Hercynian Sc^thian Plate.
The Figure I shows tcctonic structure of ihc
Southern part of ihc Russian Plate. The divcrsity
of Palaeogene lithologie associations is largcly
determined by the rcctonic complcxity of ihc
study area, locutcd in the junction zone. The
North Doncts thrust (Fig. I: A) separating rhe
Easr European craton and ihe Scythian Plate
remained active throughoui Cainozoic rime. The
Southern slope of the platform i.s adjoined by
Precambrian structures; the Ukrainian shield
(Fig. 1: A) and the Voronezh upJifc (Fig. 1; B)
with the Dnieper-Donets atilacogcn (Fig. 1; C)
in-between, and by the Peri-Caspian Basin
(Fig. 1: D) The Karpinsky swell (Fig. 1; E) is an
E-W-trending marginal structure of the post-
Hercynian Scythian Place. This swell gives way
wesrward to the orogenic Palaeozoic structure of
the Doners area (Fig. 1; F), a constituent part of
the Dnieper-Donecs aulacogen (Milanovsky
1987).
The Ukrainian dépréssion, filled by Ukrainian-
type Palaeogenc deposits, is a Meso-Cainozoic
dépréssion (Fig. 1: I) overprinring the south
flank of the Voronezh Massif of lhe Dnieper-
Donets graben, and, partiy, of the Ukrainian
shield.
The N-S-crending Ulyanovsk-Saralov dépression
(Fig. 1: II), to which the Volgian-type Palaeogene
deposits are confined, is related with an inversion
ot vertical movements. This dépréssion evoivcd
in Lite Crctaceous-Palaeocene time, and since
the Eocene it has been involved in the N-S-
trending uplifring zone, presenily known as the
Volgian uplift. Although lhe Ukrainian and
Ulyanov.sk-vSaraiov dépréssions occur closely in
spacc, their Palaeogene infilLs differ esscnrially in
structure, stratigraphie range, and lithologie
type. The zone that separating ihese areas
extends N-S along rhe East Ergeny swel! (Fig. I:
4) to E)on-Mcdveditsa swell and Kirovsk swell,
and is likely to reflecr a deep mantle structure
that trends roughly N-S.
Throughout the Palaeogene domain, lhe lower
beds are distributtd in an elongated area whose
axis .stretches N-S from Ulyanovsk to Volgograd,
and the upper .strata gravicate lo an area that
extends E-W from Kiev to Volgograd. The.srruc-
rural rearrangemenr respunsible for this réorien¬
tation took place in the early to early-middie
Eocene.
OBJECTIVES OF STUDY
The diversiry of Palaeogenc lithtifacies throu-
ghoiit this alUimportani area renders their strati¬
graphie subdivision and corrélation rather
difficult. Despiie the long histor)' ol ihc studics,
the rnicropaJacontologital coverage of these
deposits rcmains incomplète and non-unilorm.
This rclers primarily to rhe stratigraphy that is
based on .siÜceous microfossil.s, which abound in
the Palaeocene deposits of Volgian-typc sections
and in the Eocene strata of Ukrainian-rype sec-
cion.s.
First, this .study sets oui to constrain the strati¬
graphie range of Palaeogene siliccous faciès in the
Ulya novsk-Saratov dépression.
Second, our aim is to impiovc the understanding
ol the structure and age of the Eocene depo.sits in
rhe arc-a where the Dnieper-Donets depre.ssion
adjoin.s the Peri-Caspian Basin, and where the
Eocene strata comprise boih carbonate and sili-
ceous faciès, pcrniittinga corrélation of northerly
(cratonic-type) and North Caucasian sections.
Sections and boreholcs penetrating the
Palaeogene deposits we hâve studied are shown
422
GEODIVERSITAS • 1999 • 21 (3)
Configuration of the Palaeogene deposits of Southern Russia
2-km contour of basement surface
Faults
ED Cristalline basement
|A a] Oceanic crust
O Meso-Cainozoic cover
© Boreholes and sections
Fig. 1- — Schemfi showing main lectonic slruclures of the southetn part o1 Russian pJartorm, after Geodynarnic map ol the USSR
and adjacent seas (Anonymous 1988> and Milanovsky (1987). Boreholes and sections: 1, Slariy Saltov. 2. Varuga. 3. Strelech'e;
4, Kanlemirovka; 5, Sergeevka; 6, Rudaevka, 7. Boguchar; a, Veshenskoe, 9, Uzen; 10. Smishlyaevskaya Gorka; 11, Vodoratsky
Quarry; 12. Sengeley. Precambrian structures of the Russian Plate: A, Ukratnian shield; B. Voronezh uplifl; C, Dnieper-Donets aula-
cogen; D, Peri-Caspian Basin; E, Pachelma trough: <- a, northern Donets (hrusl. Posl-Hercynian structures of the Scythian Plate;
F, Karpinsky swell: G, Donets folded area- Meso-Cainozoic structures: I, Ukralnian synecline, II, Peri-Caspian Basin,
III, Ulyanovsk-Saratov synecline. Cainozoic méridional structures: b, East Ergeninsky swell (horst); c, Don-Medveditsa swell
{modem Volgian uplift); d. Klrovsk swell.
GEODIVERSITAS • 1999 * 21 (3)
423
Radionova E. P., Khokhlova I. E. & Oreshkina T. V.
in Figure l. Thèse are lype sections in two areas
that are crucial to Palaeogene stratigraphy in the
central Ulyanuvsk-Sararov dépréssion (Sengelcy
Smyshiyacvskayâ Corka, Kuroedovskie Vyselki
quarry, and Vodoratsky quarry sections) and
along ihe NE flank of the ükrainian dépréssion
(246 Stary Saltov. 230 Strelechie, 5-93 Boguchar,
and 9540 Riidacvka holcs and Yaruga, Sergeevka,
and Kantemirovka sections).
STRATIGRAPHIC SUMMARY OF
PALAEOCENE DEPOSITS (VOLGIAN-TYPE
PALAEOGENE STRATA)
Vblgian-type Palacogene deposits (Leonov 1964)
hâve a siliccous-terrigenous composition and
show a distinct cycliciry. It is cusromarily bclie-
ved that in this région PaJaeogene deposits hâve a
complété stratigrapfiic range and pass conti-
nuousiy into lower Eocene strata.
The Palacocenc deposits are subdividcd into chc
Syzran, Saratov (= Kamyshin), and Tsaritsyn for¬
mations. The last is assigned to uppermost
Palaeoccnc-lowermost Eocene. However, sections
in the lowcr and uppet rcaches of the Volga are
difFicuIt to corrclatc. The Syzran Formation is a
rather diverse and intricatcly built complex of
clay-siliceous and sand sédiments as thkk as 150-
180 m, grading Into eacb orher larerally from
area to area. In the lower reaches ol the VbJga,
the lithologie division into chc lower (clay-gaize)
and upper (sand) member is quitc consistent. In
the middie reaches of die Volga, the formation in
places becomes tripartkc, wich a .sandy middie
member, airhough in places the formation
consiscs almo.st entirely of diatomite and gai^e
[gaze (= opoka) biogenic krypeogene siliceous
sedimenr witli clayey adinixture]. The Saratov
(= Upper Saratov, Kamyshin) Formation is often
bipartite (wirh the lowcr member consisting of
gaize, and the upper. of sand), its thickness iiot
exceeding 20-30 m. In the Volga’s lower reaches,
the base of this' formation contains a distinct
intercalation of lobacco-coloured sapropcl-like
clay.
The sandy Tsaritsyn Formation in the Volga’s
lower reaches is clearly rhychmîc and consîsrs of
sandy gaize and sandstone. In the Volga middie
reaches, this formation ovcrlaps crosionally the
Linderlying deposits, is made up of thin sand
stone with occasional leaf casts, and thickens to
40-60 m.
The lithologie uniformity and cyclicit); the cor¬
rélation ol faunal rernains with particular litho-
fâcies, the cotnmunly poor préservation of
siliceous plankton due lo diageueiic transforma¬
tion of organlc opal, ail handicap ihc stratigra¬
phie subdivision of Palaeocene deposits.
Stratigraphie range of the lithostratigraphic units
(formations) is highly dispurable. In this study,
the paper by Khokhlova de Oreshkina (this volu¬
me) sets OUI to dcfinc raorc prccisely the strati¬
graphie range of Palaeocene deposits in the
Volga’s middie reaches.
STRATIGRAPHIC SUMMARY OF EOCENE
DEPOSITS (UKRAINIAN-TYPE
PAIAEOGENE STRATA)
The Dnieper Basin displays : ( 1) a reduccd stiati-
graphie range and Umited distribution of the
lowcr Eocene strata: (2) a chiefly sandy composi¬
tion of ail the horizons except two: “Kiev”
Horizon represented by a clay-marl member with
glauconite, and the lowcr part of the “Kharkov”
Horizon, which shows diatomite intercalations
in the clay-sand member.
The corrélation of stratigraphie unies of the
Dnicpci-Doncts Palacogene strata largely
dépends on rhe dating of the “Kiev" and
'^Kharkov” beds. Initially, the “Kharkov'" sand-
stones were correlated with the Latiorfian ones
bascd on mollusks (Sokolov 1903). On these
grounds. the “Kharkov” Member was as.signed to
the Oligocène, and the “Kiev” Member, to the
upper Eocene. I«arer, “Kiev” was moved into the
middie Eocene, and “Kharkov”, into the upper
Eocene (Makarenko et al. 1987). Tn some works,
especially in tliose dcaling with rectonics, this
view persisrs still. However, after the Kiev
Formation yielded the middie Eocene forarnini-
fera assentblage of the Cïlaborotalia wmndhmtrgi-
naia zone (Grigyalis et al. 1988), the
stratigraphie range of rhe “Kiev” and posc-“Kjev”
strata in ihc stratotype area (Dnieper Basin near
Kiev) became a subject of révision, and new
424
GEODIVERSiTAS • 1999 • 21 (3)
Configuration of the Palaeogene deposits of Southern Russia
h 56*
\- 54'
J- 52-
h 50’
U 48-
46’
E3 Depositional edge
Sandstone, sand
I— I Shale, clay
Mari
I I— 1 1 Diatomaceous deposits
@ Boreholes and sections
Fig. 2. — Upper Palaeocene (Thanetian) palaeogeographic scheme.
variants of their corrélation with more northerly
and eascerly areas began to appear.
rhis corrélation, howc\'er, is rcstrained by the fàct
chat Eocene deposits change in lithology toward
the northeast parts of the Ukrainian dépréssion,
where the chiefly carbonate strata in the correlates
of the Kiev Formation become replaced by clay-
sand deposits. In that area, anothcr litho-strati-
graphic scheme is used (Sokolov 1965).
As it was shown above, to subdividc the western-
GEODIVERSITAS • 1999 • 21 (3)
425
Radionova E. P., Khokhlova I. E. & OreshkinaT. V.
Denositional edae
l'^7"i| Diatomaceous deposits
1 ^-| shale. clav
hrS l ümestone
1 *• • • 1 Sandstone. sand
1“^! Anoxir. organin shalfi and rlay
l'X^I Mari
® Boreholes and sections
Fig. 3. — Middie Eocene (Bartonian) palaeogeographic scheme.
most section that we hâve studied (Boguchar),
which is locared in the Volga-Don interfluve, the
lithostratigraphic scheme from the North
Caucasus can be applied (Kurlaev & Akhlestina
1988).
In this area, the correlates of the Kuma Forma-
426
GEODIVERSITAS • 1999 • 21 (3)
Configuration of the Palaeogene deposits of Southern Russia
tion are recognised, with Bartonian anoxie evenrs
associated in eastern Pcri-’lcthys. The issues of
stratigraphie range and faciès changes in rhe
Eocene deposits of the eastern flank of the
Ukrainian dépression are addressed in tfie paper
of Khokhlova et ai (rhis volume).
PALAEOGEOGRAPHY
The Figures 2 and 3 présent palacogeographic
maps showing distribution of Paiaeocene (upper
Thanetian) and middle Eocene (Bartonian)
depo.sit.s for the Southern part of the former
USSR.
In lare Paiaeocene time, che Volga Région and
Peri-Caucasian basins formed a single, shallow-
water, highly productive marine basin wiih sili-
ccoLis sedimentarion (Fig. 1). Distanov (1964)
proposcd rhat Paiaeocene sédiments of the
Middle Volga Région accumulared in a large guif
of an inland sea. with an intense iipwelling pro-
cess. The diatomites may hâve accuniulated in
marginal parts of palaeodeltas. Another view-
point is that there exis’ted seawày(s) between the
Volga and West Siberian basins. Tins is suggesied
by the sîmilarity of the faunas and floras. For
example, the West Siberian assemblage consisrs
of 100 diacom species (Anonymous 1974) More
than 80% species are corn mon with those of the
Middle Volga palacobasin.
Tfie Middle Volga Région sagged mainly in the
biosilicâ accumulation. Pure diatomitc.s near the
town of Sengiley contain abundant radiolarian
assemblages of Buryellc^ tetradica Foreman,
Tripodisàflus sengHensis Koziova and régional
zones establishcd by Koziova (1984) and related
to rhe late Paiaeocene. In the northern Peri-
Caspian Basin, upper Paiaeocene rich radiola-
riaiis comjïlex accompanied by nannoplankton
of NP8 zone are présent. In Cis-Caucasia, rhis
Icvel conclatcs to the Goryachy Klyuch and
Abaza formations that contain abundant yet
poorly preserved radiolarian assemblages. The
entire basin had idcnticaJ radiolarian assem¬
blages, although the assemblages of the BtiryelLi
tetradica Foreman and Petalospyrîs foveolata
Ehrenberg, in the Middle Volga sections contain
a significant mimber of widespread tropical spe¬
cies.
In early Eocene time, the gulf (or scaway) that
existed on the site of che middle and partly, lower
reaches of the Volga, disappeared. Marine envi¬
ronment gâve way to continental, which pcrsis-
ted in the Middle Volgâ Région imo Eocene and
Oligocène times. In the Dnieper-Donecs Basin,
lower and lower-middle Eocene siraca coiisisi of
alternating lerrigenou.s nearshorc marine and
continental faciès. The marine basin survived
only in the south — on the site of the Peri-
Caspian Basin and Cis-Caucasia.
A new vast transgression was confined to the
upper Luieiian-Bartonian. The outlinc of rhe
basin, however, changed signifîcantly (Fig. 3). In
latc Lutetian time, carbonate-terrigenous strata
of the Kiev Formation were widespread in the
Dnieper-Donets dépréssion. The “Greenish Kiev
Marlsume'" bas long been correlatcd with che
glauconite-rich maris and limescones of rhe
Kere.sta Formation in Cis-Caucasia, which
contain siinilar forani and nannofossil assem¬
blages. The Bartonian strâtà differ signifîcantly
l>eiwecn the Southern and norchcJ-n parts of the
basin. Along the neg-th and south inai^ins of che
Dnieper-Donets Basin and along the north mar-
gin of the Peri-Caspian Basin, widespread are
deposits enriched in organic silica, whereas in the
central part of the basin carbonate-clay sédi¬
ments of the Kuma Formation, partly or cndrcly
anoxie, were laid down. In the Vblga-Don inter-
fluVe, siliceous faciès giving way ro rhe Kuma
faciès were attribuced to the existence of the
Millerovo seaway berween the Donets basemenr
high and rhe ea.st slope of ihe Voronezh Basin
(Leonov 1964).
The paiaeogeography of the South Russia Basin
with hio.siliceous accumulation changed drasti-
cally from N-S at the time of the Selandian-
lower Thanetian transgression ro W-E during the
Lutetian-Bartonian transgression.
Acknowledgements
The authors are very gratefui to Prof D. Lazarus
(Berlin, Germany) and Prof. K. Nigrini
(Canmore, Canada) for their careful reading and
their help in the rewriting of the paper.
GEODIVERSITAS • 1999 • 21 (3)
427
Radionova E. P., Khokhlova I. E. & Oreshkina T. V.
REFERENCES
Anonymous 1974. — Diatoms of the USSR. Fossils
and Recent. Volume 1. Nauka, Leningrad, 403 p.
[in Russian].
Anonymous 1988. — Geodynamic Map ofthe USSR
and Adjacent Seas. Seule 1: 2 500 000^ Zonenshain
L. P., Mezhelovsky N, V. & Natapov L. M, (eds).
Minisrry of Geology of the USSR.
Distanov LI. G. 1964. — Paleoeene deposites,
Trudy Kazanskogo filiala AN SSSR, séria geologia
11:46-62.
Grigyalis A. V., Zosimovicch V. Yu., Burlak A. F.,
Ivannik M. M., Kraeva E. Ya. & Lulyeva C. A.
1988. — New data on the stratigraphy and paleo-
geography of the Palaeogene deposits of the west
part ot the European USSR. Soviet Geology 12: 41-
54 [in Russian].
Kurlaev V. I. & Akhlestina E. F. 1988. — The
Palaeogene of the Middle and Lower Volga Région.
Saratov Universlty Publication, Saratov, 203 p. [in
Russian].
Leonov G. P. 1964. — The Main Problems of Palaeo¬
gene Stratigraphy ofthe Russian Plate. Moscow State
University Publication, Moscow, 552 p. [in
Russian].
Makarenko D. E., Gorbunov V. S., Ivannik M. M.,
Masiun N. V,, Stotland A. B. & Blan M. Ya.
1987. — Stratigraphie Scheme for Palaeogene
Deposits of Ukraine. Naukova Dumka Publication,
Kiev, 114 p. [in Russian].
Milanovsky E. E. 1987. — Geology ofthe USSR.
Part 1. Moscow State University Publication,
Moscow, 4l4 p. [in Russian].
Semenov V, P. 1965. — Palaeogene of the Voronezh
Anteclise. Voronezh University Publication,
Voronezh, 279 p. [in Russian].
Sokolov N. A. 1903. — Lower Tertiar)' Deposits of
Russia. Trudy Geology Komiteta 10 (2) [in Russian].
Submittedforpublication on 22 April 1997;
accepted on 30 June 1998.
428
GEODIVERSITAS • 1999 • 21 (3)
Early Palaeogene siliceous microfossils
of the Middie Volga Région: stratigraphy
and palaeogeography
Irina E. KHOKHLOVA & Tatiana V. ORESHKINA
Geological Institute, Russian Academy of Sciences,
Pyzhevsky per. 7, Moscow, 109017 (Russie)
khokhlova@ginran.msk.su
oreshkina@ginran.msk.su
Khokhlova I. E. & Oreshkina T. V. 1999. — Early Palaeogene siliceous microfossils of the
Middie Volga Région: stratigraphy and palaeogeography, in Crasquin-Soleau S. & De
Wever P. (eds), Peri-Tethys: stratigraphie corrélations 3, Geodiversitas 21 (3) : 429-451.
ICEYWORDS
Palaeogene,
bioÿiratigraphy,
raoiolaria,
silicoflaeellates,
oiatoms,
Middie Volga,
East European Platform.
ABSTRACT
The Sengiley section (Middie Volga Région» Russia) provides one of the
most complété late l’alaeocene sedimentary sequence wirh well-preser\^ed dîa-
toms, silicoflagellates, and radiolarians. I hree zones of régional zonal scheme
(Kozlova 1994) based on radiolaria werc distinguished In the sédiments:
Buryella tetradicUy Tripodiscinus sengilensis^ Petatospyris foneolam zones. Based
on diatom régional scheme (Strelnikova 1992) Trinacrtii venîriculosa and
Hemiaiilus periptertis zones were recognised. Aithough assemblages of siii-
ceous microfossils strongly differ front the oceanic coeval associations, the
précisé âge of the boréal zones was determined on the basis of direct corréla¬
tion wich standard zonal scales of diatoms, silicoflagellates and radiolarians.
For example, from sédiments of Petalospyris foveoUita zone, severai spccies
described by Nishimura (1992) from ihe upper part of the Bekoma campe-
chemis standard radiolarian zone of the North-West Atlantic were found and
allowed us to corrclate thèse rwo zones. Two zones of the standard oceanic
diatom scheme (Bai ron ik Baldauf 1993) {Hem/aulus peripterus and
Hemianlus incurvus zones) and standard silicofiagellate Maviculopsis constricta
zone w'ere distinguished in the Sengiley section, Siliceous-terrigenous
Palaeogene sédiments of the Middie Volga can be considered as rypical sédi¬
ments of the marginal epicontinenial bavSÎn. Siliceous assemblages of the
Sengiley section are ver)' close to assemblages from Lulinvorr and Serov for¬
mations of the West Siberia and the eastern Unils slope, Fur Formation and
Sambian Formation of North-Easc Europe» aithough the geometry of
connections berween these basins during late Palaeocene is siill not ciear.
GEODIVERSITAS • 1999 • 21 (3)
429
Khokhlova I. E. &C Oreshkina T. V.
RÉSUMÉ
Microfossiles silicetix paléogènes de la région de Li moyenne Volga : stratigraphie
et paléoécobgie.
La coupe de Sengiley (région de la moyenne Volga, Russie) présente une des
séquences scdirnentaires les plus complètes du Paléocène supérieur avec des
diatomées, radiolaires, silicoflagellés bien con,servé.s. Trois zones de la zona¬
tion régionale (Koziova 1994). fondée sur les radiolaires, sont distinguées
dans Ica sédiments ■* zones à Bitryclla tettadica^ Tripodheinus sengHensis,
Petalospyris fbveolata. Dans l.a zotration régionale à diatomées (Srrelnikova
1992), les zones à Trinacria mnrtadosa and Hetniaulns peripicriis sont recon¬
nues. Bien que les assemblages à microfossîles siliceux dilïèrent fortemenr des
équivalents océaniques, Tige précis des zones boréales a éré déterminé sur la
base de corrélation.s directes avec les échelle.s régionales standard a diatomées,
silicoflagellés et radiolaires. Par exemple, pour les sédiments de la zone
Petalospyris joveolata, plusieurs espèces décrites par Nishimura (1992) dans la
partie supérieure de la zone sc-andard à radiolaires à Bekotna campechensis du
Nord Ouest de l'Atlantique ont été trouvées et nous permettent de corréler
ces zones. Deux zones de la zonation océanique standard à diatomées (Barron
&: Baldâuf 199^) (zones à Hemiimlus peripterus and IJemiaulus im'unms) et la
zone standard à silicoflagcllés à Naviculops'ts constricta ont été trouvées dans la
coupe de Scngiley. Le.s sédiments paléogènes siliceux-terrigènes de la moyen¬
ne Volga peuvent être considérés comme typiques de bassin marginaux épi-
continenraux. Les assemblages siliceux de la coupe de Sengiley sont très
proche.s des assemblages des formations de Lulinvorr et Serov de Sibérie occi¬
dentale et du versant est de l’Oural, des formations de Fur et Sambian du
Nord Est de FEurope, bien que la géométrie des connexions entre ces bassins
durant le Paléocène ne soit pas clairement établie.
INTRODUCTION
In the Ulyanovsk'Saratov syncline of the Middle
Volga Région (Fig. 1) widespread early
Palaeogene seqiience (approximately .300 m
thick) is represented by marine siliceous-terrige-
nous deposits widi lilgli faciès diversity. Previous
srratigrapliic subdivision ot Palaeogene séquences
was based in most cases ori the liihological data.
The âge of these subdivisions and relations bei-
ween them hâve bcen révisée! by different investi-
gators more than once (Milanovsky 1940;
Leonov 1961; etc.). The high abundancc of sili-
ceous faciès, opokas (kryptogenc sUlceous depo¬
sits), the diatomites, siliccous clays and sands
offer advantage for siliceous microfossils study.
MOTS CLÉS
Paléogène,
biostratigraphy,
radiolaires,
silicoflagclJcs,
diatomées,
Moyenne Volga,
Plate-forme est-curopéenne.
430
GEODIVERSITAS • 1999 • 21 (3)
Palaeogene siliceous microfossils of Volga Région
Fig. 2. — Lithology and lithostratigraphy of the Sengiley section, stratigraphie ranges of siliceous microfossils, and zonation.
Schemes of Strelnikova (1992) (diatoms), Locker & Martini (1987) (silicoflagellates) and Koziova (1994) (radiolarians) were used.
l’his paper seeks to examine the evidence provi-
ded by siliceous microfossils — dnitoms, silico-
flagcllates and radiolarians which occur in the
Sengiley section. Scudy of siliceous micro-
organisms from this section is very crucial for
précisé âge déterminations of Palaeogene sedi-
mentary cycles and for revealing conditions of
silica accumulation on the northern Peri-Tethyan
margin. The problem of relations between thcsc
early Palaeogene biosilica accumulation events
and régional and global geologlcal events is also
of great interesi.
SENGILEY SECTION
The Sengiley section (Figs 1, 2) is located 7 km
north-west of the Sengiley (Ulyanovsk Région).
On chc right bank ofthe Volga River, at an éléva¬
tion of approximatcly 300 m above sea level, a
section of 40 m high cliff so-called "Granoe
üklto” was scudied. Up ro the section the follo-
wing Uthological units were disringuished in the
studied interval:
- at the river bank below the clifF siliceous grey
clays of 7 m thickness; no microfossils found.
GEODIVERSITAS • 1999 • 21 (3)
431
Khokhlova I. E. & Oreshkina T. V.
- siliceous dark-grey sandstones, thin-layered,
with silica clays lenses, lie at the base of thc
diatomite clifF; thickness 4-4.5 m; no microfossil
found.
- white massive diatomires with layers of lighr-
grey diatomires, sometimes with glauconite;
thickness 22 m; in samples 930109-930072
abundant siliccous microfossils werc found.
- light-grcy massive clayey diaromites lying
conform.ibly on the uudcdying unie; thiclcness
7 m; samples 930072-93057 contatn abundant
siliceous microfo.ssils.
- the unconformity separates thc diatomite unit.s
from ovcrlying sediment.s; they arc represented
by sandy brownish-green cla\^, siliceous greenish-
grey sands, brownish sandy opokas, silica dark-
grey opokas; thickness about 11m. Microfossils
were not found.
PREVIOUS STUDY OF SILICEOUS
MICROFOSSILS
Zonal subdivision of rhe Sengiley section on the
basis of radiolarians bas been proposed by
Kozlova (1984). The age was considered as late
Palaeocene. Radiolarian zones of diis scheme are
undoubiedly régional and can be traced in ihc
boréal epiconcinental Palacogenc of the Volga
and UraJ régions.
The study of diaroins of thc Middle Volga
Région vtas starred in 19th century by Ehrenberg
(1854), Grunow (1884) and Wirt (18%). Pater,
diatoms and silicoflagellates Irom tbis location
hâve been studied by Leonov (1961), Jousé
(1979, 1982), Gleser (1993, 1995; Gleser et aL
1977) and Srrelnikova (1990^ 1992). The lower
part of the diatomite unie is cerrainly related to
the Palaeocene by ail invesrigators, but an early
Eocene age is srill nor excliided for the upper
part of diatomires. Silicoflagellare assemblages
from several separated samples from ihe Sengiley
section were studied and dated by Locker 6c
Martini (1987) as early Eocene.
MATERIAL AND METHODS
Samples were collected during a field trip of
Russian Academy of Sciences Geological Institute
in 1994. 81 samples were examined for diatom
and radiolarian biostratigraphy, but siliceous
micro-organisms were found only in 55 samples
from che diaromite units of the section. Sampling
interval wa-s approximately 50 cm.
Approximately 5 g of sample was crushed
mechanically and placcd into an 400 ml bcalcer.
l'hcn samples wctc processed by 15'mJnutes boi-
ling in hydrogen peroxide. The procedure of
cepcatedly filling and decanring the bcakers with
distillcd waicr and allowing 2 hr scctling was
used to remove Chemicals and clay minerais.
Slides for radiolarian study were prepared on
24 X 24 mm cover glasscs and mounted in
Canadian balsam on 24 x 80 mm glass slides.
Radiolarians wcrc examined at X 400. Spccies
wcrc rccorded as abundant (A) if more titan
10 spécimens were présent in the slide, common
(C) if 3'10 specimeits occurred in the slide and
rare (R) if 1-3 .spécimens were found.
Strevvn slides for diatoms werc prepared by sam-
pling che suspended residuc with a pipette sprea-
ding il on 18 X 18 mm covet slide and mounting
in Elyashev moumirig medium, iliatoms were
examined ar X 500. Species identification was
checked at X 1250. Somc .samples wcrc studied
in SEM *T.’arnbridgc Srcrcoscan" microscope.
Relative abundance of taxa represented in the
range charr is reported as abundant (A) when
20 spccimens are présent in one horizontal tra¬
verse ac X 500, common (C) when 3-19 spéci¬
mens are présent at each traverse, few (F) -
1-2 specimens in each traverse, rare (R) — less
chan one specimen in each traverse.
STRATIGRAPHY
Rapiolaria
Using radiolaria, the section was subdivided on
che basis of rhe boréal zonal scheme of Kozlova
(1994). The zonal succession is Palaeocene
(Fig. 1, Table 1 ).
Buryell/t tetradica zone
The assemblage is moderately preserved and
contains Buryella tetradica Foreman, Theco-
sphaera rottmda Borissenko, Spongotrochus puter
432
GEODIVERSITAS • 1999 • 21 (3)
GEODIVERSITAS • 1999 ■ 21 (3)
Table 1. — Stratigraphie distribution of radiolaria in Sengiley section. A. abundant (20 specimens are présent in one horizontal traverse examined at x 500); C, common (3-19 spé¬
cimens are présent at each traverse); F, few (1-2 specimens In each traverse); R, rare (less than 1 specimen in each traverse).
AGE
ZELANDIAN
ZONE
BuryeUa
tetradica
Tripodiscinus sengilensis
' Species / sampla number
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
' Burva'da teuadea
C
C
C
R
LophophsôTxa curta
R
R
C
C
R
R
Plectodiscui: ïo\ch\li(rna
C
C
C
R
R
SoonoodiçcüS an\enc3nus
A
A
A
A
C
' SDOnoüdi^cuii vlina
C
R
C
C
C
R
SpoDQOirrichijs
C
C
R
R
SpoDQotrocttus sp ah Trainodiscus cleve
A
C
SponaQirocnus aH heiinr/BS
A
A
A
A
A
A
C
C
C
Sponpninychus pacfani’i
R
R
R
R
Spongcfnjchu^:, polcr
C
C
C
Thecosonacra rviunda
R
R
R
Tripodiccinus- seupiten^i^
C
C
C
C
C
R
R
R
1 Tripodiscinus Slbirii Üf^
R
R
R
R
R
R
R
R
R
R
Tripodiscinus irifcpalus’
R
R
_ ,
R
uj
AGE
ZELANDIAN-THANETIAN
ZONE
Tripodiscinus sigilensis
specles/sampie number
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
Anthoevrtoma fr/zzetf
R
R
LarnocatpiS smih
C
R
R
Lophophasna curta
- 1
R
--
R
Phormocv*tis- ^ailcuia
C
R
Plectodtscus t0tc^i//nae
C
R
R
Sponaoftoenue atf tietioides
C
R
C
C
SponQomeits&a tamaria
R
R
R
Tropodiscinus UHobafa^
C
C
C
R
C
R
R
R
R
R
R
R
C
Tripodisanus sengilensis 1
H
1
R
R
AGE _^_ ZELAND IAN-T HANETIAN _^_ THANETHiAN
ZONE _ Tripodiscinus sigilensis ____ Petalospyris foveoîata
species/sample number
73
72
71
70 ,
69
68
67 66 ; 65
64
63
62
61
60
59
58
57
^ I '
C
C
C
Boirvofreira esns
C
R
C
R
CfaihrccvcJX exisnss
R
R
Ciathroyj'çias iipm^nü
R
R
C/ar/jrocvctôs lonalsolna
A
-1
-1
Dipiocvctas comuta runievae
C
R
R
A
R
C
C
Dipiocycias pseu(Sjùicorona
Dseudobiccrone
R
C
C
R
C
Penviaiuru'/ aumif^icdv
R
R
R
Peta/osovris toveoma
R
R
C
C
C
C
R
SoonQaetôTiscuç- otnziipfm
R
R
C
R
Sponaùnieîvssa îê/pàrid
C
R
R
R
R
C
SDondome/isaa numa ni/ma
R
C
C
Sponopifoenus nativus praecox
A
Stvlodyct\>a hadastonensh
R
R
A
R
C
R
Tripodiscinus trUobàtuS
R
R
3
Palaeogene siliceous microfossils of Volga Regioi
Khokhlova I. E. & Oreshkina T. V.
Kozlova, Trifwdiscinîis sibiricus Kozlova, Spongo-
discus americamis Kozlova, Spongodisms phrix
Gorboveiz and Lophophaena curta Kozlova. The
base of rhe zone was tint oKserved in the section.
The upper boundary is deterinined by the appea-
rance of Trîpodischms sengilensis Kozlova and
Plectodisciis totchUinae Kozlova.
Tripodhcintis sengilensh zone
Radiolarians are abundant and wcll-preserved.
The most common are: Tripodiscimts sengdemii
Kozlova, T. trilohatm Kozlova, Lophophaena
curta Kozlova, Spongotrochus paciferus antiquus
Kozlova, 5. atf. Troehodiscus clevêl (Ko7.1ovâ),
S. aff helioidei Clcve, Spongodlscus americü^ius
Kozlova & Gorbovetz and Pl^ctodiscus tochilinae
Kozlova. Sponolrocbus alveatui Riedel &
.Sanfilippo, Tripodiicinus sibirirus Kozlova,
Stylodiciya churlestonemis (Clark Campbell),
Anthocyrtoma frizz-eli Nishimura and PeriviaMri^.)
dumitriiae Nishimura occur rarely. Common
Larnocalpis smill Middour and Phoonocyrtis reti-
cula Kozlova & Gorbovetz were found in rhe
upper part of the zone. The upper boundary of
the zone is very sharp and determined by the
appearance of Petalospyrh fnveolata Ehrenberg,
Diplocyclas cornuta runjetw Kozlova, D. pseudo-
bicorana pseudobkorona Nishimura, Spongo-
melissa numa numa Kozlova, Clathrocyclas
longispina Clark & Campbell and Spongotrochus
nativuspraecox Kozlova,
Petalospyris fbveolnta zone
Radiolarians are diversifîed and well-preserved.
The most abundant are: Petalospyris foueolata
Ehrenberg, Dyplotyelns cormaa nmjevae Kozlova,
D. pseudobicorona pseudohicorona Nishimura,
Antocyrtoma pizzeli Nishimura, Botryornetra osha
Kozlova, Spongomelissn ternaria Kozlova, S. nurna
numa Kozlova. !n the lowct part ol rhe zone
Clathrocyclas longispina Clark Ôc Campbell, and
Spongotrochus nativus prnecox Kozlova are abun¬
dant. Spongasteriscus cruciferus Clark &
Campbell, Clatrocyclas extensa Clark & Campbell
and C. lipmanii Kozlova are rather rare.
Diatom.s and silicoflacellai ks
Pronounced taxonomie changes in diatom
assemblages observed in the middle part of
Sengiley diatomites (Eig. 1, Table 2) allow us to
distinguish frum the base and upsection two
zones of the zunal scheme for the Northern
Hemisphere sensu Srrelnikova (1990, 1992).
Trinacria ventrkulosa zone is represeiited bv com¬
mon TriceTatium mirabiU' Jousé, Trinacria ventri-
culosa {A. Schmidt) Gteser, Pyxidicula ferox
(Grevillc) Strelnikova & Nikolacv, Crunôwiella
gernmata (Grunow) Van Heurck. The assemblage
of the flemiaulus proteus zone consists of
FJendaulns inatrms Shibkova» H. proteus Heiberg,
H. incisus Hajos, H. frrgidtts (Grunow) Fenner,
Soleufii eX'SCulptum Heiberg, Taceratiurn heihergii
Gombos, Craspcdodiscus moelleri A. Schmidt,
Aulacodiscus suspectus A. Schmidt, Grunowiella
palaeocaenica Jousc and Cyiindrospira sirnsi
Mirlehner.
Bcsides thé siratigaphically important species
enumcraicd above, diversifîed représentatives of
the neritic diatom flora of epicontinental basins
.ire présent in both zonal assemblages. A lull ILst
is shown in the Table 1 and in the taxonomie
appendix.
Silicoflagellates (about 10 taxa) are common
throughout the wholc section. For stratigraphie
subdivision, the zonation of Locker & Martini
(1987) is applied. The appearance of memhers of
the ITavicttlopsis genus (including N. constricta
(Schulz) Frcnguclli, N. robusta Deflandre,
N. danica rcrch-Nielsen) defines Naviculupsis
constricta zone (upper Palaeocene-eavly Eocene).
Corhîsema disymmeiricû Bukry is présent ihrou-
ghout the whole section. According to Locker &
Martini (1987), this stratigraphie inrerval corres¬
ponds to the NP4-NP9 nannoplankion zones
and so gives as the po5.sibiIiry to restnet the âge
of the diaiomite unit by the Palneocene. Less
pronounced chan diaroms one, change in taxo¬
nomie composition is related to the middle part
of the section. This reconstruction includes the
last appearance of Dittyocha elongata Gleser and
the firsT appearance oï Naidculopsis punctilia
Perch-Nielsen.
PALAEOECOLOGY
Radiolarian assemblages are well preserved and,
for the epicontinental setting, diversifîed (33 spe-
434
GEODIVERSITAS * 1999 • 21 (3)
GEODIVERSITAS • 1999 • 21 (3)
Table 2. — Stratigraphie occurrence of diatoms and sillcoflagellaîes in Sengiley section. Legend: see Table 1.
Diatoms/Samples
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
-r
94
93
92
91
90
89
88
87
86
85
84
Aulacodiscus distinquendus
R
i
R
R
Aulacodiscus probabfJis
H
H
R
Briaaera sibirica
R
R
F
R
R
R
F
R
R
R
R
R
R
R
R
CostopyA^ arf/oua
R
R
i
Eunotoqratr.rrs \/af4dbi1e
R
R
R
R
R
R
R
R
R
R
R
R 1
R
R
, R
Euno\Dgranirré weissU
F
F
F
R
C
1
~3rün6w\eïîa ae<vmsi£
~Ar
~C~~
"TT^
A
C
C
F
C
F
F
~F
~C
C
F
F
C
“C
A
C
C
A
A
HemiauKJs friqiQa
C
R
R
R
R
R
C
R
R
R
C
R
C
R
R
R
R
R
R
R
R
R
R
R
R
Hem^au^L•s awbrguus
F
R
HëmJa~üiu& daoïcus
~ir~
-p-
R
H
R
Hemiaulos tncL'A'us-
R
Hem}aulus rossfcus
-
F
F
Hyalodiscos radistt'S
R
R
F
R
R
R
R
F
R
R
R
R
R
R
R
R
R
Kentrodisevs fos$))is
R
H
R
R
Lisitz fi^a d^tancr/i'
-1
R
R
Odonîoîrctxs caftna^s
R
R
R
F
F
F
F
F
F
F
F
R
F
F
R
R
R
R
R
R
R
R
R
! Odontatropis costara
R
R
R
R
R
R
R
R
Paralia CiV.nufata
R
F
F
R
R
R
R
R
R
R
R
R
Paralia orunewv/
F
F
R
R
R
R
R
F
R
R
R
R
R
R
R
R
R
Paralia sulcata
R
F
R
R
R
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
Probosàa cretacea
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
R
R
R
R
R
R
Pseodopodasira sp- 2
F
R
Pseudopodos^xB rtesfV
F
R
R
R
R
R
R
R
R
R
R
R
R
R
R
F
F
F
F
F
F
Pseudosticlod^cus argulaîus
R
R
R
F
R
R
R
R
R
R
R
R
R
R
R
R
R
R
H
H
Pterothecs maicr
R
R
R
R
R
H
Pyxid^-juia feroA
C
C
C
C
C
C
C
C
C
C
F
F
F
F
F
F
F
F
F
F
F
F
Rattrayalla oamarnensiS
R
R
R
Rhaphoneis morsiana
Rhaphonbun simbirskiana
R
Rhizosohnia hahblala
R
Stellarifti<'i niiomtons,
F
R
F
F
R
R
R
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
Thalaa&fosiin 1
R
R
Tbalar.sicslropsis yifUOana
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
0
C
C
C
C
F
F
G
C
C
C
Triceraiium Ûoa
R
Tricerativm kinkaïf
R
R
F
R
R
R
R
R
R
R
F
F
F
F
R
R
R
R
R
R
C
C
C
C
C
C
C
C
C
C
A
A
C
A
A
A
A
A
A
A
A
A
A
C
C
C
R
R
F
R
F
F
Tricefatsud) k-^'^tncvla^v
F
C
F
F
C
F
F
F
F
F
F
F
R
R
F
R
R
F
F
F
R
R
F
R
R
R
Trinacna pHeolus
R
R
R
R
R
R
R
R
R
R
R
F
R
R
F
F
F
F
F
F
■R
TrochosVa spinosa
R
R
R
R
R
R
R
Silicofiacieliales
Corbisama disvmmeinca
commi/nis
R
F
R
F
F
F
R
F
F
F
F
F
F
F
F
F
F
R
R
R
R
R
R
R
R
R
Corbisema has^*at3 basfata
F
F
F
R
R
F
F
F
F
F
C
C
C
C
C
C
C
C
C
C
CorbiSems oS'ibulata
R
R
H
R
F
H
Corbis-spia inem^-s inerniis
R
R
R
R
R
R
R
R
R
F
F
R
R
R
R
R
R
R
R
F
F
F
R
R
F
Dictyoeba elonçafa
C
F
F
F
F
F
F
F
F
F
C
C
C
C
C
C
C
C
C
C
F
F
R
F
R
R
Dictyocha
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Dictyocha precarents
R
R
R
R
R
R
R
R
H
R
R
Navicuiopsis constneta
R
R
R
R
R 1 R
R
R
Naviciitopsis danica
R
R
R
Navic\nopsis roDus\a
R
R
l 3 _
R
H
H
H
H
H
H
H
R 1 R
R
Palaeogene siliceous microfossils of Volga Région
GEODIVERSITAS • 1999 • 21 (3)
4^
C^
1 Diatoms/ Samples
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62 61
60
59
58
57
1 AulacodiscüS dfstinguendus
R
R
R
R
R
R
R
Aulaœdiscus prvbaùHis 1 R
R
H
R
R
H
H
R
F
F
F
R
R
R
R
R
Aulacodiscus schmidti ^
R
H
H
F
R
R
R
Aulaoodiscua suspecfus 1
R
H
R
F
F
^r~
C
C
C
~cr~
~c
~r~
A
A
r~
Briqpera sibiriM
F
R
R
R
R
R
R
Craspedodiscus moeliari
F
F
F
F
F
c
A
A
C
A
A
c
C
A
A
F
Cylindrospira simsi
R
R
R
C
EunoTOQramma variabile
H
H
R
Eunotoprammà weissU
R
R
Fenestreila antiQua
R
R
Grunow/etta gemmata
C
G
G
F
F
F
R
F
F
F
F
F
F
F
F
F
F
F
F
c
F
F
F
F
F
F
F
Grunowiella palaeocaenica
R
C
C
C
C
C
C
C
c
C
C
c
C
C
C
F
Hemiaulus ambtguus
R
R
R
R
R
R
Hemiaufus arcticus
var. bornholmensis
F
R
R
R
R
C
R
R
R
R
R
R
R
R
R
R
R
R
Hemiaulus cun/atuius
F
R
R
F
T”
F
F
F
F
R
R
Hemiaulus danicus
R
R
R
R
R
R
Hemiaulus frigidus
H
R
H
R
H
R
R
R
R
Hemiaulus incisus
H
H
H
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Hemiaulus incunfus
R
R
Hemiaulus protevs
F
C
C
C
C
C
C
C
C
C
C
C
C
C
F
A
A
A
C
A
C
c
F
Hemiaulus rossicus
R
R
R
R
- 1
Hyalodiscus radiatus
H
H
R
R
R
R
F
R
R
R
R
F
R
R
R
R
F
R
R
R
R
R
Kentrodiscus fpssiiis
R
R
Lisitziniâ àtstanovlf
R
R
R
Odontotropis cannata
R
R
R
R
R
R
F
F
R
F
R
R
R
R
R
R
R
F
_R__.
F
R
R
Odontotropis cnstata
R
R
[ •
R
...
Paralia cronalala
R
h
h
G
G
C
F
F
R
R
F
“FT
“FT"
“R
“F^
R : R
“R
R
“Fr
TT
Paraha grunowii
1-
h
R
F
F
F
F
F
G
G
G
R
R
R
“FT-
TT
■R
“F^
“TT
Paraifa sûlcà'ta
h
G
G
A
A
A
A
A
F
F
F
F
A
A
A
“A~
-pr—
A
~A
“R“
Probosda cretaceé 1
R
R
R
“1^
R
F
R
R '
F
F
R
F
F
F
R
~R
"TT
TT
"TT
~R~
ir~
' PseudopDdosîra sp. 2
h
h
R^
R
Pseuoopodusira westii
h
h
A
A
G
G
G
F
F
R
R
R
R
R
R
F
R
^R
F
R
R
R
R
R
R
R
PseLxicxstic^dsc'js arH^ulatus
H
H
H
H
R
R
R
F
R
R
R
R
~F~
“F
R
R
~r~
R
R
R
R
R
Pterorbecà major
R
R
R
“FT
R
Pyxidlcülà môelhr!
R
F
F
F
F
F
F
F
G
C
C
C
C
F
F
F
F
~u~
“cr
C
~r~
R
Rattrayella 3ansariMos\s
F
R
F
Rattrayelia rcwndata
R
R
R
R
R
R
Rhaphpneis morstege
F
R
R
R
R
F
R
R
Rhaphoneis simbirskiana
F
F
F
R
F
F
F
F
R
F
F
F
F
R
F
C
C
C
F
F
R
Rhizosolenia hebetata
R
R
R
R
Solium exsculptum
R
F
F
F
F
F
F
F
F
R
R
F
F
F
R
R
F
F
F
R
R
F
F
F
R
R
Stellarima microtrias
R
h
F
F
R
R
R
F
^ F_
F
R
R
F
F
R
R
R
F
F
F
R
R
R
Khokhlova I. E. & Oreshkina T. V.
Palaeogene siliceous microfossils of Volga Région
N
LO
CL
CL
X
X
CO
U)
ÛC
CE
CL
O
CL
CL
X
X
X
O)
in
CE
LL
LL
U
CL
CE
CL
X
X
X
X
X
O
(O
cr
ü
O
CL
CL
LL
X
X
to
CE
lE
U
U
CL
CL
LL
CM
(O
X
O
U
CL
CL
X
X
X
CO
CO
lE
CE
O
O
X
X
X
«T
(O
U_
CE
CL
ü
O
CL
X
X
X
tn
CO
ü_
CL
U
ü
CL
LL
X
X
X
X
(O
CO
lj_
Ll
ü
X
X
X
h.
CO
CE
CE
tr
LL
O
X
X
X
X
X
X
CO
CO
LL
CE
CL
LL
O
X
X
5
X
X
X
o>
CO
LL
CE
CL
CL
ü
CL
X
X
X
X
X
X
O
h-
CE
tr
CE
CL
X
X
X
X
X
X
X
X
CE
CE
CL
CL
X
X
X
X
X
X
CM
h.
Œ
LL
CE
CL
X
X
X
X
X
X
«O
h.
CE
CE
CL
X
X
X
X
Œ
X
X
X
V
h-
CL
CE
CE
CL
°=
X
X
X
X
X
X
lO
h.
CE
CL
CL
X
X
X
X
X
X
X
(O
h-
CE
CL
X
X
X
X
fs.
N
CE
CL
X
X
X
X
X
X
00
CE
CL
X
X
X
X
X
O)
r-
CE
CL
CL
CL
X
X
X
X
X
O
00
Œ.
CE
CL
X
X
X
CO
O
CE
CE
CL
CL
X
X
X
X
X
X
X
CM
CO
Ü
LL
CE
CL
CL
X
X
X
X
X
CO
00
O
LL
CE
CL
CL
X
X
X
X
O
X
X
Diatoms/ Samples
w5
O
<0
CO
iS
CO
c:
to
t:
§
a
VJ
t-
§
î
•S
CD
e
E
5
1
S
1
(b
sQ
£
E
%
5
C
Ol
<<
1
1
S
5
II
S!
1'
iS
nj
5
jJ;
S
5r
Ç’
3
Tnceratium veotneubsum
0}
i
1
?
i
Q
S.
5
b
1
1
O)
2
S
ü
1
g
1
s
g
S
ë
ci
CO
Vi
i
1
1
5
s
1
ts
$ ttj
fe c-
11
8 8
s
ÜJ
U.
r.
c
s
42
J
i
a
8
43
to
-Ci
i
I
ai
11
1
LD
Ç
1
•e
8
CO
1
09
ta
c
11
Q
48
3
JO
«
m
i
Q
VI
1
8
Q.
en
L9
O
Q
NaviculQpS!S constficta
§
1
Î2
(O
a
a
S
Naviculopsfs punctiha
Navfculopsis robusta
cies were dctermincd). Different radiolarian spe-
cies dominatc the assemblage in spécifie strati¬
graphie intervals. hor example, specimens of
Sporigodisciis umerivanus Kozlova & Gorboverz
dominatc in the lowcrmost part of section
(samples 109-104), 'rripociiscinus sengilensis
Kozlova in samples 106-101, Spongohvchin
helîoida (Cleve) in santplc.s 99-88, Tripodheinm
trilohntus Ko/lova in samples S7-75, Antho^
cyrtonui frizzeli Noshiniura and Petahspym foi^ea'-
lata Ehrenberg in samples 65-60. Generally, in
the lower part of diatomicc unit, représentatives
of the Spongodiscidac lamily (généra
Spnngüdiscus and SpongoLrochuA and Irisso-
cyclinae iarnily (genus Tripodiicinus) are domi¬
nant, and in ihc upper part of diaromites speci¬
mens of tlie Cyrtidav (généra Diplocyclas^
Clathrocycla^ and Anîhocyrtoma) and ol the
Spyridae (genus Petalospyris) dominatc. The
grcatest change of thé assvxiation can be obser-
ved at the stratigraphical level of samples 72-67
(Fig. 2), on the boundary between the Tripo-
dischius se7igilensis and Petalospyris fot'eolata
radiolarian zones.
Diatom assemblages are well preserved and taxo-
nomically diversified too. represented mainly by
robusi, large frustules of diatoms. About 60 taxa
of diatom W'cre decennined. The diatom assem¬
blages arc dominated by species t)'pical tor neti-
tic environment. Fully planktonically living
species arc represented by généra TJemiaulus,
Rhizosoletua, Proboscia. Thalussiosiropsis and
Trkeratlnm.
In the upper part of the section (samples 80-71)
a taxonomie turnover in diatom assemblages cor¬
rélâtes wiih relative increase of the Paralia sulcata
(Ehrenberg) Cleve group. le is possible diai ihese
changes restify the transition to the coastal, .shal-
low'er environment. The same trend is reflected
in the increasing of clayey material content in
the upper part of the section and in the change
of diatpmites colour from white to grey
DISCUSSION
Stratigraphic issues
The précisé âge détermination of siliceous
GEODIVERSITAS • 1999 • 21 (3)
437
Khokhlova I. E. & Oreshkina T. V.
Fig. 3. — The stratigraphie position of the diatomites of the Sengiley section and corrélation to standard and régional zonal schemes.
microfossil.s associarion.s from the diatomite unit
of the Sengiley section is very important to
understand the stratigraphie position oF the
Middle Volga sÜiceous sediment.s (Fig. 3).
Présent knowledge of stratigraphie ranges of
Palaeoccne dratoms and radiolarians is very liini-
ted, espccially for the epieontinentaJ basitis. As a
rule sediment.s do not contain any calcareou.s
plankton and do not hâve not any pulaeomagne-
tic data.
Bcsides in the Volga Région, rhe Bnryelld tetnl-
dica radiülarian zone can be distinguished in chc
North Prccaspian Basin; the Tripodiscinm sengi-
lensis zone can be observed in rhe Serov
Formation of tlie eastern Ural slopc and of the
western Siberia; and the Petidospytis faveolata
radiolarian zone can bc recognised in the Irbii
Formation of ihc eastern Ural slope (Kozlova
1984). These radiülarian zones are ihus régional
and can be traced across a wide lerritory.
Radiolarian zones distinguished in this paper
were referred to the upper Palaeoeeiie by Kozlova
(1994) on the basis of a few species common to
the associations Irom the Guif Mexico
(Foreman 1973).
\Ve suggesr thar the Bi^ryella tetradica and
Tripodiscinus sengilensis zones are relaied to the
lower Bvkouta campvchensh zone of ihe standard
radiolarian icale. in regard of the presence of
Buryella ttimdicd Foretnan, l'hecdsphiiera ronwda
BorLssenko, Spangodisetis amerîcanuy Kozlova ÔC
Gorhovetz, Spoiigotrot'hui ttlpcdtus Riedel 6c
Sanlllippo and Penviator (?) dumitricai Nishimura.
Bascd on the presence of DiplinycLîs pseudvbi-
coninn pseudobicorona Nishimura, Spoitgasttriscus
rruciferus Clark ÔC Campbell and Antho-
cyrtoniit (?) frizzelli Nishimura, the Petalospyris
foveoLtta zone .seems lo correspond to the upper
part of Bekoma cdmpechensis zone of the
Northwest Atlantic and, cornespondingly, to the
CP5-CP6'lower CP7 nannoplankron zones
(Nishimura 1992).
A similar piciurc is obiaincd Irom the diatom
stratigraphy. 'fhc samc succession of diarom
assemblages ( Trinacria venlriculosa and
Hemiaulus protem zones) is typical for the whole
438
GEODIVERSITAS • 1999 • 21 (3)
Palaeogene siliceous microfossils of Volga Région
regioti:, being reporied from the boundary inter¬
val bervveen the Jower and middie parts of the
Lulinvorr Formation (Pur and Taz River basins)
of western Siberia, the îrbit and Serov (ormarions
of the eastern Lirai slopc (Proshkina-L^avrenko
1974). Unforiunately, the précisé âge of tliese
régional subdivisions remains unclear, for they
can still not be correlated with the standard zonal
schemes of calcareous microplankton.
Strelnikova (1990, 1992) puis the foregoing
zones into the latc Palacocene. Gleser (1994,
1995), che firsr vvho discinguished these zones,
considered the lower zone as late Palaeocenc and
upper one as early Eocene. But, it is clear now,
that for the subdivision of the Sengiley section,
standard diatom zones, which werc dircctly cor-
related wlih nannoplankton zones in sections
from Southern Indian Occan (Fourtanier 1991;
Barron ik Baldauf 1995) can be used (Fig. 3).
The taxonomie composition of the upper
Ht^mifzuhis proUi^s zone is like that of the
Hemiatilus incurvus standard zone. The sharpiy
diiferent assemblage of the lower Trinucria tm-
trtadosa zone allows us to corrclatc this interval
lo the Hem 'untliisperiptertis zone. Thèse standard
diatom zones correspond to rhe NP4-NFT 1 nan¬
noplankton zones (Fig. 2). However, the présen¬
ce in ail associations of the siliconagellate
Corbiserna disymmetriva Bukry, which i.s known
only from the NP4-NP9 interval, allows us to
siiggcsL that the Sengiley diatomites are wiihin
the Palaeocenc.
Thus, in ail threc (radiolarian, diatom, and sîlico-
llagcllate) assemblages, there are a number of stra¬
tigraphie markets which can be successfuUy used
for the stratigraphie subdivision of early
Palaeogene sédiments and for the refinemeat of
Palacocene diatom zonation. These the diatom
spccies Ai4Ltcodiscu% sus>p€ctus A. Schmidt,
Hemhwlîis prokus Heiberg, moelleri
A. Sedrmidt, Cylhulraspha shm't Mitlehner; and the
radiolarian species Tripodhchitn sengilensis
Kozlova, T. trilohatus Koziova, T. sibirkus Ko/lova,
Petalospyris foveol^ita Ehrenberg. P. fhccUa Kozlova,
etc. Until now, these radiolarian species hâve not
been found in open océan sédiments.
Palaeogeographic issues
During the middle-late Palacocene, the Middie
Volga Région vvas a shallow-water, highly pro¬
ductive marine basin with siliceous sédimenta¬
tion. It is obvious that Palaeocenc sédiments of
the Middie Volga Région are accumulated in the
great guif of the epicontinenral sea, via an inten¬
sive iipwelliug proces.s. L3istanov (1968) suppo-
sed thaï diatomites niay be accumulated in
marginal pans of palaeodelias. It is possible also
that diaromite accumulation took place only on
topographie highs of subbottom relief,
l’hc main pcculivirity of the siliceous micropJank-
ton assemblages is their provincialistn. The taxo¬
nomie composition of the associations differs
strongly from coevul oceanic assemblages. Deep-
sea diatom Palacocene a.sscmblages, restricted
generally to the Southern Hémisphère (Fcnncr
1991; Fourtanier 1991) differ caxonomically
from epiconcinental assemblages duc to palaeo-
ecological and palaeogeographical différences,
and préservation factors. Epicontincntal diatom
assemblages of the Northern Hemisphere are
highly diverse due to high percentages of mero-
planktnnic species.
Althûugh Palacocene diatom as.semblages from
the Southern Hemisphere and Volga Région dif¬
fer srrongiy, rhe présence of cominon spccies sug-
gests a connection bctvvccn thc.se arca.s o( the
World Occan, possibiy through rhe Terhys and
East Atlantic. The geography of tlie connection
between Middie Volga Région and West Siberian
ba.sins (includmg the eastern Urals slope), and
the Noriii European basins (Fur Formation,
Denmark and Sambian Formation, Kaliningrad
Région, Russia) with biosilica sédimentation
(Strelnikova et al. 1978; Fenner 1994; Mitlehner
1996) is not srill clear.
Acknowledgements
Wc would like to thank Prof. J. Meulenkamp
(Utrecht Universicy, Netherlands) and Prof.
D. La/arus (Berlin, Germany) which improved
the manuscripr, Prof. P De Wever and Dr S.
Crasquiu-Soleau for general coordination and
advice on this work, which is part of the Peri-
Tethys Prograrn (Grant.s 95-11 and 95-96/1 1).
The other sponsor was Russian Science
Foundation (Grant 05-95-15002).
GEODIVERSITAS • 1999 • 21 (3)
439
Khokhlova I. E. & Oreshkina T. V.
REFERENCES
Barron J. A. & BaldaiifJ. 1995. — Cenozoic marine
diatom biosiratigraphy and applications to paleocli-
matology and paleoceanography in Blome C. D. et
al. (cds). Siliceous Mierofth^^ih. PalcontoUi^ical
Sociery Shon Cormes in Palr 0 fuolii^> S: 107-11 H.
Berggren W. A., Kent D. \7, Svvisher C! C. & Aubry
M.'P. 1995. —A revïseci ccno/oïc w’othn)n()log\'
and chronosrrnrigrjpliy. (teochromm^' lime svale
and global jiratigralmw conriatnm, SLPM (Societ)*
for ScdimcntaiY Gcology), spécial publication 54:
129-2J1.
Bjorklund K. R. 1977. — Radiolaria front the
Norwcgian Sea, Leg 38 of rhe Deep Sea Drilling
Project. Initial Reports of the Deep Sea Drilling
Project 38: 1101-1108-
Borisenko N. N- 1960. — New radiolaria of the
Palacocene of the West Ruban River basin.
Publicdtion of Krasnodar town Otl and Cas boititute
4: 199-208 |m Russian).
Bukry D. 1976. — Cenozoic silicafiagcllates and coc-
coliih stririgraphy, Sourh Atlantic océan, Deep Sea
Drilling Project Leg 36. Initiai Reports of the Deep
Sea Drilling Project 35: 885-'9I7.
Clark B. 1,. Campbell A. Schmidt 1942. — Eocene
Radiolarian Faunas from the Mt. Diablo area,
California. Gcological Society of America Spécial
Paper 39, 112 p.
Dumimea P. 1973. — Palaeoccnc radiolaria. DSDP
Leg 21. Initial Reports of the Deep-Sea Drilling
Project 1\ : 787-817.
Fenner J. 1985. — Late Crefaceous Co Oligocène
plankcic diatoms: 713-762, in H. M., Satiders
J. B. Perch-Xielseii K. (edsK Planhton Stratigraphy,
Cambridge University Pres.s, C^ambridge.
Fenner J. 1991. — faxonomy, stratigraphy. and
paleoceanograpbic implications of Palaeocene dia-
toms. Procccaings of the Océan Drilling Program^
Scientific Ri\ndrs 114: 123-154.
— 1994. — L)iattMns of ihc Fur Formation, their
taxonomy and biostiatigrapliic interprctation.s.
Resulrs from the Harre horehole, Denmark. Aarhus
Geoscicncc, Aarhus 1: 99-163.
Foreman 11. 1973. — Radiolaria of Leg U) with sysce-
matics and ranges fo^ the lamilies Amphyndacidae,
Anostrobiidae, and Theoperidae. Initial Reports oj
the Deep Sea Drilling Project 10: 407-467.
Fourtanier E. 1991. — Palaeoccnc and Eocenc dia-
tom stratiginphy and raxonomy of Eascern Indian
océan site *^52. Proceedings of the Océan Drilling
Progrtiim Seientifïc Rendes î 14: 171-187.
Frizze f D. L. & Middour E. S. 1951 — Palaeocene
radiolaria Irrnn Soütheastern Missouri. Bulletin of
the LhthersiTy of Missouri, School Mines Meial-
logeny, lechnical scrie. 77. 41 p.
Gleser Z. 1. I960. — Palaeogene stlicoflagellates of
western Siberia. Stratigraphia i Paleontologia, VSE-
CiEl, Inform.irzioniy sborntlc 35: 127-136 [in
Russian].
— 1966. — Siliconagcllatophvceae, in Gollerbakh
M. M. (cd.) Cryptogamie plants of the VSSR.
Volume 7. Akademy Nauk SSSR, Botanischeskiy
Institut. .Moskwa'Leningrud, 330 p. |in Russian].
— 1984. — rUc significance ol taxonomie studtes of
diaiorns for biastratigraphy and paieogeography.
Ejtgodnzh paleontologischeshogo ohstchesiva 27:
2S4-298 [in Russian 1.
— 1993. — New data about the Ulyaiiovsk Volga
Région Lower Palaeogene subdivision and corréla¬
tion on diatoms and silic<illdgellart\s, Bulletin
RM SC on the Centre and South (f the Russian
Phnform^ Mosçow, Publication 3: 120-123 [in
Russian].
— 1994. — The correl.ition of P.ilaeogetie diatom
flore évolution from epicontinental and oceanic
arc-as. StYtuigraphy andgeologieui corrélation, Nauka,
Mo.scow 2(1): 103-107 (in Russian).
— 1995. — L^iatoni und silicoflagcllate assemblages
as indicaiors of synchronou.s occurrence of diato-
miies of Middle Voiga région. Denmark atid Power
Palaeogene oceanit b{}tiijm sédiments; 57-63 [in
Russiatij, in Barash M. .S. (ed.l. Rccent and fossil
microplankwu'ofthe WorLi Océan, Nauka, Moscow.
Cileser Z. 1., Kuzntrsov.i T. A. ik Afana.syeva N. I.
1977. — About âge and facial position ut the
MiJdle Volga diatomites. Sovetskaya Geologia 8:
113-119 [in Russian].
Gleser 7. I. &L Rubina N. V. 1908, — New
Palaeogene diatom specie, genus Cascinodiscus
Ehrenberg Trudy Tumen InduSttial Instimte 1;
153-155 (in Riissian].
Gombos A. M. 197". — Palaeogene and Neogene
diatoms from the Falkland Plateau and Vlalvinas
Ourer Basin: Leg. 36. Deep Sea Drilling Project.
Initial Reports of the Deep Sea Djil/in^ Project 36:
575-68^.
Hajos M. 1976. — Dpper Eoccnc and lower
Oligocène diaiomaccae, archaeomonodaceae, and
silicoflagellatae in Southern Pacific sédiments,
DSDP I cg. 29. Initial Reports of the Deep Sea
Drilling Project 35: 817-883.
Hajus M. tk Sîjdncr FI. 1975. — Late Octaceous
archacomonadaceae, diâtomaceat, and Mlicoflagel-
latae from the South Pacfllc Océan. Deep Sea
Drilling Project, Leg. 29. Site 275. Initia! Reports
ofthe Lteep Sea Drilling Project 29: 913-1009.
Harwood D. M. 1988. — L'pper CretaCeouS and
Power PaUcoGcne diatom and silicuflagellatossirati-
graphy of Seymour Island, eastern Atuarcric Penin-
sula. GeoltigiculSociety oj Anierica 169: 55-129.
Haslc G. & Si ms P. i986. — The diatom genera
StelLirima and Symbolophont viwh contments on the
geniis Aetinoptychus. British Phycological Journal 21:
97^114.
Hasie G. P. 6c Syversten E. E. 1985. — Thulas-
siosiropsis, a new diatom genus from the fossil
440
GEODIVERSITAS • 1999 • 21 (3)
Palaeogene siliceous microfossils of Volga Région
ïtcords,. Aficropaleonwlogy 31 (I): 82-91.
Homann M. 1991. — Die Diaromeen der Fur-
Formarion (Airtcrriar) aus dein LtiTif]ord-Gebiet,
Nordjutland/Danemark. Geohÿische juhrhuch 123,
285 p.
jordan R. W. & PriJdlc j. 1991. — Fossi! niembers
ol the diatom genus Proboscid. Diutvm Research 6
(1): 55-61.
jousé A. P. 1951. — Upper Creraceus diacom.s and
silicoflagcllateÿ, North Ural. Butankheykye mciterialy
nidelti spornvykh ra^^teniyy Boranic^l Instiiüic of
Akademia Nauk SSSR 7: 42-65 (in Ru«ian|.
— 1955- — New species of Palaeogene diatoms.
Botnnichesk're materialy otciela sporovykh rastemy^
Botanical Insiitutc of Akademia Naulc SSSR 10:
81-103 lin Rus-îlan).
— 1979. — Diarom biostratigraphic zones ol the
Eocene. Nowtf Hedwigui 64; 427-440.
— 1982. — Palaei'^cene diatoms and silieonagellaies
Irom the Pacific, Indian and Atlantic océans:
131-145 [in Russian], in Jousé A. P. &:
Krasheninnikov V. A. (eds), Aiorskaya mikropaleo'
tologia. Nauka, Moscow'.
Ko/.lova G. E. 197S. — Zonal subdivision of the
Cretaccou.s/Palaeogene boundary levels on plankto-
nic organi.sm.s, in Zitmal siratigniphy of the boréal
Upper PalvQX>oic and Aîczosow as the base far sîtuiy of
oit-beariiig sedinicnts of the North Russia^ Siberta
and KtizakhsuiH- Materialy VNIGRI, Leningrad,
181 p. lin Rn$sian|.
— 1984. — Zonal subdivision ol the boréal
Palaeogene on radiolarians in Morphoio^s ecology
and évolution af Radhlaria, Materials of the IV
European Meeting on radiolaria (Hurorid-lV).
Nauka, Leningrad: 196-210 [in RussianJ.
— 1990. — Filogeneiic investigations as the base lur
zotial scalc on radiolariaiis oi the boréal Palaeogene:
"^0-81 lin RussianJ, m Radioluria in Biostratigraphy,
Academy of Sciences ol USSR, Sverdlovsk.
- 1994. — Radiolarian /.onal .scalc of ihc boréal
Palaeogene. Mityopaleontology {spécial publication)
6: 90-93.
Ko/.lova G. F. & Gorbovci/ A. N. 1966. — Upper
(iretaceous radtolaria of (ht West Siherian Basin.
Nedra, Leningrad, Î59 p. (in Ru.ssian].
Kroirtv A, I. &: Shibkova K. (J. 1959. — Kew^ diatom
species from the Urals Pal.icogcne depoiits,
Botanieheskie materialy otdela sporùvykh rasienh,
Botanical Institucc ol Akademia Nauk SSSR 12:
112-129 lin Ru.ssian].
Leonov G. P. 1961. — Main problevh ofthe Russian
plate Palaeogene régional stniiigraphy. Moscow State
Univer.sity^ Moscow, 552 p. [in RussianJ.
Locker S. & Martini E. 1987. — Silicoflagellaten au.s
einigen russistheo Palaogen-Vorkommen. Senc~
kenberguina kibaea 68 (1/4): 21-67,
Makarova I. V, (ed.) 1988. — The diatoms of the
USSR fassil and recent. Volume 2, fasc. 1. Nauka,
St.-Petersburg, 116 p. [in RussianJ.
— 1992. — The diatoms oftbe USSR fossil and recent.
Volume 2, lasc. 2. Nauka, St.-Petersburg, 125 p.
lin RussianJ.
Miianovsky E. V. 1940. — Geology of the Middle and
Power Volga région. Go.stoptecknizdat, Moscow,
276 p. lin Russianh
Miilehticr A. G. 1995, — Cylindrospira, a new diarom
gemts from ihc Palaeogene of Denmark with
palaeoccological significancc. Diatom Research 10:
321-331-
— 1996. — Palacocavironments in the North .sea
basin *ari»und the Paleocene-Eocene boundar)': évi¬
dence from diatoms and olher siliceous microlos-
sils, in Knox R. W. O'B., Corfield R. M. & Dunay
R. F. (ecLs), Corrélation of the Early Palaeogene in
Northwest Europe. Geological Society spécial publi¬
cation lOI: 255-273.
Mukhina V. V. 1976. — Species composition of ilu*
Laie Palaeoccne diatoms and silitoHagclIate.s in lhe
Tndian Océan. AVnropaleontohgy Zl: 151-158.
Ni.shimura A. 1992. — Paiacocene radiolarian bio-
srraiigraphy in tlie norrhwest Atlantic at Site 384.
Leg 43, uf fhc Deep Sea DrilUng Projecr.
Microp{ileoniolog^> (4): 317-362.
Perch-Nielsen K. 1976. —- New ^ilIcolLigeJlaics and
silicofLigeilate zonation in North Furopean
Palaeoccnc and Eocene di.uonijte. Bulletin of
Geological Society of Denrnark 25 ( 1 *2): 22-27-
— 1985. — Silicoflagcllates: 811-846. tn Bolli hl. M.,
Sauders I. B. ôc Perch Nielscn K. (eds), Plankton
itratigraphy. Cambridge University Press,
Cambridge.
Petrusbevskaya M. CE 1971. — Radiolaria of the
World Océan. Investigations of the Alarine fauna.
Naulo. Leningrad, 416 p. |in RussianJ.
Perrushevskaya .M. C, & Kozlova G. E. 1972. —
Radiolaria. Inuial Reports of the Deep Sea DrilUng
Project 14: 495-654.
— 1979. — L3escriprions of rhe gênera and species of
radioUria: 86-111 [tn Ru.ssian). in Srrelkov A. A. ôc
Peirushevskaya M. G. (eds). lîistory of the
Norwegian Sea Mkroplanktou. Nauka, IvCningrad.
Proshkina-Lavrenko A. J. (ed.) 1949, — Diatomoviy
Analis, Volume 2. Akademi.a Nauk SSSR, Botanical
Institutc, Moscow-Leningrad. 238 p. (in RussianJ.
— 1974. — The diatoms of the USSR finsil and recent.
Volume 1. Naxika, Leningrad, 403 p. |in RussianJ.
Riedcl W. R. & Saidllippo A. 1971. — Cenozoic
radiokrLj from the western tropical Pacific. Initial
Reports of the Deep Sea DiilUng Project 7;
I529-166S.
Ross R. & Sims P. A. 1985. — Some généra of the
Riddulphuceae (diatoms) wirh interlocking linc-
king .spincs. Bulletin of Britisb Aiuseurn of Natimil
lîistor^f (Botamc) 13 (3): 277-381.
Sanfilippü A. èc Riedel W. R. 1973. — Ccno/oïc
radiolaria. Initial Reports af the Deep Sea DrilUng
Project 10: 475-811.
Schrader H.-J. & Fenner J. 1976. — Norwegian sea
GEODIVERSITAS • 1999 • 21 (3)
441
Khokhlova I. E. &c Oreshkina T. V.
cenozoic diatom biostratigraphy and taxonomy.
Initial Reports of the Deep Sea Drilling Project 38
(Part 1): 921-1099.
Sheshukova-Poretzkay V. S. & Gleser Z. I. 1964. —
New Palaeocene marine diatoms of the Ukraine:
78-92 [in Russian], in Novosti Systematiki Nizshikh
Rasteniy. Akademia Nauk SSSR, Botanical
Institute, Nauka, Moscow-Leningrad.
Strelnikova N. I. 1971. — New diatom species of
Upper Cretaceous .sédiments of the Eastern slope of
the Polar Ural: 41-51 [in Russian], in Novosti Syste-
matiki Nizshikh Rasteniy. Akademia Nauk SSSR,
Botanical Institute, Nauka, Moscow-Leningrad.
— 1974. — Late Cretaceous diatoms (Western Sibiria).
Nauka, Moscow, 203 p. [in Russian].
— 1990. — Evolution of diatoms during the Creta¬
ceous and Palaeoeene periods: 195-204, in Simola
H. (ed.), Proceeaing of lOth Diatom Symposium.
Koeltz Scientific books, Koenigstein.
— 1992. — Palaeogene diatoms. St-Petersbourg
University Press, St-Petersburg, 321 p.
Strelnikova N. I., Kaplan A. A. & Travina M. A.
1978. — Palaeogene diatoms, silicoflagellates, ebri-
dian of Kaliningrad district: 57-66 [in Russian], in
Jousé A. P. (ed.), Morskaya micropaleontologia.
Nauka, Moscow.
Strelnikova N. 1. & Nikolaev V. A. 1986. — The
review of généra Stephanopyxis and Pyxidicula
(Bacillariophyta). Botanischeskyi journal 71 (7):
950-953 [in Russian].
Submitted for publication on 22 April 1997;
accepted on 30 June 1998.
442
GEODIVERSITAS • 1999 • 21 (3)
Palaeogene siliceous microfossils of Volga Région
APPENDIX
DIATOMS
Actinoptychtis sp.
Aulacodiscus distingueiidus Hustedt (1958) —
Homann 1991. pl. !■» fig. 4.
Aulacodisciis probabilis A. Schmidt — Homann
1991, pl. 4, % 3-5 (Fig. 7K).
Aulacodiscus schmidtii Win (1886) — Aula-
codisciis sepuis A. Schmidt 1. septvs A. Schmidt
Srrelnikova 1974, pl. 19, (igs 1-6, tah. 20, figs 1-
5. (Fig. 7F).
Aulacodiscus suspectas A. Schmidt (1876) —
Flomann 1991: 37, pl. 6, Figs 1-5: pl. 7, Figs 1-3,
5 1= Coscimdicus josefinus Grunow — Strelnikova
et al. 1978, pl. 15, Figs 1.2] [= Coscinodisais iira-
/i’/n'A fousé — Proshkina-Lavrenko 1949: 73,
pl. 24» fig. 4 (Fig. 6K)1.
Briggera sibirica (Gainow) Ross ôc Sims, 1985:
300, pl. 3, figs 1-7. — Homann 1991: 74, pl. 8,
Figs 1-11 [= Riddulphia tuomeyi (Bailev) Roper
var. tridenut Jousé — Strelnikova et aL 1978,
pi. 17> Fig. 5 (Fig. 5D)].
Coscinodiscus anissbnovae Gleser & Rubina,
1968.* 153. pl. 1, Figs 1-6. — Pro.shkina-Lavrenko
1974, pl. 38, Fig. 8.
Coscinodiscus sp. Common occurrence of large
Coscinodisciis ts rccordcd at the Scngiley section.
These belong moscly to Coscinodiscus oculus iridîs
Ehrenberg (1839) group. Coscinodiscus mdiatus
Ehrenberg (1839) group, and Coscinodiscus argus
Ehrenberg (1838),
Costopyxis nntiqua (Jousé) Gleser, 1984; 291
Stephanopyxis antiqua Jousé, 1951; 46, pl. 1,
Fig. 3. - Strelnikova 1974, pl. 3, figs 18-20].
Craspedodiscus moelleri A. Schmidt (1893) —
Pro.shkina-l.avrenko 19‘74, pl. 23, fig. 2. -
flomann 1991: 47, pl- 17, Figs 1-5 (Fig. 6D).
Cylindrospira sitnsi Miilehner, 1995: 323,
Figs 3-6, 9-18 [= Pyxilla multiseptata Gleser,
1995, pl. l, fig. 16 (Fig. 6B)J.
Eunotogramma variabile Grunow (1883) -
Proshkina-Lavrenko 1974, pl. 15, fig. 12
(Fig. 5E).
Eunotogramma weissii Ehrenberg (1955) -
Proshkina-Lavrenko 1974, pl. 5, fig. 6 (Fig. 4A).
Fetiestrella antiqua (Grunow) Swatman (1948)
- Homann 1991, pl. 18, figs 1, 2, 4, 5.
Grunowiella gemmata (Grunow) Van Heurck
(1896) — Fenner 1991, pl. 11, fig. 13 (Fig. 6H).
Grunowiella palaeocaenica ]o\\sC 1951: 40-4l»
pl. 4, fig. 5. - Fenner 1991, pl. II, figs 1-4
(Fig. 61).
He?nialus ambiguus Grunow (1884) — Fenner
1994, pl. 6. fig. 17{Fig. 5B, I).
Hemiaulus arcticus van bornholmensis Cleve-
Euler (1951) — Fenner 1994, pl. 8, Figs 1, 2
(Fig. 5F).
Hemiaulus curvatulus Strelnikova, 1971: 49,
pl. l, figs 12, 13. - Harwood 1988, figs 12, 13
(Fig. 50, S).
Hemiaulus danicus Grunow (1878) - Homann
1991, pl. 20, figs 1-10 (Fig. 5N).
Hemiaulus jrigidus (Grunow) Fenner, 1994:
112, pL 8, fig. 4 (Fig. 5C).
Heiniaulus incisas Hajos, 1976: 829, pl. 23.
figs 4-9, — Fenner 1991, pl. 10, fig. 9 (Fig. 5G).
Hemiaulus incurvas Shibkova in Krotov &c
Shibkova, 1959: 124, pl. 4, fig 8. - Gombos
1977, pl. 16, figs 1-7 (Fig. 5A).
Hemiaultes proteus Heiberg, 1863 - Proshkina-
Lavrenko 1974, pl, 19, fig. 3. - Homann 1991,
pl. 24, figs 15-18 (Fig. 5P, R).
Hemiaulus cf. rossicus Pantoesek, 1889 -
Proshkina-Lavrenko 1974, pl. 15, fig. 10
(Fig. 5L, M).
Hyalodiscus radiatus (O’ Meara) Grunow var.
arctica Grunow (1884) — Homann 1991, pl. 26,
figs 3, 6-9.
Kentrodiscus fossilis Pantoesek (1889) -
Harwood 1988, figs 16-18 [= Pterotheca sp. -
Homann 1991, pl. 54, figs 7-9 (Fig. 7G)].
Lisitzinia distanovii Gleser, 1995, pl. 1, fig. 5
(Fig. 4C),
GEODIVERSITAS ■ 1999 • 21 (3)
443
Khokhlova I. E. & Oreshkina T. V.
Fig. 4. — A, Eunotogramma weissii Ehrenberg, sample 100; B. E. Trinacria excavata Heiberg; B, sample 68; E. sample 58;
C. Lisitzinia distanovii Gleser, sample 69; D, Triceratium mirabile Jousé, sample 100: F, Triceratium sparsipunctata Jousé.
sample 67; G. Solium exsculptum Heiberg. sample 58; H. Trinacria regina Heiberg. sample 61; I, Triceratium ventriculosum A. S.,
sample 100; J, Triceratium flos Ehrenberg, sample 100; K, Triceratium heibergii Grunow, sample 58. Scale bar: A, B. D. G. I, J,
26.6 pm; C, 13.3 pm; E, 28.5 pm; F, 40 pm; H, 20 pm; K, 23.5 pm.
444
GEODIVERSITAS • 1999 • 21 (3)
Palaeogene siliceous microfossils of Volga Région
Fig. 5. — A, Hemiaulus incurvas Shibkova. sample 85; B. I, Hemiaulus ambiguus Grunow. sample 85: C, Hemiaulus frigidus
(Grunow) Fenner, sample 67; D. Briggera sibihca (Grunow) Ross & Sims, sample 58; E. Eunotogramma variabile Grunow,
sample 88; F. Hemiaulus arcticus var. bornholmensis Cleve-Euler, sample 103; G. Hemiaulus incisus Hajos. sample 58; H, J. K,
Hemiaulus sp.; H. sample 103; J, sample 109; K. sample 109; L, M, Hemiaulus cl. rossicus Panlocsek. sample 67; N, Hemiaulus
danicus Grunow. sample 88; O. S, Hemiaulus curvatulus Strelnikova; O, sample 58; S, sample 67; P. R. Hemiaulus proteus Heiberg;
P. sample 58: R, sample 61 ; Q. Hemiaulus sp., sample 75. Scale bar; A-C, E-N, R, S, 20 pm; D, 0-Q, 26.6 pm.
GEODIVERSITAS • 1999 • 21 (3)
y ^
1
E.
% *
Khokhlova I. E. & Oreshkina T. V.
Fig. 6. — A. Rhaphonels simbirskiana Grunow & Pantocsek, sample 58; B. Cylindrospira simsi Mitlehner, sample 67; C. Pyxidicula
ferox (Greville) Strelnikova & Nikolaev, sample 100; D. Craspedodiscus moelleri A. Schmidt, sample 58; E. Pyxidicula ft/ms {Greville
& Arnott) Strelnikova & Nikolaev. sample 100; F, Thalassiosira sp. 1 sensu Fourtanier, sample 59; G. Pyxidicula sp., sample 74;
H. Grunowiella gemmata (Grunow) Van Heurk, sample 100; I, Grunowiella palaeocaenica Jousé, sample 58; J, Thalasslosiropsis
wittiana (Pantocsek) Hasie, sample 100; K. Aulacodiscus suspectus A. Schmidt, sample 58; L. Pyxidicula sp.. sample 58. Scale bar:
A. H, K, 16.6 pm; B. F, G. I. 20 pm; C, 13.3 pm; D. J, 26.6 pm; E, 28.5 pm; L, 25 pm.
GEODIVERSITAS • 1999 • 21 (3)
T4|g :
Palaeogene siliceous microfossils of Volga Région
Odontotrnpis carinata Grunow (1884) -
Homann 1991, pl. 27, iigs 5, 7; pl. 28, figs 1-3
[= Odontotropis danicm Dcbes — Fenner 1985:
734, pl. 14, fig- 11 (Fig. 71, J).
Odontotropis crtstata Grunow (1884) —
Homann 1991, pl. 29, figs 1-5.
Paralia crenulata (Grunow) Gleser stat. nov. —
Makarova 1992: 50, pl. 41, figs 1-8.
Paralia grunototi Gleser stat et nom. nov. -
Makarova 1992; 51, pl. 41, figs 9-11; pl- 42.
Paralia sulcata (Ehrenberg) Cleve (1884) -
Makarova 1992; 52, pl, 43.
Proboscia cretacea (Hajos & Stradner) Jordan
& Priddle, 1991: 56 1= Rhîzosolenia cretacea
Hajos & Stradner, 1975: 929, pl. 7, fig. 1;
pl. 31, figs 4-6. — Fenner 1991, pl- 1, figs 4-91-
Pseudopodosira westii (W. Smith) She.shukova
& Gleser, 1964, pl. 1. figs 4, 5.
Psettdopodosira sp. 2 sema Homann, 1991:
134, pl. 54, figs 9, 10.
Pseudostictodisciis anpilatns Grunow (1876) —
Fcnncr 1994, pl. 3, figs 12-17 (Fig. 70).
Pterotheca major ]o\ssé-, 1955: 101, pl. 6, fig. 2.
- Harwood 1988, fig.s 16, 18.
PyxîdicHla ferox (Greville) .Strelnikova &
Nikolaev - Makarova 1988: 41, pl. 23, figs 7. 8
(Fig.^GO.
Pyxidiciila moelleri (A. Schmidt) Strelnikova &
Nikolaev, 1986: 952 \=-Coscinodiscus moelleri A.
Schmidt - Homann 1991, pl. 10, figs 4-8
(Fig. 7A).
Pyxiducula sp. Common occurrence of different
Pyxidiciila is observed in the upper part of
Granoe Ukho section. Mosc of these belongs to
Pyxidicula tnrris (Greville & Arnort) Strelnikova
& Nikolaev, 1986 group and Pyxidicula corona
(Ehrenberg) Strelnikova & Nikolaev, 1986
group.
Rattrayella oatnaruensis (Grunow) De Ton!
(1896) — Homann 1991, pl. 33, figs 1-7
(Fig. 7C).
RiiW'ayella rotundata (Shibkova) Gleser, 1995,
pl. 1 , fig. 20. (Fig. 7B).
Rhaphoneis morsiana Grunow in Pantocsek
(1886-89) em, Homann 1991: 129, pl. 34,
figs 9-12.
Rhaphoneis simbirskiana Grunow in Pantocsek
(1886-89) - Proshkina-Lavrcnko 1974, pl. 15,
fig. 15 (Fig. 6A).
Rhîzosolenia hebetata Bailey (1856) — Homann
1991. pL 36, figs5, 11> 12.
Solium exsculptum Heiberg (1863) — Homann
1991. tf. 37, figs 1, 3, 5-7 f- Trinacria exsculpta
(Heiberg) Hust. — Mukhina 1976, pl. 2, fig. 7
(Fig. 4G).
Stellarima microtrias (Ehrenberg) Hasle àc
Sims, 1986: II, figs 18-27.
Thalassiosira sp. 1 sensu Thalassiosira ? sp. 1
sensu Fourtanier, 1991, pl. 1, fig. 12 [= Genus
and spccie indct. — Schrader & Fenner 1976,
pl. 33. fig. 7 (Fig. 6F)]. _
Thalassiosiropsis ivittiana (Pantocsek) Hasle,
Hasle Syversten, 1985, 89 f, Abb. 1-41. -
Homann 1991, pl. 37, figs 8-10 (Fig. 6j).
Tfdcejatiufft flos Ehrenberg (1885) - Homann
1991, pl. 44, figs 1, 2, 6 (Fig. 4J).
Triceratiiun heibergii sensu Gombos, 1977,
pl. 1, fig.s 1-12 (= Triceraiium caudatum Witt,
Proshkina-Lavrcnko, 1974, pl. 15, fig.] [=
Trinacria i7itiricata Gleser, 1995, pl. 1, fig. 4
(Fig.4K)l.
Triceratium kinken A. Schmidt (1874-1959) —
Prosh-kinâ-Lavrenko 1974, pl. 23, fig. 3.
Triceratium mirabile jousé in Proshkina-
Lavrcnko, 1949: 166, pl. 6, fig. 5 - Fenner 1991,
pl. 9, figs 7-10 (Fig. 4D).
Triceratiîim sparsipunctata Jousé, in
Proshkina-Lavtenkü 1949: 169, pl. 64, fig. 6
(Fig. 4F).
Trinacria veuiriculosa (A. Schmidt) Gleser, in
Proshkina-Lavrcnko 1974, pl. 18, fig. 12
(Eig. 41).
Trinacria excavata Heiberg (1863) — Homann
1991, pl. 46, figs 1-8; pl. 47, figs 1-6. (Fig. 4B,
E).^
Trinacria pileolus (Ehrenberg) Grunow (1884)
— Gombos 1977, pl. 37, figs 3, 4.
Trinacria regina Heiberg (1863) em. Homann
1991: 124, pl. 50, figs U7\ pl. 51, figs 1-7. -
Proshkina-Lavrcnko 1974, pl. 23, fig. 6
^Fig. 4H).
Trochosira spinosa Kitton (1871) - Homann
1991, pl. 17, figs 6-13.
GEODIVERSITAS • 1999 • 21 (3)
447
Khokhlova I. E. & Oreshkina T. V.
Fig. 7. — A. Pyxidicula moelleri (A. Schmidt) Strelnikova & Nikolaev. sample 58; B, RatirayeHa rotundata (Shibkova) Glaser
sample 79; C, Rattrayella oamaruensis (Grunow) De Toni, sample 87; D, Pseudostictodiscus angulatus Grunow, sample 74
E, Pyxidicula sp.. sample 58; F, Aulacodiscus schmidtii Witt, sample 74; G, Kentrodiscus fossilis Pantocsek, sample 94
H, Pterotheca sp., sample 100; I, J, Odontotropis carinata Grunow, sample 100; K, Aulacodiscus probabilis A. Schmidt, sample 88.
Scale bar: A, 14.2 pm; B-D, G. K, 20 pm; E, 40 pm; F, 13.3 pm; H-J, 26.6 pm.
GEODIVERSITAS • 1999
Fig. 8. — A'D. Naviculopsis constricta (Schuiz) Frengueüi; A. sample 74; B, sample 58; C, sample 67; D, sample 58; E, Naviculopsis
punctilia Perch-Nielsen. sample 67; F. Naviculopsis danica Perch-Nieisen, sample 67; G, Dictyocha precarentis Bukry, sample 88;
H, Corbisema hastata hastata (Lemmermann) Bukry. sample 108; l, Corbisema hastata globulata Bukry, sample 58; J, Corbisema
disymmetrica var. commuais Bukry, sample 109; K, L, Dictyocha elongata Gleser; K, sample 88; L, sample 95; M, N. Naviculopsis
robusta Deflandre; M, sample 74; N, sample 109. Scale bar: A-C, E-N, 20 pm; D, 26,6 pm.
GEODIVERSITAS • 1999 • 21 (3)
449
Khokhlova I. E. & Oreshkina T. V.
Xanthiopyxis s^. l-form 7 sensu Homann 1991,
pl. 57, figs 14, 15.
SILICOFLAGELLATES
Corbiseinn disymmetrica var. coinmunis Bukry,
1976: 891, pl. 1, figs 5-9. - Perch-Nielsen 1985,
fig. 11(8) [= Dictyocha navicula Ehrenberg,
Gleser 1966: 251, pl 9, figs 4, 5; texr-fig. 6(6)]
[= Corbisema naviculoidea (Frenguelli) Pcrch-
Nielsen, 1976: 33, fig. 7, 19, 22 (Fig. 8J)J.
Corbisema hastata hastata (Lcmmermann)
Bukry, 1976: 892, pl, 4, figs 9-16. — Perch-
Nielsen 1985, fig. 11 l22, 23) (Fig. 8H).
Corbisevia hastata globtdata Bukry, 1976: 892,
pl. 4, figs 7, 8 (Fig. 81),
Corbisema inerviis inermis (Lemmermann)
Bukry, 1976: 892, pJ. 5, figs 1-3.
Dictyocha elongata Gleser, 1960: 131, 132,
tabl. 1, pl. 2, figs 16-20. — Perch-Nielsen 1976.
fig. 2 (Fig. 8K. L).
Dictyocha fibula Ehrenberg (1839) — Perch-
Nielsen 1985. fig. 15 (17).
Dictyocha precarentis Bukry, 1976^894, pl. 6,
figs 6-13v pl. 7, figs 1-3 (Fig. 8G).
Naviculopsîs constricta (Schulz) Frenguelli,
(1940) — Perch-Nielsen 1985, figs 26 (6, 7)
(Fig. 8A-D).
Naviculopsis datiica Perch-Nielsen, 1976: 35,
figs 5, 6, 21. — Gleser 1995, pl. 1, fig. 27
(Fig. 8F).
Naviculopsis punctilia Perch-Nielsen, 1976: 36,
figs 26, 27; 1985, fig. 26 (33) (Fig. 8E).
Naviculopsis robusta Deflandrc (1950) - Gleser
1995, pl. l,fig. 29 (Fig. 8M, N).
RADIOLARIA
Anthocyrtoma (l) Jrizzeli Nishimura, 1992:
332, pl. 9, fig. 13, 14; pl. 13, fig. 8.
Botryometra (f) osha Kozlova, 1978: 95, 96,
pl. VI, fig. 9, 10; pl. XIX, fig. 3.
Buryella tetradica Foreman, 1973: 443, 8,
figs 4, 5; pl. 9, figs 13, 14. - Kozlova 1984,
pl. XII, fig, 16 1= Lithocampium sp. A - Riedcl &
Sanfilippo 1971, pl. 7, fig. 12],
Clathrocyclas elegam (Lipman, 1958) - Kozlova
1978. pl. 17, figs 1, 4, 5. — Kozlova 1990; 78,
pl. XII, fig. I4. - Petrushevskaya & Kozlova
1979, fig. 500 [= Theocorys sporta Kozlova in
Kozlova, Gorbqvetz 1966: 11, pl. 17, fig. 8.
Clathrocyclas exteusa Clark & Campbell, 1942:
85, pl 8, fig. 11. - Bjorklund 1977, pl. 21,
fig, 4, - Kozlova & Corboverz 1966, pk 21,
fig. 8. — Petrushevskaya &: Kozlova 1979: 131,
fig. 38b, 504.
Clathrocyclas lipmanae Kozlova, 1978: 121,
pl. 6, fig. 3, 6, pl. 17, fig. 12, pl. 19, fig. 8. -
Kozlova 1990: 78, pl. XII, fig. 21.
Clatln^ocyclas longispina C'Iark & Campbell,
1942- Kozlova 1978, pl. XVII.
Diplocyclas cornuta runjevae Kozlova, 1978:
124, pk VI, fig. 1 ,4, pk XJX, fig. 6.
DiplocycLts pseudobicorona pseudobicorona
Nishimura, 1992: 340, pk 4, figs 4-6, pk 13,
%• > 4 .
Larnacalpis (f) smili Middour-Kozlova 1978,
pk IX, figs 3, 5.
Lophophaemi curta Kozlova, 1978, pk V, figs 7,
8; pk XIX, fig. 4.
Peritiviator (?) dumitricae Nishimura, 1992:
328, pl. U %. 13-16, pk 11, fig.s 11,12.
Petalospyris fîscella (Kozlova) - Temtspyns fiscella
Kozlova in Kozlova & Gorbovetz 1966: 92,
tabl. XV, fig. 1 |- Hextispyyis sp. — Petrushe\^kaya
& Kozlova 1972, pl. 40, fig. 6| [= Hexaspyris fis-
celLi (feizlova) — Kozlova 1978; 89, pk VIII, fig. 6].
Petalospyris foveolata Ehrenberg 8c Kozlova,
1978: 89-90, pl. 6, fig. 8: pk 8, fig. 10; pk 19,
figs 9-13.
Petalospyris tmnidnla Kcïzlova in Kozlova &
Gorbovetz, 1966:97, pk Xy. figs 10, 11,
Phormocyrtis reticula (Kozlova) [= Theocorys
rcticiih Kozlova in Kozlova Gorbovetz, 1966:
110, pl. XVII, fig. 7]
Plectodiscus totchilinae Kozlova, 1984: 206-
207, pkX, fig. 13.
450
GEODIVERSITAS • 1999 • 21 (3)
Palaeogene siliceous microfossils of Volga Région
Spongasteriscus cruciferus Clark & Campbell,
1942 — Kozlova 1984, pl. X, fig. 16.
Spongodiscm americaniis Kozlova in Kozlova &
Gorbovetz, 1966, tabl. XIV, figs 1, 2. —
Sanfilippo & Riedel 1973: 524, pl. 27, fig. 11;
pl. 28, fig. 9 [= Spongodiscus americanus america-
nus Kozlova, 1978: 77, tabl. XIV, fig. 3].
Spongomelissa mima callosa Kozlova, 1978:
101, pl. XII, fig. 2; pl. XIX, fig. 2.
Spongomelissa numa numa Kozlova, 1978:
100, 101, pl. XII, figs 4, 5.
Spongomelissa (?) temaria Kozlova, 1978: 101,
102, pl. VIII, fig. 1; pl. XIX, fig. 1.
Spongotrochas alveatus Riedel & Sanfilippo in
Sanfilippo ôc Riedel, 1973: 525, pl. 13, figs 4, 5;
pl. 30, figs 3, 4. — Kozlova 1984, pl. XI, fig. 6.
Spongotrochas helioides (Cleve) - [= Spongo-
trochus sp. ajf. Trochodiscus helioides Cleve —
Kozlova 1978: 82, 83, pl. 16, fig. 6].
Spongotrochas nativus praecox Kozlova, 1978:
78, pl. 14, fig. 1.
Spongotrochas paciferas antiquas Kozlova,
1978, tabl. XVI, figs 4,5.
Spongotrochas puter Kozlova, 1978: 82, pl. 5,
fig. 10.
Thecosphaerella rotanda Borissenko, 1960:
222, pl. 1, fig. 3, pl. 3, figs 2, 3. - Sanfilippo &
Riedel 1973: 522, pl. 26, fig. 3 [= Thecosphaera
melitomma Kozlova in Kozlova & Gorbovetz
1966: 52. pl. VII, figs 7. 8].
Tripodiscinas sengilensis Kozlova, 1978: 104,
105, pl. V, figs 1-5; 1984; 207, 208, pl. XII, 20.
Tripodiscinas sibiricas Kozlova, 1978: 103,
104, pl. XII, fig. 3; 1984: 208, pl. XII, fig. 4 [=
Tripodiscinas tumulosa (Kozlova) - Petru-
shevskaya 1971, figs 33-V-VI] [= Tripodiscinum
sp. A - Petrushevskaya 1971, figs XI-XII].
Tripodiscinas trilobatus Kozlova, 1978, pl. X,
figs 4, 5.
GEODIVERSITAS • 1999 • 21 (3)
451
Eocene stratigraphy of key sections
of the Dnieper-Donets Dépréssion based
on calcareous and siliceous microplankton
Irina E. KHOKHLOVA, Eleonora P. RADIONOVA.
Vladimir N. BENIAMOVSKII & Ekaterina K. SHCHERBININA
Geological Institute, Russian Academy of Sciences,
Pyzhevsky per. 7, Moscow, 109017 (Russie)
khokhlova@ginran.msk.su
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K. 1999. —
Eocene stratigraphy of key sections of the Dnieper-Donets Dépréssion based on calca¬
reous and siliceous nnicroplankton, in Crasquin-Soleau S. & De Wever P. (eds), Peri-
Tethys: stratigraphie corrélations 3, Geodiversitas 21 (3) : 453-476
KEVWORDS
Dnieper-Donets Dépréssion,
radioiaria,
diatorns.
silicoflagellates,
foraminifera,
Eocene,
stratigraphy.
ABSTRACT
Radiolarian, diatom, nannoplankton, and foraminifer assemblages were stu-
died in detail in four key sections (Kantemirovka, Sergeevka, and 9540
Rudaevka, 5-93 Boguchar boreholes) of the souüi and central parts of the
Voronezh anticline area. The widespread middle Eocene sédiments lie uncor-
formably on maris and limestones of Upper Cretaceous âge. Thcy are mainly
composed by a transgressive-regressive succession of phosphoritic sands,
maris, and siliceous clays ot the Kiev Formation in the Ukraine (or Sergeevka
and Tishki formatioas in Russia) and by sandy clays and siliceous clays of the
lower part of the Khar'kov Formation in the Ukraine (or Kas’anovka
Formation in Russia). Lithologically, the cocval formations range from terri-
gcnous-carbonate to siliceous-carbonate. The âge of the formations has long
remained a point of discussion. Recent studies based on calcareous and, espe-
cially, siliceous microplankton allowed a direct corrélation of these .sections
with standard zonal scales.
GEODIVERSITAS • 1999 • 21 (3)
453
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
MOTS CLÉS
Dépression du Dniepr-Donets,
radiolaires,
diatomées,
silicofla^ellés.
loraminiftres,
Éocène,
stratigraphie.
RÉSUMÉ
Stratigraphie des coupes clvs de l’Eochte dans la dépression du Dniepr-Donets
fondée sur le microplancton calcaire et situeux.
Les assemblages de radiolaires, diatomées, nannoplancton et foraminifères
ont été étudiés en détail dans quatre séries clés (les coupes de Kaiitcmirovka
et Sergcevka et les forages 9540 Rudaevka et 5-93 Bogueliar) des parties
méridionale et centrale de la région de Tanticlinal de Voronezh. Les sédi¬
ments, largement rép.uidus, de TÉocène- moyen reposent en discontinuité sur
des marnes et calcaires du Crétacé supérieur. Ils sont principalement compo¬
sés d’une succes.sion transgression-régression de sables phosphatés, de marnes
et d’argiles siliceuses de la formation de Kiev en Ukiaine (ou les formations
de Sergee\'ka et T'ishki en Russie) et par des argiles sableuses et des argiles sili¬
ceuses dam la partie inforieure de la lormation de Kl^ar'kov en Ukraine (ou
de Kas'anovka en Russie). Lirhologiqucmcnr, les formations équivalentes
vont des carbonates terrigcncs auü carbonates siliceux Lagc des formations
est resté longtemps très di.scuté. Les études récentes* fondées .sur le micro-
plancton calcaire et surtout siliceux permettent des corrélations directes avec
les zones des échelles standart.
INTRODUCTION
The Palaeogene sédiments of the south-eastern
slope of the Voronezh anticline, which aiso repre-
sents the north-easi Bank of the Dnieper-Donets
Dépression (scc Radionova et al.^ this volume,
fig. 1), hâve been studied stratigraphically silice
the 1960s, when the lithostratigraphic scheme
was proposcd and usctl to subdividc thèse depo-
sits (Semenov 1965). *1 lie PaUcogcnc deposits of
the région represent a graduai tran.sition from
typical faciès of the Dnieper-Donets Ba.sin
(Ukrainian type of succession) to lacics of the
Volga-Don Région. In the western part ol the
area, a Ukrainian Utliostratigraphic schemc
(Makarenko et al, 1987) is used. The Palaeogene
of the marginal ea.st-northern areas of Dnieper-
Donets Basin is subdivided according to
Semenov (1965). In Volga-Don Région, the
scheme of Kurlaev (1968) is used (Fig. 1). This
faciès transition can be observed in sections stu-
died in rhe présent paper. The presence of both
calcareous and siliceous microplankfon in ail stu-
died sections allowed us to correlate rhe Eocene
part of ail llie sections.
The Palaeogene succession of the western
Kantemirovka and Sergeevka sections (Fig. 2) is
very similar to thar of the central part of
Dnieper-Donets Dépréssion and begiiis with
dark green and greyish grcen mica-glauconite
sands of Buchack Formation containing no
macro- or microfossils. Up to chc section lies rhe
Sergeevka Formation represenlcd by maris with
sandy and clayey interlayers it ihe base. The
superpo-s'ing Fishki Formation is coniposed by
sandy noiicarbonate clays. Both Sergeevka and
Tishki formations represent distinct transgressive-
regressive cycle and arc believed lo correspond to
the Kiev Formation of the LIkrainc, The overlap-
ping KasVan Formation, as a rule, begins with
sandy layer grading up to the section into sili-
ceous clays. The uppermost Kantemirovka
Formation is exposed in the Kantemirovka
Section only and is compo.scd of sandy deposits.
The Kas’yan and Kantemirovka formations
rcpre^ciu the second transgressive-rcgressivc cycle
and arc cocval co rhe Khar’kov Formation of the
LTtraine.
In rhe Boguchar Section, ihe Eocene formations
are composed t)f facie.s different from that of the
three western sections (Sei^eevka, Kantemirovka
and Rudaevka). The lowermost sedimemary
cycle includes lowermost Osinovo and Tchir
beds, represented by more terrigenous sédiments
454
GEODIVERSITAS • 1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donecs Dépréssion
M
Onieper-Donets
Dépréssion
(Makarenko étal.
1987)
Soulh«eastern
borderof
Voronezh
aniecline
(Semionov 1965)
Lower reaches
of Volga and
Don rivers
(^Kurlaev &
Akhlestina
1988)
T his pa pe r
H
1
1
c
O
Mezhigorka
E Fm.
O
LL
Kantemirovka
Fm,
Upper
Priabonian
>
O
«J Obukhovka
ë Fm.
Kasyan
F m.
Kante¬
mirovka
Fm.
K h a rko V
F m,
Eocene
c
ea
ET
O
Kiev Fm.
Tishki Fm.
Kuma Fm.
Kasyan Fm.
O
m
Tishki Fm.
Kiev F m.
•O
■O
C
cd
Sergeevska Fm,
Tchir beds
Sergeevka
Fm.
■U
_1
Osinovo Fm.
Osinovo Fm.
Fig. 1, — The Eocene lithostratigraphic scheme of the studied région.
than chose of Sergeevka Formation, and browni-
sh clays named Kuma Formation. The last for-
marion corresponds in its sedimentary
composition and stratigraphie position to the
Kuma Formation ofche Northern Cis-Caucasia.
Lithostratigraphical unies of souih-wcstern
Russia (Voronezh anricline) can be considered as
a reflection of the cransgressive-regressive succes¬
sion in the North Peri-Techys Région. A number
of problems arise when the issues concerning the
Palaeogene palaeogeography and detailed âge
corrélation are to be approached.
The first problem is the age span of the Kiev
“mari" and ifs corrélation with eastern sections.
The second problem lies in dctcrminlng the âge
of the siliceou.s units, i.e., the upper part of the
Kiev Formation and the lowcr part of Khar kov
Formadon, and in coirclating them with cocval
stratigraphie unies further east.
SAMPLES
Two sections — Kaniemirovka and Sergeevka —
and two boreholes — 5-93 Boguchar and 9540
Rudaevka - were sampled carefully during the
field trip to the Voronezh anricline area in July
1994. More than 100 samples were processed,
and in 79 of them microfossils were foiind
(Fig. 2A).
Methods
To stLidy siliceous niicro-organisms, each sampic
was placed into a 400 ml glass^ desegregated
mechanically» and chen hoiled for 15 minutes
with addicion of about 50 ml of 30% hydrogen
peroxide Each sample was soaked for
one hour with distillcd water, rinscd, and the
procedure was repeated undl the sctiling dme
becaine about 5 minutes for radiolarians. Slides
for radiolarian scudy were prepared on 24 X
24 ram cover glasses and mounted in Canada
halm on 24 X 80 mm glas.s slides. Samples for
diatom study were mounted on 18 X 18 glass
slides. Radiolarians were examined at X 400, and
diatoms, at X 1000.
For nannoplankton study, smcar slides from
liquid alcohol suspension were made with
Canada balm and examined at X 1000 with the
use of immersion oil.
GEODIVERSITAS • 1999 • 21 (3)
455
Eocene stratigraphy of the Dnieper-Donecs Dépréssion
B
C
'c
O u:
Sergeevka
Section
Kantemirovka
Section
ô
Rudaevka
Borehole 9540
Boguchar
Borehole 5/93
Fig. 2. — A, corrélation of studied sections of the eastern slope of the Dnieper-Donets Dépréssion. N,, 2 « nannofossil assemblage;
F, foraminifera assemblage; radiolaria assemblage: D^.g, diatoms assemblage. B. samples number from the sections.
Foraminifers were washed with the use of sieves
and examined at X 25-30.
MICROPALEONTOLÜGICAL ANALYSIS
The corrélation of the foraminifera, nannofossil,
silicoflagellate, radiolaria, and diatom zonal
scales Liscd in chis papcr are shown in Figure 3.
Results of micropalaeontological study of sec¬
tions are shown in Figures 2, 3 and Tables 1 ro
13. Species were recorded as abundant (A) if
more than 15 specimens were présent in the
slide, as frequent (F) if 10-15 species were pré¬
sent, as common (C) if 3-9 specimens occurred
in the slide, and as rare (R) if 1-2 specimens were
found.
Sergeevka Seciion
Sergeevka Section, occupying the north-western-
GEODIVERSITAS • 1999 • 21 (3)
457
Khokhlova 1. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
most position among the studied sections, is very
similar ia litliologicd composition to the succes¬
sion ol the Dnicper-Donets Dépréssion. )t bcgins
with dark grecn and greyish grcen mica-glauconi-
tc sands oï the BuchaeJe Formation, which arc
barren ot macro- and microtossils. Up to the sec¬
tion, the Kiev Formation represented by maris
with sandy and clayey beds 7 m in thickness lies.
These are ovetlain by the Kiev Formation: maris
with sandy and clay beds 7 m thick. The upper
part of ihc Kiev formation is composcd of sândy
non-carbonatc clays, 5 m in thickness. The lowcr
part of the formation is the samc as the
Sergeevkâ Formation of .Semenov (1965) sche-
me, and the uppex part of the KJe^^ Formation is
équivalent to Semenov (1965) Tishki Formation.
The lower part of the Khar'kov Formation
(Kasyan Formation of Semenov (1965) scheme)
begins with sandy layer passing upsection into
siliceous clays, l'he exposed thickness of these
sédiments, is about 5 m, Thcy arc unconformably
overlapped by sands of Neogene (?) âge.
NannofossUs
At the base of the Sergeevkâ Formation in a
sandy unit, a poor nannofossil assemblage (N:
range of nannofossil assemblage in Figs 2, 3) of
the middlc Eocene âge is présent.
A rather abundant nannofossil association (Ni)
including Cycliiargf^ltthus florieiarnis (Roth &C
Hay in May et ni 1967) Biikry, Discoaster hnrba-
diensis Tan, D. rjffdifcr (Bramlcie & Riedel)
Bukry, D. strictus Stradner, D. wctnmelensts
Achuthan 6c Stradner, Retiaihfene^trn dictyodn
(Deflandre in DcBandre & Fcri), Stradner in
Strander 6c Edwards, etc, was found in maris of
the Sergeevkâ Formation (Table l). Nevcrthcless,
the absence of any boundary 2 onal markets docs
not allow us to judge whether it belongs to rhe
uppermost C'PI3 Nannotetrinn quadrnta or
lowermost CP 14 Retiadojhmtrn lonhilica zones.
Foraminifern
In the maris ol the Sergeevkâ Formation, an
abundant and well-prcservcd benthic foraniinile-
ra association (F: range ot foraminifera assembla¬
ge in Figs 2, 3) contains Spiroplectammina
pishvanovae A. V. Furssenko 6>L K. B. Furssenko,
Clavulinoides sezaboi (Hantkcn), Vagimdinopsis
deeorntn (Reuss), Cibicidoides biumbonatus (A. V.
Furssenko 6c K. B. Furssenko). Uvigerina spino-
coitata Cushman & Jarvis (= Uopkimia hykovae
ukrainien Kraeva), U. cosullnta Morozova,
Bîdimina madlentn Cushman àC Parker. B, cooki
Cushman (Table 2). This assemblage can be rela-
ted to the middic-upper [.utetian Pseudo-
cldvulinâ subhotinae-Uvigerirui spinocostata-
Bolivinn caukd régional zone (Naidin et al. 1994;
Radionova er j/. 1994).
Radiolxtrin
The most ancient radiolarian assemblage (R:
range of radiolarian assemblage in Figs 2, 3) was
found in the middle part of the maris ot the
Sergeevkâ Formation (Table 3) and is represented
by Clnthrocyclas niininta Clark & Campbell,
Pleliüdisius helinsterisius Clark 6c Campbell,
H. dupla Kozlova, Üpongomclissa sp. A,
Lithornelissa sp. A, CalaycLu semipolita Clark &
Campbell, ibteosphaern minor Campbell &
Clark, Siyhnrochm radinms Lipman, Theocyrtis
lidm Clark 6c Campbell. Taxonomical composi¬
tion of fhe .is.sociarion c.innot coivstrain the âge
of sédiments more prccisely rhan middlc Eocene.
Upsection, nKliolaria are found only in siliceous
clays of Kas’ydnovka Formation assemblage (R5)
is taxonomically diversified and abundant,
containing Stylodictyn irregulnris Vinassa,
llcliodiscas heliasteriscus Clark 6c Campbell,
lleterosc^tiwv formosuni Tochilina, II. tschuenkoi
Lipman, Liihomtlif.^a sp B> Meliitosphaera
magnopnriihsn Nakaseko, Hetiodheus fragilis
Tochilina, bf. testntus Ko'àowx, ''Loplmyrtis *sinit-
zinr Lipman, Clathrocytlas extensa viultipUcata
(Clark 6c Campbell), Tripodisànus kaptarenkoi
Gorbunav. T. aff. tribrarhintus Gorbunov,
Theocyrtis lithos Clark & Campbell, and
Theocyrtis andriashein Petrushevskaya. It belongs
to the Theocyrtis andriashevi régional zone.
Diaiorns
In the lower part ot the Sctgccvka Formation
(Table 4), a typical Kiev diatoni assemblage with
Peponia harhadensh Grcvillc (Dl) (D: range of
diatom .isscmhlagc in Figs 2. 3) was tound.
Commun tava include Paralia oamaniensis
(Grove 6c Stuart) Gicler — index-specic^ of lhe
zone of the same name of the local scheme of
458
GEODIVERSITAS * 1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donets Dépréssion
.c
O
O
Q.
LU
Stage
Planklonic
foramindera
zonation
(Boii&Saiiideis
1985)
Crimea-CaucasLis
plaiklonic^ifafninrfBra
zcoalacale
(Anonymou5l909)
Nanoofûssl zorel
scale
(Okada&BuKiy
19001
zonal
xale
(BuftiyiOBI)
R(
radiolarians
(Koziova 1990)
sgional zonal scales
I diatoms
I Glezer 1989 thispaper
pper
P15
Globigerapsis
rropfcalis
CP15
ChiasmolUhüS
oamaruensis
Corbisema
apiculata
Theocyrtis
andriasheva
R5
Paralia
LU
Z
LU
oamaruensis
Z
Globtgenna
CPl4b
Discoaster
saipanensts
Ü
Q
Z
P14
turkmenica
Dictyocha
Ethniosphara
polysi^honia
layers with
LU
middle
O
1 —
Hantkenina
atabamensis
CP148
hexacantha
Brightwellia
imperfecta
D2-D2A
cc
<
CD
P13
Discoastet
bifax
Cytophormis
alta
P3
LUTETIAN
P12
Acarinina
rotundimarginatê,
CP13
Nannotetrina
quadrata
Navicutopsis
foliaceae
Heliodiscus
quadmtus
R2
Pyxilla
oligocenica
var. tenue
layers with
Peponia
barbadensis
DI
Fig. 3. — The corrélation of the foraminKera. nannofossil, silicoflagellate, radlolaria and diatom zonal scales.
Glezer (1979) — and Cristodiscus (Coscinodiscm)
succinctus (Shcshukova & Gleser) Gleser
Olshtinskaya» date index-species of the boréal
zonal scheme of Strelnikova (1992). Peponia bar-
badenüs Greville, index-spedes of rhe proposed
régional schemc (Radionova 1996) occurs rarely.
According lo Glezers (1979) local diarom sche-
me, ihe Paralin oaniaruensis zone is relared to ihe
Upper Eocene. and according ro Strelnikova
( 1992) boréal scheme, the Coscinodiscus succinc-
tiis zone bclongs to uppcrmoüt Lutetian-lower
Barconian. Layers wlrh Peponia harhadense
Greville are considered as upper Lutetian. The
association includes pelagic specics Pyxidivula
joynsonii (A. Schmidt) Strelnikovn & Nikolaev,
P charkoviana (Jouse) Strelnikova & Nikolaev,
Crnspcdodiscus moclleri A. Sclintidt, and a num-
ber of ncritic species. In Khar’kov (Kas'yanovka)
Formation, a diarom assemblage with
Eripphwellia imperfecta ]oms£. (D2) bccomcs more
abundanr. Besides, Mehsini arehittcLuralis Brun
(Schmidt et ai) and Pyxilla prolongata Brun are
comnion. l’he Coscinodiscus group becomes
more diversificd (C decmeenoides ]ousér C. bul-
liens Schmidt, C oculusiridis Ehrenberg), as well
as the Hetiiiaulus group (//. polymorphtis var.
charkovinnus Jousé, H. tschestnovji Pantoaek). In
the upper p.ïrt of the BrighwcJliâ imperfècca (?)
unit, Cosmiodiscus breviradiatus Gleser &
Olshtinskaya and Pseudotriceratiuni chenevieri
(Meistner) Gleser, appear. Index-species Brighi-
wellia imperfecta Jousé, covering a part of the
Bartonian stratigraphie interval of distribution,
allows determining the stratigraphie range of the
Kas’yanovka Formation.
ICantemirovka Section
The lower part of Scrgeevka Formation (Fig. 2), a
sandstonc layer 1.5 m thick with phosphorite
nodules, lies on chc Upper Cretaceous limestones.
Up CO the section is a unit of gtev maris and car¬
bonate clays 3-4 m thick. The upper part of the
Scrgeevka Formation is represented by non-carbo¬
nate clays of undetennined thickness. The Tishki
Formation lies una^nformably on the Sergeevka
Formation and is composcd of non-carbonate
clays 4-5 m thick, with glauconite at the base and
siliceous in the upper part. Fhe Kas’yanovka
Formation is represented by intercalations of red-
dish-yellowish gaize. breccia-like argiljtcs, and
glauconite sandstoties 4 m thick. Sands and sand-
stones of the Kantemirovka Formation overlap
rhese sédiments unconformably.
Namio/hssils
An abundant and diversified nannofossil assem¬
blage was obrained from ihc maris of rhe
Sergeevka Formation (NI) (Fig. 2). This assem¬
blage includes, among otliers, the t)^picaJ specics
of the CP 13 Nannotetrina qnadrata zone:
Nannotetrhut cristata (Martini) Perch-Niclscn,
Discoasier stnevus Stradner, Dictyococcites onusius
Perch-Nielsen (Table 5).
GEODIVERSITAS • 1999 • 21 (3)
459
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
In the uppermost part of che section, i.e. in car¬
bonate beds within the sandy Kantemirovka
Formation, a very poor and possibly reworked
nannofossil assemblage of Bartonian âge was
found.
Foraminifera
In the lower part of the Sergeevka Formation
maris, the abundant and diversified planktonic
foraminifera assemblage (F) was found (Table 6).
The mosr abundant are: Subbotina mrcmcnka
(Khalilov), 5. bowerl (Bolli), Globtgerinatheka
index (Finlay), Aenrinina afF rugosoaculeata
Subbotina. The assemblage can be related to the
upper part of the Acariniful rotnvdimarginata
(s.l.) zone of rhe Crimca-Caucasus schemc (beds
wirh Globigerinntheka index^ Beniamovskii 1995).
Benthic foraminifera are represenred by
Pseiidoclaviilina mbhotinne Nikitina, Vagwu-
linopsis decorata (Rcuss), Gyroidina soldant
(d’Orbigny), sculptilis Cushman,
B. cookî Cushman, Vvigvrina spinocostdla
Cushman & Jarvis, U. pygtneii d'Orbigny, V. cos-
iellata Morozova. Thcy arc related to the middle-
late Luretian Pseudoclitvulina subbotlniîe'
üvigerina spinocostdtU'Bolivina coukei régional
zone. Most of che spccies of the assemblages can
be traced in the European palaeobiogeographical
area from Belgium to the west parc of
Kazakhstan.
Radiolaria
In rhe lower pari of the Tishki Formation, rhe
radiolarian assemblage (R3) is taxonomically
poor, represented by Cyrtophormis alta Mok-
syakova. Cdathrocyclus utiwanii Bjorkiund bc
Kellogg, and Uthoinelîssa sp. A, fiable 7) and
most likely bclongs co the Cynophormis alta
régional zone (Kozlova 1990).
Upsection in upperrnost part of che Tishki
Formation and lowermost part ol che Kas'yanov-
ka Formation (the boundary between them is
not determined prcciscly in the section), radiola-
ria become more diversified (R4); Lithonielissa
sp. A., Heliodiscus heliasteriscus Clark &
Campbell, H. zonatnm (Lipman), H. fragilis
To c h i 1 i n a, Me lit tosp hue ra m agn o par ut o sa
Nakaseko, Calocyclas semipolita Clark bc
Campbell, Tripodiscinus kaptarenkoe Gorbunov,
Clathrocyclas extensa nmltiplicata (Clark &
Campbell), "Lophovynis^ sinïtzini Lipman,
Rathropyramis aneotos (Clark & Cambell),
Calocyclas asperum Ehrenberg, Hexacontnim aff
pacbydtrmum Jorgensen, Stylodyctya hastata
Ehrenberg. 5. tnegulans (Vinassa), Tnpilidium
ctavipes Bjorkiund, Theocyrîts lithos Clark &
Campbell, etc. Lasdy, in siliceous cUyey maris of
the Kasyanovka Fenmation, the assemblage of
Theocyrüs andriashevr régional zone (R5) is scen
and includes besides a number of species known
from R4 assemblage, l.ithelius foremanae
Sanfilippo ÔC Riedcl, Stylosphaern balbis
(Sanlllippo & Ricdel), Lithomelissa sp. B,
Heterosestenm forrnosum Tochilina, H. tschimxkoi
Lipman, and Theocyrüs andriashevi Petrushev-
skaya.
Diatotns and Silicoflagellates
l’he diatom assemblage obtained from the upper
part of the Tishki and Kas'yanovka formations is
similar to che D2 association from dic Sergeevka
Section, althougli it is not so diversified (Table 8).
Important is the présence of Cosmiodisensm hrevF
radiatas Gleser & Ol.shiiuskaya, and Bti^ttvcllia
coronata (Brightwcll) Ralfs in Fritchard, in the
lower Kas'yanovka Formation and the appearance
of Trkeratiuni ungukul/ttîan Greville, in the upper
part of chc saine formation.
9540 Rudaevka borehole
Whire chalk unit 3 m in thickness is correlated
to the Sergeevka Formation (Fig. 2), h is superse-
ded by aliernating maris and carbonate clays 6 m
ihick. 4‘he upper part of the Sergeevka
Formation is coinposcd of aliernating carbonate
and non-ciubonate clays The total thickness of
the Sergeevka Formation is 13 m Ar rhe base of
the Tishki Formation, a layer of glauconite sand
up to 0.5 m thick can be iraccd. The overlying
unit is represented by intercalations of clayey
mudscones, opoka sandstones and clays, some-
times with thin beds of carbonate clays-, The
thickness of this formation is 14 m. At the base
of the Kas’yanovka Formation, a 0.5 m*thick
glauconite sandy layer is présent, ovcrlapped by
clayey diatomites 4 m in thickness, The upper-
most 8 m of the section are represented by sands
of the Poltava Formation.
460
GEODiVERSITAS • 1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donets Dépréssion
NannofôssHs
A nannofossii assemblage related ro CP13-CP14
nannoplankton zones boundary interval (N) was
found at the base of the marly section of the
Scrgccvka formation. The assemblage is not so
rich as in Kan terni rovka Section, but scems to be
of the samc age bccause of the presence of
Rhabdosphaera glndius Locker, which is zonal
marker of the CPI3 Nunnotetrina quadntta zone
top boundar)'^ (Tiiblc 9).
Foraminifera
Foraminifera in borehole 9540 occur rarely. For
this reason, siliceous microfossils are the primary
basis for stratigraphie subdivision of the section.
Ritdiolitna
A radiolarian assemblage ('Fable 10) represented
by Stylodyctya hastaUi Ehrenberg, Thecosphaera
minor (Clark ôc Campbell), Heliodiscus heliaste-
rlsctis Clark & CampbeIK C.lathrocyclm pr'mcipi
principi Clark &: Campbell, Stylotrochns sp., and
Lithomelissa sp. A was found in ihc lowcr part of
the Scrgccvka Formation maris. The assemblage
is not taxonomically diversified. AH the specics
arc known from the Keresea and Kuma forma¬
tions of Southern Cis-Caucasia and Central Asia
(Moks}^akova 1972). ’Fhe age cannot bc constrai-
ned more precisely than iipper Luthetian-
Bartonian. The upper part of the sa me formation
contains a more diversified assemblage {R2),
represented by Heltodiscui hexasierhcus CHark &
Campbell, Hexacomittntpachydermurn jorgensen,
Petalospyris aff. duhia Clark & Campbell,
Clathrocyclas extensa Clark &: Campbell,
l'heocorys reticuln Ko'/Jova, Hetewsesti'nrn fornm-
sum Tochilina, H. ticbuenkoi Lipman, Stylo-
sphaera coronatn tnevis Ehrenberg, Tripodiscinns
turnulosus (Kozlova), Xtphospira occllata (Ehren¬
berg), Thecosphaera californien Clark ôr (Camp¬
bell and Lithomelissa affi haeckeli Butschli. Fhc
composition ol ilic association is close to tlic
Kuma Formation, the assemblage not including
only species of the généra Tripodiscinus and
Heterosestmm.
Up to the section in claycy maris of ihe Tishki
Formation, an assemblage coniainiag abundant
Cenospbaern rnitgarzi Lipman and rare
Heterosestrum TschueJikoi Lipman, Peripyramis cir-
cumtexta Haeckcl, and Cyrtophorrnis alta
Moksyakova was found. The présence of the lut¬
ter specics together with Heterosestrum ischuaikoi
Lipman, in spire of the poor taxonomical com¬
position allows cortclating this association to the
Cyrtophorrnis alta (R3) rcgional radiolarian zone.
Highei up to the .section in clays ol the samc fox-
marion, the following radiolarian assemblage
(R4) is présent: Cenosphnern mitgarzi Lipman,
Stylodyctya irregularis (Vinassa), S. hastatn
Ehrenberg. Heterosestrum formosurn Tochilina
and Theocorys reticula Kozlova. Thèse taxa arc
not indicative but the stratigraphical position of
the assemblage in the section suggests that ir can
be related approximarely to the Fahniusphaem
polysiphonia régional zone.
Up to the .section in siliceous clay.s of the
Kas’yanovka Formation, the radiolarian assem¬
blage (R5) bccomes more diversified and abon¬
da n t : Cenosphaera mIcroporn^ Stylodyctya
irregulfirii (Vinassa), S. hastatn (Ehrenberg),
Heliodiscus zoaatus Tochilina, Heterosestrum for-
mosum Tochilina, LUhelius Theocynis andria-
shevi Petrushevskaya, Calocyclas senùpolita Clark
Campbell and Lithomelissa sp. B. This as.sem-
blagc most probably belongs to the Theocynis
andriashevf régional zone.
Diatoms and Silicoflagellates
Diatoms werc found at the base of the mari unit
of the Sergeevka Formation and in noncarbonate
clays in ihc upper pan of ihc same Formation.
’Fhe a-ssemblage is rather poor (Dl) (Table 11),
Besides, species known from the Karnemirovka
and Sergeevka sections: CristodUcus duplex Gleser
& CMshrinskaya and Cnscinodiscus aff. tenerrimus
Jou.sé, and silicoflagellate.s Dietyoïha pentagona
(Schulz) Bukry & Foster, and Nnviculopsis folht-
ceae Detlandrc can be noted. In the lowcr part of
Tishki Formation, a poor diatom assemblage
conraining neritic Paralin sulcata (Ehrenberg)
CIcvc. Pseudopodosira hynltnu Jousc and
Aulneodisius excniuitus A. Schmidt was found.
Among pciagic species, Costinodisms obscurus var.
cancaous Cileser in Diatomovye vodorosly SSSR,
dominâtes. In the upper pan of ihe Tishki
Forniarion, ibe diatom flora bccomes more
diversified. More reprcseiuarives of the
Pyxidicula genus [P. moelleri (A. Schmidt)
GEODIVERSITAS • 1999 • 21 (3}
461
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
Strelnikova &C Nikolacv, R grunowii (Grovc &C
Stuart) SrtcJnikova Sc Nikolacv, ./? Joynsonii (A.
Schmidt) Srrelnikova Ôc Nikolacv, P. charkoviana
(Jousé), Strelnikova & Nikolacv), Craspedodistus
oblongus (Gfcvillc) Hanna and Coscinodisctts aff.
marginatus Ehrenberg] appear. Large diatom cells
dominatc along with unusually looking spéci¬
mens ol Meloiira arvhitecturalis Brun (Schmidt et
al.) which are up to 60-7B mm. in diameter. The
disappearance of Craspedûd/snys oblongus
(Greville) Hanna takes place in the upper part of
the Barronian. The présence of tins typical spe-
cies déterminés the âge of the upper part of the
Tishki Formation as the Barionian.
The assemblage of die Kas’yanovka Formation
includes common species of D2 assemblage. In
the uppermosr part of rhe formation (deprh
32 m), the abundance and diversity of silico-
flagellates increases. Common are typical
Bartonian taxa such as Nnviculopsis foliaceae
Dedandre, N. Piordtea Bukry, Distephanus crus
(Ehrenberg) Haeckel, Dictyocha spbwsa (Deflan-
dre) Glezer D. deflandrei Franguelli, Corbisema
hastata globulata Bukry, C htermis Lemm.
5'93 Boguchar. iu.irkhi^m-
The lithostratigraphic subdivision of this section is
made accordlng to the sclicmc ol Kurlacv &
Akhlestina (1988) fut the Khoper monocline. The
Veshenka Formation (Fig. 2), composed by sandy
opokas 5 m thick, lies on the Llppcr Cretaceous
sédiments. The Osinovo beds overlie them uncon-
formably. They are represeneed by ligJit grey opo¬
kas with phosphorite nodules al the base,
intercalatcd with sandstoncs. l'heir rhickness is
6 m. The Fehirsk)' beds consist of strong quarr-
zites 5,2 m thick, and upsection ot Hiie-graincd
glauconitc sands -with rare beds ot calcarcous clays.
Their thickness is 18 m. The Kuma Formation
lies on sands and is represenied by greenish lovv-
carbonate opokas 2 m thick, lurning up to the
section inio brownish non-calcareous clays. The
upper part of the formation is composed by light
opokas passing înto opoka sandsrones. The total
thickness of rhe formation is 20 m.
Nannofimib
The rarher poor nannofossil assemblage with rare
Chiasmolithus grandis (Bramietee & Riedel)
Radomski, C rnodestus Perch-Nielsen, C solitm
(Bramlctrc Sullivan) Locker, Discoaster barba-
diensis Tan, D. nodifvr (Bramleiter & Riedel)
Hukrv', Neococcolithm duhius (Deflandre) Black,
Reticîdofenestra diayodyî (Deflandre in Deflandre
& Fert) Siradner in Siradner & Edwards,
R. umbilicHs (Levin) Martini & Rir/kovski.
Coccolithus forrnosus (Kainprner) Wise found in
siliceous maris withiii a sandy unit fonncriy
considered as a part of Buchack (?) Formauon,
but this association can be considered as the
uppermost part of the Lutetian CP 13 Nanno-
tetrina quadraui zone or the lowermost Bartonian
CPI4a Discoasier bifâx subzone.
Radiolaria
A radiolarian assemblage (Table 12) obtained
from che base of Osinovo beds contains
Claîhrocyclai mintma Lipman, Hehodiscus hclia-
stenscus Clark & Campbell, H- dupla Kozlova,
Spongomelissn sp. A, Uthomelissa sp. A,
Thecosphaera minor Campbell ^ Clark,
Spongotrocfms radiatits l.ipmati, Stylndyctya irre-
gularis (Vin.issa), and Themyrtrs lithos Campbell
Ôc Clark. The âge of the assemblage i.s lentarively
thought to be the middle Eocene, and not youn-
ger rhaii upper Lutetian.
Dp to the section in siliceous clays and maris of
Kuma Formation, the abuiidant radiolarian
assemblages of the Cyrtopborrnis alta-
Ethrnosplutent polysiphonia (R3-R4j régional
zones werc found. The association contains
Hexavontitim paebyderrnum jorgensen, Stylo-
sphaera coronaîa coronata Ehrenberg, Lithelius
spiralis Lipman, Bathropymrnis nnoetus (Clark &
Campbell). Clathrocyclns xahvanii Bjorklund Ôc
Kellogg. Cenospbaera mstgurzi Lipman, Theocyrtis
lithos Clark ôi Campbell. Cyrtophormh alta
Moksyakova, Artubotrys norvegieusis Bjt7rklund 6c
Kellogg. Theocûtys mienta Kozlova, Lithomelissa
sti^ Bueschli, Tripodisçintis tribrachiatm Kozlova,
77 kapfitrenkoi Gorbunov, and several other taxa.
The youngest radiolarian assemblage of the
Tbeotyrtis undriushevi régional zone (R5) was
obtained from siliceous clays of Kuma
Formation. It is abundani, well-preserved, and
contains I(exaconthttn pachydernium Kozlova,
Heterosestrum shabalkini Lipman, Thecosphaera
minor Campbell & Clark, Tripodiscinus tribra-
462
GEOOIVERSITAS • 1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donets Dépréssion
chiatus Koziova, Theatyrtis andriasbevi l^etrushev-
skaya, llaliomma immensa Kozlova, Calocyclas
asperum Ehrenberg and Rhodospyris donensis
Zagorodnuk.
Diatoms and silkoflagellates,
At the base of the Osinovo beds the following
diarom association was fnund; Paralia oamaruen-
sis (Grove & Stuart) GIcser, Cristodiscus
{Coscinidiscus) succinctiu (Sheshukova Glcscr)
Gleser ôd OLshtlnskaya, Hemiaulus potymorphus
var. charkovianiis (Sheshukova & Gleser) Gleser
& Olshtinskaya, plus Coschiodiscus obsurcin var.
concûvus Gleser in Diatomovye s^odorosly SSSR,
C. astéroïdes Truan hi Witt, C. bullïens A.
Sdimidt, C decrescenoides Jousé, C oculusiridis
Elircnbcrg, Brightweilut sp., Hemiaulus polycysii-
noTnm Ehrenberg, Afelosira Brun (Schmidt et
al.)^ PyxidicuLt alf. moelleri A. Schmidt and
P. charkoviana (^Jouse), Silicoflagcllares are. tepre-
sented by Naviculopsis nordica hyatina Bukry,
Mesoi'ena concava Pcrch*Nielsen, M. apiculata
Schuiz and Dktyocha venzoi Morlotci & Rio. Kcy
specics of this assemblage arc the samc as those of
the DI association of ihc three oihcr sections.
The association bclong.s to the upper Lurerian.
In the lower part of Kuma Formation the diatom
association (Table 13) issiniilar to the D2 assem¬
blage from 9540 Rudaevka borehole, and in the
niiddle part of ilie Kuma Formation the same
silicoflagellaie assemblage was tound. The rrend
of changes in diatom and silicoflagellate compo¬
sition is similar bodi in the 9540 Rudaevka bore-
hole and m the 5-93 Boguchar borehole. Ai the
17.8 m level silicodagellates dominacev but
upsection rhey are replaced by siliceous sponges.
Discussion
In the eastern part of Dnieper-Donets Dépréssion
(the area of Transition to Vc>lga-Don Région) the
fàcics change of Eocene sédiments is so dramaric
that one needs ro use three different lirhosrratigra-
phic schemes (Fig. 1) from nonh-we.st to south-
easi to .subdivide the Eocene deposits. These
schemes (for Ukraine, Vorone/h antecline, and the
Volga-Don Région) arc not sufficicntly corrclatcd
yet. In rhe eastern part of study région, some
lithostratigtaphic subdivisions of the northern
Caucasus scheme are used. That gives us a reason
to suggest a lithostratigtaphic and microplankto-
nic corrélation for the Crimea-Caucasus area and
the Dnieper-Donets Dépréssion, because ail the
studied sections showed similar sedimentary cycli-
ciries, and rheir formations can he dared and cor-
relared on the basîs of calcareous microlossils in
the lower part of sections and on siliceous micro-
fossils in rhe upper pan.
In the Crimea-Caucasus area, the lower middle
Eocene (Lutetian) sédiments arc represented by
maris and limestones of Keresta Formation. Up
to the section, Kuma Formation composed by
carbonatic clays rich in organic matter lies with
érosion in a number of localities. The following
changes in calcareous microplankton assemblages
occLir through tbc Keresta-Kuma boundary. Fhc
naiinofbssil assemblages of Keresta Formation are
very rich ail over chc area, and chc CPI 3
Namiotetrina epuidrata zone (Fig. 3) and ail three
subzoncs (CP 13a, CP 13b, and CP 13c) of nan-
notüssil standard zonal scale (OLada & Bukr}^
!98()) can be established. The top of Keresta
Formation is marked by disappearance of
Nannoteirina cfuadrata (Branileiic & Sullivan)
Bukry, N. cmiatu (Martini) Perch-Nielcn (1971),
Discoaster gemmifer Stradner. D. rnartinii
Srradner. No new .species appear at rhe base of
Kuma Formation. The CPl4 Reticulofenestra
umbilicn zone stands ont among the deep océan
sédiments owing to rhe Discottster bifax Bukry
appearance. lu ail studied sections of the South
of tlie Foimer USSR, ihi.s species appears wiihiit
CP 13b Chiasmolithus gigas sub/one* i.e., much
carlicr than in DSDP slcesi wherc the zonal scalc
of Okada ik Bukry (1980) was established.
Recenrly, its appearance was recorded within
Lutetian deposits of Parisian Basin and
Hampshire (Aubri 1983). Hence> this species
cannot be used as a zonal market in epicontinen-
tal basins. A few meters ahove rhe Kuma Forma¬
tion s bortom, characterisric species of CPH
zone gradually appear. These changes in nanno-
fossil assemblages led us to place the CP 13/CP 14
zone boundary along the Keresra-Kuma bounda-
ry because in spite of the .ib.sence of the rraditio-
nal zonal market, thèse zonc.s arc distinguished
by the full spcctriim of the assemblage.
The changes in planktunic toraminifera assem¬
blages proceed in a similar way. At the top of
GEODIVERSITAS • 1999 • 21 (3)
463
Khokhlova 1. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
Keresta Formation, such peculiar species as
Subbotina frontosa Subbotina. S. subtrilnadi-
noides (Khalilov), Acnriniiuz hullhranki Bolli,
Globigcrinathekn subconglohata (Khalilov iti
Shutzkaya). ^7. /Wt’v (Finlay) (Actirinhm rolundi-
marginata zone ot the Crimea-Cnucasus zonal
scale are presenr - beds wirh G. siibconglubitut-
G, indey^. The foraminiteral assemblage ol Kurria
Formation is composed by T^antkcnina nlabit-
mensis Cushman, Subhotina aserbaidjanica
(Khalilov) and other spccics. Thcn, rhe
Acarininn rotundimdrgiruita-Hantkenina alaba-
mensis zone boundary is cstablished mostJy by
the disappcarancc ol the characteristic species of
the First zone and corresponds with Keresta-
Kuma lomiadons boundary.
Far co the north, the Kuma Formation sédiments
onlap the sédiments corresponding to the
Keresta Formation with pronounced érosion.
The siliccous plankcon cornes into play along
with the calcarcous microfossils. The corrélation
of radiolarian and diatom zonal scales with chat
of foraminifera and nannofossils were made in
the sections of the norihcrn Feri-Caspian
(KhokJilova 19%; Radionova 1996). The corres-
pondence of ihc radiolarian Heliodiscus quadmtus
zone (R2) to the foratninifcral Acnrlnina rotundi-
marginatd zone, and Cytophorynh alta (R3),
Ethrnosph/iem polysiphonin (R4) to the fbramini-
ferai Hantketnna alabamer/sh and Glohorotalia
turcmenua zones is sliown.
In ail sTudied sections ol Dniepcr-Doncts
Dépréssion the same zonal succession was traccd.
The Heliodisais quadmtus (R2) zone assemblage
is recorded within the lowermost part of ail four
sections, i.e., wirhin Sergeevka Formation and
Tchir beds. The lollowing rhree zonçs (R3-R5)
are escablishcd wirhin rhe upperrnost part ol
Tishki and Kas'yan formations. This suggests a
corrélation of rhese lormations with Kuma
Formation of rhe .South of the Former USSR.
It is commun knowledge chat diatom assemblage
ol the Kiev and Kharkov lormations ol Ukraine
was proposcd as Pamlia ihimantmsis zone (Gle/er
et ai 1965). but boundary markets were noi
represented, so that even now'adav's under doser
examinaiion it is hard co cstablish the boundaries
of this zone. In ail studied sections two intcivals
with abundant diatoms separated by sédiment
intcrval of variable thickness withour diatoms
were found. Ficncc, we record not zones, but
layets with Peponia /w/w/e/wir Greville (Dl) and
layers with Bn^stxvellia imperfecut^y^sssé (or Coimo-
discus brevimdifUus Q\iyi^x ^ OLsIuinskaya) (D2),
Beds with Peponia barbadense Greville, corres¬
ponding lo the “Kiev" Formation or irs corre-
laies, correlatc with the upper Lutherian, and
beds with BrightioelUa iwperfecta Jousév corres¬
ponding to the lower parc of the “Khar’kov”
Fotmarion, with the Barconian. Of the diatoms,
Peponia barbademis Greville is rcscncced to rhe
Lurhetian, Craspedndheus oblongtts (Greville)
Haima disappeats in the tipper part of the
Bartoiiian (Fcnncr 1985). and Brighîwellia
imperfecta is restricted co the second half of the
middie Eocenc (Fenner 1985). Silicollagellates
manifest the disappearance of Dktyocba spinosa
(Deflandre) Gleser (in the Sergeevka Formation)
and appearance ol DieCyocha bexacarnha Schuiz
(in iKe Kas'yanpvka Formation), or clse,
Naviadopsis foliaceaeiDictyocha hexacantha zone
boundary correlaies with the CP13/CP14
(Bukry 1981) nannoplankton zone boundary.
FA LAFOGFX)GlT\FH Y
The benthic lorams Pseudoclavidina siibbotinae
Nikitina, Uvigerina spinocostata Cushman &
Jaivis, Vaginiilopsis decorata (Rcuss), Clavu-
linoldes szahoi (Hantkcn), Bulimifm madlenta
Gushman & Parker, Bolfvina cooki Cushman,
Spiroplectamina pishvanotute A. V. Furssenko &
K. B. Furssenko in the Sergeevka Section are
widespread in Lutedan deposits of \^arious Peri-
l'cthys localiries Irom Belgium to West
rurkmenia (Kaasschnirer 1961; Furssenko &
Furssenko 1961; Shuly.kaya 1970; Bugrova 1988;
Grigaylis et aL 1988; Naidin étal. 1994). The
fact ihar the Same foraminilera assemblage is
.spcead over au erionnous area in the northern
Peri-Tethy.s .suggests the existence ol a conti-
nuous bâsin with ubiquirous paUeobiologic
links. Moving along the line of sections studied
in the présent paper from norih-west to south-
easi, i.e., from Sergeevka Section to the
Boguchat boreliole, il can he seen thaï radiola-
rian assemblage.s are more taxonomically divers!-
464
GEODIVERSITAS • 1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donets Dépréssion
Pied and well-prescrved in Boguchar borehole
located in the souch-eastcrn parc of the région.
By the way, raxonomical composition of the ear-
liest complex at the base of section is close co
coeval associations of Knma Formation of South¬
ern régions, and thaï of youngcr R3-R5 assem¬
blages is similar to coeval complexes of Norway
Basin and Peri-Caspian Basin (Kozlova &
Petrushevska)^î 1979; Khokhlova 1996). Never-
thcless, radiolarians in this section represent an
association of an open marine basin with normal
salinit}^ Conversely, radiolarian composition in
borehole 9540 seems to reflect alicrnating open
marine and of shallow-water basin conditions,
possibly with a restricred connection with chc
main basin. Sedimenis ai the base of section
(Sergeevka maris) and Ln the upper part of the
section (Kas*yanovka siliccous clays, R5) contain
diversiPicd opcn-marinc radiolarian assodarions,
but in the middle part ot the section in clays of
the Tishki Formation, the radiolarian assemblage
(R3'R4) is represented by abundant spccimens
of Cenosphaera mitgarzi Lipman and sparse spéci¬
mens of Cyrtophormh alla Moksyakova and
Bûthropyramis sjx A strong prédominance of one
species is known to testify to the absence of
open-oceanic conditions, probably to low salinity
conditions.
The oldesc radiolarian assemblage is mosr abun¬
dant and diversiPied in rhe maris of vSergccvka
Formation in rhe section of the same namc, and
the youngest (R5) assemblage is mosi diversified
in KasVanovka Formation of Kantemirovka
Section.
CONCLUSION
The study of four sections of the eastern slope of
the Dnieper-Donets Dépréssion allowed us to
correct âge détermination of the Eocene
Formation.
The maris of Sergeevka Formation inost likely
bclong to uppermost Liitetian. Tlie benthic fora-
minifcral zone Psendoclaviilina sttbbotinae-
Uvigerinu spinocosicita-BoUxnna cookei distin-
guished liere can bc traced in the Keresta
Formation through much of the south of
European Russia, and in Vemmel and Ash for¬
mations of Belgium (Kaasschiter 1961;
Radionova et ai 1994). The upper part ol the
planktonic foraminiferal Acarininu rotiindimargi-
nata zone (bed with Globigerinatheka index)
found in the lower Sergeevka maris confirms this
âge détermination. Data based on nannofossils
(CP 13 Nanmtetritui'ioné) idcnrify the boundary
between theîr Lutet ian âge, roo.
The âge of the Tishki Formation is clearly
Bartonian. This interpretarioii is confirmed by
planktonic foraminifera of rhe Glohigtrina tnre-
rnenica zone. The diatom assemblages frorn the
base of the Sergeevka Formation and the lower
part of the Osinovo beds (Dl), in ihc upper pan
of the Tishki, Kas’yanovka and Kuma Forjna-
cions (D2) arc relaced to Pamlin oamaruensis dia-
rom zone of (Glczcr 1979) and to Cosdrwdiscus
suednehii zone of Strelnlkova (1992) scheme. In
Sergeevka Section, in assemblage Dl the index
.specics Pepotiia barbadensis Grevüle (Radionova
1996), and in D2, chc index spedes Brightwellia
imperfecta Jousé, which undoubtedly testify to
middle Eocene âge, were found.
Sédiments of the Kas yanovka Formation in ail
.studied sections contain almost the same diatom
assemblage. A notable featurc of the assemblage
is rhe presence ot Paralia onmaruensis (Grov^e 6c
Stuart) Gleser and Coscinodtscus sucehictus
(Sheshukova & Gleser) Gleser & Olshrinskaya,
tlie index-species of zones in local diatom
schemes of Glezer (1979) and Strelnlkova
(1992). This diatom assemblage rs very close to
the association obtained from the base of the
KhaEkov Formation in the northern part of
Dnieper-Donets Dépréssion (see Radionova et
al.y this volume, Fig. ]> borcholevS 3 and 4;
Radionova ci al. 1994). No évidence of the
upper Eocene âge for the Kas’yan Formation has
been found from radiolaria or diatoms, and we
confidenrly suggest the upper Bartonian âge for
KasVan Formation,
Acknowledgemen is
We vvould like to thank Prot. J. Meulenkamp
(Urreclu University, the Netherlands) and Prof.
D. La/arus (Berlin, Germany) which improved
the manuscript, Proi. P. De Wever and Dr S.
Crasquin-Soleau for general coordination and
GEODIVERSITAS • 1999 • 21 (3)
465
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
advice on this work, which is part of the Peri-
Tethys Program (Grants 95-11 and 95-96/11).
The other sponsor was the Russian Science
Foundation (Grant 05-95-15002).
REFERENCES
Anonymous 1989. — Decisions of the
Interdepartmental Stratigraphie Committee and it
permanent commissions. Volume 24. VSEGEi
Publications, Leningrad: 5T53.
Aubry M.-P. 198*3. — CorrèLuions biosnati^aphiques
entre les formations paléogènes épiconlinentales de
l’Europe du Nord-ouest, basées sur la rjarmoplancton
calcaire. Thèse» Université Pierre et Marie Curie,
Paris 6, 83-08, 208 p.
Beniamovskii V. N. 1995. — Refinement of the
Palaeogene Stratigraphical Schemc ou che South of
Russia vvith Sediinentological Cyclicity and Zonal
Detalisatiôn U$e fsvestia VIJZOV^ Geologia i
Razvedka (High School Report. Cieology and
Explorationj 45; 3-11 [in RussianJ.
Bugrova E. M. 1988. — The Foeme Foramintfersfrnm
the Southern IJSSR. Doctoiatc (Cjcol'Min.)
Dissertation, VSEGEI publication. Leningrad, 3 p.
Glezer Z. J. 1979. — Zonal Subdivision ol the
Palaeogenc Marine Siliceous Deposiis of ihe USSR
by Diatoms. Soinel Gcolo^ 11; 19-30 (in Russian].
Glezer Z. 1., ZocimavJcFi V. Yu., & Klyusbnikov
M. N. 1965. — The Diaioms from the Palacogcnc
Deposits of ihc Severnyi Doncts Basin and Theii
Stratigraphie Implications. Pahontologischeskii
Sbomik 2; 73-86.
Furssenko A. V. & Furssenko K. I. 1961. — The
Upper Eocene Foraminifers in Bélarus and l’heir
Stratigraphie Implications. Paicontology and
Stratigrapny of rhe BSSR. Aeademy oj Sciences BSSR
Puhiicatmn 3: 246-3f'>l [in Russian].
Kaaschierer J. P. 1961. — Foraminifera of the Eocene
of Belgium. Mémoire de l’institur Royal des Sciences
Naturelles de Beigique^VoSume 147.27 p.
Khokhlova 1. E. 1996. - Palaeogene-Eocene
Radiolariaas of rhe Russian PJatform South and
rheir application for direct corrélation with the Kast
Atlantic scdiment.s (.sire 400A DSDP). Fossil
Microorgunism as the hase of the PiMnerasoie stran-
graphes Corrélation and Paleobiogeop'aphy. Question
of micFopaleon(olog}'i Publishing office GEOSj»
Moscow 31; 70-82 tin Russian].
Kozlova G. E. 1990. — Phylogenetic Study of
Radiolarians as a basis for che development of a
Zonal scale of the Boréal Palacogene: 70-106 [in
Russian], //; Rudiolans tn Biostratigraphy. Ural
Branch USSR Academy of Sciences, Sverdiovsk.
Kozlova G. E. & Petrushevskaya M. G. 1979. —
Stages in Evolution of Radioiarians in Norway-
Grcenland Basin: 71-190 [in Russian], in Histury of
mïcropinnkum ùfNorway Sea. Nauka, Leningrad.
Kurlaev V. J. & Akhlestina E. F. 1988. — The
Paleogene ofthe Middle and Loiver Volga Région.
Saratov Universit)*, Saratov, 203 p.
Makarenko D. L.. Gorbunov V. S., Ivannik M. M.,
Maslun N. V.. Stotland A. B. & Blan M. Ya.
1987. — Stratigraphie Schetne for Palaeogene
Dcpo.dîs oj IJkHiine. Naukova Dumka, Kiev, 215 p.
|in Ru.ssian).
Martini E. 1970. — Standart Tertiary and
Quaternary calcareoiis naniiopiankton zonation.
Poe. U IHanktonic Conférence., Rome: 739-785.
Moksyakova A. M. 1972. — Bodrack Stage of the
Tuianian Plate. Sîratigraphy of Radtolarians and
Paieozoogeography. Ncdra, Moscow, 230 p. [in
Russian].
Harknd W. B., Amstrong R. A., Graig L. E.. Smoth
A- S. fie Smith D. (j. 1990. — A Geologcnl Urne
Scale. Cambridge IJniversitv Press. Cambridge,
263 p.
Naidin D. P.. Beniamovsivü V. N. Sc Kopaevich L. F.
1994. — Paléographie base of Stratigraphy
Reconstruction. Moscow State Univcisiry, Moscow,
136 p. [in Russian].
Okada U. & Biickry D. 1980. — Sunplemeiuary
modification and introduction of code number of
ihc low-lacitude coccotirh biostratigraphic zonation
Bukx}’, 1973, 1975. Mieropaleontology 5 (3): 321-
-325.
Radionova E- P. 1996. — Comparable Study of
Eocene l^iatoms from C)ccaniç and Platform
Sections (Notth Atlantic und Russian Plate). Fossil
Mfcroorganism as fhe base of the Phanerthoic stratT
gruphy^ Corrélation and Paleobiogeographyr Question
of micropaleontolugy, Puhiisbiug office GFOS,
Mostriw 31: 83-10! jtn Russiânj.
Radionova E P., Oreshkina T. V,, Khokhlova L E* &
Beniamovskii V. N 1994. — Eocene Deposits on
the Northeastern Slopc of the Dmeper-Donets
Dépréssion: Zonal Stratigraphy and Cyclic
Analysis. Stratigraphy and (jeolûguul Corrélation 1
(6): 563-580.
Semenov V, P. 1965. — Palacogene oj the Voronezh
Antcrlisc. Voronezh Univeisiry Publication,
Voronezh, 289 p. [in Russian].
Strelniltova N. 1. 1992. — Fhe Palaeogene Diaioms.
Sr.-Pcccrburg University, Si.-Pctcrsburg, 311 p. [in
Russiaitj.
Shtizkaya E. K. 1970. — Stratigraphy, Forarninifers
and Paieogeography uf the Lower Palacogcnc in
Crimea, Ciscaucasus, and we.srern part of Middle
Asia. Tmdy I A7G7?/, Trudy 70, 256 p.
Suhmitled for publication nuAlApnl J997;
accepted on 30 June 1998.
466
GEODIVERSITAS ■ 1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donets Dépréssion
APPENDIX
Table 1. — Stratigraphie range chart of nannofosslls in Sergeevka Section. A, abondant (more than 15 specimens); F, frequent (10-
15 specimens): C, common (3-9 specimens): R. rare (1-2 specimens).
Species/sample number
8
11
12
14
Blackites spinosus
F
R
Chiasmolithus solitus
R
A
C
Coccolithus formosus
A
C
R
Cycticargolithus floridanus
A
A
A
R
Discoaster barbadiensis
F
F
F
Discoaster binodosus
F
F
F
Discoaster distinctus
F
Discoasier nodifer
F
F
Discoasfer saipanensis
F
Discoaster strictus
R
F
Discoasier wemmetensis
F
Helicosphaera bramiettei
F
Helicosphaera fophata
F
Holodiscolithus macroporus
F
Neococcolithes dubius
F
F
F
Pontosphaera muftipora
F
F
F
Reticulofenestra dictyoda
C
F
F
Reticulofenestra haqü
A
A
C
F
Reticulofenestra umbilicus
A
A
C
Sphenolithus furcatoHtoides
F
Sphenolithus moriformis
F
F
F
Sphenolithus spiniger
F
F
Transversopontis pulcher
F
F
F
F
Table 2. — Stratigraphie range chart of foraminifera of Sergeevka Section, b, benthos: p, plankton. Legend: see Table 1.
Species/sample number
1 2
3
9
4
5
10
11
12
13
Acarinina bullbrooki
P
F
Acarinina pentacamerata
P
A
R
Acarinina cf. rotundimarginata
P
R
Clavulina cylindrica
b
R
F
F
F
R
F
C
F
Clavulinoides szaboi
b
C
A
R
C
C
C
F
Pseudoclavulina subboîinae
b
R
R
R
F
Spiroplectammina pishvanovae
b
F
F
Vaginulinopsis decorata
b
C
F
A
F
F
Uvigerina costulata
b
C
C
U\/lg9rina macilenta
b
C
C
A
F
Uvigerina spinocostata
b
c
C
GEODIVERSITAS • 1999 • 21 (3)
467
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
Table 3. — Stratigraphie range chart of radiolaria in Sergeevka Section. Legend: see Table 1.
Spectes/sample number
9
19
20
21
22
23
Calocydas semipolita
A
R
R
R
Clathrocyclas minima
C
Clathrocyclas extensa
A
Heliodiscus dupla
R
Heterosesrum formosum
R
F
F
F
Heliodiscus heliasteriscus
C
A
Heliodiscus zonatus
C
Heliodiscus fragilis
R
Heterosestrum îschuenkoi
R
C
Hexacontium pachydermum
R
R
Larcospira minor
R
Liîhomelissa sp. B
A
Lithomelissa sp. A
C
R
Lophocyrtis sinitzini
C
R
Meliîîosphaera magnoporulosa
C
Phacodiscus testatus
C
Porodiscus parvus
R
Spongomelissa sp. A
C
Sîylodyctya irregularis
R
C
C
Stylotrochus radiatus
R
Theocyrtis liîhos
C
F
R
Thecosphaera californica
R
Tripodiscinus aff. clavipes
F
Tripodiscinus kaptarenkoe
C
R
Tripodiscinus aff. tribrachiatus
F
468
GEODIVERSITAS
1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donets Dépréssion
Table 4. — Stratigraphie range chart of diatoms and silicoflagellates in Sergeevka Section. Legend: see Table 1.
Species/sample number
9
19
20
22
Diatoms
Arachnoidiscus ehrenbergii
F
F
Arachnoidiscus asieromphalus
R
Aulacodiscus excavatus
C
F
F
F
Azpeitia aff. oligocenica
R
Brightwellia imperfecta (?)
R
Corona retinervis
F
Coscinodiscus bulliens
F
Coscinodiseus obscurus
C
C
C
C
Coscinodiscus obscurus var. cancavus
C
C
F
Cosmiodiscus breviradiatus
F
Coscinodiscus paiera (?)
R
Craspedodiscus moelleri
F
R
F
R
Cristodiscus (Coscinodiscus) succinctus
R
F
F
A
Cristodiscus crux
F
Cristodiscus decrescenoides
F
A
Hemiaufus polymorphus var. charkovianus
F
F
Hyalodiscus radiatus
F
F
R
Hyalodiscus inflatus
C
Hyalodiscus johnsonii
R
F
Hyalodiscus kelleri var. fasdculatus
C
F
F
Melosira architecturalis
F
C
Metosira fausta
F
F
Paralia oamaruensis
C
C
C
C
Paralia sulcata var. sibirica
C
Peponia barbadensis
R
Pseudopodosira hyalina
F
C
Pseudopodosira bella
F
F
Pseudopodosira westii
F
C
Pseudotriceratium chenevieri
R
Pseudotneeratium pyleyformis
F
Pyxidicula charkoviana
F
A
C
F
PyxHIa gracilis
F
Pyxilla schenkii
R
Pyxilla tchernovii
R
Trinacria excavata
F
F
Triceratium aff. kanaya var. trilobata
R
F
Triceratium ventricosa
C
C
Silicoflagellates
Dictyocha spinosa
F
Distephanus pentadonus
F
Distephanus grunowii
R
F
Navieufopsis constricta
F
Naviculopsis oamaruensis
F
GEODIVERSITAS
1999 • 21 (3)
469
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
Table 5. — Stratigraphie range chart of nannofossils in Kantemirovka Section. Legend: see Table 1.
Species/sample number
27
28
29
30
33
Blackites spinosus
F
F
F
Chiasmolithus solitue
F
F
F
F
Chiasmolithus tituf
F
F
Coccolithus formosus
A
C
R
F
F
Cyclicargolithus ffohdanus
C
A
C
R
F
Discoaster barbadmnsis
C
F
Discoaster bifax
R
F
Discoaster binodosus
R
F
F
F
Discoaster defJandreis
R
F
F
Discoaster saipanensis
F
Discoaster strictus
F
F
F
Discoaster onustus
R
F
Helicosphaera bramlettei
F
F
F
Helicosphaera serninulum
F
Nannotetrina cristaîa
F
F
Neococcolithes dubius
C
R
F
Pontosphaera muftipore
F
F
F
Pontosphaera duocavus
F
F
Reticulofenestra coenura
A
R
F
F
F
Hetieufofenestra bagii
A
A
C
F
Reticuloferiestra umbilicus
C
R
F
F
Sphenolithus rnoriforrpis
F
F
Sphenolithus obtusus
F
F
Sphenolithus radians
F
Transversoponîis pulcher
F
F
F
ZygrhabUthus bijugatus
R
F
F
F
Table 6. — Stratigraphie range chart of foraminifera in Kantemirovka Section, b, benthos; p, plankton. Legend: see Table 1.
Species/sample number
27
28
29
Acarinina rugosoaculeata
P
F
Bolivina cookei
b
F
C
Bulimina scufptilis
b
C
Clavulina colomi
b
C
c
C
Clavulina cylindrica
b
C
c
c
Clavulinoides szaboi
b
A
A
c
Globigerinatheka index
P
R
Pseudoctavulina subboiinae
b
F
F
c
Pseudohastigerina micra
P
F
C
Spiroplectammtna ptshvanovae
b
F
C
Subbotina turcmenica
P
C
A
Vaginulinopsis decorata
b
F
c
C
Uvigerina costellata
b
C
c
Uvigerina macitenta
b
C
c
Uvigerina spinocostata
b
C
c
470
GEODIVERSiTAS • 1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donets Dépréssion
Table 7. — Stratigraphie range charl of radiolaria in Kantemirovka Section. Legend: see Table 1.
Species/sample number
39
40
41
42
43
44A
Baîhropyramis aneotos
F
Calocyclas asperum
R
R
R
R
Calocyclas semipolita
R
R
Ceratospyris sp. aff. T. crassipes
R
Clatrocydas extensa muftiplicata
R
R
Clathrocyclas talwanü
R
R
R
R
Clathrocydas sinitzini
F
F
F
Clathrocydassp. 1
R
Conocaryomma sp.
C
Cyrîophormis alta
C
Heliodiscus heliasteriscus
A
A
Hefiodiscus zonaîum
C
Heliodiscus fragilis
C
F
Heterosestrum formosum
A
A
Heterosestrum tschuenkoi
A
Hexacontium aff. pachydermum
A
C
C
C
Lithelius foremanae
C
Lithomelissa sp. A
C
A
A
A
C
Lithomelissa sp. B
C
Lithelius foremanae
C
Mefittosphaera magnoporulosa
C
R
Pseudodyctyophimus sp.
C
Stylodyctya irregulare
C
Stylosphaera coronata
F
F
F
F
Theocyrtis lithos
Theocyrtis andriashevi
Tripodisdnus kaptarenkoe
R
R
A
A
Velicucculus aff. oddgurneri
R
Tripilidium clavipes
Stylosphaera balbis
F
Tripodisdnus sp.
A
GEODIVERSITAS
1999 • 21 (3)
471
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
Table 8. — Stratigraphie ranges chart of diatoms and silicoflagellates in Kantemirovka Section. Legend: see Table 1.
Species/sample number
39
40
42
43
44A
Diatoms
Aulacodiscus excavaîus
F
F
F
Aulacodiscus kelleri y/ar. fasciculatus
F
F
Arachnoidiscus ehrenbergii
F
F
F
Brightwellia coronata
R
Cerataulus deflandrei
F
F
Corona retinervis
F
F
CoscincKiiscus obscums
F
F
C
C
Coscinodiscus obscums var. cancavus
F
C
C
C
C
Coscinodiscus asteromphalus
F
Coscinodiscus decrescenoides
C
F
C
Cristodiscus {Coscinodiscus) succinctus
F
c
C
Hemiaulus polymorphüs var. charkovianus
C
F
F
Hemiaufus tchemovii
F
F
Hemiaulus polycysHnorum
F
F
Melosira architecturalis
c
C
F
Paralia sulcata var. sibirica
C
c
C
C
Paralia oamaruensis
C
c
C
F
Pseudopodosira hyalina
C
c
c
C
Pseudopodosira pyleiformis
c
c
F
Pyxilla gracilis
F
F
Pyxidicula charkoviana
F
c
F
F
Pyxidicuia johnsonii
A
F
Pyxidicula aff. moellerî
F
F
Thalassiosiropsis wittiana
F
Triceratium ventricosa
F
F
Triceratium aff. kanaya var. îriloata
R
R
Triceratium unguiculaîum
R
Tricacria excavata var. tetragona
F
F
Silicoflagellates
Dictyocha deflandrei
F
Mesocena oamaruensis
F
Naviculopsis constricta
F
Naviculopsis foliaceae
F
F
472
GEODIVERSITAS • 1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donets Dépréssion
Table 9. — Stratigraphie range chart of nannofossils in Rudaevka (borehole 9540). Legend: see Table 1.
Species/sample number
61-5
60-5
56
Blackites spinosus
C
Chiasmolithus grandis
F
Chiasmolithus solitus
C
F
F
Chiasmolithus tituf
F
F
F
Clathrolithus spinosus
F
Coccolithus formosus
R
F
Coccolithus pelagicus
R
R
R
Cyclicargolithus floridanus
A
A
C
Discoaster barbadiensis
F
F
Discoaster bifax
F
Discoaster distinctus
R
F
F
Discoaster nodifer
R
F
F
Discoaster saipanensis
F
Discoaster strictus
R
Hslicosphaera bramlettei
F
Helicosphaera lophota
F
Neococcoliihes dubius
C
F
F
Pontosphaera duocavus
F
Pontosphaera multipora
F
F
Reticuiofenestra umbilicus
C
F
F
Rhabdosphaera gladius
F
Table 10. — Stratigraphie range ehart of radiolaria In Rudaevka (borehole 9540). Legend: see Table 1.
Species/sample number 60-5 59 53-5 51 50 49-5 47 45 43-5 39 35 33
Stylodyctya hastata F
Cenosphaera mitgarzi
Thecosphaera minor R
Heliodiscus heliasteriscus F
Cfathrocyclas prindpi principi R
Lithomelissa sp. A F
Stylotrochus sp, F
Hexacontium pachydermum
Stylodyctya irregularis
Petalospyris aff. dubia
Clathrocyclas exiensa
Theocorys reticula
Heterosestrum formosum
Heterosestrum tschuenkoi
Stylospbaera coronata laevis
Tripodiscinus îumulosus
Hiphospira ocellata
Thecosphaera californica
Lithomelissa aff. haeckeii
Cenosphaera micropora
Cyrtophormis altus
Perypyramis circumtexta
Calocyclas semipolita
Lophophaena sp. B
Heliodiscus zonatus
Theocyrtis andhashevi
F
C C
F
C C
F
F
F F
F C
F C R
F
F
F
F
F
R
F R
A A C
F R
R
A CA
F
C F
F
F
A
C
C
GEODIVERSITAS • 1999 • 21 (3)
473
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
Table 11. — Stratigraphie range chart of diatoms and silicoflagellates in Rudaevka (borehole 5420). Legend: see Table 1.
Species/sample number
60-5
53-5
50
47
38
37
35
34
33
32
Diatoms
Aulacodiscus excavatus
Aulacodiscus ketlen var fasciculatus
Cerataulus deftandrei
F
F
F
F
Corona retJnefvis
F
Coscinodfscus buHiens
F
F
Coscinodiscus obscurus
F
F
C
C
C
C
C
R
Coscinodiscos obscurus var. cancavus
C
A
F
C
C
C
Coscinodiscus asteromphalus
F
Coscinodiscus decrascens
F
F
Coscinodiscus decrescenoides
Cosmiodiscus breviradiatus
Cristodiscus suedndus
F
F
F
F
F
Cristodiscus duplex
Craspedodiscus moelieri
F
F
Craspedodiscus oblongus
Hemiaufus polymorphus var. charkovianus
Hemiaulus tchernovii
Hyalodiscus radiatus
F
F
F
C
F
F
C
Mefosira architecturafis
C
F
F
Paralia oamaruensis
C
C
F
C
Pseudopodosira hyalina
F
C
C
C
C
Pseudopodosira westii
Pseudopodosira pyleyfortnis
Pseudopodosira bella
F
C
F
F
F
Pyxilfa gracHis
F
Pyxidicula charkoviana
Pyxidicula grunowii
F
C
C
F
C
Pyxidicula aff. moelieri
Pyxidicula johnsonii
F
C
F
F
F
F
F
F
F
Pyxidicula marginata
Pyxidicula megapora
R
F
Triceratium kanaya var. trilobata
Triceratium venîricosa
Tricacria exca\rata
F
F
Silicoflagellates
Corbisema hastata globulosa
F
Corbisema iriacantha
F
F
Dictyocha deflandrei
Dictyocha spinosa
Distephanus pentadonus
F
F
Naviculopsis foliaceae
C
Naviculopsis constricta
C
Naviculopsis nordica
c
Corbisema triacantha
F
474
GEODIVERSITAS • 1999 • 21 (3)
Eocene stratigraphy of the Dnieper-Donets Dépréssion
Table 12. — Stratigraphie range chart of radiolaria in Boguchar {borehole 5-93). Legend: see Table 1.
Species/sample number
63-4
62-1
60-1
31-5 31
30
23-4
17-4
16
12 11
Thecosphaera cafifornica
F
Calocyclas semipolita
C
Hefiodiscus heliasteriscus
C
Lychnocanium bellum
F
Artostrobus aff. annulatus
F
Stylodyctya irregularis
A
Petalospyris dubia
C
F
Lithomelissa haeckeli
F
F
Hexacontium pachydermum
Hexacontium sp.
R
F
F F
F
F
Spongomelissa sp. 1
Lithomelissa sp. A
C
Stylosphaera coronaîa coronata
C
F
Heliodiscus dupla
F
Tripodiscinus aff. vanus
Heterosestrum formosum
F
C
Stylotrochus radiatus
C
C
C
Heterosestrum thcuer)koi
Heterosestrum shabalkini
R
R
R
Clathrocyclas taiwanii
Cenosphaera mitgarzi
Theocyrtis iiîhos
C
F
F
R
Theocorys reticula
A
Artobotrys non/egiensis
F
Lithomelissa stigi
Peripyramis anoetum
R
C
Lithelius spiraiis
Thecosphaera minor
R
C
C
C
R
Cyriophormis alta
C
R
F
Tripodiscinus tribrachiatus
F
F
R
Tripodisciunus kaptarenkoi
F
C
Theocyrtis andriashevi
R
F
F
Haliomma immensa
Calocyclas asperum
R
A
C
Rhodosphaera donensis
R
C
GEODIVERSITAS • 1999 • 21 (3)
475
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Shcherbinina E. K.
Table 13. — Stratigraphie range chart of diatoms and silicoflagellates in Boguchar (borehole 5-93). Legend: see Table 1.
Species/sample number
63-4
62-1
60-1
29-5
28-2
24-2
17-1
15-1
Diatoms
Actinoptychus intermedius
Aulacodiscus excavaius
F
F
F
Aufacodiscus keHeri var. fasciculatus
Aulacodiscus inflatus
Azpeitia atf. ofigocenica
F
R
F
Brightwelfia sp.
Cerataulus deflandrei
F
R
F
Corona retinervis
F
F
Coscinodiscus bulfiens
F
F
F
Coscinodiscus obscurus
C
C
F
F
Coscinodiscus obscurus yar. cancavus
F
C
C
Coscinodiscus asteromphalus
Coscinodiscus decrescens
F
R
Coscinodiscus marginatus
Coscinodiscus decrescenoides
F
F
F
Cosmiodiscus breviradiaius
Cristodiscus succinctus
F
F
F
F
Cristodiscus duplex
F
F
Craspedodiscus moollen
F
Craspedodiscus oblongus
F
C
C
Hemialus polycystinorum
F
F
F
H. polymorphus var. charkovianus
F
F
C
Hyalodiscus radiatus
R
F
F
Melosira architecturalis
F
F
F
C
C
Paralia sulcata var. sibirica
C
C
Paralia oamaruensis
F
C
R
Pseudopodosira hyalina
C
F
C
C
F
Pseudopodosiia pyieytormis
F
F
C
F
Pseudopodosira bella
C
Pyxilla gracilis
F
F
F
P. oligocenica var. oligocenica
F
F
Pyxidicula charkoviana
F
F
F
C
C
Pyxidicula gmnowii
F
Pyxidicula aff. moelleri
F
F
F
Pyxidicula johnsonii
Pyxidicula crenata
Pyxidicula megapora
F
F
F
F
Pyxidicula spinodissima
Stellarima mucrotrias
F
F
R
Triceratium ventricosa
F
F
C
Triceratiumatf. kanayayar. triloata
F
Tricacria excavata
Tricacria exsculpta
F
F
F
F
Silicoflagellates
Corbisema hastata globulosa
F
Corbisema enermis
F
Dictyocha deflandrei
Dicîyocha spinosa
Dictyocha hexacantha
F
F
F
Disîephanus pentagonus
Naviculopsis foliaceae
F
C
Naviculopsis constricta
F
Naviculopsis nordica
C
476
GEODIVERSITAS • 1999 • 21 (3)
Some peculiarities concerning the Pliocène
évolution of the Black Sea and Caspian basins
Edward A. MOLOSTOVSKY & Andrew Yu. GUZHIKOV
Institute of Geology, Saratov State University,
Moskovskaya Street, 161, Saratov 410750 (Russia)
guzhikovay@info.sgu.ru
Molostovsky E. A. & Guzhikov A, Yu, 1999. — Some peculiarities concerning the Pliocène
évolution of the Black Sea and Caspian basins, in Crasquin-Soleau S. & De Wever P.
(eds), Peri-Tethys: stratigraphie corrélations 3, Geodiversitas 21 (3) : 477-489.
KEYWORDS
Petromagnetism,
scalar magnctic characteristics,
magnetic susceptibility,
Para-Terhys,
Pliocène.
ABSTRACT
This paper présents the results of petromagnetic studies on Pliocène key sec¬
tions of Crimea, Georgia, rhe Apscheron Peninsula and the North Cis-
Caspian Région. Scalar magnetic characteristics of sedimentary rocks reflects
the conditions they hâve been formed in the eastern Para-Tethys. The
Pliocène activation is recorded by increased rock magnetism in the middle
Pliocène. The dependence of petromagnetic variation.s upon cectonic factors
allows to correlate the marine Pliocène succession from the Ponto-Caspian
District.
MOTS CLÉS
Petromagnéti-sme,
caractéristiques magnétiques
scalaires,
susccptibilUc magnétique,
Para-Tétnys,
Pliocène.
RÉSUMÉ
QueUfues particularités de l'évolution pliocène des bassins de la Mer noire et de la
Caspienne.
Cet anicle présente les résultats d'études pétromagnétiques des dépôts plio¬
cènes de Crimée, de Géorgie, de la péninsule d’Apscheron et de la région
nord de la Cis-Caspienne. Les caractéristiques magnétiques scalaires des
roches sédimentaires reflètent les conditions dans lesquelles elles ont été for¬
mées dans la Para-Térhys orientale. L'activation pliocène est enregistrée par
une augmentation du niagnéri.smc au Pliocène moyen. La dépendance des
variarions pétromagnétiques vis à vis de.s facteurs tectoniques permet la corré¬
lation des dépôts marins de la région Ponto-Caspienne.
GEODIVERSITAS • 1999 • 21 (3)
477
Molostovsky E. A. &C Guzhikov A. Yu.
INTRODUCTION
Tectonic activity of rhe Caucasus and adjacent
mountain areas ac che Miocene-Pliocene transi¬
tion has speeded up rhe disintegrarion and final
disappearance of the Para-Tethys Basin. The west¬
ern Para-Tethys disappeared and the easrcrn
Para-fcthys was ultimately disintegrated at rhe
end of the early Pliocène, which resulted in the
final isolation of the Pontic and Caspian seas
(Nevesskayxt et al 1986).
Since rheir development proceeded praccically
independently, though occasional réunification
through the System of latitudinal Kuma-Manych
dépréssions was establishcd. The géologie record
of ihe Caspian waeer hicak-chrough into rhe Cis-
Pontic Région at the end of the middle
Actchagylinn (the beginning of Matuyarna
epoch) is mosT clearly demonstrated by che beds
with cominon niollusc fauna; lamanian beds
containing the Actcliagylian Cai'dîmn in the Cis-
Pontic Région and the Pontic Dreissenia within
the Actchagylian of the Caspian Section
(Kitovani 1976; Nevesskaya et al. 1986; Zubakov
1990).
The general évolution .scheme of isolated Peri-
Tethys basins was traditionally bascd on liiho-
facies and palaeontological data. Palaeomagnccic
research, especially aller Harland ci al. (1982)
magneiochronologic scale, provided the franie-
work for more solid and précisé corrélations of
géologie evencs in the Black Sca and Caspian
régions. Recent research hâve demonstrated rhat
most iiucrcsting stratigraphie, palaeogeographic
and geochcmical intormarion is to be found in
scalar magnetic characrerisrics of sedimentary
rocks; the ' magnecic memory" of these rocks
reflects ihc main events of their formation in
varions geodynamie and landscape-climatic set-
tings (Molostovsky 1986; Gu;thikov &
Molostovsky 1995).
The resulcs of palaeo- and pciromagnetic re
search of the marine Plioccne and PIcistoccnc
front the Ketch Penin.sula, western Georgia and
Apsheron Peninsulaarc presented (Fig. D-
In this study beside palaeontological, palvnologi-
cal and lithologic-mineralogical data, a substan-
tial amount of original and previously publishcd
palaeomagnetic data was used for palaeogeogra-
phic reconstructions (Ali-Zade 1954; Khramov
1963; Asadulacv ôc Pcvzner 1973; Trubikbin
1977; Zubakov 1990). The aurhor.s garhered rhe
matcrial on scaJar magnetic characteri.sdcs and
add data from Ismail-Zade (1967) and Khramov
(1963).
Magnetic susceptibilitics were measured by IM V-
2 and KT-5 devices, rémanent magnétisation -
by spinaer-magirccometers ION-1, JR-3, JR-4.
The basic palaeomagneiic maierial used for com¬
parative analyses is summarised in a corrélation
scheme showing with rhe PÜoeene stratigraphie
unies from the Black Sea and Caspian régions in
relation to the general magnetosiraiignaphic scale
(Fig. 2).
MAIN PRINCIPLES OF STR.\TIGRAPHIC
INTERPRETATIONS OF
PETROMAGNETIC DATA
Pctromagnetic variations of sedimentary
scquenccs are controlled by the depositional pro-
cesses and boundary conditions thar déterminé
the formation of these unirs. Therefore, a subdi¬
vision of strarified rocks based on common scalar
magneric characteristics, has sedimento-stratigra-
phic significance.
l he sedimentary rock magnetic properties are
dererniined by bodi natuial (magnetic suscepti-
biiity — k, modulus of naturaJ rémanent magnéti¬
sation — Jn, etc.) and artificial parameters i.e.
measured after exposure to température and/or a
laboratory magnetic ficld (magnetic susceptibili-
ry of a sample after exposure to température -
dk, saturation magnétisation—Js, saturation field
- Hs, etc.).
The values of natural pctromagnetic cliaracteris-
tics - magnetic susccpfibility (k) and natural
rémanent magnétisation (NRM, Jn) — dépend
mostly on fcrromagnetic minerai concentrations
as wcll as on magnetic phase compo.siiions,
secondât}' changes and otliers. The Jn modulus is
mainly controlled by the dcgrec of order of
domain magnetic moments, which results in
higher jn in chemically magnetised rocks than in
ihosc with orientational magnétisation, while
magnetic susccptibiltty values do no vâry. In
weakly magnetised rocks (k = 10-20.10'*^ SI
478
GEODIVERSITAS * 1999 • 21 (3)
Pliocène évolution of Black Sea and Caspian basins
I 1 1
Limits of States
" — f\,
Mountains ranges
Limits of Russian régions
Sections
Fig. 1. — Location map. I, Great Caucasus; 11. Adjar-Trialel mountain System; III, Balkhan; IV. Kopet-Dag; V, Talysh Mountains.
Sections: a, wells 1, 5, 13, 14, 15, 18, 19 (Samara Région); b, well 3 (Saratov, Volga Région); c, well 20 (Saratov, Volga Région);
d. well 13 (Kalmykia); e, well 48 (Kalmykia); f, Kerch Peninsula; g, western Georgia.
GEODIVERSITAS • 1999 • 21 (3)
479
Molostovsky E. A. & Guzhikov A. Yu.
International
paiæomagnetic
scate
(Harland efa/.1982)
Time
(Ma)
1
2
3
4
Apsheron Peninsula
Western Turkmenia
Asov Sea
(Khfamciv1963) (Peuzner1973)
(Trubikhin 1977)
Taman
(Zubakov 1990)
Fig. 2. — Corrélation between palaeomagnetic sections of the Pliocène from eastern Para-Tethys.
units) paraniagnctic componcnts strongly affeci
k-value formation. AU the perromagiietic indices
are funcrionally associared with sédiment com¬
position. ccxiLiral-structuraJ rock features, palaeo-
geographic and gcochemical çediment compo¬
sition epigenetic changes, i.e., with ail parameters
controlling the formation of the large sedimcn-
tary complexes within concrète palaeobasins.
The obvions relationship between petromagne-
tism and sédimentation processes provides
potentially a wide application of scalar magnetic
characteristics in solving diverse géologie pro-
blems; the petromagnetic method can be consi-
dered as a form ol rhythmostratigraphic analysis*
Detailcd kjiowlcdge ot the ferromagnelic-
fraction mineralogy forms the fondamental basis
in the interprétation of such data.
A large amoum of data on magnetic properries of
sedimentary formations of diverse âges and gene-
sis were summarised by the authors; chis made it
possible to forniulate the main principles of
palaeogeographic interprétation of petromagnetic
indices. The essence of these principles accounts
to:
l. Magnetic différentiation of rocks within a
stratigraphie section is controlled by the changes
in sédimentation environments.
In rocks wâth syn- or posc-sedimentary magnéti¬
sation carried by alloihigenic fçriomagnctics,
palaeogeographic and tcctonic factors arc defini¬
tive, i.e., chose conrn.ïlling terrigenous magnetic
material érosion, transport déposition (rectonic
activity, climatic changes affccting the rate of
baring processes). The increased concentration of
480
GEODIVERSITAS • 1999 • 21 (3)
Pliocène évolution of Black Sea and Caspian basins
detritic ferromiignerics \s regisiered by k and Jn
bursts on pccroinagnetic ciirves.
In rocks with chcmically introduced NRM
containcd by authigenic minerais, magnetic pro-
perties are controlled by chc geochemical envi-
ronmenr dnring the fonnarion of rhe authigenic
magnetic phase. Forexaniple^ in reducing condi¬
tions due to some sulphur defteie, authigenic sul-
phidc minéralisation is observed wirhin the
sédiments with strongly magnetised pyrrhotine
and greigire being fbrmed logethcr with pyrite.
Variations in geochemical conditions may resuit
in variation in different distribution of magnetic
sulphides within a stratigraphie sectiom which is
regisrered by changes iu magnetic susceptibility
and natural rémanent magnétisation.
2. The levels of subsrantial changes in sedlmenta-
ry sequence magnetism constitute rhe natural
interfaces beeween real stratiform bodies, and the
pctromagneiic laycr-sets ihcmselves may be clas¬
sifiée! as stratigraphie unit-S of local or régional
importance.
3. Sédiment petromagnctic différentiation in
time is of regular characier and reflects sédimen¬
tation peculiar and reflects changes in sédimenta¬
tion processes and environment. Spasmodic
petromagnctic changes generally coincide with
sharp changes in sedimentarion.
4. Petromagnetic rh^'thms within periods of éro¬
sion or non-déposition parallel sédimentation
rhyrhms.
In case of derrital nature ol Jn, rhe inirial (régres¬
sive) stages of sedimenration cycles are marked by
a drop in magnétisation. When magnetic rhythm
is controlled by changes in palaeogcochcmical
conditions significanr increases in Jn and k are
observed in deep-water sédiments, containing
authigenic phases - pyrrhotine and grcigite,
which formed iinder the reducing conditions.
5. Petromagnetic variations, observed ahcr heat-
ing ol samples in laboratocy, reflect concentra¬
tion variations in originally non-maguetic or
vvcakly magnetic terriferous minerais (pyrite,
marcasitc, siderite, iron hydroxide.s). Ihese
minerais are clcarly recorded magnetometrically
after conversion under elevated température.
Pyrite and marcasife, lor example, when heaied
up to 500 "C in oxidisiiig medium, turn into
magnetite, which results in magnetic susceptibili-
æ magnetic susceptibiiity
(10'^SI units)
0 10 20 30 40 50
I.. .. ..I ■... I.... I
LImestones
Absence
of deposits
Maris
Clays '
“i i .
Iron ores
Fig. 3. — Synthetic petromagnetic curve of Pliocène deposits of
the Kerch Peninsula.
ry increase. The increase in Dk = k^-k reflects the
content of newly-formed magnetite, and thus,
concentrations of inirial FeS 2 .
If non-magnetic iron sulphides are of authigenic
nature, the abnormally high increase of magnetic
susceptibiiity mirrors the reducing environment
in a sedimentary basin, with rhe presence of
hydrogen sulphide; dk - curve variations form
ihe basis for detailcd sequence division and let
yield constrain on the changes in redox poten-
tials of sédimentation environment.
GEODIVERSITAS • 1999 • 21 (3)
481
Molostovsky E. A. & Guzhikov A. Yu.
INVESTIGATION RESULTS
æ magnetic susceptibility
(10 ^Sl units)
0 200 400 600 800 1000
Aleurolltes
Clays
O O
Sandstones
Pebbles
q Limestones
Absence
of deposits
Kerch Peninswjk
Reconstruction of palaeogeographic events on
rhe basis of the palaeo- and petromagneric data
of the Black vSea Région, is possible from the end
of the Miocene ro the beginning of the Pliocène.
The analyses ol several composite sections
through the Meotian and Pontian beds in Kerch
Peninsula detnonstrate rhar similar changes in
magnetic properties can be observed in sédi¬
ments from various parts of ihc bâsin.s.
Claycy-carbonate deposits of Meotian âge in the
north-western Cis-Pontiç Région are ubiquitous-
ly distinguished for extremely low and homoge-
neous magnétisation. Their magnetic smseep-
tibilicy varies bervveen 3 and 8.10 ^ SI units.
1 hc beginning of the Pontian transgres.sioii in
the large Eüxinic Basin was accompanied by
accumulation of dark-grey deep-water clays,
dominating practically in ail the sections from
western Georgia and Kerch-Taman régions. The
beginning of the Pliocène is everywhere marked
bv sub-srantial changes in marine sédiment petro-
magnelism.
Within the Pontian beds of Kerch Peninsula, the
level of magnétisation is at least two rimes higher
than in the Meotian tcrrigenous-carbonate
sequence. Modal k values, hcrc, arc as high as
15.10 '' SI units (Fig. 3).
During the Kiminerian, deep-water clay accumu-
lated. Thèse clays coniain intercalations of che-
mogcnic sidcfitc-lcptochlorite ores in the mîddle
parc of the section which was deposited in the
Kerch and Taman areas. The intcrlayers rcsultcd
from érosion and transport to rhe littoral zone ot
the local latente crusts ol wcathering (Zubakov
1990).
d'he incrcased iron-salt contents in the middle
Kimnicrian .sedimenrs had relatively small
influence upon their magnetic properties due to
the absence of strong magnetic phases. Magnetic
suscepribilities in iron ores are increased (20-
55.10'^ SI unies) relative to those of the host
rocks (k^„^|= 12.10’^ SI units).
Fig. 4. — Synthetic petromagnetic curve of Pliocène and
Pleistocene deposits of western Georgia.
Break of ero.sion of the laterite-crust at the end of
the Kiinmetian is recorded by a marked magnéti¬
sation decrease in the rocks of the upper
482
GEODIVERSITAS • 1999 • 21 (3)
Pliocène évolution of Black Sea and Caspian basins
Kimmerian and Kuyalnikian where the k values
do not exceed 14.10''' SI units (Fig. 3).
Western Georgia
Perromagnetic différentiation in western Georgia
is much more marked than in the norch-western
Cis-Pontic Région, in spite of the homogenous
character of the section composed of grey deep-
water clays, with some sandstones and aleuro-
lites.
The Meorian/Pontian boundary is recorded as a
clear change in perromagnetic respon.se of the
sequence (Fig 4). In western Georgia, the
Meotian claycy-aleuroliric sequence is also distin-
guished for low magnétisation: = 20.10'^ SI
units. Magnedc susceptibility values are signifi-
canrly higher in the lower part of the Pontian
section; they vary between 20-200.10 '' SI units.
Sédiment magnétisation increascs steadily
upwards along the section, and within the upper
horizons ol the Pontian, rhe k values vary bet¬
ween k = 40-300.10'^ SI units.
Magnetic susceptibility values increase up to
200-800.10'^ SI units, in the Kimmerian, rea-
ching the maximum in rhe clays and aleurolite of
the Kuyalnik, Gurian and Chaudian horizons:
k = 300-1300.lO-'^ SI units (k^„^ = 660.10'5 SI
units).
In the Pleistocene, the transport of terrigenous
magnetic matcrial dccrcased significantly, its
input to the ancient Euxinic Basin was more epi-
sodic. This is marked by alcernatiott of strongly
and weakly-magnedsed layers in the petromagne-
tic records. In weakly magnetised sédiments the
k values var)' between 9 and 40.10 SI units, in
strongly magnetic sédiments k = 80-320.10'^ SI
units (Fig. 4).
Thick (up to 3500 m) Pliocène deposirs wirh
unique magnetic propeities, were formed in west¬
ern Georgia at the end of rhe Caino/.oic. Judging
from petromagneric data, the processes of marine
accumulation in ihis région were malnly control-
Icd by intensive ascending movements of rhe west¬
ern part of rhe Grear Caucasus and Adjar-Trîalet
Mountain System. Their acrivity is usually correla-
ted with the middle/lare Pliocène transition
(Kitovani 1976) but the petromagneric record
clearly indicaies that tectonic accivity srarted as
early as the earliest Pliocène.
Fig. 5. — Synthetic petromagnetic curve of Pliocène deposits of
the Apsheron Peninsula {Khramov 1963; Ismail-Zade et al.
1967).
Magnetic material was mainly provided by the
Eocene volcanic envers, widely spread in the
Southern régions of Georgia. The érosion of
highly-magnetic sequences in rhe mountains
continued with increasing intensiry right up to
the end of the Pliocène. Baring rates seemed to
hâve decreased in the Pleistocene, but the présen¬
ce of magnetite-saturated beach sands in the vici-
GEODiVERSITAS • 1999 • 21 (3)
483
Molostovsky E. A. & Guzhikov A. Yu.
nity of che towns of Poti, Ureki and Magnetiti
(Guria) sugge^ir vhar the process continue.
Petromagnetic section corrélation with the
magnetochronologic scalc suggescs that the
Adjar-Trialet Mountain massif is ihe most active
geodynainic centre of the Black Sea région for
the last 5.4 Ma: intensive baring continues since
the beginning of Gilbert epoch (Fig. 4).
The transgres.sive'regressive variations of the
Euxinic Basin, tonirary to the north-western
Cis-Ponric, are not clearly reHecced in rhe
Georgian sections, though chcy are easily reco-
gnised trom numerous unconformities within
the Pliocène secjuence. 1 he mosi expressive trace
was left by the Kimmcrian activation, which
resulted in strong réduction of Gauss zone in
many sections.
Caspïan Région
No petromagnetic data on the lowcr Pliocène
from the Caspian Région is available. In che
middle Pliocène portion of the seule, the produc¬
tive sequence front Apsheron Peninsula is relan-
vely well srudied, as well as its corrélative red-bed
(Cheleken) suite front western Turkmenia
(Khramov 1963). These rock complexes were
deposited in semiTreshwater basins with intensi¬
ve terrigenous sédimentation; ihe basins origina-
ted in the Caspian Région during che Kim-
merian transgression of the Euxinic Basin
(Muratov & Nevesskaja 1986).
The Kimmerian tectonic event did nor leave any
notable traces in the petromagnetic secrion from
the TranS'Gaspian due ro che lack of highly
magnetic source rocks in rite western Kopet-Dag
and Balkhan. The redstones, aleuroliies and clays
of the Cheleken sviite are generally cliaracterised
by moderate magnétisation (k = 15-25-10 '' SI
units) and arc poody dilfcrcntiated along the
stratigraphie section (Khramov 1963).
The petromagnetic section through che produc¬
tive sequence from Azerbaijan is more informative
in rhis respect (Fig. 5). Accord!tig to Khramot^
(1963) and Lsmail-Zade et ni (1967) data, ihe
lower part ol this large terrigenous complcx
("800 m) is composed of low-inagnctiscd clays,
aleurolites and sandstoncs with the average k va
13.10"'' SI units. In the upper part of the
Sabunchi suite, a sharp magnétisation increase is
observed in ail rock varieries, accompanied by a
substanrial dispersion of scalar magnetic charac-
terisiics; k = 13-160.10'^ SI unic.s = '^5.
10*'' SI units). A similar m;tgnetisanon levcl is
characterisiic of the overlying Surakhan suite; the
overall ihickne.ss of rhe highly magnetic complex
constitutes up to 450-500 m (Fig. 5).
Tfie large volumes ol magnetic material trans-
ported to the regress'ing Balukhan réservoir might
hâve been caused by the increa.sed tectonic aaivi-
ty of the eastetn flank of rhe Créai Caucasus or
the Talysh Mountain massif in the Southern Cis-
Caspian. In atiy case, the intensive baring of
Mesozoic and Palaeogcne volcanite séquences of
intermediate and basic composirion, resulted in
the rfccumularion of magnetic material in the
upper horizons of the productive seqtiences.
The Pliocène activity in the eastern Caucasus is
dated rather precisely by ihc magnetostrati-
graphic scalc (Fig. 5) as the end of Gilbert epoch
plus the eatly Gauss, which approximately cor¬
responds to the intentai of 1 Ma.
Corrélations of régional magncrostracigraphic
schemes and composite petromagnetic columns
show, rhac nonvirhscanding rhe complété isola¬
tion of rhe Caspian and Euxinic basins in the
middle Pliocène, the Kimmerian tectonic activa¬
tion has simil.irlv aflectcd sedimentadon rhrough-
oLic the wholc of the eastern Para-Tethys.
In lhe north-rvestern Cis-Pontîc and Apsheron
régions, this is marked by the clear enough
petromagnetic effects in rhe sections through the
middle Kimmerian (orc) and the .Surakhan suite.
In Kercli Peninsula, western Georgia, Azerhaijan
and Turkmenia, an unconlormity séparâtes the
upper horizons ol the Kuyalnikian and
Actchagylian from the Kimmerian super-ore
sequence, .Surakhan and Cheleken suites; the
upper half of Gauss zone is not présent in the
section (Fig. 2).
Ail the aurhors analyslng lhe Pliocène history of
the Black Sea région, note ihc relative srability of
rhe Euxinic configuration and its cocrespondence
with the modem Black Sea area. It is only at
individual stages of the eastern Para-Tcthys évo¬
lution when large bays came into existence in the
Kuban-Azov Région and Guria (Kitovani 1976;
Nevesskaja É-r t//. 1986).
The limited latéral amplitudes of the Euxinic
484
GEODIVERSITAS • 1999 • 21 (3)
Pliocene évolution of Black Sea and Caspian basms
Saratov
Il I 1-1 F-*/ '
■..-..-.-.■.■^20
//—488
Volgograd
M I I
O* —
-O A ^577
f.MId
1 I I ir—
-^16
-f •---
- 29 CO^ .-
: OA.—•- —
11 . '7
O ostracods
Calcareous clays -
Maris and limestones
marine molluscs
non-manne
molluscs
A glauconite
• Wells
I I highiand plateau
• À o'i^ s g
Î 5 “.*’: 3 V, sands with pebbles
Fig. 6. — Lithological-palaeogeographical scheme of Actchagylian stage of the Caspian Dépréssion (Akhlestina & Karmishina 1973)
GEODIVERSITAS • 1999 • 21 (3)
Molostovsky E. A. & Guzhikov A. Yu.
transgressions with dominating plain savannah-
steppe landscapcs in the Cis-Poaiic Région
(Zubakov 1990) combined with the (hick trans¬
gressive sériés indicatc che tectonic quiescence in
the région and limited érosion ail ovcr the norch-
ern fringe of the Euxinic.
It follows from Figure 3, tbar the Pliocène trans¬
gressions were accumpanied by the changes Ln
the magnetic properties of corresponding sédi¬
ments. The amplitudes of pecromagnctic varia¬
tions thcmselves are insignificant, bccause only
the Lippcf, wcakiy magnctiscd horizons of the
sedimentary' cover hâve undergone érosion in the
sourceland. The large volcanic rnassif of the
Kara-Dag (southern Criniea) evidently did not
serve as a source area for the northern Euxinic
Basin in the Pliocène.
From palaeontological and lirhofacies data»
Kitovani (197 Cî) concliidcd, that ihe Kuyalnikian
âge represented the curning point in modem his-
tory of the Black Sca région, h corresponds to
the beginning of a major transgressive cycle that
should be considered as the start of the late
Pliocène.
This conclusion is supported by ail data, but the
basic importance of ihe Kuyalnikian (Actcha-
gyiian) stage for the évolution of the northern
fringes of the Tethys is not limited to the Black
Sca basins.
Palaeogeographic reconstructions show that the
Neogene history of the Para-Tethys is characteri-
sed by alternaring épisodes of isolation and réu¬
nification of iiidividual basiiu (Nevesskaya et ai
1986). Ail the géologie evenrs of that period,
accompaiiied by transgressions and régressions,
occurred in the sublatitiidinal direction berween
40 and 50 N; the northern margin of the Peri-
Tethys zone hardli ewer crosscd the conventional
line berween the présent Volga Delta and the
Taganrog Bay of the Azov Sea.
A fi-indamentally new geodynamic situation was
formed ai the beginning of the Acichagylian.
A number of large-scalc iransgrcssions bave resul-
ted in cardinal change of water-masses move-
ment direction, from the sublatitudinal to rhe
méridional one, A large brackish-watet basin ari-
sed in chc Ca-spLan Région: it sireiclied from ihe
Southern shores of che modem Caspian Sea for
more than 2000 km, right to the lower reaches of
the Kama River. This basin, nearly equal in its
area to rhe whole of rhe Para-Tethys, lasred
through the Apsheronian and disintegraied only
in the carly Picistocene due to a major Tjurkian
régression.
Faciès of the Upper Pliocène were studied in
derail in a number of papers (Kolesnikov 1940;
Ali-Zade 1954; Asadiilacv & Pevzner 1973;
Trubichin 1977), Coarsc-detrital sédiments from
5-10 to 50-60 mcircs ihick accumulatcd in litto¬
ral zones. Shallow-water sédiments were deposi-
ted ai modetate deprhs (down to 100 m); they
are represented by alternaring aleurolites and
sandstoncs up to 400 ni thick. Carbonates and
deep-water clays with aurhigcnic iron sulphides
(pyrites and greigites) were deposired in the cen¬
tral parts of the réservoir under the conditions of
hydrogen-sulphkle contamination Greigiie is
characteri.scd hy pronouriced fcrromagneiism
and to a large extent déterminés the magnetic
properties ol the Pliocène marine deposiis from
the northern Cis-Caspian.
‘Fhe faciès variations of Actchagyl northern Cis-
Caspian Basin arc analysed hy Akhlestina &
Karmi.shina (1973) (Fig. 6).
The structures ol the majority of the Cis-Caspian
Plioccnc scction-s studied in KaJmykia (well 13),
Saratov Région {w'clls 3, 20), clcarlv revcal sédi¬
mentation fhythms, causcd by alternating trans¬
gressive and régressive cycles. F.ach sédimentation
rhythm comprises arenaceous (régressive) and
argillaceous (iran.sgressivc) niembers with rhe
average rhicknes.s as of 30-50 m. Judgiiig from
the data publishcd, such a structure of the
Pliocène séquence is common for ihc whole of
the Volga and northern Cis-Caspian régions.
MineralogicaJ analyses hâve establislied that the
authigenic minerais pyrire-greigite association
characterise the transgressive sériés, while siderite
and iron hydroxides are characteristic of the
régressive ones. Transgressivc-fegressive sédimen¬
tation phases in petromagneiic columns are
registered by strong variations of scalar magnetic
characterisrics. ln che transgressive portions of
the elemental rhyrhms, Jn and k values vary,
basically* within rhe ranges of 20-150.10 -^ À/m
and 100-500.10 '' SI uniis. ln che régressive (are¬
naceous) faciès, dtey decrease to 0.5-10.10’^ À/m
and 10-30. lO'^-SI units.
486
GEODIVERSITAS • 1999 • 21 (3)
Pliocène évolution of Black Sea and Caspian basins
In some sections, composed of lithologically
homogcneou.s sequences or closely inrerUyered
rocks, magnetic parametrics becomes a more pré¬
cisé indicator of environmenraJ changes in rhe
deeper pans of die basin, ihan die iradicional
lirho-facies methods.
The available data do not allow the establish¬
ment of the total niimber of elemenral sédimen¬
tation rhychms within the Cis-Caspian
Actchagylian-Apsheroman sequence, since this
number may vary wiih the section completeness
and sédimentation conditions.
The comparative analyses oi petromagneiic data
from Wells 13 and 48 hâve revealed a quite clcar
corrélation between the compositions of spore-
pollen complexes and rock magnétisation.
Highiy magnetic transgressive portions of the
rliythms arc generally associated with the com¬
plexes of forest-steppe and forest types with the
content of arboreal pollen as high as 50-65% and
that ofherbaceous pollen notcxcecding 25-30%.
The wcakiy magnerised régressive faciès arc cha-
racterised by steppe palynocomplexcs dominated
by herbaccous pollen (Sedayein et ai 1987).
This indicates îhat the pctromagnetic characte-
risrics of the rocks, may niirrof the climatic
changes: alternations of rclatively hnmid warm
and cool arid periods.
The physical-mineralogic foundation of such
interrelations are quite évident. In the moments
of climatic opdma, favourable conditions are
created for production, drift and accumulation
of substanrial masses of plant organic matrer: the
burial of this matter gives rise to reducing condi¬
tions ncccssary to form auchigenic sulphides in
naiural silts. A.s il (ollows Irom the available data,
ihe transgressive phases in the Actcha^dian and
Apsheronian basins coincided with climatic opti-
ma.
The problem of corrélations between climatic
evcnis and sédimentation settings in the Plio-
Pleiscocene basins of the castern Para-Tcthys form
a long standing discussion. A wide range of ideas
bas been presented; various authors arrive at dia-
mctrically opposite conclusions on the basis ofvir-
tually similar data. Yakhimovich rt al. (1985)
correlate the Palaeo-Caspian transgressive stages
with the Plio-Pleisrocene climatic optima and ihc
régressive stages with the periods of cooling in the
Volga-Ural Région. Zubakov (1990), on the
contrary. asserted diat the Pliocène régressions of
the Caspian Sea are related with the thermo-
chrons, and the high stand srj^es - with cooling
and aridisation in the Cis-Caspian Région.
Fedorov (1978. 1982), in his studies of the
Pontic-Caspian palaeogcography, changed views
more than once.
Petroniagneiic data demonstrate, that the trans¬
gressive faciès of elemental rhythms are associa-
ted with thermochrons, and the régressive oncs
with cryochrons. There Is no support to correlate
large transgressive cycles with climatic optima,
bccause somc information bas been gained on
multiple vcgetation-community changes, and
consequently, on climacc oscillations throughout
each of the Pliocène rransgressions,
In the Ci.s-Cas'pian, Volga and Cis-Ural régions,
the period oftlie maximum middie Actchagylian
transgression coïncides with up to six changes of
climatic conditions rccordçd by corresponding
alternations of plant comnumities. Not less than
cight climatic oscillations are revealed in the
Apsheronian rime from palynological data: four
of rhem in the early and middie Apsheronian
and four at the end of the middie and in the laie
Ap.shertniian (Yakhimovich et al. 1985). On rhe
whole, al least fourteen climatic rearrangements
took place during the four transgressive-regressi-
ve cycles of the late Pliocène.
The origin of the great Caspian transgressions
présents one of the major problems in the
Plioccnc-Pleistocenc history of the P.ara-Terhys
and its northern burders. Tlie majority of the
authors relate them with water-balance changes
in the basin in response lo climatic change
(Fedorov 1978; Zubakov 1990). A number of
publications refer co the combined effects of tec-
tonic and Late Cainozoic climatic evencs
(Vostryakov 1973; Nevesskaya 1986).
One crucial aspect should bc considered whilc
discussing this problem. The Actchag)4ian vStage
in the évolution of the Pontic-Caspian was
accompanied by a major change in ihc outflow
System of between the Para-Tethys basins. A
sharp réduction of sublaiittidinaJ water-transfer
took place, and a stable System of gigantic méri¬
dional movements of water masses set up.
No events of such magnitude are possible
GEODIVERSITAS • 1999 • 21 (3)
487
Molosrovsky E. A. & Guzhikov A. Yu.
without large srructuraJ rearrangements of the
Earth cruîst, and the influence of thc tectonic fac¬
tor was probably décisive. Vostryakov (1973)
paid particular importance ro the régional neo-
tectonic rniwements in territorics of the Volga
and norrhern Cis-Caspian régions, but fails to
account for rhe Acrchagylian transgression to
western Turkmenia and the Aral Sea basin. It
may be possible that the changes of transgressive-
regressive cycles wcre controDed by the combina¬
tions ol oscillatory motions of tlïe Southern
Caspian dccp-watcr part and tlie Rtissian Plate
south-easLcrn periphery, the Peri-Caspian
Dépréssion included.
The dynamics oi the Pliocène transgressions,
cxemplifjcd by the mîddie Acrchag)Tan, may bc
assesscd as a first approximation magnetochrono-
logically through corrélation of régional palaeoma-
gnetic colamns, Trubikhin (1977) assigned the
beginning of rhe middle Actchagylian transgres¬
sion in Turkmenia to rhe middle ol Gauss cpoch
- ^3 Ma (above Kaen épisode). The northcin limit
of thc middle Aachagyl sédiments, corresponding
to the end oi Ciauss epoch ('-2.5 Ma), spreading is
established in well 3 nenr the city of Saratov.
Thus, during rhe Ü.4-Ü.5 Ma — long întcrvaJ, cor¬
responding to rlic second hall ol Gauss epoch, the
Actchagylian sea shore-line has shifted northwards
for more ihan 1500 km, which corresponds to the
average rate of 3 in per year.
CONCLUSION
Scalar magnetit characterisrics of rocks rcflect the
conditions of the sédimentation; ihis allows to
use petromagnetic data for palaeogeographic and
geodynamic rcconsiructions. Sharp changes in
sedimentary rock magneiLsaiioti serve as a direct
indication for increased tecionic activity within
source areas, resuking in new magnetic material.
In thc Lare Neogenc from thc Black Sea région, a
major peuomagnetic houndar>' i.s associated wirh
the Meotian/Pontian boundary.
An active input of magnetic material into the
marine basin proceeded since rhe Lare Pliocène,
culminating at the end of ihe Pliocène The
Paleogene dlusives of the Adjar-Triaict Ridge are
known to be the main source for the south-
eastern part of thc Euxinic Basin: the Ridge is
characrerised by stable uplilt foi at Ica-st 5.4 Ma
(since the start of Gilbert epoch to the présent).
Active uplifr uf rhe Main Ridge and. probably,
rhe Talysh Muunrains at thc castetn end of the
Cûucasus began as late as at thc end ol Gilbert
epoch and rcrminared in the early Gauss. The
Mcsozûic and Palacogene effusives consritticed
the source of the magnetic material rransported
to the Balakhan Basin.
The transgrcssivc-rcgrcssivc cycles in the Euxinic
and Caspian basins werc .signifîcantly difterent in
theu' magnitude. Phe Euxinic Basin did not
change its outline notably during the whole of
thc l*lio-Plci.stocene.
d'he Luxtnic Basin did not change its outline
notably during the whole ol the Pliocène, since
thc area cxieni of the incursions were rarher limi-
ccd. l’he Caspian transgressions, contrary to the
Black Sea ones, resultcd in thc création of vast
basins.
*rhc largesl of them, the middle Actchagylian
onc. extended lor more than 2000 km, from the
Southern margin of the Caspian Basin to the
Kama Rjver basin.
Acknowledgements
The authors arc grateful to Prof Van der Zwan
and Prof. J. Meiilenlcamp (Utrecht Universky,
the Nethedands) for iheir helpful reviews on the
finst draft of the paper.
REFERENCES
Abakshin O. V^, Bogachkin A. B. & Eremin V. N.
1993. — Palaeomagneric Section through the
‘'Bakinian srage” mountain: 119-126 |in Riissian],
problenh of the Pafeûztnc, J^^esoz4)ic and
Caifwzoii', hutr-(.oIIege scientifîc-papers eollecrion,
7'*' i.ssue. Saratov Universuy Publisncrs, Saratov.
Aklilesrinii E. f. iji Karmishina G. 1. 1973. — To the
problems of fades, sédimentation cyclicity and
stages ol Tpaerolauna] development in the Late
Pliocène from tlic Pcri-Caspian Dépréssion: 17-30
[in Russianj, w Vostiyakov A. V. (ed.), Ccfdogic
prohlems of the South Oral and Volga région. SG U
Publishcrs, Saratov.
Ali-Zade K. A. 1954. — The Aachagylian stage in
Azerbaijan. AzSSR AS Publishers, Baku, 334 p. [in
Russian].
488
GEODIVERSITAS • 1999 • 21 (3)
Pliocène évolution of Black Sea and Caspian basins
Ali-Zade A. A., Aleskerov D. A. & Pevzner M. A.
1973. — Palacomagneric study of the Pliocène
deposits from Apshcron Pcninsula; 10-13 [in
Russian], in Pevzner M. A. (ed.), Palaeomagnetic
analysis in studying the Qiiaternary deposits and vol-
canites. Nauka, Moscow.
Asadulayev li. M. & Pevzner M. A. 1973. —
Paleoniagnetism and biostratigraphy of the Late
Cenosoit beds. in rhe Kura Dépréssion: 6-10 [in
Russian], /« Pevzner M. A. (ed.), Palaeomagnetic
analysis in studytng the Qtiaîema}y deposits and voP
canites. Nauka, Moscow.
Fedorov P. V. 1978. — The Pontic-Caspian
Pleistocene, Nauka, Moscow, 165 p. [in Russian].
— 1982. — Soinc debatablc questions of the Black
Sea Pleistocene histor)^ MOÎP Bîdletin^ Geological
department 57 (1): 108-118 (in Russian],
Guzhikov A. Yu. & Molosiovsky E. A. 1995. —
Stratigraphie significance of scalai inagnctic charac-
teristics of sedimentar)' rocks (methodical aspect.s).
MOIP Bulletin^ Geological department 70 (l):
32-41 [in Russian].
Harland W. B., Cox A. V., Llewellyn P. Cî., Pickton
C. A. G-, Smith A. G. & Walters R. 1982. —
Geological tinte scale. Cambridge University Press,
Cambridge. 128 p.
Ismail-Zade T. A., Agamirzocs' R. A. & Geraibekov
E. A. 1967. — Magnctit properties and palaeoma¬
gnetic corrélation surnmary section of production
sériés of the Western Apsheron. Azerbaijanian oil
economy^: 1-4 [in Rus.sian].
Khramov A. N. 1963. — l^alaeomagnetic section of
the Pliocène and Pleistocene from Apsheron-Trans-
Caspian région and cheir corrélation: 145-174 [in
Russian], in Palaeomagnetic stratigraphie studies.
Gostoptcklii/dai, l^eningrad.
Kitovani T. G. 1976. — Gcochronologic importance
of the Late Plioccne and Early Pleistocene Cordidae
from Western Georgia. Sabehota Sakartvelo
Publication iTbilîsi, 154 p. [in Russian].
Kolesnikov V. P, 1940. — The Middle and LTppcr
Pliocène in the Caspian région. Stratigraphy of the
USSR, LISSR AS Publication, Moscow, Leningrad
12:407-476 [in Russian].
Molostovsky E. A. 1986. — Rock scalar niagnetic
characterustics as indicators of sédimentation condi¬
tions: 180-196 [in Russian], in Kumpan A. S.
(ed.), Rûch magnetism use in géologie survey. Nedra,
Leningrad.
Murarov M. V. & Nevesskaya L. A. 1986. —
Stratigraphy of the USSR, in Muratov M. V.
[çà.), The Neogene System. Volume 1. Nedra,
Moscow, 412 p. [in Russian].
Nevesskaya L. A., Goncharova L A., Ilyina L. B. et al.
1986. — The history of Neogene moHusks from the
Paratethys. Nauka, Moscow, 208 p. [in Russian].
Sedaykin V. M., Gonnov V. V., Kovalcnko N. D. et
al. 1987. — Référencé section of modem deposits
from the Noith-Wcsccrn Cis-Caspian. VINITL
N6095-V88, 38 p. [in Russian].
Trublkhin V. M. 1977. — Puleornagnetism and strati¬
graphy of the Actchagylian deposits in Western
Turkmenia. Nauka, Moscow, 79 p. [in Russian],
Vostryakov A. V. 1973. — Tectonic and climaric
conditions of forming of relief of South-East of the
Russian plain: 78-101 [in Russian], in Vostryakov
A. V. (ed.), Géologie prohlems ofthe South lirai and
Volga région. SG U Publishers, Saratov.
Yakhimovich V. L.. Bludorova E. A., Zhidovinov
N. Ya. et al. 1985. — Gcochronologic corrélation
of the Pliocène and Plei.sfocene géologie events in
the Volga-Ural région: 3-16 [In Russian], in
Yakhimovich V L. (ed.). Géologie events in the
Pliocène and Pleistocene history of Southern and
Northern seas. BF USSR AS, Ufa.
Zubalcov V. A. 1990. — Global climaric events m the
Neogene. Gidrometeoizdat, Leningrad, 220 p. [in
Russian].
Submitted for publication on 22 April 1997;
accepted on 30 June 1998.
GEODIVERSITAS • 1999 • 21 (3)
489
Instructions aux auteurs
La ligne éditoriale
Elle prendra en compte divers aspects de la
recherche en Sciences de la Terre, en paruculier
Thistoirc et le cornporicmcnt des bassins sédimen-
raires, la paléobiodiveisiré er les paléoenvironne-
mencs. Un numéro de Geodiversitas par an pourra
être consacré, excepTionnelIcmenr, au débat contra¬
dictoire sur un sujet d’actuaJiié, ou sur un thème
donné et sous In rcsponsabillcé d'cditcur(s) mvitc(s).
Les manuscrits, dont Je nombre de pages n'est pas
limite a priori, devront suivre rigoureusement les
recommandations aux auteurs (voir ci-dessous) et
seront adresses à la revue :
Service des Publications Scientifiques du Muséum,
GeodiversitaSj
57 rue Cuvier,
F-75231 Paris cedex 05
Tel : (33) 01 40 79 34 38
fax: (33) 01 40 79 38 58
e. mai! : bulletin@mnhn.fr
Les chapitres de systématique devront se conformer
aux règle.s du Code înternational de Nomenclature
Zoologique et du Code International de Nomen¬
clature Botanique.
Tout manuscrit non conforme à ces instructions
sera retourné pour mise au point. Chatjuc manus¬
crit est évalué par deux rapporteurs, ou plus.
Informations générales
Soumettre un article pour publication dans
Geodiversiun suppose que celui-ci ou tout article
proche dans la même langue ou une autre langue,
n'ait pas été soumis dans une autre revue, meme
dans Pattente de son acceptation. Les droits de
reproduction de l'article, y compris des illustra¬
tions, sont réservés k la revue. La reproduction de
tout ou partie de l’article doit faire l'objet d’une
demande écrite préalable adressée à la rédaction.
Chaque manuscrit soumis (y compris les illustra¬
tions) doit Etre présenté en trois exemplaires (un
original et deux copies) au formar A4, avec un
double inteiligne et des marges d'au moins 3 cm ;
chaque page seia numérotée. Les illustrations origi¬
nales seront jointes au manuscrit définitif, ainsi
qu’une disquette 3.5 " de format Apple Macintosh
ou compatible IBM (traitement de texte Word de
préférence), qui devra contenir également les
tableaux (Word, Excel, Dcncba Canvas, Adobe
Illustrator) et évcntucllenieni les illustrations
(Adobe Illustrator, Photoshop, format .EPS,
300 ppp maximum, à la dimension de la revue et
en police Helvetica, corps 8 ou 10).
Le format
Les manuscrits, écrits en français ou en anglais, doi¬
vent ctre structurés comme suit :
— titre si possible bref ; un titre courant doit être
proposé :
— traduction exacte du titre en anglais ;
— nom (s) et prénom(s) dc(s) nutcur(s) suivis de
leur(s) adrcssc(s) professioniitllc(s), en indiquant si
possible le numéro de télécopie cl l’adresse électro¬
nique ;
— résumés écrits en français et en anglais (800
signes au maximum chacun), suivis des mots clés et
« key words ;
— dans le texte courant, utiliser les italiques pour
tous les noms en latin : taxons de rangs générique
et spécifique (ex : CelLiria Ellis & Solander, 1786)
et al. ;
— dans le texte courant, les références aux auteurs
seront en minuscules, ex. Duponr (2001), Dupont
(2001, 2002), (Dupont 2001 ; Durand 2002),
(Dupont Durand 2003, 2005) Dupont (2001 r
1), Dupont (2001, fig. 2).
— dans le texte courant, les références aiLv illustra¬
tions et aux tableaux de l’article seront présentées
ainsi : (fig. 1), (Fig. 2A, D), (Fig. iA-C), (Figs 3,
6), (Figs 3-5), (Tableau 1) ;
— les remerciements seront placés à la fin du texte,
avant les références bibliographiques ; ils mention-
neronr les rapporteurs ;
— les références bibliographiques doivent suivre les
excmple.s donnés ci-dessous ;
— indiquer dans la marge l'emplacement des illus¬
trations dans le texte définitif ;
— donner les légendes des figures sur une feuille
séparée.
Les illtistrafions
Une atrenrion particulière sera portée à la qualité et
la pertinence de Fillustration.
Les illustrations au trait doivent être réalisées à
l’encte de Chine ou être fournies en impression
laser. Les photographies, bien contrastées, seront
GEODIVERSITAS • 1999 • 21 (3)
491
Instructions aux auteurs
sur fond noir ou blanc. Elles pourront être regrou¬
pées, et dans ce cas, identifiées pai une lettre en
capitales (A^ B, l es planches photogra¬
phiques. placées dans le corps de l’article et non
regroupées à la fui de celui-ci, doivent être traitées et
numérotées comme des figures. Le.s illustrations
pourront être assemblées sur une largeur de colonne
(70 X 190 mm) ou sur toute la largeur de la jusrifi-
cation (l44 x 190 mm). La réd-^etion encourage la
présentation de plioiugraphies avec tout ou partie
de leur interprétation par un ou des dessins au trait.
Aucune légende, ni lettrage ne sera placé sur les ori¬
ginaux. lU figureront .sur un calque joint avec
chaque figure, la rédaction se chargeant de les pla¬
cer. Chaque figure doit comporter une échelle
métrique, sans aucun coefficient multiplicaieur. Les
tableaux et graphiques^ à inclure dans le manuscrit,
doivent nécessairement pouvoir être imprimés sur
une page et rester lusibles après réduction éventuel¬
le. Des planches en couleur pourront être publiées
moyennant une parücipation financière de ou des
auteurs.
Références bibliographiques
Denison R. 11. 1978. — Placoderml. tn Schulize
H. P. (ed.), HfUidhook of Palcoichthyology,
Volume 2. Gustav Fischer, Stuttgart, 128 p.
Marshall C. R. 1987. — Lungfish: phylogeny and
parsimony, /w BeiiiLs W. E.. Burggren W. W.
& Kern P N, E. (edsj, The Biology and
Evolution of Lungfishes, lournal of Morphobgy
1: 151-162,
Schultze Fl. P. &C Arsenault M. 1985. — l'he pan-
derichthyid fish Elpistoste^e: a close relative to
tetrapods? }\tlet)riiolog}f 28: 293-309.
Schultze H. P. 1977a. — ’l he origin of the terra-
pod limb within ihc rhipidistian fishes;
541-544, in Flecht M. K., Goody P. C. &
Hecht B. C. (eds), Major Paiterra in Vertebrate
Evolution. Plen um Press, New York and
London.
Epreuves et tirés a part
Les épreuves seront adressées à l'auteur ou au pre¬
mier auteur (sauf indication contraire) et devront
être retournées corrigées sous huitaine. Les correc¬
tions, autres que celles imputables à la rédaction ou
à l'imprimeur, seront à la charge des auteurs. Le(s)
auteur(s) recevront gracieusement vingt-cinq tirés à
part, les lires à part supplémentaires .seront à com¬
mander sur un formulaire joint aux épreuves.
Scope of rhe Journal
publishcs papers which concern varied
aspects of R.irrh Sciences and parricularly hi.story of
sedimenrary bastns, pvtlaeobiodiversity and paleoen-
v^ironnienr. A complété issue of Geodiversitas may
bc de\^oted to scveral papers on a single topLc under
the tc.sponsabilliy ol gucsi cditor(s). Papers vy4th a
sysrematic content should fnllow rhe International
Code of y.otdogial Nomcntlatitre and the îuterna-
tiona! Code o/Botanical Notnenelawfc. Maiiusaipis.
without limitation of the iiun^ber of pages, niust
conform strictiy with the instructions to aurhors,
and wÜl be sent to the Lditor:
Service des Publications Scientifiques du Muséum,
Geoditfe7'sita.^y
57 rue Cuvier,
F-75231 Pari.s Cedex 05
Te! : (33) 01 40 79 34 38
Fax: (33) 01 40 79 38 58
e. mail : balletin@mnhn.fr
General information
The siihmis.sion of a nivinuscripi to Geodiversitas
implie.s ihat the paper, or a similar one, is not heing
offered for pubfic’ation clsewliere. C<îpyright of
published paper, incliiding rhe illustrations,
hccomes the property of ihc journal. Requests ro
reproduce matcrial from Geodiversitas should bc
addressed to ilic ediror.
Manuscriprs, with illu.strations, musr be submirted in
triplicate (une original and two copies) in A4 format,
double .spaccd, with margias of at least 3 cm and ail
pages numbered- The original figures should bc sent
with rhe revised manuscripi, as well as a 3.5" di.skette
Apple Macintosh or fBM-com[)atibie (Word) for¬
mat, which will aiso contain i.ible.s (Word, Excel,
Deneba Canva.s, Adobe llkistracor) and possibly
figuies (Adobe lllustraror, Phorctshop, -FJ'S format,
300 dpi maximum, in rhe page size of rhe ]onrnal
and with Helvetica font in 8- or lO-point body).
Format
Papers arc ro be written in simple and concise
Frencb or English. They should bc organized as fol-
lows:
-a brieftitle in English;
— a tille in French (exact translation);
-a suggested running head;
— name(s) of author(.s), followed by their full pro-
fessional addressfes) and. if possible, Fax number
and e.maih
— abstracts (in English and French) not exceeding
800 signs each, with key words and “mots clés";
492
GEODIVERSITAS • 1999 • 21 (3)
Instructions aux auteurs
— text with italicized words for Latin: taxa of gene-
ric and spécifie ranks (e.g. Cellaria Ellis &
Solander, 1786) et aL\
— référencés to authors In main text should be pre-
sented, in lower case, as follows: Smith (2001),
Smith (2001, 2002), (Smith 2001), (Smith 2001;
Cary 2002), (Smith & Cary 2003, 2005), Smith
(2001: 1), Smith (2001,%. 2);
— référencés to illustrations and tables should be
indicated as follows: (Fig. 1), (Fig. 2A, D), (Fig.
2A-C), (Figs 3, 6), (Figs 3-5), (Table 1);
— keep acknowledgements short and place them at
the end of che text before référencés; please do not
forget the revisers;
— give captions to illustrations on a separate sheet
and indicate their place in che margin.
Illustrations
The éditorial board will pay spécial attention to the
quality and relevance of illustration.
Line drawings musf be in Indlan ink or high quali¬
ty laser printouts; high contrast photographs, pla-
ced on white or black backgrounds, are required.
These can be grouped into figures and identified
by letters A, B, C ... Plates are not placed at the
end of the article: they will be considered as figures
and numbered as such. Arrange figures to fit onc or
mo columns (70 x 100 mm or 144 x 190 mm).
Associate interprétation of photograph with line
drawing. No diagram or table is to exceed one
page. Letters, numbers, etc., for each figure, are to
be indicated on an accompanying overlay, not on
the original figure (line eut or half-tone). A scale
bar is nceded for each figure (without magnifica-
tion factor).
Referetices
Denison R. H. 1978. — Placodermi, in Schultze
H. P. (ed.), Handbook of Paleoichthyologyy
Volume 2. Gustav Fischer, Stuttgart, 128 p.
Marshall C. R. 1987. — Lungfish: phylogeny and
parsimony, in Bemis W. E., Burggren W. W.
& Kemp N. E. (eds), The Biology and
Evolution of Lungfishes, Journal of Morphology
1: 151-162.
Schultze H. P. & Arsenault M. 1985- — The pan-
derichthyid fish Elpistostege: a close relative to
tetrapods? Paleontology 28: 293-309.
Schultze H. P. 1977a. — The origin of the tetra-
pod limb within che rhipidistian fishes:
541-544, /// Hecht M. K., Goody P. C. &
Hecht B. C. (eds). Major Patterns in Vertebrate
Evolution. Plénum Press, New York and London.
Proofs and reprints
Proofs will be sent to the First author for correction
and must be returned within eight days by express
mail. Authors will receive twenty-five offprints free
of charge; further offprints can be ordered on a
form supplied with the proofs.
GEODIVERSITAS • 1999 • 21 (3)
493
Mise en page
Noémie de la Selle
Packaging Éditorial
Achevé d’imprimer
sur les presses de l’Imprimerie F. Paillait
80100 Abbeville
Septembre 1999
N° d’impression : 10873
Printed on acid-free paper
Imprimé sur papier non acide
Date de distribution du fasicule 2, 1999 : 24 juin 1999
Couverture ; Alternances marnes-calcaires du Lias du Bassin Lombard (Alpes Méridionales)
Coupe des gorges de la Breggia (Suisse)
Photographie J. F. Deconinck (Université de Lille I)
geodiversitas
Peri-Tethys: stratigraphie corrélations 3
edited by Sylvie Crasquin-Soieau & Patrick De Wever
Crasquin-Soieau S. & De Wever P.
289 • Introduction
Gomankov A. V. & Burov B. V.
291 • Corrélations between Tatarian (Permian) type section (Russia) and the Sait Range (Pakistan)
palynology and palaeomagnetism
Kotiyar G. V., Baud A., Pronina G. P.^ Zakharov Y. D.,
Vuks V. Ja., Nestell M. K., Belyaeva G. V. & Marcoux J.
299 • Permian and Triassic exotic limestone blocks of the Crimea
Kukhtinov D. A. & Crasquin-Soieau S.
325 • Upper Permian and Triassic of the Precaspian Dépréssion: stratigraphy and palaeogeography
Vishnevskaya V. S., De Wever P., Baraboshkin E. Yu. et al. '
347 • New stratigraphie and palaeogeographic data on Upper jurassic to Cretaceous deposits from
the eastern periphery of the Russian Platform (Russia)
Guzhikov A. Yu. & Molostovsky E. A.
365 • Some features of the Early Cretaceous sédimentation in the Cis-Caucasia reflected in magnetic
properties of the sedimentary cover
Guzhikov A. Yu. & Eremin V. N.
387 • Régional magnetic zonality scheme for the Berriasian-lower Aptian from the North Caucasus
Kopaevich L. F., Alekseev A. S., Baraboshkin E. Yu. & Beniamovskii V. N.
407 • Cretaceous sedimentary units of Mangyshiak Peninsula (western Kazakhstan)
Radionova E. P., Khokhlova I. E. & Oreshkina T. V.
421 • Configuration of the Palaeogene deposits of Southern Russia
Khokhlova I. E. & Oreshkina T. V.
429 • Early Palaeogene siliceous microfossils of the Middie Volga Région: stratigraphy a
Khokhlova I. E., Radionova E. P., Beniamovskii V. N. & Sheherbinina E. K.
453 • Eocene stratigraphy of key sections of the Dnieper-Donets Dépréssion based on calcareous and
siliceous microplankton ^ ^
Molostovsky E. A. & Guzhikov A. Yu.
477 • Some peculiarities conceming the Pliocène évolution of the Black Sea and Caspian basins
Conception Graphique : Isabel Gautray
Publication trimestrielle, septembre 1999. ISSN : 1280-9659
Vente en France
Sales Office (France excluded)
Muséum national d'Histoire naturelle
Universal Book Services
Diffusion Delphine Henry
Dr. W. Backhuys
57, rue Cuvier, 75005 Paris,
PO. Box 321 2300 AH Leiden
France
The Netherlands
Tel. : 33 - 01 40 79 37 00
Tel. ; 31 71 - 517 02 08
Fax : 33 - 01 40 79 38 40
Fax : 31 71 -517 18 56
e-mail : dhenry@mnhn.fr
e-mail : backhuys@backhuys.com