Vol. 23 (1)
REVISTA DE LA
SOCIEDAD ESPAÑOLA
DE MALACOLOGÍA
Oviedo, junio 2005
Iberus |
Revista de la
SOCIEDAD ESPAÑOLA DE MALACOLOGÍA
Comité DE REDACCIÓN (BOARD OF EDITORS)
EDITOR DE PUBLICACIONES (EDITOR-IN-CHIEF)
Serge Gotas
Universidad de Málaga, España
DIRECTOR DE REDACCIÓN (EXECUTIVE EDITOR)
Gonzalo Rodríguez Casero
Apdo. 156, Mieres del Camino, Asturias, España
EDITORA EJECUTIVA (MANAGING EDITOR)
Eugenia M* Martínez Cueto-Felgueroso
Apdo. 156, Mieres del Camino, Asturias, España
EDITORES ÁDJUNTOS (ÁSSOCIATE EDITORS)
Francisco Javier Conde de Saro
Benjamín Gómez Moliner
Ángel Antonio Luque del Villar
Emilio Rolán Mosquera
José Templado González
Jesús S. Troncoso
Embajada de España, Japón
Universidad del País Vasco, Vitoria, España
Universidad Autónoma de Madrid, Madrid, España
Universidad de Vigo, Vigo, España
Museo Nacional de Ciencias Naturales, CSIC, Madrid, España
Universidad de Vigo, Vigo, España
ComiTÉ EDITORIAL (BOARD OF REVIEWERS)
Kepa Altonaga Sustacha
Eduardo Angulo Pinedo
Rafael Araujo Armero
Thierry Bockeljau
Ridiger Bieler
Sigurd v. Boletzky
Jose Castillejo Murillo
Karl Edlinger
Antonio M. de Frias Martins
José Carlos García Gómez
Gonzalo Giribet de Sebastián
Edmund Gittenberger
Angel Guerra Sierra
Gerhard Haszprunar
Yuri |. Kantor
María Yolanda Manga González
Jordi Martinell Callico
Ron K. 0'Dor
Tokashi Okutani
Marco Oliverio
Pablo E. Penchaszadeh
Winston F. Ponder
Carlos Enrique Prieto Sierra
M* de los Ángeles Ramos Sánchez
Francisco Javier Rocha Valdés
Paul 6. Rodhouse
Joandoménec Ros ¡ Aragones
María Carmen Salas Casanovas
Gerhard Steiner
Victoriano Urgorri Carrasco
Anders Warén
PORTADA DE /berus
Universidad del País Vosco, Bilbao, España
Universidad del País Vasco, Bilbao, España
Museo Nacional de Ciencias Naturales, Madrid, España
Institut Royal des Sciences Naturelles de Belgique, Bruselas, Bélgica
The Field Museum, Chicago, Estados Unidos
Laboratoire Arago, Banyuls-sur-Mer, Francia
Universidad de Santiago de Compostela, Santiago de Compostela, España
Noturhistorisches Museum Wien, Viena, Austria
Universidade dos Acores, Acores, Portugal
Universidad de Sevilla, Sevilla, España
Harvard University, EE.UU.
Notional Notuurhistorisch Museum, Leiden, Holanda
Instituto de Investigaciones Marinas, CSIC, Vigo, España
Zoologische Staatssammlung Múnchen, Miinchen, Alemania
AN. Severtzov Institute of Ecology and Evolution, Moscú, Rusia
Estación Agrícola Experimental, CSIC, León, España
Universidad de Barcelona, Barcelona, España
Dalhousie University, Halifax, Canada
Nihon University, Fujisawa City, Japón
Universitá di Roma “La Sapienza”, Roma, Italia
Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina
Australian Museum, Sydney, Australia
Universidad del País Vasco, Bilbao, España
Museo Nacional de Ciencias Naturales, CSIC, Madrid, España
Instituto de Investigaciones Marinas, CSIC, Vigo, España
British Antarctic Survey, Cambridge, Reino Unido
Universidad de Barcelona, Barcelona, España
Universidad de Málaga, Málaga, España
Institut fir Zoologie der Universitút Wien, Viena, Austria
Universidad de Santiago de Compostela, Santiago de Compostela, España
Swedish Museum of Natural History, Estocolmo, Suecia
Iberus gualterianus (Linnaeus, 1758), una especie emblemática de la península Ibérica, que da
nombre a la revista. Dibujo realizado por José Luis González Rebollar “Toza”.
¡4
Í 208
E A SÓN, WA
A 21308)
Ea BRAR
REVISTA DE LA
SOCIEDAD ESPAÑOLA
DE MALACOLOGÍA
Vol. 23 (1) Oviedo, junio 2005
Iberus
Revista de la
SOCIEDAD ESPAÑOLA DE MALACOLOGÍA
Iberus publica trabajos que traten sobre cualquier aspecto relacionado con la Malacología. Se
admiten también notas breves. /berus edita un volumen anual que se compone de dos o más números.
INSTRUCCIONES PARA LOS AUTORES
Los manuscritos deben remitirse a: Serge Gofas, Editor de Publicaciones, Departamento de Bio-
logía Animal, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, España.
Los trabajos se entregarán por triplicado (original y dos copias). Se recomienda a los autores leer
cuidadosamente las normas de publicación que se incluyen en cada número de la revista.
SUBCRIPCIONES
Iberus puede recibirse siendo socio de la Sociedad Española de Malacología, en cualquiera de sus
formas, o mediante intercambio. Aquellos socios que deseen adquirir números atrasados deberán diri-
girse al bibliotecario.
Los no socios deberán ponerse en contacto con BACKHUYS PUBLISHERS, P.O. Box 321,
2300 AH Leiden, The Netherlands. Tel.: +31-71-51 70 208, Fax: +31-71-51 71 856, Correo Elec-
trónico: backhuysCeuronet.nl
Los resumenes de los artículos editados en esta revista se publican en Aquatic Science
and Fisheries Abstracts (ASFA) y en el Zoological Records, BIOSIS.
Contents list published in Aquatic Science and Fisheries Abstracts and Zoological Records,
BIOSIS.
Dep. Leg. B-43072-81
ISSN 0212-3010
Diseño y maquetación: Gonzalo Rodríguez
Impresión: LOREDO, S. L. - Gijón
O Sociedad Española de Malacología —__——T— Iberus, 23 (1): 1-13, 2005
Toxic effects of taraxerol extracted from Codiaeum variega-
tum stem-bark on target vector snail Lymnaea acuminata
and non-target fish
Toxicidad del taraxerol extraído del tallo de Codiaeum variegatum
sobre el caracol Lymnaea acuminata y sobre peces
Ram P YADAV*, Sudhanshu TIWARÍ* and Ajay SINGH*!
Recibido el 26-V-2003. Aceptado el 7-IV-2004
ABSTRACT
The active compound taraxerol (triterpene) extracted from the stem-bark of Codiaeum var-
iegatum Blume (Euphorbiaceae) was administered for 24h or 96h to the freshwater snail
lymnaea (Radix) acuminata Lamarck in order to test its lethality. It was observed that the
molluscicidal activity of taraxerol was time as well as dose dependent for the snail at all
the exposure periods. There was a significant negative correlation between LC values of
taraxerol and exposure period, thus LCso values decrease from 1.69 mg/L (24h) to 0.74
mg/L (96h) against lymnaea (Radix) acuminata Lamarck. Toxicity experiments were also
carried out on non-target freshwater fish Channa punctatus (Bloch) (Channidae, Ophi-
cephalidae), which shares the habitat with snails, for environmental toxicity, if any.
Exposure of sub-lethal (40% and 80% of LC50)] doses of taraxerol over 24h caused signifi-
cant alterations in carbohydrates and nitrogenous metabolism in nervous, hepatopancreas
and ovotestis tissues of snail Lymnaea acuminata. Fish Channa punctatus also exposed to
sub-lethal doses of taraxerol (40% and 80% of LCso 24h of lymnaea acuminata) for 96h
periods in order to measure potential effects on non-target organisms , also show significant
alteration in carbohydrates and nitrogenous metabolism in muscle, liver and gonadal tis-
sues. This study also shows that there ¡is partial recovery in these parameters in both snail
and fish after the 7 day of withdrawal of the treatment, which supports the view that it is
safe to use plant products as molluscicides for controlling snails in aquatic bodies.
RESUMEN
Se administró el principio activo taraxerol (un triterpeno) obtenido de los tallos de Codiaeum
variegatum Blume (Euphorbiaceae) al caracol Lymnaea (Radix) acuminata Lamarck durante
24 0 96 horas, para probar su letalidad. La actividad molusquicida del compuesto depende
tanto del tiempo como de la dosis para ambos periodos de exposición. Hay una correlación
negativa significativa entre los valores LC del compuesto y el periodo de exposición, los val-
ores LCso descienden de 1,69 mg/L (24h) a 0,74 mg/L (96h) para los caracoles. También
se probó el compuesto en el pez Channa punctatus (Bloch) (Channidae, Ophicephalidae),
que comporte hábitat con el molusco, para determinar la posible toxicidad ambiental.
la exposición durante 24 horas a dosis subletales (40 y 80% de LC50) provocó
alteraciones en el metabolismo de carbohidratos y compuestos nitrogenados en tejidos
* Natural Product Laboratory, Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur- 273 009
(U.P.) India.
'Corresponding Author: Dr. Ajay Singh, E-mail: ajay_sCsancharnet.in
Iberus, 23 (1), 2005
nervioso, del hepatopáncreas y ovotestis del caracol. Exposiciones de 96 horas de los
peces a las mismas dosis mostraron los mismos efectos sobre los tejidos muscular, hep-
ático y gonadal. El estudio muestra que hay una recuperación parcial de los parámetros
en ambos organismos al septimo día tras abandonar el tratamiento, lo que apoya la idea
de que es seguro el uso de productos vegetales como molusquicidas en medios acuáticos.
KEY WORDS: Lymnaea acuminata, Channa punctatus, molluscicides, taraxerol, metabolism.
PALABRAS CLAVE: Lymnaea acuminata, Channa punctatus, molusquicida, taraxerol, metabolismo.
INTRODUCTION
Once a pesticide is released into the
environment, chemical, physical, biolog-
ical and other allied factors determine
its fate and distribution in the ecosys-
tem. Heavy use of pesticides to control
pests results in the pollution of the envi-
ronment affecting both target species
snails, slugs etc. and many non-target
species viz. Phytoplankton, Zooplank-
ton, fish etc in freshwater ecosystems
(GOPAL, KHANNA, ANAND AND GUPTA,
1981). Pesticides interfere with the phys-
iological and metabolic function in ani-
mals, which sometimes result in death
(ARASTA, BAIS AND THAKUR, 1996).
With growing awareness of environ-
mental pollution caused by synthetic
molluscicides (RITCHIE, 1973; SRIVAS-
TAVA AND SINGH, 2001), efforts are being
made to find molluscicides of plant
origin. Being the product of biosynthe-
sis, they are highly toxic and easily
biodegradable in nature (MARSTON AND
HOSTETTMAN 1987; SINGH, SINGH,
MISHRA AND AGARWAL, 1996). Two dis-
eases - schistosomiasis and fascioliasis -
carried by aquatic snails, cause immense
harm to man and his domestic animals
(BALI, SINGH AND SHARMA, 1986;
AGARWAL AND SINGH, 1988). Large pop-
ulations of aquatic snails inhabiting
freshwater bodies cause serious destruc-
tion of freshwater vegetation which ulti-
mately affect the growth of organisms
feeding on them (REINERT, 1972).
Fascioliasis caused by Fasciola hepat-
ica, the large liver-fluke, is common in
sheep, cattle, goats and other herbivo-
rous animals throughout the world. The
freshwater snail L. acuminata is the inter-
mediate host of Fasciola hepatica and Fas-
ciola gigantica (AGARWAL AND SINGH,
1988; SINGH AND AGARWAL 1992; YADAV
AND SINGH 2001, 2002), which cause
great harm to domestic animals. SINGH
AND AGARWAL (1981) reported that 94%
of buffaloes slaughtered in Gorakhpur
of Uttar Pradesh, India were infected by
liver fluke Fasciola gigantica.
The aim of the present study is to
report on the molluscicidal activity of
taraxerol extracted from stem-bark of C.
variegatum , against the harmful snail L.
acuminata. lts effects on biochemical
parameters of target snail L. acuminata
and non-target fish Channa punctatus
were also studied. Freshwater fish
Channa punctatus is a common fish in
India and shares the habitat with the
snails.
MATERIALS AND METHODS
The stem-bark of C. variegatum was
collected locally from the Botanical
garden of D.D.U Gorakhpur University
Gorakhpur, where a voucher specimen
is deposited and identified by Prof. S.K.
Singh (taxonomist), Department of
Botany, D.D.U, Gorakhpur University,
Gorakhpur (U.P) India.
Extraction of active compounds from
stem-bark: Pure taraxerol was isolated
from the stem-bark of C. variegatum by
the method of CHATTERJEE AND BANER-
JEE (1977). The stem-bark of C. variega-
tum was dried in an incubator at 37"C
and dried stem-bark was powdered
with the help of a mechanical device.
The dried powdered stem-bark (2 kg) of
C. variegatum was extracted in Soxhlet
YADAV ET AL.: Toxicity of taraxerol from Codiaeum variegatum on Lymnaea acuminata
apparatus with petrol, for about 70
hours and a little amount of concen-
trated solution was obtained. After
evaporation of the solvent by vacuum
pump, the isolated compound in dried
form was obtained. The organic con-
stituents present in stem-bark ¡.e. taraxe-
rone-2, taraxerol, taraxeryl acetate-4 and
sitosterol were extracted with petrol.
Taraxerol is soluble in organic solvents
such as CHCl3 and CHCl-MeOH. Iden-
tification of the isolated compound was
further confirmed with an authentic
sample of taraxerol (C32H4809), supplied
by Sigma chemical Co. U.S.A. |
The extracted compound was stored
in an airtight desicator and used for tox-
icity experiments. Toxicity experiments
were performed by the method of SINGH
AND AGARWAL (1988). The freshwater
snail L. acuminata were exposed to four
different concentrations of taraxerol, 0.7
mg/L, 1.0 mg/L, 1.4 mg/L and 1.7
mg/L respectively for 24h, 48h, 72h and
96h exposure period. Mortality was
recorded every 24h up to 96h. Ten
snails were kept in 3L de-chlorinated
tap water. Control animals were kept in
similar conditions without any treat-
ment. Each set of experiments was repli-
cated six times. Effective doses (LC
values), upper and lower confidence
limits, slope value, t'ratio, “g' factor and
heterogeneity were calculated by Probit
log analysis method using POLO com-
puter programme of RUSSELL, ROBERT-
SON AND SEVIN (1977).
For environmental toxicity, if any,
the toxic effect of taraxerol was also
studied in mixed populations of target
organism snails and non-target organ-
ism fish. In this experiment, groups of
10 snail L. acuminata and 10 fish C. punc-
tatus were put together in 6L de-chlori-
nated tap water, which were exposed to
2.92 mg/L (LCo 24h of L. acuminata) of
taraxerol for 24h.
Treatment protocol for Dose-Response
relationship: L. acuminata was kept in
glass aquaria containing 6L de-chlori-
nated tap water. Each aquarium con-
tains 30 experimental animals. Snails
and fish were exposed for 24h in the
case Of L. acuminata and 96h for fish C.
punctatus to sub lethal doses 0.76 mg/L
and 1.35 mg/L (40% and 80% of LCso
24h of L. acuminata) of taraxerol. Control
animals were held in similar conditions
without any treatment. After completion
of treatment the test animals were re-
moved from aquaria, and washed with
freshwater. The nervous, hepatopan-
creas and ovotestis tissue of L. acuminata
and muscle, liver and gonadal tissue of
freshwater fish C. punctatus were
quickly dissected out in an ice tray and
used for biochemical analysis.
In order to see the effect oí with-
drawal from treatment, both the experi-
mental animals were exposed for 24h in
the case of L. acuminata and 96h for fish
C. punctatus to sub-lethal doses 1.35
mg/L (80% of 24h LCso of L. acuminata)
of taraxerol, following which the test
animals were transferred to freshwater.
This water was changed every 24h for
the next seven days. After this the test
animals were removed from aquaria,
washed with freshwater and nervous,
hepatopancreas and ovotestis tissue of
L. acuminata and muscle, liver and
gonadal tissues of freshwater fish C.
punctatus were quickly dissected out in
an ice tray and all the above mentioned
biochemical parameters were estimated.
Each experiment was replicated at
least six times and the values have been
expressed as mean +SE of six replicates.
Student's “t' test and analysis of vari-
ance were applied to locate significant
changes (SOKAL AND ROHLF 1973).
BIOCHEMICAL ESTIMATIONS
Protein: Protein levels were esti-
mated according to the method of
LOwRkrY, ROSENBROUGH, FARR, RANNDALL
(1951) using bovine serum albumin as
standard. Homogenates (5 mg/mL,
w/v) were prepared in 10% TCA.
Total free amino acids: Estimation of
total free amino acid was made accord-
ing to the method of SPICES (1957). Ho-
mogenates (10 mg/mL, w/v) were pre-
pared in 95% ethanol, centrifuged at
6000 xg and used for amino acid estima-
tion.
Iberus, 23 (1), 2005
Nucleic acids: Estimation of nucleic
acids (DNA and RNA) was performed,
by methods of SCHNEIDER (1957) using
diphenylamine and orcinol reagents,
respectively. Homogenates (Img/mL,
w/v) were prepared in 5% TCA at 900C,
centrifuged at 5000 xg for 20 min and
supernatant was prepared and used for
estimation. Both DNA and RNA have
been expressed as 1g/mg tissue.
Glycogen: Glycogen was estimated
by the Anthrone method of VAN DER
VIES (1954) as modified by MAHENDRU
AND AGARWAL (1982) for snail L. acumi-
nata. In the present experiment 50 mg of
tissue were homogenised with 5 mL of
cold 5%TCA. The homogenate was fil-
tered and 1.0 mL of filtrate was used for
assay.
Pyruvate: Pyruvate level was measured
according to FRIEDEMANN AND HAUGEN
(1943). Homogenate (50 mg/mL, w/v)
was prepared in 10% TCA. Sodium pyru-
vate was taken as standard.
Lactate: Lactate was estimated
according to BARKER AND SUMMERSON
(1941), modified by HUCKABEE (1961).
Homogenate (50 mg/mL, w/v) was
prepared in 10% cold TCA. Sodium
lactate was taken as standard.
Protease: Protease activity was esti-
mated by the method of MOORE AND
STEIN (1954). Homogenate (50 mg/mL,
w/v) was prepared in cold distilled
water. Optical density was measured at
570 nm. The enzyme activity was
expressed in qmol of tyrosine equiva-
lent/mg protein/h.
Acid and alkaline phosphatase: Activi-
ties of acid and alkaline phosphatase
were measured by the method of
BERGMEYER (1967) and modified by
SINGH AND AGARWAL (1983). Tissue
homogenate (2% w/v) was prepared in
ice cold 0.9% saline and centrifuged at
5000 xg at 0 *C for 15 min. Optical
density was measured at 420 nm against
a blank, prepared simultaneously. The
enzyme activity has been expressed as
amount of p-nitrophenol formed /30
min /mg protein in supernatant.
Lactic dehydrogenase: Lactic dehydro-
genase activity was measured according
to the method of ANONYMOUS (1984).
Homogenates (50 mg/mL, w/v) were
prepared in 1 mL of 0.1 M phosphate
buffer, pH 7.5 for 5 min in an ice bath.
Enzyme activity has been expressed as
nanomol of pyruvate reduced /min/mg
protein.
Succinic dehydrogenase: Succinic
dehydrogenase activity was measured
by the method of ARRIGONI AND SINGER
(1962). Homogenate (50 mg/mL, w/v)
was prepared in 1 mL of 0.5 M potas-
sium phosphate buffer, pH 7.6 for 5 min
in an ice bath. Optical density was mea-
sured at 600 nm. Enzyme activity has
been expressed as pumol dye
reduced /min/mg protein.
Cytochrome oxidase: Cytochrome
oxidase activity was measured accord-
ing to the method of COOPERSTEIN AND
LAZAROW (1951). Homogenates (50
mg/mL, w/v) were prepared in 1 mL of
0.33 M phosphate buffer (pH 7.4) for 5
min in ice bath. Enzyme activity has
been expressed in arbitrary
units /min/mg of proteins.
Acetylcholinesterase: Acetylcholin-
esterase was estimated by the method of
ELLMAN, (COURTNEY, ANDRES AND
FEATHERSTONE (1961) as in 0.1 M phos-
phate buffer in ice bath. Optical density
was measured at 412 nm at 25 *C.
Enzyme activity expressed in mol “SH”
hydrolysed /min/mg protein.
RESULTS
Molluscicidal activity: The toxicity of
taraxerol was also time and dose-depen-
dent for the freshwater snail L. acumi-
nata. There was a significant negative
correlation between LC5o values and all
the exposure periods for 24h or 96h
(Table ID). Thus with an increase in expo-
sure periods of taraxerol the LC50 values
show a significant decrease from 1.69
mg/L (24h);> 1.30 mg/L (48h);> 0.86
mg/L (72h);> to 0.74 mg/L (96h)
respectively, in case of freshwater snail
L. acuminata. (Table ID).
The active (moiety), of taraxerol
which were effective against freshwater
snail L. acuminata, would also cause
death amongst the fish. Consequently,
YADAV ET AL.: Toxicity of taraxerol from Codiaeum variegatum on Lymnaea acuminata
Table 1. Toxicity (LC1o, LCso and LCo0) of taraxerol against freshwater snail Lymnaea acuminata at
different time intervals.
Tabla I. Toxicidad (LCi0 , LCso y LC90) del taraxerol sobre el caracol Lymnaea acuminata a diferentes
intervalos de tiempo.
Exposure Effective dose Limits (mg/L) Slope value y factor “Prato Hetero-geneity
periods LCL UCL
24h 1C10=0.98 0.829 1.089
LC50=1.69 LSD NO 5.397+0.853 0.10 6.33 0.70
1C90=2.92 DIAS,
48h 1C10=0.68 0.494 0.818
1C50=1.30 lo O 4.629+0.649 0.13 7.14 0.50
[C90=2.46 SETS
72h [C10=0.49 0.381 0.586
1C50=0.86 AS US 5.347+0.693 0.07 1.66 0.34
1C90=1.49 1.348 1.759
96h LC10=0.41 0.294 0.514
1C50=0.74 0.640 0.822 5.15240.750 0.08 6.87 0.53
1C90=1.31 1.187 1.542
Botches of ten snails were exposed to four different concentrations of taraxerol.
Concentrations given are the final concentrations (w/v) in aquarium water.
Regression coefficient showed that there was significant (P<0.05) negative correlation between exposure time and different LC values.
LCL = Lower confidence limit; UCL = Upper confidence limit
mixed populations of 10 snails (L. acumi-
nata) and 10 fishes (C. punctatus) were
treated for 24h of the LCoo of taraxerol.
Up to the LCoo0 doses for snail L. acumi-
nata there was no mortality amongst the
freshwater fish C. punctatus. The doses,
which can be used for killing the snails,
are safe for fish. This is supported by
our observations in a mixed population.
Effect on freshwater target snail: Data
of sub-lethal doses of 40% and 80% of
LC5o (0.76 mg/L € 1.35 mg/L) taraxerol
exposure to freshwater snail L. acumi-
nata are given in Tables II and III. Expo-
sure of snails to sub-lethal doses of
taraxerol for 24h caused significant
alterations in nitrogenous and carbohy-
drate metabolism in different body
tissues of the freshwater snail L. acumi-
nata. Total protein and nucleic acids
(DNA and RNA) levels were signifi-
cantly reduced, while free amino acid
level was significantly enhanced after
the exposure to sub-lethal doses in all
the body tissues. Acid and alkaline
phosphatase activities were significantly
reduced, while protease activity was
increased after the exposure.
Total protein levels were reduced to
31%, 37% and 28% of controls after
exposure to sub-lethal doses of 1.35
mg/L of taraxerol respectively in the
nervous, hepatopancreas and ovotestis
tissue of L. acuminata, respectively. The
DNA level was reduced to 41%, 32%
and 28% of controls after treatment with
1.35 mg/L of taraxerol in nervous,
hepatopancreas and ovotestis tissue Of
L. acuminata, respectively. The RNA
level was reduced to 36%, 39% and 28%
of controls after treatment with sub-
lethal doses of 1.35 mg/L of taraxerol
respectively in nervous, hepatopancreas
and ovotestis of L. acuminata. Total free
amino acid levels were induced to 171%,
151% and 174% of controls after treat-
ment with sub-lethal doses of 1.35 mg
/L of taraxerol respectively in nervous,
hepatopancreas and ovotestis of L.
acuminata (Table II).
Activity of acid phosphatase was
inhibited to 75%, 82% and 77% of con-
Iberus, 23 (1), 2005
Table IL. Changes in total protein, total free amino acids, nucleic acid (DNA and RNA) (1g/mg)
level and activity of protease (umol of tyrosine equivalents/mg protein/h) and acid and alkaline
phosphatase (mol substrate hydrolysed/30 min/mg protein) in nervous (NT), hepatopancreas
(HP) and ovotestis (OT) tissues of Lymnaea acuminata after exposure to sub-lethal doses of 40%
and 80% (0.76 mg/L and 1.35 mg/L) of taraxerol after 24h.
Tabla II. Cambios en los niveles de proteínas, aminoácidos libres y ácidos nucléicos (ADN y ARN)
(uglmg), actividad de proteasa (umol de equivalentes de tirosinalmg proteínalh) y de fosfatasas ácida y
alcalina (umol de sustrato hidrolizado/30 min/mg proteína) en tejido nervioso (NT), hepatopáncreas
(AP) y ovotestis (OT) de Lymnaea acuminata tras exposición a dosis subletales de 40% y 80% (0,76
mg/L y 1,35 mg/L) de taraxerol tras 24h.
Pe 5 Conta 40% of LC5o (24h) 80% of LC5o (24H) 7 days of the
od ll (0.76 mg/L) (1.35 mg/L) withdrawal
Protein NT 64.0%0.18(100) 37.1240.24(58) 15.48+0.01(31) 156.80.71* (98)
HP. 66.0+2.61(100) 37.6240.91(57) 24.42+0.81 (37) 136.7+1.00* (97)
01 71.0x0.53(100) 38.34+0.87(54) 19.880.84(28) 131.140.45* (96)
Amino acid NT. 31.3+1.14(100) 51.64+1.15(165) — 53.52+0.28(171) 29.3+0.23* (103)
HP. 26.8+1.51(100) 38.86+0.38(145) 40.40+1.07(151) 23.7+0.38* (105)
0T 34.3+0.68(100) 57.62+0.15(168) 59.68+0.14(174) 21.4+0.10* (104)
DNA NT 76.6%0.29(100) 46.72+0.31(61) 31.40+0.21(41) 136.7+0.69* (96)
HP. 73.8+0.21(100) 49.44+0.33(67) 23.61+0.29(32) 134.4+0.51* (96)
01 81.5+0.89(100) 44.01+0.21(54) 22.82+0.51(28) 137.740.34* (95)
RNA NT 52.31+0.38(100) 26.67+0.27(51) 18.83+0.31(36) 99.9:0.28* (97)
HP. 50.21+0.81(100) 30.12+0.77(60) 19.58+0.22(39) 100.0+0.21* (96)
OT 55.33+0.41(100) 23.79+2.87(43) 15.49+0.58(28) 98.5+0.17* (93)
Protease NT 0.471%0.051(100) 0.664+0.050(141) 0.706*0.051(150) 0.639+0.061* (108)
HP 0.492+0.001(100) 0.6834+0.002(139) 0.713+0.001(145) 0.571+0.012* (94)
OT 0.474+0.007(100) 0.673+0.003(142) 0.725*0.004(153) 0.739%0.154* (106)
Acid phosphatase NT 0.281+0.008(100) 0.258+0.006(92) 0.210+0.004(75) 0.260+0.0123* (92)
HP. 0.275+0.007(100) 0.264+0.008(96) 0.225+0.009(82) 0.276+0.013* (93)
0T 0.280+0.008(100) 0.263+0.003(94) 0.215+0.005(77) 0.267+0.012* (93)
Alkaline phosphatase NT 0.481+0.021(100) 0.384+0.001(80) 0.307+0.003(64) 0.394+0.002* (91)
HP. 0.482+0.004(100) 0.404+0.002(80) 0.307+0.001(68) 0.426+0.003* (92)
OT 0.475+0.008(100) 0.384+0.001(81) 0.308%0.002(65) 0.403+0.004* (92)
* Significant (P<0.05). Student's *F' test was applied between 80% of LCso (24h) and withdrawal groups. Values are mean +SE of six replicates.
Values in parenthesis are percentage changes with control taken as 100%
trols after treatment with sub-lethal doses
of 1.35 mg/L of taraxerol respectively in
nervous, hepatopancreas and ovotestis.
The activity of alkaline phosphatase was
reduced to 64%, 68% and 65% of controls
after treatment with sub-lethal doses of
1.35 mg/L of taraxerol respectively in
nervous, hepatopancreas and ovotestis.
The protease activity was increased to
150%, 145% and 153% of controls after
treatment with sub-lethal doses of 1.35
mg/L of taraxerol respectively in the
nervous, hepatopancreas and ovotestis of
snail L. acuminata (Table ID.
Glycogen and pyruvate levels were
significantly reduced, while lactate level
was significantly enhanced after the
exposure to sub-lethal doses in all the
body tissues. Lactic dehydrogenase
(LDH), cytochrome oxidase and acetyl-
cholinesterase (ACHhE) activities were
significantly reduced, while succinic
dehydrogenase (SDH) activity was
increased after the exposure.
YADAV ET AL.: Toxicity of taraxerol from Codiaeum variegatum on Lymnaea acuminata
Table III. Changes in glycogen (mg/g), pyruvate (umol/g), lactate (mg/g) level and activity of
LDH (umol/mg protein/h), SDH (umol of dye reduced/min/mg protein), cytochrome oxidase
(arbitrary unit/min/mg protein) and ACE (pmol “SH” hydrolysed/min/mg protein) after 24h
exposure to sub-lethal doses of 40% and 80% (0.76 mg/L and 1.35 mg/L) of taraxerol in nervous
(NT), hepatopancreas (HP) and ovotestis (OT) tissues of snail Lymnaea acuminata after 24h.
Tabla II. Cambios en los niveles de glucógeno (mglg), piruvato (ymollg), lactato (mg/g) y actividad de
LDH (umol/mg proteína/h), SDH (pmol de tinción reducidalmin/mg proteína), citocromo oxidasa
(unidad arbitrarialmin/img proteína) y ACHE (umol “SH” hidrolizado/min/mg proteína) tras 24h de
exposición a dosis subletales al 40% y 80% (0,76 mg/L y 1,35 mg/L) de taraxerol en los tejidos nervioso
(NT), hepatopáncreas (HP) y ovotestis (OT) del caracol Lymnaea acuminata tras 24».
a E lissuES Cda 40% of LC5o (24h) 80% of LC5o (24H) 7 doys of the
(0.76 mg/L) (1.35 mg/L) withdrawal
Glycogen NT 6.8%0.02 (100) 3.12+0.03 (46) 2.31+0.01 (34) 7.340.03* (93)
HP. 7.2%0.10 (100) 3.67+0.01 (51) 2.80+0.03 (39) 6.8+0.02* (94)
01 9.1:0.08 (100) 4.09+0.03 (45) 3.00+0.01 (33) 7.3+0.04* (93)
Pyruvate NT 0.578%0.03 (100) 0.196+0.04 (34) 0.167+0.23 (29) 0.635+0.27* (91)
HP. 0.609+0.03 (100) 0.255*0.27 (42) 0.237+0.11 (39) 0.592+0.08* (90)
0T 0.581+0.04 (100) 0.180+0.18(31) 0.156+0.27 (27) 0.628+0.03* (92)
Lactate NT 3.11%0.07 (100) — 5.06+0.15(163) 5.56+0.19 (179) 2.4640.04* (113)
HP. 3.79+0.05 (100) 6.59+0.06 (174) 7.20+0.02 (190) 2.83+0.05* (118)
OT 3.95+0.07 (100) 6.47+0.08 (164) 7.11%-0.06 (180) 2.4640.03* (113)
LDH NT 0.084+0.004 (100) 0.068+0.001 (81) 0.043+0.002 (52 0.065+0.003* (90)
HP. 0.096%0.003 (100) 0.081%0.002 (85) 0.056+0.001 (59 0.068+0.004 ( (91)
OT 0.087%0.004 (100) 0.072+0.001 (83) 0.043%0.004 (5 0.070+0.003* (90)
SDH NT 31.01%0.11 (100) 39.69+0.25 (128) 51.16+0.31* (165) 18.38+0.84* (112)
HP. 43.21+0.13 (100) 53.58+0.29* (124) 65.24*0.27* (151) 15.63*0.18* (108)
) 34,42+0.30* (126) 162) — 20.43+0.20* (111)
5
6
(
(
01 27.32:0.10 (100
(16
(15
44.25+0.34* (16
(55
(02
)
)
0)
)
l
2
) 16.68+0.04*
)
0)
2
l
3
Cytochrome oxidase NT 18.23+0.12 (100) 11.84+0.16 (65) 10.02+0.18 (92)
HP. 716.21+0.14 (100) — 11.34+0.21 (70) 10.05+0.31 13.05+0.12* (90)
01 17.32+0.16 (100) — 11.77%0.15 (68) 10.04+ 0.27 (5 16.18+0.02* (94)
ACHE NT 0.068+0.0008 (100) 0.044+0.0003 (65) 0.028+0.0003 (92) 0.064+0.007* (90)
HP. 0.088%0.0002 (100) 0.060%0.0007 (69) 0.036%0.0002 (41) 0.085+0.002* (93)
OT 0.071:0.0002 (100) 0.046+0.0003 (66) 0.030%0.0004 (43) 0.063*0.007* (90)
Details are as given in Table ll
Glycogen level was reduced to 34%,
39% and 33% of controls after treatment
with sub-lethal doses of 1.35 mg/L
taraxerol respectively in nervous,
hepatopancreas and ovotestis tissues of
L. acuminata. Pyruvate level was
reduced to 29%, 39% and 27% of con-
trols after treatment with sub-lethal
doses of 1.35 mg/L taraxerol respec-
tively in nervous, hepatopancreas and
ovotestis tissues of L. acuminata. Lactate
level was increased to 179%, 190% and
180% of controls after treatment with
sub-lethal doses of 1.35 mg/L of taraxe-
rol respectively in nervous, hepatopan-
creas and ovotestis tissues of snail L.
acuminata (Table II.
Lactic dehydrogenase activity was
reduced up to 52%, 59% and 50% of con-
trols after treatment with sub-lethal
doses of 1.35 mg/L of taraxerol respec-
tively in nervous, hepatopancreas and
ovotestis tissue of snail L. acuminata.
Activity of cytochrome oxidase was
reduced to 55%, 62% and 58% of controls
after treatment with sub-lethal doses of
Iberus, 23 (1), 2005
Table IV. Changes in total protein, total free amino acids, nucleic acid (DNA 8 RNA) (1g/mg)
level and activity of protease (umol of tyrosine equivalents/mg protein/h) and acid and alkaline
phosphatase (umol substrate hydrolysed/30 min/mg protein) in muscle, liver and gonadal tissues
of freshwater fish Channa punctatus after 96h exposure to sub-lethal doses of 40% and 80% (0.76
mg/L and 1.35 mg/L) of taraxerol and 7 days after withdrawal.
Tabla IV. Cambios en los niveles de proteínas, aminoácidos libres, ácidos nucléicos (ADN y ARN)
(ug/mg), actividad de la proteasa (umol of equivalentes de tirosinalmg proteínalh) y fosfatasas ácida y
alcalina (umol sustrato hidrolizado/30 min/mg proteína) en los tejidos muscular, hepático y gonadal del
pez Channa punctatus tras 96h de exposición a dosis subletales al 40% y 80% (0,76 mg/L and 1,35
mg/L) de taraxerol y a los 7 días de retirar el tratamiento.
a his a 40% of LC5o (24h) 80% of LCso (24H) 7 days of the
Ab (0.76 mg/L) (1.35 mg/L) withdrawal
Protein Muscle 171.2+0.75(100) 104.3+0.22(61) 70.1+0.24(41) 162.6+0.68* (95)
Liver 151.0+0.65(100) 128.3+0.21(85) 119.2+0.20(79) 146.4+1.00* (97)
Gonadal 144.6+1.00(100) 112.7+0.12 (78) 76.4+0.07(53) 134.4+0.43* (93)
Amino acid Muscle 38.20+0.23(100) 42.7%0.26(112) 48.5+0.38(127) 42.2+0.20* (110)
Liver 22.6+0.40(100) 26.840.44(119) 31.840.40(141) 24.4+0.30* (108)
Gonadal 31.0+0.70(100) 42.4+0.02(137) 46.1+0.03(149) 35.6+0.08* (115)
DNA Muscle 152.44+0.73(100) 124.8+0.14(82) 94.4+0.14(62) 144.7+0.60* (96)
Liver 149.02*0.70(100) 129.8%0.07(87) 105.9+0.13(71) — 137.440.50* (92)
Gonadal — 143.00%0.73(100) 111.05+0.44(78) 82.94+0.23(58) 128.7+0.30* (90)
RNA Muscle 103.00+0.28(100) 84.41+0.03(82) 69.01%0.04(67) 99.90x0.28* (97)
Liver 100.0+0.29(100) 92.00%0.18(92) 72.00+0.18(72) 95.00%0.21* (95)
Gonadal 106.60+0.61(100) 83.21+0.40(78) 65.02+0.28(61) 98.07+0.16* (92)
Protease Muscle 0.598+0.011(100) 0.825+0.047(138) 0.926+0.015(155) 0.568+0.060* (92)
Liver 0.652+0.016(100) 0.796+0.017(122) 0.920%0.014(141) 0.046+0.010* (99)
Gonadal 0.601+0.016(100) 0.775+0.013(129) 0.949+0.014(158) 0.552+0.154* (92)
Acid phosphatose Muscle 0.302+0.012(100) 0.138+0.010(30) 0.090+0.013(30) 0.277+0.0122*(92)
Liver 0.292+0.014(100) 0.110*0.010(38) 0.078+0.009(27) 0.277+0.009* (95)
Gonadal 0.281+0.015(100) 0.092+0.007(33) 0.061+0.017(22) 0.275*0.010* (98)
Alkaline phosphatase Muscle 0.451%0.010(100) 0.193:<0.006(43) 0.121:0.03(27) 0.410:0.002* (91)
Liver 0.400%0.030(100) 0.148+0.006(37) 0.096+0.006(24) 0.368+0.002* (92)
Gonadal 0.438+0.012(100) 0.210+0.005 (48) 0.135+0.003(31) 0.420+0.003* (96)
*, Significant (P<0.05) when Student's *' test was applied between 80% of LC50 (24h) and withdrawal groups
Details are as given in Table ||
1.35 mg/L of taraxerol respectively in
nervous, hepatopancreas and ovotestis
of L. acuminata. Acetylcholinesterase
activity was reduced to 92%, 41% and
43% of controls after treatment with sub-
lethal doses of 1.35 mg/L of taraxerol
respectively in nervous, hepatopancreas
and ovotestis of snail L. acuminata. The
succinic dehydrogenase (SDH) activity
was increased to 165%, 151% and 162%
of controls after treatment with sub-
lethal doses of 1.35 mg/L of taraxerol
respectively in nervous, hepatopancreas
and ovotestis tissues of freshwater snail
L. acuminata (Table IID.
Effect on freshwater non-target fish:
Higher doses (LCso of snails) have no
apparent toxic effect on non-target fresh-
water fish C. punctatus after 24h exposure.
But exposure of fish to sub-lethal doses
(1.e. 40% and 80% of 24h LCso of snail) 0.76
mg/Land 1.35 mg/L of taraxerol for 96h
caused a significant alteration in nitroge-
nous and carbohydrates metabolism in
YADAV ET AL.: Toxicity of taraxerol from Codiaeum variegatum on Lymnaea acuminata
Table V. Changes in glycogen (mg/g), pyruvate (umol/g), lactate (mg/g) level and activity of LDH
(umol/mg protein/h), SDH (umol of dye reduced/min/mg protein), cytochrome oxidase (arbitrary
unit/min/mg protein) and ACHE (umol “SH” hydrolysed/min/mg protein) in muscle, liver and
gonadal tissues of Channa punctatus after 96h exposure to sub-lethal doses of 40% and 80% (0.76
mg/L and 1.35 mg/L) of taraxerol and 7 days after withdrawal.
Tabla V. Cambios en los niveles de glucógeno (mgle), piruvato (uymolle), lactato (mg/g) y actividad de
LDH (umol/mg proteínalh), SDH (umol de tinción reducidalminímg proteína), citocromo oxidasa
(unidad arbitrarialminimg proteína) y ACHE (pmol “SH? hidrolizado/min/mg proteína) en los tejidos
muscular, hepático y gonadal del pez Channa punctatus tras 96h de exposición a dosis subletales al
40% y 80% (0,76 mg/L and 1,35 mg/L) de taraxerol y a los 7 días de retirar el tratamiento.
E Tissue na 40% of LC5o (24h) 80% of LCso (24H) 7 days of the
(0.76 mg/L) (1.35 mg/l) withdrawal
Glycogen Muscle 2.20+0.001(100) 1.89+0.004(86) 1.380.04(63) 1.9140.02* (87)
Liver 2.980.002(100) 2.17%0.001(73) 2.62+0.03(68) 2.47+0.04* (83)
Gonadal 3.00+0.01(100) 2.61+0.02(87) 2.13+0.04(71) 2.73+0.04* (91)
Pyruvate Muscle 3.416%0.018(100) 1.702*0.013(50) 1.097%0.024(32) 3.050+0.014* (90)
Liver 4.076+0.018(100) 2.446+0.035(60) 1.548+0.007(38) 3.788+0.031* (93)
Gonadal 2.993+0.036(100) 1.705+0.014(57) 0.921*0.020(31) 2.721:+0.016* (91)
Lactate Muscle 3.816+0.018(100) 4.649+0.090(122) 6.846+0.060(179) 4.221%0.080* (111)
Liver 2.323+0.020(100) 3.205+0.020(138) 3.750%0.074 (172) 2.500%0.069* (112)
Gonadal 3.816+0.083(100) 4.502+0.088(118) 6.181+0.092(162) 4.159+0.043* (109)
LDH Muscle 425.3:0.88(100) 374.2:0.81(88) 259.4:0.83(61) 382.5+0.81* (90)
Liver 555.0+1.0(100) 521.7+0.80(94) 394.0+0.81(71) 516.1%0.76* (93)
Gonadal 467.1+0.84(100) 420.3*+0.70(90) 350.3+0.81(75) 448.4+0.78* (93)
SDH Muscle 59.4+0.21(100) 72.4:0.20(122) 81.3:0.27(137) 64.7+0.20* (109)
Liver 62.2+0.20(100) 712.240.20(116) 85.9+0.19(138) 69.30.20* (111)
Gonadal 64.4+0.26(100) 85.8+0.16(110) 95.9+0.10(149) 68.2+0.23* (106)
Cytochrome oxidase Muscle 28.9140.21(100) 24.86%0.20(86) 17.92*0.24(62) 27.17+0.30* (94)
Liver 23.1240.05(100) — 17.10%0.20(74) 15.95:0.24(69) 21.03+0.022* (91)
Gonadal 33.20+0.05(100) 32.20+0.10(87) 24.28:+0.13(73) 30.54+0.17* (92)
ACHE Muscle 0.091<0.0010(100) 0.045+0.0004(50) 0.034+0.0006 (38) 0.085+0.0002* (94)
liver 0.097+0.0009(100) 0.053+0.0004(55) 0.034+0.0003(36) 0.082+0.0001* (92)
Gonadal 0.088+0.0020(100) 0.043<0.0006(49) 0.024+0.0005(27) 0.079+0.0004* (90)
+, Significant (P<0.05) when Student's “Y test was applied between 80% of LC50 (24h) and withdrawal groups
Details are as given in Table ||
different body tissues of fish C. punctatus
(Tables IV and V).
Total protein and nucleic acids
(DNA and RNA) levels were signifi-
cantly reduced, while free amino acid
level was significantly enhanced after
the exposure to sub-lethal doses in all
the studied body tissues. Acid and alka-
line phosphatase activities were signifi-
cantly reduced, while protease activity
was increased after the exposure. Total
protein levels were reduced to 41%, 79%
and 53%; DNA level was reduced to
62%, 71% and 58% and RNA level was
reduced to 67%, 72% and 61% in muscle,
liver and gonadal tissue of freshwater
fish C. punctatus. Total free amino acid
levels were induced to 127%, 141% and
149% of controls after 96h treatment
with 1.35 mg/L of LCso of taraxerol in
muscle, liver and gonadal tissues,
respectively (Table IV).
Activity of acid phosphatase was
inhibited to 30%, 27% and 22% and
Iberus, 23 (1), 2005
activity of alkaline phosphatase was
reduced to 27%, 24% and 31% but Pro-
tease activity was increased to 155%,
141% and 158% of controls after 96h
treatment with 1.35 mg/L of taraxerol in
muscle, liver and gonadal tissues of
freshwater non-target fish C. punctatus,
respectively (Table IV).
Glycogen and pyruvate levels were
significantly reduced, while lactate level
was significantly enhanced after the
exposure to sub-lethal doses in the
studied body tissues. Lactic dehydroge-
nase (LDH), cytochrome oxidase and
acetylcholinesterase (ACHE) activities
were significantly reduced, while suc-
cinic dehydrogenase (SDH) activity was
increased after the exposure. Glycogen
level was reduced to 63%, 68% and 71%
and pyruvate level was reduced to 32%,
38% and 31% in muscle, liver and
gonadal tissue of fish. Lactate level was
increased to 179%, 172% and 162% of
controls after 96h treatment with 1.35
mg/L taraxerol in muscle, liver and
gonadal tissues of fish c. punctatus,
respectively (Table V).
Lactic dehydrogenase (LDH) activity
was reduced to 61%, 71% and 75% and
activity of cytochrome oxidase was
reduced to 62%, 69% and 73% and
acetylcholinesterase (ACHE) activity was
reduced to 38%, 36% and 27% in muscle,
liver and gonadal tissue of fish C. puncta-
tus, respectively. Succinic dehydrogenase
(SDH) activity was increased to 137%,
138% and 149% of controls after 96h
treatment with 1.35 mg/L LC5o taraxerol
in muscle, liver and gonadal tissues of
fish C. punctatus, respectively (Table V).
DISCUSSION
Itis clear from the results section that
the extracted compound taraxerol from
the stem-bark of Codiaeum variegatum has
potent molluscicidal activity against the
freshwater target snail L. acuminata.
More important is the fact that the
extracted compound is much more toxic
than synthetic pesticides. The present
study demonstrated that taraxerol has
higher molluscicidal activity than any of
10
the prevalent synthetic molluscicides
like carbamate, organophosphate and
synthetic pyrethroids. Thus, the 24h
LC5so of mexacarbamate (3.5 ppm),
aldicarb (30.00 ppm), farmothion (27.00
ppm), cypermethrin (2.5 ppm), perme-
thrin (0.82 ppm) and fenvalerate (2.5
ppm) against L. acuminata (SINGH AND
AGARWAL, 1981; SINGH AND AGARWAL,
1986; SINGH AND AGARWAL, 1988; SINGH
AND AGARWAL, 1991) is higher than that
of taraxerol (0.183 ppm), which is about
65 times stronger than the standard mol-
luscicide niclosamide (LCso 11.8 ppm)
SAHAY, SINGH AND AGARWAL (1991).
Statistical analysis of the data on tox-
icity brings out several important
points. The X? test for goodness of fit
(Heterogeneity) demonstrated that the
mortality counts were not found to be
significantly heterogeneous and other
variables (e.g. resistance) do not signifi-
cantly affect the LC5o values, as these
were found to lie within the 95% confi-
dence limits. The slope is thus, an index
of the susceptibility of the target animal
to the extract used. A steep slope is also
indicative of rapid absorption and onset
of effects. Since the LC5o of taraxerol is
within the 95% confidence limits, it is
obvious that in replicate tests of random
samples, the concentration response
lines would fall in the same range
(RAND AND PETROCELLI, 1988).
The depletion of protein fraction in
different tissues of snail and fish may
have been due to their degradation and
possible utilization of degraded prod-
ucts for metabolic purposes. Mom-
MENSEN AND WALSH (1992) reported that
proteins are mainly involved in the
architecture of the cell, which is the main
source of nitrogenous metabolism, and
during chronic periods of stress they are
also a source of energy. Increment in free
amino acids level was the result of
breakdown of protein for energy require-
ments and impaired incorporation of
amino acids in protein synthesis. Inhibi-
tions of DNA synthesis might affect both
protein as well as amino acid levels by
decreasing the level of RNA in protein
synthesis machinery (NORDENKJOLD,
SODERHALL AND MOLDEUS, 1979).
YADAV ET AL.: Toxicity of taraxerol from Codiaeum variegatum on Lymnaea acuminata
The increase in the protease activity
corroborates the enhancement in the FAA
(Free amino acids) level in tissues, the
formation of which might be the result of
protein hydrolysis in the tissues suggest-
ing stimulation during toxic stress.
Similar trend of results on protease activ-
ity were also reported by several workers
in different animals (IT. mossambica
(Peters), P. globosa (Swaimson) including
mammals (KABEER, SAHIB, SIVA PRASAD
AND SAMBASIVA RAO, 1984). SINGH AND
AGARWAL (1992) reported that several
euphorbious plants significantly reduced
the alkaline and acid phosphatase activ-
ity in nervous tissue of L. acuminata so the
reduction in protein level may be due to
the inhibition of alkaline phosphatase
activity, as it plays an important role in
protein synthesis (PILO, ASNANI AND
SHAH, 1972) and other secretory activities
(IBRAHIM, HIGAZI AND DEMIAN, 1974).
Carbohydrates reserves were
depleted to meet energy demand, thus
depletion of glycogen may be due to
direct utilization for energy generation, a
demand caused by active moiety-
induced hypoxia. The glycogenolysis
seems to be the result of increased secre-
tion of catecholamine due to stress.
Decrease in pyruvate level is due to
higher energy demand during exposure,
which suggests the possibility of a shift
towards anaerobic dependence due to a
remarkable drop in the amount of
oxygen. The increase in lactate also sug-
gests a shift towards anaerobiosis as a
consequence of hypoxia leading to respi-
ratory distress (SIvVA PRASADA RAO, 1980).
Lactic dehydrogenase (LDH) cat-
alyzes the inter-conversions of lactic
acid and pyruvic acid during anaerobic
conditions. Inhibition of lactic dehydro-
BIBLIOGRAPHY
AGARWAL, R. A., AND SINGH, D. K., 1988. Harm-
ful gastropods and their control. Acta Hy-
drochímica et Hydrobiologica 16: 113-138.
ANONYMOUS, 1984. Sigma diagnostics TM: Lac-
tic dehydrogenase (quantitative, colorimet-
ric determination in serum, urine and cere-
brospinal fluid) at 400-450 nm. Procedure
no. 500. St. Louis, U.S. A.
genase and cytochrome oxidase activity
indicates that taraxerol significantly
inhibits aerobic, as well as anaerobic
metabolism in exposed animals (EVERSE
AND KALPAN, 1973). Succinic dehydro-
genase (SDH) is one of the active regula-
tory enzymes of the TCA cycle. Inhibi-
tion in cytochrome oxidase activity by
taraxerol moieties supports that
Euphorbiales show a profound impact
on the oxidative metabolism.
Withdrawal experiments were per-
formed to see whether biochemical alter-
ation caused by taraxerol moiety would
return to normal, if the treatment were
discontinued. There was nearly com-
plete recovery of total protein, total free
amino acid, lactate, nucleic acid (DNA
and RNA), pyruvate level and in the
activity of cytochrome oxidase, succinic
dehydrogenase, protease, lactic dehydro-
genase, acetylcholinesterase and acid
and alkaline phosphatase but only a
partial recovery of glycogen level in the
different body tissues of freshwater snail
EL. acuminata and fish C. punctatus.
In conclusion, it is believed that
extracted compound of selected plants
may be used as a potent source of mol-
luscicides for addition; plant products
are less expensive, easily available,
easily soluble in water and safer for
non-target animals than synthetic mol-
luscicides.
ACKNOWLEDGEMENTS
One of the Authors (Ram P. Yadav) is
thankful to the Department of Environ-
ment, Ministry of Environment and Forest,
Govt. of India New Delhi (F-14/35/96-
MAB/RE) for financial Assistance.
ARASTA, T., BAIs, V. S. AND THAKUR, P., 1996.
Effect of Nuvan on some biological parame-
ters of Indian catfish Mystus vittatus. Journal
of Environmental Biology 17 (2): 167-169.
ARRIGONI, O., AND SINGER, T. P., 1962. Limita-
tion of the phenozine methosulphate assay
for succinic and related dehydrogenase. Na-
ture , 193: 1256-1258.
Iberus, 23 (1), 2005
BALI, H. S., SINGH, S. AND SHARMA, $S., 1986. The
distribution and ecology of vectors snails of
Punjab. Indian Journal Ecology 13: 31-37.
BARKER, S. B., AND SUMMERSON, W. H., 1941. The
colorimetric determination of lactic acid in bi-
ological materials. Journal Biological Chem-
istry. 138: 535-5427.
BERGMEYER, U. H., 1967. Method of Enzymatic
Analysis. Academic Press, New York. pp.,
DO:
CHATTERJEE, A., AND BANERJEE, A., 1977. Cro-
tocaudin; A rearranged labdane type nor-
diditerpines from Croton caudatus geisel.
Tetrahedran 33: 2407-2414.
COOPERSTEIN, S. J., AND LAZAROW, A., 1951.
Microspectrophotometric method for the de-
termination of cytochrome oxidase. Journal
of Biological Chemistry 189: 665-670.
ELLMAN, G. L., COURTNEY, K. D. ANDRES, V. J.
R. AND FEATHERSTONE, |. M., 1961. A new
and rapid colorimetric determination of
acetylcholinesterase activity. Biochemistry
Pharmacology 7: 88-95.
EVERSE, T., AND KAPLAN, N. O., 1973. Lactate
dehydrogenase: Structure and function. In
“Advances in Enzymology” (A. Meister, Ed.
) John Wiley, New York Vol. 27: 61-133.
FRIEDEMANN, T. E., AND HAUGEN, G. F., 1943.
Pyruvic acid. [. Collection of blood for the de-
termination of pyruvic acid and lactic acid.
Journal of Biological Chemistry 144: 67 - 77.
GOPAL, K., KHANNA, R. N. ANAND, M. AND
GUPTA, G. S. D., 1981. The acute toxicity of
endosulfan to freshwater organisms. Toxi-
cology Letter 7: 453-456.
HUCKABEE, W. E., 1961. In: Hawk's Physiolog-
ical Chemistry, 14th edition, (Ed. Oser, B. L.
), New Delhi, Tata McGraw-Hill, pp 1103.
IBRAHIM, A. M., HIGAZI, M. G. AND DEMIAN, S.,
1974. Histochemical localisation of alkaline
phosphatase activity in alimentary tract of the
snail Marisa cornuarietes (L.). Bulletin Zoolog-
ical Society Egypt, 26: 94-105.
KABEER, A., SAHIB, I. SIVA PRASAD, R. K. SAM-
BASIVA, R. K. R. AND RAMANA RAO, K. V.,
1984. Sub-lethal toxicity of malathion on the
protease and free amino acid composition
of the liver of the teleost Tilapia mossambica
(Peters). Toxicology Letter 20: 59-62.
LowkrY, O. H., ROSENBROUGH, N. . J., FARR A.
L AND RANDALL R. J, 1951. Protein mea-
surement with folin phenol reagent. Journal
of Biological Chemistry 193: 265-275.
MAHENDRU, V. K., AND AGARWAL, R. A., 1982.
Changes induced by phorate in the carbo-
hydrate metabolism of snail Lymnaea acumi-
nata. Pesticide Science 13: 611-616.
MOORE, S., AND STEIN, W. H., 1954. A modified
ninhydrine reagent for the photometric de-
termination of amino acids and related com-
pounds. Journal of Biological Chemistry 211:
907-913.
12
MOMMENSEN, T. P., AND WALSH, P. J., 1992.
Biochemical and metal perspectives on ni-
trogen in fishes. Experimentia, 48: 583-593.
MARSTON, AÁ., AND HOSTETTMAN, K., 1987. An-
tifungal, molluscicidal and cytotoxic com-
pounds from plants used in traditional med-
icine. Biologically active natural products ed
by Hostettmann K, Lea PJ Clarendon Press,
Oxford, 65-83.
NORDENSKJOLD, M., SODERHALL, J. AND
MOLDEUS, P., 1979. Studies on DNA strand
breaks induced in human fibroblasts by
chemical mutagens and carcinogens. Muta-
tion Research 63: 393-400.
PiLO, B., ASNANI, M. V. AND SHAH, R. V., 1972.
Studies on wound healing and repair in pi-
geon III. Histochemical studies on acid al-
kaline phosphatase activity during the
process. Journal of Animal Physiology 19: 205-
212:
RAND, G. M. AND PETROCELLI, S. R., 1988.
Fundamentals of aquatic toxicology. Hemi-
sphere Publishing Corporation, New York
pp1129:
REINERT, J. A., 1972. Snail control under aquatic
conditions. Proceeding of Florida State Horti-
culture Society 85: 380-384.
RITCHIE, L. S., 1973. Chemical control of snails.
In Epidemiology and control of schistoso-
miasis. ed by Ansari N, Darger S B, pp 458-
392:
RUSSELL, R. M., ROBERTSON, J. L. AND SEVIN, N.
E., 1977. A new computer Programme for
probit log analysis. Bulletin Entomological So-
ciety America 23: 209-213.
SAHAY, N., SINGH, D. K. AND AGARWAL, R. A.,
1991. Synergistic effect of pipernoyl butaox-
ide on the toxicity of synthetic pyrethroids
in the snail Lymnaea acuminata. Journal of Med-
ical and Applied Malacology 3: 107-111.
SCHNEIDER, W. C., 1957. Determination of nu-
cleic acid in tissue by pentose analysis In
Calowick S. P. and Kaplon N. O. (Eds. ) Aca-
demic press New York pp680.
SINGH, A., SINGH, D. K. MISHRA, T. N. AND
AGARWAL, R. A., 1996. Molluscicides of plant
origin. Biological Agriculture and Horticulture
1352057292
SINGH, A., AND AGARWAL, RR. A., 1992. Toxic-
ity of the latex of Euphorbiales: Effect on
acid and alkaline phosphatases of the snail
Lymnaea acuminata. Biological Agriculture and
Horticulture 8: 211-219.
SINGH, A., AND AGARWAL, R. A., 1988. Possi-
bility of using latex of euphorbiales for snail
control. The Science of the Total Environment
77:231-236.
SINGH, D. K., AND AGARWAL, R. A., 1983. In
vivo and in vitro studies on synergism with
anticholinestrerase pesticides in the snail
Lymnaea acuminata. Archives Environmental
Contamination and Toxicology 12: 483-487.
YADAV ET AL.: Toxicity of taraxerol from Codiaeum variegatum on Lymnaea acuminata
SINGH, D. K., AND AGARWAL, R. A., 1986. Piper-
onyl butaoxide synergism with two synthetic
pyrethroids against Lymnaea acuminata.
Chemosphere 15: 493-498.
SINGH, D. K., AND AGARWAL, R. A., 1987. Effect
of the synthetic pyrethroids permethrin on
the snail Lymnaea acuminata. The Science of
the total Environment 67: 263-267.
SINGH, D. K., AND AGARWAL, R. A., 1984. Cor-
relation of the anti- cholinesterase and mol-
luscicidal activity of the latex of Euphorbia
royleana Bioss. on Lymnaea acuminata. Journal
of Natural Product 47: 702-705.
SINGH, O., AND AGARWAL, R. A., 1981. Toxic-
ity of certain pesticides to two economic
species of snails in Northern India. Journal of
Economic Entomology 74: 568-571.
SIVA PRASADA RAO, K., 1980. Studies on some
aspects of metabolic changes with emphasis
on carbohydrate utility in the cell-free systems
of the teleost. T. mossambica (Peters) under
methyl parathion exposure. Ph. D. thesis, SV
University Tirupati, India.
SOKAL, R. R., AND ROHLE, F. J., 1973. Introduc-
tion of Biostatic WH Freeman and Company
San Francisco pp368.
SPICES, J. R., 1957. Colorimetric procedure for
amino acids. In Methods in enzymology, ed by
Calowick SP, Kalpan NO, Academic press
New York. 468 pp.
SRIVASTAVA, V. K., AND SINGH, A., 2001. Possi-
bility of using snails as bioindicator of pes-
ticidal pollution. Iberus 19 (1): 1-5.
VAN DER VIES, J., 1954. Two methods for the de-
termination of glycogen in liver. Journal of Bio-
chemistry 57: 410-416.
YADAV, R. P., AND SINGH, A., 2001. Environ-
mentally safe molluscicides from two com-
mon euphorbiales. Iberus, 19 (1): 65-73.
YADAV, R. P., AND SINGH, A., 2002. Toxic effects
of latex of Croton tiglium on Lymnaea acumi-
nata and Channa punctatus. Iberus 20 (2): 33-
44.
O Sociedad Española de Malacología —__——— Iberus, 23 (1): 15-24, 2005
Un avance sobre la composición y microestructura de la
concha de lberus gualtierianus morfotipo gualtierianus
(Linnaeus, 1758) (Gastropoda: Helicidae)
Notes on the composition and microstructure of the shell of /berus
gualtierianus morphotype gualtierianus (Linmaeus, 1758)
(Gastropoda: Helicidae)
Rocío MÁRQUEZ*, José Ramón ARRÉBOLA** y Rafael DELGADO*
Recibido el 20-V-2004. Aceptado el 5-VII-2004
RESUMEN
Se ha estudiado la concha de Iberus gualtierianus morfotipo gualtierianus (Linnaeus, 1758)
desde el punto de vista de su composición mineralógica (difracción de rayos X), composi-
ción química (fluorescencia de rayos X, microanálisis de rayos X y calcimetría) y microes-
tructura (microscopía electrónica de barrido, MEB). El mineral presente es aragonito (CaCOs)
(sobre 99%), con trazas de calcita. Los principales elementos químicos detectados, aparte
de Ca, € y O, son Si, Mg, Na y Sr, probablemente como sustituciones en la red cristalina
y/o contaminaciones. Los contenidos de CaCO3 están entre 97% y 99%. La concha tiene
un espesor de unos 300 pm, con microestructura en capas superpuestas. Dentro de cada
una de ellas, el tipo de microestructura se califica como laminar cruzada simple, compuesta
de láminas de tercer, segundo y primer orden y con orientaciones distintas de los cristales
de aragonito. Rasgos microestructurales destacables son el distinto espesor de las capas,
dependiendo de su situación bajo las costillas o estriaciones de la concha, y que el número
de capas disminuye en la última media vuelta de espira. La mayoría de estos caracteres son
comunes a otros moluscos y en especial a los gasterópodos terrestres, si bien hasta el pre-
sente no habían sido establecidos en /. gualtierianus morfotipo gualtierianus.
SUMMARY
The mineralogical composition of the shell of Iberus gualtierianus morphotype gualtierianus
(Linnaeus, 1758) was studied (X-ray diffraction), as was the chemical composition (X-ray
fluorescence, X-ray microanalysis and calcimetry) and the microstructure (scanning elec-
tron microscopy, SEM). The mineral present is aragonite (CaCO3) (around 99%) with tra-
ces of calcite. The main chemical elements detected, apart from Ca, C and O, are Si, Mg,
Na and Sr, probably substituting Ca in the crystalline structure and/or as impurities. The
CaCOz3 contents are between 97% and 99%. Shell thickness is around 300 pm with supe-
rimposed layers. In each of these the microstructure is classified as simple crossed lame-
llar, composed of third, second and first order lamellae with differing orientation of the
aragonite crystals. Noteworthy microstructural features are the different thicknesses of the
layers, depending on their position below the ribs or striations of the shell and the fact that
* Departamento de Edafología y Química Agrícola, Facultad de Farmacia, Universidad de Granada, Campus de
Cartuja s/n, 18071, Granada, España.
** Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes,
6, 41012, Sevilla, España.
15
Iberus, 23 (1), 2005
the number of layers decreases in the last half turn of the whorl. Most of these characteris-
tics are common to other molluscs, especially to the terrestrial gastropods, although, until
now, these had not been identified in Iberus gualtierianus morphotype gualtierianus.
PALABRAS CLAVE: /berus gualtierianus morfotipo gualtierianus, concha, mineralogía, composición química,
microestructura, MEB.
KEY WORDS: /berus gualtierianus morphotype gualtierianus, shell, mineralogy, chemical composition, micros-
tructure, SEM.
INTRODUCCIÓN
La mayoría de los moluscos se carac-
terizan por presentar una concha, verda-
dero esqueleto externo que ellos mismos
segregan, que posee distintas funciones y
que está compuesta en un 95-99% por car-
bonato, esencialmente cálcico (CaCO»), y
materia orgánica, que representa entre el
5% y el 0,1% restante (HARE Y ABELSON,
1965).
El carbonato cálcico de las conchas
de los moluscos precipita como calcita o
aragonito, siendo la última especie
mineral el polimorfo más frecuente
(LOWENSTAM Y WEINER, 1989). Aún así,
algunos moluscos presentan simultáne-
amente los dos polimorfos en sus
conchas, bien como constituyentes de
una misma capa (MUTVEIL, DAUPHIN Y
Curr, 1985), o bien localizados en capas
diferenciadas (SABATIER, 1953; DAUPHIN,
CUIE, MUTVEI Y DENIS, 1989; LOWENSTAM
Y WEINER, 1989). Otras formas de CaCOz3
han sido también reconocidas en la com-
posición mineral de las conchas de los
moluscos, pero nunca como constitu-
yentes principales. Así por ejemplo, la
vaterita ha sido identificada en zonas
regeneradas de las conchas tras sufrir
éstas algún daño estructural (WILBURG,
1964; TAYLOR, KENNEDY Y HALL, 1969;
LOWENSTAM Y WEINER, 1989) o en los
márgenes de las conchas recientemente
mineralizados (LOWENSTAM Y WEINER,
1989; HAsseE, EHRENBERG, MARXEN,
BECKER Y EPPLE, 2000), aunque siempre
en cantidades inferiores al 1,5%.
En la concha de los moluscos apare-
cen también ciertos elementos traza,
cuyo contenido concreto puede dar
información acerca de las condiciones
ambientales y paleoambientales del
16
medio en el que se produjo la precipita-
ción del mineral. El análisis isotópico
(810 y 8C) de las conchas ha aportado,
igualmente, información de esa natura-
leza (KRANTZ, WILLIAMS Y JONES, 1987).
La microestructura de la concha de
los moluscos ha sido descrita y analizada
por muchos autores (MaAckay, 1952;
CARTER, 1980; MUTVEI ET AL., 1985; HE-
DEGAARD, 1997; CHATEIGNER, HEDEGA-
ARD Y WENK, 2000). BSGGILD (1930) rea-
lizó la primera clasificación de la micro-
estructura mediante descripciones con
microscopía de luz transmitida. Gracias
a la introducción de la microscopía elec-
trónica en estos estudios (GRÉGOIRE, Du-
CHATEAU Y FLORKIN, 1949), y principal-
mente desde la utilización del microsco-
pio electrónico de barrido (MEB) a
finales de la década de los sesenta, la mi-
croestructura de las conchas se ha defi-
nido más a partir de su micromorfología
que a partir de su mineralogía o cristalo-
grafía Óptica. Esta situación ha hecho
que las clasificaciones iniciales hayan
sido redefinidas (KOBAYASHI, 1964, 1971;
MACCLINTOCK, 1967; TAYLOR ET AL.,
1969, TAYLOR, KENNEDY Y HALL, 1973;
GRÉGOIRE, 1972), realizándose importan-
tes revisiones de la nomenclatura des-
criptiva aplicada a la microestructura y
ultraestructura (WILBUR Y SALEUDDIN,
1983; WATABE, 1984; LOWENSTAM Y WEI-
_NER, 1989). Cabe destacar, en este sen-
tido, los trabajos de CARTER Y CLARK
(1985) y CARTER (1990), en los que se in-
tegra la nomenclatura de la mineralogía
y la microestructura de la mayoría de los
grupos de invertebrados y vertebrados,
con la intención de poder hacer compa-
raciones entre distintos organismos.
MÁRQUEZ ET AL.: Composición y microestructura de la concha de /berus gualtierianus
El estudio de la microestructura de
la concha de los moluscos también se ha
empleado para el análisis de los proce-
sos y mecanismos que dan lugar a la
precipitación del carbonato cálcico y su
posterior organización ultraestructural
(WATABE Y WILBUR, 1961; WISE Y Hay,
1968).
Entre las distintas aplicaciones que
tiene el análisis de la microestructura de
las conchas se encuentra su utilidad en
estudios taxonómicos, filogenéticos y
evolutivos (MACKaAY, 1952; WIsE, 1970;
TAYLOR, 1973; PoPOv Y BARSKOV, 1978;
CARTER Y CLARK, 1985; SCHNEIDER Y
CARTER, 2001).
En este trabajo se estudia la compo-
sición mineralógica y química y la
microestructura de la concha de Iberus
gualtierianus morfotipo gualtierianus
(Linnaeus, 1758), una de las varias
formas conquiliológicas conocidas en
esta especie.
Iberus gualtierianus morfotipo gualtie-
rianus es un endemismo andaluz cono-
cido popularmente como “chapa”, que
vive en tres enclaves muy localizados:
Sierra Elvira en la provincia de Granada,
Sierra de Jaén en la de Jaén y Sierra de
Gádor en la provincia de Almería.
Habita en suelos xéricos, sobre calizas y
dolomías con modelado de tipo kárstico
y una vegetación correspondiente a
etapas de regresión del bosque climá-
cico. En este ambiente, es capaz de colo-
nizar zonas semidesérticas con poco
desarrollo de suelo y escasas precipita-
ciones anuales. Debido a las presiones de
diversa índole que le afectan desde hace
varias décadas, y en especial las relacio-
nadas con su interés gastronómico
(ARRÉBOLA, 2002), ha sido propuesta por
la Sociedad Española de Malacología
para su incorporación al Catálogo Nacio-
nal de Especies Amenazadas.
MATERIAL Y MÉTODOS
Cuatro conchas (A, B, C y D) de
Iberus gualtierianus morfotipo gualtieria-
nus fueron recogidas en Sierra Elvira
(UTM: VG32), al noroeste de la ciudad
de Granada.
La composición mineralógica de los
cuatro ejemplares ha sido analizada
mediante difracción de rayos X (XRD), con
un difractómetro Rigaku-Miniflex Ca 2005,
equipado con un filtro de Ni, sistema de
discriminación de impulsos y contador de
gases, según describe GÁMIZ (1987). La
composición química de los ejemplares A
y B se ha conocido mediante fluorescen-
cia de rayos X (XRF) (SORIANO, 1994) y
microanálisis de rayos X de energía dis-
persiva (EDR) (MÁRQUEZ, 2003). La
primera técnica se ha realizado con un
espectrómetro secuencial de longitud de
onda dispersiva, equipado con un ánodo
de Rh y un generador de rayos X de 4 kW
de potencia, Philips Magix Pro (PW-2440).
Por su parte, el análisis EDR se ha llevado
a cabo con un espectrómetro de rayos X
de energía dispersiva, Róntec, 288, M-Serie,
EDWIN, acoplado a un equipo de MEB
(se describirá posteriormente), que permite
analizar muestras de superficie rugosa.
Para este análisis las muestras fueron meta-
lizadas con grafito. Finalmente, los ejem-
plares € y D han sido utilizados para ana-
lizar el contenido de carbonatos (CaCO%3
equivalente) con el calcímetro de Bernard.
Para el análisis de la microestructura
de la concha de I. gualtierianus morfo-
tipo gualtierianus se han seleccionado,
del ejemplar A, muestras de las zonas
de crecimiento más reciente de las tres
últimas medias vueltas de espira de la
concha, ya que según LÓPEZ-ALCÁN-
TARA, RIVAS, ALONSO E IBÁÑEZ (1983)
cada media vuelta de espira se corres-
ponde con un estadio de crecimiento del
organismo. Se han observado fracturas
frescas de la concha, que facilitan la
observación de la microestructura en el
MEB (HEDEGAARD, LINDBERG Y BANDEL,
1997), en secciones paralelas y perpendi-
culares a las líneas de crecimiento. Los
fragmentos de concha fueron pegados
directamente sobre el portamuestras de
aluminio mediante pegamento de plata
coloidal. Posteriormente fueron metali-
zados con grafito para facilitar la obser-
vación y permitir el análisis EDR. La
observación se ha realizado en un
microscopio electrónico de barrido
Hitachi, modelo S-501 (voltaje de acele-
ración de 25 kV; imágenes de electrones
17
Iberus, 23 (1), 2005
Tabla I. Análisis por fluorescencia de rayos X (XRE, ejemplares A y B) y calcimetría (calcímetro de
Bernard, ejemplares C y D) de las conchas de /berus gualtierianus morfotipo gualtierianys.
Table I. X-ray fluorescence analysis (XRE specimens A and B) and carbonate content (Bernard calcime-
ter, specimens C and D) of the shells of lberus gualtierianus morphotype gualtierianus.
Resultados XRF
Elementos mayores como óxidos (%)
Al03 C00 Fez03 K20 MgO Noz20 P205 SiO2
Ei. A 0,05 55,72 0,06 0,07 0,12 0,08 0,02 0,25
Ei. B 0,06 55,44 0,02 0,07 0,08 0,08 0,01 0,30
10,9 624,7 10,5 43,13 99,50 99,40 98,0
21,1 579,2 10,9 43,23 99,29 98/90: 98,20-197 5299772
Colcimetría
Elementos menores (ppm) LOI'Y% Suma CaCOs CoCO3 equiva-
Sr dr (0%) (4) (0% (40 | lente (%)0
EC ED
(a) Pérdida de peso por calcinación (1000 *C), (b) Calculado a partir de los porcentajes de CO; % CaCOz = % CaO x Pm CaCO3/Pm Cad
(c) Calculado a partir de los porcentajes de LO; % CaCOz = % LOI x Pm CaCO3/Pm CO»; (Pm, peso molecular); (d) Calcímetro de Bernard
secundarios) con el programa de digita-
lización de imágenes Scan Vision.
RESULTADOS Y DISCUSIÓN
El análisis mineralógico pone de
manifiesto que las conchas de 1. gualtieria-
nus morfotipo gualtierianus están com-
puestas, mayoritariamente, por aragonito
(ejemplar A, 99,8%; ejemplar B, 99,4%;
ejemplar C, 99,5% y ejemplar D, 98,7%),
conteniendo cantidades traza de calcita
(ejemplar A, 0,2%; ejemplar B, 0,6%;
ejemplar C, 0,5%; ejemplar D, 1,3%).
El patrón de difracción de los dia-
gramas corresponde al del aragonito en
la carta JCPDS n* 5-453, con una
pequeña reflexión a 0,303 nm correspon-
diente a la calcita (carta JCPDS n* 5-586)
(JCPDS, 1974).
En este resultado, I. gualtierianus mor-
fotipo gualtierianus se asemeja a la mayoría
de los moluscos, cuya concha es aragoní-
tica (LOWENSTAM Y WEINER, 1989). La pre-
sencia de pequeñas cantidades de calcita
puede interpretarse de varios modos, tal
como indican BALMAIN, HANNOYER Y
López (1999). Cabe la posibilidad de que
esta especie mineral se concentre en deter-
minadas partes de la concha, lo que no
parece probable, ya que las proporciones
en las que aparece son distintas entre los
ejemplares, siendo éstos similares macro-
morfológicamente. Otra posibilidad es que
se trate de una fase secundaria a la for-
mación de la concha por un proceso de
contaminación natural, dado que estos
animales habitan ambientes carbonatados.
18
Por último, cabría el paso de un polimorfo
a otro (de aragonito a calcita) generado
por el calentamiento durante la molienda;
este proceso tampoco parece muy proba-
ble dada la escasa velocidad de la reac-
ción (CARLSON, 1983).
Los resultados del análisis XRF se
muestran en la Tabla I. Se observa que
entre los elementos mayores destaca por
su abundancia el calcio, constituyendo,
en óxidos, el 55,72% del ejemplar A y el
55,44% del ejemplar B. Las pérdidas por
calcinación (LOL) son elevadas, superiores
al 43%. Les siguen en proporción el silicio
(en óxidos, 0,25% para el ejemplar A y
0,30% para el ejemplar B), mientras que el
resto de los óxidos aparecen con valores
inferiores al 0,1% (salvo el de magnesio en
el ejemplar A, cuyo valor es 0,12%). De los
elementos menores, el estroncio es el que
presenta el porcentaje más alto en ambas
conchas (624,7 ppm en el ejemplar A y
579,2 ppm en el ejemplar B).
Las proporciones de CaO son las espe-
radas dada la mineralogía aragonítica, y
en menor medida calcítica (ambos poli-
morfos del CaCO»), de la concha. Con estas
proporciones de CaO, cabe calcular el con-
tenido de CaCO> presente, que resulta de
99,4% y 98,9% respectivamente para el
ejemplar A y B (Tabla 1). Lo mismo se
podría decir de las altas pérdidas por cal-
cinación que corresponderían al CO» gene-
rado en la descomposición térmica de los
carbonatos; en este caso el contenido de
CaCO> calculado a partir de ellas es de
98,0% y 98,2% respectivamente para el
ejemplar A y B (Tabla ]). El ajuste con las
anteriores cifras es aceptable.
MÁRQUEZ ET AL.: Composición y microestructura de la concha de /berus gualtierianus
x103 Ca
Cuentas por segundo
2. .NNO ps
0,0 SS S IO MAAS
ON OSO ESAS SEO
Energía
Cuentas por segundo
SS Lore
Ss e se
0.0.0.3 1,0 1,53:20.25 510.35) 2401 172/
Energía
Figura 1. Espectros de microanálisis de rayos X (EDR) en fracturas frescas de conchas de /berus
gualtierianus morfotipo gualtierianus. Izquierda: ejemplar A; derecha: ejemplar B.
/
Figure 1. X-ray microanalysis spectra (EDR) in fresh fractures of the shells of Iberus gualtierianus morp-
hotype gualtierianus. Left: specimen A; right: specimen B.
Las proporciones de Si0O»2 (0,25% en
el ejemplar A y 0,30% en el ejemplar B) y
ADO (0,05% y 0,06% para el ejemplar A
y B, respectivamente), son imputables a
la contaminación de la concha por silica-
tos del suelo, tratándose de componen-
tes secundarios.
A pesar de que el aragonito es un
mineral bastante puro desde el punto de
vista químico (DEER, HOWIE Y ZUSSMAN,
1992), el Sr presente en las conchas se
incluiría en la red de este mineral susti-
tuyendo al Ca, lo cual es un hecho amplia-
mente descrito en la bibliografía sobre ara-
gonito biogénico (TUREKIAN Y ARMSTRONG,
1960; DoDD, 1967; MASUDA, 1976; MASUDA
E HIRANO, 1980). Lo mismo le ocurriría al
Mg, pudiendo ser también, en parte, pro-
ducto de contaminación de los materiales
dolomíticos del suelo.
El Na es un catión que también puede
estar presente en la red del aragonito,
incluso en cantidades elevadas (DAUPHIN
Y DENIS, 2000; DAUPHIN, GUZMAN, DENIS,
CUIF, Y ORTLIEB, 2003), aunque su propor-
ción es mayor en las conchas marinas
(WADA Y FUJINUKL, 1974). Otros autores
han considerado que la presencia del Na
en las conchas de los moluscos, se debe a
procesos de contaminación (por ejemplo,
EsTES, 1972), o al hecho de ser un catión
que forma parte de la composición
química de la matriz orgánica de las
conchas (LÉCUYER, 1996).
El análisis del contenido de carbonato
cálcico equivalente de las conchas (Tabla
D, registra los siguientes porcentajes:
97,52% para el ejemplar C y 97,72% para
el ejemplar D. Estos resultados son de mag-
nitudes similares a los obtenidos por aná-
lisis XRF ya expuestos (Tabla 1). Se puede,
por tanto, afirmar que los ejemplares de
[ gualtierianus morfotipo gualtierianus ana-
lizados tienen un porcentaje de CaCO3
entre el 97% y el 99% y que se encuentra,
de esta forma, dentro del rango de valores
conocido para la concha de los moluscos
(entre 95% y 99,9%); el resto son compo-
nentes orgánicos (HARE Y ABELSON, 1965).
El estudio de la composición se ha
completado con los resultados de micro-
análisis de rayos X (EDR) (Fig. 1) de la
superficie de las fracturas frescas de las
conchas. Se ha demostrado la composi-
ción carbonática al aparecer las líneas
correspondientes a los elementos carbono,
oxígeno y calcio. Hay, pues, una perfecta
coherencia con el resto de los resultados
expuestos. Los elementos químicos detec-
tados en XRF (Tabla D, distintos al carbono,
oxígeno y calcio, no se registran con EDR,
al encontrarse sus cantidades por debajo
de los límites de detección de esta técnica.
El estudio de la concha en fractura
fresca bajo el microscopio electrónico de
barrido (MEB) ha puesto de manifiesto,
en primer lugar, su constitución en capas
superpuestas (Figs. 2A, B). Dichas capas
presentan estructura laminar cruzada (se
describirá posteriormente) y distintas
orientaciones de los cristales de aragonito
(Fig. 2B). Esta configuración interna de la
1
Iberus, 23 (1), 2005
Tabla IT. Capas reconocidas, y espesores medios de las mismas (um), en una sección perpendicular
(A) y en otra paralela (B) a las líneas de crecimiento de la concha estudiada del ejemplar A de
Iberus gualtierianus morfotipo gualtierianus. Medidas realizadas en las observaciones con microsco-
pio electrónico de barrido (MEB). La capa a es la más interna de la concha y la e la más externa.
Table II. Layers observed and their mean thicknesses (um), in both perpendicular (A) and parallel (B)
sections to the growth lines of the studied shell of the specimen A of lberus gualtierianus morphotype
gualtierianus. The measurements were carried out using scanning electron microscopy (SEM). Layer a is
the most internal and layer e the most external.
A. Sección perpendicular a las líneas de crecimiento
Copos 0 b C d e > (espesor total)
Media vuelta
de espira esp ds nm. esp dsu nm esp ds. Mo sesp 05 Desp USES ds n
Última 132,39 123,14 8 132,60 43,03 8 101,84 14,331 4 366,83 60,16 20
Penúltima 101,14 15,17 8 55,00 16,22 8 61,47 748 8 30/46 9,57 8 55,91 18,93 8 303,98 13,47 40
Antepenúltima 113,24 34,56 8 67,50 36,29 8 46,32 885 8 36,91 911 8 3406 535 8 298,03 18,83 40
B. Sección paralela a las líneas de crecimiento
Copos 0 b C d e > (espesor total)
Media vuelta
de espira esp 05 nm. esp. 05 nm esp. ds n esp “05. .n €5p... 05 Mn esp
Último 250,972815 40 53131331054 304,10 21,03 8
Penúltima 77,91 3,91 8 55,57 10,07 8 66,56 7,73 8 5247 919 8 42,335 6,61 8 294,86 7,50 40
Antepenúltima 47,93 13,04 8 60,75 894 8 48,17 1238 8 26,59 5/04 8 24,89 7,52 8 208,33 9,38 40
esp: espesor medio (pm); ds: desviación típica; n: número de medidas realizadas
concha ha permitido establecer el número
y espesor de las capas en las últimas fases
del crecimiento del organismo (Tabla ID.
Destaca, como hecho observable, que el
espesor de las capas, en general, varía de-
pendiendo de la zona que se trate, au-
mentando bajo las costillas y decreciendo
en las estriaciones (Fig. 2A) presentes en
estas conchas (LÓPEZ-ALCÁNTARA, RIVAS,
ALONSO E IBÁÑEZ, 1985). Además, cabe
destacar que, en la mayoría de los casos,
los espesores medidos tienen un cierto
grado de espesores aparentes, ya que las
secciones observadas son irregulares al ser
fracturas frescas y no se disponen total-
mente perpendiculares al plano del ob-
(Página derecha) Figura 2. Imágenes de microscopía electrónica de barrido de la concha de l/berus
gualtierianus morfotipo gualtierianus. A: microestructura en corte fresco de una sección perpendicu-
lar a las líneas de crecimiento de la penúltima media vuelta de espira. Presencia de cinco capas con
estructura laminar cruzada y orientaciones distintas. La flecha indica una costilla y el incremento de
los espesores de las capas debajo de ella. B: detalle de la imagen anterior, demostrando las distintas
orientaciones de los cristales en las capas contiguas (por ejemplo, a con b). C: microestructura en
corte fresco de una sección paralela a las líneas de crecimiento de la penúltima media vuelta de espira.
Se muestran las varillas de aragonito (lt) que componen el tercer orden de la estructura laminar cruzada,
y los paquetes de varillas (ls) que constituyen el segundo orden de dicha estructura. D: microestruc-
tura en corte fresco de una sección paralela a las líneas de crecimiento de la última media vuelta de
espira. Se muestran las unidades estructurales de primer orden de forma tabular (Ip). Las flechas indican
las dos distintas orientaciones de los cristales en las láminas de primer orden. E: superficie interna de
la concha en la última media vuelta de espira. Se muestran, con flechas discontinuas, las ondulacio-
nes (od) y estrías finas (est). La flecha continua señala hacia la abertura de la concha. E: superficie
interna de la concha en la última media vuelta de espira. Se destacan con la flecha discontinua las
pequeñas protuberancias (pb). La flecha continua señala hacia la abertura de la concha.
20
MARQUEZ ET AL.: Composición y microestructura de la concha de /berus gualtierianus
NASA
E F
Figure 2. Scanning electron micrographs of the shell of Tberus gualtierianus morphotype gualtierianus.
A: microstructure in freshly cut section perpendicular to the growth lines of the penultimate half turn of
the whorl. Presence of the five layers with crossed. lamellar structure and different orientations. The
arrow shows a rib and the increase in thickness of the layers below it. B: detail of A showing different
orientations of the crystals in the contiguous layers (e. g. a with b). C: microstructure in freshly cut
section parallel to the growth lines of the penultimate half turn of the whorl. The aragonite rods (lt)
which constitute the third order of the crossed lamellar structure and the bundles of rods (ls) forming the
second order of the structure can be seen. D: microstructure in freshly cut section parallel to the growth
lines of the last half turn of the whorl. The first order structural units (lp) can be seen. The arrows show
the two different orientations of the crystals in the first order lamellae. E: internal surface of the shell in
the last half turn of the whorl. The dotted arrows show the ondulations (od) and fine striations (est).
The solid arrow points towards the shell aperture. E: internal surface of the shell in the last half turn of
the whorl. The dotted arrows show the small protuberances (pb). The solid arrow points towards the
shell aperture.
2]
Iberus, 23 (1), 2005
servador, a pesar de los esfuerzos reali-
zados en el microscopio para que así sea.
Por todo ello se aportan valores medios
(Tabla ID.
De estos datos se deduce, en primer
lugar, que en la sección perpendicular a
las líneas de crecimiento de la última
media vuelta de espira (Tabla IIA) se
reconocen tres capas (a, b y c), mientras
que en la sección paralela a dichas líneas
sólo se reconocen dos (Tabla IIB). Pensa-
mos que esto pueda deberse a la orien-
tación relativa de los cristales de arago-
nito en las láminas de las capas, de tal
forma que, en la sección paralela, dos de
ellas, las más internas, tienen una orien-
tación similar y se confunden.
El número de capas aumenta hasta
cinco en la penúltima y antepenúltima
medias vueltas de espira en ambas sec-
ciones, lo que supone admitir que la
concha va cambiando en su microestruc-
tura en el transcurso de las fases de
desarrollo del animal. |
Una cuestión interesante es el espesor
de las capas, variable de unas a otras (entre
24,89 um y 250,97 um) (Tabla II). Por otra
parte, el espesor total de la concha es de
unos 300 um, tendiendo a incrementarse
en la última media vuelta de espira res-
pecto a las anteriores, lo que apuntaría no
sólo a una reconstrucción en el número de
capas ya referido, sino también a una
pequeña reducción en el volumen de la
concha en las medias vueltas de espira
más internas.
Respecto a la microestructura en
detalle de las capas, hay que decir que
están constituidas por distintas unida-
des estructurales que crecen en comple-
jidad y que se denominan, respectiva-
mente, láminas de tercer, segundo y
primer orden, como corresponde con su
calificación de laminar cruzada
(BSGGILD, 1930; UOZUMI, IWATA Y TOGO,
1972; CARTER, 1990). Las unidades más
pequeñas o de tercer orden, tienen
forma de varilla y un espesor medio de
0,49 um (desviación típica, 0,14 um; n,
20) (Fig. 2C). Estas unidades son parale-
las entre sí y están unidas generando
pequeños paquetes (Fig. 2C) que consti-
tuyen las unidades estructurales inter-
medias O de segundo orden, con un
22
grosor medio de unos 5 um (4,91 um;
desviación típica, 1,16 um; n, 6). A su
vez, éstas están unidas entre sí dando
lugar a las unidades estructurales
mayores o de primer orden que presen-
tan una forma plana o tabular (Fig. 2D).
De acuerdo con los caracteres descri-
tos y según la terminología utilizada por
CARTER (1990), esta microestructura
podemos clasificarla como laminar
cruzada simple (“simple crossed lame-
llar”). La microestructura de tipo laminar
cruzada es la más extendida en las conchas
de los moluscos (B9GGILD, 1930), estando
constituida por aragonito salvo en algunas
especies (UOZUMI ET AL., 1972). Una carac-
terística de esta microestructura (BY9GGILD,
1930; CARTER, 1990) es que la orientación
de las unidades aciculares de aragonito
(láminas de tercer orden), así como los
paquetes que componen (láminas de
segundo orden), cambian de orientación
entre las láminas de primer orden adya-
centes (Fig. 2D).
Tanto la constitución en varias capas
superpuestas, como la microestructura
laminar cruzada, confieren a la concha
de 1. gualtierianus morfotipo gualtierianus
una gran resistencia mecánica.
La superficie interna de la concha es
prácticamente lisa (Fig. 2E), si bien en
algunas zonas presenta suaves ondula-
ciones (Fig. 2E), que pueden incluso llegar
a constituir pequeños montículos o pro-
tuberancias (Fig. 2F) y que parecen ser un
reflejo suavizado de la ornamentación
externa. También por zonas, la superficie
interna de la concha está microesculpida
con estriaciones muy finas (Fig. 2B).
AGRADECIMIENTOS
Al Centro de Instrumentación Cientí-
fica (CIC) de la Universidad de Granada,
en el que se ha realizado el análisis de
fluorescencia de rayos X (XRP).
Al Servicio de Microscopía Electró-
nica de Barrido y Microanálisis de la
Facultad de Farmacia (Universidad de
Granada) por la preparación de las
muestras, la realización de las fotogra-
fías y el estudio de microanálisis de
rayos-X de energía dispersiva (EDR).
MÁRQUEZ ET AL.: Composición y microestructura de la concha de /berus gualtierianus
BIBLIOGRAFÍA
ARRÉBOLA-BURGOS, J. R., 2002. Caracoles terres-
tres de Andalucía. Consejería de Medio Am-
biente, Junta de Andalucía, Manuales de
Conservación de la Naturaleza, n” 1, 64 pp.
BALMAIN, J., HANNOYER, B. Y LÓPEZ, E., 1999.
Fourier Transform Infrared Spectroscopy
(FTIR) and X-Ray Diffraction Analyses of
Mineral and Organic Matrix During Hea-
ting of Mother of Pearl (Nacre) from the Shell
of the Mollusc Pinctada maxima. Journal of
Biomedical Materials Research Part B: Applied
Biomaterials, 48: 749-754.
BOGGILD, O. B., 1930. The shell structure of the
mollusk. Det Kongelige Danske Videnskabernes
Selskabs Skrifter Naturvidenskabelig og Mathe-
matisk Afdeling, ser. 9, 2: 231-326.
CARLSON, W. D., 1983. The polimorphs of
CaCOz3 and the aragonite-calcite transfor-
mation. En: Reeder, R. J. (Ed.), Reviews in Mi-
neralogy, Vol. 11: Carbonates: Mineralogy and
Chemistry. Mineralogical Society of America,
Washington, D. C., pp. 191-225.
CARTER, J. G. Y CLARK Il, G. R., 1985. Classifi-
cation and phylogenetic significance of mo-
lluscan shell microstructure. En: Bottjer, D.
J., Hickman, C. S., Ward, P. D., Broadhead,
T. W. (Eds.), Mollusks: notes for a short course.
University of Tennessee, Department of Ge-
ological Sciences Studies in Geology, pp. 50-
EL.
CARTER, J. G., 1980. Guide to bivalve shell mi-
crostructures. En: Rhoads, D.C., Lutz, R. A.
(Eds.), Skeletal Growth of Aquatic Organisms.
Plenum, New York, pp. 645-673.
CARTER, J. G., 1990. Skeletal Biomineralization:
Patterns, Processes and Evolutionary Trends
Vol. I Van Nostrand Reinhold, New York, 823
bs
CHATEIGNER, D., HEDEGAARD, C. Y WENK, H. R,,
2000. Mollusc shell microstructures and crys-
tallographic textures. Journal of Structural Ge-
ology, 22: 1723-1735.
DAUPHIN, Y. Y DENSS, A., 2000. Structure and
composition of the aragonitic crossed lame-
llar layers in six species of Bivalvia and Gas-
tropoda. Comparative Biochemistry and Phy-
siology, Part A, 126: 367-377.
DAUPHIN, Y., CUTE, J. P., MUTVEL H. Y DENIS,
A., 1989. Mineralogy, chemistry and ultras-
tructure of the external shell-layer in ten
species of Haliotis tuberculata (Mollusca:
Archaeogastropoda). Bulletin of the Geologí-
cal Institutions of the Untversity of Uppsala,
15: 7-38.
DAUPHIN, Y., GUZMAN, N., DENIS, A., CUIF, J.
P. Y ORTLIEB, L., 2003. Microstructure, na-
nostructure and composition of the shell of
Concholepas concholepas (Gastropoda, Muri-
cidae). Aquatic Living Resources, 16: 95-103.
DEER, W. A., HOWIE, R. A. Y ZUSSMAN, J., 1992.
An Introduction to the Rock-Forming Minerals.
Longmans Scientific 8: Technical, England,
696 pp.
DODD, J. R., 1967. Manganesium and strontium
in calcareous skeletons. A review. Journal of
Paleontology, 41: 1313-1329.
ESTES, E. L. IHl, 1972. Diagenetic alteration of Mer-
cenaria mercenaria as determined by laser mi-
croprobe analysis. Thesis, University of North
Carolina, Chapel Hill.
GÁMIZ, E., 1987. Caracterización de caolines, tal-
cos y bentonitas españoles para su posible apli-
cación en Farmacia. Tesis Doctoral, Universi-
dad de Granada, 418 pp.
GRÉGOIRE, C., DUCHATEAU, G. Y FLORKIN, M.,
1949. Exame au microscope électronique de
la pellicule prénacrée et de la nacre décalci-
fiée de l'anodonte. Archives Internationales de
Physiologie, 57: 121-124.
GRÉGOIRE, C., 1972. Structure of the molluscan
shell. En: Florkin, M. €z Scheer, B. T. (Eds.),
Chemical zoology, vol. VII (Mollusca). Acade-
mic Press, New York, London, pp. 45-102.
HARE, P. E. Y ABELSON, P. H., 1965. Amino acid
composition of some calcified proteins. Car-
negie Institution Washington Yearbook, 64: 223-
SD
HAssE, B., EHRENBERG, H., MARXEN, J. C., BEC-
KER, W. Y EPPLE, M., 2000. Calcium carbonate
modifications in the mineralized shell of the
freshwater snail Biomphalaria glabrata. Che-
mistry-A European Journal, 6 (20): 3679-3685.
HEDEGAAROD, C., LINDBERG, D. R. Y BANDEL, K.,
1997. Shell microstructure of a Triassic pate-
llogastropod limpet. Lethaia, 30: 331-335.
HEDEGAARD, C., 1997. Shell structure of the re-
cent Vetigastropoda. Journal of Molluscan Stu-
dies, 63: 369-377.
(JCPDS) JornTr COMMITTEE ON POWDER DIF-
FRACTION STANDARDS AND AMERICAN SO-
CIETY FOR TESTING AND MATERIALS, 1974. Se-
lected Powder diffraction data for minerals.
JCPDS, Park Lane, Swarthmore, PA.
KOBAYASHI, I., 1964. Introduction to the shell
structure of bivalvian molluscs. Chikyu Ka-
SaKu, 73: 1512.
KOBAYASHI, IL, 1971. Internal shell microstruc-
ture of recent bivalvian molluscs. Science Re-
port of Nigata University, Series E (Geology
and mineralogy), 2: 27-50.
KRANTZ D. E., WILLIAMS, D. F. Y JONES, D. S.,
1987. Ecological and paleoenvironmental in-
formation using stable isotope profiles from
living and fossil mollusks. Palaeogeography,
Palaeoclimatology, Palaeoecology, 58: 249-266.
LÉCUYER, C., 1996. Effects of heating on the ge-
ochemistry of biogenic carbonates. Chemical
Geology, 129 (3-4): 173-183.
2)
Iberus, 23 (1), 2005
LÓPEZ-ALCÁNTARA, A., RIVAS, P., ALONSO, M.
R. E IBÁÑEZ, M., 1983. Origen de Iberus gual-
tierianus. Modelo evolutivo. Haliotis, 13: 145-
154.
LÓPEZ-ALCÁNTARA, A., RIVAS, P., ALONSO, M.
R. E IBÁÑEZ, M,, 1985. Variabilidad de Iberus
gualtierianus (Linnaeus, 1758) (Pulmonata,
Helicidae). Iberus, 5: 83-112.
LOWENSTAM, H. A. Y WEINER, S., 1989. On Bio-
mineralization. Oxford University Press, New
York, 324 pp.
MACCLINTOCK, C., 1967. Shell structure of pa-
telloid and bellerophontoid gastropods (Mo-
llusca). Bulletin of the Peabody Museum of Na-
tural History, 22: 1-140.
MAckKay, I. H., 1952. The shell structure of the
modern mollusks. Quarterly of the Colorado
School of Mines, 47: 1-27.
MÁRQUEZ, R., 2003. El cuarzo de la fracción arena
fina en suelos de la provincia de Granada. Me-
moria de Investigación Tutelada, Universi-
dad de Granada, 178 pp.
MASUDA, F. E HIRANO, M,, 1980. Chemical com-
position of some modern marine pelecypod
shells. Science Reports Institute of Geoscience
University of Tsukuba, Section B, 1: 163-177.
MASUDA, F, 1976. Strontium contents in shell of
Glycymeris. Journal of the Geological Society of
Japan, 82: 565-572.
MUTVEL H., DAUPHIN, Y. Y CUIE, J. P., 1985. Ob-
servations sur l'organisation de la couche
externe du test des Haliotis (Gastropoda):
un cas exceptionnel de variabilité mineralo-
gique et microstructurale. Bulletin du Mu-
séum National d Histoire Naturelle, Paris, 4 Sér.,
sect A. 7739
Popov, S. V. Y BARSKOV, I. S., 1978. Shell struc-
ture of mollusks and its value in phylogeny
and classification. Malacological Review, 11:
152-153.
SABATIER, G., 1953. Application de la diffraction
des rayon X a l'étude des coquilles de Mo-
llusques. Cahiers des naturalistes, Bulletin des
Naturalistes Parisiens, nouvelle série, 8: 97-102.
SCHNEIDER, J. A. Y CARTER, J. G., 2001. Evolu-
tion and phylogenetic significance of Car-
dioidean shell microstructure (Mollusca, Bi-
valvia). Journal of Paleontology, 75: 607-643.
SORIANO, M., 1994. Estudio geofarmacéutico de
polvos de talco. Primera aproximación a la far-
macopea internacional armonizada. Tesis Doc-
toral, Universidad de Granada, 619 pp.
TAYLOR, J. D., KENNEDY, W. J. Y HALL, A., 1969.
The shell structure and mineralogy of the
Bivalvia. Introduction. Nuculacea-Trigona-
cea. Bulletin of the British Museum of Natural
History (Zoology), Supplement, 3: 1-125.
24
TAYLOR, J. D., KENNEDY, W. J. Y HALL, A., 1973.
The shell structure and mineralogy of the
Bivalvia. II. Lucinacea-Clavagellacea. Con-
clusions. Bulletin of the British Museum of Na-
tural History (Zoology), Supplement, 22 (9):
253-294.
TAYLOR, J. D., 1973. The structural evolution of
the bivalve shell. Palaeontology, 16: 519-534.
TUREKIAN, K. K. Y ARMSTRONG, R. L., 1960.
Magnesium, strontium and barium concen-
trations and calcite-aragonite ratios of some
recent molluscan shells. Journal of Marine Re-
search, 18: 133-151.
UOzUMI, S., IwATA, K. Y TOGO, Y., 1972. The ul-
trastructure of the mineral in and the cons-
truction of the crossed-lamellar layer in mo-
lluscan shell. Contributions from the Department
of Geology and Mineralogy, Faculty of Science,
Hokkaido University, 1236: 447-477.
WADA, K. Y FUJINUKL, T., 1974. Physiological re-
gulation of shell formation in molluscs. 1.
Chemical composition of extrapallial fluid.
Bulletin of the National Pearl Research Labora-
tory, 18: 2085-2110.
WATABE, N. Y WILBURG, K. M., 1961. Studies on
shell formation. IX An Electron Microscope
Study of Crystal Layer Formation in the Oys-
ter. The Journal of Biophysical and Biochemical
Cytology, 9: 761-777.
WATABE, N., 1984. Mollusca: Shell. En: Bereiter-
Hahn, J., Matolsty, K. 8: Richards, S. K. (Eds.),
Biology of the integument, vol. I (Invertebrates).
Springer-Verlag, New York, pp. 448-485.
WILBUR, K. M., 1964. Shell formation and re-
generation. En: Wilbur, K. M. y Yonge, C. M.
(Eds.), Physiology of Mollusca. Academic Press,
London, pp. 243-282.
WILBUR, K. M. Y SALEUDDIN, A. S. M., 1983.
Shell formation. En: Saleuddin, A. S. M. éz
Wilbur, K. M. (Eds.), The Mollusca, Vol. 4,
Part 1. Academic Press, New York, 523 pp.
WISE, S. W. Jr. Y HaY, W. W., 1968. Scanning
Electron Microscopy of molluscan shell ul-
trastructures II. Observations of growth sur-
faces. Transactions of the American Microsco-
pical Society, 87: 419-430.
Wise, S. W. JR., 1970. Microarchitecture and
mode of formation of nacre (mother-of-pe-
arl) in Pelecypods, Gastropods and Cepha-
lopods. Eclogae Geologicae Helvetiae, 63: 775-
797.
O Sociedad Española de Malacología —__——T— Iberus, 23 (1): 25-31, 2005
Changes in phospholipid and lipid peroxidation levels due
to latex of Croton tiglium in freshwater snail Lymnaea
acuminata
Cambios en los niveles de peroxidación de fosfolípidos y lípidos por
efecto del latex de Croton tiglium sobre el molusco dulceacuícola
Lymnaea acuminata
Digvijay SINGH*!, Ram P. YADAV* and Ajay SINGH*
Recibido el 18-VII-2003. Aceptado el 13-1X-2004
ABSTRACT
Exposure to 40% and 60% of LCso of 48h of the latex extract of Croton tiglium Linn
(Euphorbiaceae) for 24h, 48h, 72h and 96h significantly reduced the endogenous levels
of phospholipid and increased the rate of lipid peroxidation in brain and foot tissue of
lymnaea (Radix) acuminata Lamarck. Alteration in the levels of phospholipid and rate of
lipid peroxidation were time and dose dependent. It is concluded that latex extract of Cro-
ton tiglium or its metabolites increase peroxidation of lipids in Lymnaea acuminata, which
brings about change in membrane permeability to various ions and may thus be the cause
of the toxicity of this plant extract.
RESUMEN
La exposición a LCso de 48 horas del extracto del latex de Croton tiglium al 40% y 60%
durante 24, 48, 72 y 96 horas redujo significativamente los niveles de fosfolípidos e
incrementó la tasa de peroxidación de lípidos en los tejidos cerebral y del pie de Lym-
naea (Radix) acuminata Lamarck. Ambos cambios dependen tanto del tiempo como de la
dosis. Esto confirma que dicho latex o sus metabolitos incrementa la peroxidación de lípi-
dos en el molusco, por medio de cambios en la permeabilidad de la menbrana a varios
iones. Esta puede ser la causa de la toxicidad del extracto de esta planta.
KEY WORDS: Lipid peroxidation, phospholipids level, latex of Croton tiglium.
PALABRAS CLAVE: Peroxidación de lípidos, niveles de fosfolípidos, latex de Croton tiglium.
INTRODUCTION
The snail Lymnaea acuminata is the SINGH AND SINGH, 2002; TRIPATHI AND
vector of liver flukes Fasciola hepatica SINGH, 2003; SINGH AND SINGH, 2003).
and Fasciola gigantica, which cause Heavy use of synthetic pesticides/ syn-
endemic fascialiasis in cattle and liver thetic pyrethroids for the control of
stock in northern parts of India (YADAV, aquatic vectors created other serious
* Natural Product Laboratory, Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur — 273 009
(U.P.) INDIA 'Corresponding author: Dr. Digvijay Singh. e-mail: digvijaysinOrediffmail.com
P4S
Iberus, 23 (1), 2005
problems to the aquatic environment
(SASTRY AND SHUKLA, 1993; DEVI, 1997).
Their hazardous nature has prompted
scientists to find out non-disruptive,
suitable and newer options for the
control of weed and aquatic pests. In
recent times, the use of natural pesti-
cides has gained popularity all over the
world. These plant products are the
focus of attention as a suitable alterna-
tive to synthetic pesticides due to some
ideal properties i.e. low cost, easy avail-
ability and biodegradability in nature
(MARSTON AND HOSTETTIMAN, 1985;
SINGH AND SINGH, 2002).
A large number of plant pesticides are
lethal to aquatic snails (GODAN, 1983;
SINGH, SINGH, MISRA AND AGARWAL, 1996).
SINGH AND AGARWAL, (1984 a, b) for the
first time reported that the lattices of
euphorbiales are highly toxic to snails.
Later SINGH AND AGARWAL (1992; 1993
and 1995) reported several euphorbious
species (falta algo :p.ej.species) as plant
mollusicicides. It is known that the
primary target of these plant molluscicides
is the nervous system (SINGH AND
AGARWAL, 1984a, b). It was observed that
these plant molluscicides affect acetyl-
choline, dopamine and non-epinephrine
levels in nervous tissues of exposed
animals (SINGH AND AGARWAL, 1995). Evi-
dences for tissues injury induced by certain
anti cholinesterase (Anti-ACHE) pesticides
has been shown to be associated with
increased fragility of various biological
membranes and the structural lipids of
biomemebranes undergo peroxidation
decomposition (CHVAPIL, RYAN AND
BRADA, 1972).
YADAV AND SINGH (2001, 2002)
reported that latex extract of Codiaeum
variegatum and Croton tiglium have high
molluscicidal and anti-cholinesterase
activity against snails Lymnaea acuminata
and Indoplanorbis exustus. In the present
work the author is interested in
knowing the sub-lethal effects of the
latex extract of Croton tiglium on the
endogenous level of phospholipids and
rate of lipid peroxidation level in
nervous and foot tissues of the freshwa-
ter snail Lymnaea acuminata to see if it
can serve as effective molluscicides.
26
MATERIAL AND METHODS
Adult Lymnaea acuminata (2.4+0.4 cm
in length) were collected from local ponds
and acclimatized in the laboratory for 96h
in dechlorinated tap water. Batches of 50
snails were kept in 12L glass aquaria con-
taining 6L-dechlorinated tap water. Snails
were treated according to methods of
SINGH AND AGARWAL (1986). Experiments
were carried out at 24-26 *C. No food was
given during the course of the experiment.
There was no mortality in either controls
or experiments. Oxygen concentration was
normal in control animals as there was no
sign of oxygen deficiency stress. 40 snails
/ 5L water were used which caused no
oxygen stress in test snails. The snails were
exposed to 40% (0.016 mg/L) and 60%
(0.024 mg/L) of 48h LC5o of 0.04 mg/L for
24h, 48h, 72h and 96h. These doses were
based on 48h LCso values reported by
YADAV AND SINGH, (2001). After 24h, 48h,
72h or 96h the snails were removed from
the aquaria and rinsed in water. Control
groups were kept in de-chlorinated tap
water without any treatment. Endogenous
levels of phospholipids were determined
in nervous and foot tissue by the method
Of FISKE AND ROW, (1925) as modified by
DITTMER AND MICHAEL (1965), and mod-
ified for snails by SINGH, SINGH AND
AGARWAL (1993). The rate of lipid perox-
idation was determined in nervous and
foot tissues by the methods of (UTELY,
BERMHEIM AND HOCHTEIN, 1967).
Phospholipids levels estimation: Brain and
foot tissue were dissected out and placed
on filter paper for removal of adherent
water. 300 mg each of brain and foot
tissues were used for each replicate. Brain
tissue was pooled from eighty five snails.
The tissues were then homogenized in
chloroform/methanol mixture (2:1v/v)
using a Teflon pestle to give a 5% w/v
homogenate . Supernatants were filtered
and two drops of 0.05M NaCl solutions
was added to the supernatant and left for
24h. After 24h the upper layer was dis-
carded. 1 mL of lipid layer was placed in
a test tube and solvent was removed by
heating in a boiling water bath. 1 mL of
distilled water and 0.4 mL of 10%
trichloroacetic acid was added to this and
SINGH ET AL.: Latex of Croton tiglium changes lipid peroxidation in Lymnaea acuminata
Table 1. /n vivo effect of exposure to 40% and 60% of 48h LCso of latex of Croton tiglium on the
levels of phospholipids in the nervous and foot tissues of snail L. acuminata after exposure to 24h,
48h, 72h and 96h. Values are mean +SE of six replicates. Values in parenthesis indicate % of
control. Student test *t” test demonstrated that the treated values were significantly different from
control (P<0.05). Two-way analysis of variance demonstrated that the changes were dose and time
dependent. 300 mg nervous and foot tissues were taken for all estimations.
Table 1. Efecto in vivo de la exposición al 40% y 60% de 48h LC5o del latex de Croton tiglium en los
niveles de fosfolípidos en los tejidos nervioso y del pie de L. acuminata tras 24h, 48h, 72h y 96h de
exposición. Los valores son la media +SE de 6 réplicas. Valores en paréntesis indican % del control. El
test “t” de Student muestra que los valores tratados son significativamente diferentes de los del control
(P<0.05). El análisis de varianza de dos vías demuestra que los cambios dependen de la dosis y el
tiempo. Se usaron 300 mg de tejido nervioso y del pie en todas las estimaciones.
Tissues 40% of LCso (48h) 60% of LCso (48h)
Control Broin 23.26+0.15 (100) 23.2640.15 (100)
Foot 21.01%0.31 (100) 21.0140.31 (100)
24h Brain 17.45+0.18 (62.12) 13.26+0.22 (57.00)
Foot 18.00+0.18 (85.67) 16.30.17 (77.58)
48h Brain 14.19+0.39 (60.99) 13.520.7 (51.52)
Foot 14.95+0.26 (71.15) 13.22+0.19 (62.92)
72h Brain 13.02+0.19 (55.96) 11.00+0.25 (47.29)
Foot 11.29+0.33 (53.73) 10.64+0.39 (50.64)
96h Brain 9.2+0.23 (39.55) 8.67+0.20 (37.27)
Foot 9.63+0.34 (45.83) 8.23+0.28 (39.317)
heated. After this, 0.4 mL of 2.5 % Ammo-
nium molybdate solutions and 0.2 mL of
amino naphthosulphonic acid was added
and the mixture heated at 80*C for 15 min,
cooled and diluted with 4 ml distilled
water. After 5 minutes the absorbance was
read at 640 nm with the help of a spec-
trophotometer (No. 106 S.No. 3265 Sys-
tronics). The blank consisted of 1 mL dis-
tilled water, 0.4 mL 10% dichloroacetic
acid, 0.4 mL 2.5% ammonium molybdate
solution, 0.2 mL of aminonaphthosul-
phonic acid and 4.0 mL distilled water but
no tissue homogenate. Standards curves
were prepared by reading the absorbance
of different concentrations of monopotas-
sium phosphate solutions containing 0.008
to 0.04 mg of pure salt.
Lipid peroxidation estimation: Brain and
foot tissues (100 mg each) were homoge-
nized in chilled 0.15 M KCI solution using
a Teflon pestle to give a 10% w/v
homogenate. 1 ml aliquots of the
homogenate were incubated at 37*C for
2h, following which 1.0 ml of 10% (w/v)
trichoroacetic acid was added. After thor-
ough mixing, the mixture was centrifuged
at 2200g for 10 min and 1ml of supernatant
was then taken with an equal volume of
0.67% (w/v) 2-thiobarbituric acid (Sigma
Chemical Company, USA) and kept in a
boiling water bath for 10 min, cooled and
diluted with one ml of distilled water. The
absorbance read at 535 nm against a blank
containing only KCl solution and results
were expressed as mol of malonal-
dialdehyde formed per 30 min /mg tissue.
The extinction coefficient was 1.56x105 as
described by UTELY ET AL., (1967). The
methods of SOKAL AND ROHLF (1973) were
applied for analysis of students “t” test
and two-way analysis of variance (P<0.05).
RESULTS
The endogenous levels of phospho-
lipids in the brain and foot tissues were
23.26 and 21.01 mg/g, respectively. In
vivo 24h, 48h, 72h and 96h exposure to
27
Iberus, 23 (1), 2005
Table IL. Zn vivo effect of exposure to 40% and 60% of 48h LCso of Croton tiglium on the rate of
lipid peroxidation in the nervous and foot tissues of snail L. acuminata after exposure to 24h, 48h,
72h and 96h. Values are mean +SE of six replicates. Values in parenthesis indicate % of control.
Student test “t” test demonstrated that the treated values were significantly different from control
(P<0.05). Two-way analysis of variance demonstrated that the changes were dose and time depen-
dent. 600 mg nervous and foot tissues were taken for all estimations.
Table 11. Efecto in vivo de la exposición al 40% y 60% de 48h LC5o del latex de Croton tiglium en los
niveles de fosfolípidos en los tejidos nervioso y del pie de L. acuminata tras 24h, 48h, 72h y 96h de
exposición. Los valores son la media +SE de 6 réplicas. Valores en paréntesis indican % del control. El
test “t” de Student muestra que los valores tratados son significativamente diferentes de los del control
(P<0.05). El análisis de varianza de dos vías demuestra que los cambios dependen de la dosis y el
tiempo. Se usaron 600 mg de tejido nervioso y del pie en todas las estimaciones.
Tissues 40% of LCso (48h) 60% of LCso (48h)
Control Brain 2.49+0.24 (100) 2.49+0.24 (100)
Foot 1.61+0.06 (100) 1.61%0.06 (100)
24h Brain 3.00+0.07 (120.48) 3.33+0.13 (133.73)
Foot 1.89+0.02 (117.39) 2.41+0.04 (149.68)
48h Brain 3.28+0.065 (131.72) 3.61+0.053 (144.97)
Foot 2.01+0.06 (124.84) 2.64+0.05 (163.97)
12h Brain 3.64+0.060 (146.18) 4.19+0.058 (168.27)
Foot 3.16+0.039 (196.27) 3.75+0.11 (232.91)
96h Brain 5.18+0.04 (208.03) 6.42+0.07 (257.83)
Foot 4.73+0.17 (293.78) 6.40%0.30 (397.51)
40% and 60% LCso (48h) of C. tiglium
caused a significant change in levels of
phospholipids (Table I) and activity of
lipid peroxidation (Table II) in the
nervous and foot tissues of the snails.
Treatment with 40% LCso of latex extract
of C. tiglium for 24h, 48h, 72h and 96h
decreased the levels of phospholipids in
the brain tissues up to 62.1, 60.99, 55.96
and 39.55 % of the control, respectively
(Table I). Likewise in foot tissue, it
decreased to 85.67, 71.15, 53.73, and 45.83
% of the control respectively (Table ID).
With exposure to a higher dose i.e. 60% of
48h LCso for 24h, 48h, 72h and 96h, there
was a further decrease in the endogenous
levels of phospholipids (Table ID.
The rate of lipid peroxidation in the
brain and foot tissues of control snails
was 2.53 and 1.66 mol malonaldialde-
hyde formed/ 30min/ mg, respectively.
Exposure to the two doses of lattices of
C. tiglium increased the rate of lipid per-
oxidation in both the nervous and foot
tissues. Exposure to 40% of LC5o for 24h,
28
48h, 72h and 96h increased this to
120.48, 131.72, 146.18 and 208.03 % of
control in brain tissue and to 117.39,
124.84, 196.27 and 293.78 % of control in
foot tissue, respectively. Exposure to
60% of LCso (48h) caused a greater
increase in the rate of lipid peroxidation
(Table ID). Analysis of variance demon-
strated that the increase in the rate of
lipid peroxidation was time as well as
dose dependent (P<0.05).
DISCUSSION
The data obtained indicate that
exposure of Lymnaea acuminata to latex of
C.tiglium, increased the rate of lipid per-
oxidation along with decrease in the
endogenous levels of phospholipids in
the nervous and foot tissue of the snail.
That these effects were indeed caused
by lattices of C. tiglium is evidenced by
the fact that both changes were time as
well as dose dependent.
SINGH ET AL.: Latex of Croton tiglium changes lipid peroxidation in Lymnaea acuminata
Biological membranes are known to
be rich in polyunsaturated fatty acids. In
fact, lipids may account for 28% to 79%
of the mass of cell membranes. While
the inner mitochondrial membrane con-
tains about 60% proteins and only 20%
lipids, the myelin sheath of the brain
contains as much as 80% lipids and only
20% protein. Most snail membranes,
however, contain nearly equal amounts
of protein and fat. Membrane lipids are
mainly phospholipids and most of them
are polyglycerides. Up to 20% of the
phospholipids are acidic which are neg-
atively charged and are associated with
membrane proteins due to lipid protein
interaction (LEHNINGER, 1987).
Several workers reported that syn-
thetic / plant pesticides cause repetitive
discharges due to prolongation of sodium
current and increased depolarization
(NARAHASHI, 1983; UPRETI ET AL, 1991;
SIDDIQUI, SAYEED, ZAFAR AND ISLAM, 2002).
The site of action is most likely to be
within the lipophilic environment of the
membrane in the neighbourhood of
sodium proteins (OSBORNE AND SMALL-
COMBE, 1983; PATEL, FULLONE AND
ANDERS, 1992). Any change in the struc-
ture of the concentration of lipids would
radically alter the structure of membranes,
bringing about a change in their perme-
ability characteristic. Indeed, lipid perox-
idation has been reported to play an
important role in a wide variety of patho-
logical and degradative conditions (Bus
AND GIBSON, 1979).
During lipid peroxidation, oxygen
reacts with polyunsaturated lipids to
form lipid radicals and semistable hydro-
peroxides. During this process hydrogen
is abstracted from a carbon-carbon bond
of unsaturated lipid. This process
requires an initiator radical, which may
BIBLIOGRAPHY
Bus, J. S. AND GIBSON, J. E., 1979. Lipid perox-
idation and its role in toxicity. In: Hodgson,
E., Bend, J. R. and Philpot, R. M. (eds) Review
in biochemical Toxicology 1: 125-149.
come from the metabolic degradation of
an external agent (TAPPEL, 1973; ZIA AND
IsLam, 2000). According to BUS AND
GIBSON (1983) certain classes of xenobi-
otics such as parquets and inorganic sub-
stances such as carbon tetrachloride lose
a single electron but under aerobic condi-
tions get re-oxidized immediately to their
original compound with the concurrent
formation of a super-oxide radical. Toxic-
ity of these compounds is due to their
ability to initiate the generation or induc-
tion of this superoxide anion radical. A
similar mechanism may be possible in
the case of L. acuminata treated with lat-
tices of C. tiglium. Formation of activated
oxygen can have extremely detrimental
consequences not only for phospholipids
but also for proteins, nucleic acids and
polysaccharides (BUS AND GIBSON, 1983;
SINGH ET AL., 1996). Even through the
mechanism of formation of superoxide in
the case of C. tiglium is not known yet, it
is possible that the metabolic degradation
of this extract produces an initiator
organic radical which is capable of start-
ing the peroxidation reaction. It is clear
that the latex extract of Croton tiglium is
highly effective at a lower dose and may
eventually prove to be a very useful mol-
luscicide .. Their effectiveness / attractive-
ness as molluscicides in comparison to
synthetic pesticides lie in their plant
origin, which makes them inexpensive
and more easily biodegradable and safe
for non-target organismos.
ACKNOWLEDGEMENTS
One of the authors (Digvijay Singh)
is thankful to CSIR, New Delhi (San.
Letter No. 9/57 (163)/2K2/ EMR - I
dated 4.9.2002) for financial support.
Bus, J. S. AND GIBSON, J. E., 1983. Oxygen acti-
vation and lipoperoxidative metabolism of
toxicity of pesticides and other xenobiotics.
In: Miyamoto, J. and Kerney, P. C. (eds) Pes-
ticides Chemistry. Human welfare and Envi-
ronment. Pergmon Press, London € New
York, 3 Pp-457 - 62.
29
Iberus, 23 (1), 2005
CHVAPIL, M., RYAN, J. N. AND BRADA, Z., 1972.
Effect of selected chelating agents and met-
als on stability of liver lÍysosome. Biochemistry
and Pharmacology 21:1097-1105.
Devi U., 1997. Heavy metal toxicity to gastro-
pod, Morula granulata: tolerance to copper,
mercury, zinc and cadmium. Journal of En-
vironmental Biology 18 (3): 287-290.
DITTMER, J. C. AND MICHAEL, A. W., 1965.
Quantitative and qualitative analysis of
lipids and lipid components. In: methods
of Enzymology. Colowick, S. P. and
Kaplam, N. O. (eds). Vol XIV. Academic
Press. Pp - 483.
FiskE, C. H. AND ROW, Y., 1925. Quantitative and
qualitative analysis of lipids and lipid com-
ponents. In: methods of Enzymology. Colow-
- ick, S. P. and Kaplam, N. O. (eds). Vol. XIV.
Academic Press. Pp 483.
GODAN, D., 1983. Pest sludge and snail, Biology
and control (ed., Dora Godan) translated by
Sheila Gruber, Springer verlag, Berlin, Hei-
delberg, New York.
LEHNINGER, A. L., 1987. Principles of Bio-
chemistry. 2nd Indian reprints. CBC Pub-
lisher and Distributors Delhi Pp - 1011
MARSTON, A. AND HOSTETTMANN, K., 1985.
Plant molluscicide. Phytochemistry 24: 639-
652.
NARAHASHI, T., 1985. Nerve membrane ionic
channels as the primary target of pyrethroids.
Neuro toxicology 6: 3-22.
OSBORNE, P. AND SMALLCOMBE, A., 1983. Site
of actions of pyrethroid insecticides In:
Miyamoto, J. and Kerney, P. C. (eds). Human
welfare and Environment. Pergmon Press,
London and New York Pesticides Chemistry
NON Z:
PATEL, N., FULLONE, J. AND ANDERS, M. W.,
1992. Brain uptake and metabolism of S-(1,2-
dichlorovenyl) glutathione (DCVG) and S-
(1,2-Dichlorovinyl)-L cystine (DCVC). Toxi-
cology 12: 343-346.
SASTRY, K. V. AND SHUKLA, V., 1993. Uptake and
distribution of cadmium in tissue of Channa
marulius. Journal of Environmental Biology 14
(2): 137 - 142.
SIDDIQUI, A., SAYEED, L, ZAFAR, K. S. AND ISLAM,
F., 2002. Argemone oil augmented oxidative
stress in discrete areas of rat brain. Bulletin
of Environmental Contamination and Toxicology
69: 734 - 740.
SINGH, A. AND AGARWAL, R. A., 1992. Mollus-
cicidal activity of euphorbiales against the
snail Indoplanorbis exustus. Acta Hydrochimica
et Hydrobiogica 20: 262- 264.
SINGH, A., SINGH, D. K. AND AGARWAL, R. A.,
1993. Effect of cypermethrin, mexacarbate
and phorate on phospholipid and lipi-
deroxidation in the snail Lymnaea acuminata.
Bulletin of Environmental Contamination and
Toxicology 51: 68-71.
30
SINGH, A. SINGH, D. K., MISRA, T. N. AND AGAR-
WAL, R. A., 1996. Molluscicides of plant or-
gin. Biological Agriculture and Horticulture 13:
205-252.
SINGH, D. AND SINGH, A., 2002. Piscicidal effects
of some common plants of India used in
freshwater bodies against target animals.
Chemosphere 49 (1): 45-49.
SINGH, D. K. AND AGARWAL, R. A., 1986. Piper-
onyl butaoxide synergism with two synthetic
pyrethroids against Lymnaea acuminata.
Chemosphere 15: 493-498.
SINGH, D. K. AND AGARWAL, R. A., 1984a. Al-
teration of biogenic level in the snail Lymnaea
acuminata by the latex of Euphorbia royleana.
Toxicological Letters 21: 309-314.
SINGH, D. K. AND AGARWAL R. A., 1984b. Cor-
relation of the anti-cholinesterase and mol-
luscicidal activity of the latex of Euphorbia
royleana Bioss. on Lymnaea acuminata. Journal
of Natural Product 47: 702-705.
SINGH, A. AND AGARWAL, R. A., 1990. Mollus-
cicidal and Anti-Cholinesterase activity of
euphorbiales. Biological Agriculture and Hor-
ticulture 7: 81-91.
SINGH, D. K., SINGH, A. AND AGARWAL, R. A.,
1993. Nerium indicum as a potent molluscicide
of plant origin. Journal of Medical and Applied
Malacology 5: 93-95.
SINGH, K. AND SINGH, D. K., 1995. Effect of
Azadirachta indica (Neem) on biochemical pa-
rameters in ovotestis of Lymnaea acuminata.
Malaysian Applied Biology 24: 7-11.
SINGH, S. K. AND SINGH, A., 2003. Effect of the
plants Thevetía peruviana and Alstonia schol-
aris (Family: Apocynaceae) on acetyl-
cholinesterase activity of Lymnaea acuminata
snails. Egyptian Journal of Schistosomiasis In-
fectious Ey Endemic Disease 25:
SOKAL, R. R. AND ROHLE, F. J., 1973. Introduc-
tion to bio-statistic edited by Freeman, M. N.,
San Francisco. Pp. 368.
TAPPEL, A. L., 1973. Lipid peroxidation damage
to cell component. Federation Proceedings 32:
1870-1874.
TRIPATHI, P. K. AND SINGH, A., 2003. Toxic ef-
fects of dimethoate and carbaryl pesticides
on protein metabolism of freshwater snail
Lymnaea acuminata. Bulletin of Environmental
Contamination Toxicology 70: 146-152.
UPRETIL, K. K., DAS, M. AND KHANNA, $. K.,
1991. Biochemical toxicology of Argemone
oil: effect on hepatic cyt P-450 and Xenobi-
otic metabolizing enzymes. Journal of Applied
Toxicology 11: 203-209.
UTELY, H. C., BERMHEIM, F. AND HOCHTEIN, P.,
1967. Effects of sulfhydryl reagent on per-
oxidation in microsome. Achieves of Bio-
chemistry and Biophysics 188: 29-32.
YADAV, R. P. AND SINGH, A., 2001. Environ-
mentally safe molluscicide from two common
Euphorbiales. Iberus 19 (1): 65-73.
SINGH ET 4L.: Latex of Croton tiglium changes lipid peroxidation in Lymnaea acuminata
YADAV, R. P. AND SINGH, A., 2002. Toxic effect ZIA, S. AND ISLAM, F., 2000. Selenium altered the
of Croton tiglium on L. acuminata and non-tar- levels of lipids, lipid peroxidation and
get fish Channa punctatus. Iberus 20 (2): 31-44. sulfhydryl group in straitum and thalamus
YADAV, R. P., SINGH, S. K. AND SINGH, A., 2002. of rat Biology of Trace Element Research 77:
Molluscicidal activity of Codiaeum variega- 251-259.
tum, effects on snail metabolism. Journal of
Ecophysiology and Occupational Health 2: 73 -
84.
3]
-. =>
sata AOL dl Ú A
ARCO rapri a EN he
4 AE An, Man p A
h R y ne CERA a añ ,
d h p 1 4d Ad 4 :
00 vir A nO ,
a ¡UH Y
V
4
O Sociedad Española de Malacología —__—_——T— Iberus, 23 (1): 33-42, 2005
Cephalopod assemblages caught by trawling along the
Southern Tyrrhenian Sea (Central Mediterranean)
Asociaciones de cefalópodos capturados por la pesca de arrastre
comercial en el Tirreno meridional (Mediterráneo central)
Daniela GIORDANO*, Teresa BOTTARI* and Paola RINELLI*
Recibido el 26-11-2004. Aceptado el 27-IX-2004
ABSTRACT
The teuthofauna assemblages of the Southern Tyrrhenian Sea are identified utilising data from
five trawl surveys. A total of 139 hauls were carried out in late spring or the middle of sum-
mer between 1995 and 1999, and 25 cephalopod species were found between 18 and
652 m of depth. The assemblages were analysed with the Bray-Curtis similarity index. Depth
showed a positive correlation with cephalopod distribution. Four main cephalopod groups
were defined: inshore (10-100 m), shelf (101-200 m), slope (201-600 m) and midslope (350-
600 m). Loligo media was the main species for the first group, lllex coindetii for the second,
Todaropsis eblanae for the third group and Todarodes sagittatus for the last group.
RESUMEN
Se identifican las asociaciones de teutofauna capturadas por los arrastreros comerciales en
el Tirreno meridional. Se analiza la fauna de cefalópodos recogida en 139 lances realiza-
dos en primavera o mediados del verano durante cinco campañas de pesca de arrastre rea-
lizadas entre 1995 y 1999. Se identificaron 25 especies de cefalópodos capturadas entre
18 y 652 m de profundidad. El análisis de las asociaciones faunísticas se realizó mediante
el índice de similitud de Bray-Curtis. La profundidad tiene una correlación positiva con la
distribución de los cefalópodos, pudiéndose definir cuatro grupos principales: costero o lito-
ral (10-100 m), de la plataforma (101-200 mj), del talud (201-600 m) y del talud medio
(350-600 m). Loligo media fue la principal especie del primer grupo, lllex coindetiidel segundo,
Todaropsis eblanae del tercero, y Todarodes sagittatus del último grupo.
KEY WORDS: Biogeography, cephalopods, trawl fishery, Tyrrhenian Sea, faunal assemblages, Mediterranean Sea.
PALABRAS CLAVE: Biogeografia, cefalópodos, pesquería de arrastre, asociación faunistica, Mar Tirreno,
Mediterráneo.
INTRODUCTION
The geographic and bathymetric dis- QUETGLAS AND SÁNCHEZ, 1998; SORIANO,
tributions of demersal cephalopods have SÁNCHEZ LIZASO AND GUERRA, 2003; VIL-
been studied in detail in different Mediter- LANUEVA, 1995); the coasts of Libya and
ranean areas: Western Mediterranean Sea Tunisia (BONNET, 1973); Marmara Sea
(SARTOR, BELCARI, CARBONELL, GONZÁLEZ, (KATAGAN, SALMAN AND BENLI, 1993;
* Istituto per Ambiente Marino Costiero IAMC-CNR, Messina Section, Spianata San Raineri 86, 98122
Messina, Italy. Corresponding author: Daniela Giordano. E-mail: daniela.giordanoCiamc.cnr.it
33
Iberus, 23 (1), 2005
UNSAL, UNSAL, ERK AND KABASAKAL,
1999); Eastern Mediterranean Sea (RUBY
AND KNUDSEN, 1972; KNUDSEN, 1981;
SALMAN, KATAGAN AND BOLETZKY, 1999);
Ligurian Sea (RELINI, DE RossI, PIANO AND
Z_AAMBONI, 2002; BERTULETTI AND ORSI
RELINI, 1986; ORSI RELINI AND BERTULETTI,
1989; WURTZ, 1979; OrSI RELINI, 1995); Sar-
dinian Sea (BONNET, 1965; CUCCU, ADDIS,
DAMELE AND MANFRIN PICCINETTI, 2003);
Tyrrhenian Sea (BERDAR, POTOSCHI, CAV-
ALLARO, CAVALIERE AND LI GRECI, 1983;
BERDAR AND CAVALLARO, 1975; LUMARE
1968, 1970; BELCARI, BIAGI, BIAGI, DE
RANIERI, MORI AND PELLEGRINI, 1986;
MANNINI AND VOLPI, 1989; BELCARI AND
SARTOR, 1993; BELCARI, SARTOR AND DE
RANIERI, 1998; WURTZ, MATRICARDI AND
BELCARI, 1992; SPEDICATO, MINETTI,
REBORA, MATRICARDI AND WURTZ, 1990;
GIORDANO AND PERDICHIZZI, 1998; BELLO
AND ARCULEO, 1994; GIORDANO AND CAR-
BONARA, 1999); Sicilian Channel (JEREB
AND RAGONESE, 1991, 1994; RAGONESE,
JEREB AND DI STEFANO, 1992); Adriatic Sea
(BELLO AND MOTOLESE, 1983; GUESCINI
AND PICCINETTI MANERIN, 1986; GAMULIN-
BRIDA AND ILIJANIC, 1972; CASALI,
MANFRIN PICCINETTI AND SORO, 1998;
BELLO, 1990; PASTORELLI, VACCARELLA AND
DE Zio, 1995); lonian Sea (PANETTA,
D'ONGHIA, TURSI AND CECERE, 1986; 'TURSI
AND D'ONGHIA, 1992; D'ONGHIA, MATAR-
RESE, TURSI, MAIORANO AND PANETTA,
1995); Catalan Sea (MANGOLD-WIRZ, 1963;
SÁNCHEZ , BELCARI AND SARTOR, 1998);
and Aegean Sea (D'ONGHIA ET AL., 1995;
SALMAN, KATAGAN AND BENLI, 2002).
In particular, assemblages of
cephalopod communities have been
studied in different areas of this basin
(UNGARO, MARANO, MARSAN, MARTINO,
MARZANO, STRIPPOLI AND VLORA, 1999;
TSERPES, PERISTERAKI, POTAMIAS AND
TSIMENIDES, 1999; (GONZÁLEZ AND
SÁNCHEZ, 2002; QUETGLAS, CARBONELL
AND SÁNCHEZ, 2000). Information about
spatio-temporal distributions of these
species and their linkage to environ-
mental factors is necessary for the study
of many commercial species. The
studies focused on demersal assem-
blages and in particular on their persis-
tence, such as the capability to maintain
34
the same specific composition during a
lag time are useful even for manage-
ment purposes (BIAGI, SARTOR, ARDIZ-
ZONE, BELCARI, BELLUSCIO AND SERENA,
2002).
In this respect, this work analyses
the structure of cephalopod assem-
blages, providing information concern-
ing their distribution for all four groups
defined: inshore, shelf, slope and mids-
lope.
MATERIAL AND METHODS
The study area is situated in the
Southern part of the Tyrrhenian Sea
(central Mediterranean) between Suvero
Cape (Calabria) and San Vito Cape
(Sicily). The data here reported come
from five trawl surveys carried out from
1995 to 1999, during the MEDITS project
(International bottom trawl survey in
the Mediterranean Sea). The experimen-
tal surveys were always conducted
during late spring or the middle of
summer. Hauls were carried out from
one hour before dawn until one hour
after sunset. A fishing vessel equipped
with an experimental trawl net with 20
mm stretched mesh size in the cod-end,
and 2-2.5 m of vertical opening (FIOREN-
TINI, COSIMI, SALA, LEONORI AND
PALOMBO, 1999) was used. A total of 139
hauls were carried out, randomly allo-
cated into five bathymetrical strata: “A”:
10-50 m; “B”: 51-100 m; “C”: 101-200 m;
“D”:> 201-500. m; +*E*%%9 5UESO0B
(BERTRAND, GIL DE SOLA, PAPACONSTAN-
TINOU, RELINI AND SOUPLET , 2002).
The duration of each haul was 30
minutes at depths less than 200 m and
one hour at greater depths. All the data
were standardised to one hour haul
duration. All cephalopods were identi-
fied and counted on board. A multivari-
ate approach, on the basis of the calcula-
tion of a triangular similarity matrix
(group-average linkage), by depth, year
and abundance (number of speci-
mens/hour), according to BRAY AND
CURTIS (1957), with relative dendrogram
and non metric plan Multi Dimensional
Scaling (MDS) was elaborated (CLARKE
GIORDANO £7 AL.: Cephalopod assemblages along the Southern Tyrrhenian Sea
0 Bray-Curtis Similarity
20
40
60
80
100
AAA AA
100 m 200 m
litoral shelf slope
Figure 1. Dendrogram showing similarities between hauls for the 1996 surveys. Mean depth of
each haul is presented.
Figura 1. Dendrograma que muestra las similitudes entre los arrastres de 1996. Se indica la profundi-
dad media de cada arrastre.
AND WARWICK, 1994). Because the
annual variations of cephalopod distrib-
ution were not significant, the five
surveys were pooled together to calcu-
late the total cluster. Hauls in which
only one species was caught and the
species with abundance values lower
than 3 were not considered for the
analysis. To establish which taxa con-
tributed most to the separation of one
group from another, the SIMPER routine
was used (CLARKE, 1993). Abundance
values were also analysed by means of
univariate indices, in relation to the four
assemblages evidenced by cluster analy-
sis: total mumber of taxa (S), total
number of individuals (N), richness of
Margalef (d), Shannon-Wiener diversity
(H”) and Pielou's evenness (J) indices.
The cumulative abundances were illus-
trated in order of dominance as K-domi-
nance curves.
RESULTS
Twenty-five species of cephalopods
were collected belonging to three orders
and eight families. In Table I the system-
atic list of species, drawn up according
to BELLO (1986), within the bathymetri-
cal range of each species, is reported. In
particular, Onychoteuthis banksii,
Ancistroteuthis lichtensteini and Abralia
veranyi were caught only once during
the period studied.
The cephalopods collected were dis-
tributed between 18 and 652 m of depth.
The more coastal species was repre-
sented by Sepia officinalis, confined
within the depth of 68 m. Fifty percent
of the species showed a wide bathymet-
rical range that included the shelf and
the beginning of the slope. The widest
distribution was shown by Eledone cir-
rhosa (72-584 m), Scaeurgus unicirrhus
(38-549 m), Todaropsis eblanae (61-613 m)
and Pteroctopus tetracirrhus (118-633 m).
Alloteuthis subulata, Octopus vulgaris and
Eledone moschata were found only on the
continental shelf. On the contrary,
Octopus salutii and Rossia macrosoma
were caught at over 200 m of depth. His-
tioteuthis bonnellii was found exclusively
in the deepest stratum.
The dendrogram of all surveys (Fig.
1) showed three principal clusters: l,
inshore (<100 m); IL, shelf (80 — 200 m)
and III, slope (200 — 600 m). The coastal
group was characterized by Loligo media
39
Iberus, 23 (1), 2005
Table I. Cephalopod species captured from 1995 to 1999 off the Southern Tyrrhenian Sea, showing
their depth range and mean depth of occurrence with the associated standard deviation (SD).
Tabla 1. Especies de cefalópodos capturadas desde 1995 a 1999 en el mar Tirreno meridional, indicando
su rango de distribución batimétrica, profundidad media y la desviación estándar asociada (SD).
Min Max Media SD
Class CEPHALOPODA Cuvier, 1798
Subclass COLEOIDEA Bather, 1888
Order SEPIOIDEA Naef, 1916
Family Sepiidae Leach, 1817
Genus Sepia Linnaeus, 1758
Sepia officinalis Linnaeus, 1758 40 68 495 12.66
Sepia orbignyana Férussac in Orbigny, 1826 61 432 185.5 96.87
Sepia elegans Blainville, 1827 40 345 137,3 14.02
Family Sepiolidae Leach, 1817
Subfamily Sepiolinae Leach, 1817
Genus Sepiola Leach, 1817
Sepiola rondeletii Leach, 1817 110 395 276 115
Genus Rondeletiola Naef, 1921
Rondeletiola minor (Naef, 1912) 117 297 207 127.28
Subfamily Rossiinae Appellof, 1898
Genus Rossia Owen in Ross, 1835
Rossia macrosoma (Delle Chiaie, 1830) 2d 596 484.5 115.56
Genus Neorossia Boletzky, 1971
Neorossia caroli (Joubin, 1902) 123 608 309 195:9
Order TEUTHOIDEA Naef, 1916
Suborder MYOPSIDA Orbygny in Férussac 8. Orbigny, 1840
Family Loliginidae Lesueur, 1821
Genus Loligo Lamarck, 1798
Loligo vulgaris Lamarck, 1798 18 29 75.72 12
Loligo forbesi Steenstrup, 1856 12. 505 134.2 127.3
Loligo media (Linnaeus, 1758) 18 E al 15.43
Genus Alloteuthis Wulker, 1920
Alloteuthis subulata (Lamarck, 1798) 16 143 109,5 47.4
Suborder OEGOPSIDA Orbigny, 1845
Family Enoploteuthidae Pfeffer, 1900
Subfamily Enoploteuthinae Pfeffer, 1900
Genus Abralia Gray, 1849
Abralia veranyi (Ruppell, 1844) 310 ES6
Family Onychoteuthidae Gray, 1847
Genus Onychoteuthis Lichtenstein, 1818
Onychoteuthis banksii (Leach, 1817) 358 358
Genus Ancistroteuthis Gray, 1849
Ancistroteuthis lichtensteinii (Férussac, 1839) 562 562
Family Histioteuthidae Verrill, 1881
Genus Histioteuthis Orbigny, 1840
Histioteuthis bonnellii (Férussac, 1834) 53] 645 565.5 53.33
Histioteuthis reversa (Verrill, 1880) 383 652 565.3 89.4
Family Ommastrephidae Steenstrup, 1857
Subfamily Illicinae Posselt, 1890
Genus /llex Steenstrup, 1880
Illex coindetii (Verany, 1839) 60 NES 128.7
36
GIORDANO ET AL.: Cephalopod assemblages along the Southern Tyrrhenian Sea
Table I. Continuación.
Tabla I. Continuation.
Genus Jodaropsis Girard, 1890
Min Max Media SD
Todaropsis eblonae (Ball, 1841) 61 0135.3235] 152.2
Sufamily Todarodinae Adam, 1960
Genus Jodarodes Steenstrup, 1880
lodarodes sagittatus (Lamarck, 1798) 114 593 438.5
Order OCTOPODA Leach, 1818
Suborder INCIRRATA Grimpe, 1916
154.69
Family Octopodidae Orbigny in Férussac 8. Orbigny, 1840
Subfamily Octopodinae Orbigny in Férussac 8. Orbigny, 1840
Genus Octopus Cuvier, 1798
Octopus vulgaris Cuvier, 1798
Octopus salutii Vérany, 1836
Genus Scaeurgus Troschel, 1857
27 114 62.86 25.85
MIL ESTA 10.87
Scaeurgus unicirrhus (Delle Chiaje in
Férussac 8. Orbigny, 1840) 00 549 1747 110.8
Genus Pteroctopus P. Fischer, 1882
Pteroctopus tetracirrhus (Delle Chiaje, 1830) UA A 147.83
Subfamily Eledoninae Grimpe, 1921
Genus Eledone Leach, 1817
Eledone moschata (Lamarck, 1798) 18 143 115.4 92.82
Eledone cirrhosa (Lamarck, 1798) IDEA ZOO OY
and Loligo vulgaris. In the shelf group
(Table lla) Illex coindetíí and Loligo media
prevailed, followed by Sepia orbignyana,
Sepia elegans and Scaeurgus unicirrhus.
The slope group (Table Ilb) was charac-
terized by Todaropsis eblanae. The Multi-
dimensional Scaling analysis (30%:
Stress 0.15) also showed four groups,
well discriminated by depth (Fig. 2).
There is also a midslope group (Fig. 3),
limited to a few hauls, in which Todaro-
des sagittatus was the prevalent species.
Analysing the univariate indices
(Table IMM), elaborated for the four
groups, the highest biodiversity was
observed in the shelf. In this macrostra-
tum, the highest values of Margalef and
Shannon-Wiener indices were recorded
as well as the highest number of species
and individuals. The highest values of
H' found at this bathymetrical level can
be explained by the relative homogene-
ity in abundance of the most frequent
species.
However, a trend was observed
according to the depth as evidenced also
by the cumulative abundance curve, in
which the shelf group showed the
highest biodiversity and the midslope
the lowest. In this last group in fact both
d and H' values recorded the lowest
values (0.973 and 1.063, respectively).
Finally the Evenness (J') values
ranged from 0.616 to 0.661. The higher
value was recorded for the last cluster.
Also in the second cluster this value is
quite high.
DISCUSSION AND CONCLUSIONS
The 25 cephalopod species distrib-
uted in 8 families recorded in this study
account for 42.4% of species reported
from the Mediterranean (MANGOLD AND
BOLETZKY, 1988; GUERRA, 1992). Absent
were certain species of the Sepiolidae
family and pelagic species. In compari-
37
Iberus, 23 (1), 2005
Table Ia. Indicator species and related data from the SIMPER analysis. Abbreviations: AA, average
abundance, contribution of each species in each group; AT, average term, average Bray-Curtis con-
tribution of each species to distinguish between groups. The ratio (AT/SD), the percentage contri-
bution to the separation (%), and the cumulative percentage (Cum %) are shown for each group
comparison.
Tabla lla. Especies indicadoras y datos relacionados, según el análisis SIMPER. Abreviaturas: AA,
abundancia promedio, contribución de cada especie en cada uno de los grupos; Average Term (AT), con-
tribución promedio de Bray-Curtis de cada especie en la diferenciación de los grupos. Cada grupo viene
definido, además, por la relación AT/SD (ratio), la contribución porcentual (%), y el porcentaje acumu-
lativo de cada especie (Cum %).
Average dissimilarity: 84.1 inshore AA shelf AA
l. vulgaris 106.88 0.90
[. coindetii 0.58 26.62
L. vulgaris 18.88 0.02
S. elegans 0.05 0.41
S. orbignyana 0.00 8.86
S. unicirrhus 0.00 0.29
E. cirrhosa 0.05 0.13
Average dissimilarity: 99 inshore AA shelf AA
L. media 106.88 + 0.00
L. vulgaris | 18.88 0.00
T. eblanae 0.00 0.46
P tetracirrhus 0.00 2.74
0. vulgaris 0.09 0.00
S. orbignyana 0.00 2.89
l. coindetii 0.04 1.67
E. moschato 2.00 0.19
Average dissimilarity: 92.7 inshore AA shelf AA
L. media 21.43 0.00
l. coindetii 26.62 1.67
S. elegans 757 0.00
S. orbignyana 8.86 2.89
T. eblanae 1.14 10.56
S. unicirrhus 6.54 0.85
E. cirrhosa 3.30 0.67
P tetracirhus 0.22 2.14
son, TURSI AND D'ONGHIA (1992) caught
24 species of cephalopods in the lonian
Sea, D'ONGHIA ET AL. (1995) 29 species
in the North Aegean Sea, QUETGLAS ET
AL. (2000) found 30 species in the
Balearic Sea, SÁNCHEZ ET AL. (1998)
found 36 species in the northern
Tyrrhenian Sea and 47 in the Catalan
Sea and SORIANO ET AL. (2003) found 18
species in the upper continental slope of
Alicante (western Mediterranean).
38
AT Ratio % Cum (%)
34.64 1.39 41.18 41.18
0.50 0.67 13.74 54.92
0.47 1.03 13.22 68.13
0.28 0.71 7.70 15.83
5.69 0.53 6.17 82.6
0.21 0.6 5,45 88.05
0.13 0.6 3.57 91.62
AT Ratio % Cum (9)
47.82 1.48 48.3 48.3
0.80 1.07 19.25 67.56
9.70 0.64 98 17.35
3.8] 0.67 3.05 81.2
0.13 0.63 3.17 84.37
2.68 0.32 1 87.08
2.43 0.56 2.46 89.54
2.37 0.76 2.39 91.93
AT Ratio % Cum (9%)
19.36 1.03 20.89 20.89
17.55 0.82 18.94 39.83
10.85 0.82 11.71 MD
10.51 0.69 11.34 62.88
9.67 0.70 10.43 13.31
117 0.69 8.38 81.69
4.95 0.63 5.34 87.04
3.47 0.83 35 90.79
In previous surveys of the study
area before 1995 (GIORDANO AND
PERDICHIZZI, - 1998), 32. speciesimolk
cephalopods were identified. In general,
a similar cephalopod distribution
pattern was observed from 1994-1995
trawl surveys, but the sampling was
carried out at a different period (in
autumn) and with a different net (with
36 mm of stretched mesh). The species
caught in the previous faunistic list in
the same area were: Sepiola affinis,
GIORDANO ET AL.: Cephalopod assemblages along the Southern Tyrrhenian Sea
Table ITb.
Tabla I1b.
Average dissimilarity: 100 inshore AA midslope AA
L. media 106.88 0
L. vulgaris 18.88 0
Í. sagittatus 0 /
0. vulgaris DS 0
S. orbignyana 0 3.6
E. moschata 2 0
Average dissimilarity: 97.18 inshore AA midslope AA
L. media 21.43 0
Í. coindefii 26.62 0
S. elegans 9.57 0
S. orbignyana 0.86 3.6
Í. sagittatus 0.16 /
S. Unicirrhus 6.54 0.2
E. cirrhosa 3 0
E. moschato 0.22 0
Average dissimilarity: 92.38 inshore AA midslope AA
T. eblanae 10.56 0
/. sagittatus 0.3 /
P tetracirrhus 2.81 0.4
S. orbignyana 2.22 3.6
R. macrosoma 0.19 l
l. coindefii 1.67 0
S. unicirrhus 0.85 0.2
E. cirrhosa 0.67 0
Sepiola ligulata, Sepiola robusta, Sepietta
oweniana, Sepietta neglecta (Sepiolidae),
Chiroteuthis veranii (Chiroteutidae) and
Bathypolypus sponsalis (Octopodidae).
On-board observation of catches indi-
cated that the demersal fauna sampled
is strongly influenced by depth. The
AT Ratio % Cum (%)
50.79 1.52 50.79 50.79
ES 1.08 21.3 72.09
9.23 0.85 9.23 81.32
3.63 0.62 3.63 84.94
3.5] 0.42 3.5] 88.46
2.61 0.74 2.61 91.07
AT Ratio % Cum (%)
20.96 1.05 21.57 ES
18.87 0.81 19.42 40.98
11.87 0.84 12.21 53.19
11.6 0.72 11.93 65.13
8.66 0.99 8.9] 74.04
8.4] 0.68 8.66 82.7
5.64 0.61 5.8 88.5
2.65 0.64 Di 91.22
AT Ratio % Cum (0)
3805 0.95 DS IS
NDS 18 23.33 48.5
11.48 0.96 12.42 60.92
10.36 0.57 11.21 712.14
6.78 0.6 7.34 79.48
5.67 0.6 6.14 85.61
3.49 0.57 3.78 89.39
2.93 0.46 35 92.56
depth range of each species with mean
depth and standard deviation are
reported in Table I. Eledone cirrhosa (32-
584 m), Scaeurgus unicirrhus (38-549 m),
Todaropsis eblanae (61-613 m), Sepia
elegans (40-432 m), Loligo media (18-383
m) and Illex coindeti (60-593 m) showed
Table III. Univariate diversity indexes for each cluster. Abbreviations: S, number of species; N,
number of specimens; d, richness of Margalef; J, Pielow's evenness; H”, Shannon-Wiener diversity.
Tabla UI Índices univariados de diversidad de cada grupo. Abreviaturas: S, número de especies; N,
número de ejemplares; d, riqueza según Margalef; J, uniformidad según Pielou; H”, diversidad de
Shannon- Wiener.
Cluster S N
inshore 8 709
shelf 15 2267
slope 12 529
midslope 5 61
d J H
1.066 0.616 1.28
1.812 0.652 1.765
1.754 0.019 1.539
0.973 0.661 1.063
9
Iberus, 23 (1), 2005
Stress: 0.15
MX 18-80 m
V 196-283 m
O 204-600 m
<> 366-585 m
Figure 2. Multidimensional scaling ordination analysis for the five surveys.
Figura 2. Análisis de ordenación de escalamiento multidimensional para las cinco campañas.
a wide distribution range, extending up
to the continental slope.
During the present study four main
cephalopod groups were defined:
inshore (10-100 m), shelf (101-200 m),
slope (201-600 m) and midslope (350-
600 m). Loligo media was the main
species for the first group, Illex coindetit
for the second, Todaropsis eblanae for the
BIBLIOGRAPHY
BELCARI, P., BIAGI, F., BIAGI, V., DE RANIERL S.,
MORI, M. AND PELLEGRINI, D., 1986. Obser-
vations about Cephalopods distribution in the
north Tyrrhenian sea. Rapport de la Commis-
sion Internationale pour l'exploration scientifi-
que de la Mer Méditerranée, 30 (2): 246.
BELCARI, P. AND SARTOR, P., 1993. Bottom traw-
ling teuthofauna of the North Tyrrhenian
sea. Scientia Marina, 57 (3): 145-152.
BELCARI, P., SARTOR, P. AND DE RANIERL S., 1998.
I cefalopodi nello sbarcato commerciale con
reti a strascico nel Mar Tirreno settentrionale.
Biologia Marina Mediterranea, 5 (2): 318-325.
BELLO, G., 1986. Catalogo dei molluschi cefa-
lopodi viventi nel Mediterraneo. Bollettino
Malacologico, 22: 197-214.
BELLO, G., 1990. The Cephalopods fauna of the
Adriatic. Acta Adriatica, 31: 275-291.
BELLO, G. AND ARCULEO, M., 1994. I cefalopodi
dei fondi strascicabili del Golfo di Caste-
llammare. Bollettino Malacologico, 30 (5-9):
173-181.
40
third group and Todarodes sagittatus for
the last group.
ACKNOWLEDGEMENTS
We are grateful to Dr. Patrizia Jereb
for helpful comments on the manu-
script.
BELLO, G. AND MOTOLESE, G. 1983. Sepiolids
from the Adriatic Sea (Mollusca, Cephalo-
poda). Rapport de la Commission Internatio-
nale pour l'exploration scientifique de la Mer
Méditerranee, 28 (5): 281-282.
BERDAR, A., POTOSCHI, A., CAVALLARO, G., CA-
VALIERE, A. AND LI GRECI, F., 1983. Su alcuni
cefalopodi spiaggiati e pescati nello Stretto
di Messina. Memorie di Biologia Marina ed Oce-
anica, 13 (2): 115-127.
BERDAR, A. AND CAVALLARO, G., 1975. Ulte-
riore contributo alla conoscenza dei Cefalo-
podi spiaggiati lungo la costa siciliana dello
Stretto di Messina. Memorie di Biologia Marina
ed Oceanica, 5 (5):121-138.
BERTRAND, J. A., GIL DE SOLA, L., PAPACONS-
TANTINOU, C., RELINI, G. AND SOUPLET, A.,
2002. An international bottom trawl in the
Mediterranean: the MEDITS programme.
1995 ICES Annual Science Conference, CM
1997 /y:03: 16 pp.
GIORDANO ET AL.: Cephalopod assemblages along the Southern Tyrrhenian Sea
BERTULETTI, M. AND ORSI RELINI, L., 1986. No-
tes on the presence and distribution of the Se-
piolinae in the Ligurian Sea. Rapport Com-
mission Internationale pour l'exploration Scien-
tifique de la Mer Méditerranée, 30 (2): 247.
BIAGI F., SARTOR, P., ARDIZZONE, G., BELCARI,
P., BELLUSCIO, A. AND SERENA, F., 2002.
Analysis of demersal assemblages off the
Tuscany and Latium coasts (north-western
Mediterranean). Scientia Marina, 66 (supp!l. 2):
233-242.
BONNET, M., 1973. Les céphalopodes capturés
par la Thalassa en Novembre 1969 au large
de la Libye et de la cóte orientale tunisienne.
Revue des travaux de l'Institut des Péches Ma-
ritimes, 37 (2): 253-256.
BONNET, M., 1965. Remarques sur l'ecologie
des Céphalopodes des cotes de Sardegne et
de Corse capturés par la “Thalassa” en no-
vembre et dicembre 1963. Rapport de la Com-
mission Internationale pour l'exploration scien-
tifique de la Mer Méditerranee, 18: 234-240.
BRAY, J. R. AND CURTIS, J. T., 1957. An ordina-
tion of the upland forest communities of the
Southern Wisconsin. Ecological Monographs,
27: 325-349
CASALI, P., MANFRIN PICCINETTI, G. AND SORO,
S., 1998. Distribuzione di cefalopodi in alto
e medio Adriatico. Biologia Marina Medite-
rranea, 5 (2) : 307-317.
CLARKE, K. R., 1993. Non parametric multiva-
riate analyse of changes in community struc-
ture. Australian Journal of Ecology, 18: 117-
143. ,
CLARKE, K. R. AND WARWICK, R. M., 1994.
Change in marine communities: an approach to
statistical analysis and interpretation. Plymouth
Marine Laboratory, Plymouth, 144 pp.
CuUccU, D., ADDIS, P., DAMELE, F. AND MANFRIN
PICCINETTI, G., 2003. Primo censimento de-
lla teutofauna dei mari circostanti la Sar-
degna. Biologia Marina Mediterranea, 10
(2):795-798.
D'ONGHIA, G., MATARRESE, A., TURSI, A., MAIO-
RANO P. AND PANETTA, P., 1995. Osserva-
zioni sulla teutofauna epi e mesobatiale nel
Mediterraneo Orientale (Mar lonio e Mar
Egeo). Biologia Marina Mediterranea, 2 (2): 199-
204.
FIORENTINI, L., COsIMI, G., SALA, A., LEONORI,
I. AND PALOMBO, V., 1999. Efficiency of the
bottom trawl used for Mediterranean inter-
national trawl survey (MEDITS). Aquatic Li-
ving Resources, 12 (3): 187-205.
GAMULIN-BRIDA, H. AND ILIJANIC, V., 1972. Con-
tribution a la connaissance des Céphalopodes
del'Adriatique. Acta Adriatica, 14 (6) : 12 pp.
GIORDANO, D. AND CARBONARA, P., 1999. Nota
sulla distribuzione di molluschi cefalopodi
nel Tirreno centro-meridionale. Biologia Ma-
rina Mediterranea, 6 (1): 573-575.
GIORDANO, D. AND PERDICHIZZI, F., 1998. Os-
servazioni sulla teutofauna nel Tirreno me-
ridionale da Capo Suvero (Calabria) a Capo
S. Vito (Sicilia). Biologia Marina Mediterranea,
5 (1): 807-810.
GONZÁLEZ, M. AND SÁNCHEZ, P., 2002. Cepha-
lopod assemblages caught by trawling along
the Iberian Peninsula Mediterranean coast.
Scientia Marina, 66 (Suppl. 2): 199-208.
GUERRA, A., 1992. Mollusca Cephalopoda. En:
Fauna Ibérica, vol. 1. Ramos, M. A. et al. (Ed.).
Museo Nacional de Ciencias Naturales, CSIC,
Madrid, 327 pp.
GUESCINL, A. AND PICCINETTI MANFRIN, G., 1986.
Distribuzione di Sepiolidi nell'Adriatico cen-
tro-settentrionale. Nova Thalassia, 8, Suppl. 3,
pp. 513-518.
JEREB, P. AND RAGONESE, S., 1991. On the asso-
ciation of the squid Illex coindetíi (Mollusca:
Cephalopoda) with the target species traw-
led in the Sicilian Channel. Note Tecniche e Re-
prints — Istituto di Tecnología della Pesca e del
Pescato, 32: 3 p.
JEREB, P. AND RAGONESE, S., 1994. The Medite-
rranean teuthofauna: Towards a biogeo-
graphical coverage by regional census. II.
Strait of Sicily. Bollettino Malacologico, 30 (5-
9): 161-172.
KATAGAN, T., SALMAN, A. AND BENLI, H. A.,
1993. The cephalopod fauna of the Sea of
Marmara. Israel Journal of Zoology, 39: 255-
261.
KNUDSEN, J., 1981. Three Sepiolidae to the
eastern Mediterranean (Mollusca: Cepha-
lopoda). Argamon, Israel Journal of Malaco-
logy, 7: 45-50.
LUMARE, F., 1968. Ricerche sui Cefalopodi
dell'alto Tirreno. Commissione Studi Oceano-
grafici e di Limnologia, Programma di ricerca
sulle risorse Marine e del fondo Marino, C. N. R.
B., 24: 5-29.
LUMARE, F., 1970. Nota sulla distribuzione di al-
cuni cefalopodi del mar Tirreno. Bollettino
Pesca Piscicoltura e Idrobiologia, 25 (2): 313-
344.
MANGOLD, K. AND BOLETSKY, S., 1988. Medite-
rranean Cephalopod Fauna. In: M. R. Clarke
and E. R. Trueman (eds.), Ethology and Ne-
ontology of Cephalopods, The Mollusca, 12:
315-330. Academic Press, San Diego.
MANGOLD-WIRz, K., 1963. Biologie des Cep-
halopodes benthiques et nectoniques de la
Mer Catalane. Vie et Milieu, 13: 1-285.
MANNINI, P. AND VOLPL C., 1989. Nota sulla pre-
senza e distribuzione di alcuni cefalopodi
del Tirreno settentrionale. Oebalia, 25-2, N. S.:
693-701.
OrsI RELINI, L., 1995. Notes on midwater co-
llections of Heteroteuthis dispar (Cephalopoda,
Sepiolidae). Bulletin de l'Institut océanograp-
hique Monaco, n. special 16 : 63-72.
41
Iberus, 23 (1), 2005
ORSI RELINL, L. AND BERTULETTI, M., 1989. Se-
piolinae (Mollusca, Cephalopoda) from the
Ligurian Sea. Vie et Milieu, 39 (3/4):183-
190.
PANETTA, P., D'ONGHIA, G., TURSI, A. AND CE-
CERE, E., 1986. Il ruolo dei Molluschi Cefalo-
podi nella valutazione delle risorse marine
dello Jonio (campagne di pesca 1985). Nova
Thalassia, 8, Suppl. 3:523-527.
PASTORELLI, A. M., VACCARELLA, R. AND DE
Z10, V., 1995. Distribuzione dei Cefalopodi
commerciali del basso Adriatico. Biologia Ma-
rina Mediterranea, 2 (2): 501-502.
QUETGLAS, A, CARBONELL, A. AND SÁNCHEZ,
P., 2000. Demersal continental self and up-
per slope cephalopods assemblages from
the Balearic Sea (North-Western Medite-
- rranean). Biological aspects of some deep-
sea species. Estuarine, Coastal and Shelf
Science, 50: 739-749.
RAGONESE, S., JEREB, P. AND DI STEFANO, L.,
1992. Occurrence of the unicorn octopus Sca-
eurgus unicirrhus in the Sicilian Channel. L
Spatial distribution and abundance. II: Bathy-
metric distribution. Rapport Commission In-
ternationale pour l'exploration Scientifique de la
Mer Méditerranée, 33: 306-307.
RELINI, G., DE ROSSI, C., PIANO, T. AND ZAMBONI
A., 2002. Osservazioni sui Cefalopodi dei
fondi strascicabili liguri. Biologia Marina Me-
diterranea, 9 (1): 792-795.
RELINI, G. AND ORSI RELINI, L., 1984. The role
of cephalopods in the inshore trawl fishing
of the Ligurian Sea. Oebalia, 10: 35-58.
RESTUCCIA, V. AND RAGONESE, S., 1986. Cefa-
lopodi dei fondali strascicabili della Sicilia
nord-orientale: nota preliminare. Nova Tha-
lassia, 8, Suppl. 3:543-549.
RUBY, G. AND KNUDSEN, J., 1972. Cephalopoda
from the Eastern Mediterranean. Israel Jour-
nal of Zoology, 21: 83-97.
SALMAN, A., KATAGAN, T. AND BENLI, H. A.,
2002. Cephalopod Fauna of the Eastern Me-
diterranean. Turkish Journal of Zoology, 26:
47-52.
SALMAN, A., KATAGAN, T. AND BOLETZKY, S. V.,
1999. New cephalopod molluscs in the Eas-
tern Mediterranean: previously unnoted spe-
cies or Lessepsian migrants? Vie et Milieu,
49 (1): 11-17.
SÁNCHEZ, P., BELCARI, P. AND SARTOR, P., 1998.
Composition and spatial distribution of cep-
halopods in two north-western Mediterra-
nean areas. South African Journal of Marine
Science, 20: 17-24.
42
SARTOR, P., BELCARI, P., CARBONELL, A., GON-
ZÁLEZ, M., QUETGLAS, A. AND SÁNCHEZ, P.,
1998. The importance of cephalopods to
trawl fisheries in the western Mediterra-
nean. South African Journal of Marine
Science, 20: 67-72.
SORIANO, S., SÁNCHEZ LIZASO, J. L. AND GUE-
RRA, A., 2003. Cephalopod species collected
in the upper continental slope off Alicante
(Western Mediterranean). Iberus, 21: 57-66.
SPEDICATO, M. T., MINETTI, D., REBORA, F., MA-
TRICARDI, G. AND WURTZ, M. 1990. Distribu-
zione di Cefalopodi Decapodi nel medio-
basso Tirreno. Oebalia, Suppl., 26 (2): 761-766.
TSERPES, G., PERISTERAKI, P., POTAMIAS, G. AND
TSIMENIDES, N., 1999. Species distribution in
the southern Aegean sea based on bottom-
trawl surveys. Aquatic Living Resources, 12
(3): 167-175.
TursI, A. AND D'ONGHIA, G., 1992. Cephalopods
in the lonian Sea (Mediterranean sea). Oeba-
lía, 18: 25-43.
UNGARO, N., MARANO, C. A., MARSAN, R., MAR-
TINO, M., MARZANO, M. C., STRIPPOLI, G. AND
VLORA, A., 1999. Analysis of demersal spe-
cies assemblages from trawl surveys in the
South Adriatic sea. Aquatic Living Resources,
12 (3): 177-185.
UnsaL, I., UNSAL, N., ERK, M. H. AND KABA-
SAKAL, H., 1999. Demersal cephalopods from
the Sea of Marmara with remarks on some
ecological characteristics. Acta Adriatica, 40:
105-104.
VILLANUEVA, R., 1995. Distribution and abun-
dance of bathyal sepiolids (Mollusca: Cep-
halopoda) in the northwestern Mediterra-
nean. Bulletin de l'Institut océanographique,
Monaco, n* special 16: 19-26.
VOLPI, C., AUTERI, R., BORRI, M. AND MANNINI,
P., 1990. Distribution and reproduction of
Sepia elegans in the North Tyrrhenian Sea.
Rapport Commission Internationale pour l'ex-
ploration Scientifique de la Mer Méditerranée, 32
(1): 244.
WURTZ, M., 1979. I Cefalopodi raccolti in Mar
Ligure durante la campagna di pesca batiale
1977/1978. Atti della Societá Toscana di Scienze
Naturali, memorie, ser. B, 86: 374-377.
WURTZ, M., MATRICARDI, G. AND BELCARI, P.,
1992. Distribution and abundance of the Oc-
topus Eledone cirrhosa in the Tyrrhenian sea,
central Mediterranean. Fishery Research, 13 (1):
53-66.
O Sociedad Española de Malacología Iberus, 23 (1): 43-48, 2005
Onchidoris neapolitana (Delle Chiaje, 1844) (Gastropoda:
Nudibranchia: Onchidorididae): una nueva especie de
molusco para la fauna andaluza
Onchidoris neapolitana (Delle Chiaje, 1844) (Gastropoda:
Nudibranchia: Onchidorididae): a new molluscan species for the
Andalousian fauna
Alma SÁNCHEZ-SANTOS*
Recibido el 6-VI1-2004. Aceptado el 24-1-2005
RESUMEN
En este trabajo se redescribe el doridoideo Onchidoris neapolitana (Delle Chiaje, 1844)
a partir de varios ejemplares recolectados en la zona del Estrecho de Gibraltar. Este
hallazgo constituye la primera cita de esta especie en el litoral andaluz y amplía su área
de distribución hacia el oeste.
ABSTRACT
In this paper, the doridoidean nudibranch Onchidoris neapolitana (Delle Chiaje, 1844) is
redescribed on the basis of several specimens collected from the Strait of Gibraltar. This
record constitutes the first one of this species from the Andalousian littoral and extends the
known range of this species to the western.
PALABRAS CLAVE: Nudibranchia, Onchidoris neapolitana, Estrecho de Gibraltar, Sur de España.
KEY WORDS: Nudibranchia, Onchidoris neapolitana, Strait of Gibraltar, Southern Spain.
INTRODUCCIÓN
El género Onchidoris está represen-
tado en el litoral peninsular ibérico por
nueve especies, cuya distribución cono-
cida en dicho ámbito geográfico es reco-
gida por CERVERA, TEMPLADO, GARCÍA-
GÓMEZ, BALLESTEROS, ORTEA, GARCÍA,
Ros Y LUQUE (1988).
Una de estas especies es Onchidoris
neapolitana, descrita por vez primera en
las costas de Italia (localidad tipo
Nápoles) y con una distribución medite-
rránea. En el mar Mediterráneo, además
de la costa italiana (golfo de Nápoles,
SCHMEKEL, 1968; SCHMEKEL Y PORT-
MANN, 1982), las otras citas conocidas
proceden de las costas de Francia
(Banyuls, PRUVOT-FoL, 1951) y España
(Ros, 1975, 1978, 1985; Ros Y ÁLTIMIRA,
1977; PEREIRA Y BALLESTEROS, 1979; ALTI-
MIRA, HUELIN Y ROs, 1981; ORTEA Y
BALLESTEROS, 1982; HUELIN Y Ros, 1984;
BALLESTEROS, 1985), donde todas las
referencias de esta especie restringen su
área de distribución al litoral catalán.
Según CERVERA ET AL. (1988), el litoral
catalán constituye el límite más occiden-
* Urb. San García, C/ Trucha, 85. 11207 Algeciras (Cádiz), Spain; e-mail: almasanchez830 hotmail.com
Á3
Iberus, 23 (1), 2005
conducto uterino
vagina conducto
deferente
ampolla
hermafrodita
ampolla
na B hermafrodita
próstata Y glándula femenina
receptáculo
seminal
bolsa copulatriz
3
Figura 1. Anatomía externa de un ejemplar de 8 mm de Onchidoris neapolitana. A: vista dorsal; B:
vista ventral; C: detalle de un rinóforo; D: disposición de las hojas branquiales y tubérculos intra-
branquiales. Figura 2. Fotografía al microscopio electrónico de barrido de la rádula de un ejemplar
de 7 mm (fijado). Escala: 30 pm. Figura 3. Sistema reproductor de un ejemplar de 8 mm (fijado).
Figure 1. External anatomy of one specimen of 8 mm of Onchidoris neapolitana. A: dorsal view; B:
ventral view; C: detail of a rinophore; D: detail of the arrangement of the branchial leaves and intra-
branchial tubercles. Figure 2. Scanning electron micrographs of the radula of one specimen of 7 mm long
(preserved). Scale bar: 30 ym. Figure 3. Reproductive system of' one specimen of. 8 mm (preservea).
1 mm
tal conocido de su área de distribución.
Así, Ros (1975) cita por primera vez
para el litoral peninsular ibérico a O.
neapolitana como Lamellidoris (Atalodoris)
neapolitana (Delle Chiaje, 1844) en base a
dos ejemplares recolectados en Cada-
qués e Islas Medas (Gerona), asociados
al briozoo incrustante Schizobrachiella
sanguinea (Norman, 1868). Posterior-
mente, PEREIRA Y BALLESTEROS (1979)
citan nuevamente esta especie como L.
(A.) neapolitana en base a un ejemplar
recolectado en Tossa de Mar (Gerona)
sobre el alga rodofícea Sphaerococcus
coronopifolius Stackhouse, 1797, no apor-
tando ninguna información anatómica y
cromática. Años más tarde, ORTEA Y
44
BALLESTEROS (1982), en su estudio
monográfico del género Onchidoris,
incluyen una descripción de la anatomía
externa y coloración de O. neapolitana a
partir de un ejemplar de 9 mm de longi-
tud, recolectado también en Tossa de
Mar y sobre el alga rodofícea Sphaerococ-
cus coronopifolius. En este mismo trabajo,
los autores consideran dudosa la cita de
Ros (1975), debido a que los caracteres
anatómicos externos en base a los cuales
se llevó ha cabo la diagnosis diferencial
específica, son del todo genéricos.
En el océano Atlántico, esta especie
ha sido citada en Gran Bretaña por
PruvoT-FoL (1954) y España (Asturias)
(ORTEA, 1976). Sin embargo, las diagno-
SÁNCHEZ-SANTOS: Redescripción de Onchidoris neapolitana
sis específicas del material en los que
ambos registros atlánticos fueron
basados han sido materia de controver-
sia. Así, mientras que ORTEA Y BALLES-
TEROS (1982) consideraron la cita de
PrRUuvoT-FoL (1954) como muy dudosa,
CATTANEO-VIETTI Y THOMPSON (1989),
basándose en ella, incluyeron a O. neapo-
litana entre las especies con distribución
atlanto-mediterránea. En cuanto a la
presencia de O. neapolitana en la costa
atlántica de la Península Ibérica, ORTEA
Y URGORRI (1979) y BALLESTEROS (1985),
tomando como referencia la cita de
ORTEA (1976), consideraron también
para esta especie una distribución
atlanto-mediterránea. Sin embargo,
ORTEA Y BALLESTEROS (1982), en su revi-
sión del género Onchidoris en el litoral
ibérico, establecen como únicas referen-
cias válidas las procedentes de la costa
mediterránea española.
En este trabajo se redescribe esta
especie a partir de ejemplares proceden-
tes del Sur de España (Estrecho de
Gibraltar), así como algunos datos bioló-
gicos inherentes a su hábitat y la puesta.
MATERIAL Y MÉTODOS
En junio de 2003 se recogieron varios
ejemplares en la zona del Estrecho de
SISTEMÁTICA
Gibraltar que atribuimos a Onchidoris
neapolitana y que constituyen el objeto
del presente trabajo. Se redescribe la
especie a partir de dichos ejemplares y
se aportan algunos datos biológicos
referidos a su hábitat y a la puesta.
Los animales, tras 24 horas de con-
gelación en agua de mar, fueron preser-
vados en etanol al 96%. Para el estudio
anatómico interno, dos ejemplares
fijados, de 7 y 8 mm respectivamente,
fueron disecados por incisión dorsal
prestando especial atención a la morfo-
logía del sistema reproductor y de la
rádula. La genitalia fue examinada y
dibujada bajo un microscopio óptico
con cámara clara. Para estudiar la mor- :
fología radular, el aparato bucal fue
extraído y mantenido en una solución
de KOH al 10% con el objeto de disol-
ver el tejido orgánico circundante. La
rádula, así aislada, fue sumergida en
agua, secada y finalmente montada
para su examen con microscopía elec-
trónica de barrido.
El material examinado se encuentra
depositado en el Natural History
Museum of Los Angeles County
(LACM), en el Departamento de Biolo-
gía de la Universidad de Cádiz (UCA) y
en el Departamento de Biología Animal
y Ecología de la Universidad de
Granada (UGR).
DORIDOIDEA Pelseneer, 1894
Familia ONCHIDORIDIDAE Alder y Hancock, 1845
Género Onchidoris Blainville, 1816
Onchidoris neapolitana (Delle Chiaje, 1844) (Figs. 1-3)
Idalia neapolitana Delle Chiaje, 1844, Napoli 8: appendice prima tomo 2: 5-12 [Localidad tipo:
Nápoles]
Anatomía externa: Cuerpo muy apla-
nado. El noto es espiculoso, ovalado y
sobresale ampliamente al pie (Fig. 14).
De los tres tipos de disposición espicu-
lar característicos del género, sólo se
pudo apreciar la disposición radial, en
el margen del noto, y la transversal en la
zona central del mismo. La oblicua no
pudo ser observada. La superficie dorsal
del noto presenta papilas digitiformes
(Fig. 14). Las de la zona central son más
cortas que las laterales y marginales,
proyectándose estas últimas más allá
del margen notal claramente, mientras
que del área intrabranquial son más
cortas que las laterales y marginales. El
45
Iberus, 23 (1), 2005
número de papilas presentes en el área
intrabranquial oscila entre 5 y 8. El
número de laminillas rinofóricas oscila
entre 6 y 7 (Fig. 1C). Orificios rinofóricos
lisos y sin vaina. La branquia está cons-
tituida por hojas branquiales unipinna-
das alineadas alrededor del ano for-
mando un óvalo abierto posteriormente
(Fig. 1D). El tamaño de las hojas decrece
desde la central hasta las posteriores. El
número de hojas branquiales oscila
entre 12, en ejemplares de 5, 6 y 7 mm
de longitud, y 14 en un ejemplar de 9
mm de longitud.
Coloración: El noto es de color rojo-
anaranjado con pequeñas manchas
pardas de geometría irregular, más den-
samente concentradas en la zona central
del noto. En el borde del noto se apre-
cian bandas de color pardo grisáceo en
disposición radial con manchas naranja
intercaladas entre ellas. Las papilas son
de color pardo claro translúcido. Las
áreas que rodean los orificios rinofóricos
y branquial están despigmentadas. Los
rinóforos son gris oscuro, mientras que
las branquias son de color naranja. La
superficie del área intrabranquial está
despigmentada con papilas ligeramente
más claras que en el resto del dorso. El
pie y el velo bucal son naranja claro.
Anatomía interna: La rádula es bise-
riada, con ausencia de diente raquídeo.
El diente lateral más interno (Fig. 2) es
de gran tamaño, tiene una placa basal
cuadrangular grande con el borde inte-
rior curvado y orientado hacia fuera, el
borde exterior presenta una cúspide
prominente y alargada en cuyo borde
interno presenta 7-8 dentículos bien
desarrollados. Asimismo, destaca la pre-
sencia de una prolongación posterior
por debajo de la cúspide. El diente más
externo está formado por una placa
basal pequeña y cóncava en cuyo borde
inferior posee una pequeña cúspide
rudimentaria (Fig. 2). La fórmula
radular de un ejemplar de 7 mm es 22 x
1.1.0.1.1. La armadura labial está com-
puesta por uncinos simples.
El sistema reproductor (Fig. 3) pre-
senta un conducto hermafrodita que se
continua en una ampolla hermafrodita
pequeña y curvada. El conducto defe-
46
rente es alargado y no presenta región
prostática morfológicamente diferen-
ciada, desembocando en el atrio genital.
El pene es inerme. El conducto vaginal,
más corto y delgado que el conducto
deferente, conecta con una bolsa copula-
triz esférica. El receptáculo seminal tiene
forma de saco curvado y se conecta a la
vagina cerca de la bolsa copulatriz. La
bolsa copulatriz, el receptáculo seminal
y la ampolla hermafrodita son de
tamaño similar. Un corto y muy delgado
conducto uterino conecta directamente
con la bolsa copulatriz en un punto
adyacente a la conexión de esta con la
vagina.
Discusión: La coloración y la anato-
mía externa de los ejemplares del Estre-
cho de Gibraltar son muy similares a las
que muestran SCHMEKEL Y PORTMANN
(1982) en los ejemplares recolectados en
el golfo de Nápoles. Uno de los ejempla-
res estudiados por dichos autores pre-
senta una rádula con un diente lateral
interno con 4-6 dentículos. Las diferen-
cias respecto al número de dentículos de
nuestro material probablemente se
deban a una cierta variabilidad en este
carácter. Asimismo, a nivel del sistema
reproductor hemos observado diferen-
cias entre ambos materiales respecto al
tamaño y la forma del receptáculo
seminal y la bolsa copulatriz, así como
la ausencia de un conducto uterino cla-
ramente definido en el esquema que
presentan SCHMEKEL Y PORTMANN (1982,
pág. 118, fig. 7.28a). Sin embargo, el
esquema de estos autores es una repre-
sentación idealizada del sistema repro-
ductor, y no un estudio morfológico
detallado. Por ello, tales diferencias con
nuestras observaciones no deben consi-
derarse significativas.
Respecto al ejemplar del litoral
catalán descrito por ORTEA Y BALLESTE-
ROS (1982), las semejanzas entre ambos
materiales son grandes. La variación en
el número de laminillas rinofóricas y
hojas branquiales observada en nuestros
ejemplares se debe probablemente a la
variabilidad intraespecífica de la
especie. En cuanto a la coloración, la
única diferencia observada es la presen-
cia en todos los ejemplares del Estrecho
SÁNCHEZ-SANTOS: Redescripción de Onchidoris neapolitana
de Gibraltar de una zona despigmen-
tada alrededor de los orificios rinofóri-
cos y branquial. ORTEA Y BALLESTEROS
(1982) no describen la anatomía interna
de su material, por lo que no hemos
podido compararla con la del nuestro.
De las especies de Onchidoris citadas
en las costas de la Península Ibérica,
únicamente Onchidoris depressa (Alder y
Hancock, 1842) y Onchidoris tridactila
Ortea y Ballesteros, 1982, ambas con dis-
tribución atlántica, comparten con O.
neapolitana la presencia de papilas en su
noto. Sin embargo, desde el punto de
vista del aspecto externo, O. depressa
difiere de esta última por su modelo cro-
mático y disposición en forma de herra-
dura de las hojas branquiales (ORTEA Y
BALLESTEROS, 1982; THOMPSON Y
BROWN, 1984; PICTON Y MORROW, 1994)
y O. tridactila por su diseño cromático y
la presencia de una vaina rinofórica pro-
vista de tubérculos y por diferencias en
la puesta (ORTEA Y BALLESTEROS, 1982).
Desde el punto de vista de la anato-
mía interna, la morfología radular de O.
depressa, O. tridactila y O. neapolitana es
muy similar, si bien, los datos existentes
de estas tres especies, revelan pequeñas
diferencias en el número de dentículos
en el diente lateral más interno. Así, en
O. neapolitana este sería de 4-8 (SCHME-
KEL Y PORTMANN, 1982; presente
trabajo), en O. depressa, sería de 4-5
(THOMPSON Y BROWN, 1984) y en O. tri-
dactila es de 3-4 en el holotipo de la
especie (ORTEA Y BALLESTEROS, 1982). El
segundo diente lateral es idéntico en las
tres especies. Dada la similitud en la
morfología radular, las diferencias
observadas en el número de dentículos
pueden ser debidas a una variación
intra-específica u ontogenética de esta
estructura. Esto último, unido al hecho
de que la captura de O. neapolitana en
aguas del Estrecho de Gibraltar indica
que las tres especies muestran áreas de
distribución solapadas en el Atlántico,
sugieren la posibilidad de que sean
sinónimas. Para aclarar este aspecto
habría que examinar el material tipo de
las tres especies.
En cuanto al sistema reproductor,
estas tres especies no pueden ser com-
paradas ya que el único conocido es el
de O. neapolitana.
Existe otra especie mediterránea no
citada en las costas ibéricas, también con
papilas en su noto, Onchidoris bouvieri
(Vayssiere, 1919). Sin embargo difiere de
O. neapolitana por la presencia de una
espícula en el interior de las proyeccio-
nes papilares y la disposición en círculo
de las hojas branquiales (ORTEA Y
BALLESTEROS, 1982).
En cuanto a la biología de O. neapo-
litana, según la literatura, esta especie
se encuentra asociada a varias especies
de briozoos incrustantes de diversos
géneros (Chorizopora Hincks, 1879;
Cribrilaria Silén, 1941; Escharina Milne-
Edwards, 1836; Microporella Hincks,
1877; Parasmittina Osburn, 1952; Schis-
mopora MacGillivray, 1888; Schizobra-
chiella Canu y Bassler, 1920; Schizoma-
vella Canu y Bassler, 1917; Schizoporella
Hincks, 1877; Smittoidea Osburn, 1952;
Tubulipora Lamarck, 1816) de las que se
alimentaría (Ros, 1975, 1978). Todos
nuestros ejemplares fueron siempre
encontrados asociados a formaciones
del briozoo incrustante Schizobrachiella
sanguinea, sobre el que mostraban una
acusada homocromía. La puesta de
algunos ejemplares pudo ser observada
en el medio siempre depositadas sobre
S. sanguinea, y consistía en una cinta
transparente enrollada en espiral de
dos vueltas con los huevos de color
naranja.
El hallazgo de O. neapolitana en
aguas del estrecho de Gibraltar consti-
tuye la primera cita de esta especie para
el litoral andaluz. Asimismo, en las
colecciones malacológicas del Museo
Nacional de Ciencias Naturales de
Madrid existe un ejemplar de esta
especie (con el n* de catálogo
15.05/804), capturado en el Peñón del
Cuervo (Málaga), el 18 de julio de 1985
(colectado e identificado por José Tem-
plado). Esta nueva adición a la fauna de
gasterópodos opistobranquios del litoral
andaluz supone una considerable
ampliación de su área de distribución,
cuyo límite más occidental en el Medite-
rráneo estaba situado en el litoral
catalán.
47
Iberus, 23 (1), 2005
AGRADECIMIENTOS
Muy especialmente deseo expresar
mi más profunda gratitud al Dr. Angel
Valdés (Natural History Museum of Los
Angeles County, LACM) por su decisiva
ayuda en la realización del estudio ana-
tómico interno y por la revisión crítica
del manuscrito. Asimismo, mi agradeci-
miento a los Drs. Luis Sánchez-Tocino
(Universidad de Granada) y Juan Lucas
BIBLIOGRAFÍA
ALTIMIRA, C., HUELIN, M. F. Y Ros, J. D., 1981.
Molluscs bentónics de les illes Medes (Gi-
rona). I. Sistemática. Butlleti de la Institucio Ca-
talana d'Historia Natural, 47 (Seccio de Zoo-
logia 4): 69-75.
BALLESTEROS, M., 1985. Contribución al conoci-
miento de los Sacoglossos y Nudibranquios (Mo-
llusca: Opisthobranchia). Estudio anatómico, sis-
temático y faunístico de las especies del Medite-
rráneo español. Resumen de la Tesis
Presentada para aspirar al grado de Doctor
en Ciencias Biológicas, Universitat de Bar-
celona. Centre de Publicaciones Intercanvi
Cientific I Extensio Universitaria, 46 pp.
CATTANEO-VIETTI, R. Y THOMPSON, T. E., 1989.
Mediterranean opisthobranch molluscs: a
zoogeographic approach. Bollettino Malaco-
logico 25(5-8): 183-204.
CERVERA, J. L., TEMPLADO, J., GARCÍA GÓMEZ,
J. C., BALLESTEROS, M., ORTEA, J. A., GARCÍA,
F. J., ROS, J. Y LUQUE, A. A., 1988. Catálogo
actualizado y comentado de los opistobran-
quios (Mollusca, Gastropoda) de la Península
Ibérica, Baleares y Canarias, con algunas re-
ferencias a Ceuta y la Isla de Alborán. Iberus,
suplemento 1.: 1-84.
DELLE CHIAJE, S., 1844. Descrizione e notomia
degli animali invertebrati della Sicilia citeriore
osservati vivi negli anni 1822-1830, Napoli 8:
appendice prima tomo 2, pp. 5-12.
HUELIN, M. F. Y Ros, J., 1984. Els molluscs ma-
rins de les Illes Medes, pp. 457-504. In: J. Ros,
I. Olivella, € J. M. Gili (eds.) Els sistemes na-
turals de les Illes Medes, Institut d'Estudis Ca-
talans.
ORTEA, J. A., 1976. Catálogo brevemente comen-
tado de la fauna de moluscos marinos gaste-
rópodos y bivalvos existentes en el estuario
de Villaviciosa. Asturnatura, 3, pp. 109-120.
ORTEA, J. A. Y URGORRI, V., 1979. Una nueva es-
pecie de Onchidoris (Moluscos, opistobran-
quios, Doridáceos) del Norte de Noroeste de
España, Onchidoris cerviñoi n. sp. Cahiers de
Biologie Marine, 20: 507-513
48
Cervera Currado (Universidad de
Cádiz) por sus valiosos comentarios
sobre el manuscrito. Por último, a los
alumnos de doctorado Manuel Caballer
Gutiérrez (Universidad de Cantabria) y
Leopoldo Moro Abad (Museo de Cien-
cias Naturales, Tenerife) por facilitarme
gran parte de la información bibliográ-
fica.
ORTEA, J. A. Y BALLESTEROS, M., 1982. Sobre al-
gunos Onchidoris Blainville, 1816 (Mollusca,
. Opisthobranchia, Doridácea) del Litoral Ibé-
rico. Investigación Pesquera, 46 (2): 239-254.
PEREIRA, F. Y BALLESTEROS, M., 1979. Gasteró-
podos del litoral mediterráneo español. II.
Tossa de Mar. Gerona. Primer Simposio de
Bentos Marino, 223-235 pp.
PIcTON, B. E. Y MORROW, C. C., 1994. A Field
Guide to the Nudibranchs of the British Isles,
Immel Publishing, 143 pp.
PRUVOT FoL, A., 1951. Etude des nudibranches
de la Méditerranée (2e partie). Archives de
Zoologie Experimentale et Generale. Paris. 88 (1):
1-80, pls. 1-4.
PRUVOT FoL, A., 1954. Mollusques Opisthobran-
ches. Faune de France, Paris (Lechevalier) 58:
1-460.
Ros, J. D., 1975. Opistobranquios (Gastropoda:
Euthyneura) del litoral ibérico. Investigación
Pesquera., 39 (2): 269-372.
Ros, J. D., 1978. La alimentación y el sustrato
en los opistobranquios ibéricos. Oecologia
Aquatica, 3: 153- 166.
Ros, J., 1985. Els poblaments d'Opistobranquis
de coves submarines mediterranies: noves da-
des i comentaris sobre llur afinitat faunis-
tica. Butlleti de la Institucio Catalana d'Histo-
ria Natural, 52 (Seccio de Zoologia, 6): 87-94.
Ros, J. D. Y ALTIMIRA, C., 1977. Comunidades
bentónicas de sustrato duro del litoral NE es-
pañol. V. Sistemática de moluscos. Miscelá-
nea Zoológica, 4 (1): 43-45.
SCHMEKEL, R. L., 1968. Ascoglossa, Notaspidea
und Nudibranchia im Litoral des Golfes von
Neapel. Revue Suisse de Zoologie, 75(6): 103-
15:
SCHMEKEL, R. L. Y PORTMANN, A., 1982. Opist-
hobranchia des Mittelmeeres. Nudibranchia und
Sacoglossa. Springer-Velarg. Berlin, 410 pp.
THOMPSON, T. E. Y BROwN, G. H., 1984. Biology
of opisthobranch molluscs, Vol. 2. The Ray So-
ciety, London, 229 pp.
O Sociedad Española de Malacología Iberus, 23 (1): 49-65, 2005
Contribution to the knowledge of the family Caecidae: 16.
Revision of the Caecidae of HEaster Island (Chile)
(Caenogastropoda: Rissooidea Gray J. E., 1847)
Contribución al conocimiento de la familia Caecidae: 16. Revisión
de los Caecidae de la Isla de Pascua (Chile) (Caenogastropoda:
Rissooidea J. E. Gray, 1847)
Bret RAINES* and Mauro PIZZINI**
Recibido el 26-X-2004. Aceptado el 11-11-2005
ABSTRACT
With the exception of two species, members of the family Caecidae from Easter Island have
been previously neglected. Based on type and additional material, a revision of the species
known to date from Easter ls. is herein proposed, with the description of 5 new species:
Caecum rehderi spec. nov., C. heterochromum spec. nov., C. pascuanum spec. nov., C.
rapanviense spec. nov., C. campanulatum spec. nov.
RESUMEN
Con la excepción de dos especies, los miembros de la familia Caecidae de la Isla de
Pascua han sido previamente desatendido. Basado en el tipo y en el material adicional, se
propone aquí dentro, una revisión de las especies conocidas hasta la fecha de la Isla de
Pascua, y incluye la descripción de 5 nuevas especies: C. rehderi esp. n., C. heterochro-
mum esp. n., C. pascuanum esp. n., C. rapanuiense esp. n., C. campanulatum esp. n.
KEY WORDS: Mollusca, Caenogastropoda, Rissooidea, Caecidae, taxonomy, new species, Easter Island,
Western Pacific.
PALABRAS CLAVE: Mollusca, Caenogastropoda, Rissooidea, Caecidae, taxonomia, nuevas especies, Isla de
Pascua, Pacífico Occidental.
INTRODUCTION
Easter Island (Fig. 1) is found in a to-
tally isolated position approximately
3,500 Km from the coast of Chile. From a
zoogeographical point of view, Easter ls.
is in a very peculiar area within the east-
ern Indo-Pacific region, and to the point
that, in 1965, Schilder proposed the Ra-
panuian province as a separate biogeo-
graphical province from the Polynesian
province. The submarine seascape fea-
tures widely scattered corals affixed to
the rugged volcanic substrate. The de-
pauperate benthic community employs a
variety of adaptive strategies for survival
in an environment stressed by waves,
currents and the absence of mineral nu-
* Research Associate, Natural History Museum of Los Angeles County , P.O. Box 612 Victorville, CA 92393
USA. e-mail: rainesbkPyahoo.com
** Largo della Caffarelletta, 6, 00179 ROME (Italy). e-mail: ma.pizziniClibero.it
AS
Iberus, 23 (1), 2005
trients. Most of the corals and other bot-
tom invertebrates are typical of the Indo-
Pacific reefs, but reefs have not formed.
The circulation pattern, and espe-
cially the marked upwelling between
the South Pacific and Mentor currents,
contributes to the isolation of the area.
In terms of marine ecosystems, this in-
sularity has also produced a high degree
of radiation in many groups, and partic-
ularly in the caenogastropods. Thus the
fauna can essentially be described as
typical Pacific fauna with a relatively
high number of endemic species. The is-
land's marine benthic fauna is generally
characterised by a high degree of
species diversity and a low abundance,
and this is true for both hard and soft
bottoms. The meiobenthic family Caeci-
dae also follows this pattern.
The Caecidae of the Easter Island
have been scarcely studied in the past,
with the exception of the work of
REHDER (1980). Past surveys have
reported endemicity rates within the
molluscan fauna ranging from 37% to
42% (REHDER, 1980, DISALVO, RANDALL
AND CEA, 1988, RAINES, 2002). Rehder
also indicates that some species appear
to have a dual relationship with certain
species from Hawaii, as well as species
from the Kermadec Islands. In prepara-
tion for his 1980 publication, Rehder
reviewed all previous studies and expe-
ditions. In addition to examining all the
Easter Is. material in US museums, he
also examined the full store of material
housed in the Museo National de Histo-
ria Natural in Santiago, Chile. In all,
Rehder examined over 7,000 specimens,
of which 3480 were collected during his
trip to the island in 1974.
In the mid 1980's, DiSalvo and his
team conducted a comprehensive survey
of Easter Island's sublittoral marine
environment. The authors of the present
work had the good fortune of having
access to examples of all the molluscan
material collected during DiSalvo's
investigation. Other than the few publi-
cations that we have been working on
(OLIVER, 1915, SCHILDER, 1965, REHDER,
1980, DISALVO ET AL., 1988, RAINES, 2002)
no other serious work on molluscs has
50
been completed during the last ten
years. With regard to Caecidae, during
the three trips to Easter Island, the
authors of the present work collected
more than 350 specimens of this family.
Rehder mentions only two species:
Caecum cf. solitarium Oliver, 1915, and C.
amydroglyptum Rehder, 1980. In all other
publications, which we have reviewed,
Caecidae are listed simply as “Caecum
species”. No other descriptions or illus-
trations were provided.
So we present herein a revision of
the species known to date from Easter
Is., based on type and additional mater-
ial, with the description of five new
species.
Abbreviations used:
AMS: Australian Museum Sydney,
Sydney (Australia)
CM: Canterbury Museum, Christchurch
(New Zealand)
LACM: Natural History Museum of Los
Angeles County, Los Angeles (U.S.A.)
MNHN: Museum National d'Histoire
Naturelle, Paris (France)
MPR: Mauro Pizzini collection.
NHML: Natural History Museum,
London (U.K.)
NMNZ: Museum of New Zealand Te
Papa Tongarewa, Wellington (New
Zealand)
NSMT: National Science Museum,
Tokyo (Japan)
USNM: National Museum of Natural
History, Washington D.C. (U.S.A.)
WAM: Western Australian Museum,
Perth (Australia)
Terminology:
Abapical: towards the apices (of the
septum)
Adapical: opposite to the apices direc-
tion (of the septum)
Aperture, apertural end: the round ante-
rior opening of the shell.
Apex, apical end: the smaller, narrower,
closed posterior end of the tube.
Cutting plane: the plane individuated
by the edge of the shell at the apex
(excluding septum and mucro).
RAINES AND PIZZINI: Revision of the Caecidae of Easter Island (Chile)
UNITED STA
SMAN $ ¡
¿ SEA j
3 2 NEW NORTH Y
- E ¿ ZEALAND AS p
[ANÍS t :
DOG EAN |
Figure 1. Biogeographical provinces within the tropical eastern Indo-Pacific as proposed by
SCHILDER (1965), and as illustrated by REHDER (1980): Micronesian: M; Hawaiian: H; Fijian: E;
Polynesian: P; Rapanuian: R; Kermadec Islands: K (added by the authors).
Figura 1. Las provincias biogeographicas dentro del Indo-Pacífico oriental tropical propuestas por
SCHILDER (1965) e ¿ilustradas por REHDER (1980): Micronesian: M; Hawaiano: H; Fijian: E: Poline-
sio: P; Rapanuzan: R; Kermadec Islands: K (añadida por los autores).
Interspace: area between rings, with /
without microsculpture.
Meiobenthic: referred to all interstitial
molluscs living in sediment of
varying granule size.
Microsculpture: usually visible at very
high magnification or under SEM can
be transverse, longitudinal or both.
Mucro: small to large prong projecting
from the septum.
RESULTS
Rings, annular sculpture: transverse,
raised sculpture (equivalent to the
axial sculpture of the normally
coiled gastropods).
Septum: closure of the shell at the apex,
as it sheds earlier stages.
Shell(s): the shell, beached without gas-
tropod.
Spm(s): live collected specimen(s), with
soft parts and /or operculum(a).
Superfamily RIsso0IDEA Gray J. E., 1847
Family CAECIDAE Gray J. E., 1850
Genus Caecum Fleming, 1813
Diagnosis (BANDEL, 1996): “The shell of the teleoconch is a small, slightly curved tube orna-
mented only with growth lines, numerous ring-like collabral lirae ad /or axial ribs. The poste-
rior end of the tube is closed by a conical septum. The protoconch is trochospirally or planispi-
rally coiled. Uncoiling of the shell begins after metamorphosis”.
Type species (BANDEL, 1996): Dentalium imperforatum Kanmaker, 1798 (= trachea Montagu, 1803)
from Europe, Mediterranean Sea and Atlantic to southern England.
dl
Iberus, 23 (1), 2005
100 yum
Figure 2. Caecum rehderi spec. nov. A: holotype LACM 3019, gold coated, length 2.08 mm; B:
detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D. Geiger.
Figura 2. Caecum rehderi spec. nov. A: holotipo LACM 3019, metalizado en oro, longitud 2,08 mm,
B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB por D. Geiger.
Caecum rehderi spec. nov. (Fig. 2)
Caecum cf. solitarium; Rehder, 1980: 31-32, pl. 5, fig. 11.
Type material: Holotype, LACM 3019; 1 paratype, LACM 3020; 1 paratype, USNM 756269; 1
paratype, MNHN.
Material examined: 1 specimen, Onetea, Hotuiti (length: 2.42 mm, USNM 756269) (Oct. 1974, leg.
H. Rehder); 4 specimens, Punta Rosalia, east of Anakena (Apr. 1998, leg. B. Raines),
Type locality: In sand collected along the base of cliffs at 10-20m, off Punta Rosalia, east of
Anakena, Easter 1s., Chile. 27? 04' 18” S, 109% 19 45” W.
Description: Shell small (holotype
measures, length: 2.08 mm; width: 0.42
mm), tube-like, slender, gently arched,
semi-translucent to opaque white. Tube
seemingly smooth almost glassy, sub-
cylindrical, with posterior end only
slightly smaller than anterior end.
Microsculpture nearly obsolete, with
only fine annular growth lines sometimes
present under magnification. Anterior
end somewhat flared just above aperture
92
with incised annular rings. Aperture cir-
cular, but slightly constricted. Posterior
end with tapered rim. Septum not
retracted, subquadrate lateral outline
inclined with elevated edge slightly right
of center when viewed frontally. Opercu-
lum and soft parts unknown.
Original description of C. cf. solitar-
ium Rehder, 1980: “Diagnosis. Shell
small, 2.4 to 2.7 mm in length, glassy,
grayish-white to whitish, slender, gently
RAINES AND PIZZINI: Revision of the Caecidae of Easter Island (Chile)
Figure 3. Caecum cf. solitarium Rehder (1980). A: USNM 756269, uncoated, length 2.42 mm; B:
detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D. Geiger.
Figura 3. Caecum cf. solitarium Rehder (1980). A: USNM 756269, no metalizado, longitud 2,42 mm;
B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB por D. Geiger.
curved, diameter at posterior end only
slightly smaller than at anterior end,
where the aperture is slightly con-
stricted and somewhat opaque above
the aperture; the sculpture consists of
fine, rather crowded, subobscure
(worn?) annular riblets that gradually
and slightly increase in strength toward
the aperture; septum exserted, sub-
quadrate with a slightly convex surface
inclined from an elevated edge at the
right dorsal sector to the edge of the
posterior rim of the shell at the left
ventral sector.
Range. Kermadec Islands (and
Easter Island ?).
Material. 1 specimen from sta E-27A,
USNM 756269.
Measurements (mm). USNM 756269:
length, 2.42; diameter at anterior end, 0.4”.
Discussion: Rehder reported a caecid
from Easter Island, which he tentatively
identified as Caecum cf. solitarium Oliver,
1915. However, it seems that Rehder un-
fortunately overlooked several key char-
acteristics within Oliver”s description.
The first being the septum of C. solitar-
tum, which OLIVER (1915) described as
“....hemispherical, making an abrupt
shoulder at the junction of the shell”;
even the septum of Rehder”s specimen
(Fig. 3) could be associated to a tale ty-
pology. Oliver also mentions, that the
sculpture of C. solitarium consists of sim-
ple growth lines, while Rehder refers to
the sculpture as consisting of suboscure
(worn?) annular riblets that gradually
and slightly increase in strength toward
the aperture. Other main difference be-
tween C. solitarium Oliver, 1915 and C.
solitarium sensu Rehder is that the first
has a nearly uniform diameter, while the
second shows the diameter at posterior
end only slightly smaller than at ante-
93
Iberus, 23 (1), 2005
Figure 4. Caecum solitarium Oliver, 1915. A: Holotype CM M2867, uncoated, length 1.68 mm;
B: detail of aperture; C: microsculpture; D: detail of posterior. SEM imaging by N. Andrews.
Figura 4. Caecum solitarium Oliver, 1915. A: Holotipo CM M2867, no metalizado, longitud 1,68 mm;
B: detalle de la abertura; C: microescultura; D: detalle trasero. Imágenes al MEB por N. Andrews.
rior end. Furthermore, it appears Re-
hder did not examine Oliver”s type ma-
terial, because if he would have done,
he would have noted that the two speci-
mens have significantly different ante-
rior ends (Figs. 3D, 4B), and that the
holotype of C. solitarium is badly broken
and lacks the entire posterior end (Fig.
4). The damage to the holotype is old
and worn, and possibly occurred in situ
suggesting that Oliver may have chosen
an imperfect specimen as the type and
actually described another in his de-
scription. (Scofield, 2002, pers. commu-
nication). Rehder”s specimen is, how-
ever, consistent with C. rehderi, and
therefore, has been designated as the
paratype. Although Rehder broke the
anterior end of his specimen while mea-
suring it, all the pieces were available
for examination. The specimens which
we found, actually showed a series of
54
small rings along the entire tube; and
apart from the relativity of the term's
significance, we hold that the difference
between our specimens and those de-
scribed by the two authors falls within
the species” range of variability, in light,
above all else, of the high degree of
adaptation of the local molluscs to the
island's distinguishing geo-climatic con-
ditions. It is known that a number of
species of Caecidae (i.e. C. lightfootae
Pizzini, Nofroni and Oliverio, 1994),
though they have the same general
shape (septum, tube and aperture),
could show a very wide range of vari-
ability in terms of the type of sculpture.
Remarks: Caecum rehderi seems to be
an unusually fragile species. Of the five
known specimens, Rehder chipped the
aperture of his specimen (USNM
756269) while measurinyg it, the holotype
has a small longitudinal crack toward
RAINES AND PIZZINI: Revision of the Caecidae of Easter Island (Chile)
Figure 5. Caecum amydroglyptum Rehder, 1980. A: holotype USNM 757977, uncoated, length 1.67
mm; B: detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D. Geiger.
Figura 5. Caecum amydroglyptum Rehder, 1980. A: holotipo USNM 757977, no metalizado, longitud
1,67 mm; B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB por D. Geiger.
the aperture end, the other paratype has the Kermadec Islands, while Rehder
a Chip in the aperture, and the junior
author completely crushed another
specimen while examining it.
Geographical distribution: Oliver
described Caecum solitarium only from
tentatively indicated the species as
being from Easter Is. In our opinion,
according to the present knowledge, C.
solitarium is restricted to the Kermadec
Is.
Caecum amydroglyptum Rehder, 1980 (Figs. 5, 6)
Caecum amydroglyptum; Rehder, 1980: 32, pl. 5, fig. 12.
Type material: Holotype, USNM 757977; 1 paratype, USNM 757978
Material examined: Original types. Holotype, USNM 757977; paratype, USNM 757978, (Oct. 1974,
leg. H. Rehder). 132 specimens in sand collected along the base of cliffs at 10-20m, off Punta Rosalia,
east of Anakena, 27” 04 18” S, 109* 19 45” W (Apr. 1998, leg. B. Raines).
Voucher material: 4 specimens were deposited in each of the following institutions: LACM; USNM
1018792; MNHN; NHML; NMNZ M.273207; NSMT Mo 73562; AMS C.205278; WAM 513783, and
6 specimens (3 adults /3 juveniles), MPR. 13 shells, beach of Anakena Bay, on the northern coast of
Easter Is., picked up among the rocky bottom on the west side of the bay at low tide, among com-
munities of Dictyotales, with Galaxaura obtusata. (12-1-1995, leg. E. Rolán), MPR.
Type locality: Station E-27A, Onetea, Hotuiti: in patch of sand above high tide level.
II
Iberus, 23 (1), 2005
B
100 um
100 um
Figure 6. Caecum amydroglyptum Rehder, 1980. A: Voucher specimen LACM, gold coated length
1.53 mm; B: detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D.
Geiger.
Figura 6. Caecum amydroglyptum Rehder, 1980. A: El espécimen del vale LACM, metalizado en oro,
longitud 1,53 mm, B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB
por D. Getger.
Original description: “Shell small,
from 1.3 to 1.7 mm in length, curved,
rather evenly cylindrical with the ante-
rior end in fully grown specimens
slightly swollen above the aperture;
glassy grayish white to light orange
yellow in color; sculpture consists of
rather strong, somewhat distantly
spaced annular ribs that become more
or less obscure in the middle part of the
shell, with microscopic, longitudinal
wavy striae that are obscure at the ante-
rior and posterior ends; septum, low,
dome-shaped. ”
Additional description: Shell small
(mean length: 1.7 mm; width: min. 0.3
mm, max 0.4 mm), curved, colour
grayish white. The tube is perfectly
cylindrical, except near the aperture,
and its sculpture consists of about 36-40
rings, with some in the middle part of
56
the shell being less raised and changing
their shape, until they resemble very
fine growth lines. Microsculpture
formed by longitudinal worm-like striae
visible at enlargement of at least 180x.
Septum dome-shaped, slightly raised
over the cutting plane. Aperture consist-
ing of a large protuberance crossed by
slightly raised rings. Operculum and
soft parts unknown.
Remarks: We agree totally with
Rehder's conclusions; because we have
”...been unable to identify this species with
any published taxon” from either the
Indo-Pacific Provinces, the Panamic
Prov. or the Chilean Prov. We have
found only one species that resembles C.
amydroglyptum, which is C. vertebrale
Hedley, 1899, from Funafuti Is. It is
quite similar to amydroglyptum in terms
of the sculpture of the tube, longitudinal
RAINES AND PIZZINI: Revision of the Caecidae of Easter Island (Chile)
100 um
100 um
Figure 7. Caecum heterochromum spec. nov. A: holotype LACM 3021, gold coated, length 1.42
mm; B: detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D. Geiger.
Figura 7. Caecum heterochromum spec. nov. A: holotipo LACM 3021, metalizado en oro, longitud 1,42
mm); B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB por D. Getger.
microsculpture and septum, but the tube, a very strong microsculpture
Rehder's species shows a much greater
swelling of the tube above the apertural
end, which is crossed by small sculp-
tured rings, while the adapical part of
vertebrale has almost the same diameter
of the tube. In addition, C. amydroglyp-
tum presents, along the entire length of
consisting of worm-like, longitudinal
striae, covering also the top of the rings,
while that of vertebrale is an indistinct
microsculpture not surely comparable to
a real striation (pers. observ.).
Geographical distribution: This species
would appear to be limited to Easter Is.
Caecum heterochromum spec. nov. (Figs. 7, 8)
Type material: Holotype, LACM 3021; 6 paratypes, LACM 3022; 6 Paratypes, USNM 1018789; 6
Paratypes, MNHN; 6 Paratypes, NHML,; 6 Paratypes, NMNZ M.273205; 6 Paratypes, NS5MT Mo
73560; 6 Paratypes, AMS C.205275,; 6 Paratypes, WAM S13780; 9 Paratypes, MPR.
Material examined: 168 specimens: off Hanga Nui; and 8 specimens off the western coastline
near Tahai (Dec. 2000, leg. B. Raines). 39 shells, beach of Anakena Bay, on the northern coast of
Easter Is., picked up among the rocky bottom on the west side of the bay at low tide, among
communities of Dictyotales, with Galaxaura obtusata. (12-1-1995, leg. E. Rolán) MPR.
Voucher material: 39 shells, beach of Anakena Bay, on the northern coast of Easter Is., picked up
among the rocky bottom on the west side of the bay at low tide, among communities of Dicty-
otales, with Galaxaura obtusata. (12-1-1995, leg. E. Rolán) MPR.
7)
Iberus, 23 (1), 2005
100 um
100 um
Figure 8. Caecum heterochromum spec. nov. A: paratype from lot LACM 3022, gold coated, length
1.53 mm; B: detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D. Geiger.
Figura 8. Caecum heterochromum spec. nov. A: paratipo de la porción LACM 3022, metalizado en oro,
longitud 1,53 mm; B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB
por D. Getger.
Type locality: In sand collected along the base of cliffs at 20m off Hanga Nui, Easter Is., Chile.
27” 07' 46” S, 109* 16' 35” W.
Derivation of the name: From the greek etepoc: other and xpopo: colour.
Description: Shell small (mean
length: 1.6 mm; mean width: 0.4 mm)
with the tube subcylindrical in shape in
the abapical part and cylindrical up to
the vicinity of the aperture (Fig. 8),
where there is a slight swelling, fol-
lowed by a narrowing of the tube; the
aperture is perfectly circular, simple and
rimmed by a very slight flaring towards
the outside. The septum is dome-shaped
and slightly raised over the cutting
plane. Its sculpture is extremely vari-
able, ranging from specimens with
approximately 50 small raised rings that
are separated by interstices of corre-
58
sponding breadth and depth, particu-
larly in the upper portion of the tube
and near the aperture, to others that lack
any type of sculpture; these two extreme
represent the limits of the species” range
of variability, given that they were
found in intermediate specimens whose
rings are barely visible. The microsculp-
ture also presents a wide range of vari-
ability, with some specimens not
showing any trace of microsculpture,
while the surface of other specimens, at
an enlargement of 30x, presents a
microsculpture consisting of a large
number of very fine, worm-like striae
RAINES AND PIZZINI: Revision of the Caecidae of Easter Island (Chile)
100 um
Figure 9. Caecum pascuanum spec. nov. A: holotype LACM 3023, gold coated, length 1.64 mm;
B: detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D. Geiger.
Figura 9. Caecum pascuanum spec. nov. A: holotipo LACM 3023, metalizado en oro, longitud 1,64
mm; B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB por D. Geiger:
that follow its axial direction, while
others have a rough surface. C. hete-
rochromum has an extremely variable
colouring and pattern; white, cream-
coloured shell with a pattern consisting
of brown, zigzagging lines running
almost parallel in a horizontal direction
(axial). There are also some specimens
showing a brown irregular stripe in the
middle portion of the shell. The colour-
ing is again a creamy white, with an
irregular vertical design consisting of
unequal spots. Operculum corneous,
light brown; its external side consists of
a smooth central nucleus and 5-6 con-
centric rings that run from this nucleus
up to the external border. Soft parts
unknown.
Remarks: Caecum heterochromum,
despite the limited nature of the name,
it is, in absolute terms, the most variable
of the species to be found on Easter ls.
In fact, its range of variability involves
not only its colouring and patterns, but
also major morphological characteris-
tics, such as microsculpture and sculp-
ture. Nevertheless, the silhouette, the
form of the septum and that of the tube,
as well as the apertural end, which,
when taken as a whole, constitute the
general form, are a constant that we
consider to be a distinguishing charac-
teristics of this species.
Geographical distribution: The species
is currently noted only in relation to
Easter ls.
59
Iberus, 23 (1), 2005
Figure 10. Caecum rapanuiense spec. nov. A: holotype LACM 3025, gold coated, length 1.58 mm;
B: detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D. Geiger.
Figura 10. Caecum rapanuiense spec. nov. A: holotipo LACM 3025, metalizado en oro, longitud 1,58
mm, B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB por D. Geiger.
Caecum pascuanum spec. nov. (Fig. 9)
Type material: Holotype, LACM 3023; 2 paratypes, LACM 3024; 1 paratype, USNM 1018790; 1
paratype, MNHN,; 1 paratype, NHML; 1 paratype, AMS C.205276; 1 paratype, WAM 513781; 1
paratype, MPR.
Material examined: 9 specimens, Hanga-Teo on the northern coastline (Dec. 2000, leg. B. Raines).
Type locality: In silty mud collected at 15m in cave off Hanga-Teo on the northern coast, Easter Is.,
Chile, 27” 03” 37” S, 109* 21' 58” W.
Derivation of the name: The name of this new species comes from a latinized adjective formed
from the Spanish name of the island, “Isla de Pascua”.
Description: Shell small (holotype
measures, length: 1.96 mm; width: 0.36
mm), gently curved. The tube, evenly
cylindrical for almost its entire length,
presents a slightly smaller diameter only
in the abapical part. Towards the adapical
part, the tube widens visibly in a large
varix crossed by 5-6 rings that are sizable
but raised to various degrees, being sepa-
rated by interspaces that also vary in
terms of their depth and width. The
60
septum protrudes to a significant extent
over the cutting plane with an unguiform
mucro, visible to a greater or lesser extent
and oriented towards the dorsal side of
the tube. Frequently visible on the cutting
plane are residues of what may be a tem-
porary septum (PIZZINL, NOFRONI AND
OLIVERIO, 1998). Even under intensive
enlargement, no microsculptures are
visible. Circular aperture. Operculum
and soft parts unknown.
RAINES AND PIZZINI: Revision of the Caecidae of Easter Island (Chile)
Figure 11. Caecum crystallinum Folin, 1879. A: holotype NHML 1887.2.9.2363; B: detail of aper-
ture. SEM imaging by K. Way.
Figura 11. Caecum crystallinum Folin, 1879. A: holotipo NHML 1887.2.9.2363; B: detalle de la
abertura. Imágenes al MEB por K. Way.
Remarks: Caecum pascuanum presents
numerous morphological analogies with
C. rehderi, including the shape of the
tube and the septum, though it is set
apart by a large varix crossed by rings,
which is completely absent in the other.
In fact, this varix, though it can be
accentuated to a greater or lesser extent
- for that matter, consistently within the
range of variability - is always present
and would appear to represent the dis-
tinguishing morphological characteris-
tics of this species.
Geographical distribution: The species
is currently known only in its typical
location.
Caecum rapanuiense spec. nov. (Fig. 10)
Type material: Holotype, LACM 3025; 2 paratypes, LACM 3026; 1 paratype, USNM 1018791; 1
paratype, MNHN; 1 paratype, NHML; 1 paratype, NMNZ M.273206; 1 paratype, NSMT Mo 73561;
1 paratype, AMS C.205277; 1 paratype, WAM 513782; 1 paratype, MPR.
Material examined: 12 specimens, off the western coastline near Tahai (Dec. 2000, leg. B. Raines).
Type locality: Dredged at 30m in fine sand off the western coastline near Tahai, Easter Is., Chile,
ZIAOIF207 5, 109926305 WN:
Derivation of the name: This species take its title from the ancient name for Easter Is., which was
Rapa Nui.
Description: Shell small (dimensions
of the spm no. 3 from Easter ls., length:
1.5 mm; width: 0.35 mm), slightly
curved. Tube completely smooth
showing only a microsculpture consist-
ing of very weakly defined growth lines.
Septum dome-shaped, with the mucro
reduced to a small pedunculum, resem-
bling a squashed ball, found on the exte-
rior and oriented to the right. Aperture
simple, with no varix and only slight
swelling: further on the swelling tends
to contract, with a slightly reflected lip.
Growth stage and soft parts unknown.
Remarks: Following an initial exam-
ination, we tentatively classified this
species as C. crystallinum Folin, 1879,
despite the absence of the mucro in the
original type (Fig. 11), but it is
straighter, and the texture of the shell
is different, exhibiting under the
microscope fine longitudinal striations
(Fig. 11B), while C. rapanuiense shows
only very fine growth lines (Fig. 10C).
It also resembles C. glabriforme
Carpenter, 1857, but this species has
fairly strong microsculpture and a
large well developed septum. In terms
61
Iberus, 23 (1), 2005
Figure 12. Caecum campanulatum spec. nov. A: holotype LACM 3027, gold coated, length 1.96
mm; B: detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D. Geiger.
Figura 12. Caecum campanulatum spec. nov. A: holotipo LACM 3027, metalizado en oro, longitud 1,96
mm, B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB por D. Geiger.
of the general shape of the tube and while our species is completely
septum, it resembles C. neocaledonicum smooth.
Folin, 1868, but the latter shows some Geographical distribution: Caecum
raised rings in the abapical part of the
tube near the aperture (PIZZINI, 1998),
rapanutense is actually known only from
Easter Is., the type locality.
Caecum campanulatum spec. nov. (Fig. 12)
Type material: Holotype, LACM 3027; 1 paratype, LACM 3028; 1 paratype, USNM 1019067.
Material examined: 6 specimens, off Hanga Nui (Dec. 2000, leg. B. Raines); 2 specimens, Punta
Rosalia, east of Anakena (Apr. 1998, leg. B. Raines).
Type locality: In sand collected along the base of cliffs at 20m, off Hanga Nui, Easter Is., Chile,
27” 07” 46” S, 109” 16' 35” W.
Derivation of the name: The name of the new species comes from the latinized adjective campan-
ulatus, which refers to the bell-shaped form of the apertural end.
Description: Shell small (holotype's
slightly near the apertural end, with a
dimensions, length: 1.64 mm; width:
silhouette that closely resembles that of
0.31 mm). Tube slightly arched, slender,
with it's abapical part only slightly
smaller then adapical. The tube widens
62
a bell, quickly narrowing itself once
again and ending in a sharp edge. The
microsculpture is quite obsolete and
RAINES AND PIZZINI: Revision of the Caecidae of Easter Island (Chile)
A 333 pm
Figure 13. Strebloceras subannulatum Folin, 1879. A: syntype NHML 1887.2.9.2308-2310, length
3.0 mm; B: detail of septum. SEM imaging by K. Way.
Figura 13. Strebloceras subannulatum Folin, 1879. A: sintiyo NHML 1887.2.9.2308-2310, longi-
tud 3,0 mm; B: detalle del septo. Imágenes al MEB por K. Way.
scarcely visible, even under intensive
optical enlargement, while the sculpture
would appear to consist of rings, which
are also barely observable, though they
are more visible near the aperture. The
septum is dome-shaped and scarcely
raised over the cutting plane. The aper-
ture is circular. Colour translucent, with
faint axial brown wavy lines. Opercu-
lum and soft parts unknown.
Remarks: Caecum campanulatum
shows some similarities with Caecum
amydroglyptum about the general shape
of the tube and the mucro, but the latter
has a longitudinal microsculpture cover-
ing all the tube, while the first one pre-
sents only a microsculpture consisting
of a scarcely visible growth striation.
Besides the species closely resembles
another new sp. currently being studied
(PIZZINI AND NOFRONI, submitted).
Endemic to the Fiji Is., it is also present
in other Indian-Pacific zones.
Geographical distribution: Caecum cam-
panulatum is currently known only on
Easter Is., its typical location.
Superfamily RISSOOIDEA Gray J. E., 1847
Family CAECIDAE Gray J. E., 1850
Genus Strebloceras Carpenter, 1859 [1858]
Diagnosis (BANDEL, 1996): “The protoconch is trochospirally coiled, and the teleoconch is
uncoiled forming a slightly curving tube with slowly increasing diameter. Protoconch and
teleoconch remain together during the whole life-time”.
Type species (BANDEL, 1996): According to COSSMANN (1896) Caecum edwarsil Deshayes, 1864 [Oligocene
of France]; according to GOUGEROT AND LE RENARD (1981), Strebloceras lituus Deshayes, 1861.
Strebloceras subannulatum Folin, 1879 [not Caecum (Brochina) subannulatum
Folin, 1870 (Mediterranean Sea)] (Figs. 13, 14)
Type material: 2 syntypes, NHML 1887.2.9.2308-2310.
Material examined: Original types, 2 syntypes NHML 1887.2.9.2308-2310; 23 specimens, Punta
Rosalia, east of Anakena (Apr. 1998, leg. B. Raines).
Voucher material: 2 specimens were deposited in each of the following institutions: LACM;
USNM 1018793; MNHN; NHML; NMNZ M.273208; NSMT Mo 73563; AMS C.205279; WAM
63
Iberus, 23 (1), 2005
Bo 100 um
Figure 14. Strebloceras subannulatum Folin, 1879. A: Voucher specimen LACM, gold coated, length
[»)
200 pm
3.3 mm; B: detail of septum; C: microsculpture; D: detail of aperture. SEM imaging by D. Geiger.
Figura 14. Strebloceras subannulatum Folin, 1879. A: voucher espécimen LACM, metalizado en oro, lon-
gitud 3,3 mm; B: detalle del septo; C: microescultura; D: detalle de la abertura. Imágenes al MEB por D. Geiger.
513784; and MPR. 4 shells, beach of Anakena Bay, N. of Easter Is.: almost exposed coast, picked
up among rocky bottom on the west side of the bay, among communities of Dictyotales, with
Galaxaura obtusata. (12-1-1995, leg. E. Rolán) MPR.
Type locality: Reefs of Honolulu, 40 fms (73m).
Original description: “Minute, double-
curved head, vitreous, diaphanous and
clear; oblique nucleus of spirals; an-
fractibus duobus: postea testa tubularia,
latitudine acrescens, curvam duplicem
sequens, transversim subannulata, an-
nulis latis, minutissime expressis, suba-
cutis, late separatis: oblique aperture.
Long.: 3 mm, lat.: 0 mm 5” (FoLin, 1879).
Additional description: Shell small
(average length: 3.5 mm, min. diam. 0.18
mm, max diam. 0.7 mm), whitish; larval
shell (diam. of the last whorl about 0.23
mm) is slightly trochospiral, consisting
of roughly 2 and a half whorls. The tube
is separated from the protoconch by an
incision which, when seen in side-view,
64
is horseshoe shaped (Fig. 14B); the tube
has a double curve that forms itself on
two different levels and is crossed by a
microsculpture whose abapical portion
consists of fine, sinuous growth stria-
tions that gradually transform them-
selves, as they grow, into fairly clear-cut,
visible rings on the adapical portion of
the tube. The aperture is perfectly circu-
lar, with an almost sharp, oblique edge.
The operculum and the soft parts are
unknown.
Geographical distribution: Described
from Honolulu, its distribution has now
extended to the Easter Is. as well.
Remarks: The specimens found on Easter
Is. are wholly identical to the specimens of
RAINES AND PIZZINI: Revision of the Caecidae of Easter Island (Chile)
the typical series (Figs. 13, 14) and to the
specimens from Hawaii (MPR), despite the
fact that the tube of the former is slightly
CONCLUSIONS
As a result of the present comprehen-
sive review and revision of Easter Is. Cae-
cidae, we discovered an unusual
anomaly regarding the family's endemic-
ity rate. Unlike other regions, where the
rate is fairly low among this family, over
71% of the known caecid species are
endemic to the island. This is the highest
rate ever observed within any region.
ACKNOWLEDGEMENTS
We would like to thank Luis DiSalvo
(Coquimbo, Chile) for providing material
collected during his survey of the island's
marine environment; Jerry Harasewych
(National Museum of Natural History)
for his support and loan of Rehder”s type
and voucher material; Paul Scofield and
Neil Andrews (Canterbury Museum) for
BIBLIOGRAPHY
BANDEL, K., 1996. Philogeny of the Caecidae.
Mitteilungen adem Geologischen und Paláon-
tologischen Institut der Untversitát Hamburg. 79:
539-115.
COSSMANN, A. M., 1896. Appendix no.2 au ca-
talogue illustre des coquilles fossiles de
lÉocéne des environs de Paris. Annales de la
Societe Malacologique de Belgique, 31: 1-94.
DIsALVvO, L. H., RANDALL, J. E. AND CEA, A,,
1988. Ecological Reconnaissance of Easter
Island Sublittoral Marine Environment.
National Geographic Research. 4: 451-473.
FOLIN, A. G. L. DE, (1879) 1880. On the Mo-
llusca of the H.M.S. Challenger Expedition.
The Caecidae, comprising the Genera Paras-
trophia, Watsonia, and Caecum.. Proceedings of
the Zoological Society of London (16 dec. 1879):
52; 806-812 [no pls].
GOUGEROT, L. AND LE RENAROD, J., 1981. Clefs
de determination de petites especes de gas-
teropodes de l'Éocéne du Bassin Parisien. 18.
Le genre Tenuiscala. Cahiers des Naturalistes,
37 (3): 61-68.
OLIVER, W. R. B., 1915. The Mollusca of Ker-
madec Islands. Transactions and Proceedings
of the New Zealand Institute, 47: 509-568.
wider than that of the latter; the length is
also greater, but this is due to the fact that the
specimens in question are adult.
their comments and support in providing
SEM images of Oliver's type material;
Kathie Way (British Museum of Natural
History) for providing SEM images of the
Folin type material; Daniel Geiger (Santa
Barbara Museum of Natural History) for
his time and effort on the remaining SEM
work; Lindsey Groves (Natural History
Museum of Los Angeles County) and
Michel Garcia (Sociedad de Explotación y
Exploración Marítima Orca, Ltda.) for
their continued support; Emilio Rolán
(Spain) for sending some specimens. We
also wish to thank both Ms. Caterina Ciu-
ferri and Ms. Mary Taylor, who helped us
with captions in Spanish, and Ms.
Viviana Meyohas for her linguistic assis-
tance in English, which proved necessary,
on occasion, in the exchange of corre-
spondence between the first and the sec-
ond author.
PIZZINL, M., NOFRONI, Í. AND OLIVERIO, M., 1998.
Contribution to the knowledge of the family
Caecidae. 4. The temporary septum forma-
tion of some caecid species (Caenogas-
tropoda: Rissooidea), Iberus, 16 (1): 133-140.
PIZZINI, M., 1998. Contribution to the knowledge
of the family Caecidae. 7. C. fulvum Kisch,
1959 a junior synonym of C. neocaledonicum
Folin, 1868 (Caenogastropoda: Rissooidea
Gray J. E., 1847). Argonauta, 11 (2): 33-38.
PIZZINL, M. AND NOFRONI, l. Revision of The
family Caecidae in the South-West Pacific
ocean with description of 23 new species
(Mollusca: Gastropoda) (submitted).
RAINES, B. K., 2002. Contributions to the knowl-
edge of Easter Island Mollusca. La Conchiglia.
304: 11-40.
REHDER, H. A., 1980. The marine mollusks of
Easter Island (Isla de Pascua) and Sala y
Gómez. Smithsonian Contribution to Zoology,
289: 1-167.
SCHILDER, F. A., 1965. The Geographical Dis-
tribution of Cowries (Mollusca: Gastropoda).
The Veliger, 7 (3): 171-183.
65
O Sociedad Española de Malacología —__——T— Iberus, 23 (1): 67-76, 2005
The molluscs of the intertidal algal turf in the Azores
Los moluscos del cesped algal intermareale en Azores
Sérgio P. ÁVILA* **, Ana C. SANTOS*, Ana M. PENTEADO*, Ana M.
RODRIGUES*, Inés QUINTINO* and Maria Inés MACHADO*
Recibido el 25-VII1-2004. Aceptado el 1-IV-2005
ABSTRACT
The molluscan fauna of the high intertidal algal turf on the island of Pico (Azores) was
studied in order to complement existing descriptions of the intertidal biota on these islands.
A total of 15,275 specimens belonging to 19 species were found. Five species, the gas-
tropods Alvania mediolittoralis Gofas, 1989, Omalogyra atomus (Philippi, 1841), Pisinna
glabrata (Megerle von Muhlfeld, 1824) and Skeneopsis planorbis (Fabricius O., 1780),
and the bivalve Lasaea adansoni (Gmelin, 1791), account for 98% of the total number of
specimens, P. glabrata itself being responsible for 46% of all specimens.
In places where patellid limpets are absent, the algal turf extends higher in the intertidal
zone. In such places, three very abundant molluscan species characterize molluscan
assemblages in the algal turf: Lasaea adansoni, Skeneopsis planorbis and Pisinna
glabrata. Lasaea adansoni and Skeneopsis planorbis virtually disappear in the transition
from algal turf to algal fronds, the only (very) abundant species being P. glabrata and,
with less importance, Omalogyra atomus and Sinezona cingulata (Costa O. G., 1861).
RESUMEN
Se estudia la fauna malacológica del cesped algal del intermareal superior en la isla de
Pico (Azores), con el fin de complementar los trabajos ya existentes sobre la biota inter-
mareal de estas islas. Se encontraron un total de 15275 ejemplares de 19 especies distin-
tas. Cinco, los gasterópodos Alvania mediolittoralis Gofas, 1989, Omalogyra atomus
(Philippi, 1841), Pisinna glabrata (Megerle von Muhlfeld, 1824) y Skeneopsis planorbis
(Fabricius O., 1780), y el bivalvo Lasaea adansoni (Gmelin, 1791), suman el 98% del
total de ejemplares, de ellas P. glabrata representa al 46%.
En aquellos lugares donde están ausentes los patélidos, las algas se extienden hasta nive-
les superiores en el intermareal. En estas zonas hay tres especies de moluscos que carac-
terizan las asociaciones malacológicas algales: Lasaea adansoni, Skeneopsis planorbis y
Pisinna glabrata. lasaea adansoni y Skeneopsis planorbis desaparecen en la transición
entre el cesped algal y la zona de algas frondosas. La única especie abundante aquí es P.
glabrata, y en menor medida Omalogyra atomus y Sinezona cingulata (Costa O. G.,
1861).
KEYWORDS: micromolluscs, intertidal, algal turf, Azores.
PALABRAS CLAVE: micromoluscos, intermareal, cesped algal, Azores.
* Departamento de Biologia, Universidade dos Agores, Rua da Máe de Deus, PT-9500 Ponta Delgada, Acores,
Portugal.
** CIRN (Centro de Investigacio de Recursos Naturais), Departamento de Biologia, Universidade dos Acores,
PT 9500 Ponta Delgada — Acores. E-mail: avilanotes.uac.pt
67
Iberus, 23 (1), 2005
INTRODUCTION
Located in the middle of the northern
Atlantic and therefore relatively isolated,
the oceanic islands that form the Azores
archipelago (36” 55' to 39% 45” N, 24? 45'
to 31? 17 W) are a “live-laboratory”
where patterns and processes of disper-
sion, colonization and speciation can be
studied and ecological, evolutionary and
biogeographical theories be tested.
Lajes do Pico, a small town located
in the south coast of Pico island, Azores
(Fig. 1), is one of the most interesting
places in the littoral of the Azores,
because of its very diverse marine fauna
and flora. As a consequence of a number
of biological studies (AZEVEDO, 1990,
SANTOS, 1992; AZEVEDO, RODRIGUES,
MENDIZABAL AND ARRUDA, 1995;
MORTON, BRITTON AND MARTINS, 1996,
1998: ÁviLA, 1998), this area was chosen
as worthy of protection to conserve bio-
logical diversity; for a detailed review
see ÁVILA, ELIAS AND MEDEIROS (2000).
Rocky shores in the Azores are
usually covered by an intricate mixture
of small-sized species of algae forming a
characteristic algal turf (HAWKINS,
BURNAY, NETO, CUNHA AND MARTINS,
1990; NETO, 1992; NETO AND TITTLEY,
1995). This turf is particularly effective
for a number of small animal species,
protecting them from wave exposure,
excessive temperatures and desiccation
(AZEVEDO, 1992). CHAPMAN (1955) was
the first author to study the fauna asso-
ciated to this algal turf, mainly com-
posed of Corallina spp. and he was sur-
prised by the great abundance of mol-
luscs found in a sample of 10 x 10 cm,
collected at Faial Island. AZEVEDO (1992)
studied the molluscan species composi-
tion, abundance, diversity, seasonal
variations and the effect of differences in
wave exposure on the high intertidal
algal turf of the Azores, on a temporal
scale at Sáo Miguel Island. He con-
cluded that floristic composition and
biomass of the algal turf are fundamen-
tal for the molluscan communities in
this particular habitat.
According to NETO (1992), the “algal
turf” is divided into two distinct zones,
68
differentiated by their species-composi-
tion and morphology. The higher part is
characterized by a “dense and short
tangle forming a mat, almost impossible
to separate into components” whereas
the lower part is composed of frondose
and larger algae. We follow her designa-
tion and restrict most of this study to
the upper part of the “algal turf”.
The aim of this study is to incorpo-
rate the vertical distribution of micro-
molluscs in the general zonation pattern
already described for the intertidal of
the Azores.
MATERIAL AND METHODS
Between August 7 and 11, 1995, a 30
m long transect was examined on the
gently sloping rocky shore of Lajes do
Pico, near “Poca do Pano”, in a moder-
ately exposed site (Fig. 1). The shore”
profile was drawn, following the spirit
leveling method (EMERY, 1961; HAWKINS
AND JONES, 1992) and all elevations were
related to Chart Datum, Azores (CD), by
using sea-level at the time of predicted
low-tide. Tidal range in the Azores is
small (less than 2 m), for which reason
the transect location was carefully
chosen. The selected site presents a very
gentle slope and, as a result, the transect
was 30 m long, a distance very seldom
found in Azorean intertidal shores. This
procedure minimized problems derived
from the blurring effect that occurs in
the zonation of organisms, when tran-
sects are made in sites with steeper
slopes.
Five quadrats of 25 x 25 cm were col-
lected at 5, 10, 20, 25 and 30 m along one
transect (Fig. 2). The highly uniform
species composition of the algal turf and
the large area used (25 x 25 cm instead
of the usual 10 x 10 cm) (BuLLOCck, 1995)
minimizes possible sampling problems
derived from a single transect without
replicates. After the littorinid zone that
extended from 0 to 15 m along the tran-
sect, and the barnacle zone (10-15 m), 3
quadrats of 25 x 25 cm were scraped
from the “algal turf” at 20, 25 and 30 m
and the material collected (all of the
ÁVILA ET AL.: The molluscs of the intertidal algal turf in the Azores
Graciosa
Sáo Jorge
Azores Archipelago
sáo Migue!
Atlantic
Ocean
Poca do
Pano
Figure 1. Azores archipelago (top), Pico island (bottom, left) and detail of location of Poga do
Pano at Lajes do Pico village (Pico Island).
Figura 1. Archipiélago de las Azores (arriba), isla de Pico (abajo, izquierda) y detalle de la localización
de Poga do Pano y la villa de Lajes do Pico (isla de Pico).
algae and contained sediment) put into
labelled bags. In the laboratory, this
material was washed several times and
the animals removed from the algae.
Samples were then labelled and pre-
served in 70% ethanol. The live-col-
lected molluscs were sorted, identified
and counted under a binocular dissect-
ing microscope. Dominant algae were
identified and algal dry weight (g) was
determined for each quadrat, after
drying for 48 hours at 60 *C. Abundance
of molluscs was expressed as density
(n/m?) as well as n/100 g ADW (algal
dry weight), where n is the number of
specimens of the ith species in a
quadrate.
Species authorities and synonymy of
mollusc species follow the CLEMAM
database.
69
Iberus, 23 (1), 2005
0 5 10 15
Distance (m)
SHA Littorina striata
de Melarhapbe neritoides dh Chthamalus stellatus
wo Algal turf
“ LWST
20 23 30
Figure 2. Transect performed at Poga do Pano (Lajes do Pico, Pico island) and vertical distribution
of rocky shore organisms. HWST: mean high water level at spring tides; LWST: mean low water
level at spring tides.
Figura 2. Transecto realizado en Poga do Pano (Lajes do Pico, isla de Pico) y distribución vertical de
organismos de costa rocosa. HWST: nivel medio superior del agua en mareas de primavera: LWST: nivel
medio inferior del agua en mareas de primavera.
RESULTS
Zonation: The “littoral fringe” is
bound at the top by a littorinid zone that
extends for 15 m along the transect, with
a vertical range of 1.7 m, between 0.9 m
and 2.6 m above chart datum. This is fol-
lowed by a barnacle zone (Chthamalus
stellatus (Poli)) with an extension of about
5 m along the transect (between 10 and
15 m), free of molluscs and with a vertical
range of about 0.5 m (Fig. 2). After this,
an algal turf, dominated by Corallina offic-
inalis L., covers the rocky substrate
entirely. No limpets were found in this
zone, nor molluscs that were common
elsewhere, like Stramonita haemastoma
(Linnaeus, 1766) or Mitra cornea Lamarck,
1811 (HAWKINS, CORTE-REAL, PANNACCI-
ULLI, WEBER AND BISHOP, 2000). Immedi-
ately after LWST (mean low water level
at spring tides), frondose algae (mainly
Pterocladiella capillacea (S.G. Gmelin) and
Enteromorpha muscoides (Clem.) Cre-
mades, in Cremades et Perez-Cirera
replace the coralline turf.
Molluscs: A total of 15,275 specimens
belonging to 19 species were found in the
intertidal algal turf at “Poca do Pano”
(Lajes do Pico) (Table I and Fig. 5). Five
7O
species, the gastropods Omalogyra atomus
(Philippi, 1841), Skeneopsis planorbis
(Fabricius O., 1780), Alvania mediolittoralis
Gofas, 1989 and Pisinna glabrata (Megerle
von Múhlfeld, 1824) (=P. punctulum) and
the bivalve Lasaea adansoni (Gmelin,
1791), account for 98% of the total num-
ber of specimens, P. glabrata itself being
responsible for 46% of all specimens
(Table 1). No molluscs were collected in
the middle of the barnacle zone. In
quadrats 3 and 4, located at 20 and 25 m
in the transect, three species dominated:
L. adansoni, S. planorbis and P. glabrata
(Table II). In the lowermost quadrat, lo-
cated at LWST, P. glabrata was clearly the
most abundant species, representing
about 90% of all specimens in that
quadrat. Species density and number of
specimens /100g ADW (algal dry weight)
generally decreased towards LWST, with
the exception of O. atomus and Sinezona
cingulata (Costa O. G., 1861) (=Schismope
fayalensis Dautzenberg, 1889) (Figs. 3, 4).
DISCUSSION
The site studied broadly conforms to
the zonation pattern described from the
ÁVILA ET AL.: The molluscs of the intertidal algal turf in the Azores
Table 1. Specific composition of the molluscan fauna inhabiting the intertidal algal turf and total
number of specimens collected in each quadrat. Quadrats 1-5 collected at, respectively, 5, 10, 20,
25 and 30 m along transect (see Figure 2 for further details).
Tabla I. Composición específica de la fauna de moluscos del cesped algal intermareal y número total de
ejemplares recogido en cada cuadrante. Cuadrantes 1-5 obtenidos a 5, 10, 20, 25 y 30 m a lo largo del
transecto, respectivamente (ver la Figura 2 para más detalles).
—
TaxaX Quadrats
Alvania mediolittoralis Gotas, 1989
Bittium latreillii (Payraudeau, 1826)
Bothryphallus ovummuscae (Gotas, 1990)
Cardita calyculata (Linnaeus, 1758)
Cingula trifasciata (Adams J., 1798)
Gregariella semigranata (Reeve, 1858)
(= Trichomusculus semigranatus (Reeve, 1858))
Lasaea adansoni (Gmelin, 1791)
Littorina striata King and Broderip, 1832
Manzonia unifasciata Dautzenberg, 1889
Melarhaphe neritoides (Linnaeus, 1758)
Odostomia sp.
Omalogyra atomus (Philippi, 1841)
Pisinna glabrata (Megerle von Múhlfeld, 1824)
Rissoella cf. diaphana (Alder, 1848)
Runcina cf. adriatica Thompson, 1980
Setia subvaricosa Gotas, 1990
Setia sp.
Sinezona cingulata (Costa O. 6., 1861)
Skeneopsis planorbis (O. Fabricius, 1780)
Total
O OOOO O
Y OOOO OOOOOouomnN O
rocky shores of the Azores by HAWKINS
ET AL. (1990) (Caloura, Sáo Miguel Island)
and NETO AND AZEVEDO (1990) for Flores
Island (see also NETO, 1992, and MORTON
ET AL., 1998). These authors divided the
vertical zonation of the organisms into
three main zones: an upper one, the
splash and spray zone, dominated by lit-
torinids, lichens and ephemeral (sea-
sonal) algae; a middle zone located
between HWST (mean high water level
at spring tides) and LWST (mean low
water level at spring tides), occupied by
filter-feeding barnacles in its upper levels
and by the algal turf in the lower levels;
and the lowermost zone, characterized
by the appearance of algal fronds. To this
scheme, we may add now the vertical
distribution of other molluscs besides the
littorinids. In places where patellid
limpets are absent, possibly due to
2 3 4 5 Total %
0 40 325 22 387 2,5
0 0 l 6 ] 0.0
0 | 0 0 ] 0.0
0 36 47 6 89 0.6
0 | 0 0 | 0.0
0 0 | 0 | 0.0
DAT | 4229 JE)
6 0 0 0 8 0.]
0 0 0 | | 0.0
3 0 0 0 8 0.]
0 0 3 0 3 0.0
0 9 35 156 287 1.9
DAA OSOS 6,993 45.8
0 3 0 0 3 0.0
0 0 20 0 20 0.1
0 0 0 25 25 0.2
0 0 2 12 14 0.]
0 2 ' 18 86 0.6
DA OA0OS 2 EZ 20.4
9 4246 9169 1,844 15275510010
human overexploitation (HAWKINS ET
AL., 1990; HAWKINS ET AL., 2000), the algal
turf, usually coralline dominated by
Corallina, Jania, Amphiroa or Haliptylon
spp. directly attached to the rocky sub-
strate (NETO AND TITTLEY, 1995) extends
higher in the intertidal zone, a situation
also encountered by NETO (1992). In such
places of the Azorean rocky shores, three
very abundant micromolluscan species
characterize and further define the algal
turf located in the intertidal zone: Lasaea
adansoni, Skeneopsis planorbis and Pisinna
glabrata. In the transition from algal turf
to algal fronds, Lasaea adansoni and Ske-
neopsis planorbis virtually disappear, the
only (very) abundant species being P.
glabrata and, with less importance, Omal-
ogyra atomus and Sinezona cingulata.
Most of the species found in the inter-
tidal algal turf at Lajes do Pico do not
71
Iberus, 23 (1), 2005
Table II. Density (n/m?) and number of specimens per 100 g algal dry weight (n/100g ADW) of
the molluscan fauna inhabiting the intertidal algal turf at Lajes do Pico. For location of quadrats 1,
2, 3, 4 and 5, please refer to Figure 2.
Tabla 1]. Densida (n/m?) y número de ejemplares por 100 g de peso seco de algas (n/100g ADW) de la
fauna de moluscos del cesped algal intermareal en Lajes do Pico. Para la localización de los cuadranets 1
a 5, ver la Figura 2.
Density (n/m?) n/1009 ADW
Taxa A Quadrats 2 3 4 5 3 4 5
Alvania mediolittoralis Gotas, 1989 0 0 640 57 30% 208 618 57
Bittium latreillii (Payraudeau, 1826) 0 0 0 16 9% 0 2 16
Bothryphallus ovummuscae (Gotas, 1990) 0 0 16 0 0 5 0 0
Cardita calyculata (Linnaeus, 1758) 0 0 576 152 96 188 89 16
Cingula trifasciata (Adams J., 1798) 0 0 16 0 0 5 0 0
Rissoella cf. diaphana (Alder, 1848) 0 0 48 0 0 16 0 0
Lasaea adansoni (Gmelin, 1791) 0 0 28,976 38,672 16 91432 4,595 3
Littorina striata King and Broderip, 1832 32 9% 0 0 0 0 0 0
Manzonia unifasciata Dautzenberg, 1889 0 0 0 0 16 0 0 3
Melarhaphe neritoides (Linnaeus, 1758) 80 48 0 0 0 0 0 0
Omalogyra atomus (Philippi, 1841) 0 0 1536 560 2,496 500 67 407
Pisinna glabrata (Megerle von Múhlfeld, 1824) 0 O 18,384 68,944 24,560 5,984 8,192 4,008
Runcina cf. adriatica Thompson, 1980 0 0 0 320 0 0 38 0
Setia subvaricosa Gotas, 1990 0 0 0 0 400 0 0 65
Setia sp. 0 0 0 32 192 0 4 31
Sinezona cingulata (Costa 0. 6., 1861) 0 0 32 96 1,248 10 11 204
Skeneopsis planorbis (0. Fabricius, 1780) 0 0 17712 32,048 32 5,766 3,808 5
Gregariella semigranata (Reeve, 1858) 0 0 0 16 0 0 2 0
(= Trichomusculus semigranatus (Reeve, 1858))
Table II. Maximum densities (n/m?) recorded for the Azores. 1: Feteira, Faial Island; 2: Piscina de
Santa Cruz, Flores Island, sheltered; 3: Ponta Delgada, Flores Island, exposed; 4: Caloura, Sáo
Miguel Island, intertidal, sheltered; 5: Caloura, Sío Miguel Island, intertidal, exposed; 6: Caloura,
Sao Miguel Island, infralittoral, sheltered; 7: llhéu de Vila Franca, Sio Miguel Island; 8: *Poga da
Barra”, Lajes do Pico, Pico Island, intertidal, sheltered; 9: “Poca do Pano”, Lajes do Pico, Pico
Island, intertidal, moderately exposed.
Tabla III. Densidades máximas (n/m?) encontradas en las Azores. 1: Feteira, isla de Faial; 2: Piscina de
Santa Cruz, isla de Flores, protegido; 3: Ponta Delgada, isla de Flores, expuesto; 4: Caloura, isla de Sáo
Miguel, intermareal, protegido; 5: Caloura, isla de Sáo Miguel, intermareal, expuesto; 6: Caloura, isla
de Sáo Miguel, infralitoral, protegido; 7: llhéu de Vila Franca, isla de Sáo Miguel; 8: “Poga da Barra”,
Lajes do Pico, isla de Pico, intermareal, protegido; 9: “Poga do Pano”, Lajes do Pico, isla de Pico, inter-
mareal, moderadamente expuesto.
Chapman, 1955 Neto and Azevedo, 1990 Azevedo, 1991 Bullock, 1995 Ávila, 1998 — This work
Alvania mediolittoralis 64 (2) 14 (4) 54,400 (7) 160(8) 5,200 (9)
Lasaea adansoni 12,200 (1) 17,888 (3) 724 (4) 1,674,400 (7) 1,088 (8) 38,672 (9)
Omalogyra atomus 68,046 (6) 16 (8) 2,496 (9)
Pisinna glabrata 5,975 (4) 104,100 (7) 32 (8) 68,944 (9)
Skeneopsis planorbis 2,000 (1) 4,304 (5) 129,400 (7) 16 (8) 32,048 (9)
2
ÁVILA ET AL.: The molluscs of the intertidal algal turf in the Azores
Table IV. Geographical ranges of the most abundant molluscan species inhabiting the intertidal
algal turf at Lajes do Pico (see ÁVILA, 2000 and references therein). np: non-planktotrophic type
of development (it includes direct development and lecithotrophic development); br: brooding.
Tabla IV. Distribución geográfica de las especies de moluscos más abundantes en el cesped algal interma-
real de Lajes do Pico (ver ÁVILA, 2000 y las referencias allí citadas). np: desarrollo no planctotrófico
(incluyendo desarrollos directo y lecitotrófico); br: desarrollo planctotrófico.
Species Type of development
Alvania mediolittoralis np
Omalogyra atomus np
Skeneopsis planorbis np
Pisinna glabrata np
Lasaea adansoni br
extend their distribution to the sublit-
toral. ÁviLA (2003) has established the
molluscan vertical distribution between 3
and 30 m depths for the Azorean rocky
shores covered by algal fronds. He found
that the endemic rissoids Alvania angioyi
van Aartsen, 1982, Manzonia unifasciata
(Dautzenberg, 1889) and Rissoa guernel
Dautzenberg, 1889, the also endemic
trochid Gibbula delgadensis Nordsieck,
1982, the Macaronesian Anachis avaroides
Nordsieck, 1975 and the small bivalve
Parvicardium vroomi van Aartsen,
Menkhorst and Gittenberger, 1984 were
only abundant in shallow water (3 to 5-6
m), whereas Alvanía sleursi (Amati, 1987)
was especially abundant below 20 m
depth. Bittium latreillii (Payraudeau,
1826), Tricolia pullus azorica (Dautzenberg,
1889) and Jujubinus pseudogravinae Nord-
sieck, 1973 were found in large numbers
along the whole depth-range, albeit
slightly more abundant in the lower
levels (ÁviLa, 2003). Thus, as expected
because of the different spatial architec-
ture of algae, there is a marked difference
between the molluscan species composi-
tion of the algal turf and that present in
algal fronds. In fact, none of the most
abundant molluscan species of the algal
turf is present in high numbers in algal
fronds. The total number of specimens of
Alvania mediolittoralis, Lasaea adansoni,
Geographical range
Azores, Madeira
Scandinavia, British Isles, Bay of Biscay, Portugal, Mediterranean,
Azores, Madeira, Canary Islands, Cape Verde and Ascension Island
Scandinavia, British Isles, Bay of Biscay, Portugal, Mediterranean,
Azores, Madeira, Canary Islands and Caribbean
Azores, Canary Islands and Mediterranean
Scandinavia, British Isles, Bay of Biscay, Portugal, Mediterranean,
Azores, Madeira, Canary Islands, Cape Verde, Ascension Island,
Saint Helena and Caribbean
Omalogyra atomus, Pisinna glabrata and
Skeneopsis planorbis collected in 51
quadrats (50 x 50 cm) between 3 and 30
m depth, was only 73 individuals, corre-
sponding to about 0.20% of all specimens
collected (ÁviLA, 2003). The only species
that apparently extends its vertical distri-
bution from the lower levels of the inter-
tidal algal turf down to the shallow sub-
littoral algal fronds (2-3 m depth) is the
minute Omalogyra atomus, which is the
most abundant species at 2-3 m depth
throughout the year (AZEVvEDO, 1991).
However, this species is very uncommon
at greater depths (ÁviLa, 2003). The
abundances of the algal-turf associated
molluscan fauna found at Lajes do Pico
are in the range of those found by other
authors for other islands of the archipel-
ago, being intermediate between the very
high densities found by BULLOCK (1995)
in a very sheltered place (Ilhéu de Vila
Franca, Sáo Miguel Island) and the densi-
ties found by NETO AND AZEVEDO (1990)
and AZEVEDO (1991) (see Table III).
Some species found in the quadrats
are accidental (e.g. Botryphallus and
Cingula) which live under intertidal
boulders and not in algal turf.
It is noteworthy that 4 out of the 5
most abundant molluscan species in the
intertidal of the Azores (the minute Ske-
neopsis planorbis and Omalogyra atomus,
TAS
Iberus, 23 (1), 2005
Distance (m)
1000 4------
1004
10
Number per 100g algal dry weight
20 25
Distance (m)
Alvania mediolittoralis
Cardita calyculata
Lasaea adansoni
Omalogyra atomus
Pisinna glabrata
Sinezona cingulata
A
Skeneopsis planorbis
30
Figures 3, 4. Abundance of the molluscs collected in the algal turf at “Poga do Pano” (Lajes do
Pico, Pico island). 3: n/m?; 4: n/100 g ADW. ADW: algal dry weight.
Figuras 3, 4. Abundancia de moluscos recogidos en el cesped algal en “Poga do Pano” (Lajes do Pico, isla
de Pico). 3: n/m?; 4: n/100 g ADW. ADW. peso seco de algas.
the rissoid Alvania mediollitoralis and the
anabathrid Pisinna glabrata) all have a
non-planktotrophic type of develop-
ment (ÁvILA, 2000). This type of devel-
opment is usually associated with a
restricted geographical range (SCHEL-
TEMA, 1978; JABLONSKI, 1986), which
clearly is not the case (with the excep-
tion of A. mediolittoralis) (see Table IV).
Perhaps the small size of these gastro-
pod species is an advantage for disper-
sal, as well as their location in the inter-
tidal, therefore having higher possibili-
ties of rafting.
CONCLUSIONS
In the studied algal turf located
between the barnacle zone (above) and
the frondose algae (below), three species
of molluscs are very common: Lasaea
74
adanson1, Skeneopsis planorbis and Pisinna
glabrata. In the transition from algal turf
to frondose algae, Lasaea adansoni and
Skeneopsis planorbis virtually disappear,
the only (very) abundant species being
P. glabrata and, with less importance,
Omalogyra atomus and Sinezona cingulata.
ACKNOWLEDGEMENTS
We thank Manuel Campos Marques
and Rui Pedro Ávila Marques for field
assistance. We are also grateful to Frias
Martins for correcting the manuscript.
Pedro “Bué” Cerqueira and António
Moniz (Seccáo de Geografia do Departa-
mento de Biologia da Universidade dos
Acores) are acknowledged for Figure 1.
The author also thanks the comments of
two anonymous referees. S.P. Ávila was
supported by grant SFERH/BD /5115/2001.
ÁVILA ET AL.: The molluscs of the intertidal algal turf in the Azores
Y / Í
Y a
> a
So ¿E
100 um
Figure 5. Common molluscs of the intertidal zone in the Azores. A: Alvania mediolittoralis Gotas,
1989; B: Bothryphallus ovummuscae (Gofas, 1990); C: Manzonia unifasciata Dautzenberg, 1889;
D: Cingula trifasciata (Adams J., 1798); E: Setía subvaricosa Gofas, 1990; E: Pisinna glabrata
(Megerle von Muúhlfeld, 1824); G: Bittium latreillii (Payraudeau, 1826); H: Stramonita haemas-
toma (Linnaeus, 1766); L, J: Skeneopsis planorbis (O. Fabricius, 1780; K: Melarhaphe neritoides
(Linnaeus, 1758); L, M: Cardita calyculata (Linnaeus, 1758).
Figura 5. Moluscos comunes en la zona intermareal de las Azores. A: Alvania mediolittoralis Gofas,
1989; B: Bothryphallus ovummuscae (Gofas, 1990); C: Manzonia unifasciata Dautzenberg, 1889;
D: Cingula trifasciata (Adams J., 1798); E: Setia subvaricosa Gofas, 1990; F: Pisinna glabrata
(Megerle von Múbhlfeld, 1824); G: Bittium latreillii (Payraudeau, 1826); H: Stramonita haemastoma
(Linnaeus, 1766); L, J: Skeneopsis planorbis (O. Fabricius, 1780; K: Melarhaphe neritoides (Lin-
naeus, 1758); L, M: Cardita calyculata (Linnaeus, 1758).
ES
Iberus, 23 (1), 2005
BIBLIOGRAPHY
ÁviLA, S. P., 1998. Zonacáo intertidal de uma
comunidade malacológica numa lagoa
costeira localizada na costa Sul da ilha do
Pico, Acores. Acoreana, 8(4): 436-486.
ÁviLA, S. P., 2000. Shallow-water marine mol-
luscs of the Azores: biogeographical rela-
tionships. Arquipélago. Life and Marine Sci-
ences. Supplement 2 (Part A): 99-131.
ÁviLA, S. P., 2003. The littoral molluscs (Gas-
tropoda, Bivalvia and Polyplacophora) of
Sáo Vicente, Capelas (Sáo Miguel Island,
Azores): ecology and biological associations
_ to algae. Iberus, 21(1): 1-23.
ÁVILA, S. P., ELIAS, R. B. AND MEDEIROS, J., 2000.
Parque Natural Regional da Plataforma Costeira
. das Lajes do Pico (Agores). Proposta de imple-
mentacáo. Amigos dos Acores, Ponta Del-
gada, 48 pp.
AZEVEDO, J. M. N., 1990. Microgastrópodes.
Expedicáo Acores 89. Ecologia e Taxonomia do
Litoral Marinho. Relatório Preliminar, 1: 54-59.
AZEVEDO, J. M. N., 1991. Estudo das comunidades
malacológicas fitais do litoral em Sáo Miguel,
Acores. MSc. Thesis, Universidade dos Acores.
AZEVEDO, J. M. N., 1992. Algae-associated ma-
rine molluscs in the Azores. Biological Jour-
nal of the Linnean Society, 46: 177-187.
AZEVEDO, J. M. N., RODRIGUES, J. B., MEN-
DIZABAL, M. AND ARRUDA,L. M., 1995. Study
of a sample of Dusky groupers, Ephinephelus
marginatus (Lowe, 1834) caught in a tide pool
at Lajes do Pico, Azores. Boletim do Museu
Municipal do Funchal, Suplemento 4: 55-64.
BULLOCK, R. C., 1995. The distribution of the
molluscan fauna associated with the intertidal
coralline algal turf of a partially submerged
volcanic crater, the Ilhéu de Vila Franca, Sáo
Miguel, Azores. In Martins, A. M. de F. (Ed.):
The marine fauna and flora of the Azores.
Proceedings of the Second International
Workshop of Malacology and Marine Biol-
ogy, Vila Franca do Campo, Sáo Miguel,
Azores. Acoreana, Suplemento 4: 9-55.
CHAPMAN, G., 1955. Aspects of the fauna and
flora of the Azores. VI. The density of animal
life in the Coralline alga zone. Annals and
Magazine of Natural History, 12 (8): 801-805.
CLEMAM. Check List of European Marine Mo-
llusca. Unitas Malacologica, Internet Re-
sources for Malacologists (http: //
www.mnkhn.fr /base /malaco.html) [last ac-
cessed 10th of August, 2004].
EMERY, K. O., 1961. A simple method of mea-
suring beach profiles. Limnology and Oceanog-
raphy, 6: 90-93.
HAWKINS, S. J. AND JONES, H. D., 1992. Marine
Field Course Guide. 1. Rocky Shores. Marine
Conservation Society. Immel Publishers, Lon-
don, 144 pp.
7Ó
HAWKINS, S. J., BURNAY, L. P., NETO, A. L,
TRISTAO DA CUNHA, R. AND MARTINS, A. M.
de F., 1990. A description of the zonation
patterns of molluscs and other important
biota on the south coast of Sáo Miguel,
Azores. In Martins, A. M. de F. (Ed.): The ma-
rine fauna and flora of the Azores. Proceed-
ings of the First International Workshop of
Malacology Sáo Miguel, Azores. Acoreana,
Suplemento 2: 21-38.
HAWKINS, S. J., CORTE-REAL, H. B. S. M., PAN-
NACCIULLI, F. G., WEBER, L. C. AND BISHOP,
J. D. D., 2000. Thoughts on the ecology and
evolution of the intertidal biota of the
Azores and other Atlantic islands. In: Jones,
M. B., Azevedo, J. M. N., Neto, A. L, Costa,
A. C. and Martins, A. M. de F. (Eds.): Is-
land, Ocean and Deep-Sea Biology. Hydro-
biología, 440: 3-17.
JABLONSKI, D., 1986. Larval ecology and
macroevolution in marine invertebrates. Bul-
letin of Marine Science, 39(2): 565-587.
MORTON, B., BRITTON, J. C. AND MARTINS, A. M.
DE F., 1996. The Lajes do Pico marsh: a fur-
ther case for coastal conservation in the
Acores. Acoreana, 8(2): 183-200.
MORTON, B., BRITTON, J. C. AND MARTINS, A. M.
DE F., 1998. Ecología Costeira dos Acores. So-
ciedade Afonso Chaves, Ponta Delgada, 249
PB:
NETO, A. LI, 1992. Contribution to the taxonomy
and ecology of the Azorean benthic marine
algae. Biological Journal of the Linnean Society,
46: 163-176.
NETO, A. L, AND AZEVEDO, J. M. N., 1990. Con-
tribuicáo para o estudo dos padróes de zon-
acáo litoral da ilha das Flores. Relatórios e Co-
municacóes do Departamento de Biologia. Ex-
pedicáo Científica Flores/89 (Relatório
Preliminar), 18: 89-102.
NETO, A.I.,, AND TITTLEY, L, 1995. Structure and
zonation of algal turf communities on the
Azores: a numerical approach. Boletim do
Museu Municipal do Funchal, Suplemento 4:
487-504.
SANTOS, R. S., 1992. Proteccáo e conservacáo do
meio marinho nos Acores. In Saldanha, L.,,
Ré, P. and Martins, A. M. de F. (Eds.): Cen-
tenaire de la Derniere Campagne
Océanographique du Prince Albert de
Monaco aux Acores á bord de L'Hirondelle.
Acoreana, Suplemento 3: 107-122.
SCHELTEMA, R. S., 1978. On the relation between
dispersal of pelagic larvae and the evolution
of marine prosobranch gastropods. In
Battaglia, B. and Beardmore, J. A. (Eds.): Ma-
rine Organisms: Genetics, Ecology, and Evo-
lution. NATO Conference Series. Series IV:
Marine Sciences. Plenum Press, New York.
O Sociedad Española de Malacología Iberus, 23 (1): 77-82, 2005
Calyptraea capensis Tomlin, 1931 (Gastropoda, Calyp-
traeidae), a valid species from South Africa
Calyptraea capensís "Tomlin, 1931 (Gastropoda, Calyptraeidae), una
especie válida de Sudáfrica
Emilio ROLÁN*
Recibido el 14-VII1-2004. Aceptado el 14-IV-2005
RESUMEN
La especie del género Calypiraea de Sudáfrica considerada hasta la actualidad como C. chinen-
sis se estudia y compara con otras especies de Africa occidental y meridional y de Europa. Se con-
cluye que se trata de una especie diferente, cuyo nombre debe ser Calyptraea capensis Tomlin, 1931.
ABSTRACT
The species of the genus Calyptraea from South Africa up to now considered to be C. chinen-
sis is studied and compared with other European and West and South African species. lt is con-
cluded that it is a different species whose name should be Calyptraea capensis Tomlin, 1931.
KEY WORDS: Calyptraeidae, Calyptraea capensis, Calyptraea chinensis, South Africa.
PALABRAS CLAVE: Calyptraeidae, Calyptraea capensis, Calyptraea chinensis, Sudáfrica.
INTRODUCTION
The study of the genus Calyptraea in
the Eastern Atlantic (ROLÁN, 2004) has
shown the existence of three species. In
this work it was mentioned that the
South African species known as Calyp-
traea chinensis Linné, 1758 could proba-
bly be a different species.
TOMLIN (1931) described C. capensis.
Agreeing with Tomlin, TURTON (1932:
154) comments that the South African
species called C. chinensis by several
authors, should be called C. capensis.
Nevertheless, this species has been
recorded from South Africa in the most
recent literature under the name C. chi-
nensis (BARNARD, 1963; KENSLEY, 1973;
KILBURN AND RIPPEY, 1982; STEYN AND
Lussi, 1998, among others.
In order to check if this species was dif-
ferent from those previously described in
ROLÁN (2004), material from the Natal
Museum was examined and compared
with that previously studied and illustrated
from the West African coasts. The conclu-
sion is that it is a different species and
which should not be called C. chinensis but
C. capensis. The diagnostic characters of
this species are shown in the present work.
Abbreviations:
NMW: National Museum of Wales,
Cardiff
NM: Natal Museum, Pietermaritzburg
sp: specimen with soft parts
s: Shell
e Museo de Historia Natural, Campus Universitario Sur. 15782 Santiago de Compostela.
e-mail: emiliorolanGinicia.es
M7
Iberus, 23 (1), 2005
RESULTS
Family CALYPTRAEIDAE Lamarck, 1809
Genus Calyptraea Lamarck, 1799
Calyptraea capensis Tomlin, 1931 (Figs. 1-13, 17-19)
Calyptraea capensis Tomlin, 1931. Annals of the Natal Museum, 6: p. 428, pl. 36, fig. 6. [Type locality:
Jeffreys Bay, South Africa].
Calyptraea chinensis auct. non Linné, 1758.
Type material: Holotype (NMW (1955.158.01006, Figs. 7, 8).
Material studied (all from NM): W1093, 1 sp, S. of Cape St. Blaize, 34? 43.5” S 22” 09 E, 88 m,
NMDP (Africana) St. A16562D; S8593, 8 s, False Bay, off Falk Bay (34* 08.5” S 18* 28” E), 18 m,
sand with Pyura, NMDP CD29 (10.1V.1991); 7316, 1 s, Port Elizabeth; Amsterdam Neek, on
Zwartkops River; B2887, 47 s, Pondoland Coast, H. Becker coll (1978); B2886, 13 s, Port Alfred, H.
Becker coll. (1978); D2211, 2 sp, Algoa Bay; 1 sp, living inside outer lip of hermit crab shell
Amalda obtusa, 49 m, W of Stilbaai, 34” 29” S 21” 16' E; V603, 2 sp, W of Stilbaai, (34? 29” S; 21” 16'
E), 49 m, B2886, 13 s, Port Alfred; 6025, 16 s, Saldanha Bay; 7316, 1 s, Port Elisabeth, Amsterdam
Nock, Zwartkops River; E6457, 3 s, Cape Agulhas, Struinbari, Caravan Park; S8121, 2 s, SW of
Struis Bay (34” 46.6” S; 20? 09.4” E), 34 m, S3557, 1 s, False Bay (34* 11.2” S; 18” 35.8” E), 40 my;
B8224, 5 s, E. Cape, off East London (33* 04.9” S; 27” 54” E), 70 m; A3454, 4 s, False Bay, Muizen-
berg; B7690, 1 s, Port Elisabeth; B7677, 1 s, Port Elisabeth, Humewood Beach, S6353, 3 s, Agulhas
Bank, W of Martha Point (34? 29.5” S; 20? 33.3” E, 28 m, V186, 3 s, 3 s, Agulhas Bank, W of Martha
Point (34? 24.8” S; 20? 53.4 E, 31 m; C4677, 1 s, Transkei, of Qolora (32? 39.7" S; 28” 28.2' E), 50 m;
B7870, 1 s, E. Cape, off East London (33* 01.0” S; 27” 57.3” E), 30 m,; B8466, 7 s, E. Cape, off East
London (33* 06.2” S; 27” 52.4” E), 70 m; E8887, 2 s, Zululand, off Matigulu River mouth (29* 21.6'
S; 31? 57.1” E), 300 m, S9109, 1 s, SW Cape, SE of Cape Infanta (34” 24.8” S; 20? 53.4” E), 31 m;
C4309, 1 s, Transkei, off Stony Point (32* 32.8” S; 28” 38.2 E), 70 m; C3467, 1 s, Transkei, Kei River;
S3624, 3 s, Cape, off Simonstown (34* 10.7” S; 18” 28.4” E), 31 m; E8940, 1 s, Zululand, off
Matigulu River mouth (29? 22.2” S; 31? 57.2” E), 350 m, A3456, 4 sp, Fish Hock; 9068, 2 s, Jeffreys
Bay; B7657, 2 s, Durban; A3455, 44 s, False Bay, Simonstown dredgings; B2887, 47 S, Pondoland
Coast; S8443, 1 sp, False Bay, SE Seal Island (34* 11.5' S; 18? 37.1” E), 43 m; W1094, W1096, 2 sp
with eggs, E. Cape, off East London (33* 06.8” S; 27” 51.4' E), 10 m.
Description: The shell (Figs. 1-8) has
been described in TOMLIN (1931) and
KILBURN AND RIPPEY (1982). The color
may be white, pink, light brown or
violet, and the surface is usually
smooth, but some shells from deeper
water from Zululand have some
spicules. Sometimes, its external surface
is undulating towards the sutural
depression. Protoconch (Figs. 12, 13)
with about 1*/2 whorls, a diameter of
about 900 um, and a nucleus with a
diameter of 85-100 um, the protoconch
surface is totally smooth. A few radial
lines appear in the teleoconch of some
shells, near the protoconch. Dimensions:
up to 29.0 mm (in lot 9068).
Soft parts: No live material was
examined, but some lots had been pre-
served in alcohol. Two males (10.3, 11.1
78
and 10.3 mm) with dry soft parts were
hydrated in water with soap, and show
that the animal (Figs. 17, 18) has a
similar aspect to that of C. chinensis from
Europe. Only the penis (Fig. 19) seems
to be different: it was placed behind the
right tentacle, being elongated, appar-
ently flat, and placed on the dorsum of
the animal and towards the posterior
part. The tip is a little wider and finishes
in a fine prolongation. Two females of
13 and 15 mm examined, have a small
vestigial penis, elongated and sharp
pointed without any wider part.
Radula (Figs. 9-11) taenioglossate;
rachidian tooth narrow and with a
prominent central cusp on the edge,
with 4, sometimes 5-6, smaller cusps at
each side. Lateral tooth with a promi-
nent and a little wider cusp at the con-
ROLÁN: Calyptraea capensis Tomlin, 1931, a valid species from South Africa
Figures 1-8. Calyptraea capensis. 1-3: 13.4 mm, Cape St. Blaize, 88 m (NM W1093); 4-6: 13.5
mm, Saldanha Bay (NM 6025); 7, 8: holotype, 10.2 mm (MNW).
Figuras 1-8. Calyptraea capensis. 1-3: 13,4 mm, Cabo St. Blaize, 88 m (NM WI1093); 4-6: 13,5
mm, Bahía Saldanha (NM 6025); 7, 8: holotipo, 10,2 mm (MNW).
YO
Iberus, 23 (1), 2005
Figures 9-11. Radula of Calyptraea capensis. 9: female, specimen of 13.8 mm (NM W1093); 10,
11: males of 11.1 and 10.3 mm (NM S8593). Figures 12-16. Protoconchs. 12, 13: C. capensis, off
East London; 14: C. chinensis, Vigo; 15: C. imexpectata, Guinea-Conakry; 16: C. africana, Ivory
Coast.
Figuras 9-11. Rádula de Calyptraea capensis. 9: hembra, ejemplar de 13,8 mm (NM W1093); 10,
11: machos de 11,1 and 10,3 mm (NM $8593). Figuras 12-16. Protoconchas. 12, 13: C. capensis,
costa de East London; 14: C. chinensis, Vigo; 15: C. inexpectata, Guinea Conakry; 16: C. africana,
Costa de Marfil.
80
ROLÁN: Calyptraea capensis Tomlin, 1931, a valid species from South Africa
Figure 17-19. Drawings of soft parts. 17: detail of the head of a female with a 15 mm shell, ventral
view; 18: a male of 10 mm with penis, dorsal view; 19: detail of the penis.
Figuras 17-19. Dibujo de las partes blandas. 17: detalle de la cabeza de una hembra con una concha de
15 mm, en visión ventral; 18: macho de 10 mm con el pene, en visión dorsal; 19: detalle del pene.
fluence of the internal and the external
edges. Internal edge with few wide
cusps (usually 1-2), while the external
has between 5-7. Marginal teeth elon-
gate, curved, sharp pointed, the internal
ones with two edges with 4-6 cusps,
while the external teeth have only 1-2
cusps on their internal part.
Spawn: several spawns were exam-
ined. They have a similar disposition to
that of C. chinensis, the capsules being
more irregular. A specimen of 15 mm
diameter had a spawn of 12 capsules,
each one between 2-3 mm, with
between 20-60 embrionary larvae inside.
Remarks: The holotype has an eroded
protoconch but all other characters fit
well with most of the studied material.
Some variations were found in the
numerous shells examined: most shells
are depressed, but some are extremely
elevated, even higher than wide. We
could not determine if these elevated
forms are a different species, due to the
lack of protoconch in the specimens
examined.
The shell of C. capensis is rather dif-
ferent from the West African species. C.
chinensis is less pointed at the apex of
the shell, and has external prominences
more frequently. The penis is different,
with a spoon shape and a wide prolon-
gation in opposition. The rachidian and
marginal teeth of the radula are very
similar, but the lateral teeth have more
cusps (3-4) on the internal side; the pro-
toconch (Fig. 14) is wider, shorter (1
against 1!/2 whorls) and the nucleus
larger; furthermore, the protoconch of C.
capensis is smooth and the beginning of
the teleoconch has some inconspicuous
radial lines never present in C. chinensis.
C. africana Rolán, 2004 has a larger
shell, more depressed, a little ovoid,
usually translucent white, frequently
with elevated external prominences; the
penis is bilobed at its extreme, with one
of the lobes formed by two masses
together, and a narrow worm-like fila-
ment near the tip; the protoconch (Fig.
16) is rather similar, but the nucleus is
somewhat smaller. The radula has more
cusps in all the teeth.
C. inexpectata Rolán, 2004 has a
smaller shell, sometimes with a squa-
mous sculpture, white or brown in
colour, but never violet; the protoconch
(Fig. 15) is smaller, with a wider nucleus
and several evident sulcii at the begin-
ning of the teleoconch. All the radular
teeth have more cusps.
There are no problems in separating
the remaining South African species of
Calyptraea: C. helicoidea Sowerby, 1883,
has a subscalariform profile, with a
narrow but distinct umbilicus and the
dorsal surface has strong, narrow, rather
oblique radial ribs. C. aurita Reeve, 1859
also has an umbilicus, the columella is
widely reflexed, and the protoconch has
clear radiating spiral lirae (see
BARNARD, 1963: 73).
81
Iberus, 23 (1), 2005
ACKNOWLEDGEMENTS
The author wishes to thank the fol-
lowing: D. G. Herbert of the Natal
Museum, who loaned the material
studied in this work; Harriet Wood of
the National Museum of Wales, Cardiff,
for the information and photographs of
the holotype of C. capensis; Jesús
BIBLIOGRAPHY
BARNARD, K. H., 1963 “1962”. Contribution to
the knowledge of the South African marine
Mollusca. Part III. Gastropoda: Proso-
branchiata: Taenioglossa. Annals of the South
African Museum, 47(1): 1-199.
KENSLEY, B., 1973. Sea-shells of Southern Africa.
Gastropods. Maskew Miller Ltd., Cape Town,
236 pp.
KILBURN, R. AND RIPPEY, E., 1982. Sea Shells of
Southern Africa. MacMillan South Africa, Jo-
hannesburg, 249 pp.
ROLÁN, E., 2004. The genus Calyptraea (Gas-
tropoda, Caenogastropoda, Calyptraeidae) in
the East Atlantic. Iberus, 22(2): 51-79.
82
Méndez of the Centro de Apoyo Cientí-
fico y Tecnológico a la Investigación
(CACTI) of Vigo University, who made
the SEM micrographs, and Jesús S. Tron-
coso of the Department of Ecology of
the University of Vigo, for the digital
optical photographs.
STEYN, G. S. AND Lusst, M., 1998. Marine Shells
of South Africa. Ekogilde, Hartebeespoort,
264 pp.
TOMLIN, J. R. LE B., 1931. On South African ma-
rine mollusca, with descriptions of new gen-
era and species. Annals of the Natal Museum,
6: 415-450.
TURTON, D. $. O., 1932. The marine shells of Port
Alfred South Africa. Oxford University Press,
London, 331 pp., 70 pls.
O Sociedad Española de Malacología
Iberus, 23 (1): 83-86, 2005
Notas breves
Additional information on the biology of Argonauta argo
(Cephalopoda: Octopoda) in the Mediterranean Sea from
gastrointestinal contents of Risso's dolphin
Aportación a la biología de Argonauta argo (Cephalopoda:
Octopoda) en el mar Mediterráneo a partir del contenido gastroin-
testinal del delfín de Risso
Carmen BLANCO*, Ángeles RADUÁN* and Juan Antonio RAGA*
Recibido el 27-VII1-2004. Aceptado el 14-IV-2005
KEY WORDS: Argonauta argo, Grampus griseus, cephalopod biology, Mediterranean.
PALABRAS CLAVE: Argonauta argo, Grampus griseus, biología cefalópodos, Mediterráneo.
INTRODUCTION
Argonguta argo Linnaeus, 1758 is a
cosmopolitan epipelagic octopod living
in tropical and subtropical waters. It is
sexually dimorphic, with dwarf males
and females lodged in calcareous shells
that serve as brood chambers (GUERRA,
1992). Despite its abundance, whole
animals are rarely caught, so that their
life cycle is not completely known. The
reproduction of this species shows a
protracted and continuous spawning
which has been defined as asynchro-
nous ovulation with monocycle spawn-
ing reproductive strategy (ROCHA,
GUERRA AND GONZÁLEZ, 2001).
Living individuals of this species are
rarely found in the Mediterranean Sea
(BOLETZKY AND CENTELLES, 1979; BELLO
AND RIZZI, 1990; POPPER, BARASH AND
GALIL, 1990). Continuous spawning is
believed to take place in the eastern
Mediterranean Sea (LAPTIKHOVSKY AND
SALMAN, 2003), but the life span and
period of reproduction of the species
continue to be unknown. The aim of this
paper is to provide some data on the
biology of this little known Mediter-
ranean species by means of remains col-
lected from the gastrointestinal contents
of Risso's dolphins, Grampus griseus
(Cuvier, 1812) (Cetacea: Delphinidae), a
teuthivorous predator (KRUSE, CALD-
WELL AND CALDWELL, 1999).
MATERIAL AND METHODS
The data analysed in this paper
came from gastrointestinal contents of
eleven Rissos dolphins, Grampus
griseus, stranded on the west Mediter-
ranean coast, between 40" 25' N, 00% 32*
* Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, P. O. Box 22085, 46100
Valencia, Spain. E-mail: carmen.blancoCuv.es
83
Iberus, 23 (1), 2005
Ve Zea da Má as
61171 3,49
O A. argo
=0— 6. griseus 3
0
10, AL A2
Figure 1. Annual distribution of specimens of Argonauta argo from gastrointestinal contents of
Mediterranean Risso's dolphin. N: number of A. argo; n: number of dolphins.
Figura 1. Distribución anual de los ejemplares de Argonauta argo obtenidos del contenido gastrointesti-
nal del delfín de Risso en el Mediterráneo.
W and 37* 35' N, 00% 45 E, collected
from April 1987 to January 2003. All gas-
trointestinal tracts were stored deep-
frozen (-20%C) and their contents subse-
quently washed through a 0.2 mm mesh
sieve and preserved in 70% ethanol;
glycerine was added to the preservative
solution for cephalopod beaks.
The beaks were identified according
to SMALE, CLARKE, KLAGES AND
ROELEVELD (1993). Cephalopod mantle
length was estimated from hood length
of lower beak (SMALE ET AL., 1993), due
to the frequent rotten condition of the
crest. Some underestimating of hood
length and, hence, mantle length may be
assumed because of the digestive action.
RESULTS
In the gastrointestinal contents of
Risso's dolphins, 336 lower beaks of
Argonauta argo were found, hood length
range: 1.31-5.87 mm. Distribution
through the time period for which data
were available (see Figure 1) shows a
higher number in early spring. The esti-
mated mantle lengths are shown in
Figure 2. Significant differences were
found in the size of specimens through-
out the year (nested ANOVA (Fos25 =
11.1, P < 0.001). The frequency distribu-
tion of beak length (HL) in the months
of maximum abundance, March and
84
April, is shown in Figure 3; significant
length distribution differences were
found between these two months (Kol-
mogorov-Smirnov test, maximum dif-
ferences between samples= 0.268, N
(192, 99), P< 0.001), 25.6-28.7 mm and
31.8-35.0 mm being the estimated
mantle length of modal class in March
and April, respectively. In all available
samples there were individuals whose
mantle length was longer than 35 mm.
An oviscapte with eggs (modal value
size 1.22-1.42 mm length) was found in
the intestine of a dolphin stranded in
January; this value may be underesti-
mated due to the possible shrinking
action of preservation in alcohol.
DISCUSSION
The high number of beaks from A.
argo gathered in this study, in contrast
with the scarcity of their catches (see the
Introduction), corroborates the effective-
ness of teuthophagous predators as
cephalopod collectors (BELLO, 1996).
All remains of A. argo found in this
study, apart from one collected in April,
were ascribed to female specimens
based on their size, since dwarf males
only reach 10 mm of dorsal mantle
length (GUERRA, 1992). In accordance
with the smallest female size at maturity
in the Mediterranean, i. e. 32 mm ML
BLANCO ET AL.: Argonauta argo in gastrointestinal contents of Risso's dolphin
3
El March
£
>
> April
LAS DORADO A
Months
EDO LAS E SA l,
Beak length (HL mm)
Figure 2. Annual length distribution of estimated mantle length (ML) of Argonauta argo from gas-
trointestinal contents of Mediterranean Risso's dolphin. Box-and-whisker-plot (TUKEY, 1977).
Figure 3. Frequency distribution of lower beak length (HL) of Argonauta argo in March and April.
Figura 2. Distribución anual de la longitud estimada del manto (ML) de Argonauta argo a partir del
contenido gastrointestinal del delfín de Risso en el Mediterráneo. Gráfico “Box-and-whisker” (TUKEY,
1977). Figura 3. Distribución de la frecuencia de la longitud de la mandíbula inferior (HL) de Argo-
nauta argo en marzo y abril.
(LAPTIKHOVSKY AND SALMAN, 2003), ma-
ture females were present in all sampled
seasons. Such a find and the occurrence
of fertilized eggs in the brooding cham-
ber from January, in addition to brood-
ing females collected in the Adriatic in
November (BELLO AND RIZZ1, 1990) and
mature females found in the eastern
Mediterranean Sea during winter (LAp-
TIKHOVSKY AND SALMAN, 2003), show
that the spawning period for Mediter-
ranean A. argo extends longer than pre-
viously believed (from May to October
according to GUERRA, 1992). Differences
BIBLIOGRAPHY
BELLO, G., 1996. Teuthophagous predators as
collectors of oceanic cephalopods: the case of
the Adriatic Sea. Bollettino Malacologico, 32 (1-
4): 71-78.
BELLO, G. AND RIZZI E., 1990. Comportamiento
di tre femmine di Argonauta argo in acquario
(Cephalopoda: Argonautidae). Atti della Societa
Italiana di Scienze Naturali e del Museo Cívico
di Storia Naturale di Milano, 131: 450-452.
BOLETZKY, S. V. AND CENTELLES, J., 1979. Argo-
nauta argo (Mollusca, Cephalopoda) dans la
région de Banyuls-sur-mer. Vie et Milieu, 28-
29 (4): 659-660.
GUERRA, A., 1992. Mollusca. Cephalopoda. In
Ramos, M. A. et al. (eds.): Fauna Ibérica, vol.
1. Museo Nacional de Ciencias Naturales,
CSIC, Madrid, 327 pp.
in the size of specimens through the
year, especially in the two consecutive
months could indicate either seasonality
or a preferential period of spawning
time.
ACKNOWLEDGEMENTS
This study was supported by Con-
sellería de Territorio y Vivienda, Gener-
alitat Valenciana, and Dirección General
de Conservación de la Naturaleza, Min-
isterio de Medio Ambiente.
KRUSE, S., CALDWELL, D. K. AND CALDWELL, M.
C., 1999. Risso's dolphin Grampus griseus (G.
Cuvier, 1812). In Ridgway, S. H. and Harrison,
R. (eds.): Handbook of Marine Mammals, Vol.
6, pp. 183-212. Academic Press, London.
LAPTIKHOVSKY, V. AND SALMAN, A., 2003. On
reproductive strategies of the epipelagic oc-
topods of the superfamily Argonautidea
(Cephalopoda: Octopoda). Marine Biology,
142: 321-326.
PopPPER, D., BARASH, A. AND GALIL, B. S., 1990.
Argonauta argo — A rare occurrence off the
shores of Israel. Israel Journal of Zoology, 37:
51-53.
ROCHA, F., GUERRA, A. AND GONZÁLEZ, A. F,,
2001. A review of reproductive strategies in
cephalopods. Biological Review, 76: 291-304.
85
Iberus, 23 (1), 2005
SMALE, M. J., CLARKE, M. R., KLAGES, T. W. TUKEY, J. W. 1977. Bob-and-whisker-Plot. In
AND ROELEVELD, A. C., 1993. Octopod beak Explanatory data analysis, pp. 39-43. Addison-
identification — resolution at a regional level Wesley, Massachusetts.
(Cephalopoda, Octopoda: Southern Africa).
South African Journal of Marine Science, 13:
269-293.
86
NORMAS DE PUBLICACIÓN
* La revista /berus publica artículos de fondo, notas y monografías que versen sobre cualquiera de los aspectos relacio-
nados con la Malacología. Se entiende por artículo un trabajo de investigación de más de 5 páginas de texto, meca-
nografiadas, incluidas láminas, gráficos y tablas. Las notas son trabajos de menor extensión. Las monografías son tra-
bajos sobre un tema único, de extensión superior a las 50 páginas de la revista y que serán publicadas como un suple-
mento de /berus. Los autores interesados en publicar monografías deberán ponerse previamente en contacto con el
Editor de Publicaciones. Se entiende que el contenido de los manuscritos no ha sido publicado, ni se publicará en
otra parte ni en su totalidad ni resumido.
* Los manuscritos, así como toda la correspondencia relacionada con los mismos, deberán ser remitidos a: Serge Gofas,
Editor de Publicaciones, Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos, s/n,
29071, Málaga, España.
* El texto del trabajo podrá estar redactado en cualquier lengua culta moderna.
* En los trabajos que superen las 20 páginas, cada página de exceso será abonada por el(los) autor(es) a precio de coste.
e Los artículos, notas y monografías deberán presentarse mecanografiados sobre DIN A-4, por una sola cara a doble
espacio (incluyendo referencias, pies de figura y tablas), con al menos 3 centímetros de margen por cada lado. Los tra-
bajos se entregarán por triplicado (original y dos copias), y se incluirá una versión en disco flexible (diskette), utili-
zando procesadores de texto en sus versiones de DOS o Macintosh. En caso de autoría compartida, uno de los auto-
res deberá hacerse responsable de toda la correspondencia.
* Junto con el trabajo debe incluirse una lista de al menos 4 posibles revisores del mismo, sin perjuicio de los que el
propio Editor considere oportunos.
e Los manuscritos se presentarán de acuerdo al siguiente esquema:
Primera página. Deberá incluir un título conciso, pero sugerente del contenido del trabajo, así como una traducción
al inglés del mismo (si el artículo no está escrito en inglés). Cuando sea preciso, deberá incluir referencia a familia o
táxones superiores. A continuación figurarán, por este orden, el nombre y apellidos completos del autor o autores,
las direcciones completas de los mismos, y un resumen del trabajo y su traducción al inglés. Dicho resumen deberá
sintetizar, en conjunción con el título, tanto los resultados como las conclusiones del artículo; se sugiere una exten-
sión de 100 a 200 palabras. El resumen deberá estar seguido de una lista de palabras clave, también con su versión
inglesa para su inclusión en los bancos de datos internacionales.
Páginas siguientes. Incluirán el resto del artículo, que debe dividirse en secciones precedidas por breves encabeza-
mientos. Siempre que sea posible, se recomienda seguir el siguiente esquema: Introducción, Material y métodos,
Resultados, Discusión, Conclusiones, Agradecimientos y Bibliografía. Si se emplean abreviaturas no habituales en
el texto, deberán indicarse tras el apartado de Material y Métodos.
* Las notas bréves deberán presentarse de la misma forma, pero sin resumen.
+ Deberán evitarse notas a pie de página y referencias cruzadas. Deberán respetarse estrictamente los Códigos
Internacionales de Nomenclatura Zoológica y Botánica (últimas ediciones). Cuando un táxon aparezca por primera
vez deberá citarse su autor y fecha de su descripción. En el caso de artículos sistemáticos, cuando se den las sinonimias
de los táxones, éstas deberán citarse COMPLETAS, incluyendo en forma abreviada la publicación donde fueron des-
critas, y la localidad tipo si es conocida entre corchetes, según el siguiente esquema (préstese especial cuidado a la pun-
tuación):
Dendrodoris limbata (Cuvier, 1804)
Sinonimias
Doris limbata Cuvier, 1804, Ann. Mus. H. N. Paris, 4 (24): 468-469 [Localidad tipo: Marsella].
Doris nigricans Otto, 1823, Nov. Act. Ac. Caes. Leop. Car., 10: 275.
Dichas referencias no deberán incluirse en la lista de Bibliografía si es la única vez que se nombran en el texto.
Si se incluyen una lista completa de referencias de un taxon inmediatamente tras éste, deberá seguirse el mismo esque-
ma (sin incluir en Bibliografía las referencias que no se mencionen en otro lugar del texto).
* Sólo los nombres en latín y los de táxones genéricos y específicos deberán llevar subrayado sencillo o preferentemente
ir en cursiva. En ningún caso deberá escribirse una palabra totalmente en letras mayúsculas, ni siquiera el Título. Las
unidades a utilizar deberán pertenecer al Sistema Métrico Decimal, junto con sus correctas abreviaturas. En artículos
escritos en castellano, en los números decimales sepárese la parte entera de la decimal por una coma inferior (,),
NUNCA por un punto (.) o coma superior (*).
* Las referencias bibliográficas irán en el texto con minúsculas o versalitas: Fretter y Graham (1962) o FRETTER Y
GRAHAM (1962). Si son más de dos autores se deberán citar todos la primera vez que aparecen en el texto [Smith,
Jones y Brown (1970)] empleándose et al. las siguientes veces [Smith et al. (1970)]. Si un autor ha publicado más de
un trabajo en un año se citarán con letras: (Davis, 1989a; Davis, 1989b). No deberá emplearse op. cit. La lista de refe-
rencias deberá incluir todas las citas del texto y sólo éstas, ordenadas alfabéticamente. Se citarán los nombres de todos
los autores de cada referencia, sea cual sea su número. Los nombres de los autores deberán escribirse, en letras minús-
culas o VERSALITAS. No deberán incluirse referencias a autores cuando éstos aparezcan en el texto exclusivamente
como autoridades de un taxon. Los nombres de las publicaciones periódicas deberán aparecer COMPLETOS, no
abreviados. Cuando se citen libros, dése el título, editor, lugar de publicación, n* de edición si no es la primera y
número total de páginas. Deberán evitarse referencias a Tesis Doctorales u otros documentos inéditos de difícil con-
sulta. Síganse los siguientes ejemplos (préstese atención a la puntuación):
Fretter, V. y Graham, A., 1962. British Prosobranch Molluscs. Ray Society, London, 765 pp.
Ponder, W. F., 1988. The Truncatelloidean (= Rissoacean) radiation - a preliminary phylogeny. En Ponder, W. F.
(Ed.): Prosobranch Phylogeny, Malacological Review, suppl. 4: 129-166.
Ros, J., 1976. Catálogo provisional de los Opistobranquios (Gastropoda: Euthyneura) de las costas ibéricas.
Miscelánea Zoolgica, 3 (5): 21-51.
* Las gráficas e ilustraciones deberán ser originales y presentarse sobre papel vegetal o similar, con tinta china negra y
ajustadas al formato de caja de la revista o proporcional a éste. Este formato es de 57 mm (una columna) o 121 mm
(dos) de anchura y hasta 196 mm de altura, si bien se recomienda utilizar el formato a dos columnas. En caso de pre-
parar figuras para que ocupen el total de una página, se ruega ajustar su tamaño para que puedan caber los pies de
figura bajo ella. Si han de incluirse gráficas de ordenador, deberán imprimirse con impresora láser sobre papel de
buena calidad. Las fotografías, bien contrastadas y sin retocar, deberán ajustarse siempre a los tamaños mencionados.
Al componer fotografías sobre una hoja, procúrese que los espacios entre ellas sean regulares y que estén debidamente
alineadas. Téngase en cuenta que incluir fotografías de distinto contraste en una misma página conlleva una pobre
reproducción final. Las escalas de dibujos y fotografías deberán ser gráficas, y las unidades que se utilicen del sistema
métrico decimal. Considérese la reducción que será necesaria a la hora de decidir el tamaño de las escalas o letras en
las figuras, que no deberán bajar de los 2 mm. En figuras compuestas, cada parte deberá etiquetarse con letras mayús-
culas, el resto de las letras deberán ser minúsculas. No deberán hacerse referencias a los aumentos de una determi-
nada ilustración, ya que éstos cambian con la reducción, por lo que debe emplearse una escala gráfica. En su caso, se
recomienda la utilización de mapas con proyección UTM. Cada figura, gráfica o ilustración deberá presentarse en
hojas separadas y con numeración arábiga (1, 2, 3,...), sin separar “Figuras” y “Láminas”. Los pies de figura, en una
hoja aparte, deberán acompañarse de su traducción al inglés (o español si el inglés es la lengua del trabajo). Utilícese
el esquema siguiente:
Figura 1. Neodoris carví. A: animal desplazándose; B: detalle de un rinóforo; C: branquia.
Las abreviaturas empleadas en las ilustraciones deberán incluirse en la hoja de pies de figura.
Los autores interesados en incluir láminas en color deberán abonarlas a precio de coste (30.000 ptas por página). Por
lo demás, deberán ajustarse a los mismos requisitos que los indicados para las figuras.
Si se pretende enviar gráficas o ilustraciones en formato digital es IMPRESCINDIBLE contactar previamente con el
Editor
e Las Tablas se presentarán en hojas separadas, siempre con numeración romana (1, IL, [IL...). Las leyendas se inclui-
rán en una hoja aparte acompañándose de una traducción al inglés. Deberán evitarse las tablas particularmente com-
plejas. Se recomienda reducir el número y extensión de ilustraciones, láminas o tablas al mínimo necesario.
* Los artículos que no se ajusten a las normas de publicación serán devueltos al autor con las indicaciones de los cam-
bios necesarios.
e El Comité Editorial comunicará al autor responsable del trabajo la fecha de recepción del trabajo y la fecha de envío
a revisión. Cada original recibido será sometido a revisión por al menos dos investigadores. El Comité Editorial, a la
vista de los informes de los revisores decidirá sobre la aceptación o no de cada manuscrito. El autor recibirá en cada
caso copia de los comentarios de los revisores sobre su artículo. En caso de aceptación, el mismo Comité Editorial, si
lo considera conveniente, podrá solicitar a los autores otras modificaciones que considere oportunas. Si el trabajo es
aceptado, el autor deberá enviar una copia impresa del mismo corregida, acompañada por una versión en disco flexi-
ble (diskette), utilizando procesadores de texto en sus versiones de DOS o Macintosh. La fecha de aceptación figura-
rá en el artículo publicado.
* Las pruebas de imprenta serán enviadas al autor responsable, EXCLUSIVAMENTE para la corrección de erratas, y
deberán ser devueltas en un plazo máximo de 15 días. Se recomienda prestar especial atención en la corrección de las
pruebas.
* De cada trabajo se entregarán gratuitamente 50 separatas. Aquellos autores que deseen un número mayor, deberán
hacerlo constar al devolver las pruebas de imprenta, y NUNCA POSTERIORMENTE. El coste de las separatas adi-
cionales será cargado al autor.
INSTRUCTIONS TO AUTHORS
e Iberus publishes research papers, notes and monographs devoted to the various aspects of Malacology. Papers are
manuscripts of more than 5 typed pages, including figures and tables. Notes are shorter papers. Monographs should
exceed 50 pages of the final periodical, and will be published as Supplements. Authors wishing to publish monographs
should contact the Editor. Manuscripts are considered on the understanding that their contents have not appeared or
will not appeared, elsewhere in substantially the same or any abbreviated form.
+ Manuscripts and correspondence regarding editorial matters must be sent to: Serge Gofas, Editor de Publicaciones,
Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain.
+ Manuscripts may be written in any modern language.
* When a paper exceeds 20 pages, extra pages will be charged to the author(s) at full cost.
+ Manuscripts must be typed double spaced (including the references, figure captions and tables) on one side on A-4
(297x210 mm) with margins of at least 3 cm. An original and two copies must be submitted, together with a floppy
disk containing the article written with a DOS or Macintosh word processor. When a paper has joint authorship, one
author must accept responsability for all correspondence.
* The authors must include a list of at least 4 possible referees; the Editor can choose any others if appropriate.
* Papers should conform the following layout:
First page. This must include a concise but informative title, with mention of family of higher taxon when appropri-
atte, and its Spanish translation. It will be followed by all authors? names and surnames, their full adress(es), an
abstract (and its Spanish translation) not exceeding 200 words which summarizes not only contents but results and
conclusions, and a list of Key Words (and their Spanish translation) under which the article should be indexed.
Following pages. These should content the rest of the paper, divided into sections under short headings. Whenever
possible the text should be arranged as follows: Introduction, Material and methods, Results, Discussion,
Conclusions, Acknowledgements and References. Unusual abbreviations used in the text must be grouped in one
alphabetic sequence after the Material and methods section.
* Notes should follow the same layout, without the abstract.
+ Footnotes and cross-references must be avoided. The International Codes of Zoological and Botanical
Nomenclature must be strictly followed. The first mention in the text of any taxon must be followed by its authori-
ty including the year. In systematic papers, when synonyms of a taxon are given, they must be cited IN FULL, includ-
ing the periodical, in an abbreviate form, where they were described, and the type localities in square brackets when
known. Follow this example (please note the punctuation):
Dendrodoris limbata (Cuvier, 1804)
Synonyms
Doris limbata Cuvier, 1804, Ann. Mus. H. N. Paris, 4 (24): 468-469 [Type locality: Marseille).
Doris nigricans Otto, 1823, Nov. Act. Ac. Caes. Leop. Car., 10: 275.
These references must not be included in the Bibliography list, except if referred to elsewhere in the text. I£a full list
of references of the taxon is to be given immediately below it, the same layout should be followed (also excluding those
nowhere else cited from the Bibliography list).
Only Latin words and names of genera and species should be underlined once or be given in ¿talics. No word must
be written in UPPER CASE LETTERS. SI units are to be used, together with their appropriate symbols. In Spanish
manuscripts, decimal numbers must be separated with a comma (,), NEVER with a point (.) or upper comma (*).
» References in the text should be written in small letters or SMALL CAPITALS: Fretter and Graham (1962) or FRETTER
AND GRAHAM (1962). The first mention in the text of a paper with more than two authors must include all of them
[Smith, Jones 82 Brown (1970)], thereafter use et al. [Smith et al. (1970)]. Ifan author has published more than one
paper per year, refer to them with letters: (Davis, 1989a; Davis, 1989b). Avoid op. cit.
The references in the reference list should be in alphabetical order and include all the publications cited in the text
but only these. ALL the authors of a paper must be included. These should be written in small letters or SMALL CAP-
ITALS. The references need not be cited when the author and date are given only as authority for a taxonomic name.
Titles of periodicals must be given IN FULL, not abbreviated. For books, give the title, name of publisher, place of
publication, indication of edition if not the first and total number of pages. Keep references to doctoral theses or any
other unpublished documents to an absolute minimum. See the following examples (please note the punctuation):
Fretter, V. and Graham, A., 1962. British Prosobranch Molluscs. Ray Society, London, 765 pp.
Ponder, W. F., 1988. The Truncatelloidean (= Rissoacean) radiation - a preliminary phylogeny. In Ponder, W. F.
(Ed.): Prosobranch Phylogeny, Malacological Review, suppl. 4: 129-166.
Ros, J., 1976. Catálogo provisional de los Opistobranquios (Gastropoda: Euthyneura) de las costas ibéricas.
Miscelánea Zoológica, 3 (5): 21-51.
* Figures must be original, in Indian ink on draughtsman's tracing paper. Keep in mind page format and column size
when designing figures. These should be one column (57 mm) or two columns (121 mm) wide and up 196 mm high,
or be proportional to these sizes. “Two columns format is recomended. It is desirable to print figures with their legend
below, so authors are asked to take this into account when preparing full page figures. If computer generated graph-
ics are to be included, they must be printed on high quality white paper with a laser printer. Photographs must be of
good contrast, and should be submitted in the final size. When mounting photographs in a block, ensure spacers are
of uniform width. Remember that grouping photographs of varied contrast results in poor reproduction. Take
account of necessary reduction in lettering drawings; final lettering must be at least 2 mm high. In composite draw-
ings, each figure should be given a capital letter; additional lettering should be in lower-case letters. A scale line is
recomended to indicate size, magnification ratio must be avoided as it may be changed during printing. UTM maps
are to be used if necessary. Figures must be submitted on separate sheets, and numbered with consecutive Arabic num-
bers (1, 2, 3,...), without separating “Plates” and “Figures”. Legends for Figures must be typed in numerical order on
a separate sheet, and an Spanish translation must be included. Follow this example (please note the punctuation):
Figure 1. Neodoris carvi. A: animal crawling; B: rinophore; C: gills.
If abbreviations are to be used in illustrations, group them alphabetically after the Legends for Figures section.
Authors wishing to publish illustrations in colour will be charged with additional costs (30,000 ptas, 180 euros per
page). They should be submitted in the same way that black and white prints.
If the authors want to send Figures in digital format, CONTACT the Editor first.
e Tables must be numbered with Roman numbers (1, II, TIL...) and each typed on a separate sheet. Headings should
be typed on a separate sheet, together with their English translation. Complex tables should be avoided. As a general
rule, keep the number and extension of illustrations and tables as reduced as possible.
e Manuscripts that do not conform to these instructions will be returned for correction before reviewing.
* Authors submitting manuscripts will receive an acknowledgement of receipt, including receipt date, and the date
the manuscript was sent for reviewing. Each manuscript will be critically evaluated by at least two referees. Based of
these evaluations, the Editorial Board will decide on acceptance or rejection. Anyway, authors will receive a copy of
the referees* comments. If a manuscript is accepted, the Editorial Board may indicate additional changes if desirable.
Acceptable manuscripts will be returned to the author for consideration of comments and criticism; a finalized man-
uscript must then be returned to the Editor, together with a floppy disk containing the article written with a DOS or
Macintosh word processor. Dates of reception and acceptance of the manuscript will appear in all published articles.
* Proofs will be sent to the author for correcting errors. At this stage no stylistic changes will be accepted. Pay special
attention to references and their dates in the text and the Bibliography section, and also to numbers of Figures and
Tables appearing in the text.
* Fifty reprints per article will be supplied free of charge. Additional reprints must be ordered when the page proofs
are returned, and will be charged at cost. NO LATER orders will be accepted.
LA SOCIEDAD ESPAÑOLA DE MALACOLOGÍA
Junta Directiva desde el 14 de noviembre de 2000
Presidente Emilio Rolán Mosquera
Vicepresidente Diego Moreno Lampreave
Secretario Luis Murillo Guillén
Tesorero Jorge J. Otero Schmitt
Avda. de las Ciencias s/n, Campus Universitario, 15706 Santiago
de Compostela, España
Editor de Publicaciones Gonzalo Rodríguez Casero
Apartado 156, 33600, Mieres del Camino, Asturias, España
Bibliotecario Rafael Araujo Armero
Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutierrez
Abascal 2, 28006 Madrid, España
Vocales Ramon M. Álvarez Halcon
Benjamín Gómez Moliner
Eugenia María Martínez Cueto-Felgueroso
Jesús Souza Troncoso
José Templado González
La Sociedad Española de Malacología se fundó el 21 de agosto de 1980. La sociedad se registró como una aso-
ciación sin ánimo de lucro en Madrid (Registro N* 4053) con unos estatutos que fueron aprobados el 12 de
diciembre de 1980. Esta sociedad se constituye con el fin de fomentar y difundir los estudios malacológicos
mediante reuniones y publicaciones. A esta sociedad puede pertenecer cualquier persona o institución interesada
en el estudio de los moluscos.
SEDE SOCIAL; Museo Nacional de Ciencias Naturales, c/ José Gutierrez Abascal 2, 28006 Madrid, España.
CUOTAS PARA 2005:
Socio numerario (en España): 40 euros
(en Europa) 40 euros
(fuera de Europa): 48 euros
Socio estudiante (en España): 23 euros
(en el extranjero): 29 euros
Socio Familiar: (sin recepcion de revista) 4 euros
Socio Protector: (mínimo) 48 euros
Socio Corporativo (en Europa): 48 euros
(fuera de Europa): 54 euros
INSCRIPCIÓN: 6 euros, además de la cuota correspondiente.
A los socios residentes en España se les aconseja domiciliar su cuota. Todos los abonos deberán enviarse al
Tesorero (dirección reseñada anteriormente) el 1 de enero de cada año. Los abonos se harán sin recargos para la
sociedad y en favor de la Sociedad Española de Malacología y no de ninguna persona de la junta directiva. Aque-
llos socios que no abonen su cuota anual dejarán de recibir las publicaciones de la Sociedad. Los bonos de ins-
cripción se enviarán junto con el abono de una cuota anual al Tesorero.
A los residentes en el extranjero se les ruega que abonen su cuota mediante giro postal en euros (internatio-
nal postal money orders in euros sent to the Treasurer). Members living in foreing countries can deduce 6 euros
if paid before 15 April.
Cada socio tiene derecho a recibir anualmente los números de /berus, Reseñas Malacológicas y Noticiarios que
se publiquen.
UI UOAIAN
ÍNDICE
Iberus | 23 (1) 2005
YADAV, R. P, TIWARI, S. AND SINGH, A. Toxic effects of taraxerol extracted from Codiaeum varie-
gatum stem-bark on target vector snail Lymnaea acuminata and non-target fish
loxicidad del taraxerol extraído del tallo de Codiaeum variegatum sobre el caracol Lymnaea
ACUIMINALA Y SODIO PECES A 1-13
MÁRQUEZ, R., ARRÉBOLA, J. R. Y DELGADO, R. Un avance sobre la composición y microestruc-
tura de la concha de /berus gualtierianus morfotipo gualtierianus (Linnaeus, 1758) (Gastro-
poda: Helicidae)
Notes on the composition and microstructure of the shell of Iberus gualtierianus morphotype
gualtierianus (Linnaeus, 1758) (Gastropoda: Helicidae) ici 15-24
SINGH, D., YADAV, R. P. AND SINGH, A. Changes in phospholipid and lipid peroxidation 15%
due to latex of Croton tiglium in freshwater snail Lymnaea acuminata
Cambios en los niveles de peroxidación de fosfolípidos y lípidos por efecto del latex de Croton
tiglium sobre el molusco dulceacuícola Lymnaea acuminata ooo cicioccccccnoos 25:34
GIORDANO, D., BOTTARI, T. AND RINELLI, P. Cephalopod assemblages caught by trawling along
the Southern Tyrrhenian Sea (Central Mediterranean)
Asociaciones de cefalópodos capturados por la pesca de arrastre comercial en el Tirreno meridio-
nal (Mediterráneo central) 0 do AI aO Ea EN 33-42
SÁNCHEZ-SANTOS, A. Onchidoris neapolitana (Delle Chiaje, 1844) (Gastropoda: Nudibranchia:
Onchidorididae): una nueva especie de molusco para la fauna andaluza
Onchidoris neapolitana (Delle Chiaje, 1844) (Gastropoda: Nudibranchia: Onchidorididae):
a new molluscan species for the Andalousian fauna ooo .... 43-48
RAINES, B. AND PIZZINL M. Contribution to the knowledge of the family Caecidae: 16. Revision
of the Caecidae of Easter Island (Chile) (Caenogastropoda: Rissooidea Gray J. E., 1847)
Contribución al conocimiento de la familia Caecidae: 16. Revisión de los Caecidae de la Isla de
Pascua (Chile) (Caenogastropoda: Rissooidea J. E. Gray 1847) ici 49-65
ÁVILA, S. P, SANTOS, A. C., PENTEADO, A. M., RODRIGUES, A. M., QUINTINO, L. AND MACHA-
DO, M. I. The molluscs of the intertidal algal turf in the Azores
Los moluscos del cesped algal intermareale en Azores iii 67-76
ROLÁN, E. Calyptraea capensis Tomlin, 1931 (Gastropoda, Calyptraeidae), a valid species from
South Africa j
Calyptraea capensis Tomlin, 1931 (Gastropoda, o una especie válida de
SUAAICA da AU 77-82
Notas breves
BLANCO, C., RADUÁN, A. AND RAGA, J. A. Additional information on the biology of Argonauta
argo (Cephalopoda: Octopoda) in the Mediterranean Sea from gastrointestinal contents ef
Risso's dolphin
Aportación a la biología de Argonauta argo (Cephalopoda: Octopoda) en el mar Mei
a partir del contenido gastrointestinal del delfín de RissO lll 83-86
ISSN 0212-3010