Ll
. : sn a Pa
E s IS AA aa cn
: : A . el EICDI
PAR A , 7 h
Ln E í Fire A
Meri
e o
Mo
E EPS : Daza ino
Laa e ñ
miei
as > >
z AAA TAR
CAS SR IES
tii
As S ..
a DA
A
el : + . A A NS
ES | : É $ Fo
ENE É A : |
es lea A y |
o EIN ; : :
ae
DR
OS
PEI
Errar
. : ns
IT A
EA A
demore
EN
ra
ARA da
E Dali cre
A
Mt
SED
HARVARD UNIVERSITY
3
Library of the
Museum of
Comparative Zoology
ÍS e
O
A 0
Es
berus
Vol. 15 (1)
REVISTA DE LA
SOCIEDAD ESPAÑOLA
DE MALACOLOGÍA
Oviedo, junio 1997
COMITÉ DE REDACCIÓN
EDITOR
Ángel Guerra Sierra
EDITORES ADJUNTOS
Eugenia M* Martínez Cueto-Felgueroso
Francisco Javier Rocha Valdés
Gonzalo Rodríguez Casero
ComuTé EDITORIAL
Kepa Altonaga Sustacha
Eduardo Angulo Pinedo
Thierry Backeljau
Sigurd v. Boletzky
Jose Castillejo Murillo
Karl Edlinger
José Carlos García Gómez
Edmund Gittenberger
Serge Gofas
Ángel Antonio Luque del Villar
María Yolanda Manga González
Jordi Martinell Callico
Iberus
Revista de la
SOCIEDAD ESPAÑOLA DE MALACOLOGÍA
Instituto de Investigaciones Marinas, CSIC, Vigo, España
Universidad de Oviedo, Oviedo, España
Instituto de Investigaciones Marinas, CSIC, Vigo, España
Universidad de Oviedo, Oviedo, España
Universidad del País Vasco, Bilbao, España
Universidad del País Vasco, Bilbao, España
Institut Royal des Sciences Naturelles de Belgique, Bruselas, Bélgica
Laboratoire Arago, Banyuls-surMer, Francia
Universidad de Santiago de Compostela, Santiago de Compostela, España
Naturhistorisches Museum Wien, Austria
Universidad de Sevilla, Sevilla, España
Notionaal Natuurhistorisch Museum, Leiden, Holanda
Muséum National d'Histoire Naturelle, Paris, Francia
Universidad Autónoma de Madrid, Madrid, España
Estación Agrícola Experimental, CSIC, León, España
Universidad de Barcelona, Barcelona, España
Ron K. 0'Dor Dalhousie University, Halifax, Conada
Marco Oliverio Universitá di Roma “La Sapienza”, Roma, Italia
Pablo E. Penchaszadeh Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina
Carlos Enrique Prieto Sierra Universidad del País Vasco, Bilbao, España
María de los Ángeles Ramos Sánchez Museo Nacional de Ciencias Naturales, CSIC, Madrid, España
Paul 6. Rodhouse British Antarctic Survey, Cambridge, Reino Unido
Joandoménec Ros ¡ Aragones Universidad de Barcelona, Barcelona, España
María del Carmen Salas Casanovas Universidad de Málaga, Málaga, España
Gerhard Steiner Universitát Wien, Austria
José Templado González Museo Nacional de Ciencias Naturales, CSIC, Madrid, España
Victoriano Urgorri Carrasco Universidad de Santiago de Compostela, Santiago de Compostela, España
Anders Warén Swedish Museum of Natural History, Estocolmo, Suecia
Iberus publica trabajos que traten sobre cualquier aspecto relacionado con la Malacología. Se admiten también
notas breves. /berus edita un volumen anual que se compone de dos o más números.
INSTRUCCIONES PARA LOS AUTORES
Los manuscritos deben remitirse a: Dr. Ángel Guerra Sierra, Instituto de Investigaciones Marinas (CSIC),
c/ Eduardo Cabello 6, 36208 Vigo, España.
Los trabajos se entregarán por triplicado (original y dos copias). Se recomienda a los autores leer cuidadosa-
mente las normas de publicación que se incluyen en cada número de la revista.
SUBCRIPCIONES
Iberus puede recibirse siendo socio de la Sociedad Española de Malacología, en cualquiera de sus formas, O
mediante intercambio. Aquellos socios que deseen adquirir números atrasados deberán dirigirse al bibliotecario.
Los no socios deberán ponerse en contacto con BACKHUYS PUBLISHERS, P.O. Box 321, 2300 AH
Leiden, The Netherlands. Tel.: +31-71-51 70 208, Fax: +31-71-51 71 856, Correo Electrónico: backhuysCeuronet.nl
PORTADA DE Jberus
Iberus gualterianus (Linnaeus, 1758), una especie emblemática de la península Ibérica, que da nombre a la
revista. Dibujo realizado por Toza.
Iberus
REVISTA DE LA
SOCIEDAD ESPAÑOLA
DE MALACOLOGÍA
Vol. 15 (1) Oviedo, junio 1997
Dep. Leg. B-43072-81
ISSN 0212-3010
Diseño y maquetación: Gonzalo Rodríguez
Impresión: LOREDO, S. L. - Gijón
O Sociedad Española de Malacología Iberus, 15 (1): 1-4, 1997
How many species of Candidula (Gastropoda: Hygromii-
dae) in northern Portugal?
¿Cuantas especies de Candidula (Gastropoda: Hygromiidae) habitan
en el norte de Portugal?
Cristian R. ALTABA*
Recibido el 6-11-1996. Aceptado el 24-IV-1996
ABSTRACT
Two species of Candidula Kobelt, 1871 (Pulmonata: Hygromiidae) endemic to Portugal
are reported from the northern part of the country. C. belemensis (Servain, 1880) is consi-
dered a valid species similar to, but different from the widespread C. intersecta (Poiret,
1801). C. olisippensis (Servain, 1880) is distinctive, having a shell with very small, round
umbilicus, a long spermathecal duct, and a short flagellum.
RESUMEN
Se citan para el norte de Portugal dos especies endémicas en este país pertenecientes al
género Candidula Kobelt, 1871 (Pulmonata: Hygromiidae). C. belemensis (Servain,
1880) es considerada como una especie válida similar, pero diferente, a la ampliamente
distribuidaC. intersecta (Poiret, 1801). C. olisippensis (Servain, 1880) es de fácil distin-
ción, al tener una concha con un ombligo redondeado y pequeño, un largo conducto de
la espermateca y un corto flagelo.
KEY WORDS: Gastropoda, Hygromiidae, Candidula, Portugal, distribution, taxonomy.
PALABRAS CLAVE: Gastropoda, Hygromiidae, Candidula, Portugal, distribución, taxonomía.
INTRODUCTION
The genus Candidula Kobelt, 1871
comprises several species of hygromiid
land snails living in Western Europe. In
the Iberian Peninsula this genus has un-
dergone a remarkable diversification,
particularly along the Atlantic drainages
(ALTONAGA, GÓMEZ, MARTÍN, PRIETO,
PUENTE AND RALLO, 1994). The taxo-
nomy of this genus is complex because
the diagnostic characters of the various
species are not conspicuous, either in
the internal anatomy or in the shells.
The species of Candidula living in Portu-
gal are still poorly known, yet this
country has at least four endemics (AL-
TIMIRA, 1969; GITTENBERGER, 1985, 1993).
This note is a contribution towards a re-
vision of the genus in the Iberian Penin-
sula (Ondina and Altaba, in prep.).
Two little-known, apparently rare
species of Candidula are reported here,
collected during a field trip in April
*Institut Mediterrani d'Estudis Avancgats (CSIC-UIB). Ctra. de Valldemossa, Km 7. 5, 07071 Palma de
Mallorca.
Iber IIIO
1994 in northern Portugal. These species
were described by SERVAIN (1880), and
subsequently ignored for over a century
(NOBRE, 1930, 1941; SErIxas, 1992). Con-
RESULTS
chological and anatomical data indicate
that the species studied here are indeed
distinct taxa. The specimens are kept in
the author's malacological collection.
Family HYGROMIIDAE Tryon, 1866
Genus Candidula Kobelt, 1871
Candidula belemensis (Servain, 1880) (Figs. 1, 2)
C. belemensis was known up to date
only from the original locality (Lisbon)
and three other sites further south (GrT-
TENBERGER, 1993). A single fresh shell
was found at the base of the old city
walls of Valenca do Minho, at the nort-
hern border of Portugal (UTM 29T
NG25; Figs. 1, 2). This locality represents
a considerable extension of the species”
known range. It is likely, however, that
C. belemensis lives also further north, in
Galicia, where specimens having a long
flagellum have been reported as C. inter-
secta by CASTILLEJO (1986).
This species is probably closely rela-
ted to C. intersecta (Poiret, 1801), which
ranges discontinuously throughout
Atlantic Europe, from southern Portugal
to southern Sweden (KERNEY AND CA-
MERON, 1979; GITTENBERGER, 1993; AL-
TONAGA et al., 1994). C. belemensis differs
conchologically from the latter in having
a more depressed shell with a broader
aperture, a wide and slightly eccentric
umbilicus, and a much shallower sculp-
ture of radial ribs and minute spiral
striae (GITTENBERGER, 1993).
Anatomically it differs from NW-Euro-
pean C. intersecta in the relatively longer
flagellum, which is about half the length
of the epiphallus (GITTENBERGER, 1993).
However, populations of C. intersecta from
NW-Iberia have a flagellum shorter than
half the length of the epiphallus, as is
typical of that species (MANGA GONZÁ-
LEZ, 1979). Thus, the available evidence
suggests that C. belemensis is not conspe-
cific with co-occurring C. intersecta.
Candidula olisippensis (Servain, 1880) (Figs. 3-6)
Two subadult specimens were col-
lected under bolders in the vicinity of
the Sanctuary of Sameiro, near Braga
(UTM 29T NE59; Figs. 3, 4). Although
the aperture edge of their shells was still
tender and became damaged, it bears a
conspicuous whitish internal rib. The
radulae have one central, and 22 and 24
lateral teeth. These numbers fall within
the range of other Candidula species
from northwestern Iberia (MANGA GON-
ZÁLEZ, 1979).
The genitalia (still immature) of both
specimens are shown in Figures 5 and 6.
The flagellum is distinct, proximally na-
rrow, and very short, measuring about
1/4 the length of the epiphallus, which is
somewhat shorter and thinner than the
penis. The bursa is small, oblong and in-
distinctly united to its duct, which lies
appressed to the spermoviduct throug-
hout and is exceedingly long, measuring
almost twice the length of the penis and
epiphallus combined. There are no glan-
dulae mucosae, their location being oc-
cupied instead by a moderate swelling
at the proximal end of the vagina. The
dart sac appears partially developed,
being only a large medial swelling of the
vagina with no trace of a dart, but exhi-
biting two large internal longitudinal
folds adjacent to two shallow invagina-
tions, the lower one bordered by a few
papillae. This internal structure can be
interpreted as an immature stage of that
described for other species of Candidula
ALTABA: How many species of Candidula in northern Portugal?
Figures 1-4. Shells of Candidula from northern Portugal. 1, 2: C. belemensís from Valenga do Minho
(CRA 4895); 3, 4: C. olisippensis from Sameiro, near Braga (CRA 4866-1). Scale bar 5 mm.
Figuras 1-4. Conchas de Candidula del norte de Portugal. 1, 2: C. belemensis de Valenga do Minho
(CRA 4895); 3, 4: C. olisippensis de Sameiro, cerca de Braga (CRA 4866-1). Escala 5 mm.
Figures 5, 6. Proximal genitalia of two immature specimens of Candidula olisippensis.
Abbreviations. A: atrium; E: epiphallus; F: flagellum; M: penial retractor muscle; P: penis; S: bursa
copulatrix; SD: duct of the bursa; SO: spermoviduct; V: vagina; VD: vas deferens. Scale bar 2 mm.
Figuras 5, 6. Genitalia proximal de dos especimenes inmaduros de Candidula olisippensis.
Abreviaturas. A: atrio; E: epifalo; E: flagelo; M: músculo retractor peneal; P: pene; S: bursa copulatrix;
SD: conducto de la bursa; SO: espermoviducto; V: vagina; VD: vaso deferente. Escala 2 mm.
Iberus, 15 (1), 1997
(HAUSDORE, 1988, 1991), confirming the
generic assignation by GITTENBERGER
(1993), who examined a dried specimen
in poor condition.
Several nominal species described
by LOCARD (1899) are probably sy-
nonyms of Helix olisippensis Servain
1880. The general shape of the shell in
this species (or species complex) is fairly
variable, yet it is always fairly thin, with
ACKNOWLEDGEMENTS
My wife Catalina Ponsell helped in
the field and provided the necessary
conditions for the preparation of the
manuscript. We are indebted to Or-
lando Moreira and his family for in-
comparable hospitality in Portugal and
BIBLIOGRAPHY
ALTIMIRA, C., 1969. Notas malacológicas. Pu-
blicaciones del Instituto de Biología Aplicada,
46: 91-113.
ALTONAGA, K.; GÓMEZ, B.; MARTÍN, R.; PRIETO,
C.R.; PUENTE, A.I. AND RALLO, A., 1994. Es-
tudio faunístico y biogeográfico de los moluscos
terrestres del norte de la Península Ibérica. Eusko
Legebiltzarra, Vitoria-Gasteiz, 505 pp.
CASTILLEJO, J., 1986. Caracoles terrestres de Ga-
licia. Familia Helicidae (Gastropoda, Pul-
monata). Monografías de la Universidad de San-
tiago de Compostela, 122: 1-65.
GITTENBERGER, E., 1985. The taxonomic status
of Xeroplexa Monterosato, 1892 (Pulmonata:
Helicidae: Helicellinae), a surprise. Iberus, 5:
59-62.
GITTENBERGER, E., 1993. Digging in the grave-
yard of synonymy, in search of Portuguese
species of Candidula Kobelt, 1871 (Mollusca:
Gastropoda Pulmonata: Hygromiidae). Zo-
ologische Meddedelingen, 67 (17): 283-293.
HAUSDORE, B., 1988. Zur Kenntnis der syste-
matischen Beziehungen einiger Taxa der He-
licellinae Ihering 1909. Archiv fiir Mollusken-
kunde, 119 (1/3): 9-37.
HAUSDORE, B., 1991. Uber zwei Candidula-Ar-
ten von der súdlichen Balkanhalbinsel (Gas-
tropoda: Hygromiidae). Archiv fur Mollus-
kenkunde, 120 (4/6): 119-129.
rounded or slightly angular periphery,
very narrow roundish umbilicus, spire
formed by flattened whorls separated
by an indented suture, radial sculpture
moderately developed, and microspiral
striae well marked (GITTENBERGER,
1993). Candidula olisippensis is appa-
rently endemic to Portugal. The current
finding represents the northern limit of
its known range.
Galicia. Paz Ondina, Carlos Prieto, Án-
gel A. Luque, and two anonymous
reviewers kindly provided helpful com-
ments. This work was partially suppor-
ted by Research Project PB93-0055 of
DEE:
KERNEY, M. P. AND CAMERON, R. A. D.,, 1979.
A field guide to the land snails of Britain and
north-west Europe. Collins, London, 288 pp.
LOCARD, A., 1899. Conchyliologie Portugaise.
Les coquilles terrestres, des eaux douces et
saumátres. Archives du Muséum de Lyon, 7
(1): i-xi, 1-303.
MANGA GONZALEZ, Y., 1979. Sobre las espe-
cies del género Candidula Kobelt, 1871, (Gas-
tropoda, Stylommatophora) en la provincia
de León. Revista Ibérica de Parasitología, 79: 455-
465 + 1 pl.
NOBRE, A,, 1930. Moluscos terrestres, fluviais e das
aguas salobras de Portugal. Porto, 259 pp, 18 pls.
NOBRE, A., 1941. Moluscos terrestres e fluviais.
Fauna de Portugal, 2. Memórias e Estudos do
Muséu de Zoología da Universidade da Coimbra,
124: 1-277, pls. i-iv, 1-30.
SEIxAS, M., 1992. Gasterópodes terrestres da
coleccao do Museu Bocage. Arquivos do Mu-
séu Bocage, Nova Série, 2 (10): 155-255.
SERVAIN, G., 1880. Étude sur les mollusques re-
cueillis en Espagne et en Portugal. Saint Ger-
main, Paris, 172 pp.
O Sociedad Española de Malacología Iberus, 151% 9=-22, 1997
Nuevos datos sobre la distribución de la superfamilia Heli-
coidea Rafinesque, 1815 (Gastropoda, Pulmonata, Stylom-
matophora) en el oeste de Galicia
New records about the distribution of the superfamily Helicoidea
Rafinesque, 1815 (Gastropoda, Pulmonata, Stylommatophora) in
the West of Galicia
Paz ONDINA, Jesús HERMIDA y Adolfo OUTEIRO*
Recibido el 21-IV-1996.Aceptado el 30-IV-1996
RESUMEN
En este trabajo se realiza un estudio faunístico de las especies de la superfamilia Helicoi-
dea Rafinesque, 1815, encontradas en el oeste de Galicia (provincias de A Coruña y
Pontevedra). Para cada especie se incluyen citas previas y localidades de captura con las
coordenadas U.T.M. 10x10 km. Teniendo en cuenta nuestros hallazgos y los de los auto-
res consultados en la bibliografía se han elaborado los mapas de distribución correspon-
dientes, en sistema U.T.M. de 10x10 km. Se cita por primera vez para el área de estudio
Mengoana brigantina (da Silva Mengo, 1867).
ABSTRACT
A faunistic study of species of superfamily Helicoidea Rafinesque, 1815, in the west of
Galicia (La Coruña and Pontevedra provinces) has been realized. For each species the
previous records and the coordinates U.T.M. 10x10 km of the localities where the species
have been found, are included. Taking our own findings into consideration, and the data
from bibliography, a map showing the distribution of each species has been drawn up,
using U.T.M. 10x10 km system. Mengoana brigantina [da Silva Mengo, 1867) is recor-
ded for the first time in this area.
PALABRAS CLAVE: Gastropoda, Pulmonata, Helicoidea, distribución, Galicia.
KEY WORDS: Gastropoda, Pulmonata, Helicoidea, distribution, Galicia.
INTRODUCCIÓN
El conocimiento de la fauna de
moluscos terrestres de la Península
Ibérica presentaba, hasta no hace mucho
tiempo, un gran retraso respecto a
Europa. Fue a finales del siglo XIX y
principios del XX cuando se desarrolló
más intensamente la actividad en este
campo, y cuando comienza a otorgár-
sele validez taxonómica a ciertas estruc-
turas anatómicas, especialmente el
*Departamento de Biología Animal. Facultad de Biología. Universidad de Santiago de Compostela. 15706
Santiago de Compostela. La Coruña, España.
Iberus, 15 (1), 1997
aparato genital, tras comprobar que
especies con conchas muy parecidas
albergaban animales de organización
anatómica diferente.
También en Galicia se inician, en este
período, los estudios malacológicos con
las aportaciones de autores como
GRAELLS (1846), SEOANE (1866), MACHO
VELADO (1871, 1878) e HIDALGO (1875).
Posteriormente otros autores han reali-
zado estudios en zonas geográficas con-
cretas como ALTIMIRA (1969); SACCHI y
VIOLANI (1977) y ROLÁN y OTERO (1988).
Con mención específica a los helícidos
cabe destacar el trabajo de CASTILLEJO
(1981; 1986), que cubre gran parte del
territorio gallego, recogiendo muestras
en un total de 87 cuadrículas de 10x10
km U.T.M.
A pesar de estos estudios existen dis-
continuidades en la distribución de gran
parte de las especies, motivo por el cual
con el presente estudio queremos contri-
buir a ampliar el conocimiento faunís-
tico de los gasterópodos terrestres perte-
necientes a la superfamilia Helicoidea
Rafinesque, 1815, aportando nuevos
datos de distribución para las provincias
de A Coruña y Pontevedra.
MATERIAL Y METODOS
Durante el período 1986-1989 se ha
recolectado material malacológico pro-
cedente de las 176 cuadrículas U.T.M. de
10x10 km, en las que se han dividido las
provincias de A Coruña y Pontevedra
(Fig. la). En las distintas cuadrículas
visitadas se han examinado detenida-
mente, de día y de noche, los distintos
hábitats donde suelen resguardarse,
recogiéndose además, muestras de suelo
y hojarasca de distintos biotopos, que
posteriormente se lavaron y tamizaron
para separar los ejemplares.
Todos los gasterópodos capturados
se sometieron al proceso habitual de
muerte por anoxia sumergiéndolos en
agua, para facilitar de este modo su
disección, conservándose posterior-
mente en alcohol de 70*.
A partir de los datos obtenidos, se
han elaborado los mapas de distribución
de cada especie (Figs. 1b-g, Figs. 2a-1) en
cuadrículas U.T.M. de 10x10 km, indi-
cándose tanto las localidades aportadas
en este trabajo (+) como las procedentes
de la bibliografía (*), así como las locali-
dades en las que se encontraron única-
mente conchas vacías (O).
La colección malacológica se encuen-
tra depositada en el Departamento de
Biología Animal (Facultad de Biología,
Universidad de Santiago de Compos-
tela).
RESULTADOS
Se han identificado un total de 6873
ejemplares pertenecientes a 18 especies.
Para cada especie se incluyen los
siguientes apartados: citas previas,
material estudiado (en el que se indica
el número de ejemplares capturados en
cada cuadrícula y aquellas localidades
donde se encontraron conchas vacías),
un breve resumen de su distribución
geográfica y algunas observaciones de
interés para aquellas especies en que lo
hemos considerado necesario. El listado
de las localidades junto a su correspon-
diente código, coordenadas U.T.M.,
Ayuntamiento y fecha de muestreo se
pueden observar en la Tabla 1.
Superfamilia HELICOIDEA Rafinesque, 1815
Familia XANTHONYCHIDAE Strebel y Pfeffer, 1880
Elona quimperiana (Férussac, 1821) (Fig. 1B)
Citas previas: CAZIOT (1915) como H. quimperiana; CASTILLEJO (1986); OTERO y TRIGO (1989).
Material examinado (107 ejemplares). 39: 1; 58: 1; 93: 9; 94: 3; 100: 7; 102: 1; 103: 8; 104: 12; 125: 9;
130: 1; 141: 3; 143: 2; 144: 1; 145: 5; 146: 15; 147: 14; 148: 4; 156: 6; 157: 5.
ONDINA £7 4Z.: Distribución de la superfamilia Helicoidea en el oeste de Galicia
Tabla I. Listado de las localidades, provincia, U.T.M. en 10 x 10 Km y fecha de recogida de las
muestras, junto a su correspondiente código. C: A Coruña; L: Lugo; O: Ourense; P: Pontevedra.
Table I. List of the locations, provinces, U.I.M. 10x10 Km and sampling date, with its code. C: A
Coruña; L: Lugo; O: Ourense; P: Pontevedra.
Código
O0XD0 NXNOo0hb0N —
Localidad /Ayuntamiento
Caldelas de Tui, Tui
Cristelos, Tomiño
Louredo, Mos
Coruxo, Vigo
Pintos, Pontevedra
Dorrón, Sanxenxo
A Xesta, A Lama
O Covelo, O Covelo
Caldas de Reis, Caldas de Reis
Sobrido, Ribeira
Noal, Porto do Son
Sionlla, Santiago
Negreira, Negreira
Ponte Sarandón, Vedra
Arca, A Estrada
Ferreiros, Vila de Cruces
Prado, Lalín
Santa María, Rodeiro
Amance, Golada
Herbón, Padrón
Budiño, Porriño
Piñeiro, O Covelo
Salvaterra, Salvaterra do Miño
Arbo, Arbo
loureza, Oia
Baredo, Baiona
Amoedo, Pazos de Borbén
Magdalena, Cangas
Leiro, Ribadumia
San Vicente do Grove, O Grove
Serrapio, Cerdedo
Nigoi, A Estrada
Vilatuxe, Lalín
lagoa, Dozón
Barrio, Vila de Cruces
Ventosa, Golada
Catoira, Catoira
Boiro, Boiro
Lapido, Ames
Sergude, Boqueixón
Costa de Mougás, Oia
Camposancos, A Guarda
Provincia
ADA OO A A A A AS AAA A A SAO ASISTAN O O) A A a a) e) A) a) A) a)
Coord. UTM
29TNG35
29TNG15
29TNG37
29TNG17
29TNG39
29TNG19
29TNG59
29TNG57
29TNH21
29TNHO1
29TNHO3
29TNHA5
29TNH25
29TNH43
29TNH41
29TNHÓ64
29TNH62
29TNH82
29TNH84
29TNH23
29TNG36
29TNG58
29TNGA45
29TNG56
29TNG14
29TNG16
29TNG38
29TNG18
29TNH20
29TNHOO
29TNH40
29TNH42
29TNH61
29TNH81
29TNH63
29TNH83
29TNH22
29TNHO2
29TNH24
29TNH44
29TNGO5
29TNG13
Fecha
26-09-86
26-09-86
27-09-86
27-09-86
28-09-86
28-09-86
29-09-86
29-09-86
30-09-86
01-10-86
01-10-86
02-10-86
02-10-86
03-10-86
03-10-86
04-10-86
04-10-86
05-10-86
05-10-86
06-10-86
04-12-86
04-12-86
05-12-86
05-12-86
06-12-86
06-12-86
07-12-86
07-12-86
08-12-86
08-12-86
09-12-86
09-12-86
10-12-86
10-12-86
11-12-86
11-12-86
12-12-86
12-12-86
13-12-86
13-12-86
10-04-87
11-04-87
Iberus, 15 (1), 1997
Tabla I. Continuación.
Table I. Continuation.
Código Localidad/Ayuntamiento Provincia Coord. UTM
44 Mondariz, Mondariz P 29TNG47
A5 Lavadores, Vigo P 291NG27
46 Pontecaldelas, Pontecaldelas p 29TNG49
A7 Postemirón, Vilaboa P 29TNG29
48 Triñnáns, Boiro (E 29TNH11
49 Oleiros, Ribeira S 29TMH91
50 Portobravo, Lousame a 29TNH13
51 César, Caldas de Reis P 29TNH31
2 Carcacía, Padrón E 29TNH33
53 Carballeda, Lalín P 29TNH72
54 Baíña, A Golada P 29TNH74
DS) Quintás, Touro E 29TNH54
56 Rellas, Silleda Cc 291NH52
7 Louro, Muros € 29TMH93
58 Ordoeste, A Baña E 29TNH15
DY A Peregrina, Santiago € 291NH35
60 Illas Cíes, Vigo P 29TNGO7
61 Barrantes, Ribadumia P 29TNH10
62 Fontáns, Barro Pp 29TNH30
63 Forcarei, Forcarei P 29TNH5 1
64 Lamela, Silleda P 29TNH53
65 Muimenta, Lalín P 29TNH73
66 A Xesta, Lalín P 29TNH7 1
67 Baroña, Porto do Son a 29TMH92
68 Pontenafonso, Noia € 29TNH14
69 Carreira, Ribeira E 29TMH9O
70 Bures, Catoira € 29TNH 12
71 Santa Mariña de Barcala, A Estrada. P 291TNH32
Ez Oitavén, Fornelos de Montes P 29TNG48
US Ponteareas, Ponteareas P 29TNG46
7A Moaña, Moaña P 29TNG28
75 Mosende, Porriño P 29TNG26
76 Tomiño, Tomiño P 29TNG24
7 Chavella, Oia P 29TNGO4
78 Cabo Silleiro, Baiona P 29TNGO06
79 Santiago, Santiago € 29TNH34
80 Esmorode, Santa Comba E 29TNH16
81 Serra de Outes, Serra de Outes E 29TNHOA4
82 Quilmas, Carnota e 291MH84
83 Vilela, Muxía E 29TMH76
84 Berdoias, Vimianzo e 29TMH96
85 Nande, Laxe € 29TMH98
86 As Tarandeiras, Coristanco E 29TNH18
Fecha
12-04-87
12-04-87
13-04-87
13-04-87
14-04-87
15-04-87
15-04-87
16-04-87
16-04-87
17-04-87
17-04-87
18-04-87
18-04-87
19-04-87
20-04-87
20-04-87
12-05-87
27-06-87
27-06-87
28-06-87
28-06-87
29-06-87
29-06-87
01-07-87
01-07-87
02-07-87
03-07-87
03-07-87
04-07-87
04-07-87
05-07-87
06-07-87
06-07-87
07-07-87
07-07-87
08-07-87
09-10-87
09-10-87
10-10-87
10-10-87
11-10-87
11-10-87
12-10-87
ONDINA £7 4Z.: Distribución de la superfamilia Helicoidea en el oeste de Galicia
Tabla I. Continuación.
Table I. Continuation.
Código Localidad/Ayuntamiento
88 Rial, Trazo
89 Zas de Reis, Melide
90 Padreiro, Curtis
91 Xestal, Irixoa
92 Saa, As Pontes
93 Freires, Ortigueira
94 Regoa, Cedeira
95 Esmelle, Ferrol
96 Bouzarredonda, Neda
97 Sigrás, Cambre
98 Abellá, Frades
99 Pedrouzo, O Pino
100 Viñas, Paderne
101 Neda, Neda
102 Ponte de Mera, Ortigueira
103 Mañón, Mañón
104 Recemel, Somozas
105 Boliqueiras, As Pontes
106 Salto do Conexo, Monfero
107 Monte do Arco, Curtis
108 Rexidoira, Cesuras
109 Arzúa, Arzúa
110 Furelos, Melide
ME Vila da Igrexa, Cerceda
112 Parada, Ordes
118 Pedrafigueira, Carnota
114 Cabo Fisterra, Fisterra
MS Ozón, Muxía
116 Areosa, Vimianzo
IN Ponteceso, Ponteceso
118 Cances, Carballo
119 Bembibre, Val do Dubra
120 Sobrado dos Monxes, Sobrado
121 A Castellana, Aranga
1122 A Capela, A Capela
123 San Sadurniño, San Sadurniño
124 O Ermo, Ortigueira
125 Sismundi, Ortigueira
126 Raxón, Ferrol
127 Mabegondo, Abegondo
128 Carnoedo, Sada
129 Poulo, Ordes
130 Río, Cerceda
Provincia
DKOOOOOOoOS0OoOO0O0o0o00 0000 O0O0oO0O0o0 0000000000000 000000O00O
Coord. UTM
29TNH36
29TNH75
291NH77
291NH79
29TNJ91
29T1NJ93
29 T1NJ73
29TNJ51
29 1INJ7 1
29TNH59
29TNH57
29TNH55
29TNHÓ9
29TNJÓ 1
29T1NJ83
29TPJO3
29TNJ8 1
29TNJ90
29TNH89
291NH87
29TNH67
29TNHÓ5
29TNH85
29TNH48
29TNH46
291MH94
291MH74
291MH86
29TNHO6
29TNHO8
291NH28
29TNH26
29TNH7Ó
291NH78
29T1NJ7O
29TNJ72
29TNJ92
291NJ94
29TNJ52
29TNH58
29TNJ50
291NH5Ó
29TNH37
Fecha
13-10-87
19-10-87
19-10-87
20-10-87
20-10-87
21-10-87
21-10-87
22-10-87
22-10-87
23-10-87
23-10-87
24-10-87
18-01-88
18-01-88
19-01-88
19-01-88
20-01-88
20-01-88
21-01-88
22-01-88
22-01-88
23-01-88
23-01-88
24-01-88
24-01-88
26-01-88
26-01-88
27-01-88
27-01-88
28-01-88
28-01-88
29-01-88
25-03-88
25-03-88
26-03-88
26-03-88
27-03-88
28-03-88
29-03-88
30-03-88
30-03-88
31-03-88
01-04-88
Iberus, 15 (1), 1997
Tabla I. Continuación.
Table I. Continuation.
Código
132
188
134
139
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
159
156
157%
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
17
174
173
Localidad/Ayuntamiento
Provincia
Agualada, Coristanco
Buño, Malpica
Santa Mariña, Camariñas
Ponte do Porto, Camariñas
Fisterra, Fisterra
Logoso, Dumbría
Arceo, Boimorto
Lagoa de Sobrado, Sobrado
Aranga, Aranga
Burricios, Oza dos Ríos
Faeira, As Pontes
As Somozas, Somozas
Grañas, Mañón
Loiba, Ortigueira
Serra da Capelada, Ortigueira
Sedes, Narón
laraxe, Cabanas
ledoño, Culleredo
Leira, Ordes
Razo, Carballo
Canosa, Carballo
Corme, Ponteceso
Baio, Zas
Moraime, Muxía
lobelos, Cée
A Picota, Mazaricos
Setados, As Neves
Crecente, Crecente
Paredes, A Cañiza
Pardesoa, Forcarei
Lira, Carnota
Couto, Rodeiro
Vilafrío, Rodeiro
San Pedro de Visma, A Coruña
Sucadío, As Pontes
Punta Candelaria, Cedeira
Illa de Ons, Bueu
Momán, Xermade
Vilaverde, Ribadavia
Codesas, Forcarei
Cabo da Voutra, Muxía
Laxe, Chantada
Punta Frouxeira, Valdoviño
Illa de Ons (Sur), Bueu
UR OAOR LO O AOS LIO ADO OOoOOO.OOOOOOOOA
Coord. UTM
29TNH17
29TNH19
291MH88
291MH97
29TMH75
29TMH95
29TNHÓ66
291NH8ó
29TNH88
29TNHÓ8
291NJ80
291NJ82
29TPJO2
29TPJO4
29T1NJ84
29TNJÓ2
29TNJ6O
291NH49
291NH47
291NH29
29TNH27
29TNHO9
29TNHO7
291MH87
291MH85
29TNHO5
29TNG55
29TNG66
291NGÓ67
29TNH50
291MH83
29TNH93
291NH92
29TNJ40
29TPJO1
29T1NJ74
29TNGO9
291NH99
29TNG68
29TNHÓO
291MH77
29TNH91
29TNJÓ3
29TNGO9
10
Fecha
02-04-88
02-04-88
03-04-88
03-04-88
04-04-88
05-04-88
30-06-88
30-06-88
01-07-88
01-07-88
02-07-88
02-07-88
03-07-88
03-07-88
04-07-88
05-07-88
05-07-88
06-07-88
06-07-88
07-07-88
07-07-88
08-07-88
08-07-88
09-07-88
09-07-88
10-07-88
17-03-89
17-03-89
18-03-89
19-03-89
22-04-89
23-05-89
23-05-89
30-05-89
08-06-89
28-03-88
31-05-89
08-06-89
18-03-89
19-03-89
22-04-89
23-05-89
10-05-89
31-05-89
ONDINA £7 AL.: Distribución de la superfamilia Helicoidea en el oeste de Galicia
Distribución geográfica: Se trata de
una especie de distribución atlántico-eu-
ropea (KERNEY, CAMERON Y JUNGBLUTH,
1983). Fuera de la Península Ibérica su
área de distribución se restringe a la Bre-.
taña francesa y al País Vasco francés
(GERMAIN, 1930).
En la Península se limita a la costa sep-
tentrional. Está citada en el norte desde
Galicia hasta el País Vasco (HIDALGO, 1875;
GITTENBERGER, 1979; LARRAZ y JORDANA,
1984; CASTILLEJO, 1986; HERMIDA, OUTEIRO
Y RODRÍGUEZ, 1992; PUENTE y PRIETO, 1992;
LARRAZ y EQUISOAIN, 1993).
Familia HYGROMIIDAE Tryon, 1866
Candidula intersecta (Poiret, 1801) (Fig. 1C)
Citas previas: MACHO VELADO (1871) como H. caperata; HIDALGO (1875, 1890) como H. caperata;
SACCHI y VIOLANI (1977) como Helicella caperata; CASTILLEJO (1986).
Material examinado (93 ejemplares). 6: 1; 11: 3; 19: 1; 20: 1; 30: 1; 35: 10; 37: 1; 38: 1; 42: 3; 46: 5; 47:
2; 48: 4; 49: 6; 57: 1; 60: 6; 69: 3; 74: 3; 77: 2; 78: 5; 79: 4; 82: 1; 83: 8; 93: 6; 113: 3; 114: 4; 136: 2; 137: 1;
151: 3; 156: 2; 171: 1.
Localidades con conchas vacías: 153.
Distribución geográfica: Su área de
distribución se enmarca en el oeste de
Europa (KERNEY ET AL., 1983).
En la Península se extiende por dos
áreas, una en el sector norte oriental, el
País Vasco y Navarra, y la otra en el tercio
oeste, desde Galicia y centro de León
hasta el Algarve, con algunas citas hacia
el centro peninsular como Segovia
(HIDALGO, 1875; NOBRE, 1941; RAMOS y
APARICIO, 1985a; (CASTILLEJO, 1986;
HERMIDA ET AL., 1992). En Asturias,
desde la cita de ALTIMIRA (1969), no ha
vuelto a ser encontrada (OJEA y ANADÓN,
1983; HERMIDA ET AL., 1992), y tampoco
se tiene constancia de ella en Cantabria.
Cernuella (Cernuella) virgata (da Costa, 1778) (Fig. 1D)
Citas previas: SACCHI y VIOLANI (1977); CASTILLEJO (1986).
Material examinado (3 ejemplares). 6: 3.
Distribución geográfica: Especie
mediterránea, ampliamente distribuida
por el sur y oeste de Europa (KERNEY ET
AL., 1983).
Siendo común en el área peninsular y
en las islas Baleares, es menos frecuente
en la franja norte que comprende desde
el valle del Tajo hasta el País Vasco,
donde se convierte en una especie litoral
(NOBRE, 1941; ORTIZ DE ZÁRATE y ORTIZ
DE ZARATE, 1949; Seixas, 1976; PAUL,
1982; MANGA, 1983; LARRAZ y JORDANA,
1984; RAMOS y APARICIO, 1985b; CASTI-
LLEJO, 1986; APARICIO, 1986; ROBLES,
ISSO PEUENTESyARRIELO Ugg L9O92:
HERMIDA ET AL., 1992; LARRAZ y EQUISO-
AIN, 1993; ALTONAGA, GÓMEZ, MARTÍN,
PRIETO, PUENTE Y RALLO, 1994).
Helicella (Helicella) itala (Linneo, 1758) (Fig. 1E)
Citas previas: MACHO VELADO (1871) como H. ericetorum; HIDALGO (1875) como H. ericetorum;
CASTILLEJO (1986); OTERO y TRIGO (1989).
Material examinado (32 ejemplares). 134: 10; 151: 20; 173: 1; 174: 1.
Distribución geográfica: Se trata de
una especie distribuida por el oeste de
Europa (KERNEY ET AL., 1983).
En la Península Ibérica está presente
en la mitad norte, siendo sus citas más es-
casas en Galicia (HIDALGO, 1875; HAAS,
11
Maira IMA
1929; ORTIZ DE ZÁRATE y ORTIZ DE ZÁ-
RATE, 1949; MANGA, 1983, APARICIO, 1986;
CASTILLEJO, 1986; HERMIDA ET AL., 1992;
LARRAZ y EQUISOAIN, 1993; ALTONAGA ET
AL., 1994). En el área de estudio la hemos
hallado únicamente en zonas del litoral.
Xerotricha apicina (Lamarck, 1822) (Fig. 1F)
Citas previas: MACHO VELADO (1871) como H. apicina; HIDALGO (1875, 1890) como H. apicina;
ALTIMIRA (1969); SACCHI y VIOLANI (1977) como Helicella apicina; CASTILLEJO (1986).
Material examinado (3 ejemplares). 26: 3.
Distribución geográfica: Es una
especie con un área de distribución
mediterránea (KERNEY ET AL., 1983).
En la Península presenta una distri-
bución costera bastante fragmentada,
encontrándose en el norte unicamente
en algunas localidades del litoral de
Galicia (ALTIMIRA, 1969; SACCHI y
VIOLANI, 1977; CASTILLEJO, 1986), Can-
tabria y Asturias (PUENTE y PRIETO,
1992). En el litoral mediterráneo está
citada en Cataluña (Haas, 1929; ALTI-
MIRA, 1969), Valencia (ROBLES, 1990);
Málaga (ALTONAGA ET AL., 1994), conti-
nuando desde ahí, de una forma más
regular, por el cuadrante suroccidental
hasta Aveiro en Portugal (SERVAIN,
1880; LOCARD, 1899; HIDALGO, 1875;
NOBRE, 1941; RAMOS y APARICIO, 1985a)
y hacia el interior hasta Badajoz.
GASULL (1965) también la cita abun-
dantemente en las Islas Baleares.
Cochlicella acuta (Muller, 1774) (Fig. 1G)
Citas previas: MACHO VELADO (1871) como Bulimus acutus; HIDALGO (1875) como B. acutus;
HIDALGO (1890) como H. acuta; ALTIMIRA (1969); SACCHI y VIOLANI (1977); CASTILLEJO (1986);
OTERO y TRIGO (1989).
Material examinado (99 ejemplares). 4: 8; 6: 8; 11: 1; 26: 9; 49: 3; 57: 4; 60: 2; 69: 4; 82: 3; 83: 8; 85:
12; 93: 5; 113: 6; 136: 10; 151: 6; 156: 4; 168: 3; 173: 3.
Distribución geográfica: Distribuida
por la zona mediterránea y atlántica de
Europa (BOATO, BODON Y GIUSTI, 1982).
Aparece practicamente en toda la
costa ibérica e Islas Baleares (NOBRE,
1941; ORTIZ DE ZARATE y ORTIZ DE
BEcH, 1990; MARTÍNEZ-ORTÍ, MARTÍNEZ-
LÓPEZ, ROBLES Y RODRÍGUEZ BABÍO,
1990) penetrando en ocasiones hacia el
interior siguiendo los valles fluviales.
Está citada en puntos del interior como
Salamanca (HERMIDA ET AL., 1992),
ZARATE, 1949; SACCcHI, 1954; GASULL,
1965; ALTIMIRA, 1969; CASTILLEJO, 1986;
Huesca y Zaragoza (PUENTE y PRIETO,
1992).
Cochlicella barbara (Linneo, 1758) (Fig. 2A)
Citas previas: MACHO VELADO (1871) como B. ventrosus; HIDALGO (1875) como B. ventrosus; ALTI-
MIRA (1969) como C. ventricosa; SACCHI y VIOLANI (1977) como C. ventricosa; CASTILLEJO (1986)
como C. ventricosa; OTERO y TRIGO (1989) como C. ventricosa.
Material examinado (704 ejemplares). 1: 3; 2: 1; 3: 2; 4: 6; 5: 4; 6: 17; 9: 16; 11: 12; 21: 1; 24: 3; 25: 7; 26:
218; 27: 5; 29: 2; 30: 1; 37: 1; 38: 6; 43: 2; 44: 1; 47: 8; 48: 20; 49: 82; 50: 1; 51: 1; 52: 4; 57: 8; 60: 4; 61: 5; 68:
1; 69: 73; 70: 2; 73: 15; 74: 12; 76: 16; 81: 3; 82: 3; 83: 2; 85: 8; 86: 2; 93: 6; 94: 17; 95: 1; 97: 22; 113: 19; 117:
1; 118: 2; 126: 1; 128: 1; 132: 6; 133: 7; 135: 1; 136: 6; 148: 5; 149: 7; 151: 6; 156: 4; 168: 12; 174: 2.
Localidades con conchas vacías: 127.
Distribución geográfica: Especie con
un amplio rango de distribución en el área
mediterránea y a lo largo de las costas del
oeste de Europa (BACKHUYS, 1975).
112
ONDINA £7 4Z.: Distribución de la superfamilia Helicoidea en el oeste de Galicia
2
Es
ll
16 |
ana
Ñ
aan
Ñ
ru
he)
Figura 1. A: Area de estudio en la Península Ibérica. B-G: Mapas de distribución. B: Elona quimpe-
riana, C: Candidula intersecta, D: Cernuella virgata; E: Helicella itala, E: Xerotricha apicina; G:
Cochlicella acuta. Localidades citadas en este trabajo (+); procedentes de la bibliografía (*); única-
mente encontradas conchas vacías (O).
Figure 1: A: The study area in the Iberian Peninsula. B-G: Distribution maps. B: Elona quimperiana;
C: Candidula intersecta; D: Cernuella virgata; £: Helicella itala; F: Xerotricha apicina; G: Cochli-
cella acuta. Localities reported in this paper (+); bibliographic records (*); only shells found (O).
13
Iberus, 15 (1), 1997
En la Península presenta una distri-
bución bastante amplia, y aunque
aparece con mayor frecuencia en el
litoral, citándose en casi todas las pro-
vincias estudiadas (BOFILL y HAAS,
1920a; NOBRE, 1941; ALTIMIRA, 1969;
OJEA y ANADÓN, 1983; RAMOS y APARI-
CIO, 1985b, CASTILLEJO, 1986; MARTÍNEZ-
ORTÍ ET AL., 1990; PUENTE y PRIETO, 1991,
1992; HERMIDA ET AL., 1992; LARRAZ y
EQUISOAIN, 1993; PAREJO ET AL., 1993b).
También se ha encontrado en las islas
Baleares (GASULL, 1965; PAUL, 1982). En
la zona de estudio está ligada a la franja
litoral, aunque penetra más hacia el inte-
rior que C. acuta y C. conotdea.
Cochlicella conoidea (Draparnaud, 1801) (Fig. 2B)
Citas previas: MACHO VELADO (1871) como B. pring1; HIDALGO (1875) como B. pring1; HIDALGO
(1890) como H. conoidea; SACCHI y VIOLANI (1977); OTERO y TRIGO (1989).
Material examinado (79 ejemplares). 4: 9; 6: 8; 49: 3; 57: 4; 60: 1; 82: 4, 83: 20; 113: 4; 136: 20; 156: 6.
Distribución geográfica: Especie
común a lo largo de la costa mediterrá-
nea, desde los Pirineos orientales hasta
los Alpes marítimos (KERNEY ET AL.,
1983)
En la Península se encuentra en el li-
toral mediterráneo, aunque también está
citada en la costa atlántica portuguesa y
gallega, y aisladamente y con escasos
ejemplares en el interior (LOCARD, 1899;
HAas, 1929; NOBRE, 1941; SaccHi, 1954;
GASULL, 1965; ALTIMIRA, 1969; GASULL,
1975; SACCHI y VIOLANI, 1977; RAMOS y
APARICIO, 1985b; CASTILLEJO, 1986; MAR-
TÍNEZ-ORTÍ ET AL., 1990). La única cita
existente en el litoral cantábrico dada
por ORTIZ DE ZARATE y ORTIZ DE ZÁ-
RATE (1949) ha sido asignada por distin-
tos autores a C. barbara (PUENTE y
PRIETO, 1992).
Ashfordia granulata (Alder, 1830) (Fig. 2C)
Citas previas: MACHO VELADO (1871) como H. sericea; HIDALGO (1875) como H. sericea; CASTI-
LLEJO (1986) como Monacha (Ashfordia) granulata.
Material examinado (151 ejemplares). 6: 1; 35: 6; 53: 1; 69: 3; 79: 24; 83: 1; 90: 5; 93: 5; 94: 23; 95: 13;
96: 1; 97: 14; 102: 11; 115: 2; 117: 3; 118: 1; 120: 3; 135: 22; 143: 1; 145: 1; 149: 2; 153: 2; 155: 3; 165: 3.
Distribución geográfica: Se distri-
buye por el oeste de Europa (KERNEY ET
AL., 1983).
En la Península Ibérica su área de
distribución comprende desde Galicia
hasta el extremo occidental de Vizcaya,
penetrando hacia León (MANGA, 1983;
ANADÓN y OJEA, 1984; HOLYOAK y SED-
DON, 1985; CASTILLEJO, 1986; HERMIDA
ET AL., 1992; PUENTE y PRIETO, 1992).
Zenobiella subrufescens (Miller, 1822) (Fig. 2D)
Citas previas: CASTILLEJO (1986) como Monacha (Zenobiella) subrufescens.
Material examinado (34 ejemplares). 39: 1; 40: 1; 50: 4; 68: 1; 79: 1; 87: 5; 90: 2; 93: 3; 94: 2; 97: 1;
102: 2; 108: 1; 111: 1; 116: 1; 117: 5; 118: 1; 128: 1; 162: 1.
Localidades con conchas vacías: 13, 58.
Distribución geográfica: Se extiende
por el oeste europeo (KERNEY ET AL.,
1983). Según GERMAIN (1930) no se aleja
de las regiones de influencia marítima.
En la Península Ibérica está citada
unicamente en la franja norte que com-
14
prende desde Galicia hasta el País
Vasco y Navarra (OJEAa y ANADÓN,
1983; CASTILLEJO, 1986, HERMIDA ET AL.,
1992; PUENTE y PRIETO, 1992; LARRAZ y
EQUISOAIN, 1993; ALTONAGA ET AL.,
1994).
ONDINA £7 4Z.: Distribución de la superfamilia Helicoidea en el oeste de Galicia
Portugala inchoata (Morelet, 1845) (Fig. 2E)
Citas previas: MACHO VELADO (1871) como H. inchoata; HIDALGO (1875, 1890) como H. inchoata;
GITTENBERGER (1980); SAccHI (1981) como Monachoides inchoatus; CASTILLEJO (1986); OTERO y
TRIGO (1989).
Material examinado (928 ejemplares). 1: 11; 2: 17; 3:
13: 1; 14: 2; 16: 16; 17: 3; 18: 2; 19: 5; 20: 4; 21: 19; 22:
30: 3; 31: 4; 32: 3; 33: 1; 35: 10; 36: 3; 37: 1; 38: 8; 39: 16;
47: 9; 48: 17; 49: 3; 50: 12; 51: 1; 52: 8; 53: 2; do 6; 55: 5;
63: 1; 64: 6; 65: 5; 67: 8; 68: 4; 69: 6; 70: 9; 71: 2; 72: 5; 73:
89:
1
;4: 7; 5: 7; 6: 20; 8: 5; 9: 11; 10: 2; 11: 7; 12: 8;
o
: 4; 41: 14; 42: 12; 43: 5; 44: 4; 45: 7; 46: 7;
: 4; 57: 3; 58: 2; 59: 2; 60: 21; 61: 10; 62: 4;
71: 4: e 75: 17; 76: 15; 77: 7; 78: 5; 79: 9; 80:
10; 81: 2; 82: 3; 83: 10; 84: 2; 85: 5; 86: 14; 87: 1; 88: 1; 1: 2; 93: 4; 94: 5; 95: 8; 96: 2; 97: 9;
98: 1; 99: 6; 100: 5; 101: 7; 103: 1; 104: 2; 105: 1; 106: : 1; 109: 3; 110: 4; 111: 11; 112: 15;
113: 3; 114: 3; 115: 5; 116: 4; 117: 12; 118: 7; 119: 3; 121: ; 124: 1; 125: 13; 127: 1; 128: 4; 129: 1;
130: 2; 131: 4; 132: 2; 133: 4; 135: 4; 136: 21; 137: 8; 138: 2; 139: 2: 140: 1; 141: 2; 142: 4; 143: 7; 145: 6;
146: 5; 147: 2; 148: 3; 149: 4; 150: 2; 151: 8; 152: 5; 153: 13; 154: 1; 155: 8; 156: 8; 157: 4; 158: 5; 160: 1;
161: 2; 162: 4; 164: 2; 165: 2; 167: 2; 168: 3; 170: 1; 171: 8; 172: 2.
Localidades con conchas vacías: 15.
,
Distribución geográfica: Esta especie
es endémica del oeste de la Península
Ibérica (NOBRE, 1941; GITTENBERGER, 1980).
Está citada en el norte, centro y sur
de Portugal por diversos autores (MORE-
LET, 1877; SERVAIN, 1880; LOCARD, 1899;
NOBRE, 1941; RAMOS y APARICIO, 1985a)
y en toda la franja oeste española desde
Asturias a Huelva (MANGA, 1983; HER-
MIDA ET AL., 1992; PUENTE y PRIETO,
1992). En Galicia es uno de los elementos
más característicos de su malacofauna.
Ponentina subvirescens (Bellamy, 1839) (Fig. 2F)
Citas previas: MACHO VELADO (1871) como H. occidentalis; HIDALGO (1875) como H. occidentalis;
SACCHI y VIOLANI (1977) como Trichia occidentalis; CASTILLEJO (1986) como Ponentina ponentina.
Material examinado (321 ejemplares). 1: 2; 2: 2; 4: 1; 19: 3; 21: 5; 26: 6; 30: 1; 32: 1; 36: 3; 38: 1; 41: 4;
42: 14; 43: 10; 44: 3; 45: 2; 47: 7; 48: 3; 49: 4; 50: 10; 51: 1; 52: 8; 54: 2; 57: 5; 59: 1; 60: 6; 61: 1; 70: 1; 76:
2; 77: 2; 79: 1; 86: 1; 89: 1; 91: 2; 97: 2; 99:
115: 2; 117: 1; 119: 119; 122: 7; 132: 3; 13
Localidades con conchas vacías: 3; 6;
131; 142; 148; 151; 159; 160.
3
9:
Distribución geográfica: Especie
atlántica que se distribuye por el suroeste
de Europa (KERNEY ET AL., 1983), pertene-
ciente a la fauna atlantico-lusitánica.
En la Península se distribuye a lo
largo de todo su tercio oeste (LOCARD,
5; 103: 3; 107: 2; 109: 1; 110: 1; 111: 3; 112: 1; 113: 1; 114: 9;
:2; 134: 22; 135: 1; 137: 2; 138: 1; 146: 7; 153: 8; 169: 2.
22; 23; 24; 25; 28; 29; 34; 39; 53; 73; 83; 88; 120; 121; 127;
1899; NOBRE, 1941; MANGA, 1983; Cas-
TILLEJO, 1986; HERMIDA ET AL., 1992;
PUENTE y PRIETO, 1992). Los puntos más
orientales corresponden a La Rioja,
Burgos y Alava (PUENTE y PRIETO,
1992).
Mengoana brigantina (da Silva Mengo, 1867) (Fig. 2G)
Material examinado (3 ejemplares). 9: 1; 67: 1; 128: 1.
Distribución geográfica: Esta espe-
cie es un endemismo ibérico restringido
al noroeste de la Península.
Su área de distribución se extiende
desde el extremo nororiental de Portu-
gal, hasta el oeste de Vizcaya (HIDALGO,
1875; ORTIZ DE ZARATE, 1949; RAMOS y
APARICIO, 1985a; MANGA, 1983; HER-
MIDA ET AL., 1992; PUENTE y PRIETO,
1992). Hasta este momento su límite oc-
cidental se encontraba en el este de Gali-
cia (CASTILLEJO, 1986).
15
Iberus, 15 (1), 1997
Observaciones: Se trata de la cita
más occidental de las conocidas y de la
primera para el área de estudio, encon-
trándose en zonas costeras. Su carácter
calcícola puede ser la causa de que
hayamos recogido un escaso número de
ejemplares en nuestra área de estudio,
predominantemente granítica.
Este taxon presenta una cierta contro-
versia dado que el holotipo de esta espe-
cie, citada como Helix brigantina (da Silva
Mengo, 1867) y recogido en Braganca
(Portugal), se ha extraviado, conserván-
dose únicamente su descripción, sin nin-
gún dibujo o representanción y sin que
haya vuelto a encontrarse ningún ejem-
plar en la localidad tipo. ROSSMASSLER
(1879) figura un ejemplar de esta especie,
aportando otros datos a su descripción y
señalando una nueva localidad en el
norte de la Península (La Liébana, Can-
tabria). NOBRE (1941) no encuentra esta
especie en ningún punto de Portugal y
presupone que la especie descrita por DA
SILVA MENGO (1867) podría tratarse de
una variedad minor de Helix inchoata
(Morelet, 1879). Este problema persiste
hoy en día y sigue siendo necesario com-
probar si el genital de los individuos en-
contrados en los alrededores de Bra-
ganca coincide con el representado por
ORTIZ DE ZARATE (1949). De no ser así, lo
que ahora se conoce como Mengoana bri-
gantina en el norte de la Península debe-
ría ser considerada como Mengoana jes-
chaul (ORTIZ DE ZARATE, 1949).
Oestophora (Oestophora) barbula (Rossmássler, 1838) (Fig. 2h)
Citas previas: GRAELLS (1846) como H. holosericea; MACHO VELADO (1871) como H. barbula;
HIDALGO (1875, 1890) como H. barbula; ORTIZ DE ZARATE (1962); SACCHI y VIOLANI (1977); CASTI-
LLEJO (1984); OTERO y TRIGO (1989).
Material examinado (661 ejemplares). 1: 10; 2: 4; 3: 7; 4: 8; 5: 2;
2; 19: 2; 20: 4; 21: 2; 22: 2; 23: 4; 24: 5; 25: 10; 26: 14; 27: 6
15; 41: 17; 42: 26; 43: 7; 45: 2; 46: 3; 47: 1; 48: 11; 49:
60: 7; 61: 1; 62: 1; 67: 2; 68: 4; 69: 33; 70: 1; 74: 2; 77:
6; 88: 2; 89: 4; 94: 2; 95: 2; 96: 1; 97: 8; 98: 2; 99: 3;
116: 2; 117: 8; 118: 3; 119: 5; 120: 6; 122: 1; 123: 4; 127: 8; 1
136: 7; 137: 4; 138: 8; 139: 1; 143: 1; 145: 2; 149: 10; 150: 1; 151:
157: 1; 158: 8; 161: 6; 168: 7; 171: 14.
Localidades con conchas vacías: 15.
Distribución geográfica: Esta espe-
cie es un endemismo ibérico pertene-
ciente a la fauna atlántico lusitánica.
Está presente en todo el oeste penin-
sular, desde Galicia y Asturias hasta el
sur de Portugal y Huelva, adentrándose
en algunos puntos del centro peninsular
; 6: 3;7: 1; 9: 2; 10: 1; 11: 1; 14: 7; 17:
; 28: 9; 29: 20; 30: 7; 32: 2; 35: 10; 37: 15; 39:
; 51: 6;52: 5;53: 1; 54: 1; 56: 2; 57: 6; 58: 8; 59: 3;
;79: de 81: 4; 82: 2; 83: 10; 84: 3; 85: 1; 86: 14; 87:
: 4; 109: 6; 110: 7; 112: 1; 113: 23; 114: 17; 115: 4;
sl 5; 129: 5; 130: 1; 132: 2; 134: 1; 135: 34;
3; 152: 8; 153: 15; 154: 2; 155: 7; 156: 8;
(NOBRE, 1941; ORTIZ DE ZÁRATE, 1962;
ALTIMIRA, 1969; MANGA, 1983; RAMOS y
APARICIO, 1985a; CASTILLEJO, 1984;
HERMIDA ET AL., 1992). Alejada de este
área se ha citado también en sureste
ibérico (HIDALGO, 1875; GASULL, 1975) y
Pirineos.
Oestophora (Oestophora) silvae Ortiz de Zárate López, 1962 (Fig. 21)
Citas previas: HIDALGO (1875, 1890) como O. lusitanica; ORTIZ DE ZARATE (1962); CASTILLEJO
(1984) como O. lusitanica var. minor; OTERO y TRIGO (1989).
Material examinado (474 ejemplares). 1: 16; 3: 1; 4: 2; 5: 5; 7: 3; 8: 2; 13: 1; 1
o ec ads 35: 4
8; 43: 10; 44: 7; 45: 2; 46: 9; 47: 9; 50: 13; 51: 3; 53: 15; 54: 2;
77: 7; 82: 1; 84: 3; 88: 1; 90: 2; 91: 2; 99: 18; 100: 10; 106: 3;
121: 16; 130: 1; 137: 4; 138: 1; 141: 6; 154: 1; 155: 1; 158: 1;
Localidades con conchas vacías: 16; 87; 93.
16
4: 4; 18: 2; 19: 1; 21: 8;
3: 13; ; 37:29; 39: 7; 40: 34; 41: 39; 42:
55: 2; 56: 1; 58: 5; 62: 1; 63: 3; 71: 2; 75: 1;
108: 7; 109: 7; 110: 10; 111: 1; 115: 9; 120: 1;
159: 6; 160: 3; 166: 2; 170: 4.
ONDINA £7 AZz.: Distribución de la superfamilia Helicoidea en el oeste de Galicia
¡cleje!
fejele|
¡ojoje|
¡[eloje| |
300
AJ000220:1
“GOPsog00bn
”O0D900095
¡mole olela!_|
¡eo
¡qloeje! ||
ge:
ECU
[ol6je]
E ¡des
¡Je
NW POJE
PABuBI ¡elejel
AE NA A OSEA
E a EE ?CÍGUOGA
EAS ae ES CENA
se |ejejejel ¡ejojojeje] !
lol eje] | Tele] e ¡ejojele] ejeje] je
xjejalolelolal O ejejejaja!
ABRAN PEOR 230
pt] Da m8 AÑO 107 O”SgO
1 Oe AQDOBOO cOn 95 jojo|ojo
4 y ea Ira J: AS
2 DO: el 0003
AS DECO
5 ¡588 jé1 7]
Sl 13439000
eló| [ojala
K L [ojejejsíate]
Figura 2. Mapas de distribución. A: Cochicella barbara; B: Cochlicella conoidea; C: Ashfordia granu-
lata; D: Zenobiella subrufescens, E: Portugala inchoata, E: Ponentina subvirescens, G: Mengoana bri-
gantina; H: Oestophora barbula; 1: Oestophora silvae, J: Theba pisana; K: Cepaea nemoralis, L: Helix
aspersa. Localidades citadas en este trabajo (*); procedentes de la bibliografía (*); únicamente
encontradas conchas vacías (O).
Figure 2: Distribution maps. A: Cochlicella barbara; B: Cochlicella conoidea; C: Ashfordia granu-
lata; D: Zenobiella subrufescens; E: Portugala inchoata; F: Ponentina subvirescens; G: Mengoana
brigantina; A: Oestophora barbula; /: Oestophora silvae; /: Theba pisana; K: Cepaea nemoralis; L:
Helix aspersa. Localities reported in this paper (e); bibliographic records (*); only shells found (O).
17
Iberus, 15 (1), 1997
Distribución geográfica: Es un en-
demismo ibérico restringido al norte de
la Península, desde Galicia hasta el
norte de Alava (CASTILLEJO, 1986; OJEA y
ANADÓN, 1983; PUENTE y PRIETO, 1992;
HERMIDA, ET AL., 1992).
Observaciones: ORTIZ DE ZARATE
(1962) al describir O. silvae expuso las dife-
rencias que existían entre esta especie y
Oestophora lusitanica (Pfeiffer, 1841). Señala
que O. silvae es más pequeña, tiene el borde
superior de la abertura más corto, un
engrosamiento mayor del peristoma en
toda su extensión, presenta una callosi-
dad blanca interna en el extremo del borde
superior de la última vuelta con la ante-
penúltima y carece del estriado espiral en
la cara inferior, cerca de la abertura, que
caracteriza a O. lusitanica. Respecto al
aparato genital destaca la distinta inserción
del músculo retractor del pene, que se
sitúa hacia la mitad de la vaina en O. lusi-
tanica y cerca del extremo en O. silvae, y la
distinta longitud de las glándulas multí-
fidas y del oviducto libre, mucho más
cortos en O. silvae.
Según ORTIZ DE ZÁRATE (1962) O.
silvae es la misma especie que fue descrita
por da Silva en 1871 como O. lusitanica
var. minor. Así mismo asigna a esta especie
todas las citas de O. lusitanica, dadas por
HIDALGO (1875), para el norte de la Penín-
sula y Galicia. Sin embargo CASTILLEJO
(1984) encontró, en diversos puntos de
Galicia, ejemplares que no coincidían com-
pletamente con la descripción de O. silvae,
siendo más similar a la de O. lusitanica var.
minor, a la que asignó esos ejemplares.
Nosotros hemos podido estudiar indi-
viduos de O. lusitanica de Portugal, y nin-
guno de nuestros ejemplares gallegos se
ajusta a las características de esta especie.
Respecto a O. silvae, hemos observado
que los datos de la descripción de ORTIZ
DE ZARATE (1962) deberían ser revisados,
ya que existen ejemplares de mayor diá-
metro que el señalado por él, y una obser-
vación detallada de la concha húmeda
pone de manifiesto, en todos los ejempla-
res, las estrías espirales en la cara inferior
que, en un principio, sólo parecía presen-
tar O. lusitanica. En lo referente al aparato
genital, las glándulas multífidas pueden
ser más largas que las descritas y el mús-
culo retractor del pene presenta cierta
variabilidad en su inserción. Observadas
estas variaciones y una vez estudiados los
ejemplares de nuestra colección y la del
Dr. Castillejo, hemos seguido a Ortiz de
Zárate considerando las citas gallegas de
O. lusitanica var. minor como O. silvae.
Familia HELICIDAE Rafinesque, 1815
Theba pisana (Muller, 1774) (Fig. 2)
Citas previas: MACHO VELADO (1871) como H. pisana; HIDALGO (1875, 1890) como H. pisana;
SACCHI y VIOLANI (1977) como Euparipha pisana; CASTILLEJO (1986); OTERO y TRIGO (1989).
Material examinado (373 ejemplares). 4: 20; 6: 3; 11: 3; 26: 10; 30: 2; 48: 1; 49: 1; 57: 14; 60: 2; 67: 5;
69: 50; 82: 1; 83: 4; 85: 12; 86: 5; 87: 10; 91: 10; 93: 2; 94: 17; 95: 1; 97: 3; 100: 3; 113: 7; 117: 1; 118: 12;
126: 9; 128: 1; 131: 33; 133: 12; 136: 15; 149: 35; 151: 25; 153: 10; 156: 3; 165: 2; 168: 5; 173: 24.
Distribución geográfica: Esta especie
presenta una distribución circunmedite-
rránea que remonta las costas atlánticas
hasta Inglaterra (KERNEY ET AL., 1983).
En la Península se extiende a lo largo
de toda la costa, aunque es capaz de colo-
nizar áreas del interior cuando se dan con-
diciones adecuadas, tales como disponi-
bilidad de sales solubles (Prieto, com. pers.).
Como citas más recientes en el interior se
pueden señalar las dadas por HERMIDA
ET AL. (1992) y PAREJO ET AL. (1993b).
Cepaea (Cepaea) nemoralis (Linneo, 1758) (Fig. 2K)
Citas previas: MACHO VELADO (1871) como H. nemoralis; HIDALGO (1875, 1890) como H.
nemoralis; SACCHI y VIOLANI (1977); SACCHI (1981); CASTILLEJO (1986); OTERO y TRIGO (1989). *
18
ONDINA £7 4Z.: Distribución de la superfamilia Helicoidea en el oeste de Galicia
Material examinado (1229 ejemplares). 1: 32; 2: 13; 3: 10; 4: 7; 5: 3; 6: 11;7: 2; 8: 4; 9: 4,10: 1; 11: 4; 12:
4; 13: 4; 14: 7; 16: 8; 17: 3; 18: 4; 19: 4; 20: 2; 21: 5; 22: 9; 23: 3; 24: 9; 25: 17; 26: 8; 27: 9; 28: 10; 29: 4; 30:
15; 31: 4; 32: 10; 33: 4; 35: 1; 36: 12; 37: 4; 38: 12; 39: 12; 40: 5; 41: 28; 42: 2; 43: 8; 44: 5; 45: 12; 46: 12; 47:
15; 48: 13; 49: 7; 50: 7; 51: 9; 52: 3; 53: 1; 54: 9; 55: 5; 56: 4; 57: 7; 58: 2; 59: 6; 61: 9; 62: 2; 63: 9; 64: 11; 65:
1; 66: 1; 67: 12; 68: 2; 69: 1; 70: 5; 71: 7; 72: 10; 73: 2; 74: 4; 75: 10; 76: 6; 77: 20; 79: 6; 80: 7; 81: 8; 82: 4; 83:
12; 84: 11; 85: 3; 86: 10; 87: 11; 88: 6; 89: 7; 90: 8; 91: 2; 92: 6; 93: 17; 94: 3; 95: 11; 96: 12; 97: 10; 98: 4; 99:
14; 100: 14; 101: 8; 102: 20; 103: 2; 104: 9; 105: 2; 106: 4; 107: 2; 108: 10; 109: 15; 110: 23; 111: 8; 112: 14;
113: 16; 114: 7; 115: 12; 116: 13; 117: 26; 118: 8; 119: 8; 120: 12; 121: 11; 122: 7; 123: 11; 125: 7; 126: 1;
127: 10; 128: 5; 129: 8; 130: 3; 131: 11; 132: 12; 133: 14; 134: 3; 135: 6; 136: 4; 137: 5; 138: 7; 139: 6; 140: 1;
141: 10; 142: 8; 143: 8; 144: 4; 145: 5; 146: 20; 147: 12; 148: 7; 149: 8; 150: 5; 151: 4; 152: 7; 153: 12; 154: 2;
155: 3; 156: 7; 157: 3; 158: 1; 159: 2; 160: 1; 161: 3; 162: 2; 163: 2; 164: 1; 165: 2; 166: 1; 170: 2; 171: 3.
Distribución geográfica: Presenta
una distribución centro-occidental euro-
pea (BOATO ET AL., 1982).
En la Península Ibérica se extiende
por la franja portuguesa (HIDALGO,
1875; LOCARD, 1899; NOBRE, 1941) y por
toda la mitad norte (BOFILL y HAAs,
1919, 1920a, 1920b; ORTIZ DE ZARATE y
ORTIZ DE ZARATE, 1949; MANGA, 1983;
RAMOS, 1985; APARICIO, 1986; HERMIDA
ET AL., 1992; LARRAZ y EQUISOAIN, 1993;
PAREJO ET AL., 1993b; ALTONAGA ET AL.,
1994). En la mitad sur peninsular es más
frecuente en Portugal, pero en los úl-
timos años varios autores han ampliado
su distribución en esta zona (MARTÍNEZ-
ORTI y ROBLES, 1993; PAREJO, ET AL.,
1993a).
Helix (Cornu) aspersa (Múller, 1774) (Fig. 2L)
Citas previas: MACHO VELADO (1871); HIDALGO (1875, 1890); SAccHI y VIOLANI (1977) como
Cryptomphalus aspersus; CASTILLEJO (1986); OTERO y TRIGO (1989).
Material examinado (1579 ejemplares). 1: 1; 2: 1; 3: 5; 4: 32; 5: 3; 6: 12; 8: 4; 9: 6; 10: 1; 11: 3; 12: 5; 13: 12;
14: 3; 16: 2; 17: 3; 19: 5; 20: 7; 21: 30; 22: 4; 23: 4; 24: 3; 25: 6; 26: 16; 27: 6; 28: 54; 29: 15; 30: 9; 31: 3; 32: 12;
35: 18; 36: 8; 37: 20; 38: 17; 39: 15; 40: 13; 41: 28; 42: 22; 43: 2; 44: 12; 45: 17; 46: 11; 47: 4; 48: 26; 49: 18; 50:
11; 51: 20; 52: 22; 53: 20; 54: 11; 55: 10; 56: 7; 57: 19; 58: 1; 59: 12; 60: 11; 61: 21; 62: 9; 63: 1; 64: 27; 65: 2; 67:
23; 68: 16; 69: 12; 70: 14; 71: 11; 73: 6; 75: 13; 76: 4; 77: 7; 78: 1; 79: 6; 80: 2; 81: 10; 82: 10; 83: 5; 84: 5; 85: 8;
86: 10; 87: 10; 88: 10; 90: 2; 91: 17; 92: 11; 93: 16; 94: 16; 95: 14; 96: 11; 97: 9; 98: 9; 100: 14; 101: 42; 102: 48;
103: 21; 104: 5; 106: 10; 109: 10; 110: 7; 111: 4; 112: 6; 113: 17; 114: 22; 115: 14; 116: 2; 117: 36; 118: 8; 119: 15;
120: 16; 121: 11; 122: 11; 123: 36; 124: 3; 125: 9; 126: 8; 127: 13; 128: 9; 129: 12; 130: 2; 131: 11; 132: 16; 133: 8;
134: 22; 135: 5; 136: 10; 137: 12; 138: 2; 139: 1; 141: 3; 143: 4; 144: 1; 145: 8; 146: 16; 147: 4; 148: 6; 149: 6; 150:
1; 151: 3; 152: 2; 153: 9; 154: 2; 155: 5; 156: 2; 157: 1; 158: 2; 159: 1; 160: 4; 162: 3; 165: 3; 167: 1; 168: 1; 171: 3.
Distribución geográfica: Especie
distribuida por el Mediterráneo y oeste
de Europa. (BOATO ET AL., 1982).
En la Península Ibérica se ha citado
repetidamente en todas las regiones
DISCUSIÓN
En un principio y dadas las condicio-
nes climáticas gallegas favorables para la
vida de los gasterópodos terrestres, podrí-
amos pensar que es un área de abundante
fauna malacológica. Pero comparándola
con otras zonas de la Península Ibérica
enclavadas en el área atlántica podemos
comprobar que la diversidad y abundan-
(ALTONAGA ET AL., 1994) y en las Islas
Baleares, y aún faltando zonas por estu-
diar, dado su carácter ubiquista y sinan-
trópico, puede asegurarse que está pre-
sente en todo el territorio peninsular.
cia de helícidos es especialmente escasa
en Galicia. Probablemente esto es debido,
principalmente, a la escasez de sustrato
calizo, necesario para la formación de la
concha de todos los gasterópodos en
general y, de la conchas gruesas y duras
de los helícidos en particular (BOYcorr,
1934; KERNEY y CAMERON, 1983).
19
Iberus, 15 (1), 1997
Con este trabajo se ha ampliado el
área de distribución conocida de la ma-
yor parte de las especies, pudiendo seña-
lar la notable presencia en la zona de es-
tudio de especies como H. aspersa, C. ne-
moralis y P. inchoata, que aparecen en más
del 80% de las cuadrículas visitadas. A
diferencia de ésto, existen otras especies
que han presentado distribuciones res-
tringidas, especialmente aquellas origi-
nariamente mediterráneas, intimamente
ligadas al litoral como T. pisana, C. acuta,
C. barbara, y C. conoidea, destacando es-
pecialmente esta última, que al igual que
sucede en el resto de la Península, no as-
ciende por la costa cantábrica. En contra-
posición a ésto, H. itala, también con un
comportamiento litoral en el área de es-
tudio, no desciende del norte de Galicia,
siendo su cita más al sur, en todo este te-
rritorio, la Sierra de O Courel, zona ca-
liza con una altitud superior a los 900 m.
También hemos de señalar que la
mayor parte de las especies han sido
capturadas en gran variedad de hábitats
(bajo troncos, muros, linderas de culti-
vos...), pudiendo destacar únicamente
la preferencia de E. quimperiana por los
diferentes tipos de arbolados, en mayor
medida pinares y robledales, y de P.
inchoata y P. subvirescens en los prados y
zonas carentes de vegetación arborea.
BIBLIOGRAFÍA
ALTIMIRA, C., 1969. Notas Malacológicas. VIH
Moluscos del Delta del Llobregat. IX Nuevas
aportaciones y datos a la fauna malacoló-
gica catalana. XI Moluscos terrestres y de
agua dulce recogidos en la provincia de Lugo
y en Asturias. Publicaciones del Instituto de
Biología Aplicada, 46: 91-113.
ALTONAGA, K.; GÓMEZ, B.; MARTÍN, R.; PRIETO,
C.; PUENTE, A. y RALLO, A., 1994. Estudio fau-
nístico y biogeográfico de los moluscos terrestres
del norte de la Península Ibérica. 505 pp. Ed.
Eusko Legebiltzarra, Parlamento Vasco.
ANADÓN, N. y OJEA, M., 1984. Gasterópodos te-
rrestres del Monte Naranco (Oviedo, Astu-
rias). Distribución, diversidad y afinidades
faunísticas. Revista de Biología de la Universi-
dad de Oviedo, 2: 121-129.
APARICIO, M. T., 1986. The geographic distri-
bution of the Family Helicidae in Central
Spain. Proceedings of the 8* International Ma-
lacological Congress, Budapest.
20
Por último queremos mencionar que
hemos encontrado la mayoría de las
especies citadas anteriormente a noso-
tros en el área de estudio, y las que no lo
han sido podemos atribuirlo, no tanto a
errores de muestreo, como a la posibili-
dad de que se encuentren poco repre-
sentadas. Este es el caso de Helicigona
lapicida (Linneo, 1758) citada por ROLÁN
y OTERO (1988) en una única localidad
de la provincia de A Coruña. Así mismo,
hay que señalar Otala punctata (Múller,
1771) citada como Otala lactea (Múller,
1771) por CASTILLEJO (1986) en la esta-
ción biológica de Lourizán (Ponteve-
dra). Esta especie de ámbito mediterrá-
neo fue, con seguridad, introducida con
un cultivo experimental en la estación
agrícola, y la población, muy abundante
en el momento de su cita (el autor
recoge unos 300 ejemplares) probable-
mente no prosperó, puesto que hemos
realizado repetidas visitas a esa zona,
sin encontrar ningún ejemplar.
AGRADECIMIENTOS
Este trabajo forma parte del Proyecto
“Invertebrados terrestres de Galicia. 1.
Provincias de La Coruña y Pontevedra”
financiado por la Xunta de Galicia.
BACKHUYS, W., 1975. Land and fresh-water mo-
lluscs of the Azores. Backhuys y Meesters.
Amsterdam. 350 pp.
BEcH, M., 1990. Fauna malacologica de Cata-
lunya. Molluscs terrestres i d'aigua dolca.
Treballs de l'Institució catalana d'Históoria Na-
tural, 12: 1-229.
BOATO, A., BODON, M. y Giusti, F., 1982. Mo-
lluschi terrestri e d'acqua dolce delle Alpi Li-
guri. Lavori della societa Italiana di Biogeografia,
Nuova serie, 9: 237-371.
BOFILL, A. y Hass, F., 1919. Molluscos rellits en
Asturias, en 1918 per en Josep Maluque pre-
cedits de consideracions bibliografiques so-
bre la Malacología asturiana. Butlletí de la Ins-
titució Catalana d'Historia Natural, 12: 25-34.
BOFILL, A. y Haas, F., 1920a. Estudi sobre la
malacologia de les Valls Pirenaiques. Vall
del Noguera Pallaresa. Treballs del Museu
de Ciences Naturals de Barcelona, 3(10): 100-
220.
ONDINA E7 42.: Distribución de la superfamilia Helicoidea en el oeste de Galicia
BOFILL, A. y Haas, F., 1920b. Estudi sobre la ma-
lacologia de les Valls Pirenaiques. Vall del Se-
gre i Andorra. Treballs del Museu de Ciences
Naturals de Barcelona, 3(12): 225-375.
CASTILLEJO, J., 1984. Caracoles terrestres de Ga-
licia, [. Género Oestophora Hesse, 1907. (Pul-
monata, Helicidae). Iberus, 4: 125-133.
CASTILLEJO, J., 1986. Caracoles terrestres de Gali-
cia. Familia Helicidae (Gastropoda, Pulmonata).
Servicio de Publicaciones de la Universidad
de Santiago, 122, 66 pp.
Cazior, E., 1915. La fauna terrestre Lusita-
nienne. Bulletin de la Société Linnéenne de Lyon,
62: 43-65.
DA SILVA MENGO, J., 1867. Descripcao de um
“Helix” novo de Portugal. Journal de Sciences
Mathematicas, Physicas e Naturales, 1: 170-171.
GASULL, L., 1965. Algunos moluscos terrestres
y de agua dulce de Baleares. Bolletí de la So-
cietat d'Historia Natural de les Balears, 9: 1-80.
GASULL, L., 1975. Fauna malacológica terrestre
del sudeste ibérico. Bolletí de la Societat d'His-
toria Natural de les Balears, 20: 5-155 + 4 pl.
GERMAIN, L., 1930. Faune de France, 21. Mollus-
ques terrestres et fluviatiles. 1-2. París. 897 pp.
GITTENBERGER, E., 1979. On Elona (Pulmonata,
Elonidae fam. nov). Malacologia, 18: 139-145
GITTENBERGER, E., 1980. On Iberian Helicellinae
(Gastropoda, Pulmonata, Helicidae). Halio-
tis, 10(2): 60
GRAELLs, M., 1846. Catálogo de los moluscos te-
rrestres y de agua dulce observados en España y
descripción y notas de algunas especies nuevas 0
poco conocidas del mismo país. 33 pp. Madrid.
HAas, F., 1929. Fauna malacológica terrestre y
de agua dulce de Cataluña. Treballs del Mu-
seu de Ciences Naturals de Barcelona, 13: 1-491.
HERMIDA, J., OUTEIRO, A. y RODRÍGUEZ, T., 1992.
Distribución de los Helicidae sensu Zilch 1959-
60 (Gastropoda: Pulmonata) en Asturias,
León, Zamora y Salamanca. Revista Academia
Galega das Ciencias, Vol XI: 81-93.
HIDALGO, J., 1875. Catálogo iconográfico y des-
criptivo de los moluscos terrestres de España,
Portugal y las Baleares. Parte 1A: 224pp., Parte
2A: 16pp., Madrid.
HIDALGO, J., 1890. Catálogo de los moluscos
recogidos en Bayona de Galicia. Revista para
el Progreso de las Ciencias Exactas, Físicas y Na-
turales, 21(7): 396-397.
HOLYOAK, D. T. y SEDDON, M. B., 1985. Non ma-
rine Gastropoda from France, Spain an Italy.
Journal of Conchology, 32(1): 67-70.
KERNEY, M. P., CAMERON, R. A. D. y JUNG-
BLUTH, J. H., 1983. Die Landschecken Nord- un
Mitteleuropas. Ed. Parey, Hamburg und Ber-
lin. 890 pp.
LARRAZ, M. y JORDANA, R., 1984. Moluscos te-
rrestres de Navarra (Mollusca: Gastropoda)
y descripción de Xeroplexa blancae n. sp. (E. He-
licidae). Publicaciones de Biología de la Univer-
sidad de Navarra, series Zoología, 11: 1-65.
LARRAZz, M. y EQUISOAIN, J., 1993. Moluscos Te-
rrestres y Acuáticos de Navarra (Norte de la Pe-
nínsula Ibérica). Pub. Biol. Univ. Navarra. Se-
rie Zoológica, 326 pp.
LOCARD, A., 1899. Conchyliologie Portugaise.
Coquilles terrestres, des eaux douces et
saumátres. Archives du Muséum d'Histoire Na-
turelle Lyon, 7: 1-303.
MANGA M. Y., 1983. Los Helicidae (Gastropoda,
Pulmonata) de la provincia de León. C.S.1.C. 394
pp. León.
MACHO VELADO, J., 1871. Catálogo de los mo-
luscos terrestres observados en Galicia. Ho-
jas Malacológicas, 10-16.
MACHO VELADO, J., 1878. Moluscos de agua
dulce de Galicia con observaciones sobre las
especies y localidades. Anales de la Sociedad
Española de Historia Natural, VI: 235-248
MARTÍNEZ-ORTL A y ROBLES, F., 1993. Nuevos
datos sobre la distribución de los moluscos
terrestres en la comunidad valenciana. XI
Bienal de la Real Sociedad Española de Historia
Natural, Jaca.
MARTÍNEZ-ORTI, A., MARTÍNEZ-LÓFPEZ, F., RO-
BLES, F. y RODRÍGUEZ BABÍO, C., 1990. El Gé-
nero Cochlicella Risso, 1826 (Pulmonata, He-
licidae) en la comunidad valenciana. Iberus,
9 (1-2): 393-405.
MORELET, A., 1877. Revision des Mollusques te-
rrestres et fluviatiles du Portugal. 21 pp. París.
NOBRE, A., 1941. Fauna malacológica de Portugal,
II. Moluscos terrestres e fluviais. 277 pp., 30
lám., Coimbra.
OjEa, M. y ANADÓN, N., 1983. Estudio faunís-
tico de los gasterópodos de las vertientes sur
y oeste del monte Naranco (Oviedo, Astu-
rias). Boletín de Ciencias de la Naturaleza 1. D.
E. A., 32: 69-90.
ORTIZ DE ZÁRATE, A,, 1949. Observaciones so-
bre la especie conocida con el nombre de He-
lix brigantina Mengo en el Museo de Madrid.
Las Ciencias, 16(2): 285-292.
ORTIZ DE ZARATE, A., 1962. Observaciones ana-
tómicas y posición sistemática de varios he-
lícidos españoles. Boletín de la Real Sociedad
Española de Historia Natural, 60: 81-104.
ORTIZ DE ZARATE, A. y ORTIZ DE ZÁRATE, A,,
1949. Contribución al conocimiento de la dis-
tribución de los moluscos terrestres en las pro-
vincias Vascongadas y norte de Navarra. Bo-
letín de la Real Sociedad Española de Historia Na-
tural, 47: 397-432.
OTERO, J. y TRIGO, J., 1989. Moluscos de la ría
de Muros. Thalassas, 7: 79-90.
PAREJO, C.; MUÑOZ, B.; ALMODÓVAR, A. y RE-
FOYO, P. 1993a. Contribución al conocimiento
de la malacofauna terrestre entre los ríos Tajo
y Tajuña en la comunidad autónoma de Ma-
drid. XI Bienal de la Real Sociedad Española de
Historia Natural, Jaca.
21
Iberus, 15 (1), 1997
PAREJO, C.; REFOYO, P.; ALMODOVAR, A. y MU-
ÑOZz, B., 1993b. Contribución al conocimiento
de la malacofauna terrestre entre los ríos He-
nares, Jarama y Tajuña en la Comunidad Au-
tónoma de Madrid. Graellsia, 49: 77-85.
PAuL, C. R. C., 1982. An annotated check-list of
the non marine Mollusca of the Pityuse
Islands, Spain. Journal of Conchology, 31 (2):
79-86.
PUENTE, A. y PRIETO, C., 1991. La superfamilia
Helicoidea (Pulmonata, Stylommatophora)
en la provincia de Huesca. Miscel.lania Zoo-
lógica, 15: 11-27.
PUENTE, A. y PRIETO, C., 1992. La superfamilia
Helicoidea (Pulmonata: Stylommatophora)
en el norte de la Penísula Ibérica: Corología
y sectorización malacogeográfica. Graellsia, 48:
133-169.
RAMOS, M. A,, 1985. Shell polymorphism in a
southern peripheral population of Cepaea ne-
moralis (L.) (Pulmoanta: Helicidae) in Spain.
Biological Journal of the Linnean Society, 25:
197-208. '
RAMOS, M. A. y APARICIO, M. T., 1985a. A cy-
totaxonomic study of some spanish and por-
tuguese Helicidae (Pulmonata, Geophila). Ma-
lacological Review, 18: 73-82.
Ramos, M. A. y APARICIO, M. T., 1985b. Gas-
terópodos terrestres y dulceacuícolas de
las Lagunas de Ruidera (España). Iberus, 5:
118-123:
ROBLES, F., 1990. Gasterópodos terrestres de la
provincia de Valencia. Revisión bibliográ-
fica y lista de especies. Iberus, 9: 467-481.
2D
ROLÁN, E y OTERO, J., 1988. Gasterópodos te-
rrestres: nuevas citas para Galicia. Iberus, 8:
111-114.
ROSSMASSLER, E. A., 1879. Iconographie der Land-
und- Sússwasser-Mollusken Europas, mit vor-
zúglicher Berúcksichtigung kritischer und noch
nicht abgebildeter Arten. Ed. H. Costenoble, 6(4-
6): 37 pp; Lam 140.
SACCHI, C., 1954. Contribution alla conoscenza
dei popolamenti delle piccole isole medite-
rranee. - II. Cenni biogeografici sulla mala-
cofauna di Iviza (Pitiuse). Bollettino di Zoolo-
gía, 21: 1-40.
SACCHI, C., 1981. Convergence du polymorp-
hisme chez Cepaea nemoralis (L.) et Mona-
choides inchoatus (Mor.) (Gastropoda: Pul-
monata): Parallélisme écologique ou mimé-
tisme imitatif?. Atti de la Societa Italiana di
Scienze Naturali e del Museo Cívico di Storia Na-
turale di Milano, 122 (3-4): 139-150.
SACcHI, C. y VIOLANI, C., 1977. Richerche eco-
logiche sulle elicide dunicole della Ría di
Vigo (Spagna), (Gastropoda, Pulmonata).
Natura, 68(3-4): 253-284.
SEOANE, V. L., 1866. Reseña de la Historia Natu-
ral de Galicia. 66pp. Jugo.
SERVAIN, G., 1880. Etude sur les mollusques re-
cueillis en Espagne et en Portugal. Ed. Saint
Germain, Paris. 172 pp.
SElxAS, M. M. P., 1976. Gasterópodes terrestres
da fauna portuguesa. Boletim da Sociedade
Portuguesa das Ciéncias Naturais, 16: 21-46.
O Sociedad Española de Malacología
Iberus, 15 (1): 23-29, 1997
Una nueva especie de Lirularía (Gastropoda: Trochidae) de
las islas de Sáo Tomé y Príncipe, África Occidental
A new species of Lirularia (Gastropoda: Trochidae) from Sao Tomé
y Príncipe Islands, West Africa
Federico RUBIO* y Emilio ROLÁN**
Recibido el 18-111-1996. Aceptado el 8-X-1996
RESUMEN
El estudio del material obtenido durante dos expediciones realizadas a las Islas de Sáo
Tomé y Príncipe en los años 1989 y 1990, ha proporcionado una nueva especie de tró-
quido con apariencia de Solariella, que por sus características morfológicas y radulares
pertenece a la subfamilia Lirulariinae. Se describe esta especie, nueva para la ciencia,
comentándose las características morfológicas de la concha, partes blandas y rádula, e
incluyéndola en el género Lirularia. Se discute la inclusión en dicho género de otras dos
especies de la costa occidental africana.
ABSTRACT
The study of the material obtained in Sáo Tomé and Principe Islands during two expedi-
tions in the years 1989 and 1990, have yielded a new trochid species with Solariella,
which for its morphological and radular characters belongs to the subfamily Lirulariinae.
This species is described as new for science within the genus Lirularia and its morphologi-
cal characteristics of shell, soft parts and radula are commented on. The assignment to this
genus of other two species of the West African coast is discussed.
PALABRAS CLAVE: Gastropoda, Trochidae, Lirularia, nueva especie, Islas de Siío Tomé y Príncipe.
KEY WORDS: Gastropoda, Trochidae, Lirularia, new species, Sio Tomé and Príncipe Islands.
INTRODUCCIÓN
Se han citado varias especies de Sola-
riella s. 1. de la costa africana en diversos
trabajos. SMITH (1871) describe la primera,
Solariella canaliculata Smith, 1871, de
Whydah (Dahomey), actualmente Repú-
blica de Benin. Esta misma especie y Sola-
riella dereimsí Dollfus, 1911 son citadas para
Angola por GOFAs, PINTO AFONSO Y
BRANDAO (1985); NICKLÉS (1950) menciona
Solariella monodi Fischer y Nicklés, 1946
para Guinea Francesa (Guinea Conakry)
y S. dereimsi para Mauritania y Senegal.
Alguna otra especie, como S. valida Daut-
zenberg y Fischer, 1906, descrita para el
archipiélago de Cabo Verde, procede de
aguas profundas.
En BERNARD (1984) aparece repre-
sentada una concha con la denomina-
*Dpto. de Zoología. Facultad de Ciencias Biológicas, Universidad de Valencia. Dr. Moliner, 50, 46100 Burjasot
(Valencia).
**Cánovas del Castillo, 22-59 F, 36202 Vigo.
23
Iberus, 15 (1), 1997
ción Solariella sp., pero en realidad se
trata de Cyclostremiscus calameli (Jousse-
aume, 1872) que es en realidad un Torni-
dae (Gofas, com. pers.).
No hay citas de especies de Solariella
para el archipiélago de Sáo Tomé y Prín-
cipe, aunque en el último listado de es-
pecies de FERNANDES Y ROLÁN (1993), se
menciona una única especie de este gé-
nero, como Solariella sp.
HERBERT (1987) demostró que muchas
de las especies de África del Sur, consi-
deradas tradicionalmente del género Sola-
riella no lo son, sino que pertenecen a la
subfamilia Umboniinae en lugar de Sola-
riellinae. HICKMAN Y MCLEAN (1990) pu-
blicaron una revisión de la superfamilia
Trochoidea y, atendiendo a la morfología
de sus partes blandas y rádula, agrupa-
ron las “Solariellas” en un grupo informal
formado por las subfamilias Trochinae Ra-
finesque, 1815, Stomatellidae Gray, 1840,
Calliostomatinae Thiele, 1924 y Solarielli-
nae Powell, 1951; agrupando las especies
de Umboniinae en otro grupo informal
formado por Lirulariinae Hickman y
McLean, 1990, Halistylinae Keen, 1958 y
Umboniinae Adams y Adams, 1854. Wa-
RÉN (1993), siguiendo dicha ordenación,
considera que “Solariella” canaliculata y
“Solariella” dereimsi pertenecen a la subfa-
milia Umboniinae.
Durante las campañas de recolección
de moluscos efectuadas por el segundo
RESULTADOS
autor en los años 1989 y 1990 en el archi-
piélago de Sáo Tomé y Príncipe, Golfo
de Guinea, se recolectaron ejemplares y
conchas de una “Solariella” aparente-
mente diferente de las especies previa-
mente conocidas. Esta misma especie,
referida como Solariella sp. por FERNAN-
DES Y ROLÁN (1993) y WARÉN (1993), es
ahora descrita, aunque en un género
diferente.
Al mismo tiempo, las especies “Sola-
riella” canaliculata y “Solariella” dereimsi,
recolectadas y observadas en las expedi-
ciones a Angola y Mauritania de 1989 y
1996 respectivamente, son transferidas a
la subfamilia Lirulariinae, género Lirula-
ria, basándonos en la similitud morfoló-
gica de sus partes blandas y rádula.
MATERIAL Y MÉTODOS
Se han estudiado 8 ejemplares y 82
conchas, procedentes de sedimentos
obtenidos en distintas localidades del
archipiélago, mediante buceo a pulmón
libre, a profundidades comprendidas
entre 5 y 15 metros. Tras la observación
de su comportamiento, algunos indivi-
duos se relajaron y posteriormente se
fijaron en solución tamponada de for-
maldehído al 5%. Para la observación
conquiológica y radular se ha utilizado
la microscopía electrónica de barrido.
Superfamilia TROCHACEA Rafinesque, 1815
Familia TROCHIDAE Rafinesque, 1815
Subfamilia LIRULARINAE Hickman y McLean, 1990
Género Lirularia Dall, 1909
Lirularia antoniae spec. nov. (Figs. 1A-B, 2 - 6)
Material estudiado: Isla de Sáo Tomé: Praia das conchas: 8 ejemplares y 16 conchas a -15 m;
Ciudad Sáo Tomé: 36 conchas. Isla de Príncipe: Bahía de Santo Antonio: 24 conchas a -10 my;
Bahía das Agulhas: 6 conchas.
Material tipo: Holotipo (Fig. 1B) y dos paratipos procedentes de la localidad tipo, depositados en
el Museo Nacional de Ciencias Naturales de Madrid, con el n* 15.05/23749, dos paratipos proce-
dentes de Praia das Conchas (Sáo Tomé) en el Muséum National d Histoire Naturelle de París, dos
paratipos procedentes de Ciudad de Sáo Tomé en el American Museum of Natural History de Nueva
York y en The Natural History Museum de Londres y 25 en cada una de las colecciones de los autores.
Localidad tipo: Praia das Conchas, Sáo Tomé.
Etimología: La especie está dedicada a Antonia Hueso, esposa del primer autor.
24
RUBIO Y ROLÁN: Nueva especie de Lirularia de Sáo “Tomé y Príncipe
UN
AN
Figura 1. Lirularia antoniae spec. nov. Holotipo. Praia das Conchas, Sáo Tomé. A: animal en movi-
miento. B: concha (MNCN). Escalas 1 mm.
Abreviaturas. o: ojo; op: opérculo; p: pie pd: proceso digitiforme sobre el extremo del morro; s:
sifón; tc: tentáculo cefálico; te: tentáculo epipodial.
Figure 1. Lirularia antoniae spec. nov. Holotype. Praia das Conchas, Sáo Tomé. A: crawling animal.
B: shell (MNCN). Scale bars 1 mm.
Abbreviations. o: eye; op: operculum; p: foot; pd: digitiform processes on the tip of'snout; s: siphon; tc: cep-
halic tentacle; te: epipodial tentacle.
Descripción: Concha sólida, bri-
llante, nacarada, de perfil cónico y
espira algo elevada, compuesta por
unas 5 vueltas convexas, que están sepa-
radas por una sutura ancha y acanalada.
Protoconcha (Fig. 5) con apenas una
vuelta de espira, lisa, con el núcleo de-
formado y de unas 200 ym. Ornamenta-
ción formada por cordones espirales y
costillas transversales muy numerosas,
que al entrecruzarse forman pequeños
nódulos; se observan, además, sutiles
líneas de crecimiento que se extienden
paralelas a las costillas. Última vuelta
con 10 cordones espirales, de los que el
primero, subsutural, y el décimo,
periumbilical, son los más prominentes
por ser nodulosos y angulan la concha.
Los restantes cordones son poco marca-
dos, sobre todo en la parte media de la
periferia, donde apenas son percepti-
bles. Las costillas transversales están
menos marcadas en la primera y última
vuelta de la teloconcha, aunque en ésta
última son numerosísimas; su curso es
prosoclino y atraviesan la totalidad de la
vuelta. Ombligo ancho y profundo, bor-
deado por el décimo cordón espiral; en
su interior se observan otros cuatro cor-
dones espirales más. Abertura subcircu-
lar, prosoclina; labio externo fino, angu-
lado por la presencia de los cordones
espirales; labio interno, ligeramente
arqueado, reflejado hacia el exterior,
pero sin llegar a ocluir el ombligo.
Coloración muy variable, de blanco-
amarillento a rosa pálido, con manchas
pardo rojizas o pardo oscuras y cierta
iridiscencia.
Respecto a sus dimensiones, el holo-
tipo (Fig. 1B) mide 1,78 mm de altura y
1,98 mm de anchura.
El animal (Fig. 1A) es de color blan-
quecino excepto el sifón y una franja de
color negro situada en la parte distal del
morro. La cabeza tiene un par de tentá-
culos cefálicos muy largos y con micro-
papilas, ojos negros situados sobre
cortos pedúnculos y carece de membra-
nas cefálicas. El morro está muy depri-
23)
Tberus, 15 (1), 1997
mido distalmente y sus extremos se pro-
longan transversalmente; hay un
proceso digitiforme con forma de peine
sobre su extremo. A cada lado de la
cabeza se observa un lóbulo cervical
modificado; el izquierdo, subdividido
en apéndices tentaculiformes y, el
derecho, que es plano, en el animal vivo,
se enrolla para formar una estructura
tubular con aspecto de sifón, moteado
con manchas negro-opacas y de un
tamaño similar a los tentáculos cefálicos.
Epipodio con cuatro pares de tentácu-
los, carentes de macropapilas sensoria-
les en su base, el primer par en posición
anterior y los tres pares restantes alrede-
dor del lóbulo opercular. El pie es muy
móvil, su extremo anterior es bilobulado
y se prolonga lateralmente y luego se
afila progresivamente hacia su extremo
posterior, para acabar en punta.
Rádula (Fig. 6) formula N. 4. 1. 4. N.
El diente central y los laterales son muy
similares y están reducidos a láminas
basales con una pequeña cúspide cada
uno. El diente central está cubierto en
parte por las láminas laterales más inter-
nas. Dientes marginales con cúspides
relativamente largas y anchas, con den-
tículos romos y aserrados.
Distribución: Sólo conocida del
archipiélago de Sáo Tomé y Príncipe
(Golfo de Guinea). No se han encon-
trado ejemplares de esta especie en
zonas continentales próximas al archi-
piélago, por lo que, probablemente, se
trata de un endemismo insular.
Hábitat: Especie infralitoral que vive
sobre fondos de arena en zonas de
aguas claras, entre -5 y -15 metros.
Discusión: Tanto la estructura plana,
enrollada en forma de sifón, como los
procesos digitiformes visibles a cada
lado de la cabeza en Lirularia antoniae, al
igual que en otras especies de África oc-
cidental (“Solariella” canaliculata y “Sola-
riella” dereimsi1) (Gofás com. pers.), son
probablemente lóbulos cervicales modi-
ficados, homólogos a los de otros Trocoi-
deos. Su función, para el lado inhalante,
se puede suponer que es la de actuar
26
como un filtro para evitar la entrada de
las partículas en la cavidad paleal. El ló-
bulo derecho tiene una función exha-
lante. Dichas estructuras surgen como
consecuencia de la adaptación de las es-
pecies de Solariellinae, Umboniinae y
Lirulariinae de África occidental a los
fondos blandos sobre los que habitan, a
diferencia de otros trocoideos (Clancu-
lus, Collonia, Gibbula, Tricolia, etc.) cuyo
hábitat está limitado a fondos rocosos.
Aspectos de esta adaptación coinciden-
tes con estas características anatómicas
pueden verse en FRETTER (1975) y HICk-
MAN (1985).
Siguiendo la clasificación de la fami-
lia Trochidae propuesta por HICKMAN Y
MCLEAN (1990), y atendiendo a los ca-
racteres morfológicos y radulares que
diferencian las tres subfamilias que per-
tenecen al grupo informal Halistylinae +
Umboniinae + Lirulariinae, hemos si-
tuado la nueva especie en la subfamilia
Lirulariinae, género Lirularia. Las espe-
cies “Solariella” canaliculata (Fig. 7) y
“Solariella” dereimsil (Figs. 8-9) son con-
genéricas entre sí, y se diferencian ana-
tómicamente de Lirularia antontae tan
solo por la distribución de las papillas
del morro; sin embargo, comparten ca-
racteres comunes como:
e protoconchas de pequeño tamaño,
no superior a 200 um, con el núcleo
deformado;
e ombligo amplio, no ocluido ni
total ni parcialmente;
e radulas similares, muy parecidas a
su vez a las de Umbonium;
e lóbulo cervical izquierdo subdivi-
dido en un proceso tentaculiforme y
lóbulo cervical derecho plano, enrollado
para formar una especie de sifón.
Todo esto nos hace considerarlas
pertenecientes a la subfamilia Lirularii-
nae, género Lirularia, en lugar de Sola-
riellinae o Umboniinae.
Eirularia antoniae, L. canaliculata y L.
dereímsii, se diferencian de las especies
pertenecientes a Solariellinae por tener
protoconcha pequeña con el núcleo de-
formado, la rádula con su zona central
simplificada, el diente central y los dien-
RUBIO Y ROLÁN: Nueva especie de Lirularia de Sao “Tomé y Príncipe
Figuras 2-6. Lirularia antoniae spec. nov., Praia das Conchas, Sáo Tomé. 2: individuo juvenil, vista
apical (col. E Rubio); 3: individuo juvenil, vista dorsal; 4: paratipo (col. E. Rubio); 5: protoconcha;
6: rádula. Escalas, 2-4: 0,5 mm; 5: 100 um; 6: 12 pm.
Figures 2-6. Lirularia antoniae spec. nov., Praia das Conchas, Sáo Tomé. 2: young specimen, apical view
(E Rubio coll.). 3: young specimen, dorsal view. 4: paratype (E Rubio coll.); 5: protoconch; 6: radula.
Scale bars, 2-4: 0,5 mm; 5: 100 ym; 6: 12 um.
27
Iberus, 15 (1), 1997
Figuras 7-9. Animal de otras especies de Lirularia de Africa. 7: L. dereimsiz (tomado de GOFAS,
PINTO AFONSO Y BRANDAO, 1985); 8-9: L. canaliculata (dibujo de S. Gofas).
Figures 7-9. Animal of other species of Lirularia from Africa. 7: L. dereimsii (after GOFAS, PINTO
AÁFONSO AND BRANDAO, 1985); 8-9: L. canaliculata (drawing from S. Gofas).
tes laterales reducidos, los tentáculos epi-
podiales carentes de macropapilas senso-
riales en su base y las papilas situadas en
el extremo anterior del morro y no alre-
dedor del disco oral. De las especies per-
28
tenecientes a Umboniinae, tribu Um-
boniini se diferencian porque estas últi-
mas poseen tentáculos cefálicos dimórfi-
cos y el lóbulo cervical izquierdo en-
vuelve el tentáculo cefálico izquierdo y
RUBIO Y ROLÁN: Nueva especie de Lirularia de Sao Tomé y Príncipe
pedúnculo ocular. De las especies perte-
necientes a la tribu Monileini se diferen-
cian porque presentan un ombligo cerrado,
total o parcialmente, por un callo; por po-
seer pedúnculos oculares prominentes,
AGRADECIMIENTOS
Al Servicio de Microscopía Electró-
nica de la Universidad de Valencia, por la
ayuda prestada en la realización de foto-
grafías al Microscopio Electrónico de Ba-
rrido. A Francisco Fernandes por su cola-
BIBLIOGRAFÍA
BERNARD, P. A., 1984. Coquillages du Gabon. Li-
breville. 140 pp., 75 láms.
FERNANDES, F. Y ROLÁN, E., 1993. Moluscos ma-
rinos de Sao Tomé y Principe: actualización
bibliográfica y nuevas aportaciones. Iberus,
11 (1): 31-47.
FRETTER, V., 1975. Umbonium vestiatium, a filter-
feeding trochid. Journal of Conchology, 177:
541-552.
GOFAS, S., PINTO AFONSO, J. Y BRANDAO, M.,
1985. Conchas e moluscos de Angola. Universi-
dad de Agostinho Neto / Elf Aquitaine. An-
gola. 139 pp.
HERBERT, D. G., 1987. Revision of the Solarie-
llinae (Mollusca: Prosobranchia: Trochidae)
in South Africa. Annals of the Natal Museum,
28: 283-382.
HICKMAN, C. S., 1985. Comparative morphology
and ecology of free living suspension-fee-
ding gastropods from Hong Kong. En Mor-
ton, B. y Dudgeon D. (Eds.): Proceedings of the
second International Workshop on the Malaco-
fauna of Hong kong and Southern China, Hong
kong University Press.: 217-234.
con anchos ojos y bases desarrolladas; y
porque su lóbulo cervical izquierdo (in-
halante) está subdividido terminalmente
en un proceso tentaculiforme dimórfico,
orientado regular y alternativamente.
boración en las expediciones a Sáo Tomé
y Príncipe. A Serge Gofas por la lectura
crítica del manuscrito, por su informa-
ción y aportación de dibujos, y por sus
sugerencias.
HICKMAN, C. S. Y MCLEAN, J. H., 1990. Syste-
matic revision and suprageneric classification of
trochacean gastropods. Natural History Mu-
seum of Los Angeles County, Science Se-
ries, 35. 169 pp.
NICKLÉS, M., 1950. Mollusques testacés marins de
la cóte occidentale d'Afrique. Lechevalier, Pa-
ris, 269 pp., 434 figs.
SmITH, E. A., 1871. A list of species of shells from
West Africa, with descriptions of those hit-
herto undescribed. Proceedings of the Zoological
Society of London, 1871: 727-739.
WARÉN, A. S., 1993. New and little know Mo-
llusca from Iceland and Scandinavia. Part 2.
Sarsia, 78: 159-201.
2D,
pe
AS 2 AA
a) yr turn hala E
Acaban ii Ñd
óí
a 8d besa
bl hos pe ep ienecion tes
TS ropnpilaa Je Era Al
E e bl .
O Sociedad Española de Malacología
Iberus, 15 (1): 31-34, 1997
Una nueva especie de Anticlimax (Gastropoda: Vitrinelli-
dae) de Cuba
A new species of Anticlimax (Gastropoda: Vitrinellidae) from Cuba
Emilio ROLÁN” Raúl FERNÁNDEZ-GARCÉS” y Federico RUBIO”
Recibido el 18-111-1996. Aceptado el 8-X-1996
RESUMEN
Se describe una nueva especie del género Anticlimax (Gastropoda: Vitrinellidae). Se dis-
cute su asignación genérica y se compara con las especies más próximas.
ABSTRACT
A new species of the genus Anticlimax (Gastropoda: Vitrinellidae) is described. lts generic
assignment is discussed and a comparison is made with allied species.
PALABRAS CLAVE: Gastropoda, Vitrinellidae, Anticlimax, especie nueva, Cuba.
KEY WORDS: Gastropoda, Vitrinellidae, Anticlimax, new species, Cuba.
INTRODUCCIÓN
DALL (1903) menciona por primera
vez el subgénero Climacia en la descrip-
ción de Teinostoma (Climacia) calliglyp-
tum, sin hacer descripción alguna de las
características del subgénero ni de las de
la especie típica, siendo ambos definidos
por figuras (PILSBRY Y MCGINTY, 1946a).
PILSBRY Y MCGINTY (1946a) dan a
Climacia categoría genérica y describen y
comentan las características de T.
calliglyptum como las de la especie típica
(por monotipia); al tiempo describen
varias especies nuevas que incluyen en
Climacia.
AGUAYO Y BORRO (1946) sustituyen
por Climacina el previamente ocupado
nombre genérico de Climacia Dall, 1903
non M'Lachlan, 1869 (Neuroptera). Poco
" Cánovas del Castillo 22, 36202 Vigo, España.
“Calle 41, 6607, Cienfuegos 55100, Cuba.
tiempo después, PiLsBRY Y MCGINTY
(1946b) sustituyen Climacina Aguayo y
Borro, 1946 non Gemmellaro, 1878
(Mollusca), por un nuevo nombre: Anti-
climax.
PILSBRY Y OLSSON (1950) hacen una
revisión del género describiendo
algunas especies nuevas del Terciario
americano, y lo subdividen en dos sub-
géneros Anticlimax y Subclimax subgen.
nov.
En el material recolectado en Cuba
durante los muestreos realizados por los
dos primeros autores en los últimos
años, se han encontrado conchas de una
especie que parece pertenecer a este
género, y que es descrita en el presente
trabajo.
Departamento de Zoología, Universidad de Valencia, Dr. Moliner 50, 41600 Burjasot, España.
31
Iberus, 15 (1), 1997
RESULTADOS
Género Anticlimax Pilsbry y McGinty, 1946
Especie tipo, por monotipia: Teinostoma (Climacia) calliglyptum Dall, 1903
Anticlimax decorata spec. nov.
Material tipo: Holotipo, de Rancho Luna, Cienfuegos, Cuba (Fig. 2), con 1,3 mm de dimensión
máxima, Museo Nacional de Ciencias Naturales de Madrid n* 15.05/27420. De la misma locali-
dad, un paratipo en las colecciones del American Museum of Natural History de Nueva York
(Fig. 1) y The Natural History Museum de Londres y dos en la de R. Fernández Garcés. Zona del
Hotel Comodoro, La Habana, Cuba: un paratipo en la colección del Instituto de Ecología y Siste-
mática de La Habana. Jibacoa, Distrito de La Habana, Cuba: un paratipo en la colección de F.
Rubio y otro en la de E. Rolán.
Localidad tipo: Rancho Luna, Cienfuegos, Cuba.
Etimología: El nombre específico deriva de su elaborada escultura.
Descripción: Concha (Figs. 1 y 2)
discoidal algo ovalada, aplanada en la
base y con el ápice apenas saliente,
espira con elevación uniforme, suave-
mente convexa y no muy pronunciada.
Color blanquecino.
Protoconcha lisa con 1*/4 vueltas de
espira. Termina bruscamente y de forma
bien delimitada con la teloconcha.
Teloconcha formada por 1*/4 vuel-
tas. La microescultura es compleja: al
final de la última vuelta hay tres cordo-
nes espirales en posición subsutural, de
los cuales, los dos primeros se inician de
forma progresiva, mientras el tercero se
origina por una división del segundo. El
resto de la superficie presenta surcos
bastante uniformes constituidos, al prin-
cipio, por perforaciones y, posterior-
mente, por hundimientos de forma más
alargada. Esta escultura desaparece casi
por completo en el último cuarto de
vuelta de forma muy constante. Hacia la
parte inferior de la última vuelta la
concha se angula y se hace prominente
por medio de un grueso cordón que
sobresale del perfil de la concha a modo
de quilla y sobre el cual aparecen varios
cordoncillos en zigzag. Este cordón,
visto desde la parte superior de la
concha, es más visible por un lado que
por el otro, lo que aumenta el perfil
ovoide de la concha. La parte de la
última vuelta que está por debajo de la
angulación apenas sobrepasa al cordón
SZ
periférico y es cóncava en la proximidad
del mismo. En su parte central hay un
ombligo profundo. Toda la base pre-
senta cordoncillos espirales; los que
bordean el ombligo son gruesos y zigza-
gueantes, y lo mismo ocurre con los que
se sitúan sobre la quilla, siendo los res-
tantes algo más finos y uniformes.
Abertura circular, con borde fino,
engrosado en su parte externa por el
final del cordón espiral sobresaliente.
El animal es desconocido.
Discusión: La especie ahora descrita
es incluida en el género Anticlimax como
una aproximación, ya que presenta
algunas diferencias con la especie tipo.
Estas diferencias son, principalmente, la
carencia de escultura axial en la base y
la ausencia de una prolongación de la
abertura en la finalización del cordón
espiral. Sin embargo, la subespecie A.
tholus prodromus Pilsbry y Olsson, 1950,
apenas presenta escultura axial en la
base y también carece de la prolonga-
ción de la abertura, habiendo sido no
obstante incluida en este género. A. deco-
rata spec. nov., además de parecerse a
esta última especie, tiene muchas de sus
características coincidentes con especies
que han sido consideradas pertene-
cientes al género Anticlimax, como la
base aplanada o cóncava, el cordón peri-
férico, la superficie convexa por encima
del mismo, la existencia de cordones en
ROLÁN E7 4£.: Una nueva especie de Anticlimax de Cuba
Figuras 1, 2. Anticlimax decorata spec. nov. 1: paratipo, Rancho Luna, Cienfuegos, Cuba, American
Museum of Natural History de Nueva York; 2: holotipo, Rancho Luna, Cienfuegos, Cuba, Museo
Nacional de Ciencias Naturales de Madrid. Escala 0,5 mm.
Figures 1, 2. Anticlimax decorata 2. sp. 1: paratype, Rancho Luna, Cienfuegos, Cuba, American
Museum of Natural History New York; 2: holotype, Rancho Luna, Cienfuegos, Cuba, Museo Nacional
de Ciencias Naturales, Madrid. Scale bar 0.5 mm.
el dorso formados por perforaciones, y
los cordones en zigzag de la base.
Su parecido con A. athleenae (Pilsbry
y McGinty, 1946) es bastante notable,
aunque esta especie se diferencia de A.
decorata porque presenta ondulaciones
en la base, y carece, tanto en la base
como en el cordón periférico, de cordon-
cillos en zigzag. Tambien con A. tholus
(Pilsbry y McGinty, 1946) tiene un cierto”
parecido, pero el ombligo de esta última
está ocluido por un fuerte callo.
Las restantes especies incluidas en
este género, o tienen escultura axial, o el
33
Iberus, 15 (1), 1997
ombligo está ocluido por un callo, o
tienen una prolongación triangular en la
abertura como continuación de la quilla
periférica, por lo que son claramente
diferentes de A. decorata.
Según ESPINOSA, FERNÁNDEZ-GAR-
CÉs Y ROLÁN (1995), para la fauna de
Cuba, únicamente era conocida una
especie en el género Anticlimax: A. pro-
boscidea (Aguayo, 1949), la cual es más
elevada y tiene una gran prolongación
de la abertura.
La principal diferencia entre los dos
subgéneros, Anticlimax y Subclimax, en
los que PILSBRY Y OLSSON (1950) dividie-
ron las especies del género Anticlimax es
que, en el primero, el ombligo es evi-
dente mientras que, en el segundo,
existe un callo columelar que cubre par-
AGRADECIMIENTOS
A Bernardo Fernández Souto del
Servicio General de Apoyo a la Inves-
tigación de la Universidad de A Co-
BIBLIOGRAFÍA
AGUAYO, C. G. Y BORRO, P., 1946. Nuevos mo-
luscos del Terciario superior de Cuba. Revista
de la Sociedad Malacológica “Carlos de la Torre”,
4 (1): 9-12, 1 lám.
DaLL, W. H., 1903. Two new mollusks from
the West Coast of America. The Nautilus, 17
(4): 37-38.
ESPINOSA, J., FERNÁNDEZ GARCÉS, R. Y ROLÁN,
E., 1995. Catálogo actualizado de los molus-
cos marinos de Cuba. Reseñas Malacológicas,
9: 1-90.
34
cial o totalmente el ombligo. Estos
autores mencionan que no conocen
especies de estructura intermedia entre
ambos subgéneros. Anticlimax decorata,
por su ombligo abierto y carencia de
callo columelar, no estaría incluida en el
subgénero Subclimax; pero por la caren-
cia de cualquier tipo de prolongación
triangular en la abertura, tampoco pre-
sentaría perfectamente las características
del subgénero Anticlimax. Por tanto,
Anticlimax decorata representa una forma
intermedia entre ambos subgéneros.
En cualquier caso, en ausencia de
información sobre las partes blandas, es
preferible no asumir su posición taxonó-
mica genérica más que como probable y
no hacer uso de asignación subgenérica
alguna.
ruña, por la realización de las fotogra-
fías en el microscopio electrónico de
barrido.
PiLsBRY, H. A. Y MCGINTY, T. L., 1946a. “Cy-
clostrematidae” and Vitrinellidae of Flo-
rida and Bahamas, III. The Nautilus, 59: 77-
83, pl. 8.
PiLSBRY, H. A. Y MCGINTY, T. L., 1946b. Vitri-
nellidae of Florida, part. 4. The Nautilus, 60
(1) 12-18.
PiLsBRY, H. A. Y OLSSON, A. A., 1950. Review
of Anticlimax, with new tertiary species (Gas-
tropoda, Vitrinellidae). Bulletin of American Pa-
leontology, 33 (135): 105-116, lám. 17-20.
O Sociedad Española de Malacología
Iberus, 15 (1): 35-40, 1997
La familia Pyramidellidae Gray, 1840 (Mollusca, Gastro-
poda) en África occidental. 1. El género Sayella Dall, 1885
The family Pyramidellidae Gray, 1840 (Mollusca, Castiopodaa in
West Africa. 1. The genus Sayella Dall, 1885
Anselmo PEÑAS* y Emilio ROLÁN**
Recibido el 8-VIIL-1996. Aceptado el 8-X-1996
RESUMEN
Se describen dos especies nuevas del género Sayella Dall, 1885 de África Occidental,
una de ellas encontrada en los Archipiélagos de Cabo Verde y de Sáo Tomé y Príncipe, y
otra, sólo en el segundo de ellos.
ABSTRACT
Two new species of the genus Sayella Dall, 1885 from West Africa are described; one of
them found in the archipelagos of Cape Verde, and Sáo Tomé and Principe, the other one
only in the latter.
PALABRAS CLAVE: Pyramidellidae, Sayella, África occidental, especies nuevas.
KEY WORDS: Pyramidellidae, Sayella, West Africa, new species.
INTRODUCCIÓN
Después de realizada la revisión de
los piramidélidos del Mediterráneo
ibérico (PEÑAS, TEMPLADO Y MARTINEZ,
1996) y animados por los recientes tra-
bajos de NOFRONI Y SCHANDER (1994) y
SCHANDER (1994), en los que se descri-
ben 31 especies nuevas de este grupo en
África occidental, unido a la gran canti-
dad de material que poseemos, nos
decidió a abordar el estudio de esta
familia en las costas atlánticas africanas.
Comenzamos esta revisión con el género
Sayella Dall, 1885, hasta ahora no men-
cionado en el área geográfica de estudio,
y continuaremos de forma inmediata
con la de los géneros Turbonilla, Eulime-
lla, Chrysallida y otros.
El género Sayella fue descrito por
DaLL (1885) para una especie fósil del
Mioceno y bajo Plioceno de Louisiana.
Inicialmente, la especie tipo, Leuconia
hemphillii Dall, 1884, fue incluida por su
autor en la familia Ellobiidae (Pulmo-
nata). Sayella no aparece mencionado en
las revisiones genéricas de THIELE (1931-
35) o de WENZ (1938). La posición de
este género y sus relaciones con otros
Pyramidellidae son discutidas por ODE
(1994), que comenta sus diferencias con
Odostomia y la dificultad para la separa-
ción de especies, revisando también los
taxones del Atlántico occidental. Las
características del género son referidas
por ABBOTT (1974) como “concha pu-
* Carrer Olérdola, 39; 08800 Vilanova i la Geltrú. Barcelona.
** Cánovas del Castillo, 22; 36202 Vigo.
39
ber ISO
poide-alargada, frágil, lisa, con vueltas
convexas. Animal con tentáculos apla-
nados, triangulares. Periostraco amari-
llento”. Se ha señalado en aguas
someras y fondos fangosos (ABBOTT,
1974).
Recientemente, WISE (1996), basán-
dose en datos anatómicos, crea la subfa-
milia Sayellinae para incluir a las espe-
cies de este género. Asimismo, describe
para la especie S. crosseana (Dall, 1885)
un nuevo género, Petitiella, por sus dife-
rencias anatómicas, al que también
incluye en esta subfamilia.
En el presente trabajo abordamos la
descripción de dos especies que consi-
deramos nuevas y que asignamos provi-
sionalmente a Sayella, pués carecemos
de los datos anatómicos necesarios para
confirmar su pertenencia a este género.
Dado el escaso número de vueltas de su
protoconcha, cabe pensar que estas
especies carecen de un desarrollo larva-
rio plantotrófico, y que, por tanto, es
poco probable una relación estrecha con
especies del Atlántico occidental. Dicho
género no ha sido mencionado con
RESULTADOS
anterioridad en las costas occidentales
de África.
MATERIAL Y MÉTODOS
El material estudiado en el presente
trabajo procede de las expediciones efec-
tuadas por el segundo de los autores al
archipiélago de Cabo Verde entre los
años 1978 y 1988, y a Sáo Tomé y Prín-
cipe en los años 1989 y 1990. Dicho
material fue separado de los detritos
recogidos mediante buceo y dragado.
Abreviaturas empleadas:
AMNH: American Museum of Natural
History, New York
BMNH: The Natural History Museum,
Londres
CER: Colección de E. Rolán
CPM: Colección de P. Micali
MNCN: Museo Nacional de Ciencias
Naturales, Madrid
MNHN: Museum National d'Histoire
Naturelle, Paris
Familia PYRAMIDELLIDAE Gray, 1840
Subfamilia SAYELLINAE Wise, 1996
Género Sayella Dall, 1885
Las características del género Sayella
son: concha pequeña, pupoide alargada,
vueltas lisas, sutura poco profunda,
bandas espirales de color, protoconcha
corta con núcleo oculto, y periostraco
acastañado.
Sayella micalii spec. nov. (Figs 1-5)
Material tipo: Holotipo (Fig. 1) de 2,86 x 1,35 mm depositado en MNCN (n* 15.05/23757) y 1
paratipo, ambos de la Bahía de Santo Antonio, Príncipe, República de Sáo Tomé y Príncipe.
Otros paratipos en las siguientes colecciones: MNHN, 1 concha y dos juveniles de Bahía das
Agulhas, Príncipe; BMNH, 1 concha, y AMNH, 1 concha, ambas a -10 m, de Regona, Isla de Sal,
Archipiélago de Cabo Verde; CPM, 1 concha, -8 m, de Furna, Isla de Brava, Archipiélago de
Cabo Verde; CER, 1 concha, -2 m, de la ciudad de Sáo Tomé, República de Sao Tomé y Príncipe y
otra, -10 m, de Furna, Isla de Brava, Cabo Verde.
Localidad tipo: Bahía de Santo Antonio, en la isla de Príncipe, Archipiélago de Sáo Tomé y Prín-
cipe.
Etimología: El nombre específico está dedicado al malacólogo Pasquale Micali, experto en Pyra-
midellidae del Mediterráneo, por su habitual cooperación en el estudio de estos moluscos.
36
PEÑAS Y ROLÁN : El género Sayella (Pyramidellidae) en África occidental
Figuras 1-4. Sayella micalii spec. nov. 1: holotipo (MNCN), Bahía de Santo Antonio, Príncipe, Archi-
piélago de Sáo Tomé y Príncipe; 2, 3: protoconcha; 4: detalle de la columela y de la microescultura.
Figures 1-4. Sayella micalii 2. sp. 1: holotype (MNCN), Santo Antonio Bay, Principe, Archipelago of
Sáo Tomé and Principe; 2, 3: protoconch; 4: detail of the columela and microesculpture.
Descripción: Concha (Figs. 1 y 5)
oval-cónica, muy frágil.
Protoconcha (Figs. 2 y 3) obtusa,
muy grande, de tipo B (según Aartsen,
1981), con un diámetro de 490 yum. Eje
con un ángulo de unos 100” en relación
al de la teloconcha, y núcleo parcial-
mente oculto. Coloración castaña clara.
Teloconcha con vueltas convexas, algo
escalonadas, que crecen deprisa; la última
vuelta es muy grande, representando un
60% del total de su altura. Sutura pro-
funda con una débil repisa subsutural.
Vueltas de espira lisas, excepto débiles
líneas de crecimiento ligeramente proso-
clinas y estrías microscópicas espirales,
más visibles en la zona umbilical (Fig. 4).
Abertura grande, oval alargada, con
un labio externo simple, cortante. Colu-
mela ligeramente arqueada, delgada, pero
muy replegada hacia la zona umbilical;
tiene dos dientes, el mayor muy saliente
37
Iberus, 15 (1), 1997
y situado en la parte superior de la colu-
mela; el segundo en la parte central, en
forma de cordoncillo oblícuo. Fisura umbi-
lical profunda. Color vítreo, semitranspa-
rente, con una banda suprasutural castaña
y otra en la base de la última vuelta, en la
que también se aprecia otra banda subsu-
tural (Fig. 5). Periostraco amarillento.
Distribución: Conocida únicamente
de los Archipiélagos de Cabo Verde y
Sáo Tomé y Príncipe.
Hábitat: En sedimentos de arena y
fango, entre 4 y 10 m de profundidad.
Discusión: No hay ninguna especie
similar a Sayella micalíí spec. nov. en el
Mediterráneo ni en las costas de África
occidental. Todas las especies del Caribe
asignadas a este género (ver ABBOTT,
1974) son diferentes porque tienen más
vueltas de teleoconcha, con un incre-
mento más lento de la espira y una
forma más lanceolada que cónica.
Sayella mercedordae spec. nov. (Figs. 6-8)
Material tipo: Holotipo (Fig. 7) de 2,10 x 0,90 mm depositado en MNCN (n* 15.05/23758); 1
paratipo (Fig. 6) de Rife de Chaves, Boavista, en CER.
Localidad tipo: Bahía de Mordeira, en la isla de Sal, Archipiélago de Cabo Verde.
Etimología: El nombre específico está dedicado a Mercedes Dorda, esposa del malacólogo
Esteban Calderón, por su colaboración a lo largo de toda su vida en la creación y mantenimiento
de su colección.
Descripción: Concha (Figs. 6 y 7)
oval-cónica, pequeña, y frágil.
Protoconcha (Figs. 8) pequeña, de
tipo B, tendente a € (de acuerdo con
AARTSEN, 1981). Su eje forma un ángulo
de unos 100% en relación al de la telocon- :
cha. Núcleo oculto.
Teloconcha con vueltas convexas,
que crecen deprisa en altura y anchura.
La última vuelta es muy grande, repre-
sentando un 70% del total de la altura
de la concha. Sutura muy marcada, algo
profunda. Vueltas de espira lisas, excep-
tuando líneas de crecimiento ligera-
mente prosoclinas y estrías microscópi-
cas espirales en la base.
Abertura oval-piriforme, estrechada
hacia arriba. Columela opistoclina, algo
arqueada, sin un diente claro, pero con
un pliegue columelar en su parte cen-
tral. No hay ombligo. Color blanquecino
con dos estrechas bandas de color pardo
por vuelta, y otra más, del mismo color,
próxima a la zona columelar (Fig. 8).
AGRADECIMIENTOS
A José Bedoya por las fotografías al
MEB realizadas en el MNCN de Madrid.
38
Distribución: Conocida únicamente
del Archipiélago de Cabo Verde.
Hábitat: Fondos arenosos entre 3 y 5
metros de profundidad, con zonas de
fango próximas.
Discusión: Sayella micalii spec. nov.,
es mucho grande, ancha, con forma más
piramidal y con protoconcha mucho
más gruesa.
Las especies del Caribe son todas de
mayor tamaño; Sayella fusca (C. B.
Adams, 1839) tiene la sutura menos pro-
funda y una banda clara subsutural; S.
livida Rehder, 1935, tiene también una
banda clara subsutural y un mayor
número de vueltas de espira; S. crosseana
(Dall, 1885) es mucho más alargada y
proporcionalmente más estrecha; S.
hemphilli (Dall, 1889) y S. chesapeakea
Morrison, 1939, tienen la sutura apenas
marcada y un número mayor de vueltas
de espira.
A Pasquale Micali por la lectura crítica del
manuscrito.
PEÑAS Y ROLÁN : El género Sayella (Pyramidellidae) en África occidental
Figura 5. Sayella micalii spec. nov. Dibujo del paratipo (CER) mostrando la distribución de las ban-
das de color. Figuras 6-8. S. mercedordae spec. nov. 6: dibujo de un paratipo (CER) mostrando la
distribución de las bandas de color; 7: holotipo (MNCN), Bahía de Mordeira, Isla de Sal,
Archipiélago de Cabo Verde; 8: protoconcha.
Figure 5. Sayella micalii 2. sp. Drawing of paratype (CER) showing the distribution of the colour bands.
Figures 6-8. S. mercedordae 7. sp. 6: drawing of a paratype (CER) showing the distribution of the colour
bands; 7: holotype (MNCN), Mordeira Bay, Sal Island, Archipelago of Cape Verde; 8: protoconch.
BIBLIOGRAFÍA
AARTSEN, J. J. VAN, 1981. European Pyramide-
llidae: HU. Turbonilla. Bollettino Malacologico, 17
(5-6): 61-88.
ABBOTT, R. T., 1974. American seashells. Van Nos-
trand Reinhold Co. New York. 663 pp., 24
láms.
NOFRONI, I. Y SCHANDER, C., 1994. Description
of three new species of Pyramidellidae (Gas-
tropoda, Heterobranchia) from West Africa.
Notiziario CISMA, 15: 1-10.
ODE, H., 1994. Monograph. Distribution and Re-
cords of the marine Mollusca in the Northwest
Gulf of Mexico. Texas Conchologist, 31 (1): 9-32.
39
Iberus, 15 (1), 1997
Prxas, A., TEMPLADO, J. Y MARTINEZ, J. L., 1996.
Contribución al conocimiento de los Pyra-
midelloidea (Gastropoda: Heterostropha)
del Mediterráneo español. Iberus, 14 (1): 1-82.
SCHANDER, C., 1994. Twenty-eight new species
of Pyramidellidae (Gastropoda, Hetero-
branchia) from West Africa. Notiziario CISMA,
17: 11-78.
THIELE, J., 1931-35. Handbook of systematic mala-
cology. Gustav Fischer. 189 pp.
40
VAUGHT, K. C., 1989. A classification of the living
Mollusca. American malacologists. Mel-
bourne, Florida. 189 pp.
WENZ, W., 1938. Handbuch der Paláozoologie.
Von Gebrúder Borntraeger. Berlin. 1638 pp.
WISE, J. B., 1996. Morphology and philogene-
tic relationship of certain pyramidelid taxa
(Heterobranchia). Malacologia, 37(2): 443-551.
O Sociedad Española de Malacología —_—_—_—_—_—— Iberus, 15 (1): 41-93, 1997
Fauna malacológica del litoral del Garraf (NE de la Penín-
sula Ibérica)
Malacological marine fauna from Garraf coast (NE Iberian Penin-
sula)
Gonzalo GIRIBET* y Anselmo PEÑAS**
Recibido el 22-VII-1996. Aceptado el 11-X-1996
RESUMEN
Se presenta una lista de 622 especies de moluscos marinos (7 Poliplacóforos, 417 Gaste-
rópodos, 190 Bivalvos y 8 Escafópodos) recolectados en el litoral del Garraf (Barcelona,
NE de la Península Ibérica). De estas especies, 53 se citan por primera vez en el Medite-
rráneo español, siendo dos de ellas primera cita para todo el Mediterráneo, Trophon bar-
vicensis y Pleurotomella coeloraphe. De particular interés ha resultado el estudio de un
nuevo yacimiento de sedimentos Wúrmienses, asociado a una biocenosis de corales blan-
cos, entre 250 y 350 m de profundidad, y el análisis del contenido gástrico de unos tres
mil ejemplares de estrellas de mar del género Astropecten, recolectadas entre 40 y 350 m
de profundidad. Se incluyen, asimismo, comentarios sobre algunos de los taxones mencio-
nados y se ilustran al MEB muchos de ellos, con especial atención a los de las familias
Cerithiopsidae, Turridae de profundidad, Yoldiidae y Thyasiridae.
ABSTRACT
We report a checklist of 622 marine molluses (7 Poliplacophors, 417 Gastropods, 190
Bivalves and 8 Scaphopods) from “El Garraf” coast (Barcelona, NE Iberian Penninsula).
From these species, 53 are new findings for the Spanish Mediterranean, and two of them,
Trophon barvicensis and Pleurotomella coeloraphe, are reported for the first time for the
whole Mediterranean. A new Wúrm bed associated with a white coral biocenosis has
been found off Vallcarca at depths between 250 and 350 m, and is described here. Data
about molluscs identified from the gut contents of about 3000 specimens of Astropecten
sea stars found between 40 and 350 m depth are also reported. Also, we include com-
ments about some of the listed taxa and a special SEM image collections, particularly of
such groups as Cerithiopsidae, deep-sea Turridae, Yoldiidae and Thyasiridae.
PALABRAS CLAVE: Moluscos marinos, Garraf, NE Península Ibérica, Mar Mediterráneo, tanatocenosis
Wiiúrmiense, biocenosis de coral blanco, contenidos estomacales de Astropecten.
KEY WORDS: Marine molluscs, Garraf, NE Iberian Penninsula, Mediterranean Sea, Wiirm tanatocenosis,
white coral biocenosis, Astropecten gut contents.
* Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08071
Barcelona.
** Carrer Olérdola 39, 08800 Vilanova i la Geltrú, Barcelona.
41
Iberus, 15 (1), 1997
INTRODUCCIÓN
El presente trabajo trata sobre los
moluscos marinos (exceptuando la
Clase Cephalopoda) que se han encon-
trado en el litoral de la comarca del
Garraf (Barcelona) durante más de una
década de recolección y estudio de
material. Aunque, aparentemente, la
región objeto de estudio no presente
ninguna particularidad biogeográfica o
física que la delimite desde un punto de
vista biológico, la consideramos de
especial interés, puesto que en un área
relativamente pequeña se encuentran
representados buena parte de los ecosis-
temas marinos del Mediterráneo. Ésto se
refleja en la gran diversidad de especies
encontrada en esta zona. Otro factor
importante que determina la riqueza
faunística del Garraf es la existencia de
diferentes tipos de fondos, con numero-
sos cañones submarinos, por lo que a
sólo 14 km del puerto principal (Vila-
nova i la Geltrú) se alcanzan profundi-
dades de unos 530 m, mientras que en
otras zonas próximas la distancia se tri-
plica para llegar a profundidades seme-
jantes.
Varios autores han estudiado la
fauna malacológica marina de esta
comarca (SAMA, 1916; HIDALGO, 1917;
VILELLA, 1968; Ros, 1975; BALLESTEROS
1977, 1978 Y 1984; ASENSI, 1984), que ha
ofrecido una gran riqueza en cuanto a
número de especies, pero en ninguno de
los casos anteriores se habían muestre-
ado todos los hábitats encontrados en
este litoral, o al menos no se había hecho
de una forma tan extensiva. Ya HIDALGO
(1917) citaba para la zona de estudio 307
especies de moluscos (191 Gasterópo-
dos, 108 Bivalvos, 4 Escafópodos y 1
Cefalópodo), y SAMA (1916) citaba 319
especies y 81 variedades.
ZONA DE ESTUDIO
El Garraf es una pequeña comarca
litoral situada al sur de Barcelona (Fig.
1), en cuyo interior se encuentra el
Parque Natural del Garraf. Los aproxi-
madamente 25 km de costa que presenta
42
esta comarca, están comprendidos entre
la desembocadura del río Foix (41* 12'
N, 1* 40” E) y punta Ginesta (41* 16' N,
1” 57' E). Tres son los municipios litora-
les que se encuentran: Sitges, Vilanova i
la Geltrú, y Cubelles, incluyendo el
primero de ellos las pedanías de Garraf
y Vallcarca. La existencia del importante
puerto pesquero de Vilanova i la Geltrú,
así como la colaboración de algunos de
los pescadores de su cofradía, han sido
factores decisivos para proporcionarnos
gran parte del material en el que está
basado este estudio.
Las playas de arena fina con pen-
dientes poco pronunciadas son domi-
nantes en la zona, aunque antes de la
construcción generalizada de espigones,
había algunas calas de arenas gruesas
con pendientes más pronunciadas,
como Cala Morisca (en Vallcarca) o
Aiguadolc (en Sitges). Los fondos de
arena fina son el hábitat típico de
algunos Nassariidae, Naticidae y varios
bivalvos, sobre todo de las especies de
aguas someras de las familias Tellinidae,
Pharidae, Donacidae, Veneridae, Mactri-
dae, Pandoridae y Thraciidae. También
se encuentran gran cantidad de escolle-
ras O espigones, que están proliferando
por toda la zona, tanto para la creación
de puertos deportivos, como para
formar playas artificiales.
Además son importantes las paredes
rocosas de los acantilados calcáreos
típicos del macizo del Garraf, que
emergen casi verticalmente de fondos
arenosos desde profundidades com-
prendidas entre 0, 5 y 4 m. Estas rocas
son poco ricas desde el punto de vista
malacológico, aunque presentan
grandes bancos de Mytilus galloprovin-
cialis (Linnaeus, 1758), y pueden llegar a
abundar especies como Thais haemastoma
(Linnaeus, 1767) y, sobre todo por
encima de la línea de marea, algunas
especies de los géneros Patella, Gibbula o
Littorina.
La desembocadura de algunas rieras
de cauce intermitente son muy intere-
santes desde el punto de vista faunís-
tico. Este es el caso de la riera de Vila-
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
41%30'
410
030' 12
Figura 1. Mapa de la zona estudiada.
Figure 1. Map of studied area.
franca, que desemboca al sur de Sitges,
y especialmente la desembocadura del
río Foix en Cubelles. Esta última zona
está formada por una base de arena fina,
casi fangosa, rica en sedimentos orgáni-
cos, cubierta casi completamente por
cantos rodados y piedras aportadas
esporádicamente por el río (suele estar
seco por la presencia de una presa de
contención situada unos kilómetros más
arriba), que sólo lleva agua en forma de
grandes avenidas. La profundidad
máxima en esta zona de cantos rodados
es de aproximadamente 1 m, y a partir
de aquí ya se encuentra el típico fondo
arenoso que caracteriza a las playas cir-
cundantes. La base pedregosa presenta
una gran riqueza malacológica, princi-
palmente de Opistobranquios. Esta zona
concreta de Cubelles ha sido previa-
mente estudiada por Ros (1975) y, prin-
cipalmente, por BALLESTEROS (1977, 1978
y 1984), y constituye la localidad tipo de
Río Foix
Barcelona '
SS
1%30' 2
Taringa faba (Ballesteros, Llera y Ortea,
1984). Una buena descripción del recu-
brimiento algal así como de la fauna de
Invertebrados acompañante se puede
encontrar en BALLESTEROS (1984).
Situada paralelamente a la costa y a
una distancia media de ésta de aproxi-
madamente 2, 5 km, se encuentra una
pradera de Posidonia oceanica (L.) Dellile.
Hace unos 25 años, esta pradera de
fanerógamas era muy densa y extensa,
encontrándose desde los 8 m de profun-
didad (frente a Terramar, en Sitges)
hasta 22 m en algunos puntos, y su lon-
gitud era de unos 10 km de largo por
casi 2 km de anchura. Esta pradera ha
sufrido una regresión considerable
durante las dos últimas décadas, y con
ella muchas de las especies típicas de
estos hábitats, como Pinna nobilis Linna-
eus, 1758, muy común anteriormente, y
que ya prácticamente no se encuentra
viva en esta comarca litoral.
43
Iberus, 15 (1), 1997
Los fondos de aguas profundas se
dividen en “La Mar de Terra” y “La Mar
de Fora”, que están separadas por una
serie de rocas dispuestas paralelamente
a la costa. “La Mar de Terra” es una pla-
nicie fangosa con una profundidad
máxima que oscila entre los 74 y los 105
m, y que se halla a una distancia media
de la costa de 9,5 km. Aquí destacan
algunas zonas rocosas aisladas, varias
zonas con gorgonias (Eunicella singularis
(Esper) y Leptogorgia sarmentosa (Esper)),
en las que abunda el bivalvo Pteria
hirundo (Linnaeus, 1758). También es
importante en esta zona una amplia
extensión de concreciones calcáreas y
coralinas situadas una entre Sitges y
Vilanova, y otra frente a Vallcarca, for-
madas por típicos fondos de maérl, en
los que abundan las algas calcáreas Lit-
hothamnion calcareum (Pallas) Areschoug
y Lithothamniom corallioides Crouan,
principalmente.
“La Mar de Fora” es más variada y
generalmente escarpada. Su profundi-
dad va desde los 105 hasta los 1600 m en
el canal de Foix. Destacan entre el S y SO
de Vilanova una zona de barrancos sub-
marinos que convergen hacia una pro-
fundidad de unos 500 m, un caladero
muy rico en el centro, y unas planicies en
cuyos límites, frente a Vallcarca, se en-
cuentran los fondos de “El Parrusset”.
Éste es un cañón submarino profundo
(los pescadores faenan a profundidades
entre 200 y 450 m), de fondo rico en nó-
dulos de ferromanganeso y que alberga
una biocenosis de coral blanco (sensu
PÉRES Y PICARD, 1964), asociada a una ta-
natocenosis de fauna Wúrmiense de
gran interés malacológico.
MATERIAL Y MÉTODOS
El presente trabajo-está basado en el
material recolectado por los autores o
proporcionado por pescadores durante
más de una década. También se ha revi-
sado material de colecciones malacoló-
gicas privadas de la zona de estudio.
El material ha sido recolectado en
fondos arenosos, escolleras, rocas o
acantilados mediante inmersión, y si-
44
multaneando con visitas a las diferentes
playas de la zona, especialmente des-
pués de los temporales. Hay que tener
en cuenta que las especies de aguas pro-
fundas que aparecen ocasionalmente en
las playas o en aguas someras, suelen
proceder de los restos arrojados al mar
por los barcos pesqueros, o de la lim-
pieza de las redes de pesca antes de en-
trar en el puerto.
La zona de la desembocadura del río
Foix en Cubelles se ha muestreado quin-
cenalmente durante más de un año
(junio de 1992 a agosto de 1993) de una
forma exhaustiva, volteando todas las
piedras en dos transectos, uno de 15 x 1
m paralelo a la línea de costa y a 0,5 m
de profundidad, y otro de 25 x 1 m, per-
pendicular a la costa y a una profundi-
dad comprendida entre 0 y 1 m.
El material de aguas profundas ha
sido proporcionado por pescadores de
arrastre. Además, en más de 20 ocasio-
nes durante el período de muestreo, se
ha acompañado a los pescadores con
objeto de separar el material por hábi-
tats y profundidades in situ, para
obtener una información más detallada
sobre el mismo.
Se ha analizado el contenido estoma-
cal de unos 3000 ejemplares de los aste-
roideos Astropecten aranciacus (L.) y As-
tropecten irregularis (Linck), procedentes
de más de 50 arrastres, principalmente
de fondos fangosos entre 40 y 350 m de
profundidad. Se han estudiado también
seis muestras de detrito fangoso (aproxi-
madamente 20 kg en total) procedente
de “El Parrusset”, entre 200 y 350 m de
profundidad, recolectadas entre 1994 y
1996. El detrito ha sido lavado y pasado
por una serie de tamices, siendo el más
fino de 0,4 mm de luz de malla. Además
se han analizado unos 30 kg de sedi-
mentos obtenidos en playas de la zona;
unos 5 kg de sedimentos arenoso de 2 m
de profundidad obtenidos en Sitges; y 1
kg de sedimento arenoso de 2 m de pro-
fundidad obtenido en el interior del
puerto de Vallcarca. Una gran cantidad
de micromoluscos se ha obtenido del es-
tudio de estos sedimentos, lo que per-
mite obtener un elevado número de es-
pecies, aunque de la mayor parte de
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
ellas se hallen sólo conchas (tanatoceno-
sis), por lo que no es posible precisar sus
hábitats.
La mayor parte del trabajo de Opis-
tobranquios se ha basado en las publica-
ciones de BALLESTEROS (1977, 1978 y
1984), Ros (1975) y ASENSI (1984), y
siempre que el material no haya sido
recolectado por los autores, se indica la
cita bibliográfica de la cual proviene.
Además, se han revisado las colec-
ciones de A. Tubau, M. Roca y P. Ortoll,
malacólogos aficionados o pescadores
de Vilanova i la Geltrú. No ha sido
posible, sin embargo localizar la colec-
ción de SAMA (1916), compuesta por 400
especies de moluscos procedentes del
litoral entre Vilanova i la Geltrú (Barce-
lona) y Calafell (Tarragona).
El material fotografiado al microsco-
pio electrónico de barrido (M.E.B.), ha
sido previamente hervido en agua desti-
lada y tratado con ultrasonidos, con el
objeto de eliminar las impurezas deposi-
tadas en las conchas, aunque en algunos
casos, cuando las conchas eran dema-
siado finas, no se ha realizado el trata-
miento con ultrasonidos. Las muestras
han sido fotografiadas en un MEB
Hitachi S-2300 a 15KV. En algunos casos
se han seleccionado para fotografiar
ejemplares procedentes de otras zonas,
con el objeto de ilustrar los ejemplares
mejor conservados.
El listado de especies ha sido confec-
cionado siguiendo a SABELLI, GIANUZZI-
SAVELLI Y BEDULLI (1990), excepto para
algunos taxones, para los que se han
empleado revisiones taxonómicas más
recientes.
Parte del material aquí tratado ha
sido cedido al Museu del Mar de Vila-
nova 1 la Geltrú.
RESULTADOS
El número total de especies de
moluscos marinos recogidos en este
trabajo es de 622 (7 Poliplacóforos, 417
Gasterópodos, 190 Bivalvos y 8 Escafó-
podos), correspondiendo aproximada-
mente un 2,7% a especies que se han
encontrado exclusivamente en forma
subfósil en el Garraf, algunas de las
cuales no viven actualmente en el Medi-
terráneo, O habitan en zonas más pro-
fundas.
Lista de especies (Tabla I): A la
izquierda aparece el nombre de cada
especie, que irá en negrita en el caso de
que sea objeto de comentarios en la dis-
cusión, irá precedida de un asterisco (*)
cuando constituya primera cita en el
Mediterráneo español, y de dos (**)
cuando constituya primera cita en el
Mediterráneo en general. A continua-
ción se describe brevemente el tipo de
hábitat donde se ha encontrado la
especie (lo cual algunas veces no refleja
su hábitat real) y el rango batimétrico:
“s” (supralitoral), “m” (mesolitoral), “1”
(infralitoral: de O a 30 m), “c” (circalito-
ral: de 30 a 200 m), y “b” (batial: más de
200 m). En algunos casos no se disponía
de estos datos, por lo que no se regis-
tran. En el caso de las especies fósiles,
tampoco se indica el hábitat. En la
siguiente columna se señalan, con un
número, las especies ilustradas, indi-
cando dicho número el de la figura
correspondiente. A continuación se
señala la abundancia (+: 1-2 ejemplares,
++: 3-10, +++: 11-100, ++++: más de
100), y se identifican con una “p” a las
especies procedentes del detrito de “El
Parrusset” y con una “f” a aquellas que
han sido halladas fósiles. En el caso de
que las letras “p” y “f” aparezcan entre
paréntesis, significa que la especie en
cuestión no ha sido hallada exclusiva-
mente en “El Parrusset” o no ha sido
encontrada exclusivamente fósil, respec-
tivamente. También se indica con una
“y” si la especie ha sido hallada viva en
el área de estudio, y con “Aa” o “Ai” se
señalan las especies obtenidas en conte-
nidos estomacales de Astropecten aran-
ciacus O A. irregularis, respectivamente.
Evidentemente no ha sido posible espe-
cificar todos los ambientes donde se han
recolectado las muestras, y es por esto
que nos hemos limitado a mencionar la
procedencia de aquellas muestras obte-
nidas de estas formas particulares.
45
Iberus, 15 (1), 1997
Tabla I. Listado de especies encontradas en el área de estudio, hábitat donde se han encontrado,
rango batimétrico, figuras en las que están representadas, abundancia y procedencia.
Las especies en negrita están comentadas en el texto. No se incluyen los datos no disponibles de bari-
metría, ni de hábitat en las especies fósiles. En las especies de opistobranquios que no han sido reco-
lectadas por los autores se incluye la referencia bibliográfica de donde procede la cita.
Códigos. *: primera cita en el Mediterráneo español; **: primera cita en el Mediterráneo; s: suprali-
toral; m: mesolitoral; i infralitoral (0-30 m); c: circalitoral (30-200 m); b: batial (>200 m); +: 1-2 ejem-
plares; ++: 3-10 ejemplares; +++: 11-100 ejemplares; ++++: más de 100 ejemplares; p: especie proce-
dente del detrito de El Parrusset; f: especies halladas fósiles; (p): especie hallada no sólo en El Parrus-
set; (£): especie hallada no exclusivamente fósil; v: especie encontrada viva en el área de estudio; Aa:
especie obtenida en contenido estomacal de Astropecten aranciacus, Ai: idem de Astropecten irregularis.
Table I. List of species found in the study area, habitat where they have been collected, bathymetric range,
figures when included, abundance and other data related with their collection.
Species in bold are discussed in the text. Data on bathymetric range are included only when known, habi-
tat of fossil species always excluded. A bibliographic reference is given for the opisthobranch species not
collected by the authors.
Codes. *: first record in the Spanish Mediterranean; **: first record in the Mediterranean Sea; s: upper
littoral; m: midlittoral; i lower littoral (0-30 m); c: circa littoral (30-200 m); b: bathyal (>200 m); +:
1-2 specimens; ++: 3-10 specimens; +++: 11-100 specimens; ++++: more than 100 specimens; p: spe-
cies found in El Parrusset detritus; f. species found fossil; (p): species found not only in El Parrusset; (f):
species found not only fossil; v: species found alive in the study area; Aa: species collected in Astropecten
aranciacus gut contents; Ál: idem in Asttopecten irregularis gut contents.
Close POLYPLACOPHORA
Familia LEPTOCHITONIDAE
Lepidopleurus cajetanus (Poli, 1791): piedras, ¡ + ov
Familia ISCHNOCHITONIDAE
Callochiton septemvalvis euplaeae (0. G. Costa, 1829): algas (Payssonnelia) y conchas muertas, ic Hov
Lepidochitona cinerea (Linnaeus, 1767): piedras y espigones, mi H+ oV
Lepidochitona corrugata (Reeve, 1848): piedras y espigones, mi H+ oV
Familia CHITONIDAE
Chiton olivaceus Spengler, 1797: piedras y espigones, m:i HE oV
Familia ACANTHOCHITONIDAE
Acanthochitona crinita (Pennant, 1777): piedras, ¡ ++ v A
Acanthochitona fascicularis (Linnaeus, 1767): piedras y conchas muertas, ic Hov
Clase GASTROPODA
Familia PATELLIDAE
Potella caerulea Linnaeus, 1758: rocas y espigones, mii HH v
Patella rustica Linnaeus, 1758: rocas y espigones, s HH V
Patella ulyssiponensis Gmelin, 1791: rocas y espigones, ¡ H+-ov
Familia ACMAEIDAE
Acmaea virginea (0. E. Múller, 1776): sedimentos en zonas rocosas, i ++
Familia LEPETIDAE
lothia fulva (O. F. Múller, 1776): b + pÍ
Familia COCCULINIDAE
Coccopigya sp.: b + Pp
Familia LEPETELLIDAE
Lepetella cfr. espinosae Dantart y Luque, 1994: b H+ op
Familia ADDISONIIDAE
Addisonia excentrica Tiberi, 1857: en capsula ovígeras de Scyliorrhinus, ca Fig.3 ++ (p),v
Familia NERITIDAE
Smaragdia viridis (Linnaeus, 1758): fango, ic ++ Mo
46
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Familia FISSURELLIDAE
Fissurella nubecula (Linnaeus, 1758): en rocas y piedras, mi
Diodora gibberula (Lamarck, 1822): en piedras, ¡
Diodora graeca (Linnaeus, 1758): en rocas y piedras, ¡
Emarginula fissura (Linnaeus, 1758): b
Emarginula octaviana Coen, 1939: ic
*Emarginula pustula Thiele in Kuester, 1913: b
Emarginula rosea T. Bell, 1824: cb
Familia SCISSURELLIDAE
Anatoma aspera (Philippi, 1844): b
Familia HALIOTIDAE
Haliotis tuberculata lamellosa Lamarck, 1822: ¡
Familia TROCHIDAE
Clanculus cruciatus (Linnaeus, 1758): piedras, ¡
Clanculus jussievi (Payraudeau, 1826): piedras, ¡
Jujubinus exasperatus (Pennant, 1777): ic
Jujubinus montagui (W. Wood, 1828): fango, c
Jujubinus striatus (Linnaeus, 1758): fango, c
Gibbula albida (Gmelin, 1791)
Gibbula magus (Linnaeus, 1758): cascajo y múerl, c
Gibbula racketti (Payraudeau, 1826): piedras, ¡
Gibbula fanulum (Gmelin, 1791)
Gibbula guttadauri (Philippi, 1836)
Gibbula leucophaea (Philippi, 1836)
Gibbula philberti (Récluz, 1843): piedras y espigones, m
Gibbula richardi (Payraudeau, 1826): piedras, m
Gibbula varia (Linnaeus, 1758): piedras, m
Gibbula divaricata (Linnaeus, 1758): piedras, m
Osilinus articulatus Lamarck, 1822: piedras, m
Osilinus turbinatus (Bor, 1778): piedras, m
Calliostoma conulus (Linnaeus, 1758): rocas y múers, ic
Calliostoma dubium (Philippi, 1844)
Calliostoma laugieri laugieri (Payraudeau, 1826): i
Calliostoma zizyphinum (Linnaeus, 1758)
Calliostoma granulatum (Born, 1778): fango, cb
Danilia otaviana (Cantraine, 1835): b
Familia SKENEIDAE
Dikoleps pusilla (Jeffreys, 1847): b
*Lissotesta gittenbergeri (van Aortsen y Bogi, 1988): b
Familia TURBINIDAE
Bolma rugosa (Linnaeus, 1767): rocas y fango, c-b
Familia COLLONIIDAE
Homalopoma sanguineum (Linnaeus, 1758)
Familia TRICOLIIDAE
Tricolia pullus (Linnaeus, 1758): ¡
Tricolia speciosa (von Múhlfeldt, 1824): ¡
Tricolia tenvis (Michaud, 1829):
Familia CERITHIIDAE
Cerithium alucaster (Brocchi, 1814): fango y múerl, i-c
Cerithium lividulum Risso, 1826
Cerithium vulgatum Bruguiére, 1792: fango y múerl, i-c
Bittium latreillei (Payraudeau, 1826): ix
Bittium reticulatum (da Costa, 1778): b
Bittium submamillatum (Rayneval y Ponzi, 1854): fango y fondos detríticos, c
Fig. 4 +
+++
Iberus, 15 (1), 1997
Familia FOSSARIDAE
Fossarus ambiguus (Linnaeus, 1758): ¡
“Familia SILIQUARIIDAE
Tenagodus obtusus (Schumacher, 1817)
Familia TURRITELLIDAE
Turritella communis Risso, 1826: fango, c
Turritella monterosatoi Kobelt, 1888: fango, c
Familia LITTORINIDAE
Littorina neritoides (Linnaeus, 1758): rocas y espigones, s
Littorina punctata (Gmelin, 1791): rocas y espigones, s
Familia SKENEOPSIDAE
Skeneopsis planorbis (Fabricius, 1780): arena, ¡
Familia RISSOIDAE
Rissoa auriscalpium (Linnaeus, 1758): i
Rissoa decorata Philippi, 1846: ¡
*Rissoa gemmula (Fischer in de Folin, 1871): i Figs. 2, 20-21
Rissoa querinii Récluz, 1843: ¡
Rissoa labiosa (Montagu, 1803): ¡
Rissoa lia (Monterosato, 1884 ex Benoit ms.): i
Rissoa monodonta Philippi, 1836: ¡
Rissoa similis Scacchi, 1836: ¡
Rissoa ventricosa Desmarest, 1814: ¡
Rissoa violacea Desmarest, 1814: ¡
Alvania beani (Hanley in Thorpe, 1844): ¡
Alvania cancellata (da Costa, 1778): ¡
Alvania cimex (Linnaeus, 1758): i
Alvania cimicoides (Forbes, 1844): fango y detrito coralígeno, c-b
Alvania discors (Allan, 1818): ¡
Alvania geryonia (Nardo, 1847 ex Chiereghini ms.): ¡
Alvania lactea (Michaud, 1832): ¡
Alvania lineata Risso, 1826: ¡
Alvania punctura (Montagu, 1803): fango y detrito coralígeno, cb
Alvania rudis (Philippi, 1844): i
Alvania subcrenulata (B. D. D., 1884): ¡
* Alvania subsoluta (Aradas, 1847): b Figs. 8, 11, 12
Alvania testae (Aradas y Maggiore, 1844): fango y detrito coralígeno, c-b Figs. 7, 9, 10
*Alvania zylensis Gotas y Warén, 1982: b Figs. 13, 14
Alvania semistriata (Montagu, 1808): ib
Alvania carinata (da Costa, 1778): i
*Benthonella tenella (Jeffreys, 1869): fango, c
Manzonia crassa (Kanmacher, 1798): i
Manzonia zetlandica (Montagu, 1815): b
Obtusella intersecta (S. W. Wood, 1857): b
Obtusella macilenta (Monterosato, 1880): fango y detrito coralígeno, cb Fig. 6
Pusillina inconspicua (Alder, 1844): ib Figs. 17, 18, 19
Pusillina philippi (Aradas y Maggiore, 1844): +b Figs. 15, 16
Pusillina radiata (Philippi, 1836): ¡
Setia maculata (Monterosato, 1869): ¡
Rissoina bruguierei (Poyraudeau, 1826): ¡
Familia ADEORBIDAE
Circulus striatus (Philippi, 1836): ¡
Familia ASSIMINEIDAE
Paludinella sicana (Brugnone, 1876): ¡
48
+++
++
++
+
+++
++
+++
+++
Ai
(p), v, Ai
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Familia CAECIDAE
Caecum auriculatum de Folin, 1868: ¡
Caecum clarkii Carpenter, 1858: ¡
Caecum trachea (Montagu, 1803): ¡
Familia HYDROBIIDAE
Ventrosia ventrosa (Montagu, 1803)
Familia IRAVADIIDAE
Ceratia proxima (Forbes y Hanley, 1850 ex Alder ms.): fango y detrito coralígeno, c-b
Hyala vitrea (Montagu, 1803): fango y detrito coralígeno, c-b
Familia TORNIDAE
Tornus subcarinatus (Montagu, 1803): i
Familia TRUNCATELLIDAE
Truncatella subcylindrica (Linnaeus, 1767): i
Familia APORRHAIDAE
Aporrhais pespelecani (Linnaeus, 1758): fango, c
Aporrhais serresianus (Michaud, 1828): fango, cb
Familia VANIKORIDAE
* Tolassia dagueneti (de Folin, 1873): b
Familia CALYPTRAEIDAE
Colyptraea chinensis (Linnaeus, 1758): en conchas muertas, cb
Crepidula fornicata (Linnaeus, 1758)
Crepidula unguiformis Lamarck, 1822: en conchas muertas, cb
Familia CAPULIDAE
Capulus ungaricus (Linnaeus, 1758): sobre conchas, c-b
Familia XENOPHORIDAE
Xenophora crispa (Koenig, 1825): fango y fondos detríticos, b
Familia VERMETIDAE
Vermetus triquetrus Bivona, 1832: rocas, ¡
Serpulorbis arenaria (Linnaeus, 1767): rocas, ¡
Familia CYPRAEIDAE
Erosaria spurca (Linnaeus, 1758)
Luria lurida (Linnaeus, 1758)
Zonaria pyrum (Gmelin, 1791): múer, c
Familia OVULIDAE
Aperiovula adriatica (G. B. Sowerby |, 1828): c
Neosimnia spelta (Linnaeus, 1758): sobre Eunicella, c
Pseudosimnia camea (Poiret, 1789): c
Familia LAMELLARIIDAE
Lamellaria latens (0. F. Múller, 1776): ¡
Familia TRIVIIDAE
Trivia arctica (Pulteney, 1789): ¡
Trivia monacha (da Costa, 1778): ¡
Trivia multilirata (G. B. Sowerby 11, 1870)
Erato voluta (Montagu, 1803)
Familia NATICIDAE
Naticarius cruentatus (Martyn, 1784): arena y fango, ic
Naticarius dillwyni (Payraudeau, 1826): arena, i
Naticarius punctatus (Chemnitz in Karsten, 1789)
Naticarivs vittatus (Gmelin, 1791)
Tectonatica filosa (Philippi, 1844): fango, c
Lunatia fusca (Blainville, 1825): fango, c-b
Lunatia guillemini (Poyraudeau, 1826): fango, ic
Lunatia macilenta (Philippi, 1844): arena y fango, ic
Lunatia nitida (Donovan, 1804): arena y fango, i-c
Payraudeautia intricata (Donovan, 1804): fango y múerl, i-c
(p), v, Ai
(p), v Ai
==" MES
49
Iberus, 15 (1), 1997
Familia TONNIDAE
Tonna galea (Linnaeus, 1758) +
Familia CASSIDAE
Galeodea echinophora (Linnaeus, 1758): fango, c HE 0V
Galeodea rugosa (Linnaeus, 1771): fango, cb ++ (p),v
Phalium granulatum (Born, 1778): fango, c H+ 0V
Phalium saburon (Bruguiére, 1792): fango, c ++ Y
Familia RANELLIDAE
Ranella olearia (Linnaeus, 1758) + pf
Cymatium corrugatum (Lamarck, 1816): fango, c HH V
Cymatium parthenopeum parthenopeum (von Salis, 1793): rocas, ¡ + Y
Cobestana cutacea cutacea (Linnaeus, 1767): fango y rocas, ic ++ v
Charonia lampas lampas (Linnaeus, 1758) +
Familia ATLANTIDAE
Atlanta peronii Lesueur, 1817: fango y detrito coralígeno, b ++ (p), Ai
Oxygyrus keraudrenii (Lesueur, 1817): b Hop
Familia TRIPHORIDAE
Marshallora adversa (Montagu, 1803): fondos detríticos, ¡ ++ vA
Monophorus erythrosomus (Bouchet y Guillemot, 1978): ¡ ++
Monophorus perversus (Linnaeus, 1758): ¡ ++
* Obesula marinostri Bouchet, 1985: b + op
Similiphora similior (Bouchet y Guillemot, 1978): i +
Metaxia metaxae (delle Chiaje, 1828): ¡-b ++ (p), (f)
Familia CERITHIOPSIDAE
* Cerithiopsis diadema Monterosato, 1874 ex Watson ms.: b Fig. 22 + Pp
Cerithiopsis jeffreysi Watson, 1885: b Fig.23 ++ (p), (1)
Cerithiopsis minima (Brusina, 1865): i Fig. 24 +++
Cerithiopsis nana Jeffreys, 1867: ib Figs. 25,29 ++ (p), (1
Cerithiopsis scalaris (Monterosato, 1877): b Fig. 26 +++ (p), (f)
* Cerithiopsis tiara Monterosato, 1874 ex Watson ms.: b Fig. 27 + (p), (1)
Cerithiopsis tubercularis (Montagu, 1803): +b Figs. 28,30 +++ (p), (f)
Familia ACLIDIDAE
*Adlis attenuans Jeffreys, 1883: fango y detrito coralígeno, b ++ (p), v Ai
Aclis gulsonae (W. Clark, 1850): fango y detrito coralígeno, b + pvA
Cima minima (Jeffreys, 1858): b ++ (p)
* Cioniscus gracilis Monterosato, 1874, ex Jeffreys ms.: b ++ (p)
Graphis albida (Kanmacher, 1798): ib Figs. 32, 33,34 ++ (p)
Familia EPITONIDAE
* Epitonium aculeatum (Allan, 1818): fango y detrito coralígeno, b ++ (p),v Ai
Epitonium olgerianum (Weinkauff, 1866): b ++ (p)
*Epitonium celesti (Aradas, 1854): b + p
Epitonium clathratulum (Kanmacher, 1798): b Fig.39 ++ (p)
Epitonium commune (Lamarck, 1822): rocas y fango, i-c +++ v A
*Epitonium dendrophylliae Bouchet y Warén, 1986: b 509
* Epitonium hispidulum (Monterosato, 1874): b ++ (p)
* Epitonium linctum (de Boury y Monterosato, 1890): b Fig. 40 + p
Epitonium pulchellum (Bivona, 1832): ¡ ++
Epitonium turtonis (Turton, 1819): fango, c +++ vw A
Cirsotrema cochlea (6. B. Sowerby Il, 1844): ¡ +
Gyroscala lamellosa (Lamarck, 1822): rocas y arena, i st
*Opalia abboti Clench y Turner, 1952: b 5
Opalia crenata (Linnaeus, 1758): i ++
Opalia hellenica (Forbes, 1844): b 0d)
50
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Familia EULIMIDAE
Eulima bilineata Alder, 1848: fango y detrito coralígeno, b
Eulima glabra (da Costa, 1778): ¡
*Crinophtheiros sp.: fango, b
* Entoconcha mirabilis Múller, 1852: b
Melanella alba (da Costa, 1778): i
Melanella boscii (Payraudeau, 1827): ¡
Melanella praecurta (Pallary, 1904): fango, b
Parvioris ibizenca (Nordsieck, 1968): ¡
Sticteulima jeffreysiana (Brusina, 1869): detrito coralígeno, b
Vitreolina perminima (Jeffreys, 1883): detrito coralígeno, b
Vitreolina sp.: detrito coralígeno, b
Familia MURICIDAE
Bolinus brandaris (Linnaeus, 1758): fango, arena y piedras, ¡
Hadriania craticuloides (Vokes, 1964): fango y detrito coralígeno, c-b
Hexaplex trunculus (Linnaeus, 1758): fango, rocas y espigones, ¡
Murexul aradasii (Poirier, 1883 ex Monterosato ms.)
Muricopsis cristatus (Brocchi, 1814): rocas y detritos, ic
Ocenebra erinaceus (Linnaeus, 1758): rocas y detritos, ix
Ocinebrina aciculata (Lamarck, 1822): fango y piedras, ix
Ocinebrina edwardsi (Payraudeau, 1826): rocas y piedras, i
*Trophon barvicensis (Johnston, 1825)
Trophon echinatus (Kiener, 1840): b
Trophon sp.: b
Irophon muricatus (Montagu, 1803): fango y detrito coralígeno, b
Familia BUCCINIDAE
Buccinum humphreysianum Bennet, 1824: b
Buccinum undatum Linnaeus, 1758: fango, c
Buccinulum cormeum (Linnaeus, 1758): fango y rocas, ic
Chauvetia brunnea (Donovan, 1804): ¡
Chauvetia turritellata (Deshayes, 1835): i
Colus jeffreysianus (Fischer, 1868): i
Neptunea contraria (Linnaeus, 1771)
Pisania striata (Gmelin, 1791)
Contharus dorbignyi (Payraudeau, 1826): i
Familia CORALLIOPHILIDAE
Coralliophila meyendorffi (Calcara, 1845): piedras y fango, i
Coralliophila panormitana (Monterosato, 1869): b
Coralliophila squamosa (Bivona, 1831): fango, cb
Familia FASCIOLARIIDAE
Fusinus pulchellus (Philippi, 1844): fango, ¡
Fusinus rostratus (Olivi, 1792): fango, c
Fusinus rudis (Linnaeus, 1758): fango, i
Familia NASSARIIDAE
Nassarius corniculus (Olivi, 1792): piedras, ¡
Nassarius cuvierii (Payraudeau, 1826): arena, ¡
Nassarius incrassatus (Stróm, 1768): piedras, ¡
Nassarius mutabilis (Linnaeus, 1758): arena y fango, i
Nassarius nitidus (Jeffreys, 1867): i
Nassarius pygmaeus (Lamarck, 1822): fango y piedras, ix
Nassarius reticulatus (Linnaeus, 1758): arena, i
Nassarius unifasciatus (Kiener, 1835)
Naytiopsis granum (Lamarck, 1822): arena, ¡
Cyclope neritea (Linnaeus, 1758)
Figs. 37, 38 ++
Figs. 35,36 +++
+
Fig. 45 +
Figs. 41,42. ++
Figs. 43,44 ++
Figs. 46,47 +++
(p), y Ai
51
Iberus, 15 (1), 1997
Familia THAIDIDAE
Orania fusulus (Brocchi, 1814)
Stramonita haemastoma (Linnaeus, 1766): rocas, ¡
Familia COLUMBELLIDAE
Columbella rustica (Linnaeus, 1758): rocos y algas, i
Mitrella minor (Scacchi, 1836)
Mitrella scripta (Linnaeus, 1758)
Familia COSTELLARIIDAE
Vexillum ebenus (Lomarck, 1811): ¡
Vexillum tricolor (Gmelin, 1790)
Familia MARGINELLIDAE
Gibberula caelata (Monterosato, 1877)
bibberula miliaria (Linnaeus, 1758): arena, ¡
Gibberula philippii (Monterosato, 1877): ¡
Gibberulo turgidula (Locard y Caziot, 1900): fango, e
Volvarina mitrella (Risso, 1826)
Granulina clandestina (Brocchi, 1814): b
Familia MITRIDAE
Mitra zonata Marryot, 1818: fango y múerl, ic
Familia CANCELLARIIDAE
Concellaria cancellata (Linnaeus, 1767): arena y fango, ic
Cancellaria similis Sowerby, 1833: fango, cb
Familia CONIDAE
Conus ventricosus (Gmelin, 1791): i
Familia TURRIDAE
Bela brachistoma (Philippi, 1844): fango y detrito coralígeno, c-b
Belo laevigata (Philippi, 1836): arena, i
Bela menkhorsti van Aartsen, 1988: b
Bela nebula (Montagu, 1803): arena fangosa, i
Bela ornata (Locard, 1897): fango, ic
Bela zonata (Locard, 1892): fango, c
Mongelia attenuata (Montagu, 1803): fango y detrito coralígeno, b
Mangelia costata (Donovan, 1804): fango y detrito coralígeno, cb
Mangelia cfr. goodalii Reeve, 1846: i
Mangelia nuperrima (Tiberi, 1855): fango y detrito coralígeno, cb
Mangelia paciniana (Calcara, 1839): arena, ¡
Mangelia serga (Dall, 1881): fango y detrito coralígeno, c-b
Mangelia smithi (Forbes, 1844): arena, fango y detrito coralígeno, cb
Mangelia stossiciana (Brusina, 1869): ¡
Mangelia unifasciata Deshayes, 1835: arena y fango, ¡
Mangelia vauquelini (Payraudeau, 1826): orena, ¡
Mangiliella bertrandii (Poyraudeau, 1826): ¡
Mangiliella taeniata (Deshayes, 1835): ¡
Taranis moerchi (Malm, 1861): detrito coralígeno, b
Taranis sp.: detrito coralígeno, b
Microdrilia loprestiana (Calcara, 1841): fongo y detrito coralígeno, cb
Haedropleura septangularis (Montagu, 1803): en Posidonia, i
**Pleurotomella coeloraphe (Dautzenberg y Fischer, 1896): b
*Pleurotomella demosia (Duutzenberg y Fischer, 1896): b
Crassopleura maravignae Bivona, 1838: ic
Mitrolumna olivoidea (Cantraine, 1835): ¡
Raphitoma aequalis Jeffreys, 1867: fango, c-
Raphitoma bicolor (Risso, 1826): arena, ¡
Raphitoma concinna (Scacchi, 1836): arena, ¡
2
Figs. 50, 51
Figs. 52, 53
Figs. 54, 55
Figs. 57, 58, 59
Figs. 60, 61, 62
Fig. 56
Figs. 63, 64, 65
Figs. 66, 67, 68
++
(p), Ai
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
*Raphitoma cordieri (Payraudeau, 1826): ¡
Raphitoma echinata (Brocchi, 1814): i
Raphitoma horrida Monterosato, 1844: en Posidonia, ¡
Raphitoma leufroyi (Michaud, 1828): arena, ¡
Raphitoma linearis (Montagu, 1803): arena, ¡
Raphitoma cfr. nivea (Marshall in Sykes, 1906): i
*Raphitoma pupoides (Monterosato, 1884): i
Comarmondia gracilis (Montagu, 1803): fango y arena, i-c
Teretia teres (Forbes, 1844): fango y detrito coralígeno, b
Familia TJAERNOEIDAE
Tjaernoeia exquisita (Jeffreys, 1883): b
Familia ARCHITECTONICIDAE
Basisulcata lepida (Bayer, 1942): mier, c
Heliacus alleryi (Seguenza, 1876): b
Heliacus architae (0. 6. Costa, 1867): b
Familia MATHILDIDAE
Mathilda cochlaeformis Brugnone, 1873: b
Familia OMALOGYRIDAE
Omalogyra atomus (Philippi, 1841): ¡
Ammonicera fischeriana (Monterosato, 1869): i
Familia PYRAMIDELLIDAE
Tiberia minuscula (Monterosato, 1880): fango y detrito coralígeno, c-
Chrysallida brattstroemi Warén, 1991: b
Chrysallida brusinaí (Cossmann, 1921): i
Chrysallida dollfusí (Kobelt, 1903): b
Chrysallida emaciata (Brusina, 1866): ¡
Chrysallida excavata (Philippi, 1836): ¡
Chrysallida fenestrata (Jrffreys, 1848): c
Chrysallida flexuosa (Monterosato, 1874 ex Jeffreys): fango y detrito coralígeno, cb
Chrysallida ghisottii van Aartsen, 1984: i
Chrysallida indistincta (Montagu, 1808): ¡
Chrysallida intermixta (Monterosato, 1884)
Chrysallida interstincta (J. Adams, 1797):
Chrysallida juliae (de Folin, 1872): fango, c
Chrysallida palazziiMicali, 1984: fango y detrito coralígeno, cb
Chrysallida pellucida (Dillwyn, 1817)
Chrysallida suturalis (Philippi, 1844): fango y detrito coralígeno, c-b
Odostomella doliolum (Philippi, 1844): ib
Euparthenia bulinea (Lowe, 1841): arena, ¡
Euparthenia humboldti (Risso, 1826)
Eulimella acicula (Philippi, 1836)
Eulimella ataktos Warén, 1991: fango y detrito coralígeno, cb
Eulimella bogii van Aartsen, 1994: b
Eulimella scillae (Scacchi, 1835): fango y detrito coralígeno, cb
Eulimella unifasciata (Forbes, 1844): fango y detrito coralígeno,
Eulimella ventricosa (Forbes, 1844): fango y detrito coralígeno, c-b
Puposyrnola minuta (H. Adams, 1869): fango y detrito coralígeno, b
Odostomia acuta Jeffreys, 1848: fango y arena, ic
Odostomia afzelii (Warén, 1991): fango y detrito coralígeno, c-b
Odostomia carrozzai van Aartsen, 1987: ¡
Odostomia clavulus (Lovén, 1846): fango y detrito coralígeno, cb
Odostomia conoidea (Brocchi, 1814): fango y detrito coralígeno, ib
Odostomia erjaveciana Brusina, 1869: arena, ¡
Odostomia eulimoides Hanley, 1844: ¡
Fig. 69 +++
p, Y, Ai
(p), v Ai
53
Iberus, 15 (1), 1997
Odostomia hansgei (Warén, 1991): fango y detrito coralígeno, b
Odostomia kromi van Aartsen, Menkhorst y Gittenberger, 1984: ¡
Odostomia lukisii Jeffreys, 1859: i
Odostomia megerlei (Locard, 1886)
Odostomia plicata (Montagu, 1803): ¡
Odostomia scalaris MacGillivray, 1843: ¡
Odostomia striolata Forbes y Hanley, 1850: ib
Odostomia suboblonga Jeffreys, 1884: b
Odostomia turriculata Monterosato, 1869: ¡
Odostomia turrita Honley, 1844: ib
Odostomia umbilicaris Malm, 1863: fango y detrito coralígeno, c-b
Odostomia unidentata (Montagu, 1803): fango y detrito coralígeno, ib
Odostomia verduini van Aartsen, 1987: ¡
Noemiamea dolioliformis (Jeffreys, 1848): ¡
Ondina dilucida (Monterosato, 1844): fango, c
Ondina obliqua (Alder, 1844): ¡
Turbonilla acuta (Donovan, 1804): ¡
Turbonilla acutissima Monterosato, 1884: b
Turbonilla jeffreysii (Jeffreys, 1848): i
Turbonilla pusilla (Philippi, 1844)
Turbonilla rufa (Philippi, 1836): ¡
Turbonilla sinvosa (Jeffreys, 1884): ¡
Turbonilla striatula (Linnaeus, 1758)
Ebala nitidissima (Montagu, 1803)
Ebala pointeli (de Folin, 1868): i
Ebala sp.: b
Familia ACTEONIDAE
Acteon tornatilis (Linnaeus, 1758): arena y fango, ic
Crenilabrum exilis (Forbes in Jeffreys, 1870): b
Familia DIAPHANIDAE
Diaphana minuta Brown, 1827: b
Familia RETUSIDAE
Retusa semisulcata (Philippi, 1836): ¡
Retusa truncatula (Bruguiére, 1792): i
Cylichnina umbilicata (Montagu, 1803): fango, ic
Familia RINGICULIDAE
Ringicula auriculata (Ménard de la Groye, 1811): fango, c
*Ringicula cfr. leptocheila Brugnone, 1873: b
Familia BULLIDAE
Bulla striata Bruguiére, 1792: arena, ¡
Familia HAMINAEIDAE
Haminaea hydatis (Linnaeus, 1758): i
Haminaea orbignyana (Férussac, 1822): ¡
Weinkauffia turgidula (Forbes, 1844): b
Familia PHILINIDAE
Philine aperta (Linnaeus, 1767): ¡
Philine catena (Montagu, 1803): i
Philine scabra (0. F. Miller, 1776): ib
*Lgona pruinosa (Clark, 1827): fango y detrito coralígeno, cb
Familia SCAPHANDRIDAE
Cylichna cylindracea (Pennant, 1777): fango y detrito coralígeno, cb
Roxania utriculus (Brocchi, 1814): fango, c
Scaphander lignarivs (Linnaeus, 1758): fango, c
Scaphander punctostriatus (Mighels y Adams, 1841): b
54
Figs. 80,81 ++
Figs. 78, 79 +
Fig. 82. +++
Ai
Ai
A
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Familia CAVOLINIIDAE
Cavolinia inflexa (Lesueur, 1813)
Clio cuspidata (Bosc, 1802)
Clio pyramidata Linnaeus, 1767
Creseis acicula Rang, 1828
Styliola subula (Quoy y Gaimard, 1827)
Familia LIMACINIDAE
* Limacina bulimoides (d'Orbigny, 1836): b
Limacina inflata (d'Orbigny, 1836): b
*Limacina retroversa (Fleming, 1822): b
Familia PERACLIDAE
Peracle reticulata (d'Orbigny, 1836): b
Familia ELYSIIDAE
Elysia viridis (Montagu, 1810)
Familia HERMAEIDAE
Stiliger sp.
Familia UMBRACULIDAE
Umbraculum mediterraneum (Lamarck, 1819): fango, c
Familia APLYSIIDAE
Aplysia depilans Gmelin, 1791
Apiysia fasciata Poiret, 1789: arena, i
Aplysia punctata Cuvier, 1803: arena, ¡
Familia TRITONIIDAE
Tritonia hombergi Cuvier, 1803
Familia DOTIDAE
Doto koenneckeri Lemche, 1976
Familia TRIOPHIDAE
Kaloplocamus ramosus (Cantraine, 1835)
Familia POLYCERIDAE
Polycera quadrilineata (0. E. Miller, 1776): piedras, i
Familia DORIDIDAE
Doris verrucosa Linnaeus, 1758: detritos y piedras, ¡
Familia ARCHIDORIDIDAE
Archidoris tuberculata (Cuvier, 1804)
Familia DISCODORIDIDAE
Taringa faba (Ballesteros, Llera y Ortea, 1984): bajo piedras, zona detrítica, ¡
Familia CENTRODORIDIDAE
Jorunna tomentosa (Cuvier, 1804)
Familia DENDRODORIDIDAE
Dendrodoris grandiflora (Rapp, 1827): bajo piedras, zona detrítica, ¡
Doriopsilla areolata Bergh, 1880
Familia ARMINIDAE
Armina maculata Rafinesque, 1814
Familia FLABELLINIDAE
Colmella cavolini (Verany, 1846)
Coryphella pedata (Montagu, 1822)
Familia TERGIPEDIDAE
lergipes tergipes (Forskal, 1775)
Familia EUBRANCHIDAE
Eubranchus exiguus (Alder y Hancock, 1848)
Eubranchus farrani (Alder y Hancock, 1844)
Familia FACELINIDAE
Cratena peregrina Gmelin, 1791
Facelina coronata (Forbes y Goodsir, 1839)
Facelina drummondi (Thompson, 1844)
Facelina sp.
+
+
+
DUDO OO
++ |
+ op
Fig. 83 ++++ p
Figs. 84, 85 + p
Ballesteros (1984)
Ballesteros (1984)
+ Y
Ros (1975)
++ V
++ V
Ros (1975)
Ballesteros (1984)
Ros (1975)
H ov
Ros (1975)
++ V
Ballesteros (1984)
++ V
Asensi (1984)
Ballesteros (1981)
Ballesteros (1978)
Ballesteros (1984)
Asensi (1984)
Asensi (1984)
Ballesteros (1984)
Ballesteros (1978)
Ballesteros (1984)
Ballesteros (1984)
Ballesteros (1984)
DS)
Iberus, 15 (1), 1997
Familia FAVORINIDAE
Favorinus branchialis (Rathke, 1806): bajo piedras, zona detrítica, ¡
Favorinus vitreus (Ortea, 1982): bajo piedras, zona detrítica, ¡ + ov
Familia AEOLIDIDAE
Aeolidiella alderi (Cocks, 1852) Ros (1975)
Berghia verrucicornis (0. G. Costa, 1864): bajo piedras, zona detrítica, ¡ H+ oV
Spurilla neapolitana (delle Chiaje, 1841): bajo piedras, zona detrítica, ¡ HH oV
Familia SIPHONARIIDAE
Williamia gussonii (O. 6. Costa, 1829): zonas detríticas, ¡ ++
Familia TRIMUSCULIDAE
Irimusculus mammilaris (Linnaeus, 1758): i ++
Familia ELLOBIIDAE
Auriculinella erosa (Jeffreys, 1829) +
Ovatella firminii (Payraudeau, 1826) ++
Ovatella myosotis (Draparnaud, 1801) ++
Close BIVALVIA
Familia NUCULIDAE
Nucula hanleyi Winckworth, 1930: fango, c +++ v A
Nucula nitidosa Winckworth, 1930: fango y detrito coralígeno, c-b +++ (p), v, Ao
Nucula cfr. nucleus (Linnaeus, 1758): fango, c +++ v A
Nucula sulcata Bronn, 183: fango y detrito coralígeno, cb +++ (p), y Ao
* Ennucula aegeensis (Forbes, 1844): fango y detrito coralígeno, c-b ++ (p),v Ai
Familia NUCULANIDAE
Nuculana commutata (Philippi, 1844): fango y detrito coralígeno, cb + lp), Ai
Nuculana pella (Linnaeus, 1767): fango, c ++ Ao
Familia YOLDIIDAE
* Yoldiella lucida (Lovén, 1846): b Fig.86 ++ pA
*Yoldiella nana (M. Sars, 1865): fango y detrito coralígeno, b Fig.87. ++ (p), Ai
*Yoldiella philippiana (Nyst, 1845): fango y detrito coralígeno, b Figs. 8893 — +++ (p), v Ai
Familia ARCIDAE
Arca noae Linnaeus, 1758: rocas, ¡ H ov
Arca tetragona Poli, 1795 +
Barbatia barbata (Linnaeus, 1758): rocas, i + oV
Barbatia clathrata (Defrance, 1816): b Hop
Anadara diluvii (Lamarck, 1819): fango, c H+ oV
Bathyarca pectunculoides (Scacchi, 1834): b Fig. 94 +++ (p),v
Bathyarca philippiana (Nyst, 1848): b Fig. 95 +++ (p)
Familia NOETIIDAE
Striarca lactea (Linnaeus, 1758): piedras, i-c Sa 0
Familia GLYCYMERIDAE
Glycymeris glycymeris (Linnaeus, 1758): fango, c: Hov
Glycymeris insubrica (Brocchi, 1814): arena, i H+ V
Familia MYTILIDAE
Myrilus galloprovincialis Lamarck, 1819: rocas y espigones, i HH V
Mytilaster minimus (Poli, 1795): rocas, m HH V
*Crenella pellucida (Jeffreys, 1850): detrito coralígeno, b Fig.96 ++ p,v
Gregariella subclavata (Libassi, 1859): rocas, ¡ TV
Gregariella petagnae (Scacchi, 1832): rocas, i HE v
Musculus costulatus (Risso, 1826) +.
Musculus subpictus (Cantraine, 1835): fango, c +H ov
Lithophaga lifhophaga (Linnaeus, 1758): en piedras, ic H ov
Modiolus adriaticus Lamarck, 1819 +
Modiolus barbatus (Linnaeus, 1758): rocas, i +++
56
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
*Idas cfr. ghisottii Warén y Carrozza, 1990: madera
*Idas simpsoni (Marshall, 1900): esqueletos de peces y cetáceos, ix
Modiolula phaseolina (Philippi, 1844): detrito coralígeno, b
Familia PINNIDAE
Atrina pectinata (Linnaeus, 1758): fango, c
Pinna nobilis Linnaeus, 1758: praderas de Posidonia, ¡
Familia PTERIIDAE
Pteria hirundo (Linnaeus, 1758): gorgonias y restos de redes, c
Familia PECTINIDAE
Palliolum incomparabile (Risso, 1826)
Delectopecten vitreus (Gmelin, 1791): b
Pseudamussium septemradiatum (0. F. Múller, 1776): fango, c
Peplum clavatum (Poli, 1795): fango, c
Karnekampia bruei (Payraudeau, 1826): b
Manupecten pesfelis (Linnaeus, 1758): cb
Chlamys islandica (0. E. Múller, 1776)
Chlamys multistriata (Poli, 1795): fango, ic
Chlamys varia (Linnaeus, 1758): roca y fango, i
Lissopecten hyalinum (Poli, 1795)
Flexopecten flexuosus (Poli, 1795): arena y fango, ic
Flexopecten glaber (Linnaeus, 1758)
Aequipecten opercularis (Linnaeus, 1758): fango, c
Perapecten commutatus (Monterosato, 1875): fango, c
Pecten jacobaeus (Linnaeus, 1758): arena y fango, i-c
Similipecten similis (Loskey, 1811): fango y detrito coralígeno, c-b
*Propeamussium lucidum (Jeffreys in Thompson, 1873): detrito coralígeno, b
Propeamussium fenestratum (Forbes, 1844): detrito coralígeno, b
*(yclopecten hoskynsi (Forbes, 1844): detrito coralígeno, b
Familia SPONDYLIDAE
Spondylus gaederopus Linnaeus, 1758
Familia ANOMIIDAE
Anomia ephippium Linnaeus, 1758: conchas de moluscos
*Heteranomia squamula (Linnaeus, 1758): b
Monia patelliformis (Linnaeus, 1761)
Familia LIMIDAE
Limaria hians (Gmelin, 1791): rocas y espigones, ¡
Limaria inflata Link, 1807: ¡
Notolimea crassa (Forbes, 1844): detrito coralígeno, b
Limatula subauriculata (Montagu, 1808): detrito coralígeno, b
*Limatula cfr. gwyni (Sykes, 1903): detrito coralígeno, b
Familia OSTREIDAE
Ostrea edulis Linnaeus, 1758: rocas, ¡
Fomilia GRYPHAEIDAE
Neopycnodonte cochlear (Poli, 1795): cb
Familia LUCINIDAE
Ctena decussata (0. 6. Costa, 1829): arena, i
Loripes lacteus (Linnaeus, 1758): arena, ¡
Lucinella divaricata (Linnaeus, 1758): arena, ¡
Lucinoma borealis (Linnaeus, 1767): fango y detrito coralígeno. cb
Myrtea spinifera (Montagu, 1803): ¡
Familia THYASIRIDAE
Thyasira (Thyasira) biplicata (Philippi, 1836): b
*Thyasira (Thyasira) obsoleta (Verrill y Bush, 1898): b
*Thyasira (Parathyasira) granulosa (Mont., 1874 ex Jeffreys): b
Fig. 97
Fig. 98
Fig. 99
Figs. 101, 102
+
+H
++
++
p, (1), v
a.
Iberus, 15 (1), 1997
*Thyasira (Parathyasira) subovata (Jeffreys, 1881): detrito coralígeno, b
*Thyasira (Leptaxinus) incrassata (Jeffreys, 1876): b
*Thyasira (Axinulus) croulinensis (Jeffreys, 1847): b
*Thyasira (Axinulus) eumyaria (M. Sars, 1870): b
Thyasira (Mendicula) ferruginea (Locard, 1886): fango y detrito coralígeno, b
Familia CHAMIDAE
Chama gryphoides Linnaeus, 1758: en piedras o Microccosmus, ¡
Pseudochama gryphina (Lamarck, 1819): rocas, i
Familia ERYCINIDAE
Scacchia ovata Philippi, 1844: ¡
Familia KELLIIDAE
Bornia sebetia (0. 6. Costa, 1829): ¡
Kellia suborbicularis (Montagu, 1803): b
Familia LASAEIDAE
Hemilepton nitidum (Turton, 1822): b
Familia MONTACUTIDAE
* Mancikellia pumila (Sowerby, 1846): b
* Montacuta phascolionis Dautzenberg y Fischer, 1925: b
Montacuta substriata (Montagu, 1808): b
Mysella bidentata (Montagu, 1803): i
Mysella obliguata (Chaster, 1897)
Tellimya ferruginosa (Montagu, 1808): b
Epilepton clarkiae (Clark, 1852): b
Epilepton sp.: detrito coralígeno, b
Familia NEOLEPTONIDAE
*Arculus sp.: detrito coralígeno, b
Familia CARDITIDAE
Venericardia antiquata (Linnaeus, 1758): fango, c
Glans aculeata (Poli, 1795): fango y detrito coralígeno, cb
Glans trapezia (Linnaeus, 1758): fango y piedras, c
Familia ASTARTIDAE
Astarte fusca (Poli, 1795): fango, c
Astarte sulcata (da Costa, 1778): fango, c
Goodallia triamgularis (Montagu, 1803): i. b
Goodallia sp.: detrito coralígeno, b
Familia CARDIIDAE
Acanthocardia aculeata (Linnaeus, 1758): arena,
Acanthocardia echinata (Linnaeus, 1758): fango, c
Acanthocardia paucicostata (Sowerby, 1834): fango, ic
Acanthocardia tuberculata (Linnaeus, 1758): arena, ¡
Parvicardium exiguum (Gmelin, 1791): ¡
Parvicardium minimum (Philippi, 1836). fango y detrito coralígeno, cb
Parvicardium ovale (6. B. Sowerby, 1840): i
Parvicardium roseum (Lamarck, 1819): fango, c
Plagiocardium papillosum (Poli, 1795): arena, i
Laevicardium crassum (Gmelin, 1791): fango, c
Loevicardium oblongum (Chemnitz, 1782): fango, cb
Cerastoderma glaucum (Poiret, 1789): arena fangosa, ¡
Familia MACTRIDAE
Mactra glauca (Bor, 1778): arena, ¡
Mactra stultorum (Linnaeus, 1758): arena, ¡
Spisula subtruncata (da Costa, 1778): arena, ¡
Lutraria angustior Philippi, 1844
Lutraria lutraria (Linnaeus, 1758): ic
Lutraria magna (da Costa, 1778): Posidonia y fango, ix
58
Fig. 100
Fig. 103
Fig. 104
Fig. 105
Fig. 108
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Familia MESODESMATIDAE
Donacilla corea (Poli, 1795)
Ervilia castanea (Montagu, 1803): fango, c
Familia SOLENIDAE
Solen marginatus Pulteney, 1799: fango, i
Familia PHARIDAE
Ensis ensis (Linnaeus, 1758): arena, ¡
Ensis minor (Chenu, 1843): arena, ¡
Pharus legumen (Linnaeus, 1758): arena, ¡
Familia TELLINIDAE
Arcopagia balaustina (Linnaeus, 1758): fango, cb
Arcopagia crassa (Pennant, 1777): fango y rocas, ic
Gastrana fragilis (Linnaeus, 1758)
Macoma cumana (0. 6. Costa, 1829): arena, ¡
Tellina donacina Linnaeus, 1758: arena y fango, ic
Tellina incarnata Linnaeus, 1758: areno, ¡
Tellina nitida Poli, 1791: arena, ¡
Tellina planata Linnaeus, 1758: arena, i
Tellina pulchella Lamarck, 1818: arena y fango, ic
Tellina serrata Brocchi, 1814: fango, c-b
Tellina tenvis da Costa, 1778: arena, ¡
Familia DONACIDAE
Donax semistriatus Poli, 1795: arena, i
Donax trunculus Linnaeus, 1758: arena, ¡
Familia PSAMMOBIIDAE
Gari fervensis (Gmelin, 1791)
Familia SCROBICULARIIDAE
Serobicularia coftardi (Payraudeau, 1826)
Familia SEMELIDAE
Abra longicallus (Scacchi, 1834): detrito coralígeno, b
Familia SOLECURTIDAE
Solecurtus scopula (Turton, 1822): fango, c
Solecurtus strigilatus (Linnaeus, 1758): fango, c
Azorinus chamasolen (da Costa, 1778): fango, c
Familia ARCTICIDAE
Arctica islandica (Linnaeus, 1767)
Familia KELLIELLIDAE
Kelliella abyssicola (Forbes, 1844): fango, cb
Familia TRAPEZIIDAE
Coralliophaga lithophagella (Lamarck, 1819): rocas, c
Familia GLOSSIDAE
Glossus humanus (Linnaeus, 1758): fango, c
Familia VENERIDAE
Callista chione (Linnaeus, 1758): arena, i
Chamelea gallina (Linnaeus, 1758): arena, ¡
Clausinella fasciata (da Costa, 1778): fango,
Dosinia exoleta (Linnaeus, 1758): fango, c
Dosinia lupinus (Linnaeus, 1758): arena y fango, ic
Globivenus effosa (Bivona, 1836)
Gouldia minima (Montagu, 1803): b
lrus irus (Linnaeus, 1758): interior de piedras calcáreas, mi
Paphia aurea (Gmelin, 1791): i
Paphia rhomboides (Pennant, 1777): fango, ic
Pitar mediterranea Tiberi, 1855: b
++
v Al
59
Iberus, 15 (1), 1997
Pitar rudis (Poli, 1795): fango, cb
Tapes decussatus (Linnaeus, 1758): arena fangosa, ¡
Timoclea ovata (Pennant, 1777): fango, cb
Venerupis corrugata (Gmelin, 1791): arena, i
Venus casina Linnaeus, 1758: fango, c
Venus nux Gmelin, 1791
Venus verrucosa Linnaeus, 1758: fango, c
Familia PETRICOLIDAE
Petricola lifhophaga (Retzivs, 1786): interior de piedras calcáreas, mii
Mysia undata (Pennant, 1777): fango, ic
Familia CORBULIDAE
Corbula gibba (Olivi, 1792): fango y detrito coralígeno, c-b
Lentidium mediterraneum (0. 6. Costa, 1829): arena, i
Familia GASTROCHAENIDAE
Gastrochaena dubia (Pennant, 1777): interior de piedras calcáreas, ¡
Familia HIATELLIDAE
Hiatella arctica (Linnaeus, 1767): restos de conchas y piedras, ic
Hiatella rugosa (Linnaeus, 1767): restos de conchas, piedras y detrito coralígeno, ib
Panopea norvegica (Spengler, 1793)
Familia PHOLADIDAE
Barnea candida (Linnaeus, 1758): arena con bloques de fango, i
Pholas dactylus Linnaeus, 1758: arena y fango, ¡
Familia TEREDINIDAE
*Bankia carinata (Gray, 1827): madera
*lyrodus pedicellatus (Quatrefages, 1849): madera
Nototeredo norvegica (Spengler, 1792): madera
Familia XYLOPHAGIDAE
Xylophaga dorsalis (Turton, 1819): madera y detrito coralígeno
Familia THRACIDAE
Thracia convexa (Wood, 1815): fango, c
Thracia corbuloides Deshayes, 1830: fango, c
Thracia papyracea (Poli, 1795): arena, i
Thracia pubescens (Pulteney, 1799): fango, c
Familia PANDORIDAE
Pandora inaequivalvis (Linnaeus, 1758): arena, ¡
Pandora pinna (Montagu, 1803): fango y detrito coralígeno, b
Familia POROMYIDAE
Poromya granulata (Nyst y Westendorp, 1839): fango y detrito coralígeno, b
Familia CUSPIDARIIDAE
* Cardiomya striolata (Locard, 1898): fango y detrito coralígeno, b
* Cuspidaria abbreviata (Forbes, 1843): b
Cuspidaria cuspidata (Olivi, 1792): b
Cuspidaria rostrata (Spengler, 1793): b
Clase SCAPHOPODA
Familia DENTALIIDAE
Dentalium agile Sars, 1872
Dentalium inaequicostatum Dautzenberg, 1891: fango y detrito coralígeno, cb
Dentalium panormum Chenu, 1842: b
Dentalium vulgare da Costa, 1778: arena y detrito rocoso, ¡
Fustiaria rubescens (Deshayes, 1825): ¡
Familia SIPHONODENTALIDAE
Pulsellum lofotense (Sars, 1865): fango y detrito coralígeno, b
Codulus jeffreysi (Monterosato, 1875): b
Entalina teftragona (Brocchi, 1814): b
60
Fig. 109 ++
Fig. 110 +++
Fig. 111 +++
Fig. 108 +++
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figura 2. Concha de Rissoa gemmula (Sitges, 1,7 mm).
Figure 2. Shell of Rissoa gemmula (Sitges, 1.7 mm).
DISCUSIÓN
COMENTARIOS SOBRE ALGUNOS TÁ-
XONES: De la mayoría de especies citadas
para el Garraf existen fotografías y des-
cripciones actualizadas en la literatura,
aunque algunas un poco dispersas. En
este apartado nos hemos limitado a
comentar algunos de los taxones que nos
han parecido de mayor interés, ya sea por
su rareza, por su importancia pesquera-
comercial en el Garraf, por la escasa
documentación bibliográfica existente, o
bien por su importancia biológica en la
zona. De muchas de estas especies repor-
tamos fotografías, la mayoría al M.E.B.,
de la concha o de la protoconcha, según
convenga para su identificación.
Clase GASTROPODA
Familia LEPETIDAE
lothia fulva (O. E. Muller, 1776)
Esta especie atlántica ha sido citada
para el Mediterráneo por TAvIANI (1974),
más concretamente para el Adriático, en
fondos de fango entre 180 y 320 m de
profundidad, aunque como comenta el
propio autor, seguramente se trataba de
una concha semifósil del Wuúrmiense.
CECALUPO Y GIUustTI (1986) citan otro
ejemplar en buenas condiciones de la
Isla de Capraia, entre 400 y 440 m de
profundidad. Nuestro único ejemplar
también parece ser un fósil Wúrmiense,
puesto que se trata de una concha mal
conservada, procedente del detrito de
“El Parrusset” entre 250 y 350 m de pro-
fundidad.
61
Uber
Familia LEPETELLIDAE
Lepetella cfr. espinosae Dantart y Luque, 1994
No se han encontrado ejemplares
vivos de esta especie, y la diagnosis
sólo es posible estudiando la morfolo-
gía del animal. De todas formas las
otras dos especies con las que podría
confundirse, Lepetella sierrai Dantart y
Luque, 1994 y L. barrajoni Dantart y
Luque, 1994, no se han encontrado en el
Mediterráneo (ver DANTART Y LUQUE,
1994).
Familia ADDISONIDAE
Addisoniía excentrica Tiberi, 1857 (Fig. 3)
MCLEAN (1985) señala que la princi-
pal diferencia entre A. paradoxa Dall,
1882 del Atlántico occidental, y A. excen-
trica (Tiberi, 1857) es el tamaño del
adulto, dando 20, 3 mm de talla máxima
para la primera y 10, 5 mm para la segu-
nada. DANTART Y LUQUE (1994), tras una
detallada discusión, consideran a A.
paradoxa sinónimo posterior de A. excen-
trica, y reportan ejemplares de esta
última de hasta 12 mm. Nosotros hemos
encontrado un ejemplar de A. excentrica
de 20 mm, por lo que ratificamos esta
sinonimia.
Familia FISSURELLIDAE
Emarginula pustula Thiele in Kuester, 1913 (Fig. 4)
Esta especie ha sido considerada
por PIANI (1984) como un “endemismo
del archipiélago Toscano y de la costa
Sarda oriental”, pero el hallazgo de un
ejemplar en el detrito de “El Parrusset”,
amplía su distribución al Mediterráneo
occidental, hecho éste que era de espe-
rar.
Familia SCISSURELLIDAE
Anatoma aspera (Philippi, 1844)
Esta especie ha sido considerada si-
nónina de A. crispata Fleming, 1828, o
como una subespecie de ésta (SCHIRO,
1986), pero presenta una espira más alta,
y parece ser que A. crispata no vive al
sur de Escocia (Gofas, com. pers.), y ade-
más ambas especies presentan diferen-
cias en la rádula (DANTART, com. pers.).
Familia RISSOIDAE
Alvania cimicoides (Forbes, 1844) y Alvania testae (Aradas y Maggiore, 1843)
(ies 790)
Los miles de ejemplares de A. testae
hallados en los contenidos estomacales de
Astropecten irregularis, contrastan con los
tan sólo cuatro de A. címicoides (hallados
62
todos ellos en la misma estrella), a pesar
de que en sedimentos como el de “El Pa-
rrusset” A. cimicoides es aproximadamente
tres veces más frecuente que A. testae.
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figura 3. Addisonia excentrica (El Parrusset), 20 mm. Figura 4. Emarginula pustula (El Parrusset),
1,22 mm. Figura 5. Protoconcha de Danilia otaviana (El Parrusset). Figura 6. Obtusella macilenta
(Vilanova). Figura 7. Alvania testae (Vilanova), 2,16 mm. Figura 8. Alvania subsoluta (isla de
Capraia, Italia), 2,1 mm.
Figure 3. Addisonia excentrica (El Parrusset), 20 mm. Figure 4. Emarginula pustula (El Parrusset), 1.22
mm. Figure 5. Protoconch ofDanilia otaviana (El Parrusset). Figure 6. Obtusella macilenta. (Vilanova). Fi-
gure 7. Alvania testae (Vilanova), 2.16 mm. Figura 8. Alvania subsoluta (Capraia Island, Italy), 2.1 mm.
63
Iberus, 15 (1), 1997
Alvania zylensis Gotas y Warén, 1982 (Figs. 13, 14)
Esta especie fue descrita por GOFAS Y
WARÉN (1982) para las costas atlánticas
de Marruecos. AARTSEN, MENKHORST Y
GITTENBERGER (1984) la citan en la Bahía
de Algeciras, y posteriormente, BOGI,
COPPINI Y MARGELLI (1989) la mencionan
por primera vez para el Mediterráneo,
en el Tirreno. En el detrito de “El Parrus-
set” hemos encontrado algunas conchas
que asociamos a esta especie, concreta-
mente a la forma de profundidad des-
crita por BOGI ET AL. (1989), que presenta
una teleoconcha con una escultura débil.
El diámetro máximo de la protoconcha
es de 530 mm. Aportamos, además, la fo-
tografía de un ejemplar de la Isla de Al-
borán (Fig. 14), que aunque presenta una
teleoconcha idéntica a la de los ejempla-
res de Vallcarca, tiene una protoconcha
más pequeña, de 450 mm de diámetro.
Obtusella macilenta (Monterosato, 1880) (Fig. 6)
Es una especie abundante en todos los
fondos fangosos del Garraf, mientras que
sólo hemos hallado unos pocos ejempla-
res de O. intersecta (Wood, 1857). Sinembar-
go, lo normal en fondos similares de otras
regiones es que la proporción sea inversa.
Rissoa gemmula Fischer in de Folin, 1871 (Figs. 2, 20, 21)
Se han encontrado dos conchas en el
litoral de Sitges, más una en Es Caló (For-
mentera, Islas Baleares). Aunque no se ha
estudiado el material tipo, los tres ejem-
plares se corresponden con la descripción
aparecida en FOLIN (1871), que reprodu-
cimos a continuación, y con la figura
representada en NORDSIECK (1972):
“... Long 1*/3 millim. Coquille conique-
allongée, blanche, subdiaphane, ornée de có-
tes longitudinales obsoletes, a peine indi-
quées, et de stries spirales, visibles a la partie
inférieure des tours. Sept tours de spire ven-
trus: les trois premiers translucides, brillants,
globuleux, papilliformes; le quatrieme dilaté,
proportionnellement trés large; les dernieurs
peu dilatés; suture bordée, ornée en dessous
d'une petite zone transverse, brune, inte-
rrompue de blanc; dernier tour orné, a sa
partie moyenne, d'une zonule de meme co-
loration; overture petite, ovale; periostoma
simple. Observation. - On ne pourrait rap-
procher ce Rissoa que du R. dolium (Nyst),
(Nassa Philippi); mais notre espece est plus
élancée, plus petite, á cótes obsoletes, et sa
coloration est spéciale, comme la présence de
la zone suturale et de la zone médiane du
dernier tour”.
En cuanto a la protoconcha, es lisa
de 2!/4 vueltas de espira, con un diáme-
tro máximo de 390 mm. Hemos incluído
en el trabajo un dibujo detallado de la
concha (Fig. 2), aparte de las fotografías
realizadas al M.E.B. (Figs. 20, 21).
Además, hemos fotografiado las espe-
cies de Rissoidae a nuestro juicio más cer-
canas, Pusillina inconspicua (Alder, 1844)
(Figs. 17-19) y P. philippi (Aradas y Mag-
giore, 1844) (Figs. 15, 16), de las que se
diferencia por la coloración y forma.
Familia CALYPTRAEIDAE
Crepidula fornicata (Linnaeus, 1758)
Aunque se ha hallado una única
concha, su presencia en la zona puede
explicarse por la introducción artificial
adherida, al casco de un barco. Ade-
64
más, en el puerto de Barcelona (a tan
sólo 45 km de distancia) han aparecido
numerosos ejemplares vivos de esta
especie.
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figuras 9-14. Género Alvania, protoconchas. 9, 10: A. testae (Vilanova); 11, 12: A. subsoluta (isla de
Capraia, Italia); 13: A. zylensis (El Parrusset); 14: A. zylensis (isla de Alborán). Escalas, 9, 11-14: 200
um; 10: 100 ym.
Figures 9-14. Genus Alvania, protoconchs. 9, 10. A. testae (Vilanova); 11, 12: A. subsoluta (Capraia
Island, Italy); 13: A. zylensis (El Parrusset); 14: A. zylensis (Alborán Island). Scale bars, 9, 11-14: 200
ym; 10: 100 um.
65
Iberus, 15 (1), 1997
Figuras 15, 16. Pusillina philippi (cala Montjoy, Roses, Girona). 15: ejemplar de 2,1 mm; 16: pro-
toconcha. Figuras 17-19. Pusillina inconspicua (lossa de Mar, Girona). 17: ejemplar de 1,7 mm; 18,
19: protoconcha. Figuras 20, 21. Ríssoa gemmula (Sitges). 20: ejemplar de 1,7 mm; 21: protocon-
cha. Escalas, 16, 19, 21: 100 um; 18: 200 pm.
Figures 15, 16. Pusillina philippi (cala Montjoy, Roses, Girona). 15: shell of 2.1 mm; 16: protoconch.
Figures 17-19. Pusillina inconspicua (Tossa de Mar, Girona). 17: shell of 1.7 mm; 18, 19: protoconch.
Figures 20, 21. Rissoa gemmula (Sitges). 20: shell of 1.7 mm; 21: protoconch. Scale bars: 16, 19, 21:
100 ym, 18: 200 um.
66
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figuras 22-28. Protoconchas de Cerithiopsis. 22: C. diadema (Isla de Alborán); 23: C. jeffreysi
(bahía de Almería); 24: C. minima (Sitges); 25: C. nana (Sitges); 26: C. scalaris (bahía de Almería);
27: C. tiara (isla de Alborán); 28: C. tubercularis (La Herradura, Granada). Figura 29: C. nana
(Sitges), concha de 1,8 mm. Figura 30: C. tubercularis (La Herradura, Granada), concha de 2,4
mm. Escalas, 22-28: 200 um; 29, 30: 1 mm.
Figures 22-28. Cerithiopsis protoconchs. 22: C. diadema (Alborán Island); 23: C. jeftreysi (Almería
bay); 24: C. minima (Sitges); 25: C. nana (Sitges); 26: C. scalaris (Almería bay); 27: C. tiara
(Alborán Island); 28: C. tubercularis (La Herradura, Granada). Figure 29: C. nana (Sitges), shell of
1.8 mm. Figure 30: C. tubercularis (La Herradura, Granada), shell of 2.4 mm. Scale bars, 22-28:
200 um; 29, 30: 1 mm.
67
Iberus, 15 (1), 1997
Familia EULIMIDAE
La familia Eulimidae es una de las
más ricas en aguas profundas, quizás
más que la familia Turridae (BOUCHET Y
WARÉN, 1986). A diferencia de otras
regiones, la zona de estudio es pobre en
especies del género Vitreolina, que prin-
cipalmente viven en aguas infralitorales.
Los pocos ejemplares de este género
encontrados proceden de aguas profun-
das.
Crinophthetros sp. (Figs. 37, 38)
Se han encontrado tres ejemplares
frescos del género Crinophtheiros en con-
tenidos estomacales de Astropecten irre-
gularis, a profundidades superiores a
los 200 m. La especie C. comatulicola
(Graf, 1875) es frecuente en fondos
infralitorales, siempre asociada a Ante-
don mediterranea (Lamarck) (TEMPLADO,
com. pers.), pero a profundidades supe-
riores a 200 m, el crinoideo presente es
Leptometra phalangium (Muller), por lo
que podría tratarse de otra especie dife-
rente perteneciente al género Crinoph-
theiros.
Parvioris ibizenca (Nordsieck, 1968)
La especie Parvioris ibizenca ha sido
referida normalmente en la bibliografía
como P. microstoma (Brusina, 1864), pero
según Gofas (com. pers.) el nombre
correcto sería el primero de éstos,
porque P. microstoma ya está preocu-
pado, con lo que se considera sinoni-
mía.
Vitreolina sp.
La especie tipo del género Vitreolina
es Eulima incurva Bucquoy, Dautzen-
berg y Dollfus, 1883, especie poco clara
(BOUCHET Y WARÉN, 1986). Además,
hay una gran confusión con las especies
adscritas al género Vitreolina (eulímidos
de pequeño tamaño,con forma curva-
da), por lo que hemos preferido men-
cionar estos ejemplares como Vitreolina
sp.
Familia MURICIDAE
Trophon echinatus (Kiener, 1840) y Trophon sp. (Figs. 41-44)
T. echinatus presenta una considerable
variación de formas de la teleoconcha, espe-
cialmente con relación a la profundidad.
Sin embargo, no se ha descrito variabili-
dad en la protoconcha. En el detrito de “El
Parrusset” hemos encontrado dos tipos de
protoconcha que presentan tamaños muy
diferentes; una con un diámetro máximo
de unos 670 mm, que asignamos a T. echi-
natus, y otra con un diámetro máximo regis-
trado entre 770 y 830 mm, que denomi-
namos provisionalmente Trophon sp.
Trophon barvicensis (Johnston, 1825) (Fig. 45)
Según BOUCHET Y WARÉN (1985), no
han visto ningún especimen mediterrá-
neo que pueda asignarse inequívoca-
68
mente a este taxón. También comentan
que algunas citas de Trophonopsis richardi
(Dautzenberg y Fischer, 1896) para el
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Eigura 31. Talassia daguenetí (El Parrusset), concha juvenil de 0,88 mm. Figura 32. Graphis albida
(El Parrusset), 1,83 mm. Figuras 33, 34. Graphis albida (La Herradura, Granada). 33: concha de 2,4
mm, 34: protoconcha. Figuras 35, 36. Vitreolina perminima (El Parrusset). 35: concha de 2,2 mm;
36: protoconcha. Figuras 37, 38. Crinophtheiros sp. (Vilanova). 37: concha de 4,6 mm; 38: proto-
concha. Figuras 39, 40. Protoconchas de Epitonium. 39: E. clathratulum (Mijas Costa, Málaga); 40:
E. linctum (El Parrusset). Escalas, 34: 100 um; 36: 300 um; 38: 300 um; 39, 40: 200 pm.
Figure 31. Talassia dagueneti (El Parrusset), juvenile shell 00.88 mm. Figure 32. Graphis albida (El
Parrusset), 1.83 mm. Figures 33, 34. Graphis albida (La Herradura, Granada). 33: shell 0f2.4 mm; 34:
protoconch. Figures 35, 36. Vitreolina perminima (El Parrusset). 35: shell of 2.2 mm; 36: protoconch.
Figures 37, 38. Crinophtheiros sp. (Vilanova). 37: shell of 4.6 mm; 38: protoconch. Figures 39, 40. Pro-
toconchs ofEpitonium. 39: E. clathratulum (Mijas Costa, Málaga); 40: E. linctum (El Parrusset). Scale
bars, 34: 100 um; 36: 300 ym; 38: 300 um; 39, 40: 200 um.
69
Iberus, 15 (1), 1997
Figuras 41, 42. Trophon echinatus (El Parrusset). 41: concha juvenil de 4,75 mm; 42: protoconcha.
Figuras 43, 44. Trophon sp. (El Parrusset). 43: concha juvenil de 2,7 mm; 44: protoconcha. Figura
45. Trophon barviciensis (El Parrusset), 19 mm. Figuras 46, 47. Trophon muricatus. 46: concha juve-
nil de 5,9 mm; 47: protoconcha. Escalas 500 um.
Figures 41, 42. Trophon echinatus (El Parrusset). 41: juvenile shell of 4.75 mm; 42: protoconch.
Figures 43, 44. Trophon sp. (El Parrusset). 43: juvenil shell of 2.7 mm; 44: protoconch. Figure 45.
Trophon barviciensis (El Parrusset), 19 mm. Figures 46, 47. Trophon muricatus. 46: juvenil shell of
5.9 mm; 47: protoconch. Scale bars 500 um.
70
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figuras 48, 49. Bela brachystoma (Vilanova). 48: ejemplar de 3,6 mm; 49: protoconcha. Figuras 50,
51. Mangelia attenuata (Vilanova). 50: ejemplar de 2,5 mm; 51: protoconcha. Figuras 52, 53.
Mangelia nuperrima (El Parrusset). 52: ejemplar de 7 mm; 53: protoconcha. Figuras 54, 55.
Mangelia serga (El Parrusset). 54: ejemplar de 2,75 mm; 55: protoconcha. Escalas 500 um.
Figures 48, 49. Bela brachystoma (Vilanova). 48: shell of 3.6 mm; 49: protoconch. Figures 50, 51.
Mangelia attenuata (Vilanova). 50: shell 0f2.5 mm; 51: protoconch. Figures 52, 53. Mangelia nupe-
rrima (El Parrusset). 52: shell of 7 mm; 53: protoconch. Figures 54, 55. Mangelia serga (El Parrusset).
54: shell 0f 2.75 mm; 55: protoconch. Scale bars 500 yum.
71
Iberus, 15 (1), 1997
Mediterráneo (ver DI GERONIMO Y PaA-
NETTA, 1973 y FRANCHINI Y FRILLI, 1970),
podrían corresponder a T. barvicensis.
Nuestro único ejemplar proveniente de
“El Parrusset” parece un ejemplar nor-
mal de T. barvicensis (Warén, com. pers.).
Familia TURRIDAE
Mangelia costata (Donovan, 1804)
AARTSEN ET AL. (1984) diferencian M.
coarctata (Forbes, 1840) de M. costata,
siendo la primera más grande y alar-
gada, con una o dos costillas más y pre-
sentando una coloración uniforme. De
todas maneras, dichos autores no des-
cartan la posibilidad de que M. costata
sea la forma litoral y M. coarctata la de
aguas profundas de una misma especie.
El análisis de más de 300 ejemplares del
Mediterráneo español de la colección de
uno de los autores, desde aguas someras
hasta profundidades de 350 m, y cu-
briendo una área geográfica desde el
Mar de Alborán hasta Cataluña, nos
sugiere que, efectivamente, ambas son
formas de una misma especie, con una
ligera tendencia a aumentar el tamaño y
a atenuar la coloración a medida que
aumenta la profundidad. Además, los
escasos ejemplares de coloración uni-
forme encontrados en aguas profundas
son ejemplares subfósiles. Por lo tanto, y
atendiendo sólo a las características de
la concha, consideramos a M. coarctata
como sinónimo de M. costata.
Mangelia attenuata (Montagu, 1803) (Figs. 50, 51)
Del mismo modo que en el caso
anterior, creemos que M. tenuicostata
(Brugnone, 1868) es sinónimo de M. atte-
nuata. Esta especie, que se encuentra
desde el litoral hasta los 250 m, dismi-
nuye de tamaño al aumentar la profun-
didad, y atenúa la coloración. Además,
las vueltas de espira se van haciendo
más escalonadas y las costillas más mar-
cadas, pero la protoconcha no sufre
variación alguna. Las Figuras 50 y 51
ilustran la forma de aguas profundas.
Mangelia nuperrima (Tiberi, 1855) (Figs. 52, 53)
Esta especie se diferencia de Man-
gelia serga (Dall, 1881) por poseer
vueltas de espira más redondeadas y
una boca más ancha. Se ha encontrado
un ejemplar fresco en el contenido es-
tomacal de Astropecten irregularis, y
cuatro conchas en el detrito de “El Pa-
rrusset”.
Mangelia serga (Dall, 1881) (Figs. 54, 55)
Esta especie se ha citado pocas veces
en el Mediterráneo; una vez para Cerdeña
(CECALUPO, 1984) y otra vez para el Tirreno
Central (SMRIGLIO, MARIOTTINI Y GRAVINA,
1987b). Se ha encontrado un ejemplar con
restos de partes blandas en contenidos
estomacales de Astropecten irregularis y
tres conchas en el detrito de “El Parrusset”.
Taranis moerchi (Malm, 1861) (Figs. 57, 58, 59)
Esta especie, de concha extremada-
mente variable, no es rara en el Medite-
72
rráneo. Las medidas de la protoconcha
ilustrada son las siguientes: 500 mm de
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figura 56. Microdrillia loprestiana (EL Parrusset), 3,1 mm. Figuras 57-59 Taranis moerchi (El
Parrusset). 57: concha de 4,4 mm, 58, 59: protoconcha. Figuras 60-62. Taranis sp. (El Parrusset).
60: concha de 2,8 mm; 61, 62: protoconcha. Escalas, 58, 61, 62: 500 um; 59: 200 um.
Figure 56. Microdrillia loprestiana (EL Parrusset), 3.1 mm. Figures 57-59. “Taranis moerchi (El
Parrusset). 57: shell of 4.4 mm; 58, 59: protoconch. Figures 60-62. Taranis sp. (El Parrusset). 60: shell
of 2.8 mm; 61, 62: protoconch. Scale bars, 58, 61, 62: 500 ym; 59: 200 ym.
Iberus, 15 (1), 1997
altura y 550 mm de diámetro máximo.
Se han encontrado 18 ejemplares (inclu-
yendo juveniles) en el detrito de “El
Parrusset”.
Taranis sp. (Figs. 60, 61, 62)
Junto a los ejemplares de T. moerchi,
hemos encontrado una concha de
aspecto similar a ésta, pero que difiere
en la protoconcha, que es mucho más
grande (650 mm de altura y 730 mm de
diámetro máximo), y además presenta
una escultura puntiforme alineada en
cordones desde el mismo ápice de la
protoconcha, mientras que en T. moerchi
los cordones de puntos se desordenan
en el ápice. Este ejemplar mide 2, 8 mm
de longitud.
Microdrillia loprestiana (Calcara, 1841) (Fig. 56)
Esta especie es común en contenidos
estomacales de estrellas a partir de los
60-80 metros, y en el detrito de “El
Parrusset”.
Pleurotomella demosia (Dautzenber y Fischer, 1896) (Figs. 66, 67, 68)
Nuestros ejemplares se ajustan a la
descripción y figuras aportadas por BOu-
CHET Y WARÉN (1980), aunque el diá-
metro de la protoconcha es menor. Las
medidas que presenta la protoconcha fo-
tografiada (Figs. 67, 68) son las siguien-
tes: 325 mm de diámetro de la P1 y 580
mm de diámetro de la P2.
Esta especie fue citada por primera
vez para el Mediterráneo por BoGI (1985),
y posteriormente por CECALUPO (1988)
para Cerdeña y por BOGI ET AL. (1989)
para el Tirreno. Hemos encontrado dos
ejemplares frescos en contenidos estoma-
cales de Astropecten irregularis y dos
conchas en el detrito de “El Parrusset”.
Pleurotomella coeloraphe (Dautzenberg y Fischer, 1896) (Figs. 63, 64, 65)
De esta especie, de aspecto más glo-
boso que P. eurybrocha y que P. demosia,
sólamente se conoce el material de la
zona batial de Azores, recolectado en va-
rias estaciones de la expedición MO-
NACO y en una estación de la expedi-
ción PORCUPINE (BOUCHET Y WARÉN,
1980). Presenta una protoconcha similar
a la de P. eurybrocha en cuanto a forma,
pero se diferencia en que la protoconcha
embrionaria es reticulada (como en P. de-
mosia) y no granulada como en P. eury-
brocha. Las medidas que presenta la pro-
toconcha fotografiada son las siguientes:
210 mm de diámetro de la P1 y 460 mm
de diámetro de la P2. El diámetro de la
protoconcha a 100 mm del ápice es de
200 mn, al igual que en P. eurybrocha.
Hemos encontrado 4 ejemplares
juveniles en el detrito de “El Parrusset”.
Se trata por tanto de la primera cita de
esta especie para el Mediterráneo.
Familia TJAERNOEIDAE
Familia monogenérica de Hetero-
branchia descrita por WARÉN (1991) en
base a la anatomía externa del animal.
Previamente, el género Tjaernoeia, des-
74
crito por WARÉN Y BOUCHET (1988), ha-
bía sido situado provisionalmente en la
familia Pyramidellidae por los mismos
autores.
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figuras 63-65. Pleurotomella coeloraphe (El Parrusset). 63: juvenil de 1,6 mm; 64, 65: protoconcha.
Figuras 66-68. Pleurotomella demosía (El Parrusset). 66: juvenil de 2,1 mm; 67, 68: protoconcha.
Figura 69. Teretía teres (El Parrusset), 4,4 mm. Escalas, 64, 67: 500 pm; 65, 68: 200 ym.
Figures 63-65. Pleurotomella coeloraphe (El Parrusset). 63: juvenile shell of 1.6 mm; 64, 65: proto-
conch. Figures 66-68. Pleurotomella demosia (El Parrusset). 66: juvenile shell of 2.1 mm; 67, 68: pro-
toconch. Figure 69. Teretia teres (El Parrusset), 4.4 mm. Scale bars, 64, 67: 500 pm; 65, 68: 200 ym.
73
Iberus, 15 (1), 1997
Figuras 70-77. Familia Pyramidellidae. 70: Chrysallida brattstroemi (El Parrusset), 1,1 mm. 71: Chry-
sallida dollfusi (LEscala, Girona), 2,8 mm. 72: Eulimella ataktos (Vilanova), 2,7 mm. 73: Eulimella
ventricosa (Isla de Alborán), 2,36 mm. 74: Enlimella unifasciata (Blanes, Girona), 5,5 mm. 75: Odos-
tomia afzelii (Vilanova), 1,5 mm. 76: Odostomia hansgei (Vilanova), 1,6 mm. 77: Turbonilla acutis-
sima (Mijas, Málaga), 4,4 mm. Escalas, 70: 200 pm; 71, 72, 73, 75, 76: 500 um; 74, 77: 1 mm.
Figures 70-77. Family Pyramidellidae. 70: Chrysallida brattstroemi (El Parrusset), 1.1 mm. 71: Chry-
sallida dollfusi (L'Escala, Girona), 2.8 mm. 72: Eulimella ataktos (Vilanova), 2.7 mm. 73: Eulimella
ventricosa (Alborán Island), 2.36 mm. 74: Eulimella unifasciata (Blanes, Girona), 5.5 mm. 75: Odos-
tomia afzelii (Vilanova), 1.5 mm. 76: Odostomia hansgei (Vilanova), 1.6 mm. 77: Turbonilla acutis-
sima (Mijas, Málaga), 4.4 mm. Scale bars, 70: 200 um; 71, 72, 73, 75, 76: 500 um; 74, 77: 1 mm.
76
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figuras 78, 79. Ringicula cfr. leptocheila (El Parrusset). 78: concha de 2,37 mm; 79: protoconcha.
Figuras 80, 81. Ringicula auriculata (Vilanova). 80: concha de 3,75 mm; 81: protoconcha. Figura
82. Cylichnina umbilicata (Vilanova), 1,3 mm. Figura 83: Limacina retroversa (El Parrusset), 2,7
mm. Figuras 84, 85. Peracle reticulata (El Parrusset). 84: concha de 2 mm; 85: protoconcha. Escalas,
79, 85: 200 um; 81: 500 um.
Figures 78, 79. Ringicula cfr. leptocheila (El Parrusset). 78: shell 02.37 mm; 79: protoconch. Figures 80,
81. Ringicula auriculata (Vilanova). 80: shell of 3.75 mm, 81: protoconch. Figure 82. Cylichnina umbili-
cata (Vilanova), 1.3 mm. Figure 83: Limacina retroversa (El Parrusset), 2.7 mm. Figures 84, 85. Peracle
reticulata (El Parrusset). 84: shell of 2 mm; 85: protoconch. Scale bars, 79, 85: 200 ym; 81: 500 ym.
7
Iberus, 15 (1), 1997
Tjaernoeia exquisita (Jeffreys, 1883)
Especie poco frecuente en el Medite-
rráneo, en donde WARÉN (1991) la
señala entre 25 y 200 m. Nosotros
hemos encontrado ejemplares a más
profundidad en el detrito de “El Parrus-
set”.
Familia ARCHITECTONICIDAE
Basisulcata lepida (Bayer, 1942)
Sólo se han encontrado dos ejempla-
res vivos en “La Mar de Nit”, a unos 40 m
de profundidad, en una zona detrítica con
grandes colonias de Bolinus brandaris (L.,
1758), cuyas conchas estaban recubiertas
por la anémona Calliactis parasitica (Couch).
Familia PYRAMIDELLIDAE (Figs. 70-77)
En el trabajo sobre Pyramidellidae
del Mediterráneo español de PEÑAS,
TEMPLADO Y MARTÍNEZ (1996) se aporta
una gran cantidad de datos sobre la pre-
sencia de esta familia en fondos del
Garraf. Asimismo, se citaba por primera
vez para el Mediterráneo las siguientes
especies: Chrysallida brattstroemi Warén,
1991, Eulimella ataktos Warén, 1991,
Odostomia afzelii (Warén, 1991), y Odosto-
mia hansgei (Warén, 1991), las cuatro
comunes en esta zona, y ninguna
hallada hasta ahora en ninguna otra
localidad del Mediterráneo español.
Además, en el mismo trabajo, numero-
sas especies son citadas por primera vez
para el Mediterráneo español, también
procedentes del Garraf.
Las especies que no habían sido cita-
das para el Garraf en el trabajo anterior de
PEÑAS ET AL. (1996), y que hemos hallado
posteriormente, son: Chrysallida dollfusi
(Kobelt, 1903), Eulimella unifasciata (Forbes,
1844), Eulimella ventricosa (Forbes, 1844),
y Turbonilla acutissima Monterosato, 1884.
El hallazgo en “El Parrusset” de una
concha subfósil de Chrysallida pellucida
(Dillwyn, 1817), no contradice la hipóte-
sis de PEÑAS ET AL., (1996), que comen-
tan que, en la actualidad, esta especie
atlántica no penetra en el Mediterráneo
más allá del mar de Alborán.
Familia SCAPHANDRIDAE
Scaphander punctostriatus (Mighels y Adams, 1841)
Esta especie ha sido citada raras
veces en el Mediterráneo (MONTERO-
SATO, 1880; Ros, 1975; BOUCHET Y
TAvIANI, 1989), y ha sido tradicional-
mente considerada una especie de aguas
profundas del Atlántico. Se han encon-
trado 6 conchas en el detrito de “El
Parrusset”.
Familia DISCODORIDIDAE
Taringa faba (Ballesteros, Llera y Ortea, 1984)
Esta especie se encuentra en la
playa del búnker de Cubelles, bajo
piedras a menos de 50 centímetros de
profundidad. Ésta es la localidad tipo
78
de la especie, descrita por BALLESTE-
ROS, LLERA Y ORTEA (1984), donde se
puede encontrar con relativa frecuen-
cia.
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figura 86. Yoldiella lucida, 4,25 mm. Figura 87. Yoldiella nana, 2,9 mm. Figuras 88-93. Yoldiella
philippiana. 88, 89: juveniles de 2,9 y 2,3 mm; 90: adulto de 4,3 mm; 91: juvenil, detalle de los
dientes de la charnela; 92: charnela; 93: protoconcha. Todos las especies de El Parrusset, contenido
estomacal de Astropeceten, 250-350 m. Escalas; 92: 200 pm; 93: 100 pm.
Figure 86. Yoldiella lucida, 4.25 mm. Figure 87. Yoldiella nana, 2.9 mm. Figures 88-93. Yoldiella phi-
lippiana. 88, 89: juvenile shells of 2.9 and 2.3 mm; 90: adult shell of 4. 3 mm; 91: juvenil shell, hinge
lateral view; 92: hinge; 93: protoconch. All the especies from El Parrusset, gut content of Astropecten,
250-350 m. Scale bars, 92: 200 ym; 93: 100 ym.
Y
Iberus, 15 (1), 1997
Familia FAVORINIDAE
Favorinus vitreus (Ortea, 1982)
Esta especie fue descrita por ORTEA
(1982) en Tenerife (Islas Canarias), a par-
tir de dos ejemplares, y únicamente se
ha citado 1 ejemplar para el Mediterrá-
neo, en al Cabo de Palos (Murcia) en ri-
zomas de Posidonia a 5 m de profundi-
dad (TEMPLADO, 1982). Se ha recolec-
tado un ejemplar de esta especie en Ju-
nio de 1993 en Cubelles, debajo de una
piedra a unos 20-30 cm de profundidad.
Clase BIVALVIA
Familia NUCULIDAE
Nucula cfr. nucleus (Linnaeus, 1758)
Gofas (com. pers.) opina que su pre-
sencia en el Mediterráneo es dudosa,
siendo N. hanleyi Winckworth, 1930, la
especie más normal, que presenta un
periostraco más brillante, con estrías
radiales oscuras, y más alargada ante-
riormente. SALAS (1996) ilustra un ejem-
plar de N. nucleus del Mediterráneo.
Hemos encontrado ejemplares juveniles
con una protoconcha que coincide con la
descripción de GOFAS Y SALAS (1996), y
ejemplares adultos que, aunque han
perdido parte del periostraco, asigna-
mos a N. nucleus.
Familia YOLDIIDAE
La familia Yoldiidae es la principal
familia de Nuculanoidea en el Medite-
rráneo, y en el Garraf sólo hemos ha-
llado el género Yoldiella. Las otras fami-
lias de Nuculanoidea no han sido reco-
lectadas en este estudio por presentar
una distribución batimétrica de mayor
profundidad. Aunque tenemos constan-
cia de la existencia de especies de otras
familias en zonas más profundas frente
a la costa del Garraf (Dantart, com. pers.).
Hemos tratado de recopilar aquí las
citas modernas de las especies de la sub-
familia Yoldiellinae en el Mediterráneo
debido a que la informacion sobre el
género es muy dispersa. Sin embargo,
no se han tenido en cuenta descripcio-
nes originales, citas antiguas ni sinoni-
mias, que se pueden encontrar en los
artículos mencionados en esta sección.
De todas las citas recopiladas para el
Mediterráneo, reconocemos sólo 5 espe-
cies. Se han dado entre corchetes los
nombres utilizados incorrectamente, o
los que han sido considerados como
sinonimias.
Yoldiella lucida (Lovén, 1846) (Fig. 86)
Di Geronimo y Panetta (1973): Golfo de Taranto, 940-1000 m
Warén (1989): distribucion Mediterránea entre 100 y 1000 m de profundidad
Es la especie de Yoldiella menos fre-
cuente de las halladas en Garraf, habién-
dose encontrado sólo tres conchas, dos
en contenidos estomacales de estrellas y
80
una en el sedimento, todas del detrito
de “El Parrusset”, entre 250 y 350 m de
profundidad, por lo que se deduce que
vive en la zona.
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figura 94. Bathyarca pectunculoides (El Parrusset), 1,3 mm. Figura 95. Bathyarca philippiana (El
Parrusset), 1,3 y 1,6 mm. Figura 96. Crenella pellucida (El Parrusset), 710 um. Figura 97. Modiolula
phaseolina (El Parrusset), 1,96 mm.
Figure 94. Bathyarca pectunculoides (El Parrusset), 1.3 mm. Figure 95. Bathyarca philippiana (El
Parrusset), 1.3 and 1.6 mm. Figure 96. Crenella pellucida (El Parrusset), 710 pm. Figure 97.
Modiolula phaseolina (El Parrusset), 1.96 mm.
81
Iberus, 15 (1), 1997
Yoldiella nana (M. Sars, 1865) (Fig. 87)
Cecalupo y Giusti (1986): Isla de Capraia, 400-440 m [Portlandia frigida (Torell, 1859)]
Bogi et al. (1989): Capo Corso, 150 m [Portlandia frigida (Torell, 1859)]
Warén (1989): Banyuls, 650-770 m
Se han encontrado varias conchas en
contenidos estomacales de estrellas
entre 100 y 350 m de profundidad, y
otras en el detrito de “El Parrusset”, por
lo que se deduce que también vive en la
zona.
Yoldiella philippiana (Nyst, 1845) (Figs. 88-93)
Di Geronimo y Panetta (1973): Golfo de Taranto, 350-1000 m [Yoldiella tenuis (Philippi)]
Di Geronimo (1974): Jónico [Yoldiella tenuis (Philippi)]
Cecalupo y Giusti (1986): varios ejemplares vivos, Isla de Capraia, 400-440 m
Warén (1989): Mediterráneo, 100-300 m
Bonfitto y Sabelli (1995): Cerdeña, 245-1707 m
Es la especie más abundante, apare-
ciendo tanto en sedimentos como en
contenidos intestinales de Astropecten,
desde los 60 hasta los 350 m de profun-
didad. Se han encontrado numerosos
juveniles vivos.
Las otras dos especies mediterráneas
de este género, Yoldiella messanensis
(Seguenza, MS, Jeffreys, 1870) y Yoldiella
seguenzae Bonfitto y Sabelli, 1995, no se
han encontrado en la zona de estudio.
La primera ha sido citada en el Medite-
rráneo en general (150-3000 m) y en el
mar de Alborán (60-1235 m) por
TERRENI (1980) CECALUPO Y GIUST1
(1986), WARÉN (1978, 1989), ALLEN Y
HANNAH (1989) y SALas (1996). La se-
gunda sólo se conoce de Cerdeña -(245-
1707 m) y mar de Alborán, entre 480 y
1005 m (BONFITTO Y SABELLL 1995;
SALAS 1996).
Familia MYTILIDAE
El género Idas en el Mediterráneo
está representado por tres especies (Wa-
RÉN, 1991), asociadas siempre a restos
de esqueletos de cetáceos. Además de
este hábitat, 1. argenteus Jeffreys, 1876 e 1.
ghisotti Warén y Carozza, 1990 también
pueden encontrarse en restos de troncos
(WARÉN, 1991, 1993). La utilización del
género Idas Jeffreys, 1878, en vez de Ida-
sola Iredale, 1915, contrariamente a lo
propuesto por DELL (1987), se basa en lo
expuesto por WARÉN (1991).
Idas cfr ghisottii Warén y Carrozza, 1990
En un tronco de madera arrojado a
la playa tras una tormenta, se ha
encontrado un ejemplar que asignamos
a esta especie, junto con varios ejem-
plares de Teredinidae. Esta especie sólo
se ha encontrado asociada a restos de
madera en el Mediterráneo por
CARROZZA (1984), que la identificó
erróneamente como Myrina modiolaefor-
82
mis Sturany, 1896. Fue corregido poste-
riormente por WARÉN Y CARROZZA
(1990), que la describieron como nueva
especie. De todas formas, y debido a la
pérdida del único ejemplar hallado, la
asignación de este especimen podría
ser errónea, aunque estamos seguros
de que no se trata de /. simpsoni (Mars-
hall, 1900).
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figura 98. Thyasira (1) biplicata (El Parrusset), 4,9 mm. Figura 99. Thyasira (1) obsoleta (El Parrusset),
1,46 y 1,87 mm. Figura 100. Thyasira (P) subovata (El Parrusset), 1 y 1,16 mm. Figuras 101, 102.
Thyasira (Parathyasira) granulosa. 101: ejemplar de 5.4 mm. 102: detalle de la granulación de la concha.
Escala 400 um.
Figure 98. Thyasira (T.) biplicata (El Parrusset), 4.9 mm. Figure 99. Thyasira (T.) obsoleta (El Parrusset),
1.46 and 1.87 mm. Figure 100. Thyasira (P.) subovata (El Parrusset), 1 and 1.16 mm. Figures 101, 102.
Thyasira (Parathyasira) granulosa. 101: shell of5.4 mm. 102: shell granulation detail. Scale bar 400 ym.
83
Iberus, 15 (1), 1997
Idas simpsoni (Marshall, 1900)
Se trata de otro Mytilidae interesante,
que vive en restos orgánicos de esquele-
tos de cetáceos o peces, aunque mucho
más común que el anterior y de distribu-
ción más amplia. Se han encontrado va-
rios ejemplares asociados a esqueletos.
Modiolula phaseolina (Philippi, 1844) (Fig. 97)
Se han encontrado unos pocos ejem-
plares vivos en el detrito de “El Parrus-
set”, aunque esta especie destaca por la
gran cantidad de conchas Wúrmienses
de gran tamano (más de 20 mm) encon-
tradas en esta localidad.
Familia PECTINIDAE
Hemos incluido en esta familia las
especies clasificadas por algunos auto-
res como Propeamussiidae (o Amussii-
dae). De todas formas, esta clasificación
es provisional hasta que se realice un es-
tudio filogenético que resuelva la cues-
tión. Hemos seguido la sistemática utili-
zada por WAGNER (1991), excepto en la
separación de Pectinidae y Amussiidae.
Para algunas especies de “Amussiidae”,
hemos seguido a SMRIGLIO Y MARIOT-
TINI (1990).
Pseudamussium septemradiatum (O. E. Muller, 1776)
Se han encontrado ejemplares vivos
de esta especie en fondos de fango entre
150 y 200 m de profundidad, mientras
que VinYas (1981) la consideraba como
una especie de aguas frías, que supues-
tamente se había extinguido del Medite-
rráneo, aunque abundante en los sedi-
mentos Wúrmienses (MArs, 1958; MAR-
TINELL Y JULIA-BRUGUES, 1973; VINYAS,
1981; DOMENECH Y MARTINELL, 1982).
SALAS (1996) la cita viva para el mar de
Alborán.
Flexopecten glaber (Linnaeus, 1758)
Gofas (com. pers.) ha comentado que se
trata de una especie más bien lagunar,
rara en el Mediterráneo occidental, y que
algunos juveniles grandes de E. flexuosus,
que no presentan aún la flexuosidad típica
de la especie, pueden ser confundidos con
F. glaber. Hemos encontrado una única
valva de esta especie, de 33 mm de altura
con 10 costillas principales, claramente
diferente de FE. flexuosus, cuyos mayores
ejemplares encontrados en la zona miden
28 mm y presenta 5 costillas principales.
Familia LIMIDAE
Limatula cfr. gwyni (Sykes, 1903)
Se ha encontrado una única valva
fresca procedente del detrito de “El
Parrusset”. El ejemplar se destruyó
durante el proceso de montaje para el
84
M.E.B. El color era blanco y presentaba
una forma y tamaño similar a L.
subovata, aunque totalmente lisa y sin
restos de costillas radiales.
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figura 103. Thyasira (Leptaxinus) incrassata (El Parrusset), 1,66 mm. Figura 104. Thyasira
(Axinulus) croulinensis (El Parrusset), 1,26 mm. Figura 105. Thyasira (A.) eumyaria (El Parrusset),
2,9 mm. Figura 106. 7hyasira (Mendicula) ferruginea (El Parrusset), 1,46 mm. Figura 107. Arculus
sp. (El Parrusset), 1,02 mm y 1,16 mm.
Figure 103. Thyasira (Leptaxinus) incrassata (El Parrusset) 1.66 mm. Figure 104. Thyasira
(Axinulus) croulinensis (El Parrusset), 1.26 mm. Figure 105. Thyasira (A.) eumyaria (El Parrusset),
2.9 mm. Figure 106. Thyasira (Mendicula) ferruginea (El Parrusset), 1.46 mm. Figure 107. Arculus
sp. (El Parrusset), 1.02 mm and 1.16 mm.
95
Iberus, 15 (1), 1997
Familia LUCINIDAE
Lucinoma borealis (Linnaeus, 1767)
Se han encontrado ejemplares vivos de
gran tamaño (hasta 47,9 mm, un ejemplar
de la coleccion de J. L. Ferrer), en fondos
de fango entre 60 y 80 m de profundidad.
Familia THYASIRIDAE (Figs. 98-106)
Los tiasíridos son la principal familia
de bivalvos que habita en el talud.
Muchas especies viven desde el circalito-
ral hasta profundidades abisales. Las
especies atlánticas han sido reciente-
mente revisadas a nivel morfológico por
PAYNE Y ALLEN (1991), pero son pocos los
trabajos sobre este grupo en el Mediterrá-
neo. La descripción de una nueva especie
mediterránea por CARROZZA (1981), así
como las redescripciones de algunas
especies de Monterosato publicadas por
GAGLINI (1991) son las obras modernas
más importantes para este mar. Además,
existen algunas citas dispersas (p. e. DI
GERONIMO Y PANETTA, 1973; TERRENI,
1980; CARROZZA, 1984; CIANFANELLI Y
TALENTI, 1987; CECALUPO Y GIusTI, 1989),
pero no hay ningún trabajo taxonómico
de revisión importante. Tampoco preten-
demos aquí realizar una revisión taxonó-
mica del grupo, pero hemos querido foto-
grafiar las 8 especies aparecidas en el
detrito de “El Parrusset” (Figs. 98-106),
constituyendo 6 de ellas la primera cita
para el Mediterráneo español.
Thyasira biplicata (Philippi, 1836) (Fig. 98)
Esta especie, fue descrita por PHI-
LIPPI (1836) para zonas abisales del Mar
Mediterráneo, pero ha sido referida en
la literatura como T. flexuosa (Montagu,
1803), que es una especie litoral atlántica
con la ondulación posterior más suave
(Gofas, com. pers.), de presencia dudosa
en el Mediterráneo.
Familia MONTACUTIDAE
Epilepton clarkiae (Clark, 1852)
Todos los ejemplares se han encon-
trado en una comunidad dominada por
Turritella communis Risso, 1826, a unos
60 m de profundidad.
Epilepton sp.
Este pequeño Epilepton, aparecido en
el detrito coralígeno de “El Parrusset”
está en este momento en proceso de des-
cripción.
Familia NEOLEPTONIDAE
Arculus sp. (Fig. 107)
Hemos identificado provisionalmen-
te estos ejemplares, hallados también en
86
“El Parrusset”, dentro del género Arcu-
lus.
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Figura 108. Xylophaga dorsalis (Vilanova): exterior valva derecha, 3,4 mm; interior valva izquierda,
1,6 mm. Figura 109. paleta de Bankia carinata (Vilanova), 4,7 mm. Figura 110. Lyrodus pedicellatus
(Vilanova): exterior valva izquierda, 1,9 mm; interior valva derecha, 2,16 mm; paleta de 2,5 mm. Fi-
gura 111. Nototeredo norvegica (Vilanova): exterior valva izquierda, 1, 38 mm; interior valva derecha,
1,5 mm; paleta de 1,7 mm.
Figures 108. Xylophaga dorsalis (Vilanova): outside of right valve, 3.4 mm; inside of lefi valve, 1.6 mm.
Figure 109. pallet ofBankia carinata (Vilanova), 4.7 mm. Figures 110. Lyrodus pedicellatus (Vilanova):
outside of lefi valve, 1.9 mm; inside of right valve, 2.16 mm; pallet of 2.5 mm. Figure 111. Nototeredo
norvegica (Vilanova): outside of lefi valve, 1.38 mm; inside of right valve, 1.5 mm), pallet of 1.7 mm.
87
Mars SANS
Familia ASTARTIDAE
Goodallia sp.
En el detrito de “El Parrusset” han
aparecido ejemplares pertenecientes
al género Goodallia, similares al taxon
Los MOLUSCOS DE “EL PARRUSSET”:
Como se comentaba anteriormente, “El
Parrusset” es una biocenosis de coral
blanco (PÉRES Y PICARD, 1964) con fan-
go, cuyas especies predominantes son
los madreporarios Dendrophyllia corni-
gera (Lamarck) y Caryophyllia sp., aso-
ciada a una tanatocenosis del Wur-
miense, con la presencia de algunas es-
pecies subfósiles que actualmente están
extintas en el Mediterráneo. En esta lo-
calidad se han obtenido numerosas es-
pecies de moluscos de profundidad,
siendo Trophon barvicensis y Pleurotomella
coeloraphe la primera vez que se citan
para el Mediterráneo, y otras la primera
vez que se citan para el litoral Medite-
rráneo español.
Una comunidad muy similar a la de
“El Parrusset” ha sido descrita por SMRI-
GLIO, MARIOTTINI Y GRAVINA (1987a;
1987b) para el mar Tirreno Central,
donde estudiaron una biocenosis de co-
ral blanco con detrito fangoso situada
entre 400 y 600 m de profundidad, en la
que la especie de madreporario predo-
minante es Dendrophyllia cornigera (La-
marck). Aunque se trate de dos comuni-
dades muy parecidas desde un punto de
vista biológico y paleontológico, las es-
pecies de moluscos que se encuentran
en la localidad del Tirreno Central (Sm-
RIGLIO ET AL., 1987a; 1987b, 1988a; 1988b;
1989; 1993) son características de aguas
más profundas. Sin embargo, algunas
de las especies son coincidentes en am-
bas biocenosis, como por ejemplo Micro-
drillia lopestriana (Calcara, 1841), Mange-
lia serga (Dall, 1881) y Teretia teres (For-
bes, 1844), entre los túrridos.
En cuanto a los bivalvos actuales en-
contrados en esta biocenosis, los grupos
mayoritarios son Nuculidae, Yoldielli-
dae, Bathyarca, Astarte, Veneridae, Thya-
siridae, Pectinidae y Xylophaga, siendo
88.
G. macandrewi Smith, 1881, que posi-
blemente se trate de una nueva espe-
cie.
Kelliella abyssicola (Forbes, 1844) la espe-
cie viva más abundante, tanto en detri-
tos como en contenidos estomacales de
estrellas. ALLEN (1979) en un trabajo so-
bre bivalvos abisales Atlánticos, co-
menta que el 95% de especies de bival-
vos de sustratos blandos son Protobran-
chia, Septibranchia y Thyasiridae,
mientras que para sustratos duros, pre-
dominan las especies con biso, como
Bathyarca, Limopsis y Dacrydium. Ade-
más, encuentra especies pequeñas, ge-
neralmente menores de 5 mm. En este
trabajo se han encontrado prácticamente
los mismos grupos, aunque representa-
dos por especies o géneros de menor
profundidad y por norma general, de ta-
llas mayores.
El primer yacimiento Wúrmiense
conocido para el litoral catalán fue el
Cap de Creus (Girona), descrito por
PRUVOT Y ROBERT (1897), posteriormente
estudiado por Mars (1958). Otro yaci-
miento situado en el Cap de Begur
(Girona) ha sido descrito por MARTINELL
Y JULIA-BRUGUES (1973). Trabajos poste-
riores sobre estos yacimientos Wur-
mienses de la costa de Girona son, entre
otros, los de VINYAS (1981) y DOMENECH
Y MARTINELL (1982). En cuanto a los
fondos blandos del litoral catalán, la
primera fauna malacológica Wúrmiense
fue descrita por MARTINELL, DOMENECH
Y DE VILLALTA (1986) para el delta del
Ebro (Tarragona).
La tanatocenosis Wurmiense que
aquí se describe es el origen de algunas
de las especies subfósiles que se encuen-
tran en el área. Éste es el caso de los Gas-
terópodos: lothia fulva (O. E. Múller, 1776),
Calliostoma zizyphinum (Linnaeus, 1758),
Danilia otaviana (Cantraine, 1835), Capulus
ungaricus (Linnaeus, 1758), Trivia multili-
rata (Sowerby, 1870), Erato voluta (Mon-
tagu, 1803), Ranella olearia (Linnaeus,
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
1758), Buccinum undatum Linnaeus, 1758,
Neptunea contraria (Linnaeus, 1771), y
Murexul aradasi (Poirier, 1883 ex Montero-
sato ms.), que se encuentran sólo como
especies subfósiles en el área de estudio.
Entre los Bivalvos, destacan los grandes
ejemplares de Modiolula phaseolina (Phi-
lippi, 1844), Chlamys islandica (O. F. Mú-
ller, 1776), Pseudamussium septemradiatum
(O. F. Múller, 1776), Arctica islandica (Lin-
naeus, 1767), Glossus humanus (Linnaeus,
1758), Globivenus effosa (Bivona, 1836),
Gouldia minima (Montagu, 1803), Pitar me-
diterranea Tiberi, 1855, Venus casina Linna-
eus, 1758 y Panopea norvegica (Spengler,
1793). Al contrario que los Gasterópodos,
muchas de estas especies también se en-
cuentran vivas a menos profundidad, o
incluso en el mismo sedimento, como es
el caso de M. phaseolina. Las especies de
Bivalvos que se encuentran en forma
subfósil exclusivamente son C. islandica,
A. islandica, y P. norvegica, especies de
aguas frías que se han extinguido del Me-
diterráneo (VINYAS, 1981), y G. effosa, que
vive en zonas profundas del Mediterrá-
neo (Mar de Alborán).
La malacofauna del sedimento Wir-
miense de fondos blandos que aquí se-
ñalamos, tiene una composición similar
a la de los yacimientos de la costa de Gi-
rona descritos por los autores menciona-
dos más arriba. De todas formas, la ma-
yoría de los trabajos anteriores están
únicamente basados en especies grandes
debido a la metodología de muestreo
empleada (Martinell, com. pers.). En los
moluscos de “El Parrusset” destaca la
ausencia de Buccinum humphreysianum
Bennet, 1824 (aunque se han encontrado
conchas en otras zonas del Garraf), y de
Modiolus modiolus (Linnaeus, 1758), pre-
sentes en casi todos los otros yacimien-
tos de la costa catalana, así como la au-
sencia de Colus islandicus (Gmelin, 1791),
abundante en los yacimientos de la
costa de Girona.
CONTENIDOS ESTOMACALES DE AS-
TROPECTEN: Los contenidos estomacales
de Equinodermos y otros depredadores
han sido investigados por diversos mala-
cólogos, como método sencillo para reco-
lectar numerosas especies, principalmente
micromoluscos de profundidad. Trabajos
científicos de este tipo han sido realizados
en el Mediterráneo español, concretamente
en las islas Baleares (GASULL Y CUERDA,
1974) y en la bahía de Almería (SIERRA,
GARCÍA Y LLORIS, 1978), así como en la
costa atlántica española, en la Ría de Ares
(Galicia) (CRISTOBO-RODRÍGUEZ, TRON-
COSO, URGORRI-CARRASCO Y RíOs-LÓPEZ,
1988), entre otros.
En este trabajo, el número de espe-
cies de Moluscos encontradas en los
contenidos estomacales de Astropecten
spp. es de 118: 1 Poliplacóforo, 90 Gaste-
rópodos, 25 Bivalvos y 2 Escafópodos).
Si bien no se ha recopilado información
cuantitativa en los muestreos, sí se tie-
nen datos cualitativos, de los que se ha
podido extraer la siguiente información:
- En el Garraf A. aranciacus es más
común entre los 40 y los 80 m de pro-
fundidad en fondos fangosos, mientras
que A. irregularis es abundante en un
rango batimétrico mucho más amplio y
en todo tipo de fondos. Casi todas las
especies halladas en A. aranciacus se
encuentran en A. irregularis, aunque en
esta última se trata de individuos más
pequeños o juveniles.
- El Gasterópodo predominante en
todas las profundidades estudiadas fue
Alvania testae (Aradas y Maggiore, 1843),
representando aproximadamente el 50%
de individuos encontrados.
- El Bivalvo predominante hasta los
80 m fue Timoclea ovata (Pennant, 1777),
y a partir de esta profundidad predo-
minó Kelliella abyssicola (Forbes, 1844).
- En “El Parrusset”, existe una rela-
ción directa entre el número de ejempla-
res vivos de Nuculidae, Nuculanidae y
Yoldiidae encontrados en los contenidos
estomacales y los hallados en el sedi-
mento, pero ésto no ocurre en el resto de
grupos estudiados.
- En general, se observó una reduc-
ción del tamaño de muchas especies (so-
bre todo apreciable en grupos abundan-
tes, como Pyramidellidae) a medida que
aumentó la profundidad. Este hecho ha
sido comentado por ALLEN (1979), que
encuentra una disminución de las tasas
de crecimiento relacionada con el incre-
mento de la profundidad.
89
Iberus, 15 (1), 1997
NUEVAS CITAS PARA EL MEDITERRÁ-
NEO ESPAÑOL: Como se señaló anterior-
mente, en la lista de especies se identifi-
can con un asterisco aquellas que, de
acuerdo con la bibliografía, se citan por
primera vez en el litoral Mediterráneo
español, y con dos asteriscos las que se
citan por primera vez para el Meditérra-
neo en general. En este apartado no se
han tenido en cuenta las citas del estre-
cho de Gibraltar como pertenecientes al
Mediterráneo.
La publicación del catálogo provisio-
nal no crítico de los Bivalvos del Medi-
terráneo español de BONNIN Y RODRÍ-
GUEZ-BABÍO (1990), basado en la biblio-
grafía, nos ha facilitado el trabajo de
recopilación de citas. En cuanto a los
Gasterópodos, no existe ningún catá-
logo actualizado, exceptuando algunas
monografías de varios grupos, como
Cocculiniformia (DANTART Y LUQUE,
1994); Pyramidellidae (PEÑAS ET AL,,
1996); Opistobranchia (CERVERA, TEM-
PLADO, GARCÍA-GÓMEZ, BALLESTEROS,
ORTEA, GARCÍA, ROs, Y LUQUE, 1988); o
el género Mitrella (LUQUE, 1986). Por
ello, la constatación de nuevas citas se
hace dificultosa y requiere la consulta
de numerosos trabajos muy dispersos.
En total se reportan 53 nuevas citas
para el Mediterráneo español, siendo la
mención de Trophon barvicensis y Pleuro-
tomella coeloraphe las primeras citas para
el Mediterráneo en general.
CONCLUSIONES
Este estudio confirma la presencia en
el Garraf de gran parte de la malaco-
fauna típica del Mediterráneo español
(exceptuando la zona de Alborán). Sin
embargo, se ha constatado la ausencia
de algunas especies consideradas comu-
nes en áreas cercanas como Scissurella
costata d'Orbigny, 1824, Sinezona cingu-
lata (O. G. Costa, 1861), Gibbula ardens
(von Salis, 1793), G. adansonil (Payrau-
deau, 1826), G. rarilineata (Michaud,
1829), G. umbilicaris (Linnaeus, 1758), Ju-
jubinus gravinae (Dautzenberg, 1881),
Rissoa variabilis (von Muhlfeldt, 1824),
Alvania mamillata Risso, 1826, o Mitrella
90
gervillei (Payraudeau, 1826), o por ejem-
plo, la presencia de sólo 2 skenéidos
pertenecientes a dos especies diferentes,
y que no se haya encontrado ningún
ejemplar de esta familia en fondos de
maérl, en los que son comunes en otras
localidades.
Finalmente, podemos concluir que la
comarca del Garraf es una zona rica en
moluscos marinos debido a las particu-
laridades de sus fondos. Prueba de ello
son las 53 nuevas citas para el Medite-
rráneo español. Muchas de estas espe-
cies viven probablemente en otras zonas
de nuestras costas, pero, debido a su
pequeño tamaño, podrían haber pasado
desapercibidas. Los autores consideran
que la prospección con medios adecua-
dos de las zonas más profundas de esta
comarca podría contribuir a ampliar el
conocimiento de la malacofauna del
litoral español, y que sería interesante
recolectar vivas algunas de las especies
que aquí se han encontrado, de las que
no se conoce el animal.
AGRADECIMIENTOS
Los autores quieren mostrar su agra-
decimiento a los hermanos J. y F. Ayza,
pescadores ya jubilados, que nos han
proporcionado numerosas muestras, así
como comentarios sobre los tipos de
fondos, etc., y a M. Roca y a sus hijos Je-
sús y Pavel que nos facilitaron desinte-
resadamente numerosos ejemplares de
asteroideos y los sedimentos de “El Pa-
rrusset”. Sin ellos, este trabajo no hu-
biera podido llevarse a cabo. También
queremos agradecer a A. Tubau el ha-
bernos cedido información de su colec-
ción. Especialmente agradecemos a C.
Palacín y M. Ballesteros (Dpt. de Biolo-
gia Animal, Universitat de Barcelona) y
a J. Templado (Museo Nacional de Cien-
cias Naturales, Madrid) sus comentarios
sobre el manuscrito original. Las correc-
ciones y comentarios constructivos de S.
Gofas (Muséum National d'Histoire Na-
turelle, Paris) y de otro revisor anónimo
han contribuido notablemente en la me-
jora de este trabajo. También agradecer a
L. Dantart (Dpto. de Biologia Animal,
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Universitat de Barcelona) y C. Salas
(Dpto. de Biología Animal, Universidad
de Málaga) por la determinación de al-
gunos ejemplares. A. Warén (Swedish
Museum of Natural History, Stockholm)
y S. Gofas realizaron comentarios sobre
algunas especies, y Y. -R. Kim (Ameri-
can Museum of Natural History, New
BIBLIOGRAFÍA
AARTSEN, J. J. VAN, MENKHORST, H. P. M. G. Y
GITTENBERGER, E., 1984. The marine Mo-
llusca of the Bay of Algeciras, Spain, with
general notes on Mitrella, Marginellidae
and Turridae. Basteria, suppl. 2: 1-135.
ALLEN, J. A., 1979. The adaptations and radia-
tion of deep-sea bivalves. Sarsia, 64: 19-27.
ALLEN, J. A. Y HANNAH, F. J., 1989. Studies on
the deep-sea Protobranchia: the subfamily
Ledellinae (Nuculanidae). Bulletin of the
British Museum of natural History (Zoology
Series), 55 (2): 123-171
ASENSI, J. M., 1984. Invertebrats del Mar de Sit-
ges. Diputació de Barcelona, Servei del
Medi Ambient, Barcelona, 54 pp.
BALLESTEROS, M., 1977. Sobre Spurilla neapoli-
tana Delle Chiaje (1824) y Berghia verruci-
cornis A. Costa (1864), dos Aeolidacea
(Gastropoda: Opistobranchia) recolectados
en Cubellas (Barcelona). Publicaciones del
Departamento de Zoología (Barcelona), 2: 7-12.
BALLESTEROS, M., 1978. Contribución al cono-
cimiento de la fauna bentónica de Cube-
llas. Publicaciones del Departamento de Zoolo-
gía (Barcelona), 3: 11-23.
BALLESTEROS, M., 1984. Adición a la fauna de
Opistobranquios de Cubelles (Tarragona).
Miscelánea Zoológica, 8: 41-49.
BALLESTEROS, M., LLERA, E. M. Y ORTEA, J. A.,
1984. Revisión de los Doridacea (Mollusca:
Opistobranchia) del Atlántico Nordeste
atribuíbles al complejo Maculosa-Fragilis.
Bollettino Malacologico, 20: 227-257.
Boci, C., 1985. Prima segnalazione di Pleuroto-
mella demosia (Dautzenberg y Fischer, 1896)
in Mar Mediterraneo (Neogastropoda: Tu-
rridae). Notiziario CISMA, 7-8: 27-28.
Boci, C., COPPINI, M. Y MARGELLI, A., 1989.
Contribution to the knowledge of the Ma-
lacofauna of the Northern Tyrrhenean Sea
(updating). La Conchiglia, 21 (238-241):
25-29.
BONFITTO, A. Y SABELLI, B., 1995. Yoldiella se-
guenzae, a new species of Nuculanidae (Bi-
valvia; Nuculoida) from the Mediterranean
Sea. Journal of Molluscan Studies, 61: 21-27.
York) nos ayudó con la bibliografía. Las
fotografías y análisis al M.E.B. han sido
realizados en los “Serveis Científico-tec-
nics” de la Universitat de Barcelona. Por
último, queremos dar las gracias a R.
Sánchez (Museo Nacional de Ciencias
Naturales, Madrid) por la fotocomposi-
ción de la lámina de Pyramidellidae.
BONNIN, J. Y RODRÍGUEZ-BABÍO, C., 1990. Ca-
tálogo provisional de los moluscos bival-
vos marinos de la plataforma continental
de las costas mediterráneas de la Península
Ibérica y de las Islas Baleares. Iberus, 9
(1-2): 97-110.
BOUCHET, P. Y TAVIANL, M., 1989. Atlantic
deep-sea Gastropods in the Mediterranean:
new findings. Bollettino Malacologico, 25
(5-8): 137-148.
BOUCHET, P. Y WARÉN, A., 1980. Revision of
the North-East Atlantic Bathyal and Abys-
sal Turridae (Mollusca, Gastropoda) Jour-
nal of Molluscan Studies, suppl. 8: 1-119.
BOUCHET, P. Y WARÉN, A., 1985. Revision of
the Northeast Atlantic Bathyal and Abys-
sal Neogastropoda excluding Turridae
(Mollusca, Gastropoda). Bollettino Malacolo-
gico, suppl. 1: 123-298.
BOUCHET, P. Y WARÉN, A., 1986. Revision of
the Northeast Atlantic Bathyal and Abys-
sal Aclididae, Eulimidae, Epitoniidae (Mo-
llusca, Gastropoda). Bollettino Malacologico,
suppl. 2: 300-576.
CARROZZA, F., 1981. Thyasira alleni n. sp. Bo-
llettino Malacologico, 17 (9-10): 223-228.
CARROZZA, F., 1984. Microdoride di malaco-
logia Mediterranea, contributo sesto. Bo-
llettino Malacologico, 20 (9-12): 219-226.
CECALUPO, A., 1984. Rinvenimento di specie
rare al largo della Sardegna Sud-Orientale
(Contributo 1). Bollettino Malacologico, 20 (1-
4): 109-112.
CECALUPO, A., 1988. Rinvenimento di specie
rare al largo della Sardegna Sud-Orientale
(Contributo IV). Bollettino Malacologico, 24
(1-4): 33-39.
CECALUPO, A. Y GiustI, F., 1986. Rinveni-
menti malacologici a sud ovest dell'Isola di
Capraia (Li). Bollettino Malacologico, 22
(9-12): 293-298.
CECALUPO, A. Y Giusti, F., 1989. Rinveni-
menti malacologici a sud-ovest dell'Isola
di Capraia (Li) parte II. Bollettino Malacolo-
gico, 25 (1-4): 97-109.
91
Iberus, 15 (1), 1997
CERVERA, J. L., TEMPLADO, J., GARCÍA-GÓMEZ,
J. C., BALLESTEROS, M., ORTEA, J. A., GAR-
CÍA, F. J., ROs, J. Y LUQUE, A. A., 1988. Catá-
logo actualizado y comentado de los Opis-
tobranquios (Mollusca, Gastropoda) de la
Península Ibérica, Baleares y Canarias, con
algunas referencias a Ceuta y la Isla de Al-
borán. Iberus, suppl. 1: 1-83.
CIANFANELLI, S. Y TALENTI, E., 1987. Ulteriori
conoscenze sulla malacofauna del Golfo di
Baratti (Piombino - LI). Bollettino Malacologico,
23(5-8): 263-268.
CRISTOBO-RODRÍGUEZ, F. J., TRONCOSO, J. S.,
URGORRI-CARRASCO, V. Y Ríos-LópEz, P.,
1988. Malacofauna en la alimentación de As-
tropecten irregularis (Linck, 1807) (Echino-
dermata: Asteroidea) en la Ría de Ares (Ga-
licia) por análisis de contenidos estomacales.
Iberus, 8 (2): 77-83.
DANTART, L. Y LUQUE, A. A., 1994. Cocculini-
formia and Lepetidae (Gastropoda: Archae-
ogastropoda) from Iberian waters. Journal of
Molluscan Studies, 60: 277-313.
DELL, R. K., 1987. Mollusca of the family Myti-
lidae (Bivalvia) associated with organic re-
mains from deep water off New Zealand,
with revisions of the genera Adipicola Daut-
zenberg, 1927 and Idasola Iredale, 1915. Na-
tional Museum of New Zealand Records, 3 (3):
.17-36.
Di GERONIMO, I., 1974. Molluschi bentonici in
sedimenti recenti batiali e abissali dello Jo-
nio. Conchiglie, 10 (7-8): 133-172.
DI GERONIMO, Í. Y PANETTA, P., 1973.-«La mala-
cofauna batiale del Golfo di Taranto. Con-
chiglie, 9 (5-6): 69-121.
"DOMENECH, R. Y MARTINELL, J., 1982. Fauna
malacológica submergida del Wúrm del li-
toral Gironí. Descriptiva i sistemática. Butlletí
de la Institució Catalana d'Historia Natural, 48
(Secció de Geologia, 3): 31-60.
FOLIN, L. A., DE, 1871. Les fonds de la mer, vol. 2.
Paris.
FRANCHINI, D. Y FRILLI G., 1970. Il genere Trop-
honopsis B. D. D., 1882, nel mar Mediterraneo.
Atti della Unione Malacologica Italiana, 1(1):
30-55.
GAGLINI, A., 1991. Terze spigolature... Monte-
rosatiane. Argonauta, 7 (1-6): 125-180.
GASULL, L. Y CUERDA, J., 1974. Malacología del
contenido gástrico de las grandes estrellas de
mar. Boletín de la Sociedad de Historia Natural
de Baleares, 19: 155-175.
GOFAS, S. Y SALAS, C., 1996. Small Nuculidae (Bi-
valvia) with functional primary hinge in the
adults. Journal of Conchology, 35(5): 427-435.
GOFAS, S. Y WARÉN, A., 1982. Taxonomie de
quelque especes du genre Alvania (Mollusca,
Gastropoda) des cótes iberiques et marocai-
nes. Bollettino Malacologico, 18 (1-4): 1-16.
92
HIDALGO, J. G., 1917. Fauna malacológica de Es-
paña, Portugal y las Baleares. Trabajos del
Museo Nacional de Ciencias Naturales, serie
Zoología, 30: 1-752.
LUQUE, A. A., 1986. El género Mitrella Risso, 1826
(Gastropoda, Columbellidae) en las costas
Ibéricas. Bollettino Malacologico, 22 (9-12):
223-244.
Mass, P., 1958. Les faunes malacologiques qua-
ternaires “froides” de Méditerranée. Le gi-
sement de Cap de Creus. Vie et Milieu, 9 (3):
293-309.
MARTINELL, J., DOMENECH, R. Y DE VILLALTA,
J. F., 1986. La fauna Wúurmiana del Delta de
l'Ebre (Tarragona). Butlletí de la Institució Ca-
talana d'Historia Natural, 53 (Secció de Geo-
logia, 4): 143-149.
MARTINELL, J. Y JULIA-BRUGUES, R., 1973. Nue-
vos datos sobre los yacimientos wurmienses
del litoral catalán. Acta Geológica Hispánica, 8
(3): 105-108.
MCLEAN, J. H., 1985. The Archaeogastropod
family Addisoniidae Dall, 1882. Life habit
and review of species. The Veliger, 28: 99-
108.
MONTEROSATO, T. A., 1880. Conchiglie della
zona degli abissi. Bollettino della Societa Ma-
lacologica Italiana, 6: 50-82.
NORDSIECK, F., 1972. Die europaischen Mee-
resschnecken (Opistobranchia mit Pyramidelli-
dae; Rissoacea). Vom Eismeer bis Kapverden,
Mittelmeer und Schwarzes Meer. Gustav Fis-
cher Verlag, Stuttgart, 327 pp.
ORTEA, J., 1982. A new Favorinus (Nudibranchia:
Aeolidoidea) from the Canary Islands. The
Nautilus, 96(2): 45-48.
PAYNE, C. M. Y ALLEN, J. A., 1991. The morp-
hology of deep-sea Thyasiridae (Mollusca: Bi-
valvia) from the Atlantic Ocean. Philosophi-
cal Transactions of the Royal Society of London,
B, 334: 481-562.
PEÑAS, A., TEMPLADO, J. Y MARTÍNEZ, J. L., 1996.
Contribución al conocimiento de los Pyra-
midelloidea (Gastropoda: Heterostropha).
Iberus, 14(1): 1-82.
PÉRES, J. M. Y PICARD, J., 1964. Nouveau manuel
de bionomie benthique de la Mer Medite-
rranée. Recueil des Travaux de la Station Ma-
rine d'Endoume, 31 (47): 1-137.
PHILIPPI, R. A., 1836. Enumeratio molluscorum
Siciliae cum viventium tum in tellure tertiaria fos-
silium, quae in itinere suo observavit. Vol. 1.
Berolini, 267 pp.
PrIanr, P., 1984. Revisione del genere Emarginula
Lamarck, 1801 in Mediterraneo. Lavori S. 1.
M., 21: 193-238.
Pruvor, G. Y ROBERT, A., 1897. Sur un gise-
ment sous-marin de coquilles au voisinage
du Cap de Creus. Archives de Zoologie Expé-
rimentale et Génetique, 3-5: 497-510.
GIRIBET Y PEÑAS: Fauna malacológica del litoral del Garraf
Ros, J., 1975. Opistobranquios (Gastropoda:
Euthyneura) del litoral ibérico. Investigación
Pesquera, 39 (2): 269-372.
SABELLI, B., GIANUZZI-SAVELLI, R. Y BEDULLI, D.,
1990. Catalogo annottato dei molluschi marini del
Mediterraneo, vol. 1. Libreria Naturalistica Bo-
lognese, Bolonia, 348 pp.
SALAS, C., 1996. Marine bivalves from off the
Southern Iberian Peninsula collected by the
Balgim and Fauna 1 expeditions. Haliotis, 25:
33-100.
SAMA, A. DE, 1916. Mollusca marina in littora
Calafell et Vilanova. Anuari de la Junta de
Ciencies Naturals de l'Ajuntament de Barcelona
(1916): 47-62.
SCHIRO, G., 1986. Scissurellidae viventi nel Me-
diterraneo. La Conchiglia, 18 (204-205): 22-23.
SIERRA, A., GARCÍA, L. Y LLORIS, D. 1978. Tro-
fismo y competencia alimentaria en asteroi-
deos de la bahía de Almería. Investigación
Pesquera, 42(2): 485-499.
SMRIGLIO, C. Y MARIOTTINI, P., 1990. Descri-
zione di una nuova specie di Pectinidae (Ra-
finesque, 1815) peril Mar Mediterraneo: Cy-
clopecten brundisiensis n. sp. e considerazioni
su alcune specie appartenenti ai generi Cy-
clopecten (Verrill, 1897) e Propeamussium de
Gregorio, 1884. Bollettino Malacologico, 26
(1-4): 1-18.
SMRIGLIO, C., MARIOTTINL, P. Y GRAVINA, F.,
1987a. Molluschi del Mar Tirreno Centrale:
ritrovamento di Typhlomangelia nivalis (Lovén,
1846). Contributo 1. Bollettino Malacologico,
23 (1-4): 47-52.
SMRIGLIO, C., MARIOTTINL, P. Y GRAVINA, F.,
1987b. Molluschi del Mar Tirreno Centrale:
segnalazione di alcuni Turridi provenienti da
una biocenosi a coralli bianchi. Contributo II.
Bollettino Malacologico, 23 (11-12): 381-390.
SMRIGLIO, C., MARIOTTINI, P. Y GRAVINA, F.,
1988a. Molluschi del Mar Tirreno Centrale:
ritrovamento di Adeuomphalus ammoniformis
G. Seguenza, 1876, Fissurisepta granulosa Jef-
freys, 1883 e Propilidium ancyloide (Forbes,
1840). Contributo III. Bollettino Malacologico,
24 (1-4): 1-6.
SMRIGLIO, C., MARIOTTINI, P. Y GRAVINA, F.,
1988b. Molluschi del Mar Tirreno Centrale:
segnalazione di Pleurotomella packardi Verrill,
1872. Contributo V. Bollettino Malacologico,
24 (5-8): 148-149.
SMRIGLIO, C., MARIOTTINI, P. Y GRAVINA, F.,
1989. Molluschi del Mar Tirreno Centrale:
ritrovamento di Putzeysia wiseri (Calcara,
1842), Ischnochiton vanbellei Kaas, 1985 e Ne-
opilina zografi (Dautzenberg éz Fischer, 1896).
Contributo VI. Bollettino Malacologico, 25 (1-4):
125-132.
SMRIGLIO, C., MARIOTTINI, P. Y GRAVINA, F.,
1993. Molluschi del Mar Tirreno Centrale,
contributo VIII: segnalazione di alcuni Epi-
tonidi batiali. Bollettino Malacologico, 29 (1-4):
81-89.
TAVIANI, M., 1974. Nota sul ritrovamento di
cinque specie di Molluschi Gastropoda, Pro-
sobranchia poco conosciuti o nuovi per le
acque del Mediterraneo. Quaderni della Cívica
Stazione Idrobiologica di Milano, 5: 39-50.
TEMPLADO, J., 1982. Datos sobre los Opisto-
branquios del Cabo de Palos (Murcia). Bo-
llettino Malacologico, 18 (9-12): 247-254.
TERRENI, G., 1980. Molluschi poco conosciuti
dell Arcipelago Toscano: 2”- Bivalvi. Bollet-
tino Malacologico, 16 (7-8): 301-304.
VILELLA, M. 1968. Notas malacológicas V. Una
nueva Elysia (Gastropoda Opistobranchia)
del Mediterráneo español. Miscelanea Zooló-
gica, 2(3): 29-32.
VINYAS, L., 1981. The Wúrm beds of the coast
of Gerona (Spain). Bollettino Malacologico, 17
(11-12): 259-264.
WAGNER, H. P., 1991. Review of the European
Pectinidae (Mollusca: Bivalvia). Vita Marina,
41 (1): 1-48.
WARÉN, A., 1978. The taxonomy of some north
Atlantic species referred to Ledella and Yol-
diella (Bivalvia). Sarsia, 63: 213-219.
WARÉN, A., 1989. Taxonomic comments on
some Protobranch bivalves from the nort-
heastern Atlantic. Sarsia, 74: 223-259.
WARÉN, A., 1991. New and little known Mo-
llusca from Iceland and Scandinavia. Sarsia,
76: 53-124.
WARÉN, A., 1993. New and little known Mo-
llusca from Iceland and Scandinavia. Part 2.
Sarsia, 78: 159-201.
WARÉN, A. Y BOUCHET, P., 1988. A new species
of Vanikoridae from the western Mediterra-
nean, with remarks on the northeast Atlan-
tic species of the family. Bollettino Malacolo-
gico, 24 (5-8): 73-100.
WARÉN, A. Y CARROZZA, F., 1990. Idas ghisottii
sp. n., a new Mytilid Bivalve associated with
sunken wood in the Mediterranean. Bollettino
Malacologico, 26 (1-4): 19-24.
YS
pac cab ARRESTO A MiLw
AER bed LON
TN Eo
aa: 4
dea to sie
a, 8 O,
E Ae
y
SA MORSA
oa oe cal
fare Ema cable
y Did A a po
se Al nia ON
IAS YY jo espoga at,
y e
Air, de Es eON eo: (7 Eh dy ps De
ie se AAA
A 10 Sd E. La
EF
bi y
UNES |
te HS
f e, Ip co! SA ds EE
EA no us" EAN Mié
De e pagana: Munt Ñ
A eran S pra
SN LN AO! VÓS E
ati de bs arde atve
he Ab e5 nd 0 Na] HPA:
h Er A “E a
m1 Pa EAT O y Api er
Em eo a pe Alan Alo
1 E, AO e! ANA
Í hoi 8 ik ay 19
O Sociedad Española de Malacología Iberus, 15 (1): 95-111, 1997
Scaphopoda from the Spanish coasts
Escafópodos de las costas españolas
Gerhard STEINER*
Recibido el 20-IX-1996. Aceptado el 18-X1-1996
ABSTRACT
The scaphopod molluscs collected at 29 stations of the Fauna Iberica projects | - 1Il along
the entire Spanish mainland coast and the Balearic Islands belong to 12 species from 7
genera and 5 families. These species are listed together with their synonyms, original des-
criptions, and geographic and bathymetric ranges in this material and from the literature.
None of the species are found to extend either range in these samples. On the other hand,
some otherwise common scaphopods are not represented. Some of the species have
extensive fossil records, and in Entalina tetragona and Antalis inaequicostata, problems of
synonymy and historical biogeography are discussed.
RESUMEN
En el presente trabajo se relacionan aquellas especies de escafópodos encontradas en 29
estaciones de las costas españolas de la península Ibérica y de las islas Baleares durante
las campañas FAUNA |-1II. En total se han hallado 12 especies pertenecientes a 7 géneros
y 5 familias. Para cada especie se proporciona una lista de sinónimos, la descripción ori-
ginal y los rangos de distribución geográfica y batimétrica, obtenidos a partir de este
material y de la bibliografía. Los datos que proporcionan estas muestras no permiten
extender rangos de distribución de ninguna de las especies. Por otra parte, algunas de
las especies comúnes de escafópodos en el área no están aquí representados. Algunas de
las especies tienen registros fósiles extensos, y en Entalina tetragona y Antalis inaequi-
costata se discuten problemas relacionados con su sinonimia y biogeografía histórica.
KEY WORDS: Scaphopoda, systematic biogeography, Iberian Peninsula and Balearic Islands
PALABRAS CLAVE: Escafópodos, sistemática biogeografía, península Ibérica e islas Baleares.
INTRODUCTION
The main purpose of this paper is
the systematic treatment of Scaphopoda
collected by recent sampling cruises of
the Fauna Ibérica programme along the
Spanish coasts. The cruises Fauna I
(July, 1989), Fauna II (June - July, 1991)
and Fauna lll (June - July, 1994) covered
the Sea of Alborán, the Gulf of Cádiz,
the Bay of Biscay, the Atlantic coast off
South Galicia, and the waters around
the Balearic Islands. Scaphopod speci-
mens are represented in 29 stations of
these cruises. A list of stations of the
“Fauna I” cruise is already published
(TEMPLADO, GUERRA, BEDOYA, MORENO,
REMÓN, MALDONADO AND RAMOS,
* Institute of Zoology, University of Vienna. Althanstr. 14, A-1090 Vienna, Austria.
95
Iberus, 15 (1), 1997
1993); publications with the stations of
the remaining cruises are in preparation
(Iemplado, pers. comm.). Sources of
primary faunistic information on Scap-
hopoda are reports of the marine expe-
ditions “Travailleur” and “Talisman”
(LocarD, 1898), “Porcupine”, “Valo-
rous” and two smaller cruises (JEFFREYS
1870, 1877, 1882), and ALZURIA (1986,
1987). Faunistic and systematic accounts
of the Eastern Pyrenean Seas were made
by BucQuoY, DAUTZENBERG AND
DOLLFUS (1882) and Mars (1965). The
only synopsis of Iberian and Balearic
SYSTEMATIC ACCOUNT
The samples revealed 12 species from
7 genera and 5 families. Both orders of
Scaphopoda, Dentaliida and Gadilida are
represented, with 8 and 4 species respec-
tively. Each species is listed with sy-
nonyms, original description, type locality,
molluscs to date (HIDALGO, 1917) also
includes Scaphopoda. The fundamental
monography of PILSBRY AND SHARP
(1897), the comprehensive studies of
CAPROTTI (1965, 1968, 1979), and the
classification of higher taxa Of STEINER
(1992, 1996) and SCARABINO (1995) form
the basis of the systematic treatment.
Complementary information on syno-
nyms is drawn from MONTEROSATO
(1875) and STORK (1934). The material
studied in this paper is deposited in the
Museo Nacional de Ciencias Naturales,
Madrid.
distribution in the present material (with
distribution maps) and as reported in the
literature, and with the earliest fossil oc-
currence. The numbers of empty shells (e)
and of shells with soft body (b) are given
for each station.
Order DENTALIDA Da Costa, 1776
Family DENTALIDAE Gray, 1847
Genus Antalis H. and A. Adams, 1854
Antalis agilis (M. Sars, 1872) (Figs. 1, 4A)
Synonyms
Dentalium incertum Philippi 1844, Enum. Moll. Sicil. 1: 207, non Deshayes 1825.
Dentalium abyssorum var. agilis Jeffreys 1870, Ann. Mag. N. Hist. Ser. 4 VI: 74.
Dentalium agile M. Sars 1872, Some remarkable forms etc., Christiania 1872: 34.
Dentalium fusticulus Brugnone 1876, Misc. Malac. 11: 21.
Dentalium vagina Jeffreys 1877, Ann. Mag. N. Hist. Ser. 4, XIX: 155.
Antalis agilis (M. Sars): G. O. Sars 1878, Moll. Reg. Arct. Norv., Christiania 1878: 102.
Dentalium (Antalis) calabrum Crema 1910, p. 68.
Original description: Shell slender,
very narrow, slightly curved, almost
straight, gradually attenuated towards the
apex. White, faint luster, posterior part fre-
quently darker. Apex very narrow, obli-
quely truncated, with a tolerably deep inci-
sion and a short, hardly protruding sup-
plementary tube. Shell surface with cir-
cular growth lines, rarely longitudinally
striated in the posterior part, the striae
being little distinct and never prominent
ribs. [... ] Largest shell 58 mm long and 4
mm in diameter, 1 mm at the apex.
96
Type locality: Lofoten Islands,
North Atlantic, at 360-540m.
Present material: 5 stations; Gulf of
Cádiz, 500-546 m (76A: 1b, 20e; 77A: 3b);
Cape Finisterre, 129-133 m (91A: 1b);
Biscay, 540-1025 m (124A: 2b, 9e; 1594:
2b, 14e).
Reported distribution: North Atlan-
tic: Portugal to Lofoten, Halifax to Cuba,
Gulf of Mexico, Azores; Mediterranean;
?Red Sea; 60-5000 m.
STEINER: Scaphopoda from the Spanish coasts
Earliest fossil: Pliocene.
Remarks: The largest specimen from
station 159A is 65 mm long, which exce-
eds indications of SARS (1872), PILSBRY
AND SHARP (1897) and CAPROTTI (1965),
but matches those of LOCARD (1898).
There are no shells with apical slits in the
present material, but most of the speci-
mens are empty shells and fragments.
The shell surface in the apical region
may be eroded by boring organisms
even in live animals. The shell then has a
chalky and often crackled aspect, as was
also remarked by Sars (1872). Young in-
dividuals are often more or less dis-
tinctly ribbed near the apex. The ribs
intercalate to about 20 in number and
then gradually become obsolete. The
younger parts of the shell (towards the
anterior opening) with an intact surface
are glossy and bear closely spaced
growth lines. LOCARD (1898) distinguis-
hed a number of varieties according to
size, curvature and sculpture. Antalis pa-
norma (Chenu, 1842-47), similar in size
and shape to A. agilis and reported from
the Mediterranean and the Bay of Biscay,
differs in being more curved and having
a more solid shell with 12 narrow but
pronounced primary ribs.
Some of the shells from station 76A
have bore holes of naticid gastropods
being, apart from different fishes,
important predators of scaphopods in
the Mediterranean.
Antalis entalis (Linné, 1758) (Figs. 1, 4B)
Synonyms
Dentalium entalis Linné 1758, Syst. Nat. (10): 785.
Dentalium entalum L.: Blainville 1819, Dict. Sc. Nat. XUl: 70.
Dentalium labiatum Brown 1827, 111. Conch. Gr. Brit. and Irel.: pl. 1, fig. 4.
Dentalium striolatum Stimpson 1851, Proc. Bost. Soc. Nat. Hist. IV: 114. non Jeffreys, Watson, Sars,
Risso.
Entalis striolata (Stimpson 1851): Gould-Binney 1870, Invert. of Mass.: 266.
Original description: Shell smooth,
moderately curved, continuous, not
fractured.
Type locality: Atlantic Ocean.
Present material: 2 stations; La
Coruña, 151-152 m (101A: le); Biscay,
119-122 m (112DH: 2e).
Reported distribution: North Atlan-
tic from Spain north to Spitzbergen and
Maine, Massachusetts to Bay of Fundy;
6-3500 m.
Earliest fossil: Pliocene.
Remarks: The shell is up to 42 mm
long, solid, white, sometimes glossy, mode-
rately curved but in the apical region, the
wider, anterior part of the shell being only
slightly curved. The shell surface is
smooth, very fine longitudinal striae may
be present in the apical region only.
Towards the anterior opening growth lines
become more distinct. There may be a
shallow apical notch on the convex side.
This species is infrequently cited
from the Mediterranean as well, due to
confusion with the apically striated An-
talis vulgaris. However, HIDALGO (1917)
retains Gibraltar and Mataró / Catalunya
as localities for A. entalis.
Antalis dentalis (Linné 1766) (Figs. 1, 4C)
Synonyms
Dentalium dentalis Linné 1766, Syst. Nat. XII: 1263.
Dentalium dentale L.: Locard 1886, Ann. Soc. Agricult., Lyon Ser. 5, IX: 145.
Dentalium linnaeum Locard 1886, Ann, Soc. Agricult., Lyon Ser. 5, IX: 145.
Dentalium mutabile Dóderlin in Hórnes 1856, Abhandl. K. -K. Geol. Reichsanst. Il: 654.
2
Iberus, 15 (1), 1997
Original description: Shell striated,
moderately curved, fractured.
Type locality: Mediterranean Sea.
Present material: 1 station; Gulf of
Cádiz, 13-15 m (714: 1e).
Reported distribution: Mediterra-
nean Sea, East Atlantic from Galicia to
Cape of Good Hope (?), Azores, Canary
Islands; 0-300 m.
Earliest fossil: Miocene.
Remarks: This rather small species
is up to 24 mm long (13 mm from
station 71A), mostly white, only the
apex sometimes with a rose tinge. There
are about 10 sharp and narrow primary
ribs, becoming doubled by intercalation
towards the anterior opening. The
secondary ribs are of about the same
height as the primary ribs. The intercos-
tal spaces are much wider than the ribs,
and smooth except for widely spaced
growth lines. Antalis dentalis is often
confused with A. inaequicostata (see
below).
Antalis inaequicostata (Dautzenberg, 1891) (Figs. 1, 4D)
Synonyms
Dentalium dentalis Lamarck 1818, Anim. sans vert. V: 344; Deshayes 1825, Anat. et Monogr. du genre
Dentale: 33; Risso 1826, Hist. Nat. Europ. Merid. IV: 398; Philippi 1836, Enum. Moll. Sicil. 1: 243;
Jeffreys 1870, Ann. Mag. Nat. Hist. VI: 10; Monterosato 1872, Not. Int. alle conch. Medit.: 28; non
Linné 1766.
Dentalium fasciatum Lamarck 1818, Anim. sans vert. V: 343; non Gmelin 1790
Dentalium pseudo-antalis Scacchi 1836, Catal. Conch. Regni Neap.: 17; non Lamarck 1818
Dentalium novem-costatum Réquien 1848, Coq. de Corse: 90; non Lamarck 1818.
Dentalium novemcostatum var. tenuis Monterosato 1878, Enum. et Sinon.: 16; non Lamarck 1818.
Dentalium novemcostatum Réquien: Monterosato 1884, Nom. Gen. e Spec.: 31; non Lamarck 1818.
Dentalium alternans Bucquoy, Dautzenberg and Dollfus 1891, Moll. Mar. Roussillon 1: 561; non
Chenu 1842.
Dentalium inaequicostatum Dautzenberg 1891, Mem. Zool. Soc. France 1891: 53.
Antale novemcostatum (Réquien): Sacco 1897, Moll. terr. terz. Piemonte e delle Liguria XXI: 104.
Dentalium (Antalis) inaequicostatum B. D. D.: Pilsbry and Sharp 1897-98, Man. Conch. XVII: 52.
Caprotti 1965, Atti. Soc. Ital. Sci. Nat. Milano 105: 343.
Dentalium novemcostatum var. inaequicostata Fantinet 1959, Serv. Carte Geol. Algérie 1: 46.
Dentalium (Antalis) novemcostatum Réquien: Caprotti 1961, Atti. Soc. Ital. Sci. Nat. Milano 100: 353.
Dentalium (Antalis) mutabile inaequicostatum Dautzenberg: Caprotti 1979, Boll. Malacol. Milano 15: 233.
Original description: Shell solid,
opaque, slightly to moderately curved,
straightening towards the anterior aper-
ture. Sculpture of 9 or 10 primary ribs
alternating with same number of wider
and less protruding secondary ribs. All
ribs become obsolete towards the ante-
rior. Numerous transverse growth lines,
sometimes with irregular fractures or
interruptions. Anterior shell aperture
slightly polygonal. Posterior aperture
truncated, polygonal, with an oval,
short central pipe. No slit or notch.
Colour light rose, more intense at the
posterior end, transversal bands of
lighter and darker colour. Shell 35 mm
long, 5 mm at anterior aperture.
98
Type locality: Mediterranean Sea.
Present material: 4 stations; Gulf of
Cádiz, 13-28 m (44A: 2e; 66A: 9b, 3e;
69A: le; 71A: about 10b, many empty
shells).
Reported distribution: Mediterra-
nean from Greece to Algeria; 5-120m.
Earliest fossil: Miocene (BUCQUOY ET
AL., 1886) or Pliocene (CAPROTTI, 1979).
Remarks: This species is extremely
variable in its longitudinal sculpture
causing considerable confusion in
studies of both fossil and recent scapho-
STEINER: Scaphopoda from the Spanish coasts
MW Antalis agilis
O Antalis dentalis
Ba Antalis novemcostata
A Antalis entalis
O Antalis inaequicostata
e Antalis vulgaris
Figure 1. Localities where Antalis agilis, A. entalis, A. dentalis, A. inaequicostata, A. novemcostata, and
A. vulgaris were collected.
Figura 1. Localidades donde se encontraron las especies Antalis agilis, A. entalis, A. dentalis, A. inae-
quicostata, Á. novemcostata y A. vulgaris.
pods. Small individuals of this species
closely resemble Antalis dentalis. The
latter differs, however, in having conspi-
cuous transversal striae between the
ribs, the ribs themselves are less acute,
and the intercostal space is not as wide.
If PILSBRY AND SHARP (1897-98, p. 52)
describe “... 9-12 strong primary ribs
towards the apex, narrower than their
intervals... “ for A. inaequicostata, they
obviously did not consider direct com-
parison with A. dentalis. The atlantic A.
novemcostata is stouter and has more
conspicuous transverse striae.
Many of the empty shells shows cha-
racteristic signs of sipunculid occupa-
tion. Phascolion strombus (Montagu,
1804) is known to close the anterior ope-
nings of scaphopod and other mollusc
shells by agglutinations of sediment,
leaving open only a small tube for their
introvert (TÉTRY, 1959).
99
Iberus, 15 (1), 1997
Antalis novemcostata (Lamarck, 1818) (Figs. 1, 4E)
Synonyms
Dentalium novemcostatum Lamarck 1818, Anim. sans vert., V: 344.
Dentalium dentalis Risso 1826, Hist. Nat. Europ. Mérid., IV: 398.
Dentalium dentale Risso: Weinkauff 1862 (partim), J. Conch., X: 364.
Antale novemcostatum (Lamarck): Sacco 1896, Boll. Mus. Zool. Anat. Comp. Univ. Torino, XI: 97.
Dentalium (Antalis) novemcostatum (Lamarck): Pilsbry and Sharp 1897-98, Man. Conch., 17: 51
Original description: Shell small,
greenish-white, with nine ribs, subde-
cussate transverse striae.
Type locality: Atlantic coast near La
Rochelle.
Present material: 1 station, Gulf of
Cádiz, 110-112 m (694: 1e).
Reported distribution: East Atlantic
from La Rochelle to South Spain; 20-300 m.
Earliest fossil: Pliocene.
Remarks: The rather stout shell is up
to 32 mm long and has 8 to 10 rounded
ribs decreasing in heigth towards the ante-
rior opening. The intercostal spaces are
more concave than in the other Antalis
species of the region and show faint lon-
gitudinal striae. Transverse striae are not
always developed, although BUCQUOY ET
AL. (1886) and CAPROTTI (1965) take the
strong transverse sculpture as an impor-
tant character to distinguish A. novem-
costata from the mediterranean A. inae-
quicostata. The apex often has a plug with
a central pipe in larger specimens.
Antalis novemcostata seems to be
living on the european Atlantic coast
only, although HIDALGO (1917) lists
several mediterranean locations for this
species. This seems to be due to misiden-
tifications of A. inaequicostata (CAPROTTI,
1961, 1965; Mars, 1965). According to
CAPROTTI (1965), the extremely rare A.
novem-costatum from the Italian Pliocene
could be intermediate between A. inae-
quicostata and A. novemcostata.
Antalis vulgaris (Da Costa, 1778) (Figs. 1, 4F)
Synonyms
Dentale vulgare Da Costa 1778, Brit. Conch.: 24.
Dentalium fasciatum Gmelin 1791, Syst. Nat., 13: 3737.
Dentalium striatum Montagu 1803, Test. Brit., II: 492, non Born 1780, Test. Mus. Caes. Vindob.: 431.
Dentalium tarentinum Lamarck 1818, Anim. sans vert., V: 345. Forbes and Henley 1853, Hist. Brit.
Moll., II: 451. Sowerby 1860, Thes. Conch., 11: 100. Jeffreys 1882, Brit. Conch., II: 195. Clessin 1896,
Conchyl. Cab.: 3.
Dentalium politum Blainville 1819, Dict. Sci. Nat., XI: 70. Turton 1819 (partim), Conch. Dict. Brit.
Sh.: 38.
Dentalium labiatum Turton 1819 (partim), Conch. Dict. Brit. Sh.: 38. Brown 1827, Illustr. Conch. Gr.
Brit.: 117.
Dentalium striolatum Risso 1826, Hist. Nat. Europ. Mérid., IV: 398.
Dentalium multistriatum Risso 1826, Hist. Nat. Europ. Mérid., IV: 398, non Deshayes 1825, Anat. et
Monogr. du genre Dentale.
Dentalium affine Biondi 1859, Atti Accad. Gioenia Sci. Nat. (2), XIV: 120.
Original description: Dentalium
with a slender, smooth, glossy, subar-
cuated shell, tapering to a small point,
pervious: sometimes marked with a few
circular wrinkles or annulations: colour
white or yellowish. Length an inch and
100
a half [38 mm]; diameter at the larger
end two-tenths of an inch [5 mm]; and
one fourth as much [1.25 mm] at the
smaller end. [... ] A variety is marked
with dusky bands; and sometimes a
little striated towards the point.
STEINER: Scaphopoda from the Spanish coasts
E Fissidentalium capillosum
O Entalina tetragona
Xx Dischides politus
A Episiphon filum
O Pulsellum lofotense
e Cadulus jeffreysi
Figure 2. Localities where Fissidentalium capillosum, Episiphon filum, Entalina tetragona, Pulsellum
lofotense, Dischides politus, and Cadulus jeffreysi were collected.
Figura 2. Localidades donde se encontraron las especies Fissidentalium capillosum, Episiphon filum,
Entalina tetragona, Pulsellum lofotense, Dischides politus y Cadulus jeffreysi.
Type locality: British shores, espe-
cially Scilly Islands, Cornwall, Devons-
hire, Hampshire.
Present material: 5 stations; Biscay,
119-122 m (112DH: 1e); Balearic Islands,
5-59 m (190B: 2e; 192A: 1b; 203B: 1e;
258B: 3b).
Reported distribution: Mediterranean
Sea and East Atlantic Ocean; 5-1100 m.
Earliest fossil: Miocene.
Remarks: The shell is up to 60 mm
long, white with a rose-coloured apex,
rather broad, and moderately curved in
the posterior half. There are about 30
longitudinal striae near the apex, oblite-
rating gradually towards the anterior
opening. The apical opening is entire
and may have a plug with a short central
pipe.
101
Iberus, 15 (1), 1997
Genus Fissidentalium Fischer, 1885
Fissidentalium capillosum (Jeffreys, 1876) (Figs. 2, 4G)
Synonyms
Dentalium capillosum Jeffreys 1876, Proc. Roy. Soc., 25: 185. (nomen nudum)
Dentalium capillosum Jeffreys: Jeffreys 1877, Ann. Mag. Nat. Hist. Ser. 4, 19: 153.
Dentalium (Fissidentalium) capillosum Jeffreys: Pilsbry and Sharp 1897-98, Man. Conch., 17: 77.
Original description: Shell tapering
to a fine point, slightly curved, rather solid,
opaque, and mostly lusterless; sculpture:
numerous and sharp (not rounded) lon-
gitudinal striae, some of which are inter-
mediate and smaller than the rest; they
disappear towards the posterior or narrow
end, which is quite smooth and glossy for
a quarter of an inch [6.4 mm]; colour
whitish; margin at the posterior end having
a short and narrow notch. L [length]: 1.4
[35.6 mm]. B [maximum diameter]: 0.15
[3.8 mm]. (...) This appears to attain a size
considerably exceeding that given in the
above description, as fragments measure
nearly 0. 4 inch [10 mm] in breadth.
Type locality: North Atlantic, Valo-
rous st. 12, 13, 16; 1242-3213 m.
Present material: 1 station; Biscay,
925-1025 m (159A: 5e).
Reported distribution: North Atlan-
tic, Caribbean Sea to Portugal, Azores to
Hebrides; 400-3500 m.
Earliest fossil: No fossil record.
Remarks: This species can be 81 mm
long. The shell is white or grey and may
be somewhat eroded. There are about 65
fine ribs throughout most of the length.
Pilsbry and SHARP (1897-98) supplement
JEFFREYS' (1877) description saying that
the ribs are sharply cut but rounded on
the top. This is particularly obvious in
the anterior part of the shell where the
ribs become wider.
Family GADILINIDAE Chistikov, 1975
Subfamiliy EPISIPHONINAE Chistikov, 1975
Genus Episiphon Pilsbry and Sharp, 1897-98
Episiphon filum (Sowerby, 1860) (Figs. 2, 4H)
Synonyms
Dentalium filum Sowerby 1860, Thes. Conch., III: 89.
Dentalium gracile Jeffreys 1870, Ann. Mag. Nat. Hist. (4), VI: 74. Fischer 1873, Journ. Conchyl.: 140.
Pseudantalis filum (Sowerby): Monterosato 1884, Nom. Gen. Spec. Conch. Medit.: 33.
Dentalium rufescens Weinkauff 1868 (partim), Conch. Mittelm., Il: 420.
Original description: Shell slender,
very narrow, thin, finely pointed, mantle
reddish brown, apex entire.
Type locality: Gibraltar.
Present material: 2 stations; Biscay,
104-132 m (152A: 2b, le; 153A: 2b).
Reported distribution: North Atlan-
tic from Florida to Cape Hatteras,
Algeria to Biscay; Mediterranean Sea
from Aegean to Gibraltar; 20-4784 m.
102
Earliest fossil: Miocene.
Remarks: This is a very characte-
ristic species, being very narrow,
hardly tapering and almost straight.
The length is up to 13 mm. The shell
is white and glossy, semitransparent
and extremely fragile. The sculpture
consists of growth lines only. Typical
for the genus is a long pipe at the
apex continuous with the shell. It
may be wanting because of its fragi-
lity.
STEINER: Scaphopoda from the Spanish coasts
Figure 3. Bathymetric ranges of species reported in literature (shaded) and in the present material
(black).
Figura 3. Rangos batimétricos de las especies: datos bibliográficos (gris), datos del presente material (negro).
Order GADILIDA Starobogatoy, 1982
Suborder ENTALIMORPHA Steiner, 1992
Family ENTALINIDAE Chistikov, 1979
Subfamily ENTALININAE Chistikov, 1979
Genus Entalina Monterosato, 1872
Entalina tetragona (Brocchi, 1814) (Figs. 2, 5A)
Synonyms
Dentalium tetragonum Brocchi 1814, Conch. foss. subapen., Milano: 627.
Dentalium quinquangulare Forbes 1844, Rep. Brit. Ass. Adv. Sci. for 1844: 188.
Siphonodentalium pentagonum M. Sars 1865, Forh. Videsk. Selsk. Christiania 1864: 307.
Dentalium quinquangulatum Reeve 1872, Conch. Icon.: pl. 5, fig 45.
Siphonodentalium quinquangulare (Forbes): Jeffreys 1867, Ann. Mag. Nat. Hist. Ser. 3, XX: 251.
Weinkauff 1868, Conch. Mittelm., 1: 421. Locard 1886, Ann, Soc. Agricult., Lyon Ser. 5, IX: 149.
Dautzenberg 1891, Mem. Soc. Zool. France, IV: 609. Friele and Grieg 1901, Norv. N. Atlant. Exp.
etc., Christiania 1901, Mollusca III: 50.
Siphonentalis tetragona (Brocchi): G. O. Sars 1878, Moll. Reg. Arct. Norv., Christiania 1878: 105.
103
Iberus, 15 (1), 1997
Siphodentalium tetragonum (Brocchi): Norman 1879, J. Conch., London, 2: 49.
Entalina tetragona (Brocchi): Monterosato 1880, Bull. Soc. Malac. Ital., VI: 64. Caprotti 1961, Atti
Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano, Vol. C, IV: 356.
Siphodentalium quinquangulare (Forbes): Jeffreys 1882, Proc. Zool. Soc. London, 1882: 662.
Siphonentalis quinquangularis (Forbes): Carus 1889, Prodr. faunae Medit., 11: 176.
Pulsellum quinquangulare (Forbes): Norman 1893, Ann. Mag. Nat. Hist. Ser. 6, XII: 344, 362.
Entalina quinguangularis (Forbes): Hidalgo 1917, Trab. Mus. Nac. Cienc. Nat. Ser Zool. 30: 306.
Chistikov and Sagaidachniy 1982, Zool. Zhurn., 60: 38.
Original description: Shell four-
angled, finely longitudinally striated,
sides weakly carinated.
Type locality: Pliocene of Italy
(BROCcHI, 1814), Aegean Sea (FORBES,
1844).
Present material: 6 stations; Medite-
rranean, 1001-1005 m (247A: le); Sea of
Alborán, 276-306 m (15A: 2e); Gulf of
Cádiz, 500-546 m (76A: 3e; 77A: 2e);
Galicia, 81-84 m (86DL: 1b), Biscay, 540-
543 m (124A: 5b, 15€e).
Reported distribution: Mediterra-
nean, East Atlantic from Biscay to Nort-
hern Norway; 10-2664 m.
Earliest fossil: Miocene.
Remarks: The shell is strongly
curved, at least in the apical half. It has
five primary ribs, four of them forming
almost right angles, the fifth rib on the
midline of the concave side forms an
obtuse angle. In specimens larger than
about 10 mm, 3 - 25 secondary ribs gra-
dually appear, the pentagonal form of the
cross-section smoothing out to become
subcircular. The anterior opening is
oblique, the apex simple and entire. The
shells may be up to 93 mm long but are
usually around 15 mm.
al
There is some confusion in the Euro-
pean species and the use of the names te-
tragona Brocchi, pentagona Sars and quin-
quangularis Forbes. BROCCHI (1814) des-
cribed tetragona as a Pliocene fossil from
Piemont and the Vienna Basin. FORBES
(1844) described the extant species from
the Aegean Sea as quinquangularis. MiI-
CHAEL SARS (1865) described pentagona
from the Norwegian coasts, without refe-
rring to either Brocchi or Forbes. His son,
G. O. SArs (1878) considers pentagona and
quinquangularis as janior synonyms of te-
tragona. MONTEROSATO (1880) comes to the
same conclusion claiming the fossil and
recent mediterranean species being iden-
tical. JEFFREYS (1870, 1882), however, is of
different opinion and gives priority to
quinquangularis for the recent Atlantic and
Mediterranean form. PILSBRY AND SHARP
(1897-98), LOCARD (1898) and FRIELE AND
GRIEG (1901) agree with this view.
CAPROTTI (1968), finally, comparing re-
cent specimens with the type material,
confirmes the synonymity of quinquangu-
laris and tetragona, stressing the priority
of Brocchi's name. Later, CHISTIKOV AND
SAGAIDACHNIY (1982), however, not only
separate tetragona and quinquangularis, but
also split the latter into the Mediterranean
quinguangularis and the Atlantic pentagona
on grounds of shell and radula characters.
However, they do not include fossil spe-
cimens in their study.
Suborder GADILIMORPHA Steiner, 1992
Family PULSELLIDAE Scarabino in Boss, 1982
Genus Pulsellum Stoliczka, 1868
Pulsellum lofotense (M. Sars, 1865) (Figs. 2, 5B)
Synonyms
Siphonodentalium lofotense M. Sars 1865, Forh. Videsk. Selsk. Christiania 1864: 297.
Siphonentalis lofotensis (M. Sars): G. O. Sars 1878, Moll. Reg. Arct. Norv., Christiania 1878: 104. Mon-
terosato 1884, Nom. Gen. Spec. Conch. Medit.: 33.
104
STEINER: Scaphopoda from the Spanish coasts
Figure 4. A: Antalis agilis, B: Antalis entalis, C: Antalis dentalis, D: Antalis inaequicostata; E: Antalis
novemcostata; E: Antalis vulgaris, G: Fissidentalium capillosum; H: Episiphon filum. Scale bars, A, G:
10 mm; B-F: 2 mm; H: 1 mm.
Figura 4. A: Antalis agilis; B: Antalis entalis; C: Antalis dentalis; D: Antalis inaequicostata; E: Antalis
novemcostata; F: Antalis vulgaris; G: Fissidentalium capillosum; A: Episiphon filum. Escalas, A, G:
10 mm, B-E: 2 mm; H: 1 mm.
Iberus, 15 (1), 1997
Siphodentalium lofotense M. Sars: Jeffreys 1882, Ann. Mag. Nat. Hist., Ser. 5, XI: 395.
Siphonodentalium (Pulsellum) lofotense M. Sars: Pilsbry and Sharp 1897-98, Man. Conch., 17: 138.
Siphonodentalium lofotensis M. Sars: Stork 1934, Thalassia, 1: 10.
Pulsellum lofotensis (M. Sars): Emerson 1962, Journ. Paleontol. 36: 475.
Original description: Shell smooth,
moderately curved, anteriorly wide and
tapering to the posterior, white, walls
transparent or semitransparent, thin,
shiny, very fine and dense obliquely
transverse growth lines well visible,
posterior shell margin entire [plain].
Length 5-6 mm, basal width 0.66 mm,
apical about 0.33 mm. [Description of
soft body omitted.]
Type locality: Lofoten Isl., Norway;
90-216 m.
Present material: 4 stations; Gulf of
Cádiz, 535-546 m (76A: 3e); Galicia, 80-
120 m (1684: 3e; 171A: 3e); Biscay, 129-
132 m (153A: 5b, about 20e).
Reported distribution: Mediterra-
nean Sea; North Atlantic from Spain to
Finmark, Ireland, New England; 26-
3500 m.
Earliest fossil: Pliocene.
Remarks: The small shell is rather
fragile in the anterior third and easily
breaks into cylindric fragments upon
handling. Breakage occurs along the
oblique growth lines. The anterior ope-
ning is circular as the apical opening but
slightly oblique. Most live animals have
perfectly transparent shells, empty
shells are opaque. The apical rim is al-
ways entire without notches or lobes,
although JEFFREYS (1882) mentions spe-
cimens with regularly jagged tips. This
may have been a siphonodentaliid spe-
cies, also because he did not see a bul-
bous larval shell, which is well develo-
ped in Pulsellum lofotense (Steiner, 1995).
Family GADILIDAE Stoliczka, 1868
Subfamily SIPHONODENTALIINAE Simroth, 1894
Genus Dischides Jeffreys, 1867
Dischides politus (Wood, 1842) (Figs. 2, 5C)
Synonyms
Ditrupa polita Wood 1842, Ann. Mag. Nat. Hist., 9: 459.
Dentalium coarctatum Philippi 1844, Enum. Moll. Sicil., UI: 208, non Lamarck 1818, Anim. sans Vert., 5: 346.
Dentalium laevigatum de Rayneval, Hecke and Ponzi 1854, Cat. Foss. Mont Mario, Versailles, non
Schlotheim 1830.
Dentalium bifissum Jeffreys 1867, Ann. Mag. Nat. Hist., Ser. 3, XX: 251. Weinkauff 1868, Conch.
Mittelm., 1: 421. Monterosato 1884, Nom. Gen. Spec. Conch. Medit.: 34.
Dischides olivi Jeffreys 1870, Ann. Mag. Nat. Hist., Ser. 4, VI: 73.
Dischides bifissus (Jeffreys): Jeffreys 1882, Proc. Zool. Soc. London, 1882: 663.
Cadulus politus (Wood): Pilsbry and Sharp 1897-98, Man. Conch., 17: 144. Stork 1934, Thalassia, 1: 9.
Original description: Shell slightly
arcuated, thin, smooth, subcylindrical;
anterior opening plain, posterior cleft,
bilateral, with unequal terminations.
The body of the [... ] shell is not inflated
or enlarged like that of Dentalium gadus,
but has the posterior opening laterally
cleft, somewhat resembling that of Den-
talium coarctatum Deshayes [... ] but the
dorsal part of the posterior end of this
106
fossil is produced beyond the edge
beneath and rounded, the ventral edge
is shorter and truncated, an enamel-like
polish covers the exterior, and was pro-
bably when inhabited subhyaline, but is
now opaque. Length half an inch [12.7
mm] nearly.
Type locality: Coralline
England (Pliocene).
Crag,
STEINER: Scaphopoda from the Spanish coasts
Figure 5. A: Entalina tetragona; B: Pulsellum lofotense, C: Dischides politus, D: Cadulus jeffreysi. Scale
bars 1 mm.
Figura 5. A: Entalina tetragona; B: Pulsellum lofotense; C: Dischides politus; D: Cadulus jeffreysi.
Escalas 1 mm.
Present material: 1 station; Gulf of
Cádiz, Trafalgar, 34 m (58A: 1e).
Reported distribution: Northeast
Atlantic from Marocco to Biscay, Medi-
terranean; 9-324 m.
Earliest fossil: Pliocene.
Remarks: The recent members of
this species attain maximum lengths of
7 mm. The shell is white, glossy, mode-
rately curved and only slightly tapering.
The sculpture consists of growth lines
only. The greatest diameter of the shell
lies just behind the anterior opening.
The posterior opening has two lateral
notches producing a dorsal and a
ventral lobe. Tubes of the serpulid poly-
chaete Ditrupa sp. must not be confused
with Dischides politus. The polychaete
tubes are often reddish brown in colour,
the outer layer has a semitransparent
aspect. They are sharply constricted at
the anterior opening and lack growth
lines.
Dischides has repeatedly been chan-
ging between subgenus and genus
status. It was recently confirmed in its
generic rank and transferred to the sub-
family Siphonodentaliinae by SCARA-
BINO (1995).
1107
Iberus, 15 (1), 1997
Subfamily GADILINAE Stoliczka, 1868
Genus Cadulus Philippi, 1844
Cadulus jeffreysi (Monterosato, 1875) (Figs. 2, 5D)
Synonyms
Helonyx jeffreysi Monterosato 1875
Cadulus jeffreysi (Monterosato): Jeffreys 1882, Verrill 1882, Pilsbry and Sharp 1897-98, Muus 1959
Cadulus propinquus Verrill 1885, non G. O. Sars
Cadulus subfusiformis Stork 1934, non M. Sars
Original description: Anterior aper-
ture obliquely truncated, base or [?and]
posterior aperture compressed, slightly
deformed at each side.
Type locality: Aegean Sea, 234-450 m.
Present material: 1 station; Gulf of
Cádiz, 535-546 m (76A: 18€).
Depth range: 535-546 m.
Reported distribution: Mediterra-
nean; North Atlantic from Canary Ís.,
Biscay to Ireland and Norway, West
Atlantic from Martha's Vineyard to Bar-
bados, South Atlantic at St. Helena; 90-
2200 m.
Earliest fossil: Pliocene
DISCUSSION
Of the 19 valid species listed for the
Iberian coasts by HIDALGO (1917), 12 are
represented in the present material. Ta-
king into account the recent finding of
the Eastern Mediterranean species Anta-
lis rossati near Barcelona (Alzuria, 1986)
and the deep-water Biscayan material of
the “Talisman”, “Travailleur” (LOCARD,
1898) and “Valorous” (JEFFREYS, 1877)
expeditions, the species list of Iberian
scaphopods grows to 31. Species treated
in these reports but not present in this
material are listed in Table I.
The present findings provide no bio-
geographic novelties. Species living in
both the Atlantic and Mediterranen Sea
are Antalis agilis, A. dentalis, A. vulgaris,
Episiphon filum, Entalina tetragona, Pulse-
llum lofotense, Dischides politus and Cadu-
108
Remarks: Shell small, smooth and
shiny, moderately curved, with a conspi-
cuous swelling just anterior to the middle;
ventral side regularly curved, dorsal side
with distinct convex area due to the swe-
lling; anterior shell aperture obliquely trun-
cated facing downwards, slightly laterally
compressed; posterior aperture without
lobes, dorsoventrally depressed.
This species may be confused with
Cadulus subfusiformis (M. Sars 1865). It
differs in being larger, conspicuously
swollen near the middle of the shell and
having a distinct convex area in the
dorsal line. The anterior aperture is
slightly laterally compressed, the poste-
rior aperture dorsoventrally depressed,
while C. subfusiformis has a faintly dorso-
ventrally depressed anterior end and a
round posterior one.
lus jeffreysi. The only typical Mediterra-
nean forms in the material is A. inaequi-
costata. This latter shallow-water form
extends, however, beyond the Strait of
Gibraltar into the Gulf of Cádiz. On the
other hand, A. entalis, A. novemcostata
and Fissidentalium capillosum are known
from Atlantic waters only.
Comparing the bathymetric data of
this material with reported ranges (Fig.
3), only Antalis agilis, A. inaequicostata
and Entalina tetragona cover the greater
part of their ranges. Most of the other
species are found a one or two stations
only, which may explain their relatively
restricted bathymetric occurrence.
CAPROTTI (1968) considers Cadulus oli-
vii, C. strangulatus and C. tumidosus doubt-
ful species or mere variations of C. ovulus.
STEINER: Scaphopoda from the Spanish coasts
Table I. Scaphopoda reported from the Iberian coasts but not in present material. Asterisks mark
doubtful species (see Discussion).
Tabla 1. Escafópodos citados en las costas ibéricas pero no hallados en el presente material. Los asteríscos
indican especies dudosas (ver Discusión)
Species Area
Order DENTALIIDA
Family DENTALIIDAE
Antalis panorma (Chenu, 1842-47)
Antalis rossati (Caprotti, 1966)
Fissidentalium candidum (Jeffreys, 1877) Biscay
FUSTIARIIDAE
Fustiaria rubescens (Deshayes, 1825) Mediterranean
1917, Alzuria, 1987
Order GADILIDA
Suborder ENTALIMORPHA
Family ENTALINIDAE
Subfamily BATHOXIPHINAE
Bathoxiphus ensiculus (Jeffreys, 1877)
Subfamily HETEROSCHISMOINAE
Heteroschismoides subterfissum
Suborder GADILIMORPHA
Family GADILIDAE
Subfamily SIPHONODENTALIINAE
Siphonodentalium lobatum (Sowerby, 1860) Atlantic, Portugal
Subfamily GADILINAE
Cadulus artatus Jeftreys, 1880
Cadulus subfusiformis (M. Sors, 1865)
Atlantic, Biscoy
Cadulus gracilis Jeffreys, 1877 Biscoy
Cadulus propinquus 6. O. Sars, 1878 Biscay
Cadulus cylindratus Jeffreys, 1877 Biscay
Cadulus monterosatoi Locard, 1897
Codulus gibbus Jeffreys, 1882
Cadulus ovulus (Philippi, 1844)
Cadulus amphorus Jeffreys, 1882
*Codulus olivii (Scacchi, 1835)
*Cadulus tumidosus Jeffreys, 1877
*Cadulus strangulatus Locard, 1897
Biscoy
Biscay
The occurrence of C. subfusiformis, a wide-
spread Atlantic species, in the Mediterra-
nean remains controversary. Although
MONTEROSATO (1880) identifies a varia-
tion (var. abyssicola) from Palermo, CA-
PROTTI (1968) does not list this species as
constant inhabitant of the Mediterranean.
Recently, GAGLINI (1985) reconfirmed C.
subfusiformis, and also MIFSUD's (1996) pho-
Mediterranean, Northeast Spain, Balearic ls.
Mediterranean, Northeast Spain
Atlantic, Portugal, Biscay
Atlantic, Portugal,
Atlantic, Biscay, Mediterranean
Atlantic, Galicia, Portugal
Biscoy, Mediterranean
-Aílantic, South Portugal
Atlantic, Biscay, Galicia, Southern Portugal
Biscay, Mediterranean off Morseilles
Reference
Locard, 1898; Hidalgo, 1917
Alzuria, 1986
Jeffreys, 1877
Locard, 1898; Hidalgo,
Jeffreys, 1877
Locard, 1898
Jeffreys, 1882
Locard, 1898
Locard, 1898; Monterosato, 1875
Locard, 1898
Locard, 1898
Locord, 1898
Locard, 1898
Locard, 1898
Locard, 1898
Locard, 1898
Jeffreys, 1882
Locord, 1898
Locard, 1898
tograph of C. jeffreysi from Malta looks
more like subfusiformis. However, until
further reports come in, it remains possi-
ble that in the Mediterranean C. subfusi-
formis occurs in episodic pseudopopula-
tions only (BOUCHET AND TAVIANI, 1992).
Long lists of synonyms as for some
Mediterranean scaphopod species may
have several reasons. One of them, espe-
109
Iberus, 15 (1), 1997
cially when generic designations vary, is
progress in supraspecific systematics.
Another reason may be closely related but
morphologically variable species and / or
similar but not identical fossil forms. The
species complex of Antalis inaequicostata,
novemcostata and the Miocene mutabile (Do-
derlein in HÓRNES, 1856) is a good exam-
ple for a combination of these causes. An-
talis mutabile and A. inaequicostata are very
similar and both highly variable in their
shell features. BUCQUOY ET AL. (1886) re-
cognize the close relationship of mutabile
and inaequicostata (=alternans). PILSBRY AND
SHARP (1897-98) go further and list muta-
bile as synonym of both dentalis (p. 53) and
novemcostata (p. 211). RUGGIERI (1948) sug-
gests mutabile being ancestral to novem-
costata. CAPROTTI (1979) takes the alterna-
tive view and presents the recent inaequi-
costata as subspecies of the fossil mutabile.
On the other hand, he assigns species sta-
tus to novemcostata, although considering
it the Atlantic descendant of mutabile. Fi-
nally, PavIA's (1991) questionable assign-
ment of mutabile to the genus Fissidenta-
lium leaves little doubt about its species
status. In this case, there are two argu-
ments for treating the presumed ancestor
and the descendants as separate species.
First, according to CAPROTTI (1979: 232),
there is a “typical mutabile” to be distin-
guished from inaequicostata, the latter being
extremely variable. Second, there is no fos-
sil record of either species from the Ta-
bianian (Lower Pliocene). Thus, there is a
gap between the latest mutabile fossils from
BIBLIOGRAPHY
ALZURIA, M., 1986. Antalis rossati (Caprotti,
1966), nuevo escafópodo para la fauna es-
pañola. Publicaciones del Departamento de Zo-
ología (Barcelona), 12: 37-39.
ALZURIA, M., 1987. El género Fustiaria (Mo-
llusca; Scaphopoda) en el delta de Ebro. Pu-
blicaciones del Departamento de Zoologia (Bar-
celona), 13: 63-69.
BOUCHET, P. AND TAVIANI, M., 1992. The Me-
diterranean deep-sea fauna - pseudopopu-
lations of Atlantic species. Deep-Sea Research,
39: 169-184.
BroccHI, G., 1814. Conchiologia fossile subapen-
nina. Vol. IL. Milano.
110
the Miocene and the earliest inaequicostata
remains from the Middle Pliocene. This
suggests that mutabile became extinct du-
ring the desiccation of the Mediterranean
in the Upper Miocene (RÓGL AND STEI-
NINGER, 1983, 1984), and inaequicostata ra-
diated back into the Mediterranean Basin
from the Atlantic, perhaps splitting from
novemcostata, the possible sister species
from the European southwest coasts. A
study of the relationships of the recent Eu-
ropean shallow water Antalis species with
molecular techniques is needed to bring
more clarity on this question.
That the re-colonisation of the Medi-
terranean by scaphopods around the
Miocene-Pliocene transition is not
necessarily connected with speciation is
demonstrated by the cases of A. dentalis
and Entalina tetragona. Both species are
represented in the fossil record almost
unchanged (CaAPRrOTTI, 1965; 1968; 1979)
from the Miocene on.
ACKNOWLEDGEMENTS
I am indepted to José Templado,
Museo Nacional de Ciencias Naturales,
for making the material available and for
the information on station data. I also
thank Luitfried Salvini-Plawen for his
comments on the manuscript. An anony-
mous reviewer provided the abstract in
Spanish. This paper is a contribution to
the Fauna Ibérica Programmes (DGCYT
PB87-0397, PB89-0081, PB92-0121).
BucQuoY, E., DAUTZENBERG, P. AND DOLLFUS, G.,
1882. Mollusques marins du Roussillon. Bailliere
and Fils, Paris, Tome l, Gasteropodes: 570 pp.
CAPROTTI, E., 1961. Scaphopodi piaceziani di
Castell Arquato (Piacenza). Atti della Societá
Italiana di Science Naturali e del Museo Cívico
di Storia Naturale di Milano, 100 (4): 345-359.
CAPROTTI, E., 1965. Note on the Mediterranean
Dentaliidae. Atti della Societá Italiana di Science
Naturali e del Museo Civico di Storia Naturale
di Milano, 104 (3): 339-354.
CAPROTTI, E., 1968. Nota sui generi Cadulus ed
Entalina nel Mediterraneo. Archiv fúr Mo-
lluskenkunde, 98: 77-84.
STEINER: Scaphopoda from the Spanish coasts
CAPROTTI, E., 1979. Scaphopodi neogenici e re-
centi del bacino mediterraneo. Iconograp-
hica ed epitome. Bollettino Malacologico, 15:
213-288.
CHISTIKOV, S. D. AND SAGAIDACHNYI, A. Y.,
1981. Comparative morphology of shells in
two species of the family Entalina. Zoologi-
cheskii Zhurnal, 60: 36-41. (in Russian).
FORBES, E., 1844. Report on the mollusca and ra-
diata of the Aegean Sea and on their distri-
bution, considering as bearing on geology. Re-
ports of the British Association for the Advance-
ment of Science 13 (for 1843): 130-193.
FRIELE, H. AND GRIEG, J. A., 1901. The Norwe-
gian North Atlantic Expedition 1876-1878.
Zoology. Mollusca III. Scaphopoda. Chris-
tiania, 49-51.
GAGLINI, A., 1985. Riconferma di Cadulus sub-
fusiformis (M. Sars). Notiziario CISMA., 6: 1-8.
HIDALGO. J. G., 1917. Fauna malacológica de
España, Portugal y las Baleares. Moluscos
testáceos marinos. Trabajos del Museo Nácio-
nal de Ciencias Naturales, Serie Zoologia, no.
30: 752 pp-
HÓRNES, 1856. Die fossile Mollusken des Tertiar-
Beckens von Wien. Jahrbúcher der Geologis-
chen Reichsanstalt, Wien, 654 pp.
JEFFREYS, J. G., 1870. Mediterranean Mollusca.
Annals and Magazines of Natural History, (4)
6: 56-86.
JEFFREYS, J. G., 1877. New and peculiar Mo-
llusca of the order Solenoconchia procured
by the “Valorous” expedition. Annals and
Magazines of Natural History, (4) 19: 153-158.
JEFFREYS, J. G., 1882. On the Mollusca procured
during the Lightning and Porcupine expe-
ditions 1868-70. Proceedings of the Royal Society
of London, 1882: 656-687.
LOCARD, A., 1898. Mollusques Testaces. Expe-
ditions Scientifigues Travailleur et Talisman
1880-1883, Masson, ed., 2: 1031 pp.
MArs, P., 1965. Faune marine des Pyrénées-
Orientales. 5. Mollusques Aplacophores,
Polyplacophores, Scaphopodes et Bivalves.
Vie et Milieu, Supplément a Tome XV, fasc.
4: 156 pp.
MIFSsUD, C., 1996. Living Mollusca from circa-
littoral coastal muds, off Western Malta. La
Conchiglia, 1996: 23-41.
MONTEROSATO, T. A. DI, 1875. Nuova Revista
delle Conchiglie Mediterranee. Atti dell“Ac-
cademia Palerm. Sciencias, Lettri e Arti, Vol. V,
Ser. 2: 1-50.
MONTEROSATO, T. A. DI, 1880. Conchiglie della
zona edgli abissi. Bullettino della Societa Ma-
lacologica Italiana, VI: 50-82.
Pavia, G., 1991. I molluschi del Messiniano di
Borrelli (Torino). 2. Scaphopoda. Museo Re-
gionale di Scienze Naturali Bollettino (Turin), 9:
105-172.
PiLsBRY, H. A. AND SHARP, B., 1897. Scaphopoda.
In Tyron, G. W. (Ed.): Manual of Conchylology,
17: 1-280.
RÓGL, F. AND STEININGER, F. F., 1983. Vom Zer-
fall der Tethys zu Mediterran und Paratethys.
Die neogene Paláogeographie und Pa-
linspastik des zirkum-mediterranen Raumes.
Annalen des Naturhistorischen Museums Wien,
85/A: 135-163.
RÓGL, F. AND STEININGER, F. F., 1984. Neogene
Paratethys, Mediterranean and Indo-Pacific
Seaways. Implications for the paleobiogeo-
graphy of marine and terrestrial biotas. In
Brenchley, P. (Ed.): Fossils and Climate, Wiley
and Sons, Ltd., 171-200.
RUGGIERI, G., 1948. La malacofauna del Cala-
briano Romagnolo. Giornale di Geologia. An-
nali del Museo Geologico di Bologna, 20: 63-110.
SARS, G. O., 1872. Some remarkable forms of ani-
mal life from the great deeps off the Nor-
wegian coast. I. Partly from posthumous ma-
nuscripts of the late Professor Dr. Michael
Sars. Christiania University Program, 1% half-
year 1869: 1-VIII, 1-85, 6 pl.
SARS, G. O., 1878. Bidrag til Kundskaben om
Norges arktiske Fauna. I. Mollusca Regio-
nis Arcticae Norvegiae. Oversigt over de i
Norges arctiske region forkommende
bloddyr. Universitetsprogram Christiana, forste
halvaar 1878: 466 pp., 18pl.
SARS, M., 1865. Malakozoologiske Jagtagelser.
II. Nye Arter af Slaegten Siphonodentalium.
Forhandlinger Videnskabs-Selskabet i Christia-
nia, 1864: 296-315.
SCARABINO, V., 1995. Scaphopoda of the tropi-
cal Pacific and Indian Oceans, with descrip-
tions of 3 new genera and 42 new species. Mé-
moirs du Museum national d'Histoire naturelle.
Résultats des Campagnes Musorstom, vol. 14, P.
Bouchet (ed.), 167: 189-379.
STEINER, G., 1992. Phylogeny and classification
of Scaphopoda. Journal of Molluscan Studies,
58: 385-400.
STEINER, G., 1995. Larval and juvenile shells of
four North Atlantic scaphopod species. Ame-
ican Malacological Bulletin, 11: 87-98.
STEINER, G., 1996. Suprageneric phylogeny in
Scaphopoda. In Taylor, J. (Ed.): Origin and
Evolutionary Radiation of the Mollusca, Oxford
University Press, 329-335 pp.
STORK, H. A., 1934. Scaphopoden der Adria.
Thalassia, 1(9): 3-18.
TEMPLADO, J., GUERRA, A., BEDOYA, J., MORENO,
D., REMÓN, J. M., MALDONADO, M. AND RA-
MOS, M. A., 1993. Fauna marina circalitoral del
sur de la península Ibérica. Resuldados de la
Campana Oceanografica “Fauna 1”. Museo Na-
cional de Ciencias Naturales Consejo Supe-
rior de Investigaciones Científicas, 183 pp.
TÉrry, A., 1959. Classe des Sipunculiens. In: Gras-
sé, P. P. (Ed.): Traitéde Zoologie. Anatomie, Sys-
tematique, Biologie. Tome V /1: 785-854.
=
111
ad mA d A ds m NE: A” 7 rr EM
ct eno A ooo ME EN
7d
did ' (3
lo ps ab mt
' MS, ep das Hd, erat RA ¿gee Y
MAA Mes a AA E LEE Qe
e de 3 PA Y amo St Las ias un
mo A
Y JN
O Sociedad Española de Malacología —_—_—_—_——— Iberus, 15 (1): 113-123, 1997
Análisis parasitológico de gasterópodos acuáticos del delta
del Llobregat (Barcelona). Estadios larvarios de trematodos
digénidos
Parasitological study on aquatic gastropods from the Llobregat delta
(Barcelona). Larval stages of digenetic trematodes
Mercedes VILLA, Isabel MONTOLIU, Mercedes GRACENEA y Olga GON-
ZÁLEZ-MORENO*
Recibido el 8-VIII-1996. Aceptado el 20-XT-1996
RESUMEN
Se ha estudiado, durante los años 1990 a 1995, el índice de parasitación por estadios
larvarios de trematodos digénidos de 6. 184 gasterópodos acuáticos recolectados en el
delta del Llobregat, pertenecientes a 4 especies, 2 prosobranquios (Hydrobiidae) y 2 pul-
monados (Ellobiidae, Physidae). El hidróbido Mercuria confusa [Frauenfeld, 1863) ha
resultado ser el único parasitado por digénidos, mostrando una prevalencia de infestación
del 3,22% (168 positivos sobre 5.219 analizados). Se han detectado hasta 5 especies
de trematodos en estadio larvario, las cuales siguen dos modalidades de ciclo biológico:
a) emisión de cercarias (xifidiocercarias Lecithodendriidae Odhner, 1910 y Microphalli-
dae Travassos, 1920, cercarias inermes Notocotylidae Lúhe, 1957; b) ausencia de emer-
gencia cercariana (Microphallidae y Heterophyidae -Leiper, 1909- Odhner, 1914). La
alta densidad poblacional de M. confusa y su susceptibilidad de ser parasitado por lar-
vas de diversas especies de digénidos revelan su importancia en el mantenimiento de los
ciclos biológicos de trematodos, ratificando el significativo papel que ejercen los proso-
branquios como hospedadores intermediarios específicos en ambientes palustres.
ABSTRACT
Aquatic gastropods from the Llobregat delta were studied in order to detect infection pre-
valence by larval digenetic trematodes in the period 1990-1995. Specimens analysed
(6.194) belonged to 4 species, 2 prosobranchs (Hydrobiidae) and 2 pulmonates (Ellobii-
dae, Physidae), the hydrobiid M. confusa (Frauenfeld, 1863) being the only infected. Lar-
vae of 5 trematode species were detected following two life cycle modalities: a) cercarial
emergence (xifidiocercariae Lecithodendriidae Odhner, 1910 and Microphallidae Travas-
sos, 1920, unarmed cercariae Notocotylidae Lúhe, 1957); b)without cercarial emergence
(Microphallidae and Heterophyidae -Leiper, 1909- Odhner, 1914). The high density of M.
confusa population and its susceptibility to infection by several digenetic species show it to
be a specific intermediate host in the life cycle of these parasites, thus confirming the signi-
ficant role of prosobranchs in the maintenance of trematode life cycles in deltaic zones.
PALABRAS CLAVE: delta del Llobregat, Prosobranchia, Hydrobiidae, M. confusa, estadios larvarios de digéni-
dos, Lecithodendriidae, Microphallidae, Notocotylidae, Heterophyidae.
KEY WORDS: Llobregat delta, Prosobranchia, Hydrobiidae, M. confusa, larval stages of Digenea,
Lecithodendriidae, Microphallidae, Notocotylidae, Heterophyidae.
* Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Barcelona, Avda. Diagonal, s/n, 08028
Barcelona.
113
Iberus, 15 (1), 1997
INTRODUCCIÓN
Las marismas del delta del Llobregat
acogen una amplia variedad de gasteró-
podos acuáticos y terrestres, distribui-
dos en las lagunas, canales y terrenos
colindantes, especies que se extienden
por toda la planicie litoral en abundan-
tes poblaciones y cuya distribución y
frecuencia ha quedado reflejada en el
estudio de ALTIMIRA (1969), autor que
describe hasta 79 especies presentes en
diversos hábitats deltaicos, destacando
asimismo los tratados malacológicos
generales elaborados por Haas (1929),
VIDAL ABARCA Y SUÁREZ (1985) y BECH
(1990).
La importancia parasitológica de
este grupo zoológico de invertebrados
reside en el destacado papel que osten-
tan sus especies como primeros hospe-
dadores intermediarios específicos,
albergantes de esporocistos, redias y
cercarias, de prácticamente todas las
especies parásitas de trematodos digéni-
dos de ciclos biológicos conocidos;
pudiendo representar un doble papel en
los ciclos abreviados, al intervenir como
primeros y segundos hospedadores
intermediarios simultáneamente, alber-
gantes además de metacercarias.
El proceso natural de eutrofización
existente en este tipo de ambiente
lagunar, caracterizado por la presencia
constante de agua salobre, rica en
materia orgánica, y la descomposición
de la vegetación helofítica, constituye el
factor primordial para el asentamiento
de moluscos eurihalinos. Otros peque-
ños invertebrados que conviven estre-
chamente con los anteriores (crustáceos
e insectos) pueden actuar como segun-
dos hospedadores intermediarios de
estos digénidos, sirviendo, asimismo,
como fuente de alimentación de la fauna
vertebrada (aves, micromamíferos,
peces), hospedadores de las formas
adultas del parásito.
El conocimiento de la biología de los
digénidos en este tipo de ambiente
palustre requiere un seguimiento previo
de las especies hospedadoras parasita-
das, de los biotopos que frecuentan y de
su comportamiento. En este sentido,
114
cabe destacar los numerosos trabajos
faunístico-ecológicos realizados en el
delta del Ebro, basados en las especies
vermidianas y sus hospedadores micro-
mamíferos (FELIU, TORRES, GÁLLEGO,
GOSÁLBEZ Y VENTURA, 1985; GRACENEA,
FELIU, MONTOLIU, TORRES Y GÁLLEGO,
1987; FELIU, TORRES, GRACENEA Y MON-
TOLIU, 1990), trabajos que han servido
como punto de referencia para el
estudio de los ciclos biológicos, princi-
palmente acuáticos, de digénidos que
tienen lugar en dicho enclave (MONTO-
LIU, GRACENEA, VILLA Y GONZÁLEZ-
MORENO, 1991). De la misma forma, los
llevados a cabo en pequeños mamíferos
del delta del Llobregat, menos numero-
sos y caracterizados por recoger una
fauna parasitaria cualitativamente y
cuantitativamente más pobre (GRACE-
NEA Y MONTOLIU, 1992; GRACENEA,
MONTOLIU Y DEBLOCK, 1993), han sido
ampliados con el estudio parasitológico
de diversas especies de moluscos, hos-
pedadoras de larvas de digénidos tanto
de ciclo acuático (MONTOLIU, GRACENEA
Y DEBLOCK, 1992), como de ciclo terres-
tre (GONZÁLEZ-MORENO, GRACENEA,
MONTOLIU Y VILLA, 1994). Continuando
en esta línea de investigación sobre
ciclos biológicos de trematodos parási-
tos, este trabajo muestra la diversidad
existente en la helmintofauna larvaria
asociada a gasterópodos acuáticos adap-
tados a hábitats deltaicos.
MATERIAL Y MÉTODOS
Recolección de caracoles y manteni-
miento en el laboratorio: El enclave
prospectado, ya señalado anteriormente
por GONZÁLEZ-MORENO ET AL. (1994),
comprende los márgenes de la laguna
de La Ricarda (Biotopo A) y terrenos
colindantes del margen derecho parcial-
mente inundados por las aguas (Biotopo
B) (ver Figura 1). Ambos puntos de
muestreo constituyen el hábitat de asen-
tamiento de diversas comunidades de
moluscos, especies que son capaces de
soportar la intensa fluctuación estacio-
VILLA ET A4L.: Larvas de tremátodos digénidos en gasterópodos acuáticos del Llobregat
BARCELONA
NM
b 1,5 km
RÍO LLOBREGAT
PRAT DEL
LLOBREGAT
2
es
AEROPUERTO
Figura 1. Situación geográfica de la zona prospectada en el delta del Llobregat. A: laguna de La
Ricarda. B: localización de los biotopos estudiados.
Figure 1. Geographic situation of the prospected areas in the Llobregat delta. A: La Ricarda lagoon. B:
localization of the study areas.
nal del enclave, con aporte constante de
agua dulce procedente de los canales y
del acuífero superficial e infiltración de
agua marina.
Biotopo A: la vegetación natural pre-
dominante en esta comunidad helofítica
son los cañizares que bordean el margen
de la laguna, con una especie predomi-
nante, el cañizo (Phragmites australis),
cuyos tallos parcialmente sumergidos
permiten el ascenso de los gasterópodos
hacia la superficie. Agua de salinidad
variable (3-8%0)y pH entre 7 y 8.
Biotopo B: constituido por zonas ane-
gadas, poco profundas, cercanas al
margen derecho de la laguna, alimenta-
das esencialmente por los canales de
desagúe y las lluvias; con predominio
de la vegetación helofítica asociada a
especies halófilas. Junto a las gramíneas
(Phragmites) se encuentra la espadaña
(Typha angustifolia, T. latifolia), el esparto
(Spartina juncea), así como una comuni-
dad bentónica (Enteromorpha, Ulva,
Chara); dado el menor aporte de agua
marina la salinidad es menor (2-5%o) y
pH entre 7 y 8.
Las especies de caracoles recolecta-
das en ambas zonas de muestreo han
sido seis: 2 prosobranquios, Mercuria
confusa (Frauenfeld, 1863) y Potamopyr-
gus jenkinsi (Smith, 1889) (Hydrobiidae)
y 2 pulmonados, Ovatella (Myosotella)
myosotis (Draparnaud, 1801) (Ellobiidae)
y Physa acuta (Draparnaud, 1805) (Physi-
dae). En la Tabla I queda reflejado el
número de caracoles de cada especie
estudiado, el biotopo de prospección y
la época de recolección.
El estudio ha abarcado un periodo
de cinco años (1990-95) con muestreos
en primavera y otoño. Para ello, fueron
utilizados tamices metálicos con los que
se procedía a barrer el fondo fangoso o
bien se practicaban pequeñas sacudidas
de las partes sumergidas de la vegeta-
ción acuática. Una vez en el laboratorio
los moluscos eran estabulados, reprodu-
ciendo las características específicas de
cada zona de captura: con una salinidad
115
Iberus, 15 (1), 1997
Tabla I. Especies de gasterópodos estudiadas: distribución del número de ejemplares según época de
recolección y biotopo prospectado (A, B).
Table I. Gastropod species analysed: specimen distribution in the prospected biotopes (A, B) and annual
variation.
1990 1991 1992
A A A
Prosobranchia
Mercuria confusa IIS O 27]
Potamopyrgus ¡jenkinsi 12 21 9
Pulmonata
Ovatella ([Myosotella) myosotis 25 6 17
Physa acuta 4 40
y pH adecuados, dieta constituida por
lechuga seca y alimento para peces.
Detección y aislamiento de formas
larvarias de digénidos: La detección de
una posible emisión de cercarias al
medio externo se efectuó disponiendo
individualmente los gasterópodos en
pocillos de placa de cultivo celular con-
teniendo agua del biotopo y observán-
dolos posteriormente bajo la lupa en
búsqueda de cercarias nadando libre-
mente. Para la detección de esporocis-
tos, redias y metacercarias, se procedió a
la disección de los caracoles y a la obser-
vación de todos sus órganos.
Técnicas microscópicas: Las larvas
fueron inicialmente estudiadas in vivo
con el microscopio óptico y con la ayuda
del colorante vital rojo neutro, proce-
diéndose posteriormente a la fijación
con el líquido de Bouin, tinción con
carmín alumínico y tras cuidadosa des-
hidratación se montaron con Bálsamo
del Canadá.
RESULTADOS
El estudio de 5.219 ejemplares de M.
confusa ha puesto de manifiesto la capa-
cidad de este prosobranquio, el único
gasterópodo que ha resultado estar
parasitado, para albergar diferentes
formas larvarias de digénidos, en total
cinco especies caracterizadas por su
116
1993: 1994 1995 Total
A B ASNO B
E O MO CA O NO
224 40 7
36 : : E Aa
121 OA 1 589
ciclo biológico acuático. Todas las infes-
taciones por digénidos han mostrado
invasión a nivel del complejo glándula
digestiva-gónada, como hábitat de elec-
ción para la evolución de las larvas.
Las especies de digénidos detecta-
das, pertenecientes a 4 familias, presen-
tan dos modalidades de ciclos biológi-
cos (Fig. 2). En la primera de ellas, es
característica la emisión de cercarias al
medio externo, bien sea en ciclos trihete-
roxenos (con tres hospedadores) o dihe-
teroxenos (con dos hospedadores). En la
segunda modalidad, ciclo de tipo abre-
viado, el gasterópodo se comporta como
primer y segundo hospedador interme-
diario simultáneamente, no habiendo
emisión de cercarias.
I. Emisión de cercarias
I. a. Ciclos triheteroxenos
Cercarias Lecithodendriidae. Lecit-
hodendriidae gen. sp.: Cercarias xifi-
diocercas (con estilete), distomas, pro-
vistas de una cola recta más estrecha
que el cuerpo (leptocercas) y virguladas
(cuerpo: 150 x 90 um). Originadas en
esporocistos sacciformes (100-350 x 50-
100 um) provistos de poro de salida
musculoso a través del cual las cercarias
emergen según un patrón de emisión
predominantemente nocturno.
La morfoanatomía de estas cercarias
se ajusta a la descrita para la familia
Lecithodendriidae (YAMAGUTI, 1975;
SCHELL, 1985), destacando su afinidad
con xifidiocercarias Lecithodendriidae
VILLA ET 4Lz.: Larvas de tremátodos digénidos en gasterópodos acuáticos del Llobregat
o 'O) enquistamiento O) anfibios,
Cercarias me a e reptiles o
EMISIÓN Lecithodendriidae : 22H. 1 quirópteros
insectos ( 19) H'D
DE CERCARIAS (H. D.)
E SLCALIAS enquistamiento O) insectivoros
M. feliui ——Y» en crustáceos, 5 (C. russula)
E) anfípodos e (H. D.)
isópodos (2? H. L)
CICLOS TRIHETEROXENOS
CICLOS DIHETEROXENOS
| — Catia enquistamiento O) Aves
a : ——PY» en plantas = aos
E Notocotylidae p y > acuáticas
conchas del caracol (H. D.)
iS enquistamiento 2) o
M. fusiformis bip> q = =D> acuáticas
: : en esporocistos HD
NO EMISIÓN (Microphallidae) (H. D.)
peces o
reptiles
(H. D.)
DE CERCARIAS cercarias $ enquistamiento
Heterophyidae en el caracol
Figura 2. Ciclos biológicos de los digénidos detectados en Mercuria confusa. (—): fases conocidas.
(=>): fases presumibles. 2” H. L.: segundo hospedador intermediario. H. D.: hospedador definitivo.
1: penetración activa. 2: penetración pasiva. 3: huevos en heces del H. D.
Figure 2. Life cycles of digeneans detected in Mercuria confusa. (—): known phases. (==): likely phases.
2'H. L.: second intermediate host. H. D.: definitive host. 1: active penetration. 2: pasive penetration. 3:
eggs in definitive host feces.
detectadas en otros biotopos deltaicos emergencia cercariana se produce predo-
geográficamente próximos, el delta del minantemente en horas crepusculares.
Ebro (MONTOLIU ET AL., 1991) y costa La realización experimental del ciclo
francesa mediterránea (DEBLOCK, 1980). biológico, descrito sucintamente por los
Las cercarias probablemente infestan autores de la especie, ha permitido su
larvas de insectos (segundos hospeda- determinación sistemática. Las cercarias
dores intermediarios, en los que se infestan activamente a crustáceos anfí-
forma la metacercaria), desarrollándose podos e isópodos (segundos intermedia-
el adulto probablemente en anfibios y rios), evolucionando a metacercarias
reptiles (LLUCH, ROCA Y NAVARRO, 1986) enquistadas, los cuales son depredados
o en quirópteros (ESTEBAN, OLTRA- por el hospedador definitivo, el insectí-
FERRERO, BOTELLA Y GRANEL, 1993) por voro Crocidura russula (Hermann, 1780)
depredación, aunque sin descartar su en el delta del Llobregat, en el que se
posible presencia en micromamíferos originan los adultos a nivel intestinal
(GRACENEA ET AL., 1987). (GRACENEA Y MONTOLIU, 1992; GRACE-
NEA ET AL., 1993).
Cercarias Microphallidae. Mari-
trema feliui Gracenea, Montoliu et I. b. Ciclos diheteroxenos
Deblock, 1993: Xifidiocercarias, monos- Cercarias Notocotylidae. Notocoty-
tomas, anentéricas y leptocercas (cuerpo: lidae gen. sp.: Cercarias de gran tamaño
120 x 68 um), de fórmula excretora (cuerpo: 600-800 ym x 370 um) y gran
2((2+2)+(2+2)= 16 solenocitos. Se origi- opacidad, inermes (ausencia de estilete),
nan en esporocistos de aspecto sacci- oftalmocercas (con manchas oculares),
forme e irregular, (166-430 x 140-180 monostomas y leptocercas. Se originan
um), provistos de poro de salida. La en redias de aspecto fusiforme, provis-
15
Iberus, 15 (1), 1997
tas de faringe subterminal y ciego intes-
tinal de gran volumen. Las cercarias
acaban de madurar fuera de las redias,
emergiendo al medio externo y enquis-
tándose rápidamente en la vegetación o
sobre la misma concha del caracol, evo-
lucionando a metacercarias (cuerpo: 736
x 138 um) confinadas en quistes hemies-
féricos (diámetro, 150-300 um).
La morfología de las cercarias y el
ciclo diheteroxeno con enquistamiento
en el medio acuático son propios de la
familia Notocotylidae (YAMAGUTI, 1975;
SCHELL, 1985). Los adultos se desarro-
llan presumiblemente en aves acuáticas
deltaicas (hospedadores definitivos) al
alimentarse éstos de plantas acuáticas o
de moluscos.
II. No emisión de cercarias (ciclos abre-
viados)
Cercarias Microphallidae. Microp-
hallus fusiformis Reimer, 1963: Cerca-
rias rudimentarias (blastocercarias) de
reducidas dimensiones (50-70 x 30-37
ym), inmóviles y constituidas por
células indiferenciadas, sin apéndice
caudal ni esbozos de otras estructuras.
Se forman en esporocistos blanquecinos,
transparentes (200-500 x 150 um) y sac-
ciformes, en los que evolucionan a
metacercarias enquistadas (diámetro,
80-110 x 59-64 um).
La metacercaria desenquistada se
caracteriza por su pequeño tamaño (140-
160 x 60 um) y cuerpo fusiforme muy
espinulado; de carácter progenético, con
testículos y glándulas vitelógenas fun-
cionales; ovario diestro y metratermo
confluyendo a nivel de la pared lateral
del atrio genital La morfología de dichas
metacercarias, muy similar a la del
adulto (MONTOLIU ET AL., 1992). El hos-
pedador definitivo en el delta lo consti-
tuyen probablemente aves anseriformes
(REIMER, 1963).
Cercarias Heterophyidae. Hete-
rophyidae gen. sp.: Cercarias monosto-
mas, leptocercas y oceladas, con órgano
de penetración protráctil (cuerpo: 100-
120 x 50-60 ym) y sistema excretor pro-
visto de glándula post-vesical. Evolucio-
nan a partir de redias de aspecto cilín-
drico (158-370 x 52-103 ym), provistas
de faringe musculosa y un ciego corto.
Las cercarias, tras emerger de la redia,
se enquistan dentro del mismo caracol.
Las metacercarias están provistas de
una doble corona de espinas rodeando a
la boca. Son distomas, con testículos
homolaterales, vesícula excretora de
gran tamaño, encontrándose confinadas
en quistes (80x70 um) de doble cubierta.
Las aves acuáticas, peces o anfibios
podrían actuar como hospedadores defi-
nitivos del digénido (YAMAGUTI, 1975).
En la Tabla II se encuentran recopila-
das las prevalencias de infestación en
Mercuria confusa para cada una de las
especies descritas anteriormente.
DISCUSIÓN
Los estudios sobre la helmintofauna
larvaria de digénidos de ciclo acuático
señalan a los moluscos prosobranquios
como los principales hospedadores
intermediarios específicos para las espe-
cies Digenea de ambientes palustres.
Los datos obtenidos en nuestro estudio
han mostrado que el hidróbido Mercuria
confusa interviene como hospedador
intermediario específico de cinco espe-
cies de digénidos deltaicos. Este proso-
branquio ha sido estudiado parasitoló-
(Página derecha). Figura 3. Estadios larvarios de digénidos detectados en Mercuria confusa. A: cer-
caria Lecithodendriidae (rojo neutro). B: blastocercaria y quistes metacercarianos intrasporocísticos
de M. fusiformis. C: metacercaria enquistada Heterophyidae. D: cercaria de M. feliui (rojo neutro).
Escalas 25 um.
(Right page). Figure 3. Digenean larval stages detected ¿in Mercuria confusa. 4: cercaria
Lecithodendriidae (neutral red). B: intrasporocystic blastocercaria and metacercarial cysts of M. fusifor-
mis. C: encysted metacercaria Heterophyidae. D: cercaria of M. feliui (neutral red). Scale bars 25 pm.
118
VILLA ET AL.: Larvas de tremátodos digénidos en gasterópodos acuáticos del Llobregat
119
Iberus, 15 (1), 1997
Tabla II. Parasitación de M. confusa por estadios larvarios de digénidos según épocas de recolección
y biotopo prospectado (A, B). N=n" de especímenes estudiados (por emisión y/o por disección).
%=prevalencia de parasitación.
Table II. Infection of M. confusa with larvae of digenetic trematodes, related to year of collection and
prospected biotopes (A, B). N=number of examined snails (emergence andlor dissection). %=prevalence
of infection.
1990 1991 1992
A A A
% % %
1993 1994 1995 Total
% % % % % %
Cercarias+Esporocistos (o redias) (emisores de cercarias)
N=1215 N=656 N=271 N=989 N=708 N=146 N=1164 N=70 N=5219
Lecithodendriidae gen sp. : 0,40 0,42 - 0,28 - 0,15
Maritrema felivi OASIS ERA SOTA ZONA: - ISAAC O
Notocotylidae gen. sp. - OOO O 0,10
Cercarias+Esporocistos (o redias) + metacercarias (ciclos abreviados)
N=492 N=482 N=33 N=475 N=210 N=32 N=150 N=0 N=1874
Microphallus fusiformis IESDAE2IO : a - : 2,51
Heterophyidae gen. sp. 325 0,85
gicamente con anterioridad en el delta
del Ebro por MONTOLIU ET AL. (1991),
detectándose formas larvarias pertene-
cientes a 7 especies de digénidos. La
ausencia de parasitación en el proso-
branquio Potamopyrgus jenkinsi, en el
que sólo han sido estudiadas hembras
partenogenéticas, podría deberse a un
fenómeno similar al observado por
LiveLY (1989) para otras especies de
Potamopyrgus Stimpson, 1865 en Nueva
Zelanda, en las que se demuestra la
correlación positiva entre las poblacio-
nes sexuadas y la parasitación por
microfálidos, no estando nunca parasi-
tadas las poblaciones que se reproducen
exclusivamente por partenogénesis. En
lo que respecta a las especies de pulmo-
nados estudiadas, si bien éstas no se
encuentraron parasitadas por digénidos,
sí que existen numerosas citas de infes-
taciones por otras especies de digénidos
en ejemplares dulceacuícolas europeos
(MOUAHID Y MONÉ, 1988, entre otras).
La prevalencia de parasitación por
larvas de digénidos mas alta detectada
en M. confusa ha correspondido a la
familia Microphallidae. Los digénidos
de biología conocida de esta familia
incluyen a diversos moluscos proso-
branquios como hospedadores interme-
120
diarios, tanto en las especies triheteroxe-
nas como las diheteroxenas, de ciclo
abreviado. En la primera modalidad,
para las especies de Maritrema Nicoll,
1907 y Microphallus Ward, 1901, son los
prosobranquios pertenecientes a Litto-
rina Ferrusac 1822 (BENJAMIN Y JAMES,
1987; IRwIN, MAGUIRE Y SAVILLE, 1990;
GALAKTIONOV Y BUSTNERS, 1995) y a
Hydrobia Hartmann, 1821 (GARKAVI,
1972; PREVOT Y BARTOLI, 1977; DEBLOCK,
1978; SAVILLE Y IRwIN, 1991) los más fre-
cuentemente citados, y más puntual-
mente los prosobranquios Bythinella
Moquin-Tandon, 1855 (JOURDANE, 1979),
Pseudamnicola Paulucci, 1878 (KULKINA Y
BELYAKOVA, 1983), Cerithium Bruguiere,
1789, Bittium Leach, 1847 (PREVOT,
BARTOLI Y DEBLOCK, 1976; BARTOLI Y
Prevor, 1978) y Cerithidea Swainson,
1840 (ABDUL-SALAM Y SREELATHA, 1991).
El género Microphallus es el que engloba
el mayor número de especies con ciclos
abreviados, interviniendo habitual-
mente especies de Hydrobia y Littorina y
puntualmente de Bittium, incluyéndose
únicamente a especies de Hydrobia para
el género Maritrema (DEBLOCK, 1977;
LAUCKNER, 1984).
En lo que se refiere a la familia Lecit-
hodendriidae, los prosobranquios vuel-
VILLA ET AL.: Larvas de tremátodos digénidos en gasterópodos acuáticos del Llobregat
ven a ser citados frecuentemente en los
trabajos sobre trematodofauna larvaria,
destacando los realizados en especies de
Bithynia Leach, 1818 (YAMAGUTL 1975) y
Amnicola Gould y Haldemanmn, 1841 (Ca-
BLE, 1985). Con respecto a los hospeda-
dores intermediarios de notocotílidos,
cabe señalar a los prosobranquios Hydro-
bia (STUNKARD, 1966; DEBLOCK, 1980), Po-
tamopyrgus (BisseT, 1977), Bithynia (Y A-
MAGUTI, 1975; VASILEV Y KANEvV, 1984),
Littorina (GRANOVICH, MIKHALOVA Y
SERGIEVSKIIL, 1987), así como a especies
de melaníidos (KHALIFA Y EL-NAFFAR,
1979). En los digénidos heterófidos no
son frecuentes los ciclos abreviados
como el que tiene lugar en el delta del
Llobregat, habiéndose citado a una sola
especie de digénido, Metagonimoides ore-
gonensis Price, 1931, la cual infesta a di-
versas especies de prosobranquios pleu-
rocéridos, únicos hospedadores interme-
diarios del ciclo (YAMAGUTI, 1975).
El análisis cuantitativo de la parasita-
ción por larvas de M. confusa muestra
diferencias en las prevalencias para cada
una de las especies de digénidos halla-
dos (Tabla II). Los índices totales más
elevados mostrados por los microfálidos
(Maritrema feliui - 1,76 %; Microphallus
fusiformis - 2,51 %) parecen ajustarse a los
detectados en hidróbidos que habitan
zonas geográficas litorales próximas al
delta del Llobregat. MONTOLIU ET AL.
(1991) muestran para M. confusa en el
delta del Ebro unos niveles de parasita-
ción para Maritrema sp. (1,36 %) muy
similares a las del presente trabajo. Asi-
“mismo, en el estudio realizado por
DEBLOCK (1978) se observan índices de
parasitación por microfálidos en especies
de Hydrobia que oscilan entre el 2,5 y
0,5% en el litoral atlántico y entre el 6 y
0,5% en el litoral mediterráneo. En otros
prosobranquios litorales también muy
estudiados del género Littorina, la preva-
lencia de estadios larvarios Microphalli-
dae es muy alta, del orden del 23,8% en
la costa del Mar Báltico (LAUCKNER,
1984) y de hasta el 40-50% en las costas
soviéticas (SERGIEVSKIL, 1985).
La baja prevalencia por lecitodéndri-
dos en el Llobregat no parece ajustarse a
las tasas de infestación observadas en
M. confusa del delta del Ebro, en el que
se alcanzan índices elevados (5,83%)
(datos no publicados). Los bajos índices
de infestación detectados en el resto de
digénidos sí parecen coincidir con los
obtenidos para este hidróbido en el
Ebro, detectándose el 0,27% para cerca-
rias Heterophyidae y el 0,20% para cer-
carias Notocotylidae, y con los de
DEBLOCK (1978) en las costas francesas
para especies de Hydrobia, 0,07-1,67%
para heterófidos y 0,20-0,43% para noto-
cotílidos.
En cuanto a la dinámica del parasi-
tismo, las fluctuaciones temporales
observadas en el hidróbido no parecen
guardar relación directa con su densi-
dad poblacional, relativamente cons-
tante en todas las prospecciones realiza-
das, o con el biotopo de prospección.
Ello podría estar relacionado con el
comportamiento de los hospedadores
definitivos como factor de máxima
influencia en dichas variaciones. Mari-
trema feliui es la única especie de digé-
nido que parece mantenerse relativa-
mente constante en el tiempo, hecho que
puede explicarse por la presencia
regular del insectívoro Crocidura russula
en el delta (GRACENEA Y MONTOLIU,
1992). En cuanto a Notocotylidae gen.
sp. y Microphallus fusiformis, potencial-
mente parásitos de aves deltaicas, su
aparición más esporádica en los caraco-
les estaría condicionada por el carácter
migratorio de sus hospedadores defini-
tivos.
AGRADECIMIENTOS
Los autores agradecen a D. Serge
Gofas, malacólogo del Laboratoire de
Biologie des Invertébrés Marins et Mala-
cologie du Muséum National d'Histoire
Naturelle de Paris, la determinación de
los moluscos prosobranquios. Asimismo,
agradecen a D. Manuel Bertrand Vergés,
Presidente de la sociedad Ebysa propie-
taria de la finca prospectada, su consen-
timiento para la recolección del material
malacológico. Este trabajo ha sido finan-
ciado por el Proyecto PB 92-0517 de la
DGICYT.
121
Iberus, 15 (1), 1997
BIBLIOGRAFÍA
ABDUL-SALAM, J. Y SREELATHA, B.S., 1991. Ob-
servations on six species of cercariae from the
gastropod Cerithidea cingulata from Kuwait
bay. Journal of Medical and Applied Malaco-
logy, 3: 31-39.
ALTIMIRA, C., 1969. Notas Malacológicas. IX.
Nuevas aportaciones y datos a la fauna ma-
lacológica catalana. Publicaciones del Instituto
de Biología Aplicada, 46: 105-106.
BARTOLI, P. Y PREVOT, S., 1978. Recherches éco-
logiques sur les cycles évolutifs de trémato-
des dans une lagune de Provence (France).
II. - Le cycle de Maritrema misenensis (A. Pa-
lombi, 1940) (Microphallidae Travassos,
1920). Annales de Parasitologie Humaine et Com-
parée, 53 (2): 181-193.
BeEcH, M., 1990. Fauna malacologica de Cata-
lunya. Mol. luscs terrestres i d'aigua dolca.
Treballs de la Institució Catalana d Historia Na-
tural, n* 12: 1-229.
BENJAMIN, L. R. Y JAMES B. L., 1987. The deve-
lopment of the metacercariae of Maritrema lin-
guilla Jág., 1908 (Digenea: Microphallidae)
in the intermediate host, Ligia oceanica (L.). Pa-
rasitology, 94 (2): 221-231.
BIsseT, S. A., 1977. Notocotylus tardorrae n. sp. and
Notocotylus gippyensis (Beverley - Burton,
1958) (Trematoda: Notocotylidae) from Wa-
terfowl in New Zealand: morphology, life
history and systematic relations. Journal of Hel-
minthology, 51 (4): 365-372.
CABLE, R. M., 1985. The partial life cycle and af-
finities of an unusual xiphidiocercaria from
Amunicola limosa (Say) in Indiana, U.S. A. (Di-
genea: Lecithodendriidae). Journal of Parasi-
tology, 71 (3): 342-344.
DEBLOCXK, S., 1977. De l'abregement du cycle
évolutif chez les Trématodes Digenes Mi-
crophallidés. En Publicaciones Especiales
(n“4) del Instituto de Biología de la Univer-
sidad Nacional de Méjico: Excerta Parasitoló-
gica en memoria del doctor Eduardo Caballero y
Caballero: 151-160.
DEBLOCK, S., 1978. Distribution géographique
des cercaires parasites des Mollusques du
genre Hydrobiía Hartman des cótes de France.
Annales de Parasitolog1ie Humaine et Comparée,
53 (6): 577-593.
DEBLOCXK, S., 1980. Inventaire des Trématodes
larvaires parasites des Mollusques Hydrobia
(Prosobranchies) des cótes de France. Paras-
sitologia, 22 (1/2): 1-105.
ESTEBAN, J. G., OLTRA-FERRERO, J. L., BOTELLA,
P. Y GRANEL, P., 1993. Prosthodendrium (Prost-
hodendrium) corberensis n. sp. (Trematoda:
Lecithodendriidae), a parasite of Rhinolop-
hus ferrumequinum (Schreber, 1774) (Chirop-
tera: Rhinolophidae) in Spain. Research and Re-
views in Parasitology, 51 (1-4): 81-85.
1122
FELIU, C., TORRES, J., GRACENEA, M. Y MONTO-
LIU, IL, 1990. Noves dades sobre trematodes
digenids parasits dels petits mamífers (In-
sectívorsi Rosegadors) al delta de l'Ebre (NE
de la Península Iberica). Butlletí de la Institu-
ció Catalana d'Historia Natural, 58; 13-17.
FELIU, C., TORRES, J., GÁLLEGO, J., GOSÁLBEZ,
J. Y VENTURA J., 1985. Primeros datos
acerca de la helmintofauna de las especies
de Roedores del delta del Ebro (Península
Ibérica). Miscel. lania Zoologica, 9: 55-64.
GALAKTIONOV, K. Y BUTNESS, J. O., 1995.
Species composition and prevalence of
seabird trematode larvae in periwinkles at
two littoral sites in North-Norway. Sarsia,
80: 187-191.
GARKAVI, B. L., 1972. The biology of Mari-
trema subdolum, Jágerskióld, 1909 (Trema-
toda: Microphallidae). Nauchnye trudy
Krasmodarskopo Nauchno Issledovatel'ska Ve-
tennannot Stansi: 73-80.
GONZÁLEZ-MORENO, O., GRACENEA, M,,
MONTOLIU, Í. Y VILLA, M., 1994. Presencia
de digénidos Brachylaimidae en el delta
del Llobregat (Barcelona): estadios larva-
rios parásitos de gasterópodos terrestres.
Iberus, 12 (2): 49-57.
GRACENEA, M. Y MONTOLIU, I., 1992. El delta
del Llobregat (N. E. de la Península Ibé-
rica) como ecosistema aislado: Considera-
ciones bioecológicas sobre la helminto-
fauna de sus micromamíferos. En Hernán-
dez Rodríguez, S. (Ed.) Córdoba: In
memoriam al profesor Doctor D. F. de P. Mar-
tínez Gómez: 481-495.
GRACENEA, M., MONTOLIU, I. Y DEBLOCK, S.,
1993. Contribution a l'étude des Micropha-
llidae Travassos, 1920 (Trematoda). XLV.
Description de Maritrema feliui n. sp. para-
site de musaraignes (Mammiferes) en Es-
pagne. Annales de Parasitologie Humaine et
Comparée, 68 (2): 76-81.
GRACENEA, M., FELIU, C., MONTOLIU, Í., TORRES,
J. Y GALLEGO, J., 1987. Sobre la presencia de
Postorchigenes gymnesicus Mas-Coma, Bar-
gues et Esteban, 1981 (Trematoda: Lecitho-
dendriidae) en micromamíferos del delta del
Ebro (NE de la Península Ibérica). Miscel. la-
nia. Zoologica, 11: 51-54.
GRANOVICH, A. I., MIKHAILOVA, N. A. Y SER-
GIEVSKII, S. O., 1987. [Age characteristic in
the prevalence of infection with trematode
parthenitae in the littorine molluscs Litto-
rina obtusata and L. saxatilis]. Parazitologiya,
21 (6) 721-729.
Haas, F., 1929. Fauna malacológica terrestre
y de agua dulce de Cataluña. Trabajos del
Museo de Ciencias Naturales de Barcelona, 13:
1-491.
VILLA ET AL.: Larvas de tremátodos digénidos en gasterópodos acuáticos del Llobregat
IRWIN, S. W. B., MAGUIRE, J. G. Y SAVILLE, D. H.,
1990. Identification of the cercarial stages of
Maritrema arenaria (syn. M. gratiosum) (Tre-
matoda: Microphallidae). Journal of Natural
History, 24 (4): 949-954.
JOURDANE, J., 1979. Le cycle biologique de Ma-
ritrema pyrenaica Deblock et Combes, 1965. Pa-
rasite de micromammiferes insectivores py-
rénéens. Annales de Parasitologie Humaine et
Comparee, 54 (4): 449-456.
KHALIFA, R. Y El-NAFFAR M. K., 1979. Paramo-
nostomun aegyptiacum sp. n. (Irematoda, No-
tocotylidae) and its life cycle. Acta Parasito-
logica Polonica, 25 (36/46): 323-332.
KULKINA, L. V. Y BELYAKOVA, Yu. V., 1983. Life
cycle of Maritrema paramusitata n. sp. (Tre-
matoda, Microphallidae). Parazitologiya, 17 (4):
272-277.
LAUCKNER, G., 1984. Brackish-water submer-
gence of the common perinkwinkle, Litto-
rina littorea, and its digenean parasites in the
baltic sea and in the Kattegat. Helgolander
Meeresuntersuchungen, 37 (1/4): 185-188.
LriveLY, C. M., 1989. Adaptation by a parasitic
trematode to local populations of its snail
host. Evolution, 43 (8): 1663-1671.
LLucH, J., ROCA, V. Y NAVARRO, P., 1986. Con-
tribución al conocimiento de la helminto-
fauna de los herpetos ibéricos. II. Digenea Le-
cithodendriidae de Rana perezi Seoane, 1885
(Amphibia: Ranidae). Revista Ibérica de Para-
sitología, 46 (3): 229-236.
MONTOLIU, I.,, GRACENEA, M. Y DEBLOCX, S.,
1992. Contribution a l'étude des Micropha-
llidae Travassos, 1920 (Trematoda). XLIV. -
Peut-on lever l'ambiguité de Microphallus fu-
siformis Reimer, 1963 ?. Annales de Parasitologie
Humaine et Comparée, 67 (6): 166-173.
MONTOLIU, Í., GRACENEA, M., VILLA, M. Y GON-
ZÁLEZ-MORENO, O., 1991. Variedad y com-
plejidad de los ciclos biológicos de Trema-
todos Digénidos establecidos en el delta del
Ebro. Butlletí del Parc Natural del delta de 1'E-
bre, 6: 4-9.
MOUAHID, A. Y MONÉ H,, 1988. Echinoparyphium
elegans (Looss, 1899) (Digenea: Echinosto-
matidae): the life cycle and redescription of
the adult with a revision of the 43-spined
members of the genus Echinoparyphium. Sys-
tematic Parasitology, 12 (2): 149-157.
PREVOT, G. Y BARTOLI, P., 1977. Recherches éco-
logiques sur les cycles évolutifs de Tréma-
todes dans une lagune de Provence (France).
[. Le cycle de Microphallus claviformis (Bran-
des, 1888) (Microphallidae - Travassos, 1920).
Ecologia Mediterranea., 3: 105-112.
PREVOT, G., BARTOLL P. Y DEBLOCK, S., 1976. Cy-
cle biologique de Maritrema misenensis (A.
Palombi, 1940) n. comb. (Trematoda: Mi-
crophallidae Travassos, 1920) du midi de la
France. Annales de Parasitologie Humaine et
Comparée, 51: 433-446.
REIMER, H. L. W., 1963. Zur Verbreitung der
Adulti und larvenstadien der Famille Mi-
crophallidae Viana, 1924 (Trematoda, Dige-
nea) in der Mitteleren Ostsee. Zeitschrift fir
Parasitenkunden, 23: 253-273.
SAVILLE, S. A. Y IRWIN, S. W. B., 1991. In ovo culti-
vation of Microphallus primas (Trematoda:
Microphallidae) metacercariae to ovigerous
adults and the establishment of the life-cy-
cle in the laboratory. Parasitology, 103: 479-484.
SCHELL, S. C., 1985. Handbook of Trematodes of
North America, North of Mexico. University
Press of Idaho, Moscow. 263 p.
SERGIEVSKII, S. O., 1985. Populational appro-
ach to the analysis of the periwinke, Littorina
littorea (L.) invasions with the trematoda part-
henitae. Helminthologica, 22 (1): 5-14.
STUNKARD, H. W., 1966. The morphology and
life history of Notocotylus atlanticus n. sp. a di-
genetic trematoda of either ducks, Somateria
mollisima, and the description of Notocotylus
duboisi nom. nov for Notocotylus imbricatus
(Loss, 1893) Szidat, 1935. Biological Bulletin,
131 (3): 501-513.
VASILEV, I. Y KANEV, I., 1984. [Morphology and
ecology of Notocotylus imbricatus (Loos, 1895)
Szidat, 1935 in Bulgaria]. En Vasilev 1. (Ed.)
Sofia, Bulgaria: Fauna, Taksonomiya i ekolo-
giya na Khelmintigo ptitsi. 55-65 p.
VIDAL ABARCA, C. Y SUÁREZ, M. L., 1985. Lista
faunística y bibliográfica de los moluscos
(Gastropoda éz Bivalvia) de las aguas conti-
nentales de la Península Ibérica e Islas Bale-
ares. En Montes, C. y García de Jalón, D.
(Ed.) Madrid: Lista de la Flora y Fauna de las
aguas continentales de la Península Ibérica, Pu-
blicación n” 2 (Asociación Española de Lim-
nología, Barcelona): 190 p.
Y AMAGUTI S., 1975. A synoptical review of life his-
tories of Digenetic Trematodes of Vertebrates.
Keigaku Publishing Co. Tokyo. 590p + 219
pl.
123
Car She EN Modo, Arias
> AY A arial o 'auelalord als *
ol : cl, to
«bismncón (029 nd os vr pl
y ene ta «ilu 20
IgE id
Erin de
vd dl bh
b Aca! o sos á
; iaberirs ¡hháb yd Ls A
Pas +
"0 Pd q q e
O Ra! d
bes sd ra ¿Y
doo hor
Yi yiRtltsialo,
ra hac AO p
MAYA rada A
ci A cn e 3
daria
cia yde ri ira hb. '
b Se lec
e e ¿mon pol
eos ddEP8 ra 38
Ñ qutt 1 dé
ad) rg bss
O Sociedad Española de Malacología ——_—_——— Iberus, 15 (1): 125-130, 1997
On a floating egg mass of the diamond shaped squid 7)»y-
sanoteuthis rhombus (Cephalopoda: Thysanoteuthidae) in
the western Mediterranean
Observaciones sobre una puesta pelágica del calamar losange 7»y-
sanoteuthis rhombus (Cephalopoda, Thysanoteuthidae) hallada en
el Mediterráneo occidental
Angel GUERRA and Francisco ROCHA*
Recibido el 14-X1-1996. Aceptado el 3-XII-1996
ABSTRACT
This is the second record of a floating egg mass of the diamond shaped squid Thysanoteu-
this rhombus in the Mediterranean (37* 11.85” N - 1? 31.15 E). The first one was obser-
ved at the Strait of Messina in 1929. The egg mass was a dense, resilient oblong cylinder
with rounded tips appoximately 100 cm in length and about 20 cm in diameter. From a
small sample, egg capsules and paralarvae (1.85+0.08 mm MIL) are described. Some
complementary characters about this species paralarvae, such as the “arm formulae, the
presence of an incipient swimming keel-like shaped membrane on some arms, and the
mantle chromatophore pattern should assist in their identification.
RESUMEN
En este trabajo se informa sobre el segundo hallazgo de una puesta pelágica del calamar
losange Thysanoteuthis rhombus en el Mar Mediterráneo (37? 11,85" N - 1? 31,15 E). La
primera se observó en el estrecho de Mesina en 1929. La masa de huevos consistía en un
cilindro oblongo con los bordes romos, denso y elástico, de unos 100 cm de longitud y
20 cm de diámetro. A partir de una muestra pequeña que se pudo obtener se describen
las cápsulas ovigeras y las paralarvas (1,85+0,08 mm ML). Se proporcionan algunos
caracteres complementarios útiles para la identificación de estas paralarvas: la formula
braquial, la presencia de una carena natatoria incipiente aquillada en algunos brazos y
el patrón de cromatóforos en el manto.
KEY WORDS: Cephalopoda, Thysanoteuthis rhombus, egg mass, paralarvae, Mediterranean Sea.
PALABRAS CLAVE: Cephalopoda, Thysanoteuthis rhombus, puesta, paralarvas, mar Mediterráneo.
INTRODUCTION
The diamond shaped squid Thysano- partially subtropical waters of the World
teuthis rhombus Troschel, 1857 is an epi- Ocean including the Mediterranean,
pelagic inhabitant of warm tropical and often occurring in pairs or small schools
* Instituto de Investigaciones Marinas, C/ Eduardo Cabello 6, 36208 Vigo, España.
25
Iberus, 15 (1), 1997
(NISHIMURA, 1966; CLARKE, 1966; NIG-
MATULLIN, ARKHIPKIN AND SABIROV,
1995). It is a large oegopsid squid which
reaches up to 85 cm in mantle length
(ML) and 24 kg in body weight (NIGMA-
TULLIN ET AL., 1995). T. rhombus is one of
the fastest-growing squid: in approxi-
mately one year, it reaches its maximum
ML (NIGMATULLIN ET AL., 1995). This
species has high potential fecundity (up
to 4.8 million oocytes), but a rather
small maximum volume of oviducts (up
to 140,000 eggs) and egg masses (35,000
to 75,000), which suggest that T. rhombus
is an intermittent spawner with multiple
filling and evacuation of oviducts (NIG-
MATULLIN ET AL., 1991; NIGMATULLIN ET
AL., 1995).
T. rhombus is one of the few oegopsid
cephalopods in which the spawn is
known. Until recently, a total of 21 egg
masses had been observed. All were
found drifting in the surface water layer
of the tropical Atlantic, northwest and
southeast Pacific and the Mediterranean
(review in SABIROV, ARKHIPKIN, TSYGAN-
KOV AND SHCHETINNIKOV, 1987). Egg
masses of this species are gelatinous, sau-
sage-shaped, 60-180 cm long by 10-30 cm
diameter; containing a double spirally
arranged row of eggs embedded in the
surface layer of the mass (MISAKI AND
OKUTANI, 1976; SUZUKI, MISAKI AND
OKUTANI, 1979). The egg mass was pho-
tographed in natural environment for the
first time by SUZUKI ET AL. (1979). The
first and unique reference to an egg mass
of T. rhombus in the Mediterranean (Strait
of Messina) was given by SANZO (1929).
Although the occurrence of this
species in the Mediterranean is rare
(MORALES, 1981; BIaGL, 1982; MANGOLD
AND BOLETZKY, 1988) it seems that its
presence is increasingly frequent as by-
catch in some pelagic fisheries, particu-
larly near the coast (EZZEDDINE-NAJAL,
1996). A pair of animals, male and
female, were observed by divers in a
submarine cave off the coast of Almeria
(Southeast Spain) relatively near the
place where the sample reported in this
paper was collected (GUERRA, 1992).
This paper deals with the second
record of the egg mass of T. rhombus in
126
the Mediterranean after 67 years. A des-
cription of the planktonic paralarvae is
given, emphasising several characteris-
tics which may be used to identify the
early stages of the species.
MATERIAL AND METHODS
The egg mass was discovered by the
vessel “Toftevaag” at 08.27 h on August
o MIS ARAS NS ME SS 18
the western Mediterranean (Fig. 1). The
reported egg mass was accompanied by .
other drifted pleuston, such as jelly-fish.
The whole mass was so loose that it
could not be taken out of the water. But
a sample of gelatinous material contai-
ning 2 eggs in early stage of develop-
ment, 1 embryo within its egg capsule, 2
paralarvae within the egg capsules, and
32 practically fully developed paralar-
vae outside the egg capsules were
caught. This sample was fixed in 5% for-
malin. The identification was made
based on the paralarvae which, alt-
hough still embedded in the external
gelatinous mass, were near hatching.
These paralarvae have similar characte-
ristics to those reported by STEPHEN
(1992). Egg diameter, dorsal mantle
length (ML) and total length (TL) of
each paralarvae were measured using a
dissecting microscope fitted with an
eye-piece graticule.
RESULTS
The egg mass was a dense, resilient,
oblong cylinder with rounded ends (Fig.
2A). The size of the whole mass was
about 100 cm in length and about 20 cm
in diameter. It was observed that the
purple egg capsules lay in two rows,
spirally arranged around the cylinder.
The diameter of the egg capsules with
the well developed embryo ranged from
2.8 to 3.0 mm. The average ML of para-
larvae was 1.85+0.08 mm (n= 30) and its
TL varied between 2.50 and 2.75 mm.
All paralarvae observed had the
head inside the mantle cavity, only
showing the arms and tentacles exter-
GUERRA AND ROCHA: Egg mass of Thysanoteuthis rhombus in Western Mediterranean
Atlantic
Ocean
oVigo
Mind Western
Mediterranean
A
Strait of _-
Gibraltar
Black Sea
Ba
| N Strait of
Messina
Mediterranean
Figure 1. Thysanoteuthis rhombus. Location of the two floating egg masses collected in the
Mediterranean Sea. A: This paper; B: SANZO (1929).
Figura 1. Thysanoteuthis rhombus. Localización geográfica de las dos puestas pelágicas encontradas en
el Mar Mediterráneo. A: Presente estudio; B: SANZO (1929).
nally (Fig. 2B). The mantle is oval, stout,
short and blunt posteriorly. The anterior
margin of the mantle curves inwards in
both dorsal and ventral sides, but is
more pronounced ventrally. This may be
a result of the preservation process
which could had produced the retrac-
tion of the head inside the mantle cavity.
The fins are subterminal, small and
rounded; the fin length 19.5% ML (Figs.
2C, D). The paralarvae have broadly
separated, slightly protruding eyes, and
funnel locking cartilage (Fig. 2E) with a
short, broad, transverse groove and a
long, relatively wide, longitudinal
groove (sideways Fshaped). The tenta-
cles are short (about 33% of the ML),
stouter and slightly longer than the
longest arm (III); the I and IV pairs of
arms are rudimentaries. Brachial formu-
lae IMI>II>I=IV. Both, tentacles and deve-
loped arms, with small suckers, pro-
bably arranged in two rows. On arms II
and III, an incipient swimming keel-like
shaped membrane was present. Trabe-
culate protective membrane was absent
in arms and tentacles.
The paralarvae show two types of
chromatophores: a) large and pale-ochre
chromatophores densely concentrated
on dorsal, lateral and ventral mantle
sides; and b) small, subtriangular dark-
red chromatophores arranged in a single
row around the anterior margin of the
mantle. There is a light area between
both types of chromatophores. Slight
chromatophores were observed on the
dorsal and ventral sides of the head, the
tentacles and the arms. The fins lacked
chromatophores.
DISCUSSION
The egg mass reported was captured
near the surface in a zone were the in-
flow of Atlantic water into the Medite-
rranean is high due to the proximity of
the Strait of Gibraltar. The water move-
ments through this bottleneck are gover-
ned by an inflow of surface water into
the Mediterranean, and a countercurrent
of lesser volume carrying water of hig-
her salinity into the Atlantic (MANGOLD
AND BOLETZKY, 1988). The egg mass co-
llected by SANZO (1929) was in the Strait
of Messina where there are strong cu-
rrents. Elsewhere egg masses of Thysa-
noteuthis rhombus occurred in regions
with strong warm currents such as Ku-
roshio, Perú countercurrent and the
Equatorial countercurrent (YAMAMOTO
127
Iberus, 15 (1), 1997
ARS
añ Pe
Figure 2. Thysanoteuthis rhombus. Floating egg mass and paralarvae. A: egg mass; B: Egg with non-
developed embryo and paralarvae within the egg capsule; C: Funnel locking-cartilage of a newly hatched,
1.85 mm ML; D: Dorsal view of a newly hatched, 1.85 mm ML; E: Ventral view of the same specimen. *
Figura 2. Yhysanoteuthis rhombus. Puesta pelágica y paralarva. A: Puesta pelágica; B: Huevo con embrión muy
poco desarrollado y paralarva dentro de la cápsula ovígera; C: Cartilago de cierre en el sifón de un recién nacido
de 1,85 mm ML; D: Visión dorsal de un recién nacido de 1,85 mm ML; E: Visión ventral del mismo ejemplar.
128
GUERRA AND ROCHA: Egg mass of Thysanoteuthis rhombus in Western Mediterranean
AND OKUTANI, 1975; NIGMATULLIN ET
AL., 1995). Therefore, as in the Atlantic
and the Pacific Oceans, in the Medite-
rranean the species seems to spawn in
waters with strong currents.
NIGMATULLIN ET AL. (1995) indicated
that T. rhombus spawns throughout the
year in tropical waters, but during the
warm season (summer and early autumn)
in peripheral regions such as in the Me-
diterranean, which agree with the date
when the egg mass reported was observed.
The egg mass in the report had a
shape and a size which coincide with
those given for the other egg masses
illustrated (SANZO, 1929; MISAKI AND
OKUTANI, 1976) and photographed
(SUZUKI ET AL., 1979).
Considering the dimension of this
egg mass, the diameter of the egg capsu-
les measured and calculating the surface
of the egg mass as a cylinder (6,280 cm?),
an estimation gives a figure of about
66,800 eggs. This amount coincides with
the total number of eggs in each egg
mass calculated by SABIROV ET AL. (1987)
which ranged from 32,000 to 76,000 eggs.
The embryo and paralarvae found
have sizes, shapes and characters which
BIBLIOOGRAPHY
BIAGI, V., 1982. Sul rinvenimento di un gio-
vane esemplare di Thysanoteuthis rhombus
Troschel (Cephalopoda - Teuthoidea) in
acque Elbane. Bollettino Malacologico, 18 (7-
8): 137-144.
CLARKE, M. R., 1966. A review of the systema-
tics and ecology of oceanic squids. Advances
in Marine Biology, 4: 91-300.
EZZEDDINE-NAJAL, S., 1996, On the presence of
a new species of cephalopod Thysanoteuthis
rhombus Troschel, 1857 on the north and
south coasts of Tunisia. IV International Sym-
posium on Cephalopods - Present and Past. Gra-
nada, Spain: 64.
GUERRA, A., 1992. Mollusca, Cephalopoda. In
Ramos, M. A,, et al. (Eds.), Fauna Ibérica,
Vol. 1. Museo Nacional de Ciencias Natura-
les, CSIC, Madrid, 327 pp.
IsseL, R., 1920. Primo contributo alla conos-
cenza dello sviluppo nei cefalopodi medite-
rranei (Ihysanoteuthis - Chiroteuthis - Gali-
teuthis). Memorie Reale Comitato Talassogra-
fico Italiano, 73: 1-19.
largely coincide with those reported by
IsseL (1920), SANZO (1929) YAMAMOTO AND
OKUTANI (1975) and MISAKI AND OKUTANI
(1976) and summarised by CLARKE (1966)
and STEPHEN (1992). Some complemen-
tary information about this species para-
larvae, such as the arm formulae, the pre-
sence of an incipient swimming keel-like
membrane on some arms, and the mantle
chromatophore pattern should assist in
their identification.
ACKNOWLEDGEMENTS
We are particularly grateful to Ricardo
Sagarminaga and Ana Cañadas, owners
of the Vessel “Toftevaag” and promoters of
the “Alnitak” project for the specimen
collection. We thank Diego Moreno of the
University of Almería for valuable preli-
minary comments on the sample and
Alfredo López “Tokio” for drawing the
egg mass and paralarvae figures. We are
grately indebted to Prof. T. Okutani, Dr.
P. G. Rodhouse and Dr. A. F. González for
valuable suggestions on the manuscripts.
Our thanks also to lan Emmett for revie-
wing the English text.
MANGOLD, K. AND BOLETZKY, S. v., 1988. Me-
diterranean cephalopod fauna. In Clarke,
M. R. and Trueman, E. R. (Eds.), Vol. 12:
The Mollusca, Paleontology and neontology of
cephalopods. Academic Press, San Diego:
s19390)
MisaKI, H. AND OKUTANI, T., 1976. Studies on
early life history of decapodan Mollusca -
VI. An evidence of spawning of an oceanic
squid, Thysanoteuthis rhombus Troschel, in
the japanese waters. Venus, The Japanese Jour-
nal of Malacology, 35: 211-213.
MORALES, E., 1981. Presencia de Thysanoteu-
this rhombus Troschel, en el puerto de Ma-
hon (Menorca). Investigación Pesquera, 45:
17-20.
NIGMATULLIN, CH. M., ARKHIPKIN, A. l. ANDSA-
BIROV, R. M,, 1991. Structure of the repro-
ductive system of the squid Thysanoteuthis
rhombus (Cephalopoda: Oegopsida). Journal
of Zoology, London, 224: 271-283.
129
Iberus, 15 (1), 1997
NIGMATULLIN, CH. M., ARKHIPKIN, A. Í. ANDSA-
BIROV, R. M., 1995. Age, growth and repro-
ductive biology of diamond-shaped squid
Thysanoteuthis rhombus (Oegopsida: Thysa-
noteuthidae). Marine Ecolology Progress Se-
ries, 124: 73-87.
NISHIMURA, S., 1966. Notes on the occurence and
biology of the oceanic squid, Thysanoteuthis
rhombus Troschel, in Japan. Publications of the
Seto Marine Biological Laboratory, 13 (4): 327-
349.
SABIROV, R. M., ARKHIPKIN, A. I., TSYGANKOV,
YU AND SHCHETINNIKOV, A. S., 1987. Egg la-
ying and embrional development of dia-
mond-shaped squid Thysanoteuthis rhombus
(Oegopsida, Thysanoteuthidae). Zoological
Journal USSR, 66 (8): 1155-1163.
SANZO, L., 1929. Nidamento pelagico, uova elarve
di Thysanoteuthis rhombus Troschel. Memorie
Reale Comitato Talassografico Italiano, 161: 1-10.
130
STEPHEN, S. J., 1992. Family Thysanoteuthidae
Keferstein, 1866. In Sweeney, M. J. et al. (Eds.),
“Larval” and juvenile cephalopods: a ma-
nual for their identification. Smithsonian Con-
tributions to Zoology, 513: 121-123.
SUZUKI, S., MISAKI, H. AND OKUTANI, T., 1979.
Studies on early life history of decapodan
Mollusca - VILA supplementary note on flo-
ating egg mass of Thysanoteuthis rhombus
Troschel in Japan - The first underwater pho-
tography. Venus, The Japanese Journal of Ma-
lacology, 38 (2): 153-155.
YAMAMOTO, K. AND OKUTANI, T., 1975. Studies
on early life history of decapodan Mollusca
- V. Systematics and distribution of epipela-
gic larvae of decapod cephalopods in the
south-western waters of Japan during the
summer in 1970. Bulletin Tokai Regional Fis-
hery Research Laboratory, 83: 45-96.
O Sociedad Española de Malacología ——_—_—_—_——— Iberus, 15 (1): 131-138, 1997
Ontogenetic variation of statolith shape in the short-finned
squid lex coindetíz (Mollusca, Cephalopoda)
Variacion ontogénica del estatolito de la pota /llex coindetii
(Mollusca, Cephalopoda)
Ángel E GONZÁLEZ and Ángel GUERRA*
Recibido el 27-X1-1996. Aceptado el 10-11-1997
ABSTRACT
Changes in statolith morphology of Illex coindetii are described from specimens ranging
from 42 to 379 mm mantle length obtained during trawling activities in the North-eastern
Atlantic. The growth of the statolith was differentiated in five developmental stages. lt has
been observed that the wing of the statolith has two different growth patterns, from the
ventral zone to the dorsal one and viceversa. The rostral angle of the statolith varied
during its ontogenetic growth from an obtuse angle to a 90? angle. The dorsal zone of the
statolith is here named as dorsal dome, and the lateral and ventral zone the lateral dome.
RESUMEN
En este trabajo se describen los cambios en la morfología del estatolito de /llex coindeti.
El estudio se llevo a cabo mediante el análisis de 341 ejemplares con longitudes del
manto comprendidas entre 42 y 379 mm. Estos animales se capturaron en la pesquería
de arrastre desarrollada en el Atlántico noreste. El crecimiento del estatolito fue diferen-
ciado en cinco estadíos de desarrollo. Se observaron dos patrones diferentes de creci-
miento del ala del estatolito, desde la parte ventral a la dorsal y viceversa. El angulo ros-
tral varía en el crecimiento ontogénico del animal, desde un ángulo marcadamente obtuso
a un ángulo recto. El crecimiento en longitud máxima y en anchura del estatolito se enlen-
tece al llegar a la maduración de los animales. Se propone una variación en la nomencla-
tura del estatolito de esta especie.
KEY WORDS: /llex coindetiz, statolith, morphology, North-eastern Atlantic.
PALABRAS CLAVE: /llex coindetiz, estatolito, morfología, Atlántico noreste.
INTRODUCTION
Cephalopods play an important role components of the diet of such top pre-
in the trophic web of marine ecosystems dators as marine mammals (XAMPENY
as both predators and prey of many ma- AND FILELLA, 1976; CLARKE, 1980, 1986;
rine species (AMARATUNGA, 1983). These CLARKE, MARTINS AND PRINCE, 1993;
marine molluscs have been cited as GONZÁLEZ, LÓPEZ, GUERRA AND BA-
* Instituto de Investigaciones Marinas (Consejo Superior de Investigaciones Científicas), Eduardo Cabello 6,
36208 Vigo, Spain.
SA
Iberus, 15 (1), 1997
RREIRO, 1994), large teleosteans (BOUXIN
AND LEGENDRE, 1936; BELLO, 1991; GUE-
RRA, SIMÓN AND GONZÁLEZ, 1993;
CLARKE, CLARKE, MARTINS AND SILVA,
1995), sea-birds (RODHOUSE, CLARKE
AND MURRAY 1987; CLARKE, CROAXALL
AND PRINCE, 1991; FURNESS, 1994; CROA-
XALL AND PRINCE, 1996) and cephalo-
pods (RASERO, GONZÁLEZ, CASTRO AND
GUERRA, 1996, RODHOUSE AND NIGMA-
TULLIN, 1996). Beaks, statoliths, chiti-
nous sucker rings and, to a lesser extent,
gladius, were the main structures which
allowed a positive identification to the
taxonomic level of species in studies
about trophic relationships between
cephalopods and other marine animals.
These hard structures remain unaltered
in the stomach contents of their preda-
tors and represent an important source
of information on the trophic relations-
hips where these animals are involved.
Statoliths of cephalopods are small
hard paired structures composed by cal-
cium carbonate in the form of aragonite.
They are situated in fluid-filled cavities
termed statocysts inside the cartilagi-
nous skulls of the cephalopods belon-
ging to the subclass Coleoidea (CLARKE
AND MADDOCK, 1988a). The statolith
and the macula (statoconia system)
constitute the receptor organ for detec-
tion of gravity. This is one of the func-
tions of the statocysts, in which the level
of sophistication is equivalent to the
vertebrate vestibular system (YOUNG,
1960, 1989; STEPHEN AND YOUNG, 1982;
BUDELMANN, 1978, 1988, 1990).
Statoliths are also the structures
most frequently used for studies on age
and growth. The statoliths of many cep-
halopod species show growth incre-
ments, which have been shown to have
a daily periodicity of deposition in seve-
ral species (see JACKSON, 1994).
Since teuthoid statoliths are appa-
rently species-characteristic and have a
greater likelihood of fossilisation than
other cephalopod structures, they have
become very important for identifi-
cation of fossil species (CLARKE AND
Frrch, 1975, 1979). The applications of
image analysis which have been used in
the morphological study of the stato-
132
liths, both recent and fossil, have shed
light on certain phylogenetic relations-
hips among cephalopods (CLARKE AND
MADDOCK, 1988a; 1988b). As was done
with shape analysis of fish otoliths
(CAMPANA AND CASSELMAN, 1993), the
statolith morphology of cephalopods
has been used also for stock discrimina-
tion (BORGES, 1995).
As ontogenetic changes do exist in
the statolith (MORRIS AND ALDRICH,
1984; GUERRA AND SÁNCHEZ, 1985;
CLARKE AND MADDOCK, 1988b; Bkru-
NETTI AND IvANOVIC, 1991), some
remains on the reliability of this appro-
ach about this subject. From descrip-
tions based solely on one statolith from
one specimen, the result of the analysis
of shape can be altered (LOMBARTE,
SÁNCHEZ AND MORALES-NÍN, 1995) and
a correct prey identification could also
be uncertain.
The aim of this study was to deter-
mine the changes in the statolith shape
for the ommastrephid squid lllex coinde-
ti1 (Vérany, 1839) during its ontogenetic
growth.
MATERIALS AND METHODS
341 specimens of Illex coindetii were
collected in the North-eastern Atlantic
(Fig. 1) from November 1991 to October
1992. Fishing was carried out at depths
ranging from 100 and 350 m over the
Galician continental shelf. The animals
were sexed, measured to the nearest
mm mantle length (ML), weighed (to 0.1
g) and assigned a maturity stage accor-
ding to LIPINSKI (1979). The squid ran-
ged from 48 to 379 mm ML. The stato-
liths were removed from the head and
preserved in 96% ethanol. Statolith ma-
jor axis and maximum width were re-
corded. Then, the statoliths were measu-
red using an eyepiece graticule. Terms
used in descriptions were assigned fo-
llowing the nomenclature established by
CLARKE (1978).
Measurements were made using an
image analysis system (IAS); the equip-
ment used is reviewed by Macy (1995).
The description of the each develop-
GONZÁLEZ AND GUERRA: Growth of /llex coindetiz statolith
$ Vigo
Miño River
, Burela.
Celeiro
-» z
8 W
1
Figure 1. /llex coindetiz. Fishing area where the samples were obtained.
Figura 1. Illex coindetii. Area de pesca donde se obtuvieron las muestras.
mental stage of the statolith was made
based on microphotographs.
RESULTS
Statolith morphology: Statolith
maximum length ranged from 0.47
(female of 48 mm ML) to 1.66 mm
(female of 360 mm ML). No significant
differences (p<0.05) between maximum
length and maximum width of male and
female statoliths of equivalent ML were
found at any stage of development.
Therefore, sex does not affect the growth
of the statolith in /llex coindetii.
Figure 2 shows a diagrammatic picture
of the different parts of an adult Illex coin-
detii statolith in posterior and anterior
view. Terms used in descriptions and the
measurements made are also shown.
Some characteristic features were obser-
ved in these statoliths: a) there is conti-
nuity between the dorsal dome and the
lateral dome. This feature can be obser-
ved between the superior and inferior
lobes of the lateral dome as well; b) the
posterior dome groove is very patent; c)
the rostrum is short and an anterior rostral
lobe does not exist; d) the wing is very
broad; e) the medial fissure is well deve-
loped and also has a small posterior inden-
tation; £) the dorsal spur is very clear.
Statolith development: Although
the above description refers to a late
developmental stage of the statolith in
an adult animal, the way to reach this
definitive stage is quite complex. Thus,
the statolith has become increasingly
complex and passed through different
stages which implies growth in different
planes. These stages can be described as
follows (Fig. 3):
Stage I: Statoliths of immature
animals ranging from 50 to 80 mm ML.
The medial fissure is not yet visible but
will be situated under the dorsal dome.
This area will be the surface where the
wing will connect with the body of the
183
Iberus, 15 (1), 1997
Dorsal dome
Dorsal indentation
Medial fissure == 2
Wing
Ventral indentation
Rostral angle
Rostrum
Superior lobe
Lateral lobe
Inferior lobe
Posterior dome groove
Rostrum
Dorsal dome
/ Posterior indentation
Wing
Maximum length
Maximum width
Figure 2. Diagrammatic picture of the different parts of an adult /llex coindetiz statolith.
Figura 2. Diferentes partes del estatolito de un Vlex coindetii adulto.
statolith in a later developmental stage.
Another characteristic of the stage 1 sta-
tolith is the wide rostral angle (>140").
The primordium of the rostrum is also
visible in the ventral zone of the stato-
lith. It is virtually impossible to differen-
tiate the dorsal dome, the superior and
inferior lobes of the lateral dome, being
round the general shape.
Stage II: This developmental stage
includes the statoliths of animals with ML
between 90 and 130 mm. The main cha-
racteristic of this stage is the growth of the
rostrum, and the change in shape of the
statolith, which is enlarging the ventral
direction. Small dark zones in the ventral
zone can be distinguished. This crystalli-
sation will form the wing of the statolith.
The wing formation is observed in two
directions, from the rostrum to the dorsal
plane of the statolith and from the dorsal
dome to the ventral plane. There is a slight
differentiation between superior and
medium lateral dome.
Stage III: This stage is remarkably dif-
ferent from the preceding one. It appears
in submature and mature squid ranging
from 130 to 200 mm ML. The enlargement
of the rostrum continues and the forma-
tion of the wing spans from the ventral to
the dorsal zone. The medial fissure is
small. A zone devoid of crystallisation
called the foramen appears for the first
134
time. The foramen runs parallel to the
rostrum and will disappear gradually. The
rostral angle is getting narrow and at this
stage 1t forms almost a 90” angle.
Stage IV: Mature animals between
200 and 250 mm ML. The developmen-
tal stage is close to definitive conditions.
The foramen is partially or totally occlu-
ded and the wing is formed along the
entire statolith. As the statolith grows,
the lobes become more distinct. Practi-
cally, the rostral angle is 90".
Stage V: This stage describes the sta-
toliths of mature specimens bigger than
250 mm ML. There are only minor
changes in morphology from stage IV.
Crystallisation in the wing is stronger
and the foramen is totally occluded. The
formation of the wing emphasises the
medial fissure.
Figure 4 illustrates the relationship
between the mantle length and the
maximum length and width of the lllex
coindetii statolith.
DISCUSSION
This paper gives a description of dif-
ferent developmental stages of Illex coin-
detii statoliths, based on observations of
the statolith growth. There are impor-
tant changes in shape of the statolith
GONZÁLEZ AND GUERRA: Growth of /llex coindetíz statolith
Figure 3. Stages of development for the statolith of //lex coindetiz. A: Stage 1, maximum statolith
length (MSL)= 0.67 mm and maximum statolith width (MSW)= 0.40 mm; B: Stage II, MSL =0.90
mm and MSW= 0.63 mm; C: Stage III, MSL= 1.13 mm and MSW= 0.80 mm; D: Stage IV, MSL=
1.20 mm and MSW= 0.80 mm; E: Stage V, MSL= 1.53 mm and MSW= 1.03 mm.
Figura 3. Estadios de desarrollo del estatolito de Ylex coindetii. A: Estadío 1, longitud máxima del estato-
lito (LME)= 0,67 mm y anchura máxima del estatolito (AME)= 0,40 mm; B: Estadío 1H, LME= 0,90
mm y AME= 0,63 mm; C: Estadío 11, LME 1,13 mm y AME= 0,80 mm; D: Estadío IV, LME= 1,20
mm y AME= 0,80 mm, E: Estadío V., LME= 1,53 mm y AME= 1,03 mm.
through the life cycle of Illex coindeti.
Considering the statolith of ommastrep-
hids, it is important to note the difficulty
in differentiating between the dorsal
dome and the superior and inferior
lobes described by CLARKE (1978) for
teuthoids. This observation agrees with
SÁNCHEZ (1981) for Illex coindetii speci-
mens from Mediterranean waters and
ARKHIPKIN (1990) and BRUNETTI AND
IVANOVIC (1991) for Illex argentinus. It
was also observed that the rostral angle
for statoliths of Illex coindetii juveniles is
clearly higher than 140? and progressi-
vely it is getting narrower until it
reaches 90? in mature animals.
Stages I and Il correspond to speci-
mens ranging from three to five months
of age. The description coincides with
stages I and II defined for Illex argenti-
nus (BRUNETTI AND IVANOVIC, 1991) and
the “definitive stage” noted by Morris
and ALDRICH (1984). The shape of the
statolith is enlarged to the ventral side
and it grows in the ventral zone. The
formation of the wing converges from
two different directions, from the dorsal
zone to the ventral one and vice-versa.
Stage III of the statolith of lllex coin-
detii corresponds to submature and
mature animals between five and eight
months of age ranging from 130 to 200
185
Iberus, 15 (1), 1997
Statolith measurements (mm)
—»
Mantle length (mm)
O Maximum length (mm)
+ Maximum width (mm)
Figure 4. /llex coindetii. Relationship between mantle length and maximum length and width .
Figura 4. Mex coindetii. Relación entre la longitud del manto y la anchura y longitud máximas.
mm ML. The union of the wing with the
dorsal dome of the statolith was obser-
ved in this stage, which agrees with the
observations Of MORRIS AND ALDRICH
(1984) for the “juvenile stage” of Illex
illecebrosus and stage III of ARKHIPKIN
(1990) and BRUNETTI AND IVANOVIC
(1991) for Illex argentinus. From this
stage onwards, the growth of the stato-
lith slows down; this could be related
with the process of maturation of the
animals as showed in the Figure 4. In
stage III appears for the first time the
foramen, which was noted as a characte-
ristic feature of ommastrephids. This is a
lack of crystallisation that runs parallel
to the rostrum. It is formed when both
planes of the wing grow, connecting
over the medial part of the statolith,
leaving one distinct zone between this
point and the body of the statolith.
Stages IV and V are very similar in
shape. However, a main difference can
be found when the foramen disappears
136
completely in stage V. Stage IV of Illex
coindetii corresponded to animals of
between 200 and 250 mm ML and ages
ranging from eight to ten months.
Finally, the statoliths of animals bigger
than 250 mm ML and older than ten
months are included in the stage V.
These statoliths are similar to those des-
cribed by MORRIS AND ALDRICH (1984)
for the “advanced stage” in statoliths of
Illex illecebrosus, to the stage VI observed
by BRUNETTI AND IVANOVIC (1991) for
Illex argentinus and the statolith descri-
bed by SÁNCHEZ (1981) for an adult /llex
coindetii specimen from the Mediterra-
nean Sea.
On the whole, it can be concluded that
the shape of the statolith changes gra-
dually from the juvenile stage until it
reaches a definitive stage of development.
There are three features to be noticed
during the growth of the lllex coindetii sta-
tolith: a) the variation of the rostral angle,
getting narrow progressively, from an
GONZÁLEZ AND GUERRA: Growth of /llex coindetíi statolith
angle wider than 120” in statoliths of juve-
niles to a 90” angle in mature animals; b)
the growth of the statolith slows down
when the animals reach sexual maturity;
c) the rounded shape of the statolith,
which makes difficult the differentiation
between the dorsal dome and the lateral
lobes; for this reason it is proposed to
extend the term dorsal dome to the supe-
rior lobe. Therefore, the inferior lobe of
the lateral dome should be called simply
lateral dome.
BIBLIOGRAPHY
AMARATUNGA, T., 1983. The role of cephalopods
in the marine ecosystem. In Caddy, J. F. (Ed.):
Advances in Assessment of World Cephalopod Re-
sources. FAO Fisheries Technical Papers, 231:
379-416.
ARKHIPKIN, A. I., 1990. Edad y crecimiento del
calamar (lllex argentinus). Frente Marítimo, 6
(A): 25-35.
BELLO, G., 1991. The role of cephalopods in the
diet of the swordfish, Xiphias gladius, from the
Eastern Mediterranean. Bulletin of Marine
Science, 49 (1-2): 312-324.
BORGES, T., 1995. Discrimination analysis of ge-
ographical variation in hard structures of
Todarodes sagittatus from North Atlantic. ICES
Marine Science Symposium, 199: 433-440.
BOUXIN, J. AND LEGENDRE, R., 1936. La faune pé-
lagique de l'Atlantique au large du Golfe de
Gascogne, recueillí dans les stomacs des ger-
mons. 2*"* partie: Céphalopodes. Annales de
l'Institut Océanographique de Monaco, XVI: 1-
99.
BRUNETTI, N. E. AND ÍVANOVIC, M., 1991. Mor-
fología y morfometría de los estatolitos del
«calamar (Illex argentinus). Frente Marítimo, 9
(A): 53-61.
BUDELMANN, B. U., 1978. The function of the
equilibrium receptor systems of cephalo-
pods. Proceedings of the Neurological and Equi-
libriometric Society, 6 (1): 15-63.
BUDELMANN, B. U., 1988. Morphological di-
versity of equilibrium receptor systems in
aquatic invertebrates. In Atema, J. et al. (Eds):
Sensory Biology of Aquatic Animals. Springer-
Verlag, New York: 757-782.
BUDELMANN, B. U., 1990. The statocysts of squid.
In Gilbert, D. L. et al. (Eds): Squid as Experi-
mental Animals. Plenum Press, New York:
421-439.
CAMPANA, S. E. AND CASSELMAN, J. M., 1993.
Stock discrimination using otolith shape
analysis. Canadian Journal of Fisheries and
Aquatic Science, 50: 1062-1083.
ACKNOWLEDGMENTS
Angel F. González thanks Dr.
William K. Macy II for his co-operation
and for the facilities to take the microp-
hotographs at the Graduate School of
Oceanography (University of Rhode
Island, USA) and Dr. Paul G. Rodhouse
for the co-operation and helpful criti-
cism during his stay at British Antarctic
Survey (Natural Environment Research
Council, Cambridge, UK).
CLARKE, M. R., 1978. The cephalopod statolith
-anintroduction toits form. Journal ofthe Mari-
ne Biological Association ofthe UK, 58: 701-712.
CLARKE, M. R., 1980. Cephalopods in the diet
of sperm whale of tne southern hemisphere
and their bearing on sperm whale biology.
Discovery Report, 37: 324 pp.
CLARKE, M. R., 1986. Cephalopods in the diet
of Odontocetes. In Bryden, M. M and Harri-
son, R. J. (Eds): Research of Dolphins. Claren-
don Press, Oxford: 281-321.
CLARKE, M. R. AND FITCH, J. E., 1975. First fos-
sil records of cephalopods statoliths. Nature,
London, 257: 380-381.
CLARKE, M. R. AND FITCH, J. E., 1979. Statoliths
of Cenozoic teuthoid cephalopods from
North America. Palaeontology, 22: 479-511.
CLARKE, M. R. AND MADDOCXK, L., 1988a. Sta-
toliths of fossil coleoid cephalopods and evo-
lution. In Clarke, M. R. and Trueman, E. R.
(Eds): The Mollusca. Palaeontology and Neon-
tology of Cephalopods. Academic Press, Inc:
153-168.
CLARKE, M. R. AND MADDOCXK, L., 1988b. Sta-
toliths from living species of cephalopods
and evolution. In Clarke, M. R. and True-
man, E. R. (Eds): The Mollusca. Palaeontology
and Neontology of Cephalopods. Academic Press,
Inc: 169-184.
CLARKE, M. R., CROAXALL, J. P. AND PRINCE, P.
A., 1991. Cephalopod remains in regurgita-
tions of the wandering albatross Diomedea
exulans L. at south Georgia. British Antarctic
Survey Bulletin, 54: 9-21.
CLARKE, M. R., MARTINS, H. R. AND PRINCE, P.
A., 1993. The diet of sperm whales (Physeter
macrocephalus Linnaeus, 1858) of Azores. Phi-
losophical Transactions of the Royal Society of
London B, 339: 67-82.
CLARKE, M. R., CLARKE, D. C., MARTINS, H. R.
AND SILVA, H. M., 1995. The diet of the sword-
fish Xiphias gladius in Azorean waters. Ar-
quipelago, 13 (A): 53-69.
137
Iberus, 15 (1), 1997
CROAXALL, J. P. AND PRINCE, P. A., 1996. Ce-
phalopod as prey. 1. Seabirds. Philosophical
Transactions of the Royal Society of London B,
351: 1023-1043.
FURNESS, R. W., 1994. An estimate of the quan-
tity of squid consumed by seabirds in the
eastern North Atlantic and adjoining seas. Fis-
heries Research, 21 (1-2): 165-178.
GONZÁLEZ, A. F., LÓPEZ, A., GUERRA, A. AND
BARREIRO, A., 1994. Diets of marine mammals
stranded on Northwestern Spanish Atlantic
coast with special reference to Cephalopoda.
Fisheries Research, 21 (1-2): 179-192.
GUERRA, A., SIMÓN, F. AND GONZÁLEZ, A. F.,
1993. Cephalopods in the diet of the sword-
fish Xiphias gladius, from the North-eastern
Atlantic Ocean. In Okutani, T., O Dor, R. K.
and Kubodera, T. (Eds.): Recent Advances in
Cephalopod Fisheries Biology, Tokai University
Press, Tokyo, 159-164.
GUERRA, A. AND SÁNCHEZ, P., 1985. Crecimiento
relativo del estatolito de Sepia officinalis (Cep-
halopoda, Sepioidea) de la Ría de Vigo. In-
vestigación Pesquera, 49: 545-557.
JACKSON, J. D., 1994. Application and future
potential of statolith increment analysis in
squid and sepioids. Canadian Journal of Fi-
sheries and Aquatic Science, 51: 2612-2625.
LIPINsKI, M., 1979. Universal maturity scale for
the commercially-important squids (Cepha-
lopoda, Teuthoidea). The results of maturity
classification of the Illex ¡llecebrosus popula-
tion for the years 1973-77. ICNAF Research Do-
cument 79/2/38, Serial 5364.
LOMBARTE, A., SÁNCHEZ, P. AND MORALES-
Nín, B., 1995. Intraspecific shape variabi-
lity in statolith of cephalopods. In Guerra,
- A., Rolán, E. and Rocha, F. (Eds.): Abstracts
12th International Malacological Congress,
Vigo 1995: 71-72.
Macy, W. K., 1995. The application of Digital
Image Processing to the ageing of long-fin-
ned squid, Loligo pealei, using the statolith. In
Secor, D. H., Dean, J. M. and Campana, 5. E.
(Eds): Recent Developments in Fish Otolith Re-
search, 19: 283-302.
138
MORRIS, C. C. AND ALDRICH, F. A., 1984. Stato-
lith development in the ommastrephid lllex
illecebrosus (LeSueur, 1821). American Mala-
cological Bulletin, 2: 51-56.
RASERO, M., GONZALEZ, A. F., CASTRO, B. G. AND
GUERRA, A., 1996. Predatory relationships
of two sympatric ommastrephids species To-
daropsis eblanae and Illex coindetii (Mollusca,
Cephalopoda) off Galician waters (NW
Spain). Journal of the Marine Biological Asso-
ciation of the UK, 76: 73-87.
RODHOUSE, P. G., CLARKE, M. R. AND MURRAY,
A. W. A., 1987. Cephalopod prey in the wan-
dering albatross Diomedea exulans. Marine
Biology, 96: 1-10.
RODHOUSE, P. G. AND NIGMATULLIN, CH. M,,
1996. The role of cephalopods as consumers.
Philosophical Transactions of the Royal Society
of London B, 351: 1003-1022.
SÁNCHEZ, P., 1981. Características bicecológicas de
Illex coindetii (Verany, 1839) en el Mar Cata-
lán. Ph. D. Thesis, Universidad de Barcelona,
Spain, 219 pp.
STEPHENS, P. R. AND YOUNG, J. Z., 1982. The sta-
tocysts of the squid Loligo. Journal of Zoology,
London, 197: 341-266.
XAMPENY, ). AND FILELLA, S., 1976. Datos sobre
tres cachalotes Physter macrocephalus L. cap-
turados frente a la costas atlánticas de Gali-
cia, España (Cetacea, Physeteridae). Misce-
lánea Zoológica, 3 (5): 235-242.
YOUNG, J. Z., 1960. The statocysts of Octopus vul-
garis. Proceedings of the Royal Society of London
B, 152: 3-29.
YOUNG, J. Z., 1989. The angular acceleration re-
ceptor system of diverse cephalopods. Phi-
losophical Transactions of the Royal Society of
London B, 25: 189-237.
NORMAS DE PUBLICACIÓN
e La revista IBERUS publica artículos de fondo, notas y monografías que versen sobre cualquiera de los aspectos rela-
cionados con la Malacología. Se entiende por artículo un trabajo de investigación de más de 5 páginas de texto,
mecanografiadas, incluidas láminas, gráficos y tablas. Las notas son trabajos de menor extensión. Las monografías
son trabajos sobre un tema único, de extensión superior a las 50 páginas de la revista y que serán publicadas como un
suplemento de IBERUS. Los autores interesados en publicar monografías deberán ponerse previamente en contacto
con el Editor de Publicaciones. Se entiende que el contenido de los manuscritos no ha sido publicado, ni se publicará
en otra parte ni en su totalidad ni resumido.
* Los manuscritos, así como toda la correspondencia relacionada con los mismos, deberán ser remitidos a: Dr. Ángel
Guerra Sierra, Editor de Publicaciones, Instituto de Investigaciones Marinas (CSIC), C/Eduardo Cabello 6, 36208
Vigo, España.
» El texto del trabajo podrá estar redactado en cualquier lengua culta moderna.
* En los trabajos que superen las 20 páginas, cada página de exceso será abonada por el(los) autor(es) a precio de coste.
* Los artículos, notas y monografías deberán presentarse mecanografiados sobre DIN A-4, por una sola cara a doble
espacio (incluyendo referencias, pies de figura y tablas), con al menos 3 centímetros de margen por cada lado. Los tra-
bajos se entregarán por triplicado (original y dos copias). En caso de autoría compartida, uno de los autores deberá
hacerse responsable de toda la correspondencia.
* Los manuscritos se presentarán de acuerdo al siguiente esquema:
Primera página. Deberá incluir un título conciso, pero sugerente del contenido del trabajo, así como una traducción
al inglés del mismo (si el artículo no está escrito en inglés). Cuando sea preciso, deberá incluir referencia a familia o
táxones superiores. A continuación figurarán, por este orden, el nombre y apellidos completos del autor o autores,
las direcciones completas de los mismos, y un resumen del trabajo y su traducción al inglés. Dicho resumen deberá
sintetizar, en conjunción con el título, tanto los resultados como las conclusiones del artículo; se sugiere una exten-
sión de 100 a 200 palabras. El resumen deberá estar seguido de una lista de palabras clave, también con su versión
inglesa para su inclusión en los bancos de datos internacionales.
Páginas siguientes. Incluirán el resto del artículo, que debe dividirse en secciones precedidas por breves encabeza-
mientos. Siempre que sea posible, se recomienda seguir el siguiente esquema: Introducción, Material y métodos,
Resultados, Discusión, Conclusiones, Agradecimientos y Bibliografía. Si se emplean abreviarras no habituales en
el texto, deberán indicarse tras el apartado de Material y Métodos.
e Las notas breves deberán presentarse de la misma forma, pero sin resumen.
* Deberán evitarse notas a pie de página y referencias cruzadas. Deberán respetarse estrictamente los Códigos
Internacionales de Nomenclatura Zoológica y Botánica (últimas ediciones). Cuando un táxon aparezca por primera
vez deberá citarse su autor y fecha de su descripción. En el caso de artículos sistemáticos, cuando se den las sinonimias
de los táxones, éstas deberán citarse COMPLETAS, incluyendo en forma abreviada la publicación donde fueron des-
critas, y la localidad tipo si es conocida entre corchetes, según el siguiente esquema (préstese especial cuidado a la pun-
tuación):
Dendrodoris limbata (Cuvier, 1804)
Sinonimias
Doris limbata Cuvier, 1804, Ann. Mus. H. N. Paris, 4 (24): 468-469 [Localidad tipo: Marsella].
Doris nigricans Otto, 1823, Nov. Act. Ac. Caes. Leop. Car., 10: 275.
Dichas referencias no deberán incluirse en la lista de Bibliografía si es la única vez que se nombran en el texto.
Si se incluyen una lista completa de referencias de un taxon inmediatamente tras éste, deberá seguirse el mismo esque-
ma (sin incluir en Bibliografía las referencias que no se mencionen en otro lugar del texto).
* Sólo los nombres en latín y los de táxones genéricos y específicos deberán llevar subrayado sencillo o preferentemente
ir en cursiva. En ningún caso deberá escribirse una palabra totalmente en letras mayúsculas, ni siquiera el Título. Las
unidades a utilizar deberán pertenecer al Sistema Métrico Decimal, junto con sus correctas abreviaturas. En artículos
escritos en castellano, en los números decimales sepárese la parte entera de la decimal por una coma inferior (,),
NUNCA por un punto (.) o coma superior (').
* Las referencias bibliográficas irán en el texto con minúsculas o versalitas: Fretter y Graham (1962) o FRETTER Y
GRAHAM (1962). Si son más de dos autores se deberán citar todos la primera vez que aparecen en el texto [Smith,
Jones y Brown (1970)] empleándose et al. las siguientes veces [Smith et al. (1970)]. Si un autor ha publicado más de
un trabajo en un año se citarán con letras: (Davis, 1989a; Davis, 1989b). No deberá emplearse op. cit. La lista de
referencias deberá incluir todas las citas del texto y sólo éstas, ordenadas alfabéticamente. Se citarán los nombres de
todos los autores de cada referencia, sea cual sea su número. Los nombres de los autores deberán escribirse, en letras
minúsculas o VERSALITAS. No deberán incluirse referencias a autores cuando éstos aparezcan en el texto exclusiva-
mente como autoridades de un taxon. Los nombres de las publicaciones periódicas deberán aparecer COMPLETOS,
no abreviados. Cuando se citen libros, dése el título, editor, lugar de publicación, n* de edición si no es la primera y
número total de páginas. Deberán evitarse referencias a Tesis Doctorales u otros documentos inéditos de difícil con-
sulta. Síganse los siguientes ejemplos (préstese atención a la puntuación):
Eretter, V. y Graham, A., 1962. British Prosobranch Molluscs. Ray Society, London, 765 pp.
Ponder, W. F., 1988. The Truncatelloidean (= Rissoacean) radiation - a preliminary phylogeny. En Ponder, W. EF.
(Ed.): Prosobranch Phylogeny, Malacological Review, suppl. 4: 129-166.
Ros, J., 1976. Catálogo provisional de los Opistobranquios (Gastropoda: Euthyneura) de las costas ibéricas.
Miscelánea Zoolgica, 3 (5): 21-51. í
e Las gráficas e ilustraciones deberán ser originales y presentarse sobre papel vegetal o similar, con tinta china negra y
ajustadas al formato de caja de la revista o proporcional a éste. Este formato es de 57 mm (una columna) o 120 mm
(dos) de anchura y hasta 194 mm de altura, si bien se recomienda utilizar el formato a dos columnas. En caso de pre-
parar figuras para que ocupen el total de una página, se ruega ajustar su tamaño para que puedan caber los pies de
figura bajo ella. Si han de incluirse gráficas de ordenador, deberán imprimirse con impresora láser sobre papel de
buena calidad. Las fotografías, bien contrastadas y sin retocar, deberán ajustarse siempre a los tamaños mencionados.
Al componer fotografías sobre una hoja, procúrese que los espacios entre ellas sean regulares y que estén debidamente
alineadas. Téngase en cuenta que incluir fotografías de distinto contraste en una misma página conlleva una pobre
reproducción final. Las escalas de dibujos y fotografías deberán ser gráficas, y las unidades que se utilicen del sistema
métrico decimal. Considérese la reducción que será necesaria a la hora de decidir el tamaño de las escalas o letras en
las figuras, que no deberán bajar de los 2 mm. En figuras compuestas, cada parte deberá etiquetarse con letras mayús-
culas, el resto de las letras deberán ser minúsculas. No deberán hacerse referencias a los aumentos de una determi-
nada ilustración, ya que éstos cambian con la reducción, por lo que debe emplearse una escala gráfica. En su caso, se
recomienda la utilización de mapas con proyección UTM. Cada figura, gráfica o ilustración deberá presentarse en
hojas separadas y con numeración arábiga (1, 2, 3,...), sin separar “Figuras” y “Láminas”. Los pies de figura, en una
hoja aparte, deberán acompañarse de su traducción al inglés. Utilícese el esquema siguiente:
Figura 1. Neodoris carvi. A: animal desplazándose; B: detalle de un rinóforo; C: branquia.
Las abreviaturas empleadas en las ilustraciones deberán incluirse en la hoja de pies de figura.
Los autores interesados en incluir láminas en color deberán abonarlas a precio de coste (30.000 ptas por página). Por
lo demás, deberán ajustarse a los mismos requisitos que los indicados para las figuras.
+ Las Tablas se presentarán en hojas separadas, siempre con numeración romana (1, II, IL...). Las leyendas se inclui-
rán en una hoja aparte acompañándose de una traducción al inglés. Deberán evitarse las tablas particularmente com-
plejas. Se recomienda reducir el número y extensión de ilustraciones, láminas o tablas al mínimo necesario.
* Los artículos que no se ajusten a las normas de publicación serán devueltos al autor con las indicaciones de los cam-
- bios necesarios.
+ El Comité Editorial comunicará al autor responsable del trabajo la fecha de recepción del trabajo y la fecha de envío
a revisión. Cada original recibido será sometido a revisión por al menos dos investigadores. El Comité Editorial, a la
vista de los informes de los revisores decidirá sobre la aceptación o no de cada manuscrito. El autor recibirá en cada
caso copia de los comentarios de los revisores sobre su artículo. En caso de aceptación, el mismo Comité Editorial, si
lo considera conveniente, podrá solicitar a los autores otras modificaciones que considere oportunas. Si el trabajo es
aceptado, el autor deberá enviar una copia impresa del mismo corregida, acompañada por una versión en disco flexi-
ble (diskette), utilizando procesadores de texto en sus versiones de DOS o Macintosh. La fecha de aceptación figura-
rá en el artículo publicado.
* Las pruebas de imprenta serán enviadas al autor responsable, EXCLUSIVAMENTE para la corrección de erratas, y
deberán ser devueltas en un plazo máximo de 15 días. Se recomienda prestar especial atención en la corrección de las
pruebas.
* De cada trabajo se entregarán gratuitamente 50 separatas. Aquellos autores que deseen un número mayor, deberán
hacerlo constar al devolver las pruebas de imprenta, y NUNCA POSTERIORMENTE. El coste de las separatas adi-
cionales será cargado al autor.
INSTRUCTIONS TO AUTHORS
» IBERUS publishes research papers, notes and monographs devoted to the various aspects of Malacology. Papers are
manuscripts of more than 5 typed pages, including figures and tables. Notes are shorter papers. Monographs should
exceed 50 pages of the final periodical, and will be published as Supplements. Authors wishing to publish monographs
should contact the Editor. Manuscripts are considered on the understanding that their contents have not appeared or
will not appeared, elsewhere in substantially the same or any abbreviated form.
+ Manuscripts and correspondence regarding editorial matters must be sent to: Dr. Ángel Guerra Sierra, Editor de Publi -
caciones, Instituto de Investigaciones Marinas (CSIC), C/Eduardo Cabello 6, 36208 Vigo, Spain.
+ Manuscripts may be written in any modern language.
* When a paper exceeds 20 pages, extra pages will be charged to the author(s) at full cost.
+ Manuscripts must be typed double spaced (including the references, figure captions and tables) on one side on A-4
(297x210 mm) with margins of at least 3 cm. An original and two copies must be submitted. When a paper has joint
authorship, one author must accept responsability for all correspondence.
» Papers should conform the following layout:
First page. This must include a concise but informative title, with mention of family of higher taxon when appropriatte,
and its Spanish translation. It will be followed by all authors? names and surnames, their full adress(es), an abstract (and
its Spanish translation) not exceeding 200 words which summarizes not only contents but results and conclusions, and
a list of Key Words (and their Spanish translation) under which the article should be indexed.
Following pages. These should content the rest of the paper, divided into sections under short headings. Whenever pos-
sible the text should be arranged as follows: Introduction, Material and methods, Results, Discussion, Conclusions,
Acknowledgements and References. Unusual abbreviations used in the text must be grouped in one alphabetic sequence
after the Material and methods section.
e Notes should follow the same layout, without the abstract.
* Footnotes and cross-references must be avoided. The International Codes of Zoological and Botanical Nomencla-
ture must be strictly followed. The first mention in the text of any taxon must be followed by its authority including
the year. In systematic papers, when synonyms of a taxon are given, they must be cited IN FULL, including the perio-
dical, in an abbreviate form, where they were described, and the type localities in square brackets when known. Follow
this example (please note the punctuation):
Dendrodoris limbata (Cuvier, 1804)
Synonyms
Doris limbata Cuvier, 1804, Ann. Mus. H. N. Paris, 4 (24): 468-469 [Type locality: Marseille].
Doris nigricans Otto, 1823, Nov. Act. Ac. Caes. Leop. Car., 10: 275.
These references must not be included in the Bibliography list, except if referred to elsewhere in the text. If a full list
of references of the taxon is to be given immediately below it, the same layout should be followed (also excluding those
nowhere else cited from the Bibliography list).
Only Latin words and names of genera and species should be underlined once or be given in ¿talics. No word must
be written in UPPER CASE LETTERS. SI units are to be used, together with their appropriate symbols. In Spanish
manuscripts, decimal numbers must be separated with a comma (,), NEVER with a point (.) or upper comma (*).
e References in the text should be written in small letters or SMALL CAPITALS: Fretter 8Z Graham (1962) or FRETTER
$ GRAHAM (1962). The first mention in the text of a paper with more than two authors must include all of them
[Smith, Jones 82 Brown (1970)], thereafter use et al. [Smith et al. (1970)]. Ifan author has published more than one
paper per year, refer to them with letters: (Davis, 1989a; Davis, 1989b). Avoid op. ci.
The references in the reference list should be in alphabetical order and include all the publications cited in the text but
only these. ALL the authors of a paper must be included. These should be written in small letters or SMALL CAPITALS.
The references need not be cited when the author and date are given only as authority for a taxonomic name. Titles of
periodicals must be given IN FULL, not abbreviated. For books, give the title, name of publisher, place of publication,
indication of edition if not the first and total number of pages. Keep references to doctoral theses or any other unpu-
blished documents to an absolute minimum. See the following examples (please note the punctuation):
Eretter, V. and Graham, A., 1962. British Prosobranch Molluscs. Ray Society, London, 765 pp.
Ponder, W. F., 1988. The Truncatelloidean (= Rissoacean) radiation - a preliminary phylogeny. In Ponder, W/. F. (Ed.):
Prosobranch Phylogeny, Malacological Review, suppl. 4: 129-166.
Ros, J., 1976. Catálogo provisional de los Opistobranquios (Gastropoda: Euthyneura) de las costas ibéricas. Miscelá-
nea Zoológica, 3 (5): 21-51.
+ Figures must be original, in Indian ink on draughtsman's tracing paper. Keep in mind page format and column size
when designing figures. These should be one column (57 mm) or two columns (120 mm) wide and up 194 mm high,
or be proportional to these sizes. Two columns format is recomended. It is desirable to print figures with their legend
below, so authors are asked to take this into account when preparing full page figures. If computer generated graphics
are to be included, they must be printed on high quality white paper with a laser printer. Photographs must be of good
contrast, and should be submitted in the final size. When mounting photographs in a block, ensure spacers are of uni-
form width. Remember that grouping photographs of varied contrast results in poor reproduction. Take account of
necessary reduction in lettering drawings; final lettering must be at least 2 mm high. In composite drawings, each figure
should be given a capital letter; additional lettering should be in lower-case letters. A scale line is recomended to indi-
cate size, magnification ratio must be avoided as it may be changed during printing. UTM maps are to be used if neces-
sary. Figures must be submitted on separate sheets, and numbered with consecutive Arabic numbers (1, 2, 3,...), without
separating Plates' and “Figures”. Legends for Figures must be typed in numerical order on a separate sheet, and an English
translation must be included. Follow this example (please note the punctuation):
Figure 1. Neodoris carvi. A: animal crawling; B: rinophore; C: gills.
If abbreviations are to be used in illustrations, group them alphabetically after the Legends for Figures section.
Authors wishing to publish illustrations in colour will be charged with additional costs (30,000 ptas, 300 US$ per page).
They should be submitted in the same way that black and white prints.
e Tables must be numbered with Roman numbers (1, II, II...) and each typed on a separate sheet. Headings should
be typed on a separate sheet, together with their English translation. Complex tables should be avoided. As a general
rule, keep the number and extension of illustrations and tables as reduced as possible.
+ Manuscripts that do not conform to these instructions will be returned for correction before reviewing.
* Authors submitting manuscripts will receive an acknowledgement of receipt, including receipt date, and the date the
manuscript was sent for reviewing. Each manuscript will be critically evaluated by at least two referees. Based of these
evaluations, the Editorial Board will decide on acceptance or rejection. Anyway, authors will receive a copy of the refe-
rees” comments. If a manuscript is accepted, the Editorial Board may indicate additional changes if desirable. Accep-
table manuscripts will be returned to the author for consideration of comments and criticism; a finalized manuscript
must then be returned to the Editor, together with a floppy disk containing the article written with a DOS or Macin-
tosh word processor. Dates of reception and acceptance of the manuscript will appear in all published articles.
* Proofs will be sent to the author for correcting errors. At this stage no stylistic changes will be accepted. Pay special
attention to references and their dates in the text and the Bibliography section, and also to numbers of Figures and
Tables appearing in the text.
e Fifty reprints per article will be supplied free of charge. Additional reprints must be ordered when the page proofs are
returned, and will be charged at cost. NO LATER orders will be accepted.
-—.
La SocieDAD ESPAÑOLA DE IMALACOLOGÍA
Junta directiva desde el 18 de octubre de 1996
Presidente Emilio Rolán Mosquera
Vicepresidente Diego Moreno Lampreave
Secretario Luis Murillo Guillén
Tesorero Jorge J. Otero Schmitt
Avda. de las Ciencias s/n, Campus Universitario, 15706 Santiago
de Compostela, España
Editor de Publicaciones Ángel Guerra Sierra
Instituto de Investigaciones Marinas, c/ Eduardo Cabello 6, 36208
Vigo, España
Bibliotecario Rafael Araujo Armero
Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutierrez
Abascal 2, 28006 Madrid, España
Vocales Eugenia María Martínez Cueto-Felgueroso
María de los Ángeles Ramos Sánchez
Francisco Javier Rocha Valdés
Gonzalo Rodríguez Casero
Jesús Souza Troncoso
José Templado González
La Sociedad Española de Malacología se fundó el 21 de agosto de 1980. La sociedad se registró como una aso-
ciación sin ánimo de lucro en Madrid (Registro N* 4053) con unos estatutos que fueron aprobados el 12 de
diciembre de 1980. Esta sociedad se constituye con el fin de fomentar y difundir los estudios malacológicos
mediante reuniones y publicaciones. A esta sociedad puede pertenecer cualquier persona o institución interesada
en el estudio de los moluscos.
SEDE SOCIAL: Museo Nacional de Ciencias Naturales, c/ José Gutierrez Abascal 2, 28006 Madrid, España.
CUOTAS PARA 1997:
Socio numerario (en España): 5.000 ptas. (= 50 U.S. $)
(en extranjero): 7.000 ptas (= 70 U.S. $)
Socio estudiante: 2.000 ptas. (= 20 U.S. $)
Socio Familiar: 500 ptas. (= 5 U.S. $)
Socio Protector: 6.000 ptas. (= 60 U.S. $) (mínimo)
Socio Corporativo 6.000 ptas. (= 60 U.S. $)
INSCRIPCIÓN: 1.000 ptas. (= 10 U.S. $) además de la cuota correspondiente.
A los socios residentes en España se les aconseja domiciliar su cuota. Todos los abonos deberán enviarse al
Tesorero (dirección reseñada anteriormente) el 1 de enero de cada año. Los abonos se harán sin recargos para la
sociedad y en favor de la Sociedad Española de Malacología y no de ninguna persona de la junta directiva. Aque-
llos socios que no abonen su cuota anual dejarán de recibir las publicaciones de la Sociedad. Los bonos de ins-
cripción se enviarán junto con el abono de una cuota anual al Tesorero.
Members living in foreing countries can deduce 10 U.S. $ if paid before 15 April.
Cada socio tiene derecho a recibir anualmente los números de /berus, Reseñas Malacológicas y Noticiarios que
se publiquen.
50 Iberus
E Revista de la
SOCIEDAD ESPAÑOLA DE MALACOLOGÍA
tu
COMITÉ DE REDACCIÓN
EDITOR Ce
Ángel Guerra Sierra a Instituto de Investigaciones Marinas, CSIC, Vigo, España
AS
EDITORES ADJUNTOS *
Eugenia M* Martínez Cueto-Felgueroso Universidad de Oviedo, Oviedo, España
Francisco Javier Rocha Valdés Instituto de Investigaciones Marinas, CSIC, Vigo, España
Gonzalo Rodríguez Casero Universidad de Oviedo, Oviedo, España
ComiTÉ EDITORIAL
Kepa Altonaga Sustacha Universidad del País Vasco, Bilbao, España
Eduardo Angulo Pinedo Universidad del País Vasco, Bilbao, España
Thierry Bockeljau Institut Royal des Sciences Naturelles de Belgique, Bruselas, Bélgica
Sigurd v. Boletzky Loboratoire Arago, Bonyuls-surMer, Francia
Jose Castillejo Murillo Universidad de Santiago de Compostela, Santiago de Compostela, España
Karl Edlinger Noturhistorisches Museum Wien, Austria
José Carlos García Gómez Universidad de Sevilla, Sevilla, España
Edmund Gittenberger Notionaal Natuurhistorisch Museum, Leiden, Holanda
Serge Gofas Muséum Notional d'Histoire Naturelle, Paris, Francia
Ángel Antonio Luque del Villar Universidad Autónoma de Madrid, Madrid, España
María Yolanda Manga González Estación Agrícola Experimental, CSIC, León, España
Jordi Martinell Callico Universidad de Barcelona, Barcelona, España
Ron K. 0'Dor Dalhousie University, Halifax, Canada
Marco Oliverio Universitá di Roma “La Sapienza”, Roma, Italia
Pablo E. Penchaszadeh Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina
Carlos Enrique Prieto Sierra Universidad del País Vasco, Bilbao, España
María de los Ángeles Ramos Sánchez Museo Nacional de Ciencias Naturales, CSIC, Madrid, España
Paul 6. Rodhouse British Antarctic Survey, Cambridge, Reino Unido
Joandoménec Ros ¡ Aragones Universidad de Barcelona, Barcelona, España
María del Carmen Salas Casanovas Universidad de Málaga, Málaga, España
Gerhard Steiner Universitát Wien, Austria
José Templado González Museo Nacional de Ciencias Naturales, CSIC, Madrid, España
Victoriano Urgorri Carrasco Universidad de Santiago de Compostela, Santiago de Compostela, España
Anders Warén Swedish Museum of Natural History, Estocolmo, Suecia
Iberus publica trabajos que traten sobre cualquier aspecto relacionado con la Malacología. Se admiten también
notas breves. /berus edita un volumen anual que se compone de dos o más números.
INSTRUCCIONES PARA LOS AUTORES
Los manuscritos deben remitirse a: Dr. Ángel Guerra Sierra, Instituto de Investigaciones Marinas (CSIC),
c/ Eduardo Cabello 6, 36208 Vigo, España.
Los trabajos se entregarán por triplicado (original y dos copias). Se recomienda a los autores leer cuidadosa-
mente las normas de publicación que se incluyen en cada número de la revista.
SUBCRIPCIONES
Iberus puede recibirse siendo socio de la Sociedad Española de Malacología, en cualquiera de sus formas, O
mediante intercambio. Aquellos socios que deseen adquirir números atrasados deberán dirigirse al bibliotecario.
Los no socios deberán ponerse en contacto con BACKHUYS PUBLISHERS, P.O. Box 321, 2300 AH
Leiden, The Netherlands. Tel.: +31-71-51 70 208, Fax: +31-71-51 71 856, Correo Electrónico: backhuysCeuronet.nl
PORTADA DE /berus
Iberus gualterianus (Linnaeus, 1758), una especie emblemática de la península Ibérica, que da nombre a la
revista. Dibujo realizado por José Luis González Rebollar “Toza”.
LIBRARY
Iberus =.
HARVA
UNI VERS In y
REVISTA DE LA
SOCIEDAD ESPAÑOLA
DE MALACOLOGÍA
Vol. 15 (2) Oviedo, diciembre 1997
Dep. Leg. B-43072-81
ISSN 0212-3010
Diseño y maquetación: Gonzalo Rodríguez
Impresión: LOREDO, S. L. - Gijón
PREFACE
This volume of /berus comprises a miscellany of various papers and posters presented
at the Twelfth International Malacological Congress held at Vigo (Spain) from 3 Septem-
ber to 8 September, 1996. This congress was organised by Dr. Ángel Guerra and Dr. Fran-
cisco Rocha, members of the Instituto de Investigaciones Marinas (IM) on behalf of Unitas
Malacologica and under the auspices of the Consejo Superior de Investigaciones Científi-
cas (CSIC), the Sociedad Española de Malacología (SEM) and the Cephalopod Interna-
tional Advisory Council (CIAC).
Based at the Cultutal Center of the Caixavigo and the adjacent Casa das Artes do Con-
cello de Vigo, the congress was attended by four houndred and twenty one specialists on
molluscs from different research fields of fifty seven countries. The framework of the Vigo
Congress was composed by five symposia, three free lectures and four workshops. These
ranged over all Classes of Mollusca, the marine, freswater and land environments, evolu-
tion and fossil records, phylogeny and systematics, ecology, medical and applied malaco-
logy, the functional morphology of cephalopods, endemisms in the marine realm, and data
bases. In addition to the communications most of the time was devoted to informal mee-
tings and discussions.
The congress was sponsored by over fourteen Governamental and Official Institutions
and companies. However, it would not be possible without the enthusiasm and the deter-
mination of the Local Organising Committee compossed mainly by people working in the
research group of Ecofisiología de Cefalópodos (1IM), the Universities of Vigo and San-
tiago de Compostela and the Sociedad Española de Malacología (SEM). Their forsight,
kindness and hard work made a very successful congress. We thank all of them and parti-
cularly to the director and the manager of IIM, Dr. Ricardo Pérez Martín and Mr. Luis
Ansorena, respectively. Our acknowdlegment to Dr. Emilio Rolán, President of the SEM
and co-editor of the book of abstracts!, Mrs. María Teresa Fernández, the person in charge
for all the secretariat affaires of the congress, and to all the organisers of the different ses-
sions, who wisely managed the symposia, workshops and free lectures. We are very grate-
ful to all the referees for their expert assistance reviewing these manuscripts. Delay in publi-
cation of this volume is basically our responsability, but we wish to point out correspon-
dence with some of the authors was not easy.
In the oppening address to the Vigo Congress, Dr. Winston E Ponder argued that mala-
cology is not doing justice to the importance of molluscs. Molluscs are a large phylum of
large bodied, well-known animals with a superb fossil record, excellent model organisms
in evolution, genetics, physiology and ecology, economically important (fisheries and cul-
tures), and as agricultural pests and carriers of disease. Analysis of several experts revealed,
however, that few papers on molluscs are given at international meetings or published in
mainstream journals, and instead, most appear in malacological meetings and journals, and
much of it is narrowly focussed and trivial, indicating an inward focus and conservatism.
If malacology is to improve its perception by the scientific community, the basic research
must be focussed on areas of greatest interest, the study of molluscs must contribute to
major areas of scientific inquiry and social and economic concern. Our discipline also needs
a strong and effective voice in the traditional (books and journals) and the new (electro-
nic) media. This, and other issues in non-molluscan specialised journals which now are in
press, must be regarded as an effort of the Vigo Congress organisers to reverse the trend of
margination of molluscan studies in mainstream biology.
This volume has been published under the inestimable collaboration of the associated
editors of Iberus D. Gonzalo Rodríguez Casero and Dr. Eugenia Martínez Cueto-Felgue-
roso. Nine papers are included in this volume. These articles embrace very different aspects
of the malacology and comprise distincts groups of molluscs that belongs to several ecosys-
tems. Thus, we find in this book studies which run from the biogeography and demo-
graphic response of the snail populations to enviromental conditions to the study of mollus-
can evolution, going through inmunology and morphological researches.
Finally, we would like to thank the Spanish Ministry of Education and Science, the
Education Ministry of the Galician Government, the manager of the 5% Centenary of the
Universidad de Santiago de Compostela and the Chancellor of the Universidad de Vigo
for their support to organise the “Iwelfth International Malacological Congress and spe-
cially the Council of Unitas Malacologica for providing funds for publication of this volume
of Iberus.
Angel Guerra and Francisco Rocha
| GUERRA, A., E. ROLÁN AND F. ROCHA (EDS.), 1995. Abstracts of the Twelfth International Malacological
Congress. Vigo, 3th-8th September, 1995. Unitas Malacologica and Instituto de Investigaciones Marinas (CSIC),
Vigo, Spain. 530 pp.
O Sociedad Española de Malacología — ——_———T— lIberus, 15 (2): 1-11, 1997
Phagocytosis by haemocytes from the Lesser Octopus Ele-
done cirrhosa
Fagocitosis en hemocitos del pulpo blanco Eledone cirrhosa
Shelagh K. MALHAM”, Norman W. RUNHAM' and Christopher J. SECOMBES”
Recibido el 8-1-1996. Aceptado el 11-IV-1996
ABSTRACT
Haemocytes from Eledone cirrhosa phagocytose formalized bacteria (Vibrio anguillarum).
The phagocytic capabilities of E. cirrhosa haemocytes are affected by several factors, inclu-
ding the haemocyte culture medium, temperature, duration of the assay, and the bacterial
pre-incubation conditions such as haemolymph concentration, temperature and the duration
of pre-incubation.
Haemocytes will phagocytose in the absence of haemolymph. With a 30min incubation
period the number of phagocytosing haemocytes increases as the pre-opsonization concen-
tration and incubation temperature increase. However after 2 hours at 15 or 20*C the num-
ber of haemocytes phagocytosing unopsonized bacteria is equivalent to the number engul-
fing 100% haemolymph opsonized bacteria.
RESUMEN
Los hemocitos de Eledone cirrhosa fagocitan bacterias formalizadas (Vibrio anguillarum). La
capacidad de fagocitar en estas células se ve afectada por varios factores, incluyendo el
medio de cultivo de los hemocitos, temperatura, duración del experimento, y las condicio-
nes de preincubación de las bacterias, tales como concentración de hemolinfa y tempera-
tura y duración de la preincubación. Los hemocitos fagocitan en ausencia de hemolinfa.
Con un periodo de incubación de 30 minutos, el numero de hemocitos que fagocitan se
incrementa cuando lo hacen la concentración de preopsonización y la temperatura de incu-
bación. Sin embargo, tras dos horas a 15 ó 20*C, el número de hemocitos que fagocitan
bacterias no opsonizadas es equivalente al de hemocitos que fagocitan bacterias tratadas
con hemolinfa al 100%.
KEY WORDS: Eledone cirrhosa, haemocytes, phagocytosis, opsonization.
PALABRAS CLAVE: Eledone cirrhosa, hemocitos, fagocitosis, opsonización.
INTRODUCTION
In vivo and in vitro investigations into blood cells or haemocytes are avidly pha-
the cellular activities of molluscs have de- gocytic and capable of recognising non-
monstrated that, in a number of cases, the self (reviewed by MILLAR AND RATCLIFEFE,
“University of Wales, School of Biological Sciences, Brambell Building, North Wales, Bangor, Gwynedd LL57
2UW, United Kingdom.
” Department of Zoology, University of Aberdeen, Tillydrone Ave, Aberdeen, Scotland AB9 2T'N, U.K.
Iberus, 15 (2), 1997
1994). The process of phagocytosis invol-
ves a number of recognizable stages,
which include attraction, attachment, in-
gestion and killing of foreign organisms,
and is influenced by a number of factors
(reviews by RATCLIFFE, ROWLEY, FITZGE-
RALD AND RHODES, 1985; MILLAR AND
RATCLIFFE, 1994). Variables which have
been shown to affect phagocytic rates in
molluscs include incubation temperature
(FOLEY AND CHENG, 1975), time and pH
(ABDUL-SALAM AND MICHELSON, 1980),
the size of the particle presented for pha-
gocytosis and the nature of the particles
(reviewed by BAYNE, 1983). Though pha-
gocytosis will take place in the absence of
opsonizing agents (RENWRANTZ AND
STAHMER, 1983; TUAN AND YOSHINO
1987; FRYER, HULL AND BAYNE, 1989), se-
veral experiments have shown that solu-
ble humoral factors or opsonins may be
instrumental in non-self recognition
(PROWSE AND TAIT, 1969) and, or enhan-
cement of phagocytosis (reviews by JEN-
KIN, 1976; RATCLIFFE ET AL., 1985).
The haemocyte culture medium has
been shown to influence phagocytosis
with, in the case of the Asian clam, Cor-
bicula fluminea, the presence of divalent
cations being necessary for both
opsonin-independent and opsonin-
dependent phagocytosis (TUAN AND
YOSHINO, 1987). The process of opsoni-
zation also appears to be influenced by
several other factors. FRYER AND BAYNE
(1989), using Biomphalaria glabrata,
showed that for this mollusc opsoniza-
tion is a time-dependent process.
Further, TrIPP (1992), working with Mer-
cenaria mercenaria demonstrated that at
low temperatures, opsonization caused
enhanced phagocytic rates.
The octopus Eledone cirrhosa is
benthic in habit, ranges in depth from
sub-littoral to 770 m and encounters
temperatures between 5 and 15”C
(BOYLE, 1983). The animal has a closed
circulatory system and if wounded pre-
vents blood loss by local vasoconstric-
tion of the area surrounding the wound.
The blood of the octopod does not clot
and further blood loss is prevented by
allowing seepage of blood through the
wou1.d until blood cells eventually plug
the wound (WELLs, 1978, 1983; BAYNE,
1983). If the animal loses a large amount
of blood a dilution of the respiratory
pigment (haemocyanin) occurs which
takes up to 2 hours to be reversed
(WELLS AND WELLS, 1993). There
appears to be only one main type of
blood cell or haemocyte in E. cirrhosa.
The haemocyte matures in the white
body, or haematopoetic organ, of the
animal and is released into the closed
circulatory system (COWDEN AND
Curtis, 1974, 1981). Few cephalopod
defense mechanisms have been elucida-
ted (FORD, 1992). It is known that E. cirr-
hosa haemocytes will phagocytose eryth-
rocytes only in the presence of hae-
molymph in vitro (STUART, 1968). Also in
vivo studies (STUART, 1968; BAYNE, 1973)
using different octopods, demonstrate
that it is mainly fixed phagocytes in
certain organs which clear injected
foreign particles, with haemocytes only
removing a small fraction of them.
This paper investigates whether hae-
mocytes from E. cirrhosa are capable of
phagocytosing dead bacteria in vitro and
whether temperature, time and hae-
molymph concentrations influence pha-
gocytosis. Additional experiments were
also performed to determine whether
bacterial pre-incubation (opsonization)
at different temperatures, times and
haemolymph concentrations affected
phagocytic rates.
MATERIALS AND METHODS
Animals: Octopuses, Eledone cirrhosa
(Lamarck) were obtained from crab pots
around the North Wales coast. The
animals were brought into the aquarium
at the University of Bangor and maintai-
ned in natural seawater at 10-12*C.
After 48 h the animals were weighed,
marked using a panjet and assigned to a
particular tank. Five octopuses per tank
were chosen at random for each set of
experiments.
Haemolymph: Blood was withdrawn
from the branchial blood vessel of each
octopus as described by MALHAM, SECOM-
MALHAM E7 AL.: Phagocytosis by haemocytes from Eledone cirrhosa
BES AND RUNHAM (1995). The blood was
centrifuged at 4*C for 5 min at 800g to
remove the haemocytes. The resulting hae-
molymph from a number of individuals
was pooled and frozen at -20*C. Before
use the haemolymph was thawed and
diluted to a final concentration of 0. 1, 1
or 10% in Sterile Octopus Saline (SOS)
(NaCl, 2.367 g/100 ml; Glucose, 1 g/100
ml; CaCL, 0.116 g/100 ml; KH2PO;, 0.0056
g/100 ml; KCl, 0.1089 g/100 ml;
MgSO4-H20, 0.503 g/100 ml; MgCL, 0.419
g/100 ml).
Haemocytes: From each animal 1 ml
blood samples were withdrawn into 10
ml ofice cold Marine Anticoagulant (NaCl,
2.63 g / 100 ml; Glucose, 1.8 g/100 mi; Tri- *
Sodium Citrate, 0.088 g/ml; Citric Acid,
0.055 g/100 ml) containing ethylene gly-
col-bis(b-aminoethylether) N, N, N”, N', -
tetraacetic acid (EGTA) (0.029 g/100 ml).
After a blood count the haemocytes were
centrifuged at 800 g for 5 min at 4*C, and
washed by resuspension in Octopus Rin-
ger (NaCl, 2.433 g/100 ml; Glucose, 1.4
g/100 ml; EGTA, 0. 015 g/100 ml; KCl,
0.082 g/100 ml; KH2PO),, 0.004 g/100 ml)
containing CaCL (0.0142 g/100 ml), MgCl
(0.0524 g/100 ml) and MgSO: (0.0629
g/100 ml). A final haemocyte count was
made before the haemocytes were washed
for a second time and resuspended in SOS
at 1 x 10 haemocytes/ ml.
Bacteria: Vibrio anguillarum (MT275)
were obtained from the Scottish Office,
Agriculture and Fisheries Department,
Marine Laboratory, Aberdeen. Formali-
zed V. anguillarum were counted, was-
hed twice by resuspension in SOS and
centrifuged at 13000 g for 10 min before
resuspension at 8 x 10% cells/ml in the
required treatments.
Transmission electron microscope
(T.E.M.) preparation: Five hundred yl of
blood was withdrawn from the bran-
chial blood vessel of the octopus and
mixed directly with 500 yl of washed
bacteria. After 2h incubation at 15*C the
blood was centrifuged and the hae-
molymph removed. The pelleted hae-
mocytes were fixed for 24 h at 4*C in
2.5% glutaraldehyde (in 0.1M sodium
cacodylate buffer at pH 7.4). The hae-
mocytes were washed in 0.1M sodium
cacodylate buffer and secondarily fixed
for 2 h at room temperature in 1%
osmium tetroxide before staining en bloc
with 2% uranyl acetate over night. The
pellet was then dehydrated through
ethanol and propylene oxide and
embedded in Spurr resin. Cut sections
(50 nm) were mounted on 100 mesh pio-
loform copper coated grids and stained
with lead citrate. Sections were viewed
in a GEC Corinth 500 at 60 KV.
Phagocytosis assay: Two phagocyto-
sis experiments were performed to
determine the effect of haemolymph
concentration, temperature and time on
haemocyte phagocytosis. Five animals
were used for each experiment. The first
experiment involved incubating hae-
mocytes in 16 well tissue culture slides
(Nunc) for 2 h at different temperatures,
but utilizing one pre-incubation tempe-
rature and time for the bacteria. The
second experiment involved haemocyte
incubations of 30 min only and utilized
different temperatures, times and hae-
molymph concentrations for bacterial
pre-incubations.
For the first experiment 50 ml of the
haemocyte suspension in SOS was put
into each of the 16 well chambers of a
tissue culture slide. Fifty microliters of
either SOS or haemolymph diluted in
SOS was added in duplicate, at half
hour intervals, to selected wells. Bacte-
ria were resuspended in either SOS or
100% haemolymph for 2 h at 15*C and
washed twice before use. Fifty microli- .
ters of either SOS treated or hae-
molymph treated bacteria immediately
followed the haemolymph additions,
again in duplicate. Each well of the
tissue culture slide therefore contained:
50 ml of haemocytes in SOS, 50 ml of
either SOS or haemolymph diluted in
SOS to 0.1, 1 or 10% concentration (final
concentrations of 0.03, 0.33 or 3.33% res-
pectively) and 50 ml of bacteria resus-
pended in SOS after treatment. The
assays were run at four temperatures (5,
10, 15 and 20%C). After 2 h the tissue
Iberus, 15 (2), 1997
culture slides were rinsed in SOS to
remove unattached bacteria and the
slide fixed by immersion in methanol
for 3-5 min.
The second experiment involved the
addition of 50 ml of haemocytes in SOS
at 1 x 10% haemocytes/ml, followed by
50 ml of haemolymph diluted in SOS at
0, 0. 1, 1 or 10% concentrations and 50
ml of the different bacterial preparations
added in duplicate to the tissue culture
slides. The bacteria were washed and
resuspended in haemolymph at concen-
trations of 0, 0.1, 1, 10 or 100%, using
Phosphate Buffered Saline pH 7.0 (PBS,
Gibco, without Ca** and Mg?*) as the
diluent. Bacteria were incubated for 1,
10, 60 or 120 min at 5, 10, 15 or 20*C,
before being washed twice and used in
the assay. The slides were incubated at
temperatures of 5, 10, 15 or 20*C. After
30 min the tissue slides were rinsed with
SOS and the experiment stopped by
immersion of the slide in methanol as
previously.
All slides were then stained in
Giemsa (Sigma), rinsed in Gurr Buffer
(BDH pH 6.8) and air dried before
mounting using DPX.
Statistical analysis: Analysis was
performed by random counting of 200
haemocytes in each well. The haemocy-
tes were counted under oil using a com-
pound binocular microscope at 800x
magnification. All slides were numbe-
red and randomly selected to reduce
observer bias. The number of haemocy-
tes which had phagocytosed bacteria
was expressed as a percentage of the
haemocytes counted in each of the
duplicate wells. The results for each of
the duplicate wells were averaged and
analysis of variance (ANOVA) perfor-
med for the 2 experiments using the 5
replicates. In each case P values of < 0.05
were taken as being significant. The
replicate means were calculated and
Tukey's pairwise comparison was per-
formed for each experiment using the
calculated confidence interval esti-
mation (CI estimation). The CI estimate
allows 2 separate means to be statisti-
cally compared (Rick, 1988).
RESULTS
Phagocytosis of the formalized
Gram negative bacterium, V. anguilla-
rum, by E. cirrhosa haemocytes occurs
both in the presence and absence of hae-
molymph. Collected haemocytes were
incubated with bacteria for 2 h before fi-
xation for T.E.M. Sections clearly indi-
cate that E. cirrhosa haemocytes pha-
gocytose and degrade bacteria (Fig. 1).
From Analysis of variance a number
of significant conclusions were obtai-
ned. Phagocytosis by haemocytes follo-
wing pre-incubation of the bacteria in
100% haemolymph was significantly
greater than phagocytosis following
SOS treatment (F= 594.85, P<0.0001)
(Fig. 2). Highly significant values were
also obtained for the effect of incubation
temperature (F= 155.09, P<0.0001), and
also for the duration of the assay (F=
178.9, P<0.0001). The concentrations of
haemolymph used in the assay medium
did not have a significant effect (E= 0.32,
P= 0.814) indicating that the rate of pha-
gocytosis was statistically equivalent in
assays containing 0, 0.1, 1 or 10% hae-
molymph.
Cross-wise comparisons of the per-
centage of haemocytes phagocytosing
opsonized and unopsonized bacteria,
temperature and assay duration were
also highly significant, (P<0.0001),
whereas cross-wise comparisons invol-
ving haemolymph concentration in the
assay medium, confirmed that the hae-
molymph concentrations, in SOS, did
not affect phagocytic rates. Hae-
molymph concentration was therefore
not considered in further analysis, and
results at each temperature and time
were pooled.
Phagocytosis of bacteria pre-incuba-
ted in SOS was affected by temperature
and time (Fig. 2A). At all temperatures
the number of haemocytes engulfing
bacteria increased over time. At 20*C
there appeared to be fewer haemocytes
phagocvtosing than at 15%C, however
statistically there was no difference
between the means at the 2 temperatu-
res. At 109C there was a rapid increase
in the number of haemocytes phagocy-
MALHAM ET AL.: Phagocytosis by haemocytes from Eledone cirrhosa
IS TAE
Figure 1. Transmission electron micrograph of an Eledone cirrhosa haemocyte (H) having engulfed
a bacterium (Vibrio anguillarum) (B). Scale bar 10 pm.
Figura 1. Microfotografía de un hemocito (H) de Eledone cirrhosa tras haber tragado una bacteria
(Vibrio anguillarum) (B). Escala 10 ym.
tosing bacteria during the first 30 min
followed by a slower rate of increase up
to 2 h. At both 5 and 10*C significantly
lower phagocytic rates were observed
than at 15 and 20*C over the 2 h period.
Fig. 2B shows the mean number of hae-
mocytes phagocytosing bacteria, pre-
incubated in 100% haemolymph, over
time. The haemocyte phagocytic rate
again increased over the 2 h period but
there were far smaller differences
between the incubation temperatures.
The phagocytic rates were again lower
at 5%C than at the other temperatures.
The maximum increase in phagocytosis
at all temperatures occurred within the
first 30 min.
As with the first experiment, the dif-
ferent concentrations of haemolymph in
SOS (at 0, 0.1, 1 or 10%) used in the se-
cond assay were found to have little ef-
fect, so were removed from the pair wise
comparison with no appreciable percen-
tage error increase (0.027%) and the re-
sults pooled at each pre-incubation tem-
perature and time. To simplify the pair-
wise comparison the assay temperature
was not included as a main factor, but
was added as an interacting factor. The
results from the simplified model show
that there were large statistically signifi-
cant differences (F= 1083.35, P<0.0001)
between the haemolymph pre-incuba-
tion concentrations. The pre-incubation
temperatures (F= 61.32, P<0.0001), and
the pre-incubation times (F= 725.24,
P<0.0001) were similarly significantly
different. Pre-incubation of the bacteria
in PBS alone at different temperatures
and time periods caused no significant
difference in the phagocytic rate (Fig. 3).
Bacteria pre-incubated in 0.1% hae-
molymph in PBS at all pre-incubation
temperatures and times were phagocyto-
sed at a significantly lower rate than in
PBS alone. Pre-incubation of the bacteria
Iberus, 15 (2), 1997
[o]
o
[>]
o
=
o
2
8 60
ES
o
S 50
[5]
£=,
a
E 40
p0)
2
E 30
——5
EY) —— 10
A 15
10 —= 20
0
0 0,5 1 1,5 2
Time (Hours)
90
80
70
D
3 60
E
o
=)
3 50
-
(
E 40
(5
2
(0)
a 30
——5
20 —==— 10
15
10
—= 20
0
0 0,5 1 1,5 2
Time (Hours)
Figure 2. A: phagocytosis of non-opsonized formalized Vibrio anguillarum at 4 temperatures over a
2h haemocyte incubation period. The bacteria were pre-treated with SOS for 2h at 15*C. Tukeys
CI estimate= 9.52. B: phagocytosis of opsonized formalized Vibrio anguillarum at 4 temperatures
over a 2h haemocyte incubation period. The bacteria were pre-treated with 100% haemolymph for
2 h at 15”C. Tukeys CI estimate = 9.52.
Figura 2. A: fagocitosis de bacterias formalizadas Vibrio anguillarum ro opsonizadas a cuantro tem-
peraturas sobre un periodo de incubación de'hemocitos de dos horas. Las bacterias fueron pretratadas con
SOS durante 2 horas a 15*C. Estimación CI de Tukeys= 9,52. B: fagocitosis de Vibrio anguillarum for-
malizado y opsonizado a cuatro temperaturas sobre un periodo de incubación de hemocitos de 2 horas.
Las bacterias fueron pretratadas con hemolinfa al 100% durante 2 horas a 15*C. Estimación del inter-
valo de confianza de Tukeys= 9,52.
in 1% haemolymph showed initially the valent to the values determined in PBS
same lowered phagocytic rate as for alone. However, at 10 min following pre-
0.1% pre-incubation. However, pre-incu- incubation at 15 and 20%C more hae-
bation of the bacteria in 1% haemolymph mocytes were observed phagocytosing
for 10 min at 20C caused an enhanced bacteria than at 5 or 10*C, or at 1 min at
phagocytic rate which also occurred at all temperatures. The enhanced pha-
all temperatures at 60 and 120 min. Bac- gocytic rate observed using 10% hae-
teria pre-incubated in 10% haemolymph molymph is statistically equivalent to
for 1 min at 5, 10, 15 and 20*C and for 10 the enhanced rate observed at 1% con-
min at 5 and 10*C were statistically equi- centration.
MALHAM ET AL.: Phagocytosis by haemocytes from Eledone cirrhosa
AE
Mb |
AN pl il
|
] | 0.1% Haemolymph
19)
(e)
MI pl
cO
aL
39
3315
25 10
”n o
ES 2
(e)
IN)
AN 40
AA
Si N M NN
IN]
! 00% | 100% Haemolymph | ECAARAN 20
i ] a
Cross Tabulated Mean
Percent Phagocytosis
10% Haemolymph
Pre-Incubation Time
Figure 3. Phagocytosis of formalized Vibrio anguillarum. The haemocytes were incubated at diffe-
rent temperatures for 30 min only. The bacteria were pre-incubated in 0% haemolymph (.e., PBS
only), 0.1% haemolymph, 1% haemolymph, 10% haemolymph and 100% haemolymph concen-
trations. The bacterial pre-incubation temperatures were 5, 10, 15 and 20*C and the pre-incuba-
tion times were 1, 10, 60 and 120 min. Tukeys CI estimate = 3.1.
Figura 3. Fagocitosis de Vibrio anguillarum formalizado. Los hemocitos fueron incubados a diferentes
temperaturas durante sólo 30 minutos. Las bacterias fueron preincubadas en concentraciones de hemo-
linfa del 0% (1.e., sólo PBS), 0,1%, 1%, 10% y 100%. Las temperaturas de preincubación de las bac-
terias fueron 5, 10, 15 y 20*C y los tiempos de preincubación de 1, 10, 60 y 120 minutos. Estimación
del intervalo de confianza de Tukeys= 3,1.
DISCUSSION
The results presented here demons-
trate that E. cirrhosa haemocytes are
capable of recognizing and ingesting the
formalized bacterium Vibrio anguillarum.
V. anguillarum is a Gram negative com-
mensal marine opportunist and was
chosen as the experimental bacterium
because it has been isolated from, and
used in previous studies on wound
healing in E. cirrhosa (BULLOCK, PoL-
GLASE AND PHILLIPS, 1987). This bacte-
rium has also been implicated in
causing cephalopod infections when the
animals are held in captivity and is a
common contributory cause of death at
high aquarium temperatures (LEIBOVITZ,
MEYERS AND ELSTON, 1977; HANLON,
FORSYTHE, COOPER, DINUZZO, FOLSE
AND KELLY, 1984; FORD, ALEXANDER,
COOPER AND HANLON, 1986; HANLON
AND FORSYTHE, 1990).
STUART (1968) found that E. cirrhosa
haemocytes required haemolymph for
in vitro phagocytosis of erythrocytes.
The data presented in this paper
demonstrate that the presence of hae-
molymph is not necessary for ingestion
of bacteria. However, this bacterium is
smaller with far less surface area than
an erythrocyte and as such maybe more
easily phagocytosed. It was found by
TYSON AND JENKIN (1974) that haemocy-
tes from a crayfish (Parachaeraps bicarina-
tus) phagocytosed bacteria in the
absence of haemolymph, but erythrocy-
tes were not phagocytosed unless they
were pre-treated with haemolymph
(McKay, JENKIN AND ROWLEY, 1969).
Further JENKIN (1976), suggested that
the concentration of certain recognition
Iberus, 15 (2), 1997
molecules on the crayfish haemocyte
surface was not sufficient to bind eryth-
rocytes, but was sufficient to bind bacte-
ria, and a similar explanation could
apply to E. cirrhosa haemocytes. Another
possibility was demonstrated by BAYNE,
MOORE, CAREFOOT AND THOMPSON,
(1979), who showed that haemocytes
from Mytilus californianus had a greater
affinity for yeast cells than human
erythrocytes, and suggested that pha-
gocytosis of foreign particles was selec-
tive. Results from other molluscan
species also demonstrate that surface
antigenicity of the respective test parti-
cles has an effect on phagocytosis by
haemocytes (TRIPP AND KENT, 1967;
ANDERSON AND GOOD, 1976).
Tripp (1966), using the bivalve M.
mercenaria, concluded that haemolymph
pre-treatment of erythrocytes caused
increased phagocytosis. The same expe-
riment showed however that if untrea-
ted erythrocytes were incubated with
haemocytes for longer periods of time,
the same levels of phagocytosis were
achieved. With E. cirrhosa haemocytes at
15 and 20*—C the phagocytic rate is
higher at 30 min for 100% haemolymph
treated bacteria compared to SOS
treated bacteria, but after 2 h there was
no difference in phagocytic rates
between the 2 treatments. The data pre-
sented here also indicate that a higher
percentage of haemocytes phagocytosed
haemolymph treated bacteria at 5 and
10*C over 2 h than SOS treated bacteria.
Tripp (1992) also showed that the hae-
mocytes of M. mercenaria were avidly
phagocytic in the absence of hae-
molymph, however at low temperatu-
res, in the presence of haemolymph
there was increased phagocytosis of
yeast. ABDUL-SALAM AND MICHELSON
(1980), working with Biomphalaria gla-
brata, also demonstrated that tempera-
ture has an effect on haemocyte pha-
gocytosis. A phagocytic activity peak
was evident at 30C with inhibition of
phagocytosis below 15%C. Low tempera-
ture inhibition (4%C) of phagocytic rates
has also been demonstrated for the hae-
mocytes from the hard clam M. mercena-
ria with maximum rates occurring at 22
and 37%C (FOLEY AND CHENG, 1975).
With SOS treated bacteria, E. cirrhosa
haemocytes demonstrate an activity
peak with about 70% of haemocytes
phagocytosing after 2 h at 15 and 20*C.
At 5*C only 14% of haemocytes contai-
ned bacteria, whereas if the bacteria
were initially pre-incubated in hae-
molymph before addition to the assay
the phagocytic rate at 5%C increased to
around 47%.
The results presented above indicate
that the amount of haemolymph present
in the bacterial pre-incubation medium
has a dramatic effect on the number of
haemocytes subsequently engulfing
these bacteria within a 30 min period.
Haemolymph concentrations of 0.1 and
1% in PBS, resulted in lower numbers of
haemocytes phagocytosing compared to
PBS alone. This inhibition changes to
enhanced phagocytosis, at all higher
pre-incubation concentrations. Further
comparisons demonstrate that the tem-
perature of the pre-incubation medium
and particularly the duration of incuba-
tion are also important factors. The ob-
served trends indicate that increasing
the pre-incubation temperature decrea-
ses the pre-incubation time needed for
enhanced phagocytosis to occur. FRYER
ET AL. (1989), working on B. glabrata, si-
milarly demonstrated that phagocytosis
was inhibited after short pre-incubation
periods, whereas longer pre-incubation
periods of 1 h resulted in enhanced le-
vels. It was suggested by the authors
that initial non-specific adsorption of a
variety of plasma components (opso-
nins) occurred onto, in their case, the ye-
ast surface. Longer exposure to the
plasma allowed more of the opsonins to
bind to the yeast surface. The results
from the data presented here for the dif-
ferent pre-incubation haemolymph con-
centrations and durations of exposure
seem to support this hypothesis. In ad-
dition it is possible that if the tempera-
ture is increased further more of the
available plasma components would ad-
here onto the surface of the bacterium.
When haemocytes from E. cirrhosa
were resuspended in SOS, as stated
above, there is phagocytosis of the for-
MALHAM E7 AL.: Phagocytosis by haemocytes from Eledone cirrhosa
malized bacterium V. anguillarum. In
buffers containing either EDTA or
EGTA, no phagocytosis of the same bac-
terium was evident (Malham, unpublis-
hed data). SOS contains Ca?”* and Mg?*
and it appears likely that the presence of
these divalent ions has an effect on pha-
gocytosis. FRYER AND ADEMA (1993) sho-
wed that manipulated haemocytes from
B. glabrata retained some phagocytic ac-
tivity, but that addition of excess Ca?*
and Mg?* to the haemocytes before the
addition of the target particles enhanced
their phagocytic rates. E. cirrhosa hae-
mocytes were initially drawn into an an-
ticoagulant buffer containing EGTA and
washed in Octopus Ringer, also contai-
ning EGTA, before resuspension in
EGTA-free-SOS, all of which could alter
haemocyte behaviour and affect pha-
gocytosis. Corbicula fluminea haemocytes
(TUAN ET AL., 1987) also required extra-
cellular Ca?* or Mg?* for both opsonin-
dependent and independent phagocyto-
sis. The authors suggest that the opso-
nin possibly exists as a divalent
cation-macromolecular complex due to
the loss of enhanced phagocytosis after
dialysis against EDTA and EGTA. Furt-
her, Mytilus edulis haemocytes phagocy-
tosed yeast cells with high efficiency
when calcium ions were present in the
suspension medium, and gave similar
results when haemolymph alone was
added, but almost no phagocytosis was
recorded with haemocytes in buffered
saline (RENWRANTZ AND STAHMER,
1983). When V. anguillarum was resus-
pended in SOS, E. cirrhosa haemolymph
diluted in SOS, or in PBS alone, there
was no change in the haemocyte pha-
gocytic rate. However, when V. anguilla-
rum was resuspended in haemolymph
diluted in PBS (2 1% haemolymph con-
centration) or in haemolymph alone, en-
hanced phagocytosis was observed.
REFERENCES
ABDUL-SALAM, J. M. AND MICHELSON, E. H.,
1980. Biomphalaria glabrata amoebocytes: as-
say of factors influencing in vitro phagocyto-
sis. Journal of Invertebrate Pathology, 36: 52-59.
Haemolymph lectins have been
shown to act as opsonins for haemocyte
phagocytosis (e. g., RENWRANTZ, 1983;
RENWRANTZ 1986; SMINIA AND VAN DER
KNAPr, 1986, VasTA, 1991). Aggluti-
nation results from Octopus maya (Fis-
HER AND DINUZZO, 1991) further sup-
port the role of lectins in recognition of
non-self. Studies using the molluscs My-
tilus edulis (RENWRANTZ AND STAHMER,
1983) and Lymnaea stagnalis (VAN DER
KnNAPr, 1982) have demonstrated that
molecules antigenically related to hae-
molymph lectins have been found in the
cytoplasm and on the surface of hae-
mocytes. Lectins, in particular C-type,
are found in a number of invertebrates
including Octopus vulgaris. These lectins
are Ca?* dependent, and these ions are
required for ligand binding of the lectin
(RÓGENER, RENWRANTZ AND UHLEN-
BRUCK, 1986). STUART (1968) suggested a
possible link between an opsonic factor
and haemocyanin in E. cirrhosa. Also a
lectin identified from the haemolymph
of O. vulgaris has been shown to be simi-
lar to a haemocyanin subunit (ROGENER,
RENWRANTZ AND UHLENBRUCK, 1985).
The nature of the soluble factor causing
enhanced phagocytosis in E. cirrhosa has
not been studied, however the factor(s)
must be present at a high concentration,
since it is effective at a haemolymph
concentration of 1% at 15 and 20*C.
In conclusion, in vitro phagocytosis
of Vibrio anguillarum by haemocytes
from E. cirrhosa is aided by a component
of haemolymph and is affected by tem-
perature, duration of the assay and pre-
incubation of the bacterium with diffe-
rent haemolymph concentrations. Fur-
ther studies to elucidate whether E. cirr-
hosa haemocytes are capable of pha-
gocytosing and digesting live microor-
ganisms in vitro and in vivo are being
pursued.
ANDERSON, R. S. AND GOOD, R. A,, 1976. Op-
sonic involvement in phagocytosis by mo-
llusk hemocytes. Journal of Invertebrate Pat-
hology, 27: 57-64.
Iberus, 15 (2), 1997
BAYNE, C. J., 1973. Internal defense mecha-
nisms of Octopus dofleini. Malacological Re-
view, 6: 13-17.
BAYNE, C.J., 1983. Molluscan Immunobiology.
In Saleuddin, A. S. M. and Wilbur, K. M.
(Eds.): The Mollusca. Vol. 5. Physiology, Part
2. Academic Press, London: 407-486.
BAYNE, C. J., MOORE, M. N., CAREFOOT, T. H.
AND THOMPSON, R. J., 1979. Hemolymph
functions in Mytilus californianus: The cyto-
chemistry of hemocytes and their responses
to foreign implants and hemolymph factors
in phagocytosis. Journal of Invertebrate Patho-
logy, 34: 1-20.
BOYLE, P. R., 1983. Eledone cirrhosa. In Boyle, P.
R. (Ed.): Cephalopod Life Cycles. Vol. 1, Aca-
demic Press, London: 365-386.
BULLOCK, A. M., POLGLASE, J. L. AND PHILLIPS,
S. E., 1987. The wound healing and hae-
mocyte response in the skin of the Lesser
Octopus E. cirrhosa (Mollusca: Cephalopoda)
in the presence of Vibrio tubiashii. Journal of
Zoology, 211: 373-385.
COWDEN, R. R. AND CURTIS, S. K., 1974. The oc-
topus white body: An ultrastructural sur-
vey. In Cooper, E. L. (Ed.): Contemporary To-
pics in Immunobiology. Invertebrate Immunology.
Vol. 4. Plenum Press, New York: 87-90.
COWDEN, R. R., AND CURTIS, S. K., 1981. Cep-
halopods. In Ratcliffe, N. A. and Rowley, A.
F. (Eds.): Invertebrate blood cells. Vol. 1. Aca-
demic Press, London: 301-323.
FISHER, W. S. AND DINUZZO, A. R., 1991. Ag-
glutination of bacteria and erythrocytes by se-
rum from six species of marine molluscs.
Journal of Invertebrate Pathology, 57: 380-394.
FoLEY, D. A. AND CHENG, T. C., 1975. A quan-
titative study of phagocytosis by hemolymph
cells of the pelecypods Crassostrea virginica
and Mercenaria mercenaria. Journal of Inverte-
brate Pathology, 25: 189-197.
FORD, L. A., 1992. Host defense mechanisms of
cephalopods. Annual Review of Fish Diseases,
2: 25-41.
FORD, L. A., ALEXANDER, S. K., COOPER, K. M.
AND HANLON, R. T., 1986. Bacterial popula-
tions of normal and ulcerated mantle tissue
of the squid Lolliguncula brevis. Journal of In-
vertebrate Pathology, 48: 13-26.
FRYER, S. E. AND BAYNE, C. J., 1989. Opsoniza-
tion of yeast by the plasma of Biomphalaria gla-
brata (Gastropoda): a strain-specific, time-
dependent process. Parasite Immunology, 11:
269-278.
FRYER, S. E., HULL, C. J. AND BAYNE, C. J., 1989.
Phagocytosis of yeast by Biomphalaria gla-
brata: carbohydrate specificity of hemocyte re-
ceptors and a plasma opsonin. Developmen-
tal and Comparative Immunology;, 13: 9-16.
10
FRYER, S. E. AND ADEMA, C. M., 1993. Manipu-
lation of Biomphalaria glabrata (Say) (Gastro-
poda: Planorbidae) haemocytes in vitro. Jour-
nal of Molluscan Studies, 59: 371-379.
HANLON, R. T., FORSYTHE, J. W., COOPER, K.
M., DINUZZO, A. R., FOLSE D. S. AND KELLY,
M. T., 1984. Fatal penetrating skin ulcers in
laboratory-reared octopuses. Journal of In-
vertebrate Pathology, 44: 57-83.
HANLON, R. T. AND FORSYTHE, J. W., 1990. Di-
seases caused by microorganisms. In Kinne,
O. (Ed.): Diseases of Marine Animals. Vol. 3. Bio-
logische Anstalt Helgoland, Hamburg; 23-46.
JENKIN, C. R., 1976. Factors involved in the re-
cognition of foreign material by phagocytic
cells from invertebrates. In Marchalonis, J. J.
(Ed.): Comparative Immunology. Blackwell
Scientific Publications, Oxford: 80-97.
LEIBOVITZ, L., MEYERS T. R. AND ELSTON, R.,
1977. Necrotic exfoliative dermatitis of cap-
tive squid (Loligo pealei). Journal of Inverte-
brate Pathology, 30: 369-376.
MALHAM, S. K., SECOMBES C. J]. AND RUNHAM,
N. W., 1995. Eledone cirrhosa haemocytes: iso-
lation and culture. In Stolen, J. S., Fletcher, T.
C., Smith, S. A., Zelikoff, J. T., Kaattari, S. L.,
Anderson, R. S., Sóoderháll, K. and Weeks-Per-
kins, B. A. (Eds.): Techniques in Fish Immuno-
logy. Vol 4, SOS Publications, Fair Haven,
New Jersey, 4: 233-240.
McKay, D., JENKIN C. R. AND ROWLEY, D., 1969.
Immunity in the invertebrates. 1. Studies on
the naturally occurring haemagglutinins in
the fluid from invertebrates. Australian Jour-
nal of Experimental Biology and Medical Science,
47: 125-134.
MILLAR, D. A. AND RATCLIFEE, N. A., 1994. In-
vertebrates. In Turner, R. J. (Ed.): Immunology:
a Comparative Approach. John Wiley and Sons,
London: 29-68.
PROwSE, R. H. AND Tarr, N. N., 1969. In vitro
- phagocytosis by amoebocytes from the hae-
molymph of Helix aspersa (Muller). 1. Evi-
dence for opsonizing factors (s) in serum.
Immunology, 17: 437-443.
RATCLIFFE, N. A., ROWLEY, A. F., FITZGERALD, S.
W. AND RHODES, C. P., 1985. Invertebrate im-
munity: basic concepts and recent advances.
International Review of Cytology, 97: 184-350.
RENWRANTZ, L., 1983. Involvement of aggluti-
nins (lectins) in invertebrate defense reac-
tions: the immuno-biological importance of
carbohydrate-specific binding molecules. De-
velopmental and Comparative Immunology, 7:
603-608.
RENWRANTZ, L., 1986. Lectins in molluscs and
arthropods: their occurrence, origin and ro-
les in inmmunity. Zoological Society of London,
56: 81-93.
MALHAM E7 AL.: Phagocytosis by haemocytes from Eledone cirrhosa
RENWRANTZ, L. AND STAHMER, A., 1983. Op-
sonizing properties of an isolated hemolymph
agglutinin and demonstration of lectin-like
recognition molecules at the surface of he-
mocytes from Mytilus edulis. Journal of Com-
parative Physiology, 149: 535-546.
RICE, J. A., 1988. Mathematical Statistics and Data
Analysis. Wadsworth and Brook, California,
595 pp-
RÓGENER, W., RENWRANTZ, L. AND UHLEN-
BRUCK, G., 1985. Isolation and charaterization
of a lectin from the hemolymph of the cep-
halopod Octopus vulgaris (Lam.) inhibited by
a-D-lactose and N-acetyl-lactosamine. Deve-
lopmental and Comparative Immunology, 9: 605-
616.
RÓGENER, W., RENWRANTZ, L. AND UHLEN-
BRUCK, G., 1986. Comparison of a hemolymph
lectin from Octopus vulgaris with hemocya-
nin. Comparative Biochemistry and Physiology,
85B (1): 119-123.
SMINIA, T. AND VAN DER KNAPP, W. P. W., 1986.
Immunorecognition in invertebrates with
special reference to molluscs. In Brehélin, M.
(Ed.): Immunity in Invertebrates. Springer-Ver-
lag, Berlin Heidelberg: 113-124.
STUART, A. E., 1968. The reticulo-endothelial
apparatus of the lesser octopus Eledone cirr-
hosa. Journal of Pathology and Bacteriology, 96:
401-412.
Tripp, M. R., 1966. Hemagglutinin in the blood
of the oyster Crassostrea virginica. Journal of In-
vertebrate Pathology, 8: 478-484.
Tripp, M. R., 1992. Phagocytosis by haemocy-
tes of the hard clam Mercenaria mercenaria.
Journal of Invertebrate Pathology, 59: 222-227.
Tripp, M. R. AND KENT, V. E., 1967. Studies on
the oyster cellular immunity. In Vitro, 3: 129-
180:
TUAN, T. L. AND YOSHINO, T. P., 1987. Role of
divalent cations in plasma opsonin-depen-
dent and -independent erythrophagocyto-
sis by hemocytes of the Asian clam Corbi-
cula fluminea. Journal of Invertebrate Pathology,
50: 310-319
TYsON, C. J. AND JENKIN, C. R., 1974. Phagocy-
tosis of bacteria in vitro by haemocytes from
the crayfish (Parachaeraps bicarinatus). Aus-
tralian Journal of Experimental Biology and Me-
dical Science, 52: 915-923.
VAN DER KNAPpP, W. P. W., 1982. The internal
defence system of the pond snail Lymnaea
stagnalis. PhD Thesis, Vrije Universiteit te
Amsterdam, The Netherlands, 139 pp.
VASTA, G. R., 1991. The multiple biological ro-
les of invertebrate lectins: their participation
in nonself recognition mechanisms. In: Warr,
G. W. and Cohen, N. (Eds.): Phylogenesis of Im-
mune Functions. CRC Press Inc., New York:
74-102.
WELLs, M. J., 1978. Octopus: Physiology and be-
haviour ofan advanced invertebrate. Chapman
and Hall, London, 478 pp.
WELLs, M. J., 1983. Circulation in Cephalopods.
In Saleuddin, A. S. M. and Wilbur, K. M.
(Eds.): The Mollusca. Vol 5. Academic Press,
London: 239-290.
WELLs, M. J]., AND WELLs, J. 1993. Fluid uptake
and the maintenance of blood volume in Oc-
topus. Journal of Experimental Biology, 175: 211-
218.
IM
EN A 04 0% b
e SN Wi ida JA
LZ » AAA Eo k
y de MA Y 0 4 bas AD El ve e
FELÓ ñ á "Elo | $ ys +
E ma EN E des AN mu 1 AO |
e A e EN O O
) a
A Mo
pue
a AN PS Y
ES O
A ol Ada
Un «roll mel me vos
AN ASA TO, li 108 8
lr Cort), o
peros Mk Mireia
p A poseo psd pai
e dE
ud hd pi99 A y
Hot dit
UN DS Ae ]
O Sociedad Española de Malacología ——__—_—_—_—_—_——— Iberus, 15 (2): 13-24, 1997
New data on the morphology and the distribution of Bul;-
mulus corneus Sowerby, 1833 (Gastropoda: Pulmonata:
Orthalicidae) in Nicaragua
Nuevos datos sobre la morfología y la distribución de Bulimulus cor-
neus Sowerby, 1833 (Gastropoda: Pulmonata: Orthalicidae) en Nica-
ragua
Antonio Mijail PÉREZ*! and Adolfo LÓPEZ*
Recibido el 8-[-1996. Aceptado el 22-IV-1996
ABSTRACT
Aspects related to the morphology and distribution of Bulimulus corneus Sowerby, 1833 in
Nicaragua are presented. Regarding morphology, a complete redescription of the shell
and the first description of the genitalia are included. The number of records have been
largelly increased; from three localities mentioned in the literature to 53. The previous figu-
res have allowed us to draw a preliminary distribution map of the species in Nicaragua,
and discuss the presence of the closely related species Bulimulus unicolor Sowerby, 1833
in the country.
RESUMEN
Se presentan aspectos relacionados con la morfología y la distribución de Bulimulus cor-
neus Sowerby, 1833 en Nicaragua. En relación con la morfología, se presenta una redes-
cripción de la concha y la primera descripción del aparato genital. El número de registros
de la especie en el país ha sido notablemente incrementado de tres a 53 localidades. Las
cifras anteriores nos han permitido confeccionar un mapa preliminar de distribución para
la especie en Nicaragua, así como discutir la presencia de Bulimulus unicolor Sowerby,
1833, una especie muy relacionada, en el país.
KEY WORDS: Bulimulus corneus, Orthalicidae, morphology, distribution, Nicaragua.
PALABRAS CLAVE: Bulimulus corneus, Orthalicidae, morfología, distribución, Nicaragua.
INTRODUCTION
According to BREURE (1979), the distribution of Bulimulus corneus
genus Bulimulus Leach, 1814 contains 88 Sowerby, 1833 as from SW Mexico to the
species, distributed over the Antilles, central zone of Costa Rica, there being
Central America and northern South apparently no records outside of these
America. MARTENS (1890-1901) gave the limits. In Nicaragua, previous reports
* Universidad Centroamericana, Apartado A-90, Managua, Nicaragua.
' Dirección postal temporal: Universidad del País Vasco, Facultad de Ciencias, Departamento de Biología
Animal y Genética, Laboratorio de Zoología, Apartado 644, 48080 Bilbao, España.
13
Iberus, 15 (2), 1997
IE
DMAX
Figure 1. Bulimulus corneus. Shell measurements.
Abbreviations. LONG: length; DMAX: maximum diameter; LEC: height of the body whorl;
DME: minimum diameter; LAB: aperture length; AAB: aperture width; LEP: spire length; AEP:
spire width.
Figura 1. Bulimulus corneus. Medidas de la concha.
Abreviaturas. LONG: longitud; DMAX: diámetro máximo; LEC: altura de la vuelta principal;
DME: diámetro mínimo; LAB: altura de la abertura; AAB: anchura de la abertura; LEP: altura de
la espira; AEP: anchura de la espira.
have been from Realejo (Chinandega),
San Juan Castillo (sic), El Toro rapids,
RAAN (Autonomous Region of the
North Atlantic) (MARTENS, 1890-1901)
and Bluefields (FLUCK, 1900).
Martens stated that this species is
closely related to Bulimulus unicolor So-
werby, 1833, and this was confirmed by
PiLSBRY (1897). None of the authors re-
cognized TATE's (1870) reports of B. uni-
color from Granada, Mesapa and San Ni-
colas, on the Pacific slope of Nicaragua.
The internal and external morpho-
logy of B. corneus, shell measurements
and data on distribution were recently
presented for the first time in an abstrac-
ted version (PÉREZ AND LóÓPEz, 1995),
and are here given in detail. New distri-
bution data gathered in the last few
months are also presented, together
with a commentary on the presence of
B. unicolor in Nicaragua.
14
MATERIALS AND METHODS
All specimens were hand-collected and
live specimens were relaxed in menthol
and fixed in 70% alcohol. All individuals
considered for the study were fully- grown
adult specimens. All localities reported are
additions to those previously mentioned
in the literature. The list of localities is gi-
ven in Table 1. The distribution map was
made using the UTM cartographic met-
hod with a grid size of 100 Km?. When
more than one locality occur on the same
UTM 10 Km? quadrat, only the one that
appears first in the listis mapped. The ab-
breviations w. l. n. and Bib. means wit-
hout lot number and bibliographic loca-
lity respectively.
The variables measured in the shells
are (Fig. 1): 1. length (LONG) 2. maximum
diameter (DMAX,) 3. height of body whorl
(LEC), 4. minimum diameter (DME), 5.
PÉREZ AND LÓPEZ: Morphology and distribution of Bulimulus corneus in Nicaragua
aperture length (LAB), 6. aperture width
(AAB), 7. spire length (LEP), 8. spire width
(AEP). All measurements were made in
adult specimens.
We calculated various descriptive
statistics for the measured variables, in or-
der to give a morphological description
of the samples. We also used a Principal
Component Analysis (PCA) to explore the
variability among populations.
RESULTS AND DISCUSSION
Description: Shell (Fig. 2): Shell thin,
spirally striate, corneus to brown, so-
mewhat translucent, showing through the
dark bands that stipple the mantle. Pro-
file bulimoid-conic. Apex obtuse; proto-
conch typically bulimoid with sculpture
of punctures in an irregular decussate pat-
tern; whorls 5.5 to 6. Aperture ovate, mar-
gin thin, sharp, umbilicus narrow. Mea-
surements taken on the shell are presen-
ted in Tables I and II.
Genitalia (Fig. 3): Penis with wide she-
ath, dilated in its central part, and reaching
to more than one half of the phallus. Epip-
hallus approximately half as wide as pe-
nis. Flagellum thinner, approximately one
half the phallus length. Sperm conduct
thickened at mid-center, ending at globose
spermatheca distally. Vagina more or less
fusiform, slightly longer than the penis,
and ?/3 the width.
We have found that shell dimensions
are quite variable within (Table I) and bet-
ween populations (Table II), as also men-
tioned by PILSBRY (1897). For this reason,
and because of the small total sample size
(n= 44) studied from all populations (11)
we have not considered the taxonomical
implications of the variability. However,
it should be mentioned that shell length
(LONG) and height of body whorl (LEC)
display the highest variances of all varia-
bles considered (Table II). Shell length is
always one of the variables on which des-
criptions are based. We recommend cau-
tion in the use of either variables for a ta-
xonomic characterization of the species.
It must be pointed out that THOMPSON
(1967) invalidated various subspecies of
the closely-related Bulimulus unicolor So-
werby, 1833, believing them to be varia-
tions related to climatic conditions. In this
paper he considered shell length (LONG),
maximum diameter (DMAX) and two ot-
her variables.
In the PCA made from conchological
variables it is possible to see the marked
scatter of the specimens (Fig. 4). Within
the plot, there is a segregation of six indi-
viduals from the populations of El Gua-
yabo, Granada (1), Xiloá, Managua (2),
and Las Lajas, Rivas (3). It is interesting
to notice that the other specimen from Ri-
vas is located within the cloud of points.
The only specimen considered from the
Nicaraguan Atlantic slope (6), can be ob-
served between the cloud of points and
the six individuals previously mentioned.
Another three specimens from Ocotal
(9) segregate towards the lower right cor-
ner of the scatterplot. These specimens, as
the previous six, have conchological fea-
tures very much like the ones from other
populations (see Table 1), although the
ones from Ocotal have larger sizes.
In Table III, it can be seen the contri-
bution made by each principal compo-
nent to total variance. Components I
(70.77%) and Il (18.15%), comprise the
major quantity of total variance (88.92%).
The absence of negative signs (Table IV)
among the eigen values obtained for
component l, also with the larger contri-
bution (70.77%), allow us to presume
that it is related to size and Il is related to
shape. Thus, differences among popula-
tions would be apparently due to size
rather than shape; and it is known that
size is usually influenced by ecological
factors, and consequently is highly corre-
lated with local environmental condi-
tions (BEROVIDES, 1988).
In their genitalia (see Figure 3), the
individuals from the populations of
UCA Campus (Managua Department)
and Ocotal (Nueva Segovias Depart-
ment) share the same external morpho-
logy and show only small differences in
size of the structures. However, a more
detailed anatomical analysis, including
an analysis of the internal anatomy of
the genital ducts (v. g. penis), of the
Ocotal population is required when
fresh material is available.
Iberus, 15 (2), 1997
16
PÉREZ AND LÓPEZ: Morphology and distribution of Bulimulus corneus in Nicaragua
Figure 3. Bulimulus corneus. Genitalia. A: specimen from Ocotal; B: specimen from Campus UCA;
pr: prostate; p: penis; f: flagellum; a: atrio; (sp: spermatheca)= bc: bursa copulatrix; s. ov: spermo-
viduct; sp. d: spermathecal duct; ep: epiphallus; v: vagina. Scale bars 1 mm.
Figura 3. Bulimulus corneus. Aparato genital. A: ejemplar de Ocotal; B: ejemplar del Campus UCA;
pr: próstata; p: pene; f: flagelo; a: atrio; (sp: espermateca)= bc: bolsa copulatriz; s. 0v: espermoviducto; sp.
d: conducto espermático; ep: epifalo; v: vagina. Escalas 1 mm.
Distribution: Fifty three localities
for B. corneus have been added to those
previous recorded. They distributed
over 12 Departments in the three natural
regions that comprise the country (Fig.
5, Table V).
CONCLUSIONS
The distribution map gives a clear
idea of B. corneus distribution in Nicara-
gua. As pointed out by JACOBSON (1968),
a fairly continuos distribution can be
seen among the samples, suggesting that
absence in other areas is due to lack of
sampling, and that B. corneus is wides-
pread in the country.
B. corneus has a very wide ecological
tolerance, ocurring from low altitude to
more than 2000 m. The species inhabits a
remarkable number of different microha-
bitats, including soil with herbs, soil
with litter, tree trunks, logs, stones, walls
of ruined houses, etc. The wide geograp-
hical distribution of the species, can pro-
(Left page). Figure 2. Bulimulus corneus. Shell morphology. A: Las Canoas (length 12.8 mm, dia-
meter 7.0 mm); B: Campus UCA (length 10.6 mm, diameter 6.7 mm), C: Ocotal (length 19.9
mm, diameter 11.35 mm).
(Página izquierda). Figura 2. Bulimulus corneus. Morfología de la concha. A: Las Canoas (1 longitud
12,8 mm, diámetro 7,0 mm); B: Campus UCA (longitud 10,6 mm, diámetro 6,7 mm); C: Ocotal
(longitud 19,9 mm, diámetro 11,35 mm).
17
Iberus, 15 (2), 1997
Table I. Variables measured considering each sample separately (X= average, S= standard deviation).
Abbreviations as in Figure 1.
Tabla I. Variables medidas considerando los ejemplares de cada muestra independientemente (X= media,
S= desviación standard). Abreviaturas como en la Figura 1.
LOCALITIES VARIABLES
LONG DMAX LEC DME LAB AAB LEP AEP
Xiloá [n= 6)
XK 10.93 6.70 A 6.13 SS] 3.87 4.38 4.85
Mín 10.10 5.80 DES) 5.30 Doll 2.95 2.9 ARS
Máx 11.70 O 8.6 6.5 6.0 4.7 5.8 5.4
S 0.62 0.61 137 0.46 0.33 0.63 1.29 0.35
Apoyo (n= 10)
X 11.62 8.19 8.82 6.31 DL EZ 3.6 4.49
Mín 10.0 6.3 7.8 DS) 4.6 2.4 2.4 37
Máx 13.5 8.0 10.0 YES 6.0 3.9 4.75 DS
S 1.04 052 0.76 0.48 0.42 0.42 0.64 0.45
Asososca (n= 4)
X 1237 a 9.27 7.0 DS 3.6 3.82 4.9
Mín 12.0 6.5 8.4 DA 45 ZE 399 4.3
Máx 13% 7.8 9.6 7.1 7 3.8 4.1 5.0
S 0.59 0.17 0.42 0.1 0.35 0.21 0.41 0.16
Las Canoas [n= 5)
XK 18202 SIS 9.46 6.6 9 3.62 4.33 AED
Mín 1285 6.8 9.0 6.3 AZ SZ 4.2 4.7
Máx 13.8 DL, 10.0 EZ 5.8 4.3 4.6 DS
S 052 057 0.42 0.35 0.22 0.42 0.17 0.26
El Guayabo (n= 5)
XK 10.65 DS DIS 5.95 IDO 4.85 IS 5.05
Mín 10.1 6.0 DS 5.8 Del 4.8 4.6 4.7
Máx 1912 6.3 6.0 6.1 6.0 4.9 6.0 5.4
S 0.78 0.2 035 0.22 0.64 0.22 0.99 0.5
Las Lajas (n= 2)
X 14.25 YES 6.82 6.7 6.35 ASIS SY 5.8
Mín 12.9 6.5 6.3 6.0 Dl 3.8 EZ DES)
Máx 1576 8.1 SS 7.4 7.0 4.5 00 6.1
S 1:91 1.18 0.74 0.99 0.92 0.5 0.18 0.65
Tepeyac (n= 2)
X 11.25 Del 8.75 5.85 4.8 SD) SS) 45
Mín 11.0 6.7 8.6 0) 4.7 2 SS) 4.4
Máx 155 YES 8.9 6.7 4.9 3.9 3.4 4.6
S 0.35 0.42 0.21 1162 0.14 0.5 (0) 0.14
Ocotal (n= 4)
XK 1712 9.52 237 8.72 ES, 4.92 5.40 6.16
Mín 13.6 8.0 10.5 8.0 7.4 4.2 3.8 ZO
Máx 19:9 11S5 11212 10.0 8.4 EZ 6.9 AZ
S ZO, AO) 1.54 0.87 0.48 0.5 1.34 0.80
Campus UCA (n= 3)
XK 11.56 AZ 8.78 (3 5.03 3.46 SSZ 4.47
Mín 10.6 6.7 8.3 6.0 4.9 3.0 2.8 4.1
Máx 12.8 7.8 9.55 2 5. 1 3.8 3.8 4.9
S 1.12 0.55 0.63 0.64 0.12 0.42 0.50 0.41
Laurel Galán (n= 3)
XK 12.45 7.6 8.95 6.7 6.02 IEA 7 4.6
Mín 15144 AO 8.35 6.0 4.9 3.0 2.8 4.1
Máx 18389 8.1 9.5 YES 6.35 3.6 4.0 5.0
S 0.98 0.55 05% 0.65 0.45 0.12 0.29 0.46
18
PÉREZ AND LÓPEZ: Morphology and distribution of Bulimulus corneus in Nicaragua
Table IL. Variables measured considering all samples pooled. (X= average; Min: minimum value;
Max: maximum value; S= standard deviation). Abbreviations as in Figure 1.
Tabla 11. Variables medidas considerando los ejemplares de todas las muestras agrupadas. (X= media;
Min: valor mínimo; Max: valor máximo; S= desviación standard). Abreviaturas como en la Figura 1.
Variables Xx Min Max S
LONG 12.40 10 19.90 2.02
DMAX JESZ Date INESS 0.99
LEC 8.78 4.1 14.20 1.89
DME 6.59 DO) 10.00 0.89
LAB 5.64 4.5 8.40 0.87
AAB SINO) DIA DENO) 0.67
LEP AZ ZA 6.90 0.97
AEP 4.86 37 7.20 0.64
Axis ll
Axis |
Figure 4. Axis I and II of the Principal Component Analysis. Each number represents a sample. 1:
El Guayabo; 2: Xiloá; 3: Las Lajas; 4: Asososca; 5: Campus UCA; 6: Loma del Mico; 7: Laurel
galán; 8: Tepeyac; 9: Ocotal; 10: Apoyo; 11: La Ceiba.
Figura 4. Ejes 1 y 11 del Análisis de Componentes Principales. Los números corresponden a las muestras.
1: El Guayabo; 2: Xiloá; 3: Las Lajas; 4: Asososca; 5: Campus UCA; 6: Loma del Mico; 7: Laurel galán;
8: Tepeyac; 9: Ocotal; 10: Apoyo; 11: La Ceiba.
19
Iberus, 15 (2), 1997
Table III. Percentage of variance explained by each one of the principal components. Abbreviations
as in Figure 1.
Tabla III. Porcentaje de varianza explicado por cada uno de los componentes principales. Abreviaturas
como en la Figura 1.
Component Percent of cumulative number Variance percentage
LONG 70.77 ANOTA
DMAX SMS 88.92
LEC 4.72 93.64
DME EDS, 95.88
LAB 2.06 SISI
AAB 0.89 98.84
LEP 0.71 SEDO
100.00
AEP 0.44
Table IV. Eigen values obtained with Principal Component Analysis, considering axes L, Il and III.
Abbreviarions as in Figure 1.
Tabla IV. Valores propios obtenidos con el Análisis de Componentes Principales, considerando los ejes l,
11 y 1. Abreviaturas como en la Figura 1.
Components
LONG 03993
Variables
|
DMAX 0.3726
LEC 0.3072
DME 0.3872
LAB 0.3902
AAB 0.2860
LEP 0.2861
Íl 111
0.1351 0.2987
0.3116 -0.0867
-0.4996 0.0703
-0.2181 -0.2486
0.0308 -0.0825
0.4631 0.7271
O3S339 0.4999
0.2948 0.2258
AEP 0.3756
bably be explained by the numerous mi-
crohabitats that it is capable of filling.
Considering at the same time the
morphological variability and the ecolo-
gical range of this species, WOLDA's
(1970) stament comes to mind, that va-
riation should be understood in terms of
the possibilities of survival in natural po-
pulations, and not only as a biologically
isolated fact about the ecology of species.
Regarding the presence of B. unicolor .
in Nicaragua, Tate's reports were not re-
cognized by MARTENS (1890-1901), or by
PiLsBRY (1897), and may have had their
20
origin in the marked variability of B. cor-
neus. We think that only B. corneus is
found in Nicaragua.
PiLsBRY (1897), mentioned Greytown
(RAAN: Autonomous Region of the
North Atlantic), and later Fluck (1900)
gave Bluefields (RAAS: Autonomous Re-
gion of the South Atlantic) as localities
for B. unicolor in Nicaragua. More re-
cently, BREURE (1979) quoted Perico Is-
land in the Bay of Panamá as the only lo-
cality in Central America.
In the last two years we have collec-
ted specimens from Bluefields, one of
PÉREZ AND LÓPEZ: Morphology and distribution of Bulimulus corneus in Nicaragua
160
130
Figure 5. Bulimulus corneus. Distribution in Nicaragua, in UT'M notation of 100 Km?.
Figura 5. Bulimulus corneus. Distribucion en Nicaragua, en notación UTM de 100 Knr.
the localities for B. unicolor, and two ot-
her nearby localities (Las Delicias and
La Fonseca) (see Table IV). This material
agrees well with the description of B.
corneus.
We are therefore led to think either
that in these localities both species live
sympatrically, and we have not so far co-
llected B. unicolor, or that B. unicolor does
not occur there at all.
In view of the fact that in the revision
of the subfamily BREURE (1979) did not
include distribution data for B. unicolor
in Nicaragua, and taking into account
the morphological variability that
THOMPSON (1967) has shown in both B.
unicolor, and B. corneus, as mentioned by
Pilsbry and also studied by us, we have
decided for the moment to accept that
the latter species is the only one that oc-
curs in Nicaragua.
ACKNOWLEDGEMENTS
We are grateful to Dra. Ana Isabel
Puente (University of Basque Country,
Faculty of Sciences, Department of
Animal Biology and Genetics, P. O. Box
644, 48080 Bilbao) for critical revision
and advice about the paper. Also to Lic.
Zamira Guevara (Central America Uni-
versity, Department of Ecology and
Natural Resources, P. O. Box. 90,
Managua, Nicaragua) who collected and
processed part of the studied material
with us. The great encouragement to
our work, given by Ing. Luis Fiallos,
Dean of the Faculty of Agricultural
Sciences, is also to be mentioned and
gratefully acknowledged. The sugges-
tions made by two anonymous revie-
wers contributed to largely improve the
manuscript's scientific quality.
21
Iberus, 15 (2), 1997
Table V. List of new localities for B. corneus Sw., in Nicaragua. S= number of shells, Sa= specimens
in alcohol. The samples used for statistical purposes are marked with an asterisk. Bibliographic loca-
lities are considered as Bib under “Lot number”. w. l. n. means: “without lot number”.
Tabla V. Lista de nuevas localidades para B. corneus Sw., en Nicaragua. S= número de conchas, Sa=
especímenes en alcohol. Las muestras usadas con propósitos estadísticos aparecen marcadas con con un aste-
risco. Las localidades bibliográficas aparecen con la abreviatura Bib en “Lot number”; w. l. n. significa:
“sin número de lote”.
Code Lot Localities
number
Coordinates
Geographical
BOACO Department
1 92:19 "El Sácal
CARAZO Department
2 90:18 La Baronesa
CHINANDEGA Department
3 Bib Realejo
CHONTALES Department
4 92:14 Punta Mayal
5 88:30 Nueva Guinea
ESTELI Department
6 93:09 Estanzuela
GRANADA Department
7) 91:26 Tepeyac
8 92:01 Aguas Calientes, Cocibolca
9 w.Ln Isleta de Ken
10. 92:12 Laguna Blanca
11. 95:72 El Guayabo
12 ER933lO Apoyo
LEON Department
13 90:05 Asososca
14 90:06 Laguna Monte, Galán
15 88:26 Salinas Grandes
MANAGUA Department
16 88:21 Villa Carmen
17 88:28 Las Sierritas
18 90:07 Xiloá
19 SES Asososca
ZOO Las Mercedes, Lago Xolotlán
ZII S SY Apoyeque
22 94:47 San Francisco Libre
ZION Los Placeres, Km 63
24 95:04 Km 66.8 Carr. Matagalpa
12*33'10” N, 85"33'30" W
12%10'N, 8717 W
123927" N, 83918” W
11%52'20" N, 85*26' W
11%43' N, 84*57' W
13%14'04” N, 862216" W
11%52.5' N, 85"59.5' W
11%52' N, 85"55'40" W
11%51'41” N, 85"53'40" W
11%46'15 N, 85%57'45" W
1158" N, 8559 W
1155 N, 85%57'45" W
12%26' N, 86"40' W
12%26' N, 86"40' W
12%16'12” N, 86"30'4” W
1219 N, 8616' W
123 N, 8616' W
12%14' N, 86"46' W
121811” N, 85198" W
12%9'30" N, 8610' W
12%15' N, 8621 W
12*30'12” N, 86%17'40" W
12*33' N, 86"3'41” W
12%29'06" N, 86%04'17" W
DD
UTM
16PFJ 58
16PFJ 72
16PDJ 78
16PFJ 71
16PGH 79
16PEK 73
16PFJ 01
16PFJ 11
16PFJ 11
16PFJ 10
16PFJ 11
16PFJ 01
16PEJ 37
16PE) 47
16PEJ 25
16PEJ 74
16PEJ 73
16PE) 74
16PEJ 74
16PEJ 84
16PEJ 74
16PEJ 78
16PFJ 08
16PFJ 08
Material
examined
6S
125
25
28
25(*)
25
25
4S
Ss(*)
105+55a
As")
155
6S
10S+4Sa
6S
ós(*]
15
25
9S
15
5Sa
1Sa
PÉREZ AND LÓPEZ: Morphology and distribution of Bulimulus corneus in Nicaragua
Table V. Continuation. *
Tabla V. Continuación.
Code Lot Localities
number
25 95:06 Km42.5 Carr. Matagalpa
26 95:07 Las Canoas
LOSA Las Canoas
28 95:26 Mateare
ZII Carr. Tipitapa-Masaya, Km 43
SOI La Polvosa
31 95:28 Sierra de San Andrés
SS: S Nandayosi
33 95:32 Nandayosi, cerca del rio
34 95:34 LosFilos de Guajachillo
SIA 38 San Bartolo
SOI El Conchital
37 95:40 Hacienda “El Apante”
38 95:44 Hacienda “El Callao”
39 95:45 Samaria
AOS El Tamarindo
41 95:59 El Platanal
42 95:64 Carr.Sur, Km 15.5, INCAE
ASI 72 Campus UCA
MATAGALPA Department
44 92:83 Ciudad Darío
AS 2:88 Fuentepura
NUEVA SEGOVIAS Department
d6 94:59 Ocotal
RIVAS Department
AT Z3 9 Río Las Lajas
RIO SAN JUAN Department
48 92:24 La Toboba
49 92:25 El Castillo
50 w.ln San Carlos
51 92:26 Laurel Galán
Coordinates
Geographical
12%21'02” N, 8602'58" W
12%19'00” N, 80%00'07” W
121905" N, 855922" W
121410" N, 86%25'48" W
120948” N, 86%00'07" W
121324” N, 86"24'59” W
12%10'28” N, 86*24'35"” W
12%06'43” N, 86"31'14” W
12%06'54” N, 86"30'16" W
12%08'33" N, 86"24'33 W
11%54'58' N, 86"33'05" W
11%54'18” N, 86"33'43" W
11%57'48” N, 862915" W
12%01'42” N, 8620'07" W
MESAUSAN, IRSA A
12%29'37" N, 86"05'01” W
12%27'06" N, 86%05'02” W
10%03'13” N, 86"18'33" W
12%07'30" N, 861613" W
12%43'50" N, 861153" W
1258" N, 8655" W
13%36'35" N, 862818” W
112 N, 85 W
11%8' N, 84*57'50" W
11720” N, 8424 W
12720" N, 86"46' W
12%7' N, 86"46' W
RAAS (AUTONOMOUS REGION OF THE SOUTH ATLANTIC)
52 93:23C Las Delicias
53 93:23B La Fonseca
54 94:19 Loma del Mico
55 Bib Bluefields
12%16'12” N, 8352/50" W
12%15'36" N, 83"58'48" W
12%4'24” N, 83%47'42” W
12% N, 834418" W
RAAN (AUTONOMOUS REGION OF THE NORTH ATLANTIC)
56
Bib
San Juan Castillo
14%24' N, 8354'54" W
UTM
16PFJ 06
16PFJ 16
16PFJ 06
16PEJ 65
16PEJ 65
16PEJ 65
16PEJ 64
16PEJ 53
16PEJ 53
16PEJ 42
16PEJ 41
16PEJ 41
16PEJ 52
16PEJ 72
16PEJ 42
16PEJ 98
16PEJ 97
16PEJ 73
16PEJ 74
16PEK 90
16PFK 13
16PEL 51
16PFH 35
16PGH 72
16PGH 81
16PGH 43
16PGH 43
17PJP
17PJP
17PJP
17PJP
17PJR
Material
examined
7S
IS
155
108
108
118
325
35
135
ÁS
7S
155
35
145
28
39
15S
1S
3Sa(*)
135
28
55")
251")
351")
23
Iberus, 15 (2), 1997
REFERENCES
BEROVIDES, V., 1988. Orden y diversidad en el
mundo viviente. Editorial Cintífico- Técnica,
La Habana. 108 pp.
BREURE, A.S. H., 1979. Systematics, phylogeny
and zoogeography of Bulimulinae. Zoologis-
che Verhandelingen, 168: 1-205.
FLuck, W. H., 1900. Shell collecting in the Mos-
quito Coast. The Nautilus, 14: 94.
JACOBSON, M. K., 1968. On a collection of te-
rrestrial mollusks from Nicaragua. Nautilus,
81: 114-120.
MARTENS, E. V., 1890-1901. Biologia Centrali-
Americana. Land and Freshwater Mollusca. Tay-
lor and Francis, London. 706 pp.
PÉREZ, A. M. AND LÓFPEZ, A., 1995. New data on
the morphology and the distribution of Bu-
limulus corneus Sowerby, 1833 (Gastropoda:
Pulmonata: Orthalicidae). In Guerra, A., Ro-
lán, E. and Rocha, F. (Eds.): Abstracts of the
Twelfth International Malacological Congress,
Vigo. Unitas Malacologica and Instituto de In-
vestigaciones Marinas, Vigo: 396-398.
24
PiLsBRY, H. A., 1897. Manual of Conchology. 2nd
series, vol. 11, pp. 65-144.
TATE, R., 1870. On the land and freshwater mo-
llusca of Nicaragua. American Journal of Con-
chology, 5: 151-162.
THOMPSON, F. G., 1967. The land and freshwa-
ter snails of Campeche. Bulletin Florida State
Museum, 11(4): 221-256.
WOoLDA, H., 1970. Ecological variation and its
implications for the dynamics of populations
of the landsnail Cepaea nemoralis. Proc. Adv.
Study Inst. Dynamics Numbers Popul.: 98-108.
O Sociedad Española de Malacología —————— Iberus, 15 (2): 25-34, 1997
Phenological patterns and life history tactics of Helicoidea
(Gastropoda, Pulmonata) snails from Northern Greece
Patrones fenológicos y estrategias de vida en Helicoidea (Gastropoda,
Pulmonata) del Norte de Grecia
Maria LAZARIDOU-DIMITRIADOU and Stefanos SGARDELIS*
Recibido el 8-[-1996. Aceptado el 31-VIL1996
ABSTRACT
The present study mainly concerns with the differences in the biological cycles and strategies
adopted by different Helicoidea snail species. In Northern Greece the climatic conditions are
not very uniform. Some snails breed during the same period as in Northern Europe but most
breed in autumn, as species from Southern Europe do. Breeding may take place in all sea-
sons except in winter, and seems to be species-specific. Long-lived snails of big size differ
from shortlived species of small size as to the time of their breeding period. The climatic con-
ditions affect the time of the breeding season and their whole life cycle and phenologies. En-
vironmental variables in Northern Greece are strongly seasonal and thus Helicoidea snails
exhibit predictable oscillations in their activity patterns, which can be interpreted by the de-
mographic response of the populations. Terrestrial snails seem to follow two different pheno-
logic curve types: the semelparous and short-lived species populations show a more stable
phenological pattern than the biennial and pluriennial ones, who mature after the first year of
their lives, being more plastic trying to face the climatic differences from one year to another.
RESUMEN
El presente estudio trata de las diferencias en los ciclos biológicos y a las estrategias adopta-
das por diferentes especies de Helicoidea. En el norte de Grecia, las condiciones climáticas
no son muy uniformes. Algunas especies crían durante el mismo periodo en que lo hacen en
el N de Europa, pero la mayoría lo hacen en otoño, como sucede en especies del S del con-
tinente. La cría puede tener lugar durante casi todas las estaciones, excepto el invierno, y el
periodo parece ser específico para cada especie. Las especies longevas y de gran talla di-
fieren de las de pequeño tamaño y vida más corta en la duración de su ciclo de cría. Las
condiciones climáticas afectan al momento de la temporada de cría y a todo su ciclo vital y
fenología. Las variables ambientales son fuertemente estacionales, así que aparecen osci-
laciones predecibles en los patrones de actividad, que pueden ser interpretadas por la res-
puesta demográfica de las poblaciones. Las babosas parecen seguir dos tipos de curvas fe-
nológicas distintas. Las especies semelpáricas y de corta vida muestran un patrón fenológico
más estable que el de especies bianuales y prurianuales, que maduran tras el primer año de
vida y son más flexibles a la hora de enfrentarse a las diferencias climáticas interanvales.
KEY WORDS: Biological cycle, phenology, Northern Greece, Helicoidea, Helix, Eobania, Helicella, Monacha,
Bradybaena.
PALABRAS CLAVE: ciclo biológico, fenología, N Grecia, Helicoidea, Helix, Eobania, Helicella, Monacha, Bradybaena.
* Departments of Zoology and Ecology, School of Biology, Aristotle University of Thessaloniki, 54006
Thessaloniki, Macedonia, Greece.
25
Iberus, 15 (2), 1997
INTRODUCTION
Greece has a Mediterranean climate
which is differentiated mainly along a
northern-southern gradient. In Northern
Greece climate is transient from
Mediterranean (mostly coastal areas) to
temperate (inland areas). A typical cha-
racteristic of this climate type is the
coincidence of high temperatures and
low precipitations during summer (las-
ting from June to October). The wet sea-
son is divided by a cold winter which is
milder in the coastal areas. Drought is a
strong agent controlling population dy-
namics and activity of most soil inverte-
brates as it imposes a pause in most
physiological activities. Low temperatu-
res during winter are also important for
population dynamics and activity as
they impose hibernation in some of the
invertebrates e. g. terrestrial gastropods.
So observed discontinuities in popula-
tion development during the transition
from the favourable to the unfavourable
seasons and vice-versa may be attribu-
ted to environmental thresholds.
Although the association between
climate and life history phenomena is
self evident, it can vary among terres-
trial molluscs, even between popula-
tions of the same species. Phenology
reflects certain aspects of the demo-
graphy of a population, that is the
timing of its life cycle characteristics in a
given environment. The classification of
phenological patterns into categories or
types (WOLDA, 1988) is better by using
phenological models (VAN STRAALEN,
1982; STAMOU, ASIKIDIS, ARGYROPOULOU
AND SGARDELIS, 1993). Using a phenolo-
gical model, complex phenograms can
be classified into types considering their
skewness, curtosis, phase and period.
The aim of the present study was to
find out whether terrestrial gastropods
adopt a general phenological pattern if
* they are differentiated according to their
origin, or their biotopes (inland and
coastal areas) or life spans. The present
study is a part of an extensive research
done on the distribution and ecology of
Helicoidea gastropods in Northern
Greece (LAZARIDOU-DIMITRIADOU, 1981,
26
1995; LAZARIDOU-DIMITRIADOU AND
KATTOULAS, 1981, 1985, 1991; STAIKOU,
LAZARIDOU-DIMITRIADOU AND FARMA-
KIS, 1988; HATZUOANNOU, ELEUTHERIA-
DIS AND LAZARIDOU-DIMITRIADOU, 1989;
STAIKOU, LAZARIDOU-DIMITRIADOU AND
PANA, 1990; STAIKOU AND LAZARIDOU-
DIMITRIADOU, 1990, 1991).
MATERIALS AND METHODS
Data used derived from monthly
quantitative samplings of Helicoidea
snails from different parts of Northern
Greece. The following species were
studied: Family Bradybaenidae, Brady-
baena fruticum (Múller, 1774); Family
Helicidae, Cepaea vindobonensis (Férus-
sac, 1821), Eobania vermiculata (Muller,
1774), Helix lucorum Linnaeus, 1758,
Helicella (Xerothracia) pappi (Schút, 1962),
Helix figulina (Rossmássler, 1839), Helix
pomatia rhodopensis Kobelt, 1906, Theba
pisana (Múller, 1774); Family Hygromii-
dae, Cernuella virgata (Da Costa, 1778),
Monacha cartusiana (Múller, 1774), Xero-
lenta obvia (Menke, 1828), Xeropicta
arenosa Ziegler, 1836, Xerotricha conspur-
cata (Draparnaud, 1801). Sampling
lasted two or four years depending on
the species and their life span (LAZARI-
DOU-DIMITRIADOU, 1981, 1995; LAZARI-
DOU-DIMITRIADOU AND KATTOULAS,
1981, 1985, 1991; STAIKOU ET AL., 1988;
STAIKOU ET AL., 1990; STAIKOU AND
LAZARIDOU-DIMITRIADOU, 1990, 1991).
Details regarding the sites and the sam-
pling procedures are given in previous
studies on these species (LAZARIDOU-
DIMITRIADOU, 1981, 1995; LAZARIDOU-
DIMITRIADOU AND KATTOULAS, 1985,
1991; STAIKOU ET AL., 1988). Ombrother-
mic data for Northern Greece from 1980
to 1990 are given in Figure 1. Data were
provided by Mahairas P., Professor of
Climatology from the Aristotle Univer-
sity of Thessaloniki.
Fischer's exact test for independence
in 2 x 2 contingency tables (ZAR, 1984)
was used for comparisons between the
different categories, e. g. snails with
autumnal and vernal-estival reproduc-
tive periods, long-lived (> 3 years) and
LAZARIDOU-DIMITRIADOU AND SGARDELIS: Phenology of Helicoidea in N Greece
JF MA M
Precipitation (mm)
Prec. (mm)
A SON D
Months
Figure 1. Ombrothermic diagram from Northern Greece. Temperature: open squares; Precipitation:
solid rhombus.
Figura 1. Diagrama ombrotérmico del Norte de Grecia. Temperatura: cuadrados abiertos; Precipitación:
rombos sólidos.
short-lived snail species (up to 3 years),
large (largest shell diameter > 25 mm)
and small sized snails.
The phenological pattern of Helicoi-
dea species was studied by using the
phenological model applied for the
study of microarthropods (STaAMOU ET
AL., 1993). In short, in this model when
asymmetries and discontinuities are dis-
played the scales of the time-axis were
adjusted. Changing time scales results
in the definition of a new variable
termed ecological time (ET), which is a
function of a standard clock time
(STAMOU ET AL., 1993). This technique is
based upon the following considera-
tions: 1) the timing of a population in
the field is determined by the sequence
of demographic events and/or beha-
vioural characteristics (i. e. migratory),
and 2) the rate of the demographic
events depends on the fluctuations of
environmental variables.
In this model it is assumed that the
phenology of any population inhabiting
a seasonal environment can be descri-
bed by a symmetric periodic curve:
F(ET) = EXP(a-+b x COS(27 x (ET-9/T)) (1)
where the independent variable ET,
termed Ecological time, is a function of
standard clock time (ST), ET = f (ST). In
the course of standard time, ecological
time is going faster during periods of
sharp changes in abundance and slower
during periods of abundance stability.
Thus, the proposed equation describing
the length of the Ecological time unit
(AET) as a function of Standard time ST
is:
AET= f (ST) = EXP(or+b1 x COS(27 x
(ST-p1)/T1)) (2) *
The model has eight parameters of
which the period T and the phase q of
the phenogram, as well as period T1 and
the phase q1 of the function relating ET
to ST, are the most important. The
period T and the phase q of the pheno-
grams are expressed formally in ET
units. For convenience they could be
expressed in ST units (as T' and q”) by
using equation (2) for the calculation of
27
Iberus, 15 (2), 1997
the Standard time T” or q” which corres-
ponds to T or € units in the Ecological
time-scale (see STAMOU ET AL., 1993: fig.
1). For the comparison of phenograms
two more parameters can be derived: a)
an estimation of the sharpness (curtosis)
of the phenogram C=(R2-R1)/T”, where
(R2-R1) is the time interval around the
phase q”, during which the abundance is
above overall mean, and b) an esti-
mation of the skewness of the pheno-
gram S= (0'-Qm)/T' where qmis the time
(in ST units) when the abundance of the
population is at minimum. Thus, pheno-
grams displaying a peak at p'-qm= T'/2
(half period) is symmetric (S= 0.5), phe-
nograms displaying a peak soon after
the minimum (S< 0.5) are positively
skewed, and phenograms with S> 0.5
are negatively skewed. The model was
fitted on log-transformed census data.
For ETi= f (STi) given as a time vector
and for a given set of q and T, the para-
meters a and b were estimated by least-
square regression.
RESULTS
The model fitted to census data for
snail populations sampled at monthly
intervals from different areas are shown
in Figure 2. The values of the most
important parameters of the fitted phe-
nological model are given in Table 1.
In all but two examined cases the
phenological pattern was strongly sea-
sonal (Fig. 2), with a more or less 1 year
periodicity apart from Monacha cartu-
siana which seems to display a six
months periodicity at least during 1984
(Table I). Abundance of Bradybaena fruti-
cum and Eobania vermiculata fluctuated
almost randomly throughout the year.
Population densities of the different
species do not exhibit phase synchroni-
zation. Even different populations of the
same species do not always exhibit a
peak density at the same time of the
year. Furthermore even the same popu-
lation displays a phase instability
during successive years of study. For
instance Xerolenta obvia from Paleokas-
tro peaked either in January or in April
28
(q, in Table I). X. obvia from Karvali
peaked in July. Helix lucorum displayed
a similar interannual instability. In both
cases the shift in phase seems to be asso-
ciated with an unexpected change of the
weather, an extended dryness (STAIKOU
ET AL., 1988: fig. 2) which provoked an
overall decline of the population density
(Fig. 2).
The phase expressed as months after
minimum population densities (qm)
(Table I) is a measure of the rate of
population increase from absolute
minimum to peak densities. Qm might
have lower values when the time
needed for a species to mature is short.
Minimum (Qm values were estimated for
X. obvia in Paleokastro, the 1st and the
third year of study, indicating a rapid
population growth which occurs in a
period of about 3 months (Fig. 2). In
Karvali, where X. obvia gets mature in 2
years, Qm value was larger (Table 1), as
was the case with M. cartusiana in 1985.
Helicella (Xerothracia) pappi snails that
need 2-3 years to mature exhibited
larger Qm values, and H. lucorum snails
- which need 3-4 years exhibited the
largest value of all except in 1983.
Species that mature in one year,
exhibit a very rapid population growth
just after the adverse period, which is
winter, and consequently they are posi-
tively skewed. Species that mature in 2-
3 years are negatively skewed (Table Il,
Fig. 3). In this case the phenological
pattern may be positively skewed or
symmetrical but the population remains
active for longer periods and the pheno-
logical pattern is platycurtic (Table II,
Fig. 3). Whereas species that mature in
one year usually display a leptocurtic
phenology (Table Il, Fig. 3). The only
species population that showed both a
negatively and a positively skewed phe-
nological pattern was H. lucorum.
The positively skewed phenograms
are leptocurtic when they concern snail
species populations that mature in one
year whereas they may be slightly platy-
curtic when they live in regions where
favourable conditions last longer as is
the case of Xeropicta arenosa Ziegler in
Edessa. Pluriennial snail species popula-
LAZARIDOU-DIMITRIADOU AND SGARDELIS: Phenology of Helicoidea in N Greece
10
”,* Helix lucorum
1) Edessa
to
.
Population density (ind./m2)
JFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFM
83 84
14 A
a o Monacha cartusiana
42 o
E A AN Edessa
E 10 / Ñ p N
= (o) ¡MORO NS
Dos 7 Ñ Y 3 :
a / A ; Y
5 Wa 4 ES
sS. U ó e ás NS e
5 ó > a) D
(e) o
A S
a o
a
5] 2
[aY
0 AA]
MJJASONDJ]FMAMJJASONDJFMAMJIJJ
6 Xeropicta arenosa
Edessa
Population density (ind./m2)
JEMAMJJASONDJIJFMAMJJASONDJFMAMJJASONDIJFMA
86
83 84
Months
21
] Xerolenta obvia
os Paleokastro ¿$
Lo 1
40 " Á Mn
¿ LO
y X | :
o |
204 |! eN l No
E so S DA i je]
Ea] ES PS ES A , o
HAL
ONDJFMAMJJASONDJFMAMJJASONDJFMAMIJAS
88
180
160 o
Xerolenta obvia
140 / V .
/ MN Karvali
120 / EN
' Va
10) P y
80 i X .
í ye dl
60 la A >
90 A ,
, »
20 Ñ JÓ
$ le
O AAXA>->>—- -á ->>--- 91
mM y y AÑES OON D ñ F M A M y J A S
89 90
30
Helicella (Xerothracia) pappi
IN Philippi
MAMJJASONDJFMAMJJASONDJFMAMJJASONDJ
86
Months
Figure 2. Abundance variations of Helicoidea snails from Northern Greece. Line: model estimates;
asterisks: observations.
Figura 2. Variaciones de la abundancia de caracoles helícidos del Norte de Grecia. Línea: estimaciones
del modelo; asteriscos: observaciones.
tions usually exhibit platycurtic pheno-
logical patterns, too, since their adults
diapause and hide in the soil or under
plants and do not emerge massively.
Negatively skewed and symmetric phe-
nograms are usually platycurtic.
It seems that there are no negatively
skewed-leptocurtic species except for M.
cartusiana that is negatively skewed and
slightly leptocurtic.
Maximum activity duration is about
the same for different populations of the
same species or for the same population
during successive years of study (Table
[, MA column).
In Northern Greece long-lived
species are of big size and short-lived
are of small size (x?= 9.983, P= 0.001).
Additionally, short-lived species breed
in autumn whereas long-lived species
may breed in autumn or vernal-estival
period (x?= 4.261, P= 0.039) (Table III).
In Northern Greece bigger helicids may
breed during the vernal-estival or
Iberus, 15 (2), 1997
Table I. The estimated parameters of the fitted model in standard time units (months).
Tabla 1. Parámetros estimados del modelo ajustado en unidades de tiempo standard (meses).
Phase ej Phase (qm Maximum
Species Place Year E (Months after (Months after activity period R? Das ps
January) minimum dens!y) MA (Monthts) dpi
Helicella pappi Philippi 1987 12.6 2.9 5.9 7.1 OIOSIEZS
1988 10.5 3.4 6.8 6.9 0.95
Xerolenta obvia Karvali 1990 12.6 6.7 4.7 4.4 0.79 2
Paleokastro 1988 14.2 0.3 29 42 0.84 ]
1989 10.8 3.5 30) 7.3 0.77
1990 10.4 0.2 2.8 2.9 0.91
Xeropicta arenosa Potidea 1979 12.7 6.1 )) 5.1 0.87 |
1980 11.2 6.2 38) 6.9 0.88
Edessa 1984 12,5 6.6 4.9 6.7 0.69 ]
1985 11223 7.8 5.8 6.9 0.68
Monacha cartusiana Edessa 1984 6.5 2.4 37 3.2 0.53 l
1985 13.0 -1.1 6.2 4.3 0.45 2
Helix lucorum 1983 12.5 4.] 5.0 8.1 0.94 34
1984 12.0 8.4 7.9 8.5 0.84
1985 12.0 8.9 8.5 8.2 0.86
Table IL. Skewness (negatively skewed <0.5; positively skewed >0.5) and curtosis (leptocurtic <0.5;
platycurtic >0.5) from the phenograms of Helicoidea snails from Northern Greece). Abbreviations:
Phil: Philippi; Pal: Paleokastro area; Kar: Karvali; Pot: Potidea; E: Edessa (the paranthesis means slightly).
Tabla 11. Desviación (desviado negativamente <0, 5; desviado positivamente >0,5) y curtosis (leptocúrtico
<0,5; platicúrico >0,5) en los fenogramas de caracoles helícidos del Norte de Grecia. Abreviaturas: Phil:
Philippi; Pal: Paleokastro area; Kar: Karvali; Pot: Potidea; E: Edessa (los paréntesis significan ligeramente).
Species Place and Year deta o Symmetric Leptocurtic Platycurtic Mesocurtic ada
Helicella pappi Phil. 1987 (+) + 23
1988 + >
Xerolenta obvia Paleo. 1988 + . 1
1989 (+) +
1990 + +
Karv. 1990 + + (+) 2
Xeropicta arenosa Potid. 1979 + (+) ]
1980 + +
Edes. 1984 + + l
1985 + +
Monacha cartusiana Edes. 1983 + (+) 2
1984 + + 1
1985 + (+) + 2
Helix lucorum Edes. 1983 + + 3-4
1984 + +
1985 +
autumnal period and small ones breed of the reproductive period is very short
mainly in autumn (x= 4.261, P= 0.039) whereas in the inland areas it is variable
(Table III). In coastal areas the duration according to the species.
30
LAZARIDOU-DIMITRIADOU AND SGARDELIS: Phenology of Helicoidea in N Greece
ps mM
Right
O.4
Xik] xapl
Ss
80 Platy-
hi2
a
hpf2
a ni3
Ml
60 a Left
Skewness
Al
4ES
mc3
a
30
Kurtosis
20 Lepto-
Figure 3. Ordination of phenograms into skewness(S)- curtosis (C) plane (Skewness: negatively ske-
wed< 0.5; positively skewed> 0.5. Curtosis: leptocurtic< 0.5; platycurtic> 0.5) of Helicoidea snails
from Northern Greece. Numbers denote 1st, 2d or 3d generation. Abbreviations, xap: Xeropicta are-
nosa Potidea; xae: Xeropicta arenosa Edessa; hl: Helix lucorum; hpf: Helicella pappi Philippi; mc:
Monacha cartusiana; xip: Xerolenta obvia Paleokastro.
Figura 3. Ordenación de fenogramas respecto al plano desviación (S)- curtosis (C) (Desviación: negati-
va< 0,5; positiva> 0,5. Curtosis: leptocúrtico< 0,5; platicúrtico> 0,5) de babosas de la familia
Helicoidea del Norte de Grecia. Los número denotan las primera, segunda y tercera generaciones.
Abreviaturas, xap: Xeropicta arenosa Potidea; xae: Xeropicta arenosa Edessa; hl: Helix lucorum; hpf
Helicella pappi Philippi; mec: Monacha cartusiana; x1p: Xerolenta obvia Paleokastro.
DISCUSSION
In Northern Greece the climatic con-
ditions are not uniform (HATZIOANNOU
ET AL., 1989). The ombrothermic
diagram for Northern Greece (Fig. 1)
from 1980 to 1990 shows that the dry
season is from June to October, whilst
the wet season is divided by a cold
winter period. Breeding may take place
almost in all seasons except during
winter. In Northern Greece, snails
mainly breed from April to the end of
autumn. The strong seasonality of the
climate imposes a seasonal pattern of
breeding. Consequently, there are two
main breeding periods: the autumnal
breeding period starts with the first
rainfalls and stops with low temperatu-
res (LAZARIDOU-DIMITRIADOU, 1981;
STAIKOU AND LAZARIDOU-DIMITRIADOU,
1991) and the vernal-estival breeding
period which starts when the mean
monthly temperature rises over 10%C
and stops when the arid period starts
(LAZARIDOU-DIMITRIADOU, 1981; LAZA-
RIDOU-DIMITRIADOU AND KATTOULAS,
1985; STAIKOU ET AL., 1988). Most of the
land snails though, mainly short-lived
and small snails, breed during the
autumnal period (Table III) as Helicoi-
dea species from Southern Europe do
(CHATFIELD, 1968; REAL AND REAL-
TESsTUD, 1983; HELLER, 1982; SACCHI,
31
Iberus, 15 (2), 1997
Table II. Life cycle characteristics from Helicoidea snails from Northern Greece. Abbreviations:
D: largest shell diameter. Ehinos is found in Rhodope area, Edessa and Thessaloniki in North
Central Macedonia, Philippi and Karvali near Kavala, and Paleokastro and Potidea in Chalkidiki.
Abbreviations, Y. years up to maturity; SL: short lived < 3 years; LL: long lived > 3 years; SS: small
sized D < 25 mm; LS: large sized D > 25 mm; V: vernal-estival reproductive period; A: automnal
reproductive period.
Tabla III. Características del ciclo de vida de los caracoles helícidos del Norte de Grecia. Abreviaturas: D:
mayor diámetro de la concha. Ehinos se encuentra en el área de Rhodope, Edessa y Thessaloniki al Norte
de Macedonia, Phillipi y Karvali cerca de Kavala, y Paleokastro y Potidea en Chalkidiki. Abreviaturas,
Y: años hasta la madurez; SL: vida corta < 3 años; LL: vida larga > 3 años; SS: pequeña talla D < 25
mm; LS: gran talla D > 25 mm, V: periodo reproductivo estival; A: periodo reproductivo otoñal.
Species Locality Longitude
Helix pomatia rhodopensis Ehinos 249 58' 34"
Helix lucorum Edessa DINA
Monacha cartusiana
(rarely )
Bradybaena fruticum Edessa
Cepaea vindobonensis Edessa
Helix figulina Thessaloniki 22% 57' 29”
Theba pisana Thessaloniki
Xerotricha conspurcata Thessaloniki
Eobania vermiculata Thessaloniki
Helicella (Xerothracia) papi Philippi 249 15' 48”
Xerolenta obvia Paleokastro MUDA
Karvali 2423011
Xeropicta arenosa Potidea DNA
Edessa IAS
Cernuella virgata Potidea ESSE
Latitude Y SL LL SS LS A
419 16' 50” 3 + +
409 47 47" 3-4 + +
2 + + +
1 + +
2 + +
2 + +
419 24' 26” 2 + + +
2 + + +
| + + +
2 + + +
419 7'26' 2-3 + + +
409 24' 59" | + + +
409 59 44” 2 + + +
4091124” 1 + + +
407 47' 47” 1 + + +
401124" | + + +
1971; BONAVITA AND BONAVITA, 1962;
DEBLOCK AND HOESTLANDT, 1967) and
only some breed during the vernal
period as land snails from Northern
Europe do (POLARD, 1975; WOLDA AND
KREULEN, 1973). M. cartusiana, which is
of Northern origin, breeds in both
seasons (STAIKOU AND LAZARIDOU-DIMI-
TRIADOU, 1990). Estival breeding period
happens in places with a wet climate
during summer months (STAIKOU ET AL,,
1988). In areas where different species
coexist (as in Logos area in Edessa) alt-
hough the climatic conditions are the
same the species do not breed during
the same period provoking less antago-
nistic intraspecific reactions to their hat-
chings (STAIKOU ET AL., 1988). Semelpa-
rous species with an r-strategy synchro-
nize their breeding period with the
favourable period which is October-mid
32
November (LAZARIDOU-DIMITRIADOU,
1981, 1995; LAZARIDOU-DIMITRIADOU
AND KATTOULAS, 1985).
There is also a marked difference
between the snail species living along
the sea shore and the inland ones. Cou-
pling and laying of eggs is more or less
synchronous for the populations living
along the seashore and do not last more
than a week each. On the contrary bree-
ding lasts about a month for the inland
species (LAZARIDOU-DIMITRIADOU, 1981;
STAIKOU AND LAZARIDOU-DIMITRIADOU,
1991).
The climatic conditions under which
the land molluscs live do not only affect
the time of the breeding season but also
their whole life cycle and phenologies.
X. obvia needs two years to mature in
coastal or semi-coastal areas and one
year on the mountains (e. g. Paleokastro,
LAZARIDOU-DIMITRIADOU AND SGARDELIS: Phenology of Helicoidea in N Greece
Central Chalkidiki, unpublished data).
Similarly, M. cartusiana which is of nort-
hern origin needs two years to mature
in the south instead of one, because it
has to face the summer aestivation, alt-
hough 15% of its population in Edessa
tends to be semelparous (STAIKOU AND
LAZARIDOU-DIMITRIADOU, 1990), as in
Northern Europe (CHATFIELD, 1968).
Species like B. fruticum and E. vermi-
culata which are iteroparous and univol-
tine species, living for a few years, exhi-
bit no seasonal trend of abundance but
fluctuate almost randomly during the
year. These show rather stable patterns
despite the oscillations of environmental
parameters. All the rest of the studied
Helicoidea species can encounter seaso-
nality by adjusting the timing of their vi-
tal activities. They respond to the ad-
verse period of the year, which is winter
time for Northern Greece, by displaying
asymmetric (positively or negatively
skewed phenograms) seasonal patterns
of abundance variation. These patterns
reflect a differential response of the spe-
cies to tolerance against stress which se-
ems not to be region-specific but species-
specific. The annual or biennial r-strate-
gists (X. arenosa, X. obvia) show a
positively skewed phenological pattern
due to the rapid development of juveni-
les soon after the adverse winter period.
These juveniles have been hatched in au-
tumn but stayed buried in the soil du-
ring winter. Their growth stops before
summer dryness during which the geni-
talia and the gonad maturation take
place and the snails are ready to lay eggs
before their death in autumn. On the
contrary, populations of pluriennial spe-
cies are characterized by low abundance
during the onset of the adverse period
and a negatively skewed or symmetric
phenciogical pattern. It seems that the
growth rate of juveniles is much slower
than that of annual species. The only
species population that showed both a
negatively and a positively skewed phe-
nological pattern was H. lucorum. Howe-
ver, a positively skewed pattern in 1983,
that is a rapid growth of population den-
sity was probable just after the adverse
period since a massive emergence from
hibernation of adult snails took place be-
cause of good weather conditions which
started earlier than usually (STAIKOU ET
AL., 1988: fig. 2). Additionally, this spe-
cies has a low net reproductive rate (Ro
= 0.9) and a low annual turnover ratio
(P/B = 1.24), the snails live up to 12 ye-
ars and they mature after the third year
of their lives (STAIKOU ET AL., 1988).
Negatively skewed and leptocurtic
phenograms could not be characteristic
of a snail species since it would mean
that this population would grow slowly
and steadily during the favourable pe-
riod of the year and would introduce ra-
pidly growing immature snails just be-
fore the adverse period. This would be
possible only if immature snails were
more resistant and tolerant to the stress.
Such a phenology has not also been re-
corded in acari or collembola (SrTamou
ET AL., 1993; SGARDELIS, SARKAR, ASIKI-
DIS, CANCELA DA FONCECA AND STAMOU,
1993). However, M. cartustana is a case
of negatively skewed and slightly lepto-
curtic phenology. In this population 15%
of juveniles mature in one year as it
happens in Northern Europe. So, in 1984
the dry season (summer time) was inte-
rrupted by a wet period (STAIKOU ET AL,,
1988: fig. 2) and this 15% of juveniles,
which had already matured, managed
to lay eggs before the majority of the
snails which were mature and ready to
copulate and lay eggs in autumn. This
population, though, comes from Nort-
hern Europe and it is found in the sout-
hern limits of its distribution.
To sum up, environmental variables
in Northern Greece are strongly seaso-
nal and thus Helicoidea snails exhibit
predictable oscillations in their activity
patterns, which can be interpreted by
the demographic response of the popu-
lations as it has been found with soil
microarthropods (STAMOU ET AL., 1993;
SGARDELIS ET AL., 1993). The semelpa-
rous and short-lived snail species popu-
lations show a more stable phenological
pattern than the biennial and plurien-
nial ones, who mature after the first year
of their life, and they are more plastic
trying to face the climatic differences
from one year to the other.
33
Iberus, 15 (2), 1997
REFERENCES
BONAVITA, A. AND BONAVITA, D., 1962. Con-
tribution a létude écologique d'Euparypha
pisana Múller des rivages Mediterranéens de
la Provence. Note preliminaire. Pubblicazioni
della Stazione Zoologica di Napoli, 32 (suppl.):
189-204.
CHATFIELD, J. E., 1968. The life history of the he-
licid snail Monacha cantiana (Montagu), with
reference also to M. cartusiana (Muller). Pro-
ceedings of the Malacological Society of London,
38: 233-245.
DEBLOCK, R. AND HOESTLANDT, H., 1967. Don-
nées biologiques sur le Gastéropode littoral
Theba pisana Múller aux limites septentrio-
nales de son extension. Compte rendu de 1”
Academie des Sciences, Paris, 265: 893-896.
HATZHIOANNOU, M., ELEUTHERIADIS, Ñ. AND
LAZARIDOU-DIMITRIADOU, M., 1989. Contri-
bution a la reproduction de l'escargot co-
mestible Helix pomatia rhodopensis Kobelt
(1906) vivant dans la Grece du Nord-Est. Ha-
liotis, 19: 137-141.
HELLER, J., 1982. Natural history of Theba pisana
in Israel (Pulmonata: Helicidae). Journal of
Zoology, 196: 475-487.
LAZARIDOU-DIMITRIADOU, M., 1981. Contribu-
tion a l'étude biologique et écologique des es-
cargots Cernuella virgata (Da Costa) et Xero-
picta arenosa Ziegler (Gastropoda, Pulmo-
nata) vivant sur les microdunes de Potidea,
Chalkidiki (Grece du Nord). Atti del V” Con-
vegno della Societa Malacologica Italiana, Pa-
via: 73-83.
LAZARIDOU-DIMITRIADOU, M., 1995. The life cy-
cle, demographic analysis, growth and se-
condary production of the snail Helicella (Xe-
rothracia) pappi Schútt (1962) (Gastropoda:
Pulmonata) in E. Macedonia (Greece). Mala-
cologia, 37: 1-11.
LAZARIDOU-DIMITRIADOU, M. AND KATTOU-
LAS, M., 1981. Contribution a l'étude de la
biologie et de la croissance des escargots
commercialisés en Grece: Eobania vermicu-
lata (Múller) et Helix aspersa Múller. Haliotis,
dEN29 137:
LAZARIDOU-DIMITRIADOU, M. AND KATTOULAS,
M., 1985. Contribution a l'étude biologique
et écologique d'Eobania vermiculata (Gasté-
ropode, Helicidae). Biologica Gallo-Hellenica,
10: 132-137.
LAZARIDOU-DIMITRIADOU, M. AND KATTOULAS,
M., 1991. Energy flux in a natural population
of the land snail Eobania vermiculata (Múller)
(Gastropoda Pulmonata Stylommatophora)
in Greece. Canadian Journal of Zoology, 69:
881-891.
POLARD, E., 1975. Aspects of the ecology of He-
lix pomatia L. Journal of Animal Ecology, 44:
305-329.
34
REAL, G. AND REAL-TESTUD, A. M., 1983. Re-
partition en France d'Helicella itala (L., 1758)
(Gasteropode, Pulmone Terrestre). Haliotis,
13: 155-161.
SACCHI, C. F., 1971. Ecologie comparée des Gas-
téropodes Pulmonés des dunes Mediterran-
nées et Atlantiques. Natura, 62: 277-358.
SGARDELIS, S. P., SARKAR, S., ASIKIDIS, M. D.,
CANCELA DA FONCECA, J. P. AND STAMOU, G.
P., 1993. Phenological patterns of soil mi-
croarthropods from three climate regions.
European Journal of Soil Biology, 29 (2): 49-57.
STAIKOU, A. AND LAZARIDOU-DIMITRIADOU, M.,
1990. Aspects of the life cycle populations dy-
namics, growth and secondary production of
the snail Monacha cartusiana (Muller, 1774)
(Gastropoda: Pulmonata) in northern Greece.
Malacologia, 31 (2): 353-362.
STAIKOU, A. AND LAZARIDOU-DIMITRIADOU, M.,
1991. The life cycle, population dynamics,
growth and secondary production of the
snail Xeropicta arenosa Ziegler (Gastropoda:
Pulmonata) in northern Greece. Zoological
Journal of Linnean Society, 101: 179-188.
STAIKOU, A., LAZARIDOU-DIMITRIADOU, M. AND
FARMAKIS, N., 1988. Aspects of the life cycle,
population dynamics, growth and secondary
production of the edible snail Helix lucorum
Linnaeus, 1758 (Gastropoda, Pulmonata) in
Greece. Journal of Molluscan Studies, 54: 139-
155%
STAIKOU A., LAZARIDOU-DIMITRIADOU, M. AND
PAna, E., 1990. The life cycle, population dy-
namics, growth and secondary production of
the snail Bradybaena fruticum (Muller, 1774)
(Gastropoda Pulmonata) in northern Gre-
ece. Journal of Molluscan Studies, 56: 137-146.
STAMOU, G. P., AsikiDIS M. D., ARGYROPOU-
LOU, M. AND SGARDELIS, S. P., 1993. Ecologi-
cal time versus standard clock time: the asym-
metry of phenologies and the life history
strategies of some soil arthropods from Me-
diterranean ecosystems. Oikos, 66: 27-35.
VAN STRAALEN, N. M., 1982. Demographic
analysis of arthropod populations using 2
continuous stage-variable. Journal of Animal
Ecology, 51: 769-783.
WoLDA, H., 1988. Insect seasonality: Why? An-
nual Revue of Ecological Systems, 19: 1-18.
WOLDA, H. AND KREULEN, D. A., 1973. Ecology
of some experimental populations of the land
snail Cepaea nemoralis (L.). IL. Production and
survival of eggs and juveniles. Netherlands
Journal of Zoology, 23 (2): 168-188.
ZAR, J. H., 1984. Biostatistical Analysis. Pren-
tice-Hall International Inc., United King-
dom, 718 pp.
O Sociedad Española de Malacología
Iberus, 15 (2): 35-50, 1997
Fragmented knowledge on West-European and Iberian
Caudofoveata and Solenogastres
Conocimiento fragmentado de los Solenogastros y Caudofoveados
de Europa occidental y Península Ibérica
Luitfried von SALVINI-PLAWEN*
Recibido el 8-1-1996. Aceptado el 4-X-1996
ABSTRACT
A basic problem in our knowledge of the aplacophoran molluscs, viz. the Caudofoveata
and the Solenogastres, is the poor availability of faunistic samplings. This lacunarity even
concerns the European waters; in the present contribution, particular attention is paid to
the gap in the records along the French and Iberian shelf regions. This is underlined by
presenting an updated geographic distribution of eight caudofoveate and thirteen soleno-
gastre species. Benthos investigators are called upon to focus more intensively on sam-
pling the smaller marine fauna from mobile bottoms of the West-European shelf regions.
RESUMEN
Un problema esencial para el conocimiento de los Caudofoveados y Solenogastros
(moluscos aplacóforos) es la insignificante disponibilidad de material recogido en diferen-
tes muestreos faunísticos. Esta carencia todavía afecta al Atlántico europeo y particular-
mente concierne a la falta de muestras en la plataforma continental de Francia y de la
Península Ibérica. Esta situación se pone en evidencia con la recopilación actualizada de
la distribución geográfica de ocho especies de Caudofoveados y trece de Solenogastros.
Se hace una invitación especial a los investigadores del bentos para que intensifiquen su
atención por la pequeña fauna marina de sustratos blandos en la plataforma occidental
europea.
KEY WORDS: Caudofoveata, Solenogastres, Aplacophora, new records, distribution, Europe.
PALABRAS CLAVE: Caudofoveados, Solenogastros, Aplacophora, nuevas citas, distribución, Europa.
INTRODUCTION
This contribution is restricted to a
very simple, but momentous problem:
the dearth of faunistic information with
all its consequences in both classes of
aplacophorous molluscs, the Caudofo-
veata (formerly Chaetodermomorpha)
and the Solenogastres (formerly Neome-
niomorpha).
Members of the Caudofoveata and
the Solenogastres live predominantly in
marine offshore habitats below 50 meters
depth and are in general not really rare
members of benthic biotopes (see SAL-
VINI-PLAWEN 1990). The Caudofoveata
(average size 2-15 mm) are micro-omni-
vores burrowing within muddy sedi-
* Institut fúr Zoologie, Universitat Wien, Althanstraffe 14, A-1090 Wien IX, Austria.
99
Iberus, 15 (2), 1997
ments, whereas the Cnidaria-vorous So-
lenogastres (average size 2-20 mm) are
bound to clay, secondary hard bottoms or
enidarian colonies. Our scarce know-
ledge about species diversity, biology
and zoogeography of the representatives
of both groups is in part due to the intri-
cate, high-effort and expensive sampling
methods for benthic meiofauna (ships,
cable winches, benthic sledge-dredges).
Due to these technical and financial diffi-
culties, investigation of marine meio-
fauna is generally restricted to the “home
turf” of marine biological stations or fis-
hery institutes as typified by Ply-
mouth/UK or Naples/Italy. For more
than a century, this has resulted in an un-
balanced biogeographic and systematic
knowledge of small fauna, even in Euro-
pean waters, restricting, the informative
data predominantly to animals of the
North and Mediterranean Seas. Surpri-
singly, there are only poor records from
the shelf region off France and the Iberian
peninsula (delimited in Figure 1 by the
200 m isobath).
Therefore, a special invitation is ad-
dressed to all Spanish, Portuguese, and
French colleagues who perform benthic
offshore investigations to include in their
projects the sampling of meiofauna from
mobile bottoms. It is only with the help
of such cooperative collecting work that
examination, determination and research
on small benthic animals such as Caudo-
foveata and Soleno-gastres can be satis-
factorily carried out. This cooperation is
vital to adequately enlarge our know-
ledge about the organization, biology
and biogeography of these primitive mo-
lluscan groups that still bear calcareous
bodies instead of a shell. Furthermore,
this knowledge is essential to also under-
stand Mollusca in general.
Finally, it must be underlined once
more that the determination of members
of both classes requires detailed examina-
tions (see SALVIN-PLAWEN, 1975 versus
ODHNER, 1921, for Caudofoveata; serial
sections for most Solenogastres).
The nature of the problem becomes
more evident when one examines the con-
crete documentation. With respect to the
presently-known caudofoveate and sole-
36
nogastre fauna in Northeast-Atlantic (Eu-
ropean) waters, there is a distinct gradient
between the Scandinavian-British records
(cf. SALVINI-PLAWEN, 1975; SEAWARD, 1982,
1991) and the West-European reports. Ex-
cept for a recent collection from four sites
off the coast of Galicia (in connection with
the project “Fauna Ibérica”; in prepara-
tion), other knowledge of aplacophoran
representatives from French and Iberian
shelf regions is restricted to a few random
findings. On the other hand, investigations
and records of both Caudofoveata and So-
lenogastres are again available from the
Mediterranean Sea. For Europe asa whole,
this results in an almost “bipolar” pattern
of intraspecific distribution. Clearly, in
contrast to the regular sampling in Scan-
dinavian, British and Mediterranean seas
(cf. SALVINI-PLAWEN, 1972, 1975, 1977a, b,
1988; SEAWARD, 1991), no purposeful offs-
hore samplings have been conducted on
the Iberian and French shelf in the past to
obtain at least an overview of West-Euro-
pe's small benthic fauna including Cau-
dofoveata and Solenogastres (the French
BIOGAS and POLYGAS samplings lie be-
yond the European shelf region).
The overall knowledge on Caudofo-
veata and Solenogastres has significantly
increased during the last decades, but is
still very poor when compared with ot-
her Mollusca (for an organisational and
structural overview see SALVINI-PLAWEN,
1985b, and SCHELTEMA, TSCHERKASSKY
AND KUZIRIAN, 1994, respectively; their
phylogenetic status is analysed in SAL-
VINI-PLAWEN AND STEINER, 1996). The
poor, random information on their occu-
rrence in West-European waters also ne-
gatively affects our knowledge on the full
range of organisation (systematics, com-
parative anatomy) as well as on biologi-
cal conditions and circumstances.
The above-mentioned “bipolarity” in
intraspecific distribution, with the inter-
vening West-European gap, becomes ob-
vious when considering all aplacophoran
representatives known from both nort-
hern and southern waters; these are do-
cumented below. Other species with an
up to now purely Mediterranean or
North-European distribution have a po-
tential West-European occurrence (Lusi-
SALVIN-PLAWEN: West-European and Iberian Caudeofoveata and Solenogastres
: Of, Gibraltar
Figure 1. Section of the West-European Atlantic demonstrating the ofÉshore shelf region down to
the 200 m isobath (followed by the continental decline to 3000 m depth).
Figura 1. Sección del Atlántico europeo mostrando la zona de la plataforma continental, hasta la isóba-
ta de 200 m (seguida de la zona del talud continental hasta los 3000 m de profundidad).
tanic region and / or Bay of Biscay ); exam-
ples given below are the caudofoveates
Psilodens tenuis and Chaetoderma strigis-
CAUDOFOVEATA
The Caudofoveata burrow within
mobile bottoms and have adapted a ver-
miform body with reduced pedal sole
quamatum as well as the solenogastres Bi-
serramenia psammobionta and Anamenia
gorgonophila.
(midventral fusion of the lateral mantle
rims). Generally, sampling in muddy bio-
topes (sledge-dredges, grabs) success-
37
Iberus, 15 (2), 1997
fully yields specimens. This group (for-
merly Chatodermomorpha) was separa-
ted from the Solenogastres and elevated
to class rank due to the paraphyletic sta-
tus of its aplacophorous organisation (see
SALVINI-PLAWEN AND STEINER, 1996). It
includes 98 named species classified into
three families (Limifossoridae, Prochae-
todermatidae, Chaetodermatidae). Se-
venteen European representatives have
been described so far, six of which occur
in the Mediterranean including three en-
demic species (cf. SALVINI-PLAWEN, 1990).
All species of the West-European
shelf region along with the Iberian waters
of the Mediterranean will be documen-
ted. Thus, among the Prochaetodermati-
dae, the deep-sea species Prochaetoderma
yongei Scheltema, P. clenchi (Scheltema),
and P. (Chevroderma) turnerae (Scheltema)
from the BIOGAS-cruises are not consi-
dered. These three species also inhabit
the basin of the Bay of Biscay (2* 10' - 92
W> at depths of 1175-2006 m (P. yongei),
1913-2430 m (P. clenchi) and 2124-4760 m
(P. turnerae) (see SCHELTEMA, 1985; for ta-
xonomy cf. SALVINI-PLAWEN, 1992).
Besides Falcidens aequabilis, other spe-
cies of Falcidens (Chaetodermatidae) are
likewise of biogeographical interest: at le-
ast among the known species which are
provided with a slender, tail-like poste-
rior body, each appears to inhabit a well-
defined, non-overlapping geographic re-
gion. Thus, E gutturosus (Kowalevsky,
1901) is Mediterranean (endemic), while
F. crossotus Salvini-Plawen has a Scandi-
navian-British distribution. A third “tai-
led” species, Falcidens vasconiensis Sal-
vini-Plawen, comes from the Gulf of Gas-
cogne (SALVINI-PLAWEN, 1996), and
future (not yet recorded) Lusitanic repre-
sentatives may well belong to yet another
species.
Family LIMIFOSSORIDAE
Scutopus ventrolineatus Salvini-Plawen, 1968
Known distribution (Figure 2A): Scan-
dinavian coast (Skagerrak to Tromso0),
North Sea, West-Scotland, Irish Sea,
southern Bay of Biscaya, Alborán Sea
(off Vélez-Málaga), Gulf of Lion (off
Banyuls, off Marseille), SE Africa (off
Durban); 40-1248 m.
Remarks: The occurrence of this very
slender and often coiled species has
been summarised in SALVINI-PLAWEN
(1975, 1977b). Supplementary records
come from the North Sea (Hartley, 1984)
and from off Barcelona / Catalonia with
the cruises RETRO 1 (41? 08' 07” N, 022
04” 32” E, 510 m) and ESPERMA 89 (41?
0437" N, 019 5933" E, 600'm) carried
out by Luis Dantart; a recent finding
comes from off Vélez-Málaga (4* 03” W)
at 400 m. This species is of special inte-
rest insofar as it has also been recorded
from off Southeast Africa, which indica-
tes a distribution along all East-Atlantic.
Scutopus robustus Salvini-Plawen, 1970
Known distribution (Fig. 2B): Off the
Norwegian coast with larger gaps from
Oslofjord to North of Trondheimsfjord,
scattered in the Western Mediterra-
nean Sea to 9? East; 50-3542 m.
Remarks: There are no additional
records referring to this slender, up to
10 mm species beyond the occurrence
summarised in SALVINI-PLAWEN (1975,
1977a).
Psilodens tenuis Salvini-Plawen, 1977
Known distribution (Fig. 2C): Lusita-
nic Atlantic S of Cap Sao Vicente; 2500
m.
38
Remarks: There is a single record
only, as communicated in SALVINI-
PLAWEN (1977a).
SALVINI-PLAWEN: West-European and Iberian Caudeofoveata and Solenogastres
Family PROCHAETODERMATIDAE
Prochaetoderma raduliferum (Kowalevsky, 1901)
Chaetoderma radulifera Kowalevsky, 1901, Archs. Zool. exp. gén., sér. 3, 9: 264.
Known distribution: Endemic in the
Mediterranean Sea, known from the Sea
of Marmara in the East to off the Alge-
rian coast in the West; 30-2415 m.
Remarks: To date, this species is
known only from the Mediterra-nean
Sea (see map Abb. 5 in SALVINI-PLAWEN,
1977b). Unlike most other members of
the Prochaetodermatidae, P. raduliferum
is not a true deep-sea species. As is
demonstrated by Adriatic and lonic
samplings (30-215 m) as well as by
records from off Banyuls (60-275 m)
summarised in SALVINI-PLAWEN (1977b),
it is quite regularly found on muddy
offshore bottoms. In accordance with
this, there are new records from off the
West coast of Malta at 120-160 m
(MrirsuD, 1996; the specimen photograp-
hed by Mirsub Fig. 2, however, is a
broken Falcidens gutturosus, see below),
from off Barcelona /Catalonia by Luis
Dantart (four stations at 41? 04' 37”-41?
OIM AN AOS ASS OLA SE SOS
680 m), and most recently from off
Vélez-Málaga to off Málaga (80-300 m).
Family CHAETODERMATIDAE
Falcidens gutturosus (Kowalevsky, 1901)
Chaetoderma gutturosum Kowalevsky, 1901, Archs. Zool. exp. gén., sér. 3, 9: 281.
Known distribution: Endemic in the
Mediterranean Sea, known from off
Palestine and from the Sea of Marmara
in the East to off Málaga in the West; 40-
866 m.
Remarks: Falcidens gutturosus is a
fairly common species characterised
by a slender, tail-like posterior body
with an orange-red terminal tassle.
Beyond the already known, purely
Mediterranean distribution (see map
Abb. 2 in SALVINI-PLAWEN, 1977b),
there are new samplings from off the
West coast of Malta at 120-160 m
(Mirsub, 1994, 1996), by L. Dantart
from off Barcelona (see SALVINI-
PLAWEN, 1996) and by A. Zenetos from
the Gulf of Korinth as well as from the
Gulf of Petalión (56 m; Greece); most
recently, specimens were recorded
from off Vélez Málaga (40 m) and off
Málaga (211 m).
Falcidens vasconiensis Salvini-Plawen, 1996
Known distribution: Gulf of Gas-
cogne; 141-170 m.
Remaks: Up to present there is a single
record only from off the Cap Breton in
the southeastern Bay or Biscaya (SALVINI-
PLAWEN, 1996). Its distribution throug-
hout the shelf region of the Gulf of Gas-
cogne is to be expected.
Falcidens aequabilis Salvini-Plawen, 1972
Known distribution: Endemic in the
Mediterranean Sea, ranging from the
Aegean Sea to the western Mediterra-
nean deep-sea bottom as far as the
Greenwich meridian; 132-3542 m.
Remarks: This species appears to in-
habit deeper and/or far offshore bot-
toms. Because of the technical effort in-
volved, it is consequently less fre-
quently recorded than F. gutturosus or
39
Iberus, 15 (2), 1997
Prochaetoderma raduliferum, but is well-
documented from the West-Mediterra-
nean deep-sea (Campagne Polymede, cf.
SALVINIEPLAWEN, 1977a and 1977b: map
Abb. 2). There is a new record by Luis
Dantart from off Barcelona / Catalonia
(RETROTATAOI406AN 02 03 OLE
350-426 m).
Chaetoderma (?) strigisquamatum Salvini-Plawen, 1977
Known distribution (Fig. 2C): Basin of
Alborán (W-Mediterranean Sea); 1491
m.
Remarks: There is a single record of this
chaetodermatid species, whose generic
classification needs confirmation (radula
SOLENOGASTRES
The Solenogastres (= “those with a
belly furrow”) include narrowed apla-
cophoran molluscs that still bear a pedal
groove to glide upon (formerly Neome-
niomorpha). A total of some 190 species
has been described which, in accordance
with integumentary characters, is grou-
ped into four orders (Pholidoskepia, Ne-
omeniamorpha, Sterrofustia, Cavi-
belonia). To date, 46 species are known
in European waters, of which 26 (inclu-
ding 19 “endemics”) are represented in
the Mediterranean Sea. However, little
is known about their biogeography:
most species have been recorded only
once, and inaccurate descriptions (see e.
g. Wirenia, below) additionally contri-
bute to difficulties in classification, re-
sulting in insufficient faunistic informa-
tion. Thus, the poorly described Nemato-
menia (?) corallophila (Kowalevsky, 1881),
recorded from off La Calle / Algeria at
73-183 m (37? N, 8* 30” E) as living epi-
zoically on Corallium rubrum (Linné),
apparatus; cf. SALVINI-PLAWEN, 1977a). Ba-
sed on the known distribution of Caudo-
foveata in the Mediterranean Sea in ge-
neral (SALVINI-PLAWEN, 1977b), a Lusita-
nic occurrence of this species might be
expected.
could only be recognised in the future
and re-described if it is rediscovered
again on a red coral (its alledged finding
in the Bay of Rosas/Costa Brava is a
mistranslation by Mars, 1965, from Ma-
LUQUER, 1917).
Most species documented here, toget-
her with a few others, belong to the small
number of representatives found several
times. Records of these findings are very
much tied to sampling methods and
habitat. For example, the well-known Neo-
menta carinata was never recorded by
means of sledge-dredges (muddy
bottoms), as predominantly used by the
author and his group. In another example,
those Solenogastres living on thecapho-
ran Hydrozoa or Octocorallia (e. g. Nema-
tomenia and Anamenia, below), are more
often sampled from secondary hard
bottoms (e. g. with Agassiz-trawls) or by
workers studying cnidarians. Thus, all
these circumstances help explain our frag-
mented biogeographic knowledge.
Order PHOLIDOSKEPIA
Family DONDERSIDAE
Nematomenta flavens (Pruvot, 1890)
Dondersia flavens Pruvot, 1890, Archs. Zool. ex. gén., sér. 2, 8: XXIL
Known distribution (Fig. 2D): Off
Banyuls - Costa Brava, Shetland Islands;
45-167 m.
40
Remarks: This slender, up to 4 cm
long species has a showy lemon-
yellow colour. It is not rare along the
SALVINI-PLAWEN: West-European and Iberian Caudeofoveata and Solenogastres
rocky (French and Spanish) Catalan
coast, feeding upon Hydrozoa-The-
caphora at 45-90 m (Pruvor, 1891;
MALUQUER, 1917; Mars, 1965). Ano-
ther record refers to the Shetland
Islands at 167 m, epizoic upon Lafoea
dumosa SARS; the anatomical examina-
tion revealed the presence of a vesti-
gial radula and the necessity for a
family reclassification (SALVINI-PLA-
WEN, 1978: 39-40).
Recently, the Irish Sea Survey
(MACKIE, OLIVER AND REES, 1995: 192)
collected eleven samples of N. banyu-
lensis (see below); however, there is no
information about the exact methos of
determination applied. The sampled
material had been fixed in formalin
and then preserved in alcohol (MACKIE
ET AL., 1995: 15-16); the specific body-
colour of both N. banyulensis (red) and
N. flavens (yellow) is no longer visible
after such treatment. Therefore, it
might well be that some of the N. ban-
yulensis-records in reality belong to the
externally very similar N. flavens. Only
an accurate histological determination
(serial sections) can provide the exact
specific classification of these speci-
mens.
Nematomenta banyulensis (Pruvot, 1890)
Dondersia banyulensis Pruvot, 1890, Archs. Zool. ex. gén., sér. 2, 8: XXIL
Nematomenia banyulensis var. norvegica Odhner, 1921, Bergens Mus. Aarb. 1918-19, Naturvid.
reekke 3: 43.
Muyzomenia Simroth, 1893, Zeitschr. wiss. Zool., 56: 324.
Known distribution (Fig. 2E): Off Dal-
matia, Gulfs of Naples and Salerno,
Cóte Vermeille, off Roscoff, Plymouth
Sound to Irish Sea to W-Scotland, off
Northumberland, Trondheimsfjord-Fill
(amfjord; 31-300 m.
Remarks: This well-known species
likewise lives epizoically upon Hydro-
zoa-Thecaphora. Its slender body
reaches a length of up to 3 cm and is red
(as are also two other Mediterranean
species). Its distribution is summarised
in NIERSTRASZ AND STORK (1940) and
more recently in SEAWARD (1982, 1991)
for the British waters. It has also
recently been found several times by the
Irish Sea Survey (MACKIE ET AL., 1995:
192), but compare the above remarks
with N. flavens. Geographically new
records include samples from off Sebe-
nico /Sibenik (Adriatic Sea) at 57 m, 61
m and 67-68 m (see also SALVINI-
PLAWEN, 1986) and from the Fill
(an)fjord = north-eastern Hitra Island off
Trondheimsfjord (Mus. Uppsala).
A comparative examination of Medi-
terranean and Norwegian (syntype)
individuals, particularly with respect to
the mantle scales, revealed no differen-
ces which would vindicate a separation
of the Norwegian specimens (as varia-
tion or subspecies proper).
Stylomenia salvatori Pruvot, 1899
Known distribution: Off Banyuls,
(?)Costa Brava; about 60-80 m.
Remarks: This species had been
found together with Rhopalomenia agla-
opheniae (q. v.) in an aquarium filled
with benthic material from off Banyuls-
sur-Mer; based on the presence of Rh.
aglaopheniae, this indicates an original
depth of about 60-80 m (see PrUVOT,
1891: 721). MALUQUER (1916: 244, 1917:
37-38) reports finding animals similar
to S. salvatori from the Bay of Rosas and
off Llansa (Costa Brava). Even if the
occurrence of this species is to be expec-
ted there, the record needs to be confir-
med because no accurate determination
(histological examination) was perfor-
med.
41
Iberus, 15 (2), 1997
Family LEPIDOMENIIDAE
Tegulaherpia myodoryata Salvini-Plawen, 1988
“Species D” in Salvini-Plawen, 1968a, Sarsia, 31: 132.
Tegulaherpia celtica Caudwell, Jones and Killeen, 1995, Journ. Conch. (London), 35: 258.
Known distribution (Fig. 2F): Off Li-
vorno, off Banyuls-sur-Mer, southern Bay
of Biscay (North of Asturias, THALASSA-
Stat. W-415)?, Celtic Sea, area around Ber-
gen (Raunefjord, Hjeltefjord), area around
Trondheim (Fill (an)fjord, Trondheimsf-
jord); 75-470 (75-860 / 1150?) m.
Remarks: This Mediterranean species
is likewise native to Northern Europe. In
the course of examining more compre-
hensive Solenogastres material from the
North Atlantic, the already communica-
ted “Species D” (SALVINI-PLAWEN, 1968a)
and T. celtica (CAUDWELL, JONES AND KI-
LLEEN, 1995), according to histological exa-
mination by series sections, turned out to
be conspecific with T. myodoryata from the
Western Mediterranean Sea as described
in SALVIN-PLAWEN (1988). Moreover, se-
veral other Norwegian individuals (Hjel-
tefjord, 200 m, Fill (an)-fjord, Trond-
heimfjord, 470 m) likewise belong to this
species.
A single specimen from the THA-
LASSA-Cruise (Stat. W-415, 439 55' 06” N,
06” 11 18” W; 860-1150 m), forwarded in
1971 by F. Monniot (Paris) to the author,
possibly also represents T. myodoryata,
since the mantle scales fully fit into the
range of shape, outline and size of the myo-
doryata-scales. However, the animal was
useless for histological examination, and
the record from a depth between 860 and
1150 m lends doubt to a conspecificity as
long as no bathymetrically interbridging
and /or additional samples are taken.
Family WIRENIIDAE
Wirenia argentea Odhner, 1921
Aesthoherpia glandulosa Salvini-Plawen, 1985, The Mollusca (Academic Press), 10: 94.
“Species B” in Salvini-Plawen, 1968a, Sarsia, 31: 131.
Aesthoherpia glandulosa Salvini-Plawen and “Species D” Haszprunar, 1986, Zool. Anz., 217: 345-360.
Known distribution (Fig. SA): Area
around Bergen/Norway, Hardanger-
fjord, area of Trondheimsfjord, Adriatic
Sea, Aegean Sea; 95-700 m.
Remarks: A most recent examination of
the hitherto missing type material of
Wirenia argentea Odhner (now in the
Naturhistoriska Rijkmuseet, Stockholm)
revealed that Aesthoherpia glandulosa
Salvini-Plawen is conspecific with it.
Despite some inaccurate and insufficient
presentations by ODHNER (1921: 31-34;
foregut, no radula, and so on), which led
to the description of Aesthoherpia (see
PLAWEN, 1988: 383-384), Wirenia has
nomenclatorial priority. The organisation
of the species and its presently known geo-
graphic distribution are communicated
(as Aesthoherpia glandulosa) in SALVINI-
PLAWEN (1988). Some additional findings
come from recently examined Norwegian
samples: area Northwest of Bergen (Hjel-
tefjord, 280 m; Herdlafjord, 200 m; Man-
gerfjord, 350 m) and Fill (an)fjord-Trond-
heimsfjord (95 m, 185 m, 320 m, 470 m and
490-500 m). The record of “Wirenia argen-
tea” by HARTLEY (1984) from the North Sea
needs specific confirmation.
Family MACELLOMENIDAE
Macellomenta palifera (Pruvot, 1890)
Paramenia palifera Pruvot, 1890, Archs. Zool. exp. gén., sér. 2, 8: XXIIL
42
SALVINI-PLAWEN: West-European and Iberian Caudeofoveata and Solenogastres
¡IS 7 Ñ N DN
Figure 2. A-C. Caudofoveata. Known European distribution. A: Scutopus ventrolineatus Salvini-
Plawen, 1968; B: Scutopus robustus Salvini-Plawen, 1970; C: Known records of Psilodens tenuis
Salvini-Plawen, 1970 (black circle) and of Chaetoderma(?) strigisquamatum Salvini-Plawen, 1971
(asterisk). D-F: Solenogastres. Known distribution. D: Nematomenia flavens (Pruvot, 1890); E:
Nematomenia banyulensis (Pruvot, 1890); E: Tegulaherpia myodoryata Salvini-Plawen, 1988.
Figura 2. A-C. Caudofoveados. Distribuciones conocidas. A: Scutopus ventrolineatus Salvini-Plawen,
1968; B: Scutopus robustus Salvini-Plawen, 1970; C: Citas conocidas de Psilodens tenuis Salvini-
Plawen, 1970 (círculo negro) y de Chaetoderma(?) strigisquamatum Salvini-Plawen, 1971 (asterisco).
D-F: Solenogastros. Distribuciones conocidas. D: Nematomenia flavens (Pruvot, 1890); E:
Nematomenia banyulensis (Pruvot, 1890); F: Tegulaherpia myodoryata Salvini-Plawen, 1988.
43
Iberus, 15 (2), 1997
Known distribution (Fig. 3B): Cóte
Vermeille, Irish Sea (?); 80-120 m.
Remarks: This species, with its parti-
cular calcareous mantle-bodies, was ori-
ginally recorded with a single specimen
North of Port Vendres (Cóte Vermeille;
southeastern France) on muddy bottom
at 80 m. Two individuals recently
sampled from the Irish Sea at 80 m and
120 m come very close to M. palifera
(CAUDWELL ET AL., 1995). In view of the
“bipolar” occurrence of other species
(demonstrated herein), there is a high
probability that the species are identi-
cal. However, as the British animals
have not been investigated anatomically
(series sections), true conspecificity
ramains uncertain.
Order NEOMENIAMORPHA
Family NEOMENIIDAE
Neomenta carinata Tullberg, 1875
Solenopus nitidulus Koren and Danielssen, 1877, Arch. Math. Naturvid. (Kristiania), 2: 124.
Solenopus affinis Koren and Danielssen, 1877, Arch. Math. Naturvid. (Kristiania), 2: 127.
Neomenia grandis Thiele, 1894, Zeitschr. wiss. Zool., 58: 223.
Known distribution (Fig. 3C): Nor-
thern Kattegat and Bohuslán (W-Swe-
den), Norwegian coast between Oslo-
fijord and Sognesjóen/Sogne-fjord,
Romsdalsfjord, Trondheimsfjord, South
of Lofoten, Iceland, Shetland Islands,
British Isles, off Roscoff, Costa Brava,
Gulf of Genova, Gulf of Naples, off Mes-
sina; 10-565 m.
Remarks: This up to 3 cm long species
has a stoutish shape and is well docu-
mented along the coast of Scandinavia
and around the British Isles (KOREN AND
DANIELSSEN, 1879; WIRÉN, 1892; ODHNER,
1921; Muus, 1959; SEAWARD, 1982, 1991)
including Strindfjord / Trondheimsfjord
(Mus. Copenhagen) and the Hebrides
(Mus. Leiden). The Mediterranean
records include N. affinis (Koren and
Danielssen) which, according, to certain,
minor anatomical differences (pers. obs.),
can be classified as a subspecies only
(SALVINI-PLAWEN 1986); the same holds
true for N. grandis Thiele (NIERSTRASZ
AND STORK, 1940). A remarkable record
refers to Iceland (KNUDSEN, 1949), a
region in which Neomenia dalyelli (Koren
and Danielssen) is generally found.
Order CAVIBELONIA
Family PARARRHOPALIDAE
Eleutheromenia sierra (Pruvot, 1890)
Paramenta sierra Pruvot, 1890, Archs. Zool. exp. gén., 8: XXUL
Known distribution (Fig. 3D): Costa
Brava, Bretagne; Irish Sea; Trondheim
region; 40-128 m.
Remarks: PRUVOT (1891) typifies the
species from a single specimen (Cap
Creus / Costa Brava; 80 m) and in 1897 he
reports another finding from off Roscoff
at about 40 m (Pruvor, 1897). A single spe-
cimen of typical appearence (lobed dor-
somedian keel) from Stjórn (North or
Trondheim / Norway), despite the geo-
graphical distance, after serial section reve-
44
aled to be Eleutheromenia sierra. Conse-
quently, the questioned presence or this
species in the southwestern Cartigan Bay
(Irish Sea, 52 m; see HARTLEY 1984,
SEAWARD, 1991: 14) as well as the speci-
mens from nine samples or the Irish Sea
Survey referred to E. sierra (CAUDWELL ET
AL., 1995: 266; MACKIE ET AL., 1995: 192;
not documented in Fig. 3D) are indirectly
confirmed to really belong to this species.
On the other hand, the Pararrhopalii-
dae represent a fairly diverse group of sys-
SALVINI-PLAWEN: West-European and Iberian Caudeofoveata and Solenogastres
Figure 3. Solenogastres. A: Known distribution of Wirenía argentea Odhner, 1921; B: Records of Ma-
cellomenia palifera (Pruvot, 1890) (black circles) and of Meromenia hirondellei Leloup, 1949 (asterisk);
C: Known distribution of Neomenia carinata Tullberg, 1875; D: Records of Eleutheromenia sierra
(Pruvot, 1890), see text; E: Known distribution of Biserramenia psammobionta Salvini-Plawen, 1968;
E: Known European distribution of Rhopalomenia aglaopheniae (Kowalevsky and Marion, 1887).
Figura 3. Solenogastros. A: Distribución conocida de Wirenia argentea Odhner, 1921; B: Citas de Macel-
lomenia palifera (Pruvot, 1890) (círculos negros) y de Meromenia hirondellei Leloup, 1949 (asterisco);
C: Distribución conocida de Neomenia carinata Tullberg, 1875; D: Citas de Eleutheromenia sierra (Pru-
vot, 1890), véase texto; E: Distribución conocida de Biserramenia psammobionta Salvini-Plawen, 1968;
F: Distribución europea de Rhopalomenia aglaopheniae (Kowalevsky y Marion, 1887).
45
Iberus, 15 (2), 1997
tematically very difficult representatives
(see SALVINI-PLAWEN, 1978); several geo-
graphically close records of Pararrhopa-
liidae may represent different species (or
even genera). Thus, another record from
the Irish Sea (Pruvotina sp. in CAUDWELL
ET AL., 1995: 265-267) clearly does not
belong to E. sierra; the same can be said
about two THALASSA-specimens from
off Galicia and off Asturias (Bay of Biscay)
Family SIMROTHIELLIDAE
Biserramenta psammobionta Salvini-Plawen, 1968
Known distribution (Fig. 3E): Irish Sea,
Plymouth area, Bretagne, Galicia; 8-30 m.
Remarks: In addition to the type mate-
rial from off Roscoff at 8-10 m (SALVINI-
PLAWEN, 1968b; see also MONNIOT, 1965),
several individuals have recently been
recorded in Plymouth Sound at 9-11 m
(50% 20” 43” N, 4? 09 05” W; see also
KIKINGER AND SALVINI-PLAWEN, 1995).
Moreover, a single specimen has been
sampled by lan Killeen during the Irish
Sea Survey from the Cardigan
Bay / Wales (Stat. 46, 52* 19% 12” N, 04? 37"
W) at 30 m, provided by Cathy Caudwell
to the author (see also CAUDWELL ET AL.,
1995). Finally, the 12 Solenogastres refe-
rred to as “Lepidomenia sp.” by Celia Bes-
teiro in her Ph. D. thesis (1986) from
Galicia / Spain (Ría de Ferrol, “Bajo de la
Palma”; 43? 27' 59” N, 08* 16' 23” W; 14
m) also represent Biserramenia psammo-
bionta. They all come from coarse sand or
shell gravel bottoms and at least those
from Roscoff, Plymouth and Galicia are
interstitially living animals (cf. SALVINI-
PLAWEN, 1985a; also OTT AND BOcH-
DANSKY, 1991, for the Plymouth animals).
The histological examination of these
specimens revealed some details beyond
the original description (SALVINI-
PLAWEN, 1968b). First, the characteristic
circular musculature around the spaw-
ning ducts and the posterior mantle
cavity is not yet elaborated in juveniles.
The slender pericardioducts with a tiny
lumen still open from dorsal into the
spawning ducts close to their rostral
ends, these ducts being paired throug-
hout with a wide lumen. Further diffe-
rentiation thus includes a curving elon-
gation of the rostral portion of the spaw-
ning ducts, which results in the adult
spawning ducts bending dorso-poste-
riorly (as described in 1968). Here, the
pericardioducts join their ends not
axially but ventrally, thus causing a
bulgy enlargement or even a slight bend
in the continuous lumen. This bulged
enlargement is the site of sperm storage,
thus functioning as receptacula seminis;
well-defined, set-off seminal pouches
(vesiculae seminales, as described
earlier), however, are not present. The
paired lateral pouch of the ventrorostral
mantle cavity is well differentiated only
in fully-grown individuals and often
merely represents two simply lobulated,
more or less distinct sacculations
opening medially through a short duct
or pore into the pallial space. Rather
than being paired in the sense of two sin-
gular, separate ganglia, the cerebral
ganglia are fused together in the middle
third of their extension. In some speci-
mens a small dorsoterminal sense organ
could be detected at the rear of the body.
Family AMPHIMENIIDAE
Meromenia hirondellei Leloup, 1949
Known distribution (Fig. 3B): Nort-
hern Bay of Biscay; 166 m.
Remarks: A single fragment of this
species had been recorded from the con-
tinental platform in the northern Bay of
46
Biscay (46” 27” N, 4* 09% 45” W) at 166 m
depth. Due to the unknown organisa-
tion of the anterior body, the generic
classification is uncertain (LELOUP, 1950:
21-23; SALVINI-PLAWEN, 1972: 224-225).
SALVINI-PLAWEN: West-European and Iberian Caudeofoveata and Solenogastres
20
o y
Figure 4. Solenogastres. A: Known European distribution of Anamenia gorgonophila (Kowalevsky,
1880); an additional record refers to the Azores; B: Known distribution of Dorymenia sarsii (Koren
and Danielssen, 1877).
Figura 4. Solenogastros. A: Distribución europea de Anamenia gorgonophila (Kowalevsky, 1880); una
cita adiccional se refiere a las islas Azores; B: Distribución conocida de Dorymenia sarsii (Koren y Daniels-
sen, 1877).
Family RHOPALOMENIDAE
Rhopalomenia aglaopheniae (Kowalevsky and Marion, 1887)
Rhopalomenia eisigi Thiele, 1894, Zeitschr. wiss. Zool., 58: 269.
Known distribution (Fig. 3F): Off Cap
Matapan/Tainaron (South-Peleponnes),
Gulf of Naples, off Marseille, Cóte Ver-
meille, off Roscoff, British Isles; 50-137 m.
Remarks: This well-known species li-
ves upon Hydrozoa-Thecaphora, almost
exclusively upon Lytocarpia myriophyllum
(Linné). The distribution is compiled in
NIERSTRASZ AND STORK (1940), SALVINI-
PLAWEN (1972) and SEAWARD (1982, 1991).
The identification of several specimens
from off Monrovia / Liberia (THIELE, 1906:
324) needs re-examination and / or confir-
mation.
Family STROPHMENIDAE
Anamenia gorgonophila (Kowalevsky, 1880)
Proneomenia nierstraszi Stork [in Nierstrasz and Stork], 1940, Zoologica (Stuttgart), 99: 57.
Anamenia heathi Leloup, 1947, Bull. Mus. roy. Hist. Nat. Belgique, 23 (26): 1-11.
Known distribution (Fig. 4A): Gulfs of
Naples and Salerno, off La Calle (eas-
ternmost Algeria), off Marseille, Sea of
Alborán, Gorringe-Bank (WSW of Cap
Sao Vicente), Azores; 65-845 m.
Remarks: The records of this species have
beenrevised by SALVINI-PLAWEN (1972). The
investigation of numerous Solenogastres
recorded more recently from the SW of the
Isle of Alborán (see TEMPLADO, GARCÍA-
CARRASCOSA, BARATECH, CAPACCIONI,
JUAN, LÓPEZ-IBOR, SILVESTRE AND MASSÓ,
1986: 101-102) revealed that they in part
belong to A. gorgonophila, and the known
distribution of the species supports the
assumption of its presence in Lusitanian
waters as well. This species lives upon Gor-
gonaria, predominantly upon Paramuricaea
clavata (Risso) = P. chamaeleon (Koch), but
also upon Eunicella spp. and others.
47
Iberus, 15 (2), 1997
Family PRONEOMENIIDAE
Dorymenia sarsil (Koren and Danielssen, 1877)
Simrothiella sarsi Auctt. (see Opinion 1185 ICZN)
Known distribution (Fig. 4B): Trond-
heimfjord, Sognefjord, Bergen area, Os-
lofjord, Skagerrak, Gorringe Bank (off Cap
Sao Vicente); North Atlantic-Arctic Ocean
outside Troms0?; 183-681 m (1134 m?).
Remarks: The up to 7 cm long, slender
species was redescribed by ODHNER (1921)
and is externally characterised by a dis-
tinct (dorso-)terminal extension of the
body; a photograph is given in SALVINI-
PLAWEN (1968a: Abb. 23). Some recently
examined material from Scandinavian col-
lections extends the known distribution
(see Fig. 4B); the North Atlantic-Arctic spe-
cimens (71 25 N, 15” 41' E, 1134 m; see
ODHNER, 1921, and JAECKEL, 1954) only
doubtfully belong to D. sarsii based on the
geographic and bathymetric distribution.
In addition to the polystichous radula, a
pair of copulatory stylets and the presence
of a dorsoterminal sense organ typical for
the genus, histological investigations un-
derline two particular specific characters
in mature animals: the anterior portion of
the pericardioducts bears small pockets
serving as vesiculae seminales, and the
posterior portion of the spawning ducts
(“lower gametoducts”) in front of their fu-
sion each elaborate a ventral enlargement
or voluminous sacculation (pocket). Both
these characters allow this particular Dory-
menta species to be identified in SCHEL-
TEMA ET AL. (1994: Figs. 22 E and 24 G) as
D. sarsii (Koren and Danielssen). The ge-
ographic distribution of this species is thus
enlarged to the Gorringe Bank of the Ibe-
rian shelf region (36? 50' N, 9* 15 W, 681
m, Cf. SCHELTEMA ET AL., 1994: 18).
Family LEPIDOMENIIDAE
Lepidomenia ? spp.
Lepidomenia hystrix Auctt. non Marion and Kowalevsky, 1886
Lepidomenia (?) swedmarki Salvini-Plawen, 1985, Stygología, 1 (1): 103.
Remarks: Some records of small, mesop-
sammic Solenogastres from off Marseille,
Bretagne and off Belfast / Northern Ireland
have been systematised as Lepidomenia
hystrix Marion and Kowalevsky (see
SALVINI-PLAWEN, 1985a; SEAWARD, 1991).
Referring to the discussion in SALVINI-
ACKNOWLEDGEMENTS
The updating of the geographical
distribution in part comes from the
Scandinavian material in elaboration by
REFERENCES
CAUDWELL, C. M., JONES, A. M. AND KILLEEN,
[. J., 1995. Three Solenogastres from the Irish
Sea, new to the British marine area. Journal
. of Conchology (London), 35: 257-269.
48
PLAWEN (1985a), the classification of these
animals (not having been investigated ana-
tomically) as L. hystrix is unwarranted and
misleading. The specimens should be
determined by means of serial sections
rather than simply naming them based on
accessory features.
Dr. Claudia Handl (Wien) supported by
the grant P 9075-B of the Austrian
Science Foundation FWFE to the author.
HARTLEY, J. P., 1984. The benthic ecology of the
Forties Oilfield (North Sea). Journal of Expe-
rimental Marine Biology and Ecology, 80: 161-
195:
SALVINI-PLAWEN: West-European and Iberian Caudeofoveata and Solenogastres
HASszPRUNAR, G., 1986. Feinmorphologische
Untersuchungen an Sinnesstrukuren ur-
sprúnglicher Solenogastres (Mollusca). Zoo-
logischer Anzeiger, 217: 345-362.
JAECKEL, G. A., 1954: Aculifera Aplacophora
und Aculifera Placophora im Gebiet der
Nord- und Ostsee. Kieler Meeresforschungen,
10: 261-271.
KIKINGER, R. AND SALVINI-PLAWEN, L. v., 1995.
Morphogenesis from polyp to Stauromedusa
in the genus Stylocoronella (Cnidaria: Scyp-
hozoa). Journal of the Marine Biological Asso-
ciation of the United Kingdom, 75 (4): 899-912.
KNUDSEN, J., 1949. Amphineura. The Zoology of
Iceland, 4 (59): 1-11.
KOREN, J. AND DANIELSSEN, D. C., 1879. Des-
criptions of new species belonging to the Ge-
nus Solenopus, with some observations on
their organization. Annals and Magazine of
Natural History (ser. 5), 3: 321-328.
LELOUr, E., 1950. Solénogastres provenant des
campagnes du Prince Albert ler de Monaco.
Résultats des Campagnes scientifiques par Albert
ler de Monaco, 110: 1-38.
MACKIE, A. S. Y., OLIVER, P. G. AND REES, E. I.
S., 1995. Benthic Biodiversity in the southern
Irish Sea. BIOMOR Reports (Natural Museum
of Wales), 1: 1-263.
MALUQUER, J., 1916. Treballs oceanografics en
la costa del Empurda. Anuari Junta Ciencies
Naturales Barcelona, 1: 221-261.
MALUQUER, J., 1917. Notes per a l'estudi dels So-
lenogastres (Molluscos Amfineures) de Ca-
talunya. Treballs de la Institució catalana d'-
Historia Natural, 3: 9-53.
Mass, P., 1965. Faune marine des Pyrénées-
Orientales (5): Mollusques Aplacophores,
Polyplacophores, Scaphopodes et Bivalves.
Vie et Milieu, Suppl. 15 (4): 1-156.
MirSUD, C., 1994. Falcidens gutturosus (Kowa-
levsky, 1901) (Mollusca, Caudofoveata). New
to the Maltese circalittoral fauna! La Conchi-
glía, 26 (270): 11-12.
MirsubD, C., 1996. Living Mollusca from circa-
littoral coastal muds, off Western Malta. La
Conchiglia, 28 (suppl. to 279): 23-41.
MONMNIOT, F., 1965. Ascidies interstitielles des
cótes d'Europe. Mémoirs du Muséum Natio-
nal d'Histoire Naturelle (Paris), Sér. A, 35: 1-
154.
MUuus, B., 1959. Skallus, Soteender, Bleeksprut-
ter. Danmarks Fauna, 65: 1-239.
NIERSTRASZ, H. AND STORK, H., 1940. Mono-
graphie der Solenogastren des Golfes von Nea-
pel. Zoologica (Stuttgart), 99: 1-99, Taf. fXV.
ODHNER, N., 1921. Norwegian Solenogastres.
Bergens Museums Aarbok 1918-19, Naturvi-
denskabelig reekke, 3: 1-82.
OPINION 1185: ICZN 1981. Simrothiella Pilsbry,
1898 (Mollusca, Solenogastres): Designation
of a type species. Bulletin of Zoological No-
menclature, 38 (3): 185-187.
Orr, J. AND BOCHDANSKY, A., 1991. Meiofauna
of marine sediments. PAL-Videofilm (Pro Mare,
Vienna).
Pruvor, G., 1891. L'organisation de quelques
Néoméniens des cótes de France. Archives de
Zoologie expérimentale et générale, sér. 2, 9: 699-
810.
Pruvor, G., 1897. Essai sur les fonds et la faune
de la Manche occidentale (Cótes de Bretag-
ne) comparés a ceux du Golfe du Lion. Archi-
ves de Zoologie expérimentale et générale, sér. 3,
5: 511-660.
SALVINI-PLAWEN, L. v., 1968a. Uber einige Be-
obachtungen an Solenogastres (Mollusca,
Aculifera). Sarsia, 31: 131-142.
SALVINI-PLAWEN, L. v., 1968b. Neue Formen
im marinen Mesopsammon: Kamptozoa
und Aculifera. Annalen des Naturhistori-
schen Museums Wien, 72: 231-272.
SALVINI-PLAWEN, L. v., 1972. Revision der
monegassischen Solenogastres (Mollusca
Aculifera). Zeitschrift fúr zoologische Syste-
matik und Evolutionsforschung, 10: 215-240.
SALVINI-PLAWEN, L. v., 1975. Mollusca: Cau-
dofoveata. Marine Invertebrates of Scandina-
via, 4: 1-55.
SALVINI-PLAWEN, L. v., 1977a. Caudofoveata
(Mollusca) des Forschungsprojektes Poly-
mede. Bulletin du Muséum Nationale d'His-
toire Naturelle (sér. 3), No. 447, Zoologie
Vol. 310: 413-421.
SALVINI-PLAWEN, L. v., 1977b. Caudofoveata
(Mollusca), Priapulida und apode Holo-
thurien (Labidoplax, Myriotrochus) bei Ban-
yuls und im Mittelmeer allgemein. Vie et
Milieu, 27A: 55-81.
SALVINI-PLAWEN, L. v., 1978. Antarktische
und subantarktische Solenogastres. Zoolo-
gica (Stuttgart), 128: 1-315.
SALVINI-PLAWEN, L. v., 1985a. New intersti-
tial Solenogastres (Mollusca). Stygologia, 1:
101-108.
SALVINEPLAWEN, L. v., 1985b. Early evolu-
tion and the primitive groups. The Mollusca
(Academic Press), 10 (Evolution): 59-150.
SALVINI-PLAWEN, L. v., 1986. Caudofoveata e
Solenogastres del Mediterraneo. Bollettino
Malacologico, 22: 189-196.
SALVINI-PLAWEN, L. v., 1988. Einige Soleno-
gastres (Mollusca) der europáischen Meio-
fauna. Annalen des Naturhistorischen Mu-
seums Wien, 90B: 373-385.
SALVINI-PLAWEN, L. v., 1990. The status of the
Caudofoveata and the Solenogastres in the
Mediterranean Sea. Lavori della Societa Ita-
liana di Malacologia, 23: 5-30.
SALVINI-PLAWEN, L. v., 1992. On certain Cau-
dofoveata from the VEMA-Expedition. In
Gitteenberger, E. and Goud, J. (Eds.): Pro-
ceedings of the Ninth International Malacolo-
gical Congress. Unitas Malacologica, Lei-
den: 318-333.
49
Iberus, 15 (2), 1997
SALVINI-PLAWEN, L. v., 1996. Falcidens vasco-
niensis spec. nov. (Mollusca, Caudofoveata)
du plateau continental du golfe de Gascogne.
Bulletin de la Société Zoologique de France, 121:
339-345.
SALVINI-PLAWEN, L. V. AND STEINER, G., 1996.
Synapomorphies and plesiomorphies in hig-
her classification of Mollusca. In Taylor, J.
(Ed.): Origin and evolutionary radiation of the
Mollusca. Oxford University Press, Oxford
(U. K.): 29:51.
SCHELTEMA, A. H., 1985. The aplacophoran fa-
mily Prochaetodermatidae in the North Ame-
rican Basin, including Chevroderma n. g. and
Spathoderma n. g. (Mollusca, Chaetoder-
momorpha). Biological Bulletin, 19: 484-529.
SCHELTEMA, A. H., TSCHERKASSKY, M. AND
KUZIRIAN, M., 1994. Aplacophora. Micros-
copic Anatomy of Invertebrates, 5 (Mollusca
I): 13-54.
50
SEAWARD, D. R., 1982. Sea Area Atlas of the ma-
rine molluscs of Britain and Ireland. Nature
Conservancy Council, Shrewsbury, 53 pp.,
746 maps.
SEAWAROD, D. R., 1991. Distribution of the marine
molluscs of North West Europe. Nature Con-
servancy Council, Peterborough, 114 pp.
TEMPLADO, J., GARCÍA-CARRASCOSA, M., BA-
RATECH, L., CAPACCIONI, R., JUAN, A., LÓPEZ-
IBOR, A., SILVESTRE, R. AND MAssóÓ, C., 1986.
Estudio preliminar de la fauna asociada a
los fondos coraliferos del mar de Alborán
(SE de España). Boletín del Instituto Español de
Oceanografía, 3 (4): 93-104.
THIELE, J., 1906. Archaeomenia prisca n. g. n. sp.
Wissenschaftliche Ergebnisse der Deutschen Tief-
see-Expedition Valdivia, 9: 317-324.
WIRÉN, A., 1892. Studien úber die Solenogas-
tren II. Kunglige Svenska Vetenskaps-Akade-
miens Handlingar, 25 (6): 1-100.
O Sociedad Española de Malacología —_—_—_—_—_—_—_———— Iberus, 15 (2): 51-66, 1997
Molluscs as evolving constructions: necessary aspects for a
discussion of their phylogeny
Los moluscos como construcciones en evolución: aspectos necesarios
para una discusión sobre su filogenia
Karl EDLINGER* and Wolfgang Friedrich GUTMANN!
Recibido el 8-[X-1995. Aceptado el 19-X-1996
ABSTRACT
A model for the evolution of molluscs is presented. The reconstruction is based on the Frank-
furt Theory which conceives organisms as energy transforming hydraulic units which are
subject to evolutionary transformation according to the constructional principles ruling orga-
nisation. Evolution is reconstructed as a process of constructional transformations in which
all stages are explained as explicitly viable constructions; the irreversible transformation
phases are also rationally explained by referring to constructional properties of the orga-
nismic machines. lt is maintained that the predecessors of molluscs must have been elongate
worm like animals which were internally tethered by muscles in a way that creeping on the
flattened ventral “foot” surface became possible. Only organisms controlling the cross-section
by a densely spaced muscle system could start creeping on hard substrate. The establishment
of the radula is shown to have been dependent on the adhesive creeping movements which
allowed anchorage of the construction to the substrate during rasping. The formation of the
shell elements was rendered possible by concentration of motility to the ventral side while
the dorsal body wall was held undeformed as a precondition for shell formation. Formation
of the muscle grid of the foot on the ventral side of the body and the stabilisation by skeletal
elements of the dorsal side caused a shift of the inner organs into a dorsal hump. From the
model for the primitive molluscs with segmented shells the continuation into the conchiferan
constructions with fused shells and the constructional lineages into the major mollusc cons-
tructions are given in captions parallelizing sequences of visualisations of the constructional
stages with the major alterations.
RESUMEN
Se presenta un modelo sobre la evolución de los moluscos basado en la Teoría de Frankfurt,
que concibe a los organismos como unidades hidráulicas transformadoras de energía suje-
tas a transformaciones evolutivas de acuerdo con los principios constructivos que regulan la
organización. La evolución se reconstruye como un proceso de transformaciones construc-
cionales en el que todos los estados se explican como construcciones explícitamente viables;
las fases de transformación irreversibles también se explican racionalmente refiriéndolas a
propiedades construccionales de las máquinas orgánicas.
Se defiende que los predecesores de los moluscos deben haber sido animales alargados,
tipo gusano, que contaban con una malla muscular interna de tal manera que fuese posible
arrastrarse sobre la superficie aplanada ventral del “pie”. Sólo aquellos organismos que
controlasen su sección mediante un sistema muscular densamente espaciado podían empe-
zar a arrastrarse sobre un sustrato duro.
* Naturhistorisches Museum Wien, 3. Zoologische Abteilung, Burgring 7, A-1014 Wien, Austria.
Prof. Gutmann died on April 1997.
Sl
Iberus, 15 (2), 1997
La aparición de la rádula se muestra como un proceso dependiente de los movimientos de
reptación que permitieron el anclaje de la estructura al sustrato durante el raspado. La for-
mación de elementos conchíferos fue posible por la concentración de la motilidad en la cara
ventral mientras que la pared dorsal del cuerpo se mantenía sin deformación, paso previo
para la formación de una concha. La aparición de la malla muscular del pie en la cara ven-
tral del cuerpo y la estabilización de la cara dorsal mediante elementos esqueléticos pro-
vocaron el traslado de los órganos internos hacia una ¡joroba dorsal. A partir del modelo
de moluscos primitivos con conchas segmentadas se presenta el desarrollo hacia construc-
ciones conchíferas con conchas fusionadas y hacia las principales estructuras construccio-
nales de moluscos, mediante encabezamientos de sequencias paralelas de estados de de-
sarrollo, incluyendo las principales alteraciones.
KEY WORDS: Molluscs, hydraulic constructions, phylogenetical reconstruction, metamery, radiation.
PALABRAS CLAVE: moluscos, construcciones hidráulicas, reconstrucción filogenética, metamería, radiación.
INTRODUCTION
Evolution can never be directly obser-
ved. It must be reconstructed in models
describing the sequences of transforma-
tional steps. All stages of evolution neces-
sarily have to be represented by explicitly
viable organismic constructions. The the-
oretical concept and the methodology
which allows such reconstructions is the
Frankfurt Evolution Theory (FET)
(GUTMANN, 1974, 1989; BONIK, GRASSHOFF
AND GUTMANN, 1977; GUTMANN AND
EDLINGER, 1994a, b, c, d; EDLINGER, 1989a,
b; EDLINGER, GUITMANN AND WEINGAR-
TEN, 1991; VOGEL, 1991). In accordance
with the demands and results of other bio-
logical disciplines, this theory conceives of
organisms as energy transforming units
and as autoformative constructions.
Reconstructions of the evolutionary
changes in the sense of the Frankfurt Evo-
lutionary Theory are supported by the
insight into the constructional properties
of all animal soft body systems which
function as hydroskeleton apparatuses
and hydraulic units. Before reconstruc-
tions are attempted the principles and
physical laws governing the organismic
entities must be known.
ORGANISMS: ENERGY TRANS-
FORMING ENTITIES
On the basis of constructional expla-
nations metazoan animals must be des-
De
cribed and explained as self-sustaining
and energy transforming systems. Basi-
cally, they function as machines. They
are capable of actively acquiring matter
and energy from their environment. By
transforming the chemical energy thus
obtained into mechanical force the wor-
king activity of the body construction is
generated.
Energy transformation in the cons-
-tructions is determined by the structure
of specific macromolecular components,
mainly in muscles and cilia. To become
effective as driving engines the energy
transforming structures have to be inte-
grated into an energy cascade of a mecha-
nically coherent structural whole in which
the forces are transmitted to mechanically
working units. A chain of force transmit-
ting structures connects the energy trans-
forming sites with the working units of
the animal body. This chain must never
be interrupted because interruption would
lead to dysfunction and failure of the orga-
nismic construction. The internal activity
is also dependent on the form determi-
ning structural order and on the effective
suppression of useless motoric deforma-
tions by restraining structures.
After the chemo-mechanical energy
transformation on the macromolecular
level the energy is finally utilised in the
machinery for the generation of form,
locomotion, behaviour, and also for
reproduction.
EDLINGER AND GUTMANN: Phylogeny of molluscs as evolving constructions
The constructional concept of orga-
nisation conceives of organismic units
as hydraulic entities that are composed
of enclosing membranes and flexible
integumental walls. The form of every
living body must be enforced by tethe-
ring and or bandaging structures which
suppress the tendency of all living
(hydraulic) units to assume a spherical
shape. In animal constructions the form
is entirely or mainly determined by the
tensile force of muscles and by the mesh
of connective tissue structures which are
organised in highly ordered arrays. In
the course of evolution all transforma-
tion stages must be shown to comply
with the laws of form-enforcement in
hydraulic units. The internal construc-
tional principles and law-like principles
determine the directionality and the
irreversibility of evolutionary change.
The capability of living construc-
tions to function as energy transforming
apparatuses and the ability to obtain an
input of matter and energy are determi-
ned by the structural order of the energy
transforming and working construction.
All stages of evolutionary transforma-
tion series must never lose their structu-
ral order and can only undergo gradual
transformation in a way that the prece-
ding constructional stages open up the
organismic options of the subsequent
alterations. These alterations lead into
constructional alleys with further trans-
formation sequences.
Evolution which is driven by the
activity of the organisms themselves
and the insuppressible generation of
non-directional variation has to follow
very specific internal principles; the step
by step alterations must be forced on
alleys of ordered constructions and on
sequences of non-fortuitous stages.
Because the principles and laws of
organisation can be elucidated in extant
organisms, the transitional sequences can
be reliably reconstructed. So models can
be formulated which are rational in
respect to the methodology applied. Con-
sequently they provide valid explanations
of the intermediate constructional stages.
In all organismic constructions the
course of evolution, mainly of the gross
morphological level, can be shown to de-
pend on the constructional organisation
outlined above. Consequently all minor
physiologically, cytologically, and histo-
logically based functions must be un-
derstood as subservient and dependent
on the conditions given by the construc-
tion as a whole.
Morphological features and so called
morphological characters in the traditio-
nal sense, at all levels of the organisms,
must be seen as enforced by mechanical
structures and as energy transforming
structures.
Constructional morphology and the
reconstruction of evolutionary transfor-
mation do not allow the employment of
traditional methodologies which prescribe
the dismantling and disintegration of
living constructions into morphological
patterns or an array of distinct characters.
Such a procedure is advocated by cladis-
tic “methodologies”. Selection and deli-
mitation of features automatically des-
troys the coherence of organismic systems
and the basic hydraulic constitution. In
living machines constructional coherence,
the hydraulic properties, the order of form-
enforcing structures, and the cataract of
energy transforming structures of orga-
nisms are not accessible to character analy-
sis and comparison of form as advocated
by traditional morphology. Only cons-
tructional alterations based on the recons-
truction of constructionally and functio-
nally viable stages are of interest.
Superficial aspects of similarity of form
and so called homologies in the sense of
traditional morphology are also of no rele-
vance because constructional explanation
has to follow lines of analysis that are com-
parable to engineering procedures.
Such principles preclude the depic-
tion of fortuitous alterations and arbi-
trary morphoclines and allow the deter-
mination and the reconstruction of the
transformation alleys and the establish-
ment of the sequences of stages in the
course of evolution. All evolutionary
alterations must be shown to be delimi-
ted by the internal constructional pro-
perties of the living machines (Fig. 1).
Thus, the constructional alterations of
evolution have to be reconstructed as
9
Iberus, 15 (2), 1997
REMOVAL OF
WASTE haa
METABOLIC === A GENE EXPRESSION AND
ACTIVITY GENETIC INTERACTIONS
IONIC COMPOSITION ¿== 2
VOLUME REGULATION
PROPERTIES OF MEMBRANES
(SOLIDITY, PERMEABILITY)
CELL SHAPE AND
ARRANGEMENT OR TISSUES
POLYMERS AND
CROSSLINKING PROTEINS
ENERGY
MECHANICAL PROPERTIES AND ACTIVITIES
(VISCOSITY, STIFFNESS, CONTRACTILITY)
CYTOSKELETAL
PATTERN
RYTHM AND
EXTRACELLULAR MATRIX AND AUTODEFORMATION
ADHESIVE FORCES
A
PERMANENTLY ACTIVE
ORGANISMIC
CONSTRUCTION
MODULATING
PARTIAL SYSTEMS
MEA
Figure 1. Interrelations between the different levels and parts of organisms and between organisms
and their environment (after BEREITER-HAHN, 1991 and EDLINGER, 1995).
Figura 1. Interrelaciones entre los diferentes niveles y partes de organismos y entre los organismos y su
medio ambiente (tomado de BEREITER-HAHN, 1991 y EDLINGER, 1995).
internally guided and directed and cannot
be understood as adaptational processes
or as ruled by environmental factors in the
sense of Darwinian thinking. Evolution in
the sense of the FET, which is certainly the
most radical variant of post-Darwinian
concepts assumes a new status and is
based on the properties of the evolving
organismic entities. Therefore, all Darwi-
nian tenets are excluded from the recons-
tructions as they are not conducive to the
constructional principles which rule orga-
nismic constructions and evolutionary
transformation.
The theoretical tenets and the met-
hodology of the reconstruction procedu-
res were elaborated by a group of
authors (BONIK ET AL., 1977; GUTMANN,
1974, 1989; EDLINGER, 19894, B, 199la, b,
1992a, b, 1994a, b; EDLINGER ET AL., 1991;
VOGEL, 1991) Numerous models
provide corroborating evidence for the
successful application of the methods
and for the validity of the non-Darwi-
nian evolutionary theory.
On the basis of the just outlined con-
cept ontogenetic and phylogenetic deve-
lopment of molluscs (like that of other
“bauplans” of animals) must be recons-
tructed as transformational sequence of
organismic constructions over viable
intermediate constructional forms. The
54
sequence of evolutionary alterations
must be ruled by the intrinsic laws and
constructional principles which are res-
ponsible for the continuation of energy
transformation and motoric activity in
all stages.
MOLLUSGCS AS A CASE STUDY
In the following the evolution of the
mollusc constructions is presented as a
case study. The stages of mollusc evolu-
tion have to be described and figured
out as tethered systems which in most
cases allow flattening of the foot. In this
way they can exert sufficient control of
body shape by tethering muscles while
the shell structures serve only as defor-
mation suppressing elements in the
dorsal parts of the coherent whole.
THE DERIVATION OF THE MO-
LLUSCS: THE KEY TRANSFORMA-
TION STEPS
In reconstructions based on cons-
tructional morphology the morphocli-
nes and all aspects of directionality of
evolutionary transformation are
derived from the biomechanical princi-
EDLINGER AND GUTMANN: Phylogeny of molluscs as evolving constructions
ples of the living organisms. Thereby,
the arrow of time is firmly supported
by irreversible constructional explana-
tion. On the basis of the constructional
analysis only the derivation of molluscs
from annelid-like forerunners can be
consistently explained (GUTMANN,
1974; EDLINGER, 1991a).
The basic mollusc construction must
certainly have been a creeping creature
with a flattened foot and a dorsal shell
or a sequence of shell elements. The
problem posed by this basic and only
sketchily figured out construction can
be formulated in the following way.
How can such a constructional
constitution arise in skeleton free
hydraulic forerunners of whatever kind
of primitive metazoan organisation?
Which constructional organisation
might have been the incipient stage for
the emergence of the basic properties?
The key changes can only be explai-
ned if one sets the starting point of the
transformation sequence in an annelid
like segmented soft body construction
which was capable of controlling the
cross-section of the body in a way that
creeping on a flattened ventral side
became possible. Flattening must have
been the first stage of adhesive creeping.
The initiation of creeping on a flatte-
ned ventral side was a realistic option of
annelid-constructions with an internal
tethering by dissepimental and other
muscles which traversed the cross
section of the elongate apparatus.
In conjunction with the development
of the adhesively creeping foot and its
anchorage at the substratum the radula
developed in a well demarcated head
region. The use of the radula as a
rasping organ was dependent on the
concomitant formation of the adhesive
creeping foot apparatus. This apparatus
allowed the radula indirectly to be
pressed against the substratum during
feeding. Simultaneously the shells could
come into existence as dorsal stabilising
structures in the non deformed dorsal
portions of the body, while an intensifi-
cation of motility for peristaltic adhesive
creeping occurred on the ventral side.
This constructional constitution is in
some way still existing in extant flatte-
ned chitons.
After the establishment of this cons-
truction with its segmented sequence of
skeletal structures in polyplacophoran-
like organisms new paths of evolution
were viable. They led to worm-like
constructions in a step by step loss of
the shell. In this way some recent forms
of worm-like molluscs, the Ventroplicata
and the Caudofoveata, are easily deriva-
ble from chiton-like predecessors.
Fusion of the shell-plates occurred in
the other major branch. Fusion of the
segmented shells, in accordance with
specific changes of the soft body led to
the formation of the conchiferan cons-
truction with its typical unified shell.
One consequence of this fusion of
the conchiferan shell was that, in con-
junction with the formation of the fused
shell a narrow waist developed
between the cephalopodium and the
dorsal body portion while the internal
organs were restructured in the frame of
a visceral hump.
The basic conchiferan organisation is
to a certain extent represented in the still
extant Tryblidiaceans which display
clear metamerism of some organs. The
basic Conchiferans provided the cons-
tructional basis for a radiative explosion
that generated most molluscan cons-
truction types of the conchiferan level.
The narrowing waist caused and
even enforced reductions especially of
the of the number of' dorsoventral
muscles, gills, and kidneys and the com-
pensatory enlargement of the few per-
sisting organs.
The major steps of transformation
are described and depicted in the illus-
trations. The complete explanation of
the transitions leading to the mollusc
constructions cannot be presented here.
It was elaborated in a sequence of
papers which may be consulted by the
interested and critical reader. In the
following the major steps are depicted
in the illustrations. The ensuing expla-
nation is formulated as a caption in
respect to the illustration (Fig. 2). It
should be stressed that the pictures are
no typical morphological illustrations.
IS
Iberus, 15 (2), 1997
They present visualisations of the array
of form enforcing structures and have to
be conceived as constructional models.
(1.1.) A worm-like predecessor (GUT-
MANN, 1974; EDLINGER, 1991a) with me-
tameric coelomic pouches, dissepiments,
and other segmental tethering elements.
Flattening is made possible by dorsoven-
tral and other muscles on the dissepiments.
All non-longitudinal muscles are helpful
in controlling the cross-section and allow
flattening of the worm-like body in the in-
cipient stages of creeping on hard subs-
trate.
Metamerism which allowed flattening
of the ventral side of the body is manda-
tory in the precursor stages of molluscs.
Flattening of the body is only possible by
internal tethering structures such as mus-
cle bearing dissepiments and internal mus-
cles transcending the coelomic chambers
which were capable of suppressing the
tendency to assume a circular shape. Lack
of cross sectional tethering as observed in
non-metameric worms would result in a
circular cross-section of the soft body and
preclude even the beginning creeping on
hard substrate.
In an early stage of evolution the
mouth became equipped with chitinous
teeth which were located around the sto-
modeum and in the foregut.
(1.2.) Transition to the basic mollusc
construction required the formation of a
thick ventral muscle lattice forming a flat
and highly deformable foot which was
able to follow the contours of the bottom.
This enabled the organisms to creep ad-
hesively and start rasping at the substrate.
In the course of the incipient stages of
transformation the coelom and the other
inner organs were shifted to the dorsal
side. In the dorsal part of the animals co-
elomic metamerism was retained and even
further demarcated by the newly develo-
ping shells.
(1.3.) As muscular activity in the form
of peristaltic waves travelling over the foot
was concentrated in the ventral portion of
the pre-mollusc constructions the dorsal
parts of the body were held mostly un-
56
deformed. In this situation serial shell ele-
ments developed as economising struc-
tures; they replaced energetically expen-
sive structures such as muscles and con-
nective tissue structures. The newly
developed skeletal structures served as
stabilising elements in the deformable and
still worm-like hydraulic apparatus. As
the shells formed a sequence of indepen-
dent elements bending movements of the
body were still possible; they are remnants
of the worm-like bending and peristaltic
activity of the predecessors. The dorsally
situated serial plates were mechanically
connected to the foot by strong muscles
which continue to demarcate the prece-
ding metamerism of the annelid-like pre-
decessors.
In accordance with the mechanical re-
quirements for the flattening of the foot
the pairs of muscles were arranged as den-
sely spaced pairs of vertical, transverse,
and oblique bundles under each plate.
These muscles project into the dense mus-
cular grid of the foot. Transversely orien-
ted muscles cross from one side to the ot-
her. In this way the form of the whole ani-
mal is under control of the tethering
structures. Lateral extensions of the shells
and their roof-like position allowed the
formation of lateral grooves. In these gro-
oves the metameric gills were established
as projections of the soft body wall. They
were indispensable for the developing mo-
lluscs because the adhesion of the foot to
the bottom and the covering dorsal shells
reduced the body surface usable for res-
piration. Only the lateral parts of the soft
body continued to be exposed to the su-
rrounding medium. The newly develo-
ping gills were forced into the old meta-
meric constellation because the vessels
had to pass between the pre-existing me-
tameric muscle bundles.
Around the shell a spicule bearing
girdle consisting of connective tissue and
musculature was established. This girdle
served as a protection for the lateral gro-
oves with the gills.
Pari passu with the rearrangement of
the musculature the large coelomic cavi-
ties of the annelid like ancestors were res-
trained to a narrow dorsal strip. While the
posterior part of the coelom was altered
EDLINGER AND GUTMANN: Phylogeny of molluscs as evolving constructions
El
2
DS
e
=/=05/2 y
Figure 2. The evolution of chiton-like molluscs out of annelid-like metameric ancestors. An early
branching into chiton-like and conchiferan constructions occurs.
Figura 2. Evolución de los moluscos con forma de quitón a partir de ancestros metaméricos tipo anélido.
Tiene lugar una pronta separación entre construcciones conchíferas y con forma de quitón.
into the pericardium around the effecti-
vely pumping heart the other parts ser-
ved as cavities containing the gonads.
In conjunction with adhesive creeping
the structures around the mouth were per-
fected into a radula by shifting of the chi-
tinous teeth into a ventral pouch of the fo-
regut. The establishment of the radula
must be seen in conjunction with the cre-
eping mode of locomotion. The scraping,
radula could only become effective when
the body remained firmly attached to the
substrate in a way that exertion of pres-
sure by the radula onto the substrate
would not push the animal body away
from the underlying surface. From this fo-
llows that the radula could only develop
in strict interdependence with the cree-
ping performance of the foot.
(1.4.) Reconstructed predecessors of
Conchiferan and Polyplacophoran cons-
tructions. In the anterior portion of the
body the coelom was gradually reduced.
The gut formed lateral pouches in the form
of the midgut-glands, which, besides their
Iberus, 15 (2), 1997
Figure 3. Evolutionary transformation of chiton-like predecessor into Placophora, Caudofoveata
and Ventroplicata.
Figura 3. Transformación evolutiva del predecesor tipo quitón en Placophora, Caudofoveata y
Ventroplicata.
digestive function, served as newly formed
fluid filled entities in the frame of the form
enforcing structures and as a substantial
part of the filling of the inner spaces of the
body. The gut pouches were also helpful
in holding the gut in its position. As the
coelomic space was restrained by the mus-
cle construction and receded to narrower
dorsal cavities glandular kidney structu-
res had to develop as extensions of the
metanephridia. They collected excretory
material from the extra coelomic spaces
mainly in the muscle grid. Such an alte-
ration of the metanephridial excretory or-
gans was necessitated by the enlargement
of the extracoelomic fluid fillings of the
muscular grid. The coelom inevitably lost
58
its function as the sole fluid filling unit of
the body. There can be no doubt that the
evolutionary transformation of the mus-
cle apparatus and the restructuring, of the
excretory system were coupled and mu-
tually dependent.
(2.1.) The Polyplacophoran like tran-
sitional stage. The model represents an
early organisational constellation in mo-
lluscan evolution. These forms retained
the metameric organisation of muscle
system, shell arrangement, gills, and
kidneys (Fig. 3).
(2.1.1.) The fully developed Polypla-
cophoran constructions represent a side
EDLINGER AND GUTMANN: Phylogeny of molluscs as evolving constructions
Figure 4. The radiation of conchiferan constructions resulting in diverging organismic types which
are capable of occupying different environmental conditions.
Figura 4. Radiación de construcciones conchíferas que resulta en tipos de organismos divergentes capaces
de ocupar diferentes condiciones ambientales.
branch of primitive molluscs. Flattening of
the shells became more pronounced. The
serial shell plates continue to preserve the
metameric arrangement of the dorsoven-
tral musculature. In the course of flattening,
the circulatory and the gill systems were
restructured in a way allowing the non-
metameric array of the gills and decou-
pling of internal metamerism and gill-po-
sition. This is unique in Polyplacophorans
and not representative for the transition to
the molluscs with fused shells.
(2.1.2.) Evolution of the Caudofovea-
tan construction is part of a radiative
differentiation of the polyplacophoran
organization. This lineage must have
started from polyplacophoran forms
(EDLINGER, 1989b) which underwent re-
duction of the shells. Concomitantly
with shell reduction the lattice-like mus-
cle foot was only retained in the anterior
portion of the worm like body. The gut
was also considerably altered; in the
rear portion the intestinal canal was su-
rrounded by the midgut-glands, which
held the gut in its position. In these bu-
rrowing constructions only one poste-
rior pair of gills was retained in the hind
part of the body. The resulting worm-
like form developed independently of
the Ventroplicatan constructions.
(2.1.3.) Evolution of the Ventroplicatan
construction is also a branch of Polypla-
cophoran radiation: loss of shell structu-
res in conjunction with an enlargement of
the girdle resulted in the formation of a
worm-like body. The foot-complex per-
sisted as a narrow groove running along
the ventral side of the whole body length.
The groove remains internally tethered
by the dorsoventral muscle bundles which
are certainly rudiments of the serial shell
related retractors. In contrast to the bu-
rrowing Caudofoveata the Ventroplicata
are capable of climbing in “tree-like” en-
vironments. To corroborate the derivation
of the worm-like forms from Polyplacop-
horans it should be kept in mind that some
extant Polyplacophorans as Cryptoplax
show an observable tendency to reduce the
shells.
(2.2.) In the evolutionary alley to the
Conchiferan constructions (Fig. 4) the Mo-
noplacophorans demarcate a strategic
' intermediate stage.
39
Iberus, 15 (2), 1997
(2.2.1.2.)
Figure 5. Transformation of monoplacophoran-like ancestors into scaphopods by extreme dorso-
ventral elongation.
Figura 5. Transformación de ancestros tipo monoplacóforo en escafópodos mediante una elongación dor-
soventral extrema.
The unified shell was formed by fu-
sion of the segmental skeletal elements.
This process ensued in the deepening of
the groove between the cephalopodium
and the shell-covered visceral hump. The
waist became more pronounced and the-
reby the cephalopodium was rendered
more flexible in respect to the shell. In the
Monoplacophora the metameric soft
body organization of muscles, gills,
nephridia and portions of the coelom is
still retained. Metamerism is obviously
fading from the rostral portion of the
body (GUTMANN, 1974; EDLINGER, 1991a).
Noticeable is the concentration of the an-
cestral structures, coelom, sac bearing
nephridia, and gills in the rear part of the
body. This situation is indicative of the
transition to the other conchiferan cons-
tructions which sprang from a radiative
divergence of constructions.
(2.2.1.) The fully developed Conchife-
ran Constructions.
In all conchiferan constructions with
fused shells the separation of the two
body-portions, the cephalopodium and
the dorsal hump, by a waist allows free
movement of the foot and the undeformed
posture of the visceral sack with the stiff
shell frame far from the substrate. The for-
mation of the waist enforced the reduction
of the number of gill-pairs in all derived
conchiferan constructions.
60
(2.2.1.1.) Neopilinida.
The Neopilinida are flattened recent
Monoplacophoran constructions with clear
remnants of metamerism in the arrange-
ment of muscles, nephridia and gills. So
they must be early representatives of the
transition phase to the Conchiferans. Ho-
wever, clear indications of reduction of
metamerism from the anterior portion of
the body become evident; the anterior gills
are reduced and the muscle bundles fused
(GUTMANN, 1974; EDLINGER, 1991a).
(2.2.1.2.) Evolution of Scaphopod cons-
tructions.
Scaphopods are derived from a Mo-
noplacophoran stage with a posterior slit
in the shell for the expulsion of faeces. A
dorsoventral elongation of the construc-
tion caused the reduction of the number
of muscles and gill pairs and the forma-
tion of a tube-like shell. The foot changes
its form by a rearrangement of the inter-
nal muscle-lattice and becomes a burro-
wing organ. The posterior slit of the shell
became an elongate hole. This hole enabled
the animals to ventilate their mantle cavity
when they penetrated into the substrate.
The water is sucked in from the anterior
region and expelled through the poste-
rior hole. The total reduction of the gills
is enforced by the narrowing of the man-
tle cavity when the elongate organisms
developed (EDLINGER, 1991b) (Fig. 5).
EDLINGER AND GUTMANN: Phylogeny of molluscs as evolving constructions
(2.2.1.3.)
Figure 6. The evolution of the gastropod construction by torsion. Torsion occurs after the forma-
tion of a waist between the cephalopodium and the visceral hump and reduction of most of doso-
ventral muscles.
Figura 6. La evolución de la estructura de un gasterópodo mediante torsión. Ésta ocurre tras la forma-
ción de un estrechamiento entre el cefalopodio y el asa visceral, y la reducción de la mayoría de los mús-
culos dorsoventrales.
(2.2.1.3.) Evolution of Gastropods (ED- ceral hump after a very narrow waist had
LINGER, 1988a, 1988b, 1989a). formed and most of the gill pairs had been
The most significant event of gastro- reduced. Torsion led to an anterior posi-
pod evolution was the torsion of the vis- tion of the partially reduced mantle ca-
61
Iberus, 15 (2), 1997
(2.2.1.4.)
(2.2.1.4.2.)
Figure 7. The evolution of cephalopods characterized by the appearance of gas-filled spaces at the
top of the shell and by a radical rearrangement of the musculature of the cephalopodium with
strong muscular arms and suckers.
Figura 7. Evolución de los cefalópodos, caracterizada por la aparición de cámaras llenas de gas en la parte
alta de la concha y una redistribución radical de la musculatura del cefalopodio con fuertes ramas mus-
culares y ventosas.
vity with the remaining gills and the for-
mation of the chiasma of the lateral nerve
cords. The precondition for torsion lies in
a step by step reduction of dorsoventral
muscle bundles of a Monoplacophoran
ancestor and by narrowing of the waist
between the cephalopodium and the vis-
ceral hump. This process is connected with
a step by step spiralling up of the shell. The
persistence of only one pair of crossing
obliquely transversal muscles could cause
the torsion. Totally bilaterally organised
symmetric Bellerophontacean shells are
representative of this process (Fig. 6).
(2.2.1.3.1) Radiation of Gastropod cons-
tructions: All gastropod lineages are de-
rived from a Bellerophontacean stage with
62
a bilateral and helical shell, which posses-
sed slits or a series of holes in the poste-
rior part of the shell for the expulsion of
faeces. Only one pair of parallel dorso-
ventral muscles persisted. Asymmetry
could arise by the partial or total reduction
of one of the dorsoventral muscles and
the change of the planispiral shell of Be-
llerophon-like ancestors to an asymme-
tric helical form. In most cases the gills be-
came also unequal or one gill was entirely
reduced (EDLINGER, 1988a, 1988b, 19894a).
Flattening and secondary reduction of
the coil can result in the formation of a cup-
like shell. Flattening must cause a change
in the muscle arrangement. The dorso-
ventral muscles and their scares on the
inner of the shells were enlarged to form
EDLINGER AND GUTMANN: Phylogeny of molluscs as evolving constructions
Figure 8. The evolution of bivalves by a rearrangement of the dorsoventral muscles and a division
of the shell to a bivalve one.
Figura 8. Evolución de los bivalvos por medio de una redistribución de los músculos dorsoventrales y una
división de la concha hacia una concha bivalva.
horseshoe-like insertions. The gills can
persist as in Fissurella. In this case the re-
tractor muscle will form a homogeneous
horse-shoe-like entity. If the gills are also
reduced and substituted by secondary
gill-like structures the muscles are splitted
up into a Monoplacophoran-like situation
of Patella (EDLINGER, 1988a, 1988b, 1989a;
HASZPRUNAR, 1988).
(2.2.1.4.) Evolution of Cephalopod
constructions (BONIK, GRASSHOFE, GUT-
MANN AND KLEIN-RÓDDER, 1977). The de-
velopment of gas-filled chambers in the
apical part of the shell rendered the orga-
nisms more buoyant. The foot with its de-
formability and the adhesive capabilities
was altered into a system of muscular
arms with suckers which could grasp prey.
Retraction of the soft-body into the shell
inevitably caused expulsion of a water-
current. In the course of evolution im-
provement of this mechanisms was alte-
red into effective jet propulsion when the
hind part of the foot was modified to form
a narrow funnel through which the water
expelled from the mantle cavity was con-
centrated to enhance the jet effect. This
constructional situation can be observed
in all cephalopods (Fig. 7). An early bi-
furcation or diphyletic development gave
rise to the branches of endocochlean and
exocochlean Cephalopod construction
(2.2.1.4.1, 2.2.1.4.2).
(2.2.1.5.) Evolution of Bivalve Cons-
tructions (VOGEL AND GUTMANN, 1980).
The origin of Bivalves can be understood
as a rearrangement of the dorsoventral
muscles in a high chambered Monopla-
cophoran ancestor. A considerable por-
tion of the dorsoventrally and obliquely
arranged muscles in the foot were shif-
ted into a horizontal position connecting
not the shell and the foot as in the former
stages but the two laterally bent down
plates of an evolving bivalved shell.
Contraction of the muscles brought the
flanks of the shells together in protective
behaviour. Most of the vertical (dorso-
ventral) portions of the musculature re-
tained their original retractile function in
respect to the foot but the number of re-
tractors was reduced. Consequently
most of the gills disappeared with one
pair remaining.
The remaining pair of gills are utilised
as filterfeeding devices because lateral
cephalic lobes bridged the gap between the
mouth and the gills and formed conveyer
belts for the transport of food from the
gills to the mouth (Fig. 8).
63
Iberus, 15 (2), 1997
DISCUSSION AND CONCLUSION
Itis very obvious that in the perspec-
tive of constructional morphology and
organismic evolution character-analysis
and the establishment of sequences of
organismic forms in the sense of homo-
logies are inconclusive and arbitrary.
They pose problems but do not provide
answers because description of form and
character analysis do not lead to cons-
tructional insight or an understanding of
form determination. Constructional alte-
ration in evolution can not reasonably be
derived from genetic or other molecular
features (GHISELIN, 1988; WAGELE, 1994;
WAGELE AND WETZEL, 1994; EDLINGER,
1995). The understanding of organisms
as constructions leaves no doubt that the
constructional configuration determines
evolutionary change of the living machi-
nery and prescribes the sequence of
constructional stages and of irreversible
steps. There is little freedom for contin-
gency in the order of the “bauplan” con-
figurations and no encouragement for
simple description and form compari-
son. Nothing useful can come from such
traditional approaches which are blind
to causal aspects and insensitive for ex-
planatory principles.
When organisms are conceived as
energy transforming constructions evo-
lution must be ruled by constructional
principles and not by subjective “gestalt”
properties or subservient molecular me-
chanisms. As could be shown in the fore-
going context strict obeisance of the cons-
tructional principles allows the rejection
of constructionally impossible or impro-
bable alternatives. From the methodology
applied and the mode of reconstruction of
the evolutionary transformations just ad-
vocated follows that traditional phyloge-
netic concepts, form sequences, and cla-
dograms based on usual procedures are
not considered valid. Therefore, traditio-
nal hypotheses are bypassed and left out
of consideration when the criteria of the
Frankfurt-Theory are applied. If some-
body feels the need to adhere to the idea
that Plathelminths, non-segmented
worms, or Nemerteans might be the pre-
cursors of mollusc he or she should pre-
64
sent a continuous model with a strict ex-
planation of the intermediate construc-
tional steps.
The genes and other molecular me-
chanisms which are subservient in relation
to the living constructions and their struc-
tures have to comply with the construc-
tional requirements and must follow cons-
tructional modifications of the machinery
in the course of structural reorganisation.
Taken as separate features molecular and
physiological mechanisms are not useful
for the elucidation of constructional change
in evolution. Therefore, constructional
morphology neglects all traditional sug-
gestions as to the affinity of organismic
groups based on form similarities in the
sense of homologies and on subservient
and constructionally dependent molecu-
lar and physiological properties.
Itis not possible to give a list of all the
published sequences of forms which were
figured out to represent what all the aut-
hors tried to suggest as stages of mollusk
evolution (SCHELTEMA, 1978; GÓTTING,
1980a, 1980b; HAas, 1981; BANDEL, 1983;
LAUTERBACH, 1983a, b; HASZPRUNAR, 1988,
1992a, b). Many contributions were for-
mulated by paleontologists (RUNNEGAR
AND POJETA, 1974; RUNNEGAR, POJETA,
NOEL, TAYLOR, TAYLOR AND MCCLUNG,
1975; MAREK AND YOCHELSON, 1976; Yo-
CHELSON, FLOWER AND WEBERS, 1973; Po-
JETAJR., 1987) who started from one or the
other fossilstructure. Most morphoclines
presented since the last century are highly
contradictory, however, all of them have
in common an access that arbitrarily selects
some features of skeletal or soft body struc-
tures.
Organisms as constructionally res-
trained and not deliberately transforma-
ble entities are not even expected. In none
of the published morphoclines is the di-
rectionality of evolutionary transforma-
tion elaborated or explained as irreversi-
ble. Organisms are misconceived as sha-
ped and freely modifiable pieces of art.
Fruitful discussion can only start when
alternative models with continuous ex-
planations and well supported transfor-
mational polarities are given. In the pre-
sent situation the discussion of all the
morphoclines would require the sacrifi-
EDLINGER AND GUTMANN: Phylogeny of molluscs as evolving constructions
cium intellectus. Also in the field of ra-
diation of the phylum Mollusca recons-
tructions have to be done on the consistent
basement of constructional laws and so-
lid criteria of directionality of evolutio-
REFERENCES
BANDEL, K., 1983. Wandel der Vorstellungen
von der Frúuhevolution der Mollusken, be-
sonders der Gastropoda und Cephalopoda.
Palaontologische Zeitschrift, 57 (3/4): 271-284.
BEREITER-HAHN, J., 1991. Cytomechanics and
biochemistry. In Schmidt-Kittler, N., Vogel,
K. (Eds.): Constructional morphology and evo-
lution. Springer Berlin-Heidelberg-New York:
81-90.
BONIK, K., GRASSHOFFE, M. AND GUTMANN, W.
F., 1977. Funktion bestimmt Evolution. Ums-
chau, 77 (20): 657 - 668.
BONIK, K., GRASSHOFF, M., GUTMANN, W. F.
AND KLEIN-RÓDDER, R., 1977. Die Evolution
der Tintenfische, ein Entwurf fúr das Schau-
museum. Natur und Museum, 107 (8): 244-
250.
EDLINGER, K., 1988a. Beitráge zur Torsion und
Frúhevolution der Gastropoden. Zeitschrift fir
zoologische Systematik und Evolutionsforschung,
26: 27-50.
EDLINGER, K., 1988b. Torsion in Gastropods: A
phylogenetical Model. Malacological Review,
Suppl. 4: 239-248.
EDLINGER, K., 1989a. Zur Evolution der Sch-
neckenkonstruktion 1. - Torsion und Frúhe-
volution der Prosobranchier. Natur und Mu-
seum, 119 (9): 272-293.
EDLINGER, K., 1989b. Sekundáre Wurmkons-
truktionen bei amphineuren Mollusken. In
Edlinger, K. (Ed.). Form und Funktion - Ihre
stammesgeschichtlichen Grundlagen. Wiener
Universitaátsverlag, Wien, 196 pp.
EDLINGER, K., 1991a. The mechanical constraints
in mollusc constructions - the function of the
shell, the musculature, and the connective tis-
sue. In Schmidt-Kittler, N. and Vogel, K.
(Eds.): Constructional morphology and evolution.
Springer Berlin-Heidelberg-New York: 359-
374.
EDLINGER, K., 1991b. Die Evolution der Scap-
hopodenkonstruktion. Natur und Museun,
121 (4): 116-122.
EDLINGER, K., 1992a. Die “Unsichtbare Morp-
hologie” - Energiefluf und Konstruktion.
Aufsátze und Reden der Senckenbergischen Na-
turforschenden Gesellschaft, 39: 27-49.
EDLINGER, K., 1992b. Nervensysteme als inte-
grale Bestandteile der mechanischen Kons-
truktion. Aufsátze und Reden der Senckenber-
gischen Naturforschenden Gesellschaft, 39: 131-
155.
nary changes. In the recent only the mo-
dels outlined above meet this conditions.
All alternative concepts which will pos-
sibly appear must be discussed on the ba-
sis of this conditions.
EDLINGER, K., 1994a. Morphologische Deter-
minanten bei der Bildung von Nervensyste-
men. Biologisches Zentralblatt, 113: 25-32.
EDLINGER, K., 1994b. Das Spiel der Molekúle -
Reicht das Organismusverstándnis des mo-
lekularbiologischen Reduktionismus?-. Na-
tur und Museum, 124 (6): 199-206.
EDLINGER, K., 1995. Organismen: Konstruktio-
nen oder Genarrangements? Biologisches Zen-
tralblatt, 114: 160-169.
EDLINGER, K., GUTMANN, W. F. AND WEIN-
GARTEN M., 1991. Evolution ohne Anpassung.
Verl. W. Kramer Frankfurt, 92 pp.
GHISELIN, M. T., 1988. The origin of molluscs in
the light of molecular evidence. Oxford Sur-
veys of Evolutionary Biology, 5: 66-95.
GOTTING, K. J., 1980a. Origin and relationships
of Mollusca. Zeitschrift fur zoologische Syste-
matik und Evolutionsforschung, 18: 24-27.
GÓTTING, K. J., 1980b. Argumente fúr die Des-
zendenz der Mollusken von metameren
Antezedenten. Zoologisches Jahrbuch Anato-
mie, 103: 211-218
GUTMANN, W. F., 1974. Die Evolution der Mo-
llusken-Konstruktion: Ein phylogenetisches
Modell. Aufsátze und Reden der Senckenber-
gischen Naturforschenden Gesellschaft, 25: 1-
84.
GUIMANN, W. F., 1989. Die Evolution hydrau-
lischer Konstruktionen. Organismische
Wandlung statt altdarwinistischer Anpas-
sung. Senckenberg-Buch 65, Verl. W. Kramer
Erankfurt/M, 200 pp.
GUTMANN, W. F. AND EDLINGER K., 1994a. Or-
ganismus und Evolution - Naturphilo-
sophische Grundlagen des Prozeffverstánd-
nisses. In Bien, G. and Wilke J. (Eds.): Natur
im Umbruch - Zur Diskussion des Naturbegriffs
in Philosophie, Naturwissenschaft und Kunstt-
heorie. Frommann-Holzboog, 109-140.
GUTMANN, W. F. AND EDLINGER K., 1994b. Mo-
lekulare Mechanismen in kohárenten Kons-
truktionen. In Maier, W. and Zoglauer, H.
“(Eds.): Technomorphe Organismuskonzepte -
Modelliibertragungen zwischen Biologie und
Technik. Frommann-Holzboog, 128: 174-198.
GUTMANN, W. F. AND EDLINGER K., 1994c.
Morphodynamik und Maschinentheorie: Die
Grundlage einer kausalen Morphologie. In
Gutmann, W. F., Mollenhauer, D. und Peters,
D. St. (Eds.): Morphologie und Evolution. W.
Kramer, Frankfurt /M: 177-199.
65
Iberus, 15 (2), 1997
GUTMANN, W. F. AND EDLINGER K., 1994d.
Neues Evolutionsdenken: Die Abkoppelung
der Lebensentwicklung von der Erdges-
chichte. Archaeoteryx, 12: 1-24.
Haas, W., 1981. Evolution of calcareous hard-
parts in primitive molluscs. Malacologia, 21 (1-
2). 403-418.
HASZPRUNAR, G., 1988. On the origin and evo-
lution of major gastropod groups, with spe-
cial reference to the streptoneura. Journal of
Molluscan Studies, 54: 367-441.
HASZPRUNAR, G., 1992a. The first molluscs:
small animals. Bollettino Zoologico, 59. 1-16.
HAszPRUNAR G., 1992b Preliminary anatomical
data on a new neopilinid (Monoplacophora)
from Antarctic waters. Abstracts of the ele-
venth International Malacological Congress, 307-
308.
LAUTERBACH, K. E., 1983a. Erórterungen zur
Stammesgeschichte der Mollusca, insbeson-
dere der Conchifera. Zeitschrift fir zoologis-
che Systematik und Evolutionsforschung, 21 (3):
201-216.
LAUTERBACH, K. E., 1983b. Gedanken zur Ents-
tehung der mehrfach paarigen Exkretion-
sorgane von Neopilia (Mollusca, Conchi-
fera). Zeitschrift fur zoologische Systematik und
Evolutionsforschung, 21 /1: 38-52.
MAREK, L. AND YOCHELSON, E. L., 1976. As-
pects of biology of Hyolitha (Mollusca). Let-
haia, 9: 65-82.
POJETA, J. JR., 1987. Rostroconcha / Scaphopoda.
In Cheetham, A. H. and Rowell, A. J. (Ed.):
Fossil Invertebrates. Blackwell Scientific Pu-
blications, Palo Alto /Oxford / London / Edin-
burgh /Boston/ Melbourne: 358-386.
66
RUNNEGAR, B. AND POJETA, J., 1974. Molluscan
Phylogeny: The Paleontological Viewpoint.
Science, 186: 311-317.
RUNNEGAR, B., POJETA J. JR., NOEL J., TAYLOR,
J. E., TAYLOR, M. F. AND MCCLUNG, G., 1975.
Biology of the Hyolitha. Lethaia, 8: 181-191.
SCHELTEMA, A. H., 1978. Position of the class
Aplacophora in the phylum Mollusca. Ma-
lacología, 17 (1). 99-109.
VOGEL, K. AND GUTMANN, MW. F., 1980. The de-
rivation of pelecypods: role of biomechanics,
physiology and environment. Lethaia, 13:
255-264.
VOGEL, K., 1991. Concepts of constructional
morphology. In Schmidt-Kittler, N. and Vo-
gel, K. (Eds.): Constructional morphology and
evolution. Springer Berlin-Heidelberg-New
York: 55-68.
WAGELE, J. W., 1994. Rekonstruktion der Phy-
logenese mit DNA-Sequenzen: Anspruch
und Wirklichkeit. Natur und Museum, 124
(4225232
WAGELE, J. W. AND WETZEL, R., 1994. Nucleic
acid sequence data are not per se reliable for
inference of phylogenies. Journal of Natural
History, 94: 749-761.
YOCHELSON, E. L., FLOWER, R. H. AND WEBERS,
G. F., 1973. The bearing of the new Late Cam-
brian genus Knightoconus (Mollusca: Mono-
placophora) upon the origin of the Cepha-
lopoda. Lethaia, 6: 275-310.
O Sociedad Española de Malacología
Iberus, 15 (2): 67-74, 1997
Mollusc fauna of the medium high mountain ranges of the
Hungarian Holocene: a zoogeographical research
Fauna de moluscos de media y alta montaña del Holoceno de Hun-
gría: una investigación zoogeográfica
Levente FÚKOH*
Recibido el 30-X-1995. Aceptado el 15-11-1997
ABSTRACT
An attempt is made to complete the zoogeographical studies of the mollusc fauna of the
medium-high mountain ranges of the Hungarian Holocene by analysing twenty-eight chrono-
logically and biostratigraphically known faunae. Eighty four species are classified in nine fau-
nalcentres and four biozones (Vallonia costata, Clausillidae, Granaria frumentum and Helici-
gonia faustina — Acicula polita). A brief discussion is made on the abundance of several
species of each faunal-centre. The picture drawn from the fauna agrees with the geographical
position and geomorphological conditions of Hungary (Carpatian Basin, Central-Europe)
RESUMEN
Se pretende completar los estudios zoogeográficos de la fauna de moluscos de media y alta
montaña del Holoceno de Hungría mediante el análisis de ventiocho faunas conocidas tanto
cronológica como estratigráficamente. Ochenta y cuatro especies fueron clasificadas en
nueve “centros faunísticos” y cuatro biozonas (Vallonia costata, Clausillidae, Granaria fru-
mentum and Helicigonia faustina — Acicula polita). Se hace una breve discusión sobre la
abundancia de varias especies en cada “centro faunístico”. La representación que se obtiene
de la fauna coincide con la posición geográfica y las condiciones geomorfológicas de Hun-
gría (planicie de los Cárpatos, Europa central).
KEY WORDS: Molluscs, Zoogeography, Holocene, Hungary.
PALABRAS CLAVE: Moluscos, Zoogeografía, Holoceno, Hungría.
INTRODUCTION
The paleoecological and biostratigrap-
hical studies of the mollusc fauna of the
medium-high mountain ranges of the Hun-
garian Holocene (Fig. 1) has been comple-
ted in the last few years. (FUKOH, 1991,
1992a, 1992b, 1993a, 1993b). Although
during these estudies, zoogeographical
examinations were carried out for certain
faunae (FUKOH, 1983, 1989; BABA AND
FUKOH, 1984), a comprehensive view is
lacking. The aim of this paper is to complete
the lack of information about this subject.
The analysis of twenty-two chronolo-
gically and biostratigraphically known
faunae (FUKOH, KROLOPP AND SÚMEGI,
1995) is completed in this work (Fig. 2), in-
creasing the number of species previously
cited from 81 (Table 1) to 84 (Table III).
* Mátra Museum, H-3200 Gyóngyós, Kossuth u. 40, Hungary.
67
Iberus, 15 (2), 1997
SS
8
MEM(12%)
MA(4%)
AMe(1%)
PM(30%)
Figure 1. Map showing the position of the localities of the Biozones stratotypes and the zoogeo-
graphical distribution of the Holocene mollusc fauna in the Hungarian medium high mountain
area. A: Búkk Mts.; B: Aggtelek karst; C: Bakony Mts. Faunal centres, PM: Ponto-mediterranean;
SA: Siberian-Asiatic; MEM: Middle-European-Mountain; HM: Holomediterranean; AM: Adriato-
Mediterranean; EM: European-Mountain; MA: Middle-Asiatic; CS: Caspi-Sarmatian; AMe:
Atlanto-Mediterranean. Biozones, 1: Vallonía costata biozone; 2: Clausiliidae biozone; 3: Granaria
frumentum biozone; 4: Helicigona faustina — Acicula polita biozone.
Figura 1. Mapa mostrando la posición de las localidades de los estratotipos de las biozonas y la distribu-
ción zoogeográfica de la fauna de moluscos de media y alta montaña del Holoceno de Hungría. A: Montes
Búkk; B: karst de Aggtelek; C: Montes Bakony. “Centros faunísticos”, PM: ponto-mediterráneo; SA: sibe-
riano asiático; MEM: media montaña europea; HM: holomediterráneo; AM: adriatico-mediterráneo;
EM: montaña europea; MA: medio asiático; CS: caspiano-samartiano; AMe: atlanto-mediterráneo.
Biozonas, 1: biozona de Vallonia costata; 2: biozona de Clausiliidae; 3: biozona de Granaria frumen-
tum; 4: biozona de Helicigona faustina — Acicula polita.
MATERIAL AND METHODS distribution of the species. This metho-
dology was chosen because, according to
the preliminary examinations and calcu-
lations, it is more suitable when resear-
ching fossil materials.
The methodology used to carry out the
classification presented in this paper is the
same employed to situate zoogeographi-
cally the species of the Middle-European
faunae. These methods can be divided into
two main groups as follows:
1. Methods based on recent distribu-
tion of the species (KERNEY, CAMERON AND
JUNGBLUTH, 1983; FLASAR, 1971; KÓRNIG,
1983; ALEXANDROWITZ, 1983, 1984; FRANK,
1988, 1990, 1992a, 1992b)
2. Derivative method (BABA, 1982).
This method is based on recent and fossil
68
RESULTS AND CONCLUSSIONS
Table II shows the distribution in num-
ber of the 84 mollusc species found in the
studied area by faunal-centres and biozo-
nes. Figure 3 illustrates the zoogeograp-
hical distribution in number of the Holo-
cene and recent mollusc species.
FEÚKOH: Mollusc fauna of the medium high mountain ranges of the Hungarian Holocene
Boreal Atlantic Sub-Boreal Sub-Atlantic
8 7 6 5 4 3 2 1 0
1000 radiocarbon year BP. (1950)
Vallonia costata Clausiliidae Granaria frumentum Helicigona faustina-
zone zone zone Acicula polita zone
Muflon 1/9-6
Mutflon 1/5-2
| Muflon 1/1
Muflon 11/3-2
Kajla-bérc 3
Kolyuk 11/17-12 Kajla-bérc 2-1
| Kólyuk 11/10-1
Rejtek 1/11
Rejtek 1/II
Szentléleki-v.
Horvatí-h. 4-3
Szalajka 11
Szalajka 5
Szalajka 3a
Szalajka 3b-1
Monosbél
Petényi H5 Petényi H3
Kis-kohát 4
Csunya-v 1/2
Csunya-v 111
Nagyoldal 6
Nagyoldal 5-4
Szentgál
Háromágú
Rigó-h
Baradla
Figure 2. Biostratigraphic identification of significant terrestric Holocene localities of Hungary (twenty-
eight chronologically and biostratigraphically known faunae). Biúikk Mts.: Muflon”-cave, “Kajla-
bérc”-cave, “Kólyuk IT”-cave, “Rejtek ”-cave, “Horvéti”-hole, “Petényi”-cave, “Csunya”-valley rock
shelter, “Csunya”-valley I=rock shelter, “Háromágu”-cave, “Kajla-bérc”-cave, “Szalajka”-valley-tra-
vertine, “Monosbél”-travertine, “Szentléleki”-valley-rock shelter, “Kálmán-rét”-shaft-cave, “Kiskóhát”-
shaft-cave. Aggtelek karst: “Baradla”-cave, “Nagy-oldal”-shaft-cave. Bakony Mts: Szentgál, Mecsek-
hill, “K6-lik”-cave, “Rigo”-hole. Lines represent the biostratigraphic and chronologic extension and/or
connection of localities (shown in Figure 1).
Figura 2. Identificación bivestratigráfica de las localidades terrestres más significantes del Holoceno de
Hungría (ventiocho faunas conocidas cronológica y bivestratigráficamente. Montes Búkk: cueva “Muflon”,
cueva “Kajla-bérc”, cueva “Kólyuk II”, cueva “Rejtek I”, sima “Horvéti”, cueva “Petényi”, abrigo rocoso
“Csunya”-valley L, abrigo rocoso “Csunya”-valley IL, cueva “Háromágu”, cueva “Kajla-bérc”, valle “Sza-
lajka” travertino, “Monosbél” travertino, valle “Szentléleki” abrigo rocoso, pozo “Kálmán-rét”, pozo
“Kiskóhát”. Karst Aggtelek: cueva “Baradla”, pozo “Nagy-oldal”. Montes Bakony: Szentgál, Mecsek-
hill, cueva “Kó-lik”, sima “Rigo”. Las líneas representan la extensión y/o conexión bioestratigráfica y cro-
nológica de las localidades (mostradas en la Figura 1).
69
Iberus, 15 (2), 1997
Table I: Distribution of 81 molluscs species found the medium-high mountain ranges of the
Hungarian Holocene fauna, according to several authors. Authors, 1: Verney, Cameron and
Jungbluth; 2: Flasar; 3: Alexandrowicz; 4: Kórnig; 5: Frank; 6: Bába. Abbreviations, a: Alpian; adm:
Adriatic-Mediterranean; e: European; h: Holarctic; hm: Holomediterranean; k: Carpatian; ksz:
Capian-Sarmatian; m: middle; ma: Middle-Asiatic; med: Mediterranean; merid: meridional; p:
Palearctic; po: Pontomediterranean; s, n, o, w, the four cardinal points; sza: Siberian-Asiatic; ws:
West-Sibiric; sz: Siberian.
Tabla 1. Distribución de 81 especies de moluscos encontradas en media y alta montaña de la fauna del
Holoceno de Hungría, de acuerdo con distintos autores. Autores, 1: Verney, Cameron and Jungbluth; 2:
Flasar; 3: Alexandrowicz; 4: Kórnig; 5: Frank; 6: Bába. Abreviaturas, a: alpino; adm: adriatico-medi-
terráneo; e: europeo; h: holártico; hm: holomediterráneo; k: carpatiano; ksz: capiano-samartiano; m:
medio; ma: medioasiático; med: mediterráneo; merid: meridional; p: paleártico; po: pontomediterráneo;
s, n, o, w: los cuatro puntos cardinales; sza: siberiano-asíatico; ws: sibírico oeste; sz: siberiano.
Species 1 2 3 4 5 6
Achantinula aculeata (0. F. Miller, 1774) wp WSZ
Acicula polita (Harimann, 1840) e-0 me me me me-a po
Aegopinella minor (Stabile, 1864) some me-se soe some po
Aegopinella pura (Alder, 1830) e e e e WSZ
Bradybaena fruticum (0. F. Mller, 1774) moe-a e e-a 05Z
Bulgarica vetusta (Rossmíssler, 1836) s08 po
Carychium minimum (0. E. Múller, 1774) e-S7 e-sz e e-S7 057
Carychium tridentatum (Risso, 1826) e se e e hm
Cecilioides acicula (0. E. Múller, 1774) med-we wme
Cepea vindobonensis (Férussac, 1821) soe soe soe ksz
Chondrina clienta (Westwrlund, 1883) s08-0 s08-0 08-a po
Chondrula tridens (0. E. Múller, 1774) msoe pm msoe hm
Clausilia cruciata (Studer, 1820) ne-a ba b-a moe-a e
Clausilia dubia Draparnaud, 1805 me me me me me po
Clousilia pumila C. Pfeiffer, 1828 moe me oe ome moe po
Cochlicopa lubrica (0. E. Miller, 1774) h h ws h h h
Cochlicopa lubricella (Porro, 1837) h h h h ma
Cochlodina cerata (Rossm(ssler, 1836) k wk me
Cochlodina laminata (Montagu, 1803) e e ws e e me
Cochlodina orthostoma (Menke, 1830) moe 0€ me
Columella edentula (Draparnaud, 1801) h h h 0-Sz
Daudebardia brevipes (Draparnaud, 1805) mse mse po
Daudebardia helenae Fúkúh, 1985 me
Daudebardia rufa (Draparnaud, 1805) mse med-me sme po
Discus perspectivus (Múhlfeld, 1816) a-ok a-ok a-ok po
Discus rotundatus (0. E. Miller, 1774) wme wsm WS wme adm
Discus ruderatus (Férussac, 1821) p p p p 0-52
Ena montana (Draparnaud, 1801) me-k-a me me me-k e
Ena obscura (0. E. Múller, 1774) e e e hm
Euconulus fulvus (0. E. Miller, 1774) h h h h h
Evomphalia strigella (Draparnaud, 1801) me ome ome ome Ksz
Granaria frumentum (Draparnaud, 1801) med merid moe po
Helicella obvia (Menke, 1828) s08 smoe
Helicigona faustina (Rossmíssler, 1838) k me
Helicodonta obvoluta (0. E. Miller, 1774) me merid merid sme adm
7O
EÚKOH: Mollusc fauna of the medium high mountain ranges of the Hungarian Holocene
Table 1. (Continuation).
Tabla I. (Continuación).
Species 1 2 3 4 5 6
Helicopsis striata (0. E. Miller, 1774) wmoe e
Helix pomatia Linné, 1758 smoe soe me soe msoe po
Isognomostoma isognomostoma (Schróter, 1784) a-k me a-k a-k a-k me
Laciniaria biplicata (Montagu, 1803) me-b some po
Laciniaria plicata (Draparnaud, 1801) moe me me moe po
Macrogastra latestriata (A. Schmidt, 1857) k
Macrogastra plicatula (Draparnaud, 1801) me e e e po
Macrogastra ventricosa (Draparnaud, 1801) me e me e e po
Monacha cartusiana (0. E. Múller, 1774) po
Nesovitrea hammonis (Siróm, 1765) p p h 0-SZ
Orcula doliolum (Bruguiére, 1792) s0€ me merid soe ma
Orcula dolium (Draparnaud, 1801) a-k a-wk a-k po
Oxychilus depressus (Sterki, 1880) a-k me a-k po
Oxychilus draparnaudi (Beck, 1837) med-we we
Oxychilus glaber (Rossm(ssler, 1838) sme smoe so€ a-se po
Oxychilus inopinatus (Ulicny, 1887) k
Oxychilus orientalis (Clessin, 1887) k k me
Perforatella incarnata (0. F. Miller, 1774) msoe mwe me msoe po
Perforatella vicina (Rossm(ssler, 1842) e
Punctum pygmaeum (Draparnaud, 1801) h p p h h
Pupilla muscorum (Linné, 1758) h h 0-57
Pupilla triplicata (Studer, 1820) 08-0 e-a adm
Pyramidula rupestris (Draparnaud, 1801) we-M oe m-a m-a ma
Ruthenica filograna (Rossm(ssler, 1836) 0€ oe moe moe me
Semilimax kotulai (Westerlund, 1871) a-k a-k a-k
Semilimax semilimax (Férussac, 1802) a-me a-me
Trichia unidentata (Draparnaud, 1805) a-k oa-wk oa-wk oa-k me
Trichia hispida (Linné, 1785) e e
Truncatellina claustralis (Gredler, 1856) m-sa m m hm
Truncatellina cylindrica (Ferrussac, 1807) se se se se hm
Vallonia costata (0. E. Múller, 1774) h h h h h h
Vallonia pulchella (0. F. Múller, 1774) h h h h h h
Vallonia enniensis (Gredler, 1856) mse me
Vertigo alpestris Alder, 1838 na p 0-Sz
Vertigo angustior Jeffreys, 1830 e e ksz
Vertigo parcedentata (A. Braun, 1847) sz0
Vertigo antivertigo (Draparnaud, 1801) p ksz
Vertigo pusilla (0. E. Múller, 1774) e e e-was hm
Vertigo pygmaea (Draparnaud, 1801) h h h WSZ
Vertigo substriata (Jeffreys, 1833) a 0-e
Vitrea contracta (Westwrlund, 1871) p hm
Vitrea crystallina (0. F. Miller, 1774) e e ws e e adm
Vitrea diaphana (Studer, 1820) a-k a-merid a-me po
Vitrina pellucida (0. E Múller, 1774) h p p p h
Zebrina detrita (0. F. Múller, 1774) s08 po
Zonitoides nitidus (0. E Miller, 1774) h h
71
Iberus, 15 (2), 1997
Table II. Distribution in number of 84 mollusc species in the Hungarian Holocene fauna of the
medium-high mountain ranges by Faunal-centres and Biozones. Abbreviations, 1: Vallonia costata
biozone; 2: Clausiliidae biozone; 3: Granaria frumentum biozone; 4: Helicigona faustina — Acicula
polita biozone.
Tabla 1. Distribución en número de las 84 especies de moluscos de la fauna del Holoceno de Hungría en
media y alta montaña agrupadas por “centros faunísticos” y biozonas. Abreviaturas, 1: biozona de
Vallonia costata; 2: biozona de Clausiliidae; 3: biozona de Granaria frumentum; 4: biozona de
Helicigona faustina — Acicula polita.
BIOZONES
FAUNAL-CENTRES No. of species 1 2 3 4
Siberian-Asiatic 21 15 19 16 16
Middle-Asiatic 3 3 2 7 2
Caspi-Sarmatian a) 3 4 2 3
Pontomediterranean 2 18 19 18 22
Adriato-Mediterranean 5 5 4 4 5
Atlanto-Mediterranean 1 0 1 0 0
Holomediterranean o o) 5 5 5
European -Mountain 7 4 3 2 4
Middle-Eur. -Mountain 11 8 o 6 9
TOTAL 84 62 63 5 66
30
Y)
o
Number of species
a
Faunal centres
Figure 3. Zoogeographical distribution in number of the mollusc fauna of the Hungarian medium
high mountain ranges considering Holocene and Recent species separately. 1: Pontomediterranean;
2: Siberian-Asiatic; 3: Middle-European-Mountain; 4: Holomediterranean; 5: Adriato-
Mediterranean; 6: European-Mountain; 7: Middle-Asiatic; 8: Caspi-Sarmatian; 9: Atlanto-
Mediterranean.
Figura 2. Distribución zoogeográfica en número de la fauna de moluscos de media y alta montaña de
Hungría, considerando tanto las especies del Holoceno como las recientes. 1: pontomediterráneo; 2: sibe-
riano asiático; 3: media montaña europea; 4: holomediterráneo; 5: adriático mediterráneo; 6: montaña
europeo; 7: medio asiático; 8: caspiano-samartiano; 9: atlanto-mediterráneo.
2
FÚKOH: Mollusc fauna of the medium high mountain ranges of the Hungarian Holocene
Table IM. Zoogeographical distribution of the Hungarian Holocene species by faunal-centres. (*)
Molluscan species not cited in Table 1.
Tabla 111. Distribución zoogeográfica de las especies del Holoceno de Hungría por “centros faunásticos”.
(%) Especies de moluscos no citadas en la Tabla 1.
1. Siberian-Asiatic faunal-centres 21species
Achantinula aculeata Euconulus fulvus Vallonia pulchella
Aegopinella pura Limax maximus Linné, 1758 (*) Vertigo alpestris
Bradybaena fruticum Nesovitrea hammonis Vertigo parcedentata
Carychium minimum Punctum pygmaeum Vertigo pusilla
Cochlicopa lubrica Pupilla muscorum Vertigo pygmaea
Columella edentula Vallonia costata Vitrina pellucida
Discus ruderatus Vallonia enniensis Zonitoides nitidus
2. Middle-Asiatic faunal centres 3 species
Cochlicopa lubricella Orcula doliolum Pyramidula rupestris
3. Caspian-Sarmatian faunal-centres 5 species
Cepaea vindobonensis Semilimax kotulai Vertigo antivertigo
Evomphalio strigella Vertigo angustior
4. Ponto-Mediterranean faunal-centres
25 species
Acicula polita Granaria frumentum Macrogastra ventricosa
Aegopinella minor Helix pomatia Monacha cartusiana
Bulgarica vetusta Helicella obvia Orcula dolium
Chondrina clienta Zebrina detrita Oxychilus depressus
Clausilia dubia Helicopsis striata Oxychilus glaber
Clousilia pumila Laciniaria plicata Perforatella incarnata
Doudebardia brevipes Laciniaria biplicata Vitrea diaphana
Daudebardia ruta Macrogastra plicatula Vitrea subrimata (Reinhardt, 1871)(*)
Discus perspectivus
5. Adriatic-Mediterranean faunal-centres 5 species
Cecilioides acicula Helicodonta obvoluta Vitrea crystallina
Discus rotundatus Pupilla triplicata
6. Atlantic-Mediterranean faunal-centres 1 species
Semilimax semilimax
7. Holomediterranean faunal-centres 6 species
Corychium tridentatum Ena obscura Truncatellina cylindrica
Chondrula tridens Truncotellina claustralis Vitrea contracta
8. European-Mountain faunal-centres 7 species
Clausilia cruciata Oxychilus inopinatus Trichia hispida
Ena montana Perforatella vicina Vertigo substriata
Macrogastra latestriata
9. Middle-European-Mountain faunal-centres 11 species
Cochlodina orthostoma Helicigona faustina Oxychilus draparnaudi
Cochlodina cerata Trichia unidentata Oxychilus orientalis
Cochlodina laminata Isognomostoma isognomostoma Ruthenica filograna
Daudebardia helenae Laciniaria turgida (Rossmassler, 1836) (*)
73
Iberus, 15 (2), 1997
The zoogeographical distribution of
species by Faunal-centres is summarised
in Table II.
The formation of the characteristic
zoogeographical conditions of the recent
fauna began after the last cold period of
the Pleistocene. This can be stated on the
basis of the relative abundance analyses
of the faunae (84 species) situated in nine
faunal-centres (Tables II and III). Prima-
rily, the abundance of Subatlantic species
has increased during the last ten thou-
sand years. Ponto-Mediterranean species
are the most important and can be obser-
ved almost in all every biostratigraphical
REFERENCES
ALEXANDROWICZ, S. W., 1983. Malacofauna of
Holocene calcareous sediments of the Cracow
Upland. Acta Geologica Polonia, 33: 117-158.
ALEXANDROWICZ, S. W., 1984. Srodkowoholo-
censka Malakofauna z Harcygrundu Kolo
Czorsztyna (Pieninski Pas Skalkowy). Studia
Geologica Polonia, 83: 96-114.
BABA, K., 1982. Eine neue zoogeographische
Gruppierung der Ungarische Landmollusken
und die Wertung des Faunabildes. Malaco-
logica, 22: 441-454.
BABA, K. and FUKÓH, L., 1984. Holocén és re-
cens malakológiai adatok értékelése állatfol-
drajzi és 0kológiai módszerekkel a Búukkben.
Malakologiai Tájékoztató (Malacological News-
letter), 4: 42-53.
FLASAR, I., 1971. Zur Malakofauna des nordós-
tlichen Erzgebirges und des angerenzenden
Gebirgsvorlands. Malakologische Abhandlun-
gen, 3: 135-170.
FRANK, C., 1988. Aquatische und Terrestrische
Mollusken der Osterreichischen Donau-auen-
gebiete und der Angrenzenden Biotope. Teil
XIL. Das Osterreichische Donautal von der Os-
terreichisch-Deutschen Staatsgrenze bis Linz.
Linzer biologische Beitrag, 20: 413-503.
FRANK, C., 1990. Pleistozáane und Holozáne Mo-
lluskenfaunen aus Stillfried an der March: Ein
Beitrag zur Ausgrabungs-geschichte von
Stillfried und des Buhubergs nordlich von
Stillfried. Wissenschaftlichen. Mitteilung Nie-
derosterreichische Landesmus, 7: 7-272.
FRANK, C., 1992a. Spát-und postglaciale Gas-
tropoden aus dem Nixloch bei Losenstein-
Ternberg (Oberósterreich). Verbindung Os-
terreichisch Akademie der Wissenschaften, Mit-
teilung Kommission Quartarforschung, 8: 35-69.
FRANK, C., 1992b. Malakologisches aus dem
Ostalpenraum. Linzer biologische Beitrag, 24:
383-662.
74
zones (Vallonía costata biozone 18; Clausi-
liidae biozone 19; Granaría frumentum bio-
zone 18; Helecigona faustina-Acicula polita
biozone 22). Species of the Siberian-Asia-
tic faunal-centre follow them in impor-
tance (Vallonia costata biozone 15; Clausi-
Itidae biozone 19; Granaria frumentum bio-
zone 16; Helicigona faustina-Acicula polita
biozone 16). The Middle-European-
Mountain faunal-centres are located in
third place considering the relative
abundance of the species (Vallonia costata
biozone 8; Clausiliidae biozone 6; Granaria
frumentum biozone 6; Helicigona faustina-
Acicula polita biozone 9).
FUKOH, L., 1983. A búkki holocén Molluscák
állatfóldrajzi csoportositása (The Zoogeo-
graphical Grouppirung of the Holocene Mo-
lluscs in the Búkk). Malakologiai Tájekoztató
(Malacological Newsletter), 3: 37-39.
FUKOH, L., 1989. A Szilvasvárad: Szalajka-vólgy
(BNP) mésztufa úledekeinek malakosztrati-
gráfiai vizsgálata. Folia Historico-Naturalia
Musei Matraensis, 14: 39-42.
FUKOH, L., 1991. Examinations on Faunal-his-
tory of the Hungarian Holocene Mollusc
fauna (Characterization of the Succession
Phase). Folia Historico-Naturalia Musei Ma-
traensis, 16: 13-28.
FUKÓH, L., 1992a. Holocene Malacology in Hun-
gary. In Giusti, F. and Manganelli, G. (Eds.):
Abstracts of the eleventh International Malaco-
logical Congress. University of Siena: 115.
FuKOH, L., 1992b. The Holocene Mollusc fauna
of the Búkk Mountains. Abstracta Botanica,
16(2): 101-108.
FUKOH, L., 1993a. Holocene malacofaunal as-
semblages in Hungary. Scripta Geologica.,
Spec. Issue, 2: 121-125.
FUKOH, L., 1993b. Main features of the deve-
lopment of the Hungarian Holocene Mollusc
fauna. Malakológiai Tájékoztató (Malacological
Newsletter), 12: 15-19.
FUKOÓH, L., KROLOPP, E. AND SUMEGI, P., 1995.
Quaternary malacostratigraphy in Hungary.
Malacological Newsletter. Suppl., 1: 113-198.
KERNEY, M. P., CAMERON, R. A. D. AND JUNG-
BLUTH, J. H., 1983. Die Landschnecken Nord-und
Mitteleuropas. P. P. Verlag Berlin: 63-284.
KORNIG, G., 1983. Studie zur Gastropodenfauna
der Westkarpatischen Kalk-und Karstsch-
luchten. Malakologische Abbhandlungen, 8: 131-
142.
O Sociedad Española de Malacología ——_—_—_—T— lIberus, 15 (2): 75-82, 1997
Aestivation responses of three populations of the giant Afri-
can snail, Achatina achatina Linne (Gastropoda: Achatinidae)
Respuestas a la estivación de tres poblaciones del caracol gigante afri-
cano Achatina achatina Linne (Gastropoda: Achatinidae)
Joseph R. COBBINAH*
Recibido el 9-X-1995. Aceptado el 7-1V-1997
ABSTRACT
The rates of aestivation and emergence from aestivation of three experimental populations
of the giant African snails Achatina achatina (Linne, 1758) were compared. The snails were
from three origins: Donyina in the Ashanti Region, Nkasem in the Brong Ahafo Region and
Apedwa in the Eastern Region of Ghana. The shortest aestivation period [4 weeks) was re-
corded for the Apedwa snails while the longest period (16 weeks) was recorded for the Don-
yina population. Data for pre-aestivation and post-aestivation growth rates show a decrea-
sing order: Apedwa > Nkasem > Donyina. The mean growth rates eight weeks before aesti-
vation were 3.6 g, 14.3 g and 19.2 g for the Donyina, Nkasem and Apedwa snails
respectively and differed significantly (P = 0.001). The variability in growth rates and dura-
tion of aestivation reflects the optimal sizes of the natural population of the three groups.
RESUMEN
Se comparan las tasas de estivación y de abandono de la misma de tres poblaciones ex-
perimentales del caracol gigante africano Achatina achatina (Linné, 1758). Los caracoles
eran de tres localidades diferentes: Donyina, en la región de Ashanti; Nkasem, en la re-
gión de Brong Ahafo, y Apedwa, al Este de Ghana. El periodo de estivación más corto (4
semanas) se registró en la población de Apedwa, mientras que el periodo más largo (16
semanas) se registró en la población de Donyina. Los datos de las tasas de crecimiento en
la pre-estivación y la post-estivación muestran un orden decreciente: Apedwa > Nkasem >
Donyina. Las tasas medias de crecimiento ocho semanas antes de la estivación eran 3,6
9, 14,3 g y 19,2 g para los caracoles de Donyina, Nkasem y Apedwa, respectivamente,
y diferían significativamente (P = 0,001). La variabilidad en las tasas de crecimiento y la
duración de la estivación reflejan los tamaños óptimos de las poblaciones naturales de los
tres grupos.
Key words: The giant African Snail, Achatina achatina, aestivation, Ecotypes.
Palabras clave: Caracol gigante africano, Achatina achatina, estivación, ecotipos.
INTRODUCTION
Achatina achatina (Linne, 1758) is which is maximal in the rainy season
found in the closed forest area in and minimal in the dry season. The
Ghana. It shows an annual activity snail burrows into the upper 10-15 cm
* Forestry Research Institute of Ghana. UST. Box 63, Kumasi, Ghana.
AS
Iberus, 15 (2), 1997
COTE
d' IVOIRE
e Nkasem
_-“eKumasi
_- eDonyina
xx Moist Semi-deciduous
GULF OF GUINEA
Figure 1. Map of the closed forest area of Ghana showing the trial site (Kumasi) and the origins
(Donyina, Nkasem and Apedwa) of the snails used in trials.
Figura 1. Mapa del área de bosque cerrado en Ghana mostrando el lugar del experimento (Kumasz) y los
orígenes de los caracoles usados en el mismo (Donyina, Nkasem y Apedwa).
of soil during the dry season and
remains dormant for a period ranging
from three to five months (COBBINAH,
1993). This state of dormancy during
the dry season is referred to as aestiva-
tion. Circannual rythms are known to
be induced by such factors as light,
temperature, humidity and soil water
deficit (OwEnN, 1966). In the period
leading to the onset of aestivation, there
is a progressive decline in the snail's
metabolism. BARATOU (1988) asserts
that in order to maintain an equilibrium
between water in its tissue and the rela-
tive humidity of the immediate envi-
ronment, snails allow themselves to
dehydrate during this period. For
Achachatina marginata dehydration leads
to the loss of about 42% liveweight of
the non-shell tissues (STIEVENART, 1994).
Later, a mucous layer is secreted to
cover the shell opening; the fully
formed mucous layer is impervious to
both gases and water (HODASI, 1982).
Snails go into a state of dormancy whe-
, never conditions are too dry for their
76
liking. Whilst this behaviour is most
common in the dry seasons, COBBINAH
(1993) reported that even dry spells
during the wet seasons may induce
aestivation in A. achatina.
This is, however, in contrast to the
observation of HODASI (1982) that exten-
sive and persistent dry conditions are
necessary to induce aestivation, and that
aestivation normally does not occur
during the dry spells in the rainy
season. Extremes of temperature and
starvation is also reported to induce
aestivation (KONDO, 1964).
HODAsI (1982) suggested that not
every individual in the population aesti-
vates during the dry season. Accor-
dingly in certain localities within the
distribution range of A. achatina in
Ghana, fresh snails can be obtained
throughout the dry season. Here the
results of studies undertaken to deter-
mine the variability in aestivation res-
ponses of populations from three dis-
tinct enclaves of A. achatina in Ghana is
reported.
COBBINAH: Aestivation responses of the giant African snail, Achatina achatina Linne
MATERIALS AND METHODS
Sources of Snails: The snails for the
study were obtained from (a) Donyina in
the Ashanti Region, (b) Nkasem in the
Brong Ahafo Region and (c) Apedwa in
the Eastern Region. Donyina is 20 km from
our test site on the campus of the Univer-
sity of Science and Technology, Kumasi,
Ghana. Nkasem to the north west and
Apedwa to the south east of Donyina are
109 and 198 km respectively from our test
site. Figure 1 shows the origin of the th-
ree populations together with approxi-
mate isohyets. Donyina (6* 45' N and 2925'
W”, Nkasem (6* 15” N and 2* 20' W) and
Apedwa (6” 46" N and 1? 25 E) all fall wit-
hin the rainfall regime 1250 mm-1750 mm
typical of the moist semi-deciduous forest
type. Seasonal rainfall at the three origins
is influenced by meteorological Equator
(ME). Two weather systems are associa-
ted with the ME, the Intertropical Front
and the Intertropical Convergence Zone
which cause short heavy rain storms and
abundant continuous rain respectively and
result in bimodal annual rainfall pattern
with major rains falling between April-
June and minor period of rains between
September and October separated by two
months of less frequent rains (LEROUxX,
1988). The mean annual rainfall for the th-
ree locations are Donyina (1403 mm), Nka-
sem (1395 mm) and Apedwa (1561 mm).
The main dry season falls between De-
cember and March. The soils at the three
areas are of the forest ochrosols type. While
all three areas fall within one forest vege-
tation type, different levels of logging and
agricultural practices have resulted in var-
ying rates of deforestation. The Donyina
site has completely been converted into
farmland over the years. The Apedwa site
falls within the mountainous Atewa range
protection forest reserve where timber ex-
ploitation is prohibited. However, pockets
of illegal farms are not uncommon. The
Nkesem site is an off reserve area with
fairly dense vegetation interspersed with
farmlands.
Growth Rates: The snails were con-
ditioned in our research plot for four we-
eks on a diet consisting of pawpaw (Ca-
rica papaya) leaves and fruits, cocoyam
(Xanthosoma mofafa) leaves, and leaves of
the fameflower plant (Talinum triangulare).
Individuals that showed signs of inacti-
vity during this period were not used for
the trials. Twenty snails of each group
(ecotype) were placed in wooden boxes
measuring 0.6 x 0.6 x 0.35 m, filled to a
depth of 20 cm with sieved sterile silty
sandy soil obtained from an abandoned
rubbish dump. The snails in the boxes were
offered excess amounts of food but left
over foods were removed daily and soils
overturned weekly. Because of high sur-
vival rates of A. achatina (COBBINAH AND
OsEI-NKRUMAH, 1988) and insignificant
changes in shell size over short periods of
time, growth rates were measured by chan-
ges in live weights of snails. Each treat-
ment was replicated three times, with data
recorded for eight weeks prior to onset of
aestivation and eight weeks after emer-
gence from aestivation.
Aestivation patterns of the three
populations: The aestivation patterns of
individual snails used in the growth
studies described above were monito-
red. Snails were considered as having
aestivated when they covered the shell
opening with a white mucous layer.
Snails were recorded as emerged from
aestivation when they discarded the
epiphragm and resumed feeding.
A second trial was conducted to deter-
mine the effects of increased humidity.
Each group of snails was divided into two
lots. Twenty snails from one lot were
placed in a 0.6 x 0.6 x 0.3 m wooden box
as described above. A second set of 20
snails of the same ecotype was placed in
another box with humidity slightly incre-
ased by making a platform about 15 cm
above the soil level and placing a moiste-
ned fibre bag on the platform. The bag
was kept moist for two weeks before onset
of aestivation and throughout the aesti-
vation period. Similar sets were set up for
the other ecotypes and each treatment was
replicated three times.
All snails used in the studies were
labelled (paint marked) to enable obser-
vation of individual activities daily.
Aestivation responses (time of onset and
Iberus, 15 (2), 1997
Table I. Growth rates of three populations of Achatina achatina cight weeks before and after aesti-
vation period.
Tabla I. Tasas de crecimiento de las tres poblaciones de Achatina achatina ocho semanas antes y después
del periodo de estivación.
Mean initial Mean weight gained Mean weight gained
weight (g) in 8 weeks before in 8 weeks after
Ecotype + s.e. aestivation + s.e. aestivation + s.e.
Donyina 46.6+1.25 3.60+0.58% 10.83 + 0.172
Nkasem 49.7+0.95 14.27+0.81? 12.47+ 0.359
Apedwa SS 19.20+1.37< 19.58 + 2.87*
Means within a row followed by the same letter are not significantly different (P= 0.05).
emergence from aestivation) were recor-
ded for all snails. The time required for
50% of each group to aestivate (TEsso) or
emerge from aestivation (TEms0o) was
estimated for the various treatments and
populations.
RESULTS AND DISCUSSION
Growth rates of the three popula-
tions: The pre-aestivation growth rates
for the Nkasem and Apedwa snails
were four and five times more than that
recorded for the Donyina snails. The
mean growth rates 8 weeks before aesti-
vation ranged from 3.6 g for Donyina to
19.2 g for Apedwa (Table 1).
Analyses of the data (ANOVA) in
Table 1 indicate that the growth rates
among the three populations differed sig-
nificantly for the pre-aestivation (F = 83.94;
df =2, 6; P< 0.001) and post-aestivation (F
= 7.73, df 2, 6; P< 0.02) periods. However,
Fisher's Multiple Range Test (LSD) did
not show significant difference in the post-
aestivation growth rates between the
Donyina and Nkasem snails. The very low
growth rates recorded for the Donyina
group 8 weeks before aestivation suggest
that, perhaps, aestivation in this group is
preceded by significantly longer period
of inactivity. Both the pre and post aesti-
vation growth rates of the three popula-
tions indicate that the Apedwa group
might be the most desirable group for
commercial snail farming.
78
Aestivation Patterns of the three
Populations: Figure 2A shows the aesti-
vation pattern of the entire snail popula-
tion. It took 10 weeks for all the snails in
the test to aestivate. Three peaks are
found in the second, sixth and tenth
week. The three peaks show the hetero-
geneity in the response of the entire
population to factors inducing aestiva-
tion.
Figure 2B shows the aestivation pat-
tern of the Donyina ecotype. Aestivation
commenced on 29 October 1993 and pea-
ked on 6th November, 1993, one week
after the beginning of aestivation. The
entire Donyina group aestivated in 5 we-
eks. The first observation of aestivation
for the Nkasem (Fig. 2C) and Apedwa
(Fig. 2D) groups was recorded on 6th
November, 1993 but peak aestivation for
these two groups was recorded on 4th
December, 1993 and 28th December,
1993, respectively. Aestivation for these
two groups spanned a period of 8 and 9
weeks. Time taken for 50% of each pro-
pulation to aestivate (TEss0) were 8, 28
and 52 days for Donyina, Nkasem and
Apedwa snails respectively.
The relatively longer periods required
for the Nkasem and Apedwa populations
to complete aestivation is a reflection of
the variability within these two popula-
tions. The peaks observed in Figures 2B-
D corresponded to the peaks in Figure 2A
and suggest that the heterogeneity in the
aestivation pattern of A. achatina observed
in our study was due mainly to the varia-
COBBINAH: Aestivation responses of the giant African snail, Achatina achatina Linne
ES 3
Percent aestivating
5
0
22)r0fa3 Sin wn 3h "h2 ap
Aestivation date
Percent aestivating
220 Sm am 32 M2 31h2
Aestivation date
Percent aestivating .
40
4, Dec —>
[27]
o
Percent aestivating
mn
3
0
2/h0 sum 14n 3/2
Aestivation date
1712 31/12
50 28 Dec.—> D
uy
o
N
o
3
0
2/0 sn. 19m 32 vh2 3112
Aestivation date
Figure 2. Aestivation patterns. A: entire experimental population; B: Donyina population; C:
Nkasem population; D: Apedwa population.
Figura 2. Patrones de estivación. A: toda la población experimental; B: población de Donyina; C: pobla-
ción de Nkasem; D: población de Apedwa.
tion in the responses of the three groups
to the factors inducing aestivation.
The emergence period for the entire
population covered a period of 7 weeks
from the end of January to mid-March,
1994. Again three peaks were evident (Fig.
3A). These were in the third, fifth and
seventh week and corresponded to peak
emergence periods for the Apedwa (Fig.
3D), Nkasem (Fig. 3C) and Donyina (Fig.
3B) respectively. The first snail to emerge
from aestivation was from the Apedwa
group on 31 January 1994 (Fig. 3D). By
mid-February 60% of this group had
emerged from aestivation. On the other
hand, not a single snail from the Donyina
group had emerged by mid-February,
three and half months after initiation of
aestivation (Fig. 3B). Twenty percent of
the Nkasem group had resumed normal
metabolic activities by mid-February (Fig.
3C). Peak emergence in the Donyina
group was recorded during the first week
in March. Time taken for 50% of popula-
tion to emerge from aestivation (T'Emso)
following the outset of emergence were 9,
YS
Iberus, 15 (2), 1997
30
25
% Emergence from aestivation
0
6/1J94 30) az 2/2 vu 21
Emergence date
40 6Mar. —»
20
% Emergence from aestivation
0
6h 30h 13% 21 ad 7
Emergence date
40 20 Feb.
E 30
u
2
E]
o
5]
5 20
mn
o
[|]
(5)
o
E
5
PS
0
6h 30h 132 2/2 133 27/3
Emergence date
40F 9Feb. — D
30
20
% Emergence from aestivation
0
16h 30h 19k 27h
Emergence date
2/3 271
Figure 3. Emergence patterns. Á: entire experimental population; B: Donyina population; C:
Nkasem population; D: Apedwa population.
Figure 3. Patrones de salida de la estivación. A: toda la población experimental; B: población de
Donyina; C: población de Nkasem; D: población de Apedwa.
20 and 33 days for Apedwa, Nkasem and
Donyina groups respectively.
Humidity is considered a major factor
affecting aestivation behaviour of A acha-
tina. COBBINAH (1993) reported that when
the relative humidity falls during the dry
season A. achatina becomes inactive, seals
itself in its shell with a white calcareous
layer and aestivates in order to prevent
loss of water from the body. In this study
the enhanced humidity (3% above the
ambient condition) attained in the boxes
with moistened fibre bags did not
80
influence the overall aestivation pattern
of any of the three groups (see Table II).
Elmslie (pers. comm.) asserts that
aestivation / hibernation may be influen-
ced by a programmable regulation, reset-
table by environmental experience like cir-
cadian rhythm, but transmitted to offs-
pring in the case of parents that have
changed environment in a partially reset
state. It is possible that the enhanced
humidity in these boxes was not adequate
to destabilise the in-built mechanism
which sets in motion physiological
COBBINAH: Aestivation responses of the giant African snail, Achatina achatina Linne
Table II. Aestivation patterns of snails in boxes with or without moistened fibre bags.
Tabla II. Patrones de estivación de los caracoles en cajas con o sin bolsas de fibra humedecidas.
Mean Weekly % Aestivation Mean weekly % Emergence
Ecotype Dry (68-70% rh) Moist (68-74% rh) Dry (57-62% hr) Moist (56-66% rh)
Donyina 22.16 SEA 26.54 25.49
Nkasem 19.42 157 15772 16.52
Apedwa 2096 23.91 13.97 14.80
All differences are not significant at (P = 0.05).
changes resulting in aestivation during
periods of low atmospheric humidity.
Whilst aestivation has adaptive value
for the snail (HODASI, 1982; STIEVENART,
1994), for the snail farmer it represents the
loss of valuable growing time. The three
populations show significant differences
in growth rates and duration of aestiva-
tion. Shorter aestivation period mean
longer feeding period and ultimately
larger body sizes.
Based on peak aestivation and emer-
gence periods for the three groups, the
estimated duration of the dormant periods
were 4, 10 and 16 weeks for the Apedwa,
Nkasem and Donyina respectively. More-
over, data on growth rates clearly show a
decreasing order Apedwa > Nkasem >
Donyina among the three groups during
the pre and post aestivation periods. These
two factors acting in concert may explain
differences in adult sizes of A. achatina
from various areas of the country. The
Apedwa snails are usually twice the size
of the Donyina snails (COBBINAH, 1993).
The Nkasem snails are often intermediate
in size between the two populations.
Although all the three enclaves
where the snails originated from are
within the moist semi-deciduous forest
type and are characterized by similar soil
type, there are differences in mean
annual rainfall and vegetation cover. Soil
water regime are influenced by rainfall
gradient and evapotranspiration (VAN
ROMPAEY, 1993). Most studies of the soil
water regime in West African tropical
forest (HUTTEL, 1975; COLLINET, MONTE-
NEY AND POUYAUD, 1984) suggest that
seasonal soil water deficits increase with
decreasing annual rainfall. Mean annual
rainfall is highest at Apedwa (1561 mm)
but similar at Donyina (1403 mm) and
Nkasem (1359 mm). In the three enclaves
the Donyina area is the most degraded
due to logging and slash and burn agri-
culture practices over the years. Unlike
Apedwa and Nkasem where snails are
mainly gathered from forest reserves
and secondary forests outside reserves,
the Donyina snails are mainly gathered
from low vegetation farmlands. Alt-
hough Donyina and Nkasem have
similar mean annual rainfall, the relati-
vely poor vegetation cover at Donyina
would result in higher evapotranspira-
tion and longer duration of seasonal
drought. The snails from this area have
probably adapted to this relatively long
drought period through extension of
dormancy period.
All individuals in the three groups
aestivated in these studies. Neverthe-
less, a few individuals among the
Apedwa group had shorter periods of
aestivation than the four week group
average. Further studies are, however,
underway to determine whether some
individuals or groups normally remain
active throughout the dry season, and
also to better understand the physiologi-
cal, environmental and behavioural fac-
tors controlling aestivation. If the varia-
bility in the aestivation behaviour by the
different individuals or groups has a
significant genetic component, the resul-
ting information would be of potential
use for commercial snail farming.
81
Iberus, 15 (2), 1997
REFERENCES
BARATOU, J., 1988. Raising snails for food. llu-
minations Press, Calistoga, USA, 72 pp.
COBBINAH, J. R. AND OSE-NKRUMAH, A., 1988.
The effect of food on growth of Achatina acha-
tina. Snail Farming Research, 2: 20-24.
COBBINAH, J. R., 1993. Snail farming in West
Africa: a practical guide. Sayce Publishing Ltd.,
Exeter, U. K., 49pp.
COLLINET, J., MONTENEY, B. AND POUYAUD, B.,
1984. Le millieu physique. Recherche de amena-
gement en millieu forestier tropical humide: le pro-
jet taide Cote d'Ivoire. Notes Techniques du
MAB, 15.
HODASL J. K. M., 1982. Some aspects of the bio-
logy of Achatina (Achatina) achatina (Linne).
Bulletin de l'IFAN, 44: 100-114.
HUTTEL, CH., 1975. Recherches sur l'ecosys-
teme de la foret subequatoriale de basse Cote
d'Ivoire. IV. Estimation du Bilan hydrique.
La Terre et la Vie, 29: 192-202.
82
KONDO, L., 1964. Growth rates in Achatina fu-
lica Bowdich. Nautilus, 78: 6-15.
LEROUX, M., 1988. La variabilite des precipita-
tions en Afrique occidentale. Les compo-
santes aerologigues du probleme. Veille cli-
matique satellitaire, 22: 26-46.
OWEN, D. F., 1966. Animal Ecology in Tropical
Africa (1st Ed.). Oliver and Boyd, London, 122
bs
STIEVENART, C., 1994. Artificial estivation of the
giant African snail Archachatina marginata sa-
turalis: Survival, weight loss and meat yield.
Snail Farming Research, 5: 23-28.
VAN ROMPAEY, R.S. A.R., 1993. Forest gradients
in West Africa. Ph. D. Thesis, Agricultural
University, Wagemningen, 98 pp.
O Sociedad Española de Malacología —————— IBERUS, 15 (2): 83-93, 1997
Snail communities associated to swampy meadows and
sedgy marshy meadows plant communities of the Great
Hungarian Plain
Comunidades de moluscos asociadas a comunidades vegetales de pra-
deras pantanosas y junqueras en la Gran Llanura Húngara
Károly BÁBA* and István BAGI'**
Recibido el 11-X-1995. Aceptado el 29-1V-1997
ABSTRACT
Simultaneous phytocoenological, malacological and pedological studies were carried out
in six successional plant community types characteristic on the Great Hungarian Plain.
Data were analyzed by multivariate statistical methods (PCA). Variation in the abundance
of ecological, habitat type and nutritional type species groups was also followed. In the
Succiso-Molinietum (swampy meadows) and Agrostio-Caricetum [sedgy marshy meadows)
plant communities, the distribution of constant and differential species is mostly influenced
by their range of pH tolerance. Habitat drying and salinization, and various human
impacts (draining, cutting and grazing by domestic animals) influence the succession of
vegetation. Changes in snail assemblages include altering proportion of living and dead
individuals and decreasing diversity (H'), both reflecting habitat drying and salinization.
Complementary changes in the abundance of riparian and steppe dweller species groups
indicate habitat drying, while swamp dwellers become more numerous as the topsoil
becomes muddy due to salt accumulation. Concerning nutritional types, the proportion of
omnivores decreases with habitat drying, whereas the frequency of herbivores increases in
a complementary manner. The increasing abundance of saprophagous snails reflects bio-
tope eutrophization caused by cutting and grazing.
RESUMEN
Se han desarrollado simultaneamente estudios fitocoenológicos, malacológicos y pedoló-
gicos en seis tipos de comunidades vegetales de la Gran Llanura Húngara. Los datos fue-
ron analizados mediante métodos estadísticos multivariantes. También se ha estudiado la
variación en los grupos de especies desde el punto de vista ecológico, de su hábitat y
tipo nutricional. En las comunidades vegetales Succiso-Molinietum (praderas pantanosas)
y Agrostio-Caricetum (¡junqueras), la distribución de las llamadas especies constantes y
diferenciales está mayoritariamente influenciada por su rango de tolerancia de pH. La
desecación del hábitat y su salinización, junto con un conjunto de alteraciones humanas
(desecación, segado y ramoneado por animales domésticos) afectan la suceción vegetal.
Los cambios en las comunidades de moluscos incluyen la variación en las proporciones
de individuos vivos y muertos y una menor diversidad (H'); ambos cambios reflejan la
desecación y salinización del hábitat. Cambios complementarios en la abundancia de los
grupos de especies ribereñas y de estepa son indicadores de la desecación, mientras que
las especies propias de zonas pantanosas se hacen más abundantes según la capa super-
* Department of Biology, Gy. Juhász Teacher Training College, Szeged, Hungary.
** Department of Botany, A. József University, Szeged, Hungary.
83
IBERUS IS NZ)IIH 7
ficial se vuelve fangosa debido a la acumulación de sal. Por lo que se refiere a los grupos
nutricionales, la proporción de omnivoros decrece con la desecación, mientras que la fre-
cuencia de herbivoros crece de manera complementaria. La creciente abundancia de
especies saprófagas refleja la eutrofización producida por el segado y ramoneo.
KEY WORDS: Gastropoda, drainage, salinization, species groups, succession, Hungary.
PALABRAS CLAVE: Gastropoda, desecación, salinización, grupos de especies, sucesión, Hungría
INTRODUCTION
Under the semiarid climate characte-
ristic to the Eupannonicum floristic
region (which the lowlands of the Car-
pathian Basin belong to), habitat drying
and salinization processes were studied
along a successional series spanning
from swampy to salt-affected meadows.
The Succiso-Molinietum association
represents the wet meadows on calcare-
ous swampy meadows soils. The phy-
siognomy of its vegetation is determi-
ned by tall grasses (Molinia caerulea, M.
arundinacea, Festuca pratensis, Deschamp-
sia caespitosa, Agrostis stolonifera). Its
stands have high species diversity and
are rich in protected rare species (Dacty-
lorrhiza incarnata, Orchis laxiflora
palustris, Cruciata pedemontana, Veratrum
album, Iris spuria, 1. sibirica, ...). The
Succiso-Molinietum is in successional
relation to the Agrostio-Caricetum asso-
ciation; namely, moderate habitat drying
and salinization involve its transforma-
tion into the latter. The Agrostio-Carice-
tum may occur independently, too. It is
characteristic of the solontschak-solonet-
zic alkaline meadows soils. Depending,
on the hydro- and haloecological condi-
tions the Agrostio-Caricetum forms
various vegetation units (eg. subassocia-
tions), that well reflect the environmen-
tal impacts. These units are extremely
diverse in its species composition and
their physiognomy. The two associa-
tions represent the meadow formation
of the Great Hungarian Plain in a signi-
ficant percentage. As the two associa-
tions have evolved under wet condi-
tions, the drought on their habitats
causes drastical transformation in their
vegetation structure, first of all in their
species composition. The changes in the
84
structure show close relationship to the
environmental conditions, therefore
every distinguished vegetation unit well
reflects a stage of the drought induced
vegetation transformation processes
(phytocoenological indication). A lower
proportion of data regards to other plant
associations, that are in successional
relationships with Succiso-Molinietum
and Agrostio-Caricetum.
The water management works in the
20 century and the more and more arid
climate of the last two decads endange-
red the vegetation of the wet meadows.
Their transformation into drier habitats
would have harmful consequences for
the whole ecosystem, particularly the
animal assemblages, that have no
enough mobility to change their habitat.
The terrestrial snails belong to a little
mobile group of animals, they are
bound to their habitats more firmly than
other ones; therefore the, however well-
known, successional and zonational re-
lationships of the vegetation units can
be examined on the basis of their snail
assemblages, too. If the transformation
processes of vegetation and their animal
assemblages show paralelism, the chan-
ges in the composition of this animal
group would have an indicative value
for nature conservation.
MATERIALS AND METHODS
In the South-eastern part of the
Great Hungarian Plain (Csongrád
County) snail assemblages were sam-
pled by the quadrat method. Ten plots
25 x 25 cm size were examined in para-
llel with phytosociological recording of
BÁBA AND BAGI: Snail communities in swampy and sedgy marshy meadows in Hungary
each plant subassociation encountered
(S0ó, 1964). A hight proportion of the
data regards to two plant communities:
Succiso-Molinietum and Agrostio-Carice-
tum; only some samples originated ot-
her successionally related association.
Altogether 30 collection sites were visi-
ted in six plant community types, while
the number of subassociations studied
was 22 (see Figure 3). In each quadrat, a
detailed soil analysis was conducted, in-
cluding measurements of relative per-
centage soil moisture, total organic mat-
ter content, CaCOz3 concentration, hy-
groscopy and pH.
The concepts applied in the coenolo-
gical characterization are the following;
Abundance (A) is the number of indivi-
duals of a snail species found in a plant
community regarding to one m? (A /m?);
Dominance (D) is the ratio of indivi-
duals of a species related to the total
individuals of every species; Species
density (SD) is the average species
number of 10 quadrats in a collection
site; Frequency (F) is the ratio of a
species in relation to the total number of
species in a collection site (consist of 10
quadrats); Constancy (K) is the ratio of a
species in relation to the number of all
species found in all collection sites
belonging to the same plant community.
When a species was found in all the
quadrats, it can be considered as an
absolute constant species. D, F and K are
expressed as percentages.
Data were analyzed by standardized
Principal Components Analysis (PCA,
PODANI, 1988). Shannon-diversity (H'),
SD and changes in the abundance
(A/m?) of living and dead individuals
were followed through examination of
the proportions of various species
groups. Ecological species groups were
defined as follows: S: sciophilous, P:
swamp dweller, Ph: photophilous, R:
riparian and OA: species of open areas.
They were obtained by applying the
block cluster method of FEOLI AND
ORLÓCZI (1979). A simplified version of
LoZEK'"s (1964) typology was used and
the following habitat type groups were
distinguished: riparian ubiquitous (RU),
bush forest dweller (B), hygrophilous
swamp dweller (HP) and steppe dweller
(ST). Nutritional type groups (O: omni-
vore, SP: saprophagous, H: herbivore)
were differentiated after the system of
FRÓMMING (1954). Species and their
group assignments are listed in Table 1.
RESULTS AND DISCUSSION
Species encountered: Field studies
yielded a collection of 3047 living and
3150 dead individuals belonging to 26
species (Table 1). The majority of the
specimens was found in the Succiso-
Molinietum (1062 + 1268) and Agrostio-
Caricetum (1496 + 1445) phytocoenoses,
while plant associations 1, 3, 4 and 6
altogether contained 489 + 440 alive and
dead individuals, respectively.
Two species new to the southern
part of the Great Hungarian Plain were
detected: Malacolimax tenellus (O. F.
Muller, 1774) and Deroceras sturanyi
(Simroth, 1894).
Characteristic species and their re-
quirements: On the basis of frequencies
of occurrence data, the constant, sub-
constant and accessorial species could be
determined for the two plant associa-
tions most rich in snails (Table ID). Cons-
tant and subconstant species reach low
levels of dominance in both communi-
ties. This is probably due to unfavoura-
ble changes in their environment caused
by either draining, drying, salinization
or grazing. Differential species are Coch-
licopa lubricella (Porro, 1938) and Cary-
chium minimum O. FE. Miller, 1774 in the
Succisio-Molinietum plant association,
and Pupilla muscorum (L., 1758) in the
Agrostio-Caricetum. The occurrence of
Truncatellina, Granaria and Helicopsis spe-
cies in the Agrostio-Caricetum association
indicates habitat drying. The distribution
of constant and differential species is
strongly influenced by the width of their
pH tolerance range (Figs. 1, 2), as it has
been shown earlier (BABA AND DOMON-
KOs, 1992). According to aur data diffe-
rential species of the Succisio-Molinietum
association have a narrow pH tolerance
range, in contrast with species occurring
85
IBERUS, 15 (2), 1997
Table I. Gastropod species found in the plant communities studied (1: Caricetum acutiformis-ripa-
riae, 2: Succiso-Molinietum; 3: Bolboschoenetum maritimae, 4: Astero-Agrostietum;, 5: Agrostio-
Caricetum distantis, 6: Achilleo-Festucetum pseudovinae) E: Ecological species groups (S: sciophilous;
P: swamp dweller; Ph: photophilous; R: riparian; OA: species of open areas); N: Nutritional type
(O: omnivore; SP: saprophagous; H: herbivore); H: Habitat type (RU: riparian ubiquitous; B: bush
forest dweller; HP: hygrophilous swamp dweller; ST: steppe dweller).
Tabla I. Especies de gasterópodos encontradas en las comunidades vegetales estudiadas (1: Caricetum acu-
tiformis-ripariae; 2: Succiso-Molinietum, 3: Bolboschoenetum maritimae; 4: Astero-Agrostietum;
5: Agrostio-Caricetum distantis; 6: Achilleo-Festucetum pseudovinae) E: Grupos ecológicos de las
especies (S: esciófilo; P: de marisma; Ph: fotófilo; R: ribereño; OA: de áreas abiertas); N: Tipo nutricio-
nal (O: omnívoro, SP: saprófago, H: herbívoro); H: Tipo de hábitat (RU: ribereño ubiquo; B: zonas
arbustivas; HP: marismeño higrófilo; ST: estepa).
E N H 1 2 3 4 5 6
SSP OR Carychium minimum (0. F. Miller 1774) 17 5
S SP HP Carychium tridentatum (Risso 1826) 8
0A HB Cepaea vindobonensis (Ferussac 1821) l 2 6
DA SP ST Chondrula tridens (0. E. Múller 1774) 135 l 388 50
Rs 0 Bb Cochlicopa lubrica (0. F. Múller 1774) 3 4
DA 0. ST Cochlicopa lubricella (Porro 1838) + 184
R 0 RU Deroceraslueve(0.F. Miller 1774) l
R 0. HP Derocerassturanyi(Simroth 1894) l
0A 0 B Euconulus fulvus (0. F. Miller 1774) 4
0A H ST Granaria frumentum (Draparnaud 1801) + 86
0A H ST Helicella obvia (Menke 1828) 3
MAS Helicopsis striata (0. E. Múller 1774) 1
Ph H B Helix pomatia (Linne 1758) 2
S 0 RU Malacolimax tenellus(0.P. Miller 1774) l
PH ST Monacha carthusiana (0. F. Miller 1774) 18 99 13 AS
R H RU Perforatella rubiginosa (A. Schmidt 1853) 3
0A H ST Pupilla muscorum (Linne 1758) l l 329 165
R 0 RU Succineaoblonga (Draparnaud 1801) 8 169 43 6 130 +
P 0 HP Succinea elegans (Risso 1826) 1
DA SP ST Irucatellina cylindrica (Ferrusac 1807) 3
0A H ST Vallonia costata (0. E Múller 1774) | 8 6
REO p Vallonia enniensis (Gredler 1856) 69 39 244
RS Vallonia pulchella (0. E. Múller 1774) 19 40 A
RES SRU Vertigo antivertigo (Draparnaud 1801) 1
A A | Vertigo pygmaea (Draparnaud 1801) 1 20 44 2
R 0 RU Zonitoides nitidus(0.F. Miller 1774) 12 1
Number of Individuals 151 1062 58 12 1496 268
Number of collection sites l 11 l l 15 l
Number of Species 11 17 3 3 15 7
Dead Individuals 155 1268 OD 42 1445 243
in both Agrostio-Caricetum and Succisio-
Molinietum, which tolerate a much wider
range of soil pH (Fig. 2).
86
Successional changes: The ordina-
tion of snail samples of collection sites
(1-30) clearly indicates (Fig. 3) the suc-
BÁBA AND BAGI: Snail communities in swampy and sedgy marshy meadows in Hungary
Table I1. The constant (above), subconstant (middle) and accesorial (below) species of the two plant
communities (Succiso-Molinietum, Agrostio-Caricetum) studied in more detail. K: constancy; D:
dominance.
Tabla 11. Las especies constantes (arriba), subconstantes (medio) y accesorias (abajo) en las dos comuni-
dades vegetales estudiadas (Succiso-Molinietum, Agrostio-Caricetum). K: constancia; D: dominancia.
Succiso - Molinietum K D
Monacha carthusiana 100 9.32
Succinea oblonga 90.9 15.91
Cochlicopa lubricella 81.81 17.32
Vallonia enniensis 1272 36.72
Chondrula tridens IDEA
Vertigo pygmaea 45.45 1.88
Carychium minimum 21.17 0.47
Vallonia pulchella 18.18 3.76
Cochlicopa lubrica 18.18 0.28
Carychium tridentatum 9.09 0.75
Perforatella rubiginosa 9.09 0.28
Cepaea vindobonensis 9.09 0.09
Deroceras laeve 9.09 0.09
Deroceras sturanyi 9.09 0.09
Malacolimax tenellus 9.09 0.09
Pupilla muscorum 9.09 0.09
Vertigo antivertigo 9.09 0.09
Agrostio - Caricetum K D
Chondrula tridens 100 25.93
Monacha carthusiana 100 13.03
Succinea oblonga 80 8.68
Pupilla muscorum 73.33 21.99
Vertigo pygmaea 33.33 2.94
Vallonia pulchella 26.66 3.67
Cepaea vindobonensis 20 0.4
Helix pomatia 13.13 0.13
Granaria frumentum 6.66 5.74
Vallonia costat 6.66 0.53
Cochlicopa lubricella 6.66 0.26
Iruncatellina cylindrica 6.66 0.2
Helicopsis striata 6.66 0.06
Zonitoides nitidus 6.66 0.06
cessional and zonational relationships of
the plant associations studied, and a
gradual habitat drying (Baci, 1988). The
main lines of the drying processes can
be outlined as follows: (A) Non-salinic,
wet line Caricetum acutiformis-ripariae (L,
1), Succiso-Molinietum typicum (IL, 2-10),
S. -M. poetosum (X, 11), S. -M. agrostieto-
sum (XI, 12). The latter is a connection to
a different, saline line: (B) Bolboschoene-
tum maritimae (IV, 14), Agrostio-Caricetum
bolboschoenetum (IV, 21), A. -C. fac. Juncus
(UL 16), Agrostio-Caricetum plantagineto-
sum maritimae (V, 17-20). Later, while the
drying procces continues, the two lines
originated a common line (C), whose re-
presentative associations are A-C. festu-
cetosum arundinacene (VI, 28), A. -C. poe-
tosum (Vlla, 22-24), A. -C. festucetosum
pseudovinae (VII, 15) and finally the
Achilleo-Festucetum pseudovinae (IX, 29).
Roman numbers indicates groups of co-
llection sites with similar features obtai-
ned from the analysis. The successio-
nally closely connected plant communi-
ties often form zonation systems in the
field. The drying processes have been
particularly accelerated since the sixties,
due to the draining of the region. The
three successionally related lines could
be distinguished in the process of drai-
ning-generated habitat drying by inves-
tigation of snails, too. The declining
density of dead shells and living indivi-
duals, the fall of individual density (ID)
and diversity (H”) indicate habitat dr-
ying (X, V, Vlla, b, IX and VIII) and
sometimes salinization (Fig. 4). Habitat
drying accelerates with draining, which
then leads to higher snail abundance
again at the end of the successional
xero-series at dry localities (Achilleo-Fes-
tucetum association). Chondrula and Pu-
pilla can become especially numerous.
Snail species groups were used to
evaluate these processes, for which the
87
IBERUS, 15 (2), 1997
2. axis
1.907 3
8
1
4
2
6
9
7
-2.043 5
Í | 1. axis
-2.038 2.23
Figure 1. Distribution of constant and subconstant species according to soil pH (standardized PCA).
1: Carychium minimum, 2: Succinea oblonga; 3: Cochlicopa lubricella; 4: Vertigo pygmaea; 5: Pupilla
muscorum; 6: Vallonia costata;, 7: Vallonia pulchella; 8: Vallonia enniensis, 9: Chondrula tridens.
Figura 1. Distribucion de las especies constantes y subconstantes de acuerdo con el pH del suelo (Análisis
de componentes principales estandarizado). 1: Carychium minimum, 2: Succinea oblonga; 3:
Cochlicopa lubricella; 4: Vertigo pygmaea; 5: Pupilla muscorum,; 6: Vallonia costata; 7: Vallonia
pulchella; 8: Vallonia enniensis; 9: Chondrula tridens.
9.2
No)
8.8
8.6
8.4
pH interval
(0,2)
159)
8 9 2 3) 4 3 7 6 l
Figure 2. Distribution of the pH tolerance ranges of constant and subconstant species. Numbers
refer to species as in Figure 1.
Figura 2. Distribución de los rangos de tolerancia al pH de las especies constantes y subconstantes. Los
números de las especies son idénticos a los de la Figura 1.
88
BÁBA AND BAGI: Snail communities in swampy and sedgy marshy meadows in Hungar;
2.axis
1.744
- 0.896
-1.329 1.258
Figure 3. Ordination of collection sites by using data of snails samples (standardized PCA). Roman
numbers indicate sample groups with similar phytological and malacological features; groups obtai-
nes by ordination of data. Arabic numerals in brackets indicate collection sites. Caricetum acutifor-
mis-ripariae 1 (1); Succiso-Molinietum a. typicum facies Veratrum album 1 (9), b. typicum facies
Phragmites 11 (10), c. typicum normale 1 (2-8), d. poetosum angustifoliae X (11), e. agrostietosum XI
(12); Bolboschoenetum maritimae YV (14); Astero - Agrostietum IV (30); Agrostio - Caricetum distan-
tis, a. agrostietosum IV (13), b. agrostietosum facies Juncus compressus YI (16), c. plantaginetosum
maritimae Va, b (17-20), d. poetosum angustifoliae Vlla (22-24), e. festucetosum arundinaceae VÍ
(28), £. festucetusum pseudovinae VII (15), g. bolboschoenetosum IV (20); Achilleo - Festucetum pseu-
dovinae IX (29). See the text for further details.
Figura 3. Ordenación de las estaciones de muestreo utilizando datos de muestras de moluscos (Análisis de
componentes principales estandarizado). Los números romanos indican grupos de estaciones con similares
características fitológicas y malacológicas; los grupos se obtuvieron por ordenación de los datos. Los núme-
ros arábigos entre paréntesis indican las localidades de muestreo. Caricetum acutiformis-ripariae / (1);
Succiso-Molinietum 4. typicum facies Veratrum album /7 (9), b. typicum facies Phragmites // (10),
c. typicum normale /7 (2-8), d. poetosum angustifoliae X (11), e. agrostietosum AX7 (12);
Bolboschoenetum maritimae /V (14); Astero - NIV (30); Agrostio - Caricetum distantis, 4. agros-
tietosum /V (13), b. agrostietosum facies Juncus N1I] (16), c. plantaginetosum maritimae Va, b (17-
20), d. poetosum angustifoliae V//a (22-24), e. festucetosum arundinaceae VI (28), f. festucetusum
pseudovinae VIT (15), g. bolboschoenetosum 7V (20); Achilleo - Festucetum pseudovinae /X (29).
Véase el texto para más detalles.
abundantial changes are shown (Figs. 5, quists (R, RU) monotonously decreases
6, 7). Habitat drying and salinization (collection sites 11 and 12 represent sta-
have different consequences in the two ges of ramification in the successional se-
plant associations. In the Succiso-Molinie- ries). As the wet terrain dries down gra-
tum one, the abundance of riparian ubi- dually, the abundance of species typical
89
IBERUS, 15 (2), 1997
1000
900
800
700
600
DA /m?
500
5
la)
/m?
VI Vila Vilb 1X vi
A B C
Figure 4. Variation in species density (1D), species diversity (H”), pH and density of living (A/m?)
and dead individuals (DA/m?) in groups of phytocoenologically similar samples (Roman numerals)
influenced by the dominant process of the habitat changes. A, B and C refer to the three succession
lines of the vegetation. A includes groups 1, II, X and XI; the main processes are drying (L, ll and
X) and salinization (XI). B includes groups IV, II! and V; the main processes are drying (IV and 111)
and an additional salinization with cutting (Va, 18-20) and degradation (Vb, 17). C includes groups
VI, VIL VII and IX; the main processes are drying (VI, Vlla 22-24 and IX) with cutting (VIIb 25-
27) and drainage (VII.
Figura 4. Variación en la densidad de las especies (ID), diversidad (H), pH y densidad de individuos
vivos (A/m*) y muertos (DA/m?) en los grupos de muestras con características fitocoenológicas similares
(números romanos) influenciadas por los procesos dominantes en los cambios de hábitat. A, B y C se
refieren a las tres líneas de sucesión de la vegetación. A incluye los grupos l, Il, X y XI; los principales pro-
cesos son la desecación (L, 1I y X) y la salinización (X1). B incluye los grupos IV; 11 y V: los principales
procesos son la desecación (IV y 11) y una salinización adicional con el segado (Va, 18-20) y degrada-
ción (Vb, 17). C incluye los grupos VI, VI, VII y LX; los procesos principales son la desecación (VI, Vlla
22-24 y IX) junto con el segado (VIIb 25-27) y el drenaje (VII).
in open areas (OA, ST) decreases, para-
lleled by a similar decline in the number
of species and individuals (Figs. 5, 6).
Concerning ecological species groups,
the abundance of swamp dwellers (P,
HP, Monacha) becomes higher with bio-
tope salinization (12). Na* accumulation
in the topsoil is responsible for its
muddy character.
90
Sciophilous (S) and bush forest dwe-
ller (B) snail species may also appear in
the tall and dense stands of Caricetum
acutiformis-ripariae community. The
abundance of OA and ST species groups
increases at the end of the successional
series in Agrostio-Caricetum and Achilleo-
Festucetum associations. Groups P and
HP are also more abundant there, due to
BÁBA AND BAGI: Snail communities in swampy and sedgy marshy meadows in Hung;
80 s F 600
20 A /
il L 500
- Ph j
/
60 le
==-==-=R 11
¡lp 400
===. OA 07 —
¡pl S
j! e
2 pa300 “
lle SE
J £
l. <
Ni l
N l F 200
iS 4
y e
Ñ US y
o S z Ni L 100
SUN N E
IN Ñ A 7%
IE ==
NEÁ E 0
T 1 T T e A pO
I u Xx XI Iv TI Va Vb VI Vila Vilb IX VI
Figure 5. Variation in the abundance (A/m?) of ecological snail species groups among plant asso-
ciations and subassociations. Abbreviations, S: sciophilous, P: swamp dweller, Ph: photophilous, R:
riparian and OA: species of open areas.
Figura 5. Variación en la abundancia (A/m?) de los grupos ecológicos de especies de moluscos en el con-
junto de las asociaciones y subasociaciones vegetales. Abreviaturas, S: esciófilo; P: de marisma; Ph: fotófi-
lo; R: ribereño; OA: de áreas abiertas.
120 RU L 700
le perio 0 coria
100 4 Í: ee E p E
V
: ' Pa En eS
DON IV IM Va Vb VI Vila Vb IX VIn
Figure 6. Variation in the abundance (A/m?) of snail habitat type groups among plant associations
and subassociations. Abbreviations, RU: riparian ubiquist, B: bush forest dweller, HP: hygrophilous
swamp dweller and ST: steppe dweller.
Figura 6. Variación en la abundandia (A/m”) de los tipos de hábitat en las especies de moluscos en el con-
junto de las asociaciones y subasociaciones vegetales. Abreviaturas, RU: ribereño ubiquo; B: zonas arbus-
tivas; HP: marismeño higrófilo; ST: estepa.
91
IBERUS, 15 (2), 1997
250
(0)
2 Sp
200 OSA
A 150
o
2)
E
< 100
50 y
IU X Xi iv IM
: E 400
:l
al 350
Sl
al
E 300
20)
; 250 po
25
200 au
E
<
150
100
50
Va Vb VI Vila Vilb Ix MIU
Figure 7. Variation in the abundance (A/m?) of snail nutritional type groups among plant associa-
tions and subassociations. Abbreviations, O: omnivore, SP: saprophagous, H: herbivore.
Figura 7. Variación en la abundancia (A/m?) de los grupos nutricionales de moluscos en el conjunto de
las asociaciones y subasociaciones vegetales. Abreviaturas, O: omnívoro, SP: saprófago, H: herbívoro.
the muddy topsoil formed under Na*
accumulation (Figs. 5, 6).
In both collection site groups of the
Agrostio-Caricetum association, habitat
salinization and drying, grazing and
cutting result in the decline of the pro-
portion of riparian ubiquists (R, RU:
Succinea, Vallonia pulchella), and a com-
plementary increase in the abundance of
steppe dwellers (OA, ST: Chondrula,
Pupilla). Stands of XL, Va and Vlla are
regularly cut, while site of VIII is both
cut and drained (Figs. 5, 6).
In terms of nutritional types, omni-
vorous snail species dominate in each
collection site group, as it was also
found elsewhere in willow-poplar fo-
rests (Bába, 1993). With habitat drying
the vegetation becomes denser, resulting
in a higher abundance of herbivores.
2
Subsequent cutting increases the pro-
portion of saprophagous species (Vallo-
nia, Chondrula, Vertigo). The omnivore
and herbivore-saprophagous groups
were found to change in a complemen-
tary manner (Fig. 7).
According to our data, the connec-
tion between the vegetation units and
the species groups of snails seems to be
very close. The composition of snail as-
semblages indicates the most important
environmental changes, such as drying
and salinization, and the human im-
pacts, eg. cutting, mowing and some ot-
her disturbances. The structural transfor-
mation of snail assemblages can be follo-
wed at a level of species groups and also
within these groups. The snail assembla-
ges indicate not only the differences bet-
ween plant communities but the diffe-
BABA AND BAGI: Snail communities in swampy and sedgy marshy meadows in Hungary
rent impacts of natural and anthropoge-
nic factors within a plant community as
well. The consequences of the habitat dr-
ying are the decrease in species number
and increase in abundance; the saliniza-
tion causes the decrease of species num-
ber and change of species groups in a
particular habitat. Mowing leads to the
decrease of species number and increase
of the ratio of saprophagous and steppe
dweller species groups. The changes can
be traced back to pedological reasons,
eg. habitat drying, increase in pH value,
REFERENCES
BABA, K. AND DOMOKOS, T., 1992. The occu-
rrence and ecology of Chilostoma banatica
(Rossmassler, 1838) in Hungary. Abstract of
the Eleventh International Malacological Con-
gress, Siena: 383-385.
BABA, K., 1993. Effect of the regions of the Tisza
Valley on the malacofauna. Tiscia, 18: 97-102.
Bacií, L, 1988. The role of water management
in the degradation processes of halophytic ve-
getation in Hungary. Environmental Conser-
vation, 15: 359-362.
FEOLI, E. AND ORLÓCZI L., 1979. Analysis of con-
centration and detection of underlying fac-
tors in structured tables. Vegetatio, 40: 49-54.
and accumulation of organic matter. The
investigations of the structural and com-
positional changes of snail assemblages
of the studied six plant communities
may provide a way to detect the conse-
quences of the salinization as a characte-
ristic successional process of Hungarian
Great Plain. The studies on the changes
of snail assemblages in meadow plant
communities can indicate the main pro-
cesses in this vegetatation type similar to
the investigations carried in forest
ecosystems (BABA, 1993).
FRÓMMING, E, 1954. Biologie der mitteleuropais-
chen Landgastropoden. Duncker-Huniblot, Ber-
lin 1-404.
LoZEk, V., 1964. Quartermollusken der Tschec-
hoslowakei. Tschechoslowakischen Akademie
der Wissenschaften. Praha, 374 pp.
PODANI, J., 1988. Syn-Tax III. Users Manual.
Abstracta Botanica, 12: 1-179.
S06, R., 1964. Synopsis systematico-geobotanica flo-
rae vegetationisque Hungariae I. Akadémiai
Kiadó, Budapest, 589 pp.
93
dYas am sinezio do m
SEO ui YY Apu rá sd
egsldrnseas Un la de Aga
esti ta pS de ond
de Prosa dolia pil
oia A 0 soi
N 35% Ni ¡Je Ji wo da ya na leds
De Ñ Fe 5
Caloabezá nt
HE
VAT lee 20 0 a
lie
40 neta) 4 ]
pS de 1 o
$ dio 7
1999 ) M0
Ae. DUDA. al dhe E
e oso sabe e -
siniles 4
ET!
De barba
| rd sd
ma 5 .
bl Esos
AS
ebRol gré
939 bns eto
o
Y DA wtT Sr
lo mb: pc a,
| Subs DD cut
ue moi mh E
Ca ¿hepital
sembla vic
13
AA TRI
id .
O Sociedad Española de Malacología
Iberus, 15 (2)495-121, 1997
Morphological and biometrical researches on Austrian
Clausiliids. Shell morphology and variability in Clausilia
dubia Draparnaud, 1805
Investigaciones biométricas y morfológicas en Clausílidos de Austria.
Morfología y variabilidad de la concha de Clausilia dubia Drapar-
naud, 1805
Karl EDLINGER*
Recibido el 8-[-1996. Aceptado el 28-V-1997
ABSTRACT
Morphological and biometrical studies on shells of some Austrian populations of Clausilia
dubia Draparnaud, 1805, show a great variability in size and in the other morphological
features within the species as a whole and also within single populations. Investigations of
the variability of characters by metrical and statistical methods in some populations dis-
close impressive metrical divergences and morphological differences.
These results give rise to the question whether the characterization of Clausilia dubia as a
polytypic species, as suggested by Kemm (1960, 1973], is justified.
RESUMEN
Estudios morfológicos y biométricos en conchas de algunas poblaciones austriacas de
Clausilia dubia Draparnaud, 1805, muestran una gran variabilidad en el tamaño y en
otros caracteres morfológicos tanto en el conjunto de la especie como en poblaciones ais-
ladas. Investigaciones sobre la variabilidad de caracteres por medio de métodos métricos
y estadísticos de algunas poblaciones mestran importantes divergencias tanto métricas
como morfológicas.
Estos resultados originan la pregunta de si está ¡justificada la caracterización de Clausilia
dubia como una especie politípica, como sugiere KiemM (1960, 1973).
KEY WORDS: Clausilia dubía, subspecies, measures, distribution, morphological continuum.
PALABRAS CLAVE: Clausilia dubía, subespecies, medidas, distribución, continuidad morfológica.
INTRODUCTION
As in great parts of Europe also in
Austria, specially in the eastern parts of
the Alps and in the adjacent areas, Clau-
silia dubiía Draparnaud 1805 is a widely
diffused and in some localities a com-
mon species that is believed to be polyty-
pic (KLeEmMM, 1960, 1973; FECHTER AND
FALKNER, 1990; KEARNEY, CAMERON AND
JUNGBLUTH, 1983; NORDSIECK, 1990).
KLEMM (1960, 1973) gave a survey of di-
* Naturhistorisches Museum Wien, 3. Zoologische Abteilung, Burgring 7, A-1014 Wien, Austria.
YO
Iberus, 15 (2), 1997
Y
Y
S ZP
$9 ] ] [TD
STD
IB
[ID
Y
ON
C. d. dubia
C. d. speciosa C. d. huettneri C. d. schlechti
9]
7 io
57) [TD
27 [>
S [NIP
PIIRAL La
2_/ [TD
|) Dm
A
7] [PI
— E
TD
eZ
|]
E [15
EI]
lA E
C. d. gracilior C. d. tettelbachiana C. d. floningiana C. d. bucculenta — C. d. runensis
C. d. kaeufeli
Figure 1. Distribution and vertical succession of Clausilia dubia subspecies as is suggested by
KLEMM (1960).
Figura 1. Distribución y sucesión vertical de las subespecies de Clausilia dubia, tal y como sugiere
KLEMM (1960).
verse “subspecies” of Clausilia dubia ac-
cording to the characters suggested by
several authors.
Traditional classification was based on
a subjective selection of characters belie-
ved to be important. This classification
depended on the preferences of the single
authors. In some cases, subspecies are
even described according to the presence
of typical features in the shell of few or sin-
gle specimens. HOLOYAK AND SEDDON
(1988) and NORDSIECK (1990) examined
some of these descriptions and offered re-
asonable revisions.
Some of these Clausilia dubia “subspe-
cies” are considered to be widely distri-
buted, others to be localized in small areas
or subdivided into isolated populations
that live in separated sites (KLEMM, 1960,
96
1973). Furthermore, KLeMM (1960) sug-
gested a vertical pattern of distribution
and an altitude dependent succession of
diverse subspecies at the eastern ranges of
the Alps (Fig. 1). He tried to explain the ob-
served distribution pattern by probable
re-immigration events in the alpine re-
gion after the Pleistocene and adaptation,
enforcing the role of the environment (al-
titude).
Examination and possible revision of
these interpretations have to critically con-
sider the definition and the meaning of the
term subspecies as it is used under va-
rious perspectives by several authors. For
the practical requirement of the collector
and for the taxonomic ordering, of collec-
tions the technical term “subspecies” as ba-
sed on peculiar morphological features
EDLINGER: Shell morphology and variability in Clausilia dubiía Draparnaud, 1805
Rax Schneeberg
Hohe Wand
Wienerwald
Figure 2. A profil of the estern edge of the Alps and the Wienerwald with the sample localities.
Figura 2. Perfil de la cara este de los Alpes y del Wienerwald con las localidades de muestreo.
may certainly be useful. However, it is
scientifically more important to consider
the conceptual background of the termi-
nology. In the given context the concept of
race or subspecies refers to biological units
that are groups of related populations
which are genetically characterized and,
in the case of very long isolation, may be
the forerunners of “valid species” (MaYr,
1967: 387; SUDHAUS AND REHFELD, 1992).
This view is highly important for tradi-
tional evolutionary biology, especially in
the frame of Darwinian models for evo-
lutionary change.
In respect to the biological relevance of
the subspecies concept, Sudhaus and REH-
FELD (1992) are suggesting that “geo-
graphic races” (subspecies) are allopatric
populations of a species, which can be
distinguished taxonomically. The diag-
nostic characters of races should be pre-
sent in 90 or more percent of individuals
of the population. “
OSCHE (1994) claims that 75 percent
or more members of a population must be
morphologically distinguishable from the
members of another population. Popula-
tions only in this case should be accepted
as valid subspecies. In this paper Osche's
definition is assumed as a very tolerant and
useful concept.
According to the presuppositions just
given, studies referring to the subspecies
problem have to treat large numbers of in-
dividuals and to apply methods of grea-
ter exactness than the usual descriptions
and discriminations of characters based on
a subjective and rather arbitrary approach.
It is therefore necessary to study as great
a number as possible of morphological
characters and to take measurements of the
greatest possible exactness to establish a
solid basis for statistical evaluations (NE-
MESCHKAL AND KOTHBAUER, 1988; KoTH-
BAUER, NEMESCHKAL, SATTMANN AND
WAWwRa, 1991; NEMESCHKAL, 1990, 1991,
1993; MYLONAS, KRIMBAS, TSIAKAS AND
AYOUNTANTI, 1990).
Such investigations may clear up,
whether the populations studied by
Klemm meet all requirements of a reliable
identification as subspecies (EDLINGER
AND FISCHER, 1997). It is also worth while
to attempt a critical revision of some sam-
ples of the Museum of Natural History in
Vienna (NHMW). This paper is first at-
tempt at elaborating a new basis for the
discussion of the Clausilia dubia problem
by morphological measurements. In future
the anatomy of the soft parts and geneti-
cal analyses might be also considered.
MATERIAL AND METHODS
606 specimens of Clausilia dubia from
different lots collected in various areas of
the “Wienerwald” (Lower Austria in the
southwest of Vienna) the massif of the
“Hohe Wand”, the “Schneeberg” and the
“Rax” were investigated. The localities
from which the samples came were si-
tuated at altitudes between 270 and 1850
m (Fig. 2).
7%
Iberus, 15 (2), 1997
RA (in mm/10,
x factor 20)
Angle
A
BR (1-6)
GW 15)
B (in mm/10)
MH (in mm/10)
EA Ñ
MB Gan mm/10)<
N
LE (1-5)
Figure 3. Measures taken from the shells: shell-height (H), shell-width (B), height (MH) and width
(MB) of the aperture, distance of ribs (RA), number of whorls (WZ), angle between the spindle axis
and the upper palatal (left side) (A).
Figura 3. Medidas tomadas en las conchas: altura (H), anchura (B), altura (MH) y anchura(MB) de la
apertura, distancia de las estrías (RA), número de vueltas (WZ), ángulo entre el eje del huso y palatal
superior (lado izquierdo) (A).
Samples (Number of Sample (Sample
localities, altitude/ numbers of specimens.
R = Rax: R4 (Reichenau, 700 m/1 spec.),
R5 (Aufstieg z. Knappenhof, 730 m/5
spec.), R7 (Knappenhof, 800 m/24 spec.),
R10 (Thórlweg, 850 m/5 spec.), R11 (Thorl-
weg, 960 m/1 spec.), R12 (Thórlweg, 1120
m/29 spec.), R13 (Thórlweg, 1260 m/20
spec.), R14 (Thórlweg, 1320 m/12 spec.),
R15 (Jakobskogel, 1685 m/8 spec.); S =
Schneéberg; S1 (Puchberg, 560 m/15 spec.),
S2 (Schneebergbahn, 750 m/57 spec.), S3
(Schneebergbahn, 790 m / 5 spec.), S4 (Sch-
neebergbahn, 945 m/30 spec.), S5 (Sch-
neebergbahn, 1165 m/9 spec.), S6 (Schne-
ebergbaln, 1370 m/6 spec.), S8 (Waxriegl
11, 1820 m/4 spec.), S9 (Waxriegl 11, 1850
m/26 spec.), S10 (Schneebergbahn, 1650
m/11 spec.), H= Hohe Wand: H1 (Dreistet-
ten, 530 m/60 spec.), H2 (Einhornhóhle,
600 m/12 spec.), H3 (Drobilsteig, 700 m/24
spec.), H4 (Drobilsteig, 760 m/69 spec.), H5
(Auffahrt z. Plateau, 830 m/74 spec.), H6
(Plateau 1020 m/6 spec.), H7 (Plateau 1020
98
m /34 spec.), H8 (Plateau 1020 m/4 spec.);
W = Wienerwald: W1 (Anninger, 400 m/11
spec.), W2 (Anninger, 450 m/4 spec.), W3
(Moódling-Klause, 260 m/8 spec.), W4 (Hu-
sarentempel, 480 m/14 spec.), W5 (Auf-
gang Aminger, 270 m/11 spec.), W6 (Peils-
tein, 400 m/8 spec.),
Several individuals were dissected.
Dissections did not reveal significant dif-
ferences in the genital apparatus. 18
shells, syntypes of Austrian and South
Tyrolean (Italy) localities, given in loan
by the Natur-Museum Senckenberg as
typical representatives of various subspe-
cies were used for comparisons (Fig. 1).
They are:
1. Clausilia dubia dubiía Draparnaud,
1805 (SMF 163024a)
2. Clausilia dubia speciosa A. Schmidt,
1857 (SMF 163025a)
3. Clausilia dubia speciosa A. Schmidt,
1857 (SMF 163026a)
4. Clausilia dubia obsoleta A. Schmidt,
1857(SMF 163027a)
EDLINGER: Shell morphology and variability in Clausilia dubía Draparnaud, 1805
Figure 4. Shell forms (7 stages from club-shaped -left- to spindle-shaped -right-).
Figura 4. Formas de la concha (siete estadios desde forma de maza -izquierda- hasta abusada -derecha-).
5. Clausilia dubia huettneri Klemm,
1960 (SMF 1630248)
6. Clausilia dubia schlechti A. Schmidt,
1857 (SMF 163030a)
7. Clausilia dubia gracilior Clessin,
1887 (SMF 163031a)
8. Clausilia dubia tettelbachiana Ross-
massler, 1838 (SMF 163032a)
9. Clausilia dubia otvinensis H. Gallens-
tein, 1895 (SMF 163033a)
10. Clausilia dubia grimmeri L.
Pfeiffer, 1848 (SMF 163034a)
11. Clausilia dubia floningiana Tscha-
pek, 1886 (SMF 163035)
12. Clausilia dubia floningiana/gracilior
(SMF 163036)
13. Clausilia dubia bucculenta Klemm,
1960 (Holotypus, SMF 163037)
14. Clausilia dubia runensis Tschapek,
1883 (SMF 163039a)
15. Clausilia dubia moldanubica Klemm,
1960 (Holotypus, SMF 163040)
16. Clausilia dubia kaeufeli Klemm,
1960 (Holotypus, SMF 163042)
17. Clausilia dubia alpicola Clessin,
1878 (SMF 31969)
18. Clausilia dubia reticulata Pini, 1883
(SMF 31936)
The shells were measured under a bi-
nocular microscope; the measurements
were repeated three times. In the case of
different results a special check was
made. The height (H, Fig. 3) and the
width (B, Fig. 3) of the shell as a whole,
the height (MH, Fig. 3) and the width
(MB, Fig. 3) of the aperture, the form of
the aperture (MF, a series of 9 stages
from pear-shaped to deltoid form, the
angle between the spindle axis and the
edge of the upper palatal (0.5 degree
exactness), the mean of 5 rib distances
(RA, Fig. 3) on the last whorl, and the
number of whorls per shell (WZ, exact-
ness: 0.25) were recorded. By compari-
son with stencils the morphological cha-
racters of the form of the shells (GH, a
series of 7 stages from club-shaped, to
extremely spindle-shaped specimens,
Fig 4), the depth, and the thickness of the
basal groove (BR, 6 stages, Fig. 5), the la-
teral internal bulge (GW, on the left side
of the aperture, 5 stages of thickness (Fig.
5), and the incision in the columellar la-
mella (LF, 5 stages, Fig. 5) were recorded.
The measured values of the follo-
wing features were processed by a WIN-
DOWS-EXCEL 5.0 and a WINDOWS
SPSS 6.0 program (BROSIUS AND BROSIUS,
1995):
- Mean of shell heights in each spot
check
- Standard deviation of shell heights
in each spot check
- Mean of shell heights in each spot
check
- Standard deviation shell heights in
each spot check
- Correlation (Pearson s) Coefficient
of all 11 values:
99
Iberus, 15 (2), 1997
Figure 5. Basal groove (6 stages, upper row); lateral bulge (5 stages, middle row); incision in the
columellar lamella (5 stages, lower row).
Figura 5. Surco basal (6 estadios, arriba); protuberancia lateral (5 estadios, centro); incisión en la lame-
la columelar (5 estadios, abajo).
(R= Pearson“s Coefficient; N=
number of cases; X, Y= variables; Sx,
Sy= standard deviation of the varia-
bles).
By means of the WINDOWS SPSS
6.0 programs a factor extraction and a
principle component analysis were exe-
cuted. “Community” delivers informa-
tion about the quota of spreading of
one value that can be traced back to all
other values. “Eigenvalue” is a value of
the regression factors. It represents the
quota of spreading of all values as
interpreted by special regression
factors. A reduction process restricts the
numbers of factors in the final statistics
to that exceeding 1.0. The factor matrix
shows the influence of the regression
factors on every variable as a percen-
tage of 1.
The measured variables of the
samples in conjunction with the values
of the specimens described by KLEmMM
(1960) and the values of specimens of
Clausilia dubia alpicola and C. d. reticulata
were utilized for computing hierarchical
clusters as dendrograms. For purpose of
cluster analysis the measured values
were transformed to “z-values”, values
with a mean of 0 and a standard devia-
tion of 1. Hierarchical clusters result
100
from dissimilarities computed on the
basis of the sums of squared values of
distances of each character. Thereby the
spectrum of similarities and differences
between all individuals of a spot check
could be elaborated. The dendrograms
contain specimens of various clusters
according to their graduated similarity
(BROSIUS AND BROSIUS, 1995).
The formula of the general distances:
D*= xvi)
(D= distance; v= number of varia-
bles; X, Y= cases)
RESULTS
Means of shell height and shell
width: The means of the shell height
and shell width differ in all sampling
areas. The lowest value was found at the
“Hohe Wand” region, the highest in the
“Wienerwald” area. Comparisons of the
means at different altitudes reveal that
KLEMM's (1960) suggestion of a succes-
sion of different shell heights (according
to a succession of “races” resp. subspe-
cies, high values at low altitudes, low
values at high altitudes) is not generally
convincing (Fig. 7).
EDLINGER: Shell morphology and variability in Clausilia dubia Draparnaud, 18
Figure 6. Two spot-checks of the collection of the NHAMW (Naturhistorisches Museum, Wien). In
the upper row “Clausilia dubia schlechti”, Inv. Nr. 11. 229 NHMW. The specimen in the upper row
at the left belongs to Neostyriaca corynoides (Held, 1836). In the row below C. d. Eschlecht?”, Inv. Nr.
62. 348 NHMW. These spot-checks show us a high variability in the “subspecies”. Scale bar 1 cm.
Figura 6. Dos muestras de la colección del NAMW (Naturbistorisches Museum, Wien). En la fila supe-
rior Clausilia dubia schlechti ”, /nv. Nr. 11. 229 NAMW El especimen de la izquierda de la fila supe-
rior pertenece a Niostyriaca corynoides (Held, 1836). En la fila inferior C. d. “schlechti”, lnv. Nr. 62.
348 NAMW. Las fotografías muetran una alta variabilidad en las subespecies. Escala 1 cm.
Correlation coefficients: A very tude and the shell height (Table 1) but a
remarkable outcome of the study was a high correlation between altitude and
low positive correlation between the alti- the incicion in the columellar lamella.
101
Iberus, 15 (2), 1997
2000 —
AA A
se e.
——_—_—_—.
==
AS
AA
_ AAA
1000 El TAE dl
A Na —.—
===> =0
== RRRAXáÁ
—— —A—
—e—
5 -
a
—r— —A—
r
ai” SYMB
<X 0 T a JETS HA a Y
9 10 11 12 13 14
DH
2000
PUE A
—_A— AAN
—r—
_-—— A _—
AA
—A—
— A —
1000+ e. —e— E
—— EN
A
. ——
—a—
—a——
E E
O __
A
Se PARAR
ER
JJ SYMB
< Jl TT E v A A Sano, mE A En)
2,4 2,5 2,56 2,7 2,8 2,9 3,0 3,1
DB
Figure 7. Scatter plots of the means of the height and width of the various samples and the altitu-
de of sampling points.
Figura 7. Diagrama de puntos de las alturas y anchuras medias de las distintas muestras y la altitud de
los puntos de muestreo.
In all four regions a significant corre-
lation between the altitude and the
height of the shells could not be confir-
med. A maximum of correlation was
found between shell height and the
height of the aperture. Correlations bet-
ween shell height and heigth of the
aperture, shell height and number of
whorls, shell form and number of
whorls, shell form and shell height, shell
102
height and width of the aperture, and
between width of the shell and width of
the aperture, are more or less remarka-
ble. Correlation between altitude and
most of the shell variables with the ex-
ception of the columellar lamella (nega-
tive correlation: -0.5123) is low (Table I).
Primary factor analysis: For the
primary factor analysis all values were
EDLINGER: Shell morphology and variability in Clausilia dubía Draparnaud, 1805
Table 1. Correlation coefficients (bivariate) of altitude (ALT), breadth (B), basal groove (BR), shell-
form (GHE), internal bulge (GW), heighth (H), the incision in the columellar lamella (UL), width
of aperture (MB), angle between the upper palatal and the spindle axis (A), height of the aperture
(MH), distance of ribs (R) and number of whorls (WZ).
Tabla I. Coeficientes de correlación (bivariables) de altitud (ALT), anchura (B), surco basal (BR), forma
de la concha (GHE), protuberancia interna (GW), altura (H), incisión en la lamela columelar (UL),
anchura de la apertura (MB), ángulo entre el palatal superior y el eje del huso (A), altura de la apertu-
ra (MH), distancia entre las estrías (R) y número de vueltas (WZ).
A ALT B BR GHF GW
A 1.0000 -.0487 OO .0493 YA .0646
ALT .0487 1.0000 -.0032 ZOOL OOO AUS
B AD -.0032 1.0000 RIGA ZO .0438
BR .0493 SI ZOZS 2 OO00 .0148 SS O/ISS
GHF AY UE -.0036 PDA .0148 1.0000 UA
GW .0646 2082 .0438 SS 0/55 UA 1.0000
H ZO -.0021 OA ASI DUNA SiS
LF .0213 ZII ASIS ZO -.0542
MB .0822* SO; A693** .1606** .0446 ASIS
MH .0450 .0214 EA lA .1644** .0656 OZ
R AIS70SS EY ISS -.0704 LANA O
WZ BUS IZ UA .0127 .0745 IIA .0632
H LF MB MH R WZ
A LU .0213 .0822* .0450 SAO ALZA
ALT .0021 IZ OS .0214 Al Oj JANE
B SONAS AS AOS SATA OSI .0127
BR SMMES ESMAS US .1644** — -.0704 .0745
GHF UNS -.0741 .0446 .0656 LNGRA S/005 +
GW USAS -.0542 SSI OZ OS .0632
H 1.0000 .0780 .4968** YA ALE AS .6663**
LF .0780 1.0000 2200 .0913* Soles .0891*
MB A968** E2DO Oi 1.0000 OA OZ 0 II
MH 07M 07/13 OA OOOO -.0412 LAS
R AMI ISO -.0230 -.0412 1.0000 2LOTOSO
WZ .6603** .0891* SS ASS 200% 1.0000
*= Signif. LE .05;**= Signif. LE .01 (2-tailed)
used irrespective of the altitude. The
analyses result four factors with an
Eigenvalue of more than 1.0. One analy-
sis was done including the NMS speci-
mens (Table II), the other only with the
own samples (Table III). The results of
both analyses were corresponding at a
high degree.
Factor 1 has a significant influence on
the width of the shell, the shell height, the
width of the aperture, the height of the
aperture and the number of whorls.
Factor 2 has a significant influence on
the angle between the axis and the left
palatal, the width of the aperture, the rib
distance and the number of whorls, factor
103
Iberus, 15 (2), 1997
Table H. Primary component analysis factors of all samples including the NMS specimens.
Abbreviations as in Table 1.
Tabla II. Factores del análisis de componentes principales de todas las mustras incluyendo los ejemplares
NMS. Abreviaturas como en la Tabla 1.
Initial Statistics
Variable Communality Factor Eigenvalue Pctof Var Cum Pct
A 1.00000 l SADO 31.4 31.4
B 1.00000 2 1.48937 14.9 46.3
BR 1.00000 3 1.34787 13.5 59.8
GW 1.00000 4 1.09305 10.9 O)
H 1.00000 5 .81589 8.2 78.9
LF 1.00000 o 697772 7.0 85.9
MB 1.00000 7 34068 5.4 ONES
MH 1.00000 8 42572 43 0)
R 1.00000 9 .32418 3.2 98.8
WZ 1.00000 10 .12276 122 100.0
PC extracted 4 factors
Factor Matrix
Factor 1 Factor 2 Factor 3 Factor 4
A 24107 -.39349 /SZI -.01561
B .64730 .28942 -. 49248 -.01712
BR .19488 39543 32902 22231
GW .11069 .S0354 33469 -.34493
H .89714 .19205 .07467 -.16390
LF .25618 .22266 .08430 .85909
MB .75790 .21202 -.17180 .03663
MH . 85718 . 10931 -.19219 -.16564
R .24758 35811 .01044 III
WZ 61193 - 3340 36292 -.06089
Final Statistics
Variable Communality Factor Eigenvalue Pctof Var Cum Pct
A 54182 1 3.14275 31.4 31.4
B 74559 2 1.48937 14.9 46.3
BR IND 3 1.34787 138 59.8
GW .67067 4 1.09305 10.9 70.7
H .87418
LF .86036
MB .65022
MM .81108
R 49962
WZ 69772
Skipping rotation 1for extraction 1 in analysis 1
104
EDLINGER: Shell morphology and variability in Clausilia dubia Draparnaud, 180
Table III. Primary component analysis factors of all samples excluding the NMS specimens.
Abbreviations as in Table I.
Tabla II. Factores del análisis de componentes principales excluyendo los ejemplares NMS. Abreviaturas
como en la Tabla 1.
Initial Statistics
Variable Communality Factor Eigenvalue PctofVar Cum Pct*
A 1.00000 l 2.98596 DS 29
B 1.00000 2 1.52656 158 A5.]
BR 1.00000 3 1.27032 11247 57.8
GW 1.00000 4 1.19526 12.0 69.8
H 1.00000 S .79324 VS VUL)
LF 1.00000 o .70682 Je 84.8
MM 1.00000 7 36029 5.6 90.4
MM 1.00000 8 A5357 45 94.9
R 1.00000 9 .36803 3.7 98.6
WZ 1.00000 10 .13995 1.4 100.0
PC extracted 4 factors
Factor Matrix
Factor 1 Factor 2 Factor 3 Factor 4
A .19408 .61541 28529 -.11267
B .60129 -.52606 -.27656 .02153
BR .32508 -.17128 64145 42482
GW 25481 ISS 76411 -.07054
H .86917 22511 -.06761 -.24429
LF .28165 05486 -.10404 .82738
MM 74584 -.22587 -.11384 .04898
MM .83214 -.22388 -.10785 -.18500
R .18873 33391 -.27470 43010
WZ ALO .61465 .04084 -.17555
Final Statistics
Variable Communality Factor Eigenvalue PctofVar Cum Pct
A 51047 1 2.98596 DAS 29.9
B ASZS 2 1.52656 1578 45.1
BR .72695 3 1.27032 11227 57.8
GW .67784 4 1.19526 12.0 69.8
H .87038
LF UY UIN
MM .62266
MM 78843
R 38114
WZ .70730
Skipping rotation 1 for extraction 1 in analysis 1
105
Iberus, 15 (2), 1997
60
40
30
20
A r
' a ES
: ¡Y al. E
-,8 8 142
(pl
R
Ea
ZONA ASS ZA ES :6
10
E
3
o
¡O)
-2,8 -2,4 -2,0
FAC1_1
70
60
o
Count
SA
FAC 2 _1
50
40
30 |
GR
20
1
V E
p ll hi E
S ¡ q , Mr mv
10) -,8 38 1,2
20 24 28 36 4.0 4,8
Figure 8. Bar charts of factor 1 and 2 (spot checks differentiated).
Figura 8. Diagrama de barras de los factores 1 y 2 (pruebas diferenciadas).
on the basal groove and factor 4 has a sig-
nificant influence on the columellar
lamella.
Bar charts show us the distributions
and the maximum of the values of the
primary factors in the samples for com-
parison.
The values of factor 1 have a similar
distribution in the Schneeberg, the Rax
106
and the Hohe Wand area and another dis-
tribution pattern with another maximum
in the Wienerwald area (Fig. 8).
The values of factor 2 show us a very
similar distribution in the Rax and the Sch-
neeberg, area, but other patterns in the Hohe
Wand and the Wienerwald area (Fig. 8).
Factor 3 has similar distributions of
values in the samples of Rax, Schneeberg
EDLINGER: Shell morphology and variability in Clausilia dubiía Draparnaud, 1805
50
o
pun
o
E
=)
[o]
O
DA 20 1 12
FAC3_1
70
60
50
40
30
20
10
=
3
[e)
0.0
DE DE A)
FAC4 1
40
30
2
GR
ME a
¡Er
El Dom.
¿All A ¡A My
32. =2,8 2 -,8 -,4 0 4 8 1 1,6 2,0 2,4
2)
Figure 9. Bar charts of factor 3 and 4 (spot checks differentiated).
Figura 9. Diagrama de barras de los factores 3 y 4 (pruebas diferenciadas).
and Hohe Wand, but another maximum
in the Sample of the Wienerwald area
(Fig. 9).
Diagrams of the values of factor 4
show us different distributions in all
samples (Fig. 9).
A two dimensional scatter plot of
factor 1 and factor 2 for a comparison of
the samples of the four areas (Fig. 10)
shows us, that by the positions of the spe-
cimens and by their pattern of distribu-
tion only two partially different groups
can be distinguished: one group consis-
ting of specimens of the Hohe Wand, the
Schneeberg and the Rax area at the one
side and a second group with the speci-
mens from the Wienerwald area at the
other. Both groups are overlapping.
107
Iberus, 15 (2), 1997
REGR factor score 2 for analysis 1
REGR factor score 1 for analysis 1
REGR factor score 4 for analysis 1
-4 3 S) aj
REGAR factor score 3 for analysis 1
Figure 10. Scatter plots of the samples with value 1 and 2, 3 and 4 (spot checks differentiated).
Figura 10. Diagramas de puntos de las muestras con los valores 1 y 2, 3 y 4 (pruebas diferenciadas).
A scatter plot with factor 3 and factor
4 (Fig. 10) shows us a wide distribution
of the specimens of the Schneeberg area
and a partial separation of the samples
of the Rax area at the one and the
samples of the Hohe Wand and the Wie-
nerwald area at the other side. Also these
distribution areas of the samples are
overlapping at a high degree.
108
Scatter plots of regression factor 1
and 2 of all samples including the SMF
specimens based on three morphologi-
cally important measures (Fig. 11) disclo-
ses a remarkable morphological isolation
of some SMF specimens, especially of
those specimens assigned to Clausilia du-
bia speciosa, C. d. dubia, C. d. floningiana
and C. d. floningiana/gracilor, C. d. graci-
EDLINGER: Shell morphology and variability in Clausilia dubiía Draparnaud, 1805
REGAR factor score 2 for analysis 1
4 E 0
REGR factor score 1 for analysis 1
REGR factor score 4 for analysis 1
4 ES E) E
REGAR factor score 3 for analysis 1
Figure 11. Scatter plots of the samples and the NMS specimens with value 1 and 2, 3 and 4 (points
represent samples, NMS specimens with abbreviations).
Figura 11. Diagramas de puntos de las muestras y los especímenes NMS con valores 1 y 2, 3 y 4 (los pun-
tos representan las muestras, los especímenes NMS son las abreviaturas).
lior, C. d. grimmeri, and also C. d. buccu-
lenta. These specimens are found outside
the central area of distribution of the two
dimensional coordinate system of the
scatter plot, where the bulk of specimens
appears in a high concentration.
A scatter plot of the factors 3 and 4
(Fig. 11) shows us more peripheral posi-
tions of Clausilia dubia moldanubica, C. d.
otvinensis, C. d. speciosa, C. d. kaeufeli, C.
d. gracilior, C. d. schlechti, C. d. grimmeri
and C. d. floningiana/gracilior.
109
Iberus, 15 (2), 1997
FAC1_2
FAC4_1
3 2) E
FAC3_1
Figure 12. Two-dimensional scatter plots with factors 1/2 and 3/4 of a spot check of the Schneeberg
samples (see the altitude of the sample areas at Material and methods).
Figura 12. Diagramas de puntos de dos dimensiones con factores 1/2 y 3/4 de las muestras de Schneeberg
(ver la altitud de las áreas de muestreo en Material y métodos).
Scatter plots of the factors 1 to 4 of
the various samples of the Schneeberg
area (from different altitudes) disclose
no remarkable dependence of the
factors 1, 3 and 4 on altitude (Fig. 12).
Factor 2 shows us a separate distribu-
tion of values of sample S9 (1850 m) and
110
S10 (1650 m). The distribution areas of the
other samples are covering one another.
They are overlapping distribution areas
of sample S9 and S10 insignificantly.
A scatter plot of the Rax samples
(Fig. 13) which were arranged in corres-
pondence to the altitude in three groups
EDLINGER: Shell morphology and variability in Clausilia dubiía Draparnaud, 1805
FAC2_1
FAC1_1
FAC4_1
FAC3_1
GR
o 1000-1500m
o >1500m
“+. <1000m
GR
e 1000-1500m
vo >1500m
. <1000m
Figure 13. Two-dimensional scatter plots with factors 1/2 and 3/4 of a spot check of the Rax sam-
ples, arranged in three groups in accordance with the altitude of the sample areas (less 1000 m,
1000-1500 m, more than 1500 m).
Figura 13. Diagramas de puntos de dos dimensiones con factores 1/2 y 3/4 de las muestras de Rax , orde-
nadas en tres grupos de acuerdo con la altitud de las áreas de muestreo (menos de 1000 m, 100-1500 m,
más de 1500 m).
(less than 1000m, 100-1500m, more than
1500m) results no altitude dependence
of the factors.
Cluster analysis: For the first cluster
analysis the measured values were ta-
ken from a group of specimens which
consisted of selected samples from diffe-
rent localities and altitudes; data from
the SMF specimens were also included
(Fig. 14). The hierarchical cluster which
is presented as a dendrogram contains
groups of different size which were co-
llected at different localities.
111
Iberus, 15 (2), 1997
Notable is the isolated position of
the SMF specimens of Clausilia dubia spe-
ciosa and C. d. dubia which constitute a
cluster of their own together with two
specimens of the samples. Almost the
same phenomena occur in dendrograms
of samples collected in the areas “Hohe
Wand”, “Schneeberg” and “Rax”. In
these cases specimens of the SMF were
also taken into consideration.
In general the clusters show remar-
kable segregations. Similarities of the
individuals coming out from the same
locality and appearing together in clus-
ters may be seen as indication of close
relationship.
At the other side the spot checks
from various areas are overlapping at a
high degree. Relevant portions of indivi-
duals, which present all the characters
of several “subspecies” (subspecies seen
in the traditional way) do not occur. It is
remarkable that most specimens from
the SMF which were considered to be
typical for specific regions, appear also
in the different branches of the dendro-
grams and in various clusters.
Only the SMF specimens of Clausilia
dubia speciosa, and in a most astonishing
way, the SMF specimen of C. d. dubia, an
individual belonging to the nominotypi-
cal subspecies” are seen at own separate
branches of the dendrograms. This
finding is in full agreement with the
above mentioned scatter plots of the
analysis of the main components. All
three above mentioned specimens are
characterized by strongly deviating
measures and stand in isolated posi-
tions. It is evident that this finding disa-
grees with the geographical distribution
shown in the literature (KLeMM, 1960).
Wienerwald: The samples from the
Wienerwald area come from altitudes
between 270 and 400 m and sites similar
in climate and ecological conditions (fir,
pine, and mixed forests).
The shells are rather similar and club
shaped, but differ considerably in shell
height and width, height and width of
aperture, and distance of ribs. The same
is true for all the other measures taken.
In the hierarchical cluster analysis of
samples from the Wienerwald area (Fig.
15) which was considered to be the type
locality of Clausilia dubia dubia, the posi-
tion of C. d. dubia, C. d. kaeufeli, and C. d.
speciosa is found to be extremely isolated
in a cluster of their own (Fig. 16). Within
the second cluster also other SMF speci-
mens appear in entirely isolated bran-
ches. Only C. d. runensis, C. d. tettelba-
chiana, C. d. grimmeri, C. d. schlechti and
C. d. moldanubica appear in a branch
together with the specimens of the
samples from the Wienerwald area.
Hohe Wand: Analyses of samples
taken from the Hohe Wand (altitude
between 560 m and 1080 m; Fig. 16) also
lead to results which are not in accor-
dance with generally held views. Clau-
silia dubia speciosa and C. d. runensis are
in an isolated position. They are in a
cluster of their own together with one
specimen of the local sample from H8.
Also C. d. bucculenta, C. d. floningia-
na/lgracilior, C. d. floningiana, C. d. reticu-
lata, C. d. obsoleta, C. d. gracilior, C. d.
(Right page). Figure 14. Hierarchical cluster of a spot-check of all samples and the SMEF specimens
(Wi-y= specimens of the Wienerwald area; i= sample; y= number of the specimen; Hi-y= specimens
of the Hohe Wand area; Si-y= specimens of the Schneeberg area; Ri-y= specimens of the Rax area;
Cd-= specimens of the SME: du= dubia; sp= speciosa; ob= obsoleta; hn= huettneri, sc= schlechti, gr=
gracilior, te= tettelbachiana, ot= otvinensis, gi= grimmeri, l= floningiana; flgr= floningianal gracilior,
bu= bucculenta; ru= runensis, mo= moldanubica; ki= kaeufeli, al= alpicola; re= reticulata).
(Página derecha). Figura 14. Cluster de todas las muestras y los especimenes SMF (Wi-y= especímenes del
área de Wienerwald; ¡= muestra; y= número del especimen; Hi-y= especímenes del área de Wand; Si-y=
especímenes del área de Schneeberg; Ri-y= especímenes del área de Rax; Cd-= especímenes SMF: du=
dubia; sp= speciosa; 0b= obsoleta; /n= huettneri; sc= schlechti; gr= gracilior; te= tetrelbachiana; 01=
otvinensis; g/= grimmeri, fl= floningiana, flgr= floningiana/gracilior; b4= bucculenta; 7u= runensis;
mo= moldanubica; Rá= kaeufeli; 4/= alpicola; re= reticulata).
112
EDLINGER: Shell morphology and variability in Clausilia dubía Draparnaud, 180
Cdob
Cdflgi
Cdbu
cafl
Cdsp
Cdsp
W6
Cddu
R4
32
Rescaled Distance Cluster Combine
IE
En
-
1
EJE
113
Iberus, 15 (2), 1997
Rescaled Distance Cluster Combine
CASE 0 5 10 15 20
Label Num —+-=-=--=-=-=--- Moscas MiS E O o ==
w1 6
wl 7 ia]
wl1 3
w1 4 z
W4 33
w1 5 E]
wW2 12
W4 27 y]
W3 23
w1 2
W4 30 poa
W4 29 ——
W3 24
Cdmo 73 Al
wW3 18 op po
W3 20 —
W2 14 ==
wW4 3/9) —
W3 119 —
wW4 38 =>
W2 16 =
w2 157) 4 —
W3 22 ==
W4 31
W4 32 7
w4 28 —
W4 34 a)
W3 21 A
Wa 36 ——
WS 50 Á
W3 25 ==
wW4 37 — >
W4 35 —
wW2 13 ——
WS 42
WS 40 =>
W5 41 — HZ
W2 15 ———— 7
w1 de
WS 44 0 ¡FR
WS 45
W5 48 —
W6 52
WS 47 — 0)
W6 a) ==
W6 56 —
W6 53
W6 54 -=)
WS 43
W4 26 ===
WS 46
W5 49 — HH
W6 Sl A [EU
wl1 8
w1 11 iS
Wl 10
w Sparta
Cdsc 64 =——,
Cdgi 68 EIA ===)
Cdte 66
Cdru 72 SIS y)
W6 57
W6 58 A ¡E
Cdflgi 70 =>
Cdbu NS EA E
Cdga 65
Cdre 76 A
Cdob 62 _—A
Cdhn cp AS
Cdot 67
Cdal IS pe
Cdká 74 E EE
cdf1l 69
Cddu 59
Cdsp 6l ] '
Cdsp 60 Ea
Figure 15. Hierarchical cluster of a spot check of all samples of the Wienerwald area and the SMF
specimens. Abbreviations as in Figure 14. |
Figura 15. Cluster de todas las muestras del área de Wienerwald y los especímenes SME Abreviaturas
como en la Figura 14.
114
EDLINGER: Shell morphology and variability in Clausilia dubía Draparnaud, 1805
Rescaled Distance Cluster Combine
CASE 0 5 10 15 20 25
Label Num +--------- OS ASFALTO ERARIO a E
H5 39
HS 43
HS 41
H5 42
H6-2 46
H6-4 48
H5 40
H2 9
H6- 3 47
H5 35 —
Cdká 76
H4 24
Cdsc 66
H1 1 [asta
H8-2 58
HS 34
H8-4 60
Cdhn 65
HS 44
H6-6 50
H7-25 53
H8-3 s9
H7-24 52
H7-23 51 —y
H1 3
Cdmo 75 Tf)
H3 14
H3 22
H1 5
H2 8
H7-27 55
H7-26 54 ——
H4 26 ES
do ¿E A
H4 23
H4 25
H1 6
H2 10
H1 7 |
H4 29
H3 19
H7-28 56 J
H3 15
H3 18
H3 21
H5 38
H6-1 45
H2 12
H4 32
pitos
H3 20
HS 36 ———
H4 27
H4 30
H1 2
H3 16
H3 17
H4 28
H2 11
H3 13
H5 37 F
Cdgi 70
Cdot 69
Cdal 27
HS 33 ae
Cdga 67 1] -
Cdob 64 PR
Cdre 78
Ccdfl 71
Cdflgi 72
Cdbu 73 E
Cdsp 62
Cdsp 63 En _———
H8-1 57
Cddu 61 Ertasto de a]
Figure 16. Hierarchical cluster of a spot check of all samples of the Hohe Wand area and the SMF
specimens. Abbreviations as in Figure 14.
Figura 16. Cluster de todas las muestras del área de Hohe Wand y los especímenes SME Abreviaturas
como en la Figura 14.
115
Iberus, 15 (2), 1997
alpicola, C. d. otvinensis and C. d. grim-
meri occur in separated branches and
only C. d. tettelbachiana, C. d. moldanu-
bica, C. d. huettneri and C. d. kaeufeli are
integrated in branches together with
the major part of the specimens from
the Hohe Wand area. There are no indi-
cations of the succession postulated by
former workers (KLeMM, 1960) when
one takes into consideration altitudes of
the localities from which they came and
the similarities that appear in the den-
drogram.
Schneeberg: The studied material
was collected at altitudes between 700 to
1850 m. The cluster analysis (Fig. 17)
reveals morphologically isolated posi-
tions for Clausilia dubia speciosa, C. d.
dubia, C. d. kaeufeli, C. d. floningiana, C. d.
reticulata, C. d. obsoleta, C. d. bucculenta,
C. d. floningiana / gracilior, C. d. alpicola, C.
d. otvinensis, C. d. tettelbachiana, C. d.
runensis and C. d. moldanubica. Only C. d.
grimmeri, C. d. gracilior and C. d. schlechti
occur in branches together with most of
the specimens of the Schneeberg spot
checks. Remarkable is that specimens
with close morphological relations to C.
d. kaeufeli, as expected for the peak of
the mountain, don't occur in the clus-
ters. The SMF specimen of C. d. kaeufeli
is isolated in the dendrogram.
Rax: The studied material was
collected at altitudes between 700 to
1685 m. As in the Clusters analyses of
the other areas Clausilia dubia dubia, and
C. d. speciosa are isolated in a Cluster of
ist own (Fig. 18). Also C. d. kaeufeli, C. d.
floningiana, C. d. bucculenta, C. d. flonin-
giana / gracilior, C. d. runensis, C. d. alpi-
cola, C. d. otvinensis, C. d. otvinensis, C. d.
obsoleta, C. d. reticulata and C. d. gracilior
occur very isolated in branches together
with only few specimens of the local
samples. Only C. d. grimmeri, C. d. mol-
danubica, C. d. tettelbachiana, C. d. sch-
lechti and C. d. huettneri can be seen as
well integrated in clusters with the
major part of the local samples. No
remarkable position of C. d. kaeufeli or a
succession as suggested by Klemm was
visible.
116
DISCUSSION AND CONCLUSION
The conclusions presented here must
be seen as being valid only for samples
of Clausilia dubia collected in restricted
areas. Only further research might lead
to conclusive results on possible geo-
graphic variation in C. dubia.
The results of the present research as
well as a critical evaluation of those of
earlier researchers show us the limits
inherent the intuitive, subjective method
used in the analysis of characters.
Earlier studies by EDLINGER AND
MILDNER (1979) on Clausilia dubia in
Carinthia, using traditional morphologi-
cal methods based on a number of shell
characters, also showed a high variabi-
lity of most of these characters within
each population. This may be a common
phenomenon when analyses are based
on a large number of characters. In this
Case, techniques of measurement, as
well as applied statistical methods
might present potential sources of error.
Nevertheless, all observations are
indicative of high variability within the
species. Similar observations can be
made in many of the collection samples
(Fig. 6). This can be clearly discerned, in
spite of the fact that many of these
samples have been classified as belon-
ging to various subspecies.
To gain a better understanding of
shell variability, we must also consider
the influence of ecological factors, and
the life history of the specimens. Morp-
hological features may be influenced by
non hereditary factors too (GOODFRIEND,
1986).
Against the background of low
correlation coefficients between altitude
and most characters, except columellar
lamella, altitude in itself cannot be con-
ceived as an substantial ecological
factor, because the measures of the
shells except the columellar lamella
don't vary significantly in correlation
with altitude. A reason for the remarka-
ble correlation of altitude with the colu-
mellar lamella might be that the Clausi-
lia dubia shells of the Wienerwald area
commonly have very pregnant incisions
of the columellar lamella.
EDLINGER: Shell morphology and variability in C/ausilia dubia Draparnaud, 1805
Rescaled Distance Cluster Combine
s8
Cdmo
Cdru
Cdte
s10
Cdot
Cdal
Cdflgi
Cdbu
Cdob
Cdre
Ccdf1
Cdká
Cddu
Cdsp
Cdsp
Num
26
29
25
33
2
34
21
4
5
12
17
22
35
41
39
6
36
1
37
14
42
19
38
10
18
27
30
8
11
2
13
15
32
40
9
20
66
16
28
65
23
24
67
70
50
51
53
52
31
55
57
56
58
60
54
47
48
46
3
45
49
43
44
75
74
68
59
69
77
72
73
64
78
7/3
76
61
63
62
0 5 10 15 20 25
00
3
a]
B|
+]
al
gol
ll ejes
==.
UTE
J
Ip uu
Figure 17. Hierarchical cluster of a spot check of all samples of the Schneeberg area and the SMF
specimens. Abbreviations as in Figure 14.
Figura 17. Cluster de todas las muestras del área de Schneeberg y los especímenes SME Abreviaturas como
en la Figura 14.
117
Iberus, 15 (2), 1997
Rescaled Distance Cluster Combine
DIU
SBPBRRA An e
VwWWWVWVWA NN
POUOWWVWWWW ny
>bBIAOIWADIOBONIW
R7 15
R10 20
R13 31
R14 44
R14 46
R14 47 =
R14 41
R14 42
R14 43
R15 50
R15 Sp
R7 Y aa
R7 13
R10 21
R14 38
R12 23 JA
R13 29
R12 24 NA
R12 25
EE
cal
E
RS 6
Cdhn 60 a)
R7 el
R7 12
R7 9 a
R14 40
Cdsc 61
R7 19
Cdte 63
R14 45
R14 49
R14 48 —
Cdmo 70
Cdgi 65
RS 2
R7 17
R11 22
Cdga 62
Cdre ve )
Cdob 59
Cdot 64
Cdal 72 AN
Cdru 69
R4 1
Cdflgi 67
AS pa
cdf1 66
Cdká 71
Cdsp 57
Cdsp 58
Cddu 56
Figure 18. Hierarchical cluster of a spot check of all samples of the Rax area and the SMF speci-
mens. Abbreviations as in Figure 14.
Figura 18. Cluster de todas las muestras del área de Rax y los especímenes SME Abreviaturas como en la
Figura 14.
118
EDLINGER: Shell morphology and variability in Clausilia dubiía Draparnaud, 1805
Other ecological factors may be of
relevance, but we must consider them as
arranged in ensembles and affecting
upon animals collectively.
Certainly, individual living condi-
tions, as well as hereditary dispositions,
result in specific modifications of cha-
racters. nevertheless we can reject the
hypothesis of EDLINGER AND MILDNER
(1982) that the characteristics of Clausilia
dubia runensis might be a result of hel-
minth parasitism.
A representation of variability of
species or populations by character
analysis also has to take into considera-
tion the fact that many characters act as
correlated variables. In these cases one
can speak of character complexes.
Arrangements in complexes restrict
variability. The question arises, whether
there are other factors influencing the
variables mentioned above, which are
not subjects of the researches presented
above. Shells, for example, function as
hard skeletons and as mechanical abut-
ments for musculature. Hard skeleton
and musculature must be suited to each
other. So it is evident, that morphologi-
cal relations between various measures
of the shell are indirectly caused by
constructional needs of the animal as a
whole and also of the soft body in parti-
cular (GUTMANN, 1989; EDLINGER, 1991).
Considering the local patterns of dis-
tribution of values and primary compo-
nents inside the species and its popula-
tions, these patterns must be seen as
varying locally and gradually. The
variation of patterns must be seen as the
result of local variation, following from
step by step changes of frequencies of
characters. When different frequencies
are developed under similar ecological
conditions, we may assume that these
changes are a result of genetic drift.
Certain local accumulation of special
characters resp. values of variables may
result from genetic drift too. Typical
characters of the so called “Clausilia
dubia runensis”, C. d. speciosa (shell form)
or “C. d. otvinensis” (distances between
shell ribs), for example, occur in sepa-
rate areas with large distances between
them. Other characters of the same
animals very often don't differ from that
of surrounding populations in adjacent
areas (EDLINGER AND FISCHER, 1997).
This leads us to the conclusion that
frequencies of special characters cannot
automatically be taken as a reason for a
common origin of separated popula-
tions resp. of a heterogeneous origin of
contiguous populations. Above all this
is true, when other characters are identi-
cal with those of contiguous popula-
tions.
So it may be that genetic drift or
special environmental factors have an
influence on single characters. With
regard to these characters we may con-
ceive of some populations as homoge-
nous and “pure bred”. At the other side
there cannot arise populations being
homogeneous and “pure bred” in all or
most characters and containing such a
high number of “typical specimens”
homogenous in most or in all characters
by simple environmental influences.
In any case, “typical” or “pure bred”
specimens were recognized mostly by
earlier researchers, and are extremely
arbitrary. So, the natural populations of
Clausilia dubia which were investigated
do not match the preconceived expecta-
tions of well established races or subs-
pecies occurring in well delimited areas
with rare interbreeding occurrences.
Therefore, we must question, if a morp-
hologically uniform population of Clau-
silia dubia which can be defined as a
subspecies or race, might ever have
existed in the eastern Alpine region.
KLEMM (1960) who was of the same
opinion, believed that the transitional
stages between the races and subspecies
might be the consequence of (post
glacial) re-immigration of pure bred
populations, and their subsequent
mixing with other local forms.
Shell characters, and their distribu-
tion patterns do not support this hypot-
hesis. Additionally, cluster analysis
shows that very variable samples come
from regions where the forerunners of
present populations must definitely
have lived and survived during the
Pleistocene. Contrary to KLemMM (1960),
we must state that a reconstruction of
119
Iberus, 15 (2), 1997
events after the Pleistocene gives us no
evidence to support this view. Why
should areas, glaciated during the Pleis-
tocene be resettled by the descendants
of single, pure bred populations after
the disappearance of the ice?
A new interpretation of character
distribution seems to be more adequate
for the case presented, and discussed
here. This interpretation requires the
(for the case discussed here) use of theo-
rems which are accepted by most anth-
ropologists (CAVALLI-SFORZA, MENOZZI
AND PIAZZA, 1994; KLEIN, TAKAHATA
AND AYALA, 1994).
According to their theoretical guide-
lines, the definition of subspecies and
race depends on subjective argumenta-
tions, and does not mirror objective,
REFERENCES
BROSIUS, G. AND BROSIUS, F., 1995. SPSS Base Sys-
tem und Professional Statistics. International
Thomson Publishing, Bonn-Albany, 1002 pp.
CAVALLI-SFORZA, L. L., MENOZZI, P. AND
PIAZZA, A., 1994. The History and Geography
of Human Genes. Princeton, NJ.
EDLINGER, K., 1991. The mechanical constraint's
in mollusc constructions. The function of the
shell, the musculature, and the connective tis-
sue. In Schmidt-Kittler, N, and Vogel, K.
(Eds.): Constructional morphology and evolution.
Springer, Berlin, Heidelberg, New York.
EDLINGER, K. AND MILDNER, P., 1979. Mono-
graphie der in Kárnten lebenden Clausilia
dubia-Rassen. Carinthia, 11/171: 251-266.
EDLINGER, K. AND MILDNER, P., 1982. Trema-
todenbefall bei Clausilia dubia runensis Ts-
chapek, 1883 aus Kárnten. Carinthia, 11/172:
319-324.
EDLINGER, K. AND FISCHER, W., 1997. Clausilia
dubia bucculenta Klemm, 1960. Zur statistis-
chen Realitát einer Unterart. Club Conchylia
Informationen, 29 (1/2): 11-25.
FECHTER, R. AND FALKNER, G., 1990. Weichtiere.
Europaische Meeres- und Binnenmollusken. Mo-
saik-Verlag, Múnchen, 287 pp.
GOODFRIEND, G. A., 1986. Variation in land-
snail shell form and size and its causes: a re-
view. Systematic Zoology, 35(2): 204-223.
GUTMANN, W. F., 1989. Die Evolution hydraulis-
cher Konstruktionen. Organismische Wandlung
statt altdarwinistischer Anpassung. W. Kra-
mer, Frankfurt /M, 200 pp.
120
concrete facts. They also accept diversity
within given populations. Therefore,
distribution and frequency of characters
are subject to constant change.
Thus, in any investigated snail
population, only the distributions of
characters, and the frequency of their
occurrence can be reasonably recorded.
This entirely altered interpretation also
corresponds better with the results of
genetic analysis in various species of
Albinaría (MYLONAS, KRIMBAS, TSIAKAS
AND AYOUNTANTI, 1990; SCHILTHUIZEN,
1994). The results of these studies show
that there is an overlap of genetic featu-
res in some of the traditionally recogni-
zed subspecies, and even of species.
Similar results may be expected for
Clausilia dubia.
HOLOYAK, D. T. AND SEDDON, M. B., 1988. Sys-
tematics and biogeography of some western
European Clausilia (Gastropoda: Clausilii-
dae). Journal of Conchyology, 33: 55-80.
KEARNEY, M. P., CAMERON, R. AND JUNGBLUTH,
J., 1983. Die Landschnecken Nord und Mitte-
leuropas. P. Parey-Verlag, Hamburg-Berlin,
387 pp.
KLEIN, J]., TAKAHATA, N. AND AYALA, F. J., 1994.
MHC-Polymorphismus und Ursprung des
menschen. Spektrum der Wissenschaft, 2: 56-62.
KLEmMM, W., 1960. Clausilia dubia und ihre for-
men in Osterreich. Archiv fúr Molluskenkunde,
89: 81-109.
KLeMM, W., 1973. Die Verbreitung der rezen-
ten Land-Geháuse-Schnecken in Osterreich.
- Denkschriften der Osterreichischen. Aka-
demie der Wissenschaften, mathematisch-natur-
wissenschaftliche Klasse, 117: 1-503.
KOTHBAUER, H., NEMESCHKAL, H. L., SATT-
MANN, H. AND WAWRA, E., 1991. Uber den
Aussagewert von Typen und qualitativen
Aufsammlungen: Eine kritische Sicht am
Beispiel von Artanta arbustorum styriaca
(Frauenfeld, 1868) (Pulmonata: Helicidae).
Annalen des Naturhistorischen, 92 B: 229-240.
MAayr, E., 1967. Artbegriff und evolution. P. Pa-
rey, Hamburg, 617 pp.
MYLONAS, M., KRIMBAS, C., TSIAKAS, S. AND
AYOUNTANTI, A., 1990. The genus Albinaria
Vest. (Clausiliidae, Gastropoda). Is there any
true species?. Biología Gallo-hellenica, 13: 161-
164.
EDLINGER: Shell morphology and variability in Clausilia dubiía Draparnaud, 1805
NEMESCHKAL, H. L., 1990. Uber die form der sch-
neckenschale: morphometrische grundlagen
und vorbereitungen fúr ein statistisches ta-
xon-Modell. Zoologisches Jahrbuch Systema-
tik, 117: 491-534.
NEMESCHKAL, H. L., 1991. Character coupling
for taxa discrimination: a critical appraisal of
quadratic assignment procedures (QAP).
Zeitschrift fur zoologische Systematik und Evo-
lutionsforschung, 29: 87-96.
NEMESCHKAL, H. L., 1993. Character coupling
in land snails (Arianta, Helicidae). Does Man-
telís test detect equality or similarity?. Zoo-
logischer Anzeiger, 230(1/2): 1-17.
NEMESCHKAL, H. L. AND KOTHBAUER, H., 1988.
Arianta arbustorum alpicola (Ferussac, 1819)
(Pulmonata, Helicidae). Uber Interpretation
und Realitát eines Taxon. Zoologischer An-
zeiger, 221(5/6): 343-354.
NORDSIECK, H., 1990. Revision der Gattung
Clausilia Draparnaud, besonders der Arten in
SW-Europa (das Clausilia rugosa-Problem).
Archiv fúr Molluskenkunde, 119 (416): 133-179.
OSCHE, G., 1994. Rasse. In Becker, U., Ganter,
S., Jost, C. and Sauermost, R. (Eds.): Lexikon
der Biologie 7. Spektrum Verlag, Heidelberg-
Berlin-Oxford: 82-83.
SCHILTHUIZEN, M., 1994. Differentiation and
hybridization in a polytypic snail. Den Haag.
178 pp.
SUDHAUS, W. AND REHFELD, K., 1992. Einfúhrung
in die Phylogenetik und Systematik. G. Fischer,
Stuttgart-Jena-New York, 241 pp.
THORPE, R. S., 1987. Geographic variation. a
synthesis of cause, data, pattern and con-
gruence in relation to subspecies, multivariate
analysis and ohylogenesis. Bollettino Zoologico,
54: 3-11.
121
. lo Pad cn
nbiegas 0 0 M
po De mb pese Ne
se E
Ds Lo Qu
NE 1 ganes
| dl RUBIA pee
2092 e pe
RBinanseral
vola a
E AE
NORMAS DE PUBLICACIÓN
e La revista IBERUS publica artículos de fondo, notas y monografías que versen sobre cualquiera de los aspectos rela-
cionados con la Malacología. Se entiende por artículo un trabajo de investigación de más de 5 páginas de texto,
mecanografiadas, incluidas láminas, gráficos y tablas. Las notas son trabajos de menor extensión. Las monografías
son trabajos sobre un tema único, de extensión superior a las 50 páginas de la revista y que serán publicadas como un
suplemento de IBERUS. Los autores interesados en publicar monografías deberán ponerse previamente en contacto
con el Editor de Publicaciones. Se entiende que el contenido de los manuscritos no ha sido publicado, ni se publicará
en otra parte ni en su totalidad ni resumido.
+ Los manuscritos, así como toda la correspondencia relacionada con los mismos, deberán ser remitidos a: Dr. Ángel
Guerra Sierra, Editor de Publicaciones, Instituto de Investigaciones Marinas (CSIC), C/Eduardo Cabello 6, 36208
Vigo, España.
» El texto del trabajo podrá estar redactado en cualquier lengua culta moderna.
* En los trabajos que superen las 20 páginas, cada página de exceso será abonada por el(los) autor(es) a precio de coste.
* Los artículos, notas y monografías deberán presentarse mecanografiados sobre DIN A-4, por una sola cara a doble
espacio (incluyendo referencias, pies de figura y tablas), con al menos 3 centímetros de margen por cada lado. Los tra-
bajos se entregarán por triplicado (original y dos copias). En caso de autoría compartida, uno de los autores deberá
hacerse responsable de toda la correspondencia.
+ Los manuscritos se presentarán de acuerdo al siguiente esquema:
Primera página. Deberá incluir un título conciso, pero sugerente del contenido del trabajo, así como una traducción
al inglés del mismo (si el artículo no está escrito en inglés). Cuando sea preciso, deberá incluir referencia a familia o
táxones superiores. Á continuación figurarán, por este orden, el nombre y apellidos completos del autor o autores,
las direcciones completas de los mismos, y un resumen del trabajo y su traducción al inglés. Dicho resumen deberá
sintetizar, en conjunción con el título, tanto los resultados como las conclusiones del artículo; se sugiere una exten-
sión de 100 a 200 palabras. El resumen deberá estar seguido de una lista de palabras clave, también con su versión
inglesa para su inclusión en los bancos de datos internacionales.
Páginas siguientes. Incluirán el resto del artículo, que debe dividirse en secciones precedidas por breves encabeza-
mientos. Siempre que sea posible, se recomienda seguir el siguiente esquema: Introducción, Material y métodos,
Resultados, Discusión, Conclusiones, Agradecimientos y Bibliografía. Si se emplean abreviaturas no habituales en
el texto, deberán indicarse tras el apartado de Material y Métodos.
* Las notas breves deberán presentarse de la misma forma, pero sin resumen.
» Deberán evitarse notas a pie de página y referencias cruzadas. Deberán respetarse estrictamente los Códigos
Internacionales de Nomenclatura Zoológica y Botánica (últimas ediciones). Cuando un táxon aparezca por primera
vez deberá citarse su autor y fecha de su descripción. En el caso de artículos sistemáticos, cuando se den las sinonimias
de los táxones, éstas deberán citarse COMPLETAS, incluyendo en forma abreviada la publicación donde fueron des-
critas, y la localidad tipo si es conocida entre corchetes, según el siguiente esquema (préstese especial cuidado a la pun-
tuación):
Dendrodoris limbata (Cuvier, 1804)
Sinonimias
Doris limbata Cuvier, 1804, Ann. Mus. H. N. Paris, 4 (24): 468-469 [Localidad tipo: Marsella].
Doris nigricans Otto, 1823, Nov. Act. Ac. Caes. Leop. Car., 10: 275.
Dichas referencias no deberán incluirse en la lista de Bibliografía si es la única vez que se nombran en el texto.
Si se incluyen una lista completa de referencias de un taxon inmediatamente tras éste, deberá seguirse el mismo esque-
ma (sin incluir en Bibliografía las referencias que no se mencionen en otro lugar del texto).
e Sólo los nombres en latín y los de táxones genéricos y específicos deberán llevar subrayado sencillo o preferentemente
ir en cursiva. En ningún caso deberá escribirse una palabra totalmente en letras mayúsculas, ni siquiera el Título. Las
unidades a utilizar deberán pertenecer al Sistema Métrico Decimal, junto con sus correctas abreviaturas. En artículos
escritos en castellano, en los números decimales sepárese la parte entera de la decimal por una coma inferior (,),
NUNCA por un punto (.) o coma superior (*).
* Las referencias bibliográficas irán en el texto con minúsculas o versalitas: Fretter y Graham (1962) o FRETIER Y
GRAHAM (1962). Si son más de dos autores se deberán citar todos la primera vez que aparecen en el texto [Smith,
Jones y Brown (1970)] empleándose ez al. las siguientes veces [Smith et al. (1970)). Si un autor ha publicado más de
un trabajo en un año se citarán con letras: (Davis, 1989a; Davis, 1989b). No deberá emplearse op. cit. La lista de
referencias deberá incluir todas las citas del texto y sólo éstas, ordenadas alfabéticamente. Se citarán los nombres de
todos los autores de cada referencia, sea cual sea su número. Los nombres de los autores deberán escribirse, en letras
minúsculas o VERSALITAS. No deberán incluirse referencias a autores cuando éstos aparezcan cn el texto exclusiva-
mente como autoridades de un taxon. Los nombres de las publicaciones periódicas deberán aparecer COMPLETOS,
no abreviados. Cuando se citen libros, dése el título, editor, lugar de publicación, n* de edición si no es la primera y
número total de páginas. Deberán evitarse referencias a Tesis Doctorales u otros documentos inéditos de difícil con-
sulta. Síganse los siguientes ejemplos (préstese atención a la puntuación):
Fretter, V. y Graham, A., 1962. British Prosobranch Molluscs. Ray Society, London, 765 pp.
Ponder, W. F., 1988. The Truncatelloidean (= Rissoacean) radiation - a preliminary phylogeny. En Ponder, W. F.
(Ed.): Prosobranch Phylogeny, Malacological Review, suppl. 4: 129-166.
Ros, J., 1976. Catálogo provisional de los Opistobranquios (Gastropoda: Euthyneura) de las costas ibéricas.
Miscelánea Zoolgica, 3 (5): 21-51.
» Las gráficas e ilustraciones deberán ser originales y presentarse sobre papel vegetal o similar, con tinta china negra y
ajustadas al formato de caja de la revista o proporcional a éste. Este formato es de 57 mm (una columna) o 120 mm
(dos) de anchura y hasta 194 mm de altura, si bien se recomienda utilizar el formato a dos columnas. En caso de pre-
parar figuras para que ocupen el total de una página, se ruega ajustar su tamaño para que puedan caber los pies de
figura bajo ella. Si han de incluirse gráficas de ordenador, deberán imprimirse con impresora láser sobre papel de
buena calidad. Las fotografías, bien contrastadas y sin retocar, deberán ajustarse siempre a los tamaños mencionados.
Al componer fotografías sobre una hoja, procúrese que los espacios entre ellas sean regulares y que estén debidamente
alineadas. Téngase en cuenta que incluir fotografías de distinto contraste en una misma página conlleva una pobre
reproducción final. Las escalas de dibujos y fotografías deberán ser gráficas, y las unidades que se utilicen del sistema
métrico decimal. Considérese la reducción que será necesaria a la hora de decidir el tamaño de las escalas o letras en
las figuras, que no deberán bajar de los 2 mm. En figuras compuestas, cada parte deberá etiquetarse con letras mayús-
culas, el resto de las letras deberán ser minúsculas. No deberán hacerse referencias a los aumentos de una determi-
nada ilustración, ya que éstos cambian con la reducción, por lo que debe emplearse una escala gráfica. En su caso, se
recomienda la utilización de mapas con proyección UTM. Cada figura, gráfica o ilustración deberá presentarse en
hojas separadas y con numeración arábiga (1, 2, 3,...), sin separar “Figuras” y “Láminas”. Los pies de figura, en una
hoja aparte, deberán acompañarse de su traducción al inglés. Utilícese el esquema siguiente:
Figura 1. Veodoris carvi. A: animal desplazándose; B: detalle de un rinóforo; C: branquia.
Las abreviaturas empleadas en las ilustraciones deberán incluirse en la hoja de pies de figura.
Los autores interesados en incluir láminas en color deberán abonarlas a precio de coste (30.000 ptas por página). Por
lo demás, deberán ajustarse a los mismos requisitos que los indicados para las figuras.
+ Las Tablas se presentarán en hojas separadas, siempre con numeración romana (1, II, IL...). Las leyendas se inclui-
rán en una hoja aparte acompañándose de una traducción al inglés. Deberán evitarse las tablas particularmente com-
plejas. Se recomienda reducir el número y extensión de ilustraciones, láminas o tablas al mínimo necesario.
* Los artículos que no se ajusten a las normas de publicación serán devueltos al autor con las indicaciones de los cam-
bios necesarios.
» El Comité Editorial comunicará al autor responsable del trabajo la fecha de recepción del trabajo y la fecha de envío
a revisión. Cada original recibido será sometido a revisión por al menos dos investigadores. El Comité Editorial, a la
vista de los informes de los revisores decidirá sobre la aceptación o no de cada manuscrito. El autor recibirá en cada
caso copia de los comentarios de los revisores sobre su artículo. En caso de aceptación, el mismo Comité Editorial, si
lo considera conveniente, podrá solicitar a los autores otras modificaciones que considere oportunas. Si el trabajo es
aceptado, el autor deberá enviar una copia impresa del mismo corregida, acompañada por una versión en disco flexi-
ble (diskette), utilizando procesadores de texto en sus versiones de DOS o Macintosh. La fecha de aceptación figura-
rá en el artículo publicado.
+ Las pruebas de imprenta serán enviadas al autor responsable, EXCLUSIVAMENTE para la corrección de erratas, y
deberán ser devueltas en un plazo máximo de 15 días. Se recomienda prestar especial atención en la corrección de las
pruebas.
» De cada trabajo se entregarán gratuitamente 50 separatas. Aquellos autores que deseen un número mayor, deberán
hacerlo constar al devolver las pruebas de imprenta, y NUNCA POSTERIORMENTE. El coste de las separatas adi-
cionales será cargado al autor.
INSTRUCTIONS TO AUTHORS
» IBERUS publishes research papers, notes and monographs devoted to the various aspects of Malacology. Papers are
manuscripts of more than 5 typed pages, including figures and tables. Notes are shorter papers. Monographs should
exceed 50 pages of the final periodical, and will be published as Supplements. Authors wishing to publish monographs
should contact the Editor. Manuscripts are considered on the understanding that their contents have not appeared or
will not appeared, elsewhere in substantially the same or any abbreviated form.
+ Manuscripts and correspondence regarding editorial matters must be sent to: Dr. Ángel Guerra Sierra, Editor de Publi-
caciones, Instituto de Investigaciones Marinas (CSIC), C/Eduardo Cabello 6, 36208 Vigo, Spain.
+ Manuscripts may be written in any modern language.
» When a paper exceeds 20 pages, extra pages will be charged to the author(s) at full cost.
+ Manuscripts must be typed double spaced (including the references, figure captions and tables) on one side on A-4
(297x210 mm) with margins of at least 3 cm. An original and two copies must be submitted. When a paper has joint
authorship, one author must accept responsability for all correspondence.
* Papers should conform the following layout:
First page. This must include a concise but informative title, with mention of family of higher taxon when appropriatte,
and its Spanish translation. It will be followed by all authors' names and surnames, their full adress(es), an abstract (and
its Spanish translation) not exceeding 200 words which summarizes not only contents but results and conclusions, and
a list of Key Words (and their Spanish translation) under which the article should be indexed.
Following pages. These should content the rest of the paper, divided into sections under short headings. Whenever pos-
sible the text should be arranged as follows: Introduction, Material and methods, Results, Discussion, Conclusions,
Acknowledgements and References. Unusual abbreviations used in the text must be grouped in one alphabetic sequence
after the Material and methods section.
* Notes should follow the same layout, without the abstract.
e Footnotes and cross-references must be avoided. The International Codes of Zoological and Botanical Nomencla-
ture must be strictly followed. The first mention in the text of any taxon must be followed by its authority including
the year. In systematic papers, when synonyms of a taxon are given, they must be cited IN FULL, including the perio-
dical, in an abbreviate form, where they were described, and the type localities in square brackets when known. Follow
this example (please note the punctuation):
Dendrodoris limbata (Cuvier, 1804)
Synonyms
Doris limbata Cuvier, 1804, Ann. Mus. H. N. Paris, 4 (24): 468-469 [Type locality: Marseille).
Doris nigricans Otto, 1823, Nov. Act. Ac. Caes. Leop. Car., 10: 275.
These references must not be included in the Bibliography list, except if referred to elsewhere in the text. I£a full list
of references of the taxon is to be given immediately below it, the same layout should be followed (also excluding those
nowhere else cited from the Bibliography list).
Only Latin words and names of genera and species should be underlined once or be given in ¿talics, No word must
be written in UPPER CASE LETTERS. SI units are to be used, together with their appropriate symbols. In Spanish
manuscripts, decimal numbers must be separated with a comma (,), NEVER with a point (.) or upper comma (').
» References in the text should be written in small letters or SMALL CAPITALS: Fretter 82 Graham (1962) or FRETTER
82 GRAHAM (1962). The first mention in the text of a paper with more than two authors must include all of them
[Smith, Jones 82 Brown (1970)], thereafter use et al. [Smith et al. (1970)]. Ifan author has published more than one
paper per year, refer to them with letters: (Davis, 1989a; Davis, 1989b). Avoid op. cit.
The references in the reference list should be in alphabetical order and include all the publications cited in the text but
only these. ALL the authors of a paper must be included. These should be written in small letters or SMALL CAPITALS.
The references need not be cited when the author and date are given only as authority for a taxonomic name. Titles of
periodicals must be given IN FULL, not abbreviated. For books, give the title, name of publisher, place of publication,
indication of edition if not the first and total number of pages. Keep references to doctoral theses or any other unpu-
blished documents to an absolute minimum. See the following examples (please note the punctuation):
Fretter, V. and Graham, A., 1962. British Prosobranch Molluscs. Ray Society, London, 765 pp.
Ponder, W. F., 1988. The Truncatelloidean (= Rissoacean) radiation - a preliminary phylogeny. In Ponder, W. F. (Ed.):
Prosobranch Phylogeny, Malacological Review, suppl. 4: 129-166.
Ros, J., 1976. Catálogo provisional de los Opistobranquios (Gastropoda: Euthyneura) de las costas ibéricas. Miscelá-
nea Zoológica, 3 (5): 21-51.
+ Figures must be original, in Indian ink on draughtsman's tracing paper. Keep in mind page format and column size
when designing figures. These should be one column (57 mm) or two columns (120 mm) wide and up 194 mm high,
or be proportional to these sizes. Two columns format is recomended. It is desirable to print figures with their legend
below, so authors are asked to take this into account when preparing full page figures. If computer generated graphics
are to be included, they must be printed on high quality white paper with a laser printer. Photographs must be of good
contrast, and should be submitted in the final size. When mounting photographs in a block, ensure spacers are of uni-
form width. Remember that grouping photographs of varied contrast results in poor reproduction. Take account of
necessary reduction in lettering drawings; final lettering must be at least 2 mm high. In composite drawings, each figure
should be given a capital letter; additional lettering should be in lower-case letters. A scale line is recomended to indi-
cate size, magnification ratio must be avoided as it may be changed during printing. UTM maps are to be used if neces-
sary. Figures must be submitted on separate sheets, and numbered with consecutive Arabic numbers (1, 2, 3,...), without
separating Plates' and “Figures”. Legends for Figures must be typed in numerical order on a separate sheet, and an English
translation must be included. Follow this example (please note the punctuation):
Figure 1. Neodoris carvi. A: animal crawling; B: rinophore; C: gills.
If abbreviations are to be used in illustrations, group them alphabetically after the Legends for Figures section.
Authors wishing to publish illustrations in colour will be charged with additional costs (30,000 ptas, 300 US$ per page).
They should be submitted in the same way that black and white prints.
+ Tables must be numbered with Roman numbers (1, II, IL...) and each typed on a separate sheet. Headings should
be typed on a separate sheet, together with their English translation. Complex tables should be avoided. As a general
rule, keep the number and extension of illustrations and tables as reduced as possible.
+ Manuscripts that do not conform to these instructions will be returned for correction before reviewing.
+ Authors submitting manuscripts will receive an acknowledgement of receipt, including receipt date, and the date the
manuscript was sent for reviewing. Each manuscript will be critically evaluated by at least two referees. Based of these
evaluations, the Editorial Board will decide on acceptance or rejection. Anyway, authors will receive a copy of the refe-
rees” comments. If a manuscript is accepted, the Editorial Board may indicate additional changes if desirable. Accep-
table manuscripts will be returned to the author for consideration of comments and criticism; a finalized manuscript
must then be returned to the Editor, together with a floppy disk containing the article written with a DOS or Macin-
tosh word processor. Dates of reception and acceptance of the manuscript will appear in all published articles.
» Proofs will be sent to the author for correcting errors. At this stage no stylistic changes will be accepted. Pay special
attention to references and their dates in the text and the Bibliography section, and also to numbers of Figures and
Tables appearing in the text.
e Fifty reprints per article will be supplied free of charge. Additional reprints must be ordered when the page proofs are
returned, and will be charged at cost. NO LATER orders will be accepted.
2 S y " e J
1. y d
¡
1 se - o
y ” “
ol
W Ñ My m0) ha A »
CIA E )
EI é e MESE: EEN A: dei DE DA
AE IS Mail Ab Mide 7
ELN PM
a y
ie de IGAC Ad
Un is e
>
LA SociEeDAD ESPAÑOLA DE MALACOLOGÍA
Junta directiva desde el 18 de octubre de 1996
Presidente Emilio Rolán Mosquera
Vicepresidente Diego Moreno Lampreave
Secretario Luis Murillo Guillén
Tesorero Jorge J. Otero Schmitt
Avda. de las Ciencias s/n, Campus Universitario, 15706 Santiago
de Compostela, España
Editor de Publicaciones Ángel Guerra Sierra
Instituto de Investigaciones Marinas, c/ Eduardo Cabello 6, 36208
Vigo, España
Bibliotecario Rafael Araujo Armero
Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutierrez
Abascal 2, 28006 Madrid, España
Vocales Eugenia María Martínez Cueto-Felgueroso
María de los Ángeles Ramos Sánchez
Francisco Javier Rocha Valdés
Gonzalo Rodríguez Casero
Jesús Souza Troncoso
José Templado González
La Sociedad Española de Malacología se fundó el 21 de agosto de 1980. La sociedad se registró como una aso-
ciación sin ánimo de lucro en Madrid (Registro N* 4053) con unos estatutos que fueron aprobados el 12 de
diciembre de 1980. Esta sociedad se constituye con el fin de fomentar y difundir los estudios malacológicos
mediante reuniones y publicaciones. A esta sociedad puede pertenecer cualquier persona o institución interesada
en el estudio de los moluscos.
SEDE SOCIAL: Museo Nacional de Ciencias Naturales, c/ José Gutierrez Abascal 2, 28006 Madrid, España.
CUOTAS PARA 1997:
Socio numerario (en España): 5.000 ptas. (= 50 U.S. $)
(en extranjero): 7.000 ptas (= 70 U.S. $)
Socio estudiante: 2.000 ptas. (= 20 U.S. $)
Socio Familiar: 500 ptas. (= 5 U.S. $)
Socio Protector: 6.000 ptas. (= 60 U.S. $) (mínimo)
Socio Corporativo 6.000 ptas. (= 60 U.S. $)
INSCRIPCIÓN: 1.000 ptas. (= 10 U.S. $) además de la cuota correspondiente.
A los socios residentes en España se les aconseja domiciliar su cuota. Todos los abonos deberán enviarse al
Tesorero (dirección reseñada anteriormente) el 1 de enero de cada año. Los abonos se harán sin recargos para la
sociedad y en favor de la Sociedad Española de Malacología y no de ninguna persona de la junta directiva. Aque-
llos socios que no abonen su cuota anual dejarán de recibir las publicaciones de la Sociedad. Los bonos de ins-
cripción se enviarán junto con el abono de una cuota anual al Tesorero.
Members living in foreing countries can deduce 10 U.S. $ if paid before 15 April.
Cada socio tiene derecho a recibir anualmente los números de /berus, Reseñas Malacológicas y Noticiarios que
se publiquen.
ÍNDICE
Iberus 15 (2) 1997
MALHAM, S. K., RUNHAM, N. W, AND SECOMBES, C. J. Phagocytosis by haemocytes from the Lesser
Octopus Eledone cirrhosa
Fagocitosis en hemocitos del pulpo blanco Eledone cirrhosa........ooooocooccooccooconocooo: 1-11
PÉREZ, A. M. AND LÓPEZ, A. New data on the morphology and the distribution of Bulimulus corneus
Sowerby, 1833 (Gastropoda: Pulmonata: Orthalicidae) in Nicaragua
Nuevos datos sobre la morfología y la distribución de Bulimulus corneus Sowerby 1833 (Gastro-
pora; Dulmonatas Orthalicidae) en INTIAgUa a a on ade 13-24
LAZARIDOU-DIMITRIADOU, M. AND SGARDELIS, S. Phenological patterns and life history tactics of
Helicoidea (Gastropoda, Pulmonata) snails from Northern Greece
Patrones fenológicos y estrategias de vida en Helicoidea (Gastropoda, Pulmonata) del Norte de
A O O A a A UE ad 25-34
SALVINI-PLAWEN, L. VON. Fragmented knowledge on West-European and Iberian Caudofoveata and
Solenogastres
Conocimiento fragmentado de los Solenogastros y Caudofoveados de Europa occidental y Península
IA RA AN OD nd E 35-50
EDLINGER, K. AND GUTMANN, W. E Molluscs as evolving constructions: necessary aspects for a dis-
cussion of their phylogeny
Los moluscos como construcciones en evolución: aspectos necesarios para una discusión sobre su
VILA A E A ORO OOO do 51-66
FÚKOH, L. Mollusc fauna of the medium high mountain ranges of the Hungarian Holocene: a zoo-
geographical research
Fauna de moluscos de media y alta montaña del Holoceno de Hungría: una investigación zo0ge-
ORVAES ao E SUS da ERE Coalo AUN ERA AS 67-74
COBBINAH, J. R. Aestivation responses of three populations of the giant African snail, Achatina acha-
tina Linne (Gastropoda: Achatinidae)
Respuestas a la estivación de tres poblaciones del caracol gigante africano Achatina achatina Linne
UCA OPOda: AC Uaae) sl ira Ed an aee e e o DD SOON 75-82
BABA, K. AND BAGL I. Snail communities associated to swampy meadows and sedgy marshy meadows
plant communities of the Great Hungarian Plain
Comunidades de moluscos asociadas a comunidades vegetales de praderas pantanosas y junqueras
ena Gran Llanura AUR Cara o dinos So Ue de DUNN rai Se CSIC EE eE 83-93
EDLINGER, K. Morphological and biometrical researches on Austrian Clausiliids. Shell morphology
and variability in Clausilia dubia Draparnaud, 1805
Investigaciones biométricas y morfológicas en Clausilidos de Austria. Morfología y variabilidad de
la concha de Clausilia dubia Draparnaud, 1805... 95-121
ISSN 0212-3010
a ,
AS
1
< K y
Y
E F a Es
E >
y y
. E
1d
ERNST MAYR LIBRARY
NR
3 2044 110 337
PEA
A PRO A
ASNO
AI
o
e
e
ia ia S
E . z S
AS ren ro dl A - Sy a
eo
rr A ps
A OS : SN z
a IS
ETS
PIS :
CAN . :
: ; aaron
2
O
er raras -
TO
eo
CNEA
EN
SENS
a Nota
SER
OS
ES
o
a E : : A
OS Ñ g Pa 4 Ed z EEES aa
: E dez 4 O paro PAE,
> 7 E E E z E CIA
] 29. E, EA ENTE
Edel E
IN
E . roo Daria
o a AA