ISSN 0073 - 9901
MIBUAH
GOVERNO DO ESTADO DE SÃO PAULO
SECRETARIA DE ESTADO DA SAÚDE
COORDENADORIA DE SERVIÇOS TÉCNICOS ESPECIALIZADOS
INSTITUTO BUTANTAN
SÃO PAULO, SP - BRASIL
Memórias
do
Instituto
Butantan
vol. 46 - 1982
SciELO
17
Governo do Estado de São Paulo
Secretaria de Estado da Saúde
Coordenadoria dos Serviços Técnicos Especializados
Instituto Butantan, SP — Brasil
MEMÓRIAS
DO
INSTITUTO BUTANTAN
v. 46
1982
DIRETOR DO INSTITUTO BUTANTAN
Bruno Soerensen Cardozo
COMISSÃO EDITORIAL
PRESIDENTE — Rosa Pavone Pimont
MEMBROS — Jesus Carlos Machado
Edison P. T. de Oliveira
Sylvia Marlene Lucas
SECRETÁRIA
REDATORA — Carmen Aleixo Nascimento
SÃO PAULO, SP — BRASIL
1983
SciELO
Endereço/Address
Biblioteca do Instituto Butantan
Av. Vital Brazil, 1500
Caixa Postal 65
05504 São Paulo, S.P. — Brasil
Publicação anual/Annual publication
Solicita-se permuta/ Exchange desired
MEMÓRIAS DO INSTITUTO BUTANTAN. (Secretaria de
Estado da Saúde) São Paulo S.P. — Brasil, 1918-
1918-1982, 1-46
ISSN 0073-9901 CDD 1K 614.07205
MIBUAH
Mem. Jnat. Butantan
46 , 1982
SUMÁR10/SUMMARY
EDITORIAL
Rosa Pavone PIMONT .
HOMENAGEM PÓSTUMA — Alphonse Richard Hoge (1912-1982)
POSTHUMOUS HOMAGE — Alphonse Richard Hoge (1912-1982)
Jesus Carlos MACHADO .
l.° SIMPÓSIO INTERNACIONAL SOBRE SERPENTES EM GERAL E
ARTRÓPODES PEÇONHENTOS
Trabalhos apresentados
1. Animaux venimeux de Madagascar.
Animais venenosos de Madagascar.
Edouard Raoul BRYGOO .
2. Les ophidiens de Madagascar.
Os ofídios de Madagascar.
Edouard Raoul BRYGOO .
1-12
15-17
19-58
59-77
79-94
3. La découverte de la sérotherapie antivenimeuse en 1894.
Phisalix, Bertrand ou Calmette?
A descoberta da soroterapia antiofídica em 1894.
Phisalix, Bertrand ou Calmette?
Edouard Raoul BRYGOO .
4. Les spécimens-types du genre Micruruí (Elapidae) conservés au Muséum
National D’Histoire Naturelle de Paris.
Os espécimens do gênero Micrurus (Elapidae) conservados no Museum
National D’Histoire Naturelle de Paris.
Rolande ROUX-ESTEVE .
5. Serpientes de Venezuela: distribución geográfica y altitudinal de generos
de serpientes en Venezuela.
Serpentes da Venezuela: distribuição geográfica e altitúdica de gêneros
de serpentes na Venezuela.
Abdem Ramon LANCINI V. 95-103
6. The evolution of the venom apparatus in snakes from colubrids to
viperids & elapids.
A evolução da glândula de veneno em serpentes de colubrideos para
viperideos & elapideos.
Kenneth V. KARDONG .105-118
7. Methodology applied in the elaboration of faunal salvage in the region
of “Água Vermelha” hydroelectric power plant.
Centrais Energéticas de São Paulo — CE SP.
Metodologia aplicada na elaboração do salvamento da fauna na região
da usina hidroelétrica “Água Vermelha”. Centrais Energéticas de
São Paulo — CESP.
Helio Emerson BELLUOMINI & Mario Paulo AUTUORI .119-138
8. Ofídios da Amazônia. XV — As espécies de Chironius da Amazônia
Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae).
Ophidians of Amazônia. XV — The species of Chironius from Oriental
Amazônia (Pará, Amapá and Maranhão). (Ophidia: Colubridae).
Oswaldo Rodrigues da CUNHA & Francisco Paiva do NASCI¬
MENTO .139-172
cm
SciELO
11 12 13 14 15 16 17
9. Fauna de serpentes da província pampeana e inter-relações com as
províncias limítrofes.
Snake — fauna of Pampean Province and interrelation with limitrophes
provinces.
Thales de LEMA .173-182
10. Estado actual de la colección herpetologica dei Museo de Zoologia de
la Universidad de Concepción (M.Z.U.C.) en la parte serpentes.
Estado atual da coleção herpetologica do Museo de Zoologia de la
Universidad de Concepción (M.Z.U.C.) — parte serpentes.
Tomas CEKALOVIC K.183-186
11. Estado actual de la colección arachnologica dei Museo de Zoologia de
la Universidad de Concepción (M.Z.U.C.) — parte scorpiones.
Estado atual da coleção aracnológica do Museo de Zoologia de la Uni¬
versidad de Concepción (M.Z.U.C.) — parte escorpiões.
Tomas CEKALOVIC K.187-192
12. Serpientes Crotalinae de Venezuela.
Serpentes Crotalinae da Venezuela.
F. SANDNER MONTILLA .193-194
13. Post-strike trailing behavior in rattlesnakes.
Comportamento da cascavel após a picada.
D.CHISZAR; H.M.SMITH & A.R.HOGE . 195-206
14. Levantamento dos gêneros de ofídios e espécies de aracnídeos causadores
de acidentes na casuística do Centro de Informação Toxicológica do
Rio Grande do Sul. (Período compreendido entre 1977 a agosto
de 1981).
Lifting of genus of ophidians and species of arachnids causers of
accidents in the casuistry of the Toxicological Information Centre
from Rio Grande do Sul. (Period between 1977 to August of 1981).
João Batista TORRES & Paulo Roque CARLOTTO . 207-218
15. Snakes of the Guianan region.
Serpentes da região das Guianas.
Marinus S. HOOGMOED .219-254
16. Problems and approaches in the interpretation of evolutionary history
of venomous snakes.
Problemas e tentativas na interpretação da evolução histórica de ser¬
pentes venenosas.
John E. CADLE . 255-274
17. Serpientes venenosas de Centro America: distribución, características
y patrones cariológicos.
Serpentes venenosas da América CeiVral: distribuição, características
e padrões cariológicos.
Róger BOLANOS . 275-291
18. Preliminary report on the medicai importance of Sicarius (Araneae:
Sicariidae) and the action of its venom.
Relatório preliminar da importância médica de Sicarius (Araneae:
Sicariidae) e a ação de seu veneno.
Gerald NEWLANDS . 293-304
19. New world coral snakes (Elapidae) : a taxonomic and biological summary.
Serpentes corais (Elapidae) do Novo Mundo: um sumário taxonômico
e biológico.
Janis A. ROZE . 305-338
20. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae
Thorell, 1870 no Brasil (Araneae, Theraphosidae) .
About geographic distribution of genus subfamily Theraphosinae
Thorell, 1870 in Brazil (Araneae, Theraphosidae).
Sylvia LUCAS . 339-352
Notes on micro and ultrastructure of “Oberhautschen” in Viperoidea.
Notas sobre micro e ultra-estrutura de “Oberháutschen” em Viperoidea.
Alphonse Richard HOGE & Silvia Alma ROMANO HOGE
Publicado nas Memórias do Instituto Butantan, 44/ U5 :81-118, 1980/81.
ÍNDICE DE AUTOR/AUTHOR INDEX. 353
ÍNDICE DE ASSUNTO . 355-356
SUBJECT INDEX . 357-358
cm
iSciELO
10 11 12 13 14
Mem. Inst. Butantan
\ 6 , 1982
EDITORIAL
A Ciência é percebida sob vários enfoques.
Segundo o poeta grego da atualidade Alexandre Panagulis — ““A
ciência não existe, a ciência é uma opinião. E não demonstra coisíssima
alguma, e muito menos a vida e a morte”.
Sob o nosso ponto de vista de educadora de Saúde Pública, a Ciência
é resultante do esforço de algumas pessoas, dentro de suas limitações
humanas, em busca da verdade, em busca da coerência, em busca de
ser e do ser e dentro da filosofia da ciência a busca da razão da vida
e da morte.
Este número de Memórias é dedicado a uma dessas pessoas. Dr.
Alphonse Richard Hoge que na sua especialidade: — a busca da verdade
científica em relação aos animais peçonhentos — dedicou toda sua vida
na pesquisa desta área específica.
Embora a tendência atual seja a de formação de grupos multi-
profissionais definindo uma metodologia científica, visando a inter-
disciplinariedade, justifica-se um número do periódico “Memórias do
Instituto Butantan” dentro de uma só especialidade, uma vez que este
volume reúne os trabalhos científicos apresentados em 1981 no l.°
Simpósio Internacional sobre Serpentes em Geral e Artrópodes Peço¬
nhentos, organizado e coordenado pelo Dr. Alphonse Richard Hoge.
Após o Simpósio, realizado por ocasião da comemoração dos 80 anos
da Fundação do Instituto Butantan, este cientista recolheu os trabalhos
apresentados e solicitou a esta Comissão Editorial que fossem publicados
nas suas formas originais.
Dr. Alphonse Richard Hoge raleceu em 25-12-82, deixando, entre
outros, mais este legado aos estudos sobre animais peçonhentos desenvol¬
vidos no Instituto Butantan.
ROSA PAVONE PIMONT
Presidente da Comissão Editorial
das Memórias do Instituto Butantan
Diretora da Divisão de Extensão Cultural
cm
2 3
Z
5 6
11 12 13 14 15 16
10 11 12 13 14
Mcm. Inst. Butantan
4 «: 1 - 12 , 1982
ALPHONSE RICHARD HOGE
(1912-1982)
cm
MACHADO, J. C. Homenagem póstuma. Alphonse Richard Hoge (1912-1982).
brasileiro. Mem. Inst. Butantan, 1,6: 1-12, 1982.
Eminente herpetólogo
HOMENAGEM PÓSTUMA
ALPHONSE RICHARD HOGE
(1912-1982)
EMINENTE HERPETÓLOGO BRASILEIRO
Jesus Carlos MACHADO *
Designado pela Comissão Editorial das Memórias do Instituto
Butantan, para escrever esta homenagem póstuma ao eminente pesqui¬
sador científico, Herpetólogo, Alphonse Richard Hoge, falecido aos 25 de
dezembro de 1982, sentimo-nos como poucas vezes honrados por uma
missão.
Julgamos que ao lado da fria relação dos seus trabalhos científicos
adiante enumerados e do sumário do seu currículo fornecido pela sua
esposa e colaboradora Alma R. Hoge, acreditamos ser extremamente
adequado se tentarmos compor inicialmente a sua figura humana.
A sua pessoa, pela forma como desenvolvia o ternário científico em
que atuava — a herpetologia — confundia-se harmoniosamente com o
próprio Instituto Butantan. Seu porte altivo e imperial, a lhaneza
incomum com que recebia indistintamente desde Reis, Príncipes, Chefes
de Estado ou simples fornecedores de cobras e outros visitantes menos
titulados, davam ao próprio Instituto Butantan um nível extremamente
difícil de ser recomposto. As línguas que dominava desde o português,
inglês, francês, alemão e mesmo o flamengo e africâner e outros que se
fazia compreender, permitiam não só completar maravilhosamente sua
formação científica pelo relacionamento e conhecimento mais profundos
como impressionar favoravelmente aos que ele recebia gentilmente e com
extrema boa vontade em seu laboratório. Sua preocupação pela Biologia
e pela própria natureza transcendia o comum e recordo-me das longas
conversas nas quais demonstrava sua alta cultura e elevado humanismo.
Os 36 anos de atividades no Instituto Butantan, tendo nele sua
residência, permitiram que vivesse intensamente todos os seus problemas,
não somente aqueles afetos à Divisão de Biologia que dirigiu desde 1969
até sua aposentadoria em Setembro de 1982, mas também todos os demais.
Seu cabedal científico era sólido e reconhecido internacionalmente,
merecendo por isso condecorações (Medalha ao Mérito “Santos Dumont”;
Medalha CNPq “Homenagem por contribuições técnicas e pesquisas” —
30.° Aniversário de Fundação — e Medalha permanente “Instituto Butan¬
tan”) e convites para ser membro da Academia Real de Ciências d’Alem
Mar (Bélgica) e Academia de Ciências do Estado de São Paulo. A lista
de Instituições em que era Pesquisador Associado (Research Associate de
“Duke University” — N. Car. USA; Research Associate “University of
Michigan” — Ann Harbor Mi. USA; Research Associate “Smithsonian
* Diretor Técnico da Divisão de Patologia do Instituto Butantan.
cm
iSciELO
10 11 12 13 14
MACHADO, J. C. Homenagem póstuma. Alphonse Richard Hoge (1912-1982). Eminente herpetólogo
brasileiro. Mem. Inst. Butantan, 46: 1-12, 1982.
Institution” United States N. Museum of Natural History; Washington
D.C. USA; Investigador Associado da Seção de Herpetologia do Museo
de Ciências Naturales de Caracas — Venezuela), as Sociedades de que
era membro (Membro Fundador da Sociedade Brasileira para o Progresso
da Ciência (SBPC) ; Membro Eleito da “The Society of the Sigma XI
Devoted to the promotion of research in Science. Durham, North Caro-
lina USA — 15-5-63, Duke University Chapter; “Dodonaea Koninklyk
Natturwetenschappelyk Gennotschap, Gent, Bélgica, em reconhecimento
às contribuições à Fauna ofiológica Neotrópica — Sócio honorário; Cor¬
respondente “Senckenbergishe Naturforchende Gesellschaft” — Frank¬
furt a/Main, Alemanha; Correspondente do “Museum National d’Histoire
Naturelle” — Paris, France; “investigador (Ad Honoren)” da Seção de
Herpetologia do Museu de Ciências Naturales, Conselho Nacional de
Cultura — CONAC — Venezuela; “Snake Specialist Group” of the Inter¬
national Union for the Conservation of Nature Species Survival Comission
— Madras, South índia) demonstram sua sólida cultura científica espe¬
cializada e seu excelente relacionamento internacional.
Demonstrou sempre profundo interesse pelos problemas da Ciência e
preocupação pelos cientistas, sendo membro fundador da Sociedade Brasi¬
leira para o Progresso da Ciência e Conselheiro do movimento de Incentivo
à volta dos Cientistas Brasileiros do Exterior ao Brasil.
No Instituto Butantan participou ativamente dos seus órgãos Cole-
giados tais como o Conselho Superior, quer como membro nato ou indicado
pelo Secretário da Saúde; compôs o Fundo de Pesquisas, o Conselho de
Pesquisas e foi membro da Comissão Editorial das Memórias do Instituto
Butantan. Foi também Diretor-Substituto.
Participou ainda de numerosos grupos de trabalho e Comissões
Especiais onde sempre demonstrou seu alto grau de bom senso e elevada
qualificação técnica.
Os serviços prestados à comunidade fizeram-lhe merecedor dos Diplo¬
mas de Solidariedade Humana e Serviços Relevantes da FAB.
Enfim, foram 36 anos de atividades voltadas para a Instituição cien¬
tífica que o acolheu, atividades essas da mais alta qualificação técnico-
científica emolduradas pela sua altiva figura humana, numa simbiose
dificilmente encontrada e que envaideceram remarcadamente o Instituto
Butantan.
10 11 12 13 14
MACHADO, J. C. Homenagem póstuma. Alphonse Richard Hoge (1912-1982). Eminente herpetólogo
brasileiro. Mem. Inat. Butantan, 46: 1-12, 1982.
TRABALHOS PUBLICADOS
1.
HOGE, A. R. Um novo lagarto da Ilha da Queimada Grande.
Mem, Insi. Butantan, 15:241-248 + 6 figs., 1946.
2.
HOGE, A. R. Notas erpetológicas. 2 Dimorfismo sexual nos Boí-
deos. Mem. Inst. Butantan, 20:181-187 + 4 figs., 1947.
3.
BIOCCA, E.; HOGE, A. R.; SCHREIBER, G. Contribuições ao
estudos de alguns sambaquis na Ilha de Santo Amaro (Es¬
tado de São Paulo). Rev. Museu Paul. NS., 1:153-68 4- 44
fig., 1947.
4.
HOGE, A. R. Notas erpetológicas. 3 Uma nova espécie de Trime-
resurus. Mem. Inst. Butantan, 20:193-202 4- 6 figs. 2 Tab.
1947.
5.
PRADO, A.; HOGE, A. R. Notas ofiológicas. Observações
sobre serpentes do Peru. Mem. Inst. Butantan, 20: 283-295
+ 1 mapa, 4 figs. 1947.
6.
PRADO, A.; HOGE, A. R. Notas ofiológicas. Observações
sobre serpentes do Peru com descrição de uma nova espécie.
Ciência, <5:180 + 1 fig., 1947. (publicação mexicana) Rev.
hispano americano de Ciências Puras Y Aplicadas, 5:180,
1947.
7.
HOGE, A. R. Notas erpetológicas. 7 Sobre a ocorrência de Tri-
meresurus hyoprora (Amaral) no Brasil. Boletim do Museu
Paraensi E. Goeldi, 10: 325-329 -1- 1 graf., 1 tab., 1948.
8.
HOGE, A. R.; GARCIA, A. Notas erpetológicas. 4 Sobre carac¬
teres sexuais secundários nas serpentes. Mem. Inst. Butan¬
tan, 21 : 55-66 + 2 graf., figs., 1949.
9.
HOGE, A. R.; GARCIA, A. Notas erpetológicas. 5 Notas sobre
Elapomorphus nasutus Gomes 1915. Mem. Inst. Butantan,
21 :67-76 + 2 mapas, 1 tab., 4 figs., 1949.
10.
HOGE, A. R. Notas erpetológicas. Fauna erpetológica da Ilha
da Queimada Grande. Mem. Inst. Butantan, 22:151-171 +
4 tab., 14 figs., 1950.
11.
HOGE, A. R. Notas erpetológicas. Revalidação da Thamnody-
nastes strigatus (Günther) 1858. Mem. Inst. Butantan, 24
(2) :171-177 + 13 figs., 1952.
5
MACHADO, J. C. Homenagem póstuma. Alphonse Richard Hoge (1912-1982). Eminente herpetólogo
brasileiro. Mem. Inst. fíutantan, 1,6: 1-12, 1982.
12. HOGE, A. R. Notas erpetológicas. Contribuição ao conhecimento
dos Testudinata do Brasil. Mem. Inst. Butantan, 21,(22:
173-177 + 2 tab., 1952.
13. HOGE, A. R. Notas erpetológicas. l. a Contribuição ao conheci¬
mento dos ofídios do Brasil Central. Mem. Inst. Butantan,
24 (2): 179-214 + 2 tab., 14 figs., 1 mapa, 1952.
14. HOGE, A. R. Notas erpetológicas. 2. a Contribuição ao conheci¬
mento dos ofídios do Brasil Central. Mem. Inst. Butantan,
24(2) :215-223, 1952.
15. HOGE, A. R. Snakes from Uaupés region. Mem. Inst. Butantan,
24(2) :225-230 + 1 mapa, 1952.
16. HOGE, A. R. Notas erpetológicas. Revalidação de Bothrops
lanceolatus (Lacèpéde). Mem. Inst. Butantan, 24(2) :231-236
+ 7 figs., 1952.
17. HOGE, A. R. Notas erpetológicas. Anomalia na lepidose e pig¬
mentação das escamas dorsais em Bothrops jararaca e
Bothrops alternatus. Mem. Inst. Butantan, 24( 2) :237-240,
1952.
18. HOGE, A. R. Notas erpetológicas. Uma nova subspécie de Leima-
dophis reginae. Mem. Inst. Butantan, 24(2) :241 + 1 tab.
1952.
19. HOGE, A. R. Notes on Lygophis Fitzinger with revalidation of
two subspécies. Mem. Inst. Butantan, 24(2) :245-268 + 10
figs., 1 mapa, 1952. j
20. HOGE, A. R. Herpetologische notizen, Farbenaberrationen bei
Brasilianischen Schlangen. Mem. Inst. Butantan, 24(2) :
269-270, 1952.
21. HOGE, A. R.; SOUZA SANTOS, P. Submicroscopic struture of
“Stratum corneum” of Snakes. Science, 118 ( 3067) :410-411 +
+ 4 figs., 1953.
22. SANTOS, P. S.; EDWARDS, G. A.; HOGE, A. R.; SAWAYA, P.
Estudo do músculo estriado de Reptilia com o microscópio
eletrônico. Ciência e Cultura, 5 :208, 1953.
23. SANTOS, H. L. S.; SANTOS, P. S.; EDWARDS, G. A.; HOGE,
A. R.; SAWAYA, P. Microscopia eletrônica de fibras colá-
genas. Ciência e Cultura, 5 :209, 1953.
24. HOGE, A. R.; SOUZA SANTOS, P. Estudos com o microscópio
eletrônico da superfície do “Stratum corneum” de Constrictor
constrictor amarali Stull, 1952. Ciência e Cultura, 5(4), 1953.
25. HOGE, A. R. A new Bothrops from Brazil, Bothrops brazili sp.
nov. Mem-. Inst. Butantan, 25(1) :15-22 + 10 figs., 1953.
26. HOGE, A. R. A new genus of Boinae from Brazil, Xenoboa cropa-
nii gen. nov. sp. nov. Mem. Inst. Butantan, 25(1) :27-34 + 8
figs., 1953.
cm
iSciELO
10 11 12 13 14
MACHADO, J. C. Homenagem póstuma. Alphonse Richard Hoge (1912-1982). Eminente herpetólogo
brasileiro. Mem. Inst. Butantan, 46:1-12, 1982.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
HOGE, A. R.; BELLUOMINI, H. E.; SCHREIBER, G. Inter-
sexuality in a Higly isolated population of Snakes. Atti dei
IX Congresso Internationale do Genetica- Cariologia, 1 :964-
-965, 1954.
EDWARDS, G. A.; SOUZA SANTOS, P.; SANTOS, H. L. S.;
HOGE, A. R.; SAWAYA, P.; VALLEJO-FREIRE, A.
Estudos electromicroscópios de músculo estriado de répteis.
Mem. Inst. Butantan, 25:169-190 + 8 figs., 1954.
SOUZA SANTOS, P.; SOUZA SANTOS, H.; EDWARDS, G. A.;
HOGE, A. R.; SAWAYA, P. Uma contribuição ao conheci¬
mento da estrutura ultrafina e das propriedades químicas de
fibrilas do tecido conjuntivo animal. Mem. Inst. Butantan,
27: 1-39 + 2 tab., 22 figs., 1954.
MENDES, E. G.; HOGE, A. R. Sobre as atividades succinoides
hidrogenásicas e citocromoxidásicas do músculo retrator do
hemipenis da gibóia. Ciência e Cultura, 7(3): 150, 1955.
HOGE, A. R. Eine neue Schlenger der Gattund Elapomorphus aus
Brazilien. Senck. Biol., 36 (5/6): 301 + 4 figs., 1 tab., 1955.
HOGE, A. R.; MERTENS, R. Eine neue Schlenger der Gattung
Pseudoboa aus dem State Mato Grosso, Brazilien. Senck.
Biol, 36 ( 5/6) :305-308 + 4 figs., 1955.
HOGE, A. R. Uma nova espécie de Micrurus (Serpentes — Ela-
pidae) do Brasil. Men. Inst. Butantan, 27:67-72 + 1 tab.,
6 figs., 1955 (1956).
HOGE, A. R. Die systematique stelling von Xenodon punctatus
Peters 1880 and Philodryas taeniatus Hensel 1868. Mit. aus
dem Zoolog. Mus. in Berlin, 54(1): 49-56 + 9 figs., 1958.
HOGE, A. R. Três notas sobre serpentes brasileiras: 1 — Sobre
a posição genérica de Coluber bicinctus Hermann, 1804 e
Xenodon gigas Duméril, 1853. (Colubridae). 2 — Sobre a
posição sistemática de Enicognatus joberti Sauvage, (Colu¬
bridae) :224, 1958. 3 — Dimoríismo sexual em Micrurus s.
surinamensis (Cuvier 1817), Elapidae:233, 1958. Pap. Av.
do Dep. Zool. 18 ( 17) :221-225 + 4 figs., 1958.
HOGE, A. R. Notes sur la position systematique de Opistophus
degener Peters 1882 et Leimadophis regina macrosoma
Amaral 1935 (Serpentes). Mem. Inst. Butantan, 28: 67-72 +
2 figs., 1957/1959.
HOGE, A. R. Étude sur Apostolepis coronata (Sauvage, 1877) et
Apostolepis quinquelineata Boulenger, 1896 (Serpentes).
Mem. Inst. Butantan, 28: 73-76 + 5 figs., 1957/1959.
HOGE, A. R. Note sur la position systematique de Trigonocepha-
lus ( Bothrops) pubescens Cope 1869. Mem. Inst. Butantan,
25:83-84, 1957/1959.
BELLUOMINI, H. E.; HOGE, A. R. Um caso de cópula entre
Bothrops e Crotalus (Serpentes). Mem. Inst. Butantan, 28:
91 + 3 figs., 1957/1959.
cm
SciELO} X1 12 13 14 15 16
MACHADO, J. C. Homenagem póstuma. Alphonse Richard Hoge (1912-1982). Eminente herpetólogo
brasileiro. Mem. Inst. Butantan, 46:1-12, 1982.
40. BELLUOMINI, H. E.; HOGE, A. R. Aberrações cromáticas em
Serpentes Brasileiras. Mem. Inst. Butantan, 25:95-98, 1957/
1959.
41. BELLUOMINI, H. E.; HOGE, A. R. Operação cesariana reali¬
zada em Eunectes murinus (Linnaeus 1758) Serpentes. Mem.
Inst. Butantan, 25:187-194 + 3 fig., 1957.
42. BELLUOMINI, H. E.; HOGE, A. R. Uma nova espécie de
Bothrops do Brasil (Serpentes). Mem. Inst. Butantan, 28:
195-206 + 10 figs., 1957 (1959).
43. BELLUOMINI, H. E.; HOGE, A. R. Contribuição à Biologia de
Eunectes murinus (Linnaeus 1758) Serpentes. Mem. Inst.
Butantan, 28: 207-216 + 4 figs., 1957 (1959).
44. HOGE, A. R. Sur la position systematique de Coluber quinqueli-
neatus Raddi 1820. Mem. Inst. Butantan, 25:267-274 + 5
figs., 1957 (1959).
45. HOGE, A. R. Étude sur Uromacerina ricardinii (Peracca) (Ser¬
pentes). Mem. Inst. Butantan, 28 :77-82 + 2 figs., 1957 (1959).
46. SCHREIBER, G.; HOGE, A. R.; BELLUOMINI, H. E.; PENHA,
A. M. Further researches in intersexuality in a highly iso-
lated population of snakes. In: X International Congress of
Genetics, Montreal, 1958, II, :254-255.
47. HOGE, A. R.; BELLUOMINI, H. E.; SCHREIBER, G.; PENHA,
A. M. Sexual abnormalities in Bothrops insularis (Amaral
1921). Mem. Inst. Butantan, 29: 17-88 + 1 mapa, 18 figs.,
15 pl. 1959 (1960).
48. BELLUOMINI, H. E.; MARANHÃO NINA, A. F.; HOGE, A. R.
Contribuição à biologia do gênero Eunectes Wagler 1830
(Serpentes, Boidae). Estudo de seis ninhadas. Mem. Inst.
Butantan, 29:165-174 + 1 graf., 1959 (1960).
49. HOGE, A. R.; LANCINI, A. R. Note sobre Micrurus surina-
mensis nattereri Schmidt e Micrurus pyrrhocryptus Cope.
Mem. Inst. Butantan, 29:9-13 + 1 mapa e 2 figs., 1959
(1960).
50. HOGE, A. R.; BELLUOMINI, H. E. Serpentes coletadas em
Jacareacanga, Estado do Pará, Brasil. Mem. Inst. Butantan,
29:15-16, 1959 (1960).
51. HOGE, A. R.; MERTENS, R. Eine neue Gattung Opisthoglipher
Nattern aus Brasilien. Senck. Biol., 40(5/6): 241-243 + 2
figs., 1959.
52. HOGE, A. R.; LANCINI, A. R. Notas sobre la ubicacion de la
Terra Typica de várias espécies de “Serpentes” coletadas por
M. Beauperthuis em la “Cote Ferme” Y la “Province de
Venezuela”. Boi. de Mus. Cienc. Nat. :58-62, 1960.
53. HOGE, A. R. Anormalidades sexuales de los ofidios. Luz, 9:241,
1961.
cm
SciELO
10 11 12 13 14 15
MACHADO, J. C. Homenagem póstuma. Alphonse Richard Hoge (1912-1982). Eminente herpetólogo
brasileiro. Mem. Inst. Butantan, 46:1-12, 1982.
54. HOGE, A. R.; BELLUOMINI, H. E.; SCHREIBER, G.; PENHA
A. M. Anomalias sexuais em Bothrops insularis (A). 1921.
(Serp. Crot.). Análise estatística da 3. a amostra. Desdobra¬
mento e comparação com as duas amostras anteriores. Anais
da Acad. Brasil, de Cienc., 33(2) :259-264 + 1 graf., 1961.
55. HOGE, A. R.; LANCINI, A. R. Sinopsis de las Serpientes Vene¬
nosas de Venezuela. Pnbl. Oc. dei Mus. de Cienc. Nat. Venez.
Zool, 1(1) :l-23, 1962.
56. HOGE, A. R.; MARANHÃO NINA, A. C. Serpentes coletadas
pelo Instituto Nacional de Pesquisas da Amazônia. Mem.
Inst. Butantan, 50:71-96 4- 32 figs-, 1960/62 (1964).
57. HOGE, A. R.; BELLUOMINI, H. E. Notas sobre Bothrops fon-
secai Hoge e Belluomini, Bothrops alternatus Duméril, Bibron
et Duméril, e Bothrops cotiara Gomes. Mem. Inst. Butantan,
30: 97-102 -I- 1 mapa, 2 graf., 1960/62 (1964).
58. HOGE, A. R. Serpentes da Fundação Surinaams Museum. Mem,
Inst. Butantan, 50:51-64 + 1 mapa, 1960/62 (1964).
59. HOGE, A. R. Notes sur Xenodon schottii, Schlegel (Serpentes).
Mem. Inst. Butantan, 30: 65-70, 1960/62 (1964).
60. HOGE, A. R. Notas sobre Xenopeltis unicolor, Reinhardt 1827.
Mem. Inst. Butantan, 50:20-27 + 4 figs., 1960/62 (1964).
61. HOGE, A. R. Sur la position systematique de quelques serpents
du genre Siphlophis. Mem. Inst. Butantan, 30: 35-50, 1960/
62, dist. 1964.
62. HOGE, A. R. Posição sistemática de Natrix sexcarinatus Wagler,
1824. Mem. Inst. Butantan, 30: 27-30, 1960/62, dist. 1964.
63. HOGE, A. R.; ROMANO, S. A. R. W. L. Leptomicrurus in Brazil
(Serpentes — Elapidae). Mem. Inst. Butantan, 32: 1-8,
1965.
64. HOGE, A. R. Preliminary account on Neotropical Crotalinae Ser¬
pentes — Viperidae. Mem. Inst. Butantan, 55:109-184 +
10 mapas, 20 pl., 1965.
65. SOERENSEN, B.; AMARAL, J. P. DO; BELLUOMINI, H. E.;
SALIBA, A. M.; CORRÊA, H. S.; HOGE, A. R. Gôta úrica
visceral em Crotalus durissus terrificus. (Serpentes). In:
Anais do 2.° Congresso Latino Americano de Zool. II, 1965.
66. HOGE, A. R.; GANS, G. A first recorded for an Amazonian
Snake similar to the Eastern Brazilian. Liophis miliaris.
Copéia, 4:511-512 + 6 figs., 1963.
67. HOGE, A. R. Notes on Hydrodynastes (Serpentes, Colubridae)
Ciência e Cultura, 21 (2) :453, 1969.
68. LATIFI, M.; HOGE, A. R.; ELEAZAN, M. The poisonous snakes
of Iran. Mem. Inst. Butantan, 55(3) :735-744 + 1 graf., 1
mapa, 1966.
69. HOGE, A. R. Serpentes do Território Federal do Amapá. Atas do
Simpósio sobre a Biota Amazônica, 5 (zool. 217-223 + 1
mapa, 1967.
cm
SciELO
3 11 12 13 14 15 16
MACHADO, J. C. Homenagem póstuma. Alphonse Richard Hoge (1912-1982). Eminente herpetólogo
brasileiro. Mem. Inst. Butantan, 40:1-12, 1982.
70. HOGE, A. R.; ROMANO, S. A. R. W. L. Nota sôbre Siphlophis
e Ptychophis. Ciência e Cultura, 21 (2) :453, 1969.
71. HOGE, A. R.; ROMANO, S. A. R. W. L. Espécies registradas
para o Brasil. (Serpentes). Ciência e Cultura, 21 (2) :454,
1969.
72. HOGE, A. R. Um novo Trimeresurus de Simalur, Sumatra (Ser¬
pentes Viperidae). Ciência e Cultura, 21(2) :459-460, 1969.
73 HOGE, A. R. Chironixis scurulus (Wagler) recorded from Vene¬
zuela. Mem. Inst. Butantan, 54:85, 1969.
74. HOGE, A. R.; ROMANO, S. A. R. W. L. Notes on the holotype
of Dipsas indica cisticeps (Boettger) (Serpentes) — Dip-
sadinae). Mem. Inst. Butantan, 54:87-88, 1969.
75. HOGE, A. R. Notes on Pseustes dispcrinckii (Schlegel) Serpentes.
Mem. Inst. Butantan, 54:89-92 + 2 figs., 1969.
76. HOGE, A. R. A new species of Chironius (Serpentes-Colubridae).
Mem. Inst. Butantan, 54:93 + 2 figs., 1969.
77. HOGE, A. R.; ROMANO, S. A. R. W. L. Neotropical Pit Vipers,
Sea Snakes and Coral Snakes. In: Bucherl, W. Vênomous
Animais and their venoms. New York, Academic Press, 1971,
v. 2, p. 211-293 + 12 figs.
78. HOGE, A. R.; ROMANO, S. A. R. W. L. Micrurus hemprichii
hemprichii recorded for Brazil (Serpentes, Elapidae). Mem.
Inst. Butantan, 55:107-109, 1971.
79. HOGE, A. R.; ROMANO, S. A. R. W. L. Sinopsis das Serpentes
peçonhentas do Brasil. (Serpentes, Elipidae e Viperidae)
Mem. Inst. Butantan, 55:109-208 + 57 pl. 1972 (1973).
80. HOGE, A. R.; LIMA-VERDE, J. S. Liophis mossoroensis nov.
sp. do Brasil (Serpentes Colubridae). Mem Inst. Butantan,
36: 215-220 + 1 tab., 1 graf., 2 figs., 1972 (1973).
81. ROMANO, S. A. R. W. L.; HOGE, A. R. Notas sôbre Xenodon
e Ophis (Serpentes Colubridae). Mem. Inst. Butantan, 36:
209-214 + 15 figs., 1972 (1973).
82. HOGE, A. R.; SANTOS, N. P.; HEITOR, C.; LOPES, L. A.;
SOUZA, I. M. DE Serpentes coletadas pelo Projeto Rondon
VII em Iauareté, Brasil. Mem. Inst. Butantan, 36 :221-232
+ 3 tab., 1972 (1973).
83. CORDEIRO, C. L.; HOGE, A. R. Contribuição ao conhecimento
das Serpentes do Estado de Pernambuco. Mem. Inst. Butan¬
tan, 57:261-290, 1973.
84. HOGE, A. R.; FEDERSONI JR., P. A. Notes on Xenopholis
Peters and Pararoxyrhopus Schenkel (Serpentes Colubridae).
Mem. Inst. Butantan, 55:137-146 + 16 figs., 1974 (1975).
85. HOGE, A. R.; ROMANO, S. A. R. W. L. Notes on Trimeresurus
brongersmai Hoge 1969 (Serp. Vip. Crot.). Mem. Inst. Bu¬
tantan, 55:147-158 4 - 14 figs., 1974 (1975).
10
cm
SciELO
10 11 12 13 14 15
MACHADO, J. C- Homenagem póstuma. Alphonse Kichard Hoge ( 1912-1982). Eminente herpetólogo
brasileiro. Nlem. Inst. Butantan, 46: 1-12. 1982.
86. HOGE, A. R.; ROMANO, S. A. R. W. L.; FEDERSONI JR„ P. A.;
CORDEIRO, C. L. Nota Prévia. Lista das espécies de ser¬
pentes coletadas na região da Usina Hidroelétrica de Ilha
Solteira, Brasil. Mem. Inst. Butantan, 38: 167-178, 1974.
87. NAHAS, L.; KAMIGUTI, A. S.; HOGE, A.R.; GORIS, C. Cha-
racterization of the coagulation of the coagulant activity or
the aglyphous. Rabdophis tigrinus snake. In: International
Symposium on Animal, Plant, and Microbial Toxins, v. 1,
Biochemistry. New York, Plenum Press, 1974.
88. HOGE, A. R.: CORDEIRO, C. L.; ROMANO, S. A. R. W. L. A
new species of Micrurus from Brazil (Serpentes — Elapidae).
Ciência e Cultura, 28 ( 7) :417-418, julho de 1976.
89. CORDEIRO, C. L.; HOGE, A. R. Biologia de Crotalus durissus
cascavella (Serpentes: Viperidae). Ciência e Cultura, 28 ( 7) :
417, julho/1976.
90. FEDERSONI JR., P. A.; HOGE, A. R. Revisão sistemática das
serpentes do gênero Epicrates do território Brasileiro (Ser¬
pentes Boidae, Boinae). Ciência e Cultura, 28(7) :435, julho/
1976.
91. HOGE, A. R.; CORDEIRO, C. L.; ROMANO, S. A. R. W. L.
Posição taxonômica de Lystrophis nattereri (Steindachner)
(Serpentes: Colubridae). Mem. hist. Butantan, 39: 37-50,
1975.
92. HOGE, A. R.; ROMANO, S. A. R. W. L. A new subspecie of
Dipsas indica from Brazil. (Serpentes: Colubridae, Dipsa-
dinae). Mem. Inst. Butantan, 55:51-60, 1975.
93. HOGE, A. R.; BELLUOMINI, H. E.; FERNANDES, W. Varia¬
ção do número de placas ventrais de Bothrops jararaca em
função dos climas (Serpentes: Viperidae, Crotalinae). Mem.
Inst. Butantan, 40/41 :11-17, 1976/77.
94. HOGE, A. R.; FEDERSONI JR., P. A. Observações sobre uma
ninhada de Bothrops atrox (Serpentes: Viperidae, Crotali¬
nae). Mem. Inst. Butantan, 40/41 :19-36, 1976/77.
95. HOGE, A. R.; ROMANO, S. A. R. W. L.; CORDEIRO, C. L.
Contribuição ao conhecimento das serpentes do Maranhão,
Brasil. (Serpentes: Boidae, Colubridae e Viperidae). Mem.
Inst. Butantan, 40/41:37-52, 1976/77.
96. HOGE, A. R.; ROMANO, S. A. R. W. L. Lachesis muta muta.
(Serpentes: Viperidae, Crotalinae). Mem. Inst. Butantan,
40/41 :53-54, 1976/77.
97. HOGE, A. R.; ROMANO, S. A. R. W. L. Description of a new
subsp. de Oxyrhopus Wagler (Serpentes: Colubridae). Mem.
Inst. Butantan, 40/41 :55-62, 1976/77.
98. HOGE, A. R.; ROMANO, S. A. R. W. L. Redescription and
Range of Sordellina punctata (Peters) (Serpentes: Colubri¬
dae). Mem. Inst. Butantan, 40/41:63-70, 1976/77.
11
cm
SciELO
3 11 12 13 14 15 16
MACHADO, J. C. Homenagem póstuma. Alphonse Richard Hoge ( 1912-1982). Eminente herpetólogo
brasileiro. Mem. Inst. Butantan, 46:1-12, 1982.
99. HOGE, A. R.; CORDEIRO, C. L.; ROMANO, S. A. R. W. L.
Redescription of Micrurus donosoi (Serpentes: Elapinae).
Mem. Inst. Butantan, AO/ Al :71-73, 1976/77.
100. HOGE, A. R.; ROMANO, S. A. R. W. L.; CORDEIRO, C. L.
Posição nomenclatural de Leimadophis poecilogyrus amazô¬
nicos Amaral. (Serpentes: Colubridae). Mem. Inst. Butantan,
AO/ Al : 75-78, 1976/77.
101. BELLUOMINI, H. E.; VEINERT, T.; DISSMANN, F.; HOGE,
A. R.; PENHA, A. M. Notas biológicas a respeito do gênero
Eunectes Wagler 1830 “Sucuris”. (Serpentes: Boinae). Mem.
Inst. Butantan, AO/ Al :79-115, 1976/77.
102. BIASI, P. de; BELLUOMINI, H. E.; HOGE, A. R.; PUORTO, G.
Uso do gás carbônico na extração de venenos de serpentes.
Mem. Inst. Butantan, AO /Al : 167-172, 1976/77.
103. HOGE, A. R. et alii. Preliminary list of vertebrates of the world
Amphibians and Reptiles Section Gainsville Field Station
National Fish and Wildlife US Fish and Wildlife Services
Gainsville USA :l-77, 1978. HOGE,, — Viperidae (24 colabo¬
radores), HOGE — revisor do trabalho com outros 11 revi¬
sores.
104. HOGE, A. R. Distribuição e Dispersão de Crotalus Durissus. An.
Acad. brasil. Ciênc., 51 (3.) :570-571, 1979.
105. HOGE, A. R. et alii. Ofídios da Amazônia — Uma subespécie
nova de Sibynomorphus mikanii do Noroeste do Maranhão
(Ophidia: Colubridae, Dipsadinae). Boletim do Museu Pa¬
raense Emílio Goeldi — Zoologia (103): 1-15, 1980.
106. HOGE, A. R. et alii. Snakes collected by the Projeto Rondon
XXII to Piaui, BRAZIL. Mem. Inst. Butantan, 42/43:87-94,
1978/79.
107. HOGE, A. R.; LAPORTA, I. L.; ROMANO-HOGE, S. A. R. W. L.
Notes on Sibynomorphus mikanii Schlegel 1837. Mem. Inst.
Butantan, 42/43:175-178, 1978/79.
108. HOGE, A. R.; ROMANO-HOGE, S. A. R. W. L. Poisonous
snakes of the world Part I — Check list of the Pit Vipers
— Viperoidea, Viperidae, Crotalinae. Mem. Inst. Butantan,
42/43:179-309, 1978/79.
109. HOGE, A. R.;, ROMANO-HOGE, S. A. R. W. L. Sinopse das
Serpentes Peçonhentas do Brasil — 2. a Edição. Mem. Inst.
Butantan, A2/A3 :373-500, 1978/79.
110. CORDEIRO, C. L. S.; HOGE, A. R.; SAWAIA, P. Criação de
Serpentes em Cativeiro. Revista Biotérios, 1: 25-30, 1981.
111. HOGE, A. R.; FEDERSONI JR., P. A. Manutenção e Criação
de Serpentes em Cativeiro. Revista Biotérios, 1: 63-73, 1981.
112. HOGE, A. R.; FERREIRA, I. L. L. Manutenção em Cativeiro
de Serpentes do gênero Dipsas e Sibynomorphus. Revista
Biotérios, 1 :75-81, 1981.
12
cm
SciELO
10 11 12 13 14 15
Mem. lnat. fíutantan
46. 1982.
l.° SIMPÓSIO INTERNACIONAL
SOBRE
SERPENTES EM GERAL
E
ARTRÓPODES PEÇONHENTOS
INSTITUTO BUTANTAN
16 a 18 de novembro de 1981
COORDENAÇÃO
Alphonse Richard Hoge
Sob os auspícios do Governo do Estado de São Paulo e Conselho Nacional
de Desenvolvimento Científico e Tecnológico.
13
2 3 4
5 6
11 12 13 14 15 16
!
Mein. Inat. lititinitun
1,6: 15-17, 1982,
ANIMAUX VENIMEUX DE MADAGASCAR
Edouard Raoul BRYGOO *
Au XIXème siècle, la mauvaise réputation de Madagascar, parmi les
Européens, reposait sur leur crainte des “fièvres”, particulièrement redou-
tables pour le nouveau débarqué et nombre de naturalistes payèrent de
leur vie la curiosité et 1’audace qui les poussaient à découvrir un monde
nouveau.
En contrepartie, très vite, s’accrédita 1’idée que la Grande Ile n’avait
pas d’animaux venimeux. De fait, ils y sont beaucoup plus rares que
dans la plupart des pays tropicaux. Nous allons rapidement les passer
en revue, traitant d’abord des invertébrés terrestres puis de la faune
marine avant de nous étendre plus longuement sur les Ophidiens.
Invertébrés terrestres venimeux
Parmi les arthropodes, si l’on exclut les accidents possibles dus aux
piqures d’hyménoptères qui ne sont pas plus agréables là qu’ailleurs il
faut dire un mot des Araignées et des Scorpions.
a) Les Araignées.
La Grande Ile partage avec 1’Europe et la Nouvelle Zélande le privi-
lège d’avoir l’une des trois Latrodectes extra-américaines. Cette Theri-
diidé est bien connue des Malgaches. Selon Flacourt on Ia désignait sous
le nom de “Vancoho”, de fait le nom vernaculaire le plus utilisé aujourd’
hui est “menavodi”, ou “à cul rouge”, en raison des deux taches rouges
à la partie supérieure de 1’abdomen, dont l’une à 1’extrémité, taches qui
tranchent sur la couleur générale noire encore qu’entre les deux taches
rouges puissent s’observer trois séries de trois points blancs. Ce nom
vernaculaire a servi à Vonson pour nommer 1’araignée: Latrodectes
menavodi. Un autre nom vernaculaire parfois utilisé est celui de “Tara-
tra”. Elle vit près du sol ou dans le sol, dans des lieux humides, à proxi-
mité ou sur des trones d’arbres morts et décomposés. Elle ne doit pas
être aussi dangereuse que son homologue sud-américaine, L• mactans,
la trop célèbre veuve noire, car ayant dépouillé la littérature médicale
malgache des origines à 1967, je n’y ai trouvé que 16 références traitant
de cette araignée et des accidents d’aranéisme consécutifs à sa morsure,
Professeur au Muséum National (THistoire Naturelle de Paris 25, rue Cuvier, 75005, Paris, Franee.
15
cm
SciELO
3 11 12 13 14 15 16
BRYGOO, E. R. Animaux venimeux de Madagascar. Mem. Inst. Butantan, 4^:15-17, 1982.
aucune ne rapporte de cas mortel. De con côté, Decary, en 28 ans de
séjour, n’avait pas eu 1’occasion de constater un cas certain de mort du
à cette araignée. Lavauden avait, en 1932, procédé à quelques expériences
avec son venin, mais, à ma connaissance, il n’a plus été étudié depuis.
Madagascar compte plusieurs mygales de petite taille et divers
araignées que la tradition populaire accuse de différents méfaits mais
sans données positives pour étayer ces accusations. C’est en particulier
le cas d’espèces du genre Thomisus qui, avec leur allure de crabe, ont la
réputation d’être extrémement dangereuses pour 1’homme et le bétail;
elles portent le nom local de “Foka”.
b) Les Scorpions.
Depuis les travaux synthétiques de L. Fage, les Scorpions malgaches
on fait 1’objet de récoltes et d’études suivies par J. Millot et M. Vachon.
La meilleure revue est sans doute celle qu’en donnait en 1972 Roland
Legendre (1). Quatorze espèces se repartissent en sept genres et deux
familles, deux ne sont pas endémiques et appartiennent l’un à la faune
cosmopolité, 1’autre à celle d’Afrique du Sud. Les douze espèces endémi¬
ques font parties de cinq genres. Deux de ceux-ci sont endémiques:
Heteroscorpion (Scorpionidae, Ischnurinae) et Grosphus (Buthidae,
Buthinae). Les huit espèces de ce dernier, le seul genre plurispécifique,
se répartissent les différentes zones biogéogrophiques de File. Ils sont
en général de petite taille, vivent aussi bien en région íorestière qu’en
savane et portent les noms locaux de “Hetsé” ou de “Maingoka”. Leur
piqüre peut-être fort douloureuse mais elle ne doit pas être particulière-
ment dangereuse quo ad vitam, du moins je n’ai trouvé qu’une seule
référence signalant un cas de piqüre par scorpion, ce qui, comparé aux
seize concernant la Latrodectes menavodi, permet d’apprécier 1’importance
relative de ces arthropodes pour le médecin.
Animaux venimeux marins.
Les côtes et récifs de Madagascar sont fréquentés par des Pterois,
poissons que les pêcheurs malgaches nomment “Lafa” et évitent avec
soins. Mais chaque année ils provoquent des accidents sérieux chez les
baigneurs et chasseurs sous-marins inexpérímentés, attirés par une
splendide livrée bigarrée, aux nageoires longues et flottantes comme
celles des poissons japonais.
Plus intéressante, car d’acquisition relativement récente, est la
notion du danger dü aux mollusques du genre Conus.
Les Cônes, mollusques venimeux.
L’importance du danger que représentent pour 1’homme les Cônes
s’est considérablement accru au cours des dernières décades du fait de
1’interêt grandissant que leur portent les amateurs de coquilles.
L’ouverture de Madagascar au tourisme international amène sur ses côtes
nombre de collectionneurs et de collecteurs tandis que 1’augmentation de
(1) Les Arachnides de Madagascar in Biogeography and Eeology in Madagascar, Battistini et Richard-
-Vindart édit., Junk publ. 1972 : 427-457.
16
cm
2 3
L
5 6
10 11 12 13 14 15
BRYGOO, E. R. Animaux venimeux de Madagascar. Mem. Inst. Butantan, 46:15-17, 1932.
la demande entraine las populations locales à s’intéresser au ramassage
de mollusques qu’autrefois elles négligeaient, d’oü augmentation des
occasions de contact entre les hommes et les mollusques et accroissement
des risques d’envenimation.
L’Institut Pasteur de Madagascar a fait de 1’étude du venin des cônes
l’un de ses thèmes de recherches depuis 1971. II a apporté les contributions
nouvelles suivantes:
— mise en évidence, pour la première fois, de la toxicité pour le
mammifère du poison de Conus tessulatus, considéré jusque là
comme inoffensif;
— étude des enzymes de six espèces, de régimes alimentaires variés,
et dont la secrétion est, ou non, toxique pour le vertébré. La
grande activité enzymatique observée n’est apparemment liée ni
au régime alimentaire ni au degré de toxicité pour le vertébré;
— démonstration de la possibilité de détoxifier le venin du cône
géographe par l’action du formol sans altérer son pouvoir
immunogène d’oü possibilité de préparer un sérum hyperimmun
non dans un but thérapeutique mais pour disposer d’un moyen
d’analyse des constituants du venin;
— mise en évidence dans le venin de deux constituants protéiques,
inactivés par la pronase; l’un est un peptide de poids moléculaire
compris entre 1500 et 2000.
RÉFÉRENCES CONCERNANT LES RECHERCHES SUR LES VENINS DES
MOLLUSQUES DU GENRE CONUS À MADAGASCAR
BOEHRER, J.L.; SOLAR, S.; RABESANDRATANA, H. & COULANGUES, P.
Etude toxicologique et analytique du venin de Conus tessulatus. Arch. Inst.
Pasteur Madagascar, 1,3 ( 1) :245-250, 1974.
BRYGOO, E.R. Bibliographie de V envenimation par des mollusques du genre Conus
Linné, 1758. ibid. hl (1) :123-133, 1972.
& RABESANDRATANA, H. Toxicité, chez la souris, du venin de
Conus tessulatus Born, 1778 (Mollusque Prosobranche Toxoglosse). C. R.
Soc. Biologie, 105(12) :2469-2471, 1971.
COULANGES, P.; SOLAR, S.; LE DEAUT, J.Y. & RAKOTOVAO, L.H. Les
cônes venimeux de 1’Océan Indien. Les études menées à Madagascar. Ilème
journées médicales de VOcéan Indien; Ile Maurice, 19-22 nov. 1978.
LE DEAUT J.Y.; RABESANDRATANA, H.; RAKOTOVAO, L.H.; ZELLER, H.;
SOLAR, S. & COULANGES, P. Etudes préliminaires des propriétés structu-
rales du venin de Conus geographus: évaluation du poids moléculaire. Arch.
Inst. Pasteur Madagascar, (1977). 4fi(l) :497-509, 1978.
MAITROT, P.; RICHAUD, J. & BRYGOO, E.R. Détoxifícation du venin de Conus
geographus. ibid. 42(1) :253-258, 1973.
RICHAUD, J.; RABESANDRATANA, H. & BRYGOO, E.R. Enzymes des glandes
à venins de quelques mollusques du genre Conus Linné, 1758. ibid., 41(1):
135-142, 1972.
17
cm
SciELO
3 11 12 13 14 15 16
LES OPHIDIENS DE MADAGASCAR
Edouard Raoul BRYGOO *
RÉSUMÉ — Revue de la faune ophidienne de Madagascar et des
principaux travaux qui lui ont été consacrés. Précisions sur certaines
orthographes et attributions de noms d’auteurs: Bruguière; Langaha
Lacepède, 1789; Leioheterodon; Madagascarophis colubrinus; Mimo-
phis rnahfalensis. Exposé des recherehes récents portant aussi bien
sur la taxinomie classique ou sérologique que sur la morphologie des
hémipénis, la faune parasitaire et les secrétions venimeuses.
PLAN
1.
Introduction
2.
Historique
3.
La faune ophdienne malgache
4.
Typhlopidae
5.
Boidae. Sanzinia et Acrantophis
5.1 S. madagascariensis
5.2
A. madagascariensis et A. dumerili
6.
Colubridae
6.1 Mimophis
6.7
Dromycodryas
6.2 Langaha
6.8
Liopholidophis
6.3 Madagascarophis
6.9
Liophidium
6.4 Leioheterodon
6.10
Lycodryas
6.5 Pseudoxyrhopus
6.11
Geodipsas
6.6 Ithycyphus
6.12
Cinq genres à espèces rares
7.
Recherehes récentes
7.1 Hémipénis
7.3
Parasites. Salmonelles
7.2 Sérologie
7.4
Poissons
8.
Bibliographie
9.
Annexes
9.1 Liste des Ophidiens de Mada¬
9.3
Liste des Ophidiens des Comores
gascar
9.2 Liste des Ophidiens des Mas-
9.4
Liste des parasites animaux des
careignes
ophidiens malgaches
1. INTRODUCTION
Une rapide présentation de la géographie physique de Madagascar
est indispensable pour comprendre les milieux oü vivent les animaux
objets de nos préoccupations. Ces données peuvent se résumer en quelques
chiffres:
* Professeur au Muséum National cTHistoire Naturelle de Paris 25, rue Cuvier, 75005, Paris, France.
19
1
L
SciÈLÕ""
1
1
1
9
1
9
1
d
1
R
1
6
IíRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. Butantan, 4^:19-58, 1982.
— 592.000 km 2 , ce qui fait de Madagascar la plus vaste ile de 1’Océan
Indien et la troisième du monde par son étendue;
— 1.580 km de long selon un axe a peu près Nord-Sud, qui s’étendent
du 12 ème au 26 ème parralèles Sud, donc en presque totalitá en
zone tropicale puisque le tropique du Capricorne traverse l’ile
dans sa partie Sud, de part et d’autre du 45 ème méridien Est.
L’importance de 1’allongement dans le sens Nord Sud apparait
peut-être mieux lorsque l’on sait que la distance qui sépare les
deux extrémités de 1’ile est la même que celle qui, dans l’hémis-
phère Nord, sépare la Norvège de la Méditerranée et, dans 1’hémis-
phère Sud, au Brésil, Salvador de Curitiba.
— 2.500 m d’altitude, dans plusieurs massifs montagneux, ce qui,
avec les plaines côtières et les séries de plateaux, crée nombre de
compartiments assez bien isolés et aux climats variés.
La gamme des terrains géologiques est étendue: un ancien plateau
granitique avec quelques régions volcaniques et un Ouest sédimentaire
comprenant du triasique, du jurassique, du crétacé et du tertiaire.
Cette grande ile qui, sur les cartes à grande échelle, semble accolée
au flane Sud-Est de 1’Afrique, en est séparée par le canal de Mozambique.
En son point le plus étroit celui-ci ne mesure que 392 km, mais, sur toute
sa longueur, la profondeur du fossé dépasse 3.000 m. Les iles les plus
proches sont les Comores à 300 km et les Mascareignes à 700 km.
Telle est la situation physique actuelle de Madagascar. Les progrès
dans la connaissance de 1’histoire du globe nous apprennent que les situa-
tions relatives des terres aujourd’hui émergées ont beaucoup évolué au
cours des temps géologiques. Et les biogéographes qui avaient dü inventer
des continents disparus et des ponts variés pour expliquer certaines
affinités de flores ou de faunes ont maintenant d’autres supports pour
asseoir leurs hypothèses. Qu’en est-il du Gondwana? II n’est pas de mon
propos d’en traiter aujourd’hui; de même je n’evoquerai pas les voyages
océaniques supposés de la Grande Ile depuis la Pangée. Nous devons
retenir que Madagascar qui, à 1’échelle du globe, ne semble être qu’un
appendice africain, est en fait séparée du continent par un fossé océani-
que qui, à en croire les géologues, existe depuis le triasique.
Une grande ile, au relief varié, située en zone tropicale, proche de
1’Afrique mais séparée d’elle depuis des millénaires, tels sont les prin-
cipaux éléments physiques du décor oü évolue, dans tous les sens du
terme, la Vie malgache.
Qu’en est-il du milieu vivant?
Par leur étonnant degré d’endémisme, Flore et Faune malgaches
offrent au naturaliste nombre d’énigmes phylogénétiques et biogéogra-
phiques. Et cependant d’innombrables espèces ont disparu, à la période
historique, dans l’un et l’autre règne, sans laisser de traces depuis que
la hache et le feu ont détruit la forêt qui les abritait. Madagascar avait
eu la très grande chance, jusqu’à il y a quelques siècles, de ne pas être
contaminée par 1’espèce humaine. Mais celle-ci, arrivée tard, s’est, si
l’on peut dire, rattrapée. L’homme n’a en effet atteint Madagascar qu’à
la période historique, vers le IVème siècle de notre ère, cela lui a suffi
20
cm
2 3
L
5 6
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. Butantan, 46:19-58. 1982.
pour réduire à l’état de lambeaux le manteau forestier diversifié qui
recouvrait, il y a quelques siècles encore, à peu pres toute 1’ile. Paulian
estimait, en 1955, qu’il ne restait qu’à peine 8 p 100 du couvert primitif.
Depuis, la situation n’a cessé de se déterriorer. Combien de milliers
d’espèces de plantes et d’animaux ont ainsi disparus à jamais qui étaient
littéralement à portée de notre main? Les relictes que nous en observons
ne font qu’augmenter nos regrets devant 1’importance du désastre.
Pour nous en tenir aux Reptiles, et avant de passer aux Ophidiens,
nous allons voir qu’ils présentent tout à la fois des rapports géographiques
bien faits pour donner des migraines aux biogéographes et un extraordi-
naire endémisme.
La faune reptilienne ancienne est essentiellement marquée par la
présence, au Mésozoique, de Dinosaures, première énigme posée aux
biogéographes. (*)
La faune reptilienne actuelle est caractérisée par
1. Ses affinités africaines : sont bien représentés, de part et d’autre du
canal de Mozambique, les Chamaeléonidés, les Scincidés et les Gekko-
nidés. La famille africaine des Cordylidés n’est présente à Mada¬
gascar qu’avec la sous-famille des Gerrhosaurinés.
2. Vabsence de grands groupes bien représentés en Afrique: Amphis-
baenidés, Varanidés, Agamidés, Lacertidés chez les Lézards, Elapidés
et Vipéridés chez les Serpents.
3. L’existence d’eléments inconnus en Afrique: chez les Lézards, les
Iguanidés, représentés par deux genres Chalarodon et Oplurus et
chez les Serpents par des Boidés, sur lesquelles nous auront 1’occasion
de revenir longuement.
4. Un extraordinaire endémisme.
Nous traiterons en détails de 1’endémisme des Ophidiens; pour les
Lacertiliens dans une étude que nous avions faite en 1963, nous
montrions que sur 32 genres de Lézards, 15 sont endémiques et que
sur les 151 espéces 138 étaient endémiques soit un taux d’endémisme,
au niveau spécifique, de plus de 91 pour 100. Les recherches plus
récentes n’ont fait que confirmer ce haut degré d’endémisme de la
faune reptilienne malgache.
Après une rapide présentation de l’historique de 1’acquisition de nos
connaissances sur les ophidiens de Madagascar nous procèderons à une
revue systématique d’ensemble avant d’aborder les domaines ayant fait
1’objet de recherches récentes.
Darlington 1957 : 535) semble bien oublier Texistence des Dinosaures lorsqu’il écrit: “Madagascar
has an obviously old fauna, much différentiated, with many relicts and much radiation in some
endemic groups . On the cther hand, the Madagascan fauna is evidently less old than the
faunas of Australia and Tertiary South America. It may have begun f o accumulate and evolve about
the Oligocene."
Le dernier décrit. Majuvgatholus atopuB, n.g. n.sp., Ta été en 1979. par Sues et Taquet.
21
cm
SciELO
3 11 12 13 14 15 16
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. Hutanian, 46:19-58, 1982.
2. HISTORIQUE.
A qui devons nous la connaissance de la faune des Ophidiens de
Madagascar ?
Dès la fin du XVIIIème siècle, les navigateurs et voyageurs natura-
listes ramenèrent en Europe des représentants des faunes exotiques,
témoins autant de leur curiosité que de leur audace et des dangers
surmontés.
Le premier serpent malgache connu en Europe füt le Langaha que
Bruguière signala en 1790. Près de cinquante ans plus tard, Schlegel
publia la description de cinq espèces de serpents malgaches encore
reconnues valables aujourd’hui. UErpétologie générale fit connaitre en
1844 deux, puis en 1854 cinq autres espèces nouvelles. En 1858, Günther,
dans sa revue sur la répartition géographique des reptiles n’attribue à
la faune malgache que onze espèces (la) ; mais relevant que la quasi-
-totalité de ces espèces n’a jamais été rencontrée en une autre région du
monde il se demande si, comme 1’avait déjà suggéré Schlegel, il n’y aurait
pas là une raison suffisante pour considérer Madagascar comme une
région géographique particulière: “small for the geographical area, rich
for its animal and vegetative life, if the still hidden parts should prove
to be as peculiar as that which we known.” On ne connaissait encore
que moins du quart de la faune ophidienne. C’est en effet entre 1880 et
1905 que furent décrites 28 espèces soit plus de la moitié de celles que
nous reconnaissons. Le rythme des description se ralentit ensuite, avec
six espèces nouvelles entre 1913 et 1944. Les deux dernières décrites
sont Liopholidophis Ihieli Domergue, 1972 et Typhlops domerguei Roux
Estève, 1980. Les auteurs auquels nous sommes redevables du plus grand
nombre d’espèce nouvelles sont: Mocquard, 12; Günther, 9; Duméril et
Bibron, 7 ; Boulenger et Boettger, chacun 6; Schlegel, 5. Sur les 17 genres
endémiques, Mocquard et Günther en ont chacun créé quatre, Boulenger
et Boettger chacun deux, les cinq autres étant dus à des auteurs divers.
Si la littérature consacrée aux serpents de Madagascar comprend de
très nombreuses notes éparses dans des publications variées et traitant
d’espèces nouvelles, de récoltes ou de discussions à leur sujet, par contre
les travaux de synthèse, consacrés aux seuls Ophidiens malgaches, sont
encore rares. La première monographie est due à Edmond Jourdran, en
1904, “les Ophidiens de Madagascar”. Cet auteur est parmi les tous
premiers à avoir largement utilisé les renseignements fournis par
1’examen radiographique des spècimens. Les Serpents tiennent évidem-
ment une place importante dans le Synopsis publié en 1909 par Mocquard
sur les Reptiles écailleux et les Amphibiens de Madagascar. Boulenger
en 1915 donna une liste des serpents de Madagascar et des íles de
1’Océan Indien Occidental. En 1922, Mme Phisalix, dans son monumental
ouvrage sur “Animaux venimeux et venins” publia (2:280) un tableau
des genres et espèces des Colubridae de Madagascar et des iles voisines
et une définition des différents genres de Colubridés Opisthoglyphes,
avec diagnose des espèces. II s’agissait d’un véritable résumé de ce qui
(la) )'une (1’elle. Herpetodryas bernieri. est donnée. a tord, comme de 1’lsle «le I-runee.
22
cm
2 3
z
5 6
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens <le Madagascar. Mem. lvat. Butantan, .{5:19-58, 1982.
était alors connu de cette faune. Après avoir donné, en 1949, une révision
du genre Langaha, J. Guibé publia, en 1958, un très important travail
sur les Serpents de Madagascar. Depuis cette date le problème, dans son
ensemble, n’a été abordé que par Ch. A. Domergue à 1’occasion de la
publication, en 1969, d’une Clé pour les serpents de Madagascar. Les
auteurs qui, depuis 1909, date de la publication du Synopsis, ont le plus
écrit sur cette faune sont, par ordre alphabétique,:
Fernand Angel, Charles A. Domergue, Jean Guibé, Robert Hoffs-
tetter et Robert Mertens.
3. LA FAUNE OPHIDIENNE MALGACHE.
Sur les 10 ou 11 familles qui composent aujourd’hui le sous-ordre
des Ophidiens ou Serpents (Guibé, 1970), quatre seulement sont connues
de Madagascar et encore l’une d’elles, celle des Hydrophiidae n’y est-elle
que très exceptionnellement représentée par les visites que peut faire sur
ses côtes un serpent marin venimeux ubiquitaire, Pelamis platurus (Linné,
1765) (2). Decary (1950) assurait avoir, à deux reprises, vu un serpent
marin dans la baie de Diégo Suarez mais sans avoir pu s’en emparer.
La faune des serpents terrestres de Madagascar appartient donc à
trois familles, les Typhlopidae, les Boidae et les Colubridae et comprend,
dans Pétat actuel des connaissances, 73 espèces reparties en 21 genres.
Les 19 genres des deux familles Boidae et Colubridae se décomposent en
9 genres monospécifiques, 5 genres bispécifiques et 5 genres avec plus
de deux espèces, le plus riche étant Pseudoxyrhopus avec huit espèces.
Si nous considérons 1’endémisme, il est total pour les Boidae, deux
genres et trois espèces, et presque total pour les Colubridae.
Dans cette famille, sur les 17 genres, 1 seul, Geodipsas, aurait des
espèces sur 1’Afrique continentale tandis que deux, Liophidium et Lijco-
dryas, ont des représentants sur les iles Comores. Quatorze genres sont
donc endémiques de la Grande Ile seule, comme le sont 60 des 61 espèces,
Lycodtyas gaimardi étant représentée par une sous-espèce à Mayotte.
Pour illustrer les nombreuses inconnues qui grèvent encore la con-
naissance de la faune malgache il n’est que de rappeler que 14 des 61
espèces de Colubridae ne sont connues que par les seuls spécimens types
qui définissent aussi deux genres monospécifiques: Compsophis et Hete-
roliodon.
D’un point de vue pratique Domergue a donné en 1969 une “Clé
simplifiée pour la détermination sur le terrain des serpents communs de
Madagascar”, particulièrement utile et qui doit son efficacité à la profonde
connaissance qu’a 1’auteur de cette faune malgache, basée, à 1’époque, sur
1’examen de plus de 700 spécimens receuillis sur le terrain.
teira «chistosa (Daudin, 1803), le premier sous le nom de Enhydrina valakadyn Boié, 1827 le
second sous celui de Enhyurina schistosa. Mais selon McDowell 1972), cette espèce a une aire
géographique beaucoup plus restreinte, du jrolfe Persique aux cótes du Vietnam et des Indes
orientales à 1’Australie.
23
cm
2 3
L
5 6
10 11 12 13 14 15
HRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. Butantan, 46:19-58, 1982.
Les trois familles sont d’importances trè inégales mais chacune
apporte son lot d’inconnues et de problèmes, du moins au spécialiste.
Nous présenterons rapidement les différents genres et espèces, rap-
pelant les principaux travaux qui les concernent avant de donner un
aperçu de quelques recherches thématiques récentes ayant porté sur la
faune ophidienne de Madagascar.
4. LES TYPHLOPIDAE
Deux des trois genres aeturellement reconnus (Hahn, 1980) dans la
famille des Typhlopidae sont représentés à Madagascar, l’un et 1’autre
cosmopolites. Pour le non spécialiste ces ophidiens sont bien caractérisés
par leur aspect vermiforme et leurs moeurs fouisseuses qui les font parfois
confondre avec des vers de terre. Les créoles les nomment “serpent mi¬
nute” nom qui, dans d’autres pays, évoque des reptiles autrement redou-
tables que ces animaux inoffensifs. Pour le systématicien, 1’anatomie de
ces serpents aveugles, dont la machoire supérieure fixe est perpendiculai-
re au crâne, pose des problèmes passionnants. Leurs rapports avec les
lézards semblent, sur bien des points, plus étroits que ceux des autres
serpents.
Le genre ubiquiste Typhlina Wagler, 1830 n’a, à Madagascar, que
son représentant cosmopolite T. bramina (Daudin, 1803). Des recher-
ques récentes semblent établir que cette espèce est parthénogénétique.
(McDowell, 1974).
Le genre Typhlops Oppel, 1811 possède à Madagascar huit espèces
endémiques, encore très mal connues, trois d’entre elles, dont la dernière
décrite (T. domerguei Roux-Estève, 1980) n’étant même représentée dans
les collections que par le seul type (3).
Des deux sous-familles de Boidae, les plus primitifs des serpents
vivants ainsi que 1’atteste la présence de poumons complets et de vestiges
de bassin et de membres postérieurs, ces derniers sous forme d’ergots ou
de griffes sur les côtés du cloaque, seule est représentée à Madagascar
celle des Boinae.
5. LES BOAS DE MADAGASCAR
Acrantophis et Sauzinia
Les problèmes phylogèniques et biogéographiques posés par les Boinés
de Madagascar sont des plus complexes.
L’historique de la nomenclature des deux genres endémiques de
Madagascar évoque bien les hésitations successives des auteurs qui s’inté-
ressèrent à cette question. En 1844, Duméril et Bibron placèrent le nou-
veau boa qu’ils décrivaient dans le genre Xiphosoma Wagler, X. mada-
(3) Paulian (1961) signale la récolte d’un Typhlopa sp sur le petit ilôt corallien et sableux de Nosy
Vorona, au Sud d’Androka.
24
cm
2 3
L
5 6
10 11 12 13 14 15
BRYGOO. E. R. Les ophidiens de Madagascar. Mem. Inst. Butantan, 46:19-58, 1982.
gascariensis y rejoignait les deux espèces américaines X. caninum et
X. hortulanum que ces auteurs admettaient. En 1849, Gray créa un
genre nouveau, Sanzinia, pour y placer 1’espèce malgache (4). En 1893,
Boulenger plaça Sanzinia dans la synonymie de Corallus Daudin, 1803,
ce qui fut accepté par Mocquard (1909) et Werner (1912). Stull (1935)
réhabilite le genre Sanzinia qui n’a plus été discuté depuis.
C’est un nouveau genre Pelophilus que Duméril et Bibron créérent,
en 1844, pour le second Boídé malgache qu’ils connaissaient: P. madagas-
cariensis. Ce genre monospécifique füt accepté par Gray (1849). En 1860,
Jan créa le genre Acrantophis pour 1’espèce nouvelle A. dumerili. Boulen¬
ger (1893) plaça dans la synonymie de Boa Linné, 1758 à la fois Pelo¬
philus D. et B. et Acrantophis Jan. II signalait par la même occasion que
Pelophilus était préoccupé (5) mais traitait B. dumereli et B. madagas-
cariensis comme deux bonnes espèces. Mocquard (1909) reprend Pelo¬
philus D. et B., à tord, et Acrantophis mais il n’est suivi ni par Boulenger
(1915) ni par Werner (1921) qui maintiennent les deux espèces dans le
genre Boa. En 1935, Stul réhabilita Acrantophis mais il fit de dumerili
une sous-espèce de Acrantophis madagascariensis. C’est ce que suivait
enore Mertens en 1955 et 1972 bien que dès 1949 Guibé eut démontré
qu’il s’agissait de deux bonnes espèces, admises par Stimson (1969) lors
de la dernière révision de la famille.
Le fait que les espèces malgaches furent, pendant longtemps, consi-
dérées comme appartenant aux genres néotropicaux Boa et Corallus
montrait bien que ces serpents avaient plus d’affinités avec eux d’Amé-
rique du Sud qu’avec les Pythons, représentants de la famille en Afrique
et en Australie. Les Boínés se séparent des Pythoninés par la perte de
l’os supra-orbitaire et des dents prémaxillaires; les premiers sont vivi-
pares, les seconds ovipares.
La création des genres Sanzinia par Gray en 1849 et Acrantophis
par Jan en 1860, si elle marquait la singularité des espèces malgaches,
ne résolvait évidement pas le problème de leurs affinités et celui, sous-
-jacent, de 1’origine du peuplement.
Romer (1956 : 573) créa une sous-famille des Sanziniinae:
“Similar to Boinae, but hypapophyses on all thoracic vertebrae” pour
réunir aux deux genres malgaches les deux de 1’ile Ronde: Bolyeria Gray,
1842 et Casarea Gray, 1842. Mais Dowling (1959 : 45) démontra que
cette sous-famille n’avait rien d’un groupe naturel et qu’elle était mal
définie puisque Romer n’avait pas correctement utilisé les observations
anatomiques de Hoffstetter (1946) et de Anthony et Guibé (1951). Ce
que confirmait 1’année suivante Hoffstetter (1960 : 137), après étude
comparée des hypapophyses vertébrales des Boidae:
(4) non pour la raison donnée par Guibé (1949): “Xyphosoma Wagler étant tombé en synonymie
avec Boa.” car Gray (p. 96) reconnaissait le genre Xiphosoma. A noter que Gray ne donne
aucune explication sur 1’origine du nom du nouveau genre: “The Sanzin. Sanzinia madagasca-
ricnsis. Xiphosoanma madagascariensis .” Y aurait-il un rapport avec le nom de Sganzin, mal
orthographié? Duméril et Bibron écrivaient en cffet à propos de cette espèce (1844 : 552): “Le
Muséum en possède une belle suite d’individus de tous âges, que M. Sganzin avait commencé
à former.”
(5) Boulenger indique: “Pelophilus (non Dej.).“ En fait le genre crée par Dejean en 1821 était
Pclophila. ce n’était donc pas un synonyme au sens strict, mais deux autres Pelophilus antérieurs
existent: Pelophilus Tschidi, 1838 et Pelophilus Eyton, 1841, celui de D. et B. ne pouvait donc
être utilisé.
25
cm
2 3
z
5 6
10 11 12 13 14 15
HRYGOO, E. R. Les ophidiens de Madatfasear. Mem. Inst. Hutantan, 4<?:19-68, 1982.
“Au contraire, Acrantophis et Sanzinia donnent des graphiques
étonnament comparables à celui de Constrictor .... II en résulte que, sur
cette base, il est impossible de séparer Acrantophis et Sanzinia des
Boinés. Les autres caractères squelettiques parlent aussi en faveur de
leur rattachement à cette sous-famille.”
Dans un essai de subdivision de la sous-famille des Boinae, Unter-
wood (1967) sépare la tribu des Bolyerini (de Tile Ronde) de celles des
Erycini et Tropidophini, mais il se trouve toujours en présence d’un
caput mortuum, la tribu des Boini, oü voisinent un genre du Pacifique,
Candoia, les 2 genres malgaches et les genres néotropicaux qui com-
prennent les grands Boas pour lesquelles la famille a été créé.
Les paléontologistes nous apporteront-ils, un jour la clef du problè-
me? Un élément est pour le moment à retenir, Hoffstetter (1961) a
rapporté au genre de Boidé fossile Madtsoia, les vertèbres d’ophidiens
receuillies dans le crétacé supérieur de la région N.W. de Madagascar
par H. Perrier de la Bathie et par R. Lavocat; il a même, à cette occasion,
créé 1’espèce M. madagascariensis. Or Madtsoia est également connu du
Paléocène de Patagonie (Hoffstetter, 1959). Aussi Mertens pouvait-il
écrire (1972 : 92): “Eine andere Unterfamilie der Boiden, die fossilen
Madtsoiinae, bildet ein Gegenstück zu den Boinae, da sie sowohl aus
Südamerika wie aus Madagaskar bekannt sind.”
Pour 1’instant, ainsi que 1’écrivait récemment Branch (1981) :
“The phylogenetic relationships and zoogeographic history of boine
snakes remains as intractable as ever.”
Et ce n’est pourtant pas faute de travaux anatomiques sur les Boinés
de Madagascar qui ont considérablement accru le domaine des connais-
sances.
Beddard (1906, 1908) après étude comparative des viscères de Co-
rallus madagascariensis (= Sanzinia madagascariensis) et de C. cooki
(= C. enydris cooki Gray 1842) écrivait:
“in view of the rather slender differences which often exist between
genera among the Ophidia, it appears to me that the differences here
recorded between Corallus madagascariensis and C. cooki are worthy of
receiving value".
En 1909, le même auteur établissait les différences anatomiques
entre la constitution interne de Boa (Pelophilus) madagascariensis ( =
Acrantophis madagascariensis) et celle de Boa occidentalis (= B. cons¬
trictor occidentalis Philippi, 1873). En 1951, Brongersma étudia 1’artère
pulmonaire de Acrantophis madagascariensis et de Sanzinia madagasca¬
riensis et, en 1955, Anthony le squelette de la machoire et la morphologie
dentaire, calculant différents indices osseux: maxillo-transverse, squa-
moso-sacré et dento-mandibulaire. Auffenberg (1958) shntéressa à la
musculature du trone chez Sanzinia pour conclure:
“Myologically Sanzina (sic) is not as much like Constrictor as one
would suppose. Deviations in muscular arrangement are suggestive of
intermediacy between typical boinés, such as Constrictor , and the Ani-
lidae, as represented by Anilius. The latter seems, in turn, intermediate
between Sanzina (sic) and the Colubridae.”
26
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. fíutantan, 46:19-58. 1982.
Les travaux d’Hoffstetter (1959 : 382) furent consacrés à 1’étude
du dentaire tandis que ceux de Dowling (1959 : 3) montraient que les
vertèbres de la région dorsale moyenne chez Sanzinia n’avaient pas
d’hypapophyses. En 1963, Domergue étudia la morphologie des hémipénis
des Boidés malgaches et, la même année, Mme H. Genest-Villard le déve-
loppement du crâne de Sanzinia montrant que, chez cette espèce, les os
du crâne constituent un ensemble plus compact que chez les autres serpents
accentuant la ressemblance du crâne des Boidés avec celui des Sauriens.
Underwood enfin (1976) montra que les relations entre os postobitaux
et les canaux vidiens rapprochaient les genre Acrantophis et Sanzinia,
ce qui était selon lui un argument en faveur de 1’hypothèse de Mertens
(1972) de 1’evolution des deux genres à partir d’un unique apport tran-
socéanique (6).
Dés 1968, la Convention africaine d’Alger, sur la Nature et les
Ressources naturelles, protégeait les deux représentants du genre Acran¬
tophis, depuis les Acrantophis et le Sanzinia sont inscrits à 1’annexe I de
la Convention de Washington. Ces Boidés, três spectaculaires et d’un
maintien relativement facile en captivité, intéressent beaucoup les jardins
zoologiques. En 1976, A. madagascariensis et S. madagascariensis étaient
les seuls serpents singnalés par le recensement des animaux rares établi
par rinternational Zoo Yearbook, le premier avec 33 spécimens en 15
collections vivantes, le second avec 42 en 18. Ces chiffres sont très au
dessous de la réalité. Cette dispersion des animaux permet dhntéressantes
observations sur le comportement et la reproduction (Mertens, 1955;
Meier, 1980), nous y reviendrons plus en détails à propos de chaque
genre. Nous verrons ultérieurement (7.4) ce que leç recherches sérolo-
giques ont pu nous apporter comme données nouvelles sur les rapports
des Boinés malgaches entre eux ainsi que sur leurs relations avec les
autres espèces d’Ophidiens de Madagascar.
Pour le non spécialiste, à Madagascar, un Boidé (7) se sépare des
autres serpents terrestres par le plus grand nombre de rangs d’ácailles
dorsales, 40 à 80 pour un maximum de 33 observé chez le colubridé
Madagascariensis coluhrinus, ainsi que par une queue épaisse et courte.
De plus les mâles présentent, de part et d’autre de la fente cloacale, des
ergots mobiles, vestiges des membres postérieurs, qui interviennent dans
les préliminaires d’accouplement.
5.1. Sanzinia madagascariensis (Duméril et Bibron, 1844) (8)
Ce serpent verdâtre, marqué de blanc, dont la tête plate élargie n’est
pas sans rappeler celle des vipères, peut atteindre 2 m. Les jeunes sont
brun noir et rouge orange. Branch et Erasmus (1976) signalent une
variante jaune de Sanzinia, observée dans le Nord Ouest, mais sans mo-
dification de la lépidose: “it is doubtful whether yellow tree boas, despite
having a restricted geographic range, deserve taxonomic recognition.”
La présence de fortes dépressions entre les plaques labiales supérieures
(6) L’on ne peut donc suivre W.R. Branch lorsqu’il écrit 1981 : 91) que la connaissance de 1’anatomie
de ces Boidés est encore limitée: il semble ainsi ignorer nombre de travaux dont certains récents.
(7) De bonnes photographies en couleur des différents Boidés de Madagascar sont publiées par Branch
et Erasmus 1976) malheureusemnt des erreurs dans Taltribution des légendes compliqueront la
tache du non spécialiste.
(8) une bonne photographie de cette espèce in Blanc, 1972 : 614.
27
cm
6 SciELO 10
11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. Butantan, 46:19-58, 1982.
et inférieures est, chez cette espèce, tout à fait caractéristique. Elles
correspondent à des fossettes sensorialles dont la localisation labiale est
1’apanage des Boidés et qui permettent à 1’animal d’apprécier une diffé-
rence de température de 1’ordre de 0,2°C. Tous les genres de Boides n’en
possèdent cependant pas et il est remarquable que la faune de Mada¬
gascar nous donne à observer un genre avec et un genre sans. (Maderson,
1970).
L’espèce est arboricolle et l’on peut la rencontrer se reposant sur
une branche d’arbre (9) mais il n’est pas rare de 1’observer au sol.
Son régime alimentaire naturel, établi par les dissections, est base
de petits vertèbrés, rongeurs et insectivores.
Nom vernaculaire: Manditra.
Le caryotype de S. madagascariensis, établi par Branch (1980),
2n = 34, NF = 50, “is unique and not easily derivable from that of other
pythons and boas.” L’auteur souligne 1’intérêt qu’aurait 1’étude du caryo¬
type des Acrantophis. A Toccasion d’études comparées chez les Vertébrés,
Goswani et Rosenberg (1969) signalent la présence dans le foie de San-
zinia madagascariensis et de Leioheterodon madagascariensis, de parahy-
droxyphenylpyruvate hydrolase et de homogentisate oxygénase et 1’absence
de tyrosine alpha-cétoglutarate aminotransférase.
Au mons dans les débuts de sa captivité le Sanzinia peut être d’un
tempérament agressif. Dowling et Spencook (1963) ont, semble-t-il les
premiers, signalé des naissances en captivité, obtenues depuis par Foe-
kema (1971, 1975), Groves et Mellendick (1973), Branch et Erasmus
(1976) et bien d’autres. Progsha et Lehman (1970) ont, à cette ocasion,
signalés dhntéressantes malformations. Foekema (1975) a même obtenu
en élevage une seconde génération, mostrant que la maturité sexuelle
était atteinte dès le 18 ème mois. La gestation est de 6 à 7 mois. Le
nombre des jeunes, étudié sur 13 portées, varie de 1 à 16 avec une moyenne
de 10,5, ce qui est inférieur à ce que l’on sait des autres boas arboricolles
(Branch et Erasmus, 1976). La dimension moyenne du jeune est de
423 mm. Groves et Mellendick (1973) observent que les jeunes mâles se
reconnaissent à leurs grands crochets anaux oranges alors que ceux des
femelles sont plus petits et blancs. Ils signalent aussi qu’aprés une
période d’alimentation assistée, alors que les jeunes se nourrissaient eux-
même de rongeurs nouveau-nés, l’un d’eux se singularisait en préférant
grenouilles et salamandres.
5.2. Acrantophis madagascariensis (D. et B., 1844) et A. dumerili Jan,
1860. (10)
Ces deux boas, d’aspect extérieur très voisins, sont de teinte brune
ou brun rouge, rehaussée de losanges noirs. Ils fréquentent les abords
humides des cours d’eau et des mares. Duméril et Bibron (1844, 6 : 577)
notaient déjà:
(9) L’attitude signalée par Blanc (1981) “ses anneaux repliés symétriquement de chaque côté de sa
tête” n'a pas été observée par Branch et Erasmus (1976) qui écrivaient: “when basking in
trees, both young and adults form a compact bali at the junction of a branch and never adopt
the characteristic “draped” posture of .... Coralina caninua or .... Chondropython viridia .”
(10) Une bonne photographie de A. dumerili, in Blanc, 1972 : 613.
28
SciELO
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. Butantan, 46:19-58, 1982.
“L’un d’eux avait dans 1’estomac un canard dont toutes les parties
étaient encore intactes, circonstance qui indique évidemment que le Pelo-
philus madagascariensis est un serpent aquatique.”
En fait, même s’il fréquente les points d’eau, V Acrantophis n’est
nullement aquatique et son régime alimentaire n’est pas à base de canards
mais de petits vertébrés, rongeurs et insectivores comme nous l‘ont montré
de nombreuses autopsies.
Ces serpents sont de tempérament placide, ce qui explique leur
utilisation éventuelle, encore qu’elle ne soit pas répandue, pour la lutte
contre les rongeurs des cases par les habitants du Nord: A. dumerili, vu
à Andranola par Kaudern ( in Anderson, 1910).
Leur taille moyenne est de 150 à 180 cm. L’affirmation de Kaudern
selon laquelle A. madagascariensis pourrait atteindre et dépasser 8 m de
long a étó confirmée par Decary qui signale un spécimen de 3m20.
Les Acrantophis furent un moment menacés par la chasse que leur
faisaient les anciens militaires retour de France oü ils avaient perdu une
partie de leurs anciennes traditions qui protégeaient ces serpents. Les
peaux étaient exploitées pour la maroquinerie. Ces aminaux sont aujourd’
hui protégés.
A. madagascariensis est caractérisé par ses grandes plaques cépha-
liques, nettement différentes des petites et nombreuses plaques de A.
dumerili. Leur nom vernaculaire est ‘Do’ ou ‘Ankoma’.
Alors que Guibé (1958) considérait que les aires de répartition des
deux espèces étaient les rnêmes, il semble que l’on puisse, selon nos obser-
vations, attribuer à madagascariensis une aire comprenant le Centre, le
Nord Ouest et le Nord et à dumerili le Sud Ouest et le Sud ce qu’ont
d’ailleurs signalé de leur côté Branch et Erasmus (1976). Pour ceux-ci
“It is suggested that A. dumerili may represent a dwarf form.” “Nous
verrons plus loin (7.2) que les différences sont plus profondes-
Très tolérants en captivité, les Acrantophis sont bien représentés
dans les diverses collections vivantes. Duplaix-Hall (1974, 1975) est,
semble-t-il, le premiei* à avoir signalé des naissances en captivité. Branch
et Erasmus (1976) ont fait connaitre d’intéressantes observations. La
gestation est de 8 à 9 mois, les portées comprennent de 2 à 6 jeunes
pour A. madagascariensis, 7 pour la seule observation concernant A. du¬
merili. Les jeunes sont exceptionnellement grands et peuvent atteindre
chez madagascariensis 640 mm et 212 g soit 3 ou 4 fois le poids d’un
jeune de Boa constrictor mais l’ensemble du poids de la portée est du
même ordre dans les deux espèces. “It is suggested that. A. madagasca-
riensis has evolued a reproductive strategy of few, but large young and
that this may be correlated with the presence of few large predators on
Madagascar.” La croissance est rapide.
6. COLUBRIDAE
La famille des Colubridae est de loin celle des Ophidiens la mieux
représentée à Madagascar. Elle comprend 16 genres et 43 espèces, du
ttmins dans 1’état actuel de la connaissance et en faisant abstraction des
29
SciELO
HRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. Hutantan, 46: 19-58, 1982.
attributions fantaisistes erronées qui peuvent encore être publiée ici
ou là (11).
Dans la présentation de la liste des Colubridae de Madagascar,
donnée en annexe, nous n’avons pas tenu compte de la séparation, encore
utilisée par Guibé (1958), entre Opisthoglyphes et Aglyphes, retenant
la critique de J. Anthony (1955 : 51) :
“Les tarmes d’Aglyphe, d’Opisthoglyphe, de Protéroglyphe et de Solé-
noglyphe se rapportent à des états anatomiques d’origine parfois poly-
phylétique, et ne correspondent pas nécessairement à des catégories natu-
relles. Nous pensons, avec plusieurs auteurs modernes, que la conserva-
tion de ces coupures artificielles serait regrettable.”
Or les colubridae de Madagascar présentent une remarquable homo-
généité : 1’existence d’hypoapophyses vertébrales. Dès 1909, Mocquard
(: 39) écrivait: “II est remarquable que, chez tous les Colubridés malga-
ches aglyphes et opisthoglyphes, excepté, parmi ces derniers, les Mimophis
et les Eteirodipsas, les vertébres postérieures du trone sont pourvues
d’hypoapophyses.”
Depuis, 1 'Eteirodipsas, devenu Madagascarophis, ayant été reconnu
comme ayant des hypoapophises sur les vertébres dorsales, 1’homogénéité
du lot est encore renforcée, en étant exclu le seul Mimophis qui se sépare
d’ailleurs des autres par d’autres caractères. Llmportance de 1’observa-
tion de Mocquard était soulignée par Hoffstetter en 1946 qui ajoutait:
“La présence ou 1’absence des hypoapophyses dans la région posté-
rieure du trone ne doit pas être négligée dans les discussions phylogéné-
tiques concernant les Ophidiens. Ces hypoapophyses ayant une origine
hypocentrale, il apparait impossible (12) que des formes ayant perdu
leurs hypocentra postérieurs aient pu donner des descendants qui les
possèdent encore.”
L’ensemble des Colubridae de Madagascar se retrouve dans la sous-
famille des Colubrinae, telle qu’elle est comprise par Romer (1956).
Nous allons d’abord voir le cas de ces Mimophis que plusieurs carac¬
tères séparent des autres Colubridés malgaches.
6.1. Les Mimophis.
Voyons d’abord le cas de ces Colubridae opisthoglyphes à pupille
ronde rangés dans le genre Mimophis dont 1’espèce unique est M. mahfa-
lensis (Grandidier, 1867) (13).
(11) Elle peuvent parfois échapper à de três bons auteurs. Ainsi, par suite de quel enchainement
d’erreurci Mertens (1955 : 70) a-t-il pu écrire: “Die erste Natter, die aus Madagascar lebend
in meinen Bezitz kam, war ein Sibynophis collaris, eine Gattung, die ebenfalls in der Neuen
Welt (allerdings auch in Südasien, aber nicht in Afrika) heimisch ist.”?
S. collaris (Cray. 1853) n’a jamais été récoltée à Madagascar. c’est une espèce du Sud-Est
asiatique, du Nepal et de THimalaya.
(12) Nous ne discuterons pas ici de cette “impossibilité”, peut être beaucoup plus théorique que réelle.
(13) Grandidier avait utilisé 1’orthographe phonetique “mahfalensis." Cest cette graphie qu emploient
Boettger (1891), Mocquard (1895, 1909). Boulenger (1896, 1915). Anderson (1910). Mertens (1955).
En 1904, Jourdran 1'avait corrige en “mabafalensis’', orthographe peut-être plus^ correcte, mais
émendation injustifiée du point de vue du code de nomenclature et c’est à tord qu elle est utilisée
par Guibé 1958) et les auteurs qui 1’ont suivi.
cm
2 3
Z
5 6
10 11 12 13 14 15
URYGOO, E R. Les ophidiens de Madagascar. Mem. Inst. Butavtan, 46:19-58, 1982.
Le genre a été créé par Günther en 1868, pour une espèce qu’il croyait
nouvelle, M. madagascaríensis, mais qui, en fait, avait été décrite 1’année
précédente par Grandidier sous le nom de Psammophis mahfalensis. En
1891, Boettger cite les deux noms comme s’il s’agissait d’espèces diffé-
rentes tandis que Mocquard, en 1895, établit la synonymie qui, adoptée
en 1896 par Boulenger, n’a plus été remise en cause. Alors que pour
Günther son nouveau genre était caractérisé, entre autres, par 1’absence
de loréale: “loreal none, replaced by the posterior frontal, which is bent
dowmvards on the sides.” Boulenger (1896) rectifia cette interprétation
et distingua Mimophis de Psammophis par le fait que chez les premiers
la préfrontale sépare la loréale de la préoculaire alors que chez les seconds
loréale et préoculaire sont au contact.
L’originalité de cette espèce était bien soulignée par Mocquard
(1895:103) : “C’est probalement (en effet) le seul Psammophidé qui
habite Madagascar...” Ces rapports étroits avec les formes africaines
sont d’ailleurs à 1’origine de diverses confusions avec les Psammophis
africains. En 1877, Boettger donne comme de Madagascar Psammophis
sihilans, P. elegans, P. mahfalensis et Mimophis madagascaríensis, les deux
première espèces s’observant aussi en Afrique continentale. Mais 4 ans
plus tard (1881:526) il exclut de la faune de Madagascar les deux espèces
africaines et relève les erreurs d’identification ou d’attribution dont il
a connaissance et dont la moindre n’est pas celle de Duméril et Bibron
(1854, VII:895) qui les faisait donner Psammophis sihilans comme de
Madagascar. Les rapports de Mimophis avec les Psammophis africains
ne semblaient cependant pas évidents à Mertens (1955:72) qui écrivait:
“Mimophis wird im Schrifttum ais die nachste Verwandte der
üthiopisch-westasiatischen Gattung Psammophis bezeichnet; ich Kami
aber weder in der Kürperform noch im Gehaben irgendeine Àhnlichkeit
damit feststellen, sondern mõchte die Verwandten von Mimophis unter
neotropischen Nattern ( Dryophylax?) suchen.”
Par contre, en 1962, après étude de 50 spécimens mâles, Ch. A.
Domergue pouvait écrire: “chez Mimophis mahafalensis (Boiginae), les
pénis sont filiformes, inermes, absolument semblables à ceux que l’on
connait chez les Boiginae eurafricains. .. Les Boiginae malgaches
possèdent des hypapophyses sur toute la longuer de la colonne vertébrale,
mahafalensis fait exception à cette règle;... la denture de M.
mahafalensis est, à peu de chose près, identique à celle du genre
Psammophis (10 à 13 dents maxillaires, dont une ou deux agrandies
au milieu de la série, précédées et suivies d’un espace libre, 2 crochets sillo-
flés postérieurs). Le type filiforme du pénis de M. mahafalensis lève les
doutes qui pourraient subsister... aussi suis-je amené à considérer M.
mahafalensis comme étant d’origne extra-malgache, susceptible d’être
réintégré dans le genre africain et asiatique) Psammophis Boie, 1827.”
La coloration de cette espèce est assez polymorphe. Jourdran avait
décrit et figuré une variété nouvelle M. mahafalensis albiceps dont
1’existence n’a pas été confirmée. Par contre pour Domergue, 1’auteur
qui sans doute à manipulé le plus grand nombre d’ophidiens malgaches
vivants, il existerait bien des variétés. En 1962 il écrivait (n. p. 102): “A
uoter que cette espèce unique se présente sous deux formes de coloration
Paraissant propres 1’une à la région des Hauts-Plateaux, 1’autre aux
31
cm
6 SciELO 10
11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mcm. Inat. Butantan, 46:19-58, 1982.
régions Sud et Ouest.” et en 1969 (p. 15) : “il n’existe qu’une seule
espèce du genre Mimophis, mais j’y ai reconnu au moins deux variétés
de coloration, peut-être même deux sous-espèces: l’une propre aux régions
Sud et Ouest, est de couleur uniforme chez la femelle ou avec une ligne
vertébrale noire en zig-zag chez le mâle (M. mahafalensis mahafalensis),
tandis que la forme des Hauts-Plateaux est pourvue de bandes noires
parallèles (M. mahafalensis lineatus).” II ajoutait en note “Ces deux
formes et une troisième intermedias, sont en cours de description.” Ce
qui n’a pas encore été fait.
Peu d’éléments ont été publiés sur la biologie de cette espèce, pourtant
commune. Pour Mertens (1959:107), 1’animal rappelle à s’y méprendre
un rameau désséché et comme il reste longtemps complètement immobile,
la tête tendue et inclinée, il échappe ainsi à 1’attention de ses ennemis.
L’observation de son ophiophagie, au moins occasionelle, constatée par
Jourdran sur une radiographie, n’a, en particulier, pas été confirmée. En
captivité, Mertens (1955) lui a vu accepter petites grenouilles et lézards
des murailles.
Selon Kaudern ( in Anderson, 1910), dans la région de Ste Marie
de Marovoay, cette espèce était appelée “Ombimati”, boeuf mort, par
référence à la couleur de viande de boeuf.
M. mahafalensis peut atteindre 75 cm de long.
Mis à part le genre Mimophis et ses affinités africaines, il reste
un lot assez homogène de 15 genres qui constituent le stock malgache
des Colubridés, parmiceux-ci les Langaha, les premiers décrits des
serpents de Madagascar, alors qu’ils sont loin d’être particulièrement
communs. Ils doivent sans doute à la forme particulière de leur appendice
nasal d’avoir semblé digne de figurer parmi les trophées ramenés en
Europe par Jean Guillaume Bruguière, docteur en médecine de
Montpellier, qui accompagna Kerguelen dans son expédition aux íles
autrales. II fit connaítre à la communauté scientifique ce serpent
remarquable sous son nom vernaculaire, langaha, dans le journal de
Physique en 1784 (14).
6.2. Le genre Langaha Lacepède, 1789 (15)
Les représentants de ce genre sont tout à fait remarquables par un
caractère unique, mis en évidence et bien étudié par J. Guibé (1948, 1949)
que cet auteur résume ainsi (1970a :861-862) :
(14)
(16)
Alors qu’au XIX ème siècle, le nom de Bruguière est le plus souvent correctement écrit, il fut
transformé en Brugnière par Boulenger, à la suite sans doute d’une mauvaiue lecture, lors de la
publication de son catalogue (1896) et c*est ce nouveau nom qui fút utilisé par Mocquard et par
Guibé. Au XIX ème, le nom est écrit avec ou sans s finale, les deux formes se lisent dans Duméril
et Bibron tandis que Schlegel (1837) et Jan (1863) écrivent le nom avec une s. Brogersma
(1971) slgnala ces différentes orthographes.
I/attribution d'un nom d‘auteur au genre Langaha a fait 1’objet d’une discussion très argumentée
par Brongersma (1972) qui démontre d abord que Bruguière n’ayant, en 1789, donné quu’un nom
vernaculaire, sans utilisation de la nomcuclature binominale, ne peut être retenu comme l’auteur
du genre. II établit ensuite que le prender auteur à avoir usé de Langaha comme nom générique
est Lacepède en 1789, mais comme par ailleurs il est d’avis d’exclure tous les noms de Lacepède,
il propose que Langaha soit attribué à Bonnaterre, le second auteur à avoir utilisé le nom dans
un sens générique (1790 : 71). Nous ne le suivons pas sur ce point et considérons Lacepède
comme 1’auteur de Langaha.
82
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mcm. Inst. Dutantan, 46:19-58, 1982.
“Les Serpents malgaches du genre Langaha offrent un cas unique
de dimorphisme sexuel, ils sont caractérisés par un prolongement écailleux
rostral, flexible, dont la longueur égale à peu près celle de la tête; alors
que chez le mâle ce prolongement est fin, de section triangulaire, chez
la femelle il est large, foliacé, dentelé sur les bords qui sont reployés
vers le bas en forme de gouttière renversée; de plus, chez L. alluaudi,
la femelle possède une écaille susoculaire en forme de corne.” Selon
Mertens (1959:154), qui ne précise pas 1’origine de ses données, ces
appendices joueraient un rôle dans la reconnaissance sexuelle, tandis que
les animaux de ce genre possèderaient des yeux spécialement adaptés
à la vie crépusculaire. Selon le même auteur 1’existence des appendices
contribuerait à accentuer la ressemblance avec des objets végétaux. En
dehors de ces appendices remarquables, les recherches sur 1’anatomie des
Langaha n’ont, semble-t-il, pas donné lieu à de nombreuses publications.
On peut signaler un dessin original du maxillaire et de la mandibule de
L. nasuta donné par Mme Phisalix (1922, 2:352). Brongersma (1938)
a vérifié 1’existence d’hypapophyses sur les vertèbres précaudales d’un
L. cristagalli.
Dans 1’état actuel des connaissances, et après la révision de Guibé
(1949b), ce genre de colubridés opisthoglyphes à pupille ronde, dont les
représentants partagent avec les Alluaudina d’être les seuls de la faune
malgache dont les écailles sont carénées, se compose de deux espèces:
— Lagaha nasuta Shaw, 1970 (16)
(+ L. cristagalli D. et B., 1854 et L. intermedia Boulenger, 1888)
— L. alluaudi Mocquard, 1901.
La première espèce a deux loréales, la seconde une seule. Alors que
les récoltes de L. nasuta proviennent de toutes les régions de 1’ile, celles
de L. alluaudi ont pour origine la moitié sud. Les individus de l’une et
1’autre espèce peuvent atteindre lm. L. nasuta est bicolore, au dos brun
rouge uniforme s’opposent la face ventrale et la lèvre supérieure jaune
vif. (17). La femelle de cette espèce a une livrée plus terne, gris brun
avec une série de taches rougeâtres, latérales. L. alluaudi est de couleur
Kris-cendré avec des bandes transversales foncées, plus ou moins nettes.
Le Langaha était déjà connu depuis plus de 50 ans lorsqu’en 1837
Schlegel décrivit quatre nouveau serpents malgaches qui portent aujourd’
hui les noms de Madagascarophis colubrinus (18), Ithycyphus miniatus,
Lycodryas gaimardi et Liophidium rhodogaster.
6) Dans son travai! déjà cité, Brongerama (1972) donné les raisons pour lesuuelles il propose
a) de rejeter comrne nomina oblita, les nornu spècifiques qui n' ont plus été utilisé depuis 1833,
1. L. madagascariensis sous les formes L. madagascar Lacepède, 1790, L. madagaecar Lacepède
1803 et L. madagascariensis Bonnaterre, 1790, 2. Langaha proposé en 1801 par Schneider dans
le binome Amphiebaena langaha, b) mais par contre de retenir Langaha nasuta Shaw, proposé
en 1802 sous la forme Langaya nasuta. Nous le suivons sur ce point. Une référence semble avoir
échappé à Brcngersma, dans ce travail par ailleurs si bien documente, mais qui n'aurait rien
changé à ses conclusioirs: il s’agit de 1‘article Langaha dÜ à Bory de Saint Vincent íin Dict.
classique Hist. naturelle, 1826, 9 : 206) ou 1’on trouve:
"Genre. . . . établi par Lacepède sur un serpent decouvert à Madagascar par Bruguière qui
le fit connaitre dans le journal de Physique en 1874.... On n’en connait qu’une espèce.... C’est
le Langaha Madagascariensis, Lacép.; Amphisbaena Langaha, Schneid."
'17) La pranche 71 de 1’Atlas de 1’Erpétologie générale 1854) présentait un Langaha crête de coq.
Schmidt et Inger (1957) ont donné une bonne photographie d’une femelle de Langaha intermedia
(= L, nasuta ); cf aussi S. Dunton (Anim. Kingd. 1955, 68 : 142).
118) C’est par erreur que Guibé (1958) et à sa suite Domergue (1969), Blanc (1971) écrivent Af.
colubrina. Le changement de nom (et de genre) du genre implique le changement d’orthographe
du nom d’espèce ainsi que l’a d’ailleurs correctement écrit Mertens (1952, 1966).
33
cm
6 SciELO 10
11 12 13 14 15
URYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. fíutantan, í<*:19-68, 1982.
6.3 Madagascarophis colubrinus (Schlegel, 1837)
Comme le remarquait Jourdran (1904 : 45), c’est une des espèces
d’ophidiens de Madagascar les plus connues. Décrite par Schlegel dans
le genre Dipsas, transférée dans un nouveau genre Eteirodipsas par Jan
en 1863, elle est devenue 1’espèce type et unique du nouveau genre Mada¬
gascarophis que créa pour elle Mertens en 1952, pour des raisons de
nomenclature.
Ce colubridé opisthoglyphe à écailles lisses est d’une Identification
facile parce qu’il est le seul dont 1’oeil, à pupille verticale, est séparé des
labiales supérieures par des sous-oculaires (Guibé, 1958; Domergue,
1969). La tête, nettement dictincte du cou, est triangulaire. L’animal est
de coloration jaune verdâtre à gris noirâtre, avec des marbrures plus ou
moins foncées. La variété du Sud présente de larges ocelles dorsales noires
sur fond jaunâtre. De longueur moyenne 0,75 à 0,80 cm, il peut atteindre
lm. L’un des plus communs et des plus répandus des serpents malga-
ches, il traverse les routes et chemins aux premières heures de la nuit.
II est bien connu des habitants des Plateaux qui le nomme “Renivit-
sika” (19) ou mère des “fourmis” parce qu’il se trouve souvent dans les
fourmilières et termitières. Selon une tradition rapportée par le Réverend
Sibree et citée par Jourdran “les fourmis le nourrissent (dit on) jusqu’à
ce qu’il soit gras puis le tuent pour le manger”. Jourdran, par des dissec-
tions, a pu établir que le serpent, lui, ne mangeait pas de fourmis. En
captivité, Mertens (1955) lui a fait accepter petites grenouilles, lézards
et souris.
6.4 Les Leioheterodon
Les plus robustes des serpents de Madagascar, aprés les Boidés, sont
aussi parmi les moins rares; ils appartiennent au genre Leioheterodon.
Aglyphes, à écailles lisses et pupille ronde, ils sont bien caractérisés par
leur tête, peu distincte du trone, qui porte une rostrale carénée, légère-
ment retroussée (20). Leur taille dépasse souvent le mètre et peut
atteindre lm 50.
Ce genre offre un bon exemple des difficultés que rencontre le systé-
maticien lorsqu’il s’éfforce d’utiliser une nomenclature rigoureuse. La
recherche de 1’auteur du genre n’est, en effet, pas sans poser des problè-
mes qui ont déjà été étudiés par Myers (1949) mais la solution proposée
alors, reposant sur des bases en parties fausses et surtout incomplètes,
ne peut être retenue. Le nom de Léiohétérodon apparu pour la première
fois sur une planche diffusée en 1844 avec le T. VI de 1’Erpétologi^géné-
rale qui abordait la description des Ophidiens. Cette planche porte le n°
LXIX et la mention Léiohétérodon de Sganzin, elle présente une vue
générale et trois bons dessins de la tête de 1’animal. A la suite de
difficultés diverses, la publication du tome VII de 1’Erpétologie générale,
avec la description de cette espèce, n’intervint que dix ans plus tard, en
(19) Ailleurs il se nomme “Lapato" (Sud et Sud-Ouest), “Mantertra” (Nord-Ouest).
(20) Mertens (1955 : 68; 1972 : 92). Schmidt et Inger (1957) rapprochent les espèces de ce genre
malgache de formes nord-américaines et plus spécialement du Serpent à grouin d'Amérique du
Nord (Hetercdon platyrhinos) en raison justement de leur museau retroussé.
34
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. Butantan, 40:19-58. 1982.
1854 (21). Duméril écrivit p. 776: “Heterodon de Madagascar. H. mada-
gascariensis nobis. (Atlas pl. 69 sous le nom de Leiohétérodon de Sgan¬
zin.” et p. 777: “Le nom de Leiohétérodon inscrit sur la planche 69 de
notre Atlas ne peut être conservê, car il indique un caractére commun
aux trois dernières espèces du genre Heterodon proprement dit et il n’y
a pas de motifs réels pour subdiviser ce genre, comme nous 1’avions cru
d’abord”. “On ne peut que regretter qu’avec le genre ait aussi disparu,
sans explication, le nom de Sganzin, officier et naturaliste, dont les nom-
breuses récoltes sur la côte est de Madagascar et à sainte-Marie méri-
ritaient bien cet hommage. Le nom de Leiohétérodon apparait encore
p. 1553, dans la table alphabétique publiée à la fin de la deuxième partie
du T. VII, ainsi que dans l’“Explication méthoque” publiée en 1854, en
tête de 1’Atlas qui réunit en un volume 1’ensemble des planches précédem-
ment publiées. Cette note précise, p. 15:
“planche LXIX. 1 Heterodon de Madagascar, représenté sous la
dénomination provisoire de Leiohétérodon de Sganzin . . . T. VII p. 776.”
Ainsi que 1’avait bien observé Myers, le nom de Leiohétérodon
n’ayant, aucune des trois fois oü il est utilisé par Duméril et Bibron,
été écrit sous une forme latine, ce qu’atteste la présence des accents, n’a
aucune valeur au sens du code de nomenclature. La première utilisation
latine du nom de genre Leioheterodon, est semble-t-il (22), due à Jan
(1863:227) à 1’occasion de la création du genre Anomalodon, avec pour
espèce type, par monotypie, Heterodon madagascariensis D. et B., 1854.
Jan a ainsi crée, simultanément les deux noms de Leioheterodon et d’Ano¬
malodon, synonymes objectifs. Boulenger, premier réviseur, a choisit
le premier nom, plaçant le second en synonymie (23). II a, de plus,
procédé à une émendation, elle injustifiée, en proposant la forme
Lioheterodon. Le nom de genre valable est, selon nous, Leioheterodon
Jan, 1863 et non comme proposait Myers, Lioheterodon Boulenger
1893 (24).
L’espèce type en est Heterodon madagascariensis D. et B. 1854 par
monotypie et non par la désignation secondaire de Myers, 1949. Guibé
(1958:230), bien que donnant dans sa bibliographie la référence de
Myers attribuait à Duméril et Bibron, avec la date de 1854, le genre
Lioheterodon écrit avec 1’orthographe proposée par Boulenger. Un auteur
au moins, Conant (1938) a cependant, depuis Boulenger, utilisé
l’orthographe correcte: Leioheteredon.
Pour Mertens (1972) ce genre n’est pas sans rappeler les genres
du nouveau monde Xenodon, Lystrophis et Heterodon.
Alors que la séparation des trois espèces de Leioheterodon se fait,
pour le spécialiste, sur la base de 1’écaillure corporéale ou céphalique,
les seuls caractères de coloration permettent à 1’amateur une
Identification facile:
(21) Ce décalage de dix ans entre les deux dates a échappé à Myers qui croyait à une erreur de
Boulenger dans son catalogue.
(22) Günther dans son catalogue (1858) ne mentionne pas Leioheterodon.
(23) Myers signale d’ailleurs qu’Anomalodon Jan, 1863 est préoccupé par Anomalodon S. Bowdich.
1825, un poisson.
(24) Le Nomenclator zoologicus créditait, en 1939, Boulenger (1893) du nom de genre Lioheterodon
et ignorait le Leioheterodon de Jan (1863).
35
SciELO
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. fíutantan, 46:19-58, 1982.
— noirâtre avec des taches jaunes au dessus, jaunâtre taché de
noir au dessous, c’est L. madagascariensis;
— brun pâle uniforme: L. modestas;
— brun clair avec au dessus un réseau sombre formé par les lignes
bordant les écailles: L. geayi.
Leioheterodon madagascariensis (D. et B., 1854)
Première décrite, cette espèce est aussi la plus grande des trois, elle
atteint facilement 150 cm. Conant (1988) en a donné une bonne
photographie (25) en même temps qu’il décrivait la ponte, en captivité,
de treize oeufs, de dimensions moyennes 47,8 x 32 mm, pesant 28, 9 g.
L’éclosion en eut lieu entre le 90 éme et le 96 éme jour. Les jeunes avaient
une longueur moyenne de 336 mm et pesaient 18,68 g. Les enzymes
hépatiques ont été étudiés par Gaswani et Rosenberg (1969).
L’animal est très actif et très vif, facilement agressif. Son nom
vernaculaire: Manarana.
Leioheterodon modestus (Günther, 1863)
Décrivant Heterodon ynodestus, Günther semble avoir ignoré que
Duméril et Bibron avaient déjà décrit 1’animal, mais comme une variété
de L. madagascariensis et sans la nommer:
“Une Variété est complément sans taches. Sa teinte générale est un
fond brun jaunâtre. Elle provient comme le type de Madagascar et elle
a été donnée par le même voyageur.... L’échantillon unicolore qui se
rapporte par tous ses caractères à 1’espèce dans laquelle nous le rangeons
est plus petit. Sa taille cependant montre que ce n’est pas un jeune
individu.”
Jourdran (1904) a proposé plusieurs bonnes représentations de cette
espèce. Kaudern ( in Anderson, 1910) signala son agressivité et le fait
qu’irrité il était capable de gonfler son cou “like a cobra”. Mertens (1955)
l’a vu, en captivité, accepter de se nourrir de grenouilles.
6.5 Les Pseudoxyrhopus
Cette très belle espèce a son domaine localisé au Sud et au Sud-Ouest
de 1’ile, alors que les deux autres se rencontrent dans tout Madagascar.
Boettger (1913) en a donné une bonne illustration sous le nom de Liohe-
terodon voeltzkowi qu’il considérait comme une espèce nouvelle.
6.5 Les Pseudoxyrhopus
L’espèce type de ce genre remarquable a été crée par Jan en 1863
sous le nom d’ Homalocephalus heterurus, nom que Günther (1881 : 359)
transforma en Pseudoxyrhopus, celui de Jan étant préoccupé en Ento-
mologie. Boulenger (1880 : 312) souligna les caractères particuliers de
la denture de la machoire inférieure, rapprochant ce genre des Lycodonts.
Dans le même travail il lui rapporte le Xenodon punctatus Peter, 1880:
(25) Par contre les couleurs de la planche originale de 1’Erpétologie générale sont sans rapport avec
les couleurs naturelles.
36
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. Butantan, 46:19-58, 1982.
“Stated to be from Brazil, but its habitat will probably prove to be
Madagascar”. Cette espèce n’a semble-t-il plus été retrouvée depuis et les
problèmes qu’elle pose n’ont pas été résolu. Les auteurs semblent cepen-
dant d’accord avec 1’opinion émise par Mocquard (1909 : 45) :
“On peut affirmer que si Xenodon punctatus est un Pseudoxyrhopus
il n’est pas originaire du Brésil, et que, s’il a réellement cette origine, il
ne peut être rapporté au genre Pseudoxyrhopus.”
Dans la révision de Guibé, ce genre Pseudoxyrhopus d’opisthoglyphes
à pupille ronde est celui qui, avec ses huit espèces, semble le plus impor-
tant ou du moins le mieux diversifié. En fait, selon Domergue (1969)
trois espèces, P. microps Günther, 1881, P. tritaeniatus Mocquard, 1894,
connues par le seul type, et P. dubius Mocquard, 1904 forment un groupe
très homogène:
“la différenciation repose, ...., sur des caractères peu convaincants
.... la validité de ces trois espèces peut être mise en doute tant leurs
caractères d’écaillure sont voisins et pourraient bien ne représenter que
trois variétés; aussi la distinction restera-t-elle délicate, pour ne pas dire
impossible, et ces trois serpents pourront-ils, sans inconvénient, être
considérés comme le groupe des Pseudoxyrhopus à vingt-cinq dorsales,
avec trois sous-espèces ou variétés (ou peut-être seulement des aberra-
tions individuelles d’une même espèce), toutes semblables par leur mor-
phologie et leur coloration rouge à bandes longitudinales noires”.
Boulenger avait déjà succesivement mit en synonymie avec P. microps,
em 1896, P. trilineatus, puis, en 1904, P. dubius, mais Angel (1935) avait
cru pouvoir séparer les 3 espèces. Deux autres espèces, P. ambreensis
Mocquard, 1894 et P. occipitalis Boulenger, 1896, ne sont connues que par
les types. Restent 3 espèces P. heterurus (Jan, 1863), P. quinquelineatus
(Günther, 1881) et P. imerinae Günther, 1890 mieux représentées dans
les collections.
Boulenger (1915) faisait un Pseudoxyrhopus du Rhabdotophis sub-
caudalis Werner, 1909 que Guibé (1958) a placé dans la synonymie de
Pararhadinea melanogaster.
6.6 Les Ithycyphus
Ce genre comprend deux espèces de Colubridae opisthoglyphes à
pupille ronde, Ithycyphus miniatus et I. goudoti qui sont parmi les
premiers décrits des serpents de Madagascar puisque l’un comme 1’autre
le furent par Schlegel en 1837, mais dans des genres différents, Coluber
pour le premier et Herpetodrias pour le second. Le genre lui ne fút crée
qu”en 1873, par Günther, pour une espèce, Ithycyphus caudolineatus que
Boulenger placa dans la synonyme d7. goudoti. I. miniatus avait été
décrit par Schlegel comme de 1’Ile de France (Maurice). Cette attribution
erronée füt rectifiée par Duméril et Bibron en 1854, mais ceux-ci signa-
lent des spécimens de Madagascar, Nossi Be et Mayotte. D’oü mention
par Boulenger, 1896, de la présence de 1’espèce aux Comores, ce qui est
encore repris, mais avec doute, par Blanc (1971). En fait 1’espèce ne
semble pas avoir été récoltée en dehors de Madagascar (et de Nossi Be).
37
SciELO
KRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. Butantan, 46:19-58, 1982.
L’espèce Ithycyphus miniatus n’est pas rare en forêt; elle est très
caractéristique (26) avec sa longue queue rouge et ses moeurs arboricoles.
Elle peut atteindre lm 50 (Kaudern, in Anderson, 1910). II semble établi
que ce serpent puisse se laisser tomber d’un arbre sur les petits animaux
dont il se nourrit. Bien connu des Malgaches qui le nomment Pily (saka-
lave) ou fandrefiala, ce qui signifie “mesureur de la forêt”, sans doute
par référence a son habitude de se suspendre et de se déplacer de branche
en branche, c’est, avec les boas et le Menarana (Leioheterodon madagas-
cariensis), l’un des serpents que l’on rencontre le plus souvent dans les
légendes. Accusé de nombreux pouvoirs, il serait en particulier capable de
transpercer son ennemi, homme ou boeuf compris, en s’élancant ou en se
laissant tomber queue la première (27). Ce serpent se nourrit entre
autres de Caméléons. Nous en avons vu un spécimen qui, au moment de
sa capture, venait d’engloutir un Chamaeleo pardalis mâle de plus de
35 cm. Kaudern ( in Anderson, 1910) a, de son côté, trouvé un rat dans
1’estomac d’un I. miniatus. Mertens (1955), qui en donne une bonne
photographie, lui trouve quelques ressemblances de comportement avec
le cubain Dromicus angulifer.
L’espèce I. goudoti se sépare de la précédente par son plus petit
nombre de plaques ventrales.
6.7 Dromicodryas
Les deux espèces de colubridae aglyphes et à pupille ronde qui cons-
tituent ce genre furent, l’une et 1’autre, décrite en 1854 par Duméril et
Bibron comme des Herpetodryas. L’une d’elle avait même fait 1’objet
d’une planche (n° 66), diffusée en 1844, avec le nom provisoire d’Elaphre
de Bernier. Boulenger (1896) créa pour elles le genre Dromycodryas,
sans désigner d’espèce type. Domergue (1969) attira 1’attention sur un
caractère diagnostic: 1’existence sur les ventrales “de chaque côté, d’un
mince trait noir correspondant à une légère encoche et, peut-être à un
soupçon de carène”.
Les deux espèces, fort voisines, se caractérisent par leurs marques
dorsales:
— trois bandes longitudinales noires chez D. bernieri,
— quatre chez D. quadrilineatus.
La répartition géographique exacte de ces deux espèces, qui ne sont
pas rares, mérite d’être précisée car les localités de récoltes données par
Guibé (1958) correspondraient à des aires en grandes parties communes.
L’origine Ile de France donnée par Duméril et Bibron pour des spécimens
de D. bernieri peut être considérée comme une erreur. Kaudern (1922)
a décrit une sous-espèce ramavali de D. bernieri dont la valeur reste à
préciser. Domerque (1969) a mis dans la synonymie de D. bernieri
Liopholidophis pseudolateralis Guibé, 1956. Pour Kaudern (in Anderson,
(26) Jourdran (1904) en a donné une bonne planche (n." 28).
(27) II est intéressant de retrouver dans le folklore malgache une croyance qui pourrait bien
appartenir au fond commun des craintes ancestrales de 1 homme, les Grecs, en effet n‘appe-
laient-ils pas Acontias, javelot, un serpent que l’on croyait s’élancer d'un trait sur les passants?
Selon Kaudern (1922), sur la côte Est (Fandrarazana) il serait nommé “Capara."
38
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. fíutantan, 19-5K. ly«2.
1910) les deux espèces se nourrissent essentiellement de grenouilles, dans
le Nord Ouest D. bernieri étant nommée “rama vali” et D. quadrilineatus
“maro longa”.
Jourdran (1904) a donné une bonne iconographie de ces deux espèces.
6.8. Les Liopholidophis.
Ce genre de colubridae aglyphes, à pupille ronde, endémique de Ma¬
dagascar, est l’un des plus importants par le nombre de ses espèces. II
n’a été créé par Mocquard qu’en 1904 mais dès 1895 cet auteur écrivait,
à propos de Tropidonotus stumpffi:
“A 1’exemple de M. Boulenger, je rapporte cette espèce au genre
Tropidonotus, sans cependant être bien convaicu qu’elle ne doive pas
constituer, avec d’autres espèces voisines, un genre particulier à Mada¬
gascar.”
Ayant créé le genre Liopholidophis en particulier pour les espèces
“..à vertèbres dorsales pourvues d’hypapophyses; hémipènis profondé-
ment bifurqués.” Mocquard (1904) y plaçait une nouvelle espèce, L.
grandidieri et les deux espèces L. sexlineatus et L. dolichocercus, dont
Boulenger (1894) faisait des Tropidonotus, mais sans mentionner ni T.
stumpffi ni T■ lateralis; il ne désignait pas d’espèce type. En 1909,
Mocquard rappela le caractère particulier des hémipénis et ajouta que,
dans ce genre, chez les mâles, “la queue est, en général, incomparable-
ment plus longue que chez les femelles.”
Ayant mis T. stumpffi (28) dans la synonymie de L. lateralis, il
reconnaissait alors dans le genre 4 espèces:
L. lateralis, L. sexlineatus, L. dolichocercus et L. grandidieri.
Depuis le travail de Domergue (1972) sur les L. lateralis s. 1. la mise
en synonymie (Domergue, 1969) de L. pseudolateralis avec Droynycodryas
bernieri, ce genre comprend 6 espèces: L. lateralis (Duméril et Bibron,
1854), L. stumpffi (Boettger, 1881), L. sexlineatus (Günther, 1882) (29),
L. grandidieri Mocquard 1904, L. pinguis Parker, 1925 et L. thieli Do¬
mergue, 1972.
Chez les Liopholidophis, sauf exception, le ventre est jaunâtre ou
blanchâtre, irrégulièrement taché (et non ponctué) de noir (Domergue,
1969).
Deux des six espèces, L- pinguis, du pays Sihanaka et L. grandidieri,
du S. S. O, St Augustin, ne sont connues que par les types.
L. sexlineatus, de la région centrale et de l’Est, a une coloration
très variable avec, typiquement, sur un fond gris olivâtre six bandes
noires, mais celles-ci sont loin d’être toujours distinctes. Jourdran en
a donné plusieurs représentations (pl 2, 15, 21, 25, 26). II notait la
longueur de la queue du mâle et signalait un spécimen de lm20.
(28) T. stumpffi était cependant encore reconnu comme espèce valide par Boulenger (1915) et par
Parker (1926) mais ce dernier la plaçapit dans le «enre Liopholidophis.
(29) Guibe (1958 : 216) place L. dolichocercus (Peracca, 1892), espèce reconnue par Mocquard
(1904, 1909), Boulensrer (1896, 1915) et Parker (1925) dans la synomymie de L. sexlineatus.
39
cm
6 SciELO 10
11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mcm. Inat. Rutantan, 1*6: 19-58, 1982.
Les recherches de Domergue (1972) ont débrouillé le groupe com-
plexe des L. lateralis s.l. 1’auteur conclut ainsi:
“Nous somme en présence d’un groupe homogène dont les extrêmes
sont L. lateralis et L. thieli; entre ces espèces parfaitement caractérisées
se place L. stumpffi qui tout en étant reconnaisable d’entrée présente
quelques individus de faciès apparenté tantôt à L. lateralis, tantôt à L.
thieli; il semble que nous sommês en présence d’une espèce (L. lateralis)
déjà suffisamment évoluée pour aboutir à 1’espèce thieli et que les termes
de passage, non seulement se sont conservés, mais encore semblent devoir
eux-mêmes s’acheminer vers une espèce déterminée (L. stumpffi)
L.lateralis est la couleuvre commune des jardins de Tananarive, ses
moeurs sont semi-aquatiques et son régime alimentaire à base d’amphi-
biens, ce qu’avait déjà noté Jourdran. De vaste répartition dans l‘ile,
elle ne semblemanquer que dans le Sud-Ouest sédimentaire (Domergue).
Selon Domergue, L. thieli, qui semble appartenir au domaine de l’est
est connue dans la région de Perinet-Moramanga sous le nom de “Mena-
maso”, oeil rouge, elle se nourrit également de batraciens. Ces deux espèces
sont ovipares, avec des pontes de 6 à 13 oeufs elliptiques mesurant 24-
27 mm x 12 mm.
Irritées, l’une comme 1’autre, aplatissent dorsoventralement leur cou
en attitude d’intimidation (30), l’élargissement latéral montre alors les
marques blanches des écailles dorsales. L. lateralis peut se montrer très
agressive et mordre énergiquement.
6.9. Les Liophidium.
Le genre Liophidium fut crée en 1896 par Boulenger pour une espèce
malgache nouvelle, L. trilineatum, dont le dentaire est, en arrière, complé-
tement séparé de 1’articulaire. II comprend aujourd’hui cinq espèces de
colubridae aglyphes à pupille ronde, quatre de Madagascar et une des
Comores. Guibé (1958 : 205, n) annonçait un travail “en cours de publi-
cation”, fait avec le Dr Hoge, donnant “les raisons qui nous ont amenè
à inclure les genre Idiophis et Parasibynophis dans le genre Liophidium.”
Ce travail n’a malheureusement pas vu le jour. Le genre Idiophis avait
été créé par Mocquard en 1901 pour 1’espèce nouvelle I. vaUlanti. Le
genre Parasibynophis était du à Leviton et Munstermann, en 1956, pour
y placer les ‘‘Polyodontophis” de Madagascar. Après examen d’un P.
rhodogaster (Sehlegel, 1837) et d’un P. torquatus (Boulenger, 1888),
comparaison des os maxillaires et craniens et des hémipénis, ils concluaient
en effet à la nécessité de séparer ces deux espèces des autres représentants
du genre, d’origine asiatique. Ils ajoutaient comme troisième espèce du
nouveau genre P. mayottensis (Peters, 1873)-
La séparation des deux genres est difficile sans une dissection per-
mettant d’examiner les rapports du dentaire et de 1’articulaire. Comme
1’indiquait Mocquard dans la clef qu’il donnait en 1909, l’os dentaire est
disjoint postérieurement de 1’articulaire chez Liophidium, alors qu’il est
(30) Cette attitude, observés aussi par Mertens (19Õ5) était pour lui un élement de rapprochement
avec les genres néotropicaux Liophis et Dromieus.
40
cm
SciELO
10 11 12 13 14 15
URYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. Butantan, 46:19-58, 1982.
articulé sur toute sa longueur avec 1’articulaire chez Liopholidophis. La
mise en synonymie par Boulenger (1915), avec doute, de Liophidium
gracile Mocquard, 1908 avec Tropidonotus stumpffi (Bottger, 1881) puis
par Guibé (1958) de ces deux espèces avec Liopholidophis lateralis (D.
et B., 1854) souligne la difficulté du diagnostic sur les seuls caractère
externes. Ce qui renforce 1’intérêt des observations de Domergue (1969) :
“Les Liophidium ont le ventre soit franchement violace (...) soit
rouge ou rougeâtre, ou rosâtre, avec des ponctuations régulièrement dis-
posées en travqrs des ventrales, tandis que chez les Liopholidophis, sauf
exceptions, le ventre est jaunâtre ou blanchâtre, irrégulièrement taché
de noir.”
A Madagascar s’observent quatre espèces L. rhodogaster (Schlegel,
1837) ; L. torquatus (Boulenger, 1888) ; L. trilineatum Boulenger, 1896
et L. vaillanti (Mocquard, 1901) qui ne sont pas rares et sont bien
représentées en collection. Jourdran (1904) avait donné des représenta-
tions d’un jeune L. vaillanti (PI 6) et d’un L. torquatus (PI 6). La
présence de L. vaillanti à la Réunion, signalée par Guibé (1958), reprise
par Blanc (1971), demande à être confirmée car cette localisation ne
repose, pour le moment, que sur un spécimen du Muséum de Paris dont
les conditions d’entrée en collections laissent subsister quelques doutes
quant à son origine réelle.
Avec ce genre nous rencontrons le premier des deux genres d’ophi-
diens malgaches ayant des représentants au Comores. L. mayottensis
(Peters, 1837) a été décrit comme Ablades ( Enicognathus) rhodogaster
var. mayottensis ce qui soulignait bien ses affinités avec 1’espèce de la
Grande Ile, si bien caractérisée par la coloration rouge-violacée de son
abdômen, encore nette sur les sujets conservés depuis longtemps en álcool-
Cette forme, endémique de Mayotte, füt placée dans le genre Polyodonto-
phis par Boulenger (1896) qui lui reconnut le statut d’espèce. Leviton
et Munsterman (1856) la placèrent dans le genre Parasibynophis avant
que Guibé (1958) ne la transferre dans le genre Liophidium.
6.10. Les Lycoáryas.
Les Lycodryas sont des colubridae opisthoglyphes à pupille verticale
de Madagascar et des Comores. En 1958, Guibé mit en synonymie le
genre Stenophis, créé par Boulenger en 1896, pour des serpents de Mada¬
gascar et des Comores avec le genre Lycodryas créé près de vingt ans
plus tôt par Günther (1879) pour une espèce des Comores:
“La séparation des genres Lycodryas Günther et Stenophis Boulenger
ne repose en fait sur aucun caractère valable.”
Alors que dans le genre Liophidium il s’agissait d’un genre malgache
ayant une forme aux Comores, il semple bien qu’ici que nous ayons un
genre appartenant réellement aussi bien aux Comores qu’à Madagascar.
Les espèces malgaches sont théoriquement au nombre de 6 avec une
sous espèce mais deux espèces: L. variabilis (Boulenger, 1896) et L.
inornatus (Boulenger, 1896) ne sont connues que par les types. Òn peut
s’interroger sur leur validité lorsque l’on garde en mémoire 1’observation
de Guibé (1958) : “Les espèces du genre sont remarquables par la grande
variabilité de leur écaillure.”
41
SciELO
URYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. Hutantan, 46 : 19-58, 1982.
L. gaimardi (Schlegel, 1837) fút l’une des premières décrites des
espèces de Madagascar. Pour Jourdran (1904) c’est: “La plus belle
forme, peutêtre de tous les serpents de Madagascar, la plus jolie comme
coloration”; cet auteur en donne deux représentations (PI 6 et 18).
Cette espèce est en effet bien caractérisée par la série de bandes
transversales foncées.
Guibé (1958) a ramené au rang de sous-espèce de L. gaimardi Steno-
phis granuliceps Boettger, 1896 dont Mocquard (1909) et Boulenger
(1915) admettaient la validité. Par ailleurs le même auteur suit Boulen¬
ger et place Dipsas ( Heterurus ) gaimardi var. comorensis Peters, 1873,
connu par un juvénile de Mayotte, dans la synonymie de la forme nomi-
nale. L. gaimardi gaimardi serait ainsi la seule espèce a avoir des repré-
sentants à la fois à Madagascar et aux Comores.
Les Lycodryas des Comores comprennent deux espèces: L. maculatus
(Günther, 1858) et L. sanctijohannis (Günther, 1879). Jusqu’en 1970,
L. maculatus n’était connu que par le type, un mâle d’origine inconnue.
Décrivant deux femelles de cette espèce en 1970, Domergue pouvait en
préciser la terra typica puisque l’une provenait de Grande Comore et
1’autre de Moheli.
L. sanctijohannis Günther, 1879 avait d’abord été décrit d’Anjouan.
Boettger (1913) proposa la création d’une variété mayottensis pour un
spécimen rapporté de Mayotte par Voeltzkow. Les collections du Muséum
de Paris possèdent des spécimens d’Anjouan, de Mayotte et de la Grande
Comore. Boettger (1913) avait déjà signalé la présence de 1’espèce dans
cette dernière íle.
6.11 Les Geodipsas
Avec les Geodipsas, genre de colubridae opisthoglyphes et à pupille
ronde, nous rencontrons le seul taxon de cette famille ayant à la fois des
espèces en Afrique et à Madagascar, en nombre égal d’ailleurs, 3 de
chaque côté. Celles d’Afrique sont observées au Cameroun, au Zaire et
en Afrique orientale.
Le genre Geodipsas a été créé en 1896 par Boulenger pour deux
espèces malgaches décrites dans le genre Tachymenis: T. infralineata
Günther, 1882 et T. boxáengeri Peracca, 1892, sans désignation d’espèce
type. En 1936, Angel ajouta une troisième espèce G. heimi. Mais G. bou-
lengeri et G. heimi ne sont connus que par les seuls types, si l’on y ajoute
qu’Angel lui-même consídérait son espèce comme très proche de boulengeri
et que l’une et 1’autre espèce proviennent de la même région de Mada¬
gascar, la vallée de 1’Onive (G. boidengeri) et celle du Sahandrato (G.
heimi), appartenant donc toutes deux au domaine de la région Sud Est,
on ne peut que se poser des questions sur la validité d’au moins 1’une de
ces deux espèces.
L’espèce G. infralineata est beaucoup mieux représentée dans les
collections. Décrite de l’est du pays Betsileo elle a été récoltée dans la
région Est et sur les plateaux. Un couple, du à Paulian, vient du Tsarata-
nana (2.000m), un spécimen de la gaine d’un Ravenala de Périnet.
42
cm
SciELO
10 11 12 13 14 15
HKYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. Hutantan, 4fí:l 9-58, 1982.
6.12 Cinq genres à espèces “rares”
Pour être complète, cette présentation de la faune ophidienne mal-
gache doit se poursuivre par l’énumération d’un certain nombre de genres
et d’espèces connus par dê très rares spécimens et souvent par les seuls
types, ce qui à la fois souligne 1’extraordinaire richesse de cette faune et
la grande nécessité d’organiser des prospections systématiques avant que
1’évolution inexorable qu’entraine la destruction des biotopes n’ait fait
disparaitre à jamais les témoins d’une vie reptilienne si richement diver-
sifiée.
Le genre Alluaudina comprend deux espèces de colubridae opistho-
glyphes à pupille ronde, l’une de 1’extrême nord (A. bellyi Mocquard,
1894), 1’autre du nord-ouest ( A. mocquard,i Angel, 1939) ; le type de cette
dernière espèce a été découvert par Decary, engourdi et roulé sur une
console stalagmitique dans une grotte totalement obscure de la Mananjeba.
Les représentants de ce genre sont les seuls ophidiens à Madagascar, avec
les Langaha, à avoir des écailles carénées.
Deux autres genres de colubridae, aglyphes à pupille ronde, ont en
commun de n’être connus que par un seul spécimen juvénile: Compsophis
albiventris Mocquard, 1894 de la montagne d’Ambre et Heteroliodon
iorquatus Boettger, 1913 de la région de Tuléar. Schmidt et Inger (1957)
considèrent cette dernière espèce comme une forme fouisseuse, en raison
de “son nez en pelle”. C’est peut être aller un peu vite en besogne. Des
données complémentaires sont nécessaires.
Pour les deux derniers genres cités, qui sont encore des colubridae
aglyphes à pupille ronde, eux aussi monospécifiques, dont les types pro-
viennent pour l’un et 1’autre de Nossi Be, la situation est à peine meil-
leure: Micropisthodon ochraceus Mocquard, 1894 dont Guibé (1958) ne
signale l’existence que de deux exemplaires alors que pour Domergue
(1969) il y en aurait 4 de connus, et Pararhadinea melanogaster Boet¬
tger, 1890, connu par deux spécimens dont l’un est le type de Rhabdoto-
phis subcaudalis Werner, 1909 que Boulenger (1915) plaçait dans le
genre Pseudoxyrhopus et dont Guibé (1958) a fait un synonyme de
P. melanogaster.
7. RECHERCHES RÉCENTES
La prospection de la faune ophidienne malgache au cours des vingt
dernières années s’est accompagnée d’un certain nombre de recherches
qui, dépassant le simple domaine faunistique dont 1’importance ne doit
cTailleurs en aucun cas être sous estimé, avaient pour but soit de fournir
des éléments susceptibles d’apporter une aide à la systématique comme
1’étude des hémipénis et celle de la sérologie soit de préciser la place des
serpents dans les écosystèmes comme 1’étude des poisons et celle des
parasites.
Nous passerons rapidement en revue ces quatres domaines.
43
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mcm. Inst. Butantan, 40:19-58, 1982.
7.1 Recherches sur les Hémipénis
Dès 1893, E. D. Cope attribuait une importance particulière à la
configuration de 1’hémipénis pour venir à bout des incertitudes de la
systématique des Ophidiens. Cette idée ne füt pas facilement admise et
il fallut attendre 1928 pour voir paraítre des travaux importants sur ce
sujet. Ce füt d’une part Z. R. Dunn qui classa les Colubridés américains
par leur caractères penniens et d’autre part J. Vellard qui fit connaitre
les résultats de ses travaux au Brésil et singulièrement à 1’Institut Bu¬
tantan. Ce même auteur, presque vingt ans plus tard, en 1946, donna la
synthèse de ses obser*vations, insistant sur 1’intèrêt de 1’étude de 1’évolu-
tion de l’hémipénis pour établir la phylogênie des Serpents (31). L’idée
avait fait son chemin et divers auteurs utilisent aujourd’hui ce caractère
anatomique. En Afrique, une application systématique en fut faite par
Bogert (1940) qui examina l’hémipénis d’une espèce malgache, Liophi-
dium torquatus. En 1956, ce fut 1’examen par Leviton et Munsterman
des hémipénis de Liophidium torquatus et de L. rhodogaster. Depuis 1962
une attention particulière est portée à 1’étude de ce caractère par Ch. A.
Domergue, mais dès 1904, F. Mocquard utilisait le caractère bifurqué des
hémipénis pour séparer le nouveau genre Liopholidophis qu’il créait, de
1’ancien genre Tropidonotus:
“.il importe de le remarquer, on ne les (les hémipénis bifur-
qués) rencontre pas en même temps que les hémipénis simples chez les
espèces d’un même genre homogène”.
En 1962, Domergue décrivait l’hémipénis de Mimophis mahfalensis
dont nous avons déjà vu 1’intérêt biogéographie et phylogénique. Dans
le même travail il faisait connaitre les grandes lignes de la structure de
celui de Liopholidophis lateralis “pénis franchement divisé, à branches
très aplaties, de forme remarquable parmi ceux des espèces que j’ai
observées jusqu’ici”. Un an plus tard, en 1963, il écrivait:
“A 1’exception du genre Mimophis, les pénis des 17 espèces exami-
nées présentent la division du sillon et deux apex; chez 16 espèces, les
apex sont portés par des branches distinctes plus ou moins développées,
tandis que chez la 17ème, Madagascarophis, les branches sont coales-
centes”. En 1972 il publia des dessins des hémipénis de Liopholidophis
lateralis et d’une nouvelle espèce L. thieli. Ch. A. Domergue a réuni une
masse d’observations considérable sur la faune ophidienne de Madagascar
et en particulier sur la morphologie des hémipénis de nombre d’espèces,
il est souhaiter qu’il ne fera pas trop attendre la publication de ces
éléments indispensables pour la connaissance des serpents de la Grande
Ile, ainsi que la publication de sa Faune des Ophidiens de Madagascar
annoncée depuis 1962. Le dernier travail sur des hémipénis de serpents
malgaches est sans doute celui de W. Branch (1981) qui étudia ceux des
Boidés Acrantophis et Sanzinia sans d’ailleurs y trouver la solution sur
1’origine des Boidés de Madagascar.
(31) On ne voit pourquoi Dowling écrivait en 1967:
“However, only Dunn (1928) and Bogert (1940) have attempted to use it (the hémipénis as
a taxonomic character) as a major character in colubrid classification in recent times...”
ignorant ainsi 1’importante contribution de Vellard alors que le même auteur, en collaboration
avec Savage, avait écrit en 1960 :
“Vellard (....) is the only other student to deal with hemipenial features as they relate
to problems of major classification.”
44
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mcm. Inat. Butantan, 46: 19-58, 1982.
7.2 Sérologie
En 1969, avec Ch. A. Domergue, Dodin et Pinon nous avons utilisé
la technique de la double diffusion en gélose pour 1’étude des constituants
sériques d’un certains nombre de serpents malgaches. Chez les Boidés,
le sérum anti -Sanzinia qui donnait sept lignes de précipitation en présence
du sérum homologue, n’en donnait plus que cinq avec les sérums d’
Acrantophis, sans qu’il soit possible de mettre en évidence une différence
selon 1’espèce d’ Acrantophis en cause. Ce même sérum ne donnait qu’une
seule ligne de précipitation en présence des sérums des neufs espèces de
Colubridés testées. Pour les Colubridés nous avons préparé trois anti-
sérums, un avec chacune des espèces de Leioheterodon. Nous avons
retrouvé sept systèmes précipitants chaque fois que 1’antisérum était mis
en présence du sérum homologue, par contre, lorsque 1’antisérum était
mis en présence du sérum de l’une des deux autres espèces il ne donnait
plus que six bandes de précipitation apportant ainsi une confirmation
sérologique à la valeur des trois espèces. En prenant comme système de
référence les protéines de Leiohetorodon modestus, les genres de Colu¬
bridés de Madagascar se classent, du point de vue sérologique, en raison
de leur affinité décroissante pour Leiohetorodon, de la manière suivante:
a) Langaha, Mimophis et Dromycodryas, cinq systèmes de préci¬
pitation,
b) Micropisthodon et Lycodryas, quatre systèmes de précipitation,
c) Liopholidophis et Pseudoxyrhopus, trois systèmes de précipi¬
tation,
d) Madagascarophis, deux systèmes de précipitation,
e) Ithycyphus, un système de précipitation.
II est tout à fait remarquable que du point de vue sérologique le
genre Ithycyphus n’a pas plus d’affinité avec Leioheterodon que n’en ont
les Boidés. Ón relèvra également que parmi les trois genres ayant le
rnaximum d’affinités sérologiques avec Leioheterodon, genre de serpents
aglyphes, se trouvent un genre d’aglyphes ( Dromycodryas ) et deux
genres d’opisthoglyphes (Langaha et Mimophis).
L’année suivante nous avons repris ces recherches en utilisant l’im-
munoélectrophorèse et en introduisant un sérum anti Madagascarophis
colubrinus. II est apparu que la technique de double précipitation en
gélose permettait une meilleure sélectivité des résultats que celle 1’immu-
noélectrophorèse.
Ces techniques trop peu utilisées, encore qu’une publication toute
récente de Schwaner et Dessauer (1981) étudie les relations des Boas
Papous par immunodiffusion, peuvent être d’un grand secours pour 1’étude
des espèces dont les captures d’individus sont rares, empéchant ainsi
toute étude biométrique. Leur intérêt doit rester présent à l’esprit de
tout récolteur. La grande diffusion des moyens de congélation rend moins
^probable 1’éventualité de pouvoir conserver dans de bonnes conditions,
au fins de recherches ultérieures, le sérum d’un spécimen qu’il ne serait
Pas possible de conserver vivant.
45
cm
SciELO
10 11 12 13 14 15
URYGOO, E. R. Les ophidiens de Madagascar. Mem. lnnt. ltutantan, 4fí:19-58, 1982.
7.3 Parasitologie des Ophidiens de Madagascar
Depuis un peu plus de 20 ans, la faune parasitaire des Ophidiens de
Madagascar a fait 1’objet d’une importance série de travaux, en particulier
sous la direction et 1’impulsion d’Alain Chabaud et de ses élèves. La liste
des résultats acquis est donnée en annexe (9.4).
La faune parasitaire des Boidés malgaches présente un intérêt
particulier car l’on sait les secours que l’on attend parfois de la
parasitologie pour éclairer tel problème de systématique ou de
biogéographie. Au stade actuel des connaissances trop dhnconnues
demeurent en ce qui concerne la faune parasitaire des Boidés en général
pour que soit venu le temps des comparaisons utiles. Les observations
faites à Madagascar n’en sont pas moins dignes d’intérêt. C’est ainsi, que
l’on note chez les Boidés la présence d’un pentastome porocéphale qui est
loin d’être rare dans les poumons de ces Ophidiens.
Sur du matériel récolté em 1898, par A. Mocquérys, les formes
adultes “chez un serpent dont 1’espèce et le genre n’ont pas été
mentionnés” et les formes nymphales dans le foie et le poumon d’un
“hérisson”, Gilioli créa en 1922 1’espèce Armillifer brumpti (32). En 1954,
après la découverte de formes nymphales chez un Lémurien, Chabaud
et Choquet conclurent qu’il ne pouvait s’agir d’une espèce du genre
Armillifer et créérent pour elle le nouveau genre Gigliolella, Les rapports
entre ce genre et les autres représentants de 1’ordre des Porocephalida
n’ont, semble-t-il, pas été discutés depuis. Peut-être y a-t-il là une voie
de recherche intéressante. Les larves et nymphes de ce pentastome ne
sont pas rares chez les insectivores malgaches, proies naturelles des
Acrantophis et Sanzinia. Nous les avons rencontrés chez Tenrec ecaudatus,
Hemicentetes semispinosus et Oryzoryctes talpoides. L’infestation au
laboratoire des souris blanches se fait sans difficulté (Brygoo,
1963). Acrantophis dumerüi est également 1’hôte d’un pentastome
céphalobaenidé, Mahafaliella tetrapoda Gretillat, Brygoo et Domegue,
1962; mais ce parasite beaucoup plus rare, n’a sans doute pas le même
intérêt que le Gigliolella pour des études comparatives.
Parmi les parasites d’ophidiens malgaches nous ne citerons encore
que YHepatozoon domerguei du Leioheterodon modestus parce que 1’étude
expérimentale de cette espèce a permis à Irène Landau de découvrir des
mécanismes fondamentaux assurant la perennité de 1’infection chez les
sporozoaires coccidiomorphes et en particulier 1’existence d’une
endogénèse et d’un double cycle de transmission.
Salmonelles.
Bien qu’il ne s’agisse pas de parasites au sens strict, on ne peut
traiter des hôtes des serpents sans évoquer des bactéries qui peuvent
avoir un rôle en pathologie humaine, les salmonelles. A Madagascar,
comme ailleurs, les Serpents sont les hôtes naturels et par là même des
disséminateurs dont le rôle ne peut être négligé de ces agents pathogênes.
(32) Giglioli notait justement 1’absence de hérisson :i Madagascar mais il se trompait quand il
croyait pouvoir affirmer que 1’hôte était un Tenrec. L/insectivore malgache qui, par son
apparence extérieure, ressemble le plus à un hérisson européen est le Setifer setosus, c’est
donc probablement lui le “hérisson” de Mocquérys.
cm
SciELO
10 11 12 13 14 15
URYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. fíutantan, 4tf:19-58. 1982.
Voici près de 20 ans déjà, P. Le Noc publiait une première note oü il
regroupait les résultats de 1’isolement des salmonelles chez les Serpents.
Depuis les recherches en ce domaine se sont poursuivies à 1’Institut Pas-
teur Madagascar et en 1978, Lhuillier, Zeller et Lerainor pouvaient en
donner un bilan particulièrement évocateur puisque le tableau
récapitulatif comprend 33 sérotypes différents, isolés de serpents, dont
de nombreux découverts pour la première fois à Madagascar.
7-4. Serpents malgaches et Poisons.
II peut paraitre curieux de traiter des poisons de serpents malgaches
alors que l’une des caractéristiques de la faune de Madagascar, célébrée
par tous les voyageurs et explorateurs, était justement 1’absence
d’animaux venimeux. Comme toujours la nature, infiniment complexe,
ne nous permet pas d’établir des divisions aussi tranchées.
Sept des 16 genres de Colubridae de Madagascar sont constitués de
serpents opisthoglyphes, avec parmi eux certaines des espèces les plus
répandues, aussi 1’éventualité d’accidents d’envenimation ne peut-elle
être exclue à priori. De fait, deux cas de morsure avec envenimation, tous
deux du à Madagascarophis colubrinus, ont été signalés. Le premier par
Mertens (1955) qui écrit simplement, à propos de ce serpent:
“deren Biss nicht eben angenehm ist, wie wir erfahren mussten,
ais eine Laborantin beim Auspacken eines solchen Tieres gebissen wurde.”
Le second par Domergue (1964) qui donna une observation beaucoup
plus complète. Une morsure à la première phalange de 1’index
s accompagna des symptômes suivants:
“Apparition quasi-immédiate d’une tâche hémorragique aux points
fie morsure, évoluant en escarre; développement rapide d’un oedème
mtense, mais qui restera localisé à la main et à l’avant-bras; absence
fie suffusions sanguines et de traces hémorragiques éloignées; absence
fie troubles généraux.” L’oedème de la main persista huit jours, celui
du doigt trois semaines avec nécrose de la région mordue.
Mais les Opisthoglyphes ne sont pas les seuls à élaborer des
substances venimeuses. Domergue et Richaud (1971) ont ainsi pu
démontrer 1’existance d’une activité hémolytique des secrétions des glandes
de Duvernoy chez Leioheterodon. Ayant noté, à la suite d’une morsure
accidentelle par un L. geayi, un retard de coagulation ces auteurs ont
e xpérimenté avec les glandes de L. geayi et de L. modestas. L’extrait de
glande injecté à la souris par voie intrapéritonéale la tue d’hémorragie
en 20 minutes, cet extrait n’est pas actif sur le lézard Oplurus. In vitro
les globules rouges de souris, de lapin et de poule sont hémolysés,
plusieurs enzymes sont en jeu. Mais cette propriété de la secrétion de
In glande de Duvernoy n’est pas générale, ainsi que Pa monté 1’absence
réaction de la souris après inoculation d’extrait de glande de
Liopholidophis lateralis, (Domergue, 1972:1401).
Dans le domaine des relations entre serpents et venins à Madagascar
une observation intéressante a été faite par Groves (1978). Après
nonstatation de la mort d’un Sanzinia madagascariensis d’élevage, au zoo
f' e Baltimore, consécutive à Pingestion d’un Bufo woodhousei fowleri cet
47
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. Iiutantan, 46:19-68, 1982.
auteur obtint en 5 minutes la mort d’un Leioheterodon madagascariensis,
également cTélevage, après ingestion d’un crapaud de la même espèce.
Groves rappelle qu’il n’y a pas de crapaud à Madagascar.
* * *
A 1’issue de cette brève revue des Ophidiens de Madagascar oü nous
avons retrouvé les caractères remarquables de la Flore et de la Faune
malgaches avec leur extraordinaire endémisme et les problèmes qu’elles
posent au biogéographes, je ne puis que souligner 1’importance des lacunes
de nos connaissances et 1’urgence qu’il y a d’y porter remède. La faune
ophidienne malgache est en voie d’extinction rapide. II s’agit d’une
responsabilité internationale car on ne peut reprocher à des hommes qui
en sont encore à lutter pour leur survie de ne pas se soucier des forêts
et des faunes qu’ils détruisent. Notre responsabilité dans la destruction
du monde vivant est collective.
Paris, octobre 1981.
8. BIBLIOGRAPHIE DES SERPENTS DE MADAGASCAR
POSTÉRIEURE À 1909
Pour la bibliographie antérieure à 1909 se repórter à
MOCQUARD, F. Synopsis des familles, genres et espèces des Reptiles écailleux
et des Batraciens de Madagascar. Nlles. Arch. Mus. Paris, 5ème S., 1 :109,
1909.
ANDERSSON, L.G. Reptiles and Batrachians from the North-West of Madagascar
collected by V. Kaudern 1906-1970. Arkiv f. Zoologi (Stockholm), 7(7) : 1-15,
1910.
ANGEL, F. Liste des Reptiles et Batraciens rapportés de Madagascar par M. G.
Petit. Buli. Mus. nat. Hist. nat. 31 :60-64, fig., 1925.
- Matériaux de la mission G. Petit à Madagascar, ibid. 2ème S., 1 :
358-362, 1930.
Contribution à 1’étude de la faune de Madagascar. Faune Colonies
françaises, 4:495-536, fig., 1931.
Reptiles et Batraciens de Madagascar et description d’une nouvelle
espèce du genre Rhacophorus. Buli. Mus. nat. Hist. nat., 6 (2) :247-249, 1934a.
Sur une collection de Reptiles et de Batraciens de Madagascar. Faune
Colonies françaises, 5(6) :311-320, 1934b.
Sur la validité spécifique de deux espèces de couleuvres de Madagascar.
Arch. Mus. Paris, 12(6) :465-467, 1935a.
Contribution à 1’étude faunistique de la réserve du Mampetsa. Ann.
Sei. nat. Paris, Zool., 18(10) :470-473, 1935b.
Matériaux herpétologiques recueillis à Madagascar par R. Heim. Buli.
Mm. Hist. nat., 8(2) :125-139, 1936.
Deuxième note sur les Reptiles récoltés à Madagascar par le Prof.
Millot. Mém. Inst. sei. Madag. A, 3(2) : 157-164, 1949.
Reptiles et Amphibiens de Madagascar et des iles voisines faisant
partie des collections du Musée zoologi que de Strasbourg. Buli. Mus. natn.
Hist. nat., 22(2) :553-558, 1950.
48
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. Butantan, 46:19-68, 1982.
ANTHONY, J. Essai sur 1’évolution anatomique de 1’appareil venimeux des Ophi¬
diens. Ann. Sei. nat., Zool. llème S., 17:7-53, 1955.
& GU1BÉ, J. Casarea, forme de passage entre les Boidés et les serpents
protéroglyphes. C. R. Acacl. Sei., 233: 203-204, 1951a.
ANTHONY, J. & GUIBÉ, J. Les affinités anatomiques de Bolyeria et de Casarea
(Ophidiens). Mém. Inst. sei. Madag. A, 7(2) : 189-201, figs., 1951b.
ARNOULT, J. Reptiles, Batraciens et Poissons d’ornement de Madagascar. —
Naturaliste malgache, 4:123-131, 1952.
& FOURMANOIR, P. Sur me collection de poissons marins et de
reptiles provenant de 1’ile de Nossi-Bé (Madagascar). Buli. Mus. natn. Hiet.
nat. 2ème S., 3.9 (1) :134-142, 1967.
AUFFENBERG, W. The trunk musculature of Sanzina (sic) and its bearing on
certain aspects of the myological évolution of Snakes. Breviora (Mus. comp.
Zool. Cambridge, Mass.) n.° 82, 12p., 4 fig., 1958.
BAIN, O. & GHADIRIAN, E. Description d’une nouvelle espèce de Dioctowittus
(Nématode) et note sur la position systématique du genre. Ann. Parasit.,
42: 643-650, 1967.
BARBOUR, T. Amphibia and Reptiles in Vertebrata from Madagascar. Buli. Mus.
comp. Zool. (Cambridge), 51:480-489, 1918.
BEDDARD, F.E. Contributions to the Knowledge of the Vascular and Respiratory
Systems in the Ophidia, and to the Anatomy of the Genera Boa and Corallus.
Proc. zool. Soe. London, (l):499-532, 1906.
- A Comparison of the Neotropical Species of Corallus, C. cookii, with
C. madagascariensis; and on some points in the Anatomy of Corallus caninus.
ibid., (1) :135-158, 1908.
- Some Notes upon Boa occidentalis and Boa (Pelophilus) madagasca¬
riensis. ibid., (2) :918-927, 1909.
BLANC, C.P. Les Reptiles de Madagascar et des lies voisines. Ann. Univ. Madag.
(8) :95-178, 1971.
-- Les Reptiles de Madagascar et des lies voisines in Biogeography and
Ecology in Madagascar, Battistini et Richard-Vindard edit., Junk publ. 1972,
501-614.
BOETTGER, O. Reptile und Amphibien vou Madagascar, den Inseln und den
Festland Ostafrikas. Voeltzkow Reise Ostafr., IV, 1913.
BOGERT, C.M. Herpetological results of the Vernay Angola Expedition. Buli.
Amer. Mus. natn. Hist., 77( 1) : 1-107, 1940.
BOULENGER, G.A. A list of snakes of Madagascar, Comoro, Mascarenes and
Seychelles. Proc. zool. Soc. London, 369-382, 1915.
BOURGAT, R.M. Recherches écologiques et biologiques sur le Chamaeleo pardalis
Cuvier, 1829 de Vlle de la Réunion et de Madagascar. Thèse Doct. Sei. Univ.
Montpellier, CNRS AO 2557, 1969.
BRANCH, W.R. Chromosome morphology of the Madagascar tree boa Sanzinia
madagascariensis. S. afr. J. Zool., 15( 2) :79-82, 1980.
Hemipenes of the Madagascars Boas Acrantophis and Sanzinia with
a review of hemipenial Morphology in the Boinae. J. Herpet. 15(1) :91-99, 1981.
BRANCH, W.R. & ERASMUS, H. Reproduction in Madagascar ground and tree
boas. Intern. Zoo Yearbook, 16: 78-80, 1976a.
-, - Reproduction in the Madagascar boas Acrantophis mada¬
gascariensis, A. dumerili and Sanzinia madagascariensis. Lacerta, .74:82-91,
1976b.
BRONGERSMA, L.D. On the presence or absence of hypapophyses under the
posterior precaudal vertebrae in some snakes. Zool. Meded. Leiden, 20: 240-242,
1938.
49
cm
SciELO
10 11 12 13 14 15
RRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inat. Butantan, 4(7:19-58, 1982.
- Some remarks on the pulmonary artery in snakes with two lungs.
Zool. Verth., 4 /:l-36, 1951.
On the “Histoire naturelle des Serpens” by de la Cépède, 1789 and
1790, with a request to reject this work as a whole and with proposals to place
seven names of snakes, being nomina oblita, on the official index of rejected
and invalid names in zoology, and to place three names of snakes on the official
list of specific names in zoology (Class Reptilia) Z. N. (S.) 1985. Buli. zool.
Nomencl. 29 ( 1):44-61, 1972.
BRYGOO, E.R. Contribution à Ia connaissance de la parasitologie des Caméléons
malgaches. Th. Doc. Sei. Paris, Masson édit. et Ann. Parasit., 35:149-334 et
525-739, 1963.
Hématozoaires de Reptiles malgaches. III. Deux trypanosomes nouveaux:
Trypanosoma haranti n. sp. parasite d’Ophidien et Trypanosoma domerguei n. sp.
parasite dTguane. Arch. Inst. Pasteur Madagascar, 34(l):47-54, 1965.
CHABAUD, A.G. Deux Nématodes parasites de serpents malgaches. Mém. Inst.
Sei. Madagascar A, 74:95-103, 1960.
& BRYGOO, E.R. Nématodes parasites de Caméléons malgaches. Ann.
Parasit., 37(4) :569-602, 1962.
& CHOQUET, M.T. Nymphes du Pentastome, Gigliolella (n. gen.)
brumpti (Giglioli, 1922), chez un Lémurien. Riv. Parasit. Uai., 75:331-336, 1954.
CONANT, R. A note on Eggs and Youngs of Leioheterodon madagascariensis
(Duméril et Bibron). Zoologica (N.Y.), (4) :389-391, 1938.
DARLINGTON, P.J. Zoogeography. The geograph distribution of animais. New
York, J. Wiley and Sons, 675 p, 80 fig., 1957.
DEBLOCK, S., ROSÉ, F. & BROUSSART, J. Ophiotaenia ventosaloculata n. sp.
parasite d’Ithycyphus miríiatus (Ophidien colubridé) à Nossi-Bé. Arch. Inst.
Pasteur Madagascar, .?7 (1) : 15-20, 1962.
DECARY, R. La protection de la faune et de la flore de Madagascar. Rev. Hist.
nat. appl. Paris, (7) : 148-167, 1926.
- Animaux de Madagascar. — Ann. Mus. colon. Marseille, 4 (6) :197-234,
1946.
- La faune malgache, son rôle dans les croyances et les usages indigènes.
Paris, Payot édit., 1950, 236 p.
DOMERGUE, A. Observations sur les pénis des Ophidiens (2ème note). Buli. Soc.
Sei. nat. phys. Maroc, 42:87-105, 1962.
Un serpent venimeux de Madagascar: Madagascarophis colubrina. Buli.
Acad. Malgache, 1902, 40: 97-98, 1964.
- Clé simplifiée pour la détermination sur le terrain des serpents communs
de Madagascar, ibid. 1967, 45(2) : 13-26, 1969.
Notes sur les serpents de la région malgache. Lycodryas maculatus
(Günther, 1858), espèce des Comores. Description de deux femelles. Buli. Mus.
natn. Hist. nat. 2ème S., 42(3) :449-451, 1970.
Etude de trois serpents malgaches: Liopholidophis lateralis (D. et B.),
L. stumffi (Boettger) et L. thieli n. sp., ibid. Sème S. (103) Zool., 77:1397-1412,
1972.
DOMERGUE, C.A.; DODIN, A.; PINON, J.M. & BRYGOO, E.R. Première applica-
tion des techniques sérologiques à 1'étude de la systématique des serpents de
Madagascar. Arch. Inst. Pasteur Madagascar, 38 (1) :175-180, 1969.
DOMERGUE, C.A. & RICHAUD, J. Activité hémolytique des secrétions des glandes
de Duvernoy chez Lioheterodon (Colubridé aglyphe). ibid., 90(1) : 195-198, 1971.
-, - & BRYGOO, E.R. Application des techniques sérologiques
à 1’étude de la systématique des serpents de Madagascar. Immunoélectrophorèse.
C. R. Soc. Biologie, 164 (12) :2690-2692, 1970.
50
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. Butantan, 46:19-58, 1982.
DOWLING, H.G. Classification of the Serpents: A Criticai Review. Coneia (1):
38-52, 1959.
Hemipenes and other characters in colubrid classification. Herpetologica,
27:138-142, 1967
& SAVAGE, J.M. A Guide to the Snake Hemipenis: a survey of basic
structure and systematic characteristics. Zoologica; 45(1) : 17-27, 1960.
& SPENCOOK, S. Department of reptiles. Rep. N. Y. Zool. Soc. 68:
26-30, 1963.
DUNN, E.R. A tentative key and arrangement of the american genera of Colu-
bridae. Buli. Antivenin Inst. America, 2(1) : 18-24, 1928.
DUPLAIX-HALL, N. Reptiles bred in captivity. Int. Zoo Yb., 14:333, 1974.
Reptiles bred in captivity. ibid. 15:320, 1975.
FAIN, A. Les acariens mésostigmatiques ectoparasites des serpents. 2. Heçnilae-
laps lioheterodon sp. n. nouvelle spèce de Madagascar. Buli. annls Soc. r. ent.
Belg., 103: 196-199, 1967.
FOEKEMA, G.M.M. Vijf geboorten bij Sanzinia madagascariensis (Serpentes,
Boidae). Lacerta, 29:43-48, 51-57, 1971.
- Lacerta, 39 (9-10) :151-164, 1974.
* Ontwilkeling en voortplanting van Sanzinia madagascariensis in een
huiskamerterrarium. ibid., 33: 71-82, 1975.
GENEST-VILLARD, H. Développement du crâne d’un boidé: Sanzinia madagas¬
cariensis. Mém. Muséum natn. Hist. nat. S.S., A, Zool., 40(5) :207-262, 6 pl.,
1966.
GHADIRIAN, E. Nématodes parasites d’Ophidiens malgaches. Mém. Mus. nat.
Hist. nat., N.S., A Zool., 54(l):l-54, 1968.
GIGLIOLI, G. Armillifer brumpti n. sp., nouvelle espèce de Linguatulidé de Mada¬
gascar. Buli. Soc. Path. exot., 15: 565-572, 1922.
GOLVAN, Y.J. Le phylum des Acanthocéphales (Deuxième note). La classe des
Eoacanthocephala (Van Cleave, 1936). Ann. Parasit., 54:5-52, 1969.
& BRYGOO, E.R. Acanthocéphales de Madagascar (Deuxième note).
Le genre Pseudopororchis Joyeux et Baer, 1935. ibid., 40(5) :543-548, 1965.
GOSWAMI, M.N.D. & ROSENBERG, A.J. Etude comparative de trois enzymes
hépatiques métabolisant la tyrosine chez les Vertébrés au cours de 1’évolution
(tyrosine alpha-cétoglutarate aminotransférase, parhydroxyphénylpruvate hydro-
lase, homogentisate oxygénase). C. R. Acad. Sei. Paris, (1968) 267 D:2224-2227,
1969.
GRANDIDIER, G. & PETIT, G. Zoologie de Madagascar. Paris, 1932.
GRETILLAT, S.; BRYGOO, E.R. & DOMERGUE, C.A. Pentastomes de Reptiles
malgaches. Ann. Paras., 57(3) :295-313, 1962.
GROVES, F. Fatal toad poisoning in snakes. Herp. Review, 9( l):19-20, 1978.
GROVES, J.D. Int. Zoo Yb, 75:106, 1973.
- , & MELLENDICK, J.R. Breeding the Madagascar boa at Baltimore
zoo. Int. zoo Yb., 75:106, 1973.
GÜNTHER, A. On the geographical Distribution of Reptiles. Proc. zool. Soc.
London, 76:373-398, 1958.
GUIBÉ, J. Sur le dimorphisme sexuel des espèce du genre Langaha (Ophidien).
C. R. Acad. Sei. Paris, 226: 1219-1220, 1948.
Révision des Boidés de Madagascar. Mém. Inst. Sei. Madag. A, 5:
95-105, figs., 1949a.
Révision du genre Langaha. Le dimorphisme sexuel et ses conséquences
taxonomiques. ibid: 147-153, figs., 1949b.
51
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. Inst. Butantan, 46:19-68, 1982.
- Etude de Liopholidophis lateralis (D. et B.) et description d’une espèce
nouvelle. ibid .9:241-246, 1954.
-Les Serpents de Madagascar, ibid 12:189-260, 1958.
- Les fossettes labiales et faciales, le sac supranasal. in Traité de
Zoologie, Paris, Masson édit., P.P. Grassé dir., U (3) :378-381, 1970a.
- La reproduction. ibid: 859-892, 1970b.
-La systématique des reptiles actuels. ibid, 1054-1160, 1970c.
HAAS, G. Uber die Morphologie der Keifermuskulatur und die Schadelmechanik
einiger Schlangen. Zool. Jahrb. lena Anat., 54:333-416, 1931.
HAHN, D.E. Anomalepidae, Leptotyphlopidae, Typhlopidae. Das Thierreich. Lief.
101, I-XII, 1-98, 1980.
HETT, M.L. On the family Linguatulidae. Proc. zool. Sco. London, 107-159, 1924.
HEYMONS, R. & VITZTHUM, H. Beitrage zur Systematic des Pentastomiden.
Zeitschr. Parasitenk., 8:1-113, 1936.
HOFPSTETTER, R. Remarques sur la classification des Ophidiens et particulière-
ment des Boidae des Mascareignes (Bolyerinae subfam. nov.). Buli. Mus. natn.
Hist. nat. Paris, 2ème S, 18(1) :132-135, 1946a.
-Les Typhlopidae fossilse. III Un typhlopidé subfossile de 1’ile Maurice.
ibid., 18( 3):313-315, 1946b.
- Un dentaire de Madtsoia (Serpent géant du Paléocène de Patagonie).
ibid., 31 (4) :379-386, 1959.
- Sur la classification des Boidés de Madagascar et des Mascareignes.
ibid., 32(2) : 131-138, 1960.
- Nouveaux restes d’un serpent Boidé (Madtsoia madagascariensis nov.
sp.) dans le Crétacé supérieur de Madagascar, ibid., 33(2) : 152-160, 1961.
- Revue des récentes acquisitions concernant 1’histoire et la systématique
des Squamates Problèmes actuels de Paléontologie (Evolution des Vertébrés)
Coll. C.N.R.S. n.° 243-379, 1962.
HOUIN, R.; GOLVAN, Y.J. & BRYGOO, E.R. Acanthocephalus bigueti n. sp.,
parasite d’un serpent de Madagascar. Buli. Soc. zool. France, 90(5-6) :599-605,
1965.
JÜRGENS, W. Der madagassiche Hundkopfschlanger Corallus madagascariensis.
Blatt. Aquar. Terr. (Stuttgart), 47:32-35, 1936.
KAUDERN, W. Sauropsiden aus Madagascar. Zool. Jahrb. Syst., 45:396-458, 1922.
LANDAU, I. Diversité des mécanismes assurant la pérennité de 1’infection chez
les sporozoaires coccidiomorphes. Mém. Mus. nat. Hist. nat., N.S., A, Zool
77, 62 p., 1973.
---; CHABAUD, A.G.; MICHEL, J.C. & BRYGOO, E.R. Mise en évidence
d’un double mode de transmission chez un Hepatozoon de Reptiles malgaches.
C.R. Acad. Sei. Paris 270D: 2308-2310, 1970a.
-;—.-, Données nouvelles sur le cycle évolutif d 'Hepatozoon domer-
guei; importance de 1’endogénèse; analogies avec d’autres cycles de Coccidies
ibid. 27W: 1679-1681, 1970b.
LE NOC, P. Les salmonelles des serpents de Madagascar. Arch. hist. Pasteur
Madagascar, 31 :91-100, 1962.
LEVITON, A.E. & MUNSTERMAN, H.E. The generic status and subfamily
relationships of the colubrid snakes of the genus Sibynophis in Madagascar.
Occ. Papers nat. Hist. Mus. Stanford Univ. n.° 4, 11 p., 1956.
LHUILLIER, M. & ZELLER, H. Vingt six sérotypes de salmonelles nouveaux
pour Madagascar isolés de différentes espèces animales. Arch. Inst. Pasteur
Madagascar, 1977, 46:61-72, 1978.
-, & LEMINOR, L. Mise à jour du tableau des Salmonelles isolées à
Madagascar jusqu’en 1977. ibid.: 75-78, 1978.
52
SciELO
10 11 12 13
RRYGOO, E. • R. Les ophidiens de Madagascar. Mem. Inat. Butantan, 46:19-58, 1982.
MCDOWELL, S.B. The genera of sea-snakes of the Hygrophis group (Serpentes:
Elapidae). Trans. zool. Soc. London, 52:189-247, 1972.
MADERSON, P.F.A. The distribution of specialized labial scales in the Boidae.
in C. Gans, Biology of the Reptiiia. Acad. Press, 2:301-304, 1970.
MARCHISIN, A. Madagascar. A brief look at its herpetofauna and from whence
it came. Herp. Buli. N. Y. Herp. Soc., 13 ( 2) :2-8, 1978.
MEIER, H. Beobachtungen an der Riesenschlangen Sanzinia madagascariensis. Das
Aquarium, 14 (127) :36-37, 1980a.
-Drei wenig bekannte Schlangen aus Madagaskar. ibid., 14(135):
483-485, 1980b.
MERTENS, R. Die Reptilien des Madagaskar Expedition Prof. Dr. H. Buntschli’s
Senkenberg., 15(3/4) :260-274, 1933.
Nomenklatorisches über die Schlangengattung Eteirodipsas. ibid, 32
(5/6) :307-308, 1952.
- Studien über die Reptilienfauna Madagaskars I. Beobachtungen and
einigen madagassichen Reptilien im Leben. Zool. Carten (NF) 22(1-3):
57-73, 1955.
La vie des Amphibiens et Reptiles. Edit. franc. Horizons de France,
1959.
-Madagaskars herpetofauna und die Kontinentaldrift. Studien über die
Reptilienfauna Madagaskars. VI. Zool. Medel. Rijksm. Leiden, 46(7) :91-98, 1972.
METHUEN, P.A. & HEWITT, J. On a collection from Madagascar during the
year 1911. Ann. meded. Transvaal Museum, 5(4) :183-193, 1913.
MYERS, G.S. Status of the generic name Lioheterodon applied to Madagascan
serpents. Herpetologica, 5(6):146, 1949.
PAULIAN, R. La Zoogéographie de Madagascar et des iles voisines. Fawne de
Madagascar. XIII. IRSM, Tananarive, 1961.
PHISALIX, M. Animaux venimeux et venins. Paris, Masson édit., 1922, 2 t.
PIVETEAU, J. Un Ophidien du Crétacé supérieur de Madagascar. Buli. Soc.
gêol. France, (5)3:597-602, 1933.
PROGSCHA, K.H. & LEHMANN, H.D. Angeborene Missbildungen in einem Wurf
von Sanzinia madagascariensis (Reptiiia, Boidae). Salamandra, 6(3/4) :108-144,
1970.
RICHARD, J. Deux nouveaux Ommatobrephus (Trématode) chez un Ophidien de
Madagascar. Buli. Mus. nat. Hist. nat. 2ème S., 38(5) :690-699, 1966.
ROMER, A.S. Osteology of the Reptiles. The Univ. Chicago Press, 1956. XXI +
772 p.
BOUX-ESTÈVE, R. Révision systématique des Typhlopidae d’Afrique. Reptilia-
Serpentes. Mém. Mus. natn. Hist. nat. Paris, N.S., A, Zool., 87, 313 p., 1975.
--- Une nouvelle espèce de Typhlopidae (Serpentes) du Centre-Est de
Madagascar: Typhlops domerguei. Buli. Mus. natn. Hist. nat. Paris, 4e S 2, A,
(1):321-323, 1980.
SCHWANER, T.D. & DESSAUER, H.C. Immunodiffusion Evidence for the Rela-
tionships of Papuan Boids. J. Herp., 15 (2) :250-253, 1981.
SCHMIDT, K.P. & INGER, R.F. Living Reptiles of the World Chanticleer Press;
édit. française, 1960: Les Reptiles vivants du Monde, Hachette, 1957.
SLOCOMBE, J.O.D. & BUDD, J. Armillifer brumpti (Pentastomida) in a boa in
Canada. J. Wildl. Dis., 9 (4) :352-355, 1973.
STIMSON, A.F. Boidae. Das Tierreich, Berlin, 1969. Leif 89, I-XL 1-49.
STULL, O.G. A check list of the family Boidae. Proc. Boston Soc. nat. Hist.,
40( 8):387-408, 1935.
53
cm
SciELO
10 11 12 13 14 15
RRYGOO, E. R. Les ophidien3 de Madagascar. Mem. Inst. Rutantan, 4 ff : 19-58, 1982.
SUES, H.D. & TAQUET, P. A pachycephalosaurid dinosaur from Madagascar and
a Laurasia-Gondwanaland connection in the Cretaceous. Nature, 279 ( 5714):
633-635, 1979.
UNDERWOOD, G. A contribution to the classifieation of snakes. British Museuni,
1967. 179 p.
- A systematic analysis of boid snakes. In: Morphology and Biology of
Reptiles. Acad. Press. Bellairs edit., 1976. v. 3, p. 157-175.
VAUCHER, C. & BAIN, O. Développement larvaire de Dracunculus doi (Nematoda)
parasite d’un serpent malgache et description de la femelle. Ann. Parasit.,
48 ( 1) :91-104, 1973.
VELLARD, J.A. Importance des caracteres fournies par i hémipenis pour classifi-
cation des ophidiens. Buli. Soc. zool. France, 53:406-418, 1928a.
-O hemipenis dos ophidios. Importância de seu caracteres para a clas¬
sificação das serpentes. Boi. Inst. Vital Brazil, (6) :3-19, 8 pl., 1928b.
- Morfologia dei Hemipenis y evolucion de los Ofidios. Acta zool.
Lilloana, 3:263-288, 1946.
VINSON, J. L’ile Ronde et 1’ile aux Serpents. Proc. r. Soc. Arts Sei. Mauritius,
3(1) :32-52, 1949.
-& VINSON, J.M. The Saurian Fauna of the Mascarene Islands. Buli.
Mauritius Inst., 6(4) :203-320, 1970.
VOELTZKOW, A. Flora un fauna der Comoren. Wiss. Ergeb., 3:459-460, 1917.
WERNER, F. Synopsis der Schlangenfamilie der Boiden und Typhlopiden auf
Grund des Boulenger’schen Schlangekatalogs (1893-1896). Archiv Naturg., 87,
A, (7) :230-338, 1921.
9.1 LISTE DES OPHIDIENS DE MADAGASCAR (i)
Typhlopidae
Typhlina Wagler, 1830 ( 2 )
T. bramina (Daudin, 1803) ( 3 )
(+ Typhlops microcephalus Wernei
Typhlops Oppel, 1811 (-)
T. albanalis Rendahl, 1918
( + T. ocularis Parker, 1927)
T. arenarius (Grandidier, 1872)
T. decorsei Mocquard, 1901
T. domerguei Roux-Estève, 1980 ( 4 )
Boidae
Acrantophis Jan, 1860
A. dumeriii Jan, 1860 ( r >) A. madagascariensis (D. et B., 1844)
Sanzinia Gray, 1849
S. madagascariensis (Duméril et Bi-
bron, 1844)
O) d’après Guibé, 1958; Domergue, 1969, 1972; McDowell, 1972; Roux-Estève,
1975, 1980; Hahn, 1980; sauf indication contraire genres et espèces sont
endémiques de Madagascar s.s.
( 2 ) genre cosmopolite
( :l ) espèce cosmopolite
( 4 ) connu par le ou les seuls types
( n ) 1’espèce type du genre est soulignée
', 1909)
T. grandidieri Mocquard, 1905 ( 4 )
T. madagascariensis Boettger, 1877
T. mucronatus Boettger, 1880 ( 4 )
T. reuteri Boettger, 1881
SciELO
10 11 12 13
54
RRYGOO, E. R. Les ophidiens de Madaífascar. Mem. Inat. fíutantan, 46:19-58, 1982.
Colubridae
Alluaudina Mocquard, 1894
A. bellyi Mocquard, 1894 ( 4 )
Compsophis Mocquard, 1898
C. albiventris Mocquard, 1898 ( 4 )
Dromicodryas Boulenger, 1893 ( (i )
D. bernieri (D. et B., 1854)
(+ Liopholidophis pseudolateralis
Guibé, 1956)
Geodipsas Boulenger, 1896 ( H ) (")
G. boulengeri (Peracca, 1892) ( 4 )
G. heimi Angel, 1936 ( 4 )
Heteroliodon Boettger, 1913
H. torquatus Boettger, 1913 ( 4 )
Ithycyphus Günther, 1873
I. goudoti (Schlegel, 1837)
(+ I. caudolineatus Günther, 1873)
Langaha Lacepède, 1789
L. alluaudi Mocquard, 1901
Leioheterodon Jan, 1863
L. geayi Mocquard, 1905
L. madagascariensis (D. et B., 1854)
Liophidium Boulenger, 1896 (*)
L. rhodogaster (Schlegel, 1837)
L. torquatus (Boulenger, 1888)
Liopholidophis Mocquard, 1904 ( a )
L. grandidieri Mocquard, 1904 ( 4 )
L. lateralis (D. et B., 1854)
L. pinguis Parker, 1925 ( 4 )
Lycodryas Günther, 1879 (*)
L. arctifasciatus (D. et B., 1854)
L. betsileanus (Günther, 1880)
L. gaimardi (Schlegel, 1837) ( H )
Madagascarophis Mertens, 1952
M. colubrinus (Schlegel, 1837)
Micropisthodon Mocquard, 1894
M. ochraceus Mocquard, 1894
Mimophis Günther, 1868
M. mahfalensis (Grandidier, 1867) ('
(= M. madagascariensis (Günther, 1
Pararhadinea Boettger, 1898
F. melanogaster Boettger, 1898
Pseudoxyrhopus Günther, 1881
P. ainbreensis Mocquard, 1894 ( 4 )
P. dubius Mocquard, 1904
P. heterurus (Jan, 1863) ( 4 )
P. imerinae (Günther, 1890)
A. mocquardi Angel, 1934 ( 4 )
D. quadrilineatus (D. et B., 1854)
G. infralineata (Günther, 1882)
I. miniatus (Schlegel, 1837)
L. nasuta Schaw, 1790
L. modestus (Günther, 1863)
L. trilineatum Boulenger, 1896
L. vaillanti (Mocquard, 1901)
L. sexlineatus (Günther, 1882)
L. stumpffi (Boettger, 1881)
L. thieli Domergue, 1972
L. guntheri (Boulenger, 1896)
L. inornatus (Boulenger, 1896) ( 4 )
L. variabilis (Boulenger, 1896) ( 4 )
P. microps Günther, 1881
P. occipitalis Boulenger, 1896
P. quinquelineatus (Günther, 1881)
P. trilineatus Mocquard, 1894 ( 4 )
Hydrophiidae
Pelamis Daudin, 1803 (-)
P. platurus (Linné, 1765) (-)
( = Hydrus bicolor Schneider, 1799)
( (i ) espèce type non désignée
( 7 ) genre représenté en Aírique
( 8 ) genre représenté aux Comores
(°) Guibé admet une sous-espèce L.g. granuliceps (Boettger, 1877)
('") Domergue (1968) admet une sous-espèce lineatus.
SciELO
15
BRYGOO, E. R. Les ophidiens de Madagascar. Mem. lnat. Butantan, 46:19-58, 1982.
9.4 PARASITES
Parasites
CILIES
Nyctotherus sp.
SPOROZOAIRES
Eimeria sp.
Karyolysus sp.
Hepatozoon sp.
Hepatozoon domerguei
FLAGELLES
Monocercomonas sp.
Trypanosoma haranti
TREMATODES
Ommatobrephus lobatum
madagascariensis
Ommatobrephus pulmo-
nicola
CESTODES
Ophiotaenia ventosalo-
culata
NEMATODES
Capillaria madagasca¬
riensis
Dioctowittus chabaudi
Kalicephalus caryoni
K. colubri domerguei
K. inaequalis
ANIMAUX DES SERPENTS MALGACHES
Hòtes Auteurs
Mimophis mahfalensi
Mimophis mahfalensis,
Madagascarophis colubrinus
Leioheterodon madagasca¬
riensis, L. geay, Madagas¬
carophis colubrinus, Ithycy-
phus miniatus, Pseudoxy-
rhopus sp.
Acrantophis dumerili, San-
zinia madagascariensis
Leioheterodon modestus,
Madagascarophis colubrinus
Leioheterodon modestus,
Madagascarophis colubrinus
Liopholidophis lateralis
Brygoo, 1963
Brygoo, 1963
Brygoo, 1963
Brygoo, 1963
Landau, Chabaud, Mi-
chel et Brygoo, 1970;
Landau, 1973
Brygoo, 1963
Brygoo, 1965
Madagascarophis colubrinus Richard, 1966
Madagascarophis colubrinus Richard, 1966
Ithycyphus miniatus
Liopholidophis sexlineatus
Leioheterodon modestus
Madagascarophis colubrinus
Acrantophis dumerili
Madagascarophis colubrinus,
Ithycyphus miniatus, lio¬
pholidophis lateralis, L.
sexlineatus
Acrantophis dumerili, San-
zinia madagascariensis
Leioheterodon madagasca¬
riensis, L. L. modestus
Leioheterodon madagasca¬
riensis, L. L. modestus, L.
geayi, Mimophis mahfalen¬
sis, Madagascarophis colu¬
brinus, Ithycyphus miniatus
Thelandros meridionalis Acrantophis dumerili
Deblock, Rose et Brous-
sard, 1962
Ghadirian, 1968
Bain et Ghadirian, 1967
Ghadirian 1968
K. paracolubri brygoi
K. simus mofidii
K. viperae gerhardschadi
Chabaud et Brygoo, 1962;
Brygoo, 1963
57
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. li. Les ophidiens
de Madagascar. Mem. Inst. Butantan
46:19-58, 1982.
Hexametra angusticae-
coides
Leioheterodon madagasca-
riensis, Sanzinia madagas-
cariensis, Madagascarophis
colubrinus, Acrantophis du-
merili
Chabaud et Brygoo, 1960;
Ghadirian, 1968
Ophidascaris solenopoion
Ithycyphus miniatus
Chabaud, 1960
Dracunculus doi
Acrantophis madagascari-
ensis, Sanzinia madagasca-
Chabaud, 1960; Vaucher
et Bain, 1973
riensis
Tanqua bainae
Sanzinia madagascariensis
Ghadirian, 1968
ACANTHOCEPHALES
Pseudacantocephalus bi-
gueti
Dromycodryas quadrililine-
atus
Houin, Golvan et Bry¬
goo, 1965; Golvan, 1969
Pseudoporrorchi rotun-
datus
Mimophis mahfalensis
Golvan et Brygoo, 1965
PENTASTOMES
Gigliolella brumpti
Sanzinia madagascariensis,
Acrantophis dumerili
Giglioli, 1922; Chabaud
et Choquet, 1954; Gre-
tillat, Brygoo et Domer-
gue, 1962; Slocombe et
Budd, 1973
Kiricephalus pattoni
Sanzinia madagascariensis,
Leioheterodon madagasca¬
riensis
Hett, 1924; Heymons et
Vitzthum, 1936
Mahafaliella tetrapoda
Acrantophis dumerili
Gretillat, Brygoo et Po-
mergue, 1962
Raillietiella ampanihy-
ensis
Leioheterodon madagasca¬
riensis, Madagascarophis
colubrinus
Gretillat, Brygoo et Do-
mergue, 1962
ACARIENS
Hemilaelaps liohetero-
don
Leioheterodon modestus
Fain, 1967
58
Afem. htat. Iiutantan
i6: 59-77. 1982
LA DÉCOUVERTE DE LA SÉROTHÉRAPIE
ANTIVENIMEUSE EN 1894.
PHISALIX ET BERTRAND OU CALMETTE?
Edouard Raoul BRYGOO *
RÉSUMÉ: Après avoir rappelé la découverte de la sérothérapie
contre les toxines microbiennes, 1’auteur présente de courtes bio-
graphies de Phisalix, Calmette et Bertrand avant d’exposer, avec
quelques détails, la découverte simultanée des possibilités de la
sérothérapie antivenimeuse d’une part par Phisalix et Bertrand
au Muséum et de 1’autre par Calmette à 1’Institut Pasteur. II
décrit la querelle de priorité qui intervint alors avant de citer les
travaux de quelques précurseurs et d’exposer comment 1’histoire
de cette découverte vit dans la mémoire des hommes.
PLAN
Le climat scientifique. La découverte de l’immunité antitoxique
bactérienne : 1890-1894.
Vies parallèles. Phisalix, Calmette, Bertrand.
La découverte de Phisalix et Bertrand. 1894.
3.1 L’ambiance.
3.2 Premiers travaux sur les venins, 1889.
3.3 Les conditions de la découverte.
La découverte d’Albert Calmette. 1894.
4.1 Premiers contacta avec les venins.
4.2 Mise au point d’une vaccination. Production d’un antisérum.
4.3 Le faire savoir.
Querelle pour une priorité.
Les Précurseurs.
Comment fut reçue la découverte et comment elle vit dans la
mémoire des hommes.
7.1 Les contemporains.
Professem- au Muséum National d’Histoire Naturelle de Paris 25, rue Cu vier, 75005, Paris, France.
59
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand ou
Calmette? Mem. Inat. Butantan, 46: — , 1982.
7.2 Les modernes.
7.3 Au Muséum.
8. Conclusion.
9. Références.
1. LE CLIMAT SCIENTIFIQUE. LA DÉCOUVERTE DE LTMMUNITÉ
ANTITOXIQUE BACTÉRIENNE. 1890-1894.
Voiçi cent ans, entre 1880 et 1890, Elie Metchnikoff qui avait, sinon
découvert, du moins exposé au monde scientifique le phénomène de la
phagocytose, en généralisait le rôle et faisait de cette manifestation cellu-
laire le support de 1’immunité, ce qu’il résumait, dans un livre paru à
Londres en 1893, en ces termes:
“The primum movens of inflammation consists in a phagocytic
reaction on the part of the animal organism. All the other phenomena
ai*e mereley accesory to this process and may be regarded as means to
facilitate the access of phagocytes to the injured part.”
Malgré ce remarquable Champion, la théorie cellulaire de l’immunité
devait alors connaítre une importante eclipse avant que les temps mo¬
dernes ne la réhabilite en partie, par le biais d’autres globules blancs,
les lymphocytes, et avec des mécanismes très différents oü les “humeurs”
jouent un rôle prépondérant. En effet la décade 1890-1900 fut celle de
la victoire des “humoralistes”. S’il faut en croire Forster (1970) la
théorie humorale de l’immunité eut pour principal pionnier G.H.F. Nuttall
qui par sa publication de 1888 établissait Fexistence d’un pouvoir bacté-
ricide du sérum à 1’égard d’un certain nombre de bactéries, pouvoir détruit
par le chauffage du sérum à 55°C. Deux ans plus tard, E. Behring et
F. Nissens, alors tous deux assistants de Robert Koch, étendirent cette
observation en montrant
a) que le pouvoir bactéricide du sérum ne s’exercait pas également
à 1’égard de toutes les bactéries,
b) que le sang du rat, animal réfractaire au charbon, avait un pou¬
voir bactéricide contre 1’agent de cette maladie, la bactéridie
charbonneuse, pouvoir que ne possèdait pas celui du cobaye,
animal sensible à la maladie.
En aoüt 1890, au Xème Congrès International de Médecine de Berlin,
Robert Koch prend nettement position: la phagocytose n’a qu’un rôle
accessoire, c’est dans un processus chimique qu’il faut rechercher 1’origine
de 1’immunité. La même année, la théorie humorale de l’immunité recoit
une confirmation éclatante avec la publication, le 4 décembre 1890, par
Emil von Behring et S. Kitasato de la découverte de 1’antitoxine tétanique,
ouvrant ainsi une ère nouvelle; c’est une date marquante de 1’histoire dé
la médecine.
Les toxines bactériennes avaient été découvertes 1’année précédente
d’abord par Emile Roux et Alexandre Yersin pour le bacille de la diphtérie
puis par C. Faber pour celui du tétanos. Dans le monde entier des équipes
cherchaient le moyen de lutter contre ces deux terribles affections. Le 3
60
cm
SciELO
10 11 12 13 14 15
BKYGOO, E, R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand ou
Calmette? Mem. Inst. liutantan, 46:59-77, 1982.
décembre 1890, Cari Fraenkel annonçait 1’existence d’une protection de
l’animal qui avait été inoculé avec de vieilles cultures chauffées de bacilles
diphtériques et le lendemain c’était la publication mémorable de Behring
et Kitasato, oü, dans une note infrapaginale, le sérum immun est décrit
comme “antitoxique”. Le 11 décembre 1890, une semaine plus tard,
Behring faisait le point sur les possibilités dhmmunisation contre la
diphtérie. L’équipe allemande avait gagné la course et découvert la possi-
bilité de la sérothérapie. Le mérite principal en revient à Behring mais
il convient de lui associer dans notre souvenir les noms de Kitasato qui
travaillait avec lui et de Fraenkel qui menait des recherches indépen-
dantes.
Comme toute grande découverte celle-ci fut revendiquée pour des
précurseurs et l’on cite le plus souvent, parmi ceux-ci, d’une part Hericourt
et Rechet qui, en 1888, avaient mis en évidence une immunité par trans-
fusion péritonéale et cTautre part Babes et Lepp pour des observations
au cours de leurs recherches sur la vaccination antirabique.
L’aptitude des organismes vivants de produire des antidotes spécifi-
ques contre les poisons bactériens apparu rapidement comme la manifes-
tation particulière d’un phénomène général, la réponse de 1’organisme à la
pénétration dans ses humeurs intimes de substances variées. En ce do-
maine, Paul Ehrlich, créatur de la chimiothérapie, joua un rôle prépondé-
rant en démontrant, dès 1891, soit moins d’un an après la publication de
Behring, que 1’inoculation de toxines végétales, ricine et abrine, entrainait
la production par l’organisme animal d'une antitoxine spécifique. Rapi¬
dement il établissait qu’une toxine vieillie, ayant perdu son pouvoir toxi¬
que, conservait son aptitude de liaison avec 1’antitoxine. II soulignait
également (1892) la différence fondamentale entre immunisation active
et immunisation passive.
La publication de la découverte de Behring a tout juste un an lorsque,
dans la nuit de Noél 1891, un premier enfant est traité par sérothérapie
antidiphtérique par Geissler à la clinique Bergmann de Berlin. Dès 1’année
suivante commencait en Allemagne la production commerciale d’un sérum
antidiphtérique. En 1894, au Congrès de Budapest, Emile Roux et Louis
Martin donnent, par la publication de leurs résultats, une grande impulsion
à l’utilisation de 1’antitoxine chez 1’homme. Nuttal (1924) a pu écrire:
“Rarely in the history of scientific discovery have the results of
laboratory researches been followed so rapidly by their practical applica-
tion, and few indeed are the workcrs in the domain of application of
medicai Science who have in their lifetime seen comparable benefits accrue
to mankind as a direct consequence of their labour.”
Ce rappel rapide de 1’histoire de la découverte des antitoxines bacté-
riennes m’a semblé nécessaire nom comprendre 1’ambiance dans laquelle
intervient celle des antitoxines et de la sérothérapie antivenimeuse. Alors
que la découverte de la sérothérapie antidiphtérique est une magnifique
victoire des chercheurs allemands, celle de la sérothérapie antivenimeuse
est due à des Français, Césaire Phisalix et Gabriel Bertrand au Muséum
d’Histoire Naturelle d’une part et Albert Calmette de 1’autre, aux Insti¬
tuís Pasteur de Saigon, Paris et Lille.
Qui étaient ces trois hommes?
61
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand
Calmette? Mem. Inst. tíutantan, 46: 59-77, 1982.
2. VIES PARALLÈLES. PHISALIX. CALMETTE. BERTRAND.
Phisalix est le plus agé des trois hommes dont nous allons étudier
la découverte. Fils de cultivateurs, Césaire Auguste Phisalix es né à
Mouthiers-Hautepierre (Doubs) en 1852. II commença des études pour
être médecin militaire à Besançon avant de suivre à Paris les cours du
Vai de Grâce, de 1876 à 1877, à 1’époque ou Alphonse Laveran, son
ainé de sept ans, y faisait son temps d’agrégation. II eut pour con-
disciple Emile Roux. Phisalix, affecté comme médecin militaire à
Besançon occupait ses loisirs à des observations d’histoire naturelle, ce
qui lui valut un blâme officiel des autorités militaires pour “occupations
étrangères à la médicine.” En 1881, Phisalix est envoyé en Tunisie
d’oü il sera rapatrié sanitaire. Au lieu de passer son congé de conva-
lescence à Besançon, il va à Roskoff, oü, travaillant au laboratoire mari-
time, il accumule des éléments pour sa thèse de Science. Bien qu’affecté
ensuite à Besançon, il vient, en 1882, subir avec succès les épreuves de
la licence en Sciences naturelles devant la faculté de Paris. A 1’occasion
d’une affectation à 1’hopital d’Amélie les Bains il poursuit ses recherches
pour sa thèse au laboratoire maritime de Banyuls. Placé en situation de
non activité il occupe alors les fonctions de préparateur puis de chef de tra-
vaux de zoologie et de botanique à la Faculté des Sciences de Besançon. En
avril 1884, Phisalix soutient brillamment à Paris une thèse de doctorat en
Sciences sur VAnatomie et la physiologie de la rate chez les Ichthyopsidés.
Sa santé 1’obligeant à quitter la carrière militaire, il est nommé au con-
cours, en 1887, professeur suppléant d’histoire naturelle à l’École de Méde-
cine et de Pharmacie de Besançon. L’année suivante, le professeur Chau-
veau, titulaire de la chaire de Pathologie comparée au Muséum, lui offre
d’entrer dans son laboratoire pour remplir les fonctions d’aide naturaliste,
en remplacement de Gibier, mis en congé. II est titularisé dans son emploi
le 30 janvier 1892. La même année le titre est transformé en celui
d’assistant. En 1897 il sera nommé professeur intérimaire. En 1895 il
avait épousé, à Besançon, mademoiselle Marie Picot, qui s’était distinguée
à 1’École normale supérieure de Sèvres par un goüt très vif pour les
Sciences expérimentales et était devenue agrégée des lycées de jeunes
filies. De santé fragile depuis son séjour de Tunisie, Césaire Phisalix
mourut le 16 mai 1906. II est enterré dans son village natal, à Mouthiers.
La liste de ses publications scientifiques, établie par Degrez (1910),
comprend 144 titres dont la moitié sont consacrés à 1’étude des venins
les autres traitant d’Embryologie, d’Anatomie et Physiologie, dé
Pathologie générale et de Microbiologie.
La mort prématurée de Césaire Phisalix avait compromis la publi-
cation de 1’ouvrage qu’il avait projeté d’écrire avec sa femme, devenue sa
dévouée collaboratrice. Celle-ci heureusement ne se découragea pas,
assuma la totalité de la charge et püt ainsi publier en 1922 la monu-
mentale somme que nous connaissons tous, Animaux venimeux et venins.
Elle devait, ensuite, jusqu’à l’âge de 85 ans, apporter au laboratoire
d’Herpétologie du Muséum la contribution de son activité inlassable et
de ses immenses connaissances.
62
cm
SciELO
10 11 12 13 14 15
HRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et. Rertrand ou
Calmette? Mm. Inat. fíutantan, 4(7:59-77, 1982.
Albert Calmette, né à Nice le 12 juillet 1863 était le cadet de Phisalix
de 11 ans. Fils d’un fonctionnaire d’autorité, il souhaitait devenir marin.
Ayant dfi y remoncer pour raisons de santé il devint médecin de marine.
Après plusieurs campagnes lointaines oü il était embarqué, il opta en
1890 pour la médecine coloniale. A 1’occasion d’un premier stage à
1’Institut Pasteur à Paris il füt remarqué par Emile Roux qui le fit
désigner par Pasteur pour créer un Institut à Saigon. De retour en
France en 1893, il travailla à 1’Institut Pasteur de Paris avant d’être
choisi pour fonder un Institut à Lille, oú il restera 23 ans, de 1895 à
1919. II revint ensuite à Paris comme sous-directeur de 1’Institut Pasteur,
chef du Service de la tuberculose et du BCG. II mourut le 29 octobre
1933, cinq jours avant Monsieur Roux.
Gabriel Bertrand, le plus jeune des trois, était né à Paris le 17 mai
1867. II avait donc 15 ans de moins que Phisalix et 4 de moins que
Calmette. Fils d’un commerçant de la rue Saint Jacques il fréquentait
dès l’âge de quinze ans la galerie de Botanique du Muséum oü 1’acceuil-
lait l’aide naturaliste Eugène Poisson. II s’inscrivit à 1’Ecole de la
Pharmacie tout en suivant au Muséum les cours de chimie de Fremy.
En 1889 il est acceuilli dans leur laboratoire par Dehérain et Maquenne
et devient en 1890, préparateur chez Arnaud, succésseur de Chevreul dans
la chaire de Chimie organique du Muséum. II restera au Muséum jusqu’en
1900, date à laquelle il entre au laboratoire de chimie biologique du
Duclaux à 1’Institut Pasteur. II lui succéda en 1904. Pendant son séjour
au Muséum il découvrit les oxydases dans le latex de 1’arbre à Iaque,
définit les coferments et signala que des caféiers de Madagascar et des
Comores ne produisaient pas de caféine. Evoquer la brillante carrière
de jCabriel Bertrand après son départ du Muséum sortirait de notre
sujêt. II mourut le 20 juin 1962.
3. LA DÉCOUVERTE DE PHISALIX ET BERTRAND. 1894
3-1. L’ambiance.
Phisalix était entré au Muséum d’Histoire naturelle en 1888, comme
aide-naturaliste dans le laboratoire de Chauveau. II y succédait à Gibier.
La personnalité d’Auguste Chauveau doit être rapidement évoquée car
elle eüt une influence directe sur la découverte de Phisalix. Jean Baptiste
Auguste Chauveau était né à Villeneuve le Guáard (Yonne) en 1827.
Après des études de médécine vétérinaire à Alford et Lyon, il devint
directeur de 1’école vétérinaire de Lyon, en 1875 puis inspecteur général
des Services vétérinaires, avant de succéder, en 1886, à Henri Bouley
dans la chaire de Pathologie comparée du Muséum.
Bulloch écrit de lui:
“One of the chief French physiologists and pathologists of the
nineteenth century.’’ et “a pioneer worker on infective disease.” L’in-
fluence d’un tel “patron” ne pouvait que marquer Phisalix qui le recon-
aait d’ailleurs lui-même (1897:61):
63
SciELO
BRYGOO, E. R. La découverte de la sérothérapie antivenira^mc *n 1394. ' Phisalix et Bertrand ou
Calmette? Mem. Inst. Butantan, 46:59-77, 1982.
. j’ai continué la poursuite des recherches que j’avais entreprise
sur les venins, avec cette idée directrice inspirée par les travaux de M.
Chauveau sur les poisons solubles des microbes que les secrétions cellulaires
toxiques offrent la plus grande analogie avec les secrétions microbiennes
et que les procédés d’atténuation et de vaccination applicables aux unes
le sont aussi au autres.”
3.2. Premiers travaux sur les venins. 1889.
Phisalix commence ses travaux sur les venins par une série d’expé-
riences sur le venin de la salamandre terrestre qui 1’amène à publier
quatre notes, de 1889 à 1891, dont une avec P. Langlois et 1’autre avec
Ch. Coutejean. Les débuts de sa collaboration avec Gabriel Bertrand,
alors préparateur dans da chaire de chimie organique du Muséum, sont
présentés par Phisalix lui-même (1897 :6 1) en ces termes:
“C’est en 1893, qu’avec la collaboration éclairée de mon ami G. Ber¬
trand, je suis arrivé à donner aux idées précédentes la sanction expé-
rimentale.”
II faisait référence à 1’idée de 1’analogie entre secrétions cellulaires
toxiques et secrétions microbiennes qu’il devait à M. Chauveau. En
1893 et 1894, Phisalix et Bertrand publient d^abord trois notes sur la
toxicité du sang et du venin de crapaud et de vipère, sur l’immunité
naturelle ou venin de vipère et sur les glandes venimeuses chez les
couleuvres, avant d’en arriver à la publication de leur découverte.
3.3. La découverte. 10 février 1894.
L’originalité de la découverte de Phisalix et Bertrand est toute
entière exposée dans la note qu’ils présentèrent le 10 février 1894 à la
Societé de Biologie de Paris sous le titre:
“Sur la propriété antitoxique du sang des animaux vaccinés contre
le venin de vipère.”
Après avoir exposé leurs expériences: le sérum des cobayes, prélevé
48 heures après 1’inoculation immunisante d’echidno-vaccin, défibriné,
puis mélangé avec le venin et injecté dans le péritoine d’autres cobayes,
les rend capables de résister à 1’action mortelle du venin; ils concluent:
“. . . la puissance antotixique du sang est susceptible d’être augmen-
tée dans des proportions considérables... nous espèrons obtenir des
modifications du sang suffasamment intenses pour qu’il puisse être utilisé
comme agent curatif.”
Dans un autre article, de la même année, ils expliquent bien 1’origine
de leur découverte:
“L’étudc des venins est entrée dans une voie nouvelle depuis que la
notion des poisons solubles d’origine microbienne a été introduite en
physiologie par M. Chauveau.” et : “Notre travail avait pour point de
départ la comparaison des venins de vipères avec les toxines micro¬
biennes; nous venons de démontrer la ressemblance en ce qui concerne
1’atténuation par la chaleur et la transformation de ce venin en vaccin.”
64
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand
Calmette? Mem. Inst. Butantan, 46:59-77, 1982.
3.3. Les conditions de la découverte
Lorsque l’on analyse les protocoles expérimentaux de Phisalix et
Bertrand, on ne peut s’empécher de sentiments mélés d’une part devant
la pauvreté, la parcimonie des moyens mis en oeuvre et d’autre part la
richesse de 1’exploitation des observations et la hardiesse des conclusions.
Ils ne travaillaient que sur un très petit nombre d’animaux, avec une dose
d’épreuve limitée à une dose minima mortelle et peu ou pas de témoins.
Qu’ils aient pu, dans ces conditions, aboutir à leur découverte est la
preuve manifeste de leurs talents d’expérimentateurs. (1)
Mais ces conditions expérimentales étaient aussi favorables à 1’inter-
férence de phénomènes “parasites” qu’ils pouvaient d’autant moins
détecter qu’ils défrichaient une terre nouvelle pour la Science. C’est
sans doute à ces conditions très particulières que l’on doit de leur avoir
vu décrire, entre 1895 et 1898 une action vaccinante contre le venin de
vipère chez une série de substances variées : le sérum des espèces douées
d’immunité naturelle, vipère, couleuvre, hérisson, anguille sous réserve
de le chauffer pendant 15 minute à 58°C pour en détruire 1’action toxique
“phlogogène”; le sérum d’espèces sensibles comme le cobaye et le cheval;
la secrétion cutanée muqueuse de la grande salamandre du Japon; diverses
secrétions muqueuses, venimeuses ou non; le venin des vespidés; la bile;
la tyrosine; le suc de tubercule de dahlia; le suc de divers champignons.
Llmmunologie était en gestation, la notion de spécificité des réac-
tions n’était pas encore établie. Phisalix et Bertrand étant convaincus
(1896) que la substance vaccinante était fondamentalement différente
de la substance toxique, in n’était pour eux, paz étonnant de la retrouver
seule, dans des organismes divers, sans rapport avec la toxine elle même.
Nous venons de voir ce qu’avait découvert 1’équipe qui travaillait
au Muséum d’histoire naturelle dans le laboratoire de Chauveau.
Qu’en était-il à L’Institut Pasteur?
4. LA DÉCOUVERTE D’ALBERT CALMETTE. 1894
4.1. Premiers contacts avec le venins.
Albert Calmette n’était à Saigon que depuis neuf mois lorsqull
recut, en octobre 1881, un télégramme de 1’administrateur de Bac Lieu,
signalant qu’il disposait de 19 cobras capturés par un Annamite “moitié
Psylle moitié sorcier” lors d’une inondation et proposant 1’envoi au labo¬
ratoire des serpents et de leur maitre. Et dans une lettre à son père du 7
novembre 1891 (2) oü Calmette raconte ces faits, de préciser:
“J’ai accepté ... Je 1’emploie (le venin) à des expériences dont
l’intérêt est très grand parce que jamais une étude aussi complète du
venin n’a pu être tentée dans des conditions favorables.”
(1) Un autre point mériterait sana doute vérification. Phisalix et Bertrand, dans leur publication
fie 1894, signaJent observer 1’apparition des propriétés immunitaires transférables quarante-huit
heures après 1‘inoculation de 1'echidovaccin! S'agissait-il vraiment du même phénomène que celui
décrit par Calmette? Les auteurs en étaient persuades.
(2) Cité par N. Bernard, 1961 : 79.
65
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand
Calmette? Mem. Inst. Butantan, ití: 59-77, 1982.
C’était 1’exploitation scientifique par un chercheur doué et bien formé
d’une “ooportunité”, comme l’on dit aujourd’hui, d‘une occasion, dont seuls
certains êtres savent tirer profit.
II s’appliqua d’abord à déterminer chez divers animaux les effets
fphysiologiques du venin puis, rapidement, hanté qu’il était par une
analogie probable entre les propriétés des venins et celles des toxines
microbiennes (N. Bernard, 1961:86) il étudia 1’action de divers produits
chimiques capables de donner avec les venins des précipités insolubles
dans l’eau et dans les humeurs, donc de les neutraliser. II en expérimente
une trentaine avant de sélectionner le chlorure d’or et eis hypochlorites
alcalins. Le premier animal vacciné qu’il obtint à Saigon, en 1892 fut
une poule.
Revenu de Saigon le 21 juillet 1893, Calmette reprend dès le mois
d’octobre, auprès de Monsieur Roux, ses recherches sur le venin de cobra
qui devaient le conduire à la découverte de la sérothérapie et qui avaient
déjà fait 1’objet d’un travail publié aux Annales de VInstitut Pasteur en
1892. C’était sa première note sur les venins. Depuis trois ans déjà
Phisalix publiait sur ce sujet.
4.2. Mise au point d’une vaccination. Production d’un antisérum.
Calmette travaillait avec du venin de cobra, beaucoup plus toxique
que celui de vipère et difficilement atténuable par la chaleur. II füt donc
obligé de mettre au point des techniques de vaccination beaucoup plus
rigoureuses.
La première annonce d’un sérum à activité thérapeutique est fait
par Calmette à la séance de la Société de Biologie du 10 février 1894,
celle là même oü Phisalix et Bertrand venaient d’exposer leurs propres
résultats. Sa note avait pour titre:
“L’immunisation artificielle des animaux contre le venin des serpents
et la thérapeutique expérimentale des morsures venimeuses.”
Calmette commence par exposer trois techniques possibles de vacci¬
nation avant d’écrire:
“Dans tous les cas, et quelle que soit la méthode employée, 1’immuni-
sation n’est jamais réalisée avant un minimum de trois semaines, et elle
ne se produit qu’àcondition que 1’animal ait été malade.”
Puis il passe aux développements possibles de sa découverte:
“... ce §érum était également thérapeutique: mes expériences sur
1’animal m’autorisent à espérer beaucoup pour 1’application à l’homme. ..
L’expérimentation sur 1’animal nous fait donc concevoir 1’espérance que
l’on pourra traiter avec succès les personnes mordues, d’abord par des
injections d’hypochlorites alcalins autour de 1’inoculation venimeuse, et
ensuite par des injections de sérum thérapeutique qui entraveront les
phénomènes généraux produits dans 1’organisme par l’envenimation
ophidienne”.
66
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand ou
Calmette? Mem. Inst. Butantan, 46: 59-77, 1982.
4.3. Le faire savoir.
Alors que Phisalix et Bertrand étaient tout aussi convaincus que
Calmette de Fimportance de leur découverte et des conséquences heureuses
qu’elle pouvait avoir pour la protection des hommes, seul ce dernier su
mettre en oeuvre les moyens pour la faire connaítre.
En 1896, en même temps qu’il publiait à Paris son ouvrage sur le
venin des serpents, Calmette donnait au British medicai Journal un
article sur la mesure du pouvoir antitoxique des sérums antivenimeux.
La même année, au mois de juillet, devant une commision du Royal
College of Physicians and Surgeons de Londres il effectuait une
démonstration de 1’action du sérum qui entrainait 1’adhésion complète
des assistants et la rédaction d’un procès verbal recommandant, sans
restriction, 1’utilisation de la sérothérapie dans le traitement des morsures
venimeuses de serpents. L’année suivant, il rédigeait le chapitre
The Snakes Venoms, dans le traité de Clifford Albutt, Infectious Diseases
Pathology. Par la suite, ses contributions à différentes publications
étrangères: en allemand, 1905, 1907, 1908, 1910 et 1915, dont les
chapitres sur Venins et animaux venimeux des deux traités magistraux
de Kolle et Wasserman, Handbuch der pathogenen Mikroorganismen et
de Mense, Handbuch der tropenkrankheiten; et en anglais, avec la
publication en 1908 de la traduction de son ouvrage magistral sur
“les Venins, les animaux venimeux et la sérothérapie antivenimeuse’’
puis, en 1909, un article dans le Journal of medicai Research de Boston,
contribuèrent à universaliser la connaissance de sa découverte.
5. QUERELLE POUR UNE PRIORITÉ
Comme beaucoup de découvertes importantes, celle de la sérothérapie
antivenimeuse eut droit à sa querelle de priorité qui prit d’autant plus
de relief que les adversaires travaillaient les uns et les autres à Paris et
utilisaient les mêmes moyens de diffusion. L’action se passe pendant
le premier semestre 1894 et est toute entière exposée dans le volume 46
des Comptes rendus de la Société de Biologie et dans le volume 118 de
ceux de 1’Académie des Sciences. Dans deux notes, présentées par
Chauveau aux séances de 1’Académie des 5 et 12 février, Phisalix
annonçaient leur découverte. Dans la première “Atténuation du venin
de vipère par la chaleur et vaccination du cobaye contre ce venin”, ils
font référence, en note infrapaginale, à un travail de Calmette, de 1892,
sur Fatténuation du venin de cobra par la chaleur; dans la seconde “Sur
la propriété antitoxique du sang des animaux vaccinés contre le venin
de vipère.” Ils écrivent : “..., nous espèrons obtenir des modifications
du sang suffisamment intenses pour qu’il puisse être utilisé comme
agent thérapeutique.”
Un mois plus tard, à la séance du 27 mars, est présentée la note
Calmette: “Propriétés du sérum des animaux immunisés contre le venin
des serpents; thérapeutique de 1’envenimation.” oü Fauteur écrit:
67
cm
SciELO
10 11 12 13 14 15
HRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894.
Calmette? Mem. Inst. Butantan, 46:59-77, 1982.
Phisalix et Bertrand
“Le sérum des animaux ainsi traités est à la fois préventif, anti-
toxique et thérapeutique, exactement comme celui des animaux immuni-
sés contre la diphtérie et le tétanos.” Ajoutant, ce qui est aujourd’hui
reconnu inexact, :
“II possède ces propriétés, non seulement à 1’égard du venin qui a
servi à immuniser 1’animal dont on l’a retiré, mais même à 1’égard de
venins d’autres origines.” Le sérum de lapin immunisé contre le venin
de cobra, par exemple, est antitoxique à 1’égard des venins de vipère de
France, cThoplocephalus et de pseudechis d’Australie.” II ne signalait
p,ucun travail sur ce sujet antérieur au sien.
Dès le mois suivant, à la séance du 23 avril, réaction de Phisalix
et Bertrand, :
“Observations à propos de la note de M. Calmette relative au venin
des serpents.” avec conclusion :
“... M. Calmette ayant omis de citer nos recherches, nous sommes
dans 1’obligation d’en rappeler 1’antériorité, car nous pensons que des
conséquences théoriques et pratiques importantes découleront logique-
ment des faits que nous avons scientifiquement établis.”
M. Chauveau, qui avait présenté cette note ajoutait, en remarque
que M. Kaufmann avait, dès 1888, signalé la possibilité d’immuniser
1’animal par injections répétées de petites quantité de venin entier.
La querelle aurait dü en rester là. Mais la semaine suivante, le 30
avril, Calmette dans une note presentée par Duclaux et intitulée “Pro-
priéteés du sérum des animaux immunisés contre les venins de diverses
espèces de serpents.” revendique la priorité car la note par laquelle
Phisalix et Bertrand annonce la possibilité d’une sérothérapie n’est que
du 12 février,
“Or, le 10 février, deux jours avant la deuxième note de MM.
Phisalix et Bertrand, j'avais communiqué à la Société de Biologie les
résultats non seulement encourageants, mais positifs, de prévention et
de thérapeutique de 1’envenimation que j’obtenais avec des sérums
d'animaux immunisés. La priorité, en ce qui concerne la détermination
des pouvoirs antitoxique, préventif et thérapeutique des sérums d’animaux
immunisés contre le venin, m’appartient incontestablement.”
Réponse, la semaine suivante, de Phisalix et Bertrand: “Sur la
réclamation de M. Calmette à propos du sang antitoxique des animaux
immunisés contre le venin des serpents.” oü ils expliquent: “la note que
nous avons présentée le 12 février à 1’Académie est exactement la même
que celle que nous avions communiquée à la Société de Biologie le 10
février, dans la séance oü M.Calmette a lu la sienne, avant même qu’il
eüt pris la parole. Au Bulletin de la Société de Biologie (16 février
1894, n.° 5), notre note, page 111, est la prernière en tête du numéro oü
celle de M. Calmette vient à la page 120.”
Même s’il ne s’en fallait que de três peu, Phisalix et Bertrand
étaient manifestement gagnants, aussi bien à la Société de Biologie qu’à
1’Académie des Sciences tandis que Calmette ne se montrait vraiment
68
cm
SciELO
10 11 12 13 14 15
BRYGOO, E.. R. Ls découverte de la sérothérapie antivenimeuse en 1894.
Calmette? Mem. Inat. Butantan, 46:59-77, 1982.
Phisalix et Bertrand ou
pas beau joueur (3). Eut-il simplement cité les deux autres auteurs dans
sa première note à 1’Académie, que sa gloire n’en aurait rien perdu et
qu’une pénible querelle eut peut être été évitée. Mais tandis que la
polémique sur la priorité de la découverte de la sérothérapie se déroulait
devant 1’Académie des Sciences une autre divergence opposait les mêmes
auteurs devant la Société de Biologie. Dans sa note du 10 février 1894,
Calmette, avant d’en venir à la thérapeutique des morsures, s’étonnait
des résultats de Phisalix et Bertrand qui réussissaient à atténuer le
venin de vipère par la chaleur alors que lui-même échouait avec ce
procédé. Phisalix et Bertrand répondaient dans une note insérrée à la
suite de celle de Calmette, estimant que des conditions expérimentales
différentes pouvaient rendre compte des différences de résultats obser-
vées. A la séance de la Société de Biologie du 3 mars 1894, Calmette
donna une nouvelle note signalant des expériences effectuées en commun
avec Phisalix et Bertrand et concluant:
“La divergence de nos résultats s’explique par la différence de
toxicité qui existe entre les venins que nous employons.”
L’année suivante ces chercheurs s’opposèrent encore, mais sur une
autre question, à propos de 1’action de 1’hypochlorite de soude. Calmette
(1894) y voyait un moyen majeur de lutter contre 1’envenimation, de
plus, dans une autre note il faisait état d’un résultat pour le moins
curieux qui montre que les idées sur les actions spécifiques n’étaient pas
encore fixées:
“C’est ainsi qu’il suffit d’injecter pendant quatre ou cinq jours de
suite à des lapins, sous la peau, une dose de 6 à 8 centimètres cubes
d’une solution d’hypochlorite de chaux au l/60e, pour rendre ces animaux
tout à fait réfractaires à 1’inoculation d’une dose deux fois mortelle de
venin.”
En 1895, relevant que Calmette semble admettre que 1’hypochlorite
aurait la propriété “de produire la même réaction vaccinale que le venin
chauffé” Phisalix et Bertrand écrivent “on comprendra quelle valeur
théorique et pratique aurait la découverte de M. Calmette, si elle était
confirmée. Malheureusement, les recherches que nous avons entreprises
dans ce but conduisent à des conclusions opposées.” et plus loin:
“Ceei démontre bien, contrairement à ce qui est avancé par M.
Calmette, que 1’hypochlorite de calcium ne protège pas 1’organisme en y
provoquant la formation d’une substance antivenimeuse, ni, non plus,
(3) Cet aspect particulier de son caractère se retrouve lorsqu’en 1907 il écrit:
“La sérothérapie antivenimeuse que mes travaux. complétés par ceux de Phisalix et
Bertrand, de Frasser, de Géo Lamb, de F. Tidwell, de Mac Farland et de Vital Brazil ont
permis d’établir sur des bases scientifiques, est maintenant entrée dans la pratique médicale
courante."
Cétait vraiment ne pas être régulier que de ne pas reconnaitre la simultanéité des recherches
de Phisalix et Bertrand et des siennes et de les mettre sur le même plan que celle des
chercheurs ultérieurs; la liste est d’ailleurs incomplète car les travaux de Flexner et de
Noguchi ont précédé ceux de Lamb et de Vital Brazil. A noter qu’en 1896 il avait été plus
“correct" en écrivant:
"A partir de 1894, les recherches poursuivies simultanément : au Muséun d’histoire naturelle
de Paris, par Phisalix et Bertrand, sur le venin de Vipère; à 1’Institut Pasteur de Paris, par
moi-même, sur le venin de Cobra, puis sur d’autres venins de diverses origines, aboutissent à
des résultats beaucoup plus précis.”
69
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de Ia sérothérapie antivenimeuse en 1894. Phisalix et Bertrand
Calmette? Mem. Inst. fíutantan, 46:59-77, 1982.
comme cet auteur en a émis 1’invraisemblable hypothèse, en pénétrant
dans la circulation et y persistant, pour y détruire le venin comme il le
ferait dans un verre à expériences.”
Calmette ne revint plus sur 1’action vaccinante de rhypochlorite,
mais en 1907 il écrivait encore:
“L’hypochlorite de chaux ... détruit sürement et immédiatemment
le venin par simple contact et, en raison de la grande diffusibilité du
chlore gazeux qu’il dégage, ce dernier agit à distance, assez loin du point
d’inoculation, sur le venin qui commence à être déjà absorbé.”
Cétait vraiment une affirmation audacieuse, même remise dans le
contexte des conaissances des années 1900. Calmette n’était manifeste-
ment pas un physiologiste.
Cette combativité entre deux équipes de chercheurs parisiens traduit
1’émulation existante alors entre 1’Institut Pasteur d‘une part et le
Muséum de 1’autre, le premier représenté par Roux, son directeur, héritier
spirituel de Pasteur et patron direct de Calmette, le second par Chauveau,
maitre de Phisalix, microbiologiste de grande renommée lui aussi, mais
n’appartement pas à la mouvance de Pasteur.
6. LES PRÉCURSEURS
Ainsi, Phisalix et Bertrand d’une part et Calmette de 1’autre,
avaient simultanément en 1894 découvert la possibilité de la sérothérapie
antivenimeuse. Mais la querelle de priorité que nous venons d’évoquer
ne saurait nous faire oublier 1’existence de précurseurs, car, comme coute
découverte, celle-ci füt préparée par des observations et expérimentations
qui à vrai dire concernaient surtout les possibilités d’immuniser les
animaux contre le venins.
L’histoire a retenu trois noms, celui d’un italien Domenico Fornara,
d’un américain H. Sewall et d’un français, M. Kaufmann.
Le premier, en 1877. étudiant les effets physiologiques du venin de
Crapaud, par des inoculations sucessives obtint la résistance du chien
contre ce venin. Sewall, professeur à 1’Université de Michigan, dix uns
après, dans un important travail sur le venin de Crotale, avait montré
qu’on peut rendre les pigeons graduellement plus resistants à 1’action de
ce venin en leur injectant d’abord des doses très petites. Kaufmann
enfin, professeur de physiologie à 1’école vétérinaire d’Alfort, est celui
qui, à partir de 1889, consacra le plus de travaux à ce sujet. (4) En
1889, il pouvait écrit:
“II semble que des inoculations successives de faibles doses de venin
communiquent une certaine immunité contre des doses fortes.”
II avait expérimenté avec du venin de Vipera aspic sur des cobayes.
II poursuivit ses expériences et quatre ans plus tard (1893 : 136) pubiiait
ses observations faites sur une chienne de 1890 à 1892 pour conclure:
(4) En 1901, une trousse du professeur Kaufmann contre les morsures de vipères était encore
commercialisée.
70
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand
Calmette? Mem. Inat, Iíutavtan, 46:59-77, 1982.
“Les observations faites sur cette chienne m’ont appris que des
inoculations successives de petites quantités de venin peuven commu-
niquer une résistance plus grande au venin, mais qu’elles sont incapables
de conférer une véritable immunité contre l’envenimation.” (5)
Dans une note présentée à la séance de la Société de Biologie du 10
février 1894 et qui, dans les Comptes Rendus, fait immédiatement suite
à celle de Phisalix et Bertrand, Kaufmann, après avoir rappelé les
résultats qu’il à publiés, peut légitimement écrire:
“Les recherches de MM. Phisalix et Bertrand confirment donc les
conclusions que j’avais déjà formulées et qui étaient basées sur des
faits expérimentaux obtenus par un procédé différent.”
Ces “précurseurs” n’avaient, en fait, qu’appliqué à leurs animaux
une méthode de mithridadisation dont le nom seul évoque qu’elle appar-
tient au patrimoine commum de l’humanité. II n’était question pour
eux ni de modifier le venin avant de 1’injecter ni encore moins de
chercher à obtenir un antidote utilisable chez d’autres sujets. Phisalix
et Bertrand, Calmette, avaient donc bien découvert quelques chose de
nouveau. Mais qu’en pensaient leurs contemporains ?
7. COMMENT FÚT REÇU LA DÉCOUVERT ET COMMENT ELLE
VIT DANS LA MÉMOIRE DES HOMMES.
7.1 Les contemporains.
Les contemporains reconnurent sans conteste 1’importance de la
découverte de Phisalix et Bertrand puisque ceux-ci obtinrent 1’année
même oü ils la firent, en 1894, le prix Monthyon de 1’Académie des
Sciences pour la découverte d’un sérum antivenimeux. (6) En 1898,
Césaire Phisalix obtenait, sur rapport du professeur Bouchard, le Prix
Brénhant, de 1’Académie des Sciences pour 1’ensemble de ses travaux
sur les venins et les animaux venimeux. Un an aprés la publication des
premiers résultats, T. R. Fraser, en Angleterre, les confirmait en pré-
sentant devant la société médico-chirurgicale d’Edimbourg un lapin
vacciné contre une dose de venin de Cobra cinquante fois mortelle. Emile
Roux, à propos des recherches de Calmette sur les venins écrivait:
“L’impulsion qu’il leur a donnée a été féconde en résultats pratiques
et en acquisitions d’un grand intérêt scientifique.” (7) En 1922, Laveran,
autre autorité scientifique non contestée, écrivait:
(5) Les intéressantes observations de Kaufmann furent le plus souvent citéei? de manière inexacte :
si Calmette (1907 : 253) donne correctement le résultat et la date de 1889 il n’y a, comme
référence, que le livre de 1893; Mme Phisalix (1922 : 759) ne fait état que de 1’expérience sur
le chien, avec sa date exacte (1893) mais ne donne dans sa bibliographie qu’une référence de
1894; P. Boquet (1948 : 111; 1970 : 640) cite le nom de Kaufmann sans précision ni référence
en 1948 et avec une référence erronée en 1970.
(6) Ce qui était une manière pour les Académiciens de faire connaitre leur jugement sur la
querelle de priorité à laquelle ils venaient d’assister.
(7) cité par N. Bernard (1961 : 78-79) sans indication d’oriífne.
71
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand ou
Calmette? Mem. Inst. Butantan, 46:59-77, 1982.
“Ces découvertes (celles de Phisalix et Bertrand et de Calmette),
qui remontent à 1894 ont eu, comme on le sait, les résultats les plus
heureux au point de vue de la sérothérapie antivenimeuse, qu’elles ont
inaugurée.”
7.2 Les modernes.
Un certain nombre d’auteurs modernes, historiens des Sciences,
ignorent aussi bien Calmette que Phisalix et Bertrand. C’est le cas de
Taylor (1963) dans son Histoire illustrée de la Biologie et de Williams
(1969) dans son Dictionnaire biographique des savants. L’ouvrage de
la Behringwerk (1963) sur les serpents venimeux, ne mentionne que
Calmette dans son introduction. Pour beaucoup, Calmette est le seul
inventeur de la sérothérapie antivenimeuse. II est certain que le reten-
tissement des démonstrations publiques en leur temps, puis celui de la
pubiication de son ouvrage et, peut-être surtout, de sa traduction anglaise
firent beaucoup pour établir dans 1’esprit du public le rôle de Calmette.
Pour Grainger (1958), Calmette est le:
“Discoverer of the antiveninserum and the BCG vaccine”, sans un
mot de Phisalix ni de Bertrand. La paternité unique de la découverte
lui est égalament attribuée par Delaunay (1962). II s’agit là de deux
historiens bactériologistes, beaucoup moins acceptable est 1’erreur d’au-
teurs herpétologistes comme Ditmars (1969):
“The discovery of antivenin, by Dr. Albert Calmette, of the Pasteur
Institute ... ” ou comme Klobusitzky (1971):
“Calmette (1894) the founder of serum therapy against snake
bites.”
Un cas particulier mérite d’être mentionné, celui des historiographes
de Calmette. Alors qu’en 1939 Bernard et Nègre écrivaient:
“Les découverte simultanées de l’immunisation par des procédés
différents, contre le venin de Vipera berus par MM. C. Phisalix et
G. Bertrand et contre le venin de Cobra par A. Calmette, et leur publi-
cation au cours d’une même semaine apportaient le príncipe du traitement
spécifique de 1’envenimation par des sérums thérapeutiques.” En 1961,
le même Noèl Bernard; présentant la vie et 1’oeuvre d’Albert Calmette
“sur un plan et sous une forme différente”, ne cite plus Phisalix et
Bertrand qu’à 1’occasion de 1’immunité du hérisson, attribuant de ce fait
toute la paternité de la découverte de la sérothérapie à Calmette.
Si pour beaucoup les noms de Phisalix et de Bertrand n’on pas paru
dignes d’être conservés, cet oubli n’est heureusement pas général et
quelques auteurs français leur rendent un équitable hommage:
Charles Joyeux (1944): “Le sérum antivenimeux a été découvert
simultanément par Phisalix et Bertrand, et par Calmette (1894).’’
Paul Boquet (1948): “Enfin, quatre ans après la découverte des anti-
toxines par Behring, C. Phisalix avec G. Bertrand, et, indépendamment,
72
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand ou
Calmette? Mem. Ivat. Butantan, 4fí: 69-77, 1982.
A. Calmette, obtiennent chez le cobaye et le lapin um sérum spécifique
capable de neutraliser les venins de serpents.” (8)
7.3 Mais qu’en est-il au Muséum d’Histoire naturelle?
Edmond Perrier, alors directeur du Muséum, à 1’occasion de la levée du
corps de Césaire Phisalix à la gare de Lyon en 1906, lui rendait hommage:
“il trouva le moyen de neutraliser plusieurs d’entre eux (venins) et peut
disputer à Calmette, qu’il semble bien avoir devancé d’ailleurs, 1’honneur
d’avoir trouvé un puissant antidote contre les venins des serpents les plus
redoutables.”
Et au laboratoire d’Herpétologie (9) qu’hante encore 1’ombre de Mme
Phisalix, la tradition orale conserve la notion de la découverte au Muséum
du sérum antivenimeux et le nom de ses auteurs, mais ailleurs, dans la
Maison?
Dans 1’historique de 1’activité du Muséum que donna, en 1935, Paul
Lemoine, à 1’occasion du tricentenaire de sa fondation, il est tout à fait
remarquable que pas un mot ne mentionne la découverte dans 1’établisse-
ment de la sérothérapie antivenimeuse alors que Phisalix et Bertrand y
sont cités, le premier comme aide naturaliste puis professeur intérimaire,
le second pour avoir “découvert au Muséum la Laccase, les oxydases puis
les conferments”. L’oubli n’est heureusement pas total puisque l’on peut
trouver, en 1954 (10), sous la plume de Roger Heim les lignes suivantes:
“Avec C. Phisalix, à qui le lia une profonde amitié, trop tôt interrom-
pue par la mort de celui-ci, Gabriel Bertrand entreprend une série remar¬
quable de travaux qui conduiront à la découverte de la vaccination antive¬
nimeuse. II n’a pas cessé de s’intéresser à ces problèmes depuis.”
Madame Phisalix (1940 a donné une explication intéressante du fait
que la découverte au Muséum du sérum antivenimeux était restée sans
lendemain:
“Le sérum contre le venin de Vipère, le premier des sérums antive¬
nimeux découvert n’est cependant pas celui qui, le premier, a passé dans
la pratique courante, car le Muséum d’Histoire naturelle, au temps même
ou, Jardin du Roy, il avait sa pharmacopée particulière, n’a jamais délivré
en ce temps au public les “remèdes exquis”, c’est-à-dire souverains que
Moyse Charas avait retirés de la Vipère et préparés contre ses morsures.
Ces remèdes étaient réservés au Roy, à sa maison, et aux officiers de sa
maison, les professeurs d’alors. On se souvient que Vallot, premier mé-
decin du Roy et surintendant du jardin, appelé in extremis auprès de la
Duchesse d’Õrléans, Madame, qui se disait empoisonnée, lui administra,
d’ailleurs sans succès, de la Poudre de Vipère délayée dans de 1’huile
d’olive. Les traditions de la Maison, sous ce rapport, n’ont pas changé.”
(8) Cette phrase se trouve dans 1’historique, à la page 14, ce qui n'empêche pas Boquet, à la page 111
d’atribuer au seul Calmette, et à une date erronée (1896), la démonstration que le sérum des
animaux prémunis contient des antitoxines spécifiques ! Les mêmes erreurs se retrouvent dans
son travail de 1970.
(9) Le laboratoire le plus voisin de celui oü Phisalix et Bertrand effectuèrent leur découverte.
(10) Dans un article consacré à G. Bertrand.
73
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand ou
Calmette? Mem. Inat. Jiutantan, 46:59-77, 1982.
Je laisse à Madame Phisalix la responsabilité de cette explication
“historique” de la non exploitation d’une découverte faite au Muséum.
En ce qui concerne 1’oubli du fait lui-même, alors qu’il n’a pas cent ans,
il me semble que l’on peut y trouver plusieurs explications. II y à d’abord
la mort précoce du principal auteur, Césaire Phisalix qui n’était plus là
pour défendre ses droits, il y a ensuite le changement d’orientation des
recherches de Gabriel Bertrand qui s’éloigna du Muséum, et des venins,
il y a surtout la disparition du laboratoire oü avait été effectuée la
découverte. La chaire de Pathologie comparée à laquelle appartenait
Phisalix füt en effet, en 1917, transformée en Chaire des Vers et Crus-
tacés, tandis que les locaux quelle occupait, construit par Chauveau,
était affectés à la chaire de Physiologie générale et comparée. Et celle-ci
n’hérita pas des traditions et souvenirs de la chaire disparue puisque
Maurice Fontaine, faisant en 1944, dans sa leçon inaugurale, Thistorique
de la chaire de Physiologie générale et comparée pouvait légitimement
ne pas compter au nombre des recherches et découvertes de ses prédé-
cesseurs, les travaux de Chauveau et ceux de Phisalix, tout en rendant
hommage au premier pour avoir su doter le Muséum d’un grand labo¬
ratoire de physiologie.
8. EN GUISE DE CONCLUSION.
II me semblerait logique de demander à Madame Phisalix un juge-
ment équitable. Elle ne peut être suspecté de prévention contre les
travaux d’un mari qu’elle admirait, elle était de surcroit particulièrement
experte en matière de venins et d’animaux venimeux. Pour elle
— à Phisalix et Bertrand, au Muséum, en 1894, la première obser-
vation sur les propriétés antivenimeuses du sang des animaux
vaccinés ou moyen du venin de Vipère et la découverte de
la sérothérapie;
— à Calmette, en 1896, à 1’Institut Pasteur de Lille, la préparation
du premier sérum antivenimeux délivré au public contre la mor-
sure du Cobra de 1’Inde.
Tel est son jugement, pouvons nous le faire notre?
II me semble trop sévère et ne pas rendre pleine justice à Calmette
qui avait bien, dès 1894, et indépendamment, découvert la sérothérapie
antivenimeuse; le reconnaítre ne diminue en rien les mérites de Phisalix
et Bertrand.
—ooOoo—
Peut-être n’était-il pas inutile de rappeler les origines d’une décou¬
verte qui connut un si grand développement et dont le rayonnement dans
le monde fut particulièrement rapide avec 1’apparition des nombreux
instituts spécialisés dans la préparation des sérums antivenimeux et
dont l’un des plus célèbres est, sans conteste, delui de Butantan, fondé
voici quatre vingt ans, en 1901, par le Dr. Vital Brazil. (11)
(11) Parmi les premiers fondés on peut citer, celui d’Australie, à Sydney par F. Tidswell aux
I n des ceux de Kasauli et Bombay par Géc. Lamb et Semple et aux Etats Unis, à Philadélphie
celui de J. Mac Farland.
74
cm
SciELO
10 11 12 13 14 15
BRYGOO, E. R. La découverte de la scrothérapie antivenimeuae en 1894. Phisalix et Bertrand ou
Calmette? Mem. Inat. fíutantan, 40:59-77, 1982.
RÉFÉRENCES B1BLI0GRAPHIQUES
ANGEL, F. Vie et Moeurs des Serpents. Paris, Payot, 1950. 316 p.
BABES, V. & LEPP. Recherches sur la vaccination antirabique. Ann. Inst. Pasteur,
3: 384-390, 1889.
BEHRINGWERK MITTEILUNGEN. Die Giftschlangen der Erde, 1963.
BEHRING, E. & KITASATO. Ueber das Zustandekommen der Diphterie-Immunitat
und der Tetanus-Immunitat bein Thieren. Deuts. med. Wchnchr,, 16:1133, 1145,
1890.
- & NISSEN, F. Ueber bacterienfeindlichee Eigenschaften verchiedener
Blutserrumarten; ein Beitrag am Immunitatsfrage. Ztschr. Hyg., 6:412-433,
1890.
BERNARD, N. La vie et Voeuvre d'Albert Calmette. 1863-1933. Paris, Albin Miehel,
1961.
- & NÈGRE, L. Albert Calmette. Sa vie, son oeuvre scientifique. Paris,
Masson et Cie édit., 1939.
BOQUET, P. Note sur la préparation des sérums antivenimeux. Ann. Inst. Pasteur,
72:6600, 1946.
- Venins de serpents et antivenins. Paris, Flammarion, 1948.
- Venins de serpents in P. P. Grasse, Traité de Zoologie, 1970. v. 14,
fase. 2, p. 599-675.
BULLOCH, W. The History of Bacteriology. Oxford Univ. Press, 1938.
CALMETTE, A. Etude expérimentale du venin de Naja tripudians ou Cobra capei
et exposé d’une méthode de neutralisation de ce venin dans 1’organisme. Ann
Inst. Pasteur, 6:160, 1892.
- L’immunisation artificielle des animaux contre le venin des serpents
et la thérapeutique expérimentale des morsures venimeuses. C. R. Soc. Biologie,
46:120 et C. R. Acad. Sei., 118: 720, 1894.
- Au sujet de Patténuation des venins par le chauífage et de 1’immunisa-
tion des animaux contre 1’envenimation. C. R. Soc. Biologie, 46:204, 1894.
- Le Venin des Serpents. Physiologie et Traitement de 1’envenimation.
Paris, Soc. Edit. sei., 1896.
- Les venins, les animaux venimeux et la sérothérapie antivenimeuse.
Paris, Masson édit., 1907.
COLLECTIF. Notice nécrologique et travaux du Dr. C.A. Phisalix (1852-1906).
Paris Progrès médical, 43p. Notice de J. Noor et textes des discours et
allocutions de Ad. Perrier, Gley, J.P. Langlois, Jouffroy, Desprez; 1 portrait,
1906.
DESGREZ, A. Césaire Phisalix. Arch. Parasitologie, 74:54-153, 1910.
DELAUNAY, A. L' Institut Pasteur des origines à aujourd’hui. Edit. France-Em-
pire, 1962.
DITMARS, R.L. Reptiles of the World. New revised edition. The Macmillan Com-
pany, 1969.
ERLICH, P. Experimentelle Untersuchungen über Immunitat. I. Ueber Ricin. II.
Ueber Abrin. Deutsche med. Wchnschr., 77:976-1218, 1891.
-Ueber Immunitat durch Verebrung und Saugung. Ztschr. F. Hyg. u.
Infektionkrankh., 72:183-203, 1892.
FONTAINE, M. La chaire de Physiologie générale du Muséum national d’Histoire
naturelle. Buli. Muséum 2 eS., 76(6) :204-222, 1944.
FORNARA, D. Sur les effets physiologiques du venin de crapaud. ./. Thérap.,
4:882, 929, 1877.
75
SciELO
BRYGOO, E. R. La découverte de la sérothérapie antivenimeuse en 1894. Phisalix et Bertrand ou
Calmette? Mem. Inat. Butantan, 46: 59-77, 1982.
FOSTER, W.D. A History of Medicai Bacteriology and Immujioloyy. W. Heineman
edit., 1970.
FRAENKEL, C. Untersuchungen über Bacteriengift. Immunisirungsversuche bei
Diphterie. Berl. Klin. Wchnschr., 27:1183, 1890.
FRASER, T.R. The rendering of animais immune against the venoin of the cobra
and others Serpents; and on the antidotal properties of the blood serum of
the immunised animais. Brit. med. J., 1 :1309, 15 juin., 1895.
GRAINGER, T, H. A guide to the History of Bacteriology. The Ronald Press
comp. edit., 1958.
HEIM, R. Le professeur Gabriel Bertrand. Triangle, 1 (6) : 125-127, 1954.
HERICOURT, J. & RICHET, C. De la transfusion péritonéale et de 1’immunité
qu’elle confère. C. R. Acad. Sei., 107'. 748-750, 1888.
KAUFMANN, M. Du venin de la vipère. Paris, Masson, 1889. 56 p.
- Les vipères de France. Morsures. Traitement. Paris, Asselin et Houzeau
édit., 1893.
- Sur le venin de la vipère, ses príncipes actifs. La vaccination contre
1’envenimation. C. R. Sco. Biol., 1*0: 113-120, 1894.
KLOBUSITZKY, D. Lethal Doses of some Snake Venoms in Venomous animais
and their Veiioms. Acad. Press, 1971. v. 2, p. 295-304.
LACROIX, A. Discours prononcé à Vlnstitut Pasteur au Jubilé de M. Gabriel
Bertrand le 21* juin 1968, tiré à part., 1938.
LAVERAN, A. Pré face à Vouvrage de Marie Phisalix: Animaux venimeux et venins
Masson édit., 1922.
LEMOINE, P. Le Muséum national d’Histoire naturelle. Son Histoire. Son état
actuel. Arch. Muséwm 6e S., 12: 1-79, 1935.
METCHNIKOFF, E. Lectures on the comparative Pathology of Inflammation.
Londres, 1893.
NUTTALL, G.H.F. Parasitology, 16: 229, 1924, in Forster.
PHISALIX, C. Venins et animaux venimeux dans la série animale. Paris, La
Revue scientifique, 1897, 68 p.
- & BERTRAND, G. Atténuation du venin de vipère par la chaleur et
vaccination du cobaye contre ce venin. C. R. Acad. Sei. Paris, 118: 288, 5 février,
1894.
-&- Sur la propriété antitoxique du sang des animaux vaccinés
contre le venin de vipère. C. R. Soc. Biologie, 46:111, 10 février et C. R.
Acad. Sei., 118: 356, 12 février, 1894.
-& - Recherches expérimentales sur le venin de vipère. Atté¬
nuation par la chaleur et vaccination contre ce venin. Arch. Physiol., 3: 567-582,
1894.
--&- Propriétés antitoxique du sang des animaux vaccinés contre
le venin de vipère. Contribution à 1’étude du mécanisme de la vaccination contre
ce venin. Arch. Physiol., 5:611-619, 1894.
-& - Observations à propos d’une note de M. Calmette relative
au venin des Serpents. C. R. Acad. Sei., 118: 235, 1894.
- & - Sur la réclamation da M. Calmette à, propos du sang anti¬
toxique des animaux immunisés contre le venin des Serpents. C. R. Acad. Sei.,
118: 1071, 1894.
- &-Sur l’emploi et le mode d’action du chlorure de chaux
contre la morsure des Serpents. Buli. Muséum, 1 (5) :221-224, 1895.
- &-Sur les relations qui existent entre les deux procédés
d’immunisation contre les venins: 1’accoutumance et la vaccination. Buli. Mu¬
séum, 2:36-39, 1896.
SciELO
10 11 12 13
76
BRYGOO, E. R. La découverte de Ia sérothérapie antivenimeuse en 1894. Phisalix et Bertrand
Calmette? Mem. Inst. Butantan, 46: 59-77, 1982.
PHISALIX, M. Animaux venimeux et Venins. Paris, Masson édit., 1922, 2 vol.
■— - Vipères de France, 2ème édit. Paris, Stock, 1940, 230 p.
RAOUL, Y. Gabriel Bertrand (1867-1962). Notiee nécrologique. Buli. Soc. Chimie
biol, U( 12) :1051-1056, 1962.
SE WALL, H. Experiments on the preventive inoculation of Rattlesnake venom.
J. of Physiology, S:203-210, 1887.
TAYLOR, G.T. Histoire illustrée de la Biologie, édit. française, 1963.
WILLIAMS, T.I. A Biographical Dictionary of Scientists. Londres, Adam et Char¬
les Black, édit., 1969.
77
cm
SciELO
10 11 12 13 14 15
Mem. Iv-at. Hutavtan
íG:79-94, 1982
LES SPÉCIMENS-TYPES DU GENRE MICRURUS
(ELAPIDAE) CONSERVÉS AU MUSÉUM NATIONAL
D’HISTOIRE NATURELLE DE PARIS
Rolande ROUX — ESTEVE *
Les collections herpétologiques du Muséum National d’Histoire Na-
turelle de Paris renferment un grand nombre de spécimens-types en
particulier ceux qui correspondent aux descriptions figurant dans YErpé-
tologie Générale de Duméril, Bibron et Duméril (1834-1854), oeuvre
considérable composée de 9 tomes (en réalité, 10 volumes, puisque le
tome VII des Ophidiens comporte 2 fascicules).
A côté des spécimens, vus et étudiés par les Duméril et Bibron,
dont près de 85% sont encore dans nos collections, nous trouvens quel-
ques types, peu nombreux, de leurs prédécesseurs, tels Lacépède, Cuvier,
Daudin; ainsi que de leurs contemporains, tels Schlegel, un de leurs
principaux correspondants, Schweigger, élève assidu des cours de Cons-
tant Duméril qui s’est illustré dans 1’étude des Chéloniens; Lesson, Le-
sueur pour ne citer que ces derniers parmi les voyageurs célebres du
début du XIX ème siècle.
Après la mort de Bibron (1848) et quelque peu avant celle de
Constant Duméril (1860), le fils de ce dernier, Auguste, aidé de Séraphin
Braconnier, son préparateur, fit parvenir en 1857, à Jan, le célèbre Ophio-
logiste de Milan, une grande partie de nos spécimens types et non-types,
pour 1’élaboration de Vlconographie Générale des Ophidiens, oeuvre co-
lossale et d’une étonnante rigueur scientifique. Chaque spécimen est,
quand sa taille l’a permis, représenté en vraie grandeur avec tous les
détails d’écaillure, les anomalies individuelles et la coloration que l’on
peut observer, encore à l’heure actuelle.
Jan a donc, à cette époque, réexaminé tous les spécimens envoyés
e t, quand cela lui est apparu nécessaire, les a redécrits et les a fait
figurer par Sordelli, son collaborateur, sous un nouveau nom avant de
les renvoyer à Paris. Ce qui explique la présence d’une partie non négli-
geable de spécimens-types de Jan dans nos collections.
Depuis cette époque, le nombre de types n’a cessé de s’accroitre et
il est parfois regrettable de constater que certains herpétologistes, fran-
Çais ou non, négligent d’avoir recours aux types du Muséum de Paris
lorsqu’ils font des révisions de famille ou de genres.
Maitre-assistant au Muséum National cTHistoire Naturelle de Paris.
79
cm
SciELO
10 11 12 13 14 15
KOUX-ESTEVE, R. Les spécimens-types du genre Micrurus (Elapidae) conserves au Muséum National
D’Histoire Naturelle de Paris. Mem. Inat. Butantan, 46: — , 1982.
C’est pourquoi, je me suis permis, à 1’occasion de ce Symposium de
faire 1’inventaire des spécimens-types du genre Micrurus.
J’indique pour chaque spécimen son numéro de collection (1) et les
caracteres qui me semblent les plus utiles à une étude ultérieure: mensu-
rations, écaillure, coloration et la synonymie.
J’ajouterai une remarque au sujet des Elapidés et de leur impor-
tance dans 1'Erpétologie Générale:
Les différents tomes ne se sont pas succédés dans le temps en suivant
1’ordre des tomes: tome I (1834) ; tome II (1835) ; tome III (1836) ;
tome IV (1837) ; tome V (1839) ; tome VI (1844) ; tome VII (les deux
fascicules: 1854) ; tome VIII (1841) ; tome IX (1854). L’avertissement
du dernier tome indique: “Cette dernière division de l’Erpétologie (les
Urodèles) était rédigée, dès 1’année 1841, lorsqu’à paru le VIII ème
volume qui commençait l”histoire du quatrième ordre, celui des Batra-
ciens
C’est donc le fascicule 2 du tome VII qui, en réalité, a été le dernier
écrit. A cette époque (1854) Bibron n’existait plus, il était mort en 1848,
Constant Duméril et son fils ont du vouloir mettre un terme à leur publi-
cation et ont rapidement rédigé certains chapitres comme le chapitre
VII qui contient les Elaps. Là, ne figurent plus les mensurations si
fréquentes dans les autres chapitres, ni les comptes de ventrales et de
sous-caudales. On peut s’étonner de ces trop brèves descriptions. II se
peut que les Duméril qui avaient à ce moment là des relations constantes
avec le Professeur Jan, Directeur du Musée de Milan, aient songé à
“passer la main” comme le laisse entendre la lettre d’Auguste Duméril
(1858) qui figure au début du “Plan d’une Iconographie descriptive. .
de Jan (1858, Rev. Mag. Zool., sér. 2, 10:438-449). Cela explique peut
être que Jan ait commencé ce “Plan” par l’étude des Elaps (p. 446 et
note p. 447) compétée par la suite (1858, Rev. Mag. Zool., sér. 2, 10:514-
527; 1859, id„ sér. 2, 11:122-136 et 148-159, pl. 4, 5 et 9). Ces 3
derniers articles ont été regroupés avec des modifications de texte (2) plus
ou moins importantes dans un tiré à part intitulé cette fois “Prodrome
d’une Iconographie descriptive. . .”, mais oü les planches 4, 5 et 9 sont
indiquées comme 4, 5 et d et oü cinq planches A, B, C, D, E ont été
ajoutées (2 en couleurs concernant les Micrurus et 3 en noir pour d’autres
Elapidés et quelques Hydrophiidés).
Après le “Plan. .” et le “Prodrome” Jan a fait de nouvelles correc-
tions intitulées “Additions et rectifications. . . ” (1859, Rev■ Mag. Zool
sér. 2, 11:505-512).
Tous ces travaux de Jan sont d’une importance notable pour 1’étude
des Micrurus de nos collections.
(1) A ce propos, je dois signaler, que le n." de collection est celui qui figure sur le parchemin
attaché en permanence au corps de 1’animal. II correspond au même numéro des registres
d’entrées de collection. Comme on peut le constater plus loin, K. P. Schmidt, lors de son
passage à Paria en 1932, a uniquement relevé le numéro de rangement du bocal renfermant
le ou les animaux et non le numéro d’entrée. De plus il a mal calligraphié ces numéros. Cela
a provoqué une certaine confusion et je me suis efforcée de rétablir les choses dans ce travail.
(2) H. M. Smith, en 1943, dans les Transactiona Kanaaa Academy Science, 46: 241-242, a essayé de
donner les correspondences de pagination entre le "Plan” et le "Prodrome” sans toutefois
donner le détail des différences des textes des deux publications.
80
cm
SciELO
10 11 12 13 14 15
KOUX-ESTEVE, R. Les spécimens-types du «eme Micrurus (Elapidae) conservés Muséum National
D’Histoire Naturelle de Paris. Mem. Inst. Butantan, 46: 79-94, 1982.
Genre MICRURUS Wagler, 1824.
Wagler, 1824, Serp. Brasil, spec. : 48.
Espèce-type Micrurus spixii Wagler, 1824.
Elaps gastrodelus Duméril, Bibron et Duméril, 1854, Erp. Gén., VII:1212.
Holotype : MNHP 3930 : localité inconnue.
Keraudren (1).
Spécimen en álcool, très bon état : £.
LT:340mm; Q:21mm.
V :228; A/2; SC:22/2.
Anneau clair derrière les pariétales suivi par 41 demi-anneaux clairs
ventraux, dessous de la queue clair.
Schmidt (1937) suppose que le type de Duméril, Bibron et Duméril
est le n.° 4626 c du Muséum National de Paris. C’est inexact, puisque
ce dernier spécimen (en réalité portant le n.° MNHP 1898 — 5) a
été récolté par Mme Hyver en Guyane en 1898. L’holotype est bien le
n.° 3930, spécimen examiné en 1913 par J. C. Thompson qui a remarqué
que cet individu comporte 1 + 1 temporales sur le côté droit de la tête
et 0 + 1 temporale sur le côté gaúche, ce que je peux confirmer ici.
Ce spécimen est aussi cité par Hoge et Romano (1965) et par Bron-
gersma qui, en 1966, a fait le point de l’historique d’Elaps collaris et en
même temps de celui à’Elaps gastrodelus.
= Micrurus collaris (Schlegel, 1837)
Elaps bocourti Jan et Sordelli, 1872, Icon. Gén. Ophid., liv. 42, pl. 6, f. 2.
Holotype: MHNP 869: Localité inconnue (restreinte par Roze (1967) à
Rio Daule, province de Guayas (Equateur).
Liautaud (1843).
Spécimen en álcool, très bon état: á .
LT: 283 mm; Q: 39 mm.
V: 194; A/2; SC: 49/2.
Dessus de la tête noir. Anneaux noirs en 18 triades sur le corps +
7 larges anneaux noirs sur la queue.
Ce spécimen est représenté en grandeur nature sur la planche de Jan et
Sordelli. C’est aussi un des syntypes de Elaps circinalis Duméril, et
Bibron et Duméril, 1854.
(1) on .sait seulement que Keraudren,
et d’Amérique du Sud.
médecin de la Marine. a envoye des collections des Antilles
81
SciELO
ROUX-ESTEVE, R. Les spécimens-types du ttenre Micmrua (Elapidae) conservés au Muséum National
D’Histoire Naturelle de Paris. Mem. Inst. liutantan, 46: 79-94, 1982.
= Micrurus bocourti bocourti (Jan et Sordelli, 1872).
Elaps diastema Duméril, Bibron et Duméril, 1854, Erp. Gén. VII: 1222.
II y avait à 1’époque des Duméril, 3 syntypes provenant du Mexique:
2 spécimens récoltés en 1847, sans indication de donateur et un troisième,
récolté par Ducommun (entré en collection en 1838, d’après nos catalo¬
gues), jugé en très bon état par les descripteurs.
Schmidt, lors de son passage à Paris, en 1933, a négligé ce dernier
spécimen qui était le seul syntype existant alors dans nos collections.
II a choisi comtne lectotype un autre individu du Mexique donné par
Schlumberger en septembre 1859 (ancien n° de rangement 4620; en
réalité n° MNHP 7656). Ce spécimen, à queue tronquée, était donc entré
en collection quelques années après la parution de 1’Erpétologie Générale.
II n’y a donc aucune raison d’accepter le choix de Schmidt.
Seul, à 1’heure actuelle, le n° 7657 peut être considéré comme le
lectotype d 'Elaps diastema puisqu’étant le seul syntype, de Duméril,
Bibron et Duméril, encore dans nos collections.
Lecto type: MNHP 7657: Mexique.
Ducommun (1838).
Spécimen en álcool, très bon état: $ .
LT: 607 mm ; Q: 69 mm.
V: 213; A/2; Q: 1/2 + 4 + 35/2.
Anneaux noirs: 1 nuchal + 15 complets + incomplet sur le corps
+ 4 sur la queue (soit les 21 anneaux indiqués par Dum., Bib. et
Dum.).
= Micrurus diastema (Duméril, Bibron et Duméril, 1854).
Elaps epistema Duméril, Bibron et Duméril, 1854, Erp. Gén. VII: 1222.
Holotype: MHNP 3922: Mexique
Verreaux.
Spécimen en álcool, très bon état: <j .
LT: 612 mm; Q: 83 mm.
V: 195; A/2; V: 45/2.
Un anneau noir nuchal + 10 taches noires dorsales + 4 anneaux
sur la queue.
82
cm
SciELO
10 11 12 13 14 15
KOUX-ESTEVE, R. Les spécimens-types du genre Micrurus (Elapidue) conserves au Muséum National
D’Histoire Naturelle de Paris. Mcm. Inst. fíutantan, 46:79-94, 1982.
+ Micrurus diadema (Duméril, Bibron et Duméril, 1854)
Elaps apiatus Jan, 1858, Rev. Mag. ZooL, (2), 10:522, pl. A.
Holotype: MHNP 3920: Vera Paz (Guatemala).
Morelet (1849).
Arthur Morelet a rapporté des Reptiles du Vera Paz en 1849 (Erp. Gén.
VII, pp. 211, 1146 . ..). Jan avait écrit “Vera Cruz, ce qui est un lapsus;
ceci avait été déjà corrigé par K. P. Schmidt en 1933.
Spécimen en álcool, à queue légèrement amputée, un Caecilidae était
avalé en partie par le spécimen qui est assez bon état: $ .
LT: 400 (+) mm; Q: 45 ( + ) mm.
V: 204; A/2; SC: 8/1 + 30/2 ( + ).
Anneaux noirs: 1 nuchal + 29 sur le corps + 10 sur la queue (+).
= Micrurus diastema (Duméril, Bibron et Duméril, 1854)
Elaps affinis Jan, 1858, Rev. Mag. Zool., (2), 10:522, pl. B et Jan et
Sordelli, 1872, Icon. Gén. Ophid., liv. 42, pl. 1, f. 2 (sous le nom de Elaps
fulvius affinis).
Holotype figuré: MNHP 3921: Mexique.
Spécimen en álcool, en très bon état: 9.
LT: 718 mm; Q: 73 mm.
V: 217; A/2; SC: 39/2.
Anneaux ou fractions d’anneaux noirs: 1 nuchal + 20 sur le corps
+ 6 sur la queue.
Schmidt (1933) écrit “ Micrurus affinis was based on two spécimens in
the Museum d’Histoire Naturelle in Paris (n° 4624)”. Schmidt donne
une fois encore le n° de rangement au lieu du n° de colleetion. Manifeste-
ment Jan ne parle que d’un spécimen dans sa description. Le deuxième
spécimen étiqueté Elaps affinis au moment du passage de Schmidt
(MNHP 1153) n’est entré dans nos collections qu’en 1863, date posté-
rieure à celle de la description de Jan.
La figure de la planche B du travail de Jan représente 1’holotype (MHNP
3921) ; c’est aussi ce spécimen qui est figuré sur la planche de 1’Icono-
graphie avec tous ses détails de coloration que nous observons encore à
1’heure actuelle.
II reste toutefois un petit problème difficile à résoudre. L’écaillure
donnée par Jan eorrespond bien à ce que j’ai pu relever; en revanche les
mensurations ne correspondent pas: s’agit-il d’erreurs typographiques
comme on en trouve quelques unes dans les travaux de Jan ou erreur
de transcription de sa part? II est difficile de trancher.
83
cm
SciELO
10 11 12 13 14 15
ROUX-ESTEVE, R. Les spécimens-types du genre Micrurus (Elapidae) conservéa au Muséum National
D’Histoire Naturelle de Paris. Mem. lust. fíutantan. Í6: 79-94. 1982.
= Micrurus diastema (Duméril, Bibron et Duméril, 1854)
Micrurus affinis stantoni Schmidt, 1933, Field Mus. Nat. Hist. Chicago,
Zool. Ser., XX, :36.
Schmidt a choisi deux de ses paratypes dans nos collections n° 4614 et
4614 J. Une fois encore ce sont les anciens n° de rangement. Ils corres-
pondent aux n° de collection 3917 (4614) et 1898-253 (4614 J).
Je les ai examiné successivement.:
Paratype MNHP 3917; Mexique.
Spécimen an álcool, état moyen.
LT: 389 mm; Q: 54 mm.
V: 195; A/2; SC: 49/2.
Anneaux noirs: 1 nuchal + 15 sur le corps + 6 sur la queue.
J’ai suivi la synonymie de cette sous-espèce dans la littérature: 1933,
Schmidt = Micrurus affinis stantoni, 1936, Schmidt = Micrurus affinis
alienus, 1967, Roze = Micrurus diastema sapperi, lequel est suivi par
Peters et Orejas-Miranda en 1970, puis par Hoge et Romano en 1971,
pour aboutir en 1973, chez Frazer à Micrurus diastema. Ce que je puis
confirmer.
= Micrurus diastema (Duméril, Bibron et Duméril, 1854)
Dans 1’ignorance des cheminements antérieurs qui avaient conduit
ce spécimen a être encore catalogué, à tort, à 1’époque de Schmidt comme
Elaps fulvius (1), je me demande si, ce spécimen ne sarait pas à 1’origine
un des syntypes manquants d 'Elaps diastema Dum., Bib. et Dum. Je le
soupçonne, mais je ne peux le prouver.
Quant au deuxième syntype manquant, ne pourrait-on pas cette fois
supposer que le spécimen du Mexique, envoyé par A. Duméril à Jan au
moment de 1’Iconographie, et décrit ensuite par Jan sous le nom d 'Elaps
affinis (2)n’était pas lui aussi primitivement étiqueté Elaps diastema.
Cette éventualité me parait probable. Et cela prouverait que Duméril,
Bibron et Duméril avaient vu juste à leur époque en groupant les spéci-
mens 7657 (diastema), 3921 (affinis), 3917 (affinis stantoni) sous un
seul vocable. Ce qui se trouve maintenant parfaitement justifié à la
lecture du travail de Frazer (1973) c’est à dire 120 ans pius tard.
Le cas du deuxième paratype de M. affinis stantoni de Schmidt est
lui aussi complexe:
(1) Ici, comme on le verra plus bas, A. Duméril, responsable des collections jusqu’en 1870 avait
suivi, son catalogue méthodique de nos archives en fait foi, la classification de 1’Elenco de
Jan qui classe diastema parmi les varétés d'Elaps fulvius.
(2) Je ferai remarquer que Jan dans son Elenco, fait, d'Elaps affinis, comme de diastema une
variété d 'Elaps fulvius.
SciELO
84
KOUX-ESTEVE, R. Les spécimens-types du genre Micrurua (Elapidae) conservés au Muséum National
D’Histoire Naturelle de Paris. Mem. Inst. Butantan, 46: 79-94, 1982.
Paratype MHNP 1898-253: Cerro San Juan, versant Occidental, terri-
toire de Tepic (Mexique Ouest, Nayarit)
Diguet.
Spécimen en álcool, bon état: $.
LT: 597 mm; Q: 61 mm.
V: 221; A/2; SC: 42/2; temp.: 1+2.
Anneaux noirs: 1 nuchal + 24 sur le corps + 7 sur la queue.
Ce spécimen avait été déterminé à son arrivée par Mocquard, comme
Elaps fulvius (Buli. Soc. Philom. Paris, 1899, 9, 1:157). Smith et Taylor
en 1945 (Buli. U. S. Nat. Mus. 187:173, note 186 font de ce spécimen un
Micrurus diastema distans (Kennicott), espèce séparée de diastema par
Zweifel (1959) et Roze (1967) et nous arrivons à Micrurus distans
distans; ce qui parait tout à fait justifié pour ce spécimen
= Micrurus distans distans (Kennicott, 1860)
Elaps dumerilii Jan, 1858, Rev. Mag■ Zool, (2), 10:522, pl. A;
Jan et Sordelli, 1872, Icon. Gén. Ophid., liv. 42, pl. I, f. 3.
Holotype figuré: MNHP 3923: Carthagène (Colombie)
Barrot.
Spécimen en álcool: très bon état: $.
LT: 660 mm; Q: 100 mm.
V: 202 (1) ; A/2; SC: 51/2.
Anneaux noirs: 1 nuchal + 11 triades sur le corps + 6 anneaux sur
la queue.
Ce spécimen avait été d’abord décrit par Duméril, Bibron et Duméril
dans 1’Erpétologie Générale (VII: 1211) sous le nom de Elaps Mar-
gravii. C’est d’ailleurs ce qu’ècrit Jan dans “Additions et rectifications
aux plan et prodrome de lTconographie descriptive des Ophidiens (1859,
Rev. Mag. Zool., (2), 11:509).
C’est aussi ce spécimen qui figure sur la planche de lTconographie.
= Micrurus dumerilii dumerilii (Jan, 1858)
Micrurus elegans veraepacis Schmidt, 1933, Field Mus Nat. Hist., Zool.
Ser., 20 :32.
Paratype: MNHP 1262: Haute Vera Paz, région autour du Rio Coban,
Cap Coban (Guatemala).
Bocourt (Commission scientifique du Mexique)
1868.
(1) Jan donne, par erreur : 104.
85
cm
SciELO
10 11 12 13 14 15
ROUX-ESTEVE, R. Les spécimens-types du prenre Micrurus (Elapidae) conserves au Muséum National
D’Histoire Naturelle de Paris. Mcm. Inat. Butantan, í6: 79-94, 1982.
Spécimen en álcool, très bon état: 9.
LT: 485 mm; Q: 45 mm.
V: 223; A/2; SC: 35/2.
Anneaux noirs en triades: 1/2 triade nuchale + 15 triades 1/2 sur
le corps + 1/2, 2 sur la queue.
Elaps frontalis Duméril, Bibron et Duméril, 1854, Erp. Gén., VII: 1223.
Des trois syntypes signalés dans 1’Erpétologie Générale, nos collec-
tions ne possèdent plus que deux individus:
Syntype MNHP 854 : Brésil
Claussen (1844).
Syntype MNHP 578: Côte Ferme (Vénézuela)
Beauperthuis.
Les deux spécimens en álcool, en très bon état: <?.
Le premier, MNHP 854, dont voici les caractéristiques:
LT: 501 mm; Q: 31 mm.
V: 235; A/2; SC: 25/2.
Anneaux en 11 triades sur le corps + 1 sur la queue-
1’anneau médian de la triade est nettement plus large que les deux
qui 1’entourent, à la fois dorsalement et ventvalement. Sur les côtés,
il apparait comme étant de même largeur que les deux autres.
= Micrurus frontalis frontalis (Duméril, Bibron et Duméril, 1854)
Le deuxième, MNHP 578:
LT: 727 mm; Q: 57 mm.
V: 208; A/2; SC: 28/2.
Anneaux en 10 triades sur le corps + 1 sur la queue.
Ce syntype a été examiné en 1978 par le Professeur Hoge qui Ta
déterminé:
= Micrurus isozonus (Cope, 1880)
Elaps heterochilus Mocquard, 1887, Buli. Soc. Philom. Paris, (7), 11:39.
Holotype: MNHP: 1887 — 122: Brésil
Pougnet
Spécimen en álcool, très bon état: <5.
LT: 553 mm: Q: 43 mm.
V: 209; A/l; SC: 2/2 + 6 + 21/2.
Anneaux en triades: 12 sur le corps -f 1 sur la queue.
86
cm
SciELO
10 11 12 13 14 15
ROUX-ESTEVE, R. Les spécimens-types du grenre Micrurua (Elapidae) conservéa au Muséum National
D’Histoire Naturelle de Paris. Mem. lnat. fíutantan, 40:79-94, 1982.
= ? Micrurus frontalis altirostris (Cope, 1859).
Cette synonymie, adoptée par Roze (1967) n’est pas très satisfai-
sante; il est dommage de ne pas connaitre le lieu exact oü a été trouvé ce
spécimen. Hoge et Romano (1971) écrivent: “The type spécimens of
M. heterochilus and M. lemniscatus miilticinctus are obviously inter-
grades.”
Micrurus latifasciatus Schmidt, 1933, Field Mus■ Nat. Hist., Zool. Ser.,
20:35.
Paratypes, MNHP 1301 et 1301 A: San Agustin, près de Solola (Gua-
témala.).
Bocourt (Commission scientifique du Mexique).
Spécimens en álcool, en très bon état: <5.
Ces deux spécimens ont été choisis par Schmidt (1933, p. 35) sous
les anciens numéros de rangement 4614 a (et non 4614 d comme 1’écrit
Schmidt).
Ces deux individus avaient été déterminés en 1896 par Dugès comme
des Elaps michoacanensis (Buli. Mus. Nat. Hist. nat., Paris, 1896, II,
p. 61.).
Paratype MNHP 1361:
LT: 490 mm; Q: 78 mm.
V: 189; A/2; SC: 53/2.
Anneaux noirs: 1 nuchal; f 6 sur le corps -
Paratype MNHP 1361 A:
3 sur la queue.
LT: 220 mm; Q: 33 mm.
V: 190; A/2; SC: 53/2-
Anneaux noirs: 1 nuchal + 6 sur le corps + 3 sur la queue.
Elaps mipartitus Duméril, Bibron et Duméril, Erp. Gén., VII: 1220.
Holotype MNHP 3915: Rio Sucio ou Senio (= ? Sinü pour Roze, 1967)
(Nouvelle — Grenade = Colombie)
Goudot.
“... nous n’en avons que la peau très bien préparée et conservée
dans 1’alcool...” (Duméril, Bibron et Duméril: 1221)
LT: 762 mm; Q: 38 mm.
V: 281; A/2; SC: 23/2.
Museau noir + 64 anneaux sur le corps + 3 sur la queue.
87
cm
SciELO
10 11 12 13 14 15
ROUX-ESTEVE, R. Les spécimens-typea du srenre Micrurua (Elapidae) conaervé» au Muaéum National
D’HÍ8toire Naturelle de Paris. Mem. Inat. Hutantan, 46: 79-94. 1982.
= Micrurus mipartitus mipartitus (Duméril, Bibron et Duméril, 1854).
Elaps decussatus Duméril, Bibron et Duméril, 1854, Erp. Gén., VII, 1221.
“Nous en possèdons trois exemplaires, dont un entier et deux autres,
.. .Nous n’avons de ces derniers que les peaux fort bien préparées.” (p.
1222 ).
Donc 3 syntypes, tous trois en álcool, le spécimen entier, comme les
2 peaux en bon état.
Syntypes MNHP 3916 en peau; MNHP 3916 A, entier;
MNHP 3916 B, en peau:
Nouvelle Grenade (= Colombie).
Goudot.
MNHP 3916: LT: 822 mm; Q: 48 mm.
V: 279; A/2; SC: 26/2.
Museau noir + 62 anneaux noirs sur le corps + 3 sur
la queue.
MNHP 3916 A: LT: 480 mm; Q: 27 mm.
V: 298; A/2; SC: 28/2.
Museau noir + 72 anneaux sur le corps + 3 sur la
queue.
MNHP 3916 B: LT 638 mm; Q: 40 mm.
V: 286; A/2; SC: 26/2.
Museau noir 4- 51 anneaux sur le corps + 2 sur la
queue.
= Micrurus mipartitus decussatus (Duméril, Bibron et Duméril, 1854).
Micrurus nuchalis Schmidt, 1933, Field Mus. Nat. Hist., Zool. Ser. XX :35.
Schmidt a désigné 3 paratypes dans notre Musée: sous 1’ancien
numéro de rangement 4622 a, le MNHP 3260; sous 1’ancien numéro 4619 a
(écrit par erreur dans son texte 4612 a), les MNHP 4424 et 4424 A.
Paratype MNHP 3260: Mexique
Boucard
Spécimen en álcool, en bon état: 9.
LT: 715 mm; Q: 77 mm.
V: 207; A/2; SC: 38/2.
Anneaux noirs: 1 nuchal + 7 sur le corps + 2 sur la queue (1’anneau
nuchal est de 10 écailles).
88
cm
SciELO
10 11 12 13 14 15
ROUX-ESTEVE, R. Les spécimens-types du fçenre Micrurus (Elapidae) conserves au Muséum National
D’Histoire Naturelle de Paris. Mem. Inat. Butantan, 46: 79-94, 1982.
Paratype MNHP 4424: Santa Efigenia, Oaxaca (Mexique).
Sumichrast par Bocourt (1875).
Spécimen en álcool, en bon état: 9.
LT: 605 mm; Q: 68 mm.
V: 202; A/2; SC: 37/2.
Anneaux noirs: 1 nuchal (10 écailles) + 7 sur le corps + 2 sur
la queue.
Paratype MNHP 4424 A: même provenance que le précédent.
Spécimen en álcool, en bon état: 9.
LT: 578 mm; Q: 69 mm.
V: 205; A/2; SC: 38/2.
Anneaux noir: 1 nuchal (10 écailles) + 8 sur le corps + 2 sur la
queue.
Elaps circinalis Duméril, Bibron et Duméril, 1854, Erp. Gén., VII: 1210.
A 1’origine, écrivent les auteurs, il y avait 4 syntypes: “. . . un seul,
qui provient de M. Plée, porte pour étiquette, avec un point de doute,
qu’il est de la Martinique; un autre, qu’il a été donné par M. Geoffroy,
avec le nom de corallinus. Un troisième est un don de M. Liautaud, qui
voyageait à bord de la Danaide en 1843; et un dernier a été acquis en
octobre 1846, de M. Deyrolle”.
Le premier syntype a été donné par le Professeur Guibé au Profes-
seur Hoge en 1956 (MNHP 3913) ; Le deuxième est encore dans nos
collections (MNHP 3912) ; le troisième a été représenté sous le nom
d 'Elaps bocourti par Jan et Sordelli en 1872 dans 1’Iconographie Générale
des Óphidiens (MNHP 869) et le quatrième ne figure plus dans nos
collections.
Syntype MNHP 3912: localité inconnue
Geoffroy
Spécimen en álcool, très bon état: 9.
LT: 280 mm; Q: 25 mm.
V: 202; A/2; SC: 32/2.
Anneaux noirs: 1 nuchal + 26 sur le corps + 6 sur la queue.
= Micrurus psyches circinalis (Duméril, Bibron et Duméril, 1854).
Micrurus spixii martiusi Schmidt, 1953, Fiedliana Zool., 34:175, f. 33-34.
Paratype MNHP 5357: Ilha do Marajó.
Jobert (1879).
Schmidt a écrit, par erreur, 5337 au lieu de 5357 (p. 172). La même
erreur a été commise (p. 171): 5336 au lieu de 5356, pour un autre
89
cm
SciELO
10 11 12 13 14 15
KOUX-ESTEVE, R. Les specimens-types du trenre Micrurna (Elapidae) conserves au Muséum National
D’Histoire Naturelle de Paris. Mem. Inat. Butantan, U6: 79-94, 1982.
paratype qui n’existe plus dans nos collections et provenant de Para.
Je pense que ce dernier a été donné en 1956 au Professeur Hoge.
Spécimen en álcool, en assez bon état: $ .
LT: 1076 mm; Q: 60 mm.
V: 207; A/2; SC: 20/2.
Anneaux noirs en triades: 7 sur le corps + 1 sur la queue.
Elaps surinamensis Cuvier, 1817, Règne animal, édit. 1, 2:84.
Syntypes MNHP 3926 et MNHP 3925: Surinam
Levaillant
C’est Duméril, Bibron et Duméril qui affirment qu’il s’agit là des
deux spécimens types de Cuvier: “Ils ont été probablement été étiquetés
par G. Cuvier...” (Erp. Gén, VII: 1225). Ces auteurs ont même écrit
auparavant: “... le second beaucoup plus petit, provenant du Surinam,
semble être le même qui aurait servi de modèle à celui qui est] représenté
sur la planche 6 du second volume du Trésor de Séba (fig. 2), portant
pour origine le nom de Surinam”.
Schmidt (1952, p. 26) donne encore une fois les n° de rangement
en lieu et place des n° de collection.
Syntype MNHP 3926: Spécimen en bon état: $
LT: 862 mm; Q: 114 mm.
V: 169; A/2; SC: 37/2.
Anneaux noirs: 6 1/2 sur le corps 4- 1/2 1 sur la queue.
Syntype MNHP 3925: Spécimen en bon état: 9
LT: 302 mm ; Q: 32 mm.
V: 176; A/2; SC: 32/2.
Anneaux noirs: 8 1/3 sur le corps + 2/3 1 sur la queue.
Cette espèce se sépare immédiatement des autres Micrurus par ses
labiales: la 4ème labiale seule est en contact avec 1’oeil; caractere que
Boulenger avait déjà signalé dans son catalogue (1896), oublié des systé-
maticiens dans leurs tableaux de détermination et repris par Duellman
tout récemment (1978).
Je dois singnaler, en outre, que le n° MNHP 3924 de Cayenne récolté
par Daniele (Spécimen non-type) est représenté dans lTconographie de
Jan et Sordelli (liv. 42, pl. 3, fig. 1).
90
cm
SciELO
10 11 12 13 14 15
ROUX-ESTEVE, R. Les spécimens-types du genre Micrurua (Elapidae) conservés au Muséum National
D'Histoire Naturelle de Paris. Mem. Inat. fíutantan, 46: 79-94, 1982.
= Micrurus surinamensis surinamensis (Cuvier, 1817)
Remarques sur quelques spécimens non-types des Collections du Muséum
national d’Histoire Naturelle de Paris et énumérés dans V“Erpétologie
Générale” de Duméril, Bibron et Duméril (185b, VII).
Page 1207:
Elaps corallinus
Le Muséum possède encore 3 spécimens vus par Dum. B. et D.
MNHP 3911: Brésil — Langsdorff
= Micrurus corallinus (Merrem, 1820)
MNHP 3909: Trinité — Plée
= Micrurus psyches circinalis (Dum., Bibr. et Dum., 1854)
MNHP 3910: Nouvelle Grenade (Colombie) Riefer.
= Micrurus dumerili carinicauda Schmidt, 1936
Page 1211:
Elaps alternans
Cette espèce insuffisamment décrite dans l’Erp. Gén., ne se retrouve
plus ultérieurement dans la littérature. Boulenger lui-même la laisse de
côté et n’en parle pas.
Duméril, Bibron et Duméril ont vu deux spécimens, provenant du
Mexique et rapportés par Prémat en 1843. J’ai retrouvé trace de 3 Elaps
sp. sur un vieux catalogue, effectivement récoltés au Mexique par Prémat.
Les deux individus ayant servi pour la description ã’E. alternans n’exis-
tent plus dans nos collections. Seul le MNHP 3919 (qui est un Micrurus
diastema) est étiqueté Mexique — Prémat. II ne correspond donc pas à
la description d 'Elaps alternans.
Page 1212:
Elaps psyches
Duméril, Bibron et Duméril mettent dans leur synonymie: “1803.
Vipera Psyche. Daudin. Rept. 8, p. 320, pl. 100, fig. 1” et dans leur
description:
“Le Musée de Paris possède trois exemplaires de ce Serpent. L’un
d’eux qui a servi à la description que Daudin en a faite, provient du
Surinam; il a été rapporté par Levaillant, et a passé ensuite dans la
collection de Dufresne; un autre a été rapporté de la Guyane par M. Les-
chenault, et le troisième de Cayenne, par Claude Richard.. ..”
91
cm
SciELO
10 11 12 13 14 15
ROUX-ESTEVE, R. Les spécimens-types du preme Micrurua (Elapidae) conservéa au Muséum National
D’Histoire Naturelle de Paris. Mem. Inst. Rutantan, ItG: 79-94. 1982.
Nous possèdons bien dans nos collections 3 spécimens contemporains
des Duméril:
MNHP 7654: Surinam
MNHP 8669: Guyane -
MNHP 3914: Cayenne
- Levaillant.
Leschenault.
- Richard.
Les n° 8669 et 3914 ne posent aucun problème. Seul le n° 7654, indi-
qué par Dum., Bib. et Dum., comme le type de Daudin amène quelques
remarques.
On lit dans Daudin (1803, Hist. Rept. 8:320) en note en bas de page:
“(1) Vivera psyches; annulis alternatim fuseis et atris circá 56
circulo albo separatis; caudâ acutã 1/9. Scutis abdom. 188. — Scutellis
subcaud. U5-233.”
Apparemment, au vu du nombre des écailles abdominales, 188 et des
sous-caudales, 45, on peut en déduire qu’il s’agit d’un spécimen á .
Dans son texte de la p. 320, Daudin indique que son spécimen mesure
9 pouces soit 244 mm (1 pouce français = 27,07 mm). Ensuite p. 321
“... le reste de 1’animal est très agréablement orné de 56 anneaux ou
environ...”
Or le MNHP 7654 mesure 490 mm de longueur totale (dont 48 mm
de queue) soit presque le double du spécimen de Daudin. J’ai compté
203 ventrales et 30/2 sous-caudales et le nombre total d’anneaux (rouges
+ noirs) est de 80 environ. Je ne suis pas süre de ce nombre qui est
difficile à évaluer, 1’anima] étant dessèché et en mauvais état.
Donc, étant donné la taille et les nombres d’écailles de ce spécimen;
il m’est impossible, malgré sa provenance, d’affirmer que nous sommes
en présence du type de Daudin. Ce qui est évidemment regrettable.
Page 1215:
Elaps fulvius
Du très "... grand nombre d’exemplaires ...” cités par Duméril;
Bibron et Duméril, restent en collection seulement 3 spécimens:
MNHP 888: Savannah — Harpert.
MNHP 59: Nouvelle Orléans — Barabino.
MNHP 3918: Nouvelle Orléans — Fournier.
Page 1217:
Elaps lemniscatus
Sur les “
vons les n°:
20 exemplaires de toutes dimensions. ..” nous retrou-
MNHP 3928: Bahia — Dabadie.
MNHP 7659: Bahia — Dubois.
MNHP 7658: Cayenne — Mélinon.
92
cm
SciELO
10 11 12 13 14 15
ROUX-ESTEVE, R. Les spécimens-types clu genre Micrurus (Elapidae) conserves au Muséum National
D’Histoire Naturelle de Paris. Mcm. Ivst. Butantan , 46:79-94, 1982.
RÉFÉRENCES BIBLIOGRAPHIQUES
BRONGERSMA, L.D. Note on Leptomicrurus collaris (Schlegel) (Reptilia, Ser¬
pentes). Zool. Meded. Leiden, 41:243-254, 1966.
CUVIER, G. Le règne animal. Paris, 1817. v. 2, p. I-XVIII, 1-532.
PAUDIN, F.M. Histoire naturelle des Reptiles. Paris, 1803. v. 8, p. 1-439, pl.
93-100.
DUELLMAN, W.E. The biology of an Equatorial Herpetofauna in Amazonian
Ecuador. Miscell. Publ. Kansas, 65: 1-352, 198 f., 34 tabl., 1978.
DUGÈS, A. Elaps Diastema, var. Michoacanensis. La Naturaleza (México), /,
ser. 2:487, pl. 32, 1891.
-- Notes sur Elaps michoacanensis. Buli. Mus. Nat. Hist. nat., 2:60-61,
1896.
DUMÉRIL, A.M.C.; BIBRON, G. & DUMÉRIL, A.H.A. Erpétologie Générale.
Paris, Roret, 1854. VII, 1536 p.
FRAZER, D.F. Variation in the Coral Snake Micrurus diastema. Copeia, 1 :1-17,
f. 1-12, 1973.
HOGE, A.R. & ROMANO, A.R.W.D.L. Leptomicrurus in Brazil (Serpentes-Elapi-
dae). Mem. Inst. Butantan, 32: 1-8, f. 1-3, 1966.
'--- Neotropical Pit Vipers, Sea Snakes and Coral Snakes in Venomous
Animais and their Venoms, 2:211-293, 1971.
JAN, G. Plan d’une Iconographie descriptive des Ophidiens et description sommaire
de nouvelles espèces de Serpents (précédé d’une lettre du Prof. Auguste Duméril
relative à cette Iconographie). Rev. Mag. Zool., Paris, sér. 2, 10:438-449;
514-527, 1858. 1859, ibid., sér. 2, 11:122-136; 148-159, pl. 4, 5 et 9, 1859.
De ce travail existe un extrait de la lère partie (12 p.) et un 2ème extrait
(32 p.) qui réunit la 2ème, 3ème et 4ème partie et porte de titre; “Prodrome
d’une Iconographie descriptive des Ophidiens et description sommaire de nou¬
velles espèces de Serpents venimeux.” Cet extrait présente de petites variantes
vis à vis du texte du périodique et en plus des 3 planches signalées ci-dessus
en possède 5 autres (A à E) représentant les principaux détails des nouvelles
espèces.
1859. Additions et rectifications aux Plan et Prodrome de lTconographie
Descriptive des Ophidiens. Rev. Mag. Zool., Paris, sér. 2, 11:505-512 (extrait:
8p.).
JAN, G. & SORDELLI, F. Iconographie Générale des Ophidiens. 1872, III.
MOCQUARD, F. Sur une nouvelle espèce d’Elaps, E. heterochilus. Buli. Soc. Philom.
Paris, sér. 7, 11:39-41, 1887.
~ ~--- Reptiles et Batraciens recueillis au Mexique par M. Léon Diguet en
1896 et 1897. Buli. Soc. Philom. Paris, sér. 9, 1:154-169, pl., 1899.
PETERS, J.A. & OREJAS-MIRANDA, B. Catalogue of the Neotropical Squamata:
Part I. Snakes. Buli. U. S. Natl. Mus., 297: 1-347, 1970.
POZE, J.A. Revisión de las corales (Serpentes: Elapidae) de Venezuela. Acta Biol.
Venezuelica, Caracas, 1:453-500, 3 figs, 2 pl. coul., 1955.
— - A Check List of the New World Venomous Coral Snakes (Elapidae),
with Descriptions of New Forms. Amer. Mus. Novit. (2287) :l-60, 17 figs., 1968.
SCHMIDT, K.P. Preliminary account of the coral snakes of Central America and
México. Eield Mus. Nat. Hist., Zool. Ser., 20:29-40, 1933.
"—- Preliminary account of coral snakes of South America. Ibid., 20: 189-203,
1936.
-- The history of Elaps collaris Schlegel 1837-1937. Ibid., 20:361-364, 1937.
— - The Surinam coral snake, Micrurus surinamensis. Fieldiana, zool., 3! t :
25-34, f. 4-6, 1952.
93
SciELO
KOUX-ESTEVE, R. Lês spécimens-types du treme Mirrurua (Elapidae) conserves au Muséum National
D’Histoire Naturelle de Paris. Mcm. Inat. Iiutantan. 40:79-94, 1982.
1953.
The Amazonian coral snake, Micrurus spixi. Ibid., 54:171-180, f. 33-35,
SMITH, H.M. Comments on G. Jan’s Papers on Venomous Serpents and the Coro-
nellidae. Trans. Kansas Acad. Sei., 46:241-242, 1943.
SMITH, H.M. & TAYLOR, E.H. An annotated check list and key to the snakes
of México. Buli. U. S. Natl. Mus., 187: 1-4, 1-239, 1943.
THOMPSON, J.C. The correct status of Elaps collaris Schlegel. Notes Leyden
Mus., 35: 171-175, 1913.
ZWEIFEL, R.G. Additions to the herpetofauna of Nayarit, México. Amer. Mus.
Novitates, (1953) :1-13, 1959.
94
cm
SciELO
10 11 12 13 14 15
Ment. In.8t. Butantan
•40:95-103, 1982
SERPIENTES DE VENEZUELA
DISTRIBUCIÓN GEOGRÁFICA Y ALTITUDINAL DE
GENEROS DE SERPIENTES EN VENEZUELA
Abdem Ramon LANCINI V. *
Venezuela está ubicada en el extremo norte de América dei Sur y
tiene una superfície de 912.050 kilometros cuadrados y recientemente
incorporo a su território 4.395 kilometros cuadrados adicionales, en un
acuerdo bilateral en la revisión de limites con la República Federativa
dei Brasil.
La posición geográfica dei país está ubicada en sentido latitudinal
entre 0 o 45’ 0” y 12° 11’ 46” Norte y entre 59° 45’ 79” hasta 73° 11’
49” de longitud Oeste.
Todo el Norte dei país está banado por una costa de 2813 Kms. y
tiene una frontera meridional con el Brasil de 2.000 kilometros de exten-
sión. Sus limites con Colombia son de 2.050 kilometros y de 743 con
Guyana.
Como puede observarse, en lo referente a latitud, Venezuela es un
País ecuatorial y predominan en gran parte de su território los climas
tipo “A” (cálidos y húmedos), “B” (secos) y en menor proporción los
dei tipo “G” y “H” (tempestades tropicales y frios de alta montaria
tropical) ; según la clasificación de Kõppen.
Las distancias extremas dei território venezolano son de 1271 kilo¬
metros de Norte a Sur y 1.493 kilometros de Este a Oeste.
Desde el punto de vista altitudinal, el relive dei país se extiende
desde el nivel dei mar hasta 5.007 metros de altura en el pico Bolívar
de los Andes de Mérida. Es fácil comprender que el factor vertical es
el más importante en la distribución de la temperatura media en las
fegiones naturales de Venezuela. Por otra parte, la posición ecuatorial
mtertropical dei país y la gran variedad de pisos térmicos altitudinales
existentes, ha permitido la existência de ambientes desérticos como las
dunas dei Istmo de los Médanos y península de la Guajira, hasta los
páramos con nieves perpetuas por encima de 4.700-4.850 metros de
altitud.
Oirector dei Museo de Ciências Naturales, Caracas.
95
cm
SciELO
10 11 12 13 14 15
liANCINI V., A. R. Serpientes de Venezuela: distribución geográfica y altitudinal de géneros de
serpientes en Venezuela. Metn. Ivat. Butavtan, 46: 95-103, 1982.
La vegetación dei país, muy rica en variedad de formaciones (selvas,
sabanas, dunas y paramos), abriga un número significativo de géneros,
especies y subespecies de Serpientes recientes. Actualmente se conocen
alrededor de 150 especies y subespecies, agrupadas en siete (7) Famílias
y cincuenta y dos (52) géneros. El 20% de la Ofiofauna de Venezuela
compreende a Serpientes venenosas de las famílias Elapidae y Viperidae
y otro 20% lo forman especies semivenenosas de la familia Colubridae.
El restante 60% corresponde a especies y subespecies no venenosas de
varias Famílias. No obstante, estos porcentajes pueden variar en el
futuro con nuevos descubrimientos herpetológicos.
Las costas de Venezuela e islas adyacentes, al igual que todo el Norte
dei país están sometidos a la influencia de los vientos Alisios dei Nor¬
deste, que determinan una estación seca de cinco meses y otra lluviosa
de siete meses. En cambio, al Sur dei rio Orinoco la estación lluviosa
es más prolongada.
En las costas de Venezuela la vegetación generalmente es semi-
xerófila e a veces desértica y así como hay pobreza de vegetación, los
elementos faunísticos son poco numerosos en especies.
Aproximadamente el 18% de las especies de Serpientes dei país se
encuentran en esta extensa y estrecha región (incluyendo islas de Vene¬
zuela en el mar Caribe) considerada en su totalidad.
En las zonas muy áridas de las Penínsulas de Araya, Paraguaná y
la Guajira la vegetación es muy pobre, las temperaturas con una varia-
ción diurna-nocturna muy amplia y la humedad relativa dei aire muy
baja. En ese medio hemos encontrado especies de 14 géneros: Leptodeira,
Leptophis, Masticophis, Mastigodryas, Oxybelis, Phimophis, Pseudoboa,
Spilotes, Tantilla y Thamnodynastes de la familia Colubridae. Leptoty-
phlops (Leptotyphlopidae), Thyphlops (Typhlopidae) y entre las vene¬
nosas algunas pocas especies de los géneros Bothrops, Crotalus (Vipe¬
ridae) y Micrurus (Elapidae).
En contraste con las regiones bajas xerófilas (—100 m.) de las costas
y algunas otras porciones dei interior dei país, encontramos los sistemas
montanosos de los Andes y Perijá en el Occidente y la Cordillera de la
Costa en el Norte y Este de la Nación.
En los Andes de Táchira existe uma región de particular interés,
la región dei Páramo de Tamá, limítrofe con Colombia. Allí existen
elevaciones de poco más de 3.600 metros de altitud y se han encontrado
formas endémicas de plantas y animales. Hasta el presente hemos
hallado allí 7 géneros de serpientes, entre ellos Lampropeltis (Colubri¬
dae), extendido desde Canadá hasta Ecuador.
Entre la región dei páramo de Tamá (3.329 m.) y los Andes de
Mérida hay una depresión de origen tectónico, denominada Depresión
dei Táchira, con un desnível de más de 2.000 metros para luego ele-
varse nuevamente. Esto ha constituído una interesante barrera ecoló¬
gica para muchas especies propias de la Cordillera Oriental de los Andes
de Colombia, que no penetran hacia los Andes de Mérica y la cuenca
hidrográfica dei Lago de Maracaibo.
96
cm
SciELO
10 11 12 13 14 15
LANCINI V., A. R. Serpientes de Venezuela; distribución geográfica y altitudinal de géneros de
serpientes en Venezuela. Mem. Inat. Butantan, 40:95-103, 1982.
La Sierra Nevada de Mérida es la formación orográfica más alta
de Venezuela. Ella se extiende paralelamente a la depresión suroriental
dei Lago de Maracaibo (—10 a — 100 m.) y exhibe todos los pisos tér¬
micos altitudinales existentes en el país, desde casi el nivel dei mar a
orillas dei Lago de Maracaibo, hasta 5.007 metros. Debemos recordar
que la temperatura media al nivel dei mar en Venezuela es de 27°C y
va disminuyendo progressivamente con la altura. Así, por ejemplo, a
1.000 metros la temperatura media anual es de -f21°C; a 2.000 metros
+15°C; a 3.000 metros +9°C; a 4.000 metros +2°C y, por último, a
5.000 metros —5°C.
La mayoría de los géneros y especies de Serpientes se encuentran en
los pisos macrotérmicos (0 — 100 m.) y mesotérmicos (1.000 — 2.800 m.),
en ambientes con temperaturas medias anuales entre 28°C y 13,5°C. En
cambio, por encima de 3.000 metros de altitud apenas se encuentran unos
pocos géneros (Atractus y Leimadophis, principalmente) de la Familia
Colubridae y, ocasionalmente, serpientes ponzonosas Bothrops (Viperi-
dae) y Micrurus (Elapidae). Allí, las pocas especies que habitan perma-
necen ocultas debajo de rocas y plantas en busca de temperaturas y pocen-
tajes de humedad un poco más elevados que en la superfície. Por otra
parte, cabe destacar que en sistemas montanosos de otros continentes a
mayor altitud todavia se encuentra cierto número de géneros y especies
de serpientes y de otros animales y plantas, a diferencia de los Andes
Suramericanos. Esto se explica porque el clima andino presenta pronun¬
ciadas oscilaciones en el ritmo de la temperatura diurna y nocturna, sobre
todo por encima de los 4.000 metros de altitud.
En los páramos andinos, después de 3.000 metros de altura apenas
encontramos un 3% de la ofiofauna conocida de Venezuela. En contraste
con esa dispersión vertical, apenas a unos 375 kms. en línea recta al
nordeste de la Sierra Nevada de Mérida, se encuentran las dunas dei Istmo
de los Médanos en la Península de Paraguaná, cuyo suelo arenoso, desnudo
o con vegetación escasa como en las partes más elevadas de los Andes.
Allí hay microclimas inversos, con temperaturas medias muy elevadas,
baja humedad relativa dei aire y niveles altitudinales inferiores a los 100
metros sobre el nivel dei mar. En la península de Paraguaná la duración
de las horas de insolación llega a promedios de nueve (9) horas diarias
y los vientos alisios soplan dei nordeste a una velocidad media de 22
-— 24 kilometros por hora. En estos ambientes xerófilos extremos hemos
capturado solamente el 2-3% de las especies de Serpientes de Venezuela.
Otra peculiaridad biogeográfica que ofrece la Península de Para¬
guaná es la existência dei Cerro Santa Ana, que emerge dei centro de la
península desde poca altura sobre el nivel dei mar hasta más de 800
metros. Las partes altas dei cerro presentan una importante vegetación
boscosa y su fauna poco estudiada debe ser de gran interés científico.
Desde el punto de vista climatológico el Cerro Santa Ana representa una
isla climática de tipo “A” dentro de una región de clima “B”.
Las Cordilleras de Perijá y de la Costa constituyen los sistemas
orográficos dei norte de Venezuela. La primera recorre parte de la fron-
tera Occidental colombo-venezolana y tiene elevaciones importantes de
97
LANCINI V., A. R. Serpientes de Venezuela; distribución geográfica y altitudinal de géneros de
serpientes en Venezuela. Mem. Inst. Butantav. 1,6: 95-103, 1982.
hasta poco más de 3.000 metros de altitud. Se han hecho pocos muestreos
de herpetofauna en la Sierra de Perijá, que seguramente encierra nuevas
especies de Serpientes para la Ciência o para Venezuela.
La Cordillera de la Costa es una prolongación de la Cordillera de los
Andes y su herpetofauna tiene afinidades genéricas à específicas con la
herpetofauna andina.
La Cordillera de la Costa tiene tres regiones delimitables: 1) Tramo
Occidental, 2) Tramo Central y 3) Macizo Oriental. Este último guarda
relación con la fauna de la Isla de Trinidad, Delta dei Orinoco y región
de las Guayanas y Amazônia- Diversos géneros de serpientes son comu-
nes a todas estas regiones biogeográficas.
El tramo Occidental de la Cordillera de la Costa presenta un relieve
con alturas discretas. En cambio el Tramo Central llega a 2.765 m. en
el pico Naiguatá. Igualmente en el macizo Oriental el pico Turumiquire
presenta elevaciones cercanas a los 3.000 metros.
Durante muchos anos hemos recolectado especies de Serpientes en
el tramo central (Cordón Litoral, etc.) perteneci entes a los géneros Boa
y Epicrates (Boidae), Atractus, Chironius, Clelia, Dendrophidion, Dipsas,
Drymarchon, Erythrolamprus, Imantodes, Lampropeltis, Leptodeira, Lep-
tophis, Lygophis, Mastigodryas, Ninia, Oxybelis, Oxyrhopus, Pseudoboa,
Pseutes, Rhadinae, Sibon, Spilotes, Stenorrhina, Tantilla, Umbrivaga,
Xenodon (Colubridae), Leptotyphlops (Leptotyphlopidae), Helmintophis
(Typhlopidae), Micrurus (Elapidae), Bothrops y Crotalus (Viperidae),
que hace un total de 33 géneros de los 52 conocidos dei país. El número de
especies encontradas en esta importante región orográfica representa
aproximadamente el 30% dei total.
Examinemos ahora una de las regiones naturales más extensas de
Venezuela: los Llanos. Como su nombre lo indica, se trata de extensas
sabanas de poca elevación (30 - 200 m.s.n.m.), que en el pasado geoló¬
gico estuvieron cubiertas, en gran extensión, por un mar epicontinental.
Esas llanuras se encuentran en dirección este-oeste entre los meridianos
62°-71° Oeste y entre los paralelos 7 o — 10° Norte.
Se dividen en Llanos Occidentales (100 — 200 m.s.n.m.), Llanos Cen-
trales (promedio + 100 m.s.n.m.) y Llanos Orientales, con sabanas alu-
vionales con niveles, en el sur de los Estados Anzoategüi y Monagas, de
menos de 50 m.s.n.m. Sinembargo, hay regiones de los Llanos Orientales
con mayor elevación, que reciben el nombre de Mesas.
En los Llanos de Venezuela viven por lo menos el 15% de especies
de Serpientes, agrupadas en más de 30 géneros.
En los Llanos las temperaturas medias son elevadas (26° — 28°C)
y la pluviosidad sobrepasa 1.100 m.m. anuales.
En el Sur de Venezuela existen también Sabanas Altas en Guayana
y el Território Federal Amazonas. Se presentan en las laderas y cumbre
de los Tepuyes en el piso mesotérmico (1.200 — 2.800 m. s.n.m.). Allí las
temperaturas medias alcanzan un máximo de 22° - 24°C y la pluviosidad
puede ser superior a 3.000 m.m. En las Sabanas Altas dei Sur dei país
se encuentran varias especies interesantes de serpientes.
98
cm
SciELO
10 11 12 13 14 15
LANCINI V., A. R. Serpientes de Venezuela; distribución geográfica y altitudinal de géneros de
serpientes en Venezuela. Mem. Ivst. Butantan, 46: 95-103, 1982.
Una mención especial merecen las cuencas hidrográficas dei Lago
de Maracaibo y dei rio Orinoco.
El Lago de Maracaibo está situado en el occidente dei país en una
depresión de bajo nivel y rodeado en gran parte por selvas pluviales
macrotérmicas, surcadas por numerosos rios que desembocan en él. Allí
se encuentra un número importante de géneros de Serpientes, entre ellos
Helicops, de la familia Colubridae, con una especie semiacuática: Helicops
scalaris.
La cuenca hidrográfica dei Orinoco es la más importante de Venezuela,
con numerosos rios tributários. Allí viven todos los géneros de serpientes
dulce-acuícolas dei país: Eunectes, Helicops, Hydrops, Hydrodynastes y
Pseudoeryx, con un total de 7 especies y subespecies. Las serpientes de
estos grupos taxonómicos son prisioneras en su distribución de esas
cuencas hidrográficas con niveles desde 0 metros a 300 metros sobre
el nivel dei mar y climas de tipo “A”.
La Amazônia de Venezuela está situada al sur dei rio Orinoco y
constituye una prolongación de la gran Hylea amazônica dei Brasil y otros
paises cercanos. Es la región más rica en herpetofauna de Venezuela,
por su extensión y su baja posición latitudinal (0 o 7.° N.). En su relieve,
estan presentes vários pisos térmicos, porque tiene tierras bajas (selvas
y sabanas) desde -f- 100 m. hasta elevadas montarias tabulares, denomi¬
nadas tepuyes, que alcanzan hasta 3.000 m. En la Serrania La Neblina,
en la frontera Venezuela-Brasil el Pico La Neblina tiene 3.014 metros
de altitud (Brasil).
El Território Amazonas posee tres (3) tipos principales de climas
tropicales (Af, Am. y Aw) de la clasificación de Kõppen, aunque en las
regiones montanosas muy elevadas encontraremos verdaderas islas climá¬
ticas subtropicales. Estos tipos climáticos están estrechamente relacio¬
nados con las formaciones vegetales y la fauna que vive en ellas.
En toda la Amazônia venezolana las especies de serpientes y lagartos
que allí se encuentran, están vinculadas a cuatro (4) grandes tipos de
habitats, a saber:
1) Región de las selvas hidrófilas megatérmicas, que abarca gran
parte de los bosques amazônicos dei Território, especialmente en el Sur.
Está bajo la influencia de un clima “Af”, lluvioso todo el afio, con tempe¬
raturas medias superiores a 28°C y precipitaciones anuales hasta de 3.400
a 3.600 m.m.
2) Región con predominio de sabanas. Situada principalmente en
la mitad norte dei Território, con altitudes variables (100 a 500 m.). En
esta región los climas dominantes son los tropicales de sabanas (Aw.)
y monzónico (Am.). Las temperaturas medias y la precipitación también
son muy elevadas en esta región zoogeográfica pero hay una estación
seca más o menos corta. El número de especies de serpientes es menor
que en los bosques amazônicos extensos, aunque en las selvas de galeria
y morichales de esta región se encuentra representada casi toda la
herpetofauna amazônica de Venezuela, por tratarse de estrechas bandas
de clima “Af” dentro de las regiones climáticas “Am” y “Aw”.
99
cm
SciELO
10 11 12 13 14 15
LANCINI V., A. R. Serpientes de Venezuela; distribución Keográfica y
serpientes en Venezuela. Mem. lw*t. Butantan, 46: 95-103, 1982.
altitudinal de Kéneroa de
Los Reptiles de las sabanas dei Território Amazonas están relacio¬
nados con las especies de los Llanos Centrales y Orientales dei país, con
numerosas especies en común.
3) Región elevada de Tepuyes. Por su formación geológica muy
antigua, aislamiento geográfico más o menos completo de sus cumbres y
pisos altitudinales diferentes a las selvas espesas y bajas que los rodean,
las partes más altas de los tepuyes son pobres en especies e indivíduos
de serpientes, aunque con marcada tendencia hacia los endemismos.
En los tepuyes las serpientes son todavia frecuentes en las selvas
de encuesta, en cambio, predominan los lagartos en las grietas de los
taludes amurallados y las cumbres rocosas de esas montanas tabulares.
Sin embargo, conviene advertir que el estúdio de estas regiones es
incipiente desde el punto de vista herpetológico.
Quizás en un futuro próximo, con las facilidades que ofrece el
helicóptero para hacer accesible la exploración de estas formaciones
orográficas, se demuestre que hay menos endemismos de los que los
especialistas creen y que algunas especies propias de las selvas bajas
pueden penetrar en estas regiones escarpadas.
4) Región de los grandes rios amazônicos y sus numerosos afluentes.
En los cauces y remansos da los rios, lagunas y morichales dei Território
Amazonas viven unas seis (6) especies de serpientes dulceacuícolas, que
tienen hábitos acuáticos o semiacuáticos.
Por último, debemos seiíalar que para el Território Federal Amazonas
se conocen, hasta el presente 48 géneros y 74 especies y subespecies de
Serpientes.
No obstante, este número se elevará sensiblemente en los próximos
anos con nuevos descubrimientos para la Ciência y nuevos records para
Venezuela.
La región de Guayana (Estado Bolívar) tiene características
ambientales muy parecidas a las dei Território Amazonas, pero las
sabanas altas son de mayor superfície (Gran Sabana) y los tepuyes más
numerosos. Estas formaciones de arenisca alcanzan en esta región su
mayor altitud en el Monte Roraima (2.772 m.).
En la Guayana venezolana también se encuentra más de la mitad
de las especies de Serpientes de Venezuela y muchas de ellas están dis¬
persas en un verdadero arco zoogeográfico cuyos extremos se encuentran
en la Península de Paria y la región dei Alto Rio Negro y el canal natural
dei Casiquiare.
RESUMEN
1. Venezuela es un país intertropical con un relieve desde el nivel dei
mar hasta 5.007 metros. El país presenta desde áreas xerófilas e
incluso dunas de poca extensión, hasta regiones cubiertas por nieves
perpetuas, aunque la mayor superfície la ocupan bosques y sabanas.
100
cm
SciELO
10 11 12 13 14 15
LANCINI V., A. R. Serpientes de Venezuela; distribución geográfica y
serpientes en Venezuela. Mem. Inst. Butantan, 46:95-103, 1982.
altitudinal de géneros de
2. Actualmente se conocen en Venezuela alrededor de 150 especies y
subespecies de Serpientes, agrupadas en 7 famílias y 52 géneros.
3. Uno de los géneros más interesantes de Serpientes de Venezuela es
Atractus de la familia Colubridae. En el país se conocen 16 especies
de este género, sin ninguna subespecie. Atractus tiene una distri¬
bución altitudinal conocida desde +200 m. (Atractus trilineatus)
hasta 3.000 metros de altitud.
4. En las costas de Venezuela (2.813 km) y tierras bajas adyacentes,
consideradas en su conjunto, encontramos el 18% de la ofiofauna.
Además, Venezuela posee una serie de islas de origen continental
con una herpetofauna estrechamente relacionada con la de tierra
firme.
En las pequenas áreas desérticas de las costas solo hay un 2% a
3% de especies, aumentando este número al 15% en los Llanos,
sabanas altas, etc. Otro 3% habita en la faja de 2.800-3.200 metros
en los Andes y alrededor de un 20% a 25% en los pisos macro-
térmico y mesotérmico de los sistemas montanosos de la Costa y los
Andes.
Efetos porcentajes aumentan a casi el 50% de las especies y subespe¬
cies en las regiones al sur dei Orinoco. Además, de los 52 géneros
de Serpientes hallados por ahora en el país, 48 se encuentran por
debajo de 6 o de latitud norte.
5. Los tipos climáticos predominantes en Venezuela son: A, B y G, con
variados subtipos (Clasificación de Kõppen). En lista anexa se
mencionan los géneros de Serpientes de Venezuela, niveles altitudi-
nales donde ocurren y tipo de clima de su distribución. Puede
observarse cómo algunos géneros de Serpientes habitan en más de
un piso térmico y soportan la influencia de más de un tipo climático.
Otros géneros presentan limitaciones ecológicas.
6. La mayoría de los géneros de Serpientes de Venezuela son propios
de América Tropical y unos pocos tienen una distribución geográ¬
fica más extensa.
7. La distribución altitudinal es pobre en representación genérica y
específica por encima de la faja de 3.000 metros de altitud, a dife¬
rencia de sistemas orográficos de otros continentes.
8. El género Umbrivaga (Colubridae) es el único hasta ahora endé¬
mico de Venezuela. También se conocen algunas especies de serpien¬
tes endémicas dei país.
9. El 60% de las Serpientes conocidas hasta el presente (1981) de
Venezuela, no son venenosas.
10. Las Serpientes venenosas de Venezuela representan el 207° de las
conocidas hasta el presente (1981) en el país. Otro restante 20%
lo forman especies y subespecies de Serpientes semi-ponzonosas
opistoglifas (Colubridae).
101
cm
SciELO
10 11 12 13 14 15
LANCINI V., A. K. Serpientes de Venezuela; distribución geográfica y altitudinal de géneros de
serpientes en Venezuela. Mem. Inwi . fíutantan, 40:95-103, 1982.
LISTA DE GENEROS DE SERPIENTES DE VENEZUELA (1981)
Distribución por
Generos
Tipo Climático
Niveles Altitudinales
(KÕPPEN)
ANILUDAE
Anilius
A
30 —
700m.
BOIDAE
Boa
A,
B
0 —
1.500m.
Corallus
A,
B
0 —
l.OOOm.
Epicrates
A,
B
0 —
1.300m.
Eunectes
A
0 —
850m.
COLUBRIDAE
Atractus
A,
G
200 —
3.100m.
Chironius
A,
G
0 —
2.500m.
Clelia
A
50 —
1.800m.
Dendrophidion
A,
G
400 —
1.600m.
Dipsas
A,
G
0 —
2.200m.
Drymarchon
A,
B
0 —
2.100m.
Drymobius
A
200 —
1.400m.
Drymoluber
A
100 —
800m.
Erythrolamprus
A,
G
0 —
1.800m.
Helicops
A
0 —
500m.
Hydrodynastes
A
0 —
500m.
Hydrops
A
0 —
300m.
Imantodes
A,
G
0 —
1.500m.
Lampropeltis
A,
G
100 —
2.600m.
Leimadophis
A,
G
0 —
3.200m.
Leptodeira
A,
B, G
0 —
1,600m.
Leptophis
A,
B, G
0 —
1.200m.
Liophis
A,
G
100 —
2.000m.
Lygophis
A
0 —
1.200m.
Masticophis
B
0 —
l.OOOm.
Mastigodryas
A,
B, G
0 —
1.800m.
Ninia
A,
G
0 —
2.000m.
Oxybelis
A,
B
0 —
1.800m.
Oxyrhopus
A,
G
0 —
1.700m.
Philodryas
A
0 —
500m.
Phimophis
A,
B
0 —
1.200m.
Pseudoboa
A,
B
0 —
l.lOOm.
Pseudoeryx
A
0 —
300m.
Pseustes
A,
G
0 —
2.400m.
Rhadinaea
A,
G
0 —
2.100m.
Rhinobothryum
A
0 —
600m.
Sibon
A
0 —
1.700m.
102
cm
SciELO
10 11 12 13 14 15
SciELO
10 11 12 13 14 15
Mem. Inst. Butantan
£6 :105-118, 1982
THE EVOLUTION OF THE VENOM APPARATUS IN
SNAKES FROM COLUBRIDS TO VIPERIDS & ELAPIDS
Kenneth V. KARDONG*
ABSTRACT: The venom apparatus of poisonous snakes consists
of a fang and associated venom gland (or glands). Venomous
snakes evolved from nonvenomous ancestors. The course of this
evolution, the adaptive advantages of the changes at each stage,
and the implications of the findings to snake phylogeny, phar-
macology, and clinicai strategies of treatment of envenomations
are the subject of this paper.
In particular, it is argued in this paper that: (1) both viperid
and elapid snakes evolved from opisthodont ancestors; (2) the
Duvernoy’s gland in most colubrid snakes should not be seen as
a gland “on its way” to becoming a venom gland, but should be
examined for the immediate biological role it plays in the life of
those snakes possessing such a gland; (3) it would be useful to
distinguish between a property of an oral secretion (e.g. toxin)
and its biological role (e.g. venom); (4) strategies of treatment
of envenomation would profit if it were more fully appreciated
why venom is composed of more than just a suite of toxins.
INTRODUCTION
The venom apparatus of poisonous snakes consists primarily of two
components: a modified tooth, the fang by which venom is delivered into
prey, and the venom gland (or glands) where toxin is produced and
stored. Venomous snakes use the venom apparatus to rapidly kill prey
and secondarily in defense from their own enemies.
The structure of fangs and venom glands are the subject of many
revealing descriptive papers (e.g. Kochva and Gans, 1966; Rosenberg,
1967; Nickerson, 1969; Gabe and Saint Girons, 1971; Halstead et al.,
1978). However, clarifying the evolution of the venom apparatus has
proved to be a more contentious and elusive task (Smith and Bellairs,
1947; Kroll, 1976). In part, this arises from phylogenies of snakes
constructed upon only a general or anecdotal knowledge of the functional
morphology of the jaw apparatus. Thus, the first purpose of this paper
is to review the functional role of both the apparatus and the evolutio-
nary antecedants of the venom apparatus. This will lead to the formu-
lation of focused hypotheses that yield testable predictions.
* Department of Zoology, Washington State University-U.S.A.
105
SciELO
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids. Mevi. Inst. Butantan, 40:105-118, 1982.
The conclusions reached herein about the evolution of the snake
venom apparatus shed a different light upon ophidian taxonomy and
phylogeny, venom pharmacology, and even upon clinicai treatment of
snakebite. Thus, the second purpose of this paper is to discuss the
implications of these conclusions for these related areas.
RESULTS
A) Evolution of the Fang
1. Morphological Series
Venomous snakes evolved from nonvenomous ancestors. Three
families of snakes are immediately involved: Colubridae, Viperidae, and
Elapidae (including sea snakes). Viperids and elapids are poisonous
snakes with sophisticated venom apparatuses used to quickly kill prey.
However, most colubrid snakes are basically nonvenomous. True, some
such as Dispholidus seem to parallel viperids and elapids in that they
possess a highly toxic venom apparatus and use it to rapidly kill prey.
But, the vast majority of colubrids are truely nonvenomous.
The origin of viperid and elapid snakes from colubrids has been a
longstanding concern among those interested in advanced snakes (Bou-
lenger, 1893, 1896, 1917; West, 1895; Alcock and Rogers, 1902; Phisalix,
1912, 1922). Several relationships have been proposed. One suggests
a single origin of venomous snakes from colubrids (Cope, 1900; Mosauer,
1935) ; another that elapids arose from opisthoglyphous colubrids, and
viperids from proteroglyphous colubrids (Anthony, 1955). The rela-
tionship I use here is that both elapids and viperids evolved from
opisthoglyphous colubrid ancestors, but independently (Kardong, 1980).
This evolution of venomous snakes from opisthoglyphs probably occurred
several times (Kochva et ah, 1967; Bourgeois, 1968; McDowell, 1968;
Savitzky, 1980). However, despite a lively polyphyletic origin of veno¬
mous snakes, these fali along but two pathways, one leading to viperids
and viper-like snakes, and the other to elapids and elapid-like snakes.
It is beyond the scope of this paper to identify how many times each
of these paths was traveled by evolving snakes. Instead, the purpose
is to analyze the general adaptive advantage of changes on each evolu-
tionary highway.
If we focus our attention on the maxillary bone and the teeth it
bears, then one can construct a simple morphological series ( sensu Maslin,
1952) through which the maxilla and its teeth transform into the short-
ened maxilla and fang of elapids on the one hand, and viperids on
the other (Fig. 1). Notice that within colubrids, there exists a range of
morphological conditions. The first state, and presumbly phylogenetically
the most primitive, is exhibited here by Pituophis wherein the shaft of
the maxilla is long, its teeth numerous, and the dentition basically homo-
dont ( sensu Edmund, 1969). In a more derived condition, as exhibited
by Dispholidus, the maxilla is shortened, the teeth reduced in number,
106
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids. Mem. Inst. Butantan, 46: 105-118, 1982.
and the dentition heterodont. Heterodonty is achieved by the differen-
tiation of the posterior maxillary teeth that lengthen through this series,
change shape, and eventually come to bear a groove along their sides.
ELAPIDAE
► COLUBRIDAE
Fig. 1 — Transformation series of the maxilla and teeth it bears within the family Colubridae and to
the families Elapidae and Viperidae. The rectangular co-ordinates laid over the isolated
maxilla diagrmatically express changes within this morphocline. Through this series, the
maxilla shortens, tooth number is reduced, and the posterior maxillary tooth lengthens.
In elapids, this tooth has migrated forward to a more rostral position on the maxilla.
In viperids, this tooth resides at the posterior end of the maxilla, but kinetically rotates
forward during the strik. Actual skulls depicted among the colubrids are those of
Pituophis (left) and Dispholidu* (right). A Naja and Vipera skull represent Elapidae and
Viperidae, respectively.
Evolution of the maxilla and its teeth within colubrids thus proceeds
from an aglyphous to an opisthoglyphous condition. Between these two
extremes lie most colubrids showing graded, intermediate states. For
instance, next after the initial condition would follow snakes that posses-
sed maxillae with slightly elongated maxillary teeth (e.g. Thamnophis).
Next would lie snakes possessing long, rear maxillary teeth, but with
secretion groves (e.g. Crotaphopeltis ). A secretion channel too appears
107
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids. Mem. Inst. Butantan, 46:105-118, 1982.
in gradual stages. It would appear first, in this transformation series,
as a corner between two adjacent teeth (Taub, 1967) and later as a
groove within a tooth (Sarker, 1923).
This trend within colubrids to a shortened maxilla, reduced number
of teeth, and elongated posterior tooth continues into the two venomous
families. But, the continuation of these trends is established in two
difíerent ways. In viperids, the elongate posterior tooth (now a fang)
lies at the rear of the shortened maxillary bone. In elapids, the elongated
posterior tooth (now also a fang) lies not at the rear of the shortened
maxillary bone, but forward on the remaining shaft. Occasionally, small
teeth remain at the posterior end of the elapid maxilla marking the point
at which the fang once resided in elapid ancestors.
2. Adaptive Advantages
a) Accretion Hypothesis
A common view holds that these evolutionary changes in the maxilla
and its teeth are driven by the increasing and additive advantages long
teeth serve in venom injection. Thus, by the accretion of Progressive toxic
benefits, a venom system develops. This hypothesis predicts that the
initial and the subsequent role played by these teeth was in prey capture.
To test this prediction, several living species ( Thamnophis , Crota-
phopeltis) falling within the middle stages of the transformation series
among colubrids were examined to see just how they used their maxillae
and posterior maxillary teeth. These species possess long posterior maxil¬
lary teeth. The results (Kardong, 1979, 1980; Wright, et al., 1979)
showed that, in fact, they did not use these teeth extensively during prey
capture. Instead, they used these teeth to manipulate prey once already
eaught (see also Minton, 1944; Platt, 1969; Kroll, 1976). Thus, these
teeth, even though slightly elongated, did not serve to inject a venom
during prey capture, but instead aided swallowing by acting like small
hooks to give better purchase on the slippery or uncertain surface of
the prey. Further, comparison of the posterior maxillary teeth and of
a venom fang revealed that the two are quite unalike (Schaefer, 1976;
Kardong, 1979; Wright et al., 1979).
Thus, no support was found for the predictions of the accretion
hypothesis, at least as applied to snakes within the middle of the trans¬
formation series.
b) Deglutition Hypothesis
Alternatively, I propose (Kardong, 1979; 1980) that these teeth
borne by maxillary bone initially functioned as hooks or gaffs to improve
purchase during swallowing. This role favored, (1) elongation of the
teeth, and (2) shortening of the maxillary bone, two changes, in fact,
present in the jaws of many colubrid snakes. Once long teeth along the
maxillary bone had arisen to serve the requirements of swallowing, then
they would be preadapted to subsequent evolution into a new function,
that of venom injection. But, the initial adaptive avantage of long
maxillary teeth was not related to venom injection, but instead to
swallowing.
108
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatu9 in snakes from colubrids to viperids
elapids. Mem. Inst. Butantan, 46: 105-118, 1982.
B) Evolution of the Venom Gland
1. Morphological Series
The evolution of the venom gland, like the previous evolution of
the fang, begins within colubrid snakes. Within colubrids, the Duvernoy’s
gland is the evolutionary predecessor of the venom gland (Gans and
Elliott, 1968; Kochva, 1978). A morphological series constructed now
for the Duvernoy’s gland shows its transformation into the venom gland
of viperid and of elapid snakes (Fig. 2).
ELAPIDAE
VI PERIDAE
®
©
DUVERNOY s
GLAND*
J
T
Fig. 2 — Transformation series of Dúvernoy’s gland. This gland appears first within the middle
of the colubrid series. It arises near the posterior end of the supralabial gland (SLG).
Through the morphocline, the Duvernoy’s gland transforms independently into the venom
gland (VG) of elapid and viperid snakes.
2. Adaptive Advantages
a ) Accretion Hypothesis
Again, the conentional view is that the Duvernoy’s gland was
always slightly venomous and that the increasing, additive advantages
°f venom injection drove the changes leading eventually to appearance
°f a fully venomous gland. But, again there is reason to doubt this
hypothesis. First, as just mentioned, eventhough the teeth of colubrids
109
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids. Mem. Inst. Butantan, 40:105-118, 1982.
are long, they are otherwise structurally quite unlike fangs. Second,
most colubrid snakes do not have large storage areas to hold venom
(Taub, 1967) to inject and rapidly kill prey.
Further, those who subscribe to this accretion hypothesis face a
self-imposed paradox, what may be termed the “paradox of imperfec-
tion”. By the accretion hypothesis, possessors of a Duvernoy’s gland are
“on their way” to becoming highly venomous, but, as yet, possess only
a mild venomous capacity. But, in fact, most living colubrids are so
endowed with long, posterior maxillary teeth (Marx and Rabb, 1972)
and a Duvernoy’s gland (Taub, 1967). In most parts of the world, such
colubrids live sympatrically with and outnumber in terms of species,
venomous snakes such as viperids and elapids. The paradox lies in the
fact that such colubrids with a presumed mildly venomous secretion,
but “imperfect” venom apparatus, could be so successful with these two
families that possess a highly venomous and efficient venom apparatus.
It does seem contradictory that colubrid species could compete and thrive
using an “imperfect” venom injection system as successful contempora-
ries with elapids and viperids.
Perhaps, I have overstated or misstated the paradox. On the other
hand, the paradox may arise from a flawed hypothesis, the accretion
hypothesis. Tris, in fact, is my view. Most colubrids simply do not seem
to use their oral secretions as venoms. Eventhough the oral secretions
of many colubrids are proving to be more toxic than previously suspected
(McAlister, 1963; Heatwole and Banuchi, 1966; Vest, 1981), still these
same species do not, in fact, use their oral secretions to rapidly kill prey
as do truely venomous snakes possessing fangs.
2. Deglutition Hypothesis
Duvernoy’s gland secretion (in most colubrids) serves not as a
venom. This is to say, it does not serve to help rapidly kill prey during
prey capture. Instead, it must serve some other primary biological role
or roles for these species. Being associated with the swallowing behavior
of snakes, the secretion of Duvernoy’s gland may reasonably be expected
to play a role in swallowing and/or digestion. However, without further
broad study of both the pharmacology of Duvernoy’s gland secretions
together with studies of the feeding behavior, it is premature to propose
any careful alternative hypothesis.
CONCLUSIONS
Early in the evolution of the venom apparatus among snakes, the
posterior maxillary teeth were long, but not yet fangs. Instead they
served as spikes to help the snake grip slippery, bulky, or difficult prey
during swallowing. So too, the Duvernoy’s gland was not yet a venom
gland, but likely served some other biological role.
Certainly once these teeth were long and the Duvernoy’s gland well
established, then this system was preadapted for the quite different role
110
SciELO
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids. Mem. Inst. Butantan, 40:105-118, 1982.
of quickly subduing prey. Later in its evolution, the tooth/gland system
then evolved under the increasing advantages derived from the ease and
efficiency of rapidly killing prey. But, prehension and envenomation
were not the initial roles that drove the early evolution of the glandular
and dental elements in the jaws of colubrid snakes toward long, posterior
teeth on a shortened maxilla.
IMPLICATIONS
A) Snake Evolution
1) Viperidis and Elapids - two venom modes
Both viperid and elapid snakes evolved independently from opistho-
glyph ancestors. At least, this is the view I take based upon the arguments
presented herein. The alternative view that elapids (or viperids) arose
from proteroglyph ancestors is contradicted by the position of the venom
gland (McDowell, 1968), embryonic development (Martin, 1899a,b.c;
Kochva 1963; 1965), and rear maxillary tooth structure, position, and
function (Kardong, 1980:273-274).
Upper jaw teeth in colubrids serve in two primary capacities-preh-
ension and swallowing. But, these two activities are not always shared
equally among the teeth. Anterior teeth of the mouth tend more often
to be involved in prehension because they are first to come into the vicinity
of the prey and because they bear responsibility for snagging elusive
prey. Correspondingly, anterior teeth are often long and recurved reflect-
ing their special role in prey capture (Frazzetta, 1966). Posterior teeth,
on the other hand, tend to be involved in preingestion/swallowing mani-
pulations. Because of the kinetic motion of the maxilla, rear teeth it
bears lie at an especially favorable mechanical position to aid in swallow¬
ing (Kardong, 1979). Consequently, posterior maxillary teeth are often
long and blade-shaped (Wright et al. 1979).
The fang borne by the maxilla in elapids and viperids is, like anterior
teeth of colubrids, deployed principally during prey capture. It is thus
fashioned similarly. For instance, the fang is conical and often recurved
(Klauber, 1956) ; it is located, during the strike, in the anterior part
of the mouth. In this latter feature, however, this forward position in
the mouth is accomplished in two different ways. In viperids, the fang
rides upon a highly kinetic maxilla that erects during the strike to bring
the fang well forward in the mouth (van Riper, 1953; Kardong, 1975).
In elapids, the fang rides on a less kinetic maxilla, but has undergone
during its evolution a forward migration so that it sits in a more anterior
position along the shaft of the maxilla (Fig. 1). Thus, fangs in the two
groups enjoy the advantages of an anterior position in the mouth, but
this is achieved differently-phylogenetic migration along the maxilla in
elapids, kinematic rotation in viperids. Although elapids and viperids
are venomous snakes, they seem to be separately derived styles of a
venomous mode of life. They differ in the structural features of the
111
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids. Mem. Inat. fíutantnn, 40:105-118, 1982.
maxilla and fang just mentioned, relative toxicity of their venoms (e.g.
Minton and Minton, 1969), and perhaps even in behavioral styles in their
strategies of prey capture (Naulleau, 1965; Kardong, 1982).
2) Duvernoy’s gland
The Duvernoy’s gland in most colubrid snakes is unlikely a gland
“on its way” to being a venom gland, but should be examined for the
immediate biological role it plays in the life on those snakes possessing
such a gland.
B) Pharmacology
1) Toxin and Venom
A distinction should be made between a secretion that is a “toxin”
and one that is a “venom”, at least as applied to snake secretions in a
biological context. These two terms have grown up in the medicai lite-
rature with closely related meanings (e.g. Russell, 1980). I don’t intend
to propose redefinition in a medicai or clinicai context. However, the
transference of these terms into a biological context has led to confusion.
As a result, some animais live with an undeserved reputation for danger
and even some medicai strategies of treatment of suspected envenoma-
tions suffer from the confusion.
In a biological context, by “toxic” I mean the lethal property of a
Chemical expressed as an LD 50 or LD 10 o, for example; it is usually
identified and characterized under defined laboratory conditions. However,
by the term “venomous” I mean the function of the secretion, specifically
the biological role (Bock, 1980) of the substance in the life of the animal
producing it. Observation of the free ranging animal in its natural
habitat is usually or ideally the basis for concluding (or not) that a
secretion is used as a venom. The two terms rest on different concepts
so more is at issue than mere semantics.
If Duvernoy’s gland secretion is shown to be toxic, some suggest
from this alone that the snake is likely venomous. However, there are
two reasons for resisting such a hasty conclusion.
2) Incidental Byproduct
First, to prove a substance toxic in character is insufficient to prove
it venomous in practice. Toxicity can occasionally be an incidental
byproduct. For example, some components of human saliva are toxic and
possess and LD 50 (Bonilla et al, 1971). Yet, no food humans consume
require envenomation to make it safe to eat, nor are there enemies
thwarted by threat of saliva injection. Toxicity is incidental and those
seeking the biological role of saliva look, quite rightly, beyond this
property to its digestive roles to understand its Chemical character. How¬
ever, analysis of oral secretions from “nonvenomous” snakes has not
always been so sensible. Too often, only the property of toxicity of
these secretions seems to have been seriously considered. Certainly, this
112
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids. Mem. Jnat. Butantan, -46:105-118, 1982.
is understandable. Lethal dose, if any, can be relatively easily demons-
trated, and hence toxicity discovered; also, the toxicity alone makes the
substance medically important regardless of its actual biological function.
Yet, in many colubrid secretions, toxicity might be, as with human saliva,
incidental, a property with no or only secondary biological significance.
It would be misleading to call humans “venomous” simply because they
possessed a “toxic” saliva. Similarly with snakes. In a biological context,
distinguishing conceptually between a toxin and a venom should help
avoid such confusion.
3) Other Functions
There is a second reason for resisting the temptation to conclude
that a toxic secretion is also automatically a venom. In most colubrids,
Duvernoy’s gland secretion functions in capaeities other than as a venom.
Many colubrids possess well developed Duvernoy’s glands, yet do not use
its secretion to rapidly kill prey. To take an example, the wandering
garter snake (Thamnophis elegans) possesses a Duvernoy’s gland secret¬
ion of alarming toxicity approaching that of some viperid snakes (Vest,
1981; 1982), yet lacks the teeth to inject much secretion (Wright et al.,
1979), and does not feed by. bringing rapid death to the prey (Peterson,
1978). It possesses the toxicity, but lacks the equipment and behavior
to use the secretion as a venom. The secretion from Duvernoy’s gland
or, for that matter, any secretion released from a specialized organ or
group of cells may serve several functions. It may function as a venom,
it may paralyze prey, it may tranquilize, it may aid digestion, and so on.
In Thamnophis and similar colubrids, what then could be this secretion’s
function?
4) Alternative or Additional Functions
To date pharmacological and biological analysis of Duvernoy’s gland
secretion has been preoccupied with toxicity (e.g. Philpot et al., 1977),
so one is left to speculation about alternative functions. However, several
seem likely.
a) Lubrication
Besides Duvernoy’s and venom glands, snakes possess additional
strips of glandular tissue along upper and lower lips (Taub, 1966) that
release their products over the prey to lubricate its passage into the
esophagus. Duvernoy’s gland secretion, released at the base of rear
maxillary teeth, trickles down the sides of these teeth to likely finds its
way to the surface of the prey. Thus it could be an additional source of
lubricant to facilitate swallowing.
b) Digestion
In viperid and elapid snakes, venom certainly contributes to rapid
prey death, but has also been suspected of promoting digestion (Reichert,
1936; Zeller, 1948). Experimental work — injesting venom into mice and
then comparing rates of their digestion to Controls — indicates that
rattlesnake venom actually speeds digestion (Thomas and Pough, 1979).
113
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatu» in snakes from colubrids to viperids &
elapids. Mem. Inst. Butantan, 46:105-118, 1982.
Such venom attributes may be of adaptive value for snakes feeding on
large numbers of prey in short periods of time or to enhance digestion
in snakes from cold or temperate climates. Similar tests have not been
done for the secretion from Duvernoy’s gland, but the possibility it
serves a similar function seems worth investigating.
c) Anti-putrefaction
Snakes swallow their food without tearing or chewing. Digestive
enzymes released from the wall of the gut may not always complete the
inward spread of digestion before tissues within the center of the bolus
putrefy. Venom injected deep (Thomas and Pough, 1979) or Duvernoy’s
gland secretion inoculated subcutaneously within the prey before swallow-
ing may retard this putrefaction.
d) Detoxify Prey Secretions
Many snakes, especially colubrids, feed on amphibians possessing
skin glands which contain, depending upon the amphibian species, irritat-
ing to actually poisonous secretions (Habermeihl, 1971; Lutz, 1971;
Brodie and Tumbarello, 1978). Duvernoy’s gland secretion in those
colubrids regularly feeding on amphibians may help neutralize these skin
secretions released by the amphibian prey.
Further, these oral secretions could contribute to improved oral
hygiene or prevent sticky material elaborated by prey from fouling the
jaws during swallowing (Gans, 1978; Jansen, 1982). My intent is not
to settle the questions of what functions snake oral secretions serve.
Instead, I wish to emphasize that snakes, faced with a variety of problems
while catching and swallowing prey, might possess various components
in the Duvernoy’s gland or venom gland secretions that serve a variety
of biological roles besides or in addition to envenomation.
Even though introduced into the prey in small quantities compared
to a true venom, some propose that the Duvernoy’s gland secretion may
slow or tranquilize the prey, thus making prey capture less risky and
swallowing easier. Perhaps it does. But, tranquilizing prey differs from
envenomation. Tooth form (Kardong, 1979; Wright et ag., 1979), maxil-
lary bone structure (e. g. Bogert, 1943; Brattstrom, 1964), and behavior
(e.g. van Riper, 1953; Klauber, 1956; Dullemeijer, 1961; Greene and
Burghardt, 1978) differ from species that use venom predominantly to
capture and dispatch rather than just quiet prey. Consequently, tran-
quilization seems distinct from true envenomation as a prey handling
technique.
C) Clinicai Significance
Venomos are complex. Laboratory analysis proceeds by fractiona-
tion into molecular components then to separate analysis of each fraction.
Some components exhibit toxicity while other components seem to be
without toxic effect (e.g. van Mierop, 1976; Russell, 1980). These nontoxic
fractions are usually classified as potentiators, activators, or amplifiers
(e.g. spreading factors) of the toxic components. Generally this conclusion
sems on mark. However, some of these components of venom may lack
toxicity, because they are present for biological reasons other than to
114
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids, Mem. lnst. Butantan, 46:105-118, 1982.
promote rapid prey death (e.g. Thomas & Pough, 1979). In fact, even
demonstrating toxicity in a particular component does not or ought not
to end the search for its possible function. Other attributes, besides
toxicity, should be considered if one is to eventually understand the
biochemical action and interaction of all venom components.
One fruitful place to begin such an analysis may be with the secretion
from Duvernoy’s gland. The venom gland of viperids and elapid snakes
evolved from the Duvernoy’s gland; these venomous snakes feed upon
similar foods and thus face generally similar problems with prey as
many “nonvenomous” colubrids. Certainly the venom of viperids and
elapids functions primarily to rapidly kill prey, but components serving
secondary functions are most likely present as well. Venom is a suite of
Chemicals, all of which go into a victim — toxins and nontoxins alike.
Consequently, it seems advisable for strategies of treatment of enveno-
mations to be founded upon a knowledge of all components and their
biological roles, not just upon the action of the toxins. Perhaps, somewhat
ironically, one place to focus such an analysis of snake venoms, is on
“nonvenomous” colubrid snakes.
ACKNOWLEDGMENTS
My thanks go in particular to several institutions and persons who
over several years have helped me secure needed comparativo specimens,
namely the American Museum of Natural History (C. W. Meyers, R. G.
Zweifel), Califórnia Academy of Sciences (A. E. Leviton), Field Museum
of Natural History (H. Marx, R. Inger), Museum of Comparative Zoology
(E. E. Williams) National Museums of Rhodesia (D. G. Broadley),
Smithsonian Institution (R. I. Crombie, F. I. McCullough, G. R. Zug),
University of Florida (W. Auffenberg), and University of Kansas Mu¬
seum of Natural History (W. E. Duellman). I appreciate the help of J.
Visser, Wildlife Documentaries (South África) for securing living
specimens. My special thanks and sincere appreciation go to Prof. A. R.
Hoge and other organizers of the symposium on “Serpentes em Geral
e Arthropódes Peçonhentos” for their invitation, help, and support.
BIBLIOGRAPHIC REFERENCES
ALCOCK, A. & ROGERS, L. On the toxic properties of the saliva of certain
“non-poisonous” colubrines. Proc. Roy. Soc. (Lond.), 70:446-454, 1902.
ANTHONY, J. Essai sur 1’évolution anatomique de 1’appareil venimeus des Ophidiens.
Ann Sei. Natur. Zool., 17:7-53, 1955.
BOCK, W.J. The definition and recognition of biological adaptation. Amer. Zool,
20: 217-227, 1980.
BOGERT, C.M. Dentitional phenomena in cobras and other elapids, with notes
on the adaptive modifications of their fangs. Buli. Amer. Mus. Nat. Hist.,
81: 285-360, 1943.
BONILLA, C.A.; FIERO, M.K. & SEIFERT, W. Comparative biochemistry and
pharmacology of salivary gland secretions. I. Electrophoretie analysis of the
proteins in the secretions from human parotid and reptilian (Duvernoy’s) glands.
J. Chromatogr., 56: 368-372, 1971.
115
SciELO
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids. Mem. Inat. Butantan, 46:105-118, 1982.
BOULENGER, G.A. Catalogue of the snakes in the British Museum (Natural
History). Vol. 1. London, British Museum (Natural History), 1893. pp. 448.
- Remarks on the dentition of snakes and on the evolution of the poison
fangs. Proc. Zool. Soc. London 1896:614-616.
Sur 1’évolution de 1’appareil à venin des serpents. Compt. Rend.,
165: 92-94, 1917.
BOURGEOIS, M. Contribution à la morphologie comparée du crane des ophidiens
de l’Afrique centrale. Publ. Univ. Off. Congo Lubumbashi, 18: 1-292, 1968.
BRATTSTROM, B.H. Evolution of the pit vipers. Trans. San Diego Soc. Nat.
Hist., 15:185-268, 1964.
BRODIE, E.D. Jr. & TUMBARELLO, M.S. The antipredator functions of Dendro-
bates auratus (Amphibia, Anura, Dendrobatidae) skin sccretion in regard to a
snake predator (Thamnophis). J. Herpet., 12:264-265, 1978.
COPE, F.D. The crocodilians, lizards, and snakes of North America. Annu. Rep.
Smithson. Inst. for 1898, U.S. National Museum, Washington, D.C., 1900 pp.
153-1270.
DULLEMEIJER, P. Some remarks on the feeding behavior of rattlesnakes. Proc.
Kon. Ned. Akad., 64:383-396, 1961.
EDMUND, A.B. Dentition. In “Biology of the Reptilia” (C. Gans, A. Bellairs,
T. S. Parsons, eds.). Academic Press, 1969. v. I, p. 117-200.
FRAZZETTA, T.H. Studies on the morphology and function of the skull in the
Boidae (Serpentes). Part II. Morphology and function of the jaw apparatus
in Python sebae and Python molurus. J. Morph., 113:217-296, 1966.
GABE, M. & SAINT GIRONS, H. Histologies comparée des glandes salivaires due
vestibule buccal chez less lézards et les serpentes et évolution de la fonction
venimeuse. In “Toxins of Animal and Plant Origin.” (A. de Vries and F.
Kochva, eds.). London, Gordon and Beach, v. 1, p. 65-68, 1971.
GANS, C. Reptilian venom: Some evolutionary considerations. In "Biology of
the Reptilia" (C. Gans and K. A. Gans, eds.). London, Academic Press, 1978.
v. 8, p. 1-42.
-& ELLIOT, W.B. Snake venoms: production, injection, action. Ad. Oral
Biol, 3:45-81, 1968.
GREEN, H.W. & BURGHARDT, G.M. Behavior and phylogeny: Constriction in
ancient and modem snakes. Science, 200: 74-77, 1978.
HABERMEIHL, G. Toxicology, pharmacology, chemistry, and biochemistry of
salamander venom. In "Venomous animais and their venoms" (W. Bücherl and
E. E. Buckley, eds.). New York, Academic Press, 1971. v. 2, p. 569-584.
HALSTEAD, B.W.; ENGEN, P.C. & TU, A.T. The venom and venom apparatus
of the sea snake Lapemis hardwicki Gray. Zool. J. Linn. Soc., 63:371-396, 1978.
HEATWOLE, H. & BANUCHI, I.B. Envenomation by the colubrid snake Alsophis
portoricensis. Herpetologica, 22:132-134, 1966.
JANSEN, D.W. A possible function of the secretion of Duvernoy’s gland. Copeia,
1982. (in press).
KARDONG, KV. Prey capture in the cottonmouth snake (Agkistrodon piscivorus).
J. Herp., 9:169-175, 1975.
- “Protovipers” and the evolution of snake fangs. Evolution, 33:433-443,
1979.
Evolutionary patterns in advanced snakes. Amer. Zool., 20: 269-282,
Comparative study of changes in prey capture behavior in the cotton¬
mouth ( Agkistrodon piscivorus) and Egyptian cobra ( Naja haie). Copeia,
1982. (in press).
KLAUBER, L.M. Rattlesnakes, their habits, life histories, and influence on mankind.
Univ. Calif. Press, 1956. v. 1, p. 1-708; v. 2, p. 709-1476.
KOCHVA, E. Development of the venom gland and the trigeminal muscles in
Vipera palaestinae. Acta Anatômica, 52: 49-89, 1963.
1980.
116
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids &
elapids. Mem. Inat. Butantan, 105-118, 1982.
- The development of the venom gland in the opisthoglyph snake Telescopus
fallax with remarks on Thamnophis sirtalis (Colubridae, Reptilia). Copeia,
147-154, 1965.
- Oral glands of the reptilia. In C. Gans and K. A. Gans (eds.).
“Biology of the Reptilia". New York, Academic Press, 1978. v. 1, p. 43-161.
& GANS, C. Histology and histochemistry of venom glands of some
crotaline snakes. Copeia, 506-515, 1966.
SHAYER-WOLLBERG, M. & SOBOL, R. The special pattern of
the venom gland in Atractaspis and its bearing on the taxonomic status of the
genus. Copeia, 763-772, 1967.
KROLL, J.C. Feeding adaptations of hognose snakes. Southwestem Nat. 20:
537-557, 1976.
LUTZ, B. Venomous toads and frogs. In “V enomous knimals and their venoms"
(W. Bucherl and E. E. Buckley, eds.). New York, Academic Press, 1971, v. 2,
p. 523-473.
MARTIN, H. Sur le développement le 1’appareil venimeux de la Vipera aspis
évolution du canal venimeux. C. R. 28 Sess. Sec. part. Ass. franc. Avanc Sei.
522-527, 1899a.
-Recherches sur le développement de 1’appareil venimeux de la Vipera
aspis. Compt. Rend. Ass. Anat., 1 :56-66, 1899b.
-Etude de 1’appareil glandulaire venimeux chez un embryon de Vipera
aspis. Buli. Soc. Zool. France, 21, : 106-116, 1899c.
MARX, H. & RABB, G.B. Phyletic analysis of fifty characters of advanced snake.
Fieldiana, Zoology, 63: 1-321, 1972.
MASLIN, T.P. Morphological criteria of phyletic relationships. Syst. Zool., 1:
49-70, 1952.
MCALISTER, W.H. Evidence of mild toxicity in the saliva of the hognose snake
(Heterodon). Herpetologica, 19:132-137, 1963.
MCDOWELL, S.B. Affinities of the snakes usually called Elaps lacteus and E.
dorsalis. J. Linn. Soc. (Zool.), 47:561-578, 1968.
MIEROP, L.H.S. VAN. Poisonous snakebite: A review. I. Snakes and their venom.
J. Florida Med. Assoe., 63:191-210, 1976.
MINTON, S.A. Introduction to the study of reptiles of Indiana. Anier. Midi. Nat.,
32: 438-477, 1944.
-& MINTON, S.R. Venomous reptiles. New York. Charles Scribner’s
Sons, 1969, 274 p.
MOSAUER, W. The myology of the trunk region of snakes and its significance
for ophidian taxonomy and phylogeny. Publ. Univ. Calif. Los Angeles. Biol.
Sei., 1:81-120, 1935.
NAULLEAU, G. La biologie et le comportment prédateur de Vipera aspis au
laboratoire et dans la nature. Buli Biol. France Belique, 99: 295-524, 1965.
NICKERSON, M.A. A study of the ultrastrueture and histochemistry of the venom
apparatus of some elapid snakes. Univ. Microfilms 60-1285, 1969.
PETERSON, C. Constriction in the wandering garter snake. Amer. Zool., 13:649,
1978. (Abstract).
PHILPOT, VAN B. Jr.; EZEKIEL, E.; YEAGER, R.G. Jr. & STJERNHOLM,
R.L. Lethal action of saliva from non-venomous snakes. Fed. Proc., 36:860,
1977. (Abstr.).
PHISALIX, M. Modifications que la formation venimeuse imprime à la tet osseuse
et aux dents chez des serpents. Ann. des Sei. Nat. Zool. 90th ser t. xví: 161-205,
1912.
- Animaux venimeux et venins. 2 vols. Paris, Masson & Cie, 1922.
PLATT, D.R. Natural history of the hognose snakes Heterodon platyrhinos and
Heterodon nasicus. Univ. Kansas Publ., Mus. Nat. Hist., 18: 253-420, 1969.
REICHERT, E. Bothrops jaracussu. BI. Aquar. K., 47:228-231, 1936.
117
cm
SciELO
10 11 12 13 14 15
KARDONG, K. V. The evolution of the venom apparatua in snakes from colubrids to viperids &
elapids. Mem. Inst. Butantan, 46:105-118, 1982.
RIPER, W., VAN. How a rattlesnake strikes. Sei. Amer., 159:100-102, 1953.
ROSENBERG, H.I. Histology, histochemistry, and emptying mechanism of the
venom glands of some elapid snakes. J. Morph., 125:133-156, 1967.
RUSSELL, F. Snake venom poisoning. Lippincott, 1980, p. 562.
PARKER, S.C. A comparative study of the buccal glands and teeth of the Opis-
thoglypha, and a discussion of the evolution of the order from the Aglypha.
Proc. Zool. Soc. Lond. (1) :295-322, 1923.
SAVITZKY, A.H. The role of venom delivery strategies in snake evolution. Evo¬
lution, 54:1194-1204, 1980.
SCHAEFER, N. The mechanism of venom transfer from the venom duet to the
fang in snakes. Herpetologica, 32: 71-76, 1976.
SMITH, M. & BELLAIRS, A. The head glands of snakes with remarks on the
evolution of the parotid gland and teeth of Opisthoglypha. Linn. Soc. J. Zool.,
41:351-368, 1947.
TAUB, A.M. Ophidian cephalic glands. J. Morph., 118: 529-542, 1966.
- Comparative histological studies on Duvernoy’s gland of colubrid snakes.
Buli. Amer. Mus. Nat. Hist., 138: 1-50, 1967.
THOMAS, R.B. & POUGH, F.H. The effect of rattlesnake venom on digestion of
prey. Toxicon, 17: 221-228, 1979.
VEST, D.K. Envenomation following the bite of a wandering garter snake (Tham-
nophis elegans vagrans) Clin. Tox., 18: 573-579, 1981.
- The toxic Duvernoy’s secretion of the wandergin garter snake (Tham-
nophis elegans vagrans). Toxicon, 1982 (in press).
WEST, G.S. On the buccal glands and teeth of certain poisonous snakes. Proc.
Zool. Soc. Lond., 812-826, 1895.
WRIGHT, D.L.; KARDONG, K.V. & BENTLEY, D.L. The functional anatomy of
the teeth of the western terrestrial garter snake, Thamnophis elegans. Herpeto¬
logica, 55:223-228, 1979.
ZELLER, E.A. Enzyms of snake venoms and their biological significance. In F. F.
Nord (ed.), “Advances in enzymology”, New York, Interscience Publ., 5:459-495,
1948.
118
cm
SciELO
10 11 12 13 14 15
Meta. Inat. Butantan
46 :119-138, 1982
METHODOLOGY APPLIED IN THE ELABORATION OF
FAUNAL SALVAGE IN THE REGION OF
“AGUA VERMELHA” HYDROELECTRIC POWER PLANT.
CENTRAIS ENERGÉTICAS DE SÃO PAULO — CESP
Helio Emerson BELLUOMINI *
Mario Paulo AUTUORI **
ABSTRACT: This paper describes the planning of the faunal
rescue operation in areas destined for great reservoirs for
hydroelectric power plants in Brazil. An extensive study was
elaborated of the topography (forests, plantations), eventual for-
mation of islands through the rising of water, inquiry into
species of animais, mainly snakes, there existing. Divísion of the
whole area in sectors for better realization of the work. Selection
of adequate sites for the installation of antiophidic stations
(maximal distance — 3 h). Training of the boat and vehicle
crews. Informative lectures to all participants, official staffs of
the different municipalities, and florestal políce on measures to
be taken. The number of animais rescued, and returned to nature
at appropriate places in the vicinity, justifies the extensive action.
INTRODUCTION
Induced by the growing need of new sources of energy, man have
continuously impaired the environment — in Brazil mainly through the
construction of great reservoirs for hydroelectric power plants — in such
a way that the deep apprehension as to future incidents is not exagge-
rated. Alterations produced by man-made lakes demand early analysis
and evaluation so that the biological system can be preserved as far a
possible, since drastic ecological changes never were beneficiai to man.
The increasing ecological consciousness invoked extensive studies
related to the damaging effects on the environment, that eventually
may mitigate the expected adverse impact by the projects accompanied
by needless destruction of natural riches.
Papers with reference to studies on the environment by Machado
(1974, 1975), Cornaby (1978), the ecological survey recommended by
* Diretor Técnico do Serviço de Animais Peçonhentos, Instituto Butantan — São Paulo
** Diretor da Fundação Parque Zoológico de São Paulo — Brasil (in Memorian).
Brasil
119
cm
SciELO
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaborat.ion of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 46:119-138, 1982.
Goodland (1977), faunal inventory preconized by Coutinho (1978),
Coutinho et al, (1979), evidence that in fact the ecological conscience is
being excited in Brazil as in the rest of the world (Garcez, 1978).
Motivated by the obligation to help as much as possible in the
proteetion of wildlife, this marvelous bequest of nature to mankind, that
must be preserved at any cost for future generations, the joint team
ZOO-BUTANTAN collaborated with “Furnas Centrais Elétricas” during
the closing of the “Marimbondo” barrage, were steps of antecipated
planning and installation of antiophidic stations were in fact applied
for the first time, and later similar collaboration was given to ELE-
TROSUL in “Salto Osório”, ELETRONORTE in “Coaracy Nunes”, and
CESP in “Capivara”, results of which are discussed in the paper by
Belluomini, Cembranelli and Autuori (1976/1977).
The planned faunal rescue at the site of the hydroelectric power
plant of “São Simão”, designed according to CEMIG (1979) has been
executed by the staff of the proper Centrais Elétricas de Minas Gerais.
“Itaipu Binacional” (1979) promoted the Ist. Seminary on Environ-
mental Preservation, manifesting through technical papers published
in a special volume particular attention to the proteetion of the environ-
ment and future faunal rescue.
ELETROSUL in “Santo Santiago”, and COPEL in “Foz de Areia”,
developed intense studies of technical-scientific nature, preparing in
advance the faunal preservation and rescue on occasion of the filling of
the reservoirs in 1979 and in 1980. “Furnas Centrais Elétricas” made
arrangements for the rescue operation in “Itumbiara”, 1979, based on
the ecological study of the UFMG (1976).
The work refering to the rescue and replacement of the ichtyological
fauna, downstream as well as upstream, constituted the responsability
of specialists as Machado and Alzuguir (1976), and Paiva (1978).
CESP through Dr. Cirilo Eduardo Mafra Machado, Administrator
of the Environmental Department, asked for the collaboration of the
joint team ZOO-BUTANTAN in “Água Vermelha”.
The present paper describes the methodology for a project of faunal
rescue and preservation, comprehending antecedent planning, program-
mation, and training of personnel, improving the achievements in other
hydroelectrics.
The rescue operation executed from 26-6-78 to 11-8-78, was conducted
by the proper Hydroelectric Company under the general coordination of
the resident engineer Walmir Fernando Modesto with the collaboration
of the joint team ZOO-BUTANTAN.
As to the Health and Sanitation Program, CESP (1978 a) received
full collaboration of the Superintendency for Endemic Control from the
Division of Health of the São Paulo State. Countless studies on sanitary
aspects can be found in the literature (Deom, 1976). Intense studies in
this sense arc being conducted by Itaipu Binacional in the inundation
area and vicinity, results of which are published in the lst Volume of
the “ler Seminário de la Itaipu Binacional sobre Medio Ambiente”, 1979.
120
cm
SciELO
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of fauna] salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inat. Butantan, 46: 119-138, 1982.
LOCALIZATION
The hydroelectric power plant of “Agua Vermelha”, property of the
Centrais Energéticas de São Paulo — CESP — (Fig. 1), situated at the
“Rio Grande”, boundary of the São Paulo and the Minas Gerais States,
was constructed in the region of the waterfall “Cachoeira dos índios”,
later disappearing with the rise of the water, and 80 km distant from
the confluence of the “Rio Grande” with the river “Parnaiba”. The
extension of the reservoir is of 168 km, and the area of the hydrographic
basin 139 900 km 2 , an area of 650 km 2 of the total reservoir, a volume of
11 billions m :i of accumulated water, and 1380 MW of energy to be gerated
(CESP, 1978 a).
INSPECTION OF THE IMPOUNDMENT AREA
Early in April, 1978, technicians of the joint team, Hélio Emerson
Belluomini, Med. Vet. (Inst. Butantan), Ladislau A. Deutsch, Biologist-
Zoo de São Paulo, and Luiz F. Galli, Florestal Engineer (CESP) conduc-
ted a reconnaissance of the whole impoundment area by helicopter, boat,
and vehicle. The main purpose was to evaluate, as regard faunal rescue,
the type of basin involved, forests, areas of plantations and pastures,
estimate the density of local fauna, select faunistic refuges for future
biological control, installation of antiophidic stations, availability of anti-
ophidic sera in drugstores and hospitais in adjacent cities.
The aerial and terrestrial survey showed that the left border of the
river is more elevated and would, at least inicially, determine minor
inundation areas, with Progressive rising of the water without major
problems; a great part of this region is constituted by pastures and
annual cultures, mainly soja, less cotton and maize.
Besides the exuberant riparian ciliate forest, several arboraceous
sites were noted, which at first sight seemed to be formed by vestiges of
primary forest in an extension varying from 48.4 ha to 145.2 ha. These
wooded regions will not become flooded, and 2/3 of the largest arboreous
part will be bordered by the new lake, however will not present major
problems during the rising of the water up to the maximal inundation
quota.
The topography of the region shows that two islands are going to
be formed by the rising water, one situated between the “Ribeirão La¬
jeado” and the “Ribeirão Agua Vermelha” rivers, and the other between
the “Aroeira” and “Maravilhas” rivers.
The riparian region on the right side presents a less expressive ciliar
forest; the probable formation of an island of about 40 ha can be expected
at the maximal inundation quota. The already existent islands will sub¬
merge. The territory is more plane and less elevated, involving greater
impoundment areas, and according to the aerial survey, part of the forest
not yet cut down, will submerge without the formation of islands. Culti-
vated areas or pastures are seen, although in less a scale than on the left
border. Pastures predominate, and then maize and cotton plantations,
deserving special attention with regard to the presence of snakes.
121
cm
SciELO
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunaí salvage in
the region of “Apua Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 40:119-138, 1982.
Fi g. 1 — Map — localization of the reservoir destined for the hydroelectric power plant ‘‘Água
Vermelha”. Division of the area into the rescue regions I-VI, and indication of antiophidic
stations.
Antiophidic Stations — Boat crews
Coordinator of the faunal rescue operations: Pedro Castelo B. Rosário (CESP)
Aides: Giuseppe Puorto (biol. — Inst. Butantan)
Antonio S. Martins Rodrigues (biol. — FPZSP)
Auxiliary: Oscar da Silva
N.° 1 rcgion
Officer on duty: Antonio G. Real (CESP)
Boat crew: Fernando C. Rodrigues (CESP), Maurício T. de Lima (*), and 1 Military Policeman
(PM).
Antiophidic Station: a — Hospital e Maternidade Santa Rosa — Dr. Antonio J. Monteiro Gama;
b — Unidade de Saúde de Iturama — Dr. Sérgio da Cunha Garcia.
N.° 2 rcgion
Officer on duty — Vandir Dias (CESP)
Boat crew: Abelar R. da Costa (CESP), Tsrael M. Bleich (*) and 1 PM.
Antiophidic Station: Hospital CESP de Indiaporã — Dr. *Arrigo Maiolini Junior, and Dr.
Kenichí Akimura.
N.° 3 rcgion
Officer on duty: Sandoval O. de Lima (CESP);
Boat crew: Celio A. de Oliveira (CESP), Luiz E. de Melo M. Machado (*), and 1 PM.
Antiophidic Station. Posto de Saúde de São Francisco de Sales — Dr. Joaquim E. Camargo.
N.° 4 rcgion
Officer on duty: Aldebrando H. da Silva (CESP);
Boat crew: Antonio R. do Prado (CESP), Luiz E. M. de Vasconcelos (*), and 1 PM.
Hospital on duty: Hospital e Maternidade Leonor Mendes de Barros — Dr. Leovaldo Canoas.
N.° 5 rcgion
Officer on duty: Clarindo Qu. da Silva (CESP):
Boat crew: Paulo E. Pereira (IB), and 2 PM.
Hospital on duty: Casa de Saúde e Maternidade de Itapagipe — Dr. Edimar Silva Machado.
N.° fí rcgion
Officer on duty: José P. da Silva (CESP), and 3 PM.
Antiophidic Station — Pronto Socorro Municipal de Riolândia — Dr. Osvaldo de Paiva, and
Santa Casa de Misericórdia de Paulo de Faria — Dr. João A. M. Casarini.
Two auxiliary boats participated also in the operation, each with 3 PM.
Siglas: CESP — Companhia Energética de São Paulo
IB — Instituto Butantan
FPZSP — Fundação Parque Zoológico de São Paulo
* — S tu denta of the Faculty of Veterinarian Medicine aggregated to the Inst. Butantan
team
PM — Florestal Military Police of Natural Resources.
122
cm
SciELO
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 46: 119-138, 1982.
70% of the economical activities of the region to be flooded (CESP,
1978 a) concentrate toward cattle raising and agronomics; 20% were
distributed in the municipalities of the São Paulo State (Indiaporã,
Mira Estrela, Macedonia, Cardoso, Riolandia, and Paulo de Faria) with
3,488.50 ha of maize, rice, cotton, and soy plantations; on the side of
the Minas Gerais State, the municipalities to become affected (Iturama,
Campo Verde, São Francisco de Sales, Itapagipe, and Frutal) compre-
hend 2,143.8 ha of maize, rice, cotton, soy and peanut plantations.
CESP organized a special team to penetrate the woodland not to be
deforested, since experience shows that animais tend to leave areas
invaded by man. This means that 6,700 ha of woodland have to be scoured
periodically in an attempt to promote exodus of the animais to other
regions.
INSPECTION — FAUNA OF THE REGION
CESP (1978 a) made a detailed inspection of the whole area to be
flooded in search of wild animais, allowing the elaboration of the follo-
wing list of mammalian species: Cerdocyon thous (Linnaeus, 1766) ;
Tayassu tajacu (Linnaeus, 1758) ; Hydrochoerus hydrochaeris (Linnaeus,
1958) ; Dasyprocta azarae (Lichtenstein) ; Callithrix jacchus penicillata
(Hershkovitz, 1968) ; Cunniculus paca (Linnaeus, 1758) ; Nasiia nasua
(Linnaeus, 1758) ; Tayassu albirostris (Illiger, 1811) ; Tolypeutes uiatacus
Desm., 1804 or T. tricinctus (Linnaeus, 1758) ; Priodontes giganteus
(Goef., 1803) ; Mazama gouazoubira (Fischer, 1814).
The scientific names were supplied by the biologist L. A. Deutsch,
Division of Mammals from the ZOO, who gave also the list of other
eventually existing mammals in the area of the future reservoir of
“Agua Vermelha” such as: Cavia aperea (Erxleben, 1777) ; Coendu pre-
hensilis (Linnaeus, 1758) ; Sylvilagus braziliensis (Linnaeus, 1758) ;
Cebus sp.; Alouatta caraya (Humboldt, 1812); Dasypus novemcinctus
(Linnaeus, 1758) ; Euphractus sexcinctus (Linnaeus, 1758) ; Tamandua
tetradactyla (Linnaeus, 1758) ; Didelphis aurita (Wied, 1826) ; Didelphis
marsupialis (Linnaeus, 1758).
The technicians of the “Departamento de Meio Ambiente da CESP”
made also a survey of the ornithological population of the region; the
ichtyological survey, including an inventory of the species, transference
of fishes from downstream to upstream, constituted the responsability
of the specialist Cirilo M. Machado, CESP.
During the period of inspection, the trained personal of the hydro¬
electric company, captured the following ophidic species, which were
classified according to Peters and Orejas Miranda (1970), and Hoge &
Romano (1972) : Bothrops rnoojeni, the most frequent venomous species
present in the various regions of this hydroelectric reservoir; Bothrops
alternatus ; Crotalus durissus terrificus, and from the non venomous spe¬
cies: Chironius sp., Helicops sp., Mastigodryas sp., Boa constrictor sp.,
Waglerophis merremii; 2 specimens of Eunectes sp. were seen but not
captured.
MATERIAL
The material used for the faunal rescue operation was manufactured
in the work-shop of the proper CESP, including the standard model from
the Instituto Butantan. Figs. 2-9 show the general measurements.
123
cm
SciELO
10 11 12 13 14 15
RELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha" hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mcm. Inst. Butantan, 45:119-138, 1982.
70% of the economical activities of the region to be flooded (CESP,
1978 a) concentrate toward cattle raising and agronomics; 20% were
distributed in the municipalities of the São Paulo State (Indiaporã,
Mira Estrela, Macedonia, Cardoso, Riolandia, and Paulo de Faria) with
3,488.50 ha of maize, rice, cotton, and soy plantations; on the side of
the Minas Gerais State, the municipalities to become affected (Iturama,
Campo Verde, São Francisco de Sales, Itapagipe, and Frutal) compre-
hend 2,143.8 ha of maize, rice, cotton, soy and peanut plantations.
CESP organized a special team to penetrate the woodland not to be
deforested, since experience shows that animais tend to leave areas
invaded by man. This means that 6,700 ha of woodland have to be scoured
periodically in an attempt to promote exodus of the animais to other
regions.
INSPECTION — FAUNA OF THE REGION
CESP (1978 a) made a detailed inspection of the whole area to be
flooded in search of wild animais, allowing the elaboration of the follo-
wing list of mammalian species: Cerdocyon thous (Linnaeus, 1766) ;
Tayassu tajacu (Linnaeus, 1758) ; Hydrochoerus hydrochaeris (Linnaeus,
1958) ; Dasyprocta azarae (Lichtenstein) ; Callith7-ix jacchus penicillata
(Hershkovitz, 1968) ; Cunniculus paca (Linnaeus, 1758) ; Nasua nasua
(Linnaeus, 1758) ; Tayassu albirostris (Illiger, 1811) ; Tolypeutes matacus
Desm., 1804 or T. tricinctus (Linnaeus, 1758) ; Priodontes giganteus
(Goef., 1803) ; Mazama gouazoubira (Fischer, 1814).
The scientific names were supplied by the biologist L. A. Deutsch,
Division of Mammals from the ZOO, who gave also the list of other
eventually existing mammals in the area of the future reservoir of
“Agua Vermelha” such as: Cavia aperea (Erxleben, 1777) ; Coendu pve-
hensilis (Linnaeus, 1758) ; Sylvilagus braziliensis (Linnaeus, 1758) ;
Cebus sp.; Alouatta caraya (Humboldt, 1812); Dasypus novemcinctus
(Linnaeus, 1758) ; Euphractus sexcinctus (Linnaeus, 1758) ; Tamandua
tetradactyla (Linnaeus, 1758) ; Didelphis aurita (Wied, 1826) ; Didelphis
marsupialis (Linnaeus, 1758).
The technicians of the “Departamento de Meio Ambiente da CESP”
made also a survey of the ornithological population of the region; the
ichtyological survey, including an inventory of the species, transference
of fishes from downstream to upstream, constituted the responsability
of the specialist Cirilo M. Machado, CESP.
During the period of inspection, the trained personal of the hydro¬
electric company, captured the following ophidic species, which were
classified according to Peters and Orejas Miranda (1970), and Hoge &
Romano (1972) : Bothrops moojeni, the most frequent venomous species
present in the various regions of this hydroelectric reservoir; Bothrops
alternatus ; Crotalus durissus terrificus, and from the non venomous spe¬
cies: Chironius sp., Helicops sp., Mastigodryas sp., Boa constrictor sp.,
Waglerophis merremii; 2 specimens of Eunectes sp. were seen but not
captured.
MATERIAL
The material used for the faunal rescue operation was manufactured
in the work-shop of the proper CESP, including the standard model from
the Instituto Butantan. Figs. 2-9 show the general measurements.
123
cm
SciELO
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunat salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 1,6: 119-138, 1982.
r
• t»r
Jj** ' ' j w/
'-■tf'},
Fig. 2 — Photo CESP — Cage with 4 partitions for mammals, devised by the joint team CESP-
-ZOO-Butantan
General meaaurements
hight 1.05 m
width
depth
Trap door
hight
width
Meah
1.05 m
0.85 m
0.8 m
0.44 m
5x5 mm
. .. • :•
■ \ *V.
Fig. 3 — Photo CESP — Cage with 2 partitions for the transport of ophidians and mammals, devised
by the joint team CESP-ZOO-Butantan.
General mcaaurementa
hight 0.61 m
width
depth
Trapdoor
hight
width
Air hole
Meah
0.61 m
0.61 m
0.35 m
0.25 m
0.32 x 0.32 m
5x5 mm
124
cm
SciELO
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 46:119-138, 1982.
Fig. 4 — Photo CESP — Box with 10 partitions for the transport of arachnids, and small ophidians,
devised by the team CESP, ZOO, BUTANTAN.
General mca8urementa
hight 0.09 m
width 0.50 m
depth 0.25 m
opening 0.09 x 0.12 m
Fig. 5 — Photo Inst. Butantan — Box with 2 partitions for the transport of ophidians, standard
model of the I.B.
General measurements
hight
width
depth
opening
0.12 m
0.50 m
0.29 m
0.25 x 0.12 m
125
SciELO
cm
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 46: 119-138, 1982.
A first aid manual for the treatment of individuais accidented by
venomous animais was elaborated by the medicai team (João L. Costa
Cardoso — Hospital “Vital Brazil”, Instituto Butantan, and Ernesto H.
Miyauchi — Head of the Medicai Department of CESP) (1978 b),
containing specific instructions (roads, airfields, list of hospitais,
addresses of physicians and nurses) for each of the areas, determining
the amount of sera necessary for each of the antiophidic stations.
According to the planning, CESP decided to invite the Natural
Resource Police Force of the São Paulo and the Minas Gerais States to
assist the boat crews engaged in the animal rescue, to reinforce the
inspection of the borders, patrol the region to impede ruthless hunters,
trying to take advantage of the situation, decimating a great part of
the game. The designated militars received also a general training.
Addresses were given to authorities of the municipalities within the
area of “Água Vermelha”, comprising sanitarians, mayors, aldermen,
engineers, biologists, pharmacists, veterinarians, teachers of the l.° and
2.° degree, and civil and military entities, about the planning related to
the filling of the barrage, and the measurements to be adopted for
environmental preservation.
Authorized by CESP, several veterinary students from the Univer-
sity of São Paulo participated as volunteers in the operation, and were
previously trained by the Instituto Butantan and ZOO; graduated techni-
cians of “Itaipu Binacional”, two Paraguayans and two Brasilians, also
participated, since similar problems are expected during the filling of
the Itaipu reservoir.
PLANNING
A map of the entire area of the future reservoir was elaborated,
delimiting six independent regions, of which N.° 1, 3, and 5 are situated
on the right border (Minas Gerais State), and N.° 2, 4, and 6 on the left
border of the river (São Paulo State).
The N.° 1 region comprehends the Iturama area; N.° 2, the India-
porã municipality; N.° 3, São Francisco de Sales; N.° 4, Mira Estrela
and Cardoso; N.° 5, Itapagipe, and finally N.° 6, the municipalities of
Riolandia, and Paulo de Faria. Each of the regions would be self-suffi-
cient as to motor boats, vehicles, radio communication, collecting equip-
ment, repair shops, fuel and depots for diverse materiais. Each of these
regions received detailed maps indicating available roads that can be
used at even the most adverse climatic conditions, the localization of
airfields with the number of available airplanes, estimate of hours for
the utilization of one or two helicopters, distance to be overcome in each
of the autonomous regions; location of day and night attendance by
physicians and nurses on duty in hospitais or at mobile stations (vehi¬
cles), antivenins in stock (antiophidic, antiarachnidic sera) necessary at
each station, and general radio-communication control (CESP, 1978 b ).
126
cm
SciELO
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 46: 119-138, 1982.
Fig. 6 — Photo Inst. Butantan — Box with 8 partitions for the transport of arachnids, standard model
of the Inst. Butantan.
General measurements
higth 6.8 cm
width 18 cm
depth 30 cm
opening — length 6.5 cm — width 7.5 cm — hight 4.5 cm
Fig. 7 __ Photo CESP _
General measurements
mammals.
Netbag
catch
diameter
hoop
handle
length
handle
net
mesh 10 x
N. ° 1
O. 48 m
0.30 m
N. ° 1
1.50 m
O . 60 m
N. ° 2
O . 26 m
0.30 m
N. ° 2
1.50 m
O. 50 m
10 x 10 mm
10 mm
127
SciELO
cm
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunaÈ salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Aí em. Inat. Butantan, 46:119-138, 1982.
Fig. 2 — Photo CESP — Cage with 4 partitions for mammals, devised by the joint team CESP-
-ZOO-Butantan
General mea8urement8
hight
1.05 m
width
1.05 m
depth
0.85 m
Trap door
hight
0.8 m
width
0.44 m
Meah
5x6 mm
Fig. 3 — Photo CESP — Cage with 2 partitions for the transport of
by the joint team CESP-ZOO-Butantan.
ophidians
and
mammals,
devised
General mcasurementa
hight 0.61 m
width 0.61 m
depth 0.61 m
T rapdoor
hight 0.35 m
width 0.25 m
Air hole
0.32 x 0.32 m
Aícs/i 5x5 mm
124
SciELO
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inat. Butantan, J+6: 119-138, 1982.
Fig. 4 — Photo CESP — Box with 10 partitions for the transport of arachnids, and small ophidians,
devised by the team CESP, ZOO, BUTANTAN.
General measurements
hight 0.09 m
width 0.50 m
depth 0.25 m
opening 0.09 x 0.12 m
125
General measurements
hight 0.12 m
width 0.50 m
depth 0.29 m
opening 0.25 x 0.12 m
Fig. 5 — Photo Inst. Butantan —
model of the I.B.
Box with 2 partitions for the transport of ophidians, standard
cm
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, .40:119-138, 1982.
Fig. 8 — Photo Inst. Butantan — Hook to catch snakes, standard model of the Inst. Butantan.
General measurements
Diameter
metal 0.6 m
handle 0.30 m
length
handle 1.00 m
hook 0.16 m
Fig. 9 — Photo Inst. Butantan — “Lutz’s lariat to catch snakes, standard model of the Inst. Butantan.
General measurements
Diameter
handle
0.30 m
lariat
0.11 m
a th
handle
1.60 m
cord
1.80 m
leather
0.39 m
The lariat was idealized by Adolpho Lutz.
SciELO
12
13
128
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mevi. Jnat. Butantan, 46: 119-138, 1982.
A special supporting team is designated to succour during criticai
situations caused by an excessive, not foreseen elevation of the water
levei, or when there is an exceptional agglomeration of animais.
The planning includes rigorous training of the personnel:
1 — General training for the personnel, in particular the boat and
vehicle crews, consisting of theorical instructions as to distinction of
mammals, reptiles and venomous arthropods of the region; practical
courses for the handling of the equipment as lariats, hooks, small and
large net-bags, and contention cages, with the use of live animais, pre-
ferably snakes, spiders and scorpions supplied by the Instituto Butantan,
with posterior evaluation and selection of the individuais more apt for
this dangerous type of work.
Physicians of the Instituto Butantan and CESP gave instructions
related to first aid, and indication of the sites appointed for specialized
treatment of the accidented individuais.
Specialized training
Part of the physicians indicated or invited by CESP, received
updating instructions — Venomous animais at the Instituto Butantan,
and its hospital “Vital Brazil”, specialized in the treatment of individuais
accidented by venomous animais. Other physicians received similar
instructions at the very hydroelectric headquarters.
Graduated personnel of CESP as biologists, agronomists, forestal
engineers, designated to participate in the “Água Vermelha operation,
received courses in basical knowledge referent to venomous animais, and
also a course at the ZOO for the recognition of animal species eventually
existing in the area of inundation.
The ZOO provided anesthetic guns at the site during the whole
rescue operation.
CESP supplied six motorboats, 12 vehicles, and 6 ambulances, two
airplanes, and two helicopters to be used in the inundation area, the
military police placed at disposal two motorboats and maintained the
whole area under radiocontrol.
The boats and vehicles were equipped with hatchets, leather gloves
— médium length, helmets, snares and hooks on a 1.50 m long handle,
ropes, burlap sacs to transport mammals and reptiles, boxes, 40 cm
screw driver, spare screws, life belts; leather boots or half boots for the
occupants of the vehicles were provided.
The Medicai Department of CESP acquired the following types of
antivenins to be distributed according to the planning norms: At the base
station — CESP Hospital in Indiaporã — 100 ampoules of antiophidic
serum, 30 amp. antielapidic serum, and 30 amp. antiarachnidic serum.
The other stations received 40 amp. antiophidic serum, and 5 antielapidic
serum each.
In the N." 2 region, a closed shelter was provided, with electricity,
piped water and sewer, for the recuperation of animais affected by the
flood and by capture.
129
SciELO
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan , 40:119-138, 1982.
With regard to the preservation of the local fauna, CESP selected
(through Ladislau A. Deutsch, biologist of the ZOO) and acquired an
area of approximately 145.2 ha, 46.8 ha of which predominantly secon-
dary woodland, situated in Paulo de Faria as a biological refuge.
Accomplishment and Results
The floodgates were closed on 26-6-78, and the water levei rose until
11-8-78. At the start of the damming, the water levei was of 341.26 m,
and attained a stable levei at the 376.57 m quota. The water rose 35.31 m
on the whole. During these 46 days, the main animal rescue took place
(Fig. 10). On the first day, the water rose about 6.19 m near the dam,
and reached the N.° 1 and 2 region; on the second day, the water rose
2.42 m, on the 3rd, 4th, and 5th day, about 1 m decreasing gradually
with some alteration up to the last week, when the variation was less
than 0.20 m per day (Fig. 10).
For each region a detailed control chart as to rescue was elaborated,
specifying the number of mammals, birds, reptiles, and arachnids (CESP,
1978 c).
During these 46 days, 3263 animais were captured (CESP, 1978 c),
1608 of which mammals (49,279%), 1621 reptiles (49,678% — 1530
snakes, 5 alligators, 86 lizards), 18 arthropods (0,551%), and 16 birds
(0,490%).
Mammals
830 — Callithrix jacchus penicillata (Hershkovitz, 1968)
197 — Cebus sp. (Linnaeus, 1758)
186 — Coendu prehensilis (Linnaeus, 1758)
166 — Didelphis aurita (Wied, 1820)
or Didelphis marsupialis (Linnaeus, 1758)
132 — Alouatta caraya (Humboldt, 1812)
16 — Cavia aperea (Erxleben, 1777)
16 — Rattus sp.
9 — Tamandua tetr^adactyla (Linnaeus, 1758)
8 — Lepus sp.
4 — Euphractus sexcinctus (Linneaus, 1758)
3 — Dasypus novemcinctus (Linnaeus, 1758)
2 — Myrmecophaga tridactyla (Linnaeus, 1758)
2 — Nasua nasua (Linnaeus, 1758)
1 — Ozotoceros bezoarticus (Linnaeus, 1758)
Domestic animais
30 — cats
5 — bovines
1 — dog
Birds did not present much trouble, even so 16 specimens needed
the help of the rescue team. Loss of nests and young naturally had to
be considered.
Of a total of 3263 captured animais in “Agua Vermelha”, 1621
reptiles (49.678%) predominated with the following distribution : 1530
ophidians (46,889%), 86 lizards (2,635%), and 5 alligators (0,153^).
130
cm
SciELO
10 11 12 13 14 15
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha" hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mcm. In8t. Bntantan, 46: 119-138, 1982.
Fig. 11 — Photo Giuseppe Puorto — Boats and helicopter in action.
Fig. 12 — Photo Giuseppe Puorto — Part of the impoundment area
132
SciELO
cm
10 11 12 13 14 15
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha’' hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inat. Butantan, 40:119-138, 1982.
REPTILIA: SERPENTES
ANOMALEPIDIDAE
4 — Typhlops squamosus (Schlegel, 1839)
BOIDAE
94 — Boa constrictor amarali (Stull, 1932)
23 — Epicrates cenchria crassus Cope, 1862
7 — Eunectes murinus scytale (Linnaeus, 1758)
COLUBRIDAE
2 — Apostolepis assimilis (Reinhardt, 1861)
1 — Chironius bicarinatus (Wied, 1820)
21 — Chironius flavolineatus (Boettger, 1885)
38 — Chironius quadricarinatus (Boie, 1827)
5 — Clelia occipitolutea (Duméril, Bibron e Duméril, 1854)
29 — Leimadophis ahnadensis Wagler, 1824
— Leimadophis poecüogyrus schottii (Schlegel, 1837)
— Leimadophis maculicauda Amaral, 1927
40 — Drymarcon corais corais (Boie, 1827)
1 — Elapomorphus nasutus Gomes, 1915
2 — Erythrolampus aesculapii venustissimus Wied, 1821
4 — Helicops carinicaudus infrataeniatus (Jan, 1865)
4 — Helicops viodestus Guenther, 1861
3 — Hydrodynastes bicinctus schultzi Iloge, 1966
19 — Hydrodynastes gigas (Duméril, Bibron e Duméril, 1854)
10 — Leptodeira annulata annulata (Linnaeus, 1758)
7 — Liophis brazili (Amaral, 1923)
6 — Liophis jaegeri (Guenther, 1858)
2 — Liophis occipitalis (Jan, 1863)
4 — Lygophis flavifrenatus Cope, 1862
4 — Lygophis meridionalis (Schenkel, 1901)
34 — Mastigodryas bifossatus bifossatus (Raddi, 1823)
2 — Oxyrhopus petola digitalis (Reuss, 1834)
9 — Oxyrhopus trigeminus guibei (Duméril, Bibron e Duméril, 1854)
72 — Philodryas olfersii (Lichtenstein, 1823)
2 — Philodryas patagoniensis (Girard, 1857)
2 — Pseudoboa nigra (Duméril, Bibron e Duméril, 1854)
2 — Rachidelus brazili Boulenger, 1908
3 — Simophis rhinostoma (Schlegel, 1837)
1 — Spilotes pullatus pullatus (Linnaeus, 1758)
33 — Thamnodynastes nattereri (Mikan, 1828)
3 — Waglerophis merremii (Wagler, 1824)
1 — Sibynomorphus mikanii mikanii (Schlegel, 1887)
ELAPIDAE
1 — Micrurus lemniscatus carvalhoi (Roze, 1967)
1 — Micrurus frontalis braziliensis (Roze, 1967)
133
SciELO
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inat. Butantan, 46:119-138, 1982.
VIPERIDAE
46 — Crotalus durissus collilineatus Amaral, 1926
— Crotalus durissus terrificus (Laurenti, 1768)
7 — Bothrops alternatus (Duméril, Bibron & Duméril, 1854)
554 — Bothrops moojeni Hoge, 1966
2 — Bothrops neuwiedi pauloensis Amaral, 1925
The venomous ophidians (611), and part of the non venomous (404),
after prior identification, were sent to the Instituto Butantan for venom
extraction, and to constitute the sampling material of the area respecti-
vely; the remainder of the non venomous ophidians (515), as well as
181 specimens of Boa constrictor amarali, 47 Drymarcon corais corais,
the 7 specimens of Eunectes murinus, and others were released in areas
adjacent to the sites of capture or in the faunal refuge of “Paulo de
Faria”.
LACERTILIA
TEIIDAE
71 — Tupinambis teguixin (Linnaeus, 1758)
GEKKONIDAE
8 — Hemidactylus sp. Gray, 1825
AMPHISBAENIDAE
7 — Amphisbaena sp. (Linnaeus, 1758)
CROCODILIA
5 — Caiman latrirostris (Daudin, 1802)
ARANEAE
THERAPHOSIDAE
6 — Acanthoscurria sp.
5 — Pamphobeteus sp.
PISAURIDAE
2 — Ancylometes sp.
CTEN1DAE
1 — Phoneutria sp.
EUSPARASSIDAE
1 — Polybetes sp.
During the first phase of inundation, the rescued animais were
released in regions of previously selected forests. Those animais rescued
during the second phase, were taken to the faunistic refuge of “Paulo
de Faria”, acquired in the meantime by CESP.
134
cm
SciELO
10 11 12 13 14 15
liELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 46:119-138, 1982.
At an advanced phase of the operation, the autonomous regions N.° 5
and 6 were incorporated into N.° 3 and 4 respectively, at the extreme end
of the dam, from 02/07/78 onwards.
The general Coordination Department of CESP, entrusted its func-
tionary Pedro Castelo Branco Rosário with the execution of the rescue
operation (CESP, 1978 c) ;he prefered to use the buildings in Indiaporã
as headquarters, geographically much more appropriate, instead of
Cardoso, inicially designated for the later inundation phase.
The rescue operation was terminated on 11/08/78, even so a single
team continued to inspect by boat and by plane the areas in search of
lost animais.
During this complementary phase the whole area was seemingly
cleared.
In conformity with the prevision related to ophidic accidents, only
one case, probably Bothrops, was confirmed in the Mira Estrela munici-
pality; the individual was treated in the CESP Hospital, and recovered
within three days (CESP, 1978 c).
The execution of the rescue operation under the total responsability
of CESP, upstream of “Água Vermelha”, concerning mammals, reptiles,
birds, and arthropods involved 20 selected employées of CESP, 8 of the
ZOO-BI7TANTAN team, 12 miJitaries of the Minas Gerais State, 47
militaries of the São Paulo State (the latter working in shifts), four
students of the Faculty of Veterinarian Medicine from the University
of São Paulo, one journalist of the “Secretaria da Saúde” of the São
Paulo State, 6 physicians of CESP or invited to participate, 6 male
nurses besides biologic specialists, forestal engineers, agronomists of the
Department of Natural Resources of CESP, who assisted in the project,
and were in charge of the iehtyological rescue downstream of the dam.
The rescue operation was once more nicknamed “Ark of Noah”.
The cinematographic, photographic, and journaJisíic documentation
was the responsability of the Public Eelation Department of CESP, with
the collaboration of specialized teehnicians of the “Secretaria da Saúde”
and the ZOO.
DISCUSSION AND CONCLUSIONS
Analysing and comparing the antecipated planning results in “Água
Vermelha” with those obtained during prior operations at other reservoirs
accomplished by Belluomini, Cembranelli, and Autuori (1976/7), it
became evident that intensive training, and selection of apt personnel
constitute fundamental prerequisites.
Criticai aspects of faunal rescue, that began with delay in areas of
great barrages, are reported by Critchley (1959), Harthorn and Lock
(1960), and Walsh & Gannon (1967).
In an attempt to maintain the biological equilibrium rodent-snake,
according to Walsh and Gannon, non venomous snakes, mainly
Boa constrictor amarali were returned to their natural habitat.
135
SciELO
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 46:119-138, 1982.
Topographic survey, to determine the regions to be deforested,
confirmation of the presence of animais, and the preparation of migratory
routes to pre-selected habitats, are necessary to warrant a favorable
development of the rescue operation.
The prevalence of ciliary forests in “Água Vermelha” involved a
higher agglomeration of mammals, mainly monkeys and hedgehogs,
generally captured with difficulty, and required frequently awaiting of
the rise of water with consequent flight of the animais to the top of the
trees, whose branches often had to be cut, bringing the animais down
to the water, thus facilitating capture. This alternative may cause
exhaustion, discomfort and hunger to them.
The rescue of animais in non deforested areas was slower and
demanded more attention from the boat crews, due to the risk repre-
sented by carnivorous ants, wasp nests, hornets, and the encounter with
venomous snakes.
Groups of delayed animais composed of females, males and young,
required more intense pursuit.
Drowning of some animais of subterraneous habits is inevitable,
considering the extension of the areas to be searched, and the speed of
the rising waters.
The practical knowledge acquired through each new salvage opera¬
tion, always improving the methodology employed as yet, grants a gradual
elimination of eventual faults in future work.
The cultivated areas, mainly those with grain crops, bring forth an
elevated populational density of rodents, and a consequent presence of
mainly venomous ophidians, in search of their favorite food (Belluo-
mini, 1968).
The presence of Bothrops moojeni (a very large venomous snake,
quick and dangerous, inclusive at capturing), commonly called “caiçaca”
or improperly “jararaca”, was confirmed in the N.° 1 region by the
capture of 266 specimens; in N.° 2 by 167, followed by 49 and 72 speci-
mens respectively in N.° 3 and N.° 4 regions, surpassing any expectation.
In these regions were captured also part of the 46 specimens of
Crotalus durissus terrificus, and C. durissus collilineatiis commonly deno-
minated rattlesnake, whose bite is the most feared (Rosenfeld, 1971) due
to the high death rate in humans and animais. There were also captured
7 Bothrops alternatus, 2 B. neuwiedi paiãoensis, and 2 true coral snakes,
Micrurus lemniscatus carvalhoi and M. frontalis braziliensis.
Of a total of 3263 animais captured in “Água Vermelha”, 1621
reptiles (49.678%) predominated in the following distribution : 1530
ophidians (46.889%), 86 lizards (2.653%), and 5 alligators (0.153%).
Among the 1530 snakes, 611 were venomous (39.934% ) represen-
ting 18.725% of the total rescued animais, transforming the operation
“Água Vermelha”, among those coordinated by the ZOO-BUTANTAN
team, the most dangerous ever accomplished. After the conclusion of
the rescue operation, no animais could be found any more (CESP,
1978 c).
136
SciELO
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaborat.ion of faunal, salvage in
the region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mcm. Inst. Butantan, 4Ü: 119-138, 1982.
The faunistic refuge acquired by CESP in “Paulo de Faria” (at the
left border of the reservoir) is being controlled and closely observed.
An agreement between “Furnas Centrais Elétricas” and the “Uni¬
versidade Federal de Minas Gerais” (UFMG) facilitated the studies
related to the planning in “Itumbiara” in 1979.
On the day when the studies in their entirety composed by local
ecological and faunal survey, as well as antecipated planning — defo-
resting and preparation of special migration routes, selection of a faunal
refuge, training of personnel — becomes concordant with the consequent
inexpressive capture of animais, the real objective of the enterprise shall
be attained.
The protection of nature needs more and more actuating individuais
endeavoured in the preservation of the ecological patrimony.
ACKNOWLEDGEMENT
The authors are grateful to CESP for all the facilities granted
during the execution of the rescue operation in “Água Vermelha”.
They wish to thank Mr. Giuseppe Puorto, biologist of the “Seção
de Venenos” at the Instituto Butantan, for his dedication during the
rescue operation.
The authors are indebted to Mrs. Sibylle Heller for the editorial
aid, and translation.
Thanks to the “Seção de Desenho” for the elaboration of the graphs
and tables.
Finally thanks to Dr. A. R. Hoge for the revision of the list of
captured ophidians.
LITERATUR
BELLUOMINI, H.E. Extraction and quantities of venom obtained from some
Brazilian snakes. Chapter 5 in Venomous Animais and their venoms. W. Bücherl,
E. Buckley, V. Deulofeu, Editors, New York, Academic Press, 1968. v. 1.
BELLUOMINI, H.E.; CEMBRANELLI, E.L.; AUTUORI, M.P. Wildlife rescue,
capture of snakes and establishment of antiophidic stations in flooded areas
destined for Brazilian hydroelectric power plants. Mem. Inst. Butantan, bO/il :
129-154, 1976/77.
CENTRAIS ELÉTRICAS DE MINAS GERAIS S/A — CEMIC: Salvamento da
fauna no reservatório de São Simão. In Centrais Elétricas Brasileiras S/A —
ELETROBRAS. Reunião técnica sobre o Setor Elétrico e Ecologia. Relatório,
1979. p. 1-36.
COMPANHIA ENERGÉTICA DE SÃO PAULO: Plano de enchimento de Água
Vermelha: impactos — preparativos. Relatório (1978 a).
-CESP: Água Vermelha. Condutas em casos de acidentes por animais
peçonhentos (serpentes, aranhas e escorpiões), durante a fase de enchimento
da bacia da Usina Hidroelétrica de Água Vermelha: a quem, como, e onde
procurar socorro de emergência? Relatório (1978 6). p. 1-23.
137
SciELO
BELLUOMINI, H. E. & AUTORI, M. P. Methodology applied in the elaboration of faunal salvage in
thc region of “Água Vermelha” hydroelectric power plant. Centrais Energéticas de São Paulo —
CESP. Mem. Inst. Butantan, 46:119-138, 1982.
- Operação Arca de Noé. Resgate de animais durante o enchimento do
reservatório da Usina de Água Vermelha. Relatório (1978 c). p. 1-34.
CORNABY, B.W. Practical methodology to predict the effects of reservoirs on
their surrounding environment and on regional development. Paper presented
at the “Seminário sobre efeitos de grandes represas no meio ambiente e no
desenvolvimento regional. CETESP: 1-21, São Paulo, Brasil, 1978.
COUTINHO, A.S. Administração dos recursos naturais das bacias hidrográficas;
atribuições; delegações; coordenação; estruturas alternativas; recursos humanos.
Revista DAE, 116: 28-34, 1978.
COUTINHO, A.S.; CAMPOS CERVERA, E. & MULLER, A. Plano básico para
conservacion dei Medio Ambiente. Itaipu Binacional in 1 er Seminário de la
Itaipu Binacional sobre Medio Ambiente. Artes Graficas Zamphiropolos, Asuncion,
Paraguay, 1979, p. 37-50.
CRITCHLEY, R.A. Operation Noah (Kariba Dam). Oryx, 5(2) : 100-107, 1959.
DEOM, J. Water Recources Development and Health. A selected bibliography.
WHO. mimeo (1976) document MPD/76.6, 68.
GARCEZ, L.N. Aspectos sócio-econômicos e de desenvolvimento regional (Semi¬
nário sobre Efeitos de Grandes Represas no Meio Ambiente e no Desenvolvi¬
mento Regional. CETESP. Revista DAE, 116, 35-40, 1978.
GOODLAND, R. Environmental assessment of the Tuçurui hydroelectric project,
Rio Tocantins, Amazônia. Centrais Elétricas do Brasil S/A — ELETRONORTE.
Relatório (1977), p. 1-26.
HARTHORN, A.M. & LOCK, J.A. The rescue of rhinoceroses at Kariba Dam
(South and North Rhodesia). Oryx, 5(6) :352-355, 1960.
HOGE, A.R. & ROMANO, S.A.R.W. Sinopse das serpentes peçonhentas do Brasil.
Mem. Inst. Butantan, 56:109-208, 1972.
ITAIPU BINACIONAL: 1 er Seminário de la Itaipu Binacional sobre Medio
Ambiente. Asuncion, Paraguay. Artes Graficas Zamphiropolos, 1979, p. 1-347.
MACHADO, C.E.M. Efeitos do Meio Ambiente sobre barragens e reservatórios.
Ação das Centrais Elétricas de São Paulo no Meio Ambiente, Seminário
Nacional de Grandes Barragens. Relatório (1974), p. 1-35.
-Efeitos do Meio Ambiente sobre barragens e reservatórios. Defesa do
equilíbrio natural. Rev. Bras. de Energia Elétrica, 32: 19-22, 1975.
MACHADO, C.E.M. & ALZUGUIR, F. Os peixes e as barragens no Brasil. Anais
do I Encontro Nacional sobre Limnologia. Piscicultura e Pesca Continental.
Belo Horizonte, MG, Brasil, 1976. p. 341-360.
PAIVA, M.P. A ictiofauna e as grandes represas brasileiras. Rev. DAE, 116:
49-57, 1978.
PETERS, J.A. & OREJAS-MIRANDA, B. Catalogue of the Neotropical Squamata.
Part I: Snakes. United States National Museum Bulletin, 297: 1-347, 1970.
ROSENFELD, G. Symptomatology, pathology and treatment of snake bite in South
America. Chapter 34 in Venomous Animais and their Venoms, W. Bücherl,
E. Buckley, editors, New York, Academic Press, 1971. Vol. II, p. 345-384.
SIQUEIRA, H.D. O enchimento do reservatório de São Simão. Centrais Elétricas
de Minas Gerais S/A — CEMIG (1979), Eletrobras — Setor Elétrico e o
Meio Ambiente, 8-9.
UNIVERSIDADE FEDERAL DE MINAS GERAIS — UFMG: Rio Paranaíba —
Itumbiara, GO. Estudos ecológicos — hidroelétrica de Itumbiara. Furnas Cen¬
trais Elétricas. (1974/6). Relatório final: 1-221.
WALSH, J. & GANNON, R. Time is short and the water rises. New York,
E.P. Dutton & Co. Inc., 1967, p. 1-224.
138
cm
SciELO
10 11 12 13 14 15
Mcm. 1 nst. Butantan
40:139-172, 1982
OFÍDIOS DA AMAZÔNIA
XV — AS ESPÉCIES DE CHIRONIUS DA AMAZÔNIA
ORIENTAL (PARÁ, AMAPÁ E MARANHÃO). (OPHIDIA:
COLUBRIDAE)
Osvaldo Rodrigues da CUNHA *
Francisco Paiva do NASCIMENTO *
RESUMO: Em grande parte do Brasil e particularmente na
região Amazônica, as espécies de Chironius são pouco conhecidas
e imperfeitamente estudadas. Para tal, reuniu-se 379 exemplares
do gênero em questão, para uma reavaliação das espécies que
ocorrem na região oriental da Amazônia, abrangendo os Estados
do Pará e Maranhão e o Território Federal do Amapá. São rede¬
finidas através de análise comparativa e confrontadas com os dados
da literatura. Neste trabalho são válidas as seguintes espécies:
Chironius carinatus, C. exoletus, C. scurrulus, C. fuscus (forma
até então confudida com Natrix cinnamomea Wagler), C. multiven-
tris (forma antes identificada como C. cochranae Hoge & Romano)
e por fim a primeira citação da ocorrência na Amazônia da
espécie C. flavolineatus, dos cerrados do leste e centro do Brasil,
até Mato Grosso e Paraguai.
INTRODUÇÃO
O gênero Chironius ocorre em quase toda a América do Sul, sendo
porém pouco conhecidas as suas espécies, porque algumas delas têm
permanecido mal definidas sob o ponto de vista taxonômico. Desde quando
Boulenger (1894:71) englobou sob a denominação de Herpetodryas Boie,
1826, cinco espécies que considerou típicas e colocou na sinonímia destas,
outras até então descritas, deste status surgiu muita confusão posterior.
Amaral (1930:160) adotando em parte a proposição de Boulenger,
simplificou mais ainda o número de espécies para três, sinonimizando
algumas designações sob Coluber carinatus Linnaeus, 1758 (= Chironius
carinatus) e Coluber fuscus Linnaeus, 1758 (— Chironius fuscus) . Sugeriu
ainda uma revisão do gênero, que até hoje não foi levada a cabo no
conjunto geral.
Pesquisadores do Museu Paraense Emílio Goeldi (CNPq), Belém-Pará.
139
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inat. Butantan,
• 40 : 139 - 172 , 1982 .
Bailey (1955) tentou sistematizar as Chironius do sudeste da
América do Sul, em particular as do leste do Brasil, e as do Paraguai e
Argentina. Neste trabalho o autor estabeleceu padrões morfológicos para
definir sete espécies, das quais uma foi descrita como nova (C. foveatiis),
três descritas por Wied, então revalidadas (C. bicarinatus, C. pyrrhopogon
e C. laevicollis) , uma de Linnaeus (C. fuscus), uma de Boettger (C.
flavolineatus) e uma de Boie ( C. quadricarinatus), e por fim determinando
aproximadamente a distribuição geográfica e ocorrências das mesmas.
A chave elaborada pelo autor para identificar estas Chironius, bem
como as tabelas dos caracteres merísticos (folidose dorsal e anal, dentes
maxilares, escamas ventrais e escudos cefálicos), são claros e de grande
utilidade para o melhor conhecimento das espécies deste gênero.
Donoso-Barros (1969:189) quis também contribuir com alguns
dados, arranjando uma chave geral das espécies então admitidas (cerca
de vinte), ao mesmo tempo que tirava do esquecimento Herpetodryas
holochlorus Cope, 1876, Coluber spixii Hallowell, 1845 e descrevia uma
espécie nova C. barrioi. A chave apresentada pelo autor parece deixar
dúvidas pois além de superficial, não analisa a identidade das espécies
e por isso não a tomamos como fundamental. Quase simultaneamente,
Peters & Orejas-Miranda 1970:58) na chave para Chironius, consideraram
16 designações para a região Neotropical, em parte baseado no trabalho
de Bailey (1955).
Pelo exposto, constatamos que na área Amazônica, as espécies de
Chironius estavam e em parte ainda permanecem pouco conhecidas e
estudadas, por ora na partp ocidental dessa região, devido principalmente
à pobreza de exemplares em coleções. A Seção de Herpetologia do Museu
Paraense nestes últimos 15 anos vem tentando sanar o problema de
coleções herpetológicas deficientes, através de capturas maciças de ofídios,
em particular nas áreas do Pará, Amapá e Maranhão. Assim foi possível
contar com abundante material para podermos elaborar o presente
trabalho sobre as espécies de Chironius de uma parte da Amazônia,
contribuindo deste modo para o conhecimento mais seguro do gênero e
servir para uma futura revisão do mesmo.
MATERIAL E MÉTODOS
Foram estudados 379 exemplares, entre jovens e adultos assim
distribuídos por espécie:
Chironius carinatus (fig. 1)
38 exemplares — 25 <j, 11 $.
Chironius exoletus (fig. 2)
157 exemplares — 69 <5 , 88 9 .
Chironius flavolineatus (fig. 3)
2 exemplares — 1 $, 1 9.
Chironius fuscus (fig. 4)
77 exemplares — 40 $, 37 9.
Chironius multiventris (figs. 5 e 6)
76 exemplares — 48 é , 28 9 .
140
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inat. Butantan.
46 : 139 - 172 , 1982 .
I — • Chironiua carinatua ±
ír. 2 — Chironiua exoletut £
SciELO
cm
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butantan,
46:139-172, 1982.
Fig. 3 — Chironiua jlavohneatua £
Fig. 4 — Chinoriua fuacua (j
142
SciELO
cm
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butantan,
40 : 139 - 172 , 1982 .
Fig. 5 — Chironius mídtiventria £
I ijç. 6 Chironius multivcntris £
143
cm
CUNHA O R & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiut da
Amazônia Oriental (Pará, Amapá e Maranháo). (Ophidia: Colubridae). Mem. Innt. Butantan,
46:139-172, 1982.
Chironius scurrulus (fig. 7)
29 exemplares — 19 S , 10 2 .
Todos os exemplares acham-se conservados na Seção de Herpetologia
do Museu Paraense Emilio Goeldi. A análise dos caracteres está
assinalada nas respectivas tabelas aqui incluidas. A totalidade dos
espécimes estudados procede do Estado do Pará, Maranhão e Território
do Amapá. Para comparação e complementação das análises foram
incluídos alguns indivíduos coletados no Estado do Amazonas, norte de
Mato Grosso (Rio Aripuanã, Cachoeira Dardanelos) e Território
de Roraima.
Figr. 7 — Chironius scurrulus £
O presente trabalho não pretende constituir uma revisão, mesmo
parcial, do gênero Chironius, mas apenas definir as espécies que ocorrem
em uma ampla área da Amazônia, onde as mesmas permaneciam
inperfeitamente caracterizadas. Foram considerados os seguintes principais
caracteres específicos, conforme o padrão estabelecido por Bailey (1955) :
variação das escamas dorsais; pré e postoculares; temporais; supra e
infralabiais (incluindo os que tocam na órbita e os que contactam com
os mentais anteriores); fossetas apicais das escamas; ventrais; anal
inteira ou dividida; caudais; dentes maxilares; colorido padrão e suas
variantes; e dimorfismo sexual.
144
SciELO
cm
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butantan,
46 : 139 - 172 , 1982 .
Apesar destas análises, continuam ainda certas dúvidas de ordem
taxonômica, tais como a validade de várias designações específicas e a
possível ocorrência de subespeciação para algumas formas mal conhecidas,
que ocorrem em extensas áreas. Somente uma revisão geral do gênero,
fundamentada em abundante material, abrangendo várias críticas da
América do Sul, poderá determinar a real situação das espécies ou raças
que compõem o gênero Chironius.
Conforme os dados por nós obtidos e confrontados com os encontrados
na literatura mais recente foi possível confirmar a ocorrência de 6 espécies
Para a região oriental da Amazônia. Destas, ratificamos a forma
C. exoletus (Linnaeus), recentemente revalidada por Hoge, Romano &
Cordeiro (1976/77:41), encontrada no Maranhão, mas que agora
sabemos ser uma espécie comum na Amazônia; C. cinnamomeus
considerada por Hoge (1964:53) e Cunha & Nascimento (1978:62),
agora passa com toda certeza a ser sinônima de C. fuscus (Linnaeus),
largamente caracterizada pelos mais recentes autores como Roze
(1966:97); Donoso-Barros (1969:189); Peters & Orejas-Miranda
(1970:58) e Dixon & Soini (1977:39); C. cochranae Hoge & Romano
deve ser admitida como sinônima de C. jnultiventris Schmidt & Walker,
pois nós, estudando 76 exemplares, de várias procedências, não nos foi
possível diferençar os caracteres apresentados para uma e outra, nem
de ordem geográfica; confirma-se aqui a existência da espécie C. sctirrulus
(Wagler), forma também examinada por Hoge & Nina (1964:72) e já
atestada por Dixon & Soini (1977:41), Cunha & Nascimento (1978:64)
e Gasc & Rodrigues (1980:572) ; pela primeira vez identifica-se para a
Amazônia a ocorrência de C. flavolineatus (Boettger), por sinal uma
espécie pouco conhecida, pois foi bem recente revalidada por Bailey
(1955:13), esquecida desde a descrição original; por fim define-se a
ocorrência de C. carinatus (Linnaeus) por muito tempo identificada como
C. exoletus, C. bicarinatus, C. flavolineatus e C. multiventris. Esta última
foi assinalada por Gomes (1918b :66) em 4 indivíduos, porém incluída
como carinatus.
Família Colubridae
Gênero Chironius Fitzinger
Chironius Fitzinger, 1826:31. Espécie tipo: Coluber
carinatus Linnaeus, 1758.
Diagnose : Cabeça alongada distinta do pescoço; rostral mais alto que
lurgo; focinho obtuso; olhos grandes com pupila redonda. Dois internasais,
dois prefrontais, um frontal e dois parietais, um nasal, um loreal, um
Preocular (raramente dois) e dois postoculares (algumas vezes três),
temporais variando de 1 -f- 1 ou 1 -f- 2 (raramente 1 -(- 3 ou 1 -f 4). Dentes
maxilares 26 a 46, menores adiante e gradualmente aumentados
posteriormente, sem diastema ou par de dentes g‘randes acanalados.
Supralabiais 8 a 11 (normalmente 9) ; infralabiais 9 a 11 (raramente
8 a 12, normalmente 10).
Corpo alongado, comprimido ou não; cauda longa, afilada. Escamas
dorsais grandes, carenadas ou lisas, com fossetas apicais, arranjadas
obliquamente em grande parte do corpo, em 10 ou 12 filas no meio do
c °rpo, com redução. Ventrais arredondadas ou obtusamente anguladas
nos lados, de 139 a 193; anal inteira ou dividida; caudais em 110 a 206,
divididas.
145
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironius da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inat. Butantan,
46 : 139 - 172 , 1982 .
Colorido variável, desde o esverdeado, azeitonado ou pardo
avermelhado na parte superior e lateral da cabeça e no corpo, ora mais
ora menos escurecido, com uma faixa clara vertebral, às vezes acentuada
(cor amarela), ora gradualmente indistinta na maior parte das espécies;
presença ou não de barras laterais transversais claras.
A diagnose acima está fundamentada quase que exclusivamente nos
caracteres apresentados nas espécies que ocorrem na região oriental da
Amazônia estudadas neste trabalho.
Chave para as espécies da Amazônia oriental
1 — 10 filas de escamas no meio do corpo . 2
12 filas de escamas no meio do corpo . 4
2 — Placa anal inteira . 3
3 — Dentes maxilares 34 a 37, temporais normalmente i + i;
escamas ventrais 150-159, caudais 110-126. scurrulus
Dentes maxilares 42 a 46, temporais normalmente 1 + 1;
escamas ventrais 140-154, caudais, 115-130 . fuscus
4 — Placa anal dividida . 5
5 — Menos de 180 escamas ventrais e menos de 180 caudais . 6
Acima de 180 ventrais e mais de 180 caudais. 9
6 — Dentes maxilares menos de 30 . 7
Dentes maxilares acima de 30 . 8
7 — Temporais 1 + 2; ventrais 139-160 e caudais 120-148, dentes
maxilares 26 a 30 . exoletus
8 — Supralabiais 8; dentes maxilares 30 a 35; ventrais 150-162,
caudais 116-133 . carinatus
Supralabiais 9; dentes maxilares 33 a 41; ventrais 151-154,
caudais 140 . flavolineatus
9 — Dentes maxilares 34 a 38; 1 pré e 3 postoculares em geral;
ventrais 183-193, caudais 189-201 . multiventris
Chironius scurrulus (Wagler)
Natrix scurrula Wagler, 1824,24. pl. 8. Localidade típica:
Rio Japurá, Estado do Amazonas.
Herpetodryas fuscus; Boulenger, 1894. [partim], 2:75 [tipo E] ;
Gomes 1918a :509; Gomes, 1918b [partim] 64.
Chironius scurrulus Hoge & Nina, 1964:72; Dixon & Soini, 1977:41;
Cunha & Nascimento, 1978 :64.
Diagnose — Nasal dividido; loreal mais longo que largo; órbita com
diâmetro maior que sua distância da narina; 1 pré e 2 postoculares
(raramente 3) ; temporais 1 + 1 (raramente 1 + 2) ; supralabiais 9-9
usualmente (muito raro 10-10), 4.°, 5.° e 6.° normalmente tocando a
órbita, às vezes 5.° e 6.° ou 5.°, 6.° e 7.°) ; infralabiais 11-11 ou 10-10
usualmente, às vezes 10-11 e raramente 9-10 (com tendência para 6 em
contato com o mental anterior ou também 5, às vezes 5-6) ; mentais
anteriores mais curtos que os posteriores. Egcamas dorsais normalmente
em 10-10-10 séries longitudinais (raramente 10-10-8, 10-10-9 e 11-10-10),
146
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butantan,
Jf6 : 139 - 172 , 1982 .
todas lisas, sem filas de carenas vertebrais; escamas laterais obliquais,
com fossetas apicilares presentes (normalmente uma, muito raro duas)
na região nucal e pescoço ou um pouco mais, ausentes na região anal.
Anal inteira. Dentes maxilares 34-37. Ventrais, machos, 150 a 158; fêmeas
150 a 159; caudais divididas, machos 111 a 126 e fêmeas 110 a 115.
Comprimento encontrado nos espécimes n.° 13.554 — Paruá (Maranhão),
1-205 mm de corpo e 613 mm de cauda (total 1.818 mm) ; n.° 425, rio
Tracajatuba (reserva do DNERu-Amapá), 1.445 mm de corpo e 291 mm
de cauda com mais da metade partida (total 1.736 mm).
Colorido em preservativo: Dorso pardo claro, às vezes escuro, com
escamas ora mais ora menos pigmentadas de pardo ou negro, irregular-
mente dispostas; cabeça mais escura que o corpo; ventre amarelado
com ou sem manchas escuras na parte lateral. A parte anterior do corpo
(pescoço) de aspecto mais escurecido.
Comentários — Boulenger (1894:75) sinonimizara Natrix scurrula
Wagler na espécie Herpetodryas fuscus (Linnaeus) (= Chironius fuscus),
embora tivesse feito ressalva em separado, para dois indivíduos do Peru,
quanto ao aspecto do colorido (tipo E). Assim, aquele autor considerara
os caracteres de C. fuscus demasiadamente amplos, sem levar em conta,
pelo menos, mais dois importantes aspectos que separam ambas formas:
a dentição do maxilar, elevada em fuscus e a ausência de carenas verte¬
brais em scurrulus.
Desta época em diante a espécie scurrulus deixará de aparecer na
referência dos especialistas até que Hoge & Nina (1964:72) resolveram
revalidar a espécie descrita por Wagler em 1824. Antes porém Gomes
(1918b:64) referiu dois exemplares do Pará (n.° 24 e 25) que parecem
identificar-se a C. scurrulus, pelos caracteres de coloração e ventrais mais
altas que o normal encontrado em C. fuscus. Ainda o mesmo Gomes
(1918a :509), ao estudar os ofídios do Museu Rocha, de Fortaleza, citou
um exemplar do Amazonas com as características de scurrula de Wagler,
indicado pelo próprio autor.
Hoge & Nina (1964:72) apresentaram uma satisfatória redescrição
de Chironius scurrulus, que vem servindo de padrão para a identificação
da espécie. A mesma apresenta atualmente, conforme trabalhos recentes,
uma ampla distribuição no Brasil (Amazonas, Pará, Amapá, Rondônia,
Minas Gerais, Maranhão e talvez outros Estados) ; Guiana Francesa
segundo Gasc & Rodrigues (1980:572); Peru de acordo com Dixon &
Soini (1977:41), para a região de Iquitos, cujos dados ajustam-se aos
exemplares estudados no presente trabalho e Colômbia segundo citação
de Peters & Orejas-Miranda (1970:61).
Foram examinados 29 exemplares, dos quais 19 machos e 10 fêmeas.
O diformismo sexual é pouco perceptível nas escamas ventrais, porém
diferindo nas caudais; aquelas quase idênticas nos dois sexos, enquanto
nestas as fêmeas as possuem acentuadamente em menor número.
A espécie é pouco freqüente, em relação às outras espécies de
Chironius. Tem sido encontrada em mata primária, capoeiras, roçados,
várzeas e possivelmente cerrados. Alimenta-se preferentemente de Anfíbios
(rãs, Hyla, Leptodactylus e talvez Eleutherodactylus) conforme atesta
a análise do conteúdo estomacal.
Material examinado: verificar tabela anexa.
147
SciELO
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da
Amazônia Oriental (Pará, Amapá e Maranhão).
■ 40 : 139 - 172 , 1982 .
Amazônia.
(Ophidia:
XV. As espécies de Chironiua da
Colubridae). Mem. Inst. Butantan,
1
u
|
1
Õ
z
Nascimento
«í
„ E
11
üZ
| Nascimento
1 Nascimento
!
ã
0
1 «.s
ISi
uz
•a 1
1,
-i
1
üS
s 1
«a £
1 s
uz
•a
«
lis
ü uz
*
f j
UM
«0
UB
9.
c
Cunha &
Nascimento
3
£ «a
E „
i 1
a uí
*0
«
§s
u*
"0 j
íl
UB
"0
2
c
3
UB
•0
í
uc
«0
i-
u
•a
3 j
uz
00
«.
UZ
91 '
«
UZ
|
E
<
Milton
Gonçalves
e
<
1
H
+
+
+
r +
+
+ +
+
+
+
+ +
+
+
+
+
+ +
f
+
H
+
+
+
+
+
+
+
I
+
+
+
+
+ +
+ +
+
+
+
+ +
+
+
+
+
+ +
+
+
+
+
+
+
+
+
+
+
Q
|e
3 E
U E
o “
1
1
1
s
1
1 2
1
s
2
1 2
2
1
1 1
1
5
1
1
S
i
s
1
1
li
6 i
5
s
1
1
£ 1
|
2
1
§ 8
S
1
1
-
i
§
1
i
I
1
I
1
1
ft
U E
0“
»
s
s
s
s
t
3 B
8
s s
s
Ú
"
°
S
5
s
ú
II
1
2
1
rt
«
a
o
= .«
~ «
1
2
B B
B
I
1
B
B
2
2
1
X
o.
S
S
I
i
2
o
1
1
§
2
â
5
1
1
I
1
6
®>
oi
3
11
S
5
1 1
ç
â
o>
2
OJ
o>
Ol
:
|
s
6
9
|
|
o.
Ol
Ol
|
5
o,
ç
1
1
1
00 c-
« °
3
uo '2
3 2
2 5'
1
1 1
1
5
|
1
|
s
1
1
2
I
1
1
1
2
1
1
i
s
<
-
-
- _
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
>
3
2
s
3
8
a
s
3
s
3
3
3
3 ;
3
3
3
8
8
8
3
2
3
3
2
c
2
2
á
2 5
2 2
2
2
Ó
á
> ©
| o
2
2
d>
2
B s
ó
é>
2
2
©
1
ti c
2 2
ó
e!>
ó
2
2
2
2
2
á
2
ò
2
á
2
2
Ó
Ó
1
-
°*
*° •»
o.
o.
'
»»
,
-
'
-
0*
-
-
-
°*
O.
*
«
-
a
D
s
s
§
£ 2
o
3
S
1
6
2
8 2
o
s
s
s
S 2
i
§
o
1
Ê
8
J
s
e
1
PROCEDÊNCIA
1!
Êí
S 2
«es
3.2
El
o «
8.2
asas
•3
>
I !
Z 0.
■ol
2
£
1
Í
3
S
m ■*
3
3
á
3
a
&
3
1
5 5
e§ á
>
z
cS
E
<2
«
«
E
«
H
|
•<
3
s
t/í
2
■s 1
E -5
us n
3
.a
H
5t
>
1
3
«
3
1
1
«
1
tn
•3
■ii
C
H
1
u
<
a.
•õ
E
«
7
s|
3
-!
?.8
U (Ã
.a
>
2
S «
lf
||
Z
3
3
3 8
3
2
Ol >'
8
8
8 8
1
-
1 8
-
o
oi
8
i
Ol
2
s
|
148
SciELO
12
13
15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inat. Butantan,
46 : 139 - 172 , 1982 .
Chironius fuscus (Linnaeus)
Coluber fuscus Linnaeus, 1758:222. Localidade tipo: Ásia (in error)
Herpetodryas fuscus ; Boulenger, 1894 [partim] :75; Gomes, 1918b
[partim] :64.
Chironius fuscus ; Amaral, 1930:161; Bailey, 1955:19; Roze, 1966:97;
Peters & Orejas-Miranda, 1970:60; Dixon & Soini, 1977:39.
Chironius cinnamomeus ; Cunha & Nascimento, 1978:62.
Diagnose — Nasal dividido; loreal mais longa que larga; órbita com
diâmetro maior que sua distância da narina; 1 pré e 2 postoculares,
raramente 3; temporais 1+1; supralabiais 9-9, raramente 9-10 (4.°, 5.°
e 6.°, sempre tocando a órbita) ; infralabiais 10-10 usualmente, às vezes
10-11, 11-11, 9-9 e 9-10 (5 normalmente em contato com o mental anterior,
às vezes 5-6 ou 6) ; mentais posteriores maiores que os anteriores. Escamas
dorsais normalmente em 10-10-10 séries longitudinais (às vezes 10-10-9),
com duas filas de escamas carenadas que se estendem até a cloaca ou
pouco adiante (muito mais acentuadas nos machos) ; escamas laterais
oblíquas; fossetas apicilares (normalmente 1 em cada escama raramente
2 ou mais raro ainda 3) presentes na nuca, parte do pescoço e raramente
na altura da região anal. Anal inteira. Dentes maxilares 42-46. Ventrais,
machos 144-154 e fêmeas 142-152; caudais, machos 115-126 e as fêmeas
117-130.
Colorido em preservativo: Dorso e lados pardo, pardo escuro ou
pardo azulado; cabeça na parte superior e lados pardo claro até a nuca;
uma faixa retro-ocular estende-se até o limite do ângulo da boca; supra¬
labiais esbranquiçadas (possivelmente amarelos em vida) e bem assim os
infralabiais, mentais e guiares; região ventral esbranquiçado a amarelo;
° tom escuro látero-dorsal estende-se às bordas laterais das ventrais.
Cauda idêntica no aspecto do corpo, superior e inferiormente. Em quase
todos os exemplares nota-se perfeitamente uma tênue faixa clara verte¬
bral, desde a nuca até quase a região anal, usualmente marginada de
um e outro lado por uma tonalidade mais escura.
Comprimento máximo no exemplar n.° 11.156 do lugar Nova Vida
BR-316 (25 quilômetros do rio Gurupi), Maranhão, 1.023 mm do corpo
e 494 mm da cauda, total 1.517 mm.
Comentários : Esta espécie foi identificada como C. cinnamomeus
(Wagler, 1824), por Cunha & Nascimento (1978:62), através de dados
apresentados por Hoge (1964:53). Porém, estamos certos de que os espéci¬
mes coletados no Pará e Maranhão, não podem ser a mesma que Hoge
identificara sobre um indivíduo de Suriname como a espécie descrita por
Wagler (N atriz cinnamomea) . O exemplar identificado por Hoge (id.)
poderia ser de fato C. fuscus, visto os caracteres apresentados coincidi¬
rem com os que normalmente vêm sendo atribuídos à esta espécie.
Wagler ao descrever Natrix cinnamomea não referiu as escamas
dorsais em 10 ou 12 no meio do corpo (por certo, caráter não levado em
consideráção à época) e nem na região anal, mas acentuou, porém, que
0 seu exemplar possuía anal inteira, dentes curtos e de mesmo tamanho.
Seria o referido indivíduo um representante do gênero Pseutes? Boulen-
149
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironius da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butantan.
•40:139-172, 1982.
IO
SciELO
12
13
150
CAUDAIS
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Man. Inst. Butantan,
hd :139-172, 1982.
ger (1894:72) já havia colocado N. cinnamomea como sinônimo de Herpe-
todryas sexcarinatus (Wagler, 1824) e hoje sabemos que esta espécie é
de fato um representante de Pseutes.
Gomes (1918b :64) ao estudar 5 exemplares das coleções do Museu
Paraense, todos do Pará, identificou-os como Herpetodryas fuscus (Lin¬
naeus) (= Chironius fuscus). Os caracteres apresentados em 3 deles
(n.°s 17, 26 e 27) ajustam-se aos espécimes atualmente conservados na
Seção de Herpetologia deste Museu e estudados por nós. Gomes cita
exemplares de Cametá (Rio Tocantins), Rio Curuá e Rio Iriri, todos
com os caracteres seguintes: dorsais em 10, anal dividida, 9 supralabiais
(4.°, 5.° e 6.° tocando o olho) e as ventrais 148 a 155 e caudais 116 a
126.
Bailey (1955:19) indicou os caracteres para C. fuscus idênticos aos
apresentados por Gomes, acima citados, acrescentando mais os dentes
maxilares em 41 a 45 e a análise do hemipênis. Aquele autor salientou
como caráter distinto a presença de dorsais em 10 no meio do corpo, a
anal inteira e os dentes maxilares, os mais elevados entre as espécies de
Chironius, e bem como os temporais em 1+1.
Dixon & Soini (1977:39) apresentam importantes dados para a
melhor caracterização de C. fuscus, sobre 54 exemplares do Peru (região
de Iquitos). A espécie ocorre em grande parte da América do Sul desde
a Venezuela, Guianas, Colômbia, Peru e quase todo o Brasil.
É relativamente frequente no leste do Pará, porém rara no Mara¬
nhão; ocorre ainda em outros locais do Pará, de acordo com tabelas
anexas e em Gomes (1918b :65) e no Amapá. Gasc & Rodrigues (1980:
572) referiram a ocorrência da espécie na Guiana Francesa, tendo por
base 5 exemplares.
Vive em floresta primária, firme e de igapó, capoeiras e roçados.
Alimenta-se especialmente de Anfíbios (rãs, possivelmente Hyla e Eleu-
therodactylus, conforme atesta a análise do conteúdo estomacal e confir¬
mados também por Dixon & Soini (1977:39).
Material examinado: verificar tabela na pág. 152.
Chironius exoletus (Linnaeus)
[ Coluber ] exoletus Linnaeus, 1758:223. Localidade típica.
Indiis (in error).
“Coluber exoletus”?, Herpetodryas carinatus; Lõnnberg, 1896:37
Chironius exoletus; Hoge, Romano & Cordeiro, 1976/77:41
Chironius carinatus; Cunha & Nascimento [partim] 1978:60
Diagnose — Nasal dividido, às vezes imperceptível; loreal mais longo
que alto; órbita com diâmetro maior que sua distância da narina (borda
posterior, às vezes borda anterior) ; 1 pré e 2 postoculares, às vezes 3
postoculares, raramente 2 pré e 2 postoculares; temporais, 1+2, rara-
151
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironius da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butanian,
45:139-172, 1982.
I
1
s
«a £
- B
1 3
uZ
•a S
.sJ
II
3
« £
- E
13
uz
■a £
-!
1 ã
UZ
3
1 e
i'i
UZ
«a £
* E
1 8
uz
«1
-|
1 3
uz
«8 £
j!
•8 £
-1
li
Cunha &
Nascimento
<8 £
üI
§ 3
uz
«8 £
js!
c 2
UZ
* £
js!
§s
uZ
•a £
,-!
§ 3
uz
1
f-
<
+
+
+
+
+
+
+
+
+
+
+
+
+
+
•3
<5
+
+
+
+
+
+
+
+
+
+
+
+
+
+
•I
0
<3
li
“f
U *
1
1
§
1
5
1
1
1
i
1
1
1
2
1
ll
u «J
ss
s
a
1
s
s
8
o
i
s
2
!2
3
s
ll
Ü E
u *
s
°
°
°
°
a
2
o
s
s
á
Ú
8
á
13
a
2
2
1
1
2
2
I
2
1
2
1
g
2
§•!
5
2
5
5
5
2
2
s
5
5
2
|
5
i
3
M
i
1
B
B
1
B
i
i
1
1
1
1
1
i
1
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>
5
8
t-
2
s
2
S
2
2
2
2
a
2
1
£
2
2
ò
2
o
ó
2
2
2
2
2
2
ó
o
á
2
o
d
2
d>
2
ó
ò
©
2
o
2
d>
o
2
2
M
»
O.
-
•«
o*
»
»
-
-
«
-
»
3
Q
£
£
t-
8
i
£
8
i
1
§
£
£
£
<
u
z
o
u
u
o
u
3
m
3
>
«
1
E
m
3
8
|
m
1
|
£
s
£
•&
>
1
«
1
i
>
1
3
.2
m
3
«
1
o"
«
3
ra
tn
3
.2
>
m
3
m
1
•j
3
z
o
8
3
£
!
1
!
i
1
£
5
8
3
154
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO. F. P. Ofídios <1 p Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butantan,
:139-172, 1982.
mente 1 + 1 ou 2+2; supralabiais 9—9, às vezes 8—9, 9—10, 8—8, 10—10
(4.°, 5.° e 6.° normalmente, 5.° e 6.°, 6.° e 7.° ou 5.°, 6.° e 7.° às vezes,
tocando a órbita) ; infralabiais 10—10 normalmente, às vezes 11—11, 9—9,
9—10, 10—11, 10—12, 11—12 (normalmente 5 em contato com o mental
anterior, às vezes 5—6 ou 6, ou ainda 4—5) ; mentais anteriores um pouco
mais curtos que os posteriores. Escamas dorsais grandes normalmente
em 12-12—10 séries longitudinais, (às vezes em 12—12—8, 14—12—10,
13—12—10 e 14—12—9), com duas linhas de carenas vertebrais (o res¬
tante lisas) muito débeis nas fêmeas, às vezes só em algumas porções
do dorso; as escamas laterais acentuadamente oblíquas; fossetas apici-
lares presentes na região nucal e pescoço, às vezes até quase a metade do
corpo, apenas em algumas escamas, espaçando e retornando a aparecer
no resto do corpo e quase toda a cauda, em geral com uma fosseta em
cada escama (às vezes duas). Anal dividida. Dentes maxilares 26—30.
Ventrais 139—160, machos 141—154, fêmeas 139—160; caudais divididas,
machos 121-148, fêmeas 120-143. Comprimento máximo do indivíduo
n.° 14.643 9 de Gancho do Ararí, Maranhão, corpo 810 mm, cauda 480 mm,
total 1.290 mm.
Colorido em vida: Parte superior da cabeça pardacento, tingido de
vermelho e amarelado nos parietais e região nucal; uma tênue faixa
clara vertebral, com uma orla enegrecida de cada lado, nos lados amarelo
abrangendo os supralabiais; focinho avermelhado, (rostral e nasais) ;
parte inferior amarelo vivo, abrangendo os guiares, mentais e até cerca
de 30 ventrais, estando o resto do ventre com um amarelo claro, até a
região anal; cauda amarelo vivo idêntico à parte inferior da cabeça.
Dorso pardo oliváceo, tendendo ao amarelado indiviso, próximo às ven¬
trais, na extensão do corpo e cauda. Pescoço de tom azeitonado mais
distinto que o resto do corpo. Olho com um círculo amarelo em torno
da pupila.
Colorido em preservativo: No aspecto geral o tom que se observa
é o cinéreo no dorso e lados do corpo e cauda, com as escamas apresen¬
tando uma bordadura azul escurecido, dando uma aparência reticulada;
uma tênue faixa clara vertebral orlada de pardo escuro. Parte anterior
da cabeça cinérea e a posterior e nuca esbranquiçados, assim como os
lados, labiais, e toda parte inferior do corpo e cauda.
Comentários — Esta espécie Lineana recentemente exumada por
Hoge, Romano & Cordeiro (1976/77:41) vinha sendo confundida com
Chinorius carinatus (Linnaeus) há cerca de um século e meio, desde os
tempos de Wagler (1830). A denominação dada por Linnaeus para a
presente espécie foi válida como demonstram os autores citados, e nós
com a análise efetuada em 154 exemplares de várias procdências do Pará,
Amapá, Maranhão e Mato Grosso (Aripuanã). Os caracteres são perfei¬
tamente distintos dos encontrados nas outras espécies de Chironius.
Apesar disso, Cunha e & Nascimento (1978:60) também incorreram
no erro, que guiando-se pelos autores anteriores consideraram a maioria
dos exemplares estudados como sendo C. carinatus, em flagrante desa¬
cordo, pois esta é quase rara no leste do Pará enquanto C. exoletus é a
espécie dominante e muito freqüente neste Estado e Maranhão, em relação
a todas as outras representantes do gênero. Tendo em vista o volumoso
155
cm
SciELO
10 11 12 13 14 15
CUNHA, O. K. & NASCIMENTO, F. P. Ofídios da Amazónia. XV. As espécies de Chironius da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butantan,
Jt6 : 139 - 172 , 1982 .
material analisado neste trabalho (apenas uma seleção da coleção exis¬
tente na Seção de Herpetologia) e o pequeno material estudado por Hoge,
Romano & Cordeiro (1976/77:41) podemos admitir que C. exoletus está
distribuída por toda a Amazônia hileiana e talvez Guianas.
Em Gasc & Rodrigues (1980:571) encontra-se espécie C. carinatus
para a Guiana Francesa, contudo há possibilidade de aí ocorrer C. exoletus,
se admitirmos os dados merísticos apontados. No mesmo caso encontram-
se as observações de Dixon & Soini (1977:39) ao identificarem C. cari¬
natus para a região de Iquítos, Peru. Os dados merísticos mostrados
pelos autores, fazem supor que no grupo de 28 exemplares analisados,
todos ou muitos deles seriam de fato C. exoletus, considerando-se em
particular as dorsais, ventrais, caudais, supralabiais e mais acentuada-
mente os dentes maxilares (26—31) idênticos na variação dos exemplares
estudados por Hoge, Romano & Cordeiro (1976/77:41) e nós.
Dos 154 exemplares analisados neste trabalho, 67 são machos e 87
fêmeas. O dimorfismo sexual é pouco acentuado, sendo contudo mais
perceptível em alguns caracteres como as duas nítidas carenas vertebrais
nos machos, enquanto muito débeis nas fêmeas; escamas ventrais um
pouco menores nos machos com as caudais pouco acima das fêmeas.
Para definir melhor a área de ocorrência de C. exoletus incluímos
na análise os exemplares disponíveis na Seção de Herpetologia, coletados
em diversos locais da Amazônia, além dos do Pará, Amapá e Maranhão,
como Aldeia dos índios Guajajara, cerrados do Maranhão e Cachoeira
Dardanelos no rio Aripuanã, Mato Grosso.
A espécie vive em todos os ambientes como floresta primária, capoei¬
ras e roçados, igapó, campos e cerrados. Possui hábitos semi-arborícolas
e terrestres. Alimenta-se especialmente de Anfíbios (rãs, Hyla, Lepto-
dactylus?, salamandra Bolitoglossa altamazonica (Cope, 1874) e sapos
e lagartos (Thecadactylus rapicaudus (Houttuyn, 1782), conforme análise
do conteúdo estomacal. Quantitativamente a preferência é para certas
espécies de rãs, do gênero Hyla, também observados por Dixon & Soini
(1977:39) para espécies do Peru identificados como C. carinatus (=C.
exoletus ?).
Material examinado — Verificar tabela anexa.
Chironius exoletus
Chironius carinatus (Linnaeus)
Coluber carinatus Linnaeus, 1758, 10:223. Localidade típica:
Indiis (in error)
Herpctodryas carinatus; Boulenger, 1894 [partim] :73; Gomes, 1918b,
[partim] :66.
Chironius carinatus; Ruthven, 1922:65; Amaral, 1930, 4:160;
Hoge, 1964:53; Cordeiro & Hoge, 1973:265; Cunha & Nasci¬
mento, 1978 [partim] :60, Est. VIII, fig. 1.
Diagnose — Nasal dividido; loreal mais longo que larga; órbita
com diâmetro maior que sua distância da narina; 1 pré e 2 postoculares,
156
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironius da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butantan
46 : 139 - 172 , 1982 .
J
4
13
UZ
3
•a £ «ü
-| -
is
UZ u
3
» «8*
.§ «J
5 1
Z UZ
£
■a
13
UZ
«1
11
3
UOÍ
3
4
-J
1|
u z
*0 0
• Ê
1|
UZ
a S 0
«.§ «
§31
UZ u
1 «1«
f il t
1 u! ■=
£ *1
! jjj
s §;
Z UZ
03 !
«.2
13
UZ
4
íi
4
«i
c !
u z
3
4
-E
la
UZ
4 s
• í
UZ
4
• J
Is
UZ
-i
■g
UZ
3
■« |
g.i
§ S 1
UZ u
3
£ 4
.§ -.1
S 1
Z UZ
«0
«í
C !
UZ
4 S
-.§
•§ S
3
UZ
4
4
+ 4
4
4
4
4
4
- 4
+ 4
4
4
4
4
4
4
4
4
+ 4
4
4
4
4
- +
+
4
4
4
4
- 4
- 4
4
4
+
4
4
+
4
4
- 4
4
4
1
1
â
|
s
1
1
1
§
i
|
9
1
s
8
I
1
1
s
|
S
3
I
2
2
1
2 1
i
S
1
8
2
1
2
S
2
6 s
Ü
1
2
ú
-
«
3 3
s a
5
8
2
8
8
8
2
s a
a
s
s
3
S 1
s
1
I
I
2 g
2 2
2
1
3
I
1
g
s
3 5
1
1
2
00
|
1
5
1
* 5
2 i
S
s
5
1
5
5
2
s 1
1
1
s
f
1
s
3
2
1
1
1 i
9 2
9 1
5
$
1
1
1
B
2
1
|
1 1
2
2
1
s s
2
2
2
C
2
s s
3 c
2
2
2
2
c
c
2 2
2
2
2
S
2 2
3
2
2
3
2
5 2
§ 2
3
9
2
a
s
2
3
g
2 2
2
3
9
4
Z 2
3
4
4
Z
Z 4
3 2
1
â
2
|
2
2
I
Z Ã
2
2
*° «
*
°*
«
»
0 . *o
-
-
*
0 *
-
*
-
*° *•
0 *
-
o
8 8
8
£
£
2
1
0 §
ei to
0 0
I
£
I
2
I
2
1 s
2
2
i
U
2 3
E O
uj -S
1 1
W H
■s* 4
2 8 2
*c
s _ e
í»S •§ U!
u
íU
ut
9
•s
E
*
■<
a.
•5
3
1
«
C
£
2
2
3
0
8
£
0
2
•3 -3
1 1
^ íí
"1 2 '.
E 0 B
Ul -§ Uín
■a <g
1 a
& &
2 I 2
a
tf
!'!
sg
a!U
j
1
8,
1
1
a
|
r.
CL.
j
a
|
CL.
i
a
CL.
|
t
£
1
•c
1
3
|
|
c
a
0.
1
?
£
1
1 1
s w
1 "
I fi
1
u
■ 8 -g
i 28
*■§
1
c
1
0 -
1
£
c
a
s
CL.
3
1
s
5 3
8
-
3
2 2
j s a
s
2
2
i
i
S
2
9
9 oõ
8
i
*
157
SciELO
14
15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mcm. Inst. Butantan,
46:139-172, 1982.
CUNHA. O. R. & NASCIMENTO, F. P. Ofídios da Amazónia. XV. As espécies de Chironius d»
Amazônia Oriental (Pará. Amapá e Maranhão). (Ophidia: Colubridae). Mew. Inst. fíutantav,
46: 139 - 172 , 1982 .
raramente 1+3; temporais 1+2, raramente 1 + 1 ou 1 + 3; supralabiais
usualmente 8, às vezes 9—9 ou 8-9 (4.° e 5.°, 5.” e 6.° tocando a órbita,
às vezes 4.°, 5.° e 6.° ou variando de um lado com o 4.° e 5.° ou este com
o 5.° e 6.°) ; infralabiais 10—10 11—11, às vezes 9—10, 10—11 e 9—9 (5
em contato as mais das vezes, com as mentais anteriores, às vezes 6 ou
5-6 de um lado e do outro) ; mentais anteriores mais curtas que as
posteriores. Escamas dorsais normalmente em 12-12-10 séries longitu¬
dinais, às 12-12-8, 12-12-9 e 14-12-10, com duas filas de escamas care-
nadas, fortemente nos machos, mais fracas nas fêmeas; escamas
laterais acentuadamente oblíquas; fossetas apicilares presentes na região
nucal e pescoço, com uma fosseta usualmente, raramente duas. Anal
dividida. Dentes maxilares 30—35. Ventrais 150—161 e caudais 116 a 133
nos machos e nas fêmeas 153 a 162 ventrais e 116 a 124 caudais. Com¬
primento maior do exemplar completo n.° 646, macho, da Ilha do Mos¬
queiro (Belém) — corpo 1.304 mm e cauda 620 mm, total 1.924 mm.
O colorido em preservativo é pardo oliváceo na cabeça e região
dorsal, ora mais escuro, ora mais claro; lados tendendo ao amarelado;
labiais, garganta, pescoço e toda região ventral amarelo. Escamas late¬
rais e caudais orladas de negro, de aspecto reticulado; as parvertebrais
grandes não oblíquas com as margens fortemente anegradas, estendendo-
se às bordas laterais das ventrais. Caudais acentuadamente bordejadas
de negro com o centro esbranquiçado, dando um aspecto bastante cons¬
pícuo.
Comentários — Esta espécie de belo aspecto e perfeitamente dife-
rençável das outras Chironius, apesar disso, tem sido confundida com C.
cxoletus e C. scurrulus desde Boulenger (1894:73) até Gomes (1918b:66)
e Cunha & Nascimento (1978:60), entre alguns.
No trabalho sobre os ofídios do leste do Pará (Cunha & Nasci¬
mento, Id.) identificamos 226 exemplares de Chironius carinatus, que
em verdade são agora C. exoletus, pois naquela ocasião não tínhamos
ainda conhecimento da revalidação desta espécie por Hoge, Romano &
Cordeiro (1976/77:40). A típica C. carinatus é rara no leste do Pará,
substituída por C. exoletus. No trabalho acima citado a foto da Estampa
8, figura 1, é de fato um Chironius carinatus, coletada então na ilha
de Mosqueiro (Belém).
Diferencia-se perfeitamente de C. exoletus por possuir dentição mais
elevada, caudais mais baixas, colorido característico e alcançar geral¬
mente maior tamanho. É também muito diferente de C. scurrulus, não
apenas pela dentição, mais elevada nesta espécie, como pela anal inteira
e colorido.
Possui distribuição geográfica ampla na América do Sul a oriente
dos Andes. Ocorre em quase todo o Brasil, vivendo em floresta primária,
capoeiras, cerrados, campos e caatingas. No presente trabalho foram
examinados exemplares das savanas de Roraima, campos de Marajó,
matas do Amapá, rio Javari (fronteira com o Peru) e capoeiras e
babaçuais do Maranhão. Alimenta-se exclusivamente de Anfíbios (rãs,
possivelmente do gênero Hyla, Leptodactylus ou talvez Eleutherodactylus).
162
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO. F. P. OHdios da A mazônia. XV. As espécies de Chironius da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. fíutantan ,
46:139-172, 1982.
Material examinado: tabela.
Tabela h — Chironius carinalus
Chironius flavolineatus (Boettger)
Herpetodryas flavolineatus Boettger, 1885:234. Localidade típica:
Paraguai.
Chironius flavolineatus-, Bailey, 1955, 571:13; Peters & Orejas-
Miranda, 1970, 297:60; Cordeiro & Hoge, 1973:266.
Diagnose — Nasal dividido; loreal mais longa que alta; órbita com
diâmetro maior que sua distância da narina; 1 pré e 2 postoculares, às
vezes 3; temporais 1+1; supralabiais 9—9 (4.°, 5.° e 6.° tocando a órbita) ;
infralabiais 10—10 (5 em contato com a mental anterior) ; mentais ante¬
riores mais curtos que os posteriores. Escamas dorsais em 12—12—10
séries longitudiais fortemente oblíquas, com duas linhas carenadas verte¬
brais pouco acentuadas, mais fracas nas fêmeas; fossetas apicilares
presentes na região nucal e pescoço. Anal dividida. Dentes maxilares
33—41. Ventrais 151—154, caudais 140 (em um exemplar macho com¬
pleto) . Comprimento total do exemplar citado, n,° 84, 842 mm (corpo
510 mm e cauda 332 mm).
Colorido em preservativo: Nos dois espécimes conservados nesta
Seção o colorido desvaneceu-se em grande parte, permanecendo apenas
de forma evidente a faixa vertebral amarelada brilhante, que se estende
da nuca até a metade do corpo; marginando esta faixa desde os lados
do pescoço até o meio do corpo e às ventrais uma tonalidade cinza
escura. Superfície ventral amarelada. Na cabeça, a parte superior pardo
escura e os supralabiais amarelos.
Comeyitários — Esta é a primeira vez que se refere a ocorrência
desta espécie na área de floresta Amazônica. Bailey (1955:15) analisou
exemplares da Bahia, S. Paulo, Goiás (Goiânia) e Mato Grosso; Peters
& Orejas-Miranda (1970:60) além das áreas já citadas, referem ainda
Paraguai e Bolívia Central; por fim Cordeiro & Hoge (1973:266), loca¬
lizaram a espécie em Pernambuco.
Os dois espécimes aqui estudados procedem do sul do Pará, sendo
o de n.° 84 da Serra Norte (região da Serra dos Carajás, município de
Marabá) e o de n.° 230 da Serra do Cachimbo, (base aérea da Aeronáu¬
tica — FAB), região oeste do Estado, limite com Mato Grosso. É inte¬
ressante observar que C. flavolineatus vive em áreas de vegetação aberta
(cerrado ou campo cerrado). No Pará ocorrem manchas de cerrado
típico, especialmente na região sul e mais acentuadamente no topo de
algumas chapadas, que não apresentam mais que 600 a 700 metros de
altitude, como as de Carajás e Cachimbo. Um dos autores (Cunha)
visitou em maio de 1969 a Serra Norte (Carajás) onde coletou o espécime
n.° 84 e exemplares de outras espécies de ofídios e lagartos. Algumas
observações foram depois publicadas em trabalho (Cunha, 1970) abor¬
dando o ambiente da região.
Os exemplares do sul do Pará ajustam-se bem aos caracteres apre¬
sentados por Bailey (1955:4-8 e 13), dentre os quais citamos: 1 temporal,
posterior usualmente; 9 supralabiais, dos quais o 4.°, 5.° e 6.° tocando
163
SciELO
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inat. Butantan,
: 139 - 172 , 1982 .
a órbita; dentes maxilares 33-41 (em Bailey encontra-se 32-38) ; uma
distinta faixa amarela brilhante vertebral até o meio do corpo, marginada
por duas filas de escamas carenadas. Alimenta-se de rãs ( Hylal) de
acordo com o exame do conteúdo estomacal.
Material examinado — Tabela 5
Chironius multiventris Schmidt & Walker
Chironius multiventris Schmidt & Walker, 1943:282. Localidade
típica: Departamento de Madre de Dios, Peru.
Chironius multiventris; Hoge, 1964:54; Dixon & Soini, 1977:40.
Chironius cochranae Hoge & Romano, 1969:93. Localidade típica:
Utinga, Belém, Pará; Cunha & Nascimento, 1978:63.
Diagnose — Nasal dividida; loreal mais longa que larga; órbita
com diâmetro maior que sua distância da narina; 1 pré e 3 postoculares
freqüentemente, porém quase freqüente 1+2, às vezes 1 + 2 de um lado e
1+3 de outro ou 1+3 de um lado e 1+4 de outro, mais raramente 1+4
de ambos os lados; temporais usualmente 1+2, raramente 1+1; supra-
labiais normalmente 9-9, às vezes 8-8; 9-10, 10-10 raramente (4.°, 5.°
e 6.° usualmente tocando a órbita, raramente 5.° e 6.° ou 5. p , 6.° e 7.°) ;
infralabiais freqüentemente 10-10, às vezes 9-9, 9-10, 10-11 e 11-11 (nor¬
malmente 5 em contato com o mental anterior, raramente 6 ou 5-6) ;
mentais anteriores mais curtas que as posteriores. Escamas dorsais
usualmente em 12-12-10 séries longitudinais (alguns exemplares em
12-12-8, 12-12-9, 13-12-10 e 14-12-10), com duas filas vertebrais care¬
nadas, fortemente nos machos e nas fêmeas débeis; as escamas laterais
acentuadamente oblíquas, excetuando as paraventrais; fossetas apicilares
presentes em todas as escamas do corpo, usualmente até às proximidades
da região anal, mais freqüentes na nuca e pescoço, em geral uma, mais
raramente duas fossetas em cada escama. Anal dividida. Dentes maxi¬
lares 34-38. Ventrais 184 a 193 nos machos e nas fêmeas 183 a 193;
caudais divididas, 189 a 203 nos machos e nas fêmeas 192 a 201 (excep¬
cionalmente encontramos uma fêmea com 206 caudais, que evidentemente
extrapola do comum). Comprimento do maior exemplar com cauda
completa, n.° 12.928 fêmea, do lugar Colônia Nova, BR-316 próximo ao
rio Gurupí, Pará, corpo 1.213 mm e cauda 762 mm, total 1.975 mm.
Colorido fundamental do corpo e cauda pardo oliváceo; cabeça mais
clara com a região látero-nucal mais acentuada insinuando esboço de um
colar; em muitos exemplares machos encontra-se a faixa clara vertebral
marginada de pardo escuro, que tem início no pescoço e se estende em
grande parte do corpo e parte anterior da cauda; na parte póstero-
lateral do corpo e cauda, barras claras transversas, espaçadas umas das
outras; o pardo escuro dos lados do corpo normalmente se estendendo
às laterais das ventrais e caudais, às vezes formando uma faixa mais
enegrecida na cauda. Ventrais fortemente anguladas, amarelo esbranqui¬
çado, mostrando uma linha escurecida, na região mediana, inclusive na
inserção das caudais. Jovens com barras transversais claras em zigue-
zague, mais acentuadas que os adultos.
Comentários — Esta espécie, descrita por Schmidt & Walker (1943:
282) em dois espécimes do Peru, ficou perfeitamente caracterizada, por
possuir ventrais e caudais muito elevadas, em relação às outras Chironius,
164
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies d e Chironius da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Jnst. Butantan,
• 46 : 139 - 172 , 1982 .
1
1
2
«a £
-J
1 8
uz
I
a
z
2
1
Z
.1
z
2
E
X
S
z
2
«a £
.2 4
II
2
« £
-!
1!
2
•3 £
„ E
II
o £
* E
13
üZ
2
< £
„ B
II
2
-a £
-E
l|
uz
2
« £
js!
2
« £
- J
I 3
uz
2
•a £
«J
íl
2
•3 £
«.g
13
uZ
j
õí
ii
£ c
e ;5j
z«a
f!
J ;s>
Z «3
|~
E
z-a
li
E &
p
Z »3
||
1:1
p
Z «3
s|
.1 §
Z-í
i|
|1
S 05
Z«3
|1
£ |
g (S
z»a
<
1
H
+
+
+
+ +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
1
+
+
+
+ +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Q
li
“ü
ü 4>
2
1
1
1
2
i
\
1
1
1
i
s
S
1
1
1
i
I
1
s
1
|
1
li
s l
ü *
1
s
8
I
§
i
3
1
1
!
2
1
§
S
1
a
3
S
S
I
jj
1
°
tf E
ü £
ü *
8
°
-
o
i
2
2
"
s
°
s
s
2
°
2
s
°
S
13
2
1
1
s
s
ô
o
5
o
©
1
I
3
3
1
3
1
s
1
2
1
1
2
2
1
a
"j
;;
s
£
S
00
00
1
s
£
£
S
*
*
5
£
i
*
5
£
*
1
3
m
2
1
1
§
1
1
1
1
1
1
s
s
1
1
1
2
1
3
1
1
|
1
•<
5
=
5
=
2
3
2
2
2
2
2
=
s
=
2
2
2
>
s
s
s
s
2
£
s
s
3
2
3
s
2
§
2
s
2
3
a
s
2
2
8
2
&
ei
2
2
ei
1
2
s
í
I
â
S
1
I
1
5
I
I
w
°*
o.
«
-
•»
-
-
O.
-
o*
-
-
«
*o
2
Q
e
1
1
1
1
g
p
p
P
P
p
*
2
*
i
8
8
i
i
8
1
<
U
z
«
Q
H
O
O
«
0.
K
c
3
E
á
.3
C/3
•c
2
<
c
õ
X
<
£
C
õ
X
s
-<
X
c
ü
X
■<
<3
X
s
«C
Ü
X
5
|
õ
X
2
■<
u
‘jj
•<
1
Õ
X
2
1
o
X
í
4
c
O
X
2
•§
õ
X
2
<
o
X
2
«:
o
X
■<
õ
E
X
*
X
2
X
2
■<
c3
X
2
<
õ
X
2
<
õ
X
<
a
X
2
•<
~a
c
CJ
X
2
c
ã
X
<
■a
O
X
•<
õ
Z
c-
2
5
1
8
I
3
I
!
s
2
i
2
!
2
2
2
2
2
2
2
165
SciELO
14
15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiu» da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inat. Butantan.
*6:139-172, 1982.
1
3
f|
11
ZSS
il
Is
l â
Z<í
|l
IS
s|
E 1
is
1*
Z*
||
1:1
Z-a
S
4 g
« E
1|
üZ
3
!
2
« g
- E
1 3
uz
2
c
Ê
1
z
2
|
I
2
.1
Z
i s
\\
2
E
a
z
i
3
i
§
i
?1
1
<
i
d
1
t*
+
+
+
+
+
+
+
+
+
+
+
+ +
+
+
d
B
H
+
+
1
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+
3
3
6
++
+
.3
•c
J
1
1
i jj
u *
1
1
1
1
§
1
i
1
R
1
s
=
1
1
ll
1
1
Is
S*
1
S
I
i
1
£
1
1
S
1
2
Is
2
8
Ü »
ü «
h
ü a
ü *
si
s
I
3
s
°
°
3
8
Ú
s
8
3
s
ll
ü s
ü *
2
si
13
2
s
2
1
1
f
*
cu
|
2
1
2
8
|
£
2
o
2
1
B
•<
3
s
i
J
2
t
£
>o 1
M
|3
1
2
ti
W J
I
s
5
1
I
8
s
i
i
1
1
§
2
ò>
2
1
3
3
•£
3
S
s
i
3
1
1
3
£
6
1
d3
«3
2
s
■d
1
3
CO
1
1
a
§
1
2
"3
1
2
o
g
2
1
1
.3
£
e
2
1
1
1
6
1
3
1
3
|
£
8
•d
|
CO
1
1
1
<
=
2
=
C
s
5
=
2
C
1
<
=
=
1
S
2
2
,
•g
2
s
S
2
1
S_
8
s
S
|
2
>o
>
>
.5
E
&
2
5
3
I
1
S
O
s
ú
S
3
2
2
52
I
i
a
á
o
52
1
-
-
-
«
-
°-
«
-
-
°*
-
1
-
°*
3
Q
i
i
8
i
i
§
2
2
8
8
8
8
i
s
8
2
Q
1
8
a
ü
SB
«
G
U
£
c
1
<
5
•c
C
<
o
|
■3
-c
O
c
2
<
|
ã
C
e
•<
õ
e
|
f
X
1
1
gc
•3
B
c3
li
13
li
£
a
i
1
a
|
s
1
5
1
!
1
5
a
i
1
1
|
á
2
1
£
P
MU
3
Ü
SB
«
1
8
s
cu
■3
Sz
ij
I
1
õ
i
co
0 .
2
S
1
§
s
S
I
8
3
5
1
2
3
8
o.
2
o
3
2
2
2
2
166
SciELO
12
13
15
CUNHA. O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará. Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inat. Butantan,
46:189-172, 1982.
e coloração conspícua, ainda que variável dentro de uma mesma população
ou de populações afastadas. Hoge (1964:54) identificou um exemplar
de Suriname como C. multiventris, de fato com os caracteres desta espécie
com pequenas variações de coloração.
Depois, Hoge & Romano (1969:93) resolveram descrever C. coch-
ranae como nova tendo por tipo um exemplar de Utinga, Belém, Pará e
por parátipos o citado espécime e mais outro de Suriname, além de
sete exemplares da Guiana. Os mesmos autores acentuaram que a nova
espécie se diferenciaria pela ausência de faixa clara vertebral, ausência
de margem escura nas ventrais e caudais, cor escura dorsal cobrindo
as bordas ventrais e caudais em todo o corpo e bem como indistintas
faixas transversais claras dos lados não orlando-as de negro.
Cunha & Nascimento (1978:63) seguindo em grande parte Hoge &
Romano (id.) identificaram 28 exemplares do leste do Pará como C.
cochranae pelo fato de alguns apresentarem estes caracteres. Porém
depois examinando mais exemplares com a descrição original de C. multi¬
ventris Schmidt & Walker e o trabalho de Dixon & Soini (1977 :40) sobre
os ofídios da região de Iquitos, Peru, foi possível chegarmos a conclusão
diferente pois C. cochranae é apenas um sinônimo de C. multiventris.
Estes últimos autores já haviam concluído por este novo status. Foram
examinados 75 indivíduos de várias procedências do Pará, Amapá e
Maranhão, nos quais procuramos avaliar os caracteres mais freqüentes
e medir as variações individuais dentro de uma população e entre popu¬
lações afastadas, comparando dados obtidos por Hoge & Romano (1969)
e Dixon & Soini (1977). Podemos pois concluir que não existem diferen¬
ças entre C. cochranae e C. multiventris.
A espécie é relativamente freqüente no Pará, porém pouco comum
no Maranhão. Quanto ao Amapá ainda persiste deficiência de coletas.
Tem sido encontrada na floresta primária, capoeiras e roçados. Conforme
a análise do conteúdo estomacal, alimenta-se especialmente de pequenos
anfíbios (rãs dos gêneros Hyla, Eleutherodactylus e Leptodactylus) e
às vezes de lagartos ( Anolis fuscoauratus d’ Orbigny, 1863), Polychrus
marmoratus (Linnaeus, 1758) e Tropidurus torquatus hispidus (Spix,
1825).
Material examinado:
Tabela 6
75 espécimes.
ABSTRACT: Snakes of the Amazon Basin. XV. The especies of
Chironius from the eastern Amazon Basin (Pará, Amapá and Ma¬
ranhão). (Ophidia: Colubridae). Throughout much of Brazil and
particularly in the Amazonian Region the species of Chironius are
little-known and imperfeetly studied. Some 379 specimens of this
genus were brought together for a reavaluation of the species vvhich
occur in the eastern Amazon Basin, including the States of Pará
and Maranhão and the Federal Territory of Amapá. The species
are redefined through comparative analysis and contrasted with
published descriptions. The following species are considered to be
valid: Chironius carínatus, C. exoletus, C. scurrulus, C. fuscus
(previously confused with Natrix cinnamomea Wagler), C. multi¬
ventris (previously misidentified as C. cochranae Hoge & Romano),
and C. flavoHneatus (which is reported for the first time for the
Amazon Basin, being fou.id from the “cerrado” scrub íorest of
eastern and central Brazil to the State of Mato Grosso and Para-
guay).
167
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inat. Butantan,
U6 :139-172, 1982.
I
i
.1
C-M
3
8
B
1
Z
-8 2
2
.1
S
z
o
■M £
-i
1 ã
oz
2
m £
* E
11
oz
3
■3 £
*.g
la
üZ
1
1
1
S
J!
áo
1
â
1
z
3
8
£
Cunha &
Nascimento
3
* g
-i
IS
oz
3
* £
-J
la
üZ
•a
* 3
is
un
3
« £
I|
uZ
3
* £
if
uZ
1 3
< £
a E
1 -
OZ
-.g
oz
3
:l
íí
oz
.1
«.g
1|
oz
3
«j g
II
8
<
E
£
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
1
1
+ +
+
+
+
+ +
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+ +
+
+
+
+ +
+
1
■f B
h
o *•
1
1
i
1
1
s
1
£
1
5
e
$
a
•3
E
|
O
i
1
1
i
1
1
i
1
1
1
1
1
1
1
a
'
I
1
|E
o E
U B
O ®
2
jj
i
2
2 '
s
a
§
?
|
s
fj
6
1
2
1
2
S
i
g
§
§
jg
3
S
f?
° E
O *
°
s
1
•2
1
3
E
5
S
2
o
5
t,
o
3
s
3
3
a
8
8
S
5
S
3
3
3
3
2
3
J3
2
1
1
2
1
s
2
3
2
2
2
2
2
s
s
2
s
5
2
2
2
2
2
a
ti
*
5
S
s
2
S
5
s
s
S
s
S
s
|
2
»
i
2
1
1
1
2
1
|
1
s
1
1
1
1
1
8
'
1
1
1
1
1
1
i.
1
1
2
1
8
1
■<
5
2
3
5
3
=
c
3
3
3
3
3
2
3
3
3
3
=
3
3
3
s
S
1
1
2
1
3
1
2
S
3
B
2
2
2
1
§
3
2
s
3
2
2
2
8
2
|
2
1
a
3
3
3
3
§
|
3
2
i
I
§
§
§
£
3
§
2
§
2
5
Ú
2
1
4
«Ò
2
s
»
»
»
-
-
-
o*
»
«
•°
»
-
-
°*
»
-
0*
-
»
3
õ
8
s
s
s
s
i
1
1
1
S
i
fJ
§
i
s
I
i
§
3
8
8
8
8
g
e
"
O
z
9
s
8
s
a.
|
z
•§
1
to
á
?
t
o
2
•3
£
f
z
I
•3
>
z
•3‘
>
§
z
■3
>
g
z
i
a.
1
2
1
O
w
0.
<
1
2
1
U
w
<
2
1
a
J3
c
II
ã'3
•3 8
sl
E 3
2
|
3
«
CO
3
£
c
•<
2
w
3
.s
>
1
M
4
.H
£
1
o
1
3
3
>
1
•3
e
ij
|
jjl
í*
3
>
m
i
8
í
£
3
s
co
1
2 '3
■3 3
2 *
d*
>
1
á
4
.H
£
z
o
s
s
§
3
§
3
s
"
gf
I
1
1
5
3
3
S
3
8
s
i
OI
8
i
8
i
168
SciELO
12
13
15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia.
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia:
40:139-172, 1982.
XV. As espécies de Chironiua da
Colubridae). Mem. Inat. Butantan,
0
O
0
0
2
3
S
2
2
0
O
0
0
2
2
2
2
2
«s
«a £
0 5
<1 £
« V,
« te
-« £
«a £
«3 £
«a £
«a £
O0 £
00 £
•0 £
•0 £
«a g
•a £
d E
«, E
jl
II
d b
d E
d b
d fc
-b
d.E
« E
d.E
d b
« b
d.E
<3
"1 1
uZ
c »
UZ
B 2
3 d
UZ
B S
3 d
u ca
15
uca
1 s
u m
1 $
u ca
ç g
UZ
C
UZ
§ S
uZ
fs
uZ
uz
3 d
UZ
Cunh
Nasc
z
uz
UZ
3 S
UZ
§ d
UZ
g 3
UZ
§s
uZ
§ s
UZ
C £
uz
UZ
%
<
cj
ej
IN
N
CM
CM
CM
CM
CM
CM
CM
CM
CM
CM
E
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
E-
«
-
-
-•
-
•*
"
*
**
*■*
jj
mrJ
e,
CO
rM —
— »,
m
M
■NI m
«
m -d
IN
CM d-
CO
CM
CO
CM
CM
CM
di
CO
CO CM
3
+
+ +
+
+ +
+ +
+ +
+
+
+
+ +
+
+
+ +
+
+ +
+
+
+
+
+
+
+
+
+ +
O
*
" -
•*
- -H
:|
&
3 E
.
.
■O
S
g
8
u B
t-
10
CM
CO
U «*
|e
r? E
S
S
n
O
«
1
0
0
0
s
0
I
S
1
g
1
316
1
i
2
2
I
2
1
E
ri
_
_
M
—1
M
•1
•-
-*
-•
—1
-o
U «
d
<0
0
<0
•d
O
(O
0
0
0
O
0
0
r-
O
<C
00
CO
0
0
eo
CO
di
-d
O
ü 8
«
w
n
«
n
M
w
8
w
8
8
8
8
N
8
8
2
8
8
2
8
8
8
2
u v
c-é
0
0
0
3
0
O
3
3
0
3
0
0
3
O
0
CO
0
0
0
-
a
2
2
2
Z
2
2
2
2
2
2
2
2
-
2
2
2
=
2
2
2
3
5
2
2
2
«i 3
0
.
.
.
.
.
<3
o>
*
*
o>
o>
o>
0.
0.
0.
00
o>
o>
O)
o>
o >
o>
o>
00
°*
-o
S
S
8
m
8
1
1
1
1
1
g
1
1
1
1
1
1
1
0
1
8
1
1
1
£
1
8
1
1
1
1
1
c/j
"
"
_
_
x
4
"*
*
H
*■*
**
"
"
"
"
~
*■*
"
•3
.
C
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
>
0
0
e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.
©
2
2
_2
C
<3
2
2
2
Ú
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
2
2
2
"" 2
2
2
2
2
2
2
2
"
8
•0
•0
0 .
o.
0 .
o.
0 ,
•0
0 .
0 .
O.
«o
C/J
5
«2
«2
«
-
g
-
?
?
?
?
g
g
g
g
g
g
g
g
g
g
Q
0
s
2
S
S
8
8
8
5
s
5
s
s
5
0
£
5
8
S
8
8
8
S
8
■a
u
2 :
•§
|
T3
Q
Q
u
0
8
tS
2
e
0
4
2
3
1
|
«
|
|
2
5
ca
i
d
d
d
|
u
K
ca
1
ca
w
-3 - 2
ca
2
B
OT
>
ca
>
ca
E
ca
B.
d
S
S
E
2
H
5
ã
1
1
*
ca
ca
1
E
ca
d
ca
2
ca
ca
s
1
|
*
1
li
«•§
*0
t.
t-
o>
Ui
«c
0
0
S
0
3
8
8
2
g
8
g
8
8
8
d-
z
169
SciELO
14
15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironiua da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inst. Butantan,
45:139-172, 1982.
I
3
«i
Jíl
II
•0 2
J3 g
II
2
<0 £
s-M
1|
üZ
•0 £
|1
4 £
li
õá
«0 £
ll
2
«|
ll
UZ
:!
11
2
ri
■g ^
uz
«0 S
-!
II
2
ri
11
J
ll
ll
«0 £
11
üZ
>0 £
15
UZ
2
■0 £
« E
11
.0 £
ll
oZ
2
•a £
*1
§ s
uz
:!
11
il
H
« £
- §
Is
UZ
>0 £
-!
1 3
UZ
■0 s
j4
§ 3
UZ
•a £
« Ê
11
UZ
1
z
|1
p
Z«0
1
<
1
H
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
1
3
6
++
+
+
+
+
+
+ +
+
+
++
+ +
+
+ +
+
+
+
+
+
+ +
+
+
+ +
+
+
+
i4
C
Q
1 B
2 8
g
O «•
1
1
1
1
1
1
1
1
i
i
1
i
1
1
1
s
1
1
1
1
S
1
2
*1
u *>
s
£
§
2
2
§
1
I
§
i
i
!
*
g
s
i
2
í
5
S
1
!
|
ll
ü B
u *
2
;
°
:
5
S
a
3
°
°
°
K
s
°
»
®
°
5
S3
°
o
ei
s
5
SS
s
2
1
1
s
1
g
2
s
2
1
1
1
1
1
1
2
B
1
1
ô
1
1
1
I
ã|
”3
S
5
-
5
Sj
s
-
*
2
s
-
s
*
í
-
*
5
s
5
1
1
1
1
1
2
§
1
1
2
1
1
l
1
1
1
2
1
1
1
1
i
1
2
1
8
1
<
2
=
=
=
s
=
3
3
3
3
c
3
C
s
=
c
c
=
C
3
|
>
2
3
2
2
2
2
2
2
2
2
S
2
2
2
1
8
3
2
2
2
2
8
2
2
2
.2
1
S
5
o
z
§
§
I
í
I
I
l
I
l
5
1
l
1
©
8
w
-
«
-
*
«
-
40
-
o*
»
40
40
04
04
-
04
O.
-
40
-
04
-
3
Q
£
£
£
£
£
£
2
£
s
£
*
£
2
£
£
£
Í2
£
£
£
£
1
£
á
u
Sc
9
|
8
£
s
3
?
£
1
I
3
L a
m
1
9
B
g
s
a
1
►4
|
«
m
1
2
a
|
u
3
>
«
m
>
z
>
s
■<
ft.
•3
e
us
X
1
s
«
2
s
«
3
«
«
3
3
UI
z
u
'§•
lo
o-‘3
,3 s-
MU
'I
1> O
c -'2
M U
3
8
|
CQ
1
E
I
1
3
z
5
3
3
.9
>
m m
S o
■<5
CU M
|
■83
E 3
H
il
Z
-
«
o,
cS
5
2
§
S
i
i
|
i
s
o
I
2
S
n
1
1
2
O
2
170
cm
SciELO
10 11 12 13 14 15
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironius da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mem. Inat. Butantan.
45:139-172, 1982.
AGRADECIMENTOS
Os autores agradecem ao Sr. Antonio A. Pinheiro, servidor do Museu
Emilio Goeldi pelas fotos apresentadas; ao Auxiliar do Setor de Herpe-
tologia, Reiginaldo R. de Moraes a confecção das tabelas e originais dati¬
lografados e bem assim ao Dr. William Overald, entomólogo do Museu,
pela redação do sumário em inglês. *
REFERÊNCIAS BIBLIOGRÁFICAS
AMARAL, A. Estudos sobre ophidios neotrópicos. XVIII — Lista remissiva dos
ophidios da região neotrópica. Mem. Inst. Butantan, ^: 129-171 (1929), 1930.
BAILEY, J.R. The snakes of the genus Chironius in southeastern South America.
Occ. pap. Mus. Zool. Univ. Michigan, 571: 1-21, 1955.
BOETTGER, O. Liste von Reptilien und Batrachiern aus Paraguay. Zeitschr.
Naturw., 55:213-248, 1885.
BOULENGER, G.A. Catalogue of the snakes in the British Museum (Natural
History). London. v. 2:382, 20 pis., 1894.
CORDEIRO, C.L. & HOGE, A.R. Contribuição ao conhecimento das serpentes do
Estado de Pernambuco. Mem. Inst. Butantan, 57:261-290, 1973.
CUNHA, O.R. Uma nova subespécie de quelônio, Kinosternon scorpioides cara-
jaensis da Serra dos Carajás, Pará (Testudinata: Kinosternidae). Boi. Mus.
Pa. Emilio Goeldi (Zool.), 74:8, 1970.
CUNHA, O.R. & NASCIMENTO, F.P. Ofídios da Amazônia. X — As cobras
da Região leste do Pará. Publ. Av. Mus. Pa. Emilio Goeldi,. Belém, 51:218,
mapa, 1978.
DIXON, J. & SOINI, P. The reptiles of the upper Amazon Basin, Iquitos region,
Peru. II. Crocodilians, Turtles and Snakes. Contr. Biol. Geol. Milwaukee.
Publ. Mus., 72:1-91, 1977.
DONOSO-BARROS, R. Contribución al conocimiento dei genero Chironius (Ser¬
pentes: Colubridae). Boi. Soc. Biol., 47:189-197, 1969.
FITZINGER, L. Neue Classification der Reptilien nach ihren natürlichen Ver-
wandschaften nebst einer Verwandschafts-Tafel und einem Verzeichnisse der
Reptilien-Sammlung des K.K. zoologischen Museums zu Wien. Wien, J. G.
Heubner, 1826. 66 p.
GASC, JEAN-PIERRE & RODRIGUES, M.T. Liste préliminaire des Serpents de
la Guyane française. B. Mus. Nat. Hist. Natur., Paris, 2(2) :559-598, 1 mapa,
1980.
GOMES, J.F. Contribuição para o conhecimento dos ophidios do Brasil. Ophidios
do Museu Rocha (Ceará). Rev. Mus. Paulista, 70:505-527, 1918a.
- Contribuição para o conhecimento dos ophidios do Brasil — III (1).
Mem. Inst. Butantan, 7(l):57-83. 1 est., 1918b.
HOGE, R. Serpentes da Fundação “Surinaam Museum”, Mem. Inst. Butantan,
30: 51-64, 1960/62.
HOGE, A.R. & NINA, C.M. Serpentes coletadas pelo Instituto Nacional de Pes¬
quisas da Amazônia. Mem. Inst. Butantan, 50:71-83, 1960/62, 11 est.
HOGE, A.R. & ROMANO, S.L. A new species of Chironius (Serpentes: Colubridae)
Mem. Inst. Butantan, 54:93-96, 1969.
HOGE, A.R.; ROMANO, S.L. & CORDEIRO, C.L. Contribuição ao conhecimento
das serpentes do Maranhão, Brasil (Serpentes: Boidae, Colubridae e Viperidae).
Mem. Inst. Butantan, 40/47:19-36, 1976/77.
171
SciELO
CUNHA, O. R. & NASCIMENTO, F. P. Ofídios da Amazônia. XV. As espécies de Chironius da
Amazônia Oriental (Pará, Amapá e Maranhão). (Ophidia: Colubridae). Mcm. Inat. Butantan,
45:139-172, 1982.
LINNAEUS, C. Systema Naturae per regna tria naturae, secundum classes, ordines,
genera, species, cum characteribus, differentiis, synonymis, locis. 10. ed. Holmiae,
Laurentti Salvii, 1758. v. 1: Regnum animale. 338 p.
LONNBERG, E. Linnean type-specimens of birds, reptiles, batraohians and fishes
in the Zoological Museum of the R. University in Upsala. Bih. till K. Svenska
Vet. — Akad. Handl., 22(4) :l-45, 1896.
PETERS, J.A. & OREJAS-MIRANDA, B. Catalogue of the Neotropical Squamata:
Part I. Snakes. Buli. U. S. Nat. Mus., 297: 1-347, 1970.
ROZE J. La taxonomia y zoogeografxa de los ofídios en Venezuela. Caracas, Ed.
Bibl. Centr. Univ. Centr. Venezuela, 1966. 362 p.
RUTHVEN, A.G. The Amphibians and Reptiles of the Sierra Nevada de Santa
Marta, Colombia. Mus. Zool. Univ. Michigan Misc. Public., S:5-69, 6 est., 1922.
SCHMIDT, K.P. & WALKER, W.F. Peruvian snakes from the University of
Arequipa. Publ. Field. Mus. Nat. Hist. Zool. ser., Chicago, 24(26) :279-296,
1943.
WAGLER, J. Serpentum brasiliensium species novae ou Histoire Naturelle des
espèces nouvelles de serpens, recueillies et observées pendant le voyage dans
Tintérieur du Brésil dans les années 1817, 1818, 1819 1820, exécuté par ordre
de Sa Majesté le Roi de Bavière, publieé par Jean de Spix.écrite d’après
les notes du voyageur par Jean Wagler. Monachii, Franc. Seraph. Hübsch-
mann. 1824. VIII + 75 p. 26 pis.
172
cm
SciELO
10 11 12 13 14 15
Mem. Inttt. Rutantan
16:173-182, 1982
fauna de serpentes da província pampeana e
INTER-RELAÇÕES com as PROVÍNCIAS LIMÍTROFES
Thales de LEMA *
RESUMO: A Província Zoogeográfica Pampeana situa-se desde
as terras baixas do Rio Grande do Sul, Brasil e do nordeste da
Argentina, até o Uruguai e as Províncias políticas argentinas de
Buenos Aires e leste de La Pampa. Há dois Centros de Dispersão
evidentes: o Bonariense e o Uruguaio. O Bonariense fornece
ofiofauna para a mesopotâmia dos rios Uruguai e Paraná, a
nordeste da Argentina. E o Uruguaio para o Rio Grande do Sul,
inclusive as encostas e margens do Planalto Meridional do Brasil.
Pelo Planalto chega fauna do Centro Paranense (Província Guarani)
e, pelo litoral florestado, do Centro da Serra do Mar (Provincia
Tupi). Em menor escala, chega fauna da Província Bororo, do
oeste, principalmente da bacia do Paraná superior. Essas ofio-
faunas se encontram ao norte do Rio Grande do Sul e da Argentina
configurando uma região transicional entre duas grandes sub-
regiões, a Guiano-brasileira e a Andino-patagônica. É formulada
uma hipótese sobre a história da dispersão da ofiofauna pam¬
peana, com base nos padrões de variação de diversas espécies e
zonas de intergradação de subespécies.
INTRODUÇÃO
Durante muitos anos estudando serpentes do Estado do Rio Grande
do Sul e regiões adjacentes do Uruguai e Argentina, principalmente, temos
Rotado uma certa gradação geográfica na variação das espécies que são
Próprias da Província Pampeana.
Analisando a variação em determinadas espécies como Elapomorphus
wneatus, Lystrophis dorbignyi, Lennadophis poecilogyrus, Philodryas
sestivtis, e outras, chegamos a algumas conclusões dignas de nota e que
ex Po,mos aqui, mas, com a ressalva de que, uma conclusão final só será
Possível quando as principais espécies da área forem analisadas.
A bibliografia específica para a área conta, principalmente, com os
S de Hensel (1868)«, Boulenger (1885a)*, (1885b) 9 , (1886) »«, Cope
K «85)13, Lema & Fabián-Beurmann (1977) 28 e Lema et alii (1980) 30 _
Para o Rio Grande do Sul. Para o Uruguai, destaca-se Devincenzi (1925) 14
mÇ W ^ Ciências Naturais cia Fundaçáo Zoobotânica do Rio Grande do Sul. Bolsista do CNPq
roc. 1111 _ «90/76). Caixa Postal 1188, 90.000 Porto Alegre, RS, Brasil.
178
SciELO
LEMA, T. Fauna de serpentes da província pampeana e inter-relações com as províncias limítrofes.
Mem. Inst. Butantan, 46:173-182, 1982.
e Vaz-Ferreira & Soriano (1960) 37 . Para a Argentina, Koslowsky
(1898) 22 e Abalos & Mischis (1975) 1 . Para o Paraguai, Bertoni (1939) 7 .
Para o Brasil em geral, atingindo o extremo-sul, destacam-se: Amaral
(1929) 4 , (1936) 6 (1977) 6 ; Peters & Orejas-Miranda (1970) 35 , Hoge
(1965) 20 e Hoge, Cordeiro e Romano (1975) 21 .
Para a apreciação zoogeográfica foram levados em conta os estudos
de Fittkau (1969) 1B , Lema (1971) 25 e Müller (1973) 34 .
O material que serviu de base para este trabalho está depositado nas
coleções do Museu de Ciências Naturais da Fundação Zoobotânica do
Rio Grande do Sul, Porto Alegre, Brasil; Instituto Butantan de São
Paulo, Brasil; Museo Nacional de História Natural de Montevideo,
Uruguay; Museo Argentino de Ciências Naturales de Buenos Aires,
Argentina; Museo de História Natural de Paraná, Entre Rios, Argentina.
ÁREA FÍSICA E POLÍTICA
A área geográfica da Província Pampeana do ponto de vista da
ofiofauna, compreende as terras baixas do Estado do Rio Grande do Sul
(a maior parte desse Estado) e que seguem para o Uruguai e Província
de Buenos Aires, Argentina — pelo leste. Pelo centro, extende-se do Rio
Grande do Sul para oeste, na mesopotâmia formada pelos rios Paraná e
Uruguai: a parte não florestada da Província de Misiones e as Províncias
de Corrientes e Entre Rios.
Fisionomicamente essa área apresenta-se, de um modo geral, plana
com algumas ondulações (coxilhas) e elevações (serras) baixas. Ao norte
do Rio Grande do Sul, a Província Pampeana é limitada pelas bordas do
Planalto Meridional do Brasil, cujas cotas vão baixando de leste a oeste,
chegando ao nível do mar nas margens do rio Uruguai (Vale do Uruguai).
Ao norte de Misiones, há a Serra de Misiones que é florestada — essa
florestal é subtropical e extende-se do Paraguai meridional para o noroeste
do Rio Grande do Sul, oeste do Estado de Santa Catarina e sudoeste do
Estado do Paraná (Brasil) : A sudeste do Rio Grande do Sul há elevações
(Serra do Sudeste) destacando-se a Serra dos Tapes e a do Herval e que
seguem para o sul até a região de Maldonado, no Uruguai, onde a altitude
média é de 500 m. Na região da Província Brasil-Uruguai há elevações
baixas e o pampa do Uruguai é um pouco mais alto que o da Argentina.
Neste país há elevações apenas ao sul de Buenos Aires (Sierra de la
Ventana e Sierras de Tándil). O pampa é todo gramado, mas a vegetação
empobrece de norte a sul e de leste a oeste, o mesmo se nota quanto à
fauna em geral e à ofiofauna. O litoral do extremo sul de Santa Catarina
até Buenos Aires é baixo e arenoso, com dunas, havendo rochedos isolados
em pequenos grupos em alguns pontos como Torres (Rio Grande do Sul),
Isla de Lobos (Montevidéo) etc. Junto ao litoral dessa área, há numa
rede de lagoas, algumas gigantes como a Lagoa dos Patos (Rio Grande
do Sul) e a Mirim (Brasil-Uruguai).
As barreiras observadas para a dispersão da ofiofauna pampeana
foram: os cursos inferiores dos rios Paraná e Uruguai, isolando a parte
sul da mesopotâmia argentina de Buenos Aires e do Uruguai. O Rio de
La Plata, isolando Buenos Aires do Uruguai. Os desertos a noroeste e
174
cm
SciELO
10 11 12 13 14 15
LEMA, T. Fauna de serpentes da província pampeana e inter-relações com as províncias limítrofes.
Mem. Inat. Hutantav, 46: 173-182, 1982.
sul da Argentina, principalmente o da Patagônia. A oeste da Argentina,
zona pedregosa e que antecede a Cordilheira dos Andes, é barreira para
a ofiofauna. Não vimos fauna pampeana na estreita área de terras baixas
junto ao litoral atlântico, ao sul de Buenos Aires, mas, sim ofiofauna
subandina. (Fig. 1)
OS CENTROS DE DISPERSÃO
Com base em Fittkau 16 e Müller 34 e no material examinado, nota¬
dos, pelo menos, dois Centros de Dispersão de ofiofauna pampeana: o
Bonariense e o Uruguaio.
O Centro de Dispersão Bonariense situa-se na Província de Buenos
Aires. A dispersão deu-se para todos os lados, ocupando toda a Província
e > para o sul é barrada pela Patagônia; para oeste chega a atingir nitida¬
mente o lado leste da Província de La Pampa; mais para oeste diminue e
desaparece a fauna pampeana, onde surgem as elevações da pré-cordi¬
lheira; aí predomina fauna subandina, diferenciada da pampena; pela
vegetação mais rica do delta do rio Paraná pela margem direita do mesmo,
dispersa-se a fauna bonariense em direção ao norte; evita o lado oeste,
arido e o noroeste, desértico, bem como a região do Chaco e povoa a
mesopotâmia pelo norte, através do Paraná médio. A mesopotâmia é uma
savana úmida e rica. Algumas poucas formas penetram no Uruguai por
sua área extrema noroeste, bem como no Rio Grande do Sul, cruzando o
rio Uruguai, que não é barreira física suficiente para répteis em geral.
Cabe aqui citar o estudo de Gans (1966) 16 sobre a subespeciação de
Amphisbaena darwini, apontando o rio Uruguai entre Rio Grande do Sul
e a Argentina como dentro de uma zona de intergradação entre duas
subespécies.
O Centro de Dispersão Uruguaio situa-se no Uruguai e, como está
confinado pelo oceano Atlântico à direita, Rio de La Plata ao sul e
Uruguai a oeste, sua dispersão é para o norte, atingindo o sul do Rio
Grande do Sul. Algumas formas dispersam-se até as bordas do planalto,
outras escalam-no, mas nenhuma atinge as partes altas do nordeste;
Poucas sobem pelo Planalto Médio, como Lystrophis dorbignyi.
PROVÍNCIAS LIMÍTROFES
A Província Pampeana, que pertence à sub-região Andino-Patagônica,
recebe ofiofauna das Províncias Tupi, Guarani e Bororó, da sub-região
Guiano-Brasileira.
A Província Tupi entra pelo extremo nordeste do Rio Grande do Sul,
°ias suas formas estão mais ligadas ao bioma das florestas da encosta do
Planalto do Brasil. Raras formas seguem para o sudeste desse Estado, e
apenas pelas manchas de mata ainda existentes.
A Província Guarani apresenta o maior número de espécies que se
dispersam até o nordeste da Pampeana (Lema et alii, m.s. :!1 ). Um nú¬
mero menor de formas chegam até o lado oriental e centro do Rio Grande
do Sul e, mesmo, o Uruguai.
175
cm
SciELO
10 11 12 13 14 15
LEMA, T. Fauna de serpentes da província pampeana e inter-relações com as províncias limítrofes.
Mem. Inst. Butantan, 46:173-182, 1982.
&
&
O
o
I —~~ —
I /
c S
li
li «
/ 1 j
&
w
g 3 5
45 ■* a •
5L-» a 3
,; ; rX 1
> ' f'í> T717 t;
:-- 'q
cm
SciELO
10 11 12 13 14 15
1-EMA, T. Fauna de serpentes da província pampeana e inter-relações com as províncias limítrofes.
Mem. In.8t. Butantan, 46 : 173 - 182 , 1982.
A Província Bororo apresenta formas cuja dispersão dá-se para
sudoeste atingindo o centro-norte e noroeste do Rio Grande do Sul e a
mesopotâmia argentina; um número menor atinge, o noroeste do Uruguai.
Há, ainda, algumas espécies de serpentes que tem distribuição geo¬
gráfica do tipo continental, desde o norte da América do Sul até o Rio
Grande do Sul pampeano e, mesmo, algumas, até o Uruguai.
HISTÓRIA DA DISPERSÃO
Há, pelo menos, três padrões gerais de formas ofídicas na Província
Pampeana, que são interpretados aqui, como estágios da especiação.
O primeiro ocupa a região argentina; o segundo, o Uruguai e o sul
do Rio Grande do Sul; e o terceiro confina-se à depressão central e
encostas do planalto a nordeste no Rio Grande do Sul.
Inicialmente a ofiofauna pampeana era contínua entre o sul do Brasil
e a Argentina. O Rio de La Plata era muito estreito, não sendo barreira.
Com seu rápido alargamento, bem como dos cursos inferiores do Uruguai
e Paraná, houve isolamento daquela biota inicial em duas — uma bona-
Hente e outra uruguaio-brasileira, que sofreram evolução diferenciada,
pelas condições ambientais específicas.
Nos pampas do Uruguai formou-se um grupo de formas próprias.
Assim também no lado oriental do Rio Grande do Sul, surgiu um outro
grupo de formas próprias, por possuir essa área outras características
ambientais.
Como o fluxo genético do Uruguai para o Rio Grande do Sul continua
e as subespécies formadas tendem a se encontrar ao longo da região
central do Rio Grande do Sul, há, aí uma intensa zona de intergradação,
com taxa crescente de genótipos pela segregação de todos os caracteres
genotípicos das espécies intergradantes.
Pode ser que, com o passar dos tempos, essa zona de intergradação
tenda a criar uma forma nova, enquanto que as formadoras ocupantes
das áreas-core atinjam o estágio de isolamento reprodutivo. Os espécimens
Provenientes da região central do Rio Grande do Sul são de difícil avalia¬
ção, se observados isoladamente, pelo menos os pertencentes a espécies
com adiantado estado de diferenciação.
Pelo litoral do Uruguai dispersaram-se algumas formas que toma¬
ram rumo norte, povoando a estreita faixa de terra do litoral, que estava
confinada entre o oceano e a seqüência de águas contínuas desde o Uruguai
até o sul de Santa Catarina. Esse contingente assim isolado e submetido
à condições ambientais muito caracteristicas, modificou-se, criando um
padrão de formas próprias daí. Com o levantamento de todo o litoral com
Ç aterro contínuo que continua se operando, esse corpo de água foi se
interrompendo oferecendo, atualmente, o aspecto de lagoas de diferentes
tamanhos com pontes de terra conectando o litoral com o interior e por
onde o contingente litorâneo dispersou-se encontrando-se e integrando
com formas pampeanas.
177
cm
SciELO
10 11 12 13 14 15
LEMA, T. Fauna de serpentes da província pampeana e inter-relações com as províncias limítrofes.
Mem. lnat. Butantan, 46: 173-182, 1982.
Na espécie Elapomorphus bilineatus podemos apreciar uma faixa de
intergradação de norte a sul, desde Porto Alegre (Rio Grande do Sul)
até Maldonado (Uruguai), da subespécie do litoral, E. bilineatus trili-
neatus com a do pampa, E. bilineatus lemmiscatus. A variedade de genó-
tipos aí ocorrentes é enorme e, no passado, alguns deles foram interpre¬
tados como espécies diferentes.
Aquelas formas pampeanas que escalaram o planalto meridional do
Brasil encontraram-se e intergradaram com as formas do planalto, de
dispersão norte-sul. Como o fluxo genético continua nessas áreas, é
possível apreciar-se uma forte zona de intergradação de formas do pampa
com as do planalto oriental na zona das encostas do mesmo, a nordeste
do Rio Grande do Sul.
Outra região em que a mescla de faunas continua se operando é a
noroeste do Uruguai e região mesopotâmica, onde há intergradação de
formas uruguaias com argentinas e com sul-riograndenses. (Fig. 2)
Apesar de não ter sido examinada a variação geográfica de todas as
espécies pampeanas, o exame que estamos procedendo em algumas delas,
vem confirmando o exposto.
COMPOSIÇÃO FAUNÍSTICA
As espécies mais características da Província Pampeana são as que
seguem, em ordem sistemática:
Família Leptotyphlopidae — Leptotyphlops munoai : do Uruguai para
o sul do Rio Grande do Sul.
Família Colubridae — Subfamília Colubrinae — Helicops carini-
caudus infrataeniatus : de São Paulo para o Uruguai e Argentina; tam¬
bém do alto Paraná para o Rio de La Plata flutuando em jangadas de
Eichornia sp. trazidas pelas cheias do Paraná. Dryadophis bifossatus
bifossatus: do leste do Brasil para o Rio Grande do Sul. Liophis miliaris :
de norte a sul do Brasil atingindo todo o pampa platino. Liophis ano-
malus: do centro a sul do Brasil para Uruguai e, para oeste, até a pré-
-cordilheira de Córdoba, Argentina. Liophis jageri: toda a área, desde o
centro Paranense — Leimadophis poecilogyrus pictostriatus: do leste
uruguaio a sudeste do Rio Grande do Sul. Leimadophis poecilogyrus pla-
tensis: da Argentina para sudoeste do Rio Grande do Sul. Leimadophis
almadensis: até o lado oriental baixo do Rio Grande do Sul. Lygophis
flavifrenatus: litoral norte e centro-oriental do Rio Grande do Sul. Chi-
ronius bicarinatus : segue de norte a sul pelos capões orientais do pampa
do Rio Grande do Sul.
Família Colubridae — Subfamília Heterodontinae — Lystrophis dor-
bignyi: toda a pampeana, com subespécies em estudo — L/ystrophis semi-
cinctus: da Argentina para o oeste do Rio Grande do Sul e noroeste do
Uruguai. Waglerophis merremii: do planalto para o nordeste baixo do
Rio Grande do Sul.
178
cm
SciELO
10 11 12 13 14 15
LEMA, T. Fauna de serpentes da província pampeana e inter-relações com as províncias limítrofes.
Mem. Inat. liutantan, b6: 173-182, 1982.
Família Colubridae — Subfamília Boiginae — Oxyrhopus rhombifer:
toda a Província; apresenta variações que estamos começando a examinar.
Philodryas aestivus subcarinatus : do Uruguai para o Rio Grande do Sul
intergradando com a forma nominal na encosta do planalto no Rio Grande
do Sul. Philodryas patagoniensis : de norte a sul, a toda a Província Pam¬
peana; com variações. Philodryas olfersii : de norte a sul, até os capões
dos pambas no Rio Grande do Sul e Argentina; também apresenta varia¬
ções geográficas. Clelia rústica : do leste do Brasil para o Uruguai e
Argentina; com variações. Clelia occipitolutea : de norte a sul até o norte
do Uruguai e Argentina; com subespécies em estudo por J. R. Bailey
(Durham, N. Car., E.U.A.). Tantilla melanocephala : de norte a sul, até
nordeste do Rio Grande do Sul e norte do Uruguai e Argentina. Tomodon
ocellatus : Argentina ao sul do Rio Grande do Sul e Uruguai. Tomodon
dorsatus : do centro do Brasil para o nordeste do Rio Grande do Sul.
Elapomorphus tricolor : do oeste do Brasil para a Argentina e noroeste
do Uruguai. Elapomorphus bilineatus : toda a Pampeana e Guarani, com
subespécies características dos diferentes centros (LEMA 27 ). Pseudabla-
bes agassizii : da Guarani para o Uruguai, com variações.
Família Colubridae — Subfamília Dipsadinae — Sibynomorphus
turgidus: da Guarani para Argentina, noroeste do Uruguai e oeste do
Rio Grande do Sul. Sibynomorphus ventrimaculatxis: da Guarani para o
Rio Grande do Sul.
Família Micruridae — Micrurus corallinus : da Guarani para o Rio
Grande do Sul, Argentina e noroeste do Uruguai (só nas partes elevadas).
Micrurus frontalis altirostris: do Uruguai para o Rio Grande do Sul.
Família Viperidae — Subfamília Crotalinae: Bothrops alternatus:
da Guarani para a Argentina, Uruguai e todo o Rio Grande do Sul —
Bothrops neuwiedi pubescens : do Uruguai para o Rio Grande do Sul
subindo as encostas de nordeste do planalto. Bothrops neuwiedi diporus:
na Argentina. Crotalus durissus terrificus: da Guarani para o Rio Grande
do Sul e lado oriental elevado do Uruguai e Argentina.
ÁREAS ESPECIAIS
Há áreas na Província Pampeana que apresentam diferenciações pró¬
prias, formando genótipos à parte. As elevações a sudeste do Rio Grande
do Sul e ao sul de Buenos Aires, parecem ser zonas de endemismo, como
se consiatou com Elapomorphus bilineatus (LEMA 17 ).
As elevações do sudesie do Rio Grande do Sul citadas acima (Serra
de Sudeste), seguem até o sudeste do Uruguai e a maioria das espécies
de répteis aí ocorrentes são melanísticas. Isso é notável em Lystrophis
dorbignyi, Elapomorphus bilineatus e Micrurus frontalis altirostris.
COMENTÁRIOS E CONCLUSÕES
As poucas espécies de serpentes próprias dos pampas apresentam
variação geográfica que ainda não foi analisada. Assim, as conclusões
definitivas sobre essa variação só poderão ser formuladas quando isso
for feito.
180
cm
SciELO
10 11 12 13 14 15
I-EMA, T. Fauna de serpentes da província pampeana e inter-relações com as províncias limítrofes.
Mem. Inat. Butantan, 4/7:173-182, 1982.
Essas três áreas de diferenciação geográfica (bonariense, uruguaia
e centro-oriental) podem representar áreas de subespécies — ao menos
para as espécies distribuídas em toda a Província Pampeana. Isso foi
visto em Elapomorphus bilineatus (LEMA, 1976 27 ), está sendo visto em
Lystrophis dorbignyi e outras.
Assim, também, com respeito a espécies do Centro de Dispersão
Paranense e que se dispersam para o sul; e formas que se dispersam do
Uruguai para as encostas da Serra do Mar, encontram-se as subespécies
cruzando-se e produzindo intergradantes.
A região do planalto no Rio Grande do Sul está sendo reexaminada.
Mas faltam muitos exemplares, principalmente de Santa Catarina, que
possam indicar até que ponto a ofiofauna oriental atinge em sua dispersão
para o sul.
SUMMARY: The zoogeographic Pampean Region extends since
Southern Brazilian Plateau borders to savannahs of Uruguay and
north-eastern Argentina. There are, at least, two Dispersion Cen-
ters, the Bonariensis, and the Uruguayan. The most forms of Rio
Grande do Sul, Brasil, are from Uruguayan Center. By the North
of the Pampean Region arrive subtropical and tropical snake forms,
proceeding of the Serra do Mar, Paranensis, and Paraná basin
Centers. North of Rio Grande do Sul and Argentina is a transi-
tional area between two bigs zoogeographic divisions: the Guyano-
-Brazilian, and Andino-Patagonian Subregions.
In Rio Grande do Sul there are many intergradations that
result of the meeting of forms of different Zoogeographic Provin-
ces, Tupi, Guarany, Bororo, and Pampean.
It’s present an hipothesis on the dispersion history of the
Pampean snake-fauna.
KEYWORDS: Províncias Zoogeográficas. América do Sul. Brasil.
Argentina. Uruguai. Rio Grande do Sul. Misiones. Corrientes.
Entre Rios. Buenos Aires. Centros de Dispersão Bonariense, Uru¬
guaio, Serra do Mar e Paranense. Variação Geográfica. Endemismo.
Subespeciaçào. Savana.
AGRADECIMENTOS
A todos os curadores de coleções. Ao Dr. Jorge R. Cranwell (Mus.
Argentino) pelas atenções recebidas. Ao Dr. Miguel A. Klappenbach
(Mus. Montevideo) pelas atenções. Ao Dr. Alphonse R. Hoge, pela opor¬
tunidade que nos concedeu para realizar este e apresentá-lo no I Simpósio
Internacional de Serpentes e Artrópodos Peçonhentos, em novembro de
i98i:
REFERÊNCIAS BIBLIOGRÁFICAS
1. ABALOS, J.W. & MISCHIS, C.C. Boi. Acad. nac. Cienc. Córdoba, 51 (1-2) :55-76,
1975.
2. ACHAVAL, F. Trabajos V Congr. latino-americ. ZooL, Montevideo, 7:17-29,
1973.
3.
in LANGUTH, A. ed. Lista vertebr. Uruguay: 26-9, 1976.
4. AMARAL, A. Mem Inst. Butantan, 4:129-272, 1929.
181
cm
SciELO
10 11 12 13 14 15
LEMA, T. Fauna de serpentes da província pampeana e inter-relações com as províncias limítrofes.
Mem. lnat. Butantan, 4(5:173-182, 1982.
30.
- . Loc. cit., 10: 87-162, 1936.
- . Icon. serp. Brasil, 1977.
BERTONI, A.W. Rev. Soc. cient. Parag., 4(4):l-60, 1939.
BOULENGER, G.A. Ann. Mag. nat. Hist., 5, 15:191-6, 1885a.
-. Loc. cit., 16: 85-8, 294-8, 1885b.
- . Loc. cit., 15:423-45, 1886.
-—. Cat. Snakes Brit. Mus., 3 vols., 1893-6.
COPE, E.D. Proc. Acad. nat. Sei. Philad., 14:346-64, 1862.
- . Proc. Am. phil. Soc., 22:187-94, 1885.
DEVINCENZI, G.J. Ann. Mus. Montevideo (2)2(1) :l-65, 1925.
FITTKAU, E.J. in FITTKAU et alii. Biogeogr. Ecol. South Amer., 2:624-58,
1969.
GANS, C. Buli Amer. Mus. Nat. Hist., (134) :187-260, 1960.
GLIESCH, R. Alm. Agr. brasil., S. Paulo: 1-18, 1925.
GUDYNAS, E. & ACHAVAL, F. Contr. biol. C. E. D. Onone, Montevideo
(1) : 11-8, 1979.
HENSEL, R. Arch. Naturgesch., 54(1) :323-56, 1868.
HOGE, A.R. Mem. Inst. Butantan, 52:109-84, 1965.
HOGE, A.R.; CORDEIRO, C.L. & ROMANO, S.A. L. Loc. cit., 39: 37-50, 1975.
KOSLOWSKY, J. Rev. Mus. La Plata, 15:161-200, 1898.
LEMA, T. Iheringia, Zool. (10) :5-18, 1958.
- . Loc. cit. (38) :89-118, 1970.
- . Archos Mus. nac., Rio de J., 54:61-2, 1971.
- . Ciênc. Cult. (S. Paulo), 52(3) :328-30, 1980.
- . Estudo monográfico de E. bilineatus — Tese apresentada Ponti¬
fícia Univ. catól. RGS. 1976 ( m.s .).
LEMA, T. & FABIÁN-BEURMANN, M.E. Iheringia, Zool. (50) :61-92, 1977.
LEMA, T.; FABIÁN-BEURMANN, M.E.; ARAÚJO, M.L. de; ALVES, M.L.M.
& VIEIRA, M.L in FUNDAÇÃO ZOOBOTÂNICA DO RIO GRANDE DO
SUL — Preceituarão ecol. Grande Porto Alegre, 111-32, 1976.
LEMA, T.; FABIÁN-BEURMANN, M.E.; ARAÚJO, M.L. de; ALVES, M.L.M.
& VIEIRA, M.L Iheringia, Zool. (55) :27-36, 1980.
LEMA, T. VIEIRA, M.L & ARAÚJO, M.L. Rev. bras. Biol. 1981 (m.s.).
MAGALHÃES, O. Mem Inst. Oswaldo Cruz, 15(1) :151-5, 1925.
MORENO, J.A.; DELANEY, P.J.V. & ZIONS, M.J. Relevo isométrico do Rio
Grande do Sul (mapa). 1963.
MÜLLER, P. Biogeographica, 2, 1973.
PETERS, J.A. & OREJAS-MIRANDA, B. Buli. U.S. natn. Mus. (297,1), 1970.
RAMBO, B. A fisionomia do RGS. 1942 e 1956.
VAZ-FERREIRA, R. & SORIANO, B.S. Rev. Fac. Hum. Cienc. Univ. Repúbl.
Urug. (18) : 133-206, 1960.
182
cm
SciELO
10 11 12 13 14 15
Mem. Inst. Butantan
-45:183-186, 1982
ESTADO ACTUAL DE LA COLECCION HERPETOLOGICA
DEL MUSEO DE ZOOLOGIA DE LA UN1VERSIDAD DE
CONCEPCION (M.Z.U.C.) EN LA PARTE SERPENTES
Tomas CEKALOVIC K. *
RESUMEN: El presente trabajo comprende la colección herpeto-
lógica (parte serpentes) de la Facultad de Ciências Biológicas
y de Recursos Naturales de la Universidad de Concepción, la
cual tiene depositados 062 ejemplares correspondientes a 179
especies repartidas en 73 géneros que representan 8 famílias.
INTRODUCTION
La colección Herpetológica (parte Serpentes) dei Museo de Zoologia
dei Departamento de Zoologia, Facultad de Ciências Biológicas y de
Recursos Naturales de la Universidad de Concepción, Chile, se encuentra
guardada en muebles metálicos: Reptilia 007 a Reptilia 012, los ejemplares
guardados en frascos de diversos tamanos en alcohol 70%, cada especie
con su etiqueta numerada está depositada en frascos independientes, al
existir vários ejemplares de una determinada especie, estos se guardan
en un solo frasco, como cada ejemplar lleva una etiqueta amarrada y
numerada, es fácil ubicarlo en el fichero kárdex específico, en el cual,
ordenados sistemáticamente, se anotan los datos de: Orden, Familia,
Género, especie, país y localidad de procedência o captura, fecha, colector,
N.° de estación en caso de expediciones o viajes, número de ejemplares,
determinador y otros datos (si fueren necesarios), en la ficha queda
sehalado si son ejemplares tipos (Holo, Alo, Para, Lecto, Topo etc.), ano-
tándose la información bibliográfica de la primera descripción.
Los ejemplares tipos se guardan en frascos con tapas rojas, que no
se utilizan para otros fines. La información sobre las especies existentes
se agregan a un Catálogo de especies que se actualiza cada vez que se
incorporan algunos lotes nuevos.
La lista de los tipos se ha publicado por T. Cekalovic y J. N. Artigas
en 1981.
El resumen de la colección es el siguiente:
* Museo de Zoologia de la Universidad de Concepción — Chile.
183
SciELO
CEKALOVIC K., T. Estado actual de la colección herpetologica dei Museu de Zoologia de la Universidad
de Concepción (M.Z.U.C.) en la parte serpentes. Mem. Inat. fíutantav, 46:183-186, 1982.
SERPENTES
Fam. Boidae — Ejemplares
Boa — 2 especies (2) — Venezuela, Argentina
Corallus — 1 especie (2) — Ecuador
Epicrates — 3 especies (7) — Ecuador, Argentina, Venezuela
Erix — 1 especie (1) — Rusia
Fam. Hydrophiidae
Pelamis — 1 especie (1) — Chile
Fam. Leptotyphlopidae
Leptotyphlops — 3 especies (7) — Venezuela, U.S.A.
Fam. Pythonidae
Morelia — 1 especie (1) — Australia
Fam. Colubridae — Ejemplares
Alsophis — 1 especie (2) — Chile
Arizona — 1 especie (1) — U.S.A.
Atractus — 5 especies (6) — Ecuador, Paraguay, Bolivia
Boaedon — 1 especie (2) — África
Chironius — 5 especies (5) — Bolivia, Brasil, Venezuela
Coluber — 2 especies (2) — U.S.A., Italia
Cyclagras — 1 especie (1) — Bolivia
Dendroaspis — 1 especie (1) — África
Diadophis — 1 especie (1) — U.S.A.
Dipsas — 2 especies (4) — Ecuador, Perú, Venezuela
Dromicus — 4 especies (138) — Cuba, Chile, Haiti
Drymarchon — 3 especies (3) — Venezuela, U.S.A.
Drymobius — 2 especies (2) — Perú, U.S.A.
Elaphe — 5 especies (5) — Rusia, U.S.A.
Elapomorphus — 1 especie (1) — Uruguay
Erythrolamprus — 1 especie (1) — Venezuela
Helicops — 1 especie (2) — Venezuela
Heterodon — 1 especie (1) — U.S.A.
Imantodes — 1 especie (1) — Venezuela
Incaspis — 1 especie (1) — Perú
Lampropeltis — 1 especie (4) — U.S.A.
Leimadophis — 7 especies (19) — Paraguay, Venezuela, Argentina,
Bolivia, Perú
Leptodeira — 3 especies (32) — Ecuador, Argentina, Venezuela
Leptophis — 4 especies (6) — Paraguay, Venezuela
Liophis — 2 especies (6) — Argentina, Brasil
Lycophidion — 1 especie (1) — África
Lygophis — 1 especie (3) — Venezuela
184
cm
SciELO
10 11 12 13 14 15
CEKALOVIC K., T. Estado actuaj de Ia colección herpetologica dei Museu de Zoologia de Ia Universidad
de Concepción (M.Z.U.C.) en la parte serpentes. Mem. Inst. Jiutantan, -46:183-186, 1982.
Lystrophis — 2 especies (6) — Argentina, Paraguay
Masticophis — 3 especies (4) — Venezuela, U.S.A.
Mastigodryas — 7 especies (22) — Venezuela, Paraguay, Brasil
Natrix — 7 especies (11) — U.S.A., Rusia
Nerodia — 2 especies (2) — U.S.A.
Ninia — 1 especie (2) — Venezuela
Fam. Colubridae — Ejemplares
Opheodrys — 1 especie (2) — U.S.A.
Oxybelis — 3 especies (8) — Venezuela, Bolivia
Oxyrhopus — 4 especies (9) — Venezuela, Argentina, Bolivia
Paraguay
Philodryas — 5 especies (9) — Argentina, Chile, Bolivia
Philothammus — 2 especies (2) — Uganda
Phimophis — 1 especie (1) — Venezuela
Pituophis — 1 especie (1) — U.S.A.
Psammophis — 1 especie (2) — África
Pseudoboa — 2 especies (10) — Ecuador, Venezuela
Pseustes — 1 especie (1) — Venezuela
Regina — 2 especies (2) — U.S.A.
Sibon — 1 especie (5) — Honduras, Venezuela
Sybinomorphus — 1 especie (4) — Argentina
Siphlophis — 1 especie (1) — Bolivia
Sonora — 1 especie (1) — U.S.A.
Spilotes — 2 especies (4) — Venezuela, Paraguay
Storeria — 1 especie (1) — U.S.A.
Synophis — 1 especie (1) — Bolivia
Tachymenis — 3 especies (219) — Chile
Tantilla — 3 especies (3) — Venezuela, U.S.A.
Thamnodynastes — 2 especies (5) — Venezuela, Bolivia
Thamnophis — 6 especies (7) — U.S.A.
Tomodon — 2 especies (3) — Argentina
Virgínia — 2 especies (3) — U.S.A.
Xenodon — 2 especies (5) — Argentina, Perú, Ecuador
Fam. Viperidae
Bitis — 1 especie (1) — África
Bothrops — 13 especies (24) — Brasil, Argentina, Venezuela,
Ecuador
Vipera — 1 especie (1) — Taiwan
Fam. Elapidae
Micrurus — 6 especies (10) — Brasil, U.S.A., Perú, Venezuela,
Bolivia, Argentina
Fam. Crotalidae
Agkistrodon — 4 especies (5) — U.S.A.
185
cm
SciELO
10 11 12 13 14 15
CEKALOVIC K., T. Estado actual de la colección herpetoloKica dei Museu de Zoologia de la Universidad
de Concepción (M.Z.U.C.) en la parte serpentes. Mem. Inat. Butantan, 46:183-186, 1982.
Crotalus — 8 especies (14) — U.S.A., Brasil, Venezuela
Sistrurus — 1 especie (1) — U.S.A.
Trimeresurus — 1 especie (1) — Tailandia
SERPENTES
Famílias: 8
Géneros: 73
Especies: 179
Ejemplares: 662
Continentes: 5
Países (total) : 18
Viejo Mundo: Australia, África, Rusia, Taiwan, Tailandia, Italia,
Uganda.
Nuevo Mundo: Argentina, Chile, Uruguay, Paraguay, Bolivia, Perú,
Brasil, Ecuador, Venezuela, U.S.A., Honduras, Cuba, Haiti.
ABSTRACT: The present herpetological collection (part Serpen¬
tes), of the Facultad de Ciências Biológicas y de Recursos Natu-
rales of University of Concepción, maintained in deposit amount
to 662 specimens, pertaining to 179 species, distributed into 73
genera of 8 families.
REFERÊNCIAS BIBLIOGRÁFICAS
CEKALOVIC, T. & ARTIGAS, J.N. Catálogo de los tipos depositados en la
Colección dei Departamento de Zoologia de la Universidad de Concepción, Chile.
Parte III. Boi. Soc. Biol. de Concepción, 51 :75-107, 1981.
DONOSO-BARROS, R. Reptiles de Chile. Edic. Univ. de Chile, 1966, pp. 1-458,
24 dibujos anatómicos, fotografias y lâminas en colores.
186
cm
SciELO
10 11 12 13 14 15
Mcm. Inst. Butantan
46 :187-192, 1982
ESTADO ACTUAL DE LA COLECCION ARACHNOLOGICA
DEL MUSEO DE ZOOLOGIA DE LA UNIVERSIDAD DE
CONCEPCIÓN (M.Z.U.C.), PARTE SCORPIONES
Tomas CEKALOVIC K. *
RESUMEN: La colección de escorpiones dei Museo de Zoologia
de la Universidad de Concepción (M.Z.U.C.), posee actualmente
95 especies identificadas que corresponden a 40 Géneros con 393
ejemplares, se incluye material tipo de 14 especies. Existe también
otros 1.250 ejemplares identificados solamente a nivel genérico.
De las siete familias de escorpiones conocidas para el mundo, están
seis de ellas representadas en la colección dei M.Z.U.C.
INTRODUCCION
La colección Arachnológica (parte Scorpiones), dei Museo de Zoolo¬
gia dei Departamento de Zoologia de la Facultad de Ciências Biológicas
y de Recursos Naturales de la Universidad de Concepción (M.Z.U.C.), se
encuentra depositada en un mueble metálico y conservada de acuerdo a
normas y técnicas museológicas actualles. Existen en la actualidad 95
especies identificadas que compreenden 40 géneros de 6 Familias, con
un total de 393 ejemplares, en este total se incluyen los ejemplares de
material tipo de 14 especies (Cekalovic y Artigas, 1981), además se
guardan aproximadamente 1.250 ejemplares identificados hasta nivel
genérico.
Los ejemplares se conservan en alcohol 70°, en tubos o frascos de
vidrio de diversos tamanos, con la correspondiente etiqueta en su interior,
cada Género o Familia, según sea el caso es guardado en un frasco de
boca ancha de medio o un galón. A cada especie se le confecciona una
Ficha específica que lleva los siguientes datos: Orden, Familia, Género
y especie, anotándose igualmente el país, lugar de captura, fecha y
colector, en otra columna se indica el determinador y el número de
ejemplares.
Museo de Zoologia de la Universidad de Concepción — Chile.
187
cm
SciELO
10 11 12 13 14 15
CEKALOVIC K., T. Estado actua] de la colección arachnoloffica dei Museo de Zoolojfia de la Universidad
de Concepción (M.Z.U.C.) parte scropiones. Mem. Inat. fíutantan, 46: 187-192, 1982.
LISTA DE LAS ESPECIES CONSERVADAS EN EL MUSEO
CLASE: ARACHNIDA
ORDEN: SCORPIONES
FAMÍLIA: BOTHRIURIDAE Simon, 1880
GÉNERO: BOTHRIURUS Peters, 1861
Bothriurus araguayae Vellard, 1934 — 4 ejemplares: Brasil
Bothriurus asper araguayae (Vellard), 1934 — 6 ejemplares: Brasil
Bothriurus honariensis (C. L. Koch), 1842 — 4 ejemplares: Uruguay
Bothriurus bücherli San Martin, 1963 — 2 ejemplares: Uruguay
Bothriurus burmeisteri Kraepelin, 1894 — 1 ejemplar: Argentina
Bothriurus patagonicus Maury, 1968 — 2 ejemplares: Argentina
Bothriurus prospicuos Mello-Leitão, 1934 — 1 ejemplar: Argentina
Bothriurus wilhelmi Cekalovic, 1976 — 3 ejemplares: Chile
GÉNERO: BRACHISTOSTERNUS Pocock, 1894
Brachistosternus artigasi Cekalovic, 1974 — 2 ejemplares: Chile
Brachistosternus donosoi, Cekalovic, 1974 — 2 ejemplares: Chile
Brachistosternus psamophilus Maury, 1968 — 1 ejemplar: Argentina
Brachistosternus ( Brachistosternus) ehrenberghi (Gervais), 1841 — 5
ejemplares: Perú
Brachistosternus ( Leptosternus) alienus Lõnnberg, 1898 — 1 ejemplar:
Argentina
Brachistosternus (Leptosternus) negrei Cekalovic, 1975 — 1 ejemplar:
Chile
Brachistosternus pegnai Cekalovic, 1969 — 1 ejemplar: Ecuador
Brachistosternus ( Microsternus) ferrugineus (Thorell), 1876 — 1 ejem¬
plar : Perú
Brachistosternus intermedius Lõnnberg, 1902 — 1 ejemplar: Argentina
Brachistosternus weijenberghi (Thorell), 1876 — 1 ejemplar: Argentina
GENERO: CENTROMACHETES Lõnnberg, 1897
Centromachetes pocoki (Kraepelin), 1894 — 20 ejemplares: Chile
Centromachetes titschaki (Werner), 1939 — 1 ejemblar: Chile
GENERO: CERCOPHONIUS Peters, 1861
Cercophonius michaelseni Kraepelin, 1908 — 1 ejemplar: Western
Australia
Cercophonius sulcatus Kraepelin, 1908 — 1 ejemplar: Western Australia
GENERO: OROBOTHRIURUS Maury, 1975
Orobothriurus dumayi (Cekalovic), 1974 — 13 ejemplares: Chile
GERENO: PHONIOCERCUS Pocock, 1893
Phoniocercus pictus Pocock, 1893 — 7 ejemplares: Chile
Phoniocercus sanmartini Cekalovic, 1968 — 47 ejemplares: Chile
188
CEKALOVIC K., T. Estado actual de la colección herpetologica dei Museu de Zoologia de la Universidad
de Concepción (M.Z.U.C.) parte scropiones. Mem. Inst. Butantan, 46:187-192, 1982.
GENERO: TEHUANKEA Cekalovic, 1973
Tehuankea moyanoi Cekalovic, 1973 — 9 ejemplares: Chile
GENERO: TIMOGENES Simon, 1881
Timogenes ( Latigenes) mapuche Maury, 1975 — 1 ejemplar: Argentina
GENERO: UROPHONIUS Pocock, 1893
Urophonius corderoi Mello-Leitao, 1931 — 7 ejemplares: Chile
Urophonius granulatus Pocock, 1898 — 7 ejemplares: Chile
Urophonius paynensis San Martin y Cekalovic, 1968 — 11 ejemplares:
Chile
Urophonius tregualemuensis Cekalovic, 1981 — 3 ejemplares: Chile
Urophonius tumbesis Cekalovic, 1981 — 6 ejemplares: Chile
FAMÍLIA: BUTHIDAE Simon, 1879
GENERO: ANANTERIS Thorell, 1891
Ananteris cussini Borelli, 1910 — 2 ejemplares: Venezuela
GENERO: ANDROCTONUS Hemprich & Ehrenberg, 1829
Androctonus australis hector C. L. Koch, 1839 — 1 ejemplar: África
GENERO: BUTHACUS Birula, 1908
Ruthacus minox occidentalis Vachon et Stockmann, 1968 — 4 ejemplares:
África
GENERO: BUTHUS Leach, 1815
Buthus occitanus mardochei Simon, 1878, var. mimeuri Vachon, 1949 —
1 ejemplar: África
Buthus occitanus occitanus (Amoreux), 1789 — 9 ejemplares: Espana,
África, Francia
Uuthus occitanus paris (C. L. Koch), 1839 — 2 ejemplares: África
GENERO: CENTRUROIDES Marx, 1899
Uentruroides fiavopictus (Pocock), 1898 — 1 ejemplar: México
Uentruroides gracilis (Latreille), 1778 — 3 ejemplares: México
Uentruroides margaritatus (Gervais), 1841 — 1 ejemplar: El Salvador
Uentruroides ochraceus (Pocock), 1898 — 1 ejemplar: México
Uentruroides sculpturatus Ewing, 1928 — 4 ejemplares: U.S.A.
GENERO: CENTRURUS Hemprich et Ehrenberg, 1828
Uentrurus elegans Thorell, 1877 — 4 ejemplares: México
Uentrurus hoxius Hoffmann, 1932 — 4 ejemplares: México
Uentrurus infamatus infamatus (C. L. Koch), 1845 — 4 ejemplares:
México
Uentrurus limpidus tecomanus Hoffmann, 1932 — 2 ejemplares: México
Uentrurus limpidus limpidus Karsch, 1879 — 5 ejemplares: México
Uentrurus suffusus suffusus (Pocock), 1902 — 6 ejemplares: México
189
cm
SciELO
10 11 12 13 14 15
CEKALOVIC K., T. Estado actual de la colección herpetologica dei Museu de Zoologia de la Universidad
de Concepción (M.Z.U.C.) parte scropiones. Mem. Inst. tíutantan, 46:187-192, 1982.
GENERO: ISOMETRUS Hemprich et Ehrenberg, 1828
lsometrus maculatus (De Geer), 1778 — 40 ejemplares: Chile, Hawai
GENERO: LEIURUS Hemprich et Ehrenberg, 1829
Leirus quinquestriatus quinquestriatus Hemprich et Ehrenberg, 1829 —
1 ejemplar: África
GENERO: LYCHAS C. L. Koch, 1850
Lychas marmoreus marmoreus (C. L. Koch), 1845
Western Australis
2 ejemplares:
GENERO: MICROTITYUS Kjellesvig-Waering, 1966
Microtityus biordi Gonzáles-Sponga, 1970 — 2 ejemplares: Venezuela
GENERO: PANDINUS Thorell, 1876
Pandinus imperator (C. L. Koch), 1842 — 1 ejemplar: África
GENERO: PARABUTHUS Pocock, 1890
Parabuthus planicauda (Pocock), 1902 — 1 ejemplar: South África
GENERO: RHOPALURUS Thorell, 1876
Rhopalurus laticauda Thorell, 1876 — 2 ejemplares: Venezuela
GENERO: TITYUS C. L. Koch, 1836
Tityus bahiensis (Perty), 1834 — 10 ejemplares: Brasil
Tityus bolivianus argentinus (Borelli), 1899 — 1 ejemplar: Argentina
Tityus clathratus C. L. Koch, 1845 — 2 ejemplares: Venezuela
Tityus discrepans (Karsch), 1879 — 2 ejemplares: Venezuela
Tityus lancini González-Sponga, 1972 — 2 ejemplares: Venezuela
Tityus melanostrichus Pocock, 1893 — 2 ejemplares: Venezuela
Tityus serrulatus Lutz y Mello, 1922 — 13 ejemplares: Brasil
Tityus uruguayensis (Borelli), 1900 — 2 ejemplares: Uruguay
Tityus valerae Scorza, 1954, 2 ejemplares: Venezuela
GENERO: UROPLECTES Peters, 1894
Uroplectes lineatus (C. L. Koch), 1845 — 2 ejemplares: South África
GENERO: ZABIUS Thorell, 1894
Zabius fuscus Thorell, 1894 — 2 ejemplares: Argentina
FAMÍLIA: CHACTIDAE Laurie, 1896
GENERO: BROTEOCHACTAS Pocock, 1893
Broteochactas gollmeri (Karsch), 1879 — 2 ejemplares: Venezuela
GENERO: CHACTAS Gervais, 1844
Chactas laevipes (Karsch), 1879 — 2 ejemplares: Venezuela
190
cm
SciELO
10 11 12 13 14 15
CEKALOVIC K., T. Estado actual de Ia colección herpetologica dei Museu de Zoologia de la Universidad
de Concepción (M.Z.U.C.) parte scropiones. Mem. Inat. Butantan, 46:187-192, 1982.
GENERO: EUSCORPIUS Thorell, 1876
Euscorpius carpathicus (Linnaeus), 1767 — 4 ejemplares: Francia
Euscorpius carpathicus sicanus (C. L. Koch), 1839 — 1 ejemplar: África
Euscorpius flavocaudalis (De Geer), 1778 — 1 ejemplar: Francia
FAMÍLIA: DIPLOCENTRIDAE Karsch, 1879
GENERO: DIPLOCENTRUS Peters, 1861
Diplocentrus keyserlingi zacatecanus Hoffmann, 19.. — 1 ejemplar:
México
FAMÍLIA: VEJOVIDAE Thorell, 1876
GENERO : CARABOCTONUS Pocock, 1893
Caraboctonus keyserlingi Pocock, 1893 — 1 ejemplar: Chile
GENERO: HADRUROIDES Pocock, 1893
Hadruroides lunatus (C. L. Koch), 1867 — 4 ejemplares: Perú
GENERO: HADRURUS Thorell, 1897
Hadrurns arizonensis (Ewing), 1928 — 5 ejemplares: U.S.A.
Hadrurus hirsutus (Wood), 1863 — 1 ejemplar: U.S.A.
GENERO: PARUROCTONUS Werner, 1934
Paruroctonus mesaensis Stahnke, 1957 — 6 ejemplares: U.S.A.
Paruroctonus utahensis (Williams), 1968 — 2 ejemplares: U.S.A.
GENERO: UROCTONUS Thorell, 1876
Uroctonus apacheanus Gertsch y Soleglad, 1972 — 3 ejemplares: U.S.A.
GENERO: VEJOVIS C. L. Koch, 1836
Vejovis carolinus C. L. Koch, 1843 — 1 ejemplar: U.S.A.
Vejovis coahuilae Williams, 1968 — 3 ejemplares: U.S.A.
Vejovis spinigerus spinigerus Wood, 1863 — 6 ejemplares: U.S.A.
Vejovis vorhiesi Stahnke, 1940 — 4 ejemplares: U.S.A.
FAMÍLIA: SCORPIONIDAE Pocock, 1893
GENERO: OPISTHACANTHUS Peters, 1861
Opisthacanthus africanus Simon, 1876 — 1 ejemplar: África
GENERO: OPISTHOPHTHALMUS C. L. Koch, 1838
Opisthophthalmus capensis (Herbst), 1800 — 1 ejemplar: South África
Opisthophthalmus macer Thorell, 1877 — 1 ejemplar: South África
Opisthophthalmus pallidipes C. L. Koch, 1843 — 2 ejemplares: South
África
GENERO: PALAMNAEUS Thorell, 1876
Palamnaeus fulvipes (C. L. Koch), 1838 — 1 ejemplar: Malasia
191
cm
SciELO
10 11 12 13 14 15
CEKALOVIC K., T. Estado actual de la colecciún herpetoloKica dei Museu de Zoolotíia de la Universidad
de Concepción (M.Z.U.C.) parte scropiones. Mem. Inat. fíntantan, 46:187-192, 1982.
GENERO: SCORPIO Linnaeus, 1758
Scorpio maurus tunetanus Birula, 1910 — 1 ejemplar: África
GENERO: URODACUS Peters, 1861
Urodacus hoplurus Pocock, 1898 — 1 ejemplar: Western Australia
Urodacus novaehollandiae Peters, 1861 — 1 ejemplar: Western Australia
Urodacus planimanus Pocock, 1893 — 1 ejemplar: Western Australia
Urodacus yaschenkoi (Birula), 1903 — 1 ejemplar: Western Australia
Urodacus woodwardsi Pocock, 1893 — 1 ejemplar: Western Australia
SCORPIONES
Famílias: 6
Géneros : 40
Especies: 95
Ejemplares: 393
Continentes: 5
Paises (total) 16
Número de ejemplares identificados a nivel genérico, aproximadamente
1.250.
Iníormación geográfica:
Viejo Mundo: Australia, África, Espana, Francia, South África,
Malasia.
Nuevo Mundo:
Argentina, Chile, Uruguay, Perú, Brasil, Ecuador,
Venezueula, México, El Salvador, Haway, U.S.A.
ABSTRACT: The collection of Scorpions deposited in the Museum
of Zoology of the Concepción University (M.Z.U.C.), consists of
identified species into 40 genera and 393 specimens including
type material of 14 species. There exits also 1.250 specimens
determined to the genus levei.
REFERÊNCIA BIBLIOGRÁFICA
CEKALOVIC, T. & ARTIGAS, J.N. Católogo de los Tipos depositados en la Co-
lección dei Departmento de Zoologia de la Universidad de Concepción, Chile.
Parte III. Boi. Soc. Biol. de Concepción, 51 :75-107, 1981.
192
cm
SciELO
10 11 12 13 14 15
Mem. Inat. Iiutantan
W: 193-194, 1982
SERPIENTES CROTALINAE DE VENEZUELA
F. SANDNER MONTILLA *
Si todos los ofidiólogos vinieramos a éste, el primer centro herpe-
tológico dei mundo, que es Butantan exponiendo determinantes modifica-
ciones a las clasificaciones existentes, se produciría una confusión tan
gigantesca, que terminaria con la estabilidad de la sistemática ofidica.
Por esta razón debemos seguir la propuesta por el ilustrísimo Dr. Alfonzo
R- Hoge, quien sin dudas es “El alma de los ofidios de Butantan”, pues
si la gran estrella que ilumino, después de Vital Brasil, a este Instituto
fue la figura insigne de Afranio do Amaral hoy dia ya su luz productiva
declina, por el “tremendo transcurrir dei tiempo”, nos ilumina hoy con
fuerza, la nueva estrella, que es Hoge, para Butantan y el mundo.
Vengo de la patria de Bolívar a hacer una sugerencia que en nada
modifica la magnífica clasificación efectuada por el Dr. Hoge y que es:
Si en esta clasificación, de la superfamilia Viperoidae aparecen las “Pit
Vipers” con tanta importância, tan numerosa en divisiones y tribus,
tan enorme la extensión de su distribución, por Nuevo y Viejo Continente,
por qué entonces no no volver a reivindicar junto a las dos Famílias de
Viperoidae, tambien la Familia nuevamente Crotalidae, y serían tres
las famílias de esa Superfamilia, pues Crotalidae sustituiría mejor a
Crotalinae y entonces las Subfamilias de Crotalidae serían Angkistro-
dontinae y Crotalinae. Así los mismos Géneros partiríam de Subfamilias
y no de Tribus. De esta manera la primera Subfamilia tendría los
Géneros: Angkistrodon, Calloselasma, Deinangistrodon, Gloydinus y
Hypnale. y Crotalinae: Bothrops, Lachesis, Crotalus, Sistrurus, Ovophis,
Trimeresurus y Tropidolaemus.
II
RELATO DE LAS SERPIENTES CROTALINAE DE VENEZUELA:
A — Género Bothrops Wagler B — Género Crotalus Linneo, 1758
1 — B.atrox (Linneo, 1758) 1 — C.pifanorum Sandner Montilla,
1980
2 — B.bilineatus bilineatus 2 — C.terrificus cumanensis, 1811
(Wied, 1825)
Instituto Venezoelano de Ofiolojria
Caracas-Venezuela.
193
cm
SciELO
10 11 12 13 14 15
SANDNER MONTILLA, F. Serpientes Crotalinae de Venezuela. Mcm. Inst. Butar.tan, 46:193-194, 1982.
2a— B.bilineatus S7naragdinus 2a— C .terrificus ruruhna Hoge, 1966
Hoge, 1966
3 — B. castelnaudi Dum. Bibr. 3 — C .vegrandis Klauber, 1941
& Dumer., 1854
4 — B.eneydae Sandner Montilla, 1976
5 — B.hyoprora Amaral, 1935
6 — B.isabelae Sandner Montilla, 1979
7 — B .lanceolatus nacaritae Sandner Montilla, 1981
8 — B .lansbergii janisrozei Peters, 1968
9 — B. medusa (Sternfeld, 1920)
10 — B.brasili Hoge (antes B.neglecta)
11 — B.schlegelii (Berthold, 1846)
12 — B .venezuelae Sandner Montilla, 1960
C Género Lachesis Daudin
1 — Lachesis muta muta (Linneo, 1766)
III
EL CASO DE CROTALUS DURISSUS:
Desde 1936 y más en 1956, publica L. Klauber en su famoso
“Rattlesnakes” que la nominación de C. terrificus de Laurenti la susti-
tuye por C .durissus: A esta insólita y no razonada decisión debemos
oponernos, como se opuso Amaral en su época, debido a que estaria en
grave peligro la estabilidad de los nombres y hasta mucha útil labor
científica, ya que no pueden caprichosamente y sin razonamientos cien¬
tíficos sustituírse nombres, lo que va además en contra dei Código Int.
de Nomencl. Zool: Nos oponermos por las tres razones siguiientes y
que iremos llevar a la Comisión Int. de Nom. Zool:
1) Por lo que en su época advirtió y rechazó Amaral (1944 P.
Avulsos Vol. V. N.° 5 Pg. 30) sobre la confusión que produce um cambio
así, hecho sin base científica, pues desde 1758 desde que Linneo la des-
cribe, haste 1936 (excepto Cope, pero rectifica luego) no se había referido
Crotalus durissus para Suramérica por ningún autor científico. Seria
entonces un Nomen oblitum por Analogia.
2) La descripción que Linneo hizo en 1758 de C.durissus no corres¬
ponde ni encaja, ni puede corresponder a nuestra cascabel tropical, o sea
que Linneo cuando describe el holotipo que se perdió después, no tuvo
bajo sus ojos la cascabel tropical, describe así ALBO FLAVOQUE
VARIUS MACULIS RHOMBEIS NIGRIS DISCO ALBIS HABITAT
AMERICA. Tiene color básico, blanco amarillo con grandes rombos
negros, igualito como la C. horridus no melánica. y no existe cascabel
tropical con rombos negros, nunca nadie la ha visto, por lo tanto no
corresponde a la misma cascabel de América tropical la de Linneo sino
la siguiente descrita la de Laurenti.
3) Klauber al reconocer subespecíficamente “terrificus” para el S.
de Suramérica y habiendose demostrado por el No 2 que lo que describió
Lin. no puede ser la cascabel tropical, debe considerarse sólo C.terrificus
como válida y utilizable.
194
cm
SciELO
10 11 12 13 14 15
Mem. Inst. Butantan
46 :195-206, 1982
POST-STRIKE TRAILING BEHAVIOR IN RA.TTLESNAKES
D. CHISZAR *
H. M. SMITH *
A. R. HOGE **
INTRODUCTION :
Numerous papers indicate that vipers can follow Chemical trails
left by rodent prey. Several of these papers also indicate that the
snakes are better at following such trails if they have struck and
envenomated a rodent just prior to being exposed to Chemical trails.
Experiments conducted at University of Colorado leave no doubt that
the act of striking (and envenomating) a mouse is responsible for the
subsequent emission of a sustained, high rate of tongue flicking. Called
strike-induced chemosensory searching (SICS), this phenomenon clearly
facilitates location and following of Chemical trails left by rodents.
REVIEW OF EXPERIMENTS CONDUCTED PRIOR TO 1980
In 1928, F.Baumann found that Vipera aspis could distinguish
between trails left by nonenvenomated and envenomated mice. Further,
the latter type of trail was preferred by V. aspis.
Several points should be made before presenting new data. First,
SICS is not a consequence of seeing, smelling, or detecting thermal cues
arising from mice. An elevation in rate of tongue flicking (RTF) is
usually produced by such stimuli, but this elevation is usually small
compared to that seen after a rattlesnake delivers a predatory stryke.
The firts slide makes this clear. Initially, rattlesnakes were observed
while they were undisturbed in their home cages. RTF was quite low.
Then, the snakes were exposed for 3 sec to a live mouse (Mus musculus)
suspended into the cage but held out of striking range. In one condition
the mouse was simply removed and tongue flicks were counted for the
next 10 min. In the other condition, the mouse was lowered into striking
range, and it was removed immediately after being struck. Again tongue
flicks were counted for 10 min. Clearly, RTF increased only in the
Strike condition. This is what we mean by SICS. Slide 2 presents a
replication of this experiment.
University of Colorado — Boulder — Colorado — USA.
Instituto Butantan — São Paulo — Brasil.
195
cm
SciELO
10 11 12 13 14 15
CHISZAR, D.; SMITH, H. M.; HOGE, A. R. Post-strike trailing behavior in rattíesnakes. Mcm.
lnat. Butantan, 45:195-206.
BASELINE
POST - PRE SENTATI ON
Slide 1. A typical SICS experiment. A high rate of tongue flicking is seen only after rattíesnakes
struck mice, not after seeing, smelling, or detecting thermal cues from rnice.
confined to the odoriferous trail (bottom panei).
196
cm
SciELO
10 11 12 13 14 15
CHISZAR, D.; SMITH, H. M.; HOGE, A.
Inst. Butantan, 4^:195-206.
Post-strike trailing behavior in rattlesnakes. Mcm.
197
SciELO
CHISZAR, D.; SMITH, H. M.; HOGE, A. R. Post-strike trailin*? behavior in rattlesnakes. Mem.
In8t. fíutantan, 46: 195-206.
Another important point is that SICS will continue for as long
as 2-3 hours. Even when no Chemical trail is present in the snake’s
post-strike environment, the snake will search for a very long while.
Hence, searching behavior is released by the predatory strike, and the
high RTF is not dependent upon the presence of Chemical stimuli. This
is why we have called SICS a fixed action pattern, following Konrad
Lorenz’s terminology (or a modal action pattern, following George
Barlow’s terminology).
A third important point is that SICS is a very general phenomenon
among rodent-feeding vipers and pit vipers. Most species strike (enve-
nomate) and then release adult rodent», allowing such prey to wander
up to 600 cm from the site of attack before succumbing to the venom.
Undoubtedly adult rodents are released because they will survive and
struggle for a brief period after envenomation (an average of 54 sec
for mice envenomated by C. viridis). If snakes attempt to hold prey
in their mouths during this period, the snakes risk tissue damage from
rodent teeth and claws. B. insularis strikes and the bird falis mostly
damaging the teeth. Hence, natural selection has favored the strategy of
releasing rodents after the strike, especially adult rodents. But, this
leaves the snake with the task of finding the now-dead rodent (which,
incidentally, is no longer emitting movements or thermal cues to attract
the snake). Rattlesnakes of all species tested as well as specimens of
AgJdstrodon, Bitis, Bothrops, Eristocophis, and Vipera exhibit SICS and
trail following. These same snakes show little interest in Chemical trails
prior to striking, but they have a profound interest in such trails after
striking (usually with 2-4 min after the strike). Thus, we conclude that
SICS is a widespread solution to the problem of locating envenomated
rodent prey.
The fourth point is that once a rattlesnake has begun SICS, it
usually will not strike again until the dead mouse has been located and
ingested. Although the strike is released by visual and thermal cues
arising from rodent prey, the strike in turn releases SICS. It is as if
the snake switches its attention from visual and thermal cues to Chemical
cues. Once the switch has been accomplished, SICS must run to com-
pletion before the program can be re-initiated. Usually a single predatory
strike is sufficient to cause this perceptual switch. Sometimes, however,
several strikes seem to be required. This may be true when the snake
has a reduced venom supply so that multiple strikes may be necessary
to accumulate an effective dose. Yet, when such a dose has been
accumulated through two or three strikes, the snake then switches its
attention to Chemical cues.
SICS and Traüing Behavior
We have already said that SICS is released by striking — the high
RTF is not dependent upon Chemical cues in the post-strike environment.
But, suppose a rodent trail is available to the snake after a predatory
strike has been delivered. How does the snake deal with it?
The answer is that RTF remains relatively constant, whereas the
tongue flicks are directed to the trail. Hence, the Chemical trail does
not release the high RTF; it simply exerts a taxic effect on the tongue
198
SciELO
CHISZAR, D.; SMITH, H. M.; HOGE, A. R. Post-strike trailinsr behavior in rattlesnakes. Mem.
Inat. Iiutantan, 46: 195-206.
flicks. The snake then positions its head so as to keep the flicking
tongue in contact with the trail. The result is that the snake’s body is
gradually drawn along the length of the trial.
An experiment with Crotalus viridis makes this clear. Six adult
snakes were observed in each of four conditions shown in Slide 3. In
two conditions snakes saw but did not strike mice, whereas the snakes
struck mice in the remaining two conditions. Then snakes were exposed
to a line drawn on the floor of a large cage; the line either contained
a rodent Chemical trail or it did not contain such a trail. These cond¬
itions conform to a 2x2 orthogonal combination of strike vs no strike
with presence vs absence of a Chemical trail. We recorded: (1) the
number of tongue flicks emitted during a 20 min period following the
initial mouse presentation, and (2) the number of tongue flicks that
were emitted within 2 cm of the solid line.
Slide 4 shows the results of this investigation. Note that snakes
emitted high RTFs only after striking mice. Note also that snakes
confined tongue flicks to the line only when a strike had been delivered
and when the line contained a rodent trail. Hence, rattlesnakes attend to
trails, but only after they have struck prey. This conclusion is also
supported by calculating the percentage of time snakes spent in contact
with the unbroken line in the test apparatus. Slide 5 shows that snakes
spent considerable time in contact with this line only when the line
contained mouse odor AND only when the snakes had just previously
struck a mouse.
This experiment has been replicated twice with results very similar
to those reported here.
Trails Made by Envenomated Mice and Nonenvenomated Mice
Now that we have developed a methodology for studying Chemical
trailing behavior in rattlesnakes, we decided to see if rattlesnakes respond
differentially to trails made by envenomated and nonenvenomated mice.
To accomplish this, we used a situation like that in Slide 6. Snakes
were exposed to two trails after striking or after seeing mice. Dependent
variables in this study were similar to those described above.
Results are shown in Slide 7. When snakes did not strike mice,
they íollowed neither trail. However, after striking mice, the snakes
attended to trails AND they selected the trail made by an envenomated
mouse.
The upper panei of slide 7 shows mean percentage of time that
snakes spent on either trail. For each snake, time on the envenomated
trail was added to time on the nonenvenomated trail; and, this total
was divided by the time the snake spent in the apparatus before finding
a mouse (a maximum of 20 min was allowed for finding mice). Since
the trails occupied about 17% of the floor space of the test apparatus,
a snake that moves randomly across the floor should make contact with
the trails only about 17% of the time. This is essentially what happened
when snakes had not struck mice prior to being exposed to the trail.
These animais paid no attention to trails; if they moved at all, they
did so in a random fashion. Howerer, when snakes struck mice, SICS
was activated and the snakes clearly investigated the trails.
199
cm
SciELO
10 11 12 13 14 15
CHISZAR, D.; SMITH, H. M.; HOGE, A. R. Post-strike trailing behavior in rattlesnakes. Mem.
Inst. Butantan, 46:195-206.
APPARATUS
180 cm
placed here in unbroken line in
all conditions Conditions B and D;
no odor trail was
made in
Conditions A and C.
2cm. between
unbroken line
and each dotted
line.
EXPERIMENTAL DESIGN
MOUSE ODOR TRAIL PRESENT
O NO
<t STRIKE
2
LU
(D
LU
CL
CL
LU
(/)
o STRIKE
2
NO YES
A
B
C
D
Slide 3. Experimental design and apparatus for the post-strik trailing experiment.
200
SciELO
CHISZAR, D.; SMITH, H. M.; HOGE, A. R. Post-strike trailing behavior in rattlesnakes. Mem.
Inat. Butantan, 46: 195-206.
NMT
MT
NO MOUSE TRAIL
ON SOLID LINE
MOUSE TRAIL
ON SOLID LINE
Slide 4. Results of the post-strik trailing experiment. SICS can again be seen (top panei); if
snakes struck mice, RTF was high, otherwise RTF was low. Note that tongue flicks were
confined to the odoriferous trail (bottom papel).
201
cm
SciELO
10 11 12 13 14 15
CHISZAR, D.; SMITH, H. M.; HOGE, A. R. Post-strike trailing behavior in rattlesnakes. Mem.
Inst. Butantan, 46:195-206.
(NO MOUSE TRAIL
ON SOLID LINE)
(MOUSE TRAIL
ON SOLID LINE)
Slide 5. Whereas Slide 4 showed % of tongue flicks confined to the trail. Slide 5 shows the % of
time the snakes’ heads were confined to the unbroken line. Note that snakes’ heads were
confined to this line only when they struck mice and when the line contained an odoriferous
trail. Hence, this slide agrees with the previous one.
APPARATUS
ENVEIMOMATED
MOUSE
180 cm-
IMONENVENOMATED
MOUSE
Slide 6. Apparatus for the trail-discrimination experiment. Snakes are exposed to two trails of the
same age; one trail was madè with an envenomated mouse, the other with a non-envenomated
mouse.
202
cm
SciELO
10 11 12 13 14 15
CH1SZAR, D.; SMITH, H. M.; HOGE, A. R. Post-strike trailing behavior in rattlesnakes. Mem.
In.8t. Butantan, Jf6: 195-206.
chance
Slide 7. Resulta of the trail-discrimination experiment. Top panei: When snakes had not struck
mice prior to being exposed to trails, the snakes did not spend much time investigating
the trails. Times spent examining the two trails were summed, and this total was divided
by the amount of time the snake was in the apparatus. However, if snakes struck mice
prior to being exposed to trails, then the snakes showed considerable interest in the trails.
Bottom panei: Here, time on the “envenomated trail” was divided by time spent on both
trails. Only snakes which struck mice showed a preference for the trail left by an
envenomated mouse.
The lower panei considers only time spent on trails. Time on the
envenomated trail was divided by time spent on both trails. If snakes
had not struck mice prior to exposure to trails, both trails were contacted
equally often. The important data comes from the snakes that struck
mice. These snakes clearly preferred the trail made with an envenomated
mouse.
We observed 13 snakes in the strike condition. All of them disco-
vered a mouse within 20 min after striking, and 10 snakes (77%)
203
cm
SciELO
10 11 12 13 14 15
CHISZAR, D.; SMITH, H. M.; HOGE, A. R. Post-strike trailin* behavior in rattlesnakes. Mem.
Inst. Butantan, 46:195-206.
discovered the envenomated mouse. Six snakes were observed in the
no-strike condition; two of them (33%) discovered the envenomated
mouse, and four discovered neither mouse within 20 min.
CONCLUSIONS
Strike-induced chemosensory searching has been observed many
times in our laboratory as well as in othes laboratories. Hence, this
is a very reliable phenomenon. The relationship between SICS and
trailing behavior is also quite reliable. Hence, it seems reasonable to
conceptualize these events as part of the same adaptive suite.
The fact that rattlesnakes preferentially followed trails left by
envenomated mice has very important theoretical implications. It is well
known that snake venom is very complicated material and that many
components of snake venom “are not particularly useful as incapacitating
or poisoning agents” (Gans, 1978, p. 7). The present results suggest
that some components of venom have evolved not necessarily to subdue
prey but rather to enhance the perceptibility of the trail left by
envenomated prey. Venom may therefore have not only toxic and
digestive significance but also perceptual significance.
Because of these very interesting implications, we feel it is abso-
lutely necessary to replicate the present results before making strong
assertions about the perceptual significance of venom.
Accordingly, we conclude that: (1) rattelsnakes are excellent at
trailing rodent prey, (2) trailing is seen most clearly after snakes have
struck rodent prey, and (3) a trail left by an envenomated rodent may
be more attractive to a rattlesnake than a trail left by a nonenvenomated
rodent.
ACKNOWLEDGEMENT
Many persons participated in the experiment here reported: C. W.
Radcliffe, T. Miller, K. Stimac, T. Poole, L. Golan, B. 0’Connell, K.
Scudder, and D. Duvall.
BIBLIOGRAPHIC REFERENCES
(reviews are indicated by *)
* BARLOW, G.W. Modal action patterns. In T. Sebeok (Ed.), Hoé animais
communicate. Bioomington, Indiana: Indiana Univer. Press, 1977.
* BURGHARDT, G.M. Chemical perception in reptils. In J. W. Johnston, Moulton,
D.G. & Turk, A. (Eds.), Communications by Chemical siynals. New York:
Applcton-Century-Crofts, 1970.
* BURGHARDT, G.M. Behavioral and stimulus correlates of vomeronasal func-
tioning in reptiles: Feeding, grouping, sex, and tongue use. In D. Müller-
Schwarze, & R. M. Silverstein (Eds.), Chemical signals: Vertebrates and aquatic
invertebrates. New York, Plenum, 1980.
204
SciELO
CH1SZAR, D.; SMITH, H. M.; HOGE, A. R. Post-strike trailing behavior in rattlesnakes. A/em.
Inst. fíutantan, 46:195-206.
CHISZAR, D.; DUVALL, D.; SCUDDER, K. & RADCLIPFE, C.W. Simultaneous
and successive discriminations between envenomated and nonenvenomated mice
by rattlesnakes ( Crotalus dwrissus and C. viridis). Behavioral and Neural
Biology, 2.9:518-521, 1980.
CHISZAR, D.; RADCLIFFE, C.W.; 0’CONNELL, B. & SMITH, H.M. Strike-
induced chemosensory searching in rattlesnakes ( Crotalus enyo) as a function
of disturbance prior to presentation of rodent prey. Transactions of the Kansas
Academy of Sciences, 83: 230-234, 1980.
CHISZAR, D.; RADCLIFFE, C.W.; 0’CONNELL, B. & SMITH, H.M. Strike-
induced chemosensory searching in rattlesnakes ( Crotalus viridis) as a fuction
of disturbance prior to presentation of rodent prey. Psychological Record,
31: 57-62, 1981.
CHISZAR, D.; RADCLIFFE, C.W.; 0’CONNELL, B. & SMITH, H.M. Analysis
of the behavioral sequence emitted by rattlesnakes during feeding episodes.
II. Duration of strike-induced chemosensory seaching in rattlesnakes ( Crotalus
viridis, C. enyo). Behavioral and Neural Biology, 1982. in press.)
CHISZAR, D.; RADCLIFFE, C.W.; & SCUDDER, K.M. Analysis of the behavioral
sequence emitted by rattlesnakes during feeding episodes. I. Striking and
chemosensory searching. Behavioral Biology, 21 :418-425, 1977.
CHISZAR, D.; RADCLIFFE, C.W. & SMITH, H.M. Chemosensory searching for
wounded prey by rattlesnakes is released by striking: A replication report.
Herpetological Review, 9: 54-56, 1978.
CHISZAR, D.; RADCLIFFE, C.W.; SMITH, H.M. & BASHINSKI, H. Effects of
prolonged food deprivation on response to prey odors by rattlesnakes. Herpeto-
logica, 1982. (in press.)
* CHISZAR, D. & SCUDDER, K.M. Chemosensory searching by rattlesnakes during
predatory episodes. In d. Müller-Schwarze & R.M. Silverstein (Eds.), Chemical
signals: Vertebrates and aquatic invertebrates. New York: Plenum, 1980.
DULLEMEIJER, P. Some remarks on the feeding behavior of rattlesnakes.
Koninklijke Nederlandische Academic van weten-schappen (Series C), 64:383-396,
1961.
DUVALL, D.; CHISZAR, D.; TRUPIANO, J. & RADCLIFFE, C.W. Preference
for envenomated rodent prey by rattlesnakes. Bulletin of the Psychonomic-Society,
11: 7-8, 1978.
DUVALL, D.; SCUDDER, K.M. & CHISZAR, D. Rattlesnake predatory behavior:
Mediation of prey discrimination, and release of swallowing by odors associated
with envenomated mice. Animal Behaviour, 26:674-683, 1980.
GANS, C. The biting behavior of solenoglyph snakes — Its bearing on the pattern
of envenomation. In Proceedings of the International Symposium on Venomous
Animais. São Paulo, Brazil, Instituto Butantan, 1966.
* GANS, C. Reptilian venoms: Some evolutionary considerations. In C. Gans &
K. A. Gans (Eds.), Biology of the reptilia, vol. 8, Physiology B. New York,
Academic Press, 1978.
GILLINGHAM, J.C. & CLARK, D.L. An analysis of prey searching behavior in
the western diamondback rattlesnake, Crotalus atrox. Behavioral and Neural
Biology, 32: 235-240, 1981.
GOLAN, L.; RADCLIFFE, C.W.; MILLER, T.; 0’CONNELL, B. & CHISZAR, D.
Under review. Prey trailing by the pririe rattlesnake (Crotalus v. viridis).
* KLAUBER, L.M. Rattlesnakes, their habits, life histories and influence on
mankind. Berkeley, University of Califórnia Press, 1956. 2 vol.
NAULLEAU, G. Premieres observations sur le compartement de chasse et de
capture chez les vipers et les couleuvres. La terre et la vie, 1 :54-76, 1964.
0’CONNELL, B.; CHISZAR, D. & SMITH, H.M. Effect of poststrike disturbance
on strike-induced chemosensory searching in the prairie rattlesnake (Crotalus
v. viridis). Behavioral and Neural Biology, 32:343-349, 1981.
205
SciELO
CHISZAR, D.; SMITH, H. M.: HOGE, A. R. Post-strike trailin^ behavior in rattlesnakes. Mem.
Inst. Butantan, 45:195-206.
RADCLIFFE, C.W.; CHISZAR, D. & 0’CONNELL, B. Effecte of prey size on
poststrike behavior in rattlesnakes (Crotalus durissus, C. enyo, & C. viridis).
Bulletin of the Psychonomic Society, 16:449-450.
SCUDDER, K.M. “Perceptual swüching" in rattlesnakes. Paper presented at
meetings of the Animal Behavior Society, Boulder, Colorado, 1976.
SCUDDER, K.M. Mechanisms mediating the sequential aspects of predatory episodes
in crotalid snakes. Ph.d. dissertation, University of Colorado, Dept. of E.P.O.
Biology, 1982.
SCUDDER, K.M.; CHISZAR, D. & SMITH, H.M. Under review. The effects of
environmental odors on strike-induced chemosensory by rattlesnakes.
206
cm
SciELO
10 11 12 13 14 15
Mem. In8t. Butantan
4^:207-218, 1982
LEVANTAMENTO DOS GÊNEROS DE OFÍDIOS E
ESPÉCIES DE ARACNÍDEOS CAUSADORES DE
ACIDENTES NA CASUÍSTICA DO CENTRO DE
INFORMAÇÃO TOXICOLÓGICA DO RIO GRANDE
DO SUL
(Período compreendido entre 1977 a agosto de 1981)
João Batista TORRES *
Paulo Roque CARLOTTO *
O número de informações que abrangem a área de animais peço¬
nhentos tem crescido aproximadamente de 100% ao ano na casuística do
Centro de Informação Toxicológica. Este fato, certamente, está ligado
ao maior conhecimento e à maior utilização do serviço de informação por
parte das equipes de saúde e pelo público em geral. O aumento da demanda
em relação a este tipo de ocorrência nos levou à efetivação de um estudo
estatístico a partir do arquivo do CIT-RS.
Para melhor abordagem do tema, analisamo-lo fundamentalmente
sob três aspectos:
1. Levantamento dos Gêneros de Ofídios e Espécies de Artrópodos
Peçonhentos responsáveis por acidentes na casuística do Centro
de Informação Toxicológica do Rio Grande do Sul.
2. Caracterização das pessoas acidentadas por Ofídios e Artró¬
podos Peçonhentos: faixa etária, região anatômica etc.
3. Finalmente, características que envolvem o Serviço de Informa¬
ção Toxicológica em relação aos acidentes: intervalo acidente-
-informação; diagnóstico etiológico (identificação do gênero de
ofídio ou espécie de artrópodo peçonhentos causador do acidente).
Síntese de algumas conclusões provenientes destas verificações:
Os acidentes por animais peçonhentos parecem estar ligados a dois
fatores importantes — condições climáticas e exposição da população aos
agentes;
As aranhas são responsáveis pela maioria das informações e são as
maiores causadoras de acidentes, seguidas dos ofídios e, por último, os
escorpiões;
* Centro de Informação Toxicológica-SSMA/RS — Brasil.
207
SciELO
TORRES, J. B. & CARLOTTO, P. R. Levantamento dos gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuística do Centro de Informação Toxicológica do Rio Grande do Sul
(período compreendido entre 1977 a agosto de 1981). Mem. Inst. Butantan, 46: 207-218, 1982.
A faixa etária mais atingida em humanos é de 1 a 14 anos.
Os homens são mais atingidos do que as mulheres nos acidentes
ofídicos e escorpiônicos ;
A região anatômica mais atingida nos acidentes ofídicos em huma¬
nos é o membro inferior e em maior percentagem pé. Já nos acidentes
por aranhas as áreas mais atingidas são os membros superiores;
Sob o ponto de vista de eficácia do Serviço de Informação Toxico-
lógica, o intervalo que vai do acidente até a informação é sempre menor
que 24 horas. Os acidentes provocados por Phoneutria são os chamados
com intervalo mais curto entre acidente e busca de informação. Apenas
os acidentes por Loxosceles sp. são mais tardios, em geral após 24 horas.
TABELA 1
Tabulação geral e percentagem dos acidentes tóxicos por animais peçonhentos e
não peçonhentos na casuística do CIT-RS no período de dezembro de 1977 a agosto
de 1981:
N.° Acidentes
Percentagem
Aranhas
94
41,59
Ofídios
62
27,43
Escorpiões
29
12,83
Abelhas
8
3,53
Centopéias
6
2,65
Lagartas Urticantes
5
2,21
Formigas
4
1,76
Louva-a-Deus
4
1,76
Vespas
2
0,88
Marimbondos
1
0,44
Lacraias
1
0,44
Peixes Venenosos
1
0,44
Não Identificados
9
3,98
TOTAL
226
100,00
208
cm
SciELO
10 11 12 13 14 15
TORRES, J. B. & CARLOTTO, P. R. Levantamento dos gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuística do Centro de Informação Toxicológica do Rio Grande do Sul
(período compreendido entre 1977 a agosto de 1981). Mem. Inst. Dutantan, \G\ 207-218, 1982.
(/)
<D
IO
Ow
O
E
o
<+-
c
~o
01
JFMAMJ JASOND
Meses
Gráf. 1: Distribuição mensal de informações. Ac. Por animais peçonhentos. (CIT)
CO
<D
IO
O-
O
E
o
«*—
c
<D
"O
01
Gráf.
209
2 3 4 5 6 SClELO 10 2.1 12 13 14 15
cm
TORRES, J. B. & CARLOTTO, P. R. Levantamento dos gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuílstica do Centro de Informação Toxicológica do Rio Grande do Sul
(período compreendido entre 1977 a agosto de 1981). Mem. Inat. íiutantan, 40:207-218, 1982.
Gráf. 3 : Crescimento do volume de informações sobre acidentes por animais peço¬
nhentos (Centro de Informação Toxicológica)
Phoneutria
L ycosa
Lactrodectus (Viúva Negra)
DD Caranguejeiras
Representação dos Acidentes por Aranhas seg. espécie causadora. (CIT)
cm
SciELO
10 11 12 13 14 15
TORRES, J. B. & CARLOTTO, P. R. Levantamento dos gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuística do Centro de Informação Toxicológica do Rio Grande do Sul
(período compreendido entre 1977 a agosto de 1981). Mem. Inst. Butantan, 46:207-218, 1982.
OI
OI
ih
T
J FMAMJ JASOND
Meses
Gráf. 5: Representação mensal de informações sobre acidentes Ofídicos. (CIT)
—i i i i—m—i—i—iii’'
J FMAMJ JASOND
Meses
Gráf. 6: Representação mensal de informações sobre acidentes por Aranhas. (CIT)
211
cm
SciELO
10 11 12 13 14 15
TORRES, J. B. & CARLOTTO, P. R. Levantamento dos gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuística do Centro de Informação Toxicológica do Rio Grande do Sul
(período compreendido entre 1977 a agosto de 1981). Mem. Inst. Butantan, 46: 207-218, 1982.
</>
<D
IO
O
O
£
i—
o
4 -
c
<D
•o
Oi
J FMAMJJASOND
Meses
Gráf. 7: Representação mensal de informações sobre acidentes por Escorpiões. (CIT)
Faixa Etária
- N 8 de informações / Faixa atingida
^ 7 ‘ +Mortolidade: Grupo de estatística da
Sec. da Saúde e Meio Ambiente RS.
Causa descrita como mordedura ou -
picada de inseto ou animal venenoso.
Gráf. 8: Gráfico comparativo N.° de Informações/Mortalidade. (CIT — Grupo de
Estatística de Sec. Saúde e Meio Amb. RS)
SciELO
10 11 12 13
212
TORRES, J. B. & CARLOTTO, P. R. Levantamento do3 gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuística do Centro de Informação Toxicológica do Rio Grande do Sul
(período compreendido entre 1977 a agosto de 1981). Mem. Inst. Butantan, -46:207-218, 1982.
Faixa etaVia
Gráf. 9: Distribuição de informações sobre Ac. por aranhas. Faixas etárias atin¬
gidas. (CIT)
Faixa etaVia
Gráf. 10: Distribuição de informações sobre acid. por Ofídios. Faixas etárias
atingidas. (CIT)
213
cm
SciELO
10 11 12 13 14 15
TORRES, J. B. & CARLOTTO, P. R. Levantamento dos gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuística do Centro de Informação Toxicológica do Rio Grande do Sul
(período compreendido entre 1977 a agosto de 1981). Mem. Inat. Butantan , 46:207-218, 1982.
Faixa etaVia
- 4 -
Gráf. 11: Distribuição de informações sobre acid. por Escorpiões
atingidas. (CIT)
Faixas etárias
214
cm
SciELO
10 11 12 13 14 15
TORRES, J. B. «St CARLOTTO, P. R. Levantamento dos gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuística do Centro de Informação Toxicológica do Rio Grande do Sul
(período compreendido entre 1977 a agosto de 1981). Mem. lnst. Butantan, 40:207-218, 1982.
TABELA 2
Distribuição mensal e anual dos acidentes por animais peçonhentos
(Centro de Informação Toxicológica) Acidentes em humanos e animais.
Ano
1977
1978
1979
1980
1981
Mês
Jan.
5
9
22
Fev.
6
6
23
Mar.
1
8
6
Abril
5
9
10
Mai.
4
5
17
Jun.
3
4
Jul.
2
1
13
Ago.
4
12
Set.
1
15
Out.
2
7
Nov.
2
8
10
Dez.
1
2
5
15
TOTAL
1
5
41
89
107
TABELA 3
Distribuição mensal de acidentes por animais peçonhentos
Aranhas, Ofídios e Escorpiões. (CIT)
J
F
M
A
M
J
J
A
S
0
N
D
TOT
Aranhas
12
15
6
10
16
3
7
10
3
2
2
8
94
Ofídios peç.
2
3
1
6
5
2
1
0
2
2
6
1
31
Escorpiões
10
7
1
0
0
0
1
0
0
0
4
6
29
TOTAL
24
25
8
16
21
5
9
10
5
4
12
15
154
TABELA 4
Percentual dos acidentes por animais peçonhentos. (CIT)
N.° Inform.
%
Aranhas
94
61,03
Ofídios Peç.
31
20,14
Escorpiões
29
18,83
TOTAL
154
100,00
216
cm
SciELO
10 11 12 13 14 15
TORRES, J. B. «& CARLOTTO, P. R. Levantamento dos gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuística do Centro de Informação Toxicológica do Rio Grande do Sul
(períoda compreendido entre 1977 a agosto de 1981). Mevt. Inst. Butantan, 40:207-218, 1982.
TABELA 5
Distribuição de ac. por Aranhas de acordo com a espécie causadora. (CIT)
J
F
M
A
M
J
J
A
s
0
N
D
TOT
Phoneutria
2
2
1
1
4
0
4
1
0
0
1
1
17
Loxosceles
2
3
0
1
4
1
0
4
0
1
0
0
16
Lycosa
2
2
0
4
0
0
1
1
0
0
0
1
11
Caranguejeiras
0
1
0
0
0
0
0
0
0
0
0
0
1
Lactrodectus
0
0
1
0
0
0
0
0
0
0
0
0
1
TOTAL
12
15
6
10
16
3
7
10
3
2
2
8
94
TABELA 6
Percentual de acidentes por Aranhas. (CIT)
N.° Informações
%
Phoneutria
16
35,55
Loxosceles
16
35,55
Lycosa
11
24,45
Caranguejeiras
1
2,22
Lactrodesctus
1
2,22
TOTAL
45
100,00
TABELA 7
Distribuição mensal dos Ac. Ofídicos. Ofídios: Peçonhentos, Não peçonhentos e Não
Identif. (CIT)
J
F
M
A
M
J
J
A
S
O
N
D
Tot.
Ofídios Peç.
2
3
1
6
5
2
1
0
2
2
6
1
31
Of. Não Peç.
1
2
2
0
0
1
2
0
1
1
1
1
12
Não Identif.
6
2
2
1
3
1
0
4
0
1
1
'3
24
TOTAL
9
7
5
7
8
4
3
4
3
4
8
5
67
217
SciELO
TORRES, J. B. & CARLOTTO, P. R. Levantamento dos gêneros de ofídios e espécies de aracnídeos
causadores de acidentes na casuística do Centro de Informação Toxicológica do Rio Grande do Sul
(período compreendido entre 1977 a agosto de 1981). Mem. Inst. Butantan, 4G: 207-218, 1982.
TABELA 8
Distribuição percentual dos Acidentes Ofidicos. Segundo o gênero causador (CIT)
N.° de Informações
%
Botrópico
27
87,10
Crotálico
2
6,45
Elapídico
2
6,45
TOTAL
31
100,00
TABELA 9
Distribuição mensal segundo o Gênero de ofídios causador de acidentes (CIT)
J
F
M
A
M
J
J
A
s
O
N
D
Tot.
Botrópico
2
2
1
6
4
2
1
0
2
1
5
1
27
Crotálico
1
1
2
Elapídico
1
1
2
TOTAL
2
3
1
6
5
2
1
0
2
2
6
1
31
TABELA 10
Faixas etárias atingidas por Acidentes por animais peçonhentos. (CIT)
nN
Inf.
Tard
— 1 ano
1-4
5-14
15-19
20-29
30-39
40-49
50-69
+ de 70
N.° de
Informações
_
_
2
29
43
16
30
20
22
21
5
%
0
0
1,06
15,4
22,8
8,52
15,9
10,6
11,7
11,1
2,65
218
cm
2 3 4
5 6 SciELO 10 2.1 12 13 14 15
Mem. In8t. Butantan
b6: 219-254, 1982
SNAKES OF THE GUIANAN REGION
Marinus S. HOOGMOED *
ABSTRACT: The study of snaks from the Guianan region got
an early start in 1705 when several species were pictured by
Merian. As relatively large proportion of the snakes described by
Linnaeus originated from Surinam. Interest for and knowledge of
this group of animais steadily increased in the 18th and 19th
century (80 species known at the turn of the century), but only
in the second part of the 20 th century detailed studies of snake
faunas from (part of) the Guianan region appeared. No such
study for the entire area has been published till now. At present
a total of 134 species of snakes, belonging to 159 taxa, is known.
ünly 19.4% is endemic, the majority (43.4%) belong to species
with an Amazonian distribution. Seventeen species (12.7%) are
venemous, ten belonging to the Elapidae, seven to the Crotalidae.
Several taxonomic problems are discussed, Cercophis auratus
(Schlegel) is restored as a valid taxon and redescribed. Analysis
of available distribution data shows that forest snakes are fairly
evenly distributed throughout Amazônia and Guiana. Snakes
restricted to open formations are spread evenly throughout Guiana,
but most of them are absent in western Amazônia. When taking
together ubiquists and snakes restricted to open formations there
is a fair resemblance between the faunas of Guiana and Iquitos,
but only a moderate one between Santa Cecilia and Guiana, possibly
reflecting the influence of species belonging to the Andes foothill
fauna (Napo refuge). Within Guiana apparently tnere are no
unsurmountable barriers to snakes, the differences that are
observed between the western and eastern/Brazilian part can
be explained by the presence of species barely raching these areas.
Probably these species are still in the process of expanding their
range.
INTRODUCTION
The area to be dealt with in this paper and called Guiana is the region
bordered by the Rio Orinoco, the Cassiquiare Canal, the Rio Negro, the
Rio Amazonas and the Atlantic Ocean (Fig. 1). This area comprises
three political units in their entirety, namely Guyana (formely British
Guiana), Surinam and French Guiana. Of Venezuela it comprises the
Estado Bolívar and the Território Federal Amazonas, known under
the common denomer Guayana. Of Brasil it comprises the Território do
♦ Rijksmuseum van Matuurlijke Historie, Leiden, The Netherlands.
219
SciELO
10 11 12 13 14 15
•HOOGMOED, M. S. Snakes of the guianan region. Mem. hiet. Butantan, 46:219-254,1982.
Amapá, the Território de Roraima and those parts of the states of Pará
and Amazonas that are situated north of the Rio Amazonas and the Rio
Negro (Hoogmoed, 1979:242). French investigators (Lescure, 1977;
Descamps et al., 1978) tend to delimit Guiana as the area bordered by
the Rio Barama (Venezuela) in the west and by the Rio Araguari (Brasil)
in the southeast, the Southern border being the watershed betvveen rivers
emptying directly into the Atlantic Ocean and those belonging to the
Amazonian drainage. In my opinion this definition of Guiana is rather
artificial and not in accordance vvith the biogeographical, geological and
geographic data. More elaborate reasons for this rejection of the French
definition are given in my 1979 paper on the herpetofauna of the Guianan
region. In the same paper an extensive description of the physical features
of the Guianan region is also provided (Hoogmoed, 1979:242-249).
HISTORY OF THE STUDY OF GUIANAN SNAKES
The coast of the Guianas was discovered in 1499 by Alonso de Ojeda
and Amerigo Vespucci and was afterwards known as the “Spanish
Main”, “Wild Coast” or the “Côte Ferme”. Because of tales about fabulous
richness in the interior of the area many expeditions explored the region,
particularly during the 16th century, in their search for El Dorado. Some
of these expeditions, notably those of Sir Walter Raleigh penetrated
fairly deep into the interior via large rivers like the Orinoco, but most
hardly ventured inland and merely explored river mouths. It soon became
evident that El Dorado either was difficult to locate, or did not exist at
all, although the last possibility was only admitted reluctantly. Hence the
character of the expeditions gradually changed and their main aim became
the establishment of trading posts at the mouths of rivers. This process
started in the second quarter of the 17th century, one of the main factors
being the founding in 1621 of the “Westindische Compagnie” (West
Indian Company) in the Netherlands, a trading society with interest
primarily in obtaining overseas trading facilities. During part of the
17th century (1624-1654) this company even conquered a large area in
northeast Brazil. The height of this conquest was during the government
of Prince Johan Maurits of Nassau, who had a keen interest in Science
and, among his companions had scientists like Piso and Marcgraf and
artists like Eckhout and Post. Their efforts must have stimulated in the
Netherlands a iively interest in objects for natural history from overseas
countries which led to the establishment of cabinets of natural history.
Although the natural history objects collected during the Brazilian
conquest were at least partly transported to the Netherlands, their
present whereabouts are not known and they probably got lost. Shortly
after the Brazilian episode carne to an end, the Dutch settled in the
Coastal area of present day Surinam and Guyana. This colonisation led
to an increase in traffic between Europe (mainly the Netherlands and
England) and Guiana and, as a consequence, to the publication of several
travelstories. Among these were the books by Warren (1667, 1669), who
also paid attention to the natural history of the areas he visited. He men-
tioned snakes that >• ere nearly thirty foot long. No doubt he is referring to
221
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mem. Inat. Rutantan, 1,6: 219-254,1082.
the anaconda, Eunectes murinus. The same author mentions snakes which
“are knotty, with Horns in their Tails, and Tusks two Inches long upon
the upper Chap”. In my opinion there is little doubt he is referring to
the rattlesnake of the coastal area of Surinam, Crotalus dumssus dryinus
L. Van Berkel (1695) also refers to the rattlesnake when he describes
the “Colony of Berbice” in Guyana, and to the anaconda when he is
describing Surinam. However, large parts of this book have been copied
from those by Warren. The first reliable pictures of snakes, which can
be identified, were provided by Merian (1705a, b) in her monumental
treatise on the insects of Surinam, and were painted on the spot in
Surinam when she stayed there during the period 1699-1701. The species
she depicted were the gardenboa Corallus enydris L.) (twice) and the
burrowing snake Anilius scytale (L.). Apparently settlers and sailors
provided cabinets of natural history with a steady flow of material from
tropical conustries. For the Netherlands this mainly involved present day
Indonésia, South- and West-Africa and Surinam. The richness of these
cabinets is well illustrated by Seba’s monumental Thesaurus (4 volumes),
in the first two volumes of which (1734/5) many snakes were illustrated.
Among these snakes are at least 40 species of American provenance, even
though their origin may be stated as being Cape of Good Hope or the
East Indies. For several of these, Surinam is indicated as the place of
origin. As the plates published by Seba were used by many subsequent
writers, notably Linnaeus, for the description of species, Seba’s
work is of paramount importance to taxonomy. Unfortunatelly, of the 14
species stated by Seba to originate from either Berbice or Surinam,
only seven are referable to six nominal taxa ( Boa c. constrictor L.,
Dipsas v. variegata (D., B. & D.), Helicops angulatus (L.), Leimadophis
typhlus ( 1 ) (L.), Philodryas v. viridissimus (L.) and Oxybelis fulgidus
(Daudin). Other Guianan snakes possibly depicted by him were Liophis
cobella (L.) and Drymolubcr dichrous (Peters). The remainder either is
unidentifiable on the basis of the drawing and the description, or could
be interpreted in several ways. Many of the other figured South American
snakes also occur in Surinam and probably originate from that country
as well. Seba's first collection was sold to Czar Peter the Great and
subsequently got lost for the greater part. His second collection was
auctioned 16 years after his death in 1752 and part of it now is in the
Zoological Museum in Leningrad (Juriev, 1981). Unfortunately I could
not yet examine that material and solve some of the remaining problems.
Another important contribution to our knowledge of Guianan snakes
was made by Scheuchzer (1735a, b, 1738) in his Physica Sacra. In this
work he depicted a number of snakes from the collection of J. H. Linck,
a pharmacist with a famous cabinet in Leipzig. The drawings were well
done and most of them can be identified relatively easily. The snakes
were generaíiy drawn life size and apparently in the position they were
(1) Throughout this paper I have adopted the generic names Leimadophis, Liophis and Lygophis as
used by Peters & Orejas-Miranda (1970), although I am fully aware of the studies that have
been going on recently in this group of related genera. The most recent paper dealing with
this subject is that by Dixon (1980), who classified all species belonging to these genera as
Liophis. Although I sympathise with his views and accept his arguments I did not adopt his
clasBification here, because this would have included too many alterations in the manuscript
of this paper. I did, however, use some of his as yet unpublished results, which are acknowledged
as “personal communication M .
222
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the Ruinnan retfion. Metn. Inst. Jiutantan, 46: 219-264,1982.
preserved in. Thus, in many cases it is possible to reconstruct the glass
jars they were stored in by taking a ruler and a pair of compasses and
drawing a few tangent lines. This to illustrate the exactness with
which the drawings were executed, much more accurately depicting
the actual specimens than those in the famous work of Seba. The
largest part of the snakes depicted and rather superficially, described
(47 of 64) aparently originated from South America and of these
47, ten were stated to come from Surinam. For two of these ( Cylin-
drophis nifus (Laur.) and C. maculatus, (L.) both from Southeast
Asia), the locality obviously is in error, the other eight do occur in
Surinam. Ammong the species reported by Scheuchzer for the
fist time from the Guianan region are Erythrolamprus a.
aesculapii (L.), Leptophis a. ahaetulla, (L.) Lygophis l. lineatus (L.),
Oxybelis argenteus (Daudin), Oxyrhopus p. petola (L.) and Rhino -
bothryum lentiginosum (Scopoli). Scheuchzer’s work also was frequently
referred to by subsequent writers, like for instance Gronovius (1756),
and its importance for herpetology may be illustrated by the history
of the name Coluber jaculatrix Linnaeus, 1766, still cited by Peters &
Orejas-Miranda (1970) with a questionmark in the synonymy of Lygophis
l. lineatus (L.). This was based only on the inclusion of the references
to it in Lacépède and Latreille in the synonymy of this species as presented
by Hoge (1952). However, the matter is relatively simple: Linnaeus
(1766) referred to species n.o 26 of Gronovius (1756), who in turn
referred to Scheuchzer (1735b), plate 715 fig. 2 and provided a fairly
good description. Combining these data it is evident that Coluber
jaculatrix Linnaeus, 1766 is a synonym of Lygophis lineatus (Linnaeus,
1758). Therefore the importance of Scheuchzer’s work for herpetology
should not be neglected. Unfortunately the present whereabouts of the
material from Lincke’s cabinet is not known. Apparently it is not in one
of the museums in the DDR (Peters, Obst, personal comunications).
Sundius (1749), contributing to Linnaeu’s (1749) Amoenitates
Academicae, described ten species of snakes from Surinam, all but one
of which can be identified. He added Thamnodynastes pallidus (L.) and
Micrurus lemniscatus (L.) to the list of snakes known from the Guianan
region. Gronovius (1756), in describing his own collection, mentioned
18 species of snakes from Surinam, of which four actually come from
Southeast Asia one from Europe, three are unidentifiable and ten could
be identified as Guianan snakes, of which Leptodeira a. annulata (L.)
Philodryas olfersii herbeus (Wied) and Thamnodynastes strigilis
(Thunberg) constitute new faunal records. Linnaeus (1758) based himself
on material present in Swedish collections of which a large proportion
either had been nbtained by purchase from the Netherlands (among
others part of the Seba collection was acquired for the king of Sweden),
or had been collected by Rolander, one of Linnaeus pupils, in Surinam,
or apparently had come from Surinam through the Netherlands along
other channels. In the 10th edition of his Systema Natura Linnaeus only
mentioned three species as coming from Surinam, but in his synonymies
he included many references to Surinam species described by Sundius,
Gronovius and Seba. In Houttuyn's so-called Dutch edition of Linnaeus’s
Systema Natura (1764), which was only partly a translation and pri-
marily an elaboration based on material in his own collection and that
223
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the gruianan reffion. Mcm. Inat. Butantan, 40:219-254,1982.
of e.g., Gronovius, a total of 12 snakes was stated to have come, from
Surinam. Two of these are of Southeast Asian provenance, the other ten
indeed are from Surinam. Houttuyn added two more species to the known
snake fauna of the Guianas, viz. Typhlops reticulatus (L.) and Corallus
caninas (L.). It sems useful to indicated here that the description of Typh¬
lops reticulatus by Linnaeus was based on two descriptions and a plate in
older literature and that he himself apparently did not have any material
of this species available. His synonymy included a reference to Scheu-
chzer’s (1735b) plate 747 fig. 4 and to Gronovius’s description of his
seventh species, the Anguis with 177 ventrals and 37 subcaudals. The
first reference is correct (Dixon & Hendricks, 1979), the second, howe-
ver, is not. After long deliberations both Dixon and I carne independently
to the conclusion that Gronovius did not describe Typhlops reticulatus
but in fact was referring to Amphisbaena fuliginosa L., a wormlizard.
By selecting RMNH 7660 as the neotype, Dixon & Hendrick (1979)
stabilised the nomenclature of Typhlops reticulatus.
Barrère (1741) in his popular account of the natural history of
French Guiana mentioned several species of snakes from that country,
of which only one, Crotalus durissus L., is identifiable.
Fermin (1765) and Hartsinck (1770) gave popular accounts of the
natural history of Surinam, but most of the snakes they mentioned are
difficult to identify. Linnaeus (1766), Laurenti (1768), Linck (1783)
and Gmelin (1789) did not add any new species to the list of known
Guianan snakes. Until the end of the 18th century nearly all material of
Guianan snakes carne from Surinam, which in this context should be
widely interpreted as comprising also eastern Guyana (Berbice and De-
merara). In 1802 Latreille (1802a, b) reported several snakes from
French Guiana, comprising the most common species like Boa constrictor,
anaconda and rattlesnake. Daudin (1803a-d) in his “Histoire naturel-
le.des reptiles” presented a nearly complete compilation of the snakes
at that moment known from the Guianan region, most still only recorded
from Surinam, but also some species that had become known from French
Guiana or Cayenne (as the colony sometimes also was called, in reference
to its capital). Only three species formerly known from the area under
consideration were not included in Daudin’s compilation. On the other
hand he reported five species new for the region, of which Sibon nebulata
(L.) and Pseudoeryx plicatilis (L.) were already known to Science, the
other three ( Clelia c. clelia (Daudin), Tripanurgos compressas (Daudin)
and Micrurus psyches (Daudin)) were described here for the first time.
Fitzinger (1826), basing himself on the literature, added three species
which had been described recently (Leünadophis poecilogyrus amazonicus
Amaral, Xenodon severus (L.) (including X. aeneus Boie from Surinam
in its synonymy) and Micrurus s. surinamensis (Cuvier)).
Our knowledge of Guianan snakes spectacularly increased by the
publication of Schlegel’s (1837) “Essaie sur la physionomie des serpens”.
This book was mainly based on the rich collections of the Rijksmuseum
van Natuurlijke Historie in Leiden, Netherlands which in the eighteen
twenti.es and thirties had in Surinam a very active collector, the phar-
rnacist H. H. Dieperink, who regularly sent large consignments of pre-
224
cm
SciELO
10 11 12 13 14 15
.HOOGMOED, M. S. Snakes of the tfuianan re^ion. Mem. Inst. Hutantan, 46: 219-254,1982.
served material to Leiden (Holthuis, 1959). Moreover, Schlegel had good
contacts with the Paris herpetologists Duméril and Bibron and also used
part of the collections of the Paris museum. From this time on snakes
from other areas within Guiana became known in growing numbers.
Through Schlegeks efforts in 1837 a total of 54 snakes was known from
Guiana. It might become boring to mention all the 21 species added to
the Guianan snake-fauna by Schlegel, but I wish to record here four
which Schlegel described for the first time. They include Dipsas pavonina
Schlegel and Dendrophidion dendrophis (Schlegel), both based on speci-
mens from French Guiana, and Pseustes sulphureus dieperinlcii (Schlegel)
and Cercophis auratus (Schlegel), both described from Surinam and both
with a confused history. The allocation of Dipsas Dieperinkii Schlegel,
1837 was cleared by Brongersma (1937), who considered it a synonym
of Pseustes s. sulphureus as used by Amaral (1930), and by Hoge &
Romano (1969) who considered it a distinct subspecies of Pseustes sul¬
phureus (Wagler). Dendrophis aurata Schlegel, 1837 never has been
allocated properly until now, possibly because it was confused with
Schlegel’s Dryiophis auratus, a synonym of Oxybelis aeneus (Wagler).
The species was described on the basis of a single specimen from Surinam,
collected there by Mr. Dieperink. The species served Fitzinger (1843) as
type of his genus Cercophis. Duméril, Bibron and Duméril (1854) did
not know where to place it and did not pursue the matter. As far as I am
aware, the species was only cited by Schlegel (1858), it was not men-
tioned by Günther (1858) or by Boulenger (1893, 1894, 1896) in their
Catalogues of Snakes in the British Museum, nor by Amaral (1930) or
Peters & Orejas-Miranda (1970) in their respective checklists of South-
American snakes. Romer (1956:580) considered Cercophis a junior syno¬
nym of Oxybelis. Keiser (1974), acting in accordance with my advice,
did not include Dendrophis aurata Schlegel, 1837 in the synonymy of
Oxybelis aeneus (Wagler). I did investigate the type-specimen (RMNH
813), which unfortunately is in a rather poor condition (e.g. the epider-
mis has largely disappeared) but still good enough to allow taxonomic
conclusions. In my opinion this species, described y Schlegel (1837) and
made the type of a ncw genus by Fitzinger (1843), is completely different
from any other known South American snake and therefore properly
should be called Cercophis auratus (Schlegel, 1837). It can be recognised
by a combination of the following characters: scales on the back smooth,
without pits, arranged in 15-15-11 longitudinal rows, of which the verte¬
bral one is enlarged, ventrals (140) fewer than the subcaudals (163),
which are paired, anal divided, a very long slender body and tapering tail,
with the thickest part of the body just anteriorly to the cloaca, head small,
distinctly wider than the neck, mandibular teeth subequal, maxillary
teeth 20 followed by two enlarged, solid teeth, separated by a diastema
from the preceeding teeth. Scalation of the head (Fig. 2) : one pre- and
two postoculars, a small, rectangular loreal, temporais 1+2, eight supra-
labials, fourth and fifth bordering the eye, ten infralabials, five of which
are in contact with the anterior pair of chinshields. This does not seem
the place to speculate on the proper position of this species within the
Colubrids, that would ask for more and preferably recently collected
material to provide us with much needed additional information on the
osteology. However, most likely this is a member of the Xenodontinae.
225
SciELO
HOOGMOED, M. S. Snakes of the ffuianan region. Atem. ln»t. Butanian, 40:219-254, 1982.
Otype
mm
Fipr. 2. Ccrcophia aurntua (Schlegel), lateral and dorsal view of head of holotype, RMNH 813.
The first paper dealing with the reptiles and amphibians of British
Guiana (Troschel, 1848) increased our knowledge of Guianan snakes by
adding five more taxa to the list. Among these were Phimophis guianensis
(Troschel), new to science, and the first mention of Crotalus durissus
ruruima Hoge. This rattlesnake was considered as one species throughout
British Guiana, but specimens from the Coastal savannas (C. d. dryinus
(L.)) and from the surroundings of Mount Roraima on the border of
Guyana, Venezuela and Brazil (C. d. ruruima Hoge) were separately
mentioned. Although the monumental work of Duméril, Bibron & Duméril
(1844, 1854) was a land-mark in the history of herpetology, it did not
substantially contribute to our knowledge of Guianan snakes, because this
work only added six more taxa to the list. Two taxa ( Dipsas v. variegata
(D., B. & D.) and Atractus torquatus (D., B. & D.)) which were (valid-
ly) described here for the first time, had previously been reported from
226
SciELO
cm
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of lhe guianan region. Mem. 1 nst Hutantan, 46:219-254,1982.
the region by respectively Seba (1735) and by Schlegel (1837) (in the
synonymy of this composite Atractus badius). Another one ( Ablabes
purpurans) falis into the synonymy of Liophis miliaris (L.) (Dixon
(1978)), personal communication). Of the six taxa reported for the first
time from Guiana none were new to Science. One of these species ( Typhlo-
phis squamosus (Schlegel) had been reported from Cayenne in the origi¬
nal description, but had not yet been included in general works used to
compile the present survey. Minor additions to the list of Guianan snakes
were made by Günther (1858) (with whose data I combined Gray’s
(1849)), Jan & Sordelli (1860-1881), Kappler (1885), Boulenger (1893,
1894, 1896) and Van Lidth de Jeude (1898, 1904, 1917). AmaraFs (1930)
checklist, based upon a survey of the literature added another ten taxa,
bringing the total up to 91. Roze (1966) compiled the data on Venezuelan
snakes and enlarged the total to 116 by adding to the list 25 new taxa,
which were mainly based on the extension of known ranges into the
Guianas, on the splitting of formerly monctypie taxa, and to a large
proportion (about 1/3) on the description of several new taxa by Roze.
The checklist by Peters & Orejas-Miranda (1970) compiled most known
data on South American snakes and listed a total of 135 from the Guianas.
Hoogmoed (1979) gave a summary of the available information, combi-
ning literature data with those from his own research and from fieldnotes,
mainly on Surinam snakes. At approximately the same time, Lancini’s
(1979) book on Venezuelan snakes appeared and together they increased
the known number of snake taxa in Guiana to 157. Gasc & Rodriguez
(1980b) dealt with the snakes of French Guiana mainly on the basis of
recently collected material and listed for this country a total of 77 taxa
(one of which was mentioned only in the general discussion). Unfortu-
nately they did not sufficiently take into account the old literature and
their list is far from complete. They (1979) described as new Atractus
zidoki, which had also been reported by Hoogmoed (1979) as Atractus sp.
A, and in another paper (1908a) Geophis alasukai, which is a junior
synonym of Atractus flammigerus (F. Boie).
Summarizing, we can say that since the end of the last century the
number of snake-taxa known for the region doubled. Thus, in the past 85
years an equal number of taxa became known as in the previous 229
years.
The gradual increase and present state of our knowledge about
Guianan snakes is reflected in the graph (Fig. 3) and in the appendix 1
which include 159 nominal taxa.
Differences with the list provided by Hoogmoed (1979) are the
result of diverse causes:
1. Oversight of previous literature records.
2. Descriptions of new taxa and new locality data.
3. Identifications of hitherto questionable taxa and re-identific-
ations.
4. Revisions of genera.
5. Hoogmoed (1979) only listed full species, subspecies were not
taken into account.
227
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mem. Inst. Butantan, i6: 219-254, 1982.
228
cm
SciELO
10 11 12 13 14 15
Fig. 3. Graph showing iscrease in knowledge about Guianan snakes. Dates refer to tmblications listed in caption of Appendix.
HOOGMOED, M. S. Snakes of the guianan region. Mem. lnat. Butantan, 46:219-254,1982.
1. Among the first group are Cercophis auratus (Schlegel), Wa-
glerophis merremii (Wagler) and Leptomicrurus schmidti Hoge & Ro¬
mano, for which definite Guianan localities are known (Schlegel, 1837;
Boulenger, 1894 and Gasc & Rodrigues, 1980b; Hoge & Romano, 1966).
Pliocercus euryzonus euryzonus Cope has been reported from Amazonian
Brazil, but it is not clear whether it really does occur in the Guianan
region or just comes close to it. For completeness sake it has been
included here.
2. The second group comprises among others Typhlops minuisqua-
mus, recently described by Dixon & Hendricks (1979), and Atractus
zidoki, described by Gasc & Rodriguez (1979), previously reported as
Atractus sp. A by Hoogmoed (1979). In this group also should be included
Eunectes deschauenseei Dunn & Conant, formerly known from Isla
Marajó only, but recently reported from eastern French Guiana, from
swamps near the river Approuage, by Matz & Matz (1981), who substan-
tiated their report with colour-photographs of living specimens. Hereby
lhe known range of this species is considerably extended to the northwest
and follows a pattern of distribution well known for several other reptiles
and amphibians inhabiting marshy areas in the lower Amazonian region
(Crocodilurus lacertinus (Daudin), Peltocephalus tracaxa (Spix), Mela-
nosuchus niger (Spix) and Hydrolaetare schmidti (Cochran & Goin).
Masticophis mentovarius suhorbitalis (Peters) recently was reported
from the northwestern part of the Guianan region by Lancini (1979),
whereas Wiest (1978) reported Chironius m. multiventris Schmidt &
Walker from the extreme Southern edge. Harris & Simmons (1978)
described the new subspecies Crotalus durissus trigonicus from the
Rupununi savanna in Southern Guyana.
Bothrops eneydae Sandner Montilla is only hesitantly included in
the list of Guianan snakes on the basis of the fact that Hoge & Romano
Hoge (1981) included it in their checklist of poisonous snakes of the
world. However, I did not yet have the opportunity to examine the
origina] description, or the holotype, which apparently already got lost
(Sandner Montilla, 1981, personal communication). Personnally I have
my strong doubts about the validity of this species, but until further
information becomes available it is retained on the list.
3. A number of hitherto questionable identifications could be cor-
rected, either in generic revisions or because additional material became
available for study. Thus, the following synonymies for names in
Hoogmoed (1979) can be listed:
Leptotyphlops sp. A = Leptotyphlops amazonicus Orejas-Miranda
Chironius sp. A = Chironius exoletus (L.)
Chironius bicarinatus = Chironius exoletus (L.)
Chironius cinnamomeus — Chironius scurrulus (Wagler)
Oxyrhopus sp. A = Oxyrhopus formosus (Wied)
Liotyphlops incertus Amaral = Liotyphlops ternetzii (Boulenger)
Aporophis crucifer Ahl = Leimadophis melanotus (Shaw)
Liophis purpurans (D., B. & D.) = Liophis miliaris (L.)
229
cm
2 3
z
5 6
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan retfion. Mem. Inat. Butantan, 46:219-254,1982.
These synonymies need some explanation. Leptotyphlops sp. A was
identified as L. amazonicus on the basis of material seen in Venezuelan
museums and collected during field-work in Venezuela in 1978. Chironius
sp. A was identified as C. exoletus and C. cinnamomeus as C. scurrulus
on the basis of the revision of the genus Chironius by Wiest (1978).
C. bicarinatus from Guiana (Hoogmoed, 1979:275) was based on a num-
ber of specimens seen by me in 1975 in collections in French Guiana
(SEPANGUY, Institut Pasteur) and Surinam (Surinaams Museum),
without access to literature and insufficient material for comparisons.
The specimens compared well with specimens of C. bicarinatus (Wied)
from Brazil present in these collections, and were tentatively identified
as such. However, upon Consulting Wiest (1978) it soon became evident
that in reality they belong to C. exoletus. Thus, the record in Hoogmoed
(1979) of. C. bicarinatus occurring in Guiana is based on a misidentific-
ation. Oxyrhopus sp. A was identified as O. formosus on the basis of
recently collected additional material while taking into account the
remarks made by Gasc & Rodrigues (1980). According to Mr. C. P.
Kofron (1979, personal communication), Liotyphlops incertus identical
with L. ternetzii, a species formerly known from Southern Brazil, Para-
guay and northern Argentina, but recently reported from the area around
Belém by Da Cunha & Do Nascimento (1975). I investigated the holotype
of Aporophis crucifer in the Berlin museum and came to the conclusion
that it is identical with Leimadophis melanotus. According to Dixon
(1978, personal communication) Liophis purpurans is a synonym of L.
miliaris.
4. Typhlops unilineatus has been omitted from the list, because
according to Dixon & Hendricks (1979) this probably is an oriental
species.
A partial revision of the genus Atractus (Hoogmoed, 1980) led me
to consider A. micheli Mocquard and A. subbicinctum (Jan) (the latter
name not mentioned by Hoogmoed, 1979) as synonyms of A. badius
(F. Boie). Also it turned out that two names considered synonyms of
A. badius since 1837 were good species {A. flammigerus (F. Boie), A.
schach (F. Boie)), well differentiated from A. badius in scale characters,
hemipenial morphology and colour pattern. Consequently these names
were restored to species levei. Gasc & Rodrigues (1979), at approxima-
tely the same time, described a new species, A. zidoki, from French
Guiana, which also had been discovered in Surinam. Geophis alasukai
from French Guiana was described by Gasc & Rodrigues (1980a), who
paid much attention to this unexpected find and devoted quite a discussion
to the supposed relationships of this taxon with species of the group
omiltemanus in México. The very strange distribution indeed was explai-
ned away as being the result of an ancient wide distribution having been
interrupted due to vegetational changes as a result of climatic fluctuations.
Examination of the types of Geophis alasukai convinced me that it actually
is identical with Atractus flammigerus. However, I must add that the
genus Atractus is in a state of confusion as becomes evident rapidly
when studying species belonging to this genus. Lack of material of many
species is one of the main factors frustrating thorough taxonomic work
on this group. From the papers by Hoogmoed (1980) and Gasc & Rodri¬
gues (1979, 1980a) it is evident that a revision of the genus is highly
230
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the Kuianan reíçion. Mvm. Inat. liutantan, 46:219-254,1982.
desirable and that it should pay much attention to hemipenial morpho-
logy, scale structure, body proportions and osteology. Until such a revision
is made hypotheses about relationships within this group and about its
zoogeographic affinities remain highly speculative.
5. Whereas Hoogmoed (1979) only listed species, in the present
paper subspecies have been taken into account as well, stablishing the
total number of taxa. It would lead us too far afield to consider these
differences in detail here.
Some of the identiíications leading to my present estimate of 159
snake-taxa for the Guianan region are not beyond doubt as has already
been suggested above in the case of taxa either just or not reaching
Guiana. However, there are some other problems as well. For instance,
Chironius scurrulus, as used by me, may be a composite of two taxa,
either species or subspecies. In this connection I may refer to the
description and pictures of this species in Lancini (1979), which closely
agree with those in Wagler (1824), while all describe the species as being
reddish brown with dark spots, having a lighter belly with darker spots.
Specimens (juveniles, halfgrowns, adults) I have investigated from
Surinam, Peru and Bolivia agree in all scale characters with the
description of C. scurrulus. However, they diífer in colour by being
immaculately grey-green. The taxonomic consequences of this observation
are not yet clear, but investigation of the holotype showed that Dendrophis
viridis Ò., B. & D., 1854 constitutes a synonym of the green form and is
not a synonym of Chironius fuscus (L.) asPeters& Orejas-Miranda (1970)
thought. Boulenger (1894) treated the green form as a separate variety
B. of his C. fuscus. Both Duellman (1978) and Dixon & Soini (1977)
reported the juveniles of C scurrulus to be leaf-green with a gradual
change to a mottled brown pattern in adults. Wiest (1978:249)
synonymised D. viridis with C. scurrulus and attributed the colour
differences to ontogenetic changes, juveniles being green, adults having
various colours, ranging from yellow to black. He also pointed out that
the name C. cinnamomeus was used by recent authors (Hoge, 1964;
Peters & Orejas-Miranda, 1970 (and also Hoogmoed, 1979) for reddish
brown or cinnamon coloured specimens of C. scurrulus and that Natrix
cinnamomea Wagler possibly is a synonym of Pseustes poecilonotus
polylepis (Peters). During a recent study of Spix and Wagler type
specimens in the Zoologische Staatssammlung München (Hoogmoed &
Gruber, in preparation) , one of the syntypes of Natrix scurrula Wagler
(ZSMH 2628/0) was located, so contrary to what Wiest (1978:249),
who actually examined the specimen, and Hoge & Do Maranhão Nina
(1964:74) were led to believe, apparently not all type material of this
species was destroyed in World War II.
Another problem is posed by the species of Thamnodynastes. In
Guiana two species occur: T. pallidus (L.) with an entire anal, smooth
dorsal scales without apical pits, arranged in 17-17-13 rows, 137-160
ventrals, 82-90 paired subcaudals, an entire nasal and a relatively large,
orange eye, and another species with divided or undivided anal, smooth
dorsal scales which have only one indistinct apical pit, arranged in
19-19-15 rows, 137-150 ventrals, 62-75 paired subcaudals, a semidivided
nasal and a relatively small, brown eye, whose identiíication is somewhat
more complicated. Using the key provided by Peters & Orejas-Miranda
231
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mem. Inst. Dutantan, 46:219-254, 1982.
(1970) this species keys out as T. strigatus (Günther), a species from
Southern Brazil. However, in males of the Guiana-form there are no
supra-anal tubercles as in T. strigatus, moreover they do agree fairly well
with the description of T. strigilis (Thunberg), known from the area with
keeled dorsal scales (see e.g. Lancini, 1979, fig. 60), and I tentatively
identified them as T. strigilis. So either T. strigilis has smooth scales in
certain populations (already indicated by Boulenger (1885) when he
described Thamnodynastes Nattereri var. laevis), or T strigatus reaches
the Guianan region as well, or the taxon here tentatively called T. strigilis
is a new species. Dr. Bailey is actively working on these problems, so
I may refer to his paper in this volume.
ZOOGEOGRAPHY
At present 159 snake-taxa belonging to 135 species are known to
occur in the Gianan region. Of these, 29 taxa, belonging to 17 species
are venomous snakes of the families Elapidae and Crotalidae. The
remainder belong to the families Anomalepidae, Leptotyphlopidae, Thyph-
lopidae, Aniliidae, Boidae and Colubridae (table 1).
TABLE 1
Families of Guianan snakes
taxa
species
Anomalepidae
2
2
Leptotyphlopidae
7
7
Typhlopidae
4
4
Aniliidae
2
1
Boidae
9
6
Colubridae
106
98
Elapidae
18
10
Crotalidae
11
7
159
135
When trying to make a zoogeographic analysis of the Guianan region
we should realise that there are widely diverse ecological conditions
within the confines of Giana. The altitude of the region varies from
sea-level to nearly 3000 m, and consequently there are differences in
vegetation related to the altitude. Vegetationtypes to be encountered range
from tropical lowland rainforest and savanna forest to montane forest,
cloud forest and mangrove forest, from lowland savanna to altitudinal
savanna and also include lowland swamp and riverine forest. Especially
the savannas play an important role in the distribution of certain
organisms in South America, by either acting as barriers or as dispersai
232
cm
SciELO
10 11 12 13 14 15
HOOCMOED, M. S. Snakes of the guianan region. Mem. Inat. Butantan, 46:219-254,1982.
routes, depending on the ecological preferences of the organism involved.
They are mainly situated in the western part of Guiana, where they
connect with the llanos of Central Venezuela; in the northern, Coastal
area of the Guianas and Amapá, and in the interior, in the area forming
a diagonal band from northwest to southeast, coinciding with a zone of
lower annual precipitation (figs. 4, 5). During the past decade or so,
the hypothesis has been postulated (Haffer, 1969, 1979; Van der
Hammen, 1974) that under the influence of climatic fluctuations in the
Pleistocene and Holocene the vegetation responded by exhibiting more
or less simultaneous contractions and expansions. During dry climatic
phases the sevannas would expand, and the forest would retract to
refuge-areas in climatically favoured (= relatively wet) areas, thus
offering good opportunities for the extension of savanna-inhabiting
species. During wet climatic phases the opposite would occur, the forest
would expand again and the savannas would retract to relatively dry
areas with unfavourable edaphic factors. Since its propagation this
hypothesis has been used do explain quite satisfactorily distribution
patterns of several groups of animais and plants in South America. For
the rattlesnake Crotalus durissus, a savanna-inhabitant, and also for the
rainforest-inhabitant Lachesis muta, the bushmaster (fig. 6), the
hypothesis offers a good explanation for the facts as we observe them
today. During dry climatic phases the original stock of Crotalus durissus
was able to spread through lowland South America from Central America.
During wet phases different populations became isolated and presently
can be recognised as different subspecies e.g. in Guiana there are four
subspecies known: C. d. cumancnsis Humboldt in the northwestern part
of the area, C. d. dryinus L. in the coastal savannas, C. d. ruruima Hoge
in the border area between Brazil and Venezuela and C. d. trigonicus
Harris & Siimmons on the Rupununi-savanna in Guyana.
Forty five species of Guianan snakes are known to occur on savannas
or in comparable habitats like open, grassy swamps (table 2). Twenty
four of these are restricted to this habitat, the others may be found in
rainforest or in edge-situations as well. The remaining species are
inhabitants of rainforest, montane forest or cloud forest. However, our
knowledge about the ecological requirements of snakes within the forest
or the savanna is very limited. Nevertheless, the main patterns are evident
and we can uso that knowledge in the zoogeographical analysis.
According to their distribution the snakes of the Guianan region can
be grouped into several assemblages. Hoogmoed (1979) discerned eight
main distribution patterns, which were partly subdivided, to yield 12
patterns, for the entire herpetofauna. Gasc & Rodrigues (1980b)
distinguished five for snakes in French Guiana and Duellman (1978)
recognised eight in the herpetofauna of Santa Cecilia in Ecuador, of
which five involve Guianan species as well. The establishment of
distribution patterns is important to answer questions about the origin
of the present fauna and it may also serve to solve the question of how
the fauna reached the region. As stated above, a factor limiting the
possibilities of interpretation is our scant knowledge of the ecological
requirements of snakes, many of which are only known from one or a
few specimens.
233
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mem. Inst. Butantan, 46:219-254, 1982.
80
70
60
50
40
80
70
>3000
2500 -
^ 3000
2000 —
2500
1500 —
2000
■10
10
1000 — 'M,
15 00
<1000
mountains above 2000 m
Fig. 5. Rainfall (mm) distribution in northern South America (after Hoogmoed, 1979).
Of the groups discerned by Hoogmoed (1979), the ones comprising
wide-ranging cosmopolitan species, species with uncertain distributions
and species with disjunct populations in Upper Amazônia and near the
mouth of the Rio Amazonas, do not include any snakes. Twenty five
species from regions as far apart as Europe, South África, Indonésia and
the Antilles have been reported from Guiana, all demonstrably based
on wrongly labelled material and consequently not considered in the
present compilation (appendix). Only one species of snake (Typhlops
lumbricállis (L.) has aparrently succesfully been introduced into Guyana
from the Antilles. The remaining 134 species can be grouped as follows
(table 2, figs. 7, 8, 9) :
235
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mem. lnst. Butantan, 40:219-254,1982.
TABLE 2
Guianan snakes arranged according to their distribution (see text for further
explanation). Species restricted to open formations (mostly savannas) are indicated
with a +, species occurring in open formations, in forest and in edge-situations
(ubiquists) are indicated with a °. Species without a mark are considered as
strictly forest species, which may however occur in forest-edges.
IA. Altitudinal endemics: 6 species, 4.5%.
Atractua duidenaia Roze
+ riveroi Roze
4- Liophia ingeri Roze
IB. Lowland endemics: 20 species, 14,9%.
-f- Leptotyphlopa amazonicua Orejas-Miranda
collaris Hoogmoed
-f- dimidiatua (Jan)
aeptemstriatua (Schneider)
+ Eunectes deachauenscei Dunn & Conant
Dipsas copei (GÜnther)
ApoatolepÍ8 quinquelineata Boulenger
Atractua favae (Filippi)
inaipidus Roze
schach (F.Boie)
2A. Periferal amazonian: 12 species, 9%.
Atractua • latifrona (Günther)
Drepanoidea anomalua (Jan)
Drymolubcr dichroua (Peters)
Imantodea lentiferua (Cope)
Liophia brevicepa Cope
undulatua (Wied)
2B. Amazonian basin: 5 species, 3.8%.
Helicopa hagmanni Roux
polylepia Günther
trivittatua (Gray)
Liophia trebbaui Roze
-f- Thamnodynaatea chimanta Roze
-j- Bothropa eneydae Sandner Montilla
Atractua ateyermarki Roze
trilineatua Wagler
zidoki Gasc «St Rodrigues
Cercophia auratua (Schlegel)
Helicopa hogei Lancini
Liophia canaima Roze
Xenodon ivcmeri Eiselt
Leptomicrurua collaris (Schlegel)
achmidti Hoge & Romano
Micrurua avcryi Schmidt
Ninia hudsoni Parker
P8eudoboa coronata Schneider
+ Thamnodyna8te.8 pallidus (L.)
Xcnopholis 8calaris (Wucherer)
° Micrurua lemniscatua (L.)
P8ychea (Daudin)
Hydropa .nrnrtii . (Wagler)
Rhadinca brevirostris (Peters)
2C. Wideranging amazonian: 41 species, 30.6%.
Leptotyphlopa tenella Klauber
Typhlopa brongcramianua Vanzolini
reticulatua (L.)
Anilina acytale (L.)
CoraU.ua caninua (L.)
° Eunectes murinua (L.)
Dipaaa cateabyi (Sentzen)
indica (Lau renti)
pavonina Schlegel
Atractua badiua (F.Boie)
flammigerua (F. Boie)
Atractua torquatus _JD., B. & D.)
Chironiua carinatua (L.)
° fU8CU8 (L.)
multiventria Schmidt & Walker
0 acurrulua (Wagler)
Erythrolamprus aeacidapii (L.)
Helicopa angulat.ua (L.)
+ leopardinua ( Schlegel)
4 - Hydrodynaatea bicinctua (Herrmann)
Hydropa trianguXaria (Wagler)
3 Widespread: 24 species, 17.9%.
Boa constrictor (L.)
Coralina enydria (L.)
Epicratea ccnchria (L.)
Dipaaa variegata (D., B. & D.)
Chironiua exoletua (L.)
Clelia delia (Daudin)
Dendrophidion dendrophis (Schlegel)
Drymarchon corais (H . Boie)
Imantodea cenchoa (L.)
Leimadophia reginae (L.)
Leptodeira annidata (L.)
Leptophia ahaetúUa (L.)
Leimadophia typhlua (L.)
° Liophia cobclla (L.)
-f- Maatigodryaa bifoaaatua (Raddi)
° boddacrti (Sentzen)
Oxybclia argenteua (Daudin)
Oxyrhopua formoaus (Wied)
-j- Philodryaa olferaii (Lichtenstein)
viridiaaimua (L.)
0 Paeudoeryx plicatüia (L.)
Paeuatea aidphureus (Wagler)
Rhinobothryum lentiginoaun (Scopoli)
+ Thamnodynaatea atrigilia (Thunberg)
° Xenodon severua (L.)
Micrurua hemprichii (Jan)
apixii Wagler
° aurinamensis (Cu vier)
° Bothropa atrox (L.)
bilineatus (Wied)
brazili Hoge
° ca8telnaudi D., B. & D.
+ Lygophis lineatna (L.)
° Oxybelia aencua (L.)
fulgidua (Daudin)
Oxyrhopua petola (L.)
Paeuatea poccilonotus (Günther)
Siphlophia cervinua (Laurenti)
Spilotea pullatua (L.)
° TantiUa melanoccphala (L.)
Tripanurgos compresaua (Daudin)
Xenodon rabdocephalus (Wied)
+ Crotalua duriaaua (L.)
Lacheai8 muta (L.)
236
SciELO
10 11 12 13
HOOGMOED, M. S. Snakes of the guianan region. Mcm. Inst. Butantan, 46: 219-254, 1982.
TABLE 2 (Continued 1)
4. Reaching eastern limit: 14 species, 10.4%.
Leptotyphlopa macrolepis (Peters)
Typhlops minuisquamis Dixon & Hendricks
Sibon nebulata (L.)
Atractua elapa (Günther)
major Boulenger
Drymobiua rhombifer (Günther)
Erythrolamprua bauperthuisii D., B. & D.
+ Lcimadophia melanotua (Shaw)
4- Masticophia mentavarius D., B. & D.
4 - Maatigodryaa pleei (D., B. & D.)
4 - Phimophia guianensia (Troschel)
Pliocercua euryzonua Cope
+ Pscudoboa neuwiedii (D., B. & D.)
Micrurua iaozonua (Cope)
6. From Central or Northeastern Brazil: 12 species, 9%.
Typhlophia aquamofiua (Schlegel)
Liotyphlopa temetzii (Boulenger)
Leptotyphlopa cupinenaia Bailey & Carvalho
4- Cyclagraa gigas (D., B. & D.)
Elapomorphua quinquelineatua (Raddi)
Lcimadophia poccilogyroa (Wied)
Liophia miliaria (L.)
4- Oxyrhopua trigeminus D., B. & D.
4- Phimophia guerini (D., B. & D.)
Waglerophia merremii (Wagler)
Xenodon neuwiedii (Günther)
4- Micrurua ibiboboca (Merrem)
120
100
80
60
40
Fig. 6.
Distribution of Crotalua duriasua and Lachesia muta after Hoge (1965), Hoge & Hoge-Romano
(1981) and Müller (1969).
237
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mm. Inst. Butantan, 40:219-254, 1982.
1 A. Altitudinal endemic are those species with a distribution
restricted to altitudes above 1000 m, usually inhabiting the summit or
talus slopes of one or a few adjacent tepuis (sandstone tablemountains)
(fig. 7). These snakes usually are only known from a few specimens and
the distributions as plotted only reflect our scant knowledge of these
creatures. As was reeently demonstrated for Bothrops lichenosus Roze,
which according to Da Cunha & Do Nascimento (1975) is a synonym
of B. castelnaudi D., B. & D., they may turn out to be identical with
widely distributed lowland species. At the moment we know of six species
(4.5%) of snakes showing this distribution, all in southeastern Venezuela.
1 B. Lowland endemics are those species which occur below
1000 m and whose ranges do not (or only slightly) extend beyond the
Guianan region (fig. 7). They may or may not occur to altitudes over
1000 m. Eventually part of the species considered to belong to this group
may prove to have a much larger distribution. Among the 20 species
(14.9%) this group, not less than 14 are burrowing snakes, which
generally are difficult to collect (genera Leptotyphlops, Apostolepis,
Atractus, Leptomicrurus and Micrurus).
Leptotyphlops
septemstriatus
Fig. 7. Distribution of endemic species, of a species reaching Guiana from the northwest {M. pleci )
and of a species with an Amazonian basin distribution (H. polylepis).
238
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mem. Inst. Butantan, 45:219-254, 1982.
Atractus fl
um
Oxyrhopus
■li
Phimophis
Fig. 8. Distribution of species with a wide range in Amazônia [A. flammigerus), reaching Guiana
from central or northeastem Brazil (O. trigeminus) and reaching eastern limit in Guiana
(P. guianen8Í8).
Combining these data I come to a total of 26 species of endemic
snakes, which ins 19.4% of the total number of snakes known to occur
in Guiana.
2 A. Amazonian species with a periferal distribution along the
northern and western edge of the Amazon basin (fig. 9). These species
apparently are absent from central Amazônia, though their absence there
is not easily explained. Hoogmoed (1979) pointed out that at least for
one toad this distribution seems to be a result of its saxicolous way of
life. For the 12 snakes (9%) showing this distribution pattern, the
presence in Amazônia of close relatives or other ecological competitors
may be the most important reason. I don't think that a distribution
pattern with disjunct populations in upper Amazônia and Guiana, as e.g.
postulated for Ninia hudsoni Parker by Duellman (1978), is real. So
far, most of the species originally thought to show such a pattern have
been found in the intermediate area as well.
2 B. Species of the Amazon basin, occurring on the Southern edge
of Guiana and along the eastern margin, where they may reach French
Guiana (fig. 7). Only five species (3.8%) show this type of distribution,
four of them ( Helicops hagmanni, Roux H. polylepis, Günther H.
trívittatus (Gray), Hydrops martii (Wagler) are waternsnakes and are
restricted to the immediate vicinity of the Rio Amazonas, whereas the
fifth ( Rhadinea brevirostris (Peters), not a watersnake) enters French
Guiana and Surinam apparently from the east.
239
cm
SciELO
10 11 12 13 14 15
*
HOOGMOED, M. S. Snakes of the guianan region. Mcm. Inst. Butantan, .$0:219-254, 1982.
Fig. 9. Distribution of widespread species (B. constrictor), of peripheral
anomalu8) and reaching Guiana from central Brazil (C. gigas).
40
Amazonian species {D.
2 C. Species widespread through Amazônia (fig. 8), often (22
out of 41) differentiated into several subspecies, make up the largest
group, consisting of 41 species (30.6%). Generally these are forest-
-dwellers, a nurnber of them are generalists which may also be found in
edge and open situations and only five (Helicops leopardinus (Schlegel),
Hydrodynastes bicinctus (Hermann), Mastigodmjas bifossatus (Raddi),
Philodryas olfersii (Lichtenstein), Thamnodynastes strigilis (Thunberg))
are restricted to open formations like savannas (two, P. olfersii and M.
bifossatus) and swamps (the remaining three).
3. Widespread species ranging from México or lower Central
America over entire cis-Andean tropical South America (fig. 9). Usually
(18 out of 24) these are differentiated into subspecies along various
patterns. Only two Lygophis lineatus (L.) and Crotalus durissus (L.)
out of 24 species are restricted to savanna habitat, the remainder are
forest-dwellers or generalists. This group constitutes 17.9% of the total.
It comprises both species with a Central American origin like the
rattlesnake C. durissus, and species of South American provenance
ranging into lower Central America, like Corallus enydris (L.).
240
SciELO
10 11 12 13 14 15
cm
HOOGMOED, M. S. Snakes of the pruianan rejçion. Mem. Inat. Butantan, 46:2/ 19-254,1982.
TABLE 3
Comparison of rainforest snake-faunas in different regions in northern
South America
FRF
A
A.
Western Guiana
85
B.
Eastern Guiana
0.80
C.
Bras. part Guiana
0.77
D.
Iquitos
0.71
E.
Santa Cecilia
0.64
Species in common
B
C
D
E
70
60
60
44
91
64
60
44
0.79
71
53
36
0.68
0.68
85
47
0.61
0.58
0.68
53
TABLE 4
Comparison of snake-faunas characteristic for open formations in different regions
in northern South America
Species
in common
FRF
A
B
c
D
E
A.
Western Guiana
20
13
10
2
0
B.
Eastern Guiana
0.72
16
11
2
0
C.
Bras. part Guiana
0.63
0.79
12
2
0
D.
Iquitos
0.18
0.22
0.29
2
0
E.
Santa Cecilia
0
0
0
0
0
TABLE 5
Comparison of open formation snake-faunas (including species restricted to this
habitat and ubiquists) in different regions in northern South America
Species in common
FRF
A
B
C
D
E
A.
Western Guiana
41
34
31
21
15
B.
Eastern Guiana
0.87
37
32
21
15
C.
Bras. part Guiana
0.84
0.91
33
21
15
D.
Iquitos
0.65
0.69
0.74
24
17
E.
Santa Cecilia
0.52
0.56
0.60
0.81
18
241
SciELO
HOOGMOED, M. S. Snakes of the guianan reBion. Mem. Inat. liutantan, .4«:219-254,1982.
4. Species reaching their eastern distribution limit in Guiana may
belong to different assemblages (fig. 7, 8). They may belong to species
occurring in the upper Amazon basin (three), to species of northwestern
South America (eight) or to species occuring in Central and northern
South America (three). There is a relatively large proportion of savanna
inhabitants (5 out of 14) and a low number polytypic species (three out
of 14) in this group. Three of the savanna snakes ( Leimadophis melanotus
(Shaw), Masticophis mentovarius (D., B. & D.), Mastigodryas pleei (D.,
B. & D.)) just reach Guiana in its northwestern part, entering the
savannas in the north of Estado Bolívar in Venezuela, which are connected
with the extensive llanos of Central Venezuela and eastern Colombia;
the other two ( Phimophis guianensis (Troschel) and Pseudoboa neuwiedii
(D., B. & D.)) occur further east in the coastal savannas of the three
Guianas. This group of 14 species constitutes 10.4% of the total.
5. The last group consists of species apparently reaching Guiana
from northeastern, central or even southeastern Brazil (fig. 9). Among
the 12 species (9%) of this group there is again a relatively large
proportion of inhabitants of open formations. Cyclagras gigas (D., B.
& D.) inhabits swampy areas, Oxyrhopus trigeminus D., B. & D.,
Phimophis guerini (D., B. & D.) and Micrurus ibiboboca (Merrem)
inhabit dry, sandy savannas and may be considered as part of the
cerrado-caatinga fauna of central and northeastern Brazil. Of several of
the remaining species it is not clear to me which are their habitat
preíerences, but several more may turn out to be open formation snakes.
The wording employed in the description of several of the groups
mentioned already indicates in which areas the species originated. For
the endemics this is fairly uncomplicated, they apparently evolved within
the confines of Guiana, either in a small isolated area, formed by a tepui,
as is the case in the altitudinal endemics, or they evolved in lowland
refugia in the Guianan region. As among the lowland endemics there
are both forest and savanna species, two types of refugia are important
here: savanna refugia and forest refugia. These refugia are thought to
have been formed under the influence of changing climate in the Pleis-
tocene and Holocene. Under wet climatic conditions savanna inhabitants
were pushed back to relatively small, isolated patches of savanna, pro-
bably in the Roraima region on the border of Venezuela, Brazil and
Guyana, and in the Paroe/Sipaliwini region on the border of Surinam
and Brazil, whereas the forest inhabitants could spread widely through
the area together with the expanding forests. During dry climatic con¬
ditions, the opposite happened: savanna inhabitants roamed far and
lowland forest inhabitants were restricted to isolated patches of forest,
probably the Guiana refuge on the northern versant of the Tumuc Humac
Mountains in Southern Surinam and French Guiana, and the Imerí and
Imataca refuges in southeastern Venezuela (Haffer, 1979:140). These
refuges are situated in areas where rainfall is high, compared with
surrounding regions (figs. 1, 5). In the expanding phase of certain
vegetations, after periods of isolation, when populations of one original
species came in contact, they could either merge completely, with no
reproductive barriers, behaving like one species; they could have diffe-
rentiated enough to show ecological incompatibility, only merging in
242
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the sruianan rejcion. Mem. Inat. Butantan, 46:219-254,1982.
the zone of contact and for the greater part being allopatric, behaving
like subspecies; or they could show complete reproductive isolation and
behave like species, occurring sympatrically without any mixing of gene-
pools. It will be evident that this process was not restricted to Guiana,
but supposedly took place in all of South Amexdca, also influencing the
evolution and distribution patterns of the other groups discerned here.
In Amazônia several areas are recognised which could have served as
refugia for vegetation and fauna with corresponding requirements and
whence the entire Amazon basin could have been repopulated under
favourable climatic conditions. However, distribution within this large
area is not uniform and often different subspecies occur allopatrically.
In the case of species with an Amazonian Arc distribution several closely
allied species or ecologically similar species may be involved.
Sufficient distribution data and at least an indication of ecological
requirements were available to permit comparison of snakefaunas from
within Guiana with areas in the Amazon basin, viz., Iquitos (Dixon &
Soini, 1977) and Santa Cecilia (Duellman, 1978). To this end the Guianan
region was divided into three parts, e.g.: Western Guiana, the area west
of the Essequibo River and Rio Branco; Eastern Guiana, Guyana east
of the Essequibo River, Surinam, French Guiana and Amapa north of
the Rio Araguari; and Brazilian Guiana, the area between Tumuc Humac
Mountains and the Rio Amazonas. To get an impression of the amount
of faunal relationship between these more or less natural subdivisions
of Guiana mutually and with the outside localities mentioned, the Faunal
Resemblance Factor (FRF) was computed for each combination of regions,
2C
using the formula: FRF - (Duellman, 1965, 1966) where Ni and
N v +N,
N 2 are the numbers of species occurring in any two regions and C is the
number of species common to the two regions compared. In tables 3-5 the
total number of species in each locality is on the diagonal (bold face lette-
ring) from upper left to lower right. The number of species common to
each combination of regions is to the right and above the diagonal with
the totais. To the left and below the diagonal are the Faunal Resemblance
Factors. Comparison of the FRF’s for the three Guianan region shows
that there is a great resemblance between those regions, without indica¬
tion of a break somewhere. For forestsnakes there is a fairly good
resemblance with both Iquitos and Santa Cecilia, but in all cases this
resemblance is slightly greater for Iquitos than for Santa Cecilia, which
is farther removed from the Guianan region. The data suggest a gradual
transition along an east-west gradient, both within Guiana and from
Santa Cecilia to Iquitos to Guiana. However, sufficient data from the
area between Iquitos and Guiana are lacking and also, considering the
list of snakes recorded for Santa Cecilia I get the impression that it is
less complete than that of Iquitos. This impression is reinforced by the
FRF between Iquitos and Santa Cecilia for rainforest snakes, 0.68, which
is much less than might be expected for areas not separated by barriers.
Nevertheless, it seems to make sense to postulate that the rainforest
snakes are fairly evenly distributed throughout Amazônia and Guiana,
differences being caused by species with relatively small distribution
243
SciELO
HOOGMOED, M. S. Snakes of the guianan region. Mem. Inat. fíutantan, 46:219-254,1982.
areas in respectively upper Amazônia and lowland Guiana. For snakes
restricted to open formations there also is good resemblance between the
several areas within Guiana, but there is only a slight resemblance with
the Iquitos region and none at all with Santa Cecilia where no open
formations and species associated with them, occur (Duellman, 1978).
When considering all snakes which may be found in open situations, the
picture is different. There is a fair resemblance between Iquitos and
the Guianan regions, and only a moderate one between Santa Cecilia and
the Guianan regions.
From the FRF’s no distinct break between the compared rainforest
snakefaunas is evident and it is only possible to conclude that for these
snakes there are no unsurmountable barriers between the Andes and the
mouth of the Rio Amazonas. Within Guiana rainforest snakes are evenly
distributed. The Essequibo River does not constitute a barrier for them
as it does e.g. for frogs (Hoognoed, 1979). For savanna snakes the
picture is slightly different. Here we find a high resemblance between
the Brazilian part of Guiana and eastern Guiana, whereas the resemblance
of each of these parts with western Guiana is distinctly lower. Upon
closer examination it appears that this difference within Guiana is not
due to the presence of any barrier, but can be explained on the one hand
by the presence in western Guiana of a few snakes which just cross
the Orinoco and enter Guiana from the llanos, and on the other hand
by the presence in eastern Guiana and the Brazilian part of Guiana of
species reaching those areas from central or northeastern Brazil and not
(yet) penetrating beyond Surinam.
CONCLUSIONS
The snakefauna of the Guianan region as we know it today is a
composite of species of different origins. The largest fraction consists
of Amazonian species, of which the ones with a wide range in Amazônia
form the majority. These probably originated in the Napo lowland
rainforest refuge at the eastern base of the Andes in Ecuador/Peru,
whence they dispersed eastward after the onset of wetter climatic
conditions. The group with an Amazonian basin distribution probably
evolved in galleryforests along the Rio Amazonas, whereas the distribution
of snakes having a periferal distribution might be explained by their
having differentiated in submontane forest refuges along the eastern
flank of the Andes. Species with a distribution encompassing both Central
and South America may have originated either in Central or in South
America, from where they expanded into the adjacent region. The
majority is of South American provenance, only five ( Imantodes cenchoa
(L.), Leptodeira annulata (L.), Leptophis ahaetulla (L.), Tantilla
melanocephala (L.) and Crotalus durissus (L.)) invaded South America
from Central America. These species either evolved in savanna refugia
( C. durissus (L.), Lygophis lineatus (L.)), or they evolved in forest
refugia. The majority of the forest species has a wide range in South
America and evolved into subspecies which may be indicative for the
refuges in which the species survived (well demonstrated by for instance
244
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mem. Inst. Butantan, 46:219-254,1982.
the distribution of Lachesis muta (L.)) (fig. 6). Species which only occur
in western Guiana mostly are invaders from the west (NW South
America, Central America) or from the Southwest (Upper Amazonian
basin), but Pseudoboa neuwiedii (D., B. & D.) may be a former endemic
of Guiana that extended its range to the northwest, to reach Panama.
Species occurring in eastern Guiana, not reaching further west than
Surinam, apparently are invaders from the southeast. The savanna
inhabiting species in this group evolved in savanna refugia in
northeastern and central Brazil. They probably reached Guiana via a
wide belt of cerrado-like vegetation, connecting northeastern Brazil with
southeastern Venezuela, during the last arid period (figs. 4, 5). When
the climate became more humid and the forests expanded again, these
species were left stranded on the isolated savannas of Guiana, most of
them in the east. The rainforest species in this group probably evolved
in a rainforest refuge south of Belém.
The lowland endemics mainly are forestsnakes and for them possible
refuges in Guiana are important: Guiana —, Imataca — and Imerí
refuges. Of the altitudinal endemics at least four are savanna species
and they may have evolved in the open formations covering the tops of
certain Venezuelan tepuis. For the other two altitudinal endemics
(Atractus duidensis Roz e,'Liophis trebbaui Roze) habitat data are not
available.
Endemism in Guianan snakes is not particularly high (19.4%)
compared to that in amphibians (52%) or reptiles in general (27%),
but still is considerable. Part of this levei of endemicity undoubtedly is
due to our poor understanding of many South American snake genera,
notably Atractus, Oxyrhopus, Leptotyphlops, and the scarcity of certain
species in collections. Future research should continue assembling
distribution data, which are still badly needed for many species from
many areas, and one of the main objectives should be to gather basic
ecological data, to establish niche preferences, food consumed,
reproductive strategy, etc. When this information becomes available,
zoogeographic analysis of South American snakes can be more fruitful
and more firmly based than hitherto.
ACKNOWLEDGEMENTS
Fieldwork in Venezuela in 1978 was made possible through grants
from the Melchior Treub Foundation of the Royal Dutch Academy of
Sciences and from the Treub Society. Fieldwork in Surinam (1968,
1974/75, 1979/81) was supported by grants W 956-2, W 87-78, W 87-127
and W 84-191 from the Netherlands Foundation for the Advancement of
Tropical Research (WOTRO), which also supported visits to Venezuelan
and Brazilian museums in 1976 (WR 87-1313). Tranks are due to Mr.
J. J. A. M. Wessendorp and Miss I. M. van Noortwijk (both from the
Rijksmuseum van Natuurlijke Historie, Leiden), who respectively
executed figs. 3, 5, 6, 9 and figs. 7, 8.
245
HOOGMOED, M. S. Snakes of the guianan rejrion. Mem. Inat. fíutantan, 46:219-254,1982.
BIBLIOGRAPHIC REFERENCES
AMARAL, A. Estudos sobre ophidios neotropicos. XVIII — Lista remissiva dos
ophidios da região neotropica. Mem. Inst. Butantan, 4:I-VIII, 129-271, 1930.
BARRÈRE, P. Essai sur VHistoire naturelle de la France Equinoxiale ou Dénom-
brement Des Plantes, des Animaux, & des Minèraux, qui se trouvent dans Visle
de Cayenne, les isles de Remire, sur les Côtes de la Mer, & dans le Continent
de la Guyane avec leurs noms differens, Latin, François & Indiens, & quelqu.es
Observations sur leur usage dans la Médecine & dans les Arts: 1-215. Paris,
1741.
BERKEL, A. VAN. Amerikaansche Voyagien, Behelzende een Reis na Rio de
Berbice, Gelegen op het vaste Land van Guiana, aande Wilde-Kust van America,
Mitsgaders een andere na de Colonie van Suriname, Gelegen in het Noorder
Deel van het gemelde Landschap Guiana. Ondermengd met alie de bijzon-
derheden noopende de Zeden, Gewooten en Levenswijs der Inboorlingen, Boom
en Aardgewassen, Waaren en Koopmanschappen, en andere aanmerkelijke
zaaken: 4 pp., Eerste Deel: Reis na Rio de Berbice: 1-104, 2 pis. Tweede Deel:
Reis na Suriname: 105-139. Amsterdam, 1965.
BOULENGER, G.A. A list of Reptiles and Batrachians from the Province Rio
Grande do Sul, Brazil, sent to the Natural-History Museum by Dr. H. von
Ihering. Ann. Mag. Nat. Hist. 15: (5) 191-196, 1885.
- Catalogue of the snakes in the British Museum (Natural History).
Vol. L, containing the families Typhlopidae, Glauconiidae, Boidae, Ilysiidae,
Uropeltidae, Xenopeltidae, and Colybridae aglyphae, part.: I-XIII, 1-447, pis.
I-XXVIII. London, 1893.
- Catalogue of the snakes in the British Museum (Natural History).
Vol. II., containing the conclusion of the Colubridae aglyphae: I-XI, 1-382,
pis. I-XX. London, 1894.
- Catalogue of the snakes in the British Museum (Natural History).
Vol. III., containing the Colubridae (Opisthoglyphae and Proteroglyphae),
Amblycephalidae, and Viperidae: I-XIV, 1-727, pis. I-XXV. London, 1896.
BRONGERSMA, L.D. Herpetological notes XIV-XVI. XV. The type of Dipsas
dieperinkii Schlegel, 1837, and the genus Pseustes Fitzinger, 1843. Zool. Med.,
20(1): 5-6, fig. 1, 1937.
CUNHA, C.R. & NASCIMENTO, F.P. Ofídios da Amazônia. V. Bothrops liche-
nosus Roze, 1958, sinônimo de Bothrops castelnaudi Duméril, Bibron e Duméril,
1854, com nova descrição e comentários. Boi. Mus. Par. Goeldi, Nov. Ser. Zool.,
80: 1-14, tabs. 1-2, 1975.
- Ofídios da Amazônia. VI. Liotyphlops ternetzii (Boulenger, 1896),
ofídio raro e de hábitos subterrâneos, na região leste do Pará (Ophidia, Ano-
malepididae). Boi. Mus. Par. Goeldi, Nov. Ser. Zool., 82: 1-8, fig. 1, 1975.
DAUDIN, F.M. Histoire naturelle, génerale et particulière des reptiles. Tome V:
1-361, pis. LIX-LXX. Paris, 1803a.
- Histoire naturelle, génerale et particulière des reptiles. Tome VI:
1-447, pis. LXXI-LXXX. Paris, 1803b.
Histoire naturelle, génerale et particulière des reptiles. Tome VII:
1-436, pis. LXXXI-XCII. Paris, 1803c.
Histoire naturelle, génerale et particulière des reptiles. Tome VIII:
1-439, pis. XCIII-C. Paris, 1803d.
DESCAMPS, M.; GASC, J.P.; LESCURE, J. & SASTRE, C. Étude des écosystemes
guyanais. II. Données biogéographiques sur la partie orientale des Guyanes.
C.R. Soe. Biogéogr., 467: 55-82, figs. 1-15, 1978.
DIXON, J.R. The Neotropical Colubrid Snake Genus Liophis. The Generic Concept.
Contr. Biol. Geol. Milw. Publ. Mus., 31:1-40, figs. 1-2, tables 1-3, 1980.
DIXON, J.R. & HENDRICKS, F.S. The wormsnakes (family Typhlopidae) of the
Neotropics, exclusive of the Antilles. Zool. Verh., 173: 1-39, figs. 1-10, 1979.
246
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the Kuianan reítion. Mem. Inst. Rutantan, J,6\ 219-254,1982.
DIXON, J.R. & SOINI, P. The reptiles of the upper Amazon basin, Iquitos region,
Peru. II. Crocodilians, turtles and snakes. Contr. Biol. Geol. Milw. Publ. Mus.,
12: 1-91, 1977.
DUELLMAN, W.E. A biogeographic account of the herpetofauna of Michoacan,
México. Univ. Kansas Publ. Mus. Nat. Hist., 15( 14): 627-709, figs. 1-5, tables
1-14, 1965.
The Central American herpetofauna: An ecological perspective. Copeia
1966(4): 700-719, figs. 1-8, tables 1-5, 1966
- The Biology of an Equatorial Herpetofauna in Amazonian Ecuador.
Univ. Kansas Mus. Nat. Hist. Misc. Publ., <75:1-352, figs. 1-198, tables 1-34,
pis. I-IV, 1978.
DUMÉRIL, A.M.C. & BIBRON, G. Erpétologie générale ou histoire naturelle com-
plète des reptiles, t.6: I-XII, 1-609, 1 p., 1844.
DUMÉRIL, A.M.C.; BIBRON, G. & DUMÉRIL A. Erpétologie générale ou histoire
naturelle complète des reptiles, 7(1): I-VII, 4pp., I-XVI, 1-780; 7(2): I-XII,
781-1536. Paris, 1854.
FERMIN, P. Histoire naturelle de la Hollande équinoxiale: ou description des
animaux, plantes, fruits et autres curiosités naturelles, qici se trouvent dans
la colonie de Surinam; avec Leurs Noms différents, tant François, que Latin,
Hollandois, Indiens & Négre-Anglois: 1-XII, 1-240, 1 pl. Amsterdam, 1765.
FITZINGER, L.I. Neue Classification der Reptilien nach ihren natürlichen
Verwandschaften. Nebst einer Verivandschafts-Tafel und einem Verzeichnisse
der Reptilien-Sammlung des K.K. Zoologischen Museum’s zu Wien, 1826. 8pp.,
1-66, 1 table.
Systema Reptilium. Fasciculus primus: Amblyglossae, 1-106, 1-VI.
GASC, J.P. & RODRIGUES, M.T. Une nouvelle espèce du genre Atractus (Colu-
bridae, Serpentes) de la Guyane française. Buli. Mus. natn. Hist. nat. Paris,
4® ser., 1, A (2): 547-557, figs. 1-6, 1979.
Sur la présence du genre Geophis (Colubridae, Serpentes) dans la
région guyanaise. Description d’une nouvelle espèce de Guyane française. Buli.
Mus. natn. Hist. nat., Paris, 4® ser., 1, A(4): 1121-1130, figs. 1-4, pl. 1., 1980a.
Liste préliminaire des Serpents de la Guyane française. Buli. Mus.
natn. Hist. nat., Paris, 4® ser., 2, A(2): 559-598, figs. 1-12, 1980b.
GMELIN, J.F. Systema Naturae per Regna tria Naturae, secundum Classes, Ordines,
Genera, Species; cum Caracteribus, Differentiis, Synonymis, Locis. Tome I,
Pars III, 1033-1056. Lyon, 1789.
GRAY, J.E. Catalogue of the specimens of snakes in the collection of the British
Museum: I-XV, 1-125. London, 1849.
GRONOVIUS, L.T. Amphibiorum Animalium Historia Zoologica exhibens Amphi¬
biorum, qui in Museo Laurentii Theodori Gronovii, J.U.D. adservantur, descr-
iptiones ordine systematico. In: Musei Ichtologici. Tomus secundus sistens
piscium indigenorum & nonnullorum exoticorum, quorum maxima pars in Museo
Laurentii Theodori Gronovii, J.U.D. adservator, nec non quorandam in aliis
Muscis observatorum descri ptiones. Accedunt nonnullorum exoticorum Piscium
icones aeri incisae, et Amphibiorum animalium. Historia Zoologica: 47-88.
Leiden, 1756.
GÜNTHER, A. Catalogue of Colubrine snakes in the collection of the British
Museum, London: I-XVI, 1-281. London, 1858.
HAFFER, J. Speciation in Amazonian Forest Birds. Science, 165: 131-137, figs.
1-6, 1969.
- Quaternary Biogeography of Tropical Lowland South America. In:
W.E. Duellman (ed.) : The South American Herpetofauna: Its origin, evolution,
and dispersai. Univ. Kansas Mus. Nat. Hist. Monogr. 7:107-140, figs. 5.1-5.11,
app. 5.1., 1979.
247
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mem. Inst. Butantan, 46:219-254,19X2.
HAMMEN, T. van der. The Pleistocene changes of vegetation and climate in
tropical South America. J. Biogeogr., 1 (1) : 3-26, figs. 1-22, 1974.
IIARRIS, H.S. & SIMMONS, R.S. A new subspecies of Crotalus durissus (Serpen¬
tes: Crotalidae) from the Rupununisavanna of Southwestern Guyana. Mem.
Inst. Butantan, ltO/bl: 305-311, figs. 1-2, 1978.
HARTSINCK, J.J. Beschryving van Guiana, of de Wilde Kust, in Zuid-America,
Betreffende de Aardrykskunde en Historie des Lands, de Zeeden en Gewoontes
der Inwooners, de Dieren, Vogeis, Visschen, Boornen en Gewassen, ais mede de
eerste Ontdekhing dier Kust, de Bezittingen der Spanjaarden, Franschen en
Potugeezen en voornaamelijk de Volkplantingen der Nederlanderen, ais Essequebo,
Demarary, Berbice, Suriname, En derzelver Rivieren, met de noodige Kaarten
en Afbeelingen der Forten, waarby komt eene verhandeling over den Aart en
de Gewoontes der Neger-Slaaven. Alies uit echte stukken opgesteld. Vol. 1:
I-XII, 4pp., 1-520, 9 pis. Vol. 2: 521-962, 15 pp. Asterdam, 1770.
HOGE, A.R. Notes on Lygophis Fitzinger. Revalidation of two sub-species. Mem.
Inst. Butantan, 24(2): 245-268, figs. 1-5, 1 map. pl. 1, tables, 1952.
Serpentes da Fundação “Surinaam Museum”. Mem. Int. Butantan,
50(1960-62) : 51-64, 1 map, 1964.
Preliminary account of neotropical Crotalinae (Serpentes Viperidae).
Mem. Inst. Butantan, 52:109-184, maps 1-10, pis. 1-20, 1965.
& MARANHÃO NINA, A.C. Serpentes coletadas pelo Instituto Na¬
cional de Pesquisas da Amazônia. Mem. Inst. Butantan, 30 (1960-62) : 71-96,
maps 1-3, pis. 1-11, 1964.
& ROMANO, S.A.R.W.D.L. Leptomicrurus in Brasil (Serpentes-
Elapidae). Mem. Inst. Butantan, 32: 1-8, figs. 1-3, 1966.
& ROMANO, S.A. Notes on Pseustes dieperinckii (Schlegel) Ser¬
pentes. Mem. Inst. Butantan, 3K :89-92, 2 figs., 1969.
- & ROMANO-HOGE, S.A.R.W.L. Poisonous snakes of the world.
Part 1.. Checklist of the pit vipers. Viperoidea, Viperidae, Crotalinae. Mem.
Inst. Butantan, b2/b3 (1978/79) : 179-310, figs. 1-66, 1981.
HOLTHUIS, L.B. The Crustacea Decapoda of Suriname (Dutch Guiana). Zool.
Verh., 44: 1-296, figs. 1-68, pis. I-XVI, maps 1-2, 1959.
HOOGMOED, M.S. The Herpetofauna of the Guianan Region. In: W.E. Duellman
(ed.) : The South American Herpetofauna: Its origin, evolution, and dispersai.
Univ. Kansas Mus. Nat. Ilist. Monogr., 7: 241-279, figs. 10.1-10.13, tables
10.1-10.8, app. 10.1, 1979.
- Revision of the genus Atractus in Surinam, with the resurrection of
two species (Colubridae, Reptilia). Notes on the herpetofauna of Surinam VII.
Zool. Verh., 175: 1-47, figs. 1-17, pis. 1-6, table 1, 1980.
HOUTTUYN, M. Natuurlyke Historie of uitvoerige beschryving der dieren, planten
en mineralen, volgens het samenstel van den heer Linnaeus. 1764. vol. 1(6):
8 pp., 1-562, pis. 50-56.
JAN, G. & SARDELLI, F. Iconographie générale des Ophidiens. 1860-66. Tome I,
livr. 1-17: 1-11.
- Iconographie générale des Ophidiens. 1866-70. Tome II, livr. 18-34: 1-9.
- Iconographie générale des Ophidiens. 1870-81. Tome III, livr. 35-50: 1-11.
JURIEV, K.B. Albert Seba and his contribution to the development of herpetology.
In: Ananjeva, N.B., and L.J. Borkin. The fauna and ecology of Amphibians aríd
Reptiles of the Palaearctic Asia. Acad. Sc. USSR. Proc. Zool. Inst., 101 : 109-120,
figs. 1-2, 1981.
KAPPLER, A. Die Tierwelt im Hollandischen Guiana. Das Ausland Wochenschrift
für Lânder und Volkerkunde 58, no. 27, 6 July 1885 pp. 537-539, no. 40, 5 October
1885, pp. 798-800, no. 41, 12 October 1885, pp. 815-818, no. 42, 19 October 1885,
pp. 838-840, no. 43, 26 October 1885, pp. 857-859.
248
cm
SciELO
10 11 12 13 14 15
HOOCiMOED, M. S. Snakes of the pruianan rejçion. Mem. Inst. Butantan, 40:219-254,1982.
KEISER, E.D. A systematic study of the neotixipical vine snake Oxybelis aeneus
(Wagler). Buli. Tex. Mem. Mus., 22 \ 1-51, figs. 1-3, tables 1-14, 1974.
LANCINI, V.A.R. Serpientes de Venezuela, p. 1-262, figs. 1-119. Caracas, 1979.
LATREILLE, P.A. In: C.S. Sonnini & P.A. Latreille: Histoire naturelle des
reptiles, avec figures dessinées d'après nature. Vol. III: 1-335, 6 pis., 1 table.
Paris, 1802a.
- In: C.S. Sonnini & P.A. Latreille: Histoire naturelle des reptiles, avec
figures dessinées d’après nature. Vol. IV: 1-410, 13 pis. Paris, 1802b.
LAURENTI, J.N. Synopsin reptilium, p. 1-214, pis. I-V. Vienna, 1768.
LESCURE, J. Diversité des origines biogéographiques chez les Amphibiens de la
region guyanaise. In: H. Descimon (ed.) : Biogéographie et evolution en
Amerique tropicale. Publ. Lab. Zool. E.N.S., 9: 53-65, map 1, 1 map., 1977.
LIDTH DE JEUDE, J.T. van. Catalogue ostéologique des poissons, reptiles et
amphibiens. Mus. Hist. Nat. Pays-Bas X(2): Reptiles, 2 pp., 1-52. Leiden, 1898.
- Reptiles and batrachians from Surinam. Notes Leyden Museus. 1904.
25: 83-94, pl. 7.
Articles on snakes. In: H.D. Benjamins & J.F. Snelleman. Encyclo-
paedie van Nederlandsch West-Indiê, I-X, 2 pp., 1-782. 's Gravenhage/Leiden,
1914/1917.
LINCK, J.H. Index Musaei Linekiani, oder kurzes systematisches Verzeichniss der
vornehmsten Stücke der Linckischen Naturaliensammlung in Leipzig. Erster
Theil: I-XXXVI, 1-297. Leipzig, 1783.
LINNAEUS, C. Amoenitates Academicae, seu dissertationes variae Physicae, Me -
dicae, Botanicae. Vol. I: 6 pp., 1-610 9 pp., 15 pis., 1749.
- Systema Naturae per Regna tria Naturae, secundum Classes, Ordines,
Genera, Species, cum characteribus, differentiis, synonymis, Locis. Ed. 10. Tomus
I: 1-823. Stockholm, 1758.
Systema Naturae per Regna tria Naturae, secundum Classes, Ordines,
Genera, Species cum characteribus, differentiis, synonymis, Locis. Ed. 12.
Tomus I: 1-532. Stockholm, 1766.
MATZ, G., & MATZ, J. Les Boidés ou Serpents Constricteurs. 7. Eunectes Wagler.
Aquarama, 15(61) :37-39, 3 figs., 1981.
MERIAN, M.S. Metamorphosis insectorum Surinamensium. In qua Erucae ac
Vermes Surinamenses, cum omnibus suis Transformationibus, ad vivum deli-
neantur <fe describuntur, singulis eorumin Plantas, Flores & Fructus collocatis,
in quibus reperta sunt; Tum etiam Generatio Ranarum, Bufonum rariorum,
Lacertarum, Serpentvm, Araneorum & Formicarum exhibetur; Omnia in Ame¬
rica ad vivum naturali magnitudine picta atque descripta, 1705a., 4 pp., 1-60,
pis. 1-60.
- Metamorphosis Insectorum Surinamensium. Ofte Verandering der Suri-
naamsche Insecten. Waar in de Surinaamsche Rupsen en Wormen met alie des
zelfs Veranderingen na het leven afgebeeld en beschreeven worden, zynde elk
geplaast op die Gewassen, Bloemen en Vruchten, daar sy op gevonden zyn;
waar in ook de generatie der Kikvorschen, wonderbaare Padden, Hagedissen,
Slangen, Spinnen en Mieren werden vertoond en beschreeven, alies in America
na het leven en levensgroote geschildert en beschreeven, 1705b. 4 pp., 1-60,
pis. 1-60.
MÜLLER, P. Vertebratenfaunen brasilianischer Inseln ais Indikatoren für glaziale
und postglaziale Vegetationsfluktuationen. Zool. Anz. Suppl., 55:97-107, figs.
1-12, 1969.
PETERS, J.A. & OREJAS-MIRANDA, B. Catalogue of the Neotropical Squamata:
Part I. Snakes. Buli. U.S.N.M., 257:1-VIII, 1-347, 1970.
ROMER, A.S. Osteology of the Reptiles. I-XXI, 1-772, figs. 1-248. Chicago, 1956.
ROZE, J. La taxonomia y zoogeografia de los ofidios en Venezuela. Ed. Bibl. 28.
Col. Cienc. Biol. III: 1-362, figs. 1-79, maps 1-80. Caracas, 1966.
249
cm
SciELO
10 11 12 13 14 15
HOOGMOED, M. S. Snakes of the guianan region. Mem. Inst. Rutantan, 40: 219-254,1982.
SANDNER MONTILLA, F. Nueva especie dei Gen. Bothrops (Crotalidae) de la
Gran Sabana, Edo. Bolívar. Bothrops eneydae nsp. Mem. Cien. Ofidiología,
7:1-4, 1976.
SCHEUCHZER, J.J. Geestelyke Natuurkunde (Physica Sacra), 13. Amsterdam,
1736a.
Geestelyke Natuurkunde, 15. Amsterdam, 1735b.
Geestelyke Natuurkunde, 14. Amsterdam, 1738.
SCHLEGEL, H. Essai sur la physionomie des serpens. Partie générale: I-XXVIII,
1-251. Partie descriptive: 1-606, I-XV, 1 p. La Haye, 1837.
-Handleiding tot de beoefining der dierkunde. Vol. II: I-XX, 1-628,
2 pp. Breda, 1858.
SEBA, A. Locupletissimi rerum, naturalium thesauri accurata descriptio, et iconobus
artificiossissimis expressio, per universam physices historiam, 1734. Vol. I:
34 pp., 1-178, 2 pis., pis. 1-111.
Locupletissimi rerum naturalium thesauri accurata descriptio, et iconobus
artificiosissimis expressio, per universam physices historiam. 1735. Vol. 2: 34 pp.,
1-154, 1 pl-, pis. 1-114.
SUNDIUS, P. Surinamensia Grilliana. In: C. Linnaeus. Amoemitates Academicae.
1749. 483-508, pl. 17.
TROSCHEL, F.H. Amphibien. In: R. Schomburgk: Reisen in British Guiana, in
den Jahren 18U0-181ÍU- Im Auftrag Sr. Májestât des Kònigs von Preussen ausge-
führt von Richard Schomburgk. 1848. Vol. 3. Versuch einer Fauna und Flora
von Britisch-Guiana: 645-661.
WAGLER, J. Serpentum Brasiliensium species novae ou Histoire Naturelle des
espèces notivelles de serpens, recueillies et observées pendant le voyage dans
Vintérieur de Brésil dans les années 1817, 1818, 1819, 1820 exécuté par de Sa
Majesté le Roi de Bavière, publiée par Jean de Spix. 1824. 1-75, pis. 1-26.
WARREN, G. An Impartial Description of Surinam upon The Continent of Guiana
in America. With a History of several strange Beasts, Birds, Fishes, Serpents,
Insects, and Customs of that Colony, & c. 4 pp., 1-28. London, 1667.
- Een onpartydige Beschrijvinge van Surinam, Gelegen op het vaste Landt
van Guiana in America. Mistgaders een Verhael van alie vreemde Beesten,
Vogeis, Visschen, Slangen, ende Wormen: Gelijck mede van de Gewoonheden
ende Manieren van deze Colonie: lp., 1-20. Amsterdam, 1669.
WIEST, J.A. Revision of the neotropical snake genus Chironius Fitzinger (Serpentes,
Colubridae). Unpublished thesis Texas A & M University, 1978.
250
cm
2 3
z
5 6
10 11 12 13 14 15
HOOGMOED, M. S.
Snakes of the guianam region.
Mem. Inst. Butantan, 46: 219-254, 1982.
SciELO
10 11 12 13 14
cm
HOOGMOED, M. S.
Snakes of the guianam region.
Mem. lnat. Butantan, 46:219-254, 1982,
10 11 12 13 14
cm
HOOGMOED, M. S.
Snakes of the guianam region.
Mem. Inst. Butantan, 46:219-254, 1982.
10
li
12
13
14
trigonieut.i
<L.)
Mem. Inat. fíutantnn
ifí: 255-274, 19K2
PROBLEMS AND APPROACHES IN THE
INTERPRETATION OF THE EVOLUTIONARY
HISTORY OF VENOMOUS SNAKES
John E. CADLE *
ABSTRACT: Data from the literature bearing on the phylogenetic
relationships among higher taxa of advanced snakes are reviewed
in an attempt to resolve the question of how many parallel
evolutionary events have resulted in front-fanged venom delivery
Systems. Two specific events, that of the New World coral snakes
(Micrurines) and the African mole viper (Atractaspis ), are
discussed in detail, and molecular evidence comprising immuno-
logical comparisons of serum albumins are brought to bear on
the relationships of these taxa. The molecular evidence do not
support the hypothesized affinity of either of these groups to
colubrids, and strongly support the relationship of micrurines to
the elapids. Atractaspis is not unambiguously allied with either
viperids or elapids by molecular criteria, and may represent a
lineage independent of these and of the colubrids. It is concluded
that there are reliable data upon which to suggest the parallel
evolution of front-fanged venom delivery systems in at most
three lineages: Atractaspis, viperids, and elapids. Hypotheses
suggesting the evolution of these systems from within colubrids
are discounted.
Problems with the current data base and approaches to the
phylogeny of advanced snakes are highlighted, and suggestions
for formulating and testing additional hypotheses are made.
Front-fanged venom delivery systems in advanced snakes may have
evolved fewer times than some current theories suggest, but more
robust phylogenetic hypotheses are necessary to formulate specific
tests.
INTRODUGTION
The adaptive radiation of advanced snakes (Caenophidia or Colu-
broidea) has produced a diverse array of species that inhabit most of
the world’s terrestrial habitats, as well as some aquatic and marine forms.
They are traditionally divided into three families, the Colubridae con-
taining about 80% of the species, and two front-fanged venomous groups,
Elapidae and Viperidae, with less extensive radiations. Numerous pro¬
blems exist with attempts to reconstruct the evolutionary relationships
Museum of Vertebrate Zoolojry, Univeraity of Califórnia, U.S.A.
255
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Prcblems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Inst. Butantan, -40:255-274, 1982.
and history of these groups. The paucity of fóssil material eombined
with extensive parallelism in morphological features (Rabb and Marx,
1973; Underwood, 1967) has prevented the formulation of robust phylo-
genetic hypotheses, resulting in considerable instability of higher taxo-
nomic categories.
One of the pervasive morphological themes among the advanced
snakes is the evolution of venom delivery systems (Underwood, 1967;
Rabb and Marx, 1973). Though some members of the Colubridae show
no dentitional or other specializations associated with venom delivery,
many species have enlarged rear teeth associated with specialized
venom-secreting (Duvernoy’s) glands, and species of two genera
(Dispholidus anã Thelotornis) are known to be highly venomous. The
front-fanged venomous snakes exhibit two structurally different types
of venom apparatus. Proteroglyph dentition, consisting of hollow fangs
on relatively elongate and non-rotatable maxillary bones, is found in
all elapids. In viperids, on the other hand, the fang-bearing maxillary
bone is extremely short and rotatable so that the fangs can be erected
(solenoglyph dentition). In addition, the elapids and vipers differ in
other aspects of the morphology of the venom apparatus (muscles,
glands) and they differ generally with respect to the biochemical nature
of the components of the venom itself (Kochva, 1979; Lee, 1979).
Much of the taxonomic instability of the advanced snakes centers
on the questions of how many times particular venom delivery systems
have evolved (see Bougeois, 1965; McDowell, 1968; and Savitzky, 1978
for discussions). A criticai question has been whether or not the
front-fanged venomous snakes (Viperidae and Elapidae, omitting for
the present the problematic genera Homoroselaps, Atractaspis, and
Micrurus) stemmed from a common ancestor with front fangs, or whether
they represent independent derivations of specialized venom delivery
systems. Boulenger (1893) proposed that vipers and elapids had inde¬
pendent origins among the colubrid snakes, and subsequent work on
jaw musculature (Haas, 1938, 1952, 1962), trunk musculature (Mosauer,
1935), and the venom gland and its musculature (Kochva, 1962, 1963,
1978) reinforced this view. Other workers (Mahendra, 1938; Bogert,
1943; Johnson, 1955, 1956; Dowling, 1959; Marx and Rabb, 1965;
Klauber, 1972; Rabb and Marx, 1973) adhered to the view advocated
by Cope (1900) that the viperids and elapids were more closely related
to each other than either was to the colubrids. This particular problem
is a reflection of a more general problem encounterd in attempts to
unravel phylogeny among advanced snakes: How are the parallelisms,
to be recognized?
Recent discussions of the evolution of venom delivery systems in
snakes have increasingly invoked parallelism to explain the attainment
of front-fanged conditions (proteroglyphy or solenoglyphy) in presumably
unrelated taxa of advanced snakes. Currently, there are five such
postulated parallel events described in the literature: Viperidae, Elapidae,
Atractaspis, Homoroselaps , and New World coral snakes. Fouin (1969)
suggested a sixth parallel attainment of a front-fanged venom delivery
sytem in the elapid genus Elapsoidea, but this work has been reinterpreted
256
CADLE, J. E. Prcblems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Inst. Butantan, 46:255-274, 1982.
by Savitzky (1978) as not supporting such a hypothesis and it will not
be considered further here.
Tests of hypotheses of parallelism must begin with an hypothesis
of the evolutionary relationships among the taxa involved, for parallelism
is evidenced by the appearance of identical derived character states in
nonsister taxa. Thus, characters evolved in parallel will be discordant
with a phylogeny based on characters which accurately reflect the
evolutionary history of a particular group. For anlyses of parallelism,
the reference phylogeny should be supported using as many character
sets as possible. Morphological data are commonly used to construct
these phylogenetic hypotheses, though any data which can be analyzed
phylogenetically can provid useful information. Recently, molecular data
have made significant contributions in this regard (see for examples,
Cronin and Meikle, 1979; Sarich and Cronin, 1976; Larson et al., 1980).
Thes data are especially useful as an independent assessment of rela¬
tionships based on morphological criteria, and can be used alone or in
conjunction with morphological data to corroborate or refute specific
phylogenetic hypotheses. Because molecular evolution can be shown to
be a largely divergent process (Wilson et al., 1977), it can be extremely
valuable in allowing the detection of parallelism in morphology. Recent
applications of molecular data to evaluate suggested cases of parallelism
have corroborate the monophyly of the ratite birds Prager et al., 1976)
and of the hystricognath rodents (Sarich and Cronin, 1980), and have
shown the association of the catarrhine and platyrrhine primates (Sarich
and Cronin, 1976, 1980), of the giant panda with the bears (Sarich,
1973), of Cynocephalus (Dermoptera) with the primates (Cronin and
Sarich, 1975), and of the New World coral snakes with other elapids
(Cadie and Sarich, 1981). In each of these cases, the hypothesis of
parallelism in the morphology of the taxa concerned has been refuted.
A detailed analysis of the relationships among suprageneric taxa
of advanced snakes from the standpoint of molecular data requires data
from a broader array of taxa than are presently available, and will be
the subject of future reports. Here I restrict my discussion to two
examples which have figured prominently in discussions concerning the
parallel acquisition of front-fanged venom delivery systems in snakes,
and which illustrate my approach in the application of molecular data to
problems in snake systematics. I will then highlight some of the problems
encountered in attemps to analyze the evolution of snake venom delivery
systems, and put these into a more general perspective relative to the
pbenomenon of parallelism and the phylogeny of such complex adaptations.
The approach used involves immunological comparisons of serum
albumins with the microcomplement fixation assay, a procedure described
in detail by Champion et al., (1974). This method basically detects
sequence resemblance between homologous proteins in different species
by using antisera to proteins from references species. The data I will
discuss are expressed in albumin immunological distance units (AID
units), wich may be subjected to a variety of numerical techniques to
construct hypotheses of phylogenetic relationships. For further discussion
of these approaches see Champion et al. (1974), Sarich and Cronin (1976),
and Prager and Wilson (1978).
257
CADLE, J. E. Problems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. ln&t. fíutantan, 46:265-274, 1982.
The two examples I discuss are the New World coral snakes
(Savitzky, 1978) and the African mole viper Atractaspis (Bourgeois,
1965). Both of these groups are front-fanged venomous snakes (proter-
oglyphous and solenoglyphous respectively) and were seen as derived
from specific colubrid lineages. According to these phylogenetic
hypotheses their venom delivery systems would be derived in parallel
with those of true elapids and vipers.
The immunological data bearing on the relationships of the
micrurines have been extensively discussed elsewhere (Cadie and Sarich,
1981), and will only be briefly reviewed here. Immunological data bearing
on the second case, Atractaspis, are as yet incomplete, but the data now
available are at variance with some interpretations of the relationships
of this genus, and they suggest areas were more work is needed to
resolve the phylogenetic affinities of this enigmatic snake. A more
detailed consideration of the molecular data por Atractaspis will form a
separate report.
THE NEW WORLD CORAL SNAKES (MICRURINES)
New World coral snakes ( Micruroides and Micrurus) are a speciose
(approximately 50 species) but morphologically a rather conservative
group distributed from the Southern United States to Central Argentina.
Traditionally coral snakes have been considered the sole New World
representatives of the family Elapidae (McDowell, 1967, 1969). Howewer,
Savitzky (1978) suggested that these snakes were derived in situ in
the neotropics from snakes allied to Apostolepis and Elapomorphus
(“elapomorphines”), part of a very extensive New World colubrid
radiation, the xenodontines.
Apostolepis and Elapomorphus are widely distributed throughout
much of South America east of the Andes, but especially in southeastern
Brasil and the surrounding region. They exhibit a number of features
associated with fossoriality, including fusion of head scales, robust nasal
complex, reduced tooth number, depressed vertebrae, and short quadrates,
and many of these features are also found in micrurines (Savitzky, 1978).
Savitzky suggested that for many morphological characteristics with the
exception of the venom delivery system, the morphological character
states of extant elapomorphines could be arrayed in a smooth morphocline
with those of micrurines, and he used this to argue for a close relation-
ship between the two groups. Savitzky regarded similarities in the
venom delivery system between micrurines and Old World elapids as
parallel attainments, and suggested that such adaptive features would
likely arise in parallel.
Cadie and Sarich (1981) compared serum albumins from represen-
tative elapids, micrurines, and xenodontines by microcomplement fixation.
Using antisera to xenodontine species the average immunological distance
to species of micrurines are very similar to those measured to Old
World elapid species (Table 1), indicating no particular xenodontine-
micrurine affinitries. Micrurus albumin is more similar to those of the
258
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Problems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Inat. Butantan, 46:255-274, 1982.
Old World elapids than of xenodontines [the similar average distances
to xenodontine species using either Anti -Micrurus or Anti-xenodontine
sera partly reflects the conservative nature of the elapid albumins (Cadie
and Sarich, 1981) and partly the observation that xenodontines are not
a natural phylogenetic grouping (Cadie, in prep.)]. Cadie and Sarich
lacked a sample of an elapomorphine species for biochemical analysis.
Their conclusions, howewer, were justified since there is little question
that this group comprises part of the xenodontine radiation, several
species of which were included in their study. An analysis of albumin
immunological data on seven genera of advanced snakes (Cadie and
Sarich, 1981, Table 1) resulted in the phylogenetic hypothesis reproduced
here as Fig. 1. Micrurus associates unambiguously with Laticauda, an
elapid suggested by MacDowell (1967, 1969) to be among the closest
living relatives of the micrurines. These data were used by Cadie and
Sarich (1981) to advocate the retention of the micrurines within the
family Elapidae.
TABLE 1
Average albumin immunological distances among xenodontines, micrurines, and Old
World elapids. Data are from Cadie and Sarich (1981) and Cadie and Gorman (1981)
Antisera
Xenodontines
Micrurines
Old World Elapids
Clelia
Leptodeira
Coniophanes
M. spixi
Laticauda
Hydrophis
Micrurines
91
110
94
_
48
Old World
Terrestrial
Elapids
83
106
86
47
28
28
Sea Snakes
91
96
77
50
Xenodontines
87
78
81
87
72
Since the Cadie and Sarich study I have compared the albumin of
Micrurus with a suite of other xenodontine genera using microcomple-
ment fixation, and the unequivocal separation of micrurines from this
group is maintained. In addition, I recently acquired a blood sample of
an elapomorphine, Apostolepis assimilis. Comparisons of this species
to two xenodontine albumin antisera, Anti-Philodryas viridissimus and
Anti-C7eh‘a scytalina, gave immunological distances of 40 and 38,
respectively, while using Anti -Micrurus spixi the comparable immuno¬
logical distance was 82. This latter value is again typical of the measured
immunological distances between Micrurus and xenodontines (Table 1;
Cadie and Sarich, 1981), while the AID’s to the two xenodontine species
strongly suggest that Apostolepis is a part of this radiation No
association between Apostolepis and micrurines is indicated by these data.
259
cm
CADLE, J. E. Problems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mcm. Inat. Butantan, 45:255-274, 1982.
r-O
Fig. 1. An hypothcsis of the phylogenetic relationships among seven genera of advanced snakes
derived from the data of Table 1 in Cadie and Sarich (1981) using the algorithm of Sarich
and Cronin (1976).
260
cm
SciELO
10 11 12 13 14 15
Immunological Distance
CADLE, J. E. Problems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Inst. Butantan, 46:255-274, 1982.
The available molecular data are clear on the association of coral
,snakes with other elapids, and alternative interpretations of the
morphology of micrurines relative to other elapids are also consistent
with this view (McDowell, 1967, 1969; C. J. McCarthy, pers. comm.).
Cadie and Sarich (1981) argued that the morphological differences
between micrurines and other elapids documented by Savitzky (1978)
reflected the long period during which the New World lineage had been
separated from the Old World lineages of the family. The most
parsimonious interpretation of all comparative evidence, then, would
appear to be a phylogenetic grouping uniting micrurines with Old
World elapids, and substantially differentiated morphologically and bio-
chemically from neotropical colubrids. Under this interpretation, the
hypothesis of parallelism in the evolution of a front-fanged venom delivery
System in micrurines is falsifield.
ATRACTASPIS
Atractaspis, the African mole viper, has long been considered a
viperid though recognizably a very distinctive one (Haas, 1962; Kochva,
1962; Laurent, 1950). Bourgeois’ (1965) radical hypothesis that the
genus is related to aparallactine colubrids generated much research on
their morphology and on the composition of their venom (see McDowell,
1968; Kochva and Wollberg, 1970; Kochva et ah, 1967; Parnas and
Russell, 1967; Underwood, 1967; Minton, 1968). The Aparallactinae
was erected by Bourgeois to include Atractaspis and a variety of small
colubrid genera, many of which are highly modified for a fossorial
existence. Currently, abouth twelve genera are assigned to this group
(Savitzky, 1978) and its species are widely distributed in África
(Atractaspis also occurs in the Middle East). The group has been
characterized by both Bourgeois (1965) and McDowell (1968). Bourgeois
attached special significanee to a presumed morphocline in the nature
of the prefrontal-maxillary articulation in aparallactines which culminates
in the unique fang erecting mechanism of Atractaspis. This feature
appears quite variable within the aparallactines (judging from Bourgeois’
figures) and was not used by McDowell to diagnose the group.
No concensus on the relationships of Atractaspis prevails, with
some workers adhering to Bourgeois’ hypothesis of aparallactine
affinities (McDowell, 1968; Liem et ah, 1971; Parker and Grandison,
1977; Savitzky, 1978), and with others suggesting that the evidence,
particularly from the structure of the venom apparatus and head muscles
lends only weak support to such an association (Kochva et ah, 1967;
Kochva and Wollberg, 1970; Heymans, 1975). Certain aspects of head
structure and venom composition suggestd elapid affinities (Kochva
et ah, 1967; Parnas and Russel, 1967; Minton, 1968; Kochva and
Wollberg, 1970), but the structure of the venom apparatus itself conforms
to neither the viperid nor the elapid patterns (Kochva 1978). Thus,
there seems to be a concensus on only one point: Atractaspis differs
markedly from “typical” vipers in many aspects of morphology and
venom chemistry (see references cited above).
261
SciELO
CADLE, J. E. Problema and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Inst. Butantan, 46:255-274, 1982.
The comparative albumin immunological data which I have had
available at this time are too incomplete to resolve the question of how
Atractaspis fits relative to other major lineages of advanced snakes,
though it is quite distinct from all genera to which comparisons have
been made thus far. The data which are available (Table 2) suggest
that further studies, molecular and morphological, are necessary before
definitive conclusions can be drawn. I have had available for biochemical
studies only four species representing two genera of aparallactines
(Aparallactus and Amblyodipsas; Table 2), and I have produced antisera
to albumins of Atractaspis bibroni and Amblyodipsas polylepis. Using
Anti -Atractaspis albumin, no association of this genus with the four
available aparallactine species is apparent (average of 96 AID units),
nor is there an association with the two viperids included (average 96
AID units). The average of reciprocai immunological distance measure-
ments between Atractaspis bibroni and Amblyodipsas polylepis (90 AID
units) is of the same order. All of these AID values are typical of those
found between major groups of advanced snakes (family levei), where
one generally finds 75-100 units of change between taxa (Cadie,
unpublished).
TABLE 2
Albumin immunological distances among Atractaspis, Viperids, Elapids,
and Aparallactine colubrids
Anti-A tractaspis
bibroni
Anti- Amblyodipsas
polylepis
A tractaspis bibroni
0
87
Viperids
Crotalus enyo
93 (80>*
Bothrops atrox
98 (90)
Elapids
Micrurus spixi
74
Laticauda semifasciata
72
Hydrophis melanosoma
71
Aparallactine colubrids
Aparallactus capensis
104
91
Aparallactus concolor
105
90
Amblyodipsas polylepis
93
0
Amblyodipsas unicolor
83
18
* Values in parentheses are reciprocai immunological distances corrected for non-
-reciprocity (Sarich and Cronin, 1976) and averaged.
Clearly, these results cannot be taken as a definitive statement on
the relationships of Atractaspis. In particular, the molecular data on
intra-viperid and intra-elapid relationships need to be expanded beyond
those currently available. Within the viperids, of all comparisons made
thus far, the genus Causus is the furthest removed from Crotalus
(AID’s of 64 and 66 to C. resimus and C. maculatus, respectively) ;
262
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Problems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Inst. Butantan, 46:255-274, 1982.
similarly, intra-elapid AID’s do not approach the elapid -Atractaspis
distances when reciprocity and rates of change considerations are met.
Thus, while the Atractaspis-e lapid AID’s reported in Table 2 are lower
than those to viperids or aparallactines, using two anti-elapid sera, the
AID’s to Atractaspis bibroni are much higher: 89 (using Anti -Dendro-
aspis polyepis) and 87 (using Anti -Elapsoidea semiannulata). Hence,
the currently available molecular data do not indicate and affinity
between Atractaspis and either elapids or viperids, and they strongly
suggest that the inclusion of Atractaspis among the aparallactine (or
other) colubrids is premature, a conclusion also reached by Kochva and
Wollberg (1970) on the basis of venom gland structure and histology.
The immunological data further suggest that additional studies of
the relationships of aparallactines are warranted. The AID’s between
Amblyodipsas and the two species of Aparallaetus (Table 2) are as great
as those between either of these genera and Atractaspis. Molecular data
on additional aparallactine genera would clearly be desirable. Certain
morphological comparisons in addition to those already mentioned suggest
that the aparallactines as currently recognized are a quite variable group.
Heymans (1975) reported differences in the arrangement of mandibular
muscles both within aparallactines ( Chilorhinophis and Aparallaetus
compared) and between Atractaspis and either of these. In addition,
Kochva and Wollberg (1970) reported considerable variability in the
structure of aparallactine oral glands; in particular, they found the
glands of Amblyodipsas ( Calamelaps ) differed considerably from those
of Aparallaetus, and imply that these genera may belong to different
colubrid lineages, an interpretation consistent with the limited immuno¬
logical comparisons reported here. Conclusions concerning the phyloge-
netic unity of the Aparallactinae are difficult to assess from such
comparisons, however. A more comprehensive study of aparallactine
genera and the inclusion of outgroups would be required to draw firm
phylogenetic conclusions from these data. An assessment of how these
features vary within other welldefined colubrid groups would also enhance
their value in this particular case.
To summarize, the distinctiveness of Atractaspis relative of other
vipers and to colubrids is the only consistent result obtained using all
available sources of data, and this hypothesis can be considered corro-
borated (sensu Nelson, 1979; Nelson and Platnick, 1981). Hypotheses
suggesting affinity to aparallactines (Bourgeois, 1965; McDowell, 1968)
are not corroborated by further morphological (Kochva et ah, 1967;
Kochva and Wollberg, 1970; Heymans, 1975) or molecular (this paper)
data. Thus Atractaspis may represent an independent lineage of front-
fanged snakes; its close relatives, if any exist, are as yet undetected.
FRONT FANGED VENOM DELIVERY SYSTEMS AND THE
COLUBRIDAE
Kochva and Wollberg (1970) urged caution in chaning the taxonomic
status of venomous snakes because of their medicai importance. Such
caution is also in the interest of workers attempting to understand the
263
CADLE, J. E. Problems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Inst. Butantan, 46:255-274, 1982.
phylogeny and evolution of the biochemical and morphological components
of the venom delivery system. The currently available molecular data on
the relationships of two venomous taxa of advanced snakes, the micrurines
and Atractaspis, do not support their hypothesized close relationships
to specific colubrid groups (xenodontines and aparallactines, respectively).
A consideration of the other comparative evidence certainly does not
require such associations, and, indeed, in at least the case of the micru¬
rines, can be more parsimoniously interpreted in alternative ways.
Kochva and Wollberg further suggested that the morphological data of
Bourgeois (1965) and of McDowell (1968) were insufficient to ally
either Atractaspis or Homoroselaps with the aparallactines, a conclusion
with which I agree. These results call for a reconsideration of the
question posed at the beginning of this paper : How many times have
front-fanged venom delivery systems evolved independently among
advanced snakes?
I conclude that no undisputed evidence exists for the evolution of
front-fanged venom delivery systems from within any lineages of living
colubrids. Kochva and Wollberg (1970) and Cadie and Sarich (1981)
argue for reteption of Homoroselaps and the micrurines, respectively,
in the Elapidae. The case of Atractaspis presents special problems since
unambiguous evidence of any sort associating this genus with any other
taxon does not exist at the present time, but there is no compelling
evidence associating even this genus with the Colubridae as has been
proposed, and the molecular data in particular preclude such an
association. Thus, the available evidence indicate that only three
possibilities exist for the parallel evolution of front-fanged venom delivery
systems: the solenoglyph systems of viperids and Atractaspis, and the
proteroglyph system of elapids ( sensu lato). I do not feel that a decisive
resolution of the problem is possible given present data, and there are
certain problems with current approaches to the question. I will attempt
to highlight these in the next section, and suggest ways that we might
profitably approach a solution to the other questions already posed.
PARALLELISM AND THE EVOLUTION OF VENOM DELIVERY
SYSTEMS
Parallelism among lineages is usually inferred for one of three
reasons. The most commonly cited evidence, and the most robust, is
that different character sets produce discordant phylogenies. This has
been used, for example, to demonstrate the parallel evolution of foot
morphology among geckos (Russell, 1979). Second, parallelism has
occasionally been inferred between two groups because of their widely
disjunct geographical distributions, accompanied by plausible fóssil
ancestral groups in the areas occupied by living forms (suggested, but
not corroborated, for New and Old World monkeys). Finally the extreme
specialization of some organisms have obscured true phylogenetic affinity
between related forms and led to the suggestion of parallelism (e.g.,
the suggested parallelism between the giant panda and bears). Of all
of these means of inferring parallelism, the first is clearly to be preferred
264
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Problems and approaches in the interprexation of the evolutionary history of venomous
snakes. Mem. Inat. Butantan, 46:255-274, 1982.
for reasons of objectivity and testability. The other two are also subject
ultimately to the test of phylogeny as well.
Among the advanced snakes, analyses of parallelism have foundered
for lack of good estimates of the phylogenetic relationships among taxa.
Two of the venomous taxa, Viperidae and Elapidae, have traditionally
been recognized only by the possession of either solenoglyphous or
proteroglyphous dentition, respectively. For example, of a variety of
features used by McDowell (1968) to diagnose the family Elapidae, only
three unequivocally characterize members of this family, and two of
these are aspects of the venom delivery system: (1) proteroglyphy,
and (2) venom gland compressor divided into dorsal and ventral portions
by the venom gland, and not attached to the cutaneous fold at the corner
of the mouth. This second feature, as well as the third feature mentioned
by McDowell, Harderian gland confined to the orbit, have been shown
to be variable within the family by Savitzky (1978). Thus, there has
been a decided tendency to define higher taxa of advanced snakes by
the presence or absence of a particular suite of morphological characte-
ristics associated with venom delivery. [Underwood (1967) used a number
of other features to describe the venomous taxa, but it is unclear which
will unambiguously characterize them],
Rigorous phylogenetic reconstruction requires that taxa be arranged
in an explicit hierarchical fashion according to the evolutionary rela¬
tionships of the taxa involved. With regard to the relationships among
the traditionally recognized advanced snake taxa, two are usually
characterized only by a particular suite of morphological features
associated with venom delivery which are unique to each (Viperidae
and Elapidae), and the third (Colubridae sensu lato) by the lack of
such specialized features. Therefore, there appear to be no unambiguous
data which will unite two or more of these (or subdivisions thereof)
to the exclusion of the third. The question of whether front-fanged
venom delivery systems have evolved in parallel thus becomes unan-
swerable because parallelism must always be analyzed with reference
to a specific (implicit or explicit) phylogenetic hypothesis. In the case
under consideration, since the features used to define groups are those
for which we wish to interpret the evolutionary history, the question of
parallel evolution cannot be resolved until other systems are investigated.
The work of Haas, Kochva, and their colleagues (summarized in
Kochva, 1978) on gland structure and compressor muscle homologies
clearly argues for a basic separation of the proteroglyphous and soleno¬
glyphous lineages, but the case for association of one group with the
Colubridae as a whole, or with a single lineage of colubrids, is not strong,
and most workers implicitly accept one hypothesis over another without
subjecting either to a rigorous test [for example, Marx and Rabb (1972,
p. 6) use the Colubridae as an outgroup to the venomous taxa in their
phyletic analysis of morphological characters, thereby assuming a
particular phylogeny a priori]. In this regard, the work of Mosauer
(1935) and Auffenberg (1958, 1961) on trunk musculature, and Kochva
(1978) on salivary glands indicating derived features shared by elapids
and colubrids, is promising, but needs to be examined in a broader array
of taxa.
265
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Problems and approaches in the interpretation of the evolutionary history of venomous
snakes. Metn. Inst. Butantan, 46:255-274, 1982.
On the other hand, most studies which place little weight on the
venom delivery system for phylogenetically useful characters (Burgeois,
1965; McDowell, 1968; Savitzky, 1978) proceed by pointing out simila-
rities in other features (e.g., shape and nature of articulation between
maxillary and eetopterygoid bones, position of Harderian gland, presence
or absence of posterior vertebral hypapophyses, color pattern) between
these problematic taxa and other (colubrid) groups. A difficulty with
this approach is that, because of parallelism, it is possible that these
kinds of comparisons will lead to erroneous hypotheses of relationships.
Similarities due to common ancestry must be unambiguously separated
from those due to homoplasy. For example, a fossorial mode of life is
widely accepted to impart similar morphologies in diverse groups of
snakes (Inger and Marx, 1965) ; yet, three of the postulated cases of
parallelism in venom delivery systems, Atractaspis, Homoroselaps, and
micrurines, involved genera exhibiting derived morphologies associated
with fossoriality. A well-founded argument for why there should be
parallelism in venom delivery systems, but not in the many other
morphological features cited as evidence of common ancestry in many
of these taxa, does not seem to exist.
An implicit assumption of some of these studies (e.g., Savitzky,
1978) is that, because specialized venom delivery systems are adaptive,
they should arise more often in parallel than other features. There is
no theoretical justification for this assumption, and I suggest that
specific structural configurations in such complexes (and their corres-
ponding functional properties) may well be unique to particular lineages.
This property has been noted for other complex character associations
with regard to their distribution among lineages (Liem, 1973; Lombard
and Wake, 1977; Russell, 1979). For example, Lombard and Wake
(1977) studied the structure-function relationships among components
of the complex tongue-projection apparatus in plethodontid salamanders.
In three distinct lineages specialized for long-distance projection they
found that each lineage exhibited specific arrangements of the elements
of the apparatus which differed in their functional properties from
those of other lineages. That these arrangements were evolved in parallel
was suggested by structural differences which were discordant with the
hypothesized phylogeny of the group. In such cases, functional paralle¬
lism is perhaps expected, but detailed structural parallelism is not. Thus,
parallelism in complex morphological units can be detected by detailed
comparisons of the structure and function of such features, and by
their congruence with robust estimates of the phylogeny of the groups
involved. Such studies have been carried out on the venom delivery
systems of Atractaspis (Kochva et al., 1967; Kochva, 1978), Homoros¬
elaps (Kochva ond Wollberg, 1970), and micrurines (Savitzky, 1978).
Atractaspis was found to differ in gland structure and histochemistry
from typical viperids and elapids, while the structure of the venom
glands and associated muscles of Homoroselaps and micrurines conformed
to that of typical elapids. [McDowell (1968) cited the undivided nature
of the venom gland compressor in Homoroselaps as a character separat-
ing this genus from all elapids; Savitzky (1978), however, reports an
undivided gland compressor in several species of the Oriental elapid
266
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Problems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Inat. Butantan, 46: 255-274, 1982.
genus Calliophis; therefore this character cannot be considered diagnostic
of the Eílapidae]. In none of these studies have the details of venom
gland and muscle morphology required an association with the colubrid
groups from which these snakes were postulated to be derived.
The presumed extensive parallelism in advanced snakes causes two
further, but related problems in the way evolutionary scenarios concern-
ing the venomous snakes have been constructed (these are discussed
in a more general context by Lauder, 1981): (1) it is sometimes assumed
that annectant forms will exist among extant snakes which will show
the transitional evolutionary stages between particular phenotypes
(Bourgeois, 1965; McDowell, 1968; Savitzky, 1978). I have already
discussed this problem above with reference to the relationships of
micrurines and Atractaspis, where it is possible to show similarities of
both of these groups to presumed ancestral (more generalized) groups.
The problem is also noted in many attempts to align dental modifications
into morphoclines (e.g., Bourgeois, 1965; Marx and Rabb, 1972) by
assuming particular transformation series.
Perhaps the classic example of the extension of this idea are
discussions of the relationships of the New World colubrids Xenodon
and Heterodon, and their asserted intermediacy in the evolution of
viperid dentition (Anthony, 1955; Kardong, 1979). Both Xenodon and
Heterodon have greatly elongated posterior maxillary teeth that are
saber-like in form. Viperid dentition was suggested to be derived from
such dentition by shortening of the maxillary bone and the development
of a canal in the fang (Anthony, 1955), leading to the designation of
these colubrids as representativo of a “protoviper” stage (Weaver, 1965;
Kroll, 1976; Kardong, 1979). As such, this concept is an untestable
construct, and yields practically no understading of the evolution of the
viperid venom apparatus. Indeed, it assumes that we already know
what that evolutionary history was. While there is good evidence from
comparative embryology for the homology of front fangs and venom
glands in vipers to rear fangs and Duvernoy’s gland in colubrids (Kochva,
1978) we currently have no basis at all for inferring that one or
another morphotype represents the “protoviper” stage. In other words,
all opisthoglyphous morphologies represent equally plausible ancestral
morphologies for the evolutionary precursors of front fangs. The exist-
ence of intermediate morphologies among members of the extant fauna
does not justify the conclusion that these are evolutionary intermed-
iates. Such recognition requires a prior, corroborated hypothesis of the
phylogenetic relationships among the taxa concerned.
This point has been discussed extensively by Dullemeijer (1974)
and Lauder (1981). Both authors recognize the value of morphological
series in studying morphological and functional patterns, but emphasize
their inadequacy in constructing phylogenetic hypotheses: “Idealistic
series do not necessarily indicate evolutionary series. A derivation of
evolution from recent material always needs an additional argument to
place the animais in a certain order.” (Dullemeijer 1974, p. 207). The
additional argument may take the form of an explicit phylogenetic
hypothesis, which can serve as a point of departure for the analysis of
ancestral morphologies (see Lauder, 1981).
267
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Problems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Inst. Butantan, 40:255-274, 1982.
(2) There is generally no basis for inferring the factors responsible
for producing or maintaining particular feeding adaptations. A common
interpretation in the literature is that selection pressures favor the
initial elaboration of enlarged posterior maxillary teeth because of their
supposed efficacy in subduing prey or in performing some other feeding
function (Savitzky, 1978; Kardong, 1979). These are then presumably
further modified by selection to result in more specialized front-fanged
venom delivery systems. While I do not suggest that selection has no
role in the evolution of these features, it is usually used as an ad hoc
explanation for why certain structures exist, and, indeed, why there is
parallelism in certain features (e.g., Kardong, 1979 for opisthoglyphy;
Savitzky, 1978 for proteroglyphy). Circumstantial evidence suggests
that there is unlikely to be a global selective basis of opisthoglyphy,
for this morphology is found in snakes living in all environments, and
ingesting a variety of prey types (e.g., Bailey, 1966). Similarly, we
cannot assume that front-fanged venom delivery systems are subject to
extensive parallelism because of presumed selection pressures operating
on a widespread ancestral morphology (i.e., opisthoglyphy). For further
general discussion of this problem see Gaffney (1979) and Lauder (1981).
Finally, how do we attack the problem of parallelism in front-fanged
venom delivery systems? It should be clear from the foregoing that
detailed and explicit phylogenetic hypothesis are needed, and that these
must be derived from a methodology utilizing as few a priori and ad hoc
assumptions as possible. Thus, assumptions about parallelism and the
evolutionary mechanisms producing it should be eliminated as apriorisms
in phylogenetic studies; rather, illumination of these processes should
come from well-constructed and tested hypotheses of relationships. It
is perhaps most reasonable in the construction of the phylogenetic hypo¬
thesis to start with the assumption that parallelisms are rare and to
recognize them as they are required by a especific hypothesis.
Therefore, attention should be directed to the development of a
well-corroborated (sensu Nelson, 1979) explicit phylogenetic hypothesis
for the cladistic relationships among major groups of advanced snakes.
With such a hypothesis in hand, then we may begin to investigate objec-
tively the more interesting question of whether there has, in fact, been
parallel evolution in front-fanged venom delivery systems, and by what
mechanisms the biochemical and morphological manifestations of these
systems have arisen evolutionarily.
I am not convinced that a rigorously cladistic methodology (sensu
Hennig) is the most fruitful approach to this problem, for such parsimony
approaches require that parallelisms and evolutionary reversals be minimal
(see Felsenstein, 1978), an assumption that does not seem realistic given
our current understanding of the evolutionary biology of snakes. Yet
such attempts should be made, for the extent of parallelisms should be
immediately obvious with such methods. Phylogenetic components ana-
lysis (Nelson, 1979; Nelson and Platnick, 1981) offers a potentially
powerful method of phylogenetic analysis which might be profitably
applied to the advanced snakes. It should be noted that this methodo¬
logy requires neither assumptions about the directionality of evolution
268
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Problema and approaches in the interpretation of the evolutiona»*y history of venomous
snakes. Mem. Inst. Butantanp 46:255-274, 1982.
nor the delineation of primitive and derived character states. In addition,
chance association of taxa in a cladistic hypothesis can be separated from
those likely to be due to common ancestry. Finally : molecular approaches,
because of their recognized independence from morphological criteria
(Wilson et al, 1977), offer extremely valuable means of formulating
and testing phylogenetic hypotheses, and may be expected to provide
criticai insight in cases where parallelism in morphology proves very
common.
CONCLUSIONS AND PROSPECTS
There is an increasing awareness of the role that architectural and
historical constraints play in determining the major morphological
ground-plans exhibited by particular lineages during phylogeny (Gould
and Lewontin, 1977; Gould, 1980). Under the view that such constraints
may strongly influence the morphological patterns produced during the
evolution of a particular lineage (see Gould, 1980 for discussion), major
reorganizations of structure are expected to be rare and to conform to
patterns modulated by ancestral structure. Thus, major phyletic lines
are expected to share a fundamental design, with further minor modifi-
cations exhibited among their members. Precise replication of such major
adaptive Bauplànne involving numerous morphological features by pa-
rallel evolution is expected to be infrequent, for this requires the identical
modification of many structures. Moreover, the outcomes are constrained
by inherited developmental sequences, making precise replication unlikely
among widely divergent lineages. In fact, good examples of such detailed
parallelism appear to be quite rare.
Proteroglyph and solenoglyph venom delivery systems in snakes
represent major structural designs in the feeding apparatus of advanced
snakes. Attainment of either of these conditions requires evolutionary
changes in the morphology of the jaw apparatus and dentition, oral
glands, and the musculature associated with these features, as well as
changes in the biochemical synthetic pathways of oral gland secretory
Products. Such specialized form-function complexes should represent
fundamental structural and functional attributes of particular lineages
(e.g., cichlid pharyngeal jaws; Liem, 1973), and parallelism in such
systems might be expected to be rare. Parallelism, however, can be
detected by detailed comparisons among lineages of the morphologies
involved, in which case multiple configurations of the system are
expected (see Lombard and Wake, 1977; Russell, 1979). Multiple
evolution of particular functions is not, therefore, generally accompanied
by detailed structural parallelism, but rather by different morphological
patterns. Thus, the venom delivery components themselves should provide
some of the primary evidence for parallelism in this system.
Kochva and Wollberg (1970) and Kochva (1978) note that the
available information on the structure and function of the venom delivery
systems among venomous snakes supports the conclusion that this
feature shows both familial consistency and specificity in design; that
is, the observed number of ways in which venom delivery systems in
269
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Problema and approaches in the interpretation of the evoluHonary history of venomous
snakes. Mem. Inat. Butantan, 46:255-274, 1982.
snakes are constructed is very liraited (the few data available on the
structure of venom proteins also support this contention; see Lee, 1979).
Among the front-fanged venomous snakes Kocnva anu Wollberg note
only three types: the solenoglyph types represented in Atractaspis and
typical vipers, and the proteroglyph type represented in all elapids
(including Homoroselaps and Micrurus). I have summarized evidence
above that these three groups represent the only advanced snake taxa
for which adequate data exist upon which to suggest parallelism in the
evolution of front-fanged venom delivery systems. In no case do I believe
there is sufficient evidence suggesting the evolution of any of these
systems from within living colubrid lineages (see also Kochva and
Wollberg, 1970).
The problem remains as to whether the venom delivery systems
seen in Atractaspis, viperids, and elapids represent true parallel acquis-
itions of simply various elaborations of a commonly inherited ancestral
design. Another way of stating this is “Do the colubrids represent an
outgroup to the front-fanged venomous taxa among advanced snakes?”
The answer to this question relies on the acceptance of one or another
phylogenetic hypothesis, none of which are robust under the criterion
of being corroborated by numerous lines of evidence. We may look
forward to a resolution of this problem with increasing evidence from
molecular and morphological data, and from the application of rigorous
phylogenetic methodology to those data.
Some goals for future research which are suggested by the foregoing
discussion are:
(1) Attempts need to be made to define major lineages of advanced
snakes on the basis of derived characters other than those associated
with dentition and jaw apparatus. The phylogenetic hypothesis which
result will provide the strongest means of testing hypothesis of
parallelism in the venom delivery systems. Tests of particular phylo¬
genetic hypothesis should be made using as many and varied comparative
data as possible.
(2) Most of the focus in the literature on the evolution of snake
venom delivery systems has been on dentition, gland structure, and
muscle arrangements. Incorporation of basic information on venom
components would greatly enhance our understanding of the raison d’etre
for these other features. Most of these data are scattered in the
pharmacological and medicai literature (see Lee, 1979) and need to be
viewed from a phylogenetic perspective. We currently have the most
detailed molecular data on elapid toxins (see discussion and references
in Strydom, 1979). Extension of these data to the problematic elapid
taxa I have discussed ( Homoroselaps and micrurines) would be most
welcome. In addition, our knowledge of the structure and function of
viperid, and especially colubrid venom components, is notably sparce.
Initial efforts on these groups promise significant insights into our
concepts concerning the evolution and biochemical specialization of
venom glands.
(3) We need information on the biological roles of snake venoms
and venom components in natural prey items. Reports of toxicity in
270
cm
2 3
Z
5 6
10 11 12 13 14 15
CADLE, J. E. Prcblems and approaches in the interpretation of the evolutionary history of venomous
snakes. Mem. Jnst. Butantan, 46:255-274, 1982.
experimental animais or humans contribute little or nothing to our
understanding of the ecological and evolutionary significance of venom
function. Such studies may elucidate the question of whether particular
venom types or components are associated with particular prey types,
ecological circumstances, or phylogenetic lineages.
Snake venom delivery systems represent one of the most specialized
feeding apparatuses among vertebrates. A detailed and comprehensive
understanding of the evolution of these systems should contribute to a
general appreciation of pattern and mechanisms associated with the
evolution of such complex morphological and biochemical adaptations.
A resolution of the conflicting phylogenetic hypothesis that exist for
the relationships among the venomous taxa will be the crucial first step
in the unraveling of the history of this most interesting evolutionary
ínnovation.
ACKNOWLEDGMENTS
I tank Dr. A. R. Hoge for his invitation to participate in this
symposium, and for his making facilities of the Instituto Butantan
available to me. My transportation to Brazil was made possible by
grants from the National Science Foundation (DEB 80-14101) and from
the Tinker Foundation through the Center for Latin American Studies
of the University of Califórnia, Berkeley. I have benefitted greatly
from discussions of the content of this paper with Hai-ry W. Greene,
Vincent M. Sarich, and David B. Wake, all of whom also provided criticai
comments on the manuscript.
BIBLIOGRAPHIC REFERENCES
1. ANTHONY, J. Essai sur 1’evolution anatomique de 1’appareil venimeux des
Ophidiens. Ann. Sei. Nat. Zool., 11 ser., 7-53, 1955.
2. AUFFENBERG, W. The trunk musculature of Sanzinia and its bearing on
certain aspects of the myological evolution of snakes. Breviora, no. 82:
1-12, 1958.
3. -. Additional remarks on the evolution of trunk musculature in
snakes. Am. Midi. Nat., 65: 1-16, 1961.
4. BAILEY, J.R. Modes of evolution in new world opisthoglyph snakes. Mem.
Inst. Butantan, 33 :67-72, 1966.
5. BOGERT, C.M. Dentitional phenomena in cobras and other elapids with notes
on adaptive modifications of fangs. Buli. Am. Mus. Nat. Hist., 81 :285-360,
1943.
6. BOULENGER, G.A. Catalogue of the snakes in the British Museum (Natural
History). London, British Museum (Natural History), 1893. V. I, 448 p.
7. BOURGEOIS, M. Contribution a la morphologie comparée du crâne des ophi¬
diens de 1’Afrique Centrale. Publs. Univ. Off. Congo (Lubumbashi), 28:
1-293, 1965.
8. CADLE, J.E. & SARICH, V.M. An immunological assessment of the phylo¬
genetic position of New World coral snakes. J. Zool. (Lond.), 195:157-167,
1981.
271
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Prcblems and approaches in the interpretation of the evoluHonary history of venomous
snakes. Mem. Inat. Rutantan. 46:255-214, 1982.
9. - & GORMAN, G.C. Albumin immunological evidence and the rela-
tionships of sea snakes. J. Herpetol., 15:329-334, 1981.
10. CHAMPION, A.B.; PRAGER, E.M.; WACHTER, D. & WILSON, A.C.
Microcomplement fixation. In Wright, C.A., ed., Biochemical and Immuno-
logical Taxonomy of Animais. London, Academic Press, 1974. p. 397-416.
11. COPE, E.D. The crocodilians, lizards, and snakes of North America. Rep.
U. S. Nat. Mus. 15.98:153-1249, 1900.
12. CRONIN, J.E. & MEIKLE, W.E. The phyletic position of Theropithecus.
congruence among molecular, morphological, and paleontological evidence.
Syst. Zool., 28: 259-269, 1979.
13. - & SARICH, V.M. Molecular systematics of the New World mon-
keys. ./. Hum. Evol., 4:357-375, 1975.
14. DOWLING, H.G. Classification of the serpents: a criticai review. Copeia,
38-52, 1959.
15. DULLEMEIJER, P. Concepts and Approaches in Animal Morphology. Assen,
The Netherlands, Van Gorcum and Co., 1974.
16. FELSENSTEIN, J. Cases in which parsimony or compatibility methods will
be positively misleading. Syst. Zool., 27:401-410, 1978.
17. FOUIN, C. Le crâne d 'Elapsoidea guntheri Bocage: Contribution à la phylo-
génese des Colubroidea. Publs. Univ. Off. Congo, Lubumbashi, 19:61-91,
1969.
18. GAFFNEY, E.S. An introduction to the logic of phylogeny reconstruction.
In Cracraft, J. and Eldredge, N., eds., Phylogenetic Analysis and Palen-
tology. N. Y., Columbia University Press, 1979. p. 79-111.
19. GOULD, S.J. The evolutionary biology of constraint. Baedalus, 109 (2) :39-52,
1980.
- & LEWONTIN, R.C. The spandrels of San Marco and the Pan-
glossian paradigm: a critique of the adaptationist programme. Proc. R.
Soc. Lond. B, 205: 581-598, 1977.
HAAS, G. A note on the origin of solenoglyph snakes. Copeia, 73-78, 1938.
-. The head muscles of the genus Causus (Ophidia, Solenoglypha)
and some remarks on the origin of the Solenoglypha. Proc. Zool. Soc.
Lond., 122: 573-592, 1952.
Remarques concernant les relations phylogéniques des diverses
20
23 . -
familles d’ophidiens fondées sur la differenciation de la musculature man-
dibulaire. In Problemes actuels de Paleontologie. Coll. Int. Centr. Nat.
Rech. Scient. no. 101,: 215-239, 1962.
24. HEYMANS, J.C. La musculature mandibulaire et le groupe parotidien des
Aparallactinae et Atractaspinae. Rev. Zool. Afr., 89:889-905, 1975.
25. INGER, R.F. & MARX, H. The systematics and evolution of the Oriental
colubrid snakes of the genus Calamaria, Fieldiana: Zool., 49:1-304, 1965.
26. JOHNSON, R.G. The adaptive and phylogenetic significance of vertebral
form in snakes. Evolution, 9:367-388, 1955.
27. -. The origin and evolution of the venomous snakes. Evolution:
56-65, 1956.
28. KARDONG, K.V. “Protovipers” and the evolution of snake fangs. Evolution,
88:433-443, 1979.
29. KLAUBER, L.M. Rattlesnakes, their habits, life histories, and influence on
mankind. Berkeley (Los Angeles), Univ. of Califórnia Press, 1972.
30. KOCHVA, E. On the lateral jaw musculature of the Solenoglypha with
remarks on some other snakes. J. Morph., 110: 227-284, 1962.
31. -. Development of the venom gland and trigeminal muscles in Vipera
palestinae. Acta anatômica, 52:49-89, 1963.
Oral Glands of the Reptilia, in Gans, C., ed. Biology of the
32.
Reptilia. London, Academic Press, 1978. V. 8, Physiology B, p. 43-161.
272
cm
SciELO
10 11 12 13 14 15
CADLE, J. E. Problema and approaches in the interpretation of the evolutionary history of venomous
snakes. Mcm. Inst. Butantan; 46: 255-274, 1982.
33. - & WOLLBERG, M. The salivary glands of Aparallaetinae (Colu-
bridae) and the venom glands of Elaps (Elapidae) in relation to the
taxonomie status of this genus. Zool. J. Linn. Soc., 49:217-224, 1970.
34. -;-& SOBOL, R. The special pattern of the venom gland
in Atractaspis and its bearing on the taxonomie status of the genus.
Copeia, 763-772, 1967.
36. KROLL, J.C. Feeding adaptations of hognose snakes. Southwest. Nat., 20:
537-557, 1976.
36. LARSON, A.; WAKE, D.B.; MAXSON, L.R. & HIGHTON, R. A molecular
phylogenetic perspective on the origins of morphological novelties in the
salamanders of the tribe plethodontini (Amphibia, Plethodontidae). Evo-
lutíon, 35 :405-422, 1980.
37. LAUDER, G.V. Form and function: structural analysis in evolutionary
morphology. Paleohiol., 7:430-442, 1981.
38. LAURENT, R.F. Révision du genre Atractaspis A. Smith. Mem. Inst. R. Sei.
Nat. Belgique, 38: 1-49, 1950.
39. LEE, C.-Y., ed. Snake Venoms. Berlin, Springer-Verlag, 1979.
40. LIEM, K. Evolutionary strategies and morphological innovations: cichlid
pharyngeal jaws. Syst. Zool., 22:425-441.
41. -; MARX, H. & RABB, G.B. The viperid snake Azemiops: its com-
parative cephalic anatomy and phylogenetic position in relation to Viperinae
and Crotalinae. Fieldiana Zool., 53:63-126, 1971.
42. LOMBARD, R.E. & WAKE, D.B. Tongue evolution in the lungless salaman¬
ders, family Plethodontidae. II. Function and evolutionary diversity. J.
Morphol „ 153: 39-80, 1977.
43. MAHENDRA, B. Some remarks on the phylogeny of the Ophidia. Anat. Anz.,
«5:321-368, 1938.
44. MARX, H. & RABB, G.B. Relationships and zoogeography of the viperine
snakes (Family Viperidae). Fieldiana Zool., 44:161-206, 1965.
45. -& -. Phyletic analysis of fifty characters of advanced
snakes. Fieldiana, Zool., 63: 1-321, 1972.
46. MCDOWELL, S.B. Aspidomorphus, a genus of New Guinea snakes of the
family Elapidae, with notes on related genera. J. Zool., (Lond.), 151:
497-543, 1967.
47 . -. Affinities of the snakes usually called Elaps lacteus and E. dor-
salis. J. Linn. Soc. (Zool.) 47:561-578, 1968.
48. -. Toxicocalamus, a New Guinea genus of snakes of the family
Elapidae. J. Zool., Lond., 159:443-511, 1969.
49. MINTON, S.A. Antigenic relationships of the venom of Atractaspis micro-
lepidota to that of other snakes. Toxicon, 5:59-64, 1968.
50. MOSAUER, W. The myology of the trunk region of snakes and its signi-
ficance for ophidian taxonomy and phylogeny. Publ. Univ. Calif. at Los
Angeles. Biol. Sci.y 1 :81-120, 1935.
51. NELSON, G.J. Cladistic analysis and synthesis: principies and definitions,
with a historical note on Adanson’s Familles des Plantes (1763-1764).
Syst. Zool., 28: 1-21, 1979.
52. -& PLATNICK, N. Systematics and Biogeography: Cladistics anil
Vicariance. N. Y., Columbia University Press, 1981.
53. PARKER, H.W. & GRANDISON, A.G.C. Snakes, a natural history. Ithaca,
Cornell University Press, 1977.
54. PARNAS, I. & RUSSEL, F.R. Effects of venom on nerve, muscle, and
neuromuscular junction. In: Animal toxins. Russel, F.E. & Saunders,
P. R., eds. Oxford, Pergamon Press, 1967.
273
SciELO
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66 .
J. E. Problema and approaches in the interpretation of the evolutionary history of venomous
kes. Mem. Inst. Butantan, 46:255-274, 1982.
PRAGER, E.M. & WILSON, A.C. Construction of phylogenetic trees for
proteins and nucleic acids: comparison of alternative matrix methods.
J. Molec. Evol., 11:129-142, 1978.
-; WILSON, A.C.; OSUGA, D.T. & FEENEY, R.E. Evolution of
flightless land birds on Southern continents: transferrin comparison shows
monophyletic origin of ratites. J. Molec. Evol., 5:283-294, 1976.
RABB, G.B. & MARX, H. Major ecological and geographic patterns in the
evolution of colubroid snakes. Evolution, 27:69-83, 1973.
RUSSELL, A.P. Parallelism and integrated design in the foot structure of
Gekkonine and Diplodactyline geckos. Copeia, 1-21, 1979.
SARICH, V.M. The giant panda is a bear. Nature, 245:218-220, 1973.
- & CRONIN, J.E. Molecular systematics of the primates. pp.
141-170, In Molecular Anthropology. Goodman, M., and Tashian, R., eds.
N. Y., Plenum Press, 1976.
- & CRONIN, J.E. South American mammal molecular systematics,
evolutionary clocks, and continental drift. In Chiarelli, B. and Ciochon R.,
eds. Evolutionary Biology of the New World Monkeys and Continental
Drift. N. Y., Plenum Publ. Co., 1980. p. 399-421.
SAVITZKY, A.H. The origin of the New World proteroplyphous snakes and
its bearing on the study of venorn delivery systems in snakes. Ph.D.
dissertation. University of Kansas, Lawrence, 1978.
STRYDOM, D.J. The evolution of toxins found in snake venoms. In Snake
Venoms. Lee, C.-Y., ed. Berlin, Springer-Verlag, 1979. p. 258-275.
UNDERWOOD, G. A Contribution to the Classification of Snakes. London,
British Museum (Natural History), 1967.
WEAVER, W.G. The cranial anatomy of the hognosed snakes (Heterodon)
Buli. Florida State Museum, 9:275-304, 1965.
WILSON, A.C.; CARLSON, S.S. & WHITE, T.J. Biochemical Evolution.
Ann. Rev. Biochem., 45:573-639, 1977.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66 .
274
cm
2 3
z
5 6
10 11 12 13 14 15
Mem. Inst. Butantan
40:275-291, 1982
SERPIENTES VENENOSAS DE CENTRO AMERICA
Distribución, características y patrones cariológicos
Róger BOLAfrOS *
RESUMEN: El trabajo presenta una visión panorâmica de las
serpientes venenosas de Centro América (Famílias Hydrophidae,
Elapidae y Viperidae), senalándose nuevas localidades para
Lachesis muta y Bothrops picadoi. Se comenta también sobre la
importância médica de las distintas especies. Se muestran, ade-
más, los patrontes eariotípieos de diez especies de Viperidae, cuatro
de Micrurus y el de Pelamis platurus y se discuten posibles
relaciones filogenéticas así como implicaciones taxonómicas.
UNITERMINOS: Serpientes venenosas; Centro América;
Distribución geográfica; Cariotipos.
INTRODUCCION
El istmo centroamericano está formado, desde un punto de vista
político, por siete pequenos países que conectan dos grandes masas
continentales: Norte y Sur América (Fig. 1) ; sin embargo, desde un
punto de vista biológico, parte dei sur de México y dei norte de Colombia
deben ser considerados como parte de la zona. A pesar de eso, en la
presente revisión únicamente será considerada la fauna de ofidios com-
prendida dentro de los limites políticos de la región.
La herpetofauna de América Central no solamente es muy abundante
sino también, diversa; con base en diferentes listas publicadas se puede
concluir que el suborden Serpentes está representado por no menos de
180 especies, agrupadas en cinco famílias principales (1). Boidae, Colubri-
dae, Hydrophidae, Elapidae y Viperidae. La primera incluye serpientes
no venenosas — sunsus strictus — las Boas, cuya dentición es aglifa.
Colubridae incluye algunas aglifas, pero también un número considerable
de opistoglifas, técnicamente venenosas; a pesar de que un número consi¬
derable de mordeduras es producido por miembros de esta familia, muy
pocos casos de envenenamiento han sido demostrados y todos los pacientes
presentaron una sintomatologia muy leve (Johanbocke, 1974; Minton,
* Departamento de Microbiología e Inmunología, Centro de Investigación y Diagnóstico en Parasitología,
Facultad de Microbiología, Universidad de Costa Rica, Costa Rica.
(1) Se conocen tres famílias más, constituídas por cinco especies de serpientes ciegas, raras y sin
importância médica.
275
SciELO
BOLAftOS, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariológicos. Mcm. Inst. Butantan, 1*6: 275-291, 1982.
1979) ; este hecho contrasta con la situación en África, en donde serpien¬
tes opistoglifas son responsables por accidentes severos, incluso letales
(Visser & Chapman, 1978) ; por razones prácticas, consideraremos esta
familia como integrada por especies no venenosas. Hydrophidae está
representada por un género con una sola especie, la pelágica serpiente
de mar, Pelamis platurus, presente en las aguas dei Pacífico de los seis
países que tienen costas en este litoral. Elapidae (considerada por algunos
autores como Micruridae), está representada por un solo género: Micru-
rus, con numerosas especies; como Pelamis, son proteroglifas y producen
un potente veneno de efecto neurotóxico; son conocidas como serpientes
de coral y a pesar de ser muy comunes en ciertas regiones, la frecuencia
de sus accidentes es baja (menos dei 2 por ciento) principalmente debido
al pequeno tamano de sus colmillos (1 a 2 mm) y al pequeno ângulo de
abertura de su boca. La taxonomía de este grupo es un tanto ambigua;
sin embargo, por lo menos pueden identificarse 14 especies bien descritas
(Minton et al. 1970; Roze, 1970; Hoge & Romano, 1971) (Cuadro 1).
Las serpientes más importantes desde el punto de vista médico que se
encuentra en la región pertenecen a la familia Viperidae, subfamilia
Crotalinae, siendo responsables por más dei 85 por ciento de todos los
accidentes y por el 99 por ciento de todas las defunciones; cuatro géneros
se encuentran en Centro América: Agkistrodon, Crotalus y Lachesis,
cada uno con una sola especie, y Bothrops con 12 (Cuadro 2).
Fig. 1. Mapa político de Centro América.
276
cm
2 3 4 5 6 SClELO 1Q 2.1 12 13 14 15
BOLADOS, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariolópricos. Me/m. Inst. fíutantan, 46:275-291, 1982.
CUADRO 1
Distribución de serpientes venenosas de las familias
en Centro America
Elapidae
e Hydrophidae
Familias y especies
Guatemala
y Belice
Honduras
El Salvador
Nicaragua
Costa Rica
Panamá
ELAPIDAE
Anillos negros en triadas
M. ancorai is
+
M. dissoleucus
+
M. elegans
+
Tricolores
M. alleni
+
+
+
M. browni
+
M. clarki
+
+
M. diastema
+
+
M. hyppocrepis
+
M. latifasciatus
+
M. nigrocinctus
+
+
+
4-
+
M. rautanus
+
M. stewarti
+
M. stuarti
+
Bicolores
M. mipartitus
+
+
HYDROPHIDAE
P. platurus
+
+
+
+
+
+
FAMÍLIA hydrophidae
Género Pelamis ( P. platurus)
Nuestra serpiente de mar, con una distribución que va desde Baja
Califórnia hasta el norte de Chile, es muy abundante en el litoral durante
ciertas épocas dei ano, sin embargo, ningún accidente humano ha sido
registrado hasta la fecha. El Dr. A.T.Tu (1976) colectó en las costas de
Costa Rica, en solamente tres semanas, más de 3000 especímenes para
sus estúdios toxinológicos. Esta especie difiere de otras serpientes marinas
en vivir en aguas limpias y mantenerse principalmente en la superfície,
la mayoría de las veces en grupos numerosos. Su coloración básica incluye
tres colores: negro en el dorso, amarillo brillante lateralmente y castano
claro en el vientre, existiendo arreglos principalmente en cuanto a la
interrelación de las bandas; un tipo totalmente amarillo ha sido descrito
en las aguas de Centro América (Bolanos et dl., 1974) con una frecuencia
277
cm
SciELO
10 11 12 13 14 15
BOLASÍOS, R. Serpientes venenosas de Centro America;
cariológicos. Mcm. Inst. Butantan, 46:275-291, 1982.
distribución, características y patrones
sumamente baja. El hecho de que ningún accidente ha sido descrito puede
estar relacionado con su comportamiento poco agresivo y su preferencia
por aguas limpias; sin embargo, cuando ella es capturada, atrapada en
redes de pescadores o cuando se vara en las playas y es manipulada
imprudentemente, bien podría causar un accidente, tal vez de consecuen-
cias severas como resultado de su potente veneno neurotóxico. Afortuna¬
damente los antivenenos producidos en Australia y Japón, a pesar de que
son específicos para otros géneros de serpientes marinas, neutralizan
efectivamente su veneno, al menos en animales de laboratorio.
CUADRO 2
Distribución de serpientes
venenosas
de la
familia
Viperidae en
Centro
America
Géneros y especies
Guatemala
y Belice
Honduras
El Salvador
Nicaragua
Costa Rica
Panamá
AGKISTRODON
A. bilineatus
+
+
■f
+
+
BOTHROPS
Terrestres
B. asper
+
+
•f
+
+
+
B. godmani
+
+
+
+
+
B. lansbergi
+
B. nasutus
+
+
7
+
+
+
B. nummifer
+
+
+
+
+
+
B. ophryomegas
+
+
+
+
+
B. picadoi
+
+
B. punctatus
+
Arborícolas
B. bicolor
+
B. lateralis
+
+
B. nigroviridis
+
+
7
+
+
B. schlegeli
+
+
+
+
+
CROTALUS
C. durissus
+
+
+
+
+
LACHESIS
L. muta
+
+
El cariotipo de Pelamis platurus fue descrito por nosotros reciente-
mente (Gutiérrez y Bolanos, 1980), estando compuesto por 20 macrocro-
mosomas y 18 microcromosomas, para un número diploide de 38 cromo-
somas. Una pequena constricción secundaria se aprecia en el cuarto par
de autosomas. En las hembras un par de cromosomas se muestra ligera-
mente heteromórfico, siendo identificados como ZW; ambos son meta-
278
cm
SciELO
10 11 12 13 14 15
BOLAÍJOS, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariológicos. Mem. Inat. Butantan, 46:275-291, 1982.
céntricos, sin embargo, uno de ellos es más pequeno y con el centrómero
en una posición más submediana que el otro. Encontramos también en
esta especie una mayor proporción de cromosomas acrocéntricos que en
el resto de especies de la subfamilia que hasta el momento han sido objeto
de estúdio, lo que sugiere que P. platurus presenta un cariotipo más
primitivo que las demás. En el Cuadro 3 se presentan, comparativamente,
algunas características cariológicas que han sido demonstradas en estúdios
con serpientes marinas, de donde se desprende — de acuerdo con Singh
(1972) — que la evolución cromosómica en la subfamilia Hydrophinae
debe haber ocurrido a expensas de los macrocromosomas, puesto que todas
las especies estudiadas presentan 18 microcromosomas. Laticauda semi-
fasciata (Laticaudinae) presenta un cariotipo claramente distinguible de
aquellos de Hydrophinae.
FAMÍLIA ELAPIDAE
Género Micrurus (serpientes de coral)
Está representado en Centro América por 14 especies (Cuadro 1),
con numerosas subespecies, algunas muy bien definidas gradas a su
aislacionismo geográfico. Esas especies pueden agruparse en tres catego¬
rias en cuanto a su coloración: 1. Con anillos negros en triadas, como
son los casos de M. elegans, de la porción sur dei istmo, y M. ancoralis y
M. dissoleucus dei sur. 2. Tricolores, en donde los anillos rojo y negro
están siempre separados por un anillo claro (amarillo o blanco) ; en esta
categoria se agrupan la mayoría de las especies, siendo el prototipo
M. nigrocinctus, la Coral Centroamericana, la más frecuente en todos los
países y la de mayor importância médica. 3. Por último, el tipo en donde
predominan dos colores, blanco y negro en secuencia, pero con la cabeza
y la cola con escamas rojas, o rojo y negro; en esta categoria hay una
sola especie M. mipartitus, exclusiva dei sur dei istmo. En la Fig. 2 se
presenta un ejemplar adulto de M. nigrocinctus. De las diversas subes¬
pecies de M. nigrocinctus que han sido consideradas recientemente en la
literatura, en dos de ellas, M. n. nigrocinctus {— M. n. melanocephalus)
y M. n. mosquitensis, Savage y Vial (1973) sugieren la eliminación dei
trinomio en vista de lo que ellos consideran — con un critério morfológico
— tipos intermédios entre ambas poblaciones en las zonas donde se
traslapan. Nuestros estúdios cariológicos indican un claro patrón dife¬
rencial entre ambas poblaciones, a expensas de los microcromosomas, sin
que se presenten cariotipos híbridos que podrían sugerir entrecruzamiento
(Gutiérrez y Bolanos, 1981).
Los cariotipos de tres especies de Micrurus : M. mipartitus, M. alleni
y M. nigrocinctus, esta última en sus dos subespecies ( M. n. nigrocinctus y
M. n. mosquitensis), han sido investigados por Gutiérrez y Bolanos
(1979). Los autores demuestran un intenso polimorfismo cromosómico,
a diferencia de lo que ocurre en Viperidae, como se observa en los idioti-
pos que se presentan en la Fig. 3. Es conveniente hacer notar, nueva-
mente, que los cariotipos de M. n. nigrocinctus y M. n. mosquitensis se
diferencian claramente por el número de microcromosomas (12 y 14 res¬
pectivamente) y por la posición dei centrómero en el octavo par de
autosomas.
279
cm
SciELO
10 11 12 13 14 15
BOLAÍJOS, R. Serpientes venenosas de Centro America; distribución, características y patrones
rariolóeicos. Mem. Inat. Butantan, i6: 275-291, 1982.
O
P3
Q
<
O
T3
3
3
rC
3
cr
T3
s
3
co
<D
280
*
3
O
O
+
3
£
03
MH
3
172
£ ^ ^
N N N
pe (S ps £
£ £ ^ ^
N CS3 N N
vrH o vr ^ VFH srH o o
00 Oi 00 00
rH rH T—( T—(
+ + + +
O TÍ I> O
o
<N
+
00
00 00 00 00
rH T—I rH rH
+ + + +
o
CO CO w IO
CO co co CO
o o o o
00 00 00 00
rH 1 TH T-H
+ + 4* +
Tji rí O to
N N ^ 'tf
CO co CO CO
o o o o
M
<c S
55 a
S 'S
Q s
!-> e
< -~
O 8
H ^
■<
.co co
a
•h ’s
3» o
co -g
^
•2 R. B. H
s P o -2
5 k í N
,3 "C *3 £
ft, ÍJ5 &3 ís-
vc
O 'W
V »i
■8 -ci
j» S
&3 69
2 2
3 e»
40
tí C0
I i
S.1
co ^
Cl P
£ g
3» -s
SciELO
10 11 12 13 14 15
cm
cm
SciELO
10 11 12 13 14 15
BOLASÍOS, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariológicos. Mem. Inst. Butantan, 46:275-291, 1982.
Al estudiar en conjunto los cariotipos de todos los Micrurus que hasta
el momento han sido publicados, se puede senalar que el par de cromo-
somas sexuales es el N.° 6, con cromosomas ZW, siendo el primero subme-
tacéntrico y el segundo acrocéntrico y más pequeno. Además, que de
todos los cariotipos hasta el presente estudiados, pareciera ser que el de
M. lemniscatus carvalhoi (Beçak y Beçak, 1969) es el más primitivo pues
todos sus macrocromosomas son acrocéntricos.
Inmunológicamente, hemos podido demonstrar que los Micrurus pue-
den ser agrupados en categorias de acuerdo a la especifidad neutralizante
de sueros antiofídicos frente a sus venenos. En el Cuadro 4 se muestran
los grupos serológicos que hemos podido demonstrar. Además, también
hemos logrado preparar un suero multivalente, capaz de neutralizar todos
los venenos, simplemente inmunizando caballos con una mezcla de venenos
representativos de cada uno de los grupos anteriores (Bolanos et al.,
1978).
FAMÍLIA VIPERIDAE, SUBFAMILIA CROTALINAE
Género Agkistrodon
Agkistrodon bilineatus es la única representante de este género en
Centro América. Es popularmente Ilamada Cantil o Castellana y se le
encuentra desde Guatemala hasta Costa Rica, en la región semiárida dei
litoral dei Pacífico. No tenemos conocimiento de accidentes por esta
especie; sin embargo, al menos experimentalmente, su veneno es produ-
cido en cantidades suficientes como para causar un accidente de relevante
magnitud. Son típicas en ella las escamas blancas que bordean su boca
y dibujan líneas en su cabeza que asemejan una jáquima. En la Fig. 4
se muestra un ejemplar, procedente de Guatemala.
rTr
£
Fig. 4. Agkistrodon bilineatus. Problación de Guatemala. Nótese la ornamentación de la cabeza
mediante hileras de escamas blancas. (Foto cortesia de B. van den Brule).
282
cm
SciELO
10 11 12 13 14 15
BOLAfíOS, R. Serpientea venenosas de Centro America; distribución, características y patrones
cariológicos. Mem. Inst. Butantan, U6: 275-291, 1982.
Género Crotalus
Una sola especie, C. ãurissus, con una sola subespecie, C. d. durissus,
se presenta en Centro América con una distribución idêntica a la de
A. bilineatus : zonas bajas y semiáridas dei Pacífico, entre Guatemala y
Costa Rica, estando ausente en Panamá.
En un intenso estúdio sobre accidentes bien comprobados en humanos
causados por C. d. durissus (Bolaíios et al., 1980) pudimos demonstrar
que su envenenamiento no reviste la severidad de aquellos que producen
sus congéneres en otras latitudes, pudiendo ser catalogados como mode¬
rados, aún en los casos más violentos; en ninguno de nuestros 21 pacientes
pudo demostrarse efecto neurotóxico, como tampoco, comprometimiento
renal. En la Fig. 5 se presenta un ejemplar adulto de la Cascabela centro-
americana, los cuales pueden alcanzar un tamano promedio de 1,35 m,
con un cuerpo relativamente grueso, pero una cabeza bastante pequena.
Fig. 5. Crotalus durissus durissus, Cascabela centroamericana.
Género Lachesis
Común en Panamá y Costa Rica, donde habita zonas selváticas de
condición húmeda y muy húmeda. Su relación con el hombre no es fre-
cuente, de ahí que los accidentes sean raros; sin embargo, en cuatro de
ellos bien confirmados, y con tratamiento con suero específico establecido
tempranamente (2 horas o menos de evolución), pudimos demostrar una
mortalidad dei 75 por ciento (Bolanos et al., 1982). Hasta el momento
una sola subespecie había sido considerada en Costa Rica y Panamá
(Peters y Orejas-Miranda, 1970) : L. m. stenophrys (Cope) ; sin embargo,
recientemente hemos podido demostrar la presencia en Panamá de L. m.
283
BOLAfíOS, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariológicos. Mem. Inat. Butantan, 46:275-291, 1982.
muta (Linnaeus) (Martínez y Bolafios, 1982), en una zona en donde es
posible que se presente una intergradación entre ambas poblaciones, la
província de Darién, en la región limítrofe con la província de Panamá.
En la región dei Pacífico Iluvioso de Costa Rica (Península de Osa
y zonas adyacentes) se presenta una población de Lachesis totalmente
diferente en muchas características a L. m. stenophrys y que aún no ha
sido descrita, a pesar de que Bolanos et al. (1978) ya senalaban diferen¬
cias en colorido, comportamiento y características inmunológicas de su
veneno.
Dentro de los viperidios de Centro América esta serpiente es la única
ovípara, siendo por lo general el número de huevos de 10 a 12, los que
requieren una incubación de aproximadamente dos meses, dependiendo
de la temperatura, y una humedad relativa cercana al 100 por ciento.
La época de postura, al menos en Costa Rica, se encuentran entre Julio
y Agosto, lo que corresponde a lo más intenso de la estación lluviosa.
La población dei Pacífico de Costa Rica de L. muta difiere de L. m.
stenophrys (Atlântico) y L. m. muta, primero en presentar un capuchón
negro que recubre toda la parte superior de su cabeza y que se extiende
lateralmente hasta la banda posocular, la cual enmascara, mientras que
las otras presentan manchas discretas en mayor o menor número según
la subespecie. Además, una notoria diferencia se presenta con el número
de escamas ventrales; mientras en L. m. muta es mayor de 214 para los
machos y de 226 para las hembras y en L. m. stenophrys menor de esas
cifras (Peters y Orejas-Miranda, 1970), nuestra población dei Pacífico
se sitúa en el medio, con un rango de 214-216 para los machos. Difieren
también en el colorido de su cuerpo, presentándose la coloración de fondo
grisacea en L. m. muta y castano amarillento en L. m. stenophrys, ambas
con triângulos castano oscuro, mientras que en la población dei Pacífico
de Costa Rica el color de fondo es amarillo y su ornamentación muy
oscura, casi negra. En la Figs. 6 y 7 se muestran ejemplares de estas dos
poblaciones de L. muta de Costa Rica, los cuales alcanzan dimensiones,
en promedio, de 2 metros o más.
CUADRO4
Grupos de venenos de Micrurus que presentan reaccion cruzada en pruebas
de neutralizacion
Grupo serológico
Especie de Micrurus
Localización geográfica
M. fulvius
América dei Norte
1
M. nigrocinctus
Centro América
M. dumerili
Sur América
M. corallinus
Sur América
2
M. frontalis
Sur América
M. 8pixi
Sur América
3
M. alleni
Centro América
M. mipartitus
Centro y Sur América
4
M. surinamensis
Sur América
284
cm
SciELO
10 11 12 13 14 15
Fig. 7. Lachesis muta. Población dei Pacífico sur de Costa Rica.
285
B0LAÍ50S, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariológicos. Mem. Inst. Butantan, 46:275-291, 1982.
Fig. 6. Lachesis muta stenophrys. Población dei Atlântico de Costa Rica.
cm
B0LA5Í0S, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariológicos. Mem. Inst. Butantan, 46: 275-291, 1982.
Género Bothrops
Similarmente a la situación dei género Micrurus, se presentan en
Centroamérica Bothrops típicos dei norte, cuya dispersión llega hasta
Guatemala y típicos dei sur, hasta Panamá, además de una población
autóctona más numerosa (Cuadro 2). Desde el punto de vista médico
son cuatro las especies que parecen tener mayor importância: 1. B. asper
(Fig. 8) responsable por más de un cincuenta por ciento de los accidentes
ofídicos y por la casi totalidad de las defunciones; alcanza tamanos consi-
derables con un promedio de 1,4 m y un máximo, observado por nosotros,
de 2,2 m; produce la mayor cantidad de veneno de todas las especies
Crotalinae de Centro América, con un promedio de 458 mg y un máximo
de 1.530 mg de veneno seco (liofilizado) en ejemplares recientemente
capturados (Bolanos, 1972). 2. B. nasuhis, pequena, terrestre, y produc-
tora de accidentes frecuentes pero de escaza importância, debido a la
pequena cantidad de veneno capaz de inocular. 3. B. schlegeli y 4. B. late-
ralis, arborícolas de color predominante verde, cuya importância principal
estriba en el hecho de que provocan accidentes en los miembros superiores,
principalmente en la mano, en donde una pequena cantidad de veneno,
como la que producen, es capaz de causar una disfunción con consecuencias
importantes para la normal función dei miembro. En las Figs. 9 y 10 se
presentan ejemplares adultos de B. schlegeli y B. lateralis, ambas con
dimensiones similares de aproximadamente 60 cm. En Costa Rica es
muy frecuente una variedad de B. schlegeli de coloración totalmente
amarilla que no se observa en otros países dei área ni en Sud América.
B. bicolor de Guatemala pareciera ser el equivalente ecológico de B. late¬
ralis de Costa Rica y Panamá. Otros miembros dei género no son rele¬
vantes desde un punto de vista médico puesto que sus accidentes no son
írecuentes.
Fig. 8. Bothrops asper, ejemplar de 1,70 m.
286
cm
2 3
z
5 6
10 11 12 13 14 15
BOLAnOS, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariológicos. Mem. Inst. Butantan, 46:275-291, 1982.
Fig. 9. Bothrops schlcgeli, detalle de la cabeza. Nótese las escamas superciliares características de
la especie.
Fig. 10. Bothrops lateralis. Se observan las típicas líneas amarillas longitudinales en la región
látero-ventral, así como pequenas líneas transversales en el dorso.
287
SciELO
30
B0LA5Í0S, R. Serpientes venenosas de Centro America; distribución,
cariológicos. Mem. Inat. Butantan, 46:275-291, 1982.
características y
patrones
cd
h
4 )
P<
O
u
X5
43
O
CQ
c
(d
E Cd
tj -p
o d
bo E
(0 CO
Pa -H
O CQ
Ch <D
43 ü
o cd
CQ ►Q
X
X
X
X
□□□ao
acnans
□□□□□;
□□□□□
DX
DX
X
X
DC
DC
DC
D
X
X
X
O
9UIOU • £
/•P oiumfojod
“1
o
<
ac
o
CQ
O
ac
o
«
«
o
288
SciELO
10 11 12 13
PARES DE GR0M0S0MAS
IíOLAnOS, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariológicos. Mem. Inat. Butantan, 40:275-291, 1982.
Recientemente hemos podido demostrar diferencias notorias en
efectos farmacológicos y patrones electroforéticos de veneno de diferentes
poblaciones de una misma especie de Bothrops, como también diferencias
entre recién nascidos y adultos de ejemplares de una misma población.
Así por ejemplo, B. asper de la región atlântica de Costa Rica presenta
un veneno más hemorragíparo y mionecrótico que los dei Pacífico; estos
últimos muestran mayor efecto proteolítico, siendo ambos similares en
cuanto a mionecrosis, hemólisis indirecta y letalidad. Con respecto a las
diferencias ontogénicas, los venenos de ejemplares recién nacidos son más
proteolíticos, hemorragíparos, edematizantes y letales para el ratón, mien-
tras que los adultos presentan mayor efecto hemolítico y mionecrótico
(Gutiérrez et al., 1980).
Un miembro de este grupo, B. picadoi, se conoce en la literatura
como exclusivo de Costa Rica, con una distribución que se limita a
montarias de baja altitud que se encuentran alrededor de la Meseta Central
dei país. Sin embargo, recientemente fue encontrada e identificada en
zonas altas de la província de Chiriquí, Panamá, cerca de la frontera sur
de Costa Rica (V. Martínez, comunicación personal), de tal suerte que
su âmbito de extensión debe ser ampliado.
Los cariotipos de 10 especies de Crotalinae de Centroamérica han
sido estudiados por Gutiérrez et al., (1979) siendo todos ellos idênticos
a los observados por Beçak (1965) y Beçak & Beçak (1969) para ser¬
pientes de la misma familia en Sur América, es decir, un número diploide
de 36 cromosomas con 16 macro y 20 microcromosomas y con un hetero-
morfismo cromosómico de las hembras en el cuarto par (ZW). Fueron
demostradas pequenas diferencias en la posición dei centrómero en algunos
pares de macrocromosomas, pero sin implicación aparente en sentido
evolutivo. Un diagrama de este cariotipo y sus diferencias entre especies
se presenta en la Fig. 11.
AGRADECIMIENTOS
El autor desea dejar constância de su agradecimiento al personal de
la División de Biologia dei Instituto Butantan por su hospitalidad durante
la celebración dei I Simposium Internacional sobre Serpientes en General
y Artrópodos Venenosos, como también a todos los funcionários dei Insti¬
tuto que también tuvieron participación en la organización dei evento.
Agradezco también a la Sra. Zaida Umana por el trabajo de mecanografia
dei manuscrito. Esta revisión fue financiada por la Vicerrectoría de Inves-
tigación de la Universidad de Costa Rica, proyecto N°. 02-07-10-25.
ABSTRACT: The paper presents a panoramic view of the
poisonous snakes of Central America (Hydrophiidae, Elapidae,
and Viperidae families), showing new localities for Lachesis rnuta
and Bothrops picadoi. Comments are presented on the medicai
importance of the species. Also the cariological patterns of ten
Viperidae, four Micrurus, and Pelàmis platurus, with a discussion
of some fiiogenetic relationships.
KEYWORDS: Poisonous snakes; Central America;
Geographical distribution; Karyotypeê.
289
SciELO
B0LA5Í0S, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariolófficos. Mem. Inat. Butantan, 46: 275-291, 1982.
REFERÊNCIAS BIBLIOGRÁFICAS
1. BEÇAK, W. Constituição cromossômica e mecanismo de determinação do sexo
em ofídios sul-americanos. I. Aspectos cariotípicos. Mem. Inst. Butantan,
32: 37-78, 1965.
2. BEÇAK, W. & BEÇAK, M.L. Cytotaxonomy and chromosomal evolution in
serpents. Cytogenetics, 247-348, 1969.
3. BOLANOS, R. Toxicity of Costa Rica snake venoms for the white mouse.
Amer. J. Trop. Med. & Hyg., 21 :360-363, 1972.
4. BOLANOS, R., CERDAS, L. & ABALOS, J.W. Venoms of coral snakes
( Micrurus spp.). Report on a multivalent antivenin for the Américas.
Buli. Pan. Am. Health Organ., 12: 23-27, 1978.
5. BOLANOS, R.; FLORES, A.; TAYLOR, R.T. & CERDAS, L. Color patterns
and venom characteristics in Pelamis platurus. Copeia, 197U: 909-912, 1974.
6. BOLANOS, R.; MARIN, O.; MORA-MEDINA, E. & ALFARO, E.A. El
accidente ofídico por cascabela ( Crotalus durissus durissus) en Costa Rica.
A cia Méd. Cost., 24:211-214, 1981.
7. BOLANOS, R.; MUNOZ, G. & CERDAS, L. Toxicidad, neutralización e
inmunoeléctroforesis de los venenos de Lachesis muta de Costa Rica y
Colombia. Toxicon, 16':295-300, 1978.
8. BOLANOS, R.; ROJAS, O. & ULLO A-FLORES, C.E. Aspectos biomédicos
de cuatro casos de mordedura de serpiente por Lachesis mxda (Ophidia:
Viperidae) en Costa Rica. Rev. Biol. Trop., 30, 1982 (no prelo).
9. GUTIÉRREZ, J.M. & BOLANOS, R. Cariotipos de las principales serpientes
de coral (Elapidae: Micrurus) de Costa Rica. Rev. Biol. Trop., 27:
57-73, 1979.
10. GUTIÉRREZ, J.M. & BOLANOS, R. Karyotype of the Yellow Bellied sea
snake, Pelamis platurus (Linnaeus) and its position in the chromosomal
evolution of the subfamily Hydrophiinae. J. Herpetol., 14:161-165, 1980.
11. GUTIÉRREZ, J.M. & BOLANOS, R. Polimorfismo cromosómico intra-
específico en la serpiente de coral Micrurus nigrocinctus (Ophidia:
Elapidae). Rev. Biol. Trop., 29: 115-122, 1981.
12. GUTIÉRREZ, J.M.; CHAVES, F. & BOLANOS, R. Estúdio comparativo de
ejemplares recién nacidos y adultos de Bothrops as per. Rev. Biol. Trop.,
28: 341-351, 1980.
13. GUTIÉRREZ, J.M.; TAYLOR, R.T. & BOLAnOS, R. Cariotipos de diez
especies de serpientes costarricenses de la familia Viperidae. Rev. Biol.
Trop., 27: 309-319, 1979.
14. HOGE, A.R. & ROMANO, S.A.R.W.D.L. Neotropical pit vipers, sea snakes
and coral snakes. In: Venomous animais and their venoms. Venomous
vertebrates (Bücherl, W. & Buckley, E.E., eds.). New York, Academic
Press, 1971. v. 2, p. 211-293.
15. JOHANBOCKE, M.M. Effects of a bite from Conophis lineatus (Squamata:
Colubridae). Buli. Phil. Herpet. Society, 22: 39, 1974.
16. MARTÍNEZ, V. & BOLANOS, R. The Bushmanster, Lachesis muta muta
(Linnaeus) (Ophidia: Viperidae) in Panama. Rev. Biol. Trop., 30, 1982
(no prelo).
17. MINTON, S.A. Jr. Beware: nonpoisonous snakes. Clin. Toxicol., 15: 259-265,
1979.
18. MINTON, S.A. Jr.; DOWLING, H.G. & RUSSEL, F.E. Poisonous snakes
of the world. Washington, D.C., U.S. Goverment Printing Office, 1968.
19. PETERS, J.A. & OREJAS MIRANDA, B. Catalogue of the neotropical
squamata. Part. 1. Snakes. Buli U.S. Natl. Mus. N.° 297. i-viii + 347 p.,
1970.
290
cm
SciELO
10 11 12 13 14 15
B0LA5Í0S, R. Serpientes venenosas de Centro America; distribución, características y patrones
cariológicos. Mem. Inst. Butantan, 46: 275-291, 1982.
20. ROZE, J.A. Micrurus. In: Catalogue of the neotropical squamata. Part. 1.
Snakes. Peters, J.A. & Orejas Miranda, B. eds. Buli. U.S. Natl. Mus. N.°
297 i-viii + 347 p. 1970.
21. SING, L. Evolution of karyotypes in snakes. Chromosoma (Berl.), 55:185-236,
1972.
22. TU, A.T. Investigation of the sea snake, Pelamis platurus (Reptilia, Ser¬
pentes, Hydrophiidae), on the Pacific coast of Costa Rica, Central America.
J. Herpetol., 10:13-18, 1976.
23. VISSER, J. & CHAPMAN, D.S. Snakes and snakebite. Venomous snakes and
management of snakebite in Southern África. Third impression. Cape
Town, Soutn África, Parnell & Sons, 1978.
291
cm
SciELO
10 11 12 13 14 15
PRELIMINARY REPORT ON THE MEDICAL
IMPORTANCE OF SICARIUS (ARANEAE: SICARIIDAE)
AND THE ACTION OF ITS VENOM
Gerald NEWLANDS *
ABSTRACT: Following a report of a person who suffered very
serious tissue loss after being bitten by a spider whieh answered
to the description of Sicarius spatulatus Pocoek, I decided to
investigate the matter. Specimens of S. albospinosus Purcell
were used for envenomation experiments with rabbits in order
to document the clinicai signs and symptoms, histopathological,
chemopathological and haematological consequences of the bite.
In the laboratory the bite of Sicarius proved to be far worse than
those of South African species of Loxosceles and the behaviour
and distribution of these spiders is thus of relevance in terms of
their epidemiological importance. Species of Sicarius occur in
the less densely populated areas of South America and Southern
África. The restricted distribution in low human density areas
means that human accidents are likely to be rare. The bite of
Sicarius results in an intensely necrotic and haemorrhagic lesion
locally and systemic symptoms attributable to disseminated intra¬
vascular coagulation.
INTRODUCTION
Spiders of the genera Sicarius and Loxosceles are closely related
and share many morphological and behavioural similarities. Both are
primitive six-eyed spiders with simple and similar male and female
genitalia. Furthermore, species of both genera stridulate by the same
unique mechanism (rub scrapers on the palpai femurs against
stridulatory files on the outer surface of the chelicerae) and both spiders
bury their egg sacs in sand (no other spiders do this). Accordingly,
when a human accident was reported to me and involved considerable
tissue destruction following a bite by a spider answering to the
description of S. spatulatus Pocock and in an area where it is common,
I decided to investigate the matter toxicologically.
To date, all the published accounts of Sicarius species have been of
a taxonomic and behavioural nature. Of the 23 species currently
* Department of Medicai Entomology, The South African Institute for Medicai Research.
293
SciELO
NEWLANDS, G. Preliminary report on the medicai importance of Sicarins
and the action of its venom. Mem. Inst. Butantan, 46:293-304, 1982.
(AraneaerSicariidae)
accepted (Gerschman de Pikelin & Schiapelli, 1979) 15 were described
between 1849 and 1900. It is clear that the genus needs revision,
especially in South America where most of the species occur and where
the published distributional records are out of date. Three works on the
behaviour of South American species have been published (Levi, 1967;
Levi & Levi, 1969 and Reiskind, 1965) but an extensive manual and
Computer search of the literature failed to reveal any clinicai or
toxicological studies on these spiders.
Zoogeographically, the disjunct distribution of Sicarins species in
the arid parts of the widely separated Neotropical and Afrotropical
regions is interesting (fig. 1). Clearly, ancestors of present day species
were separated by continental drifting following the break-up of Gondw-
analand in Cretaceous times. It is most unlikely that these primitive
spiders could have been dispersed by any other means since the conti¬
nental displacement. Spiderlings of sicarid species do not balloon as do
many of the more advanced web-bound labidognath spiders such as
Latrodectus species. Because of their xerophilous, rupicolous way of life,
sicarids are extremely unlikely candidates for dispersai by the normal
agencies such as accidental carriage with human trade goods and travei,
with migratory animais or by rafting on driftwood, which are normaly
implicated in the intercontinental dispersai of invertebrates. Regarding
the disjunct distribution of Sicarius in terms of continental displacement,
there is one anomaly viz S. utriformis (Butler) recorded from the
Galapagos Islands which are unrelated to continental drifting in that
they are of relatively recent volcanic origin. To the best of my knowledge,
S. utriformis is known only from the types described in Victorian times
and it is possible that the record is inaccurate.
METHODS
The in vivo envenomation studies were conducted with the approval
of the Witwatersrand University Animal Ethics Committee. Rabbits
were given tetracycline antibiotics by subcutaneous injection 24 hours
prior to envenomation and daily thereafter to reduce the chances of
artefacts due to secondary infections. Hind quarters of adult Californian
white rabbits were depilated by means of an electric shaver and a
proprietary depilatory cream. Adult spiders were induced to bite at the
centre of the depilated area by pressing the spider into contact with
the rabbifs skin. As Sicarius bites with reluctance, the spiders normally
had to be annoyed by pulling their pedipalps with fine fórceps to induce
biting. The clinicai appearance of the skin was monitored and changes
were photographed in colour and with Kodak High Speed Infrared Film
using a Kodak Wratten Filter 87C over an electronic flash and a dark
red filter over the camera lens. Infrared film was used to monitor
extravassation in the upper and middermis. Blood samples for
haematological and biochemical study were taken with a No. 23 (0,6mm)
Butterfly disposable needle inserted into the median artery of the ear
or by cardiac puncture with a No. 18 needle on a 50 cm 3 syringe. Aliquots
294
cm
SciELO
10 11 12 13 14 15
NEWLANDS, G.
and the action
Preliminary report on the medicai importance of
of its venom. Mem. Inst. Butantan, hG: 293-304. 1982.
SicariuH
(Araneae:Sicariidae )
SciELO
10 11 12 13
NEWLANDS, G. Preliminary report on the medicai importance of Sicariua (AraneaerSicariidae)
and the action of its venom. Mem. Inat. Butantan, J,6: 293-304, 1982.
for histological study were removed post-mortem in the usual way. The
aliquots were machine processed and the sections were stained with
haematoxylin and eosin. The majority of blood and serum samples were
machine analysed as routine clinicai specimens in the standard manner.
A Beckman 1260 autoanalyser was used for the serum biochemistry
screening. Venom was tested for proteolytic activity by the method of
Rinderknecht et al. 1968 in which a hide powder azure was used as a
chromogenic 3ubstrate.
Specimens of S. albospinosus for the study were collected beneath
rocks in the Namib desert at Awasib, Tsondab vlei and Lüderitz during
a field work expedition between February and March 1981.
EXPERIMENTAL RESULTS
Observed signs and symptoms of envenomation.
Ten experiments were conducted and the following is typical.
Within 15 minutes, the first change observed was a small purplish
discolouration of the skin at the bite site. By 20 minutes, a well defined
25mm wheal formed (fig. 3), the central area of which contained a
diffuse purple zone of about 4mm at the bite site. Skin in the wheal
area was of a distinctly glossy and reticulated texture quite markedly
different from the surrounding area. Infrared photographs at this stage
suggested slight dermal extravassation covering an area of about 5 by
llmm about the bite site.
By an hour after the bite, the glossy and reticulated skin zone had
spread to about 20 by 30mm and the central haemorrhagic area was
about 6 by 25mm and was much darker in colour. Infrared photographs
depicted a marked increase in the dermal extravassation. After a further
hour and a half, the lesion had increased in size by two or three milli-
metres and a dark central necrotic zone had formed. Five hours after
the bite, a black eschar (8 x 15mm) had begun to form over the central
area of the lesion and this was surrounded by a clearly haemorrhagic
zone (15 by 20mm). Of significance at this stage was the fact that
there was no evident oedema or erythema which are normally seen in
cases of loxoscelism.
At seven hours, the clinicai picture began to change, the eschar
had become quite hard and the surrounding zone of haemorrhage was
much darker in colour. The glossy reticulated appearance of the skin,
characteristic of skin at the bite site for four or five hours after the
bite, was no longer evident and an ecchymotic zone in excess of 50mm
was clearly visible (fig. 4). Patches of skin damaged by the electric
shaver and depilatory preparations were becoming conspicuous in the
form of mildly haemorrhagic lesions. What appeared to be a scattered
and barely perceptable macular rash was developing at this stage.
Infrared photographs (fig. 5) confirmed that the central lesion was
intensely haemorrhagic and circumscribed by an extensive area of
ecchymosis.
296
cm
SciELO
10 11 12 13 14 15
NEWLANDS, G. Preliminary report on the medicai importance of Sicariua (Araneae:Sicariidae)
and the action of its venom. Mcm. Inst. Butantan, ^6: 293-304, 1982.
Fig. 2. Dorsal view of Sicariua hahnii (Karsch) 1878.
Fig. 3. Lesion on rabbit as seen 20 minutes after a S. albospinosua bite.
Fig. 4. Same lesion depicted in Fig. 3 but at 7 hours after the bite and showing haemorrhage,
necrosis and eschar formation.
Fig. 5. Same lesion depicted in fig. 4 at the same time but photographed with infrared film to
reveal the severe haemorrhage of the central lesion (black) surrounded by an extensive area
of echymoísis (dark grey area). The gravitational effect on the spread of the lesion
is very evident.
Fig. 6. The extensively haemorrhaged subcutaneous abdominal wall of a rabbit which had died within
16 hours of a Sicariua albospinosua bite.
Fig. 7. Rabbit which was sacrificed 6 hours after a Sicariua albospinosus bite. Skin covering the
abdominal region has been peeled back in order to reveal the widespread petechial haemorrhages
of the dermis and abdominal wall in relation to the vascular system.
297
cm
NEWLANDS, G. Preliminary report on the medicai importance of Sicariua (Araneae:Sicariidae)
and the action of its venom. Mem. Inat. Butantan, 46:293-304, 1982.
Most of the rabbits died within 4 to 16 hours, but in those which
survived (possibly received milder bites), the central necrotic zone was
depressed by 18 hours and surrounded by an extensive area of ecchymosis,
erythema and oedema. The eschar sloughed in 9 days, leaving a crater
up to 60mm across and revealing tremendous damage to the subdermal
tissue and skeletal muscle. In rabbits, the lesion healed rapidly after the
eschar had sloughed, provided no secondary infection was allowed to
develop. In the early stages, the lesion was always found to be sterile,
even when no prophylactic antibiotics had been administered. Proteolytic
enzymes in the venom probably destroyed bacterial contaminants in the
early stages.
Signs and symptoms seen in rabbits prior to death were those of
collapse. Slight paralysis of the hind limbs, generalised cyanosis, shallow
breathing and body temperatures as low as 34,7°C were measured.
None of the rabbits showed signs of haematuria or haemoglobinuris.
Death appeared to result from respiratory failure.
Post-morten Findings
Autopsy examinations were conducted immediately after death in
most cases. In two animais which had died a few hours before autopsy,
the sub-dermal abdominal wall was found to be very extensively
haemorrhaged (fig. 6). In all freshly dead rabbits, the abdômen and
inside surface of the skin displayed widespread petechial haemorrhages
associated with the vascular supply (fig. 7) which in suggestive of a
disseminated intravascular coagulopathy (DIC). Further support for
the diagnosis of DIC was forthcoming on examination of the systemic
organs, many of which were petechially haemorrhaged. This systemic
pathology was evident from about five hours after envenomation. Organs
generally affected were the alimentary canal and mesenteries, kidneys,
liver, spleen, lungs, heart and the subconjunctiva of the eye. During
the autopsy, aliquots of systemic organs were taken for histological
investigation.
Histological Findings
Skin punch biopsy aliquots removed from the lesion at the bite
site three hours after envenomation, revealed early vasculitis accompanied
by massive extravassations throughout the depth of the collagen layer.
Very little inflammatory reaction and oedema could be detected at this
early stage, a finding which contrasts markedly with those of South
African loxosceline envenomation lesions.
By six hours after envenomation, the epidermis at the bite site had
completely disappeared, probably due to a direct proteolytic effect of the
venom. This lysed tissue overlayed a collagen layer which was intensely
haemorrhaged and necrotic (fig. 8). Occasional polymorphonuclear
leukocytes and eosinophils were seen throughout the dermis. The
dissolution of the epidermis must have been the result of a proteolytic
enzyme in the venom as this was too early after the bite to be an
ischemic effect caused by the vasculitis. Studies conducted with hide-
powder azure substrates confirmed that Sicarius venom has a strongly
298
cm
SciELO
10 11 12 13 14 15
NEWLANDS, G. Preliminary report on the medicai importance of Sicariua (Araneae:Sicariidae)
and the action of its venom. Mem. Inat. fíutantan, 46:293-304, 1982.
proteolytic action. Other changes observed in the skin at six hours
were, fibrin-thrombi clots partly occluding the lumens of blood vessels
and necrosis of the muscle layers at the dermal-muscle interface (fig. 9).
It must be stressed that as the skin and systemic organ aliquots were
removed from the freshly dead rabbit, the fibrin-thrombi clots seen in
most of the sections were not necessarily attributable to a diffuse
intravascular coagulation syndrome.
Changes seen in the kidneys after six hours were focal areas of
inflammatory cells in the medulla, congested glomeruli and evidence of
necrosis (fig. 10). No evidence of haemoglobin casts in the renal tubules
could be detected. Vorse et al (1972) described haemoglobin casts in
renal tubules in a fatal case of loxoscelism with disseminated intra¬
vascular coagulopathy. This finding was in keeping with the fact that
no evidence of haemoglobin could be detected in rabbits which died
within 12 hours of envenomation.
Petechial haemorrhages seen on the small intestine during autopsy
proved to be slight extravassation of erythrocytes into the lamina própria.
Changes in the spleen were found to be very slight congestion and a
slight inflammatory infiltrate into the red pulp region accompanied by
areas of necrosis with pycnosis and karyorhexis of the nuclei. Likewise,
changes in the adrenal glands were not marked; slight extravassation
of erythrocytes into the periadrenal fat accompanied by congestion were
the only detectable abnormalities. The heart displayed areas of subendo-
cardial haemorrhage and mononuclear cell infiltrates between the striated
muscle of the heart giving rise to foci of interstitial myocarditis (fig. 11).
Eosinophilic micro-abscess formation, small areas of necrosis and fibrin
thrombi in the portal vessels were the main histological findings in the
liver (fig. 12). Lungs of all the rabbits exhibited marked changes such
as pulmonary oedema, widespread inflammatory cell infiltrates and areas
of eosinophilic micro-abscess formation (fig. 13). Changes seen in the
other organs were either slight such as the perivascular cuffing seen in
the brain or possible artefact related to some other cause such as one
rabbit which had a well formed granuloma in the cerebellum.
Serum biochemistry and haematological findings
Generally, the serum biochemical and haematological findings
concurred with the histopathological findings. Higher leveis of the
circulating enzymes alkaline phosphatase, alamine transaminase (ALT)
and aspartate transaminase (AST) suggest massive hepatocellular
damage which was noted in the histology at an early stage (Table 1).
Increases in the creatine phosphokinase (CPK) normally suggest muscle
trauma and myocardial infarction and it is possible that skeletal muscle
damage at the bite site, and the histological changes seen in the heart
muscle (possibly due to DIC) are causes for the high CPK leveis detected
in the serum within 8 hours of the bite (Hyde and Driasey, 1974). The
precise cause of the higher levei of serum glucose are not determinable
at this stage as heart failure, malfunction of the kidneys, thyroid, liver
and pancreas cause glucose increase. Of these organs changes were seen
histologically in the heart, kidneys and liver which may explain the
increased glucose leveis at an early stage.
299
cm
SciELO
10 11 12 13 14 15
NEWLANDS, G. Preliminary report on the medicai importance of Sicariua (AraneaerSicariidae)
and the action of its venom. Mcm. Inst. Butantan, 46:293-304, 1982.
Fig. 12.
Fig. 13.
Section of skin from the bite-site 6 hours after envenomation. The epidermis ia completely
lysed by this stage and overhes a collagen layer which ia intenaely haemorrhagic and necrotic
(H & E, 150 x).
Evidence of vasculitis 6 hours after the bite. The vessel (cut longitudinally) ia partly
occluded by íibrinthrombi clots and inílammatory cells. The collagen above the vesael is
haemorrhaged and slightly oedematous. The muscle beneath the vessel ia necrotic vvith
karyolysis of the nuclei (H & E, 160 x).
Kidney showing nccrosis at 6 hours after the bite but no evidence of haemoglobin casta.
(H & E, 400 x).
An infiltrate of mononuclear cells and slight extravassation in between the striated muscle
fibres of the endocardium. (H & E, 400 x).
Eosinophilic micro-abscess formation near portal vessels in the liver. (H& E, 400 x).
Pulmonary oedema. eosinophilic micro-abscess formation and widespread inflammatory cell
infiltrates are clearly visible in this section of the lung, 6 hours after the bite (H & E, 160 x).
300
2 3 4
5
cm
SciELO
10 11 12 13 14 15
NEWLANDS, G. Preliminary report on the medicai importance of Sicariua (AraneaerSicariidae)
and the action of its venom. Mem. Inst. Butantan, 46:293-304, 1982.
TABLE 1
Serum biochemistry results following Sicarius albospinosics bite in rabbits. The
results reflect the pre-bite values (viz. normal) at time 0 and the findings at
4 and 8 hours after envenomation.
Time
(hours)
Glucose
Alkaline
phosphatase
ALT
AST
CPK
Amylase
0
7,2
43
79
25
343
506
4
9,9
85
156
144
496
456
8
16,1
292
760
1360
2018
436
ALT = alanine transaminase
AST = aspartate transaminase
CPK = creatinine phosphokinase
Paralysis of the hind limbs was thought to be due to a possible
neurotoxic component in Sicarius venom. Neurotoxins which stimulate
the adrenal, autonomic and sympathetic nervous systems generally give
rise to very high leveis of circulating catecholamines. High leveis of
catecholamines can induce cardiac arrest as is the case in scorpion
envenomation but in the experiments I conducted, I got the impression
that the rabbits died of respiratory failure rather than cardiac arrest.
Catecholamine leveis in a rabbit challenged with the venom of Sicarius
was found to be greatly reduced prior to its death within eight hours of
envenomation. The possible neurotoxic properties of Sicarius venom
shall soon be studied in detail.
Besides the serum biochemical changes, discovered, numerous clinicai
tests revealed little or no abnormality, viz total protein, albumin, calcium,
cholesterol, uric acid and bilirubin.
The haematological changes seen clearly suggest a DIC in my opinion.
The diagnosis of DIC is confirmed by thrombocytopenia, depletion of
fibrinogen, the activity of the clotting factors, accumulations of fibrin
and fibrinogen degradation products (FDP) and prolonged prothrombin
(PT) and partial thromboplastin (PTT) times (Bradlow, 1981). Rabbits
subjected to the bite of S. albospinosus fulfilled all these requirements
except increased leveis of FDP (Table 2). The reason for this is not
clear for in a single experiment conducted with the bite of S. hahni,
the FDP leveis in the blood rose dramatically within 6 hours of envenom¬
ation. This could be due to species specific differences in the action
of the venom. An interesting feature of Sicarius envenomation was
that clotting factor VIII is affected and drops to 16% of its activity
within seven hours of the bite. When tha activity of factor VIII drops
below about 30%, systemic haemorrhaging is possible and this may
account for the petechial haemorrhage seen in many of the visceral
organs. Bradlow (1981) points out that factor VIII deactivation is
rarely seen in DIC cases. Accordingly, the deactivation of factor VIII
may be a unique feature of Sicarius envenomation. In my opinion the
301
cm
SciELO
10 11 12 13 14 15
NEWLANDS, G. Preliminary report on the medicai importance of Sicariíis (Araneae: Sicariidae)
and the action of its venom. Mem. Inst. Butantan, 46: 293-304, 1982.
DIC seen in the rabbits was a direct result of the effect on the clotting
factor and not due to some secondary cause such as vasculitis or skeletal
muscle damage.
TABLE 2
Clotting study on the blood of rabbits subjected to the bite of Sicarius albospinosus.
Pre-bite values (viz. normal) are given at times 0 and the effect of the venom
on the coagulation potential of the blood was assessed at Various intervals after
envenomation.
Time
(hours)
PT
(sec)
PTT
(sec)
Fibrinogen
(mg/dl)
FDP
(/tg/cm 3 )
Factor VIII
(% coagulent
activity)
0
12,0
24,6
219
<10
100
1
199
10-40
75
2,5
210
<10
70
5
251
<10
38
6
139
<10
20
7,5
29,5
55,5
160
10-40
16
prothrombin time
partial thromboplastin time
Fibrin degredation products
EPIDEMIOLOGICAL CONSIDERATIONS
Factors to be considered when assessing the medicai importance of
a highly venomous spider are those behavioural and distributional
characteristics which regulate its potential contact with humans. The
laboratory study of Sicarius envenomation in rabbits certainly suggests
that S. albospinosus is one of the most dangerously venomous spiders
in the world. The reasons for the low human accident leveis with
spiders of this genus in the past are of importance. In South África, I
am aware of only two cases of spider envenomation which may have
been caused by the bite of S. spatulatus (the smallest species in the
genus) in the South eastern Cape. All Southern African species of the
genus except S. spatulatus occur in the sandy and extremely arid regions
which are virtually uninhabited by humans (fig. 1). The microhabitat
of these spiders further reduces the chances of human contact in that
these spiders frequently bury themselves in the sand (as described by
Reiskind 1965) beneath large rocks. Another habitat is beneath rocks
in the twilight zone of caves or rock shelters. The spiders have a positive
geotaxis and are never attached to the underside of their rock cover
which greatly reduces the chances of accidents when field workers lift
rocks. The spiders are very difficult to see when exposed because of
their cryptic colouration and self burying behaviour and are this unlikely
to fali into the hands of most specimen collectors.
302
cm
SciELO
10 11 12 13 14 15
NEWLANDS, G. Preliminary report on the medicai importance of Sicarius (Ararieae:Sicariidae>
and the action of its venom. Mem. Inat. fíutantan, 46: 293-304, 1982.
Besides the habitat choice, there are several unique behavioural
attributes of Sicarius which greatly reduce their chances of human
contact. In the laboratory, specimens of Sicarius would rarely of leave
their shelter and rather than go out in search of food (as in the case
of most spiders including Loxosceles species) these spiders would wait
for the chance encounter of possible prey items wandering beneath
their cover. The spiders bury themselves in the sand and then go into
a state of diapause and often months go by before they move. Specimens
kept in my laboratory refused food offered more frequently than every
two or three months and happily survived up to a year without feeding.
Nothing is known of their mating frequency in nature and whether
males go in search of females or visa versa. I have only once seen
specimens of Sicarius walking about in the field and this may have been
caused by my disturbing their habitat while collecting arachnids in the
vicinity. These spiders live a very long time. An adult female
S. albospinosus I collected at Tsondab Vlei in the Namib during June
1970 died in October 1980 after it had been handled roughly in envenom-
ation experiments. Another idiosyncrasy which reduces the medicai
importance of Sicarius species is the fact that they appear to bite with
great reluctance. In all the laboratory tests, the spiders had to be
pressed firmly into contact with the rabbit and in most cases, had to be
provoked by pulling their pedipalps with fine fórceps before they would
bite.
On the negative side, because Sicarius specimens are normally in a
state of diapause, they do not move when disturbed and could easily be
mistaken for dead specimens. Anyone handling such a specimen could
be bitten when the spider ‘awakes’. Furthermore, one species, S. spatulatus
occurs in the relatively densely populated areas of the south eastern Cape
Province in South África and this species has possibly been involved in
two human accidents in the East London area. In these cases, the spider
was not identified but the description provided by one of tjie victims
fit that of S. spatulatus. In this particular case the victim lost an arm
because of the extensive tissue necrosis. Other areas where Sicarius
species occur and which have relatively high human population densities
are indicated in figure 1. Most of these high risk areas are in Central
and South America, viz. El Salvador, Costa Rica, Colombia, Equador,
Peru, Brazil and Argentina.
CONCLUSION
Laboratory studies have demonstrated that at least two South African
species of Sicarius are dangerously venomous. Fortunately, the behaviour
and ecological background of these species is such that the chances of
human accidents in South África are slight. However, with the increasing
human activities in the deserts of Southern África, the chances of human
involvement with these spiders increases yearly. While species specific
toxicological differences were detected in some of the experiments, all
species of the genus in Southern África and the Américas should be
regarded as dangerous until proved harmless. There are several areas
in South and Central America where species of Sicarius occur in relatively
308
cm
SciELO
10 11 12 13 14 15
NEWLANDS, G. Preliminary report on the medicai importance of Sicarius (Araneae: Sicariidae)
and the action of its venom. Mem. Inat. Butantan, 46:293-304, 1982.
densely populated areas. In South África, the high risk areas are Cape
Town and the Port Elizabeth-East London areas, where a small species,
S. spatulatus occurs.
In South America bites of the spider Loxosceles laeta are frequently
accompanied by serious systemic symptoms (Schenone, 1978), and it is
possible that some of these cases diagnosed on signs and symptoms alone,
could be confused with cases of Sicarius envenomation which is super-
ficially similar.
While the names S. albospinosus and S. hahnii have been used, great
difficulty was experienced in matching specimens with the type species
descriptions. Gerschman de Pilken and Schiapelli (1979) encountered the
same difficulty in their study of Argentenian species. In view of the fact
that the various species I have studied are not equally toxic, a thorough
taxonomic revision of the species is urgently required.
ACKNOWLEDGEMENTS
The South African Medicai Research Council is thanked for a grant towards
the studies reported on and thanks are expressed to the following who helped make
this work possible: (Pathologists) P. Atkinson, S.D. Berson. C. Fernandes-Costa
and J.J. Rippey. (Technical Help) : B.P.W. Fratscher, M. George, T.R. Liptz, C.B.
Martindale and J. McClean. (Specimens loaned or donated) C. Carr, P. Crozier,
A. Dippenaar-Sehoeman, N.G.H. Jacobson, J. and A. Le Roy and A. Harington.
BIBLIOGRAPHIC REFERENCES
1. BRADLOW, B.A. Intravascular coagulation and fibrinolysis. S. Afr. J. Hosp.
Med., 7: 86-92, 1981.
2. GERSCHMAN DE PIKELIN, B.S. & SCHIAPELLI, R.D. Caracteres' morfo-
logicos validos en la sistemática dei genero Sicarius (Walckenaer 1847)
Araneae: Sicariidae. Acta zool. lilloana, 85: 87-96, 1979.
3. HYDE, T.A. & DRAISEY, T.F. Principies of Chemical Pathology. Norwich,
Butterworths, 1974.
4. LEVI, H.W. Predatory and Sexual Behaviour of the spider Sicarius (Araneae:
Sicariidae). Psyche, 74: 320-330, 1967.
5. - & LEVI, L.R. Eggcase construction and Further Observations on
the Sexual Behaviour of the Spider Sicarius (Araneae: Sicariidae). Psyche,
76:29-40, 1969.
6. REISKIND, J. Self-Burying Behaviour in the Genus Sicarius (Araneae,
Sicariidae). Psyche, 72:218-224, 1965.
7. RINDERKNECHT, H.; GEOKAS, M.C.; SILVERMAN, P.; & HAVERBACK,
B.J. A new ultrascnsitive method for the determination of proteolytic
activity. Clinica Chimica Acta, 21 :197-203, 1968.
8. SCHENONE, H. & SUAREZ, G. Venoms of the Scytodidae. Genus Loxosceles.
in Arthropod Venoms. Ed. S. Bettini. Berlin. Springer-Verlag, 1979. p.
247-275.
9. VORSE, H.; SECCARECCIO, P.; WOODFUR, K.; & HUMPHREY, G.B.
Disseminated intravascular coagulopathy following fatal brown spider bite
(necrotic arachnidism). J. Pediat., 30:1035-1038, 1972.
304
cm
2 3
z
5 6
10 11 12 13 14 15
Mem. Inst. Butantan
1*6 :305-338, 1982
NEW WORLD CORAL SNAKES (ELAPIDAE):
A TAXONOMIC AND BIOLOGICAL SUMMARY
Janis A. ROZE *
Coral snakes (corales, coralillos, coralillas, cobras coraes) comprise
a group of about 120 species and subspecies of elapid snakes of the New
World. Presently, they are included in two genera, Micruroides, known
from southeastern United States and western México, and Micrurus distri-
buted throughout the tropical and warm-temperate parts of North, Central
and South America, from North Carolina, Florida, Arizona and Texas,
United States to central Argentina. A third genus, Leptomicrurus, invali-
dated by Romano (1972), has some characteristics such as hemipenis
structure, scale microornamentation (microdermatoglyphs), contact of
the chin shields with the mental and the attachment of head musculatura
(attachment of the quarrate in rear of the venom gland) that suggest
significant differences from the other species of the genus Micrurus.
Additional information on venom characteristics, albumin as well as
karyotypes might shed further light on this problem. Provisionally, the
species of Leptomicrurus are included in the genus Micrurus pending
further studies.
Over the last fifty years, the splittingas well as lumping tendencies
have been evident in the taxonomy of coral snakes. The lumping, parti-
cularly occuring in the United States, is a recent Zeitgeist in herpetology.
Maybe it has emerged as a reaction to the earlier splitting tendencies,
or as a fascination for the potential of Computer analysis applied to
taxonomy and classification. On many occasions, the latter can neutralize
biases and subjective interpretation of data and thus eliminate guesswork
and speculations. At the same time, however, an excessive use of
computer-generated “absolutes” transform and consecuently restrict the
elegant art of taxonomy and evolutionary assessment of species to a
mathematical, mechansistic game, be it cladistic, chronistic or phenic.
Fortunately, new knowledge in additional fields is becoming available
which broaden the decision base and add new dimensions to taxonomic
inquiries. Such fields as genetic karyotyping, serological and tissular
analysis, comparative biochemistry and pharmacological properties of
venoms, diversity and evolution of behavior, niche analysis and ecological
partitioning of resources to name a few are creating the potential for a
holistic definition and understanding of species, subspecies and even
* Department of Biolog^r, City College of the City University of New York; The American Museum
of Natural History, New York.
305
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mem. Inst.
fíutantan, 1,6: 305-338, 1982.
intersubspecific populations. This holistic species concept — strived for
by many systematically and evolutionary oriented biologists — might be
the most integrative approach by which a species or subspecies is defined.
In addition, two important ingredients of the taxonomisfs work are
field studies and ecological assessment of a species, especially useful when
revising widely distributed taxonomic groups. As many seasoned biologists
would testify, during intensive field research a “biological sense of a
species or subspecies” is frequently developed. It facilitates not only an
empirical pereception of the species gestalt in its natural environment
but might also serve as additional information to be translated later into
quantitative and quantifyable terms. What I am suggesting here is a
kind of “biologisfs intuition”, similar to what has been described of
physicists. They might have an intuitional pereception of a basic concept
or a solution to a problem but these intuitions must be expressed in
mathematical or logical terms. The integration of intellectual data with
the intuitional pereception, developed during field or laboratory studies,
might be a framework for a holistic exercise in any field of biological
endeavor.
Such complex coral snake species as Micrurus diastema, íound in
México and northern Central America, and Micrurus nigrocinctus, from
Central America to northwestern Colombia, are comprised of groups of
subspecies and even population complexes that have been lumped together
(Wilson and Mayer, 1972; Fraser, 1973; Savage and Vial, 1974) even
though additional biological evidence suggests the validiíy of their sub-
specific subdivisions. Both species are, probably, of a relatively recent
evolutionary origin that have undergone migrations and adaptive radi-
ation that would fascinate an evolutionary biologist. Insular forms of
M. nigrocinctus: M. n. babaspul , M. n. coibensis and M. n. ruatanus
probably represent three different states of geographical formation of
races and speciation. The rather distinct M. n. ruatanus has not only
developed a distinct set of characteristics, close to species levei of diffe-
rentiation, but is presently endangered by human activities (Wilson and
Hahn, 1973). Even a more dramatic situation is found with M. n. babaspul,
an inhabitant of the Isla dei Maíz Grande (Great Corn Island), Nica-
ragua. The Babaspul, as the natives of the island call it, has not only
disappeared from the nearby Isla dei Maíz Pequena (Little Corn Island),
but its distribution on the first island has been reduced to a small area
not yet subject to human exploitation, If things go on as they do, in
about 20 or 30 years another subspecies will be added to the growing
list of extinct animais by action of humans.
From the present studies of coral snakes and other groups of ver-
tebrates it is becoming increasingly obvious that a recognition and careful
definition of taxonomic units particularly to the subspecific levei is a
comtemporary taxonomic imperative. In many cases it is not an easy
task. Yet, additional data from chromosome studies, venom characteris¬
tics, serological and ecological features and other studies facilitate a
holistic definition of subspecies where they can be recognized. At the
same time, a precise definition of species and subspecies is a contribution
of systematic and evolutionary biology that provides a basis for a better
assessment of differences and variation in ecological and evolutionary
dynamics of the taxonomic units. It provides also a framework for
306
cm
2 3
Z
5 6
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biolofcical summary. Mem. Inat.
Butantan, 46:305-338, 1982.
assessment of species and subspecies of medicai and epidemiological
importance. One such example is the excellent research of Oswaldo Vital
Brazil (1980) in coral snake venoms for which the subspecific definition
and distribution of the real life units (subspecies) could have helped
in a more precise interpretation of the differences in venom characteristics
of two closely allied species: Micrurus frontalis ssp. and M. lemniscatus
ssp. from Southern Brazil. The differences of venom characteristics (cf.
protein contents and other characteristics) and levei of aggressivity found
between the two subspecies of coral snakes in the United States ( Micru¬
rus fulvius fulvius and M. f. tenere) is another example in which the
recognition of subspecific differences becomes an important factor in
interpreting these differences.
In continuation, some biological features of coral snakes are briefly
summarized together with an updated enumeration of the recognized
genera, species and subspecies.
ACKNOWLEDGEMENTS
Thanks are due to many individuais and institutions who have helped
or contributed in no small ways during my 20 years of coral snake
studies. They will be acknowledged individually in a forthcoming book
on New World Venomous Coral Snakes. Meanwhile, I owe thanks to the
Department of Herpetology of the American Museum of Natural History,
New York and especially to C. Jay Cole, Charles W. Myers and Richard
G. Zweifel; to Ronald Heyer and George Zug, National Museum of
Natural History, Washington; to Robert F. Inger and Hyman Marx,
Field Museum of Natural History, Chicago; to Ernest E. Williams,
Museum of Comparative Zoology, Harvard University, as well as to
Harry W. Greene, Museum of Vertebrate Zoology, University of Califór¬
nia at Berkeley, Samuel B. McDowell, Rutgers University, Alphonse
R. Hoge, Instituto Butantan, São Paulo, and Paulo Vanzolini, Museu de
Zoologia, Universidade de São Paulo, Brazil. For help with de manuscript
thanks are due to Christina Stewart.
My research of coral, snakes has been supported by grants from the
Public Health Service and the Research Foundation of the City Univer¬
sity of New York.
BIOLOGICAL SUMMARY
Food
Most coral snakes are foraging ground litter íeeders. About 90%
of the species are ophiophagous, including cannibalism, but about 60%
have more euryphagous habits, feeding also on other elongated amphibians
and reptiles. In addition to snakes, several subspecies of M. frontalis, M.
mipartitus semipartitus, M. corallinus, M. lemniscatus ssp. and M. t.
tschudii feed also on amphisbaenids. Caecilians are known prey items for
M. latisfaciatus, M. n. nigrocinctus, M. spixii obscurus and M. lemnis¬
catus helleri.
At least four species (M. alleni, M. dumerilii carinicauda, M. lemnis¬
catus duitius, M. lemniscatus helleri and M. s. surinamensis) feed on a
307
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mem. Inat.
Butantan, 46: 305-338, 1982.
tropical pound and swamp dwelling eel, Synbranchus marmoratus.
Stomach content of M. lemniscatus heÀleri from Peru from specimens at
the American Museum of Natural History and National Museum of
Natural History suggest an ontogenetic dietary change. The smaller
specimens feed on a snakelike teiid lizard, Ophiognomon trinasale, while
the larger specimens of M. I. helleri feed on Synbranchus. Micruroides e.
euryxanthus feeds predominantly on blind snakes ( Leptotyphlops humilis)
while Micrurus narducci (Leptomicrurus auct.) feeds on microteiid
lizards.
One remarkable departure from the vertebrate diet is found in M.
hemprichi ortoni that feeds exclusively on Peripaüis, an onychophoran
invertebrate related to arthropods (Stomach contents of several speci¬
mens from Ecuador (ANMH No. 28816) and Peru (AMNH Nos. 2793
and 53182, and Dixon and Soini, 1973). Another subspecies, M. h. hem¬
prichi from Guyana feeds on lizards and snakes.
In captivity, many species accept prey other than their natural food,
including frogs and pink mice and other species of reptiles.
The most complete inquiry into food/feeding of coral snakes was
done by Greene (1974) ; additional data are found in Schmidt (1932),
Beebe (1946), Vitt and Hulse (1973), and Dixon and Soini (1973).
Feeding
Coral snakes search for prey with random poking movements, craw-
ling slowly in ground litter, leaves, sand or grass, depending upon the
substaate of the habitat. It seems that some coral snakes can follow
pheromonal trails left behind by the prey species in order to locate
their hiding place. Tongue flicking is performed within the physical
proximity of a prey or around objects that might constitute a prey.
Once a prey is located and properly identified, the coral snake would
strike. Due to the limited vision of coral snakes biting intents are not
always successful. When the prey has been bitten and seized, most coral
snakes hang on to the prey and perform a chewing motion part of which
serves to introduce more venom in the prey. A struggle ensues that
usually ends with partial or total envenomation of the prey. A part of
the struggle for overpowering the prey, while maintaining the bite grip,
the coral snake might use a loop of its body to press down and dominate
a lizard prey. Some species recur to the display of self-mimicry tail-
-raising “lure”, apparently to distract a snake prey and divert it from
biting the coral snake’s body while the latter holds on to the prey, as
I have observed it in feeding of M. isozonus from Venezuela.
Most coral snakes do not release the prey and perform preingestion
maneuvers consisting of “jaw-walking” along the body toward the
anterior end of the prey. Over 95% of the prey is ingested head first.
Depending upon the nature of the prey, swallowing is performed quickly,
usually from a few to ten minutes. The total feeding process, as observed
in captivity, from encountering the prey to finishing the ingestion may
last from a few minutes to several hours. After the first prey, the coral
snake is ready to respond to the presence of a second prey.
308
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary.
Butantan, 46:305-338, 1982.
Mera. Inst.
Observations of feeding of M. isozonus in captivity and the presence
of several freshly ingested prey items found in stomachs of M.
latifasciatus and M. diastema apiatus indicate that coral snakes devour
more than one prey item within a given feeding period.
Cannibalism
Interspecific and intraspecific cannibalism is a rather remarkable
phenomenon among coral snakes. Since Amarais (1933) general remarks
about cannibalism in M. ibiboboca, several more species have been found
to be cannibalistic: Micrurus lemniscatus diutius (Wehekind, 1955), M.
psyches circinalis, M. f. fulvius and M. fulvius tenere (Loveridge, 1944;
Greene, 1974). In M. f. fulvius, up to 12% of prey represent a low but
persistent levei of cannibalism.
There are no good explanations of cannibalism in. coral snakes.
Probably, the similarity in shape to the natural prey plays some role as
well as weakly developed pheromonal communication system.
Interspecific predation is also known as determined from the stomach
contents of museum specimens. A specimen of M. spixii obscurus had
eaten a M. a. annellatus (in Naturhistorisches Museum, Vienna), and a
M. lemnscatus diutius had eaten a M. psyches circinalis (Wehekind,
1955).
Defense behavior
Coral snake defense against predators or supposed predators has a
diverse repertoire of interdependent morphological and behavioral
patterns. These can be considered separately, but the actual presence of
a predator will elicit a combination of effects of coloration and behavior
in accordance to the best possible strategy for a sucessful encounter
(survival). That is to say, aposematic coloration does not seem to be the
principal mechanism of defense but forms part of a holistic behavioral
gestalt created by coloration and behavior. Moreover, in certain situations
the warning coloration might contribute to a mimicry system or even
become a concealing and disruptive coloration in “blotched background”
during rapid erratic movements by the coral snake (Greene and Pyburn,
1974).
The defense posture in many species of coral snakes includes self-
-mimicry or auto-mimicry. It consists of hiding the head beneath body
coils, flattening the posterior part of the body, curling and raising the
tail together with some part of the body with erratic sham-aggressive
movements. Some species, such as M. surinamensis nattereri from
Venezuela, flattens almost the entire body. The use of tail is enhanced
by the brilliant coloration (Gehlbach, 1972) and aparrently servens as
an intimidating device more than a strategy of misdirecting the attack
of th predator (Greene, 1973). Yet in captivity, M. isozonus was observed
using its tail display to “lure” away the bite of a prey snake, while the
coral snake was hanging on to the pery with a chewing motion.
M. mipartitus semipartitus and M. fulvius ssp. also employ a sporadic
“striking with the tail” (Test et al, 1966; Gehlbach, 1970). M. frontalis
ssp., in addition to “striking with the tail”, displays a death-feigning
309
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. Inat.
Jiutantan, 46: 305-338, 1982.
defense behavior. In some species (cf. M. corallinus) no self-mimicry has
been observed; only some flattening of body.
A special defense behavior has been evolved by Micruroides e.
euryxanthus consisting of a noise produced by cloacal popping performed
during the attack of a predator or enemy (Bogert, 1960).
Mimicry
Coral snakes constitute a unique group among vertebrates that
participate in mimicry Systems as a model as well as a mimic encomp-
assing a large number of species. In fact, the coral snake coloration
mimicry systems seem to be the largest single functional mimicry color
pattern in the animal kingdom. The complex mimicry interdependencies
span the whole gamut of known mimicry internactions. Ranging from
Ratesian to Mullerian mimicry they involve non-venomous, mildly
venomous and very venomous species. Greene and McDiarmid (1861)
reviewed all the arguments for and against the phenomenon of coral
snake mimicry. The extraordinary concordance of color patterns between
Micrurus and species of several genera of colubrid snakes, at times in
nearly 100% of the species and subspecies as in Pliocercus, suggests that
mimicry is a significant factor in natural selection and evolution of the
species.
Among the mildly venomous species are aglyphous (cf. Pliocercus)
as well as opisthoglyphous (cf. Erythrolamprus) species. The non-
-venomous mimics include species from several general (cf. Atractus,
Lampropeltis, Anilius) . Such non-venomous species as Atractus elaps and
Atractus güntheri in Amazon and Orinoco drainages mimic not only more
than one species of coral snakes (M. margaritiferus and M. I. langsdorffi)
but show a polymorphism of not mimicking any other species, a well
known phenomenon among model-mimic species systems in butterflies.
Moreover, Aí. I. langsdorffi itself is a polymorphic subspecies (Soini,
1974).
An intriguing question here is, can subspecies or even different
species of these mimicking Atractus species or species complexes be
recognized? This particular mimicry system is an illustration of mimicry
sistems of coral snakes with non-aposematic coloration.
Deviation from a predominant color pattern of a Micrurus species
and its concordance with another sympatric Micrurus species indicates
the existence of another type of Mullerian mimicry. In several cases when
the distribution of a single banded species overlaps with a species of a
triad type color pattern, the first tends to mimic the second. For example,
M. mertensi in northern Peru is single banded but in the region of Loja,
in Southern Ecuador, where its distribution overlaps with that of M.
bocourti, a species with acessory type triads, M. mertensi has developed
a form with weak but clearly distinct accessory triad type pattern.
Another example is M. d. dumerüii from lower Magdalena valley in
northern Columbia. All subspecies of M. dumerilii except two are single
banded forms. In lower Magdalena where it is sympatric with Aí- disso-
leucus nigrirostris, a triad type form, the subspecies, Aí. d. dumerüii shows
accessory triad type pattern. The same happens with M. dumerilii
310
cm
2 3
L
5 6
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae):
Butantan, 46: 305-338, 1982.
a taxonomic and biological summary. Mem. Inst.
colombianus in Santa Marta region where it is sympatric with M.
dissoleucus melanogenys. However, at least one morph of M. d. dumerilii
with nearly perfect single banded pattern has also been found within the
area of distribution of M. dissoleucus nigrirostris. That the color patterns
are not convergent in this type of Mullerian mimicry is demonstrated by
the fact that the single banded pattern adopts the triad type pattern and
not vice-versa. This would also suggest that the triad type color pattern
is a more recent pattern developed from a single banded coloration and
the triad type snake can not “go back” again to a single banded pattern,
supporting the concept of evolutionary irreversibility of morphological
characteristics.
Interspecific mimicry influences among species of Micrurus is
suggested also by divergence of other, more general features of coloration
within sympatric species. One example is the supracephalic coloration of
M. lemniscatus carvalhoi in the area of distribution of M. frontalis brasi-
liensis. The clearly defined whit and red bands of the former become
irregular approaching to the pattern found in M. frontalis brasiliensis.
The irregularity of black bands and the presence of black tips on the
white scales of M. I. carvalhoi is also suggestive of the coloration found
in M. f. brasiliensis. Expanded red bands of Micruroides euryxanthus
australis and M. e. neglectus in the area of distribution of Micrurus d.
distans, a species with long red bands seems to indicate the same con-
dition. Apparently, the mimicry system confers greater selective
advantage than the phenomenon of divergence known in sympatric
conditions where two quite similar species coexist.
In the Amazon basin most coral snake species have a tendency to
melanism as found in M. albicinctus, M. I. langsdorffi, M. putumayensis,
M. margaritiferus and several subspecies of M. psyches. One subspecies,
M. psyclies circinalis — outside the Amazon basin — distributed in Tri-
nidad and northeastern Venezuela, has no melanistic tendencies, or very
limited. Instead, many individuais have developed weak accessory black
bands, approaching to M. lemniscatus diutius, a triad form found
sympatric with M. psyches circinalis.
The mimefactors are predators, mostly birds but also mammals. The
wide distribution of predator species can maintain a mimicry system
even when the model-mimic assamblages are not sympatric but occupy
adjacent areas or different habitats within the general area of distri¬
bution.
Whereas in North and Central America coral snakes are either
alone or are sympatric usually with only one more species, in South
America, especially in the Amazon basin, up to eight species are known
to coexist. They display very complex patterns of partition of resources
and niche differences several of which are still only partially known
(Henderson, Dixon and Soini, 1979). A considerable mche overlap exists
as well as other convergencies without clearly convergent mimicry
systems, apart from the general color patterns. In such sympatric
assemblages some habitat segi’egation exists as for example between
M. I. langdorffi and M. putumayensis. Adding to this coral snake group
the nine non-elapid mimics found in the same region around Iquitos,
Peru results in a complex mimicry assemblage of at least 17 species.
311
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. Inat.
Butantan, 40:305-338, 1982.
Karyotypes
The number of chromosomes (2n) of the six species and subspecies
of coral snakes studied thus far ranges from 26 to 42. The first
chromosomal study of a coral snake, Micrurus lemniscatus carvalhoi,
from Brazil was done by Beçak and Beçak (1969) who found for this
subspecies a total of 42 chromosomes (22 macrochromosomes and 20
microchromosomes). Recently, active karyotype research has been done
by Gutiérrez and Bolanos (1979, 1981) on Costa Rican species. M. n.
nigrocinctus has 26 (16 + 10). Af. n. mosquitensis, 30 (16 + 14), M.
alleni, 34 (20 + 14), while M. multifasciatus hertwigi has 34 (14 + 20)
chromosomes. The Texas Coral Snake, M. fulvius tenere, has 32 (16 + 16)
chromosomes (Graham. 1977).
Coral snakes have ZZ-ZW pattern of sex choromosomes, homologous
for males and heterologous for females. This pattern has been also found
in several Old World elapids.
Significant intersubspecific differences are found in the subspecies
of M. nigrocinctus from Costa Rica, conforming the subspecific validity
pf M. n. nigrocinctus and M. n. mosquitensis. At the same time, Gutiérrez
and Bolanos (1981) reported interesting chromosomal polymorphism in
M. n. nigrocinctus.
TAXONOMIC SYMMARY
Taxonomic novelties
The following is a list of taxonomic changes since the check lists
by Roze (1967 and 1970). Reasons for the proposed changes appear in
the general check list under each taxonomic unit. A new subspecies of
Micrurus frontalis is described from Bolivia.
Taxonomic unit
Present allocation and status
Micrurus alleni yatesi DUNN, 1942 Micrurus alleni SCHMIDT, 1936
Micrurus annellatus montanus
SCHMIDT, 1954
Micrurus bocourti bocourti (JAN),
1872
Micrurus bocourti sangilensis
NICEFORO MARIA, 1942
Micrurus donosoi HOGE, COR¬
DEIRO and ROMANO, 1976
Micrurus fitzingeri (JAN), 1858
Micrurus frontalis mesopotamicus
BARRIO and MIRANDA, 1968
Micrurus annellatus annellatus,
(PETERS), 1871
Micrurus bocourti (JAN), 1872
Micrurus sangilensis
MARIA, 1942
NICEFORO
Micrurus psyches donosoi HOGE,
CORDEIRO and ROMANO,
1976
Micrurus fulvius fitzingeri
(JAN), 1858
Micrurus frontalis
(COPE), 1859
baliocoryphus
312
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mcm. Inat.
liutantan, 46:305-338, 1982.
Micrurus lemniscatus multicinctus
AMARAL, 1944
Micrurus tricolor HOGE, 1956
Micrurus lemniscatus frontifascia-
tus (WERNER), 1927
Micrurus mipartitus hertwigi
(WERNER), 1897
Micrurus mipartitus multifasciatus
(JAN), 1858
Micrurus nigrocinctus melanoce-
phalus (HALLOWELL), 1855
Micrurus nuchalis SCHMIDT, 1933
Micrurus ruatanus (GUNTHER),
1859
Micrurus steindachneri petersi
ROZE, 1967
Leptomicrurus species
Micrurus frontalis multicinctus
AMARAL, 1944
Micrurus frontalis tricolor HOGE,
1956
Micrurus frontifasciatus (WER¬
NER), 1927
Micrurus multifasciatus hertwigi
(WERNER), 1897
Micrurus multifasciatus multifas¬
ciatus (JAN), 1858
Micrurus nigrocinctus nigrocinct
(HALLOWELL), 1855
Micrurus latifasciatus SCHMIDT,
1933
Micrurus nigrocinctus ruatanus
(GUNTHER), 1859
Micrurus petersi ROZE, 1967
Provisionally included in Micrurus.
Check list of species and subspecies
Genus MICRUROIDES
Micruroides euryxanthus euryxanthus (Kennicott)
Elaps euryxanthus Kennicott, 1860, Proc. Acad. Nat. Sei. Philadelphia,
12:337. (Type locality: Sonora, México).
Distribution : Southern Arizona and southwestern New México, Uni¬
ted States to northern Chihuahua and Sonora, México.
Micruroides euryxanthus australis Zweifel and Norris
Micruroides euryxanthus australis Zweifel and Norris, 1955, Amer.
Midland. Nat., 54(1) :246. (Type locality: Guirocoba, Sonora, México).
Distribution : Southern Sonora and probably Chihuahua, México.
Micruroides euryxanthus neglectus Roze
Micruroides euryxanthus neglectus Roze, 1967, Amer. Mus. Novitates,
2287:4, fig. 1. (Type locality: Sixteen and three-tenths miles north-
-northwest of Mazatlán, Sinaloa, México).
Distribution: Vicinity of Mazatlán, Sinaloa, México.
313
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mem. Inst.
Butantan, 1,0: 305-338, 1982.
Genus MICRURUS
Micrurus albicinctus Amaral
Micrurus albicinctus Amaral, 1926, Comm. Linh. Telegr. Mato Grosso,
Publ. 84, Annex 5:26, figs. 7-10, (Type locality: No specific type
locality given; collection containing the specimen came from “Nor¬
thern or central Mato Grosso, Brazil”).
Micrurus waehnerorum Meise, 1938, Zool. Anz., 123(1/2):20. (Type
locality: São Paulo de Olivença, Brazil).
Distribution : From middle Amazon to Mato Grosso, Brazil.
Micrurus alleni Schmidt
Micrurus nigrocinctus alleni Schmidt, 1936, Zool. Ser. Field Mus. Nat.
Hist., 20:209, fig. 25. (Type locality: Rio Mico, seven miles above
Rama, Siquía District, Nicaragua).
Micrurus nigrocinctus yatesi Dunn, 1942, Notulae Naturae, 108:8. (Type
locality: Farm Two, Chiriquí Land Co., near Puerto Armuelles,
Chiriquí, Panama).
Micrurus alleni richardi Taylor, 1951, Univ. Kansas Sei. Buli., 34:169,
pl. 23, fig. (Type locality: Los Diamantes, 2 km south of Guápiles,
Costa Rica).
Distribution: From eastern Nicaragua, Costa Rica to western
Panama.
Notes: Apparently, this species is represented by two disconnected
populations. One is found on the Atlantic side an the other on the Pacific
side of Southern Central America. The specimens from the Atlantic side
have predominantly white bands while the Pacific specimens have yellow-
ish bands that are particularly intense in individuais from southeastern
part of Costa Rica. Yet, some individuais from Bocas dei Toro lowlands
in western Panama have yellow bands as well. Most specimens of the
population from the Pacific lowlands of southeastern Costa Rica and
adjacent Panama as well as from the drier low montane forests of Bo-
quete and Volcán Chiriquí have the red bands nearly completely obliter-
ated by black.
As noted by Savage and Vial (1974) other characteristics such as
the number of ventrals and subcaudals and of body bands overlap in
their extreme values. Consequently, it is difficult to separate M. alleni
yatesi as a distinct subspecies, until more specimens are available.
Micrurus ancoralis ancoralis (Jan)
Elaps maregravii var. ancoralis Jan, 1872, in Jan and Sordelli, Icon.
Gen. Ophid., Liv. 42: pl. 4, fig. 2. (Type locality: Ecuador).
Elaps rosenbergi Boulenger, 1898, Proc. Zool. Soc. London, 1898:117,
pl. 13. (Type locality: Paramba, Esmeraldas Provice, Ecuador).
Distribution: Northwestern Ecuador.
314
SciELO
10 11 12 13
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mem. Inat.
Butantan, 40:305-338, 1982.
Micrurus ancoralis jani Schmidt
Micrurus ancoralis jani Schmidt, 1936, Zool. Ser. Field Mus. Nat. Hist.,
20:197. (Type locality: Andagoya, Chocó, Colombia).
Distribution : Eastern Panama to Chocó region of western Colombia.
Notes : Both subspecies intergrade in the Saija drainage, Cauca,
Colombia.
Micrurus annellatus annellatus (Peters)
Elaps annellatus Peters, 1871, Monatsber. Akad. Wiss. Berlin, 1871:402.
(Type locality: Pozuzo, Peru).
Micrurus annellatus montanus Schmidt, 1954, Fieldiana: Zool., 34:322.
(Type locality: Camp Four, about ten km north of Santo Domingo
Mine, Puno, Peru, 2000 m).
Distribution: Amazonian slopes of Andes in Southern Ecuador, Peru
to central Bolivia.
Notes: Additional specimens from Peru show a variation in the
length of the light parietal and presence or absence of the red bands
seems to be at least partially related to ontogenetic growth. Both of
these characteristics were used by Schmidt (1954) to describe M. anne¬
llatus montanus.
Specimens from higher altitudes exhibit tendency to have a wider
parietal white band and the red bands are darker but still distinguish-
able. Black-white specimens, however, are also present (5 out of 15).
Some of them have a very narrow white parietal band that occupies
barely one eight to one quarter the length of the parietais. Of the two
specimens from the same locality, Hacienda Cadena, Marcapata Valley,
Cuzco, Peru, one has the characteristics of M. a. annellatus (FMNH No.
62942) and the other those of M. u. montanus (FMNH No. 40223). The
first is a black-white specimen (with a body length of 413 mm) with the
white parietal band about one quarter the length of the parietais, whereas
the second is a black-red-white specimen (with a body length of about
195 mm) with the white parietal band about two thirds the length of the
parietais.
All specimens from the Peruvian Amazon, up to 1000 m above sea
levei are black-white. Between 1000 m and 2000 m of altitude both black-
-white and black-red-white specimens are known even though specimens
of the latter coloration comprise 80%. Two specimens from Beni Pro-
vince, Bolivia (AMNH Nos. 2975-6) are black-white. Consequently, M. a.
montanus must be regarded as a synonym of the nominal subspecies.
This disposition might be modified when more specimens and their alti-
tudinal data are available.
Micrurus annellatus balzani (Boulenger)
Elaps balzani Boulenger, 1899, Ann. Mus. Stor. Nat. Gênova, (2)19:130.
(Type locality: Yungas, Bolivia).
Elaps regularis Boulenger, 1902, Ann. Mag. Nat. Hist. (7)10:402. (Type
locality: Chulumani, Bolivia, 2000 m).
Distribution: Western Bolivia.
315
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae):
Butantan, 46: 305-338, 1982.
taxonomic and biological summary. Mem. Innt.
Notes: No melansitic tendencies or obliteration of the red bands
by black is known in this subspecies. ZMH No. 5396 from San Carlos,
Beni, Bolívia can be considered intergrade between this and the nominal
subspecies.
Micrurus annellatus bolivianus Roze
Micrurus annellatus bolivianus Roze, 1967, Amer. Mus. Novitates, 2287:
7, fig. 2. (Type locality: Rio Charobamba, about 50 km northeast
of Zudanez, Chuquisaca, Bolivia).
Distribution: Eastern Andes and high Amazon Valleys in Cocha-
bamba and Chuquisaca, central Bolivia.
Micrurus averyi Schmidt
Micrurus averyi Schmidt, 1939, Zool. Ser. Field Mus. Nat. Hist., 24:45,
fig. 5. (Typq locality: At head of Itabu Creek, Courantyne District,
British Guiana (= Guyana) 2000 ft., near Brazilian border, at Lat.
1°40’N and Long. 58°W).
Distribution : Southern tip of Guyana to Manaos, Amazonas, Brazil.
Notes: Three additional specimens from Reserva Duke, near Manaos,
Amazônia, Brazil in the Instituto Butantan (IB Nos. 32492, 43194-5)
are the only specimens known in addition to the holotype. They extend
the distribution of this species into Brazil. This species might be related
to M. psyches by the absence of supraanal tubercles and by the all black
head coloration.
Micrurus bernardi (Cope)
Elaps bernardi Cope, 1887, Buli. U. S. Natl., Mus., 32:87. (Type locality:
Zacualtipan, Hidalgo, México).
Distribution: Western Hidalgo and northern Puebla, México.
Notes: In this species the black bands are reduced to black dorsal
spots.
Micrurus bocourti (Jan)
Elaps Bocourti Jan, 1872, in Jan and Sordelli, Icon. Gén. Ophid., Liv. 42,
pl. 6, fig. 2. (Type locality: Unknown, restricted to Rio Daule, Pro¬
víncia de Guayas, Ecuador by Roze, 1967).
Micrurus ecuadorianus Schmidt, 1936, Zool. Ser. Field Mus. Nat. Hist.,
20:196. (Type locality: Rio Daule, western Ecuador).
Distribution: Western Ecuador and northern Peru.
Notes: Apparently, the similarity between M. bocourti and M. sangi-
lensis is purely superficial. Both forms have developed accessory black
bands forming poorly marked black triads. About 1000 km separate the
distribution of both species and no forms have been found inbetween.
Therefore, M. bocourti is considered as a species undelated to M. san-
gilensis.
316
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mem. Jnst.
Butantan, 46: 305-338, 1982.
In describing M. ecuadorianus, Schmidt (1936), apparently over-
looked Jan’s E. bocourti partially due to the complex history of its type
specimen. Jan selected as type specimen for his Elaps bocourti one of
the four specimens (= syntypes) that Duméril, Bibron and Duméril
(1854) used in describing Elaps circinalis (= M. psyches circinalis).
Three of them are presently registered in the Museum National d’Histoire
Naturalle, Paris (MHNP Nos. 3912, 3913 and 869). MHNP No. 869 was
selected by Jan (1872) as the type specimen for Elaps bocourti, and was
illustrated in Jan and SordellPs Iconographie Géneràle des Ophidiens in
1872. The specimen has 194 ventrals and 50 subcaudals and 2/3 17+7
black triads. It is a male specimen without supraanal tubercles. Roux-
-Esteve (1982) reviewed all the type specimens of coral snakes in the
Paris Museum.
Micrurus bogerti Roze
Micrurus bogerti Roze, 1967, Amer. Mus. Novitates, 2287 :9, fig. 3. (Type
locality: Tangola-Tangola (Tangolunda), east of Puerto Angel,
Oaxaca, México.
Distribution : Coastal belt between Puerto Angel and Tapanatepec,
Oaxaca, México.
Micrurus browni browni Schmidt and Smith
Micrurus broivni Schmidt and Smith, 1943, Zool. Ser. Field Mus. Nat.
Hist, 29:29. (Type locality: Chilpancingo, Guerrero, México).
Distribution : México City, state of México and Sierra Madre dei
Sur from Guerrero southward to mountains of western Guatemala.
Micrurus browni importunus Roze
Micrurus browni importunus Roze, 1967, Amer. Mus. Novitates, 2287:11,
fig. 4. (Type locality: Duehas, about 25 kilometers west-southwest
of Guatemala City in the Antigua Basin, Sacatepequez, Guatemala.)
Distribution : Known only from type locality.
Micrums browni taylori Schmidt and Smith
Micrurus nuchalis taylori Schmidt and Smith, 1943, Zool. Ser. Field Mus.
Nat. Hist., 29(2):30. (Type locality: Acapulco, Guerrero, México).
Distribution: Region of Acapulco, Guerrero, México.
Notes: This subspecies was known only from its holotype until
Casas-Andreu and Lopez-Forment (1978) described 34 additional
specimens from La Poza, Município de Acapulco, Guerrero, México, found
in composte piles of leaves in a nursery at the sea levei.
Micrurus clarki Schmidt
Micrurus clarki Schmidt, 1936, Zool. Ser. Field Mus. Nat. Hist., 20:211.
(Type locality: Yavisa, Darién, Panama).
Distribution: Eastern Costa Rica to western Panama.
317
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biolojçical summary. Mem. Inst.
fíutantan, -4(5:305-338, 1982.
Micrurus collaris (Schlegel)
Elaps collaris Schlegel, 1837, Ess. phys. serp. (1) :448. (Type locality:
Not given).
Distribution : Southeastern Venezuela, Guyana and adjacent Brazil.
Notes: Romano (1972) included this and other species of the genus
Leptomicrurus in the genus Micrurus.
Micrurus corallinus (Merrem)
Elaps corallinus Merrem, 1820, Tent. Syst. Amphiborum: 144. (Type
locality: Brazil, restricted to Rio de Janeiro, Cabo Frio, Brazil by
Roze, 1967).
Distribution: Central and Southern Brazil, south of the Amazon basin,
and northern Argentina; probably also Uruguay.
Notes : The locality restriction (Roze, 1967) was based on the actual
locality given by Wied (1820) for several specimens he collected and
sent to Merrem for studies. The lectotype, designated by Roze (1966),
is AMNH N.° 3911. It forms part of a larger collection purchased by the
American Museum of Natural History, New York, around 1860.
Micrurus decoratus (Jan)
Elaps decoratus Jan, 1858, Rev. Mag. Zool., (2)10:525, pl.B. (Type
locality: México (in error). Restricted to Serra da Bocaina, São
Paulo, Brazil by Hoge and Romano, 1972).
Elaps fischeri Amaral, 1921, Anex. Mem. Inst. Butantan, 1:59, pl.2, figs.
1-5. (Type locality: Fazenda Bonito, Serra Bocaina, São Paulo,
Brazil).
Elaps ezequieli Lutz and Mello, 1923, Folha Médica, 4:2 (Type locality:
Caxambu, Serra da Mantiqueira, Minas Gerais, Brazil).
Distribution: Eastern and southeastern Brazil from Rio de Janeiro
to Santa Catarina and Rio Grande do Sul.
Micrurus diastema diastema (Dumeril, Bibron and Dumeril)
Elaps diastema Dumeril, Bibron and Dumeril, 1854, Erp. Gen., 7:1222.
(Type locality: México, restricted to Colima, México by Schmidt
(1933). As this locality is far outside the range of this subspecies,
it is not valid. Restricted herewith to Potrero Viejo, Veracruz,
México. See notes.).
Elaps epistema Duméril, Bibron and Duméril, 1854, Erp. Gén. 7:1222.
(Type locality: México).
Elaps corallinus var. crebipunctatus Peters, 1869, Montasber. Akad. Wiss.
Berlin, 1869:877. (Type locality: Matamoras, Puebla, México).
Distribution: Central Veracruz and eastern Puebla, México.
Notes: M. diasterna represents one of the most complex rassenkreis
of coral snakes. Its distribution as well as its morphological variation
shows intricate patterns of variation, cline formation and specialization.
Fraser (1973) made a thorough analysis of its geographical variation con-
cluding that no subspecies can be recognized. Yet, once the zones of inter-
318
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and bioloj?ical summary. Mem. Inst.
Butantan, 46:305-338, 1982.
gradation are identified and the intergrades, showing intermediate
features of intergradation excluded from the analysis, a set of clearly
defined subspecies can be recongnized with non-overlapping characte-
ristics. The subspecific validity of M. diastema alienus as well as as its
intergradation, for example, has been confirmed by Blaney and Blaney
(1979). Additional specimens and data of distribution from La Gloria,
Òaxaca (UI Nos. 35629-32, 37320-2) confirm the validity of another
subspecies, M. diastema macdougalli.
M. distema is a complex rassenkreis of seemingly relatively recent
evolutionary origin. It is undergoing formation of geographic races,
adpatation and specialization to diverse ecological environments (cf.
M. d. alienus to semixeric Yucatán Peninsula and M. d. distema to
lowland and low montane wet forest in central Veracruz) in which broad
zones of intergradation are still present (cf. between M. d. diastema and
M. d. sapperi in estern Veracruz and Tabasco, and between M. d. alienus
and M. d. sapperi in Campeche and Quintana Roo, México). Cline for¬
mation, as indicated by Fraser’s excellent analysis, is also present in zones
M. d. sapperi in Campeche and Quintana Roo, México). Cline formation,
as indicated by Fraser’s excellent analysis, is also present in zones
between two subspecies. The Cuautotolapan region in Veracruz might
be even a region where three subspecies interbreed: M. d. distema, M.
â. sapperi and M. d. affinis.
Micrurus diastema affinis (Jan)
Elaps affinis Jan, 1858, Rev. Mag. Zool., (2)10: 525. (Type locality:
México).
Distributions: Northern Oaxaca, México.
Notes: This subspecies intergrades with M. d. macdougalli in north-
eastern Oaxaca in Ocatál, Buena Vista (UIMNH No. 37330).
Micrurus diastema aglaeope (Cope)
Elaps aglaeope Cope, 1860, Proc. Acad. Nat. Sei. Philadelphia, 1859:344.
(Type locality: Honduras).
Distribution: Mountains of northwestern Honduras.
Micrurus diastema alienus (Werner)
Elaps alienus Werner, 1903, Zool. Anz., 26:249. (Type locality: “Vene¬
zuela or Ecuador”, restricted to Chichén Itzá, Yucatán, México by
Roze (1967)).
Micrurus affinis mayensis Schmidt, 1933, Zool. Ser. Field Mus. Nat. Hist.,
20:37. (Type locality: Chichén Itzá, Yucatán, México).
Distribution: Yucatán Peninsula: in Yucatán and northeastern
Quintana Roo, México.
Micrurus diastema apiatus (Jan)
Elaps apiatus Jan, 1858, Rev. Mag. Zool., (2)10:522. (Type locality:
Veracruz, México, shown to be a lapsus for Verapaz, Guatemala by
Schmidt, (1933), and restricted to Cobán, Guatemala by Smith and
Taylor (1950).
319
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biolo^ical summary. Mem. Inst.
Butantan, 46: 305-338, 1982.
DistribvMon: Atlantic slopes of Alta Verapaz and Huehuetenango,
Guatemala; probably also in eastern Chiapas, México.
Notes: It intergrades with M. d. sapperi in the lowlands of Petén,
Guatemala and in eastern Chiapas, México. It intergrades also with
M. d. algaeope in the area of low hills at the southwestern end of Lake
Izabál, Guatemala.
Micrurus diastema macdougalli Roze
Micrurus diastema macdougalli Roze, 1967, Amer. Mus. Novitates,
2287:15, fig. 5. (Type locality: El Modelo, Rio Chalchijapa and
Rio Corte, Oaxaca, México).
Distribution: Atlantic slopes of Sierra Madre dei Sur in eastern
Oaxaca, México.
Micrurus diastema sapperi (Werner)
Elaps fulvius var. sapperi Werner, 1903, Abhandl. Bayerisch Akad. Wiss.,
22(2) :350. (Type locality: Guatemala).
Elaps guatemalensis Ahl, 1927, Zool. Anz., 70(9/10) : 251. (Type
locality: Guatemala).
Micrurus affinis stantoni Schmidt, 1933, Zool. Ser. Field Mus. Nat. Hist,
20:36. (Type locality: Belize, British Honduras (=Berlize)).
Distribution: Campeche, northern Chiapas and, probably, eastern
Tabasco, México to northern Guatemala and Belize.
Micrurus dissoleucus dissoleucus (Cope)
Elaps dissoleucus Cope, 1860, Proc. Acad. Nat. Sei. Philadelphia, 1859:
345. (Type locality: Venezuela, restricted to Maracaibo, Zulia,
Venezuela by Roze (1955)).
Distribution: Northeastern Colombia to eastern Venezuela.
Micrurus dissoleucus dunni Barbour
Micrurus dunni Barbour, 1923, Occ. Pap. Mus. Zool. Univ. Michigan,
129:15. (Type locality: Ancon, Panama Canal Zone, Panama).
Distribution: Canal Zone to eastern Panama.
Micrurus dissoleucus melanogenys (Cope)
Elaps melanogenys Cope, 1860, Proc. Acad. Nat. Sei. Philadelphia, 1860:
72. (Type locality: Unknown, restricted to Santa Marta region,
Colombia by Schmidt, (1955)).
Elaps hollandi Griffin, 1916, Mem. Carnegie Mus., 7:218, pl. 28, figs.
10-12. (Type locality: Bonda, Columbia).
Distribution: Santa Marta region, Colombia.
Micrurus dissoleucus nigrirostris Schmidt
? Elaps gravenhorsti Jan, 1858, Rev. Mag. Zool. (2)10:522.
locality: Brazil).
(Type
320
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mera. Inst.
Butantan, 40:305-338, 1982.
Micrurus dissoleueus nigrirostris Schmidt, 1955, Fieldiana, ZooL, 34:355.
(Type locality: Barranquilla, Colombia).
Distribution: Lower Magdalena region, northern Colombia.
Notes: Elaps gravenhorsti Jan (1858) might represent this subspe-
cies. However, the type specimen has been lost and its identity has never
been established. In light of this uncertainty, I prefer to use the well
defined M. d. nigrirostris Schmidt (1955).
Micrurus distans distans (Kennicott)
Elaps distans Kennicott, 1860, Proc. Acad. Nat. Sei. Philadelphia, 12:338.
(Type locality: Batosegachie (=Batosegachic), Chihuahua, México).
Distribution : Southwestern Chihuahua and Southern Sonora to Si-
naloa and northwestern Nayarit, México.
Notes: It intergrades with M. d. zweifeli in central Nayarit, México.
Micrurus distans michoacanensis (Dugès)
Elaps diastema var. michoacanensis Dugès, 1891, La Naturaleza, (1)2:
487, pl. 32. (Type locality: Michoacán, México).
Distribution: Rio Balsas basin in Michoacán and Guerrero, México.
Micrurus distans oliveri Roze
Micrurus distans oliveri Roze, 1967, Amer. Mus. Novitates, 2287:18, fig. 6.
(Typel locality: Periquillo, Colima, México).
Distribution: Colima, México.
Micrurus distans oliveri Roze
Micrurus distans zweifeli Roze, 1967, Amer. Mus. Novitates, 2287:21,
fig. 7. (Type locality: Laguna Santa Maria, Nayarit, México).
Distribution: Southern Nayarit and Jalisco, México.
Micrurus dumerilii dumerilli (Jan)
Elaps dumerilii Jan, 1858, Rev. Mag. Zool., (2)10:522. (Type locality:
Cartagena, Colombia).
Distribution: Lower Magdalena river region to Norte de Santander,
Colombia.
Notes: M. dumerilii contains subspecies with single black banded
pattern ( antioquensis , carinicauda and transandinus) and accessory triad
type pattern (dumerilii and colombiensis). It suggests the process of
development of triad type pattern from single banded pattern. Present
subspecific arrangement is provisional until more specimens are available
from some criticai geographical areas in Colombia.
I thank Paulo Vanzolini for calling my attention to the correct use
of this name (See Roze, 1970).
Micrurus dumerilii antioquiensis Schmidt
Micrurus antioquiensis Schmidt, 1936, Zool. Ser. Field Mus. Nat. Hist.,
20:195. (Type locality: Santa Rita, north of Medellín, Antioquia,
Colombia).
Distribution: Cauca Valley, Colombia.
321
SciELO
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. Inst.
Butantan, -46:305-338, 1982.
Micrurus dumerilii carinicauda Schmidt
Micrurus carinicauda Schmidt, 1936, Zool. Ser. Field Mus. Nat. Hist.,
20:194. (Type locality: Orope, Zulia, Venezuela).
Distribution : Northern Venezuela to Norte de Santander, Colombia.
Micrurus dumerilii colombianus (Griffin)
Elaps colombianus Griffin, 1916, Mem. Carnegie Mus., 7:216. (Type
locality: Minca, Colombia).
Distribution : Santa Marta region oí northern Colombia.
Micrurus dumerilii transandinus Schmidt
Micrurus transandinus Schmidt, 1936, Zool. Ser. Field Nus. Nat. Hist.,
20:195. (Type locality: Andagoya, Chocó, Colombia).
Distribution: Pacific lowlands of Columbia and northwestern
Ecuador.
Micrurus elegans elegans (Jan)
Elaps elegans Jan, 1858, Rev. Mag. Zool., (2)10:524. (Type locality:
México, restricted to Jalapa, Veracruz, México by Smith and Taylor,
1950).
Distribution: Central Veracruz and eastern Oaxaca to western Ta-
basco, México).
Micrurus elegans veraepacis Schmidt
Micrurus elegans verae-pacis Schmidt, 1933, Zool. Ser. Field Mus. Nat.
Hist., 20:32. (Type locality: Campur, Alta Verapaz, Guatemala).
Distribution: Chiapas and Southern Tabasco, México to Alta Verapaz,
Guatemala.
Micrurus ephippifer (Cope)
Elaps ephippifer Cope, 1886, Proc. Amer. Philos. Soc., 23:281. (Type
locality: Pacific side of the Isthmus of Tehuantepec (Oaxaca, Mé¬
xico).
Distribution: Sierra Madre dei Sur in Oaxaca to the Isthmus of
Tehuantepec, México.
Notes: The populations of higher altitudes of Sierra Madre dei Sur
show a considerable variation that might represent taxonomically distin-
guishable subspecies.
Micrurus filiformis filiformis (Gunther)
Elaps filiformis Gunther, 1859, Proc. Zool. Soc. London, 1959:86, pl. 18,
fig. b. (Type locality: Pará, Brazil).
Distribution: Pará, along Amazon river to Manaos, Amazônia, Brazil.
Micrurus filiformis subtilis Roze
Micrurus filiformis subtilis Roze, 1967, Amer. Mus. Novitates, 2287:22,
fig. 8. (Type locality: Caruru, Rio Vaupes, Colombia-Brazil bound-
ary).
322
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. lnst.
Butantan, J,6: 305-338, 1982.
Distribution : Upper Amazon region in northeastern Brazil, Southern
and southeastern Colombia to northeastern Peru.
Notes : It intergrades with the nominal subspecies around Carvoeiro,
Amazonas, Brazil.
Micrurus frontalis frontalis (Duméril, Bibron and Duméril)
Elaps frontalis Duméril, Bibron and Duméril, 1854, Erp. Gén., 7:1223.
(Type locality: Corrientes and Misiones, Argentina (probably error).
Distribution: Minas Gerais and northern São Paulo, westward to
Southern Mato Grosso and Southern Paraguay.
Notes: M. frontalis is the most complex species in Southern South
America whose geographic variation has not yet been fully understood.
Further material might reveal new arrangements of subspecies. Wide
arcas of intergradation and local geographic variations are known that
further complicate the picture.
Micrurus frontalis altirostris (Cope)
Elaps altirostris Cope, 1860, Proc. Acad. Nat. Sei. Philadelphia, 1859:
345. (Type locality: South America).
Elaps heterochilus Mocquard, 1887, Buli. Soc. Philom. Paris, 7(11) :39.
(Type locality: Brazil).
Distribution: Southern Brazil in Rio Grande do Sul, and Uruguay;
probably in northeastern Argentina.
Notes: The type specimen of Elaps heterochilus, a male from “Brazil”
is probably an intergrade between M. f. altirostris and M. f. multicinctus.
However, it has 29 subcaudals that is higher than in either subspecies.
It also has the white bands slightly larger than the black bands, a condition
not found in either subspecies. Another alternative is that the specimen
is an intergrade between M. f. baliocoryphus and M. f. altirostris and
comes from southeastern Brazil. The number of ventrals (209) of the
type specimen is closer to M. f. altirostris (194-206 ventrals in males)
than to any other subspecies. In ligth of its unusual characteristics not
clearly assignable to any of the recognized subspecies, I prefer to consider
it synonymous with M. f. altirostris with which it shares the red parietal
coloration and the number of black triads (12).
M. f. altirostris intergrades with M. f. multicinctus in central Rio
Grande do Sul and, probably, in northeastern tip of Argentina.
Micrurus frontalis baliocoryphus (Cope)
Elaps baliocoryphus Cope, 1859, Proc. Acad. Nat. Sei. Philadelphia, 1859:
346. (Type locality: Buenos Aires (in error), corrected and restricted
herewith to Villa Federal, Entre Rios, Argentina).
Micrurus frontalis mesopotamicus Barrio and Miranda, 1968, Mem. Inst.
Butantan, 33(1966) :872, figs. 6-7. (Type locality: Villa Federal,
Rios, Argentina).
Distribution: Provinces of Entre Rios, Corrientes and southwestern
Misiones, Argentina.
323
SciELO
ROZE, J. A. New world coral snakes (Elapidae) :
Butantan, -46:305-338, 1982.
a taxonomic and biological Bummary. Mem. Inst.
Notes: The type specimen of Elaps baliocoryphus (ANSP No. 6842)
undoubtedly represents this subspecies. It was considered a synonym of
M. f. frontalis, but analysis of the Argentinian population of M. frontalis
by Barrio and Miranda (1968) revealed the validity of this subspecies.
Apparently, the type locality of Buenos Aires is an error and the type
specimen has come to the United States from Argentina via Buenos Aires.
M. f. baliocoryphys is distributed in the geographically well defined meso-
potamic region of Argentina, between Rio Paraná and Rio Uruguay.
Thus, Buenos Aires lies outside the geographic region in which M. f.
baliocoryphus is known. The nearest locality where the subspecies is
found is about 200 km north of the Argentinian capital.
In order to provide a realistic type locality for this well-defined
subspecies, I propose a correction and restriction of the type locality to
Villa Federal, Entre Rios, Argentina that was given as type locality for
M. f. mesopotamicus.
M. f. baliocoryphys intergrades with M. f. altirostris north in the
Misiones Provice.
Micrurus frontalis diana new subspecies
Holotype: FMNH No. 159889, a male from the vicinity of Santiago,
Província Chiquiticos, Departamento Santa Cruz, Bolívia, 700 meters,
collected by Roy F. Steinbach, April 7-20, 1973.
Paratypes : FMNH Nos. 1958864 and 195886, males, 195899, a female,
and AMNH No. 120600, a male, all from the type locality collected by
Roy F. Steinbach between March 1 and June 5, 1973.
Diagnosis: A Micrurus frontalis that differs from other subspecies
in having the first black band of the first triad fused with the black
coloration of the parietais. The only; other subspecies in which this cond-
ition occurs occasionally is M. f. frontalis from which the new subspecies
differs in having the red bands immaculate; M. f. frontalis has black
tips on the red scales.
Description of the holotype: Rostral wider than high, visible from
above; prefrontals about one and two thirds longer than internasals;
frontal slightly longer than its distance from snout and only a little
shorter than parietais; l-kl temporais, a large posttemporal, reaching
beyond tips of parietais. The holotype has 215 ventrals and 22 subcaudals,
five of which are undivided.
The snout up to the frontal, supraoculars and postoculars is creamy
yellow with the individual plates outlined by irregular black borders. The
parietais, the posterior part of the frontal and supraoculars are black.
On both sides of the parietais the head is red, including the last supra-
labials. There is a large black spot below the orbit, covering the upper
part of the third and fourth supralabials. On the suture between the
parietais is a narrow greyish white line. The black parietal coloration
fuses with the first black band of the first triad. Inferiorly, the mental,
the first three infralabials and the anterior pair of chin shields are
creamy yellow, the rest of the head is red to the tips of the posterior pair
of chin shields. A narrow black line runs between the anterior pair of
chin shields.
324
cm
SciELO
10 11 12 13 14 15
KOZE, J. A. New world coral, snakes (Elapidae): a taxonomic and biological summary. Mem. Inst.
Butantan, 40:305-338, 1982.
There are nine complete black triads on the body with the black
bands of approximately the same length, covering about three to four
dorsais. The white bands are a little longer than the black bands and
have small outline-type black tips. Ventrally, the black bands are irregular
and the central bands of a triad are partially invaded by irregular whitish
blotches that extend approximately along the midventral line. Most of
the white bands have irregular larger black spots producing an impression
of a feebly marked accessory black band. The red bands are seven to nine
ventrals and dorsais long, without black tips. There are one and two
thirds black triads on the tail.
The holotype has partially everted hemipenes. Each organ is bifurc-
ated, approaching bilobed condition, with the sulcus spermaticus bifurc-
ated. Except for the length of the first subcaudal, the organ is covered
by fairly uniform size spines. A weak semicapitate condition is suggested
by a line around the second subcaudal where the regular larger spines
begin. The hemipenis in situ is about seven to eight subcaudals long.
The holotype has an overall length of 998 mm. The tail comprises
54 mm giving the ratio of tail length to total length of 0.0541.
Description of paratypes: In most characteristics the paratypes are
similar to the holotype. There is variation in the amount and intensity
of black outlining of the snout plates and of accessory black spots on
the white bands. A constant feature is the whitish interparietal line.
The black tips on the white scales as well as the larger irregular spots
vary in size and intensity. The red bands are immaculate, except the
FMNH No. 195864 which has one black scale in the center on the mid-
dorsal line of most of the red bands. Ventrally, the outer black bands of
triads are usually solid black, not invaded by irregular greyish white
as in the holotype.
The males have 217 to 224 and the only female has 224 ventrals.
The subcaudals range from 22 to 26 in males and are 20 in the only
female. All males have some undivided subcaudals (4-11). All specimens
except one have 9 body triads; FMNH No. 195864 has 10. On the tail,
both sexes have one and one third to one two thirds of triads.
Remarks: This new subspecies has been found only in the Serrania
de Santiago, an isolated mountain “island” surrounded by swampy low-
lands. In the Serrania de San José de Chiquitos, about 160 km west of
Santiago, M. /. pyrrhocryptus has been found.
This brilliantly colored and beautiful coral snake is dedicated to
Diana, the goddess of forests, animais and the moon who should be adored
and invoked to protect the endangered nature, particularly animais.
Micrurus frontalis multicinctus Amaral
Micrurus lemniscatus multicinctus Amaral, 1944, Pap- Avul. Dept. Zool.
São Paulo, 5:91. (Type locality: Texeira Soares, Paraná, Brazil).
Distribution: Probably from Southern São Paulo to northern Rio
Grande do Sul, Brazil.
Notes: Apparently, this is a valid subspecies that has wide zones of
intergradation that still have to be defined. It intergrades with M. f.
frontalis in São Paulo and with M. f. altirostris in Rio Grande do Sul.
325
cm
SciELO
10 11 12 13 14 15
KOZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. Inat.
Butantan, 46: 305-338, 1982.
Micrurus frontalis pyrrhocryptus (Cope)
Elaps pyrrhocryptus Cope, 1862, Proc. Acad. Nat. Sei. Philadelphia,
1862:347. (Type locality: Vermejo River, Argentine Choco).
Elaps simonsii Boulenger, 1902, Ann. Mag. Nat. Hist. (7)9:338. (Type
locality: Cruz dei Eje, Córdoba, Argentina).
Micrurus frontalis tricolor Hoge
Micrurus tricolor Hoge, 1956, Mem. Inst. Butantan, 27:67, figs. 1-4, 6.
(Type locality: Garandazal, Mato Grosso, Brazil).
Distribution: Southeastern Mato Grosso, Brazil and adjacent Para-
guay.
Notes: Further studies have revealed that the southeastern Mato
Grosso population of M. frontalis represents a subspecific entity for which
M. tricolor Hoge is available. It has a higher number of black triads
than M. f. pyrrhocryptus (10 to 11 in males and 8 to 10 in females as
compared to 5 to 8 for both sexes of M. f. pyrrhocryptus) with which it
has been confused in the past.
Micrurus frontifasciatus (Werner)
Elaps frontifasciatus Werner, 1927, Sitz. Akad. Wiss. Vienna, 135:250.
(Type locality: Bolivia).
Distribution : Eastern Andean slopes in Bolivia.
Notes : Apparently, this species is sympatric with M. I. helleri in
Bolivia with which it probably forms a Mullerian mimiery system.
Micrurus fulvius fulvius (Linnaeus)
Coluber fulvius Linnaeus, 1766 (1766-1767), Syst. Nat., Ed. XII:381.
(Type locality: Carolina, restricted to Charleston, South Carolina,
United States by Schmidt, 1953).
Micrurus fulvius barbouri Schmidt, 1928, Buli. Antiven. Inst. Amer.,
2:64. (Type locality: Paradise Key, Dade County, Florida, United
States).
Distribution: Southeastern North Carolina to Southern tip of Florida
and the Gulf Coastal plain to Mississippi, United States.
Micrurus fulvius fitzingeri (Jan)
Elaps fitzingeri Jan, 1858, Rev. Mag. Zool., (2)10:521. (Type locality:
México).
Distribution: Mexican plateau in Guanajuato and Querétaro to Mo-
relos; probably also in Zacatecas, Aguascalientes and Southern Coahuila,
México.
Notes: This subspecies intergrades with M. f. tenere in central
Coahuila, and with M. f. microgalbineus along the Southern border be-
tween Hidalgo and Querétaro, México.
326
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. Inst.
Butantan, 40:305-338, 1982.
Micrurus fulvius maculatus Roze
Micrurus fulvius maculatus Roze, 1967, Amer. Mus. Novitates, 2287:27,
fig. 10. (Type locality: Tampico, Tamaulipas, México).
Distribution : Around Tampico, Tamaulipas, México.
Micrurus fulvius microgalbineus Brown and Smith
Micrurus fitzingeri microgalbineus Brown and Smith, 1942, Proc. Biol.
Soc. Washington, 55:63. (Type locality: Seven kilometers south of
Antiguo Morelos, Tamaulipas, México).
Distribution: Southwestern Tamaulipas, central and eastern San
Luis Potosi to central Guanajuato, México.
Notes: It intergrades with M. f. tenere in central Tamaulipas,
México.
Micrurus fulvius tenere (Baird and Girar d)
Elaps tenere Baird and Girard, 1853, Cat. North Amer. Rept., 1:22, 156.
(Type locality: San Pedro of Rio Grande and New Braunfels, Texas,
United States, restricted to the second locality by Smith and Taylor,
1950).
Elaps tristis Baird and Girard, 1853, Cat. North Amer. Rept., 1:23.
(Type locality: Kemper County, Mississippi; Rio Grande, west of
San Antonio, Texas).
Distribution: West of the Mississippi River from Louisiana, Arkan-
sas, and Texas to northern Coahuila, Nuevo León, and Tamaulipas,
México.
Micrurus hemprichii hemprichii (Jan)
Elaps hemprichii Jan, 1858, Rev. Mag. Zool. (2)10:523. Type locality:
Colombia).
Distribution: Eastern Colombia and Southern Venezuela to the
Guyanas.
Micrurus hemprichii ortoni Schmidt
Micrurus hemprichii ortoni Schmidt, 1953, Fieldiana, Zool., 34:166.
(Type locality: Pebas, Peru).
Distribution: Amazonian slopes of Colombia, Ecuador and Peru, also
recorded from Alto Amazonas and Pará, Brazil.
Micrurus hippocrepis (Peters)
Elaps hippocrepis Peters, 1862, Monatsber. Akad. Wiss. Berlin, 1861:
925. (Type locality: Santo Tomás (= Puerto Matías de Galvez),
Guatemala).
Distribution: Caribbean lowlands of Belize and Guatemala.
Micrurus ibiboboca (Merrem)
Elaps ibiboboca Merrem, 1820, Tentamen Syst. Amphibiorum: 142. (Type
locality: Brazil).
327
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. Innt.
Butantan. 4^:305-338, 1982.
Elaps marcgravii Wied, 1820, Nova Acta Leop.-Carol., 10:109. (Type
locality: Brazil, specified as mouth of Bio Belmonte (Bahia, Brazil)
by Wied, 1825).
Distribution : Eastern Brazil.
Micrurus isozonus (Cope)
E(laps) isozonus Cope, 1860, Proc. Acad. Nat. Sei. Philadelphia, 1860:
73. (Type locality: South America, restricted to Caracas, Venezuela
by Roze, 1955).
Elaps omissus Boulenger, 1920, Ann. Mag. Nat. Hist., (9)6:109. (Type
locality: Venezuela.
Distribution: Northern and central Venezuela to Intendência Meta,
Colombia.
Micrurus karlschmidti Hoge and Romano
Leptomicru(ru)s schmidti Hoge and Romano, 1966, Mem. Inst. Butantan,
32:1, fig. 2. (Type locality: Tapurucuara, Amazonas, Brazil).
Micrurus karlschmidti Romano, 1972, Mem. Inst. Butantan, 35:111 (New
name for L. schmidti, preoccupied by M. schmidti Dunn, 1940).
Distribution: Region of Rio Negro, Amazonas, Brazil.
Micrurus langsdorffi langsdorffi Wagler
Micrurus Lagsdorffi Wagler, 1824, in Spix, Sp. Nov. Serp. Bras.; 10,
pl. 2, fig. 2. (Type locality: Rio Japurá, Amazonas, Brazil).
Elaps imperator (Cope, 1868, Proc. Acad. Nat. Sei. Philadelphia, 1868:
110. (Type locality: Napo and Maranón, Peru).
Elaps batesi Günther, 1868, Ann. Mag. Nat. Hist., (4) 1:428, pl. 17-1.
(Type locality: Pebas, Peru).
Micrurus mimosus Amaral, 1935, Mem. Inst. Butantan, 9:221, fig. 6.
(Type locality: Rio Putumayo, Colombia).
Distribution: Upper Amazonian region from Southern Colombia to
northern Peru, including northwestern Brazil and adjacent Ecuador.
Notes: It intergrades with M. I. ornatissimus in northern Ecuador,
near Colombian border.
Micrurus langsdorffi ornatissimus (Jan)
Elaps ornatissimus Jan, 1858, Rev. Mag. Zool., (2)10:521. (Type loca¬
lity: México, in error).
Elaps buckleyi Boulenger, 1896, Cat. Sn. Brit. Mus., 3:416, pl. 22-1.
(Type locality: Canelos, Ecuador and Pará, Brazil).
Distribution: Amazonian slopes in eastern Ecuador and northern
Peru. '
Micrurus laticollaris laticollaris (Peters)
Elaps marcgravii var. laticollaris Peters, 1869, Monatsber. Akad. Wiss.
Berlin, 1869:877.
Distribution s Balsas River basin in Michoacán, Guerrero, Puebla
and Morelos, México.
328
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mem. Inst.
Butantan, 46:305-338, 1982.
Micrurus laticollaris maculirostris Roze
Micrurus laticollaris maculirostris Roze, 1967, Amer. Mus. Novitates,
2287:31. (Type locality Vicinity of Colima, Colima, México).
Distribution : Colima and Southern Jalisco, México.
Micrurus latifasciatus Schmidt
Micrurus latifasciatus Schmidt, 1933, Zool. Ser. Field Mus. Nat. Hist.,
20:35 (Type locality: Finca El Ciprés, Volcán Zunil, Suchitepequez,
Guatemala)
Micrurus nuchalis Schmidt, 1933, Zool. Ser. Field Mus. Nat. Hist., 20:35.
(Type locality: Tapanatepec, Oaxaca, México).
Distribution : Pacific side of Oaxaca and Chiapas, México and
Southern Guatemala.
Notes : Additional specimens from Oaxaca have demonstrated that
M. nuchalis can not be distinguished from this species.
Micrurus lemniscatus lemniscatus (Linnaeus)
Elaps lemniscatus Linnaeus, 1758, Syst. Nat., Ed.X:224. (Type locality:
Asia, in error).
Distribution : Northern parts of Guyana, Surinam and French
Guiana to adjacent Brazil.
Micrurus lemniscatus carvalhoi Roze
Micrurus lemniscatus carvalhoi Roze, 1967, Amer. Mus. Novitates, 2287:
33, fig. 11. (Type locality: Catanduva, São Paulo, Brazil).
Distribution : Northeastern and central Brazil to Paraná and Mato
Grosso.
Micrurus lemniscatus diutius Burger
Micrurus lemniscatus diutius Burger, 1955, Boi. Mus. Cien. Nat. Caracas,
1:8 (Type locality: Tunapuna, Trinidad).
Distribution : Trinidad, eastern Venezuela, and central parts of
Guyana, Surinam and French Guiana.
Micrurus lemniscatus helleri Schmidt and Schmidt
Micrurus helleri Schmidt and Schmidt, 1925, Zool. Ser. Field Mus. Nat.
12:129. (Type locality: Pozuzo, Huánuco, Peru).
Distribution: Northern Brazil, Southern Venezuela and Colombia to
Amazonian foothills of Ecuador, Peru ad Bolivia.
Micrurus limbatus Fraser
Micrurus limbatus Fraser, 1964, Copeia, 3570, fig. (Type locality:
Southern slope of Volcán San Martin, 7 airline miles north of San
Andrés Tuxtla, Veracruz, México).
Micrurus margaritiferus Roze
Micrurus margaritiferus Roze, 1967, Amer. Mus. Novitates, 2287:35, fig.
12. (Type locality: Boca Rio Santiago — Rio Marahón, Peru)’
Distribution: Amazonian side of Andes in central Peru.
329
SciELO
KOZE, J. A. New world coral snakes (Elanidae): a taxonomic and biological summary. Mem. Inst.
Butantan, 4G:305-338, 1982.
Micrurus mertensi Schmidt
Micrurus mertensi Schmidt, 1936, Zool. Ser. Field Mus. Nat. Hist.,
20:192. (Type locality: Pacasmayo, Peru).
Distribution : Lowlands of southwertern Ecuador to central Peruvian
Coastal area.
Micrurus mipartitus mipartitus (Duméril, Bibron and Duméril)
Elaps mipartitus Duméril, Bibron and Duméril, 1854, Erp. Gen. 7 :1220.
(Type locality: Rio Sucip or Senio (?=Senu), Columbia).
Elaps aequicinctus Werner, 1903, Zool. Anaz., 26:249. (Type locality:
unknown).
Distribution: Darién of Panama to Pacific lowlands of Colombia.
Micrurus mipartitus anomalus (Boulenger)
Elaps anomalus Boulenger, 1896, Cat. Sn. Brit. Mus., 3:417, pl. 22, fig.
2. (Type locality: Colombia).
Distributions Santa Marta mountains and Cordillera Oriental, east
of Magdalena River, Colombia to Andes in western Venezuela.
Micrurus mipartitus decussatus (Duméril, Bibron and Duméril)
Elaps decussatus Duméril, Bibron and Duméril, 1854, Erp. Gèn., 7 :1221.
(Type locality: Probably Colombia).
Elaps fraseri Boulenger, 1896, Cat. Sn. Brit. Mus., 3:432, pl. 22, fig. 3.
(Type locality: West Ecuador).
Elaps mentalis Boulenger, 1896, Cat. Sn. Brit. Mus., 3 :432, pl. 22, fig. 4.
(Type locality: Pallatanga, Ecuador, and Cali, Colombia).
Elaps calamus Boulenger, 1902, Ann. Mag. Nat. Hist., (7)9:57. (Type
locality: San Javier, northwestern Ecuador).
Elaps microps Boulenger, 1913, Proc. Zool. Soc. London, 1913:1036, pl.
108, fig. 2. (Type locality: Pena Lisa, Condoto, Chocó, Colombia).
Distribution: Western and central Andes and Southern part of
eastern Andes in Colombia and western Ecuador; possibly Peru.
Micrurus mipartitus semipartitus (Jan)
Elaps semipartitus Jan, Rev. Mag. Zool., (2)10:113. (Type locality:
Cayenne, restricted to Caracas, Venezuela by Roze (1955).
Distribution: Cordillera de la Costa in northern Venezuela.
Micrurus mídtifasciatus multifasciatus (Jan)
Elaps mídtifasciatus Jan, 1858, Rev. Mag. Zool., (2)10:521. (Type loca¬
lity: Central America).
Distribution: Central Panama,
Notes: This Central American form apparently represents a species
apart from M. mipartitus in which they were included previously. Both
species are sympatric in Panama. As a rule, M. multifasciatus ssp. has
330
SciELO
10 11 12 13 14
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mem. Inat.
fíutantan, 46:305-338, 1982.
black-red body bands in life while M. mipartitus ssp. has black-white
(yellow) body bands. In occasional specimens of M. multifasciatus ssp.
the red bands might be pale pink or nearly white.
Micrurus multifasciatus hertwigi (Werner)
Elaps hertwigi Werner, 1897, Sitz. Akad. Wiss. Munich, 27:354. (Type
locality: Central America).
Distribution : Caribbean slopes of Nicaragua, Costa Rica and
Panama.
Micrurus multiscutatus Rendahl and Vestergren
Micrurus mipartitus multiscutatus Rendahl and Vestergren, 1940, Ark.
for ZooL, 33A(1) :9, fig. 3. (Type locality: El Tambo, Cauca,
Colombia).
Distribution: Cordillera Occidental of the Andes in Cauca,
Colombia).
Notes: Additional specimen from Quebrada Guanguí, Saija drainage,
Cauca, Colombia (AMNH No. 109781) collected by Charles Myers
confirmed the validity of this species. In a living specimen, the snake
has single black-red body bands whereas M. mipartitus decussatus, found
in the same region, has black-white body bands.
Micrurus narduccii (Jan)
Elaps narduccii Jan, 1863, Arch. Zool. Anat. Fisiol., 21(2) :222. (Type
locality: Bolivia).
Elaps scutiventris Cope, 1869, Proc. Amer. Philos. Soc., 11:156. (Type
locality: Pebas on the Amazon, Ecuador).
Elaps melanotus Peters, 1881, Sitzungsber. Ges. Naturf. Freunde, Berlin,
1881:51. (Type locality: Sarayacú, Ecuador).
Distribution: Amazonian slopes of the Andes in Southern Colombia,
Ecuador, Peru and Bolivia.
Micrurus nigrocinctus nigrocinctus (Girard)
Elaps nigrocinctus Girard, 1854, Proc. Acad. Nat. Sei. Philadelphia,
1854:226. (Type locality: Taboga Island, Bay of Panama).
Elaps melanocephalus Hallowell, 1860, Proc. Acad. Nat. Sei. Philadelphia,
1860:226. (Type locality: Ometepec, Nicaragua).
Micrurus pachecoi Taylor, 1951, Univ. Kansas Sei. Buli., 34:165, pl. 22,
fig. 6. (Type locality: Guanacaste, Costa Rica).
Distribution: Pacific side of Nicaragua, Costa Rica and Panama to
adjacent Colombia.
Notes: M. nigrocinctus is a complex assemblage of Central American
coral snakes with broad areas of intergradation and isolated populations
with unique features. Savage and Vial (1974) and Savage (1980) dis-
regarded the subspecific subdivisions even though striking morpholog-
ical differences have been found, especially in coloration. Recente findings
of choromosomal differences between subspecies in Costa Rica, M. n. nigro-
331
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elaoidae) : a taxonomic and biological summary. Mem. Inst.
Butantan, J,G: 305-338, 1982.
cinctus and M. n. mosquitensis by Gutiérrez and Bolanos (1979 and 1981)
and of venoms, have confirmed the subspecific validity of several mor-
phologically recognizable units. Whereas the present arrangement and
distribution of the subspecies of M. nigrocinctus represents only a partial
picture of the complex group, lumping all subspecies disregards the bio-
logical reality of subspecies.
An analysis of the variation of populations from the Pacific side
of Costa Rica and Nicaragua (Savage and Vial, 1974) indicates that M.
n. melanocephalus canot be reasonably recognized as a distinct subspecies.
Whereas some features such as a narrow white parietal band is present
in many but not all specimens from Costa Rica and Nicaragua, it is not
a constant feature and the differences in ventral counts are somewhat
overlapping with the population from Panama.
Micrurus nigrocinctus babaspul Roze
Micrurus nigrocinctus babaspul Roze, Amer. Mus. Novitates, 2287:38,
fig. 13. (Type locality: Little Hill, Great Cord Island (Isla dei Maíz
Grande), in the Caribbean Sea, about 55 kilometers east-northeast
of Bluefields, Nicaragua).
Distribution: Corn and Great Cord Islands, Nicaragua.
Micrurus nigrocinctus coinbensis Schmidt
Micrurus nigrocinctus coinbensis Schmidt, 1936, Zool. Ser. Field Mus. Nat.
Hist, 20:209. (Type locality: Coiba Island, Panama).
Distribution : Coiba Island, Panama.
Micrurus nigrocinctus divaricatus (Hallowell)
Elaps divaricatus Hallowell, 1855, Journ. Acad. Nat. Sei- Philadelphia,
(2)3:36. (Type locality: Honduras).
Distribution: Northern and central Honduras and Belize.
Notes: This is an extremely variable subspecies (Wilson and Meyer,
1972) with broad areas of intergradation with M. n. mosquitensis in
northeastern and northern Nicaragua and with M. n. zunilensis in eastern
Guatemala and southwestern Honduras.
Micrurus nigrocinctus mosquitensis Schmidt
Micrurus nigrocinctus mosquitensis Schmidt, 1933, Zool. Ser. Field Mus.
Nat. Hist., 20:33. (Type locality: Limon, Costa Risca).
Distribution: Atlantic slopes of eastern and Southern Nicaragua,
Costa Rica to northwestern Panama.
Micrurus nigrocinctus ruatanus (Günther)
Elaps ruatanus Günther, 1895, Biol. Centr. Amer., Rept. :185, pl. 57b.
Distribution: Roatán Island of Honduras.
Notes: Whereas no intergradation is known (Wilson and Meyer,
1972), apparently, this subspecies is related to M. nigrocinctus. Some
specimens of M. n. divaricatus from Honduras mainland approach the
332
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elaoidae) : a taxonomic and biological summary. Mevn. Inst.
Butantan, 46:305-338, 1982.
high number of black bands found in the population of Isla Roatán. It
seems the evolutionary rate of speciation is faster in the island popu¬
lation a known phenomenon in evolutionary biology — for which M. n.
niatanus might serve as a classic example. Is ruatanus already a species
or not is an open question due to its insular distribution.
Micrurus nigrocinctus zunilensis Schmidt
Micrurus nigrocinctus zunilensis Schmidt, 1932, Proc. Calif. Acad. Sei.,
(4)20:266. (Type locality: Finca El Cipres, lower slopes of Yolcan
Zunil, Suchitepequez, Guatemala).
Micrurus nigrocinctus ivagneri Mertens, 1941, Senckenbergiana, 23:216.
Type locality: Finca Germania, Sierra Madre, Chiapas, México,
400-1300 m.).
Micrurus nigrocinctus ovandoensis Schmidt and Smith, 1943, Zool. Ser.
Field Mus. Nat. Hist., 29:26. (Type locality: Salto de Agua, Mount
Ovando, about 15 mi northeast of Escuintla, Chiapas, México).
Distribution : Pacific slopes of Chiapas, México, Southern Guatemala
to El Salvador and Southern Honduras).
Micrurus peruvianus Schmidt
Micrurus peruvianus Schmidt, 1936, Zool. Ser. Field Mus. Nat. Hist.,
20:193. (Type locality: Perico, Departamento de Cajamarca, Peru)
Distribution: Andes of northeastern Peru.
Notes: The mountains of Cajamarca, Peru have several populations
of coral snakes that might represent more than one endemic species.
Considerably more material is needed for their correct interpretation.
Micrurus petersi Roze
Micrurus steindachneri petersi Roze, 1967, Amer. Mus. Novitates, 2287:
45, fig. 16. (Type locality: One mile south of Plan de Milagro, on
the trail to Pan de Azúcar, Morona-Santiago Province, Ecuador,
5600 feet.
Distribution: Eastern slopes of Andes of Ecuador.
Notes: An additional specimen from Macas, Ecuador (MCZ No.
100950) suggests that this species is sympatric with M. s. steindachneri
but has distinctive characteristics. A species status is assigned to this
endemic Ecuadorian form.
Micrurus proximans Smith and Chrapliwy
Micrurus diastema proximans Smith and Chrapliwy, 1958, Herpetologica,
13(4) :270. (Type locality: Four miles north of San Blas, Nayarit,
México).
Distribution: Nayarit, México.
Micrurus psyches psyches (Daudin)
Vipera psyches Daudin, 1803, Hist. Nat. Rept., 8:320, pl. 100, fig. 1.
(Type locality: Surinam).
Distribution: Extreme Southern part of Colombia, eastern and
Southern Venezuela and the Guianas.
333
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): a taxonomic and biological summary. Mem. Inst.
Butantan, 40:305-338, 1982.
Micrurus psyches circinalis (Duméril, Bibron and Duméril)
Elaps circinalis Duméril, Bibron and Duméril, 1854, Erp. Gén., 7:1210.
(Type locality: Martinique, in error).
Distribution : Trinidad an adjacent mainland of Venezuela.
Micrurus psyches donosoi Hoge, Cordeiro and Romano
Micrurus donosoi Hoge, Cordeiro and Romano, 1976, Ciência e Cultura
(Supl.), 28(7) :417. (Type locality: Mineração Serra do Sul Ltda.,
60 km north of São Félix do Xingu, Long. 51°55’ W, Lat. 6°10’S,
Para, Brazil).
Distribution: Known only from the type locality in Pará, Brazil.
Micrurus psyches medemi Roze
Micrurus psyches medemi Roze, 1967, Amer. Mus. Novitates, 2287:41,
fig. 14. (Type locality: Villavicencio, Meta, Colombia).
Distribution: Vicinity of Villavicencio, Meta, Colombia.
Micrurus psyches paraensis Cunha and Nascimento
Micrurus psiches (sic!) paraensis Cunha and Nascimento, 1973, Mus.
Goeldi Ano Sesqui., Publ. Avuls., 20:275, figs. 1-2. (Type locality:
Icoaraci, Belém, Pará (Brazil)).
Distribution : Around Belém, Pará, Brazil.
Micrurus putumayensis Lancini
Micrurus schmidti Lancini, 1962, Publ. Ocas. Mus. Cien. Nat. Caracas,
Zool., 2:1, fig. 1. (Type locality: Puerto Socorro, 270 km northeast
of Iquitos, Rio Putumayo, Depto. Loreto, Peru).
Micrurus putumayensis Lancini, 1963, (New name for M. schmidti,
preoccupied by M. schmidti Dunn, 1940), Publ. Ocas. Mus. Cien.
Nat. Caracas, Zool., 3:1.
Distribution: Amazon basin in northeastern Peru and eastern
Brazil; probably also Southern tip of Colombia.
Micrurus sangilensis Niceforo Maria
Micrurus ecuadorianus sangilensis Nicéforo Maria, 1942, Rev. Acad.
Colomb. Cien. Exact. Fis. Nat, 5.98, pl. 3, fig. 10. (Type locality:
San Gil, Santander, Colombia).
Distribution: Between Cordillera Central and Oriental in northern
Colombia.
Notes: Apparently, this form is not related to M. bocourti with
which it has been associated in the past.
Micrurus spixii spixii Wagler
Micrurus spixii Wagler, 1824, is Spix, Sp. Nov. Serp. Bras. :48, pl. 18.
(Type locality: Rio Solimões, Brazil).
334
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. Inat.
Butantan, b6: 305-338, 1982.
Elaps ehrhardti Müller, 1926, Zool. Anz., 7/8:198. (Type locality: Ma-
nacapurú, Rio Solimões, Brazil).
Distribution: Middle Amazonian region of Brazil.
Micrurus spixii martiusi Schmidt
Micrurus spixü martiusi Schmidt, 1953, Fieldiana, Zool., 34:175, figs.
33-34. (Type locality: Santarém, Pará, Brazil).
Distribution: Amazonian drainage of Pará and Mato Grosso, Brazil.
Micrurus spixii obscurus (Jan)
Elaps corallinus var. obscura Jan, 1872 in Jan and Sordelli, Icon. Gén.
Ophid., Livr. 41 :pl. 6, fig. 3. (Type locality: Lima, corrected and
restricted to eastern Peru by Schmidt and Walker, 1953, and
further designated as Iquitos, Peru by Schmidt, 1953).
Elaps heterozonus Peters, 1881, Sitz. Ges. Naturforsch. Freunde Berlin,
1881:52. (Type locality: Sarayacú, Ecuador).
Distribution : Periphery of Amazon basin, from Southern Venezuela
and Colombia to Southern Peru, also northern tip of Brazil.
Micrurus spixii princeps (Boulenger)
Elaps princeps Boulenger, 1905, Ann. Mag. Nat. Hist., (7)15:456. (Type
locality: Província Sara, Departamento Santa Cruz de la Sierra,
Bolivia).
Distribution: Northwestern and central Bolivia
Micrurus spurelli (Boulenger)
Elaps spurelli Boulenger, 1914, Proc. Zool. Soc. London, 1914:817. (Type
locality: Pena Lisa, Rio Condoto, Colombia).
Micrurus nicefori Schmidt, 1955, Fieldiana, Zool., 34:346, fig. 65. (Type
locality: Villavicencio, Cundinamarca, Colombia).
Distributions Western and central Colombia.
Micrurus steindachneri steindachneri (Werner)
Elaps Steindachnei Werner, 1901, Verh. Zool. Bot. Ges. Vienna, 51.599.
(Type locality: Ecuador).
Elaps fassli Werner, 1926, Sitz. Math.-Naturwiss. Kl. Akad. Wiss.
Wien, 135(1) :249. (Type locality: Colombia).
Distribution: Eastern slopes of Andes in Macas-Mendez region,
Southern Ecuador.
Micrurus steindachneri orcesi Roze
Micrurus steindachneri orcesi Roze, 1967, Amer. Mus. Novitates, 2287:43,
fig. 15. (Type locality: Meta trail, Bafios, Ecuador, 1200 m.)
Distribution: Higher elevations, from 1000 to 1800 m. in valley
of Rio Pastaza, Pastaza Provice, Ecuador.
335
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae): n taxonomlc and bioloprical summary. Mcm. Inst.
Butantan, 46: 305-338, 1982.
Micrurus stewarti Barbour and Amaral
Micrurus stewarti Barbour and Amaral, 1928, Buli. Antivenin Inst. Amer.,
1:100. (Type locality: Nombre de Dios, Sierr ade la Bruja, Panama).
Micrurus schmidti Dunn, 1940, Proc. Acad. Nat. Sei. Philadelphia, 92:
119, pl. 2. Type locality: Valle de Antón, 50 mi west of Canal Zone,
Panama, 2000 ft.).
Distribution: Intermediate elevations east and west of Canal Zone,
Panama.
Micrurus stuarti Roze
Micrurus stuarti Roze, 1967, Amer. Mus. Novitates, 2287:47, fig. 17.
(Type locality: Finca La Paz, San Marcos, Guatemala, 1345 m).
Distribution-. San Marcos and Suchitepequez, Guatemala.
Micrurus surinamensis surinamensis (Cuvier)
Elaps surinamensis Cuvier, 1817, Le Règne Animal, 2.84. (Type locality:
Surinam).
Distribution : Amazonian region in Colombia, Ecuador, Peru, Brazil,
Bolivia and the Guianas.
Micrurus surinamensis nattereri Schmidt
Micrurus surinamensis nattereri Schmidt, 1952, Fieldiana, Zool., 34:27.
(Type locality: Between Guaramoca and San Fernando, Venezuela).
Distribution-. Upper Rio Orinoco a,nd Rio Negro region of Southern
Venezuela and northern Brazil.
Micrurus tschudii tschudii (Jan)
Elaps tschudii Jan, 1858, Rev. Mag. Zool., (2)10:524. (Type locality:
Peru).
Distribution: Pacific slopes from souther Ecuador to Southern Peru
and probably northwestern Bolivia.
Micrurus tschudii olssoni Schmidt and Schmidt
Micrurus olssoni Schmidt and Schmidt, 1925, Zool. Ser. Field Mus. Nat.
Hist., 12:130, pl. 11. (Type locality: Negritos, Piura, Peru).
Distribution : Pacific slopes from soutehrn Ecuador to northwestern
Peru.
BIBLIOGRAPHIC REFERENCES
AMARAL, A. do. Mecanismo e gênero de alimentação das serpentes do Brasil.
Biol. Boi. (São Paulo), N.S. 1: 2-4, 1933.
BEÇAK, W. & BEÇAK, M.L. Cytotaxonomy and chromosomal evolution in serpents.
Cytogenetics, 8: 247-348, 1969.
BEEBE, W. Field notes on the snakes of Kartabo, British Guiana, and Caripito,
Venezuela. Zoologica, 31: 11-52, 1946.
BLANEY, R.M. & BLANEY, P.K. Variation in the coral snake, Micrurus diastema
in Quintana Roo, México. Herpetologica, 35(3) :276-278, 1979.
336
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. Inst.
Butantan, 40:305-338, 1982.
BOGERT, C.M. The influence of sound on the behavior of amphibians and reptiles.
In Animal Sounds and Communication, AIBS, Publ., 7: 137-320, 1960.
CASAS-ANDREU, G. & LOPEZ-FORMENT, W. Notas sobre Micrurus browni
taylori Schmidt and Taylor en Guerrero, México. An. Inst. Biol. Univ. Nal.
Autón. México, 49, Sér. Zool. (1) :291-294, 1978.
CURTIS, L. Cannibalism in the Texas coral snake. Herpetologica, 8 :27, 1952.
DIXON, J.R. & SOINI, P. The reptiles of the Upper Amazon basin, Iquitos region,
Peru. II. Crocodilians, Turtles and Snakes. Contr. Biol. Geol. MilwavJcee Publ.
Mus., 12:1-91, 1977.
FRASER, D.F. Variation in the coral snake, Micrurus diastema. Copeia, 1:1-17,
1973.
GEHLBACH, F.R. Death-feigning and erratic behavior in leptotyphlopid, colubrid,
and elapid snakes. Herpetologica, 26(l):24-32, 1970.
Coral snake mimicry reconsidered: the strategy of self-mimicry. Forma
et Function, 5:311-320, 1972.
GRAHAM, G. The karyotype of the Texas Coral Snake, Micrurus fulvius tenere.
Herpetologica, 55:345-348, 1977.
GREENE, H.W. Defensive tail display by snakes and amphisbaenians. J. Herpetol.,
7(3) : 143-161, 1973.
The food habits and feeding behavior of New World coral snakes.
M.A. Thesis, Univ. Texas at Arlington, 1974. 66 p.
& McDIARMID, R.M. Coral snake mimicry: does it occur? Science,
215(4513) :1207-1212, 1981.
- & PYBURN, W.F. Comments on aposematic and mimicry among coral
snakes. Biologist, 55(4) : 144-148, 1973.
GUTIERREZ, J.M. & BOLANOS, R. Cariotipos de las principales serpientes coral
(Elapidae: Micrurus) de Costa Rica. Rev. Biol. Trop., 27(1) :57-73, 1979.
Polimorfismo cromosómico intraespecífico en la serpiente de coral,
Micrurus nigrocinctus (Ophidia: Elapidae). Rev. Biol. Trop., 29(2) (1980):
x-xx, 1981.
HENDERSON, R.W.; DIXON, J.T.; & SOINI, P. Resource partitioning in Ama-
zonian snake communities. Contr. Biol. Geol. Milwaukee Publ. Mus., 22:1-11,
1979.
HOGE, A.R. & ROMANO, S.A. Sinopse das serpentes peçonhentas do Brasil. Mem.
Inst. Butantan, 56:109-208, 1972.
LOVERIDGE, A. Cannibalism in the common coral snake. Copeia, 1938:201-202,
1944.
ROMANO, S.A. Notes on Leptomicrurus Schmidt (Serpentes Elapidae). Mem. Inst.
Butantan, 55(1971) :111-115, 1972.
ROZE, J.A. Revisión de las corales (Serpentes: Elapidae) de Venezuela. Acía
Biol. Venezuelica, 1 (17) :453-500, 1955.
On the synonymy and type specimens of the coral snakes, Micrurus
corallinus and M. ibiboboca (Marcgravii). Copeia, 1966(2) :369-371, 1966.
A check list of the New World venomous coral snakes (Elapidae),
with descrintions of new forms. Amer. Mus. Novitates, (2287) :l-60, 1967.
Micrurus. In J.A. Peters & B. Orejas-Miranda, Catalogue of Neotropical
squamata. Pt. I Snakes. Buli. U. S. Natl. Mus., 297: 196-220, 1970.
ROUX-ESTÈVE, R. Les spécimens-types du genre Micrurus (Elapidae) conserves
au Museum National d’Histoire Naturelle de Paris. Mem. Inst. Butantan, 46,
1982 (in print).
SAVAGE, J.M. A handlist with preliminary keys to the herpetofauna of Costa
Rica. Allan Hancock Foundation, Los Angeles, 1980. 111 p.
337
cm
SciELO
10 11 12 13 14 15
ROZE, J. A. New world coral snakes (Elapidae) : a taxonomic and biological summary. Mem. lnst.
Rutantan, 46:305-338, 1982.
SAVAGE, J.M. & VIAL, J.L. The venomous coral snakes (genus Micrurus) of
Costa Bica. Rev. Biol. Trop., 21 (2) :295-349, 1974.
SCHMIDT, K.P. Stomach contents of some American coral snakes, with the des-
cription of a new species of Geophis. Copeia :6-9, 1932.
Coral snakes of the genus Micrurus in Colombia. Fieldiana, Zool.,
Si (34) :337-359, 1955.
- & WALKER, W.F. Peruvian snakes from the University of Arequipa.
Zool. Ser. Field Mus. Nat. Hist., 29( 2) :25-31, 1943.
SMITH, H.M. & TAYLOR, E.H. Type localities of Mexican reptiles and amphibians.
Univ. Kansas Sei. Buli. 32(2), 8, :313-380, 1950.
SOINI, P. Polychromatism in a population of Micrurus langsdorffi. J. Herpetol.,
8( 3):267-269, 1974.
TEST, F.H.; SEXTON, O.J. & HEATWOLE, H. Reptiles of Rancho Grande and
vicinity, Estado Aragua, Venezuela. Misc. Publ. Mus. Zool. Univ. Michigan,
128: 1-63, 1966.
VITT, L.J. & HULSE, A.C. Observations on feeding habits and tail display of
the Sonoran Coral Snake, Micruroides euryxanthus. Herpetologica, 29 ( 4):
302-304, 1973.
WEHEKIND, L. Notes on the food of the Trinidad snakes. Brit. Journ. Herpetol.,
2: 9-13, 1955.
WIED, M. Beitrage zur Naturgeschichte Brasiliens. Weimar, vol. 1, 1825.
WILSON, L.D. & HAHN, D.E. The herpetofauna of the Islas de la Bahia, Hon¬
duras. Buli. Florida St. Mus. Biol. Sei., 77:93-150, 1973.
WILSON, L.D. & MEYER, J.R. The coral snake, Micrurus nigrocinctus in Hon¬
duras (Serpentes: Elapidae). Buli. South. Calif. Acad. Sei., 77:139-145, 1972.
338
cm
2 3
L
5 6
10 11 12 13 14 15
Mem. Inat. Butantan
46: 339-362, 1982
SOBRE A DISTRIBUIÇÃO GEOGRÁFICA DOS GÊNEROS
DA SUBFAMÍLIA THERAPHOSINAE THORELL, 1870
NO BRASIL (ARANEAE, THERAPHOSIDAE)
Sylvia LUCAS *
RESUMO: A subfamília THERAPHOSINAE Thorell, 1870
abrange atualmente 11 gêneros e cerca de 90 espécies, a grande
maioria ocorrendo na América do Sul e principalmente no Brasil.
Neste trabalho são apresentados mapas de distribuição geográfica
dos gêneros que ocorrem no Brasil, baseados em material recebido
pela Seção de Artrópodes Peçonhentos do Instituto Butantan e em
exemplares depositados nas coleções da mesma seção. Verificou-se
que a grande maioria dos exemplares recebidos pertencem aos
gêneros Pamphobeteus Pocock, 1901, Acanthoscurria Ausserer,
1871 e Lasiodora C. Koch, 1850. As legendas dos mapas mostram
as quantidades de material recebido. Quanto ao gênero Megapho-
boema Pocock, 1901 não houve registro de recebimento e não há
material depositado nas coleções, procedente do Brasil. É ques¬
tionada a ocorrência do gênero Phormictopus Pocock, 1901 no
Brasil, tendo-se examinado o tipo de P .pheopygus Mello Leitão,
1923 e verificado tratar-se de uma Acanthoscurria gomesiana
Mello Leitão, 1923. Os tipos de P.multicuspidatus Mello Leitão
1929, P.ribeiroi Mello Leitão, 1923 e P.brasiliensis Strand, 1907
teriam que ser revistos, afim de constatar se realmente pertencem
ao gênero, uma vez que as descrições são incompletas. Após a
revisão do tipo, constatou-se que a única espécie descrita como
ocorrendo no Brasil, do gênero Sericopelma Ausserer, 1875, S.fallax
Mello Leitão, 1923, não pertence ao mesmo e o gênero, portanto,
não foi incluído nos mapas apresentados.
PALAVRAS CHAVE: Subfamília THERAPHOSINAE; distri¬
buição geográfica dos gêneros no Brasil; ARANEAE; THERA-
PHOSIDAE, THERAPHOSINAE.
INTRODUÇÃO
A subfamília THERAPHOSINAE Thorell, 1870 abrange 11 gêneros
e cerca de 90 espécies, ocorrendo a maioria na América do Sul e princi¬
palmente no Brasil.
Muitas espécies são conhecidas apenas através do material tipo, às
vezes, um único exemplar e as descrições são sumárias, omitindo carac-
INSTITUTO BUTANTAN — Seção de Artrópodes Peçonhentos — Caixa Postal 65 — São Paulo —
Brasil.
339
cm
SciELO
10 11 12 13 14 15
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. ln&t. Butantan, J t G: 339-352, 1982.
teres importantes e os locais de coleta são duvidosos, tornando difícil a
correta identificação dos gêneros e espécies.
.Entre os pesquisadores que contribuíram para o melhor conhecimento
desta subfamília devemos citar, entre outros, Mello Leitão (6), que em
1923 redescreveu várias espécies, descreveu espécies novas e citou muitas
vezes não só a localidade de coleta, bem como, a distribuição geográfica
da espécie em questão. Também Vellard (7) em 1936, estudando o veneno
de diversas espécies pertencentes ao gênero Acanthoscurria Ausserer,
1871, Phormictopus Pocock, 1901, e Pamphobeteus Pocock, 1901, descre¬
veu hábitos e citou a distribuição geográfica de algumas espécies. Ainda
Bücherl (1, 2, 3) em diversos trabalhos e também Gerschman de Pikelin
e Schiapelli (4), em 1967, fizeram um estudo comparativo dos gêneros
Theraphosa Walcknaer, 1805, Lasiodora e Sericopelma Ausserer, 1875 e
apresentaram mapas de distribuição geográfica dos três gêneros.
O Instituto Butantan possui em seu acervo uma coleção de ORTHO-
GNATHA constando de mais de 4.000 exemplares, sendo esta constante¬
mente ampliada através da anexação de material recebido das mais
diversas localidades.
Neste trabalho fizemos um levantamento a nível genérico do material
recebido, pertencente à subfamília THERAPHOSINAE e apresentamos
mapas de procedências.
MATERIAL E MÉTODO
A Seção de Artrópodes Peçonhentos do Instituto Butantan atende,
anualmente, mais de 2.000 pessoas que procuram a Seção, trazendo arac¬
nídeos coletados nos arredores de suas residências, em sítios, fazendas
etc. Na Seção são informados sobre a periculosidade do animal em questão,
métodos de erradicá-lo, quando necessário, orientação sobre como prevenir
o acidente e demais informações úteis.
Os aracnídeos são registrados em livro, recebendo um número de
referência, de acordo com a ordem de entrada. Constam nos livros, inicia¬
dos em 1967, o nome e. o endereço postal do fornecedor, a data do recebi¬
mento, o local de coleta e a identificação do animal a nível genérico.
A Seção recebeu, num período de cinco anos (1976 a 1980) 3.276
exemplares de aranhas caranguejeiras e atendeu 11.500 fornecedores.
Excluindo-se os aracnídeos de interesse médico, gêneros Phoneutria, Lo-
xosceles e Lycosa, figuram as aranhas caranguejeiras em primeiro lugar,
por ordem de recebimento, podendo-se atribuir isto ao fato de que devido
ao seu tamanho, serem consideradas perigosas e portanto temida pela
população.
Fizemos um levantamento do material pertencente à subfamília THE-
RAPHOSINAE, recebido durante o período de 1976 a 1980, inclusive.
As procedências foram assinaladas em mapas. Para os gêneros Pampho-
beteus e Acanthoscurria as localidades assinaladas no Estado de São
Paulo são muitas e por isso constam em mapas separados. Nas legendas
dos mapas estão assinaladas as quantidades de material recebido de cada
gênero, por localidade. Não foram consideradas as procedências duvidosas,
isto é, aranhas que vieram em transporte de madeira etc.
340
cm
2 3
z
5 6
10 11 12 13 14 15
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inst. Butantan, 46: 339-352, 1982.
SciELO
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mevt. lnst. Butantan, 46: 339-352, 1982.
342
SciELO
12
14
Fig. 2. Gênero Pamphobeteus: mapa do Estado de São Paulo assinalando as procedências e as quantidades de material recebido.
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inst. Butantan, 40:339-352, 1982.
Quanto aos gêneros Trasyphoberus Simon, 1903, Xenesthis Simon,
1891, Eupalaestrus Pocock, 1901 e Theraphosa Walckenaer, 1805, cujo
número de exemplares recebidos é muito pequeno, consideramos todas as
procedências que constam nos registros da coleção e foi feito apenas
um mapa geral.
O GÊNERO Acanthoscurria AUSSERER, 1871
Há cerca de 32 espécies descritas das quais 22 para o Brasil.
Durante o período de cinco anos recebemos 766 exemplares. Acan-
thoscurria gomesiana Mello Leitão, 1923 é a espécie recebida com maior
freqüência, principalmente dos arredores da capital de São Paulo.
Recebemos material das seguintes procedências:
BAHIA : Feira de Santana, Irerê.
DISTRITO FEDERAL: Brasília.
GOIÁS : Cristalina, Crixás, Itumbiara, Monzolândia, Paracatu, Distrito
Federal.
MATO GROSSO: Aripuanã, Barra do Garça, Cáceres, Nobres.
MATO GROSSO DO SUL: Campo Grande, Coxim, Miranda.
MINAS GERAIS: Alterosa, Belo Horizonte, Caxambu, Cristiano Otoni,
Estiva, Extrema, Guaranésia, Iturama, Jacuí, Juiz de Fora, Liberdade,
Monte Verde, Poços de Caldas, Rio Acima, Sacramento, Uberaba, Uber¬
lândia, Vargem da Palma.
PARÁ: Belém, Santarém, Marabá.
PIAUÍ: Avelino Lopes, São Raimundo Nonato, Teresina.
RIO DE JANEIRO: Barra Bonita, Vargem Grande.
SÃO PAULO: Adamantina, Águas de Lindóia, Água Vermelha, Atibaia,
Americana, Amparo, Angatuba, Araçoiaba da Serra, Araraquara, Assis,
Bariri, Barueri, Bauru, Bebedouro, Bela Aliança, Bocaina, Boituva, Bra¬
gança Paulista, Brotas, Cabreúva, Caçapava, Caiabu, Caieiras, Cajamar,
Camanducaia do Alto, Campinas, Campo Limpo Paulista, Cananéia, Cau-
caia do Alto, Colina, Cotia, Descalvado, Diadema, Embu, Embu-Guaçu,
Espírito Santo do Pinhal, Ferraz de Vasconcelos, Flórida Paulista, Francis¬
co Morato, Franco da Rocha, Fronteiras, Garça, Guarulhos, Ibiúna, Indaia-
tuba, Iracemápolis, Itaim, Itarará, Itatiba, Itirapina, Itu, Itupeva, Jacareí,
Jaguariúna, Jandira, Jarinu, Jundiaí, Juquiá, Juquitiba, Lindóia, Louveira,
Mairinque, Mairiporã, Mailasque, Martinópolis, Matão, Miracatu, Mococa,
Mogi das Cruzes, Mogi-Guaçu, Mogi-Mirim, Morungaba, Nazaré Paulista,
Osasco, Osvaldo Cruz, Ourinhos, Paraibuna, Paranapiacaba, Paulínia,
Piedade, Penápolis, Pinhal, Pinhalzinho, Piracaia, Pirapora do Bom Jesus,
Pirassununga, Porangaba, Poá, Porto Feliz, Quitaúna, Rancharia, Regis¬
tro, Rincão, Ribeirão Preto, Rio Claro, Sales de Oliveira, Salto, Santa
Adélia, Santa Bárbara d’Oeste, Santa Gertrudes, Santana do Parnaíba,
Serra Negra, São Bernardo do Campo, São Carlos, São João da Boa Vista,
São João Novo, São Mateus, São Roque, Sumaré, Taboão da Serra, Tatuí,
Tupã, Valinhos, Vargem Paulista, Votorantim.
O GÊNERO Pamphobeteus POCOCK, 1901
Em revisão do gênero, realizada por Bücherl (1, 2) em 1947 e em
1948, as 19 espécies descritas para o Brasil foram reduzidas a apenas 8.
343
cm
SciELO
10 11 12 13 14 15
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inat. Butantan, 46: 339-352, 1982.
Há dúvida porém quanto à correta identificação das espécies perten¬
centes ao gênero que ocorrem no Brasil. Em P. nigricolor (Ausserer,
1.875), a dobradura do metatarso do palpo se dá entre as apófises tibiais,
enquanto que em material depositado nas coleções do Instituto Butantan,
identificado por Bücherl e em várias descrições de espécies novas de Mello
Leitão, o metatarso dobra-se sobre a apófise externa. O caracter tem im¬
portância genérica havendo necessidade de mais estudos.
Procedências do material recebido:
MATO GROSSO: Alta Floresta, Aripuanã e Barra do Garça.
MATO GROSSO DO SUL: Campo Grande, Dourados, Nova Andradina,
Ponta Porã.
MINAS GERAIS: Bom Jesus do Galho, Juiz de Fora, Poços de; Caldas e
Uberaba.
PARÁ: Belém, São José de Guamar.
PARANÁ: Arapongas, Apucarana, Cambará, Cambé, Castro, Curitiba,
Foz de Iguaçu, Guarapuava, Jaguariaiva, Londrina e Rolândia.
PIAUÍ: Avelino Lopes, Santa Cruz.
RIO DE JANEIRO: Angra dos Reis, Pirai, Nova Friburgo e Parati.
RONDÔNIA
SANTA CATARINA: Capinzal e Joinville.
SÃO PAULO: Airosa Galvão, Agenor de Campos, Água Vermelha, Água
de Santa Bárbara, Agudos, Americana, Américo Brasiliense, Amparo,
Ana Dias, Angatuba, Apiaí, Araraquara, Arujá, Assis, Atibaia, Avaré,
Barra doJSahi, Barra do Una, Barueri, Bertioga, Boa Esperança do Sul,
Bofete, Boituva, Boracéia, Botucatu, Bragança Paulista, Brotas, Buri,
Cachoeirinha, Caieiras, Camburi, Campinas, Campo Limpo, Cananéia,
Cândido Mota, Caraguatatuba, Carapicuíba, Capivari, Caucaia, Cerqueira
César, Cesário Lange, Colina, Conchas, Corumbataí, Cotia, Cubatão, Dia¬
dema, Dois Córregos, Dracena, Embu, Engenheiro Marsilac, Engenho,
Fartura, Gália, Garça, Gavião Peixoto, Grajaú, Guararapes, Guararema,
Guarujá, Guarulhos, Ibiúna, Iguape, Ilha Bela, Ilha Comprida, Ilha Por-
chat, Indaiatuba, Inúbia, Ipiaiçu, Iporanga, Irapoã, Itaí, Itanhaém, Ita-
peva, Itapevi, Itapetininga, Itaquera, Itariri, Itatiba, Itatinga, Itu, Jaca-
rei, Jacupiranga, Jarinu, Jaú, Jundiaí, Juqueí, Juquiá, Juquitiba, Lençóis
Paulista, Limeira, Lins, Lucélia, Mairinque, Martinópolis, Miracatu, Mogi
das Cruzes, Mogi-Guaçu, Mogi-Mirim, Mongaguá, Nova Odessa, Osasco,
Ourinhos, Panorama, Paraguaçu Paulista, Paranapiacaba, Pardinho, Pa-
riquera-Açu, Paulínia, Pedro de Toledo, Pereira, Peruíbe, Piedade, Pilar
do Sul, Piraju, Piratininga, Porangaba, Porto Feliz, Praia Grande, Praia
de Pernambuco, Pratânia, Registro, Rincão, Rio do Peixe, Rinópolis, Rio
das Pedras, Salto Grande, São Sebastião, São José dos Campos, Santa
Bárbara d’Oeste, Sorocaba, São Bernardo, São Miguel Arcanjo, São
Manoel, Santo Anastácio, Santo André, Sumaré, São Vicente, Santa Cruz
do Rio Pardo, Salto, São Caetano, São Roque, São Lourenço da Serra,
São Carlos, Sete Barras, Taboão da Serra, Tapiraí, Tatuí, Taubaté, Tietê,
Torrinha, Tupã, Uberaba Uirapuru, Valinhos, Várzea Paulista, Votoran-
tim, Valinhos e Xavantes.
SERGIPE: Aracaju.
344
cm
SciELO
10 11 12 13 14 15
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inst. Butantan, 46: 339-352, 1982.
Fig. 3. Gênero Acanthoscurria: mapa do Brasil assinalando as procedências e as quantidades de
material recebido.
345
cm
SciELO
10 11 12 13 14 15
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inst. Butantan, 46: 339-352, 1982.
Fig. 4. Gênero Pamphobeteua : mapa do Brasil assinalando
material recebido.
procedências e
as Quantidades de
346
SciELO
10 11 12 13 14
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inst. Butantan, 46:339-352, 1982.
O GÊNERO Lasiodora C. L. Koch, 1851
Há 21 espécies descritas, a grande maioria ocorrendo no Brasil.
A espécie L. klugi C. L. Koch, 1842, é trazida freqüentemente ao Instituto
junto com transporte de madeira procedente do Nordeste.
Gerschman de Pikelin e Schiapelli identificaram, em 1967, como
pertencente a este gênero, material procedente da Venezuela e sugeriram
que o mesmo ocorra na região amazônica. Nas ilustrações que acompa¬
nham o trabalho podemos verificar que os exemplares identificados não
pertencem ao gênero Lasiodora.
Recebemos material das seguintes procedências:
BAHIA : Barragem Pedra do Cavalo, Brumado, Coqueiros, Jequié, Morro
do Chapéu, Nova Viçosa, Paulo Afonso.
ESPÍRITO SANTO : Santa Teresa, Vitória.
GOIÁS : Alvorada, Goiás, Itumbiara.
MATO GROSSO: Mato Grosso.
MINAS GERAIS: Belo Horizonte, Bom Jesus do Galho, Caratinga, Co¬
rinto, Furnas do Sul, Itaberaba, Juiz de Fora, Montes Claros, Taubim,
Três Corações, Uberaba.
PIAUÍ: Avelino Lopes, Landri Sales, São Raimundo Nonato, Terezina.
RIO DE JANEIRO: Alberto Torres, Abrão, Angra dos Reis, Barra do
Pirai, Campos, Mendes, Nova Friburgo, Parati, Rio de Janeiro, Teresó-
polis, Vassouras, Visconde de Mauá, Volta Redonda.
SÃO PAULO: Água Branca, Bela Vista, Campinas, Caçapava, Caragua-
tatuba, Casa Verde, Caxingui, Guararema, Iguape, Itanhaém, Jabotica-
bal, Jardim São Bento, Mongaguá, Monte Azul Paulista, Paraibuna, Praia
Grande, Pindamonhangaba, Queluz, Registro, Santana, Sertãozinho, Santo
André, São José do Barreiro, São José dos Campos, Sorocaba, Taubaté,
Vale do Paraíba, Vila Jaraguá.
O GÊNERO Eupalaestrus Pocock, 1901
Há cinco espécies descritas, três para o Brasil. Nas coleções do Insti¬
tuto Butantan há material recebido das seguintes localidades:
MATO GROSSO DO SUL: Agachi, Bonito, Campo Grande, Coxim, Nioa-
que, Palmeiras, Taunay.
PARANÁ: Guarapuava, Laranjeira do Sul, Ponta Grossa.
RIO GRANDE DO SUL: Pelotas.
SANTA CATARINA: Capinzal, Serra Alta.
SÃO PAULO: São José dos Campos.
O GÊNERO Megaphoboema Pocock, 1901
É um gênero monotípico, M. robusta (Ausserer,. 1875), é de Bogotá,
Colômbia.
Gerschmann e Schiapelli em 1979, viram o tipo: um macho, que pelo
formato do bulbo copulador aproxima-se ao gênero Sericopelma Ausserer,
1875.
Não há registro deste gênero nas coleções do Instituto Butantan.
347
cm
SciELO
10 11 12 13 14 15
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamíHa Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mcm. Inat. Butantan, 46:339-352, 1982.
Fig. 5. Gênero Laaiodora: mapa dos Estados de São Paulo, Rio de Janeiro, Espírito Santo, Minas
Gerais, Goiás e Piauí assinalando as procedências e as quantidades de material recebido.
348
2 3
SciELO
10 11 12 13 14 15
cm
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inst. Butantan, Jt6: 339-352, 1982.
Fig. 6. Gêneros Traayphoberus, Theraphora, Xenesthis, Eupalueatrus e Nhandu: mapa do Brasil
assinalando as procedências do material recebido.
349
cm
SciELO
10 11 12 13 14 15
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subfamília Theraphosinae; Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inst. Butantan, 46:339-362, 1982.
O GÊNERO Nhandu Lucas, 1981
O gênero apresenta apenas uma espécie, Nhandu carapoensis proce¬
dente de Carapó, Mato Grosso do Sul.
Recebemos mais material pertencente ao gênero de: Campo Grande,
Nioaque e Pedro Gomes, Mato Grosso do Sul.
O GÊNERO Phormictopus Pocock, 1901
Há 13 espécies descritas das Antilhas e da América do Sul.
Em 1923, Mello Leitão descreveu duas espécies do Brasil: P. ribeiroi
de Mato Grosso e P. pheopygus de São Paulo, e em 1929, mais uma da
Bahia, P. multicuspidatus.
Vellard, em 1936, estudou o veneno de P. brasiliensis Strand, 1907 e
P. pheopygus, citando-as como ocorrendo no sul de Mato Grosso, noroeste
de São Paulo, sul de Minas e Goiás. Identificou o gênero pela presença,
nos machos, de dois esporões tibiais.
Gerschmann e Schiapelli, em 1979, citam ocorrência do gênero no
Brasil, Cuba, Antilhas, Venezuela, Estados Unidos e também na Nicarágua.
Examinando o tipo de P. pheopygus e verificamos tratar-se de uma
Acanthoscurria gomesiana Mello Leitão, 1923.
Não há registro de exemplares pertencentes ao gênero nas coleções
do Instituto Butantan, apesar de ter sido recebido material das locali¬
dades citadas por Vellard. Há necessidade de um estudo dos tipos a fim
de se verificar se de fato as demais espécies identificadas para o Brasil
e talvez, América do Sul, pertencem ao gênero.
O GÊNERO Sericopelma Ausserer, 1875
Foram descritas três espécies, duas do Panamá uma no Brasil. Gersch¬
mann de Pikelin e Schiapelli, em 1967, identificaram material do gênero
coletado na Nicarágua.
Examinamos o tipo de S. fallax Mello Leitão, 1923, e constatamos
não pertencer ao gênero. Nas coleções do Instituto Butantan não há mate¬
rial pertencente ao gênero.
O GÊNERO Theraphosa Walckenaer, 1805
É um gênero monotípico, a espécie T. leblondii (Latreille, 1804) foi
coletada na região do Maroni, nas Guianas. Walckenaer afirmou ter rece¬
bido material pertencente a este gênero procedente do Pará, fato posto
em dúvida por Mello Leitão e confirmado por nós.
Recebemos exemplares procedentes do Território do Amapá, da região
da Serra do Navio e do Pará: Belém, Marabá, São Félix do Xingu, além
de vários exemplares das Guianas Britânicas.
O GÊNERO Trasyphoberus Simon, 1903
O gênero é monotípico e a espécie T. parvitarsis Simon, 1903 foi
descrita de Tefé, Amazonas. O gênero aproxima-se de Acanthoscurria.
Em trabalho no prelo, estabelecemos a sinonímia de parvitarsis com
ferina Simon, 1892. Examinamos os tipos de ambas espécies, e verifica-
350
cm
SciELO
10 11 12 13 14 15
LUCAS, S. Sobre a distribuição geográfica dos gêneros da subíamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inst. Butantan, U6: 339-352, 1982.
mos que os receptáculos seminais de parvitarsis são idênticos aos de
ferina. O tipo de parvitarsis está em mau estado de conservação.
Nas coleções do Instituto Butantan há vários exemplares procedentes
do Amazonas, Boca do Tefé, Humaitá, Manicore e Três Casas.
O GÊNERO Xenesthis Simon, 1891
O gênero apresenta três espécies descritas para a América Central,
Colômbia e Venezuela. A espécie tipo é X. immanis (Ausserer, 1875) da
América Central.
Nas coleções do Instituto Butantan há dois exemplares procedentes
do Estado de Rondônia: Pimenta Bueno.
CONCLUSÕES
A Seção de Artrópodes Peçonhentos recebe anualmente, em maior
número, as aranhas pertencentes à subordem ORTHOGNATHA, excluin¬
do-se os gêneros da subordem LABIDOGNATHA de interesse médico,
isto é, Phoneutria, Lycosa e Loxosceles.
Os gêneros da subfamília THERAPHOSINAE recebidos com maior
freqüência são Pamphobeteus, Acanthoscurria e Lasiodora.
No Estado de São Paulo ocorrem em maior abundância os gêneros
Pamphobeteus e Acanthoscurria, sendo a espécie A. gomesiana a caran¬
guejeira mais freqüentemente recebida dos arredores da capital.
A ocorrência do gênero Phormictopus no Brasil é por enquanto duvi¬
dosa, pois apesar de Vellard assinalar a ocorrência de duas espécies nos
Estados de Mato Grosso, Minas Gerais, São Paulo e Goiás, não há material
identificado como pertencente a este gênero, nas coleções do Instituto
Butantan.
Não há registro de ocorrência dos gêneros Megaphoboema e Serico-
pelma no Brasil e a espécie S. fallax não pertencente ao gênero.
AGRADECIMENTOS
O levantamento das localidades de recebimento do material e sua
localização nos mapas foi realizado pela equipe da Seção de Artrópodes
Peçonhentos constituída pelas assistentes biologistas Irene Knysak e
Lívia Zveibil e pelos estagiários Maria Cristina dos Santos, Miriam
Costa e Ricardo Bottino.
Os mapas foram desenhados por Lívia Zveibil e fotografados por
Taufic Abraão Auede.
A todos os nossos melhores agradecimentos.
351
cm
SciELO
10 11 12 13 14 15
LUCAS, S. Sobre a distribuição geográfica dos géneros da subfamília Theraphosinae Thorell, 1870 no
Brasil (Araneae, Theraphosidae). Mem. Inat. Butantan, 46:339-352, 1982.
REFERÊNCIAS BIBLIOGRÁFICAS
1. BUCHERL, W. Estudo comparativo das espécies brasileiras do gênero Pampho-
beteus Pocock, 1901 (MYGALOMORPHAE). Mem. Inst. Butantan, 20:
233-282, 1947.
2. BUCHERL, W. Em torno das três espécies insulares e praianas do gênero
Pamphobeteus Pocock, 1901 (MYGALOMORPHAE). Mem. Inst. Butan¬
tan, 21: 117-136, 1949.
3. BUCHERL, W. Südamerikanische Vogelspinnen in: Die neue Brehm Bücherei.
A. Ziemsen Verlag, Wittenberg Lutherstadt, 1962.
4. SCHIAPELLI, R.D. & GERSCHMAN de PIKELIN, B.S. Estúdio de los gene-
ros “ Theraphosa" Walck., 1805; “ Lasiodora ” C.L. Koch, 1851 y “Serico-
pelma" Ausserer, 1875 (ARANEAE THERAPHOSIDAE). Atas Simp. Biota
Amazônica, 5 (Zoologia) :481-494, 1967.
5. SCHIAPELLI, R.D. & GERSCHMAN de PIKELIN, B.S. Las arajias de la
subfamília “THERAPHOSINAE”. Rev. Mus. Argent. Cienc. Nat. “Bemar-
dino Rivadavia” e Inst. nac. invest. Cienc. Nat. (Entom.), 5(10) :287-300,
1979.
6. MELLO LEITÃO, C. de. Theraphosoideas do Brasil. Rev. Mus. paul., 13: 1-438,
6 pl., 3 cart., 1923.
7. VELLARD, J. Le venin des araignées. Paris, 1936. pp. 362, 63 figs.
352
cm
2 3
z
5 6
10 11 12 13 14 15
Mem. Inat. fíutantan
4*:353, 1982
ÍNDICE DE AUTOR/AUTHOR INDEX
AUTUORI, M. P. : 119
BELLUOMINI, H. E. : 119
BOLANOS, R. : 275
BRYGOO, E. R. : 15, 19, 59
CADLE, J. E. : 255
CARLOTTO, P. R. : 207
CEKALOVIC K, T. : 183, 187
CHISZAR, D. : 195
CUNHA, O. R. : 139
HOGE, A. R. : 195
HOOGMOED, M. S. : 219
KARDONG, K. V. : 105
LANCINI V., A. R. : 95
LEMA, T. : 173
LUCAS, S. M. : 339
MACHADO, J. C. : 1
NASCIMENTO, F. P. : 139
NEWLANDS, G. : 293
PIMONT, R. P. : V
ROUX-ESTEVE, R. : 79
ROZE, J. A. : 305
SANDNER MONTILLA, F. : 193
SMITH, H. M. : 195
TORRES, J. B. : 207
353
cm
SciELO
10 11 12 13 14 15
Mr.m. Inat. Butantan
46 :366-366, 1982
ÍNDICE DE ASSUNTOS
Animais peçonhentos
acidentes, RS, Brasil
Madagascar : 15, 19
207
59
293
339
Antitoxinas bacterianas, descoberta
Aranhas
acidentes, RS, Brasil : 207
Sicarius (Araneae: Sicariidae)
veneno, ação : 293
Theraphcsinae
distribuição geográfica, Brasil
Atractaspis : 255
Bertrand, Gabriel, biografia : 59
Calmette, Albert, biografia : 59
Chironius, Amazônia : 139
Coleção aracnológica, escorpiões do Museo de Zoologia de Concepción,
Chile : 187
Coleção herpetológica, serpentes do Museo de Zoologia de Concepción,
Chile : 183
Crotalinae, Venezuela : 193
Crotalus, comportamento sensorial : 195
Elapidae : 305
Escorpiões
acidentes, RS, Brasil : 207
coleção do Museo de Zoologia de Concepción, Chile
Fauna, resgate em hidroelétricas : 119
Glândula de veneno, serpentes : 105
Hidroelétricas, salvamento da fauna : 119
Hoge, A. R., homenagem póstuma : 1
Homoroselaps : 255
Micrurus : 79, 255, 305
187
355
cm
SciELO
10 11 12 13 14 15
ÍNDICE DE ASSUNTOS
Ofídios vide Serpentes
Parasitas, em serpentes : 19
Phisalix, Césaire Auguste, biografia : 59
Serpentes
acidentes, RS, Brasil : 207
América Central : 275
cariotipos: 275
distribuição geográfica : 275
Atractaspis : 255
coleção do Museo de Zoologia de Concepción, Chile : 183
Crotalus, comportamento sensorial : 195
Elapidae : 305
glândula de veneno : 105
história evolucionária : 255
Homoroselaps : 255
Micrurus : 79, 255, 305
parasitas : 19
Província Zoogeográfica Pampeana, América do Sul : 173
região das Guianas : 219
sistemática : 19, 79, 139, 193, 305
Venezuela : 95, 193
Sicarius (Araneae: Sicariidae) : 293
Sistemática
Serpentes
Chironius (Colubridae) : 139
Crotalinae, Venezuela : 193
Madagascar : 19
Micrurus (Elapidae) : 79, 305
Soro antiofídico, descoberta : 59
Theraphosinae
distribuição geográfica, Brasil : 399
Venenos
aranhas : 293
serpentes
glândulas : 105
356
SciELO
10 11 12 13
Mem. Ivst. fíutantan
40:357-358, 1982
SUBJECT INDEX
Antiophidic serum, discovery : 59
Arachnological collection, scorpions from Museo de Zoologia de Concep-
ción, Chile : 187
Atractaspis : 255
Bacterial antitoxin, discovery : 59
Bertrand, Gabriel, biography : 59
Calmette, Albert, biography : 59
Chironius, Amazônia : 139
Crotalinae, Venezuela : 193
Crotalus, sensorial behavior : 195
Elapidae : 305
Fauna salvage in hydroelectrics : 119
Gland of venoms, snakes : 105
Herpetological collection, snakes from Museo de Zoologia de Concepción,
Chile : 183
Hoge, A. R. posthumous homage : 1
Homoroselaps : 255
Hydroelectrics, faunal salvage : 119
Micrurus : 79, 255, 305
Ophidians see snakes
Parasites of Snakes : 19
Phisalix, Césaire Auguste, biography : 59
Poisonous animais
accidents, RS, Brazil : 207
Madagascar : 15, 19
Scorpions
accidents, RS, Brazil : 207
collection from Museo de Zoologia de Concepción, Chile : 187
Sicarius (Araneae: Sicariidae) : 293
Snakes
accidents, RS, Brazil : 207
Atractaspis : 255
357
SciELO
SUliJECT INDEX
Central America : 255
karyotypes : 255
geographical distribuition : 255
Collection from Museo de Zoolagia de Concepción, Chile : 183
Crotalus, sensorial behavior
evolutionary history : 255
Guiana region : 219
Homoroselaps : 255
Micrurus : 79, 255, 305
parasites : 19
systematic : 19, 79, 139, 193, 305
Venezuela : 95, 193
venom gland : 105
Zoogeographic Pampean Region, South America : 173
Spiders
accidents, RS, Brazil : 207
Sicarius (Araneae: Sicariidae) : 293
vencm action : 293
Theraphosinae
geographic distribution, Brazil : 339
Systematic
snakes
Chironius (Colubridae) : 139
Crotalinae, Venezuela : 193
Madagascar : 19
Micrurus (Elapidae) : 79, 305
Theraphosinae
geographic distribution, Brazil : 399
Venoms
snakes
gland : 105
spiders : 293
358
cm
SciELO
10 11 12 13 14 15
0
IMPRENSA OFICIAL
DO ESTADO S.A IMESP
SÃO PAULO-BRASIL
1983
2 3
6 SciELO 10 11 12 13 14
cm
ISSN 0073 - 9901
IMPRENSA OFICIAL
DO ESTADO S.A. IMESP
SÃO PAULO BRASIL
1983
ISciELO
D 11 12 13 14