5 àc.
HARVARD UNIVERSITY
«
Library of thè
Museum of
Comparative Zoology
della Società Italiana
di Scienze Naturali
e del Museo Civico
Volume XXVII - Fascicolo I di Storia Naturale di Milano
Biology as History
Papers from International Conferences sponsored by thè
California Academy of Sciences in San Francisco and thè
Museo Civico di Storia Naturale in Milan
.
N. 1
Systematic Biology as an Historical Science
Milano, 24-26 June 1993
Edited by Giovanni Pinna and Michael Ghiselin
MILANO 29 MARZO 1996
Elenco delle Memorie della Società Italiana di Scienze Naturali
e del Museo Civico di Storia Naturale di Milano
Volume I
I - Cornalia E., 1865 - Descrizione di una nuova specie del
genere Felis: Felis jacobita (Corn.), 9 pp., 1 tav.
II - Magni-Griffi F., 1865 - Di una specie d 'Hippolais nuova
per l’Italia, 6 pp., 1 tav.
Ili - Gastaldi B., 1865 - Sulla riescavazione dei bacini lacustri
per opera degli antichi ghiacciai. 30 pp., 2 figg., 2 tavv.
IV - Seguenza G., 1865 - Paleontologia malacologica dei ter¬
reni terziarii del distretto di Messina. 88 pp., 8 tavv.
V - Gibelli G., 1865 - Sugli organi riproduttori del genere
Verrucaria, 16 pp., 1 tav.
VI - Beggiato F. S., 1865 - Antracoterio di Zovencedo e di
Monteviale nel Vicentino, 10 pp., 1 tav.
VII - Cocchi I., 1865 - Di alcuni resti umani e degli oggetti di
umana industria dei tempi preistorici raccolti in Toscana.
32 pp., 4 tavv.
Vili - Targioni-Tozzetti A., 1866 - Come sia fatto l’organo che
fa lume nella lucciola volante dell’Italia centrale ( Luciola
italica ) e come le fibre muscolari in questo ed altri Insetti
ed Antropodi. 28 pp., 2 tavv.
IX - Maggi L., 1865 -Intorno al genere Aeolosoma. 18 pp., 2 taw.
X - Cornalia E., 1865 - Sopra i caratteri microscopici offerti
dalle Cantaridi e da altri Coleotteri facili a confondersi
con esse. 40 pp., 4 tavv.
Volume II
I - Issel A., 1866 - Dei Molluschi raccolti nella provincia di
Pisa, 38 pp.
II - Gentilli A., 1866 - Quelques considérations sur l’origine
des bassins lacustres, àpropos des sondages du Lac de
Come. 12 pp., 8 tavv.
III - Molon F., 1867 - Sulla flora terziaria delle Prealpi venete.
140 pp.
IV - D’Achiardi A., 1866 - Corollarj fossili del terreno num-
mulitico delle Alpi venete. 54 pp., 5 tavv.
V - Cocchi I., 1866 - Sulla geologia dell’alta Valle di Magra.
18 pp., 1 tav.
VI - Seguenza G., 1866 - Sulle importanti relazioni paleonto¬
logiche di talune rocce cretacee della Calabria con alcuni
terreni di Sicilia e deH’Africa settentrionale. 18 pp., 1 tav.
VII - Cocchi I., 1866 - L’uomo fossile nell’Italia centrale. 82 pp.,
21 figg., 4 tavv.
Vili - Garovaglio S., 1866 - Manzonia cantiana, novum Liche-
num Angiocarporum genus propositum atque descriptum.
8 pp., 1 tav.
IX - Seguenza G., 1867 - Paleontologia malacologica dei ter¬
reni terziarii del distretto di Messina (Pteropodi ed Etero-
podi). 22 pp., 1 tav.
X - Durer B., 1867 - Osservazioni meteorologiche fatte alla
Villa Carlotta sul lago di Como, ecc. 48 pp., 11 tavv.
Volume III
I - Emery C., 1873 - Studii anatomici sulla Vipera Redii. 16 pp.,
1 tav.
II - Garovaglio S., 1867 - Thelopsis, Belonia, Weitenwebera
et Limboria, quatuor Lichenum Angiocarporum genera reco-
gnita iconibusque illustrata. 12 pp., 2 tavv.
Ili - Targioni-Tozzetti A., 1867 - Studii sulle Cocciniglie.
88 pp., 7 tavv.
IV - Claparède E. R. e Panceri P., 1867 - Nota sopra un Alcio-
pide parassito della Cydippe densa Forsk. 8 pp., 1 tavv.
V - Garovaglio S., 1871 - De Pertusariis Europae mediae com¬
mentano. 40 pp., 4 tavv.
Volume IV
I - D’Achiardi A., 1868 - Corollarj fossili del terreno num-
mulitico dell’ Alpi venete. Parte II. 32 pp., 8 tavv.
II - Garovaglio S., 1868 - Octona Lichenum genera vel adhuc
controversa, vel sedis prorsus incertae in systemate, novis
descriptionibus iconibusque accuratissimis illustrata. 18 pp.,
2 tavv.
Ili - Marinoni C., 1868 - Le abitazioni lacustri e gli avanzi di
umana industria in Lombardia. 66 pp., 5 figg., 7 tavv.
IV - (Non pubblicato).
V - Marinoni C., 1871 - Nuovi avanzi preistorici in Lombar¬
dia. 28 pp., 3 figg., 2 tavv.
NUOVA SERIE
Volume V
I - Martorelli G., 1895 - Monografìa illustrata degli uccelli
di rapina in Italia. 216 pp., 46 figg., 4 taw.
Volume VI
I - De Alessandri G., 1897 - La pietra da cantoni di Rosi-
gnano e di Vignale. Studi stratigrafici e paleontologici.
104 pp., 2 tavv., 1 carta.
II - Martorelli G., 1898 - Le forme e le simmetrie delle
macchie nel piumaggio. Memoria ornitologica. 112 pp.,
63 figg., 1 tavv.
Ili - Pavesi P., 1901 - L’abbate Spallanzani a Pavia. 68 pp., 14 figg.,
1 tav.
Volume VII
I - De Alessandri G., 1910 - Studi sui pesci triasici della
Lombardia. 164 pp., 9 tavv.
Volume Vili
I - Repossi E., 1915 - La bassa Valle della Mera. Studi petro-
grafici e geologici. Parte I. pp. 1-46, 5 figg., 3 tavv.
II - Repossi E., 1916 (1917) - La bassa Valle della Mera. Studi
petrografici e geologici. Parte IL pp. 47-186, 5 figg., 9 tavv.
Ili - Airaghi C., 1917 - Sui molari d’elefante delle alluvioni
lombarde, con osservazioni sulla filogenia e scomparsa di
alcuni Proboscidati. pp. 187-242, 4 figg., 3 tavv.
Volume IX
I - Bezzi M., 1918 - Studi sulla ditterofauna nivale delle Alpi
italiane, pp. 1-164, 7 figg., 2 tavv.
II - Sera G. L., 1920 - Sui rapporti della conformazione della
base del cranio colle forme craniensi e colle strutture della
faccia nelle razze umane. - (Saggio di una nuova dottrina
craniologica con particolare riguardo dei principali cranii
fossili), pp. 165-262, 7 figg., 2 tavv.
Ili - De Beaux O. e Festa E., 1927 - La ricomparsa del Cin¬
ghiale nell’Italia settentrionale-occidentale, pp. 263-320,
13 figg., 7 tavv.
Volume X
I - Desio A., 1929 - Studi geologici sulla regione dell’Albenza
(Prealpi Bergamasche), pp. 1-156, 27 figg., 1 tav., 1 carta.
II - Scortecci G., 1937 - Gli organi di senso della pelle degli
Agamidi. pp. 157-208, 39 figg., 2 tavv.
Ili - Scortecci G., 1941 - 1 recettori degli Agamidi. pp. 209-326,
80 figg.
Volume XI
I - Guiglia D., 1944 - Gli Sfecidi italiani del Museo di Mila¬
no ( Hymen .). pp. 1-44, 4 figg., 5 tavv.
II-III- Giacomini V. e Pignatti S., 1955 - Flora e Vegetazione
dell’Alta Valle del Braulio. Con speciale riferimento ai
pascoli di altitudine, pp. 45-238, 31 figg., 1 carta.
Volume XII
I - Vialli V., 1956 - Sul rinoceronte e l’elefante dei livelli
superiori della serie lacustre di Leffe (Bergamo), pp. 1-70,
4 figg., 6 tavv.
II - Venzo S., 1957 - Rilevamento geologico dell’anfiteatro
morenico del Garda. Parte I: Tratto occidentale Gardone-
Desenzano. pp. 71-140, 14 figg-, 6 tavv., 1 carta.
Ili - Vialli V., 1959 - Ammoniti sinemuriane del Monte
Albenza (Bergamo), pp. 141-188, 2 figg., 5 tavv.
Volume XIII
I - Venzo S., 1961 - Rilevamento geologico dell’anfiteatro
morenico del Garda. Parte IL Tratto orientale Garda-Adi-
ge e anfiteatro atesino di Rivoli veronese, pp. 1-64, 25 figg.,
9 tavv., 1 carta.
II - Pinna G., 1963 - Ammoniti del Lias superiore (Toarciano)
dell’Alpe Turati (Erba, Como). Generi Mercaticeras, Pseu-
domercaticeras e Brodieia. pp. 65-98, 2 figg., 4 tavv.
Ili - Zanzucchi G., 1963 - Le Ammoniti del Lias superiore
(Toarciano) di Entratico in Val Cavallina (Bergamasco
orientale), pp. 99-146, 2 figg., 8 tavv.
Biology as History
Papers from International Conferences sponsored by thè
California Academy of Sciences in San Francisco and thè
Museo Civico di Storia Naturale in Milan
UNlV£^ir
N. 1
Systematic Biology as an Historical Science
Milano, 24-26 June 1993
Edited by Giovanni Pinna and Michael Ghiselin
Volume XXVII - Fascicolo I
29 marzo 1996
Memorie della Società Italiana di Scienze Naturali
e del Museo Civico di Storia Naturale di Milano
© Società Italiana di Scienze Naturali e
Museo Civico di Storia Naturale di Milano
corso Venezia, 55 - 20121 Milano
Registrato al Tribunale di Milano al n. 6694
Direttore responsabile: Giovanni Pinna
Segretaria di redazione: Anna Alessandrello
Redazione: Magda Lusiardi, Marcello Michelangeli
Grafica editoriale Michela Mura
Stampa Tipografia Solari, Peschiera Borromeo - marzo 1996
ISSN 0376-2726
Workshop on Systematic Biology
as an Historical Science
3
PROGRAM
Thursday June 24th
9,00 Welcome address by Giovanni Pinna, Direc¬
tor of thè Museo di Storia Naturale di Milano
Morning Session
Chairman: David B. Wake
9,30 Alberto Simonetta (Università di Camerino):
Systematics: is an historical perspective use-
ful to understand modern debates on syste¬
matics and are we really equipped for sound
evolutionary systematics?
11,00 Alessandro Minelli (Università di Padova):
Some thought on homology 150 years after
Owen’s definition.
12,00 Robert J. O’Hara (University of North Carol¬
ina at Greensboro): Trees of history in syste¬
matics and philology.
Afternoon Session
Chairman: Michael T. Ghiselin
15.30 David B. Wake (University of California, Ber¬
keley): Schmalhausen’s evolutionary mor-
phology and its value in formulating research
strategies.
17,00 James R. Griesemer (Wissenschaftskolleg zu
Berlin): Some concepts of historical Science.
18.30 Opening of thè exhibition «Haeckel e l’Italia»
at thè Museo di Storia Naturale
Friday June 25th
Morning Session
Chairman: Adam Urbanek
9,30 Michael T. Ghiselin (California Academy of
Sciences, San Francisco): Charles Darwin,
Fritz Miiller, Anton Dohrn, and thè origin of
evolutionary physicological anatomy.
11,00 Francesco Scudo (IGBE-CNR, Pavia): Sym-
biosis, thè origins of major life forms and sys¬
tematics: a review with speculations.
12,00 Mikhail A. Fedonkin (Russian Academy of
Sciences, Moscow): The Precambrian fossil
record: new insight of life.
Afternoon Session
Chairman: Cesare Baroni Urbani
15.30 Adam Urbanek (Polska Akademia Nauk,
Warsaw): The origin and maintenance of
diversity: a case study of Upper Silurian
graptoloids.
17,00 E. Nicholas Arnold (The Naturai History
Museum, London): The role of biological
process in phylogenetics with examples from
thè study of lizards.
Saturday June 26th
Morning Session
Chairman: Francesco Scudo
9,00 Yves Bouligand (Institute de Biologie Théo-
rique, Angers): Morphological singularities
and macroevolution.
10.30 Eugene Presnov (The Weizmann Institute of
Science, Rehovot): Topological classifìca-
tion: onto- and phylogenesis.
11.30 René Thom (Institute des Hautes Études
Scientifiques, Bures-sur-Yvette): Quali¬
tative and quantitative in Evolutionary
Theory with some thoughts on Aristotelian
Biology.
4
LIST OF PARTICIPANTS
Giovanni Pinna
Museo Storia Naturale
Corso Venezia 55
20121 Milano, ITALIA
Eugene Presnov
The Weizmann Institute of Science
Department of Applied Mathematics
Rehovot 76100, ISRAEL
Francesco M. Scudo
IGBE (CNR)
Via Abbiategrasso 207
27100 Pavia, ITALIA
Alberto M. Simonetta
Dipartimento di Biologia
Università degli Studi di Camerino
Via F. Camerini 2
62032 Camerino, ITALIA
E. Nicholas Arnold
British Museum (Naturai History)
Cromwell Road
London SW7 5BD, ENGLAND
Cesare Baroni Urbani
Zoologische Institute
Rheinspung 9
4051 Basel, SUISSE
Yves Bouligand
Institute de Biologie Téorique
10, rue André - Bocquel
49000 Angers, FRANCE
Mikhail A. Fedonkin
Paleontological Institute
Russian Academy of Sciences
Profsoyuznaya ul. 123
Moscow 117647, RUSSIA
Michael T. Ghiselin
Center for thè History and Philosophy of Science
California Academy of Sciences
Golden Gate Park
San Francisco, Ca 94118-4599, USA
James R. Griesemer
Wissenschaftskolleg zu Berlin and
University of California
Dep. of Philosophy
Davis, CA 95616-8673, USA
Alessandro Minelli
Dipartimento di Biologia
Università di Padova
Via Trieste 75
35121 Padova, ITALIA
Robert J. O’ Hara
Cornelia Strong College and Dep. of Biology
100 Foust Building,
Univ. of North Carolina at Greensboro
Greensboro, NC 27412-5001, USA
René Thom
Institute des Hautes Etudes Scientifìques
91440 Bures sur Yvette, FRANCE
Adam Urbanek
Instytut Paleobiologii PAN
Al. Zwirki i Wigury 93
02-089 Warsaw, POLAND
David B. Wake
Dep. of Integrative Biology and
Museum of Vertebrate Zoology
University of California
Berkeley, Ca 94720, USA
5
Cari colleghi
solo due parole per ringraziarvi di aver accettato di
partecipare a questo workshop on Systematic Biolo-
gy as an Historical Science, organizzato dal Museo di
Storia Naturale di Milano e dalla California Acade-
my of Sciences, e per presentarvi il nostro Museo.
Il Museo di Storia Naturale di Milano è un museo
che, sebbene appartenga alla Città di Milano, è tutta¬
via il maggiore museo italiano di Storia Naturale.
Fondato nel 1938, prima dell’unità d’Italia, il
museo ha avuto una lunga storia scientifica; in esso
hanno operato alcuni noti studiosi italiani di ogni
campo delle scienze naturali, che con le loro ricerche
hanno fatto conoscere il museo anche al di fuori dei
confini d’Italia.
Nel 1943 il Museo è stato completamente distrutto
durante un bombardamento aereo, perdendo tutte le
sue collezioni. Tutto ciò che oggi è presente nelle
esposizioni e nelle collezioni scientifiche del museo
è dovuto quindi all’opera di ricostruzione portata
avanti con tenacia dalla città di Milano.
Oggi il Museo è in fase di ristrutturazione: si sta
cioè operando per costruire un’esposizione più mo¬
derna e più informativa di quella realizzata frettolo¬
samente negli anni 50, e che permise la riapertura al
pubblico del museo dopo solo 7 anni dalla distruzio¬
ne completa dell’edificio.
Prima di cedere la parola a David Wake, modera¬
tor di questa prima sessione del workshop, vorrei rin¬
graziare Michael Ghiselin e Francesco Scudo, che
hanno svolto una parte fondamentale nell’organizza¬
zione scientifica del workshop.
Spero che avrete un buon soggiorno a Milano e
tengo a precisare che le condizioni metereologiche
non dipendono dall’organizzazione.
Ladies and gentlemen
Only a few words thanking you for your presence
at this workshop on Systematic Biology as an Histo¬
rical Science organized by thè Museo di Storia Natu¬
rale di Milano and thè California Academy of Scien¬
ces and introducing you our Museum.
The Museo di Storia Naturale di Milano, though
depending on thè Municipality of Milan, is however
thè most important Italian Museum of Naturai His-
tory.
Founded in 1838 before thè Italian unifìcation, it has
a long scientific history: here worked several well
known italian scientists, whose researches in thè dif-
ferent fìelds of naturai history let know thè Museum
also outside thè Italian borders.
During 1943 thè Museum was totally destroyed by
an air-bombardment, losing all its collections. All
what is now present in thè exhibitions and in thè
scientifical collections of thè Museum is therefore
due to thè reconstruction work tenaciously pursued
by thè city of Milan.
Nowadays thè Museum lives a phase of rearrange¬
ment, that is we are working to prepare up-to-date
exhibitions offering more informations than those
hastily carried out during thè fìfties, which allowed
thè reopening to thè public only seven years after thè
total destruction of thè building.
Before calling on David Wake, moderator of
this fìrst session, I am glad to thank Michael Ghi¬
selin and Francesco Scudo, who played a funda-
mental role in thè scientific organization of this
workshop.
I hope you will have a nice stay in Milan, and I
would like to specify that wheather conditions don’t
depend on thè organization.
Giovanni Pinna
Giovanni Pinna
Fig. 1 - The participants to thè Milano workshop. High up, from left: Alberto Simonetta, Michael Ghiselin, James Griese-
mer, Alessandro Minelli, Nicholas Arnold, Robert O’Hara, René Thom, Eugene Presnov, David Wake; below, from left:
Giovanni Pinna, Yves Bouligand, Cesare Baroni Urbani, Adam Urbanek, Francesco Scudo, Mikhail Fedonkin.
'
:
■
■
Systematic biology as an historical Science
discussion and retrospect
by Michael T. Ghiselin
Because thè Milan conference was an informai
gathering it did not seem appropriate to publish com-
mentary by discussants. Instead thè authors were en-
couraged to incorporate what had been said when
they revised their manuscripts. A decision was also
made to prepare a statement that would provide
for some synthesis of thè results. Ghiselin wrote a
draft, based upon thè commentary from thè sessions
and additional materials solicited from thè partici-
pants. It was then circulated among thè participants,
revised in thè light of their suggestions, and is pre-
sented here.
The intent of thè organizers (Pinna, Scudo, Ghise¬
lin) was to investigate some alternatives to thè kind
of phylogenetics that has recently become fashion-
able. The emphasis has been almost entirely upon
cladograms and very little attention has been paid to
phylogenetics in thè sense of historical narrative.
The very legitimacy of such an alternative has been
seriously questioned. However, thè intent of thè par¬
ticipants was by no means to reject thè advances in
cladistic techniques that have become established in
thè past thirty years. It was a question of addition,
not subtraction.
As someone who considers himslef a cladist,
O’Hara expressed thè opinion that opposition to nar¬
rative history and a broader range of evidence is be-
coming more and more a thing of thè past, at least
among younger workers. Simonetta, urged that thè
emphasis should be upon thè questions raised, ra-
ther than upon particular answers. Minelli pointed
out that narrative history is but one example of top-
ics that have been underemphasized — especially
comparative functional anatomy.
The diversity of thè participants would probably
preclude altogether any affort to found a new school
of systematic biology. But their very diversity
brought out how much opportunity has been ne-
glected. If there was any unanimity about anything it
was that lack of communication has been a serious
problem. Work that might interest a wide range of
systematists has frequently been known only to spe-
cialists in particular taxa, and thè problem has been
exacerbated by linguistic barriers. As O’Hara stres-
sed, thè work of systematists has much in common
with a wide range of historical Sciences. Furthermo-
re, several of thè participants have been seriously in-
terested in thè history of biology, and their presenta-
tions made it abundantly clear that a great deal of
older work deserves more attention.
If any of thè participants felt that philosophy is un-
important, they certainly did not give that impres-
sion. There were lively discussions about all sorts of
philosophical issues, ranging from logicai matters
with respect to thè defìnition and use of terms to thè
very foundations of metaphysics. For example,
Thom suggested that thè digestive tract is really out-
side of thè organism. Some of thè biologists (Minelli,
Simonetta, Ghiselin), while acknowledging that this
suggestion is legitimate from a topological pint of
view, felt that it creates problems from thè physiolo-
gical point of view, especially when applied to vari-
ous body cavities (such as thè coelom being external
in human females but internai in human males). The
perennial discussion with respect to homology con-
cepts cropped up with respect to «incomplete» ho¬
mology (Urbanek). Arnold even went so far as to
wonder out loud whether this term has been so va-
guely defìned as to warrant our abandonig it!. There
was also some discussion about thè appropriateness
of other terms, for example, should we cali a lineage
that results from fusion of one or more independent
lineages «polyphyletic»?
There was deflnitely no consensus with respect to
such topics as thè relative importance of form and
function or pattern and process. The extreme diffe-
rence of opinion might be summed up by saying that
Thom supported thè tradition of Pythagorus and
Plato, Ghiselin that of Heraclitus, and Simonetta
that of thè nominalists. Griesemer extended this dis¬
cussion by suggesting that process indeed deserves
more attention, and it is not adequately understood
either in developmental biology or in thè study of
how scientists do research. Wake raised thè issue of
whether heterochrony is pattern or process, and sug¬
gested that perhaps it is pattern at a taxonomic level,
a notion opposed by Scudo on thè grounds that de-
velopment has to be a process.
Evolution, of course, is a process, but as Baroni-
Urbani pointed out, there is serious question of how
much evolution, if any, systematists really need
when doing their work. One of thè main reasons
for holding thè meeting was to address that parti¬
cular issue. Nobody carne out in favor of «pattern
cladism» and maintained that systematists do not
need evolution at all. On thè other hand it seem unli-
kely that any of thè participants will ever cali them-
selves «process cladists» - whatever that might
mean.
Presnov’s paper treated thè evolution of echino-
derms using purely topological characters, and there-
fore invoked only pattern. That this was a very inter-
esting exercise was not disputed, and Ghiselin, who
has done some research on echinoderm phylogenet¬
ics, opined that thè results seemed quite reasonable
given thè characters that were used and that they
could be supported by additional evidence. But he
argued that he could have done thè same job without
translating thè anatomy into topological language.
Scudo said that thè views of Presnov and Thom are
8
MICHAEL T. GHISELIN
theoretically interesting, but that thè practical signi-
ficance is uncertain.
The metaphysical issue of thè ontological status of
taxa, including thè proposai that species are indivi-
duals rather than classes, was not a major subject for
debate. It did surface, in a sense, when Thom sug-
gested that taxa are extensional sets and Ghiselin
responded that they are composite wholes, which
might better be treated with mereology rather than
with set theory; they concluded that this was not thè
appropriate solution. Thom had asked about thè tree
of Porphyry, and O’Hara responded that there are
important differences when we use a tree-like dia-
gram to represent thè relationships between abstrac-
tions such as kinds of furniture on thè one hand, and
historical entities connected by community of desc-
ent on thè other.
The ontological notion of thè individuality of spe¬
cies and clades (which, incidentali, Simonetta does
not accept) relates to thè epistemological issues
that surround thè role of laws of nature in historical
inference. Laws of nature are generalizations about
classes of individuals, and if taxa such as species are
individuals rather than classes, it follows that laws of
nature are not about taxa and thè generalizations that
systematists formulate about them are purely descrip-
tions of contigent, historical fact. The principle of uni-
formitarianism in geology works because thè laws of
nature do not change. But since taxa evolve we can-
not legitimately extrapolate to thè past on thè basis
of features shared by all extant members of a group.
As Griesemer explains in his article, there has
been a lot of discussion among philosophers of
Science as to whether thè historical Sciences are
Sciences at all. By defming «Science» in thè appropri¬
ate way, one can exclude such things as astronomy
and mammalogy from thè Sciences altogether. Tradi-
tional philosophy of Science has at least tended to
downgrade history, including naturai history, to an
inferior status. And this makes a great deal of sense,
since physicists founded thè movement and natural-
ly placed themnselves at thè top of thè academic
pecking order.
But historical Sciences, including not just zoology
and geology, but astronomy as well, present more
than just descriptive matters of fact about individuals
such as thè human species or thè sun. O’Hara sug-
gests that a distinction made by philosophers of his¬
tory might be useful in this respect. Chronicle is a
simple listing of events, whereas history proper is an
explanatory account of suche events. As Griesemer
points out, there are serious questions among philo¬
sophers of Science with respect to thè logie of histori¬
cal explanation and inference, especially thè role of
laws of nature. Ghiselin in commenting on Fedon-
kin’s contribution observed that in stratigraphic geo¬
logy there are generally accepted and uncontrover-
sial methodologies for establishing which event
Comes fìrst on thè basis of physical laws and princi-
ples, whereas in phylogenetics analogous modes of
inference are often rejected.
The question naturally arises of what kinds of laws
of nature or generai principles might be used in thè
reconstruction of thè history of life. There was gen¬
erai support of thè analysis of embryology, but of
course there have been a wide variety of embryolo-
gical approaches to phylogenetics and other evolu-
tionary studies. Darwin’s application of what carne
to be called developmental mechanics to phyloge-
netic inference fits in quite well with mainstream
evolutionary biology and there would seem to be no
good reason to accept thè claims of «Structuralists»
that some kind of paradigm shift that eschews thè
theory of naturai selection is in order (Wake, Minel-
li, Ghiselin). Wake and Ghiselin discussed this topic
again after thè meeting, when thè question arose
of how to differentiate modern notions of develop¬
mental constraint from traditional orthogenesis.
And is there any reai distinction between Vavilov’s
«homologous series» and Darwin’s «analogous va-
riation»?
One topic that was not explicitly addressed during
thè sessions, but did emerge several times during in¬
formai discussions, was thè cruciai role of museums
in systematic biology. Because thè workshop was co-
sponsored by two institutions that combine research
with education, such issues were of more than just
academic interest. The generai public tends to think
of naturai history museums as something like art
museums, thè major role of wichich is to provide a
chance for people to look at things. Their cruciai role
in research is most inadequately appreciated. Griese¬
mer noted that museum displays are intended to
show a particular order, but that there is a distinct
gap between discourse and research. In meeting thè
demand for information about thè environment,
museums are reorganizing their public displays in a
manner that tends to divert attention from thè basic
mission of systematics.
Systematics is of course thè Science that speciali-
zes in biodiversity, and therefore it has a cruciai role
to play in efforts to cope with thè present crisis. Dur¬
ing conversation, however, Wake expressed some
concern about thè study of biodiversity being domi-
nated by ecologists, whose agenda is not necessarily
compatible with that of systematists. There is a dan-
ger that systematics will be downgraded to a kind of
Service function for ecology and that, in consequen-
ce, it will lose thè hard-won intellectual respectabil-
ity that derives from its fundamental contributions
to evolutionary biology.
The current prosperity of paleobiology exists lar-
gely be cause paleontologists were dissatisfied with
thè traditional role of their Science as thè «hand-
maiden of stratigraphy» and shifted thè emphasis to
matters of more generai intellectual signifìcance.
The Journal Paleobiology was established after a sym¬
posium on «Models in Paleobiology» held at thè
meeting at thè Geological Society of America on No-
vember 2, 1971, in a deliberate effort to break with
that tradition. The Milan workshop was convened
with similar goals in mind, but with an important dif-
ference. The problem is not so much a matter of
gaining autonomy for systematics, as it is of main-
taining that autonomy by thè continued exploration
of new ideas.
E. Nicholas Arnold
The role of biological process in phylogenetics
with examples from thè study of lizards
Abstract — Biological process (except sometimes ontogenetic change) is not considered in cladistic phylogeny recons-
truction using non-molecular characters, but such universal exclusion violates thè principle of parsimony. Simple charac-
ter pattern is often insuffìcient on its own to produce robust hypotheses of phylogeny, and extinction and congruence
among what are in fact non-ancestral resemblances can cause misleading results; consequently additional insights from
process are valuable. Process can be helpful in thè recognition of character States, character independence, sequence of
change in transformation series and among different characters, and in weighting, that is thè assessment of thè relative
lability of character States. The fact that suppositions about are sometimes wrong and that their inclusion perturbs thè
basic simplicity of thè cladistic approach are insuffìcient reasons for not considering them at all.
Weighting can be based on character compatibility, homoplasy in thè studied group and outside it, and evidence of
lability from trait variation and from possible selective interactions between organisms and thè environment. The case
for weighting is strongest when some or all these factors are correlated. Weighting is most appropriately used after thè esta¬
blishment of an initial cladistic pattern, to resolve conflicts in evidence, to asses robustness of phylogenetic hypotheses
and, in principle, to assess relative transition probabilities for maximum likelyhood treatments of data. An example of
weighting among lacertid lizards is given. Some of thè evolutionary assumptions involved in weighting are testable using
robust hypotheses of phylogeny based on character distribution alone and such tests can potentially provide some circums-
tantial evidence for thè ubiquity of naturai selection in evolution.
Inclusion of process in estimation of phylogenies can lead to circularity if thè latter are subsequently used to study
process itself. However, thè extent of this problem has been exaggerated: where circularity is a reai possibility, such studies
can be safely conducted on robust phylogenies based on character distribution alone or ones that have been customised by
removai of thè specific process considerations concerned.
Introduction
This paper considers some of thè possible roles of
biological process in reconstructing phylogenies. In
this context, process includes thè changes that occur
during ontogeny and thè genetic and epigenetic
mechanisms that produce them, functional interac¬
tions between traits constituting organisms, and
functional interactions between organisms and their
environment. Discussion will concentrate on non-
molecular data.
Over most of thè history of systematics, thè idea
that consideration should be confmed to characters
themselves would have seemed strange to most taxo-
nomists and information or at least assumptions
about process was often included. Thus Cesalpino
(1583) gave precedence to traits involved in repro¬
duction and nutrition and Cuvier and Darwin used
functional considerations in weighting characters
(Mayr, 1982; Darwin, 1859). In contrast, a wides-
pread view over thè past dozen years is that thè ap¬
propriate way to conduct systematic studies is to take
characters, recognise at some stage their derived Sta¬
tes and, giving these equal weight, produce thè most
parsimonious hierarchical pattern associating taxa in
terms of number of state changes (steps) involved.
At no stage are generai models of how evolution oc-
curs or, indeed any suppositions about evolutionary
process, allowed to impinge on thè production of this
pattern which can be used directly as a classification
and, merely by a change of viewpoint, as a hypoth-
esis of phylogeny. So, without any alteration, thè
hierarchy with least steps is assumed to represent
thè result of thè evolutionary process. It can then be
used as a basis for assessing models of evolution and
recognising particular evolutionary phenomena.
This cladistic view of systematics obviously has
great appeal and has been widely acknowledged
(Platnick, 1979, 1985a, 1985b; Farris, 1979, 1980,
1982, 1983, 1985; Eldridge and Cracraft, 1980; Nelson
and Platnick, 1981). In fact it has variants. What is
often termed pattern cladistics excludes any referen-
ce at all to evolution and its primary aim is to produ¬
ce a generai basis for systematics. In contrast, evolu¬
tionary cladistics incorporates thè assumption that
hierarchical structure is a result of descent with mo-
dification and phylogeny reconstruction is its prim¬
ary aim (see for example Hennig, 1966; De Queiroz
& Donaghue, 1990, for discussion). However, al-
though these variants are likely to sometimes differ
in thè results they produce, they share thè generai
features of cladistics and will be treated together
here, unless otherwise specified.
When views become conventional wisdom (Gal-
braith, 1957), they are less likely to be subjected to
criticai scrutiny. Consequently, thè claims of generai
systems, like cladistics, need to be re-examined from
time to time. In thè present context, this applies es-
pecially to thè supposition that thè most parsimoni¬
ous hierarchies of equally weighted characters are
thè best, or at least most appropriate, estimates of
phylogeny and that most biological process should
be rigorously excluded from their production. This
question will be addressed here, but not such mat-
ters as thè appropriateness of cladistic pattern as thè
basis of classification.
10
E. N. ARNOLD
Problems in using cladistic pattern as thè sole source
for phylogeny estimation
It is a substantial imaginative leap to think that ge-
nealogical history can be derived from thè distribu-
tion of current characters among species. It is not a
leap that systematists have always been willing to
make (for instance many members of thè pheneticist
school) and depends to some extent on how we be-
lieve, or rather hope, evolution generally has taken
place. For total reconstruction to be possible, suffìc-
ient new traits must be generated, speciation events
must be uncommon by comparison and parallelism,
convergence and reversai must not prevent or obscu-
re thè development of a hierarchical pattern of cha-
racter change. If this is not universally so, we will be
reduced at best to reconstructing areas of phylogeny
with very different degrees of certainty and some re-
gions not at all.
Looking at thè results of using cladistic pattern
alone, this rather pessimistic possibility seems to be
thè case. A few analyses of groups appear unequivo-
cal, with all relationships strongly supported by nu-
merous characters and little conflict in thè evidence,
and these can be accepted as they stand as robust hy-
potheses of phylogeny. But, in other cases, there may
be many alternative equally parsimonious Solutions
and even more that have only marginally fewer steps.
Furthermore thè level of character conflict may be
very high and alternative trees very different. Indeed
it is possible for cladograms without conflict to be
substantially misleading as estimates of phylogeny.
For instance, situations can be envisaged where
extinction turns what would otherwise be clear ho-
moplasies into apparent evidence of relationship
(Arnold, 1981) and this is demonstrable in reai
groups, for instance when fossils are excluded from
analysis of amniote relationships (Gauthier, Kluge &
Rowe, 1988).
Even without such confounding effects of extinc¬
tion or inadequate sampling there is no reason to
think a single most parsimonious hierarchy will al¬
ways represent genealogy, especially as other hypo-
theses may be scarcely less parsimonious. It is some-
times said that characters reflecting genealogy will be
hierarchically congruent, whereas homoplasious
ones will tend not be so (see for example Farris,
1969). However, it is not uncommon for competing
sets of congruent characters to exist (p. 000), indicat-
ing that homoplasy can be ordered. Finally parsimo-
ny analysis will produce trees from randomised data
and can therefore suggest pattern where none exists.
Randomisation (= permutation) tests (Archie, 1989
a,b; Faith, 1991; Faith & Cranston, 1991; Trueman,
1993) indicate that this is indeed often thè case with
reai data sets.
The cladistic approach to phylogeny reconstruc¬
tion may turn out to be thè best that can be achieved
but it frequently fails to produce robust results and it
is consequently appropriate to consider using addi-
tional sources of inference, such as ones derived
from biological process, if this can be justified. Alter-
natively, we might take refuge in thè hope that even¬
tuali additional characters will be found that enable
a robust hypothesis of phylogeny to be produced by
straightforward cladistic means. This may happen,
but it is not certain to occur and in itself is no reason
why other relevant evidence should be excluded.
Another problem concerns thè application of thè
principle of parsimony, that thè simplest solution
that thè evidence allows should be accepted. In cla-
distics, simplest is taken to mean thè version of
events involving thè least number of steps. However,
it can be argued that thè principle is not being pro-
perly applied (Arnold, 1981), for its use carries thè
proviso that all relevant evidence should be conside-
red before thè simplest solution is chosen. Clearly on
this basis, if biological process provides additional
indicators about thè way characters change these
should be taken into account.
In cladistics, so far as is possible, different charac¬
ters are considered to be potentially equal indicators
of relationship and changes between States equally
likely. This democratic approach, (Arnold, 1981), is
essentially a kind of weighting for which there is no
supporting evidence. It might possibly be justified by
thè statistical principle of indifference, that in thè ab-
sence of any reason to expect one event more than
another, they should all be assigned equal probabil-
ity as a matter of convenience (Keynes, 1921; Wilkin-
son, 1992). Certainly, there are situations where it is
necessary to work like this, but to raise such a prag-
matic working method to a rigid law of procedure,
prevents our ever investigating possible sources of
information that might enable us to assign different
probabilities to changes in States. In fact, cladistic
phylogeny estimation often involves tacit character
weighting of other kinds, either in processing charac¬
ters in particular ways, for instance treating multi-
state characters as either ordered or unordered or
eliminating characters on thè grounds of their varia-
bility (Piementel & Riggins, 1987).
Some arguments against incorporating process
Supporters of thè pattern-process dichotomy will
often point out that their System, in eschewing most
process, has thè advantages of universal applicability,
simplicity and clarity, for it is very obvious what is
being done. Universality of application is a virtue in a
method but not if it sometimes involves excluding
other sources of inference that might otherwise be
acceptable. In a country where vehicles are present
but rare, there is little sense in insisting people
should always walk merely because this method of
locomotion is always available. While every effort
must be made to achieve methodological clarity,
other sources of inference should not be excluded
on thè grounds that they complicate procedure.
Proponents of cladistic approaches also point to thè
efficiency of thè hierarchies produced in reflecting
information content but this does not necessarily in¬
dicate efficiency in reflecting phylogeny.
It is also stressed that it is easy to be wrong about
process as an indicator in classification and phyloge¬
ny reconstruction. This is certainly true: Cesalpino
was mistaken to believe that reproductive and nutri¬
tive structures of plants should be given precedence;
some of Manton’s (1977) arguments about thè poss¬
ible course of arthropod evolution based on limb and
jaw function have not been supported by other sour¬
ces of evidence. Although such cases are often em-
phasised, it must be remembered that cladistic pat-
terns and thè processes involved in producing them
are also subject to reappraisal in thè light of further
THE ROLE OF BIOLOGICA!. PROCESS IN PHYLOGENETICS
11
information, especially that derived from additional
characters and taxa. It is inappropriate to exclude
process indicators merely on thè grounds that they
are sometimes shown to be wrong; such exclusion is
only justificable if such factors can be shown to fre-
quently mislead. Tn phylogeny assessment, we are
dealing with situations of generai uncertainty: all evi-
dence is provisionai and this applies to thè results
too. The introduction of an additional set of faulted
indicators into a System where pre-existing indica¬
tors are also faulted does not necessarily decrease
overall reliability. Provided levels of failure are not
too high and thè new indicators are independent of
those already present, they are unlikely to often ge-
nerally reinforce errors associated with thè latter. In-
stead, they can provide valuable corroboration of
some hypotheses of relationships.
For a long time, knowledge of organisms was lar-
gely confmed to their morphology which was access-
ible through museum collections, while information
about other aspects was extremely sparse. In this sit-
uation, it was appropriate to concentrate on thè ana-
tomical features from which cladistic characters have
been customarily drawn and it is not surprising that
attempts to incorporate process were often clearly
unsuccessful. However, now so much more is known
about non-anatomical aspects of organisms, there is
a much stronger case for attempting to use such in¬
formation in phylogeny estimation and error is likely
to be more avoidable.
At first sight, a more cogent objection to thè use of
evolutionary process, is thè belief that including it in
phylogeny reconstruction will result in circularity if
such phylogenies are later used to study evolutionary
process itself. In actuality, evolutionary process has
many components and when studying one, thè fact
that other independent factors have been used in
producing thè phylogeny is immaterial. Furthermore
for most uses to which phylogenies are put no such
POSSIBLE ROLES FOR BIOLOGICAL PI
It would be a happy coincidence if producing a
hierarchical character distribution also automatically
produced a phylogeny as a bonus, but as we have
seen there is no reai reason to expect this will always
happen. This being so, it seems best to disengage any
automatic association of character hierarchy, classifì-
cation and phylogeny and aim for thè latter as such,
using whatever means are available including greater
consideration of biological process.
Process is relevant in at least four areas of phyloge¬
ny reconstruction: recognising and specifying differ-
ent character States, assessing character independen-
ce, determining order of state and character change
and deciding which derived character States are likely
to give more reliable evidence about relationships,
that is character weighting.
Recognition and specifìcation of States
Developmental studies sometimes show that fea¬
tures which are thè same in their final form often
have different early stages and this information can
be used to recognise additional different States of a
character (De Queiroz, 1985). Ontogeny can also in¬
dicate that a feature may be being misinterpreted.
circularity exists. When it does so, it should be elimi-
nated by modifying thè evidential base for thè phylo¬
geny when such a study is made. Essentially, we have
thè alternatives of often accepting a suboptimal esti¬
mate of phylogeny based entirely on pattern which
will inevitably frequently result in misinterpretation
when investigations of process are based on it, or we
can aim at thè best substantiated phylogeny possible
on all thè evidence and then, if necessary, customise
this for specifìc investigations.
It has sometimes also been said that thè attempt
to expose thè hierarchical pattern of taxa and their
characters is an important test of evolution, which
would be lost if evolutionary process was not
rigorously excluded from thè procedure. Presum-
ably, this is because a hierarchical structure is
thought to be expected if both anagenesis and cla¬
dogenesi occur, but lack of hierarchy would not
disprove evolution for it might be caused by ex-
cessive parallelism, convergence and reversal. Fur¬
thermore, thè taxonomocentric view that hierarchy
is especially important as support for evolution is
wrong; most evidence Comes from a combination of
other sources such as thè fossil record, thè nature of
thè genetic mechanism and direct observation of
short-term change in populations and intraspecifìc
lineages. In fact there is no reason why simple cladis¬
tic hierarchies should not be generated separately
from attempts to reconstruct phylogeny, if they are
needed.
An alternative view of thè relationship between
hierarchy and evolution is that thè former demands
an explanation, giving a reason for invoking evolu¬
tion to provide it (Panchen, 1992). Leaving aside thè
fact that a well marked hierarchy is often not discern-
ible, it can be argued that thè reverse is thè case: evo¬
lution gives a reason why hierarchy is not unexpect-
ed and should be searched for rather than some
other kind of order.
SS IN PHYLOGENY RECONSTRUCTION
Thus, embryology suggests that thè digits in thè wing
of birds are numbers 2, 3 and 4 and not necessarily
numbers 1, 2 and 3, as their phalangeal formula in
Archaeopteryx seems to indicate (Hinchcliffe, 1992).
Developmental information, can allow character Sta¬
tes to be defìned more clearly. For instance, thè limb
pattern that delineates tetrapods may be better speci-
fìed by thè way it develops than by its highly varied
final morphology (Hinchcliffe, 1992).
Assessing character independence
For characters to make an individuai contribution
to thè establishment of relationships, they have to be
evolutionarily independent of others that are used.
Whenever derived States of different characters cor¬
relate in their distribution across taxonomic units
there is thè possibility that they are not autonomous
and process information may be helpful in detecting
whether this is so. For instance, evidence of shared
genetic control can be searched for (Shaffer, 1986)
and ontogenetic considerations of epigenetic interac-
tions may also be helpful. In some salamander
groups, thè fìfth hind digit is usually suppressed but
develops when a large body-size is attained (Wake,
12
E. N. ARNOLD
1991). Therefore these two features cannot be used
as independent indicatore of relationship. Ecological
and functional cues may also be employed in this
way. The various features developed by dune dwel-
ling lizards that enable them to exclude sand from
their body orifices are likely to be heavily selected for
by this environment and consequently likely to evol¬
ve as a syndrome.
Sequence of change in transformation series
and between different characters
Ontogenetic sequence is sometimes used for pola-
rising character state transformations and many pat¬
tern cladists regard this ‘direct’ method of polarity
assessment as more appropriate than outgroup com-
parison (Nelson, 1978). However, like outgroup com-
parison it is not a procedure that can be universally
applied, since molecules and some organisms lack an
ontogeny. Furthermore thè claim that ontogeny is a
direct method is true only of its observability and not
of its relationship to phylogeny and its reflection of
this. Total reliance on ontogenetic polarity determi-
nation would also mean that developmental sequen-
ces could not easily be used as different character
States.
Ontogenetic polarity is assigned, either on thè
basis that primitive States are more generally distri-
buted among adult and earlier stages of thè taxa con-
cerned (Nelson, 1978) or on thè supposition that they
appear earlier in ontogeny (Hennig, 1966). In terms
of phylogeny reconstruction, thè former is a special
case of ingroup analysis (common = primitive) and
suffers from thè problems characteristic of this ap-
proach (Kluge, 1985). There is no reason to assume
a priori that ontogenetic sequence will generally
reflect phylogenetic sequence faithfully. This is so-
mething that can only be tested by comparing onto¬
genetic data for particular characters with thè more
direct phylogenetic inferences provided by outgroup
analysis. Characters chosen for such comparison
should have thè assumed primitive state present in
more than one immediate outgroup and direct and
parsimonious transfer to other States in thè studied
group. Such comparisons suggest that de-differentia-
tion, paedomorphosis and deletion of developmental
stages sometimes result in misleading ontogenetic
indications of phylogenetic polarity. Nevertheless,
there is an often marked if incomplete congruence
between ontogenetic and outgroup inferences. This
being so, ontogenetic criteria might be used when
outgroup information is not available, or is weak or
equivocai. Confidence about polarity is increased
when outgroup and ontogenetic information give si-
milar results. However, when these indicatore are
both available but point in different directions there
is no reason to give priority to thè less direct indica-
tion of phylogenetic polarity provided by ontogeny.
Indications of thè order of state and character
change can also be gained from knowledge of how
characters interact functionally (Arnold, 1981). To
use such information in assessing polarity, it is usual-
ly necessary to make an assumption about how evo-
lution proceeds. For instance, that new traits generally
develop or at least become widely spread through
populations in situations where a performance ad-
vantage is conferred. As will be argued, such as-
sumptions are susceptible to independent test.
Labial scales in phrynosomatid sand lizards
The phrynosomatid lizards of North America
show three basic patterns of upper labial scales: rec-
tangular and fiat; obliquely elongated with a diag-
onal keel; and obliquely elongated with a horizontal
keel (Fig. la, c, d). Outgroup analysis suggests clearly
that oblique elongation and keeling as such are deri-
ved, but it gives no indication as to whether keeling
arose before or after elongation, or which orientation
of keeling is secondary. Diagonal keels form part of a
harmonious mechanism with obliquely elongated
upper labial scales. Lizards possessing them, such as
Callisaurus (Fig. le) evade pursuers by diving into
often relatively firm sand. The head is oscillated ra-
pidly about its longitudinal axis and thè diagonal
keels shave sand off thè sides of thè enlarging cavity
into which thè lizard moves. Oblique elongation of
thè upper labial scales increases thè length of thè in¬
dividuai keels and allows them to overlap horizontal-
ly, so thè total length of cutting edge applied to thè
substrate is increased (Arnold, 1995). Making thè as¬
sumption that traits generally arise in situations
where they confer performance advantage, it seems
likely that oblique elongation of thè labial scales
arose after diagonal keeling, since thè former would
not confer advantage in elongating thè keels until
these arose.
Fig. 1 - Diagrammatic representations of thè upper labial scales
of North American sand lizards (Phrynosomatidae); thick lines
indicate keels. a. primitive condition (for instance Sceloporus) -
rectangular and unkeeled; b. hypothetical condition - rectangular
with diagonal Keels; c. derived condition (for instance Calli¬
saurus) - obliquely elongated with diagonal keels; d. derived
condition (nothern species of Urna) - obliquely elongated with
horizontal keels. Functional considerations suggest that thè evo-
lutionary sequence was from a. through b. and c. to d, providing
evidence that oblique scale elongation arose after diagonal keel¬
ing and horzontal keeling after this.
THE ROLE OF BIOLOGICA!. PROCESS IN PHYLOGENETICS
13
Horizontal keels on obliquely elongated scales
(Fig. ld) occur in species of Urna that burrow in very
loose sand, partly by moving thè head from side to
side. The keels confer performance advantage by
forming a lateral ridge that facilitates such sideways
movement. In this situation, thè oblique elongation
of thè labial scales has no discernible function,
something corroborated by its absence in numerous
independently evolved loose-sand burrowers. Func-
tional considerations consequently strongly indicate
that diagonal keels arose in thè context of burrowing
into firm sand, oblique elongation of thè scales follo-
wed and fìnally thè keels were reorientated to a hori¬
zontal position for use in soft sand.
It could be argued that events may have been
more complex, for instance that oblique elongation
of thè scales arose in some other context and was
only later co-opted to sand drilling. This of course is a
possibility but, unless there is evidence for such greater
complexity, thè principle of parsimony should be
applied, as for any other source of phylogenetic in-
ference.
Gecko toes
Another example of thè use of function is provid-
ed by thè digits of gekkotan lizards. In different taxa,
toes can be simple in structure without adhesive
pads or internai muscles, or with both these features,
or with one of them but not thè other. There is con¬
sequently a classic incompatibility between two two-
state characters (Le Quesne, 1969) (Fig. 2). It is ap-
parent from outgroup comparison that absence of
pads and muscles are thè primitive States, so at least
one character must be homoplasious, either having
reversed or developed its derived state in parallel.
However, it is not apparent which character this was,
which of thè two possible events were involved, and
whether pads developed before muscles or vice
versa.
Fig. 2 - Conditions found in thè toes of geckoes (Gekkota): A -
no pads, A’ - pads present; B - no muscles, B’ - muscles present.
These two binary characters exist in all four possible state combi-
nations constituting a Le Quesne incompatability indicating that
homoplasy must be present. Outgroup comparison establishes
that A and B are thè primitive States and thin arrows indicate
possible directions of change. Functional considerations suggest
that changes were as indicated by thick arrows.
Gecko toe pads confer performance advantages in
many climbing situations by allowing adhesion to
smooth and precipitous surfaces and there are many
cases where they function without muscles. Howe¬
ver, when muscles are present with pads, thè former
enable thè adhesive mechanism to be used more pre-
cisely and thè toes to be more easily detached, so
that effìciency is increased (Russell, 1977). Species
with muscles but no pads are usually ground-dwel-
ling like many primitive taxa with neither of these
structures and any benefits conferred by thè muscles
in this situation seem slight. If again traits are assu-
med to usually originate in situations where they
confer a distinct performance advantage, it seems li-
kely that muscles developed only after thè origin of
pads. Consequently, digits with muscles alone will
have arisen by secondary loss of pads, rather than by
independent origin of muscles.
As with ontogenetic cues, functional indications
of order of state and character change can be used on
their own when other lines of evidence are not avail-
able, or to increase or decrease confìdence in deci-
sions made on other grounds. This can be done be¬
fore or after initial phylogeny estimation. In thè ex-
amples just given, thè functional assessments of
order of change corroborate those found on phylo-
genies based on a wide range of other characters.
Functional considerations in ontogeny may also
provide insight about order of character origin in
phylogeny. For instance, if thè presence of one trait
is necessary for thè development of another, it seems
more likely that thè former arose fìrst. Of course this
may not be so, for instance if thè second trait was
only secondarily developmentally dependent on thè
fìrst, but provisionai acceptance is appropriate.
Weighting
Since apparently derived States of different charac¬
ters in a data set often suggest different relationships
for taxa, some characters must be better indicators of
relationship than others, unless all characters mis-
lead. In this situation, it would be helpful to be able
to distinguish States likely to reflect genealogical re¬
lationships from those where this is less probable. In
attempting this we are frequently trying to determine
thè likely lability of derived States. An ideal marker
of a clade is a derived state in which all possible
changes involving it are unlikely (Fig. 3). This would
mean that unique origin without independent deve-
lopments was probable and that thè state would per-
sist without changing by reversai back to thè originai
condition. Nor would it be likely to convert to an al¬
ternative derived state which other taxa have develo¬
ped, or become unrecognisable by disappearance or
further modification.
Weighting involves relative assessment of thè
probabilities of some or all of these transitions in
different characters. Although low lability is likely
to be frequent in informative States, it is also poss¬
ible to envisage less stable traits that nonetheless
give good information about phylogeny because
their successive States specify a series of increa-
singly less inclusive clades. However, such features
can often be treated as a nested series of stable cha¬
racters.
14
E. N. ARNOLD
Unrecognisable
derived state
1 '
Fig. 3 - Some possible changes involving a derived character
state (1). Its possible value in delineating a clade by all thè mem-
bers possessing it depends on thè possession of low transition
probabilities to other States. A perfect phylogenetic indicator
would have a low probability of arising from thè primitive state
(0) thus restricting parallel development, and low probabilities of
reversing to thè primitive state, of changing to another derived
state (2) causing convergence, or to an unrecognisable derived
state (F) resulting in apparent absence. Most weighting indica-
tors involve assessing some or all of these transition possibilities
in a relative way.
1. Compatibility approaches. Le Quesne tests (Le
Quesne, 1969) can be used to detect thè presence of
homoplasy in pairs of two-state characters and vari-
ous procedures can be employed to recognise a cli-
que of congruent characters and assign some kind of
relative weight to thè rest based on their perceived
conflict (Gauld & Underwood, 1986; Sharkey, 1989).
Such information can be used directly to form a hy-
pothesis of relationship or employed as a character
weighting System to choose among alternative trees
produced by parsimony approaches. The use of com¬
patibility methods in phylogeny reconstruction in-
volves no hypotheses of process, apart from that evo-
lutionary change occurs and that some characters are
more labile than others. However, it should be borne
in mind that, as in parsimony analysis, not all homo¬
plasy will necessarily be detected so, on occasion,
characters with fewer incompatibilities may be more
homoplastic. Similarly, congruent cliques of charac¬
ters are not necessarily thè result of branching desc-
ent and may sometimes be due to convergence.
2. Homoplasy in thè studied group. The idea that
characters weight themselves by their congruence
(Darwin, 1859; Patterson, 1982) can be applied after
initial analysis. Characters that show more step chan¬
ges at this stage can be regarded as being likely to be
more labile than others and consequently downgrad-
ed before thè analysis is re-run. The process can be
repeated until a stable pattern is produced (Farris,
1969). An alternative approach is discussed by Golo-
boff (1993). Although evolutionary assumptions are
denied for this successive approximations approach
(Goloboff, 1993) there is a clear process expectation
about thè way characters behave: ones that exhibit
apparent homoplasy are more likely to have produ¬
ced homoplasies elsewhere than others.
3. Homoplasy in outgroups. Knowledge of out-
groups may make it apparent that a particular feature
has evolved, or been lost or modified in thè same
way, a number of times. This is suggestive evidence
that thè change concerned may be easily produced
and consequently more than one appearance in thè
studied group is not unlikely. Such indications of
multiple occurrence involve a process assumption,
that similar organisms are likely to have similar pro-
pensities for particular character changes. The more
cases of independent occurrence that can be recogni-
sed, thè more closely related to thè studied group
and thè more similar to it outgroups are, thè stronger
thè case that such changes are likely to have occurred
more than once in thè studied group.
Conversely, certain features and systems, such as
some genital characteristics, frequently give good in¬
formation about relationships, judged by their frequ-
ent congruence with other characters. If this is so in
immediate outgroups it is more likely to be so in thè
studied group.
4. Evidence of relative trait lability derived from
thè studied organisms
a. Variability of state expression in a wide range of
taxa and lack of a clear gap between States can both
be regarded as indications of potential lability. Expe-
rience with animai and plant breeding provides evi¬
dence that features which are variable or sub-conti-
nuous are often prone to change. Ideally, direct ex-
periment on members of thè studied group itself and
its immediate outgroup could provide evidence of
this lability, its likely universal occurrence in thè his-
tory of thè group and any bias in direction of change.
b. Evidence from developmental mechanics. Exa-
mination of thè developmental process and experi-
ment may provide evidence that some ontogenetic
changes are more or less likely to occur than others;
something that applies to shifts between derived States
as well as their origins. If a series of traits are each deve-
lopmentally dependent on thè one preceding them in
thè sequence, thè last are more likely to be lost than thè
first since so many others are dependent on these (part
of thè concept of burden - Riedl, 1979). As with varia¬
bility, examination of taxa within thè studied group
and its immediate outgroup can provide evidence
that such developmental characteristics are generai.
5. Evidence of trait lability derived from possible
selective interactions between thè organism and thè
environment.
a. When there are multiple occurrences of a state
in outgroups or thè studied group or both, and these
correlate with some aspect of thè environment, it is
likely that this aspect or some related factor exerts
selective pressure for thè development of that state,
or at least favours its persistence, so that it is more li¬
kely to occur in that situation. For instance, thè nu-
merous independent developments of lateral fringes
of pointed scales on thè toes of lizards are nearly al-
ways associated with locomotion over fluid or semi¬
fluid media, especially aeolian sand (Luke, 1986).
b. The case for selective pressure for thè develop¬
ment of particular States in a particular environments in
enhanced if thè way thè change confers performance
advantage can be discemed. In thè above case, there is
experimental evidence that thè toe fringes prevent or
limit sinking into thè fluid medium concerned and
thus improve locomotory capacity (Carothers, 1986).
c. Conversely functional interaction with thè envi¬
ronment may provide evidence as to why certain
transitions between States involving thè same cha¬
racters are unlikely to occur. Many flattened crevice-
dwelling lizards have eyes that project above thè
skull but when they enter a fìssure these are depres-
sed and their lower section projects into thè buccal
cavity from which it is separated by a flexible mem¬
brane. However thè way this occurs varies: in scin-
cids and lacertids thè eye projects through thè subor¬
bitai foramen, while in cordylids it moves partly into
THE ROLE OF BIOLOGICA!. PROCESS IN PHYLOGENETICS
15
thè interpterygoid vacuity. As these two openings are
separateci by bone, neither solution can be converted
into thè other without a loss of function. This would
involve a reversion to thè primitive condition where
eye is unable to bulge into thè buccal cavity.
d. Sometimes Dossible functional organ systems
may have inherent characteristics that seem likely to
afTect their probability of change. Thus a case can be
made that some genital features are likely to persist
because they have to conform to those of thè opposi-
te sex and are also substantially buffered from envi-
ronmental influences (Arnold, 1973, 1986).
Other weighting criteria have been suggested, for
instance that complex characters are more likely to
indicate relationships as they are less likely to evolve.
However, direct knowledge of developmental me-
chanics of thè feature concemed is likely to be a better
indicator as to whether features are likely to develop
in thè same way and also of their likely persistence.
How should weighting factors and other inferences
from process be used?
Not unexpectedly, thè different weighting factors
discussed often show correlation with at least some
of thè others. Such agreement of several factors is a
much more convincing indication of potential evolu-
tionary lability than any one indicator and should be
looked for.
On occasion, there is a marked conflict in weight¬
ing factors, with compatibility and successive appro-
ximations methods largely supporting thè initial
results of parsimony analysis, while thè other indi-
cators largely based on biological process suggest an
alternative phylogeny. In such a case thè latter indi¬
catore should stili be considered seriously since they
are completely independent, differing entirely in
their rationale from parismony, compatibility and
successive approximations which all depend on in-
group character distribution.
Compatibility indicatore can easily be assigned a
numerical value (Farris 1969; Wilkinson, 1993)
which could be used to weight character States either
before or after parsimony analysis. Most other fac¬
tors are relative and qualitative and it seems best to
. use them only when preliminary parsimony analysis
has been completed (Arnold, 1981; Wheeler, 1986).
They may then be employed to choose between al¬
ternative trees, particularly between those involving
different sets of congruent characters. Another rea-
son for applying weighting factors after initial analy¬
sis is that, while they may indicate which traits are
more likely to give misleading information about re¬
lationships, they do not show that this is actually thè
case. Pontentially weak characters may sometimes
indicate reai relationships and should be given thè
opportunity to do so.
Even when parsimony analysis produces an une-
quivocal version of some or all thè relationships con-
stituting a phylogeny, weighting factors stili have a
potential role. They may be used to judge thè degree
of support for particular relationships by assessing
thè potential lability and independence of thè cha¬
racters delineating thè clades concerned. This is not
a substitute for statistical approaches, such as boots-
trapping (Felsenstein, 1985) and permutation tests
(Archie, 1989a, 1989b; Faith & Cranston 1991) but an
independent source of inference.
An example of weighting in selected primitive
lacertid lizards
Some characters varying among selected primitive
lacertid lizards are listed in Table 1 and their distri-
butions shown in Table 2. Parsimony analysis of thè
whole data set, using thè Henning 86 program for
phylogenetic inference (Farris, 1988) results in 31
trees of 59 steps and a consistency index of 0.50. A
consensus tree produced by thè Nelsen subprogram
is shown in Fig. 4. This associates a group of species
(A, C, E, G, I and K) in which all, or nearly all, of an
assemblage of 14 characters (numbers 17-30) are
present. Examination of thè data set as a whole
shows considerable conflict. When thè group of
strongly congruent characters 17-30 are removed,
analysis of thè remaining 1-16 shows that they too
have strong internai congruence, a single tree of21
steps and a consistency index of 0.76 being produ¬
ced. As might be expected, this specifìes a complete¬
ly different pattern of relationships with thè species
previously associated by characters 17-30 being wide-
ly distributed though thè tree (Fig. 5).
Table 1. Some characters varying among selected
primitive lacertids; see Arnold (1973, 1989) for fur-
ther details.
1. No pineal fontanelle.
2. Mediai loop of clavicle continuous.
3. Mediai expansion of clavicle restri cted.
4. Arms of interclavicle directed obliquely poste-
riorly.
5. Sternum with a heart-shaped fontanelle.
6. Two pairs of diverging transverse processes on
proximal autotomic caudal vertebrae.
7. Parietal scale extends to edge of parietal table of
skull posteriorly.
8. Parietal table extends to edge of parietal table of
skull anteriorly.
9. Supratemporal scale narrow.
10. Hemipenis with an armature.
11. Lobes flattened and complexly folded in une-
verted hemipenis.
12. Hemipenial lobes long.
13. Hemipenial lips large.
14. Genital sinus unlobed.
15. Oviducts enter genital sinus at tip(s).
16. Ulnar nerve follows ’varanide’ route.
17. Head and body depressed.
18. External nares of skull large.
19. Supraocular osteoderms fenestrated in adults.
20. Frontoparietal suture relatively simple.
21. Subocular foramen relatively large and rounded.
22. Dorsal scales fiat and unkeeled and not markedly
imbricate.
23. Collar beneath throat smooth-edged.
24. Ventral body scales more or less rectangular.
25. Ventral body scales not markedly imbricate.
26. Toes laterally compressed.
27. Toes markedly kinked.
28. Tail relatively fragile, usually with a high inci-
dence of breakage and regeneration.
29. Dorsal colouring often uniform or with redol¬
iate pattern.
30. Tail often blue, at least in juveniles.
16
E. N. ARNOLD
Table 2 - Distribution of some characters varying among selected primitive lacertid lizards.
Character
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Ancestral state
A. Lacerta oxycephala
B. Lacerta laevi s
C. Podarci s h, h i spani ca
D. Podarci s tauri ca
E. Lacerta perspici l lata
F. Lacerta andreanszki i
G. Lacerta cyanura.
H. Lacerta jayakari
I . Holaspi s guenther i
J . Adol fus alleni
K. Lacerta cappadocica
0000000000
0000001000
0000101000
0 0 0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0
0 0 0 1 0 0 1 1 0 0
0000001 100
0000000001
0000000001
11110 0 110 1
1 1 1 0 0 0 1 1 0 1
0000000000
0000000000
0 0 0 0 0 0 1 1 1 1
0010000000
0 110 10 1111
0 1 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 1 1 1
0000000000
1 - - 0 0 1 1 1 1 1
1 - - 0 0 1 0 0 0 0
1 - - 1 1 1 1 1 1 1
1 - - 1 1 1 0 0 0 0
1 0 0 0 0 0 1 1 1 1
0000000000
1111111111
0000100000
1111110 111
0000000000
1111111111
0 0 1 1 1 1 0 0 0 0
1111111111
0 10 11110 10
1111111111
0000000000
1110 111111
• •
Fig. 4 - Relationships of primitive lacertid lizards based on 30
characters. Parsimony analysis associates species A,C,E,G,I and
K (dotted) which share all or most of characters 17-30 (Table 1).
fig. 5 - Relationships of primitive lacertid lizards based on 16
characters, excluding numbers 17-30 (Table 1). The apparent re¬
lationships of thè six species associated in Fig. 4 (dotted). are
now radically different. For further explanation, see text.
Cladistic methodology demands that thè version
of phylogeny involving all available characters and
least steps should be accepted, but this would give no
consideration to substantial conflicting structure that
could represent genealogy and excludes relevant in-
formation about likely character labiiity. When poss-
ible weighting factors are considered, characters 17-
30 that associate species A, C, E, G, I and K show far
more of thè indications of labiiity listed earlier. They
are frequently intraspecifically variable, sometimes
with thè derived state not being abruptly separated
from thè primitive one, and many have evolved fre¬
quently in outgroups. Some osteological character
States involve simple retardation of ossifìcation.
These characters occur, both in thè studied group
and in several outgroups, in a particular environmen-
tal situation in which they confer performance ad-
vantage, namely steep open surfaces with narrow
crevices, whether rock faces or tree boles. Characters
17-25 are beneficiai in using fissures, especially as re-
fuges, 26 and 27 during locomotion on steep surfa¬
ces, and 28-30 in limiting predation (Arnold, 1973).
In contrast, thè remaining characters lack all or most
of these indications of labiiity.
In this situation where conflicting sets of charac¬
ters differ so clearly in weighting factors, there is a
case for downgrading thè set with strong indications
of evolutionary labiiity and accepting thè version of
events suggested by thè other. It might be predicted
that if more characters are looked at, any that show
strong congruence with characters 17-30 are likely to
confer advantage in rocky situations.
Testing thè assumptions involved in weighting
and other uses of biological process
Some weighting factors involve relatively little in
thè way of premises, for instance compatibility ap-
proaches. Others merely assume that similar orga¬
nismi and their attributes are likely to have similar
evolutionary propensities. In thè case of multiple oc-
currence in outgroups, this assumption is substan-
tially self-testing, if a number of examples of inde-
pendent origin exist. As noted, checking ingroup
members and immediate outgroups can establish
that a tendency to variability or a developmental cha-
racteristic is likely to have been present throughout
thè history of thè studied group.
THE ROLE OF BIOLOGICA!. PROCESS IN PHYLOGENETICS
17
The main area requiring test involves evolution-
ary assumptions, such as that traits tend to develop
in situations where they confer a performance
advantage. Evidence for such a regularity includes
thè fact that a mechanism capable of producing it,
naturai selection, exists. Furthermore, this and an
appropriate genetic System have been demonstrated
in such a wide range of organisms that they may
most parsimoniously be assumed to have been uni¬
versali present during thè evolution of contempor-
ary forms.
A more direct way of investigating thè generality of
thè assumption involves considering groups where
simple parsimony analysis produces well substantiat-
ed hierarchies of taxa without much character confl-
ict. As noted, these hierarchies can be regarded as ro-
bust hypotheses of phylogeny although, if desired
other indications of robustness might be looked for,
so long as they do not involve thè assumption being
tested. Such phylogenies can be integrated with in-
formation about thè environments taxa inhabit and
thè performance advantages traits produce in thè sit¬
uations concerned. It is then sometimes possible to
reconstruct changing conditions on lineages and see
whether traits do actually develop at thè times when
they fìrst confer benefit.
The lacertid lizard genus, Meroles, has a strongly
supported phylogeny with its principal lineage ex-
tending steadily through a series of increasingly
sandy habitats. No less than 70% of 61 shared derived
binary characters appear on thè main lineage at thè
points where they produce obvious advantage (Ar¬
nold, 1990). Included are features associated with lo-
comotion on fìrm and then loose sandy surfaces,
with diving into aeolian sand and its exclusion from
thè body, with sub-sand respiration and with ca-
mouflage on uniform surfaces. Such studies need to
be carried out on as many robust cladistic phyloge¬
nies as possible to establish thè generality of thè as¬
sumption. As yet they have rarely been attempted
but search for such a generai correlation in time
would provide a much more rigorous test of thè im-
portance of adaptation in evolution, than merely
searching for contemporary correlations between
traits and environments in which they produce per-
t formance advantage.
DNA base sequence analysis and thè virtues
of multiple approaches
The history of using DNA sequence as a source of
phylogenetic information is illuminating. The deve-
lopment of this fìeld has been substantially inde-
pendent of thè use of larger morphological features,
yet it shows interesting similarities albeit on an ab-
breviated time scale. There was an initial optimistic
feeling that most sequence was utilisable and its con-
version into phylogenetic information would be
straightforward. However, problems of analysis are
considerable, congruence between different molecu-
lar phylogenies is often elusive (Patterson, Humph-
ries & William, 1993) and some areas of sequence ap¬
pear much more informative than others. There have
consequently been efforts to recognise parts of thè
genotype that are more likely to be reliable, character
weighting in effect. Thus, changes in functional parts
of thè sequence may be assigned greater significance
because they are less likely to alter. For instance fìrst
and second base sites that specify amino acids mak-
ing up proteins are often favoured compared with
third-base sites. Relative probability of different
kinds of changes between bases is also frequently
taken into consideration. Transversions are often
rarer than transitions and there are Chemical reasons
why this should be so; consequently they are often
given higher weight. As in gross morphology, parti-
cularly complex molecular characters have been re¬
garded as more reliable taxonomic markers because
convergent origin is thought to be highly unlikely;
for instance thè BC1 RNA, a tRNA retroposon that
may specify thè Rodentia (Martignetti & Brosius,
1993).
Eclectic morphological systematists have someti¬
mes felt a little smug about thè increasingly percei-
ved problems of interpreting DNA sequence. Some
of them experience an unworthy twinge of Schaden-
freude when watching people pay large laboratory
costs to get into thè same kind of procedural diffìcul-
ties, that they themselves often managed for thè
price of a few scalpel blades, especially as attempts to
amellorate thè problems encountered often involve
thè same generai approaches. But there are positive
lessons that many morphologists can learn from
DNA studies. In particular a willingness not to be
tied to a single method of phylogenetic inference
(see for instance Kim, 1993). As often portrayed, thè
pattern-process approach tends to be proscriptive,
being presented as thè only way of proceeding. This
not only limits attempts to explore weighting me-
thods that could be used in conjunction with it, but
also precludes thè employment of multiple approa¬
ches. If one method can be certainly recognised as
superior in all circumstances then others can be dis-
carded, but in phylogeny reconstruction this is by no
means clearly thè case. Available methods vary in
thè way they act and in thè situations and ways in
which they may fail. Cladistic parsimony approaches
work well so long as change is relatively rare (Fel-
senstein, 1978), they tend to assign homoplasy to a
wide range of characters and while they have thè ad¬
vantage of inevitably producing trees which usually
have substantial structure, many alternatives may
exist. In contrast, compatibility methods, although
related to parsimony approaches (Felsenstein, 1988)
tend to concentrate homoplasy in a smaller range of
characters and, although they can be used to produce
a single hypothesis of relationships, this often lacks
complete resolution. In such a situation, where me¬
thods have different properties and are likely to re-
flect phylogeny better in different circumstances,
there is a case for using all of them, unless there is
evidence that they are clandestine versions of each
other. Points of agreement will thus be more robust-
ly supported (thè principle of consilience - Whewell,
1840). Multiple methods have often been used in thè
history of Science. For instance, acceptance of thè
reality of molecules and atoms depended crucially
upon thè remarkable agreement provided by more
than thirteen independent methods that were used
to determine Avogadro’s number (M. Wilkinson,
personal communication).
Another approach that is being put to increasing
use in DNA sequence analysis is likelihood methods
(Felsenstein, 1981). These require some estimate to
be made of transition possibilities between thè States
18
E. N. ARNOLD
of characters, so weighting factors may eventually
allow these methods to be broadly applied to mor-
phological data, at least in limited form, and perhaps
used in multiple method approaches.
Problems of using phylogenetics to study process
As already mentioned, one way of avoiding pro¬
blems of circularity when testing assumptions of
evolutionary process is to use robust unequivocal
cladistic phylogenies that do not incorporate such as¬
sumptions. Alternatively, any process assumptions
likely to produce circularity can be purged before-
hand by eliminating them and reworking thè remain-
ing data used to produce thè phylogeny concerned.
However, many studies of evolutionary process do
not involve reai problems of circularity. For instance,
because characters associated with rocky habitats
were downgraded in estimating a phylogeny of se-
lected primitive lacertids, it might be thought this
would interfere with any attempt to look for a statis-
tical correlation between such characters and those
habitats in lacertids (thè ‘comparative method’ of
Harvey & Pagel, 1991). In fact, thè rock characters
were downgraded on a variety of grounds only one of
which involved association with rocky habitats, so
thè latter could be discounted as to do so would not
affect thè results. Moreover, noting thè association
of character and habitat within lacertids did not in
itself involve any hypothesis of multiple occurrence
in thè studied group.
The observation of multiple association, as an in-
dication that thè features were easily produced in
rocky situations, applied only to outgroups. This
being so, there is no vicious circularity in a later use
of thè ‘comparative method’ within thè studied
group if desired.
Some problems of using phylogenies to study
process are essentially sociological. Until recently,
phylogenetic studies were of principal interest to sys-
tematists but, in recent years, ecologists, ethologists
and other biologists have become increasingly aware
of thè insights that phylogenies can bring to their
work. While thè development of such an audience is
encouraging, it involves pitfalls.
There is a tendency for outside users to underesti-
mate thè frequently very provisionai nature of phylo¬
genetic hypotheses. It is not always realised that thè
best available hypothesis is often not very robust and
very different almost as well substantiated alternati-
ves may exist. Users may also fail to consider as¬
sumptions involved in constructing phylogenies that
could lead to circularity in its utilizations. People
employing phylogenies need to have enough know-
ledge of systematic procedure to be aware of poten-
tial difficulties and make some assessment of them.
Perhaps thè relationship between thè manufac-
turer and user of phylogenies should be like that
between an ethical car-dealer and Client. While thè
former should make potential problems clear, thè
latter must be willing and able to make more obvious
checks on their own. As with vehicles, a reliable
manufacturer is a start, but checks on mode of pro¬
duction and generai robustness are very important.
Finally, potential users need to ask hether thè pro-
duct really fits their specifìc needs as it stands and, if
not, whether customisation may be a possibility.
Concluding remarks
The rigorous exclusion of most process from phy¬
logeny reconstruction by cladistic means may have
had thè virtue of concentrating attention on many
important issues, such as analysis of character trans-
formation, algorithms and computer programs used
in analysis, and thè relative virtues of parsimony and
other approaches. Now there is a consensus on some
of these basic problems, or at least clarifìcation of thè
arguments, there is a case for reconsidering thè role
of process.
Results of cladistic analysis suggest that it is often
insufficient on its own to produce robust hypotheses
of phylogeny. If such hypotheses are a primary requi-
rement, it is appropriate to incorporate any other
sources of inference that might improve this situa-
tion and can be justified, including many aspects of
biological process. Proper application of thè parsi¬
mony principle demands that such evidence should
not be excluded and any insistence on rigorously
avoiding differential weighting of characters cannot
be substantiated on any grounds but pragmatism.
That relevant process information is only sometimes
available and is occasionali shown to be misleading
is no reason for its rigorous elusion, especially as
these shortcomings also apply to other sources of
phylogenetic inference. Problems of circularity in
using phylogenetic hypotheses, in which process
considerations have been incorporated, are sur-
mountable. Certainly, phylogeny estimation should
not be automatically limited to parsimony analysis of
characters on thè grounds that this procedure has
virtues unrelated to thè task in hand, such as thè in¬
formation content of hierarchies produced or their
appropriateness as a basis for classification.
It has been argued that all direct character data
should be included in thè assessment of phylogenies,
if it can be sensibly integrated (Kluge, 1989; Eernisse
& Kluge, 1993), and this principal of total evidence
can be extended to encompass inferences on how
characters are likely to behave during evolution. This
also applies to using multiple indicators of order of
change and of character weighting, and multiple me¬
thods of analysis.
In thè approach suggested here, use of biological
process occurs mainly after straightforward parsimo¬
ny analysis so thè basic cladistic pattern can stili be
recovered and used for other purposes. It might be
pointed out that inferences from process are rarely
made in practice and there is no consensus about de-
tailed methods of procedure. This is presently so and
results largely from thè proscription of most process
considerations in cladistic methodologies, but thè
process approach deserves to be explored further. It
has thè incidental virtue that thè need for informa¬
tion on development and function and tests on as¬
sumptions about regularities in thè evolutionary
process will stimulate investigations in these areas. It
may seem excessively laborious to consider such
topics in phylogeny reconstruction, but these are
valid subjects of interest in themselves and relevant
to other areas of biology. The involvement of biolo¬
gical process in phylogenetics compares favourably
in this respect with thè drudgery of accumulating
DNA sequence, thè interest of which is largely limit¬
ed to reconstructing relationships. It also helps con¬
fimi thè centrai role of phylogenetics in integrating
THE ROLE OF BIOLOGICAL PROCESS IN PHYLOGENETICS
19
difTerent aspects of biology. Incorporating process
considerations inevitably complicates phylogeny re-
construction, but there is no reason to expect that
thè recovery of genealogical patterns will always be
simple.
In deciding how to perceive thè world, there is a
continuum of possibilities that may let us believe in
fairies at one extreme but not even believe our own
sense data at thè other. Modest movement in thè di¬
rection of increased scepticism is usually applauded
in intellectual pursuits, especially when it manifests
itself in overt procedural simplicity and rigorous re-
jection of what is perceived to be misleading evi-
dence. Insistence on limiting phylogeny reconstruc-
tion to straightforward cladistic techniques is part of
this trend but, in thè long run, simplicity must not be
bought at thè expense of excluding relevant sources
of inference. This is true even if such sources are
faulted themselves, provided faults are not too com¬
mon and independent of those in thè originai data
set. While incorporation of biological process invol-
ves a move away from simplicity, its incorporation
can be justifìed both in principle and practice. Think-
ing process is relevant in phylogenetics falls a long
way short of believing in fairies.
Acknowledgements. I am grateful to Giovanni Pinna,
Michael Ghiselin and Francesco Scudo for organis-
ing thè Workshop on Systematic Biology as an His-
torical Science, held in Milan in June, 1993. I also
thank thè participants in thè meeting for helpful
comment, expecially Michael Ghiselin and David
Wake. Mark Wilkinson carefully read a draft of this
paper and made a number of useful criticisms.
REFERENCES
Archie J. W., 1989a - A Randomization test for phylogenetic in-
formation in systematic data. Syst. Zool., 38:239-252.
Archie J. W., 1989b - Phylogenies of plant families: a demonstra-
tion of phylogenetic randomness in DNA sequence data de-
rived from proteins. Evolution, 43:1796-1800.
Arnold E. N., 1973 - Relationships of thè Palaearctic lizards as-
signed to thè genera Lacerta, Algyroides and Psammodromus
(Reptilia, Lacertidae). Bulletin of thè British Museum (Natu¬
rai History) (Zool.), 29: 289-366.
Arnold E. N., 1981 - Estimating phylogenies at low taxonomic
levels. Zeitschrift fùr Zoologische Systematik und Evolutions-
forschung, 9: 1-35.
Arnold E. N., 1986 - Why copulatory organs provide so many
useful taxonomic characters: thè origin and maintenance of
hemipenial differences in lacertid lizards (Reptilia: Lacerti¬
dae). Biological Journal of thè Linnean Society, 29: 263-281.
Arnold E. N., 1989 - Towards a phylogeny and biogeography of
thè Lacertidae: relationships within an Old-World family of
lizards derived from morphology. Bulletin of thè British Mu¬
seum (Naturai History) (Zool.), 55: 209-257.
Arnold E. N., 1990 - Why do morphological phylogenies vary in
quality? An investigation based on thè comparative history
of lizard clades. Proceedings of thè Royal Society of London,
B 240: 135-172.
Arnold E. N., 1994 - Investigating thè origins of performance
advantage: adaptation, exaptation and lineage effects. In
Phylogenetics and Ecology (eds P. Eggleton & R. I. Vane-
Wright). The Linnean Society of London. London: 123-168.
Arnold E. N., 1995 - Identifying thè effects of history on adapta¬
tion: origins of different sand-diving techniques in lizards.
Journal of Zoology, 235: 351-388.
Cesalpino A., 1583 - De plantis libri XIV. Florence.
Carothers J. H., 1986 - An experimental confirmation of mor¬
phological adaptation: toe fringes in thè sand-dwelling lizard
Urna scoparia. Evolution, 40: 871-874.
Darwin C., 1859 - On thè origin of species by means of naturai
Selection. J. Murray, London.
De Queiroz K., 1985 - The ontogenetic method for determining
character polarity and its relevance to phylogenetic syste-
matics. Systematic Zoology, 34: 280-299.
De Queiroz K. & Donoghue M. J., 1990 - Phylogenetic systemat-
ics or Nelsons’s version of cladistics. Cladistics, 6: 61-75.
Eernisse D. J. & Kluge A. G., 1993 - Taxonomic congruence ver¬
sus total evidence, and amniote phylogeny inferred from
fossils, molecules and morphology. Molecular Biology and
Evolution, 10: 1170-1195.
Eldridge N. & Cracraft J., 1980 - Phylogenetic Patterns and thè
Evolutionary Process: Method and Theory in Comparative Bio¬
logy. Colombia University Press, New York.
Faith D. P., 1991 - Cladistic permutation tests for monophyly
and nonmonophyly. Systematic Zoology, 40: 366-375.
Faith D. P. & Cranston P. S., 1991 - Could a cladogram this
short have arisen by chance?: on permutation tests for cla¬
distic structure. Cladistics, 7: 1-28.
Farris J. S., 1969 - A successive approximations approach to cha¬
racter weighting. Systematic Zoology, 18: 374-385.
Farris J. S., 1979 - The information content of thè phylogenetic
System. Systematic Zoology, 28: 483-519.
Farris J. S., 1980 - The efficient diagnoses of thè phylogenetic
System. Systematic Zoology, 29: 386-401.
Farris J. S., 1982 - Simplicity and informativeness in systematics
and phylogeny. Systematic Zoology, 31: 413-444.
Farris J. S., 1983 - The logicai basis of phylogenetic analysis. In:
Advances in Cladistics, voi. 2 (eds N.I. Platnick & V.A. Funk).
Columbia University Press, New York: 7- 36.
Farris J. S., 1985 - The pattern of cladistics. Cladistics, 1: 190-
201.
Farris J. S., 1988 - Henning86, program and documentation.
Port Jefferson, New York: published by thè author.
Felsenstein J., 1978 - Cases in which parsimony or compatibility
methods will be positively misleading. Systematic Zoology,
27: 401-410.
Felsenstein J., 1981 - Evolutionary trees from DNA sequences:
a maximum likelihood approach. Journal of Morphological
Evolution, 17: 368-376.
Felsenstein J., 1985 - Confidence limits on phylogenies: an ap¬
proach using thè bootstrap. Evolution, 39: 783-791.
Felsenstein J., 1988 - Phylogenies from molecular sequences:
inference and reliability. Annual Reviews of Genetics, 22: 521-
565.
Galbraith J. K., 1957 - The Affluent Society.
Gauld I. & Underwood G. L., 1986 - Some applications of thè Le
Quesne compatibility test. Biological Journal of thè Linnean
Society, 29: 191-222.
Gauthier J., Kluge A. G. & Rowe T., 1988 - Amniote phylogeny
and thè importance of fossils. Cladistics, 4: 105-209.
Goloboff P. A., 1993 - Estimating character weights during tree
search. Cladistics, 9: 83-91.
Harvey P. & Pagel M., 1991 - The Comparative Method. Oxford
University Press, Oxford.
Henning W., 1966 - Phylogenetic Systematics. University of Illi¬
nois Press, Urbana.
Hinchcliffe J. R., 1992 - Towards a homology of process: evo¬
lutionary implications of experimental studies on thè gene¬
ration of skeletal pattern in avian limb development. In
Organizational Constraints on thè Dynamics of Evolution (eds
J. Maynard Smith & G. Vida). Manchester University Press.
Manchester: 119-131.
Keynes J. M., 1921 - A treatise on Probability. Macmillan,
London.
Kim J., 1993 - Improving thè accuracy of phylogenetic estima-
tion by combining different methods. Systematic Biology, 42:
331-340.
Kluge A., 1985 - Ontogeny and phylogenetic systematics. Cla¬
distics, 1: 13-27.
Kluge A. G., 1989 - A concern for evidence and a phylogenetic
hypothesis of relationships among Epicrates (Boidae, Ser-
pentes). Systematic Zoology, 38: 7-25.
Le Quesne W. J., 1969 - A method of selection of characters in
numerical taxonomy. Systematic Zoology, 18: 201-205.
Luke C., 1986 - Convergent evolution of lizard toe fringes. Biolo¬
gical Journal of thè Linnean Society, 21: 1-16.
Manton S. M., 1977 - The Arthropoda: Habits, Functional Mor¬
phology and Evolution. Oxford University Press, Oxford.
Martinetti J. A. & Brosius J., 1993 - Proceedings of thè Na¬
tional Academy of Science. 90: 9698-9702.
20
E. N. ARNOLD
Mayr E., 1982 - The Growth of Biologica I Thought. Diversity, Evo-
lution and Inheritance. Harvard University Press, Cambridge,
Massachusetts.
Nelson G., 1978 - Ontogeny, phylogeny and biogenetic law. Sys-
tematic Zoology, 27: 324-345.
Nelson G. & Platnick N., 1981 - Systematics and Biogeography:
Cladistics and Vicariance. Colombia University Press, New York.
Panchen A. L., 1992 - Classification, evolution and thè nature of
biology. Cambridge University Press, Cambridge.
Patterson C., 1982 - Morphological characters and homology.
In Problems in Phylogenetic Reconstruction (K. A. Joysey &
A. E. Friday, eds). Systematics Association Special Volume.
Academic Press, London: 21: 21-74.
Patterson C., Humphries, C. J. & Williams D. M., 1993 - Con-
gruence between molecular and morphological phylogenies.
Annua l Review of Ecology and Systematics, 24: 153-188.
Piementel R. A. & Riggins R., 1987 - The nature of cladistic
data. Cladistics, 3: 201-209.
Platnick N.I., 1979 - Philosophy and thè transformation of cla¬
distics. Systematic Zoology, 28: 537-546.
Platnick N.I., 1985a - Philosophy and thè transformation of cla¬
distics revisited. Cladistics, 1: 87-94.
Platnick N.I., 1985b - On justifying cladistics. Clastics, 2: 83-85.
Riedl R., 1979 - Order in Living Organisms. J. Wiley, Chichester.
Russell A. P., 1977 - A contribution to thè functional analysis of
thè foot of thè Tokay, Gekko gecko (Reptilia: Gekkonidae).
Journal of Zoology, 176: 437-476.
Shaffer H. B., 1986 - Utility of quantitative genetic parameters
in character weighting. Systematic Zoology, 35: 124-134.
Sharkey M. J., 1989 - A hypothesis-independent method of cha¬
racter weighting for cladistic analysis. Cladisitics, 5: 63-86.
Trueman J. W. H., 1993 - Randomization confounded: a reply to
Carpenter. Cladistics, 9: 101-109.
Wake D., 1991 - Homoplasy: thè result of naturai selection or
evidence of design limitations? American Naturalist, 138:
543-567.
Wheeler Q. D., 1986 - Character weighting and cladistic analy¬
sis. Systematic Zoology, 35: 102-109.
Whewell W., 1840 - Philosophy of thè Inductive Sciences, founded
on their history. London.
Wilkinson M., 1992 - Ordered versus unordered characters. Cla¬
distics, 8: 375-385.
Wilkinson M., 1993 - Consensus, compatibility and missing
data. Unpublished PhD. Thesis, University of Bristol.
. Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
Yves Bouligand
Morphological singularìties and macroevolution
Abstract — Characters used in evolutionary studies lie at two extreme scales: millimeters or centimeters for instance in
conventional systematics and nanometers in sequences of aminoacids or nucleotides. However, intermediate organization
degrees do not escape naturai selection. Morphological singularìties belong to these intermediate levels and were defined by
Rosin and Picken; they correspond to locai rearrangements of tissue orientations and polarities, which belong to definite
topological classes, as shown in figures 28 to 39. The evolutionary interest of these singularìties comes from their likely role
in organization and from thè frequent differentiation of originai organs in their core. Examples of such small organs are
discussed in thè case of a narrow and homogeneous family of parasitic Copepods, and also in larger groups, as Annelids
with their characteristic bristles and Molluscs or other phyla, with closely related ultrastuctures.
The existence of morphological singularìties is probably at thè origin of diffìculties encountered in thè application of
d’Arcy Thompson’s method of continuous transformations. This theory preposes that limited changes in shape observed
in development and evolution can be described with thè help of a rectangular cartesian frame of coordinates, itself con-
tinuously transformed into a curvilinear grid; but it is clear that morphological accidents, as supplementary vertebrae or
fingers, make impossible such continuous mapping from one individuai to another one belonging to thè same species.
Singularìties must be introduced in coordinates grids themselves to apply d’Arcy Thompson’s methods.
More or less orthogonal arrays of fibrils exist in thè integument of many vertebrates or invertebrates and show defined
orientations in their anatomy. These fibrous lattices, which can be interpreted as a materialization of d’Arcy Thompson’s
coordinates frame, present singularìties with originai symmetries, someones being pentagonal. They were observed
by Rosin (1946) in thè basement membrane of amphibian tadpoles and more recently in thè cuticle of marine worms (Le-
pescheux, 1988). These singularìties create locai specific morphologies, which resemble locai simmetry breakings observed
in liquid crystals, and this is quite naturai, since self-assembly of fibrils is a morphogenetic process closely related to thè
phase transition involved in thè transformation of an ordinary liquid into a liquid crystal.
Small causes produce important effects in non stable conditions and for instance, simple genetic events may interfere
with hormonal regulations, leading to large morphological changes, as in heterochrony. Various kinds of instabilities occur
at thè level of morphological singularìties, but instead of changes considered along thè time axis, as in heterochrony, thè
relevant axes are those of coordinate grids. Such instabilities may intervene in thè distribution of singularìties over thè
whole body, or in thè structure of their associated small organs, when they exist. We cali heterotopies such processes and
consider their plausible macroevolutionary consequences.
Introduction
Works on evolution deal mainly with two kinds of
characters, considered at very different scales: 1. ma-
croscopic structures, generally observed in thè adult
morphology and 2. genes or molecules, rarely used
in current systematics. We pass from thè visible phe-
notype to thè less accessible genotype and we change
.thè scale from centimeters or millimeters to nano¬
meters. We learn which genes are involved in thè ex-
pression of some essential morphological characters,
but we stili ignore thè complex physico-chemical
steps necessary for thè elaboration of thè corres-
ponding characters in their whole structure. Many
counterexamples can be proposed and some come
from talks presented at this workshop, but much re-
mains to study within thè gap separating thè pheno-
type from thè genotype, despite thè recent successes
in developmental genetics.
Discussions are generally limited to these two ex¬
treme description levels and rather uncommon are
evolutionary discussions on fine structures at inter¬
mediate levels, within cells and tissues for instance.
Paleontologists rarely specialize in histology and
their studies are limited to bones and teeth in thè
case of vertebrates. Histology is present in compara¬
tive anatomy, but there are few evolutionary investi-
gations on tissues and cells studied for themselves
and say at thè ultrastructural level in generai.
It appears that there is a large range of organiza-
tional levels, between nanometers and millimeters,
which do not escape naturai selection and present a
high evolutionary interest, but are not generally con¬
sidered from this point of view in thè literature. Here
also, counterexamples exist, but not too many, and
thè reason for this is possibly thè generai diffìculty of
correlating changes within cells and tissues with
those observed in thè environment, which also are
described either in macroscopic terms or in molecu-
lar terms, thè intermediate structural levels again
being generally forgotten. However, such levels of
description offer new aspects in thè evolution of liv-
ing beings, which could be narrated and integrated to
this history, perhaps unique, of life at thè surface of
thè earth.
A series of examples taken from my own works are
now presented to show different diffìculties I exper-
ienced in studying precise examples of evolution.
Some mechanisms appeared to me as plausible, but
were not discussed in my published papers, since I
was unable to propose experiments or observations
affording thè beginning of a proof or of a refutation.
All thè considered examples will correspond in my
mind to macroevolution, since they involve either
changes which characterize higher groups, or chan¬
ges within smaller groups, but however sharply defi¬
ned. The concept of morphological singularity is due
to Rosin (1946) and comes from thè observation of
thè epidermal basement membrane in young tadpo¬
les, as will be illustrated below. These singularìties
are also presented in thè book of L. Picken (1960),
with a generai discussion on fibrous structures ob-
22
Y. BOULIGAND
served in thè integument of vertebrates and inverte-
brates. A morphological singularity can be defined as
a narrow locus lying at thè core of a rearrangement of
thè main orientations of certain tissues. Here, this
term will be used in several examples, in particular
for bristles in annelids and arthropods. The presence
of one of these small organs creates a locai rehandling
within thè structure of cuticle and epidermis, which can
be interpreted as a morphological singularity.
Macroevolution within an apparently
homogeneous family
Endoparasitic Copepods of Octocorals
Lamippids are parasitic copepods, a group of very
small crustacea (generally 1 mm long or less) living
in thè digestive cavities or possibly in thè mesogloea
of Octocorals (Anthozoa, Coelenterata), these ma¬
rine animals forming beautiful colonies of polyps
with octogonal symmetries, thè precious red coral
being thè classical example. When these endopara¬
sitic Crustacea are adult, their morphology is deeply
transformed and their wormlike body is then adapt-
ed to reptation within thè host tissues (figs. 1-4), thè
morphology being grossly that of certain endopara¬
sitic acarina, for instance, thè common mites of thè
human skin, Demodex folliculorum, or also that of
some mites in thè family of Eriophyidae, living in thè
leaves of woody plants. When I began to work on
these parasitic copepods with C. Deiamare- Debout-
teville, thè main review on this family was due to de
Zulueta, 1908-1910 (see references in Bouligand,
1966a) and represented an accurate systematic study,
with clear conclusions:
1. Most of thè Octocoral species present in waters
around Banyuls-sur-mer (Mediterranean Sea, near
thè frontier between Spain and France) are parasited,
and each species of parasite is found in only one
host. There are about fifteen known species of Octo¬
corals in this area, but only twelve are parasited by
Lamippids, and some of them by two different spe¬
cies of these parasites.
2. The morphology of each species is defined by
recognizable microscopie characters of thè four pairs
of appendages and of thè caudal furca.
3. The sexual dimorphism of Lamippids was said
to be limited to thè structure of genital apertures.
The sex ratio was highly variable among species, one
sex (either male or female) having never been obser-
ved for some species.
4. This family contained two genera, Lamippe and
Linaresia, thè second one with a unique species
known only by its male. Some different species of
Lamippe had been described from other seas, but ei¬
ther corresponded to species reviewed by de Zulueta
or to other species with characters indicating a dose
relationship with this genus. This family was con-
sidered to be very homogeneous.
My observations made thè situation much less
clear, but can be summarized as follows:
1. Some new species were observed and someones
suppressed with thè agreement of de Zulueta (1961).
An immature instar of reduced size, not much longer
than thè nauplius (fig. 5), was observed in several
species, with thè adult wormlike morphology, but
without genital apertures (fig. 6).
2. The rule of host specifìcity of parasites was ve-
rified in generai, but was less certain, since no
morphological differences were found between
individuals taken from some very different hosts.
The parallelism between thè two genealogies, that of
thè hosts and that of thè corresponding parasites,
suggested by thè host specifìcity of parasites is not
verifìed. There are many examples of closely related
species found in phyletically distant hosts.
3. There are endoparasitic Copepods in Tunicates
resembling strongly either thè genus Lamippe (and
that was already quoted by de Zulueta) or thè genus
Linaresia. These two genera possibly separated when
they were parasites of Octocorals, but this is not de-
monstrated, since thè host specifìcity is not so rigorous.
4. Examples of sexual dimorphism were also ob¬
served, some being slight, mainly a bigger volume of
females (fig. 8). On thè contrary, thè female and thè
young females of Linaresia were discovered and pre-
sented an extreme sexual dimorphism (figs. 9-12).
5. The morphologies of thè fifteen studied species
(from Banyuls mainly) were drawn in great detail.
The variations in thè distribution of bristles or setae,
within each species, are rare and were also described
(about 10 anomalies for 500 observed specimens: ad-
dition, absence, or modification of a bristle).
6. The cuticle of these parasites is made of an ho-
mogenous epicuticle (soft, flexible and elastic in thè
genus Lamippe ), observed on thè whole body, and a
rigid procuticle, limited to a set of sclerites present
mainly at thè level of thè head, of thè appendages, of
thè genital apertures and of thè furca. The epicuticle
alone forms thè arthrodial membrane, which is ex-
tremely developed at thè level of thè thorax and thè
abdomen. A wormlike anatomy is reconstructed in
thè genus Lamippe, with circular and longitudinal
muscles involved in peristaltic movements (Bouli¬
gand, 1966 a and b).
Visible macroevolution
The first half of this morphological study was pu-
blished, but I never completed thè manuscripts of
thè second half, simply because I tried to prepare a
classification dose to phylogeny, if possible, but I did
not succeed. Several tables were established for cha¬
racters varying as discrete entities between species
and, in principle, thè situation was good, but it was
necessary to look for other species, and this was
never done. I was only able with thè available infor-
mation to gather some species into subgroups and
not to build a complete genealogical tree.
It was clear (but I stili wait for a rigorous proof) that
thè strong sexual dimorphism, which was already vis¬
ible in thè young female of Linaresia, was secondary
relative to thè generai morphology of Lamippids,
present in males and in young females (except thè lat-
eral extensions already visible in these latter). It also
appears that an extreme macroevolution is possible
in this group, without affecting thè main characters
of thè other instars, recognizable for instance in thè
morphology of appendages, and which give thè best
elements for a defìnition of thè Lamippid family (fig.
13-16). The digestive System (mesenteron) is absent
(or deeply modified) in thè young female and in thè
adult female of Linaresia, whose cuticle is strongly
thickened and crossed by a complex System of bran-
ched and anastomosed canals (Bouligand, 1966 a, b).
MORPHOLOGICAL SINGULARITIES AND MACROEVOLUTION
23
Figs. 1-8 - 1) Schematic section of an Octocoral colony {Alcyonium palmatum) with two expanded polyps and a smaller
one in thè middle, being retracted. Several Lamippids are represented in thè canals of thè coenosarc, but are much less
numerous than represented: A: Lamippe aciculifera (adult or immature); F: Lamippe faurei; R: Lamippe rubicunda. 2) Simi-
lar section in thè Gorgonian: Paramuricea chamaeleon, with one expanded polyp and two retracted ones. M: Linaresia
mammifera (immature or mature females and males); P: Lamippe parva and S: Lamippe setigera. 3) Drawing of Lamippe
rubicunda observed alive, after extraction from its host ( Alcyonium palmatum or A. acaule). 4) The contracted body of
Lamippe rubicunda. 5) A lamippid nauplius observed in Alcyonium. 6, 7 and 8) Immature stage, male and female of Lamippe
aciculifera.
Figs. 9-12 - Linaresia mammilifera. 9) Ventral view of a young female. 10) Ventral view of a male. 11) Dorsal view of a
young female. 12) Ventral view of an adult female.
MORPHOLOGICAL SINGULARITIES AND MACROEVOLUTION
25
Figs. 13-16 - First thoracic legs of four different species of Lamippids. Hatched areas correspond to directly visible scleri-
tes, whereas dotted structures represent other sclerites observed by transparency. 13) Lamippe rubicunda; 14) Lamippe
/aurei; 15) Linaresia mammilifera ; 16) Lamippe aciculifera.
26
Y. BOULIGAND
Less visible macroevolutions
The integument of these copepods presents many
differentiations considered in figs 17-22. There are
for instance several types of papillae as shown in fig.
21. There are two other characters, already described
by de Zulueta, which separate two subgroups in thè
genus Lamippe.
The fìrst one corresponds to species showing at
thè tip of setae, a bunch of needles (or aciculae), with
refringent droplets slowly running along them, as for
axopods of certain planctonic protozoa (Actinopo-
da). In some Lamippids, thè aciculae are mainly ob-
served at thè furca (fìg. 19), whereas in other ones
they decorate all thè appendages (fìg. 20). In Lamippe
chattoni, they cover thè whole body, pointing outsi-
de, normally to thè arthrodial cuticle (fìgs. 17, 18).
I was convinced in thè fìrst years that this very unu-
sual character was thè signature of a synapomorphy,
but it was not confìrmed by thè other morphological
details of appendages, and I learnt that aciculae,
possibly related to those of Lamippids, existed in
other parasitic copepods of thè genus Pachypygus liv-
ing in tunicates (Hipeau- Jacquotte, 1986). These aci¬
culae of Pachypygus are made of a bundle of parallel
microtubules (as in Actinopods), an ultrastructure I
stili not verified in Lamippids, but in which I believe,
since there are visible droplets moving along these aci¬
culae, which were remarkably fìlmed by J. Painlevé.
The second character allowing one to separate a
second subgroup within thè genus Lamippe stili
holds and corresponds to another strange modifìca-
tion of setae, which are contractile, as shown in thè
figure 22. These slow deformations, also fìlmed by
J. Painlevé, are due to myofìbrils visible within these
transformed setae, in histological preparations. I
never heard of examples of this kind of structures in
any other Arthropods. I spent days in libraries to find
examples in literature of similar contractile setae
(and also setae with aciculae). I have spoken of this
problem with many colleagues. I suppose that thè
synapomorphy corresponding to thè presence of
contractile setae is genuine and I never changed my
opinion. The other morphological characters con¬
fimi this synapomorphy. However, there are only
three species in this subgroups and what had been
experienced with thè aciculae might reproduce with
these contractile setae.
My hypothesis was that a very originai character,
common to several species within a family, is gene-
rally attributed to thè signature of a common ances-
tor, but actually similar productions may appear in-
dependently in very different lineages. I suggest that
this is simply because thè expression of this charac¬
ter depends on thè overstepping of certain thre-
sholds and that this can be achieved by very different
genetic situations. There are no means to verify such
conjectures in thè present context of genetic and mo-
lecular studies and this is particularly obvious for
this sort of copepods. Current molecular research
with such animals is not easy, since one generally
fìnds them in small number and their dimensions
also are very small.
Relativity of macroevolution
The three different evolutionary characters dis-
cussed in this family of copepods (strong sexual di-
morphism, axopodlike aciculae and contractile
setae) correspond, in my mind, to three examples of
macroevolution. The fìrst one appears as obvious
from thè direct examination of thè external morpho-
logy, whereas, thè two other ones are purely micros¬
copie details, but very unusual.
Considered at thè histological level or at thè ul-
trastructural level, these variations, within this nar-
row family of parasitic copepods, can appear as im-
portant as those we know in thè whole phylum of
vertebrates, from fìshes to mammals. For instance,
do we know examples, in vertebrates of such involu-
tion of thè digestive canal, with a compensation
through thè skin, as in many parasitic worms? Sev¬
eral cases are known in other groups of crustaceans,
namely Sacculina, described in handbooks of zoolo-
gy. The diffìcult question remains to appreciate thè
genetic changes related to these extreme transforma-
tions. We can suppose for instance that genetic mo-
difìcations were small with respect to their consider-
able phenotypic consequences, since thè appendage
morphology is not deeply transformed in males and
in young females. On thè contrary, we can think that,
from thè separation between Lamippe and Linaresia,
which can be very ancient, thè genetic evolution has
been possibly considerable, with however few inci-
dence on thè appendage structure, since neutral me-
chanisms in evolution are also to be taken into ac-
count. Actually, there is no reai hope to verify all that
in thè next twenty years, if I am not mistaken.
D’Arcy Thompson’s theory and morphological
singularities
Diffìculties in thè application of thè theory
of transformations
Since I had prepared numerous drawings of thè
appendages of Lamippids, I have tried to apply thè
method of continuous deformation due to d’Arcy
Thompson, but I did not succeed. I stili think that
this method is based on an excellent idea, but there
are diffìculties. The book of d’Arcy Thompson
(1917), entitled On Growth and Form, deals with geo-
metrical and physical constraints faced by organisms
in thè course of development and evolution, but its
main impact comes from thè last chapter devoted to
this theory of transformations.
Briefly, this theory proposes that one passes from
thè form of a given species to that of a related one, by
a progressive deformation, which is that of a rectan-
gular cartesian frame of coordinates into a curvili-
near one, so that two small structures recognized as
homologous in thè two different species, have equal
coordinates in thè two arrays. I did not really obtain
such continuous mappings between most species of
Lamippids. The evident diffìculty comes from seg-
mentation and ramification of appendages. A simple
explanation can be considered in thè case of vertebra¬
tes: there are examples of supplementary vertebrae or
fìngers and such variations make thè continuous map-
ping from one individuai to another one impossible.
Like thè teeth of mammals, all bristles of Lamip¬
pids can be given a name, and species are differen-
tiated by thè presence or thè absence of some par-
ticular bristles (fìgs. 13-16). One can propose such
continuous deformations only at thè level of a series
MORPHOLOGICAL SINGULARITIES AND MACROEVOLUTION
27
Figs. 17-22 - Small organs in Lamippids. 17) Lamippe chattoni, with its cuticle covered by thin aciculae. 18) Enlarged view
of aciculae at thè surface of thè cuticle of Lamippe chattoni. 19) Groups of aciculae emerging at thè tip or some special ì zed
setae in Lamippe aciculifera. 20) In thè same species, isolated aciculae emerge from bristles of antennulae. 21) Papillae ob-
served on thè head of Linaresia and on thè body of different Lamippe. 22) Different shapes observed with furcal retracti e
setae in Lamippe rubicunda.
28
Y. BOULIGAND
of sclerifìed plates (or sclerites) well difTerentiated in
thè cuticle of thè thoracic appendages (figs. 23-26).
However, many problems remain unsolved even
in this situation. Well identified sclerites, such as j
and y in fìg. 23, disappear in some species (fig. 26).
Others are added (fìg. 24, a, 3). What can we do with
these sclerites which are either present or absent?
For instance, we do not know whether or not thè
sclerite y, present in figs. 23 and 25, is a piece of scle¬
rite present at level d (Fig. 24) or is different from it
(fìg. 26). Another problem is that of thè relative pro-
portion of arthrodial membrane, lying between thè
sclerites, which varies considerably between species.
Compare for instance fìgures 24 and 26, and particu-
larly thè zone B,efg mainly formed of arthrodial cut¬
icle in fìg. 24 and mainly sclerites in fìg. 26. Two op-
posite trends are observed in these two species. The
sclerites resemble pieces of a puzzle in fig. 26, with
little room for arthrodial membrane, whereas they
form elongated rods in fig. 24, with a maximum ex-
tension for thè arthrodial cuticle, and this trend is
visible in all thè parts of thè body.
Since continuous transformations are impossible,
singularities were introduced as shown in fig. 27, to
take into account such discrete variations, as thè in-
troduction of a new bristle, but thè problem is that
there are several ways to do that, with a more or less
arbitrary localization of singularities. It must be re-
called that singularities were considered in coordina-
tes grids, as possibly useful in thè interpretation of
experiments involving morphogens (Bookstein,
1981).
If some details are not taken into account, it is
possible to draw separately thè coordinate frames
and their deformations, at different levels of organi-
zation. Each bristle can receive its own coordinates
System, which resembles for instance thè generators
of a cone and thè set of circles lying normally to ge¬
nerators. The comparative morphology of a definite
sclerite can be treated by d’Arcy Thompson’s me-
thods. Difficulties arise with sets of sclerites and
bristles, particularly when one is faced to thè intro-
duction or to thè disparition of some of these ele-
ments. The problem is to insert smaller graphs
within larger ones, in order to see thè articulation
between thè successive levels, and this creates singu¬
larities, but nothing is really sure in thè preparation
of these coordinates systems integrating several dif¬
ferent description levels.
I carne back to thè text of d’Arcy Thompson, to
observe that probably he had himself encountered
problems in thè application of his method. D’Arcy
Thompson compared a series of more or less direct
ancestors of horses. The difficulties are implicit in le-
gends to thè fìgures representing thè simplest series
of transformations from thè skull of Hyracotherium
(Eocene) to that of Equus (contemporary horses)
through «various artifìcial or imaginary types, re-
constructed as intermediate stages», which are sup-
posed to represent thè direct line of descent. Skulls
of Mesohippus, Protohippus, Miohippus and Parahip-
pus are drawn for comparison with thè imaginary
skulls, but without their own curvilinear arrays. The
study shows that Mesohippus and Protohippus are not
far from being in thè direct line of descent from
Hyracotherium to Equus, whereas Parahippus cor-
responds to a somewhat divergent branch in thè
genealogy. If one tries to draw thè absent array for
Parahippus, it appears that strong locai distortions
are necessary for this skull. This is not due to thè fact
that thè array is in two dimensions and difficulties
would not be resolved with thè use of three-dimen-
sional coordinates systems. These difficulties could
be much stronger, if we had thè possibility to exa-
mine thè originai materials and thè accurate drawing
of suture lines of cranial bones.
It is worth remembering that comparative studies
of legs were also essential in most works on thè evo-
lution of horses, but d’Arcy Thompson did not re¬
present thè corresponding deformations, probably
for thè simple reason that several bones disappeared
in thè course of evolution, thè recent horses running
on limbs built from thè preferential development of
a unique finger. D’Arcy Thompson was aware of thè
limits of his theory, but he simply wrote:
We cannot fìt both beetle and cuttlefish into thè same fra-
mework, however we distort it ; nor by any coordinate transfor-
mation can we turn either of them into one another or into thè
vertebrate type.»
Actually this problem is stili present within thè
vertebrate groups, studied by d’Arcy Thompson
himself, and in small families such as Lamippids, thè
above-mentioned parasitic Copepods. Singularities
seem to be necessary in transformation grids and this
indicates that extreme continuous deformations in-
vented to fit any shape in thè same framework are
very suspect and thè main danger is thè blind appli¬
cation of computer programs created for that. It is
probable that many accurate morphologists, among
zoologists, botanists and paleontologists tried thè
d’Arcy Thompson method in its originai form, but
abandoned it. What is surprising is thè generai ab-
sence of comments, in several recent papers, on thè
difficulties inherent to this method.
Naturai grids and their singularities
More or less orthogonal arrays of fìbrils often exist
in thè skin of vertebrates and invertebrates. The two
main directions of these arrays generally lie at about
45° from thè long axis of thè animals. In worms such
as nematods, these fìbrils (mainly collagen) generally
form two families of helices, either left-handed or
right-handed. The skin is cylindrical and, within its
thickness, layers of left-handed helically wrapped fì¬
brils alternate with layers of right-handed ones.
Such cross-ply systems exist in thè integument of
most annelids and in several groups of vertebrates,
mainly in embryoes. Collagen is replaced by chitin
in arthropod cuticles, but fìbrils often form similar
networks, with two preferred orientations which
also stabilize at about ± 45° from thè long axis of
thè body.
For all these animals, thè preferential orientations
of thè fìbrous lattice of thè integument can be repre-
sented in projection onto thè external morphology
and this can be considered as a possible materializa-
tion of thè coordinates framework of d’Arcy Thomp¬
son. Since, it is convenient to keep longitudinal and
transverse coordinates in thè body and its appenda¬
ges (and for several simple geometrical reasons), it is
better to consider that thè curvilinear d’Arcy
Thompson framework is possibly obtained with thè
set of lines tangent to thè two normal bisectors of
these fibril orientations.
MORPHOLOGICAL SINGULARITIES AND MACROEVOLUTION
29
24
Figs. 23-27 - 23-26) D’Arcy Thompson’s transformations methods applied to a set of sclerites observed in thè first thoracic
appendages of four different species of Lamippe. 23) Lamippe rubicunda, thè sclerite named j is absent in Fig. 26 ( Lamippe
/aurei), whereas thè one called y seems to be absent from figures 24 and 26 ( L . aciculifera and L. /aurei). Sclerites a and 3
are particular to L. aciculi/era (fig. 24); 27) Schematic view of an articulation in a crustacean appendage, with two successive
cylindrical (or conical) sclerites (c.s.) and an arthrodial cuticle (a.c.). The lateral insertion of a bristle (not represented
itself) generates singularities indicated by two arrows.
i
30
Y. BOULIGAND
In thè case of nematods, with a regularly cylindri-
cal body, thè fìbrous network is formed by two fami-
lies of helices of equal pitch, which are right-handed
and left-handed and intersect at a Constant angle (réf.
in Picken). In generai, animai shapes are less simple
than cylindrical and fìbrils form singular arrange-
ments. This had been observed in thè dermis of sela-
cians, by Garrault (1937) and in tadpole embryoes by
Rosin (1946), whose pictures are reproduced in figs.
28 to 32. More recently, a series of micrographs were
obtained by a collaborator, L. Lepescheux (1988) in
skins of Annelids and we deduced thè models of fi-
gures 33 to 37.
The construction principle of these discontinuities
is similar to that of singularities introduced in La-
mippids, to apply thè transformations method (but
with different symmetries). We suggest (but have no
proof...) that such singularities could be a necess-
ary ingredient in thè theory of transformations and
that thè direct pictures obtained from microscopie
examination of thè integument of several species,
belonging to very different systematic groups, illu¬
strate a generai principle of morphogenesis and evo-
lution of shape, but now thè problem is to know
thè degree of generality of these singular arrange-
ments of fìbrils and to see how to build (if justifì-
100 firn
50 jrm
Figs. 28-32 - Fibrillar structure of thè basement membrane of thè epidermis of a tadpole of Bombinator (after Rosin,
1946). 28) Dorsal view. 29) Lateral view. 30) Ventral view. 31) Series of trigonal and pentagonal singularities in thè differen-
tiation area of thè gills. 32) Micrograph of a pair of singularities, with a trigonal symmetry on thè left and a pentagonal one
on thè right.
Y. BOULIGAND
31
able) maps of thè distribution of these singularities
at difTerent ages.
Some of these singularities show well defined po-
sitions with respect to thè anatomy, as can be seen
(fig. 28-30). Other singularities have a more random
distribution, and this seems to be thè case for those
observed in thè gill region of tadpoles (fig. 31). These
types of distributions are similar to those of small or-
gans in most living beings.
Orthotaxy, plethotaxy and cosmiotaxy
Certain organs can be homologized and be given a
name, on thè basis of having a particular position in a
linear series, for instance, as it is thè case for teeth in
mammals. Such organs were said to be orthotaxic by
Grandjean (1948) and are in Constant number, or say
that number variations are rare. On thè contrary, un-
distinguishable organs such as hairs cannot be ho¬
mologized, one by one, and their number show
strong variations between individuals. They are said
to be plethotaxic. There is a third situation called cos¬
miotaxy, corresponding to identical organs, ordered
into regular two-dimensional arrays, such as cilia in
Cibata (Protozoa) or in mussel gills, ommatidia in
compound eyes in arthropods, or fish-scales. In that
case also, there are strong variations in thè total
number of organs of this type. One-dimensional se¬
ries of identical (or almost identical) organs also exist
and well known examples are vertebrae in many fi-
shes and in snakes. This situation is similar to that of
cosmiotaxy, with variations of thè total number of
elements. (All Grandjean’s references will be found
in Travé and Vachon, 1975; his complete acarologi-
cal works were republished from 1972 to 1975; a se-
lection of references is proposed in Bouligand, 1989).
Singularities present in thè naturai grids of thè in-
tegument in various animals are either orthotaxic,
plethotaxic or cosmiotaxic, and therefore present a
common character with small organs such as bristles
and other formations of thè integument. We find es-
sential thè fact that certain singularities of thè natu¬
rai grids in thè integument can be homologized as
other organs can be (teeth and bones in mammals,
bristles and sclerites in arthropods). This fact is quite
naturai since thè presence of small organs as bristles
imply thè presence of singularities in thè fibrous grid
of thè skin. But certain singularities exist without thè
differentiation of associated organs.
Remarks on d’Arcy Thompsons’s position
relative to Darwin’s theory
D’Arcy Thompson’s methods of continuous trans-
formations represent a strong support to thè gradua-
list views of Darwin ( Natura non facit saltum), but
since their author himself observed some limits to
his theory, this was interpreted as an opposition.
D’Arcy Thompson is often considered as non-Dar-
winian (Edelman, 1992). Bookstein (1977) indicates
that «thè sturdy popularity of d’Arcy Thompson’s
book resides rather in its own unique method, a
quite non-Darwinian search for geometrie simplic-
ity...» The faets are that Darwin wrote a preface for thè
first published book by d’Arcy Thompson, a translation
of H. Miiller’s Fertilization of Flowers and, much later
on, d’Arcy Thompson was Darwin medalist of thè
Royal Society. The fact is also that d’Arcy Thompson
felt unsatisfìed with some points of Darwin’s theory,
but I suppose just as Darwin himself was about many of
his own conceptions. D’Arcy Thompson defines him¬
self very clearly his position, when he writes:
«It would, I dare say, be an exaggeration to see in every bone
nothing more than a resultant of immediate and direct physical
or mechanical conditions, for to do so would be to deny thè exis-
tence in this connection, of a principle of heredity... I maintain
that it is no less an exaggeration if we tend to neglect these direct
physical and mechanical modes of causation altogether and to
see in thè characters of a bone merely thè results of variations
and of heredity.»
In his book On growth and Form, d’Arcy Thomp¬
son presented a highly documented study, which can
be considered (it is my opinion) as a contribution to
Darwin’s theory, even if d’Arcy Thompson discussed
some paragraphs or sentences from thè Origin of Spe-
cies. An interesting example corresponds to thè fol-
lowing question asked by Darwin:
«There is no obvious reason why, for instance, thè wing of a
bat, or thè fin of a porpoise, should not have been sketched out
with all thè parts in proper proportion, as soon as any structure
became visible in thè embryo.»
D’Arcy Thompson indicated that a plausible an-
swer comes from what we cali today dimensionai
analysis and scale constraints. An engine which
works perfectly at a given scale does not do so at a
different one, because laws governing mechanisms
are not invariant with dimension and, as pointed out
by Galileo more than three hundred year ago, this
also applies to nature and living systems.
The very point which differentiates d’Arcy Thomp¬
son from Darwin is thè question of discontinuities
and this is clearly presented in thè last lines of his
book entitled On Growth and Form :
«In short, nature proceeds from one type to another among or-
ganic as well as inorganic forms; and these types vary according
to their own parameters, and are defined by physico- mathemati-
cal conditions of possibility. In naturai history Cuvier’s types
may not be perfectly chosen nor numerous enough, but types
they are; and to seek for stepping-stones across thè gaps is to seek
in vain, for ever.
This is no argument against thè theory of evolutionary desc-
ent. It merely States that formai resemblance, which we depend
on as our trusty guide to thè affinity of animals within certain
bounds or grades of kinship or propinquity, ceases in certain
other cases to serve us, because under certain circumstances it
ceases to exist. Our geometrical analogies weigh heavily against
Darwin’s conception of endless small continuous variation; they
help to show that discontinuous variations are a naturai thing,
that mutations -or sudden changes, greater or less- are bound to
have taken place and new type to have arisen, now and then. Our
argument indicates, if it does not prove, that such mutations, oc-
curing on a comparatively few definite lines, or plain alternative,
of physico-mathematical possibility, are likely to repeat themsel-
ves: that thè higher protozoa, for instance, may have sprung not
from or through one another, but severally from thè simpler
forms; or that thè worm-type, to take another example, may have
come into being again and again.»
These two last paragraphs give probably thè rea¬
son why d’Arcy Thompson is sometimes classified as
non-Darwinian. The opposition appears between
considerations which actually are two conjectures:
thè one proposed by Darwin that any complex organ
has been formed by numerous, successive, slight
modifications and thè one proposed by d’Arcy
Thompson, of thè absence of stepping stones across
thè gaps between main systematic types.
Darwin knew that important and sudden morpho-
logical changes observed under domestication or
under naturai conditions did not resist naturai selec-
tion and that fertility also involved continuity, at a
32
MORPHOLOGICAL SINGULARITIES AND MACROEVOLUTION
level which will be called, in modern terms, genomic
compatibility, what corresponds to only small diffe-
rences between alleile genes.
I am less tempted to follow d’Arcy Thompson in
his conjecture for several reasons. The introduction
of discontinuities in a curvilinear coordinates frame-
work, such as those considered above and represent-
ed on fìgures, can increase considerably thè hearing
of thè method. Pairs of singularities can be generated
continuously (this is mainly a matter of defìnition)
and this is illustrated in fig. 39. In a certain way, this
continuous birth of discontinuities is analogous to
speciation which also can be a continuous process,
even if thè result is a discontinuity: thè existence of
well separated species. Now, it remains difficult to
know thè extent of thè transformations theory, re-
handled with such topological changes. It is probably
a new tool to compare thè main types of vertebrates.
The question as to whether this principle affords
continuous Solutions to pass for instance from a bee-
tle to a cuttlefìsh is far from being tackled but, even
extreme, such transformations cannot be excluded.
Figs. 33-38 - Various singularities were observed by L. Lepescheux in Annelid cuticles. Instead of being interwoven, as
admitted by Rosin, fibrils form separated and superimposed sheets, even in thè very neighbourhood of these singularities.
36 and 37) These patterns are associated with shapes which are not applicable onto a piane (saddle point and bump).
38) Semicontinuous formation of a pair of singularities in a set of aligned Fibrils (a, b, c). Correlative differentiation of a pair
of singularities in a d’Arcy Thompson’s grid.
MORPHOLOGICAL SINGULARITIES AND MACROEVOLUTION
33
Liquid crystals and thè orìgin of naturai
coordinate grids
Biological analogues of liquid crystals
I have shown in several works (see ref. in Bouli-
gand, 1978) that thè organic matrix of skeletal tissues
often presents a continuous structure which is that of
a particular helicoidal liquid crystal, but is stabilized
by several types of Chemical cross-links. There are
many examples of these non fluid analogues of li-
quid crystals in biological Systems. Liquid crystalline
self-assembly of collagen was obtained recently by
Giraud-Guille (1992) and works on similar processes
with cellulose and chitin are in progress at McGill
University, with Revol et al. (1992, 1993). I studied
thè singularities of these liquid crystals and of their
stabilized forms, mainly in thè crab exoskeleton. The
structure of these singularities is accessible, but thè
reai problem is that of their distribution relative to
thè anatomy and to thè external morphology.
Grids in thè integument of worms, insects and am-
phibian tadpoles, mentioned above, come from thè
stabilization of liquid crystalline secretions (collagen
or chitin), with preferred orientations due to various
mechanical constraints under thè control of cells.
There are examples of parallelism between cytoske-
letal elements and just secreted extracellular fìbrils,
when they adopt certain preferential orientations,
different from those followed in pure self-assembly
processes (ref. in Bouligand and Giraud-Guille,
1985). This has been observed in fish-scales and in
plant celi walls. We suppose that similar relations
between epidermal cytoskeleton and extracellular
matrices exist in thè insect cuticles and in thè verteb¬
rate compact bone. Many cross-ply structures appear
under these conditions and continuous passages are
often observed from purely helicoidal systems,
which are analogues of liquid crystals, to these cross-
ply systems, with preferential orientations.
Singularities in liquid crystals and in their
biological analogues
The distribution of molecular orientations in li-
quid crystal varies continuously and is often repre-
sented by vector fields. It follows that singularities in
such systems resemble those usually considered in
vector fields, but very different types of singularities
are also observed. The spontaneous arrangements of
molecules around these discontinuities lead to a rich
world of morphologies and similar organizations
exist in biological analogues of liquid crystals (ref. in
Bouligand, 1981).
It is well known that one of thè parameters govern-
ing crystal growth, is thè density of these very special
singular lines named screw-dislocations. These dis-
locations are involved in thè growth of enamel apati¬
te crystals and that of thè nacre in molluscan shells,
for instance. The screw character is also present in
singularities considered above, observed in different
skin networks whose structure recali thè d’Arcy
Thompson curvilinear grids. Similarly, liquid crys¬
tals show various lines of discontinuity, called dislo-
cations, focal lines and disclinations, which also play
important ròles in thè assembly and in thè generai
morphology of these phases. These singularities can
be observed directly in stabilized tissular structures,
such as thè arthropod cuticle for instance, which dif-
ferentiate by liquid crystalline self-assembly. On thè
contrary, in compact bone, such singular lines prob-
ably exist, but are extremely difficult to recognize
and to identify in thè microscope. The problem of
their distribution is beyond me in this material, but
indirect methods could be considered.
The problem is to study, in liquid crystals and in
their biological counterparts, thè deformations intro-
duced by a given density of singularities, when these
latter are easily observed (some common liquid crys¬
tals and demineralized crab cuticle for instance).
This is a geometrical problem for microscopists, with
no obvious answer at thè present time. If some gen¬
erai laws can be deduced, then a new approach
would be possible in thè comparative studies of ani¬
mai shapes, but much work is stili necessary to pre¬
pare research in this field.
With thè introduction of singularities in compara¬
tive morphology, we have to look to macroscopic
characters corresponding to long range rearrange-
ments of fìbrils around these singularities, whose
core however is generally observed at thè ultrastruc-
tural level. The various topological rehandlings of
tissues very often leads to such ultrastructural dis¬
continuities, which generally lie outside of thè exa-
mined surfaces or sections. These basic construction
patterns come from self-assembly processes and
from a series of celi activities.
Plesiomorphic ultrastructures
Diffìculties with thè concept
of synapomorphy
Strict reversibility and parallelism are considered
as unlikely, when thè characters under consideration
are defined with a very large amount of information
and represent something as a signature of thè com¬
mon origin of a group of species. This comes from
simple considerations on probabilities. Long series
of independent events never reproduce and never
give long palindromes. This leads to introduce a par-
simony principle in thè construction of cladograms.
However, a strict application of this principle ignores
that evolutionary events are far from being inde¬
pendent and there are many examples of parallelism
hardly compatible with this parsimony principle
(Gosliner and Ghiselin, 1984). There are many poss¬
ible causes for thè existence of similar characters bet¬
ween related species: symplesiomorphies, synapomor-
phies, different forms of parallelism and among
them: parallel selection influencing physiologically
analogous structures, parallel selection influencing
homologous structures, parallelism due to common
inherited factors causing incomplete synapomorphy
(Saether, 1979, 1983).
In thè case of thè above considered parasitic cope-
pods, we fìrst believed that thè axopodlike aciculae
corresponded to a synapomorphy and de Zulueta
considered this trait as essential for classifìcation.
We stili think that this character is useful in thè locai
systematics of thè family of Lamippids, but we gave
up thè idea of a synapomorphy, when more or less
related structures were discovered in some species of
ascidicolous copepods. Other characters such as
morphology of sclerites and distribution of bristles
34
Y. BOULIGAND
showed more combinations with thè presence or ab-
sence of aciculae, than those acceptable in a purely
cladistic conception, with a strict application of thè
parsimony principle. At thè present stage of know-
ledge, we cannot choose between two possible hypo-
theses: 1. The first Lamippids beared aciculae and
this character was already present in thè most recent
ancestors common to Lamippids and these ascidi-
colous copepods. 2. An opposite hypothesis is that
expression of aciculae is a threshhold dependent
character, which appears at preferential sites (furca,
bristles) and sometimes on thè whole surface of
thè parasite, if there is a large overstepping of thè
threshold.
This leads us to admit that certain characters are
less rare than we can think at first and could be lat-
ent, waiting for a propitious situation, genetic or not,
to be expressed. Then, what we believed to be a locai
synapomorphy transforms into a symplesiomorphy
defìned by a character shared by a large group of spe-
cies, at thè genotype level for instance, but not ne-
cessarily at thè phenotypic level. Some groups of
species are able to express thè character in thè syste-
matic group, but this character does not justify a cla¬
distic regrouping. Let us cali this situation an under-
lying symplesiomorphy. This situation is very dose to
that called underlying synapomorphy by Saether
(1979), since thè considered characters concern a
narrow group. Here we prefer to speak of underlying
symplesiomorphy, because we consider thè expres¬
sion of genes common to a much larger group than
thè examined family. Such underlying symplesio-
morphies are known experimentally, since many in-
sects have two pairs of wings, whereas flies have only
one, thè posterior pair being replaced by small «hal-
teres». We learnt, some years ago, that some genetic
experiments suffìce to restore thè expression of a
normal pair of posterior wings. We want to suggest
that this situation also exists naturally in very large
systematic groups, well defined by certain Constant
characteristics, whereas other traits are expressed
here and there in thè group, but are probably more
Constant in thè genotype.
Expressed symplesiomorphies
The group of Spiralia (Annelids, Molluscs, Rota-
torians, some Platyhelminths, etc.) is defined by thè
oblique orientations of thè first celi cleavages in thè
egg. Another character which is rarely taught is that
most muscles are obliquely striated, thè distribution
of myofìbrils leading then to helical or to double-obli-
que patterns (fìgs. 40-42). This character seems to be
Constant and is observed in all Annelids, Molluscs,
Rotatorians, fiat and round worms, Bryozoa, Bra-
chiopods, etc. There are however examples of per-
pendicularly cross-striated muscles in Molluscs and
Annelids, for instance in thè fast portion of thè ad-
ductor of thè scallop and also in thè proboscis of cer¬
tain Polychaetes (Annelids), but in all these animals
most muscles are obliquely striated or smooth (refi
in Bouligand, 1966c). Obliquely striated muscles are
absent in all other groups (Coelenterates, Echino-
derms, Tunicates, Vertebrates). The oblique stria-
tion of at least a part of muscles seems to be an ex-
cellent example of plesiomorphy for thè Spiralia
sensu lato (and an excellent synapomorphy, when
Spiralia are compared to thè other groups). There is
also a special kind of myosin, thè main protein of
thick filaments in muscles, which is also a good cha-
racteristic of thè whole group of Spiralia.
Underlying symplesiomorphies
We shall now consider another character of Spi¬
ralia, which seems to be generai, but not always
expressed. Two groups of Annelids (Polychaetes and
Oligochaetes) are defined by several characters, an
essential one being thè presence of bristles regularly
distributed along metameres. These bristles show
very Constant ultrastructures in thin section (fìg. 43).
Each bristle is produced in a follicle, which is a fin-
ger-like invagination of thè epidermis. A highly diffe-
rentiated celi, present at thè bottom of thè invagina¬
tion, is called chaetoblast, since it seems at first view
responsible of secretion of thè whole bristle, made of
chitin principally and some associated proteins. The
secretion occurs at thè basis of a set of parallel micro¬
villi, which control thè bristle formation, which pro-
ceeds by pure accretion at this level. New microvilli
are differentiated, whereas others are dedifferentiat-
ed in thè course of thè secretion, whose intensity
also varies and can be stronger between certain mi¬
crovilli; this produces bending and other morpholo-
gical characters of bristles, used in thè recognition of
species. Some lateral cells of thè follicle are also
involved in thè secretion process, by adding new
materials, possibly by intussusception, or simply
by external accretion (Bouligand, 1967). Phenolic
tanning also Comes from this lateral contribution
(Lehy, 1966).
Structures closely related to Polychaetes bristles
were observed over thè mantle surface of some ce-
phalopods: Kòlliker organs of thè hatching Octopus
(Brocco et al., 1974), in some Brachiopods, Lingula
for instance Storsch and Welsch (1972), cylindrical
spicules in Chitons (Prenant, 1923), in Pogonophora
(Gupta and Little, 1970) etc. In all these examples, as
in Polychaetes, also in Oligochaetes and Echiurida,
thè secretion of each bristle is guided by one celi dif¬
ferentiated with microvilli: thè chaetoblast, and
there are lateral productions due to follicular cells.
These very characteristic structures are generally ab¬
sent in molluscs, but reappear in certain genera, such
as Octopus in Cephalopods and Chiton among Placo-
phora, with various distributions and at precise sta-
ges in thè life cycle.
Aciculae of Lamippids, thè parasitic copepods
considered above, are very different from these brist¬
les observed in several groups of Spiralia, since their
structure is rather analogous to that of axopods in
Actinopoda. However, thè distribution principle of
this type of organ seems to be similar. Copepod aci¬
culae are generally absent, but when expressed, they
are gathered at thè extremity of non-sclerifìed brist¬
les, and, in certain cases they appear on thè whole
surface of thè body. In thè case of Spiralia, when
bristles are expressed, they are either concentrated in
parapods (Polychaetes), but they can cover a large
area of thè body within thè egg, before hatching, in
certain cephalopods. Such resurgences of a character
hidden in thè genome are plausible, but have never
been fully demonstrated to occur in naturai condi-
tions. The confìrmation of such a hypothesis could
represent a severe difficulty in thè application of cla¬
distic methods. The problem in this method is to re-
MORPHOLOGICAL SINGULARITIES AND MACROEVOLUTION
35
Figs. 39-41 - 39) General aspect in thè photonic microscope of thè contracile apparatus of helically or double-obliquely
striateci muscles in Spiralia (mainly Annelids, Molluscs, but also in fiat and round worms. Brachiopods, Bryozoa, Vesti¬
mentifera, etc); a and b: relaxed state; a' and b': contracted state.
Fig. 40 - General ultrastructure of obliquely striated myofibrils (Z: Opaque element to which are attached thin actin
filaments a; m: thick paramyosin filaments interdigitated with thin actin filaments; p: cross-bridges linking thick and thin
filaments).
Fig. 41 - The ultrastructure of this muscle is replaced in thè generai pattern of doublé striation (Dt, D2) and according
to thè section piane, one gets aspects which are those observed in smooth muscles, in cross-striated muscles and in ob-
lique-striated muscles. F and f: thick and thin myofilaments; A: zone of interdigitated thick and thin filaments; I: zone
with Z elements and attached thin filaments.
36
Y. BOULIGAND
cognize, when a character presents two different Sta¬
tes, which one is primitive and which one is derived.
Another question is simply to have a clear definition
of thè two States of a unique character.
The difficult determination of thè time
arrow in phylogeny
Geologists were thè first to recognize situations in
sediments and in rocks, clearly indicating for two
events from a remote past which one preceded thè
other one. Developmental biologists have a direct
evidence of thè embryo transformations and of their
order in time. On thè contrary, evolutionary biolo¬
gists are faced to numerous problems to get such evi¬
dence about thè time arrow.
The available criterions
The agreement between scientists in evolutionary
biology comes mainly from thè connected character
of thè trees they build. These minimal graphs repro¬
duce thè genealogies of species with more or less ac-
curacy, and thè knowledge of thè time arrow at one
point of thè tree often suffice to orientate a large part
of it. The problem is however to build these minimal
graphs and to fmd some good examples which allow
one to recognise which characters are ancient and
which ones are new.
The available information on thè arrow of time
in evolution comes from paleontology and from
considerations about complexity and differentia-
tion. The concept of molecular clock, even with its
inherent difficulties, can be very useful. Compari-
sons between ontogeny and phylogeny are not al-
ways accepted, but in this domain thè concept of
organ priority and its measurement, introduced by
Grandjean (1942) is useful and is related to hierar-
chies observed between embryonic inductions and
between thè expression of genes involved in deve-
lopment (Bouligand, 1989). This is a to wide problem
to be considered here.
Regression and multiplication
There is another type of criterion observed by
Grandjean, from his studies on phylogeny and onto¬
geny of mites, mainly thè Oribatids and he deduced
certain rules. One of them concerns thè arrangement
of small organs like bristles in thè external morpho-
logy. The evolution leads to a progressive numerical
regression in one or several series of orthotaxic organs,
which can be followed, more or less suddenly, by a
multiplication of these small organs, presenting then
an anorthotaxic situation (pletho-or cosmiotaxy). Si-
milar evolutions are plausible in different lineages of
Vertebrates: thè number of vertebrae was reduced,
certain vertebrae being progressively specialized, in
many Amphibians and Reptiles. Then, multiplica-
tions of vertebrae appeared, according to a highly
uniform model, possibly in Apods, in Ophidians and
in thè slow-worm, Anguis fragilis, for instance. The
situation could be similar for thè teeth of Mammals,
whose number was progressively reduced in several
groups, whereas thè differentiation between inci-
sors, canins and molars which was reinforced, but
sudden multiplications of teeth appeared in some
«edentate» mammals and in Cetaceans (Odonto-
cetes) for instance; teeth were replaced by multi¬
ple «whale-bones» in other Cetaceans, thè whales
(Mysticetes).
In our Copepod family, that of Lamippids conside¬
red above, thè appendages in thè genus Linaresia
show thè maximum reduction of bristles known in
thè whole family, and there is simultaneously a
strong multiplication of small papillae of thè integu-
ment in thè same cephalothoracic region, but our
study of this family is not as well documented as that
of Grandjean dealing with Oribatids.
Comparison with crystals (solid or liquid)
If true, thè scenario of evolution considered by
Grandjean probably applies to singularities observed
within naturai grids of thè integument of numerous
species and of their embryoes. The concepts of
ortho-, pletho-and cosmiotaxy can be applied to thè
singularities represented in Rosin drawings (fìgs. 28
to 31). For instance each eye presents a lateral
pentagonal singularity and this corresponds to an
example of orthotaxy, whereas thè pentagonal and
trigonal singularities, observed in thè area corres-
ponding to thè future gills, are more or less randomly
distributed and this corresponds to an example of
plethotaxy. As quoted above, one finds in liquid
crystals (and also in true crystals), various rearran-
gements of thè network, which correspond to singu¬
larities (also called dislocations or defects), whose
distribution is called texture (Bouligand, 1981). The
texture geometry depends on conditions prevailing
during crystallization and on thè nature of various
other constraints. In such systems, there are disloca¬
tions occupying higly «functional» positions, whe¬
reas others are more or less randomly distributed.
This term «functional» can appear as exaggerated,
but this is not always thè case since, in true crystals,
there are «screw-dislocations», whose presence acce-
lerates thè cristallization process. To come back to
thè living systems, these singularities exist in many
tissues and constraints leading to various textures
come mainly from a celi control.
Diversity and macroevolution
This work is a review of thè main difficulties en-
countered in my own studies to connect a set of
morphological data into a coherent evolutionary in-
terpretation. One of thè obvious conclusions is that
animai diversity remains very difficult to appreciate,
this being shown by thè study of Lamippids, this
small and apparently homogeneous family of parasit-
ic Copepods, which however shows extreme exam¬
ples of macroevolution. Recent hypotheses in pa-
leontological literature give also an evidence of thè
difficulty to appreciate diversity and this deserves a
discussion. There is a second conclusion, which is
that, beside heterochrony, there is another mecha-
nism of macroevolution, that of heterotopy. This
term is used mainly in medicai Sciences and means
thè abnormal displacement of an organ or a tissue
and seems be rare in thè evolutionary context, but
could mean a change in location of well identifìed
parts of thè body. If small genetic changes are able to
modify thè order in thè ontogenic time of essential
MORPHOLOGICAL SINGULARITIES AND MACROEVOLUTION
37
42
ve
m
rv.
^ fifa ° ' r
3% o: ^ q ' o v* ?■
. . c i^'èo
• ' CI O /.V/r?-’ ’V. Q-- .
° /■? M st'** ’o Ut
o .'- ?,Vo o u
" — 7pi.oó 0,;, *
II ' ° q - e &
-“"' .*7': : -*7
^/v. *v**. * ; ■ ;£• .'-f ■■ -' •*"'• *•■
^ y^ C) Qs J j- *>
■ i o
*?# c>- ..<;
- ...
0 « ■■■*■/ '■" < ' vOc ° 5
C>> ' 0 *-JU* o * ?JQ&
■ S* . ■/}&„* -sJ cPV'TO
0. „ Q~ o q_, 12^0
ì^ra-^~^71TT^~à Ire..
,•,•-■••■ o
-k&rtT'
4^Év--- •
’Jir-*.- ' •— aSai
n
Fig. 42 - General ultrastructure of an Annelid bristle. A 90° sector of this more or less cylindrical secretion is represented;
thè apical region of thè chetoblast, with its nucleus Nc, form a set of parallel microvilli (mv), which are a guide to chitin se¬
cretion vesicles (cv); other secretory activities are observed in lateral cells, with their nuclei (NI) and their vesicles (cl) at
thè level of thè tips of microvilli; these lateral secretion vesicles often form prismatic patterns (n); thè two membranes of
thè nuclear envelope often show large separations (rn); at a distance of microvilli there is a free space (L) separating thè
bristle from lateral cells of thè follicle; very usuai celi organelles are observed: various celi junctions (d), ergastoplasm (e)
Golgi apparatus (g), mitochondriae (m), polyribosomes (pr) and free ribosomes (r), various types of vesicles: (ve, vd). Brist-
les with similar or closely related ultrastructures are found in isolated species or in some groups of Spiralia.
38
Y. BOULIGAND
developmental events, one can expect that other
genetic changes can modify thè domains, in thè mor-
phological space, where some characters are expres-
sed, and also thè morphology of these characters. A
change in time is often correlated with a change in
space and conversely. So, thè idea of heterochrony
suggests that its spatial counterpart, heterotopy,
could be an evolutionary mechanism.
The difficulty to estimate diversity
Recent articles deal with remarkable fossils disco-
vered ninety years ago and propose, from their restu-
dy, that main systematic groups appeared during a
relatively short geological period, thè cambrian
explosion. Despite thè high quality of these fossils
and some ones recently discovered, it is difflcult to
understand how several authors conclude that such
observations demonstrate a sudden macroevolu-
tion occuring in many groups, with no equivalents in
later periods. Main phyla and classes are probably
very ancient, but this is established from thè study of
numerous fossils collected by successive generations
of paleontologists and not from a particularly rich
fauna discovered in some very old sedimentary for-
mations.
The question can be reasked differently. How to
estimate for instance thè extreme morphological
changes observed in parasitic copepods, and particu¬
larly those within this narrow family of Lamippids,
and then to compare them to those considered in
these cambrian organisms? These copepods possibly
existed and diversified in thè cambrian seas, but ac-
tually we have no accurate information. Extremely
large variations also are common in many other
groups of invertebrates. How to measure thè ampli-
tude of such variations in living species and to com¬
pare them to those in extinct faunas? Methods do
not really exist in thè present state of knowledge, but
some indices are possibly available and, apparently,
they are never considered in these papers.
An accurate knowledge of diversification in living
beings and its chronology will come from detailed
analyses of genomes and of many phenotypic charac¬
ters, but this stili exceeds our present capabilities,
and perhaps will for a very long time. I suppose that
thè overestimate of diversity in a fossil fauna could
be related to thè fact that most zoopaleontologists
work on bones and shells, which are homogeneous
structures in vertebrates and molluscs. The knowled¬
ge of diversity comes more from neontological stu-
dies (zoology and botany), than from paleontology.
In my opinion, thè gap separating paleobotany from
botany is less important than thè one between paleo-
zoology and zoology.
Heterochrony and heterotopy
Small causes produce important effects, when
conditions are not far from those of an instability and
this can be thè origin of discontinuities appearing in
a continuous context. Examples are known in irre-
versible thermodynamics, in phase transitions for in¬
stance, and this conception has been generalized in
thè frame of a topological approach of dynamical Sys¬
tems (Thom 1972). This is a generai principle in
physics, which certainly applies to many situations in
biology and possibly in species evolution. This idea
of continuously evolving parameters controlling a
change, with more or less sudden effects, was poss¬
ibly present in thè mind of Schiaparelli and also Vol¬
terra (Scudo, 1991, 1994).
Simple genetic changes can modify thè develop-
ment rate of a given organ, and thè result is a new
shape of thè whole body. This corresponds to hete¬
rochrony (displacement, acceleration or retardation
of an ontogenetic process within thè generai context
of development). What was considered in our exam¬
ples (from copepods to vertebrates) corresponds to
similar changes, possibly generated by small genetic
variations, but instead of a change considered along
thè time axis, thè relevant axes now are those of thè
coordinate grids, these cartesian coordinate frames
which are made curvilinear, with thè possible intro-
duction of singularities.
Such topological rehandlings are obvious things
for certain microrganisms: for instance, thè Radio-
larian skeletons showing thè symmetries of thè Pla-
tonic bodies, described by Haeckel (1887) in one of
thè Challenger Monographs. The useful pictures are
reproduced in thè book of d’Arcy Thompson in his
fìg. 340. Some ornaments show that thè represented
species are very closely related, but since they have
thè symmetries of different regular polyhedrons (oc-
tahedral, dodecahedral, icosahedral), there are no
continuous passages between these phenotypes,
whereas thè genetic differences could be small.
A change in thè number of facets in Radiolarians
can be compared with another discrete variation,
that of thè number of fìngers. This latter has general-
ly a genetic origin, which is however much less than
thè differentiation of a new species. It is not exclud-
ed that some individuals among populations of such
polyhedral Radiolarian show thè symmetries of a dif¬
ferent polyhedron. I do not read literature enough in
this domain to know whether or not is has been ob¬
served. However, strong heterotopic variations are to
be expected within this group. It appears also that
thè introduction of coordinate frames on such mor-
phologies would resemble thè representations of
harmonic functions onto a sphere, with thè corres-
ponding singularities and polyhedral symmetries.
The passage from one solution to another one is dis-
continuous, but could be parametrized continuously
within a rather simple model.
Let us recali that regular polyhedral morphologies
are very common in flower pollens and similar dis¬
crete variations occur among closely related species.
Polyhedral morphologies also exist in many viruses,
but passages to different symmetries are generally
excluded in that case, but there is possibly a sort of
exception, in certain giant T4 bacteriophages with
much longer head than usuai.
Topological rehandlings are regular processes in
ontogeny and in phylogeny of animals and involve
thè introduction of singularities, whose existence is
demonstrated in some materials, but much more in¬
formation is necessary to introduce these concepts in
thè very foundations of developmental and compa¬
rative morphology. Singularities have long range
effects or not. One obviously observes thè interme¬
diate situations. The importance of deformations
produced by a dislocation in a crystal is called thè
«mass» of thè defect by crystallographers. Similar pa¬
rameters could be introduced in biomorphology but
this seems to be to early.
MORPHOLOGICAL SINGULARITIES AND MACROEVOLUTION
39
Conversely, thè concepts of orthotaxy, plethotaxy
and cosmiotaxy, which come from biomorphology,
could be introduced in crystallography, since disloca-
tions are distributed either randomly, with a more or
less Constant density (plethotaxy), or form regular
lattices (cosmiotaxy), form definite patterns called
textures, where many singularities occupy definite
places and can be given a name.
Grandjean observed that series of events are arro-
wed in thè evolutionary time. Similarly, in crystals, it
can be easily verified that textures present irrevers-
ible types of evolution, since hysteresis is a generai
rule in thè behaviour of defects or dislocations. One
can fìnd examples in liquid crystals showing how re-
gression in thè number of singularities leads to or¬
thotaxy. If thè singularities number decreases below
a certain threshold, thè texture either disappears or is
conserved but higly rehandled, if some parameter is
changed, for instance temperature variation or intro-
duction of an external fìeld. Similar changes in thè
biological context could correspond to a strong in-
crease in thè number of cells in a given tissue. Ortho¬
taxy is then followed by anorthotaxy. In thè same
line of thought, let us recali that screw-dislocations
can be considered as «functional», since their ròle is
recognized as essential in crystal growth.
Well known examples of topological rehandling
are observed in Drosophila, with those processes cal¬
led transdetermination, thè mutation Antennapedia
for instance, leading to thè production of two more
or less complete legs in thè place of thè two anten-
nae. Such animals cannot resist naturai selection. On
thè contrary, to pass from a polyhedral shape to ano-
ther one for a Radiolarian is not an obvious handi¬
cap. When topological rehandlings of biomorpholo¬
gy are not incompatible with survival, there is a
plausible place for a large evolutionary step. Such sit-
uations are probably rare, but not excluded, and thè
two positions of Darwin and d’Arcy Thompson will
possibly represent thè two interesting pòles of discus-
sions in thè future developments of research on ma-
croevolution.
Conclusion
Self-assembly is a major process in thè genesis of
supramolecular structures in biological systems and
is closely related to crystal growth. Among these
morphogenetic mechanisms, generally considered as
working at lower levels of organization, there is a
particular self-assembly based on liquid crystalline
phases, which can be stabilized into supple but mor-
phologically defìned structures. Liquid crystals show
long range orders with remarkably diversifìed pat¬
terns. The fluidity of liquid crystalline secretions
leads to regular shapes, which can be rehandled by
resorption and resecretion controlled by cells. The
ordered fluids form an essential interface between
cells and thè extracellular matrices, on which are
based thè main characters of morphology.
Among thè patterns arising from liquid crystalline
self-assembly and controlled by celi activities, there
are sets of extracellular fìbrils forming networks
visibly related to thè d’Arcy Thompson’s grids, con¬
sidered in thè continuous shape transformations in
evolution and development. These naturai grids
show thè presence of singularities, those possibly
corresponding to difficulties arising from thè use of
d’Arcy Thompson methods by pure continuous de-
formation of thè coordinate network. The apparent
distance between Darwin’s and d’Arcy Thompson’s
conceptions about continuity Comes possibly from
thè need to introduce these singularities, but we
indicated that their introduction within a regular
lattice can intervene by creation of singularities
pairs, which can be considered as continuous. In
physics, there are transitions which are first order,
second order, and fìnally very soft. The creation of
this kind of singularities can be considered as a very
soft process...
The problem is that our personal exploration of
some biological species and of liquid crystals, biolo¬
gical and non-biological, does not suffice to really
propose generai principles, since much remains to be
done in thè examination of singularities in cells and
tissues, simply at a purely methodological level, and
results in this fìeld will need to be replaced in thè
context of molecular genetics, to be somewhat con¬
sistei in thè studies on macroevolution.
Acknowledgements - 1 wish to thank several collea-
gues who have read thè manuscript and proposed very
useful remarks, references and copies of articles, parti-
cularly Dr. M. T. Ghiselin and Dr. F. Scudo. I wish also
to thank thè Milan group, namely Professor G. Pinna
and Dr. P. Arduini.
BIBLIOGRAPHY
Bookstein F. L., 1977 - The study of shape transformations after
d’Arcy Thompson. Mathematica I Bioscience, 34: 127- 219.
Bookstein F. L., 1981 - Coordinate systems and morphogenesis.
In: Morphogenesis and Pattern Formation, T. G. Connely ed
ai ed., Raven Pr., New-York.
Bouligand Y., 1966a - Recherches récentes sur les Copépodes
associés aux Anthozoaires. In: The Cnidaria and their Evo¬
lution, W. Rees ed. Symp. Zool. Soc. London, 16: 267-306
Acad. Pr.
Bouligand Y., 1966b - Le tégument de quelques Copépodes et
ses dépendances musculaires et sensorielles. Mém. Muséum
Hist. Nat., Nouvelle Sèrie, A, Zoologie, 40, (4): 189-206.
Bouligand Y., 1966c - La disposition des myofilaments chez
une Annélide Polychète. J. Microscopie, 5: 305-322.
Bouligand Y., 1967 - Les soies et les cellules associées chez
deux Annélides Polychètes. Etude en microscopie photoni-
que à contraste de phase et en microscopie électronique.
Zeitschrift fiir Zellforschung und mikroskopische Anatomie,
79: 332-363.
Bouligand Y., 1978 - Biological anlogs of liquid crystals. Solid
State Physics, Suppl. 14, 259-294.
Bouligand Y., 1981 - Defects and textures in liquid crystals. In
Dislocations in Solids, Nabarro, F.R.N. ed., North- Holland,
5: 299-347.
Bouligand Y., 1989 - La priorité des organes selon F. Grand¬
jean: une articulation précise entre ontogenèse et phyloge-
nèse. Geobios, Mém. spécial, 12: 79-91.
Bouligand Y. and Giraud-Guille, M.-M., 1985 - Spatial
organization of skeletal tissues: analogies with liquid
crystals. Biology of Invertebrates and Lower Vertebrates
Collagens, A. Bairati and R. Garrone eds., Plenum Pubi.:
115-134.
Brocco S.L., O’Clair R. M. and Cloney R. A., 1974 - Cephalo-
pod integument: thè ultrastructure of Kòlliker’s organs and
their relationship to setae. Celi Tissue Res., 151: 293- 308.
Darwin C., 1859 - The origin of Species. J. Murray, London.
Edelman G. M., 1992 - Bright Air, Brilliant Fire, On thè Matter
of Mind. Basic Books.
40
Y. BOULIGAND
Garrault H., 1937 - Structure de la membrane basale sous-épi-
dermique chez les embryons de sélaciens. Arch. Anat. Micr.,
33: 167-176.
Giraud-Guille M.-M., 1992 - Liquid crystallinity in condensed
type I collagen Solutions. J. Mol. Biol., 224: 861-873.
Grandjean F., 1942 - Les méthodes pour établir les listes de
priorité et la concordance de leurs résultats, Comptes Rendus
Acad. Sci. Paris, 214: 729-733.
Grandjean F., 1948 - Sur la distribution spatiale des organes
d’un groupe homéotype. Comptes Rendus Acad. Sci. Paris,
227: 10-13.
Grandjean F., 1972-1976 - Compiete acarological works. 7 vols.,
van der Hammen, ed., W. Junk B. V.
Gupta B. P. and Little C., (1970) - Studies on Pogonophora, 4:
Fine structure of thè cuticle and thè epidermis. Tissue & Celi,
2: 637-696.
Haeckel E., 1887 - Challenger Monogr., Radiolaria.
Hipeau-Jacquotte R., 1986 - A new cephalic type of presumed
sense organ with naked dendritic ends in thè atypical male of
thè parasitic copepod Pachypygus gibber (Crustacea). Celi
Tissue Res. (1986), 245: 29-35.
Lehy T., 1966 - Mise en évidence d’un système de tannage quino-
nique au niveau des soies chez Sabellaria alveolata (L.), Po-
lychète sédentaire. Ann. Histochimie, 11: 71-78.
Lepescheux L., 1988 - Spatial organization of collagen in annelid
cuticle: order and defects. Biology of thè Celi, 62: 17-31.
Picken L., 1960 - The Organization of Cells and other Orga-
nisms. Clarendon Press Oxford, republished 1962.
Prenant M., 1923 - Remarques sur les processus de formation
des spicules cylidriques chez les chitons. Bull. Soc. Zool. Fr.,
48: 150-156.
Revol J. F., Bradford H., Giasson J., Marchessault R. H. and
Gray D. G., 1992 - Helicoidal self-ordering of cellulose mi-
crofibrils in aqueous suspension. Int. J. Biol. Macromoi, 14:
170-172.
Revol J. F. and Marchessault R. FL, 1994 - Chiral nematic or-
dering of chitin crystallites. Internat. J. Biol. Marcomoi, (in
press).
Rosin S., 1946 - Uber Bau und Wachstum der Grenzlamelle des
Epidermis bei Amphibien Larven. Analyse eine orthogona-
len Fibrillarstruktur. Rev. Suisse Zool., 53: 133-201.
Scudo F. M. , 1991 - Morphology and systematics, before and
after Schiaparelli. Riv. Biol., B. Forum, 84: 130-135.
Scudo F. M., 1994 - Schiaparelli Giovanni Virginio (1835-1910),
Dictionnaire de l’Evolution et du Darwinisme, P. Tort
(Dir.). Presses Universitaires de France, Paris (in press).
Storch V. and U. Welsch, 1972 - Uber Bau und Entstehung
der Mantelrandstacheln von Lingula unguis L. (Brachiopo-
da). Z. wiss. Zool. Leipzig, 183: 181-189.
Thom R., 1975 - Structural Stability and Morphogenesis (translat-
ed by D. H. Fowler). Benjamin, New York.
Thompson d’Arcy W., 1917 - On Growth and Form. Cambridge
Univ. Pr.
Trave J. et Vachon M., 1975 - Francis Grandjean 1822-1975
(Notice biographique et bibliographique). Acaralogia, 17: 1-19.
Zulueta A. de, 1961 - Boi. Roy. Soc. Esp. Hist. Nat., B., 59: 227-230.
Y. Bouligand: Institut de Biologie Théorique, EPHE, 10, rue André-Bocquel, 49000 Angers FRANCE
et Centre de Biologie Cellulare, CNRS, 67, rue M.-Giinsbourg, 94200 Ivry/S. FRANCE
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
Mikhail A. Fedonkin
The Precambrian fossil record: new insight of life
Abstract - The study of thè Precambrian fossil record, especially active in thè second half of 20th century, reveals thè
phenomena that could not be predicted on thè basis of thè Phanerozoic experience of thè classical palaeontology. Among
major revelations there are astounding antiquity of life, domination of microscopie, in particular, prokaryotic organisms
during thè most part of Earth history, cruciai role of thè biota in thè steady but radicai change of thè global environment,
dramatic restructuring of thè global ecosystem during thè late Neoproterozoic accompanied by thè rise of thè eukaryotic
trophic pyramid and very late appearance of thè metazoans.
According to historians of Science, about 2.000
species of fossils plants and 25.000 species of extinct
animals had been described by 1850, i.e. nine years
before thè fìrst edition of Darwin’s «Origin of Spe¬
cies» was published. Practically all fossil species that
had been described were from Europe.
Recently about a quarter of a million of thè fossil
species have been described from all thè continents.
More than 99 per cent of thè fossil taxa have been
described from thè Phanerozoic.
Paleontology dealing with long period of time has
revealed phenomena which are impossible to obser-
ve directly. Human life, and even historical time are
too short to allow us to notice and to recognise slow
and steady trends in thè biosphere masked by nu-
merous reversible fluctuations. That is why thè ideas
of cyclic, static and linear time of thè world have
been equally competing through thè whole history of
human culture (Grunbaum, 1969). Actually we do
not have actualistic methodological instruments that
would allow us to see difference between thè long-
term events and fluctuations if their duration ex-
ceeds human historical experience.
The fossil record, being thè integrative result of
long term processes and fluctuations, decreases thè
noise from thè latter and, otherwise, represents more
prominently thè long and irreversible trends and
events. That is why it was paleontology which gave
thè fourth dimension, namely thè Time Arrow, to
thè recent model of Nature. The idea of biological
evolution was thè most fundamental and valuable
discovery of classical paleontology. Evolutionary ap-
proach has subsequently spread through most other
areas of thè naturai Sciences.
The introduction of thè radiometrie dating of
rocks has revealed thè great age of our planet, i.e.
4. 5-5.0 billion years against 4-5 thousand years
what was generally believed according to thè Chris¬
tian tradition (interpretation of Bible) and even
against thè 100 million years, an estimation based on
thè comparison of thè amount of salt in thè world
ocean and annual input of salt by rivers (Burchfield,
1990).
Radiometrie dating, fìrst invented early in thè 20th
century by Bertram Boltwood, a Yale physicist, has
led not only to thè discovery of thè great age of Earth
but also to thè fact that thè Phanerozoic makes about
1/9 of geologie history in its entirety. This fact meant
that almost two centuries of classical paleontology
were devoted to thè study of a rather small portion of
thè history of life. And even though thè Phanerozoic
is thè best documented part of life history, it is stili
thè tail of thè whole story.
Generations of geologists and paleontologists con-
sidered thè Pre-Phanerozoic rocks as being non-fos-
siliferous. For example, thè whole sequence of thè
Riphean sedimentary rocks accumulated between 1.6
and 0.6 billion years ago and exposed in thè Ural
Mountains in Russia for many years was referred to
as «ancient dumb formations» because these rocks
seemed to be «mute» in respect of life. Apparent ab-
sence of fossils in thè Precambrian rocks was thè rea-
son for thè name Cryptozoic (from Greek «cryptos»
that means concealed, covert, unrevealed) for thè
greatest (about 85%) and thè early portion of thè his¬
tory of life.
The Precambrian fossil record became thè subject
of intensive study relatively late in comparison with
thè age of paleontology as a special scientific discip¬
line, i.e. effectively after 1960 although thè pioneer
works can be traced far back to thè beginning of thè
century. Before thè middle of our century thè term
«paleontology of thè Precambrian» sounded strange
and even later this term was rejected by some pa¬
leontologists on thè grounds that many objects in thè
Precambrian fossil record have uncertain nature
while others, for instance stromatolites, are in fact
remnants of peculiar geobiocoenoses and not thè
fossil remains of thè organism. Nevertheless during a
few last decades a series of thè fundamental discove-
ries has been made in thè Precambrian fossil record,
which dramatically changed our understanding of
life’s history and life as a phenomenon of a longer
time retrospective.
It was P. S. Laplace (1749-1827) who noticed that
an appeal to thè vast extent of time and space gives
thè possibility for discovering new classes of pheno¬
mena. His statment has found a brilliant confìrma-
tion in thè whole experience of classical Phanerozoic
paleontology.
An appeal to thè far longer history of thè Precamb¬
rian life has led to thè discovery of new faets of criti¬
cai importance, and actually to new insights about
life. It turned out that thè Phanerozoic experience of
42
MIKHAIL A. FEDONKIN
paleontology doses not exhaust thè whole diversity
of biohistorical phenomena. However, on thè way
down to thè Precambrian fossil record paleontolo-
gists have met many methodological problems con-
nected partially with thè phenomena which do not
have actualistic or Phanerozoic counterparts and
with situations which do not allow one to use thè
uniformitarian approach. In a sense, during most of
thè Precambrian geological history thè Earth was
quite a different and «unfamiliar» planet. All these
problems have affected thè systematics of thè pa-
leontological objects as well.
One of thè usuali difficulties of thè Precambrian
paleontology is an identification of thè true biolo-
gical or biogenic objects from what is called «pseu-
dofossils» i.e. thè non-biogenic objects of uncertain
nature morphologically resembling fossil or living
organisms. One should note that thè question of
how to distinguish thè living objects from thè non-
living ones on thè basis of purely morphological
characters is not quite trivial even for some recent
forms (like some viruses or bacteria, especially in
a latent phase of life activity). But this problem
becomes really difficult in many cases of paleonto-
logical practice in particular when thè specialists
deal with objects of a simple morphology which can
be observed in thè non-biogenic objects as well
(Thompson, 1942).
The matter is that in addition to thè pure morpho¬
logical characters which can be used as thè criteria
for identification of thè live object, recent organisms
demonstrate an ability for locomotion, growth, re¬
production, metabolic activity, etc., i.e. thè charac¬
ters which are impossible to observe or to judge in
dealing with thè fossil organisms. The concept of
biogenecity is poorly developed for fossil objects.
Purely morphological criteria turned out to be inade¬
quate for systematics both at thè low taxonomic level
and at thè level of higher taxonomic categories (in-
cluding life itself if one should consider it as a taxon)
in thè oldest part of thè Precambrian fossil record.
That is why along with thè morphological criteria
based on thè similarity of problematic fossils with
living or known extinct organisms one should take
into account thè taphonomic spectrum of thè fossils
as well as thè minerai, organic, molecular or isotopie
traces of life activity, probable place in a biohistorical
or evolutionary sequence, chronological probability,
position in thè paleoecosystem etc. (Hofmann, 1972;
Sokolov and Fedonkin, 1988).
The study of thè Precambrian fossil record is con-
nected with some other peculiarities in addition to
thè very long time intervals and uncertain nature of
many fossil objects mentioned above.
First of all, thè biotic diversity of thè Precambrian
fossil record looks very low if compared with thè
Phanerozoic one. Precambrian fossils have been col-
lected from more than 3.000 localities all over thè
world, but slightly more than 1.300 fossil taxa at thè
genus level have been described up to now (Hof¬
mann, 1988). Some critically inclined paleontologists
evaluate thè number of thè «reai» taxa in thè Pre¬
cambrian as somewhere between 500 and 900. Chro-
nologically and stratigraphically thè distribution of
thè Precambrian fossil localities is very uneven.
About 1-5 localities per every 100 million years are
usuai for thè Early Proterozoic, and about 10-25 loca¬
lities per every 100 million years of geological history
are typical for thè Late Proterozoic. The Archean
fossil record looks far more poor. For example,
slightly more than 20 localities of stromatolites are
known from thè whole Archean. Thus thè number of
thè sites where thè fossils could be preserved decrea-
ses with thè growing age of thè rocks.
Another circumstance is that macroscopic orga¬
nisms appeared relatively late and even among those
microfossils which represent thè procaryotic world
thè paleontologists identify just thè large bacterial
cells, in particular thè cyanobacteria, while thè most
of other groups of thè procaryotes do not yet have a
fossil record because of their very small celi size (for
instance, thè whole Kingdom Archaeobacteria).
In spite of an exponential growth of paleobiologi-
cal information from thè Precambrian we stili meet
some serious difficulties in identifying thè whole
range of biological phenomena known from thè Pha¬
nerozoic fossil record. There are a few reasons for
this: 1) poor morphological characters and uncertain
nature of many fossil groups; imperfect classification
especially among thè procaryotes where pure mor¬
phological characters have very low taxonomic
value; 2) low biological diversity at thè species level,
which is thè most effective for thè purpose of de-
tailed biostratigraphy and evolutionary modeling;
3) lack of data on thè evolutionary lineages for thè
most of thè Precambrian groups of organisms; 4) low
precision of thè biostratigraphic division and telecor-
relation of thè Precambrian strata if compared with
Phanerozoic counterparts; 5) change in time of thè
environmental biotic and abiotic factors which
strong influence on thè taphonomic processes (such
as an oxygenization of thè sediment, development of
heterotrophy, bioturbation, thè rise of thè filter feed-
ers, etc. see Fedonkin, 1985, 1987, 1992).
In contrast with thè classical paleontology of thè
Phanerozoic thè study of thè Precambrian history of
life is predominantly oriented to thè world of thè
procaryotes which dominated in thè most of envi-
ronments during thè major portion of thè history of
thè biosphere. The rise of thè eucaryotes essentially
wiped off thè picture of thè procaryotic world though
they continue to play a great role in most biological
processes. Competing with bacteria for some nu-
trients and habitats, forcing thè procaryotes out of
numerous biotopes, utilising thè by-produets of pro¬
caryotic life activity and consuming thè bacterial bio¬
mass as food eucaryiotic organisms have changed
thè world and thè fossil record as well.
On thè other hand, in thè process of thè symbiotic
origin of thè eucaryots accompanied by thè colonisa-
tion of thè host celi by procaryotic organisms thè lat-
ter have lost their individuality while they lost their
free mode of life. So part of thè procaryotes disap-
peared just because they became thè organelles of
eucaryotic cells.
And last but not least, eucaryotes have essentially
contributed to thè global change of environments fa-
vorable for thè life activity and fossilisation of proca¬
ryotic organisms.
A great advantage of thè Precambrian fossil record
in spite of thè diffìculties mentioned above is an ab-
sence of a developed trophic pyramid above thè net¬
work of procaryotic biogeochemical interactions.
This circumstance opens up a unique possibility to
read undisturbed paleontological, sedimentological
and biogeochemical signals from thè procaryotic
THE PRECAMBRIAN FOSSIL RECORD: NEW INSIGHT OF LIFE
43
ecosystems of thè Precambrian biosphere during
most of its history. Conservatism of thè procaryotes
in their morphological, ecological and biochemical
aspects, relative simplicity and determinate character
of their biogeochemical ties and reactions make it ea-
sier to decode thè geochemical and sedimentological
signals of thè Precambrian procaryote-dominated
biota especially in thè Archean and Early Proterozoic
parts of thè geological record.
Paleontology of thè Precambrian deals with diver¬
se microfossils, thalli of megascopic algae, metazoan
body fossils and bioturbations, stromotolites and
some other biosedimentary structures, biogenic mi-
nerals, kerogens, organic films, biomarkers and
other organic chemofossils. Along with thè pure pa-
leobiological methods thè geobiological approach
(review in Fedonkin, 1993, 1994b, in press) has been
actively developing during last two decades.
According to thè geobiological approach thè bio¬
sphere should be considered an integrated System of
interacting biotic and abiotic components where life
acts as thè most active part of thè System (Vernadski,
1926). Recent models of Precambrian climates, atmo-
sphere and ocean chemistry, sedimentary processes,
etc. do include thè biota as an active factor control-
ing those processes (Lovelock, 1979; Charlson et al.,
1987; Chaloner and Cocks, 1989; Derry et al., 1992).
On thè other hand, thè study of those processes
which are usually beyond thè scope of paleontology
(for instance, thè isotope record of carbon and sul-
fur) casts additional light upon thè biota and envi-
ronment in thè Precambrian (Zavarzin, 1984; Hol-
land, 1984, 1992; Kasting and Ackerman, 1986; Hayes
et al., 1992a,b; Schopf and Klein, 1992 and references
therein). The limited lenght of this paper makes me
concentrate mainly on paleontological objects — on
thè Precambrian fossil record as it recently come to
look after a few decades of intensive study.
The Precambrian fossil record demonstrates that
during thè major portion of thè history of life thè mi¬
croscopie organisms, in particular procaryote, have
dominated in all thè habitats. Precambrian microor-
ganisms usually are preserved a) as mummifìed or
organic-walled microfossils, and b) as minerai pseu-
domorphs (silicified ones are thè most common in
thè chert nodules or inside thè silicified stromatoli-
tes and bacterial mats). Being heterogenous by their
nature (eubacteria, lower eucaryotic algae, lower
fungi, protozoans, cysts, eggs and egg cases etc.) thè
microfossils demonstrate three important trends
through out thè Precambrian fossil record, namely
thè growth of morphological diversity, increasing in¬
dividuai celi size and thè tendency to coloniality
(Schopf, 1992 a, b,c).
Celi size analysis and thè study of thè internai
structure of thè microfossils were thè major approa-
ches to thè problem of thè nature and taxonomic di¬
versity of thè oldest Precambrian microorganisms.
None of thè approaches gave definite arguments.
Dramatic discussions of thè nature of thè «dark
spots» inside some of thè microfossils (nucleus, col-
lapsed protoplasm, gas vacuole or an organelle?)
have led to a number of additional approaches, e.g.
thè study of thè postmortem degradation of recent
microorganisms in vivo and in vitro, experiments
on thè artificial fossilisation of thè microorganisms,
actuopaleontological and taphonomic research etc.
(Golubic and Hofmann, 1976; Knoll, 1985 a; Pierson,
1988; Krylov, Tikhomirova, 1988; Rothschild and
Mancinelli, 1990).
These approaches were supplemented by thè com¬
parative study of thè ecology of thè recent bacterial
communities and their Precambrian counterparts
(Castenholz et al., 1992). The structure of thè com¬
munity and thè kind of environment were supposed
to give thè key to thè problem of thè nature of thè
Precambrian microfossils. In particular, it was de-
monstrated that thè recent bacterial communities of
sabkhas, marshes and lagoons of thè arid climatic
zones might be considered as analogs for thè globally
dominated ecosystem through most of Precambrian
life history (Awramik, 1984; Knoll, 1985 b).
Later on it carne to be understood that thè wide
range of thè procaryotic tolerance and their asto-
nishing biochemical diversity essentially exceeds thè
dominant environmental parameters of thè recent
biosphere. This observation has led to an idea that
thè space of biochemical diversity, thè tolerance li-
mits and thè physico-chemical parameters favorable
for thè most intensive reproduction in some recent
procaryotes may be indicative of thè environments
which existed on Early Archean Earth, i.e. during thè
periods of thè rise of thè procaryotic world (Knoll
and Bauld, 1989).
Thus, two actualistic approaches mentioned above
have given rise to non-actualistic models of thè Pre¬
cambrian biospheres. And again, here one can see
thè importance of thè data on Precambrian environ¬
ments for adequate paleobiological reconstructions
and research on thè systematics of thè oldest fossils.
The most notable evidence of thè microbial life
activity in thè Precambrian are thè stromatolites.
These biosedimentary structures fìrst appear as early
as 3.5 billion years ago and became widespread in
Early Proterozoic as thè dominant shallow water
landscape of carbonate platforms. The abundance
and morphological diversity of thè stromatolites in-
creased rapidly during Proterozoic and reached thè
maximum at about 1.0 billion years ago (Walter and
Heys, 1985).
Though thè stromatolites are in fact thè remnants
of biogeocoenoses they are referred to by Latin
names to identify thè formai morphological «genera»
and «species» and are arranged into thè formai Sys¬
tems according to their generai shape, mode of
branching, microstructure etc. The nature of thè
stromatolite morphological characters and of thè
stromatolite taxa is not well understood. However
thè taxonomy of stromatolites became an important
instrument to search thè Precambrian life history.
Distinct changes in thè stromatolite assemblages
through thè Precambrian fossil record discovered
empirically by thè paleontologists of thè Russian
biostratigraphic school (Maslov, 1960; Krylov, 1963,
1975), may reflect both intrinsic factors (such as
changes in thè structure and composition of thè mi¬
crobial communities, biological and biochemical in-
novations of thè stromatolite-building procaryotes)
and extrinsic factors (such as change in thè chemistry
of thè ocean and thè atmosphere, global climate and
paleogeography, appearance of thè eucaryotic groups
competing with or feeding on thè stromatolite bacte¬
rial communities).
Stromatolites as thè globally dominating biogenic
landscape of thè Proterozoic shallow water environ¬
ments demonstrate marked decline in their abun-
44
MIKHAIL A. FEDONKIN
dance and diversity after 1.0 billion years ago and es-
pecially dramatic after 700 million years ago. The
possible cause for thè stromatolite decline might be:
a) negative effect of thè new evolved grazing and
burrowing metazoans (Awramik, 1971; Walter and
Heys, 1985); b) appearance of eucaryotic algae com-
peting with thè cyanobacteria for nutrients, habitats
and light (Monty, 1974); c) major low-stands in thè
sea level (Gebelein, 1976); d) negative effect of thè
growing concentration of biogenic oxygen upon thè
bacterial stromatolite-building communities (Kry-
lov, 1988); e) decreasing carbonate of thè sea water
during thè Late Proterozoic (Grotzinger, 1990); f) ch¬
inate change, in particular African Glacial Era and its
paleogeographic and geochemical consequences
(Semikhatov and Raaben, 1993). In fact, all these hy-
potheses may be complementary.
Along with thè stromatolites and rare remnants of
thè carbonate algae which are indicative of carbonate
biomineralization in thè Precambrian there are other
biominerals which are thè mineralogical evidence of
thè other groups of organisms, though their celi (or
body) fossils are unknown. Biomineralization is a ra-
ther usuai phenomenon of life. About 60 minerals
are produced by representatives of all five kingdoms
of thè organic world and biomineralogical diversity is
far from being exhausted (Lowenstam and Weiner,
1989).
Biominerals which have a unique shape of their
crystals as well as other physico-chemical properties
can easily be distinguished from their abiogenic
counterparts and may be used as markers of certain
groups of organisms in thè geological record.
At least one-third of thè known biominerals are
produced by thè procaryotes but thè biochemical
possibilities of thè bacteria are far broader than thè
geochemical diversity of recent naturai environ-
ments. Given this fact we hope to discover a greater
diversity of procaryotic biominerals in thè Precamb¬
rian. Recently thè first steps in this direction were
taken. Isotopie composition of sulphide minerals
may indicate thè presence of biologically induced
biomineralization as far back as 2.7 billion years ago
(Monster et al., 1979). Direct evidence of thè presen¬
ce of magnetobacteria about 2.0 billion years ago is
thè recently discovered biogenic magnetite crystals
in Lower Proterozoic rocks (Kirschvink, 1992). The
earliest produets of life activity of thè encrusting
manganese bacteria have been discovered in depo-
sits 1.6 billion years old (Muir, 1978). The oldest evi¬
dence of carbonate biomineralization is represented
by thè slightly calcifìed cyanobacteria in rocks 1.0 bil¬
lion years old (Riding and Voronova, 1982, 1984).
The last decade has been marked by success in thè
separation, identification and taxonomic interpreta-
tion of biologically meaningful organic compounds
(or biomarkers) from Precambrian kerogens and hy-
drocarbons (Hahn, 1982; Hoering, 1987; Summons
and Walter, 1990; Ourisson, 1990). A generai trend in
thè biomarker time-distribution demonstrates their
limited diversity in thè Early-Middle Proterozoic and
increasing diversity towards thè end of thè Precamb¬
rian. This approach makes it possible to construct
simple «molecular phylogenetic trees» and to identi-
fy thè appearance of thè major known groups of thè
organisms in thè fossil record. For example, pentacy-
clic triterpane hydrocarbons represent thè molecular
remnants of thè eubacteria, some sterols represent
eucaryotes, and some acyclic isoprenoids are indica¬
tive of thè archebacteria (thè kingdom which did not
leave any morphological traces in thè fossil record).
There have also been discovered some unusual
kinds of biomarkers, indicative of thè groups of mi-
croorganims of a hight taxonomic rank which existed
in thè Proterozoic and became extinct later (Sum¬
mons and Walter, 1990).
The study of thè oldest biomarkers from thè
well preserved Proterozoic sediments may indicate
that microbial communities of thè Middle and Late
Proterozoic included not only cyanobacteria and
phototrophic eucaryots but, possibly, heterotrophic
protozoans. There were organisms resembling rec¬
ent dinoflagellates among thè Late Proterozoic
plankton.
The increasing abundance and diversity of megas-
copic fossils observed through thè Proterozoic fossil
record seems to reflect thè rise of multicellularity,
which could appear repeatedly and independently in
all kingdoms of thè organic world. In some groups
multicellularity might be genetically preserved due
to thè selective advantage of large body size and indi¬
viduai biomass or because celi specialisation.
The oldest megascopic carbonaceous fossils,
which are approximately 2.0 billion years old, may
stili represent thè flattened remains of microbial co-
lonies or bacterial mat fragments. Some appearance
of cellular structure is extremely rarely observed.
Morphologically more complex carbonaceous fossils
with some possible anatomical details appear in thè
rocks of about 1.4 billion years old but they are be-
coming more complex and diverse after 0.8-0. 9 bil¬
lion years ago. Most of these fossils are interpreted
as eucaryotic algae though some of them are con-
sidered as probable colonial procaryotes, fungi or
even metazoans (Hofmann, 1992).
Of criticai importance may be thè recent discovery
of a megascopic, spirally coiled cylindrical alga,
Grypania, in rocks 2.1 billion years old (Han, 1991;
Han and Runnegar, 1992). The fossil is interpreted as
thè oldest eucaryotic photosynthetic autotrophic
organism.
Undoubtedly metazoan body fossils and trace fos¬
sils (or bioturbations) first appear in Vendian rocks
about 620 million years old which is extremely late
compared to thè age of life on Earth. Most of thè
metazoas appeared abruptly after thè great Varange-
rian Glaciation and spread rapidly all over thè globe
during thè vast post-glacial transgression of thè seas
over thè continents.
Astounishing peculiarities of thè oldest known an¬
imate are: a) their large body size (up to 1 meter and
more so they look gigantic compared with thè small
shelly fossils of thè early Lower Cambrian); b) gene-
rally an absence of a minerai skeleton in thè majority
of animate; c) high diversity oflife forms; d) high dif-
ferentiation at thè level of a high taxonomic rank, i.e.
remarkable diversity of thè body plans including
some unusual ones unknown or normally rare in
later metazoans; e) low diversity at thè species level
(monotypic genera dominating); f) domination of
Radialia or Diploblastica, i.e. thè animate of thè coe-
lenterate grade of organisation in thè fossil assem-
blages; g) widespread metamerism (true segmenta-
tion) and pseudosegmentation among thè forms
which may be interpreted as Bilateria or Triploblasti-
ca (Fedonkin, 1987).
THE PRECAMBRIAN FOSSIL RECORD: NEW INSIGHT OF LIFE
45
Interpretation of thè Vendian metazoan body fos-
sils known as thè Ediacara fauna (Glaessner, 1984)
has met numerous methodological difficulties for
number of reasons, e.g. unusual taphonomic cir-
cumstances, poor fossil record of thè Phanerozoic
soft-bodied invertebrates (few forms to compare),
predominance ot forms with «strange» body plans
(problematics or forms of uncertain systematic po-
sition), and an absence of data on thè Pre-Vendian
metazoans. Comparison of Ediarca fauna with
recent soft-bodied invertebrates is not very easy
because of thè great evolutionary distance that se-
parates them. All these aspects put thè Precambrian
metazoans in a position of an apparent (but illuso-
ry) phylogenetic isolation. Examples of thè evolu¬
tionary ties between thè Vendian and Cambrian
faunas are in fact more numerous than one could
suppose some years ago (Conway Morris, 1993;
Fedonkin, 1994a).
Although thè first specimens of thè Precambrian
metazoans were collected in Namibia in 1908-1914
(Gurich, 1929) it took decades to prove thè Precamb¬
rian age of thè fauna (Sprigg, 1947, 1949; Glaessner
and Daily, 1959; Glaessner and Wade, 1966). Since
thè time of Darwin, naturalists were puzzled by thè
apparent absence of metazoan remains in thè Pre¬
cambrian fossil record. Darwin himself considered
an absence of data on thè ancestors of thè Cambrian
fauna as a strong and disturbing argument against his
theory of thè gradualistic origin of species. Attempts
to explain thè apparent absence of thè metazoan fos¬
sil record below thè Cambrian strata did not seem
convincing to Darwin himself (see chapter X of thè
«Origin»).
This situation provided psychological preparation
for thè (chronologically) first approach that was de-
veloped for thè interpretation of Precambrian meta¬
zoans. The fossils were considered thè remains of in¬
vertebrates belonging to thè same high rank taxa as
known Phanerozoic animals (including recent ones).
Other psychological aspects of this approach are
based on thè opinion, whish dominated for a long time
among paleontologists, that thè high rank System
of thè invertebrates seems to be thè same from
Cambrian to recent time. The extremely poor fossil
record of soft-bodied animals in thè Phanerozoic
made thè paleontologists look through thè diversity
of thè recent metazoans for comparison with thè Pre¬
cambrian ones. Such a comparison had to be done,
but along with paying attention to thè prevailing
body plans and thè peculiarities of morphology in
norm, one must pay no less attention to thè small
relict groups, to unusual morphological phenomena,
and even to thè teratology of thè invertebrates to
fìnd thè whole range of morphological possibilities.
The norm demonstrates a more narrow spectrum of
characters but affects our work as systematists rather
strongly.
According to thè first approach thè Precambrian
fauna should be placed into thè following taxa: Phy-
lum Coelenterata (classes Hydrozoa, Anthozoa, Scy-
phozoa, Conulata, medusae of uncertain systematic
position and problematic Petalonamae), Phylum
Annelida (class Polychaeta), Phylum Arthropoda
(superclass Trilobitomorpha or Chelicerata), Phy¬
lum Pogonophora, Phylum Echiurida, as well as
some forms of uncertain systematic position even at
thè level of thè phylum (Glaessner, 1984).
The chronologically second approach has pointed
out thè dissimilarity of thè Vendian invertebrates to
their recent conterparts (Fedonkin, 1983). For practi-
cally all species of Ediacara fauna one can point out
characters that are in disagreement with thè groups
of recent invertebrates with which they have been
compared. Comparative body pian analysis of thè
Vendian body fossils, with special attention to their
symmetry as thè result of thè basic growth pattern, to
thè preservation, and to thè mode of life has led to a
different view of thè System and thè early evolution
of metazoans in thè Precambrian (Fedonkin, 1985,
1987, 1992, 1994a). In particular, three new classes of
thè coelenterates were established (Cyclozoa, Inor-
dozoa and Trilobozoa), a new Phylum Proarticulata
(with thè classes Dipleurozoa and Vendiamorpha),
and new arthropod class Paratrilobita (Fedonkin,
1985, 1990).
The third approach underlines an unusual tapho-
nomy and architecture of thè Vendian body fossils
considering most of them as representatives of thè
non-metazoan Kingdom Vendobionta (Seilacher,
1989). Sandy exoskeletons of an extinct group of
botom-dwelling sea anemones (Psammocorallia)
and thè trace fossils represents «true» metazoans
(Seilacher, 1990). Criticai analysis of thè concept
of Vendobionta has been published elsewhere
(Gehling, 1991, Fedonkin, 1992, 1994a, Conway Mor¬
ris, 1993).
Though thè System of thè Vendian body fossils is
under an intensive discussion thè key arguments in
favor of their metazoan nature are being received
from taphonomic and paleoecological study, and
from thè comparative promorphological (Bauplan)
analysis of these fossils and their later counterparts.
What are thè major revelations of life in thè light
of thè Precambrian fossil record?
1. The Phanerozoic fossil record embraces less
than 15 per cent of life history. The ages of Earth and
life are comparable. This fact returns our attention to
thè old idea of panspermia and to thè statement by
V.V. Vernadski that «life is geologically eternai».
Taking into account thè preservational aspect of
thè Precambrian fossil record (thè older thè deposits
thè less paleobiological information is preserved)
and thè ecosystem principle of thè life maintaining
(from thè very early moment thè life should exist as
an ecosystem uniting thè organisms with thè differ¬
ent trophic and biogeochemical functions) we
should talk about thè appearance rather than thè ori-
gin of life on Earth. One cannot rule out thè possibil-
ity that thè question on thè origin of life might be
posed incorrectly. The paleontology of thè Precamb¬
rian revives this problem though its resolution may
be beyond thè scope of paleontology.
2. During thè major portion of life history thè
procaryotic ecosystems have dominated absolutely
in thè most of thè habitats. However, neither mor-
phologically nor ecologically have thè procaryotes
changed much during 3.8 billion years since they
first appeared in thè fossil record. This may be parti-
cularly true for thè cyanobacteria which have a pre¬
servational potential that is higher than that of other
procaryotes because of their larger celi size and their
ecological peculiarities.
3. The history of thè biosphere can be subdivided
into two parts. The earlier and longer period of time
was marked by thè dominance of conservative bacte-
46
MIKHAIL A. FEDONKIN
rial ecosystems and by graduai and steady changes in
thè abiotic parameters of thè environment. The envi-
ronmental change was essentially produced by thè
biota. The later and shorter aeon is characterised by
thè rapidly evolving eucaryotic organisms and by thè
relatively stable abiotic parameters of thè environ¬
ment controlled by thè biota.
4. A two-stage structure of thè global biota consist-
ing of a conservative and stable procaryotic «founda-
tion» and an extremely changeable eucaryotic
«building» or «epistructure», was effectively formed
during thè Late Proterozoic. The eucaryotic trophic
pyramid was built above thè pre-existing network of
biogeochemical interactions between thè microbial
communities. This additive phase in thè evolution of
thè global ecosystem was relatively short. The sub-
stitution of thè individuai members in thè eucaryotic
trophic hierarchy became thè major process in thè
subsequent history of thè global ecosystem which
retained its principal structure.
5. The world of diverse eucaryotes is in fact an epi-
phenomenon on thè procaryotic ecosystems. Thus,
evolution in a Darwinian sense as well as thè phylo-
geneses seem to be relatively late phenomena of thè
life history. The phylogenetic tree as a symbol of
irreversible and divergent mode of historical deve-
lopment reflects thè late and shorter part of life
history which was predated by longer periods of
mosaic or network «evolution».
6. Though thè phylogenetic roots of thè eucaryo¬
tes go as far as 2.0 billion years ago these organisms
did not play an essential role in thè global ecosystem
untili thè Neoproterozoic. For a long period of
time since thè moment of their appearance thè euca¬
ryotes seemed to stay in thè limits of their primary
biotopes.
7. The primary biotopes for eucaryotic cells could
be thè microenvironments with sharp geochemical
(and/or light and thermal) gradients and conse-
quently with different procaryotic populations close-
ly spaced. The symbiogenetic origin of thè eucaryots
was in fact thè process of thè miniaturization of thè
pre-existing procaryotic ecosystems dowm to thè
size of thè celi.
8. In spite of thè incredible tollerance of thè proca-
ryotes to a wide variety of thè environmental factors
and their ability rapidly to restore an optimal popula-
tion density they were forced out as thè dominants
from most of their habitats by thè eucaryotic orga¬
nisms at thè end of thè Proterozoic. Eucaryotes have
opposed their ability to evolve at thè species and eco¬
system levels, their stupefyng diversity, more active
metabolism and larger individuai biomass. But what
is more important is that thè eucaryots have created
longer trophic chains. More complex ecosystems
turned out to be more economica! energetically.
9. The relative simplicity of trophic Systems, and
thè determinate and conservative character of thè
biogeochemical and reproductive reactions of thè
procaryotes to thè abiotic factors of thè environment
make it methodologically easier to decode thè bio-
genie signals from thè Precambrian fossil record of
thè procaryots than from thè Phanerozoic one. Being
masked by thè eucaryotic epistructure thè Phanero¬
zoic world of thè procaryotes remains obscure. Clas-
sical Phanerozoic paleontology is traditionally
oriented to thè eucaryotes mainly because of their
high preservational potential, great diversity and
evolutionary change (i.g. thè factors important for
biostratigraphic purposes). However, one should
take into account that thè rise of thè eucaryotes was
thè cause of thè destruction and deformation of thè
procaryotic fossil record.
10. An actualistic approach to thè interpretation of
thè Precambrian procaryotic communities and their
habitats leads to thè non-actualistic model of thè glo¬
bal environment.
Acknowledgements - I am grateful to Prof. Mi¬
chael T. Ghiselin, Prof. Francesco Scudo and Prof.
Giovanni Pinna, thè organizers of thè workshop Bio-
logical Systematics as a Historical Sciences in Milan
for thè possibility to discuss thè problems outlined in
this paper in a highly intellectual and stimulating en¬
vironment, as well as for their acute questions and
valuable comments. I appreciate very much thè more
detailed discussion of thè problems of thè Precamb¬
rian paleozoology with Prof. Alberto Simonetta.
REFERENCES
Awramik S. M., 1971 - Precambrian columnar stromatolite di¬
versity: reflection of metazoan appearance. Science, 174:
825-827.
Awramik S. M., 1984 - Ancient stromatolites and microbial mats.
In Cohen Y., Castenholz R. Z. and Halvorsen H. O. (eds).
Microbial Mats: Stromatolites. Allan R. Liss, New York,
N.Y.: 1-22.
Burchfield J. D., 1990 - Lord Kelvin and thè age of thè Earth.
The University of Chicago Press, Chicago and London: 267
pp.
Castenholz R. W., D’Amelio E., Farmer J. D., Barker
Jorgersten B. B., Palmisano A. S., Pierson B. K. and
Ward D. M., 1992 - Modem mat-buiding microbial commu¬
nities: methods of investigation and supporting data. In:
Schopf J. W and Klein C. (eds.). The Proterozoic Biosphere.
A Multidisciplinary Study. Cambridge University Press. Cam¬
bridge: 202-229.
Chaloner W. G. and Cocks L. R. M., 1989 - Biota and pa-
leoatmosphere. Journal of thè Geological Society, 46 (1):
145-146.
Charlson R. G. Lovelock G., Anmdreae M. O., Warren S. G.,
1987 - Oceanie phytoplankton, atmospheric sulphur, cloud
albedo and climate. Nature, 326 (6114): 655-661.
Cloud P. E. and Semikhatov M. A., 1969 - Proterozoic stromato¬
lite zonation . American Journal of Sciences, 261: 1017-1061.
Conway Morris S., 1993 - Ediacaran-like fossils in Cambrian
Burgess Shale-type faunas of North America. Palaeontology,
36, part 3: 593-635.
Dery L. A., Kaufman A. J. and Jacobsen S. B., 1992 - Sediment-
ary cycling and environmental change in thè Late Proterozo¬
ic: evidence from stable and radiogenic isotopes. Geochimica
et Cosmochimica Acta 56: 1317-1329.
Fedonkin M. A., 1983 - Organic World of thè Vendian. (Transac¬
tion ofthe Institute of Scientific and Technical Information,
Itogi Nauki i Tekhniki). Stratigrapy and Paleontology, 12:
128 pp. (In Russian).
Fedonkin M. A., 1985 - Precambrian metazoans: thè problems of
preservation, systematics and evolution. Philosophical Tran-
sactions of thè Royal Society of London. Part B 311: 27-45.
Fedonkin M. A., 1987 - Non-skeletal Fauna of thè Vendian and
Its Place in thè Evoultion of Metazoans. Transactions of thè
Paleontological Institute. Nauka, Moscow, 226: 175 pp. (In
Russian).
Fedonkin M. A., 1990 - Systematic description of thè Vendian Me-
tazoa. In: Sokolov B. S. and Iwanowski A. B. (eds.). The Ven¬
dian System. Paleontology. Springer Verlag, Berlin, 1: 71-120.
THE PRECAMBRIAN FOSSIL RECORD: NEW INSIGHT OF LIFE
47
Fedonkin M. A., 1991 - Biosphere: fourth dimension. Priroda, 9:
10-18. (In Russian).
Fedonkin M. A., 1992 - Vendian faunas in thè early evolution of
Metazoa. In: Lipps J. H. and Signor P. W. (eds.). Origin and
Early Evolution of thè Metazoa. Plenum Press, New York:
87-129.
Fedonkin M. A., 1993 - Paleobiology of thè Precambrian: on thè
way to a synthesis. In: Sokolov B. S. and Iwanowski A. B.
(eds.). Fauna and Ecosystems of thè Geological Past. Nauka,
Moscow: 7-21. (In Russian).
Fedonkin M. A., 1994a - Vendian body fossils and trace fossils.
In: Bengston S. (ed.). Early Life on Earth (Nobel Sympos¬
ium 84). Columbia University Press.
Fedonkin M. A., 1994b - Geobiological trends and eventts in
thè Precambrian biosphere. In: Walliser O. H. (ed.). Global
Biological Events in Earth History (Final volume of IGCP
Project 216) (in press).
Gebelin C. D., 1976 - The effect of thè physical, Chemical and
biological evolution of thè Earth. In: Walter M. R. (ed.).
Stromatolites: Developments in Sedimentology. Elsevier,
Amsterdam, 20: 499-516.
Gehling J. G., 1991 - The case for Ediacaran roots to thè meta-
zoan tree. Memoirs of thè Geological Society of India, 20:
181-224.
Glaessner M. F., 1984 - The Dawn of Animai Life. A Biohistori-
cal Study. Cambridge University Press, Cambridge: 224 pp.
Glaessner M. F. and Daily B., 1959 - The geology and thè late
Precambrian Fauna of thè Ediacara fossil reserve. Records of
thè South Australian Museum, 13 (3): 369-401.
Glaessner M. F. and Wade M., 1966 - The late Precambrian
fossils from Ediacara, South Australia. Paleontology, 9 (4):
599-628.
Golubic S. and Hofmann H. J., 1976 - Comparison of modera
and mid-Precambrian Entophysalidaceaea (Cyanophyta) in
stromatolite algal mats: celi division and degradation. Jour¬
nal of Paleontology 50: 1074-1082.
Grotzinger J. P., 1990 - Geochemical model for Proterozoic
stromatolite decline. American Journal of Science, 290-A:
80-103.
Grunbaum A., 1969 - Philosophical Problems of Space and Time.
Progress, Moscow: 590 pp. (In Russian).
Gurich G., 1929 - Dis bisland altesten Spuren von Organisme in
Sudafrika. International Geological Congress, Pretoria, 15:
670-680.
Hahn J., 1982 - Geochemical fossils of a possibly archaeobacte-
rial origin in ancient sediments. Zbl. Bakt. Hyg. J. Abt. Orig.,
C3: 40-52.
Hayes J. M., Des Marais D. J., Lambert I. B., Strauss H. and
Summons R., 1992a - Proterozoic biogeochemistry. In:
Schopf J. W. and Klein C. (eds.). The Proterozoic Biosphere.
A. Multidisciplinary Study. Cambridge University Press,
Cambridge: 81-134.
Hayes J. M., Lambert I. B. and Strauss H., 1992 b. - The sul-
phur isotopie record. Cambridge University Press, Cambrid¬
ge: 129-132.
Hoering T. C., - 1987 - A search for molecular fossils in thè ke-
rogen of thè Precambrian sedimentary rocks. Precambrian
Research, 34: 247-267.
Hofmann H. J., 1971 - Precambrian Fossils, Pseudofossils and
Problematica in Canada. Bulletin Geological Survey of Cana¬
da, 189: 146 pp.
Hofmann H. J., 1972 - Precambrian remains in Canada: fossils,
dubiofossils, and pseudofossils. International Geological
Congress, 24th Session, Montreal. Proceedings, Section 1:
20-30.
Hofmann H. J., 1992 - Proterozoic carbonaceous films. In:
Schopf J. W. and Klein C. (eds.). The Proterozoic Biosphere.
A Multidisciplinary Study. Cambridge University Press., New
York: 349-357.
Holland H. D. 1984 - The Chemical Evolution of thè Atmosphe-
re and Ocean. Princeton University Press, Princeton: 582 pp.
Holland H. D., 1992 - Major aspeets of atmospheric evolution
during thè Precambrian. International Geological Congress,
29th Session, Kyoto. Abstracts, 1: 170 pp.
Kasting J. F. and Ackerman T. P., 1986 - Climatic consequences
of very high C02 level in earth’s early atmosphere. Science,
234: 1383-1385.
Kirschvink J. L., 1982 - Magnetite biomineralization and thè
evolution of thè eucaryotic celi. International Geological
Congress, 29th Session, Kioto. Abstracts, 2: 340 pp.
Knoll A. H., 1985 a - Exceptional preservation of photosynthetic
organisms in silicifìed carbonates and silicifìed peats. Philo¬
sophical Transactions of thè Royal Society of London, B 311:
111-122.
Knoll A. H., 1985 b - A paleobiological perspective on sabkhas.
In: Friedman G. M. and Krumbein W. E. (eds.). Hypersaline
Ecosystems. Springer, Berlin: 407-427.
Knoll A. H. and Bauld J., 1989 - The evolution of ecological tol-
lerance in procaryotes. Transaction of thè Royal Society of
Edinburgh. Earth Sciences, 80: 209-223.
Krylov I. N., 1963 - Columnar Branchiong Stromatolines from
Riphean Deposits of South Urals and Their Significance for
thè Stratigraphy of Upper Precambrian. Transactions of thè
Geological Institute. USSR Academy of Sciences. Nauka,
Moscow, 69 170 pp. (In Russian).
Krylov I. N., 1975 - Stromatolites of thè Riphean and Phanero-
zoic of thè USSR. Nauka, Moscow: 243 pp. (In Russian).
Krylov I. N., 1988 - The first ecological catasprophe has already
happened. Znaniye-Sila, 2: 44-47. (In Russian).
Krylov I. N. and Tikhomirova N. S., 1988 - On thè formation of
silicifìed microfossils. Paleontologicheskii Zhurnal, 3: 3-9. (In
Russian).
Lovelock J. E., 1979 - Gaia: A New Look at Life on Earth. Oxford
University Press, New York: 157 pp.
Lowenstan H. A. and Weiner S., 1989 - On Biomineralization.
Oxford University Press, New York: 324 pp.
Maslov V. P. 1960 - Stromatolites. Transactions of thè Geologi¬
cal Institute. USSR Academy of Sciences. Nauka, Moscow,
4L (In Russian).
Monster J., Appel P.W. U., Thode H.G. and Bridgewater D.,
1979 - Sulfur isotope studies on early Archean sedi¬
ments from Isua, West Greenland. Implications for thè
antiquity of bacterial sulfate reduction. Geochimica Acta,
43: 405-413.
Monty C. L.V., 1974 - Precambrian background and Phanerozoic
history of stromatolitic communities, an overview. Annales
del la Societe Geologique de Belgique, 96: 585-624.
Muir M. D., 1978 - Microenvironments of some modera and
fossil iron- and manganese-oxidising bacteria. In: Krum¬
bein W. E. (ed.). Environmental Biogeochemistry and Geo-
microbiology. Ann Arbor Scientific Pubi., Ann Arbor, MI:
937-944.
Ourisson G., 1990 - The generai role of terpenes and their global
significance. Pure and applied Chemistry, 60 1401-1404.
Pierson B. K., 1988 - Ecology and physiological characteristics of
modera microbial mats: perspectives for interpretations of
Proterozoic benthic communities. In: The Proterozoic Bio¬
sphere: a multidisciplinary study. A Symposium. University
of California, Los Angeles: 25-26.
Riding R. and Voronova L., 1982 - Calcified cyanobacteria and
thè Precambrian-Cambrian transition. Naturwissenschaften,
69: 498-499.
Riding R. and Voronova L., 1984 - Assemblages of calcareous
algae near thè Precambrian/Cambrian boundary in Siberia
and Mongolia. Geological Magazine, 121: 205-210.
Rothschild L. D. and Mancinelli R. L., 1990 - Model of carbon
fixation in microbial mats from 3,500 Myr ago to thè present.
Nature, 345 (6277): 710-712.
Schopf J. W., 1992 a - The oldest fossils and what they mean. In:
Schopf J. W. (ed.). Major Events in thè History of Life. Jones
and Bartlett Publishers Ine., Boston: 29-61.
Schopf J. W., 1992 b - Petterns of Proterozoic microfossil diversi-
ty: an initial tentative analysis. In: Schopf J. W. and Klein C.
(eds). The Proterozoic Biosphere. A Multidisciplinary study.
Cambridge University Press, new York: 529-552.
Schopf J. W., 1992 c - Proterozoic procaryotes: affìnities, geo¬
logie distribution, and evolutionary trends. Cambridge Uni¬
versity Press, New York: 195-218.
Schopf J. W. and Clein C. (eds.), 1992 - The Proterozoic Bio¬
sphere. A Multidisciplinary Study. Cambridge University
Press, New York: 1348 pp.
Seilacher A., 1989 - Vendozoa: organismic construction in thè
Proterozoic biosphere. Lethaia, 22: 229-239.
Seilacher A., 1990 - Precambrian evolutionary experi-
ments: Vendozoa and Psammocorallia. In: Alberch P. and
Dover G. A. (eds.). The Reference Points in Evolution. Fun-
dacion Juan March., serie Universitaria, 225: 48-53.
Semikhatov M. A. and Raaben M. E., 1993 - Dynamics of syste-
matic diversity of Riphean and Vendian stromatolites of
northern Eurasia. Stratigraphy. Geological Correlation, 1
(82): 3-12. (In Russian).
Sokolov B. S. and Fedonkin M. A., 1988 - Early stages of life
development on Earth. In: Menner V. V. and Makridin V. P.
(eds.). Modera Paleontology. Nedra, Moscow, 2: 118-141. (In
Russian).
Sprigg R. C., 1947 - Early Cambrian (?) jellyfishes from thè
Flinders Ranges, South Australia. Transactions of thè Royal
Society of South Australia, 71: 212-234.
48
MIKHAIL A. FEDONKIN
Sprigg R. C., 1949 - Early Cambrian «jellyfishes» of Ediacara,
south Australia, and Mount John, Kimberley Distict, wes¬
tern Australia. Transactions of thè Royal Society of South
Australia, 73: 72-99.
Summons R. E. and Walter M. R., 1980 - Molecular fossils of
procaryotes and protists from Proterozoic sediments. Ameri¬
can Journal of Science, 290-A: 212-244.
Thompson D. W., 1942 - On Growth and Form. Cambridge Uni¬
versity Press, Cambridge: 1116 pp.
Vernadski V. I., 1926 - Biosphere. Leningrad. 146 pp. (In Rus-
sian).
Walter M. R. (ed.), 1976 - Stromatolites. developments in Sedi-
mentology. Elsevier, Amsterdam, 20: 790 pp.
Walter M. R., 1992 - Stratigraphic distribution of stramatolites
and alliend structures. In: Schopf J. W. and Klein C. (eds.).
The Proterozoic Biosphere. A Multidisciplinary Approach.
Cambridge University Press, New York: 507-509.
Walter M. R. and Hayes G. R., 1985 - Links between thè rise of
thè metazoa and thè decine of stromatolites. Precambrian
Research, 29: 149-174.
Zavarzin G. A., 1984 - Bacteria and thè Composition of thè
Atmosphere. Naika, Moscow: 199 pp. (In Russian).
I
I
Mikhail A. Fedonkin: Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow 117647 RUSSIA
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
Michael T. Ghiselin
Charles Darwin, Fritz Miiller, Anton Dohm, and thè origin
of evolutionary physiological anatomy
Abstract - Darwin brought a truly historical perspective into evolutionary biology that differed fundamentally from
formalistic and orthogeneticist notions of change. His approach to historical reconstruction was strongly influenced by his
geological research. Scenarios in his monograph on barnacles illustrate his physiological approach, with functional conti-
nuity playing a major role. His ideas on thè relationship between ontogeny and phylogeny were later taken up and applied
to other crustaceans by Fritz Miiller before Haeckel developed thè same theme. Anton Dohrn, who also worked on crusta-
ceans, owed much to Darwin for his physiological approach to phylogenetics, especially thè principle of Funktionswechsel
or succession offunction. The tradition continued with thè Russian school of evolutionary morphologists, notably Sewert-
zoff and Schmalhausen.
Among thè many myths in thè history of evolu¬
tionary biology is that nothing of great importance
happened to comparative anatomy when Darwin
carne along. Like a lot of myths, it has a certain foun-
dation in fact. Comparative anatomists could indeed
get away with proceeding just as they always had,
and some of them did. For many, thè changes were
superficial — perhaps little more than acknowledging
that taxonomic groups have common ancestors. For
some, thè very denial that there was a Darwinian re¬
volution in comparative anatomy, or even that such a
revolution is possible, has been one way of opposing
such changes. For others, it has been a means of
stressing thè very novelty of Darwinian thinking, and
thè conservativeness of thè opposition.
Here I shall argue that something of great signifì-
cance really did happen to comparative anatomy as a
result of Darwin’s work. Darwin recognized that it
had, and he acted upon it. So too did some of his
supporters, and thè consequence were momentous.
If their accomplishments go largely unacknowled-
ged, it is partly because they seem all too obvious,
and partly because they have been forgotten, if not
outright suppressed.
The very refusai to recognize important differen-
ces between pre-Darwinian and Darwinian attitudes
toward nature would seem to reflect a persistence of
those very attitudes that Darwin called into question.
To Darwin’s predecessors, change was something to
be denied, or at least minimized. If not downright
illusory, it was superficial and not very important. To
Darwin, on thè contrary, change was not just import¬
ant, it was thè fundamental reality. Naturai selection
produced things that are novelties in a deeply meta-
physical sense, one that was lacking in earlier
thought.
Let me contrast thè old way of thinking with thè
new, albeit with thè proviso that I have to simplify a
bit for thè sake of clarity (see Ghiselin, 1980). Pre-
Darwinian biologists were perfectly aware that chan¬
ge of a sort occurs in thè ontogeny of individuai or-
ganisms. The term «evolution» originally meant
embryological development, and thè «development
hypothesis» was often used for thè views of Lamarck
and his followers. Efforts to deal with evolution in
our modera sense were largely based upon analogies
with evolution in thè older, embryological sense.
There were two basic ways of thinking about an on¬
togeny, namely preformation and epigenesis. In ei-
ther case, things went from one particular condition
to another particular condition — from A to B — un-
less, perhaps, something interfered with thè normal
state of affairs. Change was not «reai» insofar as eve-
rything was pre-ordained. For preformationists, on¬
togeny was a sort of «unfolding» or a change from a
condition of potentiality to one of actuality. For epi-
geneticsts, ontogeny was thè result of thè action of
supposed laws of nature, and was often analogized with
thè growth of a crystal. Here, change would not be reai,
insofar as thè laws of nature are eternai; a crystal of a
given kind will precipitate out of solution whenever
thè necessary and sufficient conditions are met.
When such notions are translated into an evolu¬
tionary context, one gets somewhat different ver-
sions of what is often called «orthogenesis.» In thè
preformationist version, thè changes that might be
called «evolutionary» were attributed to thè will of
an omnipotent and omniscient Being, who foresaw
and indeed pre-ordained everything. In thè epigene-
ticist version, that same Being ordained thè laws of
nature, with much thè same generai effect. As one
might expect, such thinking was both vague and flex-
ible, so that one might invoke a wide range of posi-
tions with respect to what might cause thè changes in
question. Often unknown «laws» or mysterious «for-
ces» or «tendencies» were invoked.
Once we realized that such notions of causality
were presupposed, it is most misleading to label such
pre-Darwinian figures as Buffon, Lamarck, or Owen
«evolutionists» in our modera sense. It is also easy
to see why Darwin, like many other scientists, con-
sidered such quasi-evolutionary notions unscientific.
Miracles and occult forces were not amenable to
scientifìc investigation. Darwin, to be sure, believed
that ontogeny plays an important causai role in evo¬
lution. But like us moderns he believed that whate-
ver it is that causes ontogeny also evolves. And like
us moderns he believed that evolution is governed
50
MICHAEL T. GHISELIN
by laws of nature. Much of his research was aimed at
discovering such laws.
Darwin was an «evolutionary physiological ana-
tomist» in thè sense that he explained life as thè
consequence of thè vital activities of reai, concrete
organisms, through time. The physiological aspect
of Darwin’s evolutionary biology is not always ap-
preciated. His classic work on plant movements is
highly esteemed by physiologists. However, thè evo¬
lutionary aspect of this work is only apparent when
one considers his little book on The Movement and
Habits of Climbing Plants (Darwin, 1865). Here he
provides scenarios for changes in both behavior and
anatomy. I mention this work primarily to make thè
generai point that Darwin was anything but a «for¬
mai morphologist» or someone who believed that
studies of form should be divorced from studies of
function. Indeed thè term «functional morphology»
is an oxymoron if thè word «morphology» is used in
its strict and originai sense.
Darwin was also a geologist, and this further dis-
tanced him from formai, and a fortiori from idealis-
tic, morphology. During his trip around thè world
Darwin carried out extensive geological research
under thè influence of Charles Lyell’s Principles of
Geology. This research was of cruciai importance, for
it gave Darwin a great deal of first-hand experience
in thè kind of historical thinking that he would later
apply to biology. Although Lyell did not himself be-
lieve in evolution, thè kind of thinking that he advo-
cated only had to be carried a little further to trans-
form biology into thè sort of historical Science that
geology had already become. Lyell had a «steady
state» view that limited thè amount of change, and
Darwin had to reject that. But thè notion that change
is graduai could easily be accommodated in a biolo-
gical context. More fundamental was thè point that
thè laws of nature, which do not change, can be used
to reconstruct past events. If one knows a law of na¬
ture, then one knows what can and cannot happen at
any time whatsoever. Consequently a geologist can
ask what possible events might explain thè present
configuration of thè earth, and rule out some of thè
possibilities on thè grounds that laws of nature rule
them out. Or to put it more loosely, thè narrative
theories gained plausibility when they were shown to
exemplify broad generalizations. Darwin’s coral reef
theory is clearly based upon «global» considerations,
much as is modera piate tectonics. How much these
more basic generalizations are laws and how much
they are particulars is a question that deserves fur¬
ther consideration.
Another important benefit that Darwin gained
from studying geology was thè habit of conceptualiz-
ing problems in terms of concrete objects and reai
events. Even though geologists’ diagrams can be
schematic, there is rarely any doubt that they are dia¬
grams of reai rocks and strata, not diagrams of «rock»
in thè abstract. Systematists were much more apt to
treat groups of objects as abstractions, and both their
language and their diagrams had a strongly metapho-
rical character. So although some of Darwin’s prede-
cessors drew «tree-like» diagrams, these rarely if ever
had thè connotations of a nexus of reai parents and
offspring. They were merely a way of expressing thè
notion of similarity and difference. Likewise there
was a profound difference between thè «archetypes»
ofidealistic morphologists like Oven, which were ab¬
stract schemes, and thè so-called «archetypes» of
Darwin, which were reai organisms that must have
metabolized and done all those other things that or¬
ganisms do.
Darwin’s work on Crustacea provides excellent
materials for studying his phylogenetic methodo-
logy. Although it was published before Darwin pu-
blicly announced his evolutionary point of view, there
is no question that his Monograph on thè Sub-Class
Cirripedia (Darwin, 1851, 1854) was a work on evolu¬
tionary systematics. We know this from his corres-
pondence, as well as from his commentary in The
Origin of Species and elsewhere. Furthermore, and
this is very important, his contemporaries, including
Crustacean systematists who were among his most
enthusiastic supporters, read thè monograph as
straight-forward phylogenetics. They applied his me-
thods to similar material. Because thè monograph
has been foundational for all subsequent work on
thè group, students of barnacles have provided some
excellent commentary. The latest analysis by New-
man (1993) is an outstanding example, and one to
which thè present discussion owes a great deal. (See
also Ghiselin, 1969; Burkhardt and Smith, 1988).
Darwin of course was fully aware of thè fact that
his predecessors had been able to create «naturai Sys¬
tems» of classification with hierarchies of groups wi-
thin groups that shared diagnostic characters. The
classification in his barnacle monograph bears out
thè position he took in thè Origin that classification
should be strictly genealogical, though he allowed
for «paraphyletic groups» (ones that do not include
all of thè descendants of thè common ancestor) to
express thè «amount of difference» (Ghiselin and
Jaffe, 1973). In later publications he took a stronger
position in favor of strict monophyly (Ghiselin,
1985). When one thinks in terms of taxonomic
groups, strict monophyly allows one to avoid mistak-
ing a group that has undergone much divergence for
one that branched off early. This same mistake, ho¬
wever, can be avoided by using «tree thinking» ra-
ther than «group thinking» (O’Hara, 1988). If one
thinks in terms of trees, one also thinks more clearly
about what characters are really important, including
thè ones that are «derived» or as cladists say «apo-
morphic». Darwin did not discuss such matters ex-
plicitly, and he seems to have taken a rather «com-
mon-sensical» approach, much as he did in geology.
His basic classification has not been much revised as
more has become known about thè group and as ge¬
nealogical classification has become increasingly po-
pular within systematics in generai.
It is of considerable interest that for Darwin thè
diagnostic feature of thè Cirripedia was attachment
of thè cyprid larva by a particular kind of highly-mo-
dified «antenna», definitely a derived condition. He
justified this character on thè basis of its «high phy¬
siological importance» and there being no strict pre-
cedent for it in other groups. It would seem that for
cirripedes «high physiological importance» means a
kind of technological breakthrough that allows thè
further evolution of thè group (a key innovation),
and for something that lives as they do, such an
adaptation is not likely to be secondarily lost.
Whether thè complexity of this attachment organs
was seen as a criterion for considering it most unlike-
ly to have evolved more than once is something I
cannot answer at thè present time. However this ex-
CHARLES DARWIN, FRITZ MULLER, ANTON DOHRN, AND THE ORIGIN OF EVOLUTIONARY PHYSIOLOGICAL ANATOMY
51
ampie suffices to refute thè notion that Darwin belie-
ved that classification should be based only upon
characters of trifling physiological significance. He
did think that his theory could explain why some
characters with no obvious utility were often of high
diagnostic value, but that is a very different issue.
Darwin’s scenario for thè origin of cirripides invo-
ked as a common ancestor a rather advanced crusta-
cean that fed with its feet then became attached by
its antennae and subsequently underwent much mo-
dification. Given that thè animals were very different
from other crustaceans, one might take this to mean
that they were an early branch of thè Crustacea. But
Darwin made no such mistake, and this negative evi-
dence is significant. For him thè question of relation-
ship was not a matter of similarity, but of whether
there might have been intermediate forms. Such in-
termediates also had to be physiologically viable or-
ganisms, not just morphological intermediates. In
his debate whith Étienne Geoffroy Saint-Hilaire, Cu-
vier invoked thè implausibility of functionally viable
intermediates as a means of ruling out thè derivation
of one kind of organism from another, and his argu-
ments were perfectly legitimate in that context.
However, Darwin and his followers turned thè argu-
ment on its head, and used thè argument from
physiological continuity as a means of phyloge-
netic inference. One goes back to thè most recent
plausible common ancestor that would not be
excluded by such considerations. He believed that
he had found what we would cali thè «sister group»
of cirripides well within thè Crustacean phylogenetic
tree. Thus he seems to have reasoned by putting
things together on thè basis of shared characters,
rather than by separating them on thè basis of diffe-
rences.
In considering Darwin’s «model» for thè origin of
thè Cirripedia, one might wonder to what extent thè
scenarios are merely an afterthought to tree-like dia-
grams established upon some other basis. Or are
they are something constitutive, in thè sense of pro-
viding support for thè trees themselves? I believe
that Darwin would have answered that they are in-
deed constitutive. The ancestral cirripede itself may
not be a good example of this. However, thè use of
functional criteria for establishing homologies which
are in turn evidence for relationships, is commonpla-
ce in Darwin’s work. So far as he could, he tried to
derive new structures from pre-existing ones, per-
haps with a change in function. We face a problem
here. Darwin gives two examples of thè origin of
such features in cirripedes, and they both turn out to
be mistaken: thè cement glands and probably thè
ovigerous frena (Walker, 1983). There are plenty of
good examples, however, and such «plausibility ar-
guments» are by no means uncommon in phyloge¬
netic reasoning. I will come back to them later when
I discuss thè contribution of Dohrn.
The principle of functional continuity can be deri-
ved from thè theory of naturai selection, but it is also
consistent with any theory that entails thè viability of
hypothesized organisms in a sequence of reai ances-
tors and descendants. Naturai selection, however,
specifìes conditions under which certain kinds of
changes do and do not occour, and therefore can be
invoked to rule out certain kinds of changes that
otherwise might seem possible. Naturai selection
cannot adapt a population to selection pressures that
it has not yet encountered, or, to put it in more liter-
ary language, it has no foresight. The most clear-cut
example is vestigial organs, which have to be inter-
preted as parts that are in thè process of being lost,
rather than gained. Advocates of orthogenesis, espe-
cially preformationist versions, have not been thus
constrained.
Darwin discussed thè importance of vestigial
structures for phylogenetic research in thè Origin of
Species. He had extensive experience with them in
his work on barnacles. Such structures were particu-
larly evident in thè dwarf males that he found asso-
ciated with hermaphrodites and fermales in certain
lepadomorph barnacles. What use he made of vesti¬
gial parts in reconstructing thè evolutionary history
of thè group is not always clear from thè text, and
some of thè examples may seem a bit obscure. He
thought he saw vestiges of missing segments in thè
cypris larva. In Chelonibia, a pair of vestigial sutures
convinced him that thè «rostrum» of higher balani-
nes had been formed by thè fusion of thè true ros¬
trum with thè adjacent plates.
A more straight-forward example of functional
reasoning is seen in his decision that thè males in cir¬
ripedes are hermaphrodites in which thè female parts
have been lost, and which have subsequently been
reduced. It makes a lot more sense for a tiny, and
often gutless animai with appendages that are redu¬
ced or missing, single gonads and no intromittent
organ to be thè endpoint of regressive evolution, ra¬
ther than thè beginnings of a more complicated crea¬
ture. Furthermore, Darwin believed, as we do, that
thè males in barnacles had been produced by a me-
chanism called «progenesis» involving loss of later
developmental stages and early sexual maturation.
This brings us to a consideration of Darwin’s
views on thè relationship between embryology and
evolution. In addressing this topic it should be stated
at thè outset that there are serious problems with thè
literature on thè relationship between ontogeny and
phylogeny. Much of it has been written by persons
who have little if any sympaty with phylogenetics as
a topic for scientific research. This is particularly thè
case with advocates of «experimental» approaches.
The problem is exacerbated by factional disputes
among systematists. A great deal of mythology has
been built up, and therefore it is essential that one go
back and consult thè originai documents, especially
those that are neglected in thè secondary literature.
In his Autobiography (Barlow, 1959:125) Darwin
expresses dismay at how little attention was given to
what he said about thè relationship between ontoge¬
ny and phylogeny in thè Origin of Species, where, he
believed (and I think rightly), he had provided thè
basic solution to such problems. He goes on to say
that «Within late years several reviewers have given
thè whole credit of thè idea to Fritz Miiller and
Hàckel, who undoubtedly have worked it out much
more fully, and in some respects more correctly than
I did.» Subsequently Miiller has been largely for-
gotten. But Miiller gave Darwin full credit, and thè
importance of Miiller’s contribution was widely re-
cognized by his contemporaries.
During thè 1830s and 1840s Darwin familiarized
himself with thè views of his predecessors as he de-
veloped his own. He was well aware of what those
views were, although he often relied upon secondary
sources. He could not accept their explanations for
52
MICHAEL T. GHISELIN
thè relationships between embryology and classifica-
tion, which contradicted not only his own theory, but
his very idea of what constitutes a legitimate scientif-
ic theory in generai. Both thè preformationist and
thè epigeneticist versions of «recapitulation» had to
be ruled out. However, given that developmental
processes evolve as a consequence of selection, he
could explain thè observed phenomena and there-
fore use them as evidence in favor of his theory. In
thè context of phylogenetics this meant that thè de-
velopment of an organism might contain valuable
clues as to its ancestry.
According to Darwin’s theory, variations arise
fortuitously (not at random in thè sense that one
variation is as probable as another) at any stage in
development. If passed on to thè next generation,
they tend to appear at thè same stage as they did in
thè parent. Variations accumulate as a consequence
of selection, thè nature of which is contingent upon
thè conditions of existence. So both 1) thè time in
ontogeny at which a variant appears and 2) thè time
in ontogeny at which its presence affects fitness are
capable of affecting how thè entire fife cycle will
evolve. Early variants or early selection could produ¬
ce early divergence, perhaps conpled with late diver¬
gere as well. But if selection in different lineages
was on late variants or late in thè fife cycle, or both,
thè young stages would remain unaltered. Which of
these happened in any particular case would be a
matter of (contingent) historical fact, and would
have to be worked out by historical biologists. If laws
were to be used in such reconstruction, they had to
be thè laws that govern variation, selection, and
other processes. Darwin believed that an under-
standing of developmental mechanisms would help.
But there was no way in which he could simply con-
join a description of an organismi ontogeny with a
statement of relevant laws and infer its history.
One might question whether thè above recons¬
truction of Darwin’s views is correct. It is justified by
thè generai pattern of his procedures as well as by his
explicit statements. In thè Origin of Species Darwin
gives a succinct account of his views, one that was
perhaps too brief for many readers to have under-
stood it (Darwin, 1859:439-450). His detailed exposi-
tion of his views on thè relationship between em¬
bryology and evolution is explained in The Variation
of Animals and Plants under Domestication (Darwin,
1868), a work that is rarely even mentioned in this
context. Indeed, because it is wrongly considered a
book on heredity, and one that contains a theory that
is no longer credible, it is virtually never read by an-
ybody (see Ghiselin, 1975). Darwin derived his views
on developmental physiology from his readings of
works on plant and animai breeding, teratology and
related subjects, through conversation and corres-
pondence with many informants, and from his own
empirical research. In thè book on Variation he gives
examples of changes occuring at various stages in thè
fife cycle. It is important to stress that they are not li-
mited to thè end of ontogeny, as strict recapitulatio-
nism would have it.
In thè Monograph on thè Sub-Class Cirripedia, w e
fìnd clear applications of Darwin’s embryological
principles to phylogenetic analysis. Of course he
used these principles together with all thè other evi¬
dence that was available to him. Dana and Milne Ed-
wards had divided most of thè Crustacea into three
groups which Darwin evaluated as thè possible clo-
sest relatives of thè Cirripedia: Entomostraca,
Edriopthalmia, and Podopthalmia. He opted
(1854:13) for thè last of these, thè «stalk-eyed» crusta-
ceans, on thè basis of various characters, including
details of thè structure of thè carapace and its deriva-
tes. Within thè Podopthalmia he noted that there
was an «aberrant group of low organisation»
(1854:18) which combined a mixture of entomostra-
can and podopthalmian traits and had more in com¬
mon with thè Cirripedia than any other group. The
group included Phyllosoma , which turned out to be
larvae of palinurids (spiny lobsters) and Amphion.
This group he said (1854:19) «leads into thè Stomo-
poda», which included Lucifer, Darwin’s model for a
cirripede ancestor. Lucifer is a pelagic animai, now
placed in thè order Decapoda and suborder Dendro-
branchiata (=Penaeidoidea), and includes Amphion.
How dose a relationship he invoked is not clear from
Darwin’s text. However, his views on thè homolo-
gies of limbs provide a good reason for relating thè
Cirripedia to an early offshoot of thè malacostran li-
neage. Namely, he thought that thè last cephalic and
fìrst thoracic segments in cirripedes had been redu-
ced (1854:111), rather than thè last two thoracic seg¬
ments as was thè opinion of Dana (Darwin, 1854:22)
and later authors. He thought he had some evidence
for this in thè reduced condition of these limbs in
Phyllosoma and allied forms (1854:18); and this view
seems to have been justified by reference to thè work
of Henri Milne Edwards (1834-40) whose «Stomapo-
da» included what are now called «Stomatopoda»
(Hoplocarida», and mysids, as well as Lucifer and
some larvai forms.
The figure of Lucifer that appears in Darwin’s mo¬
nograph (1851:28) was copied from Milne Edwards
(PI. 28). Below it Darwin presents a drawing of «a
mature Lepas, with thè antennae and eyes, which are
actually present in thè larva, retained and supposed
to have gone on growing». The claim of Richards
(1992) that this is a larvai crustacean is an egregious
blunder, and thè work is seriously flawed in other
respects as well (Ghiselin, 1992). For Darwin, thè
cirripedes were a group of early malacostracans that
became sessile fìlter-feeders and then underwent
considerable reorganization and subsequent adap-
tive radiation. Both progressive and regressive chan¬
ges were involved, and thè scenario presented was
anything but orthogenetic.
Among thè «regressive» changes that Darwin in¬
voked were thè regression of parts among parasitic
forms. When Darwin invoked thè «arrest» of deve¬
lopment in simple animals he really meant that so-
mething previously present had ceased to develop;
this is fundamentally different than thè claims by
some of his predecessors that simple animals have
not undergone thè sort of ontogeny that thè more
complex ones might. So when he refers to thè
«Apoda» as «larvai» he is talking about progenetic
animals. In his scenario for thè evolution of dwarf
males from hermaphrodites, he treats thè reduction
of thè males as a case of progenesis, which is a modi-
fìcation of thè developmental mechanism. He justi-
fies thè invocation of progenesis by reference to thè
histological appearance of thè tissues of thè males:
they look like those of larvae, not adults. So although
thè reduction of thè males was supported by conven-
tional synapomorphies, strictly physiological criteria
CHARLES DARWIN, FRITZ MULLER, ANTON DOHRN, AND THE ORIGIN OF EVOLUTIONARY PHYSIOLOGICAL ANATOMY
53
were also invoked. Further processual evidence for
thè reduction of thè males was provided by vestigiali-
ty of parts, and by thè generai plausibility of adaptive
change in thè mode of reproduction.
If we want to find evidence that Darwin produced
some kind of change in thè lives of comparative ana-
tomists, we ought to examine thè work of those who
were most likely to understand his views, those who
not only accepted his theory, but embraced it with
unqualified enthusiasm. A particularly good exam-
ple is Fritz Muller (1822-1897). His discovery of
Mullerian mimicry is good evidence that, unlike
most nineteenth century «evolutionists», he under-
stood naturai selection very well. If anything, his po-
litics and his religion disposed him to favor naturai
selection and its implications, for left Germany upon
religious grounds in 1852, and spent his remaining
years in Brazil. He did a great deal of research on thè
anatomy, embryology, and phylogenetics of various
marine organisms, especially crustaceans. He pre-
sented his work on crustaceans as a kind of test of
Darwin’s theory in his book Fùr Darwin (Muller,
1864), which pleased Darwin so much that he had it
translated into English as Facts and Arguments for
Darwin (Muller, 1869).
Muller provides various arguments for Darwin, in-
cluding evidence for sexual selection in thè form of
«high-low» dimorphism among Tanaidacea (Mala-
costraca: Peracarida). He shows clear evidence of
having given a great deal of thought to what now is
called «character analysis» in a cladistic context. He
shows by (p. 7) a pair of what can only be called «cla-
dograms» two lines of evidence, on thè one hand a
large, asymmetrical chela that might be a good syn-
apomorphy for several species, and, on thè other
hand, thè absence of a second branch to thè fìrst an-
tennae that might be a convergent loss. But this dis-
cussion is rather fragmentary and does not explicity
address such issue as plesiomorphy and thè use of
outgroups.
Muller presents a most impressive effort to apply
Darwin’s ideas about thè relationship between onto-
geny and phylogeny to thè Crustacea. He recognized
two basic kinds of larvae, thè nauplius and thè zoea,
which may exist in thè same life cycle. In thè most
primitive crustaceans then known, thè Phyllopoda
(as then understood, roughly equivalent to our Bran-
chiopoda), a nauplius stage is followed by an adult
stage which is essentially equivalent to a zoea, but
lacks thè modifications that occur in both thè zoea
and thè adult of higher crustaceans (so that there are
a long series of relatively undifferentiated appenda-
ges). In higher crustaceans thè zoea has its characte-
ristic features and thè adult is more modifìed in
structure. Miiller (1869) had established that a group
of highly degenerate internai parasites of crusta¬
ceans, thè Rhizocephala, are closely related to thè
Cirripedia, and had done so mainly on thè basis of
their characteristic larvae, thè oldest of which have
some features suggestive of a zoea. He proposed that
thè Rhizocephala are what we now would cali thè sis-
ter group of thè true barnacles (Thoracica), as is ge-
nerally maintained today. Barnacles have nauplii and
a «cypris» or cyprid larva, so-called because it resem-
bles an adult ostracod. Darwin called thè cypris a «lo¬
comotive pupa» and thè term expresses its function
as a specialized, non-feeeding stage that settles and
undergoes metamorphosis into thè juvenile. Miiller
(1864) dismissed thè resemblance to ostracods as
convergent. According to Newman (1983) thè traces
of a zoea in thè Maxillopoda (Copepoda, Cirripedia,
Ascothoracica, Branchiura, Mystacocarida, and Os-
tracoda) are reai, and thè Maxillopoda are a clade re¬
lated to thè «urmalacostracans» that have undergone
a loss of segments due to progenesis.
Fritz Miiller clearly and emphatically rejected thè
efforts of Johannes Miiller, Louis Agassiz, and, wi-
thout naming him, Karl Ernst von Baer, to explain
thè parallels between thè taxonomic hierarchy and
thè sequence of development in crustaceans in terms
of what he dismissed, explicity, as scholastic philoso-
phy. Rather, he adopted and developed thè interpre-
tation that Darwin had presented in thè Origin of Spe¬
cies. Observing that variations might occur early or
late in ontogeny, he explained that there might be
very different results. An animai might deviate early
in ontogeny; in that case it would retain thè originai
condition only for a short period. Or it might add
new stages at thè end of ontogeny; if so ontogeny
would pass through thè series that mirror thè history
of thè species. The important point here is that «ter¬
minal addition» is thè one condition under which re-
capitulation applies in a straight-forward manner. He
also concluded that thè phylogenetic evidence may
get obliterated when development becomes direct,
or it may get falsified as a result of naturai selection
undergone by free-living larvae. In order to infer
what thè actual history had been, one had to apply
some principles and rules. Arthropods with more
pronounced metamorphosis had probably deviated
more than others from thè ancestral condition, as
had those with greater difference in way of life — thè
two, of course being strongly correlated.
Muller goes on to interpret thè development of thè
Malacostraca in thè light of this theory. He proposed
that thè zoea larva gives thè best picture of thè ances-
try of thè group. He thought that thè nauplius larva
had been obliterated in these higher Crustacea, al-
though he found traces of it in thè relatively primi¬
tive Mysis. Spines on thè zoea he interpreted as de-
fensive adaptations that had arisen in thè larva. Gra¬
duai differentiation of segments toward thè posterior
was treated as thè ancestral condition, whereas si-
multaneous differentiation of these was thè result of
a condensation and simplification of development.
Muller does not provide anything like an «algo-
rithm» for dealing with such problems. A great deal
of ingenuity would seem to be involved. However it
is clear that he recognized from thè outset that thè
history of thè lineage cannot be read off in a straight-
forward manner from ontogenetic data.
It is easy to see, however, that people might read
thè works of Darwin and Muller and ignore or forget
thè difficulties. Or they might get their information
from other sources such as Ernst Haeckel (1834-
1919). Even if people read such technical works as thè
Generelle Morphologie (Haeckel 1866) his popular
writings obviously oversimplifìed matters. Haeckel
was also a very effective teacher, and his students na-
turally learned Haeckel’s version of what was called
Darwinism. It emphasized morphology and recapitu-
lation rather than thè kind of functional thinking that
was so characteristic of thè work of Darwin himself.
One such student of Haeckel was Anton Dohrn
(1840-1909). He began his career as an entomologist,
then, as a result of reading thè work Fritz Miiller,
54
MICHAEL T. GHISELIN
switched to Crustacea, a move that put him in a good
position to understand Darwin’s approach. Initially
Dohrn was very enthusiastic about ontogeny as evi-
dence for phylogeny, but his own research as well as
that of other workers ultimately proved disappoint-
ing. Miiller had suggested that thè zoea might have
given rise to thè insects, and Haeckel endorsed this
view. Dohrn thought he had found vestiges of thè
zoea’s defensive spine in insect embryos, but ultima¬
tely had to give that up.
In 1870 Dohrn published an anthology of papers
that he had recently published on arthropod phylo-
genetics. The introduction to thè second half specu-
lated, noncomittally, that thè Arthropoda might be
polyphyletic. In 1871 he published thè first part of a
paper, one that was never completed, that represents
at once thè end of his earlier, ontogenetic, approach
and thè beginning of his new, physiological one. On
thè one hand it treats thè phylogeny of thè Crustacea
from a strongly recapitulationist point of view. The
nauplius is compared to larvai annelid and treated as
thè ancestral form. The zoea is an modifìed nauplius,
which had added segments at thè posterior and
of thè body. If thè recapitulationist account were
true, this made sense from a physiological point of
view — as an adaptation to increasing body size.
Invoking such functional explanations, Dohrn de-
veloped an adaptive, physiological scenario for thè
phylogeny of thè Crustacea. He attributed a great
deal to thè division of labor among appendages, and
to thè various appendages changing their functions.
His scenario also includes thè complete loss of cer-
tain features, such as thè nauplius and thè zoea in
ontogeny and thè carapace and thè eye stalks in thè
adult. When he did so he related such changes in en-
vironmental circumstances, such as moving into
fresh water or to a benthic habitat. The ostracodes
had undergone a secondary reduction in size, and
were therefore secondarily simplifìed in some res-
pects. A second fragment of this work appeared as an
appendix to his book on thè origin of vertebrates (see
below). He tried to account for thè origin of thè Rhi-
zocephala using Anelasma , a parasite of sharks as a
model. The scenario was indeed plausible, but there
were two problems. First, he put thè solution to thè
problem in thè hands of Robby Kossmann, who did
thè empirical work and got thè credit (Kossmann,
1873). Second it makes sense as a sort of model, but
thè rhizocephalans evidently branched off much too
early to be directly derived from whithin this particu-
lar group.
Dohrn’s functional explanations for thè evolution
of crustaceans were by no means unreasonable, and
ones like them have continued to play an important
role in crustacean phylogenetics. The main problem
with his phylogenetics was not thè functional aspect,
but rather that thè strict application of thè recapitula¬
tionist view became a kind of procrustean bed, and
thè notion that thè nauplius and thè zoea represent
adult ancestors became increasingly untenable as
data on crustacean larvae accumulated. His critics
pointed out, and Dohrn admitted, that it would be
easier to start with an annelid having many segments
as thè ancestral precursor of thè arthropods, and
have something like that evolve an exoskeleton.
Then it became a fairly straightforward matter to de-
velop a scenario in which thè adult crustaceans had
undergone thè sort of division of labor and function¬
al reorganization that Dohrn had envisioned. And
there would stili be a place for evolving larvae and
changes in size in response to changing conditions of
existence.
Once w e see that thè embryological program was
breaking down, it makes a great deal of sense that
Dohrn would emphasize thè physiological approach
even more strongly. The connection between his
work and that of Darwin is easily established. They
began to correspond about crustacean phylogenetics
in 1867 and met at Darwin’s home on September 26,
1870. Much of thè extant correspondence (Groeben,
1982) relates to thè founding of thè Zoological Sta¬
tion at Naples, which was a work of administrative
and organizational genius, but one that diverted
Dohrn’s attention from thè sort of phylogenetic work
that was thè raison d’ètre for thè laboratory itself.
Darwin, who was an enthusiastic supporter of thè
laboratory, sent Dohrn a copy of The Expression of
thè Emotions in Man and Animals (Darwin, 1872). It
arrived on November 13, 1972. Dohrn read it imme-
diately. His review of this book, in English, appeared
thè following summer (Dohrn, 1873). The Expression
of thè Emotions is a very good specimen of Darwinian
evolutionary psychology and evolutionary physiolo¬
gical anatomy, and Dohrn rightly interpreted it as an
example of how that kind of Science might be done.
For example, thè hearing of teeth, originally prepara-
tory to combat, persists as an emotional expression
or signal. Dohrn suggests that thè «book derives its
chief interest from being a successful attempt to
trace thè origin of special functions, to introduce thè
theory of Evolution into thè domain of physiology».
He proposes that thè practice of separating morpho-
logy from physiology is no longer possible, and «that
thè new task of physiology will be to investigate thè
origin of functions.»
Darwin’s theory had come under attack by one of
his most skillful critics, Saint George Mivart (1871),
among other things on thè grounds that Darwin had
no explanation for thè origin of new structures. Ac-
tually Darwin had anticipated this criticism, and res-
ponded more fully in later editions of thè Origin of
Species. Henri Milne Edwards (1851a) had maintai-
ned that organs could be «borrowed» from unrelated
groups, but Darwin of course realized that he had to
rule out such notions if his theory was true. New or¬
gans had to evolve from pre-existing ones, and as
suggested above, he used this assumption as a guide
to phylogeny. Be this as it may, Dohrn was provoked
by Mivart’s criticisms, and wrote an essay entitled
Die Ursprung der Wirbelthiere und das Princip des
Functionswechsels (Dohrn, 1875), which Dohrn trans-
lated, in a letter to Darwin dated February 7, 1875 as
The Origin of Vertebrates and thè Principle of Succes-
sion of Functions. His use of thè word «succession»
instead of «change» for thè German Wechsel is sig¬
nificane for it suggests that thè process is a very or-
derly one. And indeed this is clear from thè text. An
organ or other part starts out having a main function
and a subsidiary function. In response to selection,
thè subsidiary function becomes increasingly im¬
portant relative to thè main function, and finally be¬
comes thè main function, and, as a result, thè entire
organ is transformed. W e now have plenty of exam-
ples of this sort of transformation, and it is a com¬
mon part of our scenarios for thè evolution of things
like mammalian inner ear bones. Having a scenario
CHARLES DARWIN, FRITZ MULLER, ANTON DOHRN, AND THE ORIGIN OF EVOLUTIONARY PHYSIOLOGICAL ANATOMY
55
in which thè intermediates change through a series
of functionally plausible intermediates with an or-
derly replacement of functions is one canon of evi-
dence that at least some phylogeneticists endorse.
And thè principle is generally accepted as a major
contribution to thè study of evolutionary mecha-
nisms, although often ignored by phylogeneticists
(Mayr, 1960).
Dohrn illustrated his principle by means of con¬
crete examples that have largely been refuted and
many of which were excessively speculative even at
thè time. He tried to derive thè vertebrates directly
from annelids, and to make thè tunicates degenerate
vertebrates. The annelid theory in one form or ano-
ther remained viable for quite some time, and in that
sense was by no means a failure. Indeed, new mole-
cular data have made some sort of annelid theory a
very good possibility. Segmentation in both protos-
tomatous and deuterostomatous eucoelomates is
controlled in ontogeny by very similar mechanisms,
and sequence data on ribosomal RNA indicate that
segmentation was more widespread than has been
thought (Ghiselin, 1988).
Dohrn also got considerable credit for thè notion
that a great deal of regression takes place. But al¬
though Dohrn’s scenarios for vertebrate evolution
were suitable from thè point of view of explaining his
physiological principles, they were highly speculative
and not thè sort of thing that would be accepted
without much further evidence. This left him open
to attacks by hostile critics, including Haeckel and
Gegenbaur.
As thè director of thè most important zoological
laboratory in thè world, Dohrn was in an excellent
position to push on with empirical research and to
get his views known through personal contacts and
publication. Visiting investigators naturally took an
interest in Dohrn’s work and helped to publicize it.
Furthermore he had a scientifìc staff that helped to
run thè Station and also did research. This included
work on taxonomic monographs that appeared as
thè Fauna und Flora des Golfes von Neapel und an-
grenzenden Meeres-Abschnitte. The third of these mo¬
nographs was by Dohrn (1881) and dealt with thè
Pantopoda. Dohrn was by no means through with
thè arthropods.
The Pantopoda, or Pycnogonida, are commonly
called sea spiders, although their relationships to
true spiders and other aracnids are highly problemat-
ic even today — and largely for thè same reasons that
they were both a challenge and an opportunity to
Dohrn. Highly modified arthropods, with small bo-
dies and long legs, they do have sort of a spider-like
appearance. To explore this possibility, one might try
to see if they had thè same generai arrangement of
limbs and segments as a spider or other arachnid.
Proceeding as comparative anatomists usually do
when dealing with such problems, one might look at
thè front end of thè body and find a pair of claw-
bearing appendages that look like chelicerae, follo-
wed by a pair of what look like pedipalps, of a spider
or other arachnid. Then one might observe that at
thè rear there are four pairs of walking legs, again,
like a spider or other arachnid. The trouble is that
there is one additional pair of appendages between
thè first two and thè last four. Much of thè history of
pycnogonid comparative anatomy has been an effort
to account for that extra pair of limbs, and just about
everything one might think of has been suggested:
loss of a segment in arachnids, duplication or subdi-
vision of a segment in pycnogonids, non-homology
of thè posterior four pairs of limbs. The comparative
anatomisti problem is rendered all thè more frus-
trating because thè posterior end of thè body has
been reduced, and because there may be several ge-
nital openings rather than a single pair located in a
place that is diagnostic of some other group of ar¬
thropods. In thè middle of thè nineteenth century
that generally meant thè crustaceans, though we
should point out that at that time Crustacea was
often used in a broad sense that included such things
as trilobites and Limulus.
Dohrn (1869) had studied thè embryology of pyc¬
nogonids in some detail during a visit to Scotland in
1868. He found that thè young stage has three ante-
rior appendages, and, in conformity with his basic
approach at thè time, concluded that this larva was a
nauplius. However, although later development see-
med like that of crustaceans, he found no sign of a
zoea, which would be diagnostic of thè Crustacea.
Therefore he concluded that although thè pycnogo¬
nids are related to thè Crustacea, they branched off
earlier. He ruled out any relationship to thè arach¬
nids on thè basis of what he called thè seventh pair of
appendages not being present.
By thè time he wrote his monograph a great deal
more information about thè pycnogonids was avail-
able. Also he had repudiated his recapitulationist
views on thè nauplius and thè zoea. He provided de-
tailed anatomical and systematic descriptions of thè
animals, and attempted a provisionai classifìcation.
His monograph was thè basis for all subsequent work
(Helfer and Schlottke, 1935) on a group that conti-
nues to frustrate efforts to develop a satisfactory phy-
logenetic arrangement or even come up with a good
tree (see Hedgpeth, 1947, 1954; Fry, 1978). Dohrn
agreed that thè pycnogonids, like other arthropods,
are modified annelids, and on thè basis of this com-
parison he had some insights concerning thè com¬
mon ancestor of thè group. It would have had a se¬
ries of relatively undifferentiated metameres with
limbs or modified limbs. Genital openings on several
of these were part of that homogeneity and indicated
an early divergence of thè pycnogonids from their
closest extant relatives. The animals were highly mo¬
dified at both ands of thè body. At thè front end
there was a suctorial feeding apparatus that had no
obvious homologue in any other arthropod. At thè
posterior, there had been much reduction, with loss
of many segments and no abdomen persisting as a
distinct body region. Various organs such as thè go-
nads had been displaced into thè legs.
Dohrn’s treatment of thè larvae and thè «extra»
pair of appendages was affected by recent advances
in thè reproductive biology of thè group. Pycnogo¬
nids, as a generai rule, feed suctorially with their mo¬
dified proboscis, and might be considered a kind of
ectoparasite. Pycnogonid larvae, unlike those of ma¬
rine crustaceans and, indeed, unlike thè generality of
marine invertebrates, are not motile creatures that
disperse and settle at a suitable habitat. Rather they
are not motile at all, but are transported by their par-
ent. Interestingly enough, it is not thè mother, but
thè father, who cares for thè young. This had come
as something of a surprise, but, as Dohrn realized,
there are other animals in which thè father cares for
56
MICHAEL T. GHISELIN
thè young but thè mother does not, such as sea-hor-
ses and their relatives. The eggs are transferred to his
body, where they develop, and he delivers them to
thè appropriate place. The «extra» limbs («ovigers»)
are present in all male pycnogonids with thè sole
known exception of one species of thè genus Pycno-
gonum and in thè females in some species. It is now
known that thè father produces a kind of cement,
and that thè ovigers process this so as to hold thè
young together. Dohrn thought that thè ovigers of
females are strictly vestigial, and indicated that both
parents had previously cared for thè young (page 93).
As it turns out, thè ovigers are also used by some
pycnogonids in cleaning thè body, so an alterna¬
tive scenario becomes available, one with a Funk-
tionswechsel in which thè main function was clean¬
ing and thè subsidiary function of parental care
evolved in males and thè organ itself was lost in
many females.
Dohrn rejected thè notion of Semper (1874) that
thè ovigers were a «new formation» on thè grounds
that thè animals would initially have had to carry thè
eggs on limbs that did not yet exist (p. 92), and com-
pared new formations in generai to special creations.
He preferred to consider thè mouthparts and ovigers
as having been produced through Funktionswechsel
from limbs. A Darwinian approach is capable of
accounting for thè origin of new parts and features,
but only with difficulty, whereas reductions and
secondary losses are a matter of routine. So it
stands to reason that Dohrn would want to have thè
ovigers be a primitive feature rather than a secondary
acquisition, and would accept thè consequences of
that, including an early divergence of thè pycnogonid
lineage.
Manton (1978) insists that thè pycnogonids have
indeed added a limb at this point, on thè grounds of
similarities in locomotory functional anatomy bet-
ween pycnogonids and arachnids. She made this
seem more plausible on thè grounds that within thè
group there are a few isolated cases of secondary in-
creases in thè number of appendages, though these
are morphologically similar to thè posterior appen¬
dages. The generai rule in arthropods is that thè
number of segments has become gradually more st-
able beginning at thè front end and proceeding to-
ward thè rear. Adding a segment at thè front end is
stili implausible, and given a modest amount of con-
vergence and parallelism, plus some conflicting evi-
dence, a somewhat earlier derivation of thè pycnogo¬
nids without recourse to such an addition remains a
very reasonable interpretation. But even if that inter-
calation has in fact occurred, it is simply an unusual
exception to a generally valid rule, not grounds for
rejecting thè rule altogether.
Given a model of a hypothetical ancestral pycno¬
gonid, Dohrn was in a good position to do some cla-
distics with a functional aspect. He could polarize
thè characters on thè basis of his model, and also jus-
tify thè direction on thè basis of adaptive signifi-
cance. He thought that thè group was relatively ho-
mogeneous, and therefore decided not to subdivide
it into taxa of high rank. There had been a modest
adaptive radiation with some diversifìcation in feed-
ing habits and way of life. At least for some charac¬
ters it was a relatively straight-forward matter to de¬
cide which conditions were primitive and which deri-
ved. The whole group showed a trend from ovigers
being present in both sexes, to ovigers being present
in just thè males. The first appendage began with a
well developed pincer, then had a rudimentary one,
or thè appendage was lost altogether. The second ap¬
pendages also might be lost. The number of genital
openings declined from three pairs to two, and finally
to just one pair. I mention only some of these trends.
There was a crude correlation between these mo-
difications, so that thè genera Fycnogonum and Rhyn-
chothorax , united in thè family Pycnogonidae, sha-
red a number of them. The functional reason for re-
duction of limbs was thought to be that thè suctorial
apparatus had become thè main organ of feeding and
accessory mouthparts were no longer necessary. But
given that these changes all go in one direction, they
are apt to give rise to a gradai classifìcation — one
that simply ranks animals according to whether they
are relatively primitive or advanced. They are thè
sort of innovations that are apt to be subject to paral-
lel evolution, just like thè opisthobranch gastropods
that evolve polyphyletically from snails into slugs
(Ghiselin, 1966; Gosliner and Ghiselin, 1984). Under
such conditions one needs derived characters that
are also divergent if thè result is to be clades rather
than grades. It is therefore not surprising that Dohrn
himself expressed dissatisfaction with his System,
and that subsequent workers have been likewise di-
sappointed.
Dohrn and his employees and supporters pushed
on with research on thè «lower» vertebrates, espe-
cially sharks, in order to develop his ideas about ver¬
tebrate origins. The Mittheilungen of thè Station, its
house organ, devotes many publications to his Pro¬
ject. Although he failed to justify thè annelid theory,
Dohrn did make important contributions to compa¬
rative vertebrate anatomy, thanks especially to his
work on thè embrology of sharks. I will not go into
thè details at this time, but should mention that a de-
tailed acount of his work has been presented by
Kuhn (1950). Rather it is important that w e note
Dohrn’s influence upon thè Russian school of evolu-
tionary morphology, especially its founder, A. N. Se-
wertzoff (1866-1936) (see Ghiselin, 1980). Sewertzoff
and his successor Schmalhausen freely and openly
acknowledged Dohrn’s contribution. The Ursprung
was treated as canonical literature, and Schmalhau¬
sen (1937) wrote a long and appreciative introduction
to thè Russian translation.
Sewertzoff visited thè Station in 1897, in order to
study thè embryology of fish, including teleosts, se-
lachians and cyclostomes. Sewertzoff (1899) was ob-
viously working on thè same kind of problems that
interested Dohrn, but thè influence of Dohrn upon
Sewertzoff is not immediately apparent. It was only
much later that Sewertzoff (1927, 1928, 1931) brought
thè work of Dohrn and others on Funktionswechsel
and related topics up to date. Sewertzoff (1931) also
wrote one of thè best discussions on thè relation-
ships between ontogeny and phylogeny. He stressed
thè point that recapitulation occurs in a straight-for¬
ward manner only when there has been terminal ad¬
dition. Sewertzoff (1931: 248) expresses regret that in
his earlier works (Sewertzoff 1912, 1928) he had over-
looked how Fritz Mùller (1864) had presented early
divergence as an alternative to terminal addition. He
accuses Darwin, along with Haeckel and Weisman,
of not having appreciated that point. And yet, as we
have seen, Darwin was Miiller’s source on that very
CHARLES DARWIN, FRITZ MÙLLER, ANTON DOHRN, AND THE ORIGIN OF EVOLUTIONARY PHYSIOLOGICAL ANATOMY
57
point! If Sewertzoff did not do proper justice to Dar¬
win, and if his mature appreciation of Miiller was at
least in part a sort of rediscovery, then it seems likely
that thè Russian endorsement of Dohrn was at least
partly retrospective as well.
Manton (1977) presents thè functional approach as
someting that was invented by H. Graham Cannon,
which may have been true of her own functional ap¬
proach, hardly does justice to biology in generai. I
find that although Manton (1977, 1978) cites Dohrn’s
monograph on thè pycnogonids, she does so only
with reference to thè illustrations, not thè text, and
that may explain thè oversight. This is, of course, no
isolated incident. Systematists, like other scientists,
work within a very narrow disciplinary context. They
all too often overlook thè accomplishments of those
who specialize on taxonomic groups other than their
own, neglect thè older literature and that in foreign
languages, and quite generally stick to tradition and
routine.
Acknowledgements — William Newman and Joel
Hedgpeth gave me thè benefit of their immense eru-
dition about cirripedes and pycnogonids in reviewing
and discussing thè manuscript in its early stages.
Detailed comments on thè manuscript by Cesare Ba¬
roni-Urbani, Robert J. O’Hara, Alessandro Minelli,
and Francesco Scudo, and informai discussion by
other participants in thè Milan workshop are grate-
fully acknowledged.
REFERENCES
Barlow N. (Ed.), 1959 - The autobiography of Charles Darwin
1909-1982. With Originai Omissions Restored. Harcourt,
Brace, New York: 253 pp.
Burkhardt F. & Smith S. (Eds.), 1988 - The Correspondence of
Charles Darwin. Cambridge University Press, Cambridge, 4:
XXXVI + 711 pp. (1847-1850).
Darwin C., 1851 - A Monograph on thè Sub-Class Cirripedia,
with Figures of all thè Species. The Lepadidae; or, Pedunco-
lated Ciripedes. Ray Society, London. XII + 400 pp. (PI. I-X).
Darwin C., 1854 - A Monograph on thè Sub-Class Cirripedia,
with Figures of all thè Species. The balanidae (or Sessile Cir¬
ripedes); thè Verrucidae, Etc., Etc., Etc. Ray Society, Lon¬
don. viii + 684 pp. (Pls. I-XXX).
Darwin C., 1865 - On thè movement and habits of climbing
plants. J. Linn. Soc., London (Bot.), 9: 1-118.
Darwin C., 1868 - The Variation of Animai and Plants under Do-
mestication. lst ed. 2 vols. John Murray, London.
Darwin C., 1872 - The Expression of thè Emotions in Man and
Animals. lst ed. John Murray, London: VI + 374 pp.
Dohrn A., 1869 - Untersuchungen iiber Bau und Entwickelung
der Arthropoden. 2. Ueber Entwicklung and Bau der Pycno-
goniden. Jena. Z. Naturwiss., 5: 138-157. (Taf. V, VI).
Dohrn A., 1870 - Untersuchungen iiber Bau und Entwicklung
der Arthropoden. 2 vols. Wilhelm Engelmann, Leipzig: V +
VI + 193 pp. (XVII Taf.).
Dohrn A., 1871 - Geschichte des Krebsstammes, nach embryolo-
gischen, anatomischen und palaeontologischen Quellen.
Ein Versuch. Jena Z. Naturwiss., 6: 96-156.
Dohrn A., 1873 - The expression of thè emotions in man and ani-
mais, by Charles Darwin. Academy, 4 (2 June): 209-212.
Dohrn A., 1875 - Der Ursprung der Wirbelthiere und das Princip
des Functionswechsels. Genealogischen Skizzen von Anton
Dohrn. Wilhelm Engelmann, Leipzig: XV + 87 pp.
Dohrn A., 1881 - Die Pantopoden des Golfes von Neapel und der
angrenzenden Meeres-Abschnitte. (Fauna und Flora des
Golfes von Neapel, III). Wilhelm Engelmann, Leipzig: Vili +
252 pp. (XVII Taf.).
Fry W. G., 1978 - A classification within thè pycnogonids. Zool.
J. Linn. Soc., 63: 35-58.
Ghiselin M. T., 1966 - Reproductive function and thè phylogeny
of opisthobranch gastropods. Malacologia, 3: 327-378.
Ghiselin M. T., 1969 - The Triumph of thè Darwinian Method.
lst ed. University of California Press, Berkeley: X + 287 pp.
Ghiselin M. T., 1975 - The rationale of pangenesis. Genetics, 79:
47-57.
Ghiselin M. T., 1980 - The failure of morphology to assimilate
Darwinism. In: The Evolutionary Synthesis. (Eds: Mayr,
Ernst; Provine, William B). Harvard University Press, Cam¬
bridge: 180-193.
Ghiselin M. T., 1985 - Mayr versus Darwin on paraphyletic taxa.
Syst. Zool., 34: 430-462.
Ghiselin M. T., 1988 - The origin of molluscs in thè light of mo-
lecular evidence. Oxford Surv. Evol. Biol., 5: 66-95.
Ghiselin M. T., 1992 - Review of The Meaning of Evolution, by
Robert J. Richards. Syst. Biol., 41: 497-499.
Ghiselin M. T. & Jaffe L., 1973 - Phylogenetic classification in
Darwin’s Monograph on thè Sub-class Cirripedia. Syst.
Zool., 23: 132-140.
Gosliner T. M. & Ghiselin M. T., 1984 - Parallel evolution in op¬
isthobranch gastropods and its implications for phylogenetic
methodology. Syst. Zool., 33: 255-274.
Groeben C. (Ed.), 1982 - Charles Darwin 1809-1882, Anton
Dohrn 1840-1909: Correspondence. Macchiaroli, Napoli:
118 pp.
Haeckel E., 1866 - Generelle Morphologie der Organismen.
Allgemeine Grundziige der organischen Formen-Wissens-
chaft, mecanisch begriindet durch die von Charles Darwin
reformierte Descendenz- Theorie. 2 vols. Verlag von Georg
Reimer, Berlin: XXXII + 574 + CLX + 462 pp. (Taf. I-II,
I-VIII).
Hedgpeth J. W., 1947 - On thè evolutionary significance of thè
Pycnogonida. Smithsonian Mise. Coll., 106 (18): 1-54. (PI. I).
Hedgpeth J. W., 1954 - On thè phylogeny of thè Pycnogonida.
Acta Zool., Stockholm, 35: 193-213.
Helfer H. & Schlottke E., 1935 - Pantopoda. In: Klassen und
ordnungen des Tierreichs. (Ed: Bronn, HG) Akademische
Verlagsgesellschaft, Leipzig, 5.4.2: 314 pp.
Heuss T., 1948 - Anton Dohrn. 2nd ed. Rainer Wunderlich Verlag
Hermann Leins, Stuttgart. 448 pp.
Kossmann R., 1873 - Suctoria und Lepadidae. Untersuchungen
iiber die durch Parasitismus hervorgerufenen Umbildungen
in der Famille der Pedunculata. Habitlitationsschrift ge-
nehmigt von der Philosophischen facultàt der Universitàt
Heidelberg. Stahel, Wiirzburg: 32 pp. (Taf. I-II).
Kuhn A., 1950 - Anton Dohrn und die Zoologie seiner zeit. Pub.
Staz. Zool., Napoli (Supplemento): 1-205.
Manton S. M., 1977 - The Arthropoda: Habits, Functional Mor¬
phology and evolution. Clarendon Press, Oxford: XXII +527 pp.
Manton S. M., 1978 - Habits, functional morphology and thè
evolution of pycnogonids. Zool. J. Linn. Soc., 63: 1-21.
Mayr E., 1960 - The emergence of evolutionary novelties.
In: The Evolution of Life: its Origin, History and Future.
(Ed: Tax, S). (Series Ed: Tax, S. Evolution after Darwin, Vo¬
lume 1). University of Chicago Press, Chicago: 349-380.
Milne-Edwards H., 1834-1840 - Histoire Naturelle des Crusta-
cés, Comprenant l’Anatomie, la Physiologie, et la Classifìca-
tion de Ces Animaux. 3 vols. Libraire Encyclopédique de
Roret., Paris: XXV + 468 + 531 + II + 638 + 32 pp. (Atlas 32
pages + XLII Planches).
Milne-Edwards H., 1851a - Introducion à la Zoologie Générale
ou Considérations sur les Tendaces de la Nature. Victor
Masson, Paris: IV + 180 pp.
Milne-Edwards H., 1851b - Observations sur le squelette tégu-
mentaire des crustacés décapodes, et sur la morphologie de
ces animaux. Ann. Sci. nat. Zool., 3 (6): 221-291. (PI. 8-11).
Mivart S. G., 1871 - On thè Genesis of Species. Macmillan, Lon¬
don: XVI + 296 pp.
Mùller F., 1862 - Die Rhizocephalen, eine neue Gruppe schma-
rotzender Kruster. Arch. Naturg., 28 (1): 1-9. (Taf. I).
Mùller F., 1864 - Fùr Darwin. Wilhelm Engelmann, Leipzig: III +
91 PP-
Mùller F., 1869 - Facts and Arguments for Darwin: with Addi-
tions by thè Author. Translated by W. S. Dallas. John Mur¬
ray, London: VII + 144 pp.
Newman W. A., 1983 - Origin of thè Maxillopoda; urmalacostra-
can ontogeny and progenesis. In: Crustacean Phylogeny.
(Ed: Schramm, Frederick R). (Series Ed: Schramm, Frede¬
rick R. Crustacean Issues, 1). Balkema, Rotterdam: 105-119.
Newman W. A., 1993 - Darwin and cirripedology. In: Crustacean
Issues. (Ed: Schramm, F. R.). A. A. Balkema, Utrecht: 1-67.
O’Hara R. J., 1988 - Homage to Clio, or, toward an historical phi-
losophy for evolutionary biology. Syst. Zool., 37: 142-155.
58
MICHAEL T. GHISELIN
Richards R. J., 1992 - The Meaning of evolution: thè Morpho-
logical Construction and Ideological Reconstruction of
Darwin’s Theory. University of Chicago Press, Chicago: XV +
205 pp.
Schmalhausen I. I., 1937 - Anton Dohm and his role in thè deve-
lopment of evolutionary morphology. In: The Origin of Verte-
brated Animals and thè Principle of Change of Function, by
Anton Dohm, Translated from thè German by B. I. Balinski.
(Ed. Schmalhausen, I. I.). Ogiz, Moscow: 7-78. (In Russian).
Semper C., 1874 - Ueber Pycnogoniden in ihre in Hydroiden
schmarotzenden Larvenform. Arò. Zool.-Zootom. Inst.,
Wurzburg, 1: 264-286.
Sewertzoff A. N., 1927 - Uber die Beziehungen zwischen der
Ontogenese und der Phylogenese der Tiere. Jena. Z. Natur-
wiss., 63 (1, 4 Màrz): 51-180.
Sewertzoff A. N., 1928 - Uber die Prinzipien der phylogenetis-
chen Entwicklung. Zoo/. Zhur., 8 (3): 139-148. (In Russian).
Sewertzoff A. N., 1931 - Morphologische Gesetzmàssigkeiten
der Evolution. Verlag von Gustav Fischer, Jena: XIV + 371 pp.
Sewertzoff A. N., 1932 - Ueber die Bedeutung des Princips der
Substitution und einiger anderer Principien in der Phyloge¬
nese. Arch. Zool. Ita!., 16: 128-139.
Walker G., 1983 - A study of thè ovigerous frena of barnacles.
Phil. Trans. Roy. Soc., London, B218: 425-442.
Michael T. Ghiselin: Department of Invertebrate Zoology and Center for thè History and Philosophy of Science
California Academy of Sciences, Golden Gate Park - San Francisco, California 94118-4599 U.S.A.
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
James R. Griesemer
Some concepts of historical Science
«The nourishing fruit of thè historically understood contains time as a precious but tasteless seed.» -
Walter Benjamin
Abstract - The goal of this paper is to explore thè concept of historical Science, Many analysts of Science distinguish
between historical and ahistorical Sciences to argue that some practices are more «scientific» than others, that thè distinc-
tion supports a particular view of proper scientific method, or that some are mere pseudo-sciences. After discussing these
reasons for calling a Science historical, six different analyses of thè concept of historical theory or Science are discussed.
I conclude in favor of a pragmatic view, drawing on Danto’s analysis of narrative, in which a Science is historical to thè
extent that it admits narrative as contributing to understanding.
The goal of this paper is to explore thè concept of
historical Science. It is claimed that evolutionary
theory and thè biological Sciences that use and deve-
lop it, e.g. systematics, are historical Sciences. Such a
claim is sometimes used to differentiate among
Sciences, e.g. to classify them as «hard» or «soft».
Since many authors discussing thè nature of syste-
matic biology, theory, or practice assume a clear dis-
tinction between historical and ahistorical, it is help-
ful to examine several such concepts. The approach
used here is philosophical: examining proposed dis-
tinctions between historical and ahistorical Sciences
(or theories) and criticizing them for failing to distin¬
guish among Sciences (or theories) that common in-
tuition distinguishes. Since thè aim in making such
distinctions is either to aid understanding of thè na¬
ture of thè Sciences or to make value judgments (e.g.
to set priorities for funding or ranking for prestige),
thè philosophical exercise has practical merit. The
aim is not, however, to criticize claims in thè philo¬
sophical and biological literature in order to establ-
ish which philosophical «school of thought» has thè
correct analysis of Science. Rather, thè practical
merit in thè philosophical exercise is to defend thè
intellectual autonomy of systematics against thè cri-
ticisms of theoretical and sociologica! reductionists.
Why cali a Science historical?
Three reasons one might cali a Science historical
are to argue that: (1) a Science, for being historical, is
no less legitimate or valuable than other, ahistorical
Sciences; (2) a certain model of explanation that ser-
ves as a standard of scientific acceptability, e.g. Hem-
pel’s deductive-nomological or covering-law model,
applies to thè Science even though nothing like
Hempel’s ideal schema appears in thè main texts of
thè practitioners; (3) thè kind of warrant, or justifìca-
tion, of knowledge or understanding claims is dis-
tinct from that of ahistorical Science. Three more
reasons just negate thè first three: (T) in being histo¬
rical, a Science is distinctly illegitimate, unfounded,
or at least inferior to ahistorical Science; (2') If Hem-
pel’s covering-law model of explanation (or some-
thing like it) does not apply to a subject, that subject
is not a Science at all; (3') The kind of warrant or
justification in historical Science in thè same as for
ahistorical Science, and therefore thè knowledge pro-
duced by historical Science is weaker because thè
warrant is generally less for its claims.
I will consider these reasons before discussing
six conceptions of what makes a Science historical
because they color one’s reading of thè concept of
«historicality». The different concepts suit different
purposes, and it is not at all clear which reasons and
concepts should be judged compatible. I shall not
consider thè compabilities in detail, but only review
four concepts and offer two more.
Positive and negative reasons are considered to-
gether because I do not aim to endorse arguments
committed to one side or thè other. Scientists engag-
ing in turf battles for legitimation, authority, domi-
nation, money, power, students, laboratory space, or
glory, often invoke thè legitimacy reason in argu¬
ments to secure places in a «pecking order» for dif¬
ferent Sciences or to reject hierarchies of authority
and social status altogether. The others are more ty-
pically used by historians or philosophers concerned
to formulate generai principles of Science or metho-
dological principles for their own disciplines.
Typically, authority hierarchists place physics and
other physical Science at thè top. Then comes biolo¬
gy and thè «historical» parts of geology and other
earth Sciences, then psychology, and then thè lowly
social Sciences like sociology and anthropology.
Equally typically, anti-hierarchists argue for some
sort of «pluralism», with all Sciences on an equal
footing. For example, in «A plea for thè high status
of naturai history», Stephen Jay Gould (1989, 280-81)
takes Nobel laureate physicist Louis Alvarez to task
for likening paleontologists to stamp collectors and
calling them «not very good scientists». Gould de-
fends thè autonomy and authorithy of naturai histo-
60
JAMES R. GRIESEMER
ry by invoking thè power of historical interpretation
on thè one hand and thè ignorance of physicists
about naturai history on thè other.
The second reason, regarding thè nature of scien-
tific explanation, typically concerns philosophers of
history, whose project this century was transformed
by Hempel’s 1942 essay, «The Function of General
Laws in History». This essay set thè stage for his con-
troversial covering-law model of explanation (Hem-
pel and Oppenheim 1948; Salmon 1989) and capped
two decades of disputation about whether history
was a scientific discipline or could be reduced to one.
Along with a number of other developments in thè
philosophy of empiricism that grew out of thè logicai
positivism of thè 1920s, Hempel’s work polarized
generai discussion about Science around thè issue of
thè reducibility of thè centrai theories of one Science
to those of another. The reduction debate was driven
by three features of Hempel’s conception of explana¬
tion: (1) that, ideally, explanations are sound deduc-
tive arguments from premises including statements
of generai laws of nature and particular conditions
about thè phenomenon to be explained; (2) that
explanation is thè core project of any Science; and
(3) that since deduction allows thè explanation of a
law by more generai or «logically powerful» ones, thè
laws of one Science might be explained by those of
another, more powerful Science. This last feature
provides thè basis for a conception of thè growth of
scientific knowledge as thè reduction of less power¬
ful theories to more powerful ones.
When philosophers turned their attention to
Sciences like geology, systematics, and evolutionary
biology, it proved difììcult to formalize thè relevant
theories along deductive lines (Flew 1959, Smart
1963, Williams 1970). The expectation of success was
formed largely through thè tacit inductive argument
that if a few select physical laws of mechanics can be
so formulated, then all of physics can and, by appeal
to principles of hierarchy and reduction, then all of
Science can.
Some of thè qualities that made formalization of
thè «soft Sciences» difficult align these Sciences with
thè humanities and social Sciences rather than with
thè physical Sciences, Goudge (1958), for example,
defended such an alignment, arguing that explana¬
tions in naturai history have more thè structure of
coherent narratives than of deductive systems. Des-
pite this, such narratives could be causai expla¬
nations. Therefore, according to Goudge, thè philo-
sophical model of deductive arrangement under
generai causai laws, which is lacking in naturai histo¬
ry narratives, cannot lay exclusive claim to causai ex¬
planation. Nor, therefore, can physics lay claim to a
scientific method superior to that of thè «historical»
Sciences (Goudge 1958, 202).
The narrative quality of Darwin’s adaptive expla¬
nations is manifest in thè structure of this argument
for evolution and naturai selection (e.g. Beer 1985;
Gould 1986). This «literary» quality looked proble-
matic to those logicians who rejected as meaningless
all statements lacking means of empirical verifìca-
tion. They accordingly tried to explain Darwin’s
theory away (e.g. Nagel 1961 for teleological explana¬
tion in generai), or to argue that such Sciences are in-
ferior Science or even pseudo-science (e.g. Popper
1957, who later changed his mind about naturai se¬
lection, see Popper 1972, 1978). Smart (1963) argued
that since there are no generai laws for particular
species, evolutionary biology was not scientific. This
statement helped provoked thè elaboration of thè
philosophical analysis of species as individuals rather
than kinds or classes (Ghiselin 1974, Hull 1980). The
species-as-individuals view supports an argument
that there should not be laws about particular species
and that philosophers and others misjudged evo¬
lutionary theory in claiming it had no laws and was
unscientifìc. Rather, they had been looking in thè
wrong place for laws.
Calling a Science historical because it fails to redu¬
ce to physics is a reason I will not explore further.
I do not believe explanation, as laid out by thè Hem-
pelian tradition, is necessarily thè centrai project of a
Science, nor do I believe that there is necessarily any
such beast as thè «core theory» of a Science in Hem¬
pel’s terms. My reasons trace to suspicions of vague-
ness and ambiguity in thè concept of «theory» and
thè likelihood that holding such concepts in high re-
gard will lead to error, or worse.
Although thè analytical philosophy of history
(Danto 1985) has done much to widen thè scope of
generai philosophical discussion on thè topic of ex¬
planation, thè latter’s ultimate purpose is too nar-
rowly epistemological to serve my goals. Philosophi¬
cal theories of explanation distinguish too rigidly
between «discovery» and «justifìcation». This once
useful distinction now serves only to insulate deduc¬
tive inference from thè scrutiny that other aspects of
scientific practice routinely receive by historians and
sociologists as well as philosophers of Science. The
question of what justifies deduction itself is part of
thè generai problem of justifìcation. Deduction has
become a self-justifying (or unjustifiable) axiom for
philosophy of Science. And this in tura has masked
thè important fact that logicai empiricist philoso¬
phers of Science are themselves merely using a bit of
predicate calculus as off-the-shelf technology. There
is no a priori reason one could not or should not take
narrative as an alternative basis for Science.
Justifìcation or warrant concerns thè relation bet¬
ween evidence and hypothesis, while explanation
concerns thè relation between premises in an ex-
planatory argument and conclusions, or between
questions and answers (van Fraassen 1980). Thus, re-
gardless of what purposes are served by invoking
scientific legitimacy or thè pattern of explanation,
a third reason to cali a Science historical is that it
differs in thè style of justifìcation from ahistorical
Sciences. That is, its evidence bears a different re¬
lation to its hypotheses. Advocates and critics of
thè distinction between historical and ahistorical
Science can agree that producing an explanation and
justifying it are logically distinct operations, and yet
disagree on whether thè distinction between styles
or types of justifìcation, and therefore between
different kinds of Science, serves any important
purpose.
Claims about warrant (reason three) are some-
times linked to thè fìrst reason through an argument
that, because Science becomes unified by a universal
logie of warrant, a Science is legitimate to thè extent
that it satisfies that logie. Scientists sometimes de-
fend a particular Science against thè charge that it is
inferior or pseudo-science by arguing for thè epistem¬
ological unity of Science (and against a distinction
between historical and ahistorical Science). But
SOME CONCEPTS OF HISTORICAL SCIENCE
61
scientists sharing thè goal of defending thè legitima-
cy of particular Sciences can fall on either side of thè
unity of Science question. One can analyze history it-
self in such a way that it is scientific, and therefore
that historical Sciences are scientifìc, or one can deny
that being historical entails not being scientifìc on
grounds other than warrant and thus stili accept epis-
temological unity. On thè other hand, one can reject
epistemological unity as a goal of Science and then
nothing is entailed about whether a practice is scien¬
tifìc just in virtue of being historical. Therefore, nei-
ther commitment — to unity or disunity — is effective
in defending a Science against its critics.
Historians and philosophers of Science also pursue
common legitimation goals with different commit-
ments to epistemological unity or disunity. Some
recent essays from a symposium on evolution as a
historical Science illustrate this. Richards (1992) re-
lies on thè distinction between historical and ahisto-
rical Science, but to argue against thè Hempel model
as a basis for unity. Richards argues that Hempel’s
model gets thè nature of explanation backwards.
Hempel did not claim that acceptable explanations
in actual scientifìc practice meet thè formai condi-
tions he defined. Rather, he offered them as an ex-
planatory ideal to which reai explanations are better
or worse approximations. Reai explanations might
not meet thè ideal by failing to explicitly mention
laws, although these might be supplied by post hoc
historical or philosophical analysis in particular
cases. Hempel called such approximations «explana¬
tion sketches» that could in principle be filled in.
Many commentators have taken Hempel’s idealism
to insulate his model from thè criticism that it failed
to account for actual scientifìc explanatory practices.
Richards argues instead that historical narrative ex¬
planations — far from being mere explanation sket¬
ches — are thè ideal, and that deductive-nomological
explanations (even those meeting all of Hempel’s re-
quirements) are mere narrative sketches. Unity of
Science is preserved by standing thè logie of explana¬
tion on its head.
Hull (1992) likewise relies on thè historical/ahisto-
rical distinction and likewise argues against thè em-
phasis on laws in thè Hempel model, but on different
grounds than Richards. Hull defends a «particular-
circumstance» model of explanation against Hem-
pel’s covering-law model to capture thè sense that,
even within thè broad framework of deductive infe-
rence, in historical Sciences thè conditions or parti¬
cular circumstances rather than thè laws govern thè
character of explanations. Thus, while Richards de¬
fends epistemological unity of Science by arguing
that narrative rather than deduction unifìes explana¬
tion, Hull defends plurality of explanatory practice
within a broad epistemological unity of deductive
form.
Ereshefsky (1992) does something orthogonal to
both Richards and Hull. He rejects thè historical/
ahistorical distinction among forms of explanation
and considers thè Hempel model a useful (though
perhaps limited) paradigm. He argues instead that
evolutionary theory is historical, but because some
of its centrai entities — taxa — are a special type of
historical entity, not because its explanations are his¬
torical in form. Hull argues that thè model of expla¬
nation in evolutionary theory takes a distinctive, par-
ticularistic form because thè entities are historical,
thus accepting thè classical basis for thè historical/
ahistorical distinction in thè form of explanation.
Ereshefsky rejects thè classical basis, but accepts a
new distinction based on thè nature of thè entities
rather than thè form of explanation. He argues that
this new distinction is compatible with thè Hempel
model and thè Ghiselin-Hull philosophy of historical
individuate.
Laudan (1992) rejects thè distinction between his¬
torical and ahistorical Science, not because she sees
an alternative route to challenge Hempel’s analysis
of thè form of «proper» scientifìc explanation (Ri¬
chards, Hull) or because thè entities of some Scien¬
ces are historical entities (Ereshefsky), but because
she rejects thè question of explanatory form as
thè signifìcant one. She suggests that philosophers
of history should look again at thè literature on
scientifìc explanation (i.e., they should bring their
history of philosophy up to date). They would find
that in thè fìfty years since Hempel proposed his
model, it has ceased to be thè only viable formai
model, and is no longer thè most promising one to
many philosophers.
Laudan takes thè difference between Sciences like
geology and biology on thè one hand and physics
and chemistry on thè other to be a scientifìc question
about warrant, not a philosophical question about
thè logicai form of explanation. The scientifìc prob-
lem is to devise means of acquiring reliable knowled-
ge. She traces thè motivation to distinguish historical
from ahistorical Science to «observational diffìcul-
ties» about reconstructing thè record of thè past and
argues that thè gradient of diffìculty in this regard
among thè Sciences does not make for epistemologi¬
cal disunity, whatever form explanations in different
Sciences may take (Laudan 1992, 62). The fact that a
laboratory physicist or geneticist has less trouble re¬
constructing thè history of events in their experi-
mental set-up than does a field paleontologist tracing
a fossil record or a systematist reconstructing a phy-
logeny does not make for a difference in kind, but
only in degree. Solution to thè problem of stating thè
generai terms of scientifìc warrant does not imply
anything, therefore, about thè epistemic unity or di¬
sunity of thè Sciences.
The objective of Laudante argument is to deny an
appeal to thè complexity of geological processes and
incompleteness of thè data to sustain a distinction
between historical and ahistorical Science. Danto
(1985, 340) argues thè same point in a more generai
context: incompleteness of record is a «banal and
contingent» fact about historical data, not what
makes a practice historical. W e shall see below why
appeals to complexity and incompleteness fail to
ground thè distinction.
As far as devising means of acquiring reliable
knowledge goes, thè issue of narrative vs. deductive
form of explanations is tangential to thè epistemolo¬
gical problem of warrant (Laudan 1992, 64). The only
historical/ahistorical distinction Laudan admits is
that narrative explanation requires an additional jus-
tifìcation step: connecting parts of chronologies
using particular causai theories. The link between
use of causai theories and parts of chronologies is
important for characterizing historical Science, but a
proper analysis would show that thè distinction can
be drawn independently of arguments for or against
epistemological unity (Griesemer ms).
62
JAMES R. GRIESEMER
One may doubt that arguments pursuing any of
thè three reasons for calling a science historical can
be efìfective on thè grounds proposed. One can argue
for or against legitimacy, explanatoriness, or warran-
tability of a science while accepting or rejecting thè
claim that it is distinctively historical and while ac¬
cepting or rejecting thè claim that thè Sciences as a
whole are epistemically unified or disunified. Push-
ing further, I will argue that what makes a science
historical is a pragmatic matter of taste rather than
logie, and thè distinction is one of aesthetics and
judgment. Put differently, questions of logicai form
are distinct from questions of logicai relation and
questions of historical form are distinct from ques¬
tions of historical relation. That explanatory form
and historicality are pragmatic matters in no way for-
ces one to take up sides on thè largely sterile contro-
versies dividing relativists and realists or objectivists
and subjectivists.
What is a historical science?
I will not discuss all thè concepts needed to in-
terpret thè claim that some Sciences are historical
and others not. Concepts like «chronicle» and «nar¬
rative» are mentioned only to introduce an alterna¬
tive view of what makes a science historical. Danto
(1985) analyzes thè relevant concepts.
A good start in answer to thè question is made in
Wright, Levine and Sober (1992). In a section autho-
red by Sober and titled, «The Historical Character of
Evolutionary Theory» (48-51), four concepts of thè
historicality of historical science are discussed (cf.
Levine and Sober 1985).
The first conception is one that Sober dismisses as
trivial, failing even to demarcate evolutionary theory
from «billiard ball» mechanics. Even though I will
ultimately distinguish «historical science» from «his¬
torical theory», thè claims to follow are worth consi-
dering irrespective of whether science or theory was
thè author’s intended target.
1. A theory is historical if thè statements it explains
refer to two or more moments of time
This is trivial because any science that deals with
temporally extended entities, events, or sequences
must refer to multiple moments in time. Time here
is thè tastless seed, not thè nourishing fruit. The fact
that billiard ball mechanics refers to thè States of
balls at different times suffices to classify it as histori¬
cal according to criterion 1. Indeed, it is hard to see
how theories of any physical processes could to
otherwise, and since evolutionary theory is a theory
of certain physical processes, claim 1 does not demar¬
cate evolutionary theory from any other dealing with
physical processes, nor any science based on faets
of naturai history from other Sciences. And even if
systematics is interpreted as a theory of certain tem-
poral relations or patterns among taxa rather than
processes, it would not be distinguished from a simi-
larly interpreted physics, e.g. one interpreted in
terms of functional relations rather than causes (e.g.
Russell 1913).
It does not follow, however, that claim 1 does no
demarcation work at all. It demarcates thè Sciences
of pure abstractions — «Platonic objects of thought» —
such as mathematics and philosophy from empirical
Sciences of thè physical world. Abstract objects are
not in time, and therefore their explanations do not
require reference to moments of time.
A more promising thesis is one that Sober charac-
terizes as attributing «thè Markov property» to a
scientifìc theory. Sober (Wright et al. 1992, 48) traces
this view to Gustav Bergmann and quotes an adapta-
tion of it by Hull (1974).
2. A theory is historical when «knowledge of thè past
is necessary to predict thè future. Knowledge of thè
present alone will not do»
It is important not to overinterpret claim 2. It does
not assert that knowledge of thè past is suffìcient to
predict thè future, but only that it is necessary. If reai
physical systems exhibit chaotic dynamics, then even
very precise information about thè past may be in-
suffìcient to predict thè future (My thanks to Profes¬
sor Scudo for raising this point). Claim 2 does not
claim so much, but Sober rejects it on several
grounds. First, he points out that in population ge-
netics, standard models require only thè gene and
genotype frequencies of thè population at a given
time plus a speciflcation of thè evolutionary forces in
play at that time. If population genetics is taken to be
thè core of evolutionary theory, and one claims that
evolutionary theory is historical, then Sober’s point
has some merit: since population genetics does not
(or at least need not) have thè Markov property, evo¬
lutionary theory is not historical by criterion 2. One
may, of course, deny that population genetics is thè
core of evolutionary theory or conclude that evolu¬
tionary theory is not historical without doing serious
damage to claim 2.
Sober makes a more important second point about
references to thè past: any dynamical theory will in
practice typically require knowledge of thè past as
well as of thè present to predict thè future. In order
to predict without reference to thè past, a theory
must be dynamically and empirically suffìcient rela¬
tive to thè choice of state variables, parameters, and
state space (Lewontin 1974, Wimsatt 1980, Lloyd
1988). Otherwise, our poor knowledge of how forces
combine to produce effeets will require that to pred¬
ict w e must know things about thè temporal order in
which thè forces operated in thè past. Cartwright
(1983) makes thè same point when she argues that
mechanics is thè only example of a dynamical theory
for which there is a generai rule (vector addition)
about how to combine forces. She argues that, more
typically, thè lack of generai laws of interaction leads
to thè complex form of «phenomenological laws»
used to predict in practice. These are distinct from
thè pristine «fundamental laws» used to explain. For
a theory like evolutionary theory, one needs in addi¬
tion a lot of variables and a lot of care in their measu-
rement to avoid empirical insufficiency, which is also
required to predict a future state of an evolving Sys¬
tem from its present state alone.
Indeed, for evolutionary theory, Lewontin (1974)
suggests that we will rarely meet conditions of dyna¬
mical and empirical sufficiency to make interesting
predictions about evolutionary systems in nature.
But this failure in practice does not lead Sober to
SOME CONCEPTS OF HISTORICAL SCIENCE
63
argue that evolutionary theory is historical. He in-
stead argues against thè interpretation that flows
from claim 2. It does not follow that a theory is histo¬
rical merely due to failure to meet thè practical re-
quirements of dynamical and empirical sufficiency.
In practice, one can sometimes substitute a knowled-
ge of history for satisfaction of formai sufficiency.
But it would be a mistake to confuse this empirical
and contingent fact with a conceptually necessary
property of historical Science.
While I accept Sober’s point about theories, and
therefore his conclusion that claim 2 fails to demar¬
cate evolutionary theory from others in thè class of
dynamical theories, there are caveats. It is not clear
how far Sober’s conclusion about a rather unspeci-
fied evolutionary theory carries to other theories and
theoretical structures in evolutionary biology, e.g. to
theories of speciation, or more importantly to thè
collection of methods and assumptions that play a
role in systematics practices such as cladistic analysis
and phylogeny reconstruction. Sober (1988) argues
for thè dependency of cladistic inference on model
assumptions about thè evolutionary process, but that
does not suffice to show that cladistic practice de-
pends on any particular version of evolutionary theo¬
ry. Therefore, thè failure of claim 2 to establish thè
historical nature of evolutionary theory does not
imply that systematics is also ahistorical.
Caution must be exercised in two ways in evaluat-
ing these arguments. One is in articulating thè con-
tent and structure of theories. If theories are best
presented through models rather than axiomatized
laws, it may turn out that what can be done with mo¬
dels in practice plays a more important role that any
conceptually necessary claim about thè historical or
ahistorical nature of thè theory, making precise state¬
ment of thè latter irrelevant to understanding what it
means to say that thè theory is historical. Second, we
may be forced to distinguish between theories and
Sciences if practice is relevant. A Science in which a
theory is constructed and used to make predictions
may be historical even if thè theory itself fails thè test
of claim 2. (It should already be clear that in calling a
Science historical, I am not concerned with thè idea
that all Sciences are historical because they are prac¬
tices and that all practices are historical).
Distinguishing between a Science and a theory
leads to thè further concern that we are perhaps
being overly respectful of thè idea that prediction,
like explanation, is a relation between premises and
conclusions of arguments. The covering law model
of explanation (and by Hempel’s symmetry thesis,
prediction) not only leads us to think of prediction in
this way, but also leads to inattention to thè practice
of argumentation. Hempel was sensitive to this in his
claim to be formulating idealized concepts of expla¬
nation and prediction, not analyzing or criticizing ac-
tual scientifìc explanations. The latter amount to
mere explanation sketches in Hempel’s analysis. But
they are none thè less powerful for failing to meet
thè ideal, and if thè idealization is so stringent that it
is never met in scientifìc practice, then practice, not
thè ideal, should be thè focus of attention in trying to
understand what makes a Science historical. To thè
extent that explanatory and predictive practice fails
outside thè bounds of what is typically called «theo¬
ry», we may need to distinguish claims about histori¬
cal Science from claims of historical theories so as to
fix thè meaning of what is necessary to predict thè
future.
So, thè need for too many variables in practice
to achieve formai sufficiency (thè heart of claim 2)
does not work well as thè basis of a criterion of de-
marcation among thè Sciences. We would have to
know a lot more about thè relation between formai
structure and practical use of theories than is evident
from thè literature on theory structure to make claim
2 work.
Another criterion moves from claim 2’s generic
appeal to knowledge necessary to predict, to a more
specific appeal which Sober identifies (in philosophy
of evolutionary biology) with Morton Beckner
(1959).
3. A theory is historical when it contains at least one
historical concept
Sober suggests that Beckner’s chosen example,
that physiological theory is historical because it con¬
tains concepts of physiological States that are histori¬
cal, such as «hungry», is inapt. Physiologists are
quite comfortable explaining physiological proces-
ses with methods drawn from physics and chemistry
that (by assumption) do not require any historical
concepts. To understand «hungry» as a historical
concept one would therefore be thrown back on a
version of claim 2, that a theory contains historical
concepts because they are thè means used to refer
to thè past, which is necessary to predict thè future.
But Sober offers another, better example: «adapta-
tion». The now standard reading of (evolutionary)
adaptation is that it applies only to traits that have
arisen by a «historical process» of naturai selection.
That is to say, present States of adaptedness are out-
comes of naturai selection processes that operated in
thè past.
But Sober rejects claim 3 as well because it implies
that many concepts from physics, e.g. acceleration,
are also historical and therefore that physics is a
historical Science. He further points out that
thè process laws of evolutionary theory, such as
concern thè principle of naturai selection, are ahisto¬
rical in thè sense of claims 2 and 3, so it is hard to see
how appeals to claim 3 can succeed merely by appli¬
cation to concepts regarding thè outcome of such
processes.
Perhaps thè main difficulty with claim 3 is also thè
reason for thè faint hope that it could work. It merely
pushes thè problem of historicality of theories back
to thè problem of historicality of concepts. If a crite¬
rion of thè latter could be produced independently of
any assumed meaning of thè historicality of theories,
then claim 3 might succeed. Sober’s argument
against claim 3 simply shows that we have not suc-
ceeded in an independent characterization, not that
claim 3 fails. Appeal to thè historicality of «adapta¬
tion» as a concept depends on thè assumption that
thè process of naturai selection is historical, perhaps
just in virtue of being a process. While that may in
fact be true, it fails as a demarcation criterion since it
throws us back on claim 2 or claim 1, both of which
fail, as we have seen. Unfortunately, I have no fur¬
ther insight on how to characterize «historical con¬
cept» independently, so I reject claim 3 as unpromis-
ing but not conclusively false.
Finally, we reach Sober’s preferred criterion:
64
JAMES R. GRIESEMER
4. A theory is historical if it «has a built-in temporal
asymmetry. The theory enshrines a difference bet-
ween thè direction from present to future and thè
direction from present to past»
Sober recognizes that this claim fails to demarcate
evolutionary theory from all of physics. Thermo-
dynamics turns out to be a historical Science accord-
ing to claim 4 through its formulation of thè princi-
ple of entropy. To suggest that this demarcation
failure is acceptable, Sober notes thè deep parallel
between evolutionary theory and thermodynamics
that R. A. Fisher developed in his fundamental
theorem of naturai selection. Fisher (1930) argued
that selection causes an increase in mean popula-
tion fitness in proportion to thè additive genetic va-
riance in fitness. Sober, of course, must take care of
thè objection than mean population fitness need
not be maximized by naturai selection (e.g., if it is
frequency-dependent). Professor Scudo (pers.
comm.) points out that Fisher’s fundamental theo¬
rem is not true in generai, but thè point here is
not about its truth, but about thè parallel to prin-
ciples in physics. Since thè same sort of caveat is
true of increase in entropy, these objections do not
undercut thè comparison between biology and
physics. And in accepting claim 4 as adequate,
Sober acknowledges that some parts of physics are
historical.
Once again, a question about practice arises. The
highly mathematized, clearly formulated evolution¬
ary theory of which Sober speaks is tethered at very
few points to data about naturai populations. In fact
it is most successful only in highly constrained
laboratory populations and abstract mathematical
models. True, claim 4 works as a criterion applied to
this idealized, abstracted theory and I am willing to
accept it as such. But it teaches us little about evo¬
lutionary theory or evolutionary Science to cali an
abstract model historical. Moreover, if naturai selec¬
tion in nature is almost always frequency-dependent,
then analysis of thè theory has only a tenuous grip on
thè practices of evolutionary biologists trying to un-
derstand evolution in nature. This not to say that thè
theory is not a triumph, but only that thè worries rai-
sed above are stili in play. Moreover, thè theory is
only remotely connected to thè practice of systemat-
ics, and most definitely not connected to cladistic or
phylogenetic patterns through successful, precise
predictions. So judgment on thè basis of acceptance
of claim 4 that evolution is a historical Science rests
on thè stili unjustified claim that thè mathematical
theory of evolutionary genetics is thè «core» of evo¬
lutionary theory.
Worse stili, as I noted above, it is not clear that
systematics has a centrai theory in thè way that evo¬
lutionary genetics does, though I would certainly
agree with Ghiselin (1969) that Darwin’s theory of
descent with modification and his principle of natu¬
rai selection are core if anything is. My worry here is
with thè concept of «core», not of «theory» — w e
don’t have a thorough understanding of thè relation
between theory and practice to justify thè linkage re-
quired to sustain claim 4 as an analysis of historical
Science. My point is that a demarcation criterion like
claim 4 may never be directly applicable to a Science
like systematics unless its application to thè core
theory helps us interpret systematics practices as
well. Such help may eventually be produced, but thè
indirect application of claim 4 solely through thè rhe-
toric of evolutionary synthesis and core looks rather
dubious.
One thing claim 4 has going for it is a certain simi-
larity to views expressed by Stephen Jay Gould
(Gould, Gilinsky & German 1987). Gould argues,
going back to thè heyday of «nomothetic paleontolo-
gy» and random clade studies by thè «MBL Group»,
that thè data of clade diversity show historical direc-
tionality. Gould et al. argue that clades that origi¬
nate early in thè history of a larger group tend to be
bottom-heavy, i.e. to have more members in thè
fìrst half of their temporal duration than in thè se-
cond half. (Put differently, that their «centers of
gravity» are at less than half their duration, measu-
red by First and last appearance in thè fossil record).
Clades that originate late in thè history of a given
larger group tend to be «neutrally bouyant» or top-
heavy. Thus thè history of a larger group has a
signature in thè statistics of clade shape at any
given time-plane. Thus thè data themselves show
directionality.
If there were a theory of clade diversity that explai-
ned thè phenomenon discussed by Gould et al., then
it would probably be a theory which satisfies claim 4
and would therefore be a historical theory. I do not
think that such a theory currently exists. But more
importantly there is some ambiguity in claim 4. The
fìrst sentence of thè claim requires that «it», thè
theory, has thè built-in tenporal asymmetry. But
since theories are abstract objects (on thè usuai phi-
losopher’s reading, which is tacit in thè covering-law
model of explanation), it is ambiguous to say that thè
theory has a temporal asymmetry built-in. Presum-
ably this is clarified in thè gloss in thè second senten¬
ce: thè theory «enshrines» a difference in two tempo¬
ral directions, i.e. thè theory describes or entails an
asymmetry in nature. But thè second sentence is also
ambiguous. It either means that thè theory refers to a
temporal asymmetry in thè phenomena, or that it
makes some claim or assumption about thè nature of
time itself. If we assume thè former, then claim 4
seems to be in line with thè empirical claim of Gould
et al. The data shows directionality, so a proper theo¬
ry of clade diversity, if we had one, would satisfy
claim 4.
But now we are left with a troubling counterfac-
tual application of claim 4 to a Science in order to
argue that a theory is historical: if thè data of a Scien¬
ce have a built-in temporal asymmetry, and if there
were a proper theory for such data, then thè theory
would be historical. This is clearly inadequate, be-
cause it does not follow from thè temporal asym¬
metry of thè data that every theory of them would
satisfy claim 4, and how are we to distinguisi! coun-
terfactually thè ones that are historical from thè
ones that are not? What pressure is there from
nature on our scientific interests, such that we for¬
mulate a theory historically so as to «mirror» this
aspect of thè phenomena? Mirroring nature is so-
mething scientists may or may not wish to do with
their theories.
In thè light of this lack of a proper theory of clade
diversity, and of a meta-theory sufficient to infer that
a proper theory of clade-diversity would meet claim
4, one might be tempted simply to cut theory out of
thè picture by altering claim 4:
SOME CONCEPTS OF HISTORICAL SCIENCE
65
4*. If thè data have a built-in temporal asymme-
try, then thè Science that includes those data is
historical
But claim 4* is suspect as well. Thus far we have
only seen difficulties in extending criteria of demar-
cation for historical vs. ahistorical theories to Scien¬
ces. By switching to thè data of a Science from thè
nature of a theory, we no longer have conceptual re-
sources enough to judge whether claim 4* is satis-
fied. Why, for example, couldn’t we adopt Sober’s
criticism of claim 1 along with thè theory that time is
asymmetrical to argue that all Sciences of thè physi-
cal world are historical? Then every pair of data
points referring to distinct moments of time will ex-
hibit temporal asymmetry: one datum is earlier than
thè other. We do not require some further «signa¬
ture» in thè data to know that data necessarily exhi-
bit temporal asymmetry of this fundamental sort. In-
deed, thè very idea of data from different moments
in time implies temporal asymmetry. But if we want
to rule out thè temporal asymmetry of time itself as
thè relation through which data are considered to sa-
tisfy 4*, how can a restriction be made? What makes
one asymmetric relation relevant and another not?
What makes a theory or a Science historical, in short,
is not thè nature of thè data, but what scientists do
with them.
Thus, I conclude that thè four options discussed
by Sober et al. are not satisfactory. Let me add two
more: one that, like thè others, is unsatisfactory on
conceptual grounds but nevertheless interesting
because it results from considerations of problems
fundamental to systematic biology, and another that
does thè work I want it to, though it will probably not
satisfy philosophers as a respectable criterion.
Philip Kitcher (1989) revisits thè question whether
species are individuals or classes (sets) from thè
point of view of formai logicai issues. Kitcher offers a
criticism of thè species-as-individuals view that leads
to an interesting possibility for a criterion of what
makes a Science historical. Kitcher does not develop
such a criterion per se, nor is that an aim of his essay
and critique of thè Ghiselin-Hull species-as-indivi¬
duals theory.
In criticizing thè species-as-individuals theory,
Kitcher tries to disentangle what he sees as a confu-
sed and misleading claim, that it is a thesis about thè
ontology of species, from what he sees as an interest¬
ing thesis about what makes individuals historical.
Since species-as-individuals theory entails that spe¬
cies are historical individuals, Kitcher expects it to
formulate a position on historicality. I will use Kit-
cher’s formulation of such a position below to state a
criterion of historicality for a Science.
Kitcher introduces a concept he calls «historical
connectedness» in order to say what he thinks is at
thè heart of thè answer to thè interesting problem
posed by thè Ghiselin-Hull theory. He offers two for-
mulations, one in thè idiom of mereology (thè logie
of parts and wholes or individuals), and one in thè
idiom of set theory (thè logie of members and sets).
Kitches draws on two alternative logicai schemes be¬
cause he thinks that Hull’s arguments do not suffice
to show that species are not sets. This does not mean
that Kitcher has shown that species are sets, but only
that he thinks Hull has not shown that they are not.
By offering a formulation in terms of mereology and
one in terms of set theory — logicai schemes with dif¬
ferent ontological assumptions — Kitcher maintains
neutrality on whether thè Ghiselin-Hull theory is
about thè ontology of species.
The mereological version of Kitcher’s criterion of
historical connectedness is as follows:
. . . we conceive of an individuai with organisms as parts to be his-
torically connected just in case for any organismal parts x and y
such that x preceeds y and for any organism z, if z belongs to a
population that descended from a population containing x and
that is ancestral to a population containing y then z is also part of
thè same individuai as x and y. (Kitcher 1989, 187).
The set-theoretical version is:
A set of organisms is historically connected just in case it satisfies
thè following condition: for any organisms x, y and z, if x and y
are in thè set and if z belongs to a population that is descendant
from a population which has x as a member and that is ancestral
to a population that has y as a member then z is in thè set. (ibid.).
Kitcher goes on to develop an interesting argu-
ment for thè claim that if thè Ghiselin-Hull theory
that species are historical individuals means that spe¬
cies are historically connected entities, then their
theory is incompatible with Mayr’s biological species
concept. Kitcher argues that thè biological species
concept is compatible with species not being histori¬
cally connected, and since his formulation of thè
Ghiselin-Hull theory implies that species must be
historically connected, there is a contradiction.
While I do not think thè argument is sound, an
interesting criterion for what makes a theory or a
Science historical can be constructed using Kitcher’s
criterion of historical connectedness:
5a. An entity is historical if and only if it is histori¬
cally connected
5b. A theory (or Science) is historical if at leastsome
of its objects are historical entities
Unfortunately, there is an equivocation on thè
meaning of thè term «population» at a criticai point
in Kitcher’s argument that Ghiselin-Hull theory, on
Kitcher’s interpretation in terms of his criterion, is
incompatible with thè biological species concept.
This equivocation raises doubts about thè generai
utility of historical connectedness as a criterion of
historicality. The source of thè trouble is that noth-
ing follows from Kitcher’s analysis about thè relation
between species and their members or parts without
some further specifìcation of thè relation between
populations and historical individuals. Kitcher has
chased thè problem to thè level of populations, but
has not sufficiently analyzed thè concept of biologi¬
cal population for his argument to go through.
Because of this problem, I do not think 5a + 5b is a
successful criterion of what makes a theory or Scien¬
ce historical. But I have no generai argument to show
that a definition of historical connectedness cannot
serve as thè basis for a concept of historical entity.
I have only claimed that without clarification of thè
concept «population» and thè relation between
population and species, Kitcher’s use of thè criterion
fails as a criticism of Ghiselin-Hull theory. Extension
of 5a + 5b to thè concept of population may result in
an adequate criterion. This would address thè goal of
proponents of claim 4 by identifying thè source of
historicality of a theory or Science with properties of
66
JAMES R. GRIESEMER
thè objects of study rather than with thè methods or
concepts, but by identifying a particular property
other than temporal relation per se and thereby solv-
ing thè problem with claim 4 raised above. But abs-
ent thè extension, there is much cause for skepti-
cism: thè species problem is hard enough, and now
thè equally hard problem of population has been
added to thè task.
Where do these considerations leave us? The first
four criteria are out and number 5 is open to doubt.
Good-faith attempts to ground historicality in refe-
rence to multiple points of time, to prediction, and to
directionality in thè data have failed and thè last,
connectedness in time, has failed to establish tempo¬
ral order in thè phenomena definitively. I am led
to try another avenue, one that ignores theory alto-
gether and focuses on thè historicality of a Science.
Before characterizing historical Science, I must in¬
troduce thè concept of narrative sentence (Danto,
1985, eh. 8). To thè extent that thè analytical philoso-
phy of history illuminates thè generai problem of
what constitutes history, it will illuminate thè con¬
cept of historical Science. Danto’s view of thè role of
narrative sentences in understanding history is signi-
fìcant for my argument: «My thesis is that narrative
sentences are so peculiarly related to our concept of
history that analysis of them must indicate what
some of thè main features of that concept are»
(Danto 1985, 143).
My analysis of historical Science is framed in terms
of thè concept of narrative sentences and a pragmatic
criterion related to their presence in a Science. As
such, thè defmition of narrative sentence becomes
part of thè criterion of historicality of a Science.
6a. A sentence is narrative if it refers to at least two
time-separated events, but only describes, i.e. is only
about, thè earliest event to which it refers
Narrative sentences have a «teleological» charac-
ter in that they refer to events in thè future of a given
event in order to describe and interpret thè signifi-
cance of thè event. The sentence, «Malthus develo-
ped thè basis for Darwinian evolutionary theory in
An Essay on thè Principle of Population », is narrative.
It is about Malthus at thè time of writing of this essay
(published in 1978), but it refers in addition to some-
thing in thè future of that event, Darwin’s working
out (in thè 1830s) and publishing (in thè 1850s) his
theory of evolution by naturai selection. The sentence
describes Malthus in terms that lend significance to
his writing due to events of which Malthus could
not have known at thè time. It selects his writing as
signifìcant among contemporaneous events in virtue
of what happened later.
An important contrast between narrative and non¬
narrative sentences in biology stems from a gramma-
tical difference between thè relation «ancestor-of»
and thè relation «descendant-of». The sentence «a is
an ancestor of b» refers to two objects, a and b. b is in
thè future of a, and a is thè subject of thè sentence,
which is therefore narrative. In contrast, thè senten¬
ce, «b is thè descendant of a » refers to something in
thè past of its subject and is therefore non-narrative.
The grammar of narrative sentences of thè kinds
found in systematic biology has not been well explo-
red from a logicai point of view, and I only mention it
here to indicate problems and subtleties that await,
especially for concepts like Kitcher’s historical con¬
nectedness that refer to genealogical relations.
With Danto’s concept of narrative sentence in
mind, I can now define «historical Science».
6b. A Science is historical to thè extent that is admits
narrative sentences as contributing to understanding
Unlike claims 1 — 5, claim 6 (6a + 6b) differentiates
explicitly between a historical Science and a histori¬
cal theory. This results from thè concept of admis-
sion indicated in claim 6b. I have not specifìed what
it means precisely for a sentence to be admitted into
a Science and I reject thè idealized characterization
of Science as a «body» of knowledge and theory as a
set of statements or sentences, but there is some
sense in which thè sentences circulating orally and in
writing — among a community of scientists — are ad¬
mitted into thè Science. I want also to distinguish
between admission into a Science and admission into
theory (minimally because contradictory sentences
may plausibly be admitted, consciously, into thè for-
mer and not thè latter). To be sure, there may be dis¬
agreement as to which sentences are admissible or
have been admitted, and even lack of cooperation in
thè admission process, but admitted sentences are
nevertheless «in play».
If one wants to characterize what it means for a
theory to be historical, it is a virtue to make this para-
sitic on thè concepts of historical Science. Theory, at
least in thè grand sense implied by most philosophi-
cal work, is not necessarily thè heart of a Science and
I do not see any reason to think thè historicality of a
Science is any more dependent on thè historicality of
a theory than on thè historicality of its data. So I cha¬
racterize a theory as historical when it (however
characterized) is put to use by scientists in a given
Science toward narrative purposes. Thus I think that
evolutionary theory is historical because (some) evo¬
lutionary scientists use it for narrative purposes. I do
not demand that, for example, population genetics
theory be put to narrative use even if one accepts that
theory as part of evolutionary theory because I do
not demand that a Science hang together very well or
for very long.
To be too rigorous about such defmitions is to do
violence to thè fragility of Science as a process. If
someone objects that then every theory is historical
or not depending on usage and that we therefore
cannot teli whether a theory is historical by inspect-
ing its structure, I would reply that this is no objec-
tion unless thè reasons to cali for this independent
means of assessment of theories are made clear. If
someone prefers to claim that I have only defìned
thè historical use of theories and not historical theo¬
ries, I would not object: whether a theory turns out to
be historical or not is not an important question.
I want also to make one further comment about
thè analysis itself concerning thè role of narrative
sentences in characterizing historicality. One reason
I have chosen this route is to avoid some problems
with thinking of narrative «linearly», that is, with in-
terpreting narrative as stating single, unbranching
causai sequences of events from A to B to C, etc.
Robert O’Hara wams about producing linear evolu¬
tionary narratives. He points out that thè subjects of
SOME CONCEPTS OF HISTORICAL SCIENCE
67
systematics are clades, and these «branched pieces of
thè evolutionary tree» lack some of thè key proper-
ties of thè sort of individuals that typically serve as
«centrai subjects» in human narratives (O’Hara 1988,
152). Terminal taxa in a tree do not have continuity
one with another, they are linked only by common
ancestry. They also do not always have distinct end-
ings in time, a property that O’Hara calls «closure».
He observes that recognition of paraphyletic taxa is a
means of imposing an artifìcial closure on an evolu¬
tionary group to «minimize thè cladistic aspect of
evolution and maximize thè linear aspect (or rather
create an imaginary linear aspect)» (ibid.).
Admission of narrative sentences as a criterion of
historicality is intended not to prejudice thè linearity
or non-linearity of narrative. Since 6a only requires
that a narrative sentence refer to at least two differ-
ent times and that it be about only thè earliest time
to which it refers, nothing is implied about whether
narratives must be linear or not. Whether a Science,
like systematics, is historical, is thus a distinct question
from whether its narratives are or should be linear.
O’Hara’s «tree thinking» is compatible with a variety of
conceptions of historicality and narrative structure.
This is important because it is open to question
whether O’Hara’s distinction between evolutionary
history and evolutionary chronicle can be sustained.
Danto characterizes chronicle as distinct from his¬
tory as:
...just an account of what happened, and nothing more than
that . . . [T]he very best kind of chronicle [which gives «all thè
details»] would stili not quite be history in thè proper sense . . .
Proper history regards chronicles as preparatory exercises. Its
own task is rather concerned with assigning some meaning to,
or discerning some meaning in, thè facts allegedly reported by
chronicles. (1985, 116).
Following Danto, O’Hara claims that «Systematics
is thè discipline which estimates thè evolutionary
chronicle» (O’Hara 1988, 144; emphasis his). And evo¬
lutionary chronicle is thè description of a series of
events without accompanying «causai statements,
explanations, or interpretations» (ibid.). I can accept,
as does O’Hara, thè distinction between history and
chronicle as it is developed in thè philosophy of his¬
tory, but if this distinction is pressed into systematics
along certain lines it will, I think, run into problems.
If O’Hara’s view is that cladistic analysis is to
phylogeny reconstruction as chronicle is to (narra¬
tive) history, then I disagree with his analysis on two
scores. First, I think thè practices of systematists teli
against a distinction O’Hara tries to draw between
human historians and systematists. He writes,
In contrast to thè historian, thè systematist performing a cladistic
analysis is trying to use all available evidence to estimate thè po-
sition of as many evolutionary events as possible; he is not trying
to construct a narrative account of a selected set of those events.
(146-47).
Sober (1988), following arguments by Felsenstein,
suggests that thè question of available evidence is a
complex one in systematics. The traditional view of
advocates of parsimony methods for cladistic analy¬
sis has been that only shared derived characters (syn-
apomorphies) provide evidence of cladistic relation-
ships. But Sober and Felsenstein have both argued
through consideration of maximum likelihood me¬
thods that there are evolutionary circumstances in
which shared ancestral characters (symplesiomor-
phies) can also provide cladistic evidence. It is irre-
levant here to try to decide which view of cladistic
methodology is correct. My point is simply that what
counts as available evidence is a negotiable matter in
systematics. At thè very least, choice of parsimony as
a method does not lead to interpretation-free des-
criptions, so cladistic analysis produces something
more theoretically charged than chronicle.
Second, while I agree that cladistic analysis aims at
something prior to evolutionary narrative in thè way
that chronicle preceeds history, I think it is false to
say that in performing cladistic analysis a systematist
avoids thè kind of selections among events that are
essential to historical narrative. The «out-group me¬
thod» for determining character polarity, for exam-
ple, involves a selection from among a number of
possibilities. But thè selection process here is buried
in thè «craft work» of systematists that is not usually
considered part of thè cladistic analysis per se, e.g. in
knowing or having hunches about what would make
suitable out-groups, which is tantemount to a judg-
ment of meaning or historical signifìcance. Professor
Urbani makes thè even stronger claim that thè
simple choice of a statistical computer package per¬
forming maximum likelihood or parsimony methods
is a declaration of faith in a given school of thought
and that practicing systematists are well aware of
such craft commitments (pers. comm.). My argu-
ment is with thè artifìcial separation of craft work
from high theory in thè philosophical analysis of sys-
tematic practice. Moreover, Sober and Felsenstein
have both vigorously argued that in order to do cla¬
distic analysis at all, some model of character evolu¬
tion must at least be tacitly assumed (Sober 1988,
eh. 6). This imposes interpretive constraints and se¬
lection of data, based on events in thè future of thè
branching sequences that cladistic analysis seeks to
«estimate». For example, in assuming a neutral rate
of molecular substitution, a model of character evo¬
lution refers to a process spanning thè whole tempo-
ral duration of thè clade being analyzed.
For these reasons, I think it will be difficult to pur-
sue «a new philosophy of evolutionary biology», as
O’Hara desires, «which reflects thè discipline’s histo¬
rical nature», unless thè practices of thè discipline
are articulated along with thè centrai theoretical con-
struets that are usually identified with thè core or es-
sence of a discipline. I suspect that O’Hara agrees
with this conclusion: he has begun thè critique of
such disciplinary practices (see his 1990, 1992), focus-
ing on thè character of evolutionary narratives (see
also Landau 1984). In systematics there is a tendency
to equate cladistic analysis with only thè final step of
running a computer program on a data set to produce
trees. This is misleading about cladistic practice be¬
cause most of thè selection and a substantial amount
of interpretation are implicit in thè so-called «metho-
dological» choices already made before a particular
computer package is run. Neither do such methods
thereby constitute a theory. It is therefore desirable to
take as primary thè historicality of a Science so as to
include all of thè discursive practices besides those no-
minally connected with theory-structure, and to charac-
terize thè historicality of a scientifìc theory derivately.
Claim 6 entails nothing that compels evolutionary
biologists to treat their Science historically and noth¬
ing that precludes physicists from doing so. Histori¬
cality is a property that a Science has in virtue of thè
pragmatic commitments that scientists make in
68
JAMES R. GRIESEMER
doing Science. As such, it has no logicai or physical
necessity. Indeed, it doesn’t even have social or cul¬
tural necessity: it is possible to practice a historical
Science ahistorically and an ahistorical Science histo-
rically. Pragmatic commitments are negotiated parts
of thè social order of scientific practice, not frag-
ments of epistemology or metaphysics.
To put this point in terms of thè foregoing review
of various attempted analyses of historicality, one
need not refer to multiple points in time in order to
describe a given moment of time. Fading to do so,
however, leads to singularly uninteresting Science, as
thè logicai positivists showed with their protocol sen-
tences as exemplary of ideal Science («Otto senses a
red patch in thè upper left quadrant of his visual fìeld at
4:05 pm, Thursday»). Their thought experiment in ideal
Science showed that not even thè level of commitment
to temporality required by claim 1 is logically or episte-
mologically necessary, but such commitments are prag-
matically necessary if Science is to be interesting.
One need not invoke thè past in order to predict
thè future either. Claim 2 says nothing about how
adequacy conditions for successful prediction are ar-
ranged in conjunction with conditions for construct-
/'«gpredictions, and even Hempel’s symmetry thesis,
which brings prediction under thè same umbrella as
explanation, is mute on this. So, there is a wide fìeld
for deciding to refer to thè past in formulating predic-
tions and their acceptance. Perhaps some generai
regularities will be discovered in thè prediction-
forming, -testing, and -judging habits of scientists,
but I doubt it.
One need not invoke historical concepts in order
to formulate scientific theories, either. In thè discus-
sion of thè concept of adaptation above, thè claim
that this concept is historical was discusseci. But even
if accepted at face value, it is stili open to biologists
to operate without thè concept. Using adaptation as
an evolutionary concept requires commitment, one
that neutral mutationists, for example, have tried at
times to do without. It is certainly open to evolution¬
ary biologists to change thè scope of their Science to
exclude, as physicists have done, phenomena that
seem to require concepts that do not meet their me-
thodological «standard of taste».
One need not have intrinsic directionality «in thè
data» in order to commit to interpreting data histori-
cally. Temporal asymmetry is automatic in data, as I
suggested, just in virtue of thè fact that time itself has a
direction and events and objects are located in time.
Finally, one need not have historically connected
objects as subjects for a Science to be historical. If
Kitcher is right that thè biological species concept al-
lows species to be historically unconnected, then in
so far as evolution was a historical Science when thè
biological species concept was uncontested, it does
not need historically connected objects. On thè other
hand, if it turns out that Kitcher is wrong and thè
biological species concept implies that species are
historically connected, it is stili plausible to think
that evolutionists could proceed without their Scien¬
ce being historical. They could, for example, embra-
ce with enthusiasm what Dobzhansky reluctantly ac¬
cepted as a working hypothesis in 1937: evolution is
change in gene frequency. This commitment to thè
much maligned bean-bag genetical view of evolu¬
tion, coupled with thè view expressed in criticism of
claim 2, that population genetics is just one more dy-
namical theory (and not thereby historical), would
suffìce to allow evolution to be practiced as an ahis¬
torical Science.
I doubt that my pragmatic criterion 6 will be
warmly received. Certainly my criticisms of thè other
criteria do not constitute a rigorous argument in
favor of my preferred criterion, though others re-
flecting on systematics have championed a pragmatic
criterion of explanation, if not of historicality per se
(see Ghiselin 1969, p. 29). Claim 6 seems to admit a
rather literary quality of historical Science that many
have been at pains to avoid, for one or more of thè
reasons I discussed. But one virtue of thè pragmatic
criterion is that it highlights something thè others
have in common: they all try to fìnd properties that
make a theory or Science necessarily historical. While
I do think that thè Sciences can be demarcated, one
from another and from other parts of society and cul¬
ture, I do not think that seeking a necessary condi-
tion for a distinction among Sciences as thè first four
criteria do is thè right approach. The pragmatic cri¬
terion focuses attention squarely on two things: thè
social process of commitment and thè nature of
historical narratives. Many of thè reasons for label-
ling a Science (or theory) historical can be addressed
by investigating a centrai feature of narratives: they
assume a periodization of history which serves as a
theoretical model in narrative construction. It is this
aspect construction of theoretical models, that puts
historical Science on an equal footing with ahistorical
Science and defeats thè hierarchical view of scientific
authority. But naturai historians have not articulated
thè view that their Science is fully theoretical (Grie-
semer 1990). Analysis of thè structure of theoretical
historical models would go far toward answering thè
critics (Griesemer ms).
Acknowledgments — I thank thè conference orga-
nizers for their invitation to participate in thè work¬
shop; thè Museo Civico di Storia Naturale di Milano
for its hospitality; Shahid Amin, John Damuth,
Elihu Gerson, and Michael Ghiselin for helpful
discussion; and thè Wissenschaftskolleg zu Berlin
for a fellowship in 1992-93 that supported this re-
search. I am grateful to Professor Scudo for pressing
his objections and criticisms with vigor.
BIBLIOGRAPHY
Beckner M., 1959 - The Biological Way of Thought. University of
California, Berkeley.
Beer G., 1985 - Darwin’s reading and thè fictions of develop-
ment. In: D. Kohn (ed.) - The Darwinian Heritage. Princeton
University, Princeton, 543-588.
Benjamin W., 1968 - Illuminations. Hartcourt, Brace & World,
New York, quotation at 265.
Cartwright N., 1983 - How thè Laws of Physics Lie. Oxford
University, New York.
Danto A. C., 1985 - Narration and Knowledge. Columbia Univer¬
sity, New York, including thè integrai text of Analytical Phi-
losophy of History, 1968.
Ereshefsky M., 1992 - The historical nature of evolution¬
ary theory. In M. H. Nitecki and D. V. Nitecki (eds.) - His¬
tory and Evolution. State University of New York, Albany:
81-99.
Fisher R. A., 1930 - The genetical Theory of Naturai Selection.
Reprinted 1958. Dover, New York.
SOME CONCEPTS OF HISTORICAL SCIENCE
69
Flew A., 1959 - The structure of Darwinism. New Biology, 28:
25-44.
Ghiselin M., 1969 - The Triumph of thè Darwinian Method.
University of California, Berkeley.
Ghiselin M., 1974 - A radiai solution to thè species problem.
Systematic Zoology, 23: 536-44.
Goudge T. A., 1958 - Causai explanations in naturai history.
British Journal for thè Philosophy of Science, 9: 194-202.
Gould S. J., 1986 - Evolution and thè triumph of homology, or
why history matters. American Scientist, 74: 60-69.
Gould S. J., 1989 - Wonderful Life, The Burgess Shale and thè
Nature of History. W. W. Norton, New York.
Gould S. J., Gilinsky N. L. & German R. Z., 1987 - Asymmetry
of lineages and thè direction of evolutionary time. Science,
236: 1437-1441.
Griesemer J. R., 1990 - Modeling in thè museum: on thè role of
models in thè work of Joseph Grinnell. Biology & Philosophy,
5: 3-36.
Griesemer J. R. - Periodization and Models in historical biology.
(Unpublished ms.).
Hempel C. G., 1942 - The function of generai laws in history.
Journal of Philosophy, 39: 35-48.
Hempel C. G., 1965 - Aspects of Scientific Explanation and Other
Essays in thè Philosophy of Science. The Free Press, New
York.
Hempel C. G. and Oppenheim P., 1948 - Studies in thè logie of
explanation. Philosophy of Science, 15: 135-75.
Hull D. L., 1974 - The Philosophy of Biology. Englewood Cliffs,
NJ., Prentice-Hall.
Hull D. L., 1980 - Individuality and selection. Annual Review of
Ecology and Systematics, 11: 311-32.
Hull D. L., 1992 - The particular-circumstance model of scien¬
tific explanation. In: M. H. Nitecki and D. V. Nitecki (eds.).
History and Evolution. State University ofNew York, Albany:
69-80.
Kitcher P., 1989 - Some puzzles about species. In: M. Ruse (ed.).
What thè Philosophy of Biology Is: Essays Dedicated to
David Hull. Dordrecht, KluwerAcademic; Nijhoff Interna¬
tional Philosophy Series, 32: 183-208.
Landau M., 1984 - Human evolution as narrative. American
Scientist, 72: 262-268.
Laudan R., 1992 - What’s so special about thè past? In: M. H. Ni¬
tecki and D. V. Nitecki (eds.). History and Evolution. Alba¬
ny, State University ofNew York, 55-67.
Levine A. and Sober E., 1985 - What’s historical about historical
materialism? Journal of Philosophy, 82: 304-26.
Lewontin R. C., 1974 - The Genetic Basis of Evolutionary Chan-
ge. Columbia, New York.
Lloyd E. A., 1988 - The Structure and Confirmation of Evolu¬
tionary Theory. Greenwood Westport, CT.
Nagel E., 1961 - The structure of Science: Problems in thè Logic of
Scientific Explanation. Harcourt, Brace & World, New York.
O’Hara R. J., 1988 - Homage to Clio, or, toward an historical phi¬
losophy for evolutionary biology. Systematic Zoology, 37:
142-155.
O’Hara R. J., 1990 - Representations of thè naturai System in thè
nineteenth century. Biology & Philosophy, 6: 255-274.
O’Hara R. J., 1992 - Telling thè tree: narrative representation and
thè study of evolutionary history. Biology & Philosophy, 7:
135-160.
Popper K. R., 1957 - The Poverty of Historicism. Routledge &
Kegan Paul, London.
Popper K. R., 1972 - Objective Knowledge, An Evolutionary
Approach. Oxford University, Oxford.
Popper K. R., 1978 - Naturai selection and thè emergence of
mind. Dialectica, 32: 339-99.
Richards R. J., 1992 - The structure of narrative explanation in
history and biology. In: M. H. Nitecki and D. V. Nitecki
(eds.). History and Evolution. State University of New York,
Albany: 19-53.
Russell B., 1913 - On thè notion of cause. Proceedings of thè Aris-
totelian Society, 13: 1-26.
Salmon W. C., 1989 - Four decades of scientific explanation. In:
P. Kitcher and W. C. Salmon (eds.). Scientific Explanation.
Minnesota Studies in thè Philosophy of Science. University
al Minnesota, Minneapolis, XIII: 3-219.
Smart J., 1963 - Philosophy and Scientific realism. Routledge &
Kegan Paul, London.
Sober E., 1988 - Reconstructing thè Past: Parsimony, Evolution
and Inference. MIT, Cambridge.
Van Fraassen B., 1980 - The Scientific Image. Princeton Universi¬
ty, Princeton.
Williams M., 1970 - Deducing thè consequences of evolution:
a mathematical model. Journal of Theoretical Biology, 29:
343-85.
Wimsatt W., 1980 - Reductionistic research strategies and their
biases in thè units of selection controversy. In: T. Nickels
(ed.), Scientific Discovery: Case Studies. D. Reidei, Dor¬
drecht: 213-259.
Wright E. O., Levine A. & Sober E., 1992 - Reconstructing Mar-
xism: Essays on Explanation and thè Theory of History.
Verso, London.
James R. Griesemer: Wissenschaftskolleg zu Berlin (Institute for Advanced Study Berlin) and University of California,
Department of Philosophy, Davis, CA 95616-8673, U.S.A.
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
.
Alessandro Minelli
Some thought on homology
150 years after Owen’s definition
Abstract - During thè last two centuries, several homology concepts, most often implicit but sometimes explicit and
theoretically belaboured, have supported thè most diverse research programmes, especially in comparative morphology,
systematics and developmental biology. There seems to be no reason for restricting today thè meaning and thè uses of this
term, e.g. only to historical, rather than biological, homology. These different traditional notions may be regarded as facets
of a comprehensive notion of homology, with a major common background in thè commonality of information lying
behind thè objects under comparison, but without any place for archetypes. The importance is stressed of always iden-
tifying thè level(s) of description (hence, thè type of homology) one is considering in a given study. The dangers of
arbitrary atomistic descriptions is underlined. In a ‘combinatorial’ model of homology, a special, independent status is
acknowledged to positional homology, as distinct from special homology: this point is supported by recent advances in
molecular genetics.
How many homology concepts?
A homologue, wrote Owen (1843:374) in a well
known passage, is «thè same organ under every va-
riety of form and function».
Owen was thè first to systematically use thè terms
«homologue» (or «homology») and «analogue» (or
«analogy») in a sense approximately equivalent to thè
sense (or, better, senses) in which we stili use them.
Things were different before, as one easily perceives,
for instance, when studying Geoffroy Saint-Hilaire’s
«théorie des analogues» (e.g., Geoffroy Saint-Hilaire,
1807, 1818, 1830) where what is developed is a concept
akin Owen’s homology, rather than Owen’s analogy.
There is no question as to thè idealistic rationale
of Owen’s homology, but things are not simply set by
stating, as seems to be implicit within some circles,
that to implement Geoffroy’s theory or Owen’s defi¬
nition all biology needed was simply thè advent of
evolutionary thinking, or thè reformulation of histo¬
rical homology concepts in terms of plesiomorphy
and apomorphy (Hennig, 1950, 1966) or even identi-
fying tout court historical homology with synapomor-
phy (Patterson, 1982).
But let me start a little before Owen, with a senten-
ce typical of thè best French morphology of thè early
nineteenth century.
According to Serres (1827:53), thè great discovery
of comparative anatomy had been «that those which
are apparently thè least similar one to thè other are,
however, fundamentally similar, and that, within thè
single individuai as well as among thè whole diversi-
ty of living beings, nature seems to have impressed
two characters, thè one perfectly compatible with thè
other, i.e. constancy within thè type and diversity in
thè modifìcations» (my transl.).
This passage clearly sets thè scope for a multidi-
mensional research programme in comparative mor¬
phology (Minelli, 1995). A broader scope than thè
cross-specific comparative work we now understand,
ever since Darwin and Haeckel, as phylogenetics.
That means that thè historical (genealogical) per-
spective, although prominent in thè current agenda
of comparative biology, does not exhaust thè scope
of this Science. In other terms, equating homology
with synapomorphy means reducing comparative
biology to phylogenetics, and nothing else. We could
also remark, a bit more fastidiously, that terms like
«apomorphy», or «plesiomorphy», strictly refer to
morphological or anatomical features, only by me-
thapor being often extended to functional, behaviou-
ral, ecological or biogeographic ones. This point was
aptly made by Tuomikoski (1967), when suggesting
thè use of thè more comprehensive (but never used)
terms «apotypy» and «plesiotypy».
If we look back at thè history of homology re¬
search, we easily perceive that under this same term
of homology several different traditions developed,
with fluctuating success, ande several of them are
stili alive with us.
There seem to be several different ways of classifying
these traditions, or thè related homology concepts. For
istance, a distinction between transformational and
taxic homology has been widely employed, especially
by cladists (e.g., Patterson, Rieppel, Cracraft, Eldredge,
Panchen). This distinction somehow parallels but
does not strictly identify itself with Wagner’s (1989a)
distinction between biological and historical homo¬
logy concepts.
«Biological homology» rests on thè identication of
correspondance between biological properties, or
processes, underlying thè features under compari¬
son, without any reference to genealogical relation-
ships, or, more generally, to thè temporal dimension
at thè geological time scale; thè opposite holds for
thè historical homology concepts.
Wagner (1989a) regards these biological concepts
of homology, with their reference to biological
mechanisms rather than to genealogical relation-
ships, as more inclusive than thè historical ones. I
would rather regard them as complementary and
worthy of inclusion in a broader construed notion of
homology.
Much of thè trouble with homology, especially in
thè recent literature, has to do with quite opposite
attitudes at this starting point: whether, I mean,
72
ALESSANDRO MINELLI
thè only possible meanings of homology have to be
searched for in a historical perspective, or, on thè
contrary, there is stili also a scope, even in a post-
Darwinian era, for non-historical, but nonetheless
meaningful, concepts of homology.
I do not intend to approach here this question in a
philological vein, i.e. by tracing, work after work, thè
origin and thè fate of individuai terms, like homolo¬
gy, homonomy, homodynamy etc., in order to apply
some kind of priority rule, as does, for instance, thè
International Code of Zoological Nomenclature for
thè scientific names of animai species. I am well
aware that my concept of homology, in so far as it re-
ceives thè legacy of different research traditions, is
perhaps too diffuse to be adequately covered by a
single, universal term, but I feel that, at present, con¬
cepts and corresponding terms may profìt from a glo-
bal discussion within a broader context, before risk-
ing a recrystallization under old or new wordings. A
similar attitude towards homology has been defend-
ed by Ghiselin (1976) and Haszprunar (1992), with
whom I am largely in agreement.
Nor shall I reiterate here thè arguments developed
elsewhere (Minelli & Peruffo, 1991; Minelli, 1992;
also Ghiselin, 1976; Haszprunar, 1992, and others) as
to thè opportunity of keeping within one compre-
hensive concept of homology both inter- and intrain-
dividual relationships, as those traditionally labelled
as special homology and serial homology. Rather, I
shall examine in some detail a few premises, and a
few consequences, of such a catholic approach.
Due to thè multidimensionality of comparative
biology and to thè lack of congruence between
thè different aspects of ‘sameness’ (Wagner, 1994),
a prerequisite for any non trivial use of homology
will always be a clear identification of thè subset of
possible homology components (e.g., positional
homology; or historical homology) we are dealing
with in a given study.
Inadvertently skipping from one kind of compari-
son to another leads all too easily to dangerous situa-
tions. A serious difficulty is stili very well entrenched
in thè literature dealing with thè old issue of ontoge-
ny vs. phylogeny.
From a phylogenetic point of view, one possible
way to look at evolution is to regard it as a history
of changes of ontogenetic programmes. Accordingly,
thè topology of these changes across geological time
is nothing but thè topology of thè phylogenetic tree.
But many evolutionary changes involve hetero-
chronies, or other modifications of thè developmen-
tal schedules, such as to limit thè applicability of
Nelson’s (1978) reformulation of thè biogenetic law.
According to Nelson (1978:327), «given an onto¬
genetic character transformation, from a character
observed to be more generai to a character observed
to be less generai, thè more generai character is pri¬
mitive and thè less generai advanced. «But this is
right thè starting point for Patterson’s (1983) identifì-
cation of ontogeny and phylogeny. I fear that both
Nelson (1978) and Patterson (1983) have fallen vic-
tims of Zeno’s paradox. Achilles will never reach
their turtles, because Zeno, Nelson and Patterson
have limited a priori thè context (a temporal frame-
work in Zeno, a relational one for pattern cladists)
where their game has to be played. The world, howe¬
ver, is wider. Nelson’s and Patterson’s too selective
principles work well, perhaps, but only within thè li-
mits set by a strict pattern cladistic approach, where
homology cannot be other than synapomorphy, as
verified through thè three classic tests of Patterson
(1982).
The dangers inherent in this pattern cladistic ap¬
proach are seldom so evident as in thè following sta¬
tement one can read in Alee Panchen’s (1992) book
on «Classifìcation, Evolution, and thè Nature of Bio¬
logy». We read there, on p. 5, that «If thè pattern of
classifìcation is logically prior to phylogeny [a firm
point, in pattern cladists’ view], thè characters on
which it is based should have logicai priority over thè
pattern. There should therefore be a Naturai Hierar-
chy of characters, whose similarity in all thè mem-
bers of a taxon is recognized as homology».
In spite of thè use of terms like phylogeny, or evo¬
lution, it is here, rather than in a non-phylogenetic
approach to homology, that I perceive an old-fashio-
ned attitude towards comparative biology. I think
that we do not necessarily (better, not always) need
to find out a priority criterion for characters; but,
whenever we need one, why, if not in an essentialis-
tic framework, are we to look for a logicai, rather
than an historical, criterion?
I do not go further with this argument. Rather, it is
perhaps worthy of careful investigation what happe-
ned to Geoffroy’s analogie , or Owen’s homology,
after thè publication of thè «Origin». Here, however,
I will only offer some suggestions.
On thè one hand, thè well-known idealistic exag-
gerations of thè last century do not seem to be com-
pletely dead. Most people will probably regard as
long extinct that early ninenteenth century tradition
of Urpflanzen which, belabouring Goethe’s morpho-
logical speculations, produced those unbelievable
summaries of possible forms we could only define as
hopeless monsters; see, e.g., Turpin’s (1837) picture
of an hypothetical Urpflanze, recently reproduced by
Màgdefrau (1992).
In thè recent literature, there is stili a place for
‘ground-plans’ (for a reasonable example, see En-
ghoffs (1990) chilognathan millipede) but these ra¬
ther run thè apposite risk, to be too poor in structure
as to correspond to possible living animals: in fact,
they are mainly built on thè basis of a few better
founded synapomorphies of a higher taxon, and
nothing else.
But let me read from thè recent (and otherwise
attractive) book of Nijhout on butterfly wing pat-
terns: «The nymphalid ground pian represents thè
maximal pattern that is found in thè family Nympha-
lidae. However, no species is known that has all thè
elements of thè nymphalid ground pian in its wing
pattern» (Nijhout, 1991:27).
On thè other hand, it is fair to say that such slip-
pings are, overall, rare. Problems with thè tradition
of rational morphology are mostly of thè opposite
nature.
In his «Strategy of Life» (1982), Timothy Lenoir
has argued that thè success of thè research agenda
developed around Darwinian evolutionary theory
caused obfuscation of thè German and French com¬
parative morphology developed between thè last de-
cades of thè eighteenth and thè fìrst decades of thè
nineteenth century. In this vein, one could specifi-
cally argue that one effect of this change of mind was
thè more or less conscious restriction of homology to
an historical framework.
SOME THOUGHT ON HOMOLOGY 150 YEARS AFTER OWEN’S DEFINITION
73
It is also fair to say that, until recently, hardly a
mechanism was available as a possible explanation
for thè structural patterns around which developed
thè speculations of a Vicq d’Azyr, or a Geoffroy
Saint-Hilaire. Things are different today, however,
and that seems to me much of a good reason for re-
surrecting (or, better, translating into more modern
terms, as we will see later) many concepts of thè old
rational morphology.
Wagner (1989a, b; also with reference to de Beer
(1971) and to Roth (1988)) has recently argued that «It
seems implausible that continuity of gene lineages
alone could account for thè homology of morpho-
logical features». More recently, Kauffman (1993)
contends that there is a scope for a non-historical
approach to biological organization. This approach
more or less merges with thè structuralist tradition.
Structuralism and Darwinism have been often re-
garded as unreducible opposites, and a lot of structu-
ralists’ excesses well justify this claim, but things
do not need to be so. In a very important paper of
1987, Wake & Larson have convincingly argued in
favour of a synthesis of structuralism and Darwi¬
nism and I cannot but subscribe to their program.
In this perspective, I believe that a suitable, and
adequately broad concept of homology will play a
non-trivial role.
Units of description
«It would be impossible to understand about what
we are talking, says Riedl (1980:157; my transl.),
whenever our terms were not rooted in homology».
In this vein, it is all but difficult to understand
why, ever since Cuvier, people seem to feel so sure,
when partitioning thè Animai Kingdom into a suit¬
able number of embranchements, or phyla. Less often
consciously than not, zoologists feel free from any
obligation to look for homologies, when taking to-
gether (I do not say «comparing») animals they have
placed in two different phyla. Cross-phylum homo¬
logies are, more or less by definition, doubtful,
uncertain, speculative; something that most good
zoologists feel, or felt, not obliged to follow up. At
least, it was so before thè advent of comparative mo-
lecular biology. An all too easy solution, anyway. Let
us look, for instance, at thè prompt dissolution of
thè traditional phylum Arthropoda in thè hands
of Sidnie Manton, as soon as she found herself in
trouble with things such as thè homology between
thè gnathobasic mandible of chelicerates with thè
tip-working mandible of insects and allies (her Uni-
ramia).
Well, homology serves as a universal foundation
of our scientific discourse. But, to begin with, homo¬
logies between what? In morphology, as in other
Sciences (e.g. in descriptive geology; Laudan, 1992),
oe major problem is thè proper identification of suit¬
able units of description and comparison.
As Eldredge & Cracraft (1980) posed it, every com¬
parison cannot but begin within ‘comparable’ units.
«But what does ‘comparable’ mean? — asked Nelson
& Platnick (1981:151-2) — Are not all things ‘compar¬
ale’? Potentially yes, but actually biologists do not
compare arms with eyeballs or noses (although there
is not rule that biologists may not do so). They com¬
pare, for example, arms of a human, or wings of a
bat, with thè fore legs of a frog or thè pectoral fins of
fìshes. To a biologist, these organs display interest-
ing similarities and differences, interesting perhaps
only because a biologist can generalize about. And
by stating that they are homologous, one means at
least that generai statements can be made about
them».
In other terms, «The significant point is that for
any discussion of homology, homologues must fìrst
be recognized based on similarity. The primacy of si-
milarity over phylogeny puts an onus on morpholo-
gists to be able to apply similarity to identified mor-
phological elements» (Young, 1993:235).
Can we subscribe to Young’s posit? Before an-
swering this question, it is perhaps apt to underline,
how loose is thè current use of thè term «morpholo¬
gy», which is often understood as a plain synonym of
«anatomy», sometimes retained in his originai and
legitimate meaning of study of (abstract) form, and
all too often dangerously employed to mean both of
those things. Now, moving back to thè foundations
of homology, it seems to me that similarity, as such,
can only be thè background of that ‘operational no-
tion of homology’ (i.e., something that actually has
nothing to do with homology proper) such as develo¬
ped within thè domain of phenetic, numerical taxo-
nomy (Sokal and Sneath, 1963; Sneath and Sokal,
1973; cf. also Patterson’s (1982) historical review of
homology concepts). Within an evolutionary con-
text, things go on otherwise.
A good morphologist, to begin with, is well aware
that there are many different possible levels of des¬
cription. Therefore, thè fìrst aspect to care for is to
avoid mixing, in a given comparison, concepts and
terms pertaining to different facets of morphology or
anatomy. In a well-argued analysis of homology pro-
blems in thè study of animai body cavities, for in¬
stance, Remane (1963) distinguished between (a)
descriptive-histological terms such as gymnocoel
and epitheliocoel, (b) ontogenetic terms such as
schizocoel, enterocoel, neocoel, (c) morphological
terms s.str. such as amniotic cavity, and (d) function-
al anatomical terms like haemocoel.
Nevertheless, this is just thè starting point. More
often than not, it is quite difficult to perceive how
traditionally biased are our current circumscriptions
of only apparently trivial terms, like flower and inflo-
rescence in plants or head, thorax and abdomen in
animals.
First, a botanical example. In a conventional her-
maphrodite flower, there is a standard sequence of
whorls: begininng with thè outmost sepals, we usual-
ly find petals, followed by stamens and fìnally car-
pels. In lieu of sepals + petals, there is sometimes a
single kind of external, nonreproductive elements
(tepals); in addition, any one of these whorls may be
missing, but — this is thè main point — their order is
never reversed. At least, botanists do not allow them
to be. However, to thè scorn of typological botanists,
there actually are a few kinds of flowers where thè se¬
quence of whorls is: outer tepals, outer ring of sta-
mes, inner tepals, inner whorl of stamens. When
confronted with such an arrangement, «thè classical
minded phytomorphologist refuses to accept thè
confìguration [..] as representing a flower, but decla-
res it to be an ‘inflorescence’ (more precisely: a pseu-
danthial inflorescence)» (Meeuse, 1986:10). In a
sense, positional constancy has become a kind of de-
74
ALESSANDRO MINELLI
fining property for thè parts of a flower. But, is this
attitude truly justified? I do not think so. The newest
discoveries in developmental genetics of plants have
shown that not just thè shape and thè colour, but
also thè relative position of thè fiorai elements is
under relatively simple genetic control. The fact that
thè usuai order is seldom reversed does not imply
that it cannot sometimes be upset, as in some labora-
tory mutants. Surely no developmental genetist
would surely argue that an Antirrhinum or an Arabi-
dopsis with its petals and stamens in unconventional
sequence is something different from an (admittedly
odd) flower. Interestingly enough, Martinez and
Ramos (1989) have recently discovered a plant species
( Lacandonia schismatica) with literally inverted fiorai
whorls, thè stamens being encircled by thè carpels!
Let me now skip to a zoological example. I do not
intend to discuss here whether there is any sense in
giving thè same name (head) to thè foremost section
of thè body of thè swordfish (a vertebrate), thè
silverfish (an insect) and thè cuttlefìsh (a mollusc),
although this question, to a belated vengeance of
Geoffroy Saint-Hilaire ad his disciples Meyranx and
Laurencet, could be perhaps less crazy than it seems
to be (see later).
Here, however, I wish to point to thè difficulties
in determining what a thorax is in aculeate hyme-
nopterans, where, as it is customary to say, thè fìrst
abdominal segment is incorporateci within thè tho-
racic tagma. Why not to say that thè boundary tho-
rax/abdomen runs here one segment behind its
usuai position in insects?
Again, is it more meaningful to say that thè fìrst
thoracic segment is fused to thè head in woodlice
and allies (Isopoda), or to acknowledge that thè posi¬
tion of thè head/thorax boundary is not universally
thè same within crustaceans?
According to Boxshall & Huys (1992:332), «Tag-
mata separeted by boundaries that lie in different
location cannot be compared. For example, maxillo-
podans such as copepods, thecostracans and tantu-
locaridans cannot be grouped together with thè
Malacostraca on thè basis of thè division of thè post-
cephalic trunk into two tagmata (thorax and abdo-
men) because thè tagmata of maxillopodans and
malacostracans have a different somite composition
and are not homologous. «In other terms, according
to Boxshall & Huys tagmata are homologous in so
far as thè boundary between them lies in an homo¬
logous position. But, how is this positional homolo¬
gy to be determined? Is thè usuai count of segments,
with a more or less hypothetical acron as number
zero, a universally reliable reference? I do not think
so. To back my argument, I simply refer thè reader to
thè example in Figure 1, which I have discussed in
more detail in a recent paper (Minelli, 1992).
A good morphologist is able to avoid these seman-
tic pitfalls, but thè circumscription of characters to
consider for homology statements stili requires ad-
dressing and possibly solving additional questions. I
shall shortly touch on three points.
A fìrst question relates to thè contrast between
atomistic vs. holistic approach.
Wagner (1989a:58) has rightly stressed that «lack
of developmental individuality of parts may render
thè identifìcation of structures meaningless», but
one cannot be sure, at thè outset, that a thorough
knowledge of morphogenesis will grant recognition
Fig. 1 - How to compare position along thè body of a segment-
ed animai, if thè number of segments is not Constant within thè
species? A relative position (such as thè 35% of thè total number
of body segments, as determined in antero-posterior direction)
may be more meaningfully comparable than an absolute position
(such as thè 35th segment). At least, so is thè case illustrated in
thè figure.
In thè very slender, worm-like centipede Stigmatogaster gracilis
(Chilopoda: Geophilomorpha), thè number of body segments is
quite variable, even within a single population. However, seg¬
ment number does not increase with age: through thè several
moults they undergo during their post-embryonic life, these ani-
mais retain thè number of segments they possessed at birth. In a
few segments, which form an uninterrupted series a bit before
mid-length, thè ventral piate (sternum) is ‘marked’ by thè presen-
ce of a pair of lateral grooves. The number of sterna with grooves
increases with age. In addition, in thè animals with a smaller total
number of segments thè grooves occur in more anterior
segments than in animals with more segments. However, thè re¬
lative positions always remain thè same, as demonstrated by thè
figure, which shows thè linear regressions separately calculated
for thè relative segmentai position of thè fìrst and last segment
with grooves (black dots and open circles respectively) vs. body
length (BL), as observed in 66 Italian specimens of this species.
Relative segmentai positions (Xl/XT) are calculated by dividing
by thè total number of leg-bearing segments (XT) thè actual seg¬
mentai position X where thè groove series respectively begins or
ends. For both regressions, p <0.001 (after Minelli, 1992; repro-
duced here with thè permission of thè publisher, Universitàtsver-
lag Wagner, Innsbruck).
of individuai (atomic) units of comparison. This is
thè message conveyed by Goodwin and Trainor’s
(1983) theoretical analysis of digit differentiation in
tetrapod limbs. They contend that homologizing
limb elements involves an artificial atomism, whe-
reas, in their opinion, individuai skeletal elements do
not have an identity of their own. Rather, Goodwin
and Trainor’s holistic-structuralistic approach recog-
nizes thè whole limb as an integrated developmental
fìeld. In their view, when confronted with a 4- or
3-digit limb, we cannot say that one or two digits are
missing, e.g. thè fìrst or thè fìfth. What they regard as
thè only meaningful comparison is one involving thè
whole of thè digit-forming material present in thè
two instances: a digit-forming material that, in thè
case of thè digit-reduced appendages, only reaches
for 3 or 4 digits, rather than for thè 5 of ... how to
say?, thè 5 traditionally supposed to have been pres¬
ent in thè archetypal tetrapods (but see thè recent
evidence for a larger number of digits in early forms
like Ichthyostega ; Coates and Clack, 1990).
I am sincerely ready to take Goodwin and Trainor
(1983) seriously, is spite of thè difficulties raised by
Shubin & Alberch (1986:375), who claim that «if
Goodwin & Trainor (1983) took their approach to its
logicai conclusion, they could not discuss limb deve-
lopment and evolution in thè fìrst place, since this
requires them to use concept of homology at another
level of thè taxonomic hierarchy — to homologize a
structure called a limb in thè fìrst place. They impli-
citly accept a certain degree of compartmentalization
SOME THOUGHT ON HOMOLOGY 150 YEARS AFTER OWEN’S DEFINITION
75
by assuming that thè limb is an independent em-
bryonic fìeld [..] The degree of developmental com-
partmentalization corresponds to thè level at which
homologies can be resolved».
The challenge of thè holistic approach has been re-
cently extended into a fìeld that most developmental
biologists regard as a triumph of thè genetic dissec-
tion of a complex pattern, that of thè origin of body
segmentation in Drosophila. In thè study of this de¬
velopmental process, a whole gallery of ‘segmentai
monsters’ opened thè way to a wonderful genetic
analysis, beginning with Niisslein-Volhard & Wies-
chaus’s (1980) already classic paper. This analysis
progressively revealed thè individuai role of a lot of
genes, in establishing thè main features of body ar-
chitecture and of segmentation in particular. Of
many of these genes w e now know both thè sequen-
ce, thè spatial and temporal patterns of expression
and thè interactive effects with thè products of other
genes. Well, right against this compact body of ex-
perimental data, which all point in favour of thè indi¬
viduai roles of individuai genes in controlling speci-
fied aspects of body structure, Goodwin’s group (Ho
et al., 1987) have shown that Drosophila embryos, ex-
posed to ether between 1 and 4 h after deposition,
often develop segmentation defects resembling
known mutant phenotypes. Their conclusion is, that
«at least part of thè segmentation process may con-
sist of physicochemical reactions coordinateci over
thè whole body» (p. 511). Quite independently from
thè final judgement on thè mechanisms actually in-
volved in digit formation in vertebrates, or in body
segmentation in insects, I once more want to stress
thè danger of rushing towards atomistic descriptions
and, hence, comparisons.
This point, however, stili leaves us with thè ques¬
tioni where to begin? Perhaps — this is my second
point — with archetypes?
Young (1993:225) has recently argued «that nei-
ther thè concept of «structure» nor that of «homolo¬
gy» can be incorporated within a morphological
Science that lacks an archetypal foundation. By an ar-
chetypal concept I mean thè recognition of stable un-
derlying patterns within morphological systems».
From an ontological point of view, this «archety-
pe» seems to be immanent rather than transcendant,
thus quite different from Owen’s one. Nevertheless,
it is stili an essentialistic, rather than an empirical,
construction.
Worries in front of this persistent ghost of archety¬
pes seem to be largely responsive for thè widespread
shift of attention, in thè literature, from transforma-
tional, or biological, to taxic, or historical, homology.
For instance, Patterson (1982) only accepts thè taxic
notion of homology as synapomorphy, stating that
transformational homology is always validated by
reference to archetypes. However, as also asserted
by Panchen (1992:71), things are not necessarly
so, if our transformational comparisons rest, apart
from Geoffroy’s principle of connections, on thè
identification of similar developmental pathways in
ontogeny.
Summing up, I do not believe that thè ghost of ar¬
chetypes should be raised against transformational,
or biological, homology, any more than against taxic,
or historical, homology. As we have already seen,
both of them are able to generate groundplans, or
Ur-somethings. On thè contrary, both of them may
(and should!) content themselves with a minimum
requirement of starting hypotheses, when adopting a
given set of terms for describing, at thè outset, thè
objects to be later compared.
Moving soon to thè third, and last, point of this
section, a major trouble for students of homology
has long been thè fact, that features regarded as ho-
mologous are sometimes built, in different orga-
nisms, under thè control of different genes. A more
recent version of this problem is Roth’s (1988:7) ‘ge¬
netic piracy’, when «genes, previously unassociated
with thè development of a particular structure, can
be deputized in evolution, that is, brought in to con¬
trol a previously unrelated developmental process,
so that entirely different suites of genes may be res¬
ponsive for thè appearance of thè structure in differ¬
ent contexts».
I believe that in order to assess thè actual relevan-
ce, or even thè meaning, of Roth’s genetic piracy, we
would need a better knowledge of what we could cali
thè redundancy of genetic control over developmen¬
tal pathways. Leaving aside thè experimental aspects
of thè question, I feel, from a theoretical point of
view, that to ignore this redundancy is one aspect of
well-entrenched typologism and reductionism.
On thè contrary, recognizing that thè features we
are homologizing are subjected to a redundant con¬
trol, or that their history has seen episodes of genetic
piracy, is not a problem, whenever we develop a
combinatoria! view of homology, as outlined below.
An informational and combinatorial view
of homology relationship
Developmental biology has often demonstrated
that thè same body part can often be built out of ma¬
teriate with different origins. What is required, to get
those organs, seems rather to be thè spread of some
specifìc information through previously inert mate¬
riate. Some example follow, from a potentially enor-
mous literature (cf. Wagner 1989a), just to give an
idea of thè different levels through which this pheno-
menon spans.
Norris (1993) has shown that there is considerable
flexibility in thè makeup of thè tympanic bulla, with
variable incorporation of thè squamosal into thè
tympanic floor, within thè same population of a mar-
supial, thè grey cuscus ( Phalanger orientalis).
At thè other extreme of thè possible taxonomic
range, within Metazoa, our current awareness of
comparative embryology suggests that thè contribu-
tion of germ layers to various body parts can vary to
such an extent as to undermine thè very concept of
germs layers.
Even an apparently major difference, such as that
between cells vs. syncytia, seems to be of minor im-
portance, e.g. in some steps of insect body segmenta¬
tion, as shown by a comparison of Drosophila , with
its syncytial blastoderm, with thè lesser flour beetle
Tribolium, with cellularized blastoderm (Sommer
and Tautz, 1993).
Writing on homology right 50 years ago, Boyden
(1943:233-4) expressed thè view that «Homology is a
genetic phenomenon». This may sound like a sim-
plistic, reductive view of thè problem; nevertheless, it
can serve as a suitable starting point for thè following
argument.
76
ALESSANDRO MINELLI
I identify three major attributes of a biological
concept of homology. Two of them are thè infor-
mational background and thè relativity of homology
(cf. Minelli & Peruffo, 1991, and references therein),
from which we can easily derive thè third point, i.e.
thè compositional aspect of homology. This
approach (Minelli, 1992, 1993; Haszprunar 1992)
seems to me a way of integrating more strictly thè
different kinds of homology as identified by thè old
comparative anatomy and more recently redefined
by Ghiselin (1976).
The individuai features of thè phenotype are thè
outcome of a series of developmental choices (more
or less directly mapping onto thè genome), many if
not most of which can be identified, in principle, as
independent units of developmental control, either
as morphogenetic or as morphostatic constraints
(Wagner, 1993). In principle, again, we can sepa¬
rate thè processes leading to these developmen¬
tal choices or control, as individuai components of
thè overall informational background underlying a
given feature and, by consequence, its homology
with corresponding features of thè same organism
(serial homology) or of different organisms (special
homology).
A notion of relativity also solves thè problem of
thè lack of unbound transitivity in homology rela-
tionships, to which Paulus (1989:472) recently called
attention.
Adopting this conceptual framework may also
help addressing thè interpretation of thè so-called
‘intermediate’ structures, which seem to take part of
two or more different elements and are often, too
often, described in terms of ‘fusion of structures’
whereas, especially in ontogenetic terms, they would
much better be described as ‘nondisjunct’. Once
more, a botanical example: «If a shoot apex does not
differentiate lateral primordia, but remains a smooth
protuberance until it starts growing (i.e., increasing
its volume by celi divisions and celi stretching), so-
mething like thè corm of a lemnaceous plantlet deve-
lops. There is no ‘fusion’, but ‘lack of separation’; thè
resulting cormoid structure is unclassifiable as a
‘stem’ or ‘a leaf and to cali it ‘intermediate’ is highly
questionable; it is rather a chimeric merger» (Meeu-
se, 1986:14-15). I would like to describe in thè same
terms a lot of structures occurring in thè animai king-
dom, as thè so-called diplosegments of millipedes,
which are clearly ‘doublé segments’ ventrally, but
‘unitary’ dorsally.
Positional homology in developmental mechanics
and in comparative anatomy
The search for a suitable reference System within
which to identify homology relationships has often
moved away from thè tangible realm of histology
and anatomy proper, to develop in more abstract,
geometrical terms, as in D’Arcy Thompson’s (1917,
1942) coordinates and transformations, or, more re¬
cently, within thè new morphometrics of Fred
Bookstein and associates (e.g., Bookstein et al., 1985;
cf. also Rohlf & Marcus, 1993 but see Bookstein
(1994) for a recent rethinking on these matters,
ending up with a strong denial of thè possibility of
reconcile morphometry with a search for homo-
logies).
However, one could more legitimately search for,
so to say, intrinsic coordinate systems, as already
did Geoffroy Saint-Hilaire, who suggested that thè
network of blood vessels could provide a kind of
scaffolding against which to identify topographical
relationships. More recently, rather than thè vascular
supply to thè different body parts, other connecting
elements, such as muscles and especially nerves,
progressively gained in favour among comparative
anatomists, as suggestive of identifìable positions
and, hence, of homologies (cf. Remane (1963) for a
modera assessment of these matters). On thè whole,
thè relationships between nerves and innervated or-
gans are generally held as thè most reliable. One
wonders whether thè reliability of inferences of ho¬
mology from nerve connections may be justified by
thè role of nerves as morphogenetic tracers. Howe¬
ver, as noted by Bock (1989:338), such «Positional
tests [of homology] are not as simple as they appear.
A common one is to test thè homology of skeletal
muscles by their innervation, using thè assumption
that thè same nerve innervates homologous muscles
even when thè muscles change shape and bony
attachments drastically. In such tests, it is necessary
to first establish thè homology of thè nerves inde-
pendently, which is not an easy task, especially when
one is dealing with secondary and tertiary branching
of a nerve».
At any rate, things seem to be different in different
systems; see, for instance, thè results of Broadie &
Bate’s newest investigations (1993:350). In thè em-
bryo of Drosophila, individuai motor neurons form
stereotyped synapses on individuai, identified mus¬
cles. Broadie and Bate «used a mutant ( prospero ) that
removes or delays innervation to assay thè role of thè
presynaptic motor neurons in thè development of
thè receptive field of thè postsynaptic muscle. Pros¬
pero (pros) is not expressed in thè muscles or their
precursors. [They] find that thè muscle defines thè
correct synaptic zone in thè absence of thè motor
neuron by restricting putative guidance molecules to
this specialized membrane region. Furthermore, thè
muscle expresses functional transmitter receptors at
thè correct developmental time without innervation.
On thè other hand, thè muscle does not localize re¬
ceptors to thè synapse without instruction from thè
motor neuron, nor does a second, much larger, syn-
thesis of receptors occur in muscles deprived of in¬
nervation». These results suggest that, in this System
at least, thè role of muscles is not simply a passive
one, where all connections are specified in advance
by nerves.
However, even if a mechanistic, i.e. molecular, in¬
terpretation of thè primacy of nerves in establishing
a morphological reference System within thè animai
may stili sound doubtful, there seems to be much
scope for a molecular interpretation of thè Lois des
connexions, especially at thè level of gross morpholo¬
gical organization.
Let me introduce this point by focussing on an ele-
mentary, but generally overlooked feature of compa¬
rative anatomy. Within thè body architecture of all
animals, there are some ‘hot spots’ where many, or
most, of thè key features of thè body differentiate
and evolve. In most groups, thè most conspicuous of
these hot spots are thè two ends of thè body, but
there are also other, less conspicuous ‘hot spots’, a
few of which seem to be worthy of attention.
SOME THOUGHT ON HOMOLOGY 150 YEARS AFTER OWEN’S DEFINITION
77
Take, for instance, a male dragonfly. At variance
with thè generality of insects, it has not developed a
copulatory structure in strict anatomical connection
with its genital opening, but one several segments in
front of it. This morphological behaviour is quite
strange, although not unique within Metazoa, but I
am not recalling it here to discuss its origin, or to
trace any special homology of this secondary penis to
structures in other insects, but simply to point to an
unexpected topographical correspondence. In fact,
male gonopods in most millipede families are thè
modifìed appendages of what seems to be exactly thè
‘same’ segment as that with genital opening in dra-
gonflies, whereas thè secondary penis of dragonflies
occur at thè same segment where male millipedes
have their genital opening! These two segments also
behave as a kind of ‘hot spot’ (Minelli & Schram,
1994) where different arthropods are able to specify
different highly specialized structures. Why do all
these structures develop there, in spite of their very
different nature? Probably because thè ‘hot spots’
are evolutionarily homologous and have not chan-
ged their relative position, at least since thè lineage
leading to dragonflies split off from that leading to
millipedes. I see here a kind of positional homology,
despite a lack of special homology.
Recently, Slack et al. (1993) have tried to characte-
rize what they cali thè ‘zootype’, a kind of molecular
archetype of metazoans. This zootype would be
under thè specifìc control of thè so-called Hox genes.
Not that these genes actually specify any given struc¬
ture, such as mouth, brain, heart, kidney, or anus,
but they seem to lay down thè generai scaffolding
of thè body, by giving — in molecular terms — posi¬
tional value to thè different points along thè main
body axis.
I believe (cf. Minelli & Schram, 1993) that these
facts and models (thè zootype; thè segments with se¬
condary penis in dragonflies and gonopods in milli¬
pedes) are better discussed by reference to what may
be regarded, in a sense, quite thè opposite. I am
thinking of thè homoeotic mutants, where, in spite
of thè different positional specification, there is stili a
point-to-point structural correspondence (iterative
homology) between thè normal feature, e.g. a leg,
and its ectopie counterpart. On thè other hand, thè
position of thè ectopie leg of an Antennapedia mut-
ant is thè same as that of a normal antenna in a wild
type fly. But, when I say ‘in thè same position’,
I imply a kind of ‘positional homology’, to be eva-
luated independently from thè «special homology»
between thè appendages. But current molecular ge-
netics of development allows us to give a material
meaning to this positional homology, not less tang-
ibly so as it gives a material meaning to thè special
homology of structures whose differentiation we en-
visage as dependent on similar genetic control. — Let
me add, incidentali, that to speak of ‘ectopie legs’,
as is customary, literally implies wrong interpreta-
tions of facts: thè expression implies that a leg has
somehow changed its position, whereas it is another
appendage that has differentiated with properties
that usually are expressed in other positions.
Summing up, in this application of thè concept of
compositional homology mentioned before, there
seems to be scope for three interestingly different
kinds of comparisons: (a) those with conservation of
positional homology, but not of special homology,
(b) those with conservation of special homology, but
not of positional homology; (c) those with conser¬
vation of both kinds of homology, positional and
special.
The positional specification of thè main body axis
seems to be only one of thè Systems where these
Hox genes are involved. In vertebrates, they also
seem to function during embryogenesis of other
structures, such as thè limbs, thè skeleton and thè
nervous System, where regional variation of thè com-
ponents must be established along axial coordinates
(Krumlauf, 1993). In other instances, as in thè deve¬
lopment of insect appendages, there appears to be an
element of polar coordinate reference Systems (Bry-
ant, 1993). This polar System is coupled with a «seg-
mentation» process similar to that of thè main body
of arthropods wherein protein markers of annulin
mark thè limbs boundaries (Bastiani et al., 1992).
Positive knowledge of these genes, of their expres¬
sion patterns during early embryogenesis and of thè
relationships between corresponding Hox genes in
different metazoans are rapidly increasing. But we
do not need to wait for much experimental detail,
before we dare to suggest — right as a kind of re-
search programme for comparative molecular gene-
ticists — a reinterpretation of many facts of tradition-
al zoological wisdom.
Why is thè anatomy of flatworms generally so un-
stable, compared to that of insects or vertebrates?
(Russell, 1930). Is perhaps this fact a consequence of
thè lack of a hot spot at thè rear end of thè body?
Once established, body landmarks (hot spots) to-
pographically constrain subsequent morphogenetic
events (Minelli and Schram, 1994).
For instance, in digenean trematodes a mid-body
spot sets thè site for thè genital opening only, whe¬
reas in planarians both mouth and genital opening
appear there.
Again, in male nematodes a posterior, subterminal
spot marks thè cloacal opening, whereas in females
only an anus develops, thè genital pore being borne
on an additional mid-body spot. And so on.
Adopting a compositional view of homology and,
especially, extracting positional homology as a factor
of its own, poses many new, interesting problems.
For instance, whether there is a minimum size for
discrete pattern elements, as one could see, for ex-
ample, in thè subcellular kineties, acting as temple-
tes for ciliary structures in ciliates (Frankel, 1989).
One interesting feature is, that some animals are per¬
haps too small to get more than anterior/posterior
polarity, e.g., dieyemid mesozoans. Others are too
small to develop or retain segmentation, e.g. erio-
phyid mites (ca. 50 pm). This fact suggests a possibly
interesting field of investigation, that of thè grain of
biological forms. Of course, thè same animai or plant
will turn out to be fme-grained or coarse-grained ac-
cording to thè criteria of description. There is no ‘ab-
solute’ grain. Nevertheless, I think that comparative
morphology and evolutionary biology both have
much to learn from studies such as those of Shimizu
et al. (1993) on Hydra, or Weber (1992) on Drosophila.
Shimizu et al. have tried to determine thè minimum
tissue size required for regeneration in Hydra ; this size
tumed out to be some 270-300 epithelial cells, thè mini¬
mum number of cells that proved to be required for
going through thè criticai stage of hollow sphere, before
starting re-differentiation towards thè polyp form.
78
ALESSANDRO MINELLI
On selection, rather than regeneration, was thè
focus of Weber’s study. He tried to see, in his words
(p. 345), «whether thè necessary genetic potential ex-
ists for dense, finegrained, autonomous and locali-
zed adaptive change all over thè insect wing; or
whether thè potential for localized remodeling is
only coarse-grained and scattered here and there». In
selected cases, a very small wing region, of less than
100 cells across, did respond to selection almost inde-
pendently from thè behaviour of thè neighbouring
cells. Weber concluded that «thè control of develop-
mental detail must involve many genes, and thè di-
versity of possible outcomes in development and
adaptation must be large».
Concluding remarks
To conclude this walk through thè world, or
worlds, of homology: far from being an empty, or
useless or deceptive, old-fashioned concept, as many
students have contended in a not too distant past,
homology stili occupies a centrai place in compara¬
tive biology. Far from annihilating it, advances in ge-
netics and developmental biology have contributed
many valuable fìndings and ideas, on thè basis of
which our appreciation of homology has progressive-
ly improved. Finally, molecular biology provided thè
stuff for clearing thè field from that lasting ghost of
subjectivity, thè criteria for positional homology.
But this does not simply mean that homology has
no necessary connection with phylogeny, i.e. with
history, with time. Rather, it turns out to be thè cen¬
trai, though multi-faceted concept of a comparative
biology whose agenda we should perhaps articulate
in revised, explicit terms, 150 years after Owen’s defi-
nition of homology.
Acknowledgements - Best thanks are due to thè
organizers of thè workshop (Michael T. Ghiselin,
Giovanni Pinna and Francesco M. Scudo) for inviting
me to attend this very stimulating three-day meeting.
To Giovanni Pinna, in addition, my most sincere
appreciation of his friendly hospitality in Milano.
Drafts of my manuscript have been carefully read
and criticized by Michael Ghiselin, Franco Scudo
and Cesare Baroni Urbani, who all deserve my most
sincere thanks; of course, they do not share with me
any responsibility for thè final version, which retains
a lot of my most idiosyncratic views.
This work has been partly supported by grants of
thè Italian National Research Council (C.N.R.) and
of thè Italian Ministry of University and Scientifìc
and Technical Research (MURST).
REFERENCES
Bastiani M. J., de Couet H. G., Quinn J. M. A., Karlstrom R. O.,
Kotrla K., Goodman C. S. & Ball E. E., 1992 - Position-spe-
cifìc expression of thè annulin protein during grasshopper
embryogenesis. Dev. Biol., 154: 129-142.
Bock W., 1989 - The homology concept: its philosophical
foundation and practical methodology. Zool. Beitr. N. F.,
32: 327-353.
Bookstein F. L., 1994 - Can biometrical shape be a homologous
character? In: Hall B. K. (ed) Homology: thè hierarchical
basis of comparative biology. Academic Press , San Diego-New
York-Boston-London-Sydney-Tokyo-Toronto: 197-227.
Bookstein F. L., Chernoff B., Elder R. L., Humphries J. M.
jr., Smith G. & Strauss R., 1985 - Morphometrics in evolu-
tionary biology. The Academy of Naturai Sciences Special
Publication, Philadelphia, 15.
Boxshall G. A. & Huys R., 1992 - A homage to homology:
patterns of copepod evoiution. Acta Zool., Stockholm, 73:
327-334.
Boyden A., 1943 - Homology and analogy: a century after thè de-
fmition of «homologue» and «analogue» of Richard Owen.
Quart. Rev. Biol., 18: 228-241.
Broadie K. & Bate M., 1993 - Innervation directs receptor synth-
esis and localization in Drosophila embryo synaptogenesis.
Nature, 361: 350-353.
Bryant P. J., 1993 - The polar coordinate model goes molecular.
Science, 259: 471-472.
de Beer G. R., 1971 - Homology, an unsolved problem. Oxford
University Press, London.
Coates M. I. & Clack J. A., 1990 - Polydactyly in thè earliest
known tetrapod limbs. Nature, 347: 66-69.
Eldredge N. & Cracraft J., 1980 - Phylogenetic patterns and
thè evolutionary process. Methods and theory in compara¬
tive biology. Columbia University Press, New York.
Enghoff H., 1990 - The ground-plan of thè chilognathan milli-
pedes (external morphology). In: Minelli A. (ed) Procee-
dings of thè 7th International Congress of Myriapodology.
E. J. Brill, Leiden: 1-21.
Frankel J., 1989 - Pattern formation: cibate studes and models.
Oxford University Press, New York.
Geoffroy Saint-Hilaire E., 1807 - Considération sur les pièces
de la tète osseuse des animaux vertébrés et particulièrement
sur celles du cràne des oiseaux. Ann. Mus. Hist. nat. Paris, 10:
342-365.
Geoffroy Saint-Hilaire E., 1818-22 - Philosophie anatomique.
J. B. Ballière, Paris.
Geoffroy Saint-Hilaire E., 1830 - Principes de philosophie
zoologique discutés au sein de l’Académie Royale des Scien¬
ces. Pichon et Didier, Paris.
Ghiselin M. T., 1976 - The nomenclature of correspondence: A
new look at «homology» and «analogy». In: Masterton R. B.,
Hodos W. & Jerison H. (eds). Evoiution, brain, and beha-
vior: Persistent problems. Lawrence Erlbaum Associates
Pubi. Hillsdale, N. J.: 129-142.
Goodwin B. C. & Trainor L., 1983 - The ontogeny and phylo¬
geny of thè pentadactyl limò. In: Goodwin B., Holder N.
& Wylie C. (eds). Development and evoiution. Cambridge
University Press, Cambridge: 75-98.
Haszprunar G., 1992 - The types of homology and their signifi-
cance for evolutionary biology and phylogenetics. J. evol.
Biol., 5: 13-25.
Hennig W., 1950 - Grundziige einer Theorie der phylogenetis-
chen Systematik. Deutscher Zentralverlag, Berlin.
Hennig W., 1966 - Phylogenetic Systematics. Translated by
D. D. Davis and R. Zangerl. Urbana University Press, Urba¬
na, 111.
Ho M.-W., Matheson A., Saunders P. T., Goodwin B. C. &
Smallcombe A., 1987 - Etner-induced segmentation distur-
bances in Drosophila melanogaster. Roux’s Arch. dev. Biol.,
196: 511-521.
Kaufmann S. A., 1993 - The origins of order. Oxford University
Press. New York.
Krumlauf R., 1993 - Hox genes and pattern formation in thè
branchial region of thè vertebrate head. Trends in Genetics, 9 :
106-112.
Laudan R., 1992 - What’s so special about thè past? In: Nite-
cki M. N. & Nitecki D. V. (eds). History and evoiution. State
Univ. of New York Press, Albany: 55-67.
Lenoir T., 1982 - The strategy of life. D. Reidei, Dordrecht.
Màgdefrau K., 1992 - Geschichte der Botanik. Leben und
Leistungen groBer Forscher. Zweite Auflage. Gustav Fischer
Verlag, Sttutgart.
Martinez E. & Ramos C. H., 1989 - Lacandoniaceae (Triurida-
les): Una nueva familia de México. Ann. Missouri bot. Gard.,
76: 128-135.
Meeuse A. D. J., 1986 - Anatomy of morphology. E. J. Brill/Dr.
W. Backhuys, Leiden.
Minelli A., 1992 - Towards a new comparative morphology of
myriapods. Ber. nat.-med, Verein Innsbruck, suppl. 10: 37-46.
Minelli A., 1993 - The agenda of comparative morphology and a i
compositional view of homology. Submitted.
SOME THOUGHT ON HOMOLOGY 150 YEARS AFTER OWEN’S DEFINITION
79
Minelli A. & Peruffo B., 1991 - Developmental pathways, ho-
mology and homonomy in metamerie animals J. evol. Biol.,
4: 429-445.
Minelli A. & Schram F. R., 1994 - Owen revisited: A reappraisal
of morphology in evolutionary biology. Bijdri Dier K., 64:
65-74.
Nelson G., 1978 - Ontogeny, phylogeny and thè biogenetic law.
Syst. Zool., 27: 324-345.
Nelson G. & Platnick N., 1981 - Systematics and biogeography.
Cladistics and vicariance. Columbia University Press, New
York.
Nijhout H. F., 1991 - The development and evolution of butterf-
ly wing patterns. Smithsonian Institution Press, Washington
and London.
Norris C. A., 1993 - Changes in thè composition of thè auditory
bulla in southern Solomon populations of thè grey cuscus
Phalanger orientalis breviceps (Marsupialia, Phalangeridae).
Biol. J. Linn. Soc., 107: 93-106.
Nusslein-Volhard C. & Wieschaus E., 1980 - Mutations affect-
ing segment number and polarity in Drosophila. Nature, 287:
795-801.
Owen R., 1843 - Lectures on thè comparative anatomy of inverte-
brates. Longman, Brown, Green and Longmans, London.
Panchen A. L., 1992 - Classification, evolution and thè nature of
biology. Cambridge Univ. Press, Cambridge.
Patterson C., 1982 - Morphological characters and homology.
In: Joysey K. A. and Friday A. D. (eds) Problems of phyloge-
netic reconstruction. The Systematics Association Special
Volume No. 21. Academic Press, London: 21-74.
Patterson C., 1983 - How does phylogeny differ from ontogeny?
In: Goodwin B. C., Holder N. and Wylie C. C. (eds). Deve¬
lopment and evolution. Cambridge University Press, Cam¬
bridge: 1-31.
Paulus H. F., 1989 - Das Homologisieren in der Feinstruktur-
forschung: Das Bolwig-Organ der hòheren Dipteren und
seine homologisierung mit Stemmata und Ommatidien
eines ursprùnglichen Fazettenauges der Mandibulata. Zool.
Beitr., N. F., 32: 437-478).
Remane A., 1963 - Uber die Homologisierungsmòglichkeiten bei
Verbindungsstrukturen (Muskeln, BlutgefaBen, Nerven)
und Hòhlràumen. Zool. Anz., 166: 481-489.
Riedl R., 1980 - Die Entwicklung des Begriffs vom taxonomis-
chen Merkmal oder das Problem der Morphologie. Zool.
Jahrb. Anat., 103: 155-168.
Rohlf F. J. & Marcus L. F., 1993 - A revolution in morpho-
metrics. Trends in Ecology and Evolution, 8: 129-132.
Roth V. L., 1988 - The biological basis of homology. In: Humph-
ries C. J. (ed). Ontogeny and systematics. British Museum
(Naturai History), London: 1-26.
Russel E. S., 1930 - The interpretation of development and he-
redity. Clarendon Press, Oxford.
Serres M., 1827 - Recherches d’anatomie transcendante, sur les
lois de l’organogénie appliquées à l’anatomie pathologique.
Ann. Sci. nat. Paris, 11: 47-70.
Shimizu H., Sawada Y. & Sugiyama T., 1993 - Minimum tissue
size required for hydra regeneration. Dev. Biol., 155: 287-296.
Shubin N. H. & Alberch P., 1986 - A morphogenetic approach to
thè origin and basic organization of thè tetrapod limb. Evol.
Biol, 20: 319-387.
Slack J. M. W., Holland P. W. H. & Graham C. F., 1993 - The
zootype and thè phylotypic stage. Nature, 361: 490-492.
Sneath P. H. A. & Sokal R. R., 1973 - Numerical taxonomy.
W. H. Freeman, San Francisco.
Sokal R. R. & Sneath P. H. A., 1963 - Principles of numerical
taxonomy. W. H. Freeman, San Francisco.
Sommer R. J. & Tautz D., 1993 - Involvement of an orthologue of
thè Drosophila pair-rule gene hairy in segment formation of
thè short-germ embryo of Tribolium (Coleoptera). Nature,
361: 448-450.
Thompson D’A. W., 1917, 1942 - On growth and form. Cambridge
University Press, Cambridge.
Tuomikoski R., 1967 - Notes or some principles of phylogenetic
systematics. Ann. Ent. Fenn., 33: 137-147.
Turpin P. J. F., 1837 - Atlas contenant deux planches d’anatomie
comparée, trois de botanique et deux de géologie. (As an
appendix to: Martins C. F., Oevres d’histoire naturelle de
Goethe). Paris.
Wagner G. P., 1989a - The biological homology concept. Ann.
Rev. Ecol. Syst., 20: 51-69.
Wagner G. P., 1989b - The origin of morphological characters
and thè biological basis of homology. Evolution, 43: 1157-1171.
Wagner G. P., 1994 - Homology and thè mechanisms of develop¬
ment. In: Hall B. K. (ed) Homology: thè hierarchical basis of
comparative biology. Academic Press, San Diego-New York-
Boston-London-Sydney-Tokyo-Toronto: 237-299.
Wake D. B., & Larson A., 1987 - Multidimensional analysis of an
evolving lineage. Science, 238: 42-48.
Weber K. E., 1992 - How small are thè smallest selectable do-
mains of form? Genetics, 130: 345-353.
Young B. A., 1993 - On thè necessity of an archetypal concept in
morphology: with special reference to thè concepts of «struc-
ture» and «homology». Biology and Philosophy, 8: 225-248.
Alessandro Minelli: Dipartimento di Biologia Università di Padova, Via Trieste 75, 35121 Padova, ITALIA
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
.
.
-• ■
.
Robert J. O’Hara
Trees of history in systematics and philology
Abstract — «The Naturai System» is thè name given to thè underlying arrangement present in thè diversity of life. Unli-
ke a classifìcation, which is made up of classes and members, a System or arrangement is an integrated whole made up of
connected parts. In thè pre-evolutionary period a variety of forms were proposed for thè Naturai System, including maps,
circles, stars, and abstract multidimensional objects. The trees sketched by Darwin in thè 1830s should probably be con¬
sideraci thè first genuine evolutionary diagrams of thè Naturai System — thè first genuine evolutionary trees. Darwin refi-
ned his image of thè Naturai System in thè well-known evolutionary tree published in thè Origin ofSpecies, where he also
carefully distinguished between arrangements and classifìcations. Following thè publication of thè Origin, there was a great
burst of evolutionary tree building, but interest in trees declined substantially after 1900, only to be revived in recent years
with thè development of cladistic analysis.
While evolutionary trees are modera diagrams of thè Naturai System, they are at thè same time instances of another
broad class of diagrams that may be called «trees of history»: branching diagrams of genealogical descent and change. Dur-
ing thè same years that Darwin was sketching his first evolutionary trees, thè earliest examples of two other trees of history
also appeared: thè first trees of language evolution and of manuscript genealogy. Though these were apparently independ-
ent of evolutionary trees in their origin, thè similarities among all these trees of history, and among thè historical processes
that underlie them, were soon recognized. Darwin compared biological evolution and language evolution several times in
thè Origin of Species, and both Ernst Haeckel and thè linguist August Schleicher made similar comparisons. Both linguists
and stemmaticists (students of manuscript descent) understood thè principle of apomorphy — thè principle that only shared
innovations provide evidence of common ancestry — more clearly than did systematists, and if there had been more cross-fer-
tilization among these fields thè cladistic revolution in systematics might well have taken place in thè nineteenth century.
Although historical linguists and stemmaticists have in some respects had sounder theory than have systematists, at least
until recently, they have also had thè practical problem of very large amounts of data, a problem not often faced by syste¬
matists until thè advent of molecular sequencing. The opportunity now exists for systematists to contribute to thè theory
and practice of linguistics and stemmatics, their sister disciplines in historical reconstruction, through application of our
commonly used computer programs for tree estimation. Preliminary results from thè application of numerical cladistic
analysis to a large stemmatic data set have been very encouraging, and have already generated much discussion in thè
stemmatics community.
Introduction
In a series of influential papers beginning in thè
1960s, Michael Ghiselin challenged a view common
among philosophers of Science that species, thè basic
unit of systematics, are best thought of ontologically
as naturai classes (Ghiselin, 1966, 1974, 1984, 1987).
Rather than seeing species as classes of organisms,
Ghiselin argued that they should in fact be regarded
as complex, historical individuals: singular things
which have particular spatial and temporal distribu-
tions, and which have individuai organisms as their
parts rather than as their members. Although this
view of thè ontological status of species was initially
rejected by many philosophers, it has since come to
be widely accepted (Hull, 1975, 1978; O’Hara, 1988b).
Although Ghiselin was primarily concerned with
thè ontological status of species in these papers, it
was implicit in his position that higher taxa must also
be individuals in a certain sense (Ghiselin 1984: 85),
individuals made up of species which are their parts,
just as any whole human body is made up of indivi¬
duai organs. In this paper I have two aims. The first
aim, following Griffìths (1974), de Queiroz (1988),
and my own earlier work (1993), is to develop thè no-
tion that higher taxa are ontological individuals or
systems, as Ghiselin had implied, and to demonstrate
that reflective systematists have long regarded them
as such. My second aim is to show that evolutionary
trees, our modern representations of thè single Natu¬
rai System, are also examples of another class of his¬
torical representations which may be called «trees of
history». As such they can be profitably studied,
from both theoretical and practical perspectives, in
conjuntion with other trees of history such as genea¬
logical diagrams of language evolution and of ma¬
nuscript descent. By putting evolutionary trees in thè
context of other trees of history we will be better able
to see thè many similarities that tie together thè enti-
re range of thè historical Sciences.
Higher taxa as systems rather than classes
The ontological status of higher taxa has attracted
some attention in thè recent systematic literature,
and Ghiselin’s distinction between classes and indi¬
viduals is often expressed in this literature as a dis¬
tinction between classifìcations on thè one hand, and
systems or arrangements on thè other (Griffìths, 1974;
Ax, 1987; de Queiroz, 1988; Minelli, 1993; O’Hara,
1993). A classifìcation is a collection of classes each
of which contains elements or members. The only
important relationship among thè elements of a clas¬
sifìcation is thè relationship of inclusion: class A may
contain class B, or it may be contained within class B,
or it may be independent of class B entirely. In con-
trast to a classifìcation, a System is an integrated,
connected whole that is not made up of classes, but
is instead made up connected parts. In a System there
are many more relationships among thè parts than
simple inclusion. There are, for example, positional
relationships: parts are not simply components of
larger parts, they may also be to thè left or right, to
82
ROBERT J. O’HARA
thè north or south, earlier or later, above or below
other parts within thè System.
We can understand thè distinction between classi-
fications and systems more clearly if we contrast a
map (as a System) with a geographical classifìcation.
It would be possible to construct a classifìcation of
places in Europe, with «Europe» as thè largest class,
including Italy, France, Germany, Spain, England,
IDEE DUNE ECHELLE
D E S E 1 R E S N A l' U R E E S.
Fig. 1 - The Scala Naturae or Chain of Being, from Bonnet (1745).
Bonnet’s originai figure is a single folding column. This Chain of
Being cannot be reduced to a classifìcation without loss of infor-
mation, because it represents a System of relationships more
complex than simple inclusion.
Ireland, and so on. Included under thè heading
«Italy» in this classifìcation would be Milan, Rome,
Bologna, Venice, and Naples; under thè heading
«England» would be London, Cambridge, Liverpool,
Oxford, and Sussex; and so on. But if this classifica-
tion of places is all we know of geography, then we
do not know a great deal. We do not know whether
Rome is north or south or east or west of Milan; we
do not know whether Oxford is north or south or
east or west of London. This is because thè classifica-
tion expresses only relationships of inclusion. We
may contrast a geographical classifìcation of this sort
with a geographical map, which is an integrated
whole: a System. A map of Europe will communicate
not only relationships of inclusion — that Milan and
Rome are both within Italy — but also positional rela¬
tionships in geographical space: Milan is north of
Rome, and Oxford is west of London.
The distinction between classifications and Sys¬
tems or map-like arrangements is important because
classifìcation, as a distinct intellectual activity, has
been overemphasized by many writers on systemat-
ics and its history. Many systematists of thè past, es-
pecially thè reflective ones, did not see themselves as
constructing classifications, but rather as recons-
tructing a large particular object they called thè Na¬
turai System (O’Hara, 1993), and for these workers
thè Naturai System was a rich and multi-faceted idea,
far more complex than any classifìcation could poss-
ibly be. Consider, for example, one of thè earliest
images of thè Naturai System: thè image of thè Scala
Naturae or Chain of Being (Lovejoy, 1936). Figure 1
shows an eighteenth-century representation of thè
Chain of Being, drawn by thè entomologist Charles
Bonnet in 1745. The information conveyed in this
systematic arrangement cannot be reduced to a
simple classifìcation without loss of information, be¬
cause thè arrangement depicts not only relationships
of inclusion but also positional relationships along
thè chain: «Oiseaux» does indeed contain many taxa
which are not enumerated, but in addition Oiseaux is
above Poissons and below Quadrupedes.
As thè diversity of life became better known in thè
late eighteenth and early nineteenth centuries, syste¬
matists carne to realize that thè Chain of Being was
an inadequate representation of thè Naturai System,
and a great variety of more complex representations
were developed and put forward (Stevens, 1982, 1984;
Barsanti, 1988; O’Hara, 1988a, 1991). The quinarian
school of systematists led by William Sharpe Ma-
cleay (1819-21) and William Swainson (1836-37), for
example, argued that thè Naturai System is held to-
gether by interlocking relationships of affìnity and
analogy, and that these relationships displayed nu-
merical regularity. Arguing against thè quinarians,
Hugh Strickland (1841) and Alfred Russel Wallace
(1856) represented thè Naturai System as an irregular
map-like entity (Fig. 2) held together by affinities
only, affinities that in Strickland’s view could some-
times be circular or loop-like.
With thè acceptance of thè principle of common
descent, thè notion of thè Naturai System was con-
verted from a System of ideal affinities to one of phy-
sical genealogy (Darwin, 1859: 485). Almost as soon
as he became convinced of thè truth of thè theory of
descent, Darwin began to sketch evolutionary trees
in his notebooks (Darwin, 1987: 177-180), and thè
only diagram in thè Origin of Species itself is Dar-
TREES OF HISTORY IN SYSTEMATICS AND PHILOLOGY
83
Jìfdp of Uve, Farruty c&ce- .
Fig. 2 - «Map of thè Family Alcedinidae», from Strickland (1841). Relationships of afFinity connect each genus, and a «Scale
of Degrees of Generic Affìnity» appears in thè lower right corner. Although none are shown here, Strickland believed it
was possible for chains of affìnity to doublé back on themselves, forming a loop.
win’s well-known representation of an evolutionary
tree. Very soon after thè publication of thè Origin,
evolutionary trees began to appear in thè generai sys-
tematic literature, and their history between 1859
and 1900 is very complex. The elaborate phylogenies
of Ernst Haeckel are among thè best known (Oppen-
heimer, 1987), but many other authors drew trees
also (Figs. 3 and 4) and there was much discussion of
thè methods of phylogenetic reconstruction (Reif,
1983; Stevens, 1984; O’Hara, 1988a, 1991; Craw, 1992;
Darwin, 1993: 379-380). It became clear to some sys-
tematists at this time, for example, that only shared
innovations could count as evidence of common an-
cestry, and that shared retentions (today called
ancestral character States or plesiomorphies) were
Peristeropodes Alectoropodes
CARINATiE RATIT2E.
Fig. 3 - A phylogeny of birds, from Huxley (1868). Like many sys-
tematists of his time, Huxley published tree diagrams but did not
explain in detail thè procedure he followed in constructing them.
phylogenetically uninformative (Mitchell, 1901;
O’Hara, 1988a; Craw, 1992).
Around 1900, however, interest in phylogenetic re¬
construction began to flag, and as «biologists focu-
sed ever more intently on problems of organic func-
tion they transferred their allegiance from thè ideal
of historical explanation, thè criticai support for all
who had studied organic form and transformation, to
thè promise extended by thè experimental investiga-
tion of vital processes» (Coleman, 1977: 160). This
shift in interest was not universal (Craw, 1992), but it
was widespread (Alien, 1975; Zuckerman, 1976; Cole¬
man, 1977; O’Hara, 1988a, 1991). Historical approa-
ches were denigrated as «speculative» (T. H. Morgan
in Mayr, 1982: 542) for much of thè century, and it
was not until thè widespread acceptance of cladistic
analysis, beginning in thè 1970s, that phylogenetic
reconstruction attained prominence again.
Trees of history
Let us now consider evolutionary trees in their
other intellectual context, as examples not only of
diagrams of thè Naturai System, but also as «trees of
history». During thè very decades when Lamarck
was offering his first speculations on thè transforma¬
tion of species and Lyell was laying thè foundations
of modern historical geology, scholars in thè fìeld of
comparative philology were sketching thè outlines of
a new historical Science of language and literature.
Although thè development of philology in thè late
1700s and early 1800s was complex (Pederson, 1931;
Aarsleff, 1967; Burrow, 1967), modern-day linguistic
historians often point to a statement made by thè
84
ROBERT J. O’HARA
Fig. 4 - The evolution of thè tubinarial birds, from Forbes (1882). The meaning of thè circles and thè positions of thè genera
are not explained in Forbes’s text.
English jurist Sir William Jones as thè traditional
starting point of their discipline. Jones was one of
thè fìrst Europeans to learn Sanskrit, thè classical
language of India, and he noticed a number of strik-
ing similarities between Sanskrit on thè one hand,
and Greek and Latin on thè other. He concluded that
these similarities were mudi too remarkable to have
arisen by chance, and that no philologist could exa-
mine all three languages — Latin, Greek, and Sansk¬
rit — «without believing them to have sprung from
some common source, which, perhaps, no longer ex-
ists» (Jones, 1786). The historical study of this family
of languages, which carne to be called Indo-Euro-
pean and which stretches from Ireland to India, con-
tinued at great speed in thè early 1800s. The fìrst ge¬
nuine tree diagram of thè history of Indo-European
(and of any family of languages) was apparently pu¬
blished around 1800 (Auroux, 1990), but linguistic
trees of history didn’t really become widespread
until thè 1850s, even though thè concept of historical
families of languages had been clear for some time
by then. Frantisek Celakovsky, a professor of philo-
logy at Prague, published a genealogical diagram of
thè Slavic languages in 1850 (Fig. 5; Priestly, 1975),
but it was thè German philologist August Schleicher
— who had spent time in Prague and may been in-
fluenced there by Celakovsky (Holm, 1972) — who fì-
Fig. 5 - A family tree of thè Slavic languages by Frantisek
Celakovsky, published posthumously in 1853. Celakovsky’s
work may well have influenced August Schleicher, whose own
genealogical diagrams have often been regarded as thè fìrst trees
of language evolution (Priestly, 1985).
nally popularized thè use of tree diagrams in histori¬
cal linguistics through his widely-read publications
(Hoenigswald, 1975; Stewart, 1976; Koerner, 1982,
1987; Priestly, 1985).
The historical study of languages was only one of
thè tasks of comparative philologists, however; thè
other was thè study of thè history of written texts.
Most works of ancient literature do not exist today in
TREES OF HISTORY IN SYSTEMATICS AND PHILOLOGY
85
copies written by thè authors themselves — rather,
they are known from copies of thè originals, and co¬
pies of those copies, often made over a period of
hundreds of years and with varying degrees of care.
Philologists who specialize in thè study of texts are
faced with a very specifìc problem: given ten or twen-
ty or a hundred copies of thè same text, all of which
differ at different points, how can we determine thè
exact words of thè lost originai? The answer is that
we can determine thè originai of thè text by recons-
tructing thè tree — or as manuscript scholars cali it,
thè stemma — of thè copies that now exist. The idea
of an ancestral text represented today only by its va¬
rying descendants had been clear to manuscript
scholars for a long time, but as was thè case in syste-
matics and linguistics, thè first actual illustrations of
manuscript stemmata do not appear until thè early
1800s. The first published stemma appears to have
been that of Cari Johan Schlyter (Holm, 1972), and it
appears in 1827, fully formed like Athena from thè
head of Zeus. Schlyter and his collaborator Hans
Collin had been commissioned by thè King of Swe-
den to research thè history of medieval Swedish law,
and they made an exceptionally comprehensive
study of all thè medieval legai documents then
known. Many of these documents were multiple co¬
pies of originai texts that had been lost, and in one
such case, in order to «make thè relationship all thè
clearer between thè codexes now described», wrote
Schlyter, «containing in whole or in part thè text of thè
Vàstergòtland Law..., we have attempted to present
their affinities, as far as we could determine them from
mutuai agreements and differences, in a kind of family-
tree» (Fig. 6; Collin & Schlyter, 1827, translated by
Holm, 1972: 51-52). Very shortly after Schlyter’s tree
was published, a series of other manuscript stemmata
appeared in rapid succession. Cari Zumpt published a
genealogy of thè known copies of Cicero’s Verrine Ora¬
ti ons in 1831, and Zumpt’s stemma was followed by
stemmata drawn by Friedrich Ritschl in 1832, and by
J. N. Madvig in 1833. Holm (1972) has reproduced all
of these along with several other early stemmata.
As we saw in thè case of systematics, after thè pu-
blication of thè 0 rigin of Species there was a great
burst of tree-making, and much discussion of phylo-
genetic theory. This same period — thè late 1800s —
was similarly a golden age of historical philology. Lin-
guistic and textual scholars did an extraordinary
amount of work reconstructing thè details of thè evolu-
tionary history of thè Indo-European languages during
these years (Pederson, 1931; Morpurgo Davies, 1975;
Hoenigswald, 1990), and establishing thè originai texts
of Classical and Medieval authors through thè recons-
truction of manuscript stemmata (Timpanaro, 1981;
Reynolds, 1983). It did not escape notice at thè time that
thè goals of thè new naturai historians and thè goals of
thè new historical philologists were similar in many res-
pects (Hoenigswald & Wiener, 1987; Hoenigswald,
1990). August Schleicher, for example, published on
Die Danvinsche Theorie und die Sprachwissenschaft
(Schleicher, 1863), and his work caught thè attention
of Ernst Haeckel as well (Maher, 1966; Koerner, 1981,
1983). And like thè systematists, thè philologists in-
terested in tree reconstruction quickly recognized
that only shared innovations could be used as evi-
dence of common ancestry (Hoenigswald, 1990).
In another remarkable parallel to systematics, ho-
wever, interest in many of these large-scale problems
Fig. 6 - A stemma of several copies of thè Vàstgòta Law, drawn by
Cari Johan Schlyter (Collin & Schlyter, 1827). The vertical axis
represents absolute time, thè interval between each dotted line
being fifty years. The similarity of this diagram to Darwin’s evo-
lutionary tree in thè Origin of Species is striking, but apparently
coincidental.
of historical philology began to wane around thè turn
of thè twentieth century. Many manuscript scholars
carne to believe that horizontal transmission of rea-
dings between manuscripts — called «contamina-
tion» in stemmatics — was so widespread that any
hope of reconstructing true stemmata was in vain.
And linguists began to distinguish between what
they called diachronic or historical studies of langu-
age on thè one hand, synchronic or structural studies
of language on thè other, and began to regard syn¬
chronic, structural linguistics as thè most «scientifìc»
approach to their field. Much of linguistics since 1900
has been profoundly ahistorical, almost completely
turning its back on thè achievements of thè nine-
teenth century (Haas, 1966; Anttila, 1989).
86
ROBERT J. O’HARA
But systematics has re-historicized itself in thè last
thirty years, and there is reason to hope that thè
same thing may happen in linguistics and textual stu-
dies as well, and it may happen with some cross-dis-
ciplinary help from systematics. Some valuable inter-
disciplinary forays have been made in recent years
(Hoenigswald & Wiener, 1987; Flight, 1988; Lee,
1989) and these hold much promise. A collaboration I
began in 1991 with a textual scholar who is interested in
thè application of computers to stemmatics has also ge-
nerated much interest, and our application of cladistic
analysis to thè history of manuscript traditions has met
with considerable success (Fig. 7; Robinson & O’Hara,
1992, in press; O’Hara & Robinson, 1993).
Conclusion
One of thè first scholars to study thè interrelation-
ships of thè historical Sciences was thè polymathic
British philosopher William Whewell , who was born
just two hundred years ago, in 1794. Whewell coined
thè term «palaetiology» for these Sciences, and offe-
red geology, philology, and archeology as examples.
Had Whewell become an evolutionist he surely
would have included thè historical Science of syste¬
matics in thè group as well. The palaetiological
Sciences, Whewell realized, cut across many conven-
tional disciplinary boundaries, including even thè
boundary between Science and thè humanities. And
yet all of these Sciences «are connected by this bond;
— that they all endeavour to ascend to a past state, by
considering what is thè present state of things, and
what are thè causes of change» (1847: 638). The re-
construction of trees of history is one of thè common
themes of thè palaetiological Sciences, but they share
many other themes as well, such as thè principle of
uniformitarianism, which has been applied not only
in geology but also in linguistics (Johnes, 1843;
Christy, 1983; Naumann, et al., 1992). Whewell’s term
«palaetiology» never attained thè currency he had
hoped it would during his lifetime, but in our own
day, as thè ahistorical tenor of thè mid-twentieth
century recedes into thè past, thè term may be due
for a revival. Not since thè nineteenth century have
Whewell’s insights rung so true:
As we may look back towards thè first condition of our planet, we
may in like manner tura our thoughts towards thè first condition
of thè solar System, and try whether we can discern any traces of
an order of things antecedent to that which is now established;
and if we find, as some great mathematicians have conceived, in-
dications of an earlier state in which thè planets were not yet ga-
thered into their present forms, we have, in pursuit of this train of
research, a palaetiological portion of Astronomy. Again, as we
may inquire how languages, and how man, have been diffused
over thè earth’s surface from place to place, we may make thè like
inquiry with regard to thè races of plants and animals, founding
our inferences upon thè existing geographical distribution of thè
animai and vegetable kingdoms: and thus thè Geography of
Plants and of Animals also becomes a portion of Palaetiology.
Again, as we can in some measure trace thè progress of Arts from
nation to nation and from age to age, we can also pursue a similar
investigation with respect to thè progress of Mythology, of Poe-
Aarsleff H., 1967 - The Study of Language in England, 1780-
1860. Princeton University Press, Princeton.
Allen G., 1975 - Life Science in thè Twentieth Century. John
Wiley <£ Sons, New York.
Anttila R., 1989 - Historical and Comparative Linguistics. John
Benjamins, Amsterdam.
try, of Government, of Law . . . It is not an arbitrary and useless
proceeding to construct such a Class of Sciences. For wide and
various as their subjects are, it will be found that they have all
certain principles, maxims, and rules of procedure in common;
and thus may reflect light upon each other by being treated to-
gether (Whewell, 1847: 639-640).
Fig. 7 - A stemma of thè Old Norse narrative Svipdagsmàl, from
Robinson & O’Hara (1993, in press). This stemma was produced
with thè cladistic analysis software PAUP (Swofford, 1991), and it
is very similar to thè stemma produced by Robinson alone using
traditional non-cladistic means (Robinson, 1991). This tree was ge-
nerated much more quickly, however, thereby allowing thè textual
scholar more time for criticai study and analysis of thè result.
Acknowledgements — I am grateful to Michael Ghi-
selin for his invitation to participate in thè Workshop
on Systematic Biology as an Historical Science at thè
Museo Civico di Storia Naturale, and to Giovanni
Pinna, thè Museum’s director, for his gracious hospi-
tality during my stay in Milan. The participants in thè
workshop made many valuable comments on my
presentation, and Shannon Downer, Mary Johnson,
and Sheila Schurer assisted in thè preparation of thè
manuscript. Peter Robinson and Jeffrey Wills have
contributed substantially to my understanding of thè
history of philology.
Auroux S., 1990 - Representation and thè place of linguistic
change before comparative grammar. In: Leibniz, Hum¬
boldt, and thè Origins of Comparativism (T. de Mauro &
L. Formigari, eds.). John Benjamins, Amsterdam: 213-238.
Ax P., 1987 - The Phylogenetic System. John Wiley & Sons, New
York.
TREES OF HISTORY IN SYSTEMATICS AND PHILOLOGY
87
Barsanti G., 1988 - Le immagini della natura: scale, mappe, albe¬
ri 1700-1800. Nuncius, Firenze, 3: 55-125.
Bonnet C., 1745 - Traité d’Insectologie, premier parte. Durand,
Paris.
Burrow J. W., 1967 - The uses of philology in Victorian England.
In: Ideas and Institutions of Victorian Britain (R. Robson,
ed.). Barnes & Noble,_ New York: 180-204.
Celakovsky F. L., 1953 - Cteni o srovnavaci mluvnici slovanské
na université Prazské. F. Rivnàc, Prague.
Christy T. C., 1983 - Uniformitarianism in Linguistics. John
Benjamins, Amsterdam.
Coleman W., 1977 - Biology in thè Nineteenth Century: Pro-
blems of Form, Function, and Transformation. Cambridge
University Press, Cambridge.
Collin H. S. & Schlyter C. J., 1827 . Corpus Iuris Sueo-Goto-
rum Antiqui. Z. Haeggstrom, Stockholm, 1.
Craw R., 1992 - Margins of cladistics: identity, difference and
place in thè emergence of phylogenetic systematics, 1864-
1975. In: Trees of Life: Essays in Philosophy of Biology
(P. Griffiths, ed.). Australasian Studies in History and Philo¬
sophy of Science, 11: 65-107.
Darwin C., 1859 - On thè Origin of Species. John Murray,
London.
Darwin C., 1987 - Charles Darwin’s Notebooks, 1836-1844.
Cornell University Press, Ithaca.
Darwin C., 1993 - The Correspondence of Charles Darwin. Volu¬
me 8: 1860. Cambridge University Press, Cambridge.
de Queiroz K., 1988 - Systematics and thè Darwinian revolution.
Philosophy of Science, East Lansing, 55: 238-259.
Flight C., 1988 - Bantu trees and some wider ramifications. Afri-
can Languages and Cultures, London, 1: 25-43.
Forbes W. A., 1882 - Report on thè anatomy of thè petrels (Tubi-
nares), collected during thè voyage of H. M. S. Challenger.
Zoology of thè Challenger Expedition, 11.
Ghiselin M. T., 1966 - On psychologism and thè logie of taxo-
nomic controversies. Systematic Zoology, Washington, D. C.,
15: 207-215.
Ghiselin M. T., 1974 - A radicai solution to thè species problem.
Systematic Zoology, Washington, D. C., 23: 536-544.
Ghiselin M. T., 1984 - The triumph of thè Darwinian Method.
University of Chicago Press, Chicago.
Ghiselin M. T., 1987 - Species concepts, individuality, and objec-
tivity. Biology and Philosophy, Dordrecht, 2: 127-143.
Griffiths G. C. D., 1974 - On thè foundations of biological syste¬
matics. Acta Biotheoretica, Leiden, 23: 85-131.
Haas M. A., 1966 - Historical linguistics and thè genetic relation-
ship of languages. Current Trends in Linguistics, The Hague,
3: 113-153.
Hoenigswald H. M., 1975 - Schleicher’s tree and its trunk. In: Ut
Videam: Contributions to an Understanding of Linguistics
(W. Abraham, ed.). Peter de Ridder Press, Lisse: 157-160.
Hoenigswald H. M., 1990 - Language families and subgroupings,
tree model and wave theory, and reconstruction of protolan-
guages. In: Research Guide on Language Change (E. C. Po-
lomé, ed.). Mouton de Gruyter, Berlin: 441-454.
Hoenigswald H. M. & Wiener L. F. (eds.), 1987 - Biological Me-
taphor and Cladistic Classifìcation: An Interdisciplinary Per-
spective. University of Pennsylvania Press, Philadelphia.
Holm G., 1972 - Cari Johan Schlyter and textual scholarship.
Saga och Sed, Uppsala, 1972: 48-80.
Hull D. L., 1975 - Central subjects and historical narratives.
History and Theory, Middletown, 14: 253-274.
Hull D. L., 1978 - A matter of individuality. Philosophy of Scien¬
ce, East Lansing, 45: 335-360.
Huxley T. H., 1868 - On thè classifìcation and distribution of thè
Alectoromorphae and Heteromorphae. Proceedings of thè Zoo¬
logica! Society of London, 1868: 294-319.
Johnes A. J., 1843 - Philological Proofs of thè Originai Unity and
Recent Origin of thè Human Race... Being an Inquiry How
Far thè DifTerences in thè Languages of thè Globe are
Referrible to Causes Now in Operation. Samuel Clarke,
London.
Jones W., 1786 - The third anniversary discourse. Asiatick Re-
searches, London, 1: 415-431.
Koerner E. F. K., 1981 - Schleichers EinfluB auf Haeckel: Schla-
glichter auf die wechselseitige Abhàngigkeit zwischen linguisti-
chen und biologischen Theorien in 19. Jahrhundert. Zeitschrift
fiir vergleichende Sprachforschung, Gòttingen, 95: 1-21.
Koerner E. F. K., 1982 - The Schleicherian paradigm in linguist¬
ics. General Linguistics, Binghamton, 22: 1-39.
Koerner E. F. K. (ed.), 1983 - Linguistics and Evolutionary
Theory: Three Essays by August Schleicher, Ernst Haeckel,
and William Bleek, with an Introduction by J. Peter Maher.
John Benjamins, Amsterdam.
Koerner E. F. K., 1987 - On Schleicher and trees. In: Biological
Metaphor and Cladistic Classifìcation: An Interdisciplinary
Perspective (H. M. Hoenigswald & L. F. Wiener, eds.). Uni¬
versity of Pennsylvania Press, Philadelphia: 109-113.
Lee A., 1989 - Numerical taxonomy revisited: John Griffìth, cla¬
distic analysis and St. Augustine’s Quaestiones in Heptateu-
chum. Studia Patristica, Berlin, 20: 24-32.
Lovejoy A. O., 1936 - The Great Chain of Being. Harvard Univer¬
sity Press, Cambridge.
Macleay W. S., 1819-21 - Horae Entomologicae: or Essays on thè
Annulose Animals. Bagster, London.
Maher J. P., 1966 - More on thè history of thè comparative me¬
thod: thè tradition of Darwinism in August Schleicher’s
work. Anthropological Linguistics, Bloomington, 8: 1-12.
Mayr E., 1982 - The Growth of Biological Thought. Harvard Uni¬
versity Press, Cambridge.
Minelli A., 1993 - Biological Systematics: The State of thè Art.
Chapman & Hall, London.
Mitchell P. C., 1901 - On thè intestinal tract of birds; with
remarks on thè valuation and nomenclature of zoological
characters. Transactions of thè Linnean Society of London,
Zoology, 8: 173-275.
Morpurgo Davies A., 1975 - Language classifìcation in thè nine¬
teenth century. Current Trends in Linguistics, The Hague, 13:
607-716.
Naumann B., Plank F. & Hofbauer G. (eds.), 1992 - Langu¬
age and Earth: Elective Affìnities Between thè Emerging
Sciences of Linguistics and Geology. John Benjamins,
Amsterdam.
O’Hara R. J., 1988a - Diagrammatic classifìcation of birds, 1819-
1901: views of thè naturai System in 19th-century British or-
nithology. In: Acta XIX Congressus Internationalis Ornitho-
logici (H. Ouellet, ed.). National Museum of Naturai Science,
Ottawa: 2746-2759.
O’Hara R. J., 1988b - Homage to Clio, or, toward an historical
philosophy for evolutionary biology. Systematic Zoology,
Washington, D. C., 37: 142-155.
O’Hara R. J., 1991 - Representations of thè naturai System in thè
nineteenth century. Biology and Philosophy, Dordrecht, 6:
255-274.
O’Hara R. J., 1993 - Systematic generalization, historical fate,
and thè species problem. Systematic Biology, Washington,
D. C., 42: 231-246.
O’Hara R. J. & Robinson P. M. W., 1993 - Computer assisted me-
thods of stemmatic analysis. Occasionai Papers of thè Canter¬
bury Tales Project, Oxford, 1: 53-74.
Oppenheimer J. M., 1987 - Haeckel’s variations on Darwin. In:
Biological Metaphor and Cladistic Classifìcation: An Inter-
disciplinary Perspective (H. M. Hoenigswald & L. F. Wiener,
eds.). University of Pennsylvania Press, Philadelphia: 123-135.
Pederson H., 1931 - The Discovery of Language: Linguistic
Science in thè Nineteenth Century. Harvard University Press,
Cambridge.
Priestly T. M. S., 1975 - Schleicher, Celakovsky, and thè family-
tree diagram: a puzzle in thè history of linguistics. Historio-
graphia Linguistica, Amsterdam, 2: 299-333.
Reif W.-E., 1983 - Hilgendorfs (1863) dissertation on thè Stein-
heim planorbids (Gastropoda, Miocene): thè development
of a phylogenetic research program for paleontology.
Palàontologische Zeitschrift, Stuttgart, 57: 7-20.
Reynolds L. D. (ed.), 1983 - Texts and Transmission: A survey of
thè Latin Classics. Oxford University Press, Oxford.
Robinson P. M. W., 1991 - An edition of Svipdagsmàl. Unpubli-
shed doctoral dissertation, University of Oxford.
Robinson P. M. W. & O’Hara R. J., 1992 - Report on thè Textual
Criticism Challenge 1991. Bryn Mawr Classical Review, Bryn
Mawr, 3: 331-337.
Robinson P. M. W. & O’Hara R. J. (in press) - Cladistic analysis
of an Old Norse manuscript tradition. Research in Humani-
ties Computing. Clarendon Press, Oxford.
Schleicher A., 1863 - Die Darwinsche Theorie un die Sprach-
wissenschaft. H. Bohlau, Weimar.
Stevens P. F., 1982 - Augustin Augier’s «Arbre Botanique»
(1801), a remarkable early botanical representation of thè na¬
turai System. Taxon, Utrecht, 32: 203-211.
Stevens P. F., 1984 - Metaphors and typology in thè development
of botanical systematics 1690-1960, or thè art of putting new
wine in old bottles. Taxon, Utrecht, 33: 169-211.
Stewart A. H., 1976 - Graphic Representation of Models in Lin¬
guistic Theory. Indiana University Press, Bloomington.
Strickand H. E., 1841 - On thè true method of discovering thè
naturai System in zoology and botany. Annals and Magazine
of Naturai History, 6: 184-194.
88
ROBERT J. O’HARA
Swainson W., 1836-37 - On thè Naturai History and Classifica-
tion of Birds. Longman, London.
Swofford D. L., 1991 - PAUP: Phylogenetic Analysis Using
Parsimony. Macintosh version 3. Or. Computer program
distributed by thè author, Smithsonian Institution, Wa¬
shington, D. C.
Timpanaro S., 1981 - La Genesi del Metodo del Lachmann, revi-
sed edition. Liviana, Padua.
Wallace A. R., 1856 - Attempts at a naturai arrangement of
birds. Annals and M agazine of Naturai History, London, 18:
193-216.
Whewell W., 1847 - The Philosophy of thè Inductive Sciences,
second edition. John W. Parker, London.
Zuckerman S. (ed.), 1976 - The Zoological Society of London,
1826-1976 and Beyond. Symposia of thè Zoological Society
of London. Academic Press, London, 40.
Robert J. O’Hara: Cornelia Strong College and Department of Biology, 100 Foust Building,
University of North Carolina at Greensboro, Greensboro, North Carolina 27412 U.S.A.
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
Eugene Presnov & Valeria Isaeva
Topologica! classification: onto- and phylogenesis
Abstract — Here a topological approach is used for thè description and analysis of biological morphogenesis. Treating
biological structures as topological subjects results in a more adequate description of biological form dynamics than thè
traditional geometrical description, as topology studies thè most generai properties of spaces. Moreover, apart from ex-
tending of descriptional possibilities thè new methodology reveals a topological dependence and topological limitations of
biological morphogenesis. Traditional anatomical language is translated into a topological one. Principles and schematics
of topological classification of biological form dynamics in ontogenesis and evolution have been elaborated. An evolution-
ary pattern for thè topological shape of animals as well as a scheme for thè phylum Echinodermata is constructed.
“Dans la conception axiomatique, la mathématique appara it en somme comme un réservoir de formes
abstraites — les structures mathématiques; et il se trouve — sans qu’on sache bien pourquoi — que cer-
tains ascpects de la réalité expérimentale viennent se mouler en certaines de ces formes, comme par une
sorte de prédaption.
Il n’est pas niable déterminé; mai c’est précisement en les vidant volontairement de ce contenu qu’on a su
leur donner toute l’efficacité qu’elles portaient en puissance, et qu’on les a rendues susceptibles de rece-
voir des interprétations nouvelles, et de remplir pleinement leur róle élaborateur”.
L’Architecture de Mathématiques - N. Bourbaki, 1948.
For centuries mathematics and biology developed
almost independently, although an amazing regular-
ity of biological forms is undoubtedly related to a un-
itary harmony of thè world. In spite of this fact thè
importance of mathematics is not completely under-
stood by biologists, who sometimes reducine it to an
apparatus for statistical treatment of experimental
data. This inadequate perspective prevents one from
seeing thè farthest horizons of mathematical studies.
However, physicists realized a long time ago that
after thè development of an adequate model of any
physical phenomenon, i.e. a model enabling one to
do precise calculations and predictions, thè mathe¬
matical structure of thè model reveals new properties
of thè simulated phenomenon. Although it may
sound paradoxically, studies of inner mathematical
structure of thè model may alter our concepts of thè
reai process. This study also provides an extra proof
of thè well-known idea of N. Bourbaki that some as-
pects of experimental reality seem to fit some mathe¬
matical structures as if due to a kind of preadaptation.
This study shows that formulating known biological
notions using a new mathematical language relating
them to other concepts has some explanatory force.
The naturalists always devoted most of their acti-
vities to description and classification of objects of
study. Biologists developed a specific System to des-
cribe living forms and their transformations in deve¬
lopment, but in spite of common features of their
descriptions depend on personal interpretations not
having completely regular features. Biologists also
traditionally use geometrical language to describe
thè shape of organisms and cells, and thè dynamics
of form in ontogeny and evolution. However topolo¬
gical language is necessary and more adequate for
such description (Listing, 1847; Thompson, 1917;
Needham, 1936; Waddington, 1940; Raven, 1959;
Thom, 1969; Presnov, Isaeva, 1985; Isaeva, Presnov,
1990), since topology deals with thè most generai
properties of spaces as mathematical subjects. Mo¬
reover, topology enables us to analize a transition
from locai parameters to global ones; it is directly
connected to thè rather old embryologisf s idea con-
cerning an integration of parts and locai parameters
in an embryo (Driesch, 1894; Child, 194Ì; Wolpert,
1969). The spatial-temporal integration of individuai
development can be explained to a certain degree by
topological constraints controlling thè morphogenet-
ic processes in our physical space; topological pro¬
perties of thè space are reflected in topological form
dynamics during ontogeny. So w e can discuss thè to¬
pological determination of individuai development.
The topological description of morphogenetic pat-
terns in ontoqeny and phylogenesis is have propo-
sed, attempting to use mathematical terms strictly
describing various phenomena such as inhomoge-
neities, detuning processes and all process of esta-
blishing differences during development. For exam-
ple, thè developmental potential of thè ooplasm
clearly shows that it is not homogeneous object and
thè problem is not thè origin of this heterogeneity,
but also it retention and transformation in develop¬
ment. It appears that thè ooplasm’s inhomogeneities
are stable figures, representing topological mecha-
nisms that control morphogenesis.
To see how topological notions may apply to mor¬
phogenesis consider thè popular description of rub-
ber band with drawings of various configurations
upon its surface. Which parts of these confìgurations
would remain unchanged if one stretches thè rubber
in an arbitrary way without tearing it apart? Evident-
ly that thè size and thè values of angles and curvature
will vary (during such deformation) as they do in de¬
velopment and in evolution. But in thè topological
90
E. PRESNOV & V. ISAEVA
description of living systems we should also account
for thè topologically invariant characteristics. The
power of topology lies on operating on such proper-
ties in analytical form.
A translation of anatomy into topologica! language
The external shape of an organism, as thè shapes
of its organs and tissues, are modeled by smooth clo-
sed surfaces. The morphogenesis of most multicellu-
lar animals may be represented through topological
modification(s) of their epithelized surfaces. A layer
of epithelial cells is characterized by morphological
and functional connectivity, closeness of its surface
in thè intact organism and apical-basal (outer-inner)
anisotropy of thè cellular sheet. This allows to ne-
glect thè thickness of thè cellular layer, considering
epithelia as smooth, closed, oriented two-dimen-
sional surfaces. The connectivity of an epithelial
layer during epithelial morphogenesis (by folding
etc.) is ensured by thè System of specialized cell-to-
cell contact — fulfilling thè function of integration of
cells and their cytoskeletal systems into a united
morphological and functional entity. Through such
prerequisites one can develop a combinatorial
approach modeling thè morphogenesis of a whole
organism.
Let us apply a theorem of elementary topology
to thè spadai organization of epithelial layers: any
closed surface in three-dimensional space is homeo-
morphic to a sphere with a given number (p) of han-
dles. The sphere with p handles sets a class of ho-
meomorphic surfaces of thè genus p. So long as there
are no topological surgeries (breakings and glueings)
of epithelial sheets thè genus of thè surface p is a
topological invariant and any detailed geometry
(curvature of surface, angle values) is not essential.
According to thè proved theorem thè closed surfaces
of thè genus
p = 0, p = 1, p = 2,
give a full topological classifìcation. An example of
such a surface is thè sphere to which p handles are at-
tached. Usually thè topological handles in biological
objects are represented «through channels» such as
thè digestive tube, i. e. — any through channel or
hole in an organism is topologically equivalent to
handle. Then topological morphogenesis in thè de-
velopment of a living organism (as in evolution) is
given by series of topological modification {surgeries)
of closed surface. For example, thè surface of an egg,
thè outer surface of blastula or early gastrula as well
as thè bodily surface of an adult coelenterate are sur¬
faces of genus 0, that is homeomorphic to a sphere.
The epithelial surface of an embryo or a larva with a
through intestine tube (having both orai and anal
openings) such as thè outer surface of an annelid or
nematode worm is a surface of genus 1, topologically
equivalent to a sphere with one handle attached or to
a torus (Figure 1).
Fig. 1 - Topological models of biological shapes. Left column:
stages in thè development of sea urchin: egg, blastula, larva, defi¬
nitive shape. Right column: 3-dimensional ball, 2-dimensional
sphere (genus 0), torus (genus 1), closed surface of genus 2.
Viewing topologically thè digestive tube is an
outer surface of an organism is unusual for biolo-
gists 0). The contents of thè digestive tract are un-
doubtedly part of thè external mediun flowing
through an organism; thè intestine epithelium is a
boundary tissue — between thè internai medium of
an organism and thè outside medium; epithelial cells
function as bordering, absorbing and conditioning
thè external medium elements.
The bodily surface an organism with one through
channel besides thè digestive tube is a surface of
genus 2, topologically equivalent to a sphere with
two handles.
Through channels of thè respiratory System are
also fìlled with an external medium, so that thè sur¬
face of thè respiratory System too may be considered
as outer surface of an animai. Coelomic cavities
opening outside by coelomoducts with unidirection-
al flow of coelomic fluid from thè cavity are physio-
logically better, but not completely, isolated from
thè external medium; thè content of coelomic fluid
in marine annelids, mollusks and echinoderms is
similar to that of marine water. In generai thè epi¬
thelial surface of an organism having n through
channels is homeomorphic to thè sphere with n
handles — i.e. is thè translation of anatomy into topo¬
logical language.
(') According to Prof. A. Minelli’s opinion, in some parts of biology this notion is well accepted: in parasitology thè ca-
tegory of parasites living in thè gut is clearly separated from thè category of thè true endoparasites living within thè tissues.
TOPOLOGICAL CLASSIFICATION: ONTO- AND PHYLOGENESIS
91
Topological modifìcations of epithelial surfaces
in ontogenesis
“Digestive channel, arterial System (including thè heart), thè centrai
nervous System (including brain) appear as simple tubular struc-
tures. The nature machines them as a glassblower”.
On Growth and Form - D’Arcy Thompson, 1917.
During development in most animals thè surface
of an organism, say, an epithelial envelope of an or-
ganism, undergoes topological modification or se-
quential modifìcations (surgeries) of thè closed sur¬
face, changing thè topological genus of this surface,
except for those in which thè definitive state is a
genus 0 surface (coelenterates, fìat worms). As in hi-
gher animals thè epithelial surface of an embryo or
larva with a through intestine tube is a surface of
genus 1 (torus) during development thè genus of thè
surface (so called «spherical surgery») is inevitably
transformed: (p = 0) (p = 1). This transformation is
a transition from a blind archenteron to a through in¬
testine tube and is usually realized at thè gastrula
stage of development by means of an appearance of
another opening opposite thè blastopore; thè blasto-
pore (or primary mouth) will be thè definitive orai
opening in Protostomia or anal opening in Deuteros-
tomia. So thè through intestina! tube arises by thè
break through of thè mouth opening (in Deuterosto-
mia) or one anal opening (in Protostomia) into thè
blind archenteron.
Animals having surface of genus 1 as adults (for
instance, round and annelid worms) undergo in on¬
togenesis only thè transformation from sphere to
torus:
(p = 0) -> (p = 1).
The ontogenesis of animals with thè genus of outer
surface 2 (echinoderms and mollusks - see below)
inevitably undergo two transformations:
(P = 0) - (p = 1) - (p = 2).
In other of protostomions and deuterostomions with
higher order adult state thè surface genus 1 + 2 n (see
below) thè following transformations take place:
O = 0)^(/? = l)^(/? = l + In).
Thus during embryogenesis thè surface of an orga¬
nism undergoes sequential topological (i.e. spheri¬
cal) surgeries, changing thè topological genus of
their surface. These surgeries are locai phenomena,
whereas its genus is a global characteristic. Topologi¬
cal surgeries changing thè connectivity of germ (em-
bryonic) layers are also possible; different types of
topological surgeries modifying spatial organization
of epithelial sheets in ontogenesis have been descri-
bed earlier (Presnov, Isaeva, 1985). Topological mo-
dification of thè connectivity of germ layers results in
a separation of additional closed spherical surfaces
from preexisting ones, for example during neurula-
tion in chordates. Spatial organization of thè orga¬
nism of an evolutionary advanced animai may be
represented topologically as an outer epithelial enve¬
lope (or shell) of certain genus p embracing a numer
of inner closed epithelial surfaces, that are embed-
ded inside thè outer envelope. However thè modifi-
cations of connectivity do not change thè topological
pattern of this outer surface shell (Figure 2).
Fig. 2 - Modifìcations (surgery) of topology during embryonic
pattern formation. Left column: locai aspect of surgeries; Right
column: global aspects of surgeries. <p0, q>] - surgeries. A(p0 — orai
piate rupture; Acp, — obliteration of branchial clefts; B<p0 — obli-
teration of choroid fissure; Bq), — separation of somites from
splanchnotome; C<p0 — mouth breaking into blind archenteron;
C<p, — neurulation; D(p0 — fusion of two heart anlagen, forma¬
tion of a single body cavity when thè sheets of lateral piate fuse;
D<p, — enterocoel mode of thè formation of thè mesoderm.
The topological surgeries in epirhelial sheets be-
come realized locally at thè cellular level; cellular
mechanisms of thè epithelial are sheet disintegra¬
tion, celi migration, celi adhesion and epithelization,
but any topological surgery always is global topologi¬
cal modification of biological form.
Evolution of topological forms
Plant organisms as a rule do not have any obligate
through channel; all thè variety of forms in thè plant
kingdom is created by pure geometrical complication
without topological modifìcations (2). Although
there are various perforations of plant body in some
species, most plants have thè genus of thè surface
equal to zero (p — 0). The topological form poverty
and rigidity in plants probably is restricted on thè cel¬
lular level by immobility and fixed position of cells
and cellular associations.
(2) For example, thè stornata of higher plants may open into common cavities, but these parenchymal cavities are irre-
gular and not epithelized. We consider as topological handles only epithelized through channels.
92
E. PRESNOV & V. ISAEVA
In thè animai kingdom, however, celi mobility,
specific celi adhesion and morphogenetic celi death
ensure thè creation, destruction and variability of su-
pracellular associations as a topological variety of
form in evolution.
The analysis of topological modifìcations of thè
closed epithelial layers covering thè outer surface
«envelope» of a developing organism (formed both
by thè external epithelium and by thè intestinal epi-
thelium too) is also applicable to consideration of to¬
pological organisation of thè bodily surface in evolu¬
tion. And here also thè topological modifìcations
changing thè genus of thè surface are important as
modifìcations of connecticity don’t change topologi¬
cal pattern of bodily surface.
The most primitive of recent multicellular ani-
mais, Placozoa, have a surface of thè body without
any through epithelized channels that is homeo-
morphic to sphere.
Poriferes have numerous channels penetrating all
thè body and connecting thè spongocoel and choa-
nocyte chambers with thè external medium. From
thè topological point of view thè genus of thè surface
in sponges is indefinite and extremely high. Such a
peculiarity in topological organization of Porifera
confirms thè data and conclusions of comparative
morphology on sponges as a special branch in animai
kingdom.
Coelenterates (Cnidaria) and fiat worms (Turbel-
laria) are characterizing in ground pian by a blind
intestine which is opened by a mouth functioning
also as an anus. As any blind invagination do not
change thè topological genus of thè surface, its
value is 0 too. Thus thè form of above types of
animals did not proceed above thè level of a sphere
(p = 0) although in separate representatives of these
types numerous evolutionary attempts to acquire
anal opening and consequently thè through intestine
have been observed: thè sole pore of hydra, pore
channels of intestine in some Turbellaria, intestine
pores of actinia, pores of thè circular channel in
some jellyfìshes. None of these openings are homo-
logous to thè anal opening of higher Bilateria. Few
representatives of fìat worms have one or several
anal pores.
The appearance of a through gut, instead of a blind
one is a topological modification of great evolution¬
ary importance, since thè external medium flows
through it resulting in better utilization and condi-
tioning of thè medium, and better digestion and ab-
sorption of its elements.
In animals of many taxa thè gut is thè only any
other through channel. The differentiation of many
organ systems proceeds through blind, often branch-
ing, invaginations, obviously giving various possibili-
ties for thè evolution of organ System. Mollusks and
echinoderms have achieved a next stage of topologi¬
cal organization of thè surface since, besides thè di¬
gestive System, they also have a second through
channel due to increased integration of thè coelomic
System. In mollusks thè through channel opening
outside via two coelomoducts and coelomopores re-
sults from thè fusion in to one (of pair of coeloms).
Most echinoderms exhibit a second through chan¬
nel due to presence of ambulacral ring channel open¬
ing outside by one canal (see below). Such pattern of
ambulacral System is topologically homeomorphic to
torus of sphere with one handle.
Thus biological evolution in mollusks and echino¬
derms results in a second through channel, but this
way of topological modification seems to lead thè
evolution into a dead end, it is not used by higher re¬
presentatives of Protostomia or Deuterostomia ani-
mais developing another System of through chan¬
nels. The next level of topological organization in
thè animai kingdom is achieved due to development
of through channels of thè respiratory System: tra-
cheal System in higher terrestrial arthropods (3) and
gill clefts in chordates. The System of paired tracheal
tubules connected laterally (in arthropods) or thè
System of through paired branchial clefts (in chorda¬
tes) results in a surface, which in topological terms
is homeomorphic to thè sphere v/ith 2n handles,
i.e. having thè genus 2 n ( n is number of respiratory
openings).
The creation of through respiratory System is thè
topological modification of thè bodily surface which
results in better utilization of oxygen from outside
medium (air or water) flowing through thè organism,
conditioning of thè medium flow and more intensive
metabolism; it can be considered as thè next step in
evolution. The acquisition of thè through respiratory
System correlates with thè development of thè most
advanced morphological and functional organization
— among protostomes in insects, among denterosto-
mes in chordates.
Thus a parallelism of topological and functional
modifìcations in evolution of both protostomes and
deuterostomes is obvious: a transition from thè
sphere in thè topological sense (p = 0), that is an or¬
ganism without a digestive cavity or with a blind gut,
to a tube or in topological terms thè torus (P= 1), an
organism with through digestive tract, and subsequ-
ent transition from thè torus by adding an even
amount of channels (handles) of thè respiratory Sys¬
tem to thè surface of genus p = 1 + 2n. The acquisi¬
tion of thè surface of thè genus 2 may be considered
as a blind branch in evolution both Protostomia and
Deuterostomia. The evolution of thè topological
form of thè surface in animai kingdom may be short-
ly expressed in thè following summing up schemat-
ics (see also Figure 3):
p = 1 + 2n
p = 2 t
\t
P = 1
t
p = 0 -»• p = N
The generai similarity or even identity of evolu¬
tionary and ontogenetic form modifìcations makes it
possible for us to develop a unifìed topological classi-
fication of biological forms.
( ) l'here are lateral connections or anastomoses between tracheomeres in some Diplopoda and Araneina. In most
insect tracheal tubes are connected by a System of lateral and transversai channels (Beklemishev, 1964).
TOPOLOGICAL CLASSIFICATION: ONTO- AND PHYLOGENESIS
93
Fig. 3 - Schematics of evolution of topologica! forms of animals.
A topological classification based
on embryonic forai dynamics
Although thè trend of increasing thè genus of sur-
face and thè amount of isolated layers in onto- and
phylogenesis is obvious, modifìcations decreasing
both thè genus of epithelial surface and thè amount
of closed isolated epithelial layers sometimes occurs
in onto- and phylogenesis. Hence thè time ordering
of modifìcations should be also taken into account.
Since thè topological modifìcation (surgery) is cano¬
nicali related to thè hole of thè surface, we will
order thè holes (through channels, or handles) and
mark them by C, . The Symbol C, acquires either thè
value of 0 or 1 depending on thè absence or presence
of j- th fundamental hole. After that thè set
I (Q , c2, . . . , cn)
will correspond to any organism. It is clear that thè
dynamics of above set (word) in animal’s ontogen¬
esi would be more complete than thè resulting
genus of thè outer surface
P = Cx + C2 + . . . + C^r
— classifying characteristics. The usuai dynamics of
variation of coding word in thè majority of animals is
(0) - (1).
However, in animals with embryonic envelopes or
specialized larvae, for instance in thè annelid worm
Polygordius we have thè follo wing scheme:
(0) -> (1) -+ (0) - (1).
During embryogenesis of Peripatopsis capensis (Ony-
chophora) an amazing bifurcation can be observed:
(0) - (1,1,1) - (0) - (1).
This mathematical approach to describing of deve-
lopmental phenomena is convenient and simple; it
enables us to give thè detailed classification of recent
echinoderms.
Scheme for thè phylum Echinodermata
The topological genus of thè bodily surface of an
echinoderm is equal to 2 for thè ground pian with
through gut and circular ambulacral System opening
outside through an additional channel. Now we will
take into account also another through epithelized
holes appearing and vanishing during embryogen¬
esis. We will consider and distinguish thè functional
value of each through channel. Thereby, we have at
hand four types of channels:
gut, ambulacral System, hydropore, waterpores.
The numerical characteristic: Cx corresponds to
absence (0) or presence (1) of thè through gut. C2 — to
absence (0) or presence (C2 > 0) of circular ambula¬
cral System opening into outside medium by one (1)
or more (C2 > 1) channels; (C2 > 1) also corresponds
to presence of anastomoses connecting two rings of
thè ambulacral System in Concentricycloidea medusi-
formes (4). C3 corresponds to thè presence of connec¬
tion of hydropore with thè outer medium by one
simple hole (1) or through madrepore piate with
multiply pores (C3 > 1). C4 designates thè presence
(C4 > 0) of thè pores of thè sea lily cup.
During planctonotrophic type of development of
sea urchins, starfìshes, ophiurans and holothurians
thè genus of thè surface of their larvae is p — Cx = 1
(presence of through gut). In cases of lecitotrophia
no through channels are observed prior to metamor-
phosis in these animals or in crinoids. During meta-
morphosis thè through digestive tract vanishes tem-
porarily in planctotrophic larvae. The development
of ring channel of thè ambulacral System opening
outside only through thè stony channel (in sea ur¬
chins, starfìshes, ophiurids, some holothuria) or
through five channels (in sea lilies) provides thè
topological genus of thè bodily surface to be equal
to p = C2 — 1 or p = C2 = 5 respectively. In thè defini¬
tive state thè most echinoderms have a through gut
(Cx = 1), but Concentricycloidea, Ophiuroidea and
some Asteroidea are exclusive ( Cx = 0). Most echi¬
noderms exhibit a connection of thè ambulacral
System with thè outer medium through multiple ma-
dreporite pores (C3 > 0); only in sea lilies is there a
(4) Concenticycloidea (whose only thè representative is Xyloplax medusiformes ) may be regarded as a class (Rowe et
al., 1988) but other evolutionary systematics prefer to treat X. merusiformes as highly specialized Asteroidea. Here we
represent Concentricycloidea as a separate class (or a separate group of lower rank) of Echinodermata.
I
94
E. PRESNOV & V. ISAEVA
System of numerous acqueous pores through thè cup
surface (C4 > 0) (Figure 4).
Using thè System of ontogenetic variations thè
change of classifying word:
(Q, C2 , C3, C4)
and definitive values composing its letters we plotted
a scheme for six classes of recent echinoderms with
thè following sequence (see also Figure 5):
c=(cnC2‘CJ'C*) / p=LCi
Fig. 4 - Topological schematics of ontogenesis in echinoderms.
Column I: embryogenesis; Column II: metamorphosis; Co-
lumn III: definite state.
f Crinoidea -► Concentricycloidea -► Holothuroidea —
( Asteroidea-* Ophiuroidea-’* Echinoidea.
Fig. 5 - Scheme of echinoderms using topological parameters.
The similarity between this topological classifica-
tion and legitimate zoological classifìcations proves
thè naturality of such topological approach which ad-
ditionally is quite simple.
Thus thè analysis of topological form dynamics in
ontogenesis may provide additional possibilities in
cladistic analysis although thè construction of a
given scheme based on pure topological characters is
only an experiment, as in cladistics many different
characters besides thè topological ones should be
taken in account.
Generally thè topological approach gives a new
adequate and strict language for description and clas-
sifìcation of biological forms and their dynamics in
embryogenesis and evolution.
Acknowledgments — Best thanks are due to thè or-
ganizers of thè workshop (Michael T. Ghiselin, Gio¬
vanni Pinna and Francesco M. Scudo) for inviting
one of us (E. P.) to attend this meeting and also
for thè discussion of this paper by all participants.
We are very indebted to M. Ghiselin, A. Minelli,
F. Scudo and C. Urbani for helpful comments by
letters. M. Ghiselin and F. Scudo also corrected our
English.
REFERENCES
Beklemishev I. N., 1987 - Basics of Comparative Anatomy of
Invertebrates. Nauka, Moscow, Voi. 1. 431 pp.; Voi. 2. 445 pp.
(In Russian).
Bourbaki N., 1948 - L’architecture de mathématiques. In: Les
Grands Courants de la Pensée Mathématiques. Cahiers du
Sud: 35-47.
Child C. M., 1941 - Patterns and Problems of Development. Uni¬
versity of Chicago Press, Chicago, 811 pp.
Driesch H., 1894 - Analytische Theorie der Organischen Ent-
wicklung. Verlag von Engelmann, Leipzig, 184 SS.
Isaeva V. V. and Presnov E. V., 1990 - Topological Structure of
Morphogenetic Fields. Nauka, Moscow, 256 pp. (In Russian).
Listing Ì. B., 1847 - Vorstudien zur topologie. In: Gòttingen Stu-
dien. Universitàt Gòttingen, Gòttingen: 811-875.
Needham J., 1936 - Order and Life. Cambridge University Press,
Cambridge: 175 pp.
Presnov E. V. and Isaeva V. V., 1985 - Modifications of Topolo-
gy in Morphogenesis. Nauka, Moscow: 191 pp. (In Russian).
Raven C. P., 1959 - An Outline of Developmental Physiology.
Pergamon Press, Oxford, 232 pp.
Rowe F. W. E., Baker A. N. and Clarke H. E. S., 1988 - The
morphology, development and taxonomic status of Xylopax
Baker, Rowe and Clark (1986) (echinodermata: Concentricy¬
cloidea), with thè description of a new species. Proceedings of
thè Royal Society of London, SeriesB,233 (1273): 431-459, plates 1-7.
Thom R., 1969 - Topological models in biology. Topology, 8 (3): 313-335.
Thompson d’Arcy W., 1917 - On Growth and Form. Cambridge
University Press, Cambridge, lst edition, 794 pp.
Waddington C. H., 1940 - Organisers and Genes. Cambridge
University Press, Cambridge, 160 pp.
Wolpert L., 1969 - Positional information and thè spadai pattern of
cellular differentiation. Journal of Theoretical Biology, 25 (1): 1-47.
E. Presnov & V. Isaeva: Dep. of Appi. Math. & Comp. Se., The Weizmann Inst. of Se., Rehovot 76100, ISRAEL
Lab. of Embr., The Inst. of Mar. Biol., Russian Academy of Science, Vladivostok, 690041, RUSSIA
E. Presnov - Present address: Habsor Experimental Station, Negev 4, ISRAEL
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
Francesco M. Scudo
Symbiosis, thè origins of major life forms and systematics:
a review with speculations
«It is often said that all thè conditions for thè fìrst production of a living organism are now present,
which could ever have been present. But if (and oh what a big if) we could conceive in some little
pond, with all sort of ammonia and phosphatic salts, light, heat, electricity, etc., present, that a pro-
tein compound was chemically formed ready to undergo stili more complex changes, at present day
such matter would be instantly devoured, or absorbed, which would not have been thè case before
living creatures were formed». C. R. Darwin, as in F. Darwin (1887), Voi. II: 202.
Abstract — It is difficult to explain thè origin of prokaryotes proper other than through symbioses among «uncoded»
proteinoids, on which viruses eventually flourished. Cellular coding would thus have started as a symbiotic enterprise of
very diverse virai elements, in which a large variety of codes were at fìrst established in order to prey upon, or parasitize
quite diverse proteinoid cells. Prokaryotes proper might have accasionaly merged into chimaers, and so apparently did
more complex cells closer to eukaryotes. Nuclear structures proper appear to be of late, multiple and possibly symbiotic
origins, connected with regular alternations between thè haploid and thè diploid cellular phase. These low eukaryotes then
acquired diverse endosymbiotes, mostly bacterial, which they permanently retainod as organelles; some of them quite like-
ly originated from distinct symbiotic events, involving much thè same symbiont. A common triplet code was eventually es¬
tablished among thè metazoans and thè metaphytes. Their cellular specializations were made possible by thè gender diffe-
rentiation of thè haplophases, that took place in many eukaryotic lineages in a few standard forms. In higher metaphytes
and seemingly all extant metazoans this haploid gender specialization was then replaced by true hermaphroditism, in tura
often resulting in diploid gender. The metazoans continued to form dose, physiologically specialized symbioses with
algae, fungi and bacteria. A common outcome of bacterial symbioses consistei in transferring to thè host’s genome some
relevant functions of thè symbiont, that was then discarded as such. Analogous, radicai transformations induced by much
thè same symbiont on rather difìferent metazoan stocks could have rendered them far more similar, as quite likely happe-
ned for thè Hyrudinea, thè Pogonophora and thè Blattoidea, possibly thè Cirripedia etc.. Directly «genotypical» symbioses
with viruses also remained common especially among thè higher animals, whose genomes largely consist of repeated, mo¬
bile elements of virai origin. Traditional systematic practices are not well suited to deal with these modes of often multiple
origins.
This review deals with theories on origins of major
life forms in order to explore possible connections
among them and implications for systematics. § 1 will
start by touching upon a few examples of reconstruc-
tions with restricted aims, mention some of thè con-
straints or problems that ought to be taken into ac-
count and fìnally consider a few treatments aiming at
completeness. Based on these treatments, § 2 will
sketch a sequence of connected scenarios for thè ori¬
gins of thè prokaryotes, thè protists, thè metazoans
and metaphytes (§ 2). § 3 will then examine thè very
different «tempos and modes» of evolution these
scenarios imply, and some of their direct consequen-
ces for systematics. More generai problems in syste¬
matics are approached in thè Final Remarks from an
historical perspective, also as a way to justify some
theoretical premises.
The term «symbiosis» is now being employed with
two radically different meanings. The recent mean-
ing, now comon, is to denote any dose, often endo-
cellular association, most of which are clearly patho-
genic. Symbiosis is, intended here in thè traditional
sense, to denote bodily associations that are obliga-
tory at least under given conditions, and take place in
standardized rather than erratically varying ways. By
being standardized, any such association is assumed
*
to benefit at last thè «host» even if thè precise nature
of thè benefìts is not known. A qualification of sym¬
bioses as «mutualistic» is problematic in many cases,
of animals in particular (cf. e. g. Nardon et al. 1990).
Most well understood forms of dose symbiosis in
animals clearly point, in fact, to a parasitic or preda-
tory fìrst origin, that only involves mutualism in any
proper sense as intermediate evolutionary stages.
Although common, hereditary associations are not a
necessary prerequisite for highly specialized, obliga-
tory symbioses. Thus thè luminescent symbiotes of
many cephalopodans are highly specialized forms of
«wild» photobacteria that remain «extracellular»,
and are obtained by thè host at each generation by
infection from free living ones (cf. Pierantoni, 1923,
Ruby & McFall-Ngai, 1992).
It is worth anticipating major differences in thè
symbiogenesis of taxa that clearly affect thè very
foundations of systematics. The principles and goals
of taxonomy and phylogeny mainly stem from com¬
parative anatomy of thè vertebrates and other deute-
rostomians proper. These easily establish full ge-
nomic integrations with viruses but only rarely dose
symbioses with bacteria or fungi, and only in special
cases these have major consequences at macroscopic
levels. On thè other hand metakaryotic protists are
96
FRANCESCO M. SCUDO
essentially qualified by thè nature of their symbioses
with different microorganisms. In most metazoans
other than deuterostomias algal, fungal and bacterial
symbioses are relatively common, and most have
major irreversible consequences also at macroscopic
levels (e. g. Nardon et al., 1993). As a result, different
stocks of most eukaryotes can be rendered more si-
milar by establishing symbiotic bonds with thè same
microorganism. Ampie parallelisms, or convergen-
cies also arise among thè metakaryotes from very si-
milar forms of sexual differentiation. As one turns to
prokaryotes thè quest for common ancestry might
prove even more elusive if, as it seems these origi-
nated through innumerable symbioses among
previously «free» proteic components and, then,
nucleic ones.
1) On theories and problems
a) «Popular» theories about origins
Only in thè 1920’s Oparin and Haldane managed to
turn thè problem of origins into a socially acceptable
topic for discourse. Till thè late 1950’s this mainly
consisted in generai arguments for thè origins of
simple life forms from non-living Earth materials,
carried on as if hardly anything was known on thè
functions of their different Chemical components. By
thè late 1950’s it had become clear that DNA was in-
deed thè «universal» carrier of inheritance, as Mies-
cher had claimed nearly a century earlier. Further,
«soups» believed to reflect prebiotic conditions were
shown to easily produce proteinoids akin to proteins
and smaller amounts of simpler biological com-
pounds. Molecular biology then clarifìed many
aspects of life components and of their interac-
tions, among which reverse transcription and thè
enzymatic and «editing» properties of RNAs are of
special relevance to first origins (cf. § 2 a).
Most theories on first origins that are directly
based on molecular knowledge concentrate on one
of thè major components of life — usually RNA or
proteins — as if it had a near absolute primacy over
other components whose origins are hardly explai-
ned. How coding carne about is thè centrai problem
to which very diverse Solutions are offered — e. g.
earliest life having been coded by some clay entities,
and only much later reai genes having «taken over»
(Cairns-Smith, e. g. 1985). Assuming that RNA carne
first seems to be a satisfactory way out of «chicken
and egg» problems, but only in vitro. Thus it seems
impossible to obtain thè nucleotides, thè building
blocks of nucleic acids, through abiotic synthesis. On
thè other hand «proteins» can easily phosphorylate
nucleosides to nucleotides, and simple sugars are
«robustly» produced abiotically as are thè bases (far
more so purines than pirimidines (e. g. Miller, 1993).
Even if thè building blocks of RNA could have been
produced abiotically, their assemblage does not ap-
pear likely other than through surface catalysis. Then
to energize this assembly, while sparing thè final pro-
duct from thè disrupting effects of thè same energy,
only seems possible if RNA’s had an extraordinary
tendency to dive as soon as «born». It is even harder
to imagine how these RNA’s could have survived
«on their own», cells being their only known and
reasonable-looking support. On thè other hand com-
binatorics would not be much of a problem by rea-
soning on an «RNA World» in terms of Wright’s
«shifting balance theory» (e. g. 1970, cf. § 2 a) on very
numerous «species» of biomolecules (cf. Eigen, 1987,
apparently unaware of thè extent his reasoning over-
lapped with Wright’s).
Life having started with membranes might seem
an easy alternative to an RNA primacy as these can
easily self-assemble in proper conditions also in thè
form of «microspheres», capable of selective osmosis
and doubling, or fusing. This alternative too is often
phrased in exclusivistic tones such as thè Genesis-
mocking «In thè Beginning was thè Membrane» (Ha-
rold, 1986: 168), while not any more complete, or
convincing than an «RNA World». Stili another way
out of concentration and energizing problems would
be for life-components having started in bubbles. As
both bubbles and wet surfaces are common around
ponds, some among thè innumerable steps of pre-
cellular life might well have taken place in either of
these ways.
All along there had also been deep analyses of one
or another aspect of origins, with very reasonable
answers it considered separately. Thus thè theory ac-
cording to which viruses would have originated from
RNA molecules ecaping thè control of cells looks as
reasonable as its main alternative — i. e. that they
carne about «alongside with thè molecules of life»
(in fact thè former is a precondition to thè latter in
thè scenario of § 2 a). There are, however, astronomi-
cal numbers of combinations and permutations of
thè answers for all thè steps involved, among which
it is hard to make meaningful connections and even
harder to choose. Thus both «compartimentaliza-
tion» theory of eukaryotic organelles and that of vi¬
ruses as «degenerate» prokaryotes might seem rea¬
sonable on their own, but it is hard to make sense of
both other than by assuming that thè metakaryotes
come first, and thè prokaryotes carne from desym-
biotyzed organelles. A major premise of thè present
analysis is that problems of polarity — i. e. a given
process appearing about as reasonable as its reverse
one — are less likely to arise thè larger thè set of orga-
nisms, or events being considered.
b) Some among thè many «facts» a complete theory
ought to take into account
Recent, explosive increases in factual knowledge
added very different «constraints» to theories on ori¬
gins, most of which concentrate on bringing about a
reasonable prokaryotic «progenote» or on interpret-
ing eukaryotic organelles as symbioses with proka¬
ryotes. Some among thè most surprising and appa¬
rently more binding such constraints concern timing
and physical conditions, to which only rarely sufflc-
ient attention has been paid.
For instance it has been firmly established that at
least thè inner planets originated by stochastic accre-
tion of discrete bodies (e. g. Dones and Tremaine
1993) — i. e. «planetesimals» that are occasionally
«doublé» or comets that could land in one piece or,
more likely, break up preceeding impact. Further,
though it is not yet clear how, or why, thè Earth
achieved an orbite very dose to thè present one
about four billion years ago (e. g. Milani 1988) - i. e.
only shortly before thè first cells appeared. The lon-
ger thè Earth kept to much thè same orbit thè better
SYMBIOSIS, THE ORIGINS OF MAJOR LIFE FORMS ANS SYSTEMATICS
97
it «sweptin» any respectably sized body with which it
was likely to collide. Collisions, in fact, might have
been a primary mechanism responsible of well spa-
ced planetary orbits, with periods far from resonan-
ce, out of more chaotic initial ones (Scudo 1993).
Such «accretions» must have had far larger direct
physical effects on thè atmosphere and dry land than
on thè whole Oceanie masses, and stili larger indirect
effects as through accumulations of snow and ice
and their subsequent melting. These physical chan-
ges would have mainly affected thè more complex
forms of animai life, resulting in thè simultaneous,
global extinction of many animals while plants
would get by more easily through spores, or seeds.
Then thè transformations of life are not, or not only
thè nearly continuous processes in which many be-
lieved, and in which some continue believing in spite
of all thè evidence to thè contrary. Rather, many life
forms were suddenly destroyed at times, and each
time new «normal» life arrangements carne about by
re-associating in different ways thè survivors, some
of which were drastically changed (cf. § 3 c).
The fossil record thus produced shows that proka-
ryotic-like cells existed for about 2 billion years with
hardly a major recorded change. Eukaryotic-looking
cells likewise persisted for a quarter to half that long
with hardly any noticeable change, before rapidly
giving rise to most animai phyla and thè early green
land plants (cf. Fedonkin, these proceedings). Any
reasonably complete theory on origins must then ac-
count for these two long periods of stasis, during
which disturbancies of cosmic origin were more fre-
quent and substantial than later on.
Furthermore, any theory aiming at completeness
ought to also account for «puzzles» such as thè sub¬
stantial variabilities in Chemical composition of
DNAs and in codes among viruses, and thè far lesser
ones among thè prokaryotes and thè lowest eukaryo-
tes. Virology treatises usually justify DNA’s Chemi¬
cal variability as a defense from bacterial restriction
enzymes, and some DNA variants might indeed
have this function. On thè other hand, to my know-
ledge, no sound reason has been given as to why this
justifìcation would also apply to Bacillus, viruses
having only uracil DNA. If life had indeed started
from a coding «progenote», among other things
it would be hard to justify thè variability in DNA
composition and codes among prokaryotes and low
protists.
c) On theories aiming at completeness
Only very few theories on origins aim at complete¬
ness and none of them has, or has ever had much fol-
lowing. The oldest such theory by Giglio-Tos (main¬
ly 1900 to 1910) is also by far thè most complete,
though it deals with thè basic features of life only in a
simplifìed way — i. e. much as gravity explains thè
features of rivers. The amount of labour involved in
drawing from gravity any detailed inference about
specifìc problems concerning rivers gives a good idea
of thè lack of detail in Giglio-Tos’ theory, which in
turn justifies its standing up in terms of present-day
knowledge. Thus GT deals with large combinations
of biomolecules, thè biomores, without specifying
their Chemical nature or spatial arrangements and
just distinguishing between «somatic» and «genetic»
ones. Life would have started with very simple mole-
cules capable of doubling by transforming different
Chemicals from a primevai broth, as well as of chang-
ing and transmitting their changes. As suitable bio¬
molecules thus carne about, «symbioses» among
them would have given rise to simple biomores.
Then different, suffìciently advanced biomores
would have been forced to associate symbiotycally
into simple protocells or biomonades; more advan¬
ced biomonades would have then specialized their
biomores into somatic and genetic ones, as in proka¬
ryotes and organelles. Then nucleated cells would
have arisen by symbiotic associations of different,
genetically specialized biomonades, as Mereschows-
ky and others had already proposed (e. g. Khakina,
1979).
Much as it was for Darwin and followers such as
Moebius and Cuénot, for GT any form of life under
«normal» conditions was, as it stili is, bound to oth¬
ers by interactions that often have substantial mu-
tualistic components. Should a parasitic or predatory
bond persist long enough undisturbed, among suit¬
able organisms, it would tend to become an «indisso-
luble» symbiosis. One among GT’s most originai
achievements was a relatively complete theory on
thè relationships between sexual reproduction and
development — i. e. gender would be thè pillar of thè
mechanisms through which vegetative cells can dif-
ferentiate genotypically, and thus allow for thè ex-
tended «symbioses» of multicellularity. As this theo¬
ry incurred in a gross, hardly avoidable «mistake»
(Scudo 1994) I shall here consider it in an amended
form (§ 2, c), confining its topological features to thè
Final Remarks.
Only recently have there been reasonably comple¬
te attempts to show how life components could origi¬
nate in thè «naturai» order of increasing complexity
of their synthesis — i. e. «proteins» first, nucleic acids
last, fatty acids and sugars in-between. Though full
of «it is far from obvious how. . .», Folsome (1979) is
noteworthy by starting from a reasonable protocell
not yet coded for; however he gets around thè noto-
rious combinatorial problems through random but
exceedingly small biomolecules, such as 5 to 7 ami-
noacid peptides. The remarkable enzymatic and «be-
havioural» properties of RNA’s were discovered
mostly later (cf. Symons 1992), radically changing thè
rules of thè game.
The stale «chicken-egg business» alluded to in a)
was set in motion again by two remarkable works:
Cordón (1990) and de Duve (1991). Different as they
are in many respeets, these concur with Folsome in
assuming that veritable «proteic» cells — rather than
just proteinoid membranes — carne about before any
cellular coding proper. So far, Cordón’s pubblished
treatments have arrived at thè simplest such cells
that are stili open, vase-like, made up by a layer of
proteic beings of a single kind that grow much as do
thè germinai lines of volvocales or thè pyrosomes,
with a lipidic layer on thè inside. He painstakingly
explains why such heterotrophic colonies, saprophy-
tes of autotrophic ones, were forced to evolve verit¬
able cellular behaviours (1990, Voi. 1) and then he ex-
amines thè early phylogeny of biochemical cycles
(1990, Voi. 2, cf. also Scudo 1992a). De Duve’s theo-
retical preferences are analogous to Cordón’s on
many counts, to thè notable exception of cells be-
coming closed very early, thus making it hard to ex-
plain thè origin of viruses except than by «degenera-
98
FRANCESCO M. SCUDO
tion» (cf. § 2a). The sequence of tentative scenarios
that follows is liberally based on thè treatments by
Giglio-Tos, Cordón and de Deuve, aiming to ac-
count for «facts» as in b) above.
2) Some «complete» scenarios for origins
a) The rise of thè cells and thè «genetic takeover»
The precise nature of thè earliest, «Chemical»
steps of life remains to a degree conjectural since thè
initial composition of thè atmosphere is stili an open
problem (e. g. Kasting 1993). These steps themselves
are not problematic, however, since even very simple
Chemical systems share with present-day life thè
basic features of self-duplication, «mutation» and
«selection» (e. g. Hong et al., 1992), and different life
components are synthetized abiotically in a wide va-
riety of conditions (cf. § 1 a). I am thus sketching here
a plausible sequence of events starting from diverse
proteinoids, primarily globular enzymes, associated
in complex systems or, more precisely, biogeocoeno-
ses. These relatively complex, non-coded «free pro-
teins» would have been error prone in reproducing,
which is hardly problematic since plenty of sequence
variations have only minor effects on function, and
all reproduced about as inefficiently. Some such pro-
teic being would form different types of «colonies»
including heterotrophic, open «cells» like Cordón’s
(cf. § 1 c), which would provide a basis for symbiotic
associations with other, non-colonial «proteic» beings.
According to Cordón thè above process would
have reached a turning point when thè coenzymes in
a celi type included thè building blocks of present-
day RNA, or alike compounds no longer found in it.
Some short «Ur-RNAs» capable of relatively error-
free replication would have formed easily, at fìrst
with no function other than storage-transport. Then
these Ur-RNAs would have then developed other
useful functions, such as repair of proteic compo¬
nents or physical support for their production. The
physiologies of these Ur-RNAs might have then be-
come akin to thè stili poorly known ones of viroids
and virusoids. By being easily transmissible among
thè stili open cells, some such Ur-viroids would have
spread from their native celi types to others as mild
predators-parasites, suited to acquire all kinds of
symbiotic functions.
As cells thus kept increasing in complexity, thè
next turning point would have consisted in some vi¬
roids starting to build capsids out of cellular aminoa-
cids, thus developping primitive codes and larger
chromosomes. The greater power of dispersal and
more complex physiology thus achieved would have
allowed them to be really virulent on some hosts.
Greater dispersal would also have resulted in more
horizontal exchanges among different virai stocks
tending to homogenize their RNAs, quite likely ini-
tially variable also in Chemical composition. Some
celi types would have reacted to ever increasing
parasitic loads by closing up, thus accelerating thè
symbiotic adjustment of thè entrapped «viruses».
Ohnishi (e. g. 1990) provides direct evidences for
coding having originated as a collective, symbiotic
entreprise of distinct RNA organisms.
Alongside thè above process some viruses would
have started to «prey upon» RNA components more
efTiciently by differentiating forms of nucleic acids
for thè sole purpose of replicating their chromoso¬
mes, namely into Ur-DNAs. The uracil DNA of thè
Bacillus, viruses might represent an obvious step in
this process which, by taking place near-indepen-
dently in different virai and celi lineages, would have
resulted in DNAs chemically far more variable than
those now extant. In this scenario many, possibly all
variants in DNA Chemical composition would be
remnants of this initial variability rather than modifì-
cations of an originally homogeneous DNA, in part
retained by assuming functions such as defense from
restriction enzymes. Notice how thè two major theo-
ries of virai origin usually presented as alterna¬
tive (cf. § 1, a) here become complementary — i. e.
RNA molecules that «escaped thè control of cells»
would have been thè starting point in thè evolution
of coding.
From a variety of coding mechanisms and DNAs,
mastered by symbionts-parasites of cells, further
evolution of coding would have been a biocoenotic
process at a stili more extended, more collective
level. Any one virai lineage could undergo direct ge¬
netic exchanges with others and it would be subject-
ed to diverse selective pressures also from different
host cells, in which it quite likely played different
roles. Any such virus, originally parasitic on a celi
type, could have slowly turned into its symbiote and
then be incorporated into its chromosome, perhaps
with quite different functions than in other celi
types. Somewhere along these processes of symbiot¬
ic specialization, thè establishment of reverse trans-
criptases would have made coding easier also for
proteic components proper of cells. Cellular coding
might thus have started by «copying» proteic compo¬
nents into messenger RNAs and then retrotranscribe
them to DNA, as proposed by de Duve (1991). «Ge¬
netic take over» of Chemical information in any one
celi type would have soon resulted in a single «main»
chromosome, as thè only manageable reproductive
arrangement.
In turn, establishing a single cellular chromosome
opened thè way to a complete, effìcient «genetic
take-over» as in thè extant eukaryotes. For long this
might have been a major adaptive goal among cells
that no longer shared, or exchanged coding func¬
tions to thè extent they did while stili open — i. e.
they did so only occasionali through new virai sym-
biotes as plasmids or sexual processes. Quite likely
symbioses between prokaryotic lineages also took
place rarely, such as between a poorly motile and a
highly motile one, and thè chromosomes of thè
«partners» soon merged. The extant variability in thè
Chemical composition of DNAs and in codes among
viruses and prokaryotes would then reflect thè level
of homogeneization achieved at thè outset of euka-
ryotic evolution, as further reduced by differential
extinction. These processes would have taken place
through much thè same selective effects of thè
struggle for life as in thè «biogeocoenoses» of multi-
cellular ornanisms — i. e. involving both selection
and chance, both within and among populations
(cf. Wright, e. g. 1970 and § 3 c).
Quite likely code homogenizing only resumed
on a wide collective basis in thè evolution of thè
metakaryotes. DNA and coding uniformity thus
eventually resulted among thè metazoans and thè
metaphytes, whose chromosome complements are
SYMBIOSIS, THE ORIGINS OF MAJOR LIFE FORMS ANS SYSTEMATICS
99
made up in substantial proportions by repeated, mo¬
bile «virai» elements.
b) The origin of thè eukaryotes
The eukaryotes are characterized by their cytos-
keletons, by mostly very similar chromatin arran-
gements and by a variety of nuclear organizations
— i. e. micronuclei, macronuclei and nuclei proper,
with different modes of division. The higher ones
(Metakaryotes or S80) also posess a variety of orga-
nelles not found in thè lower ones (Archeozoans or
S70). Reasonably detailed reconstructions tend to
agree on basic issues in thè evolution of thè thè Ar-
chezoans (e. g. de Duve 1990, Cavalier-Smith 1990)
and on distinctive metakaryotic organelles — notably
ribosomes, plastids and peroxisomes — having origi-
nated from symbioses with prokaryotes.
Far from clear, on thè other hand, are origins of
microtubule-associated motors such as in thè axone-
mes of cilia and flagella, in mitotic and meiotic spin-
dles and other processes of mechanical transport.
These microtubules and motors might all be due to
much thè same machinery of symbiotic origin, as
suggested by direct biochemical or structural evi-
dence (e. g. Margulis et al. 1990) as well as by many
eukaryotes «reabsorbing» their cilia or flagella dur-
ing celi division. This might contrast with many rea-
sons why thè evolution of thè S70’s would not have
been accompanied by any symbiotic event (Cavalier-
Smith 1990). Further, reasonable explanations for
thè origins of microtubules and their associated mo¬
tors might also quite directly account for a number
of eukariotic taxa lacking cilia and flagella, or having
flagella only in thè sperm.
A satisfactory explanation of all these evidences
might thus be far more complex than often assumed
— e. g. thè «inner» motor machineries of eukaryotes
having originated from a symbiotic event prior to thè
evolution of most other S70 features, while thè meta¬
karyotic cilia and flagella originated from different
symbiotic events with prokaryotes lacking dose,
known relatives. It is hard to choose among many
plausible reconstructions of such events so long as
thè biochemical evidence is stili as incomplete as at
present (e. g. Walker and Sheetz 1993), end detailed
ultrastructural evidences are stili scattered (e. g. En¬
gelhardt et al. 1993).
All eukaryotes seem to have primitively undergo-
ne an alternation between a haploid and a diploid
cellular phase, stili retained in different forms by
most of them.
In many protists thè diplont is dormant and highly
protected, carrying thè population through adverse
conditions and then giving rise to four haplonts. The
syngamic processes through which two haploid cells
produce thè zygote or analogous set-up (dicaryonts
in fungi, diplokaryonts in microsporidians, e. g. Can-
ning 1988) are mediated by very different adapta-
tions. In many low protists syngamy is achieved by
haplonts of uniform size (isogamy) through sequen-
tial modifications of their behaviours — e. g. aggluti-
nating as a start. Their most primitive sexual speciali-
zations consist in many genotypic differences called
poles, each pole favouring syngamy with a different
one. In more advanced forms syngamy within thè
same polarity is altogether prevented with various
consequences — e. g. only one of thè uniting cells
passes on a given organelle (cf. e. g. Hurst and
Hamilton 1992). The most avanced forms of these
evolutionary sequences consist of only two poles
(bipolarity).
In a few low protists, however, syngamy takes
place among cells that do not appear to have any
polarity differentiation but widely differ by size in a
continuum. Here syngamy always occurs between
two cells with at least some size difference, thè smal-
ler one distinctively behaving «as male», thè larger
one «as female» (relative sexuality).
Except in some of their lowest representatives, thè
gametic phase of thè metakaryotes is specialized into
sperm and egg cells (spermatic nuclei, oospheres); in
many forms without cilia or flagella, such as red
algae and nematods, sperm and egg cells are dose in
size. These specializations, collectivively denoted as
oogamy, often look very similar. They apparently
evolved innumerable times among unicellular pro¬
tists, often directly deriving from bipolarity — i. e.
one of thè poles splits into four or eight smaller cells
just prior to syngamy while thè other looses its fla-
gellum(a) (e. g. Bacci, 1965).
On thè other hand it is far from clear whether, and
in which cases, oogamy directly evolved from rela¬
tive sexuality, altogether bypassing isogamy and po¬
larity (e. g. Scudo 1973, cf. also further evidence from
Iriconympha).
From its distribution, oogamy appears being an es-
sential precondition for thè diplophase to become
substantially dominant over thè haplophase in multi-
cellular eukaryotes. Thus most if not all algae fìrst
evolved multicellularity in «identical» forms in thè
two phases, thè diplophase slowly becoming domin¬
ant only after becoming oogamous. This dominance
reaches extremes, as in thè Fucales, where thè spores
are retained on thè mother diplont, soon entering ga-
metogenesis. At variance from algae, in green land
plants a substantial dominance of thè diplophase was
only achieved after a marked cellular differentiation,
as in ferns.
On thè other hand it seems that most, if not all thè
ancestors of metazoans had developped multicellu¬
larity from thè outset only in thè diplophase, alto¬
gether lacking an independent haplophase (cf. e. g.
Scudo 1973).
The operation of naturai selection seems to justify
in a simple, generai way that all organisms with a do¬
minant diplophase are oogamous. It is easily shown
(Haldane 1924, Scudo 1975) that individuai selection
for a genetic variant operates on a sexually undiffe-
rentiated haplophase «about» twice as strongly as in
thè diplophase. This statement roughly describes thè
results of approximate analytical models showing
that selective contests about dominance are strongly
biased in favour of a sexually undifferentiated haplo¬
phase. On thè other hand, in thè same contests a va¬
riant affecting only one haplont gender would «play
about even» with one affecting thè diplophase. The
gender differentiation of thè gametes can obviously
provide various direct advantaged besides those to
be examined below, such as size dimorphism to easi¬
ly result in more efficient unions in demanding cir-
cumstances (Scudo 1967). Since a low gametic di¬
morphism is far from rare both among protists and
animals — even higher ones such as some crusta-
ceans (Baccetti, e. g. 1985) - it is not per se indicative
of gender specialization.
100
FRANCESCO M. SCUDO
c) Gender, development and thè origins of thè
metazoans and thè metaphytes
As hypotesized by Giglio-Tos (cf. § 1, c) thè most
primitive, generai function of gender would be to
allow cellular specializations also other than sexual
— i. e. «epigenetic» modifications in ontogeny could
only revert to a state dose to thè initial, zygotic one
through syngamy between gametes of different gen¬
der, or amphimixis. Cellular specializations could
only evolve through such epigenetic modifications
though these might no longer be necessary for deve¬
lopment at subsequent stages. Here different parti-
cularizations of these assumptions — now supported
by direct evidences such as methylation, including
sexual imprinting in thè vertebrates, cf. e. g. Jablon-
ka et al. (1992), Jablonka (1994) - shall be explored
through direct evidences and plausible inferences on
mechanisms. To this end, first recali how haploid,
gametic gender always appears being under strict
control of constitutive genomic differences — i. e. a
major diallelic or an heterochromosomal segregation
in all known instances of bipolarity, anisogamy and
oogamy. At least in some bipolar forms — e. g. Schi-
zosaccharomyces pombae (Arcangioli 1992) — revers-
ible gender marking or «imprinting» is also evident
at thè level of chromatids, rather than at that of whole
haploid genomes as in some diploid systems.
In hermaphroditic metazoans either sperm or eggs
are usually produced usually in different parts of thè
body, or at different times, as is also thè case for mo-
noecious Bryophytes and for micro and macrospores
in monoecious metaphytes — i. e. all these forms
lack segregational mechanisms for gametic or sporal
gender.
Diploid gender consists in individuate being spe-
cialized to produce different proportions of sexually
differentiated gametes, or spores, up to complete se-
parations of these sexes or gonochorism in animate.
These specializations too are usually connected
somehow to constitutive genomic differentiations,
though in no known case they appear to be strictly de-
termined by a single mechanism.
Thus «environmental» sex determinations of me¬
tazoans ateo have, as a rule, at least some hereditary
variability for thè threshold of response to thè gen-
der-triggering stimulus. In thè classic case of Bonellia
viridis, for instance, most larvae exposed to a mature
female settle on her as parasites thus becoming
males; if not so exposed they settle on thè ground,
becoming females. A small proportion of larvae, ho-
wever, are «true males» that never settle on thè
ground, and soon die if unable to find a female host
(cf. Bacci 1965). To thè partial exception of heteroch-
romosomes, thè effects of dialleic mechanisms for
gonochorism are subjected to all kinds of modifica¬
tions by external conditions, as for producing inter-
sexes or reversate of thè genotypic sex according to
temperature or age of thè egg at fertilization. As a
rule gonochorisms through heterochromosomes are
far less dependant upon conditions of growth as far
as thè «primary» sexual phenotype is concerned,
while thè whole sex phenotype often remains sub-
stantially «plastic». In thè latter case whole haploid
genomes are often epigenetically gender-marked, as
for sperm imprinting in mammals. At least in hu-
mans thè differential utilization of thè paternal and
of thè maternal complemens in ontogeny has been
directly, macroscopically evident since long (e. g.
Weismann 1904).
On thè other hand a strict determinism of thè
whole sex phenotype seems only possible through a
complex balance between thè heterochromosomes
and autosomal loci, acting in different ways through
their maternal and syngamic (zygotic) effects (e. g.
Cline 1993). It is thus safe to infer some generai, ne¬
cessary links between gender differentiation and me¬
chanisms of epigenetic inheritance, regardless of
whether known at thè molecular level, that explored
as an Appendix.
3) Systematics and thè diverse «tempos and modes»
in evolution
The scenarios of § 2, a) are analyzed here in terms
of traditional and symbiotic phylogenetics, with refe-
rence to data such as introduced in § 1, b). As both
such phylogenetics substantially differ from contem-
porary usages (cf. e. g. Minelli, these proceedings), it
will be useful to first recali their basic principles and
terminology. In traditional phylogenetics an assemb-
lage of lineages that originated from some common
ancestor constitutes a taxon. This is qualifìed by a set
of characters or character combinations at a given
epoch, and it is said to be monophyletic if thè com¬
mon ancestor belongs to thè taxon as so qualifìed.
Unless meant to imply that a taxon is artifìcial, in tra¬
ditional phylogenetics thè term «polyphyletic» is
usually accompanied by some restrictive qualifìca-
tion — e. g. «thè modem reptiles are likewise defìnite-
ly polyphyletic» (Schmalhausen 1968: 289, my em-
phasis).
In symbiogenetic systematics, on thè other hand,
as a rule a taxon is qualifìed by thè establishment of
an obligatory symbiosis. If this symbiosis originates
only once between given representatives of two taxa,
thè symbiogenetic definition of thè taxon coincides
with thè phylogenetic one. However a taxon, say C,
symbiogenetic of A an B (A U B), often originates at
distinct places or times, through distinct representa¬
tives af A and B, say Al U Bl, Al U B2, Al U B3 etc.,
as due to some common external pressures on A and
B such as an «infectious» spread of thè symbiote. If
such a taxon is suffìciently distinctive — or so is just
thè symbiote as for chloroplasts — its multiple ori¬
gins by no means imply that it should be regarded as
artifìcial.
These prescriptions straightforwardly apply to
dose algal, fungal and bacterial symbioses, all of
which have been infrequent, lasted very long as such
and always had major, irreversible consequences
(cf. e. g. Pierantoni 1923, Buchner 1965, Smith &
Douglas 1987 and thè Final Remarks). On thè other
hand attempting to strictly apply thè same rule to
other symbioses could make systematics «imposs-
ible» — e. g. virai symbioses in thè metazoans where
they are frequent and can easily differ within a Lin-
nean species, or thè same virai genome might be
shared by thè nuclear complements of very distant
species. Here thè traditional prescriptions of sym¬
biogenetic systematics will be followed only to thè
extent they would not force giving up major, esta-
blished taxonomic terminology or generai, useful
canons in systematics (cf. Simonetta, these pro¬
ceedings).
SYMBIOSIS, THE ORIGINS OF MAJOR LIFE FORMS ANS SYSTEMATICS
101
a) On prokaryotes and their origins
Should thè scenario in § 2, a) be anywhere dose to
truth it would necessarily imply that thè prokaryotes
and organelles are intrinsecally, highly polyphyletic,
to an extent which is not easy to ascertain. These
would in fact represent any number of lineages
— most likely not just very few — out of innumerable
lineages of non-coding cells, as originated by distinct
symbiotic events. Coding would also result from
very many symbiotic events, at times involving dif-
ferent coding agents with analogous functions. Fur-
ther, in thè process of homogenizing codes and
DNA’s among protocells, some proteic component
could have been easily transferred from a lineage to
another, or any two lineages might have symbiotical-
ly fused, and thus be misleading about proteic ances-
try in ways that are hard to disintricate.
Turning to thè tempo of pre-cellular and cellular
evolution, notice how thè scenario in § 2, a) easily
justifies a fast rise of cells looking prokaryotic in thè
record, while only partially coded or not at all. Then
thè near-stasis of such cells for about two billion
years (Ga) would be mostly an apparent one, corres-
ponding to thè evolution of cellular coding. Such an
early establishment of cells would have been poss-
ible since biochemical evolution took place quite ra-
pidly up to thè establishment of free-living protei-
noid entities, mainly since these had very short life
spans. Further, thè evolution of free protenoids was
most likely ruled by thè fast Chemical changes in a
medium stili very far away from its near-equilibrium, as
eventually reached mainly through photosynthesis.
This changing Chemical composition would have im-
posed strict conditions only on thè functions of cata-
lytic agents, quite regardless of their precise struc-
tures or sequences.
Due to thè generally scarce sequence specificity of
thè early, free-living proteinoids, naturai selection
would have been rather ineffìcient on them. Selec¬
tion would also have had slow and with relatively
loose effects on colonies of proteinoids and on non-
coded cells, since these were likely to have some-
what more precise forms of reproduction than free
proteinoids, but their life spans would be far longer.
Early cellular evolution would also have been slower
than «free» proteic one by being mostly caused by
Chemical changes life was producing, and these tend-
ed to occur at a slower pace than earlier. Further,
early cellular evolution quite likely took place
through collapses of complex, previously established
biocoenoses of different celi types, to be replaced by
novel ones. Previously, it was rather thè matter of
Chemical cycles being modified by a novel enzyme
which got established, more often than not just
changing thè status of some old one rather than eli-
minating it (see agaion, Cordón 1990, Voi. 2 and de
Duve 1991). During early cellular evolution thè stili
substantial and frequent impacts (cf. § 1, b and c
below) could easily heat up most of thè Oceanie mas-
ses and evaporate part of them without resulting in
major, global extinctions of simple, hardy proteic
beings, widely distributed and highly variable. Then
cellular evolution might have been so slow also, or
mainly since it was not speeded up by sudden mass
extinctions of exogenous causation.
Even a primitive, partial coding of cells would
have allowed naturai selection to achieve far stricter
results than on non coding ones. Coding, however, is
not likely to have much speeded up cellular evolu-
tion, since selection would operate upon more com¬
plex, longer living cells. Most likely early prokaryotes
were even less sensitive to physical conditions of life
than their extant representatives (cf. Fedonkin, these
proceedings) so that extinctions among them would
stili be mostly caused by thè ever slower Chemical
changes they produced, notably oxygen accumula-
tion, No wonder, then, that it might have taken
about two Ga for protocells to master coding mecha-
nisms. Incidentali, infering parentage among proka¬
ryotes and organelles through components of their
coding machineries might well mislead as to their
ancestral proteic parentage. Thus thè evident diphy-
lety in thè rRNAs of modern Gram positives (van de
Peer et al., 1994) might well reflect an ancient phylet-
ic divergence after these had become established or,
rather, an originali diphyletic, symbiotic establish¬
ment of rRNAs.
Il prokaryotes and organelles had indeed all diver-
sifìed from a coding «progenote» it would be hard to
explain haw this could have evolved in very few hun-
dred million years, or why its descendants so much
differentiated their codes and also thè chemistry of
their DNAs before giving rise to thè eukaryotes. Ra¬
ther, thè notion of a progenote might just derive by
applying thè «normal» assumption of monophyly to
thè origin of cells where it would just pose severe,
most likely spurious problems — e. g. thè evolution
of chromosomes as dealt with by Eigen (e. g. 1987)
through a precarious balance between «hypercycles»
and «compartments». Much current theoretical lite-
rature is struggling for better Solutions to this pro-
blem that does not arise in thè scenario of § 2 a) just
because, as a rule, any one «viroid» had to «fìt» into
different cells through somewhat different means.
b) Symbiosis and thè evolution of thè Eukaryotes
As pointed out in § 2, b) thè eukaryotes share some
basic biochemistry, cytoskeletal features and some
sorts of nuclei. Among thè lower ones even DNA
composition, codes and chromatin organization are
stili quite variable (cf. e. g. Rizzo, 1991 for thè dino-
flagellates), suggesting that also their nuclei might
have had multiple origins. Much thè same might well
apply to thè presence versus absence of cilia or fla¬
gella, as a primitive feature probably connected to
thè evolution of nuclear division (cf. § 2 b, if unicellu¬
lar, thè haplophase could be spared from this loss).
Regardless of thè precise extent to which thè meta-
karyotes might be regarded as «ancestrally polyphy¬
letic» their organelles might have more different ori¬
gins than directly evident — i. e. «thè same» organelle
might have had multiple origins — as apparently thè
case for chloroplasts (e. g. Cavalier-Smith, 1990).
Also a variety of endocellular symbiotes appear to
have levels of integration akin to organelles while de-
parting from them for their more restricted localiza-
tions, as for thè Gram negatives that are essential for
thè survival of all cockroaches.
The peculiar «epixenosomes» of thè cibate Euplo-
tidium itoi but for lacking a nucleus have all thè ap-
pearence of microsporidians (Rosati et al., 1993) and
thus support thè view that nuclei were multiple ac-
quisitions, rather likely late ones through symbioses.
Though somewhat controversial (see again Fedon-
102
FRANCESCO M. SCUDO
kin, these proceedings), thè fossil record points to
thè eukaryotes not showing major, recorded innova-
tions for about one Ga prior to rapidly giving rise to
most or all metazoan phyla. Then this «stasis» too
could well agree with thè reasoning in § 2, c) in being
just an apparent one, corresponding to thè symbiotic
origins of thè nuclei, then of thè metakaryotes and to
thè evolution of their haploid sexual specializations.
If analogy with bryophytes and lycopods applies
(cf. thè Appendix) thè originai haplont sex System
might have been homogenized in a number of vascu-
lar stocks while keeping thè haplophase dioecious. If
so, thè metaphytes might stili be regarded as mono-
phyletic in thè sense of originating from related Cha-
rales stocks. The metazoans too are likely to derive
from distinct homogeneizations of thè haploid sex
System in multicellular stocks but, as far as one
knows, they might well be polyphyletic in thè more
basic sense of having had rather different, unicellular
protistan ancestors. More detailed knowledge of cel-
lular components and distinctive motory organelles,
such as thè «missile-type», might reveal such ancient
parentages, so far elusive.
In principle thè problem of single versus multiple
symbiotic origins might be more precisely approa-
ched for metazoan taxa, as in thè classic example of
roaches, termites and mantids that stili remains con-
troversial (cf. e. g. Handlirsch 1908, Grassé and Noi-
rot 1959, Buchner 1965, Scudo et al., MS). The same
problem seems more easily amenable to a precise so¬
lution for thè pogonophorans, since this «phylum» is
represented by two rather diverse taxa, thè Vesti¬
mentifera and thè Perviata, each of which is rather
homogeneous. While solely known through Perviata
adults, pogonophorans were regarded as deuterosto-
mians of uncertain affìnities, having unique features
such as an apparent digestion through tentacles (e. g.
Becklemishev, 1969, 1: 394). The quite different vesti-
mentiferan juveniles confirm thè dose affìnity of po¬
gonophorans to anellids, already maintained by Li-
vanov and Porfirieva (cf. Becklemishev, 1969, II: 214).
Their main difference from anellids is evidently due
to thè bacterial symbiotes filling, and much enlarg-
ing thè cells of their guts (e. g. Smith & Douglas
1987) — i. e. in thè smaller Perviata this has a much
reduced lumen, which appears being altogether eli-
minated in thè Vestimentifera. The distinctive po-
gonophoran traits thus seem having separately ori-
ginated in two anellid stocks, by moving to unusual
habitats where both domesticated thè same sulfìde
oxidizing bacterion. The relationships among thè
Vestimentifera, thè Perviata and their anellid an¬
cestors are stili far from clear, however, since they
share «telling» traits both with polychaetes and oli-
gochaetes (e. g. thè axonemic structure of thè sperm,
cf. Baccetti 1985).
c) On extinctions, plant and animai evolution and
their physical causes
The metazoans and thè metaphytes appeared
when thè physical conditions on Earth were already
fairly dose to thè present ones. An atmosphere with
much thè same Chemical composition as now was un-
dergoing regular weather fluctuations, to which there
were superimposed erratic glacial periods, occasionai
bursts ol tectonic activity and thè effects of impacts,
progressively more rare and smaller on average (cf. §
1, b). As individuate, metazoans and metaphytes tend
to be more sensitive than protists to physical condi¬
tions of life (cf. Fedonkin, these proceedings) though
often able to resist short term disturbances in terms
of propagation, as through resting eggs and seeds.
A far more precise fossil record than for protists
(cf. again Fedonkin) shows that, especially among
animate, major rediations tended to follow mass ex¬
tinctions, some of which are sudden or have large
«instantaneous» components.
Much recent evidence points to boundaries bet-
ween eras and lesser epochs as often coinciding in
time with, and somehow be caused by major impacts
(cf. § 1, b). Such would be thè multiple ones on thè
southern tip of thè Gondwana (Gondwana II) corres¬
ponding to hardly separable craters over a thousand
miles radius in South Africa and South America.
This was quite likely due to a comet breaking into
several pieces prior to impacting, though thè pieces
migh thave acted mechanically as a «single impact»
causing thè Gondwana to break up. While impacts
leave hardly questionable signatures such as micro-
tektites and nanodiamont sprays, many objections
keep being risen against their causative roles on
«coincident» border extinctions. These objections
largely stem from considering only thè direct effects
of impacts — i. e. tsunamis, fìres, atmospheric cool-
ing and acid rain from dust — as well as from reason¬
ing on species rather than on biocoenoses (cf.
below). Less direct interpretations of impact effects,
much as in Vernadky’s tradition, can easily turn such
objections into revealing insights on less direct
modes of action. Thus consider glaciations, that
hardly fit Milankowitch’s otherwise excellent predic-
tions of climatic periodicities, and seem to be best in-
terpreted as thè result of uplifting tendencies and
their subsequent reversai by glacial accumulation
(Kostitzin 1934, ateo in Scudo and Ziegler, 1978). Let
us briefly see how this mechanism could easily
«magnify» thè effects of impacts (Scudo 1993a).
In a non-glacial epoch, cooling due to thè dust of a
large impact is likely to result in a rapid, massive ac¬
cumulation of snow, perhaps too short-lasting to
turn into true glaciers. As temperature climbs back
to normal, this snowmass melts quite rapidly, even if
melting is not speeded up by thè subsidences it
might cause. During glacial accumulation, cooling
from an impact could easily reverse an uplift stili
under way, or much speed up a subsidence that had
just started. Jointly with thè warming up that follows,
thè meltdowns of preexisting glaciers and of thè rec¬
ent snow accumulations would thus be much faster
and massive than «normally», and nearly synchroni-
zed. Needless to stress how thè effects of such ano-
malous snow-ice accumulations — their very rapid
melting in particular — are likely to be far more de¬
vastatine for many organisms, in many habitats, than
thè cooling that caused them. The K-T boundary ap¬
pears to well fìt this kind of reasoning by correspond¬
ing to a relatively modest impact — though probably
much terger than previously thought, namely a crater
about 300 kilometers in diameter (Sharpton et al.,
1993) — preceeded by two-three million years of unu-
sually strong telluric activities such as thè Deccan ba¬
sate floods (Basu et al., 1993).
The interactions between cosmic and terrestrial
processes are stili poorly understood in generai, save
perhaps for thè effects of major early impacts on thè
SYMBIOSIS, THE ORIGINS OF MAJOR LIFE FORMS ANS SYSTEMATICS
103
atmosphere (cf. again Kasting, 1993). Whichever
their causes, however, thè Earth surely underwent
numerous, sudden catastrophic changes (e. g. Ager
1993) and one should try to understand how and why
these affected evolution. To begin with, notice how
thè characteristic forms of biocoenoses tend to all
be exceedingly persistent in thè absence of major
disturbances, while any sufficiently global distur-
bance tends to jointly eliminate most such forms
(large, specialized animals in particular). The col-
lapse of any one «harmonic fauna», then, is primari-
ly related to its complexity and specialization,
much in thè same sense that a complex machine is
more likely to either work well or not at all than a
simpler one. No wonder, that thè prominent, highly
specialized components of rich, long established
faunas tend to either persist or disappear jointly, as
can be easily realized also a priori through mathe-
matical models such as Volterra’s (cf. Scudo and
Ziegler 1978).
Such extinctions might thus easily include whole,
long established taxa, particularly of large, speciali¬
zed, compulsorily cross-breeding animals that can-
not change fast, if at all, nor survive in small patches
or at low densities (cf. thè «limited variability» wi-
thin taxa in thè Final Remarks). The reverse also
holds in such conditions — i. e. animals that are
smallish, phenotypically plastic etc. will all tend to
rapidly change to some degree. At thè extreme, a suf¬
ficiently «plastic» lineage forced to colonize a new,
nearly desertic habitat, might give rise to «hopeful
monsters» that can survive by having no enemies,
and are more likely to enter new symbioses than in
normal conditions. The «wrong» genes of these
monsters can be subjected to directional individuai
selections of intensities that are not possible other-
wise (e. g. Haldane 1953). Stili more relevant, per-
haps, through a partially stochastic operation selec-
tion within populations can be faster and «cheaper»
than in mass conditions, and result in a substantial
selection among populations that magnifies and
spreads far more «creative» results (Wright, e. g.
1970). Thus improved upon, «lucky monsters» might
soon be able to withstand thè modest competition
from poorly adapted outsiders that would start mov-
ing in.
As a possible example consider barnacles, as as-
sessed by Darwin to represent different stocks relat¬
ed in ways he did not succeed ascertaining, nor did
others later on (cf. Ghiselin, these proceedings). It
was recently suggested (Alessandrello et al. 1992,
Scudo 1993) that barnacles derive from sandy bottom
crustaceans related to thylacocephalans, rather than
directly from pelagic crustaceans as Darwin had pro-
posed. If so, of their two «metamorphoses» (e. g.
Darwin 1851: 103) — both quite likely caused by sud¬
den changes in sea level — thè one to pupa would re¬
present thè switch to sandy bottom growth resulting
in «thylacocephalans», thè one to adult thè final
switch to a solid substratum. Each such switch of
substratum might have renderd more alike diverse
lineages ancestral to barnacles, as well documented in
other cases (cf. b above and thè Final Remarks). Then
bamacle ancestry might be so difficult to untangle due
to their multiple origins as dwellers of hard bottoms,
possibly of soft ones as well. Incidentally if Darwin
(e. g. 1851: 12) was correct in assessing thè cement as
being thè same adaptation in all, very different bar¬
nacles, and a unique one, this striking coincidence
might well be justified by distinct symbiotic origins
in ancestral lineages, involving thè same microorga-
nism (cf. again thè Final Remarks for well documented
cases).
Final remarks
Many points in this review depart from current fa-
shions and, to lesser degrees, also from more fìrmly
established positions. So far tentative phyletic re-
constructions were justified mostly through plain
common sense as for «viruses» and thè evolution
of coding — i. e. being thè simplest organisms with
coding machineries akin to «higher» ones, most likely
viruses played a centrai role in their origin. Here I
shall allude to a sample of theoretical foundations
that were mostly subsumed so far, in thè guise of an
historical sketch of systematics, that emphasizes thè
tensions between common practices and infering thè
history of fife.
One might well start with Lamarck, according to
whom discovering «thè order of production of living
beings» should be thè «first and foremost task» of a
Zoologica 1 Philosophy, as quite distinct from improv-
ing upon Linnaeus’ «magnificent construction». To
thè former end he relied on organs and organ Sys¬
tems by ranking them according to their generai util¬
ity and to their modes of utilization by «higher»
forms. However Lamarck did not go far in his main
task; rather he kept having excruciating doubts on
thè actual rankings of organs and systems (cf. e. g.
Vachon et al ., 1972: 258-263). Darwin entered evolu-
tionary systematics by posing thè problem of rela-
tionships in thè far more ambitious terms of «reai
parentage» among species much as in a family tree —
i. e. ideally in terms of a concrete measure such as
generations. For him too this goal would be quite
distinct from more practical purposes such as identi-
fication, to be achieved by diverse means (cf. his cor-
respondence with Waterhouse, recently pubblished
in full). Both Lamarck and Darwin presented their
phyletic reconstructions through trees, Darwin’s best
known ones (in Origin, its only illustration) being
very bushy. Having three to six branches at most
nodes well fìts a minor novelty that persists in its ori¬
ginai habitat and also spreads in neighboring ones,
any habitat tending to have two to five «neighbors»
much as for borders among States. Be as it may, in
Darwin’s favourite dictum by Milne Edwards his
bushy branchings refer to «variety» in which nature
is «prodigai», while Lamarck’s rare bifurcations
obviously refer to innovations in which nature is
«niggard».
As alluded in § 3 c), Darwin had laboured at great
length on thè phylogeny of barnacles, apparently
through much thè same principles as Lamarck’s.
Most likely due to this experience, in Origin (stand¬
ard, Ch. XIV) he hended up concluding that «analo-
gical or adaptive characters, although of thè utmost im-
portance to thè welfare of thè being, are almost value-
less to thè systematist » (analogical roughly corres-
ponds to parallel). Instead « very trifling characters »
would be thè best indicators of reai parentage if
enough of them had been available, as hardly thè
case at that time (cf. later on).
Darwin’s stand on systematics was soon reinforced
as it started being realized how often similar or near-
104
FRANCESCO M. SCUDO
ly identical animals had distinct origins, more often
than not through «parallel» changes. Newmayr’s first
precise documentation of such changes stimulated
Schiaparelli’s «topological» approach in terms of
switches among discrete, stable «fixed types» — i. e.
resulting in a tempo akin to «punctuated equilibria»
in contemporary jargon. Even if more effìcient than
standard character analysis, according to Schiaparelli
his topopogical approach to whole animai geometry
could not go very far in ascertaining thè reai parenta-
ges among animals. When his approach could actual-
ly be implemented, as was obviously far beyond thè
analytical machinery then available, Schiaparelli did
not believe it would allow to sort out thè relation-
ships among animai phyla (at variance from his
«mentor» Vignoli he believed they all had a common
multicellular ancestor, c.f. Scudo 1991).
Established schools of systematics somehow ma-
naged to downplay, or altogether ignore thè basic
problems so clearly stated by Lamarck, Darwin,
Newmayr, Schiaparelli, etc., as well as thè rather dif-
ferent ones symbiosis was posing (cf. below). These
problems kept re-surfacing, as for Hickling and
Wenz uncovering far more telling examples than
Newmayr’s of distinct origins of «identical» animals
— i. e. thè evolutionary series of Planorbis multiformis
in thè miocenic, lacustrine deposits of Stenhaim,
where three diverse modes of shell coiling can all
appear, in a definite order, in thè same individuai (cf.
e. g. Moret, 1940: 384). Shortly after, Piaget (cf. e. g.
1974) provided a deep behavioural and genotypical
analysis of analogous shell changes in a living coun-
terpart, Limnaea stagnalis.
Even ambitious theoretical analyses were often
carried on nearly independently of prior theories, or
of contemporary practice, or of both. Thus D’Arcy
Thompson rediscoveder from scratich a «topology»
nearly identical to Schiaparelli’s, though more expli-
citly relying on organismal mechanics and subsum-
ing continuity in evolutionary changes. An equally
eye-catching difference is that Schiaparelli kept stres-
sing his direct debt to Darwin, while D’Arcy Thomp¬
son kept elaborating on minor criticisms of Darwin
(cf. Scudo 1991, Bouligand, these proceedings). Near¬
ly simultaneously and independently of Schiaparelli,
Rosa (1899) had proposed a theory that was also
based on thè limited morpho-functional variability
within taxa, interpreting extinctions as mainly due to
a great reduction, or exhaustion of this variability in
thè course of evolution. Interestingly, Rosa reasoned
on morphogenetic processes and their changes in
terms of reactions of whole genomes (ideoplasms) to
conditions of life, fìrmly rejecting thè approach in
terms of ideoplasmic determinants and their strug-
gles as by Weismann & Co.. He thus preceeded by
decades Speeman’s empirical characterization of in-
duction as well as Schmalhausen’s theoretical rea-
soning to be mentioned later on. Subsequently Rosa
modified his theory in various ways, notably assum-
ing that branching is always dichotomic; through
Hennig this assumption eventually became very po-
pular among practicing systematists, on all kinds of
materials and with diverse meanings (cf. e. g. Baroni-
Urbani 1977).
Meanwhile palaeontology was ever more fìrmly
establishing a number of generalizations as empirical
laws, such that thè «pedunculum» of large taxa can-
not be preserved in thè record. In fact a major, very
succesful change would have a small diffusion and a
short persistance as such — most unlikely to appear
in thè fossil record — by soon giving rise to a major
radiation. According to another major «statistical»
law thè most ancestral forms of large taxa tend to
be «synthetic» and «polymorphic», in so far as thè
previous law allows to ascertain it (cf. e. g. Leonardi
1950). «Synthetic» means that thè earliest lineages
present diverse characters, each found alone, far
more developed among late descendants. «Poly¬
morphic» — i. e. «polytypic» in most posterior usa-
ges — means that in such early lineages individuate
tend to differ for thè presence or absence of one or
more characters.
Symbiosis continued being widely regarded as a
major mechanism in evolution mostly on thè basis
of generai theories such as Giglio-Tos’ (cf. § 1 c),
though a precise knowledge was stili largely confi-
ned to algal symbioses for animals and fungal ones
for plants. A major advance consisted in Pierantoni
and Sulk independently discovering, both in 1910,
that thè cells of previously enigmatic invertebrate
tissues (pseudovitellus) are densely packed with
fungal or bacterial symbiotes. The explosive in-
crease in factual knowledge following this discov-
ery made clear that all kinds of endocellular sym¬
bioses are common among protists while among
metazoans algal symbioses are mostly confìned to
their «lowest» representatives, fungal endocellular
symbioses do somewhat better higher uo in thè
«animai ladder» and bacterial ones stili higher, up
to colonial thaliaceans (where only taking place
through most anomalous modes of development,
cf. e. g. Pierantoni, 1940, Buchner 1965). According
to Pierantoni this distribution would strongly sup-
port thè symbiotic origins of eukaryotic organelles,
a stand categorically rejected by Buchner who sur-
vived Pierantoni and had a far wider audience. As a
result, thè symbiotic origins of organelles was
standard textbook knowledge in Italy around mid
century, but it took decades before it was seriously
considered again by thè biological community at
large (cf. Khakhina 1979 for analogous proposals by
Russsian botanists).
Around mid-century Schmalhausen (e. g. 1946)
was arriwing at conclusions parallel to thè paleonto-
logical ones above mostly from embryological and
biogeographical data, which he summarized into a
single law of evolution of morphogenetic reactions
(much as in Rosa’s sense, cf. above). Briefly told, any
novel reaction to conditions of life would originally
be somehow proportional to thè incidence and in-
tensity of some external stimulus. If sufficiently per-
sisting in a lineage, such a reaction would tend to
evolve into discrete morphs, as threshold responses
to external stimuli. Then each morph would tend to
become fixed in a distinct lineage, so that individuai
conditions of life would only determine whether or
not thè «normal» development of thè lineage can
take place. The development of this single norm will
then tend to become more and more «internalized»
— i. e. selectively modified to mature earlier in onto- 1
geny, regardless of conditions. The earlier in ontoge-
ny its development is completed, thè more a norm
can be diversely modified later in ontogeny, mainly
by thè active reactions of individuate to different ex¬
ternal conditions (i. e. it becomes «regulatory», cf.
SYMBIOSIS, THE ORIGINS OF MAJOR LIFE FORMS ANS SYSTEMATICS
105
also Scudo 1988, Wake, these proceedings). Taking
into account that a single morphogenetic reaction
often affects a number of characters, this law agrees
with thè palaeontological ones above as well as one
could hope. It also accounts for different modes of
interspecific associations being «statistically» related
to basic development modalities — e. g. thè «mosaic»
development of metazoans, which mostly results in
fixed norms of reaction, being more common in
forms with strict biocoenotic ties.
The same law can also be directly recasted to spe-
cifically account for thè evolution of symbioses. At
first thè individuals of a lineage either associate with
a given «guest» or they do not — possibly associating
with a somewhat different one — depending on con-
ditions. The «host» lineage then tends to break up
into one in which a given symbiosis becomes obli-
gatory and another in which it does not take place
— or another does — and this is often enough to
prevent their intercrossing. Further evolution often
results in thè host «internalizing» key functions of
thè symbiote, then discarded. This last process is
particularly evident, just by inspection, in several
examples of animai luminescence such as thè te-
leostean Apagon — i. e. thè light organs of some spe-
cies are powered by dense populations of bacteria
while closely related species have nearly identical
organs with endogenous light, and thè intensity of
its production is controllable at will. Being already
evident that viruses can carry genetic information
back and forth thè cytoplasm and thè nucleus (e. g.
Teissier 1952), such transfers were no longer pro-
blematic.
At mid-century preexisting theoretical and metho-
dological differences turned «virulent» through poli-
tico-ideological associations. Out of fierce battles a
«new synthesis» emerged as thè hardly contested
winner, imposing a strict order in which earlier no-
tions were rejected or «corrected» beyond recogni-
tion, while whole fìelds of investigation became
«prohibited». Thus thè tight forms of symbiosis em-
phasized in this review would not have been worthy
of serious consideration, apparently by requiring thè
steady operation of «group selection» to get establi-
shed (e. g. Williams 1966: 247), and by far too often
eventually resulting in «inheritance of acquired cha¬
racters». These are just two among a number of prior
errors, such as «beanbag genetics» or «typology»,
that were codified mainly by Mayr (e. g. 1982), and to
which I am unable to assign a precise meaning
(Scudo 1993b).
One can easily follow, however, how thè condem-
nations above went hand in hand with thè spread of
novel social usages, such as applying thè term sym¬
biosis mostly to bacterial and virai pathologies or
regarding much, or most DNA of thè higher metaka-
ryotes as «junk» — i. e. a hardly controllable parasite.
Synthetic theorists thus concentrated their attention
on thè severe conflicts that ought to arise between
endogenous nuclear components and allogenous, or
cytoplasmic ones, up to justify sex as a mechanism
reducing or eliminating such conflicts (e. g. Hurst
and Hamilton, 1992). To students of symbiosis in thè
old sense thè same data pointed, instead, to viruses
becoming thè «preferred» endosymbiotes, through
direct incorporation of their genomes, higher up thè
«animai ladder».
Another example of irreducible contrast between
«thè synthesis» and other theories comes from DNA
coding regions having incurred in far more gene sub-
stitutions than individuai selection could possibly ac¬
count for. This was called «non-Darwinian» evolu¬
tion and utilized to ascertain thè reai parentage
among organisms much as Darwin had prescibed,
mostly through a «neutral theory of molecular evolu¬
tion». This theory would justify most changes in cod¬
ing regions though random losses of alleles within fi¬
nite populations, at a rate per generation that would
almost solely depend on rates of mutation and thus
provide a near ideal «clock». This theory overlooks
that thè changes it predicts could only occur if all in¬
dividuals of locai populations were shuffled at ran¬
dom at each generation, and much thè same would
also occur in whole lineages (cf. e. g. Karlin, 1969: 155
in particular, Nagylaki 1992 and Scudo 1992c). In fact,
unless it were so, a genotypic variant could be lost by
a whole lineage only if lost at thè same time at all pla-
ces were it occurs, and this has a vanishing probabil-
ity. The «neutral theory» thus defies simple logics as
well as thè evidence that rates of synonimic base
changes tend to be much thè same, in long term ave-
rages, in organisms having as different generation
spans as, say, elephants and bacteria. Only in this
way synthetic theorists could avoid thè basic error
of «group selection» in darwinian theories starting
from Wallace, according to which most hereditary
changes would result from selection within popu¬
lations and among them, unless reflecting past ca-
tastrophic events that wiped out most of thè locai po¬
pulations of a lineage (e. g. Wright 1970, cf. also
Scudo 1990).
In thè light of thè scatter of points just made major
progress in systematics cannot be expected to mainly
spring from more direct empirical evidence, no mat-
ter how useful any such piece of evidence could
potentially be. Unless appropriately interpreted any
direct evidence is likely to be soon forgotten, as it
happened over and over again in thè past. Being far
from clear how to best utilize data of potential syste-
matic interest, all promising leads should be pursued
as far as possible. No matter how powerful on special
features or problems any one systematic procedure
now available could be, on its own it cannot go far in
sorting out thè reai parentage among living beings.
Major progresses in interpreting systematic data
should hopefully come from Schiaparelli-like proce-
dures, if nothing else since these have been among
thè least utilized so far (cf. Thom’s, Bouligand’s and
Presnov’s contributions). Also promising and hardly
exploited is thè fact that, early enough in develop¬
ment, changes in thè dynamics of a single celi po-
pulation can easily result in radicai macroscopic
changes (Giglio-Tos, 1900-1910, Voi. II in particular)
— e. g. between bilateral and radiate symmetry, mak-
ing one wonder about thè possible phyletic meaning
of «taxa» such as Radiata and Bilateria. To doubt thè
potential utility of topological methodologies in sys¬
tematics since it has not yet been proven is thè very
last thing one should do. Only since a few years, for
instance, Darwin’s originai guess on «trifling charac¬
ters» for human populations is firmly standing up to
evidence — i. e. their parentages as inferred by trifling
changes in gene frequencies remarkably agree,
among other things, with thè phylogenies of their
languages (Cavalli-Sforza et al. 1994).
106
FRANCESCO M. SCUDO
Appendix - Gender systems and evolution
Here I shall explore thè possible connections
between thè generalization on thè roles of gender
stated at thè opening of § 2 c) and thè truism that
thè metazoans and several metaphytes are characte-
rized by lacking a gametic or haplont segregational
gender System. Readers are assumed to be aware
of thè necessary botanical jargon and other techni-
calities.
«Loss» of thè haploid gender segregation com-
monly results in monoecism among thè otherwise
dioecious Bryophytes in some of which, such as
Bryum species, it is obtained by chromosomal du-
plication through apospory. The protandric gameto-
phytes thus resulting are always infertile at fìrst but
they become sexually fertile, as in nature, after sev¬
eral generations of vegetative reproduction (von
Wettstein and Straub 1942). In such cases thè change
from dioecism to monoecism must then be a semi-
automatic one, quite likely bringing together both
components of segregating, gender constitutive dif-
ferences in thè same chromosome complement.
These would be arranged so that either of thè two
sets of genes for gametic gender could be turned on
where and when appropriate, under thè control of
some «maternal» or «epigenetic» mechanism. Much
thè same kind of homogenization ought to also justi-
fy thè sexual conditions of lycopods, whose prothalli
can be strictly monoecious, or partially dioecious
under genotypic-environmental control, or strictly
dioecious in closely related species. On thè other
hand no trace of segregational mechanisms for
haploid gender is evident among ferns as thè ho-
mosporous ones are always monoecious, thè hete-
rosporous dioecious. Most likely, then, heterospory
originated in ferns by homogenizing thè haplont se¬
gregational mechanism after having reached a sporal
dimorphism substantial enough to «preserve» ha¬
ploid gender (heterangy, Thomson 1927, cf. again
Scudo 1973).
The relationship between amphimixis, genomic
sexual specializations and developmental complex-
ity are only part evident, displaying thè basic diffe-
rences between haplont and diplont gender systems
that Giglio-Tos had already recognized largely
through a priori reasoning (cf. Scudo 1994). Haplont
genomic dimorphisms always consist of constitutive
diallelic gender differences and, perhaps, also of
some reversible, epigenetic gender marking. When
such a dimorphism becomes «strong» enough thè se¬
gregational, haploid sex mechanism can be homoge-
nized, thus resulting in monoecism as in some bryo¬
phytes etc. (cf. above). A stili larger genomic gender
dimorphism quite likely forces analogous homogeni-
zations, such as those in thè higher metaphytes and
thè metazoans (cf. also § 3 b). Among them, indivi¬
duai, diplont gender differentiations seem always to
imply at least some degree of genomic, constitutive
gender differences and some form of reversible, epi¬
genetic gender marking proper, or other «clock» me¬
chanism (cf. above). Some individuai gender diffe-
rentiation is a priori expected to arise in originally
undifferentiated diploid systems as developmental
complexity increases, and this could only be achie-
ved by higher levels of genomic gender dimorphism
that, beyond some point, can hardly coexist in thè
same individuai whence diploid gender.
The tentative relationships between genomic gen¬
der dimorphism and developmental complexity in-
ferred above necessarily take somewhat different
forms according to whether development is an indi¬
viduai property, rather than a property of alternating
generations or of some cycle of generations. It is
evident, for instance, that amphimixis can be easily
lost to hermaphroditism, hybridogenesis, pseudoga-
my etc. if it is just one stage in population cycles of
developmentally stereotyped animals, such as wheel-
worms or aphids. This is hardly surprising since, in
appropriate conditions, thè repetition of a suffi-
ciently standardized, long established developmen¬
tal process could be achieved by sexual markings
other than epigenetic. On thè other hand it seems
that more complex or less stereotyped animals can
only loose amphimixis through exceptional chan-
ges such as interspeciflc hybridizations, or that am¬
phimixis cannot at all be lost in naturai conditions
by thè most complex matazoans and thè higher
metaphytes.
Acknowledgements — This paper owes many im-
provements to suggestions and criticism by Prof.s
Cesare Baroni-Urbani, Vaclav Paces, Marza D. Va-
sile, Gabriele Milanesi, Alessandro Minelli and by
my wife, Katherina. It was substantially enlarged to
satisfy thè request for more precise documentation,
or more elementary justifìcations, by some parteci-
pants to thè meeting. By courtesy of thè authors
recent references had been originally given while
stili unpublished.
POSTSCRIPT
Since this paper was written other works with ana¬
logous concerns were published, such as Margulis &
Cohen’s in Early life on earth (Columbia UP, New
York, 1994: 327-333). Many novel molecular data are
suggestive of special mechanisms in genomic inte¬
gration that are stili poorly understood — e. g. thè re¬
movai of 28 uridines and thè addition of 447 new
ones in thè ATPase subunit 6 precursor messenger of
Tripanosoma brucefs mitochondrion (Scott & Stuart,
Science: 286: 114-117, 1994). Nucleotide linguistics is
becoming a powerful tool to address all sorts of pro-
blems involving exogenous origins and genomic in¬
tegration, such as identifying as «imported» a num-
ber of open reading frames in Saccharomices cervi-
siae’s mithocondrion (Pietrowsky & Trifonov, Gene,
122: 129-137, 1992). On thè basis of many such novel
data multiple origins of mitochondria look ever
more likely. Also of great interest was to realize that
thè large intestinal symbiont Epulopiscium fishelsoni
and related forms have Gram positive features (Ang-
ert et al., Nature, 362: 239-241, 1993) and lack a pro-
perly eukaryotic nuclear organization (e. g. Ahern,
ASM news, 59: 519-521, 1993, their «nuclei» rather
rensemble Gram positive endospores). These oxi-
morons much strenghten thè view (cf. § 3 b) that pro¬
per nuclear structures had late, quite likely multiple
symbiotic origins. In this light bona fide chimaeras
apparently between two eukaryotes in terms of
rRNA sequences (e. g. Cryptomonas, Douglas et al.,
Nature, 350: 148-151, 1991) would be more easily
understandable if having in fact involved one a-nu-
cleated partner.
SYMBIOSIS, THE ORIGINS OF MAJOR LIFE FORMS ANS SYSTEMATICS
107
REFERENCES
Ager D., 1993 - The new catastrophism. Un. Press, Cambridge.
Alessandrello A., Arduini P., Pinna G. and Terruzzi G.,
1991 - New observations on thè Thylacocephala (Artropoda,
Crustacea). In: A. M. Simonetta & S. C. Morris, eds. The
early evolution of Metazoa and thè significance of proble-
matic taxa. Univ. Press, Cambridge: 245-252.
Arcangioli B., 1992 - A switch in time. Curr. Biol., 2: 323-325.
Bacci G., 1965 - Sex determination. Pergamon, Oxford.
Baccetti B., 1985 - Evolution of thè sperm celi. In: Biology of
fertilization. Acad. Press, New York, 2: 3-38.
Baroni-Urbani C. - Hologenesis, phylogenetic systematics and
evolution. Syst. Zool., 3: 343-346.
Basu A. R., Renne P. R., Das Gupta D. K., Teichmann F. &
Poreda R. J., 1993 - Early and late alkali igneous pulses and
high-3He piume origin for thè Deccan flood basalts. Science,
261: 902-906.
Becklemishev V. N., 1969 - Principles of comparative anatomy of
thè invertebrates. Univ. Press, Chicago.
Buchner P., 1965 - Endosymbiosis of animals with plant mi-
croorganisms. Interscience, New York.
Cairns-Smith A. G., 1985 - Seven clues on thè origin of life.
Univ. Press, Cambridge.
Canning E. U., 1988 - Nuclear division and chromosome cycle in
microsporidia. BioSyst., 21: 333-340.
Cavalier-Smith T., 1990 - Autogenous origin of Eukaryotes but
symbiotic origin of Metakaryotes. In: P. Nardon et ai, eds.:
571-574.
Cavalli-Sforza L. L., Menozzi P. & Piazza A., 1994 - The histo-
ry and geography of human genes. Un. Press, Princeton.
Cline T. W., 1993 - The Drosophila sex determination signal:
How do flies count two? Tech. Focus, 9: 385-390.
Cordón F., 1990 - Tratado Evolucionista de Biologia. Parte Se-
gunda. Aguilar, Madrid.
Darwin C. R., 1851 - A monograph of thè sub-class Cirripedia
(The Balanidae . . .). Roy. Soc., London.
Darwin F., 1887 - The life and letters of Charles Darwin. Murray,
London.
De Duve C., 1990 - The primitive phagocyte. In: P. Nardon et al.:
511-514.
De Duve C., 1991 - Blueprint for a Celi. Pattreson, Burlington.
Dones L., Tremaine S., 1993 - Why Does thè Earth spin For-
ward? Science, 259: 350-354.
Eigen M., 1987 - Stufen zum Leben. Piper, Miinchen.
Engelhardt H., Schuster S. C. & Bauerlein E., 1993 - An Ar-
chimedian spirai: thè basai disk of thè Wo lineila flagellar
motor. Science, 262: 1046-1048.
Folsome C. E., 1979 - The Origin of Life. W. H. Freeman & Co.,
San Francisco.
Giglio-Tos E., 1900-1910 - Les problemes de la Vie. Pubblished by
thè Author, Tourin.
Grassé P. P. & Noirot C., 1959 - L’évolution de la symbiose chez
les Isoptères. Experientia, 15: 365-408.
Green P., Lipman D., La Deana H., Waterson R., States D. &
Clavery J. M., 1993 - Ancient conserved regions in new
genes sequences and thè protein database. Science, 259:
1711-1716.
Haldane J. B. S., 1924 - A mathematical theory of naturai and
artificial selection. I., Proc. Camb. Phil. Soc., 23: 19-41.
Haldane J. B. S., 1957 - The cost of naturai selection. J. genet.,
55: 511-524.
Handlirsch A., 1908 - Die fossilen Insekten und die Phylogenie
der recenten Formen. Engelmann, Leipzig.
Harold F. M., 1986 - The vital force: A study of bioenergetics.
Freeman, New York.
Hong J.-L, Feng Q., Rotello V. & Rebek J. Jr., 1992 - Competi-
tion, cooperation and mutation: Improving a synthetic repli-
cator by light irradiation. Science, 255: 848-850.
Hurst L. D. & Hamilton W. D., 1992 - Cytoplasmatic fusion and
thè nature of thè sexes. Proc. R. Soc. London, 247: 189-194.
Jablonka E., 1994 - Inheritance systems and thè evolution of
new levels of individuality. J. Theor Biol., 170: 301-309.
Jablonka E., Lachmann M. & Lamb M. J., 1992 - Evidence, me-
chanisms and models for thè inheritance of acquired charac-
ters. J. Theor. Biol., 158: 254-268.
Khakina L. N., 1979 - Problema simbiogeneza: istorik-kritiches-
ky ocerk issledorani otchestrennykh botanikov. Acad. Nauk,
Leningrad. (Concepts of symbiogenesis - A historical and
criticai study of thè research of Russian Botanists, L. Margu-
lis & M. McMenAmin, eds., Yale Univ. Press, New Haven
1992).
Karlin S., 1969 - Equilibrium behavior of population genetics
models with non-random mating. Gordon & Breach, New
York.
Kasting J. F., 1993 - Earth’s early atmosphere. Science, 259:
920-926.
Leonardi P., 1950 - L’evoluzione dei viventi. Morcelliana,
Brescia.
Margulis L., Hinkle G. and Tzertzinis G., 1990 - Symbiosis
in thè origin of eukaryotic celi motility: Current status. In:
P. Nardon et al.: 523-526.
Mayr E., 1982 - The growth of biological thought, diversity, evo¬
lution and inheritance. Harward Univ. Press, Cambridge.
Milani A., 1988 - Long-term Behaviour of Planetary Orbits:
Theory and Numerical Experiments. In: Physics of thè Pla-
nets (S. K. Runcorn; ed.). J. Whiley & Sons, New York.
Miller S. L., 1993 - Prebiotic synthesis of organic compounds:
A review and new results. In: ISSOL ’93. School of Biology,
Barcelona: 36.
Moret L., 1940 - Manuel de paléontologie animale. Masson,
Paris.
Nagylaki T., 1992 - Introduction to theoretical population genet¬
ics. Springer, Berlin.
Nardon P., 1993 - Morphogenesis, differentiation and symbiosis.
Biol. Forum, 86: 327-328.
Nardon P., Gianinazzi-Pearson V., Grenier A. M., Margu¬
lis L. & Smith D. C., 1990 - Endocytobiology IV. INRA,
Paris.
Ohnishi K., 1990 - Celi machinery as a symbiotic complex of con-
temporary RNA organisms including tRNAS, rRNAS and
mRNAS: Evolution from RNA individuate to celi indivi¬
duate by cooperative symbiosis. In: P. Nardon et al.: 593-600.
Piaget J., 1974 - Adaptation vitale et psycologie de l’intelligence:
sélection organique et phénocopie. Hermann, Paris.
Pierantoni U., 1923 - Gli animali luminosi. Sonzogno, Milan.
Pierantoni U., 1940 - Nozioni di biologia. UTET, Tourin.
Rizzo P. J., 1991 - The enigma of thè dinoflagellate chromosome.
J. Protozool., 38: 246-252.
Rosa D., 1899 - La riduzione progressiva della variabilità e i suoi
rapporti coll’estinzione e coll’origine delle specie. Clausen,
Tourin.
Rosati G., Lenzi P. & Verni F., 1993 - «Epixenosomes»: Peculiar
epibionts of thè protozoan cibate Euplotidium etoi: Do their
cytoplasmic tubules consist of tubolin? Micron, 24: 465-471.
Ruby E. G. & McFall-Ngai M. J., 1992 - A squid that glows in
thè night: Development of an animal-bacterial mutualism.
J. Baci, 174: 4865-4870.
Schmalhausen I. I., 1946 - Faktorii evolutsii; teoria stabilizi-
rushego otbora. Akad. Nauk, Movska (Factors of evolution:
The theory of stabilizing selection, ateo in abridged English
edition, Blackiston, Philadelphia, 1949).
Schmalhausen I. I., 1968 - The origin of terrestrial vertebrates.
Acad. Press, New York.
Scudo F. M., 1967a - The adaptive value of sexual dimorphism:
I. Anisogamy. Evolution, 23: 36-49.
Scudo F. M., 1967b - Selection on both haplo and diplophase.
Genetics, 56: 693-704.
Scudo F. M., 1973 - The Evolution of sexual Dimorphism in
Plants and Animate. Boll. Zool., 40: 1-28.
Scudo F. M., 1988 - «Ethology», «ecology» and «philosophy».
236-250. In: (B. Goodwin et al., eds.) Dynamic structures in
biology. Univ. Press, Edinburgh.
Scudo F. M., 1990 - Darwinian theories and animai taxonomy.
Boll. Zool, 57: 181-206.
Scudo F. M., 1991 - Morphology and systematics before and after
Schiaparelli. Riv. Biol.: 130-134.
Scudo F. M., 1992a - F. Cordón - Tratado de biologia evolucio¬
nista - Historia naturai de la acciòn y experiencia (book
review). Boll. Zool., 59: 533-535.
Scudo F. M., 1992b - The early evolution of Metazoa and thè sig¬
nificance of problematic taxa (A. Simonetta & S. Conway,
eds., book review). Boll. Zool, 59: 531-533.
Scudo F. M., 1992c - A Darwinian theory of molecular evolution.
In: V. A. Ratner e N. A. Kolchanov (eds.). Modelling and
computer methods in molecular biology and genetics. Nova
Sci., New York: 369-378.
Scudo F. M., 1993a - La «Ortogenesi» e le estinzioni di massa.
Paleocronache, I: 48-58.
Scudo F. M., 1993b - E. Mayr - La «sintesi moderna» e la «storia
del pensiero biologico» (book review). Paleocronache, I:
88-94.
108
FRANCESCO M. SCUDO
Scudo F. M., 1994 - Ermanno Giglio-Tos: History and myth in
thè origins of major life-forms. Biol. Forum, 87: 330-338.
Scudo F. M. & Ziegler J. R. (eds.), 1978 - The golden age in
theoretical ecology: 1923-1940. Springer, Berlin.
Scudo F. M., Sacchi L., Freudenberg M. A., Grigolo A. &
Galanos C. MS - Membrane characterization of cockroa-
ches’ endocellular symbionts. submitted to Endocit. & Celi
Res.
Sharpton V. L., Burke K., Camargo-Zanoguera A., Hall S. A.,
Lee D. S., Marìn L. E., Suàrez-Reynoso G., Quezada-Mu-
neton J. M., Spudis P. D. & Urrutia-Fucugauchi J., 1993 -
Chixulub multiring impact basin: Size and other characte-
ristics derived from gravity analysis. Science, 261: 1564-1567.
Smith D. C. & Douglas A. E., 1987 - The biology of symbiosis.
Arnold, London.
Strauss E. G., Strauss J. H. & Levine A. J., 1990 - Virus evolu-
tion. In: (D. M. kempe ed al., eds.) Virology. Raven, New
York: 167-188.
Symons R. H., 1992 - Small catalytic RNAs. Ann. Rev. Biochem.,
61: 641-670.
Teissier G., 1952 - Dynamique des populations et taxinomie.
Ann. Soc. Roy. Zool. Belg., 83: 23-44.
Thomson B., 1927 - Evolution of thè seed habit in plants. Trans.
Roy. Soc. Can., 5: 229-272.
Vachon M., Russeau G. & Laissus Y. (eds.), 1972 - Inédits de
Lamarck. Masson, Paris.
Van De Peer Y., Neefs J. M., De Rijk P., De Vos P. and
De Vachter R., MS - About thè order of divergence of thè
major bacterial taxa during evolution.
Von Wettstein F. & Straub J., 1942 - Experimentelle Untersu-
chungen zum Artbildungsproblem. Ili: eitere Beobachtun-
gen an polyploiden Bryum-sippen. Verebungs., 80: 272-279.
Walker R. A. & Shetz M. P., 1993 - Cytoplasmic microtubule —
associated motors.
Weismann A., 1904 - The evolution theory. Arnold, London.
Williams G. C., 1972 - Adaptation and naturai selection. Univ.
Press, Princeton.
Wright S., 1970 - Random drift and thè shifting balance theory
of evolution. In: (K. Kojima, ed.). Mathematical topics in po-
pulation genetics. Springer, Heidelberg: 1-31.
-
Francesco M. Scudo: Istituto di Genetica Biochimica ed Evoluzionistica (CNR), Via Abbiategrasso 207, 1 27100 Pavia ITALIA
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
Alberto M. Simonetta
Systematics: is an historical perspective useful to understand
modem debates on systematics
and are we really equipped for sound evolutionary systematics?
Abstract — Consideration of thè very early history of concepts in biology and of their influence on formai taxonomy
shows that some basic current concepts are stili rooted in extremely ancient ideas. Awareness, for instance, of thè neopla-
tonic roots of modern trends in systematics, may be useful in thè current debates.
That thè last twenty or thirty years of debate over
systematics have helped to revive interest in practical
and theoretical systematics is obvious and this has,
by itself, been beneficiai. However I am worried that,
unless thè current arguments among thè various
schools are really clarified, we may run into as devas-
tating a situation as it was with thè neglect of syste¬
matics which plagued biology both prior to and im-
mediately after World War II.
Anyone who has happened to read my papers on
generai problems of systematics knows that cladism,
be it Hennigian or transformed, has been my special
target over thè last few years (Simonetta 1983, 1988,
1990, 1992, 1993). However I am not happy with any
of thè main schools of systematics. Indeed blind ac-
ceptance of this or that model of systematics by too
many zoologists is swamping libraries with contribu-
tions which, should thè particular creed of their
authors be finally discredited, will fall to pieces, leav-
ing heaps of sherds extremely difficult to handle and
which will also not be easily disposable.
Here, both to avoid repetition of arguments which
have not yet been challenged by disagreement, I
shall suggest that there are other stili poorly explored
aspects in thè systematic debate. I shall therefore
outline some historical considerations, as I have a
sort of feeling that thè history of systematics, though
it forms a minor chapter in any history of biology,
had a subtle and underground role in shaping thè
groundwork of systematics which has been singular-
ly overlooked.
In spite of repeated claims that systematics was
born with Aristotle and that thè arguments of anc¬
ient authors on thè scala naturae are arguments
about systematics, I think that, upon consideration,
both claims misconstruct what Aristotle, Albertus
and others had in mind. Although they did, indeed,
provide some ready materials and ideas for true sys-
tematists, when finally evolved, they were really
concerned with what we would cali «comparative
zoology» in a very broad sense.
Aristoteles’ so-called classifìcations have to be pie-
ced together frorn thè Stagyrite’s arguments, simply
because probably he never thought to formalize then
in a «System».
Aristotle was indeed thè first and for over a thou-
sand years, thè greatest of zoologists, but he dealt
with an extremely limited range of animals, and he
could describe thè structure, biology and some com¬
parative morphology of some 500 kinds of animals
without any need for a taxinomy. The very fact that
in his writings thè Stagyrite completely ignores a
large number of animals which were both common
and conspicuous in he regions where he lived for
years, shows that he actually picked up for discus-
sion those animals which, for whatever reasons, he
deemed useful in order to elucidate some problems
that he considered as being particularly signifìcant.
In some sense, just as thè Organon was considered by
Aristotle as an instrument for ascertaining thè logicai
truth of statements, so his zoological books are
aimed to point out signifìcant problems of biology
and illustrate by which methods and principles they
could be clarified.
The wealth of zoological information built up very
slowly until thè end of thè XV century, slower, in¬
deed than that on plants, and for good reason. Her-
bals were first to be generally illustrated: illuminated
herbals of Byzantine and Longobard times are stili
extant (thè Dioscorides Longobardorum, copied in
N Italy in thè Vili century, thè Byzantine codices of
Naples, of thè early VII century, and of Vienna,
dated c. 512 A.D. and based for thè figures on thè il-
lustrations by Cràteva, who was active in thè early
I century b.C.) and it is clear that they follow a pat¬
tern established early in thè Roman imperiai times.
Indeed thè problem of how to organize information
became obvious to herbalists first, because physi-
cians and apothecaries needed to identify plants cor-
rectly, if they were to avoid thè risk of pisoning,
instead of healing, their customers. Thus, since
Theophrastus, plants were very often grouped, even
if such groups were based on rather inconsistent cri-
teria. For example in thè catalogue of a (planned?)
botanical garden in Mantova, thè duke’s physician
G. F. Palperia, a contemporary of Aldrovandi, in
1625 had groups such as «Plantae leguminaceae et tri-
foleae, Plantae tuberosae et carnoseae radicum, Plan¬
tae catarticae vel solutivaeb> (Franchini & al., 1979).
In thè meantime Lullus (c. 1235-1315) and his fol-
lowers built generai theories of nature and knowled-
ge on Scotist lines (cpr. Yates, 1982). They argued
that during creation all thè various qualities and
powers of God imposed their effects on undifferen-
110
ALBERTO M. SIMONETTA
Srboi ekméfttalte» BrbciM&ttaUo.
Fig. 1 - Examples of Lullist trees from a late XIV century codex, note thè roots nourishing thè tree and thè leaves and fruits
representing thè world’s realities.
tiated matter in various balances and combinations,
basically through a doublé mechanism. First divine
qualities impinged on thè process of creation, and in
Lullist Trees (Fig. 1) this is likened to thè roots of thè
tree, by which it receives nourishment; second, by
being variously redistributed by a hierarchy of pro-
gressively subordinated entities, be they angels, ce-
lestial bodies etc., thè actual individuai objects, thè
leaves, were at last created. And just as leaves are
continuously shed and renovated, so it is with thè
turnover of creatures. As God was supreme reason,
so creation must be, above anything else, logicai, and
by an appropriate logicai instrument (in Lullism
«combinatorial» logie) it can be penetrated.
At thè same time thè trees of creation, which
could be imagined for all sorts of things, from ani-
mais to medicai produets and even intellectual enti¬
ties, had to be reconstructed in their logicai develop-
ment and, as plainly stated by Dante «Ché non fa
scienza senza lo ritenere avere inteso», this under-
standing had to be memorized in order to be maste-
red. Here thè Ars memoriae carne on its own and
Lullus himself was one of thè great masters of it
(cf. Yates, 1982, Rossi, 1983).
If one considers that, probably under thè influence
of Arab scholars, Aristotelean categories were con-
sidered as being reai material operators in thè fram-
ing of thè world and so were such divine qualities as
Bonitas, Misericordia , Justitia etc., one perceives that
thè debate between Realists and Nominalists, during
thè late medieval times was much more complex
than it is usually described in texbooks.
At thè eve of thè XVth century thè true aristote-
lians had moved well away from orthodox aristote-
lism into a nominalistic epistemology (properly
named «terminism»), while naive realism had deve-
loped into Hermetic-neoplatonism and Lullian trees
were familiar as expressing not genealogical kinship,
but thè equally true generation kinship.
Then thè age of explorations and discoveries
swamped thè scholars with innumerable new kinds
of animals and plants, and they were faced with thè
Herculean task of organizing this new knowledge. At
thè same time thè rarity, oddness or sheer beauty of thè
manifold produets of nature stimulated thè naturai ten-
dency of men to collecting, and museums were bom.
I have just said that at that time scholars were pro-
vided with two alternative intellectual tools for their
task: traditional Aristotelism turned nominalistic by
thè medieval university scholars, or Neoplatonism-
Hermeticism-Paracelsism, rooted in Lullism, with a
strong realistic tinge and commonly credited with an
Augustinian parentale, which made it, if not ortho¬
dox, at least defensible on religious grounds.
People like Aldrovandi and especially Cesalpino
tried to use thè first tool; others, for instance thè
groups linked with thè Academia dei Lincei or thè
Royal Society (like Ray), thè second one.
There is indeed a subtle difference between thè
ideal Museum of Aldrovandi (now preserved, to-
SYSTEMATICS: IS AN HISTORICAL PERSPECTIVE
USEFUL TO UNDERSTAND MODERN DEBATES
111
gether with all thè accompanying notes, by thè Uni¬
versity of Bologna), which he conceives as a sort of
material Encyclopedia, thè precise counterpart of a
set of files (and indeed he did file all thè specimens
of his own museum in thè most complete and exaus-
tive way, with all sorts of cross references etc.), a
source of retrievable information, thè more generai
and complete thè best, and thè Museum seen in thè
light of Lull’s «Ars». This second kind of museum is
a material itinerary symmetrical with thè «World’s
theatres», a sort of treatise built on specimens, in
which thè relevant ideas are linked into an organic,
chained argument, which will lead both to remembr-
ance and to knowledge (cpr. Rossi, 1983).
Both kinds of musea are stili with us: thè lullian
one in thè public exibits, which teli one story, and
Aldrovandi’s in thè study collections, where alterna¬
tive stories are developed.
Books, being musea in words, had to follow or,
perhaps, to be thè blueprint for thè material musea
being assembled.
It should also be noted, as it is customary to assu¬
me that thè «Baconian» scientifìc attitude supersed-
ed thè medieval one and that modern Science has
broken with both thè platonic and thè aristotelic tra-
dition, that Sir Francis Bacon himself largely depart-
ed from his own principles when writing of Naturai
History: His Par ascese ad historiam natura lem et ex-
perimentalem and other writings clearly expound
principles which are directly linked with those of thè
Ars memoriae» (cpr. Rossi, 1957).
John Ray, whose great influence in framing thè
principles of systematics has always been aknowled-
ged and who was especially influential on Linnaeus,
is known to have developed his basic systematic
principles while, collaborating with Willoughby and
Bishop Wilkins for thè development of thè «univer¬
sa! language», Ray actually developed a special clas-
sifìcation for Wilkins that was actually conceived as
an integrai part of thè project and was strictly based
on logicai division, though he was quite unhappy
with it as he thought thè framework too rigid and of
limited scope (cpr. Rossi, 1983, Mayr, 1982).
Thus, it seems conceivable that, more or less con-
sciously, thè joint requirements of a realistic-neopla-
tonic frame of mind, which was prevalent in North¬
ern Europe, and thè requirements of cataloguing
specimens did naturally lead to thè kind of classifica-
tion which we cali Linnean.
Linnaeus was an exemplarly practical mind and
did not generally delve into purely theoretical spe-
culations (when he did he occasionally made
thè grossest mistakes, such as when he denied thè
existance of spermatozoa as living beings). Linnaeus
generally formulated his theoretical ideas in thè
form of brief statements and rather set himself to
improve and generalize on paths tentatively trodden
by others.
However there is no doubt, as it is amply borne by
his repeated hymns to thè Divinity, that he regards,
true to thè neoplatonic tradition, that thè correct and
«naturai» listing and describing of being led to true
knownedge of God Himself in his works, which is a
classical attitude in Medieval theology of truth. Mo-
reover, when we examine thè various stages of thè
development of his classifìcation of plants and his
discussion of thè theoretical principles on which he
built his work, there is no question of thè influence
that thè combinatomi mnemotechnics and thè lul-
list tradition had on him: in fact he first derived his
26 basic characters which, also because of their num-
ber, he called Litterae vegetabi/ium, then by combina¬
toria! methods he joined them into «words», which
characterized his taxinomic order, and he had no
doubt that thè «empty» words would eventually be
filled by new discoveries, which is pure Leibniz.
To discuss thè various traditions, besides thè neo¬
platonic (such as thè Augustinian-Lutheran), which
may have been at work in shaping Linnean systemat¬
ics would need a book, rather than a paper, and thus
I leave this point, simply recalling that Linnaeus’
father and grandfather were Lutheran preachers.
For thè whole of thè XVIII century and thè first
half of thè next biologists had to choose between two
alternatives: either they subscribed to thè thesis, ho-
noured by all Christian creeds, that thè naturai
world, being thè work of God, portrayed thè same or-
derly Supreme Mind and was built of logically and
indeed necessarily related objects, shadowing a Lul¬
lian tree; or else they took a defìnitely atheistic view,
as D’Holbach and several French did, but to thè
same practical result.
Indeed, by thè XVIII century classical scholasti-
cism had become entirely discredited in protestant
areas and among «Libertines» everywhere. But also
in thè Catholic media, where, because of thè author-
ity of St. Thomas Aquinas, thè bulk of scolastic phy-
losophy was stili generally studied, it was customary,
out of thè classroom, to decry it. So, down with scho-
lasticism went nominalism.
Anyway, ever since Aristoteles had used thè word
«genos» to band related items or concepts (and he
was justified by Greco-Roman tradition, where thè
«Gens» was supposed to share thè same «Genius»
even when relationship was rather by religious tradi-
tional links than by reai blood kinship), thè term,
which could have been translated indifferently either
as «genus» or as «Family», was familiar in Science
and philosophy with this ambiguous association
both to kinship by thè mechanisms of creation and
by reai reproductive continuity.
Thus thè framework for evolutionary ideas was
prepared: Once generati o aequivoca had been gene-
rally discredited, living beings were naturally con-
sidered as being related, at least kind by kind, by ge¬
nealogica! relations which, just as human family
trees, could be expressed by dedrograms, and thè
«little» step of limited evolution, such as advocated
by Buffon and by Linnaeus himself in his later years,
was self-suggested by thè usage of words such as
family and Genus, with their strong genealogical
implications.
Indeed it seems that during thè XVII and XVIII
centuries and well into thè XIX century, thè majority
of thè best generai zoologists and botanists were
rather subconsciously dependent on Platonism (ac¬
tually Goethe was a spinozist in philosophy, but ra¬
ther a platonist in Sciences and such Naturphiloso-
phen as Schelling or Ocken were openly platonists),
while thè great comparative anatomists and pysiolo-
gists, such as G. Cuvier, were more «aristotelically»
minded, with Darwin nicely in thè middle, pragmati-
cally taking thè best of both.
Darwinian theory, turning biology to a large extent
into a historical Science, should have reopened thè
issues, as Aristoteles himself had noticed that histo-
112
ALBERTO M. SIMONETTA
rical statements could not be verifìed by classical log-
ics, and thè difficulty had been further exaustively
analyzed by medieval scholars, who had shown that
any proposition where time was involved can not be
proven by dichotomous logics.
However, Darwin himself and most of his follow-
ers, including those who plunged into an all out at-
tack on traditional religions, generally avoided thè
more theoretical implications of their stand and may
even have been unconscious of pressing into their
Services time honoured devices, which had been ori-
ginated for quite different purposes, as one may see,
for instance by comparing thè «trees» of thè pious
Lullus (Fig. 1) with those of thè atheist Haeckel
(Fig. 2): they were too busy establishing thè fact of
evolution and its mechanisms, to worry about its im¬
plications for systematics. More specially, though at
least Darwin himself was aware of it, they should
have given more attention to thè impossibility to re¬
concile thè endeavour to reconstruct a historical nar¬
rative of which thè individuai specimens known were
episodes (just as artifact or documents are in human
history), with a belief of thè reality of taxa, which was
rooted on entirely different principles; and that while
«Linnean» taxinomy, as it was practically thè best
possible in order to manage thè evidence, had to be
preserved and used.
As I have argued other aspects of thè debate on
systematics elsewhere, I shall not repeat here my ar-
guments in favour of regarding formai taxinomy as a
necessary, albeit, conventional tool for all biological
researches (Simonetta 1992, 1993), rather I have been
aiming here to show that, as we are human beings,
we are, Willy nilly, thè products of cultural evolution,
is it possible that in thè minds of each one of us thè
ghosts — thè old archetypes — are stili living and
moulding our approach to systematics?
For instance, I feel that there is a case for arguing
that thè practice of certain algorithms in cladistic,
and especially transformed cladistic systematics is
«phylogenetically» related with some Hermetic-
cabbalistic renaissance practices, through Oken (with
his dichotomus differentiation, advocated in his
« Lehrbuch der Naturphilosophie in 1809 and his
slightly previous, proclaimed «neopythagoric»
phase), Gothe, Franz Baader and others.
Consideration of thè medieval «terministic» de¬
bate recently led me to consider thè study of thè
messages relayed by thè scientific literature and
whether its semiotics should not be propedeutic to
consideration of thè philosophy of biology. Though I
have not gone far enough to have any definite ideas,
I have a strong feeling that consideration of what
really happens in thè sequence: «observation of evi-
Zonoplacenfalia —«Deciduala
(.'anuria
Dis coplacentalia
Simiae s. Pithrri
Fig. 2 - Two of thè many «trees» proposed by Haeckel, leaves and
fruits are substituted by names, but thè similarities with Lull’s
imageing is obvious.
SYSTEMATICS: IS AN HISTORICAL PERSPECTIVE USEFUL TO UNDERSTAND MODERN DEBATES
113
dence— organisation and interpretation of it-> trans¬
fer into verbal information-» interpretation of verbal
information», may really contribute to our debates.
Indeed, when we consider this sequence, it is clear
that we have here a process of progressive abstrac-
tion and that thè result is only related to thè phe-
nomenon, but that thè relation is an indirect one.
It appears that modern semiotics (cf. Eco, 1990) lar-
gely revive thè positions of medieval terminists
maintaining that concepts and more generally all
collective terms «stand for» something, are suppositi
for something reai, but that they imply a «pre-
sumption» about them, which implies a complex
attitude to knowledge: strictly objective knowledge
being absolutely denied, while a probabilistic, if
necessarily biased, knowledge being both possible
and valuable.
Subjective bias in presumed objective methods
may more or less always be proved. For instance it is
easy to show that all kinds of cladistic analysis are
based on strictly typological assumptions, which are
and work independently from thè proclaimed evolu-
tionary and systematic principles of thè same authors
who perform them.
It is a well known fact that, while any writer, in-
cluding thè scientist, puts himself into his work, his
work while being written, impinges on thè writer
subconscious and shapes it, just like any other writ-
ing he has happened to read since his childhood.
Therefore it is not surprising that, in biology, such a
long tradition of «realism» urges so many excellent
scholars to strive for a «System» good for all seasons,
for thè «good» species concepts, for «rules» which
will work out thè relationships of living beings with
regular reliability.
There is an almost generai consensus that thè
«System» must mirror, as far as possible thè best evo-
lutionary reconstructions. However thè reai scope
and thè essential autonomy of phylogenetic studies
with respect to systematics must be fully understood.
Hennig (1966), as usually wrongly, maintains that
phylogenetic connections are among species or
among taxa of supraspecific level; obviously it is per-
fectly legitimate to study thè relationships of abstract
concepts, such as classes, but this is essentially dif-
ferent from studying phylogeny (See Simonetta 1992,
1993). Indeed phylogenetic studies are concerned
with thè possible relationships of known specimens,
which are assumed to mirror thè relationships of thè
populations past and present to which these indivi¬
duate belong; formai systematics, instead, is a mes-
sage with a complex function.
If we fail to make here a clear distinction between
thè reconstruction of phylogenetic connections and
formai systematics, instead of having a «one way»
lane from evidence to interpretation, and from inter¬
pretation to filing and retrieving both thè informa¬
tion and thè interpretation and stop there, we shall
always be in danger of a feed-back: assumed syste¬
matics impinging on interpretation of data or, worse, a
systematic arrangement built on some presumed rules
prompting a stereotyped way of reading thè evidence.
Should not we instead be afraid of all kinds of or-
thodoxies and endeavour to fight them?
Having thus tried to give a bit of attention to what
may, perhaps, be deemed a marginai aspect of thè
debate, but one that I feel to be signifìcant in thè
study of such an elusive problem as that of thè signi-
ficance of taxa, a big query follows.
Have we got a really good theory of evolution, im-
proving consistently on Darwin’s? I am afraid that we
have not.
Granted thè basic Darwinian principle of variation
and selection, both stabilizing and directional, on
one side none of thè current generai accounts of thè
theoretical aspects of evolution, does take into full
account all known facts of genetics, nor do they ac-
count for all thè different ways selection has been
shown to operate both as individuai and as group se¬
lection. We have no really satisfactory generai expli-
cations for thè coordinate evolution of complex mor-
phological, physiological or ethological patterns, nor
for thè apparent fact that some kinds of mutations or
some types of selection are prevalent among certain
organisms, while alternative ones are commoner in
other, sometimes related, groups. Finally we have
several elegant and attractive models of evolutionary
events, especially in morphology, where they stem
from Schiaparelli’s and D’Arcy Thompson’s pioneer
work, but we do not really know how to correlate
them with known facts of genetics and of naturai
selection.
If we, as I expect, agree that systematics should
mirror, as far as this is practically possible, thè course
of evolution a «new synthesis» is needed against
which theories and practices of systematics must be
tested, and I expect, found wanting.
In thè meantime, I am afraid, we have to go on by
old principle that a good taxon is that which is main-
tained by a good systematist.
REFERENCES
Eco U., 1990 - I limiti dell’interpretazione. Bompiani, Milano,
369 pp.
Rossi P., 1988 - Clavis Universali. Arti della memoria e logica com¬
binatoria da Lullo a Leibniz. II ed. Il Mulino, Bologna: 340 pp.
Rossi P., 1957 - Francesco Bacone. Dalla magia alla scienza.
Laterza, Bari: 528 pp.
Simonetta A. M., 1983 - The myth of objective taxonomy and
cladism: mach ado about nothing. Atti Soc. tose. Sci. nat.,
Mem. Ser. B, 89: 175-186.
Simonetta A. M., 1988 - Logica, tassonomia e realtà. In: G. Ghiara
(ed.). Il problema biologico della specie. Collana U.Z.I. Proble¬
mi di Biologia e Storia della Natura. Mucchi, Modena, 1: 59-78.
Simonetta A. M., 1990 - On thè significance of ecotones in
evolution and on thè significance of morphologic differen-
ces in primitive taxa: reflexions and hypotheses. Boll. Zool.,
57: 325-330.
Simonetta A. M., 1992 - Problems of systematics: Part 1. A criti¬
cai evaluation of thè «species problem» and its significance
in evolutionary biology. Boll. Zool., 59: 447-464.
Simonetta A. M., 1993 - Problems of systematics: Part. 2. Theo¬
ries and practice in phylogenetic studies and in systematics.
Boll. Zool., 60: 323-334.
Yates F. A., 1982 - Lull and Bruno, collected essays. Routledge &
Kegan, London.
114
ALBERTO M. SIMONETTA
Alberto M. Simonetta: Dipartimento di Biologia Animale e Genetica «L. Pardi» - Università di Firenze,
Via Romana 17, 1-50125 Firenze ITALIA
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
René Thom
Qualitative and quantitative in Evolutionary Theory
with some thoughts on Aristotelian Biology
Abstract — This paper aims to show thè relation between qualitative and quantitative considerations (in Biology and
elsewhere). It is argued that quality cannot be reduced to quantity, as is so often held with conviction. W e propose appli¬
cation of qualitative thinking for thè Darwinian problem of speciation and discuss Lyell’s «uniformitarianism» applied
to Darwinism. The discrete qualitative character of cellular morphogenesis necessarily entails qualitative discontinuities,
however small these may be quantitatively.
It is now commonly held that any qualitative diffe-
rence may be expressed quantitatively. The old say-
ing of thè British physicist Rutherford (around 1900),
«Qualitative is nothing but poor quantitative», is a
statement that most of today’s scientists are quite
willing to endorse. For obvious reasons, thè compu¬
ter Science industry of this last half-century has done
quite a lot to impose thè idea on thè public mind. But
it may now be time to react against this widespread
belief.
One may wonder why a former mathematician
should fmd it necessary to defend thè essential speci-
ficity of quality, a concept somewhat alien to thè
world of numbers. In thè same way, one may wonder
why biologists have been so eager to tread thè path
of quantization. Think, for instance, of thè impact
of thè statistical school of thè early 1900’s (Fischer,
S. Wright, after Galton...) which led to thè triumph-
ant revival of Darwinism under thè name of neo-
Darwinism. Classical biologists used, around 1800
when their Science was new, thè concept of animai
organization. The Latins knew thè locutions Situs
Partium, thè Greeks sustèma tón morión. Now people
believe that it’s all in thè DNA and that life is more
interesting at thè molecular level — inside thè celi —
than at thè gross level of «big animals». Yet I hope
that among my hearers a sufficient number will
agree that thè study of «large animals» is stili a rather
significant part of Biology.
Now, is animai organization a qualitative or a
quantitative concept? The answer is not so easy.
For quality frequently creeps into mathematics
under thè guise of number. Is thè quantitative ine-
quality a < b (a less than b) a quantitative or a quali¬
tative relation? Consider thè integers 1 and 2. Most
people would immediately say that thè relation 2 > 1
is a quantitative one, as 2 = 1 + 1. But thè couple of
integers in thè order (1, 2) is not thè same as thè dyad
in reverse order (2,1): here enters thè piane, thè con-
tinuous 2-dimensional Euclidean space (endowed
with horizontal and vertical gradients) needed to
write down thè formula. Because of this spatial em-
bedding, thè two dyads (1,2) and (2,1) have to be
considered as qualitatively different. Our grammars
justify this viewpoint by distinguishing thè Cardinal
number (of nounlike function) from thè ordinai
number (an adjective). There is little doubt that thè
consideration of an organ’s relative position with res-
pect to others’, fundamental in defming homology
between similar bones or organs in different species
(remember Owen’s definition as quoted in Professor
Minelli’s paper), refers to this concept; and this also
requires that a System of three «gradients» (or space
coordinates) be specified. Another apparent inter-
mingling of number and quality occurs in topology.
Consider thè topologica! classification of closed
oriented surfaces. Such a surface can always be con-
structed by adding k handles to thè standard two-di-
mensional sphere S2. This positive integer k is called
thè genus of thè surface (thè cases k = 0, 1, 2 are reali-
zed respectively by thè two-sphere S2, thè two-di-
mensional torus T2, and thè Bretzelflàche). Here thè
differences, although expressed by a varying integer
q, thè genus, are fundamentally of a topological, qua¬
litative nature. Hence thè answer: Many apparently
quantitative relations are in fact of a qualitative na¬
ture, inasmuch as they involve topological relations
more specific than those of thè quantitative ones.
After all, between situs partium and analysis situs,
thè name given by Leibniz to topology, there is an
obvious affinity. When discussing a numerical equa-
lity a = b with regard to two entities A and B, one has
to distinguish thè case where a and b relate to ob-
servable characteristics of distinct entities A and B
from thè case where A and B are shown to be identi-
cal through this equality of measurement. For exam-
ple, two quantities of thè same matter and of thè
same weight are interchangeable. It is clear that if we
consider two evaluations of identical quality in two
different entities A and B, that does not imply thè
identity of thè two «substances», in philosophical
terms. Since a = b is thè most typical form of rela¬
tion, it would be useful to analyse thè medieval dis-
tinction between substance and predicate. To do this
we place ourselves in thè framework of Aristotelian
metaphysics, which has brought to thè study of this
problem some intuition that is stili highly relevant.
The relation of Genus to Species
The couple Genus-Species, which has not yet di-
sappeared from our taxonomies, owes its definition
to Aristotle. Needless to say, this defmition is infini-
116
RENÉ THOM
tely broader than thè usuai biological use of thè
terms. In Aristotle thè notion has a logicai origin.
Two qualities (a) and (b) are said to belong to thè
same genus (Tevoo in Greek), if, whatever thè entity
X, thè two propositions: X is a and X is b cannot be
simultaneously true. In other words (a) and (b) are
contrary (a wider notion than contradictory, where
thè genus is in one dimension). This means that, in a
metaphorical sense, qualities (a) and (b) compete
with each other to occupy a space (G), which must be
considered as a piece of matter in thè sense of Aris-
totle’s hylè, that is to say a continuum ( sunechès ) si¬
mular in principle to thè Euclidean one. In particular,
one can by mental experiment continuously deform
concept (a) into concept (b) (and vice versa) without
ever, throughout this deformation, having thè im-
pression of any brutal discontinuity in thè nature of
thè affect.
On thè contrary an affect such as (a), endowed
with a certain psychic individuality, will be called a
species (eidos) of genus (G). In theory two species
within thè same genus can always be deformed one
into thè other in a continuous way (*). It can be ar-
gued that this notion, valid for man, is also to some
extent present in thè animai psyche. For man it is al¬
ways possible to shift from one colour to another wi¬
thout quitting thè space of colour measurement. But
(unless one is under thè influence of mescaline or
some similar drug) one cannot transform a colour
into a smeli or into a tactile sensation. There are two
basic genera: time, each instant of which is a species,
and one-dimensional Euclidean space (where each
point is a species).
If thè relative autonomy of thè nervous System
governing perception is sufficient to explain thè au¬
tonomy of thè fìve senses, thè same explanation is
not available for abstract concepts, thè adjectival
qualities of our languages. But at least w e may ima-
gine a topology of adjectival concepts allowing them
to be associated with a semantic distance, and by and
large, this semantic distance verifìes thè inequality of
thè triangle
d(BC) < d(BA) + d(AC)
provided qualities A, B, C belong to thè same genus.
Aristotle, in his Logics, laid down as a principle
that if w e have two genera, Gl and G2, either one of
them is a sub-genus of thè other (e.g. white man is a
sub-genus of man), or they are «incommunicable»:
Ouk estin eis allo genos metabasis (there is no way of
passing from one genus to thè other). This affirma-
tion led Aristotle to accept that all Science is reduced
to thè study of a genus, there is no universal Science.
But we may wonder whether thè articulation of sub¬
genera in a genus does not proceed from universal
mechanisms. I, for one, believe that thè model pro-
posed by catastrophe theory (thè cusp model) could
be a good candidate, particularly for thè transition
genus — species, object of zoological taxonomy.
This problematics surrounding thè incommunica-
bility of genera plays an essential part in thè question
of thè relation between quality and quantity, thè sub-
ject of this essay.
Even if we accept thè universality of thè cusp
model in thè division of a genus into its species,
there is nothing to show that thè different potentials
we have to consider between genera can be connect-
ed by a quantitative relation, of an algebraic nature
for example. Belief in thè possibility of expressing in
a quantitative way relations between different genera
has engendered semantic monsters in our everyday
vocabulary. Take thè paradigmatic example given by
thè quality-price ratio that serves in gastronomical
guide-books to rate different restaurants — thè direct,
positive side evaluating thè quality of thè setting and
cuisine, and thè opposite, negative side, concerned
with thè price. But thè idea of quantifying these ef-
fects by means of a quotient remains in thè realm of
mythology.
Now let’s come back to Biology. There is around
at thè moment a much-used but ill-defìned concept,
that of cellular type. It is agreed, or so I read recently
in a very serious journal, that there are about two
hundred types of celi in thè human body. But I have
seen no table of these types and have no idea of their
organizational modes. It was suggested to me that
thè mode of genome activation was an essential part
of this definition. But I suppose that thè old classical
designations of tissue (epithelium, mesenchyma,
free cells, etc.) continue to play a part in thè new ta¬
xonomy. However that may be, we have to believe
that this classification is of a «discrete», qualitative
and finite nature. It seems to me that this must have
some impact on an old evolutionary problem. Is
there gradualism, or, on thè contrary, catastrophism,
attending thè apparition of a given speciation? Dar¬
win contented himself with Lyell’s gradualism. Yet
we can hardly deny that there have appeared, at cer¬
tain times, very considerable innovations (a typical
example is thè apparition of thè amniotic egg in am-
phibians). If we look at thè graph constituted by cel¬
lular types in thè course of ontogenesis, we see that
new types must have come on thè scene from time to
time, even if, from a quantitative point of view, thè
clone so realized may have been very slight. Whence
a formally necessary response: There have indeed
been qualitative innovations, even if their immediate
quantitative effects remained unobtrusive. Quantita¬
tive gradualism stands to reason, after all — one can¬
not imagine a mother giving birth to offspring larger
than herself — but thè apparition of a new mode of
life made possible by qualitatively new types of cells
can turn this innovation into a subsequently notable
transformation in taxonomy.
In conclusion, I would like to draw attention to thè
unifying character of this definition of thè couple
Genus-Species. We shall cali «affect» all modifica-
tion of perceptive data in an individuai that is of a
clearly individuated nature. There exists then a rela¬
tion of equivalence between affects of subjective ori-
gin, which makes it possible to recognize whether
two affects are of thè same type (for example, pheno-
menological equivalence at two points in thè exter-
(*) Some genera, in Aristotle’s sense of thè word, obviously have a discontinuous matter. Take thè descendancy of
a single human ancestor, example given by Aristotle for thè entry Genos in his book Met A 28. In this case we have to
consider that thè matter of thè genus is engendered by thè generative dynamics represented by relations of filiation making
a connected space of thè human group.
QUALITATIVE AND QUANTITATIVE IN E V OLUTION ARY THEORY
117
nal medium observed). This last relation of equiva-
lence leads one, in thè case of thè observation of
living animals or dissected cadavers, to a classifica-
tion of equivalent parts by their aspect, Aristotle’s
homeomerous parts. W e are led to an objective defìni-
tion of biological organization: thè stratification of
thè organism into homeomerous parts. In a semi-al-
gebraic model, as suggested by Schiaparelli, this al-
lows us to recover thè homotopic diagrams of d’Arcy
Thompson and consequently to defìne Owen’s ho-
mology in a conceptually rigorous way. The decom-
position of a concept into genera and sub- genera be-
comes an operation (application to thè data of a locai
relation of phenomenological equivalence, or in al-
gebraic terms, a relation of equisingularity) similar in
nature to thè decomposition of an animai organism
into its «homeomerous» parts. In thè case of a con¬
cept, we have to classify its extension by identifying
its prototypical elements, centrally placed, and
throwing aberrant elements out toward thè periph-
ery. Categories are universal genera through which
such an analysis may be carried out.
Having defìned, in his study of living bodies, thè
notion of homeomerous parts characterized by thè
property of locai phenomenological equivalence bet-
ween two points of thè same stratum, Aristotle felt it
necessary to introduce also those parts which already
have specific names in our ordinary languages, thè
usuai body parts — in thè case of human beings:
head, neck, chest, belly, legs, arms and so on. Such
parts are usually formed by thè aggregation of sev-
eral (at least two) homeomerous parts, conveniently
limited. He called them anhomeomerous parts , thè
seats of active functions and operations (erga kai pra-
xeis). If homeomerous parts can be described by a
stratifìcation of semi-algebraic nature, these new
kinds of parts cannot be split up in thè same way.
Their breakdown fragments thè homeomerous stra-
ta. Take for instance thè inclusion thumb c hand.
The boundary between thumb n hand-minus-
thumb is realized in bony tissue by a well-defìned
smooth surface, thè phalanx-metacarpus joint. The
same is no longer true for any homeomerous part of
thè surrounding tissue (flesh, nerves, tendons, etc.).
And thè blood, contained in thè vascular System, is
not properly a homeomerous part because its ramify-
ing boundary shows signs of fractality ( Partibus Ani-
malium 565b 21-22). The observation that any func-
tionally active (anhomeomerous) part of thè human
body contains at least two kinds of tissues is one of
thè Philosopher’s most penetrating insights.
See for instance my astide:
R. Thom - Itinéraire pour une Science du détail. In
English: Itinerary for a Science of thè detail, Criti-
cism, voi. XXXII, n. 3, p. 311-390, 1990, Wayne State
University Press.
1
René Thom: Institut des Hautes Études Scientifìques 91440 Bures-sur-Yvette, FRANCE
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
: *
*:
*
• •
: -
Adam Urbanek
The origin and maintenance of diversity:
a case study of Upper Silurian graptoloids
Abstract — Empirical studies on fossil material reveal certain features of thè fossil record which are of great importance
for thè generation and maintenance of biological diversity. This is particularly clear in respect of thè stem species
(lineages). Their persistence in time, combined with an ability for iterative speciation, accounts for many important events
responsive for recoveries and diversifications of thè fauna. Stem lineages provide a reliable test for thè conversation of
evolutionary potential in spite of thè numerous branching off of thè lineage. This may be called a historical experiment, as
it proves that deterministic factors, along with thè contingent ones, played an important role in evolution.
In thè reai course of evolution, as seen in thè fossil record, diversity is generateci due to so-called adaptive radiation.
As a rule, recovery and re-radiations start from indigeneous survivors from biotic crises. They are subject to a population
explosion combined with an increase of variation, both being related to an ecological release. This variation is later used as
raw material for speciation and transpecific evolution. The early phase of radiation is marked by thè paucity of lineages,
and thè presence, along with generalized or synthetic types (species or species groups), also of specialized lines of
evolution. The former produce long-lasting lineages and frequently are subject to secondary radiations, whilst thè latter
become extinct after some temporary success. In many groups of thè Graptoloidea, being thè dominating element of thè
macrozooplankton in thè Early Palaeozoic seas, evolutionary changes are concentrated on apertures of zooidal tubes. This
may reflect improvements of thè feeeding apparatus and feeding mechanisms. Trophic specialization is a golden thread of
thè evolution in this group. Production of as many character differences as possible, within a certain basic adaptive type,
enables thè subdivision of thè trophic niche and relaxation of competition between otherwise very similar species. Hence,
advanced representatives of particular lineages were usually K-strategists, while thè ancestral species bear more or less
distinct traces of an r-strategy. Seen from a historical perspective thè evolution of graptoloids looks as a process of diversity
and trophic specialization increase, punctuated by biotic crises. After each biotic crisis thè extermination of specialized
types was followed by a re-radiation from non-specialized survivors.
Inductive phylogeny
A study of thè history of fossil taxa and phyloge-
netic relations among them may be considered thè
core of any palaeontological programme. Studies in
other fìelds of palaeontology are, in one way or ano-
ther, related to this basic research programme — in
other words they are derivatives of thè historical and
phylogenetic approaches.
Dealing directly with remains of organisms of thè
past one can trace morphological changes in thè suc-
ceeding fossil populations from subsequent hori-
zons. A comparative anatomical analysis, combined
with morphometric (biometrie) methods, makes it
possible to measure certain parameters of evolution¬
ary change and to trace thè variation range, mean
value, and standard deviation, as well as to apply
more sophisticated methods (like multivariate analy¬
sis etc.). Essentially qualitative morphologies could
be transformed in this way into largely quantitative
data sets, which could later serve for discrimination
of species and other taxa. Such data, combined with
radiometrie age, may be instrumentai in thè evalua-
tion of certain parameters of thè evolutionary proc¬
ess which are not directly observable.
Studying fossil organisms enables thè application
of inductive methods to phylogeny, when phyloge¬
netic inferences are based largely on empirical data,
namely on thè observed direction of changes and
succession of chronodemes (fossil locai populations)
in time. This introduction of thè time factor and an
essential parallelism between morphological change
and time, limits considerably thè degree of subjec-
tive and speculative elements involved in phylo¬
genetic inferences. The application of an inductive
approach also increases thè probability of phyloge¬
netic inferences, and in thè case of densely-sampled,
numerically abundant and biometrically analysed
populations composed of well preserved remains —
they approach certaintly. Such highly reliable phylo-
genies constructed with thè use of thè inductive me-
thod were described among others also in graptoli-
tes. (e.g. Urbanek, 1963, 1966, 1970; see also Bulman
1971).
I apply thè term «inductive» to phylogeny merely
to stress thè importance of inferring generalized con-
clusions (on ancestry or relationship) from partial
faets concerning fossils, from thè changes observed
and their succession in time. I would rely on thè reai
course of events, established in thè above way, rather
than on considerations based on similarity and its
evaluation (homology). By using thè term «induc¬
tive» I would also like to emphasize thè significance
of bringing together and adducing disparate faets
making up thè reai history of fossils.
The research programme as advanced above
cannot be applied in every case — too frequently
thè incompletness of thè record makes thè use of
thè inductive approach impossible. However, thè in¬
ductive programme should be realized whenever
possible. It brings most interesting results, some of
which I am going to discuss below.
Considerations that will follow are based on thè
study of a single fossil group - thè graptolites. They
were colonial, marine hemichordates of thè Paleozo-
ic Era, related to Recent pterobranchs (represented
e.g. by Rhabdopleura ). Some were benthic and ses-
sile, but we will focus on «true graptolites», of thè
120
ADAM URBANEK
Fig. 1 - Early phase of monograptid radiation after thè lundgreni Event. Note thè population burst of thè only survivor,
Pristiograptus dubius (Suess) as indicated by a thick line, and its early schism into two main lineages. An important role was
played by Lobograptus? sherrardae as a generalized or synthetic species (from Koren’ & Urbanek).
order Graptoloidea. They were planktonic and in
most cases pelagic. The specialized Silurian mono¬
graptids had a simplifìed organization, and their co-
lonies were composed of a series of zooids budding
successively from each other and capable of secret-
ing individuai lodgings made of sclerotized collagen-
ous fibrils and called thecae (see Fig. 4, th2). The
overall morphology of thè skeleton of thè colony
(thè rhabdosome), as well as thè structural details of
thè thecae serve as thè basis for distinguishing a
number of genera and species. Displaying usually a
rapid evolution and frequently a world-wide distri-
bution, thè graptoloids («true graptolites») supply a
number of interesting instances of evolutionary
change.
The problem of stem species and thè nature
of historical experiments
One of thè most interesting taxa revealed by thè
study of phylogeny on fossil material are stem spe¬
cies. They may be operationally defìned as persistent
and conservative lineages producing, by means of
iterative speciation, some daughter species, but
otherwise showing a predominance of stasis or near-
stasis. A good example is Pristiograptus dubius
(Suess), a conservative monograptid species which
was thè only survivor from thè late Wenlock lundgre¬
ni Event. Soon afterward, it displayed a population
explosion, occurring probably in huge populations
(patches), which at thè same time displayed an in-
crease of both within-patch and between-patch varia-
tion. The role of numerical abundance and increased
variation was twofold: on one hand it served to ex-
pand thè niche, on thè other, it produced some fabric
that was used in later diversification into numerous
daughter species and resulted in adaptive radiation
(Fig. 1). The recovery of thè graptolite fauna in thè
late Wenlock (Homerian) and early Ludlow (Gors-
tian) was based on thè differentiation of this single
survivor. It became thè ancestor for thè bulk of later
graptolite faunas, all of which may be derived from
this single indigeneous relic species. The role of im-
migration was negligible (Koren’ and Urbanek, 1994,
in press).
Initially, there were only two daughter species,
which split from thè dubius stem line as a result of
thè so-called early schism (Fig. 1). One of them —
Pristiograptus praedeubeli gave rise to rather robust
monograptids such as Colonograptus and Saetograp-
tus (spinose monograptids of Gorstian stage). The
second, Pristiograptus idoneus produced, via a gene¬
ralized ancestral species Lobograptus? sherrardae,
such diverse forms as Neodiversograptus, Lobograp¬
tus and probably also Bohemograptus. They display
quite divergent trends of evolution but share a com¬
mon ancestry.
At thè same time thè dubius lineage continued to
exist without obvious morphological changes,
though much less numerous. In my opinion, it
should be treated as thè same species and even thè
same subspecies (Fig. 2). This practice opposes thè
cladistic approach to thè stem species — demanding
that thè ancestral species should be regarded as a
new one, after each speciation commenced from it.
THE ORIGIN AND MAINTENANCE OF DIVERSITY: A CASE STUDY OF UPPER SILURIAN GRAPTOLOIDS
121
Fig. 2 - Phylogenetic relations among Upper Silurian monograp-
tids, descendants of thè Pristiograptus dubius (Suess) stem spe-
cies. While thè conservative stem lineage continues without ob-
vious changes (thick line), its specialized derivatives (thin lines)
are subject to strong diversification and common extinction.
Note thè heterochronous appearance of similar morphological
types in Ludlow and Pridoli, namely Colonograptus and «neoco-
lonograptids». Asterisks denote additional speciation from thè
dubius stem lineage: * Pseudomonoclimacis dalejensis (Boucek) in
Gorstian time, ** Pseudimonoclimacis ìatilobus (Tseg.) and Pris¬
tiograptus fragmentalis (Boucek), both in Ludfordian. Wavy lines
indicate main extinction events. The early radiation phase is
shown at higher resolution on Fig. 1.
This is thè «nodal principle» or thè lineage concept
of species in cladistic systematics, according to which
thè temporal duration of a species is determined by
two processes of speciation, and species are «inter-
nodes» (segments of thè phylogenetic tree; Hennig,
1966: 20; Bonde, 1981: 23). Hence, a species should
be given different names before and after thè spe¬
ciation. Moreover, even strongly similar species
are given different binomials if they are situated
between different speciation events (nodes of thè
phylogenetic tree). This view is usually justified by
thè argument that because of thè speciation thè an-
cestral species completely changes its function in a
phylogenetic System. In relation to thè same dau-
ghter species, a given internode is considered to be
ancestral before speciation and a sister species, after
it. It seems obvious that one should not name thè
same entity now mother and now sister! In fact thè
latter argument is entirely unconvincing. It relies too
literally on thè analogy between genealogy and phy-
logeny — and this might be misleading. Giving such
species as Pristiograptus dubius a different name be¬
fore and after speciation because of purely formai
reasons, is of course possible, but undesireable, in
view of thè parsimony of nomenclature, and moreo¬
ver biologically unreasonable. Such a postulate also
pays no attention to thè fact that speciation does not
always break thè cohesion of thè ancestral lineage
(Simpson, 1951, Wiley 1978, 1979). In fact, stem spe¬
cies may survive one or more speciation events wi¬
thout a significant alteration. A good example is that
of sticklebacks ( Gasterosteus ), described by Bell
(1979), where morphologically divergent freshwater
species were established on Oceanie islands by thè
anadromous stock of Gasterosteus aculeatus, known
since thè Pliocene. Bell (1979: 87) is convinced that
repeated speciation has not caused sufficient (if any!)
alteration of thè parental species during approxima-
tely 10 Ma, «to warrant regarding thè latter as a suc-
cession of species».
A
Fig. 3 - Comparison of thè morphological evolution of bilateral
apertural lobes in thè proximal thecae of Ludlow colonograptids,
as illustrated by « Monograptus » praedeubeli Jaeger (Bt , praedeu-
beli zone) and Colonograptus colonus (Barrande) (B2, nilssoni
Zone), with Pridoli «neocolonograptidis» represented by Pseudo¬
monoclimacis parultimus (Jaeger) (C, , parultimus Zone), P. ulti-
mus (Perner) (C2, ultimus Zone) and P. lochkovensis (Pribyl)
(C3 , lochkovensis Zone). Final produets (B2 and C3) display a re-
markable resemblance, although they developed heterochro-
nously and independently from thè persistent stem lineage of
Pristiograptus dubius with straight apertural margins (A).
122
ADAM URBANEK
Fig. 4 - SEM micrographs showing proximal parts of A - Pristiograptus dubius (Suess), a conservative monograptid (Baltic
erratic boulder, parascanicus Zone, Gorstian) and its descendants: B - Colonograptus colonus (Barrande), (Baltic erratic
boulder, nilssoni Zone, Gorstian) as well as C - a «neocolonograptid» Pseudomonoclimacis lochkovensis (Pribyl) (deep
boring, East European Platform, lochkovensis Zone). D-E - structural details of apertural lobes in B and C respectively.
Taken with Philip XL 20 scanning electron microscope at 15 kV, from gold-platinum coated etched specimens. A-C x 50;
D-E x 150.
THE ORIGIN AND MAINTENANCE OF DIVERSITY: A CASE STUDY OF UPPER SILURIAN GRAPTOLOIDS
123
Another argument frequently quoted by cladists is
formulated in thè following way: so much variation
is lost in each speciation that this changes thè entire
evolutionary potential of thè ancestral species. Empi-
rical data do not confimi this assumption. P. dubius
can be quoted as a historical experiment of a kind.
After passing through a number of graptolite zones
of Gorstian and Ludfordian age, thè dubius stem li-
neage underwent a new (iterative) speciation in thè
early Pridoli time. The products were «neocolono-
graptids» — monograptids remarkably similar to thè
earlier Ludlow colonograptids (Fig. 3, 4), which had
become extinct in thè meantime (in thè leitwardinen-
sis Zone). Thus, provided that thè niche is empty,
thè dubius stem species was perfectly capable of spe-
ciating iteratively in very much thè same way as be-
fore. In other words, thè dubius stem lineage fea-
tured essentially thè same evolutionary potential
during thè Pridoli time (Fig. 3, C,-C3) as during thè
late Wenlock and Ludlow (Fig. 3, B,-B2), in spite of
thè numerous speciation events which occurred
from thè ancestral stock during this interval (Fig. 2).
The persistence of thè stem species and thè con-
servation of its evolutionary potential clearly contra-
dicts thè common conviction that speciation always
means a total reorganization of thè ancestral species.
What w e cali «an historical experiment» indicates
that at least in some cases such claims are contradict-
ed by thè data. Speciation events frequently do not
affect thè entire genetic pool of thè ancestral species,
but only a fraction of it. The entire genetic pool is af-
fected when daughter species appear according to
thè «dumbbell» model of speciation, as defined by
Mayr (1982), and when a parental species is suddivid-
ed into large derived portions. In fact, most of specia¬
tion events recorded among macrozooplankton be-
long to thè category of parapatric speciation (van der
Spoel, 1983; Boxshall, 1981). This mode of speciation
involved only peripheral populations of thè ancestral
species, which later became semiisolated. Hence, thè
genetic loss for thè entire System of thè parental spe¬
cies was negligible. When analysing thè Gasterosteus
case, Bell (1979: 85) has arrived at a conclusion that
«daughter speies neither carry away with them a sig-
nifìcant unique portion of thè species gene pool, nor
outcompete... or alter thè ecological niche of thè pa¬
rental species». The same was probably also true for
thè dubius lineage and expressed in thè preservation
of morphological spectrum and potential to change
(Fig. 4, B-E). It should also be noted that thè ecological
niche of thè dubius lineage, probably widened during
thè peak of numerical abundance, was later normalized
without any considerable alteration. In spite of numer¬
ous oscillations in thè prevailing morphotype of suc¬
cessive chronodemes, some samples of Pridoli age are
remarkably similar to those of lower Ludlow age.
The persistence of thè dubius stem lineage may
only be approximately estimated, because of thè re¬
lative scarcity of radiometrie dating for thè Upper Si-
lurian as well as a large margin of uncertainty of each
particular dating. Using thè dated stratigraphic scale
compiled by Odin and Odin (1990), one could esti¬
mate thè age of thè early schism as somewhat more
than 420 Ma, and thè appearance of first «neocolono-
graptids» as approximately 415 Ma (thè bottom of thè
Pridoli). Therefore thè dubius stem species preser-
ved its evolutionary potential intact for at least 5 Ma
and perhaps more!
An historical experiment - thè case
of spinose Monograptus
Another remarkable instance of a historical expe¬
riment is that of thè lobate-spinose monograptids of
late Wenlock and late Ludfordian age. The majority
of late Wenlock monograptids (M.flemingi, M. prio-
don) had hooked apertural lobes as well as paired lat-
eral spines (Fig. 5, B,-B2). Such monograptids beca¬
me extinct during thè lundgreni Event, and for some
five graptolite zones thè true monograptids - Mono¬
graptus (Monograptus) dissappeared from all known
sequences in thè epicontinental seas. They did not
reapper until thè nilssoni Zone, being represented by
Monograptus (M.) uncinatus Tullberg. In contrast to
thè late Wenlock forms it is provided with an apertu¬
ral lobe alone, without any spines (Fig. 5, ArA2) and
may be considered a derivative of thè ancient non-
specialized stock rather than a survivor of thè fauna
immediately preceding thè mass extinction which
occurred towards thè end of thè Wenlock. Mono¬
graptus (M.) uncinatus soon disappears but similar
forms reappear in thè late Ludfordian and thè early
Pridoli. Thus thè uncinatus lineage exhibits what is
known as a classical «Lazarus effect», a pehomenon
described by Jablonski (1986). After their final reap-
pearance, uncinatus- like monograptidis play a very
important role in Late Silurian and Early Devonian
faunas. The great comeback of thè true monograptids,
represented by thè uncinatus group, is one of thè most
remarkable features of late graptolite faunas. No
wonder that they re-occupied thè former Monograp¬
tus niche, which had been empty for some time, and
made some «attempts» to fili it completely by pro-
ducing again a lobate-spinose adaptive type, very si¬
milar to that encountered in thè Wenlock (Fig. 5,
CrC2). Their main representative Monograptus (M.)
spineus Tseg. may be derived from Monograptus (M.)
acer Tseg., through a transient link yet undescribed.
In this way we learn that thè Ludfordian lobate-spi¬
nose species appeared independently of thè earlier
ones. Yet, they mimic them in their overall appear¬
ance, except for certain details. While thè Wenlock
forms have lateral spines situated postero-laterally,
thè Ludfordian ones have them in thè antero-lateral
position (Fig. 5, B-C). Comparing them with thè an¬
cestral structure of Monograptus (M.) uncinatus one
may notice that thè Wenlock species have their spi¬
nes situated at point «x» and thè Ludfordian ones, at
point «y». This difference, however small, speaks for
a somewhat «defìcient» homology. Although in both
cases thè adaptive significance of thè apertural appa-
ratus thus attained is almost identical, minute details
provide evidence for their independent, iterative ori-
gin. These spines are not merely non-identical, but
they combine features of homolgy and homoplasy.
Using Remane’s (1956) widely accepted criteria of
homology, namely: (1) position in a structural Sys¬
tem, (2) specificity of structure, and (3) presence of
transitional stages, one could conclude that thè
structures in question are basically homologous.
This is because (1) in both cases spines are superim-
posed on thè apertural lobe and (2) made of thè same
skeletal tissue, however, (3) they are not related to
thè same ancestral species, and they diverged at a dif-
ferent time producing different morphoclines. Thus
we are dealing here with a border case between ho¬
mology and homoplasy, thè former being implied by
124
ADAM URBANEK
morphological criteria (1-2) of Remane (1956) and
thè latter by thè phylogenetic aspect (criterion 3). A
number of theoretical terms may be invoked here as
relevant to a great or smaller extent, but neither
seems fully adequate. As we are dealing here with
thè consequences of parallel evolution, structures in
question may be defìned as «homoiologous» (Piate,
1922; Remane, 1956). Usually their similarity is ex-
plained as a consequence of a certain potential deri-
ved from a common ancestor. This potential dispo-
ses them to change in a certain way, and they do so in
distinct lineages (canalized evolutionary potential;
Saether, 1983; Gosliner and Ghiselin, 1984). Struc¬
tures produced in parallel or iterative lineages may
reveal a deceptive combination of homology and ho-
meomorphy, frequently beyond thè resolving power
of comparative-anatomical methods.
The above situation implies a certain philosophy.
It is clear that thè uncinatus stock preserved its evolu¬
tionary potential to form not only thè apertural lobes
but also spines. I am talking about a «potential»
rather than about «tendencies» as proposed by
Simpson (1961) in his classical defmition of evolu¬
tionary species. A tendency is usually related to thè
internai factors of evolution, which produce change
independently of thè circumstances, whilst a poten¬
tial can manifest itself only under certain conditions.
I would also avoid such terms as «historical fate of
thè species» (as suggested by Wiley, 1978), which
may imply a predeterministic nature of evolutionary
change. G. G. Simpson usually viewed with caution
autogenetic interpretations of evolution. However,
when formulating his classical defmition of species
he seems to have forgotten about this danger.
The history and thè iterative origin of thè lobate-
spinose monograptidis have much in common with
thè frequently debated problem of contingency of
evolution, where «re-runs» of a certain sequence of
events inevitably produce a different result each
time. In our case, thè Wenlock sequence and thè
Ludfordian re-run produced fairly similar, although
not quite identical results. In recent debates thè em-
phasis is usually put on thè role of chance and on thè
unpredictability of results (Gould, 1989). The mono-
graptid case reveals thè role of deterministic factors
and thè essential repetition of results, although iden-
tity is not achieved. This increase in thè significance
of predictability is in an obvious way related to thè
amazing ability of thè stem lineages to sustain their
evolutionary potential through time in spite of nu-
merous iterative speciations from thè stem group.
The morphogenetic dispositions are contingent ra¬
ther than necessary but they persisi long enough to
produce thè iterations.
Fig. 5 - Comparison of apertural apparatus (Ai-A2) in Monograptus uncinatus Tullberg from thè nilssoni Zone (Ludlow,
Gorstian) representing a nonspecialized, ancestral type of structure, with late Wenlock (BrB2) and late Ludfordian (C,-C2)
lobate-spinose monograptids. All seen in ventral and lateral aspects; x, y, z, homological points on thè dorsal apertural
lobe. Note that lateral processes (lp) in late Wenlock forms were situated at x, while their analogues (alp, anterolateral proces-
ses) in Ludfordian forms were placed at y. Point z was transformed in thè latter group into a projecting edge (promontorium).
THE ORIGIN AND MAINTENANCE OF DIVERSITY: A CASE STUDY OF UPPER SILURIAN GRAPTOLOIDS
125
Adaptive radiations - generation and maintenance
of diversity
The history of thè Graptoloidea, planktonic grap-
tolites, abounded in biotic crises, which strongly re-
duced thè diversity of thè fauna and placed thè group
on thè brink of extinction. Since thè end of thè Ordo-
vician, at least six such major crises have been distin-
guished, after which a strongly impoverished fauna
displayed its ability to recover. As a rule, thè recovery
starts from indigeneous survivors which are subject to a
population burst and then to growing diversification.
The fossil record is complete enough to trace thè ex¬
tinction events and all thè successive stages of recov¬
ery. In extreme cases, only one or two relic species
undergo a population explosion producing huge pat-
ches of zooplankton. This is expressed taphonomi-
cally in thè mass abundance of their fossil remains in
thè sediments or bedding planes (thè so-called
«graptolite carpets»). Such a population burst may be
considered a direct response to thè ecological release
occurring due to thè elimination of competing spe¬
cies and relaxation of thè intra- as well as intergroup
selection pressure. On thè other hand, high numeri-
cal abundance creates suitable conditions for genera¬
tion of genetic variation. This conclusion, first ad-
vanced by E. B. Ford (1931), was later developed into
a common wisdom of evolutionary biology. No
doubt, such increased variation is later used as raw
material in both thè forthcoming speciation and
transpecific evolution.
Early phases of adaptive radiation are marked by a
paucity of lineages that split off thè ancestral species
(Fig. 1). Moreover, thè first representatives of thè
daughter lineages differ but little from thè parental
species. Nevertheless, they manifest different and
frequently quite divergent trends of evolution. There
appear numerous transients which frequently produ¬
ce a complete spectrum of variation, from thè stand¬
ard ancestral morphotype to thè morphotypes of
newly-formed species. Their presence is a remark-
able feature of this early phase of adaptive radiation.
Some of thè newly-appeared species, are forerunners
of further successful and long-lasting trends (Fig. 2),
some represent lines of precocious specialization
and become extinct after a short period of success.
The last named category produces blind alleys of
phylogeny, while thè former open avenues to much
longer prosperity. This is especially true of those spe¬
cies which deserve to be named synthetic or genera-
lized (terms frequently used in classical palaeontolo-
gy). They combine incipient traits of specializazion,
common to a number of descendant and completely
divergent trends (Fig. 1). Such ancestral species as
Lobograptus? sherrardae exhibit a great prospective
evolutionary potential, which, however, could be es-
timated only retrospectively, and cannot be predict-
ed from thè morphology and stratigraphic occurren-
ce of a given species. Some of thè descendant lines
are subject to secondary adaptive radiation. As far as
thè number of taxa produced is concerned, second¬
ary radiation may surpass thè primary one. However,
these radiations are usually variations on a theme, as
they represent modifìcations of a certain basic type
and exploit thè possibilities opened by thè given
adaptive type. Hence, their prospective potential is li-
mited as compared with primary adaptive radiation
(Fig. 2).
In many groups of graptoloids, and especially in
thè Monograptina, evolutionary changes were con-
centrated on certain key-features, namely on thè ap-
ertural region related to thè feeding apparatus of thè
zooid. The remaining structural features of thè colo-
ny were affected to a much lesser extent or remain
virtually unchanged. The evolution of such groups as
thè Cucullograptinae or Neocucullograptinae is a
graphic example of thè significance of trophic specia¬
lization for thè generation of diversity. The evolu¬
tion of particular lineages exhibits a remarkable ad-
vance in thè improvement of a particular adaptive
type (fig. 5). The replacement of sequential chronos-
pecies within such lineages accounts for a growing
degree of structural elaboration and possible sophis-
tication of thè feeding mechanism. This is an obvi-
ous instance of an anagenetic trend in thè phyletic
evolution of a single line of descent.
The co-existence of a number of species represent-
ing a basically similar adaptive type may be ensured
by thè generation of character differences between
related species. This seems to be particularly true of
plankton where, paradoxically, a number of con-ge-
neric species may co-exist sympatrically. Hutchinson
(1959, 1961) suggested an explanation of this «Para¬
dox of plankton», assuming that there exists a certain
safe limit of character differences in thè trophic
apparatus (a difference in size by a 1.3 ratio!). Such
a magnitude of differences allows a subdivision of
thè trophic niche and correspondingly a relaxation
of competition. At thè same time, such character
differences permit many species to co-exist and
avoid replacement, inevitable in view of thè action of
Gauze’s principle.
The family tree of many monograptids provides
convincing evidence that generation of differen¬
ces between closely related species with a largely
similar adaptive type played an important role in
evolution. This factor was also responsible for cla¬
dogenesi — diversification into numerous inde-
pendent evolutionary lines. One could hardly escape
thè conclusion that generation of character differen¬
ces was thè primary effect of evolutionary changes,
as differences per se had a positive effect on thè sur-
vival of thè species and thè stability of thè ecosystem
(Fig. 6).
The later and more advanced species of thè major¬
ity of thè lineages represent, in most graptoloid
groups, K-strategists (as defined by McArthur and
Wilson, 1967). They were adapted for exploitation of
a certain, rather narrowly defined fraction of food re-
sources and possess elaborated and sometimes bizar-
re apertural devices. However, in thè early stages of
recovery, thè ancestral species displayed a lack of
trophic specialization (frequently no apertural struc-
tures at all) as well as some other features of r-strate-
gies. Both thè transition from thè r- to thè K-strategy
and thè numerical increase of diversity and morpho-
logical complexity are side-effects of thè best known
adaptive radiations. This process was punctuated
from time to time by planetary disturbances of thè
environment resulting in mass extinctions. They, in
turn, were followed again by a recovery and re-radia-
tion (Fig. 2). From thè standpoint of evolutionary
ecology, thè Graptoloidea behaved as thè famous
Russian doli — «Van’ka-vstan’ka» (literally «Johnnie,
keep standing!»). It has a weight attached to its
rounded base causing it always to recover its stand-
126
ADAM URBANEK
Fig. 6 - Morphological effects od adaptive radiation in Upper Silurian monograptids of thè subfamily Cucullograptinae,
as exhibited by thè sicula and thè First theca of thè colony. 1 - Lobograptus progenitor Urbanek, thè stem species of
thè group; 2 - L. simplex Urbanek, thè centrai species within thè subfamily and a generalized ancestor for divergent lines;
3 - L. expectatus Urbanek, an advanced but stili symmetric lobograptid; 4 - L. scanicus parascanicus (Kuhne); 5 - L. scanicus
amphirostris Urbanek; 6 - L. scanicus scanicus (Tullberg); 7 - L. imitator Urbanek; 8 - L. invertus Urbanek; 9 - L. cirrifer Urba¬
nek; 10 - Cucullograptus hemiaversus Urbanek; 11 - C. aversus rostratus Urbanek; 12 - C. pazdroi Urbanek. Heavy arrows indi¬
cate a presumable direction of evolution in symmetric lobograptids, whilst thin arrows show thè same in other lineages.
Note that 4-9 display hypertrophy of thè right lobe and 10-12 display hypertrophy of thè left lobe, a - indicates thè obverse
(left) aspect of thè aperture in asymmetric species (after Urbanek 1966, modified).
THE ORIGIN AND MAINTENANCE OF DIVERSITY : A CASE STUDY OF UPPER SILURIAN GRAPTOLOIDS
127
ing position. However, after one of thè bends some-
thing got wrong with thè toy itself — it never rose up
again. These problems, however, are beyond thè
scope of thè present contribution.
Acknowledgements — Many thanks are due to thè
organizers of thè workshop (Francesco Scudo, Gio¬
vanni Pinna and Michael Ghiselin) for having invited
me to attend this important meeting. The initial ver-
sion of my paper, delivered during thè meeting, was
commented upon by Michael Ghiselin, David Wake,
Alessandro Minelli and Alberto Simonetta. Moreo-
ver, Ghiselin, Minelli and Cesare Baroni Urbani sent
their comments to thè second version of my paper.
I used their valuable comments to improve my con¬
tribution and I thank them all. I would also like to
thank my wife Irina Bagajewa-Urbanek for translat-
ing this paper into English.
REFERENCES
Bell M. A., 1971 - Persistence of ancestral-sister species. Syste-
matic Zoology, 28: 85-88.
Bonde N., 1981 - Problems of species concepts in palaeontology.
Proceedings of Int. Symp. Concepì. Meth. in Palaeontology,
Barcelona, 19-34.
Boxshall G. A., 1981 - Community structure and resource parti-
tioning-the plankton. In. P. L. Forey (Ed.) The Evolving Bio-
sphere, Cambridge, 143-156.
Bulman O. M. B., 1971 - Graptolithina. In: R. C. Moore (Ed.)
Treatise on Invertebrate Paleontology, V (2nd ed.). Boulder,
Col., 163 pp.
Ford E. B., 1931 - Mendelism and Evolution. London, 122 pp.
Gosliner T. M., Ghiselin M. T., 1984 - Parallel evolution in
opisthobranch gastropods. Systematic Zoology, 33: 255-274.
Gould S. J., 1989 - Wonderful Life. The Burgess Shale and thè Na¬
ture of History. New York, 347 pp.
Hennig W., 1966 - Phylogenetic Systematics. Urbana, III., 263 pp.
Jablonski D., 1986 - Causes and consequences of mass ex-
tinctions: a comparative approach. In: D. K. Elliot (Ed.).
Dynamics of Extinction, New York, 183-229.
Koren’ T. N., Urbanek A., 1994 - Adaptive radiation of mono-
graptids after thè late Wenlock crisis. Acta Palaeontologica
Polonica , 39: 137-167.
Mayr E., 1982 - Speciation and macroevolution. Evolution, 36:
119-132.
McArthur R. H., Wilson E. O., 1967 - The Theory of Island Bio-
geography. Princeton, 191 pp.
Odin G.-S., Odin C., 1990 - Echelle numerique des temps geolo-
giques. Geochronique, 35: 12-21.
Plate L., 1922 - Allgemeine Zoologie und Abstammungslehre,
I. G. Fischer. Jena.
Remane A., 1956 - Die Grundlagen des Naturlichen System, der
Vergleichenden Anatomie und der Phylogenetik. Akademis-
che Verlagsges., Leipzig, 364 pp.
Saether O., 1983 - The canalized evolutionary potential. Syste¬
matic Zoology, 32: 343-359.
Simpson G. G., 1951 - The species concept. Evolution, 5: 285-298.
Simpson G. G., 1961 - Principles of Animai Taxonomy. Columbia
Univ. Press., New York, 247 pp.
Spoel S. van der, 1983 - Patterns in plankton distribution and
thè relation to speciation: thè dawn of pelagic biogeo-
graphy. In: R. W. Sims, J. H. Price & P. E. S. Wholey
(eds.). Evolution, Time and Space: The Emergence of
thè Biosphere. System. Assoc., Special Volume, London, 23:
291-334.
Urbanek A., 1963 - On generation and regeneration of cladia in
some Upper Silurian monograptids. Acta Palaeontologica
Polonica, 8: 135-258.
Urbanek A., 1966 - On thè morphology and evolution of thè Cu-
cullograptinae. Acta Palaeontologica Polonica, 11: 291-544.
Urbanek A., 1970 - Neocucullograptinae n. subfam. (Grapto¬
lithina) - their evolutionary and stratigraphic hearing. Acta
Palaeontologica Polonica, 15: 163-388.
Wiley E. O., 1978 - The evolutionary species concept reconside-
red. Systematic Zoology, 27: 17-26.
Wiley E. O., 1979 - An annotated Linnaean hierarchy, with com¬
ments on naturai taxa and competing Systems. Systematic
Zoology, 28: 308-337.
*)
Adam Urbanek: Instytut Paleobiologii PAN, al. Zwirki i Wigury 93, PL-02-089 Warsawa, POLAND
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
■
: •
■
-
David B. Wake
Schmalhausen’s evolutionary morphology
and its value in formulating research strategies
Abstract — Schmalhausen (1884-1963) made important contributions to several biological fields, notably embryology
evolutionary morphology, and evolution. Had his important work on stabilizing selection been available to western
biologists at thè time of thè «evolutionary synthesis» it is likely that he would be seen as one of its important architects His
early work as an expenmental embryologist contributed to his development of thè concepts of norm of reaction and
phenotypic plasticity as important components of evolutionary studies. Brief examples from recent studies of limb and
brain evolution in amphibians show how his work retains relevance for formulating research programs.
It is my contention that thè great Russian biologist
1. 1. Schmalhausen (1884-1963), was far ahead of his
time in his approach to problems in evolutionary
morphology. Contemporaries such as Dobzhansky
(1949) knew and appreciated him, but he was mainly
ignored by other western biologists, even includ-
ing Waddington, whose work paralleled that of
Schmalhausen in some important respects. Here I
review some of Schmalhausen’s main contributions
and show how his approach has relevance for deve-
loping modern research strategies in evolutionary
morphology.
Elsewhere (Wake, 1986) I have presented an Over¬
View and perspective on one of thè two books by
Schmalhausen (Factors of Evolution, The Theory of
Stabilizing Selection, 1949) that have been translated
into English. It is regrettable that more of his work is
not readily accessible to western readers, for even
thè most famous of his books in Russian (Schmal¬
hausen, 1969) remains untranslated. Increased atten-
tion has been accorded to Schmalhausen recently,
including a biography by his daughter (Schmalhau¬
sen, 1988) and interpretations of his scientific ap¬
proach to evolutionary studies (Alien, 1991; Voro-
byeva, 1992). I present only some highlights, derived
from Schmalhausen’s own work and from thè sour-
ces cited above (and papers cited in turn by them)
that are of special relevance to points I will make in
this paper.
Schmalhausen and his Contributions
Ivan Ivanovitch Schmalhausen was a student of
thè famous comparative anatomist A. N. Severtsov,
one of thè flrst true evolutionary morphologists
(Adam, 1980). Severtsov was interested in generai
rules of morphological development and evolution¬
ary transitions in morphology; that is, in regularities,
repeated patterns and parallels between ontogeny
and phylogeny. These issues were united in a field
that he termed «phyloembryogenesis». Schmalhau-
sens’s earliest work dealt with comparative studies of
limb and fin development in anurans, urodeles,
mammals and fìshes (Schmalhausen, 1907, 1908a,
1908b, 1910, 1912), and his contributions have been
of lasting value.
Schmalhausen was educated as a comparative em¬
bryologist and anatomist, and he remained associat-
ed with these areas of inquiry throughout thè first
part of thè century. The early part of Schmalhausen’s
professional career was an intellectually stimulating
time for Russian evolutionary biology. He was a con-
temporary of Chetverikov, whose early studies of
geographic genetic variation led to a long-continued
tradition and strong point in Russian biology. This
was thè intellectual environment that also produced
Dobzhansky. A prevalent theme was that there was a
great store of genetic variation in populations and
that populations simply absorbed mutations that
carne along steadily. Also important was Vavilov, a
great botanist whose work is more appreciated now
than in thè past, and who studied thè evolutionary
origins of domesticated plants. Vavilov was espe-
cially interested in regularities in patterns of plant
evolution, and is responsible for thè so-called
«laws» of homologous series (e.g., Vavilov, 1922).
I consider Vavilov to be thè father of modern studies
of homoplasy.
It was perhaps inevitable that a morphologist
interested in evolution would also become inter¬
ested in thè genetic foundation of morphological
variation, and Schmalhausen became increasingly
recognized, within Russia, as a generai evolutionary
biologist. He succeeded his old professor as director
of an institute in Moscow in 1936, and eventually
became Professor of Darwinism in thè University of
Moscow.
It was Schmalhausen’s great misfortune to work
during a period of great politicai uncertainty and tu-
mult. Both Chetverikov and Vavilov suffered politi¬
cai ostracism, and Vavilov disappeared. Schmalhau¬
sen himself was denounced during thè period of thè
ascendency of Lysenko and attacks on mendelian ge-
netics in thè late 1940’s, and he was removed from
his professorship (Zirkle, 1949). He was partially re-
habilitated later, on condition that he restrict himself
to studies of comparative embryology and morpho¬
logy and avoid genetics. The laboratory he then de-
veloped in Moscow made important contributions to
our understanding of comparative morphogenesis of
vertebrates.
The work that introduced Schmalhausen to thè
English-speaking community of evolutionary bioio-
130
DAVID B. WAKE
gists is «Factors of Evolution», translated from thè
earlier Russian version and published in 1949. This
hook was written during thè Second World War,
when Russia was out of touch with developments in
thè West, and even its publication in Russian was de-
layed until 1947 (thè Russian version is dated 1946,
but Dobzhansky [in Schmalhausen, 1949] States that
it did not appear until 1947). So, when it reached
American and British scientists it appeared to be
dated, with few modern references. Despite a lauda-
tory introduction by Dobzhansky, thè book really
had no immediate impact. It did not even cite Simp-
son or Mayr, so one can imagine how it was received
by these scientists, who considered themselves to be
thè architects of «The New Synthesis» (Mayr and
Provine, 1980); it was largely ignored.
Many of thè topics addressed by Schmalhausen
are of great interest today: norms of reaction, pheno-
typic plasticity, morphological stasis, and morpholo-
gical transitions are just a few of thè major items
(e.g., Sultan, 1992). I think of his book as thè most
comprehensive and even thè most lasting of thè
great works of thè period of thè modern synthesis
(that is, of thè books published from thè late 1930’s
through thè 1950’s). Alien (1991) has characterized
Schmalhausen’s work as that of a true, practicing dia-
lectical materialist (as contrasted with a mechanistic
materialist such as R. A. Fisher and perhaps most
western evolutionary biologists). The fusion of men-
delian genetics with darwinian naturai selection led
to a focus on genes and to thè reduction of issues
once thought to be organismal in nature into com-
ponent parts. The generai assumption of thè mecha¬
nistic materialists was that thè whole is equal to thè
sum of its parts, with no emergent qualities. Thus, in
neodarwinism there is emphasis on environmental
change, and on atomistic phenomena that frequently
are seen as parts of a mosaic of separate and interact-
ing, but ultimately independent, parts. In contrast,
thè dialectical materialist position of Schmalhausen
(enjoying a current resurgence, although most prac-
titioners are unconscious of thè philosophical under-
pinning) sees thè parts so interconnected that they
cannot be studied separately (Sewell Wright certain-
ly would have been comfortable with this). Change is
seen as a fundamental part of any System; it is not
necessarily imposed by outside phenomena but ra-
ther is built into thè interaction of parts, that is, it is
an expected outcome of thè organization of thè Sys¬
tem. The internai forces of change can be under-
stood as interactions of factors that are fundamental-
ly in opposition, but are nonetheless components of
thè System. Thus, on thè one hand, heredity is con¬
servative, while on thè other, variation is inevitable
and radicai in its possibilities. Evolution is thè out¬
come of what might be viewed as thè opposing forces
of heredity and variation. Furthermore, quantitative
changes always lead eventually to qualitative change,
so that novelty is an expectation. This can be seen
most clearly in thè processes associated with allopa¬
tìe speciation, where quantitative changes eventual¬
ly result in thè qualitative change of reproductive in-
compatibility. In all of this, historical contigency
plays a centrai role.
Alien (1991) has argued that Schmalhausen was a
committed dialectician, not a cosmetic one who was
conforming to a prevailing politicai System. In sup-
port of this view, Alien cites Schmalhausen’s con-
tinuous emphasis on thè contradictory forces invol-
ved in evolution, and his attempt at a true synthesis
between genetics and evolution theory, on thè one
hand, and embryology (and I would add morpholo-
gy) on thè other. Schmalhausen’s dialectical ap-
proach is especially clear in his focus on stabilizing
and dynamic selection as opposing forces; in fact,
one can logically argue that Schmalhausen more
than anyone else fìrst presented a full theory of stabi¬
lizing selection. In his world view, stabilizing selec¬
tion simply had to be emphasized.
I assert that thè development and utilization of thè
concept of thè norm of reaction has been one of
Schamalhausen’s most lasting contributions. A
norm of reaction is thè range of phenotypic expres-
sion of a given genotype. Schmalhausen recognized
stable (genetically fixed, in essence, and highly pre-
dictable) and labile («morphoses» and modifìca-
tions) traits. Morphoses (or phenocopies, features
which are indicative of thè potential of thè develop-
mental System, and hence also predictable) and mo-
difìcations, which he thought of as at least potential-
ly adaptive, both usually fall outside thè norm of
reaction of a genotype, except that some categories
of modifications could be within thè norm. Stabi¬
lizing selection converts labile into stable traits.
Selection on morphogenetic processes leads to thè
internalization of external cues, which stabilizes
development and makes outeomes highly predict¬
able. Clearly there is a hierarchical component in
this. In a variable environment, norms of reaction
change constantly, as stabilizing selection does its
work. Viewed in a modern perspective, what is need-
ed is a phylogenetic interpretation of thè evolution
of norms of reaction, for then w e will be able to
reach a true synthesis of homoplasy and directional
evolution.
Schmalhausen used many examples to show that
he was thoroughly familiar with then-current genet¬
ics, evolutionary theory, development, comparative
anatomy, and paleontology. He attempted a synth¬
esis that was both prescient and extraordinarily per-
ceptive. Regrettably, a truly modern synthesis stili
eludes us, and it is unclear to me whether this is be-
cause w e lack sufficient empiricism (thè almost daily
discoveries in developmental genetics continue to be
stunning in their possible implications), or because
we cannot see thè forest for thè trees.
My own research has been influenced by that of
Schmalhausen in a number of ways, and I will cite
two examples that show how his perspectives shaped
my work. The fìrst of these focuses on trait evolu¬
tion, and indirectly relates to morphoses, modifìca-
tions, and norms of reaction. The second relates to
hierarchical issues in organismal and taxic evolution,
and thè relation between parts and wholes.
Limb Evolution in Urodeles
Some of Schmalhausen’s earliest work dealt with
limb development in salamanders. His interest was
mainly in morphogenesis, but he was strongly in¬
fluenced by thè classic comparative anatomy practi-
ced in Europe in thè early part of this century and
therefore framed his study phylogenetically. He was
especially interested in thè relation of parts to wholes
with respect to limbs, in particular, thè organization
SCHMALHAUSEN’S EVOLUTIONARY MORPHOLOGY AND ITS VALUE
131
of thè mesopodial region, thè carpus and tarsus. The
mesopodia of salamanders contain a number of ele-
ments that arise as mesenchymal condensations
which chondrify and, in some taxa, ossify. Develop-
ment of thè region involves segmentation and bifur-
cation of axes of condensation (for a modern review
see Shubin and Alberch, 1986). Two of these axes
arise as segmentations (preaxial) and bifurcations
(postaxial) from thè rudimentary distai long bones
(radius and ulna in thè forelimb; tibia and fibula in
thè hindlimb). These axes grow from a proximal ori-
gin distally during development. A third arises as an
independent distai condensation (preaxial), which
spreads postaxially, segmenting and bifurcating to
form thè digitai arch (ultimately giving rise to thè
distai mesopodials, thè metapodials and thè digits).
The three axes converge in thè centrai postaxial re¬
gion, where Schmalhausen noted a recurrent variant
pattern, thè appearance of an additional centrai ele-
ment (called by him mediale 3, and hence known to
workers in thè fìeld as «Schmalhausen’s m»). He ar-
gued that this element is in thè background, so to
speak, of thè generative dynamics of thè limb, and
that it can variously be present as a separate element,
as an amalgamation with a centrai tarsal, or as an
amalgamation with a distai tarsal. Thus, he was ex-
ploring generative rules of development and both
thè bounds on phenotypic expression and thè oppor-
tunities presented for thè evolution of novelty. This
research clearly influenced his later important work
on phenotypic plasticity, stabilizing selection, and
hierarchical issues in evolutionary biology.
Recently Neil Shubin and I have been exploring
patterns of variation in salamander limb develop¬
ment from a phylogenetic perspective. In one recent¬
ly completed study (coauthored with Andrew Craw-
ford) we examined a large series of specimens of thè
newt Taricha granulosa, collected from a single pond
in California that had unexpectedly frozen solid and
killed thè newts. We examined 452 skeletons, and
found that about 95% of thè forelimbs and 89% of thè
hindlimbs has thè expected, «standard» organiza-
tional pattern of thè mesopodials. An enormous
number of combinations fusion or separation of thè
seven carpai and nine tarsal elements can be concei-
ved, but we encountered only 21 carpai and eleven
tarsal patterns. We found that five patterns were bila¬
terali symmetrical, which implies an organismal
basis (as opposed to a locai developmental irregular-
ity). By far thè most common of these patterns, both
absolutely and in a symmetrical state, was Schmal-
hausens’s m (in 5.4% of hindlimbs, and as a symme¬
trical pattern in both hindlimbs in 2.0% of indivi¬
duai). A phylogenetic analysis disclosed that thè
presence of m as a discrete element restores an an-
cestral character, found both in fossil temnospondyls
and in basai outgroups among salamander taxa.
Thus, m is a phylogenetic atavism, thè reappearance
of a trait characteristic of ancestral taxa. One other
symmetrical state also is an atavism. The three re-
maining symmetrical States duplicate patterns found
J elsewhere among urodeles either as rare variants or
' as fixed, novel, apomorphic States. Interestingly, m
plays a role in three of thè five most common pat¬
terns, either as a free-standing atavism or as a part of
an amalgamation that has biomechanical and hence
possibly adaptive significance. The apomorphies are
morphological novelties that have been related to
both developmental and adaptive processes (e.g.,
Wake, 1991). The criticai point is that all of thè va¬
riants are familiar; evolution tends to run in grooves,
with generative processes channeling phenotypic ex¬
pression. The bounded patterns of variation are thè
manifestation of a combination of phylogenetic his-
tory and developmental constraints. What ultimately
becomes fixed in a clade may well represent thè
working of naturai selection on thè underlying va¬
riation. The variant patterns appear as complete and
integrated alternative States, and thè selection pres-
sures leading to their fìxation could be very weak.
Once fixed, thè new patterns might be very import¬
ant, and in hindsight viewed as key innovations
which open new possibilities for evolutionary diver-
sifìcation (Larson et al., 1981; Wake and Larson,
1987; Wake, 1991).
Brain Evolution in Urodeles
Brains of salamanders historically have been
viewed as very generalized, and many neuroanato-
mists have referred to them as primitive. Others have
observed that they appear to be developmentally
relatively undifferentiated. However, there clearly
is something wrong with this observation, for in
many respects thè brains of chondrichthyans and
even those of petromyzontids are anatomically more
complex than those of salamanders. Furthermore,
several parts of thè teleost brain are vastly more
complex (e. g., thè cerebellum) than those of sa¬
lamanders. So, on phylogenetic grounds it is clear
that thè salamander brain is secondarily simplifìed
(Roth et al., 1993). In collaboration with G. Roth,
K. Nishikawa and others in their laboratories and
mine, we have been exploring thè reasons for this
simplification. It now seems clear that salamanders
are, in essence, caught in a phylogenetic and evolu¬
tionary trap. On thè one hand, they have extraordi-
narily large genomes, and having large genomes
means having large cells (Session and Larson, 1987.
On thè other hand, they are relatively small vertebra-
tes, and some of them are very small, perhaps thè
smallest tetrapods; this means that they have to pro¬
duce a complicated brain in a small space with very
large cells, and so something has to give. Neuron
packing is nearly as tight as it can be, and there is
little glial matter in thè smallest species (Roth et al.,
1990). The extreme cases of brain simplification
are found in salamanders of very small size (sev¬
eral species mature at body sizes less than 20 mm)
with thè largest genomes and cells. I have argued
(Hanken and Wake, 1993) that these small salaman¬
ders are biologically very much smaller than their
metric size implies, and when comparing taxa that
vary greatly in celi size, metric size inappropriately
and inadequately expresses biological size. Recently
we found that large genomes also mean morpholo¬
gical simplification of brain organization in two
other vertebrate clades, frogs and dipnoans (Roth
et al., 1994).
Brain organization in amphibians illustrates well
thè signifìcance of hierarchical factors (relation of
molecules, cells, organs and organisms) in evolution.
In addition, it shows how misleading it can be to con-
sider isolated parts outside of thè context of thè
whole. It is far more parsimonious to interpret thè
132
DAVID B. WAKE
overall organization of thè brain as being directly
related to celi size than it is to generate a series of
separate explanations for thè simplifìed organization
of one part after thè other.
Summary
Schmalhausen developed a perspective toward
evolutionary biology that is resoundingly modern.
He was a through-going darwinian, who understood
naturai selection theory and applied externalist per-
spectives throughout his career, but at thè same time
he was a well trained embryologist who understood
thè nature of generative rules and interpreted them
in an evolutionary framework. Evolutionary deve-
lopmental biology is only one field that owes
Schmalhausen a debt. His contributions were gen¬
erai, in that they dealt with all of organismal evolu¬
tionary biology, and I believe that they will be some
of thè most long-lasting contributions from thè per-
iod of thè late 1930’s and early 1940’s. During thè last
decade, and continuing to thè present, there has
been a rebirth of interest in many of thè issues
Schmalhausen first raised.
Acknowledgments — I thank thè organizers of
this conference for thè invitation to participate,
and my colleagues N. Shubin, G. Roth and
K. Nishikawa for permission to cite unpublished
work. I appreciate constructive comments on
thè manuscript by S. Deban, M. Ghiselin, E. Jo-
ckusch, M. Mahoney, A. Minelli, C. Schneider
and M. Wake. My research is supported by thè
National Science Foundation and thè Gompertz
Professorship.
REFERENCES
Adams M., 1980 - Severtsov and Schmalhausen: Russian mor-
phology and thè evolutionary synthesis. In: E. Mayr and
W. B. Provine, eds., The Evolutionary Synthesis. Harvard
Univ. Press, Cambridge, Mass: 193-225.
Allen G. E., 1991 - Mechanistic and dialectical materialism in
20th century evolutionary theory: thè work of Ivan I.
Schmalhausen. In: L. Warren and H. Koprowski, eds., New
Perspectives on Evolution. Wiley-Liss, New York: 15-36.
Dobzhansky T., 1949 - Foreword to Factors of Evolution, by
I. I. Schmalhausen. Blakiston, Philadelphia: 327 pp.
Larson A., Wake D. B., Maxson L. R. and Highton R., 1981 - A
molecular phylogenetic perspective on thè origins of mor-
phological novelties in thè salamanders of thè tribe Pletho-
dontini (Amphibia, Plethodontidae). Evolution, 35:405-422.
Mayr E. and Provine W. B., 1980 - The Evolutionary Synthesis.
Harvard Univ. Press, Cambridge, Mass.: 487 pp.
Roth G., Rottluff B., Grunwald W., Hanken J. and Linke R.,
1990 - Miniaturization in plethodontid salamanders (Cauda¬
ta: Plethodontidae) and its consequences for thè brain and
visual System. Biol. J. Linn. Soc., 40:165-190.
Roth G., Nishikawa K. C., Naujoks-Manteuffel C., Schmidt
A. and Wake D. B., 1993 - Paedomorphosis and simplifica-
tion in thè nervous System of salamanders. Brain, Behavior
and Evolution, 42:137-170.
Roth G., Blanke J. and Wake D. B., 1994 - Celi size predicts
morphological complexity in thè brains of frogs and sala¬
manders. Proc. Nati. Acad. Sci., USA, 91: 4796-4800.
Schmalhausen I. I., 1907 - Die Enwicklung des Skelettes der
vordern Extremitàt der anuren Amphibien. Anat. Anz., 31:
177-187.
Schmalhausen I. I., 1908 a - Die Enwicklung des Skelettes der
hinteren Extremitàt der anuran Amphibien. Anat. Anz.,
33:337-344.
Schmalhausen 1. 1., 1908 b - Zur Morphologie des Saugertierfus-
ses. Anat. Anz., 33:373-378.
Schmalhausen 1. 1., 1910 - Die Entwicklung des Extremitàtens-
kelettes von Salamandrella kayserlingii. Anat. Anz., 37:
431-446.
Schmalhausen I. I., 1912 - Zur Morphologie der unpaaren Flos-
sen. I. Die Entwicklung des Skelettes und der Muskulatur der
unpaaren Flossen der Fische. Z. wiss. Zool., 100: 509-587.
Schmalhausen 1. 1., 1917 - On thè extremities of Ranidens sibiri-
cus Ressi. Rev. Zool. Russe, 2:129-135.
Schmalhausen 1. 1., 1949 - Factors of Evolution, The Theory of
Stabilizing Selection. Blakiston, Philadelphia: 327 pp.
Schmalhausen I. I., 1968 - The Origin of Terrestrial Vertebra-
tes. Academic Press, New York: 314 pp.
Schmalhausen I. I., 1969 - Problems of Darwinism. Nauka, Li-
ningrad: 493 pp. (in Russian).
Schmalhausen O. I., 1988 - Ivan Ivanovich Schmalhausen.
Nauka, Moscow: 256 pp. (in Russian).
Sessions S. K. and Larson A., 1987 - Developmental correlates
of genome size in plethodontid salamanders and their impli-
cations for genome evolution. Evolution, 41: 1239-1251.
Shubin N. and Alberch P., 1986 - A morphogenetic approach to
thè origin and basic organization of thè tetrapod limb. Evol.
Biol, 20:319-387.
Shubin N., Wake D. B. and Crawford A. J., 1995 - Predictable
morphological variation in thè limbs of Taricha granulosa
(Caudata: Salamandridae): evolutionary and phylogenetic
implications. Evolution.
Sultan S. E., 1992 - Phenotypic plasticity and thè Neo- Darwi¬
nian legacy. Evol. Trends in Plants, 6: 61-71.
Vavilov N., 1922 - The law of homologous series in variation.
Genetics, 12: 47-89.
Vorobyeva E., 1992 - In thè search for thè new strategy of evolu¬
tionary synthesis. Rivista di Biologia, 85: 213-224.
Wake D. B., 1986 - Foreword, 1986. Reprinted edition of Schmal¬
hausen 1. 1. Factors of Evolution. University of Chicago Press,
Chicago: 327 pp.
Wake D. B., 1991 - Homoplasy: thè result of naturai selection or
evidence of design limitations? Am Nat., 138: 543- 567.
Wake D. B. and Larson A., 1987 - Multidimensional analysis of
an evolving lineage. Science, 238: 42-48.
Zirkle C. (ed.), 1949 - Death of a Science in Russia. Univ. Penn¬
sylvania Pres, Philadelphia: 319 pp.
David B. Wake: Department of Integrative Biology and Museum of Vertebrate Zoology,
University of California, Berkeley, CA 94720 - 3160 U.S.A.
Systematic Biology as an Historical Science
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo I - 1996
133
INDEX
Introduction .
Systematic biology as an historical Scien¬
ce: discussion and retrospect by Michael
Ghiselin .
E. Nicholas Arnold - The role of biologi-
cal process in phylogenetics with exam-
ples from thè study of lizards ....
Yves Bouligand - Morphological singula-
rities and macroevolution .
Mikhail A. Fedonkin - The Precambrian
fossil record: new insight of life . . .
Michael T. Ghiselin - Charles Darwin,
Fritz Miiller, Anton Dohrn and thè origin
of evolutionary physiological anatomy .
James R. Griesemer - Some concepts of
historical Science .
Alessandro Minelli - Some thought on ho-
mology 150 years after Owen’s defmition
Robert J. O’Hara - Trees of history in sys-
tematics and philology .
--
»
Volume XIV
Volume XX
- Venzo S., 1965 - Rilevamento geologico dell’anfiteatro
morenico frontale del Garda dal Chiese all’Adige, pp. 1-82,
11 figg., 4 tavv., 1 carta.
1 - Pinna G., 1966 - Ammoniti del Lias superiore (Toarciano)
dell’Alpe Turati (Erba, Como). Famiglia Dactyliocerati-
dae. pp. 83-136, 4 tavv.
''] - Dieni I., Massari F. e Montanari L., 1966 - Il Paleogene
dei dintorni di Orosei (Sardegna), pp. 137-184, 5 figg.,
8 tavv.
I - Cornaggia Castiglioni O., 1971 - La cultura di Reme-
delio. Problematica ed ergologia di una facies dell’Eneoli¬
tico Padano, pp. 5-80, 2 figg., 20 tavv.
II - Petrucci F., 1972 - Il bacino del Torrente Cinghio (Prov.
Parma). Studio sulla stabilità dei versanti e conservazione
del suolo, pp. 81-127, 37 figg., 6 carte tematiche.
Ili - Ceretti E. & Poluzzi A., 1973 - Briozoi della biocalcare-
nite del Fosso di S. Spirito (Chieti, Abruzzi), pp. 129-169,
18 figg., 2 tavv.
Volume XV
- Caretto P. G., 1966 - Nuova classificazione di alcuni
Briozoi pliocenici, precedentemente determinati quali
Idrozoi del genere Hydractinia Van Beneden. pp. 1-88,
27 figg., 9 tavv.
- Dieni I. e Massari F., 1966 - Il Neogene e il Quaternario
dei dintorni di Orosei (Sardegna), pp. 89-142, 8 figg., 7 tavv.
1 - Barbieri F., Iaccarino S., Barbieri F. & Petrucci F.,
1967 - Il Pliocene del Subappennino Piacentino-Parmen¬
se- Reggiano, pp. 143-188, 20 figg., 3 tavv.
Volume XVI
- Caretto P. G., 1967 - Studio morfologico con l’ausilio del
metodo statistico e nuova classificazione dei Gasteropodi
pliocenici attribuibili al Murex brandaris Linneo, pp. 1-60,
1 fig., 7 tabb., 10 tavv.
I - Sacchi Vialli G. e Cantaluppi G., 1967 - 1 nuovi fossi¬
li di Gozzano (Prealpi piemontesi), pp. 61-128, 30 figg.,
8 tavv.
ili - Pigorini B., 1967 - Aspetti sedimentologici, del Mare
Adriatico, pp. 129-200, 13 figg., 4 tabb., 7 tavv.
Volume XVII
| - Pinna G., 1968 - Ammoniti del Lias superiore (Toarciano)
dell’Alpe Turati (Erba, Como). Famiglie Lytoceratidae,
Nannolytoceratidae, Hammatoceratidae (excl. Phymatoce-
ratinae ), Hildoceratidae (excl. Hildoceratinae e Bouleicera-
tinae). pp. 1-70, 2 tavv. n.t., 6 figg., 6 tavv.
H - Venzo S. & Pelosio G., 1968 - Nuova fauna a Ammonoidi
dell’Anisico superiore di Lenna in Val Brembana (Berga¬
mo). pp. 71-142, 5 figg., 11 tavv.
il Pelosio G., 1968 - Ammoniti del Lias superiore (Toarcia¬
no) dell’Alpe Turati (Erba, Como). Generi Hildoceras,
Phymatoceras, Paroniceras e Frechieìla. Conclusioni gene¬
rali. pp. 143- 204, 2 figg., 6 tavv.
Volume XVIII
[
il
- Pinna G., 1969 - Revisione delle ammoniti figurate da
Giuseppe Meneghini nelle Tavv. 1-22 della « Monographie
des fossiles du calcaire rouge ammonitique » (1867-1881).
pp. 5-22, 2 figg., 6 tavv.
- Montanari L., 1969 - Aspetti geologici del Lias di Gozza¬
no (Lago d’Orta). pp. 23-92, 42 figg., 4 tavv. n.t.
- Petrucci F., Bortolami G. C. & Dal Piaz G. V., 1970 -
Ricerche sull’anfiteatro morenico di Rivoli-Avigliana
(Prov. Torino) e sul suo substrato cristallino, pp. 93-169,
con carta a colori al 1:40.000, 14 figg., 4 tavv. a colori e 2 b.n.
Volume XIX
GL-
Cantaluppi G., 1970 - Le Hildoceratidae del Lias medio
delle regioni mediterranee - Loro successione e modifi¬
cazioni nel tempo. Riflessi biostratigrafici e sistematici.
pp. 5-46, con 2 tabelle nel testo.
Pinna G. & Levi-Setti F., 1971 - I Dactylioceratidae del¬
la Provincia Mediterranea ( Cephalopoda Ammonoidea).
pp. 47- 136, 21 figg., 12 tavv.
Pelosio G., 1973 - Le ammoniti del Trias medio di Askle-
pieion (Argolide, Grecia) - 1. Fauna del «calcare a Ptychi-
tes» (Anisico sup.). pp. 137-168, 3 figg., 9 tavv.
Volume XXI
I - Pinna G., 1974 - 1 crostacei della fauna triassica di Cene in
Val Seriana (Bergamo), pp. 5-34, 16 figg., 16 tavv.
II - Poluzzi A., 1975 - 1 Briozoi Cheilostomi del Pliocene del¬
la Val d’Arda (Piacenza, Italia), pp. 35-78, 6 figg., 5 tavv.
Ili - Brambilla G., 1976 - I Molluschi pliocenici di Villal-
vernia (Alessandria). I. Lamellibranchi. pp. 79-128, 4 figg.,
10 tavv.
Volume XXII
I - Cornaggia Castiglioni O. & Calegari G., 1978 - Cor¬
pus delle pintaderas preistoriche italiane. Problematica,
schede, iconografia, pp. 5-30, 6 figg., 13 tavv.
II - Pinna G., 1979 - Osteologia dello scheletro di Kritosaurus
notabilis (Lambe, 1914) del Museo Civico di Storia Na¬
turale di Milano ( Ornithischia Hadrosauridae). pp. 31-56,
3 figg-, 9 tavv.
Ili - Biancotti A., 1981 - Geomorfologia dell’Alta Langa (Pie¬
monte meridionale), pp. 57-104, 28 figg., 12 tabb., 1 carta ft.
Volume XXIII
I - Giacobini G., Calegari G. & Pinna G., 1982 - I resti
umani fossili della zona di Arena Po (Pavia). Descrizione
e problematica di una serie di reperti di probabile età
paleolitica, pp. 5-44, 4 figg., 16 tavv.
II - Poluzzi A., 1982 - 1 Radiolari quaternari di un ambiente
idrotermale del Mar Tirreno, pp. 45-72, 3 figg., 1 tab., 13 tavv.
Ili - Rossi F., 1984 - Ammoniti del Kimmeridgiano superiore
Berriasiano inferiore del Passo del Furio (Appennino
Umbro-Marchigiano), pp. 73-138, 9 figg., 2 tabb., 8 tavv.
Volume XXIV
I - Pinna G., 1984 - Osteologia di Drepanosaurus unguicau-
datus, lepidosauro triassico del sottordine Lacertilia.
pp. 7-28, 12 figg., 2 tavv.
II - NosottiS., Pinna G., 1989 -Storia delle ricerche e degli stu¬
di sui rettili Placodonti. Parte prima 1830-1902. pp. 29-84,
24 figg., 12 tavv.
Volume XXV
I - Calegari G., 1989 - Le incisioni rupestri di Taouardei
(Gao, Mali) - Problematica generale e repertorio iconogra¬
fico. pp. 1-14, 9 figg., 24 tavv.
II - Pinna G. & Nosotti S., 1989 - Anatomia, morfologia
funzionale e paleoecologia del rettile placodonte Psepho-
derma alpinum Meyer, 1858. pp. 15-50, 18 figg., 9 tavv.
Ili - Caldara R., 1990 - Revisione tassonomica delle specie
paleartiche del genere Tychius Germar (Coleoptera
Curculionidae). pp. 51-218, 575 figg.
Volume XXVI
I - Pinna G., 1992 - Cyamodus hildegardis Peyer, 1931 (Repti-
lia, Placodontia). pp. 1-21, 23 figg.
II - Calegari G. a cura di, 1993 - L’arte e l’ambiente del Saha¬
ra preistorico: dati e interpretazioni, pp. 25-556, 647 figg.
Ili - Andri E. e Rossi F., 1993 - Genesi ed evoluzione di frangen¬
ti, cinture, barriere ed atolli. Dalle stromatoliti alle comunità
di scogliera moderne, pp. 559-610, 49 figg., 1 tav.
Le Memorie sono disponibili presso la Segreteria della Società Italiana di Scienze Natu
Museo Civico di Storia Naturale, Corso Venezia 55 - 20121 Milano
MEMORIE
MCZ
Volume XXVII -
libra ?y
JU'l 0 8 J998
Fascicolo II
Harvard
- VWVERSlTy
della Società Italiana
di Scienze Naturali
e del Museo Civico
di Storia Naturale di Milano
STUDI GEOBOTANICI ED ENTOMOFAUNISTICI
NEL PARCO REGIONALE DEL MONTE BARRO
A cura di
CARLO LEONARDI E DAVIDE SASSI
MILANO 17 DICEMBRE 1997
Elenco delle Memorie della Società Italiana di Scienze Naturali
e del Museo Civico di Storia Naturale di Milano
Volume I
I - Cornalia E., 1865 - Descrizione di una nuova specie dei
genere Felis: Felis jacobita (Corn .).9 pp., 1 tav.
II - Magni-Griffi E, 1865 - Di una specie d 'Hippolais nuova
per l’Italia. 6 pp., 1 tav.
Ili - Gastaldi B., 1865 - Sulla riescavazione dei bacini lacustri
per opera degli antichi ghiacciai. 30 pp., 2 figg., 2 tavv.
IV - Seguenza G., 1865 - Paleontologia malacologica dei terre¬
ni terziarii del distretto di Messina. 88 pp., 8 tavv.
V - Gibelli G., 1865 - Sugli organi riproduttori del genere Ver¬
rucaria. 16 pp., 1 tav.
VI - Beggiato F. S., 1865 - Antracoterio di Zovencedo e di
Monteviale nel Vicentino. 10 pp., 1 tav.
VII - Cocchi I.,1865 - Di alcuni resti umani e degli oggetti di
umana industria dei tempi preistorici raccolti in Toscana.
32 pp., 4 tavv.
Vili - Targioni-Tozzetti A. 1866 - Come sia fatto l’organo che
fa lume nella lucciola volante dell’Italia centrale (Luciola
italica) e come le fibre muscolari in questo ed altri Insetti
ed Artropodi. 28 pp., 2 tavv.
IX - Maggi L., 1865 - Intorno al genere Aeolosoma. 18 pp., 2
tavv.
X - Cornalia E., 1865 - Sopra i caratteri microscopici offerti
dalle Cantaridi e da altri Coleotteri facili a confondersi con
esse. 40 pp., 4 tavv.
Ili - Marinoni G, 1868 - Le abitazioni lacustri e gli avanzi di
umana industria in Lombardia. 66 pp., 5 figg., 7 tavv.
IV - (Non pubblicato).
V - Marinoni C, 1871 - Nuovi avanzi preistorici in Lombar¬
dia. 28 pp., 3 figg., 2 tavv.
NUOVA SERIE
Volume V
I - Martorelli G., 1895 - Monografia illustrata degli uccelli
di rapina in Italia. 216 pp., 46 figg., 4 tavv.
Volume VI
I - De Alessandri G., 1897 - La pietra da cantoni di Rosi-
gnano e di Vignale. Studi stratigrafici e paleontologici. 104
pp., 2 tavv., 1 carta.
II - Martorelli G. 1898 - Le forme e le simmetrie delle mac¬
chie nel piumaggio. Memoria ornitologica. 112 pp., 63 figg.,
1 tavv.
Ili - Pavesi P, 1901- L’abbate Spallanzani a Pavia. 68 pp., 14
figg., 1 tav.
Volume VII
I - De Alessandri G., 1910 - Studi sui pesci triasici della Lom¬
bardia. 164 pp., 9 tavv.
Volume II
I - Issel A., 1866 - Dei Molluschi raccolti nella provincia di Pi¬
sa. 38 pp.
II - Gentilli A., 1866 - Quelques considérations sur l’origine
des bassins lacustres, àpropos des sondages du Lac de Co¬
me. 12 pp., 8 tavv.
Ili - Molon F., 1867 - Sulla flora terziaria delle Prealpi venete.
140 pp.
IV - D’Achiardi A., 1866 - Corollarj fossili del terreno num-
mulitico delle Alpi venete. 54 pp., 5 tavv.
V - Cocchi I., 1866 - Sulla geologia dell’alta Valle di Magra. 18
pp., 1 tav.
VI - Seguenza G., 1866 - Sulle importanti relazioni paleontolo¬
giche di talune rocce cretacee della Calabria con alcuni ter¬
reni di Sicilia e dell’ Africa settentrionale. 18 pp., 1 tav.
VII - Cocchi I., 1866 - L’uomo fossile nell’Italia centrale. 82 pp.,
21 figg., 4 tavv.
Vili - G aro vaglio S., 1866 - Manzonia cantiana, novum Liche-
num Angiocarporum genus propositum atque descriptum. 8
pp. 1 tav.
IX - Seguenza G., 1867 - Paleontologia malacologica dei terre¬
ni terziarii del distretto di Messina (Pteropodi ed Eteropo-
di). 22 pp., 1 tav.
X - Durer B., 1867 - Osservazioni meteorologiche fatte alla
Villa Carlotta sul lago di Como. ecc. 48 pp. 11 tavv.
Volume III
I - Emery C, 1873 - Studii anatomici sulla Vipera Redii. 16
pp., 1 tav.
II - Garovaglio S., 1867 - Thelopsis, Belonia, Weitenwebera et
Limboria, quatuor Lichenum Angiocarporum genera reco-
gnita iconibusque illustrata. 12 pp., 2 tavv.
Ili - Targioni-Tozzetti A., 1867 - Studii sulle Cocciniglie. 88
pp., 7 tavv.
IV - Claparède E. R. e Panceri R, 1867 - Nota sopra un Al-
ciopide parassito della Cydippe densa Forsk. 8 pp. 1 tavv.
V - Garovaglio S., 1871 - De Pertusariis Europae mediae
commentano. 40 pp., 4 tavv.
Volume IV
I - D’Achiardi A., 1868 - Corollarj fossili del terreno num-
mulitico dell’Alpi venete. Parte 11. 32 pp. 8 tavv.
II - Garovaglio S., 1868 - (Detona Lichenum genera vel adhuc
controversa, vel sedis prorsus incertae in systemate, novis
descriptionibus iconibusque accuratissimis illustrata. 18 pp.,
2 tavv.
I
II -
III -
I
II -
III -
I
II -
III -
I
ii-m-
i
i
ni -
Volume Vili
Repossi E., 1915 - La bassa Valle della Mera. Studi petro¬
grafia e geologici. Parte I .pp. 1-46, 5 figg., 3 tavv.
Repossi E., 1916 (1917) - La bassa Valle della Mera. Studi
petrografici e geologici. Parte IL pp. 47-186, 5 figg. 9 tavv.
Airaghi C, 1917 - Sui molari d’elefante delle alluvioni
lombarde, con osservazioni sulla filogenia e scomparsa di
alcuni Proboscidati.pp. 187-242, 4 figg., 3 tavv.
Volume IX
Bezzi M. 1918 - Studi sulla ditterofauna nivale delle Alpi
italiane, pp. 1-164, 7 figg. 2 tavv.
Sera G. L., 1920 - Sui rapporti della conformazione della
base del cranio colle forme craniensi e colle strutture della
faccia nelle razze umane. (Saggio di una nuova dottrina
craniologica con particolare riguardo dei principali cranii
fossili), pp. 165-262, 7 figg., 2 tavv.
De Beaux O. e Festa E., 1927 - La ricomparsa del Cin¬
ghiale nell’Italia settentrionale-occidentale, pp. 263-320, 13
figg., 7 tavv.
Volume X
Desio A., 1929 - Studi geologici sulla regione dell’Albenza
(Prealpi Bergamasche), pp. 1-156, 27 figg., 1 tav., 1 carta.
Scortecci G., 1937 - Gli organi di senso della pelle degli
Agamidi. pp. 157-208, 39 figg. 2 tavv.
Scortecci G., 1941- 1 recettori degli Agamidi. pp. 209-326,
Volume XI
Guigilia D., 1944 - Gli Sfecidi italiani del Museo di Mila¬
no (Hymen.). pp. 1-44, 4 figg., 5 tavv.
Giacomini V. e Pignatti S., 1955 - Flora e Vegetazione del¬
l’Alta Valle del Braulio. Con speciale riferimento ai pasco¬
li di altitudine, pp. 45-238, 31 figg., 1 carta.
Volume XII
Vialli V., 1956 - Sul rinoceronte e l’elefante dei livelli su¬
periori della serie lacustre di Leffe (Bergamo), pp. 1-70, 4
figg. 6 tavv.
Venzo S., 1957 - Rilevamento geologico dell’anfiteatro
morenico del Garda. Parte I: Tratto occidentale Gardone-
Desenzano. pp. 71-140, 14 figg., 6 tavv., 1 carta.
Vialli V., 1959 - Ammoniti sinemuriane del Monte Alben-
za (Bergamo), pp. 141-188, 2 figg., 5 tavv.
Studi geobotanici ed entomofaunistici
nel Parco Regionale del Monte Barro
a cura di
Carlo Leonardi
Sezione di Entomologia del Museo Civico di Storia Naturale di Milano
Davide Sassi
Collaboratore della Sezione di Entomologia del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II
17 Dicembre 1997
Memorie della Società Italiana di Scienze Naturali
e del Museo Civico di Storia Naturale di Milano
© Società Italiana di Scienze Naturali e
Museo Civico di Storia Naturale di Milano
corso Venezia, 55 - 20121 Milano
In copertina: Hypera vidua (Gené), disegno di Carlo Pesarmi.
Registrato al Tribunale di Milano al n. 6694
Direttore responsabile: Luigi Cagnolaro
Grafica editoriale: Michela Mura
Stampa Litografia Solari, Peschiera Borromeo - Dicembre 1997
137
INTRODUZIONE
Pur essendo di limitata estensione, il Parco del
Monte Barro, istituito dalla Regione Lombardia con
legge n. 78 del 16 settembre 1983, presenta un eleva¬
to interesse paesaggistico, geologico e naturalistico, in
particolare per quanto riguarda la flora (che com¬
prende numerosi endemismi) e la vegetazione.
In considerazione del fatto che, malgrado le pecu¬
liarità di questo Parco, la sua entomofauna risultava
praticamente sconosciuta, il Museo di Storia Natura¬
le di Milano si è posto l’obbiettivo di colmare, sia pur
in modo molto parziale, tale lacuna, effettuando in
quest’area, con un Contributo economico che il Par¬
co ha concesso alla Società Italiana di Scienze Natu¬
rali, una serie di raccolte negli anni 1989-1992. Il cen¬
simento faunistico, inizialmente finalizzato allo stu¬
dio dei Coleotteri Crisomelidi, è stato successiva¬
mente esteso ad altri gruppi di insetti, prevalente¬
mente o esclusivamente fitofagi, e ai ragni; sul cospi¬
cuo materiale raccolto si basano i lavori riuniti in
questo volume.
La nostra più viva riconoscenza va al Presidente e
al Direttore del Consorzio Parco Monte Barro, Prof.
Giuseppe Panzeri e Dr. Mauro Villa, che fin dall’ini¬
zio hanno appoggiato questo progetto.
Carlo Leonardi & Davide Sassi
Enrico Banfi, Gabriele Galasso & Davide Sassi
Aspetti floristico - vegetazionali del Monte Barro (Prealpi di
Lecco) in relazione all’area delle raccolte entomologiche
Riassunto - È stata studiata la flora di 9 stazioni di ambiente aperto nell’area del Parco del Monte Barro, con partico¬
lare riguardo per gli aspetti sistematico-tassonomici e corologici, dai quali è emersa la necessità di una revisione critica glo¬
bale della flora dell’intero territorio del Barro. Tale ricerca, servita di supporto a una più vasta indagine entomologica, ha
messo in evidenza aspetti della vegetazione, ufficialmente già noti, la cui interpretazione tuttavia potrà essere modificata o
migliorata da una più esatta conoscenza della flora; ciò anche nella prospettiva di acquisire le basi per una valutazione at¬
tendibile della biodiversità dell’intero territorio.
Abstract - Floristic and vegetational aspects of Mt. Barro (Italy, Lombardy, Prealps of Lecco) referring to thè area of
thè entomological sampling.
The flora of Mt Barro has been already investigated in thè past. A detailed floristic analysis of 9 meadow samples, re-
cently accomplished to support an entomological research which has been carried out by thè Naturai History Museum of
Milano, has evidenced interesting systematic-taxonomic and phytogeographic data. These observations lead thè authors to
consider thè necessity of examining again thè flora of thè whole territory on thè basis of modera knowledge and concepts,
especially in order to throw light on thè biodiversity and to determine its consistence. Furthermore thè vegetation is taken
into account to identify plant communities of sampling sites 1-8. Phytodiversity has been evaluated by using k-dominance
and diversity Shannon parameters.
Key words: Mt. Barro, Flora, Vegetation.
Il Monte Barro è un piccolo massiccio calcareo co¬
stituito prevalentemente da bancate di Dolomia nori-
ca, prospicente il versante sudorientale (Monte Mo-
regallo, Monte Rai, Corni di Canzo) dei rilievi del co¬
siddetto Triangolo Ladano e da questo separato me¬
diante l’ampia depressione alluvionale della Val Ma-
drera. Direttamente affacciato a oriente sul Lario lec-
chese, determina, con le sue pendici settentrionali, la
separazione di questo dal piccolo bacino di Garlate,
segnando l’inizio della valle dell’Adda postiariana.
È strutturalmente e morfologicamente connesso
con la piccola catena dei Colli Briantei che, allungata
in direzione nord-sud, costituisce per una quindicina
di chilometri lo spartiacque tra la valle del Lambro, a
occidente, e il corso dell’Adda, a oriente.
Pur non segnando, con la sua cima, una quota par¬
ticolarmente elevata, 922 m, il Monte Barro possiede
notevoli motivi di interesse geomorfologico e floristi¬
co. Durante le fasi di maggiore espansione dei ghiac¬
ci pleistocenici, l’intera superficie, a eccezione della
vetta e di alcune anticime poste a meridione di essa,
fu ricoperta dai ghiacci che, oltre a lasciare profonde
tracce sulla morfologia del territorio, cancellarono
ogni forma di vegetazione. L’attuale flora è dunque di
ì formazione recente, essendosi ricostituita a partire
dall’ultimo interglaciale.
La particolare posizione strategica del Monte
Barro, isolato dai rilievi circostanti e affacciato a sud
sulla vasta pianura briantea, fu sfruttata in epoca sto¬
rica dai Romani e, successivamente, dai Goti, che vi
costituirono vari nuclei di insediamento, databili al V-
VI sec. d. C., a tutt’oggi soltanto in parte esplorati.
Una serie di campagne di scavi, condotte regolar¬
mente in questi ultimi anni, ha portato al ritrovamen¬
to di reperti di notevole interesse.
Vista dunque la grande importanza, sia naturali¬
stica che storica, del Monte Barro, fu istituito con la
legge regionale 16 settembre 1983, n. 78 il Parco na¬
turale del Monte Barro, esteso su una superficie di
665 ettari.
Il Monte Barro è costituito da formazioni carbo-
natiche, la cui età si estende dal Norico al Cretaceo
medio-superiore, formanti una serie di quattro grosse
scaglie, disposte in successione nord-sud, subverticali
o immerse grosso modo verso nord (Nangeroni,
1972). Si tratta di una prima fascia di Dolomia Princi¬
pale (Norico), affiorante lungo le pendici settentrio¬
nali fino ad un piccolo sperone roccioso posto a quo¬
ta 858 m; segue una fascia di calcari marnosi del Re-
tico medio-inferiore, comprendente l’intera Val Faè e
la regione della vetta, a esclusione delle roccette del¬
la sommità, costituite di Dolomia Conchodon (Reti-
co superiore); una terza scaglia, ancora in Dolomia
norica, e infine una quarta fascia, costituente tutto il
basso versante meridionale, formata da calcari mar-
noso-selciferi liassici (Calcare di Moltrasio), calcari
del Giurassico sommitale e del Cretaceo inferiore
(Maiolica), e marne e arenarie del Cretaceo medio¬
superiore.
140
ENRICO BANFI. GABRIELE GALASSO & DAVIDE SASSI
Da un punto di vista strutturale, il rilievo è inte¬
ressato da due anticlinali parallele, ad asse disposto in
direzione NO-SE.Tra di esse trovasi la sinclinale del¬
la Val Faè, la quale, determinando l’affioramento dei
teneri calcari marnosi del Retico medio-inferiore, in¬
cassati tra la prima e la seconda scaglia di Dolomia
norica e separati da esse da due notevoli faglie, si tro¬
va in evidente concordanza morfologica con la topo¬
grafia.
La morfologia, oltre che delle condizioni struttu¬
rali e meteorologiche, risente in misura evidente, nei
depositi, nel modellamento e nell’erosione, dell’azio¬
ne sviluppata dai ghiacci. Depositi morenici, rocce le¬
vigate e striate, erratici anche di notevoli dimensioni,
generalmente in ghiandone della Val Masino, sono
rinvenibili fino a quota 874 m, segnando il limite del¬
la copertura dei ghiacci quaternari.
Potenti bancate di depositi fluvioglaciali, general¬
mente sottoposti a morenico, in gran parte trasfor¬
mati in cave di sabbia, sono visibili lungo i bassi ver¬
santi settentrionali. Piuttosto marcato appare in alcu¬
ne zone il modellamento carsico superficiale: per
esempio l’ampia balconata rappresentata dal Pian
Sciresa è probabilmente un vasto polje, costellato
nella zona meridionale da piccoli rilievi residuali a
sommità tondeggiante tipo hum.
Il clima
La massa idrica del lago di Lecco, unitamente a
quella degli altri corpi d’acqua più piccoli che cir¬
condano a est e a ovest il Monte Barro, determina il
carattere spiccatamente oceanico del clima di que¬
sto territorio. D’estate l’aria satura di umidità sale
nelle ore più calde e si espande raffreddandosi per
poi scaricarsi ostacolata dai contrafforti montuosi. I
dati termopluviometrici sono stati forniti dal Con¬
sorzio dell’ Adda, provengono dalla stazione di Olgi-
nate e si riferiscono al periodo 1981-1991 e alla quo¬
ta di 206 m s.l.m.; per quote superiori è necessaria
una piccola correzione lineare in abbassamento dei
valori termometrici secondo il gradiente termico al-
titudinale (Belloni & Pelfini, 1987). Le precipitazio¬
ni annuali sono tra le più elevate del settore preal¬
pino, 1.300 mm, con punte ben superiori in certe an¬
nate (1.678 mm nel 1984; il minimo si è avuto nel
1983 con 993 mm); anche l’umidità relativa è sempre
molto alta e nelle giornate più asciutte raramente
scende sotto il 70%. In compenso la media termica
annuale è di 13°C e la temperatura del mese più
freddo rimane leggermente sopra 3°C, sempre gra¬
zie all’effetto tamponante del sistema lacustre. Il
gradiente termico verticale negativo per il dislivello
206-922 m s.l.m. comporta un aumento con la quota
delle probabilità di gelate, nevicate e permanenza
del manto nevoso; il climogramma secondo Ba-
gnouls-Gaussen (Fig. 1) consente di inquadrare la ti¬
pologia climatica del nostro territorio nella regione
mesaxerica, sottoregione ipomesaxerica, tipo C(10)
insubrico (Tomaselli et al., 1973), caratterizzato fra
l’altro da assenza di deficit idrico estivo. Conside¬
rando che il Monte Barro è circondato da montagne
più alte (Corni di Ganzo, 1373 m; Moregallo, 1276 m;
Resegone, 1875 m; Albenza, 1250 m) costituenti la
barriera effettiva alle masse d’aria umida, si può ri¬
tenere che la variazione delle precipitazioni con la
quota non sia significativa. Pertanto è lecito riferire
1 3° C
1300 m m
GFMAMGLASOND
Fig. 1 - Climogramma secondo Bagnouls-Gaussen basato sui dati
termopluviometrici della stazione di Olginate (1981-1991).
tutti i valori di continentalità igrica (indice di Gams)
al totale annuo di 1.300 mm; ne deriva che dalla sta¬
zione di Olginate alla vetta del Barro l’indice varia
tra 9° e 35°, in evidente accordo con le caratteristi¬
che oceaniche del clima.
Un punto degno di nota è l’inversione termica che
contrassegna i versanti del Monte Barro caratterizza¬
ti da una componente in esposizione meridionale: in¬
fatti, in media, sotto i 500 m di quota prevalgono for¬
mazioni a tendenza più microterma ( Carpinion , Tilio-
Acerion) di quelle sovrastanti ( Quercion pubescenti-
petraeae ); a sud la roverella giunge quasi in vetta (850
m) dimostrando gli effetti microclimatici determinan¬
ti della buona esposizione.
Aspetti generali della vegetazione
Nel corso di una pluriennale serie di ricerche, svol¬
te dal personale scientifico del Museo di Storia Natu¬
rale di Milano, e orientate prevalentemente allo stu¬
dio dell’entomofauna del Monte Barro, sono state
condotte osservazioni sulla vegetazione e sulla flora,
in particolare su quest’ultima, a seguito dell’incom-
pletezza degli studi precedenti. Il campionamento en¬
tomologico è stato effettuato inizialmente su 20 sta¬
zioni, nove delle quali (Fig. 2) sono state successiva¬
mente studiate in modo più approfondito. Su otto di
queste ultime (versanti del Monte Barro, tra le quote
di 275 e 630 s.l.m.) è stato effettuato il rilevamento
floristico, di proposito limitato all’analisi dei prati di
versante.
Da un punto di vista fitoaltitudinale e vegetazio-
nale il Monte Barro si sviluppa tra le fasce medioeu¬
ropea e subatlantica della regione medioeuropea (Pi¬
gnatta 1979), afferenti ai seguenti climax forestali po¬
tenziali: Carpinion betuli Issi. 31 em. Oberd. 57, Tilio
platyphylli-Acerion pseudoplatani Klika 55 e Quer¬
cion pubescenti-petraeae Br.-Bl. 32 em. Rivas-Marti-
nez 72. La realtà attuale presenta una situazione di
notevole dinamismo vegetazionale, con esclusione
delle aree rocciose, dove non esiste potenzialità fore¬
stale e il climax di base corrisponde alle formazioni
casmofitiche dell’ordine Potentilletalia caulescenti
Br.-Bl. in Br.-Bl. & Jenny 26. La parte sommitale del
ASPETTI FLORISTICO - VEGETAZIONALI DEL MONTE BARRO (PREALPI DI LECCO)
141
Fig. 2 - L’area campionata del Parco del Monte Barro. Sono indi¬
cati i numeri corrispondenti alle stazioni 1-9.
monte Barro, in corrispondenza del principale affio¬
ramento roccioso, concentra l’endemismo sudalpico,
sudestalpico e insubrico. Ne sono esempi Physoplexis
comosa, Telekia speciosissima, Campanula raineri ,
Viola dubyana, Primula auricula ecc. In numerose sta¬
zioni, per esempio a Pian Sciresa, la glacializzazione è
stata totale e qui come altrove oggi si osserva un for¬
te scollamento tra rizosfera e substrato pedogenetico,
nel senso che la base calcarea smette precocemente di
influenzare l’evoluzione del suolo a causa dell’inten¬
so dilavamento, favorito anche dalle pendenze, un fe¬
nomeno comune e diffuso in tutta l’area insubrica.
Qui la potenzialità vegetazionale è rappresentata da
una brughiera riconducibile a formazioni dell’allean¬
za Genistion Bòchh. 43, che vedono la partecipazione
di Calluna vulgaris , Genista germanica , Molinia cae-
rulea subsp. arundinacea , Potentilla erecta, Stachys of¬
ficinali e Serratula tinctoria. L’elemento arboreo in
questo caso è rappresentato dal tremolo ( Populus tre¬
mula) e dalla betulla ( Betula penduta), molto fre¬
quenti in tutto il settore nordorientale del parco, la
cui diffusione però sembra legata significativamente
alla distribuzione degli incendi; questa pratica d’altra
parte favorisce selettivamente la stessa brughiera.
La vegetazione attuale nell’ambito delle potenzia¬
lità forestali è il risultato di una fase generalizzata di
abbandono e sospensione dell’attività umana sul suo¬
lo, al termine di una lunga storia di alterne vicende di
contrazione ed espansione del bosco, determinate di
volta in volta dai diversi momenti storico-economici.
I versanti esposti a sud e a ovest, potenzialmente ri¬
coperti di querceto termofilo a roverella, si caratte¬
rizzano oggi per una diffusione più o meno larga del¬
le praterie a Bromopsis erecta (incl. B. condensata) e
Brachypodium rupestre subsp. caespitosum. Queste
possono essere riferite all’ordine Brometalia erecti
Br.-Bl. 36 e a un'alleanza con carattere intermedio
tra Mesobromion erecti Br.-Bl. & Moor 38 e Diplach-
nion (Kengion) Br.-Bl. 61, secondo il punto di vista di
Royer (1991) che considera quest'ultimo syntaxon di
posizione incerta tra i Brometalia e i Festucetalia va-
lesiacae Br.-Bl. & Tx. 43. Gli aspetti più xerotermofi-
li di dette praterie, particolarmente diffusi in corri¬
spondenza degli affioramenti calcarei in buona espo¬
sizione, appartengono all’alleanza Xerobromion (Br.-
Bl. & Moor 38) Moravec in Holub et al. 67; questo ti¬
po di vegetazione non è stato preso in considerazio¬
ne nel presente lavoro. Le praterie in generale deno¬
tano diversi gradi di inarbustamento in relazione alla
tendenza autorigenerativa del bosco ora in atto. Spe¬
cialmente i versanti orientali e settentrionali com¬
prendono superfici a prato che ancora vengono in
qualche modo gestite e che dal punto di vista fitoso-
ciologico corrispondono in media all’associazione
Centaureo dubiae (nigrescentis)-Arrhenatheretum
elabori Oberd. 64. (Galasso 1994, ined.) Sia ai limiti
del prato sia nel contesto delle praterie termofile, co¬
me pure nelle aperture del bosco, sono diffusissimi gli
elementi di mantello, cioè associazioni del Geranion
sanguinei Tx. 61 caratterizzate da elevate frequenze e
coperture di Geranium sanguineum, Origanum vul-
gare, Vincetoxicum hirundinaria, Knautia drymeia
subsp. centrifrons , Teucrium chamaedrys e Thymus
pulegioides. La presenza di Viola hirta, Potentilla alba
e Trifolium medium è facilitata dai processi locali di
acidificazione del suolo e contrassegna una tipologia
associazionale ascrivibile all’alleanza Trifolion medii
Th. Muller 61. Infine merita un cenno la stazione di
Ca’ di Sala (Stazione 9 delle raccolte entomologiche),
sulla riva settentrionale del bacino di Oggiono (lago
di Annone), presa in considerazione nella ricerca en¬
tomologica come appendice del territorio del Monte
Barro con caratteristiche ecologiche particolari. Qui
la vegetazione non presenta regolare successione di
cinture lungo un gradiente idrico a causa delle modi¬
ficazioni geomorfologiche indotte dall’uomo; sono ri-
conoscibili tre aspetti essenziali: 1) il canneto ( Phrag -
mitetum australi Schmale 39) con accenni di aggrup¬
pamento a Iris pseudacorus , elementi di magnocari-
ceto ( Caricetum elatae W. Koch 26) e residui di bo¬
scaglia ripariale ( Salicion cinereae Muli. & Gòrs 58,
Alno-Ulmion Br.-Bl. & Tx. 43); 2) il prato umido oli¬
gotrofico ( Molinion caeruleae W. Koch 26); 3) vegeta¬
zione erbacea perenne e disorganizzata, al margine
superiore della stazione, riconducibile alle classi Ar¬
temisietea vulgaris Lohm., Prsg. & Tx. in Tx. 50 (sot¬
toclasse Artemisienea vulgaris Th. Muli. 81 in Oberd.
83) e Plantaginetea majoris Tx. 50 em. Oberd. et al. 67.
Benché necessaria, non è scopo della presente ri¬
cerca una verifica critica, in termini di moderne con¬
cezioni sistematiche e tassonomiche, della flora e del¬
la vegetazione del Monte Barro; per quanto sinora
pubblicato si rinvia a Fornaciari (1994) e Cerabolini
& Villa in Fornaciari (1994). Tuttavia lo studio bota¬
nico delle stazioni di rilevamento entomologico ha
messo in evidenza aspetti, specialmente della flora,
che inducono a prendere seriamente in considerazio¬
ne il problema di una revisione globale, date le pre¬
messe numeriche (oltre un migliaio di specie secondo
Fornaciari (1994)) e la particolare ricchezza di am¬
bienti, per un’analisi delle biodiversità alfa e beta,
davvero notevoli e ancora tutte da quantificare.
142
ENRICO BANFI, GABRIELE GALASSO & DAVIDE SASSI
La flora delle stazioni rilevate: novità e precisazioni
Viene riportato qui di seguito, accompagnato da
brevi note, l’elenco sistematico della flora delle otto
stazioni oggetto del presente studio, precisando che il
modello di ordinamento seguito, riguardo ai taxa di
rango superiore al genere, è quello di Cronquist
(1988) per quanto attiene le dicotiledoni e di Dahl-
gren (1989) per le monocotiledoni. Per semplicità i
generi e le specie sono ordinati alfabeticamente al¬
l’interno delle famiglie. La nomenclatura binomia se¬
gue in linea di massima Pignatti (1982), tranne nei ca¬
si di aggiornamenti successivi derivati da specifici la¬
vori di revisione sistematico-tassonomica e nomen-
claturale, parte dei quali è riportata in Greuter et al.
(1984-1991) e parte sarà citata all’occorrenza; in caso
di discordanza nomenclaturale, il binomio usato in
Flora d’Italia è riportato come sinonimo.
Pinaceae
Pinus sylvestris L. subsp. sylvestris
Introdotta a scopo forestale, questa specie non
sembra far parte del contesto vegetazionale attuale,
almeno in termini climatici (isoepira alla vetta: 35°).
Aristolochiaceae
Aristolochia pallida Willd.
Ranunculaceae
Clematis recta L.
Helleborus niger L. subsp. niger
Ranunculus acris L.
Ranunculus bulbosus L.
Thalictrum minus L.
Fagaceae
Quercus pubescens Willd.
Betulaceae
Corylus avellana L.
Ostrya carpinifolia Scop.
Caryophyllaceae
Cerastium fontanum Baumg. subsp. vulgare
(Hartm.) Greuter & Burdet
(= C. holosteoides Fr. subsp. triviale (Spenn.) Mò¬
schi, non (Link) Mòschi).
Petrorhagia saxifraga (L.) Link subsp. saxifraga
Silene pratensis (Rafn) Godr.
(= S. alba (Mill.) Krause subsp. alba).
Per la nomenclatura si veda Aeschimann & Bur¬
det (1994).
Silene vulgaris (Moench) Garcke subsp. vulgaris
Polygonaceae
Rumex acetosa L.
Rumex acetosella L.
Clusiaceae
Hypericum perforatum L. subsp. perforatum
Malvaceae
Malva alcea L.
La var. fastigiata (Cav.) Fiori, indicata da Forna-
ciari (1994) per questi popolamenti, non ha alcuna
base sistematica rappresentando una delle tante com¬
binazioni di stati di carattere (pelosità e incisioni del¬
la lamina) di natura tipicamente popolazionale, sog¬
getta cioè a flusso genico continuo.
Cistaceae
Helianthemum nummularium (L.) Mill.
Fornaciari (1994) ritiene che i popolamenti in og¬
getto vadano attribuiti al tipo nominale della specie
(subsp. nummularium ), tuttavia, se il carattere riguar¬
dante la pagina inferiore della foglia (verde pallido,
non bianco-grigiastro) è effettivamente in armonia
con la descrizione originale del taxon, e ammesso che
quest’ultimo sia consistente sul piano sistematico,
l’entità in oggetto andrebbe riferita piuttosto alla
subsp. obscurum (Celak.) Holub, che fra l’altro, se¬
condo Pignatti (1982), sarebbe particolarmente fre¬
quente al piede delle Alpi. In ogni caso, sulla variabi¬
lità infraspecifica di H. nummularium vige ancora
gran confusione, come si deduce dalla diversità delle
trattazioni (cfr., per esempio, Flora d’Italia, Flora Eu-
ropaea e Flora Iberica); sarà quindi opportuno, in at¬
tesa di una soddisfacente revisione, attenersi indicati¬
vamente al rango di specie.
Salicaceae
Populus tremula L.
Brassicaceae
Arabis collina Ten.
Biscutella laevigata L. subsp. laevigata
Fornaciari (1994) identifica il popolamento bar-
rense con la var. glabra Gaudin, della quale riconosce
tre forme per altro assolutamente prive di valore, al¬
meno finché non si disponga di un’adeguata interpre¬
tazione del modello di variabilità di questa specie.
Turritis glabra L.
(= Arabis glabra (L.) Bernh.).
Ericaceae
Calluna vulgaris (L.) Hull
Rosaceae
Amelanchier ovalis Medik. subsp. ovalis
Cotoneaster nebrodensis (Guss.) Koch
Potentilla alba L.
Assieme a Trifolium medium e Viola hirta caratte¬
rizza la versione acidoclina della vegetazione di man¬
tello, attribuibile all’alleanza Trifolion medii Th. Mul-
ler 61.
Potentilla recta L.
Fornaciari (1994) ne identifica la var. obscura (Ne-
stl.) Koch nei «prati aridi a Coera», ma gli esemplari
da noi rilevati nel prato sopra al Monumento dell’Al¬
pino (rii. 3) presentano costantemente petali giallo
sbiadito e corrispondono dunque al tipo nominale
(var. recta). La convivenza territoriale delle due for¬
me cromatiche fa ritenere che esse non abbiano alcu¬
na consistenza sistematico-tassonomica, tanto più che
sembrerebbero fondate sull’incapacità di un solo al¬
ide di codificare per uno dei pigmenti vacuolari dei
petali.
Prunus avium L.
Sanguisorba minor Scop. subsp. minor
Sorbus aria (L.) Crantz
Fabaceae
Anthyllis vulneraria L. subsp. weldeniana (Rchb.)
Cullen provv.
(= A. v. subsp. polyphylla sensu Fornaciari et sub-
ASPETTI FLORISTICO - VEGETAZIONALI DEL MONTE BARRO (PREALPI DI LECCO)
143
sp. praepropera sensu Fornaciari, A. x adriatica Beck
sensu Pignatti).
La tassonomia di questo difficile pool di variazio¬
ne infraspecifica (gruppo rimarci di Pignatti (1982)) è
completamente in alto mare per la mancanza di un
convincente riferimento sistematico. In altra occasio¬
ne (Banfi, 1983) si ritenne di attribuire l’entità in og¬
getto al presunto notomorfo A. x adriatica Beck sen¬
su Pignatti, epiteto comunque inadeguato perché ol¬
tre tutto di rango specifico, al quale sembrava meglio
corrispondere la combinazione dei caratteri in uso
osservati. Tuttavia sia il numero di segmenti delle fo¬
glie inferiori, sia la pelosità del calice, sia il pattern
della pigmentazione (giallo e rosso variamente distri¬
buiti su corolla e calice), si mostrano incostanti e im¬
prevedibili fra segmenti contigui di popolazione. For¬
naciari (1994) in questi popolamenti identifica senza
ombra di dubbio le sottospecie polyphylla (DC.) Ny-
man e praepropera (A. Kern.) Bornm. (per non par¬
lare delle «indispensabili» precisazioni sulle forme),
assunto inaccettabile perché scientificamente privo
di verifica. L’adozione da parte nostra del trinomio
A. vulneraria subsp. weldeniana , in sintonia con Greu-
ter et al. (1991), intende unicamente e provvisoria¬
mente riportare sotto questa combinazione, comun¬
que formalmente prioritaria rispetto ad A. x adriati¬
ca , tutta la variazione di tipo maura osservata nel ter¬
ritorio. Ciò in attesa di futuri chiarimenti sistematici e
nomenclaturali.
Chamaecytisus hirsutus (L.) Link subsp. hirsutus
La revisione di Cristofolini (1991) relativa a Cyti-
sus sect. Tubocytisus ha indubbiamente portato nuo¬
va luce sulle affinità all’interno del gruppo. Tuttavia
non ci sentiamo di condividere un’inclusione tout-
court di Chamaecytisus Link in Cytisus, poiché nel
complesso riteniamo continuino a sussistere chiari
elementi morfosistematici di base, di notevole valore
operativo, che rendono comunque Chamaecytisus
una realtà congruente a livello di genere. Anche la re¬
cente monografia di Pajero et al. (1994) continua a
mantenere separati i generi in questione.
Cytisophyllum sessilifolium (L.) O. Lang
(= Cytisus sessilifolius L.).
Nomenclatura secondo Greuter et al. (1991).
Cytisus emeriflorus Rchb.
Interessante endemita sudestalpico (non «insubri-
co» come altrove indicato, ma a corocentro insubri-
co) con una disgiunzione nelle Prealpi Friulane.
Cytisus scoparius (L.) Link
Genista germanica L.
Genista tinctoria L. subsp. tinctoria
L'indicazione di Fornaciari (1994) della subsp.
ovata (Waldst. & Kit.) Arcang. per i boschi tra l’Ere¬
mo e Pian Sciresa lascia notevoli perplessità in base a
quanto sinora noto sulla corologia (Pignatti, 1982),
ma soprattutto per la mancanza di studi moderni sul¬
la variabilità infraspecifica. Certo, come esemplari di
ambiente boschivo, è lecito sospettare trattarsi di
semplice ecomorfosi.
Hippocrepis coni osa L.
Lathyrus pratensis L.
Lotus comiculatus L.
Medicago lupulina L.
Ononis spinosa L. subsp. spinosa
Trifolium campestre Schreb.
Trifolium medium L.
Per l’ecologia si veda quanto detto a proposito di
Potentilla alba.
Trifolium montanum subsp. montanina
Trifolium pratense L. subsp. pratense
Trifolium repens L. subsp. repens
Vici a dumetorum L.
Entità nuova per la flora del Monte Barro. È sta¬
ta da noi raccolta lungo il margine boschivo del pra¬
to a nord del Monumento dell'Alpino (rii. 3). Galas¬
so (1989/90, ined.) ne ha confermato di recente la
presenza anche nel Triangolo Lariano (MSNM).
Vicia sativa L. subsp. nigra (L.) Ehrh.
(= V. s. subsp. angustifolia (Grufberg) Gaudin , V
s. subsp. segetalis (Thuill.) Gaudin).
Nomenclatura secondo Greuter et al. (1991).
Vicia sepium L.
Vicia villosa Roth subsp. villosa
Santalaceae
Thesium bavarum Schrank
Euphorbiaceae
Euphorbia cyparissias L.
Frequenti clorosi, deformazioni e sterilità indotte
da Uromyces pisi (Pers.) de Bary.
Euphorbia flavicoma DC. subsp. verrucosa (Fiori)
Pignatti
Rhamnaceae
Rhamnus saxatilis Jacq.
Polygalaceae
Polygala vulgaris L.
Geraniaceae
Geranium nodosum L.
Geranium sanguineum L.
Apiaceae
Astrantia major L. subsp. major
Cervaria rivinii Gaertn.
(= Peucedanum cervaria (L.) Lapeyr.).
Sistematica e nomenclatura secondo Pimenov &
Leonov (1993).
Daucus carota L. subsp. carota
Heracleum sphondylium L. subsp. sphondylium
Oreoselinum nigrum Delarbre
(= Peucedanum oreoselinum Moench).
Sistematica e nomenclatura secondo Pimenov &
Leonov (1993).
Pimpinella major (L.) Huds.
Trinia glauca (L.) Dumort.
Asclepiadaceae
Vincetoxicum hirundinaria Medik.
Convolvulaceae
Convolvulus arvensis L.
Boraginaceae
Echium vulgare L.
Lamiaceae
Clinopodium vulgare L.
Origanum vulgare L.
Prunella grandiflora (L.) Schòller
Salvia pratensis L.
Stachys alopecuros (L.) Benth. subsp. alopecuros
Stachys officinalis (L.) Trevis. subsp. officinalis
Stachys recta L. subsp. recta
144
ENRICO BANFI, GABRIELE GALASSO & DAVIDE SASSI
Teucrium chamaedrys L.
Teucrium montanum L.
Thymus pulegioides L.
Plantaginaceae
Plantago lanceolata L.
Plantago major L. subsp. major
Oleaceae
Fraxinus ornus L.
Scrophulariaceae
Melampyrum cristatum L.
Rhinanihus alectorolophus (Scop.) Pollich
Verbascum thapsus L. subsp. thapsus
Stranamente questa specie è passata inosservata
nel territorio del Monte Barro. Convive con la con¬
genere V. lychnitis L. non riportata nel presente elen¬
co in quanto estranea ai rilievi, nel prato a nord del
Monumento dell’Alpino (rii. 3), dove si presume sia
comparsa sinantropicamente.
Veronica arvensis L.
Veronica chamaedrys L.
Globulariaceae
Globularia cordifolia L.
Globularia nudicaulis L.
Campanulaceae
Phyteuma scheuchzeri All. subsp. columnae (Gau-
din) Bech.
Phyteuma spicatum L. subsp. spicatum
Rubiaceae
Cruciata glabra (L.) Ehrend.
Galium album Mill.
Galium lucidum All.
Galium mollugo L.
Galium rubrum L.
Galium veruni L. subsp. verum
Adoxaceae
Viburnum lantana L.
Riguardo all’attribuzione di Sambucus e Vibur¬
num alle Adoxaceae, qui adottata dagli scriventi, si
veda Zomlefer (1994). I due generi, diversamente,
possono essere considerati tipi di famiglie distinte
(Sambucaceae, Viburnaceae), in ogni caso senza rela¬
zioni con le Caprifoliaceae (Bolli, 1994).
Valerianaceae
Valeriana collina Wallr.
Dipsacaceae
Knautia arvensis (L.) Coult.
Knautia drymeia Heuff. subsp. centrifrons (Borbàs)
Ehrend.
Knautia transalpina (H. Christ) Briq.
Knautia velutina Briq.
Asteraceae
Achillea collina Becker
La specie non compare nell’elenco floristico del
Barro (Fornaciari, 1994). È entità subsinantropica,
che predilige i siti marginali asciutti e ben esposti.
Achillea roseoalba Ehrend.
Anche questa entità non è riportata da Fornaciari
(1994); probabilmente l’autore la identifica colletti¬
vamente con la precedente come A. millefolium L. Si
tratta di specie propria dei prati mesofili, caratteriz¬
zante il centaureo-arrenatereto.
Bellis perennis L.
Buphthalmum salicifolium L. subsp. salicifolium
La vai. grandi florum (L.) Fiori riportata da Forna¬
ciari (1994) senza citazione del revisore è un’entità da
interpretarsi, secondo Bechi & Garbari (1994), come
parte di un «commiscuum» (Danser, 1929), cioè un
insieme di individui interfecondi costituito da biotipi
geografici eteromorfi (facies regionali) formatisi per
selezione differenziale. Uno di questi biotipi è ap¬
punto la varietà in oggetto, che caratterizza la parte
occidentale dell’areale della specie (dalle Alpi Marit¬
time alle Retiche).
Centaurea grinensis Reut. subsp. grinensis
Secondo Dostàl (1976) questa entità è meritevole
di rango specifico, tanto più comportando essa una
vicariante geografica (subsp. fritschii (Hayek) Do¬
stàl), propria dei rilievi dell’Est europeo, che raggiun¬
ge le Alpi di striscio (Triestino, Friuli, Carnia (Pignat-
ti, 1982)). Rispetto a C. scabiosa L., con cui convive
nel territorio in studio, la nostra specie si distingue
per le appendici delle squame non o poco decorrenti,
con fimbrie brevi o assenti. Può considerarsi endemi¬
ca sudestalpica.
Centaurea nigrescens Willd.
Questa specie, comunissima nei prati falciati, stra¬
namente non compare nell’elenco di Fornaciari
(1994).
Centaurea rhaetica Moritzi
Fornaciari (1994) alla vetta, in esposizione orien¬
tale, riconferma la presenza della var. ensifolia (Rota)
Fiori (basionimo: C. austriaca Willd. var. ensifolia Ro¬
ta) già indicata dallo stesso Fiori (1927) per il Monte
Barro. Dal pool di variazione di C. rhaetica è stata re¬
centemente separata C. bugellensis Soldano (Solda-
no, 1996), endemica del Biellese e della Val Sesia e in
tale occasione lo stesso autore ha riesaminato anche
il taxon di Rota confermando l’opportunità di man¬
tenerne almeno per ora il rango varietale.
Centaurea triumfettii All. subsp. triumfettii
Le due forme riportate da Fornaciari (1994), cita¬
te tra l’altro senza revisore, sono del tutto inconsi¬
stenti.
Erigeron annuus (L.) Pers.
Hieracium umbellatum L.
Inula hirta L.
Che cosa intende Fornaciari (1994) con «f. poli-
cephala» (sic!)?
Leontodon hispidus L. subsp. hispidus
Leucanthemum vulgare Lam.
Scorzonera austriaca Willd.
Serratula tinctoria L. subsp. tìnctoria
Pignatti (1982) riporta due varietà, secondo For¬
naciari (1994) entrambe presenti nel territorio del
Barro. Tuttavia essendo grandissima e ancora quasi
del tutto inesplorata la variabilità infraspecifica, co¬
me già facevano notare Cannon & Marshall (1976),
preferiamo astenerci dal prendere posizione oltre la
sottospecie.
Tanacetum corymbosum (L.) Sch. Bip. subsp. corym-
bosum
Taraxacum sp. aggr. officinale
Non siamo in grado di fornire precisazioni sull’i¬
dentità di questo taxon, problema che richiederebbe
un esame approfondito sulla variabilità di «T. offici¬
nale Weber» nell’intero territorio prealpino.
Tragopogon pratensis L. subsp. pratensis
I
li
■
a
!
i
ASPETTI FLORISTICO - VEGETAZIONALI DEL MONTE BARRO (PREALPI DI LECCO)
145
Convallariaceae
Polygonatum odoratum (Mill.) Druce
La «f. angustifolia» (sic!) proposta da Fornaciari
(1994) per una «forma nemorosa a foglie strette» è
priva di valore tanto sul piano formale (nomen nu-
dum) come su quello della sostanza (variazione indi¬
viduale occasionale).
Hyacinthaceae
Omithogalum pyrenaicum L.
Liliaceae
Lilium bulbiferum L. subsp. croceum (Chaix) Baker
Orchidaceae
Gymnadenia conopsea (L.) R. Br.
Ophrys sphegodes Mill. subsp. sphegodes
(non «sphecodes» come in Fornaciari (1994)).
Cyperaceae
Carex austroalpina Bech.
Poaceae
Anthoxanthum odoratum L.
Arrhenatherum elatius (L.) P. Beauv.
Brachypodium rupestre (Host) Roem. & Schult. sub¬
sp. caespitosum (Host) H. Scholz
Nonostante la revisione di Lucchese (1987) per le
specie italiane e quella più recente di Schippmann
(1991) per il genere Brachypodium in Europa, alle
quali si rimanda per i dettagli, nei prospetti floristici
si continua a leggere «B. pinnatum (L.) P. Beauv.» (tra
questi Fornaciari, 1994), quando le uniche stazioni
italiane di tale specie, finora note con certezza, sono
localizzate nei settori più continentali delle Alpi. Il
medesimo errore viene purtroppo ripreso in modo
acritico anche nei lavori vegetazionali (nella fattispe¬
cie si veda Cerabolini & Villa in Fornaciari, 1994).
Briza media L.
Bromopsis erecta (Huds.) Fourr.
(= Bromus erectus Huds.).
L’elevazione a genere di Bromus L. sect. Pnigma
Dumort. è in linea con il punto di vista -da noi condi¬
viso- di diversi autori, a partire da Tzvelev (1976) per
arrivare a Stace (1991). Il popolamento qui esamina¬
to presenta occasionalmente individui con i caratteri
di B. condensata (Hack.) Holub (guaine fogliari lano¬
se e pannocchia contratta), il cui significato sistemati¬
co, nel caso di un’esatta corrispondenza tipologica, è
tutto da discutere, come del resto è da discutere la
congruenza delle altre variazioni del gruppo (B. ste-
nophylla, B. transsilvanica ecc.), visto che oltre tutto
non si differenziano per nulla sul piano ecologico.
Dactylis glomerata L. subsp. glomerata
Festuca valesiaca Schleich.
La specie, abbastanza diffusa nei brometi della zo¬
na archeologica affacciati a sud, non è riportata da
Fornaciari (1994). Come del resto non sono riportate
altre entità dello stesso genere, piuttosto frequenti,
che non possiamo includere nel presente elenco in
quanto estranee ai rilievi, ma che riteniamo doveroso
segnalare per la flora del Monte Barro. F. strida Ho-
< st subsp. trachyphylla (Hack.) Patzke (= F. tra-
chyphylla (Hack.) Krajina, F. brevipila Tracey), già in¬
dicata da Àrdissone (1903) sub «F. duriuscula», si in¬
contra sui pendìi soleggiati a sudovest del Monumen¬
to dell’Alpino; F. rubra L. subsp. fallax (Thuill.) Ny-
man (= F. diffusa Dumort., F. heteromalla Pourr., F.
rubra L. subsp. megastachys Gaudin) è frequente in
diversi punti a monte della strada per S. Michele, in
direzione di Pian Sciresa.
Helictotrichon pubescens (Huds.) Pilger
(= Avenula pubescens (Huds.) Dumort.).
Entità nuova per la flora del Barro, in ogni caso
piuttosto comune negli arrenatereti e stranamente
passata inosservata.
Koeleria pyramidata (Lam.) Domin
Lolium perenne L.
Molinia caerulea L. subsp. arundinacea (Schrank)
K. Richter
(= M. arundinacea Schrank, M. c. subsp. a. (Sch¬
rank) «Paul»).
Fornaciari (1994) di questa entità riferisce «Zone
paludose...», indicazione che lascia molte perplessità
poiché non corrisponde all’ecologia del taxon. D’al¬
tra parte l’autore sembra ignorare la grande diffusio¬
ne di questa sottospecie sui versanti, specialmente
settentrionale e orientale (compresa la brughiera di
Pian Sciresa), in condizioni di umidità superficiale e
lisciviazione evidenti. È nostra opinione che tutte le
indicazioni relative a «M. coerulea» vadano invece ri¬
ferite a questo taxon.
Poa pratensis L.
Schedonorus pratensis (Huds.) P. Beauv. subsp. pra¬
tensis
(= Festuca pratensis Huds.).
L’adozione di un genere distinto in questo caso è
in accordo con quanto espresso da Kerguélen &
Plonka (1989) riguardo a Festuca s.l. e rappresenta la
soluzione opposta a quella che propone Darbyshire
(1993) - secondo noi assurdamente riduttiva - di tra¬
sferire al genere Lolium tutte le entità di Festuca sub-
gen. Schedonorus.
S. arundinaceus (Schreb.) Dumort. subsp. arundi-
naceus (= Festuca arundinacea Schreb.) viene qui se¬
gnalata, anche se non compresa nei rilievi, in quanto
comune e diffusa specialmente nel piano basale e, an¬
cora una volta, inspiegabilmente non riportata nella
Flora di Fornaciari (1994).
Sesleria caerulea (L.) Ardoino
(= S. albicans Kit., S. varia (Jacq.) Wettst., nom. su-
perfl.).
Trisetaria flavescens (L.) Baumg. subsp. flavescens
(= Trisetum flavescens (L.) P. Beauv.).
La specie non è molto comune e si concentra più
che altro nei prati eutrofici. Per la tassonomia e la no¬
menclatura si veda Banfi & Soldano (1996).
Brevi considerazioni sulla vegetazione
dell’area rilevata
I rilievi fitosociologici effettuati in corrispondenza
delle stazioni di raccolta entomologica corrispondo¬
no a fasi aperte della vegetazione e, salvo il quinto
(Pian Sciresa), appartengono tutti a potenzialità fore¬
stale. Agli effetti delle interrelazioni floro-faunistiche
sembra utile un breve riepilogo degli elementi salien¬
ti. Nella tabella 1 per ogni rilievo vengono riportate
1) le specie con presenza >1, cioè non esclusive, che
ricoprano più del 5% della superficie, 2) le specie con
una sola presenza che caratterizzano in modo esclusi¬
vo la stazione. La tabella 1 non è ordinata fitosocio-
logicamente, ma alfabeticamente per taxa, e i valori
sono quelli di abbondanza-dominanza della scala di
Braun-Blanquet trasformati secondo van der Maarel
!
146
ENRICO BANFI, GABRIELE GALASSO & DAVIDE SASSI
(tabella di calcolo). Sebbene non evidenziati in appo¬
sito quadro d’associazione, si può arguire che i syn-
taxa meglio rappresentati sono: Arrhenatheretalia e
Arrhenatherion , Brometalia e Mesobromion/Diplach-
nion, Origanetalia , Quercetalia pubescenti-petraeae,
Fagetalia e Carpinion , e inoltre un manipoletto di
specie pertinenti al Genistion che isolano il rilievo 5
(Pian Sciresa) dal contesto generale.
Tab. 1 - Elenco alfabetico delle specie con i valori di
copertura secondo van der Maarel.
ASPETTI FLORISTICO - VEGETAZIONALI DEL MONTE BARRO (PREALPI DI LECCO)
147
Agli effetti delle relazioni tra entomofauna e ve¬
getazione ci è sembrato interessante fornire qualche
dato di carattere preliminare sulla fitodiversità ceno-
tica in termini di a-diversità. In base a precedenti
esperienze (Ferrari & Galanti 1972, Ferrari & Gran¬
di 1974. Banfi 1979, Anzaldi & al. 1988, Pignatti & al.
1991), abbiamo preferito l’indice di Shannon-Weaver
(log base 2) per un confronto delle stazioni rilevate.
Tuttavia, come osservano Lambshead et al. (1983), il
corretto impiego del parametro richiede una verifica
delle curve di k-dominanza (Fig. 3): se queste si inter¬
secano attorno alla metà del loro tragitto il confron¬
to degli indici di diversità non può considerarsi atten¬
dibile. Nella tabella 2 vengono riassunti i confronti
possibili, indicati con simbolo +.
Per ogni riga e per ogni colonna i quattro numeri
riportati corrispondono rispettivamenrte al numero
della stazione di campionamento, al numero delle
specie presenti, all'indice di Shannon e alla evenness.
Come si può osservare, la stazione del rilievo 6
(pendio a monte del sentiero che dall’ex-sanatorio
conduce alla vetta), benché più aperta delle altre (co¬
pertura dell’85%), floristicamente è la più diversifi¬
cata, presentando i massimi di specie e di evenness,
mentre il rilievo 4 (S. Michele, presso il sentiero per
Pian Sciresa), al quartultimo posto come numero di
specie, risulta il meno «disordinato» a causa delle
preponderanti coperture di Arabis collina, Arrhe-
natherum elatius, Helictotrichon pubescens e Triseta-
ria flavescens. L’analisi delle componenti principali
(PCA) mostra che le prime due componenti della va¬
riazione (Fig. 4) si identificano con il grado di ter-
moxerofilia (asse 1) manifestato dai Brometalia, e il
grado di ripresa vegetazionale o stato di abbandono
(asse 2) evidenziato da Origanetalia e Prunetalia. I
rapporti gerarchici di somiglianza fra le stazioni sono
visibili nel dendrogramma di Fig. 5, che è stato calco¬
lato (UPGMA) sulla matrice dei coefficienti di simi¬
litudine percentuale. Le stazioni 1 e 3 corrispondono
al prato mesofilo insubrico classico ( Centaureo nigre-
scentis-Arrhenather etum), come pure le stazioni 2 e 4,
che tuttavia risentono di abbandono per la maggiore
Fig. 3 - Curve di k-dominanza relative alle stazioni 1-8.
148
ENRICO BANFI. GABRIELE GALASSO & DAVIDE SASSI
Tab. 2 - Confronto dei rilievi sulla base delle curve di
k-dominanza. I quattro numeri delle caselle marginali
indicano, dall’alto in basso: il numero di rilievo, il tota¬
le della specie, l’indice di diversità di Shannon e le
evenness. Il simbolo + indica i confronti possibili.
residua, testimoniata anche dalla non significatività
del mantello.
Dominanze: Lolium perenne, Dactylis glomerata,
Centaurea nigrescens, Trisetaria flavescens, Knautia
velutina, Trifolium repens. Specificità: Lolium peren¬
ne, Cerastium fontanum vulgare.
Stazione 2: Località Piani di Barra, 600 m, esp. W,
dal 1990 interessata da scavi archeologici in rapporto
al cosiddetto Edificio II. Leggera prevalenza di pra¬
teria e mantello su prato falciabile, cioè netta risposta
all’abbandono di una gestione a foraggio già indebo¬
lita.
Dominanze: Galium verum, Geranium sangui-
neum, Arrhenatherum elatius, Festuca valesiaca, Leon-
todon hispidus, Helictotrichon pubescens. Specificità:
Valeriana collina, Vicia sepium.
Stazione 3: Conca prativa a monte del Monumen¬
to all’Alpino, 630 m, esp. W. Convivenza di elementi
di prateria, elementi di prato falciabile ed elementi di
disturbo marginale.
Dominanze: Bromopsis erecta, Arrhenatherum
elatius, Centaurea nigrescens, Salvia pratensis, Triseta¬
ria flavescens. Specificità: Erigeron annuus, Potentilla
recta, Convolvulus arversis, Turritis glabra, Verbascum
thapsus, Schedonorus pratensis, Vicia dumetorum.
Stazione 4: Località S. Michele, pendio in prossi¬
mità del sentiero per Pian Sciresa, 325 m, esp. E. Su
una base di Mesobromion erecti ( Thalictrum minus,
Arabis collina ) è in pieno sviluppo il prato falciabile,
che qui presenta il carattere oligo-mesotrofico.
Staz 5 ♦ o.6
♦ Staz 8
0.2
♦ Staz. 6
ON
o
« 1 - ►—
(0 ■°'3 -0,2
-0.2
• Sfaz 7
0,3
♦ Staz. 2
• Staz 4
0.4 05 0.6
♦ Staz. 3
-0,4
-0.6
♦ Staz 1
asse 1
Fig. 4 - Confronto delle stazioni 1-8 mediante analisi delle com¬
ponenti principali.
diffusione di elementi del Geranion sanguinei/Trifo-
lion medii. In posizione intermedia, sotto quest’ulti¬
mo aspetto, si collocano le stazioni 7 e 8, che presen¬
tano in più una tendenza termoxerofila ( Mesobro -
mion/Diplachniorì)\ infine le stazioni 5 e 6, pure in ab¬
bandono, identificano l’aspetto più termoxerofilo
dell’area campionata con una preponderante presen¬
za di elementi di Brometalia, Mesobromion e Dipla-
chnion.
Caratteri specifici delle stazioni rilevate
Stazione 1: Località Piani di Barra, 610 m, esp. W,
dal 1990 interessata da scavi archeologici in rapporto
al cosiddetto Grande Edificio. Consistente presenza
di prato falciabile che indica una attività di foraggio
0,3
6 5 8 7 4 2 3 1
Fig. 5 - Dendrogramma delle stazioni 1-8 (WPGMA su Percent
Similarity).
I
ASPETTI FLORISTICO - VEGETAZIONALI DEL MONTE BARRO (PREALPI DI LECCO)
149
Dominanze: Arrhencitherum elatius, Thalictrum
minus, Silene vulgaris, Trisetaria flavescens, Rhi-
nanthus alectorolophus, Arabis collina, Helictotrichon
pubescens. Specificità: Petrorhagia saxifraga.
Stazione 5: Località Pian Sciresa, 435 m, esp. NE.
Prato arido con montarozzi residuali a brughiera. Si
caratterizza meglio di tutte le altre stazioni per la pre¬
senza delPelemento di brughiera, accompagnato da
Cytisus emeriflorus , endemismo calcicolo SE-alpico.
Per il resto il livello di base è costituito da prateria a
Brachypodium rupestre caespitosum.
Dominanze: Brachypodium rupestre caespitosum,
Calluna vulgaris, Molinia caerulea arundinacea, Po-
pulus tremula. Specificità: Calluna vulgaris, Cha-
maecytisus hirsutus, Cytisus emeriflorus, Cytisus sco-
parius, Genista germanica, Molinia caerulea arundi¬
nacea, Pinus sylvestris.
Stazione 6: Superfici prative lungo il sentiero del¬
la «Cresta occidentale», che dall’edificio dell’ex sana-
; torio sale alla vetta, 750 m, esp. S. Prateria con par¬
ziale affioramento roccioso, fortemente cespugliata e
in via di chiusura. Forte influsso dell’elemento prene-
morale, con tendenza a un Quescetum pubescenti s. 1.
L’elemento di mantello ha scarso peso.
Dominanze: nessuna. Specificità: Serratula tinctoria,
Sorbus aria, Cytisophyllum sessilifolium, Helleborus ni-
ger, Cotoneaster nebrodensis, Globularia nudicaulis,
Phyteuma scheuchzeri columnae, Centaurea rhaetica,
Euphorbia flavicoma verrucosa, Carex austroalpina,
Origanum vulgare, Gymnadenia conopsea, Amelan-
chier ovalis, Galium lucidum, Melampyrum cristatum.
Stazione 7: Località Fornaci Villa, in prossimità
dell'impluvio della Val Faè. Superficie prativa terraz¬
zata all’interno del bosco mesofilo, 275 m, esp. NW.
Molto simile a quella della stazione 8, ma più aperta
e con qualche elemento in più di Mesobromion.
Dominanze: Nessuna. Specificità: Ophrys sphego-
des, Vicia sativa nigra.
Stazione 8: Località Fornaci Villa, in prossimità
dell’impluvio della Val Faè. Superficie prativa terraz¬
zata all’interno del bosco mesofilo, 305 m, esp. NW.
Prato irregolarmente gestito e contornato da un bo¬
sco con notevoli contrassegni mesofili. Ciò è conse¬
guenza dell’esposizione fresca e di un maggiore svi¬
luppo di suolo. Sono comunque sempre presenti gli
elementi di prateria.
Dominanze: Brachypodium rupestre caespitosum,
Tanacetum corymbosum, Astrantia major. Specificità;
Astrantia major, Prunus avium, Geranium nodosum.
Stazione 9: Località Ca’ di Sala, 226 m, sulla riva
settentrionale del bacino di Oggiono del Lago di An¬
none. Questa stazione non è stata rilevata fitosocio-
logicamente, ma solo floristicamente. Vi si evidenzia¬
no tre aspetti essenziali: 1) il canneto ( Phragmitetum
australi ) con accenni di aggruppamento a Iris pseu-
doacorus , elementi di magnocariceto ( Caricetum ela-
taej e residui di boscaglia ripariate ( Salicion cine-
reae)\ 2) il prato umido oligotrofico ( Molinion caeru-
leae ); 3) vegetazione erbacea perenne e disorganizza¬
ta, al margine superiore della stazione, riconducibile
alte classi Artemisietea vulgaris e Plantaginetea majo-
ris.
150
ENRICO BANFI, GABRIELE GALASSO & DAVIDE SASSI
Fig. 6 - Facies marginale di prato mesofilo ( Centaureo nigrescentis-
Arrhenatheretum) con dominanza locale di Helictotrichon pube-
scens e Rhinanthus alectorolophus.
Fig. 7 - La brughiera di Pian Sciresa fisionomizzata da Collima vul-
garis e Molinia caerulea subsp. arundinacea.
Fig. 8 - Bromopsis erecta (incl. B. condensata ), elemento caratte¬
rizzante il prato meso-xerofilo ( Mesobromion ).
Fig. 9 - Anthyllis vulneraria subsp. weldeniana provv., componente
del Mesobromion , non è ancora risolta sul piano sistematico-tas-
sonomico e presenta variabilità intrapopolazionale anche nella
colorazione del calice e della corolla.
Fig. 10 - C otinus coggygria , differenziale calcicola e termofila del- Fig. 11 - Potentina recta var. recto nel prato sopra il monumento
l’ordine Quercetalia pubescenti-petraeae. dell’Alpino (staz. 3).
ASPETTI FLORISTICO - VEGETAZIONALI DEL MONTE BARRO (PREALPI DI LECCO)
151
Fig. 12 - Festuca valesiaca appartiene al contingente più continen¬
tale e caratterizza localmente il Mesobromion e lo Xerobromion.
Fig. 13 - Stipa eriocaulis subsp. eriocaulis caratterizza gli aspetti più
xerotermofili, riscontrabili in affioramento calcareo ( Xerobromion ).
Fig. 14 - Trinia glauca , componente di Xerobromion e differenzia¬
le edafica (calcare).
Fig. 15 - Thesium bavarum è entità legata essenzialmente ai quer¬
ceti di roverella su base calcarea.
Fig. 16 - Clinopodium volgare fa parte del manipolo di specie gui¬
da della vegetazione di mantello ( Origanetalia ).
Fig. 17 - Potentilla alba differenzia in senso acidofilo e oligotrofi¬
co la vegetazione di mantello ( Trifolion medii).
152
ENRICO BANFI, GABRIELE GALASSO & DAVIDE SASSI
BIBLIOGRAFIA
Aeschimann D. & Burdet H., 1994 - Flore de la Suisse. Le nou-
veau Binz. Editions du Griffon , Neuchàtel.
Anzaldi G, Mirri L„ Pignatti S. & Ubrizsy Savoia A., 1988 -
Synthetical data of chorotypes distribution of thè Italian flora.
Annali di Botanica , Roma, 46: 59-66.
Ardissone F., 1903 - Catalogo delle piante vascolari del Monte
Baro. Meni. Regio Ist. Lonib. Sci. Lett. Arti , ser. Ili cl. Sci. mat.
e nat.. Milano, 20/21:1-102.
Banfi E., 1979 - Alcuni rilievi di vegetazione del litorale massese
(Toscana settentrionale). Natura, Milano, 70 (IV): 229-241.
Banfi E., 1983 - Additamenta floristica longobarda. 2. Note su
Malvaceae, Fabaceae, Apiaceae, Campanulaceae, Poaceae. At¬
ti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano, Milano, 124 (3-
4): 262-268.
Banfi E. & Soldano A., 1996 - Dati tassonomici e nomenclatura-
li su Poaceae dell'Europa e del Mediterraneo. Atti Soc. it. Sci.
nat. Museo civ. Stor. nat. Milano, Milano, 135 (2): 379-387.
Bechi N. & Garbari E, 1994 - Intraspecific variation and taxo-
nomic aspects of some plants from Apuan Alps (Tuscany,
Italy). Flora Mediterranea, Palermo, 4: 213-225.
Belloni S. & Pelfini M., 1987- Il gradiente termico in Lombardia
- Acqua Aria, mensile di scienze e tecniche ambientali. Milano,
1987 (4): 441-447.
Bolli R., 1994 - Revision of thè genus Sambucus. Dissert. bot.,
Berlin-Stuttgart, 223: 1-227, 29 tav.
Cannon J.F.M. & Marshall J.B., 1976 - Serranda L. inTutinT.G. et
al.: Flora Europaea, 4. Cambridge University Press, Cambridge.
Cerabolini B. & Villa M„ 1994 - La vegetazione del Monte Bar¬
ro. In: Fornaciari G.: Flora e vegetazione del Monte Barro.
Paolo Cattaneo Grafiche, Oggiono.
Cristofolini, 1991 - Taxonomic revision of Cytisus Desf. sect. Tu-
bocytisus DC. (Fabaceae). Webbia, Firenze, 45 (2): 187-219.
Cronquist A., 1988 - The evolution and classification of flowering
plants. The New York Botanical Garden, Bronx, New York.
Dahlgren G., 1989 - An updated angiosperm classification. Bot.
Journ. Finn. Soc., London, 100: 197-203.
Danser B.H., 1929 - Ùber die Begriffe Komparium, Kommi-
skuum und Konvivium und tìber die Entstehungsweise der
Konvivien. Genetica, Dordrecht, 11: 399-450.
Darbyshire S.J., 1993 - Realignment of Festuca subgenus Sche-
donorus with thè genus Lolium (Poaceae). Novon, Ottawa, 3:
239-243.
Dostàl J., 1976 - Centaurea L. In: Tutin T.G. et al.: Flora Euro¬
paea, 4. Cambridge University Press, Cambridge.
Ferrari C. & Galanti G., 1972 - Specie indicatrici e struttura
della vegetazione nei calanchi della valle del Santerno (Bolo¬
gna). Arch. bot. biog. it., Forlì, 48, serie 4, voi. 17(3-4): 131-145.
Ferrari C. & Grandi G., 1974 - La vegetazione dei calanchi nel¬
le argille plioceniche della valle del Santerno. Arch. bot. biog.
it., Forlì, 50, serie 4, voi. 20 (3-4): 3-16.
Fiori A., 1927 - Nuova flora analitica d’Italia. Tipografia del Se¬
minario, Padova, 2 (5).
Fornaciari G., 1994 - Flora e vegetazione del Monte Barro. Pao¬
lo Cattaneo Grafiche, Oggiono.
Galasso G., 1989/90 (ined.) - Aspetti geobotanici della Valle del¬
la Roncaglia e del Piano del Tivano (Triangolo Lariano). Tesi
di laurea, Fac. Scienze Mat. Fis. Nat., Università degli Studi di
Milano.
Galasso G., 1994 (ined.) - Inquadramento fitosociologico della
Cava di Vallescura e zone limitrofe (Galbiate (LC), Parco Re¬
gionale del Monte Barro) e determinazione delle linee dina¬
miche di evoluzione della vegetazione al fine di orientarne lo
sviluppo. Consulenza inedita, Milano.
Greuter W., Burdet H.M. & Long G., 1984-1991 - Med Check-
list (voi. 1, 3, 4). Conserv. et Jard. bot. Ville de Genève, Genève.
Kerguélen M. & Plonka E, 1989 - Les Festuca de la flore de
France. Soc. bot. Centre-Ouest, Dignac.
Lambshead P.J.D., Platt H.M. & Shaw K.M., 1983 - The detec¬
tion of differences among assemblages of marine benthic spe-
cies based on an assessment of dominance and diversity.
Journ. nat. History, London, 17: 859-874.
Lucchese E, 1987 - Ruolo di alcune specie del genere Brachypo-
dium nelle associazioni prative e forestali. Not. Fitosoc., Albe-
se, 23: 173-188.
Nangeroni G., 1972 - Il Monte Barro (Prealpi lombarde). Note di
geomorfologia. Natura, Milano, 63 (2): 159-196.
Pajero P., Martini F. & Colpi C., 1993 - Leguminose arboree e
arbustive in Italia. Ed. Lint, Trieste.
Pignatti S., 1979 - I piani di vegetazione in Italia. Giorn. bot. it.,
Firenze, 113:411-428.
Pignatti S., 1982 - Flora d’Italia. Edagricole, Bologna.
Pignatti E., Pignatti S„ Huang C.-C., Ding G.-Q. & Huang Z.-
L., 1991 - B-Diversity and phytogeographical patterns in thè
Ding Hu Shan Reserve (Guangdong - South China) forest ve-
getation. Rend. Fis. Acc. Lincei, Roma, serie 9, 2 (1): 79-85.
Pimenov M.G. & Leonov M.V., 1993 - The genera of thè Umbel-
liferae. A nomenclator. Royal bot. Gard., Kew.
Royer J.M., 1991 - Synthèse eurosibérienne, phytosociologique et
phytogéographique de la classe Festuco-Brometea. Diss. Bot.,
Berlin Stuttgart, 178: i-vi, 1-296.
Schippmann U., 1991 - Revision der europàischen Arten der Gat-
tung Brachypodium Palisot de Beauvois. Boissiera, Genève,
45: 1-249.
Soldano A., (1996) - Un rango specifico per la Centaurea ende¬
mica del Biellese-Val Sesia. Natura Bresciana, Brescia, 30.
Stace C.A., 1991 - New Flora of thè British Isles. Cambridge Uni¬
versity Press, Cambridge.
Tomaselli R„ Balduzzi A. & Filipello S., 1973 - Carta biocli¬
matica d’Italia. Collana Verde, Min. AA. FF., Roma, 33: 1-24.
Tzvelev N.N., 1976 - Zlaki SSSR (Grasses of thè Soviet Union).
Oxonian Press Pvt. Ltd., New Delhi-Calcutta.
Zomlefer W.B., 1994 - Guide to Flowering Plant Families. The
University of North Carolina Press, Chapel Hill.
Enrico Banfi: Museo Civico di Storia Naturale, Sezione Botanica, Corso Venezia 55, 20121 Milano
Gabriele Galasso: Via Palmi 18,20152 Milano
Davide Sassi: Via S. Rocco 17, 22030 Castelmarte CO
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
Carlo Leonardi
Ricerca entomofaunistica nel parco regionale
del Monte Barro (Italia, Lombardia, Lecco)
Riassunto - Si descrivono in modo sintetico i risultati di raccolte entomofaunistiche condotte nell’area del Monte Bar¬
ro (Lecco) negli anni 1989-1992 dal Museo Civico di Storia Naturale di Milano. La ricerca è stata prevalentemente orien¬
tata al censimento dell’entomofauna fitofaga di stazioni prative. Sono state identificate 714 entità sistematiche appartenen¬
ti a Eterotteri, Coleotteri, Imenotteri, Sinfiti e Ragni; 65 taxa sono risultati nuovi per la Lombardia e 5 nuovi per l'Italia.
Abstract - Entomofaunistic researches in thè regional park of Monte Barro (Italy, Lombardy, Lecco).
The results of a study carried out by thè Naturai History Museum of Milano in thè area of Monte Barro (Lecco) during
thè years 1989-1992 are synthetically reported. Phytophagous species of meadows have been mainly collected: 714 taxa be-
longing to Heteroptera, Coleoptera, Hymenoptera of suborder Symphyta and spiders were identified; out of them, 65 pro-
ved new to Lombardy, 5 new to Italy.
Key words: entomology, faunistics, Monte Barro.
L’indagine che il Museo di Storia Naturale di Mi¬
lano, col contributo del Consorzio Parco Monte Bar¬
ro, ha condotto nell’area del Monte Barro durante gli
anni 1989-1992 è stata prevalentemente orientata al
censimento di insetti fitofagi o comunque catturabili
coi sistemi in uso per la raccolta dell’entomofauna fi¬
tofaga. Sono stati studiati gli Eterotteri, alcune fami¬
glie di Coleotteri (Elateridi, Coccinellidi, Crisomeli¬
di, Cerambicidi, Curculionidi), gli Imenotteri Sinfiti e
i Ragni, con un numero complessivo di 718 entità si¬
stematiche, che risulta assai rilevante se si considera
che il Monte Barro è un rilievo molto modesto, privo
di specie strettamente orofile. Notevole è anche la se¬
gnalazione di ben 65 specie nuove per la Lombardia
e, nel caso dei Ragni, di 5 specie nuove per la fauna
italiana (v. Tabella 1).
Tabella 1 - Prospetto numerico delle specie raccolte
(n= n° di specie; L= specie nuove per la Lombardia;
1= specie nuove per l’Italia; %- percentuale di specie
raccolte rispetto a quelle note per ITtalia).
Le raccolte sono state effettuate prevalentemente
in 8 stazioni prative (staz. 1-8) all’interno del parco e
in una stazione (staz. 9) esterna, situata sulla riva set¬
tentrionale del bacino di Oggiono del Lago di Anno¬
ne, in località Ca’ si Sala.
Durante tutto il periodo delle raccolte è stata uti¬
lizzata per le stazioni 1-9 una numerazione differen¬
te, che riteniamo opportuno indicare in quanto non è
stata modificata sulle etichette che accompagnano gli
esemplari: 1 (4b), 2 (4), 3 (3), 4 (9), 5 (1 e Ibis), 6 (8),
7 (18), 8 (16), 9 (6).
Per una descrizione delle singole stazioni si ri¬
manda ai lavori di Banfi, Galasso & Sassi e Leonardi
& Sassi in questo stesso volume. Tali descrizioni si ri¬
feriscono agli anni in cui sono state effettuate le rac¬
colte.
Occorre infatti far presente che, essendo diventa¬
te più irregolari le tradizionali attività dell’economia
agro-silvo-pastorale che consentivano il manteni¬
mento delle cenosi erbacee, l’ambiente indagato ri¬
sulta oggi ampiamente caratterizzato da un dinami¬
smo verso la ricostruzione della foresta, quindi le va¬
riazioni che si osservano nei prati, quantomeno sotto
il profilo fisionomico, possono essere rapidissime, con
conseguenze sulla composizione dell’entomofauna. Il
recupero totale della foresta, con conseguente scom¬
parsa dei prati, causerebbe sicuramente un impoveri¬
mento faunistico.
Complessivamente sono state effettuate, da perso¬
nale o da collaboratori del museo, 86 uscite giornalie¬
re con un totale di 202 sopralluoghi di circa un’ora e
mezza ciascuno nelle stazioni 1-9, ripartiti come in ta¬
bella 2.
154
CARLO LEONARDI
Tabella 2 - Numero di sopralluoghi effettuati nei dif¬
ferenti mesi dell’anno nelle stazioni 1-9.
A queste uscite ne vanno aggiunte poche altre ef¬
fettuate da due studentesse nell’ambito delle loro te¬
si di laurea sui Ragni e sui Curculionidi del Monte
Barro.
Il numero di specie raccolto nelle singole stazioni
per ognuno dei gruppi studiati è riportato nella ta¬
bella 3.
Tabella 3 - Prospetto numerico delle specie raccolte
nelle stazioni 1-9.
L’area più ricca di specie, per quanto riguarda il
complesso dei gruppi studiati, sembra essere quella
che comprende la stazione 2, in località Piani di Bar¬
ra, interessata da scavi archeologici. Altre stazioni di
rilievo per l’elevato numero di specie che vi è stato
censito sono la staz. 3 (conca prativa a monte del mo¬
numento dell’Alpino, assai vicina in linea d’aria alle
stazioni 1 e 2), la staz. 4 (prato falciabile in località
San Michele) e la staz. 5 (in località Pian Sciresa),
mentre sembrano relativamente poveri i prati della
vai Faè (stazz. 7 e 8). È ovvio tuttavia che il numero
di specie censite nelle singole stazioni fornisce di per
sè un’informazione modesta se non lo si collega al
numero di uscite effettuate e soprattutto, ove possibi¬
le, all’andamento dei diagrammi di saturazione; que¬
sti ultimi sono stati costruiti solo per i Crisomelidi (v.
Leonardi & Sassi: p. 191, Fig 2), in considerazione del
fatto che a questo gruppo è stata rivolta una maggio¬
re attenzione durante le raccolte.
La descrizione di una comunità semplicemente in
termini di numero di specie presenti fa trascurare
completamente un aspetto importante della sua
struttura numerica, cioè la diversità. Alcune misure di
diversità (indice di Shannon, evenness, curve di k-do-
minanza) sono state ricavate per i Crisomelidi (v.
Leonardi & Sassi: pp. XX, Figg. 4, 5).
È infine interessante confrontare le stazioni 1-8 in
base alle specie fitofaghe che vi sono presenti. Par¬
tendo da una matrice binaria (Tab. 4) in cui sono rias¬
sunti i dati relativi ai tre gruppi (Heteroptera, Curcu-
lionidae, Chrysomelidae) più importanti e meglio
raccolti, si ricava, utilizzando l’indice di Dice/Soren-
sen e applicando la cluster analysis secondo il meto¬
do WPGMA, il dendrogramma di somiglianza ripor¬
tato in Fig. 1. In questo dendrogramma si nota l’isola¬
mento delle stazioni 7-8 che corrispondono a due
prati falciabili della Val Faè e, fra le rimanenti, la se¬
parazione della stazione 6, fisionomicamente ben ca¬
ratterizzata dall’evidente discontinuità della copertu¬
ra erbacea, che indica una forte ripresa del bosco.
Dal punto di vista zoogeografico l’entomofauna
del Monte Barro, che presenta una tipologia climati¬
ca di tipo insubrico, sembra essere caratterizzata da
una netta dominanza di taxa ad ampia distribuzione,
da una presenza importante di elementi europei e da
una scarsissima componente mediterranea, come si
vede nella Fig. 2 dove sono posti a confronto i gruppi
studiati raggruppando i corotipi per categorie sinteti¬
che (Vigna Taglianti et al., 1991).
i - 1 - - - 1 - 1 - 1
0.42 0.57 0.71 0.86 1.00
Fig. 1 - Dendrogramma di somiglianza delle stazioni 1-8 (indice di
Dice/Sorensen + WPGMA).
RICERCA ENTOMOFAUNISTICA NEL PARCO REGIONALE DEL MONTE BARRO
155
Ragni Eterotteri Cerambicidi Coccinellidi Crisomelidi Curculionidi Elateridi Sinfiti
E3 AMPIA DISTR. ■ DISTR. EUROPEA □ DISTR. MEDIT.
Fig. 2 - Spettro corologico nei gruppi studiati, con evidenziazione
di tre categorie sintetiche: elementi ad ampia distribuzione pa¬
leartica, elementi a distribuzione europea, elementi a distribuzio¬
ne mediterranea.
Complessivamente gli elementi ad ampia distribu¬
zione (per lo più asiatico-europei, sibirico-europei o
turanico-europei) sono circa il 66% e quelli a distri¬
buzione europea (comprendendovi anche i pochi en-
demiti della fauna italiana) poco più del 30%, mentre
la componente mediterranea corrisponde a meno del
2% delle specie raccolte (Fig. 3).
Medit.
1,82%
Fig.3 - Corotipi dei taxa raccolti sul Monte Barro raggruppati per
categorie sintetiche.
Tabella 4 - Matrice binaria formata da 395 specie di
Heteroptera (sono state escluse le specie predatrici),
Chrysomelidae e Curculionidae raccolti nelle stazio¬
ni 1-8.
156
CARLO LEONARDI
RICERCA ENTOMOFAUNISTICA NEL PARCO REGIONALE DEL MONTE BARRO
157
158
CARLO LEONARDI
BIBLIOGRAFIA
Leonardi C. & Sassi D., 1997 - 1 Crisomelidi (Coleoptera Chryso-
melidae) del Monte Barro (Italia, Lombardia, Lecco). Memo¬
rie Soc. it. Sci. nat. e Museo civ. Stor. nat. Milano, XXVII (II):
189-227.
Vigna Taglianti A., Audisio P.A., Belfiore G, Biondi M„ Bo¬
logna M.A., Carpaneto G.M., De Biase A., De Felici S.,
Piattella E., Racheli T„ Zapparoli M. & Zoia S. - 1992.
Riflessioni di gruppo sui corotipi fondamentali della fauna
W-paleartica ed in particolare italiana. Biogeographia , 16:
159-179.
Carlo Leonardi: Museo Civico di Storia Naturale, Sezione Botanica, Corso Venezia 55, 20121 Milano
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
Paride Dioli
Gli Eterotteri (Heteroptera) del Monte Barro
(Italia, Lombardia, Lecco)
Riassunto - Nel corso di una ricerca sugli Eterotteri del Monte Barro sono state censite 169 specie, di cui 13 vengono
segnalate per la prima volta in Lombardia. Esse sono: Bothynotus pilosus, Dicyphus annulatus, Phytocoris dimidiatus Pina-
htusatomanus Heterocordylus tumidicornis, Globiceps horvathi, Driophylocoris flavoquadrimaculatus, Harpocera thoraci-
ca, Heterocapdlus tigripes, Berytinus minor, Berytinus clavipes, Heterogaster cathariae e Megalonotus dilatatus. Sono state
inoltre confrontate mediante una cluster analysis le nove principali stazioni di campionamento delle specie. Dal punto di vi¬
sta zoogeografico è emerso che la maggior parte delle specie presenta ampia distribuzione in Asia ed Europa mentre l’e¬
lemento mediterraneo è scarsamente rappresentato, anche in relazione all’assenza di piante ospiti stenomediterranee.
Abstract - Bugs (Heteroptera) from Monte Barro (Italy, Lombardy, Lecco).
As a result of a research on thè heteropteran fauna (Inserta, Heteroptera) of thè Monte Barro (Lombardia, Italy) 169
species have been recorded: thirteen of them ( Bothynotus pilosus, Dicyphus annulatus, Phytocoris dimidiatus, Pinalitus ato-
marius, Heterocordylus tumidicornis, Globiceps horvathi, Driophylocoris flavo quadrimaculatus, Harpocera thoracica, Hete-
rocapillus tigripes, Berytinus minor, Berytinus clavipes, Heterogaster cathariae and Megalonotus dilatatus ) are new for Lom¬
bardia. The main sampling sites (sites 1-9) have been compared through a cluster analysis. The biogeographical analysis of
thè whole heteropteran fauna has been accomplished: most species are large distributed in Asia and Europe. The number
of Mediterranean elements is unimportant, owing to thè absence of thè typical Mediterranean host plants.
Key words: Monte Barro, Heteroptera, geographical distribution.
Negli anni 1989-1992 il Museo di Milano, con l’ap¬
poggio del Consorzio del Parco, ha effettuato una se¬
rie di raccolte sul Monte Barro, tese soprattutto allo
studio degli insetti legati alla vegetazione dei prati e
delle boscaglie circostanti. I campionamenti sono sta¬
ti effettuati inizialmente in numerose stazioni, e, suc¬
cessivamente, concentrati in nove stazioni prative
scelte fra quelle maggiormente rappresentative. Fra
queste ultime, otto sono ubicate entro i confini del
Parco e una immediatamente all’esterno (in località
Ca’ di Sala).
Tra il copioso materiale raccolto, conservato pres¬
so il Museo di Storia Naturale di Milano, vi è anche
un lotto di Eterotteri che sono stati preparati a secco
oppure conservati in acetone.
L’esame di questo materiale ha portato alla iden¬
tificazione di 169 specie, tra le quali 13 entità che non
erano state ancora segnalate in Lombardia oppure la
cui presenza era dubbia anche alla luce di alcune re¬
centi revisioni dei rispettivi gruppi sistematici. Esse
sono: Bothynotus pilosus, Dicyphus annulatus, Phyto-
coris dimidiatus, Pinalitus atomarius, Heterocordylus
tumidicornis, Globiceps horvathi, Driophylocoris fla¬
vo quadrimaculatus, Harpocera thoracica, Heteroca-
pillus tigripes, Berytinus minor, Berytinus clavipes,
Heterogaster cathariae e Megalonotus dilatatus.
Ma, ciò che più conta, è che la fauna eterotterolo-
gica del Monte Barro può considerarsi a tutt’oggi suf¬
ficientemente indagata; il cospicuo numero di specie
1 censite, in rapporto all’esigua estensione del Parco,
! rende merito alla Direzione del medesimo per aver
creduto in questa ricerca.
Descrizione sommaria delle Stazioni di raccolta 1-9
Staz. 1 - Sito archeologico in località Piani di Bar¬
ra, con calpestìo al centro e bosco ai margini; consi¬
stente l’elemento prativo con attività di foraggio resi¬
dua. Specie vegetali interessanti per gli Eterotteri:
Dactylis glomerata, Centaurea nigrescens, Trifolium
repens, Achillea spp., Lolium perenne, Vicia spp., The-
sium bavaricum.
Staz. 2 - Sito archeologico in località Piani di Bar¬
ra, un po’ a valle rispetto alla staz. 1; leggera preva¬
lenza di prateria e mantello su prato falciabile, come
risposta all’abbandono di una gestione a foraggio già
indebolita. Specie vegetali interessanti per gli Eterot¬
teri: Galium verum, Geranium sanguineum, Festuca
rubra, Valeriana collina, Vicia sepium, Teucrium cha-
maedrys, T.montanum, Vincetoxicum hirsutum.
Staz. 3 - Conca prativa a monte del Monumento
dell’alpino, convivenza di prateria con elementi di
prato falciabile ed elementi di disturbo marginale.
Specie vegetali interessanti per gli Eterotteri: Achil¬
lea sp., Centaurea spp., Euphorbia cyparissias, Galium
album, Gtverum, Lathyrus pratensis, Verbascum tha-
psus, Vicia spp.
Staz. 4 - Pendio in località S. Michele, in prossimità
del sentiero per Pian Sciresa. Prato falciabile in pieno
sviluppo con carattere oligo-mesotrofico. Specie ve¬
getali interessanti per gli Eterotteri: Echium vulgare,
Arabis collina, Daucus carota, Peucedanum spp., Vin¬
cetoxicum hirsutum.
Staz. 5 - Pian Sciresa, prato arido con collinetta a
brughiera. Inoltre si nota la presenza di prateria a
160
PARIDE DIOLI
Brachypodium rupestre. Specie vegetali interessanti
per gli Eterotteri: Collima vulgaris, Genista germani¬
ca, Hieracium sabaudum, Populus tremula, Cytisus
emeriflorus, C. scoparius.
Staz. 6 - Sentiero per la vetta del M. Barro, sopra
l’eremo. Si tratta di una prateria con parziale affiora¬
mento roccioso, fortemente cespugliata e in via di
chiusura, con una notevole presenza dell’elemento
pre-nemorale e tendenza a Quercetum pubescentis
s.l.. Specie vegetali interessanti per gli Eterotteri:
Centaurea spp., Corylus avellana, Euphorbia spp.,
Fraxinus ornus, Origanum volgare, Ostrya carpinifo-
lia, Teucrium montanum, T. chamaedrys, Thesium
spp., Vincetoxicum spp.
Staz. 7 - Località Fornaci Villa, terrazzo inferiore.
Prato contornato da bosco con caratteristiche simili a
quelle della stazione 8, ma con specie vegetali più
eliofile. Specie vegetali interessanti per gli Eterotteri:
Achillea spp., Trifolium spp., Galium mollugo, Hera-
cleum spp., Medicago spp., Peucedanum spp., Pimpi¬
nella spp., Trifolium spp., Vicia spp.
Staz. 8 - Località Fornaci Villa, terrazzo superiore.
Prato irregolarmente gestito e contornato da un bo¬
sco con notevoli contrassegni mesofili ( Astrantia
major, Prunus avium, Geranium nodosurn ), in conse¬
guenza dell’esposizione a Nord - Ovest e dell’ele¬
mento sciafilo. Specie vegetali interessanti per gli
Eterotteri: Arrenatherum elatior, Astrantia major,
Brachypodium rupestre cespitosum, Ononis spinosa.
Staz. 9 - Superficie prativa al bordo settentrionale
del Lago di Annone. Si rilevano aspetti di canneto,
prato umido oligotrofico e vegetazione disorganizza¬
ta al marginme esterno.
Tabella 1 - Prospetto delle specie raccolte (in neretto le specie esclusivamente o prevalentemente
predatrici). Sotto il numero 10 sono raggruppate diverse stazioni nelle quali le raccolte hanno avuto
carattere di sporadicità. A = abbondante.
GLI ETEROTTERI (HETEROPTERA) DEL MONTE BARRO (ITALIA. LOMBARDIA, LECCO)
161
162
PARIDE DIOLI
L’analisi del popolamento emitterologico viene
fatta attraverso l’individuazione dei rapporti gerar¬
chici di somiglianza fra le prime nove stazioni di rac¬
colta degli eterotteri. Tali rapporti sono evidenziati
nel dendrogramma di Fig. 5 che è stato ottenuto uti¬
lizzando l’indice di Sorensen e la cluster analysis se¬
condo il metodo WPGMA. La matrice per l’analisi,
che qui non si riporta, è facilmente ricavabile dalla ta¬
bella soprastante.
Come si può osservare, le Staz. 1, 2, 3, 4 fanno
gruppo assieme e rappresentano un «cluster» ben
identificato dalle situazioni a prato degradato che ri¬
chiamano eterotteri antropofili.
La Staz. 5 si stacca nettamente per la presenza del¬
la tipica fauna degli eterotteri di brughiera.
La Staz. 6 (sotto la vetta del Barro) è quella più
povera di specie (forse a causa di una certa ventosità)
ed è perciò molto distante dalla precedente.
Le Staz. 7 e 8 hanno invece una somiglianza che
viene molto ben enfatizzata dal dendrogramma.
Guardando la situazione in loco, scopriamo infatti
che esse sono entrambe caratterizzate dalla vicinanza
della faggeta, un fattore che risulta determinante an¬
che in altri studi entomologici di questa serie sul Par¬
co del Barro.
La Staz. 9, infine, pur avendo delle affinità con il
primo gruppo (1, 2, 3, 4) se ne discosta in forza della
presenza di alcuni elementi igrofili legati alle specie
vegetali tipiche di ambienti umidi.
Discussione delle specie
Saldidae
1. Saldula sai tatoria (Linné, 1758)
Corotipo: Olartico (OLA).
Presenza in Italia: tutte le regioni settentrionali,
meno frequente al Sud dove è presente solo in mon¬
tagna.
Biologia: predatore di microinvertebrati. Specie
opportunista che può adattarsi bene sia in riva a pic¬
coli ruscelli che sulle spiagge marine.
Tingidae
2. Kalama tricomis (Schrank, 1801)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni.
Biologia: solitamente su Artemisia campestris.
3. Dictyonota strichnocera Fieber, 1844
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, qua e là
in quelle centro meridionali e in Sicilia, assente in
Sardegna.
Biologia: su Cytisus spp., Ulex europaeus, Genista
spp..
4. Lasiacantha capucina (Germar, 1836)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: regioni settentrionali e centrali,
sino all’Abruzzo.
Biologia: su Thymus spp., Salvia spp., Teucrium spp..
5. Tingis crispata (Herrich - Schaffer, 1838)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: regioni settentrionali.
Biologia: Arthemisia spp..
6. Tingis reticulata (Herrich - Schaffer, 1835)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: regioni settentrionali e centrali.
Biologia: Ajuga spp..
Note di raccolta: l’insetto è stato raccolto in un
prato vicino alla staz. 4 (loc. S. Michele).
7. Catoplatus fabricii (Stai, 1868)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: regioni settentrionali. In quelle
centro-meridionali, solo in Abruzzo, Puglie e Basili¬
cata.
Biologia: su Leucanthemum vulgare, Chrysanthe-
mum spp.
8. Onchochila simplex (Herrich - Schaffer, 1830)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: nelle regioni settentrionali.
Biologia: su Euphorbia spp.
9. Dictyla echii (Schrank, 1782)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Biologia: Echium spp.
10. Copium clavicome (Linné, 1758)
Corotipo: S-Europeo (SEU).
Presenza in Italia: regioni settentrionali e, scen¬
dendo al Sud, sull’Appennino.
Biologia: Teucrium chamaedrys.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto ai margini di un sentiero che dall’eremo
va alla Sella della Pila.
11. Agramma laetum (Fallén, 1807)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: regioni settentrionali, meno co¬
mune al centro-sud.
Biologia: in ambienti umidi su Juncus spp., Carex spp.
Miridae
12. Bothynotus pilosus (Boheman, 1852), Fig. 1
Corotipo: Europeo (EUR).
Presenza in Italia: segnalato di alcune regioni set¬
tentrionali (Piemonte, Liguria, Trentino, Friuli Vene¬
zia Giulia) e Sicilia. Prima citazione per la Lombardia.
Biologia: nelle radure e brughiere, più raramente
nei boschi di Pinus, generalmente legato a Calluna
vulgaris.
Note di raccolta: l’insetto è stato raccolto ai mar¬
gini di un sentiero che dall’eremo va alla Sella della
Pila.
Note geonemiche: se si eccettua il dato più recen¬
te, relativo al Friuli, citato da Servadei (1967), le se¬
gnalazioni italiane per questa specie risalgono tutte al
secolo scorso. Considerando che il Bothynotus pilo¬
sus (Boheman, 1852) presenta la femmina brachitte-
ra, ne consegue una naturale propensione all’isola¬
mento e alla localizzazione in aree con calluneti relit¬
ti. In questo contesto, assume notevole importanza il
reperto proveniente dal Monte Barro, che potrebbe
configurarsi come stazione relitta per questa specie.
13. Briocoris pteridis Fallén, 1807
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: regioni alpine.
Biologia: su felci, particolarmente Pteridium aqui-
linum.
GLI ETEROTTERI (HETEROPTERA) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
163
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: su svariate latifoglie ma anche aghifo¬
glie, infestate da afidi o psillidi.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto ai margini di un sentiero che che dall’ere¬
mo va alla Sella della Pila.
16. Deraeocoris serenus Douglas & Scott, 1868
Corotipo: Mediterraneo (MED).
Presenza in Italia: tutte le regioni.
Biologia: predatore di microinsetti su svariate
piante erbacee.
17. Dicyphus flavoviridis Tamanini, 1949
Corotipo: Endemico italiano (END).
Presenza in Italia: tutte le regioni.
Biologia: Rubus spp., Geranium spp., Galeopsis
spp..
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto nel sottobosco della Val Faè.
18. Dicyphus globulifer (Fallén, 1829)
Corotipo: Europeo (EUR).
Presenza in Italia: tutte le regioni.
Biologia: su Chrysanthemum spp., Lycnis spp., Me-
landryum spp., Ononis spp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato presso Camporeso.
19. Dicyphus annulatus (Wolff 1804)
Corotipo: Europeo (EUR).
Presenza in Italia: nelle regioni settentrionali è spo¬
radica e si hanno dati certi solo di Piemonte e Liguria.
Più comune al Sud, ma la sua distribuzione necessita di
conferma dopo la separazione da D. ononidis E. Wa¬
gner, 1951. Prima citazione per la Lombardia.
Biologia: su Ononis spinosa.
Note sistematiche: D. annulatus si distingue da D.
ononidis E.Wagn, 1951, per le dimensioni del secon¬
do articolo antennale decisamente più corto. Esso è
infatti di poco più lungo del terzo e la metà della lar¬
ghezza del pronoto. D. ononidis ha invece il secondo
articolo antennale che è 0,7-0,8 volte la larghezza del
pronoto.
20. Stenodema sericans (Fieber, 1861)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: regioni settentrionali e, alle
quote più elevate, in quelle appenniniche e in Sicilia.
Biologia: poacee.
Note di raccolta: l’insetto è stato raccolto ai margi¬
ni di un sentiero che dall’eremo va alla Sella della Pila.
21 .Stenodema calcaratum (Fallén, 1807)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Biologia: su diverse Poacee.
22. Stenodema laevigatum (Linné, 1758)
Corotipo: Olartico (OLA).
Presenza in Italia: tutte le regioni.
Biologia: poacee (spesso svernante su conifere).
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto nel sottobosco della Val Faè.
23. Trigonotylus ruficornis (Geoffroy, 1785)
Corotipo: Olartco (OLA).
Presenza in Italia: tutte le regioni.
Biologia: su poacee, preferibilmente in ambienti
umidi.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato vicino alla staz. 4 (loc. S. Mi¬
chele).
24. Notostira erratica (Linné, 1758)
Corotipo: Europeo (EUR).
Presenza in Italia: tutte le regioni.
Biologia: poacee.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto nel sottobosco della Val Faè.
25. Megaloceroea recticornis (Geoffroy, 1785)
Corotipo: Europeo - Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Biologia: Poacee, preferibilmente Triticum spp..
26 . Phytocoris dimidiatus (Kirschbaum, 1856)
Corotipo: Europeo - Mediterraneo (EUM).
Presenza in Italia: Piemonte, Liguria, Trentino, La¬
zio e Sicilia. Prima segnalazione per la Lombardia.
Biologia: predatore di microinsetti su latifoglie
(Pirus, Malus, Quercus ), ma anche su Pinus spp..
27 . Adelphocoris lineolatus (Goeze, 1778)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Biologia: Artemisia spp., Verbascum spp.. Achillea
spp., Medicago spp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato presso Camporeso.
164
PARIDE DIOLI
28. Adelphocoris seticomis (Fabricius, 1775)
Corotipoo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni. Dubbia la pre¬
senza sulle isole maggiori (Faraci & Rizzotti, 1995).
Biologia: su papilionacee, come Medicaio spp.,
Trifolium spp., Vi eia spp.. Adulti soprattutto in luglio
e agosto.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto sulla vegetazione ai margini della strada
asfaltata che sale verso il Monumento all’Alpino.
29. Adelphocoris vandalicus (Rossi, 1790)
Corotipo: Mediterraneo (MED).
Presenza in Italia: tutte le regioni, ma raro in quel¬
le alpine
Biologia: Verbascum spp., Achillea spp., Arthemi-
sia spp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto ai margini di un sentiero che dall'eremo
va alla Sella d. Pila.
30. Calocoris striatellus (Fabricius, 1794) (= C. qua-
dripunctatus. Vili., 1789)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Biologia: su Quercus sp., dove si comporta talora
da zoofago, talora da fitofago.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto ai margini di un sentiero che dall’eremo
va alla Sella della Pila.
31. Stenotus binotatus (Fabricius, 1794)
Corotipo: Olartico (OLA).
Presenza in Italia: tutte le regioni, tranne la Sarde¬
gna.
Biologia: Melilotus spp., Medicago spp..
32. Pantilius tunicatus (Fabricius, 1781)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, raro al
Sud.
Biologia: Betula spp., Corylus spp.
33. Exolygus pratensis (Linné, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni.
Biologia: su svariate piante erbacee tra cui Unica
spp., Artemisia spp., Stachys spp. e Mentha spp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato vicino alla staz. 4 (loc. S. Mi¬
chele).
34. Pinalitus atomarius (Meyer - Dur, 1843)
Corotipo: S-Europeo (SEU).
Presenza in Italia: Trentino, Piemonte, Emilia, La¬
zio e Calabria. Prima segnalazione per la Lombardia.
Biologia: sulle conifere.
35. Orthops kalmi (Linné, 1758)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Biologia: su Apiacee come Peucedanum spp., Pim¬
pinella spp., Daucus spp., Pastinaca spp. ecc.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto nei prati sotto Sella d. Pila, a circa 700 m
di quota.
36. Liocoris tripustulatus (Fabricius, 1781)
Corotipo: Paleartica (PAL).
Presenza in Italia: tutte le regioni.
Biologia: su Parietaria spp., Solanum spp., Unica
spp., Verbascum spp., Salvia spp.
37. Polymerus holosericeus (Hahn, 1831)
Corotipo: Turanico-Mediterraneo (TUM).
Presenza in Italia:regioni montane delle Alpi e
dell’Appennino, sino alla Campania.
Biologia: su Unica spp. e Galium spp.
38. Polymerus unifasciatus (Fabricius, 1794)
Corotipo: Olartico (OLA).
Presenza in Italia: tutte le regioni.
Biologia: Galium sp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto ai margini di un sentiero che dall’eremo
va alla Sella della Pila.
39. Capsus ater (Linné, 1758)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Biologia: su Phleum spp.
40. Halticus apterus (Linné, 1758)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: Ononis spp., Galium spp.
41. Heterocordylus genistae (Scopoli, 1763)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, centro¬
meridionali e Sardegna.
Biologia: Genista spp.; regime dietetico solo par¬
zialmente fitofago.
42. Heterocordylus tumidicomis (Herrich - Schaffer,
1836)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: diverse regioni settentrionali,
centrali e meridionali. Prima segnalazione per la
Lombardia.
Biologia: soprattutto su Prunus spp.e Mespilus
germanica , ma anche su Alnus spp., Euonimus euro-
paeus e Sarothamnus scoparius; regime dietetico solo
parzialmente fitofago.
43. Globiceps horvathi Reuter, 1912
Corotipo: Est-Mediterraneo (EME).
Presenza in Italia: le citazioni sicure sono di Pie¬
monte, Trentino, Alto Adige, Marche, Abruzzo, Cam¬
pania, Calabria e Sicilia. Prima segnalazione per la
Lombardia.
Biologia: su Ononis spp., Spartium spp., Galium
spp., Corylus spp., Crataegus spp.
44. Globiceps shaegiformis (Rossi, 1790)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Biologia: soprattutto su Quercus spp., ma talora
anche su Acer campestre e Corylus avellana.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto ai margini di un sentiero che dall’eremo
va alla Sella della Pila.
45. Driophylocoris flavoquadrimaculatus (De Geer,
1773)
Corotipo: Europeo-Mediterraneo (EUM).
GLI ETEROTTERI (HETEROPTERA) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
165
Presenza in Italia: si hanno segnalazioni sicure di
Piemonte, Trentino, Alto Adige, Veneto, Emilia, Um¬
bria, Lazio, Puglia e Sicilia. Prima segnalazione per la
Lombardia.
Biologia: fitofago e zoofago su Quercus spp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto ai margini di un sentiero che dall’eremo va
alla Sella della Pila e in un prato presso Camporeso.
46. Cyllecoris histrionicus (Linné, 1767)
Corotipo: Europeo (EUR).
Presenza in Italia: tutte le regioni.
Biologia: su Quercus sp.; regime dietetico zoofago
e fitofago.
47. Pilophorus perplexus Dgl.& Scott, 1785 (= P.pu-
sillus Reuter, 1878)
Corotipo: Europeo - Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Biologia: predatore di afidi su Prunus spp .Junipe-
rus spp. e Alnus glutinosa.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto ai margini di un sentiero che dall’eremo
va alla Sella della Pila.
48. Pilophorus clavatus (Linné, 1767)
Corotipo: Olartico (OLA).
Presenza in Italia: regioni centro settentrionali,
più raro al Sud.
Biologia: predatore di afidi su Populus spp.
49. Harpocera thoracica (Fallén, 1807)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: Piemonte, Veneto, Friuli-Vene¬
zia Giulia, Liguria, Umbria e Sicilia. Prima segnala¬
zione per la Lombardia.
Biologia: su Quercus; forme giovanili essenzial¬
mente fitofaghe, adulti anche predatori di microinset¬
ti; nelle Prealpi legato al « Querco-Betuletum insubri-
cum » (Dioli, 1993).
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato presso Camporeso.
50. Phylus coryli (Linné, 1758)
Corotipo: Europeo (EUR).
Presenza in Italia: tutte le regioni settentrionali,
centro-meridionali e Sicilia.
Biologia: su Corylus avellana , anche predatore di
microinsetti.
51. Chlamidatus pulicarius (Fallén, 1807)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni settentrionali e
[ lungo l’Appennino sino al Molise.
Biologia: su Artemisia spp.. Achillea spp.
52. Plagiognathus arbustorum (Fabricius, 1794)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Biologia: comune soprattutto su Urtica spp.
Note di raccolta: l'insetto è stato raccolto ai margini
di un sentiero che dall’eremo va alla Sella della Pila.
53. Criocoris crassicomis (Hahn, 1834)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: regioni settentrionali, Emilia,
Liguria, Umbria, Abruzzo e Sicilia.
Biologia: su Galium spp.
54. Heterocapillus tigripes (Mulsant, 1852)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, Emilia,
Toscana, Abruzzo e Molise, Campania, Basilicata e
Calabria. Prima segnalazione per la Lombardia.
Biologia: su Dorycnium spp.
Note di raccolta: l’insetto è stato raccolto ai margi¬
ni di un sentiero che dall'eremo va alla Sella della Pila.
55. Psallus variabilis (Fallén, 1807)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Trentino, Alto Adige, Veneto,
Lombardia, Piemonte, Emilia, Calabria, Puglia.
Biologia: su Prunus spinosa.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto nei prati sotto la Sella della Pila.
56. Charagochilus gyllenhali (Fallén, 1807)
Corotipo: Paleartico (PAL).
Presenza in Italia: Piemonte, Lombardia, Alto
Adige, Trentino, Veneto, Emilia, Marche, Umbria,
Abruzzo, Calabria, Sicilia.
Biologia: su Galium spp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato della Val Faè attiguo alla staz.
7, in un prato in località S. Michele vicino alla staz. 4
e in un prato vicino a Camporeso.
57. Charagochilus weberi E. Wagner, 1953
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Alto
Adige, Veneto, Marche, Umbria, Abruzzo, Campania,
Puglie, Sicilia e Montecristo.
Biologia: su Verbascum spp.
Nabidae
58. Prostemma aeneicolle Stein, 1857
Corotipo: Europeo (EUR).
Presenza in Italia: Trentino, Alto Adige, Lombar¬
dia, Veneto, Liguria, Emilia, Toscana, Abruzzo e Mo¬
lise, Calabria.
Biologia: prevalentemente predatore di eterotteri
ligeidi e pentatomidi.
59. Himacerus apterus (Fabricius, 1798)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali e centrali,
raro al Sud.
Biologia: si nutre prevalentemente di afidi e larve
di lepidotteri sulle latifoglie.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto nel sottobosco della Val Faè.
60. Aptus mirmicoides (O.Costa, 1834)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Biologia: predatore di microinsetti su erbe basse e
arbusti.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto nei prati sotto la Sella della Pila, in un pra¬
to della vai Faè vicino alla staz. 7, lungo un sentiero
che dall’eremo conduce alla Sella della Pila e in un
prato presso Camporeso.
61. Nabis rugosus (Linné, 1758)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: regioni alpine, più raro in quel¬
le appenniniche, assente nelle isole.
166
PARIDE DIOLI
Biologia: predatore di afidi e microinsetti, gene¬
ralmente su Artemisia spp. ed Erica spp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato vicino a Camporeso.
62. Nabis punctatus (Costa, 1847)
Corotipo: S-Europeo (SEU).
Presenza in Italia: tutte le regioni.
Biologia: predatore di microinsetti sulle erbe bas¬
se e sugli arbusti, spesso associato a Stenodema spp.
Anthocoridae
63 . Anthocoris confusus Reuter, 1884
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: regioni alpine, Emilia, Umbria,
Lazio, Abruzzo e Molise, Basilicata, Sicilia.
Biologia: predatore di microinsetti su Betula spp. e
Fagus spp.
64. Anthocoris nemoralis (Fabricius, 1794)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Biologia: predatore di microinsetti, specialmente
psille e afidi, su Crataegus spp., Sorbus spp., Euphor-
bia spp., Fraxinus spp., Populus spp., Rhamnus spp.,
Prumis spp.
65. Anthocoris nemorum (Linné, 1761)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni.
Biologia: predatore di psillidi e afidi su Picea spp.,
Alnus spp., Salix spp., ma anche su piante erbacee co¬
me Urtica spp. e Daucus carota.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto lungo un sentiero che dall’eremo conduce
alla Sella della Pila.
66. Orius majusculus (Reuter, 1879)
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Trentino,
Alto Adige, Veneto, Emilia, Marche, Toscana, Abruz¬
zo, Calabria, Sardegna.
Biologia: predatore di microinsetti (afidi, larve di
microlepidotteri) e acari, soprattutto in ambienti
umidi su Polygonum spp., Phragmites spp. e Care x
spp.
67. Orius niger (Wolff, 1811)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: predatore di microinsetti (afidi, tisanot-
teri) e acari su Artemisia spp., Achillea spp., Verba-
scum spp.
Phymatidae
68. Phymata crassipes (Fabricius, 1775)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni.
Biologia: predatore, generalmente sui fiori o tra le
erbe secche in ambienti soleggiati.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto lungo un sentiero che dall’eremo conduce
alla Sella d. Pila.
Reduviidae
69. Rhynocoris iracundus (Poda, 1761)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni, anche in mon¬
tagna. Meritano conferma le segnalazioni per la Sar¬
degna.
Biologia: predatore di invertebrati.
70. Rhynocoris annulatus (Linné, 1758)
Corotipo: Sibirica-Europeo (SIE).
Presenza in Italia: tutte le regioni dalle Alpi alla
Calabria. Dubbia la presenza in Sicilia, assente in Sar¬
degna.
Biologia: predatore di invertebrati, è la specie di
Rhynocoris che si spinge più in alto in montagna: nel¬
la zona alpina è stato trovato a 2500 metri di altezza
(Passo Forcola di Livigno), in ambienti asciutti e
steppici.
Aradidae
IX.Aradus depressus (Fabricius, 1794)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni peninsulari e la
Sicilia.
Biologia: si nutre del micelio e dei corpi fruttiferi
di poliporacee attaccate a Betula, Quercus e Fagus.
Berytidae
72. Berytinus minor (Herrich - Schaffer, 1835)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Trentino, Alto Adige,
Emilia, Abruzzo, Lazio, Sardegna. Prima segnalazio¬
ne per la Lombardia.
Biologia: specie legata principalmente a Trifolium
spp. e Medicago spp.
73. Berytinus clavipes (Fabricius, 1775)
Corotipo: Sibirico - Europeo (SIE).
Presenza in Italia: Piemonte, Trentino, Veneto,
Emilia, Toscana. Prima segnalazione certa per la
Lombardia, dopo la revisione di Pericart (1984).
Biologia: Ononis spp., Vicia spp.
Lygaeidae
74. Tropidothorax leucopterus (Goeze, 1778)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: su Vincetoxicum spp. e Cynanchum spp..
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto lungo un sentiero che dall’eremo conduce
alla Sella d. Pila e in un prato vicino a Camporeso.
75. Lygaeus equestris (Linné, 1758)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni, tranne la Sicilia.
Biologia: in prevalenza su Artemisia, Achillea, Me¬
dicago, Trifolium, Scrophularia e Datura.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto nei prati sotto la Sella della Pila (m 700),
nei boschi della Val Faè e lungo un sentiero che dal¬
l’eremo conduce alla Sella della Pila.
Note geonemiche: la descrizione recente della
specie affine, Lygaeus simulans (Deckert, 1985), ha
portato ad una ridefinizione della distribuzione gene¬
rale di L. equestris, sotto il cui nome erano precen-
dentemente confuse le due entità.
L. simulans, in Italia, si comporta come elemento
prevalentemente montano nelle Alpi e sull’Appenni-
no mentre L. equestris è specie più ubiquista.
Note sistematiche: il carattere che consente l’im-
GLI ETEROTTERI (HETEROPTERA) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
167
mediata separazione delle due specie risiede nello
scutello: glabro o con micro-peli in L. equestri, irsu¬
to con peli lunghi ed eretti in L. simulans. Interessan¬
te anche la possibilità di facile separazione delle due
specie negli stadi larvali: su Cynanchum sono state
osservate neanidi del 5° stadio di L. simulans (color
avorio con striature rosse) e di L. equestris (comple¬
tamente rosse). (Melber & Coll., 1991).
76. Lygaeus saxatilis (Scopoli, 1763)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: specialmente su Colchicum autumnale.
77. Nysius senecionis (Schilling, 1828)
Corotipo: Turanico-mediterraneo-Europeo (TEM).
Presenza in Italia: tutte le regioni, meno comune
al Sud.
Biologia: su Artemisia absinthium.
78. Nysius ericae (Schilling, 1829)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali e, più spo¬
radico, in quelle meridionali.
Biologia: Artemisia spp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato vicino a Camporeso.
79. Nysius thymi (Wolff, 1804)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni, al Sud, solo sui
monti.
Biologia: Artemisia spp.
80. Kleidocerys reseda e (Panzer, 1789)
Corotipo: Sibirico-Europeo (SIE) e Neartico.
Presenza in Italia: regioni settentrionali, Emilia e
Toscana.
Biologia: Betula spp., Calluna vulgaris.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato della vai Faè vicino alla staz. 7.
81. Cymus aurescens Distant, 1883 (= obliquus Hor-
vath, 1888)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Piemonte, Lombardia, Trentino
e Liguria.
Biologia: su Scirpus spp.
82. Ischnodemus quadratus (Fieber, 1836)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni italiane
Biologia: poacee, in zone umide o paludose.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato vicino alla staz. 4.
83. Geocoris megacephalus (Rossi, 1790)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni. Le vecchie cita¬
zioni di G. siculus (Fieber) 1844, si riferiscono in
realtà a questa specie (Tamanini, 1981).
Biologia: detriti di Artemisia spp.
84. Oxycarenus pallens (Herrich - Schaffer, 1850)
Corotipo: Centroasiatico-Mediterraneo (CAM).
Presenza in Italia: tutte le regioni, raro nelle Alpi.
Biologia: su Centaurea spp.
85. Oxycarenus lavaterae (Fabricius, 1787)
Corotipo: Mediterraneo (MED).
Presenza in Italia: tutte le regioni, spesso in folte
colonie gregarie sulle piante ospiti, dove riesce tal¬
volta dannoso.
Biologia: soprattutto sul tiglio (Tilia cordata ), fito-
fago e, nei mesi invernali o di rifugio, corticicolo.
Note di raccolta: ne sono stati raccolti numerosi
esemplari in una radura sotto Teremo.
86. Macroplax preyssleri (Fieber, 1838)
Corotipo: Europeo (EUR).
Presenza in Italia: tutte le regioni peninsulari e Si¬
cilia, raro sulle Alpi.
Biologia: Thymus serpyllum.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto lungo un sentiero che dall’eremo conduce
alla Sella della Pila.
87. Macroplax fasciatus (Herrich - Schaffer, 1835)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni, al Sud sino a
2000 m.
Biologia: Ononis spp., Cistus spp., Spartium jun-
ceum.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto nei prati sotto la Sella d. Pila (m 700) e
lungo un sentiero che dall’eremo conduce alla Sella
della Pila.
88. Heterogaster cathariae (Geoffroy, 1785), Fig. 2
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: specie rara, sicuramente pre-
Fig. 2 - Heterogaster cathariae (disegno di C. Pesarini).
168
PARIDE DIOLI
sente in Piemonte, Trentino e in Alto Adige. A queste
citazioni posso aggiungere l’Emilia (Casola!) per un
esemplare raccolto su Nepeta catharia. Nuova segna¬
lazione per la Lombardia.
Biologia: specie infeudata su Nepeta catharia , più
raramente su Mentha spp.. Melissa spp., Lycopus spp.
89. Platyplax salviae (Schilling, 1829)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali e centrali,
sino alla Toscana e PUmbria.
Biologia: su Salvia spp.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto lungo un sentiero che dall’eremo conduce
alla Sella della Pila.
90. Plinthisus brevipennis (Latreille, 1807)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: detriti di Ericacee.
91. Tropistethus fasciatus Ferrari, 1874
Corotipo: Mediterraneo (MED).
Presenza in Italia: Trentino, Veneto, Lombardia,
Emilia, Umbria, Lazio e Sicilia.
Biologia: ambienti asciutti con detriti vegetali.
92. Drymus sylvaticus (Fabricius, 1775)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni, ma raro al Sud.
Non segnalato di Sardegna.
Biologia: detriti di latifoglie.
93. Drymus ryeii (Douglas & Scott, 1865).
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Valle d’Aosta, Lom¬
bardia, Veneto, Trentino e Venezia Giulia. Da confer¬
mare le segnalazioni per la Sicilia.
Biologia: detriti di latifoglie o sotto pietre.
94. Scolopostethus affinis (Schilling, 1829)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni settentrionali e
centrali sino all’Abruzzo.
Biologia: detriti di Unica e latifoglie.
95. Scolopostethus decoratus (Flahn, 1833)
Corotipo: Europeo-Mediteraneo (EUM).
Presenza in Italia: tutte le regioni.
Biologia: detriti di Ericacee.
96. Scolopostethus cognatus (Fieber, 1861)
Corotipo: Mediteraneo (MED).
Presenza in Italia: regioni centro-meridionali e Sar¬
degna, raro però nella zona alpina dove è infeudato al¬
le zone xerotermiche o, comunque, molto soleggiate.
Biologia: Calluna vulgaris , Erica arborea.
97. Scolopostethus thomsoni Reuter, 1874
Corotipo: Olartico (OLA).
Presenza in Italia: tutte le regioni e Sardegna.
Biologia: detriti di Unica spp.
98. Taphropeltus contractus (Herrich - Schaffer, 1839)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni, anche se piutto¬
sto raro ovunque.
Biologia: detriti di latifoglie.
99. Acompus rufipes (Wolff, 1804)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni, tranne le isole.
Biologia: Valeriana officinalis.
100. Stygnocoris sabulosus (Schilling, 1829)
Corotipo: Olartico (OLA).
Presenza in Italia: regioni settentrionali, appenni¬
niche, Basilicata, Calabria e Sicilia.
Biologia: detriti di Artemisia spp. e Alnus spp.
101. Stygnocoris pygmaeus (Sahlberg, 1848)
Corotipo: E-Europeo (EEU).
Presenza in Italia: Trentino, Alto Adige e Lombar¬
dia.
Biologia: detriti di Ericacee, soprattutto Calluna
vulgaris.
102. Pachybrachius fracticollis (Schilling, 1829)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali sino all’E¬
milia; dubbie le citazioni per il Sud.
Biologia: Carex spp., Scirpus spp., Verbascum spp.
103. Beosus maritimus (Scopoli, 1763)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: detriti di ericacee e poacee.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto in un prato vicino a Camporeso.
104. Aellopus atratus (Goeze, 1778)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: su Echium spp.
105. Rhyparochromus quadratus (Fabricius, 1758)
Corotipo: Centroasiatico-Europeo-Mediterraneo
(CEM).
Presenza in Italia: tutte le regioni.
Biologia: detriti di Ericacee.
106. Rhyparochromus alboacuminatus (Goeze,
1778)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: detriti di Poacee ed Ericacee.
Note di raccolta: l’insetto è stato raccolto in un
prato vicino a Camporeso.
107. Rhyparochromus confusus (Reuter, 1886).
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: tutte le regioni.
Biologia: detriti di Poacee.
108. Rhyparochromus vulgaris (Schilling, 1829)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: tutte le regioni.
Biologia: detriti di Poacee.
109. Rhyparochromus phoeniceus (Rossi, 1794)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni, tranne la Sarde¬
gna.
Biologia: detriti di latifoglie e Poacee.
Note di raccolta: fuori dalle staz. 1-9 l’insetto è sta¬
to raccolto ai margini di un sentiero che dall’eremo
conduce alla Sella della Pila.
GLI ETEROTTERI (HETEROPTERA) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
169
110. Rhyparochromus pini (Linné, 1758)
Corotipo: Asiatico-Èuropeo (ASE).
Presenza in Italia: tutte le regioni, tranne la Sardegna.
Biologia: detriti vegetali di Poacee, latifoglie e
aghifoglie.
111. Peritrechus geniculatus (Hahn, 1832)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: regioni settentrionali, Emilia,
Toscana, Lazio, Abruzzo, Campania e Sardegna.
Biologia: detriti vegetali di Poacee, Ericacee e al¬
tre latifoglie.
112. Peritrechus gracilicomis Puton, 1877
Corotipo: Turanico-Mediterraneo (TUM).
Presenza in Italia: tutte le regioni, anche se risul¬
tano dubbie le citazioni per le due isole maggiori.
Biologia: detriti di Poacee, Ericacee e altre latifoglie.
113. Paromius leptopoides (Baerenspung, 1859)
Corotipo: Mediterraneo (MED).
Presenza in Italia: tutte le regioni e la Sardegna,
tranne la catena alpina.
Biologia: detriti di Poacee.
114. Megalonotus praetextatus (Herrich - Schaffer,
1835)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: detriti di piante erbacee.
115. Megalonotus antennatus (Schilling, 1829)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, sino al-
l’Emilia.
Biologia: detriti vegetali, con preferenza di suoli
sabbiosi.
116. Megalonotus dilatatus (Herrich - Schaffer,
1835), Fig. 3
Corotipo: Europeo (EUR).
Presenza in Italia: in letteratura compaiono vec¬
chie citazioni sparse qua e là nelle regioni settentrio¬
nali e qualcuna più recente, riferita ad ambienti di
brughiera (Dioli, 1980). Segnalato anche nelle regio¬
ni meridionali (Faraci & Rizzotti, 1995), ma raro e lo¬
calizzato ovunque. Primo reperto in Lombardia.
Biologia: detriti di Sarothamnus spp. e Genista spp.
117. Emblethis verbasci (Fabricius, 1803)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni
Biologia: fra i detriti di Poacee, Ericacee, felci ecc...
Pyrrhocoridae
118. Pyrrhocoris apterus (Linnè, 1758)
Corotipo: Centroasiatico-Europeo-Mediterraneo
(CEM).
Presenza in Italia: tutte le regioni
Biologia: alla base di latifoglie (Tilia spp., Betida spp.).
Coreidae
119. Enoplops scapha (Fabricius, 1794)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni peninsulari e Si-
■ ciba ma non frequente.
Biologia: Cirsium spp., in ambienti soleggiati e
asciutti.
Fig. 3 - Megalonotus dilatatus (disegno di C. Pesarini).
120. Coreus marginatus (Linné, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni, assai comune
ovunque.
Biologia: Rumex spp.
121. Syromastes rhombeus (Linné, 1767)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: Euphorbia spp. e Cariofillacee ( Spergu -
laria spp.).
122. Gonocerus acuteangulatus (Goeze, 1778)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: tutte le regioni.
Biologia: Corylus avellana. In alcune regioni è
considerato dannoso alle coltivazioni del nocciolo.
123. Spatocera laticomis (Schilling, 1829)
Corotipo: Europeo (EUR)
Presenza in Italia: regioni settentrionali alpine.
Biologia: Polygonum spp.
124. Coriomeris scabricomis (Panzer, 1809)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino, Marche, Toscana, Abruzzo, Lazio, Campania,
Basilicata, Calabria e Sicilia. Prevalentemente montano.
Biologia: Trifolium spp.
170
PARIDE DIOLI
125. Coriomeris denticulatus (Scopoli, 1763)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni.
Biologia: su Poacee.
Alydidae
126. Alydus calcaratus (Linné, 1758)
Corotipo: Olartico (OLA).
Presenza in Italia: tutte le regioni del Nord e del
Sud e Sicilia.
Biologia: specie polifaga, le larve si cibano di semi
di poacee ma sono state viste anche nutrirsi di caro¬
gne o sterco. Esse sono mirmecomorfe e sono state
rinvenute spesso con formiche del gruppo « rufa », La-
sius spp. e Myrmica spp.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto in un prato vicino a Camporeso.
Rhopalidae
127. Corizus hyoscyami (Linnè, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni.
Biologia: Verbascum sp., Hyoscyamus niger,
Arthemisia spp., Ononis spp., Daucus carota.
128. Rhopalus maculatus (Fieber, 1837)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: quasi tutte le regioni peninsula¬
ri e la Sicilia.
Biologia: ambienti umidi, su Comarum palustre e
Cirsium palustre.
129. Rhopalus parumpunctatus Schilling, 1829
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni.
Biologia: su Artemisia , Achillea , Chrysanthemum ,
Eryngium, Verbascum, Erodium e Rumex.
130. Rhopalus conspersus (Fieber, 1837)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: su Thymus , Geranium, Silene.
Note di raccolta: fuori dalle stazioni 1-9 Pinsetto è
stato raccolto nei prati sotto la Sella della Pila (m
700) e ai margini di un sentiero che dall’eremo porta
alla Sella della Pila.
131. Rhopalus subrufus (Gmelin, 1790)
Corotipo: Cosmopolita (COS).
Presenza in Italia: tutte le regioni, sino a 2.000
metri.
Biologia: su Trifolium, Salvia pratensis, Vincetoxi-
cum nigrum , Mentina, Satureja, Urtica, Geranium e Se-
necio.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto ai margini di un sentiero che dall’ere¬
mo porta alla Sella della Pila.
132. Stictopleurus pictus (Fieber, 1861)
Corotipo: Centroasiatico-Mediterraneo (CAM).
Presenza in Italia: tutte le regioni, specie al Sud.
Biologia: Achillea e Artemisia.
133. Stictopleurus abutilon (Rossi, 1790)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni.
Biologia : Artemisia, Achillea, Carlina, Chrysanthe¬
mum.
134. Stictopleurus crassicornis (Linné, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni settentrionali e
centrali sino all’Abruzzo.
Biologia: Artemisia spp., Achillea spp.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto ai margini di un sentiero che dall’ere¬
mo porta alla Sella della Pila e in un prato vicino a
Camporeso.
135. Stictopleurus punctatonervosus (Goeze, 1778)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni.
Biologia: Cirsium, Artemisia absinthium, Erigeron.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto ai margini di un sentiero che dall’ere¬
mo porta alla Sella della Pila.
Cydnidae
136. Sehirus (Tritomegas) bicolor (Linné, 1758)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni.
Biologia: Lamium spp.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto in un prato vicino a Camporeso.
137. Sehirus (Adomerus) biguttatus (Linné, 1758)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: regioni settentrionali e centrali
sino aH’Umbria.
Biologia: Calluna vulgaris.
138. Sehirus (Canthophorus) dubius (Scopoli, 1763)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni del Nord e pe¬
ninsulari.
Biologia: Thesium spp.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto nei prati sotto la Sella della Pila (m
700) e ai margini di un sentiero che dall’eremo porta
alla Sella della Pila.
139. Legnotus limbosus (Geoffroy, 1785)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Biologia: Galium spp.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto presso la vetta.
140. Legnotus picipes (Fallén, 1807)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni, più raro al Sud
dove è specie montana.
Biologia: Artemisia spp.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto nei prati sotto la Sella della Pila (m
700) e in un prato della Val Faè vicino alla staz. 7.
141. Thyreocoris scarabeoides (Linné, 1758)
Corotipo: Europeo-Anatolico (EUR).
Presenza in Italia: regioni centro-settentrionali,
più raro al Sud, assente nelle isole.
Biologia: Potentina spp.
Scutelleridae
142. Odontotarsus purpureolineatus (Rossi, 1790)
Corotipo: Turanico-Mediterraneo (TUM).
Presenza in Italia: tutte le regioni, raro sulle Alpi.
GLI ETEROTTERI (HETEROPTERA) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
171
Biologia: Centaurea spp., Cirsium spp. e Carduus
spp.
Note di raccolta: fuori dalle stazioni 1-9 l'insetto è
stato raccolto nei prati sotto la Sella della Pila (m
700) e ai margini di un sentiero che dall’eremo porta
alla Sella della Pila.
143. Eurygaster maurus (Linné, 1758)
Corotipo: Centroasiatico-Europeo-Mediterraneo
(CEM)
Presenza in Italia: tutte le regioni.
Biologia: su poacee.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto nei prati sotto la Sella della Pila (m 700).
144. Eurygaster testudinarius (Geoffroy, 1785)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni, non sembra pre¬
sente sulle isole maggiori.
Biologia: Su Poacee, sino a 1.500 metri di altezza;
spesso nei luoghi umidi.
Pentatomidae
145. Graphosoma lineatum (Linné, 1758)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Biologia: su diverse Apiacee con semi in matura¬
zione.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto presso la vetta e in un prato vicino a
Camporeso.
146. Podops inuncta (Fabricius, 1775)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni italiane, più co¬
mune al Nord.
Biologia: detriti di Poacee e Ciperacee, spesso in
ambienti semi-paludosi.
147. Sciocoris cursitans (Fabricius, 1794)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni.
Biologia: nelle praterie secche alla base di Thymus
spp., Salvia spp., Lotus spp., Calluna spp.
148. Sciocoris macrocephalus Fieber, 1852
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: tutte le regioni.
Biologia: alla base di Thymus spp., nelle praterie
xeriche, spesso lo si trova assieme a Sciocoris cursi¬
tans (F.).
149. Sciocoris homalonotus Fieber, 1852
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: regioni settentrionali e Sarde¬
gna.
Biologia: Poa spp., Bromus spp., Dactylis glome-
rata.
150. Sciocoris microphthalmus Fior, 1860
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali e centrali.
Dubbia la presenza di questa specie al Sud e in Sici-
I Ha.
Biologia: sotto Ranuncolacee ( Adonis spp.) e
Scrofulariacee ( Rhinanthus spp.) che sembrano esse¬
re le sue piante ospiti.
151. Aelia acuminata (Linné, 1758)
Corotipo: Sibirico-Europeo- Mediterraneo (SEM).
Presenza in Italia: tutte le regioni.
Biologia: su Poacee, si comporta da elemento an¬
tropofilo legato alle coltivazioni di grano, orzo, sega¬
le. Quando queste ultime sono scomparse (come è
avvenuto anche sul Barro), la specie si è adattata alle
graminacee selvatiche.
Note di raccolta: fuori dalle stazioni 1-9 l'insetto è
stato raccolto in Val Faè (in un prato vicino alla staz.
7) e in un prato vicino a Camporeso.
152. Eysarcoris aeneus (Scopoli, 1763)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni.
Biologia: su svariate specie di lamiacee.
153. Staria lunata (Hahn, 1835)
Corotipo: Turanico-Mediterranea (TUM).
Presenza in Italia: in tutte le regioni, ad eccetto
della Sardegna, ma sempre in ambienti soleggiati.
Biologia: su Stachys spp. e Lamium spp.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto nei prati sotto la Sella d. Pila (m 700),
ai margini di un sentiero che dall’eremo porta alla
Sella della Pila e in un prato vicino a Camporeso.
154. Dryocoris (= Holcostethus Auct.) vernalis
(Wolff, 1804)
Corotipo: Asiatico - Europeo (ASE)
Presenza in Italia: tutte le regioni.
Biologia: su Verbascum spp., Centaurea spp.,
Scrophularia spp., oltre che su un numero elevato di
altre piante ospiti.
155. Dryocoris sphacelatus (Fabricius, 1794)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, sono de¬
gne di verifica le citazioni in Letteratura relative alle
regioni a Sud delle Marche.
Biologia: specie polifaga con qualche preferenza
per il Verbasco.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto nei boschi della Val Faè.
156. Carpocoris pudicus (Poda, 1761)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: in tutte le regioni italiane, tran¬
ne la Sardegna.
Biologia: su varie Asteracee.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto ai margini di un sentiero che dall’ere¬
mo porta alla Sella della Pila e in un prato vicino a
Camporeso.
157. Dolycoris baccarum (Linné, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni, molto comune
dal piano sino alle alte quote.
Biologia: specie polifaga su svariate latifoglie.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto nel sottobosco della Val Faè e ai margi¬
ni di un sentiero che dall’eremo porta alla Sella della
Pila.
158. Eurydema omatum (Linné, 1758)
Corotipo: Centro asiatico-Europeo-Mediterraneo
(CEM).
172
PARIDE DIOLI
Presenza in Italia: tutte le regioni.
Biologia: fitofago, prevalentemente su brassicacee.
159. Eurydema ventrale Kolenati, 1846
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni peninsulari e la
Sicilia.
Biologia: fitofago, prevalentemente su Brassicacee.
160. Eurydema oleraceum (Linnè, 1758)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni.
Biologia: su Brassicacee.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto in un prato della Val Faè vicino alla
staz. 7 e in un prato vicino a Camporeso.
161. Piezodorus lituratus (Fabricius, 1794)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni, al Sud è ele¬
mento montano.
Biologia: su Fabacee.
162. Palomena prasina (Linné, 1761)
Corotipo: Sibirico-Europeo-Mediterraneo (SEM).
Presenza in Italia: tutte le regioni.
Biologia: su diverse latifoglie selvatiche o coltiva¬
te, con una spiccata predilezione per Corylus spp. e
Quercus spp.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto ai margini di un sentiero che damere¬
mo porta alla Sella della Pila.
163. Nezara viridula (Fabricius, 1775)
Corotipo: Afrotropicale-Indoaustrale-Mediterra-
neo (AIM).
Presenza in Italia: tutte le regioni centro-meridio¬
nali, rara nelle Alpi.
Biologia: specie polifaga, presente soprattutto su
brassicacee coltivate ed altre piante ortensi.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è sta¬
to raccolto in un prato della Val Faè vicino alla staz. 7.
164. Raphigaster nebulosa (Poda, 1761)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni.
Biologia: vive a spese di larve di Crisomelidi ( Ga -
lerucella ) su latifoglie.
165. Pentatoma rufipes (Linné, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni settentrionali e,
con qualche lacuna, in quelle centro meridionali.
Biologia: su Fagus spp. e Alnus spp.
166. Picromerus bidens (Linné, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni.
Biologia: su latifoglie, predatore di larve di insetti
(soprattutto bruchi di Lepidotteri).
Acanthosomatidae
168. Acanthosoma haemorrhoidale (Linné, 1758)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: quasi tutte le regioni peninsula¬
ri e Sicilia.
Biologia: su svariate latifoglie, come Betula, Carpi-
nus, Corylus. E specie dannosa alle coltivazioni del
Nocciolo. In natura, nelle Prealpi, viene collegato con
il complesso vegetazionale del « Querco-Betuletum
insubricum » (Oberdorfer, 1964) (Dioli, 1993).
Plataspidae
169. Coptosoma scutellatum (Geoffroy, 1785)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni, eccetto la Sar¬
degna.
Biologia: su Medicago spp.. Coronilla spp.
Note di raccolta: fuori dalle stazioni 1-9 l’insetto è
stato raccolto nei prati sotto la Sella d. Pila (m 700) e
ai margini di un sentiero che dall’eremo porta alla
Sella d. Pila.
Considerazioni conclusive
Le specie raccolte sono state raggruppate in base
ai corotipi fondamentali della fauna W-paleartica co¬
sì come enunciati da Vigna & Coll. (1992). In aggiun¬
ta viene qui considerato il corotipo «Sibirico-Euro¬
peo-Mediterraneo», identificato con la sigla (SEM).
1. Specie ad ampia distribuzione paleartica
(OLA) Olartiche . 10
(PAL) Paleartiche . 9
ÌASE) Asiatiche-Europee . 20
SIE) Sibiriche-Europee . 24
SEM) Sibiriche-Europee-Mediterranee . 12
CEM) Centroasiatiche-Europee-Mediterranee.. 4
CAE) Centroasiatiche-Europee . 2
CAM) Centroasiatiche-Mediterranee . 2
(TEM) Turaniche-Europee-Mediterranee . 21
(TUE) Turaniche-Europee . 4
(TUM) Turaniche-Mediterranee . 4
(EUM) Europee-Mediterranee . 16
TOTALE . 128
2. Specie ad ampia distribuzione in Europa
(EUR) Europee . 23
(CEU) Centroeuropee . 4
(SEU) Sud-Europee . 3
(EEU) Est-Europee . 1
TOTALE . 31
3. Specie ad ampia distribuzione mediterranea
(MED) Mediterranee . 6
(EME) E-Mediterranee . 1
TOTALE . 7
4. Specie afrotropicali e indiane presenti nel Mediter¬
raneo
(AIM) Afrotropicali-Indoaustrali-Mediterranee. 1
167. Zicrona coerulea (Linné, 1758)
Corotipo: Olartico (OLA).
Presenza in Italia: tutte le regioni, più comune in
quelle centro-meridionali; piuttosto rara sulle Alpi.
Biologia: prevalentemente su Epilobium spp. Le
larve pare abbiano costumi fitofagi, mentre gli adulti
sono predatori di altri insetti.
5. Specie cosmopolite o subcosmopolite
(CÓS) Cosmopolite . 1
6. Specie endemiche italiane
(END) . 1
TOTALE COMPLESSIVO . 169
173
GLI ETEROTTERI (HETEROPTERA) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
In conclusione, la fauna degli eterotteri del Monte
Barro risulta notevolmente omogenea con una netta
predominanza di specie ad ampia distribuzione come
è visualizzato dalla Fig. 4, dove i corotipi sono stati
raggruppati per categorie sintetiche.
Tale situazione è determinata dalla presenza di
molte specie antropofile, soprattutto tra Miridae, Ly-
gaeidae e Pentatomidae, legate ai coltivi ora degra¬
dati. Gli eterotteri appartenenti a questo vasto rag¬
gruppamento sono per lo più caratteristici delle step¬
pe a graminacee dell’Europa e dell’Asia media.
Emerge qua e là qualche elemento relitto tipico
della brughiera a Calluna vulgaris , che rappresenta la
componente più preziosa e degna di maggior tutela
( Bothynotus pilosus , Megcilonotus dilatatus).
Il Monte Barro, infine, risente climaticamente di
una certa «oceanicità», tipica dei territori perilacustri
della Lombardia e del Ticino dove si va facendo stra¬
da il concetto di fauna «insubrica» (Querco-betule-
tum insubricum e Corylo-fraxinetum insubricum)
(Dioli, 1993) così diversa da quella con caratteristiche
sub-mediterranee del Veronese, dei Monti Berici e
dei Colli Euganei.
Infatti l’assenza di piante di riferimento, come YE-
rica arborea ed il Cistus salvifolius , inibisce una mag¬
gior penetrazione e diffusione delle specie mediterra¬
nee xerotermofile.
Per quanto riguarda il confronto fra le stazioni 1-9
in base alle specie che vi sono state rinvenute, utiliz¬
zando l’indice di Dice/Sorensen e applicando la cluster
analysis secondo il metodo WPGMA si sono ottenuti i
dendrogrammi di somiglianza riportati in Fig. 5 e Fig.
6: in uno di essi (fig 5) sono state prese in considera¬
zione tutte le specie raccolte nelle stazioni, nell’altro
(Fig. 6) solo quelle esclusivamente o prevalentemente
Litofaghe. I due dendrogrammi forniscono gli stessi
raggruppamenti a riprova del fatto che le specie pre¬
datrici sono sostanzialmente ininfluenti per la caratte¬
rizzazione dei biotopi. Diversamente da quanto è sta¬
to osservato nei Curculionidi la stazione 9, situata ai
margini del lago di Annone, non si stacca da tutte le al¬
tre, probabilmente per l’«inquinamento» che le deriva
dalla non irrilevante presenza di vegetazione disorga¬
nizzata. Si separa invece, in primo luogo, la stazione 6,
fisionomicamente ben caratterizzata dalla forte ten¬
denza alla ricostruzione di una foresta moderatamen¬
te termofila. Fra le rimanenti stazioni la 7 e la 8, ambe¬
due in Val Faè, occupano una posizione isolata proba¬
bilmente per via della loro esposizione fresca.
Ringraziamenti
Colgo l’occasione per ringraziare l’amico Dr. C.
Leonardi per i consigli durante la stesura del lavoro e
la revisione critica del manoscritto e l’amico Dr. C.
Pesarini per i disegni d’insieme al tratto.
r - 4
r~i - 2
L| - 5
u - 3
/
d - 9
Li - 7
^ - 8
- 6
i i - — i - 1 - 1
0.29 0.47 0.65 0.82 1.00
Fig. 5 - Dendrogramma di similarità fra le stazioni 1-9 basato su
tutte le specie di Eterotteri presenti nei campionamenti (indice di
Dice/Sorensen + WPGMA).
5
_ Z_
I - 2
7 - 9
_ I - 8
- 7
- 6
i - 1 - 1 - 1 - 1
0.26 0.45 0.63 0.82 1.00
Fig. 6 - Dendrogramma di similarità fra le stazioni 1-9 basato so¬
lo sulle specie di Eterotteri che hanno un regime dietetico del tut¬
to o in gran parte fitofago (indice di Dice/Sorensen + WPGMA).
174
PARIDE DIOLI
BIBLIOGRAFIA
Dioli P., 1980 - Eterotteri della Brughiera di Rovasenda (Pie¬
monte): Quad. sulla «Struttura delle zoocenosi terrestri» 1. La
Brughiera pedemontana. III. CNR., Programma finalizzato
«Promozione della qualità delPambiente» Serie AQ/1/1 12: 35-
56.
Dioli P., 1992 - Esame del popolamento degli eterotteri (Insecta,
Heteroptera) negli strati bassi dell’atmosfera del Delta del Po.
Boll. Mus. civ. St. Nat. Venezia ., 41: 183-205.
Dioli R, 1993 - Eterotteri insubrici ed eterotteri xerotermici nei
territori perilacustri della Lombardia e del Ticino. (Hemipte-
ra, Heteroptera). Meni. Soc. Tic. Sci. Nat., 4: 81-86.
Dioli P.. 1995 - Eterotteri del Ferrarese: 1. La Fauna terrestre.
Quad. Staz. Ecol. civ. Mus. St. nat. Ferrara , 8: 7-49.
Faraci F. & Rizzotti Vlach M., 1995 - Heteroptera. In: Minelli
A., Ruffo S. & La Posta S. (eds.), Checklist delle specie della
fauna italiana, 41. Calderini, Bologna.
Melber A., Gunther H., Rieger Ch„ 1991 - Die Wanzenfauna
des Osterreischen Neusiedlersegebietes. (Insecta, Heteropte¬
ra). Wiss. Arbeiten Bgld., Eisenstadt., 89:63-162.
Rizzotti Vlach M., 1994 - Popolamenti ad eterotteri della Val¬
policella (Veneto, Regione veronese). (Heteroptera). Mem.
Soc. ent. ital., Genova, 73: 59-152.
Servadei A., 1967. Rhynchota (Heteroptera, Homoptera Auche-
norrhyncha). Catalogo topografico e sinonimico (Fauna d’Ita¬
lia, 9). Calderini , Bologna.
Tamanini L., 1981 - Gli Eterotteri della Basilicata e della Calabria
(Italia meridionale) (Hemiptera, Heteroptera). Mem. Mus.
Civ. Stor. nat. Verona ., 3:1-164.
Tamanini L., 1982 - Gli Eterotteri dell’Alto Adige (Insecta, Hete¬
roptera). Studi trentini Sci. nat., sez.B. 59:65-194.
Vigna Taglianti A., Audisio P.A., Belfiore C., Biondi M„ Bo¬
logna M.A., Carpaneto G.M., De Biase A., De Felici S.,
Piattella E., Racheli T„ Zapparoli M. & Zoia S., 1992 -
Riflessioni di gruppo sui corotipi fondamentali della fauna W-
paleartica ed in particolare italiana. Biogeographia, 16: 159-
179.
Paride Pioli: Museo civico di Storia Naturale, Via Cortivacci 1, 23017 Morbegno (SO) - Italia
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
Carlo Pesarini
Gli Elateridi (Coleoptera Elateridae) del Monte Barro
(Italia, Lombardia, Lecco)
Riassunto - Questo lavoro contiene una lista di Elateridi presenti nell’area del Monte Barro (Lecco). Il materiale è sta¬
to raccolto quasi completamente nell'ambito di una ricerca condotta durante gli anni 1989-1992 dal Museo di Storia Natu¬
rale di Milano. Una particolare attenzione è stata rivolta a 9 stazioni prative, di cui si fornisce una breve descrizione. Com¬
plessivamente sono state individuate 27 specie di Elateridi, con una netta dominanza di elementi europei o ad ampia di¬
stribuzione.
Abstract - Click beetles (Coleoptera Elateridae) from Monte Barro (Italy, Lombardy, Lecco).
In thè present paper a list of Elateridae from thè area of Monte Barro (Lecco) is given. The material has been almost
completely collected during a research accomplished by thè Naturai History Museum of Milano in thè years 1989-1992. Ni-
ne sampling sites have been particularly investigated and shortly described.Twenty-seven species have been collected, mo-
st of which European or widely distributed in thè Palaearctic Region. The number of Mediterranean elements is unimpor-
tant, owing to thè absence of thè typical Mediterranean host plants.
Key words: Monte Barro, Elateridae, geographic distribution.
Negli anni 1989-1992 il Museo civico di Storia Na¬
turale di Milano ha condotto una ricerca entomofau-
nistica nell’area del Monte Barro (Lombardia, Lec¬
co) col contributo del Consorzio Parco. Per quanto ri¬
guarda il popolamento di Coleotteri Elateridi, le ri¬
cerche effettuate non hanno fornito un quadro fauni¬
stico particolarmente ricco, ma sicuramente significa¬
tivo, poiché se il numero di specie individuate (27)
non è particolarmente elevato, il numero di esempla¬
ri campionati è per contro cospicuo; anche se è pres¬
soché certo che l’area indagata ospiti anche altre spe¬
cie, appare indubbio che, con la presente ricerca, sia¬
no state individuate tutte le entità più diffuse e carat¬
teristiche. Dei dati qui forniti, un ristretto numero è
da riferirsi a raccolte effettuate prima dell’inizio del¬
le campagne di ricerca dal Dr. Spreafico nei dintorni
di Galbiate, quindi ai margini dell’area del Parco, o di
poco al difuori dei suoi confini.
Osservazioni sulle stazioni di raccolta
Una parte delle raccolte è stata effettuata in 9 sta¬
zioni prative (stazioni 1-9), di cui si riportano le ca¬
ratteristiche ambientali ricavate dal contributo di
Banfi, Galasso & Sassi, in questo stesso volume. Ul¬
teriori stazioni di raccolta sono state riunite, nella ta¬
bella riassuntiva (tab. 1), in una sorta di stazione cu¬
mulativa indicata con il numero 10.
Stazione 1: Località Piani di Barra, 610 m, esp. W,
interessata da scavi archeologici (Grande Edificio). E
caratterizzata da una consistente presenza di prato
falciabile che indica una attività di foraggio residua.
Stazione 2: Località Piani di Barra, 600 m, esp. W,
interessata da scavi archeologici (Edificio II). Si tratta
di una prateria in cui è stata abbandonata la gestione
a foraggio, vi è quindi presente un leggero mantello.
Stazione 3: Conca prativa a monte del Monumen¬
to dell’Alpino, 630 m, esp. W. Vi si nota la convivenza
di elementi di prateria, elementi di prato falciabile ed
elementi di disturbo marginale.
Stazione 4: Località S. Michele, pendio in prossimità
del sentiero per Pian Sciresa, 325 m, esp. E. Su una ba¬
se di Mesobromion è in pieno sviluppo il prato falciabi¬
le, che qui presenta il carattere oligo-mesotrofico.
Stazione 5: Località Pian Sciresa, 435 m, esp. NE.
È un prato arido con montarozzi residui a brughiera;
per il resto il livello di base è costituito da prateria a
Brachypodium rupestre ssp. caespitosum.
Stazione 6: Superfici prative lungo il sentiero del¬
la «Cresta occidentale», che dall’edificio dell’ex sana¬
torio sale alla vetta, 750 m, esp. S. Si tratta di una pra¬
teria con parziale affioramento roccioso, fortemente
cespugliata e in via di chiusura, con forte influsso del¬
l’elemento prenemorale (tendenza a un Quercetum
pubescenti s. 1.)
Stazione 7: Località Fornaci Villa, in prossimità del¬
l’impluvio della Val Faè, 275 m, esp. NW. È una superfi¬
cie prativa terrazzata all’interno del bosco mesofilo,
molto simile a quella della stazione 8 ma più aperta e
con qualche elemento in più di Mesobromion.
Stazione 8: Località Fornaci Villa, in prossimità
dell’impluvio della Val Faè, 305 m, esp. NW. È un pra¬
to terrazzato irregolarmente gestito e contornato da
un bosco con notevoli contrassegni mesofili.
Stazione 9: Località Ca’ di Sala, 226 m, sulla riva
settentrionale del bacino di Oggiono del Lago di An¬
none. Vi si evidenziano tre aspetti essenziali: 1) il can¬
neto, con accenni di aggruppamento a Iris pseudoa-
corus, elementi di magnocariceto e residui di bosca-
176
CARLO PESARINI
glia riparlale 2) prato umido oligotrofico ( Molinion
coeruleae ); 3) vegetazione erbacea perenne e disor¬
ganizzata al margine superiore della stazione.
Elenco delle specie raccolte
Agrypnus murinus (Linneo)
Corotipo: Olartico (OLA).
Presenza in Italia: tutta Italia e Sicilia.
Svariati esemplari raccolti in maggio e giugno nel¬
le staz. 1, 2, 3, 4, 5 e ai margini di un sentiero che dall’
eremo porta alla Sella d. Pila.
Drasterius bimaculatus (Rossi)
Corotipo: W-paleartico (WPA).
Presenza in Italia: tutta Italia e isole.
Due esemplari raccolti nella staz. 1 (19.V.1991,
lg.Leonardi e 8. VI. 1991, lg. Sassi).
Actenicerus sjaelandicus (Miiller)
Corotipo: Olartico (OLA).
Presenza in Italia: Italia settentrionale, Toscana.
Un solo esemplare raccolto nella staz. 9
(16.V.1990, lg. Sassi).
Cidnopus pilosus (Leske)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia e Sicilia.
Numerosi esemplari raccolti in maggio e giugno
nelle staz. 1, 3, 4, 5, 6, 7 e 8, e ai margini di un sentie¬
ro che porta dall’ eremo alla Sella d. Pila.
Kibunea minuta (Linneo)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia e Sicilia.
Svariati esemplari raccolti in maggio e giugno nel¬
la staz. 2, inoltre un esemplare nella staz. 4
(10. VI. 1990, lg.Sassi) e un altro nella staz. 5
(24.VI.1992, lg. Sassi).
Limonius quercus (Olivier)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta l’Italia continentale.
Numerosissimi esemplari raccolti in tutte le sta¬
zioni (ad eccezione della staz. 9) da maggio a luglio,
con maggiore abbondanza in maggio.
Nothodes parvulus (Panzer)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia e Sardegna.
Tre esemplari raccolti nella staz. 6 (6.VII.1990, lg.
Sassi).
Athous haemorrhoidalis (Fabricius)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Pltalia continentale.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 2, 3, 4, 6 e 8, altri esemplari provengono dai
prati sotto Sella d. Pila, da un prato vicino a Campo¬
reso e dal sottobosco della Val Faè.
Athous vittatus (Fabricius)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia e Sicilia.
Numerosi esemplari esemplari raccolti in maggio
e giugno nelle staz. 1 e 2.
Athous flavipennis Candèze
Corotipo: Alpino.
Presenza in Italia: Piemonte, Liguria, Lombardia,
Trentino e Appennino settentrionale.
Alcuni esemplari raccolti a fine maggio ed in giu¬
gno nelle staz. 2, 3, 4 e 5 e ai margini di un sentiero
che porta dall’ eremo alla Sella della Pila.
Athous bicolor (Goeze)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Pltalia continentale ad ec¬
cezione della Calabria.
Alcuni esemplari raccolti a fine maggio e in giu¬
gno nelle staz. 2, 3, 4 e 6.
Hemicrepidius hirtus (Herbst)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia e Sicilia.
Un unico reperto (sentiero che porta dall’ eremo
alla Sella d. Pila, 6. VII. 1990, lg. Sassi).
Adrastus axillaris Erichson
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale, Toscana,
Marche, Abruzzo, Basilicata.
Un solo esemplare raccolto nella staz. 2
(27. V. 1989, lg. Sassi).
Synaptus filiformis (Fabricius)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia e isole.
Numerosi esemplari raccolti in maggio nella staz. 9.
Agriotes acuminatus (Stephens)
Corotipo: Europeo (EUR).
Presenza in Italia: presente in gran parte dell’Ita¬
lia continentale.
Un unico reperto (Boschi della Val Faè, 23.V.1991,
lg. Sassi).
Agriotes brevis Candèze
Corotipo: Europeo (EUR).
Presenza in Italia: presente in tutta Pltalia conti¬
nentale.
Alcuni esemplari raccolti in maggio nelle staz. 1, 2 e 3.
Agriotes lineatus (Linneo)
Corotipo: Olartico (OLA).
Presenza in Italia: tutta Italia e isole.
Un unico reperto (staz. 9, 25.V.1990, lg. Sassi).
Agriotes litigiosus (Rossi)
Corotipo: S-Europeo (SEU).
Presenza in Italia: tutta Italia e Sicilia.
Alcuni esemplari raccolti in giugno e luglio nelle
staz. 4 e 9.
Agriotes ustulatus (Schaller)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Italia settentrionale e centrale,
Sicilia.
Un unico reperto (staz. 4, 8.VII.1990, lg. Sassi).
Ampedus pomonae (Stephens)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Italia settentrionale, Toscana,
Puglia.
Un esemplare raccolto nella staz. 9 (16.V.1990, lg.
Leonardi).
GLI ELATERIDI (COLEOPTERA ELATERI DAE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
177
Ampedus pomorum (Herbst)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta l’Italia continentale.
Un esemplare raccolto nella staz. 9 (25. V. 1990, lg.
Sassi).
Melanotus crassicollis (Erichson)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia e isole.
Due soli reperti (Galbiate, 30.V.1971 e
27.VII.1980, lg. Spreafico).
Melanotus punctolineatus (Pelerin)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia e Sicilia.
Alcuni esemplari raccolti in maggio e giugno nel¬
la staz. 2, 3 e 6.
Melanotus tenebrosus (Erichson)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia e isole.
Numerosi esemplari raccolti nelle staz. 2, 5 e 6 e, sul
versante meridionale, nei prati sotto Sella della Pila (m
700).
Cardiophorus gramineus (Scopoli)
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale e centrale,
Puglia, Calabria.
Un esemplare raccolto a Galbiate 83.V.1970, lg.
Spreafico)
Cardiophorus rufipes (Goeze)
Corotipo: Mediterraneo-Europeo (EUM).
Presenza in Italia: tutta Italia e isole.
Un unico reperto (staz. 2, 19.V.1991, lg. Leonardi).
Dicronychus cinereus (Herbst)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia e Sicilia.
Due soli esemplari raccolti nella staz. 2 a distanza
di un anno esatto l’uno dall’altro (15.VI.1989 e
15. VI. 1990, lg. Leonardi).
Considerazioni conclusive
Più che per altre famiglie, nel caso degli Elateridi
si è potuta osservare una predominanza quantitativa
molto accentuata di alcune specie: più della metà de¬
gli esemplari raccolti appartenevano ad una specie
sola, Limonius quercus, e dei rimanenti più della
metà appartenevano alle due specie Athous vittatus
ed A. haemorrhoidalis. Per contro, ben 10 delle 27
specie rinvenute sono state raccolte in un unico
esemplare. Nettamente predominanti, nel quadro co¬
rologico, le specie europee e sibirico-europee, come si
ricava dalla tabella 2; è interessante osservare inoltre
che le specie europee sono nettamente più numerose
di quelle ad ampia distribuzione paleartica, come
emerge con maggior evidenza dalla fig. 1, dove i co-
rotipi sono stati raggruppati per categorie sintetiche.
Va però rilevato che le specie indicate come europee
in base ai corotipi cui ci si è attenuti nel presente con¬
tributo sono in molti casi presenti anche in Asia mi¬
nore, e che per esse la più opportuna definizione del
; corotipo sarebbe quella, non contemplata, di Euro-
Anatolico. Il numero di tali elementi è indicato, fra
parentesi, dopo quello globale del corotipo europeo.
Tabella 1 - Tabella riassuntiva delle specie raccolte.
Tabella 2 - Spettro corologico delle specie raccolte.
Le sigle dei corotipi fondamentali sono ricavate dal
lavoro di Vigna Taglianti et al. (1992).
Ampia distr
44,44%
SSÉtP I . 1 1 _
-
■ —
Europea
55,56%
Fig. 1 - Corotipi raggruppati per categorie sintetiche.
178
CARLO PESARINI
BIBLIOGRAFIA
Leseigneur L., 1972 - Coléoptères Elateridae de la Faune de Fran-
ce Continentale et de Corse. Suppl. Bull. mens. Soc. linn.,
Lyon, 41:1-379.
Platia G., 1994 - Fauna d’Italia XXXIII. Coleoptera Elateridae.
Ed. C.alderini, Bologna.
Vigna Taglianti A., Audisio P. A., Belfiore C., Biondi M„ Bologna
M.A., Carpaneto G.M., De Biase A., De Felici S., Piattella E.,
Racheli T., Zapparoli M. & Zoia S., 1992 - Riflessioni di grup¬
po sui corotipi fondamentali della fauna W-paleartica ed in
particolare italiana. Biogeographia, 16: 159-179.
Carlo Pesarim: Museo Civico di Storia Naturale, Sezione Botanica, Corso Venezia 55, 20121 Milano
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
Claudio Canepari
I Coccinellidi (Coleoptera Coccinellidae) del Monte Barro
(Italia, Lombardia, Lecco)
Riassunto - L’autore presenta l’elenco di 23 specie di Coccinellidi raccolti sul rilievo brianteo del Monte Barro. Le rac¬
colte si sono concentrate soprattutto in 9 stazioni prative (staz. 1-9), 8 delle quali situate all’interno del parco regionale. Di
ciascuna specie vengono forniti i dati ecologici, corologici ed il numero di esemplari raccolti. Viene rilevata la presenza di
una popolazione numerosa ed omogenea di Scymnus femoralis (Gyllenhal). Di questa specie viene ridescritta la femmina
e vengono fornite le differenze più rilevanti con le specie affini.
Abstract - Ladybird beetles (Coleoptera Coccinellidae) from Monte Barro (Italy, Lombardy, Lecco).
The author gives thè list of 23 species of Coccinellidae collected on Monte Barro Regional Park. Nine sampling sites ha-
ve been particularly investigated, eight of which are placed inside thè Regional Park. Ecological, distributional data and thè
number of specimens collected are given for every species. The presence of a conspicuous and homogeneous population of
Scymnus femoralis (Gyllenhal) is noticed. The female of that species is redescribed and thè most relevant differences with
similar species are given.
Key words: Monte Barro, Coccinellidae, geographic distribution.
Il Monte Barro è una piccola elevazione montuo¬
sa situata a sud-ovest del ramo orientale del Lago di
Como. Ha un’altezza di m 922 ed il suo territorio, per
le sue peculiarità botaniche, geografiche e storiche è
stato costituito a Parco naturale della Regione Lom¬
bardia nel 1983. 1 suoi aspetti geomorfologici, botani¬
ci e storici sono già stati illustrati da Banfi, Galasso &
Sassi in questo stesso volume.
I Coccinellidi, sono stati raccolti in varie stazioni
negli anni 1989-92, nei mesi da marzo ad ottobre. So¬
no stati esaminati più di 350 esemplari appartenenti a
23 specie, circa 1/5 della fauna italiana.
II maggior numero dei sopralluoghi è stato effet¬
tuato in 9 stazioni prative (stazioni 1-9) di cui si ri¬
portano le caratteristiche ambientali essenziali, rica¬
vate dal contributo di Banfi, Galasso & Sassi.
Stazione 1: Località Piani di Barra, 610 m, esp. W,
interessata da scavi archeologici (Grande Edificio). È
caratterizzata da una consistente presenza di prato
falciabile che indica una attività di foraggio residua.
Stazione 2: Località Piani di Barra, 600 m, esp. W,
interessata da scavi archeologici (Edificio II). Si trat¬
ta di una prateria in cui è stata abbandonata la ge¬
stione a foraggio, vi è quindi presente un leggero
mantello.
Stazione 3: Conca prativa a monte del Monumen¬
to dell’ Alpino, 630 m, esp. W. Vi si nota la convivenza
di elementi di prateria, elementi di prato falciabile ed
elementi di disturbo marginale.
Stazione 4: Località S. Michele, pendio in prossi¬
mità del sentiero per Pian Sciresa, 325 m, esp. E. Su
una base di Mesobromion è in pieno sviluppo il pra¬
to falciabile, che qui presenta il carattere oligo-meso-
trofico.
Stazione 5: Località Pian Sciresa, 435 m, esp. NE.
È un prato arido con montarozzi residui a brughiera;
per il resto il livello di base è costituito da prateria a
Brachypodium rupestre ssp. caespitosum.
Stazione 6: Superfici prative lungo il sentiero del¬
la «Cresta occidentale», che dall’edificio dell’ex sana¬
torio sale alla vetta, 750 m, esp. S. Si tratta di una pra¬
teria con parziale affioramento roccioso, fortemente
cespugliata e in via di chiusura, con forte influsso del¬
l’elemento prenemorale (tendenza a un Quercetum
pubescentis s. 1.).
Stazione 7: Località Fornaci Villa, in prossimità
dell’impluvio della Val Faè, 275 m, esp. NW. È una su¬
perficie prativa terrazzata all’interno del bosco meso¬
frio, molto simile a quella della stazione 8 ma più
aperta e con qualche elemento in più di Mesobro¬
mion.
Stazione 8: Località Fornaci Villa, in prossimità
dell’impluvio della Val Faè, 305 m, esp. NW. È un pra¬
to terrazzato irregolarmente gestito e contornato da
un bosco con notevoli contrassegni mesofili.
Stazione 9: Località Ca’ di Sala, 226 m, sulla riva
settentrionale del bacino di Oggiono del Lago di An¬
none. Vi si evidenziano tre aspetti essenziali: 1) il can¬
neto, con accenni di aggruppamento a Iris pseudoa-
corus , elementi di magnocariceto e residui di bosca¬
glia ripariale 2) prato umido oligotrofico ( Molinion
coeruleae)\ 3) vegetazione erbacea perenne e disor¬
ganizzata al margine superiore della stazione.
180
CLAUDIO CANEPARI
Elenco delle specie raccolte
La determinazione degli esemplari è stata fatta in
base ai lavori di Mader, Fiirsch, Iablokoff- Khnzorian
e per conoscenza personale.
I corotipi sono stati attribuiti secondo le indica¬
zioni di Vigna Taglianti et Al. I dati ecologici sono
tratti dal «Die Kàfer Mitteleuropas-Òkologie», Voi 2,
di K.Koch.
Scymnus (Neopullus) haemorrhoidalis (Herbst,
1797)
Stazione: 1, 10.VI.91, 1 es; 3, 23.V.91, 1 es; 9,
15.VI.90, 4 es.
Corotipo: Sibirico-Europeo (SIE).
Distribuzione in Italia: Indicato di tutta Italia
(Porta, Luigioni), Sardegna (Luigioni). Comune nel¬
l’Italia settentrionale e centrale nelle zone umide e
paludose. Più raro ed isolato al sud ove si rinvengono
esemplari con il pronoto completamente rosso. Non
conosco esemplari di Sicilia e Sardegna.
Dati ecologici: specie euritopa, prevalentemente
arboricola, afidofaga. Il suo habitat è costituito da
3raterie umide, rive di fiumi e ruscelli (soprattutto
moschetti di Salix e Alnus ), zone sabbiose e argillose;
frequenta sia il fogliame che i vegetali secchi.
Scymnus (s. str.) femoralis (Gyllenhal, 1827) Fig. lb,
2b, 3b, 4b, 5b
Stazione: 1, 23.V.91, 1 es; 30.V.91, 1 es; 2,15.VI.90,
8 es; 3, 9.V.90, 4 es.; 23.V.91, 1 es; 10.VI.91, 1 es; 4,
21. III. 90, 1 es; 10.VI.91, 2 es; 5, 16.V.90, 1 es; 6,
27.VI.89, 2 es; 6.V.90, 2 es.; 22.VI.92, 1 es; 1.VII.92, 1
es; 9, 15.VI.90, 1 es.
Corotipo: Europeo (EUR).
Distribuzione in Italia: regioni settentrionali e
centrali.
Dati ecologici: specie stenotopa, xerofila, erbicola e
arbusticola, afidofaga. Il suo habitat è costituito da ri¬
ve fluviali sabbiose, praterie aride, bordi soleggiati di
boschi; frequenta sia il fogliame che i vegetali secchi.
Note sistematiche: la validità di questo taxon è
stata messa in dubbio. Descritto da Gyllhenhal come
specie a sè, è stato successivamente messo in sinoni¬
mia con Scymnus pygmaeus (Fourcroy, 1785) (sinoni¬
mo di Se. rubromaculatus Goeze, 1777) ed infine di
Scymnus interruptus (Goeze, 1777). L’apparato geni¬
tale maschile è identico a quello di Se. interruptus ma
le due forme non convivono. Per esempio in Gran
Bretagna è presente solo Se. femoralis e Pope nella
sua monografia degli Scymnini delle Isole Britanni¬
che lo considere buona specie. Anche Fiirsch
(1967:245) lo cita come specie a sè stante. Mentre i
maschi sono facilmente classificabili per la colorazio¬
ne e l’apparato genitale, le femmine sono difficilmen¬
te distinguibili da quelle di Se. rubromaculatus . Fur-
sch indica come carattere distintivo la morfologia
delle clave antennali, strette e fusiformi in Se. rubro¬
maculatus , larghe e ad estremità ingrossata in femo¬
ralis. La presenza sul Monte Barro di una popolazio¬
ne omogenea di Se. femoralis mi ha dato l’occasione
di esaminare un certo numero di femmine apparte¬
nenti con sicurezza a tale specie e di fornire alcuni ca¬
ratteri differenziali con le altre specie di Scymnus (s.
str.) e Scymnus (Pullus) che hanno caratteristiche di
colorazione e morfolgia esterna molto simili: Scym¬
nus rubromaculatus, Scymnus ( Pullus ) auritus e
Scymnus ( Pullus ) fraxini (Figg. 1-4).
La femmine di Se. femoralis è caratterizzata da
uno stretto orlo marginale anteriore del pronoto ros¬
sastro, in Se. rubromaculatus l’orlo anteriore rossa¬
stro è generalmente più esteso e gli angoli anteriori
del pronoto sono anch’essi rossi mentre in Se. femo¬
ralis sono sempre neri. Il receptaculum seminis in Se.
femoralis ha il nodulus lievemente più allungato che
in Se. rubromaculatus. Non ho trovato differenze im¬
portanti nella larghezza della clava antennale che
sembra, al contrario di quanto affermato da Fursch,
più larga in Se. rubromaculatus. Anche la colorazione
nera dei femori in Se. femoralis non è un carattere si¬
curo poiché si trovano spesso esemplari di Se. rubro¬
maculatus , specialmente femmine, con femori medi e
posteriori anneriti. Scymnus ( Pullus ) auritus si distin¬
gue facilmente per avere gli ultimi sterniti addomina¬
li rossi, le linee metacoxali complete, la punteggiatu¬
ra del pronoto spesso indistinta, evanescente. Scym¬
nus ( Pullus ) fraxini è di dimensioni minori, forma del
corpo più stretta, punteggiatura elitrale più robusta,
macchia del pronoto della femmina molto caratteri¬
stica. La colorazione, come in tutti i Coccinellidi, può
variare, ma generalmente i caratteri sopra descritti
sono abbastanza costanti. Le differenze tra le singole
specie sono riassunte nella tabella 1.
Scymnus (s. str.) frontalis (Fabricius, 1787)
' Stazione: 1, 10.VI.91, 1 es; 2, 15.VI.89, 1 es; 2.VI.92,
1 es; 3, 9.V.90, 3 es.; 10.VI.91, 1 es; 10.X.91, 1 es; 4,
27.VI.89 1 es; 30.III.90, 1 es; 23.V.91, 3 es; 10.VI.91, 4
es; 1. VII. 92, 1 es; 5, 10.VI.91, 1 es.; 6, 27.VI.89, 4 es;
1. VII. 92, 1 es ; 9, 15.VI.90, 33 es; 20.VII.90, 1 es; altre,
16.V.90, 1 es.; 13.IX.90, 1 es.
Fig. 1-2 - Pronoto del 8 (1) e pronoto della 9 (2) di: a) Se. femo- 1
ralis\ b) Se. rubromaculatus', c) Se. auritus ; d) Se. fraxini.
I COCCINELLIDI (COLEOPTERA COCCINELLIDAE) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
181
Fig. 3-4 - Receptaculum seminis (3) e linee metacoxali (4) di: a) Se.
femoralis\ b) Se. rubromaculatus\ c) Se. auritus ; d) Se. fraxini.
Fig. 5 - Antenna di: a) Se. femoralis ; b) Se. rubromaculatus\ c) Se.
auritus ; d) Se. fraxini.
Corotipo: Centroasiatico-Europeo (CAE).
Distribuzione in Italia: tutta la penisola, sostituito
nelle regioni meridionali dalla forma immaculatus
Suffrian. Manca in Sicilia, Sardegna ed isole minori.
Dati ecologici: specie euritopa, xerofila, erbicola e
arbusticola, afidofaga. Il suo habitat è costituito da
praterie soleggiate e margini di boschi.
Scymnus ( s . str.) pallipediformis apetzoides Capra &
Fiirsch, 1967
Stazione: 1, 10.X.91, 1 es; 2, 15.VI.89, 1 es;
15. VI.90, 2 es; 19.V.91, 1 es; 3, 20.IX.89, 1 es; 10.X.91,
1 es; 4, 27.VI.89, 1 es; 23.V.91, 1 es; 10.VI.91, 1 es; 5,
16. V.90, 4 es; 10.VI.91, 2 es; 6, 27.VI.89, 5 es; 1.VII.92,
1 es; 8, 25.VIII.92, 1 es.
Corotipo: Turanico-Europeo (TUE).
Distribuzione in Italia: regioni settentrionali e
centrali sino al Molise ed Altipiano del Matese.
Dati ecologici: specie stenotopa, termofila (fre¬
quenta ambienti caldi e soleggiati), erbicola e arbu¬
sticola, afidofaga.
Note sistematiche: descritto dapprima come spe¬
cie a sè, è stato in seguito riconosciuto come sotto¬
specie di Se. pallipediformis dell’Asia Minore. La for¬
ma tipica ha due macchie elitrali, mentre la sottospe¬
cie apetzoides presenta una macchia per ciascuna eli¬
tra. E molto simile a Se. apetzi Muls. da cui si distin¬
gue oltre che per l’apparato genitale maschile, anche
per il colore leggermente più chiaro delle tibie.
Se. pallipediformis apetzoides popola le aree xeroter-
miche centro europee ed in Italia si rinviene assieme
a Se. apetzi che è più comune. Sul Monte Barro si tro¬
va invece soltanto Se. pallipediformis apetzoides.
Nephus (Sidis) anomus Mulsant, 1856
Stazione: 5, 24. VI. 90, 1 es.
Corotipo: Sud-Europeo (SEU).
Distribuzione in Italia: tutta la penisola ed isole
ma non comune.
Dati ecologici: specie stenotopa, termofila, afido¬
faga. Il suo habitat è costituito da praterie soleggiate
e margini di boschi; si trova su varie essenze erbacee
e nei detriti.
Stethorus punctillum (Weise, 1891)
Stazione: 9, 16.V.90, 1 es.
Corotipo: Europeo (EUR).
Distribuzione in Italia: tutta la penisola ed isole.
Dati ecologici: specie euritopa, spesso arboricola, te-
tranicofaga. Frequenta margini di boschi, parchi e giar¬
dini, rive di fiumi e torrenti, etc.; si può trovare su Pru-
nus spinosa e su varie piante erbacee, meno frequente¬
mente su Tilia, Hedera helix e nei boschi di conifere.
Platynaspis luteorubra (Goeze, 1777)
Stazione: 2, 15.VI.89, 1 es; 9.V.90, 1 es; 4, 27.VI.89,
1 es; 15.VII.91, 1 es.
Corotipo: Centroasiatico-Europeo-Mediterraneo
(CEM).
Distribuzione in Italia: tutta Italia.
Dati ecologici: specie euritopa, afidofaga. Si trova
generalmente in zone calde, umide o secche, spesso
sulle rive di fiumi o torrenti, probabilmente in asso¬
ciazione con formiche del genere Lasius. Frequenta
varie piante erbacee, arbusti, alberi ( Populus , Salix,
Platanus , ecc.) e muschi.
182
CLAUDIO CANEPARI
Tabella 1 - Caratteri differenziali fra Scymnus femoralis, Se. rubromaculatus, Se. anritus e Se. fraxini.
Coccidula rufa (Herbst, 1783)
Stazione: 9, 21. III. 90, 1 es; 6.V.90, 1 es; 9.V.90, 2 es;
19.V.90, 2 es; 16.V.90, 7 es; 25.V.90, 3 es; 15.VI.90, 4 es.
Corotipo: Sibirico-Europeo (SIE).
Distribuzione in Italia: Tutta la penisola, non se¬
gnalata di Sicilia; dubbia la presenza in Sardegna.
Dati ecologici: specie euritopa, erbicola e fitode-
triticola, afidofaga. Vive in zone paludose e soprattut¬
to nei canneti.
Coccidula scutellata (Herbst, 1783)
Stazione: 9, 21. IV. 92, 2 es.
Corotipo: Sibirico-Europeo (SIE).
Distribuzione in Italia: tutta la penisola ed isole.
Dati ecologici: specie stenotopa, paludicola, erbi¬
cola, afidofaga. Si trova su vegetali acquatici e ripico-
li, specialmente Typha e Phragmites.
Anisosticta novemdecimpunctata (Linnaeus, 1758)
Stazione: 9, 30.III.90, 2 es; 16.V.90, 2 es; 25.V.90, 2
es; 15.VI.90, 7 es.
Corotipo: Sibirico-Europeo (SIE).
Distribuzione in Italia: tutta la penisola, Sicilia;
manca in Sardegna.
Dati ecologici: specie stenotopa, paludicola, erbi¬
cola, afidofaga. Si trova su vegetali acquatici e ripico-
li ( Phragmites , Carex, Glyceria, Salix) e in detriti.
Hippodamia (s. str.) tredecimpunctata (Linnaeus,
1758)
Stazione: 9, 30.III.90, 1 es; 15.VI.90, 1 es; 10.X.90, 1
es. 21. IV. 92, 1 es.
Corotipo: Olartico (OLA).
Distribuzione in Italia: regioni settenntrionali e
centrali, Campania, Sicilia.
Dati ecologici: Specie stenotopa, erbicola, afidofa¬
ga. Si trova in ambienti umidi e paludosi, su vegetali
ripicoli (specialmente Carex, Sparganium, Phragmi¬
tes, Salix ) e in detriti.
Hippodamia (Adonia) variegata (Goeze, 1777)
Stazione: 6, 6.V.90, 1 es; altre, 30.IX.90, 1 es;
21.IV.92, les.
Corotipo: Centroasiatico-Europeo-Mediterraneo
(CEM), E-Africano.
Distribuzione in Italia: tutta Italia.
Dati ecologici: specie euritopa, erbicola ed arbori-
cola, afidofaga, comune su varie specie vegetali in zo¬
ne umide o secche, sia prative che boscate.
Aphidecta obliterata (Linnaeus, 1758)
Stazione: 3, 9.V.90, 1 es.
Corotipo: Europeo (EUR).
Distribuzione in Italia: Italia settentrionale, Tosca¬
na, Lazio, Abruzzo, Calabria.
Dati ecologici: specie euritopa, abitualmente silvi¬
cola, arboricola, afidofaga. Si trova di preferenza su
conifere dei generi Pinus e Picea.
Adalia (s. str.) bipunctata (Linnaeus, 1758)
Stazione: 4, 10.VI.90, 1 es; 9, 30.III.90, 1 es;
15.VI.90, 1 es; 6.VII.91, 2 es.
Corotipo: Paleartico (PAL), importato in Nord e
Sud America.
Distribuzione in Italia: tutta la penisola ed isole.
Dati ecologici: specie ubiquitaria, arboricola ed
erbicola, afidofaga.
Adalia (s. str.) decempunctata (Linnaeus, 1758)
Stazione: 1, 18.VI.91, 1 es; 5.X.94, 1 es; 2, 15.VI.90,
2 es; 3, 30.V.90, 1 es; 15.VI.90, 1 es; 4, 27.VI.89, 1 es;
10.VI.90, 1 es; 24.VI.90, 1 es; 5, 8.VII.90, 2 es; 6,
27.VI.89, 1 es; altre, 30.V.90, 1 es.
Corotipo: Paleartico (PAL).
Distribuzione in Italia: tutta la penisola ed isole.
Dati ecologici: specie euritopa, talora silvicola, afi¬
dofaga. Più arboricola della specie precedente, si tro¬
va in genere su noccioli, querce e salici.
Tytthaspis sedecimpunctata (Linnaeus, 1761)
Stazione: 1, 19.V.91, 5 es; 23.V.91, 1 es; 30.V.91, 1
es; 3, 10.VI.91, 1 es; 4, 10.X.90, 2 es; 5, 10.VI.91, 1 es;
9, 15. VI. 90, 1 es; 6.VII.90, 1 es; altre, 6.V.90, 1 es;
23.V.91, 1 es.
Corotipo: Centroasiatico-Europeo-Mediterraneo
(CEM)
I COCCINELLIDI (COLEOPTERA COCCINELLFDAE) DEL MONTE BARRO (ITALIA. LOMBARDIA, LECCO)
183
Distribuzione in Italia: tutta la penisola e le isole.
Dati ecologici: specie euritopa, afidofaga. Si trova
soprattutto in ambienti sabbiosi e paludosi, sulla ve¬
getazione erbacea e, talora, nei detriti.
Coccinella septempunctata Linnaeus, 1758
Stazione: 1, 30.V.91, 2 es; 2, 9.V.90, 3 es; 15.VI.90, 1
es; 3, 14. III. 90, 3 es; 9.V.90, 1 es; 4, 10.VI.90,1 es;
10.VI.91, 3 es; 5, 16.V.90, 1 es; 10.VI.90, 1 es; 6, 9.V.90,
1 es; altre, 6.V.90, 1 es; 30.V.90, 2 es; 6.VII.90, 1 es.
Corotipo: Paleartico (PAL), importato in Nord
America. Distribuzione in Italia: tutta la penisola e le
isole.
Dati ecologici: specie ubiquitaria, erbicola e arbo-
ricola, afidofaga.
Oenopia lyncea agnata (Rosenhauer, 1847)
Stazione: 4, 30.III.90, 1 es; 10.VI.90, 1 es; 8,
21.IV.92, 1 es.
Corotipo: Centroeuropeo (CEU).
Distribuzione in Italia: regioni settentrionali e zo¬
ne montuose delPItalia mediterranea ed isole.
Dati ecologici: specie stenotopa, termofila, arbori-
cola, afidofaga. Il suo habitat abituale è rappresenta¬
to da boschi soleggiati di querce; oltre che su Quercus
a foglie caduche è stata segnalata su Prunus spinosa.
Halyzia sedecimguttata (Linnaeus, 1758)
Stazione: 2, 15.VI.90, 1 es; 3, 9.V.90, 3 es; 30.V.90, 2
es; 6, 27.VI.89, 2 es; 8, 14.III.90, 3 es; altre, 9.V.90, 1 es;
21.IV.92, 1 es.
Corotipo: Sibirico-Europeo (SIE).
Distribuzione in Italia: tutta Italia, Sicilia, Sarde¬
gna
Dati ecologici: specie stenotopa, silvicola, arbori-
cola, micetofaga; si trova soprattutto su Quercus,
Corylus, Fraxinus, Alnus; più raramente su Picea, Pi-
nus, Larix.
Calvia ( Anisocalvia ) quatuordecimguttata (Lin¬
naeus, 1758)
Stazione: 3, 9.V.90, 1 es; 13.IX.90, 1 es; 8, 14.III.90,
1 es.; 9, 15. VI. 90, 1 es.
Corotipo: Olartico (OLA)
Distribuzione in Italia: Tutta Italia, Sardegna.
Sembra mancare in Sicilia.
Dati ecologici: specie euritopa, silvicola, arborico-
la, afidofaga. Si trova su cespugli ed alberi vari: Fagus,
Quercus, Betula, Alnus, Salix, Fraxinus, etc.
Propylea quatuordecimpunctata (Linnaeus, 1758)
Stazione: 1, 30.V.91, 1 es; 3, 9.V.90, 2 es; 19.V.91, 1
es; ;4. 10.VI.90, 2 es; 5, 16.V.90, 1 es; 10.VI.90, 1 es;
8. VII. 90, 2 es; 7, 9.V.90,1 es; 8, 16.V.90, 1 es; 6.VII.90,
1 es; 9, 9.V.90, 1 es; 25.V.90, 1 es; 15.VI.90, 2 es; altre.
25.IV.90, 2 es.
Corotipo: Paleartico (PAL), importata in Nord
America.
Distribuzione in Italia: tutta la penisola ed isole.
Dati ecologici: specie ubiquitaria, erbicola e arbo-
ricola, afidofaga.
Psyllobora vigintiduopunctata (Linnaeus, 1758)
Stazione: 1, 19.V.91, 1 es; 12.VII.91, 1 es; 2, 9.V.90,
3 es; 15.VI.90, 1 es; 3, 9.V.90, 4 es; 13.IX.90, 1 es; 4,
21. 111. 90. 1 es; 16.V.90, 1 es; 10.VI.90, 1 es;24.VI.90, 1
es; 27.VI.90, 1 es; 8.VII.90, 1 es; 13.IX.90, 1 es; 5,
30. 111. 90. 1 es; 16.V.90, 1 es; 13.IX.90, 1 es; 6, 6.VII.90,
1 es; 7, 16.V.90, 9 es; 8, 16.V.90, 1 es; 9, 25.V.90, 1 es;
15. VI.90, 1 es; altre, 25.IV.90, 1 es; 6.V.90, 3 es; 9.V.90,
1 es; 16.V.90, 1 es.; 30.V.90, 2 es; 21 .IV.92, 2 es.
Corotipo: Paleartico (PAL).
Distribuzione in Italia: tutta la penisola ed isole.
Dati ecologici: specie euritopa, spesso xerofila, er¬
bicola, micetofaga. Il suo habitat è rappresentato da
rive di corsi d’acqua o prati asciutti, prati semi umidi,
pendìi asciutti e caldi, argini e pendìi soleggiati, filari
di viti, cave, ambienti sabbiosi o ghiaiosi.
Subcoccinella vigintiquatuorpunctata (Linnaeus,
1758)
Stazione: 1, 23.V.91, 2 es; 10.X.91, 1 es; 2, 14.III.90,
1 es; 9.V.90, 5 es; 15.VI.90, 2 es; 19.V.91, 2 es; 3,
20.IX.89, 1 es; 4, 27.VI.90, 1 es; 20.IX.89, 1 es ;
10.VI.90, 4 es; 24.VI.90, 1 es; 23.V.91, 2 es; 5, 30.III.90,
2 es; 16.V.90, 2 es; 9, 30.III.90, 1 es; 9.V.90, 6 es;
16. V.90, 2 es; 16.V.91, 1 es; 15.VI.90, 2 es; 6.VII.90, 4
es; 7, 25.IV.90, 3 es.; altre: 16.V.90, 1 es.
Corotipo: Paleartico (PAL).
Distribuzione in Italia: tutta la penisola e isole.
Dati ecologici: specie euritopa, erbicola, fitofaga.
Si trova soprattutto in prati asciutti, campi arati,
sponde e pendìi, praterie aride. È un insetto polifago
rinvenibile su Medicago, Trifolium, Beta, e su Cario-
fillacee ( Saponaria , Silene, Lychnis, Dianthus)
Tabella 2: tabella riassuntiva delle specie raccolte. Al¬
tre stazioni *.
184
CLAUDIO CANEPARI
Considerazioni conclusive
Il quadro corologico della popolazione dei Cocci-
nellidi del Monte Barro, come si vede dalla tab.3 e
dalla fig. 6, dove i corotipi sono stati raggruppati per
categorie sintetiche, mette in evidenza una netta pre¬
dominanza di specie ad ampia diffusione, che si
estende talora a tutta la regione paleartica od olarti-
ca, mentre è del tutto assente la componente medi-
terranea. Solo un elemento, Nephus ( Sidis ) anomus
presenta una diffusione sud europea. Di questa spe¬
cie, che non figura nel catalogo del «Die Kàfer Mitte-
leuropas», mi era già noto un esemplare del Canton
Ticino; la zona prealpina costituisce quindi il suo li¬
mite di diffusione settentrionale. È di notevole inte¬
resse faunistico la popolazione di Scymnus ( s.str :) fe¬
morali in assenza della sua specie più prossima Se.
(s.str.) interruptus. Tale dato sembra avvalorare l’ipo¬
tesi che Se. femorali debba esere considerato una
buona specie o per lo meno una razza ecologica. Al¬
tro elemento interessante è Scymnus (s.str.) pallipe-
diformis apetzoides che forma una popolazione piut¬
tosto abbondante sul Monte Barro, dove non si rin¬
viene invece Se. (s.str.) apetzi che è la specie di Scym¬
nus più comune nell’Italia mediterranea. Popolazioni
abbondanti di Se. pallipediformis apetzoides sembra¬
no esistere anche nel Canton ticino, infatti ho esami¬
nato numerosi esemplari di questa specie raccolti a
Chiasso. Si ha dunque l’impressione che Se. pallipe¬
diformis apetzoides sia particolarmente frequente
nelle zone calde e soleggiate delle Prealpi.
Tabella 3: spettro corologico delle specie raccolte. Le
sigle dei corotipi fondamentali sono ricavate dal la¬
voro di Vigna Taglianti et al. (1991).
Fig. 6 - Corotipi raggruppati per categorie sistematiche.
BIBLIOGRAFIA
Audisio P., Canepari G, De Biase A., Poggi R., Ratti E. &
Zampetti M.F., 1955 - Coleoptera Polyphaga XI (Clavicornia
II). In: Minelli A., Ruffo S. & La Posta S. (eds.). Checklist del¬
le specie della fauna italiana, 57. Calderini, Bologna.
Canepari C., 1983 - Le specie italiane del gruppo dello Scymnus
frontalis Fab. con descrizione di due nuove specie (Coleopte¬
ra Coccinellidae). Giorn. it. Ent., 1(4): 179-204, 28.
Della Beffa G., 1913 - Revisione dei Coccinellidi Italiani. Parte
prima: Epilachninae - Coccinellinae. Ditta Verderi e C., Borgo
S. Donnino-Salsomaggiore.
Fursch H., 1959 - Scymnus interruptus Gze. forma coloris dieck-
manni nov., eine neue Aberration aus Mitteldeutschland (Col.
Cocc.). Nachricht. Bayer. Ent.. 8 (3): 28-29.
Fursch H., 1965 - Die palaearktischen Arten der Scymnus bi-
punctatus - Gruppe und die europàischen Vertreter der Un-
tergattung Sidis (Col. Cocc.). Mitt. Munck. Entom. Gesell. 55:
178-213, 85.
Fursch H., 1966 - Bemerkungen zur Systematik mitteleuropai-
scher Coccinelliden. Nachricht. Bayer. Ent. 15 (9/10): 85-90.
Fursch H., 1967 - Coccinellidae in Freude, Harde, Lohse: Die Kà¬
fer Mitteleuropas. Goecke & Evers, Krefeld, 7: 227-278, 37.
Fursch H., Kreissl E. & Capra F., 1967 - Revision einiger eu-
ropàischer Scymnus (s. str.) Arten (Col. Coccinellidae). Mitt.
Abt. Zool. Bot. Landesmuseum « Joanneum», Graz, 28: 207-259.
Gourreau J.M., 1974 - Systematique de la tribù des Scymnini
(Coccinellidae). Ann. Zool. Ecol. Anim. , Num. Hors-Ser. Paris.
Iablokoff-Khnzorian S.M., 1982 - Les Coccinelles. Coléoptères-
Coccinellidae. Soc. Nouv. Ed. Boubée, Paris.
Koch K., 1989 - Die Kàfer Mitteleuropas. Òkologie. Goecke &
Evers. Krefeld, 2: 237-253.
Luigioni P, 1929 - I Coleotteri d’Italia. Catalogo sinonimico-bi-
bliografico-topografico. Mem. Pont. Acc. Sci. Nuovi Lincei,
(II), 13: 1-1159.
Mader L., 1955 - Evidenz der palaearktischen Coccinelliden und
ihrer Aberrationen in Wort und Bilden. Ent. Arb. Mus. Gg.
Frey, Tutzing. 6(3): 764-1035.
Majerus M.E.N., 1994 - Ladybirds. Harper Collins , London.
Porta A., 1929 - Fauna Coleopterorum Italica, Stabilimento Tipo¬
grafico Piacentino, Piacenza, III: 242-277.
Vigna Taglianti A., Audisio P.A., Belfiore C., Biondi M„
Bologna M.A., Carpaneto G.M., De Biase A., De Felici
S., Piattella E., Racheli T„ Zapparoli M., Zoia S., 1992 -
Riflessioni di gruppo sui corotipi fondamentali della fauna
W-paleartica ed in particolare italiana. Biogeographia, XVI:
159-179.
Claudio Canepari: Via Venezia, 1 - 20097 San Donato Milanese
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
Carlo Pesarini & Andrea Sabbadini
I Cerambicidi (Coleoptera Cerambycidae) del Monte Barro
(Italia, Lombardia, Lecco)
Riassunto - Nel presente lavoro viene fornito un elenco delle specie di Cerambicidi rinvenuti nell’area del Monte Bar¬
ro, come risultato di una ricerca condotta negli anni 1989-1992 dal Museo di Storia Naturale di Milano. Le raccolte sono sta¬
te effettuate prevalentemente in 9 stazioni prative. Sono state rinvenute 27 specie; una di esse, Exocentrus lusitanus, risulta
nuova per la fauna lombarda. Viene infine fornita una tabella da cui possono desumersi le caratteristiche biogeografiche
della popolazione di Cerambicidi del Monte Barro.
Abstract - Long-horned beetles (Coleoptera Cerambycidae) from Monte Barro (Italy, Lombardy, Lecco).
In thè present paper are listed thè species of Cerambycidae found in thè area of Monte Barro within thè framework of
a research accomplished by thè Naturai History Museum of Milano in thè years 1989-1992. Mainly nine meadows (sampling
sites 1-9) have been investigated. Twenty-seven species have been collected; one of them, Exocentrus lusitanus , was not yet
known for thè Lombard fauna. A brief account on thè biogeograpghic pattern of thè cerambycid-fauna of Monte Barro is
finally given.
Key words: Monte Barro, Cerambycidae, geographic distribution.
Negli anni 1989-1992 il Museo Civico di Storia Na¬
turale di Milano ha condotto una ricerca entomofau-
nistica nell’area del Monte Barro (Lombardia, Lec¬
co) col contributo del Consorzio Parco. Per quanto ri¬
guarda la famiglia Cerambycidae , la quantità com¬
plessiva di materiale raccolto nel corso di questa ri¬
cerca risulta indubbiamente modesta; il numero di
specie rinvenute, peraltro, non è del tutto trascurabi¬
le, ed il quadro faunistico che ne deriva, pur se in¬
dubbiamente incompleto, è comunque significativo,
tanto da includere anche una specie che, a dispetto
della grande abbondanza di dati esistenti in letteratu¬
ra sulla famiglia, risulta nuova per la fauna lombarda.
Si è pertanto ritenuto opportuno includere anche i
Cerambicidi fra le famiglie prese in considerazione
nel presente repertorio.
Osservazioni sulle stazioni di raccolta
Una parte delle raccolte è stata effettuata in 9 sta¬
zioni prative (stazioni 1-9), di cui riportiamo le carat¬
teristiche ambientali ricavandole dal contributo di
Banfi, Galasso & Sassi, in questo stesso volume. Ul¬
teriori stazioni di raccolta sono state riunite, nella ta¬
bella riassuntiva (tab. 1), in una sorta di stazione cu¬
mulativa indicata con il numero 10.
Stazione 1; Località Piani di Barra, 610 m, esp. W,
interessata da scavi archeologici (Grande Edificio). È
caratterizzata da una consistente presenza di prato
falciabile che indica una attività di foraggio residua.
Stazione 2: Località Piani di Barra, 600 m, esp. W,
interessata da scavi archeologici (Edificio II). Si trat¬
ta di una prateria in cui è stata abbandonata la ge¬
stione a foraggio, vi è quindi presente un leggero
mantello.
Stazione 3: Conca prativa a monte del Monumen¬
to dell’Alpino, 630 m, esp. W. Vi si nota la convivenza
di elementi di prateria, elementi di prato falciabile ed
elementi di disturbo marginale.
Stazione 4: Località S. Michele, pendio in prossi¬
mità del sentiero per Pian Sciresa, 325 m, esp. E. Su
una base di Mesobromion è in pieno sviluppo il pra¬
to falciabile, che qui presenta il carattere oligo-meso-
trofico.
Stazione 5: Località Pian Sciresa, 435 m, esp. NE.
È un prato arido con montarozzi residui a brughiera;
per il resto il livello di base è costituito da prateria a
Brachypodium rupestre ssp. caespitosum.
Stazione 6: Superfici prative lungo il sentiero del¬
la “Cresta occidentale”, che dall’edificio dell’ex sana¬
torio sale alla vetta, 750 m, esp. S. Si tratta di una pra¬
teria con parziale affioramento roccioso, fortemente
cespugliata e in via di chiusura, con forte influsso del¬
l’elemento prenemorale (tendenza a un Quercetum
pubescenti s. 1.)
Stazione 7; Località Fornaci Villa, in prossimità
dell’impluvio della Val Faè, 275 m, esp. NW. È una su¬
perficie prativa terrazzata all’interno del bosco meso¬
frio, molto simile a quella della stazione 8 ma più
aperta e con qualche elemento in più di Mesobro¬
mion.
Stazione 8: Località Fornaci Villa, in prossimità
dell’impluvio della Val Faè, 305 m, esp. NW. È un pra¬
to terrazzato irregolarmente gestito e contornato da
un bosco con notevoli contrassegni mesofili.
Stazione 9: Località Ca’ di Sala, 226 m, sulla riva
settentrionale del bacino di Oggiono del Lago di An-
186
CARLO PESARINI & ANDREA SABBADINI
none. Vi si evidenziano tre aspetti essenziali: 1) il can¬
neto, con accenni di aggruppamento a Iris pseudoci-
corus , elementi di magnocariceto e residui di bosca¬
glia ripariale 2) prato umido oligotrofico ( Molinion
coeruleae)\ 3) vegetazione erbacea perenne e disor¬
ganizzata al margine superiore della stazione.
Elenco delle specie raccolte
Con l’unica eccezione costituita da un sommario
rilievo condotto in prossimità della vetta del M. Bar¬
ro, tutto il materiale è stato raccolto dal Dr. Davide
Sassi nel corso di ricerche che si sono svolte per buo¬
na parte al difuori delle stazioni di raccolta (staz. 1-9)
scelte come base per uno studio dei biotopi prativi;
per ogni specie, comunque, viene qui fornita un’indi¬
cazione sufficientemente precisa delle singole loca¬
lità di rinvenimento.
Grammoptera ruficomis (Fabricius)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: numerose latifoglie arboree e arbu-
stive.
5 esemplari raccolti fra il 9. Ili e il 30. V nelle staz.
3, 6 e 8, in un prato della Val Faè vicino alla staz. 7 e,
sul versante meridionale, ai margini di un sentiero
che dalPeremo va alla Sella della Pila.
Pseudallostema ( Pseudovadonia ) livida (Fabricius)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: numerose latifoglie (in realtà la larva
si nutre dei miceli di funghi saprofiti su radici morte).
2 esemplari raccolti nella staz. 7 (17. VII. 1992, lg.
Sassi).
Osservazioni: la specie sembrerebbe rappresenta¬
ta, in gran parte d’Italia, dalla ssp. pecta Daniel, il cui
esatto status sistematico, peraltro, necessita di revi¬
sione.
Leptura ( Rutpela ) maculata Poda
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose latifoglie, più raramente
conifere.
6 esemplari raccolti nelle staz. 4, 5, e 8
(15. VII. 1991/2, lg. Sassi).
Stenurella bifasciata (Muller)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose conifere e latifoglie.
3 esemplari raccolti tra P8.VII e il 2.VIII nelle
staz. 2, 3 e 4.
Stenopterus rufus (Linneo)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose latifoglie.
3 esemplari raccolti in luglio nelle staz. 4, 7 e 8 e
presso la vetta.
Deilus fugax (Olivier)
Corotipo: Mediterraneo (MED).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: svariate Fabaceae della tribù Genisteae.
Un unico reperto (presso la vetta, 6. VII. 1990, lg.
Sassi).
Cerambyx scopolii (Fussly)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose latifoglie.
3 esemplari raccolti nei boschi sul versante occi¬
dentale della vetta del M. Barro, 8.V.1992, lg. Sabba-
dini & Pesarini).
Phymatodes testaceus (Linneo)
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose latifoglie.
Un unico reperto sul versante meridionale, ai mar¬
gini di un sentiero che dall’eremo conduce alla Sella
d. Pila (30. V. 1990, lg. Sassi).
Poecilium (s.str.) alni (Linneo)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: numerose latifoglie.
Un unico reperto (staz. 2, 23.V.1991, lg. Sassi).
Xylotrechus arvicola (Olivier)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose latifoglie.
Un unico reperto sul versante meridionale, ai mar¬
gini di un sentiero che dall’eremo conduce alla Sella
d. Pila (6. VII. 1990, lg. Sassi).
Clytus arietis (Linneo)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia.
Piante ospiti: numerose latifoglie.
Un esemplare raccolto nella staz. 2 (24. VI. 1989)
ed uno ai margini di un sentiero che dall’eremo con¬
duce alla Sella d. Pila (30.V.1990, lg. Sassi).
Clytus rhamni Germar ssp .bellieri Gautier
Corotipo: W-Europeo (WEU).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose latifoglie.
Due esemplari raccolti nella staz. 2 (12. VI. 1989 e
25. VI. 1992, lg. Sassi) ed uno nella staz. 4 (15. VII. 1991,
lg. Sassi).
Chlorophorus pilosus (Forster) ssp.glabromaculatus
(Goeze)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose latifoglie.
Un unico reperto nel bosco al margine della stra¬
da asfaltata che sale verso il Monumento dell’Alpino
(6.VII.1990,lg. Sassi).
Chlorophorus varius (Muller)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose latifoglie.
Alcuni esmplari raccolti in luglio e agosto nelle
staz. 2 e 9.
Chlorophorus sartor (Muller)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
I CERAMBICIDI (COLEOPTERA CERAMBYCIDAE) DEL MONTE BARRO (ITALIA. LOMBARDIA, LECCO)
187
Piante ospiti: numerose latifoglie.
Alcuni esemplari raccolti da fine giugno a inizio
agosto nelle staz. 2, 3, 4, 5 e 8, e presso la vetta.
Osservazioni: nell’ambito di questa specie, è possi¬
bile distinguere una forma orientale ed una occiden¬
tale (cui appartengono le popolazioni italiane) di¬
scretamente distinte, verosimilmente a livello sotto¬
specifico. Poiché però, come rilevato anche da Sama
(1988, p.125) non è per il momento possibile assegna¬
re alla specie una patria classica, non indicata nella
descrizione originale, la situazione nomenclatoriale
delle eventuali sottospecie non può essere attual¬
mente precisata. Sembra comunque verosimile che
alla sottospecie italiana, ove questa non andasse
identificata con la forma nominale, debba essere at¬
tribuito il nome di massiliensis (Linneo) e non quello
di infensus Plavilstshikov, come spesso indicato in let-
taratura, che ha per patria classica il Caucaso.
Parmena unifasciata (Rossi)
Corotipo: S-Europeo (SEU).
Presenza in Italia: tutta Italia.
Piante ospiti: numerose latifoglie, più di rado co¬
nifere.
Un unico reperto (staz. 3, 20.IX.1989, lg. Sassi).
Lamia textor (Linneo)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Italia settentrionale e centrale,
Basilicata, Sicilia.
Piante ospiti: specie dei generi Salix, Populus, Be-
tula, Alnus e Morus.
Un unico reperto (staz. 6, 24.IV.1992, lg. Sassi).
Agapanthia (s.str.) cardui (Linneo)
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose piante erbacee di svariate
famiglie.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 1, 2, 6 e 8.
Anaesthetis testacea (Fabricius)
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale e centrale,
Campania, Calabria, Sicilia.
Piante ospiti: numerose latifoglie, ma soprattutto
querce (Quercus).
Alcuni esemplari raccolti da maggio a luglio nelle
staz. 2 e 6, in un prato sotto il Monumento all’ Alpino
e ai margini di un sentiero che dall’eremo va alla Sel¬
la d. Pila.
Exocentrus lusitanus (Linneo)
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Trentino- Alto Adige,
Friuli-Venezia Giulia. La specie risulta nuova per la
Lombardia.
Piante ospiti: Tilia cordata.
Un unico reperto ai margini di un sentiero che dal¬
l’eremo va alla Sella della Pila (30.V.1990, lg. Sassi).
Exocentrus adspersus Mulsant
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale e centrale,
Puglia, Sicilia.
Piante ospiti: svariate specie di Fagales.
Un esemplare raccolto nella staz. 1 (12.VII.1991,
lg. Sassi), ed uno nella staz. 4 (10. VI. 1990).
Pogonochoerus hispidus (Linneo)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: numerose latifoglie.
Un unico reperto (staz. 3, 14.III.1990, lg. Sassi).
Saperda (Compsidia) populnea (Linneo)
Corotipo: Olartica (OLA).
Presenza in Italia: Italia settentrionale e centrale,
Basilicata, Calabria, Sicilia.
Piante ospiti: pioppi ( Populus ) o, più di rado, sali¬
ci (Salix).
Un unico reperto (staz. 2, 27.V.1989, lg. Sassi).
Phytoecia (s.str.) cylindrica (Linneo)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Italia settentrionale e centrale,
Campania, Puglia, Basilicata.
Piante ospiti: diverse specie di Apiaceae.
Un esemplare raccolto nella staz. 8 (16.V.1990, lg.
Sassi) e due nei boschi della Val Faè (23.V.1991, lg.
Sassi).
Phytoecia (s.str.) pustulata (Schrank)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: tutta Italia.
Piante ospiti: alcune specie di Asteraceae, ma so¬
prattutto Achillea millefolium.
Alcuni esemplari raccolti in maggio nelle staz. 1,
8 e 9.
Phytoecia (s.str.) virgula (Charpentier)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: svariate specie di Asteraceae.
Alcuni esemplari raccolti in maggio nella staz. 2 e
in luglio nel bosco che costeggia la strada asfaltata
che sale verso il Monumento all’Alpino.
Oberea (s.str.) linearis (Linneo)
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale e centrale,
Calabria, Sicilia.
Piante ospiti: svariate latifoglie, ma soprattutto
Corylus avellana.
Un unico reperto (staz. 6, 19.V.1992).
Tabella 1 - Tabella riassuntiva delle specie raccolte.
188
CARLO PESARINI & ANDREA SABBADINI
Ripartizione delle specie in base alle categorie
corologiche
Lo spettro corologico delle specie raccolte (tabel¬
la 2) mostra una dominanza di elementi ad ampia di¬
stribuzione e una scarsissima presenza di elementi
mediterranei; lo stesso dato emerge, con maggior evi¬
denza, dalla fig.l, dove i corotipi sono stati raggrup¬
pati per categorie sintetiche.
Tabella 2 - Spettro corologico delle specie raccolte.
Le sigle dei corotipi fondamentali sono ricavate dal
lavoro di Vigna Taglianti et al. (1991).
Medit.
3.70%
Fig. 1 - Corotipi raggruppati per categorie sintetiche.
BIBLIOGRAFIA
Pesarini C. & Sabbadini A., 1995 - Insetti della Fauna Europea.
Coleotteri Cerambicidi. Natura , 85:1-132.
Sama G., 1988 - Fauna d’Italia 25. Coleoptera Cerambycidae.
Ed.Calderini , Bologna.
Vigna Taglianti A., Audisio P.A., Belfiore C., Biondi M.,
Bologna M.A., Carpaneto G.M., De Biase A., De Felici
S., Piattella E., Racheli T., Zapparoli M. & Zoia S., 1992
- Riflessioni di gruppo sui corotipi fondamentali della fauna
W-paleartica ed in particolare italiana. Biogeographia , 16:
159-179.
Villiers A., 1978 - Faune des Coléoptères de France 1. Ceramby¬
cidae. Ed. Lechevalier, Paris..
■
C arlo Pesarmi & Andrea Sabbadini: Museo Civico di Storia Naturale di Milano, Corso Venezia 55, 21121 Milano
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
Carlo Leonardi & Davide Sassi
I Crisomelidi (Coleoptera Chrysomelidae) del Monte Barro
(Italia, Lombardia, Lecco)
Riassunto - Vengono presentati i risultati di una pluriennale indagine faunistica sul rilievo brianteo del Monte Barro.
Oltre ad un elenco delle 152 specie di Crisomelidi censite (otto delle quali risultano nuove per la fauna lombarda) sono for¬
nite note biologiche per numerosi taxa e considerazioni sistematiche su alcune specie di particolare interesse: è studiata la
variabilità della lunghezza (Lp) e della larghezza (lp) del pronoto in un piccolo campione di Lilioceris merdigera del Mon¬
te Barro posto a confronto con un campione di Lilioceris schneideri raccolto in Abruzzo; sono descritte le differenze morfo¬
logiche e morfometriche fra Longitarsus minusculus e Longitarsus anacardius ; è illustrata la variabilità dell’edeago e della
silhouette elitrale in Longitarsus pinguis, per il quale si evidenzia resistenza di una forma appenninica leggermente diver¬
sa da quella alpina; è studiata la variabilità di Le, Lp, Lt, Ld in campioni del Monte Barro di Psylliodes toelgi e Ps. brisouti.
Sono raffigurati in visione ventrale e laterale gli edeagi di esemplari del Monte Barro di Longitarsus minusculus , Longitar¬
sus pinguis, Altica carinthiaca, Asiorestia crassicornis, Dibolia foersteri, Psylliodes brisouti e Psylliodes toelgi. Sono riportati
dati biologici di Cassida subreticulata e ne vengono descritte e raffigurate la larva al quinto stadio e la pupa. Le raccolte so¬
no state effettuate prevalentemente in 8 stazioni prative situate all’interno del parco regionale e selezionate in base a cri¬
teri fitosociologico-vegetazionali: la maggior parte di queste stazioni (1, 3, 4, 7 e 8) sono prati regolarmente falciati e la sta¬
zione 5 si distingue dalle rimanenti per la presenza di elementi di brughiera. Abbiamo confrontato queste stazioni co¬
struendo curve di k-dominanza, calcolando indici di diversità (i valori più bassi dell’indice di Shannon si sono ottenuti nel¬
le stazioni 3,7,8) ed effettuando infine un’analisi numerica con gli indici di Sòrensen e di Sokal-Michener per mettere in evi¬
denza il grado di affinità fra le stazioni indagate. Le raccolte sono state effettuate anche ai margini del fragmiteto che co¬
steggia il lago di Annone, in località Sala al Barro (staz. 9). Dal punto di vista zoogeografico prevalgono nei Crisomelidi le
specie ampiamente distribuite nella regione paleartica; i corotipi mediterranei costituiscono una percentuale molto piccola
(1.3%) delle specie raccolte, ma vi è un’importante presenza (18%) di elementi sudeuropei, in accordo con le caratteristi¬
che insubriche dell’area indagata. Conclude il lavoro un quadro sinottico della fenologia delle specie.
Abstract - Leaf beetles (Coleoptera Chrysomelidae) from Monte Barro (Italy, Lombardy, Lecco).
This paper is thè result of a faunistical research on thè Chrysomelid-beetles of Monte Barro Regional Park, which is pla-
ced at thè southeast end of Como Lake, in face of thè massif of thè Grigne. The authors give thè list of 152 species collected
during four years of entomological survey, with information on host plants, distributional pattern and distribution in Italy for
each taxon and biological notes for many of them. Noteworthy distributional data are reported: Longitarsus exoletus, L. fou-
drasi, L. brunneus, L. minusculus , Altica carinthiaca, Asiorestia crassicornis, Dibolia foersteri and Psylliodes brisouti are new
to Lombardia; Cryptocephalus bimaculatus is new to Calabria; Cr. flavipes in nex to Sardegna Aphthona atrovirens is new to
Molise; Longitarsus pinguis is new to Liguria, Molise and Campania; Asiorestia crassicornis is new to Emilia-Romagna; Psyl¬
liodes toelgi is new to Lazio. Systematical comments on a few species are appended, i. e.: information is given on thè variabi-
lity of pronotai length (Lp) and width (lp) in a little sample of Lilioceris merdigera from Monte Barro, which is compared
with a sample of Lilioceris schneideri from Abruzzo; morphologic and morphometric differences between Longitarsus minu¬
sculus and Longitarsus anacardius are described; in consequence of a study on thè variability of aedeagus and elytral silhouet¬
te in L. pinguis, thè existence of an Apenninic form somewhat different from thè Alpine one is emphasized; information is
given on thè variability of elytral length (Le), pronotai length (Lp), length of hind tibia (Lt) and length of prolongation of
hind tibia beyond tarsal insertion (Ld) in samples of Psylliodes brisouti and Ps. toelgi from Monte Barro. Nymph and fifth lar¬
vai instar of Cassida subreticulata are described. Aedeagi of specimens from Monte Barro belonging to following species are
figured in ventral and lateral view: Longitarsus minusculus, L. pinguis, Altica carinthiaca, Asiorestia crassicornis, Dibolia foer¬
steri, Psylliodes brisouti and Psylliodes toelgi. Most specimens have been collected in 8 sampling-sites placed inside thè Park
and selected on thè ground of physionomic-vegetational criteria. Most of these sampling-sites ( 1, 3, 4, 7 and 8) are regularly
mowed and peculiar to sampling-site 5 is thè presence of heath elements. We have compared these sampling-sites by means
of k-dominance curves, indexes of diversity (sites 3, 7 and 8 give comparatively small values of Shannon’s index) and cluster
analysis, in order to point out their degree of affinity. Also a grassland on thè border of thè swamp running along thè side of
Annone Lake, in thè district of Sala al Barro, has been investigated (site 9). From thè zoogeographic point of view species wi-
dely distributed in thè Palaearctic region are prevailing, there is a very low percentage (1.3 %) of Mediterranean elements,
but a comparatively high percentage (18 %) of south-European taxa, in agreement with thè Insubric character of thè inve¬
stigated area. A synoptic phenologic table is given in thè end of thè work.
Key words: Monte Barro, Chrysomelidae, Phenology, Geographic distribution.
Il Monte Barro è un modesto rilievo situato all’e-
stremo limite sudorientale del Triangolo Lariano, in
posizione dominante la città di Lecco e prospicente al
massiccio delle Grigne. Per il suo rilevante interesse
ambientale è attualmente un parco naturale della Re¬
gione Lombardia.
Questo studio, che presenta il risultato di quattro
anni di raccolte di coleotteri crisomelidi nell’area in
oggetto, è stato condotto secondo due direttrici. In
primo luogo si è cercato di censire tutte le specie pre¬
senti nell’intera area studiata, utilizzando le consuete
tecniche di raccolta (a vista, retino da sfalcio, ombrel-
190
CARLO LEONARDI & DAVIDE SASSI
lo entomologico). Inoltre, allo scopo di mettere in lu¬
ce eventuali caratterizzazioni faunistiche nell’ambito
delle zone prative del Parco, è stato condotto un con¬
fronto statistico del popolamento crisomelidologico
tra otto diverse stazioni, selezionate sulla base della
fisionomia della vegetazione. A causa della limitata
estensione del territorio indagato la caratterizzazione
delle stazioni è piuttosto modesta, l’analisi ha per¬
messo comunque di evidenziare alcuni aspetti signifi¬
cativi. Ad eccezione della stazione 5, che si differen¬
zia in modo evidente per la presenza dell’elemento
acidofilo di brughiera, le altre stazioni possono esse¬
re inquadrate in una tipologia di tensione tra gli ordi¬
ni non climacici Arrhenatheretalia elatioris Pawl. 1828
e Brometalia erecti Br.-Bl. 1936. Il primo ordine rap¬
presenta le comunità di prato regolarmente falciato,
di condizioni meso-eutrofiche, suolo profondo, gene¬
ralmente favorite dalla presenza di falda superficiale,
e si esprime attraverso gli elementi dell’associazione
Arrhenatheretum elatioris Br.-Bl. ex Scherr. 1925
(Arrhenatherum elatius , Tris et aria fla vescens , Dactylis
glomerata , Silene vulgaris , Ranunculus acris, Rhi-
nanthus alectorolophus, Plantago lanceolata ecc.). Il
secondo ordine, legato al dinamismo naturale ex¬
traforestale, rappresenta le comunità di prateria se¬
miarida che ricoprono suoli molto scarni o substrati
litoidi, spesso in forte pendenza, aH'inizio di una serie
dinamica che porta alla ricostruzione della copertura
forestale. La combinazione specifica ricorrente ( Bro -
mopsis erecta, Dianthus carthusianorum, Lilium bul-
biferum, Trinia glauca, Helianthemum nnmmularinm
ssp. obscurum, Sanguisorba minor ssp. mancata, Po¬
tentina neumanniana ecc .) consente di attribuire tali
espressioni all’alleanza Mesobromion erecti (Br.-Bl.
& Moor 1938) Knapp 1942. Il dinamismo naturale,
come accennato, porta in tempi brevi alla ripresa del-
Fig. 1 - Carta del Monte Barro con l’ubicazione delle stazioni 1-9.
la copertura forestale, che per tutte le stazioni si iden¬
tifica con il climax di un querceto a rovere ( Quercus
petraea ), roverella ( Q . pubescens ), orniello ( Fraxinus
ornus) e carpinello ( Ostrya carpinifolia ), inquadrabi¬
le nell’alleanza Quercion pubescenti-petreae Br.-Bl.
1932, attualmente vicariata dalle formazioni boschive
dell’ Orno- Ostryon. Al momento delle raccolte, tutte
le stazioni non più gestite presentavano un’evidente
ripresa dinamica, come si è potuto constatare dalla
costante presenza di significativi elementi dell’allean¬
za Geranion sanguinei Tx. 1961, tra cui Geranium
sanguineum, Origanum vulgare, Vincetoxicum hirun-
dinaria, Knautia drymeia ssp. centrifrons, Teucrium
chamaedrys, Thymus pulegioides ecc.
Le raccolte hanno interessato anche una piccola
superficie in località Sala al Barro, situata a ridosso
del Phragmitetum che costeggia il Lago di Annone e
denominata nel testo Stazione 9. Questa stazione non
verrà confrontata direttamente con le altre in quanto
si differenzia in modo evidente.
Caratteri stazionali specifici
Per le prime otto stazioni vengono indicate le spe¬
cie esclusive (specificità), e le tre specie più comuni
con il relativo indice di dominanza (sensu Berger &
Parker, 1970). Si tratta di un indice molto semplice
(numero di esemplari di ogni specie sul numero tota¬
le di esemplari raccolti), che però fornisce un’accet¬
tabile stima della diversità di un popolamento, tenen¬
do anche conto della buona correlazione che mostra
nei confronti del più popolare indice di Simpson. Vie¬
ne inoltre riportato l’indice di dominanza di Margalef
Dmg = (S-l)/ln(N) dove S è il numero di specie cen¬
site e N il numero totale degli individui raccolti. Per
la stazione nove, non direttamente comparabile con
le precedenti, non vengono indicate le specificità.
Stazione 1 (Fig. 67): Località Piani di Barra, 610 m,
esp. W, dal 1990 interessata da scavi archeologici in
rapporto al cosiddetto Grande Edificio. Consistente
presenza di prato falciabile che indica una attività di
foraggio residua, testimoniata anche dalla non signi¬
ficatività del mantello.
Specificità: Smaragdina aurita, Longitarsus holsa-
ticus. Dominanze: Longitarsus luridus (0,245), Poda¬
grica fuscicornis (0,179), Sphaeroderma rubidum
(0,084). 40 specie censite; 559 esemplari. Dmg = 6,16.
Stazione 2 (Fig. 67): Località Piani di Barra, 600 m, .
esp. W, dal 1990 interessata da scavi archeologici in
rapporto al cosiddetto Edificio II. Leggera prevalen¬
za di prateria e mantello su prato falciabile, cioè net¬
ta risposta all’abbandono di una gestione a foraggio
già indebolita.
Specificità: Cryptocephalus trimaculatus, Labido-
stomis tridentata, Leptinotarsa decemlineata, Lilioce-
ris lilii, Mantura obtusata, Psylliodes brisouti, Psyllio-
des ìnstabilis, Crepidodera aurea. Dominanze:
Aphthona venustula (0,122), Cryptocephalus flavipes
(0,111), Longitarsus succineus (0,092). 65 specie cen¬
site; 931 esemplari. Dmg = 9,37.
Stazione 3: Conca prativa a monte del Monumen¬
to all' Alpino, 630 m, esp. W. Convivenza di elementi
di prateria, elementi di prato falciabile ed elementi di
disturbo marginale.
Specificità: Longitarsus tabidus, Phyllotreta aerea,
Phyllotreta ochripes, Timarcha nicaeensis, Chaetocne-
I CRISOMELIDI (COLEOPTERA CHRYSOMELIDAE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
191
ma concinna, Chrysolina polita, Chrysolina rossia.
Dominanze: Longitarsus luridus (0,423), Longitarsus
succineus (0,111), Longitarsus pratensis (0,082). 56
specie censite; 2182 esemplari. Dmg = 7,15.
Stazione 4: Località S. Michele, pendio in prossi¬
mità del sentiero per Pian Sciresa, 325 m, esp. E. Su
una base di Mesobromion eredi ( Thalictrum minus,
Arabis collina) è in pieno sviluppo il prato falciabile,
che qui presenta il carattere oligo-mesotrofico.
Specificità: Chrysolina fastuosa, Chrysolina orical-
Fig. 2 - Diagrammi di saturazione delle specie censite nei periodi di raccolta.
192
CARLO LEONARDI & DAVIDE SASSI
eia, Clytra appendicina, Aphthona pygmaea, Argopus
ahrensi, Cassida subreticulata, Psylliodes cupreus,
Smaragdina flavicollis, Phyllotreta nemorum. Domi¬
nanze: Longitarsus luridus (0,182), Longitarsus exole-
tus (0,079), Longitarsus pratensis (0,069). 61 specie
censite; 1341 esemplari. Dmg = 8,33.
Stazione 5 (Fig. 67): Località Pian Sciresa, 435 m,
esp. NE. Prato arido con montarozzi residuali a bru¬
ghiera. Si caratterizza meglio di tutte le altre stazioni
per la presenza delPelemento di brughiera, accompa¬
gnato da Cytisus emeriflorus , endemismo calcicolo
SE-alpico. Per il resto il livello di base è costituito da
prateria a Brachypodium rupestre ssp. caespitosum.
Specificità: Dibolia f oersted, Crepidodera aurata,
Crytocephalus fulvus, Cryptocephalus primarius. Do¬
minanze: Aphthona herbigrada (0,116), Cryptocepha¬
lus labiatus (0,097), Cryptocephalus transiens (0,085).
46 specie censite; 941 esemplari. Dmg = 6,57.
Stazione 6 (Fig. 67): Superfici prative lungo il sen¬
tiero della «Cresta occidentale», che dall’edificio del¬
l’ex sanatorio sale alla vetta, 750 m, esp. S. Prateria con
parziale affioramento roccioso, fortemente cespuglia¬
ta e in via di chiusura. Forte influsso dell’elemento
prenemorale, con tendenza a un Quercetum pube¬
scenti s. 1. L’elemento di mantello ha scarso peso.
Specificità: Galenica pomonae, Longitarsus oblite-
ratus. Dominanze: Aphthona herbigrada (0,336),
Longitarsus helvolus (0,136), Longitarsus obliteratus
(0,086). 51 specie censite; 1678 esemplari. Dmg =
6,73.
Stazione 7 (Fig. 67): Località Fornaci Villa, in pros¬
simità dell’impluvio della Val Faè, 275 m, esp. NW. Su¬
perficie prativa terrazzata aH’interno del bosco meso¬
frio, molto simile a quella della stazione 8, ma più
aperta e con qualche elemento in più di Mesobro-
mion.
Specificità: nessuna. Dominanze: Longitarsus pra¬
tensis (0,251), Longitarsus luridus (0,214), Longitar¬
sus succineus (0,117). 32 specie censite; 426 esempla¬
ri . Dmg = 5,12.
Stazione 8 (Fig. 67): Località Fornaci Villa, in pros¬
simità dell’impluvio della Val Faè, 305 m, esp. NW. Su¬
perficie prativa terrazzata, irregolarmente gestita e
contornata da un bosco con notevoli contrassegni
mesofili. Ciò è conseguenza dell’esposizione fresca e
di un maggiore sviluppo di suolo. Sono comunque
sempre presenti gli elementi di prateria.
Specificità: Labidostomis longimana, Crypto¬
cephalus loreyi, Oomorphus concolor, Longitarsus
minusculus, Sphaeroderma testaceum. Dominanze:
Longitarsus luridus (0,274), Longitarsus pratensis
(0,224), Longitarsus salviae (0,169). 50 specie censite;
1046 esemplari. Dmg = 5,05.
Stazione 9: Località Ca’ di Sala, 226 m, sulla riva
settentrionale del bacino di Oggiono del Lago di An¬
none. Vi si evidenziano tre aspetti essenziali: 1) il can¬
neto ( Phragmitetum australi) con accenni di aggrup¬
pamento a Iris pseudoacorus, elementi di magnocari-
ceto ( Caricetum elatae) e residui di boscaglia riparia¬
te ( Salicion cinereae). 2) il prato umido oligotrofico
(Molinion coeruleae)\ 3) vegetazione erbacea peren¬
ne e disorganizzata, al margine superiore della sta¬
zione, riconducibile alle classi Artemisietea vulgaris e
Plantaginetea majoris.
Dominanze: Aphthona coerulea (0,218), Lythraria
salicariae (0,083), Asiorestia transversa (0,072). 59
specie censite; 1681 esemplari. Dmg = 7,43.
Confronto statistico delle stazioni
Le campagne di ricerca nel Parco hanno fruttato
la raccolta di 12.422 esemplari appartenenti a 152
specie, alcune di particolare interesse o inedite per la
Lombardia.
Allo scopo di valutare l’accuratezza con cui i cen¬
simenti sono stati condotti, abbiamo costruito per le
stazioni 1-8 i diagrammi di saturazione (Fig. 2), che
indicano il progressivo incremento di specie nei suc¬
cessivi periodi di raccolta. L’altezza degli istogrammi
tende ad un limite (altezza di saturazione) che corri¬
sponde al numero ideale di specie che con le tecniche
in uso è possibile censire ed è quindi indipendente
dal numero delle raccolte ulteriori. L’andamento dei
diagrammi sembra mostrare che per tutte le stazioni,
tranne 1, 7 e forse 8, si raggiungono valori molto pros-
</>
il
o Stazione 1
• Stazione 2
▲ Stazione 3
a Stazione 4
♦ Stazione 5
o Stazione 6
■ Stazione 7
□ Stazione 8
8 9 10 11 12 13
M = SA/
I ig. 3 - C onlronto tra numero medio di individui raccolti per ciascuna specie (T) e numero medio di specie censite per ogni
raccolta effettuata. Per la spiegazione vedi testo.
I CRISOMELIDI (COLEOPTERA CHRYSOMELIDAE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
193
simi all'altezza di saturazione. Riteniamo pertanto
che il quadro ottenuto dalle nostre indagini sia suffi¬
cientemente rappresentativo.
Malgrado la complessità dell’ambiente studiato
abbia impedito di effettuare raccolte quantitative, è
sembrato comunque utile ricorrere ad alcuni indici
ecologici per un confronto delle stazioni. In primo
luogo abbiamo valutato le differenze nella struttura
del popolamento delle stazioni 1-8 confrontando il
numero medio di individui raccolti per ciascuna spe¬
cie (T=I/S ) e il numero medio di specie censite per
ogni raccolta effettuata (M=S/V), dove I è il numero
di individui complessivamente raccolti nella stazione
in tutte le uscite, S è la sommatoria di tutte le specie
raccolte nella stazione nel totale delle uscite, V è il to¬
tale delle uscite effettuate nella stazione (Pesarmi,
1986). Il calcolo di tali rapporti permette di rendere
indipendenti i dati dal numero delle uscite. I valori
ottenuti sono riportati nella tabella 1 e graficamente
nella figura n. 3.
Tabella 1 - Valori di T e di M (v. testo) relativi alle sta¬
zioni 1-8.
Nel diagramma emergono alcuni raggruppamenti
quali 3; 6, caratterizzato da un elevato numero medio
di specie e di esemplari per specie, e 2; 5; 7 con carat¬
teristiche opposte. La stazione 8 presenta un alto nu¬
mero di esemplari per specie ma una bassa varietà
delle medesime, mentre il complesso 1; 4 manifesta
una tendenza contraria.
In secondo luogo abbiamo stimato la diversità e Ye-
\venness all’interno delle stazioni 1-8 utilizzando i rela-
jtivi indici di Shannon. Per valutare i confronti possibi¬
li, abbiamo determinato le curve di k-dominanza (Fig.
4), calcolando l’abbondanza relativa proporzionale
delle k specie presenti in una stazione, ed esprimendo
graficamente i risultati in forma di percentuale cumu¬
lativa. Lambshead et al. (1983) hanno infatti osservato
che, se le curve di k-dominanza si intersecano intorno
a metà del loro tragitto, il confronto degli indici di di¬
versità non può considerarsi attendibile. Nella tabella
2 sono riportati i valori (log base 2) degli indici di di¬
versità (in tondo) e di evenness (in corsivo), eviden¬
ziando i confronti possibili (+).
Tabella 2 - Valori (log base 2) degli indici di diversità
(in tondo) e di evenness (in corsivo) relativi alle sta¬
zioni 1-8. 1 confronti possibili sono indicati con +.
- Staz. 1 — ° — Staz. 2 - ■ - Staz. 3 - • - Staz. 4 - o — Staz. 5 - ♦ - Staz. 6 - * — Staz, 7 — ° Staz. 8
Fig. 4 - Curve di k-dominanza relative alle stazioni 1-8 su tutti gli anni delle raccolte.
frequenza cumulativa , frequenza cumulativa
194
CARLO LEONARDI & DAVIDE SASSI
Marzo — D - Aprile - & - Maggio — o — Giugno — «•— Luglio - Agosto - o - Settembre
Fig. 5.1 - Curve di k-dominanza relative al complesso delle stazioni 1-8 nei diversi mesi di campionamento del 1990
1 ' 1 T — I f 1 — t - 1 1 1 1 t - 1 t - 1 — i — | 1 - j 1 — |
’ 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
numero specie raccolte
I ig ■ < urve di k-dominanza relative alla stazione 9 nei diversi mesi di campionamento del 1990.
I CRISOMELIDI (COLEOPTERA CHRYSOMELIDAE) DEL MONTE BARRO (ITALIA. LOMBARDIA, LECCO)
195
Tabella 3 - Valori (log base 2) degli indici di diversità
(in tondo) e di evenness (in corsivo) relativi ai mesi di
raccolta del 1990 nelle stazioni 1-8.
Tabella 4: valori (log base 2) degli indici di diversità
(in tondo) e di evenness relativi ai mesi di raccolta del
1990 nella stazione 9.
Dal confronto dei valori ottenuti si può affermare
che le stazioni 2, 4 e 5 costituiscono un blocco a diver¬
sità più elevata rispetto alle rimanenti, come già ap¬
pare evidente dall’andamento delle curve di k-domi-
nanza. La stazione 2 presenta anche il valore più ele¬
vato dell’indice di Margalef. Questo carattere di più
marcata «naturalità» per la stazione 2 non è probabil¬
mente dovuto ad una maggiore stabilità dell’ambien¬
te, ma ad una minore pressione antropica rispetto alle
altre aree di raccolta. Va però segnalato che negli ulti¬
mi due anni del periodo di campionamento la stazio¬
ne è stata pesantemente interessata dagli scavi ar¬
cheologici relativi al cosiddetto «Edificio 2», durante i
quali il tappeto erboso è stato completamente aspor¬
tato su una considerevole superficie. Il disturbo in ge¬
nere provocato dalle attività agricole sulla diversità
del popolamento è provato anche dai valori molto
bassi dell’indice di diversità di Shannon per le tre sta¬
zioni più intensamente sfruttate (3-7-8).
Allo scopo di evidenziare l’evoluzione stagionale
del popolamento, è stato inoltre condotto un con¬
fronto tra i diversi mesi di raccolta del 1990, anno in
cui tutte le stazioni sono state indagate con regolarità
per l’intera stagione. Anche in questo caso prima di
calcolare gli indici di Shannon abbiamo tracciato le
curve di k-dominanza, separando la stazione 9 (Fig.
5.2) dal complesso delle stazioni 1-8 (Fig. 5.1). Daì-
l’andamento dei tracciati si osserva, come prevedibi¬
le, una maggiore dominanza all'inizio della primave¬
ra e nella stagione tardo estiva-autunnale. Nelle ta¬
belle 3-4 sono riportati i valori (log base 2) degli in¬
dici di diversità (in tondo) e di evenness (in corsivo),
evidenziando i confronti possibili (+).
Con un ulteriore confronto sono state messe in
evidenza le affinità tra le stazioni 1-8 da un punto di
vista qualitativo. A questo scopo abbiamo utilizzato
l’indice di Sprensen J= C/(A+B-C) e la cluster analy-
sis secondo il metodo WPGMA, dove C sono le spe¬
cie comuni alle due stazioni messe a confronto, A le
specie esclusive della prima stazione e B le specie
esclusive della seconda stazione. I risultati vengono
presentati nel dendrogramma in Fig. 6.1 a sinistra.
Dall’analisi dei risultati si può rilevare che le stazioni
6; 5; 2, che rappresentano i prati non gestiti a foraggio,
presentano una composizione crisomelidologica si¬
mile, mentre piuttosto differente risulta il popola¬
mento dei prati 7; 8; 4, sottoposti, con maggiore o mi¬
nore regolarità, alla pratica dello sfalcio. Le stazioni 3
e 1, pure falciate ma associate al cluster dei prati na¬
turali, risentono probabilmente della vicinanza con la
stazione 2 (poche decine di metri, in linea d’aria).
L’influenza dell’azione antropica è messa ancor più
in evidenza dall’indice di Sokal Michener, (Fig.6.1 a
destra), che permette di separare in due cluster di¬
stinti i prati i prati «naturali» e quelli regolarmente
falciati.
Risultati nel complesso analoghi si ottengono con
l’analisi delle componenti principali (PCA). In parti¬
colare utilizzando soltanto le specie frequenti (alme¬
no 20 esemplari raccolti nel complesso delle stazioni)
si ottiene ancora una volta una netta separazione del
complesso 6; 5; 2 (Fig. 6.2). La prima componente
principale della variazione (asse 1, orizzontale) sem¬
brerebbe in questo caso identificabile con la tenden¬
za alla ripresa della copertura boschiva nelle stazioni
non più gestite a foraggio (varie specie legate ad es¬
senze arboree o arbustive presentano una elevata
correlazione positiva con tale componente).
Interessante risulta il confronto tra il dendro¬
gramma ottenuto con l’indice di Sprensen e quello
ottenuto utilizzando l’indice multistato «percent si-
milarity» sulla struttura del popolamento vegetale
(Banfi, Galasso e Sassi, in questo stesso volume), ri¬
portato in Fig. 7. 1 due dendrogrammi, pur presentan¬
do affinità nell’associare alcune coppie di stazioni (7-
8; 1-3; 6-5), differiscono però per una serie di elemen¬
ti, fra cui, in botanica, l’isolamento delle stazioni 6-5
rispetto alle rimanenti. Queste differenze possono es¬
sere messe in relazione con fattori biologici quali la
mobilità degli insetti e la polifagia di molte specie di
crisomelidi, che rendono in effetti improbabile una
completa sovrapposizione dei risultati.
Analisi faunistica
Viene di seguito riportato l’elenco ragionato delle
152 specie censite durante le raccolte. Ad esse posso¬
no essere aggiunti Cryptocephalus (s. str) cordiger
(Linnaeus, 1758) e Cryptocephalus (s.str.) octopuncta-
tus Scopoli che, benché non reperiti nel corso del pre¬
sente studio, furono segnalati per il monte Barro da
Buriini (1955). Per quanto riguarda il genere Astore-
asse 2
196
CARLO LEONARDI & DAVIDE SASSI
Fig. 6.1 - Dendrogrammi di similarità tra le stazioni 1-8 basati sui campionamenti dei Crisomelidi. A sinistra: indice di S0-
rensen + WPGMA. A destra: indice di Sokal-Michener + WPGMA.
• Staz. 3
• Staz. 6
• Staz. 2
• Staz. 8
Y
+
-1,5
-1
+
-0,5
-&
(I
• Staz. 1
•0,5
• Staz. 7
+
0,5
Staz. 5 •
-1.5
Staz. 4*
-2 -
asse 1
1 ig 6.2 - C ontronto delle stazioni 1-8 mediante analisi delle componenti principali.
I CRISOMELIDI (COLEOPTERA CHRY SOMELID AE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
197
l - 1 - 1 - 1 - 1
13.45 35.09 56.72 78.36 100.00
Fig. 7 - Dendrogramma di similarità tra le stazioni 1-8 basato sui
rilievi botanici (Percent similarity + WPGMA).
stia Jacob, occorre osservare che recentemente esso è
stato messo in sinonimia di Neocrepidodera Heiktgr.
(Konstantinov & Vandenberg, 1996); siamo venuti a
conoscenza di questo lavoro quando non ci era più
possibile apportare la modifica.
Plateumaris rustica (Kunze, 1818)
Corotipo: Paleartico (PAL).
Presenza in Italia: regioni settentrionali.
Piante ospiti: Cladium mariscus, Carex.
Oulema duftschmidi (Redtenbacher, 1874)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: da definire.
Piante ospiti: Poacee coltivate e spontanee.
Crioceris duodecimpunctata duodecimpunctata
(Linnaeus, 1758)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: tutta la Penisola, Sardegna, Sicilia.
Piante ospiti: Asparagus. Raccolta in Monte Barro
su Asparagus tenuifolius.
Lilioceris lilii lilii (Scopoli, 1763)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta la Penisola, Sardegna, Si¬
cilia.
Piante ospiti: Lilium , Fritillaria, Convallaria, Poly-
gonatum. Raccolta in Monte Barro su Lilium marta-
gon.
Lilioceris merdigera (Linnaeus, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: comune nelle regioni setten¬
trionali e centrali, molto più rara al Sud e probabil¬
mente localizzata su massicci montuosi (Ruffo, 1964).
Piante ospiti: Convallaria, Polygonatum, Lilium,
Allium. Causa danni, come la specie precedente, a li-
liacee coltivate. Raccolta in Monte Barro su Polygo¬
natum multiflorum.
Note: Berti & Rapilly (1976), nella revisione delle
specie paleartiche del genere Lilioceris indicano dif¬
ferenze morfometriche a sostegno della separazione
specifica di L. merdigera da L. schneideri Weise. In
particolare segnalano (p. 46), in un diagramma di di¬
spersione per le variabili lunghezza e larghezza del
pronoto espresse in forma logaritmica: «...malgré les
chevaulchements ... nous avons observé des zones de
dispersion bien individualisées». Su due piccoli cam¬
pioni di L. merdigera del Monte Barro (9 esemplari)
e di L. schneideri (Abruzzo, Prati di Tivo, 11 esempla¬
ri) abbiamo calcolato (in mm) i valori medi (m) e le
rispettive deviazioni standard (s) della lunghezza e
larghezza del pronoto. L. schneideri mostra effettiva¬
mente un pronoto più grande ((Lp) m = 1,88 s = 0,09;
(lp) m = 1,95 s = 0,09), contro i corrispondenti valori
di merdigera ((Lp) m = 1,74 s = 010; (lp) m = 1,85 s =
0,09). Sottoponendo i dati all’analisi della varianza
per il confronto tra medie si ottengono differenze al¬
tamente significative (F=ll,39) per le lunghezze e si¬
gnificative (F= 6,19) per le larghezze. Il rapporto
lp/Lp non sembra invece avere importanza diagnosti¬
ca, poiché il confronto tra le rette di regressione di lp
su Lp (Fig.8) mediante l’analisi della covarianza indi¬
ca una differenza non significativa (F=0,0667).
Labidistomis (s. str.) tridentata (Linnaeus, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali.
Piante ospiti: Corylus, Betula, Salix, Quercus, Spi-
raea. Prevalentemente legata allo strato arbustivo,
ma rinvenibile anche nei prati. In Monte Barro è sta¬
ta raccolta su Corylus avellana.
Labidostomis (s. str.) longimana longimana (Lin¬
naeus, 1761)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: tutta Italia.
Piante ospiti: Fabacee dei generi Lotus e Trifo-
lium. Secondo Balachovski (1963) anche su Brassica-
cee selvatiche e cereali coltivati.
Lachnaia (s. str.) italica italica (Weise, 1882)
Corotipo: S-Europeo (SEU).
Presenza in Italia: tutta la Penisola, Sicilia.
Piante ospiti: Rubus, occasionalmente Quercus. In
Monte Barro è stata raccolta su Rubus sp.
Clytra (s. str.) quadripunctata (Linnaeus, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutta la Penisola.
Piante ospiti: Betula, Crataegus, Salix, Quercus,
Prunus e vari alberi da frutto. In Monte Barro spesso
raccolta su Corylus avellana.
Clytra (s. str.) appendicina Lacordaire, 1848
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: tutta la Penisola, Sicilia.
Piante ospiti: indicata in letteratura per diversi ge¬
neri (Salix, Rumex, Populus , Tamarix, Malus).
198
CARLO LEONARDI & DAVIDE SASSI
Note: la posizione sistematica di Clytra appendici-
ria è piuttosto controversa. Nella recente Checklist
della fauna italiana (Biondi et al., 1994) è considera¬
ta sottospecie di C. quadripunctata. La convivenza
delle due forme sul monte Barro sembrerebbe smen¬
tire questa interpretazione. In attesa di chiarimenti in
merito preferiamo considerare specie distinta il taxon
in questione.
Clytra (s. str.) laeviuscula (Ratzeburg, 1837)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta la Penisola, Sardegna.
Piante ospiti: Salix, Prunus , Dorycnium , Eraxinus.
In Monte Barro è stata raccolta su Salix cinerea e
Ostrya carpinifolia.
Smaragdina (s. str.) salicina (Scopoli, 1763)
Corotipo: Europeo (EUR).
Presenza in Italia: Penisola e Sicilia.
Piante ospiti: Crataegus, Salix. In Monte Barro è
molto comune anche sulla vegetazione erbacea.
Smaragdina (s. str.) flavicollis (Charpentier, 1825)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali.
Piante ospiti: Alnus glutinosa.
Note: secondo Miiller è specie moderatamente
orofila.
Smaragdina (s. str.) aurita aurita (Linnaeus, 1767)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta la Penisola.
Piante ospiti: alberi e arbusti dei generi Corylus,
Crataegus, Betula.
Smaragdina (s. str.) affinis (Illiger, 1794)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta la Penisola.
Piante ospiti: Corylus , Quercus , Crataegus. In
Monte Barro in genere raccolta su Corylus avellana.
Coptocephala (s. str.) unifasciata unifasciata (Sco¬
poli, 1763)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutta la Penisola, Sicilia.
Piante ospiti: Echinophora , Pastinaca , Daucus , Fe-
rulago.
Coptocephala (s. str.) scopolina kuesteri Kraatz,
1872
Corotipo: S-Europeo (SEU).
Presenza in Italia: Penisola, Sicilia.
Piante ospiti: Apiacee dei generi Seseli e Daucus.
Pachybrachis hieroglyphicus (Laicharting, 1781)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutta la Penisola, Sicilia.
Piante ospiti: Salix, Populus, Betula. In Monte
Barro esclusivamente raccolta su Salix cinerea.
Note: specie igrofila. Raccolte femmine gravide
nella seconda metà di luglio.
Pachybrachis tessellatus tessellatus (Olivier, 1791)
Corotipo: S-Europeo (SEU).
Presenza in Italia: Penisola, Sicilia.
Piante ospiti: Quercus , Salix , Corylus, Erica.
Note: Specie xerofila.
Cryptocephalus (Homalopus) loreyi Solier, 1836
Corotipo: S-Europeo (SEU).
Presenza in Italia: diffuso su tutta la Penisola.
Piante ospiti: specie polifaga, legata allo strato ar-
boreo-arbustivo. Fagacee, Corilacee, Rosacee.
Cryptocephalus (Homalopus) coryli (Linnaeus, 1758)
Corotipo: Asiatico-Europeo (ASE).
165 1.7 1,75 1,8 1,85 1,9 1,95 2
lunghezza pronoto
Fig. 8 - \ ariabil ità delle dimensioni del pronoto in Lilioceris merdigera e L. schneideri (valori in millimetri).
I CRISOMELIDI (COLEOPTERA CHRY SOMELIDAE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
199
Presenza in Italia: regioni settentrionali e centrali.
Piante ospiti: specie polifaga, legata allo strato ar-
bustivo; Betulacee, Corilacee, Salicacee, Oleracee
( Fraxinus ), Rosacee. Gli esemplari furono raccolti su
Corylus avellana e Quercus pubescens.
Cryptocephalus (s. str.) primarius Harold, 1872
Corotipo: specie a gravitazione S-Europea (SEU).
Presenza in Italia: regioni settentrionali e centrali.
Piante ospiti: specie polifaga; generalmente indi¬
cata su Corilacee, Salicacee, Fagacee; Bedel (1901) la
ritiene invece legata al tappeto erboso. Da noi è stata
sempre raccolta sfalciando i prati.
Cryptocephalus (s. str.) bimaculatus Fabricius, 1781
Corotipo: Mediterraneo (MED), noto soltanto
per l’Italia, Francia meridionale e Marocco.
Presenza in Italia: regioni settentrionali e centrali,
Campania, Calabria (Sila, Cotronei: inedito).
Piante ospiti: specie polifaga, indicata su Fabacee
e Lamiacee; frequenta prevalentemente lo strato er¬
baceo e i bassi arbusti.
Note: elemento xerofilo, non molto comune.
Cryptocephalus (s. str.) trimaculatus Rossi, 1790
Corotipo: S-Europeo (SEU).
Presenza in Italia: diffuso in tutta la Penisola.
Piante ospiti: specie polifaga; Fagacee, Rosacee,
Salicacee, Anacardiacee ( Pistacia); presente anche
sul tappeto erboso.
Cryptocephalus (s. str.) bipunctatus bipunctatus
(Linnaeus, 1758)
Corotipo: Paleartico (PAL).
Presenza in Italia: diffuso in tutta la Penisola.
Piante ospiti: specie polifaga ad ampio spettro, lega¬
ta allo strato arbustivo-arboreo. Indicata su Salicacee,
Betulacee, Corilacee, Fagacee, Rosacee, Fabacee.
Note: Buriini (1955) ritiene la ab. sanguinolentus
più comune della forma tipica sul territorio italiano.
Sul Monte Barro questa variazione cromatica è inve¬
ce decisamente rara.
Cryptocephalus (s. str.) sericeus zambanellus (Mar-
seul, 1875)
Corotipo: S-Europeo (SEU).
Presenza in Italia: presente in tutta la Penisola.
Piante ospiti: specie polifaga, ma con tendenza al-
l’oligofagia; Asteracee, Ranuncolacee, Boraginacee.
Quest’ultima indicazione (Roubal, 1941) richiedereb¬
be ulteriori conferme. Raccolta prevalentemente su
Inula hirta e Geranium sanguineum.
Cryptocephalus (s. str.) transiens Franz, 1949
Corotipo: S-Europeo (SEU).
Presenza in Italia: regioni settentrionali.
Piante ospiti: specie polifaga, legata al tappeto er¬
boso. Hypericum, Ranunculus , Anthyllis , Genista,
Hieracium, Leontodon , Hypochoeris, Helichrysum,
Taraxacum , Centaurea. Accertata la frequentazione
di fiori di colore giallo, indipendentemente dalla fa¬
miglia di appartenenza. Tale comportamento è pre¬
sente anche in specie affini (C. hypochaeridis , seri-
ceus, aureolus , barii). Raccolta sul Monte Barro su di¬
verse piante, tra cui Ranunculus spp., Ruta graveo-
lens , Lotus corniculatus , Genista tinctoria.
Cryptocephalus (s. str.) nitidus (Linnaeus, 1758)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: presente in tutta la Penisola.
Piante ospiti: specie polifaga e legata allo strato
arboreo-arbustivo; Fagacee, Corilacee, Betulacee,
Rosacee. Prevalentemente raccolto su Quercus sp. e
Corylus avellana.
Cryptocephalus (s. str.) janthinus Germar, 1824
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: presente in tutta la Penisola,
Corsica e Sardegna.
Piante ospiti: legata ad ambienti umidi, polifaga
ad ampio spettro; Poacee ( Phragmites ), Betulacee, Li-
tracee, Salicacee.
Cryptocephalus (s. str.) parvulus parvulus Miiller,
1776
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: presente in tutta la Penisola,
Corsica e Sardegna.
Piante ospiti: specie polifaga, legata allo strato ar¬
bustivo-arboreo; Betulacee, Salicacee, Fagacee, Cori-
Iacee, Rosacee.
Cryptocephalus (s. str.) marginatus Fabricius, 1781
Corotipo: Europeo (EUR).
Presenza in Italia: tutta la Penisola.
Piante ospiti: essenze arbustive e arboree dei ge¬
neri Betula, Quercus, Salix, Populus, Sorbus, Rubus.
Cryptocephalus (s. str.) moraei (Linnaeus, 1758)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: diffuso in tutta la Penisola e iso¬
le maggiori.
Piante ospiti: specie oligofaga, infeudata al genere
Hypericum (Guttifere); popola il tappeto erboso.
Cryptocephalus (s. str.) flavipes Fabricius, 1781
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: diffuso in tutta la Penisola, Sici¬
lia e Sardegna (P. Conte, dato inedito).
Piante ospiti: specie polifaga ad ampio spettro,
prevalentemente legata allo strato arbustivo-arbo¬
reo; Salicacee, Betulacee, Fagacee, Corilacee, Cista-
cee. Presente anche sul tappeto erboso. Tra le essenze
frequentate sul Monte Barro furono registrati: Ostrya
carpini/ olia, Corylus avellana , Rubus sp., Geranium
sanguineum.
Note: per questa specie, essendo disponibile un nu¬
mero piuttosto elevato di esemplari raccolti, è stata
determinata la sex-ratio sui 167 individui provenienti
da quindici diversi campionamenti, distribuiti su tre
anni di raccolte in periodi compresi tra la seconda
metà di maggio e la prima metà di luglio. I risultati ri¬
velano la presenza di 67 maschi e 100 femmine, con
uno scostamento significativo dal rapporto di 1:1 per
il periodo studiato secondo il test del chi quadrato.
Cryptocephalus (s. str.) signatifrons Suffrian, 1847
Corotipo: S-Europeo (SEU).
Presenza in Italia: Penisola.
Piante ospiti: specie oligofaga, legata allo strato
arbustivo. Quercus, Corylus. Sul Monte Barro gene¬
ralmente raccolto sul nocciolo, ne è stata registrata la
presenza anche su Quercus pubescens e Ostrya carpi-
nifolia.
Cryptocephalus (s. str.) turcicus Suffrian, 1847
Corotipo: S-Europeo (SEU).
200
CARLO LEONARDI & DAVIDE SASSI
Presenza in Italia: Penisola, Sicilia, Sardegna.
Piante ospiti: specie xerofila e probabilmente oli-
gofaga. Quercus , Pistacici. Quest’ultimo dato, derivan¬
te dalle segnalazioni di vecchi Autori, meriterebbe
conferma. Generalmente raccolto sul Monte Barro
su Corylus avellana e Quercus pubescens.
Cryptocephalus ( Burlinius ) bilineatus (Linnaeus,
1767)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali e centrali.
Piante ospiti: Asteracee, Dipsacacee, Campanula-
cee. Secondo Suffrian anche su Plumbaginacee (Sta-
tice).
Cryptocephalus ( Burlinius ) elegantulus Gravenhor-
st, 1807
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali e centrali.
Piante ospiti: specie polifaga legata allo strato er¬
boso. Asteracee, Campanulacee, Geraniacee, Lamia-
cee. Elemento tendenzialmente xerofilo.
Cryptocephalus ( Burlinius ) strigosus Germar, 1823
Corotipo: S-Europeo (SEU).
Presenza in Italia: regioni peninsulari, fino alla
Campania.
Piante ospiti: specie tendenzialmente oligofaga.
Thymus , Alnus. Quest’ultimo dato, meriterebbe con¬
ferma.
Cryptocephalus ( Burlinius ) ocellatus Drapiez, 1819
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: Penisola, Sardegna, Sicilia.
Piante ospiti: segnalata su Salix, Populus , Corylus ,
Quercus , Betula , Alnus , Ulmus , Mentha, Melissa. Spe¬
cie sicuramente polifaga, e legata allo strato arboreo-
arbustivo. Le catture su essenze erbacee sono proba¬
bilmente accidentali.
Cryptocephalus ( Burlinius ) labiatus (Linnaeus,
1761)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Penisola, Sicilia.
Piante ospiti: specie polifaga ad ampio spettro,
prevalentemente legata allo strato arbustivo, ma fre¬
quentemente raccolta anche sul tappeto erboso. Be¬
tula , Alnus , Salix, Quercus , Populus , Fragaria , Vacci¬
ni um.
Note: disponendo di un numero elevato di esem¬
plari di questa specie, è stata determinata la sex-ratio
su 110 individui raccolti in 16 date di campionamen¬
to, distribuite in quattro anni. I risultati evidenziano
una fluttuazione stagionale (25 maschi e 12 femmine
nelle raccolte del periodo maggio-giugno; 33 maschi e
40 femmine nelle raccolte di luglio), con uno scosta¬
mento significativo dal rapporto di 1:1 secondo il test
del chi quadrato. La dissezione rivela peraltro che le
femmine portano uova apparentemente mature (fino
a 4-5 contemporaneamente), per tutto il periodo di
attività. Vari esemplari furono osservati in copula nel¬
la prima metà di luglio.
Cryptocephalus ( Burlinius ) vittula Suffrian, 1848
Corotipo: la posizione tassonomica nei confronti
di C- pygmaeus Fabr. è ancora da chiarire, in lavori di
sintesi recenti (Warchalowski, 1991: 280; Gruev & To-
mov, 1984: 176), il taxon è indicato come sinonimo di
C. pygmaeus , mentre Kippenberg (1994: 39) lo consi¬
dera specie distinta. Anche l’areale di distribuzione
risulta pertanto mal definito. Sembra comunque pre¬
sente in gran parte dell’Europa Meridionale, Asia
Minore, Caucaso. Il taxon presente in Nord Africa è
da sempre indicato come C. pygmaeus. Pertanto il co¬
rotipo può essere provvisoriamente indicato come S-
Europeo (SEU).
Presenza in Italia: Penisola e Sicilia.
Piante ospiti: specie oligofaga, legata al tappeto
erboso. Lamiacee dei generi Origanum , Thymus , Sa¬
tureia, Mentha.
Cryptocephalus ( Burlinius ) fulvus fulvus Goeze,
1777
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Piante ospiti: specie polifaga ad ampio spettro, più
frequente in genere sul tappeto erboso. Indicato in
letteratura come legato a vari generi di Corilacee, Sa-
licacee, Lamiacee, Asteracee, Fabacee, Guttifere, Ge¬
raniacee, Ericacee, Rubiacee, Apiacee ( Corylus , Po¬
pulus, Salix, Thymus, Artemisia, Achillea, Vicia, Lo¬
tus, Trifolium, Hypericum, Geranium, Calluna , Ga-
lium. Pimpinella, Laserpitium).
Cryptocephalus ( Burlinius ) pusillus Fabricius, 1777
Corotipo: Europeo (EUR).
Presenza in Italia: Penisola.
Piante ospiti: specie polifaga, legata allo strato ar¬
boreo arbustivo. Populus, Alnus, Corylus , Quercus,
Salix, Betula. Sul Monte Barro è stata raccolta esclu¬
sivamente la forma cromatica marshami Weise. Rela¬
tivamente comune all’inizio di luglio in località Pian
Sciresa (Versante Est), su Corylus avellana.
Oomorphus concolor (Sturm, 1807)
Corotipo: C-Europeo (CEU).
Presenza in Italia: regioni centro settentrionali.
Piante ospiti: Aegopodium podagraria.
Note: specie moderatamente orofila.
Eumolpus asclepiadeus (Pallas, 1773)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali e centrali.
Piante ospiti: Vincetoxicum, Cynanchum. Sul
Monte Barro la specie è strettamente legata a Vince¬
toxicum hirundinaria.
Leptinotarsa decemlineata (Say, 1824)
Corotipo: Neartico; specie importata in Europa e
rapidamente stabilizzata.
Presenza in Italia: tutta la Penisola, Sicilia.
Piante ospiti: Solanacee spontanee e coltivate. Se¬
condo Balachovski (1963) può trovarsi occasional¬
mente anche su Chenopodium, Sisimbrium, e Achil¬
lea.
Chrysolina (Euchrysolina) graminis santonici
(Contarini, 1847)
Corotipo: S-Europeo (SEU).
Presenza in Italia: Penisola.
Piante ospiti: questa specie è indicata da vari au¬
tori su Asteracee (Thanacetum, Achillea) e Lamiacee
( Lycopus , Stachys). Bourdonnè e Doguet, che la rac¬
colsero e la allevarono su Mentha aquatica e M. pule-
gium, ritengono che Achillea rappresenti solo un
ospite occasionale degli adulti. Nella stazione in cui
I CRISOMELIDI (COLEOPTERA CHRY SOMELID AE) DEL MONTE BARRO (ITALIA. LOMBARDIA, LECCO)
201
fu raccolta, la osservammo varie volte, in riposo, sulla
pagina superiore delle foglie di Phragmites australis.
Chrysolina (Erythrochrysa) polita (Linnaeus, 1758)
Corotipo: Asiatico-Europeo (ASÈ).
Presenza in Italia: tutta la Penisola, Sardegna, Si¬
cilia.
Piante ospiti: Lamiacee ( Mentha , Melissa , Lyco-
pus, Salvia , Òriganum , Nepeta , Glechoma).
Note: nel territorio studiato fu osservata la pre¬
senza di esemplari immaturi nella prima metà del
mese di ottobre.
Chrysolina (Chrysomorpha) cerealis mixta (Kue-
ster, 1844)
Corotipo: S-Europeo (SEU).
Presenza in Italia: regioni settentrionali e centrali.
Piante ospiti: indicati in letteratura diversi generi
di Lamiacee ( Thymus , Rosmarinus, Satureia , Cala-
mintha). Secondo Ruffo (1938) potrebbe essere mo-
nofaga ( Thymus serpillum ).
Chrysolina (Minchia) oricalcia (Muller, 1776)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Penisola, Sicilia.
Piante ospiti: Apiacee (. Anthriscus , Chaerophyl-
lum, Aegopodium).
Chrysolina (Colaphodes) haemoptera (Linnaeus, 1758)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: Penisola e Sardegna, dubitati¬
vamente in Sicilia.
Piante ospiti: Plantago.
Chrysolina (Stichoptera) rossia (Illiger, 1802)
Corotipo: S-Europeo (SEU).
Presenza in Italia: tutta la Penisola.
Piante ospiti: Scrofulariacee ( Linaria ).
Chrysolina (Chalcoidea) marginata marginata
(Linnaeus, 1758)
Corotipo: Paleartico (PAL).
Presenza in Italia: regioni settentrionali.
Piante ospiti: Achillea , Artemisia , Leucanthemum.
Chrysolina (Fastuolina) fastuosa fastuosa (Scopoli,
1763)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Penisola.
Piante ospiti: Galeopsis, Lamium. Sul Monte Bar¬
ro fu raccolta su Lamium maculatum e Galeopsis pu-
bescens.
Gastrophysa viridula (De Geer, 1775)
Corotipo: Olartico (OLA).
Presenza in Italia: regioni settentrionali.
Piante ospiti: Rumex, Polygonum , Oxyria , Rheum.
Phaedon (s. str.) cochleariae (Fabricius, 1792)
Corotipo: Paleartico (PAL).
Presenza in Italia: penisola e, dubitativamente,
Sardegna.
Piante ospiti: Brassicacee dei generi Nasturtium,
Rorippa, Armoracia , Brassica , Sinapis, ed inoltre su
; Veronica beccabunga (Scrofulariacee). Presente a
volte su Brassicacee coltivate.
Note: specie igrofila.
Hydrothassa marginella (Linnaeus, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali.
Piante ospiti: Ranuncolacee dei generi Ranuncu-
lus e Caltha.
Plagiodera versicolora (Laicharting, 1781)
Corotipo: Olartico (OLA), presente anche in In¬
dia e Taiwan (Gruev e Tomov, 1986).
Presenza in Italia: tutte le regioni.
Piante ospiti: Salix, Populus. Fu raccolta sul Mon¬
te Barro su Salix cinerea.
Chrysomela (Chrysomela) populi Linnaeus, 1758
Corotipo: Asiatico-Europeo (ASE), presente an¬
che in India (Gruev e Tomov, 1986).
Presenza in Italia: tutte le regioni.
Piante ospiti: Populus , Salix. Sul Monte Barro fu
raccolto su polloni di Populus tremula.
Timarcha (Timarcha) nicaeensis Villa, 1835
Corotipo: S-Europeo (SEU).
Presenza in Italia: regioni settentrionali.
Piante ospiti: Rubiacee del genere Galium.
Galerucella (Galerucella) nimphaeae (Linnaeus,
1758)
Corotipo: Olartico (OLA).
Presenza in Italia: Penisola.
Piante ospiti: indicati diversi generi di piante ac¬
quatiche o di luoghi umidi ( Nimphaea , Nuphar , Pota-
mogeton , Polygonum , Rumex , Sagittaria, Potentilla).
Galerucella ( Galerucella ) lineola lineola (Fabricius,
1781)
Corotipo: Paleartico (PAL).
Presenza in Italia: Penisola, Sicilia e Sardegna.
Piante ospiti: indicate in letteratura essenze arbo¬
reo arbustive ( Alnus , Salix, Corylus) ed erbacee ( Ly -
simachia e Rumex).
Galerucella (Neogalerucella) pusilla (Duftschmid,
1825)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Penisola.
Piante ospiti: Lythrum, dubitativamente anche
Stachys, Veronica. Sul Monte Barro costantemente
raccolta su Lythrum salicaria.
Note: specie igrofila.
Galeruca (Galeruca) tanaceti (Linnaeus, 1758)
Corotipo: Paleartico (PAL), introdotta anche in N.
America secondo Gruev e Tomov (1986).
Presenza in Italia: Penisola, Sicilia.
Piante ospiti: Asteracee (Achillea, Chrysanthe-
mum ), Brassicacee ( Cardamine ), Cariofillacee ( Cera -
stium).
Note: nella prima metà di ottobre furono raccolte
femmine con uova.
Galeruca (Galeruca) pomonae (Scopoli, 1763)
Corotipo: Asiatico-Europeo (ASE), introdotta e
stabilizzata negli USA (Lopatin, 1977).
Presenza in Italia: Penisola, Sardegna, Sicilia.
Piante ospiti: Asteracee, Cariofillacee, Lamiacee,
Crucifere, Dipsacacee ( Centaurea , Scabiosa, Cirsium ,
Leontodon , Phlox, Salvia , Capsella , Knautia).
202
CARLO LEONARDI & DAVIDE SASSI
Exosoma lusitanicum (Linnaeus, 1767)
Corotipo: W-Mediterraneo (WME).
Presenza in Italia: Penisola, Sardegna, Sicilia.
Piante ospiti: Centaurea , Senecio , Vincetoxicum ,
Vitis, Cucurbitacee. Specie polifaga ad ampio spettro;
le larve rodono i bulbi di Liliacee e Amarillidacee.
Calomicrus circumfusus (Marsham, 1802)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Penisola.
Piante ospiti: Genista , Spartium. In Monte Barro
prevalentemente su Genista tinctoria.
Luperus longicomis (Fabricius, 1781)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali.
Piante ospiti: Alnus, Corylus , Salix, Betula. Sul
Monte Barro fu osservato su Corylus avellana e Cra-
taegus sp.
Note: vari immaturi raccolti tra la seconda metà di
aprile e la prima di maggio.
Luperus flavipes (Linnaeus, 1767)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali, Toscana.
Piante ospiti: Alnus, Betula, Salix, Corylus, Ostrya.
Raccolto in Monte Barro su Quercus pubescens e
Crataegus sp.
Luperus leonardii Fogato, 1978
Corotipo: S-Europeo (SEU).
Presenza in Italia: Penisola.
Piante ospiti: Corylus, Ulmus.
Phyllotreta vittula (Redtenbacher, 1849)
Corotipo: Paleartico (PAL). La specie è presente
anche nella regione Neartica probabilmente per ef¬
fetto di importazione.
Presenza in Italia: Italia peninsulare.
Piante ospiti: Poacee, Brassicacee, occasionalmen¬
te Asteracee, Chenopodiacee e Ciperacee. L’insetto è
ampiamente diffuso negli arrenatereti e mesobrome-
ti del Monte Barro anche in assenza di brassicacee.
Phyllotreta nemorum (Linneo, 1758)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Piante ospiti: Brassicacee.
Phyllotreta striolata (Fabricius, 1801)
Corotipo: Paleartico (PAL). La specie è presente
anche nelle regioni Neartica, Afrotropicale e Orien¬
tale probabilmente per effetto di importazione.
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana, Lazio, Abruzzo, Campania.
Piante ospiti: Brassicacee.
Phyllotreta ochripes (Curtis, 1837)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Italia settentrionale e centrale,
Puglia, Sicilia.
Piante ospiti: Brassicacee; sul Monte Barro Alba¬
na petiolata.
Phyllotreta aerea Allard, 1859
Corotipo: Europeo-Mediterraneo (EUM). La spe¬
cie è presente anche nella regione Neartica probabil¬
mente per effetto di importazione.
Presenza in Italia: tutte le regioni.
Piante ospiti: Brassicacee, Resedacee.
Aphthona cyparissiae (Koch, 1803)
Corotipo: Europeo (EUR).
Presenza in Italia: Friuli-Venezia Giulia, Veneto,
Trentino-Alto Adige, Lombardia, Val d’Aosta,
Abruzzo.
Piante ospiti: Euforbiacee del genere Euphor-
bia.
Aphthona lutescens (Gyllenhal, 1808)
Corotipo: Turanico-Europeo (TUE)
Presenza in Italia: tutte le regioni.
Piante ospiti: Litracee, Lamiacee (?), Rosacee.
Note biologiche: A. lutescens è caratteristica di
fragmiteti, dove vive su Lythrum salicaria, o di moli-
nieti, dove vive su Filipendula ulmaria; Doguet (1994:
127) asserisce di averla trovata in numero anche su
Rubus ma sul Monte Barro l’insetto non sembra fre¬
quentare questa pianta: è comune nella palude di Ca’
di Sala e assente nelle stazioni all’interno del parco,
se si esclude un unico reperto in Val di Faè, che rite¬
niamo del tutto accidentale.
Note sistematiche: alla varietà praeclara Weise,
che occupa la parte orientale dell’areale, alcuni auto¬
ri attribuiscono valore di sottospecie.
Aphthona pygmaea pygmaea Kutschera, 1861
Corotipo: Europeo (EUR).
Presenza in Italia: tutte le regioni.
Piante ospiti: Euforbiacee del genere Euphorbia.
Note biologiche: Perner (1996: 247, 253-254) la
considera specie xerotermofila; in praterie aride (teu-
crio-seslerieti) dell’ex Germania orientale ha riscon¬
trato la presenza di individui immaturi da fine luglio
a fine agosto e di femmine con uova da aprile a giu¬
gno; secondo questo autore gli adulti sono attivi fino
all’inizio di novembre e ricompaiono in aprile dopo
aver superato l’inverno.
Note sistematiche: è generalmente ammessa resi¬
stenza di una sottospecie (orientali Mulsant & Rey)
nelle regioni sud-orientali del Mediterraneo, caratteriz¬
zata dalla notevole finezza della punteggiatura elitrale.
Aphthona venustula venustula Kutschera, 1861
Corotipo: Europeo (EUR).
Presenza in Italia: ssp. tipica: Italia settentrionale e
centrale, Campania, Basilicata, Puglia; ssp. attica Wei¬
se, 1890: Sicilia.
Piante ospiti: Euforbiacee del genere Euphorbia.
Note biologiche: sul Monte Barro i maschi, molto
comuni in maggio, sembrano diventare più rari rispet¬
to alle femmine nel mese successivo. Abbiamo rileva¬
to la presenza di femmine con uova in giugno e un ma¬
schio non del tutto maturo è stato raccolto alla fine di
agosto. Secondo Perner (1996: 254, 257) gli adulti, in
praterie aride dell’ex Germania orientale, sono attivi
da aprile (dopo lo svernamento) all’inizio di luglio e
compaiono femmine con uova da aprile a giugno.
Aphthona coerulea (Geoffroy, 1785)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: regioni settentrionali e centrali,
Campania, Basilicata, Puglia, Sicilia, Sardegna.
Piante ospiti: specie monofaga, sembra vivere
esclusivamente su Iris pseudacorus.
Note biologiche: A. coerulea è un elemento carat-
CRISOMELIDI (COLEOPTERA CHRYSOMELID AE) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
203
teristico di ambienti palustri; è comunissima nella pa¬
lude di Ca’ di Sala, mentre la sua presenza, occasio¬
nalmente riscontrata, in altre stazioni è da ritenersi
del tutto accidentale.
Aphthona herbigrada (Curtis, 1837)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Piante ospiti: Cistacee del genere Helianthemunr,
sul Monte Barro soprattutto Helianthemnm nummu-
larium.
Note biologiche: per quanto l’insetto sul Monte
Barro sia stato raccolto anche in primavera, diventa
molto comune nella seconda metà dell’estate e all’i¬
nizio dell’autunno. Individui visibilmente immaturi
compaiono già alla fine di giugno ma si trovano nu¬
merosi soprattutto nei mesi di luglio e agosto (verso
la fine di questo mese rappresentano ancora circa il
10% degli esemplari raccolti). Il rapporto maschi/fem¬
mine, calcolato su 2 campioni, ha fornito i seguenti
valori: 0,88 (25.8.1992, dimensione del campione: 150
esemplari; 0,93 (25.9.1992, dimensione del campione:
108 esemplari). Perner (1996: 253, 255), in praterie
aride dell’ex Gemania orientale, ha osservato la pre¬
senza di femmine con uova da fine agosto a fine ot¬
tobre.
Aphthona ovata Foudras, 1860
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale, Toscana,
Lazio, Calabria, Sicilia.
Piante ospiti: Euforbiacee del genere Euphorbia.
Sul Monte Barro comune soprattutto su Euphorbia
dulcis, nei boschi della Val di Faè.
Note biologiche: in un campione del 26 settembre
è stata riscontrata la presenza di un maschio e di una
femmina leggermente immaturi.
Aphthona atrovirens (Foerster, 1 849)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Friuli-Venezia Giulia, Trentino-
Alto Adige, Lombardia, Piemonte, Toscana, Marche,
Lazio, Abruzzo, Molise (Matese: M.te Miletto, dato
inedito), Calabria.
Piante ospiti: secondo Weise (1893: 1137)
Euphorbia cyparissias L., secondo altri autori
(Mohr, 1966: 217; Warchalowski: 1978: 41; Biondi,
1990: 114) Helianthemum e Linum; sul Monte Barro
quasi tutti gli esemplari sono stati raccolti, insieme
ad Aphthona ovata , su Euphorbia dulcis, in prati del¬
la Val di Faè, ai margini di boschi dell’alleanza Car-
pinion betuli.
Longitarsus (s. str.) pellucidus (Foudras, 1860)
Corotipo: Centroasiatico-Europeo-Mediterraneo
(CEM). La specie è presente anche nella regione
Neartica, probabilmente per effetto di importazione.
Presenza in Italia: tutte le regioni.
Piante ospiti: Convolvulacee, soprattutto genere
Convolvulus.
Longitarsus (s. str.) succineus succineus (Foudras,
1 1860)
Corotipo: Paleartico (PAL). La specie è presente
anche nella regione Neartica probabilmente per ef¬
fetto di importazione.
Presenza in Italia: tutte le regioni.
Piante ospiti: Convolvulacee, Plantaginacee, La-
miacee, Boraginacee, Asteracee.
Note biologiche: è probabile che l'insetto abbia
uno sviluppo larvale primaverile, infatti sul Monte
Barro gli adulti sono relativamente rari in maggio,
mentre si riscontra una presenza massiccia di esem¬
plari immaturi nei mesi di giugno e luglio e di femmi¬
ne con uova in settembre. In un campione di 81 esem¬
plari, raccolto il 18.6.1991 e formato interamente da
individui più o meno immaturi, il rapporto maschi/fem¬
mine ha fornito il valore 1,25. Perner (1996: 252-254),
basandosi sul comportamento della specie in praterie
aride dell’ex Germania orientale, ritiene che nel L.
succineus gli stadi di svernamento possano essere
l'uovo, la larva o la pupa; egli ha osservato femmine
con uova da fine giugno a fine agosto e individui im¬
maturi dall’inizio di maggio alla fine di giugno.
Longitarsus (s. str.) noricus Leonardi, 1976
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Friuli-Venezia Giulia, Trentino-
Alto Adige, Veneto, Lombardia e Piemonte.
Piante ospiti: Plantaginacee del genere Plantago ,
Lamiacee del genere Salvia, Asteracee.
Longitarsus (s. str.) rubiginosus (Foudras, 1860)
Corotipo: Sibirico-Europeo (SIE). La specie è
presente anche nella regione Neartica probabilmente
per effetto di importazione.
Presenza in Italia: Friuli-Venezia Giulia, Trentino
Alto Adige, Lombardia, Piemonte, Toscana, Umbria,
Lazio, Abruzzo, Puglia, Basilicata, Sardegna.
Piante ospiti: Convolvulacee con particolare pre¬
ferenza per il genere Calystegia.
Longitarsus tabidus (Fabricius, 1775)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Piante ospiti: Scrofulariacee del genere Verba-
scum.
Longitarsus (s. str.) nigrofasciatus nigrofasciatus
(Goeze, 1977)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Piante ospiti: Scrofulariacee dei generi Verbascum
e Scrophularia.
Longitarsus (s. str.) foudrasi Weise, 1893
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Friuli-Venezia Giulia, Veneto,
Lombardia (prima segnalazione), Piemonte.
Piante ospiti: Scrofulariacee del genere Verba¬
scum.
Note: l’insetto è stato trovato in due soli esempla¬
ri il 26.IX.92, lungo un sentiero che va da Galbiate
verso la località di S. Michele.
Longitarsus (s. str.) lycopi (Foudras, 1860)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Questa specie penetra marginalmente anche nella re¬
gione Afrotropicale.
Presenza in Italia: tutte le regioni.
Piante ospiti: Lamiacee dei generi Mentha e Lyco-
pus.
Note: questa specie è del tutto sporadica all’interno
del parco, in quanto tipica di ambienti molto umidi; ri¬
sulta invece comunissima nella palude a Cà di Sala.
204
CARLO LEONARDI & DAVIDE SASSI
Longitarsus (s. str.) obliteratus (Rosenhauer, 1847)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: tutta la Penisola.
Piante ospiti: Lamiacee. Sul Monte Barro sembra
frequentare soprattutto i generi Stachys, Thymus e
Origanum.
Note biologiche: Perner (1996: 251-252) lo ritiene
specie xerotermofila; in praterie aride (Teucrio-Sesle-
rieti) dell’ex Germania orientale segnala la presenza
di femmine con uova da aprile a giugno e da settem¬
bre a novembre e di individui immaturi da luglio ad
agosto. Sul Monte Barro abbiamo riscontrato la pre¬
senza di femmine con uova da fine marzo a fine mag¬
gio e raccolto individui immaturi in agosto, settembre
e ottobre. Il rapporto maschi/femmine, calcolato su
quattro campioni, ha fornito i seguenti valori: 1,83
(23.5.1991, dimensioni del campione: 34 esemplari);
0,54 (25.8.1992, dimensione del campione: 17 esem¬
plari); 3,6 (25.9.1992, dimensione del campione: 23
esemplari); 0,54 (10.10.1990, dimensione del campio¬
ne 17 esemplari).
Longitarsus (s. str.) salviae Gruev, 1975
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Friuli-Venezia Giulia, Veneto,
Lombardia, Puglia.
Piante ospiti: Lamiacee del genere Salvia.
Note biologiche: Perner (1996: 252-253) lo ritiene
specie xerotermofila; in praterie aride (Teucrio-Sesle-
rieti) dell’ex Germania orientale segnala la presenza di
femmine con uova da aprile (immediatamente dopo lo
svernamento) all'inizio di giugno. Sul Monte Barro ab¬
biamo riscontrato la presenza di femmine con uova nei
mesi di marzo, aprile e maggio e raccolto numerosi
esemplari fortemente immaturi nei mesi di agosto e set¬
tembre. Il rapporto maschi/femmine, calcolato su 3 cam¬
pioni, ha fornito i seguenti valori: 2 (10. VI. 1991, dimen¬
sione del campione: 12 esemplari); 1,93 (25.8.1992, di¬
mensione del campione: 41 esemplari); 1,13 (26.9.1992,
dimensione del campione: 17 esemplari).
Longitarsus (s. str.) helvolus Kutschera, 1863
Corotipo: Cetroeuropeo (CEU).
Presenza in Italia: Friuli-Venezia Giulia, Lombar¬
dia, Liguria, Toscana, Calabria, Sicilia (?).
Piante ospiti: Lamiacee ( Teucrium chamaedrys ).
Note biologiche: Doguet (1993) scrive di averlo
raccolto sempre in stazioni calde su terreni calcarei.
Perner (1996: 249-250) lo ritiene specie xerotermofi¬
la; in praterie aride (Teucrio-Seslerieti) dell’ex Ger¬
mania orientale egli ha riscontrato la presenza di
femmine con uova da agosto a maggio e di individui
immaturi da luglio a settembre. Sul Monte Barro è
molto comune, soprattutto in settembre, nelle prate¬
rie cespugliate e con parziale affioramento roccioso
che formano la stazione 6; nelle raccolte compaiono
pochissimi esemplari immaturi. Il rapporto maschi
/femmine, calcolato su due campioni, ha fornito i se¬
guenti risultati: 0,36 (3.9.1991; dimensioni del cam¬
pione: 15 esemplari; 0,20 (25.9.1992; dimensioni del
campione: 73 esemplari).
Note sistematiche: tutte le citazioni di Longitarsus
membranaceus Foudras per la fauna italiana sembra¬
no riferirsi a questo taxon recentemente rivalutato da
Doguet.
Longitarsus (s. str.) melanocephalus (De Geer, 1775)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: tutte le regioni.
Piante ospiti: Plantaginacee del genere Plantago.
Note biologiche: sono stati raccolti individui im¬
maturi in giugno e nella seconda metà di settembre.
Il rapporto maschi/femmine, calcolato su tre campio¬
ni, ha fornito i seguenti valori: 1,75 (15.6.1989, di¬
mensione del campione: 11 esemplari); 1,83
(27.6.1989, dimensione del campione: 17 esemplari);
0,71 (30.3.1990, dimensione del campione: 29 esem¬
plari).
Longitarsus (s. str.) niger (Koch, 1803)
Corotipo: Europeo (EUR).
Presenza in Italia: tutte le regioni.
Piante ospiti: Boraginacee (?), Plantaginacee del
genere Plantago. Sul Monte Barro abbiamo raccolto
questa specie in prati in cui erano presenti sia
Echium vulgare che Plantago lanceolata ma non ci è
stato possibile individuare con sicurezza la sua pian¬
ta ospite. Doguet (1994: 201) ha potuto riscontrare la
presenza di numerosi esemplari di L. niger nell’atto
di rodere foglie di Plantago lanceolata e questo dato
biologico conferma la vicinanza sistematica di questo
insetto con L. melanocephalus (De Geer).
Note biologiche: è stata riscontrata la presenza di
esemplari immaturi alla fine di giugno.
Longitarsus (s. str.) exoletus (Linnaeus, 1758)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Friuli-Venezia Giulia, Trentino-
Alto Adige, Lombardia (prima segnalazione), Ligu¬
ria, Emilia-Romagna, Toscana, Lazio, Abruzzo, Cam¬
pania, Puglia, Sicilia.
Piante ospiti: Boraginacee; sul M. Barro è stato
raccolto solo su Echium vulgare.
Note sistematiche: gli esemplari raccolti sul M.
Barro presentano in parte le caratteristiche cromati¬
che dalla forma tipica, in parte quelle della razza me¬
diterranea rufulus (Foudras, 1860). Condividiamo l’o¬
pinione di Biondi (1990), che ritiene la ssp. rufulus
una semplice forma cromatica, non sufficientemente
distinta da poterle attribuire valore sistematico.
Note biologiche: secondo Miiller (1953), il quale
fa riferimento a un precedente lavoro di Buddeberg,
l’insetto sverna nel terreno come larva, diventa im¬
magine in primavera e depone le uova dalla fine di
giugno a metà agosto; sul Monte Barro noi abbiamo
trovato numerosi esemplari immaturi nel mese di
giugno e femmine con uova da metà luglio all’inizio
di ottobre.
Longitarsus (s. str.) lewisii (Baly, 1874)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Friuli-Venezia Giulia, Trentino-
Alto Adige, Veneto, Lombardia, Piemonte, Valle
d’Aosta, Emilia-Romagna.
Piante ospiti: Plantaginacee del genere Plantago ; è
noto un caso di allotrofia su Mentha arvensis (Leo¬
nardi & Doguet, 1990: 41).
Note biologiche: per quanto si trovi anche in pri¬
mavera L. lewisii è un tipico insetto tardo-estivo au¬
tunnale; abbiamo raccolto femmine con uova all’ini¬
zio di aprile e a metà giugno, mentre esemplari im¬
maturi compaiono in settembre. Il rapporto
maschi/femmine, calcolato su 2 campioni, ha fornito i
seguenti valori: 1,67 (13.9.1990, dimensione del cam¬
pione: 32 esemplari); 1,10 (20.9.1989, dimensione del
campione: 65 esemplari).
I CRISOMELIDI (COLEOPTERA CHRY SOMELIDAE) DEL MONTE BARRO (ITALIA. LOMB.ARDIA. LECCO)
205
Longitarsus (s. str.) pratensis (Panzer. 1794)
Corotipo: Europeo-Mediterraneo (EUM). La spe¬
cie è presente anche nella regione Neartica probabil¬
mente per effetto di importazione.
Presenza in Italia: tutte le regioni.
Piante ospiti: Plantaginacee del genere Plantcìgo.
Note biologiche: sono state raccolte femmine con
uova a metà del mese di marzo. Il rapporto
maschi/femmine, calcolato su tre campioni, ha fornito
i seguenti risultati: 1,8 (14.3.1990, dimensione del
campione: 42 esemplari); 1,71 (10.6.1991; dimensione
del campione: 19 esemplari); 1,73 (20.9.1989, dimen¬
sione del campione: 71 esemplari).
Longitarsus (s. str.) longiseta Weise, 1889
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Friuli-Venezia Giulia, Trentino-
Alto Adige, Lombardia, Piemonte.
Piante ospiti: Plantaginacee del genere Plantago e
Scrofulariacee del genere Veronica.
Note biologiche: abbiamo riscontrato la presenza
di individui immaturi all’inizio di agosto e nella se¬
conda decade di settembre, e di femmine con uova
dalla fine di maggio alla seconda decade di giugno. Al¬
cuni campioni ricavati da raccolte effettuate nei mesi
di marzo, giugno e settembre fanno credere che i ma¬
schi siano di norma più frequenti delle femmine, ma
questa impressione non è confermata dall’esame di
materiale proveniente da altre località (in un campio¬
ne di 48 esemplari, in gran parte immaturi, raccolto in
Val Vigezzo il 27.8.1971 la sex ratio è risultata 1,00).
Longitarsus nasturtii (Fabricius, 1972)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Friuli-Venezia Giulia, Veneto,
Trentino- Alto Adige, Lombardia, Piemonte, Toscana,
Umbria, Lazio, Abruzzo, Calabria.
Piante ospiti: Boraginacee, soprattutto Symphy-
tum officinale.
Note biologiche: L. nasturtii vive generalmente in
ambienti piuttosto umidi; l’abbiamo rinvenuto esclu¬
sivamente nella palude di Ca’ di Sala.
Longitarsus (s. str.) holsaticus (Linnaeus, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Italia settentrionale e centrale,
Campania.
Piante ospiti: Scrofulariacee dei generi Veronica,
Pedicularis e Gratiola.
Longitarsus (s. str.) luridus (Scopoli, 1763)
Corotipo: Paleartico (PAL). La specie è presente
anche nella regione Neartica probabilmente per ef¬
fetto di importazione.
Presenza in Italia: tutte le regioni.
Piante ospiti: Ranuncolacee dei generi Ranunculus
e Clematis, Boraginacee dei generi Symphytum e Pol¬
monaria, Lamiacee del genere Clinopodium, Plantagi¬
nacee del genere Plantago, Dipsacacee del genere Suc¬
cisa, Scrofulariacee del genere Rhinanthus.
Note biologiche: abbiamo raccolto femmine con
uova nella seconda metà di aprile e individui imma¬
turi da metà giugno a metà settembre, con un massi¬
mo di presenza da fine giugno a metà luglio. Il rap¬
porto fra i due sessi (abbastanza vicino a 1) non sem¬
bra variare significativamente dei diversi momenti
dell’anno.
Longitarsus (s. str.) fulgens (Foudras, 1860)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Lombardia, Piemonte.
Piante ospiti: Lamiacee dei generi Mentita, Lyco-
pus e Scutellaria.
Note biologiche: L. fulgens è un insetto caratteri¬
stico di prati molto umidi. Abbiamo riscontrato la sua
presenza solo nella palude di Ca’ di Sala, dove peral¬
tro era molto raro.
Longitarsus (s. str.) brunneus (Duftschmid, 1825)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Friuli-Venezia Giulia, Lombar¬
dia (prima segnalazione) Piemonte, Liguria, Toscana,
Abruzzo, Lazio, Campania, Calabria.
Piante ospiti: Ranuncolacee del genere Thalic-
trum. Secondo Gruev anche Asteracee ( Aster ), Bora¬
ginacee ( Symphytum ) e Lamiacee ( Stachys ). Per
quanto riguarda il Monte Barro l’insetto è stato rac¬
colto costantemente su Thalictrum , prevalentemente
Thalictrum minus.
Note biologiche: abbiamo raccolto femmine con
uova dalla prima decade di maggio alla fine di giugno
e un maschio fortemente immaturo a metà luglio;
nessun esemplare di L. brunneus è stato raccolto in
agosto, settembre e ottobre, pur essendo soprattutto
questi i mesi in cui, sulla base dell’esperienza acquisi¬
ta dall’esame di materiale di altra provenienza (Ve¬
nezia Giulia), dovrebbero comparire individui imma¬
turi. Per quanto riguarda la proporzione fra i due ses¬
si abbiamo rilevato una maggiore presenza di maschi,
soprattutto nel mese di maggio
Longitarsus (s. str.) minusculus (Foudras, 1860)
Corotipo: S-Europeo (SEU).
Presenza in Italia: Friuli-Venezia Giulia, Lombar¬
dia (prima segnalazione), Piemonte, Liguria, Emilia-
Romagna, Toscana, Lazio, Puglia (?).
Piante ospiti: Lamiacee, soprattutto dei generi Sta¬
chys, Teucrium, Sideritis e Salvia.
Note sistematiche: L. minusculus è stato citato an¬
che di Lucania, Sicilia (Biondi, 1990: 145) e Sardegna
(Leonardi, 1975: 9; Biondi, 1990: 145) dove invece
sembra essere sostituito da L. anacardius (All.); que¬
st’ultimo è un taxon a distribuzione sud-mediterra-
nea che è stato messo in sinonimia del L. minusculus
da Warchalowski (1969); successivamente uno di noi
(Leonardi) ebbe modo di esaminare due femmine
della serie tipica di L. anacardius nella collezione
Oberthur e, ritenendo il taxon una specie distinta, de¬
signò una di esse come Lectotypus, designazione che
è però rimasta in litteris. Doguet nel volume sugli Al-
ticinae della serie Faune de France (1994: 216) rivalu¬
ta L. anacardius, considerandolo sottospecie di L. mi¬
nusculus', le importanti differenze (soprattutto nella
conformazione della spermateca: Figg. 17-26) che
permettono di separarlo dal L. minusculus, fanno
preferire l’ipotesi che esso sia effettivamente una
specie a sè stante (]). Nel complesso le due entità si
possono riconoscere in base ai seguenti caratteri:
1 Microttero. Le/Lp (v. Fig. 27) nei maschi normal¬
mente < 3,20, nelle femmine normalmente < 3,40.
lp/Lp (v. Fig. 28) nei maschi normalmente < 1,45,
nelle femmine normalmente < 1,50. Edeago in vi¬
sione ventrale (Figg. 9a-12a) con una leggera
strozzatura circa ai 3/5 distali della sua lunghezza
e con apice subtriangolare, in visione laterale
206
CARLO LEONARDI & DAVIDE SASSI
(Figg. 9b-12b) caratterizzato quasi sempre da una
leggera deflessione apicale. Spermateca (Figg. 22-
26) con parte distale molto larga e non invaginata
nella parte basale; ansa del ductus appressata al
corpo della spermateca. Europa centrale e meri¬
dionale . L. minusculus (Foudras)
1’ Spesso macrottero. Le/Lp (v. Fig. 27) nei maschi
normalmente > 3,40, nelle femmine normalmen¬
te > 3,50. lp/Lp (v. Fig. 28) nei maschi normal¬
mente > 1,45, nelle femmine normalmente > 1,50.
Edeago in visione ventrale (Figg. 13a-16a) nella
metà distale con lati praticamente paralleli e api¬
ce di regola arrotondato, in visione laterale (Figg.
13b-16b) con deflessione apicale in genere più
debole o del tutto assente. Spermateca (Figg. 17-
21) con parte distale più sottile e debolmente in¬
vaginata nella parte basale; ansa del ductus più
staccata dal corpo della spermateca. Is. Baleari,
Sardegna, Sicilia, Lucania, Maghreb .
. L. anacardius (Allard)
Figg. 9-16 - Edeagi di Longitarsus minusculus (9-12) e L. anacardius (13-16) in visione ventrale (a) e laterale (b). I numeri
piccoli indicano la lunghezza elitrale in millimetri degli esemplari disegnati. Località degli esemplari raffigurati: Monte Bar¬
ro (9-10); Lazio. Riofreddo (11); Bohemia, Karlstein (12); Algeria, Constantine (13); Algeria, E1 Meridj (14);Tunisia, Le Kef
(15); Sardegna, Gennargentu (16).
Figg. 17-26 - Spermateche di Longitarsus anacardius (17-21) e L.
minusculus (22-26) in visione dorsale. I numeri piccoli indicano la
lunghezza elitrale in millimetri degli esemplari disegnati. Località
degli esemplari raffigurati: Basilicata, Policoro (17); Algeria, Al-
gier («ex Musaeo Allard»): Lectotypus + Paralectotypus (18-19);
Algeria, E1 Meridj (20); Algeria, Bòne (21); Istria, Mali Kras (22);
Friuli Venezia Giulia, Duino (23); Monte Barro (24); Lazio, Rio¬
freddo (25); Friuli Venezia Giulia, Bivio Aurisina (26).
Longitarsus (s. str.) linnaei linnaei (Duftschmid,
1825)
Corotipo: S-Europeo (SEU).
Presenza in Italia: tutte le regioni.
Piante ospiti: Boraginacee, soprattutto del genere
Symphytum.
Note biologiche: sul Monte Barro è stato raccolto
solo nei boschi di latifoglie della Val Faè.
Longitarsus (s. str.) pinguis Weise, 1888
Corotipo: S-Europeo (SEU).
Presenza in Italia: Friuli-Venezia Giulia, Veneto,
Trentino-Alto Adige, Lombardia, Emilia-Romagna,
Abruzzo.
Piante ospiti: Boraginacee. All’interno del Parco
del Monte Barro abbiamo raccolto il L. pinguis qua¬
si esclusivamente in Val Faè, senza riuscire a indivi¬
duare con certezza la pianta ospite. L’insetto è invece
molto comune nelle vicinanze del Lago d’Alserio, a
poca distanza dal Monte Barro, dove è stato raccolto
da uno di noi (Leonardi) su Pulmonaria officinalis.
Note biologiche: è stata riscontrata la presenza di
individui immaturi nel mese di settembre.
Note sistematiche: gli esemplari alpini di L. pin¬
guis fanno pensare a forme molto scure di L. luridus
(Scop.), dalle quali si differenziano per le elitre in ge¬
nere più largamente arrotondate all’apice (Figg. 29-
31) e digradanti sui fianchi in un arco un po’ meno re-
(') A lavoro ultimato abbiamo ricevuto un articolo di Doguet, Bastazo, Bergeal & Vela in cui si considera L. anacardius spe¬
cie distinta e si fissa come Lectotypus l’esemplare di cui è rappresentata la spermateca nella fig. 18 della nostra pubblica¬
zione.
I CRISOMELIDI (COLEOPTERA CHRYSOMELIDAE) DEL MONTE BARRO (ITALIA, LOMBARDIA. LECCO) 207
MASCHI FEMMINE
Fig. 27 - Variabilità della lunghezza delle elitre e del pronoto in Longitarsus anacardius e L. minusculus (valori in millime¬
tri). Le rette che descrivono la regressione di Le su Lp sono tracciate con una linea continua, quelle che descrivono la re¬
gressione di Lp su Le sono tracciate con una linea tratteggiata. L’analisi della covarianza applicata alle rette ha fornito i se¬
guenti risultati: maschi: F= 93,57 (Lp su Le, differenza altamente significativa); F= 64,53 (Le su Lp, differenza altamente si¬
gnificativa); femmine: F= 47,44 (Lp su Le, differenza altamente significativa); F= 30,23 (Le su Lp, differenza altamente si¬
gnificativa).
golare. Nella regione appenninica la forma elitrale
presenta una variabilità più marcata (Figg. 32-41) e
possono comparire individui con elitre accentuata-
mente compresse ai lati e debolmente subtroncate,
che fanno pensare piuttosto a L. anchusae (Paykull)
o a L. bonnairei (Allard). Altrettanto variabili sono il
rapporto lp/Lp, i cui valori medi comunque non sem¬
brano essere mai inferiori a 1,30, e la conformazione
dell’organo copulatore (Figg. 44-50): nell’edeago de¬
gli esemplari appenninici in genere il lembo interno
del bordo laterale è fortemente inclinato verso il fon¬
do della scanalatura ventrale, cosicché il bordo appa¬
re più stretto e la scanalatura più larga, inoltre l’api¬
ce è in visione ventrale abitualmente meno ottuso
che nella forma alpina e in visione laterale media¬
mente meno deflesso; gli esemplari quasi privi di de¬
flessione edeagica apicale (Figg. 46-47) ricordano, per
questa caratteristica, L. bulgaricus Gruev.
Esemplari abbastanza simili a quelli europei sono
stati raccolti nella regione caucasica, mentre in Israe¬
le è diffusa una forma con protorace relativamente
poco trasverso (lp/Lp abitualmente < 1,25) e margine
apicale delle elitre costantemente subtroncato (Figg.
42-43) che, pur essendo di chiara derivazione dal L.
pinguis, col quale ha in comune sia la conformazione
dell’edeago (Fig. 51) che quella della spermateca, è
stata trattata da Furth (1979: 116) come specie distin¬
ta col nome di L. truncatellus Weise.
Per la relativa brevità della callosità elitropleurale,
che si ferma all’inizio del margine apicale delle elitre,
e per la presenza di individui con elitre fortemente
compresse e subtroncate L. pinguis dovrebbe essere
incluso nel sottogenere Testergus Wse sensu Bechyné
(= Truncatus Pai.), ipotesi, questa, non sconvolgente,
dato che Heikertinger lo trattava addirittura come va¬
rietà di L. anchusae, cioè di una specie che Lopatin
(1977) include in questo sottogenere. D’altro canto, la
prima di queste caratteristiche può comparire, con
maggiore o minore frequenza, anche in alcuni Longi¬
tarsus attribuiti al sottogenere tipico, quali, per esem¬
pio, L. reichei (All.), L. medvedevi Shap., L. albineus
(Foudr.), e L. absynthii Kutsch., mentre le altre, data la
loro variabilità, fanno di L. pinguis, una specie di tran¬
sizione fra Longitarsus s. str. e Testergus Weise sensu
Bechyné. Riteniamo pertanto che quest’ultimo (che
Bechyné proponeva addirittura come genere distinto)
sia troppo insufficientemente caratterizzato dal punto
di vista morfologico per poter essere considerato come
un sottogenere distinto, pur essendo probabile che
molti dei taxa che vi sono inclusi formino realmente un
gruppo naturale. È questa la posizione sostenuta dalla
maggior parte degli specialisti (v. Doguet, 1994). Una
sua eventuale rivalutazione potrà essere, a nostro avvi¬
so, solo successiva a uno studio filogenetico accurato
dell’intero genere Longitarsus.
Non intendiamo invece entrare nel merito della
validità del sottogenere Testergus inteso nel senso
originale, che Weise istituì per due specie caucasiche
208
CARLO LEONARDI & DAVIDE SASSI
MASCHI
FEMMINE
su lp sono tracciate con una linea tratteggiata. L’analisi della covarianza applicata alle rette ha fornito i seguenti risultati:
maschi: F= 7,57 (lp su Lp, differenza significativa); F= 22,51 (Lp su lp, differenza altamente significativa); femmine: F= 12,54
(lp su Lp, differenza altamente significativa); F= 25,97 (Lp su lp, differenza altamente significativa).
(L. ledevi e L. pubescens) da lui stesso descritte, ca¬
ratterizzate dalle elitre saldate e pubescenti.
Ericacee, Onagracee, Litracee, Cistacee, Rosacee,
Scrofulariacee, Betulacee, Fagacee.
Attica oleracea (Linneo, 1758)
Corotipo; Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni.
Piante ospiti: soprattutto poligonacee ma anche
Figg. 29-43 - Silouette elitrale in Longitarsus pinguis (29-41) e L.
truncatellus (42-43). Località degli esemplari raffigurati: Monte
Barro (20-30); Nieder Bayern (31); Emilia Romagna, Campigna
(32-34); Emilia Romagna, Passo Calla (35); Campania, Valle Pia¬
na (M.ti Picentini) (36); Abruzzo, Monte Marsicano (37); Molise,
Monte Miletto (38); Abruzzo, Gran Sasso (39); Abruzzo,
Blockhaus (40-41); Israele, N. Amud (42-43).
Attica carinthiaca (Weise, 1888), (Fig. 52)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: Alpi (finora citata in modo ge¬
nerico delle Alpi Orientali e, dubitativamente, delle
Alpi Marittime; la presenza di questa specie sul Mon¬
te Barro costituisce il primo dato sicuro per le Alpi
Italiane), Lazio.
Piante ospiti: come piante ospiti di A. carinthiaca
figurano Sanguisorba minor (Rosacee) e Lathyrus
pratensis (Fabacee); data la rarità di questa specie
non siamo riusciti a confermare questi dati biologici
Attica impressicollis Reiche, 1862
Corotipo: Turanico-Europeo-Mediterraneo (TEM)
Presenza in Italia: tutte le regioni.
Piante ospiti: Enoteracee del genere Epilobium ,
Litracee ( Lythrum salicaria), Asteracee ( Eupatorium
cannabinum.
Note biologiche: Euforbiacee del genere Mercu¬
riali. Questa specie frequenta biotopi umidi. L’ab¬
biamo raccolta, in un numero limitato di esemplari,
solo nella palude di Ca’ di Sala.
Hermaeophaga mercurialis (Fabricius, 1792)
Corotipo: Europeo (EUR)
Presenza in Italia: regioni settentrionali, Lazio,
Abruzzo, Puglia.
CRISOMELIDI (COLEOPTERA CHRY SOMELID AE) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
209
Figg. 44-51 - Edeagi di Longitarsus pinguis (44-50) e L. truncatel-
lus (51) in visione ventrale (a) e laterale (b). I numeri piccoli in¬
dicano la lunghezza elitrale in millimetri degli esemplari disegna¬
ti. Località degli esemplari raffigurati: Gòrz Piava (44); Monte
Barro (45); Liguria. Rezzoaglio d’Aveto (46); Emilia Romagna,
Campigna (47); Abruzzo, Monte Marsicano (48); Abruzzo,
Blockhaus (49-50); Israele (51).
Piante ospiti: Euforbiacee del genere Mercurialis.
Questo insetto è stato raccolto solo in Val di Faè, do¬
ve è frequente soprattutto nel sottobosco.
Lythraria salicariae (Paykull, 1800)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali e centrali,
Campania, Basilicata, Calabria.
Piante ospiti: Primulacee del genere Lysimachia ,
Litracee ( Lythrum salicaria).
Figg. 52-53 - Edeagi di Altica carinthiaca (52) e Asiorestia crassi-
cornis (53) del Monte Barro in visione ventrale (a) e laterale (b).
I numeri piccoli indicano la lunghezza elitrale in millimetri degli
esemplari disegnati.
Note biologiche: questa specie è caratteristica di
biotopi umidi; l’abbiamo raccolta solo nella palude di
Ca’ di Sala.
Asiorestia brevicollis (J. Daniel. 1904)
Corotipo: Sud-Europeo (SEU) (endemita Alpino-
Appenninico).
Presenza in Italia: tutte le regioni peninsulari ad
esclusione di Valle d'Aosta, Piemonte e Liguria.
Piante ospiti: Asteracee del genere Cirsium.
Note biologiche: questo insetto sembra predilige¬
re ambienti umidi; ne abbiamo raccolto una sola fem¬
mina nella palude di Ca' di Sala, ed era già noto del
Lago di Annone.
Asiorestia transversa (Marsham, 1802)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni peninsulari e Sardegna.
Piante ospiti: Asteracee soprattutto del genere
Cirsium , Boraginacee (?), Plumbaginacee (?).
Note biologiche: il rapporto maschi/femmine ha
fornito il valore 0,79 in un campione di 41 esemplari
raccolto il 15.6.1990.
Asiorestia ferruginea (Scopoli, 1763)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni.
Piante ospiti: Poacee, Fabacee, Poligonacee, Aste¬
racee, Boraginacee, Cannabacee, Urticacee.
Asiorestia crassicornis crassicornis (Faldermann,
1837), (Fig. 53)
Corotipo: S-Europeo (SEU).
Presenza in Italia: Friuli-Venezia Giulia, Veneto,
Lombardia (prima segnalazione per la regione), Val¬
le d’Aosta, Liguria, Emilia-Romagna (M. Fumaiolo,
dato inedito).
Piante ospiti: Asteracee del genere Centaurea.
O restia electra electra Gredler, 1868
Corotipo: S-Europeo (SEU) (endemita Alpino)
Presenza in Italia: ssp. electra: Trentino- Alto Adige
(Alpi Giudicane), Lombardia; ssp. brunnea
(Halbherr, 1898); Trentino- Alto Adige, Veneto.
Note biologiche: questa specie non frequenta la
vegetazione; la si raccoglie sotto sassi, fra i muschi o
nelle lettiere. Sul Monte Barro ne è stato raccolto un
solo maschio in Val Faè a m 620 di quota.
Derocrepis sodalis (Kutschera, 1860)
Corotipo: S-Europeo (SEU) (endemita Alpino-
Appenninico).
Presenza in Italia: regione alpina (dalle Alpi Reti-
che alle Liguri), Appennino centro-settentrionale,
Massiccio del Pollino.
Piante ospiti: Fabacee.
Crepidodera aurea (Geoffroy, 1785)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali e centrali,
Campania, Basilicata, Calabria, Sicilia.
Piante ospiti: Salicacee.
Crepidodera aurata (Marsham, 1802)
Corotipo: Asiatico-Europeo (ASE)
Presenza in Italia: tutte le regioni.
Piante ospiti: Salicacee.
Note sistematiche: di questa specie Heikertinger
210
CARLO LEONARDI & DAVIDE SASSI
(1910: (54)) ha descritto, su esemplari di Morea, la
razza peloponnesiaca. Noi abbiamo potuto esaminare
una serie di esemplari (MM, CZ) raccolti in Pelopon¬
neso (Korinthia: dint. Kaliani, 13. IX. 1995) da S. Zoia,
che corrispondono alla descrizione di questo taxon;
essi non appartengono sicuramente alla specie aura¬
ta, dalla quale si distinguono, oltre che per la confor¬
mazione dell’edeago e della spermateca, anche per
caratteristiche esterne, quali, soprattutto, la relativa
opacità elitrale. Riteniamo quindi che Crepidodera
peloponnesiaca sia una specie distinta o, forse, una
forma geografica di Cr. nigricoxis All., che conoscia¬
mo solo dalle descrizioni (Gruev & Tomov, 1986: 273,
274; Konstantinov, 1996: 29, 31-32). A favore della se¬
conda ipotesi sembra giocare una notevole rassomi¬
glianza, sia edeagica che spermatecale, fra i due taxa;
in nessuna descrizione di Cr. nigricoxis si accenna
però alla scarsa lucentezza elitrale, che caratterizza
invece Cr. peloponnesiaca.
Epitrix pubescens (Koch, 1803)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: regioni settentrionali e centrali,
Basilicata, Sardegna.
Piante ospiti: Solanacee.
Podagrica fuscicomis (Linneo, 1766)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Piante ospiti: Malvacee, occasionalmente Astera-
cee del genere Carduus.
Note sistematiche: per la punteggiatura elitrale re¬
lativamente forte gli esemplari del Monte Barro sem¬
brano appartenere alla forma mediterranea, abitual¬
mente trattata come sottospecie, col nome di chryso-
melina (Waltl, 1835); il valore di questa razza geogra¬
fica può essere facilmente messo in discussione in
considerazione dell’elevata variabilità della specie e
dell’esistenza di troppe popolazioni con caratteristi¬
che intermedie.
Mantura (s. str.) obtusata (Gyllenhal, 1813)
Corotipo: Europeo (EUR).
Presenza in Italia: Friuli-Venezia Giulia, Veneto,
Lombardia, Piemonte, Emilia-Romagna, Toscana,
Lazio, Campania, Calabria, Sicilia.
Piante ospiti: Poligonacee del genere Rumex.
Chaetocnena (Tlanoma) concinna (Marsham, 1802)
Corotipo: Asiatico-Europeo (ASE)
Presenza in Italia: regioni peninsulari, Sicilia, Sar¬
degna (?).
Piante ospiti: Poligonacee dei generi Polygonum e
Rumex , Chenopodiacee del genere Atriplex.
Chaetocnema ( Tlanoma ) laevicollis (C. G. Thom¬
son, 1866)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Friuli-Venezia Giulia, , Veneto,
Lombardia, Piemonte, Lazio.
Piante ospiti: Poligonacee, occasionalmente Bras-
sicacee.
Chaetocnema (Tlanoma) tibialis (Illiger, 1807)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Piante ospiti: Chenopodiacee.
Chaetocnema ( Tlanoma ) conducta (Motschulski, 1838)
Corotipo: Turanico-Europeo-Mediterraneo (TEM),
secondariamente Afrotropicale.
Presenza in Italia: tutte le regioni.
Piante ospiti: Ciperacee, Giuncacee, Poacee.
Chaetocnema (s. str.) confusa (Bohemann, 1851)
Corotipo: Turanico-Europeo (TUE)
Presenza in Italia: Friuli-Venezia Giulia, Veneto,
Piemonte, Campania, Basilicata, Calabria.
Piante ospiti: Ciperacee del genere Carex , Giunca¬
cee del genere Juncus.
Note biologiche: si tratta di un insetto tipico di
ambienti umidi: l’abbiamo raccolto solo nella palude
di Ca’ di Sala.
Chaetocnema (s. str.) arida Foudras, 1860
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: regioni settentrionali e centrali,
Basilicata, Sicilia, Sardegna.
Piante ospiti: Ciperacee, Giuncacee.
Chaetocnema (s. str.) hortensis (Geoffroy, 1785)
Corotipo: Paleartico (PAL), secondariamente
Afrotropicale.
Presenza in Italia: tutte le regioni.
Piante ospiti: Poacee, Ciperacee (?).
Sphaeroderma testaceum (Fabricius, 1775)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni peninsulari, Sicilia.
Piante ospiti: Asteracee dei generi Carduus e Cir-
sium.
Sphaeroderma rubidum (Graèlls, 1858)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutte le regioni.
Piante ospiti: Asteracee soprattutto dei generi
Centaurea , Carduus e Cirsium.
Argopus ahrensi (Germar, 1817)
Corotipo: S-Europeo (SEU).
Presenza in Italia: regioni nordorientali, Lombar¬
dia, Piemonte, Toscana, Abruzzo, Calabria.
Piante ospiti: Ranuncolacee del genere Clematis.
0.3 mm
Fig. 54 - Edeago di Dibolia foersteri del Monte Barro in visione
ventrale (a) e laterale (b). Il numero piccolo indica la lunghezza
elitrale in millimetri dell’esemplare disegnato.
I CRISOMELIDI (COLEOPTERA CHRY SOMELID AE) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
211
Dibolia foersteri Bach, 1859, (Fig. 54)
Corotipo: Europeo (EUR).
Presenza in Italia: Friuli-Venezia Giulia, Veneto,
Trentino-Alto Adige, Lombardia (prima segnalazio¬
ne per questa regione), Piemonte, Lazio.
Piante ospiti: Lamiacee ( Stachys officinalis).
Dibolia cryptocephala (Koch, 1803)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: regioni settentrionali, Toscana,
Abruzzo, Basilicata, Calabria, Sicilia.
Piante ospiti: Lamiacee, probabilmente dei generi
Thymus e Salvia. Salvia pratensis è presente sul Mon¬
te Barro in tutte e tre le stazioni in cui abbiamo rac¬
colto questo insetto.
Psylliodes affinis (Paykull, 1799)
Corotipo: Centroasiatico-Europeo-Mediterraneo
(CEM)
Presenza in Italia: regioni settentrionali e centrali,
Campania, Basilicata, Sardegna.
Piante ospiti: Solanacee, soprattutto Solarium dul¬
camara.
Psylliodes napi (Fabricius, 1792)
Corotipo: Turanico-Europeo-Mediterraneo (TEM).
Presenza in Italia: tutte le regioni.
Piante ospiti: Brassicacee.
Psylliodes toelgi Heikertinger, 1914
Corotipo: S-Europeo (SEU).
Presenza in Italia: Friuli-Venezia Giulia, Trentino-
Alto Adige, Lombardia, Piemonte, Val d’Aosta, Lazio
(Terminillo: Sella di Leonessa, dato inedito).
Piante ospiti: Brassicacee (Biscutella laevigata).
Note biologiche: individui immaturi sono stati rac¬
colti nei mesi di giugno e di luglio.
Note sistematiche: Ps. toelgi è una specie montana
molto vicina a Ps. brisouti Bedel; se ne distingue so¬
prattutto per il primo protarsomero dei maschi mo¬
destamente dilatato, per l’assenza del tipo alare bra-
chittero (nella popolazione del Monte Barro domina
la forma mesottera con una percentuale di circa il
15% di individui macrotteri) e per l’edeago (Figg. 57-
58) mediamente più esile e meno angolosamente ar¬
cuato; ulteriori particolarità edeagiche si riscontrano
nella scanalatura ventrale, dove la parte basale è re¬
lativamente lunga e la rigatura trasversale della par¬
te intermedia è spesso molto debole o del tutto as¬
sente. Il confronto (Figg. 59-60) fra i valori di Le, Lp,
Lt ed Ld ottenuti da un campione di Ps. toelgi del
Monte Barro e quelli ottenuti da un campione di Ps.
brisouti della stessa provenienza conferma inoltre re¬
sistenza di importanti differenze nei valori medi del
rapporto Le/Lp ed Lt/Ld, in sostanziale accordo con
quanto fu già scritto da uno di noi (Leonardi, 1971).
E da notare come gli individui del Monte Barro, for¬
se in relazione alla quota molto bassa (circa 300 m)
del ritrovamento, presentino dimensioni medie note¬
volmente superiori rispetto ai valori medi della spe¬
cie.
Psylliodes brisouti Bedel, 1898
Corotipo: S-Europeo (SEU).
Presenza in Italia: Veneto, Lombardia (prima se¬
gnalazione per questa regione), Piemonte, Val d’Ao¬
sta, Lazio, Abruzzo, Sicilia.
Piante ospiti: Brassicacee del genere Erysimum.
Figg. 55-58 - Edeagi di Psylliodes brisouti (55-56) e Ps. toelgi (57-
58) del Monte Barro in visione ventrale (a) e laterale (b). I nu¬
meri piccoli indicano la lunghezza elitrale in millimetri degli
esemplari disegnati.
Note biologiche: sono stati raccolti diversi indivi¬
dui immaturi nella seconda metà di giugno e all’inizio
di luglio.
Note sistematiche: è interessante osservare come
il Monte Barro sia l’unica località finora nota in cui
sono presenti sia Ps. brisouti Bedel che Ps. toelgi
Heikertinger, a conferma del valore specifico di que¬
sti due taxa che presentano indubbiamente un livello
di affinità assai elevato. Mentre Ps. toelgi vive esclusi¬
vamente su Biscutella laevigata, P. brisouti è stata rac¬
colta solo su Erysimum virgatum , ai margini della sta¬
zione 2; tutti gli esemplari sono risultati brachitteri e
i maschi presentano una forte dilatazione del primo
articolo protarsale oltre che un edeago (Figg. 55-56)
relativamente robusto e quasi angolosamente arcua¬
to; la scanalatura edeagica ventrale presenta spesso
un’evidente rigatura trasversale, che tipicamente in¬
teressa la parte intermedia ma talvolta si estende an-
212
CARLO LEONARDI & DAVIDE SASSI
MASCHI FEMMINE
Fig. 59 - Variabilità della lunghezza delle elitre e del pronoto in esemplari di Psylliodes brisouti e Ps. toelgi del Monte Bar¬
ro (valori in millimetri). Le rette che descrivono la regressione di Le su Lp sono tracciate con una linea continua, quelle che
descrivono la regressione di Lp su Le sono tracciate con una linea tratteggiata. L’analisi della covarianza applicata alle ret¬
te ha fornito i seguenti risultati: maschi: F= 78,71 (Lp su Le, differenza altamente significativa); F= 21,99 (Le su Lp, diffe¬
renza altamente significativa); femmine: F= 54,83 (Lp su Le, differenza altamente significativa); F= 18,41 (Le su Lp, diffe¬
renza altamente significativa).
che sulla parte basale; quest’ultima, non sempre ben
delimitata, è in genere più corta che in Ps. toelgi. I va¬
lori di Le, Lp, Lt ed Ld, messi a confronto con quelli
ottenuti da un campione di Ps. toelgi del Monte Bar¬
ro, sono riportati nelle Figg. 59-60.
Note geometriche: Ps. brisouti è nel complesso una
specie a gravitazione meridionale, per quanto possa
spingersi molto a nord, fino a raggiungere la punta
meridionale della Svezia (Baranowski, 1980). 1 Ma¬
schio e 1 femmina svedesi conservati presso il Museo
di Storia Naturale di Milano (dono Baranowski) for¬
niscono i seguenti dati morfometrici: maschio: Le =
1,840 mm, Lp - 0,605 mm, Lt = 0,740 mm, Ld - 0,177
mm; femmina: Le = 1,950 mm, Lp = 0,640 mm, Lt =
0,778 mm, Ld = 0,177 mm.
Psylliodes cupreus (Koch, 1803)
Corotipo: Centroasiatico-Europeo-Mediterraneo
(CEM)
Presenza in Italia: tutte le regioni.
Piante ospiti: Brassicacee.
Psylliodes instabilis Foudras, 1860
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: regioni peninsulari, Sicilia.
Piante ospiti: Brassicacee.
Psylliodes dulcamarae (Koch, 1803)
Corotipo: Turanico-Europeo (TUE)
Presenza in Italia: regioni settentrionali e centrali,
Campania, Basilicata, Calabria.
Piante ospiti: Solanacee ( Solarium dulcamara).
Cassida (Hypocassida) subferruginea Schrank, 1776
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Piante ospiti: Convolvulacee ( Convolvulus ); spo¬
radicamente Chenopodiacee (Beta). Un esemplare fu
raccolto in Monte Barro su Calystegia sepium.
Cassida (Odontionycha) viridis viridis Linnaeus, 1758
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Piante ospiti: specie igro-mesofila, legata a Lamiacee
dei generi Stachys, Mentita, Galeopsis, Lycopus, Salvia.
In Monte Barro fu sempre raccolta su Salvia glutinosa.
Cassida (s. str.) vibex Linnaeus, 1767
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutte le regioni.
Piante ospiti: Asteracee ( Cirsium , Carduus, Centau¬
rea , Arctium , Tanacetum , Achillea). In Monte Barro
sembra prevalentemente legata a Centaurea triumfettii.
Cassida (s. str.) ferruginea Goeze, 1777
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: penisola.
I CRISOMELIDI (COLEOPTERA CHRYSOMELID AE) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
213
MASCHI
FEMMINE
Piante ospiti: Pulicaria dysenterica, su cui fu rac¬
colta anche in Monte Barro.
Note: specie tendenzialmente igrofila.
Cassida (s. str.) rubiginosa rubiginosa Miiller, 1776
Corotipo: Paleartico (PAL).
Presenza in Italia: tutte le regioni.
Piante ospiti: diversi generi di Asteracee.
Cassida (s. str.) denticollis Suffrian, 1844
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutta la penisola, nel complesso
piuttosto rara. Tendenzialmente submontana-monta-
na, specialmente al sud.
Piante ospiti: Asteracee (Achillea, Tanacetum ).
Cassida A- str.) sanguinolenta sanguinolenta Miil-
ler, 1776
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: penisola, Sicilia.
Piante ospiti: Asteracee ( Achillea , Tanacetum ).
Note: raccolte femmine con uova a metà luglio.
Cassida (Mionycha) margaritacea Schaller, 1783
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: penisola, Sicilia.
Piante ospiti: Cariofillacee ( Silene , Saponaria , Sper-
gula), Lamiacee (Thymus), Asteracee ( Centaurea ).
Note: specie tendenzialmente xerofila.
Cassida ( Mionycha ) subreticulata Suffrian, 1844
(Fig. 66)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: penisola, Sicilia.
Piante ospiti: Cariofillacee ( Silene , Saponaria,
Dianthus ). In Monte Barro raccolta su Saponaria of-
ficinalis.
Note biologiche: nel corso delle ricerche
(16.5.1991) furono raccolti sei esemplari di Cassida
subreticulata ed allevati con foglie fresche di Sapona¬
ria officinalis. Gli esemplari cominciarono subito a
nutrirsi e ad accoppiarsi frequentemente. Gli accop¬
piamenti continuarono, con lo stesso ritmo, almeno
fino alFinizio di luglio. Il giorno stesso della raccolta
iniziarono le prime deposizioni. Dopo breve tempo
(22 maggio) erano già state deposte circa 50 uova,
contenute singolarmente in piccole ooteche trasluci¬
de, formate da un sottile strato di secreto colleterico
ricoprente ciascun germe. Nella maggior parte dei ca¬
si le ooteche vennero applicate alla pagina superiore
delle foglie. La femmina non provvide mai a rivestir¬
le con materiale fecale. Le dimensioni medie delle
uova erano 1,15 mm X 0,58 mm. Quelle della intera
ooteca 1,58 mm X 1,14 mm. Le prime larve compar¬
vero il 29 maggio e iniziarono subito a nutrirsi, pro¬
ducendo piccoli fori subcircolari nella pagina inferio¬
re delle foglie, lasciando generalmente intatta quella
superiore. Come consuetudine per le larve dei cassi-
dini, i residui delle exuvie, parzialmente ricoperti da
214
CARLO LEONARDI & DAVIDE SASSI
un leggero strato di materia fecale, vennero conser¬
vati sulla turca anale, tenuta ripiegata in avanti e sol¬
levata al di sopra del dorso. Se molestate, le larve
scuotevano ritmicamente e con energia la furca al di
sopra dell’addome. Dopo circa un mese (21 giugno) e
quattro mute, le prime larve sgusciate, raggiunte le di¬
mensioni di 4,13 - 4,60 mm, smisero di nutrirsi e si fis¬
sarono ad una foglia con una goccia di sostanza vi¬
schiosa emessa dall’ano, senza liberarsi dei residui
delle mute precedenti, come osservato in altre specie.
Dopo poche ore si trasformarono in pupe e la com¬
parsa dei primi adulti si ebbe il 25 giugno. Appena na¬
te, le immagini sono di un giallo chiarissimo, soltanto
gli occhi e i palpi labiali sono neri. L’apice dell’ultimo
articolo antennale e, in parte, gli altri elementi bocca¬
li sono soltanto leggermente offuscati. La superficie
dorsale è opaca. Dopo poche ore la colorazione nera
interessa anche il labbro superiore. Dopo due giorni
l’esoscheletro elitrale è diventato lucido, si evidenzia¬
no le bozze juxtascutellari, inzia a vedersi per traspa¬
renza il capo attraverso il pronoto. A questa età il ca¬
po è completamente nero, e pure oscurato è il pro¬
sterno, compreso il processo prosternale. Più tardi la
colorazione scura si estende al mesosterno, al meta-
sterno e, successivamente, alla fascia centrale dell’ad¬
dome.
Larva di quinta età (Figg. 61 e 66): Larva allunga¬
ta, a lati debolmente convergenti in direzione cauda¬
le a partire dal metatorace; lungo i margini vi sono 16
paia di processi laterali così suddivisi: 4 paia nel pro¬
torace, 2 paia nel meso e 2 nel metatorace, 1 paio in
ciascun segmento addominale. Ogni processo porta
10-15 spinule di lunghezza variabile e diversamente
orientate. La superficie dorsale, escluso il protorace, è
solcata da rugosità piuttosto profonde, più o meno si¬
nuose. Colore interamente giallo paglierino. Lun¬
ghezza totale, esclusa la furca anale e i processi api-
cali, 4,60 mm. Larghezza massima (all’altezza del me¬
tatorace ed esclusi i processi laterali) 2,56 mm. L’ot¬
tavo segmento addominale reca la furca anale, priva
di spinule, lunga 2,70 mm. Il complesso dei frammen¬
ti delle exuvie e residui fecali applicate sulla furca
anale costituisce una struttura del tipo kompakte
Kotmaske, sensu Steinhausen (1950).
Capo subcircolare, ipognato. Fronte lievemente
depressa nel tratto postero-mediano. Ocelli in nume¬
ro di 5 per lato, dei quali quattro disposti internamen¬
te, in linea leggermente arcuata, il quinto, più piccolo,
in posizione latero caudale a detta linea, all’altezza del
terzo ocello. Labrum debolmente chitinizzato, con tre
paia di setole su ciascun lato e incavo mediano poco
accentuato, a fondo rettilineo e lati debolmente ango¬
losi. Antenne bisegmentate, con vari processi senso¬
riali all’apice, di cui uno maggiore in forma di papilla
debolmente conica. Clipeo trasverso, circa 5 volte più
largo che lungo. Mandibole con tre denti apicali.
Torace lungo circa 0,75 volte l’addome. Superficie
del protorace con vari solchi e rughe, più marcati la¬
teralmente. Scudo protoracico poco evidente, forma¬
to da due aree circolari, lievemente depresse, a fondo
rugoso portante qualche corta setola. Tali aree risul¬
tano separate da una regione mediana rilevata, di su¬
perficie più uniforme, con circa 20 setole spiniformi,
le maggiori lunghe fino a 0,1 mm, prevalentemente
disposte lungo il bordo interno delle aree circolari.
Alla base della quarta spina protoracica vi è lo spira-
colo anteriore, in una piccola area subtriangolare se¬
parata dal corpo del protorace da un solco obliquo.
Mesotorace poco meno di quattro volte più largo che
lungo, dorsalmente diviso in pre- e post-mesotergite
da una linea sinuosa. Metatorace quasi cinque volte
più largo che lungo.
Figg. 61-62 - Cassida subreticulata : larva al quinto stadio (61) e
pupa (62).
I CRISOMELIDI (COLEOPTERA CHRYSOMELIDAE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
215
Addome con tergiti divisi in pre- e post-tergite da
una linea arcuata, più marcata lateralmente. Superfi¬
cie con numerose piccole setole a disposizione più o
meno uniforme. Ai lati dei primi sette pretergiti si
trova una coppia di spiracoli addominali, a peritrema
molto saliente.
Pupa (Figg. 62 e 66): Lunghezza 4,77 mm. Lar¬
ghezza 2,98 mm. Colore interamente giallo paglieri¬
no, privo di zone pigmentate.
Superficie dorsale opaca, con microrugosità pre¬
valentemente disposta in senso trasversale.
Pronoto circa 3 volte più corto della lunghezza to¬
tale del corpo; subpentagonale, convesso; area poste¬
riore più saliente della anteriore. Superficie opaca,
con microrugosità variamente disposta; qualche bre¬
vissima setola, visibile solo a forte ingrandimento, è
presente soprattutto nella metà posteriore. Margine
anterolaterale con circa 40 spine di varia lunghezza e
per lo più semplici; solo due coppie centro-laterali,
più lunghe, portano qualche spinula. Al centro del
margine anteriore vi è una intaccatura subtriangola¬
re, dalla quale si diparte una linea liscia, sublucida e
leggermente rilevata che attraversa longitudinalmen¬
te i due terzi anteriori del pronoto ed è interrotta da
una areola trasversale, in forma di una fascia liscia e
male delimitata, che costituisce con la linea longitu¬
dinale una struttura a croce debolmente rilevata.
Margine posteriore bisinuato, con due marcate intac¬
cature sublaterali.
Meso e metatorace privi di particolari strutture ad
esclusione degli astucci alari i quali, ruotati lateral¬
mente e ventralmente, sono poco visibili dall’alto.
Tergiti addominali convessi, con linea mediana ri¬
levata quasi in forma di carena; inoltre un solco bre¬
vemente inciso, più evidente nei segmenti addomina¬
li anteriori, si stacca circa a metà del margine ante¬
riore di ciascun emitergite, raggiungendone la linea
mediana. Primi cinque segmenti addominali ciascuno
con una coppia di processi laterali in forma di lamine
appiattite in senso dorsoventrale. Gli anteriori più
ampi, i successivi progressivamente decrescenti in
senso caudale. Ciascun processo reca lungo il margi¬
ne laterale una serie di 7-9 spinule, la apicale sensi¬
bilmente più lunga. Alla base di ciascun processo,
spostato verso il margine anteriore del tergite, si tro¬
va uno spiracolo, con peritrema fortemente saliente.
Gli ultimi tre segmenti addominali recano coppie di
processi laterali spiniformi, orientati in direzione cau¬
dale, solo in parte visibili dall’alto perchè inseriti
piuttosto ventralmente.
Fronte marcatamente incavata. Antenne orientate
obliquamente verso l’estremità caudale, con segmen¬
ti apicali prossimi alla articolazione femoro-tibiale
anteriore. Astucci alari sottoposti al piano di giacitu¬
ra delle zampe anteriori e medie, ma in parte rico¬
prenti le posteriori, delle quali risultano ben visibili
solo tibie e tarsi.
Considerazioni biogeografiche
Le categorie corologiche indicate nel testo sono
state individuate secondo i criteri proposti da Vigna
Taglianti et al. (1992).
Dall’analisi dei singoli corotipi (Figg. 63-64) emer¬
ge una dominanza di elementi ad ampia distribuzio¬
ne nella regione Paleartica. È però cospiqua anche la
presenza di taxa a gravitazione europea, ivi compre¬
so un numero non indifferente di elementi Sudeuro¬
pei (17,88% del totale), mentre i taxa riferibili a co¬
rotipi Mediterranei rappresentano una percentuale
molto modesta (1,3%) delle specie raccolte. È stata
esclusa Leptinotarsa decemlineata in quanto zoogeo-
graficamente estranea alla fauna paleartica.
ASE f . li - „J-,- . .. „„ . . A ■ - . . - f 33
SEU *>■»---« • • -gp 27
PAL pta*as&.;. ■„*,>, Sl , -- ^ 19
EUR 15
TUE . . - . . -0 14
S'E 12
EUM K 10
TEM F ****4*imis*smj 7
CEU 5
0LA 3
CENI f 1 3
WME Fp 1
MED frP 1
CAE fr? 1
0 5 10 15 20 25 30 35
Fig. 63 - Spettro corologico delle specie raccolte.
Medit.
1,32%
Fig. 64 - Corotipi raggruppati per categorie sintetiche (Vigna Ta¬
glianti et al., 1991).
Fenologia
Dalle date di raccolta delle singole specie abbia¬
mo ricavato la Fig. 65, che rappresenta un semplice
quadro orientativo dell’abbondanza delle specie nel¬
le raccolte condotte in diversi periodi dell’anno, sen¬
za la pretesa di fornire una informazione completa
sulla fenologia delle specie.
Per ogni specie sono indicate le stazioni di presen¬
za (st), e per ogni stazione, il numero complessivo de¬
gli esemplari raccolti (n) e il numero medio di esem¬
plari raccolti per uscita (F), per il cui calcolo si è te¬
nuto conto solo delle uscite effettuate in periodi in
cui la specie è risultata presente.
Le altezze degli elementi di ogni istogramma sono
determinate, per ogni specie e per ogni stazione, dal
rapporto tra il numero medio di esemplari raccolto
nelle uscite effettuate in un particolare periodo e il
numero medio (F) di esemplari raccolto nelle uscite
effettuate in tutto l’arco dell’anno. In questo modo si
ottiene, per ciascun periodo, una misura dell’abbon¬
danza relativa della specie. Per facilitare la lettura di
questo dato, i rapporti calcolati sono stati raggruppa¬
ti in cinque classi di frequenza (<0, 5; 0,51-1; 1,01-1,50;
216
CARLO LEONARDI & DAVIDE SASSI
1,51-2; >2), corrispondenti a cinque diverse altezze
degli istogrammi.
Abbreviazioni usate nel testo
MM: Museo di Storia Naturale di Milano; CZ: col¬
lezione Zoia; Le: lunghezza (distanza apice - base)
dell’elitra; Lp: lunghezza del pronoto; lp: larghezza
del pronoto; Lt: lunghezza della tibia posteriore in
completa distensione; Ld: lunghezza della porzione
tibiale posteriore all’inserzione del metatarso; (...) m
valore medio di .
Ringraziamenti
Ringraziamo la Dr.ssa Nicole Berti, del Museo di
Storia Naturale di Parigi, per il prestito dei tipi di
Longitarsus anacardius , e gli amici Serge Doguet, per
il prestito di esemplari algerini di L. anacardius , Da¬
vid Furth, per il dono di esemplari di Longitarsus
truncatellus al Museo di Storia Naturale di Milano, e
Stefano Zoia, per il dono di esemplari di Crepidode-
ra peloponnesiaca al Museo di Storia Naturale di Mi¬
lano. Un particolare ringraziamento va inoltre al Dr.
Giuseppe Panzeri e al Dr. Mauro Villa, rispettiva¬
mente Presidente e Direttore del Consorzio Parco
Monte Barro, per l’aiuto fornitoci durante le nostre
ricerche.
I CRISOMELIDI (COLEOPTERA CHRYSOMELIDAE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
217
marzo aprile maggio giugno luglio agosto settembre ottobre novembre
14-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30
218
CARLO LEONARDI & DAVIDE SASSI
marzo aprile maggio
giugno luglio agosto settembre ottobre novembre
1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30
219
220
CARLO LEONARDI & DAVIDE SASSI
Specie
Lup. flavipes
Lup. leonardii
Phyllotr. vittula
Phyllotr. nemorum
Phyllotr. striolata
Phyllotr. ochripes
Phyllotr. aerea
Aphth. cyparissiae
Aphth. lutescens
Aphth. pygmaea
Aphth. venustula
Aphth. coerulea
Aphth. herbigrada
Aphth. ovata
Aphth. atrovirens
Longit. pellucidus
marzo aprile maggio giugno luglio agosto settembre ottobre novembre
1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30
Longit. succineus
I CRISOMELIDI (COLEOPTERA CHRY SOMELID AE) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
giugno luglio agosto settembre ottobre novembre
1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30
inni n i i 1 1 i imi
222
CARLO LEONARDI & DAVIDE SASSI
I CRISOMELIDI (COLEOPTERA CHRY SOMELID AE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
223
Specie
Chaetocn. conducta
Chaetocn. confusa
Chaetocn. arida
Chaetocn. hortensis
Sphaerod. testac.
Sphaerod. rubidum
Argopus ahrensi
Dibolia foersteri
Dibolia cryptoceph.
Psylliodes affinis
Psylliodes napi
Psylliodes toelgi
Psylliodes brisouti
Psylliodes cupreus
Psylliodes instabilis
Psylliodes dulcam.
Cassida subferrug.
Cassida viridis
Cassida vibex
marzo aprile maggio giugno
luglio agosto settembre ottobre novembre
1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30
III III I DII
224
CARLO LEONARDI & DAVIDE SASSI
aprile maggio giugno luglio
1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30
agosto settembre ottobre novembre
1-15 16-30 1-15 16-30 1-15 16-30 1-15 16-30
Fig. 65 - Tabella fenologica delle specie raccolte nelle stazioni 1-9.
I CRISOMELIDI (COLEOPTERA CHRYSOMELIDAE) DEL MONTE BARRO (ITALIA. LOMBARDIA. LECCO)
225
a
Fig. 66 - Cassida subreticulata. a) larva di quinta età con esuvie e residui fecali sulla furca anale; b) larva con furca anale par¬
zialmente ribaltata sul dorso; c) larve coperte daH’ombrello fecale; d) pupa; e) adulti neosfarfallati; f) adulti in accoppia¬
mento.
226
CARLO LEONARDI & DAVIDE SASSI
Fig. 67 - Stazioni di raccolta, a) staz. 1 (in loc. Piani di Barra); b) staz. 2 (in loc. Piani di Barra); c) staz. 5 (Pian Sciresa); d)
staz. 6 (superfici prative lungo il sentiero della «cresta occidentale»); e) staz. 7 (in Val di Faè); f) staz. 8 (in Val di Faè).
I CRISOMELIDI (COLEOPTERA CHRYSOMELIDAE) DEL MONTE BARRO (ITALIA, LOMBARDIA. LECCO)
227
BIBLIOGRAFIA
Balachowsky A.S., 1963 - Entomologie appliquée a l'agriculture,
tome I, Coleopteres, 2° volume Phytophagoidea (suite et fin)
: 566-1391 (567-873).
Baranowski R.. 1980 - Interessanta skalbaggsfynd 5 (Coleopte-
ra). End. Tidskr ; Lund, 101: 99-106.
Bedel., 1989-1901- Faune des Coléoptères du Bassin de la Seine.
Soc. ent. Fr., 4: 1-423.
Begon M., Harper J.L. & Townsend C.R., 1989 - Ecologia. Indi¬
vidui. popolazioni, comunità. Zanichelli , Bologna: I-XIII + 1-
854.
Berger W. H. & Parker F.L., 1970 - Diversity of Planktonic Fo-
raminifera in Deep-Sea Sediments. Science , 168: 1345-1347.
Berti N. & Rapilly M., 1976 - Faune d’Iran. Liste d’especes et re-
vision du Genre Lilioceris Reitter (Col, Chrysomelidae). Ann.
Soc. ent. Fr. (N. S.), 12 (I): 31-73.
Biondi M., 1990 - Elenco commentato dei Crisomelidi Alticini
della fauna italiana (Coleoptera). Fragni. Entomol., Roma, 22
(1): 109-183.
Biondi M„ Daccordi M., Regalin R„ & Zampetti M., 1994 -
Coleoptera Polyphaga XV (Chrysomelidae, Bruchidae). In
Minelli A., Ruffo S. & La Posta S. (eds.). Checklist delle specie
della fauna italiana, 60. Calderini , Bologna, 1-34.
Bourdonné J-C. & Doguet S„ 1991 - Données sur la biosysté-
matique des Chrysolina 1. s. (Coleoptera: Chrysomelidae:
Chrysomelinae). Ànn. Soc. ent. Fr. (N. S.), 27 (I): 29-64.
Burlini M., 1955 - Revisione dei Cryptocephalus italiani e della
maggior parte delle specie di Europa (Col. Chrysomelidae).
Meni Soc. ent. It., Genova, 34: 5- 287.
Corti M. & Loy A., 1985 - Morfometria multivariata e variazione
geografica. Biogeographia, 11: 91-113.
Doguet S., 1993 - Réhabilitation de Longitarsus helvolus Kut-
schera 1863 , espece distincte de Longitarsus membranaceus
(Foudras 1860) (Col. Chrysomelidae). Ent. gali. 4(2/3): 45-46.
Doguet S., 1994 - Coléoptères Chrysomelidae, voi 2: Alticinae.
Faune de France, 80: 1-696.
Doguet S., Bastazo G., Bergeal M„ Vela J. M., 1996 - Contri-
bution à l’étude des Chrysomelidae d’Andalousie (Coleopte¬
ra). Nuov. Revue Ent. (N.S.), 13 (4): 315-323.
Gruev B. & Tomov B., 1984 - Coleoptera Chrysomelidae Part 1:
Orsodacninae, Zeugophorinae, Donaciiinae, Criocerinae, Cly-
trinae, Cryptocephalinae, Lamprosomatinae, Eumolpinae.
Fauna Bilgariae. Acad. Scient. Bulg., Sofia, 13: 1-220.
Gruev B. & Tomov V, 1986 - Coleoptera, Chrysomelidae Part 2:
Chrysomelinae, Galerucinae, Alticinae, Hispinae, Cassidinae.
Fauna Bulgariae. Acad. Scient. Bulg., Sofia, 16: 1-387.
Heikertinger F, 1910 - Chalcoides aurata nov. var. peloponnesia¬
ca Heikert... Verh. zool. hot. Ges. Wien, 60: (54).
Kippenberg H., 1994 - 88. Familie:Chrysomelidae in Ergànzungen
und Berichtigungen zu Freude-Harde-Lohse «Die Kàfer Mit-
teleuropas». Goecke & Evers, Krefeld. Band 9 (1966). 3 Sup-
plementband.: 17-142.
Konstantinov A.S. & Vandenberg N.J., 1996 - Handbook of Pa-
learctic Flea Beetles (Coleoptera: Chrysomehidae: Alticinae).
Contrib. on Entom., International, Gainesville: 237-439.
■ Lambshead P.J.D., Platt H.M. & Shaw K.M., 1983 - The detec¬
tion of differences among assemblages of marine benthic spe-
cies based on an assessment of dominance and diversity.
Journ. of Nat. Hist., London, 17: 859-874.
Leonardi C., 1971 - Considerazioni sulle Psylliodes del gruppo
napi e descrizione di una nuova specie (Coleoptera Chryso¬
melidae). Atti Soc. ital. Sci. nat. Mus. civ. Stor. nat., Milano, 112:
485-533.
Lison L., 1961 - Statistica applicata alla biologia sperimentale. Ca¬
sa Editrice Ambrosiana, Milano: 1-381.
Lopatin I.K., 1977 - Zhuki-Listoedy (Chrysomelidae) Srednei
Azii i Kazakhstana. Nauka, Leningrad: 1-269.
Medvedev L.N., 1982 - Chrysomelidae of thè Mongolian People’s
Republic: identification key. Nauka, Moscow: 1-302.
Medvedev L.N., 1986 - Chrysomelidae in «Identification key of
insects of thè Sovietic Far East». Nauka, S.Petersburg: 533-
602.
Mohr K.-H., 1966 - Chrysomelidae in «Die Kàfer Mitteleuropas»,
Band 9. Goecke & Evers, Krefeld: 95-299. Phànologie. Centro
Sperim. Agricoltura e Foreste, Trieste: 1-686.
Muller G., 1951-1953 - I Coleotteri della Venezia Giulia. II.Co-
leoptera Phytophaga. La Edit. Libraria, Trieste: 225-685.
Perner J., 1996 - Zur Phànologie und Biotopbindung ausgewàhl-
ter Flohkàfer (Coleoptera, Chrysomelidae, Alticinae). Verh.
des 14. Intern. Symposiums iiber Entomofaunistik in Mitteleu-
ropa, Miinchen: 247-260.
Pesarini E, 1986 - Imenotteri Sinfiti del Piano Pedemontano in
Lombardia IL Note ecologiche. Memorie Soc. ent. ital., Geno¬
va, 64: 73-92.
Ruffo S., 1938 - Studi sui Crisomelidi. Boll. Ist. ent. Univ. Bologna,
10: 178-222 + 3 tavv.
Steinhausen W., 1950 - Vergleichende Morphologie, Biologie und
Òkologie der Entwicklungsstadien der in Niedersachsen hei-
mischen Schildkàfer (Cassidinae Chrysomelidae Coleoptera)
und deren Bedeutung fiir die Landwirtschaft. Diss. Tech. Ho-
chsch. Carolo-Wilh. Braunschweig : 69 pp, 8 pi..
Suffrian E., 1847 - Revision der Europàischen Arten der Gat-
tung Cryptocephalus. Linn. Ent., 2: 1-194.
Vigna Taglianti A., Audisio P.A., Belfiore C., Biondi M., Bo¬
logna M. A., Carpaneto G. M., De Biase A., De Felici S.,
Piattella E., Racheli T., Zapparoli M. & Zoia S. - 1992 -
Riflessioni i gruppo sui corotipi fondamentali della fauna W-
paleartica ed in particolare italiana. Biogeographia, 16: 159-
179.
Warchalowski A., 1969 - lìdie Systematik und Verbreitung eini-
ger westpalàarktischer Longitarsus- Arten (Coleoptera Chry¬
somelidae). Polskie Pismo Entom., Wroclaw, 39 (3): 515-527.
Warchalowski A., 1978 - Klucze do Oznaczania owadow Polski,
Cz. XIX, Ze. 94c: Stonkowate Chrysomelidae, Podrodziny
Halticinae, Hispinae, Cassidinae. Polskie Towarz. Entom.,
Warszawa, nr. 105 serii kluczy: 1-157.
Warchalowski A., 1991 - Chrysomelidae (Insecta Coleoptera)
Part IL (podrodziny: Clythrinae i Cryptocephalinae). Fauna
Polski. Tom 13, Warszawa:l-347.
Weise J., 1893 - Coleoptera. In: Erichson W.F. (Nicolaische Ver-
lags-Buchhandlung), Naturgeschichte der Insekten Deutsch-
lands, 1, 6: 1-1161.
Carlo Leonardi: Museo Civico di Storia Naturale, Corso Venezia 55, 20121 Milano
Davide SassùVia San Rocco 17, 22030 Castelmarte
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
..
Carlo Pesarini
I Curculionidi in senso lato (Coleoptera Attelabidae,
Apionidae e Curculionidae) del Monte Barro
(Italia, Lombardia, Lecco)
Riassunto - Col presente lavoro sono forniti i dati relativi alla popolazione curculionidica del Monte Barro, come risul¬
tato di una ricerca condotta negli anni 1989-1992 dal Museo di Storia Naturale di Milano. Le raccolte sono state effettuate
prevalentemente in 9 stazioni prative. Vengono analizzate le caratteristiche biogeografiche della popolazione curculionidi¬
ca, 9 specie ( Nanophyes annulatus, Apion armatum, A. flavimanum, A. filirostre, A. ebeninum, Thamiocolus signatus, Coelio¬
des dryados, Miarus distinctus, Miarus micros) sono segnalate come nuove per la Lombardia e si ribadisce la presenza in Ita¬
lia di Polydrusus corruscus.
Abstract - Weevils (Coleoptera Attelabidae, Apionidae and Curculionidae) from Monte Barro (Italy, Lombardy, Lec¬
co).
In thè present work data concerning thè weevil-fauna of Monte Barro are given, as result of a research carried out by
thè Naturai History Museum of Milano in thè years 1989-1992. Samplings have been largely addressed to thè study of mea-
dows and 9 sampling sites have been chiefly investigated. The biogegraphic pattern of thè weevil-population is analyzed, 9
species ( Nanophyes annulatus, Apion armatum, A. flavimanum, A. filirostre, A. ebeninum, Thamiocolus signatus, Coeliodes
dryados, Miarus distinctus, Miarus micros ) are recorded for thè first time from Lombardy, and thè presence in Italy of Poly¬
drusus corruscus is confirmed.
Key words: Monte Barro, Curculionidae, geographic distribution.
Le ricerche effettuate dal Museo di Storia Natura¬
le di Milano nel corso di quattro campagne annuali di
raccolta hanno fornito un quadro assai ampio e, nei
limiti del possibile, verosimilmente completo della
fauna curculionidica del M. Barro. Tale risultato è sta¬
lo possibile grazie anche agli elementi aggiuntivi che
hanno permesso di integrare la già ricca massa di da-
}ti prodotta dalle ricerche di Davide Sassi e Carlo
Leonardi. Tali elementi sono stati forniti dal lavoro
csvolto, nell’ambito di una tesi di laurea da me coordi¬
nata, dalla Dr.ssa Laura Bonini.
Osservazioni sulle stazioni di raccolta
Le raccolte sono state effettuate prevalentemente
in 9 stazioni prative, le cui caratteristiche ambientali
sono state ampiamente analizzate nel contributo di
Banfi, Galasso & Sassi, in questo stesso volume. Ul¬
teriori stazioni di raccolta, ispezionate soprattutto da
Laura Bonini e da Davide Sassi, sono state riunite,
nel quadro d’insieme, in una sorta di stazione cumu¬
lativa indicata con il numero 10.
Qui di seguito è data una breve descrizione delle
■stazioni 1-9 e sono indicate le specie esclusive (speci¬
ficità) per ciascuna stazione; le specie contrassegnate
da un asterisco pur non essendo state rinvenute in
nessun’altra fra le nove stazioni considerate risultano
presenti in uno o più dei biotopi riuniti al numero 10.
Stazione 1: Località Piani di Barra, 610 m, esp. W,
■ .
interessata da scavi archeologici (Grande Edificio). È
caratterizzata da una consistente presenza di prato
falciabile che indica una attività di foraggio residua.
Specificità: Lixus bardanae , Dorytomus taenicitus.
Stazione 2: Località Piani di Barra, 600 m, esp. W,
interessata da scavi archeologici (Edificio II). Si trat¬
ta di una prateria in cui è stata abbandonata la ge¬
stione a foraggio, vi è quindi presente un leggero
mantello. Specificità: Attelabus nitens*, Thamiocolus
signatus, Coeliodes dryados, Tychius longicollis *,
Rhynchaenus signi fer*.
Stazione 3: Conca prativa a monte del Monumento
dell’Alpino, 630 m, esp. W. Vi si nota la convivenza di
elementi di prateria, elementi di prato falciabile ed ele¬
menti di disturbo marginale. Specificità: Coenorhinus
aeneovirens*, Apion confluens, Apion flavimanum,
Apion oblivium, Apion holosericeum, Phyllobius etru-
scus*, Ceuthorhynchus cochleariae, Cionus thapsus.
Stazione 4: Località S. Michele, pendio in prossi¬
mità del sentiero per Pian Sciresa, 325 m, esp. E. Su
una base di Mesobromion è in pieno sviluppo il pra¬
to falciabile, che qui presenta il carattere oligo-meso-
trofico. Specificità: Otiorhynchus ovatus.
Stazione 5: Località Pian Sciresa, 435 m, esp. NE.
È un prato arido con montarozzi residui a brughiera;
per il resto il livello di base è costituito da prateria a
Brachypodium rupestre ssp. caespitosum. Specificità:
Apion subulatum, Sitona suturalis, Hypera venusta,
Micrelus ericae, Tychius polylineatus.
Stazione 6: Superfici prative lungo il sentiero del¬
la «Cresta occidentale», che dall’edificio dell’ex sana-
230
CARLO PESARINI
torio sale alla vetta, 750 m, esp. S. Si tratta di una pra¬
teria con parziale affioramento roccioso, fortemente
cespugliata e in via di chiusura, con forte influsso del-
relemento prenemorale (tendenza a un Quercetum
pubescenti s. 1.) Specificità: Apion aeneomicans ,
Apion cerdo, Apion opeticum , Magdalis exarata *, Ty-
chius junceus, Miarus rnicros.
Stazione 7: Località Fornaci Villa, in prossimità
deH'impluvio della Val Faè, 275 m, esp. NW. È una su¬
perficie prativa terrazzata all’interno del bosco meso¬
frio, molto simile a quella della stazione 8 ma più
aperta e con qualche elemento in più di Mesobro-
mion. Specificità: Apion rufirostre, Apion nigritarse,
Apion ebeninum, Polydrusus atomarius, Polydrusus
corruscus, Hypera nigrirostris , Hypera postica*.
Stazione 8: Località Fornaci Villa, in prossimità
deH’impluvio della Val Faè, 305 m, esp. NW. È un pra¬
to terrazzato irregolarmente gestito e contornato da
un bosco con notevoli contrassegni mesofili. Specifi¬
cità: Leiosoma concinnimi, Trichosirocalus rufulus.
Stazione 9: Località Ca’ di Sala, 226 m, sulla riva
settentrionale del bacino di Oggiono del Lago di An¬
none. Vi si evidenziano tre aspetti essenziali: 1) il can¬
neto, con accenni di aggruppamento a Iris pseudoa-
corus , elementi di magnocariceto e residui di bosca¬
glia ripariale 2) prato umido oligotrofico ( Molinion
coeruleae ); 3) vegetazione erbacea perenne e disor¬
ganizzata al margine superiore della stazione. Specifi¬
cità: Nanophyes marmoratus, Nanophyes annulatus,
Lepyrus capucinus, Hylobius transversovittatus, Rhi-
noncus perpendicularis, Pelenomus comari, Tapinotus
sellatus, Limnobaris t-album, Tychius meliloti, Dory-
tomus rufatus, Notaris scirpi, Rhynchaenus salicis.
Elenco delle specie raccolte
In tale elenco si è seguito l’ordine adottato nel re¬
cente lavoro di Abbazzi & Osella (1992) sulla curcu-
lionidofauna italiana, includendovi le famiglie Attela-
bidae, Apionidae e Curculionidae. Di tale lavoro so¬
no state seguite nel complesso anche le scelte siste¬
matiche, con l’unica eccezione di rilievo costituita dal
mantenimento del senso tradizionale del genere
Apion , che nel citato lavoro viene suddiviso in 39 ge¬
neri distinti, ai quali qui viene assegnato invece il ran¬
go più tradizionale (e che personalmente ritengo più
adeguato nella stragrande maggioranza dei casi) di
semplici sottogeneri.
Delle specie censite, 9 risultano nuove per la fau¬
na lombarda.
Lasiorhynchites (Coccigorhynchites) sericeus (Herbst)
Presenza in Italia: tutta Italia e Sicilia.
Piante ospiti: diverse specie del genere Quercus.
Due reperti sul versante meridionale verso Sella
d. Pila: 13. VI. 1990, lg. Bonini (su Quercus ); 30.V.1990,
lg. Sassi (su Quercus).
Coenorliinus (Pselaphorhynchites) nanus (Paykull)
Corotipo: Sibirico-Europeo (SIE)
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Trentino-Alto Adige, Friuli-Venezia Giulia,
Emilia-Romagna, Toscana, Campania, Basilicata, Ca¬
labria.
Piante ospiti: in prevalenza salici ( Salix ), ma anche
Betula e Alnus.
Due esemplari raccolti a giugno nelle staz. 2 e 6.
Coenorhinus ( Pselaphorhynchites ) tomentosus (Gyl-
lenhal)
Corotipo: Sibirico-Europeo (SIE)
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: in prevalenza salici (Salix), più di ra¬
do Populus.
Due esemplari raccolti a maggio e giugno nelle
staz. 2, 4, 5 e 6.
Coenorhinus (s.str.) germanicus (Herbst)
Corotipo: Sibirico-Europeo (SIE)
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: diverse Salicacee e Rosacee.
Svariati reperti singoli in maggio e giugno nelle
stazioni 1, 2, 3, 5, 6, in un prato attiguo alla stazione 4,
presso la stazione di osservazione ornitologica e sot¬
to la vetta.
Coenorhinus (s.str.) aeneovirens (Marsham)
Corotipo: Europeo (EUR)
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Trentino -Alto Adige, Friuli-Venezia Giulia,
Emilia-Romagna, Toscana, Umbria, Marche, Lazio,
Abruzzo, Campania, Puglie.
Piante ospiti : in prevalenza querce (Quercus), ma
anche Rosacee.
Due esemplari raccolti a maggio nella staz. 3 e in
un prato della vai Faè vicino alla stazione 7.
Coenorhinus (s.str.) aequatus (Linneo)
Corotipo: Europeo (EUR)
Presenza in Italia: tutta Italia.
Piante ospiti: diverse Rosacee arboree e arbustive.
Due reperti (24.IV.1990, lg. Sassi, boschi della vai
Faè nei pressi della staz. 7; 13.VI.1990, lg. Bonini, a
sud della vetta sopra la stazione di osservazione orni¬
tologica)
Rhynchites (Involvulus) aethiops (Bach)
Corotipo: Europeo (EUR)
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: Helianthemum nummularium.
Rinvenuto, spesso in numerosissimi esemplari,
sulla sua pianta ospite, nelle stazioni 3, 4, 5 e 6, sopra
la stazione di osservazione ornitologica e presso la
vetta, fra maggio e luglio, con un marcato picco di
maggiore abbondanza in giugno.
Apoderus coryli (Linneo)
Corotipo: Sibirico-Europeo (SIE)
Presenza in Italia: tutta Italia.
Piante ospiti: in prevalenza nocciolo (Corylus
avellana), ma anche Alnus e Betula.
Rinvenuto svariate volte, ma in pochi esemplari,
nelle stazioni 1, 2, 4, 5, 6 e sul versante meridionale,
lungo un sentiero che dall’eremo conduce alla sella
della Pila, fra maggio e luglio, con maggiore frequen¬
za in maggio.
Attelabus nitens (Scopoli)
Corotipo: Sibirico-Europeo (SIE)
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: in prevalenza querce (Quercus), ma
anche Castanea.
Un reperto nella stazione 2 (24.6.1990, lg. Sassi) e
uno sul versante meridionale, lungo un sentiero che
dall’eremo conduce alla Sella della Pila (30. V. 1990,
lg. Sassi).
I CURCULIONIDI IN SENSO LATO (COLEOPTERA ATTELABIDAE. APIONIDAE E CURCULIONIDAE) DEL MONTE BARRO
231
Nanophyes annulatus Aragona
Corotipo: Mediterraneo (MED)
Presenza in Italia: Liguria, Piemonte, Veneto, Tren¬
tino-Alto Adige, Friuli-Venezia Giulia, Emilia-Roma¬
gna, Toscana, Lazio, Abruzzo, Campania, Calabria, Si¬
cilia. La specie risulta nuova per la Lombardia.
Piante ospiti: Lythrum salicaria.
Due soli esemplari provenienti dalla staz. 9, rac¬
colti il 25.V.1990 e il 6.VII.1990.
Nanophyes marmoratus (Goeze)
Corotipo: Sibirico-Europeo (SIE)
Presenza in Italia: tutta Italia.
Piante ospiti: Lythrum salicaria.
Numerosi esemplari provenienti dalla staz. 9, rac¬
colti il 24.V.89, il 16.V.1990 ed il 15.VI.1990.
Apion (Ceratapion) armatum Gerstàcker
Corotipo: Centroeuropeo (CEU)
Presenza in Italia: Liguria, Piemonte, Veneto, Friu¬
li-Venezia Giulia, Lazio, Abruzzo, Campania, Cala¬
bria. La specie risulta nuova per la Lombardia.
Piante ospiti: Centaurea spp.
Numerosi esemplari provenienti dalle stazioni 2,4,
5 e 7 e sul versante meridionale, ai margini di un sen¬
tiero che dall’eremo va alla Sella della Pila, raccolti fra
fine aprile (25. IV) e oltre metà settembre (20.IX).
Apion ( Ceratapion ) onopordi Kirby
Corotipo: Centroasiatico-Europeo (CAE)
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: Asteraceae della tribù Cynareae.
Particolarmente abbondante nella staz. 9, ma rin¬
venuto anche nelle staz. 1, 2, 3, 4, 5, 8, ai margini di un
sentiero a nord-ovest dei Piani di Barra e in un prato
presso Camporeso da fine marzo a settembre.
Apion (Diplapion) confluens Kirby
Corotipo: Europeo-Mediterraneo (EUM)
Presenza in Italia: Piemonte, Val d’Aosta, Lom¬
bardia, Trentino-Alto Adige, Friuli-Venezia Giulia,
Toscana, Umbria, Lazio, Puglia, Basilicata, Calabria,
Sicilia, Sardegna.
Piante ospiti: specie dei generi Matricaria e Anthemis.
Due reperti in staz. 3 (9.V.1990, lg. Sassi;
16.V.1991, leg. Bonini).
Apion (Aspidapion) aeneum (Fabricius)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie dei generi Malva e Althaea.
Alcuni esemplari raccolti nelle stazioni 1, 2 e 3 in
maggio e giugno.
Apion (Squamapion) atomarium Kirby
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Italia settentrionale, Toscana,
Abruzzi, Sardegna.
Piante ospiti: specie del genere Thymus.
Alcuni esemplari rinvenuti da maggio a settembre
nelle staz. 3, 4 e 5.
Apion ( Squamapion ) flavimanum Gyllenhal
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Veneto, Trentino- Al¬
to Adige, Friuli-Venezia Giulia, Emilia-Romagna, To¬
scana, Sicilia, Sardegna. La specie risulta nuova per la
Lombardia.
Piante ospiti: specie del genere Mentila.
Un esemplare proveniente dalla staz. 3 (19.V.1991,
lg. Bonini).
Apion ( Squamapion ) minutissimum Rosenhauer
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Lazio, Toscana.
Piante ospiti: specie del genere Thymus.
Tre esemplari, raccolti in differenti località e date:
staz. 2, 19.V.1991, lg. Leonardi, staz. 3, 14.III. 1990, lg.
Leonardi, e in un prato della Val Faè prossimo alla
staz. 7, 25.IV.1990, lg. Sassi.
Apion ( Squamapion ) oblivium Schilsky
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Piemonte, Lombardia.
Piante ospiti: specie del genere Thymus.
Un solo esemplare raccolto nella staz. 3
(20.IX.1989, lg. Leonardi).
Apion (Taeniapion) urticarium (Herbst)
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: Unica dioica.
Alcuni esemplari raccolti nelle staz. 3, 4 e 9 fra fi¬
ne marzo e metà giugno.
Apion ( Pseudapion ) rufirostre (Fabricius)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: Malva sylvestris e neglecta.
Tre esemplari raccolti nella staz. 7 (V.1992, lg. Sassi).
Apion ( Trichopterapion ) holosericeum Gyllenhal
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: noto di gran parte d’Italia e Sicilia.
Piante ospiti: Carpinus betulus e orientalis.
Alcuni esemplari raccolti nella staz. 3 (19.V.1991,
lg. Bonini).
Apion (Exapion) difficile Herbst
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Italia settentrionale, Toscana,
Lazio, Abruzzi, Puglia, Calabria.
Piante ospiti: specie del genere Genista.
Svariati esemplari raccolti fra metà maggio e fine
giugno nelle staz. 1, 2, 5 e 6 e ai margini di un sentie¬
ro a nord-ovest dei Piani di Barra.
Apion ( Exapion ) formaneki Wagner
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Italia settentrionale, Toscana,
Abruzzi, Campania, Puglia, Basilicata.
Piante ospiti: specie dei generi Genista e Cytisus.
Svariati esemplari raccolti in maggio e giugno nelle
staz. 2, 3, 4, 5 e 6, ai margini di un sentiero a nord-ovest
dei Piani di Barra e nei prati sotto la Sella della Pila.
Apion (Protapion) filirostre Kirby
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Liguria, Piemonte, Friuli-Vene¬
zia Giulia, Emilia- Romagna, Toscana, Umbria, Lazio,
Campania. La specie risulta nuova per la Lombardia.
Piante ospiti: specie del genere Medicago.
Due singoli esemplari raccolti nelle stazioni 1 e 7
(rispettivamente il 19.V.1991 ed il 16.V.1990, lg. Leo¬
nardi).
232
CARLO PESARINI
Apion (Protapion) nigritarse Kirby
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Trifolium.
Un solo esemplare raccolto nella staz. 7
(16.V.1990, lg. Leonardi).
Apion ( Protapion ) fulvipes Geoffroy
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie dei generi Trifolium, Medica-
go e Ononis.
Numerosi esemplari raccolti fra fine aprile e giu¬
gno nelle staz. 1, 2, 3, 4, 5, 6. 7 e 9, in un prato vicino
alla staz. 7 e in un prato vicino a Camporeso.
Apion ( Protapion ) trifolii (Linneo)
Corotipo: Paleartco (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Trifolium.
Numerosi esemplari raccolti in tutte le stazioni in
maggio e giugno.
Apion ( Protapion ) interj ectum Desbrochers
Corotipo: Mediterraneo (MED).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: prevalentemente Trifolium monta-
num ; indicata anche Ononis repens.
Due singoli esemplari raccolti nelle staz. 2 e 3 (ri¬
spettivamente 19.V.1991 e 20.IX.1989, lg. Leonardi).
Apion (Protapion) apricans Herbst
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: Trifolium pratense.
Svariati esemplari raccolti fra fine aprile e metà
giugno nelle staz. 1-8 e nei boschi della Val Faè.
Apion (Protapion) ononicola Bach
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Ononis.
Alcuni esemplari raccolti fra metà maggio e giu¬
gno nelle staz. 2 e 6, ai margini di un sentiero che dal-
l’eremo porta alla Sella della Pila e nell’area a nord-
ovest dei Piani di Barra.
Apion (Protapion) assimile Kirby
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Trifolium.
Numerosi esemplari raccolti da marzo a giugno
nelle staz. 1-9, ai margini di un sentiero a nord-ovest
dei Piani di Barra, in un prato vicino alla staz. 7, in un
prato presso Camporeso e in località S.Michele (in un
prato attiguo alla stazione 4).
Apion (Protapion) difforme Ahrens
Corotipo: W-Mediterraneo (WME).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Friuli-Venezia Giulia, Toscana, Umbria, La¬
zio, Basilicata, Sicilia, Sardegna.
Piante ospiti: specie del genere Trifolium.
Alcuni esemplari raccolti nel staz. 2 e 7 e nei bo¬
schi della Val Faè da fine maggio a metà giugno.
Apion (Protapion) varipes Germar
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Trifolium.
Alcuni esemplari raccolti nelle staz. 1, 3, 5 e 6 da
maggio a settembre.
Apion (Helianthemapion) aciculare Germar
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Liguria, Lombardia, Veneto,
Trentino-Alto Adige, Friuli-Venezia Giulia, Emilia-
Romagna, Toscana, Abruzzi.
Piante ospiti: specie dei generi Helianthemum, Tu¬
berà ria e Fumaria.
Numerosi esemplari raccolti da fine aprile a fine
maggio nelle staz. 1, 2 e 5, a Camporeso, in un prato
della Val Faè vicino alla staz. 7 e sul versante meri¬
dionale, ai margini di un sentiero che dall’eremo con¬
duce alla Sella della Pila.
Apion (Pseudostenapion) simum Germar
Corotipo. Europeo-Mediterraneo (EUM)
Presenza in Italia: Piemonte, Lombardia, Trenti¬
no-Alto Adige, Friuli-Venezia Giulia, Toscana, Mar¬
che, Lazio, Abruzzi, Campania, Basilicata, Sicilia.
Piante ospiti: specie del genere Hypericum.
Alcuni esemplari nelle stazioni 2 e 5 in maggio.
Apion (Perapion) curtirostre Germar
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Rumex.
Numerosi esemplari raccolti nelle staz. 1, 2, 4 e 5 e
in un prato attiguo alla staz. 4, fra fine marzo e inizio
luglio.
Apion (Perapion) violaceum Kirby
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Rumex.
Alcuni esemplari raccolti nelle staz. 1, 2, 4 e 5, e in
località S.Michele (in un prato attiguo alla stazione 4)
da fine marzo a inizio giugno.
Apion (s.str.) cruentatum Walton
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino- Alto Adige, Friuli-Venezia Giulia, Toscana,
Campania, Puglia, Calabria, Sicilia, Sardegna.
Piante ospiti: specie del genere Rumex.
Alcuni esemplari raccolti nelle staz. 2, 3, 4, 5, 7, 8 e
in località S.Michele (in un prato attiguo alla stazione
4) da fine marzo a settembre.
Apion (Catapion) seniculus Kirby
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: in prevalenza specie del genere
Trifolium ; vi sono però anche indicazioni relative ai
generi Medicago, Ononis, Vicia e Melilotus.
Numerosi esemplari raccolti quasi ovunque da
marzo a settembre.
Apion (Trichapion) simile Kirby
Corotipo: Paleartico (PAL).
Presenza in Italia: Italia settentrionale.
Piante ospiti: Betula penduta.
Alcuni esemplari raccolti nelle staz. 2, 4 e 5 fra
marzo e luglio.
I CURCULIONIDI IN SENSO LATO (COLEOPTERA ATTELABIDAE. APIONIDAE E CURCULIONIDAE) DEL MONTE BARRO
233
Apion ( Stenopterapion ) tenue Kirby
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Medicago.
Numerosi esemplari raccolti in marzo e aprile nel¬
le staz. 4, 7 e 8 e in località S.Michele (in un prato at¬
tiguo alla stazione 4).
Apion ( Ischnopterapion ) aeneomicans Wencker
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Lombardia, Veneto,
Friuli-Venezia Giulia, Umbria, Marche, Sicilia.
Piante ospiti: specie del genere Dorycninm.
Un unico reperto: staz. 6 (11. VI. 1990, lg. Bonini).
Apion (Ischnopterapion) loti Kirby
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie del genere Lotus.
Numerosi esemplari raccolti un po’ dovunque (la
specie risulta assente solo nelle staz. 8 e 9) da marzo
a luglio.
Apion ( Ischnopterapion ) virens Herbst
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Trifolium.
Numerosi esemplari raccolti fra marzo e giugno
nelle staz. 1, 3, 4, 7 e 8, in un prato attiguo alla staz. 4,
in un prato attiguo alla staz. 7 e in un prato vicino a
Camporeso.
I Apion (Synapion) ebeninum Kirby
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Piemonte, Veneto,
Trentino- Alto Adige, Friuli-Venezia Giulia, Abruzzi.
La specie risulta nuova per la Lombardia.
Piante ospiti: Fabacee dei generi Lotus , Onobry-
chis , Vicia, Astragalus e Trifolium.
Un unico esemplare raccolto nella staz. 7
(23.V.1991, lg. Bonini).
Apion ( Holotrichapion ) pisi Fabricius
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Medicago.
Numerosi esemplari raccolti da fine marzo a fine
maggio nelle staz. 1, 2, 4, 5, 7 e 9, in un prato attiguo
alla staz. 7, in un prato vicino a Camporeso e in loca¬
lità S.Michele (in un prato attiguo alla stazione 4).
Apion ( Hemitrichapion ) pavidum Germar
Corotipo: Paleartico (PAL).
Presenza in Italia: Italia settentrionale, Toscana,
Lazio, Puglia e Sicilia.
Piante ospiti: Coronilla varia.
Numerosi esemplari raccolti da marzo a giugno
nelle staz. 2 (dove la specie è particolarmente abbon¬
dante a metà giugno), 3, 4, 7 e 8, ai margini di un sen¬
tiero a nord-ovest dei Piani di Barra e, sul versante
meridionale, ai margini di un sentiero che dall’eremo
va alla Sella della Pila.
Apion (Cyanapion) gyllenhali Kirby
Corotipo: Europeo (EUR).
Presenza in Italia: segnalato di gran parte delle re¬
gioni Italiane e di Sicilia, ma non ancora noto di Lom¬
bardia.
Piante ospiti: specie del genere Vicia.
Un unico esemplare raccolto nella staz. 2
(16.V.1991, lg. Bonini).
Apion (Oxystoma) cerdo Gerstàcker
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Vicia.
Un unico esemplare raccolto nella staz. 6
(23.V.1991, lg. Bonini).
Apion ( Oxystoma ) subulatum Kirby
Corotipo: W-Paleartico (WPA).
Presenza in Italia: noto di gran parte d’Italia e Si¬
cilia.
Piante ospiti: specie del genere Lathyrus.
Un unico esemplare raccolto nella staz. 5
(23.V.1991, lg. Bonini).
Apion ( Oxystoma ) opeticum Bach
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale e centrale,
Basilicata, Calabria e Sicilia.
Piante ospiti: Lathyrus vernus.
Un unico esemplare raccoilto nella staz. 6
(23.V.1991,lg. Bonini)
Apion (Eutrichapion) gribodoi Desbrochers
Corotipo: S-Europeo (SEU).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Friuli-Venezia Giulia, Emilia-Romagna, Toscana,
Umbria, Lazio, Campania, Basilicata e Calabria.
Piante ospiti: Galega officinalis.
Due esemplari raccolti a nord-ovest dei Piani di
Barra (23.VI.1991, lg. Bonini).
Apion ( Eutrichapion ) ervi Kirby
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie dei generi Lathyrus e Vicia.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 1, 2, 3, 6, 7 e 8, ai margini di un sentiero a nord-
ovest dei Piani di Barra e in un prato presso Campo¬
reso.
Apion ( Eutrichapion ) viciae Paykull
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie dei generi Lathyrus e Vicia.
Alcuni esemplari raccolti in maggio nelle staz. 2, 3,
6 e 7 e in un prato presso Camporeso.
Otiorhynchus (s.str.) salicicola Heyden
Corotipo: Alpino.
Presenza in Italia: Italia settentrionale, Toscana.
Piante ospiti: specie verosimilmente polifaga.
Alcuni esemplari raccolti nelle staz. 3, 4, 7, 8 e nei
boschi della Val Faé in maggio e giugno.
Otiorhynchus (s.str.) vehemens Boheman
Corotipo: Alpino.
Presenza in Italia: Alpi e Prealpi occidentali, Ap¬
pennino settentrionale.
Piante ospiti: specie verosimilmente polifaga.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 2, 3, 6, 7 e 8, nei prati sotto Sella della Pila (m
700) e nei boschi della Val Faè.
234
CARLO PESARINI
Otiorhynchus (s. str.) frescati Boheman
Corotipo (SEU)
Presenza in Italia: Italia settentrionale e centrale,
Campania.
Piante ospiti: specie polifaga.
Un esemplare raccolto nella staz. 9 (15.VI.1990, lg.
Sassi) e uno in un prato della Val Faè vicino alla staz.
7 (25.IV.1990, lg. Sassi).
Otiorhynchus ( Dorymerus ) carmagnolae Villa
Corotipo: Alpino.
Presenza in Italia: Alpi e Prealpi biellesi e lombar¬
de.
Piante ospiti: specie verosimilmente polifaga.
Alcuni esemplari raccolti nelle staz. 2 e 5 e nei bo¬
schi della Val Faè in giugno e luglio.
Otiorhynchus (Toumieria) ovatus (Linneo)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana, Abruzzi.
Piante ospiti: specie polifaga.
Un unico reperto (staz. 4, 30.V.1989, lg. Sassi).
Homorhythmus hirticomis (Herbst)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie polifaga.
Numerosi esemplari raccolti in maggio e giugno
nelle staz. 1, 2, 5, 6 e 7, ai margini di un sentiero a
nord-ovest dei Piani di Barra e nei boschi della Val
Faè.
Phyllobius (Parnemoicus) subdentatus Boheman
ssp .roboretanus Gredler
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale e centrale.
Piante ospiti: Salicacee e Rosacee.
Numerosi esemplari raccolti nelle staz. 2, 3, 5, 6 e
9 e nei prati sotto Sella d. Pila (m 700) in maggio e
giugno.
Phyllobius ( Parnemoicus ) chloropus (Linneo)
Corotipo: Europeo (EUR).
Presenza in Italia: Valle d’Aosta, Piemonte, Lom¬
bardia, Trentino-Alto Adige, Emilia-Romagna, To¬
scana, Marche, Abruzzi, Lazio, Campania, Basilicata.
Piante ospiti: Alnus glutinosa e viridis.
Alcuni esemplari raccolti in maggio nelle staz. 1, 6
e 7 e nei boschi della Val Faè.
Phyllobius (s.str.) virideaeris Laicharting ssp .pada-
nus Pesarini
Corotipo: Alpino.
Presenza in Italia: Italia settentrionale.
Piante ospiti: Salicacee.
Alcuni esemplari raccolti nelle staz. 1, 2, 3 e 5 in
maggio e giugno.
Phyllobius (s.str.) pyri (Linneo) s. str.
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: la sottospecie nominale è diffu¬
sa in tutta l’Italia settentrionale e centrale.
Piante ospiti: Rosacee arboree o arbustive.
Numerosissimi esemplari raccolti un po’ dovun¬
que (la specie non è stata rinvenuta solamente nella
staz. 4) da aprile a giugno.
Phyllobius (s.str.) etruscus Desbrochers
Corotipo: Alpino-Appenninico.
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: Rosacee e Salicacee.
Alcuni esemplari raccolti in aprile e maggio nella
staz. 3 e in un prato della Val Faè vicino alla staz. 7.
Phyllobius (Dieletus) argentatus (Linneo) s.str.
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia.
Piante ospiti: Rosacee.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 2, 3, ai margini di un sentiero a nord-ovest dei
Piani di Barra e nei boschi della Val Faè.
Polydrusus (Metallites) marginatus Stephens
Corotipo: W-Europeo (WEU).
Presenza in Italia: tutta Italia
Piante ospiti: Rosacee.
Un esemplare raccolto nei boschi della Val Faè
(30. V. 1990, lg. Bonini).
Polydrusus (Metallites) atomarius (Olivier)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: regioni alpine e Appennino set¬
tentrionale.
Piante ospiti: Conifere.
Un esemplare raccolto nella staz. 7 (22.VI.1992, lg.
Leonardi).
Polydrusus (Tylodrusus) corruscus Germar, Figg. 1,5
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino- Alto Adige, Toscana.
Fig. 1 - Polydrusus corruscus Germar, cT.
I CURCULIONIDI IN SENSO LATO (COLEOPTERA ATTELABIDAE. APIONIDAE E CURCULIONIDAE) DEL MONTE BARRO
235
Piante ospiti: specie del genere Salix.
Un esemplare raccolto nella staz. 7 (23.V.1991, lg.
Bonini).
Osservazioni: singolarmente, questa specie risulta
esclusa dalla fauna italiana nel citato lavoro di Ab-
bazzi & Osella (1992), a dispetto delle precedenti se¬
gnalazioni di svariati autori. Tale esclusione non è da
attribuirsi ad una semplice svista, poiché essa viene
esplicitamente ribadita nel successivo lavoro di Ab-
bazzi. Osella, Calamandrei & Altea (1993), in cui P.
corruscus è elencato fra le specie che si ritengono er¬
roneamente segnalate d’Italia. Oltre al reperto relati¬
vo al M. Barro, ho personalmente raccolto in serie
questa specie anche nei dintorni di Lodi lungo la
sponde del fiume Adda su Salix (9.V.65). Essa si può
distinguere agevolmente dagli affini P pterygomalis
Boheman e Pflavipes (Degeer) in base ai seguenti ca¬
ratteri, già sottolineati in parte da precedenti autori:
1 Porzione dorsale delle tempie fortemente ed an¬
golosamente rilevata a ciascun lato, occhi relativa¬
mente grandi e poco convessi (Fig. 3). Elitre con
pubescenza biancastra discretamente lunga e den¬
sa, sollevata in modo netto anche nella porzione
basale . pterygomalis Boheman
- Porzione dorsale delle tempie debolmente e non
angolosamente rilevata, occhi più piccoli e con¬
vessi (figg. 4, 5). Pubescenza elitrale, nella porzio¬
ne basale, pressoché totalmente coricata . 2
2 Elitre con pubescenza formata da peli nerastri
nettamente sollevati sulla porzione apicale. Occhi
discretamente ma non fortemente convessi, a con¬
vessità uniforme (Fig. 4) . flavipes (Degeer)
- Elitre con pubescenza formata da peli biancastri
totalmente coricati su tutta la superficie. Occhi
fortemente convessi, a convessità leggermente ir¬
regolare (Fig. 5) . corruscus Germar
Polydrusus (Tylodrusus) pterygomalis Boheman,
Figg- 2, 3
Corotipo: sibirico-europeo (SIE).
Presenza in Italia: tutta Italia
Piante ospiti: diverse specie arboree di Fagales.
Un esemplare raccolto nei boschi della Val Faè
(23.V.1991, lg. Sassi).
Polydrusus (Eustolus) cervinus (Linneo)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie rizofaga allo stato larvale su
Dactylis glomerata.
Numerosi esemplari raccolti in maggio e giugno nel¬
le staz. 2, 3, 4, 5 e 6 e sul versante meridionale, ai mar¬
gini di un sentiero che dall’eremo va alla Sella della Pi¬
la.
Polydrusus ( Eustolus ) confluens Stephens
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Friuli-
Venezia Giulia, Emilia-Romagna.
Piante ospiti: specie dei generi Cytisus , Ulex e Ge¬
nista.
Alcuni esemplari raccolti nelle staz. 1, 3 e 5 in
maggio.
Figg. 3-5 - Capo visto di tre quarti di: 3) Polydrusus pterygomalis
Boheman; 4) P. flavipes (Degeer) e 5) P corruscus Germar.
Polydrusus (Thomsoneonymus) sericeus (Schaller)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia
Piante ospiti: specie polifaga.
Numerosi esemplari raccolti in tutte le stazioni
(ad eccezione delle staz. 1 e 8) da fine aprile a metà
giugno.
Liophloeus (s.str.) tessulatus (Muller) s.str.
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Piemonte, Valle d'Aosta, Lom¬
bardia, Veneto, Trentino-Alto Adige.
Piante ospiti: Heracleum sphondylium.
Due esemplari (staz. 5, 30.V.1991, lg. Leonardi, e
staz. 8, 16.V.1990, lg. Sassi).
Stasiodis parvulus (Fabricius)
Corotipo: Alpino- Appenninico.
Presenza in Italia: Liguria, Piemonte, Lombardia,
Trentino-Alto Adige, Emilia-Romagna, Toscana,
Umbria, Abruzzi.
236
CARLO PESARINI
Piante ospiti: Trifolium repens.
Numerosissimi esemplari raccolti in gran parte
delle stazioni (la specie non è stata rinvenuta nelle
staz. 7 e 9) in maggio e giugno.
Sciaphilus asperatus (Bonsdorff)
Corotipo: Centroeuropeo (CÉU).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino-Alto Adige, Toscana.
Piante ospiti: Primula officinali.
Un singolo esemplare raccolto nei boschi della Val
Faé (11. VI. 1991, lg. Bonini).
Strophosoma (s.str.) melanogrammum (Forster)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sardegna.
Piante ospiti: specie polifaga.
Numerosi esemplari raccolti a fine aprile e maggio
nelle staz. 1, 2, 5 e nei boschi della Val Faè.
Barynotus obscurus (Fabricius)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie polifaga.
Alcuni esemplari raccolti a maggio nelle staz. 2 e 6.
Sitona (s.str.) tibialis (Herbst)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia.
Piante ospiti: specie dei generi Cytisus, Genista e
Ulex.
Alcuni esemplari raccolti da fine marzo a fine
maggio nelle staz. 5 e 6, inoltre ai margini di un sen¬
tiero che va dall’eremo alla Sella d. Pila e in un prato
della Val Faè vicino alla staz. 7.
Sitona (s.str.) suturali Stephens
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia.
Piante ospiti: specie dei generi Vida e Lathyrus.
Un singolo esemplare raccolto nella staz. 5
(30.V.1991, lg. Leonardi).
Sitona (s.str.) sulcifrons (Thunberg) ssp.argutulus
Gyllenhal
Corotipo: S-Europeo (SEU).
Presenza in Italia: tutta Italia.
Piante ospiti: specie dei generi Trifolium e Medi-
cago.
Numerosi esemplari raccolti in tutte le stazioni da
marzo a settembre.
Sitona (s.str.) Jlavescens (Marsham)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia.
Piante ospiti: Papilionacee, soprattutto dei generi
Trifolium e Medicago.
Un esemplare raccolto nella staz. 5 (10. VI. 1991, lg.
Bonini) e uno nella staz. 9 (15. VI. 1990, lg. Sassi).
Sitona (s.str.) puncticollis Stephens
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: Papilionacee, soprattutto del genere
Trifolium.
Due esemplari raccolti il 10. VI. 1991 nella staz. 1
(lg. Leonardi) e nella staz. 2 (lg. Bonini).
Sitona (s.str.) humeralis Stephens
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia.
Piante ospiti: Papilionacee, soprattutto del genere
Medicago.
Alcuni esemplari raccolti nelle staz. 4, 5, 7, 9 e in
Località San Michele (in un prato attiguo alla stazio¬
ne 4) da fine marzo a giugno.
Sitona (s.str.) hispidulus (Fabricius)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia.
Piante ospiti: Papilionacee.
Alcuni esemplari raccolti nelle staz.l, 3, 7, 8 e in
località San Michele (in un prato attiguo alla stazio¬
ne 4) da marzo a giugno.
Pseudocleonus cinereus (Schrank)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: diverse Asteracee.
Un esemplare raccolto in un prato della Val Faé
prossimo alla staz. 7 (6.V.1990, lg. Sassi) e un altro nei
prati sotto Sella della Pila (m 700) (30.V.1990, lg. Sassi).
Pseudocleonus grammicus (Panzer)
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale.
Piante ospiti: Centaurea jacea.
Un esemplare raccolto nella staz. 2 (25. Vili. 1992,
lg. Sassi) ed uno nella staz. 3 (10.X.1991, lg. Leonardi).
Lixus (Dilixellus) bardanae (Fabricius)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia.
Piante ospiti: specie del genere Rumex.
Un unico reperto (staz. 1, 9.VI.1991, lg. Sassi)
Larinus (Larinorhynchus) stumus (Schaller)
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Cirsium , più di ra¬
do Carduus e Centaurea.
Alcuni esemplari raccolti nelle staz. 2, 3 e 9 da
maggio a ottobre.
Larinus (Larinomesius) obtusus Gyllenhal
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie del genere Centaurea.
Numerosi esemplari raccolti da maggio a settem¬
bre nelle staz. 1, 2, 3, 5, 6, ai margini di un sentiero a
nord-ovest dei Piani di Barra e ai margini di un sen¬
tiero che dall’eremo porta alla Sella della Pila.
Hypera zoilus (Scopoli)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie dei generi Trifolium e Medicago.
Tre esemplari raccolti nelle staz. 2, 3 e in località
San Michele (in un prato attiguo alla stazione 4) da
giugno a ottobre.
Hypera vidua (Gené), Fig. 6
Corotipo: Alpino.
Presenza in Italia: Liguria, Piemonte, Lombardia,
Trentino-Alto Adige, Toscana.
Piante ospiti: specie del genere Geranium.
I CURCULIONIDI IN SENSO LATO (COLEOPTERA ATTELABIDAE. APIONIDAE E CURCULIONIDAE) DEL MONTE BARRO
237
Fig. 6 - Hypera vidua (Gené), 8, habitus.
Quattro esemplari raccolti nella staz.2 (10.III.1991,
lg. Leonardi, 14.III.1990 e 10.X.1991 lg. Sassi) e un
esemplare nella staz. 5 (18.VI.1991, lg. Sassi).
Hypera nigrirostris (Fabricius)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia.
Piante ospiti: specie dei generi Trifolium e Ononis.
Un esemplare raccolto nella staz. 7 (23.V.1991, lg.
Bonini).
Hypera postica (Gyllenhal)
Corotipo: Olartico (OLA).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie dei generi Trifolium e Medi-
cago.
Due esemplari raccolti il 25.IV.1990 (lg. Sassi) nel¬
la staz. 7 e in un prato attiguo alla stessa.
Hypera venusta (Fabricius)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose specie di Papilionacee.
Quattro esemplari raccolti nella staz. 5 (16.V.1990
e 8.VII.1990, lg. Leonardi e Sassi).
Donus oxalidis (Herbst)
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale.
Piante ospiti: Petasites e Adenostyles.
Un esemplare raccolto nella staz. 2 (12. VII. 1992,
lg. Sassi), uno nella staz. 7 (23.V.1991, lg. Bonini), al¬
cuni esemplari nel bosco sottostante al monumento
dell’ Alpino e un altro nei boschi della vai Faè.
Donus intermedius (Boheman)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Piemonte, Lombardia, Trenti¬
no-Alto Adige, Friuli-Venezia Giulia, Emilia-Roma¬
gna, Toscana, Marche.
Piante ospiti: specie del genere Mentha.
Due esemplari raccolti nella staz. 1 (18. VI. 1991 e
10.X.1991, lg. Sassi), uno nella staz. 2 (12. VII. 1991, lg.
Sassi) ed uno nella staz. 4 (10.X.1990, lg. Leonardi).
Limobius borealis (Paykull)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Geranium.
Numerosissimi esemplari raccolti nelle staz. 1,2,4,
5 e 6 da marzo a giugno.
Lepyrus capucinus (Schaller)
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Trentino-Alto Adige, Emilia-Romagna, To¬
scana, Lazio.
Piante ospiti: specie polifaga.
Alcuni esmplari raccolti in giugno nella staz. 9.
Hylobius (Hylobitelus) transversovittatus (Goeze)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Lombardia, Trenti¬
no-Alto Adige, Emilia-Romagna, Toscana, Lazio,
Campania, Basilicata, Sicilia.
Piante ospiti: Lythrum salicaria.
Alcuni esemplari raccolti nella staz. 9 nei mesi di
maggio, giugno, settembre e ottobre (lg. Sassi).
Liparus (s.str.) dirus (Herbst)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Italia settentrionale e centrale.
Piante ospiti: specie del genere Laserpitium.
Numerosi esemplari raccolti a maggio nelle staz.
2, 5, 6 e 7, inoltre presso la vetta e lungo un sentiero
che dall’eremo va alla Sella della Pila.
Leiosoma concinnum Boheman
Corotipo: Alpino.
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino- Alto Adige, Toscana, Marche.
Piante ospiti: biologia sconosciuta.
Due esemplari raccolti nella staz. 8 (25.IV. 1990, lg.
Sassi e 16.V.1990, lg. Bonini).
Magdalis (Neopanus) cerasi (Linneo)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: Rosacee arboree ed arbustive.
Alcuni esemplari raccolti a maggio nelle staz. 8 e 9
e sul versante meridionale, ai margini di un sentiero
che dall'eremo va alla Sella della Pila.
Magdalis ( Neopanus ) exarata Brisout
Corotipo: Europeo (EUR).
Presenza in Italia: nota di gran parte delle regioni
d’Italia e di Sicilia, ma non mancora segnalata per la
Lombardia.
Piante ospiti: specie del genere Quercus.
Alcuni esemplari raccolti a maggio nella staz. 6 e
sotto la vetta del M. Barro
238
CARLO PESARINI
Acalles lemur (Germar)
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale e centrale,
Calabria.
Piante ospiti: specie polifaga.
Un unico esemplare raccolto nel sottobosco della
Val Faé (21.IX.1992).
Echinodera ( Ruteria ) hypocrita (Boheman)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie polifaga.
Due reperti (staz. 7, 21.V.1991, lg. Bonini; staz. 8,
25. V. 1990, lg. Sassi)).
Mononychus punctumalbum (Herbst)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: Iris pseudacorus.
Svariati esemplari raccolti in maggio e giugno nel¬
le staz. 6 e 9.
Rhinoncus (s.str.) bruchoides (Herbst)
Corotipo: Paleartico (PAL).
Presenza in Italia: noto di gran parte dell’Italia
settentrionale e centrale, Campania, Basilicata e Sar¬
degna.
Piante ospiti: specie del genere Polygonum.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 1, 2 e 4.
Rhinoncus (s.str.) pericarpius (Linneo)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Rumex.
Alcuni esemplari raccolti a maggio nelle staz. 1, 2,
4, 5 e 9.
Rhinoncus (Amalorhinoncus) perpendicularis (Rei-
che)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Polygonum.
Un unico reperto (staz. 9, 15.VI.1990, lg. Sassi).
Pelenomus comari (Herbst)
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Trentino-Alto Adige, Emilia-Romagna, To¬
scana.
Piante ospiti: svariate piante di diverse famiglie:
Lythrum salicaria, Comarum palustre, Alchemilla vul-
garis, Sanguisorba officinalis, Polygonum persicaria.
Un unico reperto (staz. 9, 30.III.1990, lg. Leonar¬
di).
Tapinotus sellatus (Fabricius)
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Friuli-Venezia Giulia, Emilia-Romagna, Toscana, Lazio.
Piante ospiti: Lysimachia vulgaris.
Un unico reperto (staz. 9, 15. VI. 1990, lg. Sassi).
Ceutorhynchus (s.str.) floralis (Paykull)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: svariate Brassicacee, ma soprattutto
Capsella bursa-pastoris.
Alcuni esemplari raccolti nelle staz. 1-5, da fine
marzo a maggio.
Ceutorhynchus (s.str.) erysimi (Fabricius)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: svariate Brassicacee, ma soprattutto
Capsella bursa-pastoris.
Alcuni esemplari raccolti nelle staz. 1, 2, 3 e 4,
presso l’Osservatorio ornitologico e ai margini di un
sentiero che dall’eremo porta alla Sella della Pila.
Ceutorhynchus (s.str.) contractus (Marsham)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: numerose specie di svariate famiglie,
soprattutto Brassicaee e Resedacee.
Numerosi esemplari raccolti nelle staz. 3, 4, 5, 7 e
8 da fine marzo a giugno.
Ceutorhynchus (s.str.) cochleariae (Gyllenhal)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: noto di gran parte d’Italia set¬
tentrionale e centrale, Basilicata.
Piante ospiti: numerose specie di Brassicacee.
Due reperti in staz. 3 (9.V.1990, lg. Sassi;
16.V.1991,lg. Bonini).
Ceutorhynchus (Glocianus) punctiger (Gyllenhal)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia.
Piante ospiti: Taraxacum officinale.
Alcuni esemplari raccolti nelle staz. 1, 2, 3 e 8 in
marzo e maggio.
Ceutorhynchus (Glocianus) distinctus Brisout
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: Asteracee dei generi Hypochoeris,
Crepis, Lactuca e Hieracium.
Alcuni esemplari raccolti a maggio nelle staz. 1, 2,
3 e 5.
Nedyus quadrimaculatus (Linneo)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: Unica dioica.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 2, 3, 5 e 9 e nei boschi della Val Faè.
Thamiocolus signatus (Gyllenhal)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Liguria, Piemonte, Veneto,
Trentino- Alto Adige, Friuli-Venezia Giulia, Lazio. La
specie risulta nuova per la Lombardia.
Piante ospiti: Stachys recta.
Alcuni esemplari raccolti nella staz. 2 tra il 23.V e
il 10. VI.
Trichosirocalus rufulus (Dufour)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Lombardia, Emilia-Romagna,
Toscana, Italia meridionale, Sicilia.
Piante ospiti: specie del genere Plantago.
Un unico reperto (staz. 8, 14.III.1990, lg. Leonardi).
Trichosirocalus troglodytes (Fabricius)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
CURCULIONIDI IN SENSO LATO (COLEOPTERA ATTELABIDAE, APIONIDAE E CURCULIONIDAE) DEL MONTE BARRO
239
Piante ospiti: Plantago lanceolata.
Alcuni esemplari raccolti da marzo a maggio nel¬
le staz. 3, 5 e 8.
Micrelus ericae (Gyllenhal)
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino-Alto Adige, Friuli-Venezia Giulia, Emilia-
Romagna, Toscana.
Piante ospiti: Calluna vulgaris.
Numerosi esemplari raccolti nella staz. 5 fra il
16.V e il 10. VI.
Zacladus geranii (Paykull)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Geranium.
Numerosissimi esemplari raccolti in maggio e giu¬
gno nelle staz. 1, 2, 4, 5, 6, 7, 8 e 9, presso l’Osservato-
rio ornitologico, a Camporeso, ai margini di un sen¬
tiero a nord-ovest dei Piani di Barra e nei boschi del¬
la Val Faè.
Coeliodes dryados (Gmelin)
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Piemonte, Trentino-Al¬
to Adige, Emilia-Romagna, Toscana, Umbria, Campa¬
nia, Puglia. La specie risulta nuova per la Lombardia.
Piante ospiti: Quercus robur e petraea.
Un unico reperto (staz. 2, 3.IV.1991, lg. Bonini).
Orobitis cyaneus (Linneo)
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino-Alto Adige, Emilia-Romagna, Toscana, La¬
zio, Abruzzi, Campania, Calabria.
Piante ospiti: specie del genere Viola.
Un unico esemplare raccolto nei boschi della Val
Faè (25.IV.1990, lg. Sassi).
Baris scolopacea Germar
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Toscana, Lazio, Campania, Sicilia, Sardegna.
Piante ospiti: Chenopodiacee.
Due soli reperti (staz 4, 8.VII.1990, lg. Sassi e staz.
5, 28.V.1990, lg. Bonini).
Limnobaris t-album (Linneo)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia.
Piante ospiti: Ciperacee.
Alcuni esemplari raccolti nella staz. 9 da marzo a
giugno.
Anthonomus (s.str.) rubi (Herbst)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia.
Piante ospiti: numerose specie di Rosacee.
Numerosi esemplari raccolti da aprile a giugno
nelle staz. 1, 2, 3, 4, 5, 6, 8, 9 e sul versante meridiona-
ì le, ai margini di un sentiero che va dalPeremo alla
I Sella della Pila.
Curculio glandium Marsham
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Quercus.
Alcuni esemplari raccolti in aprile e maggio nelle
staz. 2 e 5.
Curculio nucum Linneo
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia.
Piante ospiti: Corylus avellana.
Alcuni esemplari raccolti da maggio a luglio nelle
staz. 2 e 5.
Balanobius pyrrhoceras (Marsham)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: parassita di galle di Cinipidi su querce.
Alcuni esemplari raccolti nelle staz. 2, 5 e 6 e in un
prato della Val Faè vicino alla staz. 7.
Tychius (s.str.) meliloti Stephens
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Melilotus.
Alcuni esemplari raccolti fra il 9.V e 1T1.VI nella
staz. 9.
Tychius (s.str.) polylineatus (Germar)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Trifolium.
Un unico reperto (staz. 5, 23. V. 1991, lg. Bonini).
Tychius (s.str.) schneideri (Herbst)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: Anthyllis vulneraria.
Alcuni esemplari raccolti in maggio nelle staz. 5 e 6.
Tychius (s.str.) junceus (Reich)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: noto di gran parte dellTtalia
settentrionale e centrale, Basilicata, Sicilia.
Piante ospiti: specie dei generi Trifolium e Melilotus.
Un unico reperto (staz. 6, 23. V. 1991, lg. Bonini).
Tychius (s.str.) stephensi Schònherr
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: Specie del genere Trifolium, soprat¬
tutto T.pratense.
Numerosi esemplari raccolti nelle staz. 1, 2, 3, 4, 5,
6, 8 e 9 e nei boschi della Val Faè.
Tychius (s.str. ) longicollis Brisout
Corotipo: S-Europeo (SEU).
Presenza in Italia: tutta Italia.
Piante ospiti: Ononis repens.
Alcuni esemplari raccolti a maggio nella staz. 2 e
nei boschi della Val Faè.
Tychius (s.str.) picirostris (Fabricius)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Trifolium , soprat¬
tutto T. repens.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 3 e 5.
Tychius (s.str.) cuprifer (Panzer)
Corotipo: W-Paleartico (WPA).
240
CARLO PESARINI
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Trifolium.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 1, 2, 3 e 5 e in un prato presso Camporeso.
Sibinia viscariae (Linneo)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie dei generi Silene e Lychnis.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 1, 2, 3, 4 e 7.
Sibinia pellucens (Scopoli)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia.
Piante ospiti: Lychnis dioica.
Alcuni esemplari raccolti da maggio a luglio nelle
staz. 2, 3, 4 e 5 e nei boschi della Val Faè.
Dorytomus (s.str.) taeniatus (Fabricius)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: Salicacee.
Alcuni esemplari raccolti in maggio e giugno nel¬
la staz. 1.
Dorytomus (Olamus) rufatus (Bedel)
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Trenti¬
no-Alto Adige, Emilia- Romagna, Toscana, Abruzzi,
Molise.
Piante ospiti: specie del genere Salix.
Numerosi (25) esemplari raccolti nella staz. 9
(16.V.1990, lg. Leonardi). Oltre a questa serie, la spe¬
cie è stata raccolta nella medesima stazione solo in
tre esemplari (25.V.1990, lg. Sassi e 19.V.1991, lg. Leo¬
nardi), il che indica come la specie presenti verosi¬
milmente una comparsa massiccia e di breve durata,
discontinua da un anno all’altro.
Notaris (s.str.) scirpi (Fabricius)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Emilia-Romagna, Toscana, Umbria, Abruzzi, Molise,
Basilicata, Calabria, Sicilia.
Piante ospiti: Carex paludosa.
Un unico reperto (staz. 9, 25.V.1990, lg. Sassi).
Pachytychius (s.str.) sparsutus (Olivier)
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie dei generi Cytisus, Genista e
Ulex.
Numerosi esemplari raccolti in maggio e giugno
nelle staz. 5 e 6, inoltre lungo un sentiero a nord-ove¬
st dei Piani di Barra e nei prati intorno alla Sella d. Pi¬
la.
Rhynchaenus (s.str.) rufus (Schrank)
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Lombardia, Trenti¬
no-Alto Adige, Friuli-Venezia Giulia, Emilia-Roma¬
gna, Toscana, Lazio, Basilicata, Sardegna.
Piante ospiti: Ulmus campestris.
Un esemplare raccolto presso l’Osservatorio orni¬
tologico (13. VI. 1990, lg. Bonini) e uno nei prati verso
Sella della Pila (6. VII. 1990, lg. Sassi).
Rhynchaenus (Alyctus) signifer (Creutzer)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia.
Piante ospiti: specie del genere Quercus, soprat¬
tutto Q. robur.
Due esemplari raccolti nella staz. 2 (1 5. VI. 1990, lg.
Leonardi), uno nei prati sotto la Sella d. Pila
(30. V.l 990, lg. Sassi), e uno ai margini di un sentiero
che dall’eremo porta alla Sella della Pila (30. V. 1990).
Rhynchaenus (Tachyerges) salicis (Linneo)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia.
Piante ospiti: specie del genere Salix, soprattutto
Salix cinerea.
Un esemplare raccolto nella staz. 9 (24.VI.1989, lg.
Sassi).
Rhamphus pulicarius (Herbst)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Salix.
Due esemplari raccolti sul versante meridionale, sot¬
to Sella d. Pila (m 700) (6.V.1990 e 30.V.1990, lg. Sassi).
Mecinus janthinus (Germar)
Corotipo: Europeo (EUR).
Presenza in Italia: Noto di gran parte d’Italia, Sicilia.
Piante ospiti: specie del genere Linaria.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 2, 5 e 9.
Mecinus pyraster (Herbst)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: Plantago lanceolata.
Alcuni esemplari raccolti da marzo a giugno nelle
staz. 3, 4, 5 e 9 e nei boschi della Val Faè.
Mecinus circulatus (Marsham)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Plantago, soprat¬
tutto P. lanceolata.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 1, 9 e nei boschi della Val Faè.
Miarus (Miaromimus) graminis (Gyllenhal)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: noto di gran parte d’Italia.
Piante ospiti: specie del genere Campanula.
Alcuni esemplari raccolti in maggio nelle staz. 2,5,
6, 8 e 9 e in un prato presso Camporeso.
Miarus (Miaromimus) distinctus (Boheman)
Corotipo: Alpino-Appenninico.
Presenza in Italia: Piemonte, Veneto, Emilia-Ro¬
magna, Toscana, Basilicata. Risulta nuovo per la
Lombardia.
Piante ospiti: specie del genere Campanula.
Alcuni esemplari raccolti in giugno nelle staz. 2 e
6, ai margini di un sentiero a nord-ovest dei Piani di
Barra e presso l’Osservatorio ornitologico.
Miarus (Miaromimus) micros (Germar)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Piemonte, Veneto, Emilia-Roma¬
gna, Sicilia. La specie risulta nuova per la Lombardia.
I CURCULIONIDI IN SENSO LATO (COLEOPTERA ATTELABIDAE, APIONIDAE E CURCULIONIDAE) DEL MONTE BARRO
241
Piante ospiti: verosimilmente Campanulacee.
Un unico reperto (staz. 6, 23.V.1991, lg. Bonini).
Miarus (s.str.) campanulae (Linneo)
Corotipo: Paleartico (PAL).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Trentino- Alto Adige, Toscana, Lazio, Campa¬
nia, Calabria.
Piante ospiti: svariate Campanulacee.
Numerosi esemplari raccolti in aprile e maggio
nelle staz. 2, 5, 6 e 8, presso la vetta e ai margini di un
sentiero che dall’eremo porta alla Sella della Pila.
Gymnetron (s.str.) pascuorum (Gyllenhal)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia.
Piante ospiti: Piantalo lanceolata.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 1, 2, 5, 7, 9, presso la stazione di osservazione
ornitologica e nei boschi della Val Faè.
Gymnetron (Rhinusa) tetrum (Linneo)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Verbscum , più di
rado Scrophularia.
Alcuni esemplari raccolti in giugno nelle staz. 3 e 9.
Gymnetron ( Rhinusa ) antirrhini (Paykull)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie del genere Linaria.
Un reperto in staz. 2 e uno in staz, 5 (23. V. 1991, lg.
Bonini).
Gymnetron ( Rhinusa ) linariae (Panzer)
Corotipo: Europeo (EUR).
Presenza in Italia: noto di gran parte d’Italia set¬
tentrionale e centrale, Campania, Sicilia.
Piante ospiti: specie del genere Linaria.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 1, 2 e 5 e ai margini di un sentiero a nord-ove¬
st dei Piani di Barra.
Cionus tuberculosus (Scopoli)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia.
Piante ospiti: specie del genere Scrophularia.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 1, 2 e ai margini di un sentiero a nord-ovest dei
Piani di Barra.
Cionus olivieri Rosenschòld
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Verbascum, so¬
prattutto V. thapsus.
Alcuni esemplari raccolti in maggio e giugno nel¬
le staz. 4 e 5.
Cionus thapsus (Fabricius)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Piante ospiti: specie del genere Verbascum.
Tre esemplari raccolti nella staz. 3 (18.V.1991, lg.
Sassi).
Stereonychus fraxini (Degeer) s.str.
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: noto di gran parte d'Italia, Sicilia.
Piante ospiti: Fraxinus excelsior.
Alcuni esemplari raccolti a maggio nelle staz. 6, 7
e nei boschi della Val Faè.
Nella seguente tabella (Tabella 1) sono riuniti i
dati relativi alla presenza delle specie nelle diverse
stazioni. Nel numero 10 sono riunite le località del
Monte Barro collocate al difuori delle stazioni di rac¬
colta identificate con precisione; si tratta per lo più di
località site nei boschi della Val Faè; indicazioni più
dettagliate, peraltro, si possono ricavare dalla prece¬
dente trattazione delle singole specie.
Tabella 1 - Tabella riassuntiva delle specie raccolte.
242
CARLO PESARINI
I CURCULIONIDI IN SENSO LATO (COLEOPTERA ATTELABIDAE. APIONIDAE E CURCULIONIDAE) DEL MONTE BARRO
243
Considerazioni conclusive
Col presente lavoro vengono segnalate 166 specie
di Curculionidae (sensu lato) per la zona del M. Bar¬
ro. Come già accennato in apertura, si tratta di un
quadro sufficientemente ampio della fauna dell’area
in questione, anche se mancano alcuni elementi, sicu¬
ramente presenti, il cui campionamento avrebbe ri¬
chiesto tecniche di raccolta mirate, come ad esempio
le specie della tribù Cossonini, gli Acalles e più gene¬
ralmente le specie strettamente legate al terreno. Gli
elementi raccolti, peraltro, consentono di delineare
un quadro sicuramente significativo della fauna cur-
culioniodica, dal quale emerge una prevalenza di spe¬
cie mesoterme ad ampia distribuzione, come si può
rilevare dalla tabella 2, basata sulle categorie corolo¬
giche delle specie censite e dalla fig. 7, dove i corotipi
sono raggruppati per categorie sintetiche.
Tabella 2 - Spettro corologico delle specie raccolte.
Le sigle dei corotipi fondamentali sono ricavate dal
lavoro di Vigna Taglianti et al. (1991).
Per quanto riguarda il confronto fra le stazioni 1-
9 in base alle specie che vi sono presenti, utilizzando
l’indice di Dice/Sorensen e applicando la cluster
analysis secondo il metodo WPGMA si è ottenuto il
dendrogramma di somiglianza riportato in fig. 8. Pre¬
scindendo dalla contrapposizione fra la stazione 9 e
le rimanenti, abbastanza ovvia in considerazione del¬
le caratteristiche particolari di quel biotopo, si sepa¬
rano in primo luogo i due prati della Val Faè, proba¬
bilmente per via della loro esposizione fresca, e suc¬
cessivamente la stazione 6, che, oltre ad essere la più
xerotermica,si distingue fisionomicamente dalle altre
stazioni prative per la tendenza molto più spiccata al¬
la ricostruzione della foresta.
Medit.
1,81%
Fig. 7 - Corotipi raggruppati per categorie sintetiche.
Q
0.31 0.48 0.65 0.83 1.00
Fig. 8 - Dendrogramma di similarità fra le stazioni 1-9 basato sui
campionamenti di Curculionidi (indice di Dice/Sorensen + WPG¬
MA).
244
CARLO PESARINI
BIBLIOGRAFIA
Abbazzi P., Colonnelli E., Masutti L. & Osella G., 1995 -
Checklist delle specie della fauna italiana. 61. Coleoptera
Polyphaga XVI (Curculionoidea). Ed. Calderini, Bologna.
Abbazzi P. & Osella G., 1992 - Elenco sistematico-faunistico de¬
gli Anthribidae, Rhinomaceridae, Attelabidae, Apionidae,
Brentidae, Curculionidae italiani. I Parte. Redia , 75:267-427.
Abbazzi R, Osella G., Calamandrei S., Altea T., 1993 - Elen¬
co sistematico-faunistico degli Anthribidae. Rhinomaceridae,
Attelabidae, Apionidae, Brentidae, Curculionidae italiani. II
Parte. Redia, 75:179-221.
Caldara R., 1990 - Revisione tassonomica delle specie palearti¬
che del genere Tychius Germar (Coleoptera Curculionidae).
Metri. Soc. dal. Sci. Nat. Mus. civ. Stor. nat. Milano , Milano,
25:53-218.
Dieckmann L., 1972 - Beitrage zur Insektenfauna der DDR: Co¬
leoptera: Curculionidae, Cethorhynchinae. Beitr. Ent., 22:3-
128.
Dieckmann L., 1977 - Beitrage zur Insektenfauna der DDR: Co¬
leoptera Curculionidae (Apioninae). Beitr. Ent., 27:7 -143.
Pesarini G, 1980 - Le specie paleartiche della tribù Phyllobiini
(Coleoptera Curculionidae). Boll. Zool. agr. Bachic., 15:49-
230.
Porta A., 1932 - Fauna Coleopterorum Italica. Voi. V Rhyn-
chophora Lamellicornia. Piacenza.
Vigna Taglianti A., Audisio P.A., Belfiore G, Biondi M„ Bo¬
logna M.A., Carpaneto G.M., De Biase A., De Felici S.,
Piattella E., Racheli T., Zapparoli M. & Zoia S., 1992 -
Riflessioni di gruppo sui corotipi fondamentali della fauna W-
paleartica ed in particolare italiana. Biogeographia, 16: 159-
179.
Carlo Pesarini: Museo Civico di Storia Naturale di Milano, Corso Venezia 55, 20121 Milano
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
Fausto Pesarini
Gli Imenotteri Sinfiti (Hymenoptera Megalodontidae,
Cephidae, Argidae, Cimbicidae, Tenthredinidae)
del Monte Barro (Italia, Lombardia, Lecco)
Riassunto - L’autore presenta un elenco di 43 specie di Imenotteri Sinfiti censite nell’area del Monte Barro (Lecco). Il
materiale è stato raccolto nell’ambito di una ricerca entomofaunistica condotta dal Museo di Storia Naturale di Milano ne¬
gli anni 1989-1992. La maggior parte delle raccolte è stata effettuata in nove stazioni prative (staz. 1-9), 8 delle quali situa¬
te all’interno del parco regionale. Di ciascuna stazione è fornita una breve descrizione. Per ognuna delle specie censite si
forniscono i dati corologici e biologici essenziali e il numero di esemplari raccolti in ogni stazione con l’indicazione del ses¬
so. Due specie ( Tenthredo diana e Macrophya rufipes ) sono risultate nuove per la Lombardia.
Abstract - Sawflies (Hymenoptera Megalodontidae, Cephidae, Argidae, Cimbicidae, Tenthredinidae) from Monte Bar¬
ro (Italy, Lombardy, Lecco).
The author makes a list of 43 species of Hymenoptera Symphyta collected in thè area of Monte Barro (Lecco). The ma¬
terial has been sampled during a research accomplished by thè Naturai History Museum of Milano in thè years 1989-1992.
Nine sampling sites (eight of which placed inside thè Regional Park) have been especially investigated and briefly descri-
bed. For each sampled species biological and distributional data are given, together with thè number of both male (m) and
female (f) collected specimens.Two species ( Tenthredo diana and Macrophya rufipes ) are new for Lombardy.
Key words: Monte Barro, Symphyta, geographical distribution.
Nel corso delle campagne di raccolta sulla ento-
mofauna del Monte Barro, condotte dal Museo Civi¬
co di Storia Naturale di Milano negli anni 1989-1992,
sono stati campionati 136 esemplari di Imenotteri
Sinfiti appartenenti a 43 specie. Si tratta di un picco¬
lo contingente, che potrebbe certamente venire mol¬
to incrementato con ulteriori indagini. Pur con evi¬
denti lacune (quali ad esempio Punica specie, per di
più alquanto banale, di Nematinae), si può però con¬
siderare tale campione discretamente indicativo del¬
la fisionomia dell’ambiente indagato e della sinfito-
fauna relativa. È degna di nota, infatti, la notevole ali¬
quota di specie infeudate a poacee (almeno 13 su 43,
pari al 30,2 %), molte volte superiore all’analoga
quota (4,2 %) che si ottiene prendendo in esame l’in¬
tero complesso di specie europee di Sinfiti di cui è
nota le pianta ospite (Liston, 1995). Pur non potendo
escludere che abbiano avuto un’influenza non trascu¬
rabile, nella composizione del campione, le tecniche
di raccolta impiegate, nonché la stessa casualità (visto
il numero complessivamente modesto di specie censi¬
te), sembra però plausibile ricollegare tale dato ad
; elementi fisionomici propri delle biocenosi oggetto di
studio.
Nel complesso delle specie censite, due sono ri-
; sultate nuove per la Lombardia ( Tenthredo diana
Benson e Macrophya rufipes (L.)), mentre altre tre
( Sterictiphora angelicae (Panzer), Tenthredopsis d ti¬
bia Konow e Tenthredopsis palmata (Geoffroy)) era¬
no state segnalate, per la stessa regione, sotto altro
; nome.
Osservazioni sulle stazioni di raccolta
La maggior parte delle raccolte va riferita a 9 sta¬
zioni prative (staz. 1-9) di cui si riportano le caratteri¬
stiche ambientali ricavate dal contributo di Banfi,
Galasso & Sassi, in questo stesso volume. Altre sta¬
zioni sono state riunite, nella tabella riassuntiva (tab.
1), sotto il numero 10.
Stazione 1: Località Piani di Barra, 610 m, esp. W,
interessata da scavi archeologici (Grande Edificio). È
caratterizzata da una consistente presenza di prato
falciabile che indica una attività di foraggio residua.
Stazione 2: Località Piani di Barra, 600 m, esp. W,
interessata da scavi archeologici (Edificio II). Si trat¬
ta di una prateria in cui è stata abbandonata la ge¬
stione a foraggio, vi è quindi presente un leggero
mantello.
Stazione 3: Conca prativa a monte del Monumen¬
to dell’Alpino, 630 m, esp. W. Vi si nota la convivenza
di elementi di prateria, elementi di prato falciabile ed
elementi di disturbo marginale.
Stazione 4: Località S. Michele, pendio in prossi¬
mità del sentiero per Pian Sciresa, 325 m, esp. E. Su
una base di Mesobromion è in pieno sviluppo il pra¬
to falciabile, che qui presenta il carattere oligo-meso-
trofico.
Stazione 5: Località Pian Sciresa, 435 m, esp. NE.
È un prato arido con montarozzi residui a brughiera;
per il resto il livello di base è costituito da prateria a
Brachypodium rupestre ssp. caespitosum.
Stazione 6: Superfici prative lungo il sentiero del¬
la «Cresta occidentale», che dall’edificio dell’ex sana-
246
FAUSTO PESARINI
torio sale alla vetta, 750 m, esp. S. Si tratta di una pra¬
teria con parziale affioramento roccioso, fortemente
cespugliata e in via di chiusura, con forte influsso del¬
l’elemento prenemorale (tendenza a un Quercetum
pubescenti s. 1.)
Stazione 7: Località Fornaci Villa, in prossimità
deU’impluvio della Val Faè, 275 m, esp. NW. È una su¬
perficie prativa terrazzata all’interno del bosco meso¬
frio, molto simile a quella della stazione 8 ma più aper¬
ta e con qualche elemento in più di Mesobromion.
Stazione 8: Località Fornaci Villa, in prossimità
dell’impluvio della Val Faè, 305 m, esp. NW. È un pra¬
to terrazzato irregolarmente gestito e contornato da
un bosco con notevoli contrassegni mesofili.
Stazione 9: Località Ca’ di Sala, 226 m, sulla riva
settentrionale del bacino di Oggiono del Lago di An¬
none. Vi si evidenziano tre aspetti essenziali: 1) il can¬
neto, con accenni di aggruppamento a Iris pseudoa-
corus , elementi di magnocariceto e residui di bosca¬
glia ripariale 2) prato umido oligotrofico ( Molinion
coeruleae ); 3) vegetazione erbacea perenne e disor¬
ganizzata al margine superiore della stazione.
Elenco delle specie raccolte
Nell’elenco che segue si è adottato l’ordinamento
seguito nella recentissima check-list dei Sinfiti italia¬
ni di Masutti & Pesarini (1995).
Megalodontidae
Megalodontes cephalotes (Fabricius, 1781)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: regioni settentrionali, Toscana.
Piante osoiti: Apiacee del genere Peucedanum.
Staz.4: 10.VI.91, leg. Leonardi, 1 f; 18.VI.91, leg.
Sassi, 1 f. Staz. 5: 10.VI.90, leg. Sassi, 1 f. Staz. 7:
19.V.92, leg. Sassi, 1 f.
Megalodontes klugii (Leach, 1817)
= M. spissicornis (Klug, 1824)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: regioni settentrionali, Toscana.
Piante ospiti: Apiacee dei generi Laserpitium,
Peucedanum, Seseli.
1 f, 30.V.90, leg. Sassi, sul versante meridionale, ai
margini di un sentiero che va dall’eremo alla Sella
della Pila.
Cephidae
Cephus brachycercus Thomson, 1871
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: regioni settentrionali, Toscana,
Marche, Lazio, Sardegna.
Piante ospiti: sconosciute, con molta probabilità
poacee.
Staz. 1: 23.V.91, leg. Sassi, 1 f. Staz. 2: 23.V.91, leg.
Leonardi, 1 f. Staz. 4, 23.V.91, leg. Leonardi, 3 ff.
Cephus cultratus Eversmann, 1847
= C. pilosulus Thomson, 1871
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, Toscana e
Sicilia.
Piante ospiti: Poacee dei generi Phleum e Dactylis.
Staz. 1: 23.V.91, leg. Sassi, 1 m; 30.V.91, leg. Sassi, 1
m. Staz. 2: 10. VI. 91. leg. Leonardi, 1 f. Staz. 3: 30.V.91,
leg. Leonardi, 1 f.
Calameuta pallipes (Klug, 1803)
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Valle d’Aosta, Lom¬
bardia, Liguria, Calabria, Sardegna.
Piante ospiti: sconosciute, con molta probabilità
poacee.
Staz. 1: 30.V.91, leg. Leonardi, 1 f. Staz. 2: 15. VI. 89,
leg. Leonardi, 1 f; 10. VI. 91, leg. Leonardi, 1 m. Staz. 8:
19.V.92, leg. Sassi, 1 f.
Argidae
Sterictiphora angeliche (Panzer, 1799)
= S. furcata auctt., partim, nec Villers, 1789
Corotipo: Europeo (EUR).
Presenza in Italia: a lungo confusa con S. furcata
(Villers), l’unico dato Pubblicato era relativo all’Ap-
pennino Romagnolo (Pesarini & Campadelli, in
stampa). Ne ho potuti esaminare, in realtà, esemplari
provenienti da svariate regioni, ed è probabile che
molti dei reperti di S. furcata della letteratura siano
da assegnare a S. angelicae. Di Lombardia essa mi è
nota anche di Casiino al Piano (Pesarini, 1983, sub S.
furcata ) e di Mercallo (in coll. Museo di Milano).
Piante ospiti: sconosciute, probabilmente rosacee.
Staz. 1: 19.V.91, leg. Leonardi, 1 m.
Cimbicidae
Corynis obscura (Fabricius, 1775)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia e Sicilia.
Piante ospiti: probabilmente Geranium sylvati-
cum.
Staz. 6: 27. VI. 89, leg. Leonardi, 1 f 1 m.
Tentredinidae
Selandriinae
Brachytops flavens (Klug, 1814)
Corotipo: Olartico (OLA).
Presenza in Italia: nonostante l’enorme areale, per
il nostro Paese risulta segnalato solo di Piemonte,
Lombardia e Veneto.
Piante ospiti: Ciperacee del genere Carex.
Staz. 2: 9.IV.90, leg. Leonardi, 1 f 3 mm. Staz. 9:
15.VI.90, leg. Leonardi, 1 m.
Dolerus (Dicrodolerus) vestigialis (Klug, 1814)
Corotipo: Olartico (OLA).
Presenza in Italia: regioni settentrionali e peninsu¬
lari.
Piante ospiti: Equisetum palustre e sylvaticum.
Staz. 9: 19.V.91, leg. Leonardi, 1 f.
Dolerus (Poodolerus) gonager (Fabricius, 1781)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: regioni settentrionali, Toscana,
Lazio, Calabria.
Piante ospiti: Poacee dei generi Agrostis , Festuca ,
Po a.
Staz. 3: 19.V.91, leg. Leonardi, 1 f. Staz. 4: 30.III.90,
leg. Leonardi, 1 f; 23.V.91, leg. Leonardi, 1 f.
Dolerus (Poodolerus) niger (Linnaeus, 1767)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, Toscana,
Lazio, Campania e Calabria.
GLI IMENOTTERI SINFITI (HYMENOPTERA MEGALODONTIDAE, CEìPHIDAE. ARGIDAE. CIMBICIDAE. TENTHREDINIDAE)
247
Piante ospiti: poacee dei generi Avena, Hordeum.
Triticum.
Staz. 1: 23.V.91, leg. Sassi, 1 f.
Dolerus (Poodolerus) picipes (Klug. 1814)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, Marche,
Calabria.
Piante ospiti: Poacee dei generi Agrostis e Festuca.
Staz. 4: 23.V.91, leg. Leonardi, 1 f; 30.V.91, leg. Leo¬
nardi, 1 f. Staz. 5: 30.V.91, leg. Leonardi, 1 f.
Dolerus (Poodolerus) puncticollis Thomson, 1871
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, Toscana,
Calabria; mi è noto anche di Lazio, Abruzzo e Puglia
(Gargano).
Piante ospiti: sconosciute, con tutta probabilità
poacee.
Staz. 8: 14.III.90, leg. Sassi, 1 f.
Tenthredininae
Aglaostigma aucupariae Klug, 1814)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: regioni settentrionali, Toscana,
Lazio, Basilicata.
Piante ospiti: Galium mollugo e boreale.
Staz. 2: 19.V.91, leg. Leonardi, 1 m. Staz. 7:
21.IV.92, leg. Sassi, 1 f.
Aglaostigma fulvipes (Scopoli, 1763)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Lombardia, Trentino, Friuli,
Emilia-Romagna e Toscana; mi è noto anche di Pie¬
monte, Veneto, Liguria, Marche, Abruzzo e Calabria.
Piante ospiti: Galium.
Staz. 4: 30.III.90, leg. Sassi, 1 f.
Tenthredopsis dubia Konow, 1890
= T. picticeps auctt. nec Cameron, 1881
Corotipo: Europeo (EUR).
Presenza in Italia: da precisare, data l’estrema in¬
certezza sull’identità delle specie del genere Tenthre¬
dopsis Costa. Con i nomi di T. dubia Konow o pictice¬
ps Cameron risulta segnalata di Veneto, Emilia-Ro¬
magna e Abruzzo, ma è certamente molto più diffusa.
Di Lombardia mi era nota di Faloppio, Olgelasca, Ca-
priano, Calolziocorte (Pesarini, 1983, sub T. nassata
(L.), partim).
Piante ospiti: Triticum vulgare e Agropyron re-
pens.
Staz. 1: 19.V.91, leg. Leonardi, 1 f. Staz. 2: 23.V.91,
leg. Leonardi, 1 m. Staz. 6: 19.V.92, leg. Sassi, 1 f. Staz.
7: 21.IV.92, leg. Leonardi, 1 m.
Tenthredopsis nassata (Linnaeus, 1767)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: tutta Italia continentale, forse
Sicilia.
Piante ospiti: Poacee dei generi Agropyron e De-
schampsia ; anche Carex.
Staz. 6: 19.V.92, leg. Sassi, 2 mm. Staz. 7: 19.V.92.
leg. Sassi, 1 f.
Tenthredopsis palmata (Geoffroy, 1785)
= T. campestri auctt., Partim, nec Linnaeus, 1758
= T. scutellaris (Fabricius, 1798)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: da precisare, per le stesse ragio¬
ni esposte al riguardo di T. dubia Konow; sembra co¬
munque essere meno diffusa e frequente di quest'ul-
tima. Di Lombardia mi era nota di Olgiate Comasco,
Casiino al Piano, Verano Brianza, Sartirana, Brivio
(Pesarini, 1983, sub T. nassata (L.), partim).
Piante ospiti: Poacee dei generi Agropyron, Dacty-
lis, Festuca e Poa.
Staz. 2: 23.V.91, leg. Sassi, 1 f. Staz. 6, 19.V.92, leg.
Sassi. 1 m; Boschi della Val Faè, 19.V.92, leg. Sassi, 1 f.
Tenthredopsis sordida (Klug, 1814)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: regioni settentrionali, Toscana,
Abruzzo, Campania, Basilicata, Calabria.
Piante ospiti: Poacee dei generi Agropyron. Arrhe-
naterum, Lolium\ anche Carex.
Staz. 1: 19.V.91, leg. Leonardi, 1 f. Staz. 2: 9.V.90,
leg. Sassi, 1 f 2 mm; 23.V.91, leg. Leonardi, 1 f; 30.V.91,
leg. Leonardi, 1 f. Staz. 8, 16.V.90, 1 f. Inoltre 2 mm
(25.IV.90, leg. Sassi) in un prato della vai Faè prossi¬
mo alla staz. 7.
Tenthredopsis stigma (Fabricius, 1798)
Corotipo: Europeo (EUR).
Presenza in Italia: regioni settentrionali, Toscana,
Abruzzo, Campania, Calabria.
Piante ospiti: Triticum intermedium.
Staz. 6: 19.V.92, leg. Sassi, 2 ff 2 mm. Staz. 8:
19.V.92, leg. Sassi, 1 f.
Rhogogaster genistae Benson, 1949
Corotioo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Piemonte, Lombardia, Friuli-
Venezia Giulia, Liguria, Emilia-Romagna, Toscana.
Piante ospiti: Sarothamnus e Genista.
Staz. 5: 30.V.91, leg. Sassi, 1 m.
Rhogogaster viridis (Linnaeus, 1758)
Corotipo: Olartico (OLA).
Presenza in Italia: in Passato venivano confuse
con Rh. viridis (L.) almeno altre due specie del gene¬
re Rhogogaster Konow. I dati certi riguardano le re¬
gioni settentrionali, la Toscana e il Lazio.
Piante ospiti: specie spiccatamente polifaga, si svi¬
luppa su Salix. Populus, Quercus. e più tipicamente
Alnus ; ma anche su Stellaria, Filipendula, Circaea,
Epilobium ( Chamnaerion ).
Staz. 5: 16.V.90, leg. Sassi, 1 f. Staz. 6: 19.V.92, leg.
Sassi, 1 f.
Tenthredo brevicomis Konow, 1886)
= T. nitidior Konow, 1888 = acerrima Benson, 1952
Corotipo: Europeo (EUR).
Presenza in Italia: per lungo tempo confusa con al¬
meno tre altre specie del gruppo arcuata ; i dati certi
riguardano le regioni settentrionali (Alpi e pedemon¬
te alpino) e l’Appennino daH’Emilia al Molise.
Piante ospiti: Lotus corniculatus.
Staz. 1: 18.VI.91, leg. Sassi, 1 m; 10.X.91, leg. Sassi,
3 ff. Staz. 2: 9.V.90. leg. Sassi, 1 f.
Tenthredo notha Klug, 1814
= T. perkinsi Morice, 1919
Corotipo: Europeo (EUR).
Presenza in Italia: valgono le considerazioni fatte
per la precedente specie. I dati certi riguardano l’in-
248
FAUSTO PESAR1NI
tero arco alpino. l'Abruzzo (Gran Sasso) e il Molise
(Matese).
Piante ospiti: Trifolium repens , Vida cracca.
Boschi della Val Faè, 13. IX. 90, leg Leonardi, 1 f.
Tenthredo sp. gruppo arcuata
Staz. 4: 10. VI. 91, leg. Leonardi. 1 m.
Tenthredo diana Benson, 1968
Corotipo: Europeo (EUR).
Presenza in Italia: descritta come sottospecie ap¬
penninica di T. maculata Geoffroy, T. diana è stata ri¬
conosciuta come specie distinta solo di recente (Pe¬
sarmi, 1989) ed è in realtà assai più ampiamente dif¬
fusa di quanto non si ritenesse un tempo; è attual¬
mente nota di Italia e di Francia, il suo areale di di¬
stribuzione resta però da precisare, perchè è probabi¬
le sia stata per molto tempo confusa con la specie af¬
fine. In Italia i dati certi riguardano Piemonte, Emi¬
lia-Romagna, Toscana, Marche, Abruzzo; nuova per
la Lombardia.
Piante ospiti: sconosciute; l'affine T maculata si
sviluppa su Poacee dei generi Brachypodium e Dacty-
lis.
Staz. 6: 19. V, 92, leg. Sassi, 2 ff.
Pachyprotasis rapae (Linnaeus, 1767)
Corotipo: Olartico (OLA).
Presenza in Italia: regioni settentrionali e peninsu¬
lari.
Piante ospiti: specie polifaga; si sviluppa principal¬
mente su varie Lamiacee, Scrofulariacee, Solanacee e
Asteracee, ma anche su Plantago , Hypericum, Epilo-
bium, Angelica, Sarothamnus, Fraxinus, Quercus,
Corylus.
Boschi della Val Faè, 13.IX.90, leg. Sassi, 1 f. Prato
adiacente alla staz. 4, 13.IX.90, leg. Sassi, 1 f.
Macrophya albipuncta (Fallén, 1808)
Corotipo: Europeo (EUR).
Presenza in Italia: Lombardia, Emilia-Romagna,
Toscana; probabilmente è molto più diffusa, ma non
è frequente.
Piante ospiti: Geranium sylvaticum.
Staz. 1: 30.V.91, leg. Sassi, 1 m. Staz. 2, 23.V.91, leg.
Leonardi, 1 f; idem, leg. Sassi, 1 f 1 m; 9.VI.91, leg. Sas¬
si. 1 f. Staz. 6, 19.V.92. leg. Sassi. 1 m.
Macrophya annulata (Geoffroy, 1785)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutte le regioni settentrionali e
peninsulari, Sicilia.
Piante ospiti: in letteratura è riportata più fre¬
quentemente Potentilla reptans , ma sono indicati an¬
che Rosa, Rubus e Origanum.
Staz. 2: 15. VI. 89, leg. Leonardi, 3 ff; 9.VI.91, leg.
Sassi, 1 m; 10. VI. 91, leg. Leonardi, 2 ff 1 m; 18. VI. 91,
leg. Sassi, 2 ff 1 m. Staz. 4: 10. VI. 91, leg. Leonardi, 1 f.
Staz. 5: 30.V.91, leg. Sassi. 1 f; 18. VI. 91, leg. Sassi, 1 f.
Tornante lungo la strada che sale al monumento del¬
l’Alpino, 9. VI. 91, leg. Sassi, 1 f.
Macrophya duodecimpunctata (Linnaeus, 1758)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali, Toscana,
Lazio, Abruzzo, Campania, Basilicata, Calabria.
Piante ospiti: Poacee a foglia coriacea e Ciperacee
( Carex ).
Staz. 2: 18. VI. 91, leg. Sassi, 1 m. Staz. 9: 16.V.90, leg.
Leonardi. 2 mm; idem, leg. Sassi, 2 ff 2 mm; 15. VI. 91,
leg. Leonardi, 1 f.
Macrophya rufipes (Linnaeus, 1758)
Corotipo: Turanico-Europeo (TUE).
Presenza in Italia: Piemonte, Emilia-Romagna,
Toscana, Abruzzo. Sicilia. Probabilmente presente in
tutta Italia come già riportava genericamente Costa
(1894); in letteratura non esistevano comunque dati
lombardi. Di questa regione mi è nota anche del La¬
go d’Endine (in Coll. Pesarini).
Piante ospiti: non note con certezza; forse Vitis vi¬
nifera.
Staz. 9: 15.VI.90, leg. Leonardi, 1 f.
Allantinae
Empria tridens (Konow, 1896)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: da precisare; i dati di letteratu¬
ra riguardano Piemonte e Lombardia.
Piante ospiti: Rosacee dei generi Rubus e Geum.
Boschi della Val Faè, 25.VI.90, leg. Sassi, 1 f.
Ametastegia tenera (Fallén, 1808)
Corotipo: Olartico (OLA).
Presenza in Italia: Piemonte, Lombardia, Trenti¬
no-Alto Adige, Friuli-Venezia Giulia, Liguria; generi¬
camente indicata di Sicilia.
Piante ospiti: piante erbacee varie: Cyrsium lan-
ceolatum , Filipendula ulmaria , più tipicamente Ru-
mex spp..
Staz. 3: 14.III.90, leg. Leonardi, 1 f. Staz. 4: 26.IX.92,
leg. Leonardi, 1 f. Boschi della Val Faè, 25. VI. 90, leg.
Sassi, 1 m.
Emphytus calceatus (Klug, 1814)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: regioni settentrionali, Toscana,
Lazio, Abruzzo; citato di Sardegna, ma il dato proba¬
bilmente è da riferire a E. laticinctus (Lepeletier,
1823) (= E. balteatus (Klug, 1818 nec Klug, 1817)).
Piante ospiti: Rosacee di svariati generi: Filipen¬
dula, Fragaria, Rosa, Rubus, Alchemilla, Sanguisorba.
Staz. 9: 15. VI. 90, leg. Leonardi, 1 f; 16.V.91, leg. Sas¬
si, 1 f; 19.V.91, leg. Leonardi, 1 f.
Emphytus cingulatus (Scopoli, 1763)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Lombardia, Marche,
Abruzzo, Campania. Calabria, Sicilia, Sardegna.
Piante ospiti: Fragaria e Rosa, ma anche Corylus e
Betula.
Staz. 2: 15.VI.89. leg. Leonardi, 1 f.
Athaliinae
Athalia circularis (Klug, 1813)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali e peninsu¬
lari, Sardegna.
Piante ospiti: varie Lamiacee e Scrofulariacee, ma
anche Plantago e Capsella.
Staz. 9: 25.V.90, leg. Sassi, 1 m.
Athalia cordata Lepeletier, 1823
Corotipo: W-Paleartico (WPA).
GLI IMENOTTERI SINFITI (HYMENOPTERA MEGALODONTIDAE, CEìPHIDAE, ARGIDAE. CIMBICIDAE, TENTHREDINIDAE)
249
Presenza in Italia: regioni settentrionali e peninsu¬
lari, Sardegna.
Piante ospiti: piante erbacee varie: Ajuga, An-
tirrhinum e Plantago.
Staz. 3: 13. IX. 90, leg. Leonardi, 1 f. Staz. 4,
26. IX. 92, leg. Leonardi, 1 f. Staz. 7: 21.IV.92. leg. Sassi,
1 f. Prato adiacente alla staz. 4, 13. IX. 90, leg. Sassi, 1 f.
Athalia glabricollis Thomson, 1870
Corotipo: W-paleartico (WPA).
Presenza in Italia: tutta Italia, incluse Sicilia e Sar¬
degna.
Piante ospiti: Brassicacee dei generi Diplotaxis,
Erysimum, Raphanus, Sinapis e Sisymbrium.
Staz. 4: 20. IX. 89, leg. Leonardi. 1 f.
Blennocampinae
Monophadnus pallescens (Gmelin. 1790)
Corotipo: Olartico (OLA).
Presenza in Italia: regioni settentrionali, Toscana,
Basilicata, Calabria.
Piante ospiti: diverse specie del genere Ranuncu-
lus.
Staz. 3: 14.III.90, leg. Leonardi, 1 f; idem, leg. Sas¬
si, 1 f. Staz. 4: 30.III.90, leg. Sassi, 1 f. Staz. 8, 14. III. 90,
leg. Leonardi, 2 ff 2 mm; idem. leg. Sassi, 5 ff 1 m.
Stethomostus fuliginosus (Schrank, 1781)
Corotipo: Asiatico-Europeo (ASE); introdotto in
Nord America.
Presenza in Italia: regioni settentrionali, Toscana,
Lazio, Abruzzo, Campania, Calabria.
Piante ospiti: diverse specie del genere Ranuncu-
lus.
Staz. 9: 15.VI.90, leg. Leonardi, 1 m.
Eutomostethus luteiventris (Klug, 1814)
Corotipo: Europeo (EUR); introdotto in Nord
America.
Presenza in Italia: regioni settentrionali, Toscana,
Lazio, Calabria.
Piante ospiti: Juncus effusus.
Staz. 9: 15. VI. 90. leg. Leonardi, 1 f.
Claremontia confusa (Konow, 1886)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: regioni settentrionali, Calabria;
citata da Costa (1894) anche di Sardegna sub Blen-
nocampa cinereipes (Hartig).
Piante ospiti: Rosacee dei generi Sanguisorba, Po¬
tentina, Fragaria.
Staz. 9: 30.III.90, leg. Sassi, 1 f.
Nematinae
Cladius pectinicomis (Geoffroy, 1785)
Corotipo: Olartico (OLA).
Presenza in Italia: regioni settentrionali, Toscana,
Sardegna; probabilmente diffuso in tutto il Paese, ma
i molti dati esistenti in letteratura possono riferirsi al-
) l’affine C. difformis (Panzer, 1799).
Piante ospiti: Rosacee dei generi Filipendula, Fra¬
garia, Rosa, Sanguisorba ; forse Lamiastrum galeob-
dolon.
Staz. 1: 10.X.91, leg. Sassi, 1 f. Staz 9: 30.III.90, leg.
Sassi, 1 f; 15.VI.90, leg. Leonardi, 1 f.
Tabella 1 - Tabella riassuntiva delle specie raccolte.
Considerazioni zoogeografiche
Il quadro corologico delle specie raccolte sul
Monte Barro indica una netta predominanza di ele¬
menti ad ampia distribuzione paleartica e la totale as¬
senza di specie mediterranee, come si può vedere dal¬
la tabella 2 e, con maggior evidenza, dalla figura 1,
dove i corotipi sono stati raggruppati per categorie
sintetiche.
250
FAUSTO PESARINI
Tabella 2 - Spettro corologico delle specie raccol¬
te. I corotipi sono stati definiti in base al lavoro di Vi¬
gna Taglianti et alii (1992).
Fig. 1 - Corotipi raggruppati per categorie sintetiche.
BIBLIOGRAFIA
Costa A., 1895 - Prospetto degli Imenotteri italiani, parte 3:Ten-
tredinidei e Siricidei. Atti Accad. Sci. fis. mat., Napoli, serie II,
7: 1-212.
Liston A.D., 1995 - Compendium of European Sawflies. Chala-
stos Forestry, Gottfrieding, 190 pp.
Masutti L. & Pesarini F., 1995 - Hymenoptera Symphyta. In: Mi-
nelli A., Ruffo S. & La Posta S. (eds.), Checklist delle specie
della fauna italiana. Calderini , Bologna, 92.
Pesaresi E, 1983 - Imenotteri Sinfiti del piano pedemontano in
Lombardia. I. Indagine faunistica (Hymenoptera Symphyta).
Boll. Ist. Zool. agr. Bachic.. Milano, ser. IL 17 (1982-83): 63-113.
Pesaresi F., 1989 - Studi sulle Tenthredininae (Hymenoptera
Tenthredinidae). Meni. Soc. ent. ital.,61 (1988): 337-3S8.
Pesaresi E, Campadelli G. & Crudele G., 1995 - Imenotteri
Sinfiti delle Foreste Demaniali Casentinesi (Materiali per una
sinfitofauna appenninica. I.). Boll. Ist. Ent. «G. Grandi», Bolo¬
gna, 50: 29-55.
Vigna Taglianti A., Audisio P.A., Belfiore C., Biondi M., Bo¬
logna M.A., Carpaneto G.M., De Biase A., De Felici S.,
Piattella E., Racheli T., Zapparoli M. & Zoia S., 1992 - Ri¬
flessioni di gruppo sui corotipi fondamentali della fauna W-pa-
leartica ed in particolare italiana. Biogeographia, 16: 159-179.
Fausto Pesarini: Museo Civico di Storia Naturale, Via De Pisis, 24 - 44100 Ferrara
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
Carlo Pesarmi
I Ragni (Arachnida Araneae) del Monte Barro
(Italia, Lombardia, Lecco)
Riassunto - Col presente lavoro sono forniti i dati relativi al popolamento araneologico del Monte Barro (Lecco), co¬
me risultato di una ricerca condotta negli anni 1989-1992 dal Museo di Storia Naturale di Milano col contributo del Con¬
sorzio Parco Monte Barro. Le raccolte sono state effettuate prevalentemente in 9 stazioni prative. Vengono analizzate le ca¬
ratteristiche biogeografiche della popolazione araneologica, e vengono segnalate 32 specie come nuove per la fauna lom¬
barda, fra le quali 5 ( Ceratinella scabrosa, Erigone autumnalis, Enoplognatha thoracica, Cheiracanthium montanum, Philo-
dromus praedatus) nuove per la fauna italiana.
Abstract - Spiders (Arachnida Araneae) from Monte Barro (Italy, Lombardy, Lecco).
In thè present work data concerning thè spider-fauna of thè Monte Barro are given, as result of a research carried out
by thè Naturai History Museum of Milano in thè years 1989-1992. Meadows have been chiefly investigated, with particular
regard to 9 sampling sites.The biogegraphic pattern of thè spider-population is analyzed; furthermore, 32 species are recor-
ded as new for thè Lombard fauna, 5 among which ( Ceratinella scabrosa, Erigone autumnalis, Enoplognatha thoracica, Chei¬
racanthium montanum, Philodromus praedatus ) are new for Italy.
Key words: Monte Barro, Araneae, geographic distribution.
Negli anni 1989-1992 il Museo Civico di Storia Na¬
turale di Milano ha condotto una ricerca entomofau-
nistica nell’area del Monte Barro (Lombardia, Lecco)
col contributo del Consorzio Parco. Per quanto ri¬
guarda la fauna araneologica, alle raccolte effettuate
da Davide Sassi e Carlo Leonardi sono da aggiunger¬
si quelle prodotte, nell’ambito di un lavoro di tesi di
laurea da me coordinato, dalla Dr.ssa Monica Aureg-
gi. Il quadro complessivo così ottenuto è discreta¬
mente ricco, anche se verosimilmente non del tutto
completo. Si riscontrano infatti delle lacune per quan¬
to riguarda la fauna del terreno, sicuramente molto
più abbondante di quanto non appaia dall’elenco qui
fornito; ciò va imputato alla modalità delle ricerche
condotte, indirizzate essenzialmente ad un monito-
raggio della fauna legata alla vegetazione. A dispetto
di tale lacuna, peraltro, i dati ottenuti sono di indub¬
bio interesse, ed hanno condotto alla segnalazione di
32 specie nuove per la Lombardia, fra cui 5 nuove per
la fauna italiana ( Ceratinella scabrosa, Erigone au¬
tumnalis, Enoplognatha thoracica, Cheiracanthium
montanum, Philodromus praedatus). Tale segnalazio¬
ne viene fornita in modo generico per l’Italia setten¬
trionale nella check-list delle specie italiane da me re¬
centemente pubblicata (Pesarmi, 1995); dati più det¬
tagliati, limitatamente alle specie di Linyphiidae della
sottofamiglia Erigoninae sono invece da me forniti in
un’altra pubblicazione attualmente in stampa.
»
Osservazioni sulle stazioni di raccolta
Le raccolte sono state effettuate prevalentemente
in nove stazioni (staz.1-9) caratterizzate da una forte
presenza prativa; ulteriori stazioni di raccolta sono
state riunite, nel quadro riassuntivo (Tabella 1), in
una sorta di stazione cumulativa indicata con il nu¬
mero 10.
Qui di seguito è data una breve descrizione delle
stazioni 1-9; esse corrispondono più o meno a quelle
della ricerca generale ma hanno quasi sempre confi¬
ni più ampi e in alcuni casi sono fisionomicamente
più varie. Per ogni stazione sono indicati i taxa esclu¬
sivi (specificità). Le specie contrassegnate da un *,
pur essendo state rinvenute in una sola delle nove
stazioni considerate, risultano presenti in uno o più
dei biotopi riuniti al numero 10.
Stazione 1: Località Piani di Barra, 610 m. esp. W,
interessata da scavi archeologici (Grande Edificio). E
caratterizzata da una consistente presenza di prato
falciabile che indica un’attività di foraggio residua.
Specificità: Clubiona terrestris*.
Stazione 2: Località Piani di Barra, 600 m, esp. W,
interessata da scavi archeologici (Edificio II). Si trat¬
ta di una prateria in cui è stata abbandonata la ge¬
stione a foraggio ed è presente un leggero mantello
con forte copertura di Geranium sanguineum. Nella
stessa area si collocano boschi moderatamente ter¬
mofili con Quercus pubescens, Ostrya carpinifolia e
Corylus avellana.
Specificità: Aculepeira ceropegia, Porrhomma
pygmaeum, Episinus truncatus*, Trochosa ruricola *,
Xerolycosa nemoralis*, Xysticus bufo * Brigittea la-
tens, Heliophanus aeneus.
Stazione 3: Conca prativa a monte del Monumen¬
to dell’Alpino, 630 m, esp. W. Vi si nota la convivenza
di elementi di prateria, elementi di prato falciabile ed
elementi di disturbo marginale.
252
CARLO PESARINI
Specificità: Araneus sturmi, Ar. triguttatus, Meione-
ta rurestris, Cheiracanthium montanum.
Stazione 4: Località S. Michele, pendio in prossi¬
mità del sentiero per Pian Sciresa, 325 m, esp. E. Su
una base di Mesobromion è in pieno sviluppo il pra¬
to falciabile, che qui presenta il carattere oligo-meso-
trofico.
Stazione 5: Località Pian Sciresa, 435 m, esp. NE.
Prevalenza di prateria arida a Brachypodium rupestre
ssp. caespitosum , con montarozzi residuali a brughie¬
ra. La continuità della prateria è interrotta qua e là da
Betula penduta, Corylus avellana e alberi caratteristi¬
ci di boschi moderatamente termofili ( Quercus pube-
scens, Ostrya carpinifolia).
Specificità: A raneus alsine, Ero aphana, Ero furca-
ta, Ceratinella scabrosa , Erigone autumnalis, Dipoena
melanogaster*, Arctosa perita , Par dosa hortensis, Par-
dosa riparia, Nigma flavescens, Zelotes praeficus, Phi-
lodromus praedatus, Xysticus ninnii, Aelurillus v-insi-
gnitus, Marpissa nivoyi, Philaeus chrysops.
Stazione 6: Superfici prative lungo il sentiero del¬
la “Cresta occidentale” che dall’edificio dell’ex sana¬
torio sale alla vetta, partendo da una quota di circa
750 m, esp. S. Prateria con parziale affioramento roc¬
cioso. All’inizio appare fortemente cespugliata e in
via di chiusura, con forte influsso dell’elemento pre-
nemorale verso un Quercetum pubescenti s.L; più in
alto dominano i molinieti e i seslerieti.
Specificità: Lepthyphantes tenuis, Peponocranium
orbiculatum, Salticus scenicus.
Stazione 7: Località Fornaci Villa, in prossimità
deH'impluvio della Val Faè, 275 m, esp. NW. Superfi¬
cie prativa terrazzata all’interno del bosco mesofilo,
molto simile a quella della stazione 8 ma più aperta e
con qualche elemento in più di Mesobromion.
Specificità: Lepthyphantes flavipes*,
Stazione 8: Località Fornaci Villa, in prossimità
dell’impluvio della Val Faè, 305 m, esp. NW. Superfi¬
cie terrazzata, irregolarmente gestita e contornata da
un bosco con notevoli contrassegni mesofili, in con¬
seguenza dell’esposizione fresca e di un maggiore svi¬
luppo del suolo.
Specificità: Ozyptila randa.
Stazione 9: Località Ca’ di Sala, 226 m, sulla riva set¬
tentrionale del bacino di Oggiono del Lago di Annone.
Vi si evidenziano tre aspetti essenziali: 1) il canneto
con accenni di aggruppamenti a Iris pseudoacorus , ele¬
menti di magnocariceto e residui di boscaglia ripariale.
2) il prato umido oligotrofico ( Molinion coeruleae). 3)
vegetazione erbacea perenne e disorganizzata, al mar¬
gine superiore della stazione, riconducibile alle classi
Artemisietea vulgaris e Plantaginetea majoris.
Specificità: Tetragnatha extensa, Hypsosinga heri*,
Gnathonarium dentatum*, Par dosa prativaga, Agele-
na labyrinthica, Clubiona phragmitis, Misumenops tri-
cuspidatus, Runcinia laterali, Xysticus ulmi.
Elenco delle specie raccolte
In tale elenco si è seguito l’ordine adottato nella
redazione della check-list delle specie italiane (Pesa¬
rmi, 1995). Si è quindi seguito un ordine sistematico
nella trattazione delle varie famiglie, mentre all’inter¬
no di ogni singola famiglia le specie vengono elenca¬
te in ordine alfabetico.
Si è colta l’occasione, per alcune specie, di fornire
illustrazioni degli organi genitali, sempre molto utili
per l’identificazione, quando di tali organi non è age¬
volmente disponibile, in letteratura, un’iconografia
adeguata. Gli esemplari raffigurati, salvo contraria in¬
dicazione, provengono dalle raccolte effettuate nel¬
l’area del M. Barro.
Atypidae
Atypus affinis (Sulzer)
Corotipo: europeo (EUR).
Presenza in Italia: Lombardia e Toscana.
Un esemplare giovanile raccolto nell’alneto lungo
il torrente della Val Faè (14. III. 1990, lg. Aureggi).
Dysderidae
Dasumia taeniifera Thorell
Corotipo: Alpino appenninico.
Presenza in Italia: Lombardia, Emilia-Romagna,
Toscana, Lazio.
Alcune 9 9 raccolte nelle staz. 2 e 5.
Tetragnathidae
Pachygnatha clercki (Sundevall)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino-Alto Adige, Friuli-Venezia Giulia, Emilia-
Romagna, Toscana, Umbria, Calabria.
Un S raccolto nell’alneto lungo il torrente della
Val Faè (14.III.1990, lg. Aureggi).
Pachygnatha degeeri (Sundevall)
Corotipo: Paleartico (PAL).
Presenza in Italia: Liguria, Lombardia, Veneto,
Trentino-Alto Adige, Friuli-Venezia Giulia, Emilia-
Romagna, Toscana, Marche, Umbria, Lazio, Campa¬
nia, Calabria.
Alcuni esemplari raccolti nelle staz. 2 e 5 e nei bo¬
schi della Val Faè.
Tetragnatha extensa (Linneo)
Corotipo: Olartico (OLA).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
2 8 <5 e 3 9 9 raccolti nella staz. 9.
Metidae
Meta segmentata (Clerck)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Numerosi esemplari raccolti nelle staz. 3, 5 e 7, nei
boschi della Val Faè e nella zona ad Ovest dei Piani di
Barra.
Araneidae
Aculepeira ceropegia (Walckenaer)
Corotipo: Paleartico (PAL).
Presenza in Italia: gran parte d’Italia, Sicilia, Sar¬
degna.
Un esemplare giovanile raccolto nella staz. 2
(12.VI.1991,lg. Aureggi).
Agalenatea redii (Scopoli)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Alcune 9 9 raccolte nelle staz. 2 e 5 e un esem-
I RAGNI ( ARACHNIDA ARANEAE) DEL MONTE BARRO (ITALIA, LOMBARDIA. LECCO)
253
piare giovanile raccolto nell'alneto lungo il torrente
della vai Faè.
Araneus disine (Walckenaer)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Lombardia, Veneto.
Una $ raccolta nella staz. 5 (20.IX.1989,lg. Auriggi).
Araneus sturmi (Hahn)
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Trentino-Alto Adige, Emilia-Romagna, To¬
scana, Lazio, Campania, Puglia, Calabria.
Un 8 raccolto nella staz. 3 (13.IX.1990, lg. Leo¬
nardi).
Araneus triguttatus (Fabricius)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Lombardia, Veneto, Trentino- Al¬
to Adige, Emilia-Romagna, Umbria, Lazio, Abruzzi.
Un 8 raccolto nella staz. 3 (13. IX. 1990, lg. Leo¬
nardi).
Araniella cucurbitina (Clerck)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Alcuni esemplari raccolti nelle staz. 2, 5 e 6.
Argiope bruennichi (Scopoli)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Alcuni esemplari, per lo più giovanili, raccolti nel¬
le staz. 5 e 6 ed in prossimità dell’Osservatorio orni¬
tologico.
Cercidia prominens (Westring)
Corotipo: Olartico (OLA).
Presenza in Italia: Lombardia, Veneto, Trentino-
Alto Adige, Emilia-Romagna, Toscana, Umbria,
Abruzzi, Puglia, Calabria, Sardegna.
Alcuni esemplari raccolti nelle staz. 5 e 8 e nei bo¬
schi della Val Faè.
Cyclosa conica (Pallas)
Corotipo: Olartico (OLA).
Presenza in Italia: Tutta Italia, Sicilia, Sardegna.
Alcuni esemplari raccolti nelle stazioni 2 e 5 e 1 $
raccolta nei boschi della vai Faè (23.V.1991 lg. Sassi).
Gibbaranea bituberculata (Walckenaer)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Numerosi esemplari raccolti nelle staz. 2, 3, 5, 6 e
7 e nei boschi della Val Faè.
Hypsosinga heri (Hahn)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana, Umbria, Calabria, Sicilia.
Alcuni esemplari raccolti nella staz. 9 e nei boschi
della Val Faè.
Hypsosinga sanguinea (Koch)
Corotipo: Europeo (EUR).
Presenza in Italia: Trentino- Alto Adige, Friuli-Vene¬
zia Giulia, Emilia-Romagna, Toscana, Marche, Lazio,
Calabria. La specie risulta nuova per la Lombardia.
Alcuni esemplari raccolti nelle stazioni 4 e 5.
Larinioides comutus (Clerck)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Alcuni esemplari raccolti nelle stazioni 4 e 9.
Mangora acalypha (Walckenaer)
Corotipo: W-Paleartico (WPA).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Numerosissimi esemplari raccolti nelle staz. 2, 3, 5,
6, 7 e 9, nei boschi della Val Faè, presso l’Osservato¬
rio ornitologico e ad Ovest dei Piani di Barra.
Neoscona adiantum (Walckenaer)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Numerosi esemplari raccolti nelle staz. 2, 5, 6 e 9 e
nei pressi dell’Osservatorio ornitologico.
Zilla diodia (Walckenaer)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Alcuni esemplari raccolti nelle staz. 5 e 6 e ad
Ovest dei Piani di Barra.
Mimetidae
Ero aphana (Walckenaer)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Friuli-Venezia Giulia, Emilia-Romagna, To¬
scana, Marche, Umbria, Calabria.
Un esemplare giovanile raccolto nella staz. 5
(23.V.1991, lg. Auriggi).
Ero furcata (Villers)
Corotipo: Europeo (EUR).
Presenza in Italia: Lombardia, Trentino-Alto Adi¬
ge, Toscana.
Una 2 raccolta nella staz. 5 (28.V.1990,lg. Aureggi).
Linyphiidae
Ceratinella scabrosa (Pickard-Cambridge)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: da me recentemente indicata,
sulla scorta del presente reperto, in occasione della
compilazione della check-list delle specie italiane del¬
l’ordine (Pesarmi 1995).
Un 8 raccolto nella staz. 5 (28.V.1990, lg. Aureggi).
Osservazioni: il presente reperto è l’unico noto
per la fauna italiana.
Cresmatoneta mutinensis (Canestrini), Fig. 1, 2
Corotipo: S-Europeo (SEU).
Presenza in Italia: Liguria, Lombardia, Emilia-Ro¬
magna, Toscana, Umbria, Puglia, Calabria.
Alcuni esemplari raccolti nelle stazioni 3 e 9.
Erigone autumnalis Emerton
Corotipo: Olartico (OLA).
Presenza in Italia: da me recentemente indicata,
sulla scorta del presente reperto, in occasione della
compilazione della check-list delle specie italiane del¬
l’ordine (Pesarini 1995).
2 8 8 raccolti nella stazione 3 (10.VI.1991) e 5
8 8 raccolti nella staz. 5 (30.V.1989, lg. Leonardi).
Osservazioni: fino a pochi anni fa, questa specie
era nota solo della fauna neartica; di recente Hànggi
254
CARLO PESARINI
(1990) l’ha segnalata del Canton Ticino (M. Genero¬
so e M. S.Giorgio), quindi di un’area assai prossima al
M. Barro. Sembrerebbe peraltro verosimile che l’ef¬
fettiva diffusione della specie in Europa, pur se tutto¬
ra pressoché ignota, sia notevolmente più ampia.
Erigone dentipalpis (Wider)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Friuli-Venezia Giulia, Emilia-Romagna, Toscana, La¬
zio, Campania.
Alcuni esemplari raccolti nelle staz. 5 e 9 e nell’al-
neto lungo il torrente della Val Faè.
Gncitìionarium dentatimi (Wider)
Corotipo: Paleartico (PAL).
Presenza in Italia: Piemonte, Friuli-Venezia Giu¬
lia, Emilia-Romagna, Toscana. La specie risulta nuo¬
va per la Lombardia.
Alcuni esemplari raccolti nella staz. 9 e nell’alne-
to lungo il torrente della Val Faè.
Hylyphantes nigritus (Simon)
Corotipo: Europeo (EUR).
Presenza in Italia: Piemonte, Friuli-Venezia Giu¬
lia, Toscana. La specie risulta nuova per la Lombar¬
dia.
Alcuni esemplari raccolti nelle staz. 2 e 9 e nell’al-
neto lungo il torrente della Val Faè.
Lepthyphantes flavipes (Blackwall)
Corotipo: Europeo (EUR).
Presenza in Italia: Trentino- Alto Adige, Campa¬
nia.
Alcuni esemplari raccolti nella staz. 7 (3 S S e 9
9 9 , 9.V.1990, lg. Aureggi) e nei boschi della Val Faè
(1 9, 16.V.1990, lg. Aureggi).
Osservazioni: in realtà questa specie, che risulta
nuova per la Lombardia, è assai comune e diffusa, al¬
meno nell’Italia settentrionale, a dispetto dell’inspie-
gabile scarsità di precedenti segnalazioni.
Personalmente, mi è anche nota delle seguenti lo¬
calità: Liguria: Finale Ligure (15.V.88, lg. Sciaky, 1 S ).
Piemonte: Crissolo (30.IV.1983, lg. Sciaky, 1 9); Ro-
vasenda (prov. Vercelli, Vili. 1984, lg. Gozzi, 1 1).
Lombardia: Dumenza (prov. Varese, 12.VII.1987, lg.
Zanon, 19); Val Fredda (prov. Varese, 4. X. 1983, lg.
Baratelli, 1 9); Bernate Ticino (prov. Milano,
XII.1989, 1.1990, 11.1990, lg. Pasquetto, 7 SS e 5 9 9);
Monza Parco (IX. 1985, lg. Sciaky, 1 S e 2 9 9 ); Mon-
torfano (prov. Brescia, 11.1991, 4 S S e 6 9 9 , lg. Ghi-
lardi). Veneto: M. Cesen (prov. Treviso, 2.V.1988, lg.
Zanon, 19); Col Perer (prov. Belluno, 25. VI. 1988, lg.
Zanon, 1 d e 1 9); Cima di Campo (prov. Belluno,
25. VI. 1988, 2 SS e 2 99). Friuli-Venezia Giulia:
Grotta Ercole presso Gabrovizza (prov. Trieste,
18. Vili. 1986, lg. Zanon, 19). Emilia- Romagna: Ba-
dagnano (prov. Piacenza, 24.III.1982, lg. Pavesi, 1 d).
Lepthyphantes tenuis (Blackwall)
Corotipo: Europeo (EUR).
Presenza in Italia: Veneto, Friuli-Venezia Giulia,
Emilia-Romagna, Toscana, Umbria, Marche, Lazio,
Campania, Puglia, Calabria. La specie non risultava
segnalata per la Lombardia.
Una 9 raccolta nella staz. 6 (11. VI. 1990, lg. Au¬
reggi)
Linyphia hortensis Sundevall
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino-Alto Adige, Friuli-Venezia Giulia, Emilia-
Romagna, Toscana, Umbria, Marche, Campania, Ca¬
labria.
Numerosi esemplari raccolti nelle staz. 2, 3, 5 e 6 e
nei boschi della Val Faè.
Meioneta rurestris (Koch)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Veneto, Trentino-Alto Adige,
Friuli-Venezia Giulia, Emilia-Romagna, Toscana,
Marche, Puglia. La specie risulta nuova per la Lom¬
bardia.
Una 9 raccolta nella staz. 3 (14.III.1990, lg. Leo¬
nardi).
Microlinyphia pusilla (Sundevall)
Corotipo: Olartico (OLA).
Presenza in Italia: Italia Settentrionale, Emilia-
Romagna, Toscana, Umbria, Calabria.
Alcuni esemplari raccolti nelle staz. 2, 3 e 5, nel-
l’alneto lungo il torrente della Val Faè e presso l’Os¬
servatorio ornitologico.
Minicia marginella (Wider)
Corotipo: Europeo (EUR).
Presenza in Italia: Trentino- Alto Adige. La specie
risulta nuova per la Lombardia.
Alcuni esemplari raccolti nelle staz. 2, 5, 6 e 9 e ad
Ovest dei Piani di Barra.
Nematogmus sanguinolentus (Walckenaer)
Corotipo: Europeo (EUR).
Presenza in Italia: Lombardia, Veneto, Trentino-
Alto Adige, Emilia-Romagna, Toscana, Lazio, Puglia.
Alcuni esemplari raccolti nelle staz. 3, 6 e 9 e pres¬
so l’Osservatorio ornitologico.
Neriene pettata (Wider)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Trentino- Alto Adige, Friuli-Ve¬
nezia Giulia, Emilia-Romagna, Campania, Puglia,
Calabria. La specie risulta nuova per la Lombardia.
Una 9 raccolta nei boschi della Val Faè
(16.V.1990, lg. Aureggi).
Peponocranium orbiculatum (Pickard-Cambridge)
Corotipo: Europeo (EUR).
Presenza in Italia: Trentino-Alto Adige. La specie
risulta nuova per la Lombardia.
Una 9 raccolta nella staz. 6 (11. VI. 1990, lg. Au¬
reggi).
Porrhomma pygmaeum (Blackwall)
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: Veneto. La specie risulta nuova
per la Lombardia.
Una 9 raccolta nella staz. 2 (23.V.1991, lg. Aureg¬
gi)-
Walckenaeria antica (Wider)
Corotipo: Europeo (EUR).
Presenza in Italia: Trentino-Alto Adige. La specie
risulta nuova per la Lombardia.
Alcuni esemplari raccolti nelle staz. 2, 3, 4 e 7.
I RAGNI (ARACHNIDA ARANEAE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
255
Fig. 1-4 - 1-2) Cresmatoneta mutinensis (Canestrini); 1) pedipalpo 8 in visione laterale; 2) id., epigino $ ; 3-4) Cheiracanthìum
elegans Thorell; 3) pedipalpo 8 in visione laterale; 4) Cheiracanthìum montanum Koch, pedipalpo 8 in visione laterale.
Theridiidae
Achaearanea lunata (Clerck)
Corotipo: Europeo (EUR).
Presenza in Italia; Italia settentrionale, Emilia-Ro¬
magna, Toscana, Campania, Calabria, Sicilia.
Un 8 raccolto ad Ovest dei Piani di Barra
(25.VI.1991, lg. Aureggi).
Crustuliha guttata (Wider)
Corotipo: Olartico (OLA).
Presenza in Italia: Veneto, Trentino-Alto Adige,
Friuli-Venezia Giulia, Emilia-Romagna, Campania,
Puglia. La specie risulta nuova per la Lombardia.
Alcuni esemplari raccolti nelle staz. 2, 4, 5 e 6.
Dipoena melanogaster (Koch)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Trentino-Alto Adige, Friuli-Ve¬
nezia Giulia, Emilia-Romagna, Marche, Lazio, Italia
meridionale, Sicilia. La specie risulta nuova per la
Lombardia.
Alcuni esemplari raccolti nella staz. 5 e nei boschi
della Val Faè.
Enoplognatha ovata (Clerck)
Corotipo: Olartico (OLA).
Presenza in Italia: Tutta Italia, Sicilia, Sardegna.
Numerosi esemplari raccolti nelle staz. 2, 5 e 9, nei
boschi della Val Faè e ad Ovest dei Piani di Barra.
Enoplognatha thoracica (Hahn)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: da me recentemente indicata in
occasione della compilazione della check-list delle
specie italiane dell’ordine (Pesarmi, 1995).
Alcuni esemplari raccolti nelle stazioni 3 e 4 e
un 8 nei boschi della Val Faè (16.V.1990, lg. Au¬
reggi).
Osservazioni: Questa specie, di cui non esistono in
letteratura altre indicazioni per la fauna italiana, mi è
comunque nota anche di un’altra località lombarda
(Raffa del Garda in provincia di Brescia, 24.V.1991,
un G, lg. Cauda), di Veneto (Ponte Fiorio in provincia
di Verona, un G, lg. Ferri) e Sicilia (Torre Montaspro
in provincia di Palermo, 4.VII.1991, 4 $ $ , lg. Pesari-
ni & Sabbadini).
Episinus truncatus Latreille
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Marche, Umbria, Campania, Calabria, Sarde-
gna.
Alcuni esemplari raccolti nella staz. 2 e nei boschi
della Val Faè.
Euryopis flavomaculata (Koch)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Trentino-Alto Adige, Friuli-Ve¬
nezia Giulia, Emilia-Romagna, Toscana, Marche,
Umbria, Lazio, Campania. La specie risulta nuova
per la Lombardia.
Un 8 raccolto presso l’Osservatorio ornitologico
(16.V.1990, lg. Aureggi).
Neottiura bimaculata (Linneo)
Corotipo: Sibirico-Europeo (SIE)
Presenza in Italia: Lombardia, Veneto, Trentino-
Alto Adige, Friuli-Venezia Giulia, Emilia-Romagna,
Toscana, Marche, Umbria, Lazio, Campania, Cala¬
bria, Sicilia.
Alcuni esemplari raccolti nelle staz. 2, 5 e 6, nei
boschi della Val Faè e ad Ovest dei Piani di Barra.
256
CARLO PESARINI
Theridion nigrovariegatum Simon
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Emilia-Romagna, Marche,
Campania, Calabria, Sicilia. La specie risulta nuova
per la Lombardia.
Alcuni esemplari raccolti nelle staz. 5 e 6, presso
l’Osservatorio ornitologico e ad Ovest dei Piani di
Barra.
Theridion simile Koch
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Piemonte, Trentino- Al¬
to Adige, Veneto, Friuli-Venezia Giulia, Toscana,
Marche, Umbria, Lazio, Abruzzo, Campania, Basili¬
cata, Calabria, Sicilia. La specie risulta nuova per la
Lombardia e mi è nota anche di Emilia (Badagnano
in provincia di Piacenza, diversi esemplari di diverse
date, lg. Pavesi e Pesarini).
3 6 6 e 4 9 2 raccolti nelle stazioni 2, 5 e 6, lg. Bo-
nini.
Pisauridae
Pisaura mirabilis (Clerck)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Numerosissimi esemplari (fra cui però solamente
6 6 6 e 9 $ $ adulti) raccolti nelle staz. 1, 2, 3, 5, 6, 7,
8 e 9 e presso l’Osservatorio ornitologico.
Osservazioni: gli adulti rinvenuti sono da attribui¬
re alla specie intesa in senso stretto, e non a qualcuna
delle specie strettamente affini solo recentemente
prese in considerazione nella letteratura; nessuna in¬
dicazione precisa in tal senso, ovviamente, può essere
fornita per i numerosi giovani.
Lycosidae
Arctosa perita (Latreille)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Italia settentrionale e centrale,
Puglia, Calabria, Sardegna.
Un 6 raccolto nella staz. 5 (28.V.1990, lg. Aureggi).
Aulonia albimana (Walckenaer)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana.
Alcuni esemplari raccolti nelle staz. 2 e 5.
Pardosa hortensis (Thorell)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana, Campania, Puglia, Basilicata, Calabria.
Un 6 raccolto nella staz. 5 (28.V.1990, lg. Aureggi).
Pardosa lugubris (Walckenaer)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana, Campania, Puglia, Basilicata, Cala¬
bria.
Alcuni esemplari raccolti nelle staz. 5 e 6, nei bo¬
schi della Val Faè e presso l’Osservatorio ornitologico.
Pardosa prativaga (Koch)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Emilia-Romagna,
Toscana, Campania, Calabria. La specie risulta nuova
per la Lombardia.
Una 9 raccolta nella staz. 9 (15.VI.1990, lg. Leo¬
nardi).
Pardosa riparia (Koch)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Friuli-Venezia Giulia, Emilia-Romagna, Calabria.
Un 6 proveniente dalla staz. 5 (23.V.1991, lg. Au¬
reggi)-
Trochosa ruricola (Degeer)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana, Umbria, Puglia, Calabria, Sicilia.
Alcuni esemplari raccolti nella staz. 2 e presso
l’Osservarorio ornitologico.
Xerolycosa nemoralis (Westring)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Lombardia, Toscana, Calabria.
Alcuni esemplari raccolti nella staz. 2 e ad Ovest
dei Piani di Barra.
Agelenidae
Agelena labyrinthica (Clerck)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Un esemplare giovanile raccolto nella staz. 9
(22.V.1991, lg. Leonardi).
Dyctinidae
Brigittea latens (Fabricius)
Corotipo: W-Paleartico (WPA).
Presenza in Italia: Piemonte, Veneto, Friuli-Vene¬
zia Giulia, Emilia-Romagna, Toscana, Umbria, Cam¬
pania, Puglia, Calabria. La specie risulta nuova per la
Lombardia.
5 2 9 raccolte nella staz. 2 (16.V.1991,lg. Aureggi).
Nigma flavescens (Walckenaer)
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Lombardia, Emilia-Ro¬
magna, Toscana, Lazio.
Un S raccolto nella staz. 5 (25.VI.1991,lg. Aureggi).
Nigma puella (Simon)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Lombardia, Emilia-Romagna,
Toscana, Umbria.
Una 9 raccolta nei boschi della Val Faè
(30.V.1990, lg. Aureggi).
Anyphaenidae
Anyphaena accentuata (Walckenaer)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sardegna.
Una 2 raccolta nei boschi della Val Faè
(16.V.1990, lg. Aureggi).
Clubionidae
Cheiracanthium elegans Thorell, Fig. 3
Corotipo: Europeo (EUR).
Presenza in Italia: Veneto, Emilia-Romagna, To-
I RAGNI (ARACHNIDA ARANEAE) DEL MONTE BARRO (ITALIA. LOMBARDIA, LECCO)
257
scana, Lazio, Campania, Calabria. La specie risulta
nuova per la Lombardia.
Una 9 raccolta nei sottoboschi della Val Faè
(16.V.1990, lg. Leonardi).
Cheiracanthium montanum Koch, Fig. 4
Corotipo: Centroeuropeo (CEU).
Presenza in Italia: da me recentemente indicata,
sulla scorta del presente reperto, in occasione della
compilazione della check-list delle specie italiane del¬
l’ordine (Pesarini 1995).
Un 6 raccolto nella staz. 3 (9.V.1990, lg. Leonar¬
di).
Clubìona neglecta Pickard-Cambridge
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Friuli-Venezia Giulia, Emilia-
Romagna, Puglia. La specie risulta nuova per la Lom¬
bardia.
Una $ raccolta nella staz. 2 (15.IV.1989, lg. Leo¬
nardi) e una $ nella staz. 6 (12. VI. 1991, lg. Aureggi).
Clubiona phragmitis Koch
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Umbria, Marche, Basilicata.
Un 6 e una 9 raccolti nella staz. 9 (11. VI.1991, lg.
Aureggi).
Clubiona terrestris Westring
Corotipo: Europeo (EUR).
Presenza in Italia: Liguria, Veneto, Trentino- Alto
Adige, Umbria, Lazio, Campania, Calabria. La specie
risulta nuova per la Lombardia.
Un 6 raccolto nella staz. 1 (10.VI.1991, lg. Leo¬
nardi) e una 9 raccolta nei boschi della Val Faè
(16.V.1990, lg. Aureggi).
Gnaphosidae
Zelotes praeficus (Koch)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: Veneto, Trentino-Alto Adige,
Friuli-Venezia Giulia, Emilia-Romagna, Toscana,
Marche, Calabria. La specie risulta nuova per la Lom¬
bardia.
Un 6 raccolto nella staz. 5 (28.V.1990, lg. Aureg¬
gi)-
Eusparassidae
Micrommata virescens (Clerck)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Italia settentrionale e centrale,
Campania, Calabria, Sardegna.
Nunerosi esemplari, in prevalenza giovanili, rac¬
colti nelle staz. 2, 5, 7 e 9, nei boschi della Val Faè e
presso l’Osservatorio ornitologico.
Philodromidae
) Philodromus aureolus (Clerck)
Corotipo: Olartico (OLA).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino-Alto Adige, Emilia-Romagna, Marche,
Campania, Puglia, Calabria, Sicilia.
Alcuni esemplari raccolti nelle staz. 5, 6 e 9.
Philodromus cespitum (Walckenaer)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Veneto, Trentino-Alto Adige,
Friuli-Venezia Giulia, Emilia-Romagna, Toscana,
Umbria, Lazio, Campania, Puglia, Sicilia. La specie ri¬
sulta nuova per la Lombardia.
Alcuni esemplari raccolti nelle staz. 6 e 9.
Philodromus dispar Walckenaer
Corotipo: Europeo (EUR).
Presenza in Italia: Emilia-Romagna, Umbria, La¬
zio. La specie risulta nuova per la Lombardia.
Numerosi esemplari raccolti nelle staz. 3, 5, 7 e 8 e
nei boschi della Val Faè.
Philodromus praedatus Pickard-Cambridge
Corotipo: Europeo (EUR).
Presenza in Italia: da me recentemente indicata in
occasione della compilazione della check-list delle
specie italiane dell’ordine (Pesarini 1995).
Una 9 raccolta nella staz. 5 (28. V. 1990, lg. Aureg¬
gi)-
Osservazioni: solo recentemente rivalutata, questa
specie non risultava precedentemente segnalata d’I¬
talia, dove è in realtà abbastanza diffusa; oltre che del
M. Barro mi è infatti nota delle seguenti località: Pie¬
monte: Roncasso (prov. Torino, VII. 1981, lg. Giachi-
no, 1 9). Lombardia: Piazzatorre (prov. Bergamo,
14.IX.1989, lg. Camelli, 19). Basilicata: M. Pollino
(prov. Potenza, VI.1991, lg. Sabbadini, 19). Sicilia:
Piano Zucchi (prov. Palermo, 2/4. VII. 1991, lg. Pesari¬
ni & Sabbadini, 2 9 9).
Tibellus oblongus (Walckenaer)
Corotipo: Olartico (OLA).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Lazio, Campania, Calabria.
Alcuni esemplari raccolti nelle staz. 2, 3, 5, 6 e 9 e
nei dintorni dell’Osservatorio ornitologico.
Thomisidae
Heriaeus hirtus (Latreille)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Emilia-Romagna, Toscana, Umbria, Campa¬
nia, Puglia, Calabria, Sicilia, Sardegna.
Numerosi esemplari raccolti nelle staz. 2, 5 e 6, nei
boschi della Val Faè e presso l’Osservatorio ornitolo¬
gico.
Misumena vatia (Clerck)
Corotipo: Olartico (OLA).
Presenza in Italia: tutta Italia, Sicilia.
Numerosi esemplari raccolti nelle staz. 2, 3, 5, 6, 7,
8 e 9, nei boschi della Val Faè, presso l’Osservatorio
ornitologico e ad Ovest dei Piani di Barra.
Misumenops tricuspidatus (Fabricius)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Veneto, Emilia-Romagna, Toscana.
Numerosi esemplari raccolti in maggio e giugno
nella staz. 9.
Ozyptila rauda Simon
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Friuli-Venezia Giu-
258
CARLO PESARINI
Ha, Emilia-Romagna, Puglia. La specie risulta nuova
per la Lombardia.
Un 6 raccolto nella staz. 8 ( 16. V. 1990, lg. Aureg-
gi)-
Runcinia lateralis (Koch)
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Italia settentrionale e centrale,
Calabria, Sicilia, Sardegna.
Numerosi esemplari raccolti nella staz. 9 in mag¬
gio e giugno.
Synaema globosum (Fabricius)
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Numerosi esemplari raccolti nelle staz. 1, 2, 3, 6 e
9, nei boschi della Val Faè, presso POsservatorio or¬
nitologico e ad Ovest dei Piani di Barra.
Thomisus onustus Walckenaer
Corotipo: Paleartico (PAL).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Numerosi esemplari raccolti nelle staz. 2, 5 e 6, ad
Ovest dei Piani di Barra e presso POsservatorio orni¬
tologico.
Tmarus piger (Walckenaer)
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Italia settentrionale e centrale,
Campania.
Numerosi esemplari raccolti nelle staz. 2, 3, 5, 6, 7
e 8, nei boschi della Val Faè e presso POsservatorio
ornitologico.
Xysticus acerbus Thorell
Corotipo: Asiatico-Europeo (ASE).
Presenza in Italia: Lombardia, Veneto, Friuli-Ve¬
nezia Giulia, Emilia-Romagna, Toscana, Sicilia.
Alcuni esemplari raccolti nelle staz. 2 e 5 e presso
POsservatorio ornitologico.
Xysticus audax (Schrank)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Lombardia, Trentino- Alto Adi¬
ge, Friuli-Venezia Giulia, Emilia-Romagna, Lazio,
Campania, Calabria, Sardegna.
Alcuni esemplari raccolti nelle staz. 2 e 5.
Xysticus bifasciatus Koch
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Lombardia, Emilia-Romagna,
Basilicata, Sardegna.
Alcuni esemplari raccolti nelle staz. 2, 5 e 6.
Xysticus bufo (Dufour)
Corotipo: Mediterraneo (MED).
Presenza in Italia: Liguria, Piemonte, Lombardia,
Toscana, Lazio.
Alcuni esemplari raccolti nella staz. 2 e nell’alne-
to lungo il torrente della Val Faè.
Xysticus cristatus (Clerck)
Corotipo: Paleartico (PAL).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana, Marche, Campania, Calabria, Sarde¬
gna.
Numerosissimi esemplari raccolti nelle staz. 2, 3, 5
e 6 e ad Ovest dei Piani di Barra.
Xysticus erraticus (Blackwall)
Corotipo: Europeo (EUR).
Presenza in Italia: Trentino-Alto Adige. La specie
risulta nuova per la Lombardia.
Alcuni esemplari raccolti nelle staz. 2 e 5.
Xysticus kempeleni Thorell
Corotipo: Europeo (EUR).
Presenza in Italia: Veneto, Friuli-Venezia Giulia,
Emilia-Romagna. La specie risulta nuova per la
Lombardia.
Alcuni esemplari raccolti nelle staz. 2, 3, 5 e 7.
Xysticus kochi Thorell
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sardegna.
Alcuni esemplari raccolti nelle staz. 2, 3, 5, 6 e 9,
nei boschi della Val Faè e nell’alneto lungo il torren¬
te della Val Faè.
Xysticus lattio Koch
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Lombardia, Veneto, Trentino-
Alto Adige, Friuli-Venezia Giulia, Emilia-Romagna,
Toscana.
Alcuni esemplari raccolti nelle staz. 2, 5, 7, 8 e 9,
nei boschi della Val Faè, nell’alneto lungo il torrente
della Val Faè e ad Ovest dei Piani di Barra.
Xysticus ninnii Thorell
Corotipo: W.Paleartico (WPA).
Presenza in Italia: Veneto, Trentino-Alto Adige,
Friuli-Venezia Giulia, Emilia-Romagna, Toscana,
Marche, Basilicata. La specie risulta nuova per la
Lombardia.
Un 6 raccolto nella staz. 5 (28.V.1990, lg. Aureg-
gi)- |
Xysticus ulmi (Hahn)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Lombardia, Veneto,
Trentino- Alto Adige, Marche, Calabria.
2 6 6 e 2 9 9 raccolti nella staz. 9 (15. VI. 1990, lg.
Leonardi).
Salticidae
Aelurillus v-insignitus (Clerck)
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana, Basilicata, Calabria, Sardegna.
Un c3 raccolto nella staz. 5 (25. VI. 1991, lg. Aureg-
gi)-
Ballus depressus (Walckenaer)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Alcuni esemplari raccolti nelle staz. 1, 2, 5 e 6, nei
boschi della Val Faè, presso POsservatorio ornitologi-
co e ad Ovest dei Piani di Barra.
Bianor aurocinctus (Ohlert)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: Liguria, Veneto, Trentino-Alto
Adige. La specie risulta nuova per la Lombardia.
Alcuni esemplari raccolti nelle staz. 1, 2, 5 e 6 e ad
Ovest dei Piani di Barra.
I RAGNI ( ARACHNIDA ARANE AE) DEL MONTE BARRO (ITALIA, LOMBARDIA. LECCO)
259
Eris nidicolens (Walckenaer), Fig. 5
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Liguria, Lombardia, Veneto,
Trentino-Alto-Adige, Friuli-Venezia Giulia, Emilia-
Romagna, Toscana, Marche, Umbria, Campania, Pu¬
glia, Calabria, Sardegna.
Alcuni esemplari raccolti nelle staz. 2, 4 e 5.
Heliophanus aeneus (Hahn)
Corotipo: Centroasiatico-Europeo (CAE).
Presenza in Italia: Italia settentrionale, Toscana,
Calabria, Sicilia.
Una $ raccolta nella staz. 2 (23.V.1991, lg. Leo¬
nardi).
Heliophanus auratus Koch
Corotipo: Sibirico-Europeo (SIE).
Presenza in Italia: Piemonte, Val d’Aosta, Veneto,
Trentino-Alto Adige, Friuli-Venezia Giulia, Emilia-
Romagna, Toscana, Sardegna. La specie risulta nuova
per la Lombardia.
Alcuni esemplari raccolti nelle staz. 2, 5 e presso
l’Osservatorio ornitologico.
Heliophanus cupreus (Walckenaer)
Corotipo: Europeo (EUR).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Numerosissimi esemplari raccolti in tutti gli am¬
bienti indagati eccetto la staz. 1.
Fig. 5-10 - 5) Eris nidicolens (Walckenaer), pedipalpo 6 in visione ventrale. 6) Marpissa nivoyi (Lucas), pedipalpo 6 in vi¬
sione ventrale; 7) Mithion canestrinii (Ninni), pedipalpo 6 in visione ventrale; 8) id., epigino 9 ; 9) Philaeus chrysops (Po-
da), pedipalpo ó in visione ventrale; 10) Saitis barbipes (Simon), pedipalpo 6 in visione ventrale.
260
CARLO PESARINI
Heliophanus flavipes (Hahn)
Corotipo: Asiatico-Èuropeo (ASE).
Presenza in Italia: Lombardia, Veneto, Trentino-
Alto Adige, Friuli-Venezia Giulia, Emilia-Romagna,
Toscana, Umbria, Lazio, Italia meridionale, Sicilia,
Sardegna.
Numerosi esemplari raccolti nelle staz. 2, 3, 4, 5, 6
e 9, nei boschi della Val Faè e presso rOsservatorio
ornitologico.
Heliophanus kochi Simon
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Italia settentrionale e centrale,
Puglia, Calabria, Sardegna.
Alcuni esemplari raccolti nelle staz. 1 e 3, 4 e 5.
Marpissa nivoyi (Lucas), Fig. 6
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: Liguria, Emilia-Romagna, To¬
scana, Umbria, Lazio, Campania. La specie risulta
nuova per la Lombardia.
Una $ raccolta nella staz. 5 (15.IV.1989, lg. Leo¬
nardi).
Mithion canestrinii (Ninni), Fig. 7, 8 e 11
Corotipo: europeo (EUR).
Presenza in Italia: Veneto, Emilia-Romagna, Um¬
bria, Basilicata, Sicilia, Sardegna. La specie risulta
nuova per la Lombardia.
Numerosi esemplari (14 3 3, 11 $9 eli immatu¬
ri) raccolti nella staz. 9 (15. VI. 1990, lg. Leonardi), al¬
tri esemplari nelle stazioni 4 e 5.
Osservazioni: il genere Mithion Simon, compren¬
dente la qui presente specie come unico rappresen¬
tante, viene generalmente considerato, nella lettera¬
tura più recente, sinonimo di Marpissa. Le differen¬
ze molto nette che si riscontrano nei genitali dei due
sessi fra le varie specie di Marpissa da una lato, e la
presente specie dall’altro, mi inducono a ritenere in¬
giustificato il declassamento di Mithion , che preferi¬
sco continuare a trattare alla stregua di genere a sé
stante.
Myrmarachne formicaria (Degeer)
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale e centrale,
Calabria, Sicilia, Sardegna.
Alcuni esemplari raccolti nelle staz. 2, 3, 6 e 9.
Philaeus chrysops (Poda), Fig. 9
Corotipo: Europeo-Mediterraneo (EUM).
Presenza in Italia: tutta Italia, Sicilia, Sardegna.
Un 3 raccolto nella staz. 5 (25.VI.1991, lg. Aureggi).
Saitis barbipes (Simon), Fig. 10
Corotipo: Europeo (EUR).
Presenza in Italia: Italia settentrionale e centrale,
Campania, Calabria.
Alcuni esemplari raccolti nei boschi della Val Faè
e ad Ovest dei Piani di Barra.
Salticus scenicus (Clerck)
Corotipo: Olartico (OLA).
Presenza in Italia: Italia settentrionale, Emilia-Ro¬
magna, Toscana, Umbria, Campania, Puglia, Calabria,
Sicilia, Sardegna.
Un 3 e una 9 raccolti nella staz. 6 (12. VI. 1991, lg.
Aureggi).
Fig. 11 - Mithion canestrinii (Ninni), $, habitus.
Nella seguente tabella (Tabella 1) sono riuniti i
dati relativi alla presenza delle specie nelle diverse
stazioni. Tutte le stazioni successive alla nona sono
riunite nel numero 10. Si tratta per lo più di località
situate nei boschi della Val Faè; indicazioni più detta¬
gliate, peraltro, si possono ricavare dalla precedente
trattazione delle singole specie.
Tabella 1 - Tabella riassuntiva delle specie raccolte.
I RAGNI ( ARACHNIDA ARANEAE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
261
Considerazioni conclusive
Le ricerche condotte nell’area del Monte Barro
hanno condotto al rinvenimento di 111 specie di ra¬
gni, pari al 7,89 per cento della fauna italiana com¬
plessiva; un raffronto fra la fauna censita e quella ita¬
liana è messa in evidenza nella tabella 2, dove per cia¬
scuna famiglia vengono indicati i dati sottospecifica¬
ti, relativi alla ricerca condotta sul Monte Barro (let¬
tere minuscole) e relativi all’intera fauna italiana (let¬
tere maiuscole).
262
CARLO PESARINI
Tabella 2 - Numero di specie delle singole famiglie
raccolte sul Monte Barro (a) e note per l’intero terri¬
torio italiano (A), e relative percentuali (b, B) riferite
al numero totale di specie della fauna araneologica
In ricerche condotte in aree sufficientemente di-
versificate, come è il caso dell’area del Monte Barro,
il rapporto b/B, per famiglie discretamente vaste
(comprendenti almeno una trentina di specie) è ge¬
neralmente compreso fra 0,5 e 2, con tendenza al li¬
mite inferiore per le famiglie comprendenti numero¬
se specie a distribuzione geografica ristretta ed a
quello superiore per famiglie con specie in prevalen¬
za a distribuzione ampia. Il rapporto b/B tende inol¬
tre a discostarsi più o meno nettamente dall’unità in
un senso o nell’altro (a seconda delle caratteristiche
geografiche o ecologiche dell’ambiente) nel caso di
famiglie comprendenti numerose specie stenoecie o a
distribuzione geografica marcatamente caratterizza¬
ta. Nel caso della presente ricerca, si può notare che i
limiti indicati vengono in alcuni casi largamente su¬
perati nei due sensi, per eccesso nel caso di Thomisi-
dae (3,59) e Araneidae (3,16), per difetto nel caso di
Dysderidae (0,21), Agelenidae (0,17) e Gnaphosidae
(0,09). I fattori precedentemente indicati hanno con¬
tribuito in parte al diseostamento dall’unità (Aranei¬
dae e Thomisidae comprendono numerose specie a
diffusione geografica molto ampia, mentre Dysderi¬
dae, Agelenidae e Gnaphosidae comprendono nume¬
rose specie a diffusione ristretta e/o a gravitazione
mediterranea), ma il netto superamento dei limiti
mediamente riscontrati è senz’altro da attribuirsi alle
modalità di ricerca, che hanno fornito un quadro suf¬
ficientemente completo delle specie diurne legate al¬
la vegetazione (come appunto Thomisidae ed Ara¬
neidae), mentre è pressoché sicuro che numerose
specie di Dysderidae, Agelenidae e soprattutto
Gnaphosidae (terricole e spesso a costumi notturni)
siano sfuggite alle ricerche, che in tal caso hanno for¬
nito un quadro della popolazione araneologica netta¬
mente sbilanciato a sfavore di questi ultimi taxa. No¬
nostante queste limitazioni, peraltro, i dati geonemici
ottenuti con la presente ricerca sono comunque di
notevole interesse, anche in considerazione dell’e¬
strema lacunosità delle attuali conoscenze sulla fauna
araneologica italiana: ben 5 specie risultavano infatti
non ancora segnalate per la fauna italiana, e addirit¬
tura 32 nuove per la fauna lombarda.
Indicazioni sulle caratteristiche ambientali sono
fornite dalla sottoindicata tabella corologica del po¬
polamento censito (tabella 3), che fornisce un quadro
di ambiente mesotermo, con elementi enofili in leg¬
gera maggioranza rispetto a quelli termofili e con
un’ampia componente di specie euriecie.
Tabella 3 - Spettro corologico delle specie raccolte.
Le sigle dei corotipi fondamentali sono ricavate dal
lavoro di Vigna et al. (1991).
La figura 12, dove i corotipi sono raggruppati per
categorie sintetiche, visualizza la dominanza di ele¬
menti ad ampia distribuzione (oltre il 70% delle spe¬
cie raccolte) e la totale assenza di elementi mediter¬
ranei.
I RAGNI (ARACHNIDA ARANEAE) DEL MONTE BARRO (ITALIA, LOMBARDIA, LECCO)
263
BIBLIOGRAFIA
Alicata P, 1966 - Il genere Dasumia Thorell (Araneae, Dysderi-
dae), sua nuova definizione e revisione delle specie italiane.
Meni. Mus. civ. Stor. nat., Verona, 14:465-486.
Aureggi M„ 1991 - Il popolamento araneologico del Monte Barro.
Tesi di laurea Univ. Studi Milano, corso in Scienze Biologiche.
Braun R., 1965 - Beitrag zu einer Revision der palàarktischen Ar-
ten der Philodromus aureolus- Gruppe (Arach., Araneae).
Senck. biol. , 46:369-428.
Grimm U., 1985 - Die Gnaphosidae Mitteleuropas (Arachnida,
Araneae). Abhandl. Naturwiss. Ver., Hamburg, 26:1-318.
Hànggi A., 1990 - Beitràge zur Kenntnis der Spinnenfauna des Kt.
Tessin III. Fur die Schweiz neue und bemerkenswerte Spinne
(Arachnida Araneae). Miti, scheiz ■ entom. Ges., 63:153-167.
Hansen H.. 1985 - Contributo alla conoscenza dei Salticidae ita¬
liani (Arachnida:Araneae). Boll. Mus. civ. St. nat., Venezia,
34:241-322.
Pesarini C., 1995 - Checklist delle specie della fauna italiana. 23.
Arachnida Araneae. Ed. Calderini, Bologna.
Roberts M. J., 1985 - The spiders of Great Britain and Ireland.
Voi. 1. Ed. Brill , Leiden.
Roberts M. X, 1987 - The spiders of Great Britain and Ireland.
Voi. 2. Ed. Brill , Leiden.
Simon E., 1932 - Les Arachnides de France. Ed. Mulo , Paris, 6 (4).
Simon E., 1937 - Les Arachnides de France. Ed. Mulo. Paris, 6 (5).
Tongiorgi P, 1966 - Italian wolf spiders of thè genus Pardosa
(Araneae: Lycosidae). Bull. Mus. Comp. Zool., 134:275-334.
Vigna Taglianti A., Audisio P.A., Belfiore C, Biondi M.. Bo¬
logna M.A., Carpaneto G.M., De Biase A., De Felici S..
Piattella E., Racheli T., Zapparoli M. & Zoia S., 1992 -
Riflessioni di gruppo sui corotipi fondamentali della fauna W-
paleartica ed in particolare italiana. Biogeographia , 16: 159-
179.
Wiehle H., 1956 - Die Tierwelt Deutschlands 44. Spinnentiere. 28
Familie Linyphiidae-Baldachinspinnen. ed. G. Fischer, Jena.
Wiehle H., 1960 - Die Tierwelt Deutschlands 47. Spinnentiere. XI
Micryphantidae-Zwergspinnen. ed. G. Fischer, Jena.
!
i
!
Carlo Pesarini: Museo Civico di Storia Naturale di Milano, Corso Venezia 55, 20121 Milano
Studi geobotanici ed entomofaunistici nel Parco Regionale del Monte Barro
Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano
Volume XXVII - Fascicolo II - 1997
1
.
INDICE
Introduzione . Pag. 137
Enrico Banfi, Gabriele Galasso & Davide
Sassi - Aspetti floristico-vegetazionali del
Monte Barro (Preali di Lecco) in rela¬
zione all’area delle raccolte entomologi-
che . Pag. 139
Carlo Leonardi - Ricerca entomofaunisti-
ca nel parco regionale del Monte Barro
(Italia, Lombardia, Lecco) . Pag. 153
Paride Dioli - Gli Eterotteri (Heteropte-
ra) del Monte Barro (Italia, Lombardia,
Lecco) . Pag. 159
Carlo Pesarmi - Gli Elateridi (Coleoptera
Elateridae) del Monte Barro (Italia, Lom¬
bardia, Lecco) . Pag. 175
Carlo Pesarmi & Andrea Sabbadini - I
Cerambicidi (Coleoptera Cerambycidae)
del Monte Barro (Italia, Lombardia, Lec¬
co) . Pag. 185
Carlo Leonardi & Davide Sassi - I Criso¬
melidi (Coleoptera Chrysomelidae) del
Monte Barro (Italia, Lombardia, Lecco) ... Pag. 189
Carlo Pesarini - 1 Curculionidi in sensu la¬
to (Coleoptera Attelabidae, Apionidae e
Curculionidae) del Monte Barro (Italia,
Lombardia, Lecco) . Pag. 229
Fausto Pesarini - Gli Imenotteri Sinfidi
(Hymenoptera Megalodontidae, Cephi-
dae, Argidae, Cimbicidae, Tenthredinidae)
del Monte Barro (Italia, Lombardia, Lec¬
co) . Pag. 245
Claudio Canepari - I Coccinellidi (Co¬
leoptera Coccinellidae) del Monte Barro
(Italia, Lombardia, Lecco) . Pag. 179
Carlo Pesarini - 1 Ragni (Arachnida Ara-
neae) del Monte Barro (Italia, Lombar¬
dia, Lecco) . Pag. 251
»
-
'
■; .
Volume XIII
I - Vhnzo S., 1961- Rilevamento geologico deH’anfiteatro mo¬
renico del Garda. Parte II. Tratto orientale Garda- Adige e
anfiteatro atesino di Rivoli veronese, pp. 1-64, 25 figg., 9
tavv., 1 carta.
II - Pinna G., 1963 - Ammoniti del Lias superiore (Toarciano)
dell’Alpe Turati (Erba, Como). Generi Mercaticeras, Pseu-
domercaticeras e Brodieia. pp. 65-98, 2 figg., 4 tavv.
III - Zanzucchi G., 1963 - Le Ammoniti del Lias superiore
(Toarciano) di Entratico in Val Cavallina (Bergamasco
orientale), pp. 99-146, 2 figg. 8 tavv.
Volume XIV
I - Venzo S., 1965 - Rilevamento geologico dell’anfiteatro
morenico frontale del Garda dal Chiese all’Adige, pp. 1-82,
11 figg., 4 tavv., 1 carta.
II - Pinna G., 1966 - Ammoniti del Lias superiore (Toarciano)
dell’Alpe Turati (Erba, Como). Famiglia Dactylioceratidae.
pp. 83-136, 4 tavv.
Ili - Dieni I., Massari F. e Montanari L., 1966 - Il Paleogene
dei dintorni di Orosei (Sardegna). pp. 13-184, 5 figg., 8 tavv.
Volume XV
I - Caretto P. G., 1966 - Nuova classificazione di alcuni Brio-
zoi pliocenici, precedentemente determinati quali Idrozoi
del genere Hydractinia Van Beneden. pp. 1-88, 27 figg. 9
tavv.
II - Dieni I. e Massari F, 1966 - Il Neogene e il Quaternario
dei dintorni di Orosei (Sardegna), pp. 89-142, 8 figg., 7 tavv.
Ili - Barbieri E, Iaccarino S., Barbieri F. & Petrucci F,
1967 - Il Pliocene del Subappennino Piacentino-Parmense-
Reggiano.pp. 143-188, 20 figg., 3 tavv.
Volume XVI
I - Caretto P. G., 1967 - Studio morfologico con l’ausilio del
metodo statistico e nuova classificazione dei Gasteropodi
pliocenici attribuibili al Murex brandaris Linneo, pp. 1 -60,
1 fig., 7 tabb., 10 tavv.
II - Sacchi Vialli G. e Cantaluppi G., 1967 - 1 nuovi fossili di
Gozzano (Prealpi piemontesi), pp. 61-128, 30 figg., 8 tavv.
Ili - Pigorini B., 1967 - Aspetti sedimentologici del Mare
Adriatico, pp. 129-200, 13 figg., 4 tabb. 7 tavv.
Volume XVII
I - Pinna G., 1968 - Ammoniti del Lias superiore (Toarciano)
dell’Alpe Turati (Erba, Como). Famiglie Lytoceratidae,
Nannolytoceratidae, Hammatoceratidae (excl. Phymatoce-
ratinae) Hildoceratidae (excl. Hildoceratinae e Bouleicera-
tinae). pp. 1-70, 2 tavv. n.t.,6 figg., 6 tavv.
II - Venzo S. & Pelosio G., 1968 - Nuova fauna a Ammonoidi
dell’Anisico superiore di Lenna in Val Brembana (Berga¬
mo), pp. 71-142, 5 figg., 11 tavv.
Ili - Pelosio G., 1968 - Ammoniti del Lias superiore (Toarcia¬
no) dell’Alpe Turati (Erba, Como). Generi Hildoceras,
Phymatoceras, Paroniceras e Frechiella. Conclusioni gene¬
rali. pp. 143-204, 2 figg., 6 tavv.
Volume XVIII
I - Pinna G., 1969 - Revisione delle ammoniti figurate da Giu¬
seppe Meneghini nelle Taw. 1-22 della « Monographie des
fossiles du calcaire rouge ammonitique» (1867-1881). pp. 5-
22, 2 figg., 6 tavv.
II - Montanari L., 1969 - Aspetti geologici del Lias di Gozza¬
no (Lago d’Orta). pp. 23-92, 42 figg., 4 tavv. n.t.
Ili - Petrucci F., Bortolami G. C. & Dal Piaz G. V., 1970 - Ri¬
cerche sull’anfiteatro morenico di Rivoli-Avigliana (Prov.
Torino) e sul suo substrato cristallino, pp. 93-169, con carta
a colori al 1:40.000, 14 figg., 4 tavv. a colori e 2 b.n.
Volume XIX
I - Cantaluppi G., 1970 - Le Hildoceratidae del Lias medio
delle regioni mediterranee. Loro successione e modifica¬
zioni nel tempo. Riflessi biostratigrafici e sistematici, pp. 5-
46, con 2 tabelle nel testo.
II - Pinna G. & Levi-Setti E, 1971 - 1 Dactylioceratidae della
Provincia Mediterranea (Cephalopoda Ammonoidea). pp.
47-136, 21 figg., 12 tavv.
III - Pelosio G., 1973 - Le ammoniti del Trias medio di Askle-
pieion (Argolide, Grecia). I. Fauna del «calcare a Ptychites »
(Anisico sup.). pp. 137-168, 3 figg., 9 tavv.
Volume XX
I - Cornaggia Castiglioni O., 1971 - La cultura di Reme-
delio. Problematica ed ergologia di una facies dell’Eneoli¬
tico Padano, pp. 5-80, 2 figg., 20 tavv.
II - Petrucci F. 1972 -Il bacino del Torrente Cinghio (Prov.
Parma). Studio sulla stabilità dei versanti e conservazione
del suolo, pp. 81-127, 37 figg., 6 carte tematiche.
Ili - Ceretti E. & Poluzzi À., 1973 - Briozoi della biocalcare-
nite del Fosso di S. Spirito (Chieti, Abruzzi), pp. 129-169, 18
figg., 2 tavv.
Volume XXI
I - Pinna G., 1974 - 1 crostacei della fauna triassica di Cene in
Val Seriana (Bergamo), pp. 5-34, 16 figg., 16 tavv.
II - Poluzzi A., 1975 - 1 Briozoi Cheilostomi del Pliocene del¬
la Val d’Arda (Piacenza, Italia), pp. 35-78, 6 figg., 5 tavv.
Ili - Brambilla G., 1976 - 1 Molluschi pliocenici di Villalvernia
Alessandria). I. Lamellibranchi.pp. 79-128, 4 figg., 10 tavv.
Volume XXII
I - Cornaggia Castaglioni O. & Calegari G., 1978 - Cor¬
pus delle pintaderas preistoriche italiane. Problematica,
schede, iconografia, pp. 5-30, 6 figg., 13 tavv.
II - Pinna G., 1979 - Osteologia dello scheletro di Kritosaurus
notabilis (Lambe, 1914) del Museo Civico di Storia Natu¬
rale di Milano (Ornithischia Hadrosauridae). pp. 31-56, 3
figg., 9 tavv.
Ili - Biancotti A., 1981 - Geomorfologia dell’Alta Langa (Pie¬
monte meridionale), pp. 57-104, 28 figg., 12 tabb., 1 carta f. t.
Volume XXIII
I - Giacobini G., Calegari G. & Pinna G., 1982 - 1 resti uma¬
ni fossili della zona di Arena Po (Pavia). Descrizione e pro¬
blematica di una serie di reperti di probabile età paleoliti¬
ca, pp. 5-44, 4 figg., 16 tavv.
II - Poluzzi A., 1982 - 1 Radiolari quaternari di un ambiente
idrotermale del Mar Tirreno, pp. 45-72, 3 figg., 1 tab., 13
tavv.
Ili - Rossi E, 1984 - Ammoniti del Kimmeridgiano superiore
Berriasiano inferiore del Passo del Furio (Appennino Um¬
bro-Marchigiano), pp. 73-138, 9 figg., 2 tabb., 8 tavv.
Volume XXIV
I - Pinna G., 1984 - Osteologia di Drepanosaurus unguicauda-
tus, lepidosauro triassico del sottordine Lacertilia. pp. 7-28,
12 figg., 2 tavv.
II - Nosotti S., Pinna G., 1989 - Storia delle ricerche e degli
studi sui rettili Placodonti. Parte prima 1830-1902. pp. 29-
86, 24 figg., 12 tavv.
Volume XXV
I - Calegari G., 1989 - Le incisioni rupestri di Taouardei
(Gao, Mali). Problematica generale e repertorio iconogra¬
fico, pp. 1-14, 9 figg., 24 tavv.
II - Pinna G. & Nosotti S., 1989 - Anatomia, morfologia fun¬
zionale e paleoecologia del rettile placodonte Psephoder-
ma alpinum Meyer, 1858. pp. 15-50, 20 figg., 9 tavv.
Ili - Caldara R., 1990 - Revisione Tassonomica delle specie
paleartiche del genere Tychius Germar (Coleoptera Cur-
culionidae).pp. 51-218, 575 figg.
Volume XXVI
I - Pinna G., 1992 - Cyamodus hildegardis Peyer, 1931 (Repti-
lia, Placodontia).pp. 1-21, 23 figg.
II - Calegari G. a cura di, 1993 - L’arte e l’ambiente del Saha¬
ra preistorico: dati e interpretazioni, pp. 25-556. 647 figg.
Ili - Andri E. e Rossi E, 1993 - Genesi ed evoluzione di fran¬
genti, cinture, barriere ed atolli. Dalle stromatoliti alle co¬
munità di scogliera moderne, pp. 559-610, 49 figg., 1 tav.
Volume XXVII
I - Pinna G. & Ghiselin M. edited by, 1996 - Biology as Hi-
story. N. 1. Systematic Biology as an Historical Science, pp.
1-133, 68 figg.
Le Memorie sono disponibili presso la Segreteria della Società Italiana di Scienze Naturali,
Museo Civico di Storia Naturale, Corso Venezia 55 - 20121 Milano
Pubblicazione disponibile in cambio