MYCOTAXON
THE INTERNATIONAL JOURNAL OF FUNGAL TAXONOMY & NOMENCLATURE
VOLUME 136 (2) APRIL-JUNE 2021
a
Entyloma eranthidis sp. nov. on Eranthis longistipitata
(Denchev & al.— Fie. 2, p. 379)
ISSN (PRINT) 0093-4666 https://doi.org/10.5248/136-2 ISSN (ONLINE) 2154-8889
MYXNAE 136(2): 253-544 (2021)
EDITORIAL ADVISORY BOARD
ELSE C. VELLINGA (2019-2022), Chair
Berkeley, California, U.S.A.
KAREN HANSEN (2014-2021), Past Chair
Stockholm, Sweden
XINLI WEI (2019-2023)
Beijing, China
Topp W. OsMUNDSON (2019-2024)
La Crosse, Wisconsin, U.S.A.
ELAINE MALosso (2019-2025)
Recife, Brazil
ALFREDO JUSTO (2021-2026)
Saint John, New Brunswick, Canada
ISSN 0093-4666 (PRINT)
ISSN 2154-8889 (ONLINE)
MYCOTAXON
THE INTERNATIONAL JOURNAL OF FUNGAL TAXONOMY & NOMENCLATURE
APRIL-JUNE 2021
VOLUME 136 (2)
http://dx.doi.org/10.5248/136-2
EDITOR-IN-CHIEF
LORELEI L. NORVELL
editor@mycotaxon.com
Pacific Northwest Mycology Service
6720 NW Skyline Boulevard
Portland, Oregon 97229-1309 USA
NOMENCLATURE EDITOR
SHAUN R. PENNYCOOK
PennycookS@LandcareResearch.co.nz
Manaaki Whenua Landcare Research
Auckland, New Zealand
MyYcoTAxon, LTD. © 2021
www.mycotaxon.com &
www.ingentaconnect.com/content/mtax/mt
P.O. BOX 264, ITHACA, NY 14581-0264, USA
Iv ... MYCOTAXON 136(2)
MYCOTAXON
VOLUME ONE HUNDRED THIRTY-SIX (2) — TABLE OF CONTENTS
COonricendd ts, on BS Seba s Prk ee ihagh Fe Sha eR EAA eee eet aap Ae eee vi
Nomenclatural novelties & typifications ........ 0. cece eee eee ees vii
AS EV ACMI OTST to ere. a Se cai ge an Sate Ree EK niece Eke Bake 3 SS Ae eo eager ss aes Sk x
TUOUEE LO TAILOUS 2 Murssd gh Pak hier rid thle hes dP eee hd dee Led he aaAay xi
2O2T SUBMISSION PTOCE ANTES 0 5 bo Oa bones alee 8 WO eee eae eee xiii
NEw TAXA
Collybiopsis and its type species, Co. ramealis
RONALD H. PETERSEN & KAREN W. HuGHEs 263
Parathozetella microsperma gen. & sp. nov.,
from the Brazilian Amazon
FLAVIA RODRIGUES BARBOSA, PATRICIA OLIVEIRA FIUZA,
JOSIANE SANTANA MONTEIRO, ALEXANDRE PEREIRA DA SILVA,
Luis FERNANDO PASCHOLATI GUSMAO, RAFAEL FELIPE CASTANEDA-Ruiz 351
Pseudosperma albobrunneum sp. nov. from coniferous forests of Pakistan
SANA JABEEN, ZAINAB, HiRA BASHIR, ABDUL NASIR KHALID 361
Entyloma eranthidis sp. nov. on Eranthis longistipitata from Uzbekistan
TEODOR T. DENCHEV, CVETOMIR M. DENCHEV,
MARTIN KEMLER, DOMINIK BEGEROW 373
Calogaya miniata comb. nov., Huneckia crocina comb. nov.,
and new neotropical records of Wetmoreana brouardii KARINA WILK 387
Kirschsteiniothelia shimlaensis sp. nov.,
from Himachal Pradesh, India RaJNISH KUMAR VERMA,
I.B. PRASHER, SUSHMA, AJAY KUMAR GAUTAM,
KUNHIRAMAN C. RAJESHKUMAR, RAFAEL F. CASTANEDA-Ru1z 401
KEYS
A key to the identification of the genera of lichenized fungi
occurring in Thailand VASUN POENGSUNGNOEN,
KAWINNAT BUARUANG, KANSRI BOONPRAGOB, H. THORSTEN LuMBSCH 409
NEW RANGES/HOSTS
Dictyostelids from Jilin Province, China, 4
HE ZHU, SONGNING GUO, QIN XUE, ZHUANG LI,
XUEPING KANG, YUHUA WEI, Pu Liu, Qi WANG, Yu Li 445
APRIL-JUNE 2021... V
New host and distributional records for Camarosporidiella
in Italy, Russia, and Ukraine
DHANDEVI PEM, RAJESH JEEWON, TIMUR S. BULGAKOV,
IRINA V. BONDARENKO-BORISOVA, MINGKWAN DOILOM,
ABDALLAH M. ELGORBAN, RUNGTIWA PHOOKAMSAK,
SAISAMORN LUMYONG, KEVIN D. Hype 451
Microbotryum bardanense and M. polygoni-alati -
new records from Nepal
TEODOR T. DENCHEV, SUK-Pyo HonG, CvETomIR M. DENCHEV 491
Chlorophyllum hortense newly recorded,
and C. molybdites confirmed, from Pakistan
SANA JABEEN, SHAHZEENA ARSHAD, HUMAIRA BASHIR,
MuGHEES HAMID, ANEELA YASMEEN, ABDUL NASIR KHALID 497
New record of Geopora sumneriana from Pakistan
IRFANA MAQSAD, BARKAT ALI, TASMIA BASHIR, ABDUL SAMAD Mumtaz 511
Didymocyrtis epiphyscia, Lichenochora weillii,
and Lichenoconium xanthoriae newly recorded from Turkey
MustaFa Kocakaya 523
Ganoderma leucocontextum, a new record from Pakistan
AIsHA UMAR, SHAKIL AHMED, HIRA BASHIR 529
MycosBioTa (FUNGAE) NEW TO THE MYCOTAXON WEBSITE
Lichens from Brazil: a checklist of lichenized fungi
from Acre, in the Amazon (suMMaRy)
ANDRE APTROOT, LIDIANE ALVES DOS SANTOS, ISAIAS OLIVEIRA JUNIOR,
JANICE GOMES CAVALCANTE, MARCELA EUGENIA DA SILVA CACERES 541
Basidiomycetes within Calabrian pine (Pinus brutia) ecosystems
on the island of Cyprus (summary)
MICHAEL LOIZIDES 543
VI ... MYCOTAXON 136(2)
CORRIGENDA
CORRIGENDA FOR MYCOTAXON 136(2)
Cited below are mistakes present in files submitted for PDF conversion in
the current issue but not detected by the authors until after the paper had
gone to press.
p- 533, line 2
FOR: C. Section of context; D. Lower surface pores; ...
READ: C. Lower pores surface; D. Pores section under microscope: ...
p- 533, line 3
FOR: I. Binding hyphae J. ...
READ: I. Binding hyphae; J. ...
p. 537, line 1 For: The 5-6 mm long tubes G. leucocontextum ...
READ: The 5-6 mm long tubes of G. leucocontextum ...
PUBLICATION DATE FOR VOLUME ONE HUNDRED THIRTY-SIX (1)
MYCOTAXON for JANUARY-MARCH 2021 (I-XvI + 1-262)
was issued on April 16, 2021
APRIL-JUNE 2021 ...
NOMENCLATURAL NOVELTIES AND TYPIFICATIONS
PROPOSED IN MYCOTAXON 136(2)
Calogaya miniata (Hoffm.) Wilk & Licking
[MB 839870], p. 393
Collybiopsis biformis (Peck) R.H. Petersen
[IF 556182] p. 341
Collybiopsis brunneigracilis (Corner) R.H. Petersen
[IF 557078], p. 341
Collybiopsis californica (Desjardin) R.H. Petersen
[IF 556204]. p. 277
Collybiopsis confluens (Pers.) R.H. Petersen
[IF 556183]. p. 341
Collybiopsis dichroa (Berk. & M.A. Curtis) R.H. Petersen
[IF 556184], p. 341
Collybiopsis diminuta (Berk. & Broome) R.H. Petersen
[IF 556185], p. 341
Collybiopsis disjuncta (R.H. Petersen & K.W. Hughes)
R.H. Petersen & K.W. Hughes
[IF 556777], p. 341
Collybiopsis eneficola (R.H. Petersen) R.H. Petersen
[IF 556186], p. 342
Collybiopsis fibrosipes (Berk. & M.A. Curtis) R.H. Petersen
[IF 557077], p. 342
Collybiopsis filamentipes R.H. Petersen
[IF 557073]. p. 287
Collybiopsis foliiphila (A.K. Dutta, K. Acharya, Antonin) R.H. Petersen
[IF 557080], p. 342
Collybiopsis furtiva R.H. Petersen
[IF 556208]. p. 297
Collybiopsis gibbosa (Corner) R.H. Petersen
[IF 556187], p. 342
Collybiopsis hasanskyensis R.H. Petersen
[IF 557072], p. 309
Collybiopsis indocta (Corner) R.H. Petersen
[IF 556188], p. 342
Collybiopsis juniperina (Murrill) R.H. Petersen
[IF 556189], p. 342
Collybiopsis luxurians (Peck) R.H. Petersen
[IF 556190], p. 342
Collybiopsis melanopus (Wilson, Desjardin & E. Horak) R.H. Petersen
[IF 556191], p. 342
VII
vill ... MYCOTAXON 136(2)
Collybiopsis menehune (Desjardin, Halling & Hemmes) R.H. Petersen
[IF 556192], p. 343
Collybiopsis mesoamericana (J.L. Mata) R.H. Petersen
[IF 556193], p. 343
Collybiopsis micromphaloides (R.H. Petersen & K.W. Hughes) R.H. Petersen
[IF 556778], p. 343
Collybiopsis minor R.H. Petersen
[IF 556206], p. 317
Collybiopsis neotropica (Singer) R.H. Petersen
[IF 556942], p. 343
Collybiopsis nonnulla (Corner) R.H. Petersen
[IF 556194], p. 343
Collybiopsis obscuroides (Antonin & Legon) R.H. Petersen
[IF 556943], p. 343
Collybiopsis parvula (J.L. Mata, R.H. Petersen & K.W. Hughes) R.H. Petersen
[IF 556779], p. 343
Collybiopsis peronata (Bolton) R.H. Petersen
[IF 556195], p. 343
Collybiopsis polygramma (Mont.) R.H. Petersen
[IF 556944], p. 344
Collybiopsis pseudoluxurians (R.H. Petersen & K.W. Hughes) R.H. Petersen
[IF 556196], p. 344
Collybiopsis quercophila (Pouzar) R.H. Petersen
[IF 556197], p. 344
Collybiopsis ramealis (Bull.) Millsp. 1913
= Agaricus ramealis Bull. 1788 nom. sanct.,
[IF 556205, (epitypified)], p. 326
Collybiopsis readiae (G. Stev.) R.H. Petersen
[IF 556945], p. 344
Collybiopsis stenophylla (Mont.) R.H. Petersen
[IF 557079], p. 344
Collybiopsis subcyathiformis (Murrill) R.H. Petersen
[IF 556946], p. 344
Collybiopsis subnuda (Ellis ex Peck) R.H. Petersen
[IF 556198], p. 344
Collybiopsis subpruinosa (Murrill) R.H. Petersen
[IF 556199], p. 344
Collybiopsis synodica (Kunze ex Fr.) R.H. Petersen
[IF 556200], p. 345
Collybiopsis termiticola (Corner) R.H. Petersen
[IF 556201], p. 345
Collybiopsis vaillantii (Pers.) R.H. Petersen
[IF 556202], p. 345
APRIL-JUNE 2021 ...
Collybiopsis villosipes (Cleland) R.H. Petersen
[IF 556203], p. 345
Entyloma eranthidis T. Denchev, Denchev, Kemler & Begerow
[IF 557320], p. 382
Huneckia crocina (Kremp.) Wilk
[MB 836903], p. 395
Ionaspis aptrootii Poengs. & Lumbsch
[MB 835127], p. 427
= Ionaspis tropica Aptroot 1997, nom. illegit.
(non Riddle 1920)
Kirschsteiniothelia shimlaensis Rajn.K. Verma, Prasher, Rajeshk., Sushma,
A.K. Gautam & R.F. Castaneda
[IF 557827], p. 404
Parathozetella F.R. Barbosa, J.S. Monteiro, Fiuza, R.F. Castafeda & Gusmao
[MB 834624], p. 353
Parathozetella microsperma E.R. Barbosa, J.S. Monteiro, Fiuza,
R.E Castaneda & Gusmao
[MB 834626], p. 353
Pseudosperma albobrunneum Jabeen, Zainab, H. Bashir & Khalid
[MB 840056], p. 364
IX
x ... MYCOTAXON 136(2)
REVIEWERS — VOLUME ONE HUNDRED THIRTY-SIX (2)
The Editors express their appreciation to the following individuals who have,
prior to acceptance for publication, reviewed one or more of the papers
prepared for this issue.
Andreas Beck
Jayarama Bhat
Jerry Cooper
Manuela Dal Forno
Pradeep Kumar Divakar
Xi-Hui Du
Tine Grebenc
Arthur Grupe
Emerson Luiz Gumboski
Danny Haelewaters
Shuang-Hui He
Makoto Kakishima
Martin Kukwa
John C. Landolt
De-Wei Li
Patrick M. McCarthy
Rosa Maria Arias Mota
Lorelei L. Norvell
Shaun R. Pennycook
Sergio Pérez-Ortega
Raquel Pino Bodas
Elias Polemis
Huzefa A. Raja
Carmel Sammut
Harrie Sipman
Tibpromma Saowaluck
Steven L. Stephenson
Priyanka Uniyal
Else C. Vellinga
Nousheen Yousaf
Juan Carlos Zamora
Chang-Lin Zhao
APRIL-JUNE 2021... XI
FROM THE EDITOR-IN-CHIEF
LATE AGAIN? — We could write volumes explaining why MycoTaxon 136(2) is delayed.
But rather than spew meaningless ink on these pages, we simply offer a brief apologetic
explanation: the 2021 April-June MycoTaxon is being released in July/August BECAUSE:
the EIC foolishly thought she might prepare her own research paper after closure of
136(1), medical issues and side effects assaulted both editors after April, Oregon melted
under a record-breaking June “heat dome” (on June 30 reaching a high 116°F (46.7°C)
with no air-conditioning and hot nights), the editorial ADoser publishing application
began disintegrating, with InDesign stalling several times daily and finally snatching
carefully formatted tables or eating italics from text in front of horrified editorial eyes,
and the Internet crashed. Internet service was restored last week. After repeated crashes,
the frazzled EIC uninstalled and reinstalled all Adobe applications, imported and
formatted missing text and italics anew, restored tables, and more or less successfully
converted the final five papers confronting a VERY strange interface. (Some time in the
past four years, the Adobe subscription disappeared off the editorial computer, to be
replaced by a rickety 2013 application. Don't ask. The EIC’s First Born is convinced the
editorial computer is haunted. We see no evidence to the contrary.)
A MYCOTAXON PRIMER TO SCIENTIFIC NAMES: Undergraduates are generally taught that
a scientific name comprises Two elements: the name of the genus (capitalized) + the
name of the species (all lower case): e.g., Russula campinensis. In mycological taxonomic
journals, scientific authors are also expected to cite authorities (generally only once):
ie., Russula campinensis (Singer) T.W. Henkel, Aime & S.L. Mill. Authors cited within
parentheses are those who originally named the species while those standing outside the
brackets transferred the species to a different genus. A species name that serves as the
title of a section containing a full description heads a ‘taxonomic section’ and includes
the complete taxonomic reference: genus name, species name, naming authors, an
abbreviated but complete bibliographic reference, and date of publication. The complete
taxonomic reference of the name above is: Russula campinensis (Singer) T.W. Henkel,
Aime & S.L. Mill., Mycologia 92(6): 1124 (2000).
Basically, we cite authorities only ONCE per paper to make the text more user friendly.
If a species is not part of a taxonomic heading, authorities are cited generally at first
mention. Because now complete fungal names (including bibliographic reference) are
available on the internet, the Code recommends (for ‘incidental’ mention in a taxonomic
paper) that species named by more than two authors be cited as First author & al. (ie.,
Russula campinensis (Singer) T.W. Henkel & al.).
Index Fungorum also presents a list of standardized author spellings: see
http://www.indexfungorum.org/names/AuthorsOfFungalNames.asp . Reference to
this list will ensure that each authority is spelled consistently in mycological literature.
When in doubt how to present a taxonomic heading, use IndexFungorum (universally
available online) as a model.
xi ... MYCOTAXON 136(2)
One last note: although names of synonyms and basionyms are nomenclatural
in nature, the decision as to WHICH synonym should be used is a TAxoNoMIC (NOT
nomenclatural) decision.
Our 2021 April-June Mycotaxon provides 17 contributions by 70 authors (representing
17 countries) as revised by 35 expert reviewers and the editors.
The NEw Taxa (6 titles) section leads off the issue with a monographic treatment
of Collybiopsis, here endorsed over Marasmiellus “especially by (re)describing
taxa within the Co. ramealis complex with emphasis on European collections of
Co. ramealis;” the authors propose five new species (one a previously described taxon
here elevated to species), and 35 new combinations. NEw Taxa also covers ONE new
genus (Parathozetella from Brazil) and an additional FouR species new to science
representing Entyloma from UZBEKISTAN; Kirschsteiniothelia from Inp1a; Parathozetella
from BRAZIL; and Pseudosperma from PAKISTAN. We also offer Two new combinations
in Calogaya and Huneckia and ONE epitypification for Collybiopsis (= Agaricus) ramealis.
Keys presents an impressive key to the 258 genera of lichenized fungi in Thailand,
which also proposes the replacement name Jonaspis aptrootii for the illegitimate
I. tropica.
NEW RANGES/HOSTS (seven titles) report range extensions for [ascomycetes]
Camarosporidiella for Iraty, UKRAINE, and Russia and Geopora for PAKISTAN;
[basidiomycetes] Chlorophyllum and Ganoderma for PAKISTAN and Microbotryum for
NepAL; [lichens] Didymocyrtis, Lichenochora, and Lichenoconium for TURKEY; and
[myxomycetes] Dictyostelium for Cu1na. New hosts are cited for Camarosporidiella
from UKRAINE.
Papers providing research supported by phylogenetic analysis include seven new
species representing Collybiopsis, Entyloma, and Pseudosperma, the two new Calogaya
and Huneckia combinations, and nine range extensions.
Our issue concludes with the announcement of two new annotated species lists on
our MYCOBIOTA website, covering lichenized fungi from the Amazon (BRAzIL) and
basidiomycetes within Calabrian pine ecosystems on CyPRUS.
Warm (no longer hot!) regards and best wishes for good health,
Lorelei L. Norvell (Editor-in-Chief)
21 July 2021
APRIL-JUNE 2021 ... XIII
2021 MyCOTAXON SUBMISSION PROCEDURE
Prospective MycotTaxon authors should download the MycoTaxon 2021 guide,
review & submission forms, and MycoTaxon sample manuscript by clicking the ‘file
download page’ link on our INSTRUCTIONS TO AUTHORS page before preparing their
manuscript. This page briefly summarizes our “4-step’ submission process.
1—PEER REVIEW: Authors first contact peer reviewers (two for journal papers;
three for mycobiota/fungae) before sending them formatted text & illustration
files and the appropriate 2021 MycoTaxon journal or mycota reviewer comment
form. Experts return revisions & comments to BoTH the Editor-in-Chief
<editor@mycotaxon.com> and authors. ALL co-authors must correct and proof-
read their files before submitting them to the Nomenclature Editor.
2—NOMENCLATURAL REVIEW: Authors email all ERROR-FREE text & illustration
files to the Nomenclature Editor <PennycookS@LandcareResearch.co.nz>.
Place first author surname + genus + ‘Mycotaxon’ on the subject line, and
(required) attach a completed sUBMISSION FORM. The Nomenclature Editor will
(i) immediately assign the accession number and (ii) after a few weeks return his
notes and suggested revisions to the author(s) and Editor-in-Chief.
3—FINAL SUBMISSION: All coauthors thoroughly revise and proof-read files
to prepare error-free text and images ready for immediate publication. Poorly
formatted copy will be rejected or returned for revision. E-mail the final manuscript
to the Editor-in-Chief <editor@mycotaxon.com>, adding the accession number to
the message and all files, which include a (i) revised 2021 submission form, all (ii)
text files and (iii) jpg images, and (iv) FN, IF, or MB identifier verifications for each
new name or typification. The Editor-in-Chief acknowledges submissions within
two weeks of final submission but requests authors to wait at least 14 days before
sending a follow-up query (without attachments).
4—FINAL EDITORIAL REVIEW & PUBLICATION: The Editor-in-Chief conducts a
final grammatical and scientific review and returns her editorial revisions to all
expert reviewers and coauthors for final author approval. Author-approved files
are placed in the publication queue.
The PDF proof and bibliographic & nomenclatural index entries are sent to all
coauthors for final inspection. After PDF processing, the Editor-in-Chief corrects
ONLY PDF editorial/conversion and index entry errors; corrections of all other
errors are listed in the ERRATA of a subsequent issue for no charge. Authors will pay
fees for mycobiota uploads, optional open access, and correction of major author
errors to the Business Manager <subscriptions@mycotaxon.com> at this time.
MyYcOTAXON LTD— www.mycotaxon.com
The Mycotaxon Webmaster <mycotaxon@gmail.com> posts announcements,
subscription & publication information, and author forms & templates on the official
MycoTAXxon site. Our server also hosts the mycobiota web-page for free download
of Fungae (regional annotated species lists).
MYCOTAXON ONLINE— www.ingentaconnect.com/content/mtax/mt
The MycoTaxon journal publishes four quarterly issues per year. Both open access
and subscription articles are offered.
MYCOTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021— Volume 136, pp. 263-349
https://doi.org/10.5248/136.263
Collybiopsis and its type species, Co. ramealis
RONALD H. PETERSEN* & KAREN W. HUGHES
Ecology and Evolutionary Biology, University of Tennessee
Knoxville, TN 37996-1100.
CORRESPONDENCE TO: repete@utk.edu
ABSTRACT—Collybiopsis (Omphalotaceae, Agaricales) is accepted as the correct genus name
for a large clade of non-typical Gymnopus. The type species of Collybiopsis (Agaricus ramealis)
is shown to be a genetic complex. Collybiopsis filamentipes, Co. furtiva, Co. hasanskyensis, and
Co. minor are proposed as spp. nov. and Co. californica as a stat. nov. Thirty-four additional
Collybiopsis comb. nov. are proposed in Appendix I.
Key worps—clade /marasmiellus, morphology, taxonomy, new combinations, new species
Introduction
For many years, agaric taxonomists have dealt with the morphological
and molecular diversity of both Gymnopus and Marasmius. Several
segregate genera have been carved from Gymnopus, but a large complex
of fungi remains, comprising taxa contributed by elements of Gymnopus,
Marasmius, and Marasmiellus. This large assemblage has been called
Marasmiellus (see Wilson & Desjardin 2005), presumably because the type
species of Marasmiellus, Ma. juniperinus, is included. Recent papers by
Dutta & al. (2015) and Oliveira & al. (2019) are among the latest to draw
attention to Marasmiellus. Two principles were included: 1) presentation of
a well-populated phylogeny to demonstrate placement of numerous taxa
exhibiting “gymnopoid, “marasmioid,’ and/or “marasmielloid” taxonomic
character suites; and 2) the use of the genus name Marasmiellus to represent
a large taxonomic group that includes type species of at least two genera
(Marasmiellus and Collybiopsis) plus taxa of Gymnopus sect. Vestipedes. While
264 ... Petersen & Hughes
we agree with the taxonomy presented, we choose to follow the International
Code of Nomenclature (Turland & al. 2018, Art. 11.3) in accepting the prior
genus name, Collybiopsis, for the group that Oliveira & al. (2019) and Wilson
& Desjardin (2005) called Marasmiellus.
Nomenclaturally, Collybiopsis Earle 1909 (with its explicit type species
Agaricus ramealis Bull. 1787) has clear priority over Marasmiellus Murrill
1915 (explicitly typified by Ma. juniperinus Murrill). Use of Marasmiellus for
this clade would require conservation of this genus name, not yet proposed.
In addition, Ma. juniperinus is poorly represented phylogenetically (two
ITS-based sequences, neither from the topotype location). Conversely,
Co. ramealis is a well-known taxon molecularly represented from original
topotype locales. The relative placement of these taxa is shown in Fics 1,
2. To our knowledge, only Horak (1971) has recombined basionyms into
Collybiopsis.
Taxonomic circumscription of fungi assigned to Marasmiellus-like taxa
has changed and enlarged over the last century. Although an extensive
literature chronology could be narrated, this is not the intent of this paper.
Instead, literature can be concisely cited, leaving further investigation to
the reader. A sketch of this morpho-taxonomic process includes: Antonin
& Noordeloos (1993, 1997, 2010); Clements & Shear (1931, 1954); Corner
(1996); Donk (1962); Earle (1909); Horak (1968); Kiihner (1933, 1936);
Murrill (1915); Patouillard (1900); Singer [1936, 1945, 1948, 1962—
dismissing Collybiopsis and accepting Marasmiellus with 59 species; for more
on this, see “Discussion” —and 1973 with 134 species listed in Marasmiellus].
Since the introduction of molecular tools in fungal taxonomy, numerous
papers have presented phylogenetic trees including or alluding to the group
under consideration. These papers include Aldrovandi & al. (2015); Binder
& Hibbett (2002); Dentinger & al. (2016); Desjardin (1997); Desjardin & al.
(2017); Desjardin & Perry (2017); Dutta & al. (2015); Honan & al. (2015);
Hughes & Petersen (2015); Hughes & al. (2001, 2008); Kerekes & Desjardin
(2009); Kim & al. (2015); Mata & al. (2004, 2007); Matheny & al. (2006);
Moncalvo & al. (2000, 2002); Nakasone & al. (2009); Oliveira & al. (2019);
Petersen & Hughes (2014, 2016, 2017a,b); Sandoval-Leiva & al. (2016); and
Wilson & Desjardin (2005).
The intent of this paper is to endorse use of Collybiopsis over Marasmiellus,
especially by (re)describing taxa within the Co. ramealis complex with
emphasis on European collections of Co. ramealis. A list of proposed transfers
into Collybiopsis appears in Appendix I.
Collybiopsis resurrected ... 265
99896E€MIN
S9896EMWN
L69970AM
96997T0AXI
vS99TOAM
€LS68 11M
SLS68 11M
I8S68 1M
P8S681(M
S8S68T IM
CIPOCIAV
695681 (4
OLS681 (4
s9c6s It
L9S68I(M
OST
ANVGNAD
99896E€MIN
S9896EeMW.
L69970AM
969970 AX
vS99TOAM
96701 ZdM
c6cOTLZd a
I8@O1ZdM
6ZCOT Lda
8ZCOTZda
8ceccIVNN
LECClVNW
9ECETPNN
SeeelPNW
69887INH
89P7887INH
6SEEZ7Od
VEVEITAV
6PC9IPIN
SPOT FIM
OFC9OT ELM
SPCOIPLA
SLI
INVGNAD
ST et et
5 oe A oer oe OS
‘ON ‘DIT
eUuToreD YON :VSN
eUTOIeD YON :VSN
dNWSD assauuay, :VSn
dNWSD assauuay, :VSn
eUTOIeD YON :VSN
eIsulinyy, AueUtiay
eisulinyy, AueUtias
vulpore? YON “VSN.
YIMsuNIg MON sepeuey
YOIMsuNIg Man :epeuesy
eIquIN]OD Ysitig :epeueD
PrUTOFTeD “WSN.
PIUTOFTeD “WSN.
PrUTOFTeD “WSN.
uwo8aO :vSN
uwo8alO :vSN
PIUTOFTED “WSN.
Teg /ear{
dassouUsy, “VSN
eulporey) YON -VSN
dNWS® ‘eassouuay, : WSN
dNWS ‘eassouuat, : VSN
NOILLVOOT
€C960A.L
€C96dA.L
CSSTTTPI GAL
ISSTITVIGALL
600014.
VITVIGAL
STIVIGAL
SLOVIGA.L
68eV1adL
60771 EA.L
L8LSGA,.L
7Zesaad
TP6TISIIM,
998143LIM
TOMMY
VIS lah
O68e Tal
OSCcrIaALL
Scr dsb
TLV TOS]
cUv8S9S0-4-NNAL
TUP8S9S0-4-NNALL
658290-4-NNAL
658290-4-NNAL
17Z9S0-4d- NN&LL
¥98290-4- NNALL
698290-4-NNAL
€C€8290-4-NNAL
€S0690-4-NNALL
€£0690-4-NNAL
L197S0-A-NN&LL
97S70-A-NSAS
6€SP70-d-NSAS
998143IIM :ASAS
[eJUSTUIUOITAU
[eJUSTUUOITAU
[eJUSTUUOITAU
OSAS- TOMMY
681S90-4-NNAL
985990-4d-NNAL
80189-d-NN&L
601890-4-NNAL
‘ON Warivadapy
vOLYIIp ‘0D
voLyoip ‘0D
DOLYIIP ‘0D
vOLYIIp ‘0D
vOLYIIP 0D
vosynip sisdo1qdyoD
suanj{uod ‘o7)
suantfuod ‘o7)
suanjfuos sisdo1qdjjoD
puvaiiaup dss suanjfuor ‘oD
vuvsiiaup dss mare ‘0
LH
vuvrisaiuv ‘dss suanjf{uos ‘075
puvoisaup ‘dss suanjfuos sisdo1qgdyjoD
DIULO{IBI ‘OD
VIULO{IVI ‘OD
VILULO{IVI ‘OD
DIIULO{IVI ‘OD
DIULO{IVI ‘OD
VIULO{NVI ‘OD
VILULO{NVI ‘OD
va1usofivs sisdo1qdjjo)
SyIvASIaUUNAQ ‘0+
sipavssiauunag sisdo1qdqjoy
sUsofig ‘0D
stuUsofig ‘0D
stUsofig ‘0D
sIUsofig ‘0D
stumsofig sisdo1qdyjo)
WSINVDUO
(adAjida = La ‘adAjoyoy = LH) ‘sosdyeue s9uaS0]Ayd UT pasn suOTDeTIOD “| ATAVI,
266 ... Petersen & Hughes
cOTI9O0AM
CcOCTT9OAM
€1Z710da
6£896EMW.
O0S9CTPOLV
0z€090 DN
9C9LTEdM
CE8L68NW
70S6S0 DN
SOcOTZdy
vocOlZda
06568 11>
€V96TOAM
69896CMWN
89896CMWN
LI8I6EMWN
OST
ANVGNAD
0¢8Z68NW
678Z68NW
cOTT9OAM
CcOCTT9OAM
€1Z710da
eVeclIVNN
cVeeIVNN
IVECIPNN
Oree IDNA
6ceeIVNN
Te00SPOd
OLIPST UN
SC9LIEdM
ce8Z68NW
LIECevOW
€19ZET UN
IZZOIZdM
OL7OTLd™
S9T8TILM
GO8ZET UN
€S79ITPIM
69896CMW
89896CMWN
LI896EMWN
SLI
ANVGNAD
= 1.
‘ON ‘DIY
eAPAOIPY :VISSNY
eARAOIPAY :VISSNY
[erg
[zerg
elyensny
PIBIOSY -VSN
euTore) YON “VSN
euTfore) YON “VSN
euTfore) YON -VSN)
“euTporIeD YON : VSN
euTforey) YON -VSN)
eIpu]
PIpuy
sassouuay, VS
eylaqyy :epeueo
pur[punojMoN :epeueD
eysely
eyse[y
pur[punojMoN :epeueD
yNdTD9UuUOy -VSN
iddississiw -vSa
eUuToIeD YON :VSN
euToreD yINoS :¥SN)
eUuTOIeD YON :VSN
NOILLVOOT
LV8ITasL
OP8TTGAL
96LVE AL
cY96ZSCHd
TY96ZSCHd
v8srddd
€Z6¢d4d
Scrrdid
c96E TAAL
06cd aL
eLAV9C-60-60
9L69Md
SL69Md
VOAVTC0-60-0T
6ceVIadL
I8crvI dil
O98 TAL
6SPSdA.L
eLZ8elaab
TLV TOS]
T¢Z090-4- NN&LL
0¢Z090-4- NNALL
90006 Wan
c1006 WN
SE8T8ET THIN
Z601S0-4-NNALL
CUPCSPCO-A-SAS
TUvCSPCO-d-NSAS
80S7C0-4d-NSAS
€cSVCO-d-NSAS
Schrag ‘NSAS
O60WV HNO
IOTNWY WO
198S90-d-NN&L
yeyusurUO AUS
€C1690-d-NNAL
S£69Xd‘HOIN
¢S£69Xd‘HOIN
c€C1690-d-NNALL
C€£1690-4-NNAL
9€1890-4T-NNALL
089870-4d-NNALL
SLLTSO-J-NNAL
69S590-4-NNAL
‘ON Warivatay
SISUaAYSUDSBY “OD
SISUadYsSUDSBY “OD
sisuadysuvsvy sisdo1qdqjoD
VSOgq18 ‘07D
vSOqqis ‘07D
vsoqqis ‘07)
vsoqgqis sisdo1qdyjoD
(snyjaiusvivyy sv) vayanf oD
valyAnf ‘0D
valzAnf ‘0D
valzan{ ‘oD
vAIyAn{ ‘0D
SIJVAWDA "Sv vAYAN{ ‘0D
vayanf sisdo1qdyjop
[1H] vpydiyof 0D
vpydinof ‘oD
wprydiyof sisdorgdyog
sadyuawmovjy ‘0+
sadyuawmovjyf ‘0+
sadyuauvyy sisdo1qdjjo)
[LH] vjostfaua ‘05
vjooyfiua ‘0+
vjooyfiua ‘0+
vjooyaua ‘oD
vjooifaua sisdo1qdyjoy
[LH] vyountsip ‘oD
vjountsip ‘0+
vyounf{sip sisdo1qdyjoD
vOLYIIp ‘0D
vOLYIIP ‘0D
vOLYIIp ‘0D
WSINVDUO
Collybiopsis resurrected ... 267
669970 AM
CL896EMWN.
O8896E€MIN
cE96TOAM
90¢001 dx
VCVOEIAV
779090 DN
SOcO00Tda
IZ896€MW
6V99COAM
60Z9STAV
T999TOAM
LE96TOAM
OST
ANVGNAD
6699C0AM
69ZS0SAV
8ZZS0P MW.
CL896EMW.
vecelIVNN
SE00SPOd =€8S6II UN
9€00SPOd
89ZS0SAV
€SZ8ZLIM
€r00srOd
CVVEOCAV
OCVEITAV
6¢€SZET-UN
SL8968INX
IZ896€MW
6V99COAM
OrZ9T FIM
60Z9STAV
1999COAM
80Z9STAV
SLI
ANVGNAD
oe YE sO oe |
‘ON ‘DIY
iddississiw :VSA
PONY eISOD
eurjoreD YINoS ‘ys
vurjoreD YyINos :vSN
dNWSD ‘eassouual, :- WSN
PONY bISOD
PONY eISOD
PONY eISOD
eIpU]
TeMeyy
yeq/ear{
TeMeyy
eg /eael
eIpu]
eUlOIeD YON :VSN
eueIsmMoy :vsn
UdPIMs
eUuToIeD YON : VSN
SOUOISSTP ‘eUTJUDSIY
eueIsnoy :vsn
NOILLVOOT
cOrVIadL
OTPOTEALL
V8c9ddL
versal
Oc6T TAAL
SOOTT EAL
ITVOTAAL
6Z¢ZHAd
OCET
SOUIWIdHY “A
‘d ‘Z8ST1daL
VSMMY
0907 TALL
ICl6d.L
OTSSe8cCraL
OScOTaALL
c8ZOTa.L
6886041
LV TOS]
680890-4-NNAL
OTT8S0-4d-NNAL
€€6cS0-d-NNAL
c6ZTS0-4-NNALL
€666S0-4-NNAL
addT, €198S0-d-NNGLL
90T8S0-4d-NNAL
6Z¢ZHAWDAAN
680 NV HNO
Ayuo aanyn5
STMMYV-OSAS
adAjojoH]
998SCHd ‘NSAS
DSM MV ‘NSAS
c60NWV HNO
908290-4-NN&LL
8b£SS0-4-NNAL
6190S0-4-NNAL
016ZS0-4-NNAL
886850-d-NNAL
07S6S0-4-NNALL
‘ON Woarivatay
vjnuou ye ‘oD
vyjnuuou sisdoiqdyjoy
va1do1joau ‘oD
vaidoajoau sisdoiqa jo)
4OUIUL ‘OD
4OUIUL ‘0
4OUIUL ‘OD
doumu sisdo1qgdyjoD
[LH] vuvIIaUvOSAUL ‘0D
DUDILAIWUBOSAUL ‘0+
DUDILAIWVOSAUL ‘OD
puvd1sauvosaut sisdo1qd]joD
aunyauau ‘0D
aUunyaUuau Or)
aunyauaul 0+)
[LH] aunyauau ‘oy
aunyauau sisdo1gdyjoy
[LH] sndouvjau ‘oD
sndouvjau ‘0D
sndouvjau sisdo1qdyjoD
SUDLINXN] ‘OD
SUDLINXN] ‘OFZ
SUDLINXN] ‘OF
SUDLINXN] ‘07D
supiinxny sisdo1qdqjoy
putsadiunt oD
putsadiunt ‘oD
putsadiunt sisdoiqdyjo)
WSINVDUO
268 ... Petersen & Hughes
VLCE880AM
SL7880AM
c0C00T dy
SOPZO8HW.
SSZ9TOAM
LL99NTOAM
8678S6XI
66€8S6XI
ITPOLIAV
TOZ9TOAM
OST
XINVGNAD
TP9PZOAM T
OP9FZOAM T
TSLELLIMN I
791609{9 T
8z00srOd I
VS6CP8AV T
968SS8HW T
SSLOTOAM I
LL99NTOAM T
LCOvVShda T
0900S~POd I
= 1P8S6IT UN
V86v0VAN I
LL6L69,LM if
7900SPOa T
1900SPOd I
PLLSOSAV I
86P78S6XXI T
66£8S6XX I
CCIOL6NW. T
IZC90E6NWN T
OPPCIOTAV I
SPVCOTAV I
TOZ9COAM T
SLI Ou aa
ANVINAD
edeury :[izerg
edeury :[Iizerg
eIpu]
valoy
oory O}1ong
OorY OJIong
umouyun
eIssny
uInIs]aq
eIquINOD Ysitig :epeued
PONY BISOD
Tzerg
OOTXaJAT
PONY bISOD
PONY BISOD
PONY eISOD
puepyure( suapams
pareqyeas :AeMION
uoor1eure7)
uoor1dure7)
yeq/ear/
yeq/ear{
iddississiw :VSA
NOILLVOOT
v9
-T@80C10@OAS
87960 A.L
N.L¢erscdd
PoC TUld-AT
epLeldal
61POTEAL
XWOT-c8uS
SCPOTaA.L
TcvOl dL
cCPOldd.L
C CLEAVE
CO9EMVA
SSMMV
SOMMY
8LCV Ia
TLV TOS]
91006 Wan
S1006 WN
c80WV:HNO
68S950-4-NNAL
685950-d-NNAL
LEETT SAO
Ayuo asnyng
071S90-d-NN&ALL
cOV8TAO EN,
€T18S0-4d-NNAL
S006 Wan
6118S0-4d-NNAL
STI8S0-4-NNAL
9TT8S0-4-NN&L
18€S00-dD
PVISOSTO-dD
SSMMV ‘DSHS
SOMMV ‘SAS
vuuDvssijod 0+
vUUDvisijod ‘0+
puupssxjod 0D
puupssijod 0D
puuvssijod 0D
vuuvssijod 0D
puuuv.ssdjod sisdo1qdjjoD
snyvuosad sndouudy
sv pypuosad ‘07D
vyvuosad ‘0D
vywuosad ‘0D
vywuosad ‘0D
vywuosad sisdo1gdjjo)
[LH] vjnasvd ‘0D
YLIOT-DA “ds ‘5
st pjnasvd ‘o
snjnaso
SNIJaIWUSDADIY se DjNALvd ‘0D
vjnasvd 05
ppnasvd 0+
pynasvd ‘0+
vjnaavd sisdo1qdyjoy
sap1o.ngsqo ‘0+
saplo.ngsqo ‘0D
saploangsqo ‘oy
vonuayv A VYNUUOU ‘0D
vyonuayv A VYNUUOU ‘0D
vyonuayv A vYNUUOU ‘0D
vyonuayyv A vYNUUOU ‘0D
snyonuayv Ava vyNuuo0HU sisdo1gd]joD
€€1890-d-NNALL
‘ON Woarivatay
DINUOU Je ‘0D
WSINVDUO
Collybiopsis resurrected ... 269
S8896eMW.
C8896ECEMWN
SPEeCLPNW
99568 11>
99568 11>
T9Z9TOAM
LELOTOAM
9ELOTOAM
87Z9TOAM
7PCOTPIM
OST
ANVGNAD
SSECIPNIN
PSECIPNIN
€SCCITPNW
TSECTPNIN
ISEETPNW
OSEETPNIN
6PSCTPNW
SPEC IPN
LUCCIPNN
OPECIPNIN
SPECIPNIN
PPECIPNINN
SETIIPLM
SECIIPLA
OL9ETEAl
oco0srOd
T9L9OCOAM
LELOTOAM
9eLOTOAM
87Z9TOAM
LS6CVBAV
cOLSOSAV
€98ZeT UN
‘COL9TOAM
EV98STNW
COLVICTAIN
CVOPLOAM
SLI
INVGNAD
N
N
NANANNANNDANANANDANNANA AN
rt ot et ort
‘ON ‘DIY
eisuLmMyy, :AueurIas
AUBULIDS)
AuvUIID4)
eisuLmyy, :AueurlIas
eisuLmyy, :AueulIas
PUB|OSS
ayuRuIG ‘uINIsjeg
UIANOD :UINTSTIg
UIANOD :UINTSTIg
UIANOD :UINTSTAg
UIANOD :UINTSTAg
UIANOD :UINISTIg
AURULIDS)
UIANOZD) :UINTSTOg
uapams
uapams
eIUIOFTD “WSN
erUIOFTD “WSN
eruIopTeD “WSN
PIYRAOTS
oory O}long
PONY bISOD
iddisstsstw :VSA
rxduel{ :euryD
euly)
vied ‘yIze1g
NOILVOOT
DPOPIVI GAL
cUCoTPIEALL
TUCOIPIEAAL
cUCOTP IAAL
T4C9TPIGAL
CLLEGA.L
SLLETEAL
CUIZZE TAAL
TUTZZE TAAL
OZZE TEAL
69ZE TEAL
6SZE1 dL
POPIPI GAL
SSZETEAL
OcSe TAAL
LOLVaAL
OTOP TELL
ST9VIGAL
OLS TEAL
NLvcdd
8reZHAd
O6cr IAAL
LV TOS]
068290-4-NN&L
€16Z90-4-NNAL
€16Z90-4J-NNAL
€16Z90-4d-NNAL
€16Z90-4-NNAL
60S0S0-4-NNAL
TSTS90-4-NN&LL
LVIS90-A-NN&ALL
LVTS90-A-NN&ALL
9V1S90-A-NNALL
SVIS90-J-NNALL
9€TS90-F-NNALL
068290-4-NN&LL
cE1S90-T-NNALL
£98090-4J-NN&ALL
vec0SO-A-NNAL
O0¢CS7:NSAS
17€690-4F-NNALL
0¢£690-F-NNALL
£97690-A-NN&ALL
UdAI8 JOU
8reZHAd OAAN
vPI890-F-NNAL
S70 NVITH
7160€ ONNHHW
21006 WUN
‘ON Worivatay
SIVAWDA OD
SIVAWIDA “OD
SIVAWDA OD
SIVAWIDA OD
SIVAWDA “OD
SIVAWDA OD
SIVAULDA “OD
SIVAWIDA “OD
SIVAWDA “OD
SIVAWDA “OD
[La] sipawp.s ‘oD
SIVAWDA OD
SIVAWIDA OD
SIVAWDA ‘OD
SIVAWDA “OD
SIVAWIDA OD
sya. sisdo1qdyoy
vpiydossanb ‘or+
vpiydossanb ‘ory
vpiydossanb ‘oD
optydossanb ‘oD
vjiydossanb sisdo1gdjjoD
Ssapojvyduopnasd 07,
sapopvyduiopnasd ‘05,
<sapojvyduopnasd sisdo1qdyo7),,
[LH] suvtinxnjopnasd ‘oD
_Suviinxnjopnasd sisdo1qdyjoy,,
vUUDIsKjod ‘07+
puUDssijod ‘0+
vUUDAsKjod ‘07+
WSINVDUO
270 ... Petersen & Hughes
Z9TOSL{A
€86V0VAM
C86P0VAM
L8896EMW
98896CMIN
P8896EMN
SL896€¢MW.
E8896CMN
OST
ANVGNAD
L999TOAM
€86V0VAXM
C86V0VAM
€€00srOd
zE00SPOd
Occe IDNA
TecclPNN
PPI PIM
9€E0€€SOH
reodsrod
6ZZS0Vp MW.
SL896EMW
cLECLPNW
IZEeTVNN
OZECTVNW
LICCTVNW
99CETPNN
S9CCLPNW
VICEITPNN
cOCCTPNN
COCETPNN
I9ECTPNAN.
O9CeTPNN
6SeClPNW
8SeclPNW
LSEClVNW
9SECTVNW
SLI
ANVGNAD
NNNNNN NNN NN NN
‘ON ‘DIY
dNWS ‘eassouual, : VSN
vied ‘]Ize1g
vied ‘]Ize1g
euTore) YON -VSN)
euTpore) YON -VSN
PIBIOSD -VSN
dNWSD “assauual, “VSN
puryeoz MON
purjeoz MON
puryeoz MON
RTYRAOTS
uInIs]Oq
pueyjoos
PTyRAOTS
eIYeAOTS
eisulmMyy, :-Aueurldas
eisuLmyy, :Aueuldas
eisulmyy, :AueULIay
eisurmyy, :AueULIas
eisulmyy, :AueulIay
eisuLmyy, :AueuIas
eisurmyy, :AueulIas
eisulmyy, :AueulIay
eisurmyy, :AueUlIay
eisurmMuyy, :AueUIas
eisulmyy, :AueUIasy
eisuLmMyy, :AueULIas
NOILLVOOT
LLSCIEALL
6SSTIAA.L
8SSTIAA.L
86ZPa4L
866c TEL
9S0¢ TELL
vrsse-ddd
IZSZEA.L
SSSVIGA.L
6869dA,.L
cY6SSP IAL
Ty6ssvlaa.
SPOS TV IAAL
LOSTV Ia
COS TV IAAL
OOSTVIGAL
TPOSTPVIGAL
SPOrIVIAAL
OrIvlash
S0rIVIGALL
SOrMIVIAATL
Poorly lath
COV IVIAAL
OOrIVIAT.L
ALV TOS]
8€1190-d-NNAL
cc006 WH
€c006 WN
676S0--4d- NNALL
vrreso--d-NNALL
6601S0-4-NNAL
€v6S90-4-NNAL
190190-4-NN&L
S6eTZA
Z£89€S0-4d-NNALL
1S¢690-4d- NN&LL
Iv tLUd
806SS0-4-NNAL
SS7690-4-NNAL
SS7@690-4-NNALL
006290-4- NNALL
006290-4- NNALL
006290-4-NNALL
006290-4-NNALL
006290-4- NNALL
068290-4-NNALL
068290-4- NNALL
068290-4- NNALL
068290-4- NN4LL
068290-4-NNALL
068290-4- NNALL
068290-4-NNALL
‘ON Woarivatay
ppnugns ‘0D
vpnugns sisdo1qdyjoD
stusofiyjodogns ‘oD
stusofiyjodaqgns ‘oD
siumsofiyzodogns sisdo1qdqjoy
vyaydouays *
oydydouays *
oydydouays *
oydydouays *
09
09
09
09)
vijdydouays sisdoiqgdyjo)
avipvad 0D
avipvad 0D
avipvad 0D
avipva.s sisdo1gdyjo)
SIDIWUDA *
SIVIWIDL
SIVIWIDL
SIVIWDL
SIVIWDL
SIVIWIDL
SIVIWDL
SIVIWIDL
SIVIWIDL
SIVIWDL
SIVIWIDL
SIVIWDL
SIVIWIDL
SIVIWIDL
SIVIWIDL
SIVIWIDL
SIVIWIDL
09
ee
a
o)
oy
mis
Oy
ie,
a
A
ay
an
ae
te
me
By
WSINVDUO
Collybiopsis resurrected ... 271
SLSTCTEAM
VLSITEAM
eLSTTe AM
SCV906.LM
vCv906.L4
DL896EMWN
0Z896E¢MW
PITOSL[A
9L99T0AM
VOLITOAM
80Z970AM
LOLITOAM
TeVOcOAV
9L896EMW
S9Z9TOAM
OST
O6CISTAW
V86r0VAM
OcScSEAM
SLSTCEAM
VLSITEAM
eZST7TeAM
S7V906.LA
VCV906.LY
PL896EMWN
0Z896E¢MW
IZIE9TAWN
SS7OIPIM
gs00srOd
9L99T0OAM
VOLITOAM
80Z970AM
LOLITOAM
8ChEOCAV
9L896EMW
S9L9TOAM
SLI
ANVGNAD
be PE a ae SE ao
‘ON ‘DIY
purys] syoopped “Sure VSN
eqreieg :]Izerg
uapams
eqreleg :[Iizerg
eqreleg :[Izerg
eqreieg :]Izerg
ayo
ayo
PIBIOSD -VSN
ynqny :eurjuasry
eIUIOFYeD “WSN
puel[psory :puryeoZ MeN
‘vsn
dNIWSD “assauuay, vs
PIUISITA 189M VSN
yndTD9UuUOy -VSN
yndTpsUUoyD :VSN
eISUOpU]
eUuToreD YON :VSN
NOILVOOT
vecsd -IHd
907 uO
008rd.L
aanqyno
SO98dd.L
9e8CI GALL
6c€S6dA.L
6cLeTaaL
cyreer lath
Tapecer laa.
ISMMV
evorv laa.
LV TOS]
€cSd-THd ‘Hd
S006 Wan
yeyusuruO AUS
S006 WN
cv006 WN
€v006 WN
Sc9E9T ODS
ve9E9T OOS
TOTTSO-A-NN&L
vrers-dJ-NNAL
ysTjeanye NI
1S6090-4-NN&.L
cS79S0-4A-NN&.L
STTS9-A-NN&L
OZTI-SOMUM
cYS81890-4-NNAL
TUS81890-4d-NNALL
ISMMY-NSAS
86S9-4-NNAL
c9F-80 MUM
‘ON Worivatay
‘ds sndoumdy
B8LIOT-DA sndoumdy
‘ds sndouwAy
B8LTOT-DA sndoumdy
B8LIOT-DA sndoumdy
B8LIOT-DA sndoumdy
‘ds sndoumdy
1svfoyjou vyauvdouudy
1svfoyjou vyauvdouudy
18vfoyjou vjjauvdoumdy
z ‘ds ‘oy
z ‘ds sisdo1gdyjop
1 ‘ds ‘09
I ‘ds stsdo1gdqjop
sadisopjia ‘07D
sadisopjiA ‘07D
sadisopjia ‘Oy
sadisopjia stsdo1gdy09
MUDIIVIA 0D
Huvyoia sisdoigd yop
_Swuofian 0+,
SIWAofian 0+,
StWuofisn 0+,
,siUsofiaqn sisdo1qdqj07),,
[LH] sapio1s0.14 ‘5
sap10180.4 sisdo1qdjjoy
ppnuagns ‘0+
ppnuagns ‘0D
RIUISIIA 189M ?VSA.
WSINVDUO
XANVGNAD
272 ... Petersen & Hughes
Sv99TOAM
VP99TOAY
€V99COAM
cV99COAM
8e99T0OAM
LE99TOAM
cC99COAM
8h Z969AM
9PL969 AM
CVLI69AM
IPVL969AM
6¢Z969AM
VeL969 AM
ce Z969AM
TeZ969AM
S9CTSLXM
8Z896CeMW
LL896EMW
69Z969A
89Z969AX
8SZ969AM
L6E8S6X
OST
ANVGNAD
Sv99TOAM
VP99TOAX
eV99COAM
cV99COAM
8E99T0 AM
LE99TOAM
cC99COAM
8h Z969AM
9PL969 AM
CVLI69OAM
IVL969 AM
6¢Z969AM
veL969 AM
ee Z969AM
TeZ969AM
S9CTSLXM
8Z896EeMW
LL896EMW
69Z969AX
89Z969AX
8SZ969AX
L6E8S6XM
SLI
ANVGNAD
aa at
rest ee ee es Se ee et
eS ae ee ot
‘ON ‘DIT
puryesz MaN
purys] YON :purles7z Man
puryesz MaN
puryesz MoN
eIURUUIse], :eTesNy
eIURUUSeL, :eTeIsNYy
eluUeUlsey, :eTesny
eure -VSN
YOR MON “WSN
RIJO9S BAON ‘epeury
YOR MON “WSN
RIJO9S BAON ‘epeury
ANWSD ‘eessouusl, VSN.
eulpore) YON -VSN
PUeTOBII}seA ‘UIpoMs
99SSouusgy, “WSN
iddississtw :¥SA
iddississiw :¥SA
iddississtw :¥SN
dNWSD ‘QaSSUuUI], “WSN
pareqyeas :AeMION
NOILLVOOT
SSVI Zab
68SZEA.L
88SZdA.L
CLSLEA.L
S8SceqdiL
l6Seah
ecOvaiL
SOOSdA.L
6cordiL
SCOSdA.L
6967EA.L
Te0Sda.L
80Z¢d4.L
10Ze aL
S8ZedA.L
888
[oor 2onIg
1Z0644.L
cyOorr Id.
T406rV 1 AdL
Z8Z1 1A
TLV TOS]
0SOvSO-d-NNALL
SCLESO-d-NNAL
I¢ZESO-d- NNALL
€89¢S0-d-NNAL
I8T€SO-d-NNAL
6rV1¢S0-d-NNAL
S€TOSO-d-NNAL
vLbesSO-d-NNALL
IZv€SO-d-NNALL
L9VESO-JT-NNALL
99P€S0-4T-NNALL
CVV ISO-d-NNAL
9690S0-4- NNALL
689050-4-NNA.L
cCS0S0-d-NNAL
ISCSZT‘WOVd
c-STETZONE
IZ8vS0-4d-NN&LL
007690-4- NNALL
007690-4- NNALL
910090-4- NN4LL
ELTSOSTO-dD
‘ON Woarivatdy
[LH] snywipysdsojnvs g
snywipysdoojnve q
snyvipysdoojnve q
snyvipysdoojnvs q
snqw1pysdrojnvs stuyjadduviwg
SaqlAasqo.jsnv q
SadlAasqosjsnv q
[LH] sadiaasqoysnv J
sad1aalqoasny stuyaaiuviwg
sntuopoLogs “AIA
sniuoposogs “AIA
sniuoposogs “AIA
sniuoposogs “AIA
snuoposogs “AIA
sniuopoLogs “AIA
sniuoposogs “AIA
sntuoposogs “AIA
SNIMUOPOsOIS SIUIaIA
syojvs AW
SYVIDs stUIaIA
snavdo ‘Ay
snavdo ‘AN
snavdo ‘Ay
snavdo ‘Ay
snavdo ‘An
snovdo stuiaadyy
snauolyy “AIA
snauoyjvy s1uiadd
WSINVDUO
Collybiopsis resurrected ... 273
Materials & methods
ABBREVIATIONS: Throughout this paper, Co = Collybiopsis; G = Gymnopus;
M = Marasmius; Ma = Marasmiellus. Colors cited alphanumerically are from
Kornerup & Wanscher (1967) and those in quotation marks are from Ridgway
(1912). BF = bright field microscopy; PhC = phase contrast microscopy (see
also Petersen & Hughes 2017b). TFB = Tennessee field-book number, assigned
to fresh collections in order to track specimen, photos, notes, etc.; TENN-F-
XXXXXX = official designation of the herbarium of the University of Tennessee
(and Mycoportal number). GSMNP = Great Smoky Mountains National Park.
In basidiospore metrics, E = range of spore lengths divided by spore widths;
E™ = median spore length divided by median spore width; L” = median spore
length. In descriptions L = complete lamellae; L + ll = lamellae + lamellulae
Herbarium acronyms are from Index Herbariorum.
Metrics of microstructures were calculated using an Olympus BX60 microscope
fitted with phase contrast imagery and photographs of microstructures were
produced with an Olympus Q_ color camera. Microscope mounts were usually in
3% KOH solution or Melzer’s reagent (abbr. IKI).
Molecular methods for DNA extractions, PCR, and Sanger sequencing of
the nuclear ribosomal ITS and LSU regions were described in Aldrovandi et al.
(2015). DNA sequence alignments with concatenated ITS and LSU sequences
(where available (see TABLE 1) were performed in Geneious 11.0.3 (2017) using
Clustal W (Thompson & al. 1994) then manually adjusted in AliView 1.26 (Larsson
2014). Unlike Olivera & al., (2019), we did not delete highly variable regions of
the alignment because information content in these regions informed species
groupings. PhyML phylogenetic analyses were performed in Geneious 11.0.3
(2017) using a Generalized Time-reversable model (GTR) with 4 nucleotide
substitution rate catigories and a gamma rate variation with 4 categories.
Values for the transition/transversion ratio, proportion of invariable sites, and
gamma distribution parameter were estimated. 500 boot strap replications were
performed. Bayesian analysis was performed in Geneious 11/0/3 using MrBayes
3.2.6 (Huelsenbeck & Ronquist 2001) with a GTR model of evolution, 4 chains
and a burn-in of 100,000. Chain length was 1,100,000. Sequences were deposited
in GenBank (TABLE 1). Specimen data are available in Mycoportal (MyCoPortal
2018).
Taxonomy
AnITS+LSU phylogeny of Collybiopsis is presented in Fic. 1.Gymnopanella
nothofagi, Mycetinis spp., and Paramycetinis spp. were selected as related
outgroups based on a nrLSU phylogeny in Petersen & Hughes (2020).
Collybiopsis as circumscribed in this paper includes Co. dichroa, a genetic
complex of several poorly circumscribed taxa. Collybiopsis dichroa I and II
274 ... Petersen & Hughes
form natural hybrids but there is no evidence that F2 later progeny are viable
(Hughes & al. 2015). Collybiopsis ramealis appears as sister to Co. furtiva and
is in a larger, well-supported clade with Co. stenophylla, Co. filamentipes,
Co. californica, and Co. foliiphila.
1.00, KT906425 ] Gymnopanella nothofagi
100 KT906426
1.00 KX752265 Mycetinis salalis
98 KX958397 Mycetinis kallioneus
KY696758
1.00} Ti00 KY696769
100 MW396877 Mycetinis opacus
1.00 KY696768
98 MW396878
KY696734
1.00 KY696731
10 KY696733
75 KY696748
KY696742 Mycetinis scorodonius
KY696739
KY696746
KY696741
KY026644
KY026645
97 KY026642 Paramycetinis cauloscystidiatus
1,00 KY026643
100 KY026622 |
76 KY026638 Paramycetinis austrobrevipes
KY026637
1.00 KY026677
KP454027
100 100 77 KY026755 Co. peronata
100 MH855896
0.69 KY026676
97 10.76 KY026765 Co. subnuda
87 MW396876
1.00 KY026696
1.00 |100 KY026697
100 if pgs Sve Co. dichroa
MW396866
MW396868
KY026654
MW396869
MW396874 Co. sp.
, MN413333
MW396872 Co. minor
MN413334
0.55 KY026729
KY026736 Co. quercophila
KY026737
KY026761
AY256708 _ Co. juniperina
KY026661
KP100305
NR_137539
KY026707 ] “Co. utriformis”as Gymnopus sp 17
L_ KY026708
| Co. melanopus
Collybiopsis resurrected ...
1.00 MF163171
100 L.67 KJ416255 Co. villosipes
59 1.00 DQ450058
93 ni KY404984
33 KT697977
100 DQ450062
DQ450061 Co. parvula
NR_119584
AF505774
DQ450060
100 DQ450036
NR_119583 | Co. mesoamericana
1.00 0.95 AF505768
99 96 AF505769 Co. neotropicus
80 1.00 AY263443
1.00 98 Tiss Co. menehune
8 DQ450043
; — Seti ] Co. subcyathiformis
1.00 HQ533036
100 L927 DQ450034 Co. readiae
KJ416244
1.00 KP710279
100 KP710278| Co. confluens ssp. americana
100 1.00 79 KP71028
53 '°l1.00 KP710296 Co. confluens
100 KP710292
1.00 KJ416253
10.98 | 100 NR_137865
72 |) op KJ416246 Co. disjuncta
100 KJ416249
KJ416245
72 KJ416248
KY352520 environmental sample
KY026676 Co. vaillantii
98 MF161290 Gymnopus sp.
1.00 0.99 89 [1.00 MN897829 4 ;
100 4 97 MN897830 + Co. hasanskyensis
MW396870 Collybiopsis sp. 1
0.93 00 KX958399 ; nse
49 |, oo{100 KX958308 ] Co. obscuroides
100 0G KP710270
1.00} 10° PK6976 Co. eneficola
87 [1.00 KJ128265
100 NR_137613
1.00 MN930621
1.00/| 99 MN930622
£00 98 [1.00 AY263446 | Co. nonnulla
91 100 AY263445
1.00 KY026699
T00 KY026701
MK214392
1.00 MN258643
100 KJ609162
KJ778752
88 KY074640 Co. polygramma
KY074641
KY074642
93 AY842954__
DQ450028
1.00 = pene oy “Co. pseudomphalodes”/fibrosipes
100 | 1.00 KY321574
100 L9:29 KY321573 |
1.00 ol 81 KY321575 Gymnopus sp.
81 100 1.00 KY026702 Co. pseudoluxurians
100 10.95 KY026649
08 88 7 at sean 6871 Co. luxurians
69 AF505765
AY639431 Co. trogioides
AY639412 Co. brunneigracilis
1,00 KY061203
100 KP012713 oo gibbosa
4 86 KY061202
275
276...
Petersen & Hughes
npeamatas ] Co. stenophylla
HM488468 environmental
MN897832 :
MG433317 Co. filamentipes
HM488469 environmental
MN413338_
DQ273359 Co. californica
MN413335
MN413337
MN413336
KP317638 he
NR_ 154176 | Co. foliiphila
LC505328 Agaricales sp
FJ179468 Uncultured Agaricales
MW396875
MW405779
MN413346 Co. ramealis
MN413350
MN413372
MN413343
DQ450031_
MN413341
MN413342
MN413343
MN413340
93 MN413339
Co. furtiva
Fics 1A, B, C. PhyML tree of concatenated nrITS and LSU Collybiopsis sequences. Support values
at the nodes consist of Bayesian posterior probabilities (top value) and PhyML bootstrap support
based on 500 replications (bottom value). The outgroup comprises Gymnopanella and Mycetinis.
The label on each branch represents the nrITS GenBank accession number. Corresponding
LSU sequences are given in TABLE 1. GenBank accession numbers in bold represent types. Taxa
described in this paper are also in bold. The phylogeny is divided into three parts with arrows
connecting each part.
An nrITS-based phylogeny including all sequenced collections of
Co. ramealis (Fic. 2) demonstrates that Co. ramealis represents a complex,
not a single taxon. Several issues are resolved or raised. First, European
collections are very nearly homogeneous based on nrITS sequences, so
topotype Co. ramealis remains a circumscribable taxon well described by
Antonin & Noordeloos (2010) and below. Examination of nrITS sequences
reveals, however, that the European population consists of two ITS
haplotypes and hybrids, with indications that genetic recombination has
occurred between haplotypes. Conversely, at least some North American
collections (to this time limited to southeastern North America), are
clearly separated from Co. ramealis, and are here described as Co. furtiva.
Likewise, Marasmiellus ramealis var. californicus lies within Collybiopsis,
discrete at species rank and more widely distributed than anticipated.
Collybiopsis resurrected ... 277
MNadaeoe Co. stenophylla
oie g Renu 1,00] KP317638 a
DQ450033 a cl Co. foliiphila
MN897832 , ‘
0.89) \91G433317 ] Co. filamentipes
1.00] _| MN413335
100 MN413337 : :
MN413336 | Co. californica
1.00 HM488468
, MN413338
HM488469
MN413343
eae PMIN413339
95 MN413340 | 0. furtiva
MN413341
MN413342
MN413346
MN413347
MN413348
MN413364
MN413366
1.00 MN413367
36 MN413363
MN413357
MN413362
MN413361
MN413365
MN413355
MN413360
MN413359 4
MN413358 Co. ramealis
MN413356
MN413353
MN413350
KJ416235
DQ450030
MN413372
JF313670
MN413353
MN413352
MN413351
KJ416235
MN413344
MN413345
MN413349
MW405779
MN413371
MN413370
Co. ramealis complex
0.08 changes
Fic. 2. PhyML tree of nrITS sequences representing the Collybiopsis ramealis complex. Collybiopsis
stenophylla was used as an outgroup. Support values at the nodes consist of Bayesian posterior
probabilities (top value) and PhyML bootstrap support based on 500 replications (bottom value).
The label on each branch represents the nrITS GenBank accession number.
Taxonomic analyses
Collybiopsis californica (Desjardin) R.H. Petersen, stat. nov. Figs 3-13
IF 556204
BastonyM: Marasmiellus ramealis var. californicus Desjardin, Mycologia 79: 132. 1987.
Ho.totype: USA, California, Los Angeles Co., San Dimas, 34°06’23”N 117°48’25”W,
9.]11.1983, Wright 2941 (SFSU-F s.n.).
278 ... Petersen & Hughes
Fic. 3. Collybiopsis californica (Wright 866; SFSU-F-024539).
A. Basidiomata and rhizomorphs. B. Basidiospores. C. Termini of caulocystidia.
Scale bars: A = 10 mm; B = 5 um; C = 10 um.
Desjardin (1987) offered a detailed, comprehensive description of Marasmiellus
ramealis var. californicus. Our Fic. 2 indicates that the taxon, while related
to Co. ramealis (both European and putative American), is separable from
Co. ramealis at species rank, triggering the rank change above. The following items
are worthy of note: 1) photographic images and discussion of microstructures
(Frcs 3-13); and 2) the taxon’s apparent extended geographic distribution.
Collybiopsis resurrected ... 279
Fic. 4. Collybiopsis californica. (Wright 2941 SFSU s.n.).
Diverticulate pileipellis hyphae. Scale bars = 10 um.
A comparison of microstructures of Co. californica (Fics 3-13) with those
of Co. ramealis (Fics 50-60) includes the nature of the structure of pileipellis
hyphae. In Co. ramealis, diverticula are slender, digitate and appear rigid, while
those of Co. californica (Fic. 5) are broad, often fin- or node-like, gnarled and
repeatedly branched. Pleurocystidia (Fic. 6), basidioles, and basidia (Fic. 7)
280 ... Petersen & Hughes
Fic. 5. Collybiopsis californica. (TFB 5787; TENN-F-052617). Pileipellis elements.
A, B. Lobate-diverticulate elements. C-G. Diverticulate elements.
are similar to those of Co. ramealis, although somewhat longer. The variability
of cheilocystidial shape from broadly clavate to ventricose-rostrate (Fics
8-11) is notable, but lengths and breadths of diverticula (which are often
Collybiopsis resurrected ... 281
Fic. 7. Collybiopsis californica (Wright 2941; SFSU s.n.).
A. Basidiole. B-E. Basidia. Scale bars = 10 um.
282 ... Petersen & Hughes
Fic. 8. Collybiopsis californica. (Wright 2941; SFSU s.n.). Cheilocystidia.
A. Cluster of three individuals. B, C. Individual cheilocystidia. Scale bars = 10 um.
subcapitate) are much longer and stouter. More intriguing, cheilocystidia
of Co. californica are often transversely septate (apparently non-clamped;
Fics. 11) and apparently easily disarticulated at this septum. The result is
frequent subglobose to ventricose diverticulate structures with no evidence
of stalk. Whether these structures could act as propagules is unknown.
Finally, caulocystidia predictably range from short, simple, individual
lobes at upper stipe (Fics 12, 13) to mid- or lower stipe vesture comprising
Collybiopsis resurrected ... 283
Fic. 9. Collybiopsis californica. (DED 8372; SFSU-F-024526). Cheilocystidia.
A. Cluster of three individuals. B-E. Individual cheilocystidia.
fascicles of hyphae perpendicular to stipe surface. Smaller such fascicles
(Fic. I3) are synnematoid while larger assemblages are acervuloid.
At the time of initial proposal, all collections of Co. californica had
been gathered in southern California. Since then, samples of mycelial
mats under Pseudotsuga menziesii in northern California and roots of
Lithocarpus densiflorus in Oregon have yielded sequences quite similar to
those of the southern Californian collections (Bergemann & Garbelotto
284 ... Petersen & Hughes
Fic. 11. Collybiopsis californica. (DED 8372; SFSU-F-024526). Cheilocystidia.
A. Constricted by not septate cheilocystidium. B, C, E. Septate cheilocystidia.
D. Cheilocystidium with septum below constriction. Scale bars = 10 um.
Collybiopsis resurrected ... 285
Fic. 12. Collybiopsis californica. (DED 8372; SFSU-F-024526). Upper stipe ornamentation;
individual nodose, digitate caulocystidia. Scale bars = 10 um.
2006; Kluber & al. 2011). Likewise, a sequence from a British Columbian
collection (Canada, TENN-F-052617) matches the Californian collections.
The species, obviously, exhibits a much wider distribution than originally
conceived.
Pileipellis hyphal morphology is reminiscent of that of Gymnopus
pyracanthoides (Petersen & Hughes 2016), especially regarding the
complexity of diverticulate hyphae and broom cell-like termini of pileipellis
hyphae. Basidiomata of the latter species, however, exhibit a slime matrix
in the stipe medulla and the pileipellis includes some scanty evidence of
gelatinous matrix, placing it in Gymnopus sect. Perforantes.
286 ... Petersen & Hughes
Fic. 13. Collybiopsis californica. (DED 8372; SFSU-F-0024526). Mid-stipe ornamentation.
Synnematoid fascicle of caulocystidia. Scale bar = 10 um.
Collybiopsis resurrected ... 287
ADDITIONAL SPECIMENS EXAMINED: CANADA, BritTisH CoLumBiA, Chilliwack
River Valley, 49°09’38”N 121°57'02”W, 8.X.1992, coll. RHP (as Marasmius
androsaceus), TFB 5787 (TENN-F-052617). USA, CALIFORNIA, Los Angeles Co.,
Marshall Canyon, 34°06’23”N 117°48’25”W, 12.1.1978, coll. G Wright, det. DE
Desjardin, Wright 866 (SFSU-F-024539); Marin Co., Point Reyes Nat. Seashore,
Horse Trail, 38.043191 N, 122.802687, Wright 2941 (SASFU s.n.); , W, 11.X1.2008,
coll. & det. DE Desjardin, DED 8372 (SFSU-F-024526); Trinity Co., Rte 299. Grey’s
Falls Campground,40°51’26”N 123°29’30’W, 15.X1.1999. coll. D Largent, TFB 8088
(TENJN-F-055412).
Collybiopsis filamentipes R.H. Petersen, sp. nov. FIGS. 14-23
IF 557073
Differs from Co. furtiva in its narrower basidiospores, its caulocystidial shape and
distribution, and its longer and thinner stipe.
Type: USA, Tennessee, Knox Co., Knoxville, 3613 Timberlake Dr, 35°54’49”N
83°57'58’W, 22. VIII.2011, coll. RHP, TFB 13962 (Holotype, TENN-F-065861).
Erymo ocy: Referring to the long, slender stipe.
BASIDIOMATA (Fic. 14A, 15) diminutive, gracile, decidedly mycenoid.
Piteus 2-11 mm broad, strongly convex when young, later shallowly
convex, matt; disc near “pinkish buff” 6A3, outward somewhat paler, hardly
changing color upon drying. LAMELLAE adnexed to subdecurrent, few
(L + Il = 12-13; L = 0-1), thickish with rounded edge with no anastomoses
or buttressing, subventricose, off-white, developing pastel cantaloupe
necropigment upon drying. Stripe 12-21 x 0.5-1 mm, concolorous with
lamellae above, slightly darker downward but never darker than “sayal
brown” 6C5 developing cantaloupe colored necropigment upon drying, not
insititious, upward sometimes subsaccharine, downward almost glabrous.
TASTE and opor negligible. RHIZOMORPHS absent.
HABITAT & DISTRIBUTION: apparently associated with Poaceae (lawn
grass, dead fine roots of ornamental bamboo); so far extremely restricted
to a small area of eastern Tennessee; mid-summer. Known only from the
type locality with two collections (1970, 2011).
PILEIPELLIS constructed of three elements with intermediate forms:
1) repent, inflated, free-form hyphae <14 um diam, firm-walled,
inconspicuously clamped (due to hyphal inflation), barely roughened to
distinctly encrusted in small, densely gregarious patches — no annular or
helical patterns observed, with frequent secondary septa (cloissons de
retret) (FiGs.16, 17); 2) repent hyphae as in 1) but beset with diverticulate
to setuloid ornamentation (F1G.18C); setulae <6 x 1-1.5 um; diverticula
<9 x 1-2.5 um at base, lobate to conical, simple to variously branched;
288 ... Petersen & Hughes
Fic. 14. Collybiopsis filamentipes. A. Basidiomata. (TFB 13962; TENN-F-065861).
B. Basidiospores (upper = TFB 13962; lower = LRH 35861).
Scale bar = 5 um (for spores); 5 mm (for basidiomata).
and 3) hyphal termini (Fig 18A, B, D) as in 2), usually antler-branched
and with setulae and/or diverticula. Pileus and lamellar trama interwoven;
hyphae 3-13 um diam, thin- to firm-walled, conspicuously clamped.
PLEUROCYSTIDIA (Fic. 19) 25-32 x 6-8 um, stalked-fusiform, rounded
apically, inconspicuously clamped; contents multigranular or multiguttulate,
Collybiopsis resurrected ... 289
Fic. 15. Collybiopsis filamentipes. (TFB 13962; TENN-F-065861).
Basidiomata (dried). Scale bar = 10 mm.
occasionally partitioned. Basip1A 26-33 x 7-8 um, clavate, 4-sterigmate,
inconspicuously clamped; contents multiguttulate, usually with one major distal
guttule. Basipiospores (Fic. 14B) 8-9.5(-10.5) x 2.5-3.5 um (E = 2.29-3.80;
E™ = 2.96; L™ = 8.8 um), cylindrical to elongate-ellipsoid, thin-walled, smooth,
inamyloid; contents multiguttulate, the guttules usually bipolar. Lamellar edge
composed of two elements: 1) CHEILOCYSTIDIA (Fics. 20, 21A-C) plentiful,
typically clavate to broadly clavate, 35-70 x 8-18(-25) um, occasionally stoutly
dichotomous, conspicuously clamped, hyaline, firm-walled, surmounted by
numerous diverticula; diverticula 3-15 x 1.5-2 um, appearing flexuous (not
rigid), often branched, sometimes repeatedly so; and 2) DIVERTICULATE HYPHAE
(Fic. 21D, E, 22) 5-8 um diam, firm-walled with diverticula in files; diverticula
as in 1) above. STIPE MEDULLARY HYPHAE (2-)3.5-7.5 diam, hyaline, embedded
in a slime matrix, strictly parallel, thick-walled (wall <1.5 um thick, hyaline),
inconspicuously clamped. Stipe cortical hyphae 2-6.5 um diam, thick-walled
(wall 1.5 um thick, golden ochre), inconspicuously clamped, producing hyphal
termini and side branches (caulocystidia) perpendicular to stipe surface.
290 ... Petersen & Hughes
Fic. 16. Collybiopsis filamentipes. (TFB 13962; TENN-F-065861). Pileipellis.
A. Intricately encrusted hypha with apical diverticulate outgrowth. Note basidiospores.
B. Free-form hyphae. Short lines indicate secondary septa.
Scale bars = 10 um.
Collybiopsis resurrected ... 291
Fic. 17. Collybiopsis filamentipes. (TFB 13962; TENN-F-065861). Pileipellis.
Inflated, repent hyphae with moderate encrustation.
Short lines indicate secondary septa.
Scale bars = 10 um.
292 ... Petersen & Hughes
Fic. 18. Collybiopsis filamentipes. (TFB 13962; TENN-F-065861). Pileipellis.
Diverticulate hyphae. A. Inflated hypha with apical diverticula.
B, D. Hyphal terminus with diverticula. C. Diverticulate hypha.
Scale bars = 10 um.
CaAULOcysTIDIA (Fic. 23) 5-20(-40) x 6-9 um, columnar to digitate, rarely
branched, firm-walled, hyaline, without clamp connections, detersile.
COMMENTARY: Basidiomata of Co. filamentipes resemble those of Co. furtiva,
a southeastern American species in the Co. ramealis complex. An even
closer molecular match (~99%) is with Co. californica, distributed along the
Collybiopsis resurrected ... 293
Fic. 19. Collybiopsis filamentipes. (TFB 13962; TENN-F-065861).
Pleurocystidia. Scale bars = 10 um.
Fic. 20. Collybiopsis filamentipes. (TFB 13962; TENN-F-065861).
Cheilocystidia. Scale bars = 10 um.
294 ... Petersen & Hughes
Fic. 21. Collybiopsis filamentipes. (TFB 13962; TENN-F-065861). Cheilocystidia.
A-C. Typical forms with apical diverticula.
D, E. Diverticulate hyphae of the hymenium.
Scale bars = 10 um.
North American west coast. Collybiopsis filamentipes shares with both
inflated cells in the pileipellis, Rameales-structure pileipellis, cheilocystidia
bearing long tentacular diverticula, spore shape (Co. furtiva spores
slightly wider than those of Co. filamentipes) and caulocystidia shape and
distribution. Basidiomatal stature is surely different; stipe (and therefore
the stipe length to pileus breadth ratio) is much longer and thinner in
Co. filamentipes than in Co. furtiva and Co. californica.
Collybiopsis filamentipes adds to the Co. ramealis clade, species of which
exhibit small micromorphological differences separable only with molecular
techniques and/or a careful and practiced eye. As in other such compact
clades, geographical distributions seem to support micromorphological
Collybiopsis resurrected ... 295
Fic. 22. Collybiopsis filamentipes. (TFB 13962; TENN-F-065861).
Diverticulate hyphae of the hymenium. Scale bars = 10 um.
and molecular evidence. That Co. ramealis seems not to occur in North
America, and seems replaced by Co. californica, Co. filamentipes and
Co. furtiva reflects the same situation in other agaric groups [e.g., Megacollybia
rodmanii for M. platyphylla (Hughes & al. 2008); Collybiopsis confluens
subsp. campanulatus in North America for the type subspecies in Europe
(Hughes & Petersen 2015); Sparassis americana for S. crispa (Hughes & al.
(2014, 2015)].
Interestingly, some years after collection of the holotype specimen in 2011,
the Hesler specimen was discovered in the herbarium under “Marasmiellus sp.,.
collected some 40 years previously within 100 m from the topotype location.
ADDITIONAL SPECIMEN EXAMINED: USA, TENNESSEE, Knox Co., Knoxville, Timberlake
Dr., Hesler’s house, 1.VIII.1970, coll. LR Hesler, LRH 35861 (TENN-F-035861).
296 ... Petersen & Hughes
Fic. 23. Collybiopsis filamentipes. (TFB 13962; TENN-F-065861). Caulocystidia.
A, B, D. Clusters of Caulocystidia. C, E, F Individual caulocystidia.
Scale bars = 10 um.
Collybiopsis resurrected ... 297
Collybiopsis furtiva R.H. Petersen, sp. nov. Figs. 24-34
IF 556208
Differs from Old World Co. ramealis by its distinct molecular profile; its hyaline (not
pigmented) cheilocystidia; and its generally smaller basidiomata.
Type: USA, North Carolina, Macon Co., vic. Highlands, Horse Cove, Rustic Falls area,
35°02'17”N 83°09’32”W, 10.VIII.1987, coll. DE Desjardin (as Ma. ramealis), DED 4425
(Holotype, SSFU-F-024540).
Etymo oey: furtiva = furtive, underhanded, secretive, referring to prior identification
as Co. ramealis.
Fic. 24. Collybiopsis furtiva. (TFB 11558; TENN-F-059444). Pileipellis and pileus trama.
A, B. Diverticulate hyphae of pileus surface. C. Diverticulate hypha ending in a “broom cell-like”
hyphal terminus. D. “Antler-shaped” hyphae of subpellis. E. Swollen cells of pileus trama. F. Slender
hypha among swollen hyphae of pileus trama. Scale bars = 10 um.
298 ... Petersen & Hughes
BASIDIOMATA diminutive, ratio of stipe length to pileus diameter low. PILEUs
5-12 mm broad, strongly convex to subglobose when young, expanding
to become shallowly convex to plano-convex with involute margin, finally
applanate with upturned margin, opaque, consistently sulcate-striate near
margin, matt; disc unicolorous or tinged brownish to avellaneous, otherwise
white, orange-white, cream, pinkish cream, grayish-orange 5B2-3, pale
orange white 6A2 developing necropigment near “ochraceous buff” 5A5.
LAMELLAE adnexed to decurrent by a tooth, close to subdistant (L + ll = 35-52;
L = 11-16), thickish, with little or no anastomosis but occasionally showing
common forking near pileus margin in large basidiomata, becoming crisped
in or after drying, seceding and then sometimes appearing pseudocollariate,
white to cream white, near “pale olive buff” 3B2, or buff when fresh, developing
Fic. 25. Collybiopsis furtiva. (DED 4410; TENN-F-057309). Pleurocystidia.
Note submammillate apices; clamp connection in E.
Scale bars = 10 um.
Collybiopsis resurrected ... 299
Fic. 26. Collybiopsis furtiva. (TFB 11550; TENN-F-059444). Basidioles and basidia.
A. Basidiole. B-H. Mature basidia. Note clamp connections in A, D, F.
Scale bars = 10 um.
ruddy necropigment; lamellar edge fimbriate or appearing crystalline, eroded,
remaining white to buff or “pale pinkish buff” 6A2, but not marginate when
fresh. Stipe 4-11 x 0.3-1.2 mm, terete or somewhat compressed upward,
300 ... Petersen & Hughes
Fic. 27. Basidiospores of Collybiopsis taxa.
A. Collybiopsis furtiva. (DED 4410; TENN-F-057309).
B. Collybiopsis furtiva. (DED 3973; SFSU-F-024523).
C. Collybiopsis minor. (TFB 11930; TENN-F-059993).
Scale bars = 10 um.
Collybiopsis resurrected ... 301
Fic. 28. Collybiopsis furtiva. (DED 4425; SFSU-F-024540).
Cheilocystidia. Scale bars = 10 um.
equal or tapered downward and then with minute snow white ring or ruff on
stipe base, straight to curved (in drying?), sometimes abruptly pinched at base
(similar to adult Ma. praeacutus), opaque or (now) appearing subcartilaginous,
loosely stuffed to hollow; upper stipe appearing glabrous to minutely flocculose,
concolorous with lamellae, not dextrinoid (sallow greenish yellow in IKI + BF);
302 ... Petersen & Hughes
eS
Fic. 29. Collybiopsis furtiva. (DED 4410; TENN-F-057309). Upper stipe surface.
Note files of simple lobate branches.
Scale bars = 10 um
lower stipe (basal ~1/5) appearing flocculose to wispy, in age light brown 6D6,
“avellaneous’ 7B3, reddish brown black to slightly brownish orange 6C5-6when
young; insertion appearing insititious. ODoR negligible; TAsTE negligible.
HABITAT & PHENOLOGY: Gregarious; fruiting on well-rotted wood and dead
twigs of Rhododendron maximum, Tsuga, various hardwoods, rarely on bark of
grape; eastern United States (common in southern Appalachian Mountains);
mid-summer.
PILEIPELLIS a well-developed Rameales-structure with two types of hyphae:
1) repent hyphae (Fic. 24A, B) 2.5-6.5 um diam, beset with diverticula;
diverticula 1-6.5(-9) x 1-2 um, appearing stiff, nodulose to strangulate, often
dichotomously branched, refringent (PhC); and 2) common hyphal termini
(Fic. 24C) otherwise resembling the repent hyphae with similar diverticula.
Subpellis including free-form or “antler-shaped” hyphal segments and termini
(Fic. 24D-F). Pileus and lamellar tramae loosely interwoven, composed of three
hyphal types: 1) hyphae 2.5-6.5(-14) um diam, firm-walled, conspicuously
clamped; 2) basically similar but with long, free-form, hyaline, inflated cells
<15 um diam; and 3) occasional slender hyphae with thickened walls and dense
cytoplasm suggestive of gelatinization. PLEUROCysTIDIA (Fic. 25) abundant
to often scattered, 20-35 x 6-9 um, hyaline, fusiform, sharply attenuate
distally and occasionally submammillate, conspicuously clamped; contents
often vaguely partitioned at very apex. Basidioles (Fic. 26A) clavate; BASIDIA
(Fic. 26B-H) 20-28 x 6-7 um, narrowly clavate, not capitulate, 4-sterigmate,
Collybiopsis resurrected ... 303
Fic. 30. Collybiopsis furtiva. (DED 4410; TENN-F-057309). Lower stipe surface.
A, B, E. Files of surface lobate branches. D. Two lobate branches with suggestion of slime matrix.
Scale bars = 10 um.
conspicuously clamped. Basipiospores (Fic. 27A) (6-)6.5-9(-10) x
2.5-3(-3.5) um (E= 1.86-3.50; E"=2.75; L"=7.6 um), elongate-ellipsoid, tapered
proximally (marasmioid), thin-walled, hyaline, inamyloid. CHEILOCYSTIDIA
304 ... Petersen & Hughes
DED 3973.) 008 088 8 S8" CQURSDE DESJARDING ©
Fic. 31. Collybiopsis furtiva. (DED 3973; SFSU-F-024523). Basidiomata.
Scale bar = 10 mm. Photo courtesy of DE Desjardin.
(Fic. 28) hyaline, thin-walled, always obscurely clamped, very variable
from clavate (<50 x 10-13 um) with scattered diverticula over the apical
15-20 um, shorter (base not seen), branched (branches 6-8 um broad,
variably diverticulate) to ventricose-rostrate, stalked (<50 um long) with
apical inflation <20 um broad, smooth or beset with diverticula varying from
papillate (rotalis-like) to tentacular (<10 x 1-1.5 um). UPPER STIPE MEDULLA
consistent with medulla of lower stipe (see below); upper stipe cortical
hyphae also similar, but surface lobate branches (Fic. 29) seem consistently
simple, knobby, not vermiform, perhaps thick-walled, subrefringent. LowER
STIPE MEDULLA in minimal slime matrix. Hyphae of two types: 1) broad,
4—7.5 um diam., hyaline, thick-walled (wall <2.5 um thick with evidence of
individual gelatinization), obscurely clamped; and 2) slender, 1.5-3 um diam.,
firm- to thick-walled, conspicuously clamped, occasionally with incomplete
clamps (i.e., small, curved, hook-like branches). No tissue dextrinoid. Lower
stipe cortical hyphae (Fic. 20) 3.5-7.5 um diam, thick-walled, pigmented
(ochraceous brown), producing small, thickly scattered, hyaline, thin-
walled, nodulose to vermiform branches (caulocystidia; Fic. 29) 3.5-6.5 um
broad. CauLocystTip1a of two types: 1) digitate or peg-like individuals (Fic.
30A, B, E) arising from cortical hyphae as side branches, 4-13 x 2.5-4 um;
and 2) cheilocystidia-like (Fic. 30D), with inflated portions surmounted by
numerous lobe-like diverticula.
Collybiopsis resurrected ... 305
Fic. 32. Collybiopsis furtiva. (DED 3973; SFSU-F-024523). Cheilocystidia.
A. Cluster of cheilocystidia. B. Clavate individual plus divaricately branched individual.
Scale bars = 10 um.
COMMENTARY: Most synonyms listed under Agaricus ramealis in Index
Fungorum are homotypic (i.e., based on Bulliard’s basionym). ‘The European
neotype designated by Antonin & Noordeloos (1993; France, Calais, Boulogne,
Noordeloos 7310, L) serves to establish the taxonomic basis of these homotypic
synonyms. Although numerous subspecies and varieties have been proposed,
none have been explicitly based on North American material.
306 ... Petersen & Hughes
Fic. 33. Collybiopsis furtiva. (DED 3972; SFSU-F-024523). Ventricose-rostrate cheilocystidia.
Note prominent diverticula. Scale bars = 10 um.
In order to reach Marasmiellus ramealis in Desjardin’s (1997) key to the
genus in the southern Appalachian Mountains, the following characters are
required (some a poor match to the description above): 1) basidiospores
<10.5 um long; 2) stipe central, habit marasmioid, collybioid or mycenoid,
basidiomata NOT pleurotoid, not on monocots; 3) stipe base NOT
attenuated to a narrow point, odor not alliaceous nor fetid; 4) pileipellis a
Collybiopsis resurrected ... 307
well-developed Rameales-structure; 5) pileus pigmented overall (including
pinkish brown); 6) rhizomorphs absent; 7) pileipellis lacking inflated
terminal cells; 8) pileus yellowish brown vs dark brown to brown (separating
from Ma. nodosus); 9) context <1 mm thick (vs. context 2-4 mm thick);
10) stipe 0.2-1 mm diam. (vs. stipe 2-3(-11) mm diam.; 11) basidiospores
2.5-4.5 um broad (vs 4.5-7 um broad); 12) cheilocystidia broadly clavate
with numerous fine diverticula (vs cheilocystidia irregular in outline,
often contorted, and with nodulose outgrowths); and 13) basidiomata
formed on epigeous branches and stems of deciduous trees, shrubs or
herbaceous dicots (vs basidiomata formed on hypogeous sticks or roots).
According to Desjardin (1997), southeastern North America M. ramealis
is most commonly confused with Marasmius (now Mycetinis) opacus with
larger basidiomata and plentiful white rhizomorphs and rather different
pileipellis (see Petersen & Hughes 2017b). Our observations indicate also
a resemblance to Ma. praeacutus, distinguished in the field by its pinched
stipe and common, persistent basidiomatal primordia.
Stipe surface ornamentation, especially upper stipe, comprises scattered
lobes or nodes, more complex on lower stipe. When simple, such nodules
are subrefringent, identical with diverticula of cheilocystidia and especially
pileipellis Rameales-structure.
Parenthetically, it is interesting to know Earle’s taxonomic concept
of Marasmius ramealis. Specimen Earle 767 (collected on N.Y. Botanical
Garden grounds and identified by Earle; NY) may be representative.
Although microscopic structures are collapsed, diagnostic characters do
not totally agree with those of eastern North American Co. “ramealis” (see
above). No attempt has been made to extract DNA.
We need to note here an abnormal collection of Co. furtiva (DED
3973, SFSU-F-024523 as Ma. ramealis), collected in the same general area
as several other species. Significantly, its nrITS sequence does not differ
from those of several other Co. furtiva collections, yet the basidiomata
(Fic. 31) are anatomically distinct, particularly the cheilocystidia and stipe
ornamentation. In DED 3973 cheilocystidia (Fics. 32, 33) 45-60 x 9-19
um (at widest point), appear to arise deep in the hymenophoral trama
(surely longer than basidia or pleurocystidia); are ventricose-rostrate,
stalked with an inflated terminus, and rarely branched; and include
scattered small, broadly clavate individuals; the stalks (25-40 x 3-5.5 um)
are conspicuously clamped, thin-walled, easily distorted or disarticulated
with termini that are inflated, thin-walled, unpigmented, and beset with
308 ... Petersen & Hughes
Fic. 34. Collybiopsis furtiva. (DED 3973; SFSU-F-024523). Caulocystidial structures.
A. Individual caulocystidia. B-D. Coralloid, cheilocystidial structures. Scale bars = 10 um.
numerous (<70) medusoid diverticula; the slender long diverticula (<25 x
1-1.5 um) are usually elongate-digitate but occasionally dichotomously
branched, gnarled, subnodulose, and often apically refringent (PhC).
Basidiospores (Fic. 27) are significantly larger than those of Co. furtiva.
The stipe ornamentation consists of both individual hyphal caulocystidia
and coralloid cheilocystidial structures; individual hyphal caulocystidia
Collybiopsis resurrected ... 309
(Fic. 34A) 6-75 x 5-9 um, thick-walled (wall <2 um thick, pallid greenish
ochraceous PhC), sometimes appearing in “picket fence” files, broadly
rounded to setoid with sharply acute apex; caulocystidia resembling
cheilocystidia (Fic. 34B-D) 15-45 x 9-15 um, coralloid with peg-like or
capitulate diverticula, thick-walled (wall <1 um, hyaline). Lower stipe
ornamented with accumulated heaps of mixed caulocystidial structures.
Probably coincidentally, the submammillate pleurocystidial apices of
Co. furtiva resemble those of an unidentified Collybiopsis (TFB 23217;
TENN-F-023217) close to Gymnopus subnudus in G. sect. Vestipedes (Fic. 1).
Cheilocystidia of DED 3973 resemble those of Co. californica (q.v.) but
our molecular nrITS phylogeny (Fic. 2) places its sequence with other
southeastern collections typical of Co. furtiva. Coralloid cheilocystidial
stipe vesture elements seem unique.
ADDITIONAL SPECIMENS EXAMINED: USA, GEORGIA, Rabun Co., vic. Clayton,
Warwoman Dell Picnic Area, 34°52’58’N 83°20'58”W, 6/15/1992, coll. SA Gordon,
TFB 4796 (TENN-F-051097). NEw YorK, Bronx Co., “Bronx Woods,’ det. WA Murrill,
VIII.1911 (02755903 NY). NorTH CAROLINA, Macon Co., vic. Highlands, Bull Pen
Rd., 28.VII.1987. coll. TJ Baroni, det. DE Desjardin, DED 4410 (TENN-F-057309);
vic. Highlands, Horse Cove, Rustic Falls area, 12.VII.1984, coll. & det. DE Desjardin,
DED 4584 (SFSU-F-024508); vic. Highlands, Cliffside Lake Campground,
29.VII.1986, coll. & det. DE Desjardin, DED 3973 (SFSU-F-024523); 35°02’24”N
83°27'12”W, 30.VI.2002, coll. RHP, TFB 11558 (TENN-F-059444); vic. Otto, Coweeta
Hydrologic Laboratory, Ball Creek Rd., 26.VI.1993, coll. & det. DE Desjardin, DED
5796 (SFSU-F-024524). TENNESSEE, Blount Co., GSMNP, Cades Cove, 35°35’39”N
83°50'31”W, 15.VI1.1957, coll LR Hesler, TFB 7867 (TENN-F-007867).
Collybiopsis hasanskyensis R.H. Petersen, sp. nov. Figs. 35-41
IF 557072
Differs from other Collybiopsis taxa by its diminutive basidiomata that fruit
on Alnus twigs and strobili; its unique ITS sequence; its gymnopoid pileipellis
lacking a Rameales-structure; its stalked-clavate, smooth to lobate to diverticulate
cheilocystidia that are larger than basidia and pleurocystidia, and its pale buff
necropigment.
Type: Russia, Primorsky krai, Hasansky Dist., vic. Primorsky, Kedrovaya Reserve,
43°05.87’N 131°33.57’E, 18.VIII.2005, coll RHP, A. Kovalenko, TFB 11846
(Holotype, TENN-F-060730).
ErymMo.oey: Hasansky; district in Primorsky Region of Russia, where the holotype
was collected.
BASIDIOMATA (Fic. 31A) diminutive. PILEUs 4-8 mm broad, plane to
somewhat depressed with involute margin, matt, delicately radially wrinkled,
inward “pinkish buff” 6A3, outward “pale cinnamon pink’ 5A2, becoming
310 ... Petersen & Hughes
Fic. 35. Collybiopsis hasanskyensis. (TFB 11846; TENN-F-060730).
A. Basidiomata B. Basidiospores Scale bar: A = 5 mm; B = 5 um.
off-white with pale cantaloupe-colored necropigment; pileus context thin,
brittle when dried, white. Hymenophore developing a pallid cantaloupe
necropigment. LAMELLAE adnate to shallowly decurrent, subdistant to distant,
varying from knife-like and then occasionally ventricose (<0.5 mm broad), to
reduced to thin pleats, rarely with dichotomy but often buttressed or cross-
veined, color unchanged from fresh (off-white with pinkish tint), L + ll =
(22—)36-40, L = (9-)12-16, off-white with pinkish tint. STIPE 6-9 x 0.6-0.8
mm, equal to tapering somewhat upward, sometimes with base slightly
enlarged to club-shaped, inserted only at base of club, apically minutely
roughened (60x), soon appearing glabrous, now cartilaginous (glabrous-
shining), pale apically, “sayal brown” 6C5 to dirty grayish brown downward,
developing rich cantaloupe necropigment uniformly, consistently with
small, off-white, circular, appressed basal pad. Opor and TASTE negligible.
RHIZOMORPHS not observed.
HABITAT & DISTRIBUTION: Fruiting on dead Alnus twigs and strobili; late
summer and early autumn; presently known only from Hasansky District of
far-eastern Russia near North Korea.
Collybiopsis resurrected ... 311
Fic. 36. Collybiopsis hasanskyensis. (TFB 11846; TENN-F-060730). Pileipellis hyphae. A. Heavy
annular ornamentation. B. Weak annular ornamentation. C. Hypha with dense contents.
D, E. Roughened, “cigar-shaped” hyphal segments. F. Thick-walled hypha with substantial profile
calluses. Scale bar 10 um.
312 ... Petersen & Hughes
ON «* 4 . 4 4 na
Fic. 37. Collybiopsis hasanskyensis. (TFB 11846; TENN-F-060730). Lamellar trama.
A. Trama, showing inflated hyphae. B. Hyphal fragments with dense contents. Scale bar = 10 um.
PILEIPELLIS a repent layer of hyphae 4.5-13 um diam, of several types:
1) thin-walled, without ornamentation, conspicuously clamped; 2) firm-
to thick-walled (wall <1 um thick, hyaline), ornamented (Fic. 36C) with
two types of thickening; a) hardly visible in profile but vaguely annular
in face view (Fic. 36B); b) prominent in profile view with conspicuous
profile calluses (Fic. 36F); profile calluses <1.5 um thick, lens-shaped,
hyaline, refringent, conspicuously clamped; 3) disarticulated, somewhat
inflated cells, cylindrical or cigar-shaped, thick-walled (wall <1 um thick),
Collybiopsis resurrected ... 313
Fic. 38. Collybiopsis hasanskyensis. (TFB 11846; TENN-F-060730). Hymenial structures.
A-D. Pleurocystidia. E-H. Basidia. Note clamp connection in E. Scale bar = 10 um.
delicately ornamented in gregarious plaques (Fic. 36D, E); and 4) repent,
thin-walled hyphae 4-8 um diam, heavily ornamented with pigmented
plaques, perhaps crystalline, protruding from the hyphal wall angularly <4
um high (Fic. 36A). Note: no evidence of Rameales-structure. Pileus and
314 ... Petersen & Hughes
Fic. 39. Collybiopsis hasanskyensis. (TFB 11846; TENN-F-060730).
Typical cheilocystidia. Scale bars = 10 um.
lamellar trama interwoven (Fic. 37), more tightly so under hymenophore;
hyphae 3-6.5(-14) um diam, firm-walled, hyaline, without slime sheath or
matrix, conspicuously clamped. Subhymenial hyphae seem to disintegrate
Collybiopsis resurrected ... 315
Fic. 40. Collybiopsis hasanskyensis. (TFB 11846; TENN-F-060730).
Diverticulate cheilocystidia. Scale bars = 10 um.
into debris, persistent after hymenial discharge making observation of
basal clamps in the hymenium difficult. Evidence of gelatinization absent.
PLEUROCYSTIDIA (Fic. 383A—D) common, not abundant, stalked-fusiform,
19-22 x 9-11 um at widest point, inconspicuously clamped; contents more
or less homogeneous, not partitioned. BAsip1a (Fic. 38-H) digitate to
clavate but not subcapitulate, 18-23 x 9-11 um, occasionally suburniform,
2-4-sterigmate, inconspicuously clamped; sterigmata slender, lyre-shaped;
316 ... Petersen & Hughes
Fic. 41. Collybiopsis hasanskyensis. (TFB 11846; TENN-F-060730).
Caulocystidia. Scale bars = 10 um.
contents heterogeneous, multi-granular with amorphous inclusions.
BASIDIOSPORES (FIG. 35B) 7-11 x 3.5-4.5(-5.5) um (E = 1.82-2.75; E" = 2.29;
L™ = 8.8 um), elongate-ellipsoid, widely rounded distally, tapered proximally
(marasmioid), thin-walled, hyaline, inamyloid; contents heterogeneous,
foamy (i.e. multiguttulate). CHEILOCYSTIDIA (Fic. 39) abundant at lamellar
edge, apparently easily disarticulated from basal septum (i-e., appearing
without parent hyphae and with no evidence of clamp connection), firm-
to thick-walled (wall <1 um thick, hyaline, usually on emergent portion,
not portions juxtaposed to other hymenial elements), very variable in shape
from subglobose and without lobes, broadly clavate with expanded distal
portion with one or few lobes, to columnar, to stalked with distal portion
moderately expanded by with almost equal lobes, to occasionally grown out
Collybiopsis resurrected ... 317
distally to form stout diverticula (Fic. 40); diverticula <40 x 3-5 um, often
lobed and occasionally branched; measurements really only approximate
because forms are so variable, 30-42(-60) x 7-11 um (at widest point),
hyaline, often appearing empty (see photos). STIPE ANATOMY: no apparent
differentiation of medullary versus cortical hyphae, all 4-6 um diam,
firm-walled (not thick-walled), obscurely clamped, apparently uniformly
dextrinoid (cut ends of medullary hyphae just as dextrinoid as corticals);
clamp connections, if present, inconspicuous. Stipe surface possibly with
very thin slime matrix. Stipe apex with covering of inflated, free-form
caulocystidia similar to inflated and distorted pleurocystidia (normal
pleurocystidia and cheilocystidia common in this caulocystidial covering,
some with tentacular apical outgrowths). CAuLocysTIpDIA (Fic. 41)
(15-)20-40(-55) x (3-tentacular outgrowth) 8-14 um, simple inflated
utriform structures with almost invisible pedicel to repeatedly constricted
“chains,” occasionally a combination of tentacular and constricted structures.
Lower stipe glabrous.
ComMMENTARyY: Although Collybiopsis ramealis exhibits a typical Rameales-
structure pileipellis (as the archetype of the structure), this construction
is not universal even in the Co. ramealis complex. Singer (1973) included
nearly 20 Latin American taxa in M. subsect. Ramealini, but several did not
exhibit the characteristic setulose repent hyphae and broom cell-like hyphal
termini, and some were described as having a trichodermium of “thorny” or
setulose hyphae. [Marasmiellus foliiphilus Dutta & al. (2015) was described
and illustrated with such a trichodermium.] Likewise, Co. hasanskyensis lacks
Rameales-structure in the pileipellis, instead showing typical gymnopoid
repent hyphae, often with annular ornamentation.
Fic. 1 (ITS + LSU-based phylogeny) places Co. hasanskyensis sister to
Co. vaillantii in the larger clade including Co. eneficola and Co. biformis.
ADDITIONAL SPECIMEN EXAMINED: RUSSIA, PRIMORSKI KRAI, Hasansky Dist., vic.
Primorsky, Kedrovaya Reserve, 43°05.87’N 131°33.57’E, 18.VIII.2005, coll. RHP, TFB
11847 (TENN-F-60731).
Collybiopsis minor R.H. Petersen, sp. nov. Figs. 42-49
IF 556206
Differs from other Collybiopsis taxa by its habit on dead Tsuga twigs; its unique ITS
rDNA molecular sequences; its pileipellis a repent layer of interwoven, non-diverticulate
hyphae, often encrusted with annular deposit; its complete absence of gelatinized tissue;
its pallid vestured stipe; and its conspicuously clamped hyphae (including hymenophore
elements).
318 ... Petersen & Hughes
Fic. 42. Collybiopsis minor. (TFB 11930; TENN-F-059993). Dried basidiomata on Tsuga twigs.
Scale bar = 10 mm.
Type: USA, Tennessee, Blount Co., GSMNP, Turkey Pen Ridge trailhead, 35°36’47”N
83°43'37”W 18.VI. 2004, coll. RHP, TFB 11930 (Holotype, TENN-F-059993).
ErymMo.oey: Minor = small, referring to the size of basidiomata.
BASIDIOMATA (Fic. 41) diminutive. PILEus 4-9 mm broad, applanate,
usually with down-curved margin, occasionally with shallow umbo, matt;
disc and inner limb “army brown” 8D5 to “wood brown” 7C4; outer limb
and margin “vinaceous buff” 9B2 to “tilleul buff” 7B2 (in drying remaining
not far from “avellaneous” 7B3), not at all sulcate-striate; margin irregular
as though eroded. LAMELLAE close (L + Il = 60-68; L = 20-24), adnexed (but
without pseudocollarium), thin, subventricose (<1 mm broad), off-white
when fresh, drying pallid yellowish with no necropigment; edges entire,
somewhat paler than face; lamellulae in 2-3 ranks, plentiful at pileus margin.
STIPE 8-15 x 1-1.5 mm, concolorous with pileus (more or less “avellaneous”
7B3) to somewhat more pallid or off-white where vestured, terete, equal or
slightly tapering upward (base thicker than apex), lightly stuffed, vestured
throughout; stipe base with conspicuous white ruff <0.5 mm high; insertion
Collybiopsis resurrected ... 319
Fic. 43. Collybiopsis minor. (TFB 11930; TENN-F-059993). Pileipellis elements. A. Smooth, repent
hyphae (note basidiospore); B. Hyphae with annular ornamentation; C. Hypha with contents
appearing oily; D. Slender hyphae with minute roughening; note clamp connection at right.
Scale bars = 10 um.
not insititious. RHIZOMORPHS sporadic, white, ropy (not well-defined),
associated with resupinate white pad. TasTE and opor negligible.
HABITAT & PHENOLOGY: Four collections known, all fruiting on very
slender dead twigs of Tsuga in southern Appalachian Mountains (Tennessee,
South Carolina); June-July.
320 ... Petersen & Hughes
Fic. 44. Collybiopsis minor. (TFB 11930; TENN-F-059993). Pileipellis and subpellis hyphae.
A. Inflated, ornamented hyphal segment of pileipellis; B-D. Slender, meandering hyphae of
subpellis, with occasional lobate side branches. Scale bars = 10 um.
PILEIPELLIS an interwoven repent layer with no evidence of slime
deposition, constructed of the following: 1) repent, unoriented hyphae 3-8.5
um diam, firm-walled, conspicuously clamped, ranging from smooth (Fic.
43A) to ornamented; ornamentation ranging from a) scattered spiculate
“crystals, unoriented; b) annular or striped ornamentation (Fic. 43B)
of varying density and width (profile calluses <1 um thick); contents
hyaline, speckled (Fic. 43C) as though oily, to dense and then hypha usually
slender (Fic. 43D); 2) inflated hyphal segments (Fic. 44A) <16 um diam,
Collybiopsis resurrected ... 321
Fic. 46. Collybiopsis minor. (TFB 11930; TENN-F-059993). A. Basidiole. B-D. Mature basidia.
Note non-refringent, heterogeneous contents. Scale bars = 10 um.
322 ... Petersen & Hughes
Fic. 47. Collybiopsis minor. (TFB 11930; TENN-F-059993). Cheilocystidia. A. Cluster of three
cheilocystidia; B, C, E-G. Cheilocystidia with distal prong-like ornamentation; D. Cheilocystidium
with two simple sterigmatoid apical lobes. Scale bars = 10 um.
clavate to keg-shaped, always ornamented with scattered stripes or annular
appearance; 3) slender hyphae (Fic. 44B-D), 2.5-4.5 um diam., firm-walled,
often meandering, usually delicately ornamented with spiculate deposits,
appearing dense (PhC); and 5) rare cheilocystidium-shaped individuals,
34-46 x 5-7.5 uum, appearing to arise below the subpellis and permeate the
pileus surface, clavate, stalked, thick-walled (wall <1.5 um thick, hyaline)
distally pronged to coarsely divided with apical prongs. PLEUROCYSTIDIA
(Fic. 45) abundant, 35-45 x 5-8 um, slender-fusiform to fusiform, hardly
discernable from basidioles when immature, conspicuously clamped;
Collybiopsis resurrected ... 323
Fic. 48. Collybiopsis minor. (TFB 11930; TENN-F-059993). Upper stipe caulocystidia.
A. Survey. B-E. Individual caulocystidia. Scale bars = 10 um.
contents multiguttulate by maturity. Basidioles (Fic. 46A) 30-37 x 7-9 um
(at widest point), clavate, subcapitulate, clamped; contents multiguttulate;
BASIDIA (FIG. 46B-D) 30-43 x 7-9 um, clavate, hardly subcapitulate,
4-sterigmate, clamped; contents mottled, hardly guttulate (not refringent).
BASIDIOSPORES (Fic. 27) 9-10(-11) x 4-4.5 um (E = 2.00-2.75; E™ = 2.22;
L™ = 9.75 um), ellipsoid, flattened adaxially, hardly tapered proximally,
324 ... Petersen & Hughes
Fic. 49. Collybiopsis minor. (TFB 11930; TENN-F-059993). Lower stipe caulocystidia.
A. Survey. B-E. Individual caulocystidia. Scale bars = 10 um.
smooth, thin-walled, inamyloid. CHEmLocystipia (Fic. 47) plentiful at
lamellar edge, broadly clavate to ventricose-rostrate, firm- to thick-walled
(wall <0.5 um thick, hyaline), 30-55 x 12-20 um (at widest point); stalk
15-25 x 3.5-5.5 um, obscurely clamped (easily disarticulated); distal
Collybiopsis resurrected ... 325
inflated portion subglobose to broadly clavate, ranging from simply lobed
(Fic. 47D) to beset with several prong-like protuberances; contents usually
multiguttulate (guttules scattered, usually small, refringent PhC). Upper
STIPE MEDULLA with no evidence of slime or gelatinization; medullary
hyphae strictly parallel, of two types: 1) 4-8 um diam., thick-walled (wall
<1.5 um thick, hyaline), occasionally clamped; 2) 2-3.5 um diam., thick-
walled (wall <0.7 um thick, hyaline), sometimes meandering, occasionally
clamped. Upper stipe cortex similar, weakly pigmented (straw-colored),
producing caulocystidia as side branches; cAuLOcysTIpIA (Fic. 48) 5-35
x 4-10 um (at widest point), papillate, digitate, cylindrical, often swollen
at base, not separated from parent hypha by a septum, thick-walled (wall
<1.5 um thick, hyaline). Lower sT1PE medulla with no evidence of slime or
gelatinization; medullary hyphae free (not in slime matrix), strictly parallel,
of two types: 1) 3.5-8 um diam, firm- to thick-walled (wall <0.7 um thick,
hyaline), occasionally clamped; and 2) 2-3.5 um diam, appearing dense
(PhC), frequently clamped, often branched and with “H”-connections.
Lower stipe cortex weakly pigmented (straw-colored); cortical cells 3-4.5
um diam, thick-walled (wall <0.7 um thick), producing caulocystidia
(Fic. 49) as side branches; caulocystidia ranging from broadly fusiform
(Fic. 49D, E) to stalked and coarsely lobed (Fic. 49A-C) and inflated
<14 um broad, thick-walled (wall <0.7 um thick, hyaline), obscurely
clamped. Stipe cortex ochraceous-red-brown in IKI + BF.
CoMMENTARY: The holotype collection (about 25 basidiomata), originally
identified as Marasmiellus ramealis, was later revised to Ma. stenophyllus.
In reality, the pileipellis lacks any Rameales-structure, and tramal tissues
are devoid of any slime or gelatinous deposition. Similar (but apparently
unrelated) are Marasmiellus synodicus (Kunze ex Fr.) Singer, a European
taxon, and Marasmius subsynodicus Murrill, which differs by fruiting on
chips and sticks of Pinus, distant lamellae, greenish yellow pileus, smaller
spores (4-5 x 2 um, teste Murrill), and more southern distribution.
Phylogenetically, Ma. stenophyllus appears as sister to a yet-unnamed taxon
(MW386874) and more broadly to Co. quercophila and Co. melanopus.
ADDITIONAL SPECIMENS EXAMINED: USA, NORTH CAROLINA, Jackson Co.,
vic. Cashiers, trail to Panthertown Valley from Bald Rock, 13.VIII.1993, coll.
Nadya Psurtseva & RHP, TFB 10358 (TENN-F-057197). SouTH CAROLINA,
Oconee Co., Walhalla Fish Hatchery, trail to Ellicott Rock, 34°52’58”N
83°20'58’W, 29.VII.1993, coll. RHP, TFB 6284 (TENN-F-052933); Burrell’s Ford
Campground, 34°52’58”N 83°20'58’W, 12.VIII.2014, coll. HBS class, TFB 14516
(TENN-F-069211).
326 ... Petersen & Hughes
Fic. 50. Collybiopsis ramealis. Basidiomata.
A. (TFB 14162; TENN-F-067913). B. (TFB 13769; TENN-F-065145). Scale bars = 10 mm.
Collybiopsis ramealis (Bull.) Millsp.,
West Virginia Geol. Surv. Pt. 1: 127. 1913. Fics 50-60
= Agaricus ramealis Bull., Herb. France 7: tab no. 336 1788, nom. sanct.
NEOTYPE (designated by Antonin & Noordeloos 1993): France, dept. Pas de Calais,
Boulogne sur Mer, 14.X.19873, ME Noordeloos 7310, L.
EpityPe (hic designatus, IF 556205.): Belgium, Couvin, Damon, Ardennes Mts.,
River de Rome, 50°01.45’N 4°32.21’W, 8.[X.2010, coll. A Methven, TFB 13769
(TENN-F-065145).
Collybiopsis resurrected ... 327
Fic. 51. Collybiopsis ramealis. (TFB 14546; TENN-F-069241). Pileipellis elements.
A, B, E. Diverticulate hyphae. C, D. Ornamented hyphae. Scale bars = 10 um.
BASIDIOMATA (Fic. 50) diminutive, gregarious to densely gregarious,
occasionally in troops, drying to “ochraceous buff” 5A5 to “wood brown” 7C4.
PiteEus 3-15 mm broad, matt, shallowly convex to applanate with involute
margin, occasionally abruptly umbonate, never umbilicate but irregularly
pulvinate, minimally striate at margin, not hygrophanous; disc off-white,
“cream buff” 4A4, “light pinkish cinnamon” 7A2, “cinnamon buff” 6B4 to
“sayal brown” 6C5, light brown 6D5-6, or paler when young 6D4,“vinaceous
buff” 9B2, outward “pinkish buff” 6A3, “pale pinkish cinnamon” 6A2,
328 ... Petersen & Hughes
Fic. 52. Collybiopsis ramealis. (TFB 14546; TENN-F-069241).
Pileipellis elements; diverticulate hyphal termini. Scale bars = 10 um.
“pale pinkish buff” 6A2 to “tilleul buff” 7B2, sometimes yellowing in age
(orange white 5A2 disc, margin 4A2). LAMELLAE subdecurrent (and then
ending abruptly on stipe), adnexed to adnate to appearing free, more or
Collybiopsis resurrected ... 329
Fic. 53. Collybiopsis ramealis. (TFB 14546; TENN-F-069241). Inflated subpellis hyphae.
Note prominent clamp connections. Scale bars = 10 um.
less arcuate, not ventricose, seceding slightly when dried to appear free or
pseudocollariate, 0.7-1 mm broad, distant, subdistant to close, (L + Il = 40-43,
L = 11-14), thickish, usually concolorous with pileus surface, off-white to
“pale pinkish buff” 6A2, “warm buff” 5A4, “pale pinkish cinnamon” 6A2,
“pinkish buff” 6A2 with white edge, occasionally suffusing to “light pinkish
cinnamon” 7A2 sometimes yellowing in age to “cartridge buff” 30A2 and
tending toward crisping in older basidiomata; buttressing rare; anastomosis
absent. In normal pilei, hymenophore taking on a fleshy necropigment
upon drying. STIPE 6-20 x 1-2 mm broad at apex, equal and remaining so
or tapering downward to 0.5-0.8 mm broad at base, inflated apically, there
“pale pinkish cinnamon” 6A2, to concolorous with lamellae and minutely
flocculose, downward “cream buff” 4A4, “sayal brown” 6C5, “cinnamon
buff” 6D4, “vinaceous buff” 9B2, “pinkish cinnamon” 7B5, to “clay color”
5C6, at base “cinnamon buff” 6D4 or “wood brown” 7C4, sometimes
yellowing 4A2, “yellow ocher” (orange-white 5A2) and then suffusing light
brown 6D4 to brownish orange 6C7, in age occasionally suffusing fleshy
cream to “Pompeian red” 10C6 toward base, smooth, without basal pad.
330 ... Petersen & Hughes
Fic. 54. Collybiopsis ramealis. (TFB 14163; TENN-F-067913).
Lamellar trama; diverticulate hyphae. Scale bars = 10 um.
OpDoR sometimes weakly of garlic or fresh but otherwise negligible; TASTE not
distinctive.
HABITAT & PHENOLOGY: Hardwood (at least Fagus or Quercus),
occasionally on Rubus canes, Crataegus or other woody substrates, rotting
wood, branches, twigs and bark; Europe including Scandinavia and Caucasus;
late Summer, early Autumn.
Collybiopsis resurrected ... 331
Fic. 55. Collybiopsis ramealis. (TFB 14573; TENN-F-069270).
Lamellar trama; inflated hyphal segments and termini. Scale bars = 10 um.
PILEIPELLIS constructed of the following elements: 1) erect filamentous
hyphae emerging from subpellis, 25-50 x 4-5 um, equal to subtly
subcapitulate, hyaline, firm-walled, arising as side branches from repent
hyphae; 2) antler-shaped hyphae 3—7(-10) um diam, branched more or
less at right angles, often ending in short, blunt, divaricate spurs (tibiiform;
Rameales-structure; Fic. 51A, B); 3) as above but distinctly ornamented in
332 ... Petersen & Hughes
Fic. 56. Collybiopsis ramealis. (TFB 14546; TENN-F-069241). Pleurocystidia.
Note prominent clamp connection in C. Scale bars = 10 um.
annular or striped configuration (Fic. 51C, D), always in short lengths; 4)
repent hyphae 4—8 um diam, beset with closely scattered thumb shaped to
digitate setulae 1-4 x 0.7-1.0 um, (Fic. 52B, E) apparently as interseptal
hyphal lengths and also as hyphal termini, and then more or less broom
cell-like shapes (Fic. 52); setulae as above, often with refringent tips (PhC).
Subpellis hyphae loosely interwoven without evidence of slime matrix or
sheath, 3.5-15 um diam (Fic. 53), thin- to firm-walled, conspicuously
clamped. Pileipellis near pileus margin a coarse Rameales-structure,
setulae coarser, knobby, not papillate, closely scattered. Lamellar trama
loosely interwoven; hyphae include scattered diverticulate (Fic. 54) and
antler-shaped divaricate elements (Fic. 55). PLEUROCYSTIDIA (Fic. 56)
24-33 x 6-7.5 um, common to scattered but not normally abundant,
digitate (and then difficult to distinguish from basidioles) to narrowly
fusiform, conspicuously clamped; contents heterogeneous with scattered
granules and often 1-2 refringent inclusions (PhC). Basidioles (Fic. 57A)
Collybiopsis resurrected ... 333
Fic. 57. Collybiopsis ramealis. (TFB 13755; TENN-F-065145).
A. Basidiole. B-D. Basidia. E-H. Basidiospores. Scale bars: A~D = 10 um, E-H = 5 um.
clavate to subcapitulate. Basip1a (Fic. 57B-D) 26-32 x 7-8.5 um, clavate
to subtly subcapitulate, 4-sterigmate (sterigmata very slender, easily
collapsed), conspicuously clamped; contents heterogeneous with scattered
334 ... Petersen & Hughes
Fic. 58. Collybiopsis ramealis. (TFB 14573; TENN-F-069270).
Clavate cheilocystidia. Scale bars = 10 um.
granules. BAsIDIOsPORES (Fic. 57E-H) (6—-)7-10(-11.5) x 2.5-4(-4.5) um
(E= 1.76-3.20; E™ = 2.39; L™ = 8.61 um), slender ellipsoid, marasmioid
(tapered proximally), thin-walled, inamyloid; contents 2-3-guttulate
to minutely heterogeneous, appearing foamy. CHEILOCYSTIDIA (FIGs.
58-60) (27-)50-84 x 12-22 um (at widest point), thickly scattered,
often appearing as pseudocystidia (i.e. arising in subhymenium, not in
hymenium), ranging from clavate (Fic. 58) to typically long ventricose-
rostrate to spheropedunculate with apical setulae (Fic. 59, 60), but
occasionally misshapen (Fic. 60), thin- to firm-walled; inflated distal
portion pigmented (dark ochraceous, PhC); apical outgrowths ranging
from papillate to tentacular/coralloid, apparently flexuous (diverticula, not
setulae); stalk slender (1.5-2.5 um diam), clamped; contents heterogeneous
with scattered minute granular aspect. Occasional cheilocystidia clavate
(12-15 um broad, not ventricose-rostrate), beset with scattered papillate
setulae. STIPE MEDULLARY HYPHAE strictly parallel, easily extruded in
squash mounts, of two types: 1) 4-9 um diam, thick-walled (wall <1 um
thick, hyaline), conspicuously clamped; and 2) 1-2.5 um diam, thin- to
firm-walled, widely clamped. STIPE CORTICAL HYPHAE 3-6 um diam,
thick-walled, weakly pigmented (straw-colored PhC), often papillate on
outside wall; papillae 0.5-2 x 1 um, hyaline, thick-walled. Stipe surface
Collybiopsis resurrected ... 335
Fic. 59. Collybiopsis ramealis. (TFB 14573; TENN-F-069270).
Ventricose-rostrate cheilocystidia. Scale bars = 10 um.
ornamented with utriform to lobate cells arising as thin-walled termini of
surface cortical hyphae, 5-10 um diam. Upper stipe clothed in the following:
1) typical hymenium of basidia, basidioles and occasional pleurocystidia;
2) relatively normal cheilocystidia, but often distorted into odd shapes; and
3) modified cheilocystidia (distinguished by heterogeneous contents and
336 ... Petersen & Hughes
Fic. 60. Collybiopsis ramealis. (TFB 14546; TENN-F-069241).
Aberrant clavate cheilocystidia. Scale bars = 10 um.
very slight pigmentation) into elongate clavate structures 9-13(-19) um
diam (at widest point), appearing as pseudocystidia, smooth to (rarely)
beset with apical knobby to coralloid diverticula, firm- to thick-walled
(wall <1.0 um thick, hyaline), with basal clamp connection.
COMMENTARY: Bulliard’s illustration clearly shows decurrent, arcuate lamellae
(his fig. A) perhaps seceding (his fig. B).
Cheilocystidia of all examined European specimens were pigmented.
The pigment is cytoplasmic; the wall is hyaline. Contents are heterogeneous,
Collybiopsis resurrected ... 337
appearing oily with inclusions (PhC). Contents of basidioles and
pleurocystidia are homogeneous but contents of mature basidia are
heterogeneous, multigranular with a few small refringent guttules. Based
on long pedicel stalks, cheilocystidia seem to arise deep in lamellar trama
and project through the lamellar edge. This morphology has been termed
“pseudocheilocystidia” (Singer 1968).
Copious spores seem to lodge on lamellar surfaces, especially at the
lamellar edge. Other than the projections from cheilocystidial apices, there
seems not to be a physical attraction. Spores are usually 2-guttulate; guttules
polar (at proximal and distal ends of the spore), and refringent.
While the lamellar edge appears smooth at low magnification, it is
delicately serrulate at 250x, with pigmented cheilocystidia appearing dark
near or at the lamellar edge.
Stipes vary from terete and equal to compressed and tapering downward
to a fine insertion reminiscent of that of Marasmiellus praeacutus (see Halling
1987).
Self-crosses were performed on collections TENN-F-052628 (Sweden),
TENN-F-065120 (Belgium), TENN-F-065122 (Belgium), TENN-F-065132
(Belgium), and TENN-F-065165 (Belgium). All self-crosses showed
tetrapolar mating systems. An intercollection pairing grid developed
from single-basidiospore isolates from the Belgian collections showed all
collections to be intercompatible, indicating that all belonged to a single
mating group.
Earle’s explicit assignment of Marasmius ramealis as type of his genus
Collybiopsis did not constitute valid publication of the nomenclatural
combination Collybiopsis ramealis (ICN Shenzhen Art, 36:2, see also Antonin
& Noordeloos 2010: 316), although his intent was indisputable. Millspaugh
(1913) made the earliest valid publication of Collybiopsis ramealis.
There remains a question about Earle’s (1909) use of the AMERICAN CODE
OF BOTANICAL NOMENCLATURE (1904, 1907), of which he was a signee,
especially Canon 15, embodying the “first species rule.” Earle’s 1909 effort
was intended to be explicitly and exclusively taxonomic, not nomenclatural.
In his prose summary he does not mention typification or his method of
arriving at the type species of the genera in his generic summary. A search
of “Tribe I. Agaricaceae §1. Gymnophylli” (Earle, pp 411-433) covering 73
genera reveals that the preponderance of genera were typified by the first
(often the only) species listed in the generic protologue. But in the following,
a non-first species was chosen: Anthracophyllum, Leptomyces, Prunulus,
338 ... Petersen & Hughes
Omphalina, Pilacre, Lepista, Phylloporus, and Melanoleuca. Earle’s mechanical
use of “The first species rule” (explicit or implicit) cannot be upheld.
But although Earle was not slavish to “the first-species rule” regarding the
protologue of the various genera, he was, indeed, slavish in citing Saccardos
Sylloge Fungorum (Vol. 5, covering the agarics). In the various assemblages
that Earle recognized as represented in Sylloge, Saccardo’s first species do not
appear to have been selected as generic types for Earle’s genera.
SPECIMENS EXAMINED: BELGIUM, Dimonte, vic. Hever, Jemain, Massembre,
50°09°37’N 4°51’29’E, 7.1X.2010, coll. AS Methven, TFB 13755 (TENN-F-065120);
coll. S Adam¢éik, TFB 13745 (TENN-F-065122); vic. Heer, Bois de Baroville, vic.
Beauraina, 9.I[X.2010, coll. RHP, TFB 13775 (TENN-F-065151); coll. RHP, TFB 13590
(TENN-F-065165); Couvin, Damon, Ardennes Mts., River de Rome, 50°01.45’N
4°32.21’E, 8.1X.2010, coll. A Methven, TFB 13770 (TENN-F-065146). GERMANY,
THURINGIA, vic. Obergebra, off Rte 1016, 51°24.13’N 10°36.05’E, 30.VHIL.2012, coll.
RHP, TFB 14162 (TENN-F-067912); TFB 14163 (TENN-F-067913); vic. Menteroda,
51°18.18’N 10°33.52’E, 28. VIII.2012, coll. AS Methven, TFB 14140 (TENN-F-067890);
Grosslohram vic Nohra, 51°24.40’N 10°36.88’E, 29.VIII.2012, coll. KWH, TFB
14150 (TENN-F-067900). SLOVAKIA, Nitra, Prostredny Vrich, Lovce, 48°27'04”N
18°20'49”E, 12.1X.2014, coll. RHP TFB 14573 (TENN-F-069270); Zlate Maravce
Dist., vic. Hostie, 48°27’59”"N 18°27’35”E, 10.1X.2014, coll A.S. Methven, TFB 14555
(TENN-F-069255); coll A.S. Methven, TFB 14546 (TENN-F-069241). SWEDEN,
NARKE, Hjalmarsbaden, Ostra Hagen, 59°16.07’N 15°19.07’E, 10.1X.2008, coll. RHP,
TFB 13520 (TENN-F-062867); HALLAND, Toto Parish, 56°54’19"N 12°47’23”E,
24.1X.1991, coll. SA Gordon, RHP, Stig Jacobsson, TFB 4727 (TENN-F-050324);
UPPLAND, vic. Uppsala, Fiby Urskog, 59°52’54”N 17°21'13”E, 8.1X.1994, coll. RHP,
TFB 7288 (TENN-F-053525); vic. Uppsala, 31X.1994, coll. unknown, TFB 7248
(TENN-F-052628). UNITED KINGDOM, PERTHSHIRE, Pitlochry, Beach Walk
along River Garry & vicinity, 56°42’16”N 3°43’47’W, 2.1X.1997, coll. RHP, TFB 6989
(TENN-F-055908).
Discussion
In future taxonomic investigations, some taxa heretofore described as
Marasmiellus will be authoritatively sequenced and as a result, will remain
securely within Collybiopsis. Other sequenced taxa, however, will not remain
in Collybiopsis, with destinations (e.g., Marasmiaceae, Physalacriaceae)
unpredictable. For example, taxa within Marasmiellus sect. Candidi,
Ma. sect. Stenophylloides, and Ma. sect. Nigripedes (= Tetrapyrgos) seem
destined for Marasmiaceae (not Omphalotaceae-Collybiopsis, where
Marasmiellus juniperinus belongs). If done carefully, this process will be slow
and piecemeal, inviting caution in blanket transfers.
Here it might be noted that Pegler & Young (1971) cited a specimen of
Ma. juniperinus from Jamaica (Jamaica, Blue Mountains, 26.XII.1949,
Collybiopsis resurrected ... 339
Proctor: K). DNA sequences from this specimen might furnish a more secure
(topotype) connection for the type of Marasmiellus.
The phylogenetic position of Marasmiellus juniperinus is unstable and not
well-supported by either Olivera & al. (2019) or our analyses. The Olivera
& al. (2019) analysis associated Ma. juniperinus with TENN-F-068185
(TFB14334; Gymnopus sp. 17) and TENN-F-068085 (TFB14228; Gymnopus
sp.) but without support. Our current analysis associates Ma. juniperinus with
Co. quercophila and Co. melanopus, again without support. The underlying
cause is that its ITS sequence diverges from the rest of the sequenced taxa
in Collybiopsis but does not clearly belong elsewhere based on its DNA
sequences.
Despite the literature summary presented above (see Introduction),
Singer's (1962) acceptance of Marasmiellus over Collybiopsis is instructive.
For many years during the early 20" century an expanded concept of
Marasmius was accepted, including numerous taxa whose micromorphology
did not fully conform to the present circumscription of the genus. Kiihner’s
(1933, 1936) treatments were especially influential. Both Marasmiellus and
Collybiopsis were overlooked as candidates for atypical “Marasmius” taxa. In
addition, they were also overlooked by some authors (notably Clements &
Shear 1931, 1954) who selected type species for many genera. During these
years, Singer (1938) used Hemimycena for a group of agarics he considered to
be without a previous home. It was only later (Singer 1950) when he realized
that Marasmiellus Murrill 1915 took priority over Hemimycena Singer 1938
that Marasmiellus came into Singer’s purview. In a nomenclatural study of
the genera of Agaricales, Donk (1962) summarized the history of Collybiopsis
to that date. There he named a “selected” type species as Agaricus calopus. By
1962, Singer had accepted 59 taxa within Marasmiellus and, whether before
or after Donk’s publication, Singer also listed Agaricus calopus as type of
Collybiopsis. The two authors’ choice superseded Earle’s explicit citation of
the generic type for Collybiopsis (also distorting Earle’s intent), thus steering
Collybiopsis away from contention for priority over Marasmiellus. Both
authors, however, also reported that the taxonomic concept of A. calopus
itself was anything but secure, concluding that A. calopus was a “nomen
dubium.’ Singer went one step further: if A. calopus was a “nomen dubium,”
then Collybiopsis was also a “nomen dubium.’ Singer (1962: 417-418)
included Collybiopsis under “genera imperfectly known,’ We contend that
Collybiopsis is in no way a dubious name, having been explicitly established
by Earle (1909).
340 ... Petersen & Hughes
Acknowledgements
We extend our sincere thanks to three anonymous reviewers whose comments and
suggestions made this version of the original manuscript stronger. Dr. Else Vellinga
caught some substantive errors. Dr. Jerry Cooper, Landcare Research, New Zealand,
provided the Millspaugh paper as well as other valuable suggestions. The Mycotaxon
Editors excelled in correcting confusing text and formatting and nomenclatural
shortcomings; they are sincerely thanked.
Collybiopsis resurrected ... 341
APPENDIX |
Collybiopsis recombinations proposed
The correct name for the large clade considered here is Collybiopsis, which includes
the type species of Marasmiellus (M. juniperinus), as well as the type species of Gymnopus
sect. Vestipedes (G. confluens). Many epithets of appropriate binomials require transfer
to Collybiopsis. Oliveira & al. (2019) made numerous transfers to Marasmiellus but,
while we do not disagree with the taxonomy of these transfers, we argue that they
are nomenclaturally incorrectly combined in Marasmiellus and not Collybiopsis. The
list of corrected transfers below includes such species epithets with which we have
experience but not those which we contend require additional investigation. Based
on Fic. 1 (ITS + LSU-based phylogeny), appropriate epithets include those below, but
as accurate phylogenetic placement of Marasmiellus and Gymnopus taxa (and some
Marasmius) is determined, additional transfers will be necessary.
Collybiopsis biformis (Peck) R.H. Petersen, comb. nov.
IF 556182
BastonyM: Marasmius biformis Peck, Bull. 1904 [“1903”]. N.Y. State Mus. 67: 25.
= Marasmiellus biformis (Peck) J.S. Oliveira. 2019. Mycol. Prog. 18(4): 734.
Collybiopsis brunneigracilis (Corner) R.H. Petersen, comb. nov.
IF 557078
BastonyM: Marasmius brunneigracilis Corner. 1996. Nova Hedwigia, Beih. 111: 39.
= Gymnopus brunneigracilis (Corner) A.W. Wilson, Desjardin, E. Horak. 2004.
Sydowia 56(1): 171.
= Marasmiellus brunneigracilis (Corner) J.S. Oliveira. 2019. Mycol. Prog. 18(5): 734.
Collybiopsis confluens (Pers.) R.H. Petersen, comb. nov.
IF 556183
BASIONYM: Agaricus confluens Pers. 1796. Observ. Mycol. 1: 8.
= Marasmiellus confluens (Pers.) J.S. Oliveira. 2019. Mycol. Prog. 18: 734.
Collybiopsis dichroa (Berk. & M.A. Curtis) R.H. Petersen, comb. nov.
IF 556184
BastonyM: Marasmius dichrous Berk. & M.A. Curtis.
1853. Ann. Mag. Nat. Hist. 2 12: 426.
= Marasmiellus dichrous (Berk. & M.A. Curtis) J.S. Oliveira. 2019. Mycol. Prog. 18: 734.
Collybiopsis diminuta (Berk. & Broome) R.H. Petersen, comb. nov.
IF 56185
BasionyM: Agaricus diminutus Berk. & Broome. 1871. J. Linn. Soc., Bot. 11: 251.
Collybiopsis disjuncta (R.H. Petersen & K.W. Hughes) comb. nov.
IF 556777
BASIONYM: Gymnopus disjunctus R.H. Petersen & K.W. Hughes. 2014.
N. Am. Fung. 9: 2.
= Marasmiellus disjunctus (R.H. Petersen & K.W. Hughes) J.S. Oliveira. 2019.
Mycol. Prog. 18: 734.
342 ... Petersen & Hughes
Collybiopsis eneficola (R.H. Petersen) R.H. Petersen, comb. nov.
IF 556186
BASIONYM: Gymnopus eneficola R.H. Petersen. 2014. Omphalina 5(5): 5.
= Marasmiellus eneficola (R.H. Petersen) J.S. Oliveira. 2019. Mycol. Prog. 18: 734.
Collybiopsis fibrosipes (Berk. & M.A. Curtis) R.H. Petersen, comb. nov.
IF 557077
BastonyM: Marasmius fibrosipes Berk. & M.A. Curtis. 1869. J. Linn. Soc. Bot. 10: 293.
= Collybia fibrosipes (Berk. & M.W. Curtis) Dennis. 1951.
Trans. Brit. Mycol. Soc. 34(4): 448
= Gymnopus fibrosipes (Berk. & M.A. Curtis) J.L. Mata. 2003 Mycotaxon 86: 315.
Collybiopsis foliiphila (A.K. Dutta, K. Acharya & Antonin) R.H. Petersen, comb.
nov.
IF 557080
BastonyM: Marasmiellus foliiphilus A.K. Dutta, K. Acharya & Antonin. 2015.
Mycol. Prog. 14: 5.
Collybiopsis gibbosa (Corner) R.H. Petersen, comb. nov.
IF 556187
BastonyM: Marasmius gibbosus Corner. 1996. Nova Hedwigia, Beih. 111: 53.
= Marasmiellus gibbosus (Corner) J.S. Oliveira. 2019. Mycol. Prog. 18: 734.
Collybiopsis indocta (Corner) R.H. Petersen, comb. nov.
IF 556188
BastonyM: Marasmius indoctus Corner. 1996. Nova Hedwigia, Beih. 111: 60.
= Marasmiellus indoctus (Corner) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
Collybiopsis juniperina (Murrill) R.H. Petersen, comb. nov.
IF 556189
BastonyM: Marasmiellus juniperinus Murrill. 1915 N. Am. Fl. 9(4): 243.
Collybiopsis luxurians (Peck) R.H. Petersen, comb. nov.
IF 556190
BastonyM: Collybia luxurians Peck. 1897. Bull. Torrey Bot. Club 24: 141.
= Marasmiellus luxurians (Peck) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
Collybiopsis melanopus (A.W. Wilson, Desjardin & E. Horak)
R.H. Petersen, comb. nov.
IF 556191
BasIonyM: Gymnopus melanopus A.W. Wilson, Desjardin & E. Horak. 2004.
Sydowia 56: 181
= Marasmiellus melanopus (A.W. Wilson, Desjardin & E. Horak)
J.S. Oliveira. 2019. Mycol. Prog. 18: 735
Collybiopsis resurrected ... 343
Collybiopsis menehune (Desjardin, Halling & Hemmes) R.H. Petersen, comb. nov.
IF 556192
BASsIONYM: Gymnopus menehune Desjardin, Halling & Hemmes. 1999.
Mycologia 91(1): 173.
= Marasmiellus menehune (Desjardin, Halling & Hemmes) J.S. Oliveira. 2019.
Mycol. Prog. 18: 375.
Collybiopsis mesoamericana (J.L. Mata) R.H. Petersen, comb. nov.
IF 556193
BASIONYM: Gymnopus mesoamericanus J.L. Mata. 2006. Sydowia 58(2): 283.
= Marasmiellus mesoamericanus (J.L. Mata) J.S. Oliveira. 2019. Mycol. Prog. 19: 735.
Collybiopsis micromphaloides (R.H. Petersen & K.W. Hughes) R.H. Petersen,
comb. nov.
IF 556778
BasionyM: R.H. Petersen & K.W. Hughes. 2014. N. Am. Fungi 9: 6.
= Marasmiellus micromphalioides (R.H. Petersen & K.W.Hughes)
J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
Collybiopsis neotropica (Singer) R.H. Petersen, comb. nov.
IF 556942
BastonyM: Collybia neotropica Singer. 1962 [“1961”]. Sydowia 15: 54.
= Gymnopus neotropicus (Singer) J.L. Mata. 2003. Mycotaxon 86:313.
= Marasmiellus neotropicus (Singer) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
Collybiopsis nonnulla (Corner) R.H. Petersen, comb. nov.
IF 556194
BastonyM: Marasmius nonnullus Corner. 1996, Nova Hedwigia, Beih. 111: 76.
= Marasmiellus nonnullus (Corner) J.S. Oliveira 2019, Mycol. Prog. 18: 735.
Collybiopsis obscuroides (Antonin & Legon) R.H. Petersen, comb. nov.
IF 556943
BaAsIONYM: Gymnopus obscuroides Antonin & Legon. 2008. Czech Mycol. 60: 14.
Collybiopsis parvula (J.L. Mata, R.H. Petersen & K.W. Hughes)
R.H. Petersen, comb. nov.
IF 556779
BASIONYM: Gymnopus parvulus J.L. Mata, R.H. Petersen & K.W. Hughes. 2007.
Sydowia 58(2): 285.
= Marasmiellus parvulus (J.L. Mata, R.H. Petersen & K.W.
Hughes) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
Collybiopsis peronata (Bolton) R.H. Petersen, comb. nov.
IF 556195
Bastonym: Agaricus peronatus Bolton. 1788. Hist. Fung. Halifax 2: 58.
= Marasmiellus peronatus (Bolton) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
344 ... Petersen & Hughes
Collybiopsis polygramma (Mont.) R.H. Petersen, comb. nov.
IF 556944
BastonyM: Marasmius polygrammus Montagne. 1854. Ann. Sci. Nat, Bot. ser. 4 1: 118.
= Gymnopus polygrammus (Mont.) J.L. Mata. 2003. Mycotaxon 86: 313.
= Marasmiellus polygrammus (Mont.) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
Collybiopsis pseudoluxurians (R.H. Petersen & K.W. Hughes)
R.H. Petersen, comb. nov.
IF 556196
BASIONYM: Gymnopus pseudoluxurians R.H. Petersen & K.W. Hughes.
2014, N. Am. Fung. 9(3): 7.
= Marasmiellus pseudoluxurians (R.H. Petersen & K.W.
Hughes) J.S. Oliveira. 2019. Mycol. Prog. 19: 736
Collybiopsis quercophila (Pouzar) R.H. Petersen, comb. nov.
IF 556197
BastonyM: Marasmius quercophilus Pouzar. 1982. Ceska Mykol. 36(1): 1.
= Marasmiellus quercophilus (Pouzar) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
Collybiopsis readiae (G. Stev.) R.H. Petersen, comb. nov.
IF 556945
BASIONYM: Crinipellis readiae G. Stev. 1964. Kew Bull. 19(1): 43.
= Gymnopus readiae (G. Stev.) J.L. Mata. 2007. Sydowia 58: 289.
Collybiopsis stenophylla (Mont.) R.H. Petersen, comb. nov.
IF 557079
BastonyM: Marasmius stenophyllus Mont. 1854. Ann. Sci. Nat., Bot.Ser. 4 1: 116.
= Marasmiellus stenophyllus (Mont.) Singer. 1962. Sydowia 15: 58.
= Gymnopus stenophyllus (Mont.) J.L. Mata & R.H.
Petersen. 2004. Mycoscience 45(1): 221.
Collybiopsis subcyathiformis (Murrill) R.H. Petersen, comb. nov.
IF 556946
BastonyM: Marasmius subcyathiformis Murrill. 1915. N. Amer. Fl. 9(4): 269.
= Marasmiellus subcyathiformis (Murrill) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
= Gymnopus subcyathiformis (Murrill) Desjardin, Halling & Hemmes. 1999,
Mycologia 91: 175.
Collybiopsis subnuda (Ellis ex Peck) R.H. Petersen, comb. nov.
IF 556198
BastonyM: Marasmius subnudus Ellis ex Peck. 1898. Bull. Torrey Bot. Club 25: 287.
= Marasmiellus subnudus (Ellis ex Peck) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
Collybiopsis subpruinosa (Murrill) R.H. Petersen, comb. nov.
IF 556199
BastonyM: Marasmius subpruinosus Murrill. 1915. N. Amer. Fl. 9: 266.
= Marasmiellus subpruinosus (Murrill) J.S. Oliveira. 2019. Mycol. Prog. 18: 735.
Collybiopsis resurrected ...
Collybiopsis synodica (Kunze ex Fr.) R.H. Petersen, comb. nov.
IF 556200
BASIONYM: Agaricus synodicus Kunze ex Fr. 1830. Linnaea 5: 507.
Collybiopsis termiticola (Corner) R.H. Petersen, comb. nov.
IF 556201
BastonyM: Marasmius termiticola Corner. 1996. Nova Hedwigia. Beih. 111: 101.
= Marasmiellus termiticola (Corner) J.S. Oliveira. 2019. Mycol. Prog. 18: 736.
Collybiopsis vaillantii (Pers.) R.H. Petersen, comb. nov.
IF 556202
BASIONYM: Agaricus ericetorum B vaillantii Pers. 1801. Syn. Meth. Fung. 2: 472.
Collybiopsis villosipes (Cleland) R.H. Petersen, comb. nov.
IF 556203
BastonyM: Marasmius villosipes Cleland. 1934.
Toadstools Mushrooms S. Austral. 1: 166.
= Marasmiellus villosipes (Cleland) J.S. Oliveira. 2019. Mycol. Prog. 18: 736.
345
346 ... Petersen & Hughes
Literature cited
Aldrovandi MSP, Johnson JE, O’Meara B, Petersen RH, Hughes KW. 2015. Xeromphalina
campanella/kauffmanii complex: species delineation and biogeographical patterns of
speciation. Mycologia 107(6): 1270-1284. https://doi.org/10.3852/15-087
Anonymous. 1904. American Code of Botanical Nomenclature. Bull. Torrey Bot. Club 31:
249-261.
Anonymous. 1907. American Code of Botanical Nomenclature. Bull. Torrey Bot. Club 34:
167-178.
Antonin V, Noordeloos ME. 1993. A monograph of Marasmius, Collybia and related genera
in Europe. Part. I: Marasmius, Setulipes, and Marasmiellus. Libri Botanici 8. IHW-Verlag.
229-0:
Antonin V, Noordeloos ME. 1997. A monograph of Marasmius, Collybia and related genera
in Europe. Part 2: Collybia, Gymnopus, Rhodocollybia, Crinipellis, Chaetocalathus and
additions to Marasmiellus. Libri Botanici 17. IHW- Verlag. 256 p.
Antonin V, Noordeloos ME. 2010. A monograph of marasmioid and collybioid fungi found in
Europe. HW Verlag. 478 p.
Bergemann SE, Garbelotto M. 2006. High diversity of fungi recovered from the roots of
mature tanoak (Lithocarpus densiflorus) in northern California. Botany 84(9): 1380-1394.
https://doi.org/10.1139/b06-097
Binder M, Hibbett DS. 2002. Higher-level phylogenetic relationships of Homobasidiomycetes
(mushroom-forming fungi) inferred from four rDNA regions. Mol. Phylog. Evol. 22(1):
76-90. https://doi.org/10.1006/mpev.2001.1043
Clements FE, Shear CL. 1931. The genera of fungi. Noble Offset & Printing, N.Y. Hafner Publ.
Co., N.Y.
Clements FE, Shear CL. 1954. The genera of fungi. 2nd printing. Hafner Publ. Co.
Corner EJH. 1996. The agaric genera Marasmius, Chaetocalathus, Crinipellis, Heimiomyces,
Resupinatus, Xerula and Xerulina in Malasia. Nova Hedwigia, Beih. 111. 175 p.
Dentinger BTM, Gaya E, O’Brien H, Suz LM, Lachlan R, Diaz-Valderrama JR, Koch RA,
Aime MC. 2016. Tales from the crypt: genome mining from fungarium specimens
improves resolution of the mushroom tree of life. Biol. J. Linn. Soc. 117: 1-22.
https://doi.org/10.1111/bij.12553
Desjardin DE. 1987. New and noteworthy marasmioid fungi from California. Mycologia
79(1): 123-134. https://doi.org/10.1080/00275514.1987.12025378
Desjardin DE. 1997. A synopsis of Marasmiellus in the southern Appalachian Mountains.
Mycotaxon 65: 237-261.
Desjardin DE, Perry BA. 2017. The gymnopoid fungi (Basidiomycota, Agaricales) from
the Republic of SAo Tomé and Principe, West Africa. Mycosphere 8(9): 1317-1391.
https://doi.org/10.5943/mycosphere/8/9/5
Desjardin DE, Perry BA, Shay JE, Newman DS, Randrianjohany E. 2017. The type species of
Tetrapyrgos and Campanella (Basidiomycota, Agaricales) are redescribed and epitypified.
Mycosphere 8(8): 977-985. https://doi.org/10.5943/mycosphere/8/8/1
Donk MA. 1962. The generic names proposed for Agaricaceae. Nova Hedwigia, Beih. 5. 320 p.
Dutta AK, Wilson AW, Antonin V, Acharya K. 2015. Taxonomic and phylogenetic study of
gymnopoid fungi from eastern India. I. Mycol. Prog. 14: 1-18.
https://doi.org/10.1007/s11557-015-1094-3
Earle FS. 1909. The genera of the North American gill fungi. Bull. N. Y. Bot. Gard. 5: 373-462.
Geneious. 2017. Geneious version 11.0.3 created by Biomatters. Available from
http://www.geneious.com/.
Collybiopsis resurrected ... 347
Halling, RE. 1987. Studies on Marasmiellus (Tricholomataceae) in the United States, I. A new
species and a new combination. Syst. Bot. 12(3): 400-405. https://doi.org/10.2307/2419264
Honan A, Desjardin DE, Perry BA, Horak E, Baroni TJ. 2015. Towards a better understanding
of Tetrapyrgos (Basidiomycota, Agaricales): new species, type studies, and phylogenetic
inferences. Phytotaxa 23(2): 101-132. https://doi.org/10.11646/phytotaxa.231.2.1
Horak E. 1968. Synopsis generum Agaricalium. Beitr. Kryptogam. Schweiz 13. 747 p.
Horak E. 1971. A contribution towards the revision of the Agaricales (fungi) from New Zealand.
New Zealand J. Bot. 9(3): 463-493. https://doi.org/10.1080/0028825X.1971.10430194
Hughes KW, Petersen RH. 2015. Transatlantic disjunction in fleshy fungi. III. Gymnopus
confluens. MycoKeys 9: 37-63. https://doi.org/10.3897/mycokeys.9.4700
Hughes KW, Petersen RH, Johnson JE, Moncalvo J-M, Vilgalys R, Redhead SA, Thomas T,
McGhee LL. 2001. Infragenic phylogeny Collybia s. str. based on sequences of ribosomal ITS
and LSU regions. Mycol. Res. 105: 164-172. https://doi.org/10.1017/S0953756200003415
Hughes KW, Petersen RH, Mata JL, Psurtseva NV, Kovalenko AE, Morozova OV & al. 2008
(“2007”) Megacollybia (Agaricales). Rep. Tottori Mycol. Inst. 45: 1-57.
Hughes KW, Reboredo-Segovia A, Petersen RH. 2014. Transatlantic disjunction in fleshy
fungi. I. The Sparassis crispa complex. Mycol. Progr. 13: 407-427.
https://doi.org/10.1007/s11557-013-0927-1
Hughes KW, Reboredo-Segovia A, Morris SD. 2015. Cloning of ribosomal ITS PCR products creates
frequent, non-random chimeric sequences - a test involving a heterozygotes between Gymnopus
dichrous taxa I and II. MycoKeys 10: 45-56. https://doi.org/10.3897/mycokeys. 10.5126
Huelsenbeck J, Ronquist FE 2001. MrBayes: Bayesian Inference of phylogenetic trees.
Bioinformatics 17:754—755. https://doi.org/10.1093/bioinformatics/17.8.754
Kerekes J, Desjardin DE. 2009. A monograph of the genera Crinipellis and Moniliophthora
from Southeast Asia including a molecular phylogeny of the nrITS region. Fung. Div. 37:
101-152.
Kim CS, Jo JW, Kwag Y-N, Sung G-H, Lee S-G, Kim S-Y, Shin C-H, Han S-K. 2015. Mushroom
flora of Ulleug-gun and a newly recorded Bovista species in the Republic of Korea.
Microbiology 43(3): 239-259. https://doi.org/10.5941/MYCO.2015.43.3.239
Kluber LA, Smith JE, DD Myroid DD. 2011. Distinctive fungal and bacterial communities
are associated with mats formed by ectomycorrhizal fungi. Soil Biol. Biochem. 43(5):
1042-1050. https://doi.org/10.1016/j.soilbio.2011.01.022
Kornerup A, Wanscher JH 1967. Methuen handbook of colour. Methuen & Co., 243 pp + 30
plates.
Kithner R 1933 Etude sur le genre Marasmius. Le Botaniste 25: 57-116.
Kuhner R 1936. Nouvelles recherches sur le genre Marasmius. Ann. Soc. Linn. Lyon 79: 1-22.
https://doi.org/10.3406/linly.1936.14776
Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets.
Bioinformatics 30: 3276-3278.
Mata JL, Hughes KW, Petersen RH. 2004. Phylogenetic placement of Marasmiellus juniperinus.
Mycoscience 45: 214—221. https://doi.org/10.1007/S10267-004-0170-3
Mata JL, Hughes KW, Petersen RH. 2007. An investigation of /omphalotaceae (Fungi:
Euagarics) with emphasis on the genus Gymnopus. Sydowia 58(2): 191-289.
Matheny PB, Curtis JN, Hofstetter V, Aime MC, Moncalvo J-M, Gee Z-W, Yang Z-L & al. 2006.
Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98(6): 982-995.
https://doi.org/10.1080/15572536.2006.11832627
348 ... Petersen & Hughes
Millspaugh CF 1913 The living flora of West Virginia. West Virginia Geol. Surv. 5(Pt.1): 1-389.
https://doi.org/10.5962/bh1.title.56464
Moncalvo J-M, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R. 2000. Phylogenetic relationships
of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst. Biol. 49:
278-305. https://doi.org/10.1093/sysbio/49.2.278
Moncalvo J-M, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime MC & al. 2002.
One hundred and seventeen clades of euagarics. Mol. Phyl. Evol. 23: 357-400.
https://doi.org/10.1016/S1055-7903(02)00027-1
Murrill WO. 1915. Marasmiellus in Agaricales, Agaricaceae. North Amer. Fl. 9(4): 201-296.
MycoPortal. 2018. http://mycoportal.org (last searched 10/2019)
Nakasone K, Hibbett DS, Goranova G. 2009. Neocampanella, a new corticioid fungal genus,
and a note on Dendrothele bispora. Botany 87: 875-882. https://doi.org/10.1139/B09-046
Oliveira JJS, Vargas-Isla R, Cabral TS, Rodrigues DP, Ishikawa NK. 2019. Progress on the phylogeny
of the Omphalotaceae: Gymnopus s. str., Marasmiellus s. str., Paragymnopus gen. nov. and
Pusillomyces gen. nov. Mycol. Prog. 18: 713-739. https://doi.org/10.1007/s11557-019-01483-5
Patouillard N. 1900. Essai taxonomique sur les familles et les genres des Hymnomycetes. Lons-
le-Saunier. Reprint Ascher 1963. https://doi.org/10.5962/bhL title.40287
Pegler DN, Young TWK. 1971. Basidiospore morphology in the Agaricales. Nova Hedwigia,
Beih. 35: 210 p.
Petersen RH, Borovicka J, Reboredo-Segovia A, Hughes KW. 2015. Transatlantic disjunction in
fleshy fungi. II. The Sparassis spathulata - S. brevipes complex. Mycol. Prog. 14(30): [18 p].
https://doi.org/10.1007/s11557-015-1049-8
Petersen RH, Hughes KW. 2014. New North American species of Gymnopus. North Amer.
Fungi 9(3): 1-22. https://doi.org/10.2509/naf2014.009.003
Petersen RH, Hughes KW. 2016. Micromphale sect. Perforantia (Agaricales, Basidiomycetes);
Expansion and phylogenetic placement. MycoKeys 18: 1-122.
Petersen RH, Hughes KW. 2017a. Corrigenda for: “Micromphale sect. Perforantia
(Basidiomycetes); Expansion and phylogenetic placement” published in MycoKeys.
MycoKeys 19: 45-54.
Petersen RH, Hughes KW. 2017b. An investigation on Mycetinis (Euagarics, Basidiomycota).
MycoKeys 24: 1-138.
Petersen RH, Hughes KW. 2020. Two new genera of gymnopoid/marasmioid euagarics.
Mycotaxon 135: 1-95. https://doi.org/10.5248/135.1
Ridgway R 1912 Color standards and color nomenclature. Published Privately. 43 pp + 52
plates. https://doi.org/10.5962/bhl.title.62375
Saccardo PA 1887. Sylloge Fungorum omnium hucusque cognitorum. Vol. 5. Padua. 1144 pp.
Sandoval-Leiva PA, McDonald JW, Thorn RG. 2016. Gymnoporella nothofagi, a new genus and
species of gymnopoid fungi (Omphalotaceae) from Chilean Nothofagus forest. Mycologia
108(4): 820-827. https://doi.org/10.3852/15-303
Singer R 1936. Das System der Agaricales. Ann. Mycol. 34: 287-378.
Singer R 1938. Notes sur quelque Basidiomycetes. Rev. Mycol. 2: 187-199.
Singer R 1948 (“1946”). New and interesting species of Basidiomycetes. Pap. Michigan Acad.
Sci. 32: 103-150.
Singer R. 1950. Should D.P. Rogers’ proposals for the regulation for fixing generic
types be accepted as published in Mycologia 41: 219, 1949? Mycologia 42: 195-197.
https://doi.org/10.2307/3755252
Singer R. 1962. The Agaricales in modern taxonomy. J. Cramer, Weinheim. 915 p. + 73 pls.
Collybiopsis resurrected ... 349
Singer R. 1973. A monograph of the neotropical species of Marasmiellus. Nova Hedwigia,
Beih. 44: 1-340.
Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.
Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS & al. 2018.
International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted
by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regn.
Veget. 159. Glashiitten: Koeltz Botanical Books. https://doi.org/10.12705/Code.2018
Wilson AW, Desjardin DE. 2005. Phylogenetic relationships in the gymnopoid and marasmioid
fungi (Basidiomycetes, euagarics clade). Mycologia 98: 667-679.
https://doi.org/10.3852/mycologia.97.3.667
MYCOTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021— Volume 136, pp. 351-357
https://doi.org/10.5248/136.351
Parathozetella microsperma gen. & sp. nov.
from the Brazilian Amazon
FLAVIA RODRIGUES BARBOSA’, PATRICIA OLIVEIRA FIUZA?,
JOSIANE SANTANA MONTEIRO?, ALEXANDRE PEREIRA DA SILVA},
Luis FERNANDO PASCHOLATI GUSMAO’‘, RAFAEL FELIPE CASTANEDA-RUIZ5
"Instituto de Ciéncias Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso,
Ay. Alexandre Ferronato, 1200, 78557-267, Sinop, Brazil
? Programa de Pés-graduacdo em Sistemdtica e Evolucdo,
Universidade Federal do Rio Grande do Norte, Campus Universitario,
Av. Senador Salgado Filho, 3000, Lagoa Nova, 59078-970, Natal, Brazil
> Museu Paraense Emilio Goeldi, Coordenagdao de Botdnica,
Av. Perimetral, 1901 - Terra Firme, Belém, 66077-830, Belém, Brazil
‘Universidade Estadual de Feira de Santana, Programa de Pés-graduacdo em Botanica,
Av. Transnordestina s/n, Novo Horizonte, 44036-900, Feira de Santana, Brazil
° Instituto de Investigaciones Fundamentales en Agricultura Tropical ‘Alejandro de
Humboldt’ (INIFAT), Académico Titular de la Academia de Ciencias de Cuba,
Calle 1 Esq. 2, Santiago de Las Vegas, C. Habana, Cuba, C.P. 17200
* CORRESPONDENCE TO: patyfiuzabio@gmail.com
ABSTRACT—A new genus and species of asexual ascomycete, Parathozetella microsperma,
are described and illustrated from decaying plant material collected from three rainforest
areas in Mato Grosso and Para States. The new genus resembles Thozetella in sporodochial
conidiomata, presence of microawns, and enteroblastic monophialidic conidiogenesis that
produces lunate conidia, but Parathozetella can be easily distinguished by the absence of
setulae.
KEY worDs—Ascomycota, saprobic fungi, taxonomy, tropical fungi
Introduction
The Amazon biome, in addition to its great species richness, is also
characterized by its high rate of endemism and highly diverse ecosystems
352 ... Barbosa & al.
(Verissimo & al. 2011). The fungal community found on dead and decaying
forest litter is crucial for decomposing the organic matter in soil by providing
energy and maintaining a nutritional balance. Among the decomposers,
asexual ascomycetes are the most common fungi that decompose different
plant substrates in both terrestrial (Costa & Gusmao 2016, Santos & al. 2018)
and aquatic habitats (Fiuza & al. 2019, Silva & al. 2014).
Data on fungi in the Amazon currently underestimate diversity due to
insufficient research (Monteiro & al. 2019, Sotao & al. 2004). Obtaining
an accurate assessment of Amazonian biodiversity is further complicated
by the threat to the ecosystem caused by the high rate of deforestation and
resulting habitat fragmentation (Magnusson & al. 2013). Approximately 200
asexual ascomycete species have been registered in the Brazilian Amazon in
the states of Para (Castro & al. 2012, Monteiro & al. 2013, Santos & al. 2018),
Amazonas (Cortez al. 2016, Fiuza & al. 2015), Amapa (Carmo & al. 2014),
and Mato Grosso (Barbosa & al. 2015; 2017). Asexual ascomycetes have also
been reported in the Amazon from Peru (Matsushima 1993, Zelski & al. 2014)
and Ecuador (Matsushima 1993). As many Amazonian species have yet to be
discovered, inventory work is encouraged and essential before we lose these
precious forests due to anthropogenic factors such as habitat fragmentation
and climate change. Our research team, which has focused on the Brazilian
Amazon, has discovered many interesting taxa (Barbosa & al. 2015, 2017, 2019,
Fiuza & al. 2015, Monteiro & al. 2013). One survey of asexual ascomycetes
on plant debris in Amazonia revealed an interesting sporodochial conidioma-
producing fungus with microawns and conidia but lacking setulae. While
similar to Thozetella Kuntze, the fungus lacked the setulae that characterize
this genus. Réblova & Winka (2000) demonstrated the importance of setulae
in separating Dictyochaeta Speg. and Codinaea Maire, a concept supported by
Seifert & al. (2011) and Li & al. (2012). Thus, we use the absence of setulae to
propose a new genus for the previously undescribed fungus from the Brazilian
Amazon.
Materials & methods
Expeditions were carried out to three sites at the Brazilian Amazon rainforest:
Claudia, Mato Grosso (11934’54”S 55°17’15”W), Parque Nacional do Utinga, Belém,
Para (1°23’13”S 48°25’19”W), and Assentamento Rio Vermelho, Santa Barbara do
Para, Para (1°10°58”S 48°11’43”W) to collect decaying wood and petioles. Samples
were placed in paper bags and taken to the laboratory at Universidade Federal de
Mato Grosso (UFMT-Sinop) and Museu Paraense Emilio Goeldi, Para for processing
following Castafieda-Ruiz & al. (2016). Permanent slides were prepared in PVL resin
Parathozetella microsperma gen. & sp. nov. (Brazil) ... 353
(polyvinyl alcohol, lactic acid, and phenol) and reproductive structures were measured
and photographed under a Leica DM 500 microscope with a coupled digital camera.
The holotype was deposited in the Herbario Centro-Norte Mato-Grossense, Sinop,
Mato Grosso state, Brazil (CNMT), and additional materials in the Herbario Joao
Murga Pires, Belém, Para state, Brazil (MG). Several attempts to obtain this species in
pure culture were unsuccessful.
Taxonomy
Parathozetella ER. Barbosa, J.S. Monteiro, Fiuza, R.F. Castafeda &
Gusmao, gen. nov.
MB 834624
Differs from Thozetella by the absence of setulae on conidia.
TyPE SPECIES: Parathozetella microsperma ER. Barbosa & al.
ErymMo.oey: Latin, Para- referring to similar; and -thozetella, referring to the genus
Thozetella
MycELIvum superficial and immersed, composed of slightly branched, septate,
smooth, pale brown hyphae. Conipromarta sporodochial, superficial, scattered,
brown. CONIDIOPHORES macronematous, septate, cylindrical, smooth, pale
brown to brown. CONIDIOGENOUS CELLS enteroblastic, monophialidic,
integrated, determinate, terminal, cylindrical, smooth, pale brown. MICROAWNS
mixed and immersed in the white to yellow conidial mass, smooth or verrucose
at one end. ConipIA lunate, septate or aseptate, smooth, asetulate, hyaline.
Parathozetella microsperma ER. Barbosa, J.S. Monteiro, Fiuza,
R.F. Castafieda & Gusmao, sp. nov. Fig. 1
MB 834626
Differs from Thozetella species by its small conidia that lack setulae.
Type: Brazil, Mato Grosso State, Claudia, on decaying wood of lianes, 9.V.2016, coll.
ER. Barbosa (Holotype, CNMTf 81).
ErymMo_oey: Latin, microsperma, refers to the small size of the conidia
MyceELIumM superficial and immersed, hyphae, 2.5 um diam, slightly
branched, septate, smooth, pale brown. ConipIOMATA sporodochial, sessile,
superficial, scattered, conidial mass white to yellow, 150-320 x 120-200 um.
CONIDIOPHORES macronematous, septate, cylindrical, smooth, pale brown
to brown. CONIDIOGENOUS CELLS enteroblastic, monophialidic, integrated,
determinate, terminal, cylindrical, smooth, subhyaline, 8.5-13 x 2-3 um, with
a conspicuous collarette. MICROAWNS aseptate, uncinate, verrucose at one end,
hyaline, mixed and immersed in the white to yellow conidial mass, 10-12 x
354 ... Barbosa & al.
Fic. 1. Parathozetella microsperma (holotype, CNMTf 81). A. Conidium; B. Conidia;
C. Microawn; D. Conidiogenous cells and microawn; E. Conidiogenous cells; F. Conidiomata.
Scale bars: A, C = 5 um; B, D-E = 10 um; F = 20 um.
Parathozetella microsperma gen. & sp. nov. (Brazil) ... 355
1.2-1.5 um. Conip1a lunate, 0-1 septate, smooth, asetulate, hyaline, 4-5 x
1-1.5 um. Sexual morph not observed.
ADDITIONAL SPECIMENS EXAMINED-BRAZIL. PARA STATE: Belém, Parque Estadual
do Utinga, trilha do Patua, on decaying wood of unidentified plant: 29.IV.2019, coll.
J.S. Monteiro (MG 237232). Santa Barbara do Para, Assentamento Rio Vermelho, on
decaying petioles of Bactris gasipaes Kunth (Arecaceae), 16.V.2019, coll. A.P. Silva (MG
237239).
CoMMENTS—The production of sporodochia with monophialidic
conidiogenous cells invites comparison of Parathozetella with some genera
like Mahabalella B. Sutton & S.D. Patil, Menidochium R.F. Castafeda &
W.B. Kendr., and Minimidochium B. Sutton. However, the presence of microawns
distinguishes Parathozetella from those genera, placing it morphologically closer
to Thozetella. In addition to forming conidioma (synnema and sporodochia)
and microawns, however, Thozetella is further characterized by conidia with
setulae, structures that are absent in Parathozetella.
We consider that production of microawns and asetulate conidia are
sufficient to propose a new genus, possibly within Chaetosphaeriaceae, a
family characterized by presence of microawns. Réblova (2000) and Reéblova
& Winka (2000) maintained that the presence or absence of conidial setulae
was morphologically important in separating Dictyochaeta and Codinaea.
Moreover, Seifert & al. (2011) and Li & al. (2012) also accepted using conidial
setulae as a factor in delineating genera. Given this result we suggest establishing
a new genus and species Parathozetella microsperma for our fungus from the
Brazilian Amazon.
Acknowledgments
The authors express their sincere gratitude to Dr. De-Wei Li (The Connecticut
Agricultural Experiment Station, Windsor CT U.S.A.) and Dr. Huzefa A. Raja
(University of North Carolina at Greensboro U.S.A.) for their critical review of
the manuscript. ER. Barbosa thanks to “Programa de Pesquisa em Biodiversidade
da Amazénia Matogrossense” (Proc. 558225/2009-8, 569382/2008-4) for
financial support and to “Programa de Pés-Graduacao em Ciéncias Ambientais”
(PPGCAM/UFMT). Patricia Fiuza thanks Coordenagao de Aperfeigoamento de
Pessoal de Nivel Superior - Programa Nacional de Pés-doutorado (CAPES-PNPD)
for scholarship (Proc. 88882.306016/2018-01). Dr. Lorelei Norvell’s editorial, and
Dr. Shaun Pennycook’s nomenclature reviews are greatly appreciated.
Literature cited
Barbosa FR, Machiner M, Barbosa GCK, Alexandre FS, Ribeiro ML. 2015. Fungos conidiais
decompositores de substratos vegetais. 41-52, in: DJ Rodrigues & al. (eds). Biodiversidade do
Parque Estadual Cristalino. Attema Editorial, Sao Paulo.
356 ... Barbosa & al.
Barbosa FR, Gusmao LFP, Castaneda-Ruiz RF. 2017. Craspedodidymella matogrossensis
gen. & sp. nov. from the Brazilian Amazon rainforest. Mycotaxon 132: 643-647.
https://doi.org/10.5248/132.643.
Barbosa FR, Fiuza PO, Barbosa GCK, Costa LA, Barreto GG, Gusmao LFP, Castafieda-Ruiz
RE. 2019. Beltraniomyces panthericolor and B. pulcher spp. nov. from Brazil. Mycotaxon
134: 555-560. https://doi.org/10.5248/134.555.
Carmo LT, Monteiro JS, Gusmao LFP, Sotao HMP, Gutiérrez AH, Castafieda-Ruiz RF. 2014.
Anabahusakala, a new genus from the Brazilian Amazon rainforest. Mycotaxon 127: 11-15.
https://doi.org/10.5248/127.11.
Castafieda-Ruiz RF, Heredia G, Gusmao LFP, Li DW. 2016. Fungal diversity of Central and
South America. 197-217, in: DW Li (ed.). Biology of Microfungi. Springer, Switzerland.
https://doi.org/10.1007/978-3-319-29137-6_9.
Castro CC, Gutiérrez-Hernandez A, Sotao HMP. 2012. Fungos conidiais em Euterpe oleracea
Mart. (acaizeiro) na Ilha do Combu, Para-Brasil. Acta Botanica Brasilica 26: 761-771.
http://dx.doi.org/10.1590/S0102-33062012000400005.
Cortez ACA, Sanches MA, Zelski SE, Souza JVB de. 2016. A comparison of the freshwater fungal
community during the non-rainy and rainy seasons in a small black water lake in Amazonas,
Brazil. Journal of Food, Agriculture & Environment 14(2): 156-161.
Costa LA, Gusmao LFP. 2016. Communities of saprobic fungi on leaf litter of Vismia guianensis
in remnants of the Brazilian Atlantic Forest. Journal of Forestry Research 28(1): 163-172.
http://doi.org/10.1007/s11676-016-0268-4.
Fiuza PO, Ottoni-Boldrini BMP, Monteiro JS, Catena NR, Hamada N, Gusmao LFP. 2015. First
records of Ingoldian fungi from the Brazilian Amazon. Brazilian Journal of Botany 38(3):
615-621. https://doi.org/10.1007/s40415-015-0157-7.
Fiuza PO, Costa LA, Medeiros AO, Gulis V, Gusmao LFP. 2019. Diversity of freshwater hyphomycetes
associated with leaf litter of Calophyllum brasiliense in streams of the semiarid region of Brazil.
Mycological Progress 18: 907-920. https://doi.org/10.1007/s11557-019-01501-6.
Li DW, Kendrick B, Chen J. 2012. Two new hyphomycetes: Codinaea sinensis sp. nov. and
Parapleurotheciopsis quercicola sp. nov., and two new records from Quercus phillyraeoides
leaf litter. Mycological Progress 11: 899-905. https://doi.org/10.1007/s11557-011-0805-7.
Magnusson W, Braga-Neto R, Baccaro F, Bergallo H, Penha J, Rodrigues DJ & al. 2013.
Biodiversidade e monitoramento ambiental integrado. Attema Editorial, Sao Paulo.
Matsushima T. 1993. Matsushima mycological memoirs 7. Published by the author, Kobe.
Monteiro JS, Hernandez-Gutiérrez A, Sotao HMP, Grandi RAP. 2013. Fungos conidiais
decompositores ocorrentes em palmeiras e liquens associados na Floresta Nacional de
Caxiuana. 341-366, in: PLB. Lisboa (ed.). Caxiuana: Paraiso ainda preservado. Editora do
Museu Paraense Emilio Goeldi, Belém.
Monteiro JS, Sarmento PSM, Sotao HMP. 2019. Saprobic conidial fungi associated with palm leaf
litter in eastern Amazon, Brazil. Anais da Academia Brasileira de Ciéncias 91(3): e20180545.
https://doi.org/10.1590/0001-3675201920180545
Réblova M. 2000. The genus Chaetosphaeria and its anamorphs. Studies in Mycology
43: 149-168.
Réblova M, Winka K. 2000. Phylogeny of Chaetosphaeria and its anamorph based on
morphological and molecular data. Mycologia 92(5): 939-954.
https://doi.org/10.1080/00275514.2000.12061238
Santos RF dos, Sotao HMP, Monteiro JS, Gusmao LFP, Gutiérrez AH. 2018. Conidial fungi
associated with leaf litter of red cedar (Cedrela odorata) in Belém, Para (eastern Brazilian
Amazon). Acta Amazonica 48(3): 230-238. http://dx.doi.org/10.1590/1809-4392201704411.
Parathozetella microsperma gen. & sp. nov. (Brazil) ... 357
Seifert K, Morgan-Jones G, Gams W, Kendrick B. 2011. The genera of hyphomycetes. CBS
Biodiversity Series 9. Utrecht.
Silva SS, Santa-Izabel TS, Gusmao LFP. 2014. Fungos conidiais associados a substratos
vegetais submersos em algumas areas do bioma Caatinga. Rodriguésia 65(2): 527-538.
https://doi.org/10.1590/s2175-78602014000200014.
Sotao HMP, Campos EL, Costa SPS. 2004. Micologia: diversidade de fungos na Amazonia. Série
cadernos de alfabetizacao cientifica. Museu Paraense Emilio Goeldi, Belém.
Verissimo A, Rolla A, Vedoveto M, Futada SM. 2011. Areas protegidas na Amaz6nia Brasileira:
avancos e desafios. Imazon/ISA, Sao Paulo.
Zelski SE, Balto JA, Do C, Raja HA, Miller NA, Shearer CA. 2014. Phylogeny and morphology
of dematiaceous freshwater microfungi from Peru. IMA Fungus 5(2): 425-438.
https://doi:10.5598/imafungus.2014.05.02.07
Page Missing
in Original
Volume
Page Missing
in Original
Volume
MYCOTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021— Volume 136, pp. 361-372
https://doi.org/10.5248/136.361
Pseudosperma albobrunneum sp. nov.
from coniferous forests of Pakistan
SANA JABEEN?®”, ZAINAB’, HIRA BASHIR?®, ABDUL NASIR KHALID?
' Department of Botany, Division of Science & Technology,
University of Education, Township, Lahore, Punjab, Pakistan
? Institute of Botany, University of the Punjab,
Quaid-e-Azam Campus-54590, Lahore, Punjab, Pakistan
° Department of Botany, University of Okara,
Okara 56300, Punjab, Pakistan
* CORRESPONDENCE TO: sanajabeenue@gmail.com; sanajabeen@ue.edu.pk
ABSTRACT—A new species, Pseudosperma albobrunneum, is described and illustrated.
The specimens are from different areas of Khyber Pakhtunkhwa province, Pakistan. The
identification is based on morphological characters, in combination with molecular
phylogenetic analysis of sequences of the ITS region of nuclear ribosomal DNA. The species
is found distinct morphologically from all closely related taxa, and molecular data confirm
its novelty.
Key worps—ectomycorrhizal, Himalayan, moist temperate, taxonomy
Introduction
Inocybaceae Julich (Basidiomycota, Agaricales) is a highly diversified
family of ectomycorrhizal fungi, comprising seven genera and more than
1000 species (Kobayashi 2009; Matheny & al. 2009, 2012, 2019; Kobayashi &
Onishi 2010; Kropp & al. 2010; Bougher & Matheny 2011; Bougher & al. 2012;
Kokkonen & Vauras 2012; Fan & Bau 2013, 2014; Braaten & al. 2014; Esteve-
Raventos & al. 2015; Jabeen & al. 2016; Faroogi & al. 2017; Naseer & al. 2017;
Liu & al. 2018; Ullah & al. 2018; Matheny & Kudzma 2019). The family shows
more diversification in temperate regions as comparatively fewer species have
been reported from tropical rain forests (Matheny & al. 2003; Matheny &
362 ...Jabeen & al.
Bougher 2017). The species have demonstrated ectomycorrhizal associations
with as many as 23 families of vascular plants, including low woody shrubs in
arctic-alpine habitats making these fungi of high interest (Cripps & al. 2010,
Matheny & al. 2019).
Among the 28 species representing different genera in Inocybaceae
reported from Pakistan (Ahmad & al. 1997; Ilyas & al. 2013; Saba & al. 2015,
2020; Jabeen & al. 2016; Farooqi & al. 2017; Naseer & al. 2017, 2019; Liu & al.
2018; Ullah & al. 2018; Jabeen & Khalid 2020), eight represent Pseudosperma
(Ahmad & al. 1997; Saba & al. 2015, 2020; Liu & al. 2018; Ullah & al. 2018;
Jabeen & Khalid 2020).
The many classification systems proposed for the species in Inocybaceae
include several clades, sections, subgenera, and genera based on morphological
features and molecular phylogenetics (Massee 1904, Heim 1931, Kithner &
Romagnesi 1953, Kuyper 1986, Singer 1986, Horak 2005, Matheny & Bougher
2006, Matheny & al. 2009, Larsson & al. 2009, Alvarado & al. 2010, Ryberg &
al. 2010, Matheny & Kudzma 2019).
One multigene phylogenetic analysis by Matheny & al. (2019) recognized
seven genera within Inocybaceae, including two new genera [Nothocybe
Matheny & K.P.D. Latha, Pseudosperma Matheny & Esteve-Rav.], two
subgenera elevated to generic rank [Inosperma (Kiihner) Matheny & Esteve-
Rav., Mallocybe (Kuyper) Matheny & al.], and three previously described
genera [Auritella Matheny & Bougher, Tubariomyces Esteve-Rav. & Matheny,
Inocybe (Fr.) Fr. sensu stricto].
Pseudosperma comprises species previously placed in Inocybe sect. Rimosae
(Fr.) Quél. and characterized by cheilocystidia, absence of pleurocystidia,
hyaline basidia, adnexed to sinuate lamellae, a fibrillose (rarely squamulose)
and rimose pileus surface, a cylindrical stipe with a distinctly pruinose,
furfuraceous, or somewhat flocculose apex, stipe context not changing color
when bruised, odor often spermatic (reminiscent of green corn or honey) but
occasionally nil, and smooth elliptic to (occasionally) indistinctly phaseoliform
basidiospores (Matheny & al. 2019). Pseudosperma is represented by 70
species in Africa, Asia, Australasia, Europe, North America, and northern
South America.
During field surveys for ectomycorrhizal fungi associated with Pinaceae
in different areas of Khyber Pakhtunkhwa province, Pakistan, several
collections were identified through both morphological and nrDNA ITS
sequence analyses. They showed characters similar to species now classified
under Pseudosperma. We could not find a published description that fit these
Pseudosperma albobrunneum sp. nov. (Pakistan) ... 363
specimens nor published similar ITS sequences and propose these here as a
new species
Material & methods
Samples of basidiomata were collected in four different localities in two
administrative divisions of Khyber Pakhtunkhwa province, Pakistan.
Khanian is a small village in the northern Kaghan valley in the Mansehra district,
Hazara division, in north-east Khyber Pakhtunkhwa province, immediately south of
the main Himalayan range with a typically moist temperate climate and dominated
by Cedrus deodara (Roxb. ex D. Don) G. Don along with Abies pindrow (Royle ex D.
Don) Royle and Pinus wallichiana A.B. Jacks. (Siddiqui & al. 2013).
The Lower Dir district is located in the Hindu Kush range, Malakand division,
in northwestern Khyber Pakhtunkhwa province. The area lies in the valley of the
Panjkora river, which originates from the Hindu Kush ranges and joins the Swat River
near Chakdara. The climate is dry temperate. Pinus spp. and Quercus oblongata D.
Don [= Q. incana Roxb., nom. illeg.] are the dominant tree species (Champion & al.
1965). Among Pinus, P. gerardiana Wall. ex D. Don was the dominant species. Pure
Q. oblongata forest was found in the mountain heights (H. Bashir, pers. obs.). Kalam
and Mashkun, also situated in the Malakand division, are home to the offshoots of
the Hindu Kush range (Hamayun & al. 2003), also dominated by C. deodara forests
with Pinus spp. and Q. oblongata (Champion & al. 1965). These areas have a typical
dry temperate climate (Stucki & Khan 1999).
Basidiomata were collected and photographed in their natural habitat.
Morphological data was recorded from the fresh specimens. Color codes follow
Munsell color charts (Munsell 1975). Each collection was dried using a fan heater
and preserved in sealed bags. Sections from basidiomata were rehydrated in 5%
KOH, stained in Congo red, and observed under a Techno MX4300H compound
microscope. Microscopical characters were measured using an ocular micrometer,
and drawn with the aid of a camera lucida. The abbreviation (n/m/p) represents ‘Y
number of basidiospores measured, ‘m’ number of basidiomata, and ‘p’ number of
collections. Basidiospore dimensions were recorded as (a) b-c (d), where (a) and
(d) are the extreme values, and the range b-c contains at least 90% of the calculated
values; Q indicates the l/w ratio of the spores, and avQ is the average Q of all measured
spores. Measurements of hyphae are given as ranges. The collections examined during
this study have been deposited in the herbarium, Department of Botany, University of
the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan (LAH).
Genomic DNA extraction and PCR amplification of ITS1, 5.88, and ITS2 was
carried out following procedures by White & al. (1990), Gardes & Bruns (1993),
and Bruns (1995). The PCR products were purified and sequenced at Macrogen
Inc. (Korea). The newly generated sequences were deposited in GenBank. For
phylogenetic study, consensus sequences of ITS regions were generated in the BioEdit
software version 7.2.5 (Hall 1999). Sequence homology search was investigated using
the BLAST algorithm at http://www.ncbi.nlm.nih.gov/. Sequences from the closest
364 ...Jabeen & al.
relatives of the Pakistani species were included in the final dataset to reconstruct a
phylogeny based on published phylogenies (Larsson & al. 2009, Kropp & al. 2013,
Latha & Manimohan 2017, Liu & al. 2018). Sequences from Auritella and Inosperma
were chosen as outgroup (Matheny & al. 2009). GenBank accession numbers are
included with each taxon name in the phylogenetic tree. Multiple sequences were
aligned using the webPRANK tool at https://www.ebi.ac.uk/goldman-srv/webprank/.
Maximum likelihood analysis was performed in MEGA version 6 (Tamura & al.
2013) at 1000 bootstrap pseudoreplicates by finding best-fit substitution model with
1000 bootstrap replicates. The phylogeny was inferred by the Maximum Likelihood
method based on the General Time Reversible model. A discrete Gamma distribution
was used to model evolutionary rate differences among sites (5 categories (+G,
parameter = 0.7529)).
Taxonomy
Pseudosperma albobrunneum Jabeen, Zainab, H. Bashir & Khalid, sp. nov.
Figs. 1, 2
MB 840056
Differs from Pseudosperma dulcamaroides and P. sororium by the smaller basidiomata,
white pileus becoming brownish with age, fibrillose stipe, and smooth, elongate to
cylindric, sub-reniform basidiospores.
Type: Pakistan, Khyber Pakhtunkhwa, Hazara division, Mansehra district, Khanian,
2500 m a.s.l., on soil under Cedrus deodara, 5 August 2014, Sana Jabeen SJ102 (Holotype
LAH35047; GenBank MG495392).
Erymo.oey: The specific epithet refers to the white to brown basidiomata.
PirEus 1-1.8 cm in diam., conical with a prominent umbo; surface
dry, rimose, fibrillose, white (10Y8/4) to brownish (7.5YR6/10); umbo
yellowish (5Y8/6) becoming brownish (7.5YR6/10) at maturity; margin
incurved when young. LAMELLAE adnexed, moderately close, up to 2 mm
deep, golden brown (10YR5/6), with fimbriate edge. STIPE 5.5 x 0.4 cm,
central, cylindrical, narrower towards the apex and wider towards the
base; surface dry, pruinose towards apex, fibrillose; white (10Y8/4) when
young, becoming grayish brown (5R4/1) to brown (7.5YR6/10) upon
maturity, context off-white (5Y9/2). ODOR spermatic.
BASIDIOSPORES [100/5/5] (12.7-)13.2-14.4(-16.4) x (5.3-)6.1-6.9 (—8.2)
um, avl x avw = 13.8 x 6.5 um, Q = (1.90-)1.94-2.20(-2.50), avQ = 2.00,
elongate to cylindric, constricted in the center in side view, sub-reniform,
smooth, guttulate, brown in 5% KOH. Basrpia (38.1-)40.3-42.2(-43.7) x
(9.2—)9.5-11.8(-12.1) um, 2-4-spored, clavate, guttulate, hyaline in 5% KOH;
clamp connections observed at the base. CHEILOCYSTIDIA (20.2-)25.4-27.4
(-30.3) x 4.4-6.5 um, avl x avw = 26.4 x 5.5 um, clavate, connected with basal
Pseudosperma albobrunneum sp. nov. (Pakistan) ... 365
a ee
ta ~ :
Ficure. 1. Pseudosperma albobrunneum. A. LAH35288; B. LAH35047 (holotype).
Scale bars = 0.5 cm. Photos by Abdul Nasir Khalid and Sana Jabeen.
366 ...Jabeen & al.
~~)
E —_
FiGure. 2. Pseudosperma albobrunneum (holotype, LAH35047). A. Basidiospores; B. Basidia;
C. Caulocystidia; D. Cheilocystidia, E. Pileipellis; F Stipitipellis. Scale bars = 10 um. Drawings
by Sana Jabeen.
Pseudosperma albobrunneum sp. nov. (Pakistan) ... 367
cell, hyaline in 5% KOH; clamp connections at base common. PLEUROCYSTIDIA
absent. CAULOCYSTIDIA at the extreme apex of the stipe, (43.1-)45.2-50.3(-
56.11) x (7.6-)9.4-10.9(-11.2) um, avl x avw = 47.7 x 10.1 um, clavate, hyaline
in 5% KOH; clamp connections observed at the base. PILEIPELLIS hyphae 4.6-
7.7 um wide, avw = 6.1 um, septate, filamentous, branched, hyaline in 5% KOH;
clamp connections frequent. STIPITIPELLIS hyphae (6.1—)8.3-11.04(-11.69)
um wide, avw = 9.7 um, septate, filamentous, rarely branched; terminal cells
clavate; clamp connections observed.
ADDITIONAL SPECIMENS EXAMINED: PAKISTAN. KHYBER PAKHTUNKHWA,
Malakand division, Lower Dir district, near Darosh, 1840 m a.s.l., on soil under
Pinus wallichiana, 4 September 2015, Hira Bashir & Abdul Nasir Khalid D15
(LAH35288; GenBank MG495393); Swat district, Kalam, 2400 m a.s.l., on soil
under C. deodara, 4 September 2013, Sana Jabeen SJ146 (LAH35045; GenBank
MG495395); Swat district, Mashkun, 2500 m a.s.l., on soil under C. deodara, 5
September 2013, Aamna Ishaq SJ147 (LAH35046; GenBank MG495396); SJ110
(LAH35289; GenBank MG495394).
HABITAT & DISTRIBUTION—Himalayan moist Pinaceae-dominated forests
(including Pinus roxburghii Sarg., P. wallichiana, and few Cedrus deodara) and
dry oak-dominated temperate forests (including Quercus oblongata). Currently
known only from Pakistan's Khyber Pakhtunkhwa province.
EcoLocy & DISTRIBUTION—1840-2500 m asl in dry and moist temperate
coniferous forests, Pakistan.
Molecular phylogenetic analysis
A BLAST search of NCBI comparing the ITS consensus sequence of
658 base pairs from the type specimen of Pseudosperma albobrunneum
(LAH35045) was closely similar to HQ604626 & KP783443 sequences
named as I. sororia (P. sororium (Kauffman) Matheny & Esteve-Rav. in
Index Fungorum) from USA and Russia. The ITS dataset involved 100
nucleotide sequences including these two and others closely related from
the BLAST along with sequences generated during this study and those
from published literature as well as those chosen as outgroup. Of the total
1642 positions in the final dataset, 771 were conserved, 465 were variable,
342 were parsimony informative, and 114 were present as singletons.
In the phylogenetic tree (Fic. 3), two major clades were recovered
within Pseudosperma labeled as clade A and clade B. The P albobrunneum
sequences generated during this study formed their own lineage in
clade A clustered with P. sororium (HQ604626 & KP783443) but
separated from them with 94% boot strap support. The second set of
368 ...Jabeen & al.
69
KJ700456 Pseudosperma mimicum
67 | KJ546158 Pseudosperma mimicum
KJ726737 Pseudosperma mimicum
87 KF056319 Pseudosperma mimicum
soe FJ904124 Pseudosperma mimicum
97 —— FJ904134 Pseudosperma arenicola
—— FJ904133 Pseudosperma arenicola
99 HQ604626 Pseudosperma sororium
97 KP783443 Pseudosperma sororium
g9 | @ MG495393 Pseudosperma albobrunneum
aa @ MG495395 Pseudosperma albobrunneum
@ MG495396 Pseudosperma albobrunneum
71| @ MG495394 Pseudosperma albobrunneum
@ MG495392 Pseudosperma albobrunneum
ih JX630909 Pseudosperma dulcamaroides
FJ904127 Pseudosperma dulcamaroides
FJ904126 Pseudosperma dulcamaroides
MW010042 Pseudosperma dulcamaroides
75) IQ408754 Pseudosperma breviterincarnatum
99 | JQ408751 Pseudosperma breviterincarnatum
JQ408753 Pseudosperma breviterincarnatum
JQ408750 Pseudosperma breviterincarnatum
85 | JF908162 Pseudosperma squamatum
99 || AM882780 Pseudosperma squamatum
FJ904136 Pseudosperma squamatum
93 FJ904132 Pseudosperma squamatum
on JF908260 Pseudosperma spurium
FJ904139 Pseudosperma spurium
JQ408794 Pseudosperma spurium
“| gg) JX436912 Pseudosperma flavellum
JQ724025 Pseudosperma flavellum
JQ724026 Pseudosperma flavellum
JQ724027 Pseudosperma flavellum
NR_153126 Pseudosperma illudens
99; NR_153171 Pseudosperma luteobrunneum
KX073581 Pseudosperma luteobrunneum
97 NR_153172 Pseudosperma brunneosquamulosum
4 > NR_153173 Inocybe rubrobrunnea
99 NR_152346 Pseudosperma araneosum
KJ729878 Pseudosperma araneosum
99 | MF588965 Pseudosperma pakistanense
'— MF575849 Pseudosperma pakistanense
99 97 | AM882769 Pseudosperma obsoletum
AM882770 Pseudosperma obsoletum
| 97 NR_119898 Pseudosperma aurora
55 NR_160609 Pseudosperma yunnanensis
83 NR_164070 Pseudosperma notodryinum
r AM882772 Pseudosperma perlatum
AM882771 Pseudosperma perlatum
NR_121520 Pseudosperma lepidotellum
> NR_153169 Pseudosperma griseorubidum
89 99 KY440094 Pseudosperma keralense
NR_160442 Pseudosperma keralense
95 95 — 224 KP171123 Pseudosperma gracilissimum
eT oe JQ408755 Pseudosperma gracilissimum
KP171122 Pseudosperma gracilissimum
gg > NR_171961 Pseudosperma salentinum
g9 | NR_165883 Pseudosperma friabile
7 MH216090 Pseudosperma friabile
MH216093 Pseudosperma friabile
MH216091 Pseudosperma friabile |
99 |MG742423 Pseudosperma triaciculare
MG742429 Pseudosperma triaciculare
99 | MG742419 Pseudosperma flavorimosum as P. brunneoumbonatum
MG742421 Pseudosperma flavorimosum as P. brunneoumbonatum
MG495391 Pseudosperma flavorimosum
KP636864 Inocybe sp.
99 | MHS78031 Inocybe sp.
MH212073 Inocybe sp.
NR_171959 Pseudosperma melleum
of 74 F 4904165 Pseudosperma umbrinellum
FJ904163 Pseudosperma umbrinellum
NR_160608 Pseudosperma neoumbrinellum
65 — FJ904158 Pseudosperma bulbosissinum
83 [| FJ904159 Pseudosperma bulbosissimum
65|, FJ904160 Pseudosperma bulbosissimum
81| 87 L
57
AM882765 Pseudosperma bulbosissinum
AM882777 Pseudosperma rimosum
F908172 Pseudosperma rimosum
71) 'd
MH745138 Pseudosperma himalayense
Lis MH745140 Pseudosperma himalayense
H
796995 Pseudosperma himalayense
9 | MG742414 Pseudosperma pinophilum
MG742417 Pseudosperma pinophilum
———— NR_171960 Pseudosperma ponderosum
57| 57 it AM882844 Pseudosperma rimosum
AM882761 Pseudosperma rimosum
t— AM882762 Pseudosperma rimosum
87, FJ904148 Pseudosperma melliolens
FJ904149 Pseudosperma melliolens
FJ904147 Pseudosperma rimosum
“ HQ604618 Pseudosperma sororium
9 |- HQ604610 Pseudosperma sororium
HQ604617 Pseudosperma sororium
HQ604607 Pseudosperma sororium
JQ408762 Inosperma lanatodiscum
KY616964 Inosperma shawarense
Figure. 3. Molecular phylogenetic analysis of Pseudosperma albobrunneum
Clade B
o7 In MH734760 Pseudosperma himalayense
Clade A
Pseudosperma
Inosperma
MH578017 Inosperma maculatum
GU062740 Auritella foveata
| Auritella
based on ITS
sequences. Sequences generated during this study are marked with bullets; a red bullet indicates
the holotype sequence.
Pseudosperma albobrunneum sp. nov. (Pakistan) ... 369
P. sororium sequences (HQ604607, HQ604610, HQ604617, HQ604618)
found in clade B does not show remarkable genetic similarity with our
P. albobrunneum sequences.
Discussion
Pseudosperma albobrunneum is characterized by its whitish to brownish
basidiomata, a very prominent long-lasting umbo, a comparatively long
and slender stipe, and smooth and elongate to cylindric, sub-reniform
basidiospores.
The new Pakistani species resembles the European P. dulcamaroides
(Kithner) Matheny & Esteve-Rav., which also has brown basidiomata but with
a short stipe compared with its cap diameter and with a non-umbonate pileus
that becomes convex to flat at maturity (Larsson & al. 2009).
Pseudosperma sororium (Kauffman) Matheny & Esteve-Rav. showed
morphological characters more or less similar to P. albobrunneum as described
by Kauffman (1924), but its yellow pileus and basidiospores that are ellipsoid
or elongate-ellipsoid and not truly sub-reniform, sub-inequilateral, obtuse
at both ends distinguish P sororium from P. albobrunneum. Furthermore,
P. sororium has a very strong green corn odor.
In the absence of type studies, modern descriptions of P dulcamaroides
(Larsson & al. 2009) and P sororium (as Inocybe, Stuntz 1978) also support
P. albobrunneum as morphologically distinct.
Pseudosperma breviterincarnatum (D.E. Stuntz ex Kropp & al.) Matheny &
Esteve-Rav. from conifer and quaking aspen forests of the western USA differs
by its pinkish lamellae and brownish pileus as well as a pinkish to brownish
stipe (Kropp & al. 2013).
Pseudosperma flavorimosum Jabeen & Khalid from Pakistan
morphologically resembles P. albobrunneum but can be distinguished by its
basidiospores that are elliptical, amygdaliform with broad apex and narrow
base (Jabeen & Khalid 2020). In the phylogenic tree (Fic. 3), P. albobrunneum
forms a separate clade, supporting its novelty.
Acknowledgements
This work was financially supported by Higher Education Commission (HEC)-
Pakistan under Indigenous PhD Fellowship (Phase II). Sincere thanks to Dr.
Chang-Lin Zhao (Southwest Forestry University, Kunming, Yunnan, P.R. China),
Dr. Tine Grebenc (Department of Forest Physiology and Genetics, Slovenian
Forestry Institute, Ljubljana, Slovenia), and Dr. Else C. Vellinga (University of
California, Berkeley, USA) for presubmission reviews of the manuscript.
370 ...Jabeen & al.
Literature cited
Ahmad S, Iqbal SH, Khalid AN. 1997. Fungi of Pakistan. Sultan Ahmad Mycological Society of
Pakistan, Department of Botany, University of the Punjab, Quaid-e-Azam campus, Lahore,
248 p.
Alvarado P, Manjon JL, Matheny PB, Esteve-Raventés F. 2010. Tubariomyces, a new genus of
Inocybaceae. Mycologia 102: 1389-1397. https://doi.org/10.3852/10-041
Bougher NL, Matheny PB. 2011. Two species of Inocybe (Fungi) introduced into Western
Australia. Nuytsia 21: 139-148.
Bougher NL, Matheny PB, Gates GM. 2012. Five new species and records of Inocybe (Agaricales)
from temperate and tropical Australia. Nuytsia 22: 57-74.
Braaten CC, Matheny PB, Viess DL, Wood MG, Williams JH, Bougher NL. 2014. Two new
species of Inocybe from Australia and North America that include novel secotioid forms.
Botany 92: 9-22. https://doi.org/10.1139/cjb-2013-0195
Bruns TD. 1995. Thoughts on the processes that maintain local species diversity of
ectomycorrhizal fungi. Plant and Soil 170(1): 63-73. https://doi.org/10.1007/BF02183055
Champion G, Harry S, Seth K. 1965. Forest types of Pakistan. Pakistan Forest Institute, Peshawar.
25303
Cripps C, Larsson E, Horak E. 2010. Subgenus Mallocybe (Inocybe) in the Rocky Mountain
alpine zone with molecular reference to European Arctic-alpine material. North American
Fungi 5: 97-126.
Esteve-Raventés F, Moreno G, Bizio E, Alvarado P. 2015. Inocybe flavobrunnescens, a new
species in section Marginatae. Mycological Progress 14: 1-12.
https://doi.org/10.1007/s11557-015-1036-0
Fan YG, Bau T. 2013. Two striking Inocybe species from Yunnan Province, China. Mycotaxon.
123: 169-181. https://doi-org/10.5248/123.169
Fan YG, Bau T. 2014. Inocybe miyiensis, a new two-spored species in section Marginatae from
China. Nova Hedwigia 98: 179-185. https://doi.org/10.1127/0029-5035/2013/0135
Faroogi A, Aqdus F, Niazi AR, Jabeen S, Khalid AN. 2017. Inocybe ahmadii sp.
nov. and a new record of I. leptocystis from Pakistan. Mycotaxon132: 257-269.
https://doi.org/10.5248/132.257
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity of basidiomycetes:
application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.
https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
program for Windows 95/98/NT. Nucleic Acid Series 41: 95-98.
Hamayun M, Khan MA, Begum S. 2003. Marketing of medicinal plants of Utror-Gabral valleys,
Swat, Pakistan. Ethnobotanical Leaflet 2003: 13.
Heim R. 1931. Le genre Inocybe. Encylopédie mycologique 1. Paris: Paul Lechevalier & Fils.
429 p.
Horak E. 2005. Rohrlinge und Blatterpilze in Europa. Heidelberg, Germany: Spektrum
Akademischer Verlag. 575 p.
Ilyas S, Razaq A, Khalid AN. 2013. Inocybe nitidiuscula and its ectomycorrhizae with Alnus
nitida from Galyat, Pakistan. Mycotaxon 124: 247-254. https://doi.org/10.5248/124.247
Jabeen S, Khalid AN. 2020. Pseudosperma flavorimosum sp. nov. from Pakistan. Mycotaxon 135:
183-193. https://doi.org/10.5248/135.183
Jabeen S, Ahmad I, Rashid A, Khalid AN. 2016. Inocybe kohistanensis, a new species from Swat,
Pakistan. Turkish Journal of Botany 40: 312-318. https://doi.org/10.3906/bot- 1501-17
Pseudosperma albobrunneum sp. nov. (Pakistan) ... 371
Kauffman CH. 1924. Inocybe. North American Flora 10: 227-261.
Kobayashi T. 2009. Notes on the genus Inocybe of Japan: IV. Species having metuloids
collected from Hokkaido, Honshu, and Kyushu. Mycoscience 50: 203-211.
https://doi.org/10.1007/S10267-008-0472-Y
Kobayashi T, Onishi S. 2010. Inocybe sericella, a new species of Inocybe sect. Inocybe
[= Cortinatae] from Kobe, Japan. Nova Hedwigia 90: 227-232.
https://doi.org/10.1127/0029-5035/2010/0090-0227
Kokkonen K, Vauras J. 2012. Eleven new boreal species of Inocybe with nodulose spores.
Mycological Progress 11: 299-341. https://doi.org/10.1007/s11557011-0783-9
Kropp BR, Matheny PB, Hutchison LJ. 2013. Inocybe section Rimosae in Utah: phylogenetic
affinities and new species. Mycologia 105: 728-747. https://doi.org/10.3852/12-185
Kuhner R, Romagnesi H. 1953. Flore analytique des champignons supérieurs. Paris: Masson et
Cie. 556 p.
Kuyper TW. 1986. A revision of the genus Inocybe in Europe. 1. Subgenus Inosperma and the
smooth spored species of subgenus Inocybe. Persoonia Supplement 3. 247 p.
Larsson E, Ryberg M, Moreau PA, Mathiesen AD, Jacobsson S. 2009. Taxonomy and evolutionary
relationships within species of section Rimosae (Inocybe) based on ITS, LSU and mtSSU
sequence data. Persoonia23: 86-98. https://doi.org/10.3767/003158509X475913
Latha KPD, Manimohan P. 2017. Inocybes of Kerala. Spore Print Books, Calicut. 181 p.
Liu L-N, Razaq A, Atri NS, Bau T, Belbahri L, Bouket AC & al. 2018. Fungal systematics and
evolution: FUSE 4. Sydowia 70: 211-286.
Massee G. 1904. A monograph of the genus Inocybe, Karsten. Annals of Botany 18: 459-504.
https://doi.org/10.1093/oxfordjournals.aob.a088972
Matheny PB, Bougher NL. 2006. The new genus Auritella from Africa and Australia (Inocybaceae,
Agaricales): molecular systematics, taxonomy and historical biogeography. Mycological
Progress 5:2-17. https://doi.org/10.1007/s11557-005-0001-8
Matheny PB, Bougher NL. 2017. Fungi of Australia: Inocybaceae. Australian Biological Resources
Study, Canberra. CSIRO Publishing, Melbourne.
Matheny PB, Kudzma LV. 2019. New species of Inocybe (Agaricales) from eastern North
America. Journal of the Torrey Botanical Society 146: 213-235.
https://doi.org/10.3159/TORREY-D-18-00060.1
Matheny PB, Aime MC, Henkel TW. 2003. New species of Inocybe from Dicymbe forests of Guyana.
Mycological Research 107(4): 495-505. https://doi.org/10.1017/S0953756203007627
Matheny PB, Aime MC, Bougher NL, Buyck B, Desjardin DE, Horak E, Kropp BR, Lodge DJ,
Soytong K, Trappe JM, Hibbett DS. 2009. Out of the Palaeotropics? Historical biogeography
and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae.
Journal of Biogeography 36: 577-592. https://doi.org/10.1111/j.1365-2699.2008.02055.x
Matheny PB, Aime MC, Smith ME, Henkel TW. 2012. Nuevas especies y registros de Inocybe
(Agaricales) de Guyana. Kurtziana37(1): 23-29.
Matheny PB, Hobbs AM, Esteve-Raventos, F. 2019. Genera of Inocybaceae: new skin for the old
ceremony. Mycologia 112: 83-120. https://doi.org/10.1080/00275514.2019.1668906
Munsell AH.1975. Munsell soil color charts. Macbeth Division of Kollmorgen Corporation.
Baltimore, Maryland.
Naseer A, Khalid AN, Smith ME. 2017. Inocybe shawarensis sp. nov. in the Inosperma clade from
Pakistan. Mycotaxon 132(4): 909-918. https://doi.org/10.5248/132.909
Naseer A, Ghani S, Niazi AR, Khalid AN. 2019. Inocybe caroticolor from oak forests of Pakistan.
Mycotaxon 134(2): 241-251. https://doi-org/10.5248/134.241
372 ...Jabeen & al.
Ryberg M, Larsson E, Jacobsson S. 2010. An evolutionary perspective on morphological and
ecological characters in the mushroom family Inocybaceae (Agaricomycotina, Fungi). Molecular
Phylogenetics and Evolution 55: 431-442. https://doi.org/10.1016/j.ympev.2010.02.011
Saba M, Ahmad I, Khalid AN. 2015. New reports of Inocybe from pine forests in Pakistan.
Mycotaxon 130: 671-681. https://doi.org/10.5248/130.671
Saba M, Haelewaters D, Pfister DH, Khalid AN. 2020. New species of Pseudosperma (Agaricales,
Inocybaceae) from Pakistan revealed by morphology and multi-locus phylogenetic
reconstruction. MycoKeys 69: 1-31. https://doi.org/10.3897/mycokeys.69.33563
Siddiqui MEF, Shaukat SS, Ahmed M, Khan N, Khan IA. 2013. Vegetation-environment
relationship of conifer dominating forests of moist temperate belt of Himalayan and
Hindukush regions of Pakistan. Pakistan Journal of Botany 45: 577-92.
Singer R. 1986. The Agaricales in modern taxonomy. 4th ed. Koenigsten, Germany: Koeltz
Scientific Books. 981 p.
Stucki B, Khan HA. 1999. Working plan for Utror-Desan forests of Kalam Forest Division.
Peshawar, Pakistan Nizam Printing Press.
Stuntz D. 1978. Interim ‘skeleton key’ to some common species of Inocybe in the Pacific
Northwest. Pacific Northwest Key Council (rev. ed. 2004). Accessed 30 December 2020:
https://www.svims.ca/council/Inocyb.htm
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary
genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.
https://doi.org/10.1093/molbev/mst197
Ullah Z, Jabeen S, Ahmad H, Khalid AN. 2018. Inocybe pakistanensis, a new species in section
Rimosae. Phytotaxa 348(4): 279-288. https://doi.org/10.11646/phytotaxa.348.4.4
White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Amplification and direct sequencing
of fungal ribosomal RNA genes for phylogenetics. 315-322, in: MA Innis & al.
(eds). PCR protocols: a guide to methods applications. Academic Press, New York.
https://doi.org/10.1016/B978-0-12-372180-8.50042-1
MY COTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021— Volume 136, pp. 373-385
https://doi.org/10.5248/136.373
Entyloma eranthidis sp. nov.
on Eranthis longistipitata from Uzbekistan
TEODOR T. DENCHEV' , CVETOMIR M. DENCHEV’,
MARTIN KEMLER’, DOMINIK BEGEROW?”
' Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences,
2 Gagarin St., 1113 Sofia, Bulgaria
? AG Geobotanik, Ruhr-Universitat Bochum,
ND 03, Universitatsstrafse 150, 44801 Bochum, Germany
* CORRESPONDENCE TO: ttdenchev@gmail.com
ABSTRACT—A new smut fungus, Entyloma eranthidis on Eranthis longistipitata from
Uzbekistan, revealed by molecular, morphological, and ecological evidence, is described and
illustrated. It differs from all other species of Entyloma by host specialization on Eranthis
and by having longer (<35(-38) um) spores and thicker (<10(-12) um) spore walls. ITS
rDNA sequence analysis indicates that the new species does not cluster with other species of
Entyloma on Ranunculaceae.
Key worps—Entylomataceae, phylogeny, taxonomy
Introduction
Eranthis Salisb. (Ranunculaceae) is a small genus with a geographic range
extending from southern Europe and Turkey to central and east Asia. It
contains eleven species (Ruksans & Zetterlund 2018, Park & al. 2019). Four
are with yellow perianth-segments: E. hyemalis (L.) Salisb. (native to South
Europe), E. cilicica Schott & Kotschy (in the Taurus Mts and Iranian and Iraq
Kurdistan; considered by some authors conspecific with previously named
species; Davis & al. 1965, Tutin 1993), E. iranica Ruksans & Zetterl. (from
Iran), and E. longistipitata Regel (from central Asia) (Frizen 1993, Ruksans
& Zetterlund 2018, Park & al. 2019). The remaining species produce white
374 ... Denchev & al.
perianth-segments and have a limited distribution in the Altai-Sayan
mountain region in western China or eastern Asia (Li & Tamura 2001, Park
& al. 2019).
Only one smut fungus, Urocystis eranthidis (Pass.) Ainsw. & Sampson, is
known to infect plants in Eranthis. This fungus is reported from Europe, Asia,
North America, and Australia, with all records occurring on yellow-flowered
plants: E. hyemalis, E. cilicica, and E. longistipitata (Ciferri 1938; Ainsworth
& Sampson 1950; Fischer 1953; Schwarzman 1960; Vanky 1985, 2011; Scholz
& Scholz 1988, 2001, 2013; Denchev 1991, 2001; Azbukina & Karatygin 1995;
Scholler 1996; Vanky & Shivas 2008; Beenken & Senn-Irlet 2016; Woods
& al. 2018). During an examination of fungal loans from the herbarium of
University of Turku, Finland (TUR), an unidentified smut fungus on Eranthis
longistipitata from Uzbekistan was found. Morphological and molecular
studies demonstrated that it represented a new species of Entyloma de Bary.
Its host belongs to the group of yellow-flowered species of Eranthis.
Entyloma is a large genus in the Entylomataceae, with 188 recognized
species on host plants belonging to 27 families (Vanky 2011; Denchev & al.
2013; Savchenko & al. 2014, 2016; Rossman & al. 2016; Rooney-Latham &
al. 2017; Savchenko & Carris 2017; Kruse & al. 2018; Kruse & Thines 2019;
Richter & al. 2019). Entyloma species form sori in vegetative organs of plants
from many different lineages of eudicots, mostly in leaves, rarely in stems,
occasionally in roots, usually forming few to numerous spots, sometimes
swellings or galls formed by hypertrophic growth of host tissue. The spores
are permanently embedded in the host tissue, singly or in irregular groups,
hyaline, yellow or yellowish brown, and usually with a smooth, two-layered
wall; very rarely the outer layer is tuberculate (e.g., E. verruculosum) or
torn apart into prismatic, pyramidal or coarse and irregular pieces (e.g.,
E. urocystoides) (Denchev & al. 2013). For many Entyloma species, an asexual
morph is also recorded (Vanky 2011).
The importance of host specificity in delimiting species within Entyloma
has varied significantly during the last eight decades. Savile (1947) applied
a morphological species concept, based on spore sizes and asexual morph.
He synonymized species with similar morphology, parasitizing host species
on different genera from the same family. As a result of this broad species
concept, Savile accepted only eight species of Entyloma on North American
asteraceous hosts. Other authors (e.g. Liro 1938, Lindeberg 1959, Vanky
2011) applied narrower species concepts, considering Entyloma species as
infecting one or more hosts from the same host genus or occasionally a few
Entyloma eranthidis sp. nov. on Eranthis (Uzbekistan) ...
TABLE 1. Entyloma species and GenBank accession numbers used for
phylogenetic analysis
SPECIES Host
E. arnicale Arnica montana
. arnoseridis Arnoseris minima
. atlanticum Geranium tuberosum
. australe Physalis cordata
. belangeri —
. bidentis Bidens pilosa
. browalliae Browallia americana
bullosum Ranunculus paludosus
calceolariae
carmeli
chrysosplenii
comaclinii
corydalis
cosmi
costaricense
dahliae
deliliae
davenportii
diastateae
doebbeleri
eburneum
elstari
eranthidis
eryngii
eryngii-cretici
E. eryngii-plani
E. ficariae
E. fuscum
E. gaillardianum
E. guaraniticum
E. helianthi
E. hieracii
E. holwayi
E. jolantae
E. klenkei
E. kochmanii
Calceolaria chelidonioides
Eryngium falcatum
Chrysosplenium alternifolium
Comaclinium montanum
Corydalis bulbosa
Cosmos bipinnatus
Viguiera sp.
Dahlia sp.
Delilia biflora
Diastatea micrantha
Dahlia imperialis
Ranunculus repens
Eranthis longistipitata
Eryngium campestre
E. creticum
E. planum
Ficaria verna
Glaucium flavum
Gaillardia aristata
Bidens pilosa
Helianthus annuus
Hieracium sylvaticum
Cosmos caudatus
Ranunculus oreophilus
R. marginatus
R. lanuginosus
GENBANK #
(ITS)
AY854964
AY081017
AY081018
AY081019
AY259074
AY081020
AY081021
MF924658
AY081022
KF310892
AY081024
AY081025
AY081027
KJ728759
AY081028
AY081029
AY081030
AY259064
AY081031
AY081032
MF924689
AY259048
MT118137
AY081033
KF310894
AY081034
MF924702
AY081036
AY081037
AY081038
KU163607
AY081039
AY081040
MF924688
MF924663
MF924678
REFERENCE
Boekhout & al. 2006
Begerow & al. 2002
Begerow & al. 2002
Begerow & al. 2002
Richter & al. 2019
Begerow & al. 2002
Begerow & al. 2002
Kruse & al. 2018
Begerow & al. 2002
Savchenko & al. 2014
Begerow & al. 2002
Begerow & al. 2002
Begerow & al. 2002
Lutz & Piatek 2016
Begerow & al. 2002
Begerow & al. 2002
Begerow & al. 2002
Richter & al. 2019
Begerow & al. 2002
Begerow & al. 2002
Kruse & al. 2018
Richter & al. 2019
this study
Begerow & al. 2002
Savchenko & al. 2014
Begerow & al. 2002
Kruse & al. 2018
Begerow & al. 2002
Begerow & al. 2002
Begerow & al. 2002
ofp
Rooney-Latham & al. 2017
Begerow & al. 2002
Begerow & al. 2002
Kruse & al. 2018
Kruse & al. 2018
Kruse & al. 2018
376 ... Denchev & al.
SPECIES Host prt if REFERENCE
E. lagoeciae Lagoecia cuminoides MH295129 Kruse & Thines 2019
E. linariae Linaria vulgaris AY081041 Begerow & al. 2002
E. lobeliae Lobelia laxiflora AY081042 Begerow & al. 2002
E. madiae Madia gracilis AY081043 Begerow & al. 2002
E. magocsyanum Tordylium cordatum KF310891 Savchenko & al. 2016
E. majewskii Ficaria verna MF924713 Kruse & al. 2018
E. matricariae Tripleurospermum perforatum AY081044 Begerow & al. 2002
E. microsporum Ranunculus repens MF924708 Kruse & al. 2018
E. parthenii Parthenium hysterophorus AY081026 Begerow & al. 2002
E. piepenbringiae Ranunculus polyanthemos MF924664 Kruse & al. 2018
subsp. nemorosus
E. polysporum Ambrosia artemisiifolia AY081046 Begerow & al. 2002
E. randwijkense — AY259080 Richter & al. 2019
E. ranunculacearum Ranunculus acris MF924635 Kruse & al. 2018
E. ranunculi-repentis R. repens AY081047 Begerow & al. 2002
E. ranunculi-scelerati R. sceleratus MF924672 Kruse & al. 2018
E. ranunculorum R. auricomus MF924638 Kruse & al. 2018
E. savchenkoi R. paludosus MF924675 Kruse & al. 2018
E. scandicis Scandix verna KF447773 Savchenko & al. 2016
E. serotinum Symphytum officinale AY081048 Begerow & al. 2002
E. thielii Ranunculus montanus MF924692 Kruse & al. 2018
E. verruculosum R. lanuginosus MF924651 Kruse & al. 2018
E. zinniae Zinnia peruviana AY081049 Begerow & al. 2002
closely related host genera. During the last two decades with the application
of molecular methods, it became evident that members of Entyloma exhibit
a far higher host specificity, parasitizing a single or only a few closely related
host species (Begerow & al. 2002, Vanky & Lutz 2010, Savchenko & al. 2014,
2016, Kruse & al. 2018, Kruse & Thines 2019). It also became evident that
much higher diversity than currently recognized in Entyloma should be
expected (Kruse & al. 2018).
From Uzbekistan, 16 different Entyloma species are known, among which
three are recorded on hosts in Ranunculaceae: the E. ranunculi-repentis
complex on R. polyanthemos L., E. thalictri J. Schrot. on Thalictrum minus
L., and E. winteri Linh. on Delphinium biternatum Huth (Ramazanova & al.
1987, Azbukina & Karatygin 1995).
In the present article, we describe and illustrate a new species of Entyloma
on Eranthis from Uzbekistan, and analyze its phylogenetic affinities in
Entyloma.
Entyloma eranthidis sp. nov. on Eranthis (Uzbekistan) ... 377
55) Entyloma hieracii AY081039
Entyloma matricariae AY081044
Entyloma polysporum AY081046
Entyloma belangeri AY259074
eo Entyloma gaillardianum AY081037
Entyloma arnicale AY854964
Entyloma chrysosplenii AY081024
BE as Entyloma carmeli KF310892
Entyloma eryngii-cretici KF310894
Entyloma lagoeciae MH295129
Entyloma eryngii-plani AY081034
Entyloma eryngii AY081033
Entyloma dahliae AY081029
Entyloma parthenii AY081026
Entyloma australe AY081019
Entyloma zinniae AY081049
Entyloma doebbeleri AY081032
Entyloma diastateae AY081031
Entyloma guaraniticum AY081038
Entyloma helianthi KU163607
Entyloma cosmi KJ728759
Entyloma bidentis AY081020
Entyloma holwayi AY081040
Entyloma browalliae AY081021
Entyloma calceolariae AY081022
98) Entyloma scandicis KF447773
Entyloma magocsyanum KF310891
Entyloma costaricense AY081028
Entyloma deliliae AY081030
Entyloma arnoseridis AY081017
Entyloma comaclinii AY081025
Entyloma lobeliae AY081042
91 Entyloma elstari AY259048
87 Entyloma madiae AY081043
Entyloma davenportii AY259064
Entyloma serotinum AY081048
Entyloma corydalis AY081027
69) Entyloma bullosum MF924658
100 Entyloma verruculosum MF924651
Entyloma piepenbringiae MF924664
ms Entyloma microsporum MF924708
Entyloma randwijkense AY259080
soy Entyloma eburneum MF924689
60 Entyloma klenkei MF924663
Entyloma jolantae MF924688
Entyloma ranunculi-scelerati MF924672
Entyloma majewskii MF924713
Entyloma kochmanii MF924678
Entyloma ranunculacearum MF924635
Entyloma ranunculorum MF924638
Entyloma ficariae MF924702
72) Entyloma savchenkoi MF924675
100 Entyloma ranunculi-repentis AY081047
Entyloma thielii MF924692
Entyloma linariae AY081041
91 Entyloma atlanticum AY081018
100 Entyloma eranthidis MT118137
Entyloma fuscum AY081036
50
4p
54
100
54]
81
0.02 substitutions/site
Fic. 1. Phylogenetic relationships of Entyloma, based on the RAxML analysis of the complete rDNA
internal transcribed spacer (ITS). The new species Entyloma eranthidis is depicted in boldface.
Bootstrap values of 1000 repetitions =50 are shown above branches. The phylogeny was rooted
according to Begerow & al. (2002).
Materials & methods
Morphological examination
A dried specimen from the herbarium of University of Turku, Finland (TUR) was
examined under light microscope (LM) and scanning electron microscope (SEM). For
LM observations and measurements, spores were mounted in lactoglycerol solution
378 ... Denchev & al.
(w: la: gl=1:1: 2) on glass slides, gently heated to boiling point to rehydrate the
spores, and then cooled. The measurements of spores are given as min-max (extreme
values) (mean + 1 standard deviation). For the description of the new species, a total
of 300 spores from three sori (100 spores per sorus) were measured. For SEM, spores
were attached to specimen holders by double-sided adhesive tape and coated with
gold in an ion sputter. The surface structure of spores was observed and photographed
at 10 kV accelerating voltage using a Zeiss Sigma VP scanning electron microscope.
The description below is based entirely on the specimen examined.
DNA extraction, PCR amplification, and sequencing
Fragments of sori for the smut fungus and leaf tissue for the host plant were
removed for DNA extraction. The samples were milled in the Fastprep-24™ Sample
Preparation Instrument, using two steel beads. Genomic DNA was isolated using the
my-Budget Plant DNA Kit™, according to the manufacturer’s protocol 1 (“Isolation of
DNA from plant material using lysis buffer SLS”). The rDNA ITS region was amplified
using GoTaq™ Master Mix with primer combination ITS1-F/ITS4 (White & al. 1990,
Gardes & Bruns 1993) for the smut fungus and ITS1/ITS4 (White & al. 1990) for the
host plant. Standard thermal cycling conditions with annealing temperature of 52 °C
were used for amplification. Five pl of PCR products were purified using ExoSAP (1:5
diluted in ddH,O). Amplicons were sequenced in both directions with the BigDye™
Terminator Cycle Sequencing Kit V3.1 on an ABI 3130xl Genetic Analyser at the
Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Germany.
Phylogenetic analyses
A multiple sequence alignment of the newly generated Entyloma sequence and
representative sequences downloaded from NCBIs GenBank (TABLE 1) was generated
using the e-ins-i option in MAFFT v7.450 (Katoh & Standley 2013). Ambiguous
positions were removed using GBLOCKS (Castresana 2000) implemented in
SEAVIEW (Gouy & al. 2010). A phylogenetic tree was inferred in RAxML 8.2.11
using the GT[RGAMMA nucleotide model and a rapid bootstrapping algorithm with
1000 replicates (Stamatakis 2014). The resulting phylogeny was visualized using
FigTree v1.4.3 (Rambaut 2012).
Results: Phylogeny and molecular host identification
The phylogenetic analysis of the ITS data produced a topology similar
to previous analyses (Begerow & al. 2002), with notable exceptions
(Fic. 1). As in Begerow & al. (2002), all species of Entyloma on asterids,
together with E. chrysosplenii and three species known only by their asexual
morph, formed a well-supported clade, whereas those on Ranunculales
were inferred as paraphyletic. Clades within these large groupings
sometimes were incongruent with those of Begerow & al. (2002); however
we note that in general our phylogeny showed limited statistical support for
many clades. Nevertheless, the Entyloma species on Eranthis longistipitata
Entyloma eranthidis sp. nov. on Eranthis (Uzbekistan) ... 379
D ,
E | Loe
Fic. 2. Entyloma eranthidis on Eranthis longistipitata (holotype, TUR 109 345): A-C. Habit;
D. Spores in LM, median view; E. Spores in LM, surface view. Scale bars: A-C = 0.5 cm;
D, E= 10 um.
380 ... Denchev & al.
formed a statistically well-supported clade with E. atlanticum on Geranium
tuberosum and did not cluster together with other Entyloma species on
Ranunculaceae. This clade was sister group to E. fuscum on Glaucium
flavum.
The identity of the host plant, Eranthis longistipitata, was confirmed
by ITS sequence data (now deposited in the NCBI with accession no.
MT484089). The newly generated ITS sequence had a 99-100% sequence
identity and 84% query coverage with the available ITS sequences of
E. longistipitata in GenBank.
Morphology
The morphology of Entyloma is very simple, and differences between the
species are consequently very few and vague (Lindeberg 1959). In this genus,
the morphological features most commonly used for separating species are:
sorus location and characteristics, spore sizes and wall characteristics, and
presence of an asexual morph.
The smut fungus on Eranthis longistipitata from Uzbekistan is
characterized by atypically well-defined morphological features, by
which it can be easily distinguished from all species currently recognized
in Entyloma. With respect to spore size, it produces by far the largest-
sized spores in Entyloma. ‘The only other Entyloma that occasionally has
spores exceeding 25 um, is E. bullosum (Sacc.) J. Kruse & al., with spore
lengths reaching 21.5(-—26.5) um (Vanky 2011, Kruse & al. 2018). Several
“Entyloma” species with large “spores” are referred to the Protomycetales
(Vanky 2011). Although the smut fungus on Eranthis longistipitata from
Uzbekistan has large spores, the morphological features and ITS sequence
data clearly determine its position within Entyloma.
A second morphological feature distinguishing this fungus from all
currently known Entyloma species is its spore wall, which is remarkably
thick, (3.5-)4.5-10(-12) um, with a cracked outer layer. The only other
Entyloma that has a spore wall reaching 10 um, is E. martindalei (Peck)
Piatek, with the inner layer being c. 0.5 um and the outer layer (1-)2-5
(-9.5) um thick (Vanky 2011). For the Entyloma spp. parasitizing hosts
in the Ranunculales, thick spore walls with cracked outer layer are not an
uncommon morphological feature (e.g., the spore walls of E. urocystoides
Bubak on Corydalis solida (L.) Clairv., E. bullosum on Ranunculus paludosus
Poir., and E. microsporum (Unger) J. Schrét. on Ranunculus spp.; Denchev
2001, Vanky 2011, Kruse & al. 2018).
Entyloma eranthidis sp. nov. on Eranthis (Uzbekistan) ... 381
Fic. 3. Entyloma eranthidis on Eranthis longistipitata (holotype, TUR 109 345). Spores in SEM.
Scale bars: A, B = 10 um; C, D = 5 um.
382 ... Denchev & al.
Taxonomy
Entyloma eranthidis T. Denchev, Denchev, Kemler & Begerow, sp.nov. _—_- FIGs 2, 3
IF 557320
Differs from the other Entyloma species by specialization on Eranthis and by having
larger spores and thicker spore walls.
Type—on Eranthis longistipitata: Uzbekistan, Tashkent Region, NE of Tashkent, W Tian
Shan, Ugamskii Khrebet, NE of Charvak Reservoir, 1100 m, 41°43’N 70°05’E, 1 May
1992, leg. Y. Makinen 92-163 (Holotype, TUR 109 345).
EryMoLoGcy—tThe epithet refers to the host genus.
Sor! in leaves, forming irregularly rounded spots, 0.5-2.5 mm long, larger
by fusion, amphigenous, not limited by veins, sometimes slightly protruding,
reddish brown, peripherally greenish on adaxial side, clay buff on abaxial side
of leaves. SPORES single, embedded in leaf tissue, usually irregular (because of
the cracked surface), variable in size (18—)20—35(-38) x (16.5—)18-28(-31.5)
(26.8 + 3.3 x 23.3 + 2.8) um (n = 300), light to medium yellowish brown;
spore wall two-layered, (3.5—)4.5-10(-12) um thick, inner layer yellowish
brown, unevenly thickened, (0.8—)1.0-3.5(—4.3) um thick, outer layer hyaline,
highly variable in thickness, (2.5-)3.5-7.5(-9.5) um thick, initially smooth,
at maturity cracking and rupturing irregularly, some ruptures reaching inner
layer. As seen by SEM, outer spore wall layer very irregularly ruptured, often
forming irregular ridge-like structures. ANAMORPH not seen.
CoOMMENTS— The immature spores of E. eranthidis are hyaline, with smaller
sizes and a thinner, not ruptured, spore wall.
Entyloma eranthidis is known only from the type locality.
Acknowledgements
The authors gratefully acknowledge Prof. Makoto Kakishima (University of
Tsukuba, Tsukuba, Japan) and Dr. Shuang-Hui He (Beijing Forestry University,
China) for critically reading the manuscript and serving as pre-submission reviewers,
Curator of TUR (Herbarium of University of Turku) for sending specimens, and
Tanja Rollnik (Ruhr-Universitat Bochum) for preparing the SEM images.
Literature cited
Ainsworth GC, Sampson K. 1950. The British smut fungi. Mycological Papers 154: i-viit+ 1-96.
Azbukina ZM, Karatygin IV. 1995. Ordo Ustilaginales. Fasc. 2. Familia Tilletiaceae. 1-263
+ Pls 35-58, in VA Mel'nik (ed.), Definitorium fungorum Rossiae, Fasc. 2. Nauka, Saint
Petersburg. (In Russian)
Beenken L, Senn-Irlet, 2016. Neomyceten in der Schweiz: Stand des Wissens und Abschatzung
des Schadpotentials der mit Pflanzen assoziierten gebietsfremden Pilze. WSL [Wald, Schee
und Landschaft] Berichte 50: 1-93.
Entyloma eranthidis sp. nov. on Eranthis (Uzbekistan) ... 383
Begerow D, Lutz M, Oberwinkler EF 2002. Implications of molecular characters for
the phylogeny of the genus Entyloma. Mycological Research 106: 1392-1399.
https://doi.org/10.1017/S0953756202006962
Boekhout T, Gildemacher P, Theelen B, Miller WH, Heijne B, Lutz M. 2006. Extensive
colonization of apples by smut anamorphs causes a new postharvest disorder. FEMS Yeast
Research 6: 63-76. https://doi.org/10.1111/j.1567-1364.2005.00002.x
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their
use in phylogenetic analysis. Molecular Biology and Evolution 17: 540-552.
https://doi.org/10.1093/oxfordjournals.molbev.a026334
Ciferri R 1938. Ustilaginales. Flora Italica Cryptogama, Pars I, Fungi, Fasc. 17: 1-443.
Davis PH, Coode MJE, Cullen J. 1965. Eranthis Salisb. 97-98, in PH Davis (ed.), Flora of
Turkey and the East Aegean Islands, vol. 1. Edinburgh University Press, Edinburgh.
Denchev CM. 1991. New records of Bulgarian smut fungi (Ustilaginales). Sydowia 43: 15-22.
Denchev CM. 2001. Class Ustomycetes (Orders Tilletiales, Ustilaginales, and Graphiolales).
1-286, in V Fakirova (ed.), Fungi Bulgariae, vol. 4. Editio Academica “Prof. Marin Drinov”
& Editio Pensoft, Sofia. (In Bulgarian)
Denchev TT, Denchev CM, Shivas RG. 2013. Two new Entyloma species (Entylomatales) from
USA. Mycobiota 3: 35-39. https://doi.org/10.12664/mycobiota.2013.03.04
Fischer GW. 1953. Manual of the North American smut fungi. Ronald Press Co., New York.
Frizen NV. 1993. Eranthis DC. 111, in LI Malyshev, GA Peshkova (eds), Flora of Siberia,
Portulacaceae—Ranunculaceae, vol. 6. Nauka, Novosibirsk. (In Russian)
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes -
application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.
https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: A multiplatform graphical user
interface for sequence alignment and phylogenetic tree building. Molecular Biology and
Evolution 27: 221-224. https://doi.org/10.1093/molbev/msp259
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
https://doi.org/10.1093/molbev/mst010
Kruse J, Thines M. 2019. Entyloma lagoeciae: a new smut fungus occurring on the annual
Apiaceae Lagoecia cuminoides. Nova Hedwigia 108: 173-184.
https://doi.org/10.1127/nova_hedwigia/2018/0503
Kruse J, Piatek M, Lutz M, Thines M. 2018. Broad host range species in specialised pathogen
groups should be treated with suspicion - a case study on Entyloma infecting Ranunculus.
Persoonia 41: 175-201. https://doi.org/10.3767/persoonia.2018.41.09
Li LQ, Tamura M. 2001. Etranthis Salisbury. 148-149, in ZY Wu, PH Raven, DY Hong. (eds),
Flora of China, Caryophyllaceae through Lardizabalaceae, vol. 6. Science Press, Beijing,
and Missouri Botanical Garden Press, St. Louis.
Lindeberg B. 1959. Ustilaginales of Sweden (exclusive of the Cintractias on Caricoideae).
Symbolae Botanicae Upsalienses 16(2):1-175.
Liro JI. 1938. Die Ustilagineen Finnlands II. Annales Academiae Scientiarum Fennicae, Ser.
A 42(1): 1-720.
Lutz M, Piatek M. 2016. Phylogenetic placement, DNA barcoding, morphology and evidence
for the spreading of Entyloma cosmi. European Journal of Plant Pathology 145: 857-869.
https://doi.org/10.1007/s10658-016-0874-1
Park SY, Jeon MJ, Ma SH, Wahlsteen E, Amundsen K, Kim JH, Suh JK, Chang C-S, Joung YH.
2019. Phylogeny and genetic variation in the genus Eranthis using nrITS and cpIS single
384 ... Denchev & al.
nucleotide polymorphisms. Horticulture, Environment, and Biotechnology 60: 239-252.
https://doi.org/10.1007/s13580-018-0113-0
Ramazanova SS, Akhmedova FG, Sagdullaeva MSh, Kirgizbaeva KhM, Gaponenko NI. 1987.
Smut fungi. 1-146, in IV Karatygin (ed.), Fungus flora of Uzbekistan, Vol. 4. Fan, Tashkent.
(In Russian)
Rambaut A. 2012. FigTree v1.4. http://tree.bio.ed.ac.uk/software/figtree/ [last accessed 25
February 2020].
Richter C, Yurkov AM, Boekhout T, Stadler M. 2019. Diversity of Tilletiopsis-like fungi in
Exobasidiomycetes (Ustilaginomycotina) and description of six novel species. Frontiers in
Microbiology 10: 2544. https://doi.org/10.3389/fmicb.2019.02544
Rooney-Latham S, Lutz M, Blomquist CL, Romberg MK, Scheck HJ, Piatek M. 2017. Entyloma
helianthi: identification and characterization of the causal agent of sunflower white leaf
smut. Mycologia 109: 520-528. https://doi.org/10.1080/00275514.2017.1362314
Rossman AY, Allen WC, Castlebury LA. 2016. New combinations of plant-associated
fungi resulting from the change to one name for fungi. IMA Fungus 7: 1-7.
https://doi.org/10.5598/imafungus.2016.07.01.01
Ruksans J, Zetterlund H. 2018. Eranthis iranica (Ranunculaceae) Ruksans & Zetterlund — new
species of winter aconite from Iran. International Rock Gardener 108: 2-19.
Savchenko KG, Carris LM. 2017. Two new Entyloma (Entylomataceae, Basidiomycota) species
on North American Sanicula. Phytotaxa 327: 191-195.
https://doi.org/10.11646/phytotaxa.327.2.8
Savchenko KG, Carris LM, Castlebury LA, Heluta VP, Wasser SP, Nevo E. 2014. Revision
of Entyloma (Entylomatales, Exobasidiomycetes) on Eryngium. Mycologia 106: 797-810.
https://doi.org/10.3852/13-317
Savchenko KG, Carris LM, Castlebury LA, Heluta VP, Wasser SP, Nevo E. 2016 [“2015”].
Entyloma scandicis, a new smut fungus on Scandix verna from Mediterranean forests of
Israel. Mycotaxon 130: 1061-1071. https://doi.org/10.5248/130.1061
Savile DBO. 1947. A study of the species of Entyloma on North American composites.
Canadian Journal of Research, Section C: Botanical Sciences 25: 105-120.
https://doi.org/10.1139/cjr47c-011
Scholler M. 1996. Die Erysiphales, Pucciniales und Ustilaginales der Vorpommerschen
Boddenlandschaft. Regensburger Mykologische Schriften 6. 325 p.
Scholz H, Scholz I. 1988. Die Brandpilze Deutschlands (Ustilaginales). Englera 8. 691 p.
https://doi.org/10.2307/3776736
Scholz H, Scholz I. 2001. Die Brandpilze Deutschlands (Ustilaginales), Nachtrag.
Verhandlungen des Botanischen Vereins von Berlin und Brandenburg 133: 343-398.
Scholz H, Scholz I. 2013. Die Brandpilze Deutschlands, 3. Nachtrag. Verhandlungen des
Botanischen Vereins von Berlin und Brandenburg 145: 161-217.
Schwarzman SR. 1960. Smut fungi. 1-370, in Flora Sporovykh Rasteniy Kazakhstana, vol. 2.
Izdatel’stvo Akademii Nauk Kazakhskoy SSR, Alma-Ata. (In Russian)
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/
btu033
Tutin TG. 1993. Eranthis Salisb. 251, in TG Tutin & al. (eds), Flora Europaea, vol. 5 (Psilotaceae
to Platanaceae), 2"‘ edn. Cambridge University Press, Cambridge.
Vanky K. 1985. Carpathian Ustilaginales. Symbolae Botanicae Upsalienses 24(2). 309 p.
Vanky K. 2011 [“2012”]. Smut fungi of the world. APS Press, St. Paul, Minnesota.
Entyloma eranthidis sp. nov. on Eranthis (Uzbekistan) ... 385
Vanky K, Lutz M. 2010. Entyloma majewskii sp. nov. (Entylomataceae) on Ranunculus ficaria
from Iran. Polish Botanical Journal 55: 271-279.
Vanky K, Shivas RG. 2008. Fungi of Australia: the smut fungi. In: Fungi of Australia Series.
Australian Biological Resources Study, Canberra & CSIRO Publishing, Melbourne.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of
fungal ribosomal RNA genes for phylogenetics. 315-322, in: M Innis & al. (eds).
PCR protocols: a guide to methods and applications. Academic Press, San Diego.
https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Woods RG, Chater AO, Smith PA, Stringer RN, Evans DA 2018. Smut and allied fungi of
Wales, a guide, red data list and census catalogue. A.O. Chater, Aberystwyth.
MY COTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021—Volume 136, pp. 387-400
https://doi.org/10.5248/136.387
Calogaya miniata comb. nov., Huneckia crocina comb. nov.,
and new neotropical records of Wetmoreana brouardii
KARINA WILK
W. Szafer Institute of Botany, Polish Academy of Sciences,
Lubicz 46, 31-512 Krakow, Poland
CORRESPONDENCE TO: k.wilk@botany.pl
ABSTRACT—New combinations Calogaya miniata and Huneckia crocina are proposed
for species previously placed in Caloplaca s.lat., following the revised classification of
Teloschistaceae. The taxonomy of Wetmoreana brouardii is discussed in relation to Caloplaca
ochraceofulva, and its current world distribution is presented, including new records from
Chile, Colombia, Peru, and Uruguay.
Key worps—lichenized Ascomycota, nomenclature, South America, Teloschistaceae
Introduction
Since the publication of the new systematic arrangement of Teloschistaceae
(Arup & al. 2013), many new genera have been proposed (e.g., Kondratyuk
& al. 2014a, 2017; Sochting & al. 2014a, b; Wilk & al. 2021), with the family
now comprising more than 100 genera (Kondratyuk & al. 2018). The genera
are distributed among the subfamilies Caloplacoideae, Teloschistoideae, and
Xanthorioideae (Gaya & al. 2012; Arup & al. 2013).
During an ongoing taxonomic and molecular survey on Teloschistaceae
in Bolivia and Peru, many new discoveries were made, some already
published in Wilk & Flakus (2017), Wilk (2020), and Wilk & al. (2021).
In this work, two new nomenclatural combinations for species previously
placed in Caloplaca s.lat. are proposed in Calogaya Arup &al., and Huneckia
S.Y. Kondr. & al. Calogaya is well-delimited molecularly (Gaya & al. 2011
as “Caloplaca saxicola group”; Arup & al. 2013; Vondrak & al. 2016, 2018).
388 ... Wilk
Huneckia is a genus recently proposed to accommodate two species,
H. pollinii (A. Massal.) S.Y. Kondr. & al. and H. rheinigera (Elix & S.Y.
Kondr.) S.Y. Kondr. & al., both characterized by production of an unusual,
thick-walled type of ascospore (Kondratyuk & al. 2014a). Huneckia seems
to be well-defined molecularly, morphologically, and chemically (see below
for further discussion).
Current phylogenetic analyses based on three rDNA loci (ITS, nucLSU,
and mtSSU) place Caloplaca crocina, a species producing hourglass-shaped
ascospores, in Huneckia (Caloplacoideae) and Caloplaca rouxii in Calogaya
(Xanthorioideae).
Wetmoreana brouardii is morphologically similar and often misidentified
as Caloplaca ochraceofulva (Mull. Arg.) Jatta, for which molecular data are
not yet available. Both taxa are discussed below, and the current world
distribution of W. brouardii is presented.
Materials & methods
This study is based on the collections from the following herbaria: B, BM, E, G,
KRAM, LD, M, MEL, MIN, S, and UPS. For species identification morphological
characters were measured from dry material using a Nikon SMZ 1270 dissecting
microscope. Anatomical characters were measured from hand-cut sections mounted
in water using a Nikon Eclipse 50i light microscope. The conidia were measured based
on photographs. To study the thallus anatomy of W. brouardii and C. ochraceofulva
high-quality cross sections of lobes were prepared by selecting lobes which overlap
other lichen thalli if possible. The granulation of anatomical structures was observed
in polarized light, and solubility of granules/crystals and colour reactions were
determined using 25% KOH (K) and 65% nitric acid (N). Hydrochloric acid (HCl)
was used to test for the presence of calcium carbonate (CaCO,) in the rocky substrate.
Thallic and apothecial terminology follows Bungartz (2002) and Ryan & al. (2002,
2012). Photographic documentation was made with a Nikon DS-Fi2 digital camera
combined with the imaging software NIS-Elements D v. 4.30.
The sequences used in the study were sourced from Wilk & al. (2021) and
references therein (see Table 1 for voucher information and GenBank accession
numbers). The datasets were subjected to maximum likelihood (ML) analysis in
RAXML v. 8.2.0 (Stamatakis 2014) under the GTR-Gamma model. Branch support
was assessed by bootstrapping (100 replicates). Phylogenetic trees were visualized
and edited in FigTree v. 1.4.4 (Rambaut 2018) and Inkscape v. 0.92 graphic software
(http://inkscape.org).
The current phylogenetic analyses are a continuation of the study started by Wilk
& al. (2021), and the phylogenetic Teloschistaceae tree therein was used as reference
tree for this survey.
389
Calogaya & Huneckia combs. nov. (South America) ...
xLOSEET IM
x86V6Z1IOM
xI8PLOEOl
»L6V6L1IOM
9676ZTOM
S6r6ZTOM
c6P6LTOM
T6P6ZTOM
OSSIN
x88Pee LIM
xL9T6ZIOM
xLPSTOECOl
x9916ZIOM
«xS9T6ZIOM
COT6ZION
TI9T6ZTOM
asToaN
8hE6LIOM
0Z8008WH
Z88008WH
788008WH
068008WH
LEE6LION
9FE6LION
S88008WH
P88008WH
€88008WH
6PPEE LIM
SPE6LION
PPE6LION
868008WH
£68008WH
S68008WH
€S6ESCAV
SZ8008WH
LS9LOEOl
€PE6LION
€£96E9NT
CrE6LION
Ivc6ZTIOM
CCV6LION
TCP6ZTOM
STV6ZION
€1V6ZION
SLI
CT ‘P9rZeT dniy ‘esny
NIW ‘9P6ZZ dO AM “eYSeIgeN “VSN
NIW ‘27608 ax0trJa\ BupuroAM “YSN,
NIW ‘SP6 P[NOD ‘satoysay, samyWON “epeurD
AZD “U's Yoo 29 NSTg “EPFLAOTS
CT ‘680207 dnszy ‘uapamsg
‘quay ‘lad premeag “u's premeas “Ueystpyezeyy
AZD “u's ‘Te 2» yao “eysny
NO® ‘06¢ SPUISOY-OTTeARN “UTedS
NO@ “Tee €£Z PAD ‘uteds
TMX ‘1002266 Yoourey ‘eruewsey, ‘erperjsny
AZD “U's PISUTSAID ‘puryod
7) cu's SUNOS Yreuruag
NIW ‘6ZST8 ar0uNa\ ‘“euRUOWY “YSN.
NO@ “Te 28 £92 eked ‘uredg
NOd ‘8096 8uNYyD9¢ ‘uteds
CT ‘L08Z6T dnsiy ‘ersny
AZ) u's s9uyeyey] “eLysny
NOd “u's ‘Te 29 edey ‘uapams
9 ‘TLPL BUNYPOS YreUTUaG
adAjojoy (SSUVW “U's apezneyD ‘aoue1y
(AST NU) D ‘OT9OT
BUTIYIOS ‘Uapas ‘(S,LT) CT ‘S0Z907 dnsy ‘uapams
CT ‘SeeroT dniy ‘uaspams
(ASSIA) D “O8FOT SUNYPOS ‘purfusarD “yreUTUEG
‘(S.LI) 0 ‘6262 BUNYDOS ‘Js] puRTEYS YING “eoROIEIUY
CT F8TS0T dnsy Aemion
O“€7SL BUTIBIOS “puRle]
(ASTONU) D ‘Z600T SUNYDeS
‘ARMION ‘(ASSIU ‘S.LI) O “SPE BUTYDIOS “eLsNY
YAHONOA,
€10Z ‘Te 29 dniy
TL0Z ‘Te 2g ees)
T10Z ‘Te 2g eAes)
TI0Z ‘Te 2g eAes)
TLOZ ‘Te 2g ees)
€10z ‘Te 29 dniy
€10Z ‘Te 29 dniy
T10Z ‘Te 2g eAee)
T10Z ‘Te 29 ede
TL0Z ‘Te 2g eAee)
QP LOZ ‘Te 28 HAerpuoy
€10Z ‘Te 29 dniy
€10z ‘Te 29 dnsy
T10Z ‘Te 2g ees)
TL0Z ‘Te 2g ees)
TLOZ ‘Te 2g eAes)
€10Z ‘Te 29 dniy
€10Z ‘Te 29 dniy
ZIOT Te 2g PAH
€10Z ‘Te 29 dniy
8002 ‘Te 2g ekeD
€107 Te 29 dniy
€107 Te 29 dniy
€107 Te 29 dniy
€107 Te 29 dniy
€107 Te 29 dniy
€107 Te 29 dniy
AFONAAAAAY
Mpysiyos vABsO]D)
€ vjoI1xvs DADBOIDD
Z vjos1xvs vAvBOIDD
I vjosixvs vAvsojvy)
Z vpisnd vAvsopvy
I yypisnd vdvsopvy
saplodivaqjod vavsovy
€ DJvIUIW vADSOIDD
ZT vjvIUIU vADSOIDD
I vious vdvsopv)
Z vIVINGO] vAvsOIvD
I vIvINGo] vAvSOIDD
suaidizap vAvsovy)
Pf vulsoqw1g vAvSOIDD
€ DULLOINIG DADBOIDD
Z vUulLOIDIG vADBOIDD
I vutsoqvig vAvsojvy)
vsnfuornpjousy vADBOIDD
vjo.ajyqo ‘dsqns pious vdvsojvy)
TS upjousv vkvsojvD
Z Mpjousv vdvsopvy)
I upjousv vdvsojvD
sisuaysvjo vAvso]v)
viodsvijay vovjdodig
vuisadsidvuis vavjdokig
DIADINUALI DIUAISY|T
vjidsolmu viuajsvlg
SHIOaTdS
‘sasdjeue sauasopAyd ay} UI pasn pue YUeGuey Woy pepeojuMop saduenbas ‘T ATAVI,
390 ... Wilk
867170
L6T17OIM
LOCPSLLWN
PES6LIOM
I€S6ZIOM
0€S6LIOM
9871 Z0[M
P8TIZOIM
O8ZIZ0M
6LTITOLM
SIEZS9IM
61€ZS9IM
80ST67.LY
067T0EOl
S0S6ZIOM
POS6LION
ZOS6ZIOM
6LPVI9AM
10S6ZTOM
00S6ZTOM
6676ZTON
OSSIW
LOTITOIM
9971 70[M
SPTSESLIN
0076LTIOM
L616LIOM
9616LTOM
6S7IZOLM
LSTITOLM
PSTIZOIM
€S7IZOLM
8SST6C.LY
PSSTOEOl
CLT6ZION
IZT6ZTOM
8PPVIOAM
69T6ZTOM
89T6ZTOM
QSTOOAN
7TCTIZTOLM
SECIZOlM
LEETTOM
6€7HSLLN
IPP6LIOM
6€F6LIOM
PEP6LION
9TETTOLM
PCETTOLM
61ET7OLM
SITET ZOLM
TIELS9IM
LI€LS9IM
€OFI6TLY
SeZLSTOM
PELLSTAM
Z99TOEOL
TP8e660!
096ESE1V
PCP6LION
€7h6LION
O6€F19AM
TEPELION
9CP6LION
SCV6LION
6re6ZTOM
SLI
adAjost CT ‘€€88z XI[W ‘pueysusang ‘erpersny
SOZOLTI CT ‘POPPI AsO ‘sesuey “VSN
SP6LIOICT ‘COTS eIOUNIAAA ‘TINOSsIW “WSN
WY ‘Z0SZ AIM “eIATIOg
D €596 SuUNYPOS ‘ureds
D ‘LZTLOT SuNYIaS “erUO}sy
(ASTPENU) NZD “u's aqni5 »
yood “eLsNY (SSI ‘S.LI) A’ ‘€6PZ6T dnszy ‘eLysny
CT ‘€7P07 FNAIeIpuoy ‘erpensny
CT ‘10€F66 Ioyourey ‘elpesrysny
adAjopoy MY “U's ‘Te 29 YIM “CIqrueN
CT ‘TOTEPOOT Iayourey ‘erpersny
O ‘OTFOT BuNYDes OTYD
O POCHOT BUYS TTYO
AMIN ‘sess, 29 LE -11°7'6T PACD ‘OPLYO
adAjojoy FS] “ESETZ $e120"D 29 Joondy ize1g
adAjojoy YS] ‘P9CTZ $at20"D 29 JoondyY Jize1g
NO ‘eUOUTITT 29 L¢¢ oUILIg-zopueusa,y ‘eAey ‘uteds
W ‘WojURys 29 ST PZ SeBIVA ‘OTTYO
CT ‘116267 dary “qex]
CT ‘010907 dnzy ‘uapams
CT ‘0€060T dnzy ‘uapams
adAjojoy OH “ZI/9ZP sepAquRY “erpensny
CT ‘6061 Upper “Uapams
(Assi ‘QsToNU) D ‘TZEZ
BUTIYOOS eUUIG {(S.L]I) A'T ‘9Z8T Uapory ‘Uapams
WORLL ‘F80:€0 PIRGATA ‘preqqeas ‘Aemson,
CI ‘8ZZI Ueposy ‘eunuasIy
WHHONOA,
ePTOT ‘Te 29 YNAyespuoy
(pans
SIaquinu YURGUad }DI1IOIUT)
ePLOT ‘Te 29 YNAyespuoy
(pans
Siaquinu YUeGUa }DI1IOIUT)
ePLOT ‘Te 29 NAIeIpUoY
1207 ‘Te 28 TEM.
€10Z ‘Te 29 dnsy
€10Z ‘Te 29 dniy
€10Z ‘Te 29 dniy
ePLOT ‘Te 29 YNAIeIpuoy
ePLOT Te 29 YNAIeIpuoy
ePLOT ‘Te 29 NAWeIpUoy
ePLOT ‘Te 29 YNAIeIpuoy
PPLOT Te 2g BUNYDOS
PPLOT Te 2g BUNYDOS
SIOZ ‘Te 2g ekeD
OTOT S9TIDPT) 2} joondy
OTOT S9T9DPT) 2} joondy
ZLOZ ‘Te 2g ede
ZLOZ YP 2B O[[HseD sesier,
€107 Te 2g dnsiy
€107 ‘Te 2g dnsiy
€107 ‘Te 2g dnsiy
L107 ‘Te 2g YNAIeIpUoy
€107 ‘Te 2g dniy
€107 Te 29 dniy
€107 Te 29 dniy
€107 Te 2g dniy
AONAAAAAY
vAaSIULIYA DIYIOUNET
Z Huijod viysaunzy
I wuryjod viysaunyy
DUIIOLI DIYIAUNET
pubsawuos viyra{0]v4
suagsaqnsoavf v1yIa10]DA5)
vainv viysajojvA)
sIsuavpUuNng]1y VISIMUDAT
MMOISDQ VISJIMUDL]
nym vyyoppyry
yop vyyopsmtr
DUDISDALA DULLDUaDD
DIVIOSAP VDULLDUA]V_)
(q5 ul eg10z-Dg ‘ds vovjdoywD
‘qns) "jUT pe vuviuossajuvs vovjdovD,
oyonjsndvsg] vovjdoyv),
vdivr0.0uv2a] vIvjdojv),
xvinf vovjdojv),
puvizapuvusaf vavjdopv),
vssiuap vrvjdojv),
vavyfosv vovjdopv),
suaosaynjoqyy vovjdoqv),
vywsa1ssv vovjidoqv7,
sisuanyiny vovjdopv)
vuLsojys vovjdopvy
pulsao vovjdopvy
‘ds vdvsojv)
SHIOTdS
391
Calogaya & Huneckia combs. nov. (South America) ...
x6C96L1IOM
CI96ZTOM
IT96ZIOM
OT96ZTOM
6096ZTOY
L8V 167.14
S69V9TAM
v69V9TIN
8096ZTOY
S096ZTOM
T096Z1IOM
0096ZTOX
86S6Z1IDOM
c6S6Z1IOM
€8S6Z1ION
C8S6Z1IOM
SLS6ZTOM
€ZS6Z1IOM
CLS6Z1IOM
TZS6ZTOM
IVS6ZIOM
OSSIN
x6876Z1IOM
€ZC6ZION
CLC6LION
TZ76ZTOM
0Z76ZTOM
OrST67.LY
69C6ZTOM
9eST6C.LY
S9C6LION
c9COLTON
T9C6ZTOM
6SC6ZION
€SC6ZION
VPC6LIOM
€VC6ZION
LET6LTIOM
S¢c6LION
vecoLIOM
OssTocol
LOZ6ZIOM
90C6ZTOM
QSTOON
ITV6ZIOM
9S96¢9NA
LecoZTOM
9€C6ZTOM
Sec6ZTO
vec6ZIOM
eSVl6cLy
VP9VITAA
ev9V9cdy
ecc6ZIOW
8rrl6c.Ly
9LV6LTON
IZV6ZTOM
O0ZV6ZTOM
89P6ZTOM
vooesedV
99V6ZTOM
S9P6LTON
0976ZTOM
LSV6LTOM
C96ESEAV
VSP6LIOM
6PV6Z1ION
8PP6ZTON
SLI
) curs SUNYIOS Yreuruag
NO® ‘S9E6Z AIOUTIAM “OOTXOY
2 ‘S766 BUTIYIOS ‘oorKayAy
CAT ‘IZST Uspory ‘Nag
CT ‘61ST Uepory ‘N19g
CT ‘SPOT Uspory ‘TTD
adAoqoy SN ‘89Z0Z IOUT, ‘vaI0y YINOS
TWION ‘ZZE00T ‘Te 29 Tysof ‘ea10y, YNOS
TWTIOM ‘ZIEOOT Te 29 Tysof ‘ear0y, yNOS
adAoyoy SN ‘89Z0Z JOY], ‘var0y, YINOS
anda
‘TUOZINT ®Y €-OT'E0'EO PACD ‘“eIUIOFTTED vleg ‘oorxay]
(assur ‘(qsTonu)
CT ‘€Z1ZOT dnszy ‘Ayer “(S.L1) AT P61 LOT dnszy ‘Ayer
CT ‘P1S0dS TUL ‘uteds
(asTpnu) 5
“u's asuey ‘Ayeqy (Assi ‘S$ LJ) D “u's euouryy ‘uteds
2) “u's xnoy sour]
CT ‘ZZ0Z67 dniy ‘ennsny
AT ‘TOZZI dnszsdous 2g ajorezur’y ‘ureds
CT ‘F0:81M UIPION 29 B1aqgoyy ‘“URSTPyezeyy
CAT ‘IZTS0T dniy ‘kemion
CT ‘ZE00TT dnszy ‘uspamg
(Ass ‘nsTonu) dT
‘PETEOT dnsy ‘uspams “(S.L1) AT “u's dnszy enysny
(NSTOnU) NO” “Te 2g “u's edey purpyjoH
‘UaPaMs *(ASSIW ‘S,LI) O ‘TSE6 SUNYDOS ‘eLsNY
(asTonu) qT ‘ZZPE0T dnsy
‘ABMION §(SSIU ‘S.LI) AT ‘TEEZOT dnszy ‘uapams
CT ‘ZOTZT dnsy ‘uapams
YATHONOA
€107 ‘Te 2g dnsry
8007 ‘Te 29 eAeD
€107 ‘Te 2g dnsiy
€107 ‘Te 2g dnsiy
€107 ‘Te 2g dnsiy
€107 ‘Te 2g dnsiy
SIOZ ‘Te 2g ede
€107 Te 29 YNATeIpuoy
€107 Te 29 YNATeIpuoy
€107 Te 29 dniy
STOT Te 2g PAP
€107 Te 29 dniy
€107 Te 29 dniy
€107 ‘Te 2g dniy
€107 ‘Te 2g dnsiy
€107 ‘Te 2g dnsiy
€107 ‘Te 2g dnsiy
€107 ‘Te 2g dnsiy
€107 ‘Te 2g dniy
€107 ‘Te 29 dnsiy
€107 Te 29 dniy
€107 Te 29 dniy
€107 Te 29 dniy
€107 Te 29 dniy
AONAAAAAY
Apnjs sty} UT pasn jou jnq yUeguey uT sfqeyrear saouanbes ,
puyativd vlLoyJUuvy
7 DUDXa} DUBALOUIJaM,
| DUuDxa] DUDAaLOUIIaM
¢ ‘ds puvasowjayy
Z ‘ds vuvasoujayy
1 ‘ds puvasowjay
PF saploidizap puvasoujay,
¢ Saploldisap vuvasouljan
Z saploidizap puvasoujay,
I saploidizap puvasoujay,
MplDNOlg VUvaLOWJIaM,
DUvIaA DLOGSOLIDA
DIOIJIWOJOp vAOdSOLIDA
vyUuvAND vLOdSOLLDA
wnauiydivs DULOLYIOUS()
byrjosqns vajnwonbs
puasi1oos vloydosas
vsounsy] vsoydosas
vynosniysi4y vavjdofny
vovjdojoos vovjdofny
SIIQUIADA DILUSapoualdg
vavqdvy) viusapoualdg
suvsajygo vovjdosdaT
vjapostays vovjdosdaT+
SHIOaTdS
92, &
Wilk
Blastenia_ammiospila
lastenia_crenularia
‘Caloplaca'_lecanorocarpa
*Caloplaca'_lecapustulata
= Huneckia_crocina_comb. nov.
100,
Fic. 1. Phylogenetic placement of Huneckia crocina within the subfamily Caloplacoideae derived
from maximum likelihood (ML) analyses of rDNA ITS, nucLSU, and mtSSU loci. ML bootstrap
values are presented at the nodes. Squamulea subsoluta was used to root the tree. Huneckia genus,
including H. crocina, is marked with grey.
Phylogenetic results
The phylogenetic analyses based on three rDNA loci (ITS, nuLSU and
mtSSU) nest Caloplaca crocina within Caloplacoideae with a strongly
supported (BS = 99) sister relationship to Huneckia pollinii and H. rheinigera
(Fic. 1; see also Wilk & al. 2021: Fig. 1, Suppl. Fig. 1). Within the C. crocina
clade is clearly separated from the latter two species by its long branch. The
Huneckia clade is sister to ‘Caloplaca’ lecapustulata Aptroot & M. Caceres and
‘C. lecanorocarpa Aptroot & M. Caceres, but with only moderate support (BS
= 79). The relationship of Huneckia to other representatives of Caloplacoideae
is resolved without support, indicating its close relationship to Blastenia
A. Massal., Eilifdahlia S.Y. Kondr. & al., Franwilsia S.Y. Kondr. & al., Gyalolechia
A. Massal., and ‘Caloplaca’ fernandeziana (Zahlbr.) Follmann & Redon.
Before our research, the phylogenetic position of C. crocina was unknown,
although its potential placement in Huneckia could be inferred based on
certain morphological characters, especially the thick walls of the ascospores.
Thick-walled ascospores, however, cannot be treated as distinctive for the
genus, because this type of ascospore occurs also in Flavoplaca Arup & al.
[e.g., FE dichroa (Arup) Arup & al. and F. calcitrapa (Nav.-Ros. & al.) Arup & al.;
Xanthorioideae}.
The phylogenetic analyses based on three-loci dataset (ITS, nuLSU,
and mtSSU) nests Caloplaca rouxii within Calogaya (Xanthorioideae)
(Wilk & al. 2021: Fig. 1, Suppl. Fig. 1). Within the Calogaya clade C. rouxii,
C. arnoldiiconfusa Gaya & Nav.-Ros., and C. saxicola (Hoffm.) Nordin form a
Calogaya & Huneckia combs. nov. (South America) ... 393
Xanthoria_parietina
0 Calogaya_lobulata2
Calogaya_lobulata1
45 &2logaya_amoldii_subsp_obliterata
Calogaya_arnoldii_s_lat
pp ouaveanol ii1
Calogaya_arnoldii2
Calogaya_arnoldiiconfusa
Calogaya_saxicola3
Calogaya_saxicola1
Calogaya_saxicola2
a_miniata3_comb_nov
ya_miniata2_comb_nov
iniata1_comb_nov
Calogaya_decipiens
Calogaya_schistidii
Calogaya_sp
Calogaya_pusilla2
Calogaya_pusilla1
Calogaya_alaskensis
Calogaya_polycarpoides
Calogaya_biatorina3
ie Calogaya_biatorina1
= Calogaya_biatorina4
0.03 Calogaya_biatorina2
Fic. 2. Phylogenetic placement of Calogaya miniata (marked in grey) within the subfamily
Xanthorioideae derived from maximum likelihood (ML) analyses of rDNA ITS locus.
ML bootstrap values are presented at the nodes. Xanthoria parietina was used to root the tree.
well-supported (BS = 95) group of closely related taxa (Fic. 2). The phylogenetic
position of Caloplaca rouxii within Calogaya was also studied in detail by Gaya
& al. (2011), who noted the monophyly of C. rouxii, while C. saxicola appears
monophyletic or polyphyletic depending on the phylogenetic analysis. The
polyphyly of C. saxicola has been discussed in detail by Gaya & al. (2011) and
Vondrak & al. (2018).
Taxonomy: new combinations
Calogaya miniata (Hoffm.) Wilk & Liicking, comb. nov.
MB 839870
= Psora miniata Hoffm., Enum. Lich.: 63 (1784); Descr. Pl. Cl. Crypt. 3(2): 16 (1801).
Type: Spain. Catalunya, Lleida, Alt Urgell, Figols I Alinya, entre el Perdé dels Quatre
Batlles I el Prat Llarg, elev. 2200-2382 m, 2001, Navarro-Rosinés (BCN, neotype,
designated by Gaya 2009).
= Lichen miniatus Hoftm., Enum. Lich.: 62 (1784) [nom. illeg.,
ICN (Shenzen) Art. 53, non Lichen miniatus L 1753].
= Lobaria miniata (Hoftm.) Hoftm., Deutschl. Fl. 2: 158 (1796) [“1795”].
= Caloplaca rouxii Gaya, Nav.-Ros. & Llimona, Biblioth. Lichenol.
101: 82 (2009) [nom. illeg., ICN (Shenzen) Art. 52].
394 ... Wilk
For taxonomic description, distribution, illustrations, and further synonyms,
see Gaya (2009).
NOMENCLATURAL NOTES—Calogaya miniata was first described by
Hoffmann (1784: 62), under the name Lichen miniatus Hoftm.., an illegitimate
later homonym of L. miniatus L. Gaya (2009) proposed Caloplaca rouxii
as a replacement name for the illegitimate L. miniatus Hoffm. However,
Hoffmann (1784: 62-63) had originally published two alternative names
(L. miniatus and Psora miniata) for this species, both of which are valid
[ICN (Shenzhen) Art. 36.3], but as Lichen miniatus Hoftm. is illegitimate,
Psora miniata remains the legitimate basionym of the species, a name also
used in a subsequent treatment of the species by the same author (Hoffmann
1801). Gaya’s (2009) replacement name Caloplaca rouxii is superfluous
and illegitimate, because Gaya (2009) cited Lichen miniatus Hoffm. as the
replaced synonym and Psora miniata is an alternative name based on the
same type [ICN (Shenzhen) Arts 52.1, 52.2(e)].
Hoffmann (1796: 158) also published the combination Lobaria miniata,
based on Lichen miniatus Hoftm. Subsequently, this has been interpreted as
being based on Lichen miniatus L., being cited as Lobaria miniata (L.) Hoffm.
and interpreted as a homotypic synonym of Dermatocarpon miniatum (L.)
W. Mann. However, Hoffmann’s combination is clearly based on Lichen
miniatus Hoftm., not L. miniatus L., both explicitly [“Enum. Lich. 62. (Lich.
miniatus)”| and implicitly by describing the lichen as “foliois ... miniatis,’
i.e., scarlet or cinnabar-red, and not grey as in D. miniatum. The correct
citation of this combination is therefore Lobaria miniata (Hoftm.) Hoffm.
If Hoffmann had not already established the alternative name Psora miniata
twelve years prior in 1784, Lobaria miniata (as a replacement name for
L. miniatus Hoffm.) would have had priority over the erroneously presumed
first publication of Psora miniata five years later in 1801.
Hoffmann (1784) did not cite any material in the protologue of
Lichen miniatus/Psora miniata. Later he provided a color plate under the
name Psora miniata (Hoffmann 1801: Tab. LX). However, as it cannot be
established that this illustration and its underlying specimen were part of
the original material, they are not available for lectotypification and have
no priority in terms of typification. The neotypification proposed by Gaya
(2009) is therefore appropriate.
Calogaya & Huneckia combs. nov. (South America) ... 395
Fic. 3. Wetmoreana brouardii, habitus and cross section of thallus: A. Wetmore 69973 (MIN);
B, C. Wetmore 79665 (MIN). Caloplaca ochraceofulva, habitus and cross section of thallus:
D. Geesteranus 10299 (LD); E, E. Kofler (LD1066528). B, E = in regular light; C, F = in polarized
light. Scale bars: A = 2.5 mm; B,C, E, F = 50 um; D =2 mm.
Huneckia crocina (Kremp.) Wilk, comb. nov.
MB 836903
= Lecidea crocina Kremp., Flora 61: 519 (1878).
Type: Argentina. 1873-1874, Lorentz & Hieronymus (MI, holotype).
= Caloplaca crocina (Kremp.) Wilk & R. Vargas, Mycotaxon 132: 127 (2017).
396 ... Wilk
Additional synonyms, taxonomic description, distribution, and illustrations
are available in Wilk & Flakus (2017).
TAXONOMIC NOTES—Huneckia includes three species: H. pollinii (type
species), H. rheinigera (Kondratyuk & al. 2014a), and the newly transferred
H. crocina. These species are morphologically similar to one another. They
produce continuous to areolate grayish thalli and dark orange to brownish,
biatorine or zeorine apothecia. The apothecial margin (true exciple) is
prosoplectenchymatous, composed of radiating, conglutinating hyphae. The
ascospores are polarilocular, characterized by clearly thickened terminal spore
walls (also called hourglass-shaped, sand-clock, or sand-glass types). The
diagnostic characters for these and similar Caloplaca s.lat. species are discussed
in Wilk & Flakus (2017: Table 1). Huneckia is characterized by specific
anthraquinones, mainly chrysophanol, chrysophanal and rhein (Kondratyuk &
al. 2014a), although the chemical composition of lichen secondary metabolites
present in H. crocina has not been studied. The genus is mostly similar to
Blastenia. For characters distinguishing among these taxa see Vondrak & al.
(2019). Huneckia pollinii is widespread in the Northern Hemisphere (Wetmore
1994; Miao & al. 2018), H. rheinigera is known from Australia (Kondratyuk &
al. 2007), and H. crocina is common in South America (Wilk & Flakus 2017).
Huneckia pollinii and H. rheinigera are well-illustrated in Schumm & Aptroot
(2019a,b) and H. crocina in Wilk & Flakus (2017).
Taxonomy: new records
Wetmoreana brouardii (B. de Lesd.) Wilk & Sachting,
Pl. Fung. Syst. 65(2): 562. 2020. Fic. A-C
A taxonomic description is available in Wetmore & Karnefelt (1998).
SPECIMENS EXAMINED— CHILE. VaLparaiso, Cuesta de Chacabuco, Follmann 12885
(B). COLOMBIA. CunDINAMARCA, Narifio, Munic. Imues, near El Pedregal, towards
Tuquerres, on road Pasto-Tumaco, elev. 1880 m, 16 June 1986, Sipman 33540 (B). PERU.
Dept. AREQUIPA, Prov. Caylloma, Canon del Colca canyon, below Tapay village, open
semi-desert montane area, elev. 2774 m, 6 July 2006, Flakus 9663 & Cykowska (KRAM;
fertile specimen). URUGUAY. Dept. CANELONES, Parador Tajes, El Cerroto, elev. 10-
20 m, 19 Feb 1950, Osorio 2135 (B). MEXICO. Baja CALIFORNIA Sour, Sierra Laguna,
along river bottom Picacho de La Laguna, elev. 500 m, 16 Feb 1993, Wetmore 72011
(B), open oak forest (Quercus tuberculata) with shrubs, along ridge leading to the crest
after turnoff to Rancho La Victoria, elev. 1400 m, 6 Jan 1998, Wetmore 79665 (MIN).
CHIHUAHUA, Sierra la Cinguita, eastern side, 9 km west of Moctezuma along route 10,
elev. 1120 m, 16 March 1992, Wetmore 69973 (MIN).
MATERIAL INVESTIGATED FOR COMPARISON—Caloplaca ochraceofulva. (Fic. 3, D-F)
KENYA. RIFT VALLEY PROVINCE, distr. Nakuru, 1949, Geesteranus 10299 & L4644a
Calogaya & Huneckia combs. nov. (South America) ...
TABLE 2. Comparison of Wetmoreana brouardii and Caloplaca ochraceofulva
CHARACTERS
VEGETATIVE
PROPAGULES
SPORES (um)
SEPTUM (um)
THALLUS
LOBE THICKNESS (tm)
CORTEX
CORTEX CONES
ALGAE
MEDULLA
CaAOX CRYSTALS
PYCNIDIA
Conrpia (ttm)
SUBSTRATE
DISTRIBUTION
REFERENCES
W. brouardii
Papillae,
laminal
10-13 x 4-6
2.5-3.5
Thin
90-250
Cell lumina rounded
Absent or indistinct
Continuous
Thin, indistinctly separated from
the algae layer
Absent (medulla may illuminated
in polarized light due to the lichen
substances, in K & N insoluble)
Rare
Long bacilliform,
4.0 x 1.1 (mean)
Siliceous rocks
Widespread in Americas, and
Arabian Peninsula
This paper
C. ochraceofulva
Isidia,
marginal
10-16 x 4-8
2-4
Thick
130-400
Cell lumina elongated
Distinct
Discontinuous, in distinct groups
Thick, distinctly separated
Distinct layer (35-75 um thick; in K
397
insoluble, in N soluble) at a distance of c.
100 pm from the thallus surface, on the
border between algal layer and medulla
Common
Short bacilliform or ovoid,
3.1 x 1.2 (mean)
Siliceous or calcareous rocks
Widespread in Africa, and Arabian
Peninsula and South America
This paper
(LD). LESOTHO. LeEriBeE, Buthabuthe, 1963, Kofler s.n. (LD1066528, LD1066592),
Kopje near Buthabuthe, 1963, Kofler s.n. (LD1024127). NAMIBIA, OTJOZONDJUPA
REGION, Waterberg Plateau National Park, primary forest with large Ficus at the base
of Waterberg Plateau, elev. 1469 m, 15 June 2019, Flakus 19/162 (KRAM, DUKE).
SOMALILAND. Serrubgebirge, 1885, Hildebrandt s.n. (G66459, Lectotypus). SOUTH
AFRICA. Natal, Vryheid Div., 1953, Almborn 7976 (LD1024960, LD1024896; fertile
specimens). ORANGE FREE StaTE, Div. Ladybrand, 1949, Geesteranus L6546 (LD).
SAUDI ARABIA. Asir ReGion, Al Dalaghan area, Asir National Park, 1982, Zapletal
s.n. (BM1247493, E905776, E905777). ARGENTINA, Jujuy, Santa Barbara, 1901, Fries
50 (LD). URUGUAY, Dept. MALDONADO, Rio de la Plata, Isla Gorriti, 1984, Osorio
8345 (MIN).
TAXONOMIC NOTE—Wetmoreana brouardii is characterized by the clearly
lobate, thin thallus, closely appressed to the substratum. The thallus is orange
to reddish, abundantly covered by distinct, laminal papillae. According to
Wetmore & Karnefelt (1998) apothecia are very rare, sessile, and <0.5 mm;
the ascospores are polarilocular (11-14 x 5.5-7.0 um) with a 3.5-4.0 um thick
septum.
Wetmoreana brouardii is often misidentified as Caloplaca ochraceofulva,
which is closely related (Wilk & Licking, unpubl. data) but which differs from
398 ... Wilk
W. brouardii in having a distinctly thicker, yellow-orange (not reddish) and
isidiate thallus. Another distinguishing feature is the presence or absence
of calcium oxalate crystals (pol+ white) in the thallus. They are present in
C. ochraceofulva, forming a distinct layer along the border between the algal
layer and medulla, but absent in all studied material of W. brouardii (Fie. 3,
TABLE 2). Medullary crystals are diagnostic for other Wetmoreana species,
such as W. appressa, W. texana, and the probably related Caloplaca eugyra
(Tuck.) Zahlbr. (Wetmore & Karnefelt 1998).
HABITAT AND DISTRIBUTION— Wetmoreana brouardii occurs on siliceous
rocks. It was reported from North America in Mexico and USA (Nash &
al. 1998; Wetmore & Karnefelt 1998); from the Arabian Peninsula in Saudi
Arabia (Bokhary & al. 1993) and Qatar (Al-Thani & Al-Meri 2011); from
Central America in Guatemala (Wetmore & Karnefelt 1998), and from
South America in Brazil (Aptroot & al. 2017), Ecuador (Galapagos Islands),
(Bungartz & al. 2013), and Venezuela (Aptroot 2015).
New records of Wetmoreana brouardii are reported here from Chile, Peru,
Uruguay, and Colombia. The Peruvian material cited previously by Wetmore
& Karnefelt (1998) lacked locality data, provided here.
Acknowledgements
I am grateful to R. Licking (BGBM, Germany), M. Kukwa (UG, Poland), A. Beck
(BSM, Germany), and Shaun Pennycook for reviewing the manuscript and providing
important suggestions and improvements. I thank the curators of the herbaria B, BM,
E, G, KRAM, LD, M, MEL, MIN, S and UPS for loan of specimens. Financial support
was provided by the National Science Centre (NCN, grant no. N N303 821740).
Literature cited
Al-Thani FR, Al-Meri HA. 2011. Study of some lichens of Qatar. Atlas Journal of Biology 1: 41-46.
https://doi.org/10.5147/ajb.2011.0046
Aptroot A. 2015. Holarctic and Caribbean crustose lichens collected by Lopez Figueras in
Venezuela. Glalia 7: 1-18.
Aptroot A, Caceres MES. 2016. Two new lecanoroid Caloplaca (Teloschistaceae) species from gneiss
inselbergs in equatorial Brazil, with a key to tropical lecanoroid species of Caloplaca s. lat.
Lichenologist 48: 201-207. https://doi.org/10.1017/S0024282916000049
Aptroot A, Gumboski EL, Caceres MES. 2017. Ocean view: a first assessment of
the littoral, crustose lichen biota of south Brazil. Lichenologist 49: 597-605.
https://doi.org/10.1017/S0024282917000512
Arup U, Sochting U, Frédén P. 2013. A new taxonomy of the family Teloschistaceae. Nordic Journal
of Botany 31: 16-83. https://doi.org/10.1111/j.1756-1051.2013.00062.x
Bokhary HA, Parvez S$, Abu-Zinada AH. 1993. Lichen flora from high altitude areas of Saudi
Arabia. Nova Hedwigia 56: 491-496.
Calogaya & Huneckia combs. nov. (South America) ... 399
Bungartz F. 2002. Morphology and anatomy of the fertile structures. 24-35, in: TH Nash & al. (eds).
Lichen flora of the Greater Sonoran Desert Region, vol. 1. Arizona, Tempe: Lichens Unlimited,
Arizona State University.
Bungartz F, Ziemmeck F, Yanez Ayabaca A, Nugra F, Aptroot A. 2013. CDF checklist of Galapagos
lichenized lungi. In: F Bungartz & al. (eds). Charles Darwin Foundation Galapagos Species
Checklist. Charles Darwin Foundation, Galapagos. Available from (accessed: January 2020):
http://www.darwinfoundation.org/datazone/checklists/true-fungi/lichens/
Gaya E. 2009. Taxonomical revision of the Caloplaca saxicola group (Teloschistaceae, lichen-
forming Ascomycota). Bibliotheca Lichenologica 101. 191 p.
Gaya E, Navarro-Rosinés P, Llimona X, Hladun N, Lutzoni F. 2008. Phylogenetic reassessment of
the Teloschistaceae (lichen-forming Ascomycota, Lecanoromycetes). Mycological Research 112:
528-546. https://doi.org/10.1016/j.mycres.2007.11.005
Gaya E, Redelings BD, Navarro-Rosinés P, Llimona X, Caceres M, Lutzoni F. 2011. Align or not
to align? Resolving species complexes within the Caloplaca saxicola group as a case study.
Mycologia 103: 361-378. https://doi.org/10.3852/10-120
Gaya E, Hégnabba F, Holguin A, Molnar K, Fernandez-Brime S & al. 2012. Implementing a
cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistales
(Pezizomycotina, Ascomycota). Molecular Phylogenetics and Evolution 63: 374-387.
https://doi.org/10.1016/j-ympev.2012.01.012
Gaya E, Fernandez-Brime S, Vargas R, Lachlan RF, Gueidan C & al. 2015. The adaptive radiation
of lichen-forming Teloschistaceae is associated with sunscreening pigments and a bark-to-rock
substrate shift. Proceedings of the National Academy of Sciences U.S.A. 112: 11600-11605.
https://doi.org/10.1073/pnas.1507072112
Hoffmann GF. 1784. Enumeratio lichenum. Erlangae. 102 p.
Hoffmann GE. 1796. Deutschlands Flora oder botanisches Taschenbuch. Zweyter Theil fiir das Jahr
1795. Cryptogamie. 200 p.
Hoffmann GF. 1801. Descriptio et adumbratio plantarum e classe cryptogamica. 3(2): 1-18, tab.
LV-LX.
Kondratyuk SY, Karnefelt I, Elix JA, Thell A. 2007. New species of the genus Caloplaca in Australia.
Bibliotheca Lichenologica 95: 341-386.
Kondratyuk S, Jeong M-H, Yu N-H, Karnefelt I, Thell A, Elix JA & al. 2013. Four new genera
of teloschistoid lichens (Teloschistaceae, Ascomycota) based on molecular phylogeny. Acta
Botanica Hungarica 55: 251-274. https://doi.org/10.1556/ABot.55.2013.3-4.8
Kondratyuk SY, Jeong M-H, Yu NN, Karnefelt I, Thell A, Elix JA & al. 2014a. A revised taxonomy
for the subfamily Caloplacoideae (Teloschistaceae, Ascomycota) based on molecular phylogeny.
Acta Botanica Hungarica 56: 93-123. https://doi.org/10.1556/ABot.56.2014.1-2.10
Kondratyuk SY, Karnefelt I, Thell A, Elix JA, Kim J, Jeong MH & al. 2014b. A revised taxonomy
for the subfamily Xanthorioideae (Teloschistaceae, Ascomycota) based on molecular phylogeny.
Acta Botanica Hungarica 56: 141-178. https://doi.org/10.1556/ABot.56.2014.1-2.12
Kondratyuk SY, L6kés L, Upreti DK, Nayaka S, Mishra GK, Ravera S & al. 2017. New monophyletic
branches of the Teloschistaceae (lichen-forming Ascomycota) proved by three gene phylogeny.
Acta Botanica Hungarica 59: 71-136. https://doi.org/10.1556/034.59.2017.1-2.6
Kondratyuk SY, Karnefelt I, Lok6s L, Hur JS, Thell A. 2018. Coppinsiella and Seawardiella - two
new genera of the Xanthorioideae (Teloschistaceae, lichen-forming Ascomycota). Acta Botanica
Hungarica 60: 369-386. https://doi.org/10.1556/034.60.2018.3-4.8
Miao CC, Zhao XX, Zhao ZT, Shahidin H, Zhang LL. 2018. Huneckia pollinii and Flavoplaca oasis
newly recorded from China. Mycotaxon 132: 895-901. https://doi.org/10.5248/132.895
400 ... Wilk
Nash TH, Ryan BD, Davis WC, Breuss O, Hafellner J, Lumbsch HT & al. 1998. Additions to the
lichen flora of Arizona IV. Bryologist 101: 93-99. https://doi.org/10.2307/3244078
Rambaut A. 2018. FigTree version 1.4.4. Available from: https://github.com/rambaut/figtree/releases.
Ryan BD, Bungartz F, Nash TH. 2002. Morphology and anatomy of the lichen thallus. 8-23, in: TH
Nash & al. (eds). Lichen flora of the Greater Sonoran Desert Region, vol. 1. Arizona, Tempe:
Lichens Unlimited, Arizona State University.
Ryan BD, Bungartz EK Hagedorn G, Rambold G (eds). 2012. LIAS glossary - a Wiki-based online
dictionary for ascomycete terminology used by LIAS, the global information system for
lichenized and non-lichenized ascomycetes. Available from: http://glossary.lias.net
Sochting U, Sogaard MZ, Elix JA, Arup U, Elvebakk A, Sancho LG. 2014a. Catenarina
(Teloschistaceae, Ascomycota), a new Southern Hemisphere genus with 7-chlorocatenarin.
Lichenologist 46: 175-187. https://doi.org/10.1017/S002428291300087X
Sechting U, Garrido-Benavent I, Seppelt R, Castello M & al. 2014b. Charcotiana and
Amundsenia, two new genera in Teloschistaceae (lichenized Ascomycota, subfamily
Xanthorioideae) hosting two new species from continental Antarctica, and Austroplaca
frigida, a new name for a continental Antarctic species. Lichenologist 46: 763-782.
https://doi.org/10.1017/S0024282914000395
Schumm Ff, Aptroot A. 2019a. Images of the lichen genus Caloplaca, vol. 3, Caloplaca holocarpa-
pulicarioides. Books on Demand. ISBN 978-3-7494- 1388-1.
Schumm F, Aptroot A. 2019b. Images of the lichen genus Caloplaca, vol. 4, Caloplaca pyracea-
xerica. ISBN 978-3-7494-1389-8.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Vargas Castillo R, Beck A. 2012. Photobiont selectivity and specificity in Caloplaca species in a
fog-induced community in the Atacama Desert, northern Chile. Fungal Biology 116: 665-676.
https://doi.org/10.1016/j.funbio.2012.04.001
Vondrak J, Frolov I, Davydov EA, Urbanavichene I, Chesnokov S & al. 2016. The extensive
geographical range of several species of Teloschistaceae: evidence from Russia. Lichenologist
48: 171-189. https://doi.org/10.1017/S00242829 16000116
Vondrak J, Shahidin H, Moniri MH, Halici G, KoSnar J. 2018. Taxonomic and functional diversity
in Calogaya (lichenised Ascomycota) in dry continental Asia. Mycological Progress 17:
897-916. https://doi.org/10.1007/s11557-018-1402-9
Vondrak J, Frolov I, KoSnar J, Arup U, Veselska T, Halict G & al. 2019. Substrate switches,
phenotypic innovations and allopatric speciation formed taxonomic diversity within
the lichen genus Blastenia. Journal of Systematics and Evolution: 10.1111/jse.12503.
https://doi.org/10.1111/jse.12503
Wetmore CM. 1994. The lichen genus Caloplaca in North and Central America with brown or
black apothecia. Mycologia 86: 813-838. https://doi.org/10.1080/00275514.1994.12026488
Wetmore CM, Karnefelt EI. 1998. The lobate and subfruticose species of Caloplaca in North and
Central America. Bryologist 101: 230-255. https://doi.org/10.2307/3244201
Wilk K. 2020. Huriella flakusii ( Teloschistaceae, lichenized Ascomycota), a new species from the Colca
Canyon region in Peru. Lichenologist 52: 37-47. https://doi.org/10.1017/S0024282919000458
Wilk K, Flakus A. 2017. Eight Caloplaca species newly recorded from Bolivia, including C. crocina
comb. nov. Mycotaxon 132: 125-140. https://doi.org/10.5248/132.125
Wilk K, Pabijan M, Satuga M, Gaya E, Liicking R. 2021. Phylogenetic revision of South American
Teloschistaceae (lichenized Ascomycota, Teloschistales) reveals three new genera and species.
Mycologia 113: 278-299. https://doi.org/10.1080/00275514.2020.1830672
MY COTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021— Volume 136, pp. 401-407
https://doi.org/10.5248/136.401
Kirschsteiniothelia shimlaensis sp. nov.
from Himachal Pradesh, India
RAJNISH KUMAR VERMA”, I. B. PRASHER’, SUSHMA3,
AJAY KUMAR GAUTAM‘, KUNHIRAMAN C. RAJESHKUMAR’,
RAFAEL F,. CASTANEDA-RvuIz?
' Department of Plant Pathology, Punjab Agricultural University,
Ludhiana, Punjab, 141004, India
? Department of Botany, Mycology and Plant Pathology Laboratory, Panjab University,
Chandigarh, 160014, India
° Department of Biosciences, Chandigarh University Gharuan, Punjab, India
* School of Agriculture, Abhilashi University, Mandi, Himachal Pradesh, 175028, India
° National Fungal Culture Collection of India, Agharkar Research Institute,
Pune, 411004, Maharashtra, India
° Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt
(INIFAT), OSDE, Grupo Agricola,
Calle 1 Esq. 2, Santiago de Las Vegas, C. Habana, Cuba, C.P. 17200
* CORRESPONDENCE TO: * vermarajnish1985@gmail.com * rfcastanedaruiz@gmail.com
ABSTRACT—A new species, Kirschsteiniothelia shimlaensis collected on stumps of Cedrus
deodara, is described and illustrated. It is characterized by mostly monotretic (rarely
polytretic), terminal or intercalary, discrete or integrated conidiogenous cells with solitary
conidia that are obovoid, oblong, broadly clavate or cylindrical and dark brown, smooth, and
2-5-septate.
Key worps—anamorphic fungi, hyphomycetes, Kirschsteiniotheliaceae, taxonomy
Introduction
Himachal Pradesh is situated at 30°22’40”-33°12’40"N 75°45’55”-
79°04’20’E. Elevations in the state, a wholly mountainous region in the lap
of Himalayas, range from 350 to 6975 m. Himachal Pradesh can be divided
402 ... Verma & al.
into three distinct regions, the [1] Shivalik or outer Himalayas, [2] middle or
inner Himalayas, and [3] greater Himalayas or alpine zone. Of the total area
(55,673 km’), 25.8% is under forest cover and offers a vast variety of perennial
plants (Balokhra 2011). Since the Himachal Pradesh with different climatic
regions supports both tropical and temperate vegetation, the extensive growth
of fungi is predictable. Terrestrial saprobic hyphomycetes are an important
component of Himalayan forest ecosystem as they play an important role in
nutrient cycling. Studies on the fungal diversity of the Northwestern Himalayan
ecosystem with particular reference to Himachal Pradesh have been primarily
restricted to Agaricomycetes (Prasher & Ashok 2013, Ashok & Prasher 2014a,b).
There are only few reports of hyphomycetes from this area (Bilgrami & al.
1991, Jamaluddin & al. 2004, Prasher & Verma 2012a,b, 2014a,b, 2015a,b,c).
The hyphomycete records reported from this region pertain primarily to plant
pathogenic fungi affecting crops (Bilgrami & al. 1991, Jamaluddin & al. 2004).
Other new records of hyphomycetous fungi from India have been added by
Prasher & Sushma (2014), Verma & al. (2019), and Sushma & al. (2020).
Kirschsteiniothelia D. Hawksw., typified by K. aethiops (Sacc.) D. Hawksw.,
is distinguished by ostiolate ascomata with pseudoparenchymatous peridium
of textura angularis to prismatica and composed of subglobose or polyhedral
cells. The centrum comprises cellular, branched pseudoparaphyses and
bitunicate, fissitunicate, subcylindrical or elongate-clavate asci with (4-)8
ellipsoidal or soleiform, 1-septate, distichously arranged ascospores that
are slightly constricted at the septum, brown, verruculose or striate, and
covered by a distinct gelatinous tunica. Conidiophores are macronematous;
mononematous; erect, straight or flexuous; and branched toward the apex,
with the branches irregular or scorpioid. Conidiogenous cells are monotretic,
cylindrical or doliiform, mostly discrete (sometimes integrate), determinate
or with enteroblastic percurrent elongations, brown. The solitary conidia are
cylindrical, obclavate, clavate, oblong, or obovoid; straight or slightly curved;
2 or more septate; and olivaceous-brown, brown, or black (Boonmee & al. 2012
Hawksworth. 1985, Su & al. 2016).
Wijayawardene & al. (2014) demonstrated that Dendryphiopsis atra (Corda)
S. Hughes (the type of Dendryphiopsis S. Hughes) belonged in Kirschsteiniothelia;
however, further phylogenetic analyses are required to ascertain the correct
generic afhnities with other Dendryphiopsis species. During a mycological
survey of microfungi associated with culm, twigs and decaying wood in a
Himachal Pradesh forest, a conspicuous fungus was collected, which we
propose here as a new Kirschsteiniothelia species.
Kirschsteiniothelia shimlaensis sp. nov. (India) ... 403
Fic. 1. Kirschsteiniothelia shimlaensis (holotype, PAN 30505). A. Colonies on natural substratum.
B-D. Conidiophores, conidiogenous cells with attached conidia. Scale bars: B-D = 20 um.
AOA ... Verma & al.
Materials & methods
Decaying culms, twigs and wood were collected in zip lock bags and taken
to the laboratory. The specimens were mounted in 4% KOH, lactophenol, and
0.01% cotton blue in lactophenol (Kirk & al. 2008). The specimens were studied
microscopically under Matrix VL—Z60 stereo trinocular microscope and VRS-2f
compound microscope. All measurements were taken with ProMED software. The
specimen was deposited in the herbarium of Botany Department, Panjab University,
Chandigarh, India (PAN).
Taxonomy
Kirschsteiniothelia shimlaensis Rajn.K. Verma, Prasher, Rajeshk.,
Sushma, A.K. Gautam & R.F. Castafieda, sp. nov. FIGs 1, 2
IF 557827
Differs from Kirschsteiniothelia atra by its obovoid, oblong, broadly clavate, narrower
conidia.
Type: India. Himachal Pradesh: Shimla, Kumarsain, on decaying stump of Cedrus
deodara (Roxb. ex D. Don) G. Don, 19 Nov. 2016, R.K. Verma (Holotype, PAN 30505).
Erymo_oey: Latin, shimlaensis, referring to the place of collection, Shimla district.
COLONIES on natural substratum scattered, dark, brown to black. Mycelium
partly superficial, partly immersed in the host tissue. CONIDIOPHORES
macronematous, mononematous, single to loosely fasciculate, erect,
straight to flexuous multiseptate, irregular or subscorpioid branched at the
apex, dark brown, smooth, 110-268 x 12-19 um, 7-9 um wide at the apex.
CONIDIOGENOUS CELLS monotretic, terminal or intercalary, cylindrical
or doliiform, mostly discrete, determinate, sometimes with enteroblastic
percurrent elongations, smooth, dark brown or brown, 18-24 x 8-10 um.
ConlipiA solitary, obovoid, oblong, broad clavate or cylindrical, sometimes
constricted near the middle or at the supra basal cell, sub-truncate or rounded
at the base, rounded at the apex, dark brown or black, smooth, microguttulate,
lumen aspect granulose, 2-5(-6)-septate, 41-81 x 13-17.5 um.
Discussion
Kirschsteiniothelia shimlaensis is superficially similar to K. atra (Corda)
D. Hawksw., which differs in its mostly cylindrical, pale to mid-dark smoky
or olivaceous brown, and wider (12-25 um) conidia (Ellis 1971, Hughes 1953,
1958; as “D. atra”). Kirschsteiniothelia shimlaensis also differs from K. lignicola
Boonmee & K.D. Hyde which has ellipsoidal to obovate, 2-septate conidia, and
K. emarceis Boonmee & K.D. Hyde which has oblong to obclavate, 3-4-septate
conidia (Boonmee & al. 2012.
Kirschsteiniothelia shimlaensis sp. nov. (India) ... 405
Fic. 2. Kirschsteiniothelia shimlaensis (holotype, PAN 30505). A-D. Conidiophores, conidiogenous
cells with attached conidia. E,F. Conidia. Scale bars = 20 um.
A406 ... Verma & al.
Dendryphiopsis goaensis J. Pratibha & al., shares a somewhat similar
conidial morphology with K. shimlaensis, but D. goaensis has mostly
cylindrical, dark brown, 20-40 x 5-7.5 um conidia, frequently produced in
polytretic conidiogenous cells (Pratibha & al. 2010). Other Dendryphiopsis
species comparable with K. shimlaensis are D. arbuscula (Berk. & M.A.
Curtis) S$. Hughes, D. binsarensis Subram. & V. Srivast., and D. fascicularis
(Berk. & Ravenel) S. Hughes; D. arbuscula is distinguished by conidia that are
subfusiform, fusiform or obclavate 3-7-septate, blackish olivaceous, 50-80 x
14-17 um (Berkeley 1875, Ellis 1976), D. binsarensis has obclavate to obclavate-
fusiform, 3-7-septate, brown conidia, 36-44 x 8-10 um (Subramanian &
Srivastva 1994), and K. fascicularis has long-clavate conidia, strongly attenuated
at the base (Berkeley 1875, Hughes 1958).
Acknowledgments
The authors are thankful to Chairperson, Department of Botany, Panjab
University for providing infrastructural and laboratory facilities. The authors express
their sincere gratitude to Dr. De-Wei Li (Connecticut Agricultural Experiment
Station Valley Laboratory, USA) and Dr. Rosa Maria Arias Mota (Instituto
Tecnoldégico Superior de Xalapa, Mexico) for their critical review of the manuscript.
RFCR is grateful to Cuban Ministry of Agriculture for facilities. We acknowledge the
assistance provided by Dr. P.M. Kirk and Dr. Konstanze Bensch, through the Index
Fungorum and MycoBank websites. Dr. Lorelei Norvell’s editorial and Dr. Shaun
Pennycook’s nomenclatural reviews are greatly appreciated.
Literature cited
Ashok D, Prasher IB. 2014a. Wood rotting non-gilled Agaricomycetes new to India. Journal on
New Biological Reports 3: 4-8.
Ashok D, Prasher IB. 2014b. Some interesting wood rotting non-gilled Agaricomycetes new to
India. Journal on New Biological Reports 3: 155-158.
Balokhra JM. 2011. The wonderland Himachal Pradesh. HG Publication New Delhi. pp 1152.
Berkeley MJ. 1875. Notices of North American fungi. Grevillea 3: 97-112.
Bilgrami KS, Jamaluddin, Rizwi MA. 1991. Fungi of India list and references. Today and
Tomorrow’s Printers & Publishers, New Delhi, India. pp 798.
Boonmee S, Ko TWK, Chukeatirote E, Hyde KD & al. 2012. Two new Kirschsteiniothelia with
Dendryphiopsis anamorphs cluster in Kirschsteiniotheliaceae fam. nov. Mycologia 104:
698-714. https://doi.org/10.3852/11-089.
Ellis MB. 1971. Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey.
Ellis MB. 1976. More dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew,
Surrey.
Hawksworth DL. 1985. Kirschsteiniothelia, a new genus for the Microthelia incrustans-group
(Dothideales). Botanical Journal of the Linnean Society. 91:181-202.
Hughes SJ. 1953. Conidiophores, conidia and classification. Canadian Journal of Botany 31:
577-659. https://doi.org/10.1139/b53-046
Kirschsteiniothelia shimlaensis sp. nov. (India) ... 407
Hughes SJ. 1958. Revisiones hyphomycetum aliquot cum appendice de nominibus rejiciendis.
Canadian Journal of Botany 36: 727-836. https://doi.org/10.1139/b58-067
Jamaluddin, Goswami MG, Ojha BM. 2004. Fungi of India 1989-2001. Scientific Publishers,
Jodhpur, India. 326 p.
Kirk PM, Cannon PE, Minter DW, Stalpers JA. 2008. Dictionary of the Fungi, 10" ed. CABI.
Prasher IB, Ashok D. 2013. A checklist of wood rotting fungi (non-gilled Agaricomycotina) of
Himachal Pradesh. Journal on New Biological Reports 2(2): 71-98.
Prasher IB, Sushma. 2014. Hermatomyces indicus sp. nov. (hyphomycetes) from India. Nova
Hedwigia 99 (3-4): 551-556. https://doi.org/10.1127/nova_hedwigia/2014/0215
Prasher IB, Verma RK. 2012a. Periconia species new to North Western Himalaya. Journal on
New Biological Reports 1(1): 1-2.
Prasher IB, Verma RK. 2012b. Two hyphomycetes new to Himalayas. Plant Sciences Feed
2(8): 122-124.
Prasher IB, Verma RK. 2014a. Four interesting hyphomycetes from Himachal Pradesh.
Journal on New Biological Reports 3(3): 159 -166.
Prasher IB, Verma RK. 2014b. Taeniolina echinata- A new species of hyphomycetes
(anamorphic) fungus from North India. Kavaka 43: 11-13.
Prasher IB, Verma RK. 2015a. Some new and interesting hyphomycetes from North Western
Himalayas, India. Nova Hedwigia 100(1-2): 269-277.
http://dxdoi.org/10.1127/nova_hedwigia/2014/2015
Prasher IB, Verma RK. 2015b. Two new species of Dictyosporium from India. Phytotaxa 204(3):
193-202. http://dx.doi.org/10.11646/phytotaxa.204.3.2
Prasher IB, Verma RK. 2015c. Neosporidesmium appendiculatus sp. nov. from North-Western
India. Mycological Progress 14: 87. http://dx.doi.org/10.1007/s11557-015-1112-5
Pratibha J, Raghukumar S, Bhat DJ. 2010. New species of Dendryphiopsis and Stauriella from
Goa, India. Mycotaxon 113: 297-303. https://doi.org/10.5248/113.297
Su HY, Hyde KD, Maharachchikumbura SSN & al. 2016. The families Distoseptisporaceae
fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species
from freshwater in Yunnan Province, China. Fungal Diversity 80: 375-409.
https://doi.org/10.1007/s13225-016-0362-0
Subramanian CV, Srivastva V. 1994. Two new hyphomycetes from Kumaon Himalayas.
Proceedings of Indian National Science Academy 60: 167-171.
Sushma, Prasher IB, Verma RK. 2020. Some interesting hyphomycetous fungi from India.
Vegetos 33: 74-82. https://doi.org/10.1007/s42535-019-00083-8
Verma RK, Prasher IB, Sushma, Gautam AK. 2019. Two new additions to mycoflora
(hyphomycetes) of India. Studies in Fungi 4(1): 230-243. Doi 10.5943/sif/4/1/25
Wijayawardene NN, Crous PW, Kirk PM, Hawksworth DL, Boonmee S & al. 2014. Naming and
outline of Dothideomycetes-2014 including proposals for the protection or suppression of
generic names. Fungal Diversity 69: 1-55. https://doi.org/10.1007/s13225-014-0309-2
MYCOTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021— Volume 136, pp. 409-444
https://doi.org/10.5248/136.409
A key to the identification of the genera of lichenized fungi
occurring in Thailand
VASUN POENGSUNGNOEN’, KAWINNAT BUARUANG’,
KANSRI BOONPRAGOB', H. THORSTEN LUMBSCH”
' Lichen Research Unit, Biology Department, Faculty of Science, Ramkhamhaeng University,
Ramkhamhaeng 24 Road, Bangkok, 10240 Thailand
? Science & Education, The Field Museum,
1400 S Lakeshore Drive, Chicago, IL 60605-2496, USA
* CORRESPONDENCE TO: tlumbsch@fieldmuseum.org
ABSTRACT—A key to the identification of the 258 genera of lichenized fungi in Thailand is
presented. Species names are provided for genera for which only a single species has been
recorded for Thailand. Recent available keys that include all species known from Thailand
are referenced. The replacement name Jonaspis aptrootii is proposed for I. tropica Aptroot
(non Riddle).
Key worps—biodiversity, lichens, Southeast Asia, tropics
Introduction
The lichen flora of Thailand has recently received considerable interest
resulting in more than a doubling of the known species in only 15 years
between a first catalogue (Wolseley & al. 2002) and a recent checklist
(Buaruang & al. 2017). Moreover, several treatments of genera or species
groups of lichenized fungi in East Asia or focused on Thai species have
been published (cited below in the key) improving our knowledge of species
diversity. Recently, numerous phylogenetic studies have dramatically changed
our understanding of the evolution of lichenized fungi, with numerous
taxonomic changes at the generic rank which are summarized elsewhere
VJaklitsch & al. 2016, Licking & al. 2016a, 2017). However, only few keys to the
410 ... Poengsungnoen & al.
genera of tropical lichens, especially crustose taxa, are available, providing an
impediment to the training of students and making species-based treatments
for scientists less accessible. For these reasons, we are providing a key to the
identification of lichen genera in Thailand and notes on some genera and
species previously cited in the checklist by Buaruang & al. (2017).
Notes
Some genera listed in the checklist for Thailand (Buaruang & al. 2017)
have since been shown not to occur in the country and are not included in
this key. These include: Arctomia Th. Fr.— the Thai species is now placed
in Gabura (Magain & al. 2020); Hemithecium Trevis.—the Thai species are
currently classified in Graphis (Kalb & al. 2018); Maronina Hafellner & R.W.
Rogers—the Thai species are currently accepted in Neoprotoparmelia (Singh
& al. 2018); and Rostania Trevis.—the single species recorded from Thailand
is now placed in Collema (Kosuthova & al. 2019). Cryptothelium sepultum
(Mont.) A. Massal. is now accepted as Astrothelium sepultum Mont. (Licking
& al. 2016c); and Spilonema Bornet does not occur in Thailand (Spribille & al.
2014), where the Thai species is now classified in Erinacellus. Furthermore,
Arthonia ochrodes Nyl. ex Willey has been referred to the lichenicolous
fungus Synarthonia Mull. Arg. However, the Thai material does not agree
with the type from Cuba and requires further study (van den Broeck & al.
2018). Blastenia A. Massal. is not keyed out, since its presence in Thailand
is doubtful, and B. testaceorufa (Vain.) Zahlbr. does not belong to the genus
as currently circumscribed (Arup & al. 2013). “Lobariella isidiosa Moncada
& Liicking” was listed in the checklist by error—the material belongs
to Lobaria isidiosa (Mull. Arg.) Vain., not Lobariella isidiata Moncada &
Licking; the genus Lobariella Yoshim. does not occur in Thailand. The
genus Sulzbacheromyces, which has been recorded from Thailand since the
publication of the checklist (Suwannarach & al. 2019), is included in this
key.
Key to the genera of Thai lichenized fungi
1. Thallus foliose, fruticose, dimorphic or squamulose............ 0... c cece eee eee 2,
L; Thallus-etustose,leprose; byssoid or flamentouse.. sa0h. . sevhe , sous . ute are wl 93
Ze Uraliys OlHOserOrSQUaTaU LOSE s® oily alicg eh haces hblg we aig eh abtig oh dhaace® dons Mites 3
22 Ehallysrimiticose Ordimorpiies, 18 Sith Stor ht eet meet meee hed Anes 79
3. Thallus gelatinous, with cyanobacteria, homoiomerous...............00.0 eee ee 4
3. Thallus not gelatinous, with green algae or cyanobacteria, heteromerous.......... 7
Key to the lichen genera of Thailand ... 411
4. Thallus corticate,
ascospores transversely septate to muriform ............ Leptogium (Ach.) Gray
4. Thallus ecorticate, ascospores simple or transversely septate to muriform ......... 5
5. Ascospores simple, thallus leathery, adnate, <10 cm wide ....... Physma A. Massal.
5. Ascospores transversely septate to muriform,
thallus tightly or loosely adnate to tcushion-forming ....................00. 6
6. Thallus foliose, lobes >3 mm wide, not squamulose or subcrustose,
ascospores narrowly ellipsoidal to fusiform,
transversely septate or muriform................ Collema Weber ex F.H. Wigg.
6. Thallus smaller, when foliose then lobes <3 mm wide, squamulose, shrubby or
crustose, ascospores transversely septate, thin-walled ........... Gabura Adans.
NoTE: One species known from Thailand: G. fascicularis (L.) P.M. Jorg.
72 [Rial USAS CALA ULOGES, SF Parse aes. sec teas sip age oes ate Caapen og een Cea utes w Bceheg ac Bits alts wad 8
POE Wok WN hom Ca) 1 of cae en AW URNS MA AE Aa SERN oot ae A RO ie Oe oA ne 24
8. Ascomata perithecia, located between squamules,
ASCOSPOLES WAU TMOEIN 2 rage ride tx iica set x 49 dl apd pnts eesetite tee Agonimia Zahlbr.
Note: Recent key to the genus available (Breuss 2020).
&. Ascomataaiapotheciummor thallus'sterile:.... soto. 8.22 ype Gee sods Gee sols Ged ees «oes o's 9
Ox Apothecia immersediss 76.50 nh Sie noth e 5 Mest sepa we Fe0a gle sae pode a A gue De ga ES 10
9. Apotheciasessile to raisedcor thallus Sterile s: ¥ 2 |. oP ys) eBags eye PO as kw pe 11
10. Asci polyspored, ascospores simple,
thallus:containing:cvanobacterian.. 90. 20h jor bogs se ese etd age phe ek Peltula Nyl.
10. Asci 8-spored, ascospores 1-septate,
thallus*contaiminie oreemalOae: Rea ig woe sce pipes ae Met a ohese sta Rolfidium Moberg
NOTE: One species known from Thailand: R. coccocarpioides (Nyl.) Timdal
11. Photobiont a cyanobacterium, apothecia with a thalline margin ............... 12
11. Photobiont a green alga, apothecia lacking a thalline margin or sterile.......... 14
12. Thallus on a distinct blackish hypothallus................... Lepidocollema Vain.
12. Thallus lacking a distinct hypothallus, often with lichen substances............. 13
13. Thalline margin of apothecia excluded when mature,
asci with amyloid apical structures,
Hy men iti} Bed AD Owen ake Fag cic Fae lo Pao Pap BP Fuscopannaria P.M. Jorg.
NoTE: One species known from Thailand: F. siamensis P.M. Jorg. & Wolseley
13. Thalline margin of apothecia prominent and persisting when mature,
asci without amyloid apical structures,
hynreniumlscdark blue’... 2.260 SG bie +5 Wen e hoe Pannaria Delise ex Bory
NoTE: One species known from Thailand: P. dispartita (Nyl.) Vain.
14. Thallus consisting of small ear-like squamules, with raised margins,
{JEON RS air (yp Rn A te oy EG le Ee AEN Lee at ETS S Normandina Nyl.
NoTE: One species known from Thailand: N. pulchella (Borrer) Nyl.
TAT iral eS TOPO NNE Nh, abies peat Mt vet tie Btu Me Wc ey Miiudhs d pllhe DAE ibs oittiulbs otdadby ot 15
412 ... Poengsungnoen & al.
15
15
16.
16.
17.
iz
18.
18.
19.
19s
20)
20.
21,
2),
Den
22.
23.
23.
24.
24.
2D;
25.
ZO:
26.
27
27
AThalluslackine-aprothalliss. 5 2.08 2. ke. Pie ac Peace aie ale tS dle 16
. Thallus*withawell-developed prothalluss:.....% 4 4.54 eqebu ves hw vege a ae bene 21
PUSCOSPOLOS DROW Ie Foi tons et san ek ayia dae aee ysl dane x cebawe 8 Hypoflavia Marbach
NoTE: One species known from Thailand: H. crustosa Aptroot
Ascasporesshyaline,or thallys-sterile:; 12.05 pit.24.5 eh eet et OE ee 17
Thallus sterile and usually growing on soil or rocks ......... 0.0.0... c eee eee 18
Thallus with sessile or stalked apothecia lacking a thalline margin,
STOWING Of DarwOT TOCKS ae cboa dh aca dying dead ep dog tre sea dnp eed hs begins dors oa 19
Lobes thick, greenish to greenish gray, usually >1 mm wide
primary squamules of Cladonia spp.
Lobes thin, grayish blue-green to brown, <1 mm wide......... Flakea O.E. Erikss.
NoTE: One species known from Thailand: F. papillata O.E. Erikss.
Thallus with stalked, biatorine apothecia, ascospores simple..... Gymnoderma Nyl.
NoTE: One species known from Thailand: G. coccocarpum Nyl.
Thallus-with- sessile; biatorine apothiecta a, .:c-g.la. tos. 4sence yl. ce yoleidin ylantee-dontendie dace 20
Saxicolous, ascospores 3-septate................. Septotrapelia Aptroot & Chaves
Corticolous, ascospores l-septate.......... 0... cece eee eee Eschatogonia Trevis.
Apothecia zeorine, ascospores 1-3-septate........ 0.0... eee ee eee Physcidia Tuck.
APothecigbigwOrine® .G.5425. 65.2.5 Glee. ew, 58S ain Se Sain, Se Cols ge Sas cB oe Sey ol ee 22
Ascospores transversely septate, with up to 17 septa............ Bacidiopsora Kalb
ASCOSPOTeSs sil ple tO-l-Septate oid: syd rece deh stadinaceadivaceading ee dine ee gna d 23
ASCOSPORES Up tO ZO MENON sts pects Beira s Baematsy sean tastes ty Phyllopsora Mull. Arg.
NotE: Recent key to Asian species available (Kistenich & al. 2019).
Ascospores25=40 MMV IONG >. os 242s sp whee ean Renee eee cen ag Triclinum Fée
Lower surface of thallus with trounded pores, either cyphellae or
PeeUicloc vp ae srg ks cee x selec eee le Pele Teen le siege pellet od ea od Glee ¢ 25
Lower surface of thallus lacking cyphellae and pseudocyphellae................ 29
Medulla yellow, lower surface with yellow pseudocyphellae
withraneensal salphotoviotites 1.2% ft 08 4 lott Weare Feet ns oe Crocodia Link
Medulla white, lower surface with cyphellae, cyphelloid pores, or
yellowzsor white pseudocy phellae-: Hriats #etar3.t lato lem mets ms ts Paes 2 26
Lower surface with pseudocyphellae that lack a distinct margin................ oF
Lower surface with pores with a distinct margin, with either cyphellae or
Gy pheligidhponegar, aes ia eee a es nea eg at eg LB 28
. Thallus of different colors, lower surface more or less tomentose,
apothecia laminal, ascospores transversely septate ...... Pseudocyphellaria Vain.
. Thallus containing usnic acid, yellowish green, lower surface not tomentose,
apothecia marginal, ascospores simple
(green algal photobiont and no cephalodia)........... Nephromopsis Mull. Arg.
28.
28.
29.
29.
30.
30.
3
_
)
—_
a2:
cy
et
33.
34.
34.
35.
BD:
36.
36.
oe
Dk
Key to the lichen genera of Thailand ... 413
Lower surface of thallus with cyphelloid pores, thallus containing
the gyrophoric acid chemosyndrome ...... Dendriscosticta Moncada & Liicking
Lower surface of thallus with distinct cyphellae, thallus lacking
SECONGALY NICtADOULES sen can nce ene ea d+ sSeecte o atamere » hated Sticta (Schreb.) Ach.
Thallus yellow to yellow-orange, ascospores simple.......... Candelaria A. Massal.
NoTE: One species known from Thailand: C. concolor (Dicks.) Arnold
Thallus of different colors, including yellowish green, but not
yellow te vellowzoran ge «28s 70s . 45 -aelays tceiaes cunt Senge aie oy Bayete SASS ee 30
Lower thallus surface glossy black, erhizinate and not tomentose,
TGBeSsHOMOWG: .c. Hie toos ea ee tate las Po Sa abla GAIA oa Oe 31
Lower surface of thallus of different colors, mostly rhizinate or tomentose,
TGDGS:SOMie at Mayo Matick Corry che sl sagt serra eta anon anal yaa dae uke 32
. Upper surface of thallus perforated,
Z=SsASGOSPOLES PECWASCUS. B55. dione ctu «Pace afte tse ev ete era eee ces Menegazzia A. Massal.
NoTE: One species known from Thailand: M. terebrata (Hoffm.) A. Massal.
. Upper surface without perforations,
SiaSCOSPOTES DET ASCUS 4 fort eh Oh see hae ebsaee eS Hypogymnia (Nyl.) Nyl.
Thallus containing cyanobacteria as primary photobiont...................... 33
Thallus containing green algae as primary photobiont, cyanobacteria absent
or present as secondary photobiont in cephalodia......................000. 38
Apothecia on lower surface of thallus .............. 0... eee ee eee Nephroma Ach.
NOTE: One species known from Thailand: N. helveticum Ach.
Apothecia laminal or marginal on upper thallus surface, or thallus sterile ....... 34
Upper surface of thallus with stiff hairs, or strongly tomentose................. 35
Uppersuntace of thallns:ditterettte.. .. 295 oh Fars oe Face. Bele oe aes eta Sane ens 36
Thallus with stiff hairs or strongly tomentose, Pd+ yellow-orange . . . Erioderma Fee
NoTE: One species known from Thailand: E. sorediatum D.J. Galloway & P.M. Jorg.
Thallus strongly tomentose, lacking stiff hairs, Pd-............... Leioderma Nyl.
NoTE: One species known from Thailand: L. sorediatum D.J. Galloway & P.M. Jorg.
Lower surface of thallus ecorticate, with pale to dark veins and conspicuous
GAEZ IC Sache Pathe tah Sasa te Big Serte eR pte oe Rs oe Rice ies Peltigera Willd.
NoTE: One species known from Thailand: P. pindarensis D.D. Awasthi & M. Joshi
Bowersuttace OF thalisMathOunveins rac nct, wanes Menten Biteenes Wsbes tly Usseaewna By oll 37
Apothecia adnate, proper margin soon becoming excluded, photobiont Scytonema,
lower surface of thallus with dense rhizines................. Coccocarpia Pers.
Apothecia sessile, proper margin persistent, photobiont Nostoc, lower surface of
thallus with sparse to dense rhizines ................. Lobaria (Schreb.) Hoftm.
. Thallus with pseudocyphellae on the upper surface .................. 000 e eee 39
. Thallus lacking pseudocyphellae on the upper surface..................000005 43
414 ... Poengsungnoen & al.
aN
_
46.
47.
47.
48.
48.
49
49
. Thallus yellowish green, containing usnic acid........... Nephromopsis Mull. Arg.
. Thallus greenish gray to gray, containing atranorin...................0.0 0000. 40
. Thallus closely appressed to the substrate by the lower cortex or inconspicuous
TIIZIRVES sna feet cvaratatte ch th beardcos Beans uel taea ce ieteerin St Maewk ot caus dkonk gel ctaaua muage alti 41
s Thallus lodselyattached tothe substrates 3.) c.g.) cia te Be} bed Rae hee tae 42
. Thallus with distinct, linear or reticulate pseudocyphellae,
lobessioLtusinom ater alg Mr tc Ami dil Ae A Aa Top bi A ae cee ae Pyxine Fr.
NotTE: Recent key to Thai species is available (Mongkolsuk & al. 2012).
. Thallus with indistinct pseudocyphellae or pseudocyphellae lacking,
lobestoftenttiising laterally ....2 1% 9.8 ae Pole pot) «ee oat Dirinaria (Tuck.) Clem.
. Thallus with marginal cilia,
upper surface finely. maculate, ./ 08. lols, siesta» allele» lle Parmotrema A. Massal.
. Thallus lacking marginal cilia,
pseudocyphellae-punctiform .. .A-05 .deq tle. Cetrelia W.L. Culb. & C.F. Culb.
* Thallus'seith: bulbatesrmar Stirred Ci a, it Fi Pcs io ea 5 en Page icine fo ne fo ace 44
oLhadius Hackine Du lbatesciiaacaarts naacshe ton te cian ce tee rate cian ee ik eataymr ee nance ake 45
. Thallus yellowish green, containing usnic acid...... Relicina (Hale & Kurok.) Hale
. Thallus grayish green, lacking usnic acid, containing atranorin .... Bulbothrix Hale
. Thallus yellow-green or greenish yellow to yellowish brown, containing cephalodia,
with a non-trebouxioid primary photobiont .................... 0. eee ee eee 46
. Thallus of different colors, containing a trebouxioid or non-trebouxioid
photobiont, lacking -cephalodia sco soe eaege 5 noe tage # eetoge Bente BAe eee Peg Bk 47
. Thallus small-foliose, apothecia with thick thalline margin, ascospores
simple, thick-walled with an epispore.............. Gibbosporina Elvebakk & al.
NoTE: One species known from Thailand: G. boninensis (Kurok.) Elvebakk & P.M.
Jorg.
Thallus larger,
ascospores transversely septate, thin-walled .......... Lobaria (Schreb.) Hoffm.
Thallus containing a non-trebouxioid photobiont,
lobes broad, lower surface whitish gray...................00. Ricasolia De Not.
NoTE: One species known from Thailand: R. discolor (Bory) Nyl.
Thallus containing a trebouxioid photobiont,
Tobes-arrd lower Surtace’ Varta he 50.15 ahs: oncce gd fobog te fobed hts Seber phe detonate felon ayo fed g 48
Upper surface of thallus yellow-green to greenish yellow,
containing usnic acid, apothecia with a thalline margin..................... 49
Upper surface of thallus whitish, gray, olive-green or brown to blackish brown,
lacking usnic acid, apothecia with or without thalline margin ............... 54
. Thallus with truncated lobe apices,
rhizines squarrosely to dichotomously branched. .... Hypotrachyna (Vain.) Hale
. Thallus with rounded or incised lobe apices, rhizines usually simple............ 50
56
S7
OF
58
58
59
59
60
60
61
61
Key to the lichen genera of Thailand... 415
: Thalluslobes: broad, usually >2imm wide... 2.:0.28.0. bho aston ethan ch aenek ya 51
S Fhallus lobes*narto wey ast widen hited wats Rise wake Win wake Big wade Ben cncoie Mincecote Reg cert 52
. Lobes apically rounded, on bark or rocks, loosely adnate,
hakespecies sorediate 00.5.) <3. 54 ot AR ES OER oe: aba BE Flavoparmelia Hale
NoTE: One species known from Thailand: F. caperata (L.) Hale
. Lobes +apically incised, on rocks,
iharspeciesnotsorediates wet ee td a ety le Xanthoparmelia (Vain.) Hale
Thallussrowin gon tOcke fy at. cos yee loe 5 nate ¥ eae Bee Xanthoparmelia (Vain.) Hale
a thallus eeowingyon: Barkor WOO dics ©. ata! cee See Me 1 eR ie AE a TR ho sac heals 53
. Thallus adnate, lobes sublinear, 0.5-1.5 mm wide, sorediate,
STH ales. ak Mh he tel ae a Ae a ites len Parmeliopsis (Nyl.) Nyl.
NoTE: One species known from Thailand: P ambigua (Hoffm.) Nyl.
. Thallus adnate, lobes irregular to linear-elongate, contiguous in the center,
O52 (3 sah WAS css, Soe, Pesce, atuonier + atovade: » 2h Relicina (Hale & Kurok.) Hale
. Thallus-wathr broad lobes,->5 mimewide: .¢.oes 26a. ve ee oe Bey Be eG Be eae ee ea DD
a Lnalhus with Tartawer lobes, iS 1M ee se hee hee dR Raed aa Nei are 8 as ove
. Thallus with cilia in lobe axils, cilia c.0.5 mm long....... Parmelinella Elix & Hale
. Thallus eciliate or with longer cilia (0.5-6 mm long).....................00 008 56
. Thallus with a broad erhizinate margin, ciliate or eciliate,
GHEMUSTEYVARPADICSy Leister e eh Po tale camer Pen Parmotrema A. Massal.
. Thallus erhizinate or with very few scattered rhizines, eciliate,
medulla containing fatty acids ............. Platismatia W.L. Culb. & C.F. Culb.
NoTE: One species known from Thailand: P. erosa W.L. Culb. & C.F. Culb.
. Thallus with cilia at margins (or marginal rhizines that resemble cilia).......... 58
» ATAUIS-CCITALCS seine, fealay atin th, inlA abit» seman y dlls ry Welt Pon cin Pgh 9 a oahn eS 66
. Medulla at least partly yellow to orange or orange-red..................0.0008 59
pela AV ILE 5 abedcy, wheter y Besoin Beseanh Mee R CK abe NCL MRE weal Age ele Ate ale ete x 60
. Thallus lobes narrow, usually less than 1 mm wide, dark gray to brownish gray,
HACKS Gtr a Orie. sioracacstcrye ctetlaers ete fase coast acta inet aera saab tamecst Phaeophyscia Moberg
. Thallus lobes 2-4 mm wide, whitish gray,
CONTAINING -atraNONINs vss evi w ee was eves Myelochroa (Asahina) Elix & Hale
e Halluistackinera LO Wer eOntese 2a5i.0 4 ctetist a gistlants usatlate talents uaatlases aa oa ne ae t 61
Fbhallisewath a lowerccortes <8 3. 28 de pate arate eh aay hae ha edt ee AGreye lene, tees 62
. Thallus with linear-elongate, often ribbon-like, dichotomously branched lobes,
loosely-attachedsto the substrates shaw ray laa taal te 3 Leucodermia Kalb
Note: Recent key to Thai species is available (Mongkolsuk & al. 2015).
. Thallus with suborbicular lobes, attached to the substrate ..... Polyblastidium Kalb
Note: Recent key to Thai species is available (Mongkolsuk & al. 2015).
416 ... Poengsungnoen & al.
62.
62.
63.
63.
64.
64.
65.
65.
66.
66.
67.
67.
68.
68.
69.
69.
70.
70.
7
—
vi
_
723
Pos
73:
PS;
Thallus dark gray to brownish gray, lacking atranorin ....................000. 63
Thallus lighter, often whitish gray, containing atranorin....................... 64
Lower cortex of thallus prosoplectenchymatous,
lower surfaceewhites, 6) 8.5 8 ..ctine Soh Mieke te Ost bt yeni Ppl Physciella Essl.
NoTE: One species known from Thailand: P. chloantha (Ach.) Essl.
Lower cortex of thallus paraplectenchymatous,
lower surtace- usually dark yea: 0% ae th heise bic able uh a Phaeophyscia Moberg
Thallus lobes short, richly dichotomously branched, lower surface black,
with short, richly dichotomously branched rhizines,
ascospores hyaline, non-septate.......... Remototrachyna Divakar & A. Crespo
Thallus lobes either suborbicular or orbicular to spreading irregularly,
lower surface pale or brown, with different rhizines,
ASCOSPOTES: DFOWN AL -SEPTALE "schig dri eciog gyescton Sracponeg drs pcbea drat g- eo diane toed pias gegen 8 65
Upper cortex of thallus consisting of periclinal hyphae ...... Heterodermia Trevis.
Note: Recent key to Thai species is available (Mongkolsuk & al. 2015).
Upper cortex of thallus paraplectenchymatous........... Physcia (Schreb.) Michx.
Thallus subfoliose-peltate, monophyllous, on siliceous rocks ....Rolfidium Moberg
NoTE: One species known from Thailand: R. coccocarpioides (Nyl.) Timdal
Thallus foliose, variable, on various substrates............... eee ee ee eens 67
Thallus closely appressed to the substrate
by the lower cortex or inconspicuous rhizines............ 0.0... e ee eee eee 68
Thallus.not-as-closely-attached -fo-the-substrate cc. so5t eased eset oe tog Whang ho 70
Thallus very small, tightly adhered to the substrate, lacking atranorin,
SPAY TEEN LO Car DT OWI, jars etter ace acd dha eed Pe Hyperphyscia Mull. Arg.
Thallus larger, containing atranorin, lighter, usually whitish gray............... 69
Thallus lobes not fusing laterally, often glossy ..................0.0005 Pyxine Fr.
NotE: Recent key to Thai species is available (Mongkolsuk & al. 2012).
Thallus lobes often fusing laterally, matt, often pruinose ... Dirinaria (Tuck.) Clem.
Thallus dark brown to green-brown, lacking atranorin....................004. 71
Thallus lighter, mostly whitish gray to greenish gray, with or without atranorin . .72
. Thallus small, on various substrates,
ascospores brown,/l-séptate: 0.00 os. se dans ale key Phaeophyscia Moberg
. Thallus larger, saxicolous,
ascospores hyaline, non-septate.................. Xanthoparmelia (Vain.) Hale
Hhallusdacking.4 lower. cOLte sc ice. oh chwce Mie cies ho dae do's Polyblastidium Kalb
Note: Recent key to Thai species is available (Mongkolsuk & al. 2015).
Ehallus with: a lOWerseOrtex tit ce, ehh tetris a dlatien eatlan arta tlan nsuablae ae moyen nesatee 73
Upper cortex of thallus consisting of periclinal hyphae ...... Heterodermia Trevis.
Note: Recent key to Thai species is available (Mongkolsuk & al. 2015).
Upper cortex of thallus not consisting of periclinal hyphae, mostly
ParaplectenchymatOusy-2 rasic's space ane sesttiel 2 Seeman of ale casters wastes tee Bats 74
Key to the lichen genera of Thailand ... 417
74. Rhizines dichotomously branchied...5 2.052. .6a coho hh ouch anes winch a eine 75
74. Rhizines usually simple or squarrosely branched................... 00 ee eee eee 76
75. Thallus lobes broad, irregular, rotund,
irregularly branched s 64 wie ne Fete oe Remototrachyna Divakar & A. Crespo
75. Thallus lobes narrow, sublinear to linear-elongate, truncate,
more or less dichotomously branched.............. Hypotrachyna (Vain.) Hale
76. Margin of thallus lower surface lacking rhizines at margins, lower surface
black, ascospores hyaline, non-septate .............. Canoparmelia Elix & Hale
76. Lower surface of thallus lobes rhizinate to margins,
lower surface pale, ascospores VariOUS............ cee eee eect eee eee eens 77
77. Lichen growing on dead wood at high altitudes, ascospores hyaline, non-
SE IOLALE crete Oates onus upstate decade PMP rode Reed ok Neglect ih rages Imshaugia S.L.F. Mey.
NoTE: One species known from Thailand: I. placorodia (Ach.) S.L.E. Mey.
77. Lichen growing on bark or rocks at different altitudes, ascospores brown,
NS ODUALC ANF Dac So ld stanttp lt Pale lt tantold Pa QAt th RUE De ytd da Ne Rl ENT MEAL ols 78
78. Thallus foliose, appressed but loosely adnate, irregularly concave, rounded,
upper surface bluish gray, pruinose, on rocks ................ Culbersonia Essl.
NoTE: One species known from Thailand: C. nubila (Moberg) Essl.
78. Thallus foliose, suborbicular, radially lobate,
ONSVATIOUG SUDSLEALES e+ <0) Beene See FN ee Physcia (Schreb.) Michx.
79. Thallus yellow to orange, K+ red-purple,
shrubby, sopediates stelle tna, sees eco ema aaa eno Teloschistes Norman
NoTE: One species known from Thailand: T: flavicans (Sw.) Norman
79~ Thallusnot-yellow-or-orange, not K+ Ted=purpless rye plat tat yak Bat a ad EB bs 80
80. Lichen forming clavarioid basidiomata, vegetative thallus crustose,
ianditierentiated io. sn. dhe nn Reade Sulzbacheromyces B.P. Hodk. & Liicking
NoTE: One species known from Thailand: S. yunnanensis D. Liu & al. (Suwannarach
& al. 2019).
SOULichenrfarnitieasce Miata OF SLELILS™. re. estes, Tess Secaet dean Nese dons Sesaat laos Seen beset eae ed 81
81. Lichen consisting of a basal crustose or squamulose primary thallus and an erect
SOCOM AT VU FS sg at cnnes fe penton trbennien grip fe bog rts j gaey di) fokod ris poker cfu soaweyiat eben ch gles 82
81. Lichen uniformly fruticose, lacking a primary thallus ........................ 83
82. Erect secondary thallus (podetia) hollow, lichenized, apothecia brown,
yellow or red, primary thallus squamulose to +foliose....... Cladonia P. Browne
82. Erect part solid, not lichenized, apothecia pink to flesh-colored,
primar yet halls: cHstOses 1, coupe! a: copier ala sundplarsendglar senders Dibaeis Clem.
83. Thallus containing a cyanobacterium as primary photobiont,
Ip hie= onary WoeG aT Ke DROWN Pht Ad crIR NBN i Gee ed rials Pid te RM Cals Mid cers Masao Red cece 84
83. Thallus containing a green algal primary photobiont, colors vary............... 86
418 ... Poengsungnoen & al.
84.
84.
85.
85.
86.
86.
87.
87.
88.
88.
89.
89.
20)
90.
9
—_
9
—_
D2:
D2:
93°
93:
Lichenized with the cyanobacterial genus Hyphomorpha
(trichomes with branches), thallus erect, with thread-like branches,
fungal hyphae enclosing photobiont in continuous sheath, the sheathing
fungal cells rectangular, no ascomata known.......... Erinacellus T. Sprib. & al.
NoTE: One species known from Thailand: E. schmidtii (Vain.) T. Sprib. & al.
Lichenized with the cyanobacterial genera Nostoc or Scytonema,
thallus shrub-like, richly branched, attached to substrate by a
basal holdfast, cortex well developed, apothecia biatorine, mostly lateral,
disc pale to dark brown, ascospores simple or 1-septate..................04. 85
Lichenized with the cyanobacterial genus Nostoc,
occurrence in Thailand doubtful.................... Polychidium (Ach.) Gray
Lichenized with the cyanobacterial genus Scytonema............ Leptogidium Nyl.
NoTE: One species known from Thailand: L. dendriscum (Nyl.) Nyl. (Muggia & al.
2011)
Thallus leprose-sorediate, ecorticate, grayish white,
ASCOMIatATADSEN, che. Ay aah ey he eh bes ey kpc h Lepraria Ach.
Thallus not leprose-sorediate, corticate or ecorticate, colors variable............ 87
Thallushollowe. cm 2, ssw 2, Sea 2; Stew 2; Se See ee. Seo SRE, SEO. ES cB 88
Thallus solid or filamentous, or tufted and rather delicate ..................0.. 90
Thallus chalky white, not branched or sparingly branched, erect or decumbent, on
Silat Nig -altitudegs i. eres dara tee trates te spatiale planters « Thamnolia Ach. ex Schaer.
NoTE: One species known from Thailand: T. vermicularis (Sw.) Schaer.
Thallus not chalky white, slightly to richly branched......................0004. 89
Thallus surface smooth, corticate, often glossy...................0005 Cladia Ny].
NoTE: One species known from Thailand: C. aggregata (Sw.) Nyl.
ThallesSurtace rOUsACECOMIC ALES apusst, Yessy bitmonts aeeusteln teehee es Cladonia P. Browne
Thallus filamentous, small, consisting of algal filaments of
Trentepohlia surrounded by fungal hyphae,
ascospores*l=septate, hyaline ous cite cor. Ss ww ees Coenogonium Ehrenb.
Note: Recent key to Thai species available (Kalb & al. 2016a).
Thallus fruticose, usually larger, corticate, ascospores variable ................. 91
. Thallus terete with a cartilaginous axis, thallus pale green to green, or slightly
reddish, often with blackened holdfast, erect to pendulous or decumbent,
apothecial disc pale yellow-green..................0000. Usnea Dill. ex Adans.
. Thallus flattened, without a cartilaginous axis ........... 0.0 c cece eee 92
Thallus pale gray to pale mauve-gray, C+ red, photobiont Trentepohlia,
ONvCWAStal Mees Palen Gy Wh lace nda wh teats bins hag ak tod bai ene Roccella DC.
NoTE: One species known from Thailand: R. montagnei Bél.
Thallus pale green or yellowish, C-, photobiont trebouxioid,
in different habitats, locally abundant......................... Ramalina Ach.
Thallus growing on rock, bark, wood, soil or mosses ............00000 0c eee eee 94
Thallus erawine-onsleavesc yc pi. 3.0a ln Secs coe Rage eat Bigs at oat Ree ete he ate ost 296
Key to the lichen genera of Thailand ... 419
94. Primary photobiont blue-green, ascospores hyaline (if sterile, see 99)........... 95
94. Primary photobiont green, cyanobiont lacking or present in cephalodia,
ascospores hyaliné-or-browil?. 26. 6.56 4350 253-10 ar i aGngtt seas be cies DHSS 103
95. Ascospores.transversely septate: tO Maur ilOriny 225.6 kano oe Nets ela ne ea orn Se 96
OD PIS COSPOLES SMI EN 610g Fre cuteg Frys suhag dts onceg Syh ge tun tye feben Suh seen dh peemegye se NS fee ee At 101
96: Aseomata Perec iar sar iF, ait Pa gt ce Page begs lot a oR gs le Psoroglaena Mill. Arg.
NoTE: One species known from Thailand: P. cubensis Mill. Arg.
OG: ASCOM ALA AD OLNSCIAR erated tea ttra tein Saat cai aang anager thee meade me ante rea 97
97. Ascospores muriform, cuboid to oblong............ Collema Weber ex F.H. Wigg.
97; Ascospores leseptateto-transversely septate, fii. stedany whic, saclay whee cderealieelin ya's 98
D8 SAScospores-l septate; OMANOSSeS. 5. a2 yas yaks ¥ Ae sogt ¥ cleciayt ¥ lett ¥ dete 8 wap eS 29
98. Ascospores transversely septate, on various substrates..................006. 100
99. Lichenized with the cyanobacterial genus Nostoc,
occurrence 1 Thailanddoubteul: fs, nets thw 3k Ss Polychidium (Ach.) Gray
99. Lichenized with the cyanobacterial genus Scytonema............ Leptogidium Nyl.
NoTE: One species known from Thailand: L. dendriscum (Nyl.) Nyl. (Muggia & al.
2011).
LOOT Mn alhigvcelatinious,e pip lytic. ees oleh ton! ww emadd 9 Weems n Delnetd ann Gabura Adans.
NoTE: One species known from Thailand: G. fascicularis (L.) P. M. Jorg.
100. Thallus not gelatinous, on limestone .................. Placynthium (Ach.) Gray
NoTE: One species known from Thailand: P. nigrum (Huds.) Gray
101. Lichen growing on siliceous rocks, with immersed apothecia,
asci unitunicate; polyspOred, << ign x oie es Whats sage lol 8 awe Peltula Nyl.
101. Lichen growing on bark, asci prototunicate, usually with 8 spores........... 102
102. Thallus dwarf-fruticose, apothecia + biatorine, apothecial disc
not umbonate, with a thick proper margin.............. Lecidopyrenopsis Vain.
NoTE: One species known from Thailand: L. corticola Vain.
102. Thallus crustose, apothecia + biatorine, apothecial disc
lunibenate when: matune- inci hoes, 4 ae iene ee ws Leprocollema Vain.
NoTE: One species known from Thailand: L. novocaledonianum A.L. Sm.
103. Thallus sterile, byssoid, leprose or small-filamentose (most species that are
crustose and sterile are not keyed out - only commonly sterile byssoid, leprose,
Ph ova Mabechoates alc eger onc: 6c: We Gavel |i el cla bat ae eel Joan date nek oe met Jeeta > se See ae See 104
hOS MhallysawathicaSCOniata be. cass Seas boven be ghe boa ute mate peaks beetle Benils LEZ
104. Thallus lacking a cortex, crustose, leprose to byssoid ..................0004 105
104, Uhallus:siwall-trlamentose 3 4.5.44 dsb wea dinaer dd bard dh nterd Dheerd di peeved poeta A hare 114
105. Thallus yellow with dibenzofurans (pigments), leprose ........ Chrysothrix Mont.
NoTE: One species known from Thailand: C. xanthina (Vain.) Kalb
105. Thallus of different colors, not yellow, lacking dibenzofurans ............... 106
420 ... Poengsungnoen & al.
106. Thallus crustose, not leprose or byssoid.......... 00... eee cece eeeeeee ee 107
LOG Mnalhisleprose-tolbyssoid: ls. lute. whed bes olay whdhey eft y seh nthe ontnled 110
107. Thallus covered with blackish conidiomata, photobiont trentepohlioid....... 108
107. Thallus lacking obvious conidiomata, photobiont chlorococcoid............ 109
108. Conidiophores gnarled,
conidia formed irregularly, curved to semi-helicoid curled,
lacking secondary substances ............... 0.000 eee Milospium D. Hawksw.
NoTE: One species known from Thailand: M. planorbis Aptroot & Sipman
108. Conidiogeneous hyphae forming conidial chains,
conidia in chains, ellipsoid to bacillar,
Contains eCaNOriEAcid No RAT Rew) 9 Woosh 5 eek « Tylophoron Nyl. ex Stizenb.
NotE: Recent key to species available (Ertz & al. 2011).
109. Thallus with a cortex and roundish soralia,
IMycoblontan-ascomycete sos yw soe x wiajow W aielo’ Monae # woaoet Bee ¥ eee Lepra Scop.
109. Thallus lacking a cortex and soralia,
mycobiont a basidiomycete............ Sulzbacheromyces B.P. Hodk. & Liicking
NoTE: One species known from Thailand: S. yunnanensis D. Liu & al. (Suwannarach
& al. 2019).
ITO ah ablusilepnase as: 4 nuns 4 oe ens 4 hate Ae ABR AMBER ol ambGh Frm bal 4 Peachy PBSC 4 111
DLO Thalltis*byssOtd. 6 soos wt oes hoes wees vee 2 GB vey Be baad eee ee Be 112
111. Thallus with trebouxioid photobiont......................220005 Lepraria Ach.
111. Thallus with trentepohlioid photobiont...................... Cryptothecia Stirt.
DV PHOtODIONtEDOURTOIE. o-...!.9.c:0-4-! dwg onc al andl! ace Crocynia (Ach.) A. Massal.
Note: Recent key to species available (Aptroot & Caceres 2014a).
12 SPH OLG DICT PRETILE POMONA: 2 5 02,81<b. 5 cay: snare ceaat lasea tena? fapea set lotta uaat lates inte na teeee ateneas 113
113. Thallus with isidioid structures, containing the protocetraric acid
CHEMO VMAS. 9 Fe ase apn es ote lee Page et Page ake oe ot Paghi Heiomasia Nelsen & al.
Note: One species known from Thailand: H. siamensis Kalb (Kalb 2020).
113. Thallus lacking isidioid structures, chemistry variable ....... Herpothallon Tobler
Note: Recent key to the genus available (Aptroot & al. 2009).
(AP BHOtODIONt Cyanobacterial... ha, AB, tenis» Mos» Mey «a Poeats » oat aflnata »allinals 115
IWC Wed no} CejoYtosnvates is stash (occ ewon® Aerts Mer» Mineree® Wierd 2 iver ch» Fiber t > Haran © Vener © fi 116
115. Thallus erect, dwarf-fruticose, with Hyphomorpha
(trichomes with branches) as photobiont............. Erinacellus T. Sprib. & al.
NoTE: One species known from Thailand: E. schmidtii (Vain.) T. Sprib. & al.
115. Thallus prostrate, with Rhizonema (morphologically similar to Nostoc)
AS ep IOROIMOT IES 55, F Passsly tte Sy fate wie dodecyl oles Gd ola Dictyonema C. Ag. ex Kunth
NoTE: One species known from Thailand: D. thelephora (Spreng.) Zahlbr.
Key to the lichen genera of Thailand ... 421
116. Thallus with chlorococcoid photobiont, prostrate............. Agonimia Zahlbr.
NotE: Recent key to the genus available (Breuss 2020).
116. Thallus with trentepohlioid photobiont, often forming
CUSDIONSS > ad. 8 engl tht Geren Bo rag Goer gts oS apache eat Coenogonium Ehrenb.
Note: Recent key to Thai species available (Kalb & al. 2016a).
MI AsAISCOMALA-StALK OG. Py whut tadiy alideltte weet obatly g wtie abate y alates a iNe oda dbe 5 118
117. Ascomata sessile, immersed or slightly raised from the thallus,
DtiteriGt Stal Rei fasts stitey whk tere wae bace eet a: pd aly Blade a APES othe tbe 120
118. Apothecial stalk pale, small, thallus inconspicuous, paraphyses rare,
dscitunitunicate. 2.6.23 s60 2; Sk 23 teach ae ote ee Vezdaea Tsch.-Woess & Poelt
NoTE: One species known from Thailand: V. stipitata Poelt & Débbeler
118. Apothecial stalk not pale, larger, thallus variable, paraphyses frequent,
asci prototunicate, forming a mazaedium............. 0... cece eee eee eee 119
119. Ascospores roundish, non-septate ................-. Chaenotheca (Th. Fr.) Th. Fr.
NoTE: One species known from Thailand: C. trichialis (Ach.) Hellb.
119. Ascospores ellipsoidal, l-septate....... 0.00... cece ee eee eee eee Calicium Pers.
120: -Ascomataawith- open Giscs-tapotneciay ss Fre ssc tte iae tute Toe asta Ta erste ae an anaes 121
120. Ascomata opening with a small pore (perithecia) .....................008. 256
121 thallusswithchlorococcoidsphotobionts «0. vests veacts casts coats neache «onc: 122
121. Thallus with trentepohlioid photobiont................... 0c eee ee eee eee 180
WI ASCOSPOLES DLO WITTE, 9 4isae g4 im eg het 24 Heer 4 NeeeES Neerd 4 Neer d 4 Aeeers Nee A Ries 123
P22, ASCOS POLES DY ANN G hs tas ota. dona oa: tenn otase etale aot asda dsb esgic ateada dsb apie doaQale dspam teaee 135
IQs. AAscosporesmubifentiie: (New cede 25 -Seleyrs Sebyet oiyes alekys® elnys yaa 124
123. Ascospores 1-septate or transversely septate............ 00... eee eee eee L25
124. Hymenium and asci non-amyloid, paraphyses simple, exciple carbonized,
ON: SOUGE-SIRCBOUS TOCKS of... 4 wheats oauhcy al wbey eae wands Diploschistes Norman
NotE: Recent key to species available (Rivas Plata & al. 2010).
124. Hymenium and asci amyloid, paraphyses branched,
OTE VATIOUS SUDStTALES. pass oles ens Siae et Hee on LeMans ees Diplotomma Flot.
125. Thallus with elongate or radiate margins................... Dimelaena Norman
125. Thallus lacking elongate*or radiate margins i....°. cscs. savas’, arate ceversie e waists 126
126. AsCOSpotes(ransversely SEPEALCE.-0t. tit. Win blet isha ahe CfA cla id ats Ml Wile an ld Be 127
126. cASCOSPOHESE-SEPLALER’. s5:4iacta stytlaatd. cht tetnconahigete ena tyah a eae acetal a sees ot assay ot ass 128
127. Ascospores with apical wall thickenings ..................... Cratiria Marbach
NotE: Recent key to species available (Marbach 2000).
127. Ascospores without apical wall thickenings .................. Diplotomma Flot.
128. Apothecia with a thalline margin......................4. Rinodina (Ach.) Gray
128:tApotheciawith-a proper margin’. 02. ese east ge ssa ape ote aye bole nye ek nak 129
422 ... Poengsungnoen & al.
129
L279;
130.
130.
BL
1S,
132,
132.
133;
133.
134.
134.
135;
135.
136.
136.
Lz:
L3e,
138.
138.
139.
BSS.
140.
140.
141
. Ascospores with apical wall thickenings ...................0. Cratiria Marbach
NotE: Recent key to species available (Marbach 2000).
Ascospores without apical wall thickenings, thick- or thin-walled........... 130
Apothecial discs red-pruinose................000000- Stigmatochroma Marbach
Note: Recent key to species available (Marbach 2000).
Apothecial discs epruinose or with whitish gray pruina.................... 131
PRM CTIUTT ANS PETSEy, oo escent someday th wo ® ienieeg Bae Sculptolumina Marbach
NoTE: One species known from Thailand: S. japonica (Tuck.) Marbach
TBiake minha c leak tc nek fo, ne re WE ta, Pom WR eo RRR eS AR En eines Cen Oey a 132
ELy potheeteitn<bright yellow verges et onedseas tase eratsla cet ams! dea Hypoflavia Marbach
NoTE: One species known from Thailand: H. crustosa Aptroot
Ely pothectana- mot BOM yellOW, is 555-3 dts, onsen dh soa dts senen dye debe dpb pben doh pebea dyes 133
Conidiatiforniss At. Ato) es Amandinea M. Choisy ex Scheid. & H. Mayrhofer
Conidia-bacilliform ortusiforines ¢ 0...2du edd caead ceed bir ed bate heed bay 134
FONT A PLES TE OT ITY Seticsath saat arto Nea Pe Non 1 Pe Me Win onlin Sg alent Gassicurtia Fée
Conidia bacwliforin: 16). i Mes 25 Ae xy sabe eb, < 8 eels, 8 te been Buellia De Not.
ASCramultispored-(258 ASCOSPOTES) enc. tcvarsis naraccth saraccte tearaiee tearacgeanen act meee Riots 136
Asei Withel=§ ascospores. sacs 20.S0) 6.0) eae dee DG See eae bce bh Be 138
Thallus and apothecia gray-green to gray-brownish,
apothecial discs not pruinose .) 07.504 se Be ite ote tle ast Maronea A. Massal.
NoTE: One species known from Thailand: M. constans (Nyl.) Hepp
Apothecia yellowish green to orange,
apotliecial liscs-pruimiOserOrgiOk. u's. ae. eddy kbs Dh dh wed Aa ale 137
Thallus and apothecia K-, containing pulvinic acid derivatives,
apothecia lecanorine, apothecial discs not or slightly pruinose,
Ol! VARIOUS: SUDSTRATES: oso. % cc ones nate Bae, Shes eet pa Candelariella Mull. Arg.
NoTE: One species known from Thailand: C. reflexa (Nyl.) Lettau
Thallus and apothecia K+ red, containing anthraquinones,
apothecial discs heavily pruinose, on bark ................. Piccolia A. Massal.
NoTE: One species . known from Thailand: P conspersa (Fée) Hafellner
ASCOSPORES HON=SEP tate 6 sale em tly. Sem, Me By elie eee hari ehnae ocd eee dn end 139
Ascospores with 1 to many transverse septa or muriform .................. 164
Apotheciayellovwcorredak= or K+ yiolet lS: shu dey sadbcs sodden Soden Sodbes 140
Apothecia not yellowor red) Kas oe vie oo Waals boas bogs shia wa ale PR eae 142
Apothecia lecanorine, epihymenium K-,
containing pulvinic acid derivatives .................. Candelariella Mull. Arg.
NoTE: One species known from Thailand: C. reflexa (Nyl.) Lettau
Apothecia biatorine, epihymenium K+ violet, containing anthraquinones.... 141
. Thallus containing xanthones, ascospores broadly ellipsoid,
On.various subsivatesics «F515 est hp eo see =o wipes! etree Pee Pyrrhospora Korb.
Key to the lichen genera of Thailand ... 423
141. Thallus lacking xanthones, ascospores narrowly ellipsoid to bacillar,
MMTYS AE erp one scrrtng tg ee acl sms, PO Late inl bode Hp Ma OE Ramboldia Kantvilas & Elix
Note: Recent key to Thai species available (Kalb & al. 2009).
142. Apothecia lecanorine or cryptolecanorine ............... 0c. cee eee eee eee 143
14>, Apothecia-bigtormne or lecid eine. reste ee 28S! et Ae al ASae et Ae eae en 154
143. Ascospores usually over 30 um long, often thick-walled, paraphyses usually
retictilately branched, -hypotheciummhyaline a. cote rete ietihe 5: ane oooh 144
143. Ascospores usually smaller, usually thin-walled, paraphyses simple to branched,
hy pothecivmehyalitiervor: pismented: cg t-. ua Fhe ag en ee eee ER eee toe 147
144. Hymenial gel and asci strongly amyloid, ascospore wall 1-layered,
APOMIeCta-GISCUONTE, Ai, ltt W whut, avkhes dukhe 5 seehes seh Ochrolechia A. Massal.
NoTE: One species known from Thailand: O. africana Vain.
144. Hymenial gel not or weakly amyloid, asci amyloid, ascospore wall 1- or 2-layered,
apothecia-disciforim Orsporitornt WR ele, Amino eins healt yeaheah atin 9 145
145. Asci weakly amyloid, with a distinctive ocular chamber, ascospore wall
mostly 2-layered, thick, apothecia disciform or poriform ........ Pertusaria DC.
145. Asci strongly amyloid, no structures visible, ascospore wall
IPlayered;thick:-or thin, apothecia-discitormn 20h. 4 oldbe said . Bakes Behe 146
146. Ascospores thick-walled, usually containing lecanoric acid....... Varicellaria Nyl.
NoTE: One species known from Thailand: V. velata (Turner) I. Schmitt & Lumbsch
146. Ascospores thin-walled, lacking lecanoric acid ..................44. Lepra Scop.
147. Hymenium not or faintly amyloid. <2. sea eles eae in ale bg os ewe ed eel 148
147. Hymenium amyloid, paraphyses conglutinate......................00 0008 149
148. Apothecia sessile, with a star-like opening .................. Trapelia M. Choisy
148. Apothecia immersed in the thallus....................00.. Hymenelia Kremp.
NoTE: One species known from Thailand: H. lacustris (With.) M. Choisy
149. Marginal lobes of thallus elongate,
Lal ue suibertighoseue.'. 9,0 Ot cl wee |e | ae Xanthoparmelia (Vain.) Hale
149. Thallus crustose, without elongate lobes ............. 0.0... cece ee eee eee 150
150. -Hypothecrut-hyaline-of palevelowishe ..csetands.aeetencsete bande ngelandse tg dandie danandsn 151
150. Hypothecium orange-brown to dark brown............ 0... eee eee ee eee 152
151. Thallus and apothecia brownish,
exciple cupulate, conidia bacilliform, usually containing
the alectoronic acid chemosyndrome..... Neoprotoparmelia Garima Singh & al.
Note: Recent key to species available (Singh & al. 2018).
151. Thallus and apothecia not brownish,
exciple annulate, conidia filiform,
alectoronic acid chemosyndrome absent .................-0-6- Lecanora Ach.
NotE: Recent key to Thai species available (Papong & Lumbsch 2011).
424 ... Poengsungnoen & al.
152
152
153.
153.
154.
154.
155.
155.
156.
156.
Ls?
PSY:
158.
158.
159,
159:
160.
160.
161.
161.
162.
. Hymenium purple-violet, apothecial discs black.......... Tephromela M. Choisy
. Hymenium hyaline to pale yellowish, discs of various colors, only rarely blackish
BROWNS h. 5 a5 Nis a2 Sis SP ee a2 Sen Se eT ene Se Te Som se Su see ci tk yeh Se 153
Conidtat HOt et ancl non nant aah on etn tet an titan em Lecanora Ach.
Note: Recent key to Thai species available (Papong & Lumbsch 2011).
Conidia baciliform.:-..5 2.56 5 2.hew 2.526 wee he we Vainionora Kalb
NoTE: One species known from Thailand: V. flavidorufa (Hue) Papong & Lumbsch
Hymenium not or faintly amyloid, asci faintly amyloid .................... 155
Pyaneninm-andyaseamy lords: 08 os 0 Se Se Rap he tartan erie oleae? Solan # 2 vers
Apothecia pinkish, thallus dark green, thin ..................... Dibaeis Clem.
mpothecia brownisihathallus-Orayicht ts. teh. tet le ts ode Cd hed ol cel alae 156
Thallus:containing sticti¢ acids... fsa. fives dane ee Parainoa Resl & T. Sprib.
NoTE: One species known from Thailand: P. subconcolor (Anzi) Resl & T. Sprib.
Thallus containing the gyrophoric acid
Che MOS yNO POM: eas ahs 8k wartrh xs yet en ei ae Trapeliopsis Hertel & Gotth. Schneid.
NoTE: One species known from Thailand: T: viridescens (Schrad.) Coppins & P.
James
Thallus byssoid, white to pale gray, ecorticate......... Crocynia (Ach.) A. Massal.
NotE: Recent key to species available (Aptroot & Caceres 2014a).
Thallus crustose, not byssoid, corticate or ecorticate............... eee eee 158
‘Thalltis erowinGOnfOCk, 2243-2 a4ibee a4 need itd 4 nerd 4 nice dd magne ihapeucd age 159
Tiaallis ORO Wit ORES CAB hacen ota ahs oh at Se at ase as sla as oA deeb tarda Se 160
Asctof the Lecanorastype.i6 x) Gu 4. Gao Se hee eee ts Ramboldia Kantvilas & Elix
NotE: Recent key to Thai species available (Kalb & al. 2009).
AUSCLOL (Ne POLIT AY Oe sco one S oa erat oR cs PR gh. Pag Pg Pe Porpidia Korb.
NoTE: One species known from Thailand: P albocaerulescens (Wulfen) Hertel &
Knoph
Thallus with stalked sporodochia and red pigments ... Sprucidea M. Caceres & al.
NoTE: One species known from Thailand: S. penicillata (Aptroot & al.) M. Caceres
& al. (Caceres & al. 2017).
Thallus lacking sporodochia, with or without pigment;
if pigmented restricted to medulla, and yellowish to orange, not red........ 161
Asci without a distinct tubular structure in the tholus,
thallus-usually swith warts. oo. aye el kere hoy ewes Malmidea Kalb & al.
NotTE: Key to Thai species available (Kalb & al. 2011); subsequently, one additional
species, M. tratiana Kalb & Mongk., was described (Kalb & al. 2012).
AS CIO PH EAC COOL I UPC o:i> e5Gairg -2 stadt eee e ota SNe ota ae ee Sh ew Beas Bote 162
Apothecia over 0.5 mm in diam.,
hypoth eermtnslya live he. ss ccths wetwarti taper the Belesbe gotta » Ramboldia Kantvilas & Elix
NotE: Recent key to Thai species available (Kalb & al. 2009).
Key to the lichen genera of Thailand ... 425
162. Apothecia small, under 0.5 mm in diam.,
hypothecium hyaline:orpieiniemte ds, sw. sve le Ss Ae Ms eles Als ee ae 163
163. Apothecial margin entire, paraphyses unbranched, hypothecium dark brown,
ascospores thin-walled. 54 i..034 nee 3 4 pice ds mised Viner 24 hee Punctonora Aptroot
NoTE: One species known from Thailand: P. nigropulvinata Aptroot
163. Apothecial margin ragged, paraphyses branched, hypothecium hyaline,
ascospores thick wallleds. <4 s:o.10g spseuted ¢itsrten gal gehen dy eeeeggit zeh-a 4 Traponora Aptroot
Note: Recent key to species available (Aptroot 2009).
164. Ascospores polarilocular, with 2 or more locules....................000005 165
164. Ascospores transversely septate to muriform, ascospore wall various ........ 166
165. Ascospores usually with 2 locules,
AscroPalZloscitistes- 1 Pe SAS POPE sotalol anil ast aid acl ncse achat Caloplaca Th. Fr.
165. Ascospores with more than 2 locules,
asci of Letrouitia-type, 2-8-spored ............. Letrouitia Hafellner & Bellem.
LOGnAscospores -seplate ..). 2. cscs Bie 62, ei Se en Se eee GE Gi FES oe FES oie S 167
166. Ascospores with 3 or more transverse septa, or muriform.................. 171
167. Hymenium inspersed with oil droplets, ascospores relatively thick-
ZUG SUPE AT Sr Ut AREA Sys Prt se eer Re rae YY CA WRER Bi Pol co Megalospora Meyen
167. Hymenium clear, ascospores thick- or thin-walled....................004. 168
168. Asci with 2 ascospores, more than 40 um long........ Lopezaria Kalb & Hafellner
168. Asci usually with more ascospores, usually less than 40 um long............ 169
169. Asci thin-walled, non-amyloid,
hamathecium weakly amyloid.....................0004. Absconditella Vézda
NoTE: One species known from Thailand: A. delutula (Nyl.) Coppins & H. Kilias
169. Asci with thickened apex, amyloid, hamathecium amyloid................. 170
170. Asci of Catillaria-type, paraphyses with distinct pigment caps,
ascospores <2 0)(iarlonie. oe hus. Slee Ree ees eee Catillaria A. Massal.
170. Asci of Lecanora-type, paraphyses lacking distinct caps,
ascospores >20 pit LONG. fos rao es ewe seit vid es Sage a Megalaria Hafellner
NoTE: One species known from Thailand: M. laureri (Hepp ex Th. Fr.) Hafellner
PT. SelryieniuicOnaniylOld. ¢ Saat ears hen eke ae oe tee oe tere te Mave et 172
17. Hyimeniuniamyloid -or-hemiamyloid, a2) 42094 a ee ee ee oo eg 173
172. Paraphyses richly branched and anastomosing .............. Gyalideopsis Vézda
Note: Recent key to species available (Xavier-Leite & al. 2018).
LPO AP arap Ry SeS SUP I oF Jase s0 oreo 2 ote © dora otateee tee eaee Gyalidea Lettau ex Vézda
NoTE: One species known from Thailand: G. luzonensis (Kalb & Vézda) Aptroot
& Licking
17 3) ASCOS POLES. MIUTHOTHIG Soi ced ated Gane Pe eerie OF Rene OF ween ¥ Meant ltnne hoes ed 174
i737 AScospores ransverselysseptatevt.n: e105 Mico td wot Wet) ee) ee a 176
426 ... Poengsungnoen & al.
174.
174.
175,
175.
176.
176.
177.
177.
178.
178.
179,
IZ,
180.
180.
18
—_
181.
182.
182.
183.
183.
184.
184.
185.
185.
Apothecia K-, lacking anthraquinones ................... Phlyctis (Wallr.) Flot.
Apothecia K+ violet, containing anthraquinones. ...................00000- 175
Thallus whitish or gray, lacking anthraquinones,
BSH (=D) COTE FS EF ack Pea ae Sects alle, eaten oe erat Brigantiaea Trevis.
Thallus yellowish, containing anthraquinones,
ASCP De Ses PORCU a vig a. en the Ula rot eat wae yo Letrouitia Hafellner & Bellem.
Apothecia lecanorine-or immersediin verrucae. . nw oi ha veh ee Ra eae ee 177
Apothecia: biatorine Omlecideiier. 2 211: Se set sho At usttyntusalnnsdy foes ewes 179
Apothecia lecanorine, discs red, K+ red,
ascospores thin-walled... ott 1.94 + eqacge egange 2 Meee ee Haematomma A. Massal.
Apothecia immersed in verrucae, discs not pigmented ..................4. 178
Paraphyses simple to apically sparingly branched,
asci with weakly amyloid tholus, ascospores
thick-walled, containing depsidones .................... Phlyctis (Wallr.) Flot.
Paraphyses slightly branched, asci with an amyloid tholus, ascospores
relatively thin-walled, spiraled, containing depsides....... Loxospora A. Massal.
NoTE: One species known from Thailand: L. lecanoriformis Lumbsch & al.
Exciple poorly developed, consisting of paraphysis-like hyphae,
asci of Lecanora-type, ascospores twisted............ Scoliciosporum A. Massal.
NoTE: One species known from Thailand: S. umbrinum (Ach.) Lojka
Exciple well developed, ascospores and asci variable...................006- 182
Thallus with stalked soralia, ascospores 1-3-septate...... Crustospathula Aptroot
NoTE: One species known from Thailand: C. khaoyaiana Kalb & Mongk.
Thallus lacking ‘stalked:sotalian wi. op oa. s. weet s dao: taoles taoe daa va aust 181
. Asci of Catillaria-type, hypothecium dark,
thallus containing depsidones ..................0.. Kalbionora Sodamuk & al.
NoTE: One species known: K. palaeotropica Sodamuk & al.
Asci of Bacidia-type, hypothecium hyaline to pigmented,
Chemistry variablew.n :... 8c: toda ch, Bae co Met 0-9 set ol Puerco oe Bacidia De Not.
Mazaedium present, asci prototunicate, ascospores brown ..............--- 183
Mazaedium absent, asci uni- or bitunicate, ascospores hyaline or brown ..... 188
Ascospores.2-septate to submiuriforin .. 3. 14.625 e4 ed shied oe wSEe eae 184
PRS COSPORES ASOD AUC: Foe Fee Men l, Goi Men, bo Nan bia, bl Ney be RN Cas tA 186
Ascospores 2-septate, secondary metabolites lacking...... Heterocyphelium Vain.
NoTE: One species known from Thailand: H. leucampyx (Tuck.) Vain.
ASGoOSpores. S-septate to: SUbMIUFTTOTI Soy), eel; vente « slbeate » wlvai alba « 185
ASCOSPOTES se-Se Plate, ve ladle taste tal as nals 5 Meats oe sands sls eas Pyrgillus Nyl.
NotE: Recent key to species available (Singh & Singh 2017).
Ascospores submuriform, containing norstictic acid ......... Schistophoron Stirt.
NoTE: One species known from Thailand: S. tenue Stirt.
Key to the lichen genera of Thailand ... 427
186: Exciple'edoewithira pale corona 52.6825 swe A Gee sales oe Nadvornikia Tibell
LS6s EXCIpleed Ve WILNOUL ae CON ODA uF aie lage ated bla sd age ecee ed ncad BE 187
187. Apothecia with a thick,
whitish gray thalline margin...................... Tylophoron Nyl. ex Stizenb.
Note: Recent key to species available (Ertz & al. 2011).
187. Apothecia without a thalline margin......................0 0008. Pyrgillus Nyl.
NotE: Recent key to species available (Singh and Singh 2017).
L8sApothecia orbicularortiot-welldeiiied: : ss0i.5% netak cast at eaten eat woes tartan 189
lee*Apotheriathvellate: eT Met ee oe Ro Ci ce ert cen tat eten eterna te Mgie hn Mrnet 3 231
189. Paraphyses simple, hymenium amyloid or not, asci cylindrical, unitunicate,
ascomata orbicular, urceolate, apothecioid or perithecioid ................ 190
189. Paraphyses more or less branched and often anastomosing, rarely simple,
hymenium non-amyloid, asci non-amyloid or with a small amyloid plug,
bittinicate-ascomata Various x. ci. <setiags x sedan ie stant sella a stele 4 aN gage 5 223
190. Ascospores thin-walled, non-septate or septate
and. withimore‘or less-angullarihim ina § mii oe ag 8 hen eg ah wo 4 Ba wig Sh x eae ee 191
190. Ascospores mostly thick-walled, transversely septate or muriform,
with lenticular or diamond-shaped lumina ................ 2.0... esse eeee 200
191. Ascospores non-septate, apothecia immersed in the thallus ...... Ionaspis Th. Fr.
NoTE: One species known from Thailand: Ionaspis aptrootii Poengs. & Lumbsch,
nom. nov., MB 835127; = Jonaspis tropica Aptroot, Biblioth. Lichenol. 64: 73. 1997,
nom. illeg., non Ionaspis tropica Riddle (Britton & Millspaugh 1920).
191. Ascospotes transversely septate to-muriform’... >. 0204. beac post) hoaawoncs 192
192. Proper exciple and hypothecium carbonaceous,
epihymeniumy brown-granular. oot seas Die eden ene baa es Glyphis Ach.
NotE: Recent key to species available (Staiger 2002).
192. Proper exciple and hypothecium not carbonaceous,
epihymenium not brown-granular......... 0... cece eee eee eee 193
193. Disc of mature apothecia plane and adnate,
or, plane toxconvex anc apothecia’séssile eta v ooh «ae Bd x ee veh wwe he 194
193. Disc of mature apothecia urceolate, or apothecia perithecioid .............. 198
194. Apothecia pale yellow, sessile, biatorine, proper exciple hyaline to yellowish,
pseudoparenchymatous, ascospores l-septate........... Coenogonium Ehrenb.
Note: Recent key to Thai species available (Kalb & al. 2016a).
194. Apothecia immersed but erumpent, opening by radial or tangential fissures,
margins grayish, formed by exfoliating recurved triangular lobes .......... 195
195.sthallussecorticatevorspartly <orticate, Matt." .o0 4 os hase) hee ot hea steararts 196
195"Thallus.derisely corticate, usually shiny. 0) 4.9 ee a RG ee LS Be 197
196. Exciple more or less brown, ascospores amyloid ..... Pseudochapsa Parnmen & al.
196. Exciple hyaline to yellowish, ascospores non-amyloid ......... Chapsa A. Massal.
428 ... Poengsungnoen & al.
197;
197s
Apothecia with recurved margins,
ascospores NOMRaMyloid "Aves Anise Ment oda rlcad Astrochapsa Parnmen & al.
NotE: Recent key to species available (Borgato & Ertz 2018).
Apothecial margins not or slightly recurved,
with striate exciple filling the disc............. Pseudotopeliopsis Parnmen & al.
NoTE: One species known from Thailand: P. laceratula Mull ArgParnmen & al.
198. Exciple indistinct,
198.
199:
So
200.
200.
201.
201.
202.
202.
203:
203.
204.
204.
periphysoids lacking................ Gyalecta Ach. [= Cryptolechia A. Massal.]
Exciple well developed swith periphysoidss 200.05 a+ anes < laces qeteitie posal tin ahatald oe 199
Thallus indistinct, apothecia immersed to erumpent, asci thin-walled throughout,
ascospores"| “septate toAMUriOEnys, <4... 0.4 ade een a Ramonia Stizenb.
NoTE: One species known from Thailand: R. minima J. Kalb & Kalb (Kalb & Kalb
2017).
Thallus thin, gray to olive-gray, apothecia sessile to subimmersed, asci
thin-walled, with a thickened apex, ascospores transversely septate (to
PULTE ROG II oy Mee wade, islet ee hn ee ec eee tain We Topeliopsis Kantvilas & Vézda
NoTE: One species known from Thailand: T: darlingtonii Frisch & Kalb
Exciple-with periphysoids or-apieal fibrils... i... sass pols soins ele wa ees 201
Exciple lacking periphysoids and apical fibrils........................0000. 210
Exciple with apical fibrils consisting of radiating hyphae around the pore,
PeLIphysoidS. aPSent ~n. sect nla earl en leader aibles le rstsbaey ot Fibrillithecis Frisch
Note: One species known from Thailand: F. argentea (Mill. Arg.) Rivas Plata &
Licking
Exciple lacking apical fibrils but with periphysoids
separating the hymientumrand-exCtple so o..ce aca: s-sogdye sea grb seea dh pba gb sca ayers 202
Apothecia with a more or less free exciple and
a split between exciple and thalline margin .........................004, 203
Apothecia with a more or less fused exciple and
lacking a distinct split between exciple and thalline margin ............... 205
Thallus ecorticate or with a loose cortex, if with dense cortex
Chen’ lacktne Statice ACh oa. 8 canes Bagh wor Pays oot Ppt nad Page (oss Pap los Thelotrema Ach.
Note: Recent key to species available (Rivas Plata & al. 2010).
Thallus with a dense cortex, ascospores <60 um long,
VOAEIINS TIC EEG: DETR nd tld oe VD ol MA NT a ac Ni lel shite ad al secs Med ecg lt Redes 204
Apothecia large, >0.3 mm in diam., erumpent to prominent, with a thick, often
fissured, thalline margin, periphysoids distinct.............. Asteristion Leight.
NoTE: One species known from Thailand: A. alboannuliforme (Nagarkar & al.) I.
Medeiros & al.
Apothecia smaller, <0.3 mm in diam., immersed-erumpent, with a thin, entire
thalline margin, periphysoids indistinct .......... Austrotrema I. Medeiros & al.
NoTE: One species known from Thailand: A. terebrans (Nyl.) I. Medeiros & al.
Key to the lichen genera of Thailand ... 429
205. Apothecial discs more or less concealed by the incurved, denticulate margins,
paraphyses apically not distinctly thickened....... Topeliopsis Kantvilas & Vézda
NoTE: One species known from Thailand: T: darlingtonii Frisch & Kalb
205. Apothecial discs more or less exposed,
paraphyses often apically thickened and moniliform ..................... 206
206. Apothecia with a free exciple and distinct double margin,
thallus with a dense cortex, containing stictic acid ........... Asteristion Leight.
Note: One species known from Thailand: A. alboannuliforme (Nagarkar & al.) I.
Medeiros & al.
206. Apothecia with a fused exciple, cortex and chemistry variable .............. 207
207. Thallus:densely corticate, usually shinys ss. be baie te nein ek neve BY beset gave et 208
207thallusecorticate-on- partly corticates matt, 2.288.240 we 9) oe el ek 209
208. Apothecia with recurved margins, ascospores brown,
AUUTVLOT Case, hoes feds sedan ited hf wnt hyis pedal dy hs fob tts Mua ty hs Nitidochapsa Parnmen & al.
NotE: Recent key to species available (Poengsungnoen & al. 2014).
208. Apothecial margins not or slightly recurved, with striate exciple filling the
ISG ie te cart Pankecnet bce sceand hy erent eeha te Ph tarenaeh ie Pseudotopeliopsis Parnmen & al.
NOTE: one species known from Thailand: P. laceratula (Mull. Arg.) Parnmen & al.
209. Exciple more or less brown, ascospores amyloid ..... Pseudochapsa Parnmen & al.
209. Exciple hyaline to yellowish, ascospores non-amyloid ......... Chapsa A. Massal.
NotE: Recent key to species available (Rivas Plata & al. 2010).
210: Apothecta solitary. lacking: a.colummellay. 08 lub alincd ey whine bey telonsieytilancteeitoialels mi a
210. Apothecia solitary or pseudostromatic, with a columella or
columella-like sterile tissue in the hymenium .......................004. 217
211. Apothecia with the covering lobules rupturing radially and horizontally,
medulla dark red, exciple more or less carbonized,
ascospores diamond-shaped................... Cruentotrema Rivas Plata & al.
Note: Recent key to species available (Kalb & Schumm 2021).
211. Apothecia different, medulla pigmented or not, exciple hyaline or brown,
ascospores Trot-diamond4shaped tics tie des (Beg hee ee ae 212
212. Apothecia emergent to sessile, hymenium inspersed or rarely clear,
EXCIDONCAE D@MEZEG ction sth Morante Menaee Worn Sas Morey, Novae Mewnsiy twa te Miarg Maele dua sme 213
212. Apothecia immersed to sessile, hymenium mostly clear, rarely inspersed,
exciplech valine toz brow Shi ss bones Sauces Boncnaly Maleate Uhemansl hy Reknel Atima tna Sona 214
213. Apothecia with a yellow to orange disc, hymenium inspersed with small oil
droplets, ascospores ellipsoid to broadly ellipsoid,
CONLAMMING | PrOLOCELMATIC ACIDS, Ni, see, Wanstd we tect elce a» Wes Ampliotrema Kalb
213. Apothecia lacking pigments, hymenium clear or inspersed,
ascospores narrowly fusiform to cylindrical,
lacking secondary metabolites os. jo05 estes eee ee Trinathotrema Liicking & al.
NotE: Recent key to species available (Kalb & Kalb 2017).
430 ... Poengsungnoen & al.
214.
214.
25:
215i
216.
216.
27;
217.
218.
218.
219;
219,
220.
220.
221
22);
222.
Apothecia immersed, exciple prosoplectenchymatous,
chemistry variable but psoromic acid common................ Myriotrema Fée
NotE: Recent key to species available (Liicking & al. 2016b).
Apothecia immersed to sessile, exciple paraplectenchymatous,
chemistry variable but psoromic acid absent and stictic acid common...... 215
Apothecia immersed with a pore-like opening,
ascospores hyaline, non-amyloid,
thallus with prosoplectenchymatous cortex ...... Wirthiotrema Rivas Plata & al.
Apothecia immersed to sessile, with a broader opening,
ascospores brown, rarely hyaline, non- or weakly amyloid,
thallus ecorticate or with a weakly developed cortex...................0.4 216
Young ascospores thick-walled, thallus loosely attached to substrate,
with large clusters of columnar crystals,
Tinedtll a withsre d= Crystal Se 2. ot encmn alee es aga wna tea te anaes ch gee Sanguinotrema Liicking
NoTE: One species known from Thailand: S. wightii (Taylor) Licking.
Young ascospores thin-walled, thallus firmly attached to the substrate,
with irregularly dispersed crystals,
medulla iekine cedicrystals.cch + is8 ta. See ohn sae ee Leucodecton A. Massal.
Ascospores diamond-shaped, non-amyloid,
EXCIPISCALDGHIZEM poe i tacts hes ne boats hae Clandestinotrema Rivas Plata & al.
NoTE: One species known from Thailand: C. clandestinum (Ach.) Rivas Plata & al.
Ascospores not diamond-shaped, amyloid or non-amyloid,
exciplenyalinie t6.canbOnizeds 1s Peis sre fe ase feo cee owe tata eee eee 218
Columella broad-based, carbonized,
thallus ecorticate or with weakly developed cortex......... Melanotrema Frisch
Columella smaller when simple or reticulate, or pseudocolumella present, or
apothecia pseudostromatic, thallus with a well-developed cortex. .......... 219
Apothecia pseudostromatic, columella absent. ... Compositrema Rivas Plata & al.
NOTE: One species known from Thailand: C. thailandicum Rivas Plata & al.
Apotheciasolitaryscolumellapresenty.«.i3+54sa¢7 Glas Gate Re eae pees 220
@oltmella retictilate's. .sa.' 2 4:hul- dalle og qthaee ggihee dq /hece 2 4ihoer F4'h avoid hae’ aed 221
Columella simple or a pseudocolumella
(not penetrating the hymenium completely) present ...................0. 222
Apothecia uncarbonized or weakly carbonized, margins thick,
WLISes: SUA VSP S Ge: pee sar ye eee Ae lee gh ean oie oat gilded Stegobolus Mont.
NoTE: One species known from Thailand: S. berkeleyanus Mont.
Apothecia distinctly carbonized, margins thin,
discs mostly epruinose?;+6.07..08 fh bs sh ba sea te ote te Rhabdodiscus Vain.
Exciple hyaline, pseudocolumella present,
ascospores relatively small................ Glaucotrema Rivas Plata & Lumbsch
Note: Recent key to species available (Liicking & al. 2016b).
Key to the lichen genera of Thailand ... 431
222. Exciple hyaline to carbonized, columella present,
ASCOSPOLES OVATIONS SIZES um, atin Ra wh unn sates trn west lon darth Ocellularia G. Mey.
NotE: Recent key to Thai species available (Sutjaritturakan & Kalb 2015).
223. Ascomata not well defined, asci weakly aggregated in clusters or scattered, broadly
CLA VALE ae wks ctnn pds wabag gh tvactan 4 Satan dybds haa trdtg kee hs chal Byds poked AA peta tht pcbou 8d dss dee a ass 2 224
223. Ascomata present, orbicular, asci clavate or cylindrical, ascospores various... 225
224, Ascospores MUPMOIIMN, 9 oi vee aos Meow vee Naa aoe vas Cryptothecia Stirt.
Z24 LASCOSPOTES tralisversely. SEPUALe 5a 0. Fa 0 pos Fu,0 PFs Page Pea Stirtonia A.L. Sm.
NoTE: One species known from Thailand: S. rhizophorae Kalb & Mongk.
225. Paraphyses weakly anastomosing, paraphyses easily separated in KOH....... 226
225. Paraphyses strongly anastomosing, paraphyses conglutinate in KOH ........ 227
226. Ascomata lecideine, paraphyses weakly anastomosing,
ascospores multi-septate, acicular,
sometimes separating into part-spores in the ascus ...... Bactrospora A. Massal.
Note: Recent key to species available (Sobreira & al. 2015)
226. Ascomata with pseudothalline margin, paraphyses simple,
ascospores not separating into part-spores..... Graphidastra (Redinger) G. Thor
227 -alballus-byssoid'.... 22 Seis 42 ew Bs Ses 22 Rn Be Be oe Re oe Sk aes Dichosporidium Pat.
NoTE: One species known from Thailand: D. boschianum (Mont.) G. Thor
Peal VC UW WUC C see een eae <P Nte ae RAS © SAS AREAS. Ge veee omen cemane Dresher © 228
228. Ascomata perithecioid, in stromata................ 22. eee eee Chiodecton Ach.
NotTE: Key to species available (Thor 1990).
228; -Ascomata“apothecioid, not instroiniata:. «.- Akt Ratha athe a aR a mem an. 229
229. Exciple containing crystals, asci clavate, apothecial discs often
PRURTIOSE fs C6 Soest renee d Seether tae Bet ahs cageneths Cresponea Egea & Torrente
Note: Recent key to species available (Egea & Torrente 1993).
P2OSEXCIple TACKS CLV Staley tesla wine ts fects Seeing Feedage Baise Bodog Kreg Bee 2 230
230. Ascomata orbicular, asci of abietina-type,
ASCOSPOTESNISH OEM 28 2 h.t9 Oe Feel EN! UES ee Lecanactis Korb..
230. Ascomata somewhat rounded to lirellate, asci of grumulosa-type,
ascospores ellipsoidal to fusiform............... Lecanographa Egea & Torrente
NoTE: One species known from Thailand: L. atropunctata Sparrius & al.
231. Asci bitunicate, with a small amyloid plug, clavate to cylindrical ............ 232
231. Asci unitunicate, non-amyloid, cylindrical, unitunicate.................... 239
2ST ASCOM ALA SEPOUTALONGE S%, -aceusey -a tase apa tisane statis sree aceon Grea oR oh 233
237; AScomaAta solitary snot St OMMata oA, uch cits econ n wooeede g sceea eatterte wal Uma 3 234
233. Apothecial discs exposed in stomata ............. 2... sees eee Syncesia Taylor
NoTE: One species known from Thailand: S. albiseda (Nyl.) Tehler
233. Apothecial discs in stromata perithecioid...................4. Chiodecton Ach.
NotE: Recent key to species available (Thor 1990).
432 ... Poengsungnoen & al.
234.
234.
Pe oe
239;
236.
236.
23
237:
DIS:
238:
239.
239;
240.
240.
241.
241.
242.
242.
243.
243.
244.
244.
245.
245.
246
246
Ascomatal margins indistinct, asci broadly clavate ................ 0.000 235
Ascomatal margins distinct, asci cylindrical to clavate..................00. 236
ASCOSPORESATANSVETS Ely SEPLALE cute. My sctae Wy dneRQy et RR d teal a Geet Arthonia Ach.
AISCOS POPES TIMILLOTINL #2 89 Pas Hat Ge ROE lat Us Ml, Arthothelium A. Massal.
Ascomata with a pseudothalline margin, orbicular to slightly lirellate,
ASCOSPOTESTDICLAVALC Exe ye lsu a oon y oie e oust Graphidastra (Redinger) G. Thor
Ascomata without a pseudothalline margin, lirellate, ascospores various ..... 237
Ascomata immersed in thallus,
exciple and hypothecium hyaline......................008. Enterographa Fée
Note: Recent key to species available (Seavey & Seavey 2014).
Ascomata sessile, exciple and/or hypothecium pigmented.................. 238
Ascomata ellipsoid to shortly lirelliform, asci cylindrical,
without apical thickening ..................... Lecanographa Egea & Torrente
NoTE: One species known from Thailand: L. atropunctata Sparrius & al.
Ascomata lirelliform, asci clavate to cylindrical,
apically: thickertied®. gic. og aids. gin oF 4! sera din ere a din aee gd Alb are a dinar Opegrapha Ach.
Ascospores Ayaline- ©... one, Lemke, ©. vera US ek eek ee Mees OE ee one EE lane 240
ASCOSPOTES DeCOMATINS, DOWIE 5 pu: on ceg pus weneg te pe ben hye poten dye bobo Oph phew be petgung be Fd 248
Exgiplenot-earbonized ts, syn, aunts pdb 5 nes Bh 5 ees BSe sei ibe gape ibe vcetbe nese e 4 241
Exeiple; at least partly carbonized. . 2.26... aete saat ole sine es ale os hale s 245
Paraphyses withtwarted "tips... 24:15 sicko Jussi Susette Susetatusee Acanthothecis Clem.
NoTE: One species known from Thailand: A. yokdonensis S. Joshi & Hur
Paraphiyses lacking -warted: tips... 736154 hie fo Oe vo ae ve ee BS kay 242
Lirellae narrow, more or less immersed in thallus, discs partly covered by the
EIA LRG ed Petia Pe Pn ae PTR a, gt Rh RAL PE a PRD PL BP oe Fissurina Fée
ASCOIM ELA CIPTCTO RES sterne sattiaa cesta acta nat anhs nat lat aren che aah anh eniae tebe etnias 243
Ascospores small, less than 20 um long.................... Platythecium Staiger
NotE: Recent key to species available (Neuwirth & al. 2017).
Mscospores larger «2 dina dese ag ftdte.« a4 deer a dthterg Ath peez dither a Ath aetae'd Raeeuld ees 244
Thallus ecorticate, whitish gray, discs whitish-pruinose........ Diorygma Eschw.
Thallus corticate,.dises Vartous....0). <0). 2.20 weenie eb bene Allographa Chevall.
NotE: Recent key to Thai species available (Kalb & al. 2018).
Apothecial dises-brown-pxruinose nse, sethsssny tls ayy elec Sr alle ra tabling elton Glyphis Ach.
NotE: Recent key to species available (Staiger 2002).
Apothecial discs epruinose or with whitish or yellowish pruina............. 246
. Thallus containing lecanoric acid, C+ red, apothecial discs heavily whitish-
PGTEOS Cs A cule PR acde cee ccs cee gia Pree. 2 hal ses aden ot Ea -Dyplolabia A. Massal.
Note: Recent key to species available (Kalb & al. 2016b).
. Thallus lacking substance or containing other substances, apothecial discs
EPPUINOSE OL PCUIMOSE tla pS wigs! aa o-aePateds dil ko 36) ated 5 a ol phates! dslatcdie nash dearth 4 gs 247
Key to the lichen genera of Thailand ... 433
247. Periphysoids warty, labia covered by whitish pruina,
ascospores non- or weakly amyloid......... Carbacanthographis Staiger & Kalb
NotE: Recent key to species available (Staiger 2002)
247. Periphysoids not warty, labia exposed or partly covered by thallus,
ascospores strongly amyloid............. Allographa Chevall. & Graphis Adans.
Note: Recent key to Thai species available (Kalb & al. 2018).
ZAS eA scomata NOt: CarbOmMiZed ie os sete ws wie ele ooh ale Helens ai ele 5 Ole ld bk ane #8 eae 249
248. Ascomata at least partly carbonized......... 0... eee eee eee 252
249. Ascospores non-amyloid, walls not thickened.......... Phaeographopsis Sipman
Note: Recent key to species available (Kalb & Kalb 2017).
249. Ascospores amyloid or non-amyloid, walls thickened ..................... 250
250 SASCOMAtarStHONIAtOI sarc, tease teas tae ee bavecte ones bak. Creographa A. Massal.
NoTE: One species known from Thailand: C. subbrasiliensis Sutjaritt. & Kalb
ZOU. AS COMALNOT AA STPOMIARA fl anno wsent ¥ avenge X atent & Giktand 5 Senend Sefttenend Selene’ A 251
251. Ascomata with distinct labiae covering the apothecial discs
ie Pach daisy eke trated eae Aatinar tatty Wasa dens Pallidogramme Staiger & al.
251. Ascomata with indistinct labiae and exposed apothecial discs
SE Ea oc eat Acker. Phaeographis Mull. Arg. [= Gymnographa Mill. Arg.]
252 eASCOMAtArStOUIAtOIG Gaoc.0o acts Moats Monat, Moats Leach, ene, DEas Sarcographa Fée
POA SASCOMA AIO MM SIMOI RAGA s hs Neon toast a hap eat 8 nily Rei Belg ha Fly eat A gn to pHa)
253. Hypothecium not carbonized, exciple carbonized.............. Platygramme Fée
Note: Recent key to Thai species available (Kalb & Kalb 2017).
DSS. SET y OTHE IT CALO ONIZEG. «).55 24.5} uhe tht ne ctact latin wae lon aaah aha ciaa acuta ate vate cuentas 254
254. Labiae indistinct, ascospores transversely septate ............ Leiorreuma Eschw.
254. Labiae distinct, ascospores muriform ............ 0.0 e eect eee eee 255
255. Apothecial discs pruinose, hymenium not red..................40. Thecaria Fée
NoTE: One species known from Thailand: T: quassiicola Fée
255. Apothecial discs epruinose, hymenium dark red............ Pliariona A. Massal.
NoTE: One species known from Thailand: PR montagnei (Bosch) A. Massal.
256, ASCOSPOLESHON =Septate HV ANE isc 4 tasee dla, sel ota a ta Se ls aed Rs ol 257
256; Ascospores septate, Wyaline Gr DrOWIh..'< ie <le/ Wie x iels Mid was ld win le wale Mite o wl Rd 260
257. Paraphyses present, periphyses absent,
ascospores over 30 lm long, thick-walled...................... Pertusaria DC.
257. Paraphyses absent, periphyses present,
ASCOSPOFES WATIADIOST Ns tout, odin Blades edly WIN wh ENE oh INE Ah cle tt lg 258
258. Ascospores over 30 [tm long, thick-walled, on bark ....... Coccotrema Mill. Arg.
258. Ascospores smaller, thin-walled, on rocks ........... 0... cee eee eee eee 259
434 ... Poengsungnoen & al.
29;
29:
260.
260.
261.
261.
262.
262.
203:
263.
264.
264.
265.
265.
266.
266.
267.
LO7s
268.
268.
269.
269.
270.
270.
Thallus endolithic, perithecial involucrellum with star-shaped aperture,
Perithecta TMMePSes Faw An ccuts wheeler wlleatecaliesdard Bagliettoa A. Massal.
NOTE: One species known from Thailand: B. baldensis (A. Massal.) Vézda
Thallus epi- or endolithic, perithecial involucrellum lacking star-shaped aperture,
peritheciassessile-orrarely 1mmiersed:...: 5 £427 t2 th. eh Verrucaria Schrad.
NoTE: One species known from Thailand: V. muralis Ach.
Mazaedium present, asci prototunicate, ascospores brown ..............--- 261
Mazaedium absent, asci uni- or bitunicate, ascospores hyaline or brown ..... 262
Ascomata with poriform opening disc, photobiont trebouxioid... Pyrgidium Ny].
NoTE: One species known from Thailand: P montellicum (Beltr.) Tibell
Ascomata with widely exposed disc, photobiont Trentepohlia....... Pyrgillus Nyl.
NotE: Recent key to species available (Singh & Singh 2017).
Paraphyses or other interascal hyphae absent, ascospores muriform......... 263
Paraphyses or other interascal hyphae present, ascospores various. .......... 264
Hymenium lacking algae, usually on bark ................... Agonimia Zahlbr.
NotE: Recent key to the genus available (Breuss 2020).
Hymenium with algae, on soil and calcareous rocks.......... Endocarpon Hedw.
FS COSPOTES: DOWN Su, eis.) Heancctle Hensatls Henly Bae eT BUCK BRC TRAE kaka ene 265
AASCOSPOTES MVS tape os weet ws vedas veka Te vee le seals eas le sella we oe Gael ON Gale 5 273
Asci unitunicate, paraphyses simple to sparingly branched,
periphysoids, if present, going down to the hymenium ................... 266
Asci bitunicate, paraphyses simple to strongly branched and anastomosing,
periphysoids;.if present, restiicted to -OStiole is. s.co pe ote aioe Sega a acaaceld ola ae 267
Photobiont trebouxioid, on soil or rocks................-- Diploschistes Norman
NotE: Recent key to species available (Rivas Plata & al. 2010).
Photobiont trentepohlioid, on various substrates
bt cchag ¥y ttecbeg dy Manian eataga resshagt ing Genera with perithecioid apothecia — see 188
Paraplnyses!sitip le splat: epsesnny etme ety epssdaly helmets Whe wadils Wesel Weemadlinta tend watadabe ¥ 268
Paraphyses strongly branched and anastomosing ..................0.0000- 272
ASCO ata SECON ALONG. tise. Tan tee Tags sts gh asseutlga tees Ta acceatign nuvast ign ners Pneynes eerste 269
ASCOMALASOMPAT Ys sp nie ti weenie epaneeled nretayt ¥ mosnend ¥ eect ¥ eeeneyd ating Seltleteyt tyltlenen tel 270
Asci broadly clavate, thick-walled,
ASCOSPOres MIUPLOKIMN «Fhe il Fage ae Pageee Page oe ap | Mycoporum Flot. ex Nyl.
NOTE: One species known from Thailand: M. compositum (A. Massal.) R.C. Harris
Asci cylindrical to clavate, only apically thickened,
ascospores transversely septate to muriform ................... Pyrenula Ach.
Note: Recent key to species available (Aptroot 2012).
Ascospores red-brown with rounded lumina............ Lithothelium Mill. Arg.
Note: Recent key to species available (Aptroot 2006).
Ascospores gray to brown, not red-brown ............. 0. cece eee eee eee 271
Key to the lichen genera of Thailand ... 435
271. Ascospores distoseptate, transversely septate to muriform......... Pyrenula Ach.
NotE: Recent key to species available (Aptroot 2012).
271. Ascospores euseptate, muriform.......... Anthracothecium Hampe ex A. Massal.
NotE: Recent key to species available (Aptroot 2012).
272. Ascospores small (less than 20 um long), ascomata exposed,
LAE Val igh Win aptiin Sne a AR ERO) nor Mean Rem Lee, OR Mane CE Bogoriella Zahlbr.
NotE: Recent key to species available (Aptroot & Liicking 2016).
272. Ascospores larger, ascomata covered at least in part by the
EELS a, Sram nh Ne see ety cll 2 titania detec elec at Architrypethelium Aptroot
NoTE: One species known from Thailand: A. murisporum Luangsuph. & al.
Da D5 SCR UIT UTCAUC Ro al eka cot (eal Ee Rad Ae Rd Sad a EL Pe 274
DPS ASCM DILUTICALE Hart sith nee len Lee tk batt Na eat ava enn nal ave cael Oy eat! Sok emacs 277
274. Photobiont trebouxioid, asci thick-walled.................. Aspidothelium Vain.
274. Photobiont trentepohlioid, asci thin- or thick-walled...................... 275
275. Asci thick-walled, periphysoids, if present, going down to the hymenium
a ee Sas aah, ig MANS B A +n, Se Genera with perithecioid apothecia — see 189
275. Asci thin-walled, apically with refractive ring ............. 0. cece eee eee 276
276. Thallus and ascomata lacking yellow to orange pigments,
ascospores transversely septate to muriform ..................... Porina Ach.
276. Thallus and ascomata containing yellow to orange pigments (phenalenones),
ASUOSPOTES MUTTON = ., Heras. crates Mere eort Myeloconis P.M. McCarthy & Elix
NoTE: One species known from Thailand: M. erumpens P.M. McCarthy & Elix
PAE gd PEN eV) Sb tense LAN ie Can Ar Cnes A, A OR CAP LEAL RR ALE ont e ane J 278
277. Paraphyses strongly branched and anastomosing or
hamathecium pseudoparenchymatous ............ 0... cece eee eee eee 279
278. Ascomata stromatoid, ascospores muriform ........... Mycoporum Flot. ex Nyl.
NoTE: One species known from Thailand: M. compositum (A. Massal.) R.C. Harris
278. Ascomata solitary, ascospores transversely septate to submuriform.... Strigula Fr.
279. Hamathecium pseudoparenchymatous................... Tomasellia A. Massal.
NoTE: One species known from Thailand: T: eschweileri (Mull. Arg.) R.C. Harris
279. Hamathecium consisting of strongly branched and anastomosing paraphyses. 280
280. ASCOSPOLES sl SEPlate as wrt scott ae acwtapates tol do. alt 4 cog lie 8 a a la Ao rngsna cod oon 281
280. Ascospores transversely. septate O-TTUTIFOMMNS nh.) Bianchey wlawades Wlrchd'y Bancde witlonde » 282
281. Ascospores small to medium-sized (up to 50um long), with thin walls and septa,
thallus usually thin ................... Anisomeridium (Mull. Arg.) M. Choisy
281. Ascospores large (above 50m long), with thick walls and septa,
thalligthiek-2 oe 58s G8. fF ole RE SeEE Sora hcl § a lee 2a Megalotremis Aptroot
282. Ascospores filiform, transversely septate................. Celothelium A. Massal.
NoTE: One species known from Thailand: C. aciculiferum (Nyl.) Vain.
282. Ascospores fusiform to ellipsoid, transversely septate to muriform .......... 283
436 ... Poengsungnoen & al.
283.
283.
284.
284.
Zoos
Zoo:
286.
286.
287.
287.
288.
288.
289.
289.
290.
290.
291.
Zo,
292,
292.
293:
Ascospores.cuseptate, amuriforim,.. 62.5050 ..6505hG4 29 henson th yan Julella Fabre
NOTE: One species known from Thailand: J. lactea (A. Massal.) M.E. Barr
Ascospores distoseptate, transversely septate to muriform.................. 284
Pavapliyses SIA IC ts tutes wists wha ity atthe b tne oP 5 efik Lithothelium Mill. Arg.
Note: Recent key to species available (Aptroot 2006).
Paraphyses strongly branched and anastomosing .....................000- 285
Thallus ecorticate, ascomata exposed, dark-pigmented .................... 286
Thallus corticate, ascomata at least in part covered by thallus............... 288
Paraphyses basally thickened, not anastomosing.. Constrictolumina Licking & al.
NoTE: One species known from Thailand: C. cinchonae (Ach.) Liicking & al.
Paraphyses thickness uniform, anastomosing ............ 0.00. cece eee eee 287
Ascospore lumina angular,
endospore thin. $2022.42 25 4365 wah ates Polymeridium (Mill. Arg.) R.C. Harris
NotE: Recent key to species available (Aptroot & Caceres 2014b).
Ascospores with diamond-shaped lumina,
EMO OSPOLE NICK, Ait. 28 2. BE a se ew ee We eee Pseudopyrenula Mill. Arg.
Ascospores with rectangular to oval lumina, transversely septate............ 289
Ascospores with diamond-shaped lumina, transversely septate to muriform.. 291
Ascomata in brown-black, sessile stromata,
ascospores 3-9-septate, up to 40 um long..................0.. Bathelium Ach.
Note: Recent key to species available (Aptroot & Licking 2016).
Ascomata in variously colored stromata or solitary,
ascospores (5—)9-19-septate, over 40 um long........... 0... eee eee eee 290
Ascomata immersed-erumpent, solitary to aggregated,
Pismmentstabseiits 7. messy vos Var eM ee eee Viridothelium Licking & al.
NoTE: One species known from Thailand: V. virens (Tuck. ex Michener) Liicking
& al.
Ascomata in erumpent to prominent pseudostromata,
OitensPlOMenbed ef Lik, Mace omnibus edd olde seal otcre staan ye | Trypethelium Spreng.
NotE: Recent key to species available (Aptroot & Licking 2016).
AScospores. trafisversely SEplale: cay x Goes wh Be ooh Oye eG bE eo Ge nae 292
ASCOSPORES TMUTE OLIN, £5 5 Mc cee sale Mae oe MAR Nl Rr a RR Ra ae 294
Ascospores very large, 3(-5)-septate, with a reduced
RNGOSPOLOr.. o54 ha og 4 egg Seog Aiea ¢-F knee gS heer dA eee Architrypethelium Aptroot
NoTE: One species known from Thailand: A. murisporum Luangsuph. & al.
Ascospores usually small to-medium-sizéd.. o0. jas) Gees eee Gee eae ey 293
Ascomata prominent to sessile, fully exposed and black, solitary, lacking
PIOMCNtS ew TP ee Rts ew eee aE wt Adel a2 Nigrovothelium Licking & al.
NoTE: One species known from Thailand: N. tropicum (Ach.) Liicking & al.
Key to the lichen genera of Thailand ... 437
293. Ascomata immersed to prominent or in immersed to sessile stromata,
at least partly covered by thallus,
often with yellow-orange pigment...................005. Astrothelium Eschw.
294, Ascomata in prominent stromata
filled with yellow-orange pigments...................000005. Bathelium Ach.
Note: Recent key to species available (Aptroot & Licking 2016).
294. Ascomata immersed to sessile or in immersed to sessile stromata, at least partly
covered by thallus, with or without pigments.......................00044 295
295. Ascomata in large, prominent to sessile stromata,
Fedor Yellow-OFalnge- Warts 2. ight ss ae isd seatieane wow cnet Srstahins Marcelaria Aptroot & al.
Note: Recent key to species available (Aptroot & Licking 2016).
295. Ascomata immersed to prominent or in immersed to sessile stromata,
lacking pigments or with a thin pigment layer
SpA lives can DD oR ae Astrothelium Eschw. & Viridothelium Licking & al.
Note: Recent key to species available (Aptroot & Licking 2016).
296. Ascomata not well defined, asci weakly aggregated in clusters or
scattered, broadly clavate, ascospores muriform ............. Cryptothecia Stirt.
296. Ascomata well defined, either apothecia or perithecia ..................... 297
2972 Ascomata- with open discs-(apothecia); +0 a hvsea desea hued heaea esas geet 298
297. Ascomata opening with a small pore (perithecia) ....................0000. 329
Zo OPA OUEST ABC TU ete ste Rc Rie Se Ne RB 299
293; APOUeela ON PICU lal- Ae Bet, Me rseh, Misa, Pinel, Mecih, weet, ued, Beth, gous tats 303
299. Apothecial margin carbonized, lacking algae........... 0.0 eee 300
299. Apothecial margin not carbonized, containing algae ...................... 301
300. Photobiont trentepohlioid, asci bitunicate ..................... Opegrapha Ach.
300. Photobiont chlorococcoid, asci unitunicate .................0000. Aulaxina Fée
Note: Recent key to species available (Liicking 2008).
BOI ASCOSPORES AAUTILOR I. .yu atin, Mes Soe ete Gey allen bles aegis Gyalectidium Mull. Arg.
S0lAscospores transverselyseptate a2... oft <5 tinge oGlaye eines seine emt oS eee 302
302. Apothecial margin well-developed, ascospores 3-15-septate. .... Enterographa Fée
Note: Recent key to species available (Seavey & Seavey 2014).
302. Apothecial margin reduced, ascospores 1-2-septate.............. Arthonia Ach.
SOSA MOLODIOTI EEE MLE OMIT OA ae oanog dye seeped py dedod sh Redo d hits Fede Bye aed Syed tps Poe gat 304
BOSE HOLObion tGOLOCOCCOIG a. oe state C-a staat ora eae ta ate ota aed ota ate Ba Se 307
304. Ascomata adnate and spot-like,
asci obovate to globose, bitunicate................ Eremothecella Syd. & P. Syd.
Note: Recent key to species available (Jagadesh Ram & Sinha 2019).
304. Ascomata immersed to erumpent or sessile,
ascL-cylmdrical/-to-clavate;-uari*-6r: Ditunteate.®, ek. ase hes wees eae baa 305
438 ... Poengsungnoen & al.
305.
305.
306.
306.
307.
307.
308.
308.
309.
209.
310.
310.
ola
OM.
S12;
S12:
B13.
313.
314.
314.
Sil:
S15:
316.
DG.
Apothecial discs dark gray to black, asci bitunicate,
PaLAapYses<ANASCOMOGUNG se erin sean) ee Pgs He a Tei Mazosia A. Massal.
Note: Recent key to species available (Licking 2008).
Apothecial discs yellowish green, light gray or orange-red, asci unitunicate,
Pabaphyseds MOLANASKOMIOSUIT. t.98 PTR et AR, Neen NN! wht ed he 306
Apothecial margins recurved, prominent,
ascospores transversely septate to muriform .Chroodiscus (Mill. Arg.) Mill. Arg.
NotE: Recent key to species available (Papong & al. 2009).
Apothecia biatorine, margins not recurved,
ASCOSPOFESAISEP LATS hays whet, ahasne te whan h whore g alton h aftontby Coenogonium Ehrenb.
Note: Recent key to Thai species available (Kalb & al. 2016a).
PLY Me IU OM AMOI § 2 hae 5 whites w ednage 5 relptege ¥ selptege ¥ telptege ¥ telptage Yap leae Y hapten 308
babe mia bara my Oi CL Sa. Pore .es © whee ©, wean te eR ee 8 OR wr 8 Rw eR Ween On SO 318
Mba COPLCALGs 53 ia g Ss fees eee t tleyate stale aot Tales AH ane AE gules e 309
bra NsOC OPER CA CSS oF aR oe ot Bigs vst Magn te eee eRe gt Re gt oR ne Dine fo Boe so 310
Apothecia pale yellowish, exciple hyaline .............. Asterothyrium Mill. Arg.
Note: Recent key to species available (Liicking 2008).
Apothecia black, exciple at least partly carbonized ......... Psorotheciopsis Rehm
NoTE: One species known from Thailand: P. patellarioides (Rehm) R. Sant.
SSPE ELAR PTET Hote Feta he AAG Ul AMN UL AAVGR uh aMNieh LalMNeeh UMBC PBSC 4 311
Sterile setae absent but hyphophores often present ....................000- 312
Sterile setaeipales 3 2 din. edie edhe e 34 nacre 4 Hberd 4 needed need Aderkomyces Bat.
Stepile setae blacks a sa ik ces eek rene: ig hs oat Egle ete ae ae Tricharia Fée
Apothecial margin dark brown to black, exciple carbonized........ Aulaxina Fée
NotE: Recent key to species available (Licking 2008).
Apothecialanargin-pale;-exciple not-carbonized. ..54.5 tsb es ee 313
Proper exciple well-developed, covered by a cartilaginous layer............. 314
Proper exciple reduced, with a thalline margin or immersed in thallus....... 315
Paraphyses unbranched, hyphophores absent . . Phyllogyalidea Licking & Aptroot
NoTE: One species known from Thailand: P. epiphylla (Vézda) Licking & Aptroot
Paraphyses branched, hyphophores common................ Gyalideopsis Vézda
NotE: Recent key to species available (Xavier-Leite & al. 2018).
Hyphophores squamiform, ascospores muriform........ Gyalectidium Mull. Arg.
ELV PH OPROreSs SEtEOLIIN s+ Ness cies sles Mate areas Etleoe slants Fetleuale OR gape § 316
PRP ORME CTA AATTALE sd aS cae cscs abe vcs, Raed oncdi destancdes deeb ccs eed aadics deepak Echinoplaca Fée
Note: Recent key to species available (Licking 2008).
AEPOLHe Cia IMA TMER Sede OULD CLL. Weal ad et Malta's Wd tla"s Rad Mats Rid Aral Rid als Wed ate ak 317
Key to the lichen genera of Thailand ... 439
317. Hyphophores pale,
ascospores transversely septate to muriform ............... Calenia Mill. Arg.
317. Hyphophores reddish brown,
ASGOSPOFES AL — Fase PtAten Leena cd wads wnlne Phage sea usane aE Rolueckia Papong & al.
NoTE: One species known from Thailand: R. siamensis Papong & al.
BIS: “ASCO SIIOL ESA SEP LAUOY sete sc aisinn dcealiice a ota ey otal tocy a te wcaie ona won oe ae Fellhanera Vézda
313. Ascospores.withanore thar ge pcan |e cto atnc dc, Mein elles erates iengghimbors 319
DUD GASCOSPORESMLATISVETSELY. SEPEAT CS Spa ciel cr sa Pisce ie PR a lo te lo Pag OR a lo Bee o Be 320
DUD ASCOSPORES TUPMON ED ys 0 sevens senaress teenage tars soe fartcoth baraccee teaws emanations 328
320. Ascospores narrowly cylindrical to filiform .................... Bacidina Vézda
NoTE: One species known from Thailand: B. pallidocarnea (Mill. Arg.) Vézda
320; Ascospores ellipsoid Vo;CVHMrieal yo .a cts. wcucg yt sben y b-be2 yh saben ah Fehon a tu dyes 321
321. Apothecial margin composed of loosely interwoven hyphae... . Byssoloma Trevis.
ode Apothecial marcim differents... adic. adie sad barat berg d nerd Harta eeu albaee 322
B22 KE XCIPLESWAET) CLV SUAIS thn ssn aiaees Fisa Sees aa nee ae APS Nope Bee Moy olla bn oh esd 9 andre 323
S22; Excipledackitigicrystals sy tp, <5 ca ho sth, < 8 neh, Ob webb cise Sa ee ee 325
323. Cottidta-produced cana y NTA -aracsis tssaraiatovarcht teoearcte teanacstt deavacaes Badimia Vézda
NoTE: One species known from Thailand: B. multiseptata Papong & Licking
325. Conidta Prodticedan PY CHITA se a ecnie Sage esegh ¥ meee ¥ rene # senna? Soattetene telilenene ¥ 324
324. Apothecial margin distinct, whitish, conidia ellipsoid-
PUSTEO CTR c- 25- se gs aes nc ae aged eae in, Haeea ty eM nsec Eugeniella Licking & al.
NoTE: One species known from Thailand: E. micrommata (Kremp.) Licking & al.
324. Apothecial margin thin, gray, conidia pyriform................ Fellhanera Vézda
S2 >eConisig produced iipycminia: a! once, | ck uate ek ee A ee A OR Oe ns Sa 326
325; Conidia-produced in: campyldia. a... educa dyes sade ee de ka ne eae eee dene 327
326. APOTHECIASESSUE SS uF, htt eens Ras Re Oey ep EAN AE, ES Fellhanera Vézda
326. Apothecia adnate and spot-like............. 0. cee eee eee eee Byssolecania Vain.
NotE: Recent key to species available (Liicking 2008).
327. Apothecial discs black, hypothecium brown, K+ purple..... Tapellaria Mill. Arg.
NoTE: One species known from Thailand: T: nigrata (Mull. Arg.) R. Sant.
327. Apothecial discs grayish brown, hypothecium brown, K-....... Calopadia Vézda
Note: Recent key to species available (Liicking 2008).
328. Thallus verrucose, conidia non-septate.................6-- Sporopodium Mont.
328. Thallus smooth, conidia multi-septate...................000- Lasioloma R. Sant.
NoTE: One species known from Thailand: L. phycophilum (Vain.) R. Sant.
BAD. A SCUUMICUEICALS. 5 “oes Teen 5 pte gous te Tyo ste gen a ee Tae 0 tena Ta a ee Tees aoa wha eeu atm te amet ates 330
BID. ASCOT UTICA: SIR ee vole x secant bcitncaninebe a nceitent ¥ redone 8 mmaiend & munrigt Sas tecont setlsncent Stans 332
330. Perithecia white to pale pink, photobiont trebouxioid ....... Aspidothelium Vain.
330. Perithecia yellowish to green, brown or black, photobiont trentepohlioid..... 331
440 ... Poengsungnoen & al.
331. Perithecia glabrous or, if hairy, then involucrellum yellowish to brown Porina Ach.
331. Perithecia with black hairs or spines, involucrellum mostly
pipmenited: 7. Bei. <P Mele ts Re ee Se Fe a 8 Trichothelium Mull. Arg.
632+Paraphyses absent in, perithecia: ».o2 5. 0% -ceoe A. woe oe Microtheliopsis Mull. Arg.
NoTE: One species known from Thailand: M. uleana Mill. Arg.
332. Paraphyses-present mr perithecia... 2.500 2.06. Shea tthe Shh Gs OOS on SBS ante 333
333. Paraphyses unbranched or slightly branched apically,
photobiont:Cephaleuros‘or Phycopeltts. 2c Fie Pils Pe Ok Pie ee 334
$35. Paraphyses branched, piotobiont Various, wees 8) sera ce sara ce ena WE, Mare ee eras 337
$349 Perithecial-wall:noticarbomized.2.03 6 .vt.tt 20298 et 8 eee Puigariella Speg.
NoTE: One species known from Thailand: P. nemathora (Mont.) S.H. Jiang & al.
334. Perithecial wall at least partially carbonized............... 0... cece eee eee 335
335. Thallus supracuticular, photobiont Phycopeltis................ Phylloporis Clem.
NotE: Recent key to species available (Jiang & al. 2020).
335. Thallus subcuticular, photobiont Cephaleuros or Trentepohlia............... 336
336. Thallus olive-brown to dark green,
perithecia covered by thin thallus layer around ostiolum......... Racoplaca Fée
NotE: Recent key to species available (Jiang & al. 2020).
336. Thallus bright green to grey-green, perithecia black,
NOLCOvened Moy strays: Pa tal yk elt ei at gana ae Strigula Fr.
337. Pycnidia setose, conidia in rectangular packages........ Caprettia Bat. & H. Maia
337. Pycnidia globose to conical, conidia in irregular masses
whieh acteckiees pe aeegd Sabet Mle arict nsec see Anisomeridium (Mull. Arg.) M. Choisy
Acknowledgments
We thank Prof. Pradeep Divakar (Madrid) and Dr Patrick McCarthy (Canberra)
for reviewing this manuscript. Dr Matthew Nelsen (Chicago) is thanked for helpful
comments on an earlier version of this manuscript. Financial support from the
National Research Council of Thailand is gratefully acknowledged.
Literature cited
Aptroot A. 2006. Three new species of Lithothelium (Pyrenulaceae) from China and Thailand,
with a revised world key and annotated list of species. Lichenologist 38: 541-548.
https://doi.org/10.1017/S0024282906005913
Aptroot A. 2009. The lichen genus Traponora. Bibliotheca Lichenologica 100: 21-29.
Aptroot A. 2012. A world key to the species of Anthracothecium and Pyrenula. Lichenologist
44: 5-53. https://doi.org/10.1017/S0024282911000624
Aptroot A, Caceres MES. 2014a. A key to the corticolous microfoliose, foliose and related
crustose lichens from Rondonia, Brazil, with the description of four new species.
Lichenologist 46: 783-799. https://doi.org/10.1017/S00242829 14000358
Aptroot A, Caceres MES. 2014b. A refined species concept in the tropical lichen genus
Polymeridium (Trypetheliaceae) doubles the number of known species, with a worldwide
key to the species. Nova Hedwigia 98: 1-29. https://doi.org/10.1127/0029-5035/2013/0143
Key to the lichen genera of Thailand ... 441
Aptroot A, Licking R. 2016. A revisionary synopsis of the Trypetheliaceae (Ascomycota:
Trypetheliales). Lichenologist 48: 763-982. https://doi.org/10.1017/S00242829 16000487
Aptroot A, Thor G, Liicking R, Elix JA, Chaves JL. 2009. The lichen genus Herpothallon
reinstated. Bibliotheca Lichenologica 99: 19-66.
Arup U, Sechting U, Frédén P. 2013. A new taxonomy of the family Teloschistaceae. Nordic
Journal of Botany 31: 16-83. https://doi.org/10.1111/j.1756-1051.2013.00295.x
Borgato L, Ertz D. 2018. A new species of Astrochapsa (Graphidaceae) from
Martinique, with a world-wide key to the species. Phytotaxa 371: 102-110.
https://doi.org/10.11646/phytotaxa.371.2.4
Breuss O. 2020: Key to the species of Agonimia (lichenised Ascomycota, Verrucariaceae).
Osterreichische Zeitschrift fiir Pilzkunde 28: 69-74.
Britton NL, Millspaugh CF. 1920. The Bahama Flora. New York, Published by the authors.
Buaruang K, Boonpragob K, Mongkolsuk P, Sangvichien E, Vongshewarat K & al.
2017. A new checklist of lichenized fungi occurring in Thailand. Mycokeys 1-91.
https://doi.org/10.3897/mycokeys.23.12666
Caceres MES, Aptroot A, Mendonca CO, Santos LA dos, Licking R. 2017. Sprucidea, a
further new genus of rain forest lichens in the family Malmideaceae (Ascomycota).
Bryologist 120: 202-211. https://doi.org/10.1639/0007-2745-120.2.202
Egea JM, Torrente P. 1993. Cresponea, a new genus of lichenized fungi in the order
Arthoniales (Ascomycotina). Mycotaxon 48: 301-331.
Ertz D, Bungartz FE, Diederich P, Tibell L. 2011. Molecular and morphological
data place Blarneya in Tylophoron (Arthoniaceae). Lichenologist 43: 345-356.
https://doi.org/10.1017/S002428291100020X
Jagadeesh Ram TAM, Sinha GP. 2019. New species and first records of Eremothecella
(Arthoniales) from the Andaman and Nicobar Islands, India. Lichenologist 51: 507-513.
https://doi.org/10.1017/S0024282919000409
Jaklitsch WM, Baral HO, Licking R, Lumbsch HT. 2016. Ascomycota. 1-150, in Frey W (ed.),
Syllabus of Plant Families - Adolf Engler’s Syllabus der Pflanzenfamilien. Stuttgart, Gebr.
Borntraeger Verlagsbuchhandlung.
Jiang SH, Liicking R, Xavier Leite AB, Caceres MES, Aptroot A, Vifias Portilla C, Wei
JC. 2020. Reallocation of foliicolous species of the genus Strigula into six genera
(lichenized Ascomycota, Dothideomycetes, Strigulaceae). Fungal Diversity 102: 257-291.
https://doi.org/10.1007/s13225-020-00445-7
Kalb J, Kalb K. 2017. New lichen species from Thailand, new combinations and new additions to
the Thai lichen biota. Phytotaxa 332: 141-156. https://doi.org/10.11646/phytotaxa.332.2.2
Kalb K. 2020: New or otherwise interesting lichens. VII, including a world key to the lichen
genus Heiomasia. Archive for Lichenology 15: 1-18.
Kalb K, Schumm F. 2021: New or otherwise interesting lichens. IX. Four new species in
the family Graphidaceae, one new combination, new records and remarks. Archive for
Lichenology 22: 1-22.
Kalb K, Buaruang K, Papong K, Boonpragob K. 2009. New or otherwise interesting lichens
from the tropics, including the lichen genus Ramboldia in Thailand. Mycotaxon 110:
109-123. https://doi.org/10.5248/110.109
Kalb K, Plata ER, Licking R, Lumbsch HT. 2011. The phylogenetic position of Malmidea,
a new genus for the Lecidea piperis- and Lecanora granifera-groups (Lecanorales,
Malmideaceae), inferred from nuclear and mitochondrial ribosomal DNA sequences, with
special reference to Thai species. Bibliotheca Lichenologica 106: 143-168.
442 ... Poengsungnoen & al.
Kalb K, Buaruang K, Mongkolsuk P, Boonpragob K. 2012. New or otherwise
interesting lichens. VI, including a lichenicolous fungus. Phytotaxa 42: 35-47.
https://doi.org/10.11646/phytotaxa.42.1.5
Kalb J, Boonpragob K, Kalb K. 2016a. New Coenogonium species (Ostropales:
Coenogoniaceae) from Thailand, new reports and a revised key to the species occurring
in the country. Phytotaxa 283: 101-122. https://doi.org/10.11646/phytotaxa.283.2.1
Kalb K, Polyiam W, Rivas Plata E, Bawingan PA, Kalb K, Licking R. 2016b. “Missing links”
alive? Novel taxa represent morphological transitions between distinctive phenotypes
among extant Graphidaceae (lichenized Ascomycota: Ostropales). Phytotaxa 268:
110-122. https://doi.org/10.11646/phytotaxa.268.2.2
Kalb J, Licking R, Kalb K. 2018. The lichen genera Allographa and Graphis (Ascomycota:
Ostropales, Graphidaceae) in Thailand-eleven new species, forty-seven new records and
a key to all one hundred and fifteen species so far recorded for the country. Phytotaxa
377: 1-83. https://doi.org/10.11646/phytotaxa.377.1.1
Kistenich S, Bendiksby M, Vairappan CS, Weerakoon G, Wijesundara S, Wolseley PA, Timdal
E. 2019. A regional study of the genus Phyllopsora (Ramalinaceae) in Asia and Melanesia.
Mycokeys 23-72. https://doi.org/10.3897/mycokeys.53.33425
Kosuthova A, Westberg M, Otalora MAG, Wedin M. 2019. Rostania revised: testing
generic delimitations in Collemataceae (Peltigerales, Lecanoromycetes). Mycokeys 17-33.
https://doi.org/10.3897/mycokeys.47.32227
Licking R. 2008. Foliicolous lichenized fungi. Flora Neotropica 103: 1-867.
Liicking R, Hodkinson BP, Leavitt SD. 2016a. The 2016 classification of lichenized fungi in
the Ascomycota and Basidiomycota — Approaching one thousand genera. Bryologist 119:
361-416. https://doi.org/10.1639/0007-2745-119.4.361
Liicking R, Mangold A, Lumbsch HT. 2016b. A worldwide key to species of the genera
Myriotrema and Glaucotrema (lichenized Ascomycota: Graphidaceae), with a
nomenclatural checklist of species published in Myriotrema. Herzogia 29: 493-513.
https://doi.org/10.13158/heia.29.2.2016.493
Liicking R, Nelsen MP, Aptroot A, Benatti MN, Binh NQ, Gueidan C, Gutierrez MC,
Jungbluth P, Lumbsch HT, Marcelli MP, Moncada B, Naksuwankul K, Orozco T,
Salazar-Allen N, Upreti DK. 2016c. A pot-pourri of new species of Trypetheliaceae
resulting from molecular phylogenetic studies. Lichenologist 48: 639-660.
https://doi.org/10.1017/S00242829 16000475
Liicking R, Hodkinson BP, Leavitt SD. 2017. Corrections and amendments to the 2016
classification of lichenized fungi in the Ascomycota and Basidiomycota. Bryologist 120:
58-69. https://doi.org/10.1639/0007-2745-120.1.058
Magain N, Spribille T, DiMeglio J, Nelson PR, Miadlikowska J, Sérusiaux E. 2020. Phylogenetic
evidence for an expanded circumscription of Gabura (Arctomiaceae). Lichenologist 52:
3-15. https://doi.org/10.1017/S0024282919000471
Marbach B. 2000. Corticole und lignicole Arten der Flechtengattung Buellia sensu lato in
den Subtropen und Tropen. Bibliotheca Lichenologica 74: 1-384.
Mongkolsuk P, Meesim S, Poengsungnoen V, Kalb K. 2012. The lichen
family Physciaceae in ‘Thailand-I. The genus Pyxine. Phytotaxa 59: 32-54.
https://doi.org/10.11646/phytotaxa.59.1.2
Mongkolsuk P, Meesim S, Poengsungnoen V, Buaruang K, Schumm EF, Kalb K. 2015. The
lichen family Physciaceae in Thailand-II. Contributions to the genus Heterodermia
sensu lato. Phytotaxa 235: 3-66. https://doi.org/10.11646/phytotaxa.235.1.1
Key to the lichen genera of Thailand ... 443
Muggia L, Nelson P, Wheeler T, Yakovchenko LS, Tonsberg T, Spribille T. 2011.
Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium
(Peltigerales, Ascomycota). American Journal of Botany 98: 1647-1656.
https://doi.org/10.3732/ajb. 1100046
Neuwirth G, Aptroot A, Stocker-Woergoetter E. 2017. Platythecium seychellense,
a new species in the family Graphidaceae (lichenized Ascomycota: Ostropales)
from the Seychelles and a world key to the genus. Lichenologist 49: 85-91.
https://doi.org/10.1017/S002428291600061X
Papong K, Lumbsch HT. 2011. A taxonomic survey of Lecanora sensu stricto
in ‘Thailand (Lecanoraceae; Ascomycota). Lichenologist 43: 299-320.
https://doi.org/10.1017/S00242829 11000247
Papong K, Licking R, Thammathaworn A, Boonpragob K. 2009. Four new taxa of
Chroodiscus (thelotremoid Graphidaceae) from Southeast Asia. Bryologist 112: 152-163.
https://doi.org/10.1639/0007-2745-112.1.152
Poengsungnoen V, Manoch L, Mongkolsuk P, Boonpragob K, Parnmen §S, Liicking R, Tehler A,
Lumbsch HT. 2014. Phylogenetic analysis reveals two morphologically unique new species
in the genera Astrochapsa and Nitidochapsa (lichenized Ascomycota: Graphidaceae).
Phytotaxa 189: 268-281. https://doi.org/10.11646/phytotaxa.189.1.19
Rivas Plata E, Licking R, Sipman HJM, Mangold A, Lumbsch HT. 2010. A world-wide key
to the thelotremoid Graphidaceae, excluding the Ocellularia-Myriotrema-Stegobolus clade.
Lichenologist 42: 139-185. https://doi.org/10.1017/S0024282909990491
Seavey F, Seavey J. 2014. New additions to the lichen genus Enterographa (Roccellaceae)
from Everglades National Park including an updated world key. Lichenologist 46: 83-93.
https://doi.org/10.1017/S0024282913000662
Singh G, Aptroot A, Rico V, Otte J, Divakar PK, Crespo A, Caceres MES, Lumbsch HT, Schmitt
I. 2018. Neoprotoparmelia gen. nov. and Maronina (Lecanorales, Protoparmelioideae):
species description and generic delimitation using DNA barcodes and phenotypical
characters. MycoKeys 44: 19-50. https://doi.org/10.3897/mycokeys.44.29904
Singh P, Singh KP. 2017. Note on the taxonomic status of Pyrgillus tibellii Kr. P. Singh &
Pushpi Singh with a world key to the species of Pyrgillus Ny]. (Pyrenulaceae: Pyrenulales).
Lichenologist 49: 287-289. https://doi.org/10.1017/S002428291700010X
Sobreira PNB, Aptroot A, Caceres MES. 2015. A world key to species of the genus
Bactrospora (Roccellaceae) with a new species from Brazil. Lichenologist 47: 131-136.
https://doi.org/10.1017/S00242829 14000607
Spribille T, Tonsberg T, Stabentheiner E, Muggia L. 2014. Reassessing evolutionary relationships
in the filamentous cyanolichen genus Spilonema (Peltigerales, Lecanoromycetes).
Lichenologist 46: 373-388. https://doi.org/10.1017/S00242829 13000601
Staiger B. 2002. Die Flechtenfamilie Graphidaceae. Studien in Richtung einer natiirlicheren
Gliederung. Bibliotheca Lichenologica 85: 1-526.
Sutjaritturakan J, Kalb K. 2015. Ocellularia (Ascomycota: Ostropales) — three new species, a
new record and a key for all species so far recorded for Thailand. Herzogia 28: 545-555.
https://doi.org/10.13158/heia.28.2.2015.545
Suwannarach N, Kumla J, Satienperakul K, Sungpalee W, Hermhuk S, Suttiprapan P, Sri-
Ngernyuang K, Lumyong S. 2019. Sulzbacheromyces yunnanensis, a new record for
Thailand. Mycotaxon 134: 215-219. https://doi.org/10.5248/134.215
444 ... Poengsungnoen & al.
Thor G. 1990. The lichen genus Chiodecton and five allied genera. Opera Botanica 5-92.
Van den Broeck D, Frisch A, Razafindraliaja T, Van de Vijver B, Ertz D. 2018. Phylogenetic position
of Synarthonia (lichenized Ascomycota, Arthoniaceae), with the description of six new species.
Plant Ecology and Evolution 151: 327-351. https://doi.org/10.5091/plecevo.2018.1506
Wolseley PA, Aguirre-Hudson B, McCarthy PM. 2002. Catalogue of the lichens of
Thailand. Bulletin of the British Museum (Natural History), Botany 32: 13-59.
https://doi.org/10.1017/S0968044602000038
Xavier-Leite AB, Caceres MES, Goto BT, Lticking R. 2018. The genus Gyalideopsis (lichenized
Ascomycota: Gomphillaceae) in Brazil: updated checklist, key to species, and two novel taxa
with unique hyphophores. Bryologist 121: 32-40. https://doi.org/10.1639/0007-2745-121.1.032
MYCOTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021—Volume 136, pp. 445-449
https://doi.org/10.5248/136.445
Dictyostelids from Jilin Province, China, 4
HE ZHvU’”, SONGNING GUO’, QIN XUE’, ZHUANG LI’,
XUEPING KANG‘, YUHUA WEI’, Pu Liu?“, Q1 WANG?®?, Yu Li’
' Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education,
Jilin Agricultural University, Changchun, 130118, PR. China
’ College of Resources and Environment, Jilin Agricultural University,
Changchun, 130118, PR. China
> Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests,
College of Plant Protection, Shandong Agricultural University,
Tai’ an, 271018, PR. China
* Yanbian Academy of Agricultural Sciences, Yanji, 133001, P.R. China
* CORRESPONDENCE TO: * puliu1982@yahoo.com
® giwang@jlau.edu.cn ° fungi966@126.com
ABSTRACT—Dictyostelium quercibrachium and D. crassicaule were isolated from samples of
soil collected on Changbai Mountain, Jilin Province, China. Dictyostelium quercibrachium
represents a new record from China; and D. crassicaule, represents a new record from Jilin
Province. Descriptions and illustrations based on these isolates are provided.
Key worps—cellular slime molds, Dictyosteliaceae, Mycetozoa, taxonomy
Introduction
Dictyostelid cellular slime molds (dictyostelids), are ideal organisms for
investigating problems in genetics, cytology, and developmental biology
because of their unique macroscopic characteristics and life cycles. These
organisms are primary inhabitants of soil and play an essential role in
maintaining the balance between bacteria and other soil organisms, because
they feed mostly on bacteria (Singh 1947; Cavender & Raper 1965a,b;
Raper 1973, 1984). At present, about 150 species have been identified,
mostly based on a traditional morphological classification system in which
446 ... Zhu &al.
dictyostelids are distributed among four genera based on differences in
sorophore structure and branching patterns, but also on a new classification
based on unique 18S rRNA sequence signatures (Kirk & al. 2008; Sheikh &
al. 2018).
Jilin Province is situated in China’s temperate zone and is characterized
by a monsoon climate (Liu & Li 2014). Previously, a total of 18 dictyostelids
species have been reported from Jilin Province (He & Li 2008; Liu & Li
2014, 2017; Liu & al. 2019). In this study, we report two additional species
in Dictyostelium, one for the first time from China, and the other for the
first time from Jilin Province.
Materials & methods
Samples of soil were collected on Changbai Mountain, Jilin Province in 2014.
Each sample consisted of 20-30 g of soil and was placed in a sterile whirl-pack
plastic bag and returned to the laboratory for isolation of dictyostelids according
to Cavender & Raper (1965a), with some minor modifications outlined by Liu & al.
(2019). Each isolate recovered from one of the plates was purified and cultivated for
taxonomic studies, with an identification made using morphological descriptions
(Raper 1984) and molecular characteristics (Sheikh & al. 2018). Life cycle stages were
observed under a Zeiss Axio Zoom V16 dissecting microscope with a 1.5x objective
and a 10x ocular. Sorocarps were mounted in water on slides for observation and
measurements of spores, sorophores, and sorocarps using a Zeiss Axio Imager A2
light microscope mounted with 10x ocular and 10, 40, and 100x (oil) objectives.
Photographs were taken with Zeiss Axiocam 506 color microscope camera. Spores
from these isolates were frozen in HL 5 media (Cocucci & Sussman 1970) and
stored at -80 °C in the herbarium of the Mycological Institute of Jilin Agricultural
University, Changchun, China (HMJAU).
Taxonomy
Dictyostelium quercibrachium Cavender, S.L. Stephenson, J.C. Landolt & Vadell,
New Zealand J. Bot. 40: 258. 2002. PLATE 1A-D
When cultured at 23 °C on non-nutrient agar with E. coli, sorocarps
clustered or solitary, often twisted, unbranched or branched, normally
1.9-4.5 mm long. Sorophore colorless, robust, stout, tapering from bases
to tips, consisting of one tier of cells in the terminus, and becoming
coremiform at the lower part when clustered and aged. Tips capitate,
bases clavate to round. Branches Quercus-like, twisted or sometimes
recurved, tapering from bases to tips, with small sori. Terminal sori white,
globose, commonly 130-290 um diam. Spores hyaline, elliptical, 4.6-7.6 x
2.9-3.9 um. Aggregations with radiate flattened streams.
Dictyostelium spp. new for Jilin Province (China) ... 447
PLATE 1. Dictyostelium quercibrachium (HMJAU MR238): A. Sorocarps; B. Sorophore tips;
C. Sorophore base; D. Spores. Dictyostelium crassicaule (HMJAU MR230): E. Sorocarps;
FE. Aggregations, G. Sorophore tip; H. Sorophore base; I. Spores. Scale bars: A = 5 mm;
B, C, 1 = 20 um; D = 10 um; E = 1 mm; F = 200 um; G, H = 50 um.
448 ... Zhu &al.
SPECIMEN EXAMINED: CHINA, JILIN PROVINCE, Changbai Mountain, isolated from a
soil sample ($4377) collected in a Pinus koraiensis Sieb. & Zucc. forest, 22 Aug. 2014
(HMJAU MR238).
CoMMENTs: Dictyostelium quercibrachium was first reported from forest soil
sampled in New Zealand; however, other identical isolates also have been
recovered from a bog environment in north central Ohio in the United States
and from Iguazu in South America, as per unpublished data (Cavender & al.
2002). The sorocarp morphology varies considerably in D. quercibrachium
depending upon environmental conditions such as temperature and food
supply.
Dictyostelium crassicaule H. Hagiw.,
Bull. Natl. Sci. Mus., Tokyo, B 10: 67. 1984. PLATE 1E-I
When cultured at 23 °C on non-nutrient agar with E. coli, sorocarps
solitary, unbranched, rarely prostrate, 0.3-2.3 mm long. Sorophore colorless,
sinuous, stout, tapering from bases to tips, consisting of one to two tiers of
cells near the tip, bases round or conical sometimes with basal discs, tips
capitate. Sori white, globose, commonly 40-230 um diam. Spores hyaline,
oblong to elliptical, 5.7-7.0 x 3.4-3.9 um, usually without (but sometimes
with) irregular polar granules. Aggregations with radiate streams.
SPECIMEN EXAMINED: CHINA, JILIN PROVINCE, Changbai Mountain, isolated from a
soil sample ($4372) collected in an alpine birch forest, 22 Aug. 2014 (HMJAU MR230).
ComMENts: Dictyostelium crassicaule was originally isolated from soil sampled
in Pinus pumila of Chokai Mountain, Akita, Japan (Hagiwara 1984). This species
is characterized by its small sorocarps, capitate tips, and thick sorophores.
Discussion
Our study increases to 20 the number of dictyostelid species known from
Jilin Province. Dictyostelium quercibrachium, which was first reported from
New Zealand in the Southern Hemisphere (Cavender & al. 2002), is new to
China (here reported from a Pinus koraiensis forest) and is currently recorded
only from Jilin and Heilongjiang provinces in China. Further dictyostelid
surveys will probably increase species richness in Jilin Province.
Acknowledgments
We wish to express our appreciation to peer reviewers Prof. Steven L. Stephenson
(University of Arkansas, U.S.A.) and Prof. John C. Landolt (Shepherd University,
U.S.A) for their valuable comments relating to this manuscript. This study was
supported by the National Natural Science Foundation of China (No. 32070009,
Dictyostelium spp. new for Jilin Province (China) ... 449
31870015), Science and Technology Development Program of Jilin Province
(No. 20200801068GH), and 111 Project (No. D17014).
Literature cited
Cavender JC, Raper KB. 1965a. The Acrasieae in nature. I. Isolation. American Journal of
Botany 52: 294-296. https://doi.org/10.2307/2439943
Cavender JC, Raper KB. 1965b. The Acrasieae in nature. II. Forest soil as a primary habitat.
American Journal of Botany 52: 297-302. https://doi.org/10.2307/2439944
Cavender JC, Stephenson SL, Landolt JC, Vadell EM. 2002. Dictyostelid cellular slime
moulds in the forests of New Zealand. New Zealand Journal of Botany 40(2): 235-264.
https://doi.org/10.1080/0028825X.2002.95 12786
Cocucci SM, Sussman M. 1970. RNA in cytoplasmic and nuclear fractions of cellular slime
mold amoebas. Journal of Cell Biology 45: 399-407. https://doi:org/10.1083/jcb.45.2.399
Hagiwara H. 1984. The Acrasiales in Japan. VII. Two new species Dictyostelium implicatum
and D. crassicaule. Bulletin of the National Science Museum, Tokyo, Ser. B, 10: 63-71.
He XL, Li Y. 2008. A new species of Dictyostelium. Mycotaxon 106: 379-383.
Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Dictionary of the fungi, 10th edition.
CABI, UK.
Liu P, Li Y. 2014. Dictyostelids from Jilin Province, China. I. Phytotaxa 183(4): 279-283.
https://doi.org/10.11646/phytotaxa.183.4.7
Liu P, Li Y. 2017. Dictyostelids from Jilin Province, China. II. Phytotaxa 323(1): 77-82.
https://doi.org/10.11646/phytotaxa.323.1.6
Liu P, Zhang S, Li Z, Zou Y, Kang X, Li Y. 2019. Dictyostelids from Jilin Province,
China 3: new Cavenderia and Dictyostelium records. Mycotaxon 134(4): 613-618.
https://doi.org/10.5248/134.613
Raper KB. 1973. Acrasiomycetes. 9-36, in: GC Ainsworth & al. (eds). The Fungi, vol. IVB.
Academic Press, Inc. New York.
Raper KB. 1984. The dictyostelids. Princeton University Press, Princeton.
Sheikh S, Thulin M, Cavender JC, Escalante R, Kawakami S, Lado C, Landolt JC & al. 2018.
A new classification of the dictyostelids. Protist 169(1): 1-28.
https://doi.org/10.1016/j.protist.2017.11.001.
Singh BN. 1947. Studies on soil Acrasieae. 1. Distribution of species of Dictyostelium in
soils of Great Britain and the effect of bacteria on their development. Journal of General
Microbiology 1(1): 11-21. https://doi.org/10.1099/00221287-1-1-11
MYCOTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021—Volume 136, pp. 451-489
https://doi.org/10.5248/136.451
New host and distributional records for Camarosporidiella
in Italy, Russia, and Ukraine
DHANDEVI PEM", RAJESH JEEWON’, TIMUR S. BULGAKOV‘,
IRINA V. BONDARENKO-BorIsova>, MINGKWAN DOILOM 2 *?!%,
ABDALLAH M. ELGORBAN*, RUNGTIWA PHOOKAMSAK’®,
SAISAMORN LUMYONG “+, KEVIN D. HyDE”?°
' Research Center of Microbial Diversity & Sustainable Utilization, Fac. Science,
Chiang Mai University, Chiang Mai 50200, Thailand
? Center of Excellence in Fungal Research, Mae Fah Luang University,
Chiang Rai, 57100, Thailand
° Dept. of Health Sciences, Fac. Medicine & Health Sciences, University of Mauritius,
Reduit, Mauritius
* Dept. of Plant Protection, Federal Research Centre the Subtropical Scientific Centre
of the Russian Academy of Sciences,
2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia
° Laboratory of Biological Invasions and Plant Protection, Donetsk Botanical Garden,
110 Illicha Avenue, Donetsk 283059, Donetsk region, Ukraine
° Department of Botany and Microbiology, College of Sciences, King Saud University,
PO. Box. 2455, Riyadh 11451, Saudi Arabia
” CAS Key Laboratory for Plant Diversity and Biogeography of East Asia,
Kunming Institute of Botany, Chinese Academy of Science,
Kunming 650201, Yunnan, PR. China
® World Agroforestry Centre, East and Central Asia,
Kunming 650201, Yunnan, PR. China
° Academy of Science, The Royal Society of Thailand, Bangkok10300, Thailand
"° Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering,
Guangzhou 510255, PR. China
" Department of Biology, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand
* CORRESPONDENCE TO: * scboi009@gmail.com * j_hammochi@hotmail.com
452 ... Pem & al.
ABSTRACT—Camarosporidiella specimens collected from woody plants in central
Italy, eastern Ukraine, and southeastern Russia were identified based on morphology
and multi-gene (LSU, SSU, ITS, and TEF) sequence analyses. Camarosporidiella
caraganicola on Amorpha fruticosa, C. celtidis on Ulmus pumila, C. elaeagnicola on Cytisus
ruthenicus are described with new host records and as new fungal records for Ukraine.
Camarosporidiella moricola on Morus nigra is newly reported for Italy, and C. robiniicola
on Robinia pseudoacacia is new for Ukraine. Camarosporidiella elaeagnicola on Elaeagnus
angustifolia is re-described to facilitate identification. Notes on host distribution of
Camarosporidiellaceae are also provided.
KEY worps—asexual, multigene, phylogeny, taxa, taxonomy
Introduction
The monotypic family Camarosporidiellaceae was introduced by
Wanasinghe &al.(2017) for Camarosporidiellaastypegenus. Camarosporidiella
species, which are necrotrophic or saprobic on host plants (Tibpromma &
al. 2017, Wanasinghe & al. 2017), are mainly distributed in southern (Italy)
and eastern Europe (Russia), central Asia (Uzbekistan), and Southeast Asia
(Thailand) (Wanasinghe & al. 2017). There are 23 Camarosporidiella records
listed in Index Fungorum (2020, accessed 2 August). Understanding species
relationships within Camarosporidiella is complicated due to the lack of
morphological characters available to distinguish species. Most species are
characterized by asexual morphs producing conidia that are muriform,
ellipsoidal, or fusiform and dark brown (Wanasinghe & al. 2017). Species
exhibiting a sexual morph are characterized by globose to subglobose
ascomata, cylindrical short-pedicellate asci, and ellipsoidal muriform
ascospores. Accurate new host-fungus records are essential for identification
and prevention of plant diseases (Dugan & al. 2018). New fungal reports
facilitate deposition of new voucher specimens, contribute new molecular
data in GenBank, expand knowledge surrounding host-specificity, and note
new host-fungi interactions (Halme & al. 2012). In this study, we describe
and illustrate six Camarosporidiella species and analyze DNA sequences that
may facilitate their species identification. Camarosporidiella caraganicola,
C. celtidis, C. elaeagnicola have new host records for Ukraine, and
C. moricola on Morus nigra (in Italy) and C. robiniicola (in Ukraine) represent
new distributional records. Camarosporidiella elaeagnicola on Elaeagnus
angustifolia is re-described to enable identification. Host distributions of all
six species are also discussed.
New hosts and distribution for Camarosporidiella ... 453
Materials & methods
Sample collection, morphological examination, and isolation
Fresh specimens were collected from southern European Russia (Rostov
region), eastern Ukraine (Donetsk region), and central Italy (Forli-Cesena
province). No endangered or protected species were sampled. Twigs, branches,
and stems were examined for fruiting bodies in the laboratory using a Motic
SMZ 168 stereomicroscope. Single spore cultures were established according to
Chomnunti & al. (2014). Conidia and ascospores were lifted from fruiting bodies
using a sterile inoculation needle and dropped onto surfaces of malt extract agar
(MEA) plates that were kept in a dry place overnight. Plates were checked using the
stereomicroscope, and single germinated conidia or ascospores were transferred
to new MEA plates. The culture media were kept at 25°C for 10 days (Damm &
al. 2009). MEA colony morphologies (including colour, shape, and growth rate)
were determined after 7 days of incubation. Microscopic fungal structures were
mounted in water and observed using a Nikon Eclipse 80i compound microscope
and photographed with a Canon 750D digital camera fitted to the microscope.
Voucher specimens are deposited in the Herbarium of Mae Fah Luang
University, Chiang Rai, Thailand (MFLU). Single-spore cultures were preserved
on MEA in 1.5 mL microtube slants at 4°C in Mae Fah Luang Culture Collection,
Chiang Rai, Thailand (MFLUCC) with duplicates at Leibniz Institute DSMZ-
German Collection of Microorganisms and Cell Cultures, Braunschweig,
Germany (DSM). Tarosoft (R) Image Frame Work was used to measure sizes of
microstructure, and Adobe Photoshop CS6 Extended (v. 10.0) was used to prepare
photographic plates.
DNA extraction, amplification, and sequencing
Genomic DNA was extracted from scraped fresh fungal mycelium grown on
MEA media for 8 weeks at 25°C by using the E.Z.N.A Fungal DNA Mini Kit (D3390-
02) extraction kit following the manufacturer’s protocol. Four regions [3’-end of
18S + ITS1+ 5.8S rRNA gene + ITS2 + 5’-end of the 28S rRNA gene; 28S rDNA
gene (LSU); 18S rDNA gene (SSU); partial translation elongation factor 1-alpha
gene (TEF)] were amplified and sequenced using the primer pairs ITS5 and ITS4
(White & al. 1990), LROR (Rehner & Samuels 1994) and LR5 (Vilgalys & Hester
1990), NS1 and NS4 (White & al. 1990), and TEF1-983F and TEF1-2218R (Rehner
& Buckley 2005). Polymerase chain reaction (PCR) mixtures and conditions for ITS,
LSU, SSU, and TEF were amplified in 25-uL volumes according to Wanasinghe & al.
(2017). Final mixtures comprised 1 uL genomic DNA extract, 12.5 uL of 2x Power
Taq PCR MasterMix and 9.5 uL deionised water and 1 uL of each primer (10 uM).
For each gene, PCR conditions included initial denaturation at 95°C for 5 min, 35
denaturation cycles at 95°C for 90 s, annealing for 90 s, elongation at 72°C for 1 min,
and final extension at 72°C for 10 min. Annealing temperatures were 56°C for ITS
and LSU, 55 °C for SSU, and 58°C for TEE PCR amplicons were visualized under
UV light on 1.2% agarose gels stained with GoldView (TM) Gel Stain. The PCR
454 ... Pem & al.
COLPEPAIN
l6everdN
O6eVerdN
68eEPErdN
cI9Z69N
6cIZ8SNW
88eEPErdIN
L8CVersN
98CVErIWN
S8ererdN
p8erverdN
E8CVErdN
C8EPEPAIN
I8ererdN
O8cererdN
6LererdWN
SLererdN
da
SOCPePAWN
vOLVEPAWN
cOCPErPAN
COLPEPAN
ST9Z69N
lO0ererdN
OOCVEPAWN
66CVEPAN
86CPEPAN
LOCVEVAWN
c8eTIZdI
87607 da
96CVEPAWN
S6crePAWN
V6crersAWN
COCVEPAN
COCVEPAIN
l6crerdN
O6crEPAWN
6ZeTIZdy
OSS
LIChEVAWN
OT ChePsAIN
SICVePAWN
VIChEPAWN
VI9LZ69NM
cClCverdN
OLTPVTNW
CICVEPAWN
LICrersN
OT crersAIN
60CPEPAWN
I8€1TZdy
LC60CT da
80CPEPAN
LOCVEVAWN
90CIEPAWN
SOCPEPAWN
vOCVEPAWN
COCPEPAIN
COCPEPAIN
8LeTIZdy
c9T67T6AM
OST
5 (ON NOISSHOOV ANVGNAD
6CIVEPAWN
ScIVePdAWN
LCIVerAWN
OTIVEPAWN
€19Z69N
LCCVPCNW,
SCIVEPAWN
VCIVePAWN
eCIVerdWN
CCIVEPAWN
O8elTZdy
ICI Vers
OcI Pera
6LIVePAWN
SIIVePsaWN
LITVerPsN
OTT Versa
STIVePAWN
LLETIZdM
LTT6COAM
SII
PIssny
eissny
eissny
eissny
Rissny
Ayey
ouTe DIL
eissny
eissny
vIssny
eissny
eIssny
Ayey
eissny
PvIssny
eissny
eIssny
eissny
Ayey
Rissny
Rissny
aureny
AWLNNOD
SoUJUvIIAY DISIPI15)
psafiuod vanjovyy
suadas snug
‘ds vavuids
sypjUap1990 SIJID
was payyuepruy,
vsooynaf vydsomy
xaNnLf DUBSVADI
xanlf{ DUBSVADI)
xXaNlf DUBSVADIJ
xaNsf DUBSVADI
xansf DUBSVADI
‘ds snsydy
snov1ajsnv snsiyd)
snaiuayjysdsog snsiydy
snovijsny snsiydy
vsooynsf vydiowy
‘ds pydiouy
suarsa1oqgav vaynjor)
syojuai4o vanjoy
suadsasogav vaynjor)
snaiuayysdsog snsidy
ALVULSANS / LSOY
9990-Z1T NTAW
0S70-ZT NTAW
9¢0¢-ST NTAW
L681-ST OTAW
TSSe-ST NTIAW
6¢cSc-LZT NTAW
c8ZT-9T (YIAW
cvec-ST (YTAW
6SP0-ZT MTAW
eSPv0-ZT MYTAW
V6LO-VI MTAW
9¢90-FINTAW
8ZP0-ZT NTAW
SLVO-LT (YTAW
c9P0-LT (YTAW
SSPO-LT (YTAW
L8¢C-9T NTAW
O0e9e-ST NTAN
I81¢-ST NIAW
q@ON NAWIOddS
OITEPI SAO
= 9060-71 DONTAWN
60IEhI SAO
= 7880-71 DONTAW
vPPO-ST OONTAN
9820-81 DONTAW
80LeVI SAO
= 97Z0-Z1 DONTAW
ZOTEPI SAO
= £690-ZT DONTAW
90T EPI SAD
= 9680-71 DONTAW
SOTEPI SAO
= £880-VI DONTAW.
S090-VI DONTAW
8€70-VI DON TAW.
vOTEPI SAO
= 9160-VI DONTAW
cOlerI SAO
= €160-V1 DONTAW
cOLEvI SAO
= 6680-71 DONTAW
1680-71 OONTAN
8€Z0-ZT DONTAW.
0990-ZT OONTAN
v090-FT OONTAN
O@PTE OdO
yON FUNITAD
sIpiyf9 “D
DIONUVSDIDI “D
SISUIBOZZAAD *")
SIJUIISALOQD *7)
SHIOadS
‘Apnys sHauasoyAyd ay} Ul popnpuT sa1deds vyjarpisodsosvuvy Jo S{Iejaq ‘| ATAV],
455
New hosts and distribution for Camarosporidiella ...
60PPEPAIN
S0PPEPAIN
F06ZL90d
€LIZ8SNW
TEIZESNW
LOVPEPAW
90PVETAN
SOPPEPAWN
vOPVEPAN
COPPEPAIN
COPPEPAWN
LOPPEPAN
OOPrEPAWN
66CPEPAN
86CVEPAN
LOCVEVAW
96EVEPAWN
S6ererdWNN
VOCVErAWN
COCvErsNN
dal
CCEVEPAWN
ICevers
6008Z90d
S8IVPTNW
L8TVPCNW
98IPPTNW
OCeVEPAWN
61 EVErdN
SlererdWN
LICvers
9TeErersN
STEverdWN
VIEverdN
cleverd
ClEPerdN
Ilererd
PIP68S(M
SSIPPTNN.
OlePerdN
60€PErdWN
S0EPErdWN
LOCPEPAN.
90EPErAN
ass
VEChersAW
CECVEPANN
6PCPTLIN
1908Z90d
TIZPPCNW
LIZPPTNW
607FF7NW
991676AM
CECHEPAW
I€TPEPIIN
O€7PEPAW
6CCPEPAW
S7CPEPAW
LCOCVEVAWN
9CCHEVAIN
SCCVEPAWN
VCCHEPAN,
ETCHEPAW
881Z9S(M
S07PFTNW
CCCHEPAWN
I@7rerdW
O@7PEPAN
6ITPEPAWN
SITPerdN
AST
5 ‘ON NOISSHOOV ANVNAD
OVIPePsAWN
SVIPEPAWN
8CCVPCNW
STCHPCNW
TElT6c6AM
DVIPersAWN
cVIverdN
CVIPEPAWN
IVIPersN
OVI Vers
6CIVEPAN
SEIVEPAN
Lelvers
9CTVEPAWN
SCIVePAWN
€1779S(M
STCVPCNW
vVeEIVerdWN
eCIVErdN
CEIVEPAN
Tel vend
Oc IVerdN
SII
PIssny
Ayeqy
AUPUTIDS)
AUPUTIDS)
vIssnyy
oure.D/)
oure.DI/)
AUPUTIDS)
PISS
BISSNy
BISSNYy
eISSNy
PISSNYy
vIssny
PIssny
PiIssny
eissny
eissny
Ayey
aurea),
BISSIy
eiIssny
eIssny
eviIssny
vIssny
AWINAO’)
uospuapolvy vUuvSvIvD
‘ds snsyky
sniavdogs snsiy)
viavavopnasd viuiqoy
vyofiysnsuv snusvav,q
vyofiysnsuv snuspav,q
snoiuayyns snsyay
saplouupys snusvav]q
vyofysnsuv snusvavjq
vyofiysnsuv snusvavpq
vyofysnsuv snusvavpq
vyofiysnsuv snusvavjq
vyofysnsuv snusvavpq
vyofysnsuv snusvavjq
vyofysnsuv snusvavpq
vyofysnsuv snusvavjq
vyofysnsuv snusvavjq
WNIIUOJUDS VISIMaLLYy
DQIvIIA sIWoULA]D
vjnund snuyy
‘ds piuiqoy
DUISSIYD snYyJUOLLY
DgID SNLOW
snpod snunig
vjnpuad vjnjag
ALVULSANS / LSOY
c9P0-LT MTAW
c810-9T (YTAW
6v8I-ZT NTAW
TSsc-ZT NIAW
S0sc-ZT NTAW
c8ec-9T (YTAW
I8PI-91T NTIAW
€96C-ST (YIAW
8S6c-ST (YTAW
9S6¢-ST NTAW
PVLV0-ZT OTAW
€ZV0-LT (TAN
0Z70-ZT NTAW
S1¢c-ST MTAW
veoI-ST OTAW
9ec0-CTNTAWN
C6rc-LZT NTIAW
8S¢c-9T (YIAW
c16c-ST (YIAN
ev6r-ST MTAW
8c6I-ST (YIAWN
c90C-ST (YTAW
qa@ON NAWIOddS
ZITEPI SAO
= 1060-71 DONTAW
9TTEPI SAO
= L020-ZT DONTAW
0970-FT OONTAN
SSTLI SAD
920-81 OONTAW
8820-81 DONTAW
7820-81 OONTAW.
Te0l€ Odd
LELO-LZT OONTAN
cIZ0-ZT DONTAW
L0L0-ZT OOMTAN
9020-ZT OONTAN
S0Z0-ZT DONTAW.
STTEPI SAO
= C160-VI DON TAW.
vVITEPI SAO
= 1160-VI DONTAW.
ellevl SAO
= 8060-71 DONTAWN
9€€0-€T OONTAN
PVELI-8T OONTAWN
S€Z0-ZT DON TAW.
cITePl SAO
= 10£0-ZT DONTAW.
6£90-ZT OONTAN
IITevl SAD
= 9£90-ZT DONTAW.
9SS0-ZT DONTAN
yON TANITA
lapuapoutroy *D
puviuafna *)
vyvsuoja “D
vjonusvavya *)
SIpyvUgta *D
SHIOTdS
456 ... Pem & al.
6CPPCPAWN
SCPPCPAWN
LCOVVEVAWN
ICVVCPAWN
SCPPePAWN
661676AM
861676AM
VCVVCPAWN
CCPrerdN
CCPPEPAWN
S8ZL6V AX
ICvrersN
OcrrerAWN
61PPePAWN
SIPPePAWN
LIVPerAWN
OTVPePsAWN
SIPPePAWN
VIVPErsAWN
cClPrerdN
CIPVEPAWN
LIVPersN
OIVrersAN
dal
CVEVEVAN
IvererdN
OVeVerdN
6€EVErAN
Severs
LECvevs
9ECVEPAWN
ScererdNN
I8ZZ6VAM
vecversWN
ECeverdN
CEEVEPAIN
TeeverdN
OcererdN
6CEVEPAN
8CEVEPAN
S6LIVPCNW
LCEEVEVAW
9CEVEVAWN
SCEVePAWN
VCCVersAWN
ECEVEPAN
OSS
VSCVEPAWN
eScCrerdNN
CSCVEPAWN
8Sc06SMIN
ISChEPAN
OSCrEPAIN
S9T6C6OAM
VOT6C6AX
6VCVEPAN
SVCVePAWN
LVCVEVAWN
6LZL6VAXM
9VCVEVAWN
SVCVCPAWN
VPCVEVAWN
eVCcverdNN
CVCVEPAWN
Ivcrers
OVCre PAWN
61TVVTNW
6ECVePAWN
SecrePAWNN
LECVEVAWN
9ETVEPAWN
SECVePAWN
OST
5 ‘ON NOISSHOOV ANVGNAD
99TVEPAWN
SOTPEPAWN
VOTVEPAN
6S¢e06SMIN
C9IVEPAN
COIPEPAN
Oc T6c6AM
6C1676AM
I9TVEPAWN
O9TVEPAN
6STVEPAWN
V8ZL6V AM:
SSTPePAWN
LSTVersWN
9STPEPAWN
SSTPVEPAWN
VSTVersW
eSTVerdN
CSTPEPAWN
SECVVPCNW
IST PEPIN
OSTPEPAIN
6VIVEPAWN
SPIVePsAWN
LVIVerAWN
SII
PIssny
vIssny
vissny
PIssny
PIssny
PIssny
pueury
puelury
eIssny
vIssny
PIssny
vIssny
PIssny
vIssny
PIssny
vissny
Aye yy
vIssnyy
Ayey
vIssny
Issn]
eISSN]
eISSN
vIssnyy
vIssny
AWINAO’)
vqIv snLOW
vqIv SnLOW
vqIv SnLOW
vqIv snLOW
vigvavopnasd viuigoy
xXaNLf{ DUBSVADI)
‘ds vuvsvivy
‘ds puvsviv)
‘ds vuvsvivy
SUIISALOGAD DUDSDIDID
SUIBISALOGAD DUDSDIDID
SaploAASBUD WLUNUANGUT
SaplosASDUD WUNUANGUT
SaplOAASBUD WUNUANGUT
‘ds wnusnqvT
SaplOAASBUD WUNUANGUT
SaploAASBUD WUNUANGUT
SaplosASBUD WNUANGUT
snaawa sidass0ddify
visvovopnasd viu1goy
uoLpuapolvYy DUBsSDIVD
uUNnAvgsvg WUNIIAT
snayopod snsiya)
xansf DUBSVADI)
uospuapolvy vUuBSvIDD
ALVULSANS / LSOY
cSP0O-LT (YTAW
€tcc-ST (YIAW
9e61-ST NTAW
LVIC-LZT NTAW
8CC-LZT (YIAW
cCOC-ST (YIAW
€S6c-ST (YIAW
LSV0-ZT OTAW
6r0-LZT (TAN
cCST-ST (YIAW
SePI-LI (YIAW
vevi-ZT OTAW
186¢-ST NIAW
vS6C-ST NTAW
v600-9T NTAW
ISPO-ZT NTIAW
6¢10-ZT NTAW
800¢-ZT NTAW
CLIC-ST (YIAW
e€cIc-ST MTAW
9LV0-ZT OTAW
69P0-LT (TAN
L9V0-ZT OTAW
q@ON NAWIOddS
9880-FT OONTAN
¥890-ZT OONTAN
96S OdD
096S¢ DdO
€0Z0-ZT DON TAW
velevl SAD
= €680-71 DONTAWN
€TLEVl SAO
= €880-VI DONTAW
S9S0-7I DONTAW.
cSZ0-ZT DON TAW.
O7@IEPI SAD
= 1SZ0-ZT DONTAW.
6020-ZT OONTAN
cclePvl SAO
= V0L0-ZT DONTAW.
IclePvl SAO
= 6160-71 DONTAW.
S880-7I DONTAW
LVSO-€T OONTAN
£9L0-8T DONTAW
1690-ZT OONTAN
61 TEP SAO
= CICO-ZT OONTAW.
VI60-FI OONTAN
8ITerl SAO
= £060-V1 DONTAW
S060-VI DON TAW
yON TANITA
DIONOUL “>
LOU “+
sISUaJaqvAIU +)
Hepaue
laizUuayovUl “7D
DIONUANQV] “dD
juangvy “D
vIYvH “D)
SHIOaTdS
457
New hosts and distribution for Camarosporidiella ...
ChPVerAWN
IPPrers
OnPre PAWN
6CPPEPAN
8cTZ8SNW
LETZ8SNW
9ETLZ8SNW
SCTZ8SNW
veTL8SNW
SEPPEPAN
LEVVevsAWN
IEPVCPAWN
SCprerdNN
VeVvrersaN
CCVVEPAN
CEPPEPAIN
lepperdN
OcPVerdN
dah
SSererdNN
VSErersAW
ESererdW
STP68SIM
CSEVePAWN
17ZS90 DN
V6LIVPCNWN
C6LPVTNW.
COLPPCNWIN
I61IVPCNN
O61VPCNW
681VPCNW
ISEPersN
OSerersaN
6VEVEPAN
SPePErsN
LVEVEVAWN
OVEVEPAWN
SveVerdWNN
VreVerAWN
S68ESOAM
V68cSOAM
c68ESOAM
eVeverdN
Ss
LOCVEVAWN
99CIEPAWN
S9TPEPAN
TIP68S(M
VICVEPAWN
78Z809NW
SI@VPCNW
LI@VPCNW
9IZVPCNW
STCVPPCNW
VIZVPCNW
CICVVPCNW
cOCHEPAWN
COCHEPAWN
L9CPEPAWN
O9CrEPAWN
6SCVEPAWN
8SCrePAWN
LSCVEVAWN
9SChEPAWN
c68ES0AM
T68eS0AM
068¢S0AM
SSCVEPAWN
NST
5 (ON NOISSHOOV ANVENAD
6ZIPVEPAWN
8SLIVersAWN
LLIPEPAW
PITZIS(M
OLTPVEVAWN
OPOIST UN
€L6cO9ONW.
VETHVTNWN
CCCPVCNW.
CETHVTNW
I€tVPCNN
O€TPVTNW
6CCHVTNW
SLIVEPAWN
DLIVeVAWN
eLIVers
CLIVEPAWN
IZIPePAW
OLIVE VAN
691 PEPAN
89IPEPAWN
688ES0AM
888ES0AM
L88CS0AM
LOTVEVAWN
SLI
vIssny
PIssny
RIssny
Ayeyy
Ayeyy
rIssny
Ayeyy
eIssny
vIssny
vIssny
vissny
vIssny
vIssny
rIssny
rissny
PIssny
PIssny
vIssny
PIssny
PIssny
PIssny
eIssny
eIssny
PIssny
vIssny
AULNAO)
SOYJUvIDIAY VIS}P]5)
DUDIIXIWLOIU VIUIQOY
SoYJUvIDIAY VIS}PA]£)
viavavopnasd viuIgoYy
‘ds snsydy
visu snndog
DASIU SNAOW
vq|v snsow
vq[v snsow
vg[v snsow
vg[v snsow
vqv snsow
vgv snsow
vqIv SnLOW
vqIv SnLOW
bq]v snLoyw
bq]v snLoyw
bq]v snLoywy
gv snLoyw
bq]v snLoyw
qv snLoywy
bq]v snLoyw
bq]v sn1oywy
bgq|v snLoyw
bq]v snLoyw
ATLVULSANS / LSOH
8970-ZT NTAW
8SP70-ZT NTAW
9S70-ZT NTAW
Ore0-€1 NTAN
S810-9T (TAN
CCLT-9T (YTIAW
1T660-ZT NTAW
$80¢-ZT NTAW
090¢-ZT NTAW
9¢07C-ZT NTAW
se0c-ZT NTAW
O10C-ZT NTAW
VO6I-ZT NTAW
OZZT-9T NTAW
6€9T-9T (TAN
9C9T-9T YTAN
LCS1-9T NTAW
666C-ST NTAW
cCCC-ST NV TAW
SZLOC-ST NY TAW
6961-ST NTAW
€tcc-ST NTAW
céCC-ST NV TAW
SZLOC-ST NTAW
I9P0-ZT NTAW
q@ON NAWIONdS
OeTEPI SAD
= 9060-71 DONTAW
6c EVI SAO
= 680-71 DONTAW
8clerI SAO
= €680-V1 OONTAW
L£7S0-€T OONTAW
LeLevl SAD
= 8020-ZT DON TAW
£800-8T OONTAW
OTE7-ZT OONTAW
7@£L0-8T OONTAW
1220-81 DON TAW
0220-81 DON TAW
6920-81 DON TAW
8920-81 DON TAW
9920-81 DON TAW
S¢LO-ZT DON TAN
61Z0-ZT DON TAN
9CIEPI SAD
= 81Z0-ZT DONTAW
SCTLEVI SAO
= PIZ0-ZI OONTAW
T1Z0-ZT OONTAW
¥690-ZT OON TAN
£890-ZT OONTAW
0890-ZT DON TAN
86€1-9T DON TAN
L6€1T-9T DON TAN
96€T-9T DON TAN
8680-7 DON TAN
YON FUALIAD
vjoaUigos *D
sisuaanoqiuard *D
puyndod *)
SAIOTdS
458 ... Pem & al.
Jo dINJSU] “LUNTIeQIOP] [EOTBOTOOAP[ JWoYYsSeL, ‘IWSVL ‘puepyeyL
CSPPEPAWN
ISPPEPAN
OSPPEPAIN
6rPPCPAWN
SrrrcrdWN
LVVVEVAWN
Te TZ8SNW
OcTZ8SNW
9PVPEVAWN
SPPPCPAWN
VrVrersAWN
CVPrersdW
da.
S9CPCPAWN
VICVEPAWN
C9CPEPAIN
CICPEPAIN
I9€VEPAWN
O9CrerAWN
8r6eSZdX
D8SIVPCNW
96IPPTNW
6SererdWN
8SererdNN
LSCvevsW
9SEPEPAW
OSS
Tey SueIyD
‘pjoq UI UMOYs ore saduanbeas payesrsuas A[MON
‘qua3 eydye-] 10}eJ UOSUOTA UOTLISURT] :ATL SYNCIU Sst Tenred :qss SVWNCIU $gz JeHsed :qs7T ‘s1a0eds paqiiosues [eUID] :S$ TI >
‘URISTYIqZA) JUIYYse], “Ue}sEyaqz Jo s2oustd¢ Jo Auapeoy ‘A8ojooz pue Auejog
TUNTIeGIIH (QTIW) Ausioatug Suen yey sey (A TAW ‘pueyreyl
Tey SurryD
UOT}DITIOD FANIIND q
AUSIOATUL) BURNT YRT IPI SOON TAW ‘SPurpIOYION ey) IWyIeIIC ‘ons AUsIaATporg [esunN. A{Tp19}saAA IY} JO WOTIDIT[OD o1NI[ND »
LLCOVEVAW
OLCVEVAWN
S8sZZeOd
cET6C6OAM
SLCOVEPAWN
VLCVEVAWN
eLeOverdW
CLOVEPAWN
8LrrrZdy
LOCVVTNW
OCTHPPTNW
69T676AM
89T676AM
ILChEPAWN
OLChE PAWN
69CPEPAN
S9CPEPA
OST
5 (ON NOISSHOOV ANVGNAD
SI779S(M
68IPEPAN
SSI Pera
871676AN
ZEL6TOAN
L8IPErdN
O8IPEPAWN
S8IPePAWN
V8IversWN
9evPPLda
VCCVPCNW
9ETVPCNW.
veT6coAM
eCl6c76AM
e8IPErdNN
C8TIPePAWN
I8l Pers
OST Ver
SII
Ayey
eissny
eissny
TEA
ouTeDT/)
eissny
eissny
vIssnyy
Issn]
eIssnyy
vIssny
oure-rD/)
AUPUTIDS)
oureryy)
BISSNy
vIssny
PIssny
PIssny
AWINAO’)
‘ds snsydy
‘ds vissug
snotuayjns snsiyay
oydydosksyo vioydos
siaavy snuQ
‘ds piuiqoy
‘ds piuiqoy
vyofiysnsuv snusvavpq
SOYJUVIDIAY VIS} PI)
V141848809 SNUIJO)
visvovopnasd viu1goy
visvIvopnasd viu1goy
SNLIDUOLOI snYdjapvyiyd
viavovopnasd viuiqoy
‘ds piuiqoy
‘ds viuiqoy
vigvavopnasd viuigoy
vigvovopnasd viu1goYy
ALVULSANS / LSOY
V8rI-9T OTAW
LLV0-ZT OTAW
V99T-9T NTAW
66ST-9T (YTAIN
0970-ZT NTAW
6061-ST MYTAW
0£Z0-V1 NTAW
0cc0-8T OTAN
69FC-LT NTAW
00€7-9T NTAW
L6S1-9T NTAW
VOT?-ST NTAW
IZV0-ZT OTAW
qON NAWIOddS
87S0-€1l DONTAW
bvelerl SAO
= €1Z0-ZT DONTAW
ST60-7T DONTAW.
Ivvcl Odd
cegT€ OdD
cCLO-ZT DON TAW.
LIZO-ZT OONTAN
e€eleVvl SAO
= £680-VI DONTAW
0790-FT OONTAN
6820-81 DONTAW
$£Z0-8T DON TAW
6L£¢E0€ OdO
L99LT OdO
€€Z0-ZT DON TAW
celevl SAO
= 91Z0-ZT DONTAW
8890-ZT DONTAW.
Televi SAD
= 6060-71 DON TAW.
yON FUALIAD
iyavds “+
‘ds
pijaipisodso1vuvy)
‘ds
vijaipisodso1vuivy)
Luazjnyys “Dd
SHIOTdS
New hosts and distribution for Camarosporidiella ... 459
amplification products (amplimers) were analysed by the BGI, Ltd (Shenzhen, PR
China). Same primer pairs used for amplification process were used for sequencing.
The nucleotide sequences were deposited in GenBank (TABLE 1), and the final
alignment and tree are deposited in TreeBASE (http://www.treebase.org/).
Phylogenetic and sequence analysis
The raw trace files were edited using BioEdit v. 7.0.5.2 (Hall 1999) and unclear
peaks were omitted from the beginning and end of the sequences. A consensus
sequence was generated manually for each set of trace files from the forward and
reverse sequences, which were subjected to standard GenBank BLAST searches
to compare with other fungal DNA sequences from NCBIs GenBank sequence
database. High similarity sequences were added to the alignments. Sequences
generated in this study and those obtained from GenBank were aligned using
MAFFT (Kuraku & al. 2013, Katoh & al. 2017) and adjusted visually in BioEdit
v. 7.0.5.2. The best evolutionary model for each data partition was obtained using
MrModelTest v. 2.3 (Nylander 2004) under the Akaike Information Criterion (AIC)
implemented in both PAUP v. 4.0b10 and MrBayes v. 3. The combined gene trees
were phylogenetically regenerated using both Bayesian Inference (BI) and Maximum
Likelihood (ML) criteria as outlined in Jeewon & al. (2017), Pem & al. (2019a,b), and
Senanayake & al. (2017). ML analysis was conducted in RAxML-HPC2 on XSEDE
(8.2.8) (Stamatakis 2006) implemented in raxmlGUI v.0.9b2 (Silvestro & Michalak
2012), employing GTR+I+G evolutionary settings; bootstrap support values were
obtained by running 1000 pseudo replicates. Bayesian inference (BI) analysis was
run with MrBayes v. 3.2.1 (Ronquist & Huelsenbeck 2003) to evaluate Posterior
probabilities (BYPP) (Rannala & Yang 1996, Zhaxybayeva & Gogarten 2002) with
Markov Chain Monte Carlo (MCMC) sampling. The heating parameter was set
at 0.15. Two parallel runs were conducted using the default settings. The analysis
lasted until the average standard deviation of split frequencies came below 0.01.
Trees were saved each 1000 generation, with the first 25% discarded as the ‘burn-ir’
phase. BYPP were calculated from the remaining trees. The resulting phylogenetic
tree was visualized with FigTree v1.4.0 program (Rambaut 2012) and reorganized
in Microsoft Power Point 2007 and Adobe Illustrator CS5 (v. 15.0.0). Sequences
generated in this study were submitted to NCBI's GenBank nucleotide database
(http://www.ncbi.nlm.nih.gov; TABLE 1).
Phylogenetic results
Topologies of ML and BI trees recovered for each gene dataset were
visually compared, and the overall tree topology was congruent to those
obtained from the combined dataset. The RAxML analysis of the combined
dataset yielded a best scoring tree (Fic. 1a,b,c) with a final ML optimization
likelihood value of -7746.830774. The matrix had 412 distinct alignment
patterns, with 11.62% proportion of gaps and completely undetermined
characters in this alignment. Parameters for the GIR + I + G model of
460 ... Pem & al.
89/1.00 (C. moricola MFLUCC 16-1398
51/- (C. moricola MFLUCC 16-1396!
C. moricola MFLU 16-1397
71/0.95|C. moricola MFLUCC 17-0694
73/0.99I|C. moricola MFLUCC 17-0718
C. moricola MFLUCC 17-0687 Clade A |
C. moricola MFLUCC 17-0680 =
C. moricola MFLU 15-2223
86/1.00 |C. moricola MFLUCC 17-0714
C. moricola MFLUCC 17-0725
. moricola MFLUCC 17-0719
51/1.00 IC. moricola MFLUCC 15-1936
62/1.00 |\C. moricola MFLUCC 18-0766
C. moricola MFLUCC 18-0768 :
s9/1.00 |C- moricola MFLUCC 18-0769
C. moricola MFLUCC 18-0770 |
C. moricola MFLUCC 18-0771
C. moricola MFLUCC 18-0772
C. moricola MFLUCC 17-2310
C. moricola MFLUCC 17-0711
87/1.00 'C. moricola MFLUCC 14-0898
C. moricola MFLUCC 14-0886 =
85/1.00 C. robiniicolaMFLUCC 14-0892
55]-IC. robiniicola MELUGE wists 6
57/0.95
92/1.00
57/-
. robiniicola MFLUCC a Clade B
Fic. la-c (pp.460-462). RAxML tree of Camarosporidiella spp. based on analysis of a combined
dataset of LSU, SSU, ITS, and TEF partial sequence data. Bootstrap support values for ML >50%
and Bayesian posterior probabilities (PP) 20.90 are presented as ML/PP above and below the
New hosts and distribution for Camarosporidiella ... 461
96/1.00 |C. Jaburni MFLUCC 17-0751
Band C. laburni MFLUCC 17-0709
‘IC. laburni MFLUCC 17-0752
C. laburni MFLUCC 14-09197
C. laburni MFLUCC 14-0885?
. laburni MFLUCC 17-0704
C. laburnicolaMFLUCC 14-0565! Clade C
C. sp CPC 12441
celtidis MELUCC 14-0904
C. celtidis MFLUCC 17-0676
C. celtidis MFLUCC 17-0679 — Clade D
C. populina JZB3170002
C. celtidis MFLUCC 17-0701
C. celtidis MFLUCC 17-0556 _
_ celtidis MFLU 15-3551
C. elaeagnicola MFLUCC 18-0788
. elaeagnicola MFLUCC 14-0911
C. elaeagnicola MFLUCC 17-0705
C. elaeagnicola MFLUCC 17-0707
C. elaeagnicola MFLUCC 15-2215 |
C. elaeagnicola MFLUCC 17-0712 Clade E ©
C. elaeagnicola MFLUCC 18-0782
C. elaeagnicola MFLU 15-1924
C. elaeagnicola MFLUCC 17-0706
C. elaeagnicola MFLUCC 17-0737
C. elaeagnicola MFLUCC 18-0764
C. sp CPC 31031
63/1.
52/1.
96/1.
nodes. The new isolates are set in bold font. Ex-type strains are indicated with a superscript '. The
scale bar represents the expected number of nucleotide substitutions per site.
462 ... Pem & al.
| -C. italicaMFLUCC 13-0547"
6P/-1C. mori MFLU 17-2147!
' . caraganicola MFLUCC 14-
|| ‘C. caraganicola MFLUCC 1 cae
sn dic caraganicolaMFLUCC 14-08:
. caraganicola Z
oll C laMFLUCC 14
4 it
59/1.04| 'C. caraganicola MFLUCC 17-
C. melnikii MFLUCC 17-0684?
71/0.94 C. schulzeri MFLUCC 14-08977 —
79/0.94)|C. Schulzeri MFLU 15-1909
C. schulzeri MFLUCC 17-0722
C. schulzeri MFLUCC 17-0717
C. halimodendri MFLUCC 18-0767
C. halinodendri MFLUCC 14
C. halinodendri MFLUCC 17-
C. halimodendri MFLUCC 14
i halimodendri MFLUCC 17-
100/1.00|C. halimodendri MFLUCC 14
C. halimodendri MFLUCC 14-0907
65/1.0) [C. arezzoensis MFLUCC 14-0913
. arezzoensis MFLUCC 14-0916_
C. arezzoensis MFLUCC 14-0899 Clade I
™4/1. DUC. arezzoensis MFLUCC 14-0238.
95/1 09C. arezzoensis MFLUCC 14-0891?
100/1.00 fC. aborescentis MFLUCC 14-06041
84/6. aborescentis CPC 31420
| C. aborescentis MFLUCC 17-0 Clade J
6/1 RC aborescentis MFLUCC 17-0738
C. aborescentis MFLU 15-2181
od -
7
99/1.00
Clade H
L AE. mackenziei CPC 25960 a
aie 4 IC. mackenziei CPC 25962 oa
b4/1.0a(C. mackenziei MFLUCC 14-0893. : Clade K
. mackenziei MFLUCC 14-0883?
C. mackenziei MFLUCC 17-0703 an
taurosphaerialycii} IF
0.006 —StaurosphaerialyciiN r
New hosts and distribution for Camarosporidiella ... 463
the combined LSU, ITS, SSU and TEF were as follows: Estimated base
frequencies: A = 0.243219, C = 0.241435, G = 0.266791, T = 0.248554;
substitution rates AC = 1.018686, AG = 2.994042, AT = 1.771673,
CG = 1.029209, CT = 4.405919, GT = 1.000000; proportion of invariable
sites I = 0.845457; gamma distribution shape parameter a = 0.909328.
The Bayesian analysis resulted in 10,000 trees after 1 M generations with
0.049881 as the average standard deviation of split frequency. The first 2000
trees representing the burn-in phase of the analyses were discarded, and the
remaining 8000 trees were used for calculating posterior probabilities in the
majority rule consensus tree.
Newly generated sequences from seven Camarosporidiella isolates
(MFLUCC 18-0766, MFLUCC 18-0768, MFLUCC 18-0769, MFLUCC
18-0770, MFLUCC 18-0771, MFLUCC 18-0772, and MFLUCC 17-2310)
grouped with isolates previously circumscribed as C. moricola (Wanasinghe &
al. 2017, Tibpromma & al. 2017). These sequences formed a distinct clade (Fic.
1, CLADE A) within Camarosporidiella, but were poorly supported in multi-
gene analyses (MI = 62%, BI = 1; and ML = 89%, BI = 1). Two other isolates
(MFLUCC 18-0775 and MFLUCC 18-0789) showed a close phylogenetic
affinity with C. robiniicola strains and two unidentified Camarosporidiella
species (CPC 27667 and CPC 30379); this relationship retrieved a support
of ML = 73%, BI = 1 (Fic. 1, CLADE B). Isolate MFLUCC 18-1134 clustered
with C. celtidis strains (Fic. 1, CLapE D). Three newly generated sequences,
MFLUCC 18-0764, MFLUCC 18-0782, and MFLUCC 18-0788 grouped
with C. elaeagnicola isolates with statistical support (ML = 60%, BI = 1).
(Fic. 1, CLADE E). Isolate MFLUCC 18-0786 clustered with C. caraganicola
(MFLUCC 14-0605), C. mori (MFLU 17-2147), and C. italica (MFLUCC
13-0547) (Fic. 1, CLADE F). MFLUCC 18-0767 nested among C. halimodendri
isolates including ex-type strain (MFLUCC 14-0901) (Fic. 1, CLADE H).
Taxonomy
Camarosporidiella caraganicola (Phukhams., Bulgakov & K.D. Hyde)
Phukhams., Wanas. & K.D. Hyde, Stud. Mycol. 87: 220 (2017)
PiaTE 1, Fic. 2e,f
SAPROBIC on dead branches of Amorpha fruticosa L. (Fabaceae). SEXUAL
MORPH: ASCOMATA 200-380 um high, 250-380 um diam. (x = 333.4 x 286.1
um, n = 10), black, superficial to semi-immersed, in groups, occasionally
dispersed underneath the host periderm, entirely or moderately erumpent,
464 ... Pem & al.
PiaTE. 1. Camarosporidiella caraganicola (MFLU 17-2539). a, b. Ascomata on host surface;
c. Ascoma, vertical section; d, e. Peridium; f. Hamathecium; g—j. Asci; k-r. Ascospores. Scale
bars: a = 1000 um; b = 500 um; c = 200 um; d, e = 25 um; f= 5 um; g-j = 50 um; k-r = 10 um.
globose, rough, ostiolate. OsTIOLE central, short, slightly sunken, tiny,
inconspicuous on surface, smooth, with ostiolar canal filled with hyaline
cells. PERIDIUM 80-90 ttm at the base, 60-90 um on the sides, comprising
3-4 layers, with outer layer cells heavily pigmented, thick-walled, dark brown
New hosts and distribution for Camarosporidiella ... 465
cells of a textura angularis and the cells towards the inside lightly coloured
with an inner layer comprising 3-4 layers, hyaline, flattened, thin-walled, a
textura angularis. HAMATHECIUM comprising numerous pseudoparaphyses
2.8-3.6 um (n = 20) diam., filamentous, branched, septate. Asc1 150-180 x
10-12 um (x = 163.8 x 11.7 um, n = 30), 8-spored, bitunicate, fissitunicate,
cylindrical, short-pedicellate, rounded at apex with a tiny ocular chamber.
AScospores 20-24 x 7-8 um (x = 22.9 x 7.3 um, n = 50), overlapping
uniseriate, muriform, ellipsoidal, 3—5-transversely septate, with 2-4 vertical
septa, constricted at middle septum, initially hyaline and becoming brown at
maturity, marginally paler, pointed and narrow at the ends, not surrounded
by a mucilaginous sheath.
CULTURE CHARACTERISTICS: Slow growing, reaching 3 cm diam. after
4 weeks at 25°C, later with dense mycelium, circular, rough margin, hairy,
white at first, greenish grey after 2 months, reverse greenish grey in the
middle, whitish at the margin, flat on the surface.
SPECIMEN EXAMINED: UKRAINE, DONETSK REGION, Donetsk city, Donetsk Botanical
Garden, lower park near pond, dying and dead twigs of Amorpha fruticosa, 20 May 2017,
Timur S. Bulgakov (MFLU 17-2539; living cultures MFLUCC 18-0786, DSM 109978).
Notes: Our specimen of Camarosporidiella caraganicola is morphologically and
phylogenetically similar to another specimen collected from a different host,
Caragana frutex (L.) K. Koch (Fabaceae); we isolated our strain from Amorpha
fruticosa. Liu & al. (2015) reported the asexual morph, and Wanasinghe & al.
(2017) reported the sexual morph. The phylogenetic placement of our strain
(MFLUCC 18-1128) is shown in Fie. 1.
Hosts: Caragana frutex (Liu & al. 2015, Wanasinghe & al. 2017); Amorpha
fruticosa (this study).
DISTRIBUTION: Russia: Liu & al. 2015, Wanasinghe & al. 2017; Ukraine:
this study).
Camarosporidiella celtidis (Shear) Thambug., Wanas. & K.D. Hyde,
Stud. Mycol. 87: 226 (2017) PLATE 2, FiG. 2c,d
SAPROBIC on dead twigs of Ulmus pumila L. (Ulmaceae).
ASEXUAL MORPH: CONIDIOMATA 250-350 um high, 220-470 um diam.
(x = 280.5 x 314.7 um, n = 10), solitary or gregarious, black, immersed to
semi-immersed, unilocular, ostiolate. CONIDIOMATAL WALL 25-50 um
thick at the base, 25-35 um and thick at the sides, comprising 3-4 layers,
outer layer heavily pigmented, thick-walled, comprising dark reddish-
brown cells of textura angularis, cells towards the inside lighter with the
inner layer comprising 3-4 layers, hyaline, with thick-walled cells of textura
466 ... Pem & al.
PLaTeE. 2. Camarosporidiella celtidis (MFLU 17-2492). a, b. Conidiomata on host surface;
c. Conidioma, vertical section; d. Peridium; e-f. Conidiogenous cells and developing conidia;
g-k. Conidia. Scale bars: a, b = 500 um; c = 100 um; d = 30 um; e-k = 5 um.
angularis. OSTIOLE 25-30 um long, 30-40 um diam. (x = 26.5 x 37.5 um,
n = 6), central, smooth, ostiolar canal filled with hyaline or pale brown cells.
CONIDIOPHORES reduced to conidiogenous cells. CONIDIOGENOUS CELLS
enteroblastic, annellidic, doliiform, integrated, solitary, hyaline, smooth-
walled, and formed from the inner layer of conidiomatal wall. Conip1a 9-14
x 4-5 um (x = 12.3 x 5.0 um, n = 40), oblong, straight, rounded at both ends,
2-3-transversely euseptate, without vertical septa, smooth-walled, slightly
constricted at septa, initially hyaline, becoming brown to dark brown at
maturity.
New hosts and distribution for Camarosporidiella ... 467
CULTURE CHARACTERISTICS: Slow growing, reaching 3 cm diam. after 4
weeks at 25°C, later with medium dense mycelium, circular smooth entire
margin, radially furrowed, hairy, white at first, yellowish white after 2 months,
reverse off white in the middle, white at the margin, flat on the surface.
SPECIMEN EXAMINED: UKRAINE, DONETSK REGION, Shakhtyoarsk district, “Donetsk
Ridge” regional landscape park (“Donetskiy kryazh”), old artificial forest belt, on Ulmus
pumila, 19 May 2017, Timur S. Bulgakov (MFLU 17-2492; living cultures MFLUCC
18-1134, DSM 109786).
Notes: Our isolate MFLUCC 18-1134 clustered with the ex-type strain of
Camarosporidiella celtidis, previously described by Wanasinghe & al. (2017).
The main difference between descriptions by Wanasinghe & al. (2017) and
our C. celtidis isolate is the size of conidia (15-20 x 6-8 um vs. 9-14 x 4-5
uum). However, our LSU, SSU, ITS, and TEF sequence analyses showed a 100%
similarity between our isolate and the other C. celtidis isolates in GenBank.
In view of the phylogenetic and morphological similarities, we introduce our
collection as a new record on Ulmus pumila.
Hosts: Ailanthus altissima (Mill.) Swingle, Betula pendula Roth, Celtis
occidentalis L., Elymus repens (L.) Gould, Gleditsia triacanthos L., Maclura
pomifera (Raf.) C.K. Schneid., Morus alba L., Prunus padus L., Spiraea sp.,
(Thambugala & al. 2016, Wanasinghe & al. 2017); Ulmus pumila (this study).
DISTRIBUTION: Russia (Thambugala & al. 2016, Wanasinghe & al. 2017);
Ukraine (this study).
Camarosporidiella elaeagnicola Wanas., Bulgakov & K.D. Hyde,
Stud. Mycol. 87: 227 (2017) PLaTE 3, Fic. 2¢,h
NECROTROPHIC on dying twigs.
SEXUAL MORPH: Undetermined.
ASEXUAL MORPH: CONIDIOMATA pycnidial, 170-270 um high, 180-330
um diam. (x = 259.4 x 204.6 um, n = 10), solitary or gregarious, black,
immersed to slightly erumpent, unilocular, ostiolate. OsTIOLE 17-20 um
long, 19-25 um diam. (x = 15.2 x 19.1 um, n = 10), central, smooth, ostiolar
canal filled with hyaline or pale brown cells. CONIDIOMATAL WALL multi-
layered, 25-35 um thick at the base, 35-50 um thick at the sides, comprising
5-8 layers of heavily pigmented dark brown cells of textura angularis, with
lighter cells towards the inside, with inner layer comprising 2-4 layers, cells
a textura angularis, hyaline, thin-walled. MACROCONIDIOPHORES reduced
to conidiogenous cells. MACROCONIDIOGENOUS CELLS enteroblastic
with percurrent annellations, doliiform, integrated, solitary, hyaline,
smooth-walled, and formed from the inner layer of conidiomatal wall.
468 ... Pem & al.
PLATE. 3. Camarosporidiella elaeagnicola (MFLU 17-2505). a, b. Conidiomata on host surface;
Conidioma, vertical section; d. Peridium; e-g. Conidiogenesis; h-l. Conidia. Scale bars:
a = 1000 um; b = 500 um; c = 25 um; d = 20 um; e-1 = 10 um.
MacroconipiA 13-18 x 8-9 um (x = 15.5 x 9.0 um, n = 30), ellipsoidal,
straight to slightly curved, rounded at both ends, 2—3-transversely septate,
with 2-4 vertical septa, muriform, smooth, pale to dark brown.
CULTURE CHARACTERISTICS: Slow growing, reaching 3 cm diam. after
4 weeks at 25°C, later with dense mycelium, circular, smooth well-defined
margin, hairy, white at the centre, greenish grey towards margin, reverse
greenish grey, flat on the surface.
SPECIMENS EXAMINED: UKRAINE, DONETSK REGION, Shakhtyorsk district,
“Donetsk Ridge” regional landscape park (“Donetskiy kryazh”), stony steppe, on dying
twigs of Cytisus ruthenicus Wol. [= Chamaecytisus ruthenicus (Wol.) Klask.], 19 May
New hosts and distribution for Camarosporidiella ... 469
2017, Timur S. Bulgakov (MFLU 17-2505; living culture MFLUCC 18-0782, DSM
109783); Donetsk city, Donetsk Botanical Garden, arboretum park near the pond,
on dead twigs of Elaeagnus angustifolia, 21 May 2017, Irina V. Bondarenko-Borisova
(MFLU 17-2551; living culture MFLUCC 18-0788, DSM 109784); RUSSIA, Rostov
REGION, Shakhty city district, rock quarry “Stony pond” (“Kamennyy stav”), on dead
twigs of Elaeagnus angustifolia, 17 April 2017, Timur S. Bulgakov (MFLU 17-1849;
living culture MFLUCC 18-0764; DSM 109794).
Notes: Our isolate MFLUCC 18-0782 clustered with the ex-type strains
of Camarosporidiella elaeagnicola originally described by Wanasinghe &
al. (2017). However, MFLUCC 18-0782 differs from the type strain in its
comparatively smaller conidiomata (170-270 um high, 185-330 um diam.
vs. 300-500 um high, 300-550 um diam.) and shorter conidia (13-18 x
8-9 um vs. 18-25 x 9-13 um). MFLUCC 18-0782 originates from Ukraine,
while the holotype specimen was collected from an adjacent area of Russia.
We provide identify this new collection as C. elaeagnicola based on its
morphology, phylogeny, and host association.
Hosts: Artemisia santonicum (Asteraceae), Cytisus ruthenicus
[= Chamaecytisus ruthenicus] (this study), Elaeagnus angustifolia
(Wanasinghe & al. 2017).
DISTRIBUTION: Russia (Wanasinghe & al. 2017), Ukraine (this study).
Camarosporidiella halimodendri Wanas., Bulgakov & K.D. Hyde,
Stud. Mycol. 87: 230 (2017) PLATE 4, Fic. 2a,b
SAPROBIC on dead branches of Robinia pseudoacacia L. (Fabaceae).
SEXUAL MORPH: Undetermined.
ASEXUAL MORPH: CONIDIOMATA pycnidial, 340-490 um high, 440-710
um diam. (x = 586.6 x 396.3 um, n = 10), solitary or gregarious, black,
immersed or semi-immersed, unilocular papillate. OSTIOLE 35-60 um long,
40-60 um diam. (x = 42.5 x 54.6 um, n = 6), central, smooth, ostiolar canal
filled with hyaline or pale brown cells. CONIDIOMATAL WALL comprising
1-2 layer of hyaline (inner layer) and dark reddish-brown (outer layer)
cells of textura angularis. CoNrDIOPHORES reduced to conidiogenous
cells. MACROCONIDIOGENOUS CELLS enteroblastic, annellidic, doliiform,
integrated, solitary, hyaline, smooth-walled, and formed from the inner
layer of conidiomatal wall. Macroconipia 11-22 x 5-7 um (x = 14.8
x 6.9 um, n = 20), oblong, straight to slightly curved, rounded at both
ends, 3—7-transversely septate, with 1-2 vertical septa, with 2-3 oblique
septa, muriform, smooth-walled, hyaline when immature becoming
dark brown on maturity. MICROCONIDIOGENOUS CELLS intermixed with
470 ... Pem & al.
PLaTEe. 4. Camarosporidiella halimodendri (MFLU 17-2008). a, b. Conidiomata on
host surface; Conidioma, vertical section; d. Peridium; e-g. Conidiogenous cells;
h-m. Macroconidia; n-s. Microconidia. Scale bars: a, b = 1000 um; c = 100 um; d = 30 um;
e-m, o-s = 5 um;n = 10 um.
macroconidiogenous cells, hyaline, distinct, enteroblastic, annellidic,
ampulliform to subcylindrical. MicRoconipiA 6.6-10.4 x 2.5-3.3 um (x =
7.9 x 3.0 um, n = 20), hyaline, oblong to ellipsoidal, allantoid, with a few
small guttules, smooth-walled.
New hosts and distribution for Camarosporidiella ... 471
CULTURE CHARACTERISTICS: Slow growing, reaching 3 cm diam. after
4 weeks at 25°C, later with sparse mycelium, circular, smooth well-defined
margin, grey in the middle, white in the edges, reverse cream-grey in the
middle, whitish at the edge, flat on the surface.
SPECIMEN EXAMINED: RUSSIA, Rostov REGION, Shakhty city district, urban
artificial forest, on dying twigs of Robinia pseudoacacia, 26 May 2017, Timur S.
Bulgakov (MFLU 17-2008; living cultures MFLUCC 18-0767, DSM 109977).
Notes: Our new isolate MFLUCC 18-0767 shares a close phylogenetic
affinity to Camarosporidiella halimodendri (MFLUCC 14-0905) in our
combined LSU, SSU, ITS, and TEF phylogenetic tree. Our isolate differs
slightly morphologically from the type description in microconidial shape
and larger size (vs. 4.5-7.5 x 3.5-4.5 um). Camarosporidiella halimodendri
has not previously been reported from Robinia pseudoacacia, reported here
as a new host.
Hosts: Caragana frutex, C. halodendron (Pall.) Dum. Cours.
[= Halimodendron halodendron (Pall.) Voss], Cytisus podolicus Blocki
[= Chamaecytisus podolicus (Blocki) Klask.], Lycium barbarum _L.
(Wanasinghe & al. 2017), Robinia pseudoacacia (this study).
DISTRIBUTION: Russia: Wanasinghe & al. 2017, this study.
Camarosporidiella moricola (Chethana, Bulgakov & K.D. Hyde) Wanas. &
K.D. Hyde, Stud. Mycol. 87: 238 (2017) Pate 5, Fic. 2k]
NECROTROPHIC on dead and dying twigs of Morus nigra L. (Moraceae).
SEXUAL MORPH: Undetermined.
ASEXUAL MORPH: CONIDIOMATA 110-175 um diam., 210—290 um high,
pycnidial, solitary, scattered, semi-immersed, unilocular, globose, black, with
a papillate ostiole. CONIDIOMATAL WALL 15-30 um thick at the base, 20-30
um thick at the sides, multi-layered, outer layer composed of 3-4 layers of
thick, dark brown cells; inner 4-6 layers hyaline cells of textura angularis.
CONIDIOPHORES reduced to conidiogenous cells. CONIDIOGENOUS CELLS
enteroblastic, with percurrent annellations, doliiform, hyaline, smooth-
walled, formed from the inner most layer of the conidiomatal wall. Conrp1A
11-12 x 4-5 um (x = 11.9 x 5.3 um, n = 20), oblong, ellipsoidal, straight to
slightly curved, initially hyaline becoming pale to dark brown at maturity,
smooth-walled, rounded at both ends, muriform, 1-3-transversely septate
and 1-2 vertical septa.
CULTURE CHARACTERISTICS: Mycelium slow growing, reaching 3 cm
diam. after 4 weeks at 25°C, later with dense mycelium, circular, fimbriate,
472 ...Pem & al.
Pate. 5. Camarosporidiella moricola (MFLU 17-0991). a, b. Conidiomata on host surface;
c. Conidioma, vertical section; d. Peridium; e—g. Conidiogenous cells and developing conidia;
h-m. Conidia. Scale bars: a = 500 um; b = 300 um; c = 50 um; d = 40 um; e-g = 5 um;
h-m = 10 um.
rough margin, olivaceous grey in the middle, reverse creamy-white, flat on
the surface.
SPECIMENS EXAMINED: ITALY, PROVINCE OF FORLI-CESENA, Predappio Alta-
Predappio, on dead branch of Morus nigra, 5 May 2017, Erio Camporesi (MFLU
17-0991, MFLUCC 17-2310); RUSSIA, RosTov REGION, Shakhty city, urban
artificial forest, on Morus alba, 26 May 2017, Timur S. Bulgakov (MFLU 17-2060;
living cultures MFLUCC 18-0771, DSM 109975); Shakhty city district, artificial
forest, on dead twigs of Morus alba, 11 June 2017, Timur S. Bulgakov (MFLU 17-
2036; living cultures MFLUCC 18-0770, DSM 109835); trees near Atyukhta river, on
dead twigs of Morus alba, 1 June 2017, Timur S. Bulgakov (MFLU 17-1904; living
cultures MFLUCC 18-0766, DSM 109917); block green belt, on Morus alba, 8 May
2017, Timur S. Bulgakov (MFLU 17-2085; living cultures MFLUCC 18-0772, DSM
109795); Hospital park, trees, on dead twigs of Morus alba, 3 June 2017, Timur S.
New hosts and distribution for Camarosporidiella ... 473
Bulgakov (MFLU 17-2010; living cultures MFLUCC 18-0768, DSM 109792); former
Shakhty Forest, artificial forest, on dead twigs of Morus alba, 11 June 2017, Timur S.
Bulgakov (MFLU 17-2035; living cultures MFLUCC 18-0769, DSM 109976).
Notes: Multi-gene phylogenetic analyses group MFLU 17-2310, MFLUCC
18-0766, MFLUCC 18-0768, MFLUCC 18-0769, MFLUCC 18-0770,
MFLUCC 18-0771, MFLUCC 18-0772 with Camarosporidiella moricola.
A BLASTn search of LSU, SSU, ITS, TEF sequences places the seven
strains at 99-100% similarity with C. moricola. The C. moricola type strain
differs from our specimens in its larger (150-340 um diam.) conidiomata.
Camarosporidiella moricola has been described only on Morus species from
Russia. We examined fresh specimens both from Russia and Italy. We identify
our strains as C. moricola and report MFLU 17-0991 as new for Italy.
Hosts: Morus alba (Tibpromma & al. 2017, Wanasinghe & al. 2017);
Morus nigra (this study).
DISTRIBUTION: Russia (Tibpromma & al. 2017, Wanasinghe & al. 2017),
Italy (this study).
Camarosporidiella robiniicola (Wijayaw., Camporesi & K.D. Hyde) Wijayaw.,
Wanas. & K.D. Hyde, Stud. Mycol. 87: 241 (2017) PLATE 6, FIG. 2i,j
NECROTROPHIC on dying and dead branches of Robinia pseudoacacia.
SEXUAL MORPH: Undetermined.
ASEXUAL MORPH: CONIDIOMATA pycnidial, 500—700 um diam., 200-450
um high, solitary or gregarious, black, immersed, unilocular, papillate.
CONIDIOMATAL WALL multi-layered, 20-35 um thick at the base, 10-25
um thick at the sides, comprising 4-5 layers of dark brown cells of textura
angularis, with lighter cells towards the inside, inner layer composed of
2-4 layers, hyaline, thin-walled cells of textura angularis. CONIDIOPHORES
reduced to conidiogenous cells. CONIDIOGENOUS CELLS enteroblastic,
annellidic, doliiform, obclavate, hyaline, smooth. Conip1a 16-20 x 7-9 um
(x = 18.2 x 8.2 um, n = 20), oblong, straight to slightly curved, rounded
at both ends, 4—6-transversely septate, with 1 vertical septum, muriform,
smooth, initially pale brown becoming dark brown on maturity.
CULTURE CHARACTERISTICS: Slow growing, reaching 3 cm diam. after 4
weeks at 25°C, later with sparse dense mycelium, off-white to white in the
middle, white in the edge, circular, smooth, slightly irregular margin, thin
mycelia, radially furrowed, reverse creamy to off-white, flat on the surface.
SPECIMENS EXAMINED: UKRAINE, DONETSK REGION, Donetsk city, Donetsk
Botanical Garden, arboretum, on dying twigs and branches of Robinia pseudoacacia,
474 ... Pem & al.
PLATE. 6. Camarosporidiella robiniicola (MFLU 17-2469). a, b. Conidiomata on host surface;
c. Conidioma, vertical section; d. Peridium; e-g. Conidiogenous cells and developing conidia;
h-l. Conidia. Scale bars: a, b = 1000 um; c = 50 um; d, h-] = 10 um; e, f= 5 um; g = 15 um.
18 May 2017, Timur S. Bulgakov (MFLU 17-2469; living cultures MFLUCC 18-0775);
RUSSIA, Rostov REGION, Shakhty city district, Alexandrovsky (Central) Park,
trees, on dead twigs of Robinia pseudoacacia, 5 November 2017, Timur S. Bulgakov
(MFLU 18-0320; living cultures MFLUCC 18-0789; DSM 109791).
Notes: The isolate MFLUCC 18-0775 clustered with Camarosporidiella
robiniicola with moderate bootstrap support (ML = 70%, BI = 1). The type
species as described by Wijayawardene & al. (2014) differs morphologically
from our specimen in its smaller conidiomata (210-240 x 180-220 um).
Hosts: Gleditsia triacanthos, Robinia neomexicana (Wijayawardene & al.
2014, Wanasinghe & al. 2017), R. pseudoacacia (this study)
DISTRIBUTION: Italy (Wijayawardene & al. 2014, Wanasinghe & al. 2017),
Ukraine and Russia (this study).
New hosts and distribution for Camarosporidiella ... 475
Discussion
Morphological circumscription and phylogeny
All phylogenetic analyses show that Camarosporidiella is monophyletic
as traditionally circumscribed, but not all clades are well supported.
Phylogenies derived herein are consistent with those of Wanasinghe & al.
(2017), who sampled 99 Camarosporidiella strains.
Camarosporidiella moricola (CLADE A) and C. robiniicola (CLADE B)
isolates cluster in two clades. These two species produce morphologically
similar conidia: oblong, ellipsoidal, and pale to dark brown. However, in
C. moricola, conidiomata appear as small black dots, semi-immersed on
the substrate while those of C. robiniicola are completely immersed in the
substrate. Conidia of C. robiniicola are larger (18-28 x 7-11 um) than in
C. moricola (8-15 x 4-7.5 um) and differ in the number of septa—4—6
transverse septa, 1 vertical septum vs. 1-3 transverse septa, 1-2 vertical
septa. ITS and TEF sequences are similar for the two species in this study.
Clade C, which shares a common geographical distribution, comprises
Camarosporidiella clematidis, C. elongata, C. eufemiana, C. laburni,
C. laburnicola, C. mirabellensis, C. premilcurensis, C. spartii, and one
unidentified isolate (Camarosporidiella sp. CPC 12441). Morphological
dimensions within this clade overlap for ascomata (650-950 um x 500-775
um), asci (130-255 um x14-18 um), and ascospores (20-38 um x 8-12 um).
However, the species can be distinguished by the number of septa (TABLE
2). There are only <0.5% ITS base pair (bp) differences and <0.8% TEF bp
differences separating the species.
Clade D sequences represent two species: Camarosporidiella celtidis
and C. populina. Hyde & al. (2018) separated C. populina by its smaller
and superficial to semi-immersed conidiomata, phialidic conidiogenous
cells, and larger 1-3 transversely septate conidia from C. celtidis with
larger immersed conidiomata; annellidic integrated conidiogenous cells,
and smaller conidia with 2—3 transverse septa and one vertical septum.
Nonetheless, only two bp differences separate the C. populina and C. celtidis
ITS sequences. There is no TEF sequence available for C. populina. Whether
C. populina is a separate species warrants further investigation.
Clade E comprises Camarosporidiella elaeagnicola. All isolates within
the clade are morphologically similar. Our isolate (MFLUCC 18-0782)
is morphologically slightly different in having smaller conidiomata and
shorter conidia from other species of C. elaeagnicola within the clade. But
476 ... Pem & al.
comparison of ITS and TEF sequences shows no nucleotide bp differences
among the species.
Clade F, which comprises the four species Camarosporidiella caraganicola,
C. mori, C. melnikii, and C. italica, are distinguished by conidiomatal and
ascomatal sizes and the morphology of asci, conidia, and ascospores.
Camarosporidiella caraganicola, isolated from dead branches of Coronilla
emerus, is morphologically similar to C. italica in cylindrical asci measuring
150-190 x 10-15 um (Wanasinghe & al. 2017), but differs in its smaller
ascospores (20-30 x 7-10 um vs. 30-35 x 12-14 um) and its 3-5 transverse
septa, 2-4 vertical septa (vs. 6-8 transverse septa, 2-3 vertical septa in
C. italica). Within clade F the ITS region of C. caraganicola has 10 (1.8%;
C. melnikii), 3 (0.7%; C. mori), and 9 (1.6%; C. italica) bp differences, and
the TEF region comparison between C. caraganicola to that of 5 (0.5%;
C. melnikii) and 11 (1.2%; C. italica) bp differences. No TEF data is available
for C. mori. Camarosporidiella mori, which was isolated from Morus alba,
shares a conidial size range (15.5-21 x 6.5-9.5 um) with C. celtidis and
C. schulzeri. However, within clade F C. mori is phylogenetically distant from
C. celtidis and C. schulzeri, clustering closer to C. italica. The C. mori ITS
sequence shows a 1.7% bp difference to C. celtidis, a 1.6% bp difference to
C. schulzeri, and a 1.3% (7) bp) difference to C. melnikii and C. italica.
Although Camarosporidiella melnikii, morphologically distinct from
C. caraganicola and C. italica, closely resembles C. celtidis in its muriform
ascospores measuring 11-16 x 5-6 um with 2-3 transverse septa and
without vertical septa, it is phylogenetically separate from C. celtidis with 6
(1.1%) ITS and 8 (0.9%) TEF bp differences; C. melnikii shows 9 (1.6%) ITS
and 11 (1.2%) TEF bp differences from C. italica.
The Camarosporidiella schulzeri isolates form the monophyletic Clade
G (Fic. 1c); C. schulzeri resembles C. elaeagnicola in its black, immersed
300-500 x 300-550 um conidiomata and similarly sized conidia (15-21
x 8-12 um vs. 18-25 x 9-13 um), both with 2-3 transverse septa and 1
vertical septum. Camarosporidiella schulzeri shows 1.06% ITS and 1.12%
TEF bp differences to C. elaeagnicola, which supports the two species as
phylogenetically distinct.
Sequences representing Camarosporidiella halimodendri, C. arezzoensis
and C. aborescentis, which form distinct monophyletic groups as clade H,
clade I, and clade J, are morphologically similar and phylogenetically close.
In addition, there are no bp differences in the ITS and TEF sequences among
the three clades.
New hosts and distribution for Camarosporidiella ... 477
TABLE 2a. Sexual stage morphology
SEXUAL STAGE MORPHOLOGY (tm)
CLADE SPECIES ASCOMATA ASCI ASCOSPORES SEPTA REFERENCE
(um) (um) (um) (TSP, LS*)
A C. moricola Undetermined T
C. robiniicola Undetermined Wi
Ci C. clematidis Undetermined Wi
Go alavver: 650-950 x 140-255 x 21-38 x 3-8 TS, 5-7 Wa
He 500-775 14-18 8-12 LS
C eufemiana 350-400 x 130-150 x 20-25 x 3-5 TS, Wa
‘ 450-550 14-15 10-12 1LS
Pe oer 400-550 x 160-190 x 27-32 x 6-7 TS, 1-2 Wa
. 500-600 12-16 10-12 LS
‘ : 300-350 x 140-170 x 22-27 x 3-5 TS, 1-2
C. mirabellensis 500-550 12-16 9-11 LS Wa
C. 400-450 x 160-210 x 22-27 x 5-7 TS, 1-2 Wa
premilcurensis 500-600 14-16 10-12 LS
C laburnicols 280-370 x 125-150 x 15-21 x 6-7 TS, 5-6 T
: 220-320 9-11 6-8 LS
D C. spartii Undetermined Wi
PP 200-400 120-160 x 19.9 x 3-5 TS,
(celtids 300-475 12-15 7.9 1-2(-3) LS es
C. populina Undetermined H
E C. elaeagnicola Undetermined Wa
E Cetin Agioals 400-550 150-190 x 20-30 x 3-5 TS, in
Se x 450-500 10-15 7-10 2-4 LS
eye 400-450 x 150-180 x 30-35 x
Ge figiiens 550-600 15-20 12-14 Wa
C. melnikii Undetermined Wa
C. mori Undetermined H
C. schulzeri Undetermined Wa
C. halimodendri Undetermined Wa
I rs, neem, ERA 400-500 x 180-240 x 19-28 x 5-7 TS, Wa
i 450-550 10-15 9-15 4-6 LS
J tia ee eaanye 350-450 x 170-210 x 28-32 x 5-7 TS, L
, 500-600 15-18 12-13 1-2 LS
= 500-750 um 131-210 x 30-35 x 5-6 TS,
K Gamgckeriaies diam 15-16 10-12.5 1LS Wa
* Reference abbreviations: C = Crous & al. (2018); H = Hyde & al. (2019); L = Liu & al. (2015);
T = Tibpromma & al. (2017); Th = Thambugala & al. (2016); Wa = Wanasinghe & al. (2017);
Wi = Wijayawardene & al. (2014).
>T'S: Transverse septa; ‘LS: Longitudinal septa.
478 ... Pem & al.
TABLE 2b. Asexual stage morphology
CLADE
SPECIES
C. moricola
C. robiniicola
C. clematidis
C. elongata
C. eufemiana
C. laburni
C. laburnicola
C. mirabellensis
C. premilcurensis
C. spartii
C. celtidis
C. populina
C. elaeagnicola
C. caraganicola
C. italica
C. melnikii
C. mori
C. schulzeri
C. halimodendri
C. arezzoensis
C. aborescentis
C. mackenziei
ASEXUAL STAGE MORPHOLOGY (UM)
CONIDIOMATA
(wm)
150-340
diam.
180-220 x
210-240
350-380 x
370-425
400-500
diam.
300-350 x
300-400
200-225 x
250-300
300-350 x
350-450
200-360
diam.
300-500 x
300-550
413-604 x
280-780
350-550 x
300-500
370-520 x
220-430
370-420 x
380-460
500-600 x
350-600
300-400 x
300-350
350-600 x
490- 770
450-550 x
500-600
CONIDIA
(um) (wm)
8-15 x
4-7.5
18-28 x
7-11
10-17 x
7-9
13-21 x
7-10
Undetermined
20-30 x
8-11
Undetermined
Undetermined
Undetermined
13-16 x
6-7
15-20 x
6-8
11-17~x
4-7
18-25 x 5-6.5 X
9-13 3.5-4.5
13-26 x
6-13
Undetermined
11-16 x 7-12 x
5-6 4-7
15.5-21
x
6.5-9.5
15-21 x 4.5-6.5 x
8-12 4.5-5.5
18-25 x 4.5-7.5 x
8-12 3.5-4.5
20-28 x 5-7.5 X
6-9 3.5-4.5
12-25 x
5=13
17-25 x 6.5-8 x
9-13 4-6
“ Reference abbreviations: see TABLE 2a footnote.
MICROCONIDIA
SEPTA
(TS, LS)
1-3 TS,
1-2 VS
4-6 TS,
1VS
2-3 TS,
1VS
4-5 TS,
1-2 VS
3-4 TS,
2-3 VS
2-3 TS,
OVS
1-3 TS,
1 VS
2-3 TS,
1 VS
1-4 TS,
1-4 VS
2-3 TS,
OVS
4TS,1
VS
2-3 TS,
1 VS
4-6 TS,
1-2 VS
4-7 TS,
1-2 VS
1-3 TS,
1-4 VS
3-4 TS,
1-2 VS
REFERENCE
Wa
New hosts and distribution for Camarosporidiella ... 479
TABLE 2c. Host substrata per clade/species
CLADE SPECIES
A C. moricola
B C. robiniicola
C C. clematidis
C. elongata
C. eufemiana
C. laburni
C. laburnicola
C. mirabellensis
C. premilcurensis
D C. spartii
C. celtidis
C. populina
E C. elaeagnicola
F C. caraganicola
C. italica
C. melnikii
C. mori
G C. schulzeri
H C. halimodendri
I C. arezzoensis
J C. aborescentis
K C. mackenziei
Hosts
Morus alba, M. nigra (Moraceae)
Gleditsia triacanthos, Robinia neomexicana, R. pseudoacacia (Fabaceae)
Clematis vitalba (Ranunculaceae)
Cytisus scoparius, Robinia pseudoacacia (Fabaceae)
Cytisus sp. (Fabaceae)
Laburnum anagyroides (Fabaceae)
Laburnum anagyroides (Fabaceae)
Robinia pseudoacacia (Fabaceae)
Cytisus sp. (Fabaceae)
Bassia sp. (Amaranthaceae), Cytisus sp. (Fabaceae)
Ailanthus altissima (Simaroubaceae), Betula pendula (Betulaceae), Celtis occidentalis
(Cannabaceae)., Elymus repens (Poaceae), Gleditsia triacanthos (Fabaceae), Maclura
pomifera, Morus alba (Moraceae), Prunus padus, Robinia sp., Spiraea sp (Rosaceae),
Ulmus pumila (Ulmaceae).
Populus nigra var. italica (Salicaceae)
Artemisia santonicum (Asteraceae), Cytisus ruthenicus (Fabaceae), Elaeagnus
angustifolia (Elaeagnaceae)
Amorpha fruticosa, Caragana frutex (Fabaceae)
Hippocrepis emerus (Fabaceae)
Caragana frutex (Fabaceae)
Morus alba, M. nigra (Moraceae)
Gleditsia triacanthos, Elaeagnus angustifolia (Fabaceae)
Caragana frutex, C. halodendron, Cytisus podolicus, Robinia pseudoacacia
(Fabaceae), Lycium barbarum (Solanaceae)
Amorpha sp., Cytisus sp. (Fabaceae)
Colutea arborescens, C. orientalis, Cytisus borysthenicus (Fabaceae)
Caragana arborescens, Caragana sp. (Fabaceae)
Clade K comprises isolates representing Camarosporidiella mackenziei
and two previously unidentified species. Camarosporidiella mackenziei
was previously isolated from Caragana arborescens from south European
Russia. While there are no ITS bp differences separating C. mackenziei and
Camarosporidiella sp. CPC 25960 and CPC 25962, TEF comparisons reveal
480 ... Pem & al.
Fic. 2. Camarosporidiella spp. cultures. a, b: C. halimodendri. c, d: C. celtidis. e, f: C. caraganicola.
g, h: C. elaeagnicola. i, j: C. robiniicola. k, |: C. moricola.
a 0.77% (7) bp difference with CPC 25960 and 0.66% (6 bp) difference with
CPC 25962. Recently, Crous & al. (2018), who described the sexual morph
of C. mackenziei, identified CPC 25960 and CPC 25962 (isolated from
Caragana sp. in Finland) as C. mackenziei.
Identification of Camarosporidiella species using ITS region can be
challenging, as it does not contain sufficient variation for distinguishing
between species, although it is useful in BLAST searches of the NCBI database
to get information on species clusters and to confirm new sequences against
curated sequences (Doilom & al. 2017). Nonetheless, in this study, ITS-
based phylogenies resolved the clades (data not shown) very well, even while
pairwise alignment revealed very little difference (<1%) among species. The
TEF region, which has been widely used in the taxonomy and systematics
of Camarosporidiella (Liu & al. 2017, Tibpromma & al. 2017, Wanasinghe
& al. 2017), provided better resolution for species-level identification (data
New hosts and distribution for Camarosporidiella ... 481
not shown). Yet, bp differences among TEF sequences across species were
likewise very small (< 1%). Therefore, using the ITS marker alone to identify
Camarosporidiella species is probably not sufficient, requiring protein-
coding gene sequences as well. A RPB2-based phylogeny might give better
results and greater bp differences among species compared to TEF. Further
studies are required to see whether amplifying RPB2 gene fragments is
possible and useful for identifying Camarosporidiella species. If so, we
encourage researchers to deposit Camarosporidiella RPB2 sequence data in
GenBank.
Diversity and host association
Camarosporidiella species are distributed over a wide host range,
with higher percentages in Fabaceae (45%), Moraceae (22%), and
Elaeagnaceae (12%) (Fic. 3). Most species have been named based
on the host from which the fungus was isolated. In the present
study, C. caraganicola, C. celtidis and C. halimodendri comprise new
host records for Russia. One of our isolates, MFLUCC 18-0786,
Anacardiaceae__ _ _—- Hydrangeaceae
1% ~~ 1% - Amaranthaceae
h, .
Asteraceae > EIneagnaceae Solanaceae f 1% er
\ 8 ~ 1% <a 1% Leguminosae
1% Se 12% 8%
Ranunculaceae ___ ic
1% YS
Simaroubaceae_~“¢
1% a
fo
Rosaceae _“
1%
/ Fabaceae
/ 45%
Betulaceae _/
1%
Moraceae _/
22%
Poaceae _——
1%
/ \
Rosaceae _/Cannabaceae Ulmaceae
1% 1% *
@ Leguminosae ™@ Fabaceae @ Ulmaceae ™ Cannabaceae @ Rosaceae @ Poaceae
@ Moraceae @ Betulaceae m@ Rosaceae mSimaroubaceae mRanunculaceae mAsteraceae
m@ Elaeagnaceae @ Solanaceae mAnacardiaceae m@Hydrangeaceae mAmaranthaceae wm Salicaceae
Fic 3. Family affiliations of hosts of Camarosporidiella strains with molecular data.
482 ... Pem & al.
clustered in Clade F (Fic. 1) among Camarosporidiella caraganicola
sequences. We add a new host to the fungal records from Fabaceae
as C. caraganicola has not been previously reported on Amorpha
fruticosa. The morphology of C. caraganicola MFLUCC 18-0786
fully agree with the descriptions provided by Liu & al. (2015) and
Wanasinghe & al. (2017).
Camarosporidiella celtidis, previously described as Cucurbitaria
celtidis by Shear (1902), was previously isolated from Celtis
occidentalis in Osborne, Kansas. The species was transferred to
Camarosporium by Thambugala & al. (2016) based on molecular
data from a fresh collection. Cucurbitaria celtidis was later re-
circumscribed as Camarosporidiella celtidis by Wanasinghe &
al. (2017), who illustrated its asexual morph. Camarosporidiella
celtidis has been reported on a wide range of hosts including
Celtis occidentalis (Cannabaceae), Gleditsia triacanthos (Fabaceae),
Maclura pomifera (Moraceae), Spiraea sp. (Rosaceae), Prunus padus
(Rosaceae), Morus alba (Moraceae), Elymus repens (Poaceae), Betula
pendula (Betulaceae), and Ailanthus altissima (Simaroubaceae) (Ellis
& Everhart 1894, Shear 1902, Thambugala & al. 2016, Wanasinghe
& al. 2017). In the present study, C. celtidis was recovered from dead
Ulmus pumila twigs in Ukraine. Our new isolate also matches the
descriptions of Wanasinghe & al. (2017).
Likewise, Camarosporidiella halimodendri has been collected
in Iran by Farr & Rossman (2017). The isolate C. halimodendri
(MFLUCC 18-0767) from Robinia pseudoacacia clustered in Clade
H with other C. halimodendri isolates. We found no description for
C. halimodendri isolates from Robinia pseudoacacia in any scientific
publication. From previous studies, we know that phenotypic
variation often depends on host substrata, environmental conditions,
and geographical location (Jain & Fries 2009, Hewitt & al. 2016,
Elliot & al. 2018, De Silva & al. 2016, Promputtha & al. 2019). We
should note that MFLUCC 18-0767 morphologically differs slightly
from the other C. halimodendri in this clade in its shorter conidia
and different microconidia.
Camarosporidiella elaeagnicola has been collected on Elaeagnus
angustifolia from Russia and from E. rhamnoides in Germany.
We regard our three isolates grouped in Clade E as representing
additional collections of C. elaeagnicola. Camarosporidiella
New hosts and distribution for Camarosporidiella ... 483
robiniicola, previously collected from Robinia pseudoacacia in
Italy, was first described by Wijayawardene & al. (2014), and later
Wanasinghe & al. (2017) reported additional collections by adding
seven new C. robiniicola strains; here we present our two isolates in
Clade B as representing new collections of C. robiniicola from Russia.
Camarosporidiella moricola was originally proposed in Tibpromma
& al. (2017; as Camarosporium moricola), and Wanasinghe & al.
(2017) added twelve strains collected from Morus alba in Russia.
We identifiy our six strains MFLUCC 18-0766, MFLUCC 18-0768,
MFLUCC 18-0769, MFLUCC 18-0770, MFLUCC 18-0771, and
MFLUCC 18-0772 (also from Russia) and MFLU 17-0991 (a new
record from Italy on Morus nigra) as C. moricola based on cultural
and morphological characteristics.
Our current data indicate greater species diversity and a much
wider range of habitat for Camarosporidiella species in many
countries of the northern hemisphere. It is very likely that many
Camarosporidiellaceae were initially described as species in
Camarosporium s. lat., as other anamorphic fungi with pigmented
septate conidia (e.g., Dichomera, Hendersonia), or their sexual
stages as ascomycetes with pigmented septate ascospores (e.g.,
Cucurbitaria, Pleospora). For example, 78 Camarosporium spp.,
3 Dichomera spp., 54 Hendersonia spp., and 48 Cucurbitaria spp.
were previously recorded on Ukraine territory alone (Andrianova
& al. 2006), many of which on the same host plant species now
cited for Camarosporidiella species collected in the adjacent Rostov
region of Russia. Undoubtedly at least some of those fungi and
Camarosporidiella species are conspecific. Unfortunately, the original
species descriptions of most species in Camarosporium, Dichomera,
and Hendersonia are very brief, incomplete, and sometimes even
controversial. Therefore, it is difficult to compare species described
in the 21st century with 19th and 20th century descriptions based
solely on morphological features.
Camarosporidiella species are mainly saprobic on dead twigs and
branches of woody plants, with some being necrotrophic pathogens
causing necroses of twigs and branches of woody angiosperms. This
implies a rather wide host specialization for the pathogenic species.
Although most Camarosporidiella species were named based on
the host plant from which they were isolated for the first time, it is
484 ... Pem & al.
already clear that many species (especially saprobic) can potentially
grow on angiosperms of many genera, families, orders, and classes.
Nevertheless, our observations indicate that each Camarosporidiella
species usually colonizes plants of a certain plant genus or plant
family, although many species may colonize closely related (or
even not so closely related) woody plants. Occasionally different
Camarosporidiella species coexist on the same plant species, often
simultaneously on the same plant.
For example, Camarosporidiella caraganicola, C. halimodendri,
and C. melnikii were all found on Caragana frutex; C. robiniicola
and C. schulzeri were both found on Gleditsia triacanthos; and
Camarosporidiella mirabellensis, C. robiniicola, and C. schulzeri were
found on Robinia pseudoacacia in Russia and Italy (Wanasinghe &
al. 2017). Camarosporidiella robiniicola was found not only on its
primary hosts (Robinia pseudoacacia and other Robinia spp.), but also
on another closely related leguminous tree—Gleditsia triacanthos
(Wanasinghe & al. 2017) as well as an unrelated introduced shrub
Cotinus coggygria Scop. (Liu & al. 2015) growing under Robinia
pseudoacacia. In this study, we found Camarosporidiella caraganicola
on an Amorpha fruticosa surrounded by Caragana frutex shrubs.
Camarosporidiella elaeagnicola was found not only on its main host
plant (Elaeagnus angustifolia), but also on the aboriginal dwarf semi-
shrub Artemisia santonica (Wanasinghe & al. 2017), aboriginal low
shrub Cytisus ruthenicus, and introduced Robinia pseudoacacia
(this study); but in all cases those new host plants were located
close to Elaeagnus angustifolia trees affected by Camarosporidiella
elaeagnicola.
We hypothesize that many necrotrophic Camarosporidiella
species move from main host plants to nearest closely related and
even distantly related plants, especially when growing together in
botanical gardens, arboreta, artificial forests, urban parks, and
private gardens. Saprobic Camarosporidiella species therefore can
grow on very wide range of host plants. For example, saprobic
C. celtidis was found on many plants of many families, so we could
expect the species to be found on dead stems, twigs, and branches of
many other plant species. It is likely that C. celtidis was first recorded
as Hendersonia sarmentorum Westend. or some other Hendersonia
species in Ukraine (Andrianova & al. 2006).
New hosts and distribution for Camarosporidiella ... 485
It is notable that the hosts of many Camarosporidiella species
originate in North America (Amorpha fruticosa, Celtis occidentalis,
Gleditsia triacanthos, Robinia pseudoacacia, R. neomexicana),
Central Asia (Caragana halodendron, Elaeagnus angustifolia, Morus
nigra), and East Asia (Ailanthus altissima, Caragana arborescens,
Cotinus coggygria, Lycium barbarum, Morus alba). These plants
were introduced to many European countries (including Italy and
Russia) over a century ago, and today many have become invasive in
some regions of Russia (The Black Data Book of the flora of Central
Russia 2009) and Europe (DAISIE 2009). Because of their obligate
associations with alien plants, many Camarosporidiella species
might also be treated as alien fungal species in territories where they
are found for the first time.
Many Camarosporidiella species were both weakly supported in
our phylogenetic analyses and morphologically similar. We also
cannot rely on cultural variation or on morphological descriptions
of specimens collected in the 19'"~20" centuries to delimit species.
Camarosporidiellaisa complex taxonomic group requiring integrative
taxonomy rather than phylogenies based only on neutral markers
(Zamora & al. 2015, Caparrés & al. 2016, Hyde & al. 2020, Jayasiri
& al. 2017, Konta & al. 2020, Sharma & al. 2016). For these reasons,
new specimen collections and further research on Camarosporidiella
in Europe, Central and East Asia, and North America are needed
to clarity the origins of many species, their natural diversity, and
relationships.
Acknowledgments
D. Pem thanks Mae Fah Luang University for supporting studies in
Dothideomycetes. The authors extend their appreciation to The Researchers
supporting project number (RSP-2021/56) King Saud University, Riyadh, Saudi
Arabia. R. Jeewon thanks University of Mauritius for research support. This research
work was partially supported by Chiang Mai University. M. Doilom thanks the 5th
batch of Postdoctoral Orientation Training Personnel in Yunnan Province (grant
no.: Y934283261) and the 64th batch of China Postdoctoral Science Foundation
(grant no.: Y913082271). T.S. Bulgakov thanks Donetsk Botanical Garden (Ukraine,
Donetsk) for the help in the expeditions in Donetsk region. The research was
prepared in the implementation of the State Assignment of the Federal Research
Center of the Subtropical Scientific Centre of the Russian Academy of Sciences No.
0492-2021-0007. R. Phookamsak thanks CAS President's International Fellowship
Initiative (PIFI) for young staff (grant no. Y9215811Q1) for financial support. The
486 ... Pem & al.
expert reviewers Prof. Jayarama Bhat (Department of Botany, Goa University,
India) and Dr. Saowaluck Tibpromma (Key Laboratory for Plant Diversity and
Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of
Science, P.R. China) are acknowledged for their valuable suggestions and effort in
improving this manuscript. This research work was partially supported by Chiang
Mai University and was done as part of the implementation of the State Assignment
No. 0492-2021-0007 of the Federal Research Centre the Subtropical Scientific
Centre of the Russian Academy of Sciences.
COMPLIANCE WITH ETHICAL STANDARDS. There is no conflict of interest
(financial or non-financial) and all authors have agreed to submission of the paper.
The authors also declare that they have no conflict of interest and confirm that the
field studies did not involve endangered or protected species.
Literature cited
Andrianova TV, Dudka IO, Hayova VP, Heluta VP, Isikov VP, Kondratiuk SY & al. 2006. Fungi
of Ukraine. Available at: www.cybertruffle.org.uk/ukrafung/eng [website, version 1.00]
(Accessed 14 November 2019)
Caparros R, Lara F, Draper I, Mazimpaka V, Garilleti R. 2016. Integrative taxonomy sheds light
on an old problem: the Ulota crispa complex (Orthotrichaceae, Musci). Botanical Journal of
the Linnean Society 180: 427-451. https://doi-org/10.1111/boj.12397
Crous PW, Schumacher RK, Wingfield MJ, Akulov A, Denman S, Roux J & al. 2018. New and
interesting Fungi. 1. FUSE 1: 169-215. https://doi.org/10.3114/fuse.2018.01.08
DAISIE (Delivering Alien Invasive Species Inventories for Europe). 2009. Handbook of alien
species in Europe. Invading Nature - Springer Series in Invasion Ecology, 3. Springer:
Dordrecht. https://doi.org/10.1007/978-1-4020-8280-1
Damm U, Woudenberg JHC, Cannon PEF, Crous PW. 2009. Colletotrichum species with curved
conidia from herbaceous hosts. Fungal Diversity 39: 45-87.
De Silva NI, Lumyong S, Hyde KD, Bulgakov T, Phillips AJL, Yan JY. 2016. Mycosphere
essays 9: defining biotrophs and hemibiotrophs. Mycosphere 7(5): 545-559.
https://doi.org/10.5943/mycosphere/7/5/2
Doilom M, Manawasinghe I, Jeewon R, Jayawardena R, Tibpromma S, Hongsanan S & al.
2017. Can ITS sequence data identify fungal endophytes from cultures? A case study from
Rhizophora apiculata. Mycosphere 8: 1869-1892. https://doi.org/10.5943/mycosphere/9/4/3
Dugan FM, Glawe DA, Attanayake RN, Chen W. 2018. The importance of reporting new
host-fungus records for ornamental and regional crops. Online. Plant Health Progress
https://doi,org/10.1094/PHP-2009-0512-01-RV
Elliott M, Yuzon J, Mathu Malar C, Tripathy S, Bui M, Chastagner GA & al. 2018.
Characterization of phenotypic variation and genome aberrations observed among
Phytophthora ramorum isolates from diverse hosts. BMC Genomics 19: 320.
https://doi.org/10.1186/s12864-018-4709-7
Ellis JB, Everhart BM. 1894. New species of fungi from various localities. Proceedings of the
Academy of Natural Sciences of Philadelphia 46: 322-384.
Farr DF, Rossman AY. 2017. Fungal databases, systematic mycology and microbiology laboratory,
ARCS, USDA. http://nt.ars-grin.gov/fungaldatabases/ (Accessed 14 January 2019)
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
New hosts and distribution for Camarosporidiella ... 487
Halme P, Heilmann-Clausen J, Rama T, Kosonen T, Kunttu P. 2012. Monitoring
fungal biodiversity - towards an integrated approach. Fungal Ecology 5: 750-758.
https://doi.org/10.1016/j.funeco.2012.05.005
Hewitt SK, Foster DS, Dyer PS, Avery SV. 2016. Phenotypic heterogeneity in fungi: Importance
and methodology. Fungal Biology reviews 30: 176-184.
https://doi.org/10.1016/j.fbr.2016.09.002
Hyde KD, Chaiwan N, Norphanphoun C, Boonmee S, Camporesi E, Chethana KWT & al.
2018. Mycosphere notes 169-224. Mycosphere 9: 271-430.
https://doi.org/10.5943/mycosphere/9/2/8
Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SSN, Rossi W & al. 2019.
Fungal diversity notes 1036-1150: taxonomic and phylogenetic contributions on genera
and species of fungal taxa. Fungal Diversity 96: 1-242.
https://doi.org/10.1007/s13225-019-00429-2
Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun
D. 2020. Refined families of Sordariomycetes. Mycosphere 11(1), 306-1060.
https://doi.org/10.5943/mycosphere/11/1/7
Index Fungorum. 2019. Available at: http://www.indexfungorum.org/Names/names.asp
(Accessed 14 October 2019)
Jain N, Fries BC. 2009. Antigenic and phenotypic variations in fungi. Cell Microbiology 11:
1716-1723. https://doi.org/10.1111/j.1462-5822.2009.01384.x
Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat DJ, Buyck B, Cai L & al. 2015. The faces of fungi
database: fungal names linked with morphology, phylogeny and human impacts. Fungal
Diversity 74: 3-18. https://doi.org/10.1007/s13225-015-0351-8
Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat DJ & al. 2017. Taxonomy
and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with
new records of Ascochyta and Didymella (Didymellaceae). Mycosphere 8(8): 1080-1101.
https://doi.org/10.5943/mycosphere/8/8/9
Jeewon R, Hyde KD. 2016. Establishing species boundaries and new taxa among fungi:
recommendations to resolve taxonomic ambiguities. Mycosphere 7: 1669-1677.
https://doi.org/10.5943/mycosphere/7/11/4
Jeewon R, Wanasinghe DN, Rampadaruth S, Puchooa D, Zhou L-G, Liu A-R, Wang H-K. 2017.
Nomenclatural and identification pitfalls of endophytic mycota based on DNA sequence
analyses of ribosomal and protein genes phylogenetic markers: A taxonomic dead end?
Mycosphere 8(10): 1802-1817. https://doi.org/10.5943/mycosphere/8/10/7
Katoh K, Rozewicki J, Yamada KD. 2017. MAFFT online service: multiple sequence alignment,
interactive sequence choice and visualization. Briefings in Bioinformatics: bbx108.
https://doi. org/10.1093/bib/bbx108
Konta S, Maharachchikumbura SSN, Senanayake IC, McKenzie EHC, Stadler M,
Boonmee S & al. 2020. A new genus Allodiatrype, five new species and a new host
record of diatrypaceous fungi from palms (Arecaceae). Mycosphere 11(1): 239-268.
https://doi.org/10.5943/mycosphere/11/1/4
Kuraku S, Zmasek CM, Nishimura O, Katoh K. 2013. aLeaves facilitates on-demand exploration
of metazoan gene family trees on MAFFT sequence alignment server with enhanced
interactivity. Nucleic Acids Research 41(W1): W22-W28.
https://doi.org/10.1093/nar/gkt389
Liu JK, Hyde KD, Jones EBG, Ariyawansa HA, Bhat DJ, Boonmee S & al. 2015. Fungal diversity
notes 1-110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity
72: 1-197. https://doi.org/10.1007/s13225-015-0324-y
488 ... Pem & al.
Nylander JAA. 2004. MrModeltest 2.0. Program distributed by the author. Evolutionary Biology
Centre, Uppsala University.
Pem D, Jeewon R, Gafforov Y, Hongsanan S, Phukhamsakda C, Promputtha I & al.
2019a. Melanocamarosporioides ugamica gen. et sp. nov., a novel member of the
family Melanommataceae from Uzbekistan. Mycological Progress 18: 471-481.
https://doi.org/10.1007/s11557-018- 1448-8
Pem D, Jeewon R, Bhat DJ, Doilom M, Boonmee S, Hongsanan S & al. 2019b. Mycosphere notes
275-324: a morphotaxonomic revision and typification of obscure Dothideomycetes genera
(incertae sedis). Mycosphere 10(1): 1115-1246. https://doi.org/10.5943/mycosphere/ 10/1/22
Promputtha I, McKenzie EHC, Tennakoon DS, Lumyong S, Hyde KD. 2019. Succession
and natural occurrence of saprobic fungi on leaves of Berchemia floribunda (climber)
and their association with Magnolia liliifera (host). Mycosphere 10(1): 1100-1114.
https://doi.org/10.5943/mycosphere/10/1/21
Rambaut A. 2012. FigTree (version 1.4.0). Available at: http://tree.bio.ed.ac.uk/software/figtree/
(Accessed 15 May 2019)
Rannala B, Yang Z. 1996. Probability distribution of molecular evolutionary trees: a
new method of phylogenetic inference. Journal of Molecular Evolution 43: 304-311.
https://doi.org/10.1007/BF02338839
Rehner SA, Buckley E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EFl-a
sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs.
Mycologia 97: 84-98. https://doi.org/10.1080/15572536.2006.11832842
Rehner SA, Samuels GJ. 1994. Taxonomy and phylogeny of Gliocladium analysed from
nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625-634.
https://doi.org/10.1016/S0953-7562(09)80409-7
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed
models. Bioinformatics 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
Senanayake IC, Maharachchikumbura SSN, Jeewon R, Promputtha I, Al-Sadi AM & al. 2017.
Morphophylogenetic study of Sydowiellaceae reveals several new genera. Mycosphere 8(1):
172-217. https://doi.org/10.5943/mycosphere/8/1/15
Sharma G, Shenoy BD. 2016. Colletotrichum systematics: Past, present and prospects.
Mycosphere 7(8): 1093-1102. https://doi.org/10.5943/mycosphere/si/2c/2
Shear CL. 1902. Mycological notes and new species. Bulletin of the Torrey Botanical Club 29:
449-457.
Silvestro D, Michalak I. 2012. RaxmlGUI: a graphical front-end for RAxML. Organisms
Diversity & Evolution 12: 335-337. https://doi.org/10.1007/s13127-011-0056-0
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
https://doi.org/10.1093/bioinformatics/btl446
Thambugala KM, Bulgakov TS, Eungwanichayapant PD, Liu ZY, Hyde KD. 2016. Camarosporium
uniseriatum nom. nov., from Celtis occidentalis in European Russia. Studies in Fungi 1:
90-98. https://doi.org/10.5943/sif/1/1/8
Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK, Bhat DJ & al. 2017.
Fungal diversity notes 491-602: taxonomic and phylogenetic contributions to fungal taxa.
Fungal Diversity 83: 1-261. https://doi.org/10.1007/s13225-017-0378-0
Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified
ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4239-4246.
https://doi.org/10.1128/jb.172.8.4238-4246
New hosts and distribution for Camarosporidiella ... 489
Vinogradova Yuk, Mayorov SR, Khorun LV. 2009. The Black Data Book of the flora of Central
Russia: alien plant species in ecosystems of Central Russia). Moscow, GEOS. 502 p.
http://www.bookblack.ru
http://ashipunov.info/shipunov/school/books/vinogradova2009_chern_kniga.djvu
Wanasinghe DN, Hyde KD, Jeewon R, Crous PW, Wijayawardene NN, Jones EBG. 2017.
Phylogenetic revision of Camarosporium (Pleosporineae, Dothideomycetes) and allied genera.
Studies in Mycology 87: 207-256. https://doi.org/10.1016/j.simyco.2017.08.001
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of
fungal ribosomal RNA genes for phylogenetics. 315-322, in: MA Innis & al.
(eds). PCR protocols: a guide to methods and applications. Academic, San Diego.
https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Wijayawardene NN, Bhat DJ, Hyde KD, Camporesi E, Chethana KWT, Tangthirasunun N,
Wang Y. 2014. Camarosporium sensu stricto in Pleosporineae, Pleosporales with two new
species. Phytotaxa 183: 16-26. https://doi.org/10.11646/phytotaxa.183.1.2
Zamora JC, Calonge FD, Martin MP. 2015. Integrative taxonomy reveals an unexpected
diversity in Geastrum section Geastrum (Geastrales, Basidiomycota). Persoonia 34: 130-165.
https://doi.org/10.3767/003158515X687443
Zhaxybayeva O, Gogarten JP. 2002. Bootstrap, Bayesian probability and maximum likelihood
mapping: exploring new tools for comparative genome analyses. BMC Genomics 3(1): 1-15.
https://doi.org/10.1186/1471-2164-3-4
MY COTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021—Volume 136, pp. 491-496
https://doi.org/10.5248/136.491
Microbotryum bardanense and M. polygoni-alati
—new records from Nepal
TEODOR T. DENCHEV’, SUK-PYo HONG?, CVETOMIR M. DENCHEV"™
' Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences,
2 Gagarin St., 1113 Sofia, Bulgaria
? Laboratory of Plant Systematics, Department of Biology, Kyung Hee University,
Seoul, 02447, Republic of Korea
* CORRESPONDENCE TO: cmdenchev@yahoo.co.uk
ABSTRACT—Two smut fungi, Microbotryum bardanense and M. polygoni-alati, are reported
for the first time from Nepal. Descriptions, illustrations, and taxonomic notes are provided
for these taxa.
Key worps—Caryophyllaceae, Microbotryaceae, Persicaria nepalensis, Polygonaceae, Silene
moorcroftiana
Introduction
In its broad circumscription, Microbotryum Lév. comprises 99 species
(Kemler & al. 2020). This genus has a nearly world-wide range, but many
of its species are known from one or a limited number of localities (Vanky
2011, 2013). Some of them are undoubtedly under-recorded and in need of
additional distribution data, especially from some understudied regions of
the world, such as the Himalayas.
During examinations in the herbarium of the Royal Botanic Garden
Edinburgh, UK (E) and TB. Lee Herbarium in College of Agriculture and Life
Sciences, Seoul National University, Seoul, Korea (SNUA), carried out by one
of the authors (CMD), some specimens from Nepal, infected by smut fungi,
were found. Two rarely collected smut fungi, Microbotryum bardanense and
M. polygoni-alati, are reported here for the first time from Nepal.
492 ... Denchev, Hong, Denchev
Materials & methods
Dried specimens from E and SNUA were examined under light microscope (LM)
and scanning electron microscope (SEM). For LM observations and measurements,
spores were mounted in lactoglycerol solution (w: la: gl = 1: 1:2) on glass slides,
gently heated to boiling point to rehydrate the spores, and then cooled. The spore
measurements are given as min-max (mean + standard deviation). For SEM,
spores were attached to specimen holders by double-sided adhesive tape and
coated with gold in an ion sputter. The surface structure of spores was observed
and photographed at 10 kV accelerating voltage using a JEOL SM-6390 scanning
electron microscope. The height of warts was measured in LM. The descriptions
below are based entirely on the specimens examined. The lists of shapes of spores
are arranged in descending order of frequency.
Taxonomy
Microbotryum bardanense Chleb. & Sukova, Mycotaxon 93: 150, 2005. FIG. 1
INFECTION systemic. Sori in considerably swollen anthers, filling pollen
sacs with a pulverulent, dark brick (based on Rayner 1970) or purplish
date (based on the Colour identification chart of Anonymous 1969) spore
mass. SPORES subglobose, globose, broadly ellipsoidal or ovoid, sometimes
ellipsoidal, (5-—)5.5-7(-8) x (4.5-)5-6.5(-7) um (6.4 + 0.5 x 5.8 + 0.4 um)
(n = 100), light vinaceous; wall irregularly, moderately verruculose to
incompletely reticulate, 0.7-1.1 um thick, including 0.3-0.5 um high
ornamentation. In SEM, spore wall moderately echinulate-verruculose,
ornaments often confluent, forming short rows or interconnected by lower
ribs forming irregular patterns, sometimes even incomplete reticulum.
SPECIMENS EXAMINED—On Silene moorcroftiana Wall. ex Benth.: NEPAL, GANDAKI
PRADESH, Mustang District, Jharkot-Khinga—Yekle Bhatti-Jomsom-—Syang-
Marpha, 28°45’17”-49’01”N 83°41’28”-51'02’E, alt. 3100 m, 21 August 1994, leg.
S. Noshiro & al., 1994 Expedition by the Society of Himalayan Botany, Tokyo, no.
9470526 (E 232984); Jomsom-Ekle Bhatti-Khingar—Jharkot, 28°47’09”-49’38’N
83°42’5”-51'07’E, alt. 3040 m, 22 September 1995, leg. M. Mikage & al., 1995
Expedition by the Herbal Garden, Kanazawa Univ., Japan, no. 9552385 (E 232977).
DIsTRIBUTION—On Caryophyllaceae: Silene moorcroftiana, the Himalayas
(India (Ladakh) and Nepal).
ComMMENTS— The morphological features given in the protologue of
M. bardanense (Chlebicki & Sukova 2005) are similar to those reported here.
Silene moorcroftiana is distributed in Afghanistan, NW Pakistan, India
(Iammu and Kashmir, Himachal Pradesh, and Uttar Pradesh), Nepal,
and China (Tibet) (Zhou & al. 2001, Rajbhandari & Suzuki 2008, India
Microbotryum bardanense & M. polygoni-alati, new for Nepal ... 493
Fic. 1. Microbotryum bardanense on Silene moorcroftiana (E 232984): A. Habit; B. Spores in LM;
C, D. Spores in SEM. Scale bars: A = 0.5 cm; B = 10 um; C, D = 5 um.
Biodiversity Portal 2020). Until now, Microbotryum bardanense was known
only from its type locality: India, Ladakh, 20 km S of Padum, near Bardan
494 ... Denchev, Hong, Denchev
Monastery, alt. 3888 m (Chlebicki & Sukova 2005). In the protologue, the
geographic coordinates of the type locality appear to be wrong. Microbotryum
bardanense is reported here for the first time from Nepal.
Microbotryum polygoni-alati (Thirum. & Pavgi) Vanky,
Mycotaxon 67: 49, 1998 Fic. 2
Sori in inflorescence (destroying single or groups of flowers, forming
irregular bodies), in some leaves (forming irregular bodies), or on stem
(forming irregular or reniform bodies); 2-10 mm long, covered by a yellow-
brown peridium that ruptures irregularly, exposing a semi-agglutinated to
powdery, sepia (based on Rayner 1970) or date brown (based on the Colour
identification chart of Anonymous 1969) spore mass. SpoREs subglobose,
globose, broadly ellipsoidal, slightly irregular, ellipsoidal or ovoid,
9-12.5(-14) x (8.0-)8.5-11(-12) um (10.9 + 0.9 x 9.6 + 0.6 um) (n = 100),
light to medium purplish brown; wall reticulate, 1.0-1.4 um thick, including
0.4—0.6(-0.7) um high muri. In SEM, spore wall reticulate, often incompletely
reticulate, often with warts, mainly in the common points of the meshes; the
interspaces often perforate with up to 3(-5) holes per interspace, sometimes
with 1(-—2) warts. Immature spores abundant, hyaline to light purplish brown,
smaller than the mature spores.
SPECIMEN EXAMINED—On Persicaria nepalensis (Meisn.) Miyabe: NEPAL, PROVINCE
No. 1, Khumbu Region, Rolwaling, trekking to Sagarmatha National Park, Lukla (alt.
2760 m) to Phakding (alt. 2610 m) ca 5 km, 27°41'44’”N 86°44’19’E, 14 October 2002,
leg. C.S. Chang & al., no. NE020610 (SNUA 61760; host plant as “Koenigia nepalensis
D. Don’, rev. S.P. Hong).
DIsTRIBUTION—On_ Polygonaceae: Persicaria nepalensis [= Polygonum
nepalense Meisn.; = P. alatum Buch.-Ham. ex D. Don]; Asia (India, Nepal,
China), East Africa (Ethiopia).
ComMMENTS—The morphological features of the examined specimen are
similar to those reported by Vanky (2011). Microbotryum polygoni-alati has
very characteristic spore wall ornamentation (visible particularly well in SEM)
— a reticulum with interspaces, which are often perforate with <3(-5) holes,
sometimes, with 1(-2) warts. This species is also one of the few members of
Microbotryum that can develop sori in different organs of their hosts.
Persicaria nepalensis is distributed in East, South, and Southeast Asia, New
Guinea, and Tropical Africa (Li & al. 2003) but this species has been introduced
in many other regions of the world. Microbotryum polygoni-alati was known
only from India (Thirumalachar & Pavgi 1968; Vanky 2007), China (Sichuan,
Microbotryum bardanense & M. polygoni-alati, new for Nepal ... 495
Fic. 2. Microbotryum polygoni-alati on Persicaria nepalensis (SNUA 61760): A. Habit; B. Spores
in LM, median view; C. Spores in LM, surface view; D. Spores in SEM. Scale bars: A = 0.5 cm;
B, C = 10 um; D = 5 um.
Guo 1993; Yunnan, Kakishima & al. 2000), and Ethiopia (Denchev & Denchev
2017). It is reported here for the first time from Nepal.
496 ... Denchev, Hong, Denchev
Acknowledgements
The visit in the herbarium of the Royal Botanic Garden Edinburgh was
supported from the SYNTHESYS Project http://www.synthesys.info/ (Grant no.
GB-TAF-709) financed by the European Community Research Infrastructure
Action under the FP7 Integrating Activities Programme. The visit in T.B. Lee
Herbarium in College of Agriculture and Life Sciences, Seoul National University
was supported by the Korea Research Foundation and the Korean Federation of
Science and Technology Societies Grant funded by Korea Government (MOEHRD,
Basic Research Promotion Fund). The authors would also like to acknowledge Prof.
Makoto Kakishima (University of Tsukuba, Tsukuba, Japan) and Dr. Shuang-Hui
He (Institute of Microbiology, Beijing Forestry University, China) for critically
reading the manuscript and serving as pre-submission reviewers, and Directors and
Curators of E and SNUA for granting access to the collections.
Literature cited
Anonymous. 1969. Flora of British fungi. Colour identification chart. Her Majesty's Stationery
Office, Edinburgh.
Chlebicki A, Sukova M. 2005. Two Microbotryum species from the Himalayas. Mycotaxon 93:
149-154.
Denchev TT, Denchev CM. 2017. Contributions to the smut fungi of Africa. 3. First record of
Microbotryum polygoni-alati. Mycobiota 7: 19-24.
https://doi.org/10.12664/mycobiota.2017.07.04
Guo L. 1993. Ustilago deyeuxiae sp. nov. and three smut species new to China. Mycosystema 6:
51-55.
India Biodiversity Portal. 2020. Silene moorcroftiana Wall. ex Benth., in: India Biodiversity
Portal. https://indiabiodiversity.org/species/show/278543 [accessed 30 April 2020].
Kakishima M, Denchev CM, Zhou X, Zang M. 2000. Smut fungi from Yunnan Province,
China, collected in 1998. Bulletin of the National Science Museum, Tokyo, Series B
(Botany) 26(1): 23-34.
Kemler M, Denchev TT, Denchev CM, Begerow D, Piatek M, Lutz M. 2020. Host preference
and sorus location correlate with parasite phylogeny in the smut fungal genus
Microbotryum (Basidiomycota, Microbotryales). Mycological Progress 19: 481-493.
https://doi.org/10.1007/s11557-020-01571-x
Li A-J, Bao B-J, Grabovskaya-Borodina AE, Hong S-P, Mc-Neill J, Mosyakin SL, Ohba H, Park
C-W. 2003. Polygonaceae. 277-350, in ZY Wu & al. (eds), Flora of China, vol. 5, Ulmaceae
through Basellaceae. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis.
Rajbhandari KR, Suzuki M. 2008. Distribution maps of Silene (Caryophyllaceae) in Nepal (1).
Bulletin of the Tohoku University Museum 8: 9-28.
Rayner RW. 1970. A mycological colour chart. CMI, Surrey & British Mycological Society, Kew.
Thirumalachar MJ, Pavgi MS. 1968 [“1966”]. Notes on some Indian Ustilagineae. 9. Sydowia 20:
21-27 + Pls I-I.
Vanky K. 2007. Smut fungi of the Indian Subcontinent. Polish Botanical Studies 26: 1-265.
Vanky K. 2011 [“2012”]. Smut fungi of the world. APS Press, St. Paul, Minnesota, USA.
Vanky K. 2013. Illustrated genera of smut fungi. 3"! edn. APS Press, St. Paul, Minnesota, USA.
Zhou LH, Wu ZY, Lidén M, Oxelman B. 2001. Silene Linnaeus. 66-100, in ZY Wu & PH.
Raven (eds), Flora of China, vol. 6, Caryophyllaceae through Lardizabalaceae. Science Press,
Beijing, and Missouri Botanical Garden Press, St. Louis
MY COTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021— Volume 136, pp. 497-509
https://doi.org/10.5248/136.497
Chlorophyllum hortense newly recorded,
and C. molybdites confirmed, from Pakistan
SANA JABEEN: , SHAHZEENA ARSHAD', HUMAIRA BASHIR’,
MUuGHEES HAMID’, ANEELA YASMEEN?, ABDUL NASIR KHALID?
' Department of Botany, Division of Science & Technology, University of Education,
Township, Lahore, Pakistan
? Institute of Botany, University of the Punjab,
Quaid-e-Azam Campus-54590, Lahore, Pakistan
> Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
* CORRESPONDENCE TO: sanajabeenue@gmail.com; sanajabeen@ue.edu.pk
ABsTRACT—During a field survey of macrofungi from Kasur and Narowal districts, Punjab,
Pakistan, some collections were found morphologically similar to species of Chlorophyllum.
Their morphological and molecular analyses revealed two species, Chlorophyllum hortense
(a new record from Pakistan) and C. molybdites (confirming a previous Pakistani record that
lacked phylogenetic and detailed micro-morphological analyses).
Key worps—Agaricaceae, agaricoid, ITS, taxonomy
Introduction
Chlorophyllum Massee is a relatively small genus in the Agaricaceae
(Vellinga 2004b, Vellinga & al. 2011, Ge & Yang 2006). Species within
this genus are saprobic, distributed in tropical to temperate regions of
the world, and often found growing in urban and rural habitats (Vellinga
2004a). The genus varies from agaricoid, secotioid to gasteroid in habit.
Agaricoid species are characterized by a hymenodermal pileus covering,
smooth stipe, and basidiospores that either lack a germ pore or have a germ
pore caused by a depression in the episporium without a hyaline covering,
and a white, green, brownish or brown spore print (Vellinga 2003a, 2004b;
Vellinga & al. 2011, Ge & Yang 2006, Crous & al. 2015, Loizides & al. 2020).
A98 ... Jabeen & al.
Chlorophyllum was previously recorded from Pakistan by Razaq & Shahzad
(2012), who provided descriptions and illustrations of C. molybdites and
C. rhacodes |as Macrolepiota rachodes], but without phylogenetic analyses
and more detailed descriptions these cannot be accepted as authenticated
identifications. Our research focuses on the identification of Chlorophyllum
specimens collected in Kasur and Narowal districts of Punjab, Pakistan. The
identification of taxa is based on both morphological characters and nrDNA
ITS phylogenetic sequence analysis.
Material & methods
The samples were collected from Kasur and Narowal district, Punjab, Pakistan
during monsoon of 2015 and 2019.
The Koppen-Geiger climate classification (Geiger 1954, 1961) describes the
climate of Kasur district as warm semi-arid. Ground vegetation was sparse at the
collection site, with patches of grass along the bank of BRB canal. Dominant tree
species include Dalbergia sissoo DC. and Vachellia nilotica (L.) P.J.H. Hurter &
Mabb. Koppen-Geiger (Geiger 1954, 1961) classifies the Narowal district as humid
subtropical. The collection site was a grassy ground. Broad-leaved tree species
including D. sissoo and Eucalyptus camaldulensis Dehnh. were observed 30-50 m
away from the collection site.
The specimens were photographed at the sampling site, and the macroscopic
characters were recorded in the field. Munsell (1975) was followed for color notation.
The specimens were air dried for further analyses and deposited in the Herbarium of
University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan (LAH).
For microscopic studies, tissues from different parts of the basidiomata were
rehydrated in KOH (2%) and mounted in Congo red (1%). Micro-morphological
features were measured using calibrated Motic Images Plus 2.0 software. Genomic
DNA was extracted using Extract-N-Amp” kit following manufacturer's instructions.
PCR amplification of the internal transcribed spacer region was carried out using
ITS1F/ITS4 primer combination (White & al. 1990, Gardes & Bruns 1993). PCR
products were purified and both strands were sequenced from Beijing Genomic
Institute (BGI), PR. China.
For phylogenetic analysis, consensus sequences were generated in BioEdit (Hall
1999) and BLAST searched at NCBI (https://www.ncbi.nlm.nih.gov/) to retrieve
the sequences of closely related Chlorophyllum spp. from the database. Sequences
mentioned in the published literature were also included from the database in final
ITS matrix to represent different sections in the genus (Ge & al. 2018). Agaricus
campestris L. was chosen as the outgroup. All the sequences were aligned online
using MUSCLE (Edgar 2004). The final aligned data set was analyzed through
MEGA 6.0 software for reassessing the phylogeny. Tamura 3-parameter (Tamura
1992) was selected as evolution model for maximum likelihood analysis using best-
fit substitution model approach in MEGA (Tamura & al. 2013). A discrete gamma
Chlorophyllum in Pakistan ... 499
MG741988 C. molybdites
MG741994 C. molybdites
U85309 C. molybdites
MG741985 C. molybdites
MG741990 C. mroyodies
MG741986 C. m olybates,
MG741989 C. molybdites
MG741991 C. molybdites
97 | MG741987 C. molybdites
KP229775 C. jnolynesse
KP229777 C. lybdites
KJ524557 C. molybdites
|. @MN577980 C. molybdites
AY243618 C. molybdites
KP012712 C. molyndigs
AY081243 C. molybdites
97 AY083209 C. m olybdlites
KP229774 C. molybdites
AF482836 C. molybdites
AY243617 C. molybdites C. sect. Chlorophyllum
MG741984 C. molybdites
MG741992 C. molybdites
KU499923 C. globosum
MG741996 C. globosum
99 | | AY243619 C. globosum
89 AF482842 C. globosum as 'Macrolepiota globosa’
MG741995 C. globosum
MG742000 C. globosum
KP229776 C. globosum
KJ524553 C. globosum
MG742001 C. globosum
MG741997 C. globosum
MG742002 C. globosum
MH287459 C. globosum
99 MG741977 C. palaeotropicum
f MG741983 C. palaeotropicum
MG741979 C. palaeotropicum
MG741982 C. palaeotropicum
MG741978 C. palaeotropicum
wl MSTIEE Sears
. Subrhar les .
MG741975 C. subrhacodes C. sect. Parvispororum
MG741972 C. subrhacodes
MG742005 C. agaricoides
MG742007 C. agaricoides
MG742004 C. agaricoides
91 | AY243616 C. agaricoides
MG742008 C. agaricoides
AY243615 C. agaricoides
Poser pine: muaccered as 'Endoptychum agaricoides'
. agaricoides
KR233487 C. agancoides C. sect. Endoptychorum
KR233486 C. agaricoides
MG742003 C. agaricoides
AF482837 C. agaricoides as 'Endoptychum agaricoides'
MG742009 C. agaricoides —
MG742006 C. agaricoides
DQ200928 C. agaricoides
KR2334865 C. agaricoides
55
99 { MG741963 C. africanum
MG741961 C. africanum
99 ; MG741965 C. demangei
MG741966 C. demangei
KR154963 C. hortense as'C. sp.'
KY636372 C. hortense as'C. sp.'
@ MW031276 C. hortense
@ MW031274 C. hortense
© MW031278 C. hortense
KM350690 C. hortense
KM350691 C. hortense
KM350689 C. hortense
weiter forse
. hortense aes
@ MW031277 C. hortense C. sect. Ellipsoidospororum
MK713837 C. hortense
67 | AY243612 C. hortense
AY243611 C. hortense
U85319 C. hortense as 'Lepiota humei'
@MN577078 C. hortense
AY243610 C. hortense as 'C. alborubes'
AF 482843 C. hortense as ‘Leucoagaricus hortensis'
MG741967 C. hortense
MG741969 C. hortense
MG741968 C. hortense
MG741970 C. hortense
AY243613 C. hortense
HG976895 C. hortense
MG742016 C. olivieri
99 | MG742019 C. olivier!
MG742017 C. olivieri
AY081241 C. olivieri
AY081242 C. olivieri
99
AY081240 C. rhacodes
AY081234 C. rhacodes
AY081237 C. rhacodes
99 | JQ683124 C. rhacodes
AY243608 C. rhacodes
AY081236 C. rhacodes
4)) AF482849 C. rachodes
AY081232 C. rhacodes
AY081233 C. rhacodes
93
AF482856 C. brunneum C. sect. Rhacodium
AY081230 C. brunneum
AY081227 C. brunneum
AY081223 C. brunneum
AY083206 C. brunneum
AY081229 C. brunneum
AY081225 C. brunneum
AY083208 C. brunneum
MG742014 C. brunneum
MG742013 C. brunneum
AY081222 C. brunneum
AY081226 C. brunneum
AY083207 C. brunneum
AY243609 C. brunneum
AY081228 C. brunneum
99 | KR233484 C. lusitanicum
KR233483 C. lusitanicum
#1 MRaeeixaa4651 G. sph C
. Sphaerosporum as ‘C. sp."
99 | JX434652 C, sphaerosporum as'C. sp.’ C. sect. Sphaerospororum
MG742011 C. sphaerosporum
MG742010 C. sphaerosporum
MG742012 C. sphaerosporum
KM657927 Agaricus campestris Outgroup
0.05
Figure. 1. Molecular phylogenetic analysis of ITS sequences of Chlorophyllum species. Section
names are given on the right. The sequences generated during this study are marked with bullets.
500 ... Jabeen & al.
distribution was used to model evolutionary rate differences among sites (5 categories
(+G, parameter = 0.2606)).
Phylogenetic results
The ITS dataset included a total of 125 nucleotide sequences. There were
a total of 726 positions in the final matrix. All positions were used in the
analysis. Among these positions, 477 were conserved, 227 were variable,
183 were parsimony informative. The maximum likelihood tree is given in
FiGuRE 1. There were total six major clades representing six infrageneric
groups and an outgroup. The topology of the tree is similar to the previous
phylogeny reconstructed by Ge & al. (2018). The sequences from Pakistani
collections clustered within C. sect. Chlorophyllum Massee (C. molybdites)
and C. sect. Ellipsoidospororum Z.W. Ge (C. hortense) along with similar
sequences of Chlorophyllum species from different parts of the world.
Taxonomy
Chlorophyllum hortense (Murrill) Vellinga, Mycotaxon 83: 416 (2002) Fics 24-D, 3
BASIDIOMATA agaricoid. PILEUS 3-6.1 cm broad, slightly umbonate,
conical to convex and flat at maturity; central disc yellowish brown
(7.5YR5/8); surface dry, matt, scaly, scales furfuraceous, radially arranged,
concentrated near the center and sparse towards margins; squamules present
towards the margins, grayish (10Y7/2); margin slightly striate and cracked
or wavy. LAMELLAE crowded, free, off-white (2.5Y9/2) to yellowish green
(10Y9/4), with entire white edge. LAMELLULAE lengths variable. STIPE 9.1
x 1 cm, cylindrical; base slightly broadening <1.4 cm; surface longitudinally
striate; striations light yellowish brown (2.5Y7/4), slightly pink (10P7/10)
at the site of attachment with the pileus and around the annulus. ANNULUS
double, superior, persistent, having pinkish tint close to the stipe. CONTEXT
soft, brittle, white, becoming pinkish (10P7/10) when bruised.
BASIDIOSPORES [70/6/6] (6.8—)7.2—9.4(-10.8) x (5.3-)5.8-6.4(-6.8)
um, Q = (1.2—)1.3-1.4(-1.5), avQ = 1.3, ellipsoid with rounded apex, thick
walled; germ pore absent; dextrinoid, reddish in Congo red. BAsIpIA (24-)
24.8-31.2(-34.9) x (8.7-)9-10.3(-11.8) uum, clavate, 2-4 sterigmata, most
commonly 2-sterigmate. LAMELLAE EDGE sterile. CHEILOCYSTIDIA (28.6-)
35.2-58.9(-62.1) x (6.2—)7.3-9(-9.9) tm subcylindric to slightly fusiform
or very narrowly clavate. PLEUROCYSTIDIA absent. PILEIPELLIS hyphae
(from the background) (4.2—)6.2-9.1(-10) um in diameter, long, cylindrical,
frequently septate, branched; terminal elements clavate to narrowly clavate
Chlorophyllum in Pakistan ... 501
Figure. 2. Chlorophyllum hortense basidiomata: A, B. LAH36664; C, D. LAH36661.
Chlorophyllum molybdites basidioma: E, F LAH36660. Scale bars = 1 cm. Photographs by
Mughees Hamid and Humaira Bashir.
502 ... Jabeen & al.
ii | ,
Figure. 3. Chlorophyllum hortense [LAH36661]. A. Basidiospores; B. Basidia; C. Cheilocystidia;
D. Pileipellis (hyphae from the background); E. Stipitipellis. Scale bars = 10 um. Drawing by
Sana Jabeen.
Chlorophyllum in Pakistan ... 503
forming a trichoderm, pale yellow from the disc and hyaline from the
margins in KOH. StipiTipeLyis hyphae (7.2—)8.2-10.2(-10.4) um wide,
filamentous, branched, with narrow terminal cells, septate, clamped septa
rare, hyaline in KOH.
MATERIAL EXAMINED: PAKISTAN. PunyjaB, Gujranwala division, Narowal district,
Bola Bajwa, 234 m asl, on soil, 14 August 2015, Humaira Bashir RN1S53 (LAH36661;
GenBank MN577078); Lahore division, Kasur district, near BRB Canal, 218 m asl,
on soil, 30 July 2019, Mughees Hamid S#3SJ45 (LAH36662; GenBank MW031274);
S#7S]37 (LAH36663; GenBank MW031275); S#6SJ44 (LAH36664; GenBank
MW031276); 1 August 2019 Mughees Hamid S#28SJ38 (LAH36665; GenBank
MW031277); 9 August 2019 Mughees Hamid S#63SJ42 (LAH36666; GenBank
MW031278).
Chlorophyllum molybdites (G. Mey.) Massee,
Bull. Misc. Inf., Kew 1898(138): 136 (1898) FIGS 2 E,F, 4
BASIDIOMA agaricoid. PILEUS 7.6 cm in diameter, spherical when young,
plane when mature; margins slightly cracked; central disc plate-like, brownish
black (7.5YR3/6) to dull yellow orange (10YR6/10); surface creamy white
(5Y9/4), minutely pubescent with distinct brown fibrils and patches of
squamules; squamules uplifted, dull yellow orange (10YR6/10), concentrated
near the center. LAMELLAE free, crowded, regular, even, light green (SGY8/4),
edges entire. LAMELLULAE three tiered. STIPE 6.3 x 0.8 cm, cylindrical, straight
to bent, slightly bulbous at the base, light brown (10YR5/6) to dark brown
(10YR3/6), central to the pileus; surface smooth, dry, glabrous. ANNULUS double
edged, edges ruptured, persistent, fixed, central to the stipe, upper surface
white, lower surface brown. ConTEXxT slightly tough, and hard particularly of
stipe, white, becoming pinkish (10P7/10) when bruised.
Basip1ospores [20/1/1] (8.6-)9.3-12.2(-12.5) x (6-)6.6-7.7(-7.8) tm,
Q = (1.2-)1.3-1.5(-1.6), avQ = 1.3, ellipsoid to amygdaliform, smooth, with
truncate apex and visible germ pore and prominent apiculus, thick-walled,
dextrinoid, pinkish in Congo red, light green in 5% KOH. Basip1a (22.8-)
24-28.6(-29.6) x (10.1-)10.6-13.5(-14) um, clavate, 2-4 sterigmate, thin-
walled. LAMELLA EDGE sterile. CHEILOCYSTIDIA (20-)24.3-28.8(—31.1) x (7.6-)
8.3-10.2(-11.7) um, clavate to broadly clavate or sphaeropedunculate, hyaline
to yellowish in KOH. PLeuRocystip1A absent. PILEIPELLIS (hyphae from the
background) trichoderm, hyphae forming a palisade of cells (7.6-)10.1-14
(-14.7) um in diameter, apical cells narrowly clavate and slightly long, pale yellow
to brownish from the central disc and hyaline from the margins in 5% KOH.
STIPITIPELLIS hyphae (3.5-)4.9-8.3(-8.8) tm wide, filamentous, branched,
frequently septate, clamped septa rare, broad terminals, hyaline in KOH.
504 ... Jabeen & al.
.
Figure. 4. Chlorophyllum molybdites [LAH36660]. A. Basidiospores; B. Basidia; C. Cheilo-
cystidia; D. Pileipellis (hyphae from the background); E. Stipitipellis. Scale bars: A-C = 10 um;
D, E = 20 um. Drawing by Sana Jabeen.
C _
Chlorophyllum in Pakistan ... 505
MATERIAL EXAMINED: PAKISTAN. Punjab, Gujranwala division, Narowal district,
Bola Bajwa, 234 m asl, on soil, 14 August 2015, Humaira Bashir RN2 (LAH36660;
GenBank MN577080).
Discussion
Two Chlorophyllum species from Kasur and Narowal district, Punjab,
Pakistan have been identified. Both species have brown scales on the cap,
which differ slightly in shape, but the main differences are in the color of the
lamellae, spores, basidia, and cheilocystidia.
Chlorophyllum hortense was previously known under different species
names in multiple genera including Lepiota (Pers.) Gray, Leucoagaricus
Locq. ex Singer, and Macrolepiota Singer, until Vellinga (2003a) used
molecular data and placed the taxon in Chlorophyllum. It is placed in
C. sect. Ellipsoidospororum, characterized by slender basidiomata having
furfuraceous squamules on the pileus, ellipsoid basidiospores without a germ
pore, and subcylindric to slightly fusiform cheilocystidia (Ge & al. 2018).
This species can be separated from other taxa in C. sect. Ellipsoidospororum
by its white basidiomata, ellipsoid basidiospores with a rounded apex and
lack of a germ pore, frequent 2-spored basidia, and subcylindric to fusiform
cheilocystidia (Ge & al. 2018). It should be noted that although 2-spored
basidia are rare in the Agaricaceae, we have frequently observed 2-spored
basidia both previously and during this investigation. These specimens
showed remarkable similarity with previous descriptions of the species
by several workers from different parts of the world (Murrill 1914, Pegler
1983, Aberdeen 1992, Akers & Sundberg 1997, Vellinga 2003a, Ge & Yang
2006, Nascimento & Alves 2014, Alves & al. 2016). Clamp connections
were also observed in the stipitipellis of Pakistani collections. Distinct
clamp connections were reported by Akers & Sundberg (1997) and Vellinga
(2003a), but not observed by Pegler (1983) and Ge & Yang (2006).
Chlorophyllum hortense is widely distributed and known (under various
names) from Africa, Asia, Australia, and North and South America (Murrill
1914, Dennis 1952, Aberdeen 1962, 1992; Smith 1966; Heinemann 1973;
Pegler 1983, 1997; Franco 1994; Akers & Sundberg 1997; Vrinda & al. 1999;
Hemmes & Desjardin 2002; Vellinga 2003a; Sobestiansky 2005; Ge & Yang
2006; Gimenes 2007; Farook & al. 2013; Nascimento & Alves 2014; Alves &
al. 2016).
Chlorophyllum molybdites [= C. esculentum Massee, the generic type] is
characterized by olive to greenish-white basidiospores with a truncate apex,
broadly clavate to sphaeropedunculate cheilocystidia, and a palisade-like
506 ... Jabeen & al.
pileus covering of hyphae with terminal clavate to subfusiform elements
(Ge & al. 2018). The specimen identified as C. molybdites during this
investigation showed similar characters as described by Pegler (1983), De
Meijer & al. (2007), Alves & al. (2016, 2019), and Bijeesh & al. (2017). It is
characterized by the green lamellae and green basidiospores (>10 um) with a
truncate apex anda prominent germ pore (Ge & al. 2018, Alves & al. 2019). This
species is considered toxic and causes gastrointestinal distress; the symptoms
can be quite serious. The toxicity of this species may depend upon climatic
conditions, habitat alone, and the susceptibility of the individual (Graff 1927,
Pegler 1983, Reid & Eicker 1991, Lehmann & Khazan 1992; Benjamin 1995).
This species has been reported worldwide (Reid & Eicker 1991).
Chlorophyllum molybdites has been reported previously in the cold desert
climate of Gilgit-Baltistan, Pakistan (Razaq & Shahzad 2012). Photographs
by Razaq & Shahzad (2012) show a specimen with persistent scales that are
grayish rather than dark brown and the lamellae appear white, which also
differs from previous descriptions of C. molybdites. Since Razaq & Shahzad'’s
(2012) identification was based solely on macroscopic characters without
detailed anatomical observations and lacking a herbarium specimen and
phylogenetic analyses, their Pakistan report of C. molybdites cannot be
authenticated.
Chlorophyllum rhacodes (Vittad.) Vellinga [= Macrolepiota rhacodes
(Vittad.) Singer] has also been reported from Pakistan (Razaq & Shahzad
2012, as Macrolepiota). Chlorophyllum rhacodes can be identified by large
basidiomata with darker pileus scales and a bulbous stipe with a double
crowned annulus. Anatomically this species can be distinguished from
other Chlorophyllum species by its large, broad (10-35 x 8.5-25 um)
sphaeropedunculate cheilocystidia. Its basidiospores are 8.8-12.7 x 5.4-7.9
um with a rounded to truncate apex and visible germ pore, and its pileipellis is
a tightly packed hymeniderm of cylindrical and flexuous, or narrowly clavate
or narrowly lageniform elements (Vellinga 2003b). The Pakistani collection
identified as Macrolepiota rhacodes by Razaq & Shahzad (2012) shared some
features with the type specimen, including the larger basidiomata with
dark brown scales, double crowned annulus, a stipe with bulbous base; and
the spore shape and size (Razaq & Shahzad 2012). We can conclude that
M. rhacodes described by Razaq & Shahzad (2012) probably represents
C. rhacodes; but again, without an herbarium specimen, we cannot obtain
the detailed description and molecular phylogeny necessary to authenticate
this record.
Chlorophyllum in Pakistan ... 507
This investigation reports C. hortense as a new record from Pakistan
and confirms the occurrence of C. molybdites from Pakistan, based on
detailed morphological descriptions and molecular phylogenetic evidence.
Occurrence of Chlorophyllum species in Pakistan considerably extends their
known distribution into warm semi-arid and humid subtropical regions.
Acknowledgements
Sincere thanks to Dr. Else C. Vellinga (University of California, Berkeley,
California, USA) and Dr. Chang-Lin Zhao (Southwest Forestry University, Kunming,
Yunnan, P.R. China) for presubmission review of the manuscript. Their comments
and suggestions greatly helped to improve the document.
Literature cited
Aberdeen JEC. 1962. Notes on Australian Lepiota in the Kew Herbarium. Kew Bulletin 16:
129-137. https://doi.org/10.2307/4120357
Aberdeen JEC. 1992. Lepiotoid genera (Agaricales) in south-eastern Queensland. Aberdeen
Publications, Gailes, Queensland.
Akers BP, Sundberg WJ. 1997. Leucoagaricus hortensis: some synonyms from Florida and
taxonomic observations. Mycotaxon 62: 401-419.
Alves RP, Menezes GCA, Oliveira ED, Victoria FC, Pereira AB, Albuquerque MP. 2016.
Chlorophyllum Massee e Macrolepiota Singer (Agaricaceae) em area do bioma Pampa,
Rio Grande do Sul, Brasil. Neotropical Biology and Conservation 11(3): 141-152.
https://doi. org/10.4013/nbc.2016.113.04
Alves MH, Cruz MO, Nascimento CC. 2019. First record of Chlorophyllum molybdites (G. Mey.)
Massee (Basidiomycota, Agaricaceae) from Piaui state, Brazil. Check List 15(5): 695-699.
https://doi.org/10.15560/15.4.695
Benjamin DR. 1995. Mushrooms, poisons and panaceas: a handbook for naturalists, mycologists
and physicians. Freemann WH and Co., New York. 422 p.
Bijeesh C, Vrinda KB, Pradeep CK. 2017. Mushroom poisoning by Chlorophyllum molybdites
in Kerala. Journal of Mycopathological Research 54 (4): 477-483.
Crous PW, Wingfield MJ, Guarro J, Hernandez-Restrepo M, Sutton DA, Acharya K
& al. 2015. Fungal planet description sheets: 320-370. Persoonia 34: 167-266.
https://doi.org/10.3767/003 1585 15x688433
De Meijer AAR, Amazonas MALA, Rubio GBG, Curial RM. 2007. Incidences of poisonings due
to Chlorophyllum molybdites in the state of Parana, Brazil. Brazilian Archives of Biology and
Technology 50(3): 479-488. https://doi.org/10.1590/S1516-89132007000300014
Dennis RWG. 1952. Lepiota and allied genera in Trinidad, British West Indies. Kew Bulletin.
7(4): 459-499. https://doi.org/10.2307/4117800
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research 32(5): 1792-1797. https://doi.org/10.1093/nar/gkh340
Farook VA, Khan SS, Manimohan P. 2013. A checklist of agarics (gilled mushrooms) of Kerala
State, India. Mycosphere 4(1): 97-131. https://doi.org/10.5943/mycosphere/4/1/6
Franco AE. 1994. The genus Lepiota sensu stricto with observations on related taxa in Colombia.
Ph.D. Dissertation. City University of New York.
508 ... Jabeen & al.
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity of basidiomycetes:
application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.
https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Ge ZW, Yang ZL. 2006. The genus Chlorophyllum (Basidiomycetes) in China. Mycotaxon 96:
181-191.
Ge ZW, Jacobs A, Vellinga EC, Sysouphanthong P, Walt R, Lavorato C, Yang ZL. 2018.
A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new
species, new combination and infrageneric classification. MycoKeys 32: 65-90.
https://doi.org/10.3897/mycokeys.32.23831
Geiger R. 1954. Klassifikation der Klimate nach W. Képpen. Landolt-Bérnstein — Zahlenwerte
und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie,. 3:
603-607.
Geiger R.. 1961. Uberarbeitete Neuausgabe von Geiger, R.: K6ppen-Geiger / Klima der Erde.
(Wandkarte 1:16 Mill.). Klett-Perthes, Gotha.
Gimenes LJ. 2007. A tribo Leucocoprineae (Agaricaceae) no Parque Estadual das Fontes do
Ipiranga, Sao Paulo, SP, Brasil. PhD thesis, Biodiversidade Vegetal e Meio Ambiente, Instituto
de Botanica da Secretaria do Meio Ambiente, Sao Paulo.
Graff PW. 1927. The green-spored Lepiota. Mycologia 19: 322-326.
https://doi.org/10.1080/00275514.1927.12020565
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
program for Windows 95/98/NT. Nucleic Acid Series 41: 95-98.
Heinemann P. 1973. Leucocoprinées nouvelles d'Afrique centrale. Bulletin du Jardin Botanique
National de Belgique 43: 7-13. https://doi.org/10.2307/3667558
Hemmes DE, Desjardin DE. 2002. Mushrooms of Hawaii: an identification guide. Ten Speed
Press. Berkeley, California. 212 p.
Lehmann PF, Khazan U. 1992. Mushroom poisoning by Chlorophyllum molybdites in the
Midwest United States. Mycopathologia 118: 3-13. https://doi.org/10.1007/BF00472564
Loizides M, Alvarado P, Polemis E, Dimou DM, Zervakis GI, Thines M, Telle S$, Konstantinou
G, Gube M. 2020. Multiple evolutionary origins of secotioid species in the agaricoid genus
Chlorophyllum. Mycologia 112: 400-422. https://doi.org/10.1080/00275514.2020.1712179
Munsell AH. 1975. Munsell Soil Color Charts. Macbeth Division of Kollmorgen Corporation.
Baltimore, Maryland.
Murrill WA. 1914. Agaricaceae. North American Flora 10(1): 41-65.
Nascimento CC, Alves MH. 2014. New records of Agaricaceae (Basidiomycota, Agaricales)
from Araripe National Forest, Ceara State, Brazil. Mycosphere 5(2): 319-332.
https://doi.org/10.5943/mycosphere/5/2/6
Pegler DN. 1983. Agaric flora of the Lesser Antilles. Kew Bulletin Additional Series 9. 668 p.
Pegler DN. 1997. The agarics of Sao Paulo: an account of the agaricoid fungi
(Holobasidiomycetes) of Sao Paulo State, Brazil. Royal Botanic Gardens, Kew. 68 p.
Razaq A, Shahzad S. 2012. New records of Agaricaceae form Pakistan. Pakistan Journal of
Botany 44(4): 1475-1477.
Reid DA, Eicker A. 1991. A comprehensive account of Chlorophyllum molybdites. Botanical
Bulletin Academia Sinica 32: 317-334.
Smith HV. 1966. Contributions toward a monograph on the genus Lepiota, I. Type
studies in the genus Lepiota. Mycopathologia et Mycologia Applicata 29: 97-117.
https://doi.org/10.1007/BF02055063
Chlorophyllum in Pakistan ... 509
Sobestiansky G . 2005. Contribution to a macromycete survey of the states of Rio Grande do Sul
and Santa Catarina in Brazil. Brazilian Archives of Biology and Technology 48(3): 437-457.
https://doi.org/10.1590/S1516-89132005000300015
Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong
transition-transversion and G + C-content biases. Molecular Biology and Evolution 9:
678-687.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary
Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.
https://doi.org/10.1093/molbev/mst197
Vellinga EC. 2003a. Chlorophyllum and Macrolepiota (Agaricaceae) in Australia. Australian
Systematic Botany 16: 361-370. https://doi.org/10.1071/sb02013
Vellinga EC. 2003b. Type studies in Agaricaceae—Chlorophyllum rachodes and allies. Mycotaxon
85: 259-270.
Vellinga EC. 2004a. Ecology and distribution of lepiotaceous fungi (Agaricaceae) - A review.
Nova Hedwigia 78: 273-299. https://doi.org/10.1127/0029-5035/2004/0078-0273
Vellinga EC. 2004b. Genera in the family Agaricaceae: evidence from nrITS and nrLSU sequences.
Mycological Research 108: 354-377. https://doi.org/10.1017/s0953756204009700
Vellinga EC, Sysouphanthong P, Hyde KD. 2011. The family Agaricaceae: phylogenies and two
new white-spored genera. Mycologia 103: 494-509. https://doi.org/10.3852/10-204
Vrinda KB, Pradeep CK, Mathew S. Abraham TK. 1999. Agaricales from Western Ghats-VII.
Mushroom Research 8(2): 9-12.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of
fungal ribosomal RNA genes for phylogenetics. 315-322, in: MA Innis & al. (eds).
PCR protocols: a guide to methods and applications. Academic Press, San Diego.
https://doi.org/10.1016/B978-0-12-372180-8.50042-1
MY COTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021—Volume 136, pp. 511-522
https://doi.org/10.5248/136.511
New record of Geopora sumneriana from Pakistan
IRFANA MAQSAD, BARKAT ALI,
TASMIA BASHIR, ABDUL SAMAD MUMTAZ*
Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University,
Islamabad, 45320, Pakistan
*CORRESPONDENCE TO: asmumtaz@qau.edu.pk
ABSTRACT—A new record of Geopora sumneriana is presented from Pakistan. Specimens
were collected under Cedrus deodara trees in Chitral district of Khyber Pakhtunkhwa
province during 2018. The newly reported specimens are illustrated and described using
morphological characters and phylogenetic analysis of the internal transcribed spacer region
(ITS).
KEY worps—cup fungi, Pezizales, phylogeny, Pyronemataceae, taxonomy
Introduction
Geopora Harkn. (Pyronemataceae, Pezizales) was established by
Harkness (1885) based on the hypogeous type species Geopora cooperi
Harkn. With the addition of semihypogeous and epigeous species, the
genus has since been expanded to 27 species and six infraspecific taxa
(Index Fungorum 2020). Five species—G. arenosa (Fuckel) S. Ahmad,
G. foliacea (Schaeff.) S$. Ahmad, G. arenicola (Lév.) Kers, G. cooperi, and
G. ahmadii Saba & al.—have been reported from Pakistan (Ashraf &
Khalid 2012, Saba & al. 2019).
Geopora taxa are morphologically characterized by ascomata that
are partially or completely subterranean and covered with flexible, thin
or thick, septate excipular hairs; a whitish, greyish or yellowish grey
hymenium; an excipulum divided into two (the ectal and medullary)
layers; operculate cylindrical asci; uniseriate, ellipsoid or ellipsoidal-
512 ... Magsad & al.
fusiform, predominantly smooth (although G. lateritia (Fogel & States)
Healy & M.E. Sm. has ornamented spores; Grupe & al. 2019) ascospores
with one or two guttules (Tamm & al. 2010, Peri¢ & Peri¢ 2011). Geopora
species fruit on soil, sand, or often rotten and decaying plant materials and
form ectomycorrhizal relationships with trees (Tamm & al. 2010).
Tamm & al. (2010) concluded that previously used taxonomic
characters —such as ascospore size, hymenial color, ectomycorrhizal
relationships, ascomatal shape and position, and ploidy level—are
insufficient for circumscribing Geopora species. Similarly, geographic
research data also do not help in delimiting species within the genus. An
integrative approach to taxonomy combining morphological and DNA
sequence data—as applied in many other groups of fungi (e.g., Ko & al.
2011, Stefani & al. 2014, Ali & al. 2016, Skrede & al. 2017, Sousa & al.
2017, Haelewaters & al. 2018, Song & al. 2019)—has been suggested for
classifying species within Geopora (Tamm & al. 2010, Flores-Renteria &
al. 2014). The description of G. ahmadii, for example, was supported by
both morphological and molecular phylogenetic data (Saba & al. 2019).
During our macrofungal field surveys, we collected some gregarious
specimens of Geopora on moist soil under Cedrus deodara (Roxb. ex
D. Don) G. Don trees in Chitral District, Northern Pakistan. Our
preliminary field observations, morphological examinations, and
ITS sequence data identified the specimens as G. sumneriana, which
constitutes the first report of this species in Pakistan.
Materials & methods
Microscopic study
The specimens collected in the Chitral district were dried in a food dehydrator at
40 °C for 8 hours. Microscopic characters were measured and photographed using
a Leitz light microscope and Leica camera. Fungal tissues were mounted in water,
KOH, and Congo red. The specimens were deposited in the herbarium of Plant
Sciences Department, Quaid-i-Azam University, Islamabad, Pakistan (ISL).
DNA extraction, PCR amplification, DNA sequencing
DNA was extracted from a small section of the dried apothecium using a
modified CTAB protocol (O’Donnell & al. 2009). The internal transcribed spacer
region (ITS) was amplified with the primer pair ITS1F and ITS4 (White & al. 1990,
Gardes & Bruns 1993). PCR parameters were set as follows: initial denaturation at
95 °C for 5 min, followed by 38 cycles of denaturation at 95 °C for 30 s, annealing at
56 °C for 40 s, and extension at 72 °C for 1:30 min; and a final extension at 72 °C for
10 min. The PCR product was purified using the Thermo Scientific™ GeneJET PCR
Geopora sumneriana new for Pakistan ... 513
TABLE 1. Geopora species and outgroup species used in the phylogenetic analyses. The
newly generated sequence is presented in bold font.
TAXA
Geopora ahmadii
G. arenicola
G. cervina
G. cercocarpi
G. clausa
G. cooperi
G. foliacea
G. gilkeyae
G. pinyonensis
G. sepulta
G. sumneriana
G. tenuis
G. tolucana
Trichophaea hybrida
Tarzetta catinus
COUNTRY
Pakistan
Pakistan
Finland
Finland
Finland
Finland
Estonia
Estonia
Estonia
Estonia
USA
USA
USA
USA
Spain
Spain
Spain
Finland
Finland
USA, CA
USA, AR
USA, AR
Estonia
Estonia
Pakistan
India
Italy
Finland
Estonia
Estonia
USA
USA
USA
USA
USA
Estonia
Estonia
VOUCHER/
ISOLATE/STRAIN
MSMO0091
MSMO00163
H SJ-4366
TAA 188638
H VH23012
H VH22603
TAAM 192325
TAA 188304
TAA 117898
TAA 188517
Kropp2
Kropp1l
SOC1596
OSC 58245
101GA
108GC
109GC
H RS-34685
H RS-29584
src515
DGB 27586
DGB 27586
TAA 192333
TAA 192311
ISL99125
RS-18-1000
16978
H RS-09584
TAA 188326
TAA 188331
375
217
376
222
215
TAA 192334
TAA 192291
ITS
KY805995
KY805996
FM206457
FM206453
FM206454
FM206455
FM206456
FM206417
FM206419
FM206418
HQ283097
HQ283096
HQ283094
MK359192
AF387651
AF387649
AF387650
FM206428
FM206424
DQ974731
KF768652
KE768653
FM206431
FM206432
MN860070
MN200944
JF908024
FM206402
FM206397
FM206396
MK842019
MK841861
MK842020
MK841866
MK841859
FM206477
FM206478
REFERENCES
Saba & al. 2019
Saba & al. 2019
Tamm & al. 2010
Tamm & al. 2010
Tamm & al. 2010
Tamm & al. 2010
Tamm & al. 2010
Tamm & al. 2010
Tamm & al. 2010
Tamm & al. 2010
Southworth & Frank 2011
Southworth & Frank 2011
Southworth & al. 2011
Grupe & al. 2019
Gutierrez & al. (unpubl.)
Gutierrez & al. (unpubl.)
Gutierrez & al. (unpubl.)
Tamm & al. 2010
Tamm & al. 2010
Smith & al. 2007
Flores-Renteria & al. 2014
Flores-Renteria & al. 2014
Tamm & al. 2010
Tamm & al. 2010
This paper
Sharma (unpubl.)
Osmundson & al. 2013
Tamm & al. 2010
Tamm & al. 2010
Tamm & al. 2010
Shemesh & al. (unpubl.)
Shemesh & al. (unpubl.)
Shemesh & al. (unpubl.)
Shemesh & al. (unpubl.)
Shemesh & al. (unpubl.)
Tamm & al. 2010
Tamm & al. 2010
514... Maqsad & al.
purification kit according to the manufacturer's instructions and commercially
sequenced by Macrogen (Korea).
Phylogenetic analysis
The raw sequence reads were manually assembled, checked, and corrected
in CLC Main Workbench version 8.1 (QIAGEN Aarhus A/S). The ITS sequence
dataset included 37 sequences, including 34 Geopora sequences downloaded
from NCBI GenBank, one sequence generated during the present study, and
two outgroup sequences (Tarzetta catinus (Holmsk.) Korf & J.K. Rogers and
Trichophaea hybrida (Sowerby) T. Schumach.) also downloaded from GenBank
(TaBLE 1). The ITS dataset was aligned using the Muscle E multiple alignment
tool in MEGA v. 7.0 (Kumar & al. 2016). Gaps and missing data were excluded
from the dataset.
The best-fit nucleotide substitution model was chosen from the model test
tool in MEGA 7.0 (Kumar & al. 2016) using the Akaike Information Criterion
(AIC). The phylogeny of the ITS sequences was constructed using maximum
likelihood inference (ML) under the General Time Reversible Model of nucleotide
substitution (GTR + I + I; Nei & Kumar 2000). Bootstrap support values were
obtained from 1000 replications. A heuristic search was performed on the matrix
of pairwise distances using maximum composite likelihood method of estimation
and Neighbor-Joining and BioNJ algorithms. MEGA 7.0 (Kumar & al. 2016) was
used for the phylogenetic analysis. The final tree was visualized and formatted in
FigTree v.1.4.4 and TreeGraph 2.0 (Fie. 1).
Bayesian inference with Metropolis-coupled Markov Chain Monte Carlo
(MCMC) method was used to estimate posterior probabilities in MrBayes version
3.2.7a (Ronquist & al. 2012). The nucleotide substitution model selected was
GTR +1+T. The analysis was carried out in two runs and four chains, each with
1,000,0000 generations. The temperature (1.0) was used for the cold chain. The
MCMC model parameters were adjusted to every 500 generations and trees were
sampled every 1000 generations. A default burn-in of 25% was used by MrBayes to
discard samples from the cold chain and 3020 trees were summarized to construct
a consensus tree. Bayesian posterior probability values of >0.8 were used in the
final fit-tree.
Phylogenetic results
Our query sequence Blast produced the highest hits for Geopora sumneriana
from Italy (JF908024, 99.82 identity) and G. sumneriana from India (MN200944,
FicgurE 1. A phylogram of Geopora species constructed from ITS sequences. Maximum
likelihood (ML) and Bayesian inference (BI) methods of phylogeny were conducted in MEGA
7.0 and MrBayes 3.2.7a. Bootstrap probability values >80% and posterior probability values 20.80
are shown above the branches. Geopora sumneriana, investigated in this paper, stands in blue
font. Tarzetta catinus and Trichophaea hybrida represent outgroup taxa.
Geopora sumneriana new for Pakistan ... 515
sete: Geopora cervina FM206417
Geopora cervina FM206419
96/1 Geopora cervina FM206418
400 Geopora tenuis FM206402
Geopora tenuis FM206397
Geopora tenuis FM206396
00 Geopora foliacea FM206428
Geopora foliacea FM206424
100/0.8 Geopora sepulta FM206431
Geopora sepulta FM206432
100/0.9 Geopora ahmadii KY805995
Geopora ahmadii KY805996
400 Geopora cooperi AF387651
Geopora cooperi AF387649
Geopora cooperi AF387650
1q0}0.8 Geopora pinyonensis KF768652
Geopora pinyonensis KF768653
Geopora cercocarpi HQ283097
Geopora cercocarpi HQ283096
83 Geopora cercocarpi HQ283094
Geopora arenicola FM206457
Geopora arenicola FM206453
Geopora arenicola FM206454
83/0.8 | 190/d.9
Geopora arenicola FM206455
Geopora arenicola FM206456
Geopora clausa MK359192
D9/0.9 Geopora gilkeyae DQ974731
Geopora sumneriana MN860070
Geopora sumneriana MN200944
Geopora sumneriana JF908024
100
98 Geopora tolucana MK842019
90/0.8 | 'Geopora tolucana MK841861
98 Geopora tolucana MK842020
Geopora tolucana MK841866
Geopora tolucana MK841859
Trichophaea hybrida FM206477
Tarzetta catinus FM206478
0.05
516 ... Magsad & al.
100 identity). Tarzetta catinus and Trichophaea hybrida were chosen for rooting
purpose due to their close phylogenetic relationship with Geopora species
(Perry & al. 2007, Saba & al. 2019). The best tree recovered from ML analysis
(-InL = 1925.2196) is shown in Fic. 1. Our G. sumneriana ITS sequence clusters
with the G. sumneriana sequences from Italy and India (Fic. 1) in a clade with
100% ML bootstrap support; however, Bayesian inference support was only
moderate (posterior probability = 0.65).
Taxonomy
Geopora sumneriana (Cooke ex W. Phillips) M. Torre,
Anales Inst. Bot. Cavanilles 32(2): 96. 1976 [“1975”]. PLATES 1, 2
APOTHECIUM large, sessile, outer surface brown or deep brown, covered
with fine hairs and dust particles, scaly, rough, brittle, at first subterranean
and globular in shape, closed, upon maturity a small opening arising at the
top with regular margins, later breaking through soil, then margins splitting
into 4-6 lobes or rays, resembling star or crown-shape, then making a wide
bowl shape; at maturity semihypogeous or partially immersed in the soil;
stem absent, apothecium attached to the substrate through a tiny tubular
structure in the center or brown mycelium. HyMENIUM deeply concave,
smooth, whitish and at maturity creamy or pale beige color. Ascus hyaline,
eight-spored, operculate, cylindrical, 182-300 x 16-27 um, rounded at the
top (16-27 um diam.), narrower at the base (6-8 um diam.). ASCOSPORES
ellipsoid and fusiform, uniseriate, sometimes containing two larger oil
drops and many small oil drops around them, or mostly one oil drop,
28-33 x 12.9-15 um, hyaline, smooth, thick walled, colorless in water, in
Melzer’s reagent no change in color observed. PARAPHYSES thread-like and
narrow, cylindrical, hyaline, broader at the middle <3—4 um diam., slightly
enlarged at the top <4-6 um diam., septate. EcTAL ExXCIPULUM is textura
globuloso-angularis, made up of oval or irregular shaped cells, 17.5-42.5
x 10-28 um, transparent or brown at the surface. Harrs arising from ectal
excipulum, septate, lighter or darker brown, thick-walled, blunt ends and
rounded, very long, 12-15 um diam., cytoplasm with numerous crystals.
ANCHOR Hypuate septate, dense, very long, light brownish and curled with
rounded ends.
PLATE 1. Geopora sumneriana (ISL99125): A, B. Maturing and immature apothecia; C. Asci and
paraphyses; D. Ascus; E. Ascus with ascospores, some ascospores with only one large oil drop and
others with two oil drops, one large and one small; F. Ectal excipulum cells; G. Hyphae; H. Septate
paraphyses; I. Excipular hairs with base. Scale bars: C = 200 um; F = 50 um; G-I = 20 um.
ily
Geopora sumneriana new for Pakistan ...
~
£
.
“ ;
t 23
— Ad oa
=
518 ... Magsad & al.
PLATE 2. Geopora sumneriana (ISL99125): A. Part of ascus showing ascospores with guttules;
B. Ascospores without guttules, showing the ellipsofusoid shape; C. Ascospore with one guttule;
D. Ascospore with two guttules. Scale bars: A = 200 um; B-D = 20 um.
HasitaT In small groups, on moist ground beneath cedar (Cedrus
deodara) and among the rotten cedar needles.
MATERIAL EXAMINED—PAKISTAN, KHYBER PAKHTUNKHWA PROVINCE, Chitral,
Booni Gol Qasumandeh, collected beneath Cedrus deodara, alt. 2159 m a.s.l., 19 April
2018, leg. I. Maqsad (ISL99125; GenBank MN860070).
Discussion
In the present study, we discovered that our specimens closely match
the original and subsequently published descriptions and illustrations of
Geopora sumneriana (and its synonyms), a species widely known from Europe
(Phillips 1887, Berkeley & Broome 1866, Yao & Spooner 1996, Peri¢ & Peric
2011). The identification of our material as G. sumneriana is supported by
BLAST matches with G. sumneriana sequences from India and Italy and our
phylogenetic analysis (Fic. 1). This represents the first report of G. sumneriana
from Pakistan.
The distinguishing characters of G. sumneriana include relatively large
apothecia and asci, ellipsoid and fusiform ascospores (usually with two oil
drops) measuring (26.7—)28.7-31.6(-32.1) x (13.2-)14.7-16.0(-16.3) um
(Torre 1975), and a habit under coniferous trees in spring (Phillips 1887, Peric
& Peri¢ 2011).
Geopora sumneriana new for Pakistan ... 519
However, we did observe one difference in the morphological characters
of our Pakistani material. Peri¢ & Peri¢ (2011) mention that the ascospores
of G. sumneriana generally contain two oil drops but rarely one, whereas we
observed generally one, rarely two oil drops in our specimens, potentially
due to differences in developmental stage; our specimens appeared to be
relatively young to immature (PLATE 2).
Geopora sumneriana and G. arenosa possess a similar ascospore spore
size and shape; however, G. arenosa can be distinguished by its smaller
apothecia (c. 15 mm diam. in G. arenosa vs. >30 mm diam), its phenology
(late summer to autumn), and association with pine; Yao & Spooner 1996,
2003) instead of cedar. Also, the ascospore size and shape of our specimen
was larger than in G. arenosa (25-29 x 12.5 um; Yao & Spooner 2003). As
no sequence data have been obtained from G. arenosa; efforts to re-collect
and sequence specimens of this species would help elucidate its placement
among related Geopora species.
The morphological species concept in Geopora, as in many other fungal
groups, potentially leads to incorrect species identification of the species,
primarily due to overlapping morphologies and rarity of fruiting bodies
(Tamm & al. 2010, Flores-Renteria & al. 2014, Saba & al. 2019). Our
phylogeny clustered our ITS sequence in a distinct clade with two other
G. sumneriana sequences ML support 100% (Fic. 1). One nucleotide
separated our ITS sequence and the G. sumneriana sequence from Italy
(position 114). Additional collections and sequences from G. sumneriana
might indicate intraspecific variations in the ITS region (e.g., Nilsson &
al. 2008). Geopora ahmadii (Saba & al. 2019), morphologically similar to
our G. sumneriana, is phylogenetically separated in our analysis (Fic. 1).
Morphologically, G. ahmadii differs from G. sumneriana by single oil drop
per ascospore and shorter length (19-26.0 um long in G. ahmadii). Saba &
al. (2019) hypothesized (based on ascospore size and shape) that G. arenosa
collected from Pakistan might represent G. ahmadii. This should be tested
by morphological examination and sequencing of the type specimen, as it
is of supreme importance to evaluate type material to evaluate whether the
name-bearing type material is resembles or differs from newly collected
samples (Dayarathne & al. 2016). Re-examination of type materials would
definitely lead to more reliable identification of the species within Geopora.
In conclusion, informative field surveys and a combined approach
involving thorough morphology and multi-locus phylogenetic analyses will
help to resolve systematics and evolution of the species within Geopora.
520 ... Magsad & al.
Association of Geopora species with their ectomycorrhizal hosts, phenology,
distribution, soil characteristics, and type specimens should also be studied
to support correct species identifications.
Acknowledgments
The first author acknowledges Mohammad Kaleem, Saira Shamsi, and
Sanam Asmat (Quaid-i-Azam University, Islamabad, Pakistan) for their help with
laboratory work. We are sincerely thankful to Dr. Danny Haelewaters (Department
of Botany and Plant Pathology, Purdue University, USA), Dr. Arthur Grupe
(Department of Plant Pathology, University of Florida, USA), and Dr. Du Xi-Hui
(College of Life Sciences, Chongqing Normal University, China) for reviewing
and improving the manuscript.
Literature cited
Ali B, Sohail Y, Toome-Heller M, Mumtaz AS. 2016. Melampsora pakistanica sp. nov., a new rust
fungus on Euphorbia helioscopia (sun spurge) from Pakistan. Mycological Progress 15(12):
1285-1292. https://doi.org/10.1007/s11557-016-1244-2
Ashraf T, Khalid AN. 2012. New records of Pezizales from Pakistan. Mycotaxon 119(1): 301-306.
https://doi.org/10.5248/119.301
Berkeley MJ, Broome CE. 1866. Notices of British Fungi [1144-1181]. Annals and Magazine of
Natural History, Ser. 3, 18: 121-129. https://doi.org/10.1080/00222936608679610
Dayarathne MC, Boonmee S, Braun U, Crous PW, Daranagama DA, Dissanayake AJ & al. 2016.
Taxonomic utility of old names in current fungal classification and nomenclature: conflicts,
confusion & clarifications. Mycosphere 7(11): 1622-1648.
https://doi.org/10.5943/mycosphere/7/11/2
Flores-Renteria L, Lau MK, Lamit LJ, Gehring CA. 2014. An elusive ectomycorrhizal fungus
reveals itself: a new species of Geopora (Pyronemataceae) associated with Pinus edulis.
Mycologia 106(3): 553-563. https://doi.org/10.3852/13-263
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for Basidiomycetes:
application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.
https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Grupe II AC, Kraisitudomsook N, Healy R, Zelmanovich D, Anderson C, Guevara G, Trappe J,
Smith ME. 2019. A new species and a new combination of truffle-like fungi in the Geopora-
Tricharina lineage from North America: Terracavicola echinospora gen. et sp. nov. and
Geopora lateritia comb. nov. Ascomycete.org. 11(2): 37-47.
https://doi.org/10.25664/ART-0257
Haelewaters D, De Kesel A, Pfister DH. 2018. Integrative taxonomy reveals hidden species within
a common fungal parasite of ladybirds. Scientific Reports 8(1): 1-16.
https://doi.org/10.1038/s41598-018-34319-5
Harkness HW. 1885. Fungi of the Pacific Coast. Bulletin of the California Academy of Science
Ls61-59- 1:76,
Index Fungorum. 2020. Search Index Fungorum. Available online at http://www. indexfungorum.
org/Names/Names.asp. Accessed 4 February 2020.
Ko TWK, Stephenson SL, Bahkali AH, Hyde KD. 2011. From morphology to molecular biology:
can we use sequence data to identify fungal endophytes? Fungal Diversity 50(1): 113-120.
https://doi.org/10.1007/s13225-011-0130-0
Geopora sumneriana new for Pakistan ... 521
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis
version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870-1874.
https://doi.org/10.1093/molbev/msw054
Nei M, Kumar S. 2000. Molecular evolution and phylogenetics. Oxford University Press. 352 p.
Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH. 2008. Intraspecific ITS
variability in the kingdom Fungi as expressed in the international sequence databases
and its implications for molecular species identification. Evolutionary Bioinformatics 4:
193-201. https://doi.org/10.4137/EBO.S653
O'Donnell K, Gueidan C, Sink S, Johnston PR, Crous PW, Glenn A & al. 2009. A two-
locus DNA sequence database for typing plant and human pathogens within the
Fusarium oxysporum species complex. Fungal Genetics and Biology 46(12): 936-948.
https://doi.org/10.1016/j.fgb.2009.08.006
Peric B, Peri¢ O. 2011. Notes on Montenegrin Species of Geopora. Mycologia Montenegrina
14: 117-150.
Perry BA, Hansen K, Pfister DH. 2007. A phylogenetic overview of the family Pyronemataceae
(Ascomycota, Pezizales). Mycological Research 111(5): 549-571.
https://doi.org/10.1016/j.mycres.2007.03.014
Phillips W. 1887. A manual of the British discomycetes. Kegan Paul, Trench and Co: London.
462 p.
Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Hohna S, Huelsenbeck JP
2012. Mr Bayes 3.2: efficient Bayesian phylogenetic inference and model choice across a
large model space. Systematic Biology 61(3): 539-542.
https://doi.org/10.1093/sysbio/sys029
Saba M, Haelewaters D, Iturriaga T, Ashraf 'T, Khalid AN, Pfister DH. 2019. Geopora ahmadii.
sp. nov. from Pakistan. Mycotaxon 134(2): 377-389. https://doi.org/10.5248/134.377
Skrede I, Carlsen T, Schumacher T. 2017. A synopsis of the saddle fungi (Helvella: Ascomycota)
in Europe - species delimitation, taxonomy and typification. Persoonia 39: 201-253.
https://doi.org/10.3767/persoonia.2017.39.09
Smith ME, Douhan GW, Rizzo DM. 2007. Ectomycorrhizal community structure in a xeric
Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots.
New Phytologist 174(4): 847-863. https://doi.org/10.1111/j.1469-8137.2007.02040.x
Song J, Liang JE, Mehrabi-Koushki M, Krisai-Greilhuber I, Ali B, Bhatt VK, Cerna-
Mendoza A & al. 2019. Fungal systematics and evolution 5. Sydowia 71: 141-245.
https://doi.org/10.12905/0380.sydowia71-2019-0141
Sousa JO, Suz LM, Garcia MA, Alfredo DS, Conrado LM, Marinho P, Ainsworth AM, Baseia
IG, Martin MP. 2017. More than one fungus in the pepper pot: integrative taxonomy
unmasks hidden species within Myriostoma coliforme (Geastraceae, Basidiomycota).
PLoS One 12(6): e0177873. https://doi.org/10.1371/journal.pone.0177873
Southworth D, Frank JL. 2011. Linking mycorrhizas to sporocarps: a new species, Geopora
cercocarpi, on Cercocarpus ledifolius (Rosaceae). Mycologia 103(6): 1194-1200.
https://doi.org/10.3852/11-053
Stefani FO, Jones RH, May TW. 2014. Concordance of seven gene genealogies compared
to phenotypic data reveals multiple cryptic species in Australian dermocyboid
Cortinarius (Agaricales). Molecular Phylogenetics and Evolution 71: 249-260.
https://doi.org/10.1016/j.ympev.2013.10.019
Tamm H, Poldmaa K, Kullman B. 2010. Phylogenetic relationships in genus Geopora
(Pyronemataceae, Pezizales). Mycological Progress 9(4): 509-522.
https://doi.org/10.1007/s11557-010-0659-4
522 ... Maqgsad & al.
Torre M de la. 1976 [“1975”]. Estudio sobre Discomycetes operculados: clave y géneros nuevos
para la flora Espanola Peninsular. Anales del Instituto Botanico A.J. Cavanilles 32(2):
85-101.
White TJ, Bruns T, Lee SJWT, Taylor JW. 1990. Amplification and direct sequencing
of fungal ribosomal RNA genes for phylogenetics. 315-322, in: MA Innis & al. (eds).
PCR protocols: a guide to methods and applications. San Diego, CA. Academic Press.
https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Yao YJ, Spooner BM. 1996. Notes on British species of Geopora. Mycological Research 100(1):
72-74. https://doi.org/10.1016/S0953-7562(96)80102-X
Yao YJ, Spooner BM. 2003. The occurrence of Geopora arenosa in the British Isles. Kew
Bulletin 58(1): 247-252. https://doi.org/10.2307/4119373
MY COTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021— Volume 136, pp. 523-528
https://doi.org/10.5248/136.523
Didymocyrtis epiphyscia, Lichenochora weillii,
and Lichenoconium xanthoriae newly recorded from Turkey
MUSTAFA KOCAKAYA
Department of Organic Agriculture, Bogazlyan Vocational School, University of Yozgat,
Bozok 66400 Yozgat , Turkey
* CORRESPONDENCE TO: mustafa.kocakaya@yobu.edu.tr
Asstract—Three lichenicolous fungal species, Didymocyrtis epiphyscia, Lichenochora
weillii, and Lichenoconium xanthoriae, are reported for the first time from Turkey. Comments
on the taxonomy, ecology, and hosts and photographic illustrations are provided for each
species.
Key worps—biodiversity, lichens, Lichenoconiaceae, Phaeosphaeriaceae, Phyllachoraceae
Introduction
The lichenicolous fungi of Turkey have received increasing attention
during the last fifteen years since Hafellner & John (2006) compiled the first
checklist recognizing 63 taxa. Halici (2008) published an updated list and key
for the 117 known taxa of lichenicolous Ascomycota (including mitosporic
fungi), and subsequent papers have published new records (Halici & al. 2012;
Kocakaya & al. 2016a, 2018, 2020) and new species (Kocakaya & al. 2016b,
Hawksworth & al. 2016).
Among the c. 200 lichenicolous fungi species currently known from
Turkey, Lichenoconium Petr. & Syd. is represented by six species, Lichenochora
Hafellner by three species, and Didymocyrtis Vain. by one species (John &
Turk 2017, Yazici & al. 2011). Here, I report the presence of three additional
species from those genera and provide interesting information on their
anatomy and ecology.
524 ... Kocakaya
Material & methods
All specimens were collected in Camlik National Park (Yozgat) during 2018-19.
Camlik National Park is Turkey’s first National Park. As a national park, it is a well-
preserved area, with oak (Quercus pubescens) and hawthorn (Crataegus orientalis)
woods dominating the lower parts, while the higher elevations are occupied by Pinus
nigra forests. Lichenicolous fungi are more common in preserved areas.
Vouchers are stored at the lichen herbarium of Yozgat Bozok University, Science
and Art Faculty, Yozgat, Turkey, 66400 Yozgat, Turkey (YBUL); herbarium accession
numbers are given in parentheses after locality details. Specimens were examined
in water, 10% KOH, Lugol's, and Meltzer’s iodine solutions. Spores were generally
measured in water mounts. The specimens were examined with an Olympus
SZX16 stereomicroscope and an Olympus BX53 light microscope. Micro- and
macrophotographs were taken with an Olympus DP72 digital microscope camera
with c-mount interface and with a 5-megapixel CCD.
New records
Didymocyrtis epiphyscia Ertz & Diederich,
Fungal Diversity 74: 71 (2015) FIG. 1A,B
Conidiomata superficial and aggregated on host apothecia, black, <150 um.
Conidiogenous cells ampulliform, aseptate, hyaline, 3-6 um. Conidiospores
simple, hyaline, ellipsoid, with usually one or two small guttules, 4-7 x
3.5-5 um (n = 50). The lichenicolous fungus host apothecia blacken when
infected (Fic. 14).
SPECIMEN EXAMINED—TURKEY. YozGat, Camlik National Park, 39°48’04’”N
34°48’49”E, 1615 m, on apothecia of Physcia stellaris (L.). Nyl., 20 July 2019, M.
Kocakaya MK-4114 (YBUL).
CoMMENTS— The Turkish specimen was found growing on the apothecia of
Physcia stellaris on Quercus spp. Ertz & al. (2015) segregated D. epiphyscia s.lat.
on Physcia adscendens and P. tenella from genetically related D. epiphyscia
s.str. on Physcia aipolia based on consistently narrower conidia—3.7 -8.0 x
2.0-3.5 um in D. epiphyscia s.lat. and 4.0-7.8 x 3.2-5.0 um in D. epiphyscia
s.str. Our specimen completely matches the description of D. epiphyscia s.str.
(Ertz al. 2015).
Didymocyrtis epiphyscia has also been reported from other host genera,
e.g., on Physconia distorta (Hawksworth 1981), Phaeophyscia orbicularis
(Brackel 2011), and Parmelia sulcata (Brackel 2007, 2009; Zhurbenko &
al. 2012). The species has previously been reported from Austria, France,
Scotland, Luxembourg, and Canada (Ertz & al. 2015) as well as Phoma
physciicola Keiss]. from Russia (Zhurbenko & Tugi 2013).
Lichenicolous fungi newly recorded for Turkey ... 525
Fic. 1. Didymocyrtis epiphyscia (MK-4114): A. Perithecia on apothecia of Physcia stellaris;
B: Conidia. Lichenochora weillii (MK-3822): C. Perithecia on Physcia tenella; D. Ascus and
ascospores. Lichenoconium xanthoriae (MK-3830): E. Conidiomata on apothecia of Xanthoria
parietina; F. Conidia.
The sole Didymocyrtis species previously reported from Turkey represents
D. foliaceiphila (Diederich & al.) Ertz & Diederich, which differs by its
narrowly ellipsoid conidia, immersed pycnidia, and Cladonia host (Ertz & al.
2015; Kocakaya & al. 2018).
526 ... Kocakaya
Lichenochora weillii (Werner) Hafellner & R. Sant.,
Nova Hedwigia 48(3-4): 369 (1989) FIG. 1C,D
Perithecia subglobose to globose, immersed-subimmersed to erumpent
in the ostiolar region, 150-200 um, aggregated in groups. Ascus 8-spored,
70-100 x 10-16 um (n = 20), with spores are organized in a single row in ascus.
Ascospores hyaline, 1-septate, slightly constricted at the septum, smooth-
walled, with many guttules in each cell, 9-12 x 7-9 um (n = 60).
SPECIMENS EXAMINED—TURKEY. YozGaT, Camlik National Park, 39°48’02”N
34°48’46”E, 1635 m, on apothecia of Physcia tenella (Scop.) DC., 22 July 2018, M.
Kocakaya MK-3822 (YBUL); 39°48’20”N 34°48’51”E, 1490 m, on apothecia of Physcia
sp. 22 July 2018, M. Kocakaya MK-3860 (YBUL).
COMMENTS—Our specimens represent the first report of L. weillii on Physcia
hosts. One Turkish specimen was collected from apothecia of Physcia tenella on
Acer spp.; this host is quite common in Turkey (John & Tiirk 2017). Ascospore
sizes vary in the species; they are cited as 7-11 x 5-6 um by Werner (1937) but
as 10-12 x 8—9.5 um by Hafellner (1989); our specimen matches Hafellner’s
specimen more closely. Previous studies suggest that Lichenochora weillii always
develops on Physconia spp. (Hafellner 1989; Gromakova 2018; Khodosovtsev
& al. 2019), but all the characteristics of our specimens match the original
description. Lichenochora thallina rarely develops on Physcia, but it has longer
and narrower ascospores than L. weillii (Hafellner 1989). Lichenochora weillii,
which was originally described by Werner (1937) from Spain, has also been
reported from Belgium (Ertz & al. 2008), Svalbard (Zhurbenko & Brackel
2013), Sweden, North America (Hafellner 1989), and Ukraine (Gromakova
2018; Khodosovtsev & al. 2019).
Lichenochora species previously reported from Turkey include L. aprica,
Hafellner & Nik. Hoffm., L. atrans Halici & al., and L. verrucicola (Wedd.) Nik.
Hoffm. & Hafellner (John & Turk 2017, Yazic1 & Aslan 2019).
Lichenoconium xanthoriae M.S. Christ.,
Friesia 5(3—5): 212 (1956) FIG. 1, F
Pycnidia immersed to erumpent, black, subglobose, (100-)150(-200) um
in diam.; conidiospores dark brown, simple, subglobose, almost smooth to
slightly verruculose, 3-6 x 3-5 um (n = 48). The lichenicolous fungus causes
slightly whitening on the host apothecia and thallus (Fie. 12).
SPECIMEN EXAMINED—TURKEY. YozGatT, Camlik National Park, 39°48’20’N
34°48’51”E, 1490 m, on apothecia of Xanthoria parietina, 22 July 2018, M. Kocakaya
MK-3830 (YBUL).
Lichenicolous fungi newly recorded for Turkey ... 527
ComMENtTs— The Turkish specimen was found growing on the apothecia of
Xanthoria parietina on Quercus spp. The host of the type specimen is Xanthoria
parietina (Christiansen 1956), but it has also been recorded on other unrelated
lichen genera (Brackel 2008; Kocourkova 2000; Triebel & al. 1991). This species
was previously reported from Austria (Etayo & Berger 2009), Italy (Brackel
2008), Russia (Himelbrant & al. 2013), and USA (Haldeman 2019).
Lichenoconium species previously reported from Turkey are L. aeruginosum
Diederich & al., L. erodens M.S. Christ. & D. Hawksw., L. lecanorae (Jaap) D.
Hawksw., L. lichenicola (P. Karst.) Petr. & Syd., L. pyxidatae (Oudem.) Petr. &
Syd., and L. usneae (Anzi) D. Hawksw. (John & Tiirk 2017; Yazici & al. 2011).
Acknowledgements
The manuscript was reviewed by Sergio Perez Ortega (Real Jardin Botanico,
Madrid, Spain) and Raquel Pino Bodas (Royal Botanic Gardens, Kew, UK).
Literature cited
Brackel WV. 2007. Zur Flechtenflora der Serpentinitfelsen in Nordostbayern. Hoppea,
Denkschriften der Regensburgischen Botanischen Gesellschaft 68: 253-268.
Brackel WV. 2008. Zwackhiomyces echinulatus sp. nov. and other lichenicolous fungi from Sicily,
Italy. Herzogia 21: 181-198.
Brackel WV. 2009. Weitere Funde von flechtenbewohnenden Pilzen in Bayern—Beitrag zu einer
Checkliste IV. Berichte der Bayerischen Botanischen Gesellschaft 79: 5-55.
Brackel WV. 2011. Lichenicolous fungi and lichens from Puglia and Basilicata (southern Italy).
Herzogia 24: 65-101. https://doi.org/10.13158/heia.24.1.2011.65
Christiansen MS. 1956. A new species of the form-genus Lichenoconium Petr. & Syd. (fungi
imperfecti), L. xanthoriae sp. n. Friesia 5(3-5): 212-217.
Ertz D, Diederich P, Brand AM, Boom P. van den, Sérusiaux E. 2008. New or interesting lichens
and lichenicolous fungi from Belgium, Luxembourg and northern France. XI. Bulletin de la
Société des Naturalistes Luxembourgeois 109: 35-51.
Ertz D, Diederich P, Lawrey JD, Berger E, Freebury CE, Coppins B, Gardiennet A, Hafellner
J. 2015. Phylogenetic insights resolve Dacampiaceae (Pleosporales) as polyphyletic:
Didymocyrtis (Pleosporales, Phaeosphaeriaceae) with Phoma-like anamorphs resurrected
and segregated from Polycoccum (Trypetheliales, Polycoccaceae fam. nov.). Fungal Diversity
74: 53-89. https://doi.org/10.1007/s13225-015-0345-6
Etayo J, Berger E 2009. About a fast developing community of lichenicolous deuteromycetes
decaying Xanthoria parietina. Osterreichische Zeitschrift fiir Pilzkunde 18: 111-115.
Gromakova AB. 2018. New records of lichens and lichenicolous fungi from Eastern Ukraine.
Chornomors’k. bot. z. 14: 269-278. https://doi.org/10.14255/2308-9628/18.143/5
Haldeman M. 2019. New and interesting records of lichens and lichenicolous fungi from
northwestern USA II. Evansia 36(3), 63-71. https://doi.org/10.1639/0747-9859-36.3.63
Hafellner J. 1989. Studien tber lichenicole Pilze und Flechten. VII: ttber die neue Gattung
Lichenochora (Ascomycetes, Phyllachorales). Nova Hedwigia 48: 357-370.
Hafellner J, John, V. 2006. Records of lichenicolous non-lichenized fungi from Turkey, including
a synopsis of the taxa so far recorded in the country. Herzogia 19: 155-176.
528 ... Kocakaya
Halici MG. 2008. A key to the lichenicolous Ascomycota (including mitosporic fungi) of Turkey.
Mycotaxon 104: 253-286.
Halici1 MG, Candan M, Tiirk A. 2012. A key to the peltigericolous fungi in Turkey. Mycotaxon
119: 277-289. https://doi.org/10.5248/119.277
Hawksworth DL. 1977. Taxonomic and biological observations on the genus Lichenoconium
(Sphaeropsidales). Persoonia 9: 159-198.
Hawksworth DL. 1981. The lichenicolous coelomycetes. Bulletin of the British Museum (Natural
History) Botany 9: 1-198.
Hawksworth DL, Halici MG, Kocakaya Z, Kocakaya M. (2016). Henfellra muriformis
gen et sp nov a new dictyosporous pycnidial fungus on Candelariella with a key
to the lichenicolous fungi known from that genus. Herzogia, 29(2): 329-336.
https://doi.org/10.13158/heia.29.2.2016.329
Himelbrant DE, Motiejunaiteé J, Pykala J, Schiefelbein U, Stepanchikova IS. 2013. New records of
lichens and allied fungi from the Leningrad Region, Russia. IV. Folia Cryptogamica Estonica
50: 23-31. https://doi.org/10.12697/fce.2013.50.04
John V, Tiirk A. 2017. Turkiye likenleri listesi. Nezahat Gokyigit Botanik Bah¢esi Yayin1.
Khodosovtsev AY, Darmostuk VV, Khodosovtseva YA, Gaychenya YV. 2019. The lichens and
lichenicolous fungi of Trykraty granite massive (Ukraine). Chornomors'‘kii Botanichnii
Zhurnal 15(1): 54-68. https://doi.org/10.32999/ksu1990-553X/2019-15-1-6
Kocakaya M, Halici1 MG, Pino Bodas R. 2016a. New or additional cladoniicolous fungi for
Turkey. Turkish Journal of Botany 40: 308-311. https://doi.org/10.3906/bot-1502-8
Kocakaya Z, Halici MG, Kocakaya M. 2016b. Phoma candelariellae sp. nov., a lichenicolous
fungus from Turkey. Mycotaxon 130: 1185-1189. https://doi.org/10.5248/130.1185
Kocakaya M, Kocakaya Z, Kaya D, Barak MU. 2018. A new lichenicolous fungus record from
the Turkey, Tremella macrobasidiata (Basidiomycota, Tremellales). Siileyman Demirel
Universitesi Fen Bilimleri Enstitiisii Dergisi 22: 95-97.
https://doi.org/10.19113/sdufbed.36932
Kocakaya Z, Kocakaya M, Barak MU. 2020. A new lichenicolous fungus record from the Camlik
National Park (Yozgat, Turkey), Tremella candelariellae (Basidiomycota, Tremellales).
Kahramanmaras Siitcii Imam Universitesi Tarim ve Doga Dergisi 23: 388-390.
Kocourkova J. 2000. Lichenicolous fungi of the Czech Republic: The First Commented Checklist.
Triebel D, Rambold G, Nash TH. 1991. On lichenicolous fungi from continental North America.
Mycotaxon 42: 263-296.
Werner RG. 1937. Recherches phytogéographiques comparées sur la flore cryptogamique de
lEspagne meéridionale et du Maroc. Bulletin de la Société des Sciences Naturelles du Maroc
1732-65.
Yazic1 K, Aslan A. 2019. Three new lichenicolous fungi records for Turkey and Asia. Acta
Botanica Hungarica 61: 205-212 http://dx.doi.org/10.1556/034.61.2019.1-2.11
Yazici1 K, Etayo J, Aslan A. 2011 A note about lichenicolous fungi from Ardahan (Turkey).
Cryptogamie, Mycologie 32: 429-437. http://dx.doi.org/10.7872/crym.v32.iss4.2011.429
Zhurbenko MP, Brackel W. 2013. Checklist of lichenicolous fungi and lichenicolous lichens
of Svalbard, including new species, new records and revisions. Herzogia 26: 323-359.
https://doi.org/10.13158/heia.26.2.2013.323
Zhurbenko MP. Tugi EW. 2013. Some noteworthy lichenicolous fungi from Khabarovsk
Territory of Russia. Mycosphere 4(1): 46-51. https://doi.org/10.5943/mycosphere/4/1/3
Zhurbenko MP, Hermansson J, Pystina TN. 2012. Lichenicolous fungi from the Komi Republic
of Russia. II. Folia Cryptogamica Estonica 49: 89-91. https://doi.org/10.12697/fce.2013.50.12
MYCOTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021
April-June 2021— Volume 136, pp. 529-539
https://doi.org/10.5248/136.529
Ganoderma leucocontextum,
a new record from Pakistan
AISHA UMAR”, SHAKIL AHMED, HIRA BASHIR
Department of Botany, University of the Punjab,
Quaid-e-Azam Campus,54590, Lahore, Pakistan
*CORRESPONDENCE TO: ash.dr88@gmail.com
ABSTRACT—Ganoderma leucocontextum is reported from Khyber Pakhtunkhwa province
as a new record from Pakistan. This species in the G. ucidum complex is characterized
by reddish brown to yellowish brown zones on the pileus. The Pakistani specimens are
morphologically described and illustrated and their identification supported by a nrITS DNA
based phylogeny.
KEY worps—coniferous, Ganodermataceae, polypore, taxonomy, temperate regions
Introduction
Ganoderma P. Karst. (Ganodermataceae, Polyporales) is a genus of c. 80
accepted species and has a world-wide distribution (Richter & al. 2015).
Ganoderma leucocontextum is popularly known as a _ health-oriented
herbal mushroom (Li & al. 2015; Wang & al. 2015) and commonly called
‘Zanglingzhi in Tibet Autonomous Region (Wang & al. 2015). The species
contains numerous bioactive secondary compounds (Chen & al. 2018) that
are pharmacologically valuable in America, Europe, and China due to their
therapeutic effects (Xing & al. 2016). However, there has been little scientific
research on G. leucocontextum due to its rarity (Wang & al. 2015).
Eight Ganoderma species have been reported from Pakistan: G. colossus
(Fr.) C.F. Baker and G. lucidum (Curtis) P. Karst. (Ahmad 1956); G. ahmadii
Steyaert, G. applanatum (Pers.) Pat., G. flexipes Pat., G. resinaceum Boud., and
530 ... Umar, Ahmed, Bashir
G. tornatum (Pers.) Bres. (Ahmad 1972); and G. tsugae Murrill (Irshad & al.
2012). Here we report on a ninth species for the country, G. leucocontextum.
Materials & methods
Collection procedures
Samples were collected during the monsoon season (2018) in Pakistan.
Macroscopical features (color, shape, surface texture, length, and width) were noted
from fresh basidiomata, which were also photographed in the field. Samples were
dried using a dehydrator and stored in sealed polythene bags.
Study sites
The specimens of Ganoderma leucocontextum were collected from Ayubia
National Park, Khyber Pakhtunkhwa, District Abbottabad, and Naran Valley, District
Mansehra, Pakistan. Ayubia National Park is located in the western Himalayas, north
of Murree and south of Nathiagali (33°51’55”N 73°08’20”E). This area is covered by
temperate broadleaf, mixed, and coniferous forest. The average minimum-—maximum
temperatures are 3-11 °C and the average annual rainfall is 1244 mm (Afza & al.
2018).
Naran Valley lies in northeastern District Mansehra (34°54.26’N 73°38.90°E). Its
climate is dry temperate. Snowfall is heavy in the winter, but summers are cool and
dry, and the temperature remains below 10 °C during the whole year (Khan & al.
2011).
Morphological characterization
The size, shape, and color of basidiomata were noted. Color descriptions follow
Munsell (1975). Microscopic structures were observed from cross sections of tissues
that were soaked in KOH (5% w/v), stained with Congo red (1 %), and viewed under
a Meiji Techo MX4300H compound light microscope at 100x magnification. At
least 30 measurements were made of all the microscopic features. For basidiospores,
50 measurements were taken and presented as length x width (Nagy & al. 2010).
DNA extraction, sequence alignment and molecular phylogeny
Total genomic DNA was extracted from the material following a modified CTAB
procedure (Doyle & Doyle 1987). The nuclear ribosomal ITS region was amplified by
using primers ITS1 and ITS2 (White & al. 1990). Reaction mixtures (20 ul) contained
0.5 pl template DNA, 8.5 ml distilled water, 0.5 ul of each primer, and 10 ml PCR mix
[DreamTaqGreen PCR Master Mix (2X)]. Amplification conditions were 35 cycles of
95 °C for 30 s, 52 °C for 30 s and 72 °C for 1 min, with a final extension at 72 °C for
10 min. Amplified PCR products were purified and sequenced by Tsingke Co. Ltd.
The consensus sequence was generated from both ITS1 and ITS2 in BioEdit
vers. 7.2.5 (Hall 1999) and then homology searches were performed at the NCBI
web site using BLASTn. Sequences generated during this study were deposited in
GenBank. A dataset of 35 ITS sequences (TABLE 1) from published literature was
downloaded from GenBank. Sequences were aligned and edited using ClustalX 2.1
Ganoderma leucocontextum new for Pakistan ... 531
TABLE 1. Ganoderma and Amauroderma sequences used in the phylogenetic analysis.
SPECIES ORIGIN VOUCHER GENBANK No. REFERENCE
G. lingzhi Japan WD-2038 EU021456 Wang & al. 2009
Japan WD-565 EU021455 Cao & al. 2012
China Wu1006-38 JQ781858 Cao & al. 2012
China Cui9164 JQ781859 Cao & al. 2012
G. curtisii USA CBS 100131 JQ781848 Cao & al. 2012
USA CBS 100132 JQ781849 Cao & al. 2012
G, multipileam China Dai 9521 JQ781874 Cao & al. 2012
Taiwan BCRC 37043 EU021460 Wang & al. 2009
India BCRC 36123 EU021459 Wang & al. 2009
G. tropicum China Yuan 3490 JQ781880 Cao & al. 2012
China Dai 9724 JQ781879 Cao & al. 2012
Taiwan BCRC 37122 EU021457 Wang & al. 2009
G. flexipes China Wei 5494 JN383979 Cao & Yuan 2012
China Wei 5491 JQ781850 Cao & al. 2012
G. sichuanense China Cui 7691 JQ781878 Cao & al. 2012
China HMAS 42798 JQ781877 Cao & al. 2012
G. resinaceum England HMAS86599 AY884177 Li & al. 2015
Italy GrT096 AM906065 Guglielmo & al. 2008
G. leucocontextum China GDGM44304 KJ027608 Li & al. 2015
China GDGM44303 KJ027607 Li & al. 2015
China GDGM44305 KJ027609 Li & al. 2015
China GDGM42932 KF372586 Li & al. 2015
Pakistan LAH36345 MK713839 This study
Pakistan LAH36346 MN134012 This study
G. valesiacum Europe CBS 282.33 Z37056 Moncalvo & al. 1995
G. ahmadii Pakistan FWP 14329 Z37047 Moncalvo & al. 1995
G. oregonense USA ATCC 46750 Z37061 Moncalvo & al. 1995
USA ATCC 46750 Z37061 Li & al. 2013
G. lucidum Sweden Dai 2272 JQ781851 Cao & al. 2012
China Dai 3937 JQ781853 Cao & al. 2012
England HMAS 86597 AY884176 Li & al. 2015
G. tsugae England CBS 223.48 Z37054 Moncalvo & al 1995
England AFTOL-ID 771 DQ206985 Moncalvo & al. 1995
A. rude Taiwan GDGM 25736 KF372587 Li & al. 2015
532 ... Umar, Ahmed, Bashir
(Larkin & al. 2007) and BioEdit. These sequences were aligned with MAFFT v. 10
(http://mafft.cbrc.jp/alignment/server/index.html; Katoh & Standley 2013) and
manually edited at 593 positions to generate a phylogenetic tree representing 15 taxa,
with Amauroderma rude (Berk.) Torrend selected as outgroup. MEGA version 10.0
was used to run the maximum likelihood phylogenetic analysis with 1000 bootstrap
replicates (Tamura & al. 2011); branches with less than 50% bootstrap support were
collapsed.
Taxonomy
Ganoderma leucocontextum T.H. Li, W.Q. Deng, Sheng H. Wu,
Dong M. Wang & H.P. Hu, Mycoscience 56(1): 82 (2015) Fics 1-2
BASIDIOMATA stipitate, verrucose, zonate, inner zone maroon brown
(5YR 4/8), outer zone yellowish brown (7.5YR 6/8), margins white; PILEUS
10-18 x 5-9 cm, 2-3 cm thick, glossy, shiny, smooth, reniform, dimidiate
to flabelliform, margins thin, obtuse, white, radially wrinkled, blackish
red-brown towards stipe (SYR 3/4), flesh soft with hard crust; sTIPE 6-7 x
2-3 cm, cylindrical, slightly wrinkled, glossy, fibrous to woody, chocolate
brown (5YR 3/4); PoREs 114-153 x 222-255 um, creamy to white, subcircular;
TUBES 5-6 mm long, non-stratified, ochraceous (2.5YR 8/4); CONTEXT 2 cm
thick, milky cream (2.5YR 8/4), dry, fibrous, corky.
HYPHAL SYSTEM trimitic, comprising 1) generative hyphae (septate,
clamped, colorless, thin-walled), 2) skeletal hyphae (thick-walled, colorless,
unbranched or few branches with distal end), and 3) binding hyphae
(arboriform, colorless, thick-walled, multi-branched). BAsIDIOSPORES
10.4-12.2 x 6.4-10.2 um, broadly ellipsoid, rough, bitunicate; exosporium
hyaline, non-pigmented, thick, brown, episporium verrucose, echinulae
dark brown; eusporium, highly thick inter-walled pillars, apically truncate,
myxosporium end tapered. CHLAMYDOSPORES 8.2-9.5 x 7.5-8.2 um, broad,
round, rough, pigmented, highly-ornamented. CRUSTOHYMENIDERM CELLS
30-58 x 9-11 um, amyloid, thick-walled, clavate, originating from skeletal
hyphae, brown; below cutis, thick brownish layer composed of hyaline
generative and brown skeletal hyphae.
SPECIMENS EXAMINED—PAKISTAN, KHYBER PAKHTUNKHWA, Abbottabad
District, Ayubia National Park, 34.0642°N 73.4072°E, elevation 2400 m a.s.l.,
gregarious on the older roots of Pinus wallichiana A.B. Jacks., 12 August 2018, Aisha
Umar ANP1 (LAH36345, GenBank MK713839). Mansehra District, Naran Valley,
34.9093°N 73.6507°E, elevation 2450 m a.s.l., scattered in organic soil, on the roots
of Pinus wallichiana, 20 September 2018, Aisha Umar AY2B (LAH36346, GenBank
MN134012).
Ganoderma leucocontextum new for Pakistan ... 533
Fic. 1. Ganoderma leucocontextum (LAH36345). A, B. Basidiomata; C. Section of context;
D. Lower surface pores; E. Section of context; F. Crusto-hymeniderm cells; G. Generative
hyphae; H. Skeletal hyphae; I. Binding hyphae J. Basidiospores; K. Chlamydospores. Scale bars:
A-C = 2cm, D= 100 um, E= 1 cm, G-I = 6 um; F J-K = 10 um.
Molecular phylogeny
The ITS sequence analysis supported our specimen in G. leucocontextum.
All sequences analyzed clustered in two clades supported by high bootstrap
value (Fic. 3). In our tree, G. leucocontextum clusters in one clade representing
534 ... Umar, Ahmed, Bashir
o=\
Fic. 2. Ganoderma leucocontextum (LAH36345). A, B. Binding and skeletal hyphae; C. Generative
hyphae; D. Basidiospores; E. Chlamydospores. Scale bars: A-C = 5 um; D, E= 10 um.
G. lucidum, G. oregonense Murrill, G. tsugae, G. ahmadii, and G. valesiacum
Boud. with 97% bootstrap value. Our specimens (ANP1, AY2B), which nested
within the well-supported clade of G. lucidum complex, formed a discrete
lineage with Chinese G. leucocontextum sequences (Li & al. 2015), supported
by 96% bootstrap value (Fic. 3).
Discussion
Ganoderma leucocontextum was first described morphologically by Li &
al. (2015) based on Chinese material. Our specimens (ANP1, AY2B) and
the Chinese specimens both have creamy white context and a long thick
Ganoderma leucocontextum new for Pakistan ... 535
% JQ781858 Ganoderma lingzhi
100 JQ781859 Ganoderma lingzhi
* &U021456 Ganoderma lingzhi
EU021455 Ganoderma lingzhi
100 ; JQ781848 Ganoderma curtisii
7 JQ781849 Ganoderma curtisii
71) JQ781880 Ganoderma tropicum
JQ781879 Ganoderma tropicum
98
100
EU021457 Ganoderma tropicum
* EU021460 Ganoderma multipileum
JQ781874 Ganoderma multipileum
57
100
EU021459 Ganoderma multipileum
86 100 JQ781850 Ganoderma flexipes
JN383979 Ganoderma flexipes
100 AY884177 Ganoderma resinaceum
97 AM906065 Ganoderma resinaceum
Gymnopilus 100 JQ781877 Ganoderma resinaceum
JQ781878 Ganoderma sichuanense
DQ206985 Ganoderma tsugae
Z37060 Ganoderma oregonense
Z37061 Ganoderma oregonense
69! 737054 Ganoderma tsugae
69) Z37056 Ganoderma valesiacum
237047 Ganoderma ahmadii
55 KF372586 Ganoderma leucocontextum
KJ027609 Ganoderma leucocontextum
KJ027608 Ganoderma leucocontextum
MN134012 Ganoderma leucocontextum
MK713839 Ganoderma leucocontextum
KJ027607 Ganoderma leucocontextum
Ui JQ781853 Ganoderma lucidum
JQ781851 Ganoderma lucidum
Outgroup AY884176 Ganoderma lucidum
KF372587 Amauroderma rude
97
92
0.01
Fic. 3. Phylogenetic tree of Ganoderma leucocontextum and related species based on ITS sequences
generated by maximum likelihood method in MEGA 10. Amauroderma rude was chosen as
outgroup. Bootstrap values >50% are shown at the branches.
536 ... Umar, Ahmed, Bashir
cylindrical stipitate fruiting body. The hymenophore pores (4-6 pores per
mm) of the Chinese G. leucocontextum basidiomata were only slightly
smaller and the Chinese crustohymeniderm cells (30-60 x 8-10 um) were
like those in Pakistani specimens. Basidiospore size and ornamentation of
Pakistani specimens were also similar to those described for the Chinese
G. leucocontextum (9.5-12.5 x 7-9 um; Li & al. 2015).
The Pakistani material also possessed the trimitic hyphal system cited
by Li & al. (2015) for G. leucocontextum. However, there was a significant
difference in host association as the Chinese material was found on the base
of dead wood stems of Fagaceae [Cyclobalanopsis glauca (Thunb.) Oerst.; Li
& al. 2015], while our specimens (ANP 1, AY2B) were found on the exposed
older roots of Pinaceae | Pinus wallichiana].
The Pakistani G. leucocontextum basidiomata (ANP1, AY2B) also
resembled G. lucidum, G. oregonense, and G. tsugae, but these species were
easily distinguished based on microscopic characters and host habitat.
The Chinese G. leucocontextum resembled East Asian G. lucidum (Li & al.
2015), but East Asian, European (Cao & al. 2012; Wang & al. 2012), and
Chinese G. lucidum differed from one another based on molecular analysis
(Yang & Feng 2013).
Ganoderma leucocontextum, G. lucidum, G. oregonense, and G. tsugae all
produce hard basidiomata. Hong & al. (2001) suggested that wrinkles on
the pileus surface, smaller basidioma size, and number of pores increase
the hardness. Ganoderma oregonense basidiomata are reniform, flabellate,
pulvinate sessile to laterally substipitate (Gilbertson & Ryvarden 1986),
while our specimens possessed a long, thick, cylindrical, stipitate, laccate
fruiting body as in G. lucidum and G. tsugae. The pileal surface color of
G. tsugae (brown) and G. lucidum (reddish-brown) closely matched the
Pakistani and Chinese G. leucocontextum (Cao & al. 2012) in contrast
to the bay blackish brown color typical of G. oregonense (Steyaert 1980).
Basidioma margins were white in both G. tsugae (Steyaert 1980) and
G. leucocontextum whereas margins were folded (and thus brown) in
G. oregonense.
The creamy context color in G. leucocontextum was close to the creamy
to pinkish-buff context of G. oregonense (Zhou & al. 2015) and G. tsugae
(Steyaert 1980). but dissimilar to the deep rusty brown context described
for the European G. lucidum (Ryvarden & Gilbertson 1993). Pores are
subcircular in G. leucocontextum and G. lucidum (Cao & al. 2012), circular
in G. tsugae, and circular to irregular in G. oregonense (Steyaert 1980).
Ganoderma leucocontextum new for Pakistan ... 537
The 5-6 mm long tubes G. leucocontextum are virtually the same length
as those cited for G. lucidum (5-7 mm). Highly echinulate ellipsoid spores
of our specimens were larger than the echinulate ovoid spores of European
samples of G. lucidum (7-12 x 6-8 um; Wang & al. 2012) and smaller than
the ovoid spores of G. tsugae (13-15 x 7.5-8.5 um; Wasser & al. 2006, Hong
& Jung 2004) and ovoid to ellipsoid in G. oregonense (11-12.5 x 7-8 um;
Zhou & al. 2015). The spore apex is convex in G. tsugae, collapsed in
G. lucidum, and ellipsoid in G. leucocontextum and G. oregonense. The
basidiospore color is light yellowish brown in both G. oregonense and
G. tsugae and brown in G. leucocontextum and G. lucidum (Steyaert 1980).
Trimitic hyphal system is present as in G. lucidum, G. oregonense, G. tsugae
(El-Fallal & al. 2015) and our specimens of G. leucocontextum.
Ganoderma lucidum, G. oregonense, and G. tsugae associate only with
conifers (Fernando 2008), whereas G. leucocontextum grows on both
Angiospermae (China) and Gymnospermae (Pakistan).
Acknowledgements
The authors are grateful to Prof. Dr. Abdul Nasir Khalid (Department of Botany,
University of the Punjab) for providing all kinds of facilities during the study of this
material. Thanks are due to Dr. Priyanka Uniyal (Government PG College, Gopeshwar,
India) and Dr. Nousheen Yousaf (Government College University, Lahore, Pakistan)
for presubmission review and helping the authors in many ways.
Literature cited
Ahmad S. 1956. Fungi of Pakistan. Biological Society of Pakistan, Monograph 1. Biological
Laboratories, Government College, Lahore. 126 p.
Ahmad S. 1972. Basidiomycetes of West Pakistan. Biological Society of Pakistan, Monograph 6.
Biological Laboratories, Govt. College Lahore. 142 p.
Afza R, Habib A, Zaffer S, Khan BM, Jawad K. 2018. Spatial analysis of vascular flora of Ayubia
National Park, KPK, Pakistan: A classical example of moist temperate Himalaya. Pakistan
Journal of Botany 50(4): 1499-1508.
Cao Y, Wu SH, Dai YC. 2012. Species clarification of the prize medicinal Ganoderma mushroom
“Lingzhi” Fungal Diversity 56: 49-62. https://doi.org/10.1007/s13225-012-0178-5
Chen HY, Zhang JJ, Ren JW, Wang WZ, Xiong WP, Zhang YD, Bao L, Liu HW. 2018. Triterpenes
and meroterpenes with neuroprotective effects from Ganoderma leucocontextum. Chemistry &
Biodiversity 15: 1-9. https://doi.org/10.1002/cbdv.201700567
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.
Phytochemistry Bulletin 19: 11-15.
El-Fallal AA, El-Sayed AKA, El-Esseily SR. 2015. First record of two Ganoderma species from North
East Nile Delta - Egypt. Mycosphere 6(3): 248-259. https://doi.org/10.5943/mycosphere/6/3/2
Fernando KMEP. 2008. The host preference of a Ganoderma lucidum strain for three tree species of
Fabaceae family; Cassia nodosa, Cassia fistula and Delonix regia. Journal of the National Science
Foundation of Sri Lanka 36(4): 323-326. http://doi.org/10.4038/jnsfsr.v36i4.27 1
538 ... Umar, Ahmed, Bashir
Gilbertson RL, Ryvarden L. 1986. North American polypores, vol. 1. Abortiporus—Lindtneria.
Fungiflora, Oslo. 433 p.
Guglielmo FE, Gonthier P, Garbelotto M, Nicolotti G. 2008. A PCR-based method for the
identification of important wood rotting fungal taxa within Ganoderma, Inonotus and
Phellinus. FEMS Microbiology Letters 282(2): 228-237.
https://doi.org/10.1111/j.1574-6968.2008.01132.x
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program
for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Hong SG, Jung HS. 2004. Phylogenetic analysis of Ganoderma based on nearly complete
mitochondrial small-subunit ribosomal DNA sequences. Mycologia 96(4): 742-755.
https://doi.org/10.1080/15572536.2005.11832922
Hong KK, Geon SS, Hong GK. 2001. Comparison of characteristics of Ganoderma lucidum
according to geographical origins: consideration of morphological characteristics (II).
Mycobiology 29(2): 80-84. https://doi.org/10.1080/12298093.2001.12015765
Irshad M, Anwar Z, Gulfraz M, Butt HI, Ejaz A, Nawaz H. 2012. Purification and characterization
of a-amylase from Ganoderma tsugae growing in waste bread medium. African Journal of
Biotechnology 11(33): 8288-8294.n https://doi.org/10.5897/AJB11.3643
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
improvements in performance and usability. Molecular Biology and Evolution 30(4): 772-780.
https://doi 10.1093/molbev/mst010
Khan SM, Harper DM, Page S, Ahmad H. 2011. Species and community diversity of vascular
flora along environmental gradient in Naran Valley: a multivariate approach through indicator
species analysis. Pakistan Journal of Botany 43(5): 2337-2346.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H &
al. 2007. ClustalW and ClustalX version 2.0. Bioinformatics 23(21): 2947-2948.
https://doi.org/10.1093/ bioinformatics/btm404
Li TH, Hu HP, Deng WQ, Wu SH, Wang DM, Tsering T. 2015. Ganoderma leucocontextum, a
new member of the G. lucidum complex from southwestern China. Mycoscience 56(1): 81-85.
https://doi.org/10.1016/j.myc.2014.03.005
Moncalvo JM, Wang HE, Hseu RS. 1995. Gene phylogeny of the Ganoderma lucidum complex
based on ribosomal DNA sequences. Comparison with traditional taxonomic characters.
Mycological Research 99: 1489-1499. https://doi.org/10.1016/S0953-7562(09)80798-3
Munsell. 1975. Munsell soil color charts. Baltimore, Maryland.
Nagy GL, Vagvélgyi C, Papp T. 2010. Type studies and nomenclatural revisions in Parasola
(Psathyrellaceae) and related taxa. Mycotaxon 112: 103-141. https://doi.org/10.5248/112.103
Richter C, Wittstein K, Kirk PM, Stadler M. 2015. An assessment of the taxonomy and
chemotaxonomy of Ganoderma. Fungal Diversity 71: 1-15.
https://doi.org/10.1007/s13225-014-0313-6
Ryvarden L, Gilbertson RL. 1993. European polypores. Part 1. Abortiporus—Lindtneria. Fungiflora,
Oslo. 387 p.
Steyaert RL. 1980. Study of Some Ganoderma Species. Bulletin du Jardin botanique National de
Belgique 50(1/2): 135-186.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGAS: molecular
evolutionary genetics analysis using maximum likelihood, evolutionary distance, and
maximum parsimony methods. Molecular Biology and Evolution 28(10): 2731-2739.
https://doi.org/10.1093/molbev/msr121
Wang DM, Wu SH, Su CH, Peng JT, Shih YH, Chen LC. 2009. Ganoderma multipileum, the correct
name for ‘G. lucidum’ in tropical Asia. Botanical Studies 50: 451-458.
Ganoderma leucocontextum new for Pakistan ... 539
Wang XC, Xi RJ, Li Y, Wang DM, Yao YJ. 2012. The species identity of the widely
cultivated Ganoderma, ‘G. lucidum’ (Ling-zhi), in China. PLoS One 7: e40857.
https://doi.org/10.1371/journal.pone.0040857
Wang K, Bao L, Xiong W, Ma K, Han J, Wang W, Yin W, Liu H. 2015. Lanostane
triterpenes from the Tibetan medicinal mushroom Ganoderma leucocontextum and
their inhibitory effects on HMG-CoA reductase and a-glucosidase. Journal of Natural
Products 78: 1977-1989. https://doi.org/10.1021/acs.jnatprod.5b00331
Wasser SP, Zmitrovich IV, Didukh MY, Spirin WA, Malysheva VF. 2006. Morphological
traits of Ganoderma lucidum complex highlighting G. tsugae var. jannieae: the current
generalization. Gantner, Ruggell.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of
fungal ribosomal RNA genes for phylogenetics. 315-322, in: MA Innis & al. (eds),
PCR protocols, a guide to methods and applications. Academic Press, New York.
https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Xing JH, Song J, Decock C, Cui BK. 2016. Morphological characters and phylogenetic analysis
reveal a new species within the Ganoderma lucidum complex from South Africa. Phytotaxa
266(2): 115-124. https://doi.org/10.11646/phytotaxa.266.2.5
Yang ZL, Feng B. 2013. What is the Chinese “Lingzhi”- a taxonomic mini-review. Mycology 4:
1-4. https://doi-org/10.1080/21501203.2013.774299
Zhou LW, Cao Y, Wu SH, Vlasak J, Li DW, Li MJ, Dai YC. 2015. Global diversity of the
Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology
and multilocus phylogeny. Phytochemistry 114: 7-1.
MYCOTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. © 2021
April-June 2021—Volume 136, p. 541
https://doi.org/10.5248/136.541
Regional annotated mycobiota new to the Mycotaxon website
ABSTRACT—Mycotaxon is pleased to add a new annotated species distribution list
to our 144 previously posted free access fungae. The 49-page “Lichens from Brazil: a
checklist of lichenized fungi from Acre, in the Amazon” by Aptroot, Santos, Oliveira,
Cavalcante, and Caceres may be downloaded from our website via
http://www.mycotaxon.com/mycobiota/index.html
SOUTH AMERICA
Brazil
ANDRE APTROOT, LIDIANE ALVES DOS SANTOS, ISAIAS OLIVEIRA JUNIOR,
JANICE GOMES CAVALCANTE, MARCELA EUGENIA DA SILVA CACERES.
Lichens from Brazil: a checklist of lichenized fungi from Acre, in the
Amazon. 49 p.
ABSTRACT—A checklist is presented with the 304 lichen species currently
known from the state of Acre. Of these, 247 are corticolous species, 59
foliicolous species, and three (Coenogonium confervoides, Echinoplaca pellicula,
and Porina imitatrix) grow on both substrata. All but 12 species are new reports
based on identifications of material from our 2019 field trip to the Reserva
Extrativista Cazumba-Iracema near Sena Madureira. Additionally, 20 species
are new records for Brazil, and two for the Neotropics.
Key worps—biodiversity, Graphis, lichenized fungi, Oellularia, Pyrenula,
tropical rain forest
MYCOTAXON
ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. © 2021
April-June 2021—Volume 136, p. 543
https://doi.org/10.5248/136.543
Regional annotated mycobiota new to the Mycotaxon website
ABSTRACT—We are pleased to announce the posting of a new mycobiota on the
MycotTaxon website: “Basidiomycete diversity within Calabrian pine (Pinus brutia)
ecosystems on the island of Cyprus” by Michael Loizides. This brings to 146 the number of
free access Fungae now available on http://www.mycotaxon.com/mycobiota/index.html
EUROPE
Cyprus
MicHAEL Loizipes. Basidiomycete diversity within Calabrian pine (Pinus
brutia) ecosystems on the island of Cyprus. 28 p.
ABSTRACT—Extended areas on the island of Cyprus including the vast majority
of forested land, are occupied by Pinus brutia, an ecologically important tree
forming ectomycorrhizal associations with a wide array of fungi. In this third
installment of macromycete inventories from selected ecosystems in Cyprus,
the basidiomycete diversity within P brutia communities is reported following
a 12-y-inventory. Two hundred and thirty-one taxa are compiled in an
annotated checklist, 95 of which constitute new records for the country. Most
notable of these are Clitopilus daamsii, Hygrophorocybe nivea, Lepiota lepida,
Leucoagaricus georginae, Rhodocybe matesina, Russula werneri, Tephrocybe
striaepilea, Tephroderma fuscopallens, and Tricholoma chrysophyllum, which
are rarely reported in published literature. Notes on the altitude, phenology
and estimated abundance are provided, accompanied by selected imagery and
a review of previously published records.
Key worps—biogeographical distribution, checklist, East-Mediterranean
pine, fungi, island biogeography, Turkish pine
et ee et
Collybiopsis filamentipes sp. nov.
(Petersen & Hughes— Fie. 14, p. 288)
RONALD H. PETERSEN, artist