a AUS AE LOT) | ET LOT, EX
TE = kalt DRE sa tre \ aus i
asl 4 Ait ath ok ET De
von RER 68 Sy ni Ju DELA he
rs rs 4 . ‘ AR LA AD IR NETTER A a à i à M8 ns a al Er ne
À a AS Pee Er DAUERTE TEE
ad abr a 2 de Las tt UE ETS hy x i 0 à
TENTONTA x 2 Bo Rae OAS nee Rm 2 1
Pt A À We Dante Nee EX oh Mr
4
aA 40
DR}
CS US RTE 0 tL wath aa
\* Hye Mae ay LO Mary
CRUE RONA NL RDA al feat Te
CANCER CANON EN EN ER ER I DOTE
. 0 : Sak ee dS Da See Le INT 7: ere: EIERN
; man ë CURE WN tle We PTE Ay a da ORO Le TA MS at ab
KA rs PLANE bey 4 KALT RETRO . Ran Ast IR die
œ Bahl mn ua lan mihnne? 2 ü M: 2 “ia Hie and Ehre D “i À ayo
tall he N I Von atthe Pt ot om a GOUT LETTRE ,
ni
a a & à dd 6 a lt LAC PIED WIE vt
J D \ io ’ AIS STV foe gi i A SE EST p | Re Meal RC ET thors
nnd ‘ i AL ee et LA 6 N RUE DATE he
hee ere Puree ae eat 4: ñ F : An Mp dr,
Dean de Nee Le Ho ne ed BS ete Se he LI Ae ant. Pith ahs LE Ê MAMIE (RUES ET Te ea h
Mn ne En DL EEE ae IR RS Er Im 3 DT hund
> AN Te de Katie an. J Nie beh EA ADIL ML ihe PRT yn SIN PE LA TS SC teary ’ DIR An RAA)
CES RAR edi (a 46 A fe HAE à ; 34 DVS Satie Dh 9 ¥ si De DEN
Ne NN ben Hann dés de thy, aus r SPY AAR AP MAIR ENTER STA Ta ke abt hae Der ah BN Saal + Ier
é SI Rit de Le MOP JL be IK Hi a Lis Sead m DES et BR TR bt ; à ‘ 9 ME an Na
D RER à eh LI Free Ve DA dE HA A NS HA Made DEL R 3 er 5
! EASTERN ni Da mb ie m Amine mann DE COMFORT E
DEEE TES) PACD Bs de od Hen Dl DAL Tn PHORM mm EA am Me halvun à ann CETTE # à r
. Pro Ne B® Final tell Rhian ln 2 24 ag a 3: 10 4 db. Eu tot Ji Sarg DRE MN
en enable D ¥ DATE SE ty, N nen
Ya NN te Fu Rn one HM In Bite LA PAN E x à ‘ e
2 IN Fendt ain Panel Ve Paume nn Le POINTER à D Ka < * u
DORE Man Zi Nid Gat ofa tan bow
a el}
PS 10 6 54 aoe
kam
fay entr
QUE
TES
ROLE CE DER CS DLL HOS NSE aM sey We Sing
ENE Ak SBN A ie 5 Dar in aa
MONIES Se 5 2 we Bag!
’ 3 PRES ce IES on
E + # 4 He Ti te J
N tn No a he ihe Le
ea ee
wel a Mal at
a ee,
itor ibang ae i
BeMhagit Akon
Ce Eee ee à heh Mn most
: * i Pt betel td
ku ren À 3 ft i ù Tail elton aay
~ MIN ORO yd 29 Pate Zug À É F
Me te dite TELE A - « :
PRAT ewe, D ha the 2 AN... $ J 5 oe I “
Ann Wi ten aad as a EE va 3 F :
TEN BR a Bo tod
oe Be ste Em Pa Mente Blan mee Tee yy hn te ch, ah S A LOUIS he Mis Sh ak Te
FN Hane an Anh Ue Rate tye “ Just Aah Med 8e r
nn De a no Hi, Tete Matin anale à à LL DA N De don I on adhe te in RE En a IL
re fee Sanne at Tome ON en AS, 2 à 2 E La nn 2. À Dur
ar ns +
EN do an ANDY Win or et N
SRE 2 Run eins
le de Bo Te de da nein
Da De HE on ee y : r = \ nt.
men Aie Vu x ; x > . RE
À Le Ve Al M et on, i i MLAS Sewn,
Dm com nas onde À nn, > .
men PUR Er)
. N 4 : DEE Er Tee
DAC Mee VERT SEEN RER En er
ellen Don Tea do I Tann > poet : ue
Pe Nee Vin a on >. 7 >
ES md, . .
Sree
ran
BEER LER
CARE
sbi a pa at
hie
FD WT WS
: RP TRES
eat me ont | aM a
ARTEN N.
Sorted mn Po a Ve
SRT a nie
Reta tie we
ET ea ot Tann
lan
: cpap eran reir ete dre began in
SS Sot i Or SS a Snir ee
2 Ge Wok
Pei ms at 7 2
IE IE
ae
TxA IR eer Se CS
irs
THA ya
RE ee ee Mr Pe a ithe Be rl i
ame EA teen de
ER BELLA ; ds RR 29 ae ET : EEE: Ex
fas abat à = EN HEN ER ES
: 34 AU my \ ¥. Pe ce RER a is
D D Ve er SR 4 ... le t . = “
Se aaa Per a a
en nn
{AFTER se
N SY = WSS om CMA = \E ] CAS f2 AX ea
| al z ay z
LIBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI NVINOSHLINS S31uvVYa17 L
| = = z - 2 ri
| 2 mee) o = NE oO D
| = ‘i Pe] = D S N = D 5
| . > hes :
2, E = = 3
En = = - = m
Cons = (47) » one! [47] 4
NOILNLILSNI SAlYVUdIT LIBRARIES SMITHSONIAN Ni
| 2 wm <= eee n z nO .
= = = N = < = \
= | = | = = F
a g à 8 à 2;
= 2 = 2 = x
de > "€ ee DURS
LIBRARI ES SMITHSONIAN _ INSTITUTION, NOILNLILSNI NVINOSHLINS Sa Iyvy g iu
i > > te 23
ul AT) a NW |
x. Là wy es: cc = NN œ 4 /
LP, =. < À } NN < =
a Greg c œ = N c\%
= 2% = = 70 6 !
— À. z ac ar i 2 2 ay \
NOILNLLLSNI_NVINO HLIWS Sa Iuvyg itl BRARI ES_ SMITHSONIAN_ INSTITUTION "NO
En z Ir Z 5 rm z
2 zit 2 > > ae > |
SANE E > = <> a
= WOE > EGG: E
-IBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI NVINOSHLIWS S3IyvuagıT LIE
. 2 > Z *« un = un ; = 4
= < = ; < = < N
= 5 2 Le = 5
. ” en an Ç A on on D h
: : 8 Gf? - :
et ie RL : 3
_NVINOSHLUINS Sa Iuvyg II_LIBRARI ES SMITHSONIAN_ INSTITUTION
7 RE GER “ Gy à =
= Of =a œ a. [04
ot << =. < Fe =
S PS c IE
= = = = =
5 (os = m» = m
2 a i = | er 2 3
IBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI NVINOSHLINS S31YvVug17 LIB
Z = m Er 2 rm
= Pa: 2 à ae © =
P > > ZN 5 2
E = FE = E =
4 - a m i =
ty ainda : 2 2 |
LEN wot Iuvag11 SMITHSONIAN INSTITUTION NOI.
= (22) Z iD a
= = RE: = < Nu ©
re) TPS GO. = 5 T À
2 EGY) 3 = 4 5 2
E 7 2: 2 = 23
| 7 2 | a » À = . 2 m
IBRARI ES SMITHSONIAN _ INSTITUTION NOLLNLILSNI NVINOSHLIWS $3 ıavaaıı LIEB
2 > au > |
u «nn ud = NR Lu = A
au “A 2 4 NN = > m
<x * — < pr NN = =
= = : S KR = =
Bae) i = 5 a 5
ay 2 24 > CADRES i
OILNLILSNI_NVINOSHLIWS $3 luvug ae LIBRARI ES_ SMITHSONIAN” INSTITUTION” NOI,
SU u N, ER a mn Bla: En LOIR
+ m VW Af 4 NE TR ff fA al Ne NR Ee AT
= — ros aul z —
SMITHSONIAN INSTITUTION NOILNLILSNI NVINOSHLINS S31YV4811 LIBRARIES
= it = EI ae z cs |
By ‘Ow = ee \ © wo |
5 2 5 2 = 2
> = = = >
7 = ip 2 m ei
DO © z i ie 2
NVINOSHLINS S3IYVYUdEIT LIBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI
= [22] Z u... n = NL. on
< = .„£ | = < I =
= = = aa = a — vat 2 à
- = E = = nine N
= > = & = = ‘bh > 4 dé
ERRITHSONIAN INSTITUTION NOILNLILSNI NVINOSHLIWS S 3 IYV#811 LIBRARIES
LJ Er te =
< SN 4
> x i NN ead
= \ =
a =
S31#VY#917 LIBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI
INSTITUTION NOILNLILSNI
INSTITUTION NOILNLILSNI
s3lyvyg11
INSTITUTION
SMITHSONIAN
NS
En |
ITUTION NOILNLILSNI _NVINOSHLINS
SE
NVINOSHLINS S314V48911 LIBRARIE
N
SAIMVYUGIT LIBRARIES SM
NVINOSHLINS" S3INVYGIT-LIBRARI
NVINOSHLINS
SMITHSONIAN
SMITHSONIAN
NVINOSHLINS INSTITUTION NOILNLILSN
Z
<
z
oO
7)
x
=
=
17)
5 u 5; u fe
= œ = x An x
= a = < dr <
= œ = = = re
S = ° > S -
z 3 2 ur Z =
SMITHSONIAN INSTITUTION NOILNLILSNI NVINOSHLINS S314#V44171 LIBRARIES
= = (e] = Oo =
= > ra > : = >
14 © = a i =
= m = m 2 m
= w == (47) Ne ao
| NVINOSHLINS S314vV4417 SMITHSONIAN
=, ao = (22) z (29)
< = / „= = < =
= pa ae 4 Z = z =
2 EES 2K EDI 2
= = 4 E <= = 2
= > = ae) oe = >
wn za (79) “ me wo = =
> SMITHSONIAN _ INSTITUTION NOILNLILSNI NVINOSHLINS S31UVY8917
ui Z u AN 3
4 [22] Ex Q NN
X. en oc a AWS œ =
<<; pe. < = RW Se Ge =
Œ = & YQ. a =
= ? O ai 5 ale °
= = = z Toye LS z
| NVINOSHLINS SSIYVYEIT LIBRARIES SMITHSONIAN INSTITUTION NOILNLILSN
aie z = z = =
— wm = ow =
TIT; STE SAN,
LME, LLIINÈN, LEON,
Mi AV Bh.
4 4 "10.
in
See eae journal should be checked for st
rt
essary.
d for.
Nota lepidopterologica
Vol. 17 No. 1/2 Basel, 30.X1.1994 ISSN 0342-7536
Editor : Steven E. Whitebread, Maispracherstrasse 51, CH-4312 Magden,
Switzerland. FAX : +41-61-8412238.
Assistant Editors : Emmanuel de Bros (Binningen, CH)
PD Dr. Andreas Erhardt (Binningen, CH)
PD Dr. Hansjürg Geiger (Berne, CH)
Dr. Alexander Pelzer (Wennigsen, D)
Contents — Inhalt — Sommaire
FIEDLER, K. & SAAM, C. : Does ant-attendance influence development
in 5 European Lycaenidae butterfly species? .…................................... 5
FIEDLER, K. & SCHURIAN, K. G. : Oviposition behaviour in Lycaena
Breisgau onl(liyeaenidae) 322.132 2H en. daran. „ann. 25
Hausmann, A. : Morphology and taxonomy of the species belonging
to the genus Myinodes Meyrick, 1892 (Geometridae) ........................ 3
Kozıov, M. V. : Geographical variation in wing pattern of Micropterix
maschukella Alphéraky, 1876 (Micropterigidae) .............................. 45
KRISTAL, P. M., HIRNEISEN, N. & STEINER, A. : Eine weitere endemische
Hepialide aus den Alpen : Pharmacis claudiae sp.n. (Hepialidae) ...... 38
PATOCKA, J. : Die Puppen der Tribus Cyclophorini Mitteleuropas (Geo-
MECS) MRC ee nu heine TE EE ote 73
Rıepı, T. : Une nouvelle espèce européenne du genre Pancalia Stephens
(@Eosmoplezioidas, Antegueninag)), z... nme 87
Obituary — Nekrolog — Necrologie
meee berhiard 9% erenin (1902-1993). RR. in INN Lars 93
Book reviews — Buchbesprechungen — Analyses .................... 30, 44, 100
Notices
Rundschreiben'betreffend Dr. Erst PREESNER 4... 2
REA EN TARDE A Bee re ee ER ee ee ee D
Nota lepid. 17 (1/2) : 2-4 ; 30.X1.1994 ISSN 0342-7536
Rundschreiben betreffend Dr. Ernst PRIESNER
Sehr geehrte Damen und Herren,
liebe Kolleginnen und Kollegen
falls Sie es nicht schon von Freunden erfahren haben, möchten wir Ihnen
mitteilen, daß unser Kollege Dr. Ernst Priesner seit Mitte Juli 1994 verschollen
ist. Als Ergebnis intensiver Suchaktionen durch Freunde, Bergrettung, Hundes-
taffeln, Hubschrauber und Polizei, die leider erfolglos verliefen, muß davon
ausgegangen werden, daß er durch einen Unfall im Gebiet des Pflegersees
bei Garmisch in den Bayerischen Alpen ums Leben gekommen ist.
Wie Sie alle wissen, hat sich Ernst Priesner seit vielen Jahren intensiv mit
der Lockstoffsystematik beschäftigt und in dieser Fachdisziplin eine Weltspit-
zenstellung eingenommen. Zahlreiche Fachkollegen hatten mit ihm Kontakt
und unzählige gemeinsame Projekte wurden durchgeführt bzw. sind noch im
Gange. Das mutmaßliche Ableben von Ernst Priesner ist nicht nur für die
Wissenschaft ein unersetzlicher Verlust, es werden sich dadurch auch für viele
Kollegen große Schwierigkeiten bei ihren weiteren Arbeiten ergeben.
Deshalb gilt es sofort, den umfangreichen und für die Wissenschaft unersetz-
lichen Nachlaß zu sichern, ihn sicher und übersichtlich zu lagern und für die
Zukunft verfügbar zu halten. Ferner müssen alle Bemühungen dahin gehen,
möglichst wenig Information aus nicht abgeschlossenen, laufenden Projekten
zu verlieren und wichtige Daten jenen Kollegen zukommen zu lassen, deren
Arbeiten beeinträchtigt werden oder ein Ende finden müssen.
Das Max-Planck-Institut in Seewiesen sieht sich außerstande, die umfangreiche
Bücher, Sonderdrucke, Karteien, handschriftlichen Notizen, Sammlungsteile,
Negative, Fotos und Dias sowie die noch in den Labors vorhandenen Duft-
stoffe und ihre Komponenten zu lagern und evident zu halten. Vielmehr wird
dort dringend Labor- und Büroplatz benötigt.
Nach Absprachen zwischen Frau Hedi Priesner, Prof.Dr. Kaissling, dem Ar-
beitsgruppenleiter von Dr. Ernst Priesner am Max-Planck-Institut in Seewiesen,
Dr. Gerhard Tarmann vom Tiroler Landesmuseum in Innsbruck und nach
Genehmigung des Direktors des Institutes, Herrn Prof.Dr. Eberhard Gwinner,
ging der gesamte Bestand, mit Ausnahme des chemischen Teils (Pheromone
und die Substanzen zur Herstellung), geschlossen an das Tiroler Landesmuseum
Ferdinandeum (Naturwissenschaften), da dort im neuerbauten Institut aus-
2
reichend Raum für eine Lagerung und Betreuung vorhanden ist. Die Bear-
beitung der Bestände soll durch folgende Maßnahmen gesichert werden :
1. das Max-Planck-Institut leistet einen finanziellen Beitrag ;
2. das Tiroler Landesmuseum Ferdinandeum setzt seine Mitarbeiter zur Be-
treuung der umfangreichen Literatur (hunderte Bücher, tausende Sonderdrucke
und Kopien), der Sammlungen und des Fotoarchives ein und wird sich be-
mühen, weitere Mitarbeiter für die Katalogisierung (EDV-mäßige Aufarbei-
tung) zu bekommen ;
3. aus dem Verkauf von Literaturdoubleiten (Bücher und Zeitschriften, die
am Ferdinandeum bereits vorhanden sind) sollen weitere Mittel zur Betreuung
des Nachlasses, vorallem zur Katalogisierung und Evidenthaltung der zahllosen
handschriftlichen Notizen und der Originalprotokolle aus den Gelände- und
Laborarbeiten verfügbar gemacht werden ;
4. es wird ein Fond zur Bearbeitung des Nachlasses Ernst Priesner eingerichtet ;
alle Kollegen, denen die rasche Aufarbeitung des wissenschaftlichen Nachlasses
ein Anliegen ist, da sie Informationen daraus immer wieder brauchen bzw.
jene, die durch die Verbindung mit Ernst Priesner wesentliche Impulse für
ihre eigenen Forschungen erhalten haben, könne sich durch einen finanziellen
Beitrag beteiligen ;
5. für die Aufarbeitung des Nachlasses sollen sachkundige Mitarbeiter stun-
denweise engagiert werden.
Der chemische Teil des Nachlasses muß in kompetente Hände gehen, das
heißt, in eine Institution, die fachlich und personell in der Lage ist, mit den
Substanzen zu hantieren und eventuell nach publizierten oder aufgefundenen
Rezepturen Pheromone weiter zu produzieren. Diese Möglichkeiten sind am
Ferdinandeum in Innsbruck nicht vorhanden. Durch Intervention von Dr. Nils
Ryrholm aus Uppsala ist es gelungen, bei Dr. Peter Witzgall in Lund in
Schweden eine solche Möglichkeit zu finden. So können die laufenden Projekte
vielleicht doch noch einen Abschluß finden. Auch Prof. Clas Naumann in
Bonn wird sich bemühen, mit seinen Mitarbeitern Teilgruppen organisatorisch
zu betreuen (besonders Sesien- und Zygaenenpheromone).
Wir möchten Sie bitten, falls sich für Sie wichtige Informationen in den vielen
handschriftlichen Aufzeichnungen befinden, dies mit möglichst genauen Detail-
angaben mitzuteilen. Nur so gibt es eine Chance, gezielt zu suchen und Ihnen
Informationen rasch zukommen zu lassen. Bitte wenden Sie sich an
Dr. Gerhard Tarmann,
Tiroler Landesmuseum Ferdinandeum, Naturwissenschaften,
Feldstraße 11a, Tel. : +43/512-587286
A-6020 Innsbruck Fax. : +43/512-58728640
Wir hoffen, mit diesen Aktivitäten und Ihrer Hilfe wenigstens die große wissen-
schaftliche Lücke, die das mutmaßliche Ableben von Dr. Ernst Priesner für
uns alle hinterläßt, so gering wie möglich zu halten.
Dr. Gerhard TARMANN
Summary
Dr. Ernst Priesner, the well-known pheromone specialist, has been missing
since the middle of July 1994, when he went to check some pheromone traps
inthe Bavarian Alps, near Garmisch. Despite numerous search parties he could
not be found and it must be assumed that he met with a fatal accident.
Dr. Priesner’s contribution to pheromone research was immense and he led
the world in the field of pheromone systematics. His research has resulted in
an immense wealth of new faunistic and biological information. Many current
scientific projects were dependent on his collaboration and their successful
conclusion will now be very difficult.
It was therefore considered imperative to save and make available the vast
and irreplaceable scientific material he left behind. Apart from the chemicals,
the entire contents of Dr. Priesner’s office and laboratory at the Max-Planck-
Institute in Seewiesen, Bavaria, have been transferred to the Tiroler Landes-
museum Ferdinandeum in Innsbruck, Austria, under the charge of Dr. Ger-
hard Tarmann. This material consists of hundreds of books, thousands of
scientific papers, card indexes, handwritten notes, photographs etc. A fund
will be set up to finance the cataloguing and storage of the material. The Max-
Planck-Institute will make a financial contribution and duplicate books will
be sold. Donations to the fund are invited.
The responsibility for the chemical contents of Dr. Priesner’s laboratory will
be assumed by Dr. Peter Witzgall, Lund, Sweden, and Prof. Clas Naumann,
Bonn, Germany will try to organise some of the projects (particularly those
concerning sesiid and zygaenid pheromones). It is therefore hoped that the
running projects can be brought to a conclusion.
If anyone requires specific information from Dr. Priesner’s handwritten notes,
he is invited to write to Dr. Gerhard Tarmann with as many details of the
required information as possible.
It is hoped that the measures taken will ensure that the loss caused by Dr. Pries-
ner’s disappearance is kept to a minimum.
Nota lepid. 17 (1/2) : 5-24 : 30.X1.1994 ISSN 0342-7536
Does ant-attendance influence development
in 5 European Lycaenidae butterfly species ?
(Lepidoptera)
Konrad FIEDLER (!) & Christine SAAM
Lehrstuhl für Verhaltensphysiologie, Theodor-Boveri-Biozentrum, Universität Würzburg, Am Hub-
land, D-97074 Würzburg, Federal Republic of Germany
Summary
Caterpillars and pupae of 3 myrmecophilous (Aricia agestis, Polyommatus
icarus, P. bellargus) and 2 myrmecoxenous lycaenid butterflies (Lycaena
phlaeas, L. tityrus) were reared in the laboratory together with, or without,
2 species of tending Zasius ants (L. flavus, L. niger). Duration of development,
mass gain, growth rates, prepupal and adult weights, and the ratio of mass
gain per frass production were studied. There was no evidence for significant
developmental costs associated with myrmecophily. Rather, we found some
marginally beneficial effects of ant-attendance. Males of P icarus and L.
phlaeas grew larger in the presence of ants. Mass gain per unit frass was
slightly higher with ants in A. agestis (both sexes), P icarus and L. tityrus
(males only). We found no consistent differences between the effects of the
2 ant species, nor between rearing treatments involving 2 or 5 L. flavus workers,
respectively. Sexual and interspecific differences were documented in most of
the parameters. These results show that certain myrmecoxenous and facul-
tatively myrmecophilous lycaenid butterflies are able to compensate for their
energetic costs associated with myrmecophily. The evolutionary consequences
of such low-cost mutualisms are discussed.
Zusammenfassung
Raupen und Puppen von 3 fakultativ myrmekophilen (Aricia agestis, Polyom-
matus icarus und P. bellargus) sowie 2 myrmekoxenen Bläulingsarten (Lycaena
phlaeas, L. tityrus) wurden in Gegenwart von Ameisen (Lasius flavus bzw.
L. niger) aufgezogen. Entwicklungsdauern, Wachstumsraten, Gewichte und
Massenzunahme pro Kotproduktion wurden protokolliert. In keinem Fall
ergab sich eine signifikante Beeinträchtigung dieser Parameter durch den Be-
such von Ameisen und damit verbundene Sekretabgaben. Schwache positive
Sn N correspondence should be addressed ; Tel. : 0931-8884321, Fax : 0931-
Effekte konnten vereinzelt beobachtet werden (Gewicht der Männchen von
P. icarus und L. phlaeas in Gegenwart von Ameisen größer, Massenzunahme
pro Kotproduktion größer bei A. agestis, P. icarus und L. tityrus). Geschlechts-
und Artunterschiede in den Entwicklungsparametern traten in den meisten
Fällen auf. Die Ergebnisse zeigen, daß die untersuchten Bläulings-Ameisen-
Interaktionen für die Schmetterlinge mit geringen, voll kompensierbaren
Kosten verbunden sind. Die evolutive Bedeutung solcher Mutualismen mit
niedriger Investition wird diskutiert.
Resume
Chenilles et chrysalides de 3 Lycénides myrmécophiles (Aricia agestis, Polyom-
matus icarus et P. bellargus) et de 2 Lycénides myrmécoxènes (Lycaena phlaeas
et L. tityrus) ont été élevées en laboratoire avec et sans 2 espèces de fourmis
(Lasius flavus et L. niger). Les auteurs ont étudié la durée du développement,
augmentation de taille, le taux de croissance, le poids des chenilles adultes
et avant la chrysalidation, ainsi que l’augmentation de taille par rapport à
la production d’excréments. Dans aucun cas, ils n’ont constaté une modification
signicative de ces paramètres due à la visite des fourmis. Dans quelques cas,
ils ont observé de faibles effets positifs de la myrmécophilie. Le poids des
mâles de P icarus et L. phlaeas augmenta en présence des fourmis ; l’aug-
mentation de taille par rapport à la production d’excréments fut plus marquée
en présence des fourmis chez À. agestis (dans les deux sexes), P icarus et
L. tityrus (mâles seulement). Les auteurs n’ont pas trouvé de différences
consistantes entre les effets des deux espèces de fourmis, ni entre les élevages
impliquant 2 ou 5 L. flavus (ouvrières). Des différences apparurent dans la
plupart des paramètres du développement selon le sexe et l’espèce. Ces résultats
montrent que les interactions Lycènes-Fourmis étudiées entraînent de faibles
«coûts énergétiques», entièrement compensables. Les auteurs discutent de la
signification évolutive de tels mutualismes «à faible coût».
Introduction
Many species of the butterfly family Lycaenidae live in association with
ants throughout part of their larval and/or pupal stage (COTTRELL,
1984 ; PıERCE, 1987 ; FIEDLER, 1991). Ant-associations among lycaenids
range from loose and unspecific, facultative interactions to obligatory
and species-specific cases of mutualism or, rarely, parasitism. Typically,
while feeding on their hostplants, the caterpillars attract ants with the
help of chemical stimuli. This ant guard may provide protection against
parasitoids or predators (PIERCE & EASTEAL, 1986; Pierce et al.
1987 ; but see PETERSON, 1993).
Interactions between lycaenid immatures and ants are mainly mediated
by secretions from specialized exocrine epidermal glands (MALIcky,
6
1969 ; CoTTRELL, 1984), although vibratory communication may be
important in certain cases (DEVRIES, 1990). Three types of myrme-
cophilous organs are known to play major roles. The dorsal nectar
organ on the 7th abdominal segment, only present in larvae, secretes
droplets of a clear liquid that contain carbohydrates and amino acids
(Mascawirz et al., 1975; Pierce, 1983) upon tactile stimulation
(TAUTZ & FIEDLER, 1992). So-called pore cupola organs, minute hair-
derived glands distributed over the larval or pupal integument, appear
to secrete amino acids or, in certain species, mimics of ant-pheromones
(PIERCE, 1983). And the tentacle organs on the 8th abdominal segment
of various lycaenid caterpillar species emit volatile compounds that
cause an alerted behaviour in attendant ants (FIEDLER & MASCHWITZ,
1988 ; BALLMER & Pratt, 1992). All these secretions are produced
at some energetic cost by the herbivorous caterpillars. In addition, the
innervation and musculature of myrmecophilous organs and vibratory
organs also cause metabolic costs.
Previous studies on two lycaenid-ant systems demonstrated that ant-
attendance may have a negative impact on larval and pupal develop-
ment. In the obligatorily myrmecophilous Jalmenus evagoras (Dono-
VAN, 1805) from Australia, ant-tended individuals develop faster than
untended sisters, but attain lower weights (PIERCE et al., 1987). Larvae
of J. evagoras are unable to compensate for nutrient loss to ants (BAYLIS
& Pierce, 1992). As a consequence, myrmecophily is associated with
significant fitness costs, since male mating success and female fecundity
are strongly dependent on adult weight (ELGAR & Pierce, 1988 ; HILL
& Prerce, 1989). In the Neotropical Arawacus lincoides (Draudt,
[1919]), Rogsıns (1991) observed a slight retardation of larval develop-
ment in response to ant-association, but weight was unaffected.
Recently, however, beneficial effects of ant-attendance on larval develop-
ment have been detected in three additional species. FIEDLER & HÖöLL-
DOBLER (1992) found that ant-tended males of the Palearctic Polyom-
matus icarus (Rottemburg, 1775) reach higher larval and pupal weights
than untended controls. In the Nearctic Hemiargus isola (Reakirt,
[1867]), tending by the ant Formica perpilosa enhanced caterpillar
growth and thus adult weight, whereas two other ant species did not
affect butterfly weight (WAGNER, 1993). These two butterfly species
are facultative myrmecophiles, whose larvae associate with a variety
of ant taxa and are not dependent on ant-association for survival.
Overall, facultative myrmecophiles account for a larger proportion of
the species diversity of the Lycaenidae than obligatory myrmecophiles
(FIEDLER, 1991). Most recently, CUSHMAN et al. (1994) observed bene-
ficial developmental effects in another Australian obligatory myrme-
cophile, Paralucia aurifera (Blanchard, 1848). Hence, the prominent
developmental costs of myrmecophily as found in J. evagoras might
be atypical for the species majority. Therefore, a better understanding
of the evolutionary and ecological significance of developmental costs
or benefits arising from myrmecophily among Lycaenidae butterflies
requires experimental work on a larger set of species from various
taxonomic groups and representing all major types of myrmecophily.
We here present the results of laboratory experiments with 5 European
Lycaenidae species. Three of these possess all three types of myrme-
cophilous organs and are facultative myrmecophiles, but show different
degrees of myrmecophily. While mature larvae of Polyommatus bel-
largus (Rottemburg, 1775) and Aricia agestis ([ Denis & Schiffermiiller],
1775) are rarely found without tending ants in nature, caterpillars of
Polyommatus icarus are much less attractive to ants (e.g. THOMAS
& LEWINGTON, 1991). P icarus was included to repeat the experiments
of FIEDLER & HOLLDOBLER (1992) under a modified rearing regime.
We also studied two myrmecoxenous species : Lycaena phlaeas (Lin-
naeus, 1761) and L. tityrus (Poda, 1761). Larvae of these species neither
possess a dorsal nectar organ nor tentacle organs, but they do have
pore cupola organs. In laboratory experiments, weak and unstable ant-
associations of these species can be induced and ants then harvest the
PCO secretions (FIEDLER, 1991). Neither L. phlaeas nor L. tityrus larvae
have hitherto been observed in association with ants in the field.
Our aim was to investigate whether or not artificial ant-association
involving two ant species and two different numbers of ants per indi-
vidual lycaenid has any detectable effects on larval or pupal develop-
ment. Furthermore, we wanted to know whether developmental effects
differ between lycaenid species according to their degree of myrme-
cophily. One might expect more distinct costs in caterpillars that are
highly attractive to ants (P bellargus, A. agestis), whereas in myrme-
coxenous species developmental costs should be absent or minimal.
On the other extreme, secretion rates of obligatorily myrmecophilous
caterpillars can be amazingly high (FIEDLER & MascHwirz, 1989 ;
Fiedler, unpublished), corresponding to the pronounced developmental
costs observed in species like the Australian Jalmenus evagoras (BAYLIS
& Pierce, 1992). Finally, the developmental constraints on phyto-
predacious lycaenid larvae parasitizing inside ant colonies (alike the
Palaearctic Maculinea spp.) are entirely different (e.g. THOMAS et al,
1993, and references therein). Hence, a comparative survey across a
larger number of species representing various stages of myrmecophily
appears rewarding.
8
Material and methods
Butterfly rearing
Caterpillars were reared from eggs laid by field-caught (Aricia agestis,
Polyommatus bellargus, P. icarus, Lycaena phlaeas, L. tityrus) or
laboratory-bred females (A. agestis, P. icarus). Livestock originated
from northern Bavarian populations except in ?. bellargus, where part
of the experiments was conducted with individuals from southern
France. Butterflies were kept in a greenhouse for oviposition or mating.
Rearing procedures largely followed those described by SCHURIAN
(1989). Eggs were collected every second day and transferred ınto a
climatic chamber (25°C, 16:8 h L:D), where the whole development
to adult eclosion took place. Groups of first instar larvae were placed
in translucent plastic containers (125 ml) lined with moist filter paper.
They were fed with cut foliage or inflorescences of appropriate host-
plants : Geranium molle L. (Geraniaceae) leaves (A. agestis) ; Coronilla
varia L. (Fabaceae) leaves (P. bellargus) ; Medicago sativa L. (Fabaceae)
inflorescences (P. icarus); Rumex acetosa L. (Polygonaceae) leaves
(Lycaena phlaeas, L. tityrus). Food was exchanged daily. Special care
was taken to provide food of approximately equal quality ad libitum
throughout the season, since food quality may affect larval myrme-
cophily (FIEDLER, 1990 ; Bayis & Pierce, 1991).
Ants
Two ant species were used. Lasius niger (Linnaeus, 1758) is a common
species of open grasslands and is well known to tend a number of
lycaenid species in the field (FIEDLER, 1991). L. niger ants are omni-
vorous ; they feed on insect prey and collect honeydew or similar
energy-rich fluids. Lasius flavus (Fabricius, 1781) is also very common
and lives largely subterranean in European grasslands. Its diet consists
almost entirely of honeydew produced by root aphids. Because of their
subterranean life, L. flavus ants rarely tend lycaenid larvae in nature,
but they readily show trophobiotic interactions with lycaenid imma-
tures in the laboratory (FIEDLER, 1991). Ant colonies were kept in the
laboratory (at 22-26°C) in earth nests (L. flavus), or in artificial nest
chambers the bottom of which consisted of plaster of Paris (L. niger).
Ants were fed with honey-water and dead insects (mostly cockroaches)
as needed.
Experiments
Experiments started at the beginning of the third larval instar, when
the myrmecophilous glands of P icarus, P. bellargus and A. agestis
9
become functional. Experimental caterpillars were reared singly in
translucent plastic vials (125 ml) equipped as above and were randomly
subjected to one of the 4 following treatments: kept with 5 L. flavus
workers ; with 2 L. flavus workers; with 2 L. niger workers ; and
controls reared without ants. Food and filter paper were exchanged
daily, and the entire larval frass was collected. Ants that had died during
the experiment were replaced by nestmates to ensure a constant number
of tending ants throughout. The procedure continued during the pupal
stage. Daily inspections of every individual larva and pupa confirmed
that all immatures of the 3 myrmecophilous species were constantly
tended by their ant guard. In the 2 Lycaena species, ant-associations
were likewise regularly observed, although occasionally larvae were seen
without tending ants for short periods of time. Each experiment lasted
until the adult butterfly eclosed from the pupa. All individuals that
died prior to eclosion were discarded from the analyses. Mortality rates
did not differ between the ant treatments within each species (SAAM,
1993). In total, 358 butterflies were reared to maturity (see SAAM, 1993
for further details).
Every individual was weighed 5 times: at the beginning of the ex-
periment (freshly moulted L3 : initial larval weight) ; as immobile non-
feeding prepupa within a few hours prior to pupation (prepupal weight) ;
as freshly moulted pupa (initial pupal weight) ; as fully pigmented pupa
within 6 h before eclosion ; and as freshly eclosed adult after emission
of the meconium (adult weight). The whole frass production over the
third and fourth larval instar was collected, dried in an oven at 65°C
to constant weight, and then weighed. All weights were recorded to
the nearest 0.1 mg using an electronic Sartorius BA 61 balance. In
addition, the durations of the third plus fourth larval instars and of
the pupal stage were recorded (in days).
From these data the following additional parameters were calculated :
PERCENT PUPAL WEIGHT Loss : (Initial pupal weight - final pupal weight)
x 100 / (initial pupal weight). Pupal weight losses always occur during
development, but could be enhanced by the delivery of pupal secretions
(e.g. from pore cupola organs) to ants.
RELATIVE GROWTH RATE : RGR = (mass gained in the third plus fourth
larval instar) / (prepupal weight X larval duration).
The ratio : (larval mass gain) / (total frass production). This is a rough
estimate for the efficiency of the conversion of ingested food into
biomass. Assuming that the digestibility of food is not affected by the
10
presence of ants (see BayLis & PıErce, 1992), frass production is pro-
portional to food consumption, if food quality is kept constant.
The data were analysed statistically using ANOVA (with sex and treat-
ment as factors) for multiple comparisons, and Mann-Whitney U-tests
for comparisons between pairs of samples where normalıty or homo-
geneity of variances were not met (SACHS, 1992). Percent data were
arcsine-transformed prior to analysis. All P values given refer to 2-tailed
tests.
Results
Duration of larval and pupal development
The duration of the third plus fourth instar (Table 1) was largely
unaffected by the presence of ants in A. agestis (mean values per
experimental series 6-9 d), P. icarus (10-12 d), P bellargus (16-23 d),
L. phlaeas (8-10 d) and L. tityrus (11-15 d). Sex differences in the
duration of larval development occurred in all 5 species and in almost
all treatments. Females generally took 1-2 d longer than males until
pupation, but this difference was less distinct in experiments with ?
icarus and L. phlaeas.
The duration of the pupal stage was likewise not influenced by ant-
association in all 5 lycaenid species tested. Sex differences in pupal
duration were minimal (males faster in L. tityrus and P. bellargus).
The pupal stage of A. agestis, L. phlaeas and L. tityrus took 7-8 d,
that of P icarus 9-10 d, and in P bellargus pupal development lasted
11-13 d under the rearing conditions.
Prepupal weights (Table 2)
Caterpillar mass at the end of the larval stage was independent of
ant-association in A. agestis (means 71-82 mg), P bellargus (means
107-126 mg) and L. tityrus (118-127 mg). P icarus males reared in
the presence of ants (94.55 + 1.33 mg) were consistently heavier than
control males (89.46 + 5.44 mg), although the difference was not signi-
ficant. However, ant-association fostered a sex difference in P icarus.
Males reared in the presence of ants were significantly heavier than
females (U 3.3; = 195 ; Z = 2.825 ; P < 0.01), whereas control males
and females reached equal prepupal weights (U7..; = 45; P > 0.5).
A similar pattern occurred in L. phlaeas. Male prepupae reared in
association with ants (89.6 + 3.05 mg) were significantly heavier
than controls (73.8 + 2.34 mg; Ujo..4 = 38; Z = 3.099; P < 0.01),
11
xxx LO EL = A
: X9S
SU po 0 = 4
: SJUB
supe 0 = A
BEN
su cdc =A
: syue
*86 9 = 4
DRS
su 39°C =
: syue
su 90°] =H
DER
SU ÿ6 0 = 4
: syue
*+L0 8 = A
: X9S
SU ÿL0 = 4
: SJuE
19974
(STD IEOF TE II
(ZZ) 8t'0 F SI EI
(ve) 91 0 + E98
(LZ) 81 0 F €£'6
(91) 89°0 F £9'8I
(IT) SIO F 70T
(TE) STOF L601
(TI STOFESII
(ET) ITO + 6€ L
(6€) IT’O + 9€'8
pauiquio9
SJU9U)E9I) JUV
kkkCS OT = 4
XS
SU 1l/.0=J4
: JU9UIJBII]
«II =a
WER
SU OCT =A
: Juaunean
*90 7 =A
Bros
*16€ =A
: JUS 91]
+C6T =A
Bros
SU LEO = 4
: Juaumeaı]
x*x* 16 CI = A
2 X9S
MYC = al
: JU90198297)
Bela
(ID) 80 FLTII
(L) 890 F Er El
(OL) 67 0 + 08'8
(S) 0r'0 + 0r'8
(2) L9'T + LS'61
(8) ITI F OS TC
(L) LEO FLT
(EI) SPOF 79'TI
(8) SVOFSLL
(LI) 0€ 0 + €S'8
syue }nOUJI M
(8) I1L'0 F 00 ZI
(6) LL'0 + 68 EI
(9) LL’O + £8'8
(11) ¥7'0 + LT'6
() 91 I = 00'07
(2) OL'0 FrI'6l
(ai) CEO 25 Zi
(9) 290 = OS'II
MOSES
(L) PE 0 F PIE
1961U SNISVT 7
(L) 890 = ET'II
(9) 9L'0 + LIYI
(L) I£'0 + ££'8
COAAE 76
(p) EC'T F OS'9I
(8) 91 I + 05°02
(8) WO F EIOI
(3) I€ 0 FSLTI
(6) 670 = 9S'L
(LI) €€:0 £ 678
SNAD]{ snıspT 7
(SID LG OSE N
(L) p80 F LSTI
(LL) LTOFTL8
(L) ES'0 + LS'6
(8) €6°0 + 00°61
(AN SEAN
(11) p70 $= 0011
(8) WO FOS II
(L) 00 + 98°9
(SI) 9€°0 + L0'8
SNAD]{ snıspT S
SOIN
SO[PUIO
SNA] DUAGDIAT
se
sofewa-]
spovjyd puoosAT
soe
sopews]
snd4D]]29 SNIDWL.IWLOAJOT
SIM
soewsg
SNADI1 SNIDWWOAJOT
sae
sopewag
SUS28D DIDI
Sa199dS
010 < d SU: 1000 > d xxx: 100 > d xx: 600 > d x ‘ l'0 > d + ‘VAONV ABM-OMI Wry 918 SONJEA |
‘(S194981q ur Sois a[duues) SIOIIS PIepueIs F SULIT 218 UDAIDH ‘SJUE SN1SP7T JO S9U9Sq8 10 JoU9S91d au} ur PaIea1 USM
sowads JepıuseaAT ueadomng ddl Jo (sAep ur ‘resur yJınoF snjd pa) JuswdopsAap [eA] Jo uoneinq
I SIgeL
SU 60 0 = 4
SCH
Su C0 0 = 4
: que
SU GI T—=4A
: X9S
kx8T 8 = A
: jue
xx08°L = 4
> XOS
su 66 I =H
: SJUB
su OT =A
: X9S
su QL'0 = 4
: sjue
x€9 =A
: X9S
SU T0 0 = 4
: syue
Pape
(ST) 0€ 7 F S6'07I
(TI) Tr € F LL ETI
(PT) SOE + 09°68
(LT) 90°€ + LO'E6
(CON Ret SSA (HHI
(IT) LL'T + 9S'601
(LE) €€°1 F SS'H6
(EZ) 091 = L0'88
(ST) LP IF 60°€L
(Zr) 6S IF PL SL
pourquios
SJU9U)291) UY
su 770 =A
: X9S
su 860 =H
: JusunNean
su Cp | =H
: X9S
+80 € = A
: Juauıyean
kk80 8 = Æ
: X9S
suc] [| =H
: JUSUIJESJI]
xOT 6 = A
: X9S
SU 6€ 0 = A
: Juowgean
xxOL'L= A
: X9S
su C00 = 4
: Juawean
IREM
(11) 10°S F 9S IZI
(DIGS 22 IGG!
(OI) ET + OS EL
(9) 6£ 8 + cr'E8
(L) tT'S FLONI
(8) 9L°S = 69'EII
(L) bys = 9768
(EI) €L°7 + 61 68
(6) ILT + S6 EL
(61) SLI FLY LL
syue noygM
(8) 98°€ F EI STI
(6) LL'S F 10971
(9) LS'T + OS €6
(LI) 677 = 79°06
(bp) SI'S F ET STI
(2) 9+'t = OI CII
(TI) STTFELL6
(L) OL'E F IT 98
() CGE EGIL
(L) Ov'S + I8'I8
dosıu SNISVT 7
(2) 9L'+t = LEI
(9) 86°F + 00'171
(L) 9S'S F 0S'S8
(6) L£'9 + 0L'86
(bp) er 8 + ST SII
(8) pp + £9'60I
(8) SOT + 07 T6
(8) SET F £I 88
(OI) EOTF Zr IL
(SI) 61 7 + 01 08
SNAD]{ SNISDT 7
(EI) IVE F ET 6II
(2) LL'9 $= IT SIT
(LD) OS'S + rc 88
(L) p8'b + L9'68
(8) SSI FESLIT
(9) SS'9 F 7S 901
(LI) £TT + £9 76
(8) IST + £968
(8) 67 T F 9S 91
(LI) 907 + CO 9L
SNAD]{ SNISDT S
SOIN
SOJEUIO
SNAÂJ1] DUADIAT
SOIN
sopewsA
spanjyd puovodT
sey
SEL]
SNBADIJAG SNIVWIWUOAJOT
soe
sopewoJ
SNADIL SNIVWWOAJOI
ssfeW
sopewuag
S1S28D DIDI
Sa199dS
‘OT'0< d SU : 100 > d xx: S00 > d x VAONYV ÂBM-OM] WOIF ore SOnJeA A
‘(SI9NJEIG UI SozIs a[duIES) SIOIIS PIBPUBJS F SURI 918 U9AIO) ‘SJUE S71SDT JO Duasge JO JOU9S91d ayJ ur PaIesı USM
sarmads sepruseaA| uvadoing dA JO (1uS81oM Jom Bur ‘ages pedndaid ur) s}ysioM [VAIL] [EU
€ SIQEL
whereas females showed no effect (mean weights 83.42 + 8.39 mg and
93107 == 3.00:m2 U, =D: Ze ea ale):
A general sex difference in prepupal weights emerged only in 2 species.
A. agestis males were smaller than females, in P bellargus males were
larger. In P. icarus and L. phlaeas, the sex difference was only apparent
in ant-tended individuals (males larger than females, see above).
Females and males of L. tityrus reached similar prepupal weights. Signi-
ficant statistical ant-sex interactions were not observed.
Pupal weight loss
In all 5 species, ant-association had no detectable influence on pupal
weight loss. Mean weight losses accounted for 15-20% in A. agestis,
P. icarus and L. phlaeas, but were slıghtly higher in L. tityrus (> 20%
in females) and highest in P bellargus (average values per series
23-28%). Sex differences in pupal weight loss were distinct only in L.
tityrus (female pupae lost more weight [22-24% on average] than males
[average loss 17-19%]). Otherwise, there were neither sex differences
nor significant ant-sex interactions.
Adult weights (Table 3)
Adult weights were not affected by ant-association in A. agestis, P.
bellargus and L. tityrus. In P. icarus, ant-tended males (35.07 + 0.76 mg)
were ca. 10% heavier than untended controls (31.27 + 1.21 mg;
Uz3, = 50 ; Z= 2.20 ; P < 0.02), whereas females showed no effect (ant-
sex interaction : Fj.67 = 3.92 ; P < 0.05). A similar effect was observed in
L. phlaeas : ant-tended individuals (especially males : 31.41 = 1.70 mg)
eclosed from the pupae at higher weights than untended controls
(23.65 + 0.85 mg). As a consequence, there was no significant sex dif-
ference in adult weights of ant-tended P icarus and L. phlaeas, whereas
untended controls of both species showed a distinct size dimorphism
(females heavier than males). In A. agestis there was a significant sex
difference independent of ant-association, females being heavier than
males. No significant size dimorphism occurred in P bellargus and
L. tityrus.
Growth rates (Table 4)
In all 5 species tested, males tended to grow faster than females. This
difference was only weakly developed in P. icarus and L. phlaeas, but
was pronounced in the remaining 3 species. Only in A. agestis was
there a weak trend that caterpillars in association with 5 Lasius flavus
ants grew slightly faster than all others. In all, ant-association had no
14
SU 8ÿ I =A
DER
su00=4
: syue
+trt=d
: X9S
x6P 6 =A
: syue
SU 89 0 — 4
Ixos
su €8 0 = 4
: jue
x60 vy =A
: X9S
SU p8 | =H
: sSJUB
xt 6€ = A
MX AS
SU [00 = 4
: sJUB
Del
COLO == ES Tt
iA) CTL SE ee Gy
(EI) OL I = IV IE
(CO) PEASE RV ASS
(OI) PIC + BEI
(IT) 161 F 6S 8€
(TE) 9L'0 + LO'SE
(OT) $9°0 = ET'SE
CORSO E LIEST
(Zr) S6 0 F LS'IE
pauIquio9
syuawjean JuV
SU LOT =H
LOS
SU CCI =a
: 4uauyean
sulsc=hH
: XOS
su cl c =A
: uouean
su0I=4
: X9S
SU ZE O0 = 4
: uouean
SU OCT =A
axes
SU 70 T =A
: Juauean}
#kkOL'SE = A
: XOS
su ç90 = 4
: Juaumeal}
PISA
(LI) PET + SI TV
(2) OS'E = 90° ++
(OI) S8'0 + S9'ET
(9) 00'€ = LT'0€
(L) 8€°€ FO EP
(8) E67 + 09 Ir
BIENEN
(EI) LSI F +6 SE
(6) bl I FISST
(61) 871 F V7 TE
syue noygM
(L) TS'E F LE bP
(6) 90'€ F IS’ Lt
(9) p17 + SCIE
(DIET EOC
WTErFETEr
(L) 0€°7 + 00'8€
(TI) SEI = O8 VE
(S) 68°0 + PE EC
(2) SO'l = IO'r7
(L) BEE F 96'SE
4951U SNISVT 7
(L) SVT + EI Ip
(9) 09T + cr'9r
(9) tt F SO'IE
(8) TT + + OF LE
(p) STE FET BE
(8) 77 € F Sr Ir
(BETT = I0'SE
(8) +6 0 + 97'SE
(OI) 69:0 + IC ST
(81) 67 I F 99'0€
snapjf SNISDT 7
(EI) 97 + 686€
(L) SIT + CS OP
(LI) ETEFEITE
(L) LIT + 60'I€
(8) IS'E + OCP
(9) Ly'v Fa'se
(ID Or IF Ir'se
(L) STI + PS 9€
(8) 160 FEIN
(LI) 71 = TL'0€
snapjf SNISVT S
‘010 < 4 SU * 1000 > d xxx: S00>d x: l'O > d + VAONV AEM-OMJ OI ore sanyeA A
‘(S19%981Qq UI SozIs ajdues) SIOIIS PIepueIs F SURO 218 USAIL)
SOIN
SITE
SNAÂ71] DUADIAT
soe
sopewag
spanjyd vuov9dT
sofeW
sopewuag
SNBADIJAG SNIPWWoOAJOT
sae
sopewag
snıvaı SNIDWIWOAJOT
SIP
SAP,
S1JSA8D DIDI
sowads
‘SJUE SSD] JO S9U9Sq8 10 JdUaSoId au} ur pareaı uayMm saloads sepıuseaAT ueadoing SAT JO (WYSIOM JOM Zw) SJUSTOM INPY
© SIgEL
kkx[C VL = A
: X9S
WEG (0) al
: SJuUB
xxx LI =A
5 KOS
suss0=4 |(ID 700042300] (8) +000 + €800| (2) S000 + 980'0 | (EI) 1000 F +800
: quoUTIvON} (L) +000 + rL0'0 | (6) +000 + ZL0'0| (9) 7000 = 890'0 | (2) $00'0 + 6/00
(8Z) Z00'0 + 80'0
(TT) €00'0 = €L0°0
SOIN
SAP
snadı DUIDIAT
+60 =A
OS
SU 700 = 4
: Sue
TAC
5 XOS
su/.01=4 | (OI) £000 + 0110 | (9) 7000 +0110} (2) S000 + 911 0 | (ID) +00 0 + IIT0
: yuauıyeaı} (9) T10°0 + 9010 | (IT) £00°0 = SOI 0 | (6) £00°0 = SOI 0 | (2) S00°0 + TOI 0
(v7) TO0'0 = E110
(LZ) TO0'0 £ +OI 0
SOIN
sspewsg
spopjyd DuavdAT
*8L$ =A
: X9S
su dec =a
: sjue
x0£ 9 = A
! XOS
SU [81 =A (2) 700'0 + 0S0'0| (+) €00°0 + 80'0 | (+) S00'0 F 650'0 | (8) 7000 + 1S0'0
- JUSUE ON) (8) T00°0 + £r0'0 | (2) Z00'0 + 1500 | (8) 7000 + Lr0'0 | (9) €00°0 + 9r0'0
(91) Z00'0 + 7S0'0
(IZ) 100°0 £ 8+0'0
sofeW
spewsg
sn810]2Q SNIDWIWUOAJOT
SU OCT =A
: X9S
OÙ GA, || el
: syue
+08 =H
: X9S
SU 66 0 = 4
: Juoumean
(L) £00'0 + 780'0 | (ZI) €00°0 + 8800 | (8) €00°0 + 1600 | (II) Z00°0 + 6800
(EI) €00°0 + #80 0 | (2) #00'0 F 9800 | (8) Z00'0 F £80'0 | (8) €00°0 + S80'0
soe
sopewag
SNADIL SnIDwwoAJ]og
(TE) 100°0 + 6800
(€Z) Z00'0 + S80'0
**9$ 6 = 4
: X9S
SU 9ÿ | =H
: SUP
kxkxLL' VI =A
+ X9S
LOC TE = (6) S00 0 + LITO | (L) +000 + 8110 | (OI) S00'0 + 611 0 | (8) S00'0 F 0EL'O
:quouneon | (61) £00‘0 + 801 0| (2) €000 + HOI 0 | (81) €00°0 Æ III '0 | (ZI) +000 + FI 0
Soe
soyeulay
SUS28D DIDI
pauiquio9
‘01 0 < d SU: 1000 > d xxx: 100 > d xx ‘ S00 > d x: 1 0 > d + VAONYV ABM-OMJ LOI 918 SONJEA A
‘(S19Y981Q UI SazIs aJduES) SIOII9 PIepue)s F sueaw Je UdAIH
‘SJUE SNISDT JO SOU9SqE JO SOU9SAId 94} ur paıeaı UdYM sotoods sepıuseaA 1 ueodoimA >Aly Jo (p „ Zw /Suu UT) S9IVI YIMOIS SATEIOY
ÿ 1921
(SZ) £00'0 + ZI 0
(Zr) O0 0 + IIT'O
SU 860 =H
. X9S
x90 7 = 4
: SJUE
SU 98 0 =A
Mes
SU [60 = 4
: jue
su £9T=4
XOS
+$8'¢ =A
: sque
supe CT =A
: XOS
Su €TO =A
: jue
Su 770 =A
+ KOS
+69 =A
: sjue
199
(80) 0T'0 F ET +
(ZZ) 91 OF TIE
FOTO F CP
(LZ) 61:0 F ETP
(91) 60°0 £ 061
(IT) L0'0 + 89°]
(1E) 80°0 F SOT
(€Z) O1 OF 91
(SZ) S0'0 + Sr]
(Zr) WOFTSI
p>urqwo)
SJUSUNESI] JUV
+L LT =A
SEN
su [oT =A
: uaumeaı
su (90 = 4
ROS
su 660 = 4
: Jusumea}
+90 ÿ =A
! X9S
*l6¢ =A
: JUOW}eOI}
«ICV =A
! X9S
su 8€ 0 =H
: JU9UI)R91]
SUOI I =A
: XOS
SU oT =A
: Juaumea1
(11) PT’O FOEE
(L) PL OF ESE
(OI) 9€°0 F TT +
(9) 970 + H9'€
(2) 91:0 + 907
(8) OI'0 + F6 I
(2) 90°0 = 681
(EI) 600 I8 1
(6) ILO + vel
(61) 900 + HET
(8) p€'0 + 80'P
(6) 770 + 8S'€
(S) 170 + TEE
(11) 0€ 0 + 79V
(p) I7OF ILI
(L) LO'0 F STI
(GD) GIO 42 SINE
(L) S70 F CSI
(L) 80°0 FI
(L) 110 + 691
(L) 6£°0 F ST +
(9) P70 F LS'E
(9) 990 + L6 +
(6) S£'0 F 86'€
(t) 61 0 + 017
(8) 800 = SLI
(8) 81.0 + I61
(8) 770 F 8L'I
(O1) 800 F IVI
(81) 800 +971
(EI) €€0 + IEP
(L)IEOF LIE
(II) 870 + 96'€
(L)IEOF LEE
(8) TI 0 + 061
(9) tI'0 + SSI
(ID STOFYOT
(8) L0.0 + OL'T
(8) 800 + 6r I
LDOTOFISI
Sole
sopewag
SNAÂJ1] DUADIAT
soe
sspeung
spanjyd nuavdaT
sofeW
sopewag
sn34D]]2g SNIVWWOAJOT
sofeW
sopewag
SNADI1 SNIDVWIWOAÄJOT
SIP
sopewag
S1JSA8D DIDI
O10<d SU‘ S00 > d «+10 > d + VAONY AeM-0m} WoT 97e sonJeA A
‘(S19X981q ur SOZIS Spdues) SIOIIS PIepueIs F SUPAUI 918 UDAIH ‘SJUE SNISDT JO dUaSGe 10 SOU9S9Id 9} UT pores usyM
so1oeds sepruseoAT uvadoing day Jo (Iysıam Arp Su /JYsI9M JOM SU) uoronpoid sse.ıj pue UIeS ssew [BAIR] JO ONY
S 3192 L
significant influence on growth rates. Relative growth rates (daily mass
gain divided by prepupal mass) were 0.10-0.13 mg/mg * d in A. agestis
and L. phlaeas, 0.07-0.09 mg/mg * d in P icarus and L. tityrus, and
0.045-0.05 mg/mg * d in P bellargus.
Frass production and efficiency of food conversion (Table 5)
The ratio of larval mass gain (wet weight) and frass production (dry
weight) was at most weakly affected by ant-association in all 5 species.
In P bellargus, this ratio was lower in the experimental series with
2 L. niger ants. This series was reared later in the season than all others,
and the differences most likely indicate a change in hostplant quality
rather than any influence of ant-tending. In A. agestis, L. phlaeas and
L. tityrus, no consistent effects of ants were found. For P. icarus,
ANOVA indicated no influence of ant-association on food utilization.
However, ant-tended males had a significantly higher mass gain/frass
ratio than ant-tended females (U;,33, = 170; Z = 3.26; P < 0.002),
whereas in control experiments this sex difference did not occur
(U); = 34; P > 0.2). Overall, sex differences in this parameter were
minimal, and average values for the treatments ranged from 1.34-
1.52 mg/mg in A. agestis, 1.70-2.05 mg/mg in both Polyommatus
species, and 3.30-4.97 mg/ mg in the two Lycaena species.
Discussion
Differences in developmental parameters between males and females
were observed in all 5 species tested. Generally males developed faster
(shorter larval period, higher growth rate). This is in accordance with
the protandry of all 5 species in nature.
All species examined produce 2 or more generations per year in central
or southern Europe. The most rapid development was observed in A.
agestis and L. phlaeas. These two species produce 3-4 generations per
year in central Europe in favourable seasons. P. icarus was somewhat
slower (2-3 generations per year), and L. tityrus as well as P. bellargus
took longest to reach maturity. In the latter two species a third
generation is a very rare exception north of the Alps (EBERT & RENN-
WALD, 1991). Thus, our laboratory results are consistent with pheno-
logical observations made in the field.
Pupal weight losses were highest in P. bellargus, the species with the
longest pupal stage, and were fairly similar among the remaining
4 species. Concerning the ratio of mass gain per frass production, the
two myrmecoxenous Lycaena species far surpassed the 3 myrme-
cophilous members of the Polyommatus group. Both Lycaena species
18
feed on leaves of Rumex species (Polygonaceae). These leaves appear
to have a lower content of undigestible material than the legume
hostplants of P icarus or P. bellargus. PıErce (1985) has argued that
myrmecophily has selected for the utilization of nutrient-rich hostplants
(especially nitrogen-rich legumes and inflorescences), but obviously the
2 Lycaena species perform in a superior manner on the foliage of a
non-legume host. According to its biomass/frass ratio, A. agestis utilizes
the poorest hostplant material (leaves of Geraniaceae), but nevertheless
the caterpillars are highly myrmecophilous. The nutritional constraints
on larval myrmecophily are a rewarding field open to further inves-
tigation (BAYLIs & PIERCE, 1993).
Overall, ants had very little impact on the developmental parameters
studied, and the few marginally significant ant-effects which could be
detected were mostly beneficial. From facultatively myrmecophilous
Lycaenidae butterflies like Polyommatus icarus or Hemiargus isola it
is already known that ant-association does not necessarily pose develop-
mental costs, but may even allow overcompensation of the investment
into myrmecophily (FIEDLER & HÖLLDOBLER, 1992 ; WAGNER, 1993).
Our present data fully corroborate that pattern.
Aricia agestis and Polyommatus bellargus are both facultative myr-
mecophiles whose older larvae are almost never found without tending
ants (e.g. THOMAS & LEWINGTON, 1991). In these species, ant-
association had very limited effects on developmental parameters,
suggesting that larvae of both sexes can fully compensate for the costs
of myrmecophily. In recent experiments with A. agestis, we could even
demonstrate a beneficial effect of ant-attendance on prepupal weights
(tended individuals are ca. 10% heavier, but develop more slowly:
Hummel & Fiedler, unpublished). Polyommatus icarus is a facultative
myrmecophile with a rather loose relationship to ants (THOMAS &
LEWINGTON, 1991). Caterpillars of this species produce less secretion
from their nectar organs than P. coridon and its close relatives (FIED-
LER, 1991), suggesting a comparatively low energetic investment into
myrmecophily. Our experimental data confirm the findings of FIEDLER
& HOLLDOBLER (1992) that ant-tended P. icarus males grow larger than
untended controls, whereas tended females appear to fully compensate
for their costs of myrmecophily.
Weak male-limited benefits also occurred in myrmecoxenous Lycaena
species (weight in L. phlaeas, food conversion in L. tityrus). Caterpillars
of both species lack a dorsal nectar organ. Accordingly, their energetic
investment in interactions with ants must be low (only through the
ubiquitous pore cupola organs). Ant-associations of these species are
19
unknown in the wild, but under laboratory conditions weak and
unstable associations can be induced (FIEDLER, 1991).
As in the case of certain ant-tended aphids which show better growth
in the presence of ants (Banks & Nıxon, 1958), the physiological
mechanisms responsible for overcompensation in some lycaenid cater-
pillars remain unclear. Ant-tended caterpillars did not produce more
frass than untended controls (SAAM, 1993). Therefore, total food
consumption was probably equal between the groups. Rather, the
efficiency of food conversion into biomass may be stimulated by tending
ants. Circumstantial evidence for this hypothesis was found in A.
agestis, P. icarus and L. tityrus, where ant-tended individuals showed
enhanced conversion of food.
Alternatively, the stimulation of caterpillars could be a predominantly
behavioural phenomenon (see discussion in WAGNER, 1993). Perhaps
feeding behaviour is less often interrupted in ant-tended individuals,
facilitating a more effective food utilization. Caterpillars of P icarus,
P. coridon and other myrmecophilous species resume locomotion and
feeding more rapidly after experimental disturbance when ants are
present (Fiedler, unpublished). In the Nearctic Glaucopsyche lygdamus
(Doubleday, 1841), untended caterpillars are much more likely to drop
off the hostplant (PIERCE & EASTEAL, 1986). Developmental effects
of ant-attendance have not been studied in detail in this latter species,
but pupal weights of tended and untended individuals did not differ
(PIERCE & EASTEAL, 1986).
One could argue that, under the confined conditions of artificial ant-
associations, ants do not harvest larval secretions as eagerly as they
would do if they could transfer their crop content to their colony.
Three lines of evidence contradict this view. Firstly, caterpillars and
pupae of all 5 species tested were regularly tended by ants (and the
3 myrmecophilous species constantly so) throughout the whole experi-
mental period. Tending levels did not decrease with time. This indicates
that the ants, which had no access to alternative food sources, exerted
a permanent pressure on the lycaenid immatures to deliver their
secretions. Secondly, in P icarus (and in the myrmecoxenes L. phlaeas
and L. tityrus) the numbers of ants per larva used in our experiments
were comparable to, or even higher than, the average number of tending
ants observed so far in nature. Hence, at least in these species com-
pensation or overcompensation occurred despite a relatively high level
of ant-attendance.
Thirdly, the amounts of nectar secretion produced by single lycaenid
larvae over the third plus fourth instar are sufficiently small to be
20
sampled completely by a small number of ant workers. In P. icarus
and A. agestis, for example, individual lifetime nectar secretion volumes
amount to 10 ul or less, equivalent to approximately 1.5 mg carbo-
hydrates at most (Fiedler, Burghardt & Hummel, unpublished). How-
ever, we cannot rule out the possibility that ın future experiments
(e.g. with higher tending levels or involving other ant species) deviating
results could be obtained. The actual outcome of potentially mutualistic
interspecific interactions can be strongly shaped by environmental
conditions such as hostplant quality or density of interacting species
(CUSHMAN & WHITHAM, 1991 ; BRETON & ADDICOTT, 1992).
There is steadily increasing evidence that compensation or even over-
compensation of the energetic costs resulting from ant-association is
not uncommon among facultatively myrmecophilous lycaenid butterf-
lies. This finding could explain why facultative, and sometimes weak,
interactions with ants are so common and taxonomically widespread
across the diversity of Lycaenidae butterflies (FIEDLER, 1991). If myr-
mecophily were generally a high-cost strategy under severe selective
regimes, one would have to expect strong disruptive selection favouring
either close and obligatory myrmecophily with high costs, but high
rewards for the lycaenids, or favouring the reduction of myrmecophily.
In contrast to this expectation, facultative ant-associations appear to
be more common in lycaenid butterflies than cases of obligatory myr-
mecophily (PIERCE, 1987 ; FIEDLER, 1991). Many examples of facul-
tative interactions with ants are probably best described as low-cost
mutualisms, where the lifetime energetic investment of individual cater-
pillars accounts for a few ul of secretions. It is then not surprising
that myrmecophily is an evolutionarily rather stable component in the
life-history of so many Lycaenidae species.
A broad continuum of cost-benefit relationships in terms of myrme-
cophily does exist across the diversity of Lycaenidae butterflies. This
is reflected by the variety of developmental effects these ant-association
can have in various lycaenid species, ranging from severe costs to
substantial benefits. In general, the developmental costs for the larvae
appear to parallel the degree of obligateness of the ant-lycaenid asso-
ciations : the more dependent the larvae are on ants, the higher the
costs the ants can in turn impose. Further comparative studies on
species representing various taxonomic groups and different types of
myrmecophily will strengthen our ecological and evolutionary under-
standing of lycaenid-ant interactions.
21
Acknowledgements
We are indebted to U. Grosch, V. Hummel and T. Baumgarten for their help
in butterfly rearing and data collection. P. Seufert kindly provided live stock
for part of our rearings, and K. Sommer gave us access to some ant colonies.
F. Burghardt and V. Hummel kindly contributed some unpublished data.
We are grateful to B. Hölldobler and two anonymous referees for their critical
comments on the manuscript. Supported from the Leibniz Prize of the Deut-
sche Forschungsgemeinschaft to B. Hölldobler.
References
BALLMER, G. R. & Pratt, G. F., 1992. Quantification of ant attendance
(myrmecophily) of lycaenid larvae. J. Res. Lepid. 30 : 95-112.
Banks, C. J. & Nixon, H. L., 1958. Effects of the ant, Lasius niger L., on
the feeding and excretion of the bean aphid, Aphis fabae Scop. J. Exp.
Biol. 35 : 703-711.
Bay is, M. & PIERCE, N. E., 1991. The effect of host plant quality on the
survival of larvae and oviposition by adults of an ant-tended lycaenid
butterfly, Jalmenus evagoras. Ecol. Ent. 16 : 1-9.
BayLis, M. & Prerce, N. E., 1992. Lack of compensation by final instar
larvae of the myrmecophilous lycaenid butterfly, Jalmenus evagoras, for
the loss of nutrients to ants. Physiol. Ent. 17 : 107-114.
BAyLıs, M. & Pierce, N. E., 1993. The effects of ant mutualism on the
foraging and diet of lycaenid caterpillars. /n Stamp, N. E. & CASEy,
T. M. (Eds.) : Caterpillars : ecological and evolutionary constraints on
foraging. Chapman & Hall, New York/ London, pp. 404-421.
BRETON, L. M. & ADDICOTT, J. F., 1992. Does host-plant quality mediate
aphid-ant mutualism? Oikos 63 : 253-259.
COTTRELL, C. B., 1984. Aphytophagy in butterflies: its relationship to
myrmecophily. Zool. J. Linn. Soc. 79 : 1-57.
CUSHMAN, J. H., RASHBROOK, V. K. & BEATTIE, A. J., 1994. Assessing benefits
to both participants in a lycaenid-ant association. Ecology 75 : 1031-1041.
CusHMAN, J. H. & WHITHAM, T. G., 1991. Competition mediating the out-
come of a mutualism : Protective services of ants as a limiting resource
for membracids. Amer. Nat. 138 : 851-865.
DeVries, P. J., 1990. Enhancement of symbioses between butterfly caterpillars
and ants by vibrational communication. Science 248 : 1104-1106.
EBERT, G. & RENNWALD, E. (Eds.), 1991. Die Schmetterlinge Baden-
Württembergs, Band 2 : Tagfalter IL. E. Ulmer, Stuttgart.
ELGAR, M. A. & Pierce, N. E., 1988. Mating success and fecundity in an
ant-tended lycaenid butterfly. /n CLUTron-Brock, T. H. (Ed.) : Repro-
ductive success: studies of selection and adaptation in contrasting
breeding systems. Chicago Univ. Press, pp. 59-71.
FIEDLER, K., 1990. Effects of larval diet on the myrmecophilous qualities
of Polyommatus icarus caterpillars (Lepidoptera : Lycaenidae). Oecologia
83 : 284-287.
22
FIEDLER, K., 1991. Systematic, evolutionary, and ecological implications of
myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilio-
noidea). Bonner zool. Monogr. 31 : 1-210.
FIEDLER, K. & HÔLLDOBLER, B., 1992. Ants and Polyommatus icarus
immatures (Lycaenidae) — sex-related developmental benefits and costs
of ant attendance. Oecologia 91 : 468-473.
FIEDLER, K. & MaAscuwitz, U., 1988. Functional analysis of the myrme-
cophilous relationships between ants (Hymenoptera: Formicidae) and
lycaenids (Lepidoptera : Lycaenidae). III. New aspects of the function
of the retractile tentacular organs of lycaenid larvae. Zool. Beitr. Berlin
N. F. 31 : 409-416.
FIEDLER, K. & Mascuwitz, U., 1989. The symbiosis between the weaver
ant Oecophylla smaragdina and Anthene emolus, an obligate myrme-
cophilous lycaenid butterfly. J. Nat. Hist. 23 : 833-846.
Hiri, C. J. & Prerce, N. E., 1989. The effect of adult diet on the biology
of butterflies I. The common imperial blue, Jalmenus evagoras. Oecologia
81 : 249-257.
Mauıicky, H., 1969. Versuch einer Analyse der ökologischen Beziehungen
zwischen Lycaeniden (Lepidoptera) und Formiciden (Hymenoptera).
Tijdschr. Ent. 112 : 213-298.
MASCHWITZ, U., Wüst, M. & ScHURIAN, K., 1975. Bläulingsraupen als
Zuckerlieferanten für Ameisen. Oecologia 18 : 17-21.
PETERSON, M. A., 1993. The nature of ant attendance and the survival of
larval Icaricia acmon (Lycaenidae). J. Lepid. Soc. 47 : 8-16.
Pierce, N. E., 1983. The ecology and evolution of symbioses between lycaenid
butterflies and ants. Ph.D. thesis, Harvard Univ., Cambridge/ Massa-
chusetts.
Pierce, N. E., 1985. Lycaenid butterflies and ants: selection for nitrogen-
fixing and other protein-rich food plants. Amer. Nat. 125 : 888-895.
Pierce, N. E., 1987. The evolution and biogeography of associations between
lycaenid butterflies and ants. Oxford Surv. Evol. Biol. 4 : 89-116.
Pierce, N. E. & EASTEAL, S., 1986. The selective advantage of attendant
ants for the larvae of a lycaenid butterfly, Glaucopsyche lygdamus. J.
Anim. Ecol. 55 : 451-462.
Pierce, N. E., Kircuine, KR. L., BUCKLEY, KR. C., TAYLOR, M. F. J. & BENBow,
K. F., 1987. The costs and benefits of cooperation between the Australian
lycaenid butterfly, Jalmenus evagoras, and its attendant ants. Behav.
Ecol. Sociobiol. 21 : 237-248.
Rossins, R. K., 1991. Cost and evolution of a facultative mutualism between
ants and lycaenid larvae (Lepidoptera). Oikos 62 : 363-369.
SAAM, C., 1993. Untersuchungen zum Einfluß der Ameisenassoziation auf
die Individualentwicklung einiger europäischer Bläulingsarten. Diplom
thesis, Dep. Zool., Univ. Würzburg.
Sachs, L., 1992. Angewandte Statistik. 7th edition. Springer, Berlin/ Heidel-
berg/ New York
23
SCHURIAN, K. G., 1989. Revision der Lysandra-Gruppe des Genus Polyom-
matus Latr. (Lepidoptera : Lycaenidae). Neue ent. Nachr. 24 : 1-181.
Tautz, J. & FIEDLER, K., 1992. Mechanoreceptive properties of caterpillar
hairs involved in mediation of butterfly-ant symbioses. Naturwissen-
schaften 79 : 561-563.
Tuomas, J. A., ELMES, G. W. & WARDLAw, J. C., 1993. Contest competition
among Maculinea rebeli butterfly larvae in ant nests. Ecol. Ent. 18:
73-79.
Tuomas, J. A. & LEWINGTON, R., 1991. The butterflies of Britain and Ireland.
Dorling Kindersley, London/ New York/ Stuttgart.
WAGNER, D., 1993. Species-specific effects of tending ants on the development
of lycaenid butterfly larvae. Oecologia 96 : 276-281.
24
Nota lepid. 17 (1/2) : 25-29 ; 30.X1.1994 ISSN 0342-7536
Oviposition behaviour in Lycaena thetis Klug
(Lepidoptera : Lycaenidae)
Konrad FIEDLER* & Klaus G. SCHURIAN**
* Theodor-Boveri-Biozentrum der Universität, Zoologie II, Am Hubland, D-97074 Würzburg,
Germany
** Am Mannstein 13, D-65779 Kelkheim-Fischbach, Germany
Summary
The oviposition behaviour of Lycaena thetis was observed in the Aladag
mountains, southern Turkey. Females drop their eggs singly into the spiny
cushions of the larval foodplant (Acantholimon spp., Plumbaginaceae).
Zusammenfassung
Das Eiablageverhalten von Lycaena thetis wurde im Aladag-Gebirge (Süd-
Türkei) beobachtet. Die Weibchen lassen ihre Eier einzeln in die dornigen
Kugelpolster ihrer Wirtspflanze (Acantholimon spp., Plumbaginaceae) fallen.
The life histories of European or North American species of the
Lycaenini (“Copper butterflies”) are, in general, well known. For most
Asian Lycaena Fabricius, 1807, species, however, even basic biological
information on hostplants, voltinism, or diapause stages is lacking (cf.
FIEDLER, 1991). Recently, ToLMAN (1993) published a detailed account
of the larval biology of Lycaena thetis Klug, 1834, from southern
Greece. Since Tolman based his description on field-collected young,
hibernated larvae, the oviposition behaviour of L. thetis remained
unknown. Furthermore, Tolman’s paper deals with the westernmost
populations of L. thetis. Because the distribution of L. thetis extends
throughout Asia Minor to northern Iran (SCHURIAN & HOFMANN,
1982), it remained to be tested whether populations in the heart of
the species’ range utilize the same or similar hostplants.
On 15.vi.1993, between 11.00-15.00 EEST, we had the opportunity
to observe the unusual oviposition behaviour of L. thetis in a population
of southern Turkey. The habitat was a south-facing steep slope in a
valley of the Aladag mountains (Prov. Nidge), approximately 1800-
25
1900 m above sea level. This slope was mostly covered by limestone
boulders and scree. The sparse vegetation contained Juniperus shrubs
and single conifer trees. Spiny, cushion-forming, perennial plants
(Astragalus and Acantholimon spp.) which are relatively immune to
overgrazing by the abundant sheep and goats, formed the lower
vegetation between the boulders.
#
É #
ft À
mit 4
#
Fig. 1. Large contiguous cushions (total diameter > 1 m) of Acantholimon sp. (Plum-
baginaceae), the hostplant of Lycaena thetis.
When we first walked through the habitat late in the morning, only
few territorial males and nectaring females of L. thetis were on the
wing. Males preferably basked on barren ground. Around noon, when
the air temperatures had reached about 30°C, females became increa-
singlv active. They often visited the last flowers of Acantholimon spp.
(Plumbaginaceae). This cushion plant with extremely spiny, needle-
like leaves (Fig. 1) is the hostplant of L. thetis in Greece (TOLMAN,
1993), although we were unaware of his paper at the time of our
observations. Females examined the Acantholimon cushions in the
fluttery searching flights that typically precede oviposition in many
lycaenid butterflies. After alighting, each female would crawl about
on the cushions for several minutes, repeatedly curling its abdomen
26
and probing the plant surface with the antennae and ovipositor.
However, despite intensive close examination of the respective plants
after the females had flown off, we failed to find any eggs attached
to the twigs or leaves.
Finally, we succeeded in observing the actual oviposition act. When
viewed in contre-jour, we could clearly see that after up to 5 minutes
of intensive crawling and probing the hostplant, the female eventually
inserts its ovipositor between the needle-like leaves and simply drops
a single egg into the cushion. In one case, the egg by chance stuck
to a twig deep within an Acantholimon cushion, but unfortunately
it fell to the ground during our attempt to secure it. The hemispherical
egg was rather large (ca. | mm in diameter) and showed the rough
chorionic sculpturing typical for Lycaena eggs. In total, we observed
10 successful oviposition acts, all in the same manner. On at least twice
as many occasions, a female left the hostplant without laying an egg.
Ovipositions only occurred during the hottest hours around noon.
When we left the habitat (15.00), the females tended to bask for long
periods on the Acantholimon cushions, and flight activity evidently
decreased. We followed various individual females for dozens of metres.
These females ignored many potential hostplant cushions and alighted
to probe quite a number of Acantholimon plants before an egg was
laid. Hence, they appear to be very choosy, but we do not know the
factors that finally elicit oviposition. Egg-laying occurred on small as
well as on large plants (0 = 30-100 cm) and not invariably in full sun,
although high temperatures are clearly required. All eggs were dropped
into the central part of a cushion, not at the edges.
To obtain oviposition in captivity, we collected a total of 10 females
from various habitats in southern Turkey in August 1993. These were
caged in a plastic bottle (1.5 1) lined with moist filter paper, twigs of
the hostplant Acantholimon as oviposition substrate, and sugar solution
as food. However, despite exposing the females to various conditions
(direct sunlight, shadow, high temperatures, high or low humidity),
not a single egg was laid. The last female died after 14 days in captivity.
When earlier attempting to obtain eggs from L. thetis in captivity (1977
and 1984), females had been confined with an erroneously presumed
hostplant (Rumex sp., Polygonaceae) without any success. Our failure
to induce oviposition in captivity contrasts sharply with successful
attempts involving various other Lycaenidae species (Lycaena candens
(Herrich-Schäffer, 1844), Agrodiaetus spp., Polyommatus spp.) under
similar conditions. Females of L. thersamon (Esper, 1784) (like L. thetis,
often assigned to the “subgenus” Thersamonia Verity, 1919), however,
2
laid only few eggs, suggesting that in both species highly xerothermic
conditions (and presumably unknown factors) are essential for egg-
laying.
Dropping the eggs instead of attaching them onto the hostplant is a
very rare behaviour in Lycaenidae butterflies, but has been recorded
from the Nearctic Lycaena rubidus (Behr, 1866 ; see Funk, 1975). In
L. thetis, the females may thereby avoid fatal injuries inflicted by the
extremely spiny leaves, and the eggs are probably protected against
many enemies within the dense thorny Acantholimon cushions. It re-
mains to be proven whether L. thetis hibernates in the egg stage or
whether the larvae hatch in late summer to diapause. Both strategies
occur within the genus Lycaena. Since TOLMAN (1993) found larvae
of 4-7 mm length shortly after hibernation in Greece, diapause as a
young caterpillar seems more likely.
Our observations confirm that Acantholimon is the hostplant not
only for Greek, but also for Turkish L. thetis populations. The plant
family Plumbaginaceae is well represented in eremic steppe habitats.
In addition, Plumbaginaceae are not too distantly related to the usual
Polygonaceae hostplants of most Lycaena species (both plant families
belong to the subclass Caryophyllidae). SCHURIAN & HOFMANN (1982)
explicitly mentioned the presence of Acantholimon (in part quoted as
“ Acantolimnus”) in habitats of L. eberti Forster, 1972, and LUKHTANOV
& LUKHTANOV (1994) recorded the hostplant of L. solskyi (Erschoff,
1874) as Acantholimon. Therefore, additional species of Asian Lycaena
might also use Acantholimon as hostplant. Fucus (1989) reported that
L. thetis (especially females) preferably visited another spiny cushion
plant, Drypis spinosa (Caryophyllaceae), in central Greece for nectaring
and basking. Whether this plant species could serve as alternative larval
hostplant, needs to be demonstrated.
References
FIEDLER, K., 1991. Systematic, evolutionary, and ecological implications of
myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilio-
noidea). Bonner zool. Monogr. 31 : 1-210.
Fucus, J., 1989. Ein Vorkommen von Thersamonia thetis (Klug) in Mittel-
griechenland (Lep., Lycaenidae, Lycaeninae). Galathea Ber. Kreises
Nürnberger Entomologen 5(1) : 11-18.
Funk, R. S., 1975. Association of ants with ovipositing Lycaena rubidus
(Lycaenidae). J. Lepid. Soc. 29 : 261-262.
LUKHTANOV, V. & LuKHTANov, A., 1994. Die Tagfalter Nordwestasiens.
Herbipoliana 3 : 1-440.
28
SCHURIAN, K. G. & HorMmann, P., 1982. Die Thersamonia-Gruppe (Lepi-
doptera, Lycaenidae). Nachr. entomol. Ver. Apollo, Frankfurt, Suppl. 2:
1-59.
ToLMAN, T., 1993. The natural history, ecology and distribution of Turanana
panagaea (Herrich-Schäffer, [1851]) and Lycaena thetis (Klug, 1834) in
Greece (Lepidoptera : Lycaenidae). Phegea 21(3) : 81-92.
29
Nota lepid. 17 (1/2) : 30 ; 30.X1.1994 ISSN 0342-7536
Book reviews — Buchbesprechungen — Analyses
Oecophorine Genera of Australia. I. The Wingia Group (Lepidoptera :
Oecophoridae). Monographs on Australian Lepidoptera, vol. 3. Ian F.
B. Common. xvi, 390 pp., 712 Figs. 25.9 X 18.2 cm, hardback. CSIRO
Publications, 1994. ISBN 0 643 05524 X. Obtainable from CSIRO
Publications, 314 Albert St., East Melbourne, Victoria 3002, Australia,
or Apollo Books, Kirkeby Sand 19, DK-5771 Stenstrup, Denmark.
Price : $US 100, or $AS 100 in Australia. A discount of 25% is given
to subscribers of the series.
The third volume of this major work on the Australian Lepidoptera fauna
deals with the genera of the subfamily Oecophorinae. With 1886 valid named
species and an estimated species total of more than 5000, the Oecophorinae
is by far the best represented group of Lepidoptera in Australia. The wealth
of species in Australia is disproportionate, being about 70% of the world
fauna. With 170 named genera and an estimated total of 275, clearly all cannot
be treated in a single volume. The present volume is the first of three parts
and covers the 91 genera of the Wingia group. The author is well-known for
his excellent book ‘Moths of Australia’ (see review in Nota lepid. 14 (3) : 292).
As in the previous volume, introductory chapters on ‘Phylogeny’, including a
tentative phylogenetic analysis of the subfamily genera, ‘Morphology’, ‘Biology’
and ‘Diversity and Distribution’ are given.
The only synapomorphies of the Wingia group are to be found on the ab-
dominal sternum and in the male genitalia. It is not stated however whether
an experienced lepidopterist can recognise most species belonging to this group
on external characters only. A key to the genera is provided, based on external
and internal morphological features. The treatment of each species follows
the same format as in the previous volume (for review, see Nota lepid. 16 (3/4) :
265-266).
The high scientific quality of the series is maintained in this volume and as
such can be highly recommended to students of this family or of the Australian
Lepidoptera fauna in general. Unexpectedly, considering the usually high stan-
dard of production, in the reviewer’s copy the text was bound to the cover
upside down !
Steven WHITEBREAD
30
Nota lepid. 17 (1/2) : 31-43 ; 30.X1.1994 ISSN 0342-7536
Morphology and taxonomy of the species
belonging to the genus Myinodes Meyrick, 1892
(Lepidoptera : Geometridae)
Axel HAUSMANN
Zoologische Staatssammlung, Münchhausenstr. 21, D-81247 München, Germany
Summary
Two new species and one new subspecies of the genus Myinodes Meyrick,
1892 are described : Myinodes interpunctaria atlantica ssp. n. from Spain,
Myinodes constantina sp. n. from Algeria and Myinodes shohami sp. n. from
Jordan. Until recently, the genus was considered to be monotypical, with M.
interpunctaria (Herrich-Schäffer, 1839) the only known species.
Zusammenfassung
Myinodes interpunctaria (Herrich-Schaffer, 1839) war in der Literatur bisher
stets als einzige Art (Typusart) der Gattung Myinodes betrachtet worden. Eine
genauere morphologische Analyse ergab, daß die aus Nordafrika, Südeuropa
und Vorderasien bekannten Populationen einen aus mehreren verschiedenen
Arten bestehenden Komplex bilden. In der vorliegenden Arbeit werden zwei
neue Arten und eine neue Unterart beschrieben : Myinodes interpunctaria
atlantica ssp. n. aus Spanien, Myinodes constantina sp. n. aus Algerien und
Myinodes shohami sp. n. aus Jordanien.
Resume
Description de deux nouvelles espèces et d’une nouvelle sous-espèce du genre
Myinodes Meyrick, 1892 : Myinodes interpunctaria atlantica ssp. n. d’Espagne,
M. constantina sp. n. d’Algerie et M. shohami sp. n. de Jordanie. Jusqu’a tout
récemment, ce genre était considéré comme monotypique avec M. interpunc-
taria (Herrich-Schäffer, 1839) comme seule espèce connue.
Until recently, the genus Myinodes Meyrick, 1892 was considered to
comprise only the species interpunctaria (Herrich-Schäffer, 1839). De-
tailed morphological studies have revealed, however, that the popu-
lations known from northern Africa, southern Europe and the Middle
East constitute a complex of different species. In this paper two new
Sil
species and one new subspecies are described : Myinodes interpunctaria
atlantica ssp. n. from Spain, Myinodes constantina sp. n. from Algeria
and Myinodes shohami sp. n. from Jordan.
Systematic part
Abbreviations :
BUS : Bet Ussishkin Museum, Tel Dan, N.-Israel.
NHMW : Naturhistorisches Museum Wien, Austria.
NLK : Naturkundliche Landessammlungen Karlsruhe, Germany.
TAU : Tel Aviv University Collection, Israel.
ZFMK : Zoologisches Forschungsinstitut und Museum Alexander Koenig,
Bonn, Germany.
ZSM : Zoologische Staatssammlung Miinchen, Germany.
Myinodes Meyrick, 1892
Eusarca Herrich-Schaffer, 1847 (partim)
Pseudotagma Staudinger, 1892
Type species : Sterrha interpunctaria Herrich-Schäffer, 1839 : pl. 6 and wrap-
per ; by monotypy.
VENATION : Hindwing Sc + RI and Rs not fused (as in the subfamily
Alsophilinae), M2 tubular. Tongue developed, length about 4 mm.
Frons strongly convex. Palpi long. Male antennae with two rows of
cilia, female antennae simple, finely ciliate beneath. Male and female
hindlegs long and slender, with two pairs of long spurs. In the male
genitalia uncus developed, often with a subapical lobe ; juxta with caudal
excavation ; costal part of valva strongly sclerotized, harpe prominent ;
aedoeagus long, slender, with one cornutus, laterally sclerotized (dif-
ferently in each species). In the female genitalia apophyses weak ; ductus
bursae comparatively long and stout ; bursa copulatrix longitudinally
ribbed (not in M. constantina), without signa, joins ductus bursae
laterally on the latter. Ansa of the tympanon apically pointed. In most of
these characters very similar to the genus Eumegethes Staudinger, 1898.
The systematic position of the genera Myinodes and Eumegethes is
not the subject of this paper, They are usually placed in the subfamily
“Oenochrominae” (s.1.). However, they are not closely related with this
subfamily (s.str.), which is mainly distributed in SE Asia and Australia,
or with the subfamily Alsophilinae.
Myinodes interpunctaria interpunctaria (Herrich-Schaffer, 1839)
Sterrha interpunctaria Herrich-Schäffer, 1839 : pl. 6 and wrapper. Locus typi-
cus : Sicily.
32
‘sqpouldy snus3 au} JO exe} snoLIeA oy} Jo UOTNGIYSIG “| ‘ST
"u "ds Tweyoys SepoutAWy
"u ‘ds eurt3ue3suo9 SapoutAy
"u "dsqns eatyuetg4e etzezoundzaqgut sapoutihw
"S-"H erıe3aundagqurt eteqsoundiaequt
33
Sterrha interpunctaria : Herrich-Schäffer, 1840 : 104.
Eusarca interpunctaria : Herrich-Schäffer, 1847 : 34.
Eusarca interpunctaria : Herrich-Schäffer, 1848 : pl. 64, fig. 390.
Fidonia interpunctaria : Heydenreich, 1851 : 54.
Phasiane? interpunctaria : Lederer, 1853 : 180.
Selidosema? interpunctaria : Guenée, 1857 : 146.
Anisopteryx interpunctaria : Gumppenberg, 1893 : 396.
Eusarca interpunctaria : Staudinger & Rebel, 1901 : 322.
Eusarca interpunctaria : Spuler, 1904 : 86.
Eusarca interpunctaria : Spuler, 1907 : pl. 71b, fig. 1.
Myinodes interpunctaria : Prout, 1910 : 20, pl. 1, fig. 13.
Myinodes interpunctaria : Prout, 1912a : 4, pl. 1b.
Myinodes interpunctaria : Prout, 1912b : 32.
Eusarca interpunctaria : Culot, 1920 : 49, pl. 45, fig. 932.
Eusarca interpunctaria : Oberthür, 1922 : 307.
?Myinodes interpunctaria : Turati, 1925 : 8.
?Myinos interpunctaria : Krüger, 1939 : 352.
Myinoides interpunctaria : Mariani, 1943 : 81.
Myrinodes interpunctaria : Schmidlin, 1964 : 82.
Myrinodes interpunctaria : Parenzan, 1976 : 162, fig. 6a.
Myinodes interpunctaria : Fletcher, 1979 : 133.
MATERIAL EXAMINED: 16, Sicily, coll. Failla; 1 4, S. Italy, Basilicata, F.
Basento, Trivigno Scalo, 28.II1.1977, leg. P. Parenzan, coll. ZSM ; 2 88, S.
Italy, Puglia, Mte. Camplo, Laterza (TA), 21.111.1971, leg. P. Parenzan, coll.
ZSM; 1666, Tunisia, Tunis distr., El Gouina, 9.11.-4.111.1960, leg. H.P.
Müller, coll. ZSM ; 2 99, Algeria s., Algier Distr., El Aziza, 26.111.1989, leg.
Kuchler jr., coll. K. Kuchler; 1 9, Algeria, Constantine, leg. Olivier, coll.
ZFMK ; 1 9, Algeria, Guelt-es-Stel, 19.1V.1931, leg. Predota, coll. ZFMK.
7 OG, 3 QQ dissected.
DISTRIBUTION (Fig. 1): Sicily, S. Italy (Basilicata and Puglia), N.
Tunisia, N. Algeria. The local populations of Tripolitania and Cyrenaica
have to be preliminarily regarded as belonging to the nominate
subspecies.
EXTERNAL MORPHOLOGY : Palpi: length 1.25-1.35 mm, scales dark
brown, only upperside white. Frons (Fig. 8) with two projections.
Length of cilia of male antenna about 0.14 mm, somewhat exceeding
thickness of shaft (0.12 mm).
Wincs : Forewing length, male : 14.0-15.2 mm ; female (Algeria) : 11.4-
13.7. Postmedial line very slightly dentate, at inner margin not inclined
toward wing base. White intervenal line in subterminal area of forewing
apex crossing postmedial fascia. Postmedial line and intervenal lines
sharply bordered. Small terminal spots black, trianguliform, surrounded
by forked white intervenal line.
34
Figs 2-7. Myinodes spp. 2 — M. interpunctaria atlantica ssp. n., 4, Holotypus ;
3 — M. interpunctaria atlantica ssp. n., Q, Paratypus ; 4 — Myinodes constantina
sp. n., 6, Holotypus ; 5 — M. constantina sp. n., 9, Paratypus ; 6 — M. shohami
sp. n., 6, Holotypus ; 7 — M. shohami sp. n., Q, Paratypus.
MALE GENITALIA (Fig. 10a-d): Uncus short, with stout subapical
processus. In juxta caudal median notch very deep, basis of juxta
forked. Valva costa broad, smoothly edged. Caudal directed spine
(harpe) prominent, pointed, slightly curved. Basal lobe of harpe strongly
convex, With numerous small spines. Aedoeagus slender and long (mean
1.7 mm). Cornutus weakly sclerotised, situated subterminally. Aedoea-
gus bearing a longitudinal row of about four sharp, stoutly sclerotized
teeth in terminal part. In the male from Sicily there are six teeth,
35
perhaps an individual aberration. In the Tunisian males these teeth
are ısolated from each other.
FEMALE GENITALIA (Fig. 14): Females examined from Algeria have
a comparatively long and narrow ductus bursae, its left lateral margin
concave. Bursa copulatrix broad and large, but narrower than in the
spanish subspecies. Caudal edge of lamella postvaginalis convex.
HABITAT : Not above 900 m, mostly from 0-300 m. In Southern Italy
abundant in a xerothermic locality (Mte. Camplo) with remnants of
mediterranean macchia.
FLIGHT PERIOD : Beginning of February to mid-April. The Tripolitanian
specimen mentioned in KRUGER (/.c.) taken in January.
Myinodes interpunctaria atlantica subsp. n. (Figs 2, 3)
Myinodes interpunctaria : Exposito, 1978 : 38.
Myiniodes interpunctaria : Rungs, 1981 : 223.
HoıoTyPE: @, S. Spain, Prov. S. Nevada, Alcolea, 5.1V.1991, leg. Kuchler
jr., coll. ZSM, Prep.No. G 6825.
PARATYPES : | ®, S. Spain, Prov. S. Nevada, Alcolea, 1.1V.1991, leg. Kuchler
jr., coll. ZSM ; 16, id., 5.1V.1991, leg. Kuchler jr., coll. Ky Kuchen a:
S. Spain, Fuerte Higuera, Alicante, 2.1V.1993, leg. Kuchler jr., coll. K.
Kuchler ; 3 35, S. Spain, Prov. Gador, Beria, 4.1V.1991, leg. Kuchler jr., coll.
K. Kuchler ; 18, S. Spain, Prov. Cadiz, Villaluenga, 870m, 13.1V.1986, leg.
et coll. A. Exposito ; 1 &, S. Spain, Prov. Malaga, Ronda, Cmo. Carbonera,
15.-28.111.1972, leg. et coll. A. Exposito ; 1 4, C. Spain, Toledo, 24.V.1972,
leg. J. Calle, coll. A. Exposito ; 3 @4, SW. Morocco, Marrakesch, O. Tensift,
12.11.1974, leg. Friedel, coll. M. Sommerer ; 1 6, id., coll. ZSM; 1 95 W.
Morocco, Zehroun, Mrassine, 1.-15.111.1921, leg. H. Powell, coll. ZFMK.
7 G&, 3 PQ dissected.
DISTRIBUTION (Fig. 1) : C. and S. Spain, W. and N. Morocco.
EXTERNAL MORPHOLOGY : Palpi: Length in both sexes somewhat
variable 1.00-1.25 mm, shorter than in nominate subspecies, dark
brown, only upperside white. Frons with two projections. Length of
cilia of male antenna about 0.11 mm, not exceeding thickness of shaft
(0.11 mm).
WINGs : Indistinguishable from M. i. interpunctaria. Forewing length,
male : 13.6-16.8 mm ; female : 13.2-13.8 mm.
MALE GENITALIA (Fig. 11a-d): Uncus, juxta and costal part of the
valva similar to M. i. interpunctaria. Harpe prominent, pointed, some-
what more curved than in nominate subspecies. Basal lobe of harpe
slightly convex, not so heavily rounded. Aedoeagus slender and long
36
Figs 8, 9. Head of Myinodes spp. 8 — M. interpunctaria H.-S. ; 9 — M. constan-
tina sp. n.
(mean 1.7 mm). Cornutus as in typical M. i. interpunctaria. Aedoeagus
terminally heavily sclerotized, more than in nominate subspecies,
bearing row of 3 or 4 sharp, lateral teeth.
FEMALE GENITALIA (Fig. 15) : Ductus bursae shorter and broader than
in specimens from Algeria. Caudal edge of lamella postvaginalis slightly
concave. Bursa copulatrix very similar, somewhat broader.
FLIGHT PERIOD : S. Spain mid-March to mid-April ; Morocco first half
of March. The very late record from Toledo could indicate a later
flight period in C. Spain, but this needs confirmation.
Myinodes constantina sp. n. (Figs 4,5)
HoLoTypPE : 4, Algeria, Lambese, II-III.1913, leg. Sari Lakhdar ben Laouss,
coll. ZFMK, Prep. No. Hausm. 7910.
PARATYPES : 4464, Algeria, Lambese, II-IIL.1913, leg. Sari Lakhdar ben
Laouës, coll. ZFMK ; 1 @, id., coll. ZSM ; 19, Algeria, Guelt-es-Stel near
Boghari, III-IV.1914, leg. Domenech Joseph, coll. ZSM ; 1 ©, id., coll. ZFMK ;
1, Tunisia, Kroumirie, Soudia, 24.V.1941, leg. Chnéour, coll. ZSM. 3 42,
2 QQ dissected.
DISTRIBUTION (Fig. 1): N. Algeria: Saharan Atlas and Constantine
district. In Guelt-es-Stel sympatric with M. interpunctaria. NW. Tunisia.
EXTERNAL MORPHOLOGY : Palpi: Length in both sexes 1.40-1.60 mm,
longer than in the other species, dark brown, upperside and basal scales
near tongue white. Frons (Fig. 9) with only one central projection.
Length of cilia of male antenna about 0.18 mm, exceeding thickness
of shaft (0.12 mm).
Wins : Forewing length, male : 14.7-15.7 mm ; female : 12.9-13.5 mm.
Postmedial line not dentate, at inner margin strongly inclined toward
wing base. White intervenal line in forewing apex very short, length
about 1/3 of subterminal area. Postmedial line and intervenal lines
Su
indistinctly bordered. Antemedial line completely lacking. Small ter-
minal spots black, punctiform. Intervenal lines near margin not forked,
and not encircling terminal spots. Hindwings brighter than in the other
species.
MALE GENITALIA (Fig. 12a-d) : Uncus long, with very small subapical
processus. Caudal median notch of juxta very deep, caudal lobi pointed,
basis convex. Costal part of valva sinus shaped. Harpe prominent, less
pointed than in M. interpunctaria, strongly curved, without spines.
Basal lobe of harpe lacking. Aedoeagus slender and very long (mean
1.9 mm). Cornutus situated subterminally, broader and more sclerotized
than in M. interpunctaria. Aedoeagus terminally bearing a long digiti-
form and heavily sclerotized processus without teeth.
FEMALE GENITALIA (Fig. 16) : Ductus bursae long, straight. Bursa copu-
latrix small, irregularily shaped and not longitudinally ribbed as in
the other species.
FLIGHT PERIOD : No precise data available (February to May”).
Myinodes shohami sp. n. (Figs 6, 7)
Pseudotagma interpunctaria : Staudinger, 1892 : 168.
Pseudotagma interpunctaria : v. Kalchberg, 1897 : 182.
Eusarca interpunctaria : Amsel, 1933 : 109.
Myinodes interpunctaria : Wehrli, 1934 : 2.
Eusarca interpunctaria : Bodenheimer, 1937 : 88.
Myinodes interpunctaria : Ellison & Wiltshire, 1939 : 43
Myinodes interpunctaria : Wiltshire, 1957 : 101.
Myinodes interpunctaria : Hausmann, 1991 : 115, pl. 10, fig. 63.
HoıoTyPE : 4, NE. Jordan, Qasr el Hallabad, 17.11.1958, leg. Klapperich, coll.
ZSM
PARATYPES : | @Q; C. Israel, En Gedi (Dead Sea), January, leg. G. Müller,
coll. ZSM; 18, id., 1111989; 1 © ad; 8.1IL1989; 18, id.; colE PAUSE
C Israel, Enot Zugim (Dead Sea), leg. G. Müller, coll. ZSM>; FR
N. Israel, N. Ammud, 8.111.-19.111.1991, leg. R. Ortal, coll. ZSM ; 5 88, id.,
coll. TAU ; 1 @, N. Israel, Hula Reserve, 19.111.1991, leg. R. Ortal, coll. ZSM ;
2 Oo, id., 5.-8.111.1992 ; 18, N. Jordan, Amman, 8.11.1958 ; leg. Klapperich,
coll. NLK; 1 ©, id., 28.VIIL.1967 (date probably mislabelled) ; 15 19, N.
Jordan, Rumman, 28.11.1968, leg. Klapperich, coll. NLK ; 1 ®, id., 28.11.1965,
leg. Klapperich, coll. ZSM ; 3 6&, N. Israel, Sede Nehamya, leg. Shoham, coll.
BUS ; 1, id., coll. S. Yathom ; 1 4, N. Israel, Neot Mordehai, leg. Shoham,
coll. BUS; 16, N. Israel, Gazith, coll. TAU; 1 @;-C Israel, “"Palaesewa
Tel Aviv, leg. Bodenheimer, coll. NHMW; 19, N. Israel, “Syria”, Haifa,
coll. NHMW. 8 38,3 QQ dissected.
38
Figs 10-13. @ genitalia of Myinodes spp. 10 — M. interpunctaria interpunctaria
H.-S. (topotypical : Sicily); 11 — M. interpunctaria atlantica ssp. n. (Holotypus) ;
12 — M. constantina sp. n. (Paratypus) ; 13 — M. shohami sp. n. (Paratypus, Jordan) ;
a — Uncus ; b = Juxta (scale bar = 0,5 mm). c = valva; d = Aedoeagus (scale
bar = 1 mm).
FURTHER MATERIAL EXAMINED : About 20 more or less damaged specimens
from N. and C. Israel, coll. ZSM ; 1 8, “Syria”, coll. NHMW ; 16, id., coll.
ZSH; 16, “Syria”, coll. ZFMK ; 446, S. Turkey, Taurus, Marasch, 600-
900m, 111.1930, les. Einh>- Sir, coll. ZFMK; 14, id., coll) ZZHEL Gar
Turkey, Amanus, “Syria”, Akbés, 1895, coll. ZFMK.
DistTriBuTIion : C. and N. Israel (AMSEL, 1933), N. Jordan (HAUSMANN,
1991), Lebanon (ELLIsoN & WILTSHIRE, 1939: Beirut), S. Turkey
(Marasch, Akbes, Mardin ; cf. WEHRLI, 1934) and N. Iraq (WILTSHIRE,
1957). As yet no species of this genus have been found in Egypt.
EXTERNAL MORPHOLOGY : Palpi: Length in both sexes 1.15-1.30 mm,
much shorter than in Myinodes constantina, dark brown, upperside
and basal scales near tongue white. Frons (cf. Fig. 9) with only one
central projection. Length of cilia of male antenna about 0.16 mm,
exceeding thickness of shaft (0.12 mm).
WINGs : Forewing length, male : 12.5-14.6 mm ; female : 10.6-11.4 mm.
Postmedial line strongly dentate, more outwardly curved than in the
other species, at inner margin not inclined toward base. White inter-
venal line in forewing apex longer than in Myinodes constantina, but
not crossing postmedial fascia. Postmedial line and intervenal lines
sharply bordered. Terminal spots black, punctiform and small, thinly
encircled by white forked intervenal line. Forewings of specimens from
S. Turkey slightly darker than in those from Jordan and Israel.
MALE GENITALIA (Fig. 13a-d) : Uncus very long, subapical processus
lacking. Caudal excavation of juxta U-shaped, much less deep than
in the other species, basis of juxta convex. Costal part of the valva
narrower than in the other species, more convex and distally pointed.
Harpe prominent, S-shaped, without spines. Basal lobe of harpe lacking.
Aedoeagus comparatively broad and short (mean 1.55 mm). Cornutus
terminally located, very stout. Aedoeagus apex laterally bearing heavily
sclerotized, distally pointed plate with one or two lateral teeth.
FEMALE GENITALIA (Fig. 17): Ductus bursae broad and short. Bursa
copulatrix smaller and narrower than in M. interpunctaria. Caudal
half of bursa copulatrix more sclerotized than in the other species.
HABITAT : From — 400 m (Israel) to 900 m (Taurus). In Israel and
Jordan mainly in the swamps and wet areas near Hula Lake, the Dead
Sea and some rivers (e.g. Zerga, Nahal Ammud).
FLIGHT PERIOD : Israel and S. Turkey : Mid-February to end of March,
one specimen in January (C. Israel). Jordan : Throughout February.
One Jordan female labelled “28.VIIL” probably a mistake. In Iraq
flying in April (WiILTSHIRE, 1957).
40
Figs 14-17. © genitalia of Myinodes spp. 14 — M. interpunctaria interpunctaria
H.-S. (NE. Algeria) ; 15 — M. interpunctaria atlantica ssp. n. (Paratypus, S. Spain) ;
16 — M. constantina sp. n. (Paratypus) ; 17 — M. shohami sp. n. (Paratypus, N.
Israel) ; scale bar = | mm.
41
REMARKS: Named after the late Mr. Z. Shoham, Israel, for his great
merits in the lepidopterological exploration of N. Israel.
Key to species
1 Frons with two projections. Basal scales of palpi dark brown. Black terminal
spots trianguliform. Intervenal line in forewing apex crossing postmedial
line‘... ae. FR as Ma. Ru interpunctaria H.-S.
— Frons with only one central projection. Basal scales of palpi white. Black
terminal spots punctiform. Intervenai line in forewing apex not crossing
postmedial Iime........ ernennen Is ee 2
2 Palpi long (ca. 1.5 mm). Postmedial line not dentate, at inner margin
strongly inclined toward wing base. The white intervenal line in forewing apex
VERY SOL. Ve Sonera ose ee constantina Sp. n.
— Palpi short (ca. 1.2 mm). Postmedial line strongly dentate, at inner margin
not inclined toward wing base. The white intervenal line in forewing apex
approaching. postmedialkines:1...114 484. Zen shohami sp. n.
PARENZAN (1976 : fig. 9) mentions the genus Myinodes from N. and
W. Turkey and Rumania, but gives no details. Confirmation of the
occurrence of this genus from these areas ıs required.
Acknowledgements
I wish to express my gratitude to Dr. D. Stüning, Bonn, P. Parenzan, Palermo,
G. Ebert, Karlsruhe, A. Exposito, Mostoles, A. Freidberg, Tel Aviv, R. Ortal,
Jerusalem, G. Müller, Jerusalem, K. Kuchler, Munich and M. Sommerer,
Munich for the loan or donation of material.
References
AMSEL, H. G., 1933. Die Lepidopteren Palästinas. Zoogeographica 2 (1):
1-146.
BODENHEIMER, F. S., 1937. Prodromus Faunae Palestinae. Mem. Inst.
d’Egypte 33 : 1-287.
Cu1oT, J., 1920. Noctuelles et geomètres d’Europe, II. Rennes.
EıLiıson, R. E. & WiiTSHIRE, E. P., 1939. The Lepidoptera of the Lebanon
with notes on their season and distribution. Trans. Royal Ent. Soc.
London 88 (1) : 1-56.
Exposito HERMOSA, A., 1978. Catalogo provisional de la familia Geometridae.
Shilap Revta Lepid. 6 : 37-44 ; 125-130.
FLETCHER, D. S., 1979. In Nye, I. W. B (Ed.) : The Generic Names of Moths
of the World, vol. 3, London, 243 pp.
GuENEE, A., 1857. In BoıspuvaAL, J. A. & GuENEE, A. (1854-1858) : Histoire
naturelle des insectes (Lepidoptera). Species général des Lépidoptères,
10 : Uranides et Phalénites, Paris.
GUMPPENBERG, C. Frhr. v., 1893. Systema Geometrarum zonae temperatioris
42
septentr. Nova Acta Ksl. Leop. Carol. Deutsche Akad. d. Naturforscher,
Halle.
HAUSMANN, A., 1991. Beitrag zur Geometridenfauna Palästinas : Die Spanner
der Klapperich-Ausbeute aus Jordanien (Lepidoptera, Geometridae).
Mitt. münch. ent. Ges. 81 : 111-163.
HERRICH-SCHAFFER, G. A. W., 1829-1844. Deutschlands Insekten, Fortsetzung
von Panzers Fauna insectorum Germanica, 10 Bde. H. 111-190.
HERRICH-SCHAFFER, G. A. W., 1843-1856. Systematische Bearbeitung der
Schmetterlinge von Europa. Regensburg, 6 Bde.
HEYDENREICH, G. H., 1851. Lepidopterorum Europaeorum Catalogus me-
thodicus, Edn. 3. Leipzig.
KALCHBERG A. von, 1897. Über die Lepidopterenfauna von Haifa in Syrien.
Dt. ent. Z. Iris 10 : 161-190.
KRUGER, G. C., 1939. Notizie sulla fauna della Sirtica occidentale : Lepidotteri.
Annali del Mus. Libico Stor. Nat. 1 : 317-357.
LEDERER, J., 1853. Versuch, die europäischen Lepidopteren in möglichst
natürliche Reihenfolge zu stellen, nebst Bemerkungen zu einigen Familien
und Arten. Verh. Zool.-bot. Ges. Wien 3 : 165-270.
MARIANI, M., 1943. Fauna Lepidopterorum Italiae. Parte I. Catalogo ragio-
nato dei Lepidotteri d’Italia. Fasc. II e III. Giorn. Sc. Nat. Econ. 42 (3) :
81-227.
OBERTHUR, C., 1922. Les Lépidoptères du Maroc. Lepid. Comp. 19 : 1-402.
PARENZAN, P., 1976. Contributi alla conoscenza della Lepidotterofauna del-
l’Itahia meridionale. II Nuovi reperti di Noctuidae e Geometridae. Ento-
mologica, Bari XII : 153-169.
Prout, L. B., 1910. Fam. Geometridae, Subfam. Oenochrominae. Gen. ins.
104 : 1-120, 2 pl.
Prout, L. B., 1912a. Die spannerartigen Nachtfalter. In Seitz, A. [1912-1916] :
Die Gross-Schmetterlinge der Erde, Bd. 4. Verlag A. Kernen, Stuttgart.
Prout, L. B., 1912b. Lepidopterorum Catalogus, Pars 8: Geometridae :
Brephinae, Oenochrominae, Berlin, 94 pp.
Runcs, C. E. E., 1981. Catalogue raisonné des Lépidoptères du Maroc.
Inventaire faunistique et observations écologiques. Tome II. Trav. Inst.
Sc., Sér. Zool., n. 40, Rabat.
SCHMIDLIN, A., 1964. Übersicht über die europäischen Arten der Familie
Geometridae (Lep.). Mitt. ent. Ges. Basel, 14 (4,5) : 77-137.
SPULER, A., 1904-1908. Die Schmetterlinge Europas. Stuttgart, 4 volumes.
STAUDINGER, O., 1892. Neue Arten und Varietäten von Lepidopteren des
palaearctischen Faunengebietes. Dr. ent. Z. Iris 4 : 224-339.
STAUDINGER, O. & REBEL, H., 1901. Katalog der Lepidopteren des palaeark-
tischen Faunengebietes 1. Verlag Friedländer & Sohn, Berlin.
Turarı, E., 1925. Missione zoologica del Dott. E. Festa in Cirenaica. XVII.
Lepidotteri. Boll. Mus. Zool. Anat. Comp. R. Univ. Torino 39 : 1-9.
WEHRLI, E., 1934. Lepidopteren-Fauna von Marasch in türkisch Nordsyrien.
Mitt. münch. ent. Ges. 24 : 1-55.
WILTSHIRE, E. P., 1957. The Lepidoptera of Iraq. Nicholas Kaye Limited,
London & Bagdad.
43
Nota lepid. 17 (1/2) : 44 : 30.X1.1994 ISSN 0342-7536
Book reviews — Buchbesprechungen — Analyses
Larger moths of the London area. Colin W. PLANT. xxii, 292 pp.
523 distribution maps 30.5 X 21.5 cm, hardback. London Natural
History Society, 1993. ISBN 0 901009 04 0. Available from: The
London Natural History Society, Publication sales secretary, 3 Chats-
worth Gardens, West Harrow, Middlesex HA2 ORS, UK. Price:
19295
This volume can be considered to be the sequel to ‘The butterflies of the
London area’ produced by the same author in 1987. It is however very different
in both format and content. The moth volume has a much larger format,
there are no coloured photographs and several species are treated per page.
It will therefore not be attractive to the general public; the ‘moth hunter’
however will find this book extremely interesting and useful.
The London area is defined as that area within 20 miles from St. Paul’s
Cathedral. All available records have been collated, but on the distribution
maps, only the data obtained between 1980 and 1991 are plotted, although
the older records are given in the usual way (open circles) for the rarer species.
A transparent overlay with maps showing the built-up areas, woodland and
chalk is provided. Over this ten year period, 84% of the 856 tetrads (a tetrad =
2 x 2 km) have been covered, although to varying degrees — a remarkable
achievement. A total of 715 macrolepidoptera have been recorded from this
area, although 66 were not noted during the ten year recording period. The
text for each species is very readable, and reminiscent of that in South’s ‘Moths
of the British Isles’. Foodplants known to have been recorded within the area
are listed for each species, and also the years of the oldest and most recent
records. Appendices give a check list of species for each vice-county in the
area, the National Red Data List category, and the number and percentage
of tetrads in which each resident species was recorded.
This work will undoubtedly be a very valuable tool for London naturalists,
conservation officers and lepidopterists. It provides an ideal basis for further
studies and the author and record contributors are to be congratulated on
their efforts. Their example should be followed.
S. WHITEBREAD
44
Nota lepid. 17 (1/2) : 45-52 ; 30.X1.1994 | ISSN 0342-7536
Geographical varıation in wing pattern
of Micropterix maschukella Alpheraky, 1876
(Lepidoptera : Micropterigidae)
Michail V. Kozıov
Laboratory of Ecological Zoology, Department of Biology, University of Turku, FIN-20500 Turku,
Finland
Summary
Five discrete types of forewing pattern can be found within populations of
Micropterix maschukella Alphéraky. In Lagodekhi, Eastern Georgia, frequen-
cies of wing pattern types were the same for males and females ; no differences
were found between the two study years. The frequency of wing pattern type
was therefore considered to be a population specific character and was used
to study geographical variation. Phenetic resemblances of 15 samples from
the Crimea and Caucasus correspond in general to the spatial proximities
of the sampling sites. Three geographically consistent units were distinguished :
northern (Crimea and Krasnodar district), south-western and eastern. A clear
allopatric differentiation within the species was found, but there was no corre-
sponding variation in the male genitalia.
Resume
Parmi les populations de Micropterix maschukella Alphéraky, on trouve cinq
types discrets de dessin des ailes antérieures. A Lagodekhi, Georgie orientale,
la fréquence des types de dessins des ailes est la même pour les mâles et
les femelles ; on n’a pas trouvé de différences entre les deux années de l'étude.
La fréquence des types de dessin des ailes a donc été considérée comme carac-
téristique des populations et utilisée pour étudier la variation géographique.
Les ressemblances phénétiques de 15 échantillons de Crimée et du Caucase
correspondent en général aux proximités spatiales des sites des échantillons.
Trois unités géographiques consistantes ont été distinguées : nord (Crimée et
région de Krasnodar), sud-ouest et est. On a constaté une nette différenciation
allopatrique dans cette espèce, mais pas de variation correspondante dans
les genitalia mâles. |
Zusammenfassung
In Populationen von Micropterix maschukella Alpheraky lassen sich fünf
Typen der Vorderflügelzeichnung unterscheiden. In Lagodekhi, Ost-Georgien,
45
werden diese Zeichnungsmuster-Typen bei Männchen und Weibchen mit glei-
cher relativer Häufigkeit beobachtet ; zwischen den beiden Untersuchungsjahren
gab es hierbei keine Unterschiede. Die relativen Häufigkeiten der Zeichnungs-
muster-Iypen wurden daher als populationsspezifisch betrachtet und als Maß
für geographische Variabilität verwendet. Das Erscheinungsbild von 15 Sammel-
proben von der Krim und aus dem Kaukasus läßt sich im allgemeinem mit den
räumlichen Abstand der Fundpunkte in Beziehung setzen. Drei geographische
Bereiche lassen sich unterscheiden : ein nördlicher (die Krim und die Gegend
von Krasnodar), ein südwestlicher und ein östlicher. Innerhalb der Art wurde
eine deutliche allopatrische Differenzierung festgestellt, die aber nicht mit einer
entsprechenden Variation der männlichen Genitalien verbunden ist.
Introduction
The contrasting wing pattern is typical for almost all of the approx.
70 species of the Palaearctic genus Micropterix Hübner [1825] (HEATH,
1987). Wing pattern characteristics are widely used in determination
keys (Razowskı, 1975; ZAGULAJEV, 1978; Kozıov, 1988; 1989;
1990a ; WHITEBREAD, 1992), and they are of critical importance for
the identification of females, whose genitalia are very poor in specific
characters. However, variation of wing pattern characteristics has not
been studied in this genus and the absence of knowledge of the extent
of interpopulation and geographical variation has sometimes caused
taxonomic problems.
The small (about 8-10 mm wing expanse) day-active irridescent moth
Micropterix maschukella Alpheraky is widely distributed and very
abundant in the Crimea and Caucasus. In Eastern Georgia the moths
emerge at the beginning of May in the valleys ; at the altitudes 1500-
1700 m the last specimens were observed in late July. The moths feed
on the pollen of several plant species, usually on elder (Sambucus
nigra L.) and Philadelphus caucasicus Koehne. Sometimes they also
visit flowers of Rubus spp. and Rosa spp. (pers. obs.). The investigation
of wing pattern variation has been prompted by the description of
a new species, Micropterix maritimella (Zagulajev, 1983) based on
females originating from the population of M. maschukella in Gantiadi,
Abkhasia, which I had studied for some years.
Material and methods
The study consisted of two parts : intrapopulation variation was investi-
gated in Lagodekhi Natural Reserve (Georgia, formerly the U.S.S.R. ;
41°50’ N, 46°20’ E) ; geographical variation was studied from specimens
46
collected by the author and those kept in the Zoological Institute, St.
Petersburg, Russia.
Moths were sampled from inflorescences of host plants by net and im-
mediately anaesthetised by chloroform. Each sample was characterized
by frequencies of moths with different wing pattern (see Figs 1-5) ;
males and females were recorded separately. In total, about 5,500 moths
were thus investigated. Samples were compared by chi-square test or, if
the sample size was very small, by the non-parametric lambda criterion.
Diversity (u) was calculated according to ZHIVOTOVSKY (1982) :
u = (yp,
where p; is the frequency of the ith type of wing pattern (i = 1...5). The
presence of geographical variation was tested by G-statistic for hetero-
geneity of proportions (GABRIEL & SOKAL, 1969). Pairwise similarity
Ry = LiVPixPit
based on the ratio of frequencies (p;) of all the wing pattern types (1)
in populations under comparison (k and |) (ZHIvotovsky, 1982) was
calculated for all samples involved in the study ; similarity matrix was
clustered on the base of mean arithmetic unweighed estimations of
the similarity between clades.
Results
Wing pattern variation
The general appearance of the golden pattern in M. maschukella
includes two bands (basal and medial) and a subapical spot, sharply
distinguished from the cupreous-brownish background.
Five discrete types of forewing pattern were found. The first type has
a large, almost rectangular subapical gold spot laying along the costal
margin of the wing (Fig. 1). The second type differs from the first by
having a small dark spot within this gold spot (Fig. 2). In both the
third and fourth type there are two spots (small costal and large
subapical) on the costal edge. These two types differ in the form of
the subapical spot, which has its maximum width either at the costal
margin (type 3, Fig. 3), or towards the centre of the wing (type 4,
Fig. 4). The 5th type differs from the 4th due to the absence of the
costal spot ; the large subapical spot is usually not connected to the
costal edge of the wing (Fig. 5), although there are some exceptions.
47
Figs 1-5. The five types (numbers 1-5) of forewing pattern of M. maschukella.
The two bands, although variable in form and width, did not show
any clearly recognizable types.
The right and left wings of the moth usually have the same type of
wing pattern. However, 30.6% of specimens collected in Lagodekhi
1989 and 28.7% in 1990 were asymmetrical. But if the pattern of the
right and left wing varies independently, the expected number of asym-
metrical moths would be significantly (about 2 times) higher than
observed (in 1989 : expected 64.0%, G = 799.1, df = 1, P < 0.0001 ;
in 1990 : expected 56.9%, G = 291.9, df = 1, P< 0.0001). In spite of the
high percentage of asymmetrical specimens, some genetic background
of wing pattern types is assumed. But even if the variation is phenotypic
only, it does not affect the conclusions of the present study.
48
1. Krasnolesye
2. Jalta
4. Alushta
6. Crimsk
— 3. Gursuf
5. Staryi Crim
7. Gorjatchyi Kljuch
8. Gantiadi
12. Sukhumi
14. Nalchik
13. Besengi
15. Lagodekhi
9. Tkvarcheli
10. Kobuleti
11. Borshomi
SS SE OR CRE ee
05 0.6 0.7 0.8 0.9 1.0
Fig. 6. Dendrogram based on the similarity between samples of M. maschukella in
wing pattern frequency.
In spite of the very low (about 10%) proportion of males in samples
obtained from the inflorescences of elder in Lagodekhi, I succeeded
in obtaining samples of 15-25 males from six local populations ; dif-
ferences between sexes appeared to be non-significant (lambda = 0.04-
1.10). Differences between samples obtained in Lagodekhi in 1989 and
1990 from the same local populations were also not significant. Thus,
I concluded that the frequencies of wing pattern types are relatively
stable in time, and therefore the samples collected in different years
can be compared when studying geographical variation. To increase
the sample size, males and females were pooled when counting wing
pattern frequencies.
Geographical variation
The 15 localities in the Crimea and Caucasus, significantly heterogeneous
in wing pattern frequencies (n = 5242, G = 1383.6, df = 52, P < 0.0001),
were included in the analysis. Clustering of the similarity matrix showed
that the phenetic resemblances of samples correspond in general to
their spatial proximities (Fig. 6). Three geographically consistent units
were distinguished : northern (Crimea and Krasnodar district), south-
western and eastern (Fig. 7).
49
20
0
1; 35%
t | morphs
Nalchik
Er / rail
/ 13
e
NZ +4 14
SukhumiX_12
‚Mo TE
0 100 km Be
Ser aC
/
Fig. 7. Geographical variation in wing pattern frequencies of M. maschukella Alph.
in the Crimea and Caucasus. Localities : 1 — Krasnolesye (sample size n = 94, moths
collected in 1984) ; 2 — Jalta (n = 54, 1983) ; 3 — Gursuf (n = 60, 1985) ; 4 — Alushta
(n = 72, 1983); 5 — Staryi Crim (n = 36, 1913); 6 — Crimsk (n = 36, 1990) ;
7 — Gorjatchyi Kljuch (n = 22, 1988) ; 8 — Gantiadi (n = 42, 1978) ; 9 — Tkvarcheli
(n = 14, 1980); 10 — Kobuleti (n = 66, 1973); 11 — Borshomi (n = 46, 1898) ;
12 — Sukhumi (n = 26, 1980) ; 13 — Besengi (n = 70, 1989) ; 14 — Nalchik (n = 54,
1989) ; 15 — Lagodekhi (n = 4550, 1990). Contours correspond to the clusters identified
in Fig. 6. Groups of population : A — northern ; B — eastern ; C — south-western.
Samples from the northern group demonstrated the lowest observed
intrapopulation diversity (coefficient of diversity u < 2.5) ; about 90%
of individuals belonged to the fourth type of wing pattern. This group
was heterogeneous (n = 416, G = 59.4, df = 28, P < 0.0005) because
of the most southern sample (from Gantiadi), which had an intermediate
ratio of wing pattern types. If this sample is excluded from the consi-
deration, the northern group becomes homogeneous in relation to wing
pattern frequencies (n = 374, G = 28.3, df = 24, P< 0.251).
Both the south-western and eastern groups are significantly hetero-
geneous (n = 126, G = 30.1, df = 8, P < 0.0005, and n = 4700,
G = 168.2, df = 12, P < 0.0001, respectively), and more diverse than
the northern one (u = 3.5-4.5). In the south-western group the pattern
number five was most abundant, in contrast to the eastern group where
the second and fourth types had highest frequencies. The small number
of localities being compared did not allow investigation of the geo-
graphical variation of wing pattern within these groups.
50
Discussion
Like leaf miners of the family Nepticulidae (MENKEN, 1990), M. maschu-
kella bear characteristics which appear to facilitate rapid speciation :
they occur in small isolated populations, the detritophagous cater-
pillars and pollen-eating adults have only a few (if any) competitors,
and their food resources are highly predictable. But, in contrast to
sympatric speciation in Nepticulidae and Yponomeutidae (MENKEN,
1990 ; MENKEN et al., 1992), Micropterigidae demonstrate mostly geo-
graphical (allopatric) differentiation.
No differences in genitalic structure were found between males of M.
maschukella with different wing patterns, or between local populations
in Lagodekhi area and between populations from different geographical
groups (Kozıov, 1990b and unpublished data). According to the re-
cognition concept of species argued by PATERSON (1985), this may be
due to visual recognition of the opposite sex in this moth species. In
this respect M. maschukella is similar to butterflies, which often de-
monstrate strict interspecific differentiation in wing pattern features,
while male genitalia are quite similar, i.e. in the genus Erebia Dalm.
(WARREN, 1936).
Thus, the data obtained showed clear allopatric differentiation within
the species, which, however, demonstrated no corresponding variation
in male genitalia structure. It is possible that a complex of subspecies
or even sibling species may exist under the name Micropterix maschu-
kella, but at the present level of knowledge the differentiation in wing
pattern is not sufficient to ascribe a taxonomic rank to geographically
separated populations. |
Acknowledgements
I am very grateful to V. Pavliashvili and all the staff of the Lagodekhi reserve
for their hospitality during my stay in Georgia. I am greatly indebted to M.
Motorkin for his assistance in collecting the moths, E. Zvereva for fruitful
discussion, E. Haukioja, N. P. Kristensen, M. R. McClure and T. Vuorisalo
for their helpful comments and improvement of the text. The work was sup-
ported by the Plant Protection Institute (St. Petersburg, Russia) and the
University of Turku Foundation (Finland).
References
GABRIEL, K. R. & SokAL, R. R., 1969. A new statistical approach to geo-
graphic variation analysis. Syst. Zool. 18 : 259-278.
SA
HEATH, J., 1987. A check list of the genus Micropterix Hübner, [1825] (Lepi-
doptera : Zeugloptera, Micropterigidae). Entomologist’s Gaz. 38 : 205-207.
Kozıov, M. V., 1988. Short review and key for determination of Micropterix
Hbn. (Lepidoptera, Micropterigidae) species of the Palaearctic. 1. Mor-
phological description and results of investigation of Dr. H. G.Amsel
type material. Vest. Zool. 1988 (4) : 8-14. [In Russian]
Kozıov, M. V., 1989. Short review and key for determination of Micropterix
Hbn. (Lepidoptera, Micropterigidae) species of the Palaearctic. 2. Key
for determination [pt 1]. Vest. Zool. 1989 (6) : 26-31. [In Russian]
Kozlov, M.V., 1990. Short review and key for determination of Micropterix
Hbn. (Lepidoptera, Micropterigidae) species of the Palaearctic. 3. Key
for determination [pt 2]. Vest. Zool. 1990 (2) : 21-26. [In Russian]
Kozıov, M. V., 1990b. Variation of Micropterix maschukella Alph. (Lepi-
doptera, Micropterigidae) in local populations of Abkhasia and Eastern
Georgia. Jn Problemy sovremennoi biologi [Problems of modern
biology], pp. 29-33. VINITI, Moscow (Dep. No. 641-B90). [In Russian]
MENKEN, S. B. J., 1990. Population structure and evolution in sexual and
parthenogenetic leaf mining moths (Lepidoptera, Nepticulidae) : why so
little speciation? Symp. Biol. Hung. 39 : 349-353.
MENKEN, S. B. J., HERREBOUT, W. M. & Wieses, J. T., 1992. Small ermine
moths (Yponomeuta) : their host relations and evolution. A. Rev. Ent.
37 : 41-66.
PATERSON, H. E. H., 1985. The recognition concept of species. In VRBA, E. S.
(Ed.) : Species and speciation. Transvaal Museum Monograph No. 4,
pp. 21-29. Pretoria.
RazowskI, J., 1975. Motyle (Lepidoptera) Polski, II. Homoneura. Monografie
fauny Polski 5 : 1-96.
WARREN, B. C. S., 1936. Monograph of the genus Erebia. 407 p. + 104 pl.
London.
WHITEBREAD, S.E., 1992. The Micropterigidae of Switzerland, with a key
to their identification. Nota lepid. Suppl. 4 : 129-143.
ZAGULAJEV, A. K., 1978. Fam. Micropterigidae. Jn MEDVEDEV, G. S. (Ed.) :
Key for determination of insects of the European part of the U.S.S.R.
4 (1), pp. 40-43. Leningrad.
ZAGULAJEV, A. K. 1983. New and little known species of moth families
Tineidae, Micropterigidae and Pterophoridae (Lepidoptera) ofthe USSR
and adjacent countries. Ent. Obozr. 62 : 106-122. [In Russian]
Zuivotovsky, L. A., 1982. Population characteristics based on polymorphic
traits. Jn Fenetica populjatsij [Phenetic of populations], pp. 38-44.
Moscow. [In Russian]
=
Nota lepid. 17 (1/2) : 53-72 ; 30.X1.1994 ISSN 0342-7536
Eine weitere endemische Hepialide aus den Alpen:
Pharmacis claudiae sp. n. (Lepidoptera : Hepialidae)
Philipp M. Krıstar*, Norbert HIRNEISEN** & Axel STEINER***
* Pankratiusstr. 2, D-68642 Biirstadt
** Hauptstr. 12, D-72149 Remmingsheim
*** Bruchsaler Weg 6, D-76327 Wöschbach
Summary
Another new endemic Hepialid from the Alps: Pharmacis claudiae sp. n.
(Hepialidae) — A new species allied to Ph. bertrandi (Le Cerf) and Ph. ansel-
minae (Teobaldelli) is described from the Italian Alps (Aosta, Valtournenche)
based on a series of males. It differs from the related taxa in wing markings,
genital morphology and male activity period. The probably brachypterous
female is still unknown.
Resume
Une espece nouvelle proche de Ph. bertrandi (Le Cerf) et de Ph. anselminae
(Teobaldelli), est décrite des Alpes italiennes (Aoste, Valtournanche), fondée
sur une série de mâles. L’espéce se distingue des taxa voisins aussi bien par
Vhabitus que par les genitalia. En plus, elle diffère de Ph. anselminae et de
Ph. carna (Denis & Schiffermüller) par la phase d’activité du mâle. La femelle,
probablement brachyptère, reste encore inconnue.
Zusammenfassung
Pharmacis claudiae sp. n. wird aus den italienischen Alpen (Aosta, Valtour-
nenche) anhand einer Serie von männlichen Faltern beschrieben. Die Art
unterscheidet sich sowohl habituell als auch genitalmorphologisch von den
verwandten Taxa Ph. bertrandi (Le Cerf) und Ph. anselminae (Teobaldelli).
Zu Ph. anselminae und Ph. carna (Denis & Schiffermüller) bestehen zudem
Unterschiede in der Aktivitätsphase der Männchen. Das vermutlich brachyptere
Weibchen ist noch unbekannt.
Einleitung
Die Entdeckung einer bisher unbekannten Lepidopteren-Spezies in
Mitteleuropa ist in heutiger Zeit ein seltenes Ereignis. Nach selbstkri-
tischer Beurteilung der vorliegenden Fakten, dem Vergleich von Serien
53
von Genitalpräparaten und nach Einbeziehung genealogischer Über-
legungen halten die Verfasser die Aufstellung eines neuen Taxons im
Artrang für gerechtfertigt. Es ist wohl daher auch vertretbar, über die
nüchterne wissenschaftliche Dokumentation hinaus eine kurze Beschrei-
bung der Entdeckung des neuen Taxons beizufügen.
Die Entdeckungsgeschichte von Pharmacis claudiae
(P. M. Kristal)
Am 28. Juli 1992 unternahmen wir (Claudia Kuon, Norbert Hirneisen
und Philipp M. Kristal) während unseres Aufenthalts im Aosta-Tal
(Italien) eine Tagestour zum Monte Cervinio (Matterhorn) am Ende
des Valtournenche. Von der Talstation in Breuil-Cervinia fuhren wir
mit der Seilbahn zum Giomein, also zur ersten Station auf ca. 2100 m
Höhe. Von dort streiften wir durch das Gelände und fanden neben
vielen hochalpinen Tagfalterarten auch einen Wurzelbohrer. Nach an-
strengender Jagd auf den in unruhigem Zickzackflug über die alpinen
Matten fliegenden Falter wurde diese Pharmacis “carna” von Norbert
Hirneisen zur Präparation und Artbestimmung an Philipp Kristal über-
geben, der diese “etwas dunkle fusconebulosa” gerne übernahm, da
ihm weder die eine noch die andere Art aus seinen 12 Aufenthalten
im Aosta-Tal bekannt war.
Nach unserem Abstieg stand für uns fest, daß wir am Abend in der
Nähe, “irgendwo über 2000 m” Lichtfang betreiben wollten. Da Philipp
Kristal durch seine jahrelange Tätigkeit für das naturwissenschaftliche
Museum in St. Pierre, Aosta-Tal, eine Genehmigung zum Befahren
gesperrter Wege im gesamten Tal besaß, war nur das Problem des An-
fahrens eines Leuchtplatzes gegeben. Erfahrungsgemäß erweisen sich
auf der Karte verzeichnete Wege oftmals als nur für allradgetriebene
Fahrzeuge befahrbar, so daß wir erst nach mehreren Fehlversuchen
schließlich einen schönen Platz oberhalb von Antey-Saint-André bei
Telınaud auf ca. 2200 m Höhe fanden.
Das Terrain dort war spärlich bewachsen und auf den wenigen üppiger
bewachsenen Matten grasten die Rinder der nahen Alpe. Nur noch
einzelne Lärchen und Föhren umgaben uns, wir befanden uns dort
offensichtlich direkt an der Waldgrenze. Dieser Platz erinnerte mich
sehr stark an die mir bekannten Fundorte von Pharmacis anselminae
im Val di Valeille und im Champorcher-Tal, da auch dort eine relativ
starke Beweidung der Ph. anselminae-Biotope stattfindet. Diese Be-
weidung scheint den Wurzelbohrern offensichtlich nicht zu schaden,
wahrscheinlich ist dieser Umstand für die Ph. anselminae-Populationen
sogar förderlich, wenn nicht sogar überlebenswichtig.
54
Nachdem uns Claudia Kuon trotz größter Schnakenplage ein Abend-
essen in der “Feldküche” gezaubert hatte, konnten wir gut gestärkt
mit dem Aufschlagen unserer beiden Leuchttürme beginnen, die wir
mit einer Distanz von ca. 150 m errichteten. Der Anflug war, durch
einen vom Tal aufsteigenden Wind begünstigt, sehr gut und wir hatten
alle Hände voll zu tun, um alle anfliegenden Arten qualitativ und —
soweit möglich — auch quantitativ zu erfasen. Gegen 1 Uhr Sommerzeit
begab sıch jeder noch einmal zu seinem Turm, um nach einem letzt-
maligen Absuchen des Leuchtplatzes mit dem Abbau zu beginnen. Uns
fielen sofort die erst jetzt in Anzahl anfliegenden Wurzelbohrer auf,
die wegen ihrer Größe, der sehr dunklen, fast schwarzen Grundfarbe
und der grellweißen Zeichnung nicht sofort einer uns bekannten Art
zuzuordnen waren. Durch die Distanz zwischen unseren Leuchttürmen
konnten wir uns nicht sofort verständigen, und erst vor der Abfahrt
konnten wir uns über diesen Bohrer unterhalten. Da Norbert Hirneisen
nur ein Belegtier mitgenommen hatte, erwies es sıch als vorteilhaft, daß
Philipp Kristal im Hinblick auf die Lokalsammlung des Museums in
St. Pierre zwölf Tiere im Fangglas hatte, so daß genügend Anschauungs-
material vorhanden war.
Wir saßen in dieser Nacht noch lange über dieser Hepialide, die nach
den Abbildungen bei FORSTER & WOHLFAHRT (1960) keiner uns
bekannten Art zuzuordnen war. Überdies fiel uns auf, daß nach den
Angaben dort Pharmacis carna und Ph. fusconebulosa ebenfalls
ausscheiden müßten, da carna erst gegen Morgen zum Licht kommt,
fusconebulosa jedoch in der späten Abenddämmerung fliegt. Aus
eigener Erfahrung wußten wir, daß anselminae tagaktıv ist. “Unser”
Bohrer jedoch kam ziemlich genau kurz nach 24 Uhr MEZ zum Licht.
Da die Zeit des Paarungsflugs in der Regel genetisch festgelegt ist,
kamen wir überein, daß wir uns diesen Bohrer doch noch näher ansehen
müßten, denn es sei nicht auszuschließen, daß wir eine weitere, im
Aosta-Tal endemische Art vor uns hätten, nachdem der Endemit
Pharmacis anselminae auch erst vor ca. 15 Jahren von Teobaldelli im
Aosta-Tal entdeckt worden war.
Wir opferten unsere restliche Urlaubszeit diesem Unterfangen und
konnten in drei Nächten noch weitere 6 Tiere am Licht erbeuten. Die
Nachsuche nach Puppen oder Weibchen bei Tage, wie bei anselminae
schon erfolgreich praktiziert, blieb jedoch in diesem Falle ohne greif-
bares Ergebnis. Beim Anfertigen der Genitalpräparate stellte sich her-
aus, daß wir, wie vermutet, nur männliche Falter am Licht erbeutet
hatten und daß das Tier von oberhalb Breuil di Cervinio zur gleichen
Art gehörte wie die Tiere von Antey-Saint-André.
55
Pharmacis claudiae Kristal & Hirneisen sp. n.
Locus Typicus : Italia, Aosta, Valtournenche oberhalb Antey-Saint-Andre (1),
2200 m.
Hoıotypus &: Italia, Aosta, Valtournenche oberhalb Antey-Saint-André,
2200 m, 31.7.1992, Lichtfang, leg. Kristal, coll. British Museum (Natural
History) London.
PARATYPEN : 19 GG gleicher Fundort wie Holotypus, 28.7., 31.7. und 1.8.1992,
leg. Kristal & Hirneisen. Coll. British Museum (Natural History) London (1),
coll. Staatliches Museum für Naturkunde Karlsruhe (2), coll. Museum Witt,
München (2), coll. Museo di Scienze Naturali, St. Pierre, Aosta (2), coll.
Kristal (9), coll. Hirneisen (3) ; 1 @ Italia, Aosta, oberhalb Breuil di Cervinio,
ca. 2000 m, 28.7.1992, Tagfang, leg. Hirneisen, coll. Kristal.
Hasitus (Abb. 1-2): Spannweite 38-42 mm, © 40,5 mm (n = 17).
Vorderflügellänge 18-20,5 mm, @ 19 mm (n = 17). Kopf und Thorax
dunkelbraun. Vorderflügel dunkelbraun, im postmedianen Bereich mit
zwei weißen, fast parallel verlaufenden Fleckenreihen, von denen die
äußere nicht durch Wische mit dem Außenrand verbunden ist. Auch
die übrige Flügelfläche ist mit mehr oder weniger deutlich ausgebildeten
weißen Flecken überdeckt. Alle weißen Zeichnungselemente sind, wie
bei Ph. carna, durch doppelte dunkle Linien begrenzt, die hellbraun
ausgefüllt sind. Die bei Ph. carna in den Apex ziehende, kettenartig
verbundene, hellbraun umsäumte, dunkle Fleckenreihe ist bei Ph. clau-
diae als dunkle, hellbraun begrenzte Binde ausgebildet, die ca. 3 mm
vom Analwinkel entfernt entspringt und 2 bis 3 mm vor dem Apex
auf die Costa trıfft. Die Fransen der Vorderflügel sind deutlich hell
und dunkelbraun gescheckt, ebenso die der Hinterflügel bis vor den
Analwinkel.
MANNLICHER GENITALAPPARAT (2) (Abb. 6-11) : Valven sehr lang und
schmal, schwach gebogen. Vinculum auffallend durch die konvexe
Ausbuchtung am ventralen Rand und die starke konkave U-förmige
Einbuchtung zwischen den zwei stark sklerotisierten, triangulären Vin-
culumfortsätzen. Pseudoteguminalplatte (Mesosoma bei NIELSEN &
(!) Auf eine genauere Beschreibung der Fundlokalität wird hier mit Rücksicht auf
den endemischen Charakter der Art und die damit verbundene Schutzproblematik
verzichtet. Die Erfahrungen bei Pharmacis anselminae haben gezeigt, daß es leider
genug verantwortungslose sogenannte “Entomologen” gibt, die sich nicht scheuen, an
einem Tag an einer Flugstelle von einer nur sehr lokal vorkommenden Art mehrere
Dutzend “Belegtiere” einzusammeln. Diesem Sammeltourismus soll kein Vorschub
geleistet werden.
(2) Die (bei den Hepialiden noch immer uneinheitliche) Genitalterminologie richtet
sich nach NIELSEN & KRISTENSEN (1989).
56
Abb. 1, 2. Pharmacis claudiae sp. n. 4, Italien, Aosta, Valtournenche. 1 — Holotypus ;
2 — Paratypus.
Rosinson, 1983) im oberen Teil breit, medial nicht verschmolzen, die
oberen medialen Spitzen in der Form variabel, teils schmal, teils breiter,
gelegentlich papageienschnabelartig geformt, aber immer einheitlich
schwach sklerotisiert ; Pseudoteguminalarme verschmolzen und eine
stark gefaltete Rinne bildend. Ventraler Rand der Juxta flach konkav
gebogen.
DIFFERENTIALDIAGNOSE : Im Habitus von Ph. anselminae unter-
schieden durch die bedeutendere Größe (Spannweite 38-42 mm gegen-
57
Abb. 3. Pharmacis bertrandi (Le Cerf) €. Frankreich, Hautes-Alpes, Chamonix.
hellbraun umrandeten Fleckenzeichnungen (bei anselminae hellocker-
braun und ohne irgendwelche Umrandung) und durch die auf beiden
Flügeln deutlich hellbraun-dunkelbraun gescheckten Fransen (bei ansel-
minae Hinterflügelfransen einfarbig, Vorderflügelfransen manchmal mit
schwach angedeuteter Scheckung am Tornus). Von Ph. bertrandi ım
Habitus unterschieden durch die dunkelrotbraune bis schwärzlich-
braune Grundfarbe (bei bertrandi hell- bis mittelbraun) sowie durch die
gescheckten Fransen (bei bertrandi einfarbig). Im männlichen Genital-
apparat unterscheidet sich claudiae von beiden Arten durch die sehr
langen, schmalen Valven (bei bertrandi und anselminae wesentlich
kürzer, nahezu erdnußförmig) und durch die U-förmige Einbuchtung
zwischen den triangulären Vinvulumfortsätzen, von bertrandi außerdem
durch das Fehlen der sternförmigen Sklerotisierung an der oberen
medialen Spitze der Pseudoteguminalplatte und durch die unterschied-
liche Form des ventralen Randes der Juxta. Ph. claudiae ist nachtaktiv,
Ph. anselminae tagaktiv.
WEIBCHEN : noch unbekannt. Die nahe Verwandtschaft zu den Arten
mit brachypteren Weibchen, die (soweit bisher bekannt) stark einge-
schränkte, endemische Verbreitung sowie die Tatsache, daß alle am
Licht anfliegenden Tiere Männchen waren, deuten darauf hin, daß es
sich auch bei Ph. claudiae um eine im weiblichen Geschlecht kurz-
flügelige Art handeln könnte.
AKTIVITÄTSPHASE : Die Aktivitätsphase der Männchen fällt ziemlich
genau auf die Zeit zwischen 0 und 1 h MEZ. Ein einzelnes, wohl auf-
58
Abb. 4, 5. Pharmacis anselminae (Teobaldelli), Italien, Aosta, Val Cogne. 4 — G ;
5 — ©.
gescheuchtes Tier wurde am Nachmittag gegen 14.30 h MEZ in reißen-
dem Flug über die alpinen Rasen fliegend gefangen. Dies dürfte einen
Ausnahmefall darstellen, da am betreffenden Fundort trotz Aufmerk-
samkeit kein weiteres tagaktives Tier beobachtet wurde.
VERBREITUNG: Italienische Alpen, Aosta, Valtournenche zwischen
Breuil-Cervinia an den Südhängen des Matterhorns und Antey-St.-
Andre. Die bekannten Areale von Ph. anselminae und Ph. claudiae
59
Pseudoteguminalplatte
Zwischenplatte
Pseudoteguminalarm
Valve
Juxta
triangulärer Fortsatz
Tegumen
Abb. 6. Pharmacis claudiae sp. n. männliche Genitalien. Italien, Aosta, Valtournenche.
Holotypus. Der dorsale Teil der Juxta proximal umgebogen. Maßstab 0,5 mm.
sind damit nur um ca. 25 km (Luftlinie) voneinander entfernt, aber
durch das tief eingeschnittene Valle d’Aosta getrennt, das für Arten mit
flugunfähigen Weibchen eine unüberwindbare Barriere darstellt. Beide
Arten müssen das Würmglazial in unvergletscherten Refugien über-
dauert haben, Ph. claudiae nördlich des Aostatals und Ph. anselminae
südlich davon.
VERTIKALVERBREITUNG : Die bisher bekannten Fundstellen liegen in
Höhen zwischen 2000 und 2200 m.
BıoTor : Alpine Rasen oberhalb der Waldgrenze (Abb. 23).
FLuGzeir : Nachgewiesen vom 28. Juli bis zum 1. August. Es ist zu
vermuten, daß Ph. claudiae eine ähnlich kurze Flugzeit hat, wie sie
für Ph. bertrandi anhand der vorliegenden Daten zu vermuten ist und
für Ph. anselminae beobachtet wurde. Eine kurze Flugzeit von einer
Woche bei sehr lokaler Verbreitung erklärt sowohl die späte Entdeckung
der Arten Ph. claudiae und Ph. anselminae als auch das spärlich vor-
handene Material bei Ph. bertrandi. Es sollte an dieser Stelle auch
die von DANIEL (1950) für Ph. carna aufgestellte Vermutung einer nur
eintägigen Lebendauer der Männchen in die Überlegungen zur Biolo-
60
gie der Arten einfließen, obwohl gerade Ph. carna eine ausgedehnte
Flugzeit hat.
DERIVATIO NOMINIS : Die Namensgebung erfolgt zu Ehren unserer be-
zaubernden Kollegin, Frau Claudia Kuon, die uns in den kalten Hoch-
gebirgsnächten immer begleitete, verpflegte und die erschöpften Ento-
mologen im Morgengrauen sicher nach Hause fuhr. Sie war trotz des
mehr als 60 km weiten Anfahrtsweges durchs Gebirge und der dort
oben herrschenden Schnakenplage stets gut aufgelegt und half uns
somit in nicht zu unterschätzender Weise.
Verwandte Arten
Pharmacis bertrandi (Le Cerf, 1936)
UNTERSUCHTES MATERIAL: | @ mit 2 Etiketten : “Hepialus Bertrandi Le
Cerf 20.V11.1954 [France,] Chamonix H[au]t[es] Alpes” und “coll. Th. Witt
München/ Weiden Ht. Alpes Chamonix 20.V11.1954 leg. Rungs”, coll. Museum
Witt, München.
Hasitus (Abb. 3) : Spannweite 37 mm (n = 1) ; TEOBALDELLI (1977)
und FREINA & Wırr (1990) : 35-39 mm. Vorderflügellänge 17 mm
(n= 1). Die Zeichnungselemente sind ähnlich wie bei Ph. carna an-
gelegt. Die Grundfärbung ist etwas heller, die weißen Flecken sind weit
spärlicher vorhanden. Zwei bis drei kleine Fleckchen bilden, deutlicher
als bei den verwandten Arten, eine weiße Basalstrieme. Die kettenartige,
aus hellbraun umrandeten runden Fleckchen bestehende Binde ent-
springt hier ebenfalls im Analwinkel des Vorderflügels, zieht gerade
verlaufend zur Costa und trifft ca. 1 mm vor dem Apex auf die Costa.
Die Fransen aller Flügel sind einfarbig dunkelbraun.
MANNLICHER GENITALAPPARAT (Abb. 12): Valven gebogen, kürzer
als bei Ph. claudiae, in der Mitte etwas eingeschnürt, dadurch in der
Form an eine Erdnuß erinnernd. Ventraler Rand des Vinculum regel-
mäßiger gerundet als bei Ph. claudiae und Ph. anselminae. Einbuchtung
zwischen den triangulären Vinculumfortsätzen grob U-förmig bzw. (am
ventralen Rand der stark sklerotisierten Zone) abgerundet W-förmig
(vgl. auch TEOBALDELLI, 1977, Abb. 3).
WEIBCHEN : Die Weibchen sind brachypter.
AKTIVITÄTSPHASE : Den Verfassern sind keine Angaben bekannt.
VERBREITUNG : Französische Alpen, Alpes-Maritimes (Guil-Tal) und
Hautes-Alpes (Abries). Das vorliegende Belegstück ist mit “Chamonix”
bezettelt, wobei nicht eindeutig klar ist, ob es sich, wie auf dem Etikett
angegeben, um einen Ort in den Hautes-Alpes oder vielleicht um das
61
bekannte Chamonix am Mont Blanc (Haute-Savoie) handelt, wodurch
das bekannte Verbreitungsareal der Art beträchtlich erweitert würde.
VERTIKALVERBREITUNG : 1900-2400 m (FREINA & Wirt, 1990).
BıoToPr : Alpine Kurzrasen (FREINA & Witt, 1990).
FLuGzEIT : Zweite Julihälfte bis August (FREINA & Witt, 1990). Vor-
liegende Funddaten vom 17. Juli bis 20. Juli.
Pharmacis anselminae (Teobaldelli, 1977)
UNTERSUCHTES MATERIAL : 16 @@, Italia, Aosta, Valle di Valeille südlich von
Lillaz (Cogne-Tal), 1900 m, 12.7.1990, leg. & coll. Kristal. 2 35, Italia, Aosta,
Val di Champorcher, Umgebung Rifugio Dondena, 2000 m, 7.7.1991, leg.
& coll. Kristal.
Hasitus (Abb. 4) : Spannweite 32-33,5 mm, © 32,6 mm (n = 6) ; TEo-
BALDELLI (1977) und FREINA & Witt (1990) : 28-33 mm. Vorderflügel-
länge 14,5-16,5 mm, © 15,1 mm (n = 18). Im Habitus erscheinen die
Tiere untereinander recht einheitlich. Die Grundfärbung aller Flügel
ist ein schwärzliches Dunkelbraun, in welchem auf den Vorderflügeln
unregelmäßige, nicht scharf begrenzte, hellere, weißlichgraue Fleckchen
stehen. Hellbraune Zeichnungselemente als Umrandung der helleren
Flecken wie bei den anderen Arten der Gruppe fehlen gänzlich. Die
Hinterflügel sind einfarbig dunkelbraun ohne Einmischungen, die Fran-
sen aller Flügel sind ebenfalls einfarbig dunkelbraun.
MANNLICHER GENITALAPPARAT (Abb. 13-18) : Valven gebogen, kürzer
als bei Ph. claudiae, in der Mitte etwas eingeschnürt, dadurch in der
Form an eine Erdnuß erinnernd. Ventraler Rand des Vinculum regel-
mäßiger gerundet als bei Ph. claudiae aber kantiger als bei Ph. ber-
trandi. Vinculum zwischen den triangulären Fortsätzen ın der Regel
V-förmig eingebuchtet (zwei der untersuchten Männchen zeigen eine
abweichende U-Form, Abb. 17-18) und ventral weniger stark ausge-
buchtet. Vinculum stets mit fleckenartigen Sklerotisierungen entlang
der Ränder (nur in Abb. 13 zeichnerisch dargestellt, aber in allen
Präparaten vorhanden), die bei den anderen Arten fehlen. Pseudo-
teguminalplatte insgesamt ähnlich wie bei Ph. claudiae, das obere
mediale Ende aber breit abgerundet, nur schwach sklerotisiert. Ventraler
Rand der Juxta flach konkav gebogen. In der Vinculumform besteht
eine gewisse Variation ; ferner zeigt ein Präparat (hier nicht abgebildet)
im Vinculumbereich eine pathologische Deformation. Möglicherweise
handelt es sich dabei um Defekte als Folge der Isolation (Inzucht).
Wir nutzen die Gelegenheit, die Genitalien von Pharmacis anselminae in Serie
abzubilden. Die einzige bisher verfügbare Abbildung, das Foto eines ungünstig
62
Abb. 7-12. Männliche Genitalien von Pharmacis spp. 7-11 — Ph. claudiae sp. n.,
Paratypen. Italien, Aosta, Valtournenche ; 12 — Ph. bertrandi (Le Cerf). Frankreich,
Hautes Alpes, Chamonix. Maßstab 0,5 mm.
63
gelagerten Quetschpräparates zusammen mit einer unzulänglichen Beschreibung
(TEOBALDELLI, 1977) hat die Beurteilung dieses Taxons eher erschwert als
erleichtert und FREINA & Wirt (1990) sogar zu der Vermutung veranlaßt,
daß anselminae und bertrandi als konspezifisch aufzufassen seien.
WEIBCHEN : Die Weibchen sind brachypter (Abb. 5).
AKTIVITATSPHASE : 9-16 h mit Höhepunkt zwischen 10 und 12 h (Teo-
BALDELLI, 1977 ; 1979).
VERBREITUNG : Italienische Alpen, Aosta, bisher nur aus der Umgebung
des oberen Cogne-Tals südlich des Valle d’Aosta bekannt: Valle di
Valeille und Vallone di Urtier (Umg. Peradza) sowie Val di Champorcher
(Umg. Dondena).
VERTIKALVERBREITUNG : 1800-2500 m (TEOBALDELLI, 1977 und eigene
Beobachtungen) ().
Biotop : Alpine Rasen oberhalb der Waldgrenze. Die bekannten Bio-
tope sind z. T. stark beweidet.
FLuGzeir : Anfang bis Mitte Juli von sehr kurzer Dauer. Nach den
Angaben bei TEOBALDELLI (1977), den Funddaten der bei FREINA &
Witt (1990) abgebildeten Tiere sowie den Belegstücken in der coll.
Kristal vom 7. Juli bis 15. Juli.
Pharmacis carna (|Denis & Schiffermüller], 1775)
UNTERSUCHTES MATERIAL: 6 4, Italia, Trento/ Brescia, Monte Tremalzo,
1800 m, Daten vom 27.7.-3.8.1974, leg. Ströhle, coll. Kristal.
Hasitus : Spannweite 32-37 mm, © 34,4 mm (n = 6) ; FREINA & Witt
(1990) : && 25-34 mm, 99 32-44 mm. Vorderflügellänge 15,5-17 mm,
© 16,3 mm (n = 6). Die Grundfarbe der Flügel ist ein dunkleres Mittel-
braun, in dem auf den Vorderfliigeln unregelmäßige helle Zeichnungs-
elemente stehen, die wiederum hellockerbraun umrandet sind. Vom
Analwinkel ausgehend läuft eine aus ockerfarbenen Ringen bestehende
Fleckenreihe direkt in den Apex des Vorderflügels. Die Fransen der
Vorderflügel sind kaum erkennbar gescheckt, fast einfarbig mittelbraun,
die Hinterflügelfransen sind am Grunde einfarbig dunkelbraun, an den
Spitzen etwas heller gefärbt.
() TEOBALDELLI (1977) machte verschiedene Aussagen. Die Daten der Typenserie
lauten “bei 2000 m” bis “2500 m” ; im Text finden sich außerdem die Angaben “in
Höhen zwischen 1800 und 2500 m” (S. 38) sowie “zwischen 1900 und 2200 m ... bei
2500 m” (S. 41).
64
Abb. 13-18. Pharmacis anselminae (Teobaldelli), männliche Genitalien. Italien, Aosta,
Val Cogne. Maßstab 0,5 mm.
MANNLICHER GENITALAPPARAT (Abb. 19-20): Valven länger und
schlanker als bei Ph. bertrandi und Ph. anselminae, jedoch nicht so
lang wie bei Ph. claudiae. Ventraler Rand des Vinculum konkav ein-
gezogen, trianguläre Vinculumfortsätze schwächer ausgebildet als bei
den Vergleichsarten, Einbuchtung zwischen den Fortsätzen flacher,
breit U-förmig, wannenartig. Pseudoteguminalarme als zwei klappen-
65
Abb. 19-20. Pharmacis carna (D. & S.), männliche Genitalien. Italien, Trento/ Brescia,
M. Tremalzo. Maßstab 0,5 mm.
artige Auswüchse ausgebildet, deren Form varüert. Der kleine, schneiden-
artige, sklerotisierte Fortsatz in der Mitte des medialen Randes der
Pseudoteguminalplatte, der bei den Vergleichsarten vorhanden ist, fehlt
bei Ph. carna völlig.
WEIBCHEN : Die Weibchen haben voll entwickelte Flügel.
AKTIVITATSPHASE : “Hepialus carna hat ein erstes Flugintervall im
Morgengrauen, um welche Zeit einzelne dd — so ziemlich als letzte
Falter — am Licht erscheinen. ... Die eigentliche Flugzeit setzt jedoch
erst um 7.30 Uhr ein... Der Falter fliegt, so lange es ziemlich kühl
ist, in der Sonne, etwa von 8.30 Uhr ab nur mehr an schattigen Stellen...
Der Flug dauert bis gegen 12 Uhr...” (DANIEL, 1950). Diese Beobach-
tungen beziehen sich auf Beobachtungen zwischen 1800 und 2200 m
auf apinen Rasen an den Südhängen des Watzmannstockes in den
Berchtesgadner Alpen. In tieferen Lagen konnte DANIEL (1950) Ph.
carna nur am Licht nachweisen.
VERBREITUNG: In Europa in den Alpen und den osteuropäischen Ge-
birgen. Ob sich die Angaben vom Ural und aus den asiatischen Ge-
birgen sowie aus den subarktischen Regionen Asiens wirklich alle auf
Ph. carna beziehen, bedarf noch der Klärung, ebenso die bis heute
in der Literatur vertretene Meldung aus der ungarischen Tiefebene
(PFITZNER, 1912 ; FREINA & Wirt, 1990).
VERTIKALVERBREITUNG : In den Alpen von der montanen bis zur
alpinen Höhenstufe. DANIEL (1950) gibt für die Berchtesgadener Alpen
Funde zwischen 1150 und 2200 m mit einem Maximum zwischen 1700
und 2000 m an. Die bei FREINA & Witt (1990) abgebildeten alpınen
Belegstücke weisen Funddaten zwischen 1300 und 1800 m auf. Ein Tier
aus den Karpaten wırd mit 540 m angegeben.
66
pes
Abb. 21. Form der Juxta : obere Reihe Pharmacis claudiae, mittlere Reihe Ph. ansel-
minae, untere Reihe Ph. bertrandi. Maßstab 0,5 mm.
Brorop : Montane und subalpine Populationen finden sich im Bereich
üppigster Vegetation (DANIEL, 1950). FREINA & Wirr (1990) verweisen
auf kräuterreiche, hanglagige Wiesenmatten. Die alpinen Populationen
bewohnen wie die verwandten Arten alpine Rasen.
FrLugzeiır : Ende Juni bis in den späten August (FREINA & Wirt, 1990).
Diskussion
(A. Steiner)
Ohne eine Gesamtrevision der Gattung Pharmacis lassen sich keine
endgültigen Aussagen über die phylogenetische Stellung der einzelnen
Taxa machen. Ph. bertrandi und Ph. anselminae stehen sich ungeachtet
der klaren habituellen Unterschiede genitalmorphologisch sehr nahe ;
möglicherweise sind sie Schwestertaxa. Es steht zu vermuten, daß die
Brachypterie im weiblichen Geschlecht in der Gattung Pharmacis nur
einmal aufgetreten ist, so daß alle Arten mit kurzflügeligen Weibchen
ein Monophylum bilden und das Merkmal selbst eine Synapomorphie
dieser Gruppe darstellt (als weitere Synapomorphien kommen die
Merkmale “ventraler Rand des Vinculum ausgebuchtet” und “schneiden-
artiger sklerotisierter Fortsatz am medialen Rand der Pseudoteguminal-
platte” in Frage).
Der weitgehende Verlust der Lokomotionsfähigkeit der weiblichen
Imago durch Brachypterie ist ein schwerwiegender Schritt im Evolu-
tionsgeschehen einer Art, der gut begründet sein muß. Die Brachypterie
kann durch endogene Faktoren bedingt sein: die Weibchen einiger
67
>
Een
E 39
&
© 37
= QO anselminae
= 35
= © bertrandi
© 33
Q 3
X) © claudiae
31
29
Vorderflügellänge in [mm]
Abb. 22. Verhältnis von Vorderflügellänge und Spannweite.
Lasiocampiden und Arctiiden, die im Imaginalstadium keine Nahrung
aufnehmen können und somit als Adulte nur eine kurze Lebensdauer
haben, müssen bereits beim Schlupf den Großteil ihrer Eier fertig
entwickelt haben. Durch das schwere Abdomen behindert sind solche
Weibchen oft ausgesprochen flugtrage und bewegen sich fast nur zu
Fuß, so daß eine Flügelreduktion hier nur die Einsparung ohnehin
ungenutzter Körperteile bedeutet. Als Ausgleich für die fehlende Vagi-
litat der Weibchen haben dann meist die Raupen Ausbreitungspotentiale
erschlossen, so bei Orgyia die Windverdriftung der L,-Raupe, die dafür
mit langen Haarbüscheln ausgestattet ist.
Brachypterie kann aber auch eine Reaktion auf exogene Faktoren sein,
etwa bei Arten, die in ungünstigen Jahreszeiten fliegen (zahlreiche
Herbst-, Winter- und Frühjahrsarten, besonders unter den Geometridae)
oder ın Regionen leben, in denen die Flugfähigkeit ein Nachteil sein
kann, so im Falle von Endemiten auf kleinen Inseln in Gebieten mit
starken Winden, die Gefahr laufen, aufs Meer verdriftet zu werden
(z. B. Agrotis cunhaensis). Im Hochgebirge hat die Evolution der Bra-
chypterie genau die selben Ursachen : Imagines von Arten, die die
Glazialzeiten auf inneralpinen Nunatakkern — also ebenfalls in isolierter
Lage — überdauerten, waren beim Verdriften von ihrer Refugiumsinsel
auf die umliegenden Gletscher zum Tode verurteilt. Geringe Flugak-
tivität und in der Folge Flügelreduktion erwies sich in dieser Situation
als Selektionsvorteil und wurde von einer ganzen Reihe von Arten
genutzt, sowohl in den “massifs de refuge” der Hochgebirge als auch
68
Abb. 23. Habitat von Pharmacis claudiae sp. n. bei Antey-St.-Andre (Aosta).
im borealen Bereich (Agrotis fatidica, Xestia (Schoyenia) spp., Elophos
spp., Pharmacis spp. u. a.). Doch was in den Glazialia eine Überlebens-
strategie war, erweist sich heute als Hindernis für die Dispersion dieser
Arten, so daß bei vielen von ihnen davon ausgegangen werden kann,
daß ihr rezentes Areal sich seit dem letzten Glazial nur wenig erweitert
hat. Ein auffallend geringes Dispersionspotential weisen auch manche
flugfähigen Arten auf, z. B. einige Arten der Genera Erebia, Psodos
und der Tribus Gnophini. (Daß die Flügelreduktion meist nur das weib-
liche Geschlecht betrifft, liegt daran, daß eine rasche Geschlechterfindung
69
nur dann gewährleistet ist, wenn der suchende Partner geflügelt ist,
und daß andererseits die Population den Verlust von Männchen eher
verkraften kann, denn auch wenige überlebende Männchen sind in der
Lage, alle vorhandenen Weibchen zu begatten, während jeder Verlust
eines Weibchens den Verlust ihres Eivorrats und somit ihrer gesamten
potentiellen Nachkommenschaft bedeutet.)
Die Gruppe der gebirgsbewohnenden Pharmacis-Arten mit brachy-
pteren Weibchen wird ım folgenden Text nach dem zuerst beschriebenen
alpinen Vertreter als bertrandi-Artengruppe bezeichnet, umfaßt aber
auch Ph. pyrenaicus (Donzel, 1838) und eventuell einen weiteren Ver-
treter im Kaukasus. Möglicherweise existieren noch unentdeckte oder
bisher mit Ph. carna verwechselte Taxa in asiatischen Hochgebirgen.
Pharmacis carna (eventuell einschließlich nahe verwandter geflügelter
Arten) stellt vermutlich die Schwestergruppe der Pharmacis bertrandi-
Gruppe dar. Im Laufe mehrerer Eiszeiten wurde das Areal der Phar-
macis bertrandi-Gruppe mehrfach zersplittert und zweifellos sind auch
manche Populationen, die den Vergletscherungen nicht ausweichen
konnten, ausgestorben. Wann sich im alpinen Raum die Aufspaltung
in die Arten Ph. bertrandi, Ph. anselminae und Ph. claudiae vollzogen
hat, läßt sich beim heutigen Kenntnisstand nur schwer beurteilen ; die
deutlichen Unterschiede in Habitus und Genitalmorphologie und die
stark reliktäre Verbreitung lassen jedenfalls eine Aufspaltung schon vor
dem Würmglazial vermuten. Die rezente Situation stellt sich folgender-
maßen dar : Es existieren eine Reihe von isolierten Populationen im Be-
reich der Südwestalpen, wobei an jeder einzelnen Fundstelle nur je eines
dieser Taxa nachgewiesen ist. Über ihr aktuelles Expansionspotential
wissen wir wenig, die Weibchen sind aber flugunfähig und können wohl
auch nicht von den Männchen transportiert werden ; als einzige Me-
thode der Arealexpansion bleibt die Fortbewegung im Raupenstadium,
und die dürfte bei terrestrischen Raupen, die nicht die Möglichkeit
haben, sich im Jugendstadium am Faden treiben zu lassen, gering sein.
Es sieht also so aus, als ob die einzelnen Populationen noch immer
in etwa die Regionen bewohnen, die ihnen während des Höhepunkts
des letzten Glazials als Refugien gedient haben. Zur Beurteilung der
Frage, ob sich diese Populationen zu Arten differenziert haben, stehen
derzeit folgende Informationen zur Verfügung: Habitus und Genital-
morphologie der Imagines (bei Ph. claudiae nur der Männchen), zirka-
dianer Aktivitätsrhythmus (nicht für alle Populationen), Flugzeit, Bio-
tope und Vertikalverbreitung. Die zwei letzten Punkte sind beı allen
Populationen so ähnlich, daß zur Beantwortung der Frage nur Mor-
phologie, Anatomie, Flugzeit und tageszeitliche Aktivität bleiben. Bei
den meisten Hepialidae besteht in großen und zusammenhängenden
70
Populationen in der Regel eine große Variation in der Flügelzeichnung
und -färbung. Dies gilt für Ph. fusconebulosa (DE GEER, 1778) und darf
wohl auch für den gemeinsamen Vorfahren der Ph. bertrandi-Arten-
gruppe vorausgesetzt werden. Wenn bei einem solchen Vorfahren Eng-
pässe (bottleneck-Situationen) in mehreren disjunkten Reliktpopula-
tionen auftreten, wie dies während der Vereisungs- und Eisrückzugs-
phasen des Pleistozäns mehrfach eingetreten sein muß, dann darf ge-
radezu damit gerechnet werden, daß sich die einzelnen disjunkten Teil-
populationen bezüglich des Merkmals Flügelzeichnung stark ausein-
anderentwickelten, so daß selbst nahestehende Taxa (z. B. Schwester-
taxa) nicht unbedingt durch ähnliche Flügelzeichnung ausgezeichnet
sein müssen und daß die Flügelzeichnung alleine in einer solchen
Gruppe kein verläßlicher Indikator für genealogische Verwandtschaft
sein kann. Differenzen in der Genitalmorphologie und in der tageszeit-
lichen Aktivität können hier eher zur Klärung verwandtschaftlicher
Beziehungen herangezogen werden. Selbst in der Flugzeit scheinen sich
Ph. anselminae und Ph. claudiae zu unterscheiden (wenn nicht sogar
auszuschließen) : Ph. anselminae wurde nur bis zum 15.7., Ph. claudiae
erst ab dem 28.7. nachgewiesen, wobei allerdings berücksichtigt werden
muß, daß bisher für beide Arten nur wenige Phänologiedaten vorliegen.
Bei den geographisch teils sehr eng benachbarten Taxa der Ph. ber-
trandi-Gruppe bietet es sich an, durch Raupen- und Puppensuche oder
Zucht einerseits die Präimaginalstadien kennenzulernen und deren Mor-
phologie, Biologie und Ökologie zu vergleichen, andererseits virgine
Weibchen zu erlangen und mit diesen in Biotopen der jeweils anderen
Arten Anflugversuche durchzuführen, um das Vorhandensein (oder
Fehlen) von Isolationsmechanismen durch Pheromoninkompatibilität,
durch anatomische Differenzen in der Genitalmorphologie oder durch
sich ausschließende zirkadiane Aktivitätsrhythmen nachzuweisen. Hier
wie in ähnlich gelagerten Fällen öffnet sich ein weites Betätigungsfeld
auch für den Amateur-Entomologen, der sich nicht auf das Anhäufen
toter Imagines beschränken sollte, sondern — mit entsprechender wis-
senschaftlicher Untermauerung — wertvolle Beiträge zur Kenntnis der
Holomorphe und ihrer Autökologie liefern kann. Schließlich muß mit
der Möglichkeit gerechnet werden, daß in den südwestlichen Alpen
(besonders auf der entomofaunistisch wenig intensiv durchforschten
italienischen Seite) weitere lokale Populationen von Vertretern der Ph.
bertrandi-Artengruppe existieren, die noch ihrer Entdeckung harren.
7A
Danksagung
Wie danken Herrn Thomas Witt (München) für die Ausleihe eines Pharmacis
bertrandi-Belegstücks und Herrn Wolfgang Ströhle (Weiden/Opf.) für die
Überlassung einer Serie von Pharmacis carna.
Literatur
DANIEL, F., 1950. Beobachtung über die Lebensweise hochalpiner Vertreter
der Gattung Hepialus. Mitt. münch. ent. Ges. 40 : 203-206.
FREINA, J. J. DE & Witt, T., 1990. Die Bombyces und Sphinges der West-
palaearktis (Insecta, Lepidoptera). Band 2. München (Edition Forschung
& Wissenschaft). 134 + 6 unnumerierte S.
NIELSEN, E. S. & KRISTENSEN, N. P., 1989. Primitive Ghost Moths. Morpho-
logy and taxonomy of the Australian genus Fraus Walker (Lepidoptera :
Hepialidae s. lat.). Monographs on Australian Lepidoptera 1 : i-xi,
1-206.
NIELSEN, E. S. & Rosinson, G. S., 1983. Ghost moths of southern South
America (Lepidoptera: Hepialidae). With a Summary in Spanish
prepared by P. Gentili : “Mariposas Fantasmas del sur de Sudamerica”.
Scandinavian Science Press, Copenhagen. 192 S.
PFITZNER, R., 1912. Hepialidae. In Serrz, A. (Hrsg.) (1909-1913) : Die Gross-
Schmetterlinge der Erde. I. Abteilung: Die Gross-Schmetterlinge des
Palaearktischen Faunengebietes. Bd. 2: Die Palaearktischen Spinner &
Schwärmer : 433-439.
TEOBALDELLI, A., 1977. Eine neue Hepialus-Art aus Italien. NachrBl bayer.
Ent. 26 : 38-43.
TEOBALDELLI, A., 1979. Lépidoptères capturés en Val d’Aoste. Alexanor 11:
98-104 ; 145-152.
12
Nota lepid. 17 (1/2) : 73-86 ; 30.X1.1994 ISSN 0342-7536
Die Puppen der Tribus Cyclophorini Mitteleuropas
(Lepidoptera : Geometridae)
Jan PATOCKA
Institut für Waldökologie der SAW, Stürova 2, SK-96053 Zvolen, Republik Slowakei
Summary
The pupae of the central European species of the tribe Cyclophorini (Lepi-
doptera, Geometridae) — The pupae of 11 species of Central European Cyclo-
phorini (Lepidoptera, Geometridae, Sterrhinae) are characterised, described
and figured. A key for the determination of pupae of the genus Cyclophora
Hübner and some biological data are added. The current system within the
genus Cyclophora is discussed on the basis of pupal characters.
Zusammenfassung
Die Puppen von 11 Arten der mitteleuropäischen Cyclophorini (Lepidoptera,
Geometridae, Sterrhinae) werden charakterisiert, beschrieben und abgebildet.
Eine Tabelle zur Bestimmung der Arten der einzigen mitteleuropäischen Gat-
tung Cyclophora Hübner und einige bionomische Angaben werden beigefügt.
Das derzeitige System der Gattung Cyclophora wird anhand der Puppenmerk-
male diskutiert.
Resume
L’auteur caractérise, décrit et figure les chrysalides de 11 espèces de Cyclophorini
d’Europe centrale (Lepidoptera, Geometridae, Sterrhinae). Il présente en outre
un tableau de détermination pour les espèces du seul genre d'Europe centrale :
Cyclophora Hübner, et ajoute quelques données sur la bionomie. Discussion du
système actuel de classement dans le genre Cyclophora sur la base des carac-
tères des chrysalides.
Diese Arbeit knüpft an PATOCKA (im Druck) an und behandelt die
Puppen der Cyclophorini (Lepidoptera, Geometridae, Sterrhinae) mit
der einzigen mitteleuropäischen Gattung Cyclophora Hübner. Das Sys-
tem und die Nomenklatur folgen LERAUT (1980), die morphologische
Terminologie (vgl. Abb. 1, 2) MosHer (1916) und McGuFFIN (1967).
73
Abb. 1-10. 1-2 — Cyclophora sp. ; 3-7 — C. pendularia ; 8-9 — C. albiocellaria :
10 — C. annulata.
| — Habitusbild in Ventral-; 2 — in Lateralansicht ; 3, 7 — Clypeus, Labrum ;
4,8 — Oculi und Umgebung ; 5, 9, 10 — thorakaler Spiracularhöcker.
A = Antennae, Af = Analfeld, An = Analnaht, As = abdominale Spiracula, Bh =
Basalhöcker, C] - Clypeus, E = Einsenkung, F = Frons, G = Genae, Gn = Genital-
naht, @, Hb = Hinterbeine, Hfl = Hinterflügel, Hn = Häkchen, Kr = Kremaster,
Lbr = Labrum, Mb = Mittelbeine, Msn = Mesonotum, Mtn = Metanotum, O =
Oculi, Pcl = Postclypeus, Pr = Proboscis, Prn = Pronotum, Sh = Spiracularhöcker,
Str = Streifen im Analteil der Vorderflügel, Vb = Vorderbeine, Vfl = Vorderflügel,
Vs = Vorderschenkel, 1-10 = 1.-10. Abdominalsegment.
Tribus Cyclophorini
Diese Tribus enthält in Mitteleuropa nur die Gattung Cyclophora Hüb-
ner, 1822, mit folgender Charakteristik :
Mittelkleine (ca. 11-14 X 2,5-3,5 mm), ziemlich gleichförmige, in Ven-
tralsicht charakteristisch keilförmige Spannerpuppen (Abb. 1), vorn am
breitesten und stark abgestumpft. Thorakale Spiracularhöcker ecken-
artig vorspringend. Von diesen läuft parallel zum Dorsalrand der Vor-
derflügel je eine erhabene Kante. Auch zwischen Clypeus und Frons
eine Kante (Abb. 1-2). Färbung fahl (sand-) gelb bis rot- oder grau-
74
bräunlich. Manche Arten weisen außerdem grüne Puppenformen auf.
Körper oft gesprenkelt mit Fleckenzeichnungen am Clypeus, an der
Vorderflügelbasis, am Thorax und Abdomen. Längs des kantenartigen
Dorsalteiles der Vorderflügel oft ein dunkler Streifen, auch die Adern
manchmal + verdunkelt. Puppen nur schwach glänzend. Skulptur mittel-
grob bis mittelfein, wirr runzelig, zuweilen etwas höckerig, 1.-7. Ab-
dominalsegment meist mit — scharfen Punktgrübchen (Abb. 18, 45).
Labrum breit, abgerundet bis trapezförmig (Abb. 3, 7, 20). Labium
ganz verdeckt. Genae oben beulenartig erhaben. Die Grenze zwischen
Proboscis und Genae verläuft eher quer zur Längsachse der Puppe,
die zwischen den Vorderbeinen und Antennae mehr schräg. Grenze
der Vorderbeine mit den Antennae 4-5 X länger, die mit den Genae
etwa 1,5-3 X kürzer als die Grenze zwischen den Vorderbeinen und
Oculi (Abb. 4, 8). Vorderschenkel und Enden der Hinterbeine sicht-
bar. Proboscis wenig, Vorderbeine deutlich kürzer als die Mittelbeine
und Antennae, diese überragen die Vorderflügel nicht (Abb. 1). Basen
der Antennae, Frons, der ziemlich gut differenzierte, schmale Vertex
und das Pronotum befinden sich an der abgestumpften Frontalseite
der Puppe (Abb. 2). Frontolateral (Spiracular-) Höcker des Mesono-
tums manchmal mit komplizierten Einschnürungen, zuweilen lappig
(Abb. 9, 43). Frontolaterale Ausläufer des Metanotums relatıv spitz
(Abb. 19, 39). Thorakale Spiracula undeutlich. Hinterflügel schmal,
bis etwa zum Caudalrand des 3. Abdominalsegmentes sichtbar. Spira-
cula am 2. Abdominalsegment deutlich, am 3. Segment verdeckt, relativ
groß, elliptisch, ihre Höfe breit (Abb. 2). Zwischen dem 9. und 10. Ab-
dominalsegment, dorsal und lateral, gibt es weder eine Rinne, noch
Einschnitte (Abb. 11, 12). Das 9. Segment ziemlich kurz, insbeson-
dere an der Ventralseite. An der Dorsalseite trägt es V- oder trapez-
förmige, zuweilen abgerundete Vertiefungen, die kantenartig gesäumt
sind (Abb. 11, 12, 27, 31, 33). Analfeld deutlich, meist dreieckig, manch-
mal längsgefurcht. Die Analnaht zuweilen mit erhabenen Lateralwällen
(Abb. 17, 22).
Kremaster + so lang wie basal breit, dorsoventral abgeplattet. In der
Dorsalansicht ist er entweder zungenförmig, am Ende relativ spitz
(Abb. 33) ; oder am Ende abgestumpft (Abb. 12), bzw. stumpf- oder
rechtwinklig (Abb. 31, 42). Ventralseite oft mit Basalhöckern und einer
größeren oder kleineren Basalvertiefung (Abb. 6, 17). Von den 4 Paaren
der hakenartigen Kremasterborsten entspringt D1 dorsal vor dem Ende
des Kremasters und ist kleiner als die übrigen. Diese etwa gleichgroß,
dicht in einer Gruppe am Kremasterende konzentriert (Abb. 54). Sonst
ist der Kremaster + gerunzelt bzw. gefurcht.
75
Abb. 11-24. 11 — Cyclophora pendularia ; 12-14 — C. albiocellaria ; 15-18 — C.
annulata ; 19-23 — C. albipunctata ; 24 — C. puppillaria.
11, 12, 16, 23 — Abdomenende in Dorsal- ; 13, 17, 18 — in Ventralsicht ; 14, 18 — 5.
Abdominalsegment in Dorsalsicht ; 15, 20, 24 — Labrum, Clypeus ; 21 — thorakaler
Spiracularhöcker.
Die Puppe ruht oberirdisch an einem besponnenen Blatt der Futter-
pilanze, mit Hilfe der Kremasterhäkchen und eines Gespinstgürtels
“tagfalterartig” am Blatt befestigt. Die Überwinterung findet im abge-
fallenen Laub bzw. in einer noch belaubten Baumkrone statt. Die Arten
leben vorwiegend an Laubhölzern (nur C. suppunctaria an Kräutern)
und sind in Mitteleuropa meist bivoltin (selten uni- bzw. trivoltin) ;
die Puppen findet man im Sommer und von Herbst zum Frühling.
Die einzelnen Arten bewohnen Laub- und Mischwälder, zuweilen die
Waldsteppe. C. puppillaria ist als Wanderfalter bekannt. Wirtschaftlich
sind sie fast bedeutungslos.
76
Bestimmungstabelle der Arten
2(1)
Dorsal am 10. Abdominalsegment eine keilförmige (dreieckige) Vertie-
fung (Abb. 11, 23, 38), zuweilen durch die Längsfurchung verdeckt und
memes schaut (ADBA DD RUE Men ER emo Ah 2
Dorsal am 10 Abdominalsegment eine trapezförmige (an der Caudalseite
absestumpfte)Vertiefungss(Abb 27313 Pam irn; 7
Die Vertiefung dorsal am 10. Abdominalsegment unscharf, durch
scharfe Längsfurchung verdeckt (Abb. 11). Puppenfärbung trüb braun-
DU Beats. EGR We SARS m. abe Set C. pendularia
Die Vertiefung dorsal am 10. Abdominalsegment scharf (Abb. 23, 54).
Körperfärbung sandbraun, gelbbraun bis trüb strohgelb, manchmal
EMRE GUN ON EM ARABE ISIN IN TOR EN ISH IOUT. MEN... 3
Seiten der Vertiefung dorsal am 10. Abdominalsegment stark geschwun-
gen, Spitze spitzwinklig vorgezogen (Abb. 38) ......... C. quercimontaria
Seiten der Vertiefung dorsal am 10. Abdominalegment nicht oder kaum
geschwungen, Spitze deshalb nicht vorgezogen (Abb. 12,54) ............. +
Vorderflügel mit einem dunklen Fleck in der Mitte (Abb. 2). Kremaster
in Dorsalsicht meist allmählich zungenförmig zugespitzt (Abb. 23) .......
nee Meee oneness vn C. annulata
Vorderfliigel ohne einen dunklen Fleck in der Mitte. Kremaster in Dor-
salsicht meist erst im Endteil abgerundet, oder stumpf- bis rechtwinklig
ARCS DAC NO PU ODA ie ces rene WER EEE EREERRREER 5
Dunkle Sprenkelung und Flecken an Borstenbasen am Thorax und Ab-
domen fehlend (Abb. 19). Labrum abgerundet trapezförmig (Abb. 20)
ee AURA Vordleriiiioein Ah. 2). ast le clean C. albipunctata
Dunkle Sprenkelung und Flecken am Thorax und Abdomen deutlich
(Abb. 14, 55, 56). Labrum trapezförmig (Abb. 7,51) ......................... 6
Labrum mit wenig schrägen Seiten, dunkle Flecken an der Basis der
Clypealborsten klein, punktförmig (Abb. 7). Kremaster in Ventralsicht
mit einer tiefen, breiten Vertiefung im Basalteil, am Ende stumpf abge-
RUMI CAibin fl). . sarya! teres eh. cee. nel. C. albiocellaria
Labrum mit schrägen Seiten, dunkle Flecken an der Basis der Clypeal-
borsten relativ groß (Abb. 51). Kremaster in Ventralsicht mit schwa-
cher, eher länglicher Vertiefung, am Ende meist stumpf- bis rechtwinklig
CASSER PRIRENT RER C. linearia
Vertiefung dorsal am 10. Abdominalsegment im Caudalteil breit (manch-
mal u-förmig abgerundet), Caudalrand nicht kürzer als die Lateralränder
(ADD Zr) ee ee ae bd te ATEN ar En 8
Vertiefung dorsal am 10. Adominalsegment im Caudalteil schmal, Cau-
dalrand viel kürzer als die Lateralränder (Abb. 31, 42, 47) ................ 9
Labrum — halbkreisförmig (Abb. 35). Grenze der Vorderbeine mit den
Genae etwa 3 X kürzer als die mit den Oculi (Abb. 4). Kremaster in Ven-
tralsicht mit deutlichen Basalhöckern. Analfeld groß, breit, Lateralwälle
der Analnaht nicht stark hervortretend (Abb. 29). Vertiefung am 10.
Abdominalsegment dorsal mit + scharfen Ecken (Abb. 33) ..................
We
— _Labrum = abgerundet viereckig (Abb. 24). Grenze der Vorderbeine mit
den Genae kaum 2 X kürzer als die mit den Oculi (Abb. 8). Basalhöcker
an der Ventralseite des Kremasters kaum angedeutet, Analfeld schmal,
Analnaht mit starken Lateralwällen (Abb. 25). Vertiefung am 10. Ab-
dominalsegment dorsal mit + abgerundeten Ecken (Abb. 27) ...............
ee Kl. serien. aD ee eee à Din C. puppillaria
9(7) Puppe mit gut entwickelter dunkelbrauner Fleckenzeichnung dorsal am
Thorax und Abdomen (Abb. 45). Clypeale Borsten auf dunklen Basal-
flächen (Abb A): 8 LCL Lads Pee, neuen C. punctaria
— Puppe ohne oder mit ganz schwacher Fleckenzeichnung (Abb. 48).
Clypealborsten höchstens auf dunklen Punkten (Abb. 46) ............... 10
10(9) Puppe fahlbraungelb oder rötlichgelb gefärbt. Skulptur, besonders an
den Vorderflügeln (auch an deren Basis) ziemlich fein. Labrum lateral
gewölbt. Caudalseite gerade (Abb. 28). Lateralränder der Dorsalvertie-
fung am 10. Abdominalsegment — einwärts gebogen (Abb. 31) ............
lien. sans rd Meer en RE C. ruficiliaria
— Puppe fahl braungrau gefärbt. Skulptur gröber, z.T. höckerig. Labrum
auch an der Caudalseite gewölbt (Abb. 46). Lateralränder der Dorsal-
vertiefung am 10. Abdominalsegment auswärts gebogen (Abb. 47) .......
BEN a SR PR DE PRE. ui ER ee C. suppunctaria
Cyclophora pendularia (Clerck, 1759)
5 6,5 © aus der Slowakei und aus Böhmen wurden untersucht. Puppe
schlank mit spitzem Abdomenende. Färbung bräunlich hellgrau, dunkle
Zeichnung an den Vorderflügeln spärlich, dunkel braungrau. Punkte
an der Basis der Clypealborsten etwas größer, sonst dorsal am Thorax
und Abdomen klein, unauffällig. Skulptur am Notum und Abdomen
wirr gerunzelt, Punktgrübchen an den mittleren Abdominalsegmenten
unscharf. Labrum an der Caudalseite — abgerundet (Abb. 3). Grenze
der Vorderbeine mit den Oculi etwa 2 X länger als die mit den Genae
(Abb. 8). Spiraculare Ausläufer am Thorax stark hervortretend mit
feinen Einschnürungen, wenig gelappt (Abb. 9). Vertiefung dorsal am
10. Abdominalsegment keilförmig, hinten in etwa rechtwinklig, unscharf,
durch starke Längsfurchung weniger auffällig (Abb. 11). Analfeld
schlank dreieckig, Seitenwälle schwach, sonst Umgebung längsgerunzelt
(Abb. 6). Kremaster wenig länger als basal breit, zum Ende zungen-
förmig verschmälert, am Ende abgerundet, wirr gerunzelt. Basalhöcker
an der Ventralseite deutlich, dazwischen fast keine Vertiefung. Häkchen
relativ klein, dunkel graubraun (Abb. 6, 11). Raupe an Salix spp.,
seltener an verschiedenen anderen Laubhölzern. Laubholzbestände an
Gewässerufern, mehr in tieferen Lagen, lokal.
78
Cyclophora albiocellaria (Hübner, 1789)
3 6, 4 2 aus der Slowakei wurden untersucht. Puppe ziemlich ge-
drungen, hell sandgelb, deutlich und scharf schwarzbraun gezeichnet.
Rückenfleckchen dick (Abb. 14). Punktgrübchen an mittleren Abdo-
minalsegmenten ziemlich tief, unscharf. Labrum stumpf trapezformig
mit steilen Seiten (Abb. 7). Grenze der Vorderbeine mit den Oculi kaum
2 X länger als die mit den Genae (Abb. 8). Thorakale Spiracularaus-
läufer relativ stumpf (Abb. 9). Vertiefung dorsal am 10. Abdominal-
segment scharf, keilförmig, Seiten wenig geschwungen, Spitze nicht
vorgezogen (Abb. 12). Analfeld dreieckig, Seitenwälle der Analnaht
niedrig. Sonst Ventralseite des 10. Abdominalsegmentes längsgefurcht.
Kremaster meist etwas länger als basal breit, am Ende abgerundet.
Ventralseite stark vertieft, Endteil längsgefurcht, sonst Furchung eher
wirr. Ba sal höcker deutlich. Häkchen relativ stark und dick, braun
(Abb. 12, 13).
Raupe an Acer spp. In der Waldsteppe und Randzone der Waldbestände
an warmtrockenen Standorten im Süden und Südosten Mitteleuropas.
Cyclophora annulata (Schulze, 1775)
5 À, 5 ® aus der Slowakei wurden untersucht. Puppe relativ klein,
ziemlich gedrungen, meist unscharf gezeichnet, u.a. ein charakteristischer
dunkler Fleck an den Vorderflügeln (Abb. 2), dunkle dorsale Fleckchen
am Thorax und Abdomen fließen oft streifenartig zusammen. An den
mittleren Abdominalsegmenten tiefe, relativ scharfe Punktgrübchen
(Abb. 18). Labium trapezförmig mit schrägen Seiten (Abb. 15). Grenze
der Vorderbeine mit den Oculi mehr als 2 X länger als die mit den
Genae. Thorakale Spiracularhöcker relativ stumpf, schwächer gewölbt
als bei C. albiocellaria (Abb. 10). Dorsalvertiefung am 10. Abdominal-
segment derjenigen der vorigen Art ziemlich ähnlich (Abb. 16), ebenso
das Analfeld und der Kremaster, dieser ıst jedoch spitzer. Endhäkchen
relativ stark, braun (Abb. 16, 17).
Raupen an Acer spp., seltener an anderen Laubhölzern. Randzone der
Laubwälder, Gebüsch. An mäßig feuchten bis trockenen Standorten
wärmerer Lagen, verbreitet.
Cyclophora albipunctata (Hufnagel, 1767)
5 4, 5 Puppen aus der Slowakei und aus Böhmen wurden untersucht.
Puppe ziemlich gedrungen, sandgelbbraun oder grün, Flügelstreifen oft
scharf, schwarzbraun, Fleck im Mittelteil der Vorderflügel nicht vor-
12
Abb. 25-36. 25-27 — Cyclophora puppillaria ; 28-31 — C. ruficiliaria ; 32-35 — C.
porata , 36 — C. quercimontaria.
25, 29, 33 — Abdomenende in Ventralsicht ; 26, 30, 34 — thorakaler Spiracularhöcker ;
27, 31, 33 — Abdomenende in Dorsalsicht ; 28, 35, 36 — Labrum, Clypeus.
handen. Wurzel-Punkte der Clypealborsten schwach (Abb. 20). Flecken-
zeichnungen am Thorax und Abdomen reduziert oder fehlend (Abb. 19).
Morphologisch jedoch C. annulata ähnlich. Labrum abgerundet trapez-
förmig (Abb. 20), Grenze der Vorderbeine mit den Oculi mehr als 2 X
länger als die mit den Genae (Abb. 4). Thorakale Spiracularhöcker
mehr hervortretend, der große äußere Teil gewölbt, mit Einschnürungen
(Abb. 21). Analfeld mit stärker hervortretenden Wällen. Kremaster an
der Ventralseite kaum vertieft, Basalhöcker angedeutet. Häkchen ziem-
lich klein, braun (Abb. 22, 23).
Raupe an Betula spp., auch an Alnus spp., seltener an anderen Laub-
hölzern. In Birkenhainen, Laub- und Mischwäldern an Gewässerufern.
80
Cyclophora puppillaria (Hübner, 1799)
2 © aus Frankreich (Coll. Staudinger, Museum für Naturkunde, Berlin)
wurden untersucht. Färbung nach Forster & WOHLFAHRT (1981)
“dunkelgrün mit einigen hellen Linien auf dem Rücken und an den
Rändern der Flügelscheiden. Kopfspitzen und Kremaster leicht wein-
rot”, möglicherweise jedoch auch braungelb. Exuvie trüb strohgelb,
Abdomenende mehr bräunlich, Zeichnungen praktisch fehlend. Punkt-
grübchen nicht allzu stark. Labrum mit geschwungenen Seiten, Clypeal-
borsten ohne dunkle Punkte (Abb. 24). Grenze zwischen den Vorder-
beinen und Oculi etwa 2 X länger als die zwischen Vorderbeinen und
Genae. Thorakale Spiracularhöcker schwächer hervortretend, lappig
(Abb. 26). Das 10. Abdominalsegment dorsal mit einer sehr breiten
trapezförmigen Vertiefung, deren Ecken + abgerundet sind. Caudalrand
nicht kürzer als die Lateralränder (Abb. 27). Analnaht lang mit + deut-
lichen Seitenzweigen, Lateralwälle stark, Analfeld schmal, dreieckig.
Kremaster an der Ventralseite ohne deutliche Basalhöcker, Basalteil
vertieft, Endteil eher angeschwollen. Dorsalseite wirr gerunzelt. Ende
des Kremasters abgerundet (Abb. 25, 27).
Raupe in Mitteleuropa angeblich an Quercus spp. An trockenwarmen
Standorten im äußersten Süden Mitteleuropas (und im Mediterran-
gebiet), als Wanderfalter auch weiter nordwärts vordringend.
Cyclophora ruficiliaria (Herrich-Schäffer, 1855)
2 &, 2 ® Puppen aus der Slowakei wurden untersucht. Abdomenende
relativ schlank. Färbung fahlgelb, Zeichnung stark reduziert bzw. fast
fehlend. Vorderflügel höchstens mit einem schmalen Analstreifen oder
mit schwach verdunkelten Adern. Punkte an Borstenbasen (auch die
der Clypealborsten, Abb. 28) meist kaum sichtbar. Skulptur an den
Vorderflügeln, auch an deren Basis, ziemlich fein. Punktgrübchen an
den mittleren Abdominalsegmenten verhältnismäßig scharf. Labrum
breit, Seiten gewölbt (Abb. 28). Grenze der Vorderbeine mit den Oculi
+ zweimal länger als die der Oculi mit den Genae. Thorakaler Spira-
cularhöcker mittelstark hervortretend, gewölbt, mit scharfen Querein-
schnürungen (Abb. 30). 9. und 10. Abdominalsegment dorsal längs-
gefurcht. Dorsalvertiefung am 10. Segment scharf begrenzt, schmal
trapezförmig, Seitenränder schräg, viel länger als der Caudalrand und
etwas einwärts geschwungen (Abb. 31). Analnaht mit schwachen Seiten-
wällen, Analfeld groß. Kremaster relativ kurz, breit, Ventralseite mit
angedeuteten Basalhöckern und einer breiten Vertiefung. Kremaster vor
dem Ende etwas angeschwollen. Dorsalseite relativ stark, wirr gefurcht.
81
Abb. 37-47. 37-40 — Cyclophora quercimontaria ; 41-45 — C. punctaria ; 46-47 — C.
suppunctaria.
37, 41 — Abdomenende in Ventral- ; 38, 42, 47 — in Dorsalsicht ; 39 — Metano-
tum, 1. Abdominalsegment, limke Seite; 40, 43 — thorakaler Spiracularhöcker ;
44, 45 — Labrum, Clypeus ; 45 — 5. Abdominalsegment in Dorsalsicht.
Das Ende in Dorsalansicht etwas winkelförmig. Häkchen stark, rot-
braun (Abb. 31, 32).
Raupe an Quercus spp. (in der Slowakei wird Q. cerris bevorzugt).
Lokal an trockenwarmen Standorten.
Cyclophora porata (Linnaeus, 1767)
1 4, 1 2 Puppe aus dem Naturhistorischen Museum Wien wurden
untersucht. Färbung gelbbräunlich, Exuvie trüb strohgelb. Zeichnung
reduziert. Vorderflügel nur mit etwas dunkleren Adern. Thorax und
Abdomen fast ohne dunkle Sprenkelung. Punkte an der Borstenbasis
(auch an den Clypealborsten, Abb. 35) kaum dunkler. Punktgrübchen
am Abdomen unscharf, nur in der Umgebung der Spiracula deutlicher.
82
Labrum breit abgerundet, Ränder (auch der Caudalrand) gewölbt
(Abb. 35). Grenze der Vorderbeine mit den Genae kurz (fast 3 X kürzer
als die mit den Oculi, vgl. Abb. 4). Thorakale Spiracularhöcker mittel-
stark erhaben, mäßıg gewölbt, Einschnürungen schwach (Abb. 34).
Dorsale Vertiefung am 10. Abdominalsegment breit trapezförmig,
eckig, Seiten schräg, Caudalrand kaum kürzer als die Lateralränder
(Abb. 33). Analfeld relativ breit, Analnaht mit mäßigen Lateralwällen.
Kremaster relativ kurz, vor dem Ende stumpfwinklig oder quer zur
Längsachse abgestumpft. Ventralseite mit schwachen Basalhöckern,
dazwischen vertieft ; sonst nur mäßig, Dorsalseite deutlicher, skulp-
turiert. Häkchen ziemlich kräftig (Abb. 32, 33).
Raupe an Quercus spp., Betula spp., vorzugsweise auf sandigen Böden,
in Heiden u. dgl.
Cyclophora quercimontaria (Bastelberger, 1897)
5 6, 5 2 Puppen aus der Slowakei wurden untersucht. Puppe mäßig
gedrungen, oft dunkel braungrau gesprenkelt, Flügeladern + verdunkelt,
dunkle Fleckchen an der Basis der Borsten (Abb. 39). Exuvie hell sand-
bis strohgelb, Abdomenende oft dunkler. Punktgrübchen mittelscharf.
Labium breit trapezförmig, Caudalrand meist konvex (zuweilen auch
konkav). An der Basis der Clypealborsten die dunklen Fleckchen deut-
lich (Abb. 36). Grenze der Vorderbeine mit den Genae mehr als zwei-
mal kürzer als die mit den Oculi (vgl. Abb. 4). Thorakale Spiracular-
höcker mittelstark, mäßig eingeschnürt und gelappt (Abb. 40). 10. Ab-
dominalsegment dorsal mit einer tiefen, keilartigen Vertiefung, Seiten
geschwungen, Spitze spitzwinklig, vorgezogen (Abb. 38). Analfeld mit
schwachen Lateralwällen. Kremaster meist länger als basal breit, zum
Ende verjüngt, am Ende selbst abgerundet. Ventralseite mit starken
Basalhöckern, dazwischen vertieft, Endteil längs-, Dorsalseite eher wirr
gefurcht. Häkchen stark, rotbraun (Abb. 37, 38).
Raupe an Quercus spp., lokal, an trockenwarmen Standorten (Wald-
steppen, Heiden). Bevorzugt buschige Eichen.
Cyclophora punctaria (Linnaeus, 1758)
5 À, 5 2 aus der Slowakei wurden untersucht. Puppe ziemlich ge-
drungen, sandfarben, seltener grün, ähnlich wie die vorige scharf ge-
zeichnet (Abb. 45). Labrum trapezförmig mit schrägen, meist geraden
Seiten, am Caudalrand manchmal etwas ausgeschnitten. Fleckchen an
der Basis der Clypealborsten deutlich (Abb. 44). Grenze der Vorderbeine
mit den Oculi mehr als 2 X länger als die mit den Genae (vgl. Abb. 4).
83
Thorakaler Spiracularhöcker mittelstark erhaben mit deutlichen Ein-
schnürungen (Abb. 43). Dorsalvertiefung am 10. Abdominalsegment
(im Unterschied zu der sonst ähnlichen vorigen Art bzw. zu C. linea-
ria) schmal trapezförmig, Caudalrand viel kürzer als die schrägen,
kaum geschwungenen Seitenränder (Abb. 42). Analfeld schlank drei-
eckig. Lateralwälle der Analnaht ziemlich erhaben. Kremaster kaum
oder wenig länger als basal breit, vor dem Ende in Dorsalsicht zu-
gespitzt. Ventralseite mit Basalhöckern und einer meist kleinen, oder
fehlenden Vertiefung. Dorsalseite mäßig gerunzelt. Häkchen mittelstark,
rotbraun (Abb. 41, 42).
Raupe an Quercus spp. In Eichenwäldern aller Art oft häufig.
Cyclophora suppunctaria (Zeller, 1847)
5 4, 5 2 aus der Slowakei wurden untersucht. Der C. ruficiliaria
morphologisch ähnlich. Unterscheidet sich durch die mehr fahl grau-
braune Färbung (C. ruficiliaria ist eher fahlgelb), durch die gröbere
und teilweise auch höckerige Skulptur an Thorax, Abdomen- und
Vorderfliigelbasis (Abb. 48). Punktgrübchen am Abdomen meist weniger
scharf. Abgrenzung des Labrums — lateral und auch caudal — gewölbt
(Abb. 46). Das 9. und 10. Abdominalsegment dorsal längsgefurcht.
Am 10. ist eine trapezförmige Vertiefung, deren Seiten ein bißchen
auswärts gebogen sind. Caudalrand viel kürzer als die Seitenränder
(Abb. 47). Das Abdominalsegment ventral und auch das Analfeld
längsgefurcht (Abb 50 ; stärker als bei C. ruficiliaria). Kremaster ventral
kaum konkav mit + starken Basalhöckern, wirr gefurcht — auch an
der Dorsalseite. Kremasterende in Dorsalsicht + stumpf bis rechtwinklig
zugespitzt, Häkchen mittelstark, dunkel rotbraun (Abb. 47, 50).
Raupe an Kräutern wie Artemisia campestris, Hippocrepis spp., Meli-
lotus spp. An trockenwarmen Standorten, z.B. Waldsteppen im süd-
östlichen Mitteleuropa, lokal.
Cyclophora linearia (Hübner, [1799])
5 6, 5 2 Puppen aus der Slowakei wurden untersucht. Der C. puncta-
ria ähnlich, + rötlich braunsandgelb, Sprenkelung und Flecken am
Clypeus, Thorax und Abdomen und Streifen an den Vordeflügeln meist
scharf (Abb. 51, 55, 56). Punktgriibchen am Abdomen relativ deutlich.
Labrum trapezförmig (Abb. 51). Grenze der Vorderbeine mit den Oculi
wenigstens 2 X länger als die mit den Genae (vgl. Abb. 4). Thorakale
Spiracularhöcker stark hervortretend, Einschnürungen jedoch kaum
angedeutet (Abb. 52). 9. und 10. Abdominalsegment dorsal — gerunzelt.
84
Abb. 48-56. 48-51 — Cyclophora suppunctaria ; 52-56 — C. linearia.
48, 56 — Metanotum, 1. Abdominalsegment ; 49, 52 — thorakaler Spiracularhöcker ;
50, 53 — Abdomenende in Ventralsicht ; 51 — Labrum, Clypeus ; 54 — Abdomenende
in Dorsalsicht ‚55 — 3. Abdominalsegment in Dorsalsicht.
Am 10. Abdominalsegment eine spitz keilförmige Vertiefung mit wenig
oder nicht geschwungenen Seiten (Unterschied gegenüber C. querci-
montaria) und kaum vorgezogener Spitze (Abb. 54). Analfeld deutlich,
Ränder der Analnaht oft wallartig erhaben. Kremaster meist etwas
länger als basal breit ; Ventralseite meist mit deutlichen Basalhöckern
und einer Vertiefung. Kremasterendteil in Dorsalsicht etwas zugespitzt.
Häkchen ziemlich stark, rotbraun (Abb. 53, 54).
Raupe an Laubhölzern, vorzugsweise an Fagus sylvatica und Quercus
spp., auch an Vaccinium spp., bevorzugt Eichen-Buchen-Wälder, dort
oft häufig.
Diskussion
Die untersuchten Puppen der Tribus Cyclophorini mit der einzigen
mitteleuropäischen Gattung Cyclophora bilden hinsichtlich ihres Baues
eine geschlossene, wenig differenzierte Einheit. Auch die einzelnen, auf
Grund ihrer bevorzugten Futterpflanzen gebildeten Gruppen — an
Salicaceae (C. pendularia), Betulaceae (C. albipunctata), Fagaceae
85
(C. puppillaria, C. ruficiliaria, C. porata, C. quercimontaria, C. punc-
taria, C. linearia), Aceraceae (C. albiocellaria, C. annulata), Asteraceae,
Fabaceae u.a. (C. suppunctaria) unterscheiden sich puppenmorpho-
logisch kaum voneinander.
Die Cyclophora-Puppen weichen von den anderen der Familie Geo-
metridae stark ab. Ihre Körperform ist der bei den Spannern wenig
üblichen Verpuppungsweise an der Oberfäche der Blätter ihrer Nah-
rungspflanzen angepaßt und weist dementsprechend weitgehende Adap-
tationen auf. Sie entsprechen anderen, sich auf diese Weise verpup-
penden (und sonst einander wenig verwandten) Schmetterlingsgruppen.
Auffallend ist der lang vorgezogene Kremaster mit der Konzentrierung
der hakenförmigen Haftborsten auf sein Caudalende. Eine sonst bei
der Familie Geometridae wenig übliche, helle Färbung, nicht selten
mit Zeichnungen, fast ohne Glanz, eckige Ausläufer am Vorderteil des
Körpers, die Befestigung der Puppe an einem Blatt mittels Kremaster-
häkchen und eines Gespinstgürtels erinnern an ähnliche Verhältnisse
bei den Familien Papilionidae, Pieridae usw. Während die einzelnen
Arten auch als Imagines relativ schwer zu bestimmen sind, ist ihre
Unterscheidung anhand der Puppenmerkmale möglich und relativ ver-
läßlich.
Danksagung
Der Verfasser dankt mehreren Fachkollegen, insbesondere Doz. Dr. Z.
Lastüvka (Brünn), Ing. J. Skyva (Prag), dem Museum für Naturkunde in
Berlin (Dr. W. Mey) und dem Naturhistorischen Museum in Wien (Dr. M.
Lödl) für die Überlassung bzw. Ausleihe des Puppenmaterials zur Unter-
suchung.
Literatur
FORSTER, W. & WOHLFAHRT, T. A., 1981. Die Schmetterlinge Mitteleuropas,
5. Spanner (Geometridae). 311 pp.
LERAUT, P., 1980. Liste systématique et synonymique des Lépidoptères de
France, Belgique et Corse. Supplement a Alexanor et Bull. Soc. ent.
Fr., 334 pp.
MCGUFFIN, W. C., 1968. Guide to the Geometridae of Canada (Lepidoptera).
I. Subfamily Sterrhinae. Mem. ent. Soc. Can. 50 : 1-103.
MOsHER, E., 1916. A classification of the Lepidoptera based on characters
of the pupa. Bull. Ill. St. Lab. Nat. Hist. 12 : 1-158.
PATOCKA, J., 1994. Die Puppen der Spanner Mitteleuropas (Lepidoptera, Geo-
metridae). Charakteristik, Bestimmungstabelle der Gattungen. Tijdschr.
Ent. 137 : 27-56.
86
Nota lepid. 17 (1/2) : 87-91 ; 30.X1.1994 ISSN 0342-7536
Une nouvelle espèce européenne
du genre Pancalia Stephens
(Lepidoptera : Cosmopterigidae, Antequerinae)
Tadeusz RıEDL
Witosa 5/5, 80-809 Gdansk, Pologne
Summary
A new European species of the genus Pancalia Stephens (Lepidoptera, Cosmo-
pterigidae, Antequerinae) — Pancalia baldizzonella sp. n. is described from
southern Italy. Adults and genitalia of both sexes are illustrated. The new
species is most closely related to P Jatreillella Curtis and P nodosella (Bruand),
from which it can be distinguished by the wing markings and genitalic cha-
racters.
Resume
Description de Pancalia baldizzonella sp. n. d’Italie méridionale. Les adultes et
les armures génitales des deux sexes de ce taxon sont figurées.
Zusammenfassung
Pancalia baldizzonella sp. n. wird aus Süditalien beschrieben. Die Imagines
und die Genitalien beider Geschlechter werden abgebildet. Die neue Art steht
P. latreillella Curtis und P nodosella (Bruand) am nächsten, von denen sie
sich durch die Flügelzeichnung und Genitalmerkmale unterscheidet.
Introduction
Depuis la parution d’un article de GAEDIKE (1967) consacré aux espèces
de Pancalia Stephens, 1829, ce genre et ses espèces ont été étudiés à
plusieurs réprises (LERAUT, 1984 ; RrEDL, 1984 ; SINEV, 1985). Ces études
ont permis d’expliquer la position systématique du genre en question
et de confirmer, après deux révisions, l’existence de 9 espèces nomi-
nales habitant uniquement la zone paléarctique, à savoir P gaedikei
Sinev, 1985, P hexachrysa (Meyrick, 1935), P isshikii Matsumura, 1931,
P. latreillella Curtis, 1830, P. leuwenhoekella (Linnaeus, 1761), P nodo-
sella (Bruand, [1851]), 2 sichotella Christoph, 1882, P sinense Gaedike,
1967, P swetlanae Sinev, 1985.
87
Fig. 1-2. Pancalia baldizzonella sp. n. 1 — holotype (mâle) ; 2 — paratype (femelle)
(phot. G. Baldizzone).
Il m’a récemment été possible d’examiner les matériaux récoltés par
le Dr. G. Baldizzone en Italie méridionale et de trouver parmi de nom-
breux Cosmopterigidae une nouvelle espèce du genre Pancalia qui est
donc le dixième taxon spécifique appartenant à ce genre.
Pancalia baldizzonella sp. n.
Ho.otype (Fig. 1) : Mâle, “Mt. Pollino, 1500 m, Lucania, Piano di Ruggio,
9. VII. 1991, G. Baldizzone leg.”, prép. gén. no. 1415/R.
PARATYPE (Fig. 2) : Femelle, prép. gén. no. 1414/R. Portant la même étiquette.
L’holotype et le paratype sont conservés dans la collection du Dr. G. Baldiz-
zone à Asti.
88
Envergure de l’holotype : 15 mm ; du paratype : 14,5 mm. Tête, thorax,
tegulae et palpes labiaux brun foncé, unicolores, brillants. Antennes
brun foncé, unicolores chez le mâle et avec la partie subterminale du
flagellum blanche chez la femelle (Fig. 1-2).
Ailes antérieures foncées ; la base, l’apex, les bords antérieur et posté-
rieur sont brun foncé, la partie centrale de l’aile est brun-jaunätre. Le
dessin se compose d’une tache costale externe blanche et de tubercules
d’écailles réfractives argentées. Le bord antérieur présente trois tubercules
dont l’externe est réuni avec la tache costale blanche et l’interne, réuni
avec le tubercule postérieur interne, forme avec celui-ci une écharpe
transversale basale. Le second tubercule postérieur est rond, petit et
situé plus près de la base de l’aile que le tubercule costal intermédiaire.
Le troisième est allongé, enfin le quatrième, étroit, peu développé, est
situé le long du bord postérieur de l’aile sous le tubercule costal externe
et la tache costale blanche. Franges brun foncé. Ailes postérieures et
leurs franges brun foncé.
La forme des bandes du système de renforcement de la base de l’ab-
domen (Fig. 3) est la même que chez P Jatreillella Curtis : la bande
transversale est droite, mince, les bandes latérales du premier tergite
sont également à peu près droites.
ARMURE GÉNITALE MÂLE (Fig. 4-6) : Valves lobiformes, non arquées,
leur bord ventral légèrement concave. Juxta développée en tant que
deux bras de longeur inégale (Fig. 5), allongés et étroits. Aedoeagus
arqué (Fig. 6) ; sa partie proximale possède une saillie ventrale très
distincte. Terminaison de l’aedoeagus aiguë.
ARMURE GÉNITALE FEMELLE (Fig. 9): Lamelle antévaginale à bords
latéraux parallèles, son bord proximal convexe. Ostium bursae étroit,
les deux signa peu distincts.
Je nomme cette intéressante nouvelle espèce européenne en l’honneur
de mon éminent collègue italien, distingué spécialiste des Lépidoptères
Coleophoridae, le Dr. Giorgio Baldizzone (Asti).
Commentaire
P. baldizzonella sp. n. est la plus proche de deux espèces européennes,
P latreillella Curtis et P nodosella (Bruand). Elle s’en distingue cepen-
dant au premier coup d’ceil par le fond de la partie centrale des ailes
antérieures qui est brun-jaunâtre tandis que chez les deux espèces men-
tionnées ce fond est ferrugineux foncé. Le dessin des ailes antérieures
ne présente aucun caractère particulier. Les différences les plus marquées
concernent la forme des armures génitales. Chez le mâle, les deux bras
89
Figs 3-4. Pancalia baldizzonella sp. n. 3 — systeme de renforcement ; 4 — armure
genitale mäle.
ay
q anh 8
Figs 5-8. Pancalia spp., armure génitale mâle : bras de la juxta (5, 7); aedoeagus
(6, 8). 5, 6 — P baldizzonella sp. n. ; 7, 8 — P. nodosella (Bruand).
de la juxta (Fig. 5) sont relativement étroits et allongés ; chez d’autres
espèces de Pancalia, par example chez P nodosella (Bruand) (Fig. 7),
ces sclérites sont moins allongés et nettement plus larges. En outre,
parmı toutes les especes connues de Pancalia, P. baldizzonella sp. n.
presente la saillie ventrale de l’aedoeagus la plus grande (Fig. 6). Cette
saillie chez les autres, y compris P nodosella (Bruand) (Fig. 8), est plus
petite et moins distincte. Chez la femelle, notre attention doit se porter
sur la forme de la lamelle antévaginale, qui est bien caractéristique
et diffère sensiblement de celles d’autres espèces de Pancalia.
90
Fig. 9. Pancalia baldizzonella sp. n., armure génitale femelle.
En ce qui concerne la localité-type de P. baldizzonella sp. n., il s’agit
du Massif Mont Pollino (Lucanie, Italie méridionale) ; Piano di Ruggio
se trouve dans une grande prairie située dans le Massif en question.
Bibliographie
GAEDIKE, R., 1967. Zur systematischen Stellung einiger Gattungen der Helio-
dinidae/Schreckensteiniidae sowie Revision der paläarktischen Arten der
Gattung Pancalia Curtis, 1830. Beitr. Ent. 17 : 363-374.
LERAUT, P., 1984. Quelques données sur le genre Pancalia Stephens en France
(Lep. Cosmopterigidae). Ent. gall. 1 : 215-219.
Rıepı, T., 1984. La position systématique du genre Pancalia Stephens (Lepi-
doptera Cosmopterigidae). Polskie Pismo ent. 53 (1983) : 579-581.
SINEV, S. Yu., 1985. A review of the genus Pancalia Stephens (Lepidoptera,
Cosmopterigidae) in the fauna of the USSR. Ent. Obozr. 64 : 804-822.
9]
Nota lepid. 17 (1/2) : 92 ; 30.X1.1994 ISSN 0342-7536
Aufruf zur Mitarbeit
Die Schmetterlinge der Schweiz und ihre Lebensräume
Verbreitungskarten (5 X 5 km Netz) der ‘Spinner und Schwärmer’ der Schweiz
werden für eine Fortsetzung des inzwischen sehr bekannten und geschätzten
Buches “Tagfalter und ihre Lebensräume’ vorbereitet.
Um diese Verbreitungskarten zu ergänzen, sind alle Lepidopterologen einge-
laden, uns ihre Schweizer Funddaten dieser Falter mitzuteilen. Bearbeitet
werden alle Macrolepidopteren Familien, einschliesslich der Psychidae und
Hesperiidae, aber ohne die Papilionoidea und (vorläufig noch) die Noctuidae
und Geometridae.
Gewünscht sind mindestens : Fundort, -datum und -stadien von einwandfrei be-
stimmtem Material. Zusatzinformationen wenn möglich : Kanton, CH-Koor-
dinaten, Sammler, ob Belegstück vorhanden, Sammlung, Raupenfutterpflanze.
Ich werde die Daten sammeln und an die einzelnen Familien-Bearbeiter zur
Kontrolle weiterleiten. Daten für die Sesiidae und Thyrididae bearbeite ich
selbst. Daten von schwierig zu bestimmenden Arten werden eventuell nicht
berücksichtigt, oder nur nach Genitaluntersuchung, wie z.B. bei den meisten
Zygaeniden. Die kontrollierten Daten werden in die Databank des Schweize-
rischen Zentrum für die kartographische Erfassung der Fauna (SZKF, CSCF)
in Neuchätel aufgenommen. Lepidopterologen welche uns Verbreitungsdaten
mitteilen werden im Buch erwähnt.
Für die lepidopterologische Arbeitsgruppe der Schweiz,
S. Whitebread,
Maispracherstrasse 51,
CH-4312 Magden,
Schweiz
92
Nota lepid. 17 (1/2) : 93-99 ; 30.X1.1994 ISSN 0342-7536
Ing. Eberhard JACKH Ÿ
(1902-1993)
Am 22. August 1993 verstarb Eberhard Jäckh in seinen Haus in Hörmanshofen.
Er saß in seinem Sessel, als er schnell und fast schmerzlos zur ewigen Ruhe
kam.
Er wurde am 5. Dezember 1902 in Kassel geboren, hat also den größten Teil
dieses ausgehenden Jahrhunderts erlebt. Zur Zeit seiner Geburt regierte noch
der Kaiser in Deutschland und der “Weltkrieg” war noch kein Begriff. Autos
standen noch am Anfang der Entwicklung, Rundfunk und Fernsehen waren
unbekannt, wie die meisten Geräte der heutigen Technik.
Eberhard war das älteste von drei Geschwistern, Sohn von Dr. med. Alexander
Jäckh, Chirurg und Frau Erna, geb. Hartdegen, einer talentierten Malerin.
93
Die Eltern starben beide früh. Schon während seiner Studienjahre im Internat
entdeckte Eberhard jene Begeisterung für Insekten, die für sein ganzes Leben
bestimmend wurde. Die Berufsausbildung begann er in Bremen, mit der Idee,
als Schiffsingenieur die Welt kennenzulernen. Nach Abschluß der Ausbildung
am Technikum erwies sich jedoch, daß seine immer größer werdende Passion
für die Entomologie nicht mit wochenlangen Fahrten auf hoher See zu ver-
einbaren waren. So wechselte er über zum Flugzeugbau. Viele Jahre arbeitete
er bei der Firma Focke Wulf in Bremen, was ihm die direkte Teilnahme am
ganz Europa zerstörenden Krieg ersparte. Auch seine Wohnung in Bremen
wurde zerstört. 1937 heiratete er Adele Lakmann. 1940 wurde ein Sohn, auch
Eberhard benannt, geboren, der jetzt mit seiner Familie in den USA lebt.
Sein Interesse an der Entomologie vertiefte sich. Er konnte seine Kenntnisse
erweitern, dank der Zusammenarbeit mit einigen bekannten Insektenforschern.
Besonders Prof. E. M. Hering, Berlin, wurde sein Lehrmeister und Freund.
Vor allem widmete er sich den Microlepidopteren. Äußerst aktiv beteiligte
er sich am Wiederaufbau des Entomologischen Vereines Bremen. Das Bremer
Überseemuseum engagierte ihn zunächst als freien Mitarbeiter. Das Hobby
wurde zum Beruf, als ihm gleich nach dem Krieg 1945 die Leitung der Entomo-
logischen Abteilung des Museums übertragen wurde, die er bis zur Pensio-
nierung behielt (1967).
Seine Frau Adele verstarb früh in Jahre 1960. Sieben Jahre später heiratete
er Ingeborg Hoyer, die ihn als liebevolle Gefährtin bis zu seinem letzten Atem-
zuge begleitete. 1974 zogen beide von Bremen zum Alpenrand und erwarben
ein Haus in Hörmanshofen im Allgäu.
Das Ehepaar ist viel gereist, vor allem nach Italien. Beide sprachen italienisch,
liebten die Sonne, das Mittelmeer und die üppige farbenfrohe Natur, die oft
Thema ihrer anderen Passion, der Fotografie, wurde. Ihr beliebtestes Reiseziel
war immer Ligurien, die Riviera dei Fiori. Dort “entdeckten” sie Conna, eine
winzige Ortschaft, eine Gruppe von steinernen Häusern, gelegen an den
Ausläufern des Apennin, eingetaucht in Pinien, Ginster und Buschwald. Dort
verbrachten sie viele Wochen und sammelten reiche menschliche und natur-
wissenschaftliche Erfahrungen. Bedeutsam waren auch ihre Reisen in die USA,
wobei die interessanten entomologischen Forschungen verbunden waren mit
den Zusammentreffen mit der Familie des Sohnes.
Eberhard Jäckh verbrachte seine letzten Lebensjahre zu Hause in Hörmans-
hofen gestärkt durch die Liebe seiner Frau und seiner kleinen Enkelin Gian-
nina, die viel in seiner Nähe war und viel von ihm gelernt hat. Er genoß ihre
zärtliche Liebe, die wohl dazu beigetragen hat ihn bis ins 92. Lebensjahr auf-
recht zu halten.
94
In der Entomologie gehört Eberhard Jäckh zu den bedeutenden deutsch-
sprachigen Forschern, die die Grundlage für die moderne Lepidopterenfor-
schung gebildet haben. Er hat seine während der Studienjahre gewonnenen
technologischen Erkenntnisse für die entomologischen Forschungen benutzt
und dabei neue Lösungen und hervorragende Ergebnisse erzielt. Unter ande-
rem machte er technische Experimente für den Nachtfang. Durch eine Reihe
von Versuchen kam es zur Erfindung einer leichten sehr wirksamen tragbaren
Lampe, die er auch für Kollegen anfertigte.
Als einer der ersten wandte er die Methode der Artenbestimmung durch die
Untersuchung der Genitalien an. Mehr als 11 000 mikroskopische Präparate
wurden mit den verschiedensten Färbetechniken angefertigt, um besonders
scharfe Fotos davon zu erhalten. Denn auch die Mikrofotografie wurde mit
Sorgfalt betrieben, bearbeitet im eigenen, sinnvoll mit einfachen Mitteln ein-
gerichteten Labor, assistiert von seiner Frau, die professionelle Fotografin ist.
So sind seine ganzen Forschungen durch Bilder belegt. Er hinterläßt ein ein-
drucksvolles Archiv, das aus über 20 000, nach der systematischen Mikro-
lepidopterenordnung klassifizierten Bildern besteht. Dabei sind auch ca. 100
Corodia-Filme, die Schmetterlinge in ihrer natürlichen Umwelt zeigen, sowie
ca. 1 000 Schwarzweißfilme. Jede studierte Art ist dokumentiert im Entwick-
lungsstadium, wenn möglich in der Natur, mit Genitalfotos beider Geschlechter,
in Variationen, sowie manchmal mit Fotos der Larve oder der Spuren an
der Futterpflanze.
Die Sammlung Jäckh ist von sehr hohem wissenschaftlichen Wert. Sie umfaßt
ca. 75 000 perfekt präparierte und etikettierte Exemplare, sorgfältig geordnet
in großen, von Jäckh selbst gefertigten Holzkästen. Der Hauptkern besteht
aus europäischem Material, sowie einer großen Anzahl in Nordamerika
gesammelter Exemplare.
Manche Exemplare wurden gezüchtet, um die Biologie der Microlepidopteren
zu beobachten, vor allem der “Minierer”, wie Nepticulidae, Lyonetiidae, Gra-
cillaridae und Coleophoridae. Dazu gibt es auch eine wichtige Sammlung
von sorgfältig katalogisierten minierten Blättern.
Die Bibliothek enthält ca. 150 Bände, teils seltene Exemplare, mit Widmungen
und Notizen der Autoren sowie ca. 2000 Sonderdrucken von Entomologen
der ganzen Welt. Die gesamte Sammlung wurde schon vor Jahren dem Smith-
sonian Institution in Washington, USA, übereignet, das somit eine der wich-
tigsten und weltbekanntesten Privatsammlungen bekam.
Jäckhs wissenschaftliche Veröffentlichungen sind nicht so zahlreich, weil er
die große Menge seiner Erkenntnisse immer sehr vorsichtig darstellte. Aber die,
die er hinterlassen hat, sind von hohem wissenschaftlichen Wert meistens durch
95
Fotos dokumentiert. Somit ist Jäckh einer der ersten Autoren, der der guten
Fotografie, zwecks besserer Objektivität, den Vorzug vor der Zeichnung gab.
Im Laufe seiner Tätigkeit hat Jäckh verschiedene Gruppen und Familien der
Lepidopteren bearbeitet (Gracillariidae, Lyonetiidae, Gelechiidae, Coleopho-
ridae, Tortricidae, Pterophoridae, etc.), was seine umfangreichen Kenntnisse
über Microlepidopteren beweist. Unter anderem hat er eine Revision der Gat-
tung Batia Stephens und Pseudatemelia Rebel (Oecophoridae) vorgenommen.
In den letzten Jahren hat er sich auf die Familie der Scythrididae spezialisiert
und einige wichtige Beiträge erbracht mit der Revision verwandter Gruppen
und der Beschreibung neuer Arten.
Mit großer Bescheidenheit hat er nach 1978 mit der Veröffentlichung seiner
wissenschaftlichen Arbeit aufgehört, um “altersbedingte Fehler” zu vermeiden.
_ Fortgesetzt hat er seine Arbeiten im Archiv, welches viele neue Arten, sowie
Arten der Gattung Scythris enthält, die auf eine Beschreibung warten. Eine
der ihn begeisternden Gruppen war die Alucita, über die er die Basis für
eine komplette Revision der palearktischen Fauna vorbereitet hat. Glücklicher-
weise ist diese Arbeit nicht verloren. Wieder aufgenommen und ergänzt von
Jäckhs jungem “Schüler” Axel Scholz, ist sie vor kurzem veröffentlicht worden.
Ich habe Eberhard Jäckh 1973 in Conna kennengelernt. Damals entstand
zwischen uns eine brüderliche Freundschaft, mit gegenseitigen Besuchen und
gemeinsamen wissenschaftlichen Forschungen an der Riviera, auf den Hügeln
des Monferrato, auf dem Monte Baldo, der Insel Krk, etc. Wir verbrachten
miteinander viele unvergeßliche Stunden. Wir suchten Raupen und minierte
Blätter, saßen neben der brennenden Lampe an einem xerothermischen Hang,
diskutierten unaufhörlich über die Natur, planten Forschungen, Exkursionen
und Publikationen. Aber oft sprachen wir auch über das Leben und die Ge-
schichte dieses Jahrhunderts, das er selbst dahinfließen sah. Ich verdanke Eber-
hard den größten Teil meiner Kenntnisse über Microlepidopteren. Besonders
über alles, was ich über die Technik der Mikroskopie, Mikrofotografie, und
der Sammlungs- und Lichtfangmethoden weiß. Alles wurde mir mit großer
Geduld und Hingabe erklärt, voller Sympathie und Großherzigkeit.
Aber viel verdanke ich ihm auch von einem menschlichen Gesichtspunkt aus.
Es war eine echte Lebensschule mit unvergeßlicher Korrektheit, Ehrlichkeits-,
Zähigkeits-, Freundlichkeits-, Bescheidenheitslehren und einer riesigen Liebe
zur Natur.
Giorgio BALDIZZONE
96
Liste der Publikationen
1977:
1933.
1934.
1936.
1940.
1942.
1951
195]:
1951.
1951.
1931:
1951:
1951:
1951.
Ose
1951.
1952:
1953.
1953;
1953.
1953.
1953.
1953.
Zur Entwicklung von Gracillaria azaleella Brants. Anz. Schädlingsk. 3 :
53-54.
Über einige das nordwestdeutsche Faunengebiet kennzeichnende Micro-
Lepidopteren. Mitt. ent. Ver. Bremen 21 : 6-10.
Zur Überwinterung des Zitronenfalters, Gonepteryx rhamni L. Kosmos
31 : 31-32, 1 Abb.
Bemerkungen über Trichoptilus paludum Z. Mitt. ent. Ges. Halle 14:
5-7.
Die Insekten des Naturschutzparkes des Lüneburger Heide, III. Die
Kleinschmetterlinge (Microlepidoptera). Abh. naturw. Ver. Bremen 31 :
786-806, 4 Abb.
Die Microlepidopteren-Fauna des rechtsseitigen Mittelrheintales nebst
Beschreibung von Borkhausenia magnatella spec. nov. (Lep. Gelechiidae).
Z. wien. Ent Ver. 27 : 137-141, 174-200, 216-221, 230-241, 3 Abb., 1 Taf.
Pristophora florella (Mann, 1862) (Pyralidae, Phycitinae) am Mittelrhein.
Zepid' 1105.
Bemerkenswerte Lepidopterenfunde auf Wangeroog in den Jahren 1947,
1949 u. 1950. Beschreibung der Raupe von Agdistis benneti Curt. Z.
Lepid. 1 : 121-122.
Praktische Genitalpräparate. Z. Lepid. 1 : 175-180.
Die fruchtminierenden Arten der Gattung Nepticula Heyd. (Etainia
Beirne) an der vier deutschen Ahornarten (Lep. Nept.). Z. wien. ent.
Ges. 36 : 170-178, Taf. 14-16.
Rhyacia subrosea Stph. Bombus 64/65 : 275, Nr.497.
Agrotis cinerea Schff. Bombus 64/65 : 275, Nr. 498.
Für das Gebiet der Niederweser 1950 neu aufgefundene Microlepidop-
teren. Bombus 64/65 : 276, Nr. 500.
Pseudophia lunaris Schff. (Lepid. Noct.). Bombus 66/67 : 284, Nr. 519.
Zur Verbreitung von Pachetra fulminea F. Bombus 66/67 : 284-285,
Nr. 520.
Eriogaster lanestris L. Bombus 66/67 : 285, Nr. 521.
1. Zanclognatha tarsicrinalis Knoch., 2. Herminia derivalis Hb., 3. Hype-
nodes costaestrigalis Stph. Bombus 74/75 : 316-317.
Catoptria (Semasia) heringiana n.sp. (Eucosmidae). Z. Lepid. 3 : 43-45,
1 Abb..
Buchbesprechung : HERING, E. Martin: Biology of the Leaf Miners,
420 pp., 2 Tfln, 180 Textabb. Z. Lepid. 3 : 63-64.
Aetetis (Elaphria) selini Bsd. (Lep. Noct.) bei Bremen. Bombus 76/77:
322, Nr. 617.
Drei hervorragende Kleinschmetterlinge in Nordwestdeutschlands : I. Dio-
ryctria faecella Z., 2 Myelois neophanes Durr., 3. Laspeyresia juniperana
Mill. Bombus 76/77 : 323- 324, Nr. 621.
Polyploca ridens F. wiederfunden. Bombus 78/79 : 333, Nr. 631b.
Schutzvorrichtung zum Bau des Verpuppungskokons bei Arten der Gat-
97
1956.
1956.
1957.
19572
1958.
1958.
1958.
1959:
1959
19592
1959
1960.
1960.
1961.
1961.
ISI,
1961.
1972:
1972:
1972:
1977.
tung Bucculatrix Z. und Lyonetia Hb. Z. wien. ent. Ges. 40 : 118-121,
Taf. 6-9, Nachtrag : 40 : 206.
Ergänzungen zur Microlepidopteren-Fauna des Bremer Sammelgebietes.
Bombus 92/93/94 : 393-395, Nr. 713.
Tubuliferodes josephinae Toll in Nordwestdeustchland. Bombus 95/96 :
402, Nr. 719.
Eine weitere in Deutschland an Aster linosyris (L.) Bernh. lebende
Coleophora-Art. Dt. ent. Z. 4 : 54-60.
Auffällig häufiges Auftreten des Totenkopfes, Acherontia atropos L.
1956 im Niederwesergebiet. Bombus 97/98 : 410, Nr. 726.
Hipparchia statilinus Hufn. bei Pevesdorf an der Elbe, Kreis Lüchow.
Bombus 2 : 10-11, Nr. 15.
Polia glauca Hb. im Lande Oldenburg : Bombus 2 : 40, Nr. 47.
Wanderfalterbeobachtungen. Bombus 2 : 40, Nr. 48.
Beitrag zur Kenntnis der Oecophoridae, die Gattung Tubuliferola Strand,
1917. Dt. ent. Z. 6 : 174-184, 34 figs, Taf. I-IX.
Die Gattungsgruppe Stomopteryx Hein. im nordwestdeutschen Tiefland.
Bombus 2 : 64-66, Nr. 72.
Bemerkenswerde Tortriciden-Funde in nordwestdeutschen Flachland.
Bombus 2 : 70-72, Nr. 80.
Neue Microlepidopteren der Italienischen Fauna. Boll. Soc. ent. ital. 89 :
85-88, Taf. 1.
Neue und bemerkenswerte Funde im Bremer Sammelgebiet. Bombus 2:
86-87, Nr. 108.
Eine neue Art aus der Gattung Pseudeucosma Obr., Pseudeucosma sub-
tilana nova species. Boll. Zool. agr. Bachic., Serie II : 127-135.
Nachtrag zur Microlepidopteren-Fauna des Naturschutz-Parkes der
Lüneburg Heide. Bombus 2 : 100-103, Nr. 127.
Moderner Lichtfang. Ent. Z. Frankf.a.M. 71 : 93-96.
Pterophorus nephelodactylus Eversmann auch in den italienischen Alpen.
Boll. Soc. ent. ital. 41 : 158-160, Taf. 1.
Buchbeschprechung ; HANNEMANN, Hans Joachim, 1961 : Kleinschmet-
terlinge oder Microlepidoptera, I. Die Wickler, 48. Teil, Die Tierwelt
Deutschlands “Dahl”. Bonner zool. Beitr. 12 : 354.
Caloptilia alchimiella Scop. und Caloptilia robustella spec. nov. Atti
Accad. Sci. Torino 106 : 549-560, 10 Abb.
Die Gattung Batia Stephens, 1834 s.str., (Lep. Oecophoridae). Redia
53 : 331-345, 5 Taf.
Die Gattung Pseudatemelia Rebel, 1910 (Lep. Oecophoridae). Entomo-
logica, Bari 8 : 133-140, 4 Abb.
Bearbeitung der Gattung Scythris Hübner (Lep. Scythrididae) — 1. Die
“grandipennis-Gruppe”. Dt. Ent. Z. 24 : 261-271, 11 Taf.
1977 (1978). Bearbeitung der Gattung Scythris Hübner (Lep. Scythrididae) -
98
2. Eine neue Scythris-Art aus Spanien : Scythris limbelloides n.sp. Z.
ArbGem. öst. Ent. 29 : 81-84.
1978. Bearbeitung der Gattung Scythris Hübner (Lep. Scythrididae) — 3. Arten
mit einer weissen Längsstrieme. Dr. Ent. Z. 25 : 71-89, 2 Taf.
1978. Bearbeitung der Gattung Scythris Hübner (Lep. Scythrididae) — 4. Un-
beschriebene Arten aus Italien. Boll. Mus. civ. Stor. nat. Verona 5:
1-16, 5 Taf.
BRINKMANN, A. & JACKH, E., 1926. Ein Jahr Schmetterlingsfang im Königs-
moor - Verzeichnis der Kleinschmetterlinge. Jber. ent. Ver. Bremen 14:
11-13.
JÄCKH, E. & BALDIZZONE, G., 1977. Sulla sinonimia di Coleophora oriolella Z.
e Coleophora mongetella Chrét. Entomologica, Bari 13 : 31-36, 5 Abb.
NAUMANN, J. & JACKH, E., 1930. 2. Beitrag zur Kenntnis der Schmetterlings-
fauna des Königsmoores (Oyter Moores). Mitt. ent. Ver. Bremen 18:
8-16.
SCHOLZ, A. & JACKH, E., 1994. Taxonomie und Verbreitung der westpaläark-
tischen Alucita-Arten (Lepidoptera : Alucitidae [Orneodidae]). Alexanor
18 (4) [1993], suppl. : [3]-[63].
99
Nota lepid. 17 (1/2) : 100-104 ; 30.X1.1994 ISSN 0342-7536
Book reviews — Buchbesprechungen — Analyses
Coleophoridae dell’ Area Irano-Anatolica e regioni limitrofe (Lepi-
doptera). Contribuzioni alla conoscenza dei Coleophoridae. LXXV.
Giorgio BALDIZZONE. 423 pp., 698 photos b/n. Associazione Natura-
listica Piemontese, Memorie, III. En vente exclusivement chez Apollo
Books, Kirkeby Sand 19, DK-5771 Stenstrup, Danemark, DKK 390,
frais d’expedition exclus. Présentation par le Prof. Emilio Balletto,
President de la Societas Europaea Lepidopterologica.
Vient de paraître le troisième volume des «Memorie» de l’«Associazione Natu-
ralistica Piemontese», qui depuis quelques années publie aussi un intéressant
Bulletin dédié surtout à l’histoire naturelle subalpine. Ce volume des «Memorie»
est monographique et comprend seulement le travail de Giorgio Baldizzone
relatif aux Coleophorides de la zone Irano-Anatolienne et des régions limi-
trophes. Après l’importante révision des Coleophorides chinois, de l’Inde, de
l'Australie et de l’Afrique tropicale, Baldizzone nous présente aujourd’hui en
détail la faune du Proche- et Moyen-Orient. Ce travail représente sa 75° contri-
bution à la connaissance de cette vaste et complexe famille des Microlépi-
doptères Gelechioidea, dont il est depuis longtemps un spécialiste reconnu.
Comme le rappelle dans sa préface Emilio Balletto, Président de la «Societas
Europaea Lepidopterologica», la région irano-anatolienne est très peu connue,
non seulement en ce qui concerne les microlépidoptères ; le travail de Baldiz-
zone doit donc être particulièrement apprecié pour l’évidente et vaste contri-
bution qu'il apporte au progrès des connaissances relatives à la faune des
Lépidoptères de cette importante zone de la Région Paléarctique. Dans cette
monographie, dédiée à la mémoire de Eberhard Jäckh récemment disparu,
sont traités 310 taxa appartenant aux Coleophorides, dont 84 sont ici décrits
pour la première fois sur la base d’un large matériel provenant en majorité
des campagnes de recherche de microlépidoptéristes connus, parmi lesquels
les plus importants sont sans doute Fritz Kasy, Wolfgang Glaser, Hans Georg
Amsel et Eva Vartian. Les nouveaux taxa appartiennent tous au genre Coleo-
phora, sauf une espèce du genre /schnophanes. L’auteur a en outre fixé 30
lectotypes et le néotype de C. gypsophilae Christoph, 1862 (= C. vicinella
Zeller, 1849). Enfin sept nouvelles synonymies sont reconnues ; ces dernieres,
ajoutées aux nombreuses déjà signalées par Baldizzone lui-même ou par
d’autres auteurs, permettent de compléter la révision nomenclatoriale des taxa
paléarctiques.
Comme d’habitude, la très abondante iconographie qui accompagne le travail
est très claire et parfaite sur le plan technique, soit en ce qui concerne l’habitus
des adultes — il est dommage que les hauts frais d’impression ne permettent
100
pas de les reproduire en couleur comme on l’a fait sur la couverture avec
la splendide planche du jeune entomologiste Fabrizio Pensati! — soit en ce
qui concerne les genitalia des deux sexes.
Ce travail, d’apres une indication tres claire de son auteur, veut seulement
mettre a jour la connaissance des Coleophorides de la region irano-anatolienne
au sens large, en renvoyant à des contributions ultérieures la révision moderne
de la systématique du groupe et toute autre considération zoogéographique.
Dans sa contribution en effet, Baldizzone maintient pour l'instant la subdivision
classique donnée par Toll, qui divise les Coleophorides en plusieurs groupes
pas nécessairement naturels, reconnus sur la base des plans de structure des
genitalia des deux sexes. En lisant avec attention la monographie, on peut
de toute façon dejà obtenir plusieurs indications zoogéographiques tout à fait
intéressantes qui nous permettent de confirmer ou de mieux comprendre le
peuplement des régions anatoliennes, arabes et du bassin touranique.
De toute façon, ce volume, à tirage limité à 400 copies à cause des frais d’im-
pression élevés auxquels l’auteur a dû faire face lui-même pour la plupart, est
non seulement à conseiller vivement à tous ceux qui étudient les Lépidoptères,
mais aussi à tous ceux qui désirent augmenter leurs connaissances en matière
d’entomologie et de zoogéographie.
Pietro PASSERIN D’ENTREVES,
Dipartimento di Biologia Animale,
Università di Torino,
Via Accademia Albertina 17,
I-10123 Torino (Italie)
Index of economically important Lepidoptera. Bin-Cheng Zhang, 1994.
599 Seiten, gebunden. CAB International, Wallingford, Oxon, UK.
ISBN 0-85198-903-9. £ 50 ohne, £ 70 mit Diskette.
Das Commonwealth Agricultural Bureau International (CABI), wurde 1928
gegründet. Eine der wesentlichen Aufgaben des CAB’s ist die Herausgabe
von Referateorganen über die Weltliteratur im Agrarbereich im weitesten
Sinne. Unter anderem erscheint das ”Review of Agricultural Entomology”
(RAE) (früher : "Review of applied Entomology”) 1994 bereits im Volume 82
und zwar gegründet 1913, also schon vor der Etablierung des CABI. Da jähr-
lich ca. 10.000 Arbeiten referiert werden, hat sich im Laufe der Jahre natür-
lich ein enormer Datenbestand angesammelt. Verständlich, daß dieser riesige
Fundus nach zusätzlichen ‘Ertragsmöglichkeiten’ durchforscht wird. Begrüßens-
wert für die ‘User’ der Reviews, wenn ihnen das geballte Wissen, praxisgerecht
serviert wird. Praxisgerecht bedeutet in diesem Falle, daß Herr Zhang aus
dem RAE-Datenbestand, alle Lepidopteren herausselektiert hat, die seit 1913
in der Literatur eine Erwähnung als “Pflanzenschädlinge’ fanden. Parasiten
des Menschen und der Tiere sollen separat behandelt werde. Eine derartige
Kompilation bedeutet für jeden angewandten Entomologen eine sehr große
Hilfe. Dafür sei Herrn Zhang und dem CABI Dank. Schließlich hat nicht
101
jeder die technischen Einrichtungen und die finanziellen: Möglichkeiten, die
leider sehr teure elektronische Datenbank des CABI zu benutzen.
Allerdings möchte ich einige ‘Schwachstellen’ auflisten, die ich gerne bei einer
Neuauflage beseitigt sehen würde.
Daß bei der großen Datenfülle auch mal etwas verloren geht, dürfte verständ-
lich sein. Einige wenige Arten habe ich vermißt, so zum Beispiel Duponchelia
fovealis (in RAE 1991 ; no. 743, 5542 und 6335). Die Angaben zur geogra-
phischen Verbreitung sind immer mit Vorsicht zu handhaben, da viele Länder
nicht sehr meldefreudig sind. Allerdings hat Herr Zhang auch nicht alle An-
gaben aus den Reviews übernommen, so zum Beispiel bei Opogona sacchari.
Ein besonderes Problem sind die Wirtspflanzenangaben. Wenn bei Epichoristo-
des acerbella nur drei Wirtspflanzen genannt sind, so ist mir dies unverständ-
lich. Die Larve dieses Tortriciden ist zweifellos polyphag und man könnte
ohne weiteres 20 bis 30 Wirtspflanzen nennen bzw. der Literatur entnehmen.
Beim European corn borer Ostrinia nubilalis hätte er etwa 300 Pflanzenarten
aufführen können. Aus Platzgründen (oder auch aus Zeitgründen ?) wurde wohl
selektiert. Wäre es, in diesem wie in ähnlichen Fällen, nicht besser gewesen,
wirklich nur die Hauptwirtspflanze(n) anzugeben und dann auf die Polyphagie
zu verweisen ? Personen, die diese Lepidopteren nicht näher kennen, könnten
sonst solche unvollständige Auflistungen für bare Münze nehmen. Die Ver-
mischung der ‘common names’ mit den wissenschaftlichen Namen in den Host
Records dient auch nicht gerade der besseren Übersicht.
Etwas ganz wichtiges für den angewandten Entomologen fehlt jedoch total :
ein Wirtspflanzenindex. Es wäre wirklich sehr hilfreich, einen Überblick zu
bekommen, welche Lepidopteren an welchen Pflanzen vorkommen können.
Da das Buch weitgehend mit Hilfe der EDV geschrieben wurde, dürfte die
Erstellung einer derartigen Liste kein Problem darstellen. Der ‘Index of specific
and infraspecific epithets’ am Schluß des Buches ist zwar sehr umfangreich,
wäre aber mit Seitenangaben besser brauchbar. Vermutlich aus Platzgründen
wurde bei den Hinweisen zu den RAE References nur die Bandzahl genannt.
Die zusätzliche Angabe der Abstract-Nummer wäre sehr hilfreich und würde
das Buch meines Erachtens kaum umfangreicher machen.
Insgesamt gesehen, stellt das Buch jedoch auf Grund der ungeheuren Daten-
fülle eine äußerst wertvolle Arbeitsgrundlage für alle Biologen, Ökologen und
natürlich speziell für Entomologen dar und ist für Entomologen im Bereich
Pflanzenschutz eigentlich unverzichtbar. Es wäre sehr zu wünschen, wenn wei-
tere derartige Indexe auch für andere Insektenordnungen erscheinen würden.
Wolfgang BILLEN
Guide pour l’identification des especes francaises du genre Zygaena.
Louis Faillie, 1994. 52 pages, 56 figures au trait, 3 planches couleur
hors texte. Format 14,8 x 21 cm. Edition J-M Desse. Prix 90 FFr plus
port. En vente chez l’auteur ; 8 rue Polonaise F-72200 La Flèche.
Ce guide publié à compte d’auteur le 19-I11-1994 est destiné à permettre l’iden-
102
tification rapide et sûre de toutes les espèces du genre Zygaena actuellement
connues en France. L. Faillie aurait donc pu se contenter de la partie centrale
du guide, nous en aurions disposé déja depuis plusieurs années. Ce perfec-
tionniste ne pouvait se contenter de cet à peu près. Il a donc cherché à mettre
en perspective l’objet du guide. Celui-ci débute par quelques considérations
sur les notions biologiques qui conduisent à la systématique bien documentée
permettant d'approcher la finesse de la pensée des grands spécialistes contem-
porains qui guident l'étude de ce groupe d’espéces.
Elles illustrent aussi le bon sens qui privilégie les solutions simples aux consi-
dérations trop théoriques ou partielles qui ont souvent obscurci l’horizon des
études se rapportant à ce groupe.
Suit la liste des espèces du genre Zygaena, tirée de la solution proposée par
C. M. Naumann & W. G. Tremewan en 1984, suivie de rappels au sujet de
la position de Zygaenidae fossiles vis-à-vis de ce genre et des genres voisins.
Les 26 espèces françaises qui sont l’objet du guide, sont ensuite énumérées
dans le même ordre. Un intéressant tableau de comparaison avec les pays
européens limitrophes ou voisins, permet de visualiser la richesse et la variété
des espèces de chacun d’eux.
Dans les 18 pages suivantes le lecteur trouvera les traits essentiels d’une diagnose
de chacune des espèces françaises qui décrit parfaitement les caractères distinc-
tifs externes, complétés par un dessin au trait grandeur nature qui met l’accent
sur les parties de l’ornementation alaire ou du corps qu’il faut prendre en
compte pour déterminer chaque espèce. Ces caractères sont souvent mis en
évidence par une flèche qui attire judicieusement l’attention du lecteur.
Pour les espèces présentant une variation importante, L. Faillie n’a pas hésité
à réaliser plusieurs dessins qui illustrent les principales sous-espèces ou morphes
présentes en France. Il y a ajouté souvent des informations très pertinentes
et très à Jour sur la répartition, la génétique, la nomenclature ou la taxinomie.
Cette partie centrale du guide permet vraiment de réaliser les déterminations
correctes dans la plupart des cas. Les pièges et difficultés essentielles sont d’ail-
leurs révélés afin de permettre à tous de travailler avec un maximum de sécu-
rité.
Le guide est complété par un tryptique amovible regroupant sur trois planches
photographiques en couleur, les 72 specimens représentant au moins une fois,
grandeur nature, chacune des 26 epèces traitées. Cette disposition permet, lors
de la détermination, de comparer le dessin au trait avec la figure en couleur
et renforce ainsi la qualité de la détermination. Il convient de saluer le soin
apporté au choix des exemplaires reproduits, car ils sont tous en parfait état
de fraîcheur et correctement préparés, ce qui est rare dans les publications
concernant ce groupe.
Pour augmenter l'efficacité des déterminations, l’auteur a ensuite judicieusement
regroupé les espèces suivant certains critères ornementaux (anneau abdominal
et collerette) puis regroupé à la fin du guide, sur 4 pages, tous les dessins au
trait représentant les imagos figurant dans la partie centrale. Quelques considé-
103
rations sur la structure interne des genitalia mäle des Zygaena sont ensuite les
bienvenues. Elles permettent de bien comprendre les différences entre Z. minos
et Z. purpuralis dont la dissection est obligatoire.
Une bibliographie adaptée au guide permettra enfin au lecteur d’approfondir
les connaissances qu'il aura acquises à la lecture du guide.
En résumé, un petit livre intelligent, fruit de décennies d’études dédiées aux
zygènes et de rencontres avec les plus grands spécialistes de la question. Marque
aussi d’une volonté de se mettre au service des autres pour les aider à com-
prendre. Remercions donc chaleureusement Louis Faillie d’avoir consacré beau-
coup de son temps à la réalisation de ce petit fascicule qu’il a tenu à financer
de ses propres deniers afin de ne dépendre d’aucune obédience.
Faisons bon accueil à ce guide qui, je n’en doute pas, deviendra très vite le
compagnon indispensable de vos recherches et de vos promenades à la ren-
contre des zygenes.
Eric DROUET
Copyright © Societas Europaea Lepidopterologica, 1994
Printed by Imprimerie Universa Sprl, 24 Hoenderstraat. B-9230 Wetteren, Belgium
All rights reserved. No part of this Journal may be reproduced or transmitted in any form
or by any means, electronic or mechanical including photocopying, recording or any other
information storage and retrieval system, without permission in writing from the Publisher.
Authors are responsible for the contents of their articles.
104
toph Häuser, Dr. Pete Tr —
patenka, Dr Paul | Waring
‘prs
aa oq
it
a + #48
AT HEN
lepidopterologica
Vol. 17 No.3-4 1994 ISSN 0342-7536
|
ei
RE.
ae
Si ar ic che sind hei Redaktor erhältlich.
| si sen francais sont dcr auprès de l'éditeur ay
articl au eo RN RUE (max. 2 typed pages) on any we we LR
ic lepidopterology will be considered for publication. Full articles will be
revie! : reviewed by two referees. ‘Publication languages are English, French and German. F
a. ra t should be made t to Sal out area corrections before SE the
"AU manuseri a ae be an ae ER dose spacing and wide margins, and |
| submitted à a ae In addition. to the original figures, three ee should be
fac ee also accepted) shout also es aie Que possible. Full etc must Rs à
a summar sa not more than 200 words. A translation of the pee: in at least x
ae
or. C ies nt issues of se pan: ‘hou: be deckel {ee style a format. is
ee words | at the right-hand. ag or Be surnames in capitals, Er =
À should be styled as follows : ER VS
Br
J., 1985. New species of dont Hübner re . Zeuglopera: RAR
N ic opterigidae) En Greece and Cyprus. Nota lepid. 8 : 336-340. =
3, Pale eee ee te in in NI =
ER | NL: 1g re : esas sunk er d ee
ue 2 and all ype deren must
Nota lepidopterologica
ISSN N249 7694
Schloßgasse 8 + 99448 Kranichfeld + Telefon und Fax: 036450/23 10 + Funktelefon: 0161/3 30 80 43
Im Dienste der Ökologie - Für die Erhaltung der Umwelt
Basel. 30.1V.1995
Vol.17 No.3/4
Service: Versand:
- Gutachten - Umweltanalytik
- Kartierungen - Klimamessung
- Landschaftsplanung und -gestaltung - optische Geräte
- Pflegearbeiten - Laborgeräte
- Auftragsforschung - Freilandgeräte für ökologische Untersuchungen
- Beratung - Präparationshilfsmittel
UVP / UVS - Literatur (Ökologie, Reise, Entomologie)
„Eugen. Deu unsere kostenlosen Kataloge anl
Ta FIN eee i ee a ee
Nota lepidopterologica
Vol.17 No.3/4 Basel, 30.1V.1995 ISSN 0342-7536
Lebensmittel aus ökologischem Anbau u. a.m.
Oko-Shop, AlexanderstraBe 33, D-99448 KRANICHFELD
Spezialangebot: Entomologiebedarf
Netze (Kescher, Streifkescher, Kafersiebe [versch. Größen))
Fallen (Bodenfallen, Lichtfallen, Photoeklektoren u.a.)
Sammelschachteln (Raupensammelschachteln, Transportbecher u. a.)
Pinzetten (Uhrfederstahl, med. Pinzetten, spitz, rund, schräg)
Insektennadeln (versch. Hersteller, versch. Preislagen)
Spannbretter (verstellbar, feststehend, Holz, Schaumstoff)
Insektenkästen (Doppelglas, Normalausführung, versch. Holzarten)
Dublettenkästen (Plaste, Pappe, Holz, mit und ohne Glas)
entomologische und ökologische Literatur
(antiquarisch und neu, spezielle Literatur auf Anfrage)
Etikettenservice (Sie geben uns Text und Anzahl,
wir schreiben und drucken für Sie in kürzester Zeit mit Computer)
Lichtfangausrüstungen (mit Zigarettenanzünderanschluß für Auto,
mit Batterieanschluß, Mischlichtlampen, UV-Röhren u. a.)
HONDA-Stromerzeuger (für den netzunabhängigen Lichtfang)
Kataloge kostenlos! - Persönliche Beratung auf Wunschl
Ecology - the way to understand the nature
Nota lepidopterologica
Vol.17 No.3/4 Basel, 30.1V.1995 ISSN 0342-7536
Editor : Steven E. Whitebread, Maispracherstrasse 51, CH-4312 Magden,
Switzerland. FAX : + 41-61-841.22.38.
Assistant Editors : Emmanuel de Bros (Binningen, CH)
PD Dr. Andreas Erhardt (Binningen, CH)
PD Dr. Hansjürg Geiger (Berne, CH)
Dr. Alexander Pelzer (Wennigsen, D)
Contents — Inhalt — Sommaire
EGROMAIR ate tard Sone ee 5 RT PAPER CO ERA NC 106
Di, Ja M Sn A a 120
FIBIGER, M. : Anumeta arax sp. n. from Turkish Armenia (Noctuidae,
(COCA S) dues Res ee EEE... 107
KAıLA, L. & BIESENBAUM, W.: Redescription of Elachista differens
arent 1978: (Blachisudae) 2... DA ESEL 113
LARSEN, T. B. : Aricia crassipuncta bassoni Larsen, 1974 from Lebanon
Raised sto speciesurank (leyeaenidae) nn. nn NE 121
MUNGUIRA, M. L., MARTIN, J. & PEREZ-VALIENTE, M. : Karyology and
distribution as tools in the taxonomy of Iberian Agrodiaetus butterflies
By calcmiicl ac) RER ER I ERENTO LERNEN INN FROHES 125
PELZER, A. : Illustrierter Bestimmungsschlüssel für die Präimaginalsta-
dien der Schwärmer Europas und Nordafrikas (Sphingidae). Teil II :
sia latin ee We Ba ee 141
PORTER, A., SCHNEIDER, R. & PRICE, B. : Wing pattern and allozyme
relationships in the Coenonympha arcania group, emphasising the
C. gardetta-darwiniana contact area at Bellwald, Switzerland (Saty-
EN ee N TEENS 155
SMITH, D. A. S. & Owen, D. F. : Inter-island variation in the butterfly
Hipparchia (Pseudotergumia) wyssii (Christ, 1889) in the Canary
ISlamelsı(Salyanac) NE En Re ski 175
TENNENT, J. : Danaus chrysippus Linnaeus, 1758 ; a review of records and
present status in the Maghreb countries of Morocco, Algeria and
ns (Dan aiMae) ears bern been ze 201
TENNENT, J. : Further notes on Berberia de Lesse species in North Africa
and confirmation that B. abdelkader Pierret, 1837 and B. lambessanus
Staudinger, 1901 are significantly distinct (Satyridae) ........................ 217
105
Short communication — Kurze Mitteilung — En bref
DARDENNE, B. & DROUET, E. : Pempeliella ornatella (D. & S.) et Acti-
notia hyperici (D. & S.), espèces nouvelles pour la Seine Maritime
(Normandie, France) (Pyralidae, Pterophoridae, Noctuidae) ............. 220
Book reviews — Buchbesprechungen — Analyses ................................ 124
Vol. 17 — 1994
Dates of publication — Publikationsdaten — Dates de publication 221
Contents — Inhalt Sommaire Wen er ee 221
New taxa described in Vol. 17 — Neue Taxa in Band 17 beschrieben —
Nouveaux taxa décris dans le VOTE RS 224
Editorial
The Editor would like to apologise for the late publication of this issue.
This has been due to illness in the Editor’s family, on top of increased
professional and private commitments during February and March.
For the same reason, the SEL “1991-1992 Index of Publications on
European Lepidoptera” was also delayed. The situation is again under
control and all outstanding correspondence will be dealt with as soon
as possible.
I am pleased to announce that Dr. Roger Dennis, Wilmslow, GB has
joined the Editorial Committee of this Journal. Dr. Dennis, who is well
known for his articles and books on ecological lepidopterology, has
already been a great help in the processing of a number of manuscripts
in English. Such manuscripts from the United Kingdom may now be
submitted directly to Dr. Dennis. In addition, M. Yves Gonseth, Neu-
chätel, Switzerland has agreed to act as Assistant Editor from June
1995. At the same time, Dr. Hansjürg Geiger will leave us. Dr. Geiger
has been an invaluable member of the Editorial Committee since 1986,
but wishes to step down due to increased professional commitments.
I would like to sincerely thank Dr. Geiger, not only for his editorial
contribution, but also for his advice and moral support.
Finally, I would like to mention that this Journal ıs now abstracted
in BIOSIS and “Current Advances in Ecological and Environmental
Sciences”, a CABS review journal.
| Steven WHITEBREAD
106
Nota lepid. 17 (3/4) : 107-112 ; 30.1V.1995 ISSN 0342-7536
Anumeta arax Sp. n. from Turkish Armenia
(Lepidoptera, Noctuidae, Catocalinae)
Michael FIBIGER
Molbechs alle 49, 4180 Sore, Denmark
Summary
During a lepidopterological visit to Turkish Armenia in 1989 a new species
of Anumeta Walker, 1858. was found. This ıs described here as Anumeta arax
sp. n. In September 1993 a further visit to this area was made. A few notes
on collecting in this politically very tense, but entomologically very interesting
area are given.
Resume
Découverte d’une nouvelle espèce d’Anumeta Walker, 1858 au cours d’une
expédition lépidoptérologique en Arménie turque en 1989. Description de celle-
ci sous le nom d’Anumeta arax sp. n. L’auteur a revisité ces lieux en septembre
1993 et donne quelques indications sur la chasse aux papillons dans cette
région, où la situation politique est très tendue, mais qui est très intéressante
pour les entomologistes.
Introduction
Turkish Armenia is one of the most beautiful and lepidopterologically
important areas in the western Palaearctic region. However, since 1988
it has not been fully safe to travel, camp or catch insects because of
the unstable political situation in the area. The Arax valley is per-
haps the most interesting locality of the region. It runs east-west at
a low level (at Aralik : 825 m) just north of, and below, the imposing
Mt. Ararat. Unfortunately, the Turkish, Armenian and Kurdish peoples
all claim sovereignty over the area, which is at present situated ın
Turkey. By the end of 1993, the tense situation had become distinctly
dangerous for touring lepidopterists who wanted to collect in the area.
Together with the Danish lepidopterist, Fritz Schepler, I visited the
area at the beginning of September 1993. We collected at night only
with “black” lamps (pure ultraviolet 125 watt bulbs and 20 watt tubes),
107
and were as usual met by the very friendly local people, but also by
masses of heavily armed, friendly gendarmes and soldiers. Everybody
was scared of each other, often with good reason, and this anxiety
creates aggression.
When I worked in the area in 1989, Nils Esser (a Danish coleopterist)
and I were allowed by the gendarmes to camp and catch moths along
the asphalt road from Igdir to Aralik, but we had to set up the lamps
within 5 metres from the road, and we were not allowed to stay. In 1993
it was impossible — even armed with psychological arguments rehearsed
in my mind — to obtain the same permission. We were forced to
camp in a storm (only catching with an 8 watt superactinic tube two
metres from the car) close to the military camp in the middle of the
village of Hasanhan, approx. 30 km west of Aralik. The unexpected,
but good records from both visits to the area will be published in
a later paper. Here I will only mention the catch in 1989 of a dozen
specimens of Drasteria picta (Christoph, 1877), two specimens of
Gonospileia munita (Hübner, [1813]), both species new to Turkey, and
in 1993 the record of two specimens of Cardiestra vassilinini (A. Bang-
Haas, 1927), also new to Turkey and previously only known from the
type specimen.
In 1989, I also captured one specimen of the genus Anumeta Walker,
1858 which was unknown to me and to everyone to whom I showed
it. Not until 1992 in St. Petersburg, visited in connection with the
successful SEL Congress in Helsinki, did I find four more specimens
of “my” Anumeta in the Zoology Institute, Russian Academy of Science.
They were placed under the name caucasica Rjabov, in litt. Dr. Irına
L. Sukhareva who kindly helped me during my visit also translated
the Cyrillic writing on the labels. The four specimens were all recorded
from the Armenian side of the Arax valley (former Armenian S.S.R.)
within 10 km from the locality in Turkey where I found it: 10 km
north west of Aralik. As the name caucasica to my mind should
represent a mountain species further to the north, I have decided to
describe it here under the name Anumeta arax sp. n.
Anumeta arax Sp. n.
HoıoTypE: & (Fig. 1) Turkey, prov. Kars, 10 km NW Aralik, 825 m,
22.vu.1989, genit. prep. 1798, leg. & coll. M. Fibiger.
PARATYPES : | @ [Turkey], Aralych [Aralik]. 1 2 [Armenia], Mtschjan
Artashantski region (Arax valley), Okt., leg. Arutjunjan. 1 © [Armenia],
Dzhuga by Dzhulfa [Arax valley], 4.vu.1932, leg. Rjabov. 1 9 (Fig. 2, ALLo-
108
Figs 1-2. Anumeta arax sp. n. 1 — Allotype, female ; 2 — Holotype, male.
TYPE) Armenia, Burastan, Acerjan [Kamarlu region, Arax valley], at light,
26.v1.1948, leg. G. Azaryan, genit. prep. 1799 M. Fibiger.
DESCRIPTION (Figs 1,2): Male and female similar in size and wing
pattern ; female colouration in fore and hindwing slightly darker.
Wingspan: 33-34 mm. All segments of labial palpi porrect ; first
segment light grey, as long as second and third together, latter two
black. Antenna of male ciliate, of female filiform. Ground colour of
head, thorax and forewing blackish grey. Basal and median area of
forewing slightly darker. Black costal spots on and between crosslines.
Lines weakly defined except for black terminal line on both wings,
which is sinuate with white spots between veins on terminal side. Fore-
wing fringes dark grey, whitish on hindwing. Stigmata absent, a black
spot near reniform. Hindwing with light greyish median band, terminal
area darker than basal. Whitish blotches on termen of hindwing (typical
for Anumeta and Drasteria) weakly defined in male, hardly visible in
female. Underside light greyish powdered with black scales. Terminal
area blackish. Median stigma present on hindwing.
MALE GENITALIA (Fig. 3): Valva, juxta, and vinculum rather simple,
but uncus prominent, heavily sclerotised, with apical hook. Aedeagus
straight, no cornutus, but a light sclerotised band. Vesica short, rounded
with small diverticula.
Note : The preparation of the vesica was not perfect and the paratype
male had already been dissected, so it was not possible to evert.
FEMALE GENITALIA (Fig. 4): Ovipositor hairy. Apophyses equally
broad their whole length. Eighth segment hairy distally. Ductus bursa
weakly sclerotised. Corpus bursa unisaccate, cylindrical, two and a half
times as long as broad.
109
Fig. 3. Male genitalia of Anumeta arax sp. n. : holotype.
Remarks
Because of an urgent need for a revision of the genus Anumeta, which
also forms the tribe Anumetini, the exact number of species cannot
be stated. A little more than a score of Anumeta species are known,
all with a desert and semi-desert, central and southwestern Palaearctic
distribution. Only three species are recorded from Europe (FiBIGER &
HACKER, 1991), in south-east European Russia. The genus was pre-
viously unknown from Turkey.
Systematically, Anumeta arax sp. n. is most closest related to Anu-
meta fricta (Christoph, 1893), A. fractistrigata (Alphéraky, 1882) and
A. cestina (Staudinger, 1884).
The name of this new species is derived from the type locality : The
Arax valley.
110
Fig. 4. Female genitalia of Anumeta arax sp. n. : allotype.
111
Acknowledgements
Dr. Irina L. Sukhareva is sincerely thanked for her assistance in the Zoological
Institute, St. Petersburg. My wife Mariann and Barry Goater are as usual
thanked for checking my English.
Literature
FIBIGER, M. & HACKER, H., 1991. Systematic List of the Noctuidae of Europe.
Esperiana 2 : 1-109.
12
Nota lepid. 17 (3/4) : 113-119 ; 30.1V.1995 ISSN 0342-7536
Redescription of Elachista differens Parenti, 1978
(Lepidoptera, Elachistidae)
Lauri KAıLA* & Willy BIESENBAUM**
* Finnish Museum of Natural History, Zoological Museum, P.O.Box 17, FIN- 00014 University
of Helsinki, Finland
** Feldstrasse 69, D-42555 Velbert-Langenberg, Germany
Summary
Elachista differens Parenti is redescribed and compared with the other re-
cognized West-Palaearctic species of the Elachista gleichenella group on the
basis of a series collected in Rhineland, Germany. The female is described
for the first time. The species externally closely resembles E. gleichenella
(Fabricius) and E. lambeseella Nielsen & Traugott-Olsen. The structure of
male genitalia indicates E. lambeseella to be the closest relative of the species.
E. differens is also reported from Corfu, Greece, although the male genitalia
show some minor differences.
Zusammenfassung
Elachista differens Parenti, 1978, wird erneut beschrieben und ausserdem
verglichen mit den anderen bekannten westpalearktischen Arten der Elachista
gleichenella-Gruppe auf der Grundlage einiger im Rheinland, Deutschland,
gefundenen Faltern dieser Art. Das bisher unbekannte Weibchen wird zum
ersten Mal beschrieben. Die Art gleicht äusserlich sehr der E. gleichenella
(Fabricius) und E. lambeseella Nielsen & Traugott-Olsen. Der Bau der männ-
lichen Genitalien zeigt, dass E. lambeseella am nächsten verwandt ist mit dieser
Art. E. differens wird ebenfalls nachgewiesen von Korfu, Griechenland, ob-
gleich die männlichen Genitalien der dort gefundenen Tiere einige kleine
Abweichungen zeigen.
Resume
Redescription d’Elachista differens Parenti et comparaison de celle-ci avec
d’autres espèces ouest-paléarctiques connues du groupe d’Elachista gleichenella
en se basant sur quelques exemplaires trouvés en Rhénanie (Allemagne).
Description de la femelle, jusqu’à présent encore inconnue. Extérieurement,
E. differens ressemble beaucoup à E. gleichenella (Fabricius) et a E. lambeseella
Nielsen & Traugott-Olsen. La structure des genitalia mâles montre que cette
espèce est la plus proche de E. lambeseella. Elle a aussi été signalée de Corfou,
113
Grèce ; les genitalia mâles des exemplaires de ces deux régions présentent
toutefois quelques petites differences.
Introduction
In the Palaearctic region five Elachista species belonging to the gleiche-
nella group sensu TRAUGOTT-OLSEN and NIELSEN (1977) have so far
been described : E. gleichenella (Fabricius, 1781), E. regificella Sircom,
1849, E. differens Parenti, 1978, E. lambeseella Nielsen & Traugott-
Olsen, 1987 and the eastern Palaearctic E. megagnathos Sruoga, 1990.
The description of E. differens was based on three male specimens
collected from France (type locality) and Italy. The original description
(PARENTI, 1978) contained only a short description of the external
characters and a schematic figure of the male genitalia; NIELSEN &
TRAUGOTT-OLSEN (1987) therefore ignored this species when describing
E. lambeseella (type locality Algeria, Lambése), even though these
species are closely related. Additional material has shown that E. diffe-
rens 1s rather widespread in Europe. In this paper we give a redescription
of this species, including a description of the previously unknown female.
Elachista differens Parenti, 1978
MATERIAL STUDIED: D NW-Nordeifel Marmagen, Gillesbachtal,
4.7.1992 19, 8.7.1992 1.3 1 ©, 3.7.1993 4.44 6 99, 4.7.1993 5 99
Biesenbaum leg. Coll. Zoological Museum, University of Helsinki
(2 & 2 Q), and coll. Biesenbaum. Greece, Corfu, 6.-14.6.1978, Vesa
Varis leg., 8 44 in Coll. Zoological Museum, University of Helsinki.
DraGnosis : Externally Elachista differens resembles E. gleichenella
(Fabricius), but it is on average larger. Costal and tornal spots are
usually separated in E. differens, whereas they almost always are joined
in E. gleichenella, forming a fascia (Figs 1-2, 4). These species are readily
distinguished by the very different shape of valva, uncus lobes and
aedeagus in the male genitalia (Figs 5 and 7). In the female genitalia
the diagnostic characters of E. differens are the non-sclerotized an-
trum and colliculum, narrower signum and pyriform corpus bursae
(Figs 11-12, 14). The colliculum of E. gleichenella is dorsally sclerotized
(Fig. 15) ; the corpus bursae is constricted just below middle (Fig. 13)
[this character is ignored in TRAUGOTT-OLSEN & NIELSEN (1977:
Fig. 401]).
The male genitalia of E. differens somewhat resemble those of E.
regificella Sircom, but the gnathos is much larger, and the aedeagus
114
Figs 1-4. Habitus of Elachista spp. : 1 — E. differens Parenti ¢ (Nordeifel, Germany) ;
2 — E. differens 9 (Nordeifel, Germany) ; 3 — Holotype & of E. lambeseella Nielsen
& Traugott-Olsen (Lambése, Algeria) ; 4 — E. gleichenella (Fabricius) 2 (S. Germany).
is straight in E. regificella (Fig. 8). The female of E. regificella has
a longitudinal, dentate sclerotization in the colliculum (Fig. 16), which
is lacking in E. differens.
Based on male genitalic characters E. lambeseella Nielsen & Traugott-
Olsen, 1987 seems to be the closest relative of E. differens. Externally
E. differens can be separated from this species by the broader forewing
and larger size (Figs 1-3). In the male genitalia the uncus lobes are
longer and more slender, the valva is narrower, the cucullus of the
valva is more elongate and slightly bent and no cornuti are present
in the aedeagus (Figs 5-6, 9-10). The female of E. lambeseella remains
unknown.
Redescription
(Figs 1-2, 5, 9-10, 11-12, 14)
Labial palpi drooping, slightly curved, leaden grey, third segment
slightly shorter than second. Head and neck tufts leaden grey with
115
Figs 5-8. Male genitalia of Elachista spp. : 5 — E. differens Parenti (L. Kaila prep.
no. 1136) ; 6 — Holotype of E. lambeseella Nielsen & Traugott-Olsen (prep. E. S.
Nielsen 1776) ; 7 — E. gleichenella (L. Kaila prep. no. 444) ; 8 — E. regificella (L.
Kaila prep. no. 1127).
metallic sheen. Antennae unicolorous grey, in distal 2/3rds segments
with distally slightly raised scales. Tegulae, thorax and abdomen leaden
grey with metallic sheen. Legs grey, underside of tibia creamy white,
tarsal segments with white distal rings. Forewing ground colour mottled
black with bronzy sheen ; base shining silvery ; fascia from before
middle of costa to middle of dorsum, silvery with bluish or greenish
reflection ; triangular costal spot creamy white at costa, towards middle
of wing silvery just beyond opposite silvery tornal spot ; an irregular
third spot between tornal spot and apex formed by some silvery scales ;
especially in female the three spots often joined forming fascia with
medial angle towards apex. Hindwing and underside of wings grey.
Forewing length 3.5-4 mm in male (n=4), 2.5-4 mm in female
(n = 13). Most female specimens smaller than males.
MALE GENITALIA : Uncus lobes long, gradually tapering toward rounded
tip, with row of stout setae. Gnathos large, rounded. Valva rather
narrow, tapering towards tip ; costa straight, well sclerotized ; cucullus
116
Figs 9-10. Male genitalia of E. differens : 9 — aedeagus with carina in the margin of
distal opening (L. Kaila prep. no. 1133) ; 10 — juxta lobes (L. Kaila prep. no. 1134).
Figs 11-13. Female genitalia of Elachista spp. : 11, 12 — E. differens (L. Kaila prep.
no. 1137) ; 13 — E. gleichenella (L. Kaila prep. no. 1132).
117
2
; ;
Meg
4
u 77
; F4;
Figs 14-16. Region of ostium bursae in female genitalia of Elachista spp. : 14 — E.
differens (L. Kaila prep. no. 1137); 15 — E. gleichenella (L. Kaila prep. no. 1131);
16 — E. regificella (L. Kaila prep. no. 1130).
elongate with rounded tip, slightly bent forming an angle with costa.
Digitate process rather broad, blunt, with setae. Juxta lobes separated
by short incision medially, almost parallel-sided, truncate, apical margin
slightly rounded near the incision ; with short, pointed lateral process.
Vinculum rounded, with indistinct median ridge. Aedeagus short and
broad, S-shaped ; caecum processed, blunt ; distal part oblique, tapering
into strongly pointed distal end, margin of distal opening laterally
asymmetrical with elongate carina ; without cornuti.
FEMALE GENITALIA : Distal margin of eighth tergite with long setae.
Apophyses stout, posteriores three times longer than anteriores. Ostium
bursae rounded with strongly sclerotized margins. Antrum very short,
funnel-shaped, neither antrum nor colliculum sclerotized. Corpus bur-
sae rounded with small internal spines ; signum elongate, dentate.
Remarks
We consider the series from Greece, Corfu, to belong to E. differens,
although the uncus lobes seem to be slightly narrower, and carina of
aedeagus is smaller in these specimens. These differences are in our
opinion minor, and the material available does not allow taxonomic
separation of these populations. Further material is needed for an
evaluation of the geographic variation of the species.
118
Acknowledgements
B. Krutzsch (Berlin) loaned us the holotype of Elachista lambeseella. R. Tyynelä
helped with photographs, and K. Mikkola made valuable comments on the
manuscript. We thank all these persons for their help.
References
FABrıcıus, J. C., 1781. Species Insectorum exhibentes eorum Differentias
specificas, Synonyma Auctorum, Loca Natalia, Metamorphosin adjectis
Observationibus, Descriptionibus 2, 517 pp. Hamburgi et Kilonu.
NIELSEN, E. S. & TRAUGOTT-OLSEN, E., 1987. Four new West Palaearctic
species of Elachistidae (Lepidoptera). Entomologist’s Gaz. 38 : 103-113.
PARENTI, U., 1978. Nuove specie paleartiche del Genere Elachista Treitschke
(Lepidoptera, Elachistidae). Boll. Mus. Zool. Univ. Torino N. 4 : 15-26.
SIRCOM, J., 1849. Description of three new British Tineidae. Zoologist 7,
App. 42.
SRUOGA, V., 1990. Seven new species of Elachistidae (Lepidoptera) from the
USSR. Tijdschr. Ent. 133 : 75-84.
TRAUGOTT-OLSEN, E. & NIELSEN, E. S., 1977. The Elachistidae (Lepidoptera)
of Fennoscandia and Denmark. Fauna Ent. Scand. 6. 299 pp.
109)
Nota lepid. 17 (3/4) : 120 ; 30.IV.1995 ISSN 0342-7536
Dr. h.c. Karl Burmann +
Wir haben die traurige Pflicht Ihnen
mitzuteilen, dass der bekannte
oesterreichische Lepidopterologe
Dr.h.c. Karl Burmann tot ist.
Er starb am 26. März 1995
im 87. Lebensjahr.
120
Nota lepid. 17 (3/4) : 121-123 ; 30.1V.1995 ISSN 0342-7536
Aricia crassipuncta bassoni Larsen, 1974 from Lebanon
raised to species rank (Lepidoptera, Lycaenidae)
Torben B. LARSEN
358 Coldharbour Lane, London SW9 8PL, U.K.
Summary
A reexamination of material of Aricia crassipuncta bassoni Larsen, 1974 from
Lebanon shows that it differs from A. vandarbani Pfeiffer, 1937 from Iran,
with which it had been synonymised, and also from A. anteros Freyer, 1838
[Turkey] and A. crassipuncta Christoph, 1893 [Armenia]. The differences are
to be found in wing pattern and shape, and in the male genitalia. The taxon
is therefore raised to species rank.
Résumé
Le réexamen de matériel d’Aricia crassipuncta bassoni Larsen, 1974 du Liban,
montre qu’il differe de A. vandarbani Pfeiffer, 1937 d’Iran, avec lequel il
avait été synonymisé, et également d’A. anteros Freyer, 1838 (Turquie) et d’A.
crassipuncta Christoph, 1893 (Arménie). Les différences sont à trouver dans
les dessins et les formes des ailes, ainsi que dans les genitalia mâles. Le taxon
est en conséquence élevé au rang d’espèce.
In 1974, I described the taxon Aricia crassipuncta bassoni from the
high mountains of Lebanon. It belongs in the subgenus Ultraaricia
Beuret, 1959, a small group of species characterized by the presence
of an unusual inferior lobe in the uncus. On the advice of Dr. Burk-
hardt Alberti and Dr. Walther Forster, I allied the Lebanese taxon
with A. crassipuncta Christoph, 1893 from Armenia, despite their being
separated by a distance of more than a thousand kilometres. I was
encouraged to do this also because the Lebanese population was
traditionally referred to tentatively as ssp. crassipuncta of Aricia anteros
Freyer, 1838.
In a paper in this journal, NEKRUTENKO (1980) placed the taxon bassoni
as a synonym of A. vandarbani Pfeiffer, 1937 from the Iranian Elburs
Mountains on morphological grounds, though he also said it might
possibly be a valid subspecies thereof. K. Schurian (pers. comm.), to
23
AA
N
U. bassoni U. anteros
Fig. 1. Uncus and valves of Ultraaricia spp. : U. bassoni from Lebanon (Larsen prep.
LAI) ; U. anteros from Anatolia (Ankara area) (Larsen prep. LAJ).
whom I gave some specimens, did not agree with this decision, and
I had for long wanted to re-examine the issue.
After many years, I recently regained access to my genitalia mounts from
Lebanon. Examination of a male bassoni shows that the specialized
inferior lobe of the uncus is exactly like that of a male A. anteros
from near Ankara (Fig. 1). Since the main characteristic of A. vandar-
bani is a strong reduction of this lobe, the assignment of bassoni to
A. vandarbani clearly becomes impossible (no material of bassoni was
available to Nekrutenko).
On the other hand, Nekrutenko’s redescription of A. crassipuncta, a
poorly known species, makes it clear that it differs more from bassoni
than I thought in 1974. A. crassipuncta has very pointed forewings,
the underside pattern is less strongly developed, the wings almost wholly
lack orange marginal lunules, and the overlay of light scales is blueish-
grey rather than greenish. To this must now be added that the valve
of bassoni is proportionately longer than in the other three species,
and the distal spine is long, jutting well beyond the distal end of the
valve. The length of the valve is due to elongation of the basal part,
the distal half having the usual proportions. I therefore raise Aricia
(Ultraaricia) crassipuncta bassoni Larsen, 1974 to species rank (stat.
122
n.). This also seems the most reasonable solution on biogeographical
grounds.
Males of A. bassoni (illustrated in colour by LARSEN, 1974) are readily
recognized by the grey upperside with a strong, greenish sheen, usually
with well developed marginal orange lunules. They are very different
from the smaller blue Anatolian males. Females are like those of Aricia
agestis Denis & Schiffermüller, 1775 with strongly developed marginal
lunules. The haploid chromosome number is n = 23 (LARSEN, 1975),
which has also been found in nominate A. anteros, and which appears
to be typical for the genus. Hiccins (1975) quotes n = 24 for A. agestis,
but I found Lebanese males to have n = 23.
There are also occasional records of A. crassipuncta from southwestern
Turkey (Hicains, 1966 ; NEKRUTENKO, 1980). It 1s thus possible that
a population of A. bassoni exists in the Taurus Mountains, with which
the Lebanese butterfly fauna has many other affinities, but I have not
seen material from there.
References
Hicains, L. G., 1966. Check-list of Turkish butterflies. Entomologist 99 :
209-222.
Hicains, L. G., 1975. The classification of European butterflies. Collins,
London.
Larsen, T. B., 1974. The butterflies of Lebanon. National Council for
Scientific Research, Beirut.
LARSEN, T. B., 1975. Chromosome numbers and notes on testicular morpho-
logy of some Lebanese Rhopalocera. Entomologica scand. 6 : 218-225.
NEKRUTENKO, Y. P., 1980. Revisional notes on the lycaenid butterfly species
assigned to Ultraaricia Beuret (Lycaenidae). Nota lepid. 3 : 55-68.
123
Nota lepid. 17 (3/4) : 124 ; 30.1V.1995 ISSN 0342-7536
Book reviews — Buchbesprechungen — Analyses
Oekologische Untersuchungen im Unterengadin. Schmetterlinge (Lepi-
doptera). W. SAUTER. 137 pp., kartoniert. Ergebnisse der wissenschaft-
lichen Untersuchungen im Schweizerischen Nationalpark Band 12,
14. Lieferung, 1993. Bestellungen an: F. Flück-Wirth, Internationale
Buchhandlung für Botanik und Naturwissenschaften, CH-9053 Teufen,
Schweiz. Preis : 78 Fr.
Die vorliegende Arbeit ist Teil einer interdisziplinären, durch geplante Kraft-
werksbauten, angeregten Studie im Schweizer Unterengadin. Die Schmetter-
lingszönosen unterhalb der Waldgrenze wurden von 1961 bis 1976 mit unter-
schiedlicher Methodik erfaßt und durch zusätzliches Datenmaterial bis 1990
ergänzt. Insgesamt konnten 1242 Arten nachgewiesen werden, die alle ein-
schließlich der Fundorte aufgelistet sind. In der Schweiz im wesentlichen auf
das Unterengadin beschränkte Arten werden zoogeographisch analysiert.
Leider konnten hier neuere Ergebnisse über Caryocolum oculatella nicht mehr
berücksichtigt werden.
Besonders wertvoll erscheint dem Rezensenten die ökologisch orientierte
Analyse der Artenbestände im 2. Teil der Studie, die trotz aller vom Autor
offen dargelegten Unzulänglichkeiten eine reichhaltige Fundgrube für ähnlich
gelagerte Untersuchungen im Mitteleuropa darstellt. Basierend auf den gut
dokumentierten pflanzensoziologischen Verhältnissen, sowie den bekannten
Daten über Raupenfutterpflanzen wurden die Arten soweit als möglich den
unterschiedlichen Vegetationstypen zugeordnet. Die Zönosezugehörigkeit der
einzelnen Taxa wurde möglichst exakt vorgenommen und beinhaltet im Sinne
von Schwerdtfeger (1975) mehrere Kategorien von zönoseigenen Arten bis
zu Irrgästen. Besonders hohe Diversitätsraten wurden im Koelerio-Poetum
xerophilae (236 Arten), im Vincetoxico-Festucetum sulcatae (166 Arten) sowie
im Violo-Alnetum incanae (116 Arten) nachgewiesen werden. Die Pionier-
standorte des Inn sind erwartungsgemäß artenarm, weisen aber einige wichtige
Vorkommen auf wie z.b. Merulempista cingillella (Tamariskenzünsler).
Die Studie ist trotz des relativ hohen Preises allen ökologisch orientierten
Lepidopterologen wärmstens zu empfehlen, und untermauert die Bedeutung
von Schmetterlingserhebungen für Aussagen über die Wertigkeit von Lebens-
räumen.
Peter HUEMER
124
Nota lepid. 17 (3/4) : 125-140 ; 30.1V.1995 ISSN 0342-7536
Karyology and distribution as tools ın the taxonomy
of Iberian Agrodiaetus butterflies
(Lepidoptera : Lycaenidae)
Miguel L. MunGuIRA, José MARTIN and Margarita PEREZ-VALIENTE
Departamento de Biologia (Zoologia), Facultad de Ciencias, Universidad Autönoma de Madrid,
Cantoblanco, E-28049-Madrid, Spain.
Summary
A cytotaxonomical study in the main distribution areas of Agrodiaetus ripar-
tii, A. fabressei, A. ainsae and A. fulgens revealed differences between these
species. In the species with brown males, A. ripartii has n = 90 with two macro-
chromosomes and A. fabressei the same chromosome number, but three large
chromosomes. In the species with blue males, A. fulgens (considered here
a true species) and A. ainsae have n= ca. 103 and n= 108 with two and six
macrochromosomes respectively. Macrochromosomes proved to be the best
genetic marker to identify the species of Agrodiaetus in the Iberian Peninsula.
By combining karyological and morphological data we were able to construct
detailed UTM maps for the four species. A. ripartii is found from Catalonia
to the Cantabrian Mountains, in the south to the Sistema Ibérico, A. fabressei
flies in the Sistema Ibérico and Andalusian Sierras, A. fulgens is a Catalonian
species with a very restricted distribution range and A. ainsae lives in the
Central and Western Pyrenees and the Cantabrian Mountains. The taxon
recently described as A. violetae is considered a subspecies of A. fabressei,
based on the similar chromosome morphology and number. The group seems
to have evolved very quickly karyologically, but morphological and ecological
differences are not so evident.
Resumen
El estudio citotaxonömico en las principales areas de distribuciön de Agro-
diaetus ripartii, A. fabressei, A. ainsae y A. fulgens revelö diferencias entre
las especies. Las especies de machos castafios A. ripartii y A. fabressei tienen
respectivamente n = 90 y dos macrocromosomas y el mismo numero de cromo-
somas, pero con tres cromosomas grandes. En el caso de las especies de machos
azules A. fulgens (elevada aqui a la categoria de especie) y A. ainsae tienen
n=ca. 103 y n= 108 con dos y seis macrocromosomas respectivamente. Los
macrocromosomas resultaron ser el mejor marcador genético para identificar
las especies del género en la Peninsula Ibérica. Mediante el analisis conjunto
de datos cariolögicos, morfolögicos y de distribuciön (estudiada con mapas
125
detallados en proyecciön UTM), obtnemos una idea clara de la taxonomia del
grupo. Asi A. ripartii se encuentra desde Cataluña hasta el Sistema Cantabrico,
siempre al norte del Sistema Ibérico, A. fabressei vive en el Sistema Ibérico
y sierras andaluzas, A. fulgens esta restringida a unas pocas localidades cata-
lanas y À. ainsae vive en los Pirineos Centrales y Occidentales y los Montes
Cantäbricos. La recientemente descrita A. violetae se considera una subespe-
cie de A. fabressei por su similar numero y morfologia cromosémicas. El
grupo parece haber evolucionado muy räpidamente desde el punto de vista
cariolögico, mientras que las diferencias morfolögicas y ecolögicas no son tan
patentes.
Introduction
The taxonomy of the genus Agrodiaetus Hübner, [1822] is one of the
most complicated among Palaeartic butterflies. The genus lives mainly
in the Mediterranean and Middle East, but can also be found in Central
Europe and Russia (Hiccins & HARGREAVES, 1983 ; KuDRNA, 1986).
The biology is similar in the different species of the group, the larvae
use sainfoin (Onobrychis) as foodplants, and overwinter in this stage,
feeding during the following spring on the young leaves of the plant
(SCHURIAN, 1976; Lepidopterologische Arbeitsgruppe der Schweiz,
1987 ; Manıno et al., 1987; MUNGUIRA, unpublished data). Pupation
takes place at the base of the plant and adults begin to fly usually
after a month. The flight period ranges from July in hotter places to
August in populations living at higher altitudes.
Interest in the group lies in the controversial taxonomic position of
most species. Before chromosome studies were made, morphological
research attempted to provide a clear view of the systematics and
taxonomy of the group. Some comprehensive reviews attempted this
difficult task (FORSTER, 1961), but the confusion generated by this
approach proved the inadequacy of the methods based solely on
morphological analysis. Chromosomic studies started by de Lesse in
1952, clearly showed that morphology itself was not enough to under-
stand relationship among the species (DE LESSE, 1960a). Unfortunately
these studies are not a panacea either and the species’ chromosome
numbers also show a complicated pattern, with very different chromo-
some numbers in otherwise identical taxa. This shows how hard it is
to give simple answers to difficult questions in a group that is under-
going a splitting process at the moment we are studying it. For example,
in Italy the taxa previously grouped under the name Agrodiaetus ripar-
tii (FREYER, 1830) has been split into three different species with
different chromosome numbers : A. humedasae Toso & Balletto, 1976
126
with n = 38 ; A. galloi Balletto & Toso, 1979 with n = 66 ; and A. ripar-
tii with n = 90 (TRoIANO et al., 1979).
AGENJO (1947) lists the Spanish species as Plebejus (Agrodiaetus)
damon (Denis & Schiffermüller, 1775), P dolus (Hübner, [1823]), P.
admetus (Esper, 1785) and P ripartii. FORSTER (1961) describes ainsae
as a subspecies of dolus and considers Agrodiaetus as an independent
genus. Following the popular book by GOMEz-BusTILLo & FERNAN-
DEZ-RUBIO (1974) the Iberian species of the genus are Agrodiaetus
damon, A. dolus, A. fabressei (Oberthür, 1910), A. ripartii and A.
ainsae Forster, 1961, to which A. violetae Gomez-Bustillo, Expösito
& Martinez, 1979 was added later as a new species. A. fabressei cor-
responds to what AGENJo (1947) named P admetus, now known to
be restricted to Eastern Europe and Asia Minor. There is a tendency
to split the species of the group into new species whose validity has
been discussed in several reviews (see for example FERNANDEZ-RUBIO,
1992). Hıscıns (1975) also considers within the genus the species A.
amanda (Schneider, 1792), A. thersites (Cantener, 1834) and A. escheri
(Hübner, [1823]), but although this inclusion has strong arguments in
its favour, the resulting genus is less homogeneous. KuDRNA (1986:
161, 229-231) in the latest European checklist grouped the Agrodiaetus
within the genus Polyommatus and listed the following species as
present in Spain : P ainsae, P. damon, P. dolus, P. fabressei, P. ripartii,
and P. violetae. The first three taxa have blue males and the last three
brown males. The inclusion of Agrodiaetus in Polyommatus is not
supported by recent research (LELIEVRE, 1992) and we do not assume
it for simplicity.
We centered our study only in the Agrodiaetus sensu stricto group
(following Hiccins & RırLry, 1970), but excluded A. damon which
is a fairly distinct species that has never been mistaken with the others
anywhere in its range. The objectives of our study were to identify the
specific entities of the Agrodiaetus group living in the Iberian Peninsula
based on cytotaxonomical and morphological information and to give
accurate UTM distributions for every species.
Materials and methods
Chromosome number studies were made on male testes of at least
five specimens for each species and/or geographical area. Testes were
dissected in situ under a stereomicroscope in distilled water and fixed
with a solution of ethanol : acetic acid (3:1). They were kept at ca. 5°C
until analysis was possible. After staining the samples with lacto-
propionic orceine they were observed under a phase contrast microscope
127
to count chromosomes using the squash technique (Lorkovic, 1990)
with small fragments of the testes. Brown males were studied from
Sierra de Cazorla (SW Spain), Sistema Ibérico (Central Spain), Cata-
lonia (NE Spain) and the Cantabrian Mountains (N Spain). Blue males
were studied from Catalonia and the Pyrenees. This covered all the
taxa previously described and the geographic range of the group in
the Iberian Peninsula and was considered enough to give an idea of
the chromosome numbers for each area and species.
Distribution data were collected using faunistic records from the
literature and from specimens in the collections of the following Spanish
institutions : Museo Nacional de Ciencias Naturales, Sociedad de
Ciencias Naturales Aranzadi, Museo de Ciencias Naturales de Vitoria,
Museo de Zoologia de Barcelona and Universidad Autönoma de
Madrid. Private collections from Fidel Fernandez-Rubio, Jose Luis
Yela, Arcadi Cervellé, Jose Maria Font and Jose Luis Nuñez and
personal communications from Albert Maso, José Bellavista and Fran-
cisco Abös were used for distribution records. Data were also gathered
visiting a total of 36 localities from 12 different Provinces in which
specimens were taken for morphological analysis. The specimens used
for this study are preserved in the zoological collection of the Uni-
versidad Autönoma de Madrid (UAMZ). A database was created to
process all the faunistic data with information on localities, provinces,
dates, UTM coordinates, altitudes and bibliographic references. This
is available upon request for anyone interested, but its volume (more
than 700 records) made its inclusion in this paper impossible.
Maps were produced using a commercial program for automated carto-
graphy (CYANUS) for the Iberian Peninsula and Balearic Islands. Each
record was assigned to a particular species using karyological data for
the localities from which chromosome studies were made. For the rest
of the localities identification was based on geographical and morpho-
logical affınities with the former records. The morphological analysis
of the records for which we had specimens, showed that the individuals
identified by this method had the typical morphology of the species
to which they were assıgned.
The biology of the group was studied at the different localities visited,
where we gathered data on foodplants, overwintering stages and im-
mature stage morphology.
128
Table 1
Localities, sample size and chromosome numbers of the studied material
and all the literature references for Agrodiaetus species in the Iberian Peninsula.
“No. males” refers to the number of males that produced metaphase I plates
suitable for chromosome counts and the total sample is given in brackets.
References are as follows : (1) DE LESSE, 1960b (2) DE LeEsse, 1961a
(3) DE LESSE, 1962 (4) DE LESSE, 1968 and (*) our own observations
Locality
Villanueva
Peñahorada
Bernués
Jaca
Taradell
Noguera
Albarracin
Peñalén
Cazorla
Morella
Province
Burgos
Burgos
Huesca
Huesca
Barcelona
Teruel
Teruel
Guadalajara
Jaen
Castellön
No. males | Chr. No. | Macrochr.| Species
108
9
108-110
103
90
90
90
90
ainsae
ainsae
ainsae
ainsae
fulgens
fabressei
fabressei
fabressei
fabressei
fabressei
Teruel 90
Castellön 90
Barcelona 4 90
Barcelona
Barcelona
Tarragona
Villarroya
Olocan
Amorös
Collsuspina
Taradell
Santa Coloma
Penahorada Burgos
Gredilla Burgos
Jaca Huesca
Jaca Huesca
fabressei
ripartit
ripartit
ripartit
ripartit
ripartit
ripartit
ripartit
ripartii
ripartit
NNNN | BORDER | AD |] sw.
NO * * * * x x BON ND * + ke x FEW + LU
Results
Chromosome numbers in different populations
Table 1 gives a summary of the data from our study pooled with data
from DE Lesse’s 1960b, 1961a, 1962 and 1968 papers. From these
results it is clear that the best genetic marker for the identification
of the species of the group in the Iberian Peninsula is the number
of macrochromosomes (see WHITE, 1973 for the use of the term, that
appears as “gros chromosomes” in DE LESsE, 1960b). These can be
defined in Lepidoptera as chromosomes with two to four times the
normal size, located in the centre of metaphase I plates and surrounded
by normal-sized chromosomes (Figs 1-4). The location of macro-
chromosomes contrasts with their peripheral location in Orthoptera,
amphibians and reptiles (WHITE, 1973). In lycaenids the number of
macrochromosomes is always low while in the other groups it usually
outnumbers that of microchromosomes (see WHITE, 1973 for compa-
129
Figs 1-4. Metaphase I plates. 1 — Agrodiaetus fulgens. (Taradell, Barcelona Province,
type locality for species) n = 103, six macrochromosomes ; 2 — Agrodiaetus fabres-
sei (Penalen, Guadalajara Province), n = 90, three macrochromosomes ; 3 — Agro-
diaetus ripartii (Collsuspina, Barcelona Province), n = ca. 88, two macrochromosomes ;
4 — Agrodiaetus fabressei violetae (Sierra de Cazorla, Jaén Province), n = 90, three
macrochromosomes.
130
rison), and it is probable that these configurations depend on mechanical
aspects of the cell division process. The number of chromosomes is
also distinctive, but the metaphase I plates of Agrodiaetus have large
chromosome numbers and accurate counts are difficult in most cases.
The results from Table 1 support the following species’ arrangements :
A. ainsae with n — ca. 108 lives in the Pyrenees and a wide area sur-
rounding the Cantabrian Mountains, whereas in Catalonıa the speci-
mens previously assigned to A. dolus should now be considered a
distinct species. The name A. fulgens (Sagarra, 1925) is valid for this
species, because it was given to what was thought a subspecies of A.
dolus in the same localities where the samples for chromosome studies
were taken. The reason for considering fulgens a distinct species is
the different chromosome number (n = ca. 103, while dolus has n = 124
and ainsae n = 108) and above all, the different number of macro-
chromosomes of these specimens (six for fulgens (Fig. 1) as opposed
to four in dolus, DE LESSE, 1961b). de Lesse (1962, 1966) only gives
the chromosome number for A. ainsae and does not provide figures
for it, but our specimen from Peñahorada (Burgos Province, northern
Spain) had two macrochromosomes although the metaphase I plates
we obtained were not suitable for accurate chromosome counts. The
number of macrochromosomes is therefore six in A. fulgens, four in
A. dolus and two in A. ainsae. Although our sample for fulgens 1s
very small (only 3 specimens with metaphase I plates), the separation
of ainsae from dolus was made with similar samples (five specimens, DE
LESSE, 1962). Moreover it is not chromosome number, but the number
of macrochromosomes that we consider to be a strong argument to
split fulgens from ainsae, because it is highly improbable that specimens
with such a different chromosome morphology can belong to the same
species.
A. ripartii and A. fabressei share the same chromosome number
(n = 90) but clearly differ in the morphology of chromosomes, fabressei
having three (Fig. 2) and ripartii two (Fig. 3) macrochromosomes. DE
LESSE (1960a, Table 1) states that fabressei has four macrochromosomes,
but after examining our photographs and drawings we have concluded
that the species clearly has three large chromosomes constantly seen
in all the metaphase I plates. The difference between de Lesse’s results
and ours is due to the existence of one or two medium sized chromo-
somes that in some plates resemble macrochromosomes, but are driven
out of the centre of the spindle in a majority of our figures from
fabressei. Large chromosomes are always located in the centre of meta-
phase I plates, and they are easily spotted when comparing long series
of plates. This has been possible with the material from the Sierra
131
de Cazorla, previously regarded as A. violetae, where the presence of
three macrochromosomes is clear (Fig. 4). The latter race has therefore
a true fabressei karyotype, which supports the idea outlined in FER-
NANDEZ-RUBIO (1992) that it is a subspecies of fabressei and not of
ripartii, as has been proposed (BALLETTO, pers. comm.). The distribution
of both karyotypes seems to be clearcut from the data in Table 1.
A. ripartii 1s a species living from the Cantabrian Mountains to the
Catalonian Pyrenees whereas A. fabressei lives in central Spain and
in some southern mountain ranges.
Morphology
There is not a single character clearly separating all ripartii specimens
from fabressei, and ainsae from the Catalonian species fulgens. In the
first case a group of characters can identify most of the specimens,
but in the latter this proves to be very difficult. Generally speaking
fabressei lacks the white band along the v4 on the hind wing’s underside,
but there is a great variability on this character. Traditionally brown
males without the white band have been regarded as fabressei, and
this has produced records of the species in the Pyrenees (GöMEZ, 1988)
and Catalonia (GOMEz-BusTILLO & FERNANDEZ-RUBIO, 1974). The
book by MANLEY & ALLCARD (1970) is unusual because it illustrates
an individual with white band taken at Penahorada (Burgos Province)
under the name fabressei and a very similar specimen (with white band)
from Albarracin (Teruel) as ripartii. These identifications are in dis-
agreement with our karyological results. On the other hand a white
band is also present in some fabressei specimens leading some authors
to consider these as ripartii (GOMEZ-BUSTILLO & FERNANDEZ-RUBIO,
1974 ; MANLEY & ALLCARD, 1970 for the male collected in Albarracin,
Teruel). The Catalonian race agenjoi Forster, 1965 has been considered
a different species (Hıscıns & HARGREAVES, 1983), a subspecies of
fabressei (MANLEY & ALLCARD, 1970 ; GOMEz-BuUSTILLO & FERNAN-
DEZ-RUBIO, 1974) or a subspecies of ripartii (AGENJO, 1964 ; DE LESSE,
1968, PÉREZ, 1979). Black spots on the underside are larger in fabressei
than in the normal ripartii, but again the Catalonian specimens are
an exception to this and resemble typical fabressei. Another distinctive
feature of fabressei has traditionally been the enlargement of the black
spot between v2 and v3 in the forewing’s underside (DE LESSE, 1968),
but our material from the whole geographic range of both species does
not support the distinctness of this feature. The apical angle of the
forewing is smaller in fabressei than in ripartii. Althoug this seems to
be a constant character, it is hard to measure and by itself is not use-
ful enough to identify all the specimens clearly. The third supposed
132
species with brown males, A. violetae, has a mixture of morphological
characters from ripartii and fabressei with a white band in the underside
of the hindwing (absent in six of our sample of 22 butterflies) and
a small angle in the apex of the forewing. As a result of ıts chromo-
some morphology we consider it a subspecies of A. fabressei. Although
there are exceptions to all the characters mentioned above, most of
the specimens can be identified by a mixture of characters. Therefore
specimens without white band in the underside, large spots ın the
underside and small apical angle can be considered fabressei, provided
they are in the distribution range of the species. Individuals outside
the normal species’ range need chromosome study to be sure of their
identity.
As far as the species with blue males is concerned identification is also
difficult. A. fulgens has traditionally been regarded as a race with
brighter blue and lack of the white band ın the hindwing’s under-
side. These two features are useful for most specimens, but again a
substantial morphological variation takes place in ainsae for both
characters, making individual diagnosis difficult in some cases.
Distribution
Given that it is very difficult to identify the species of the group based
on morphological features, we considered the possibility to use both
chromosome numbers and distribution data to assign a given individual
to a species of the group. In almost all the studied northern localities,
three Agrodiaetus species live together : damon, which is a well cha-
racterized distinct species, a species with blue males and a species with
brown males. We assumed that each area has a sıngle brown and/or
blue species (this was confirmed by the chromosome study) and by
mapping the species tried to define areas isolated by barriers separating
species. In the localities of the Sistema Iberico (Central Spain) only
a species with brown males flies together with damon and the chromo-
some studies revealed this to be fabressei (DE LESSE, 1960b, and our
observations, Table 1).
A. fabressei (Fig. 5) is therefore restricted to the Sistema Iberico, a
mountain range running from north to south in Central Spain and
to the Sierras of Andalusia. The species lives in the Serranias of Cuenca
and Albarracin, the high plains of La Alcarria, some calcareous out-
crops in Segovia Province and north of Madrid, and reaches the
Province of Soria in the north, being isolated from ripartii by the Picos
de Urbiön, whose northern slopes flow down to the Ebro Valley. A. fa-
bressei violetae is found in a total of twelve UTM squares (10 X 10 km)
138
Fig. 5. Distribution of Agrodiaetus ripartü (circle) and A. fabressei (star) in the Iberian
Peninsula. Each symbol represents the presence of the species in a 10 X 10 km UTM
square. Open symbols represent localities where chromosome studies were available.
from four mountain ranges in Southern Spain (Sierra Tejeda, Sierra
de Almijara, Sierra de Cazorla and Sierra de Alcaraz).
A. ripartii (Fig. 5) lives over a wide area, from Catalonia through
the Pyrenees to the Cantabrian Mountains, where it lives mainly on
the southern slopes. Two subspecies can be distinguised: the Catalonıan
agenjoi and the Pyrenean and Cantabrian ripartii, separated by an
area that more or less matches the boundary between the Pyrenees
and a mountain range running from north to south in eastern Catalonia
(Serralada Vertical) in which the species becomes scarce (Fig. 5). DE
LESSE (1961a) describes the presence of specimens with a typical ripartii
134
Fig. 6. Distribution of Agrodiaetus ainsae (circle) and A. fulgens (star) in the Iberian
Peninsula. Each symbol represents the presence of the species in a 10 X 10 km UTM
square. Open symbols represent localities where chromosome studies were available.
karyotype in Olocau del Rey (Castellön Province), an area where fa-
bressei is widespread. If this finding is confirmed it may be possible
that ripartii has some populations more or less mixed with fabressei
colonies in this contact zone.
A. ainsae (Fig. 6) is the most widespread species with blue males in
this area. Specimens from the western Pyrenees and the Cantabrian
mountains belong to this species, but not a single locality has been
found south to the Picos de Urbiön, suggesting that the southern limit
for ripartii is also valid for the blue species of the group.
185
A. fulgens (Fig. 6) has until now been considered a subspecies of dolus
(GOMEZ-BuSTILLO & FERNANDEZ-RUBIO, 1974, Hıccıns, 1975). It has
only been cited from a handful of localities in Catalonia and between
the strongholds of this species and the previous one there is a wide
area with scarcity of records that can be seen when the distribution
of both species is plotted together (Fig. 6). It should be noted that
this lack of records is not a consequence of lack of information, for
this is a well explored area.
Biology
Allthe studied species use Onobrychis as larval foodplants. In the Cata-
lonian localities, the Pyrenees, the Sistema Ibérico and the Cantabrian
Mountains the foodplant is always O. viciifolia Scop. The only popu-
lation that uses a different foodplant is A. fabressei violetae in the
Sierra de Cazorla. Its foodplant is O. argentea Boiss., but we do not
consider this difference to be relevant with respect to its taxonomic
status, because the two plants are ecologically similar, and O. argentea
is the only species of this plant genus living in Sierra de Cazorla. In
all other aspects the biology of the studied species is very similar. They
all overwinter as third instar larvae (we studied this for fabressei, ripartii
and ainsae) and pupate during the spring at the base of the foodplant.
The fullgrown larva is very similar in species living in the same area.
Thus we were unable to distinguish between A. fabressei and and the
very different A. damon in Albarracin (Teruel Province), and between
A. ripartii and A. ainsae in Jaca (Huesca Province). All the larvae
have tentacles and dorsal nectary organs (Newcomer’s gland), and the
coloured band in the lateral zone of the larva can have different colours,
being yellow in the specimens from Jaca in the Pyrenees and pink
in the larvae from Albarracin. Wether this can be a distinctive feature
between ripartii and fabressei or just a character related to the ecological
peculiarities of the site requires a more comprehensive study. Egg
morphology is being studied under the SEM microscope by two of us
(MuncuirA & MARTIN, in preparation) and all the species exhibit
a very similar chorionic pattern, with no distinctive features among
them.
Discussion
Previous results have shown how complicated a taxonomic study of
this difficult butterfly group can be. Although butterfly taxonomy
in Europe is often regarded as being settled, there are some groups
in which a great deal of research is still needed. Two of the main
136
taxonomic groups within which the boundaries between species are
not yet well defined are found in Agrodiaetus, and Polyommatus
(Lysandra) of the coridon (Poda, 1761) group (DE BAST, 1985 ; Mensı
et al., 1988 ; LELIEVRE, 1992).
Our approach to the taxonomy of the group was to begin to identify
the different karyotypes found in the Iberian Peninsula. Then we trıed
to study as many areas as possible to assign karyotypes to relevant
areas from the biogeographical point of view. Plotting this information
with distribution maps, we tried to draw accurate maps of every species.
The separation of species in contact areas such as the boundaries
between A. ainsae and A. fulgens is still tentative and a karyological
study of almost every locality is needed to be completely sure. The
limit between A. ripartii and A. fabressei also needs some further study,
but in this case we think that our proposal is closer to reality because
the morphology of specimens from Abejar (Soria) resembles the typical
fabressei, with most butterflies lacking the white band on the hind-
wing’s underside (MANLEY & ALLCARD, 1970). On the other hand
the specimens from the northern slopes of the Sistema Ibérico (e. g.
Castañares de las Cuevas in La Rioja) are morphologically true ripartii
with the white band present in all the studied material. Some research
needs to be done on the identity of some populations close to the
town of Morella in central eastern Spain, where DE LEssE (1961a)
identified karyotypes belonging to fabressei and ripartii in nearby
populations, but never in the same one. This area may prove to be
a contact zone for the two species, and the segregation of populations
may not be as clearcut as depicted in the distribution maps. In a locality
between the towns of Olocan and Forcall, de Lesse (1961a) found males
with a typical ripartii karyotype and a single male with fabressei
morphology, for which a chromosome study was not possible. Speaking
of this fabressei specimen he writes that “on a vu qu’aucun doute ne
peut exister sur son identité”. Therefore a contact area between the
two species might exist in Morella, but this statement has to be proven
through more chromosomic studies. On the other hand, although some
authors have reported the two species from the same locality, nobody
has yet identified specimens of the two different karyotypes living to-
gether.
Populations having different chromosome numbers are usually thought
to belong to different species. Although DE LEssE (1960a ; 1966) is
very cautious to split species by their distinct chromosome numbers,
his data have always been used as a proof to make new species’ arrange-
ments (GOMEZ-BUSTILLO & FERNANDEZ-RuBIO, 1974 ; Hicains, 1975).
Some intraspecific variation in chromosome numbers and chromosome
15%
morphology can not be plainly rejected (WHITE, 1973), particularly in
such similarly looking and difficult groups as the Agrodiaetus. Never-
theless, before a more thorough study is done on the significance of
chromosome number variability in the evolution of lycaenids, we
assume it is safer to assign populations with different chromosome
numbers to different species. This approach was made in most chromo-
somic studies in butterflies, as for example to support the separation
of A. humedasae (TROIANO, et al., 1979), to split a species complex
in several species previously regarded as identical (SOUMALANIEN &
Brown, 1984) or as a general rule to explain chromosome number
variability (see WHITE, 1973). On the other hand a karyological feature
of great taxonomic importance has emerged during our study: the
variability of the number of macrochromosomes observed in the centre
of metaphase I plates. This character was previously used by DE LESSE
(1960b), but our data prove that it is the best genetic marker to identify
the species of Agrodiaetus in the Iberian Peninsula. We can therefore
recognize fulgens by its six macrochromosomes and separate it from
ainsae that has only two, whereas the species with brown males differ
in having two (ripartii) or three (fabressei) of these large chromosomes.
As a conclusion to our study, the Spanish Agrodiaetus with their
chromosome numbers and distribution are: A. ripartii (n = 90, two
macrochromosomes) living from Catalonia to the Cantabrian Moun-
tains, A. fabressei (n= 90, three macrochromosomes) living in the
Sistema Ibérico (South to the Picos de Urbiön), the limestone out-
crops of Central Spain and some southern mountain ranges (Sierra
Almijara, Cazorla, Alcaraz and Tejeda), A. ainsae (n = 108, two macro-
chromosomes) from the Pyrenees and Northern Spain and A. fulgens
(n = ca. 103, six macrochromosomes) living in Catalonia.
Acknowledgements
We are very grateful to Fidel Fernandez-Rubio, Arcadi Cervellö, Jose Maria
Font, José Luis Nufiez and José Luis Yela for kindly giving access to their
private collections. Isabel Izquierdo, Ibön de Olano and Jesus Aldaba gave
facilities for the revision of public collections and Albert Masö and Francisco
Abös provided unpublished distribution records. José Serrano and Jaime
Gosalvez helped us in many ways with cytogenetical analysis, discussion of
data and giving access to their laboratories. Enrique Garcia-Barros made
valuable suggestions to a previous draft of the manuscript.
138
References
AGENJO, R., 1964. Secciôn de capturas. IV. Graellsia 20 : 191-202.
BAST, B. DE, 1985. La notion d’espèce dans le genre Lysandra Hemming, 1933
(Lepidoptera Lycaenidae) (Première partie). Linn. Belgica 10 : 98-110.
FERNANDEZ-RUBIO, F., 1992. Guia de mariposas diurnas de la Peninsula
Ibérica, Baleares, Canarias, Azores y Madeira. Piramide, Madrid.
Forster, W., 1961. Bausteine zur kenntnis der Gattung Agrodiaetus Scudd.
(Lep. Lycaen.). II. Z. wien. ent. Ges. 46 : 74-80.
Gomez, C., 1988. Atlas provisional de los lepidöpteros de la zona norte.
Tomo III. Serv. Publicaciones Gobierno Vasco, Vitoria.
GöMEZ-BusTiL1o, M. R. & FERNANDEZ-RUBIO, F., 1974. Las mariposas de
la Peninsula Ibérica. Ropalöceros. Tomo II. 258 pp. ICONA, Madrid.
Hicains, L. G., 1975. The classification of European butterflies. 320 pp.
Collins, London.
Hıscıns, L. G. & HARGREAVES, B., 1983. The butterflies of Britain and
Europe. 256 pp. Collins, London.
Hicains, L. G. & Rire, N. D., 1970. A field guide to the butterflies of
Britain and Europe. 380 pp. Collins, London.
Kuprna, O., 1986. Aspects of the conservation of butterflies in Europe. Butter-
flies of Europe (O. Kudrna, Ed.). Vol. 8. 323 pp. Aula-Verlag, Wiesbaden.
LELIEVRE, T., 1992. Phylogenie des Polyommatinae et structure genetique de
six espèces du genre Lysandra, Hemming (Lépidoptères Lycaenidae).
PhD Thesis, Université de Provence.
Lepidopterologische Arbeitsgruppe der Schweiz, 1987. Tagfalter und ihre
Lebensräume. 516 pp. Schweizerische Bund für Naturschutz, Basel.
LESSE, H. DE, 1952. Quelques formules chromosomiques chez les Lycaenidae
(Lépidoptères, Rhopalocères). C. R. Acad. Sci. Paris 235 : 1692-1694.
LESSE, H. DE, 1960a. Spéciation et variation chromosomique chez les Lé-
pidoptères Rhopalocères. Ann. Sci. Nat. Zool. Biol. Anim. 12 Ser. 2:
1-223.
LESSE, H. DE, 1960b. Les nombres de chromosomes dans la classification
du groupe d’Agrodiaetus ripartü Freyer. Revue fr. Ent. 27 : 240-264.
LESSE, H. DE, 196la. Cohabitation en Espagne d’Agrodiaetus ripartii Freyer
et A. fabressei Oberthür. Revue fr. Ent. 28 : 50-53.
LESSE, H. DE, 1961b. Les nombres de chromosomes chez Agrodiaetus dolus
Hübner et les espèces voisines. Alexanor 2 : 57-63.
LESSE, H. DE, 1962. Variation chromosomique chez Agrodiaetus dolus Hb.
(Lep. Lycaenidae). Alexanor 2 : 283-286.
LESSE, H. DE, 1966. Variation chromosomique chez Agrodiaetus dolus Hübner
(Lepidoptera Lycaenidae). Annls Soc. ent. Fr. 2 : 209-214.
LESSE, H. DE, 1968. Agrodiaetus ripartii Frey. dans la region de Barcelone
(Lycaenidae). Alexanor 5 : 203-235.
Lorkovic, Z., 1990. The butterfly chromosomes and their application in
systematics and phylogeny. pp. 332-96, in ©. Kudrna (Ed.) : Butterflies
of Europe. vol. 2. Introduction to lepidopterology. 557 pp. Aula-Verlag,
Wiesbaden.
159
MANINO, Z., LEIGHEB, G., CAMERON-CuRRY, P. & CAMERON-CURRY, V., 1987.
Descrizione degli stadi preimaginali di Agrodiaetus humedasae Toso &
Balletto, 1976 (Lepidoptera, Lycaenidae). Boll. Mus. reg. Sci. nat. Torino
5 : 97-101.
MANLEY, W. B. L. & ALLCARD, H. G., 1970. A field guide to the butterflies
and burnets of Spain. 192 pp. E.W. Classey, Hampton.
Mensı, P., LATTES, A., SALVIDIO, S. & BALLETTO, E., 1988. Taxonomy,
evolutionary biology and biogeography of South West European Polyom-
matus coridon (Lepidoptera : Lycaenidae). Zool. J. Linn. Soc. 93:
259-271.
PEREZ, J. J., 1979. Notas sobre les especes catalanas del gener Agrodiaetus
(Hbn., 1822) (Lep. Lycaenidae). Butll. Soc. cat. Lepid. 22 : 7-9.
SCHURIAN, K., 1976. Beitrage zur Biologie der Gattung Agrodiaetus, I Agro-
diaetus ripartii Frey. (Lep., Lycaenidae). Ent. Z. Frankf. a. M. 86:
196-199.
SOUMALANIEN, E. & BROWN, K. S. Jr., 1984. Chromosome number variation
within Philaethria butterilies (Lepidoptera : Nymphalidae, Heliconiini).
Chromosoma 90 : 170-176.
TROIANO, G., BALLETTO, E. & Toso, G. G., 1979. The karyotype of Agro-
diaetus humedasae Toso & Balletto, 1976 (Lepidoptera, Lycaenidae).
Boll. Soc. ent. ital. 111 : 141-143.
WHITE, M. J. D., 1973. Animal cytology and evolution. 961 pp. Cambridge
University Press, Cambridge.
140
Nota lepid. 17 (3/4) : 141-154 ; 30.1V.1995 ISSN 0342-7536
Illustrierter Bestimmungsschlüssel
für die Präimaginalstadien der Schwärmer Europas
und Nordafrikas (Lepidoptera, Sphingidae)
Teil IT : Eilarven
Alexander PELZER
DorfstraBe 20, D-30974 Wennigsen, Bundesrepublik Deutschland
Summary
Keys to the preimaginal instars of the hawkmoths of Europe and North Africa
(Lepidoptera, Sphingidae). Part II : First instar larvae.
This is the second of a small series of keys dealing with mature larvae, first
instar larvae, and pupae. They aim at the identification of living specimens.
Therefore, all characters that are not visible in the intact animal are omitted.
It is hoped that the keys will be useful for faunistic purposes and for research
in the ecology of hawkmoths.
Zusammenfassung
Dieser Schliissel ist der zweite aus einer kleinen Reihe, die sich mit den erwach-
senen Raupen, den Eilarven und den Puppen befaßt. Sein Ziel ist das Be-
stimmen lebender Tiere. Daher wird auf alle Merkmale, die am lebenden Tier
nicht erkennbar sind (z.B. Mandibelformen), bewußt verzichtet. Die Schlüssel
könnten vor allem in der Faunistik und für die ökologische Forschung von
Nutzen sein.
Resume
Cette clé est la deuxième d’une petite série qui traite des chenilles — adultes
et au stade LI — et des chrysalides. Elle a pour objectif de permettre la
détermination des espèces vivantes à ces différents stades. Par conséquent ne
sont pas pris en considération les caractères invisibles chez l’animal vivant
(p. ex. la forme des mandibules). Ces clés pourraient rendre service en
faunistique et pour les recherches sur l'écologie des Sphingidae.
141
Einleitung
Eilarven verschiedener Schmetterlingsgruppen sind bisher vorwiegend
zur Klärung der Systematik herangezogen worden (z.B. WASSERTHAL,
1970). Die hier wichtigen Merkmale sind jedoch in der Regel erst nach
dem Töten des Tieres erkennbar und daher für eine einfache Artbe-
stimmung vielfach ungeeignet.
Eilarven sind bereits in der Frühzeit der wissenschaftlichen Entomologie
ein beliebtes Studien- und Mikroskopierobjekt gewesen (WEISMANN,
1876 ; PouLton, 1885 ; 1886 ; 1888 ; GILLMER, 1904 ; DENso, 1906a,b).
Auch ın den letzten Jahren sind Eilarven etlicher Schwärmer beschrieben
worden (z.B. HEINIG, 1976; 1978 ; 1981 ; HArBıcH, 1978 ; Pirraway,
1979 ; PELZER, 1982 ; HEINIG & HASLER, 1986 ; FREINA, 1994). Auf die
Merkmale, durch die sich verwandte Arten unterscheiden, gehen die
Beschreibungen jedoch nur in Ausnahmefällen ein (PELZER, 1988).
Von einfachen Bestimmungsschlüsseln für die Präimaginalstadien, mit
denen sich bereits ein lebendes Tier bestimmen läßt, könnte neben der
Systematik besonders die Faunistik profitieren ; im faunistischen Schrift-
tum tauchen Eilarven als Artnachweis bisher nicht auf. Dabei sind
Eier oder Eilarven manchmal nicht schwieriger zu finden als die Falter
(z.B. PELZER, 1982). Könnte man bereits die Eilarve bestimmen,
bräuchte man das fragliche Tier nicht bis zur erwachsenen Raupe oder
gar bis zum Falter aufzuziehen — was auf Exkursionen in der Regel
nur selten möglich sein dürfte.
Die Bestimmung von Eilarven ist ın vielen Fällen erstaunlich einfach.
Im Gegensatz zu erwachsenen Raupen weisen sie nämlich nur eine
sehr geringe Variabilität auf. Andererseits wirkt die insgesamt nur kleine
Zahl verwertbarer Merkmale jedoch limitierend.
Systematik, geographische Abgrenzung, Material und Methoden
Die verwendete Systematik wird im 1. Teil der Reihe erläutert (PELZER,
1991) ; sie folgt weitgehend der Auffassung von ROTHSCHILD & JORDAN
(1903). Der Name Laothoe tremulae (Fischer von Waldheim, 1830) wird
durch L. amurensis (Staudinger, 1892) ersetzt (Pirraway, 1993).
——
Abb. 1-6. Eilarven europäischer und nordafrikanischer Schwärmer. In Klammern hinter
dem Artnamen der jeweilige Abbildungsmaßstab.
142
Abb. 1. a) A. atropos (14 X); b) A. convolvuli (21%); c) S. ligustri (12 X) ; d) H.
pinastri (19 X).
abv
Schwarmerarten Europas und Nordafrikas
Acherontia atropos (Linné, 1758) Totenkopf
Agrius convolvuli (Linné, 1758) Windenschwärmer
Sphinx ligustri Linné, 1758 Ligusterschwärmer
Hyloicus pinastri (Linné, 1758) Kiefernschwärmer
Dolbina elegans A. Bang-Haas, 1912
Marumba quercus (Denis & Schiffermüller, 1776) Eichenschwärmer
Mimas tiliae (Linné, 1758) Lindenschwärmer
Smerinthus caecus Ménétriés, 1857
Smerinthus ocellatus (Linné, 1758) Abendpfauenauge
Laothoe populi (Linné, 1758) Pappelschwärmer
Laothoe amurensis (Staudinger, 1892)
Hemaris fuciformis (Linné, 1758) Hummelschwärmer
Hemaris tityus (Linné, 1758) Skabiosenschwärmer
Hemaris croatica (Esper, 1779)
Daphnis nerii (Linné, 1758) Oleanderschwärmer
Macroglossum stellatarum (Linné, 1758) Taubenschwanz
Proserpinus proserpina (Pallas, 1772) Nachtkerzenschwärmer
Rethera komarovi (Christoph, 1885)
Sphingonaepiopsis gorgoniades (Hübner, 1819)
Hyles lineata (Fabricius, 1775) Linienschwärmer
Hyles gallii (Rottemburg, 1775) Labkrautschwärmer
Hyles euphorbiae (Linné, 1758) Wolfsmilchschwärmer
Hyles nicaea (Prunner, 1798) Nizzaschwärmer
Hyles centralasiae (Staudinger, 1887)
Hyles zygophylli (Ochsenheimer, 1808)
Hyles hippophaes (Esper, 1789) Sanddornschwärmer
Hyles vespertilio (Esper, 1779) Fledermausschwärmer
Deilephila elpenor (Linné, 1758) Mittlerer Weinschwärmer
Deilephila porcellus (Linné, 1758) Kleiner Weinschwärmer
Hippotion celerio (Linné, 1758) Großer Weinschwärmer
Hippotion osiris (Dalman, 1823)
Theretra alecto (Linné, 1758)
Das im Schlüssel behandelte Gebiet umfaßt Europa bis zum Ural sowie
Nordafrika nördlich der Sahara. Nach dem gegenwärtigen Kenntnis-
stand treten 32 Schwärmerarten mehr oder weniger regelmäßig in
diesem Areal auf (Tab. 1). Hinzu kommen einige Irrgäste aus Nord-
amerika, Afrika und Asien, die hier nicht behandelt werden (Listen
in MEERMAN, 1987 und Pitraway, 1993). Die Merkmale der wenigen
Hybriden, die aus dem Freiland bekannt sind, vermitteln stets zwischen
denen der Elternarten.
Die Schlüssel basieren ausschließlich auf eigenen Daten. Sie beruhen
auf zahlreichen Zuchten und Freilandbeobachtungen der meisten hier
behandelten Arten. Von fünf Arten lag mir allerdings kein Material
vor. Es handelt sich dabei um Arten, für die Europa auf dem äußersten
Rand ihres Verbreitungsgebiets liegt.
144
IE:
is (11 X)
c) L. amurens
. tiliae (12 X)
; b)
tus (14 X).
lla
S. oce
5)
ad)
Abb. 2. a) M. quercus (8 X)
popul e)
Die Aufnahme von R. komarovi in den Schlüssel erfolgt nach einem
Farbdia, das mir Prof. Dr. L.T. Wasserthal (Erlangen) dankenswer-
terweise überlassen hat. Die noch unbeschriebene Eilarve von S. caecus
dürfte der von S. ocellatus sehr ähneln. Aus der einzigen, mir vor-
liegenden Beschreibung der Eiraupe von D. elegans geht lediglich her-
vor, daß sie ein Horn besitzt (SOFFNER, 1959). Hier und bei den Arten
S. gorgoniades und H. osiris kann — anders als bei den erwachsenen
Raupen — nicht abgeschätzt werden, wo im Bestimmungsschlüssel man
vermutlich ankäme.
Zur Bestimmung ist eine Handlupe mit wenigstens 10-, besser 20facher
Vergrößerung notwendig. Zur Ermittlung des Horn-/ Afterklappen-
längen-Verhältnisses (H/ A, s.u.) besonders geeignet sind Meßlupen mit
eingearbeiteter Millimeterskala, wie sie von Briefmarkensammlern ver-
wendet werden.
Einfache Längenangaben, wie z.B. die Gesamt-Körperlänge, sind als
Bestimmungsmerkmal gewöhnlich ebenso unbrauchbar wie simple
Farbangaben. Bei einigen Arten werden einige Zeit nach Beginn der
Nahrungsaufnahme Zeichnungselemente des zweiten Stadiums mehr
oder weniger deutlich sichtbar. Solche variablen Merkmale werden
nicht berücksichtigt.
Die Färbung der Hartteile ändert sich dagegen während eines Stadiums
nicht und ist daher für die Bestimmung geeignet. Auch die Beweglichkeit
des Horns ist ein gutes Merkmal : manche Arten können ihr Horn
weit nach vorn neigen (Abb. 3d), bei anderen ist es praktisch unbeweg-
lich. Wo die Futterpflanzen der Raupen bei der Bestimmung helfen
können, werden sie mit aufgeführt.
Ein „mathematisches“ Merkmal hat sich als besonders einfach und
brauchbar erwiesen : das Verhältnis der Hornlänge relativ zur Länge
der Afterklappe (Horn-/ Afterklappen-Längenverhältnis, H/A). Dieses
Längenverhältnis läßt sich schon rein optisch gut abschätzen. Bei der
Kiefernschwärmerraupe auf Abb. Id beträgt es etwa 1, d.h. Horn und
Afterklappe sind etwa gleich lang. Das Schwanzhorn ist bei Eilarven —
sofern es nicht beim Schlupf verbogen worden ist — immer gerade.
Zur Ermittlung von H/A ist stets die Gesamtlänge des gestreckten
Horns zu verwenden.
Die Anordnung der einzelnen Arten auf den Tafeln weicht z.T. von der
in Teil I ab, um ähnliche Raupen direkt nebeneinander zu stellen.
Da die lebenden Eilarven einiger Arten bei Lupenvergrößerung nur
schwer zu bestimmen sind, gibt ein Hilfsschlüssel zusätzlich Unterschei-
dungsmerkmale des zweiten Raupenstadiums an.
146
Abb. 3. a) H. fuciformis (20 X); b) H. croatica (22 X) ; c) A. tityus (22 X) ; d) D.
nerü (16 X).
Hauptschlüssel
Die Zahl in Klammern hinter dem Artnamen ist die jeweils zugehörige
Abbildungsnummer.
1. Horn kurz (Verhältnis Horn- zu Afterklappenlänge [H/A]< 1), höchstens
so lang wie in Abb. [dt ae... ee RC SES 2
1°. Horn lang (H/ A > 1), mindestens so lang wie in Abb. 2c ................. 14
2. Kopf, Brustbeine und Horn verdunkelt, oft schwarz (vergl. Abb. 5c) 3
2. zumindest'derKoptichell-r...2.. al en ee 6
3. frisch geschlüpft einfarbig schwarz ; nach Nahrungsaufnahme oder im
Durchlichtdunke bis mittelonin 22 H. euphorbiae (5e)
3”... anders... ihnen ee ei SO E 4
4. Kopf wie lackglänzend, klar in schwarze und bräunliche Partien geglie-
dert ; Horn an der Spitze deutlich gegabelt ; auf Nadelhölzern. ...............
ds dea bide ee RE EEE HA. pinastri (1d)
4°. anders ; nicht auf Nadelhölzern 2... ee 5
5. Kopf und Nackenschild einfarbig schwarzbraun ..... H. centralasiae (5d)
5. Kopf scheckig, nicht einfarbig ; Nackenschild hell .......... H. lineata (Sc)
6... Horn hell oder reduziert 7... er fl
6. Horn dunkel, normal ausgebildet 2.220 Re 11
7. Horn klein, aber normal ausgebildet (vergl. Abb. 4f) .......................... 8
7”. Horn fast oder ganz zurückgebildet "en 9
8. mit langen, schwarzen, Y-förmigen Borsten ...................... H. tityus (3c)
8... mit hellen kurzen-Borstene cess ec eeee eee ee H. gallii (4f)
9. Borsten: Del a ae we P. proserpina (4c)
9”: Borsten SCHWATZz........... en ee ee. 10
10. Basalfelder der Borsten ebenfalls schwarz ................... H. vespertilio (4e)
10% BasalteldergerBorstenhelen. ee D. porcellus (4d)
11. Borsten lang, etwa halb so lang wie das Horn .…............................... 12
11°. ‚Borsten viel’kürzer 2.0. on oe ee Se EL ER 13
12. Brustbeine dunkel, Horn nur mit den üblichen 2 kräftigen Endborsten....
I Eee M. stellatarum (4a)
12°. Brustbeine hell, Horn mit 4 kräftigen Borsten ............ R. komarovi (4b)
13. Kopf und stärker sklerotisierte Teile einfarbig hell ; auf Euphorbiaceae ...
DEN a AR ae MS RS cleus cetera tree Se Se H. nicaea (5a)
13. Kopf mit bräunlicher Scheckung ; stärker sklerotisierte Teile (z.B. Bauch-
beinschienen) oft dunkel gerandet ; auf Zygophyllaceae .........................
ER EN a oe ore ea 0 ae lec lsondenoes H. zygophylli (Sb)
14. Nachschieber nach hinten spitz ausgezogen (vergl. Abb. 2a) ............. 15
14°. Nachschieberhintenaabgerundet ne RER cone eee eee eee eee 18
148
Abb. 4. a) M. stellatarum (24 X); b) R. komarovi (15 X, Foto Wasserthal) ; c) P
proserpina (26 X) ; d) D. porcellus (19 X) ; e) H. vespertilio (23 X) ; f) A. gallii (23 X).
15.
15%
16.
16°.
17.
17.
18.
18’.
19.
19°.
20.
20°.
21.
217
22.
22%
23.
237.
Horn wie mit schwarzbraunem Hagelzucker bestreut ; Prothorax ragt
kapuzenartig über den Kopf hinaus ............................. M. quercus (2a)
Ua Le) bs Bn eR ree Mere Mr See NEE 16
Horn über den größten Teil der Länge mittel- bis dunkelbraun. ..............
Be ere eae Beer Ome eas eh aay ut Re S. ocellatus (2e)
Horn von heller Grundfarbe... na ee 17
Horn relativ kurz (H/ A < 1,5), fast glatt ................... L. amurensis (2c)
Horn lang (H/A > 1,5), durch viele kleine Borsten deutlich aufgerauht...
ee Get TRG Orta dara een dr Sac dane ec ee aes N L. populi (2d)
Körper mit langen, hellen, Y-förmigen Borsten (Abb. 3a-b) .............. 19
ohne sölche.Borsten 2a rn ee ee 20
Borsten auch auf Nackenschild und Kopf tief gegabelt ; auf Dipsaca-
EDER en CC DNA H. croatica (3b)
Nackenschild und Kopf mit einfachen oder nur ganz leicht gegabelten
Borsten au Eapnifoliaeeae 2.2.0.2. ae H. fuciformis (3a)
Körper mit dunklen Borsten auf ebenfalls dunklen Basalfeldern ........ 21
Basalfelder der.Borsten hell... mn. ee ee eee 22
auch Kopf mit schwarzen Borsten .......................... H. hippophaes (6a)
Kopf mitzhellien’Borstener ee me A. convolvuli (1b)
Horn extrem lang (H/A = 6 !), sehr beweglich ................ H. celerio (6c)
Horn kürzer (H/A = 4) 2... ee RE 23
Raupe durch zusätzliche Kleinborsten (Sekundärborsten ; besonders im
Gegenlicht gut zu sehen) sehr rauh wirkend ..................... M. tiliae (2b)
nur mit einem einfachen Borstenmuster (vergl. Abb. Ib) ........................
ER AN EEE NE Bern Sane ene 24 und Hilfsschlüssel
Anmerkung : Lebende Eilarven der folgenden 5 Arten sind bei Lupenvergröße-
rung nur schwer zu bestimmen ; die Futterpflanze der Raupe gibt jedoch oft
wichtige Hinweise.
24.
24’.
25.
257
26.
26’.
27:
272
28.
28°.
150
Horn relativ kurz und dick (H/ A = 2,5), unbeweglich ... D. elpenor (6b)
Horn anger CH A= 4) ne ee nn EEE 25
Kopfborsten dunkler als Koplt 2.2... 2. see 00 eee eee eee 26
Kopfborsten so hell wie oder heller als Kopf 1... 2er 27
Homdunkelbraun auf Oleaceeass er re ee S. ligustri (1c)
Horn schwarz ; auf Vitaceae (u.a.), nicht auf Oleaceae ...... T. alecto (6d)
auf Apocynaceae ; Horn äußerst beweglich ....................... D. nerii (3d)
nicht auf Apocynaceae ; Horn praktisch unbeweglich ......................- 28
auf Solanaceaeı Olcaceae (ua) er Fr en A. atropos (la)
auf Vitaceae, Onageraceaelua Te ne ee 2 T. alecto (6d)
Abb. 5. a) A. nicaea (16 X) ; b) H. zygophylli (18 X); c) H. lineata (24 X); d) H.
centralasiae (19 X) ; e) H. euphorbiae (15 X).
Hilfsschlüssel : 2. Raupenstadium
Lebende Eilarven der Arten A. atropos, S. ligustri, D. nerü, D. elpenor
und 7: alecto sind bei Lupenvergrößerung nur schwer zu bestimmen.
Dieser Hilfsschlüssel verwendet daher zusätzlich Merkmale des zweiten
Raupenstadiums.
1. Körper glatt, mit subdorsalen, paarigen Augenflecken ........................ 2
1°. Körper durch Chitinzapfen aufgerauht, ohne Augenflecken. ................ d
2. mit einem Augentlecks(Metathorax) RP D. nerii
2”. mit mindestens zwei subdorsalen Augenflecken .................................. 3
3. mit ZWELSUDIOTSAlEN Ansentlecken re... eee D. elpenor
3”. mit mindestens drei subdorsalen Augenflecken ....................... T. alecto
4. lateral mit deutlichen Diagonalstreifen (von vorn/unten nach hinten/
oben) 4.....0n. a ee. EEE S. ligustri
4. ohne. Diagonalstreifen 2... 0 A. atropos
Dank
Mein Dank gilt wiederum Herrn Prof. Dr. L.T. Wasserthal (Erlangen) für
technische und wissenschaftliche Anregungen, Herrn Dr. E.A. Loeliger (Oegst-
geest [NL]) für Lebendmaterial zahlreicher Arten, Frau I. Paas (Bochum)
für die fotografischen Abzüge und Herrn E. de Bros (Binningen [CH]) für
die französische Übersetzung der Zusammenfassung.
Literatur
Denso, P., 1906a. Lepidopterologisches von der Umgebung des Genfer Sees.
Ent. Z. Guben 20 : 329-340.
Denso, P., 1906b. Beiträge zur Kenntnis der Ontogenese europäischer Sphin-
gidenraupen. Ent. Z. Guben 20 : 411-418, 463-470, 523-527 + Taf. 9-12.
FREINA, J. J. DE, 1994. Über Biologie, Morphologie und Taxonomie von
Hyles tithymali deserticola (Bartel), mit vergleichenden Studien zu Hyles
euphorbiae mauretanica (Staudinger) (Lepidoptera : Sphingidae). Ent.
Z. 104 : 33-41.
GILLMER, M., 1904. Ein Beitrag zur Entwickelungsgeschichte von Phryxus
livornica, Esp.. Ent. Z. Guben 18 : 116-123.
Harsicu, H., 1978. Zur Biologie von Acherontia atropos (Lep. : Sphingidae).
1. Teil. Ent. Z. 88 : 29-36.
Hernia, S., 1976. Nachzucht von Daphnis nerü (Lep., Sphingidae). Ent. Z.
86 : 25-30.
Hernic, S., 1978. Zur Biologie des Großen Weinschwärmers (Hippotion
celerio) (Lep., Sphingidae). Ent. Z. 88 : 53-62.
Hermie, S., 1981. Einige Beobachtungen zur Biologie des Linienschwärmers
(Hyles livornica Esper) (Lep. : Sphingidae). Ent. Z. 91 : 241247.
152
Abb. 6. a) H. hippophaes (17 X); b) D. elpenor (18 X); c) H. celerio (15 X); d) T.
alecto (14 X).
Heınıg, S. & HÄsLer, G., 1986. Angaben zur Biologie von Hemaris croatica
(Lep. : Sphingidae). Ent. Z. 96 : 193-199.
LEDERER, G., 1949. Ein Beitrag zur Biologie von Celerio hippophaes hippo-
phaes (Esper 1789) mit einigen Bemerkungen über Celerio nicaea nicaea
(Prunner 1798). Ent. Z. 59 : 65-70, 75-78, 87-88, 101-102.
MEERMAN, J. C., 1987. De Nederlandse Pijlstaartvlinders (Lepidoptera : Sphin-
gidae). Wetensch. Meded. Kon. Ned. natuurhist. Ver. 180 : 60 pp.
PELZER, A., 1982. Zur Kenntnis der frühen Stände von Hyles centralasiae siehei
(Püngeler) (Sphingidae). Nota lepid. 5 : 134-140.
PELZER, A., 1988. Die Präimaginalstadien von Laothoe amurensis — ein Ver-
gleich mit L. populi (Lepidoptera : Sphingidae). Nota lepid. 11 : 274-278.
PELZER, A., 1991. Illustrierter Bestimmungsschlüssel für die Präimaginalstadien
der Schwärmer Europas und Nordafrikas (Lepidoptera : Sphingidae).
Teil I: Erwachsene Raupen. Nota lepid. 14 : 220-233.
PITTAWAY, A. R., 1979. On Rethera komarovi manifica [sic] (Brandt) (Lepi-
doptera : Sphingidae). Entomologist’s Gaz. 30 : 3-6 + Taf. 1.
Pitraway, A. R., 1993. The hawkmoths of the Western Palaearctic. Harley
Books, Colchester.
Pourrton, E. B., 1885. Further notes upon the markings and attitudes of
lepidopterous larvae, together with a complete account of the life-history
of Sphinx ligustri and Selenia illunaria (larvae). Trans. R. Ent. Soc.
Lond. 1885 : 281-329 + Taf. 7.
Pourrton, E. B., 1886. Notes in 1885 upon lepidopterous larvæ and pupæ,
including an account of the loss of weight in the freshly-formed lepido-
pterous pupae, & c. Trans. R. Ent. Soc. Lond. 1886 : 137-179.
Pourron, E. B., 1888. Notes in 1887 upon lepidopterous larvæ, & c., including
a complete account of the life-history of the larvæ of Sphinx convolvuli
and Aglia tau. Trans. R. Ent. Soc. Lond. 1888 : 515-606 + Taf. 15-17.
ROTHSCHILD, W. & JoRDAN, K., 1903. A revision of the lepidopterous family
Sphingidae. Novit. Zool. 9, Suppl.
SOFFNER, J., 1959. Dolbina elegans O. [sic] Bang-Haas in Europa (Lep. Sphin-
gidae). Ent. Z. 69 : 269-270.
Voss, H. von, 1911. Die Entwicklung der Raupenzeichnung bei einigen Sphin-
giden. Zool. Jb. Syst. 30 : 573-642 + Taf. 16-19.
WASSERTHAL, L. T., 1970. Generalisierende und metrische Analyse des pri-
mären Borstenmusters der Pterophoriden-Raupen (Lepidoptera). Z.
Morph. Tiere 68 : 177-254.
WEISMANN, A., 1876. Studien zur Descendenz-Theorie. II. Ueber die letzten
Ursachen der Transmutationen. Leipzig : Engelmann.
154
Nota lepid. 17 (3/4) : 155-174 ; 30.1V.1995 ISSN 0342-7536
Wing pattern and allozyme relationships
in the Coenonympha arcania group, emphasising
the C. gardetta-darwiniana contact area at Bellwald,
Switzerland (Lepidoptera, Satyrıdae)
Adam H. PORTER (!), Robert W. SCHNEIDER & Brad A. PRICE
Biology Department, Bowling Green University, Bowling Green, OH 43403-0212, USA
Summary
The butterflies Coenonympha gardetta, C. darwiniana and C. arcania are
closely related and have parapatric distributions. We studied wing pattern
and allozyme variation in three sample sites near Bellwald in Canton Valais,
Switzerland in an area where C. gardetta and C. darwiniana meet, and in
a C. arcania population from northern Italy. Principal component analysis
identified traits that separated the C. arcania population, but separate taxo-
nomic groups could not be distinguished in the Bellwald region even when
C. arcania was dropped from the analysıs. Allozyme data showed high poly-
morphism characteristic of other Coenonympha populations, and also sepa-
rated the C. arcania population. F-statistics revealed that the sampled popu-
lations at Bellwald, even though separated by up to 2 km, are probably sub-
sites within a single large, demographic population. We believe C. gardetta and
C. darwiniana should be considered conspecific ; C. gardetta is the older name.
C. arcania should provisionally be kept distinct taxonomically, but closer study
of contact regions between C. gardetta and C. arcania are required to rule out
mere isolation by distance as the reason for the observed level of differentiation.
Resume
Coenonympha gardetta, C. darwiniana et C. arcania sont des espèces proches
parentes dont la répartition est parapatrique. Les auteurs ont étudié le dessin
des ailes et la variation allozyme de trois lots provenant des environs de
Bellwald (Valais, Suisse), région où C. gardetta et C. darwiniana sont en
contact, ainsi que chez une population de C. arcania d’Italie septentrionale.
L'analyse des principaux éléments a révélé des caractères qui séparaient la
population de C. arcania, mais on n’a pas du distinguer de groupes taxo-
nomiques séparés dans les biotopes de Bellwald, même lorsque C. arcania
(‘) Corresponding author : Adam Porter at the above address, or
E-mail : aporter@opie.bgsu.edu ; Tel. : (419) 372-2691 ; Fax : (419) 372-0224.
153
était exclu de l’analyse. Les données allozymes ont révélé un polymorphisme
considérable caractéristique d’autres populations de Coenonympha ; elles ont
également séparé la population de C. arcania. Les statistiques F ont prouvé
que les populations-échantillons de Bellwald, même séparées par une distance
de 2 km, sont probablement des sous-stations à l’intérieur d’une seule et même
grande population. Les auteurs pensent que C. gardetta et C. darwiniana
devraient être considérées comme co-spécifiques ; C. gardetta est le plus ancien
nom. C. arcania devrait être provisoirement conservé comme espèce taxono-
miquement distincte. Mais on devrait étudier de plus près les zones de contact
potentiel entre C. gardetta et C. arcania afin de pouvoir exclure une simple
isolation par la distance pour expliquer le degré de différenciation qu’on a
constaté.
Introduction
The butterfly taxa Coenonympha gardetta (de Prunner, 1798), C. dar-
winiana Staudinger, 1871 and C. arcania (Linnaeus, 1761) are parapatric
in the Alps, respectively occupying high (= 1800 m), middle (800-
2000 m), and low (= 1000 m) elevational bands. These taxa have long
been seen as closely related (e.g. DAVENPORT, 1941). C. gardetta and
C. darwiniana have contact areas where they are reported to intergrade
in the southern Alps (Lepidopterologische Arbeitsgruppe der Schweiz,
1987), leading to questions about their taxonomic status as separate
species. Because C. arcania is also parapatric, and darwiniana is some-
times listed in its synonomy (e.g. FORSTER & WOHLFAHRT, 1976), it
is legitimate to question the relationships among all three taxa.
In this study, we examine three populations at the contact zone be-
tween Coenonympha gardetta and C. darwiniana, and a geographically
distant population of C. arcania. If there is indeed partial (or complete)
genetic isolation between these taxa, as the current taxonomy suggests,
then our contact populations should contain an excess of “pure” forms
of each taxon, and few intermediates. Upon closer statistical exami-
nation, suites of diagnostic wing pattern and/or allozyme traits would
appear to be correlated within individuals in these populations. How-
ever, if the major diagnostic differences between these taxa are produced
by environmental conditions operating on a common genotypic array
rather than by genetic differences maintained by “reproductive” barriers,
then there should be no such correlations within contact populations.
A similar lack of correlation would result in contact areas if hybrids
between immigrants from taxonomically differentiated regional popu-
lations were not at a selective disadvantage relative to “pure” individuals.
Furthermore, for traits inherited in a co-dominant Mendelian fashion
156
(allozymes in this study), such correlations can also be expressed in
the form of F-statistics (WRIGHT, 1969). These have the advantage of
permitting us to enlist the analytical power of evolutionary theory to
make inferences about underlying populational processes, in particular
gene exchange among populations. Of course, it is gene exchange be-
tween putative taxonomic groupings that we wish to infer in the process
of making taxonomic decisions. Taxonomists have traditionally done
this “by eye” and therefore less reliably, especially for the traits whose
genetic bases are unknown.
Methods
Mixed populations of Coenonympha gardetta and C. darwiniana were
sampled in July 1991 in the vicinity of Bellwald, Switzerland, on the
north slope of Canton Valais in the Rhone Valley. Population I was
collected on a steep, SW-facing slope at 1700m in a meadow under
an open-canopy fir forest on 13.vu.1991. Population II was sampled
also at 1700 m, but 1 km N on a NW-facing, colder slope, locally
above treeline, on 20.vii.1991. Population III was at 2000 m at the
top of the ski lift, above the treeline in open meadow, on 21.vii.1991.
The C. arcania population was collected at 1400 m from Monte Motta-
rone, near Streza, Italy, on 23.vu.1991. Individuals were haphazardly
netted and stored alive under refrigeration until they could be frozen
at -80C.
Wing pattern morphometrics
The taxonomic literature (DAVENPORT, 1941 ; HicGins & HARGREAVES,
1991; Lepidopterologische Arbeitsgruppe der Schweiz, 1987) was
consulted to determine the wing pattern elements previously used to
distinguish the three taxa, especially between the more similar taxa,
gardetta and darwiniana. The characters proved to be mainly the size
and location (relative to the wing margin) of the eyespots in the distal
wing cells of the ventral hindwing, and the extent and location of the
white band proximal to these spots. Spots near the apex of the ventral
forewing have also been used.
Wings were removed and stored separately when specimens were pre-
pared for electrophoresis (described below). We measured the following
characters for each of eight ventral hindwing cells, along the axis of
the cell : the diameter of the black center of the eyespot (absent = 0),
the distance from the center of the eyespot to the wing margin
(absent = unscored), the width of the white band measured to the edge
157
of the eyespot halo (absent = 0), and the edge of the white band to
the edge of the wing (absent = unscored). We also measured the
diameter of the forewing eyespots (absent = 0). We did not record
from the outer wing spot rings because yellow outer rings could not
be consistently distinguished when the ground colour was pale ; our
scoring system thus regarded any all-yellow spots as being absent. Wing
length was measured as an index of body size, and gender was recorded.
The left wings were used except when one or more characters was
missing due to damage, whereupon the right wings were used. Measure-
ments were made at 20x magnification on a colour video monitor using
a computerised image-analysıs system. A Wild® microscope was fitted
with a Sony® video camera ; this was connected to IBM PC® computer
operated using the image-analysis program Optimas® (v. 3.01, BioScan,
Inc.). Data collection was mechanised using a macro written in the
Optimas procedural language, and measurements were saved directly
to a file. We avoided characters involving colour because they were
not amenable to accurate measurement using this software.
We analyzed the wing patterns using principal component analysis.
This method condenses the large number of measurements per individual
into a more manageable number of statistically independent characters,
and is justifiable both statistically and biologically. The premise,
statistically, is that some characters are likely to be correlated, where-
upon they carry redundant information and should be weighted to
take this into account. For example, large individuals are likely have
larger measurements, and we should factor out the body size differences
before we attempt to consider relative eyespot size differences. Bio-
logically, the premise is that if the taxa are genetically isolated, then
their wing patterns will have evolved independently in the separate
lineages, and different pattern elements will be correlated, within
lineages. The elements that are correlated would form the set of dia-
gnostic characters useful for distinguishing the lineages. If genetic
isolation were indeed involved, a small number of principal components
would contain all the correlated diagnostic characters and describe most
of the overall wing pattern variation among individuals, even within
contact areas. But if the taxa were freely interbreeding, then characters
in contact areas would tend to be assorted independently among
individuals ; they would be uncorrelated. Statistically, this would be
indicated if the overall wing pattern variation were spread among a
larger number of principal components, evidence of independence
among the wing pattern elements, and by unimodal variation along
principal component axes.
158
Principal components analysis is, in its philosophy, what the experienced
taxonomists of older generations did “by eye”. The advantages of the
statistical approach are three. Firstly, it is explicit, thus repeatable by
others and carries known data limitations. Secondly, it is grounded
in statistical theory so it takes sample size into account in a way that
cannot be done properly otherwise. Finally, it can pick out much more
subtle patterns than can the eye of an experienced worker, and con-
versely, it can demonstrate that some patterns perceived by less ex-
perienced eyes are fantasy. However, both approaches depend on the
ability to pick out the “right” characters to measure, those that will
give the best discrimination ; this is why, for characters in this study,
we relied on the literature for the acknowledged expertise of previous
workers.
We used Systat® (v.5.1, Systat Inc.) software on a Macintosh computer
for the principal components analysis. We used a Pearson’s r correlation
matrix of the 28 primary measurements/individual to generate all
principal components (PCs) ; gender and body size were included in
these analyses as controls. The statistics require data sets without
missing entries, so we were forced to omit the measures of spot or
white line location for some wing cells if any individuals were absent
that trait (the rejected alternative was to eliminate those individuals).
We examined the loadings of characters onto each PC for suites of
diagnostic characters. The proportion of the total wing pattern variance
explained by each PC was used as an estimate of the overall in-
dependence of traits. We then analyzed the corresponding PC scores
of each individual (1.e., the “measurement” of the individual along the
PC axis, produced as a weighted combination of the original measure-
ments in that individual) using one-way ANOVAs for to find significant
variation among populations, using SuperANOVA® (v4.0; Abacus
Concepts, Inc.) software on a Macintosh computer. The entire analysis
was repeated without the C. arcania population to look more closely
at differentiation in the Bellwald region ; here we could use a larger
data set because fewer individuals were absent the eyespots or white
lines in cells.
Electrophoresis
Horizontal starch gel electrophoresis was performed on head and
thorax tissue using standard methods described elsewhere (PORTER &
GEIGER, 1988; PORTER & MATOON, 1989). We scored 19 putative
genetic loci: alcohol dehydrogenase (ADH; enzyme commission
number 1.1.1.1), adenylate kinase (AK-1 ; 2.7.4.7), aldolase (ALDO ;
159
4.1.2.13), esterase (EST-1 ; 3.1.1.1), fumarase (FUM ; 4.2.1.2), glutamic-
oxaloacetic transaminase (GOT-1, GOT-2 ; 2.6.1.1), glyceraldehyde-3-
phosphate dehydrogenase (GAPDH; 1.2.1.12), a-glycerophosphate
dehydrogenase (aGPDH ; 1.1.1.8), hexokinase (HK ; 2.7.1.1), isocitric
dehydrogenase (IDH-1; 1.1.1.42), lactic dehydrogenase (LDH;
1.1.1.27), malic dehydrogenase (MDH-1, MDH-2; 1.1.1.37) , malic
enzyme (ME-1, ME-2 ; 1.1.1.40), peptidase (PEP-1 ; 3.4.1.1), phospho-
glucomutase (PGM ; 2.7.5.1) and phosphoglucose isomerase (PGI ;
38.1.9)!
We calculated standard statistics describing the extent of allozyme varia-
bility within populations. These include the mean number of alleles
observed per locus, the mean heterozygosity observed per locus (H,,,)
and that expected based on Hardy-Weinberg expectation (H,,,), and
the percent of sampled loci that were polymorphic in the population
(%P).
We describe variation among populations in two ways. First, we cal-
culated Nei’s unbiased genetic distance and produced a summary
phenogram using UPGMA. This method is probably most familiar
and permits comparison across a wide range of taxa. We also estimated
Fsr (WRIGHT, 1969) among the Bellwald populations using WEIR &
COCKERHAM’S (1984) method which accounts for sampling variation.
We used weighted averaging over alleles and loci, and jackknifed over
loci for the error estimates. Our estimates were interpreted using the
relationship M = (1/Fsr-1)/4, where M is a gene flow parameter de-
scribing the effective number of individuals moving among popula-
tions each generation (COCKERHAM & WEIR, 1993). A fundamental
result in theoretical population genetics is that when M > 0.5, then
gene flow produces substantial genetic similarity among populations
at neutral loci (WRIGHT, 1931). We will not provide the theoretical
and statistical details here ; interested readers may consult population
genetic texts (e.g. HARTL & CLARK, 1989) for introductory concepts,
CocKERHAM & WEIR (1993) and references therein for current
statistical theory, and PORTER (1990) and PORTER & GEIGER (1988 ;
1995) for examples of applications to butterfly populations.
Results
Wing pattern morphometrics
Coefficients of variation (c.v.) for each trait are shown for each popu-
lation and for all populations combined (Table 1). A c.v. of 0.1 means
that the standard deviation is 10% of the mean for the trait, a reasonably
160
Table 1
Coefficients of variation for the ventral wing pattern characters used in this study.
Missing values indicate the trait was not present in the population
character Mn HR Bellwald Mt. total
III Mottarone
17 87
reine length
forewing spot diameter
l
2
hindwing spot diameter
NnBWN—
ite line width
5
W
spot location
l
2
3
4
5
6
7
8
P
l
2
3
4
5
6
white line location
O0 I Un BB © D =
high level of variability. Variability is high in the wing pattern traits
taxonomists have identified as important, being generally higher than
c.v. — 0.2, and is comparable among populations. Some traits, par-
ticularly those present in only a few individuals, showed c.v. > 1, an
extreme level of variability. This included pattern elements in hindwing
cells 7 and 8, and in the forewing spots.
161
First consider variation in all populations. Eigenvalues and the propor-
tion of total variance explained by the first ten PCs are in Table 2.
The character loadings of the first six PCs are given in Table 3. PC 1
loaded highly for most characters, especially for forewing length, and
we interpret it as a general body size character. Note that several traits
did not load here, indicating that these varied relatively independently
of body size (this points out the hazards of an alternative approach :
dividing all measurements by body size for standardisation before
statistical analysis). These include the spot diameter in cell 6 and the
white line width in cell 1. PC 2 describes an inverse ratio of spot
diameter and white line width, and is largely independent of body size.
PC 3 mainly describes the shape of the white line as it traverses the
cells, with loadings being positive in the first cells and negative in the
later cells ; the spot diameters in cells 2 and 6 and the width in cell
2 also load here. This PC captures a previously reported taxonomic
difference between arcania, with a line that narrows posteriorly, and
the others, with a line of relatively constant width. PCs 4 and 5 describe
subtle relationships between spot diameters, white line widths and their
locations in several cells. PC 6 describes sexual dimorphism, and
characters that also load here include the spot diameter of cell 6 and
the white line width in cell 8.
Table 2
Principal component analysis with all population included.
Eigenvalues of the first ten PCs
and the percent of the total variance explained
PC Eigenvalue % variance
explained
© \O 00 I ON Un BR © D
Figure 1 shows differentiation among populations in PC scores. We
found significant interpopulational differences in PC 1 (ANOVA;
F37 = 14.958; P < 0.0001), with two groups segregating in the
followup test (Duncan’s New Multiple Range Test, P < 0.05): the
162
Table 3
Character loadings on the first six principle components using all populations.
Numbers for traits refer to wing cells.
Loadings are the extent to which a character is correlated with the PC
gender
forewing length
forewing spot diameter
2
hindwing spot diameter
OL PRWND =
white line width
l
2
3
4
5
6
7
8
indwing spot location
3
white line location
D
3
Mottarone and Bellwald II population both had larger mean body
sizes than the other populations (Figure 1a). The Mottarone population
(arcania) differed from the others in PC 3 (ANOVA ; F3 7) = 17.164 ;
P < 0.0001), indicating a difference in white line shape between these
groups (Figure 1b). PC 6 also showed significance (ANOVA ;
F37 = 3.233 ; P= 0.027), but we attribute this to a difference in sex
ratios among populations. These differences demonstrate that the
arcania population is phenotypically different from the remaining po-
pulations, and by themselves, suggest a possibility of genetic isolation.
Means of PCs 2, 4 & 5 were not significantly different among po-
pulations, and we consider them to represent patterns of variation
common to all populations.
The differences between arcania vs. Bellwald populations could poten-
tially obscure more subtle differentiation between gardetta and dar-
winiana in the contact zone, so it is appropriate to reanalyze the data
dropping the Mottarone population.
163
1.5
PC 1
-1
Bellwald | Bellwald Il Bellwald Ill Mt. Mottarone
1.5
Bellwald | Bellwald Il Bellwald Ill Mt. Mottarone
Fig. 1. Principal component means (95% c.1.) showing differences among populations.
(a) PC 1, describing body size ; (b) PC 3, describing the shape of the white line.
164
Table 4
Principal component analysis with only Bellwald populations.
Eigenvalues of the first ten PCs
and the percent of the total variance explained
PC Eigenvalue % variance
explained
© \O 00 I A Un BR © ND
Here we concentrate on the gardetta/darwiniana sampling sites at
Bellwald, excluding arcania. Eigenvalues and the proportion of total
variance explained by the first ten PCs are in Table 4. The character
loadings of the first six PCs are given in Table 5; it is important to
remember that these PCs describe different combinations of characters
than those in the previous analysis. PC 1 again loaded highly for most
characters, especially for forewing length, and we interpret it again
as a general body size character. The forewing spot diameter and the
several of the white line widths vary little with body size, nor is there
sexual size dimorphism. PC 2 shows strong negative loadings for white
line width and weak positive loadings for spot diameters. We interpret
it as a white line width parameter that is in relative agreement with
a diagnostic character often used to separate gardetta and darwiniana.
PC 3 describes a differentiation pattern in inter-cell ratios of spot and
white line sizes — at one extreme are darwiniana-like individuals with
the middle cells having relatively smaller spots and extreme cells having
wider lines, at the other are individuals with the reverse. PC 4 describes
sexual dimorphism, with hindwing spot 6 being larger in males and
the white band slightly more centrally located in females. PCs 5 & 6
describe mainly relationships among spot sizes.
We found significant differences among populations only in PC 4
(ANOVA ; F357 = 5.093 ; P = 0.009), and this was attributed to the
different sex ratios of these population samples. The difference in body
size from the previous analysis was not quite significant here (ANOVA ;
F; 57 = 2.736 ; P = 0.073). Distributions for all three Bellwald popu-
lations along PC axes 2 & 3 are shown in Figure 2 ; these axes describe
165
Table 5
Loadings for the first six PCs for the gardetta-darwiniana contact area only
gender
forewing length
forewing spot diameter
2
hindwing spot diameter
OU B © N =
white line width
O0 I ON Un BB © ND =
5
=
ndwing spot location
U 8 © ND
white line location
Un © ND
most of the gardetta-darwiniana diagnostic characters. Despite the
numerous individuals that appear to have gardetta and darwiniana
characteristics, there is unimodal variation and no evidence from wing
pattern that these taxa are genetically isolated.
Allozyme differentiation
Allelic frequencies for variable loci are given in Table 6. The loci EST-1,
GAPDH and aGPDH were monomorphic. Summary statistics de-
scribing genetic variability within populations is given in Table 7. Varia-
bility is remarkably high, a common phenomenon in butterfly popu-
lations, including Coenonympha (PORTER & GEIGER, 1988 ; PORTER
& MAToon, 1989), and indicates that these populations are quite large
and have not been through population bottlenecks in their recent past.
166
darwiniana
om
O
jae
3
D
QG
O
5 -4 -3 -2 -1 0 1 2
ardetta darwiniana
@ PC 2
Fig. 2. Distributions of individuals from the Bellwald populations along PC axes 2 & 3
are unimodal. 1 — from Bellwald I; 2 — Bellwald II; 3 — Bellwald III. PCs are
standardised to have their means at zero and scale in units of standard deviations.
The populations do not differ significantly along either axis.
Differentiation among populations is described graphically using a
distance Wagner procedure (FARRIS, 1972) on a matrix of pairwise
RoGers’ (1972) genetic distances (Figure 3a), and using UPGMA
cluster analysis on a matrix of Ner’s (1978) unbiased genetic identities
(Figure 3b). The Mottarone arcania population segregates from the
others, at a level suggesting that it may be genetically isolated. The
remainder cluster closely, at levels commonly observed among con-
specific populations in other butterfly taxa.
The high similarity within the Bellwald group permits closer popu-
lational analyses using F-statistics. Within the Bellwald population
group, we obtained an estimate of 9 (= sr) = - 0.00223 + 0.00127
(s.d.), averaged over alleles and loci. This slightly negative value is
a result of sampling error and shows that 0 is not significantly different
from zero, indicating that there is no appreciable genetic differentiation
among sites. This is perhaps more easily understood when translated
to a gene flow estimate (M) using M = (1/0 — 1)/4, yielding a value
of 942 < M S panmictic (95% c.i.). This large number of individuals
exchanged among sites each generation suggests that the sampled
“populations” are effectively sub-sites within a single, larger panmictic
population in the Bellwald area.
167
Table 6
Allele frequencies for variable loci, by population.
Sample sizes for each locus in brackets
Monte Mottarone Bellwald I Bellwald II Bellwald III
Aw>a
=,
a
®)
m
w>S-mangaw
=
N
>r
ed
O > 0%
m
=
œ
en
Su>S
Sr>Suw>
!
A
B
ME
A
B
ME-2
A
B
Ow> 5
de
<
amyUmerarcrmammyaws
Mt. Mottarone
Bellwald I
Bellwald Il
Bellwald Ill
D
Mt. Mottarone
= Bellwald |
Bellwald Ill
Bellwald II
Te el
.875 9 .925 .95 975 1
Nei's 1978 unbiased genetic identity
Fig. 3. Genetic differentiation among populations, described by (a) a distance Wagner
procedure (Farris, 1972) using RoGERs’ (1972) genetic distance, rooted using the mid-
point of the longest path ; (b) UPGMA using Nei’s unbiased genetic identity.
Table 7
Genetic variability within populations (s.e.).
A : mean alleles per locus ; %P : percent of loci that were polymorphic ;
H,,; : the observed proportion of heterozygotes, averaged over loci ;
H.x, : the proportion of heterozygotes expected from Hardy-Weinberg
genotypic proportions, averaged over loci.
Standard errors calculated using a jackknife procedure, over loci
population
Monte 2.27 (0.02) 60.0 (0.9) 0.229 (0.005) | 0.199 (0.004)
Mottarone
Bellwald I 2.33 (0.03) 60.0 (0.9) | 0.187 (0.004) | 0.207 (0.004)
Bellwald II 2.00 (0.02) 53.3 (0.9) | 0.213 (0.004) | 0.212 (0.004)
Bellwald II | 2.47 (0.03) 60.0 (0.9) | 0.192 (0.004) | 0.213 (0.004)
169
Discussion
Both morphological and allozyme analyses show that the Monte Mot-
tarone C. arcania population is different from the others, but that
continuous variation exists between C. gardetta and C. darwiniana at
Bellwald. The morphometric analyses isolated essentially the same
suites of “diagnostic” character states that taxonomists have used,
showing that the results are not spurious as has been suggested in
similar studies (HAMMOND, 1985). Neither is the high genetic similarity
a spurious result of low variability : genetic variability is high enough
that if two species have been coexisting at Bellwald, then genetic drift
should have already differentiated the populations (see PORTER &
GEIGER, 1995 for a discussion of this effect). There is no evidence to
suggest that these are distinct species at Bellwald.
The C. gardetta-darwiniana contact region is similar to contact regions
between C. tullia (Müller, 1764) taxa in western North America. C.
tullia-group taxa in California, Nevada and Oregon differ in eyespot
size and number, dorsal and ventral ground colour and the shape and
placement of the white lines, and were distributed among several no-
minal species. However, populations are highly variable, and taxono-
mists, with the notable exception of DAVENPORT (1941), had tended
concentrate on widely separated localities, ignoring contact areas and
intrapopulational variability. When contact areas were examined, and
allozyme data used as corroborating evidence, it was found that wing
patterns intergraded, gene flow was high, and no genetic isolation was
apparent (PORTER & GEIGER, 1988). Instead, the geographic variation
in wing pattern was attributed to unknown selective and/or historical
factors, being maintained in the face of strong gene flow between the
taxonomically recognised forms. In one remarkable example, a popu-
lation on coastal dunes was sharply differentiated in wing pattern from
one only 8 km away on a hilltop, yet the allozyme data could only
be reasonably interpreted as showing evidence of strong gene flow
between them (PORTER & MATOON, 1989).
The allozyme data indicate that the C. gardetta-darwiniana population
at Bellwald is probably quite large and demographically continuous
over an area of several km?. This area encompasses the respectively
“typical” subalpine and alpine habitats of C. darwiniana and C. gar-
detta, and is consistent with the interpretation that no genetic isola-
tion exists between them. The implication is that individuals are quite
mobile, readily moving distances of 2 km or more in their lifetimes.
Whereas this should obviously be verified with a demographic study,
we point out that marked C. tullia california Westwood, 1851 in Cali-
170
fornia have been recaptured at distances >1 km (WEISSMAN, 1972),
and stray individuals have been seen in the Central Valley (Davis area)
at least 40 km from potential source populations (SHAPIRO, 1982 ;
PorTER, pers. obs.).
We believe C. gardetta and C. darwiniana should be considered con-
specific and the younger name, darwiniana, be placed in synonymy.
This decision is based on the high genetic and phenotypic variability
in the contact zone without apparent isolation, and remains subjective
pending verification by closer demographic studies there. However, the
patterns are strongly suggestive, and the onus now properly belongs
on a splitter to demonstrate that C. gardetta and C. darwiniana are
genetically isolated, rather than being extremes of a cline as we be-
lieve they are. Indeed, the high gene flow estimate would argue that
darwiniana not even be used as a subspecies name, because indivi-
duals from populations of “darwiniana” wing phenotype are likely to
be much more closely related in pedigree to those from “gardetta”
populations directly upslope than to butterflies from populations with
“darwiniana” phenotypes at more distant localities. A minor difference
between C. gardetta and darwiniana in the male genitalia has been
identified (Hıscıns, 1975), but DAVENPORT (1941) found the genitalia
to be quite variable. Regardless of the validity of this putative difference,
small differences in the genitalia per se have little value as evidence
of reproductive isolation between parapatric taxa (PORTER & SHAPIRO,
1990).
The possibility also remains that C. arcania and C. gardetta (+ dar-
winiana) are conspecific, as we have only studied widely separated
populations and these taxa too may intergrade in their contact areas.
However, both the allozyme and wing pattern differentiation in our
limited data are consistent with differences between closely related
sympatric taxa, and we believe their continued designation as species —
the status quo — is appropriate pending publication of studies done
in contact areas. Anticipated results from a current study of the C.
arcania group, on a larger geographic scale than ours (WIEMERS, 1994),
will bring us much closer to the solution of this problem.
Systematists of Coenonympha have long relied heavily on qualitatively
described wing pattern dimensions as characters, even while lamenting
their intra- and interpopulational variability (DAVENPORT, 1941).
Species-level taxonomic decisions in Coenonympha could be greatly
illuminated if we understood more about how wing pattern is develop-
mentally, genetically and ecologically controlled, because it would help
us determine the extent to which character variation could be used
171
as markers for more profound genetic differentiation. Studies of the
wing patterns of Coenonympha indicate that several taxa have clines
in spot pattern, with spot size diminishing with increasing elevation
(BRUNTON et al., 1991) or latitude (K. PORTER, 1980 ; DENNIS et al.,
1986) ; these patterns also appear to occur in North American C. tullia
but have not yet been studied quantitatively. Though the eyespots of
the Nymphalidae are probably serially homologous (NisHout, 1991),
multivariate statistical analyses have demonstrated that the pattern
elements in different wing cells are largely developmentally independent
(NuHouT, 1985 ; Dennis et al., 1984). Dennis et al., (1986) proposed
that geographic variation in spot size in C. tullia is attributable to
parallel variation in selection pressures imposed by different suites of
predators or predator abilities relative to gross habitat type. The alter-
native that one might infer from clinal variation, that spot pattern
is not genetically controlled at all, seems unlikely given the weaknes-
ses of correlations of spot sizes within individuals and the heritability
of spot pattern in other Satyrinae (BRAKEFIELD & NOoORDWIK, 1985).
It would also be difficult to credibly explain, without invoking adap-
tive genetic differences, why spot size gets smaller with increasing ele-
vation in C. gardetta, but larger with increasing elevation in C. corinna
and North American C. tullia, even though the ecological causes of
these putative adaptations remain elusive. This is not to exclude an
important role for environmental effects : polyphenism is apparent in
several satyrine taxa, e.g. Bicyclus (BRAKEFIELD & REITSMA, 1991)
and C. tullia (WEISSMAN, 1972), indicating the presence of genotype
by environment interactions in the control of wing pattern. Though
C. arcania and C. gardetta usually have only a single annual generation,
similar underlying genetic mechanisms could well be influencing their
wing patterns. Unfortunately, there are substantial technical difficulties
to surmount before these issues can be quantitatively studied in Coeno-
nympha and, especially, before they can be used to truly test assumptions
underlying species-level taxonomic decisions.
Acknowledgements
Special thanks go to J. Buggmann, in whose house AP stayed in Bellwald,
and H., I. & M. Geiger-Buggmann, the gracious hosts. The electrophoresis
was supported by the Zoologisches Museum in Ziirich. M. Wiemers provided
a copy of his excellent thesis ; he and an anonymous referee provided useful
comments on a previous draft of this paper.
11762
Literature
BRAKEFIELD, P. M. & RerrsMA, N., 1991. Phenotypic plasticity, seasonal
climate, and the population biology of Bicyclus butterflies (Satyridae)
in Malawi. Ecol. Ent. 16 : 291-303.
BRAKEFIELD, P. M. & Noorpwuk, A. J. van, 1985. The genetics of spot
pattern characters in the meadow brown butterfly Maniola jurtina
(Lepidoptera : Satyrinae). Heredity 54 : 275-284.
Brunton, C. F. A., BAXTER, J. D., QUARTON, J. A. S. & PANCHEN, A. L.,
1991. Altitude-dependent variation in wing pattern in the Corsican
butterfly Coenonympha corinna Hiibner (Satyridae). Biol. J. Linn. Soc.
42 : 367-378.
COCKERHAM, C. C. & Weir, B. S., 1993. Estimation of gene flow from
F-statistics. Evolution 47 : 855-863.
Davenport, D., 1941. The butterflies of the satyrid genus Coenonympha.
Bull. Mus. Comp. Zool., Harvard 87 : 215-349, 10 plates.
Dennis, R. L. H., PORTER, K. & WırLıams, W. R., 1984. Ocellation in
Coenonympha tullia (Müller) (Lepidoptera : Satyridae) I. Structures in
correlation matrices. Nota lepid. 7 : 199-219.
Dennis, R. L. H., PORTER, K. & WiLLıams, W. R., 1986. Ocellation in Coeno-
nympha tullia (Müller) (Lepidoptera : Satyridae). II. Population diffe-
rentiation and clinal variation in the context of climatically induced anti-
predator defence strategies. Entomologist’s Gaz. 37 : 133-172.
Farris, J. S., 1972. Estimating phylogenetic trees from distance data. Am.
Nat. 106 : 645-668.
FORSTER, W. & WOHLFAHRT, T. A., 1976. Die Schmetterlinge Mitteleuropas.
Tagfalter Diurna (Rhopalocera und Hesperiidae). Franckh’sche Verlags-
handlung. Stuttgart.
Hammonpn, P. C., 1985. Rebuttal to the Arnold classification of Speyeria
callippe (Nymphalidae) and defense of the subspecies concept. J. Res.
Lep. 24 : 197-208.
HARTL, D. L. & CLARK, A. G., 1989. Principles of Population Genetics.
Sinhauer, Sunderland, Massachusetts.
H1GGins, L. G., 1975. The Classification of European Butterflies. Collins,
London.
HiGGins, L. G. & HARGREAVES, B., 1991. The Butterflies of Britain and
Europe. 3rd Edn. Collins, London.
Lepidopterologische Arbeitsgruppe der Schweiz, 1987. Tagfalter und ihre
Lebensräume. Schweitzerischer Bund für Naturschutz, Basel und Foto-
rotar AG, Egg/ Zürich 516 pp.
Net, M., 1978. Estimation of average heterozygosity and genetic distance from
a small number of individuals. Genetics 89 : 583-590.
NuHoUT, H. F., 1985. Independent development of homologous pattern
elements in the wing patterns of butterflies. Dev. Bio. 108 : 146-151.
NuHoOUT, F. H., 1991. The Development and Evolution of Butterfly Wing
Patterns. Smithsonian Institution Press, Washington.
173
PORTER, A. H., 1990. Testing nominal species boundaries using gene flow
statistics : the taxonomy of two hybridizing Admiral Butterflies (Lime-
nitis : Nymphalidae). Syst. Zool. 39 : 131-148.
PORTER, A. H. & GEIGER, H., 1988. Genetic and phenotypic population
structure of the Coenonympha tullia complex (Lepidoptera : Nympha-
lidae : Satyrinae) in California : no evidence for species boundaries. Can.
J. Zool. 66 : 2751-2765.
PORTER, A. H. & GEIGER, H., 1995. Limitations to the inference of gene
flow at regional geographic scales — an example from the Pieris napi
group (Lepidoptera : Pieridae) in Europe. Biol. J. Linn. Soc. (in press).
PORTER, A. H. & Marroon, S. O., 1989. A new subspecies of Coenonympha
tullia (Müller) (Nymphalidae : Satyrinae) confined to the coastal dunes
of northern California. J. lepidopt. Soc. 43 : 229-238.
PORTER, A. H. & SHAPIRo, A. M., 1990. Lock and key hypothesis : lack
of mechanical isolation in a butterfly hybrid zone. Ann. entomol. Soc.
Amer. 83 : 107-114.
Porter, K., 1980. A quantitative treatment of clinal variation in Coenonympha
tullia (Müller) (Lep., Satyridae). Entomol. Mon. Mag. 11: 71-82.
ROGERS, J. S., 1972. Measures of genetic similarity and genetic distance.
Studies in Genetics, Univ. of Texas Publ. No. 7213 7 : 145-153.
SHAPIRO, A. M., 1982. Within-range butterfly dispersal : an urban garden
as a detector. Atala 8 : 46-49.
Weir, B. S. & CockERHAM, C. C., 1984. Estimating F-statistics for the
analysis of population structure. Evolution 38 : 1358-1370
WEISSMAN, K. G., 1972. The population biology of Coenonympha tullia on
Jasper Ridge : strategies of a bivoltine butterfly. Ph. D. Thesis, Stanford
University.
WIEMERS, M., 1994. Differenzierungsmuster bei Artbildungsprozessen : Mor-
phologisch-biometrische und enzymelektrophoretische Untersuchungen
am Coenonympha arcania (Linnaeus, 1761) Superspezies-Komplex.
Diplomarbeit, Universitat Bonn.
WRIGHT, S., 1931. Evolution in Mendelian populations. Genetics 16 : 97-159.
WRIGHT, S., 1969. Evolution and the Genetics of Populations. Vol. 2. The
Theory of Gene Frequencies. University of Chicago Press, Chicago.
174
Nota lepid. 17 (3/4) : 175-200 ; 30.1V.1995 ISSN 0342-7536
Inter-island variation in the butterfly Hipparchia
(Pseudotergumia) wyssii (Christ, 1889)
(Lepidoptera, Satyrinae) in the Canary Islands
David A. S. Smirx* & Denis F. OWEN**
* Natural History Museum, Eton College, Windsor, Berkshire SL4 6EW, England
** School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford
OX3 OBP, England (!)
Summary
Samples of the endemic Canary grayling butterfly, Hipparchia (Pseudoter-
gumia) wyssü (Christ, 1889), were obtained from all five of the Canary Islands
where it occurs. Each island population comprises a distinct subspecies but
the differences between them are quantitative rather than qualitative ; hence
a system 1s devised by which elements of the wing pattern are scored to permit
quantitative analysis. The results demonstrate significant inter-island differences
in Wing size and wing pattern. The underside of the hindwing shows the greatest
degree of inter-island variation. This is the only wing surface that is always
visible in a resting butterfly ; its coloration is highly cryptic and it is suggested
that the pattern was evolved in response to selection by predators long before
H. wyssü or its ancestors reached the Canaries. Subsequent evolution of the
details of the wing pattern differed from island to island because each island
population was probably founded by few individuals with only a fraction
of the genetic diversity of the species. It is postulated that the basic “grayling”
wing pattern is determined by natural selection, but the precise expression
of this pattern on each island is circumscribed by the limited gene pool of
the original founders.
Resume
Des exemplaires du Satyride Hipparchia (Pseudotergumia) wyssii (Christ,
1889), endémique des Iles Canaries, ont été récoltés dans les cinq îles de cet
archipel où ils existent. Les populations de chaque île forment une sous-espèce
distincte, mais les différences entre celles-ci sont plutôt quantitatives que
qualitatives. On a donc établi un système basé sur certains éléments précis
des ailes permettant une analyse quantitative. Les résultats ainsi obtenus prou-
vent l’existence de différences significatives entre les populations de chaque
(1) Address for correspondence.
13
île en ce qui concerne la taille et le dessin des ailes. Le dessous des ailes posté-
rieures est l'élément qui présente le plus fort degré de variation d’une île a
l’autre. C’est en fait la seule partie de la surface des ailes qui est visible lorsque
le papillon se pose. Son homochromie extrême est un élément de camouflage
par mimétisme. On peut envisager que ce dessin a évolué du fait de la sélection
par les prédateurs longtemps avant que A. wyssii ou ses ancêtres aient atteint
les Canaries. L'évolution ultérieure des détails dans ce dessin des ailes fut
différente d’une île à l’autre parce que la population de chaque île avait pro-
bablement été fondée par un petit nombre d’individus qui n'étaient chacun
porteurs que d’une fraction de la diversité génétique de l’espèce. On peut donc
penser que si le dessin typique «Hipparchia» du dessous des ailes postérieures
est déterminé par sélection naturelle, la réalisation concrète de ce dessin sur
chaque île se trouve différenciée du fait du stock de gènes incomplet des
premiers arrivés «fondateurs».
Zusammenfassung
Der Augenfalter Hipparchia (Pseudotergumia) wyssii (Christ, 1889) ist auf
den Kanaren endemisch. Untersuchungen an Material von allen fünf Inseln
des Archipels, auf denen die Art vorkommt, ergaben, daß jede Inselpopulation
eine eigenständige Unterart darstellt, die sich aber eher quantitativ als qualitativ
von den anderen unterscheidet. Daher wurde ein System entwickelt, das durch
die Untersuchung von Flügel-Zeichnungselementen eine quantitative Analyse
erlaubt. Die Ergebnisse zeigen signifikante Unterschiede in Flügelgröße und
Flügelzeichnung zwischen den Inselpopulationen. Die größte Variabilität weist
die Unterseite des Hinterflügels auf. Dies ist die einzige Flügelfläche, die an
einem ruhenden Falter stets sichtbar ist. Sie zeigt eine ausgeprägte Tarnfarbe,
deren Muster vermutlich durch Feinddruck selektiert worden ist, bevor A.
wyssii oder ihre Vorfahren die Kanaren erreichten. Die spätere Entwicklung der
Details der Flügelzeichnung variiert von Insel zu Insel, weil jede Inselpopulation
wahrscheinlich nur von wenigen Individuen -mit nur einen Bruchteil der gene-
tischen Vielfalt der Art -begründet wurde. Es wird postuliert, daß das grund-
legende Hipparchia-Flügelmuster durch natürliche Selektion bestimmt wird,
aber die genaue Ausprägung dieses Musters auf jeder Insel vom begrenzten
Genpool der ursprünglichen Gründer abhängt.
Introduction
The Canary grayling butterfly, Hipparchia (Pseudotergumia) wyssii
(Christ, 1889) (Lepidoptera, Satyrinae) is endemic to the five Canary
Islands of Tenerife, La Gomera, Gran Canaria, La Palma and El Hierro
(Fig. 1). Until recently little was known of this species and even its
presence on one island, La Palma, was in doubt (LEESTMANS, 1975) ;
however a comprehensive review which followed several collecting trips
(WIEMERS, 1991) has established that the butterfly is relatively common
176
0
Lanzarote 3
Canary Islands
Tenerife
Ga wyssii
La Palma“ = Fuerteventura
tilosi
La gomera Gran Canaria
gomera tamadabae
El Hierro
bacchus
Fig. 1. The Canary Islands showing the distribution of the five subspecies of Hipparchia
wyssü.
on Tenerife, La Gomera, La Palma and El Hierro (Herr Wiemers did
not collect on Gran Canaria), and absent from the two eastern islands
of Fuerteventura and Lanzarote, both of which are too dry for grass-
feeding satyrine butterflies. This paper presents the results of our own
sampling and field work on all five islands over the period 1987-91.
Grayling butterflies have a complex wing pattern, particularly on the
underside, and the variation is difficult to quantify. Here we identify
scorable and quantifiable phenotypic variation in wing pattern and
coloration and use this to estimate the extent to which each island
population is differentiated. Our paper is complementary to two
previous analyses of variation in Canary Island satyrine butterflies :
Maniola jurtina (Linnaeus, 1758) (OWEN & SMITH, 1990) and Pararge
xiphioides Staudinger, 1871 (OWEN & SMITH, 1993).
The island populations
Each island population is distinctive and we treat each as a subspecies ;
in contrast WIEMERS (1991) recognizes four species : A. wyssii (Tenerife
and Gran Canaria), H. gomera (La Gomera), H. bacchus (El Hierro)
jig!
and A. tilosi (La Palma). We recognize five subspecies, one on each
island while agreeing that some or all of them may have diverged
sufficiently to be designated as species ; as we discuss later, there is
rarely conclusive evidence either way (from crossing) when dealing with
allopatric populations and, in its absence, splitting should be avoided
(CoRBET & PENDLEBURY, 1992). Plates 1 and 2 show the complex
but distinctive underside patterns of males and females of each of the
five subspecies.
H. wyssii wyssii (Christ, 1890). Tenerife. Mostly confined to Pinus
canariensis forest at altitudes of 1300 — 1700 m and also found above
the pine forest zone to 2300 m at Las Cañadas.
H. wyssii gomera (Higgins, 1967). La Gomera. Widespread in open
country and light woodland at 300 — 1200 m. (There is no natural
pine forest on La Gomera.)
H. wyssii tamadabae Owen & Smith, 1992. Gran Canaria. Mainly in
P. canariensis forest at 300 — 500 m but extending to 1800 m and
especially associated with shallow barrancos. Known chiefly from the
north-west of the island.
H. wyssii bacchus (Higgins, 1967). El Hierro. Strongly associated with
vineyards in barrancos at 300 — 700 m and extending in small numbers
to 1500 m in laurel forest, but apparently rare or absent in P canariensis
forest.
H. wyssii tilosi Manil, 1984. La Palma. Apparently widespread in deep
and steep-sided barrancos above 500 m in mixed laurel/ pine forest
on the east and north-east side of the island, but probably absent from
the extensive P canariensis forest around the Caldera de Taburiente.
This subspecies may be much more split up into relatively isolated
populations than the others.
On all islands the butterflies are on the wing in July and August but
can occur as early as May and as late as September. The early stages
from four islands are described in WIEMERS (1991). The larvae are
grass-feeders but precisely which species of grass are utilized in the
wild has not been determined. There is one breeding generation a year.
Adult butterflies occasionally visit flowers but are more often seen
visiting damp patches and ripe fruit, especially grapes; on Gran
Canaria, and probably also on Tenerife, they probe cracks in the bark
for pine resin. On Tenerife and Gran Canaria in particular there is
a marked downhill movement in the evening and an uphill movement
in the morning. Most individuals involved are females. This behaviour
is spectacular, especially in places where movement is funnelled by a
178
dry barranco ; we have no explanation for it but suggest it may be
associated with locating egg-laying sites or with diurnal temperature
changes.
The cryptic coloration of the underside, especially of the hindwing,
is superb. When at rest on a pine trunk with the forewing lowered,
a butterfly is almost impossible to see. When a resting butterfly is
approached it raises its forewings and exposes the eyespots and at
first walks around the tree trunk, sometimes circling the trunk several
times. This is presumed to be anti-predator behaviour but we have
no observations of successful predation, only an attempted catch by
a blue tit, Parus caeruleus Linnaeus, 1758, and two unsuccessful strikes
by a large asiliid fly. Some of the butterflies in our samples have wing
damage suggestive of unsuccessful attacks by lızards.
The existence of H. wyssii on four of the Canary Islands has been
known since 1888-9 (review in WIEMERS, 1991) but until 1966 it was
well-known only from Tenerife, where it has been taken repeatedly.
The rediscovery of populations on La Gomera and El Hierro in 1966
by Guichard and Ward (GuICHARD, 1967) was considered “unexpected
and exciting...No butterflies of such distinctive appearance have been
discovered in the Western Palaearctic Region for very many years”
(Hıscıns, 1967). (Higgins was apparently unaware of earlier records
for both islands dating from 1889 (REBEL & ROGENHOFER, 1894) and
of NORDMAN (1935) for La Gomera.) The La Palma population re-
mained unknown until 1983 (MANIL, 1984), possibly because its habitat
is sO inaccessible, while the true habitat and status of the Gran Canaria
population seems to have been unknown until we discovered it in 1990
(OWEN & SMITH, 1992 and this paper).
Source of samples and methods of scoring
In 1987-91 we visited all the islands where A. wyssii occurs and collected
random samples, from single locations in the case of four islands and
from six different and isolated populations, four of which are new
records for the species, on La Palma. Samples were deliberately limited
because of uncertainty as to exactly how common the species is on
each island ; in the event we discovered that no island population is
endangered except by habitat destruction resulting from increased
cultivation. The butterflies were pinned and set for more detailed
examination. Sample sizes for each island are given in Table 1.
Fig. 2 is a diagram of grayling wings showing the numbering system
for space(s) where spots (border ocelli) may be present or absent ; it
179
Table 1
Inter-island variation for forewing length (mm) in 7. wyssii in the Canary Islands
Island abbreviations : T = Tenerife, G = La Gomera, C = Gran Canaria, P = La Palma,
H = El Hierro.
* One very small and otherwise aberrant female (22.8 mm), much the smallest individual
of either sex recorded, substantially reduces the mean of this sample, without which
it is 30.3 mm (n = 8).
basal discal postdiscal submarginal
Fig. 2. Diagram of the wings of Hipparchia wyssii showing the nomenclature of spaces (s)
and the location of other wing pattern elements mentioned in the text.
180
also shows the position of other elements of wing structure mentioned
in the text. Each butterfly was examined by eye using a X 2 lens. All
the scoring was done by one of us (DASS) to ensure consistency. The
characters scored are listed in Appendix I. Forewing length was
measured (with vernier calipers to an accuracy of 0.1 mm) from the
apex to the point where the basal area joins the thorax. It was possible
to measure forewing length in every specimen collected but for some
other characters not all specimens could be scored because of damage.
Analysis
Size
Table 1 shows the mean forewing lengths for males and females. The
rank order of forewing length for males is El Hierro > La Palma
> La Gomera > Tenerife > Gran Canaria. If the single aberrant female
from La Palma is omitted (Table 1), the rank order of forewing length
for females is similar : El Hierro > La Gomera > La Palma > Tenerife
> Gran Canaria.
Table 2 shows the results of a one-way ANOVA for forewing length.
The overall values of variance ratios (F) are significant for both males
and females at the 0.1 per cent level, indicating that forewing length
(which reflects body size) has diverged significantly among the island
populations. Individual island comparisons are shown in Table 2 only
where they are significant. Of the seven significant comparisons, five
Table 2
One-way analysis of variance for forewing length in H. wyssii from the Canary Islands
Source Degrees Variance
of variation of freedom ratio (F) Probability
ne u
All islands
CvG
CvP
CvH
| TES Female BEAT
All ıslands
TvH
CvG
CvH
PvH
Island abbreviations as in Table 1. Comparisons for individual island pairs are included
only if statistically significant.
181
Plate 1. Hipparchia wyssii, undersides of males (actual size).
1 — H. w. wyssü (Tenerife) ; 2 — H. w. gomera (La Gomera) ; 3 — H. w. tamadabae
(Gran Canaria) ; 4 — H. w. bacchus (El Hierro) ; 5 — H. w. tilosi (La Palma).
involve Gran Canaria (the smallest subspecies) and four El Hierro
(the largest). Therefore, size may be a diagnostic character for at least
these two islands but it is possible that larger samples would reveal
that all five populations are statistically different in size. The marked
difference in size between Gran Canaria and El Hierro butterflies can
be seen in Plates 1 and 2.
Hindwing border ocellus (spotting) phenotypes
A list of hindwing spotting phenotypes is given in Appendix III. The
spots, which belong to the border ocellus system (NıJHour, 1991), are
182
Plate 2. Hipparchia wyssii, undersides of females (actual size).
1 — H. w. wyssü (Tenerife) ; 2 — H. w. gomera (La Gomera) ; 3 — H. w. tamadabae
(Gran Canaria) ; 4 — H. w. bacchus (El Hierro) ; 5 — H. w. tilosi (La Palma).
numbered antero-posterially from the costal side as follows : 1 (space 6),
2 (s5), 3 (s4), 4 (s3), 5 (s2) (the position of the spaces is shown in
Fig. 2). Spots 1 — 4 are pale ochreous or white on the upperside
but invariably white on the underside. Spot 5 is always black and may
be white-pupilled (underlined) or ringed with a yellowish halo (super-
script bar).
Table 3 shows the distribution of hindwing spotting phenotypes on each
of the five islands. As shown, we recorded 18 upperside (UPH) pheno-
types (A-R), and 22 underside hindwing (UNH) phenotypes (1-22).
183
Table 3
Distribution of the hindwing upper and underside border ocellus phenotypes
of H. wyssii (see Appendix III for codes) on the five Canary Islands where it occurs
| Phenotype |T|G|C|H| P| Phenotype |T|G|C|H|P| Phenotype |T|G|C|H|P| T | Phenotype |T|G|C|H| P| Phenotype |T|G|C|H] P| Phenotype |T|G|C|H] P| C|H| P| Phenotype | T|G|C|H| P| Phenotype | T|G|C|H|P
+ + -
+ + +
+ + -
-- + +
ar r
- + --
+ + +
+|+]+]+ +
+ 4
+\+] |+/+ +) +
+ + +
+) [+ +
- +
+++ +
++ +
+
+
+
+
A a
§ recorded in males only (19), * recorded in females only (28), # recorded in both
sexes (11). Island abbreviations as in Table 1.
58 different combinations were recorded ; the theoretical maximum is
396 though the actual number is probably far less. Considering the
small size of some samples, however, many more phenotypes would
be expected in larger samples, especially in males from Tenerife (n = 3)
and females from La Gomera (n = 3). Nineteen phenotypes occur in
males only, 28 in females only and 11 in both sexes : females are thus
more variable than males.
Table 4 summarizes inter-island differences in the distribution of hind-
wing phenotypes and compares hindwing diversity on each of the five
islands. Of the 58 hindwing phenotypes recorded only 12 (= 20%) occur
on more than one island, none is found on all five islands and only
three (= 5%) occur on four islands. This alone suggests considerable
inter-island diversification.
The distance coefficients for phenotypes shared with other islands
(Table 6D) show that La Palma has the most distinct population,
followed by Gran Canaria, Tenerife and La Gomera/El Hierro. La
184
Table 4
Analysis of the inter-island distributions (Table 3)
of the hindwing phenotypes of H. wyssii (Appendix III) in the Canary Islands,
with the phenotypic diversity on each island
Islands
Number of phenotypes (both sexes)
Sample size
Number phenotypes shared between 4 islands
Number phenotypes shared between 3 islands
Number phenotypes shared between 2 islands
Total shared phenotypes
Mean % phenotypes shared with other islands
Mean phenetic distance from other islands
Total unique phenotypes
Per cent unique phenotypes
Margalef Diversity Index (D,4)
Berger-Parker Diversity Index (//d)
Island abbreviations as in Table 1.
Palma is also the most distinctive population in terms of the percentage
of unique phenotypes, followed again by Gran Canaria and Tenerife.
Small sample size in one or the other sex from some ıslands necessitates
combining sexes to estimate phenotypic diversity. Although this pro-
cedure inevitably involves the loss of some resolving power, the results
are nevertheless unambiguous. We use two contrasting measures of
diversity, the Margalef Index and the Berger-Parker Index (MAGGURAN,
1988). The former is primarily a measure of richness (number of pheno-
types) (CLIFFORD & STEPHENSON, 1975) and has the disadvantage that
it is strongly influenced by sample size (SOUTHwoo»p, 1978) ; the latter
emphasises evenness (or dominance) and is little affected by sample
size (MAY, 1975). In this case, where all samples are fairly small, the
Berger-Parker Index is preferred although encouragingly the rankings
for the two indices are in substantial agreement. The La Palma (Berger-
Parker) and Gran Canaria (Margalef) populations have the highest
diversity, El Hierro and La Gomera (especially) the lowest, with Tene-
rife intermediate (both indices agree on the ranking of the latter three
islands).
In general the larger islands (Tenerife, Gran Canaria and La Palma)
are more diverse than the smaller (El Hierro and La Gomera), as could
be predicted from biogeographical theory (MACARTHUR & WILSON,
1967). The high diversity on La Palma, in particular, is enigmatic :
it may result from independent evolution of sub-populations in relative
isolation within deep barrancos, a situation which probably does not
prevail on the other islands.
185
Table 5
Mean values for spots, pupils and halos comprising the hindwing border ocellus system
in H. wyssii from the Canary Islands
land i
Pool PS al 2 iP ni won
UPH spot average
(max. 5)
UNH spot average
(max. 5)
Pupil average
(max. 6)
Halo average
(max. 6)
N (N*)
UPH spot average
(max. 5)
UNH spot average
(max. 5)
Pupil average
(max. 6)
Halo average
(max. 6)
N (NX)
* Numbers in parenthesis are sample sizes for spot averages reduced due to hindwing
damage in some specimens. § Sample means significantly different (in ¢ tests) from
others in the same row. Island abbreviations as in Table 1.
Table 5 shows the UPH and UNH spot averages for males and fe-
males for each island. Correlation for UPH and UNH spot number
in individuals is low and not significant in either males (r = 0.070,
n = 68) or females (r = 0.073, n = 55) ; NısHouT (1991) has emphasised
that dorsal and ventral wing coloration patterns develop from epithelial
monolayers within separate compartments and that correlation between
them is by no means inevitable. As shown, La Palma has the highest
values for spot average for both UPH and UNH. El Hierro and La
Gomera have the lowest values with Tenerife and Gran Canaria inter-
mediate.
The frequency of white pupils in the six black spots (border ocelli)
(UPF/UNF s6 and s3 and UPH/UNH s2) and of the yellow halos
around the same spots, provides a set of characters additional to hind-
wing spotting which can be used to differentiate populations. Table 5
gives pupil and halo averages for males and females for each island.
The sum of pupils (maximum 6) and halos (maximum 6) for an
186
individual butterfly gives a measure which we call spot enhancement
(maximum 12); both pupils and halos render the black spots more
distinctive and conspicuous. Males and females from La Palma and
Gran Canaria have significantly higher enhancement values than the
other populations but it is obtained by different means : mainly by
pupillation on Gran Canaria (a consistently diagnostic feature of ssp.
tamadabae) and by the development of halos in ssp. tilosi from La
Palma. Both features are recorded from some of the other islands but
less distinctly and much less frequently. On La Palma and Gran Ca-
naria, the black spots tend to be larger and, when combined with white
pupils and yellow halos, they are rendered much more apparent.
The ssp. bacchus phenotype is also highly distinctive in a quite different
way from ssp. tilosi or ssp. tamadabae, because of the intense contrast
between the postdiscal black line (element f of the central symmetry
system (NıJHoUT, 1991)) and the band of white background immediately
distal to it, especially on the UNH (Plates 1 and 2); ssp. bacchus has
low values for spot average and much the lowest development of spot
enhancement (Table 5). As the background of the bacchus wing is
extensively melanised, several other black pattern elements (d, e and i
(NısHout, 1991)) are also relatively obscured. Subspecies gomera is
intermediate between ssp. bacchus and ssp. wyssii in all the above
respects (Plates 1-2).
Table 6
Matrices showing mean Euclidean distances (MED)
for five H. wyssii OTUs in the Canary Islands :
(A) males, (B) females, (C) combined sexes,
(D) hindwing spotting phenotypes (both sexes) (Table 3, Appendix III).
A-C are based on 34 non-metric characters and D
on numbers of phenotypes shared between islands (Table 4)
T
G
C
H
P
T
G
C
H
12
Kendall’s rank correlation for A and B is not significant (t = 0.4, P — 0.11) ; C and D
are significantly correlated (7 = 0.822, P = 0.04). Island abbreviations as in Table 1.
187
Phenetic distance coefficients
The phenotypes of all members of the genus Hipparchia Fabricius,
1807 are difficult to measure as much of the variation is quantitative
and therefore judgment of it subjective. Hence for the calculation of
phenetic distance coefficients (Table 6), we have chosen 34 non-metric
characters (Appendix I) which are discrete (i.e. can be consistently
scored as present or absent) and variable in frequency within or between
islands. This statement does not imply that these characters are the
only ones by which the five island populations can be compared and
differentiated, nor that they are necessarily even the most distinctive.
Many characters are manifested only or mainly in males (9) or females
(7) ; those which are variable in both sexes (18) nevertheless differ in
frequency and so they are scored separately for males and females.
Therefore the matrices (Table 6) are based on 27 characters for males,
25 for females and 52 for the combined sexes. As shown in the character
matrix (Appendix II), few characters are absolutely diagnostic, most
differing only quantitatively between islands. Hence each character
score is weighted (0-100%) for its comparative frequency. The data
in Table 6 represent the Euclidean distance MED (SNEATH & SOKAL,
1973) between pairs of island populations (OTUs). ED is calculated
for each OTU (subspecies) pair using the formula :
EDy =[2(X, - Xu)"
where X; and X; are the scores of OTUs (subspecies) j and K for
character 1. Mean Euclidean distances (WED) over all characters are
calculated as :
MED, = \[2(X, - Xx)21/n
where n is the number of characters.
Comparing the distance values (WED) between sexes (Table 6A, B,
Fig. 3A, B) it is clear that females have in general diverged further
than males. In the case of La Palma this applies to the female MED
values compared to all other islands ; for Gran Canaria it is confined
mainly to the comparison with Tenerife. Furthermore, the differences
between the male and female phenograms (Fig. 3), and the absence
of any significant rank correlation between their inter-island phenetic
distances (Table 6), strongly suggest that there has been a degree of
independence in the evolution of the phenotype of the two sexes, the
male being the more conservative .
188
PG, (AY Th
0.2 0.7
3
5
20.3
{1}
is 0.8
T
_
5 0.4
D
©
2
w 0.9
5
8 0.5
®
>
<
0.6 1.0
Fig. 3. Phenograms, derived by UPGMA, showing the mean Euclidean distances (MED)
(Table 6) between the five subspecies of Hipparchia wyssü: A, males ; B, females ;
C, combined sexes ; D, hindwing border ocellus phenotypes (both sexes) shared between
islands (Table 3). Island abbreviations as in Table 1.
Considering combined sexes (Table 6C), La Palma (mean distan-
ce — 0.523) ıs the most distinctive followed by Gran Canaria (0.468).
El Hierro (0.450) is intermediate, with Tenerife and La Gomera (both
0.422) the least distinctive on average. The two most similar populations
are El Hierro and La Gomera. However, there is no rank correlation
(SIEGEL & CASTELLAN, 1988) between the geographical distances
separating islands and phenetic distances (Kendall’s 7 (tau) = 0.422;
P=0.11).
In Table 6D we compare the islands by numbers of shared hindwing
phenotypes. The isolation of La Palma and the closeness of La Gomera
and El Hierro are again clear and, as above, there is no rank correlation
between the physical distance separating islands and the number of
shared phenotypes (t = 0.244 ; P= 0.38). Encouragingly, however, the
two methods of inter-island comparison (Table 6C, D) are themselves
significantly correlated by rank (t = 0.822 ; P= 0.04).
Interpretation of inter-island variation
The phenograms in Fig. 3 are derived by the UPGMA method (SNEATH
& SoKAL, 1973) from the data in Table 6. The relative isolation of
189
the La Palma subspecies is evident in all the phenograms ; La Gomera
and El Hierro form a cluster ; Tenerife and Gran Canaria may also
form a cluster, possibly for male phenotypes only (Table 6A, 6C), but
6B and 6D suggest that Tenerife is closer to La Gomera/El Hierro
with Gran Canaria more isolated. The raw data for males (Table 6A)
indicate that ssp. tilosi (La Palma) is closer to ssp. gomera (La Gomera)
than to any other but this is not the case for females. The phenetic
distance of ssp. tilosi females from all other subspecies would suggest
either a comparatively early dichotomy from the ancestral stock or
more recent but rapid evolution. To explain this anomaly it is neces-
sary to postulate different rates of evolution in males and females, the
former being relatively conservative and the latter evolving rather
rapidly, especially on La Palma. All data sets (Table 6) show that ssp.
tamadabae (Gran Canaria) is closest to ssp. wyssü (Tenerife). In this
case too, however, there is a sex difference, the males being much
closer than the females. The El Hierro subspecies (ssp. bacchus) is un-
doubtedly closest to ssp. gomera and is equally distinctive, mainly due
to the dark background (unscored) (Plates 1 & 2), in both sexes. It
should be noted, however, that WIEMERS (1991) observed that the eggs
of these two subspecies are quite dissimilar.
The origin and relationships of A. wyssü
There are three other species belonging to the subgenus Pseudotergu-
mia Agenjo, 1947 (KUDRNA, 1977). If examined comparatively in the
manner advocated by HARVEY & PAGEL (1991), they are the outgroup
for reconstructing ancestral character states. 7. fidia (Linnaeus, 1767)
is a west Mediterranean species ranging from Morocco, Algeria and
Tunisia through Portugal, Spain and S. France to Italy; A. pisidice
Klug, 1832 occurs in the Middle East from Sinai through Jordan,
Palestine, Lebanon and Syria to south Turkey ; A. tewfiki (Wiltshire,
1949) is a relict endemic restricted to Yemen and southwest Arabia.
All three species share with H. wyssii tamadabae the white pupilling
of the two forewing ocelli in s6 and s3 (UPF and UNF). These cha-
racters are likely to be primitive for the subgenus and their absence
from most individuals of the other subspecies of H. wyssii is probably
due to loss. There are several other similarities between ssp. tamadabae
and the other Pseudotergumia species (the nomenclature of the fol-
lowing pattern elements follows NiJHouT (1991) : first, the bold black
proximal band of the central symmetry system (element d), which
bisects the discal cell (UNF); second, bold discal spots (element e)
on the discoidal vein (UNF) and, third, bold proximal (medial) and
190
distal (postmedial) bands (elements d and f) of the central symmetry
system (UNH), given in our original description of ssp. tamadabae
(OwEN & SMITH, 1992). All things considered, it seems likely that A.
wyssii tamadabae is closest to the ancestral Pseudotergumia (and
Hipparchia) phenotype. In other words, the states of some of the above
characters in most individuals of H. wyssii ssp. wyssii, gomera, bacchus
and rilosi are derived.
The origin of H. wyssii itself is a matter for conjecture. On the evidence
of present distributions, an origin for H. wyssii from H. fidia stock,
which inhabited the western Mediterranean area, seems the most
plausible. Indeed, while admitting that Hipparchia phenotypes are in
general conservative, the adult phenotype of H. fidia is in many respects
close to H. wyssii tamadabae. However, from a comparison of the
male genitalia and androconia, KUDRNA (1977) believed H. wyssii to
be closer to H. tewfiki than to either A. fidia or H. pisidice. Judging
from his excellent figures of the very similar genitalia and androconia
of all the Pseudotergumia species, his conclusion requires exceeding-
ly fine distinctions to be made, mainly on grounds of size. As is com-
monly the case when genitalia characters are used in insect taxonomy,
no allowance was made for allometry (GouLD, 1966): H. tewfiki is
considerably smaller than all other species of Pseudotergumia but, of
the subspecies of H. wyssii examined by Kudrna, is closest in body
size to ssp. wyssii (which he believed inhabited both Tenerife and Gran
Canaria). The above remarks notwithstanding, as the only worker to
have examined all known museum specimens of the four Pseudoter-
gumia species, we tentatively accept Kudrna’s conclusion that 7. wyssii
is closer to A. tewfiki than to A. fidia. In view of the conservatism of
Hipparchia adult phenotypes and the considerable continuous variation
between individuals within taxa, a protein or DNA study is needed
to reach more robust conclusions.
If A. wyssii and A. tewfiki are indeed closely related then their present
distributions, in the Canaries and southwest Arabia, respectively, are
highly disjunct. To account for the presence of H. wyssii in the Canary
Islands, it is therefore necessary to invoke both vicariance and several
island-hopping events. We argue that neither is improbable as both
are prevalent features of the flora and fauna of the Canary Islands.
First, during the Miocene, southern Europe and the present Sahara
Desert area were covered with subtropical to tropical evergreen forests
(AXELROD, 1986). As drier climates spread through the Upper Miocene
and Pliocene, disjunctions in range developed, which are well-docu-
mented for the flora (BRAMWELL, 1976) resulting in highly disjunct
Fall
distributions between, on the one hand, the Canary Islands and, on
the other, far-distant locations such as Arabia, Socotra, Mauritius, the
East African highlands, the Himalayas and south Asia. Two of these
disjunctions are particularly relevant to a possible scenario for the origin
of H. wyssii: Pinus canariensis may be most closely related to P rox-
burghii of the western Himalaya, with fossil relatives in southwest Asia
(AXELROD, 1986) ; the genus Appollonias (Lauraceae), one of the four
lauraceous species found in the /aurisilva, has only two living species,
A. barbajuna in the Canaries and A. arnotti in south India (SUNDING,
1979). Moreover, there are parallel examples among butterflies : the
distribution of Vanessa indica (Herbst, 1794) (Nymphalidae), with
distinct subspecies in Macaronesia (the Canaries and Madeira) and
south Asia, has attracted recent attention (LEESTMANS, 1978 ; SHAPIRO,
1992a, 1992b) ; the genus Cyclyrius Butler, 1897 (Lycaenidae), which
has only two living species, C. webbianus (Brullé, 1840) in the Canaries
and C. mandersi (Druce, 1907) from Mauritius, presents a similar case
(OWEN & SMITH, 1993).
There is considerable evidence that many genera of butterflies from
several families and subfamilies, including some satyrınes (PORTER &
GEIGER, 1988 ; PORTER & SHAPIRO, 1991), are slow-evolving or brady-
telic (Simpson, 1944). We believe that Hipparchia, in particular the
ancestor of tewfiki-wyssii is probably a bradytelic taxon and that A.
wyssii has a relatively ancient origin (LARSEN, 1984) in the Miocene,
say 10 — 15 Ma. The first dispersal event, presumably from North
Africa, was probably to the eastern islands of Gran Canaria and
Fuerteventura, possibly at the same time as the invasion of the /auri-
silva and P canariensis forest and before these islands became arid.
The second dispersal event may have been from Gran Canaria to
La Gomera. However, the low phenotypic diversity on La Gomera,
compared to Gran Canaria, and indeed all other ıslands, suggests a
bottleneck effect at introduction which is still reflected in the modern
population. Subsequent island hops would follow, first to Tenerife,
not earlier than 6 Ma (SCHMINKE, 1976) and then to El Hierro and
La Palma during the Pleistocene (2 — 0 Ma). The increasing aridity
of the Sahara region during the Pliocene would then produce the
vicariance event which split the zewfiki-wyssii ancestor into two relict
species.
Comparative morphology and high phenotypic diversity, as well as
the antiquity of Gran Canaria (SCHMINKE, 1976), support the proposed
ancestral status of ssp. tamadabae. Whether ssp. wyssii on Tenerife
originated from La Gomera or Gran Canaria (or both) remains an open
192
question, each being almost equally likely on grounds of comparative
morphology (Table 6). The data indicate that ssp. bacchus (El Hierro)
originated from La Gomera, the nearest source, at a date which must
have been = 2 Ma ago.
The case of ssp. tilosi, however, appears anomalous and defies simple
interpretation. While it is undoubtedly closest to ssp. gomera (Table 6),
it is the most distinct of all five subspecies (Fig. 3) and shares the
smallest number of hindwing phenotypes with other subspecies ; ıt also
shows the highest phenotypic diversity (Table 4). We suggest above
that the fragmented distribution of ssp. tilosi into many small isolated
populations, a situation which does not apply to the other subspecies,
may have resulted in numerous founder effects with unusual and dif-
fering starting sets of alleles ; sub-population differences might further
intensify under subsequent genetic drift. Our collection is much too
small to hope to find quantitative differences between the six sub-
populations from La Palma represented, but the high phenotypic
diversity in the bulked sample may reflect heterogeneity arising from
the fragmented population structure of this subspecies.
However, the fact that ssp. rilosi is the most distant (phenetically)
from all other subspecies and occurs on the island known to be the
youngest (= 2 Ma) (SCHMINKE, 1976) and furthest from a continental
source of recruitment, suggest two other possible interpretations of the
evolutionary history of H. wyssii. First, the species may have colonised
the Canary archipelago only within the last two million years, in which
case the diversification we describe occurred within the Pleistocene or
later. If this is the case, then rapid evolution has occurred on El Hierro
and (especially) La Palma. It follows from this that the pre-Pleistocene
geological history of the islands would be irrelevant to any attempt
to reconstruct the evolution of H. wyssii. Alternatively, the species
may have reached the eastern islands a long time ago but dispersed
to La Palma and El Hierro, where it has undergone rapid evolution,
comparatively recently. This last interpretation best fits the facts.
Discussion
Graylings are essentially “underside” butterflies. Only rarely is the
upperside visible and it is the underside that has the intricate and
characteristic patterning. When a butterfly comes to rest, the underside
of the forewing is well-exposed and its spots are conspicuous. After
a short interval, the forewing is lowered and hidden by the hindwing,
and the butterfly is beautifully camouflaged against the background
193
of rock or tree trunk. If alerted, it raises the forewing and the eyespots
are again visible. This behaviour is widespread among members of
the Satyrinae but is particularly well-developed in Hipparchia and it
is usually interpreted as anti-predator strategy. The forewing eyespots
catch the attention of a predator which may then strike at a non-
vulnerable part of the wing (BRAKEFIELD, 1984), enabling the butterfly
to escape by flying away. If there is no strike, the butterfly assumes
the resting position with the forewing concealed. Our observations on
all subspecies of A. wyssii suggest that this presumed anti-predator
behaviour is the norm. The rarely exposed upperside is rather uniformly
dark and may function in thermoregulation, though only in flight, as
Hipparchia group species are exclusively lateral baskers at rest (SHREEVE
& Dennis, 1992): it is probably never involved in anti-predator
behaviour.
Hence, we view the ground plan of the underside pattern of all five
subspecies as having evolved in response to selection by predators ;
most of this evolution must have occurred before what is now H. wyssii
reached the Canary Islands. Assuming a mainland origin for A. wyssii,
the initial colonisation of any one of the islands may have involved
few individuals ; indeed a single fertilised female is all that is required.
Subsequent colonisation of other islands might similarly involve few
individuals. Each colonisation has produced relatively large but isolated
populations which could easily have been founded with only a fraction
of the genetic diversity of its source population(s) leading to selective
and epigenetic constraint. The restricted gene pool of each founder
population would thus be unique to each island and differ stochastically
from all other islands : this alone could account for most of the inter-
island differentiation we have described. Genetic drift in the initially
small populations of founders would be expected to lead to a further
loss of genetic diversity and to the fixation of inter-island differences,
which are mainly so minor that their influence on survival may be
trivial.
NiyHoutT (1991) emphasises that small changes in the source or steep-
ness of diffusion gradients for theoretical morphogens, thresholds for
the expression of alternative pigment genes and pattern elements and
the timing of the sequence of morphogenetic events, can produce quite
profound changes to the visible phenotype. We believe that develop-
mental constraint, probably involving very few gene loci with alter-
native alleles, has produced the high proportion of unique character
combinations that now occur on each island. The overall result is that
the distinct grayling phenotype is retained but its precise expression
194
on each island is different and dependent on the genetic history of
each population. The hindwing underside is the most complex of a
grayling’s wing surfaces and it is this which is most often exposed
to potential predators : it is a cryptic wing surface but the precise means
by which crypsis is attained differs from island to island.
Of the 30 species of butterfly found on the Canary Islands, four (in-
cluding H. wyssii) exhibit inter-island differentiation in wing pattern
morphology, while others probably do so but have not been subjected
to detailed analysis. In all four cases, the island differences are quan-
titative rather than qualitative. In two species, Maniola jurtina and
Pararge xiphioides, subspecific names have not been given, while in
the other two, Gonepteryx cleopatra (Linnaeus, 1767) and H. wyssii,
subspecific (or specific) status is based on small differences in adult
size, Wing pattern and the structure of genitalia (KUDRNA, 1975, 1977),
and in the latter case, also on egg and larval morphology (WIEMERS,
1991). While these features differ slightly between islands, they vary
only to an extent, as in comparisons between Palaearctic and Nearctic
Aglais Dalman, 1816 and Nymphalis Kluk, 1802, that either species
or subspecies might be expected to differ (MILLER & MILLER, 1990).
To demonstrate speciation more positively would require cross-breeding
or better, analysis of mtDNA. However, our view is that, although
it hardly matters whether the island populations of H. wyssii are de-
signated as species or subspecies, we have found no compelling evidence
for full speciation and are thus persuaded to leave them as well-
differentiated subspecies.
Acknowledgements
DASS thanks the administrators of the Educational Fund, Eton College, for
a research grant to work in the Canary Islands in 1990. Mr Derek Whiteley
drew the figures and he and Mrs Barbara Southall took the photographs
for Plates 1 and 2.
References
AXELROD, D. I, 1986. Analysis of some paleogeographic and paleoclimatic
problems of paleobotany : The 33rd Sir Albert Charles Seward Memorial
Lecture. Paleobotanist 35 : 115-129.
BRAKEFIELD, P. M., 1984. The ecological genetics of quantitative characters
of Maniola jurtina and other butterflies. Jn R. I. VANE-WRIGHT and P.
R. ACKERY (Eds.), The biology of butterflies, 167-190. Symposium of
the Royal Entomological Society of London, No. 11, Academic Press,
London.
195
BRAMWELL, D., 1976. The endemic flora of the Canary Islands. In KuNKEL,
G. (Ed.), Biogeography and ecology in the Canary Islands, pp. 207-240.
W. Junk, The Hague.
CLIFFORD, H. T. & STEPHENSON, W., 1975. An introduction to numerical
classification. Academic Press, London.
CoRBET, A. S. & PENDLEBURY, H. M., 1992. The butterflies of the Malay
Peninsula. 4th. edition revised ELioT, J. N. United Selangor Press, Kuala
Lumpur.
GouLD, S. J., 1966. Allometry and size in ontogeny and phylogeny. Biological
Reviews 41 : 587-640.
GUICHARD, K. M., 1967. Butterflies in the Canary Islands. Entomologist 100 :
293-299.
Harvey, P. H. & PAGEL, M. D., 1991. The comparative method in evo-
lutionary biology. Oxford University Press, Oxford.
Hicains, L. G., 1967. Hipparchia (Pseudotergumia) wyssii CHRISTOPH, with
descriptions of two subspecies. Entomologist 100 : 169-171.
KUDRNA, O., 1975. A revision of the genus Gonepteryx Leach (Lep. Pieridae).
Entomologist’s Gaz 26 : 3-37.
Kuprna, O., 1977. A revision of the genus Hipparchia Fabricius. E. W. Clas-
sey, Faringdon.
LARSEN, T. B., 1984. Butterflies of Saudi Arabia and its neighbours. Stacey
International, London.
LEESTMANS, R., 1975. Etude biogéographique et écologique des Lepidopteres
des iles Canaries (Insecta Lepidoptera). Vieraea 4 : 9-116.
LEESTMANS, R., 1978. Problèmes de spéciation dans le genre Vanessa. Vanessa
vulcania Godart stat. nov. et Vanessa buana stat. nov. : bonae species.
(Lepidoptera : Nymphalidae). Linneana Belgica 7 : 130-156.
MACARTHUR, R. H. & Witson, E. O., 1967. The theory of island biogeo-
graphy. Princeton University Press, Princeton, NJ
MAGURRAN, A. E., 1988. Ecological diversity and its measurement. Croom
Helm, London.
Mani, L., 1984. Découverte de Hipparchia (Pseudotergumia) wyssii CHRIST
dans l’île de la Palma (Canaries) et description d’une nouvelle sous-
espece : Hipparchia wyssii tilosi nova ssp. (Lepidoptera Satyridae). Linn.
belg. 9 : 359-367.
May, R. M., 1975. Patterns of species abundance and diversity. In Copy,
M. L. & Diamonpn, J. M. (Eds.), Ecology and evolution of communities,
pp. 81-120. Harvard University Press, Cambridge, Mass.
Mizer, L. D. & Mie, J. Y., 1990. Nearctic Aglais and Nymphalis (Lepi-
doptera: Nymphalidae): Laurasia revisited? Entomologist 109:
106-115.
NısHout, H. F., 1991. The development and evolution of butterfly wing
patterns. Smithsonian Institution Press, Washington.
NORDMAN, A. F., 1935. Verzeichnis der von Richard Frey und Ragmar Stora
auf den Kanarischen Inseln gesammelten Lepidopteren. Commentationes
biological 6 : 1-20. Helsinki.
196
Owen, D. F. & SMITH, D. A. S., 1990. Interpopulation variation and selective
predation in the meadow brown butterfly Maniola jurtina (L.) (Lepido-
ptera : Satyridae) in the Canary Islands. Biol. J. Linn. Soc. 39 : 251-267.
Owen, D. F. & SmiTH, D. A. S., 1992. A new subspecies of Hipparchia wyssii
(Christ) (Lepidoptera : Satyrinae) from Gran Canaria, Canary Islands.
Entomologist’s Gaz 43 : 253-256.
Owen, D. FE & SmitH, D. A. S., 1993. Interisland phenotypic diversity in
Pararge xiphioides (Staudinger) (Lepidoptera : Satyrinae) in the Canary
Islands. Biodiversity Letters 1 : 23-30.
Owen, D. F. & SMITH, D. A. S., 1993. The origin and history of the butterfly
fauna of the North Atlantic islands. Bolm Mus. Mun. Funchal Suppl. 2:
211-241.
PORTER, A. H. & GEIGER, H. J., 1988. Genetic and phenotypic population
structure of the Coenonympha tullia complex (Lepidoptera : Nympha-
lidae : Satyrinae) in California : no evidence for species boundaries. Can.
J. Zool. 66 : 2751-2765.
Porter, A. H. & SHAPIRO, A. M., 1991. Genetics and biogeography of the
Oeneis chryxus complex (Satyrinae) in California. J. Res. Lepid. 28:
263-276.
REBEL, H. & ROGENHOFER, A., 1894. Zur Lepidopterenfauna der Canaren.
Annin. naturh. Mus. Wien 9 : 1-96.
SCHMINKE, H.-U., 1976. The geology of the Canary Islands. /n KUNKEL, G.
(Ed.), Biogeography and ecology in the Canary Islands, pp. 67-184. W.
Junk, The Hague.
SHREEVE, T. G. & Dennis, R. L. H., 1992. The development of butterfly
settling posture : the role of predators, climate, hostplant, habitat and
phylogeny. Biol. J. Linn. Soc. 45 : 57-69.
SHAPIRO, A. M., 1992a. How did Vanessa indica (Herbst) (Lepidoptera :
Nymphalidae) get to the Canary Islands and Madeira ? Entomologist
111: 10-21.
SHAPIRO, A. M., 1992b. A postscript on Vanessa indica (Herbst) (Lepidoptera :
Nymphalidae). Entomologist 111 : 162-163.
SIEGEL, S. & CASTELLAN, N. J. Jr., 1988. Nonparametric statistics for the
behavioral sciences, 2nd. ed. McGraw-Hill, New York.
SIMPSON, G. G., 1944. Tempo and mode in evolution. Columbia University
Press, New York.
SNEATH, P. H. A. & SOKAL, R. R., 1973. Numerical taxonomy : The principles
and practice of numerical classification. W. H. Freeman, San Francisco.
SOUTHWOOD, T. R. E., 1978. Ecological methods. Chapman and Hall, London.
SUNDING, P., 1979. Origins of the Macaronesian flora. /n BRAMWELL, D. (Ed.),
Plants and islands, pp. 13-40. W. Junk, The Hague.
WIEMERS, M., 1991. Hipparchia wyssii (Christ, 1889) Komplex : Beitrag zur
Morphologie, Biologie, Ökologie und Verbreitung auf den Kanarischen
Inseln (Lepidoptera, Satyridae). Nota lepid. 14 : 255-278.
12/7
APPENDIX I
Characters used for analysis of inter-island differences
in Hipparchia wyssii in the Canary Islands
WEF
Small ochreous border ocellus (h) in s7. #
Black border ocellus in s6 (h) with white pupil.
Black border ocellus in s6 (2) ringed with yellowish halo.
Pale submarginal spot (h) in s5. *
Pale spot in s5 (4) white (+) or brown. *
Pale submarginal spot (h) in s4. *
Pale spot in s4 (6) white (+) or brown. *
Black border ocellus (h) in s3. *
Black border ocellus (8) in s3 with white pupil. #
10. Black border ocellus (8) in s3 ringed with yellowish halo.
11. Pale postdiscal spot in s6. *
12. | Above spot (11) in s6 white (+) or pale brown. #
13. Pale postdiscal spot in s3. *
en
14. Pale ochreous or white border ocellus (h) in s6 (spot 1).
15. Similar ocellus (h) in s5 (spot 2).
16. Similar ocellus (h) in s4 (spot 3). #
17. Similar ocellus (h) in s3 (spot 4).
18. Small submarginal black border ocellus (h) in s2 (spot 5). *
19. Spot 5 (18) with minute white pupil. #
20. Spot 5 (18) ringed with narrow yellowish halo. #
21. Large black border ocellus (h) in s6 with white pupil.
22. Spot in s5 fused with halo of border ocellus in space 6.
23. Black border ocellus (h) in s3 with white pupil. #
24. Black border ocellus (h) in s3 ringed with yellowish halo.
25. s3 between elements f (postmedial line) and h ochreous (+) or brown.
26. Postdiscal area of s2 ochreous (+) or brown.
27. Diffused ochreous spot proximal to element d in discal cell. *
28. Diffuse white submarginal border ocellus (h) in s6 (spot 1).
29. Similar spot (h) in s5 (spot 2).
30. Similar spot (h) in s4 (spot 3).
3l. Similar spot (h) in s3 (spot 4).
32. Black spot in s2 with minute white pupil.
33. Pale patches immediately lateral to postmedial line (f) flecked white (+) or grey.
34. Above patches (33) fused to form irregular but uninterrupted stripe.
Letters in bold type identify the probable homologies of pattern elements according
to the nymphalid ground plan (NisHout, 1991). s = space (Fig. 2) UPF = upperside
forewing ; UPH = upperside hindwing ; UNF = underside forewing ; UNH = underside
hindwing ; + = present ; characters expressed or variable only in one sex are marked *
for males (9) and # for females (7) ; all other characters (18) are scored in both sexes.
198
APPENDIX II
Character matrix for A. wyssii from the Canary Islands.
The data are expressed as percent occurrence
[es Sel bl ie
BW
REIN
SW
D m =
A G0 90 DH
CO CO 00 \O
CoO RK = WO WwW
© © & & W © ©
iS)
| Se
EN | N
al NS | | su
no
Soo-maa
ON
©
Un © ON W
SAS SSD)
mi = O0 ~) W
\O © © O \O
SL2SHRUSO |
© © © 00 In 00 00
= OO ~) ~) OV
SONAAAN | ee
oo
0
8
8
5
8
8
0
7
Y
3
0
0
0
0
0
3
0
0
a
5
0
0
© © OO OS IS © © © — SS
WBSANWBIARSD
oo OWN Un © © © W 00
199
APPENDIX III
Classification of the hindwing border ocellus (spotting) phenotypes
of A. wyssü in the Canary Islands
UPH UNH |
Spots Code Spots Code Spots Code Spots Code
B
©
D
B
F
G
H
I
J
Spots are numbered antero-posterially from the costal side as follows : 1 (s6), 2 (s5),
3 (s4), 4 (s3), 5 (s2). White pupils are indicated as e.g. 5 and yellow halos as e.g. 5.
200
Nota lepid. 17 (3/4) : 201-216 ; 30.1V.1995 ISSN 0342-7536
Danaus chrysippus Linnaeus, 1758 ;
a review of records and present status
in the Maghreb countries of Morocco,
Algeria and Tunisia (Lepidoptera, Danainae)
John TENNENT
1 Middlewood Close, Fylingthorpe, Whitby, N. Yorkshire YO22 4UD, England
Summary
Danaus chrysippus Linnaeus, 1758, was first reliably noted from Algeria in
1912, from Morocco in 1943 and from Tunisia in 1952; it has since been
recorded there sporadically. Sightings have increased in recent years and some
have wrongly been claimed as new country records, due possibly to the
erroneous claim in early editions (and English language editions/reprints up
to 1993) of Higgins & Riley’s “Field guide to the butterflies of Britain and
Europe” that the species had not been recorded from Algeria or Tunisia. Known
records of Danaus chrysippus in the Maghreb countries of Morocco, Algeria
and Tunisia are reviewed here. It is shown that the butterfly has established
breeding populations in all three countries. Hostplants are discussed.
Resume
Danaus chrysippus Linnaeus, 1758, fut signalé pour la première fois d'Algérie
en 1912, du Maroc en 1943 et de Tunisie en 1952 ; il a fait l’objet, depuis, de
citations sporadiques. Les observations se sont multipliées ces dernières années,
dont certaines indûment revendiquées comme nouvelles, censément en raison
de l’assertion erronée des premières éditions (et éditions en langue anglaise,
réimprimées jusqu’en 1993) du «Guide des Papillons de Grande-Bretagne et
d'Europe» de Higgins & Riley, donnant l’espèce comme inconnue d'Algérie
ou de Tunisie. Les citations de Danaus chrysippus des pays maghrébins du
Maroc, d'Algérie et de Tunisie sont ici rassemblées. Il est démontré que le
Petit Monarque a établi des colonies stables dans ces trois pays. Les plantes-
hôtes sont étudiées.
Zusammenfassung
Danaus chrysippus Linnaeus, 1758, wurde aus Algerien erstmals 1912 gemeldet,
aus Marokko 1943 und aus Tunesien 1952 ; seitdem wurde er dort sporadisch
gesichtet. In den letzten Jahren häuften sich die Beobachtungen ; dabei wurden
201
einige fälschlich als Erstnachweise bezeichnet. Dies ist vermutlich darauf
zurückzuführen, daß in früheren Ausgaben des Feldführers „Die Tagfalter
Europas und Nordwestafrikas“ von Higgins und Riley irrtümlich behauptet
wird, die Art sei aus Algerien oder Tunesien nicht bekannt. Die bisher bekann-
ten Nachweise von Danaus chrysippus in den Maghreb-Ländern Marokko,
Algerien und Tunesien werden zusammengestellt. Es wird gezeigt, daß der
Falter in allen drei Ländern bodenständige Populationen besitzt. Die Futter-
pflanzen werden diskutiert.
Introduction
There has been some confusion in recent years over the occurrence and
distribution of the butterfly Danaus chrysippus Linnaeus, 1758, in the
Maghreb states of Morocco, Algeria and Tunisia. Hiccins & RILEY,
in all English language editions to date of their Field Guide to the
Butterflies of Britain and Europe, currently the only guide to the region,
stated that the butterfly is a rare migrant in Morocco and has not been
reported from Algeria or Tunisia. The most recent French language
edition is more up to date.
A mass of further information has been published, in a number of
languages in a variety of entomological journals, on the distribution
of D. chrysippus in the Maghreb and in Europe with some recent
papers claiming new records for Algeria and Tunisia. There has also
been speculation and discussion on the probable hostplants of D. chry-
sippus in North Africa.
This paper sets out to collate published records to date ; to assess the
present status of the butterfly in the Maghreb and to identify host-
plants in each country. All localities can be found on the map (Fig. 1).
Whilst the occurrence of D. chrysippus in Europe is outside the scope
of this paper, it has been seen more frequently there in recent years and
published records noted are included in the form of a bibliography.
Records to date
(M) = Morocco ; (A) = Algeria ; (T) = Tunisia
1905 — Joannis (1908 : 83), in his list of Saharan Lepidoptera recorded
by Chudeau on a voyage from Algiers to Timbouctou in 1905-6, noted
D. chrysippus ‘var.’ alcippus Cramer, 1777 taken at Oued Kadamellet
on 21 September 1905 and as this has been quoted (including by the
present author !) as the first published record of Danaus chrysippus
in Algeria, it is worth taking a moment to establish where Kadamellet
lies. It transpires that the locality is in Niger.
202
¢
jesspJupwp| ®
uejsob|
DIDHEND uUyg e
DAW peno®
unowiwwiL
e
DIPP1DU9
4anoBBno] ©
vısınn
x
yonoybo7
e
psy.” DAysig
era eg e
““e
$ auljuDjsUu0D
e
S#3191v
"eIsıun], PUR BIIOS[Y ‘0990J0W UI
"1 snddisduyo snoung Jo 39u211N990 UMOUY “| “LA
N
N
N SUMO}[)
>; suoljpjndod Buipee1qO
SS sBuiyybis snddisksyo @
N
Aa»
DIUD/8/NDW
(D1DyDS u1e/sem)
POISSON e
—.
— —.
'sı Aiouo9
yas
JUUDPNO1D] ©
NDUSZD| ©
U90YDJIDW :
0929080
D9UD|qDSDY
203
The author was unable to find reference to Oued Kadamellet on any
modern map. However, Mont Kadamellet was eventually identified
on a very old map at 19° 34’ N, 8° 36’ E, some 45 km NNE of
Iferouane, Air, the position loosely described by Joannis (1908 : 82).
In June 1905, an agreement between the Commandant of what was
then Haut Sénégal et Niger and the military commander of the Depart-
ment de l’oasıs (part of Territories du Sud Algerien), determined a
boundary between Algeria and French West Africa which was completed
in principle by the Niamey Conventions of 1909 (International Boundary
Study No. 99). Thus ’Kadamellet’ was and is in Niger, about 200 km
SE of the Algerian border.
1907 — Seitz (1907 : 75-76), noted that [form] chrysippus was to be
found on the Canary Islands “and the opposite districts of Morocco ...
The absence of the insect from Algiers [Algeria] is very remarkable ...
ab. alcippoides... in the Palearctic region only on the Canaries and
in the opposite districts of Morocco ...”. The source of these comments
is not clear ; there are no D. chrysippus from N Africa in the Seitz
collection, now in the Senckenberg Museum, Frankfurt am Main (H.
Schroeder, pers. comm.)
1912 — RoruscnuiL_p (1913: 114), recorded a male specimen from
South Oued Mya (A) [30 April 1912] (another was seen but not
captured) ; a female north of Ain Guettara (A) [8-11 April 1912] and
a male from Igosten, Tidikelt (A) [15 April 1912] among the butterflies
collected by Hartert in an expedition to the central western Sahara.
He correctly noted these specimens as the first records for Algerian
territory. The specimens remain extant in the Rothschild collection
at the BM(NH).
1923 — Demaison (1923 : 134) reported his brother finding a single
f. alcippus at Ghardaia (A) on 22 April 1923 and seeing several more
on subsequent days in the same place. His brother also apparently
found it commonly at Touggourt oasis (A) on 1 May 1923. In April
1927 Demaison’s brother returned to Ghardaia but saw no further
specimens (Demaison, 1932 : 93), prompting Demaison to suggest that
its occurrence in large numbers in the area in 1923 was due to an
“accidental migration”. Apparently all individuals seen then were f.
alcippus. He mentioned Gomphocarpus fruticosus (Asclepiadaceae), a
known hostplant of D. chrysippus (ACKERY & VANE-WRIGHT, 1984 :
210), as a possible hostplant there.
1943 — Runcs (1945 : 15) noted 6 examples of f. “kanariensis” Fruh-
storfer, 1898, [a doubtfully distinct race essentially of the “chrysippus”
form (ACKERY & VANE-WRIGHT, 1984 : 115)], and one f. alcippus at
204
Messeied, Rio de Oro in SW Morocco (Western Sahara), taken on
20 January 1943 by Morales Agacino who observed further adults and
larvae associated with Calotropis procera (Asclepiadaceae).
1947 — Runcs (1950 : 144-5) stated that despite much travelling in
southern Morocco, he failed to find D. chrysippus until December 1947
when he found all stages of the insect abundantly some kilometres
west of Taroudannt (M) ; of 38 specimens taken, only 6 were f. alcippus,
the remainder being “f. kanariensis” |chrysippus] or alcippoides. The
hostplant was Asclepias curassavica f. atropurpurea (Asclepiadaceae) ;
RunGs expressed surprise at the apparent rarity of D. chrysippus in
view of the availability of a number of different and presumably quite
suitable Asclepiad hostplants.
1952 — CHnéoUR (1953) recorded Bede telling him that it was to be
found frequently in the Biskra and Ghardaia areas of Algeria and that
Kruglik had observed it in some numbers at Nefta (T). He recorded
the capture, by Demoflys, of a single f. alcippoides at Gabés (T) on
4 July 1952. He added that since the time of this first observation,
other specimens had been seen at Tozeur (T), Ain Draham (T) and
Mégrine (T) (by Chpakowsky) and at Barrage de l’Oued Kebir (T)
(by Massal and Arnould). This record was repeated (Chnèour, 1954 :
222) and the butterfly was depicted on the front cover of volume 7 of
Bull. Soc. Sci. nat. Tunis.
1956 — Wyatt (1956: 220) recorded the species in the Sous valley
(Taroudannt) (M) and noted that approximately 30% of individuals
seen were f. alcippus.
1970 — Hıccıns & RILEY, in their Field Guide to the Butterflies of
Britain and Europe, stated that D. chrysippus was a rare migrant in
Morocco and not reported from Algeria or Tunisia ; claims reiterated
in subsequent English language editions (1973, 1975, 1980, 1983) and
reprints up to 1993. The French language edition of 1988, the only one
the author has examined, went some way to correcting these mistakes.
1971 — Owen (1971 : 138 [Fig. 9.2]), included all of Tunisia and most
of Algeria and Morocco well into the Sahara desert in the distribution
of f. chrysippus in Africa. He showed f. alcippus occupying most of
Morocco and part of western Algeria, far removed from the extensive
populations of western Africa and went on to say (1971: 140) that
maps were prepared after examination of the large collections in the
British Museum [Natural History] and in the Hope Department of
Entomology at Oxford. This is puzzling since the author was unable
to find any D. chrysippus from N Africa other than from Egypt, Libya
205
and Mauretania and those recorded by Rothschild in 1912 in the
BM(NH) collections, or in the Hope Department of Entomology at
Oxford University Museum. A number of specimens from Morocco
and Tunisia have been deposited by the present author in the BM(NH)
collection. |
1971 — Kuprna (1972: 268) recorded the capture by Gawadi and
Wilson on 1 September 1971 of 1 male and 3 females at Taroudannt
(M) where it was common and fresh, having apparently bred locally.
1974 — PıERRE (1974) provided comprehensive discussion on the
distribution of D. chrysippus throughout Africa and included parts
of Algeria in the distribution of f. alcippus, as well as including W
Moroccan and S Algerian records of f. chrysippus. This was based
on a number of specimens in the collections of the Museum National
d’Histoire Naturelle in Paris, namely Alger, Maison Carée (1, ex.
Balachowski — alcippus) ; Touggourt (A) (5, ex. Babault — alcippus) ;
Ghardaia (A) (l, ex. Demaison — alcippus) and Timmimoun (A)
(1 chrysippus) (J. PIERRE, pers. comm.)
1975 — SAMRAOUI (1993 : 69) noted a specimen captured in Tebessa
(A) in 1975, in the INVP collection in Algiers.
1979 — DEVARENNE (1981 : 171) recorded it in March and September/
October 1979 around Ghardaia (A) and figured an extreme male
aberration taken in October of that year.
1979 — DE FRIENA (1981) recorded Menrad taking a series at Sousse
(T) on 16 December 1979, some of which were f. alcippoides ; he also
discussed several possible hostplants.
1979/80 — SCHUURMANS (1981) found D. chrysippus at Sousse (T)
in 1979 and recorded Myncke finding it commonly from the begin-
ning of August until mid-October at Monastir (T), Sousse (T) and
Jendouba (T).
1980 — LEMPKE (1981 : 35) recorded a specimen at Sousse (T) on
2 March 1980.
1980 — van CAPPELLEN (1981) illustrated a female specimen found
by Bolland on 11 March 1980 at Sousse (T).
1980 — LttrceEn (1981 : 55) found two examples of the nominate
form at Tozeur (T) on 4 October 1980.
1980/1981 — There are specimens in the Museum National d’ Histoire
Naturelle, Paris, from near Sbeitla (T) (7, Ex. Barbery & Aubertin,
1980/81 — chrysippus) ; R. Lheureux apparently also observed 3 spe-
206
cimens at Béthioua (A) and Mostaganem (A) in 1980 (J. PIERRE, pers.
comm.)
1982 — BURTON (1982) mentioned several hundred D. chrysippus seen
by Tombs in the region of Monastir (T) and Sousse (T) from 6 to
10 June 1982.
1983 — Cassar (1983) noted a total of 19 specimens on 10 and 13 July
1983 near Kairouan (T), La Kesra (T) and El Kef (T).
1985 — Between 12 and 24 June 1985, LEGLER (1986) saw a number
of specimens in the area of Hammamet (T).
1985 — DEVARENNE (1990 : 154) reported it as common in various
localities in Tunisia ; all stages of the butterfly were found in May
1985 between Sousse (T) and Port-el-Kataoui (T) feeding on Pergularia
tomentosa (Asclepiadaceae). The butterfly was seen ın “almost every
part of Tunisia, including Tunis”.
1985/6 — Cassar (1989) reported a single specimen seen by Balzan at
Tunis (T) on 9 April 1985 and scores seen at Douz (T) in early October
1986. He went on to report a male specimen on 9 October 1986 at
Touggourt (A) ; this last record was believed to be the first for Algeria.
1988 — Hünı (1988) saw the species near El Djem (T) and Sidi Bou
Ali (T).
1988 — STEINIGER & EITSCHBERGER (1990 : 169), noted a specimen
seen to the east of Tangier (M) on 25 October 1988.
1990 — Samraour & BENYAcouB (1991) observed a build up of D.
chrysippus apparently migrating from east to west in the region of
Annaba (A) and El-Kelaa (A) in May 1990; the last specimen seen
in Annaba was on 17 October. On 27 August 1990 about 20 specimens
were seen at Touggourt (A), also apparently moving in an cast/ west
direction.
1990 — Observed to be widespread in small numbers beween Casa-
blanca and Marrakech (M) on 3 October 1990; also seen near
Tazenakht, 60km SW of Ouarzazate (M) on 11 October 1990 (Martin
Jacoby, pers. comm.).
1991 — Samraout et al. (1992) noted the butterfly at Lac Bleu (A)
(2) on 28 May 1991, El-Chatt (A) (1) on 14 June 1991, Lac des Oiseaux
(A) (1) on 21 June 1991, Biskra (A) (numerous) on 19 July 1991,
Laghouat (A) (numerous) on 26 July 1991, Ghardaia (A) (numerous)
on 28 July 1991, Touggourt (A) (3) on 5 August 1991 and Taman-
rasset (A) (1) on 10 October 1991. Calotropis procera (Asclepiadaceae)
was suggested as a probable hostplant in central and southern Algeria.
207
1991 — 1 example was seen at the Gorges de Zeghzel, Berkane (M)
on 28 September 1991 and about 15 specimens at the Moulouya delta
(M) on 9 October 1991 by G. Chavanon (H.-J. Falkenhahn, pers.
comm.).
Author’s observations 1991-1993
MOROCCO: On 11 September 1991, a few individuals were seen in
different localities on the eastern and northern outskirts of Taroudannt.
The following day quite large numbers (40-60) were seen west of the
town where there was a large stand of Asclepias curassavica growing
in an irrigation ditch (TENNENT, 1993 : 27). On 3 March 1992 the area
was revisited when it was found that the irrigation ditches had been
cleared of all “debris”, including curassavica plants ; only a single D.
chrysippus was seen to the east of Taroudannt. On 11 May, four
specimens were seen in close proximity to curassavica plants at Ait
Iazza, east of Taroudannt and on 4 June, a single example was seen
flying across the main road 24 km east of the town. A further specimen
was seen just south of Taroudannt on 2 September, the last visit of
that year.
In 1993, the locality west of Taroudannt where both the butterfly and
hostplant were common in the autumn of 1991,was visited on 26 May.
Although curissavica had begun to repopulate the ditch, individual
plants were very small and no D. chrysippus were seen. However, at
Ait lazza, both the plant and the butterfly were quite common ; with
about 20 butterflies observed in a half hour period.
Of D. chrysippus butterflies seen in Morocco, some 60-70% were of the
nominotypical form, with the remainder being f. alcippus or alcippoides ;
the latter were very variable, displaying a white hindwing patch of
variable size or merely a few white scales around the inner margin.
The author travelled extensively in Morocco in 1992 and 1993 but never
saw D. chrysippus other than around Taroudannt and the Sous river
valley. It was seen on each visit to the area, even when merely “passing
through” ; individuals appeared generally to be freshly emerged.
ALGERIA : From 15-17 March 1992, small numbers of D. chrysippus
(about 10 in total) were seen close to the town of Ghardaia in central
Algeria. Some individuals were possibly in transıt, but others appeared
settled in an area west of the town where Pergularia tomentosa
(Asclepiadaceae) grew commonly. A few Asclepias curassavica plants
seen incorporated in a display along the central reservation of a street
on the outskirts of Berriane, 40km north of Ghardaia, were thickly
208
covered in dust ; no D. chrysippus were seen. It was not seen at Toug-
gourt some days later, although only a very cursory search was carried
out. Two specimens were seen at Ghardaia on 3 October.
In 1993, 2 individuals were seen flying aimlessly in the centre of Taman-
rasset town on 24 April and a third (or one of the previous two again ?)
in the same place the following day.
A single example was seen flying across the road 34km south of Ghar-
daia on | May. The very small entomological collection at the Institut
National de la Protection desVegetaux in Ghardaia contains only three
butterflies — 2 male D. chrysippus and 1 male Pieris rapae Linnaeus,
1758 (identified as P napi !) ; according to an official of the Institute,
D. chrysippus is a regular visitor to the Institute gardens.
Without exception, butterflies seen by the author ın Algeria have been
of the nominotypical form.
TUNISIA : On 4 October 1992, single specimens were seen at Degache
and Tozeur ; the butterfly was very common in an oasis on the southern
outskirts of Douz, about 150 individuals were seen in one afternoon
including seven pairs in copula. Two larvae were noted on (?) Cynan-
chum sp. (Asclepiadaceae). One freshly emerged male f. alcippus was
seen ; the remainder of those seen at Douz and subsequently elsewhere
in Tunisia, were f. chrysippus. On 5 October it was also common (in-
cluding one pair seen in copula) in cultivated areas on the western
outskirts of Gabes ; the following day two were seen flying in Gabes
town centre and singletons seen at Oudre ; in the desert 42km west
of Gabes ; El Guettar and Gafsa. On 7 October it was flying quite
commonly in a dry river bed on the outskirts of Moulares and 3 days
later, three were seen ca. 30km north of Sbeitla.
In 1993, a year when the Spring season was delayed, one D. chrysippus
was seen on the eastern outskirts of Gafsa and another near El Guettar
on 30 March ; on 5 April a single specimen was seen at Douz.
In October 1992, at the Institut National Agronomique de Tunisie
(INAT) in Tunis, a display case containing preserved stages and host-
plant (Pergularia tomentosa) of Danaus chrysippus was seen in the
foyer of the zoology department, apparently prepared by Mon-
sieur Hedi Smiri, an amateur lepidopterist working at the Institut
National de la Recherche Agronomique de Tunisie (INRAT) in Sfax.
On 23 March 1993 the author met Monsieur Smiri who confirmed
that he had been breeding D. chrysippus regularly during the previous
ten years from early stages found locally ; a search failed to find any
209
pupae, the only stage we might have expected to see since the butterfly
had not yet emerged that year.
Present Status
Danaus chrysippus ıs a strongly migratory butterfly, with individuals
often wandering far from established colonies. However, there is strong
evidence that the species has established breeding colonies in Morocco,
Algeria and Tunisia within the last 50 years.
MOROCCO : Danaus chrysippus is clearly well established in the Sous
valley, where it has almost certainly been resident since 1947 or earlier.
It seems likely that the Morocco populations originated from western
Africa ; forms alcippus and alcippoides form a significant percentage
of the population.
Although other Asclepiads are available, particulary in the south of
the country, the only confirmed hostplant utilised by D. chrysippus
in Morocco is Asclepias curassavica, introduced into Africa as a garden
plant from Tropical America (Owen, 1971 : 34). The plant, which grows
as a weed on the edges of fields and irrigation ditches around Tarou-
dannt, seems to be irregularly but routinely destroyed by the local
farmers and this probably has a direct bearing on the fluctuation of
the D. chrysippus population. The botanist J. Gattefossé appears to
have been the first to find curassavica in the Taroudannt area of
Morocco in 1940 (Gattefossé, 1941 : 214).
ALGERIA : It is interesting that the “invasion” of D. che to
the Ghardaia and Touggourt areas recorded by Demaison in 1923
consisted exclusively of f. alcippus, whereas those seen in recent years
have all been (where recorded) of the nominate form. Clearly, the
butterfly has established for some years a breeding population at
Ghardaia and Touggourt and probably elsewhere in that region.
The hostplant(s) in Algeria is not clearly established. However, with
the exception of Tamanrasset where the butterflies were seen only in
the town centre, the asclepiad Pergularia tomentosa was present, usually
commonly, in every locality where the author observed the butterfly.
It seems likely therefore that this is the hostplant, though not necessarily
the only one. Calotropis procera and other Calotropis species (Ascle-
piadaceae) have been suggested as hostplants although, if that were so,
one might reasonably expect D. chrysippus to be more common and
widespread than it is in Algeria, since procera is a very common plant
in the desert. It is a hostplant of D. chrysippus in West Africa (vAN
DER HEYDEN, 1992).
210
TUNISIA : The butterfly is a notable vagrant and the relatively
numerous records from various parts of Tunisia in the last 15 years
may herald a spread in distribution from those areas of southern Tunisia
(Sfax, Gabes, Douz etc.) where it appears to have been resident for
some years. Although occasional individuals of f. alcippus occur, the
resident form ıs apparently nominotypical like that to the west in east
central Algeria.
The primary hostplant in coastal Tunisia, including Sfax, Gabes etc.,
is Pergularia tomentosa, not recorded amongst the more than 50 Ascle-
piadaceae hostplants for D. chrysippus listed by ACKERY & VANE-
WRIGHT (1984 : 210-211). At Douz, the hostplant seems to be a (?)
Cynanchum species ; the number of other possible asclepiad hostplants
in Tunisia makes it quite likely that other species are also utilised.
Acknowledgements
A number of people and organisations provided assistance in the preparation
of this paper ; they are acknowledged here in alphabetical order : Mr. Phil
Ackery, of the Entomology Department, BM(NH), London, allowed access
to the large collections in the BM(NH) ; Madame Hnia Bencheikh, Chef de
la Division de la Coopération, Ministère de l’Agriculture et de la Réforme
Agraire, Rabat, kindly gave authority to collect and study butterflies in
Morocco ; Mr. Louis Cassar, of the University of Malta, provided information
concerning his observations of D. chrysippus in Tunisia ; Herr Hermann-
Joseph Falkenhahn, of Marburg, Germany and Mr. Martin Jacoby, of Cadiz,
Spain, provided some unpublished records and pointed out additional
references ; Dr. Abderrahman Jerraya, of INAT, Tunis, kindly gave authority
to collect and study butterflies in Tunisia ; Dr. George McGavin, of Oxford
University Museum, kindly allowed access to the Hope collection of ento-
mology ; Dr. Jacques Pierre provided details of material held in the Museum
National d’Histoire Naturelle in Paris ; the staff of the Map Room of the Royal
Geographical Society, London, provided assistance in locating Mont Kada-
mellet ; Monsieur Cherif Rachid and Monsieur Hedi Smiri of INRAT, Sfax,
provided helpful information concerning D. chrysippus in Sfax ; Dr. Heinz
Schroeder, of the Senckenberg Museum, Frankfurt-am-Main, provided details
of the Seitz collection ; Monsieur Michel Tarrier, of Malaga kindly translated
the resume ; Mr. Roy Vickery, of the Botany Department, BM(NH), kindly
took the time to identify dried plant specimens. Finally, my thanks to my
wife Julie who drew the map which accompanies this paper.
References/Bibliography
ACKERY, P. R. & VANE-WRIGHT, R. I., 1984. Milkweed Butterflies : Their
cladistics and biology., London.
211
ALBERT, F., GONZALEZ, F. & LENCINA, F., 1980. Un nuevo Lepidöptero para
la fauna ibérica : Danaus chrysippus (L.). SHILAP Revta. lepid. 8 (31),
suppl.
ARREBOLA, F., 1982. Capturas de Danaus chrysippus (L. 1758) en la provencia
de Malaga (Torrox). SHILAP Revta. lepid. 10 (40) : 321-322.
ARREBOLA, F., 1983a. Danaus plexippus (L. 1758) en una colonia de Danaus
chrysippus (L. 1758) en Torrox (Mälaga). SHILAP Revta. lepid. 11
(41) : 77-78.
ARREBOLA, F., 1983b. Capturas de Danaus plexippus (L. 1758) en una colonia
de Danaus chrysippus (L. 1758) en Torrox (Malaga). SHILAP Revta.
lepid. 11 (42) : 131.
BIERMANN, H., 1990. Nachtrag zu “Beitrag zur Tagfalterfauna Sardiniens
(Lep., Rhopalocera und Hesperiidae)”. Atalanta 21 (1/2) : 81-82.
BoIREAU, P., 1985. Danaus chrysippus L. pour la première fois en Corse
(Lep. Nymphalidae). Alexanor 13 (8) : 365-366.
BorrEAu, P., 1988. La plante nourricière de Danaus chrysippus L. en Corse
(Lepidoptera, Nymphalidae). Alexanor 15 (3) :174-175.
BoNETT, G., 1979. Danaus chrysippus in Malta. Entomologist’s Rec. J. Var.
91 (5) : 142-143.
BoRGOo, E., CAssuLo, L., RAINERI, V. & ZiL1, A., 1992. On the expansion of
Danaus chrysippus (Linnaeus, 1758) during the last decade in Italy (Lepi-
doptera, Nymphalidae, Danaidae). Atalanta 23 (3/4) : 407-410.
BRETHERTON, R. F., 1966. A distribution list of the butterflies (Rhopalocera)
of western and southern Europe. Trans. Soc. Br. Ent. 17 (1): 1-194.
BRETHERTON, R.F., 1984. Monarchs on the move — Danaus plexippus (L.)
and D. chrysippus (L.). Proc. Trans. Br. Ent. Nat. Hist. Soc. 17 : 65-66.
Burton, J. F., 1982. Danaus chrysippus L. in Tunisia. Entomologist’s Rec.
J. Var. 94 : 208.
Cassar, L. F., 1983. On the occurrence of Danaus chrysippus in Tunisia
in 1983. Entomologist’s Rec. J. Var. 95 : 249.
Cassar, L. FE, 1989. Danaus chrysippus (L.) distribution spread across the
Maghreb. Occurrences in Tunisia and Algeria (Lepidoptera : Danaidae).
SHILAP Revta. lepid. 17 : 165-166.
CaTANIA, A., 1993a. Breeding the Plain Tiger, Danaus chrysippus. Bull. amat.
Ent. Soc. 52 : 133-134.
CATANIA, A., 1993b. Additional records of the Plain Tiger (Danaus chrysippus),
in Malta. Bull. amat. Ent. Soc. 52 : 134-135.
CHNÉOUR, A., 1953. Présence en Tunisie de Danais chrysippus L. Bull. Soc.
Sci. nat. Tunis. 6 : 123.
CHNEOUR, A., 1954. Macrolepidoptera de Tunisie I, II, Rhopalocera, Grypo-
cera. Bull. Soc. Sci. nat. Tunis. 7 : 207-239. 6 plates.
Cirores, R., 1993. Del nacimiento a la decadencia de una colonia de Danaidae
Bates, 1861 en el sudeste español. SHILAP Revta. lepid. 21 (82):
109-117.
Demaison, L., 1923. Danais chrysippus L. (Lep., Danaidae) en Algérie. Bull.
Soc. ent. Fr. 1923 : 134-135.
212
DEMAISON, L., 1932. Danais chrysippus en Algérie (Lep., Nymphalidae). Bull.
Soc. ent. Fr. 1932 : 92-96.
DEVARENNE, M. P., 1981. Contribution a l’etude des Rhopalocères d’Algérie.
| Alexanor 12 : 167-176.
DEVARENNE, M. P., 1989 (1990). Dix ans de prospections entomologiques
à travers l'Afrique du Nord. (Lepidoptera, Rhopalocera). Alexanor 16:
131-172.
FERNANDEZ, J. M., 1978. Los lepidöpteros diurnos de las Islas Canarias. Enc.
Canaria. Aula cult. Tenerife.
FREINA, J. J. DE, 1981. Danaus chrysippus, ein fester Bestandteil der Lepi-
dopteren fauna Tunisiens (Lep., Danaidae). Ent. Z. Frankf. a. M. 91:
126-128.
GATTEFOSSE, J., 1941. Contribution a la connaissance de la Flore du Maroc
(Fasc. II). Bull. Soc. Hist. nat. Afr. N. 31 (7-9) : 206-220.
Genty, F., 1991. Observation de Danaus chrysippus L. au centre de Marseille
(Bouches-du Rhône) (Lepidoptera Nymphalidae Danainae). Alexanor
17 (1) : 63
GONZALEZ, F., ALBERT, F. & Lencina, F., 1980. Un nuevo lepidöptero para
la fauna iberica: Danaus chrysippus (L.). SHILAP Revta. lepid. 31
(Suppl.) : 1-3.
HaniscH, H., 1992. Einige Tagfalter in Andalusien (Südspanien) im September
1991. Atalanta 23 (1/2) : 85-88, 292-293.
Hanus, E., 1984. Danaus chrysippus Linne a Malaga (Lepidoptera, Nym-
phalidae). Alexanor 13 (6) : 274.
HEYDEN, T. VAN DER, 1992. Vertreter der Gattung Calotropis (Asclepiadaceae)
als Raupenfutterpflanzen von Danaus-Arten (Lepidoptera : Nymphali-
dae, Danainae). Nachr. entomol. Ver. Apollo 13 (3) : 253-257.
Hicains, L. G. & Rırey, N. D., 1970. A field guide to the butterflies of Britain
and Europe. 5th (revised) edition 1983. Collins.
Hünı, M., 1988. Nachweis des Tagfalters Danaus chrysippus L. (Lep., Danai-
dae) in Tunesien. Mitt. schweiz. ent. Ges. 61 : 184.
International Boundary Study No. 99 (1 May 1970). Algeria-Niger boundary ;
prepared by the Office of the Geographer, Directorate for Functional
Research, Bureau of Intelligence and Research, United States Department
of State.
JACK, J., 1985. Première observation de Danaus chrysippus en France conti-
nentale (Lep. Nymphalidae). Alexanor 13 (8) : 367-368.
Jacosy, M., 1993. The Plain tiger butterfly Danaus chrysippus (Linnaeus 1758)
Danaidae. Alectoris, Journal of the Gibraltar Ornithological and Natural
History Society 8 : 63.
JoAnnis, J. DE, 1908. Liste de Lépidoptères recueillis au Sahara par M. KR.
Chudeau en 1905-1906. Bull. Soc. ent. Fr. 1908 : 82-83.
KAGER, S., 1992. Neuer Fundort von Danaus chrysippus Linnaeus 1758 (Lep.,
Danaidae) in Sardinien. Galathea 8 (2) : 49-50.
KING, G., 1991. The Spanish whereabouts of the Monarch and Plain Tiger.
Bull. amat. Ent. Soc. 50 (374) : 48.
213
KUDRNA, O., 1972. On some Moroccan butterflies. Entomologist’s Rec. J. Var.
84 : 267-268.
KURZE, ?., 1984. Mas datos sobre D. chrysippus (L.). SHILAP Revta. lepid.
12 (45) : 84.
LARSEN, T. B., 1977. Il y a trois millénaires et demi que Danaus chrysippus
Linné est connu en Haut Egypte (Lepidoptera, Danaidae). Linn. belg.
7 : 55-58.
LARSEN, T. B., 1986. Tropical butterflies of the Mediterranean. Nota lepid.
9 : 63-77.
LEGLER, O., 1986. Kurzbericht zu: Danaus chrysippus L. in Tunisien (Lep.,
Danaidae). Ent. Z. Frankf. a. M. 96 : 16.
LEMPKE, B. J., 1981. No title [Danaus chrysippus in Tunisia]. Bull. Cercle
Lepid. Belg. 10 (3) : 35.
LENCINA, F., ALBERT, F. & GONZALES, F., 1983. Nuevas citas y observaciones
sobre Danaus chrysippus (L., 1758). SHILAP Revta. lepid. 11 (43):
245-248.
LUQUET, G. & Misia, K., 1989. Premières observations de Danaus chrysippus
(L.) en Albanie. Alexanor 16 : 67-70.
LÜTTGEN, M., 1981. Zum Auftreten von Danaus chrysippus in Tunisien (Lep. :
Danaidae). Ent. Z. Frankf. a. M. 91 : 55-56.
Macias, E., 1984. La D. chrysippus (L.) en España. SHILA P Revta. lepid.
12 (45) : 84.
Man ey, W. B. L., & ALLCARD, H. G., 1970. A field guide to the butterflies
and burnets of Spain. Classey.
MARTINEZ, M. & Moreno, D., 1984. Localizacion de una coloniade Danaus
chrysippus en la provincia de Tarragona. SHILA P Revta. lepid. 12 (47) :
227-229.
Masö, A., 1992. Danaus chrysippus (L.) en Méditerranée occidentale. Migra-
tions dès 1979 jusqu’à 1985. Nota lepid., Suppl. 3 : 53-60.
Maso, A., & GREGORIO, J. J. P. DE, 1984. Migraciö de Danaus chrysippus
a la costa catalana : especie nova per a Catalunya. Treb. Soc. Cat. Lep.
6 : 55-63.
Mateo, J. M., 1991. Danaus chrysippus (L.) en Cadiz. SHILAP Revta. lepid.
73 : 84.
MOokHLEs, A., 1985 (1984). Calendrier des périodes de vol des Rhopalocères
du Maroc — Calendar of the flying period of the Rhopalocera of
Morocco. Nota lepid. 7 (3) : 257-263. Corrigenda 8 (1) : 53-54.
MONSERRAT, V. J. & Montes, C., 1983. Una nueva colonia de Danaus chry-
sippus en la Peninsula Iberica (Lep. Danaidae). Boletin Asoc. esp. Entom.
7 : 324.
MORGENROTH, H., 1993. Beobachtungen zum Vorkommen von Danaus chry-
sippus (Linnaeus, 1758) in Mittelmeerraum und auf La Palma (Lepi-
doptera, Danaidae). Nota lepid. 15 (3/4) : 268-270.
Munoz, B., 1984. Nota sobre la Danaus chrysippus de la provincia de Alicante
y cuenca del Segura. SHILA P Revta. lepid. 12 (47) : 194.
OCHOTORENA, F., 1983. El Danaus chrysippus (L.) en la provencia de Murcia.
SHILAP Revta. lepid. 11 (42) : 124.
214
Owen, D. F., 1971. Tropical Butterflies. Oxford.
Owen, D. F., 1991. Can Danaus chrysippus (L.) (Lepidoptera : Danainae)
establish itself in Europe ? Entomologist’s Gaz. 42 : 37-39.
Owen, D. FE. & WIEMERs, M., 1992. The butterflies of Fuerteventura., Ento-
mologist’s Gaz. 43 : 87-92.
PERALES, J., 1984. Mäs sobre D. chrysippus. SHILAP Revta. lepid. 12 (47):
2 GE
[PEREz, C.,] 1990. African Tiger ! Gibraltar Ornithological and Natural History
Society Newsletter 38 : 7.
PEREZ, C., 1993. A new species of butterfly for Gibraltar : The Plain Tiger
Danaus chrysippus Linnaeus 1758, and the present status of the Danidae
[sic] in the Iberian Peninsula. Alectoris, Journal of the Gibraltar Ornitho-
logical and Natural History Society 8 : 61-62.
PIERRE, J., 1973. Etude du polymorphisme chez Danaus chrysippus L. (Lépi-
doptère Danaïde) : aires de répartition et catégories infraspécifiques en
Afrique. C. R. Acad. Sc. Paris, Série D : 2685-2687.
PIERRE, J., 1974. Polymorphisme et coupes infraspécifiques africaines dans
l'espèce Danaus chrysippus (L.) (Insecta Lepidoptera Danaidae). Bull.
Mus. natn. Hist. nat. Paris, 3rd series, Zoologie 149 (221) : 601-640.
PIERRE, J., 1980. Variation geographique du polymorphisme et du mimétisme
de Danaus chrysippus et d’Hypolimnas misippus en Afrique et en Asie.
C. r. somm. Seanc. Soc. Biogeogr. 486 : 179-187.
Prins, W. O. DE, Kok, N. J. J. & TURELINCKX, F., 1984. A fortnight’s visit
to Morocco in April 1983. Nota lepid. 7 : 71-3.
ROTHSCHILD, L. W., 1913. 7 — Lepidoptera. pp. 109-142, 469, In Hartert, E. :
Expedition to the central western Sahara. Novit. zool. 20 : 1-472.
Runcs, C. E. E., 1945. Contribution à la connaissance des lépidoptères du
Sahara nord-occidental. Eos, Madrid 21 : 7-43.
Runos, C. E. E., 1948 (1950). Notes de Lépidoptèrologie Marocaine (16).
Descriptions et notes critiques. Bull. Soc. Sci. nat. Maroc 28 : 142-166.
SAMRAOUI, B. & BENYACOUB, S., 1991. A large migration of the Plain Tiger,
Danaus chrysippus L., through north-eastern Algeria (Lepidoptera :
Danaidae). Nota lepid. 14 : 99.
SAMRAOUI, B., BENYACOUB, S. & MENAI, R., 1992. Danaus chrysippus (L.)
in Algeria : Possible breeding status and new sightings (Lepidoptera,
Danaidae). Nota lepid. 14 (4) : 348-350.
SCHUURMANS, J., 1981. Een explosie van Danaus chrysippus L. in 1979-1980
(Lepidoptera, Danaidae). Phegea 9 (1) : 71-72.
SEITZ, A., 1907. Gross-Schmetterlinge der Erde, Vol 1, Palearctica. A. Kernen
Verlag, Stuttgart.
SOKOLOFF, P., 1991. Monarchs and Plain Tiger in Spain. Bull. amat. Ent.
Soc. 50 (377) : 191.
STEINIGER, H. & EITSCHBERGER, U., 1989. Nymphalidae, Danaidae, Liby-
theidae, Satyridae und Lycaenidae. Atalanta 20 : 27-37.
STEINIGER, H. & EITSCHBERGER, U., 1990. Nymphalidae, Danaidae, Liby-
theidae, Satyridae und Lycaenidae. Atalanta 21 (3/4) : 163-170.
215
STEINIGER, H. & EITSCHBERGER, U., 1992. Nymphalidae, Danaidae, Liby-
theidae, Satyridae und Lycaenidae. Atalanta 23 (1/2) : 33-43.
Tapia, P., 1982. Danaus chrysippus (L.) y D. plexippus (L.) en la provincia
de Malaga. SHILAP Revta. lepid. 10 (40) : 274.
Tapia, P., 1983a. Los danaidos en España: resumen de observaciones.
SHILA P Revta. lepid. 11 (42) : 145-146.
TaprA, P., 1983b. Observaciones complimentarias sobre los danaidos de Torrox.
SHILA P Revta. lepid. 11 (43) : 256.
TapiA, P., 1984. Nuevas observaciones en la colonia de danaidos de Torrox.
SHILAP Revta. lepid. 12 (45) : 58,62.
TARRIER, M., 1993. Protection des Lépidoptères S.O.S Monarques ! Dernier
acte : l’adieu (Lepidoptera Nymphalidae Danainae). Alexanor 18 (3):
189-192.
TENNENT, W. J., 1993. Notes on some Moroccan butterflies in late summer
1991. Entomologist’s Gaz. 44 : 21-29.
Tormo, J. E., 1985. Danaus chrysippus L. en Alicante. SHILA P Revta. lepid.
ISKOD) AIS}
Torres, J. L., 1981. De nuevo Danaus chrysippus en España. SHILAP Revta.
lepid. 9 (36) : 316.
Tucker, D., 1992. Plain Tigers in Spain. Bull. amat. Ent. Soc. 51 (385) : 248.
VALLETTA, A., 1986. Malta’s share of Tropical Butterflies. Nota lepid. 9:
279-281.
VERDUGO, A., 1984. Cria en captividad de Danaus chrysippus L. y Danaus
plexippus L. procedentes de Torrox (Malaga). SHILAP Revta. lepid.
12 (46) : 153-158.
VERDUGO, A., 1990. Danaidae en la Provincia de Cadiz. SHILAP Revta.
lepid. 70 : 191.
Wyatt, C. W., 1956. Lepidoptera collecting in the Atlas mountains of
Morocco. Lepid. News 10 : 214-222.
ZANON, V., 1922. In Turati, E. & Zanon, V. : Materiali per una faunula lepi-
dopterologica di Cirenaica (con 19 specie e forme nuove). Atti Soc. ital.
Sci. nat. 61 : 132-178.
216
Nota lepid. 17 (3/4) : 217-219 ; 30.1V.1995 ISSN 0342-7536
Further notes on Berberia de Lesse species in North Africa
and confirmation that B. abdelkader Pierret, 1837
and B. lambessanus Staudinger, 1901 are significantly distinct
(Lepidoptera, Satyridae)
John TENNENT
1 Middlewood Close, Fylingthorpe, Whitby, N. Yorkshire YO22 4UD, England
Summary
Subsequent to the author’s previous work on the genus Berberia de Lesse in
NW Africa (Tennent, 1994), in June 1994, a mixed population of B. abdelkader
Pierret and B. lambessanus Staudinger was discovered flying in the Moroccan
High Atlas mountains. A number of male butterflies were secured, all of which
were clearly identifiable as either abdelkader or lambessanus. The probable
hostplant was identified as Stipa parviflora.
Résumé
Après la publication de son article sur le genre Berberia de Lesse en Afrique
du Nord occidentale (Tennent, 1994), l’auteur a découvert en juin 1994 une
population mixte de B. abdelkader Pierret et B. lambessanus Staudinger qui
volaient ensemble dans le Haut-Atlas marocain. Il a capturé une série de mâles
dont tous étaient nettement identifiables comme abdelkader ou lambessanus.
La plante nourricière des chenilles a été déterminée : Stipa parviflora.
Zusammenfassung
Nach der Publikation einer früheren Arbeit über Berberia de Lesse in Nord-
westafrika (Tennent, 1994) wurde im Juni 1994 im marokkanischen Hohen
Atlas eine gemischte Population von B. abdelkader Pierret und B. lambes-
sanus Staudinger entdeckt. Alle gefangenen Männchen ließen sich eindeutig
als abdelkader oder lambessanus bestimmen. Futterpflanze ist vermutlich Stipa
parviflora.
This short paper should be considered in conjunction with the author’s
previous work on Berberia de Lesse (TENNENT, 1994). Since prepa-
ring that paper in 1992, further lengthy visits have been made to the
Maghreb, particularly Morocco, and on 8/9 June 1994, at 2150-
JAY
2250 metres on the shores of Lac Tislit (Imilchil) in the Moroccan
High Atlas mountains, a mixed population of Berberia abdelkader
abdelkader Pierret and B. lambessanus Staudinger was discovered.
In raising B. lambessanus to specific status, the author ventured the
opinion (TENNENT, 1994 : 314) that B. abdelkader and B. lambessanus
were unlikely to be found flying together because of (presumed) dif-
fering biological requirements. The Tislit biotope consists primarily of
extensive stands of Stipa parviflora grass (det. Mr. Roy Vickery, Dept.
of Botany, BM(NH)), which presumably serves as the hostplant for
both species. Neither species was particularly common. Most individuals
were seen on a steep rocky slope where pursuit was difficult and in
two days a total of 24 males and 1 female were secured ; collection was
arbitrary, many more were seen than taken and it proved impossible
to accurately determine identity in flight. The males comprised 20 (83%)
typical abdelkader and 4 (17%) typical lambessanus ; the single female
was tentatively placed as B. abdelkader.
There are two possible explanations for the discovery of abdelkader
and lambessanus flying together. Firstly, that abdelkader is a dimorphic
(polymorphic if nelvai Seitz and taghzefti Wyatt are included) species
or secondly, since by definition no two ’subspecies’ of the same form
may fly together, that two separate species are involved. The first
explanation may reasonably be discarded, since all other known popu-
lations are almost exclusively of one “form” or the other and their
respective hostplants are different (TENNENT, 1994 : 303, 314). Having
said that, it is true that Jambessanus-like forms occur rarely in abdel-
kader populations, and very infrequent specimens of lambessanus
transitional to abdelkader were noted by the author in 1993 in the
western Rif mountains and on Djebel Aourach, NE of the Dades gorge ;
a circumstance not unexpected in such closely related taxa.
Of the Lac Tislit material examined, most were fresh and all males
were Clearly of one form or the other, with the upperside ground colour
of lambessanus very dark brown, almost black and that of abdelkader
dark chocolate-brown with the forewing apical ocellus ringed completely
or partly by pale scales. Females of both species are generally difficult
to separate. On balance, abdelkader from Tislit had a dark overall
appearance compared with other populations, although many indivi-
duals were indistinguishable from those taken by the author in several
localities in Algeria.
Apart from the obvious interest in finding abdelkader and lambes-
sanus flying together, the occurrence of typical abdelkader in southern
Morocco, some 380 km SW of the nearest previously known population,
218
is equally interesting and raises further questions as to the status of
B. abdelkader nelvai and B. abdelkader taghzefti. One might have ex-
pected abdelkader flying in the northern High Atlas to be 2. a. taghzefti,
the nearest known population of which flies on the Tizi-n-Tairhemt
in the extreme NE of that range (wrongly recorded by the author as
being in the Middle Atlas mountains (TENNENT, 1994: 308, 309)),
a little more than 100 km NE of Lac Tislit. In preparing the previous
paper, the author believed that a case may be made for considering
nelvai a good species, based on its distinctive appearance, unusually
late flight period, apparently clear geographical parameters and the
fact that typical abdelkader flies both to the west and (from the small
number of specimens in the BM(NH) collection in London from the
Gharyan hills in W Libya) to the east. Although the evidence was
deemed inconclusive, finding typical abdelkader in S Morocco lends
support to this view since nelvai and taghzefti are in effect surrounded
both by typical abdelkader and lambessanus.
Clearly, still more work needs to be done to finally resolve this inte-
resting problem ; sadly the declaration by the FIS in September 1993
that foreigners in Algeria were considered a legitimate target, and
the subsequent killing of many Europeans there, makes travel in that
country in the foreseeable future impossible.
Reference
TENNENT, W. J., 1994. The Berberia abdelkader (Pierret, 1837) enigma; a
review of named forms ; comments ; a solution offered (Lepidoptera :
Satyridae). Nota lepid. 16 (3/4) : 295-320.
219
Nota lepid. 17 (3/4) : 220 ; 30.1V.1995 ISSN 0342-7536
Short communication — Kurze Mitteilung — En bref
Pempeliella ornatella (D. & S.) et Actinotia hyperici (D. & S.), espèces
nouvelles pour la Seine Maritime (Normandie, France) (Lepidoptera :
Pyralidae, Pterophoridae, Noctuidae)
B. DARDENNE* & E. DROUET**
* 9, allée Darwin, F-76230 Boisguillaume, France
** 9, boulevard Saint Simon, F-13009 Marseille, France
Dans la nuit du 26 au 27 juin 1992, nous avons installé notre lampe à vapeur
de mercure au pied d’une colline de sable (dune fossile ?) située à l'Ouest
de Notre Dame de Gravenchon (Seine Maritime), le long de la route D 928
(UTM CQ28). Les pentes sont occupées par une garenne dont la végétation
diffère notablement des biotopes des coteaux calcaires de la région et sont
couronnées de taillis de Prunus, Crataegus et Salix. Notre observation s’est
déroulée dans la deuxième partie de la nuit de 0h45 à 2h30 (heure légale).
Quelques microlépidoptères se sont ajoutées aux 60 espèces de macrolépi-
doptères observées et parmi eux Pempeliella ornatella (D. & S.) qui était
demeurée inconnue de Seine Maritime. D’après le catalogue de L. LHOMME
(1935-1949 : 21), la chenille de cette pyrale se nourrit aux dépens de Thymus
serpyllum, plante répandue dans le lieu visité (Thymus drucei en Angleterre ;
GOATER, 1986). Nous remercions le Dr. M. Laine pour la détermination de
ce Phycitinae, qu’il avait signalé de l’Eure dans son catalogue (1986) d’après
une capture de L. Dupont.
Nous avons également pu capturer un exemplaire mâle très frais de Actinotia
hyperici (D. & S.), Noctuidae nouvelle pour la Seine Maritime et connue
depuis peu dans l’Eure (SAUVAGERE, 1989). La localité de Notre Dame de
Gravenchon paraît être la plus septentrionale pour cette espèce dans le Nord
Ouest de la France.
Ce biotope recèle également un Ptérophore peu signalé en Normandie:
Stenoptilia zophodactyla (Dup.) ; 2 ex. le 27-VI-1992 et 2 ex. le 21-VIII-1993.
Bibliographie
GOATER, B., 1986. British pyralid moths. A guide to their identification. 175 pp. Harley
Books, Colchester.
LHOMME, L., 1935-1949. Catalogue des Lépidoptères de France et de Belgique. Vol. II.
Microlépidoptères, 1% partie. 487 pp. Le Carriol, par Douelle (Lot).
SAUVAGERE, M., 1989. Les Noctuidae dans le département de l’Eure. Bull. liais Assoc.
entom. Evreux 21.
220
Nota lepid. 17 (3/4) : 221-224 ; 30.1V.1995 ISSN 0342-7536
Vol 17 — 1994
Dates of publication — Publikationsdaten — Dates de publication
Supplement 5: 31.X.1994 pp. 1-128
17 (1/2): 30.X1.1994 pp. 1-104
17 (3/4): 30.1V.1995 pp. 105-224
Contents — Inhalt — Sommaire
No.
BALLETTO, E. — cf. LATTES, A.
BARASCUD, B. — cf. NEVE, G.
BIESENBAUM, W. — cf. KAILA,L.
CassuLo, L. — cf. LATTES, A.
CIFUENTES, J. — cf. VIEJO, J. L.
Da.vAsta, U. : The genitalia of Eudasychira Möschler ; morpho-
losyzand evolution (My MANEAIAAC) 11... ce crrmcsememneseocreee SS
DARDENNE, B. & DROUET, E.: Pempeliella ornatella (D. & S.)
et Actinotia hyperici (D. & S.), especes nouvelles pour la
Seine Maritime (Normandie, France) (Pyralidae, Pteropho-
MAN OC AG) Atte OSE MR ne cel ceacoeut onshwenceasteoosse 3/4
DROUET, E. — cf. DARDENNE, B.
FIBIGER, M. : Anumeta arax sp. n. from Turkish Armenia (Noctui-
PER I COCA) RIRE ces come 3/4
FIEDLER, K. & SAAM, C. : Does ant-attendance influence develop-
ment in 5 European Lycaenidae butterfly species ? ............... 12
FIEDLER, K. & SCHURIAN, K. G. : Oviposition behaviour in Lycae-
HORS MCN (IEVCACMIG AG) „een escroc aus roses oecu sense e (2
HAUSMANN, A. : Morphology and taxonomy of the species belon-
ging to the genus Myinodes Meyrick, 1892 (Geometridae) … 1/2
HIRNEISEN, N. — cf. KRISTAL, P. M.
KAILA, L. & BIESENBAUM, W. : Redescription of Elachista differens
Basenti 1978 (Blachisidae) n.eeeeneessnaeeeeleesenzesenn 3/4
Koronen, S. : The butterfly fauna of the eastern coast of Hudson
Bay and James Bay (Canada), with particular reference to
Pew Olaketicnclemiemt Aare ee meets SS
Kozıov, M. V. : Geographical variation in wing pattern of Micro-
pterix maschukella Alphéraky, 1876 (Micropterigidae) ........ 12
KRISTAL, P. M., HIRNEISEN, N, & STEINER, A. : Eine weitere ende-
mische Hepialide aus den Alpen : Pharmacis claudiae sp. n.
(J IG] STRUTS BYE) rere ew. aoe meaner een 2
89
220
31
13
221
LARSEN, T. B.: Aricia crassipuncta bassoni Larsen, 1974 from
Lebanon raised to species rank (Lycaenidae) .......................
LATTES, A. — cf. Mensı, P.
LATTES, A., Mensı, P., CAssuLo, L. & BALLETTO, E. : Genotypic
variability in western European members of the Erebia tyn-
darus species group (Satyridac) Ae PR RER nl
Martin, J. — cf. VIEJO, J. L.
Martin, J. — cf. MUNGUIRA, M. L.
Mensı, P. — cf. LATTES, A.
MensI, P., LATTES, A., CAssuLo, L. & BALLETTO, E. : Biochemical
taxonomy and evolutionary relationships in Polyommatus
(subgenus Agrodiaetus) (Lycaenidae) ..................................
MikkoLA, K.: Inferences about the function of genitalia in the
genus Eupithecia, with description of a new organ (Geome-
thidae)t ms. sans BS A eee
Muncurra, M. L., MARTIN, J. & PÉREZ-VALIENTE, M. : Karyo-
logy and distribution as tools in the taxonomy of Iberian
Agrodiaeiusputtertlies 5.50 ee eee ee
NÈVE, G., BARASCUD, B. & WinpiG, J. J.: Population biology
of Proclossiana eunomia (Nymphalidae) : Preliminary results
on morphometric and allozyme variation in Belgian and
EirenchPopulations esse. BORN IR ME IE ee
Owen, D. FE. — cf. SMITH, D. A. S.
PATOCKA, J. : Die Puppen der Tribus Cyclophorini Mitteleuropas
(Geometridae). me ee re A
PELZER, A.: Illustrierter Bestimmungsschlüssel für die Präimagi-
nalstadien der Schwärmer Europas und Nordafrikas (Sphin-
sıdae), Teil te Pilamveny anc. EST ee TE RE RE
PEREZ-VALIENTE, M. — cf. MunGUIRA, M. L.
PORTER, A., SCHNEIDER, R. & PRICE, B. : Wing pattern and allo-
zyme relationships in the Coenonympha arcania group,
emphasising the C. gardetta-darwiniana contact area at Bell-
wald; Switzerland (Satyaidae) 22 a ee eee
PRICE, B. — cf. PORTER, A.
Rıepı, T.: Une nouvelle espèce européenne du genre Pancalia
Stephens (Cosmopterigidae, Antequerinae) .......................…..
SAAM, C. — cf. FIEDLER, K.
SCHNEIDER, R. — cf. PORTER, A.
SCHURIAN, K. G. — cf. FIEDLER, K.
SMITH, D. A. S. & Owen, D. F.: Inter-island variation in the
butterfly Hipparchia (Pseudotergumia) wyssii (Christ, 1889)
inthe CanamyAlslands/(Satymnao) er. nern
222
3/4
S5
S5
SS)
3/4
S35
1/2
3/4
3/4
12
121
93
105
73
125
73
141
155
87
175
Spitzer, K. : Biogeographical and ecological determinants of the
central European peat bog Lepidoptera: The habitat island
approach Ol" COMSEEVALtIOMM ar. LI Rene ete eraarereuie nee à 55
STEINER, A. — cf. KRISTAL, P. M.
TARMANN, G. : New ideas on the status of the zygaenid subfamily
Brocsidmaei(Zygaenidae). or. Tirer cn S5
TENNENT, J.: Danaus chrysippus Linnaeus, 1758; a review of
records and present status in the Maghreb countries of
Morocco, Algeria and Tunisia (Danainae) ........................... 3/4
TENNENT, J. : Further notes on Berberia de Lesse species in North
Africa and confirmation that B. abdelkader Pierret, 1837 and
B. lambessanus Staudinger, 1901 are significantly distinct
(CSG CCIE) ite Re ee ae ee Se ad 3/4
TRAUGOTT-OLSEN, E. : The use of wing venation as an additional
aid in the identification of species of Elachista, as demon-
strated by a study of the dispunctella (Duponchel, 1843)
complex (E lachistid ae) EE nenne S5
Vieso, J. L., Ciruentes, J. & MARTIN, J.: Variation saisonnière
des peuplements de macrohétérocéres en Navarre ................ S5
WARING, P. : Conserving Britain’s rarest moths ............................ S5
WINDIG, J. J. — cf. NEVE, G.
Obituary — Nekrolog — Necrologie
Ines Eberhard JAGKH f (1902-1993)... me 1/2
Book reviews — Buchbesprechungen — Analyses
Coleophoridae dell’Area Irano-Anatolica e regioni limitrofe ......... 12
Guide pour l’identification des espèces françaises du genre Zygaena. 1/2
Index of economically important Lepidoptera .............................. 12
IEanser mochs;otthe Eondenarean..aunesscnlesssessoneesschkesenese 12
Oecophorine Genera of Australia. I. The Wingia Group 1/2
Oekologische Untersuchungen im Unterengadin .......................... 3/4
IN Ob ES ER Rd nn 12
1/2
3/4
45
115
201
217
19
13
51
93
120
223
New taxa described in Vol. 17
Neue Taxa in Band 17 beschrieben
Nouveaux taxa decrits dans le Vol. 17
HEPIALIDAE
Pharmacis claudiae Kristal & Hirneisen, 1994 ............................. 1/2
COSMOPTERIGIDAE
Pancatia baldizzonella Riedl, OA PP 12
GEOMETRIDAE
Myinodes interpunctaria atlantica Hausmann, 1994 ..................... 1/2
Myinodes constantina Hausmann, 1994 ....................................... 1/2.
Myinodes shohami Hausmann, 1994 ........................................... 1/2
NOCTUIDAE
ANUIMECLG ONG Xa IDIC cts 99 Sea ee ee 3/4
56
88
Copyright © Societas Europaea Lepidopterologica. 1995 ISSN 0342-7536
Printed by Imprimerie Universa Sprl, 24 Hoenderstraat. B-9230 Wetteren, Belgium
All rights reserved. No part of this Journal may be reproduced or transmitted in any form
or by any means, electronic or mechanical including photocopying, recording or any other
information storage and retrieval system, without permission in writing from the Publisher.
Authors are responsible for the contents of their articles.
224
esident : Michael Fiir |
-: Manfred er
Editor : Steven E. Whitebread |
is ph Häuser ‚Dr. Peter ln |
‘Sputenka, Di. Pa ul Waring —
Handelsgesellschaft
ws
b ia ofo rm Schweiger & Meiser GmbH & Co. KG
Bittimairstrasse 4
8070 INGOLSTADT/DO.
Telefon (0841) 75583
IHR SPEZIALIST FUR ENTOMOLOGIEBEDARF !
Wir liefern seit vielen Jahren zu günstigen Preisen eine große Auswahl von
Utensilien für den Fach- und Hobbyentomologen.
Für die Zucht:
Zuchtkästen, Puppenkästen, Infrarotstrahler, Zuchtbehälter etc.
Für den Tag- und Nachtfang:
Netze, Gläser, Stromaggregate, Transportkästen, Lampen und Leucht-
röhren etc.
Für das Präparieren:
Insektennadeln, Spannbretter, Präparierbesteck, Kopflupen, Chemika-
lien etc.
Für die Sammlung:
Insektenkästen in allen Größen mit der bewährten Moll- oder Schaum-
stoffeinlage, Insektenschränke aller Art
Ein umfangreiches Angebot an neuer und antiquarischer Literatur ist vorhanden.
Schreiben Sie uns oder rufen Sie uns an, wir beraten Sie gern. Unser Katalog steht
Ihnen kostenlos zur Verfügung. Als SEL-Mitglied erhalten Sie bei uns auf sämtliche
Artikel (außer Bücher) 5% Rabatt.
ich ——
Bipferm
EN HSONIAN
N
aan 2 7 97
LIBRARIES
NOTA % K
_ lepidopterologica
VIII. Congress of European Lepidopterology
Helsinki 19-23.1V.1992
Proceedings
Verhandlungsberichte
Comptes-rendus
Supplement No.5 1994 ISSN 0342-7536
NOTA LEPIDOPTEROLOGICA
A quarterly journal devoted to Palaearctic lepidopterology
Published by Societas Europaea Lepidopterologica
Manuscripts should be sent to the editor : Steven E. Whitebread,
Maispracherstrasse 5l, CH-4312 Magden, Switzerland
Instructions for authors
Kopien dieser Hinweise in deutscher Sprache sind beim Redaktor erhältlich.
Copies de ces instructions en français sont disponibles auprès de l’editeur.
All manuscripts should be typed with double spacing and wide margins, and submitted
in triplicate. They should not exceed 20 typed pages (including tables). All pages should
be numbered and show the author’s name at the top right-hand corner. Do not
hyphenate words at the right-hand margin. Current issues of the journal should be
checked for style and format.
Legends to figures and plates should be typed on a separate sheet and placed after
the list of references. Line drawings should be in black waterproof ink. When adding
numbers and letters any final reduction in size should be allowed for. Photographs
should be glossy positive prints. Coloured slides can only be accepted for colour plates
and these can only be published at the author’s expense.
Publication languages are English, French and German. The editors reserve the right
to make minor textual corrections that do not alter the author’s meaning. Every effort
should be made to carry out major linguistic corrections before submitting the
manuscript, otherwise considerable delays can be expected.
All manuscripts exceeding three typed pages must include a summary of no more
than 200 words. It is strongly recommended to add a translation of the summary
in at least one other European language.
The first mention of any organism should include the full scientific name with the
author and year of description. New descriptions must conform with the current edition
of the International Code of Zoological Nomenclature. We strongly urge deposition
of types in major museums and all type depositions must be cited.
All papers will be read by the editors and submitted for review to two referees.
Manuscripts not conforming with these instructions may be returned.
Twenty-five reprints of each article will be supplied free of charge to the first author.
Additional copies may be ordered at extra cost.
Copyright © Societas Europaea Lepidopterologica, 1994 ISSN 0342-7536
Printed by Imprimerie Universa Sprl, 24 Hoenderstraat. B-9230 Wetteren, Belgium
All rights reserved. No part of this Journal may be reproduced or transmitted in any form
or by any means, electronic or mechanical including photocopying, recording or any other
information storage and retrieval system, without permission in writing from the Publisher.
Authors are responsible for the contents of their articles.
Nota lepidopterologica
Supplement No. 5 Basel, 31.X.1994 ISSN 0342-7536
Editor : Steven E. Whitebread, Maispracherstrasse 51, CH-4312 Magden,
Switzerland. FAX : +41-61-8412238.
Assistant Editors : Emmanuel de Bros (Binningen, CH)
PD Dr. Andreas Erhardt (Binningen, CH)
PD Dr. Hansjürg Geiger (Berne, CH)
Contents — Inhalt — Sommaire
Proceedings of the 8th European Congress of Lepidopterology, Helsinki,
Finland, 19th - 23rd April 1992
@oneress photopraplis 78... 44, 50, 88
ist Ol other presentations aNdgMOSlems EEE AT...
Biswondelesates SR A Saige Seawag on escneweceauends
Biology and ecology
Neve, G., BARASCUD, B. & WinpicG, J. J. : Population biology of Pro-
clossiana eunomia (Nymphalidae): Preliminary results on morpho-
metric and allozyme variation in Belgian and French populations .....
Vieso, J. L., CIFUENTES, J. & MARTIN, J. : Variation saisonnière des peu-
plements de macrohétérocéresteniNavarre Pen... nennen
Conservation of Lepidoptera
SPITZER, K. : Biogeographical and ecological determinants of the central
European peat bog Lepidoptera : The habitat island approach of con-
SERVICES SEILER, DM ARE OTIC, el CICEI OORT iE fie. DENE,
Faunistics and biogeography
KOPONEN, S.: The butterfly fauna of the eastern coast of Hudson Bay
and James Bay (Canada), with particular reference to the Holarctic
SIEHDETS TE AB Be Rn Me See otic oo Re ny rane ae
Morphology
Mikxo La, K.: Inferences about the function of genitalia in the genus
Eupithecia, with description of a new organ (Geometridae) ...............
TRAUGOTT-OLSEN, E. : The use of wing venation as an additional aid in
the identification of species of Elachista, as demonstrated by a study of
the dispunctella (Duponchel, 1843) complex (Elachistidae) ...............
124
13
45
Si
65
73
Systematics, genetics and evolution
DALLASTA, U.: The genitalia of Eudasychira Möschler ; morphology
and evolution (Lymantriidac)* 2.2.2.2 ss D NE Rs
LATTES, A., MENsI, P., CAssuLo, L. & BALLETTO, E. : Genotypic varia-
bility in western European members of the Erebia tyndarus species
group (Satyridae) i... es ee eee DR
Mensı, P., LATTES, A., CAssuLo, L. & BALLETTO, E.: Biochemical
taxonomy and evolutionary relationships in Polyommatus (subgenus
Agrodiaetus ) (Lycaenidae) ne Pn aes Se ee CIDRE
TARMANN, G. : New ideas on the status of the zygaenid subfamily Pro-
eridinae (Zysaenidac) 2.2 Sk 2 see eee
SEL We’ = VIII
European a
O
Lepidopterology
Helsinki April 19-23, 1992
Organised by the Finnish Lepidopterological Society
for Societas Europaea Lepidopterologica
Organising Committee :
89
93
105
Kauri Mikkola (Chairman), Antti Aalto (Chairman of the Finnish Lepidoptero-
logical Society), Anders Albrecht, Laura Kaila, Risto Martikainen (Treasurer)
and Maia Lepistö (Secretary)
Secretary of Congress : Maya Lepist6
Membership Secretary : Vesa Varis
Museum Guide : Jukka Jalava
Ladies’ Program Organiser : Maarit Louekari-Mikkola
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 3-12 ; 31.X.1994 ISSN 0342-7536
Population biology of Proclossiana eunomia :
Preliminary results on morphometric and allozyme
variation in Belgian and French populations
(Lepidoptera, Nymphalidae)
Gabriel NEve*, Bernard BARASCUD** & Jack J. Winpic***
* Unité d’Ecologie et de Biogéographie, Université Catholique de Louvain, Croix du Sud 5,
B-1348 Louvain-la-Neuve, Belgium.
** Laboratoire de Systématique Evolutive, Université de Provence, 3 Place Victor Hugo, F-13 331
Marseille Cédex, France.
*** Department Biologie, Universitaire Instelling Antwerpen, Universiteitsplein 1, B-2610 Wilrijk,
Belgium.
Summary
Samples of Proclossiana eunomia (Esper, 1799) from Belgium and France were
analysed by protein electrophoresis and morphometrics. The population from
Morvan, central France, where the species was introduced from the Ardennes,
is morphologically distinct from its mother population and has lost some
alleles, due to a foundation effect. The within-region difference is usually small
compared with between-region differences. The validity of the Pyrennean sub-
species P eunomia ceretanensis Deslandes, 1930 is confirmed.
Resume
Des échantillons de Proclossiana eunomia (Esper, 1799) de France et de Bel-
gique ont été analysés par morphométrie et électrophorèse des protéines. La
population du Morvan, où l’espèce a été introduite depuis les Ardennes, est
morphologiquement distincte et a perdu des allèles suite à un effet de fondation.
Les différences au sein des régions sont en général plus faibles que celles entre
les régions. La validité de la sous-espèce pyrénéenne P eunomia ceretanensis
Deslandes, 1930 est confirmée.
In Belgium, 81 of the 120 native species of Rhopalocera have shown a
significant shrinking of their distribution this century (BAGUETTE et al., 1992).
More than half of the Belgian butterfly species are threatened, being in the
“endangered”, “vulnerable”, “rare” or “indetermined” IUCN classes of vulnera-
bility (BAGUETTE & GoFFART, 1991). The species more prone to decline are
those with strong ecological requirements, and often are linked with specific
semi-natural habitats. To address concerns about the future of the declining
3
species, one needs information, not only of their distribution and habitat
requirements, but also of their genetic diversity (FRANKEL & SouL£, 1980 ;
ALLENDORF, 1983 ; TEMPLETON, 1991).
In order to investigate how this distribution decline may affect the survival
of the concerned species, genetic studies have begun independently in France
and in Belgium in 1991 on Proclossiana eunomia Esper. This species has
a very restricted habitat in western Europe : it is found in bogs and unfertilised
wet meadows where its only local host plant Polygonum bistorta grows
(HACKRAY & SARLET, 1969 ; DEscimon, 1976). The patchiness of this habitat
may be seen at different scales, being due both to natural and human factors.
Large formerly suitable areas have frequently been fragmented by spruce (Picea
abies) plantations or by intensively managed and fertilised pasture lands. The
local abundance of P eunomia and its strong habitat requirements make this
species a good model to investigate how natural and man-made patchiness
may influence the genetic structure of natural populations.
How genetically distinct different populations are, and how organised this
variation is, are the main themes of our research. The population genetics
of P eunomia is currently being studied at different levels: local (within
populations, within localities), regional (within regions), and between regions
(within the European range of the species). Moreover, as new populations
were founded in Morvan in 1970 and 1973, in an area where P eunomia
was hitherto absent (DEscimon, 1976), the genetics of these populations are
investigated and compared with the population of origin of the founder
individuals.
Methods
P eunomia specimens were collected in 1991 in the French Pyrenees, in the
two localites where it had been introduced in Morvan (central France), in
various localities in Gaume (Southern Belgium) and in the Belgian and French
Ardennes, including the locality of origin of the individuals which founded
the Morvan populations (Fig. 1). A sample of 206 specimens collected in
Morvan in 1977, and in the French Ardennes and the Pyrenees prior to 1991
by H. Descimon was added to the morphometric analysis.
Specimens collected in the field were deep frozen in liquid nitrogen (-196°C)
as soon as possible, and kept so until analysis. When thawed in the laboratory,
the wings were kept for morphometric analysis, and the body was squashed
in a pH 7.1 buffer (15% (w/v) sucrose, 50 mM Tris/HCl pH 7.1, 0.5% (v/v)
Triton X-100, drop of Bromophenol Blue as runner marker; WYNNE &
Brookes, 1992). Barascud followed the electrophoresis techniques described
by PASTEUR et al. (1987), using horizontal starch gel electrophoresis, and Neve
used cellulose acetate electrophoresis methods following RICHARDSON et al.
(1986) and Wynne et al. (1992). Among various allozyme loci studied, the
following proved to be polymorphic in the scored populations of P eunomia :
Phosphogiucose isomerase (PGI, EC 5.3.1.9), amino aspartate transaminase
4
Fig. 1. Distribution of P eunomia samples.
(AAT, EC 2.6.1.1), 6-phosphogluconate deshydrogenase (6PGD, EC 1.1.1.44)
and phosphoglucomutase (PGM, EC 2.7.5.1).
Morphometric studies of French specimens were carried out manually, using
a binocular microscope and an internal ruler to measure linear dimensions
of cells and spots on the wings (Fig. 2, Table 1). For Belgian specimens, an
image analyser (description and use described in Winp1G, 1991) was used to
take measurements of surface characters (Fig. 2, Table 1). In both cases a
principal component analysis was performed on a first data set where 44 and
56 characters respectively were measured on a subsample ; then a set of as
few correlated characters as possible was chosen to be measured on all
specimens. On the whole, 152 French and 297 Belgian specimens were collected
in 1991, of which only a portion has been analysed so far.
Upperside Underside
Fig. 2. Wing morphometric characters.
Results
The morphometric analysis shows that regions within France are well differen-
tiated. The two populations founded in Morvan (central France) with females
from the French Ardennes in the early 1970s, already show a significant diffe-
6
Table 1
List of brief descriptions of morphometric characters measured.
Nomenclature of veins and cells follows Hiccins & RiILey (1983)
French specimens
Forewing
. Maximum width of basal black spot
Maximum width of discoidal black spot
Distance between the outer edge of the second discoidal spot and the inner
edge of the median vein
. Width of central black spot in s4
Distance between the connections of veins 3 and 4 and the basal edge of the
spot in s3
Diameter of outer spot in s4
. Diameter of outer spot in slb
Seo NOR
Hindwing
. Diameter of outer spot in s2
Length of light “cell” in sic
Distance between the connections of veins 6 and 7 and the inner side of the
discal spot in s6
. Length of submarginal light space in s4
“Length” of hind-wing
. Outer diameter of eyespot in s6
. Inner diameter of eyespot in s6
Zeon STE
Belgian specimens
Upperside of the forewing
1. Total black surface
2. Total orange surface
3. Area of discoidal black spot
4. Area of outer spot in s4
Underside of the hindwing
5. Total black surface
6. Total orange and white surface
7. Contrast index (contrast area x contrast level) of the spot in the orange discal
spot of the cell
8. Area of black outer margin of the orange spot of in s5
9. Area of submarginal light space in s4
rence from specimens of their area of origin (MANOVA analysis, F1444 = 6.36,
P < 0.001 for 1977 specimens, Fj4.157 = 6.60, P < 0.001 for 1991 specimens).
In order to maximise the distance between the regions, a canonical discriminant
analysis was performed on the two data sets (Figs 3, 4). In France, on the
first two canonical axes, a marked difference was found between the Pyrenean
individuals and those from other regions. This result confirms the validity
of the Pyrenean subspecies P eunomia ceretanensis Deslandes, 1930. The
populations from Morvan were only slightly different from Ardennean popu-
lations in 1977, but seem more so in 1991 (Fig. 3). Belgian populations are
if
3.50
Pyrenees
150 78
-0.50
-2.50
Ardennes
-4.50
-5.50 -3.25 -1.00 1.25 3.50
a French
Ardennes
2.25 Pyrenees
0.50
-1.25
Morvan II
-3.00
-6.00 -3.38 -0.75 1.88 4.50
Fig. 3. Canonical discriminant analysis on morphometric characters of French specimens
sampled in 1977 (Fig. 3a) and in 1991 (Fig. 3b), projection on the first two axes ; the
ellipses show the 80% distribution of the samples of each group. Symbols : Pyrenees =
closed squares ; French Ardennes = closed circles ; Saint Brisson (Morvan I) = open
circles ; Lavault de Frétoy (Morvan II) = open triangles.
3.50
2.00
0.50
-1.00
-2.50
-3.50 -1.62 0.25 2.12 4.00
Figure 4. Canonical discriminant analysis on morphometric characters of Belgian
specimens sampled in 1991, projection on the first two axes ; the ellipses show the 80%
distribution of the samples of each group. Symbols : Graide (West) = closed squares ;
Süre valley (Central) = closed circles ; Plateau des Tailles and Liège Province (North)
localities = open circles ; Gaume (South) = open triangles.
Table 2
Frequency of allozyme in French populations, as all studied loci are diallelic,
only the frequency of the commonest allele is given.
In each sample 20 individuals were scored
Frequency of commonest allele
Locality AAT PGI 6PGD
Ardennes Pont Collin
Morvan Saint Brisson
Lavault de Frétoy
Pyrenees Porta
La Tour Cerdane
Porté
less well differentiated ; they might however display a slight North-South
morphological cline (Fig. 4).
Allozyme analysis also confirms the validity of P e. ceretanensis, as populations
from the Pyrenees show significant differences with that from the Ardennes
(Table 2). In the introduced populations of Morvan, 6PGD has lost the
polymorphism present in the mother population at Pont Collin, Ardennes,
indicating that the Morvan populations have suffered from a bottleneck effect.
Within Belgian populations, very low genetic differences have been observed
so far, as the percentage of the commonest PGM locus varies from 72% to
81% in the 4 regions, and the difference is not significant. Too few data on
other loci have been so far collected to allow any further discussion of this
genetic data.
Discussion
The preliminary results of this ongoing study suggest that P eunomia popu-
lations show high inter-region variation. This is not surprising, as it has been
shown for other species with a disjunct distribution (e.g. Parnassius mnemosyne
in South France, NAPOLITANO et al., 1988). However, local differentiation
and genetic shift of introduced populations vs their mother population does
not rule out the possibility of selection, which has been proven to occur on the
PGM locus in Maniola jurtina (MASETTI & SCALI, 1976), but CARTER &
WATT (1988) have shown that PGM heterozygosity of Colias philodice eriphyle
varies with the date of sampling, which suggests a more complicated picture
of adaptation of the different PGM alleles to temperature. The morphometric
differentiation of the Morvan populations suggests selection pressure, pheno-
typic plasticity, or both.
Many questions may be raised at this stage in our study. In order to solve
at least some of them we plan further work on P eunomia, which will involve
(1) pooling both electrophoresis and morphometric data by using the same
or compatible methods of investigation in both French and Belgian labor-
atories ; (2) the collection of more specimens to allow detailed hierarchical
analysis of both morphometric and biochemical characters ; (3) the study of
further enzymes, in order to validate the estimation of genetic distances
between populations and the use of Wright’s F statistics ; (4) various DNA
markers will also be tested, to complement the electrophoresis results ; (5) 2
eunomia from other regions (e.g. Scandinavia, Bulgaria) will be studied, to
investigate its global differentiation and its adaptations to various habitats ;
it has been reported to feed on Polygonum bistorta in Belgium and France,
on Viola palustris and possibly Polygonum viviparum in Scandinavia (HENRIK-
SEN & KREUTZER, 1982) and on Vaccinium uliginosum and Andromeda poli-
folia in Finland (MARTTILA et al. 1992).
10
Acknowledgements
Special capture licences were given by the “Ministere de la Region Wallonne”
(Belgium) and the “Ministère de l’Environnement” (France), as P eunomia
is a protected species in both countries. Special thanks are due to Professor
Philippe Lebrun and Professor Henri Descimon, for their support and interest
in this study. Philippe Goffart, Jean-Claude Weiss, and Henri Descimon helped
in capturing specimens in localities the authors did not visit ; Sabine Braconnot
and Michel Baguette helped with discussions ; Marc Dufrêne allowed us to use
his programmes of multivariate data analysis ; Ilan Wynne and Cliff Brookes
introduced GN to electrophoresis techniques ; and Luc Renier drew the figures.
This research is supported by an IRSIA (Institut pour l’Encouragement de
la Recherche Scientifique dans l’Industrie et l’Agriculture, Bruxelles) grant
to GN and a MRT (Ministere de la Recherche et de la Technologie, Paris)
grant to BB.
References
ALLENDORE, F. W., 1983. Isolation, gene flow, and genetic differentiation among popu-
lations. /n Genetics and Conservation, SCHONEWALD-Cox, C. M., CHAMBERS,
S. M., MACBRYDE, B. & THomas, W. L. (Eds.), Benjamin Cummings, Menlo
Parc (Ca., USA), 51-65.
BAGUETTE, M. & GoFFART, P., 1991. Liste rouge des Lépidoptères Rhopalocères de
Belgique. Bull. Annls. Soc. r. belge Ent. 127 : 147-153.
BAGUETTE, M., GOFFART, P. & DE Bast, B., 1992. Modification de la distribution
et du statut des Lépidoptères Rhopalocères en Belgique depuis 1900. Mem. Soc.
r. belge Ent. 35 : 591-596.
CARTER, P. A. & WATT, W. B., 1988. Adaptation at specific loci. V. Metabolically
adjacent enzymes loci may have very distinct experiences of selective pressures.
Genetics 119 : 913-924.
Descımon, H., 1976. L’acclimatation de lépidoptères : un essai d’experimentation en
biogéographie. Alexanor 9 : 195-204.
FRANKEL, O. H. & SouLé, M. E., 1981. Conservation and Evolution. Cambridge
University Press, Cambridge.
HACKRAY, J. & SARLET, L. G., 1969. Catalogue des Macrolépidoptères de Belgique.
Lambillionea 68, supplément.
HENRIKSEN, H. J. & Kreutzer, I., 1982. The Butterflies of Scandinavia in Nature.
Skandinavisk Bogforlag, Odense (Denmark).
Hicains, L. G. & Ritey, N. D., 1983. A Field Guide to the Butterflies of Britain
and Europe. 5th ed. Collins, London.
MARTILLA, O., HAAHTELA, T., AARNIO, H. & OJALAINEN, P., 1992. Päiväperhosopas.
Kirjayhtymä Oy, Helsinki.
MASsETTI, M. & Scauı, V., 1975. Electrophoretic studies on gene-enzyme systems in
Maniolia jurtina (Lepidoptera Satyridae) : the PGM polymorphism in central
Italy. Lincei, Rend. Sc. fis. mat. e nat. 59 : 822-830.
NAPOLITANO, M., GEIGER, H. & Descımon, H., 1988. Structure démographique et
génétique de quatre populations provençales de Parnassius mnemosyne (L.)
(Lepidoptera Papilionidae) : isolement et polymorphisme dans des populations
«menacées». Genet. Sel. Evol. 20 : 51-62.
PASTEUR, N., PASTEUR, G., BONHOMME, F., CATALAN, J. & BRITTON-DAVIDIAN, J.,
1987. Manuel technique de génétique par électrophorèse des protéines. Lavoisier,
Paris.
11
RICHARDSON, B. J., BAVERSTOCK, P. R. & ADAMS, M., 1986. Allozyme Electrophoresis.
Academic Press, Sydney.
TEMPLETON, A. R., 1991. Genetics and conservation biology. In Species Conservation,
a Population-biological Approach, SEITZ, A. & LoESCHE, V. (Eds.), Birkhauser,
Basel, 15-29.
WiNDIG, J. J., 1991. Quantification of Lepidoptera wing patterns using an image
analyser. J. Res. Lepid. 30 : 82-94. .
Wynne, I. R. & Brookes, C. P., 1992. A device for producing multiple deep-frozen
samples for allozyme electrophoresis. Jn Genes in Ecology, BERRY, R. J.,
CRAWFORD, T. J. & Hewitt, G. M. (Eds.), Blackwell, Oxford, pp. 500-502.
Wynne, I. R., LOXDALE, H. D. & Brookes, C. P., 1992. Use of a cellulose acetate
system for allozyme electrophoresis. Jn Genes in Ecology, BERRY, R. J., CRAw-
FORD, T. J. & Hewitt, G. M. (Eds.), Blackwell, Oxford, pp. 494-499.
12
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 13-43 ; 31.X.1994 ISSN 0342-7536
Variation saisonniere des peuplements
de macroheteroceres en Navarre
(Lepidoptera)
José Luis VIEJOo, Julio CIFUENTES et José MARTIN
Departamento de Biologia, Universidad Autönoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Summary
The seasonal variation in the populations of macro-moths in Navarre, northern
Spain, has been studied. The most common vegetational types were downy
oak (Quercus pubescens), holm oak (Q. ilex) and Kermes oak (©. coccifera)
forests. The number and diversity of species increased between January and
June, stabilising over the summer months, with a peak again in September,
and dropped rapidly again from October. The larvae of species flying in winter
and early spring generally feed on the leaves of trees, mainly beech, oak, pine
and sallow. Such trees lose their importance as larval pabulum in moths flying
later in the year; these tend to feed on annual plants. The best represented
families were the Noctuidae and Geometridae.
Résumé
On a étudié la variation saisonnière des peuplements de macrohétérocères
en Navarre (Nord de l’Espagne). Le nombre des espèces en vol et la diversité
augmentent de janvier à juin, se stabilisent pendant l'été et subissent une forte
baisse en octobre. Les espèces qui sont capturées en hiver et au début du
printemps se nourrissent en général, à l’état larvaire, de feuilles d’arbre, sur-
tout de fagacées, pinacées et de différentes salicacées. À mesure qu’avance
le printemps, les arbres perdent de l’importance dans le régime alimentaire
des chenilles, tandis que la consommation de plantes annuelles augmente. Les
familles les plus riches en espèces sont les Noctuidae et Geometridae. Les
formations végétales les plus fréquentes sont les rouvraies, les forêts de chêne
vert (Quercus ilex) et les forêts de chêne kermes (Q. coccifera).
Resumen
Se estudia la variaciôn estacional de las poblaciones de falenas en Navarra
(Norte de España). El numero de especies en vuelo y la diversidad va aumen-
tando de enero a junio, se estabiliza en verano y en octubre sufre un brusco
descenso. Las especies que vuelan en invierno y al comienzo de la primavera
se alimentan en general, en estado larvario, de hojas de arboles, y a medida
13
que avanza la primavera los arboles pierden importancia en el régimen alimen-
tario de las orugas, mientras que aumenta el consumo de plantas anuales.
Las familias mas abundantes son Noctuidae y Geometridae. Las formaciones
vegetales mas ricas son quejigares, encinares y coscojares.
Introduction
Une des principales caractéristiques des écosystèmes méditerranéens est la
différence thermique et pluviométrique importante qui existe entre les saisons,
et même d’une année à l’autre. Cette «saisonnalité» marquée, ajoutée aux
fluctuations interannuelles (en particulier en ce qui concerne la pluviométrie),
donne lieu à une végétation très caractéristique, dont l’une des principales
adaptations est la résistance à de longues périodes de sécheresse (Copy &
Mooney, 1978). Cependant, les adaptations morphologiques et physiologiques
ne sont pas les seules stratégies que les plantes ont opposé aux irrégularités
climatiques ; elles ont également développé des stratégies phénologiques grâce
auxquelles les phénoménes vitaux fondamentaux (floraison, fructification, etc.)
se sont ajustés avec précision aux conditions météorologiques. Bien évidem-
ment, les plantes ne sont pas les seuls organismes qui subissent des fluctuations
climatiques ; cependant, leur immobilité leur interdit les stratégies évasives
comme les migrations, les diapauses, les comportements nocturnes, etc, que
les animaux, et en particulier les insectes, peuvent mettre en pratique.
L’ajustement des cycles biologiques des insectes aux saisons est particuliere-
ment marqué dans le cas des phytophages, qui doivent s’alimenter dans une
période au cours de laquelle les plantes sont plus sensibles, à cause d’un faible
taux en tanin ou bien de la présence d’organes adéquats pour l’almentation
des phytophages (feuilles, fleurs, fruits, etc.). Dans ce travail, nous analyserons
les fluctuations de différentes variables écologiques des populations de macro-
hétérocères dans la province de Navarre (Nord de l’Espagne), tout au long
de l’année, et en relation avec le type de végétation et l’utilisation du territoire.
Concrètement, nous nous sommes interessés au nombre d’individus et d’es-
pèces capturés chaque mois, a la diversité et à l’équitabilité, de même qu’à
la variation de la composition des taxocénoses de ces lépidoptères.
Ce type d’étude dans la Péninsule Ibèrique n’a été antérieurement réalisé que
par SARTO 1 MonTEYs (1984) dans le Massif du Montseny (Barcelone) et
par YELA (1990) à Trillo (La Alcarria, Guadalajara).
Matériel et méthode
38 160 exemplaires de Lépidoptères adultes ont été capturés au moyen de pièges
lumineux, pendant 15 ans, dans l’ensemble de la province de Navarre.
Les pièges étaient fixes, situés dans des centres agronomiques ou des fermes
et ils fonctionnaient automatiquement de la tombée de la nuit jusqu’à l’aube.
Au total, pour ce travail, les échantillons récoltés provenaient de 19 points
14
Tableau |
Localites
UTM = Coordonnées selon un quadrillage de 10 km de côté. Alt = Altitude en mètres.
Veg.pot. = Vegetation potentielle, (R) représente forêt de rivière. Usage = On donne la
principale utilisation du sol par rapport au nombre d’hectares total (que chacune occupe).
1 Arizala
2 Azcona
3 Bunuel
4 Cadreita
5 Carcastillo
6 Caseda
7 Fontellas
8 Ilundäin
9 Imoz
10 La Oliva
11 Larraga
12 Lecaroz
13 Marcilla
14 Mendavia
15 Oteiza
16 San Adria
17 Sangüesa
18 Sartaguda
19 Ucar
30TWN83
30TW M83
30TXM24
30TXM07
30TXM29
30TXN30
30TXM15
30TXN23
30TWN95
30TXM29
30TWN91
30TXN17
30TXM08
30TWM69
30TWN81
30TWM88
30TXN41
30TWM79
30TXN02
Chênaie vert
Chênaie vert
Chénaie Kermés (R)
Chénaie Kermés (R)
Chénaie vert (R)
Chênaie vert (R)
Chénaie Kermès (R)
Rouvraie
Hétraie
Chénaie vert
Chénaie vert (R)
Chénaie
Chénaie Kermès
Chénaie Kermés (R)
Chênaie vert
Chénaie Kermes (R)
Chénaie vert (R)
Chénaie Kermés (R)
Rouvraie
Culture non irriguée
Culture non irriguée
Culture irriguée
Culture non irriguée
Culture irriguée
Cult. irriguée et non irrig.
Culture irriguée
Culture non irriguée
Feuillu
Culture non irriguée
Culture non irriguée
Feuillu
Cult. irriguée et non irrig.
Culture non irriguée
Culture non irriguée
Culture non irriguée
Culture non irriguée
Culture non irriguée
Culture non irriguée
de capture situés dans les formations végétales les plus communes de Navarre
(Tableau 1).
La province de Navarre est située au nord de la Péninsule Ibérique, sa super-
ficie est de 1 042 100 ha (10 421 km?) et elle présente de forts gradients de
direction nord-sud. Dans la partie septentrionale, le climat est nettement atlan-
tique, avec des hivers doux et des étés frais et humides (Tableau 2) alors
que dans la région centre et le sud de la province, les hivers sont froids et
les étés chauds et secs. Le régime climatique induit une végétation très variée,
comparable à celle de la région eurosibérienne dans le nord et à celle de
la région méditerranéenne dans le sud. Ce gradient est accentué par la présence
des Pyrénées à l'extrémité septentrionale et la vallée de l’Ébre dans la frange
méridionale (Tableau 1).
Résultats
Au total, ont été capturés 38 160 exemplaires de papillons appartenant à 14
familles et 651 espèces, présentés en détail au Tableau 3.
On peut voir que la plupart des espèces appartiennent aux familles Noctuidae
et Geometridae (81,9%) alors que la plupart des individus appartiennent aux
familles Noctuidae et Arctiidae (respectivement 74 et 62%).
15
Tableau 2
Données climatiques
L = Latitude en degrés. Années — Période d’observation. T = Température moyenne en degré
centigrade : Ta = Moyenne annuelle. Te = Mois le plus chaud. Tf = Mois le plus froid. TM =
Maxima des mois les plus froids. TMC = Maxima des mois les plus chauds. Tm = Minima des
mois les plus froids. P = Précipitations en mm: Pa = Moyenne annuelle. Pj = Juin. Pju =
Juillet. Pa = Août.
Localités Années ta | De ies IM NI me Bi
Arizala (1) | 42 | 1960-80
Azcona (1) | 42 | 1960-80
Buñuel 1932-80
Cadreita 1941-72
Carcastillo 1932-80
Cäseda (2) a
Fontellas (3) 1933-75
Ilundain (4) 1931-80
Imoz (5) 1941-50
La Oliva 1932-80
Larraga (6) 1968-80
Lecaroz (7) 1931-80
Marcilla 1950-79
Mendavia (8) ate
Oteiza (6) 1968-80
San Adrian (9) 1931-80
Sangüesa (2) Fr
Sartaguda 1931-80
Ucar (6) 1968-80
SO
I
w
Un
OO 00
w
w
00 \O GO \O 00 XO XO = 00 00 \O 00 00 00 00 © \O
NO © © I © I — © © À \O 00 OO DW
w
w
w
w
M
N
w
Damme = DD
w
w
w
w
w
w
vy
w
w
wy
w
v
w
N
w
w
v
M]
\
wy
w
“w
w
wy
wy
w
wy
w
w
wy
w
w
vy
w
w
wy
w
Où Un Un Un Un Un N NN PN PB En Un BR ON En Un
BWW BR © De PH BW COCR DB WH ~)
DADADAPOD—- ROP WHNHEOO
w
w
(1) Les données correspondent à Alloz. (2) Données de température de Janvier (** années 1955-
1980) et précipitations de Sangüesa (** années 1911-1936). (3) Données de Tudela. (4) Don-
nées de Pamplona. (5) Données de Lecumberri. (6) Données de Mendigorria. (7) Données de
Santesteban. (8) Données de température de Sartaguda (*** années 1931-1980) et précipitations
de Mendavia-Imoz (*** années 1967-1975). (9) Données de Sartaguda.
Pour pouvoir comparer les échantillons, nous n’avons pas retenu les localités
présentant des données fragmentaires ou incomplètes. Dix-neuf localités pré-
sentaient un échantillon à peu près homogène et ont donc été conservées.
Groupées par mois, les 20 espèces les plus abondantes sont présentées aux
Tableaux 4.1 à 4.12. On peut noter qu’en janvier et février (Tableaux 4.1 et 4.2)
il y a peu d’espèces et d’individus en vol, bien qu’une légère augmentation
apparaisse. Les espèces les plus abondantes sont les mêmes pour ces deux
mois, une noctuelle et une géomètre. Si l’on prend en compte l’alimentation
larvaire de ces espèces (selon les données de GoMEZ DE AizPURUA, 1985 ;
1987a ; 1987b ; 1988 ; SORIA CARRERAS, 1987 ; TEMPLADO, 1990) en général,
leurs plantes nourricières sont, par ordre d’importance, les fagacées (Quercus
et Castanea), les pinacées (Pinus), cistacées, salicacées et rosacées, essentiel-
lement donc des arbres et arbustes ; les plantes herbacées n’interviennent prati-
quement pas. Bien évidement, ces espèces hibernent en phase adulte princi-
16
| 1s9 | O918€ |
ES
787
ET
1107 | ÿOOI
Sarre; Jed 39 stow anbeus soinjdeo snprArpur,p sIqwoN
€ neojge],
| Ste
EU
JepIn9oN
Se)
2EPILTJUEUIAT
2UPTJUOPOJON
aeproodojouneur
2UPIJIWO90)
oe prey, |,
JER
sepiuedsaiqg
oepisuryds
oe pidwiesoise |
Jepnuınyes
IVPISSOD
sepıjerds}
17
Tableaux 4.1-4.12
Nombre d’individus captures par mois
Chénaie = 1: Lecäroz. Hétraie = 2 : Imoz. Rouvraie = 3: Ilundäin 1983. 4 : Ilundain
1984. 5: Ucar. Forêt de chêne vert = 6: Arizala. 7: Azcona. 8: Oteiza. 9: Larraga.
10 : Sangüesa. 11: Cäseda. 12 :Carcastillo. 13: La Oliva. Forêt de chêne Kermes =
14: Mendavia. 15 : Sartagudal984. 16 : Sartaguda1985. 17 :San Adrian. 18 : Marcilla.
19 : Cadreita. 20 : Fontellas. 21 : Buñuel.
h (hibernation) : o = œuf, ch = chenille, c = chrysalide, i = imago.
Tableau 4.1 : Janvier
Localités :
Conistra alicia
Chemerina caliginearia
Agrochola lychnidis
Agrochola lota
Peridroma saucia
Colotois pennaria
m— | Dı DJ
N° exemplaires :
N° espèces :
5
— bi
HO! i Nt NOR | Ww
N
E
Tableau 4.2 : Février
Localités :
Conistra alicia
Chemerina caliginearia
Xylena exsoleta
Conistra torrida
Chesias rufata
Orthosia incerta
Orthosia stabilis
Pyrois cinnamomea
N° exemplaires :
N° espèces :
18
Tableau 4.3 : Mars
Orthosia incerta
Conistra alicia
Orthosia gothica
Valeria jaspidea
Chemerina caliginearia
Cerastis rubricosa
Trichiura ilicis
Biston strataria
Xylocampa areola
Chesias rufata
Orthosia stabilis
Spudaea ruticilla
Alsophila aescularia
Xylena exsoleta
Orthosia gracilis
Cerura iberica
N° exemplaires :
N° espèces :
19
En
ve
I
= = THON
cc ¢
Ly 9 : Sorreyduuoxo
- - DINJAND DAIISO],D
- - DPID40Z DUAIOUI()
- - pasid 0401850]
(6 - pippunsıp SIN]
- - pundjpd Dulojsosald
- - pipfna spisay)
| - DSOIIAGNA SUSDA97)
- - DSOIUIU DISOYAC
| - Duds DYyYdDABOINY
- - DJAIIUL DISOYIAC
| - DINWAA] DISOAYd
N - SIAD][121dSU02 DAS]
- - DIAG] DANA97)
- - DI1YIO8 DISOYIAC
- - popıdspl D112]DA
- - uindjsavd DIdOdAYDAD_
- DINIIS DULUTY TAP
- SIJLIDAB DISOY1AO
DSOULBIIN{ DIGOJDUBDAY
- DOIPUOU DAoydpıcı
MN
I
a —- OM
p € : SOU[LIO'T
WAY : pp nesqe
20
rI°y9°o
yo
INDOAN = MM
IT NN mr N
-|wonnnwnm N
Te : S' neorgeL
: ssaadsa „N
: Saxe duoxa „N
psopns1j2u D10yd030]yq4
WUNASIU- J DUSOX
pxajdiad vuspvH
pnäigu DUPO]dOH
DIDIJIIO SNYIULUOUS
pgnuo1d DNJ20N
pııpuınıu DULAY da],
snj]J2940d ppiydapiag
D91149Q1 DANA
DIDANAASGns DODP]
pioundiqp vuumyyAN
pinin vssadsAq
DIADAAYIO SDS
piaajd vina]d01ÿ20
yndod aoyjovT
DINDIS DUULLY IA
ppadısııgny pwuosonds
psoulsyn/[ pvıgomwwapıyg
DIIPUOU D10ydDI
pumjana DULY IA IA
: soyfe90T
21
GG | | WE Ca) Mie | EG CO WG ze) 3 Sole) lets NE SG ACC : S299dS9 „N
CP WS CC FR RS OS SCOR REC eG O Poe Ca NON EE PR GPA CCI RE OT SCC : soıreJdwsx9 ,N
5 E F = = 7 F z ; = 5 Co mo]
DIDUDIU1 pjndosS
psomnasniu DIAC
DIAJSNAU DWOSOSDIDAN
DIDAYIDII vsıyJonuas
DSONJON] DIA],
DPION] DUO
SIUOIJDUDIIXA SNOABY
yndod 2041007
DIUPIA DIA
SIJDAGDA] DAU
SISUBAISDI DUUOSOIDID
DAIDABJO DIGOUDIDT
pjnjn vssadsaq
pnsiqup DUI1PO]dOH
DxXI/ pnudyuds
sn]]9940d pjiydapjiad
ppadiaiqgny pwosonds
DIOIUDI DUA
pumjona DUUIY IA
DSOULBIIN{ DIGOJDULBDAY I
1
n
1
LL CAN
i TNMM
INN ST
+ © TE ON © ©
N
1 00 M mn MH ON A MM AN OS
\O st oot Ott
RM == NU
© | ON © ©
: SAHIP90T
umg : 9‘ neajge]L
22
23
pS | €L | 9E : $909d89 „N
88T | 08s | rorI : sammeJpdu1sx3 „N
= El
papjdıma S1Y10129H
DIDAYID]2 psıyJonuas
DIADULINUL punıydaL
pxif vnudyruds
DAOYAAOSAAYI SIJIOAAUNT
DIAJSNIU DULOSOIDIDIV
DIDAYIO DODP]
un11$202 vIdoddyvsvdg
DSOjNIDUL SYaYD
psopnasnu DUO
ppıan] DHUOIY
pdwosodnd paodojaunopy J
_ puvj duos nwa
DIOIUDI DUAL
DSONJON] 014],
Apdsip DIAJUDULAT
SISUAAJSDI DWOSOMIDN
DINajOLYIO DIGOWOAT
SIJDAQDA] DYOUUT
DSOULBIIN{ DIGOJDULBDAY I
Ne)
m
I
S
L
0
6
0%
S
0
HL
E
oIlyvam am Da
: sayıfe907]
Yang : Lp neaigeL
19
607
Sv
661
LV
tél
LI
6€
PORN ES es SOS SOIN OE NGC ME
CL | C9E | 997 | 08T | 8H | COT | 611 | LOI
- - _ - - I - -
MOV : 8‘ NEOIQUI
li IP)
CV8l| SEL
I -
vv
661
Ir
cOl
: S999dS9 „N
: saımeJduax9 oN
DIAJISNIU DWOSO9DJDN
yndod 2041007
D1D]]990 SNYIULOUS
DSSDAI SIJOABY
DUIYIUDI DNIION
DIDI DIDAY
DIADAIDS DAJIUOPOYY
DIDICMA sıyloof
DUDS DYdDABOINy
pııpjupd spxviqy
ADdsip DIAJuDULAT
DIADULANU DULAY aT,
DPION] DUO
DJOIUDI DU9]IT
pdwpsodnd b2odojounvy]
DSONJON] DAT,
DSOULBIIN{ DIGOJDUBDAY
SIJDAGDA] DJ
pjoapusad pwanz
puvnjduoo pwap7
: SANT
24
Lv
1424
siquiajdas : 6° nesjge]
:so99dsa „N
: sameJdwsx3 „N
piv) DAY
DUIYIUDI DNJ20N
sadsoy sijaylp
DIADAIDS DAJAUOPOY
pqjpna ppıydodoyL
DPION] DHUOIY
pdwvsodnd paodojauinvy J
D99D]1$91 DUIAAANT
pqnuodd DNJ20N
pumjona DULY IA IN
DUD]dWO2 DUT
1110/1141 DAWUDIOISVT
DSONJON] Did]
DydDASOYIUDX DUSOX
pnsiquip DUUPO]doH
S]D2QD1] DAU
DIADIUDA SDXD1QY
poipnd v1oydojpqud
DJo1UDD DUAL
DSOU181/n/f pıgomwuwapıyg
: SAI90"T
25
:ss9adsa „N
: sameJdusx3 „N
papnd v10ydojpqud
pjsundigjp DUUYIAIN
DIADAIDS DAJAUOPOY
psojnayau DA0oydo3ojyd
pjoundiun puunyia py
pawumj/ Dvaoydouoau],
D1A1DSO1UNU DISIUOIUT
sııgpıdo SI04990PD]J
pyuaynın) vpdydo1ody
pqnuodd DNJ20N
DSO91D]3 DISADIPDADY
vapol pAoydouosids],
S11D][290 DIYIUDX
DAS1U Djiydo104dy
DNS1QUD DU11PO]dOH
D99D]S91 pun1adnT
DIOIUDI DUO
DYADABOYIUDX DISaX
SIPIUYIA] DJOYIOIBY
psoun] S122S0/DyduQ
NN +
IN 1 —
G
I
L io
I Ê
Ê ÿ
0 9
v €
6 =
TR | ON ©
: SAHU90/T
9190190 : OL‘ neaigeL
26
| MOMNANM =
ı N oO
-—
(4
I
6
I
6
0
ib
I
RON
vo ON © © om
aN
IMWOMIHON In
\O
=
JIQUIDAON : [[' neaige]
: Sa9adsa „N
: saımepdwusx3 „N
pııvuuad S1010]09
DIADSOIUIU DISIUODUT
14940] puunysa
psopnsau1 DAOYAOBO]Yd
DIADAIDS DAJQUOPOYY
OSDAJ1S DIYJUDX
S11D]]290 DIYIUDX
papol vioydouosu]
DJOAJaY DJOYIOABp
pnsiquip DULPO]dOH
DIADAD]2 DIJUOADT
DIO] DIOYIOAB py
DSOIN] DAapazıy
DAS1U pjiydosodpy
pqnuodd on190N
DIIYD DAISIUOD
psounj S29$0/DyduQ
WUNASIU- 9 DUSOX
pjoundiun nuuiyla py
SIPMYIA] DJOY2048F
: SoNeIO'T
241
Tableau 4.12 : Decembre
Localites : 4 6 11 15 16 18 19 h
Agrochola lychnidis
Mythimna unipuncta
Conistra alicia
Agrochola lota
Agrotis ipsilon
Conistra daubei
Peridroma saucia
Agrochola blidaensis
Colotois pennaria
Aporophila nigra
w
N
| — Oo
II OR BR
0
eM ae - | Ch
286) 30 | 46.48, CT lel Gelso
3414 lle
palement, bien que quelques-unes le fassent en phase chrysalide ou méme
chenille, ce qui indiquerait que les adultes de janvier et février seraient le
produit d’une émergence précoce. Dans le cas de Agrochola lychnidis et
Colotois pennaria, il s’agit d’especes qui hibernent sous forme d’œuf ; janvier
et février correspondent alors a la fin de leur période de vol. Notons de plus,
que les localités où ont été capturés les individus de ces espèces se trouvent
toutes dans le sud de la province: Larraga (9), La Oliva (13) et Marcilla
(18), là où la végétation potentielle se compose de Quercus ilex (chêne vert,
les deux premières) et Quercus coccifera (chêne Kermès, la dernière).
2 a u :
1 © À) © -J D ı
1
N° exemplaires : 39 15
N° espèces : 16 9
En mars, on note une augmentation sensible du nombre d’exemplaires et
d’espèces (Tableau 4.3). On trouve en particulier Conistra alicia et Chemerina
caliginearia, mais également quelques Orthosia sont déjà plus abondantes (O.
incerta et O. gothica). L'alimentation larvaire des imagos capturés en mars se
réalise surtout au dépend des arbres (Quercus, Fagus, Salix, Populus, Ulmus,
Tilia, Betula, etc.) ou arbustes (Crataegus, Malus, Prunus, Genista, etc.). Les
espèces les plus abondantes sont en général celles qui passent l’hiver au stade
chrysalide.
En avril, le nombre d’individus et d’especes en vol continue à augmenter
(Tableau 4.4). Onze des seize espèces de mars se capturent encore, auxquelles
s'ajoutent six nouvelles. Bien que deux Arctiides soient en tête de la liste
d’abondance (Diaphora mendica et Phragmatobia fuliginosa), les plus abon-
dants sont les Noctuides ; les Géométrides sont encore rares. Les zones comp-
tant le plus d’individus et d’espèces capturés sont la région moyenne et la
Ribera (centre et sud de la Navarre), bien qu’apparaissent déjà des individus
dans la région nord. L’alimentation larvaire des imagos capturés en avril, se
réalise principalement sur des plantes basses annuelles, tant sylvestres que
cultivées, bien que les premières soient les plus importantes. L’abondance de
celles qui s’alimentent sur les arbres ou arbustes à feuilles caduques (fagacées
et salicacées) diminue. Les espèces les plus abondantes ont hiberné au stade
chenille, probablement non complètement développées.
28
En mai, la tendance à l’augmentation s’accentue (Tableau 4.5). Les localités
de la vallée de l’Ebre et de la zone moyenne sont toujours les plus riches.
En effet, en mai, des gelées peuvent toujours se produire dans la région nord,
et les températures moyennes nocturnes sont encore basses en montagne. Les
espèces les plus abondantes sont les Noctuides (Mythimna vitellina) et les
Arctiides (Diaphora mendica et Phragmatobia fuliginosa), bien qu’apparaissent
déjà des Sphyngides, Géométrides et Cossides. L’alimentation larvaire des
especes les plus abondantes repose surtout sur les plantes basses de la famille
des Astéracées et des Poacées.
En juin, on peut noter une grande augmentation du nombre d’individus et
d’espèces en vol, même dans le nord de la province (Tableau 4.6). Parmi
les 10 espèces les plus abondantes, on trouve trois Arctüdes (P. fuliginosa,
Eilema caniola et Spilosoma lubricipeda) et quatre Noctuides, bien que la
densité de celles-ci commence à diminuer à partir de ce mois. L’alimentation
larvaire des espèces les plus abondantes se réalise sur les Astéracées et dans
une moindre mesure les Poacées et Fabacées.
En juillet, les captures du nord de la province prennent de l’importance tandis |
que celles du sud commencent à se raréfier (Tableau 4.7). De nouveau, l’espèce
la plus abondante est l’Arctiide (P. fuliginosa). Les Noctuides les plus abon-
dantes sont Emmelia trabealis, Tyta luctuosa et Acontia lucida. Les espèces
Malacosoma castrensis, Lymantria dispar et Thaumetopoea pityocampa sont
également représentées. Les larves des espèces les plus abondantes s’alimentent
de la strate herbacée (Astéracées, Poacées, Polygonacées, Plantaginacées, etc.)
et quelques-unes également exploitent la strate arborée (Fagacées et Pinacées),
en particulier dans la région nord de la province.
En août, les captures sont toujours très abondantes, bien que les localités
du sud y contribuent de moins en moins (Tableau 4.8). En général, les Arctiides
sont toujours les plus abondants ; les Noctuides les plus communes sont,
comme le mois précédent Emmelia trabealis, Tyta luctuosa et Acontia lucida.
Les espèces les plus abondantes continuent à exploiter en priorité la strate
herbacée ainsi que les lichens, ceci étant dû sans doute à la présence des
deux espèces d’Eilema.
En septembre, les captures sont toujours abondantes au nord de la province
et elles reprennent de l’importance dans le sud (Tableau 4.9). Les Arctiides
déjà citées sont toujours en tête de la liste de captures. Viennent s’y ajouter
les Lasiocampides (Lasiocampa trifolii) ou Géométrides (Abraxas pantaria)
et surtout les noctuides (Emmelia trabealis, Hoplodrina ambigua, Xestia
xanthographa, Tyta luctuosa, Mythimna vitellina et Noctua pronuba). Les
plantes nourricieres des larves sont encore les Astéracées, Poacées et Poly-
gonacées et les Rosacées prennent de l’importance.
En octobre, on note une forte baisse, tant du nombre d’individus captures
que du nombre d’especes (Tableau 4.10). Parmi les dix espèces les plus abon-
dantes, neuf sont des Noctuides et la dixième une Arctiide. Les localités qui
comptent le plus grand nombre d’individus capturés sont situées dans la région
29
moyenne et la Ribera. L’alimentation des larves se fait aux dépens des plantes
herbacées annuelles comme les Poacées, Astéracées, Fabacées et Polygonacées.
En parallèle, commencent à apparaître des adultes dont les larves se nourrissent
de Rosacées et de Salicacées.
En novembre, la baisse du nombre d’individus et d’espèces capturés, en parti-
culier dans le nord de la province, s’accentue (Tableau 4.11). Les espèces les
plus communes appartiennent à la famille des Noctuides (Agrochola lychnidis,
Mythimna unipuncta, etc.). L'alimentation larvaire des espèces les plus abon-
dantes se réalise sur les Rosacées, Poacées, Salicacées et Fabacées, avec une
exploitation encore plus importante des plantes basses annuelles que des arbres
ou arbustes. Les espèces capturées en novembre hibernent en général au stade
œuf bien que quelques-unes le fassent au stade chenille.
En décembre, on note une forte diminution des captures (Tableau 4.12). Parmi
les dix espèces les plus abondantes, il y a neuf Noctuides et une Géométride.
Les plantes exploitées par les larves sont les mêmes qu’au cours du mois
précédent. Les espèces capturées en décembre hibernent à différents stades,
mais on note que les espèces qui hibernent au stade imago prennent de l’im-
portance.
En résumé, et si l’on considère les dix espèces les plus abondantes, chaque
mois (numerotées de 1 a 10) en fonction du nombre d’individus capturés
(Tableau 5), on peut noter que peu d’espèces sont représentées dans ce tableau
car pour la plupart, elles sont présentes pendant plusieurs mois.
On trouve deux Cossidae, trois Lasiocampidae, deux Sphingidae, huit Geo-
metridae (deux Larentiinae et six Boarmiinae), une Thaumetopoeidae, deux
Notodontidae, une Lymantriidae, sept Arctiidae et quarante Noctuidae (une
Catocalinae, deux Acontiinae, six Amphipyrinae, treize Cuculliinae, dix Hade-
ninae et huit Noctuinae). Les Arctiides predominent sur le reste, grâce sur-
tout à l’abondance de Phragmatobia fuliginosa au printemps et en été. Les
Noctuides dominent en automne et en hiver, bien qu’elles soient abondantes
toute l’année.
Discussion
Les espèces qui sont capturées en hiver et au début du printemps (de décembre
à mars) se nourrissent en général, à l’état larvaire, de feuilles d’arbre, surtout
de Fagacées (Quercus, Castanea, etc.), Pinacées (Pinus) et de différentes Sali-
cacées. À mesure qu’avance le printemps, les arbres perdent de l’importance
dans le régime alimentaire des chenilles, tandis que la consommation de plantes
annuelles augmente (Astéracées et Poacées principalement).
Si l’on observe les cycles biologiques de ces espèces hibernantes, il apparaît
que la phase chenille est atteinte au printemps et que ces animaux passent
la période été-hiver au stade chrysalide ou parfois imago.
30
Dans tous les cas, les chenilles utilisent les feuilles des arbres au moment
le plus approprié pour l’alimentation. En effet, il a été démontré que le contenu
en tanin des feuilles augmente et qu’elles perdent de l’eau à mesure qu’avance
le printemps (SCRIBER & SLANSKY, 1981) et en réponse aux premières attaques
des herbivores, de sorte que leur qualité nutritive diminue. Une telle relation
a été décrite pour le chêne et Operophtera brumata L. (Geometridae) (FEENY,
1970), et Lymantria dispar L. (Lymantriidae) (ScHULTz & BALDwin, 1982),
et enfin pour différents lépidoptères mineurs (FAETH ef al., 1981 ; FAETH,
1986 ; 1988). Ce renforcement des défenses chimiques des arbres peut même
être induit à distance comme le suggèrent BALDWIN & SCHULTZ (1983) pour
les peupliers et les érables.
L'utilisation par les chenilles des feuilles des arbres au printemps n’est pas
une exclusivité, parmi les lépidoptères, des hétérocères ; en effet, il est bien
connu que les Lycénides, qui hibernent au stade œuf, se nourrissent de feuilles
d’arbres au cours des premiers mois du printemps (MARTIN CANO, 1982).
Les plantes ont développé divers mécanismes pour prévenir les attaques des
phytophages et ceux-ci, de leur côté, ont essayé d’esquiver ou éviter ces méca-
nismes (RHOADES, 1985). Le résultat de cette interaction est en definitive un
ajustement chaque fois plus fin entre l’hôte et l’herbivore. Cet ajustement se
manifeste non seulement au niveau physiologique (présence de tanins, toxines,
etc.), mais aussi au niveau de la synchronisation des cycles vitaux de la plante
et de l’insecte phytophage (STRONG et al., 1984 ; TEMPLADO, 1990). Ce dernier
aspect est une fois encore mis en évidence par nos résultats.
Les espèces qui volent des le mois d’avril se trouvent à l’état larvaire de mai
à novembre avec estivation et hibernation à différents stades. Leur alimentation
larvaire est principalement constituée de plantes herbacées annuelles, chez
lesquelles la défense chimique contre les herbivores ne se base pas tant sur
la présence de tanins que sur la présence de toxines.
Diversité
La diversité définit de façon simple et synthétique, bien qu’incomplete, la
structure d’une communauté. De ce fait, cette variable est fréquemment utilisée
pour comparer différents échantillons, qu’ils proviennent de la même localité
(variation annuelle) ou de différentes régions (variation spatiale).
Les indices de diversité sont divers et variés (voir MARGALEFFE, 1977 et MAGUR-
RAN, 1988) ; en général, ils prétendent établir la richesse en espèces d’une
communauté, en relation avec une unité d’Echantillonnage. Du fait de sa facilité
de calcul et son utilisation répandue (ce qui permet de comparer les résultats
de divers travaux), nous avons employé l’indice de Shannon (SHANNON-
WEAVER, 1957).
31
cl
I]
DAIDISA] "7
DINAJOAYIO 7
DAWUOWDUUI) J
Opn “Ve
SIDAqvA] ‘A
DSONJON] ;]
DIIpUaU ‘(J
ppadinaqny 'S
Doipnd ‘>
psoursynf{ “Yd
pjoapusad 7
DJOIUDO “7
puvjduoo 7
dpdsip "J
DINWAA] “Yd
D9149Q1 ‘7
pdwosodnd ‘YJ,
DIADAAYIO ‘YF
DIADOU151]D9 “YD
DIADIDAIS ‘4
DIADUUId ‘7
DIADULANUL |]
DIADJUDd ‘vy
DIDfnA “YD
DIADAD]I "7
sn]j22404 ‘(7
yndod 7
of 7
SISUIAISDI ‘IN
SON
DINAN
WNAJSIDI J
: SON
soyuepuoge snyd sa s999dsa sap srow ed uonefoy
¢ negqey,
oe PINJOON
LN
Jepı.muewAT]
9PPIJUOPOION
seproodojourney |,
HEPLIWWIOAN)
oepisuryds
ov pidureooise’]
IVPISsOD
32
DSOIUQNU I
DYADABOYIUDX "X
WUNABIU- 2 °X
DIONDS 4
DSO910]3 J
pqnuoid 'N
piaajd ‘CO
uonsdi ‘F
DINOIS “A
pjoundiun ‘py
DUTCH WV
pjsundigjp "MW
DI1YIO8 ‘OC
DIAJIUI ‘OC
1SD122 ‘O
SI19D18 'O
SLAD]PIDIASUOD “FJ
D29D19]0 "7
SLID]JAIO X
psoun] 'O
sıpıuyad] 'Y
SSL DE Vy
D 17
DP14101 ‘7
EUROS)
HD)
papol ;]
popıdsol 1
D]024D 'X
DJ9]0SX2 “XY
DASIU “YY
DXI TS
DNBIGUID 'H
DSOIN] “YM
se PINJSON
33
: D; D;
=>; nm + 102 =|
H = Indice de Shannon.
n; = Nombre d’individus de l’espèce i.
n = Nombre total d’individus captures.
s = Nombre total d’especes capturées.
L’analyse de la diversité annuelle dans les différentes localités de capture
(Tableau 6) révèle des valeurs très élevées, ce qui indique que les communau-
tés de lépidoptères que l’on y observe sont relativement stables malgré une
importante disproportion dans les taux d’abondance. En effet, la plupart des
espèces capturées sont rares ou très rares et seule une infime minorité peut
être considérée comme abondante (Tableau 7).
Vingt-cinq des trente échantillons considérés et appartenant aux 19 localités
étudiées, présentent un indice supérieur à quatre.
Tout au long de l’année, la diversité fluctue de différente façon, selon la localité
considérée (Tableau 6). En général, la diversité augmente de janvier à juin
ou juillet, se stabilise ou diminue légèrement en été, recommence à augmenter
au début de l’automne et diminue brusquement en novembre.
Si l’on réorganise les données du tableau 6 de sorte que n’apparaissent que
les trois mois pour lesquels l’indice de Shannon est le plus élevé, on obtient
le tableau 8 dans lequel ne figurent plus que dix-neuf échantillons (provenant
de quinze localités). Par exemple, dans la première ligne du tableau, le numéro
huit indique que pour la localité de Lecäroz et pour l’échantillonnage de 1983,
le mois d’août présente l’indice de Shannon le plus élevé, suivi par les mois
de juin et mai. On note qu’en octobre la diversité est maximale dans la plupart
des localités (sept sur dix-neuf) ; viennent ensuite les mois de juin et juillet,
puis mai, août et septembre. Aucun des autres mois ne présente jamais de
valeur maximale pour l’indice de Shannon. Pour les localités du nord de
Navarre, la diversité maximale est atteinte en été et au début de l’automne
alors que dans de nombreuses localités du sud (Ribera), les valeurs les plus
élevées sont obtenues à la fin du printemps, bien qu’elles restent élevées
jusqu’en automne (octobre).
Si l’on met en relation ces données avec l’incorporation à l’ensemble, de la
nombreuse communauté des Noctuides, en particulier Hadeninae, avec vol
printanier, et Cuculliinae et Noctuinae, dont le vol est automnal, on peut dire
que les valeurs maximales de l’indice de Shannon, à la fin du printemps se
justifient par l’apparition essentiellement de la première génération (et parfois
la seule) des Hadeninae. Le maximun automnal doit être lie à l'émergence
des Cuculliinae et des Noctuinae, avec lesquelles coïncident en plus les espèces
qui ont subi une diapause estivale. Le maintien d’une diversité élevée pendant
l'été et au début de l’automne dans la région nord doit être lié tant à la
longueur et a la rudesse de l’hiver qu’à la relative douceur de l'été, alors
34
que dans la région de la Ribera, caractérisée par un été chaud et sec, la diversité
chutera des juillet.
Les douze Echantillons de plus grande diversite sont, dans l’ordre :
Ilundain 1984 (Rouvraie) 615
Marcilla 1985 (Forêt de chêne Kermes) 606
Larraga 1985 (Forêt de chêne vert) 591
Mendavia 1984 (Forét de chéne Kermes) 5°83
Sartaguda 1985 (Forét de chéne Kermes) 581
Lecaroz 1983 (Chénaie) 5776
Ilundain 1983 (Rouvraie) 5770
Ucar 1986 (Rouvraie) 5°63
Bunuel 1984 (Forét de chéne Kermes) 5°62
La Oliva 1985 (Forét de chéne vert) 5°58
Fontellas 1985 (Forét de chéne Kermes) Sal
Ucar 1987 (Rouvraie) 541
Comme l’indique la liste ci-dessus, rouvraie, forêt de chêne Kermes et forêt
de chêne vert, sont les formations végetales présentant la plus grande diversité.
L’echantillon annuel le plus riche a été observé à Ilundäin en 1984, dans le
domaine du Quercus faginea et présentait une diversité réellement élevée (615
bits/individus), avec 290 espèces. Ce résultat concorde avec ceux obtenus pour
Papilionoidea et Hesperioidea dans le centre de la Péninsule Ibérique (VIEJo,
1985 ; VıEIO et al., 1989), qui révélaient une importante diversité dans les
forêts de chêne vert. Cependant, si l’on calcule la diversité globale des forma-
tions végétales, les forêts de chêne vert sont les plus riches, mais suivies de
près par les rouvraies et les forêts de chêne Kermès ; quoi qu’il en soit les
rouvraies sont celles qui présentent le plus grand nombre d’espèces (378).
Chênaie 576 (85 esp.)
Hétraie 4773 (66 esp.)
Rouvraie 6731 (378 esp.)
Forét de chéne vert 6’54 (355 esp.)
Forét de chéne Kermes 629 (331 esp.)
L’analyse de l’équitabilité dans les différentes localités (Tableau 6) indique une
diminution au cours de l'été, que l’on attribue a la diminution de la diversité
par rapport au maximum possible, en tenant compte du nombre d’espèces
obtenues.
Conclusions
La Navarre est une région riche en macrohétérocères ; nous y avons capturé
651 espèces de 14 familles, ce qui représente 44,9% des espèces iberiques.
Les localités les plus riches se situent dans le domaine climatique des chênaies
(Quercus), en particulier les chênes verts, chênes rouvres et chênes Kermès.
Bien que la plupart des localités soient situées en zones agricoles, cette activité
ne semble pas altérer de façon importante la structure des communautés de
macrohétérocères si l’on s’en tient aux valeurs de l’équitabilité, supérieures en
général à 0,75, ce qui signifie que la diversité réelle est proche du maximum.
35
jonuuy
nv
a N O 4 S
(G-+-N+0) suwoiny : ny (S+V+L) 94:4 (HN+V) Sduauuq : 14 (N+4+f) ATH : H : SUOSTES
AQUUE,] 2P SUC] ne INO} uorerIeA AnaJ‘9710907 anbeuyo op aiqenbs 19 uouurys ap sdIpu]
9 nesfgeL
S999dS9,P oN
SUIPIAIPULP oN
npgennbg
uouueyS
L86E EI}
S999dS9,p oN
SnpPIAIPULP oN
rnmgeymbg
uouueys
986T 189N
S999dS9,p oN
SNPIATPULP oN
npgennbg
UOUUBUS
p861I ulepungj
S999dS9 p oN
SRPIATDUT PAC N]
pgennbg
uouueyS
C86, uIepungj
S999d$S9 p oN
snpIAIPULP oN
npgennbg
uouueys
9861 zou
sa99dsa,p oN
snpIAIpuULP oN
mgermbg
uouueys
C86 ZOAEI9]
S999dS9 p „N
SnPIATPULP oN
ngeymbg
uouueys
9861 VSULICT
sooodsa.p „N
SNPIATPULP oN
suiqeynby
uouueys
CS6I edeue]
sa99dsa,p „N
snpIATPULP oN
ngennbg
uouueys
9861 &Z1930
S999dS9 p „N
snp EN Por oN
nmgeynbg
uouueys
986] EUOIZV
sooodsa.p „N
SNPIAIPULP oN
npgennbg
uouueys
L861 BIEZLIV
sa9adsa,p „N
SNPIAIPULP oN
nmgennbg
uouueys
9861 EIEZLIV
so99dsa,p oN
snpIATPULP oN
npgeynb
uouueys
S861 PANO UT
so00dsa,Pp oN
SNPIATPULP oN
npgennbg
uouueyS
L861 ONNSEI1E)
S999dS9,P oN
SOP ETD UT DuoN
gennbg
uouueyS
9861 OIIHSEIIE)
299d$9 p oN
SUDIAIDURD oN
npgennbg
uouueyS
9861 pase)
S999dS9,p oN
snpIATPULP oN
npgennbg
uouueyS
S861 EPISE)
S999dS9,P „N
snpIATPULP oN
nngennbg
uouueys
E86T esandues
pnuuy
nV
sooodsa.p „N
SNPIAIPULP oN
nngeynbg
uouueys
S861 EIIDIEN
sooodsa,.p „N
SIPIATPUrP ON
annaba
uouueys
7861 UBLIPV UBS
S999dS9,p „N
SUIDIATPULP oN
nngernbg
uouueys
S86 pneus
sooodsa.p „N
SDpIAIDULP oN
anrqermbA
uouueys
P86l epndenes
sooodsa.p „N
snpIAIPULP oN
aurqeynbA
uouueyS
ÿ86I elAeEpuUSN
sooodsa.p oN
snpIAIPULP oN
ngeymbg
uouueyS
9861 PANO ET
S299d$9,p „N
SnpIAIPULP oN
ngennbg
uouueyS
y86I Pnung
S999dS9 p oN
SNPIATPULP oN
anrqembA
uouueys
S861 SEIJUO
sooodsa,.p oN
SNPIAIPULP oN
nmgennbg
uouueys
S86I ByoIpe)
sooodsa.p oN
snpIATPULP oN
ngennbg
uouueys
P86 BWoIpe+)
S292dS9,p oN
SNPIAIPULP oN
nmgeymbg
uouueys
C86 BWoIpe+)
S999dS9,p oN
snPIATPULP oN
auraqernbA
uouueys
9861 EIIDAEN
Tableau 7
Degré d’abondance des espèces capturées
Degré Nombre Pourcentage Nombre Pourcentage
d’abondance d’espèces n° d’espèces d'individus n° d'individus
>2000
1001-2000
501-1000
251-500
51-250
26-50
<26
Tableau 8
Réarrangement des différents mois en fonction de leur importance
pour l’indice de Shannon
Divisions géographiques de la Navarre : Dt : Division traditionnelle (M = Montagne.
ZM = Zone moyenne. R= Ribera). Ce: Régions écologiques (Vc = Vallées canta-
briques. Cc = Vallées centrales. Nr = Navarre moyenne orientale. R= Ribera).
Localité Échantillon Numéro d’ordre
3 O
Lecaroz
Ilundain
Ilundäin
Ucar
Arızala
Oteiza
Larraga
Caseda
La Oliva
Mendavia
Sartaguda
Sartaguda
San Adrian
Marcilla
Cadreita
Cadreita
Cadreita
Fontellas
Bunuel
="
oo R © = Un © I Do QUI SION MN
© © LD I © © I I —J SON \0 (D © 0 © Aa Je
DARA AAA DIT SSX zZ
AAAAAARAAA Zuwzn ZOO <
4]
La famille qui a été le plus capturée est celle des Noctuides, lesquelles prédo-
minent en automne et en hiver, bien qu’ils soient abondants en toute saison ;
elle est suivie par celle des Arctiides, à cause en particulier de l’abondance
de Phragmatobia fuliginosa au printemps et en été.
Il existe un ajustement entre les cycles biologiques des lépidoptères et la pheno-
logie des plantes nourricières. Les espèces qui volent en hiver sont présentes au
printemps au stade chenille, lesquelles s’alimentent de feuilles d’arbre (chênes,
peupliers, saules, etc.) quand celles-ci sont le plus nutritives. Pour les espèces
qui volent à partir du mois d’avril, les larves sont présentes en été et en automne
et s’alimentent de plantes basses.
Remerciements
Marina Alcobendas s’est chargée de la traduction de notre manuscrit ; nous
l’en remercions.
Bibliographie
BaLpwin, I. T. & SCHULTZ, J. C., 1983. Rapid changes in tree leaf chemistry induced
by damage : Evidence for communication between plants. Science 221 : 277-279.
Copy, M. L. & Mooney, H. A., 1978. Convergence versus nonconvergence in mediter-
ranean-climate ecosystems. Ann. Rev. Ecol. Syst. 9 : 265-321.
FAETH, S. H., 1986. Indirect interactions between temporally separated herbivores
mediated by the host plant. Ecology 7 : 479-494.
FAETH, S. H., 1988. Plant-mediated interactions between seasonal herbivores : Enough
for evolution or coevolution?. In SPENCER, K. C. (Ed.), Chemical Mediation
of Coevolution, pp. 391-414. Academic Press. San Diego, London.
FAETH, F. S., Connor, E. F. & SIMBERLOFF, D., 1981. Early leaf abscission: A
neglected source of mortality for folivores. Am. Nat. 117 : 409-415.
FEENY, P., 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring
feeding by winter moth caterpillars. Ecology 51 : 565-581.
Gomez DE Aizpurua, C., 1985. Biologia y morfologia de las orugas (Lepidoptera).
Tomo 1. Noctuidae, Dilobidae : 227 pp. Bol. San. Veg., fuera de serie n° 5.
Madrid.
Gomez DE AizpurRuaA, C., 1987a. Biologia y morfologia de las orugas (Lepidoptera).
Tomo 2: Cossidae, Sphingidae, Thaumetopoeidae, Lymantriidae, Arctiidae :
239 pp. Bol. San. Veg., fuera de serie n° 6. Madrid.
Gomez DE AizPURUA, C., 1987b. Biologia y morfologia de las orugas (Lepidoptera).
Tomo 3: Geometridae : 238 pp. Bol. San. Veg., fuera de serie n° 8. Madrid.
Gomez DE AIzPURUA, C., 1988. Biologia y morfologia de las orugas. Tomo 4 : Noctui-
dae. 248 pp. Bol. San. Veg., fuera de serie n° 10. Madrid.
MAGURRAN, A. E., 1988. Ecological diversity and its measurement. Croom Helm,
London.
MARGALEF, R., 1977. Ecologia. 951 pp. Omega, Barcelona.
MARTIN CANO, J., 1982. La biologia de los licénidos españoles (Lep. Rhopalocera).
Miscelanea Conmemorativa del X Aniversario de la U.A.M., pp. 1002-1020.
Madrid.
RHOADES, D. F., 1985. Offensive-defensive interactions between herbivores and plants :
Their relevance in herbivore population dynamics and ecological theory. Am.
Nat. 125 : 205-238.
Sarto 1 Monteys, V., 1984. Estudio de los Lepidöpteros Noctuidae del macizo del
Montseny (Barcelona). Tesis doctoral, Departamento de Zoologia, Facultad de
Ciencias Universidad Autönoma de Barcelona, 618 pp.
42
SCHULTZ, J. C. & BAarLpwin, I. T., 1982. Oak leaf quality declines in response to
defoliation by gypsy moth larvae. Science 217 : 149-151.
SORIA CARRERAS, S., 1987. Lepidöpteros defoliadores de Quercus pyrenaica, Willde-
now, 1805. Bol. San. Veg., fuera de serie n 7 : 302 pp.
STRONG, D. R., Lawton, J. H. & SourHwoop, R., 1984. Insects on plants. Community
patterns and mechanisms. Blackwell, Oxford.
TEMPLADO, J., 1990. Datos fenolögicos sobre lepidöpteros defoliadores de la encina
(Quercus ilex L.). SHILAP Revta. lepid. 18(72) : 325-334.
V1EJo, J. L., 1985. Diversity and species richness of butterflies and skippers in central
Spain habitats. J. Res. Lepid. 24(4) : 364-371.
VIEJO, J. L., VIEDMA, M. G. & MARTINEZ FALERO, E., 1989. The importance of wood-
lands in the conservation of butterflies (Lep. : Papilionoidea and Hesperioidea)
in the centre of the Iberian Peninsula. Biological Conservation 48 : 101-114.
YELA, J. L., 1990. Los Noctuidos de La Alcarria y su relaciön con las formaciones
vegetales (Lepidoptera : Noctuidae). Tesis doctoral, Facultad de Biologia, Univer-
sidad Compl. de Madrid, 696 pp.
43
s
Ÿ
À
N
s
“yy
Some of the delegates at the 8th European Congress of Lepidopterology. Dr. Kauri
Mikkola (Chairman of the Organising Committee) is standing at the front, second from
the right. The President of SEL, Prof. Emilio Balletto (Turin), is sitting, second from
the left, next to Dr. Laszlo Gozmäny (Budapest), honorary member of SEL. Dr. Hans-
jürg Geiger (General Secretary of SEL) is standing front right. Photo : M. Sommerer.
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 45-49 ; 31.X.1994 ISSN 0342-7536
Biogeographical and ecological determinants
of the central European peat bog Lepidoptera :
The habitat island approach to conservation
Karel SPITZER
Institute of Entomology, Czech Academy of Sciences, BraniSovska 31, CZ-370 05 Ceské Budéjovice,
Czech Republic
Summary
Oligotrophic peat bogs form characteristic habitat islands within the temperate
forests of central Europe. These isolated relict bog ecosystems are similar to
some subarctic and subalpine biomes (“edaphic forest-tundra”) in being deter-
mined in the Holocene and by recent local ecology. The ecological determinants
are interactions of suitable edaphic and climatic factors. Most of the tyrpho-
biontic and tyrphophilous Lepidoptera species have taxonomic affinities to
boreal and subarctic zones. The “archipelago” of South Bohemian oligotrophic
bogs is ideal for case studies, and model conservation projects.
Bog habitat island : outline of ecological history
Central European oligotrophic peat bogs (e.g. Mrtvy luh bog, Fig. 1) are
isolated ecosystems similar in structure and function to subarctic wet forest-
tundra (= “edaphic forest-tundra” sensu Husticu, 1957, see also TUHKANEN,
1984). In southern latitudes of the temperate forest zone, such peat bogs are
characteristic azonal ecosystems, occurring in isolated and discrete patches
in “average” landscape originally covered by forest. The habitat island develop-
ment of most central European bogs, e.g. in South Bohemia, dates from the
early Holocene (JANKovsKA, 1980) and the bogs became more acid and
ombrotrophic during the Holocene ecological succession. The island-like
characteristics have resulted from the interaction of both climatic and edaphic
factors. Recently, the local cold/warm and wet/dry “continental” environment
has been the main factor favouring the survival of relict cold adapted (stress
tolerant and K-selected) biotas. Because of their different ecological histories
each large bog is unique in its species composition (e.g. insects) and their
taxonomic status (subspecies and geographical races). These central European
oligotrophic bogs can be classified under the vegetation association : Pino
rotundatae-Sphagnetum (see NEUHAUSL, 1972 ; SPITZER, 1975 ; MIKKOLA &
SPITZER, 1982, etc.). The linkage between insect community and vegetation
45
Fig. 1. The habitat island of Mrtvy luh bog, ca. 300 ha of edaphic “forest-tundra”,
Sumava Mts., 740 m.
association is very close, e.g. Lepidoptera associated with Ledum palustre
(Lyonetia ledi Stt., Olethreutes lediana L., Eupithecia gelidata Möschl.) and
Vaccinium uliginosum (Anarta cordigera Thnbg., Lithophane lamda F., Colias
palaeno L.).
Ecological grouping of peat bog Lepidoptera : stenotopic species
1. Tyrphobionts (Prus, 1932 ; Spitzer, 1975 ; ROHACEK, 1982 ; MEINEKE,
1985 ; MıkKkoLA & SPITZER, 1982 ; GELBRECHT, 1988, etc.) are obligatorily
associated with peat bogs in temperate and southern boreal zones. Their most
important ecological requirements are micro (meso) climatic and edaphic
conditions (Zugraphe subrosea Steph. is a typical example, Fig. 2). Some bog
Lepidoptera are closely associated with the habitat because of their foodplants
(e.g. strictly monophagous species that feed on Ledum palustre, Vaccinium
uliginosum and Eriophorum vaginatum). In some cases monophagy is recent,
induced by the Holocene vegetation succession, which resulted in the extinction
of certain plants (see Spitzer et al., 1991 — Eupithecia gelidata Möschl.).
There is a general trend to a weaker tyrphobiontic association towards the
northern and alpine timber lines (MIKKOLA & SPITZER, 1982).
2. Tyrphophilous biotas are plants and animals that are not restricted to peat
bogs. Such peatland species colonise other wetlands, wet forests, heathlands
46
Fig. 2. Larva of Eugraphe subrosea (Steph.), a local geographical race of the Mrtvy
luh bog, Sumava Mts.
and meadows, but achieve their greatest population abundance in peat bogs
(see PEus, 1932 ; Lepidoptera are listed by Spitzer, 1975 ; 1981 ; MıKKoLA
& SPITZER, 1975 ; GELBRECHT, 1988).
Why is a peat bog “island” unique?
The recent habitat island structure of central European bogs is a unique product
of the ecological succession in the Holocene. The relict biotas of bogs, plants
and invertebrates especially, have lived here from the early Holocene or even
the late Glacial stadials (PEus, 1932 ; Cooper, 1970 ; JANKOVSKA, 1980). Such
organısms are very vulnerable to extinction because they do not occur in
other habitats. Changes in the local environment (water level, chemistry of
water and peat, etc.) of a peat bog can cause the extinction of the local
tyrphobiontic taxa associated with a particular habitat island. Such changes
are irreversible because it is not possible to recreate the evolutionary history
that gave rise to the biodiversity of a specific bog. A good example is the
recent fate of subalpine bogs in the Krkonoëe Mountains, which 14 years ago
were sprayed with insecticide to suppress a forest pest. The relict and endemic
(subspecies) insect fauna probably disappeared (e.g. Pachnobia alpicola (Zett.)
a tyrphophilous relict noctuid of the subalpine zone). The habitat is now
irregularly colonised by some opportunistic insect species. Insecticides and
other chemicals are likely to prove fatal to the existence of such tyrphobiontic
insect communities.
47
Conclusions for conservation management
The best conservation strategy for peat bogs and their Lepidoptera communities
is a “no action strategy” — other than preserve good hydrological conditions.
Generally, the hydrology is the most important factor. The bog ecosystem is
fragile and any human impact is likely to prove fatal for some components of
the fauna and flora. Species of Lepidoptera are the best bioindicators. Moni-
toring of the hydrological and other environmental conditions is necessary,
if a bog is situated in a predominantly man made landscape.
Rules for conservation of central European peat bogs :
l. Maintain the hydrological conditions that prevent successional change from
wetland to closed pine forest. Wet edaphic “forest-tundra” formation appears
to be the optimal state (see also MEINEKE, 1985).
2. Ban the use of chemicals (insecticides, herbicides, etc.) close to the localities.
3. Conserve all of the “habitat islands”. For example, in the case of the unique
“archipelago” of peat bogs in the Sumava Mountains (see WELLS et al., 1983 ;
SPITZER, 1981) the whole archipelago needs to be conserved.
Scientific and educational values of peat bog communities of Lepidoptera
It is difficult to separate the “educational” from the purely “scientific” value
of central European bogs. The following scientific and educational priorities
should be included in the scientific conservation programme :
1. A model study of habitat islands and their relict Lepidoptera communities
based on the theory of island biogeography.
2. The use of peat bogs as sites for testing s-selection (stress tolerant taxa)
and r- and K-selection hypotheses.
3. Studies of relict endangered species of Lepidoptera and their subspecies.
4. Evolutionary differentiation of the insect populations within and between
“archipelagos” of bogs (e.g. Colias palaeno L. and Eugraphe subrosea Steph.).
References
Husticy, I., 1966. On the forest-tundra and the northern tree-lines. Ann. Univ. Turku
A2, 36 : 7-47.
Coorg, G. R., 1970. Interpretation of Quartenary insect fossils. Ann. Rev. Entomol.
152297120;
GELBRECHT, J., 1988. Zur Schmetterlingsfauna von Hochmooren in der DDR. Ent.
Nachr. Ber. 22 : 49-56.
JANKOVSKA, V., 1980. Paläogeobotanische Rekonstruktion der Vegetationsentwicklung
im Becken Trebonska panev während des Spätglazials und Holozäns. 151 pp.
Academia, Praha.
Meineke, J.-U., 1985. Die Situation Moorgebundener Gross-Schmetterlingsarten in
Nordrhein-Westfalen. Telma 15 : 75-100.
48
MıKKoLA, K. & SPITZER, K., 1983. Lepidoptera associated with peatlands in central
and northern Europe : a synthesis. Nota lepid. 6 : 216-229.
NEuHAUSL, R., 1972. Subkontinentale Hochmoore und ihre Vegetation. Studie CSAV
(Praha) 13 : 1-121.
Peus, F, 1932. Die Tierwelt der Moore unter besonderer Berücksichtigung der
europäischen Hochmoore. Handbuch der Moorkunde (Berlin) 3 : 1-277.
ROHACEK, J., 1982. Acalypterate Diptera of peat bogs in North Moravia (Czecho-
slovakia). Part 1. Cas. Slez. Muz. Opava (A) 31 : 1-21.
SPITZER, K., 1975. Zum zoogeographisch-ökologischen Begriff der südböhmischen Hoch-
moore. Verh. 6. Int. Sympos. Entomofaun. Mitteleuropa (The Hague) : 293-298.
SPITZER, K., 1981. Ökologie und Biogeographie der bedrohten Schmetterlinge der süd-
böhmischen Hochmoore. Beih. Veröff. Naturschutz Landschaftspflege Bad.-
Württ. 21 : 125-131.
Spitzer, K., JAROS, J. & Svensson, I., 1991. Geographical variation in food plant
selection of Eupithecia gelidata Möschler, 1860 (Lepidoptera, Geometridae).
Entomol. Fenn. 2 : 33-36.
TUHKANEN, S., 1984. A circumboreal system of climatic-phytogeographical regions.
Acta Bot. Fenn. 127 : 1-50.
WELLS, S. M., PyLE, R. & Corins, N. M., 1983. The IUCN Invertebrate Red Data
Book. Gland, Cambridge.
49
England meets Russia. David Agassiz (U.K.) discussing (presumably) the dynamics of
Phyllonorycter populations with Michail Kozlov (Russia, at present in Finland). Photo :
S. Whitebread.
Sweden meets Spain. Bengt Bengtsson (Sweden) introduces Ingvar Svensson (Sweden,
left) to Antonio Vives Moreno (Spain). Photo : S. Whitebread.
50
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 51-64 ; 31.X.1994 ISSN 0342-7536
Conserving Britain’s rarest moths
Paul WARING
Windmill View, 1366 Lincoln Road, Werrington, Peterborough, PE4 6LS, UK
Summary
The work of the Joint Nature Conservation Committee Moth Conservation
Project has several components. The first involves servicing a national network
of recorders which was set up in the winter of 1990/91 to trawl information
on the current national distribution, status and conservation requirements of
the rarer species of macro-moths in Britain. The information collected is being
used to organise surveys and produce national surveys and produce national
distribution maps, data sheets and a bibliography for the rarer moths. The
rarer macro-moths have been defined as those species believed to occur in
less than one hundred of the 10 km squares in Britain. Approximately 280
of the 730 or more macro-moth species that breed in Britain are in this category
now. The collected information is used by the government conservation
agencies to identify important breeding sites and advise on their management.
Since its inception in 1987 the Moth Conservation Project has also been
involved in devising and assisting practical conservation measures for anumber
of rare moths including six species of moths which receive legal protection
in Britain and are listed on Schedule 5 of the Wildlife and Countryside Act
1981 and 1988 amendment. These six are Zygaena viciae argyllensis Tremewan,
Thetidia smaragdaria maritima Prout, Pareulype berberata Denis & Schiffer-
müller, Siona lineata Scopoli, Acosmetia caliginosa Hübner and Hadena
irregularis Hufnagel. Practical conservation measures for these species include
site protection and defence, management work, ecological studies, captive
breeding and translocation to establish new breeding colonies. The Moth Con-
servation Project also liaises with and promotes the work of a large number
of other organisations and individuals involved in moth recording and con-
servation to raise public awareness and provide a national overview.
Introduction
This paper reports on the work of the Moth Conservation Project which
was started by the Nature Conservancy Council (NCC) in 1987 and subse-
quently passed to one of its four successor organisations, the Joint Nature
Conservation Committee (JNCC) following the reorganisation of the UK
51
government conservation agency in April 1991. The JNCC is the UK govern-
ment agency responsible for promoting nature conservation at the UK and
international levels and is the coordinating body for the three separate country
agencies of England (English Nature), Scotland (Scottish Natural Heritage)
and Wales (Countryside Council for Wales). The author has been responsible
for the Moth Conservation Project since its inception and the work has
consisted of four main tasks. These are:
— to identify which species are where, keep the information up to date and
actively encourage recording effort ;
— draw up a list of the species in greatest need of conservation ;
— organise, coordinate and promote practical conservation measures ;
— promote greater awareness of moths and other invertebrate animals and
their value as indicators of habitat quality and change.
Details of these activities have been provided by WARING (1988a ; 1989a,b,c ;
1990a,b,c ; 1991a,b,c,d ; 1992a,b,c) and references contained therein. This paper
is intended as a summary and guide.
Locating and documenting the resource
In Britain there is a long history of recording moth distribution and abundance.
Fust (1868) provides an early account of the distribution of moths in Britain.
More recently the late John Heath (based at the Biological Records Centre
(BRC), Institute of Terrestrial Ecology, Monks Wood) organised a national
recording scheme and this has formed the basis for the distribution maps
which have been published in HEATH & EMMET (1976-1991). The recording
scheme was discontinued due to lack of resources on the retirement of John
Heath in 1982. There has been no decrease in the amount of voluntary
recording effort however. The author estimates that several thousand light-
traps are operated by private individuals and organisations each year in Britain
and covering many more locations. There is a strong tradition of local
recording which extends back more than two hundred years. For consistency
local schemes are usually based on the Watsonian vice-county system which
continues to be strongly advocated (Morris, 1990). Local lists continue to
be published on a regular basis and often provide information on the habits
and phenology of species. Increasingly the county lists are including distribution
maps as well. CHALMERS-HUNT (1989) provides a recent bibliography of local
lists. In addition the Rothamsted Insect Survey continues to maintain a
network of nearly one hundred light-traps which are operated every night
of the year throughout Britain. So far it has not been possible to set up
a national recording scheme again that is capable of processing all the moth
data that is being collected in Britain. At the same time conservation
organisations frequently require greater detail about the occurrence of certain
species than the basic grid reference and date class collected by John Heath’s
scheme. To provide the information required in conservation issues the
By 2
Nature Conservancy Council developed the Invertebrate Site Register (ISR)
in 1979, with computerisation of the data-base from 1986 onwards. The ISR
aims to maintain files on all UK sites of known invertebrate importance and
to supply information about the species of conservation interest for use in
site evaluation, protection, defence and management. Currently the ISR holds
files on some 8500 sites. Many sources of information have been trawled
to prepare short-lists of species which are nationally rare, restricted to
particular habitats or are of conservation interest for some other reason, such
as a population subject to long-term study. The ISR stores and retrieves this
information. The data can be accessed by species rather than by site to allow
compilation of a list of sites at which a particular species has been recorded
or for production of a distribution map.
HADLEY (1983 ; 1984) was the first to compile a list of the nationally scarce
macro-moths. This was produced by using the BRC maps and by drawing
on the experience of active field workers in the major British entomological
societies. For the macro-moths, which may be regarded as those species
included in SKINNER (1984), the nationally scarce species were defined as those
recorded since 1960 from less than one hundred of the 10km squares in the
Ordnance Survey National Grid which covers the UK. This amounted to some
256 species. HADLEY (1983) also drew on local lists to define additional species
of regional interest. Since then information on these species has been entered
on the ISR. A Red Data Book (SHIRT, 1987), compiled at the same time
and published in 1987, lists the species recorded from fifteen or fewer of the
10km squares and categorises these as endangered, vulnerable or rare on the
basis of known threats to the sites in which they occur. This list includes
99 species or subspecies of macro-moths.
The Moth Conservation Project has been able to draw on the above
publications and on the facilities and data in the ISR. The first step was
to issue a list compiled from Hap ey (1984) and Shirt (1987) and trawl
in the data on these species from the years since 1980. This information has
been used to compile up to date distribution maps and see if the species
still merit their existing conservation status. Information on a further 80
localised species was also requested to assess whether any had moved into
the nationally scarce category based on their status from 1980 onwards. The
information was collected by contacting all existing county recorders, active
field workers and by extracting records from the national entomological
journals. In addition the Rothamsted Insect Survey kindly supplied copies
of their records on disc and the Biological Records Centre have provided
their data which enables comparison of distributions pre- and post-1980. At
the time of writing, virtually all the data required for production of maps
of the scarce species has been entered onto computer and maps such as Fig.
| are being prepared for circulation to recorders for checking. This new
generation of maps uses 1980 onwards to distinguish recent records and larger
spot sizes to indicate multiple records of adults from the same 10 km square
or evidence of breeding such as reports of immature stages. This is intended
3)
to focus attention on breeding colonies and distinguish them from records
which may refer to vagrant specimens. The current generation of recorders
is not in the habit of sending in details of numbers of moths seen and is
mainly oriented to work with light-traps but it is hoped that the new maps
will promote valuable work on larvae. At present it is true to say that much
more information is being collected from the field than the national organ-
isations are capable of trawling and processing and that the latter have been
the weak link in the chain. During 1992 it is intended that an Atlas of up
to date distribution maps and an accompanying text will be prepared for
JNCC. This will make available the information collected so far.
Preparation of a list of nationally scarce macro-moths
The new maps will be used to define the current nationally scarce species.
It is quite clear from the results that some species have increased and others
have declined in range dramatically in the last ten years, even allowing for
possible differences in recording effort and coverage. A good example is that
of Thera juniperata. Since the last distribution map of this species was
published (in WARD, 1977), T. juniperata has extended its range greatly, in
part dispersed as immature stages on young juniper bushes (Juniperus spp.)
which have become popular with gardeners in the Midland counties and
elsewhere (WARING, 1992b). The current situation (Fig. 1) is very different
from the mid-1970s and before, when TZ: juniperata was largely confined to
parts of Scotland and to the chalk of south-eastern England. Some species
have expanded their ranges greatly over the same time span, such as Rhyacia
simulans, with no apparent assistance from man, while others have declined.
Published map information and recording effort has sometimes proved to
be a less than adequate indication of the real situation. The map of Cucullia
lychnitis in HEATH & EMMET (1983) shows records from only three 10 km
Squares in mainland Britain since 1960. A survey of this species in 1991
(WARING, 1992c) discovered post-1960 records from several other localities
and that the species has bred in at least sixteen 10 km squares since 1980.
It was found to be occupying almost all of these in 1991.
Practical conservation measures for nationally scarce species
National reviews and mapping projects are on-going but can become ends
in themselves. The purpose of NCC and JNCC involvement has always been
to use these as tools to launch and sustain practical conservation measures
for the species in greatest need. When the Moth Conservation Project was
started in 1987 the rarest species of macro-moth had already been identified
and five of the species listed in SHIRT (1987) as endangered had been given
legal protection from collection and sale since 1981 under the terms of Schedule
5 of the Wildlife and Countryside Act of 1981. A sixth species had been
proposed for inclusion in the quinquennial review of 1986 and was added
in an amendment to the Act in 1988. A first priority in 1987 was to investigate
the current status of the protected species on the ground.
54
i Thera juniperata Linnaeus
O Before 1980
1980 Onwards
B Larval record
® Several adult records
© Single adult record
Fig. 1. The distribution of Thera juniperata L. in Britain.
SB)
Siona lineata
Within weeks of starting the post, work commenced on Siona lineata. This
species is now confined in Britain to two fields of rank grassland in Kent
although in the past it was more widespread (WARING, 1988a ; 1990a). The
local NCC office had been sent a copy of a paper in draft which had been
submitted to a leading British entomological journal by a highly respected
entomologist complaining about the mis-management of part of one of the
two remaining sites which is a National Nature Reserve. Sheep had been
allowed to hard-graze part of the site and had reduced the turf height to
less than 2 cm. which entomologists consider is much too short to provide
suitable conditions for the moth to breed. Meetings were held with the regional
staff responsible for the reserve and with the author of the draft. It soon
became clear that although numbers of the adult moth had been counted
annually since 1976 on a transect walk used for monitoring butterfly
populations on the site, the ecological requirements of the moth and its
immature stages were poorly known. The larval food-plant in the wild was
generally considered to be Brachypodium pinnatum, upon which wild females
had been seen laying and it was also considered that the tussocks of this
plant probably provided important over-wintering refuges for the larvae. These
impressions have had major implications when determining and reviewing the
management of the site. The hard-grazing of part of the site had been an
accident caused when sheep were penned there because of problems with stray
dogs elsewhere on the site. In other parts of the reserve B. pinnatum was
rampant to the virtual exclusion of other herbs and grasses. The moth was
now absent from the hard-grazed site and dwindling in numbers elsewhere
for unknown reasons.
Other entomologists were contacted immediately and it became apparent that
no one had reared S. lineata successfully in captivity in Britain, at least not
recently, in spite of several attempts supplying both grasses and dicotyledonous
herbs. A literature search suggested that the latter was the more likely pabulum
(e.g. SCORER, 1913 ; Skou, 1986). Field observations that summer confirmed
the habit of ovipositing on B. pinnatum and other grasses and some eggs
were collected for rearing. In a choice experiment newly hatched larvae were
offered the range of common herbs available at the breeding site. From these
they selected Origanum vulgare upon which they proceeded to develop. As
the larvae grew in size they were transferred to as near natural conditions
as possible, using potted turves from the site. The potted turves were enclosed
in nets out of doors and the larvae were released into these before the winter
to study their habits. Overwintering was successful and seven larvae were
reared to adult on O. vulgare. Subsequently larvae have been found in the
wild in association with damaged leaves of O. vulgare upon which they have
fed. B. pinnatum appears to be important in providing daily roosting and
basking sites for the larvae, which match the dry stems in colour, and in
providing spinning sites for the zygaenid-like spindle-shaped cocoon this
species produces. Full details and photographs of this work are given in
WARING (1988a ; 1989a and 1990a).
56
Following the ecological work, the management of the parts of the site which
the moth occupies has been modified to create a balance between sufficient
B. pinnatum and abundant O. vulgare. In 1991 numbers of adult moths
counted on the transect walk were higher than in any year since 1979 (Fig. 2),
although this is probably the result of the dry weather and high temperatures
experienced in 1990/91 as well as the management.
SA AAC en eolony..L
S
eb)
(cb)
n
un
=
=
Oo
(ae)
(Ce
©
un
=
o
2
E
>
LA
1976 1978 1980 1982 1984 1986 1968 1990
1977 1979 1981 1983 1985 1987 1989 1991
Transect walks
Fig. 2. The number of Siona lineata Scop. adults seen at one of the two known
localities in Britain between the years 1976 and 1991.
Other work on S. lineata during the project has included monitoring the effects
of an accidental fire which burned 10% of the site of the second remaining
colony. It has been demonstrated that the moth will recolonise an area burned
in May as early as the growing season of the following year, at which time
adults have been seen ovipositing and the resulting larvae located later in
the year. Searches for the moth in other fragments of rank chalk grassland
elsewhere in Kent and in possible former localities in Dorset and Somerset
have been organised but the moth has been found at none. Management
to recover a former site in Kent at which the moth occurred up to 1984
has been set in motion and the second of the two known colonies has been
Dj
scheduled a Site of Special Scientific Interest (SSSI) which confers a measure
of protection from changes in land use under the terms of the Wildlife and
Countryside Act 1981.
All five of the other Schedule 5 protected species have been given attention.
Acosmetia caliginosa
A. caliginosa had not been seen since 1984 and seems to have died out from
both of its last known sites which were the edges of rides in conifer plantations
on the Isle of Wight. The moth was described in NCC files as a creature
of woodland rides and requiring sensitive ride-side management. Surveys for
the moth were organised in 1987 (for larvae) and 1988 (for adults) and these
covered former sites and a number of others known to support the larval
food-plant Serratula tinctoria. A strong colony of the moth was discovered
surviving on a site from which it had been reported nearly forty years
previously and the breeding grounds were found to extend into a neighbouring
property (WARING, 1990a,b). Both of these sites are open heathland and the
larvae have since been found on plants of S. tinctoria growing in full sun
amongst sparse vegetation — a much drier and warmer situation than the
lush conditions which now exist in the edges of the plantation rides. As with
S. lineata, this single discovery has profound implications for management
and the shade from conifers and scrub is now seen as a major threat to
the species. At one of the former sites scrub invasion has been cleared and
nearly 800 larvae were reared and released in 1989 in an experiment to see
if a colony can be established. The larval food-plant is now abundant and
adults produced by the original larvae were recorded at light-traps in 1990.
No adults were found when light-trapping took place in 1991 but this coincided
with an extended period of adverse weather during which many species known
to be resident were not recorded. Light-traps will be operated at the site again
in 1992. The knowledge gained during this study indicates that this is currently
a sub-optimal site. Owing to the small size of this woodland clearing and
the proximity of trees and shrubs, it has been necessary to coppice the site
every second winter to control the woodland regeneration and in spite of
this treatment conditions at this site differ substantially from the surviving
breeding grounds on heathland. The situation will not be resolved without
clearance of a much larger area and use of domestic animals or other means
to keep woody growth at bay.
Interest in establishing colonies of A. caliginosa continues, with the aim of
replacing colonies that have been lost because of adverse management in the
last forty years and because the species now appears to be restricted to what
is basically one locality. The possibility of a return of the insect to the mainland,
from which it was last seen in 1961, is being investigated by English Nature
as part of their Species Recovery Plan. Meanwhile negotiations are underway
to maintain and improve management at the remaining colony. Some adjacent
scrub has been cleared to extend the size of the breeding grounds and further
scrub clearance followed by rotational management is planned.
58
Pareulype berberata
The third of the Schedule 5 species, Pareulype berberata, was formerly wide-
spread in Britain and reached at least as far north as Yorkshire (WARING,
1989a,b ; 1990a ; 1991c) although there is also a record from Scotland. During
the late nineteenth century it was discovered that the larval food-plant, Berberis
vulgaris, was a host of the wheat rust Puccinia graminis and there began
an extensive campaign to eradicate B. vulgaris from field hedgerows and wood
margins and this resulted in the loss of colonies of the moth (BARRETT, 1902).
There is evidence that the practice of Berberis destruction continues today
to some extent even though modern wheat strains are resistant to the rust.
Additional losses have been caused by general grubbing out of hedgerows
to increase the size of fields to accommodate modern farming methods and
by fires resulting from badly controlled stubble burning (WARING, 1989b ;
1991c). By the late 1970s the moth was apparently reduced to a single colony
in Suffolk. This colony, which has been known since the 1860s (WARING,
1989b), has been eroded in size as bushes have been removed to accommodate
improvements in nearby roads. During the 1970s the whole site was threatened
with obliteration because it was in the proposed route of a new by-pass.
Fortunately the eventual route taken by the by-pass narrowly avoids the site.
In 1983 vandals started a fire which scorched some of the best bushes. Because
of the precarious nature of this remaining colony a captive stock was
established from a single female captured in May 1988. This stock has been
used in three establishment trials aimed at setting up new colonies. The
discovery in 1991 of larvae of a successor generation at one of the establishment
sites suggests that the trial may be on the way to success. The necessity of
such extreme and time-consuming measures for these species was emphasised
in August 1991 when an accidental fire at the donor site burned 73% of the
Berberis at this colony at a time when the larvae were feeding. The entire
standing volume of Berberis before the fire was estimated to occupy only
120 m? (WARING, 1989b) and there is currently doubt as to whether any P
berberata have survived to recolonise the site if and when the Berberis recovers
from the fire. Arrangements are underway to propagate new bushes to replace
those that have been lost over the years. Meanwhile a second colony of the
moth has been discovered by investigating old records of occasional adults
taken at light in Gloucestershire (WARING, 1991c) and arrangements have been
made to protect these breeding grounds. Surveys of a number of other sites
with the potential to support colonies have been conducted (e.g. WARING,
1992a), so far without finding any more colonies. However the capture of
a single adult female at light in 1990 in Hampshire suggests that at least
one undiscovered colony survives so the search will continue.
Zygaena viciae and Thetidia smaragdaria
Two more of the Schedule 5 species are Zygaena viciae and Thetidia
smaragdaria. Both of these have been covered by extensive surveys, monitoring
of their single known colonies and ecological studies which are still underway.
59
Further details are provided by BARBOUR & WARING (1991) and WARING
(1989c ; 1990c). The latter species has been the subject of a major captive
rearing programme aimed at building up numbers of larvae for return to
the wild. This has not been an easy job with this species. Whereas it was
possible to produce over 1000 larvae from a few A. caliginosa females within
one generation, 7: smaragdaria has been much less accommodating. During
1987 only eleven larvae were found in the wild after a major survey of the
Essex and Kent salt marshes to which this species has always been confined
in Britain. These were used to establish a captive stock (WARING, 1989c).
The females are capable of laying only 70 or 80 eggs as a rule and it has
been our experience that many lay fewer or none. From eleven pre-hibernation
larvae in autumn 1987 numbers have been raised in captivity to over 100
in autumn 1988 and over 600 in autumn 1989. In 1990 the captive stock
was dispersed between several entomologists skilled in breeding moths and
arrangements were made for releases of the progeny into the wild. However
breeding success was extremely poor and resulted in just over 100 larvae only
in autumn 1990. From the resulting adults over 400 larvae were reared in
autumn 1991 and at least 350 have survived the 1991/92 winter. This is barely
sufficient for establishment trials and many fewer than we would have expected
after five years of hard work and much care. The reason for such poor
reproductive success, which is a common experience among those maintaining
captive moth populations, is usually attributed to inbreeding. There is no
denying that the captive stock of T: smaragdaria is inbred. Neither of the
two colonies that have been recorded in the last fifteen years have numbered
more than 100 larvae at any point during this time so inbreeding has been
inevitable. Another reason for the poor reproductive success could be a build
up of pathogens in these small inbred populations. Larvae have been reared
at low density on new potted food-plants each year and have not displayed
the characteristic symptoms of viral diseases. In fact larval mortality has been
very low in each generation. The poor reproductive success stems from the
fact that many adults fail to pair or pair but produce few eggs or infertile
ones. Arrangements are being made for specialists to examine the stock for
protozoan and viral infections during 1992. One technique for reducing the
possibilities of virus transmission is to surface-sterilise the eggs with a dilute
solution of formaldehyde and in 1991 this was applied to a small batch of
eggs to establish whether 7. smaragdaria eggs would survive this treatment.
The hatch rate was very poor in both the treated sample and a control batch
from the same females. This treatment greatly increases the time that has
to be spent on the culture. Protozoan infections can be controlled using drugs
sprayed onto the food-plant for the larvae to ingest. Depending on the results
of the examinations for pathogens, these treatments may be applied to part
of the captive stock in the future.
Meanwhile the numbers of larvae found in late summer counts at the last-
known wild colony in Britain have declined from 56 in 1988 to 27 in 1989,
28 in 1990 and none in 1991. The causes of loss of previous colonies have
been variously attributed to land reclamation, sea-wall construction and main-
60
tenance, removal of large numbers of larvae by insect collectors, crowding
of the larval food-plant, Artemisia maritima, by coarse grasses and tramplıng
by domestic livestock. There is no evidence that any of these factors are
responsible for the decline at the last-known colony, although a fire narrowly
missed wiping out the colony in 1989. Could it be that such small colonies,
reduced to fragments of their former habitat, can ultimately become too inbred
or disease-laden to remain viable even if their immediate habitat remains
suitable? Hence the importance of the pathogen tests.
Hadena irregularis
The latest addition to the list of moths to be given legal protection in the
UK, Hadena irregularis, was added to Schedule 5 in 1988. The same year
a major survey was organised covering all the known sites for the larval food-
plant, Silene otites, which has been the subject of botanical surveys in recent
years. The plant is confined to the East Anglian Breckland area. No larvae
were found. A second survey, in 1989, covered the most promising areas again
but with negative results. Subsequent enquiries indicate that the moth had
almost certainly declined to extinction some years before it was proposed
for inclusion on Schedule 5. The last known sighting was in 1977. This case
draws attention to the need for improved and continuous monitoring of the
rarest species so that the current status is always known. With only irregular
surveys and out of date information species are being lost before we have
time to realise and react to their decline.
Other work
While this account has concentrated on the Schedule 5 species, the breeding
grounds of many other rare moths have been visited during the last five years.
Surveys have been organised and assistance given in protecting and managing
sites all over the UK, from the steep coastal slope inhabited by Z. viciae
argyllensis in western Scotland to the sand-bank occupied by Luperina nickerlii
leechi in the extreme south-west of England, the estuary on the coast of eastern
England where Gortyna borelii resides, to the bog in west Wales where the
larvae of Eugraphe subrosea are counted every year. The responses of moths
to various types of management such as coppicing and conifer planting in
ancient broad-leaved woodland, fenland management and the harvesting of
wild-flower seed in hay-meadows have been examined (WARING, 1988a,b ;
1989d ; 1990d ; WARING & HAGGETT, 1991). A large number of independently
organised moth recording and conservation projects have been promoted via
publications and radio and television broadcasts and it is apparent that moths
and moth conservation enjoy a higher profile now than at the inception of
the project.
61
The future for moth conservation in the UK
Central to the development of moth conservation in the 1990s is the need
to find means of sustaining a long-term programme of action. Conservation
efforts remain piecemeal and sporadic, sometimes subject to the vagaries of
funding but more often critically dependent on the enthusiasm and time of
highly motivated local volunteers. The latter are the most valuable conservation
resource. Much can be achieved simply by providing a national overview in
the context of which the importance of particular local projects can be seen
and attention focused. Local action groups thrive on encouragement and the
realisation that what they are doing is recognised to be of value by others
outside the group. There is no doubt that county-based recording will continue
to thrive and that more detail will be recorded as computers and other aids
make it easier to process and retrieve this information. This will be of increasing
use in local conservation issues. However a national recording scheme is needed
to encourage recorders to poorly worked areas and to aid the interpretation
of local data. Hopefully the production of the Atlas of rarer moths will
stimulate many more local projects but past experience with the Red Data
Book (SHIRT, 1987) suggests that this alone may be insufficient to ensure
that the rarer species are conserved. Promoting recording and making
recommendations for action is one thing, the logistics of ecological study and
practical conservation measures can rapidly require full-time commitment to
achieve even modest progress. Within the conservation organisations staff that
are able to build such projects into their work programme for a few days
or weeks per year and contractors and researchers wishing to tackle these
jobs also find an up to date national information network useful to quickly
locate other colonies or experience. This is apparent from the number of
enquiries the author receives. With so much of this service now in place it
is hoped that ways and means can be found to continue and build upon
it in the years to come. As it is increasingly realised that moths are sensitive
indicators and integrators of habitat quality and change in our environment,
and as the large-scale declines of some species become more widely known,
public support for the monitoring and conservation of moths will grow in
the same way that it has for butterflies. The scientific value of conserving
the isolated British populations for study by evolutionary biologists, ecologists
and taxonomists hardly needs stating, particularly as some of the British forms
are recognised as separate subspecies from those of continental Europe. One
of the above species, P berberata, has been collected as long series from the
same site in Britain over many years, beginning in the 1860s when the colony
was first discovered. In fact the great majority of specimens in British
collections come from this one site. It is likely that such a wealth of preserved
dried material of known origin and date will be of value to many disciplines,
not just geneticists and entomologists in the future. But unless special
conservation measures continue to be taken now, these populations and the
link with the past will be lost. It is also true to say that for too long moth
recording and conservation in Britain has proceeded with an imperfect
62
knowledge of the situation elsewhere in Europe. The case of S. lineata is a
good example. There must be many other cases where the biology of particular
species is better known or can be more easily studied abroad, although
the habits of 7: smaragdaria indicate that the results may not always be
applicable in Britain. Greater contact with workers in other European countries
is desirable and Societas Europaea Lepidopterologica is the obvious medium.
Acknowledgements
The author would like to thank the staff of the former Nature Conservancy
Council and its successor agencies for help and support received both in the
field and in the office. Particular thanks are due to Mr. Alan Stubbs and
Dr. Ian McLean without whom the project might never have taken place,
and Dr. Roger Key, Dr. Michael Pienkowski and Mrs Margaret Palmer for
enabling its continuation. In respect of the National Recording Network and
the National Distribution Maps the author wishes to acknowledge the help
and the data kindly supplied by Messrs Paul Harding and Brian Eversham
and the Biological Records Centre of the Institute of Terrestrial Ecology at
Monks Wood and Dr. Ian Woiwood and Mr. Adrian Riley of the Rothamsted
Insect Survey, Harpenden. Dr. Stuart Ball of JNCC merits special thanks for
his work on the computer system and in particular the Recorder package which
processes the data for the Moth Conservation Project. Dr. Alan Morton of
Imperial College, Silwood Park, provided the package DMAP which is being
used to generate the distribution maps. Finally the author wishes to thank all
the many volunteers and friends who have generously provided their time and
effort in helping the field projects and contributing to the National Moth
Recording Network, the Biological Records Centre data and the Rothamsted
Insect Survey.
References
BARBOUR, D. A. & Warıng, P., 1991. The New Forest Burnet moth Zygaena viciae
(Denis and Schiffermiiller) (Lepidoptera: Zygaenidae) in Scotland in 1990.
Entomologist’s Gazette 42 : 231-238.
BARRETT, C. G., 1902. The Lepidoptera of the British Isles. 8 : 138-140. Reeve, London.
ann J. M., 1989. Local lists of Lepidoptera. Hedera Press, Uffington,
Oxford.
Fust, H. J., 1868. On the distribution of Lepidoptera in Great Britain and Ireland.
Transactions of the Entomological Society 4 in : 417-518.
HADLEY, M., 1983. A provisional national review of British macrolepidoptera.
Invertebrate Site Register. Unpublished report 46. Nature Conservancy Council,
London.
HADLEY, M., 1984. A national review of British macrolepidoptera. Invertebrate Site
Register. Unpublished report 46. Nature Conservancy Council, London.
HEATH, J. & EMMET, A. M., 1976 - 1991. Moths and butterflies of Great Britain and
Ireland. Vols. 1,2,71,711,9,10. Harley Books, Great Horkesley. Essex.
Ba G., 1990. The Watsonian vice-county system. Entomologist’s Rec. J. Var.
02 : 25-30.
SCORER, A. G., 1913. The entomologist’s log-book. Routledge, London.
SHIRT, D. B. (Ed.) 1987. British Red Data Books 2: Insects. Nature Conservancy
Council, Peterborough. |
63
SKINNER, B., 1984. Colour identification guide to moths of the British Isles. Viking.
Harmondsworth, Middlesex.
SKOU, P., 1986. The geometroid moths of north Europe. Entomonograph 6. Brill,
Copenhagen.
WARD, L. K., 1977. The conservation of juniper : the associated fauna with special
reference to southern England. Journal of Applied Ecology 14 : 81-120.
Warıng, P. 1987. Conservation of the British macrolepidoptera (larger moths) : intro-
duction to a new project. Bull. amat. Ent. Soc. 47 : 86-88.
WARING, P., 1988a. Moth Conservation Project, News Bulletin 1. Nature Conservancy
Council, Peterborough.
WARING, P., 1988b. Responses of moth populations to coppicing and the planting
of conifers. Jn Kirpy, K. J. & WRIGHT, F. J. (Eds.) : Woodland conservation
and research in the Clay Vale of Oxfordshire and Buckinghamshire. Nature
Conservancy Council, Research and Survey series 15 : 82-113.
WaRING, P., 1989a. Moth Conservation Project, News Bulletin 2. Nature Conservancy
Council, Peterborough.
WARING, P., 1989b. Conserving the Barberry Carpet moth in Suffolk. Transactions
of the Suffolk Naturalists’ Society 25 : 37-41.
WARING, P., 1989c. Rescue bid to save the British race of the Essex Emerald moth
from extinction. Entomologist’s Rec. J. Var. 101 : 231-232.
Warıng, P., 1989d. Comparison of light trap catches in deciduous and coniferous
woodland habitats. Entomologist’s Rec. J. Var. 101 : 1-10.
WARING, P., 1990a. Conserving Britain’s rarest moths. British Wildlife 1 : 266-284.
Warıng, P., 1990b. 1988 survey of the Reddish Buff moth, Acosmetia caliginosa,
on the Isle of Wight. Proceedings of the Isle of Wight Natural History and
Archaeological Society 9 : 147-150.
WaRING, P., 1990c. Essex Emerald moth, Thetidia smaragdaria maritima Prout (Lep.
Geometridae) — an update. Entomologist’s Rec. J. Var. 102 : 71-73.
Warıng, P., 1990d. Observations on invertebrates collected up during wildflower seed
harvesting in a hay meadow, with particular reference to the butterflies and
moths. British Journal of Entomology and Natural History 3 : 143-152.
Warıng, P., 1991a. National review of the recording and conservation of the rarer
British macro-moths. Entomologist’s Rec. J. Var. 103 : 193-196.
WARING, P., 1991b. Moth Conservation Project, News Bulletin 3. Nature Conservancy
Council, Peterborough.
Warıng, P., 1991c. Barberry Carpet moth, Pareulype berberata D. & S. : the discovery
of a second breeding colony in Britain and other recent records. Entomologist’s
Rec. J. Var. 103 : 287-292.
Warıng, P., 1991d. Some thoughts on moths and the BBCS. British Butterfly
Conservation Society News 47 : 19-22.
WARING, P., 1992a. Scarce Tissue moth, Rheumaptera cervinalis (Lep. : Geom.), and
a search for the Barberry Carpet moth, Pareulype berberata (Lep.: Geom.)
in Lincolnshire. Entomologist’s Rec. J. Var. 104 : 63-66.
WARING, P., 1992b. On the current status of the Juniper Carpet moth, Thera juniperata
(Lep. : Geometridae). Entomologist’s Rec. J. Var. 104 : 143-148.
Warıng, P., 1992c. The Striped Lychnis moth, Cucullia lychnitis Rambur (Lepidoptera :
Noctuidae) — a review of its distribution and status in Britain. Entomologist’s
Gazette 43 : 179-205.
WaRING, P., in prep. Moth Conservation Project, News Bulletin 4. Joint Nature
Conservation Committee, Peterborough.
Warıng, P. & HAGGETT, G., 1991. Coppiced woodland habitats. Im Fry, R. A. &
LONSDALE, D. (Eds.) : Habitat conservation for insects : a neglected green issue.
Amateur Entomologist’s Society, Colchester.
See also WaARING, P., 1989-1992. Moth reports. British Wildlife 1 : 47-48, 103-105,
168-169, 228-229, 296-297, 359-360 ; 2: 50-52, 115-117, 177-178, 245-246, 308-310 ;
3 : 49-51, 112-114, 176-178.
64
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 65-72 ; 31.X.1994 ISSN 0342-7536
The butterfly fauna of the eastern coast of Hudson Bay
and James Bay (Canada), with particular reference
to the Holarctic element
Seppo KOPONEN
Centre d’études nordiques, Université Laval, Ste-Foy, Québec GIK 7P4, Canada (!)
Summary
Twenty-four butterfly and three skipper species were collected at Kuujjuarapik
(S5°17 N, 77°48’W), in the forest tundra zone of northern Québec, in 1985,
1990 and 1991. This material markedly extends the known northern limit of
many species, including Clossiana bellona (Fabricius, 1775), Vanessa atalanta
(Linnaeus, 1758), Incisalia polios Cook & Watson, 1907, Polygonia gracilis
(Grote & Robinson, 1867), Lycaeides idas (Linnaeus, 1761) and Celastrina
ladon (Cramer, 1780). A massive migration of Vanessa cardui (Linnaeus, 1758)
was observed in 1991. Certain northern species, such as Colias nastes Bois-
duval, 1832 and Clossiana polaris (Boisduval, 1828), are at their southern limit
at Kuujjuarapik. The total fauna on the eastern coast of James Bay - central
Hudson Bay, Québec (between 51°30’ and 57°15’N; up to 100 km inland
of the coast) comprises 41 species of butterflies and skippers. The proportion
of circumpolar (Holarctic) species increases with the latitude. The approximate
percentage of Holarctic species at James Bay sites is 50%, at Kuujjuarapik
75% and at more northern sites on Hudson Bay 90%.
Introduction
The Lepidoptera fauna of the eastern coast of Hudson Bay is rather poorly
known. Thus, in the recent handbooks by LAPLANTE (1985) and ScoTT (1986),
the maps and other data on the distribution of butterflies in Nouveau-Québec
are highly generalized. Only a few papers on the butterflies of the eastern
coastal area of Hudson Bay and of James Bay have been published (FREE-
MAN, 1949; LAFLAMME & PERRON, 1983; GAUTHIER & KOPONEN, 1987 ;
CoMToıs & NÉRON, 1987 ; LAYBERRY, 1988 ; NERON, 1990 ; KOPONEN, 1992).
No detailed study of the butterfly fauna of any restricted locality in the Hudson
Bay area is available.
(!) Present address : Zoological Museum, University of Turku, FIN-20500 Turku, Finland
65
This article presents the butterfly and skipper species found by the author
around the village of Kuujjuarapik (Whapmagoostui/ Poste-de-la-Baleine/
Great Whale) during three summers (1985, 1990 and 1991). Data on their flying
periods and habitat preferences in the area are given. The known butterfly
and skipper fauna of the southeastern coasts of Hudson Bay is also discussed.
Study area, material and methods
The Kuujjuarapik area (55°17 N, 77°48’°W) belongs to the southern forest
tundra zone (PAYETTE, 1983) (Fig. 1). Three conifer tree species, white spruce,
black spruce and tamarack grow there at their arctic-maritime limit. Alder
and dwarf birch shrubs are typical of the area. There are also small bogs
and moist meadows. Open hills, barren or covered by alpine heath, are rather
low, the highest summit being about 230 m. Vast alpine tundra areas are
absent around Kuujjuarapik. The village is located on a sandy terrace between
the Great Whale River and Hudson Bay.
Butterflies and skippers were collected and observed around the village.
Lepidopterans were observed in 1985 whenever the weather permitted ; species
were caught by netting, and abundant ones also recorded without catching.
The study period consisted of two periods, 18th June - 8th July and 2nd
August - 2nd September 1985 ; the total number of observation days was 34.
In 1990 collecting was less intensive ; the main observation period was 13th
July - 21st August, but some collecting was also done around mid-June. The
collecting period in 1991 was short, 5th-11th July.
The author collected butterflies at Lake Ekomiak (53°23’N) 60 km south
of Radisson (La Grande) in July 1990, and between Rupert River (51°30'N)
and Lake Ekomiak on the James Bay Highway in July 1991. Information
on collections by LAYBERRY (1988 and unpubl.) in 1986-87 in the James Bay
Highway area (between 51°30’ and 53°45’N), has been included in this paper.
Collections between 53°10’ and 57° 15'N, presented by GAUTHIER & KOPONEN
(1987), are also included.
The system and nomenclature is mainly based on LAPLANTE (1985) ; however,
all subspecific and other infraspecific names have been omitted.
Results
1. Fauna of Kuujjuarapik
Altogether, 24 species of butterflies and three skippers were found at Kuuj-
juarapik (Table 1). The butterfly material included twelve Nymphalidae, five
Lycaenidae, four Satyridae and three Pieridae species.
Most species were collected or observed frequently ; only /ncisalia polios Cook
& Watson, 1907 and Speyeria atlantis (Edwards, 1862) in 1985, Colias nastes
Boisduval, 1832 in 1990, and Clossiana bellona (Fabricius, 1775), in 1991,
were observed once. The species observed most often in 1985 were Epidemia
66
dorcas (Kirby, 1837), which was seen on 20 of the total 34 observation days,
and Lycaeides idas (Linnaeus, 1761) (18), both flying mainly in August, Colias
pelidne Boisduval & Leconte, 1829 (14) with a very long flying period, Oeneis
taygete Geyer, 1830 (14) and Celastrina ladon (Cramer, 1780) (13) flying in
June-July. Nymphalis antiopa (Linnaeus, 1758), Clossiana titania (Esper,
1793), ©. selene (Denis & Schiffermüller, 1775) and C. frigga (Thunberg, 1791)
were also seen frequently.
Three species not found in 1985 were collected in 1990 : Colias nastes, and the
skippers Hesperia comma (Linnaeus, 1758) and Pyrgus centaureae (Rambur,
1839) ; and one in 1991: Clossiana bellona. The skippers were markedly
abundant, and their absence in 1985 is presumably due to their flying pattern :
only or dominantly in even years at Kuujjuarapık. The same is true for
Clossiana polaris (Boisduval, 1828).
A massive migration of Vanessa cardui (Linnaeus, 1758) was observed in July
1991. More than 20 specimens were seen at Kuujjuarapik and five captured,
Sth-11th July.
Moist swampy meadows were the preferred flying sites of many species at
Kuujjuarapik. Species collected frequently in moist meadows and bogs were
Clossiana frigga, C. freija (Thunberg, 1791), C. titania, Proclossiana eunomia
(Esper, 1799), Oeneis taygete, O. jutta (Hübner, 1806), Coenonympha inornata
Edwards, 1861, Epidemia dorcas, Carterocephalus palaemon (Pallas, 1771),
Hesperia comma and Pyrgus centaureae. Species typically observed in forested
sites were Nymphalis antiopa and Polygonia gracilis (Grote & Robinson,
1867), and also Clossiana titania and Lycaeides idas. Some species, such as
Vanessa atalanta (Linnaeus, 1758), Colias pelidne, Clossiana polaris, Agriades
franklinii (Curtis, 1798), Oeneis taygete and O. melissa (Fabricius, 1775) were
often seen on open, windy hills and also on the open Hudson Bay shores.
The most eurytopic species at Kuujjuarapik seemed to be Colias pelidne, Pieris
napi (Linnaeus, 1758), Clossiana selene, C. titania, Vanessa atalanta, Lycaeides
idas, Celestrina ladon and Hesperia comma.
2. Fauna of the eastern coast of James Bay - Hudson Bay
Altogether, 41 butterfly and skipper species are known from the coastal area
between southern James Bay and central Hudson Bay (Table 1). This area
is situated between Rupert River, 51°30’N, and Lake Minto, 57° 16N (Fig. 1).
Thirteen species not caught at Kuujjuarapik in 1985, 1990 and 1991 are known
from the James Bay area. Papilio machaon Linnaeus, 1758 and the migrating
Danaus plexippus (Linnaeus, 1758) were mentioned by FREEMAN (1949) from
the southernmost locality included, Fort Rupert (Waskaganish). The same
is true for Incisalia augustus (Kirby, 1837), reported by LEBLANC (1985) at
Rupert River. Other species, known to occur in the James Bay area (Lay-
BERRY, 1988 ; SCOTT, 1985), but not found by the present author include Colias
interior Scudder, 1862, Oeneis chryxus (Doubleday & Hewitson, 1849), Erebia
disa (Thunberg, 1791) and Epidemia epixanthe (Boisduval & Leconte, 1833).
67
Labrador.” /
VV
Newfoundland
Ontario
= se ood
x
I —
Fig. 1. Study localities in northeastern Canada. 1. Kuujjuarapik, 2. Richmond Gulf,
3. Lake Minto, 4. Lake Ekomiak, 5. Rupert River, 6. Schefferville, 7. Missisicabi
River, 8. Fort Albany, 9. Cape Henriette Maria, 10. Fort Severn, 11. Churchill. Gray
line indicates the northern forestline.
The author collected the skippers Polites mystic (Edwards, 1863), Erynnis icelus
(Scudder & Burgess, 1870) and Thymelicus lineola (Ochsenheimer, 1808) at
Rupert River, the southernmost study site. Of these, 7: lineola, an introduced
European species, was abundant. Pterourus glaucus (Linnaeus, 1758), Phy-
ciodes morpheus (Fabricius, 1775) and Basilarchia arthemis (Drury, 1773) were
caught as far north as Lake Ekomiak (53°23'N). Vanessa cardui occurred
in great numbers along the James Bay Highway at all suitable sites in early
July 1991 (see KOPONEN, 1992).
Of the 41 species found between Rupert River and Lake Minto, 27 have been
observed by the present author at Kuujjuarapik. The number of species caught
at the James Bay sites, north of Rupert River, is 32 and 19 are known from
the northern forest tundra, between Richmond Gulf (17 species) and Lake
Minto (Table 1).
Discussion
l. Kuujjuarapik
Up to now, 17 butterfly species have been reported from Kuujjuarapik (FREE-
MAN, 1949; LAFLAMME & PERRON, 1983 ; GAUTHIER & KOPONEN, 1987 ;
NÉRON, 1990). The present material includes all of these, plus the following
seven butterflies which have not been found earlier at Kuujjuarapik (see
Koronen, 1992) : Colias nastes, Clossiana bellona, Speyeria atlantis, Vanessa
atalanta, Polygonia gracilis, Incisalia polios, and Celastrina ladon. The skip-
68
Table |
Butterflies and skippers known from three areas on the eastern coast of James Bay -
Hudson Bay (51°30°-57°15’N), based on the present material, GAUTHIER & KOPONEN
(1987)!, LAYBERRY (1988 and unpublished)?, FREEMAN (1949)?, Comtois & NERON
(1987)*, Scott (1986)>, and LEBLANC (1985)6. The observation periods at Kuujjuarapik
were 18th June - 8th July and 2nd August - 2nd September 1985, mid-June and 13th
July - 21th August 1990, and Sth-11th July 1991. JB = James Bay (boreal forest zone),
KU = Kuujjuarapik (southern forest tundra), RM = Richmond Gulf - Lake Minto
(northern forest tundra)
Species flight at
Kuujjuarapik
Papilio machaon
Pterourus glaucus
Colias interior
Colias pelidne
Colias nastes
Pieris napi
Clossiana selene
Clossiana bellona
Clossiana frigga
Clossiana polaris
Clossiana freija
Clossiana titania
Proclossiana eunomia
Speyeria atlantis
Phyciodes morpheus
Vanessa atalanta
Vanessa cardui
Nymphalis antiopa
Polygonia gracilis
Polygonia sp.
Basilarchia arthemis
Danaus plexippus
Coenonympha inornata (tullia)
Oeneis chryxus
Oeneis taygete (bore)
Oeneis jutta
Oeneis melissa
Oeneis polixenes
Erebia disa
Incisalia polios
Incisalia augustus
Epidemia dorcas
Epidemia epixanthe
Lycaeides idas
Agriades franklinii (glandon)
Celastrina ladon (argiolus )
Polites mystic
Hesperia comma
Thymelicus lineola
Carterocephalus palaemon
Pyrgus centaureae
Erynnis icelus
Ben
=
HER ++i RH HE +
due
+++t+t++t++++ +
+i tthe ti tir Hi His ++++i
I Par f
28.6.-26.8.
04.8.
18.6.-01.8.
30.6.-13.8.
OS
23.6.-08.7.
22.6.-02.8.
22.6.-16.7.
05.7.-22.8.
29.6.-06.8.
05.8.
09.6.-01.7.
VIERTE
18.6.-15.7.
21.6.-29.6.
08.7.-05.8.
18.6.-01.8.
26.6.-27.7.
22.6.-01.8.
21.6.
28.7.-02.9.
05.7.-02.9.
30.6.-12.8.
18.6.-08.7.
14.7.-12.8.
02.7.-08.7.
15.7.-04.8.
pers Carterocephalus palaemon, Hesperia comma and Pyrgus centaureae are
also new to Kuujjuarapik ; however, all these skippers have been recorded
north of Kuujjuarapik (GAUTHIER & KOPONEN, 1987).
According to LAPLANTE (1985), many of the present species have a southern
range in Québec, and their occurrence at Kuujjuarapik on the Hudson Bay
coast is somewhat unexpected. LAPLANTE (1985) regarded Clossiana bellona,
Vanessa atalanta, Incisalia polios, Speyeria atlantis and Carterocephalus
palaemon as species of the temperate-boreal forest zone. GAUTHIER &
Koronen (1987) already reported C. palaemon from Richmond Gulf, north
of Kuujjuarapık. The following species also have a southern (boreal) distri-
bution ; their range, according to LAPLANTE (1985), in the Québec-Labrador
peninsula extends to the forest tundra area only in its maritime southeastern
part on the Labrador coast (see LAPLANTE 1985: 218-219; note that Fort
Rupert in his map on p. 219 should be Fort George) : Nymphalis antiopa,
Polygonia gracilis, Epidemia dorcas, Lycaeides idas and Celastrina ladon. Of
these, NERON (1990) has already reported Nymphalis antiopa and Epidemia
dorcas from Kuujjuarapik. Many of the above southern species have been
reported from comparable areas on the western coast of Hudson Bay in
Ontario and Manitoba (RIOTTE, 1971 ; KLASSEN, 1984 ; KLASSEN et al., 1989).
Danks (1981) mentioned Clossiana polaris, Colias nastes and Agriades frank-
linii as butterfly species occurring in the Canadian High Arctic. Of the northern
species, Colias nastes, Clossiana polaris and Oeneis melissa seem to reach the
southern limit of their range around Kuujjuarapik. Oeneis polixenes (Fabricius,
1775) has been collected north of Kuujjuarapik (GAUTHIER & KOPONEN, 1987).
Its absence from Kuujjuarapik is probably explained by the absence of large-
scale tundra areas around the village.
The special flying pattern, only or predominantly in alternate years in the
north (cf. Scott, 1981 ; Ferris et al., 1983) can explain the uneven occurrence
of some species in 1985 and 1990. Thus Clossiana polaris (only one specimen
in 1985 and none in 1991), and Hesperia comma and Pyrgus centaureae (not
found in 1985 or 1991) were markedly abundant in 1990. The opposite seemed
to be true for Clossiana freija, Oeneis jutta, and Carterocephalus palaemon.
No evidence of alternate year flight was found for the more abundant Oeneis
species, ©. taygete and ©. melissa (cf. Scott, 1981 ; 1986). The data from
Schefferville, central Québec-Labrador peninsula (ANTHONY, 1969 ; KOPONEN,
1980) support the even-year flying pattern of Hesperia comma and Pyrgus
centaureae there as well. Clossiana polaris seems to be more common in even
years on the Hudson Bay coast (GAUTHIER & KOPONEN, 1987 ; NERON, 1990)
and near Schefferville (ANTHONY, 1969 ; KOPONEN, 1980). Due to this flying
pattern, a study of butterflies in the north during one summer only may give
greatly biased results.
2. Eastern coast of James Bay - Hudson Bay
RioTTE (1971) reported 37 species from the closely comparable areas of
northern Ontario : Missisicabi River - Fort Albany on James Bay and Cape
70
Henriette Maria - Fort Severn on Hudson Bay (51° 15’-53°N ; Fig. 1). Twenty-
five of these were found on the eastern coast of James Bay - Hudson Bay,
between Rupert River and Lake Minto (Soerensen’s quotient of similarity ;
see e.g. MAGGURRAN, 1988, QS = 0.64). KLASSEN et al. (1989) reported 45
species from northernmost Manitoba; 33 of the 41 species on the eastern
coast of James Bay - Hudson Bay were also mentioned for northern Manitoba
(QS = 0.77). Morris (1980) listed 37 species of butterflies and skippers found
on the Labrador coast, of these 31 were common with the present study area
(QS = 0.79).
The proportion of circumpolar, Holarctic species increases with the latitude.
The percentage of Holarctic species at James Bay sites is 53%, at Kuujjuarapik
74% and at more northern sites on Hudson Bay (Richmond Gulf - Lake
Minto) 89%. Of the present total material, between Rupert River and the
Ungava peninsula, the percentage of Holarctic species is about 60%.
The proportion of Holarctic species in the total Québec butterfly and skipper
fauna is only 26% (LAPLANTE, 1985). On the island of Newfoundland this
proportion is 46% and on the Labrador coast as high as 67% (Morris, 1980).
Around Churchill, northern Manitoba on the western coast of Hudson Bay,
the percentage of Holarctic species is about 57% (KLASSEN et al., 1989).
The known northern limit of many species approaches the southern end of
James Bay (Scott, 1986) and thus several species not mentioned in the present
paper probably also occur in the southern James Bay area. Two northern
butterflies, Colias hecla Lefebvre, 1836 and C. palaeno (Linnaeus, 1761),
known from the Ungava peninsula (LAPLANTE, 1985 ; Scott, 1986), possibly
occur in the northernmost parts of the present study area.
Acknowledgements
I wish to thank Professor Louise Filion, Professor Serge Payette and the
staff of the Centre d’études nordiques (Université Laval) for their generous
help during the study. Robert Gauthier, Jean-Marie Perron and Jean-Paul
Laplante (Québec City), J. Donald Lafontaine (Ottawa) and Ross A. Layberry
(Kinburn) gave me valuable information. Veikko Rinne (Turku) compiled the
map. I express my sincere thanks to all of them.
References
ANTHONY, G. S., 1969. Notes on the butterflies of the Schefferville region, northern
Quebec. McGill Subarctic Res. Paper 24 : 46-54
Comrtois, P. & NÉRON, D., 1987. Nymphalis antiopa antiopa (Linné) (Lepidoptera :
Nymphalidae) au-delà de la limite des forêts : un essai inusité de colonisation.
Fabreries 13 : 41-44.
Danks, H. V., 1981. Arctic arthropods. Entomological Society of Canada, Ottawa.
608 pp.
71
Ferris, C. D., Dos Passos, C. F, EBNER, J. A. & LAFONTAINE, J. D., 1983. An
annotated list of the butterflies (Lepidoptera) of the Yukon Territory, Canada.
Can. Ent. 115 : 823-840.
FREEMAN, T. N., 1949. Field season summary 8. Far North. The Lepidopterists’ News
3 : 101-102.
GAUTHIER, R. & Koponen, S., 1987. Lépidoptères diurnes capturés sur la côte est
des Baies d’Hudson et de James, Nouveau-Québec. Géogr. phys. et Quatern.
41:171-175.
KLASSEN, P., 1984. Checklist of Manitoba butterflies (Rhopalocera). Journ. Lep. Soc.
BS 32-50)
KLASSEN, P., Westwoop, A. R., Preston, W. B. & MckKırıor, W. B., 1989. The
butterflies of Manitoba. Manitoba Museum of Man and Nature, Winnipeg.
290 pp.
KOPONEN, S., 1980. Butterflies from the Schefferville area of the central Quebec-
Labrador peninsula. McGill Subarctic Res. Paper 30 : 62-64.
Koronen, S., 1992. New records of butterflies and skippers (Lepidoptera) from
Kuujjuarapik and the James Bay area. Fabreries 17 : 55-57.
LAFLAMME, M. & PERRON, J.-M., 1983. Liste partielle des lépidoptères et des odonates
du Nouveau-Québec. Fabreries 9 : 76-80.
LAPLANTE, J.-P., 1985. Papillons et chenilles du Québec et de l’est du Canada. France-
Amérique, Montréal. 280 pp.
LAYBERRY, R., 1988. Season summary 1987. Zone 7 Ontario/Quebec. News of Lepi-
dopterists’ Soc. 2/1988 : 30-31.
LEBLANC, A., 1985. Les Lycénidés (Lepidoptera : Lycaenidae) du Québec. Fabreries,
Suppl. 4 : 1-66.
MAGGURRAN, A. E., 1988. Ecological diversity and its measurement. Chapman and
Hall, Princeton University Press. 179 pp.
Morris, R. F., 1980. Butterflies and moths of Newfoundland and Labrador. The
Macrolepidoptera. Research Branch, Agriculture Canada, Publ. 1691. 407 pp.
NÉRON, D., 1990. Captures de Lépidoptéres diurnes en juin et août a Kuujjuarapık
(Territoire du Nouveau-Québec). Fabreries 15 : 53-58.
PAYETTE, S., 1983. The forest tundra and present tree-lines of the northern Quebec-
Labrador peninsula. Nordicana 47 : 3-23.
Riotre, J. C. E., 1971. Butterflies and skippers of northern Ontario. Mid-Continent
Lep. Ser. 2 (21) : 1-20.
Scott, J. A., 1981. Hibernal diapause of North American Papilionoidea and Hespe-
rioidea. J. Res. Lepid. 18 : 171-200.
Scott, J. A., 1986. The butterflies of North America. A natural history and field
guide. Stanford Univ. Press. 583 pp.
72
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 73-78 ; 31.X.1994 ISSN 0342-7536
Inferences about the function of genitalia
in the genus Eupithecia, with description of a new organ
(Lepidoptera, Geometridae)
Kauri MIKKOLA
The Finnish Museum of Natural History, P.O. Box 17, FIN-00014 University of Helsinki, Finland
Summary
In the geometrid genus Eupithecia, the females usually have a sclerotized half-
ring in the ductus bursae, called the colliculum. Bozre (1990) observed that
this structure is lacking in the North American FE. palpata group. In this
group, the males have the 8th sternite (ventral plate) composed of two long
rods and a connecting ridge. It is shown that the rods are basally articulated,
and seemingly, they have a forceps-like function. In the 7th segment of the
female, corresponding paired pouches for reception of the forceps’ tips were
found. These are named “Bolte’s pockets” (crumillae boltei). A hypothesis
about the interplay between the male ventral plate and the female colliculum
is presented : the mainly species-specific plate is an “opener” of the colliculum,
a “key”. It is suggested that in Eupithecia, the recognition function between
sexes during the early phase of copulation has shifted from the valvae to
these structures. The function of the valvae is probably restricted to a stereo-
typic grasping at the beginning of the pairing. The later fixing, recognition
and isolating functions are performed by the internal lock-and-key mechanisms
formed by the aedeagus and vesica of the male and bursa copulatrix of the
female, in a way similar to that published for the noctuid genus Apamea.
It has recently been shown that the internal genitalia of noctuid moths function
as complicated lock-and-key mechanisms (LAFONTAINE & MIKKOLA, 1987 ;
MikkoLA, 1992). In the geometrid genus Eupithecia Curtis, 1825, the male
vesica and the female bursa show similar structural correspondences (MIKKOLA,
1993). According to PETERSEN (1909), also in these moths, the male must
deposit the spermatophore into the female bursa and appendix bursae so that
its opening is against the opening of the ductus seminalis. Otherwise, the sperm
transfer in the female cannot take place. Such a deposition succeeds only
if the genitalia have the same specific characteristics. Thus, the internal genitalia
act as isolation mechanisms.
73
Even though the genitalia of Eupithecia are shown in numerous standard
works, very little is known about their function. PETERSEN (1909) is virtually
the only researcher who has paid attention to the interplay of the male and
female genitalia. He reached the pioneering and important concept, referred
to above, that the male spermatophore must corrrespond in shape to the
shape of the female bursa.
PETERSEN (1909) never made comments about the significance of the female
colliculum, a structure peculiar to the genus Eupithecia. This is a dorsal, half-
ring-formed sclerotization in the posterior part of the ductus bursae : ventrally
the ductus wall is membranous (Fig. 3). Another structure which is typical
of the genus Eupithecia is the male “ventral plate”, the modified 8th sternite.
Its shape is more or less species-specific, and therefore, most standard works
show it for all species, even though the function of the organ was unknown.
Bo te (1990) noted that the female colliculum is lacking in the North American
E. palpata group, and that the ventral plate in the males of these species
is composed of two long rods, fork-like. This cue inspired me to try to figure
out what the relation of the ventral plate and the colliculum is; the first
results are published in this paper. A review of the lock-and-key mechanisms
will be published in a separate paper in cooperation with Mr. Klaus Bolte.
Material and methods
For this study, genitalia slides made by Klaus Bolte (see Botte, 1990) from
the Canadian National Collection, Ottawa, were used. The slides contain both
the routine parts and the male vesica everted as well as the male and female
abdominal skins. Most slides are stained with chlorazol black, giving a clear
separation between membranous and sclerotized parts. The drawings were
made using a mirror, so they correspond to the original slides.
Results
According to McDuNNouGH (1949) the E. palpata group contains 22 species
in North America. As Botte (1990) reported, the male ventral plate in the
E. palpata group is fork-like with two more or less thin rods and with a
narrow transversal ridge connecting the rods basally (Figs 1,2). In most species,
like E. longipalpata Packard, 1876 (Fig. 1), the tips of the rods are dorso-
ventrally flattened, and spatulate. The rods are usually asymmetric (noted
also by McDunnoucH, 1949), the left one being straighter and extending
further. The stoutness and length of the rods show specific variation.
In E. miserulata (Grote, 1863), the plate is strongly modified (Fig. 2). The
rods are strong and flat, and the tips are bent inward; they are strongly
asymmetric, the left one being much larger.
In addition to what Botte (1990) described, the connecting ridge is not
contiguous, but there is a longitudinal crack between the lateral parts,
seemingly an articulation surface, suggesting that the ventral plate could
74
1. Eupithecia longipalpata Packard
2. Eupithecia miserulata Grote
6)
>=:
b—À
|
Figs 1, 2. Ventral views of the tips of abdomina of males (to the left, caudal direction
to the right) and females (to the right, caudal direction to the left) of Eupithecia.
The sclerotized parts are shown with heavy line and dense stippling. a = the male
ventral plate (8th sternite), b = articulation of the sclerites. c = Bolte’s pocket.
1) Eupithecia longipalpata Packard (slides CNC/GEO 5192 and 5207) ; 2) E. miserulata
Grote (slides CNC/GEO 5659 and 5595).
function like forceps. This observation led me to search the female genitalia
for the grasping points of the tips of the forceps. What was found was a pair
of specialized pockets, laterally in the 7th sternite of the female skin. They
are usually asymmetric (but because they are soft structures this cannot always
be observed) corresponding to the male ventral plate, 1.e. with the right pocket
larger. The structure is described here and named Bolte’s pockets (crumillae
boltei) in honour of Klaus Bolte who published the outstanding monograph
of the Canadian Eupithecia species (BoLTE, 1990), and who observed the
connection between the structure of the ventral plate and the absence/ presence
of a colliculum.
ip
DESCRIPTION : Paired depressions of cuticula of female 7th sternite, antero-
medial of the stigmata, near 6th/7th intersegmental membrane. Right pocket
usually larger than left. Bottom of pocket scaleless, seemingly covered by
sensory hairs, in E. miserulata bottom of pocket partly sclerotized. In fresh
specimens the pockets are covered by scales of the surrounding skin. Size
of pockets varies according to size of tips of ventral plate of male. Altered
shape and enlarged size is found in E. miserulata.
Discussion
In the functional anatomy of the genitalia of species of Eupithecia (Geo-
metridae) and those of the genus Apamea (Noctuidae) (cf. MıkkoLA 1993),
the following basic differences can be observed :
1. The valvae of Eupithecia are soft and stereotypic, usually without specific
characteristics. Those of Apamea are strongly sclerotized and, although they
are basically quite uniform, they usually have clear specific characteristics.
2. The 8th sternite of male Eupithecia is a specialized, mostly species-specific
structure, while the corresponding sternite in Apamea has an X-shaped
sclerotization, similar in all species.
3. In most species of Eupithecia, except those of the E. palpata group, there
is a colliculum, which is not known in the genus Apamea. There seems to
be no doubt that the ventral plate in the Æ. palpata group acts as a tool
grasping the female in her Bolte’s pockets during the early phase of copulation.
In Fig. 3, a hypothesis is presented to demonstrate how the ventral plate may
interact with the colliculum.
The colliculum in the female’s ductus bursae is a double half-ring with the
dorsal side rigidly sclerotized and the ventral side membranous, laying tightly
a. Before b. Opened by c. During
copulation ventral plate copulation
en
Q
ventral wall — 3 ventral wer 3 aedeagus —
Fig. 3. Hypothetical mode of interplay between the male ventral plate and the female
colliculum (transections through ductus bursae ; ventral direction downward). a : Before
copulation with the ventral wall of ductus bursae against colliculum ; b: The ductus
is opened by the male ventral plate ; c: When the male aedeagus is inserted into the
ductus, the colliculum effectively disappears.
76
against the dorsal side. When Zupithecia bursae are inflated by injection, this
point is particularly difficult to pass with a syringe needle (K. Bolte, pers.
comm.) which is the same as what the male is doing with its aedeagus during
copulation. The male ventral plate 1s usually more or less wedge-shaped. I have
found some evidence concerning corresponding measurements and shapes of
the ventral plate and the colliculum. Therefore, I propose that the ventral plate
is a tool for the opening of the colliculum. In the early phase of copulation,
it would slide ventrally of the ductus bursae, widen the distance between the
lateral walls of the colliculum and thus open the ductus bursae. Once the
aedeagus has gained entry to the ductus, the colliculum structure is no longer
apparent. Therefore, its function must be restricted to the early phase of the
copulation.
How exactly the interplay between the ventral plate and colliculum occurs,
remains to be demonstrated. The former is contiguous with the abdominal
scale-covered skin, and the latter is situated under the skin. It may be that
the end of the abdomen is telescopic in both sexes. The colliculum of the
female may well come out from the abdominal skin to be covered only by
a thin inter-segmental skin. The dorsal surface of the ventral plate probably
slides into the colliculum, which would require a telescopic abdomen from
the male. This problem can only be solved by following and perhaps filming
the early phase of the copulation.
Because the colliculum is needed only in the early phase of the copulation,
the process being loosely species-specific, I propose that the valvae in the genus
Eupithecia have lost parts of their function to the ventral plate/colliculum
combination. Their function is most probably restricted to grasping the female
in the first phase of copulation. In the genus Apamea, the valvae would have
both grasping and recognition functions ; they have retained the “loosely
species-specific” function. The significance of the valvae and ventral plate
would be at the end, when the male has inserted the aedeagus and vesica
into the ductus bursae and bursa copulatrix of the female. Thereafter, the
latter structures are undertaking the fixing and sperm-transferring, and, in
the case of non-conspecific copulations, isolating functions (LAFONTAINE &
MIKKOLA, 1987 ; MIKKOLA, 1992).
Acknowledgements
Thanks are due to Mr. K. Bolte and Dr. J. D. Lafontaine for the opportunity
to use genitalia slides from the Canadian National Collection (CNC), Ottawa,
and for inspiring discussions on the subject of this article.
References
Botte, K. B., 1990. Guide to the Geometridae of Canada (Lepidoptera). VI. Subfamily
Larentiinae. 1. Revision of the genus Eupithecia. Mem. ent. Soc. Can. 151:
1-253.
Ta
LAFONTAINE, J. D. & MIKKOLA, K., 1987. [Lock-and-key systems in the inner genitalia
of Noctuidae (Lepidoptera) as a taxonomic character]. (In Swedish with English
summary.) Ent. Meddr. 55 : 161-167.
McDunnouch, J. H., 1949. Revision of the North American species of the genus
Eupithecia (Lepidoptera, Geometridae). Bull. Amer. Mus. Nat. Hist. 93 : 537-728,
12 pl.
MikKOLA, K., 1992. Evidence for lock-and-key mechanisms in the internal genitalia
of the Apamea moths. Syst. Ent. 17 : 145-153.
MikkoLA, K., 1993. The lock-and-key mechanisms of the internal genitalia of the
noctuid and geometrid moths (Lepidoptera) in relation to the speciation concepts.
Folia Baeriana, Tartu 6 : 149-157.
PETERSEN, W., 1909. Ein Beitrag zur Kenntnis der Gattung Eupithecia Curt. Dt. ent.
Z. Iris 22 : 203-313.
78
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 79-87 ; 31.X.1994 ISSN 0342-7536
The use of wing venation as an additional aid
in the identification of species of Elachista,
as demonstrated by a study of the E. dispunctella
(Duponchel, 1843) complex
(Lepidoptera, Elachistidae)
Ernst TRAUGOTT-OLSEN
Calle nr 8 — La Retama, Urb. El Mirador, Marbella, Spain
Summary
Many species of the genus Elachista present difficult identification problems.
The venation is proposed as a simple identification aid within species com-
plexes. Examples are presented from the recently published revision of the
E. dispunctella complex, which comprises 54 species.
When The Elachistidae (Lepidoptera) of Fennoscandia and Denmark (TRAU-
GOTT-OLSEN & NIELSEN, 1977) was published, it was the first work to fully
treat the northern European species of this family and as such satisfied the
urgent demand for a guide to their identification. Since then, however, addi-
tional species have been described, several mistakes have been corrected and
further revisions have been published.
SVENSSON (1966) published a paper on the separation of Elachista triseriatella
Stainton, 1854 and Elachista dispunctella (Duponchel, 1843). As Elachista
dispunctella, he considered specimens having genitalia with a long and slender
aedeagus without cornuti; this turned out to be a lucky choice. Svensson
also mentioned that the type of Elachista dispunctella Duponchel in the Paris
Museum was without abdomen, and thus he could not be certain about the
genitalia.
In 1986, on my way to the V. SEL Congress in Budapest, I paid a visit to
the late Dr. Kasy in Vienna. He generously put the museum collection of
Elachista “dispunctella” Dup. at my disposal and gave me a free hand to study
all specimens, including making venation preparations if necessary. I had
already found the study of venation valuable in the 1977 work. On my way
back to Spain from Budapest, passing through France I took the opportunity
to visit the museum in Paris and due to the kindness of Dr. G. Luquet I was
allowed to borrow the type of Elachista dispunctella Dup. This specimen had
both forewings, but only one hindwing, and so I was able to make a venation
preparation of one of the forewings.
19
I have since been able to study a large material of this species complex, and
based largely on the venation, colour of the undersides of the wings (Dupon-
chel stated that the undersides of the wings of dispunctella were white), and
the male and female genitalia, a remarkably large number of new species (44)
has been detected. It was found that males and females have an equal or almost
equal venation and that the venation was to a high degree species specific
within the complex. The results of this study have now been published in
detail, including venation, male and female genitalia and colour figures of
the upper and undersides of the wings (TRAUGOTT-OLSEN, 1992). The reader
is referred to this paper for the characterisation of the complex.
The species could be conveniently split into 8 groups or sections, based on
the venation at the apex of the cell. All of the known species are listed in
Table 1, according to section, giving the countries from which they have been
reported and the number of specimens examined. The venation characterising
the sections are illustrated and defined in Figs 1-8. The method used for
visualising the venation is given in TRAUGOTT-OLSEN & NIELSEN (1977 : 34).
Table |
The Elachista dispunctella complex : List of species according to section
Species Distribution Material examined
Males Females
Section I
. E. hallini Traugott-Olsen, 1992 Austria
. E. madridensis Traugott-Olsen, 1992 Spain
. E. disemiella Zeller, 1847 Spain
. E. mannella Traugott-Olsen, 1992 Austria
. E. multipunctella Traugott-Olsen, 1992 | Austria
. E. skulei Traugott-Olsen, 1992 Greece
. E. occidentella Traugott-Olsen, 1992 Portugal
. E. clintoni Traugott-Olsen, 1992 France
. E. luqueti Traugott-Olsen, 1992 S. France
10. E. punctella Traugott-Olsen, 1992 Austria
ll. E. catalunella Traugott-Olsen, 1992 Spain
12. E. cuencaensis Traugott-Olsen, 1992 Spain
13. E. vivesi Traugott-Olsen, 1992 Spain
14. E. vanderwolfi Traugott-Olsen, 1992 France
© 00 -J ON Un BR © D —
2
l
6
6
2
l
3
I
l
l
11
l
8
4
Section II
15. E. hispanica Traugott-Olsen, 1992 Spain
16. E. minusculella Traugott-Olsen, 1992 Turkey
17. E. blancella Traugott-Olsen, 1992 Turkey
18. E. carascoensis Traugott-Olsen, 1992 Italy
19. E. dispunctella (Duponchel, 1843) Austria
20. E. dalmatiensis Traugott-Olsen, 1992 S.E. Europe
21. E. bazaella Traugott-Olsen, 1992 Spain
22. E. veletaella Traugott-Olsen, 1992 Spain
23. E. maboulella Chretien, 1915 N. Africa
24. E. grandella Traugott-Olsen, 1992 Austria
25. E. parvula Parenti, 1978 Italy
BRK DN BO YDS eS ©
80
Species Distribution Material examined
Males Females
Section III
26. E. cahorsensis Traugott-Olsen, 1992 France, Germany, Ireland
27. E. imbi Traugott-Olsen, 1992 Austria
28. E. senecai Traugott-Olsen, 1992 Libya
29. E. toveella Traugott-Olsen, 1985 Spain
30. E. anitella Traugott-Olsen, 1985 Spain
31. E. gielisi Traugott-Olsen, 1992 France
32. E. amparoae Traugott-Olsen, 1992 N.E. Spain
33. E. varensis Traugott-Olsen, 1992 France
Section IV
34. E. intrigella Traugott-Olsen, 1992 Austria
35. E. karsholti Traugott-Olsen, 1992 Austria
36. E. glaseri Traugott-Olsen, 1992 S.E. Spain
37. E. moroccoensis Traugott-Olsen, 1992 Morocco
38. E. baldizzonella Traugott-Olsen, 1985 Spain, France
39. E. louiseae Traugott-Olsen, 1992 Spain
40. E. rikkeae Traugott-Olsen, 1992 Spain
41. E. tribertiella Traugott-Olsen, 1985 Spain
42. E. povolnyi Traugott-Olsen, 1992 N.E. Germany, N. Austria
43. E. pocopunctella Traugott-Olsen, 1992 Austria, Rumania
44. E. gerdmaritella Traugott-Olsen, 1992 Spain
45. E. wadielhiraensis Traugott-Olsen, 1992 | Tunisia
46. E. michelseni Traugott-Olsen, 1992 Tunisia
47. E. bengtssoni Traugott-Olsen, 1992 Spain
48. E. rissaniensis Traugott-Olsen, 1992 Morocco
49. E. totanaensis Traugott-Olsen, 1992 Spain
= IN = BR JO IA = ON = ui Un mn
Section V
50. E. berndtiella Traugott-Olsen, 1985 France, Germany, Italy,
Spain
Section VI |
51. E. contisella Chrétien, 1922 France
Section VII
52. E. nielspederi Traugott-Olsen, 1992 Austria
53. E. olemartini Traugott-Olsen, 1992 Tunisia
Section VIII
54. E. lerauti Traugott-Olsen, 1992 France
Seventeen male specimens (plus one female) from the type locality (lower
Austria) of Elachista dispunctella (Dup.) all had identical genitalia and white
undersides to their forewings. In addition, the venation of all specimens was
identical to that of the holotype. These specimens are therefore considered
to be dispunctella. The male described and figured under that name in TRAU-
GOTT-OLSEN & NIELSEN (1977, Figs 94, 201, 338, 339) is the recently described
E. multipunctella Tr.-O., whereas the female (loc. cit., Figs 95, 463) was proven
to be E. pollutella (Dup.) (TRAUGOTT-OLSEN, 1990).
81
R2 R3
= R4+5
M2 M1
Cu Al
CuA2 >
Fig. 1. Section I: R3 arising before apex of cell ; R(4+5) + MI arising at apex of cell ;
M2 arising from terminal vein, just below apex of cell.
R4+5
M1
Fig. 2. Section Il: R3 arising before apex of cell; R(4+5) + MI and M2 arising
coincident at apex of cell.
R1 R2 R3
R4+5
M1
M2
CuAl
CuA
Fig. 3. Section III: R3 arising before apex of cell; R(4+5) + MI and M2 shortly
confluent basally, arising at apex of cell.
R1 R2 R3 R4+5
M1
M2
CuAl
CuA2
Fig. 4. Section IV : R3 arising before apex of cell; R(4+5) + MI and M2 confluent
basally, arising at apex of cell, M2 branching off a short distance from base of R(4+5)
+ MI.
82
R4+5
M1
‘CUAZ
Fig. 5. Section V : R3 arising at apex of cell, coincident with R(4+5) + MI ; M2 arising
from terminal vein, just below apex of cell.
= vs % R4+5
M1
Fig. 6. Section VI: R3 arising from costal vein close to apex of cell; R(4+5) + MI
and M2 shortly confluent basally, arising at apex of cell; MI arising well beyond
middle of R(4+5).
R1 R2 R3
R4+5
M2 MI
CuA1
CuA2
Fig. 7. Section VII : R3, R(4+5) + MI and M2 arising coincident at apex of cell.
R1 R2 R3 R4+5
M1
M2
CuAi
CuA2
Fig. 8. Section VIII: R3 and R(4+5) + MI + M2 arising at apex of cell ; M2 arises
from R(4+5) + MI beyond apex of cell.
83
Elachista mannella Tr.-O. and E. dalmatiensis Tr.-O. could be considered to be
the species most likely to be confused with E. dispunctella in that they all
have whitish forewing undersides. However, E. mannella belongs to section I,
whereas E. dispunctella and E. dalmatiensis belong to section II. E. dispunctella
has R2 arising well before the origin of CuA2, whereas E. dalmatiensis has
R2 arising above the origin of CuA2. Additional differences between these
three species can be found in details of the genitalia: Vinculum, juxta lobe,
digitate process, anellus and aedeagus (Fig. 9).
To further illustrate the species specific venation, the venation, vinculum and
uncus of four species belonging to section IV are compared in Fig. 10. E.
intrigella has R2 arising well before the base of CuA2, while in E. karsholti
R2 arises beyond the base of CuA2, paralleling the specific differences in
the vinculum. The size of the anellus sac, wing pattern and antennal characters
also distinguish the species (TRAUGOTT-OLSEN, 1992). In E. baldizzonella, the
saccus is rather pointed, while that of E. tribertiella is rounded. In E. bal-
dizzonella the distance between the base of R3 and the apex of the cell is
much longer than in E. tribertiella. R2 arises well before or well after the
base of CuA2 in E. baldizzonella and E. tribertiella respectively. With these
characters, it should be easy to distinguish these species. An additional
character is seen in the uncus lobes, which are narrowly incised in E. bal-
dizzonella and broadly incised in E. tribertiella.
Discussion
Colleagues have often been confused when I have tried to explain my points
of view on the value of the venation in species identification. I will try to
clarify a few points.
1. The results presented here concern only the Elachista dispunctella complex.
Similar and parallel situations have been found in the Elachista triseriatella
and Elachista dispilella complexes.
2. A complex is first established by the common characters of the genitalia
in both sexes and not necessarily including the study of the venation. In two
different complexes I have found equality in the specific venation, demon-
strating that the venation alone cannot be used to identify a species without
knowing to which complex it belongs. The genitalia remain the single most
important character to separate species and species complexes, although other
factors such as wing markings biology must also be taken into account. The
venation is only a separating character for the species within the complex
and can be used to group the species.
3. Any description of a new elachistid species will have to state the complex
to which the new species belongs, with diagnoses and discussion of all the
species of the complex and full descriptions of the adults, including genitalia
and venation.
4. Venation is only a secondary character emphasising the polyphyletic nature
of the genus Elachista. To arrive at a proper division of this conglomerate
84
Elachista mannella Tr.-O.
Ze
Q
=
A
—_
8
N
Y
+
S
À
à
a
3
=
=
SQ
©
=
A
Elachista dalmatiensis Tr.-O.
Fig. 9. Forewing venation (apical part) and male genitalia of Elachista dispunctella
(Dup.), E. mannella Tr.-O. and E. dalmatiensis Tr.-O.
85
Detail of venation at apex Vinculum Uncus
De à
Elachista intrigella Tr.-O.
an
Elachista karsholti Tr.-O.
7
:
=
7
Elachista baldizzonella Tr.-O.
Y
Elachista tribertiella Tr.-O.
Fig. 10. Forewing venation, vinculum and uncus of four representative species of
section IV of the Zlachista dispunctella complex. Not drawn to scale.
86
it will be necessary to split the genus into many monophyletic units, such
as the complexes mentioned here, which can be understood as a further
division of the groups presented in TRAUGOTT-OLSEN & NIELSEN (1977).
It is not suggested that the evolutionary relationships between species within
a complex can be determined from their venation, rather that the intra-specific
variation is rather small and the inter-specific variation rather large, thereby
allowing this character to be used in combination with other characters as
an aid to identification. It has also helped to refer previously unknown female
specimens to their male counterparts, and vice versa. An advantage of using
the venation as an identification aid is that preparations are less likely to
suffer the distortions often found in genitalia preparations, thereby avoiding
errors of interpretation.
References
TRAUGOTT-OLSEN, E., 1990. Description of four new species of Elachistidae (Lepi-
doptera) and diagnoses of Elachista pollutella Duponchel, 1843 and Elachista
constitella Frey, 1859. SHILAP Revta lepid. 18(71) : 273-285.
TRAUGOTT-OLSEN, E., 1992. The Elachista dispunctella (Duponchel, 1843) complex
with descriptions of new taxa (Lepidoptera, Elachistidae). SHILAP Revta lepid.
20(79) : 197-316.
TRAUGOTT-OLSEN, E. & NIELSEN, E. S., 1977. The Elachistidae (Lepidoptera) of
Fennoscandia and Denmark. Fauna Entomologica Scandinavica 6. 299 pp.
Klampenborg, Denmark.
87
Ih
|
7
/
The ladies enjoyed visiting the many attractions of Helsinki.
SWOME 22
FINLAND &
ee
The Finnish Post Office issued these stamps and cover during the Congress. The stamps
P
depict Xestia brunneopicta (Matsumura, 1925), Acerbia alpina (Quensel, 1802) and
Baptria tibiale (Esper, 1790), the Congress emblem (60% actual size).
88
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 89-92 ; 31.X.1994 ISSN 0342-7536
The genitalia of Eudasychira Möschler ;
morphology and evolution
(Lepidoptera, Lymantriidae)
U. DaArLr'Asta
Musée Royal de l’Afrique centrale, B-3080 Tervuren, Belgium.
Summary
A revision of the genus Eudasychira Möschler was undertaken in 1983. At that
time it was noted that the male genitalia offer many good diagnostic features
at the species level. The evolutionary significance of the complex structure
of the male genitalia has now been investigated. The studied characters have
been interactively analysed with the HENNIG program. The resulting 17 trees
showed that there were not too many discrepancies between the characters, but
a well-marked infrageneric classification could not be proposed. The problems
in the nomenclature of the different parts of the male genitalia are explained
and a few data concerning the distribution of the species is also mentioned.
The male genitalia of the taxa recognized as belonging to the genus Euda-
sychira are very complex (DALL'ASTA, 1983). Thorough examination showed
that these genitalia possess a unique feature within the Lymantriidae: a
peculiar form and position of the saccus. Instead of being a tubular structure
extending midventrally below the valvae, the saccus extends above the valvae.
This is most easily seen in E. quinquepunctata (Fig. 1), the type species of
the genus, where the valvae join ventrally and their ventral edges bend dorsally
back cephalad forming the subrectangular saccus on which the penis can slide.
Describing this character in another way, it can be said that the attachment
point of the valvae to the saccus is situated below instead of above, and
that consequently the saccus is suspended between these valvae. This peculiar
feature of the saccus transforms quite a few other parts of the genitalia and
the transformations of the valvae themselves are the most striking. Instead
of being flattened sacs, they are semi-circularly bent in order to leave space
medially for the saccus. This peculiar form of saccus and valvae can be
considered a unique apomorphic character to distinguish taxa belonging to
the genus Eudasychira from all other Lymantriidae.
Examining all preparations of Lymantriidae available proved that this genus
only occurs in the Afrotropical region. In some species the saccus situated
89
SR Wege |
en VS aos Deno OR
Re PS QE
ES) Sosa.harpre
Fig. 1. Male genitalia of Eudasychira quinquepunctata Môschler. do.va. : dorsal portion
of valva ; pe: penis; sa: saccus ; sa.ha.pro : saccus hairy process ; un: uncus; va:
valva ; ve.va : ventral portion of valva. Scale : | mm.
above the ventral portion of the valvae can be rather small ; the valvae are
then attached to its lateral edges and remain flattened. Including the species
with these flattened valvae, a total of 33 species can now be recognized in
the genus Eudasychira.
The unique forms of saccus and valvae are not the only peculiarities of the
genus. The male genitalia of the taxa of the genus Eudasychira possess at
least three other distinct structures not present in any other Lymantriidae,
and for which no nomenclature exists in the literature on the morphology
90
of male genitalia of Lepidoptera in general. One of these are the two hairy
processes within the saccus (Fig. 1, sa.ha.pro). These hairy processess occur
also in other species where they are situated on the edge of the rim saccus-
valvae ; in this case these hairy processes are protruding outside the genitalia
instead of being situated within the saccus. In some species, more sclerotized
processess can occur in the same place as where the hairy processess of E.
quinquepunctata are situated. Due to the fact that they are more sclerotized,
never hairy and always situated at the same position, they cannot be consi-
dered homologous to the hairy processes, which are always elongate. These
sclerotized processes on the other hand can display quite different forms
(characteristic for the species) and can even transform into paired hooks
protruding outside the genitalia from within the saccus. These two kinds of
processes occur only in species with circularly bent valvae, as in E. quin-
quepunctata. In some species with flattened valvae on the other hand (and
also in a species with forceps-like valvae) a long ventral ribbon (having at
least the length of half of the genitalia) can be attached to the distal portion
of the saccus. This ribbon can be simple or divided and is also a character
unique within the Lymantrudae.
Apart from these characters, some species of Eudasychira display other
peculiar structures characteristic of a limited number of its species. Some of
these characters can only be considered transformations of parts of the valvae
or other ‘recognisable’ parts of ‘classic’ types of genitalia (uncus, vinculum, etc.).
But it should be borne in mind that the male genitalia of species of Eudasychira
can be of very different forms and that sometimes single species can display
some peculiar processes or forms of valvae unique within the Lymantriidae.
The above findings once again raise the question of the use of a “nomenclature
of convenience” for naming the different parts of the genitalia in Lepidoptera
(Kiots, 1970 : 116). If distinct names have to be given to all new structures
of the genitalia, in the genus Eudasychira alone this would mean the intro-
duction of at least three new names. Therefore, together with the pertinent
remarks of SIBATANI (1972) on Klots’ paper the nomenclature and glossaries
of terms to be used in describing male genitalia of Lepidoptera should be
considered established by those two papers. One should avoid proposing new
names as WELLER (1990) has done for a group of nystaleine Notodontidae.
To gain some insight into the evolutionary trends of the different characters
within the species, all characters of all species have been coded and this data
analysed with the HENNIG 86 program. The resulting 17 trees showed that
there were not too many discrepancies between the characters, but a well-
marked infrageneric classification could not be proposed. Many of the taxa
were isolated, or in pairs, sister groups of the rest of the tree (a kind of
chaining), but in all trees the species with flattened valvae are situated near
the root of the tree and the species group with the large saccus and the bent
valvae always clusters at the end. This could show a trend, i.e. saccus becoming
larger when more apomorphic characters are present, which was also sub-
jectively felt at the moment of coding.
Hi
References
DaALL'ASTA, U. 1983. Révision du genre Eudasychira Möschler en Afrique Centrale
(Lepidoptera, Lymantridae). Revue Zool. afr. 97 : 12-44, 54 figs.
Kıorts, A. B., 1970. Lepidoptera, pp. 115-130. In S. L. Tuxen (Ed.), Taxonomist’s
Glossary of Genitalia in Insects. Munksgaard, Copenhagen.
SIBATANI, A., 1972. Male genitalia of Lepidoptera : morphology and nomenclature.
VI. Notes on Tuxen’s “Taxonomist’s Glossary of Genitalia in Insects : second
enlarged edition”. J. Lepid. Soc. 26 : 117-122.
WELLER, J. S., 1990. Revision of the Nystalea aequipars Walker species complex with
notes on nystaleine genitalia (Lepidoptera : Notodontidae). J. N.Y. Ent. Soc.
98 : 35-49, 29 figs.
92
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.IV.1992
Nota lepid. Supplement No. 5 : 93-104 ; 31.X.1994 ISSN 0342-7536
Genotypic variability in western European members
of the Erebia tyndarus species group
(Lepidoptera, Satyridae)
A. LATTES*, P. Mensi*, L. CAssuLo*, E. BALLETTO**
* Istituto di Zoologia, Universita di Genova, v. Balbi 5, I-16126 Genova, Italy
** Dipartimento di Biologia Animale, Universita di Torino, Via Accademia Albertina 17, I-10123
Torino, Italy
Summary
Relationships between West European species of the Erebia tyndarus group
have been investigated by means of enzyme electrophoresis. Within E. cas-
sioides s.]. two genetically distinct groups of populations exist, one occurring in
the eastern Alps (E. cassioides s.str.) and another in the western Alps, the Italian
Apennines and the Pyrenees (E. (cassioides) carmenta Fruhstorfer, 1909). In
order to ensure nomenclatural stability, a neotype has been designated for
Papilio cassiodes Reiner & Hohenwarth, 1792.
Zusammenfassung
Die Beziehungen zwischen West-europäischen Arten der Erebia tyndarus
Gruppe wurden mit der Hilfe elektrophoretischer Methode untersucht. Bei der
E. cassioides s.\. kann man zwei genetisch verschiedene Populationengruppen
unterscheiden : eine in den Ost-Alpen (E. cassioides s.str.) und die andere
in den West-Alpen, in den italienischen Apenninen und in den Pyrenäen (E.
(cassioides) carmenta Fruhstorfer, 1909). Um eine nomenklatorische Stabi-
lität zu erreichen, wurde für Papilio cassioides Reiner & Hohenwarth, 1792 ein
Neotyp gewählt.
Resume
Les relations phylétiques entre les espèces ouest-européennes du groupe de
Erebia tyndarus ont été étudiées au moyen de l’analyse électrophorétique des
enzymes. Deux groupes de populations génétiquement distinctes ont été déce-
lées au sein d’E. cassioides s.l., l’une vivant dans les Alpes orientales (E. cas-
sioides s.str.) et l’autre comprenant les populations des Alpes occidentales,
des Apennins italiens et des Pyrénées (E. (cassioides) carmenta Fruhstorfer,
1909). Dans l’intérêt de la stabilité de la nomenclature, un néotype de Papilio
cassiodes Reiner & Hohenwarth, 1792 a été désigné.
93
Introduction
WARREN (1936) originally classified the Erebia tyndarus species complex within
a broader E. pluto group. It was considered to include E. tyndarus (Esper,
1781), E. ottomana Herrich-Schäffer, 1847 and E. callias Edwards, 1871, each
subdivided into many subspecies. A number of later authors contributed to
raising to species rank one or another of these subspecies, whereas meanwhile
a few totally new species have been described. Currently, also E. cassioides
(Reiner & Hohenwarth, 1792), E. hispania Butler, 1868, E. iranica Grum-
Grshimailo, 1895, E. dromulus Staudinger, 1901, E. calcarius Lorkovic, 1953
and E. nivalis Lorkovié & de Lesse, 1954 are considered distinct species by
most authors, so bringing the total of members of the E. tyndarus group
to nine.
As male and female genitalia are very similar throughout the group (DE LESSE,
1960) and as a consequence of the fact that these species are rarely found in
cohabitation, NicuLEscu (1985) reverted to the original suggestion of Warren
that they should all be considered separate subspecies within a polytypic
complex. In at least one case, however, cohabitation does occur : E. (iranica)
transcaucasica and E. ottomana are known to fly together in E. Turkey.
Members of the E. tyndarus group are characterized by their small size,
rounded wing shape, the presence of a normally reduced orange-brown stripe
on the apical third of the wings, surrounding a pair of small black spots,
pupillated white. The hind wings are normally ash-grey on the ventral surface,
often with a yellowish tinge in the females. Males lack androconial scales.
In the male genitalia, the valva shows a series of upwards and rearwards
directed spines, the most proximal of which is normally the largest. The rear
half of the valva itself recalls that of E. pluto (Warren, 1936), as it tapers
caudad rather smoothly, without any real interruption between what this
author called a ‘shoulder’, a ‘neck’ and a ‘head’. Caterpillars appear finely
pubescent due to the presence of many short setae. All taxa of this group
are alpine or subalpine, perhaps with the exception of E. ottomana, which
can often colonize the upper parts of the montane vegetational level. All are
Palaearctic, but the range of E. callias extends to the Nearctic.
The karyological study of this group, carried out by Lorkovié (1941) and
DE LESSE (1960), demonstrated that haploid chromosome complements vary
between species. E. tyndarus and E. cassioides have n = 10; E. calcarius
n= 8; E. nivalis n = 11; E. callias n = 15; E. hispania hispania n = 25 ;
E. hispania rondoui n = 24; E. ottomana n = 40; E. iranica iranica and
E. iranica savalanica n = 51 ; E. (iranica) transcaucasica n = 52, E. dromulus
n= 51 or 52.
WARREN (1955, 1981) taking again in consideration the taxonomy of this
group, came to rather different conclusions. This author, in fact, doubted
that E. cassioides, first described from the Großglockner (Austria), really
inhabits this region. As a consequence of the fact that Reiner & Hohenwarths’
figure, later designated as lectotype of E. cassioides (LORKOVIC & DE LESSE,
94
1955) cannot be identified with any known species, he considered E. cassioides
a nomen nudum, perhaps to be identified with E. nivalis, a species also
described from the Großglockner. He also split what was formerly known
as E. cassioides into two species, namely EF. neleus (Freyer, 1833) and E.
aquitania Fruhstorfer, 1909, on the basis of some subtle morphological
characters of the wing shape (more pointed in E. neleus). Among more recent
authors, however, only von MENTZER (1960) followed this suggestion ; most
other authors (DE LESSE, 1956 ; Hiccins, 1975, etc.) maintained E. cassioides
as a valid and single species.
The present work deals with the West European members of the Erebia
tyndarus species group and aims at the clarification of some of the taxonomic
problems outlined above, by the study of electromorph variation. Only E.
cassioides arvernensis Oberthir, 1908, from the Mont Dore (Auvergne, France)
and E. cassioides dolomitensis Goltz, 1930 from the Italian Dolomites and
Caravanche Alps remain, for the moment, unstudied.
Materials and methods
Preparation of samples
Twenty-four populations of the E. tyndarus species group were scored for
electromorph variability, for a total 290 specimens. Collection data for each
of these populations are listed in Tab. 1, where, as regards western populations
of E. cassioides, WARREN’S (1955, 1981) suggestion that E. neleus and E.
aquitania may represent separate species was followed, for the sake of clarity.
One population of E. gorge from Colle del Dragone (Province of Potenza,
S.Italy) was included as an outgroup.
The wings were immediately removed on collection with sharp scissors and
the whole bodies were frozen in liquid nitrogen while still alive. The specimens
were stored in the same medium. Samples were prepared for electrophoresis
as follows. Individual butterfly bodies were thawed in 250 pl of an ice-cold
homogenizing solution (NADP 0.125 mM, 2-mercaptoethanol 1.14 mM ; pH
range between 6-8) and macerated with an electric tissue grinder. Centrifugation
at 13,000 x g for 15 minutes permitted the separation of a clear supernatant.
Care was taken to avoid overheating during both homogenization and centri-
fugation. Homogenates were stored at -80°C in 5-15 ul aliquots in microtubes.
Electrophoresis
Electrophoresis was carried out on Cellogel sheets at 4°C. Buffer systems
and staining techniques were similar to those described by MEERA KHAN
(1971) and RicHARDSON ef al. (1986). Thirteen gene-enzyme systems were
studied for a total of 17 loci. Genetically interpretable banding patterns could
be obtained for : glycerol-3-phosphate dehydrogenase (E.C.1.1.1.8) (aGPD),
malate dehydrogenases (E.C.1.1.1.37) (MDh-1, 2), isocitrate dehydrogenases
(E.C.1.1.1.42) (IDh-1, 2), 6-phosphogluconate dehydrogenase (E.C.1.1.1.44)
(6PGD), glucose-6-phosphate dehydrogenase (E.C.1.1.1.49) (G6PD), glutam-
95
(234103) OD
(snoJ2U) LN
(snajau) 9N
(snajaul) SN
(snajau) YN
(snajau) EN
(piupnnbo) pV
(piupunbp) Ev
(SNLIDIIDI) 89)
(Sisua2DUAG PUDWONO) TO
(sıjpaau) IN
(sapıoıssp2) SI
(saploisspa) po)
(S2P101S$D2) ED
(sopıoıssp>) 79
(S2p1018$D2) 19
(sninpudi) AL
(piuviinbp) TV
(pıupunbo) |v
(PJOU2p1D1 puDwono) [JO
(pdo3 ‘J ınopuo4 vıupdsu/) £H
(snajau) TN
(1nopuo4 pıupdsıy) TH
(snajau) IN
(piupdsiy mıupdsıy) 1H
eıueanT? ‘ourjod ‘AJ
eıueonT ‘OUIIO4 ‘ATP
ızznıqy ‘osezzniqy ouruuoddw ‘Aje1]
IZZn1qVY ‘os9ZzZn1qy outuusddy ‘Afeyj
IZZNIQGV ‘osazznıqy ouruusddy ‘Are
AUDIPIN ouersiyssepy ouruusddv ‘Afey]
BIW ‘ouerwg-o9so] ouruusddy ‘Ayet]
PIN ‘oueiwfg-o2so] outuuoddw ‘Aeyf
AU ‘ouyoruie Idesıqg ‘Afe]
ounusı] ‘uw opfeg ‘API
emule) ‘UNE ], AUCH ‘CHISNY
enunIe) ‘Une ] 9yoH "eLNsnV
ounusı] ‘oyonoy ıdıv ‘Ayer
ounusı] ‘syonoy Idıv ‘Aye
ounusı] ‘oysnoy ıdıv ‘ATAII
ounusı] ‘ayonoy !dıv “Are
BJSOV.P [eA 'sdjv ouruusq ‘Aye I]
BISOV,P JPA ‘Sdiv uere19 ‘ATeI]
Juowpaıg ‘Sdiv ue109 ‘Aye
AU99P1V ‘SIBIBAIA ‘IN SOUBI
‘10 ‘IAd ‘sooudtAg ‘surly
sooudlAd ‘eilopuy
toSonH ‘soousiAg “ureds
Bliqejue, ‘sui IN URLIgejURD ‘ureds
epeueln PPEAIN BIIAIS ‘ureds
uorsay “Anunoy
uodelg [pp 209
uogelg [OP 209
ejpofe
e119S EI OdeD [eA
OSH) OW
ousleg [op ITA
AUOT) ‘MN
BU9IEPEI IP 0S4
offeae) “WW
OSEN IP OWISSHTY NA
10}YIOH
[EZ NZ
QUOIQUIBN [PA
00€7 u ‘azzog div
0007 W ‘52204 diy
0081 u ‘azzoq div
opıeulog 'S ULIO OS
AUdA [eA
opsusy.[op AD
onsieuel 97
nosiuey JuoW
BIeCAUY 9P 01d
OJ991P1N op “Quy
OTIO[O) UBS 9P 017g
SBUIQRS SET 9P TIOD
AYfR90T
U9IIAA 0) SUIPIO0998 PAIJISSEIO 918 sopıoıssp> ‘ Jo suoremndod uiasom ‘pardues dno13 snuppud) viga«q sy) Jo suonendoq
I STQUT
96
ate-oxaloacetate transaminases (E.C.2.6.1.1) (GOT-1, 2), glutamate-pyruvate
transaminase (E.C.2.6.1.2) (GPT), hexokinase (E.C.2.7.1.1) (HK), pyruvate
kinases (E.C.2.7.1.40) (PK-1, 2), phosphoglucomutase (E.C.2.7.5.1) (PGM),
mannosephosphate isomerase (E.C.5.3.1.8) (MPI), phosphoglucose isomerase
(E.C.5.3.1.9) (PGI), esterase (E.C.3.1.1.1) (Es). Isozymes and alleles were de-
signed numerically according to their decreasing mobility rate.
Statistical analyses
Several genetic distance indexes were calculated (Cavalli-Sforza and Edward
arc and chord distances, 1967; Rogers D, 1972; Wright’s modification of
Rogers D, 1978 ; Nei’s D, 1972 ; Hillis modification of Nei’S D, 1984). Dendro-
grams using UPGMA method of SOKAL & SNEATH (1963) and FitcH &
MARGoLIAsH method (1967) were constructed from these distances. A phylo-
genetic tree connecting all populations studied was obtained by the “Continuous
Characters Maximum Likelihood Method” (CONTML ; FELSENSTEIN, 1981,
1985). This program assumes that each locus evolves by genetic drift, so that
gene frequencies may be considered to behave like particles undergoing pure
Brownian-motion.
Results
Allele frequencies are shown in Table 2. The overall number of alleles detected
at 17 loci of all Erebia tyndarus species group studied amounts to 64 (mean
per locus 3.76, range 2-8). No locus proved monomorphic across the whole
sample. An additional private allele (HK 110) was identified in E. gorge.
The allele GOT-1 90 was found in the three populations of E. hispania only ;
the allele GOT-1 110 is diagnostic for E. nivalis, PK-1 115 for E. ottomana.
Studied populations of E. tyndarus, E. neleus (7), E. aquitania (4). E. cassioides
(5), and E. calcarius (1) did not show any private allele.
All dendrograms obtained by the various distance and clustering methods
outlined above concur to a single picture :
1. E. gorge (outgroup), as expected, proved to be the most genetically different
taxon (D = 0.719). The E. tyndarus group, accordingly, may represent a
monophyletic unit. Its first split occurs at Nei’s D = 0.407.
2. Populations of E. cassioides (E. neleus + E. aquitania) from the Italian
Apennines, the western Alps, the Pyrenees, the Cantabrian Mountains (western
populations of E. cassioides, 11 populations) cluster together at much lower
values (Nei’s D = 0.015).
3. Populations of E. cassioides from the central-eastern Alps (eastern E.
cassioides, 5 populations studied) also cluster together at low distance (Nei’s
D = 0.016).
4. Eastern and western E. cassioides, in contrast, cluster with each other at
a considerably higher level of distance (Nei’s D = 0.071).
97
OOT 001
0€°0
0L 0
001
SO 0
S00 r00
ct O ÿ0'0
960 O0T 00°I 490 O0T 00°I 960 00 ‘T $60 960 760 00 I 2460 007
r0'0 ÿ0 0 ÿ0'0 £00
001 960 00°I ODOT OOT OOT OOT OOT OOT ODOT OOT ODOT OOT OOT ODOT OOT OOT OOT OOT OOT ODOT ODOT ODOT OOT ODT
r0°0
» Sc et NEO. oa Er OS A AN NENNEN Py Gey cy N
g[qissod jou sem Suroos uonendod ayJ ur je} SoxeOIpUT .-, 'P21095 319M suonerndod [fe Jo spenprArpur [fe jou awÂZzus autos JO]
‘I Qe ur se paroqunu ae suonendog 'suonepndod ¢z ut 190] Jıydıowouow-uou pareus /] Ye sawuanbaıg 921
c SIgeL
ae Où DA IN oo AL DD DO DD GN IN UN ON TEN WN EN Ar ANA 7
Nei genetic distance
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.0
| | | | | | | | |
N5
A4
A1
N2
Na
N4
A2
N7
N6
A3
C1
C 2
C4
C5
C3
Ca
Ty
O1
02
Ni
te Su
H3
Go
Figure 1. Dendrogram based on Nei’s Distances.
Figure 2. Dendrogram obtained by the Continous Characters Maximum Likelihood
method.
5. E. cassioides (E. neleus + E. aquitania), E. tyndarus and E. calcarius also
cluster at similar levels (Nei’s D [E. cassioides - E. calcarius | = 0.096 ; [(E.
cassioides + E. calcarius) - E. tyndarus | = 0.147).
6. E. nivalis is the most genetically distant species of the Æ. tyndarus-E.
cassioides-E. calcarius lineage (Nei’s D ~ 0.3).
7. The two populations of E. ottomana are genetically rather distant (Nei’s
D = 0.177).
8. Among populations of E. hispania the closest are ‘ssp. rondoui’ and ‘ssp.
goya’ (Nei’s D = 0.063), whereas the nominotypical form is genetically quite
distinct (Nei’s D = 0.155).
The UPGMA cluster of Nei’s genetic distances is shown in Fig. 1.
The ‘phylogenetic’ tree obtained by the Continuous Characters Maximum
Likelihood Method, is shown in Fig. 2 and concurs with the tree shown in
Fig. 1 in all its most important aspects.
Discussion
All our results suggest that the distinction of E. neleus and E. aquitania 1s
untenable and that this complex is well distinct from E. nivalis. The two
populations collected at different altitudes on Großglockner, which we identi-
fied as E. cassioides (low altitude) and E. nivalis (high altitude) on characters
of wing morphology, show a genetic distance of D = 0.358. Accordingly, and
apart from other nomenclatural problems (see below) they can be identified
as topotypic samples of their respective species.
It remains to be stressed that FE. cassioides sensu lato is a complex of two
genetically different groups of populations. One, including the type locality of
E. cassioides, occurring at least in the Rhetian Alps and the Tauern. The other
includes all populations from the Italian Apennines, the central and western
Alps, the Pyrenees and the Cantabrian Mountains. The names by which these
groups of populations can be identified will be dealt with further on.
The relatively small genetic distance between these two taxa (Nei’s D = 0.071)
is probably a consequence of them having become separated in recent times.
On the basis on Nei’s calibration of the molecular clock these two taxa would
have started to evolve independently about 0.35 Myr ago. Since this date
gene flow was presumably interrupted by the intervening populations of E.
tyndarus, a species already genetically distinct from the rest, having the fixed
allele MPI 70 (absent from all populations of E. cassioides s.1. and otherwise
only found in E. hispania) and lacking the allele PGI 100 (very common
in E. cassioides s.l.). The interruption of gene flow between eastern and western
populations of E. cassioides s.l. is demonstrated by the absence of allele 6PGD
100 from populations of the former. Subsequently, the rising temperature may
have progressively confined western populations of E. cassioides to the moun-
tain peaks of the Alps, Apennines, Pyrenees and Cantabrian Mountains. Nei’s
distances between these populations generally vary between 0.01 and 0.02,
101
which would place such events in the interval of 50,000 - 100,000 years bp.
These distances, however, are too small to be reliable and should be confirmed
by independent studies on mitochondrial DNA.
On purely morphological grounds populations of the ‘western group’ are not
easily identified from nominotypical Erebia cassioides. The latter generally
have slightly smaller size, more rounded wings at apex and are darker grey
on ventral surface of the hindwings, with a normally less neatly black edged
discal stripe. In females the hindwing colouration is silvery grey on ventral
surface, with almost no hint of a yellowish or creamy wash. The opposite
applies to populations of the ‘western group’.
A potentially interesting field for future research would be to investigate genetic
distances between other ‘subspecies’ having similar distributions, such as those
found within E. pronoe, E. meolans, etc. It may be worth noting that the
presence of another species occurring between populations of an eastern and
a western group may have contributed to an earlier interruption of the gene
flow, as well as to keep the interruption in place by mutual exclusion, when
more favourable environmental conditions took over. Where such a situation is
lacking, e.g. for E. euryale, E. pluto, E. gorge, etc., there is enough morpho-
logical evidence to suggest that hybrid populations exist in between, where
they probably represent the outcome of secondary hybridization events.
Another lineage is that of E. hispania, where even though no cohabitation
can obviously occur between populations of the Pyrenees (N Spain) and Sierra
Nevada (S Spain), genetic distances suggest that two different species are
involved : E. hispania (Sierra Nevada) and E. rondoui (Pyrenees). Such a
distinction is supported also by their different haploid chromosome comple-
ments (n = 25 and n = 24, respectively) and external morphology.
It is finally worth mentioning that the only two western European populations
of E. ottomana, the so called ‘ssp. tardenota’ and ‘ssp. benacensis’, sharply differ
from each other on a genetic, as well as on a morphological basis. A final
word on this subject, however, cannot be spoken until populations from the
Balkan peninsula and Turkey have been analyzed.
Nomenclature
1. The application of the name Papilio cassioides Reiner & Hohenwarth, 1792.
The reasons why WARREN (1981) considered Reiner & Hohenwarths’ name a
nomen nudum (i.e. a name that fails to conform to Articles 11-13 of the Inter-
national Code of Zoological Nomenclature, ICZN) have been dealt with al-
ready. Such a contention, however, finds little support in the current edition
of the ICZN, since the publication of this name not only was accompanied
by a description, but a specimen (presumably the holotype), now lost, was
also figured. Neither can this name be considered a nomen oblitum (1.e. a for-
gotten name, a term that has been omitted from recent editions of the ICZN),
because it remains by far the most commonly employed name in current
102
literature. On the other hand, however, it is true that although both the
description and the accompanying figure are taxonomically obscure, the
description may subjectively be presumed to represent the taxon currently
referred to as E. nivalis Lorkovié & de Lesse, 1954.
To preserve nomenclatural stability, therefore, we think that the most straight-
forward nomenclatural option is at this point to select a neotype, in accordance
to provisions of Art.75 of the ICZN. Accordingly, we herewith designate the
male specimen labeled : Zirknitztal : Großglockner : Austria, 30.07.1991, leg.
L. Cassulo, deposited in the collection of the Museo Civico Giacomo Doria
(Genoa, Italy) as neotype of Papilio cassioides Reiner & Hohenwarth, 1792.
2. Western and southern populations of the Erebia cassioides complex.
The discovery that two genetically different groups of populations can be
identified within the E. cassioides complex resurrects WARREN’S (1955, 1981)
suggestion, albeit on different grounds, that two different species may have
been confused under this name. The name Erebia neleus (Freyer, 1833), how-
ever, probably cannot be employed for either of these, as it was proposed to
designate some electrophoretically still unstudied populations from the Alps of
Transsylvania (Retezat Mts) which may prove conspecific with E. cassioides.
Should populations of the ‘western group’ be found to be distinct at species
or subspecies level, they should be designated by the name Erebia (cassioides )
carmenta (Erebia tyndarus carmenta Fruhstorfer, 1909 — Soc. ent., 24 : 223 —
type locality : N.Italy : Province of Aosta: Alpi Graie : Courmayeur), rather
than Erebia (cassioides) aquitania (Erebia tyndarus aquitania Fruhstorfer,
1909 — Soc. ent., 24: 125 — type locality : Maritime Alps). Although both
names bear the same author and date, selecting carmenta will have the
advantage of avoiding confusion with other treatments of the group. It is
rather unfortunate, in this connection, that Reverdin’s name ‘murina’ cannot
be employed, as infrasubspecific, and as such invalid on a nomenclatural basis
(E. tyndarus var. cassioides forma murina Reverdin, 1909 — Bull. Soc. lépid.
Genève, 1 : 292 — type locality : Le Moléson, Prealps of Freiburg’s Gruyère,
Switzerland).
Acknowledgements
This study was financially supported by the Italian Ministry for University
and Scientific Research (MURST) under 40% and 60% research funding
programs, and by the Italian National Research Council. We also wish to
thank Dr. V. Cameron-Curry, Prof. P. Passerin d’Entreves and Dr. L. Giacoma
for help in the linguistic revision of a first draft of this manuscript.
References
CAVALLI-SFORZA, L. L. & Epwarps, A. W. F., 1967. Phylogenetic analysis : models
and estimation procedures. Evolution 21 : 15-28.
103
FELSENSTEIN, J., 1981. Evolutionary trees from gene frequencies and quantitative
characters : finding maximum likelihood estimates. Evolution 35 : 1229-1242.
FELSENSTEIN, J., 1985. Confidence limits on phylogenies : an approach using the boots-
trap. Evolution 39 : 783-791.
FitcH, W. M. & MARGOLIASH, E., 1967. Construction of phylogenetic trees. Science
155 : 279-284.
Hicains, L. G., 1975. The classification of European butterflies. William Collins & So.,
London.
Hırrıs, D. M., 1984. Misuse and Modification of Nei’s Genetic Distance. Syst. Zool.
33 : 238-240.
International Commission on Zoological Nomenclature, 1985. International Code of
Zoological Nomenclature, third edition adopted by the XX general assembly
of the International Union of Biological Sciences.
LESSE, H. DE, 1956. Notes on the species-groups in the genus Erebia: a reply.
Entomologist 89 : 278-282.
LESSE, H. DE, 1960. Spéciation et variation chromosomique chez les Lépidoptères
Rhopalocères. Masson, Paris.
Lorkovié, Z., 1941. Die Chromosomenzahlen in der Spermatogenese der Tagfalter.
Chromosoma, 2 : 155-191.
Lorkovié, Z. & Lesse, H. DE, 1954. Expériences de croisement dans le genre Erebia
(Lépidoptères, Satyridae). Bull. Soc. zool. Fr. 79 : 31-39.
MEERA KHAN, P., 1971. Enzyme electrophoresis on cellulose acetate gel : zymogram
patterns in man-mouse and man-chinese hamster somatic cell hybrids. Arch.
Biochem. Biophys. 145 : 470-483.
Mentzer, E. von, 1960. Über die Spezifizität von Erebia neleus Frr. und Erebia
aquitania Frhst. (Lep. Satyridae). Entomologisk Tidskrift 81 : 77-90.
Neı, M., 1972. Genetic distance between populations. Amer. Nat. 106 : 283-292.
NICULEScu, E. U., 1985. Problèmes de morphologie et taxonomie dans le genre Erebia
(Lep. Satyridae). Bull. Soc. Ent. Mulhouse 1985 : 1-8.
RICHARDSON, B. J., BAVERSTOCK, P. R. & Apams, M., 1986. Allozyme Electrophoresis.
Academic Press, Sydney.
ROGERS, J. S., 1972. Measures of genetic similarity and genetic distance. Univ. Texas
Stud. Genet. 7 : 145-153.
SOKAL, R. R. & SNEATH, P. H. A., 1963. Principles of Numerical Taxonomy. W.
Freeman & Co., San Francisco.
WARREN, B. C. S., 1936. Monograph of the genus Erebia. British Museum (N.H.),
London, 407 pp., 104 pls.
WaRREN, B. C. S., 1955. Erebia tyndarus and allied species: the solution of some
long outstanding problems (Lepidoptera Satyridae). Entomologist 88 : 227-231,
252-259.
WARREN, B. C. S., 1981, Supplement to Monograph of the genus Erebia. E. W.Classey,
Faringdon, Oxon, 16 pp., Pls 105,106.
WRIGHT, S., 1978. The Theory of Gene Frequencies. Vol IV. Univ. Chicago Press.
104
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 105-114 ; 31.X.1994 ISSN 0342-7536
Biochemical taxonomy and evolutionary relationships
in Polyommatus (subgenus A grodiaetus)
(Lepidoptera, Lycaenidae)
P. MENSI*, A. LATTES*, L. CAssuLo*, E. BALLETTO**
* Istituto di Zoologia, Università di Genova, Via Balbi 5, I-16126 Genova, Italy
** Dipartimento di Biologia Animale, Universita di Torino, Via Accademia Albertina 17, I-10123
Torino, Italy
Summary
Relationships between monomorphic species of the subgenus Agrodiaetus have
been studied by enzyme electrophoresis. Results indicate that all species tradi-
tionally recognised on the basis of de Lesse’s karyological studies may represent
real species. Irrespective of problems of holocentricity it also appears likely
that chromosome rearrangements may have contributed to speciation in this
group of insects.
Zusammenfassung
Die Beziehungen zwischen den monomorphischen Arten des Subgenus Agro-
diaetus wurden mit der Hilfe elektrophoretischer Methode untersucht. Die
Ergebnisse zeigen, daß die Arten, die gewöhnlich nach de Lesse’s karyologischen
Untersuchungen anerkannt werden, echte Arten sind. Trotz des Holocentrismus-
problems, haben vermutlich “Chromosomen-Rearrangements” in der Arten-
bildung dieser Insektengruppe eine Rolle gespielt.
Resume
Les relations phylogénétiques entre les espèces monomorphes apartenant au
sous-genre Agrodiaetus ont été étudiées au moyen de l’analyse électrophorétique
des enzymes. Nos résultats suggèrent que toutes les espèces traditionnellement
reconnues dans ce groupe sur la base des études caryologiques conduites par
de Lesse, représentent de véritables espèces. Quoi qu’il en soit de l’holocentrisme
chromosomique chez les Lépidoptères, il semble aussi très probable que quel-
que mécanisme de réarrangement chromosomique puisse avoir contribué à
la spéciation au sein de ce groupe d’insectes.
105
Introduction
Members of the subgenus Agrodiaetus (Hübner, 1822) are widespread across
Europe and Asia, and range from the Iberian peninsula to the Altai Mountains
and further to the east, with a distribution characterized by extreme geo-
graphical fragmentation.
The identification of species of Agrodiaetus can be quite difficult. As a conse-
quence, the systematics of this subgenus goes little beyond alfa-taxonomy and
no phylogenetic reconstruction has so far been attempted. Morphological
features traditionally employed in butterfly taxonomy, either do not sufficiently
differ between species (e.g. male genitalia) or, although variable, are not suf-
ficiently constant at the intraspecific level (e.g. female genitalia, shape of andro-
conial scales, etc.).
So far, therefore, most taxonomic work has been based on characters of wing
colouration and markings. In this respect, two groups are traditionally re-
cognized. One includes the so-called dimorphic species, whose males are
promptly identified by their blue wings, on the dorsal surface, as opposed
to the brown wings of females. The other group includes monomorphic entities
only, with dark brown wings in both sexes.
FORSTER (1956), working on this basis, was the first to attempt a broad revision
of Agrodiaetus. Since using chromatic characters within the monomorphic
forms of the P ripartii complex is impossible, however, his work was almost
entirely dedicated to the study of the dimorphic complex.
A major problem deriving from the use of characters such as the shade of
the blue colour on the dorsal surface of the male’s wings, or the extent and
degree of development of submarginal markings on the ventral surface of
the hindwings, etc., is that the interpretation of their relative weight may be
subjective. Notwithstanding the great importance generally attached to Forster’s
work, therefore, it is not surprising that solutions offered by this author for
some taxonomic problems remain controversial, while others have been
abandoned altogether.
The extensive karyological study carried out on members of this and other
subgenera of Polyommatus by the late Hubert de Lesse while working in
the Paris Natural History Museum from the late 1950s (DE Lesse, 1957;
1959a,b,c,d,e,f ; 1960a,b,c ; 1961a,b ; 1962a,b ; 1963 a,b,c) was immediately
welcomed by lycaenid specialists. Characters derived from haploid chromosome
complements soon became widely employed in the taxonomy of this group,
where they contributed considerable changes. On this basis, many morpho-
logically almost indistinguishable forms of the monomorphic complex have
been recognized as distinct species, whereas a number of new species have
been described both within this and the dimorphic group.
Not even this study, however, could provide a definitive solution to the bio-
logical riddle of Agrodiaetus. A first problem is that butterfly chromosomes
are normally seen in a contracted state, when they do not show any of the
106
karyological details used to identify homologous regions. What is worse, it
soon became apparent that Lepidoptera chromosomes may be holocentric,
(see WuirE, 1973 for a review). Should this be true, it is contended, haploid
chromosome complements (1.e.‘chromosome numbers’) would provide little
or no evidence for speciation. Holocentric chromosomes, ın fact, could con-
ceivably pair with each other almost at any homologous region, and not at
the centromeric region only as is usual. For similar reasons they could freely
become fragmented, or bind on ends to each other, etc. without necessarily
causing any major karyological imbalance. Even though views on this subject
seem now to be changing again (see BIGGER, 1960 ; SUOMALAINEN, 1969 ;
or Lorkovié, 1990 for a review), haploid complements permit, at least, various
interpretations. For example, whereas different haploid complements, as such,
perhaps should not be considered sufficient evidence for speciation, when en-
countered in morphologically similar allopatric populations, the discovery of
sharp karyotypic differences between parapatric or sympatric populations may
represent a strong argument to assume that gene flow has been interrupted.
For all these reasons, however, the unusually broad varıability in haploid
chromosome complements currently known to exist within the subgenus
Agrodiaetus (from n = 7, in Polyommatus nephohiptamenos to n= 125, in
P. dolus), combined with the lack of evidence from crossing experiments to
determine levels of hybrid dysgenesis, stimulate questions on whether or not
the 60 odd currently recognized species may really all represent biologically
distinct taxa.
The purpose of this work is therefore to i) utilize electrophoretically detectable
enzyme variability to analyze levels of genetic divergence between karyotypically
different sibling species of the monomorphic complex, 11) show relationships
among members of this subgenus and finally to iii) suggest a possible evolu-
tionary scenario.
Materials and methods
Preparation of samples
A total of 196 specimens from 21 natural populations of Agrodiaetus and
1 population of the subgenus Lysandra (Polyommatus (Lysandra) corydonius
Herrich-Schäffer, 1852, otherwise known as P (L.) caucasicus Lederer, 1869),
included as outgroup, were collected at several localities in Italy, France, Spain,
ex-Yugoslavia and Turkey (Table 1).
Since females are difficult to identify, only adult males were employed. Their
wings were immediately removed with sharp scissors and the whole bodies
were frozen in liquid nitrogen while still alive. Specimens were stored in this
medium for several weeks, until further processing. Samples were prepared
for electrophoresis as follows. Individual butterfly bodies were thawed in 250 ul
of an ice-cold homogenizing solution (NADP 0.125 mM, 2-mercaptoethanol
1.14 mM ; pH range between 6-8) and macerated with an electric tissue grinder.
107
Table 1
Populations sampled
Locality Country, Region
Col de Cabre France, Dröme D1 (damon)
Glassier di Ollomont Italy, Aosta D2 (damon)
Tahir Turkey, Agri D3 (damon)
Tragacete Spain, Cuenca D4 (damon)
Les Puits d’Auzon France, Bouches du Rhöne L1 (dolus dolus)
L’Hospitalet du Larzac France, Aveyron L2 (dolus vittatus)
Pic du Cougouille France, Aveyron L3 (dolus vittatus)
Ainsa Spain, Huesca Fu (fulgens)
Erzincan Turkey, Erzurum Me (menalcas)
Ainsa Spain, Huesca RI (riparti)
Aksehir Turkey, Konya R2 (riparti)
Col de Braus France, Alpes Maritimes R3 (riparti)
Kocak Turkey, Van De (demavendi)
Sinkan Turkey, Ankara Al (admetus anatoliensis)
Küru Dagi Turkey, Canakkale A2 (admetus admetus)
Nova Breznica Macedonia A3 (admetus admetus)
Gevas Turkey, Van In (interjectus)
Tragacete Spain, Cuenca Fa (fabressei)
Oulx Italy, Torino Ex (exuberans)
Pondel Italy, Aosta Hu (humedasae)
Palandöken Turkey, Erzurum Ly ((L.) corydonius)
Centrifugation at 13,000 x g for 15 minutes permitted the separation of a clear
supernatant. Care was paid to avoid overheating during both homogenization
and centrifugation. Homogenates were stored at -80°C in 5-15 ul aliquots in
microtubes.
Electrophoresis
Electrophoresis was carried out on Cellogel sheets at 4°C, as we have found
the gel form of cellulose acetate an excellent support medium. An important
advantage is that it requires only 0.5-1 ul per sample per enzyme run, whereas
other support media require 10-50 pl: this is a remarkable advantage for
projects where many enzymes must be scored (often more than once for
obtaining best results) from single very small samples.
Buffer systems and staining techniques were similar to those described by
MEERA KHAN (1971) and RicHARDSON et al. (1986). Genetically interpretable
banding patterns could be obtained for : glycerol-3-phosphate dehydrogenase
(E.C.1.1.1.8) (aGPD), adenylate kinase (E.C.2.7.4.3) (AK), hexokinase
(E.C.2.7.1.1) (HK), glucose-6-phosphate dehydrogenase (E.C.1.1.1.49) (G6PD),
malate dehydrogenases (E.C.1.1.1.37) (MDh-1, MDh-2), phosphoglucose
isomerase (E.C.5.3.1.9) (PGI), glutamate-oxaloacetate transferases (E.C.2.6.1.1)
(GOT-1, GOT-2), malic enzyme (E.C.1.1.1,40) (ME), 6-phosphogluconate
dehydrogenase (E.C.1.1.1.44) (6PGD), phosphoglucomutase (E.C.2.7.5.1)
108
(PGM), esterases (E.C.3.1.1.1) (ES-1, ES-2). Isozymes and alleles were de-
signed numerically according to their decreasing mobility rate.
Statistical analyses
Average probabilities of interpopulation genetic distance were estimated by
Ner’s (1972) I and D related indexes (jackknifed according to MUELLER &
AYALA, 1982), on the basis of fourteen shared loci and for pairwise combi-
nations of all populations investigated.
Results and discussion
The cumulative total of alleles detected at the fourteen shared loci is 67 (range
3-9). Allele frequencies are reported in table 2. Nei’s genetic index D was
employed to generate the cluster shown in Fig. 1. While the distance between
the subgenera Agrodiaetus and Lysandra shows, as expected, a relatively high
level of genetic differentiation (D = 0.625 ), the split sequence and branch
lengths within the subgenus Agrodiaetus are rather unexpected. A second split
separates P damon samples (D = 0.460) from all the rest. The separation
between monomorphic and dimorphic forms occurs at D = 0.20.
From the dendrogram the following phylogenetic reconstruction can be in-
ferred:
1. Polyommatus (Lysandra) corydonius lies on a different lineage with respect
to all the populations of Agrodiaetus. The latter, accordingly, may be consi-
dered a monophyletic group (subgenus).
2. Within the phyletic line of Agrodiaetus, the four studied populations of
P. damon group on a distinct branch.
3. Another branch includes all monomorphic populations, together with P
doius, P. dolus vittatus, P. fulgens and P. menalcas. Males of both monomorphic
and dimorphic forms in this phyletic line are provided with androconial scale-
tufts (‘sex-brands’). The close relationships within the latter lineage support
an old, non phylogenetically-based suggestion by DE LESSE (1960a), who
divided Agrodiaetus into two main groups : the P. ripartii complex, including
both monomorphic and dimorphic forms with androconial scale-tufts in males,
and the P damon group, where sex-brands are absent.
Distances between members of both complexes are indeed very small, but not
incompatible with those encountered between sibling species of other groups
(Mens! et al., 1988 ; 1992). The central point, in this respect, is represented
by the pivotal position assumed in the dendrogram by P admetus. This is,
in fact, about the only easily identifiable species within the monomorphic
complex. P admetus is widely distributed from “Yugoslavia” to East Turkey
and, apart from flying with many other species of the dimorphic group (P
menalcas, P. hopfferi, etc.), is often encountered in cohabitation with e.g. P
ripartii (Greece, Turkey, etc.), P demavendi or P. interjectus (Turkey). Since
its species-level separation from all other species of the monomorphic complex
109
ST O
S80 001 OOT 00’I
00°I 650
001 OT 170
O0 I OOT OOT O01I
00°I OOI
00°1
O0
O0 TT 00°1
L
9
¢
v
iE
C
I
C
I
G
I
6
8
lL
9
S
Vv
C
I
G
I
G
I
C
I
MT MS, Me Ba U Oy Cy hy ed RI GN IM MUT CI Ge IT a sa Ta
"YIOM STU} UL Papnjaur jou suorefndod yunosoe oqui saye}i sajajfe JO uoNeIsumu Sased Jwos UT ‘arqissod
jou sem SUTIOOS uonerndod ayJ ur jeu} soyeaıpur ,-, ‘Pa109S 319M suomendod je Jo SJENPIAIPUI [fe JOU aWIAÂZUS JWoS 107
"[ aJqe] ur se paroqunu are suomepndoq ‘suonepndod [7 ur 190] stydiowouow-uou paleys FI Je sarouanbai, [er
€ SIgEeL
110
Se
t60 001 O01I
00'T 001
80°0
O0 I O0T 00 "I OOT 001
OO TI 001 00 "I O0T 0071
00°I O0 TI 00 ‘T O0T 001
a LENZ OV ely SoG ER Be It -eN TH ET CT MITA td cd
Id
L
9
S
v
G
I
Ç
Vv
I
9
¢
v
b
C
I
S
v
I
(3
(6
I
SNM TM BAO
bit
Nresierszenle tic distames
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
| | | | | | | | |
Fa
Ly
Figure 1. Dendrogram based on Nei’s Distances. All nodes shown are statistically
different from zero.
is unquestionable, its level of genetic divergence with respect to P. ripartii,
on the one hand, and P demavendi and P. interjectus, on the other, can be
taken as a yardstick to infer that all other chromosomically- identified ‘species’
within the monomorphic complex may indeed qualify as biologically distinct
sibling species. Conversely, even though a more detailed analysis is required,
also extending to the dimorphic species group, our results are not incompatible
with the hypothesis that, in the case of Agrodiaetus, karyological mechanisms
may have been involved in speciation processes.
112
Based on Nei’s rough estimates for the (highly controversial) molecular clock
hypothesis, it may be possible to approximately date the branching events
as follows : the subgenus Agrodiaetus originated about 3.1 Myr ago (i.e. in the
late Pliocene) as dimorphic, sex brand-lacking forms (plesiomorphic charac-
ters) ; monomorphism and scale-tufts appeared later, roughly 2.3 Myr ago.
Finally, the ancestors of the Agrodiaetus dolus group diverged only about
1 Myr ago. The dimorphic character of this complex is therefore of a secondary
origin, and may be derived from a simple reverse mutation which took place
within the monomorphic complex. Speciation events within the monomorphic
complex are indeed very recent, generally in the 50,000-100,000 years bp
interval. These distances, however, are too small to be reliable and should
be confirmed by independent studies on mitochondrial DNA. The most
important exceptions, in this respect, are represented by P fabressei , P. exu-
berans and P. humedasae, which, in this order, are the most primitive taxa
of the monomorphic group. It may be interesting to note that, apart from
P. admetus, P. fabressei is the only other monomorphic species commonly
encountered in cohabitation with another species of this same complex (with
P ripartii in the Montes Universales region : central Spain cf. DE LESSE, 1961c
and personal observations).
Acknowledgements
This study was financially supported by the Italian Ministry for University
and Scientific Research (MURST) under 40% and 60% research funding
programs, and by the Italian National Research Council. We also wish to
thank Dr. V. Cameron-Curry, Prof. P. Passerin d’Entreves and Dr. L. Giacoma
for help in the linguistic revision of a first draft of this manuscript.
References
BIGGER, T. R. L., 1960. Chromosome numbers of Lepidoptera. II. Entomologist’s
Gaz. 12 : 85-89.
Forster, W., 1956. Bausteine zur Kenntnis der Gattung Agrodiaetus Scudd. Z. wien.
ent. Ges. 41 : 42-61, 71-89, 118-127.
LESSE, H. DE, 1957. Description de deux nouvelles espéces d’Agrodiaetus (Lep.
Lycaenidae) séparées à la suite de la découverte de leurs formules chromosomique.
Lambillionea 57 : 65-71.
LESSE, H. DE, 1959a. Description d’une nouvelle sous espèce d’Agrodiaetus dama Stgr
(Lep., Lycaenidae) et de sa formule chromosomique. Bull. Soc. ent. Mulhouse
(1959) : 13-14.
LESSE, H. DE, 1959b. Nouvelle étude chorologique et cytologique conduisant à changer
l'application du nom d’Agrodiaetus iphigenia H.S. Lambillionea 59 : 56-61.
LESSE, H. DE, 1959c. Description d’une nouvelle sous-espèce d’Agrodiaetus hopfferi
H.-S. et de sa formule chromosomique particulière. Bull. mens. Soc. Linn. Lyon
28 (5) : 149-151.
LESSE, H. DE, 1959d. Note sur deux espèces d’Agrodiaetus (Lep. Lycaenidae) récem-
ment séparées d’après leurs formules chromosomiques. Lambillionea 59 : 5-10.
LESSE, H. DE, 1959e. Sur la valeur specifique de deux sous- espèces d’Agrodiaetus (Lep.
Lycaenidae) recemment décrites. Bull. mens. Soc. Linn., Lyon 28 : 312-315.
LESSE, H. DE, 1959f. Caractères externes et formule chromosomique d’Agrodiaetus
baytopi n.sp. (Lep. Lycaenidae). Bull. Soc. ent. Mulhouse 1959 : 44-48.
13
LESSE, H. DE, 1960a. Spéciation et variation chromosomique chez les Lépidoptères
Rhopalocères. Thèse Fac. Sci. Univ. Paris, Annls Sci. nat., Zool. Biol. anim.
(ser3l2)2721223
LESSE, H. DE, 1960b. Agrodiaetus iphigenia et son espèce jumelle A. tankeri n.sp. Bull.
Soc. ent. Mulhouse 1960 : 75-78.
LESSE, H. DE, 1960c. Les nombres de chromosomes du groupe de Agrodiaetus ripartii
Freyer. Revue fr. Ent. 27 : 240-274.
LESSE, H. DE, 196la. Deux nouvelles formules chromosomiques où n dépasse 100 chez
les Lycaenidae. C.R. Acad. Sci. (Paris) 253 : 1982-1984.
LESSE, H. DE, 1961b. Les nombres de chromosomes chez Agrodiaetus dolus Hübner
et les espèces voisines. Alexanor 2 :57-63.
LESSE, H. DE, 1961c. Cohabitation en Espagne d’Agrodiaetus ripartii Freyer et A.
fabressei Oberthür [Lepidoptera Lycaenidae]. Revue fr. Ent. 28(1) : 50-53.
LESSE, H. DE, 1962a. Lépidoptères Lycaenidae recoltés en Iran en 1961. Alexanor
2 305-312;
LESSE, H. DE, 1962b. Variation chromosomique chez Agrodiaetus actis H.S. et A.
altivagans Forst. Revue fr. Ent. 29 : 66-77.
LESSE, H. DE, 1963a. Variation chromosomique chez Agrodiaetus carmon H.S. et
A. cyanea Stgr. Revue fr. Ent. 30 : 177- 181.
LESSE, H. DE, 1963b. Lépidoptères Lycaenidae recoltés en Iran en 1961. Alexanor
323338
LESSE, H. DE, 1963c. Variation chromosomique chez les Agrodiaetus. Revue fr. Ent.
30 : 182-189.
Lorkovié, Z., 1990. The butterfly chromosomes and their application in systematics
and phylogeny. Jn KUDRNA O. (Ed.), Butterflies of Europe. II. Introduction
to Lepidopterology. pp.332-396. Aula Verlag, Wiesbaden.
MEERA KHAN, P., 1971. Enzyme Electrophoresis on Cellulose Acetate Gel : Zymogram
Patterns in Man-Mouse and Man-Chinese Hamster Somatic Cell Hybrids. Arch.
Biochem. Biophys. 145 : 470-483.
MUELLER, L. D. & AYALA, F. J., 1982. Estimation and interpretation of genetic distance
in empirical studies. Genet. Res., Cambridge 40 : 127-137.
Mens, P., LATTES, A., CAssuLo, L., Crnti, R. & BALLETTO, E., 1992. Electophoretic
Studies in the Genus Melanargia Meigen, 1828 (Lepidoptera: Satyridae). J.
Res. Lepid. 29 : 11-20.
Mensı, P., LATTES, A., SALVIDIO, S. & BALLETTO, E., 1988. Taxonomy, evolutionary
biology and biogeography of South West European Polyommatus coridon
(Lepidoptera : Lycaenidae). J. Linn. Soc. Lond, Zool. 98 : 259-271.
Ne, M., 1972. Genetic distance between popolations. Amer. Nat. 106 : 283-292.
RICHARDSON, B. J., BAVERSTOCK, P. R. & ApAms, M., 1986. Allozyme Electrophoresis.
Academic Press, Sydney, 410 pp.
SUOMALAINEN, E., 1969. Chromosome evolution in the Lepidoptera. Chromosomes
Today 2 : 132-138.
WHITE, M. J. D., 1973. Animal species and evolution. Cambridge University Press,
961 pp.
114
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 115-123 ; 31.X.1994 ISSN 0342-7536
A preliminary review of the classification
of the zygaenid subfamily Procridinae (Lepidoptera)
G. TARMANN
Tiroler Landesmuseum Ferdinandeum, Feldstrasse 11a, A-6020 Innsbruck, Austria
Summary
In his revision of the Zygaenidae of the world, ALBERTI (1954) divides the
Zygaenid subfamily Procridinae into the two tribes Callızygaenini and Pro-
cridini. As typical for the subfamily, he mentions 9 main characters (“Leitmerk-
male”). Three of them refer to the head and the wing, the other six to the
sclerotized parts of the genitalia of the male and female. Studies of type
material from all regions of the world have shown that the real autapomorhies
of the Procridinae are found in the interior female genitalic structures. Of
the nine characters mentioned as typical for Procridinae by Alberti, none
is unique to this subfamily as all of them are shared with at least one other
group of Zygaenidae. Therefore they cannot be used as autapomorphies for
the Procridinae. As the type species of the tribe Callizygaenini, Callizygaena
auratus (Cramer, 1779) (= nivimacula Felder, 1874), lacks the autapomorphies
of the subfamily Procridinae, the tribe has to be excluded from the Procridinae
and is considered to form a distinct subfamily of the family Zygaenidae. The
remaining species in the Procridinae can be divided into two groups, the
Adscita-llliberis-group and the Artona-group. Both are considered to form
well-separated tribes within the subfamily. The Adscita-Illiberis-group has a
world-wide distribution, whereas the Artona-group is restricted to the Indo-
Australian and Afrotropical regions with a few species occurring also in the
eastern Palaearctic region. Observations on the biology support the evidence
provided by results based on morphological characters.
The monophyly of the Procridinae
The Procridinae are the only subfamily of the Zygaenidae with a world-wide
distribution, whereas all other subfamilies are restricted to smaller areas. On
the American and Australian continents they are the only representatives of
the family. The nine principal characters (“Leitmerkmale” sensu Alberti) of
the Procridinae are :
l. Proboscis only sometimes reduced
2. Chaetosemata always present
115
. Analis [CuP] always present
. Ovipositor absent
. Ductus seminalis inserted into corpus bursae near orifice of ductus bursae
(and not from ductus bursae itself)
. Ductus bursae frequently with specialized structures
. Uncus single and pointed, without sensory hairs
. Valva well developed
. Aedeagus never thorn-shaped
Un R ©
\O O0 —I ON
A critical review of these characters shows that not one of them is a real
autapomorphy of the subfamily, as the Procridinae share most of them with
at least one other subfamily of the Zygaenidae.
Notes
ad 1) As far as is known the proboscis is reduced in only two genera of Pro-
cridinae (Theresimima Strand, 1917 [1 species] and Rhagades Wallengren,
1863 [1 of 4 species]) in which it is approximately two-thirds shorter
than normal. It is fully developed in all Zygaeninae except in the relict
species Pryeria sinica Moore, 1877, and in nearly all the Chalcosiinae
except a few genera in which it is shorter (e.g. Aglaope Latreille, 1809,
Chalcosiopsis Swinhoe, 1894, Boradia Moore, 1879). It is partly reduced
in the Phaudinae and totally absent in the Anomoeotinae and Himan-
topterinae. These three groups are treated as subfamilies of the Zygaeni-
dae by ALBERTI (1954). The Anomoeotinae and Himantopterinae are
now accepted as distinct families within the superfamily Zygaenoidea
and the Phaudinae may also form a separate family perhaps including
the Lactura-group according to larval and female genitalic characters
(Kirky, pers. comm.). Within the remaining three subfamilies of Zygae-
nidae, the Zygaeninae, Chalcosiinae and Procridinae, the character
‘proboscis only sometimes reduced’ does not represent an autapomorphy
of the Procridinae.
ad 2) Well developed chaetosemata are present in all Zygaeninae, Chalcosiinae
and Procridinae. The presence of chaetosemata is therefore a family
character of the Zygaenidae.
ad 3) The vein CuP (analis sensu ALBERTI, 1954) is present in all Zygaeninae,
Chalcosiinae and Procridinae. It is therefore a family character of the
Zygaenidae.
ad 4) Absence of an ovipositor occurs in all Zygaeninae and in all Procridinae,
except the Central American genus Gonioprocris Jordan, 1913 in which
a small ovipositor is developed. A well developed ovipositor is present
in the Chalcosiinae. As this character is shared by both the Zygaeninae
and Procridinae it cannot be an autapomorphy of the subfamily Pro-
cridinae and is considered to be plesiomorphic.
ad 5) The ductus seminalis is inserted into the ductus bursae near the antrum
in the Zygaeninae and in some Chalcosiinae (e.g. tribe Heteropanini),
116
but arises from the corpus bursae in most Chalcosunae and all Procri-
dinae. Therefore this character does not represent an autapomorphy of
the subfamily Procridinae.
ad 6) The ductus bursae has many very strange and specialized structures in
most Procridinae but there are also groups within this subfamily in which
the ductus is simple. The specialization of the ductus bursae (e.g. the
evolution of a praebursa) is a good autapomorphy for certain subgroups
of the Procridinae but not an autapomorphic character for the entire
subfamily.
ad 7) It is true that nearly all Procridinae have a single and pointed uncus
mainly without any sensory hairs. All Zygaeninae and many Chalcosiinae
(e.g Chalcosiini) have a double uncus. In those Chalcosiinae in which
a single uncus is developed (e.g. Cyclosiini), it is rarely pointed and
bears sensory hairs. Nevertheless there are some Chalcosunae which have
a single uncus which lacks hair (e.g some Cyclosia Hübner, [1820]) and
there are specializations of the uncus known in some Procridinae (e.g.
Neoprocris Jordan, 1915). Therefore this character is also not a good
autapomorphy of the subfamily Procridinae.
ad 8) All Zygaeninae, Chalcosiinae and Procridinae have a well-developed
valva which is a plesiomorphic character.
ad 9) The aedeagus is thorn-shaped in the tribes Agalopini, Aglaopini and
Chalcosiini of the subfamiliy Chalcosiinae, but normal and tube-like in
the tribes Cyclosiini and Heteropanini. In all Zygaeninae and Procridinae
it is not thorn-shaped. The character "aedeagus never thorn-shaped’ does
not represent an autapomorphy of the subfamily Procridinae.
Although according to recent research the characters of Alberti do not re-
present good autapomorphies of the subfamily there is no doubt that this
group is a monophyletic unit and its status as a subfamily of the Zygaenidae
is justified. The main characters that clearly separate the Procridinae from
all other Zygaenid subfamilies are :
1. Female genitalia with ductus seminalis lacking pseudobursa or bulla seminalis.
As in most families included in the superfamily Zygaenoidea, there is a well-
developed pseudobursa present in the Zygaeninae and Chalcosiinae. The lack
of a pseudobursa in the Procridinae is therefore considered to be a secondary
reduction, or plesiomorphic.
2. Lagena in receptaculum seminis absent.
In Zygaeninae and Chalcosiinae and, as far as checked, in all other families
included in the superfamily Zygaenoidea a well-developed lagena is present,
as in most ditrysian Lepidoptera. The reduction of the lagena in the Procri-
dinae is therefore considered to represent a good autapomorphic character
of the group.
17
3. A pair of accessory glands is present close to the ooporus which may
represent a structure homologous to Petersen’s gland in the Zygaeninae.
These glands differ in shape and structure from those of the Zygaeninae. They
are lacking in the Chalcosiinae. There is one group of Procridinae in which
these glands are secondarily reduced or transformed into a different structure
(Pollanisus Walker, 1854, Hestiochora Meyrick, 1887 and Onceropyga Turner,
1906 in Australia). According to recent research Petersen’s gland in the Zygae-
ninae produces a secretion which is supposed to prevent predators and possibly
funghi from attacking the eggs (Naumann, pers. comm.). As the Australian
group is not able to produce this liquid due to the absence or the modification
of the glands another defence system has been developed. The females of
the three above-mentioned Australian genera are characteristized by their
abdominal hairtuft. When laying eggs the long, hair-like scales of this hairtuft
are glued to the surface of the eggs, giving the egg clusters a hedgehog-like
appearance. The tips of these scales are poisonous and an aphid, for example
will die within a quarter of an hour after touching them. It is therefore possible
that the glands have evolved into a special subcuticular poisonous area in
which the spiny scales are situated. When the scales become attached to the egg
by their distal part, the proximal part is covered with poison as in a poisonous
dart.
4. Larva without chemical defence system.
In the larvae of Zygaeninae and Chalcosiinae a special cuticular defence system
is present (PovoLNY & WEYDA, 1981 ; FRANZL & NAUMANN, 1984; 1985 ;
WITTHOHN & NAUMANN, 1984a ; 1984b). Similar defence systems have also
been discovered in other Zygaenoidea (Naumann, pers.comm.). It is not yet
clear whether the lack of such a cuticular defence system in larvae of the
Procridinae is a secondary loss or a primary situation.
The subdivision of the Procridinae into tribes
ALBERTI (1954: 209), in his revision of the family, divided the subfamily
Procridinae into the two tribes Callizygaenini and Procridini. He was con-
vinced that both are monophyletic units within a monophyletic subfamily.
His opinion was based on studies especially of genitalia structures and the
presence or absence of a medial stem in the wing venation. Unfortunately
Alberti did not check Callizygaena aurata (Cramer, 1779)(— nivimacula Felder,
1874), the type-species of Callizygaena Felder, 1874. This species and a small
group of other congeneric South East Asian species lack the characteristic
autapomorphies of the subfamily Procridinae.
The following characters show that the Callizygaena-group neither belong to
the Procridinae nor to the Zygaeninae or Chalcosiinae :
l. Valva dish-like and strongly sclerotized as in Zygaeninae, with setae at
distal margin pointing inwards but with one single, stout, triangular, not
118
distally pointed and very strongly sclerotized uncus (in the Zygaeninae there
is a double-lobed uncus present and in the Procridinae and Chalcosiinae
the valva is completely different, never so strongly sclerotized and distally
rounded) (Fig. 1).
Fig. 1. Male genitalia (Valva-tegumen-uncus-part) of Callizygaena aurata (Cramer, 1779),
S. India, Mullacore (BMNH/London).
2. Aedeagus a tiny, slender and straight spine (in Procridinae tube-like and
much larger compared with the size of the specimens and in the Zygaeninae
also much larger with a lamina dorsalis and lamina ventralis present).
3. Corpus bursae with characteristic signa (signa never present in the Pro-
cridinae).
4. Ductus seminalis arising from.the proximal part of the ductus bursa and
not from the corpus bursae (as in the Procridinae) or from the distal part
of the ductus bursae (as in the Zygaeninae).
5. A pseudobursa (= bulla seminalis sensu Alberti) is present, as in the Zygae-
ninae and Chalcosiinae (absent in the Procridinae).
6. Receptaculum seminis with well developed lagena, as in all Zygaenoidea
except the Procridinae.
A)
7. Petersen’s gland or homologous structures absent (present in the Zygaeninae
and Procridinae, also absent in the Chalcosiinae).
Consequently, the Callizygaena-group of the Zygaenidae has to be excluded
from the subfamily Procridinae and treated as a distinct subfamily of the
Zygaenidae, Callizygaeninae stat.n.
According to the author’s studies the remaining genera of Procridinae can
be placed into two subgroups or tribes :
(a) Tribus Procridini Boisduval, [1828]
(b) Tribus Artonini trib. n.
The tribe Procridini is still a mixture of several monophyletic subgroups which
may be described as separate tribes later, if necessary. The tribe Artonini
is a monophyletic unit based on the following autapomorphies :
1. Chaetosema triangular, extending forward between the compound eye and
the ocellus (Fig. 2). In all other Procridinae the space between the compound
eye and the ocellus is covered with smooth, flat scales and the chaetosema
is not extended.
Fig. 2. Chaetosema of a primitive Artonini from Australia. SEM-photo by Colin Beaton,
CSIRO, Canberra, Australia.
120
4
@
Fig. 3. Lateral view of a female Turneriptocris coronias (Meyrick, 1886) with dorso-
lateral evagination at abdominal segment 2 (see arrow). Photo by John Green, CSIRO,
Canberra, Australia.
2. Abdomen with small dorsolateral evaginations on segments 2 and 7 (Fig. 3).
These evaginations are secondarily reduced in some subgroups. Only on
the second abdominal segment are these lateral evaginations present in
the Australian genus Pollanisus Walker, 1854, and there are no lateral evagi-
nations in the Australian genus Hestiochora Meyrick, 1887, but as Hestio-
chora is closely related to Pollanisus and there are clear synapomorphies
indicating the monophyly of these two genera, the reduction of the lateral
evagination has to be interpreted as a secondary loss.
3. Valva fan-shaped with a stronger, sclerotized costal and basal margin and
a very translucent, strongly folded central part. This type of artonoid valva
is present in its basic and simple form in the primitive Australian genera
(e.g. Pollanisus Walker, Fig. 4) while it has evolved into very complicated
structures in most of the tropical genera. However, even if the structures
are very complicated the ground-plan of the fan-shaped artonoid valva
is still visible.
The Procridini have a world-wide distribution with the exception of the tem-
perate parts of Australia. The Artonini occur only in the Afrotropical Region,
in South East and East Asia and Australia, including the temperate parts
and the island of Tasmania.
Conclusion
Having excluded the former tribe Callizygaenini from the subfamily Procri-
dinae, the remaining genera within the latter form a monophyletic unit. The
121
Fig. 4. Artonoid valva type of a primitive Artonini, Pollanisus subdolosa (Walker, 1865),
male Holotype, Australia (BMNH/ London).
monophyletic origin of the Procridinae is supported by four autapomorphies.
The subfamily is newly divided into two tribes. The tribe Procridini consists
of several monophyletic groups and subgroups, but at the present time there
are no characters known which are clear autapomorphies of the whole tribe.
The tribe Artonini is monophyletic, based on three autapomorphies. The Calli-
zygaeninae are considered to form a distinct subfamily of the Zygaenidae.
References
ALBERTI, B., 1954. Über die stammesgeschichtliche Gliederung der Zygaenidae nebst
Revision einiger Gruppen (Insecta, Lepidoptera). Mitt. zool. Mus. Berlin 30 :
115-480.
FRANZL, S. & NAUMANN, C. M., 1984. Morphologie und Histologie der Wehrsekret-
behälter erwachsener Raupen von Zygaena trifolii. Entomol. Abh. 48(1) : 1-12.
122
FRANZL, S. & NAuMANN, C. M., 1985. Cuticular cavities: Storage chambers for
Cyanoglucoside-containing defensive secretions in larvae of a Zygaenid moth.
Tissue & Cell 17(2) : 267-278.
Povo ny, D. & WeEypDA, F., 1981. On the glandular character of larval integument in the
genus Zygaena (Lepidoptera, Zygaenidae). Acta ent. bohemoslov. 73 : 273-279.
WITTHOHN, K. & NAuMANN, C. M., 1984a. Qualitative and quantitative studies on
the compounds of the larval defensive secretion of Zygaena trifolii (Esper,1783)
(Insecta, Lepidoptera, Zygaenidae). Comp. Biochem. 68B : 575-577.
WITTHOHN, K. & NAUMANN, C. M., 1984b. Die Verbreitung des B-Cyan-L-alanins bei
cyanogenen Lepidopteren. Z. Naturforsch. 39c : 837-840.
123
Proc. VIII. Congr. Eur. Lepid., Helsinki 19-23.1V.1992
Nota lepid. Supplement No. 5 : 124-128 ; 31.X.1994 ISSN 0342-7536
List of other presentations and posters
Acassız, D. & Nasu, P.: The invasion of Britain by Phyllonorycter leuco-
graphella and other Lepidoptera.
Buszko, J. : Marshlands and distribution limits of some Lepidoptera in eastern
Poland.
Byun, B. K. & Park, K.-T. : Systematic importance of the 8th abdominal
segment of male Tortricinae (Tortricidae). [Poster]
Cook, M. A., HARwoop, L.M., SCOBLE, M. J. & McGavin, G. C. : Geoverdin :
A novel pigment from the wings of moths (Geometridae) and the develop-
ment of a fingerprinting technique for pigments.
DANTART, J. : Notes on the genus Chesias (Lepidoptera, Geometridae). [Poster]
DE JONG, R. : Habitat preference, speciation and biogeography.
DE OLANO, I. & MENDEz, J. M. : Geometridae del Pais Vasco. [Poster]
DIEHL, E.-W. : Can the tropical rain-forests be saved?
EFETOV, K. A. : On the biology and taxonomy of the genus Adscita Retzius, 1783
(Zygaenidae). [Poster]
FIEDLER, K. : Vibratory signals of lycaenid caterpillars.
HÄUSER, C. L.: Critical comments on the phylogenetic relationships within
the family Papilionidae.
Ivinskis, P. : Some characteristics of the Lithuanian Lepidoptera. [Poster]
KiyucHko, Z. : Die Noctuidenfauna des Daurischen Naturschutzgebietes. [Poster]
KONONENKO, V. S. & MIKKOLA, K.: Taxonomy and zoogeography of the
Palaearctic autumn and spring fauna of Noctuidae.
Kozıov, M. V.: On the origin and phylogeny of the Papilionida (= Lepido-
ptera).
Kozıov, M. V. : Population structure and morphological variations of Micro-
pterix maschukella Alph. (Micropterigidae). [Poster]
KRISTENSEN, N. P. : Structural diversity in the lowest moths : Some startling
new discoveries.
LAFONTAINE, J. D. : Classification of Lepidoptera : Stability through coopera-
tion. [Inaugural lecture]
LAFONTAINE, J. D. : Classification of trifid noctuids : adult and larval conflicts.
LHONORÉ, J. & FAILLIE, L. : L’Azure des Mouillères (Maculinea alcon D. & S.),
un exemple d'étude de la dynamique de populations dispersées.
Masö, A. : Morphology of the Iberian Lepidoptera. [Poster]
Mey, W. : Intraspezifische Konkurrenz bei Leucoptera malifoliella (Lyonetidae)
durch induzierte Resistenz am Apfel.
MEYER, M. : Endemic Lepidoptera from Madeira and Azores. [Poster]
MEYER, M. : The variability of endemic macrolepidoptera from the northern
part of Macaronesia. [Poster]
124
MunGuUIRA, M. L., MARTIN, J., THOMAS, J. A. & ELMES, G. W. : Host speci-
ficity and population dynamics in the Iberian Maculinea species (Lycae-
nidae).
NAUMANN, C. : Reproductive biology in the zygaenid moths.
NIKUSCH, I. : New results concerning the subspecies of Parnassius apollo and
P mnemosyne in Fennoscandia.
OLIVELLA, E. & SARTO 1 Monteys, V. : Incidence of Phyllonorycter cory-
lifoliella (Gracillariidae) on apple orchards in areas of Lleida (Catalonia,
Spain). [Poster]
Park, K.-T. : Systematic revision of the tribe Teleiodini in Korea (Gelechiidae).
[Poster]
RAxosy, L. : Endangered Macrolepidoptera in Romania. [Poster]
RAKosy, L. : Noctuidae from Romania : Systematic list providing ecological
and zoogeographical data. [Poster]
Ronkay, G. & Ronkay, L. : On the phylogeny of the noctuid subfamily Cucul-
liinae : a provisional sketch of the new system.
Sarto 1 MONTEYS, V. & Maso, A. : Remarks on the biology of a lycaenid
butterfly, pest of geraniums, new to Europe.
SCOBLE, M. J. : The family Hedylidae : A revised concept of the butterflies.
SETTELE, J., FREY, W., Bink, K. & PFEIFER, M. A. : Verbreitung, Ökologie und
Schutz vermeintlich gefährdeten Bläulinge in Feuchtwiesen des Oberrheins-
grabens : Lycaena dispar, Maculinea teleius und M. nausithous in the Pala-
tinate.
SINEV, S. Yu. : Some results of the Russian-Finnish expeditions to Siberia and
central Asia : Momphidae and some other microlepidoptera. [Poster]
SKALSKI, A. V. : The possibility of influence of phenological factors on compo-
sition of the Lepidoptera in the Baltic and Saxonian amber.
Sutcs, I. : Arten mit östlichen und südöstlichen Verbreitung in Lettland.
TSHISTIAKOV, Y. A.: The current state of the rare and endangered species
of the Lepidoptera in the Russian Far East and their conservation.
VAISANEN, R. & LAITALA, L. : On the ecology of Lopinga achine (Satyridae).
[Poster]
VAN OORSCHOT, H. & VAN DEN Brink, H. : Biological and taxonomical aspects
of Melitaea persea (Kollar, 1849) (Nymphalidae).
VARGA, Z. S.: Biogeographic patterns of speciation in some xeromontane
Noctuidae genera. [Poster]
VARGA, Z. S.: Life history of some butterfly species in the nature reserves
in NE-Hungary.
VIIDALEPP, J.: Cladistic analysis of the genera of Larentiinae (Geometridae)
of the temperate to northern Palaearctic.
WEINTRAUB, J. D. : The higher classification of the Lithinini (Geometridae).
Woıwop, I. P.: Mobility and variability in the farmland moth community.
[ Poster]
YELA, J. L. & HERRERA, C. M. : The seasonal cycle of noctuid moths (Noctui-
dae) and woody plants in Mediterranean montane forests. [Poster]
125
YLLA 1 ULLASTRE, J.: Warm up and flight body temperature of Graellsia
isabelae (Saturniidae).
In addition to these presentations, short communications were presented at
three workshops : Noctuidae, Microlepidoptera and Larvae.
List of delegates
Aalto, Antti Hyvinkää Finland
Agassiz, David Bishop’s Stortford U.K.
Ahola, Matti Koski Hl. Finland
Albrecht, Dr. Anders Helsinki Finland
Balletto, Dr. Emilio Torino Italy
Bengtsson, Bengt Löttorp Sweden
Best, Julian Lerida Spain
Biström, Prof. Olof Helsinki Finland
Buchsbaum, Ulf Kranichfeld Germany
Buszko, Dr. Jaroslav Torun Poland
Byun, Dr. Bong-Kyu Chuncheon S. Korea
Cook, Dr. Mark London U.K
Dall’Asta, Dr. Ugo Tervuren Belgium
Dantart, Jorge Barcelona Spain
de Bros, Emmanuel Binningen Switzerland
de Jong, Dr. Rienk Alphen a/d Rijn Netherlands
de Olano, Ibon Vitoria Gasteiz Spain
De Prins, Willy Antwerpen Belgium
Diehl, Dr.med. Eduard Siantar Indonesia
Drouet, Eric | Mont Saint Aisnan France
Efetov, Dr. Konstantin Sımferopol Ukraine
Faillie, Louis La Fleche France
Fibiger, Michael Sor® Denmark
Fiedler, Dr. Konrad Würzburg Germany
Font-Bustos, Juan Castellon Spain
Gaedike, Dr. Reinhard Eberswalde Germany
Geiger, Dr. Hansjürg Berne Switzerland
Gerstberger, Manfred Berlin Germany
Gozmäny, Dr. Laszlo Budapest Hungary
Hesselbarth, Gerhard Diepholz Germany
Honey, Martin London U.K.
Hulden, Dr. Larry Helsinki Finland
Hauser, Dr. Christoph Bonn Germany
Jalava, Jukka Helsinki Finland
Johansson, Roland Växjö ' Sweden
Junnilainen, Jari Vantaa Finland
Kager, Dr. Stefan Nürnberg, Germany
126
Kaila, Lauri
Kaitila, Jari
Karsholt, Ole
Kerppola, Sakari
Kljuchko, Prof. Zoja
Kononenko, Dr. Vladimir
Koponen, Seppo
Koster, Sjaak
Kozlov, Dr. Michail
Kristensen, Dr. Niels
Krogerus, Dr. Harry
Kullberg, Jaakko
Kuznetsov, Dr. Vladimir
Lafontaine, Dr. J. Donald
Landtman, Dr.med. Magnus
Langohr, Gerard
Lehto, Olli
Lepistö, Vesa
Lhonoré, Dr. Jacques
Lorkovic, Prof.Dr. Zdravko
Lvovsky, Dr. Alexandr
Maso, Albert
Meinander, Prof. Martin
Mey, Dr. Wolfram
Meyer, Marc
Mikkola, Dr. Kauri
Morgenroth, Hermann
Munguira, Dr. Miguel
Neve, Gabriel
Naumann, Prof.Dr. Clas
Nekrutenko, Dr. Yuri
Nieminen, Marko
Nikusch, Dr. Ingo
Nowacki, Janus
Nässig, Wolfgang
Olivella, Elisenda
Park, Dr. Kyu-Tek
Peregovits, Läszlö
Povolny, Prof.Dr.Ing. Dalibor
Raineri, Valter
Rakosy, Dr. Laszlö
Ronkay, Dr. Laszlo
Ryrholm, Dr. Nils
Sarto 1 Monteys, Dr. Victor
Schouten, Rob
Scoble, Dr. Malcolm
Helsinki
Vantaa
Copenhagen
Helsinki
Kiev
Vladivostok
Turku
Callantsoog
Turku
Copenhagen
Helsinki
Helsinki
St. Petersburg
Ottawa
Helsingfors
Simpelveld
Helsinki
Helsinki
Le Mans
Zagreb.
St. Petersburg
Barcelona
Helsinki
Berlin
Luxembourg
Helsinki
Paderborn
Madrid
Louvain-la-Neuve
Bonn
Kiev
Vantaa
Offenburg-Bohlsbach
Poznan
Mühlheim
Barcelona
Chuncheon
Budapest
Brno
Genova
Cluj-Napoca
Budapest
Uppsala
Mollet (Barcelona)
Den Haag
London
Finland
Finland
Denmark
Finland
Ukraine
Russia
Finland
Netherlands
Finland
Denmark
Finland
Finland
Russia
Canada
Finland
Netherlands
Finland
Finland
France
Croatia
Russia -
Spain
Finland
Germany
Luxembourg
Finland
Germany
Spain
Belgium
Germany
Ukraine
Finland
Germanv
Poland
Germany
Spain
S. Korea
Hungary
Czech Republic
Italy
Rumania
Hungary
Sweden
Spain
Netherlands
UK.
Settele, Josef
Shvetsova, Lubov
Silvonen, Kimmo
Sinev, Dr. S. Yu.
Skalski, Dr. Andrzej
Skou, Peder
Somerma, Päivö
Sommerer, Manfred
Spitzer, Dr. Karel
Stangelmaier, Ing. Günter
Sugi, Shigero
Sulcs, Ivars
Suomalainen, Prof. Esko
Svensson, Ingvar
Tabell, Jukka
Tarmann, Dr. Gerhard
Traugott-Olsen, Ernst
Tshistjakov, Dr. Yuri
Valleala, Einari
van den Brink, H.
van der Wolf, Hugo
van Nieukerken, Dr. Erik
van Oorschot, Harry
Varga, Dr. Zoltän
Viejo Montesinos, Dr. Jose
Viidalepp, Dr. Jaan
Vives Moreno, Dr. Antonio
Vojnits, Dr. Andras
Wagener, Dr.P. Sigbert
Waring, Dr. Paul
Weintraub, Jason
Wettenhovi, Kalle
Whitebread, Steven
Woiwod, Ian
Yela, José
Ylla ı Ullastre, Josep
Zub, Petra
128
Stuttgart
Moscow
Espoo
St. Petersburg
Czestochowa
Stenstrup
Espoo
Munich
Jindrichuv Hradec
Villach
Tokyo
Riga
Helsinki
Kristianstad
Hartola
Innsbruck
Marbella
Vladivostok
Kotka
Badhoevedorp
Nuenen
Leiden
Amsterdam
Debrecen
Madrid
Tartu
Madrid
Budapest
Bocholt
Peterborough
London
Helsinki
Magden
Harpenden
Sevilla
Gurb (Barcelona)
Bad Vilbel
Germany
Russia
Finland
Russia
Poland
Denmark
Finland
Germany
Czech Republic
Austria
Japan
Latvia
Finland
Sweden
Finland
Austria
Spain
Russia
Finland
Netherlands
Netherlands
Netherlands
Netherlands
Hungary
Spain
Estonia
Spain
Hungary
Germany
U.K.
U.K.
Finland
Switzerland
Spain
Germany
SEL SOCIETAS EUROPAEA LEPIDOPTEROLOGICA e.V.
COUNCIL :
President : Prof. Emilio Balletto Vice-President : Dr. Kauri Mikkola
General Secretary : Dr. Hansjürg Geiger Treasurer : Manfred Sommerer
Membership Secretary : Willy De Prins Editor : Steven E. Whitebread
Ordinary Council Members : Prof. Henri Descimon, Michael Fibiger,
Barry Goater, Dr. Victor Sarto 1 Monteys, Dr. Gerhard Tarmann.
COMMITTEES :
Literature : Dr. Victor Sarto 1 Monteys
Habitat and Species Protection : Marc Meyer
MEMBERSHIP:
Applications for membership, changes of address and orders for Nota lepidoptero-
logica and other literature should be sent to :
SEL - M. Sommerer,
Volpinistrasse 72, D-80638 München, Germany
Annual subscription fees :
Ordinary members DM 50,-
Corporate members DM 60,-
Admission fee DM 5
Overseas air mail charges DM 15,-
BACK VOLUMES OF NOTA LEPIDOPTEROLOGICA :
vol. 3-5, each members DM 24,-
non-members DM 48,-
vol. 6-9, each members DM 32,-
non-members DM 64,-
vol. 10-16, each members DM 40,-
non-members DM 80,-
PAYMENTS :
All payments should be addressed to :
SEL - M. Sommerer,
Volpinistrasse 72, D-80638 Miinchen, Germany
and should be made through the Post Office :
Postal Giro Office Cologne — Postgiroamt Köln - C.C.P. Cologne
Nr. 1956 50-507
In Deutschland Einzahlungen/ Überweisungen auch auf das Bankkonto der SEL
bei (from within Germany only) :
Bayerische Vereinsbank (BLZ 700 202 70)
Nr. 2692511
United Kingdom members wili receive a separate invoice. Cheques and bankers
orders should be made payable to “Societas Europaea Lepidopterologica U.K.
A/c” and sent to Barry Goater, 27 Hiltingbury Road, Chandlers Ford, Hamp-
shire SO53 5SR.
NEWS : All items for ‘SEL-News’ should be sent to
Willy De Prins, Diksmuidelaan 176, B-2600 Antwerp, Belgium
All other matters to : SEL Office, General Secretary Dr. Hansjiirg Geiger
Zoologisches Institut Universitat Bern
BaltzerstraBe 3, CH-3012 Bern, Switzerland
‘Handelsgesellschaft
=
Er à ofo zuun Schweiger & Meiser GmbH & Co. KG
- Bittlmairstrasse 4
8070 INGOLSTADT/DO.
Telefon (0841).75583
IHR SPEZIALIST FUR ENTOMOLOGIEBEDARE | -
Wir liefern seit vielen Jahren zu günstigen Be eine große Auswahl von
Utensilien für den Fach- und Hobbyentomologen.
Für die Zucht:
Zuchtkästen, Puppenkästen, Infrarotstrahler, Zuchtbehälter etc.
Für den Tag- und Nachtfang:
Netze, Gläser, Stromaggregate, Transportkästen, Lampen und Leucht-
röhren etc.
Für das Präparieren:
Insektennadeln, Spannbretter, Präparierbesteck, Kopflupen, Chemika-
lien etc.
Für die Sammlung:
Insektenkästen in allen Größen mit der bewährten Moll- oder Schaum-
stoffeinlage, Insektenschränke aller Art
Ein umfangreiches Angebot an neuer und antiquarischer Literatur ist vorhanden.
Schreiben Sie uns oder rufen Sie uns an, wir beraten Sie gern. Unser Katalog steht
Ihnen kostenlos zur Verfügung. Als SEL-Mitglied erhalten Sie bei uns auf sämtliche
Artikel (außer Bücher) 5% Rabatt.
ich —- —-
Bieferm
ee EF
EAN RG
| Pe CRT
N Cf Off = ct] O LT Tr à le 0] NA
NN 2G = EN 2 44, EN 2 ewe
ee à | = wor
31#VY911 LIBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI Os
5 (72) 3 on = Ww
7 i un zus = Lu
“1 REA LH Sy, "4 x ml aaa
= LY YZ a < 4 =
= = i 2 5 S +4
NVINOSHLINS S31y4vugl17 IN
z En zZ m z =
= u ze wo a wo
= me) > xy ae m
= > > > = > |
> a = me) BE * oo
a 7. m : = = on * ==
= Ei (02) ; = 1%) = a
LIBRARIES SMITHS NIAN INSTITUTION NOILNLILSNI NVINOSHLINS S:
N = i = | SU =
we 4 \, I z =
kB & WS 5 ae ra
= S BOWS © a og
= = AS Z = Zy
= N io as = >"
+ Se > z
ISTITUTION NOILALILSNI SJIYVYGIT LIBRARI ES SMITHSONIAN IN
LIBRARIES
NOILNLILSNI
NOILNLILSNI
NOILNLILSNI
LIBRARIES
118VH411 LIBRARIES SMITHSONIAN |
INSTITUTION NOILNLILSNI NVINOSHLINS S
S S3INVYGIT LIBRARIES SMITHSONIAN
— 6 6 = A Ge
At — N & © ¥
= = = N cH
= D . = RN D
F 3 = > r |
po) = 4 “M po) —
= un D = ei
B z ie a ae
Tal ON © ea s31yvVyg Li BRARI ES SMITHSONIAN IN
NN 2. 5 HA . = .
N 2 2 ELA À 2 2‘
2 = 2 Wy © 2 =i
> = | SS : = u Ss
= a 2 a he zu
u LIBRARI ES SMITHSONIAN _ INSTITUTION NOILALILSNI_ NVINOSHLIWS S=
m CLÉ SD a œ =. NN œ |
= LYS LL = < À à NN < |
=i D Gy = = = N a |
= g ze.
O = 0 © = 5 a
= pir 6 z = z \. Ga
grat NOILNLILSNI _NVINOSHLINS _ $3 Iuvyg ae LIBRARI ES_ SMITHSONIAN _IN:
ö EU 2 6 = = 2 a ‘
= w — œ = the œ
= = = ie F y, 2
= > = > > fe GR >
_ = F a = G fir >
(2) m 2 m un" m
JI8VYGIT LIBRARIES SMITHSONIAN INSTITUTION NOILALILSNI NVINOSHLINS S3
2 =z ‘9 on a ® on = a
= = =. = i < =
: 6 2 8 Wy = Ns =
Sn WQ & D ~ Nr. G&G AD na
a N° O oA N NS" A
ZN ERDE, : :
a de ee : =
STITUTION NOILALILSNI_ NVINOSHLINS S31#V48171 LIBRARIES SMITHSONIAN IN:
AIVIAINÇGLIIIIAE
et a nm A se = A
EL E GAY 2 ZU = SS 2 Cu E
| > 4 = ON. DC. > = \ > TH» =
M LIBRARIES SMITHSONIAN _ INSTITUTION NOILNLILSNI NVINOSHLIWS $3 IuVYi
= 2 2 2 AR
[2] Cr „0 = a es
: x. X. = œŒ = X
7 < Y, Pa. < ei <
1 a = a we 5 28
2 = af: : z :
= À N
IN NOILNLILSNI NVINOSHLINS SS!Y¥VYUSIT LIBRARIES SMITHSONIAN” INSTITUT
z fe Pi = = ry
O w O un O Y œ
aS 2 ns D aa Ye:
res = = a = hae
2 m Z m 2 #
== . = w = Ww
11 LIBRARIES INSTITUTION NOILNLILSNI NVINOSHLINS S3IUVUHS
Re SS PH ee gl 4
fz = = = fF, = = YY,
15 Na ii Vs: REED: ZO
Pe WAN oO A CA
ER 2 = = GY flo = 3 AG
= a a 2. 5 7
)N „NOLLNLILSNI_ NVINOSHLINS _LIBRARI ES SMITHSONIAN INSTITUT!
= z ’ 2
Mr n ui 2 Lu Qu. Z
\ = oc za x Yiu, =
) < = . < = < DE =
5 œ Sf: 2
= = (se) = ne ER" 4 =
iy = = z a 2
[1 LIBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI s31lyvYi
m z a = Lie <
= Oo we 5) HE oO
2 r = = w =
E = = au =
LT FE * = = a =
i, Z © 2 m 2
D n° 3114VUB8IT_ LIBRARIES, ~ INSTITUT
I z = N \ 4 >
Z = =. = 2 =
= = > = El =
an Z ; an = Pid Tp) à
= > MITHSONIAN _ Pee EVEN „NOLIDERISNI AVINOSHNNS SE 1ava:
a = .6 Lu
ne <<. = < 4 <
— Oe — Ge Cc œ
= rea) _ m =
2 m Que = 2 =
ad > N
N _ NOILNLILSNI_NVINOSHLINS „e3 IuvV48g EE LIBRARI ES” SMITHSONIAN INSTITUT!
2 - NL = oo © ty, ©
> > Wy I ne) = .
aA ones N N i bid F - a
Er m En NS = m Ww a m
= w cg: = 7) = n
7 Ze! SAS | ES SMITHSONIAN INSTITUTION NOILNLILSNI NVINOSHLINS S3 I4vV4g
Bi, = Het = wy, = = y
7 = = tip, =
C8 = 9 > 5 2
= re) T x 8 ae x sg
= = = S GF fh pi O
= — nd us + / = a
5 = Ze = 3
BE ARE QUE an = Br
)
>
À
j
)
»
J
J
ww
PRET
UT hae ee
me at vt
CETTE)
Oe ror
a yr
DATENT
RTS TE CE ET
LE PUR
DATA TT TETE
LADA
RAT Nr ar
aa vee
Tan
7 ed ann
rn
ru ran
MEHR
RE Ne HE SN
SO EWES gr
HT ae ip
UE aE ET UT ET
re
x
DATA
PACE ET ET
bea
Wen nur
Ine we we ar 4
ren EY
TETE
Baar ne eg;
MUL WE ated Un ei dw TPE A AAA GAP ET SU NR my Dat
we ‘wv N
Ve tar € A 5
SRH WET ETES ATEN TNTEN
augen,
Kara
[Ana
NEE EN
Re WHEE WER gee oe
vw“ ur
OW SEEM AEE ME SEE
ed eal AY Wehe
We WN
EHESTEN Lg
aa" . AR tsar eee era
RUT an eut a
WW IEAM Ay tea!
IHU NGS PAP ge
at ai ee an
NE att ee tan
Ta RN A nm
IAP wee ew ar
ME vat we
w True WE REN Er
0 WOMENS UP TEE
RO LR es Ta AN a ae A Ze ER
eet YO apr 8e WIND ue
SPA De Tee
en PER I Re
Porat
HEME SY
r
NG MICO
ty vit et ARE ME AU
ed CAT UE ie ET LE
a EWE we
VE RUN DOTE STONE
ERLE TOUT ATTES EEE Aa CUITS
NT en MSN ENTE TE a
wert
TETE ET EN
au art
ut
Ure 2
Ee ES
Were
a ANSE TETE"
APE TNE UP Wie A
"auras Ve vee Mit RU LE TE LR tes a a ad
AUPE NA ASE MT EA AE EO OE SA YP iar HTN Life 4
su PONE EURE NE an ara
RULES TE ET) ARRET DATE TETE ET NET Bel pt ara ER)
SUE TOME UE MP ME WOE NE ERTL te Vive NAN RTE DE AT
D D CEE LEO FANE OME A DO TE We et a OU BT NE WI +4 zen ee U re
mé DER any a NE MEME MO UE A VE RENT N ed oy VE DEN ut PUREE My GENE UE UR al yy owe we
ohn a ae Ee dee NVI TS wer >
NA AALS CMa ETE PAR Au 4
LORD ee LE Ci TN OR ee
PET ARE
OU Waly
Frees
Mey EE raw,
ur EPO Vet
AV AE D
WE DEEN pe
atc
SUE pen eg
TRE EN YY gh
D ETATS
Pps
STARS
CATNAUR AUTRES
ne
ET rt
RTS STORES
are
CAT
DY Sea INE aT EN
PA NE,
3 wen CC AE ET TT ETES PE hel se A Bel?
EEE GEM NEE Wet a RONDE UNS GRY U STR Wan DL A LE LT ENT POSE CE
CE ET ENDEN EEE UT an DRE DATENT LET Psp Saar 5 wh ET UE APE NU a, Neng ay LE UNE D AS
NENNEN wae WWE WEI SS LE WEA An LENE MEY LEE NEUE AU UGE AE MOA UE CV NUE ae yp ae Ug" CN MEN EE ESAT ATTN ETE PTT Ate Se? Kane
AT en en Mir Ve eee DAT 0 AE MES EAE RENT TEE UT AL EN SAA TER QE sa ENT D SU EAP YE ge Yale (ETES ON bee
run EN ~ he RET ae » . PAR WE Wo aus TVW MAE See or el y rn LINE ALES CAE ET AT ONCE RTE OT EP PE ve Bun Ade WE CARTE LOT ETES
msn UE Dunn wenden een N Vas iu AL Mad us tthe Ai dons a RE le Lu CA LUE ee qu TE
TU RR Reha ne [ “ “ Ra A AUS WENO ENA Ma ue ET :
SB AES COTES UH PSE AA Ge LeU ee ee Ma NT
N ee TONER
Kae u ZN
ET Nun a
BEE UE SP UCT EN ee YON OST
woe ew
as
ator
seein en een
font OPT es crue AEE AE AEN ESTE MEO FR TPT
Wee ees SOUS ah? URAN ue PATATE TETE YO Rar aE Blan ulate
Ne ae SANS tur RTE ps FA VENEN MEUPA ETS si wir a CCE TT UT wur
Br ANNU fr D eh a tr vu TOWLE OS air we Ente ewes SPW a er ee N ur BESSERE N ‘ bergen PE OT I
Mirae len a he nat ees ca 2 UNE Ue SPL ER Whe soy AOA UP ant Sty ent ET) UP Oe ge PMC LO NEUEN Wt Bae PEN WE MOURA OUR MCE i ae ue A emer ee ee ere ee A Ra
ur ANA N ale as à WERE RET LT Gren TMF 17‘ Ur VERDE CRUE TIRER ET Sr VE FETE CPS TTC UN ETTEN We teeter RESET TER NN TUT ET ure WE OPUS U Gey EA RE SEL WM Nm ETS OS LU
Pies eel Cal er POI emi nal LM > a At wen re ein TETE KLEE EEE Er ER gE PAE V6 HAP SENT NUE Se LE SA AU ah A fe
. AEM SRV en RATEN tol A ARE M a EU oe KP AY
à LORS HS VA we ul ne ar RM ae ren a JE ra TETE Ne x MT Sa
BNE D ee TRE a
NL ETES
RE ned
SOLAR RER TRUE OF LEA ne
RT ee ner a PO POUR
NEST AO ETES
VE ae
Re
END,
N TL TETE We ly
PALAU TETE
NET
CRC EC Le ns
CARLA TT WE ON ENTF SUN
SUR
QUOTE
A NE PR ON Un DL Ton D TT EE COTE ET ee
HU HE NL UE A PE AE UE UE eg A AP NA UE A ESC A PAR SIT RNIT NEE a gen ENT GP SE AN ST EN AT ara
EVER Ate VER M NET NP UE AEA Dr Are re QE UNE NE ELU Aare ui PA EGE IESE NE OO AH BEHR UE UT Ar BRÜSTE CT OY TE STE PS
hs MEO wey! er re ee ENST DS SEI SEN TOO N Une LE Ar our ip al tat fenton sna
au PAGANO ROVE ARAL US UP Weis CORTE ow arn vr CRE TETE TY
x > FU wen RDS CE SOS UW VENI N TON TEEN Re
1 WED gehen DAT ON PS Gy N NN ! er
EEE TE VA BEWERTEN a VNA HE WARE hr
TTS ee M
Sha Wak SE DT LITE er
Wa Ny Ua Ter ae “ae “Tg, a De Del th
a Te A Tl
TR ES
Dein
UNE WAT Ur dee 8
DELETE EEE TEN ATEN TER
AT Gar je
RT |
Tee
NE BIN
air
1 WERNER UF TE cpu Ur ar whi ur ge
TNE UE ENE A RO SE ET ENTER
MOVE HE LEESON Ve ME NEE Me etme
UT UT WE HE A
We OU Air to
TSO WE WE EL
ee Ry AH WERE TEE
ME DS ME UE hrs
sue WANN TROT
NHL NED Me HP
ae
TE AUS re qu ti
NT REN
BETWS Den He IT
EE Ue MUR TE ETIENNE
vor. are
ator fe Ab weds wer ur eu
NEE RER dern ers ar
REITEN AUT PSP TN Fin
LOL Tab CE ETUI SET EE LTE ARTE
ARRETE TANT
CORNE TETE TEE mE ang
eR OD dr
ET a He
QUEUE PEN sac)
UE Beep AL A DNA SHE AD AE ROMA ISIC ME NG QE UE ae NULL RE RU (BNI PR del
N EC a A REN AT AURONT HU or ta np SENT TO DCR Va ET ET NE CE ur ET PS EC ETES Cal “PNR ural att
vet we man Ve Cyr Rah Sour ne Wi VU QU AGE SUR YEE YEE ator a Van ENE AT Ae NEUE Se a RER EMR APN A OES aE PUY YE HOS nee A SE RU NET A EN A
Sehr Are EN. Pa A M EU AU AE REN UT Ur Var QE ara SAG UP UP OP AEN CRUE EUR VEN RSS SE D MLS VA sie Hp AU UP LÉ AC wel Ue SEHEN? urn DATENT PEAU AU LA A TN ET AA je 9 SESE PALO SALE EM A EE A EE A ar
Mia tae) ETES ar RR Al À or inti Roi or EN rn MALE AP Me et CN ME GF ah Qt À EU Ve We ir or EU ke UE ae ye N DATE SSO ONE WENO VR EE UE TENTE ET EN TI MENTE AL AT AT OT ETAT ET RENE TETE MT DEA D OT CS CT IEP HR APN RTE) CON CRT CENT ET NT ES TE DR mit re hae
[aan LE CUT CS NOT CO TENTE Si Te no a AN RARE nur ROWE MERE ESP EE Sy AM SUL ME A ie be LS OSH NE Ur) EU PE u Te Dan SOR ert Tithe TH TER ET uy RO LL OT TS RP ERSTE A LU sn LS up
Cac ue ef iy ee ay EU ren LATTES MALE Hr pe D k ALES Wt ale te ES TETE AES LS CE Ur EU Pa RE MEE ar SE gt UA yes VU UO SE EAE EE MEUM on i are SL Det CANTON ES LAN COLE ger SIE Uy SAW NEPA SE PETER WOME RT Lee OF DE EE ETON ECT
D TU ge BIER WAS RMA > DAME He A CRE Le CRRA TRUSTE ALL MND ME BS AU TETE a ann PATEL EE NEY Sal MEN Md od Et Seok Ue ar at AR UE ape ae Parken: PEE Whe) OP OA SPAY NEE WEE MEME ERBE AOE Art AEE AUS YEAR UP ME ts
a ns fk aL ns RER en LU UP AA AUS Au Au PR TEL NG ey ey RN Ha ae hs ron D Re HALL su Fa ; 4 ar N ae SEEN NE A EEE OE PAR OLE HEME air Sa
DD LED OS OES WAR ER TEL SP Warns UU UNTO Ne KU Pete a mate em N Mes Me 3 wh Sia aon) METZFSEIT ‘
BURN EI LE Dot MA eu wee DE Mir a ee at HELA an WN rie Gr Me age
KLETT a pm Mun wre
Gal
SOME NEE QE
RETENU ENT ET ETAT EEE
L'AUTRE ETS ME yee
NMEA ESP al
PA OE SE A EA ET OT SME IES Ne
NENNEN TEMPE MEE UE YE RS aD
Sy ACS am ne
PALAU ATOS CET
RES he ai tM
Re
WR Pre
ue NP AU ja
Ta Em
EN TEE
BDA LA BLUE PE TNT TED TNT EMEA WP
BEER RENEE NEI ATMO ETE UTAH ENT URAN
ROSE TETE EE Wr EIEN ETS
4"
WR ei teurs Ae
LT RTS TPN RUE AE
LOC OR ART OME ASA AN REED NEA VO
a
CRAN CET ETS
SUR ZU NE Ar or
USERN IR DLR ET:
AINE YENI EMCO UN NET SOE Paaren SUE BLEUES TES
LACE AE AEN OPT YEE SIP RUTTER ET a
D Oat at Ue ol tn
Heer a
ER
Pee ee LD NE LE LITE PETE PE TETE TETE DET EUR TE METER Med GE Wy
EMME AE MEE UE AU SF a A RAE M VE AE 7 EA LOW Meant
rm,
AUS ET NET“ ED NEE AU RT GP Ph yrs Bo CARTON EE
RE NEO IE UE RIESE NP MENT Ste oP a oF Rl AEA EU EI NA PE MEME RUE HNC au RN ET CERTES
\ TE APE WA A URE N ee Ge IE Nee Urn COE TE WENT ad atone N RO OF DE MT YE YOU Aye NEN OMG Yr pak ee eT ATA RSS ED NI GIE à P = a
i PAE UAE ORTE TASTER EI ME OI UP UCM we YE ew ay SOE UE SONOS A Ne Aa a ate ME SELENE UME Ne eye hin HIE ar BEA POE Ne AC UU UE Aiea AUR Ee 05 FERN
ERTL Nee Enel + wh NE VER TU Wed me NANG og ESE te PE yy ter nal oo LAC ACER TETE TETE tae UP TUE LS TRS DÉRTRT REEE TE TTC TENTE TITAN AR DUR
ss LE a ale D LL ns RE Brain Mess hs his ps ae ww ee rt ME IE EVE WN OA ee AIOE a af ee Wet ergeht
RR Kern VA N AU LP LA SU gern IR ANE eng» purer Aas m pap UP ar agin mA;
es bled oho Setar Mum WF Wik PMR MOR reac mee Su u RATE A nn
ER iad i Tans ae
fi UGE ANDEREN
Paws PONS : PART UT A
A RE nm
DORA ERP LL aS Re PET
DT IT
RON RE entres
SUS NIT Nv EE