a
Mar?
#
fe ca
Fin
SANS
SR Ere Pate ENS
Va
the
ve
z PSS à, 9 ane
PAR
H
rare Let
AH Ee
Sec?
tresse rer
Fists
ys >
Ka I~ Ka}
Seige
NSD AEROS CNE a ie
2 ERS“.
Fa 7
ir ernten
a et" “KE
RN en
PÉTER RE
get X
De
$53 pep eS yes
wr 3 Br nn
ni : BREVET
wt L t
1 AIR
AR
ig '
N ur :
na Os ony ; i N
| Nr AN VIDE eh ee
k I , u a À AL hee |
LINE LE ot 1 i: if L ds hy ney ed IC PEN nee | 4 fae
y Tou ; j - ’ | \
fr ta
¥ ib
5
ES)
\
a, v u
‘ ‘4
ave
on we F
i]
ISSN 0342-7536
A quarterly journal devoted to Palaearctic lepidopterology
Published by Societas Europaea Lepidopterologica
À ar, a
k vi ee ‘
‘ . à { à, (1 LP
" ; 4 i ” F "
He By ee Re N A i
\ is TE + ARE E : Ê
1 F ri 7 LA + > ‘ En
À RTL DES n" ae | 5 .
GREEN | PT NT nage dr if NAS à e > ¥
& 7 Sehe KREIEREN SA" ; =
fe 4 À ot ae A - R
r : bw
5 : ‘ N I ?
RR we hé VAUX x ,
SEL SOCIETAS EUROPAEA LEPIDOPTEROLOGICA E.V. | 1
CouNCIL
President: Prof. Dr. Niels P. Kristensen Vice-President: Dr. Jacques Lhonoré
General Secretary: Dr. Christoph L. Hauser Treasurer: Manfred Sommerer
Membership Secretary: Willy O. De Prins Editor: Alain Olivier
Ordinary Council Members: Dr. Jaroslaw Buszko, Michael Fibiger,
Mark Parsons, Steven Whitebread. Dr. Alberto Zilli
COMMITTEES
Literature: Steven Whitebread
Habitat and Species Protection: Dr. Jacques Lhonoré
HONORARY MEMBERS
Jean Bourgogne (F), Pamela Gilbert (GB),
Laszlo Gozmäny (H), P. Sigbert Wagener (D)
Applications for membership, changes of address and orders for Nota lepidopte-
rologica back volumes and other literature should be sent to the treasurer. Subscriptions
should be paid to your country’s representative (see SEL-News 25) or to the treasurer:
SEL M. Sommerer, VolpinistraBe 72, D-80637 Miinchen, Germany
Postgiroamt Köln Nr. 1956 50-507
In Deutschland Einzahlungen/ Überweisungen auch auf das Bankkonto der SEL
bei Bayerische Vereinsbank (BLZ 700 202 70) Nr. 2692511 (German residents only).
Annual subscription fees (to be paid at the beginning of each year):
Ordinary members DEM 65.—
Corporate members DEM 80.—
Admission fee DEM 5.—
Overseas and mail charges DEM 15.
Non-members and institutions may order Nota lepidopterologica through our agent:
Apollo Books Aps., Kirkeby Sand 19, DK-5771 Stenstrup, Denmark.
News. All items for SEZ-News should be sent to Willy De Prins, Diksmuidelaan 176,
B-2600 Antwerpen, Belgium (e-mail: willy.deprins@village.uunet.be).
For all other matters contact Dr. Christoph L. Häuser, SEL General Secretary,
Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart,
Germany (e-mail: 11327.3422@compuserve. com).
Copyright © Societas Europaea Lepidopterologica, 1999
Printed by Imprimerie Universa Sprl, 24 Hoenderstraat, B-9230 Wetteren, Belgium
All rights reserved. No part of this journal may be reproduced or transmitted in any form or
by no means, electronic or mechanical including photocopying, recording or any other information
storage and retrieval system, without written permission from the publisher. Authors are
responsible for the contents of their papers.
NOTA LEPIDOPTEROLOGICA
A journal of the Societas Europaea Lepidopterologica
Published by Societas Europaea Lepidopterologica
Vol. 22 No. 1 Basel, 01.11.1999 ISSN 0342-7536
Editorial Board
Editor: Alain Olivier, Lt. Lippenslaan 43, bus 14, B-2140 Antwerpen (B)
Assistant Editors: Dr. Roger L. H. Dennis (Wilmslow, GB),
Prof. Dr. Konrad Fiedler (Bayreuth, D), Dr. Enrique Garcia-Barros (Madrid, E),
Ole Karsholt (Kobenhavn, DK), Dr. Yuri P. Nekrutenko (Kiev, UA),
Dr. Erik J. van Nieukerken (Leiden, NL), Dr. Alexander Pelzer (Wennigsen, D)
Contents @ Inhalt e Sommaire
GAEDIKE, R. & HENDERICKX, H. A new species of Eudarcia subgenus
Abchagleris and description of the hitherto unknown female of E. (A.)
TLE SECS) ER I TR RE
HERRMANN, R. & WEIDLICH, M. Psychidenbeobachtungen in West-
rumänien — Teil 2. Beschreibung von Siederia transsilvanica sp. n.
CIO SLEDS te EEE
MARTTILA, O., SAARINEN, K. & JANTUNEN, J. The national butterfly
recording scheme in Finland: first seven-year period 1991-1997 |
Rosinson, G. S. HOSTS: a database of the host Dre of the world’s
Lepidoptera ne
TENNENT, W. J. À commercial interest in systematics, or a systematic
interest in commerce? The Moroccan butterfly names of M. R. Tarrier.
Dosa, G. Flower visitation patterns of butterflies and burnet moths
CIC RER ASE (Hiunpary).................................. |
ADAMSKI, P. & Witkowski, Z. Wing deformation in an isolated
Carpathian population of Parnassius apollo (Papilionidae: Parnas-
DILEE Liu DOUTER
67
74
Nota lepid. 22 (1): 2-9; 01.111.1999 ISSN 0342-7536
A new species of Eudarcia subgenus A bchagleris
and description of the hitherto unknown female
of E. (A.) sutteri (Tineidae)
Reinhard GAEDIKE* & Hans HENDERICKX**
* Deutsches Entomologisches Institut, SchicklerstraBe 5, D-16225 Eberswalde,
Germany
** Hemelrijkstraat 4, B-2400 Mol, Belgium
Summary. A new Eudarcia species is described in the subgenus Abchagleris along
with the hitherto unknown female of E. (A.) sutteri Gaedike, 1997. The new available
material makes it possible to extend our knowledge on the biology of Eudarcia moths.
A study of these two species brought out some more characters of the female genitalia
to be synapomorphic for the subgenus Abchagleris.
Zusammenfassung. Es wird eine neue Eudarcia-Art in der Untergattung Abchagleris
zusammen mit dem bisher unbekannten Weibchen von E. (A.) sutteri Gaedike, 1997
beschrieben. Das Material ermöglicht es, einige Bemerkungen zur Biologie der Gattung
zu machen. Die Untersuchung der Weibchen der beiden Arten erbrachte zusätzliche
Merkmale der weiblichen Genitalien, die synapomorph für die Untergattung Abchagleris
sein können.
Resume. Une nouvelle espèce d’Eudarcia est décrite, appartenant au sous-genre
Abchagleris, ainsi que la femelle, jusqu’à présent inconnue, de E. (A.) sutteri Gaedike,
1997. Le matériel additionnel à disposition actuellement permet d’approfondir nos
connaissances sur la biologie du genre Eudarcia. L'étude de ces deux espèces a révélé
quelques caractères synapomorphiques additionels du sous-genre Abchagleris.
Key words: Lepidoptera, Tineidae, Eudarcia, Abchagleris, taxonomy, biology, new
species, Crete, Rhodes, Greece.
Shortly after a publication of some remarks on the Eudarcia
subgenus Abchagleris (Gaedike, 1997), along with an attempt to
clarify the phylogenetic relationships in this subgenus, it became
possible to put forward some additional information based on
material from the Greek islands of Crete (Kriti) and Rhodes
(Rödos) collected by the second author and G. Verkerk.
Besides of a new species and the hitherto unknown female
of another (described below), this material is of certain importance
since it also throws some further light on the biology of Eudarcia
tineid moths.
2
The holotype and 6 paratypes of the new species are deposited
in the collection of the Deutsches Entomologisches Institut,
Eberswalde, the rest of the paratypes in the collections of H.
Henderickx and G. Verkerk.
Eudarcia (A bchagleris) verkerki sp. n.
Holotype & (with case and pupal skin), Crete, Mesavia, 700 m, case: 23.11.1997, imago:
19.VI.1997, G. Verkerk & H. Henderickx leg. 15 Paratypes (all cases from the same
locality and with the same date): 4, Q (with case and pupal skin), same label data
as holotype; 2 4, 2 ®, imago: 20.V.1997; 4, 2 ©, imago: 22.V.1997; ©, imago: 26.V.1997;
Q (with case and pupal skin), imago: 20.VI.1997; & (with case and pupal skin), imago:
24.V1.1997; 3 9 (with case and pupal skin), imago: 2.VII.1997. Additionally, the cases
and pupal skins collected on 20. and 22.V.1997 are on separate labels.
Diagnosis (fig. 1). Wingspan 5-8 mm; head yellowish brown,
dark grey antennae nearly as long as the forewings, palpi of the
same coloration as head, basal segment of maxillar palpi with
a brush of long dark bristles; thorax and tegulae dark brownish-
grey; forewing of the same coloration as thorax, mixed with a
pale yellowish pattern: two broad bands, speckled with dark
scales, from costa to posterior wing margin between 1/4 and
1/2, three short strips on the costa before the apex; cilia overlaid
with dark scales; hindwings light grey.
Male genitalia (fig. 7, a-c). Tegumen without any special
structures, with broad rounded upper edge, without developed
uncus; a small thin process in the middle of the tegumen directed
downwards, two small processes from the lateral edges to the
middle; vinculum triangular with deep lateral incisions; corpus
valvae nearly cubic, with long transtilla, costal arm long, convex,
with rounded tip with many fine bristles, the lower edge of the
corpus valvae folded, the tip with two strongly sclerotized short
thorns, on the inner side of the corpus with approx. 10 long
bristles, which often break off during preparation; aedeagus long,
as long as tegumen+vinculum, curved, with a cornutus-like
sclerotization and with one cornutus (a short thorn on a broad
rounded base).
Female genitalia (fig. 7, d). Last abdominal segment strongly
sclerotized; the strongest sclerotization around the ostium; ostium
and almost entire ductus bursae with strong sclerotization; signum
is a field with many very small scale-sized rounded bristles.
Biology (figs. 3, 5, 6). All cases were found in one locality,
at the entrance and in the surroundings of a small cave, a crack
in a porous rock near Mesavia (Crete, 700 m). The larvae fed
on algae or lichens on some longitudinal markings on the wall
with greenish appearance. It appeared that a small water source
created a convenient humidity and microclimatic conditions, since
outside of the cave the rocks were dry and eroded. It is not
unlikely that such a small habitat causes a very restricted
distribution if not a relict colony. The specimens were bred on
parts of the original rock and pupated soon after picking up.
Fig. 3 shows mating of the new species under natural conditions,
fig. 5, b shows the female pupal skin, figs. 6, a-c show cases
with pupal skins.
Comparative notes. The new species differs in the size of the
valva and the tegumen from all other members of the subgenus
(glaseri (Petersen, 1967); armata (Gaedike, 1984); fasciata (Stau-
dinger, 1880); montana (Gaedike, 1984); sutteri Gaedike, 1997).
The presence of bristles on the inner side of the corpus valvae
is a synapomorphic character shared with E. sutteri. The aut-
apomorphic character for separation of the new species from
sutteri is the size of the valva and the long bristles on the inner
side of it. Furthermore the two species differ in female genitalia
characters (signum, ductus bursae sclerotization).
The new species is dedicated to Gijs Verkerk, to acknowledge
his worthwhile contribution in collecting Eudarcia, especially the
species described here, and exploring their habitats.
A description of the female of Eudarcia (Abchagleris) sutteri
Gaedike, 1997
Material examined. 29, Rhodes, Apollona, 600 m, mountain Profitis Ilias, case:
9.-11.V.1997, imago: 15.V1.1997, H. Henderickx & G. Verkerk leg.; 9, same label
data, imago: 4.VI.1997; ©, Rhodes, Siäna, 350 m, case: 10.V.1997, imago: 10.VI.1997,
H. Henderickx & G. Verkerk leg.; 9, Rhodes, Siana, 350 m, in a deep cleft, case:
10.V.1997, imago: 10.VI.1997, H. Henderickx & G. Verkerk leg.
An examination of three female specimens (figs. 2, 4) of
Eudarcia from Rodos, suggested them to belong to E. (A.) sutteri
Gaedike, 1997, a species described on a series of males only.
Recently obtained material makes it possible to describe the
female genitalia of this species (fig. 7, e): last abdominal segment
4
Fig. 1. E. verkerki sp. n. (Crete, Mesavia, case: 23.11.1997, imago: 19.V1.1997).
Fig. 2. E. sutteri (Rhodes, Apöllona, case 9.-11.V.1997, imago 15.V1.1997).
Fig. 3. E. verkerki sp. n., mating (Crete, Mesavia, 20.V.1997).
Fig. 4. E. sutteri (Rhodes, Apöllona, 4.VI.1997).
strongly sclerotized, ostium with a strongly sclerotized broad ring,
which continues as a triangle-shaped sclerotization area in the
ductus bursae; signum formed by about 6-8 rows of small
sclerotized thorns.
Gis Verkerk and the second author collected the larvae of
this species on shaded humid rocks with mosses and lichens. The
localities were situated at an elevation of between 300 and 600 m
in a humid pine wood. The species was particularly abundant
on the mountain Profitis Ilias near Apöllona, where most
specimens were collected in a humid forest with a small river
(figs. 5, b, 6, d, e).
pipi
case 9 -11.V.1997,
23.111.1997, imago
, Apöllona
ia
(Rhodes
Mesav
2
Fig. 5. Eudarcia, pupal skin a — E. sutteri 9
imago
.
.
, case:
r
b — E. verkerki sp. n. ®, (Crete,
5
1997)
15.VI
20.V1.1997).
2 mm
Fig. 6. Eudarcia, cases and pupal skin: a — E. verkerki sp. n. &@, (Crete, Mesavia,
case: 23.111.1997, imago: 20.VI.1997); b — E. verkerki sp. n., (Crete, Mesavia, case:
23.111.1997, imago: 20.VI.1997); c — E. verkerki sp. n. Q, (Crete, Mesavia, case:
23.111.1997, imago: 20.VI.1997); d — E. sutteri ® (Rhodes, Siana, case: 10.V.1997,
imago: 10.VI.1997); e — E. sutteri Q (Rhodes, Apöllona, case: 9 -11.V.1997, imago:
15. VI.1997) (a-c — cases with pupal skin, d, e — pupal skin).
Fig. 7. Eudarcia, genitalia: a-c — E. verkerki sp. n., male genitalia: a — valva, b —
uncus + tegumen + vinculum, c — aedeagus (Crete, Mesavia, imago: 20.VI.1997);
d — E. verkerki sp. n., female genitalia (Crete, Mesavia, imago: 22.VI.1997); e —
E. sutteri, female genitalia (Rhodes, Apollona, imago: 4. VII.1997).
8
Up to now, the females of three Abchagleris species were
known. An examination of two out of the forementioned 5 female
specimens makes it somewhat more confident to establish phy-
logenetically founded characters in the female genitalia for this
subgenus. It seems that the stronger sclerotization of the last
abdominal segment and the signum shape represent synapomor-
phic characters.
The illustrations on figs. 1-6 were made by the second author,
the drawings (fig. 7) by the first author.
Reference
GAEDIKE, R. 1997. Beitrag zur Kenntnis der paläarktischen Tineidae: Gattung
Eudarcia Clemens, 1860. (Lepidoptera). — Reichenbachia 32(17): 99-103,
13 Abb.
Nota lepid. 22 (1): 10-16; 01.111.1999 ISSN 0342-7536
Psychidenbeobachtungen in Westrumänien —
Teil 2. Beschreibung von Siederia transsilvanica
sp. n. (Psychidae)
Rene HERRMANN* & Michael WEIDLICH**
* Kapellenweg 38, D-79100 Freiburg 1. Br., Deutschland
** Tindenstr. 11, D-15898 Ratzdorf, Deutschland
Summary. During the spring of 1986, a new species of Psychidae was discovered in
the Romanian southern Carpathians that, based on a series of characteristic features,
was placed in the genus Siederia Meier, 1957. Siederia transsilvanica sp. n. is easily
distinguishable from the other congeneric species by its wingspan and markings, the
relatively low genitalic index and the small size of the case. From the species of the
closely related genus Dahlica Enderlein, 1912 it is distinguished mainly by the presence
of an epiphysis on the foretibia of the male. The new species occurs in shadow-rich
rocky places, with abundant growth of algae, lichens and mosses, the foodstuffs of
the larvae.
Zusammenfassung. Im Frühjahr 1986 wurde in den rumänischen Südkarpaten eine
neue Psychidenart entdeckt, die aufgrund einer Reihe gattungstypischer Merkmale dem
Genus Siederia Meier, 1957 zugeordnet wurde. Siederia transsilvanica sp. n. läßt sich
hinsichtlich ihrer Fliigelspannweite und Zeichnung, dem relativ niedrigen Genitalindex
sowie der Kleinheit der Säcke leicht von den anderen Arten der Gattung trennen.
Von den Arten der naheverwandten Gattung Dahlica Enderlein, 1912 unterscheidet
sie sich in der Hauptsache durch das Vorhandensein einer Epiphyse an den Vordertibien
der Männchen. Die neue Art besiedelt schattig gelegene Felsen, an denen reichlich
Algen, Flechten und Moose, die Nahrungsquellen der Raupen, vorkommen.
Résumé. Au printemps de 1986, une nouvelle espèce de Psychidae fût découverte en
Roumanie, dans les Carpathes méridionales qui, sur base d’une série de caractéres
typiques, a été placée dans le genre Siederia Meier, 1957. Siederia transsilvanica sp.
n. se distingue aisément des autres espèces du genre par son envergure et ses dessins,
l’indice genitalique relativement bas et le fourreau de petite taille. Des espèces du
genre apparenté Dahlica Enderlein, 1912, il se distingue principalement par la présence
d’une epiphyse sur les tibias antérieurs du mâle. La nouvelle espèce se rencontre dans
des endroits rocheux ombragés, riches en algues, lichens et mousses, qui constituent
la nourriture des chenilles.
Key words: Lepidoptera, Psychidae, Siederia, new species, Transsylvania, Romania.
10
Einleitung
Wahrend der gemeinsamen naturkundlichen Expedition zwi-
schen dem 30.4. und 9.5.1986 haben die Autoren die Psychiden-
fauna Westrumäniens studiert und die Ergebnisse publiziert
(Herrmann & Weidlich, 1990). Damals wurde im Zuge dieser
faunistischen Tätigkeiten in den Karpaten eine große Anzahl
frisch angesponnener Säcke einer Psychidenart entdeckt, die
keiner der bisher aus Rumänien bekannten Taxa zugeordnet
werden konnte.
Neuere eingehende taxonomische Untersuchungen bekräftigten
die im Fundjahr gefaßte Vermutung, daß es sich hierbei um eine
bisher unentdeckt gebliebene Psychidenart handelt, die sich
hinsichtlich einer Reihe signifikanter, gattungstypischer Merkmale,
wie etwa dem Vorhandensein einer Epiphyse am Vorderbein der
Männchen und den breiten Deckschuppen, am besten in den
Genus Siederia Meier, 1953 eingliedern läßt.
Fundplätze und Biotope
Die neue Art wurde zuerst in der Jiul-Felsschlucht (Südkar-
paten) auf einer Distanz von etwa 10km Länge zwischen
Petrosanı und Lainici, an sieben engbegrenzten, um 700 m NN
hochgelegenen und collin bis submontan geprägten Lokalitäten,
in Teilpopulationen nachgewiesen.
Ein weiteres Vorkommen liegt im Bereich von ca. 8 bis 13 km
östlich von Petrosani, wo diese Psychidenart in einer engen
Kalkschlucht in ca. 600 bis 800 m NN Höhe entdeckt werden
konnte.
Mit zum Teil bis zu hundert frisch angesponnenen Säcken trat
sie an den meisten Fundstellen in erstaunlich hohen Abundanzen
auf. Die Larven siedeln auf offenen, schütter bewachsenen Felsen
(metamorphe Gesteine, meist Gneise), wurden aber auch an freien
calzitischen Felsbildungen festgestellt. Sämtliche Lebensräume
befinden sich in der mit Laubgehölzen reichen Bergwaldstufe, wo
Buchen, Hainbuchen, Erlen, Ahorn und Birken dominieren
(Abb. 1).
u
Siederia transsilvanica sp. n.
Holotypus 4, Rumänien, Südkarpaten, Umg. Petrosani, Jiul-Tal, 700m NN.
16.-29.5.1986, e. p. leg. R. Herrmann. Allotypus ®, Fundort wie oben. Beide Typen
befinden sich im Staatlichen Museum für Naturkunde in Karlsruhe (Deutschland).
Paratypen. 137 &: Rumänien, Südkarpaten, Umg. Petrosani, Jiul-Tal, 700 m NN.
16.-29.5.1986, e. p. leg. R. Herrmann. 138 4, Fundort wie oben, 15.-25.5.1986, e.
l. leg. M. Weidlich. 3&, Rumänien, Südkarpaten, 13 km E Petrosani, 800 m NN.
14.-18.5.1986, e. p. leg. R. Herrmann. 27 9, Rumänien, Südkarpaten, Umg. Petrosani,
Jiul-Tal, 700 m NN. 16.-29.5.1986, e. p. leg. R. Herrmann. 20 ©, Fundort wie oben,
08.-23.5.1986, e. p. leg. M. Weidlich. 179 Säcke, Rumänien, Südkarpaten, Umg.
Petrosani, Jiul-Tal, 700 m NN. 06.-07.5.1986, leg. R. Herrmann. 246 Säcke, Fundort
wie oben, 06.-07.5.1986, leg. M. Weidlich.
Beschreibung
Männchen (Abb. 2). Stirnhaare weißlichgelb, Fühler mit 26
bis 32 Gliedern (einschließlich Scapus und Pedicellus) und sehr
langer Bewimperung, die oftmals die Länge eines Geiselgliedes
übertrifft. Augen schwarz kreisrund, Nebenaugen fehlen, die
meist dreigliederigen Labialpalpen gattungstypisch sehr lang und
etwa dem Augendurchmesser entsprechend.
Vorderflügel schmal, nach außen kaum erweitert, mit zugespitz-
tem Apex (gut sichtbar nur bei entschupptem Flügel) und
ziemlich geradem Vorderrand.
Flügelspannweite bei 20 untersuchten Tieren 7-11 mm, im
Mittel 9 mm.
Die Zeichnung bei den Tieren aus dem Jiul-Tal sehr kontrast-
reich, mit kleineren und größeren weißlichgelben Flecken, die bei
den meisten Exemplaren scharf umgrenzt angelegt sind. Mit
deutlich reduzierter Schwarzfärbung hingegen die blassgrau ge-
färbten Tiere der Kalkschlucht, die insbesondere durch ein starkes
Zusammenfließen der hellen Flecken gekennzeichnet sind. Meist
ist ein Innenrandfleck gut ausgeprägt vorhanden, seltener dagegen
ein Diskoidalfleck.
Im apikalen Teil des Vorderflügels meist 4-6 zackige Deck-
schuppen der Schuppenklasse V—VI (nach Sauter, 1956).
Aus der Mittelzelle entspringen 9 Adern, wobei m, und m;
meist getrennt verlaufen (20 Flügel untersucht). Nur dreimal
entsprangen sie aus einem Punkt. Symmetrische Geäderstrukturen
zeigten sich bei 7 Flügelpaaren. Dreimal wurden auch Unter-
schiede im rechten und linken Flügel festgestellt. So verliefen m,
12
Abb. 1. Felsige waldreiche Steil-
hänge, wie hier in der Jiul-Fels-
schlucht südlich von Petrosani,
bilden den Lebensraum der neuen
Psychidenart.
Foto: R. Herrmann.
Abb. 2. Männchen von Siederia transsilvanica sp. n. Durch die markante Fleckung
im Vorderflügel und geringe Fliigelspannweite kann es leicht von den anderen Arten
des Genus unterschieden werden. Foto: R. Herrmann.
13
und m; getrennt bzw. kamen aus einem Punkt. 12 von 20
untersuchten Flügeln hatten eine deutlich erkennbare Anhangzelle
(AZ). Nur fünfmal konnte dagegen eine Eingeschobene Zelle (EZ)
registriert werden.
Hinterflügel sehr schmal, mit spitzem Apex und einheitlich-
grauer Färbung. 6 Adern entspringen aus der Mittelzelle, wobei
sie sich bei den 20 kontrollierten Flügeln m, und m; elfmal
kurzgestielt und nur einmal langgestielt zeigten. In acht Fällen
entsprangen diese Adern aus einem Punkt. Auch hier m, und
m; bei einigen Faltern im rechten und linken Flügel mit
unterschiedlichem Verlauf. Eine Eingeschobene Zelle oft vorhan-
den! Nur drei der überprüften 20 Flügel hatten keine, stets fehlte
indes die Anhangszelle.
Vordertibien mit kleiner Epiphyse, Mitteltibien mit einem,
Hintertibien mit zwei Spornpaaren.
Die Genitalstrukturen sind gattungstypisch. Der Genitalindex
liegt bei der neuen Art mit Werten zwischen 0,89-1,15 (n = 16)
und einem Mittel von 1,02 der Genitalindex (ermittelt nach
Sauter, 1956) den Angaben von S. meierella (Sieder, 1956) am
nächsten. Alle anderen Vertreter der europäischen Arten der
Gattung verzeichnen höhere Werte. Messungen an drei präpa-
rierten Valven ergaben dazu noch einen Indexwert von 3,444 im
Mittel.
Weibchen. Das frischgeschlüpfte flügellose Tier ist hellgrün
bis ockergelb gefärbt, hat einen dunkelbraunen chitinisierten Kopf
und schwarze Augen. Dunkelbraun sind auch die ersten vier
Rückenplatten, heller hingegen die restlichen Tergite und Sternite.
Die schmalen keilförmigen Bauchplatten oft nur gering getrennt
oder sich sogar in den Spitzen berührend. Das 7. Sternit dagegen
geschlossen und dicht mit cremeweißen Afterwollhaaren über-
zogen.
Die Fühler mit 13-17 Gliedern, lang und ziemlich frei von
Fusionen. Sämtliche Beine mit viergliederigen Tarsen, wobei es
an den Vordertibien keine, an den Mittel- und Hintertibien
einzelne oder paarig angelegte Endsporne von unterschiedlicher
Größe geben kann. Mehrmals fehlten diese Sporne auch voll-
ständig.
Das weibliche Genital mit gattungstypischen Strukturen und
ohne große Unterschiede zu den verwandten Arten. Die Kopf-
14
Brustplatte mit kurzen Fühlerscheiden. Diese lagen bei 19 über-
prüften Stücken siebenmal knapp unter und viermal leicht über
dem distalen Ende der ersten Beinscheiden. Sechsmal hatten sie
die gleiche Lange wie die Beinscheiden. Außergewöhnlich lange
Fühlerscheiden, vergleichbar etwa denen von Dahlica nickerli
(Heinemann, 1870) und D. ticinensis (Hättenschwiler, 1977),
fanden sich dagegen nur bei zwei Exemplaren.
Larven. Die erwachsene Larve ist gelblich. Der Kopf und
die ersten beiden Rückenpartien schwarzbraun. Die restlichen
Körpersegmente sind beim lebenden Tier graubraun gefärbt.
Säcke. Der meist grau gefärbte Sack ist mit 5,5-6,0 mm recht
kurz, ausgeprägt dreikantig, kaum erweitert zur Mitte und
deutlich verjüngt bis zu den Enden hin. Er ist mit winzigen
Gesteinpartikeln bekleidet und insbesondere an den Kanten
oftmals mit feinen grünlichgelben bis weißen Algenbestandteilen
bedeckt. So konnten an 164 adulten Säcken, von 216 kontrol-
lierten, Algenreste festgestellt werden. Nennenswerte Geschlechts-
unterschiede liegen nicht vor.
Derivatio nominis. Die Namensgebung erfolgt nach den
Transsilvanischen Alpen (Südkarpaten). Die Typenlokalitäten
befinden sich im westlichen Teil der Südkarpaten, nahe der
Industriestadt Petrosani.
Biologie und Ökologie
Mit Hauptzeiten zwischen 6 und 9 Uhr, schlüpften die Männ-
chen, unter Zuchtbedingungen, zwischen | Uhr nachts und 12
Uhr. Die Weibchen hingegen zwischen 8 und 12 Uhr sowie in
den frühen Abendstunden zwischen 17 und 20 Uhr. Die Lockak-
tivitäten der Weibchen und die Paarungzeiten fallen überwiegend
in die Mittags- und Nachmittagsstunden.
S. transsilvanica Sp. n. ist ein typischer Felsenbewohner, deren
Entwicklungshabitate schattige und nur zeitweise der Sonne
ausgesetzte Stellen mit überwiegend feuchtkühlem Mikroklima
sind. Selbst reine Nordseiten werden genutzt, sofern auch hier
noch ausreichend Algen, Flechten und Moose als Nahrungsres-
sourcen den Larven zur Verfügung stehen.
Extremstandorte dieser Ausprägung sınd artenarm und können
von einigen Ubiquisten wie Zaleporia tubulosa (Retzius, 1783)
einmal abgesehen, nur von hoch spezialisierten bzw. stenöken
15
Arten besiedelt werden. Hierzu wäre neben S. transsilvanica sp.
n. noch Dahlica cf. wagneri (Gozmäny, 1952) zu nennen, welche
im Jıul-Tal syntop vorkommen.
Diskussion
Gegenüber den anderen europäischen Vertretern des Genus
Siederia läßt sich die neue Art verhältnismäßig einfach abgrenzen.
So ist sie mit einer Flügelspannweite von 7-12 mm auffallend
kleiner als S. alpicolella (Rebel, 1919) (11,5-14 mm), S. pineti
(Zeller, 1852) (13-15 mm), S. meierella (Sieder, 1956) (13-15 mm)
und S. rupicolella (Sauter, 1954) (14-15 mm).
Auch durch ihre an Kontrasten reiche Vorderflügel-Fleckung,
wie sie in dieser Ausprägung von keiner der nahestehenden Arten
erreicht wird, ist S. transsilvanica sp. n. schon auf den ersten
Blick von diesen Arten verschieden.
Die langen, meist dreigliederigen Labialpalpen der Männchen,
der tiefe Genitalindex sowie die kleinen, stark dreikantigen Säcke
der neuen Art, bilden eine Reihe weiterer Merkmale, die Art-
verschiedenheit verdeutlichen.
Zum Vergleich seien die Genitalindizes der europäischen Sie-
deria-Arten dargestellt (nach Sauter, 1956; ergänzt durch eigene
Angaben):
alpicolella Rebel 1,33-1,48
pineti Zeller 1.191,42
meierella Sieder 1,13 (nur ein Wert bekannt)
rupicolella Sauter 1,22-1,37
transsilvanica Sp. n. 0,89-1,15.
Literatur
HATTENSCHWILER, P., 1977. Neue Merkmale als Bestimmungshilfe bei Psy-
chiden und Beschreibung von drei neuen Solenobia Dup. Arten. —
Mitt.ent. Ges. Basel 27(2): 33-60.
HERRMANN, R. & WEIDLICH, M., 1990. Psychidenbeobachtungen in West-
rumänien — Teil 1 (Lepidoptera, Psychidae). — Nota lepid. 13(1): 12-27.
Meier, H., 1957. Ein neues Subgenus und neue Arten aus der Gattung
Solenobia Dup. (Lep., Psychidae). — NachrBl.bayer. Ent. 6: 55-61.
SAUTER, W., 1956. Morphologie und Systematik der schweizerischen Sole-
nobia-Arten (Lep. Psychidae). — Revue suisse Zool. 63(3): 451-550.
SAUTER, W. & HATTENSCHWILER, P., 1991. Zum System der palaearktischen
Psychiden (Lep. Psychidae) 1. Teil: Liste der palaearktischen Arten. —
Nota lepid. 14(1): 69-89.
SIEDER, L., 1956. Vierte Vorarbeit über die Gattung Solenobia Z. (Lepidopt.,
Psychidae — Talaeporiinae). — Z. wien.ent.Ges. 41: 192-204, 218-225.
16
Nota lepid. 22 (1): 17-34; 01.11.1999 ISSN 0342-7536
The national butterfly recording scheme in
Finland: first seven-year period 1991-1997
Olli MARTTILA, Kimmo SAARINEN & Juha JANTUNEN
South Karelia Allergy and Environment Institute, FIN-55330 Tiuruniemi,
Finland e-mail: all.env@inst.inet.fi
Summary. The National Butterfly Recording Scheme in Finland (NAFI) conducted
by the South Karelia Allergy and Environment Institute and the Lepidopterological
Society of Finland, makes available, for the first time, quantitative information on
the butterfly fauna for the whole country. The data, based on the Finnish uniform
27°E grid (10-km squares), numbers of individuals and numbers of observation days,
are collected using a uniform questionnaire. During the first seven-year period
(1991-1997) a total of 306 voluntary amateur and professional lepidopterists have
participated in the scheme, providing data on 889,917 individuals representing all the
Finnish resident species (95) and 8 non-resident species. Broadly speaking, the results
are in line with earlier knowledge about Finnish butterflies, but not a single threatened
or declining species has become more abundant or more widely distributed than was
previously assessed. Parallel with this, there were decreases in annual frequencies (see
methods) in 8 species, while only one exhibited of increase. As a prospective follow-
up study, NAFI provides much needed quantitative on-line knowledge of possible
changes in the distribution and abundance of butterflies for attempts to protect the
Finnish butterfly fauna.
Zusammenfassung. Das Nationale Tagfalter-Uberwachungs-Programm von Finnland
(NAFI), gemeinschaftlich durchgeführt vom Südkarelischen Institut für Allergien und
Umwelt und der Finnischen Lepidopterologischen Gesellschaft, liefert erstmalig quan-
titative Informationen zur Tagfalterfauna des ganzen Landes. Die Daten (Anzahl
beobachteter Individuen bzw. Anzahl von Nachweisen pro Tag) werden auf der
Kartierungsgrundlage des einheitlichen Finnischen Quadrantensystems (in 10-km2-
Feldern) gesammelt. Während der ersten Siebenjahresperiode (1991-1997) haben 306
Lepidopterologen (Amateure und Berufsentomologen) insgesamt Daten zu 889,917
beobachteten Individuen geliefert, die alle 95 in Finnland heimischen sowie 8 nicht
dauerhaft residente Arten repräsentieren. Insgesamt bestätigt dieser Datensatz bisherige
Einschätzungen zur finnischen Tagfalterfauna. Keine einzige gefährdete oder bestands-
rückläufige Art stellte sich demnach als häufiger oder weiter verbreitet heraus als zuvor
angenommen. Acht weitere Arten scheinen in ihrer jährlichen Häufigkeit rückläufig
zu sein (siehe “Methoden”), während nur bei einer Art Hinweise auf positive
Bestandsentwicklung auftraten. NAFI stellt dringend benötigte quantitative Informa-
tionen in Zukunft auch on-line zur Verfügung, um mögliche Änderungen in der
Verbreitung und Häufigkeit der finnischen Tagfalterfauna überwachen und Maßnahmen
zum Schutz einleiten zu können.
17
Resume. Le Programme National d’Inventarisation des Papillons Diurnes de Finlande
(NAFI), conduit par l’Institut d’Allergie et de l’Environement de Carélie du Sud et
la Société Lépidoptérologique de Finlande, rend disponible, pour la première fois,
de l’information quantitative sur la faune des papillons diurnes du pays entier. Les
données, basées sur le système de coordonnées 27°E finlandais uniformisé (carroyage
10 x 10 km), les nombres d’individus et les nombres de jours d’observation, sont
assemblées au moyen d’un questionnaire uniforme. Durant la premiére période de
sept ans (1991-1997), au total 306 lépidoptéristes volontaires, amateurs et professionnels,
ont participé a l’inventarisation, fournissant des données sur quelques 889,917
spécimens représentant toutes les espèces autochtones (95) et 8 espèces non-résidentes.
En règle générale, les résultats s’inscrivent dans la lignée de nos connaissances
antérieures sur les papillons diurnes de Finlande, mais aucune espèce menacée ou
en régression est devenue plus commune ou plus répandue qu’il n’était précédemment
établi. Parallèlement à cela, il y eût une décroissance en fréquences annuelles (voir
méthodes) chez 8 espèces, alors que seulement une seule espèce montrait un
acroissement. En tant qu’étude prospective à poursuivre, NAFI fournit des données
quantitatives actualisées sur des changements possibles affectant la distribution et
l'abondance de papillons diurnes, d’une grande nécessité dans le cadre d’efforts de
protection de la faune des papillons diurnes de Finlande.
Key words: Lepidoptera, butterflies, fauna, monitoring, Finland.
Introduction
There are 114 butterfly species found in Finland. The fauna
comprises 95 resident species, 14 of which live in Lapland in
northernmost Finland (Marttila et al., 1991).
Over the last few decades the decline of butterflies has been
a general phenomenon in the country. One species has become
extinct, four are endangered and six are considered vulnerable.
Furthermore, there are 15 declining, insufficiently known and rare
species in need of monitoring, making a total of 26 threatened
butterfly species in Finland (Rassi et al., 1992, Somerma, 1997).
In addition, Marttila et al. (1991) evaluated that the status of
another 15 species has been adversely affected during the last
20 years. Altogether, this makes 41 species that are declining,
amounting to 43% of all the indigenous butterflies in Finland.
At the same time only 8 species (8%) have become more
abundant.
Decline of butterflies is mainly caused by changes in agricultural
practices, the loss of meadows through the cessation of hay
cutting and cattle grazing, indirect nitrogen fertilization of
meadows by air pollution, heavy use of pesticides, herbicides and
18
fertilizers, a strong decline in natural pastures, the centralization
of production, and depopulation of the countryside. The other
main reason for the decline is changes in forestry, especially the
drainage of peatlands and reforestation of open habitats (Marttila
et al., 1991, Rassi et al., 1992, Väisänen, 1992, Somerma, 1997).
In spite of the alarming trends in the butterfly fauna of Finland,
no permanent or large-scale follow-ups, based on quantitative
data, have been carried out in the country. On the whole, there
are only a few European countries where national monitoring
of butterflies has been established. In Great Britain (Pollard er
al., 1986, Pollard & Yates, 1993) and The Netherlands (van Swaay
et al., 1997, van Strien et al., 1997), the schemes are carried out
using a network of transect counts. In Denmark, the monitoring
scheme is based on observations by volunteers with transect
counts and free observations (Stoltze, 1996), but today the scheme
is continuing on a much smaller scale than previously (Peder
Skou, pers. comm.).
In Finland, knowledge of population changes in butterflies has
mostly been based on long-term collecting in the same locality,
combined with thorough records, and surveys with queries and
literature reviews. As a consequence, changes in the occurrence
and abundance of butterflies, especially of common and non-
threatened species, have been poorly known. The need for
continuous countrywide butterfly monitoring has been obvious.
The South Karelia Allergy and Environment Institute and the
Lepidopterological Society of Finland in 1991 organised a
countrywide follow-up study, the National Butterfly Recording
Scheme in Finland (NAFI), which is intended to create quan-
titative on-line knowledge for the attempts to monitor changes
in the distribution and abundance of butterflies in Finland. We
report here the methods and some results of the scheme
application.
Methods
The monitoring scheme is directed to all voluntary amateur
and professional lepidopterists and also naturalists interested in
butterflies. All participants recorded their yearly observations on
the form designed for the scheme. The data on each form includes
the year, the Finnish uniform 27° E grid (10 km square), the
19
number of counted or estimated individuals of species observed,
and the number of counted or estimated observation days. No
advice on the use of zero, i.e. negative observation of species,
is given. The recorder’s name and address are also requested for
correspondence purposes.
Forms are distributed by the Lepidopterological Society and
South Karelia Allergy and Environment Institute. New forms
and a franked, addressed envelope are mailed every April to the
most active and other potential participants. Participants who
are not members of the Society have also received a reprint of
the previous year’s survey results. Forms returned before the end
of November have been included in the annual survey published
in the Bulletin of the Lepidopterological Society (Baptria) (Mart-
tila, 1992, 1993, 1994, Marttila & Saarinen, 1995, 1996a, 1997,
Saarinen & Marttila, 1998). Forms mailed after the deadline were
not ignored but retained for comparison in the next season’s
survey.
The forms are transformed and fed into a computer program
designed for NAFI. The main tools of the program, which are
needed on every form, are the 10 km square, the individual
number of species observed, and the number of observation days.
The data on each form is checked carefully. If necessary,
questionable observations are verified by contacting the observer.
Several checks have been made yearly, and assistance has also
been given with filling in the form. Finally the computer data
are read carefully and verified by a random selection of 5-10%
of the new files. The data are collected and stored at the South
Karelia Allergy and Environment Institute.
The program prints out the processed numerical data on each
species as distribution maps. There are three kinds of maps. All
of these show the result in terms of the 10 km squares: (1) The
accumulative map of species shows the accumulative data for
all years, (2) The average map shows the accumulative data as
averages of certain years, and (3) The relative map shows the
number of individuals related to observation days: [(2n)/d, where
n is the number of individuals observed in any of 10 km square
on any day and d is the number of days], being either
accumulative or the average of certain years.
In many cases this map reveals the regional differences in
abundance better than the total numbers of individuals.
20
780
770+
I I I
© èee
eee
e eae
e ce
ee»
oo » fee oe ecce
ecco \ @ © ce 000.0.
e © ee o.... ee @
e © ee e e ee
ryy) ry) eee ee ec»
e eee e006e0e
eco eo eo ee cecee
ee ee ceesee
e e eee e @ 000c6
ee e eee Cee 0o....
o...... e @ © 20000 oo...
eee ee © e © eee ee ee
o...u. ee e ee oe. eee se © ce
eee e000 00e © © ee 1000...
ce ee ee e ee oo oe e
c0ee © ee oo. e eee
oe... @ e e ee ecceee ©
© 02000008 © 00e
e ee @ 00e e000 e400
ee e ee 0.0.
œ ce e
ee ® rYy) e e\.
e © ee e@ + ee ee ee © eee
e e © ee eee ee © eee
® o e e e e e © © ee
© e e © ee oo eee
e ee © ce ee eee © ee
e e ee ee [MIT
e ee e eee © ee © oo ee
e ce 000 082 © 00000000
e @ ee ce 0000000 © 20000
; 2000000 0008 00 © 0000
6 ee e ce ececcee eee © e
\, e@ eee ee co, 2000000000 cece cose
‘ee ee © e eee ccece ee ©
e © ee + e a.
@ ce eee cee eee + ee
\® e e eee © eee e eee
eo ® © so..... e000 ee ee
Pr dk he ee
ce © ce © cocece ee (
oo..... e © © © eee 000000 ce
.,,2° ,° 2 02022220 „os
© e ee e ee gee ed
ee wile ée ut he
ee
e
ee ee
ee
ceee
"tiiti
“0.
se
e
| Bt ee) eS ee ee ee ee ee ee eee oO
oO oO oO oO oO
N oO [ep] CO ™
N N (de) (de) (de)
80
21
70
60
50
40
20 30
10
Fig. 1. The network of the National Butterfly Recording Scheme in Finland over
the first seven-year period (1991-1997). The total number of positive 10 km squares
(Finnish uniform 27° E grid) was 891.
780
Pieris nap! (L.) oh ce
770 pe >,
760 0°
750 Ce OS :
3 @
@ 1000- i. &
@ 100-999 8.
ia @ 10-99 A ER:
e 1-9 e se:
730 0 P aies -
720
710+
700!
690
680
670
660 — te 2 fr #8 ee nn]
0 10 20 30 40 50 60 70 80
Fig. 2. The accumulative map of Pieris napi based on data from the first seven-year
period (1991-1997). The species was the most numerous in the recording scheme during
the period. The total number of individuals in each positive 10 km square is illustrated
using proportionally-sized symbols.
29
The annual variation in the numbers of participants and
observation days leads to the dilemma that a direct comparison
of individual numbers of species between years is not really valid.
To avoid this problem we have calculated annual frequencies for
each species by dividing the positive 10 km squares (at least one
individual observed) by the total number of squares in each year.
For example, if the species is present in 250 squares and the
total number of squares is 500, the frequency is 50%. To
distinguish any trend in annual frequencies of the species during
the seven-year period we used the linear regression (e.g. Sokal
& Rohlf, 1981). |
Some results
Altogether 306 persons have taken part in the scheme between
1991 and 1997. The seven-year data consists of 103 species and
almost 890,000 butterfly individuals (Table 1 and 2). Fig. 1 depicts
the NAFI network. In Figs. 2-4 there are examples of both
accumulative and relative maps of certain species.
The proportion of the five most abundant species, Pieris napi
(75,636 individuals), Gonepteryx rhamni (59,497), Callophrys
rubi (56,506), Aglais urticae (55,467) and Aphantopus hyperantus
(54,783), amounted to more than one third (34%) of all individuals.
The most abundant migrant was Vanessa atalanta (7,986), and
the most substantial migration events during the period were
observed with V. atalanta (6,028) and Vanessa cardui (3,426) in
1994 and 1996, respectively (Table 2).
The year 1995 was the most favourable for butterflies. The
total numbers of individuals on one average observation day for
the whole country were as follows: 16 (1991), 28 (1992), 26 (1993),
26 (1994), 47 (1995), 28 (1996) and 23 (1997), the average of
the whole seven-year period being 28 individuals in a day.
In terms of annual frequencies during the period there were
increases in Aricia nicias (r = 0.915**) and decreases in following
8 species: Colias palaeno (r = - 0.81*), Lycaena hippothoe (r =
— 0.87*), Boloria aquilonaris (r = — 0.809*), Euphydryas maturna
(r = — 0.796*), Euphydryas aurinia (r = — 0.895**), Oeneis jutta
(r = —0.998*), Coenonympha pamphilus (r = - 0.910**) and
C. tullia (r = - 0.842*) (Table 2). Note that a periodical species
O. jutta is in flight only in even years and the records available
for the analysis were only of three years.
23
780
770
760
750
740
730
720
710
700
690
680
@ 1000-
@ 100-999
e 10-99
e 1-9
On
10 20 30 40 50 60 70 80
Fig. 3. The accumulative map of Euphydryas maturna. The map based on data from
the first seven-year period (1991-1997) is an example of a species having a restricted
distribution in the country. The total number of individuals in each positive 10 km
square is illustrated using proportionally-sized symbols.
919 8II €VL'OLI 8SI TOC OI LCI Aa) OM EN
Sa199dS
sAep uoNeAIIsgO
sorenbs Wy OI
SULIO,]
sjuedionied
‘L661 1661
poriod 1e9A-usAas Is, IY} SULINP puejurg Ul AWISU9S SUIPIOI9Y AljioyNgG [eUONeN sy JO sonstyeis oIseq Ay] 'T AIgeL
25
780
Aporia crataegi (L.)
770
760
750
@ 1000-
@ 100-999
al @ 10-99
° 1-9
730 ® ai
720
710
700
690
680 -
rh 10 20 30 40 50 60 70 80
Fig. 4. The accumulative (A) and relative map (B) of Aporia crataegi based on data
from the first seven-year period (1991-1997). The relative map shows the regional
difference in abundance better than the accumulative map. On the accumulative map
the total number of individuals in each positive 10 km square is illustrated using
26
780
Aporia crataegi (L.) LS
770 70
B 8 8 ;
760 cy
All
750 |
740 -
730 ;
720 -
710
700 -
690 |
680 1
670
660
0 10 20 30 40 50 60 70 80
proportionally-sized symbols, while on the relative map the spot shows the number
of individuals [(n)/d, where n is the number of individuals observed in any 10 km
square on any day and d is the number of days].
27
© © OO + © = OO rt
\O ON ON M) ao
ANNAN 0
(16) TES
(16) OZE
(16) 6€
(16) 799
(16) L
(16) SEE T
(16) O1Z
(16) St
0
(16) S
(76) 657
(76) ET
(C6) SSI‘L
(L6) S
(S6) LT
(S6) 29
(S6) 809°LI
(S6) 671
(t6) SSI
0
(T6) LLL'I
(v6) SP
0
(S6) ISI
(56) 9S9°IZ
(76) II
(S6) TIP
(S6) 90 TI
(56) 099°E
(96) 861°7
(96) 919
0
(96) EET
(£6) 99
(96) 695°
(96) 95
(56) SL6°91
(96) ST8
(S6) L61
0
(76) 86
(96) LIS‘I
(76) 8¢
(96) O1
S
JL
(SSLI 'snaeuur]) 2D24ND811A "7
(cost ‘Lunomex]) 40dsp "7
(SLLI Tommwasyiyas 2p stusq]) ajay “7
(19L] ‘snœuurT) svanjyd puov9dT
(QSLI 'snaeuurT) :uwubyA xd4ajdauoyH
(8SLI ‘snovuury) andy 2%
(QE8I ‘21AQF9T) 0/924 I
(SQL ‘ÂOIIMOA) 522049 “Dx
(19L[ ‘snseuur]) ouanjpod ‘7
(TEST TeAnpsIog) saispu spyoD
(L£181] ‘uqnp) po] J x
(8SLI ‘snaeuurT) 291p1Jdop puuod +
(8SLI ‘snovuury) ıdou q
(8SLI ‘Snovuur]) 20404 J x
(QSLI ‘snaeuurT) 2D21$$D1Q SU %
(QSL ‘snoeuur{) 18201019 D110dyY
(QSL] 'snaeuurT) saumuDpsDd slIDyIOYUp
(QSL ‘snaeuurg) sidpuis papiidaT
(QSL] “‘snaœeuurT) uoryoou odoq
(SLI ‘snoeuury) snıuppod sapyr1yd] x
(8SZI ‘snseuur]) o7odp 4
(SSLI ‘snaeuurT) audsowauu snisspu1dg
(ES8I ‘ÂBIO) 2 IAWI91Y) DIDUAA S2PO]YIO
(QSL] ‘Snaeuur TT) DUO) pı1odsof]
(SO8I ‘IowlayUasydIQ) Djoauy snoawdyL
(6781 ‘USSIOA) pjosapıs I
(ILLI 'seffed) Uowanjnd snj0yd290.214105
(ILLI 'sered) snaydıow Sn121d019197 %
([£O8r] ‘uqnp) snaajo J
(QSL| ‘snaeuurT) avappıu I
([segI] ıngwey) avainvjuad 4
(ESSI ‘U9ISU9IEM) 2PpawoAıpun sn84144
Sa199dS
— © mi sf Ni \0 1 00
0 €
wınuurmu wnunxeu | 9881948 [810
SIVNAIAIANI AO AHANWNN
L661-1661 (%) AONANOAYA
‘SJINS21 9WOS Pur SpOuJIN I>2pun des ‘(2,) sarsuanbai [enuue 104
(x) ASH9SE UB JIM poayıeul 918 sarads JuapIsa21I-uUoN ‘SJUSUIPUQUIR IOUIUI JWOS YUM (9661) PISMOZey 9 Noysıey JO
1SIPOSU9 9U1 SMOJJOJ 2INJPJOUSUIOU SUT, ‘/661-I661 POI Ieak-udAas 1SIIJ ayJ SULINP puejurg UI SWOU9S SUIPIOS9Y
Ajjioynng [EUONEN sy) ur SJENPIAIPUI Jo SISQUUNU sy} pue puejurg Ul PUNO} Sa}I91}Nq JO isl] SAISUSU9IduI09 BY, ‘Z SIQUL
28
+)
==
N
un
N
s+
Vea
onywnmnant owo—--o00
nom — Ton aa
n
-_
+
N oO —
NY
ET © © = Two
nn
+
1 ©
TT —
W oO
cm
OS
¢
LE
= ON
l'es
CON
nor
an
‘~~
(oa)
cn
m
N
Sr
ON)
y-oyoa-ol om
un
COm en M) en © AO = —
nn
M st OI st — 0 © OO © — + —
MANN M oO
_
N
m
(L6) 91
(€6) SZ
(16) OVI
0
0
(16) E
0
0
(16) 81
0
(16) 169
0
(16) ILL
(16) Ir
(16) ZLE
(L6) I
0
(16) LI
(16) €6
(16) 9b7Z
(16) 8b
(16) 8€€
(16) OLZ
(16) SEE
0
(16) €€
(16) EL
0
(16) TZE
(16) 907
(16) 885
0
(16) +
(£6) €
0
(16) 65
0
0
(16) 61
0
(16) €SL
0
(16) €
(16) v6
(96) ITr’E
(#6) 8Z0°9
(56) 087’ I
(v6) v1
(v6) ZI
(76) 767
(56) SZI
(16) 61
(96) 90€
(L6) PIE
(56) 697°9
($6) 9€€
(96) 607°9
(96) 60S'I
($6) TIL II
(S6) LEZ
(v6) I
(56) $99
(S6) IPL‘9
(S6) 01T'‘9
(S6) £86
(S6) €07°7Z
(66) SI ‘+
(S6) 89¢°Z
(L6) IT]
(S6) 9b
(56) ES9°T
(96) 07
(56) ILTT
(S6) 9ZI‘L
(C6) 6€€ ZI
(T6) v7
(S6) 61
($6) pr
(v6) IL
(96) r6p'S
0
(C6) 96€
(C6) 651
(96) 89
(96) ZIS‘8I
(C6) Z9I
(C6) 98
(S6) 708
(SSLI ‘snaeuurT) INPADI A »
(SSLI ‘snaeuur]) PIUD]DID DSSAUDA x
(8061 ‘TU9NS) s4vuoyinbo ‘g
(tOSI ‘SS9SUPWJOH) vavdpu ‘g
(LL81 “1png) 2go4duut “g
(16/1 ‘Ssioquny]) ssf ‘q
(Leogt] ‘ouqny) 24041 “g
(8781 TeAnpstog) 47/04 “gq
(1621 “S19quny]) viel ‘4
(p6LI “1Oplouyos) vajapYyo ‘4
(CLLI Ternuemnuos 2 stusq]) auajas ‘4
(Le6zt] ‘sodsq) vun “g
(QSL ‘snaeuurT) audsosydna 'g
(1662 1] ‘1ds4) pıuouna nu1ojog
(SLLI Zıngquopoy) ou sıyruaıg
(852 ] ‘snaeuurT]) DIuoyID] DILOSST
(TLLI 'seifed) 221P00] “Vx
(8SLI ‘snaeuurT) ago ‘py
(SLLI Lommwasyiyas 9 stuaq]) addipp ‘y
(8SLT ‘SnoeuurT) D/DJ80 “vy
(8SLI ‘snseuurg) vıydod siuudsup
(SLLI ‘Smquayoy) snıvsı 4
(T6LI ‘19prouyos) snpunup q
(SLLI Zınquayoy) snZımmuas sniwwwmodjog
(O£8T ‘USSTIA) spıaıu “y
(€6L] ‘sNDLIGE) SaX40xD110 'Y
(0811 ‘19dsq) uopawna vm11y
(86/1 ‘J9UUNIg) vopunjs J
(18/1 ‘ypouy) araıdo J
(19,1 ‘snseuurT) sopı J
(8S/] ‘snaeuur]) snsup sniagajg
(SSLI ‘snaeuurT) 4O1D vaumnaoy
(I9LI ‘epoq) Sıxajo aysdsdoanv]d
(ILLI ‘seifed) 4010 sapyunjyors
(S98] ‘2100 N) DUDAIIA Sajojiydopnasg
(QGLI ‘SnovuUry) sMjO1s1D DUIAISD]97)
(ILLI ‘seifed) Sapvisuv ‘I %
(SLLI ‘Assaon,g) snwaunu opıdny
(SLI ‘snoeuury) munud 'S
(TSLI ‘Yyoouy) ungjp-m wunudıos
(QSL ‘snaeuur]) 19714 sduydoyyp)
(8SLI ‘snaeuur]) sn24onb snadydazoan
(8SLI ‘snaeuurT) avjniag pJ>oyL
(I9LI ‘snaeuur]) aoyjoddiy “7
29
+TOmNON— eo
un
0
C
Ss
61
0
vl
cl
0
VE
6€
0
vl
= = OO —
m
V V
oon
vi
V
=
N
V
MO OMmNAN OM mi
NSS TROST
NOR tA Con =
MONMm=O = ON OS © +
L661-1661 (%) AONANOAYA
MN © DU © © © © + © © ©
SQ] DOS) >)
(16) SI
(16) 808
0
(L6) 97
(16) OLT'T
(16) 08+
0
(16) vIv
(16) S6
0
(16) L6L
(16) L6I
0
(16) 62
0
(v6) €Z
(16) Lee
(16) I
(L6) €
(76) €€
(16) 097
0
0
0
0
(16) E97
0
(16) LOI
(16) 099°1
(16) vr
UINUTUTUU wnunxeu | 9981948 [8101
SIVNAIAIANI 40 YIINNN
(96) 06€°I
(€6) 87
(L6) Lt
(€6) Ltr
0
(L6) SES
(96) EST
(v6) TOI
(v6) 107
(L6) 68°71
0
(76) 6r1
(56) 86L°7I
(C6) PS£'I
0
(S6) I68'I
(76) PEL
(6) OS
(56) L8S‘9
(96) OvE'Z
0
(96) 961'I
(96) 08
(C6) SEL
(96) TrE'r
(S6) L£6
(16) SPLI
(96) 8Ir
(96) 776
(96) 9
0
0
(56) I
(16) p9E7Z
(16) 9r1
(C6) EETE
(56) I1S°07
(56) 86S°€
(L9081] ‘uqnx) vun! ‘CO
(T6LI ‘12prRuu9S) 2109 ‘CO
(16LI ‘S19quny]) vuiou siaua—Q
(8SLI ‘snaeuurT]) ajaiuas nıyoanddıy
(8SLI “snoeuurT) 22/1D]D8 DISIDUDI2/ x
(88LI ‘ussneuyx10g) 2s04puvd "4
(1181 ‘18urpne]S) sıımjod ‘4
(16/1 “Siaquny |) osıp “7
(16/1 ‘S1aquny |) orpgwa 7
(8SLI ‘snovuur]) vasy 019247
(SLLI Zıngqwayoy) uovad] ajaydauoday x
(QSL] snaeuurT) vunAnl pjowupy
(QSLI ‘snseuur]) sryuviodiy sndojupydp
(SLI ‘snaeuury) snpydwod >
(I9L] ‘snaeuurT) 0424 Dy
(88/] ‘uasneyyIog) 10192473 I
(POLI “INA pıyynı vyduduouao
(€9L]| ‘odo9S) auiyov vsuidoT
(SSLI ‘snaeuurT) psa "7
(1821 ‘snrouqgex) vuDjyOdowjad "T
(LOLI ‘SnoeuUr]) D4982W DIDUWOISDT »
(SSLI ‘snaeuur]) 2149590 2840404
(QSL ‘snaœuurT) s241 Dinjody
(QSL] ‘snoœeuurT) yndod sınuawnT
(SLLI ‘Smquayoy) oyoYyID ‘IN
(68/1 ‘SULT) vumunıp "W
(QSL] ‘snaeuurT) PIXU12 vavıa
(SLLI ‘Smquayoy) vun 7
(8SLT ‘snseuur]) puanıpuu 7
(9[8] ‘uewpeq) punpı svdupdydnq
(SLLI TomnwazytydS»pstuaq]) ungjonoa ‘Nx
([1821] ‘19dsq) spp woyruox ‘Ny
(QSL] ‘snaeuurT) so1ojyodjod ‘Ny
(QSL] ‘snseuur]) vdonur sypyduAn
(QSL ‘SNIBUUTT) vupaa] DIUYISDAF
(QSL ‘snaeuur]) wngp-9 piuosAjog
(QSL ‘snaeuur]) 20911n sIDjspy
(QSL] ‘snaeuurT) 01 s1y2DU]
sowads
30
Discussion
The progress of NAFI mostly depends on the number of
participants. During the seven-year period a total of 306 persons
took part in the scheme. One fifth (188, 21%) of all members
of the Lepidopterological Society (altogether about 900) have
participated in NAFI for one year at least. Another 118
participants, comprising more than one third of the total (39%),
have been naturalists but not members of the Society. We suggest
that there are two main reasons for the positive progress. Firstly,
the general interest in butterflies has grown in Finland during
the 1990s, and secondly, NAFI has taken good care of the
participants. They have been supplied with regular feedback of
their work via the annual results published in the Society’s
bulletin, and most of the participants have personally received
new forms with a covering letter every spring. In addition, five-
year results (1991-1995) with accumulative maps of all 114
butterfly species have been published (Marttila & Saarinen,
1996b). Non-member participants have become acquainted with
NAFI through reprints, the media and previous participants.
Validity of methods. The data on forms and in computer files
is checked carefully as described under Methods above, but still
the most serious question is how to ensure the reliability of the
information sent in on forms. This problem is aggravated by
the fact that all the participants are not registered members of
the Lepidopterological Society. In order to minimize the risk of
incorrect data, all questionable observations, whether provided
by a member or not, have been checked by contacting the
observer. There are some details which have made the authors
dubious, such as the species being reported well outside of its
known distribution area, or a periodical species being observed
in a wrong year, or where a rare species inhabiting mires has
been reported whereas no information on more common species
living in similar environments has been given. If there still exists
some doubt as to the authenticity of the observation after it has
been followed up, it has not been computerized.
Broadly speaking, the maps based on the NAFI results are
in line with earlier maps published in the handbook of Finnish
butterflies (Marttila er al., 1991). There is no reason to suspect
that previous knowledge would not have been good enough to
31
show the essential distribution of any species living in Finland.
Some similar species (Plebeius argus/P. idas, Argynnis aglaja/
A. adippe), previously known to have different distributions, have
provided a good control. The differences between these species
have also been revealed in NAFI.
The observation network covers almost the whole country,
except that a few regions in the northern part of Finland are
poorly represented in comparison to the southern parts of the
country. The poor network in the north causes an effect that
the frequencies of ’northern’ species tend to be underestimated.
To avoid this possible bias the country could be divided into
two subareas, a southern and a northern one, after which the
frequencies of “northern” species could be assessed independently.
However, even in “northern” species the distribution areas vary
greatly from one species to another. That would cause a difficulty
how to define the position of the line with no risk of under-
estimating or overestimating certain species occurring in the area
concerned.
Something new already. The seven-year data applies to almost
890,000 butterfly individuals, representing all the Finnish resident
species (95) and 8 of a total of 19 non-resident species. The NAFI
results are largely parallel to previous knowledge of Finnish
butterflies (Marttila et al., 1991, Rassı et al., 1992, Somerma,
1997), but the data also suggest some new trends.
The NAFI results point to the possibility of changes in the
distributions of some species. When the distribution maps are
compared to corresponding ones given in the handbook of
Finnish butterflies (Marttila et al., 1991), Limenitis populi,
Apatura iris and Argynnis paphia show some expansion, while
the ranges of Lycaena helle, Glaucopsyche alexis, Issoria lathonia
and Maniola jurtina have decreased.
The trends in annual frequencies in nine species, almost all
declining, might show — we say so, though the trends during
the period were statistically significant — that the status of these
species is undergoing a change.
The results for two species are alarming in particular. Lycaena
hippothoe and Glaucopsyche alexis have had surprisingly low
individual numbers, 2,697 and 308, respectively. In addition, there
has been a significant fall-off in the annual frequencies of L.
32
hippothoe, while the range of G. alexis has strongly decreased
in comparison to the distribution map given in the book of
Finnish butterflies (Marttila er al., 1991). The book classifies these
species as fairly common and scarce, respectively, whereas the
recent book on Finnish threatened Lepidoptera does not mention
the species at all (Somerma, 1997).
The seven-year period of NAFI is not long enough to provide
extensive conclusions about changes in the status of butterflies.
Some changes observed during the period might form a part
of natural long-term fluctuation, but some of them might also
be cautionary, indicating an actual decline in adversely affected
species. Most importantly, the scheme reveals the downward
trend of these species earlier than could be detected previously.
Thus, conservation projects, if needed, can also be launched
earlier than before.
Acknowledgements
We wish to thank all those lepidopterists taking part in the
scheme. We are grateful to Dr. Tapani Lahti for creating the
computer program and to our secretary Seija Pohjalainen for
helping with the computer work.
References
KARSHOLT, O. & Razowskı, J. (eds.), 1996. The Lepidoptera of Europe.
A distributional checklist. — Apollo Books, Stenstrup. 380 p.
MARTTILA, O., 1992. Päiväperhosseurannan vuoden 1991 tulokset. — Baptria
17: 17-21.
MARTTILA, O., 1993. Päiväperhosseurannan vuoden 1992 tulokset. — Baptria
18: 1-7.
MARTTILA, O., 1994. Päiväperhosseurannan vuoden 1993 tulokset. — Baptria
19: 41-51.
MARTTILA, O. & SAARINEN, K., 1995. Päiväperhosseurannan vuoden 1994
tulokset. — Baptria 20: 35-46.
MARTTILA, O. & SAARINEN, K., 1996a. Päiväperhosseurannan vuoden 1995
tulokset. — Baptria 21: 17-28.
MARTTILA, O. & SAARINEN, K., 1996b. Valtakunnallinen päiväperhosseuranta.
Ensimmäisen viisivuotisjakson (1991-1995) tulokset. Jn: Marttila O. &
Saarinen K. (eds.). Perhostutkimus Suomessa. South Karelia Allergy and
Environment Institute, Joutseno. p. 22-43.
MARTTILA, O. & SAARINEN, K., 1997. Päiväperhosseurannan vuoden 1996
tulokset. — Baptria 22: 7-18.
33
MARTTILA, O., HAAHTELA, T., AARNIO, H. & OJALAINEN, P., 1991. Suomen
päiväperhoset, 2nd ed. — Kirjayhtymä, Helsinki. 370 p.
POLLARD, E., HALL, M. L. & Bissy, T. J., 1986. Monitoring the abundance
of butterflies 1976-1985. — Nature Conservancy Council, Peterborough.
280 p.
POLLARD, E. & Yates T. J., 1993. Monitoring butterflies for Ecology and
Conservation. — Chapman and Hall, London. 274 p.
Rassı, P., KAIPAINEN, H., MANNERKOSKI, I. & STAHLS, G., 1992. Report
on the monitoring of threatened animals and plants in Finland. — Ministry
of the Environment, Helsinki. 328 p. (In Finnish, English summary).
SAARINEN, K. & MARTTILA, O., 1998. Valtakunnallisen päiväperhosseurannan
vuoden 1997 tulokset. — Baptria 23: 27-37.
SoKAL, R. R. & RoHLF, F. J., 1981. Biometry : The principles and practice
of statistics in biological research. 2nd ed. — WH Freeman and Co., San
Francisco. 859 p.
SOMERMA, P., 1997. Suomen uhanalaiset perhoset. — Suomen ympäristö-
keskus & Suomen Perhostutkyain Seura, Helsinki. 336 p.
STOLTZE, M., 1996. Danske dagsommerfugle. — Gyllendal, Copenhagen.
383 p.
VAN STRIEN, A. J., VAN DE PAVERT, R., Moss, D., YATES, T. J., VAN SWAAY,
C. A. M. & Vos, P., 1997. The statistical power of two butterfly monitoring
schemes to detect trends. — J.appl. Ecol. 34: 817-828.
VAN Swaay, C. A. M., Mags, D. & PLATE, C., 1997. Monitoring butterflies
in the Netherlands and Flanders: the first results. — J. Insect Conservation
1: 81-87.
VAISANEN, R., 1992. Conservation of Lepidoptera in Finland: recent advances.
— Nota lepid. 14: 332-347.
34
Nota lepid. 22 (1): 35-47; 01.111.1999 ISSN 0342-7536
HOSTS: a database of the host plants
of the world’s Lepidoptera
Gaden S. ROBINSON
Department of Entomology, The Natural History Museum, Cromwell Road,
London SW7 5BD, UK
Summary. The Natural History Museum’s HOSTS database is intended to provide
eventually a thorough inventory of the host plants of the world’s Lepidoptera. The
methods used for data capture, the editing and validation processes, the database
structure and the inherent limitations of the project are described. The current status
of the database, its actual and potential products, and possible directions for future
development are outlined, and the problems in making it widely available while
safeguarding intellectual property rights are discussed.
Zusammenfassung. Die Datenbank HOSTS am Natural History Museum, London,
hat eine umfassende Zusammenstellung der Wirtspflanzennachweise fiir alle Lepidop-
terenarten der Erde zum Ziel. Methoden der Datenerfassung, der Herausgabe- und
Validierungsprozess, die Struktur der Datenbank und die systembedingten Grenzen
des Projektes werden beschrieben. Ferner werden der gegenwärtige Stand der Da-
tenbank, ihre aktuellen und potentiellen Nutzanwendungen sowie mögliche Richtungen
für die künftige Weiterentwicklung vorgestellt. Ein wichtiges Problem besteht darin,
Urheberrechte an geistigem Eigentum mit den Anforderungen an eine weite Verbreitung
der gespeicherten Information in Einklang zu bringen.
Résumé. La banque de données HOSTS du ’Natural History Museum’ à Londres
a comme objectif de fournir un inventaire exhaustif des plantes-hôtes des Lépidoptères
du monde. Les méthodes employées pour la collecte des données, pour l'édition et
les procédés de validation, pour la structure de la banque de données et les limitations
inhérentes du projet sont décrits. L'état actuel de la banque de données, les produits
actuels et potentiels qu’elle livre et les directions pour un développement futur sont
également décrits, ainsi que les problèmes posés par sa mise à la disposition générale
en ce qui concerne la protection des droits de propriété intellectuelle.
Key words: Lepidoptera, host plants, world resources, inventory database, data
processing, intellectual property rights.
Introduction
Information on what eats what and where in the complex web
of relationships between caterpillars and plants is of use to a
very wide range of users. The demand for such information is
39
increasing as a corollary of the increase in demand for information
(and rapid access to it) by, notably, environmental and agricultural
interests. The provision of such information requires access to
data that has both geographical and taxonomic breadth. With
some 135,000 recognised Lepidoptera species feeding potentially
on more than a quarter-million species of plants, the eventual
size of an even remotely credible databank is considerable.
A great deal of information on Lepidoptera host plants is
already available for, notably, Europe and North America. But
most is in either printed (i.e., published) or manuscript form,
the latter often as card indexes, the former scattered in an
enormous literature that covers three centuries. Attempts have
been made to compile regional compendiums of host plant data.
These include, for example, that by Tietz (1972) for the Ma-
crolepidoptera of North America, and by Emmet (1992) for Great
Britain and Ireland. The only attempt at a global compendium
is that by Zhang (1994) for Lepidoptera of economic importance.
The integration of Lepidoptera host plant data and the efficient
sorting, indexing and interrogation of that data to answer a wide
range of questions for a wide range of users necessitates its being
in the form of an electronic database. In the late 1980’s staff
of the NHM Lepidoptera Section began collecting data in
electronic form as a series of pilot projects. In 1993 we developed
the concept of a large database that would provide eventually
world-wide coverage and be flexible enough to deliver both
printed and electronic products to a user base that included
amateur entomologists and professional biologists involved in
systematics, conservation, agriculture, forestry, biocontrol and
quarantine regulation. This concept has evolved into the HOSTS
database.
Comparatively small and specialised data sets are used routinely
by systematists to enrich the data content of taxonomic treatments
by providing an ecological context. The observed host plant
ranges of small groups of Lepidoptera may well, by their
uniformity, reinforce hypotheses of relationship: larvae of Ute-
theisa (Arctiidae), for example, feed on Leguminosae and Bo-
raginaceae, and morphologically distinct species-groups are res-
tricted in their feeding to one or other host family.
Easily accessible data on Lepidoptera host plants allows the
conservationist to at least predict the presence of particular insects
36
in a habitat given the requisite botanical information. It also
permits the setting of clear diversity objectives in habitat enrich-
ment and restoration — a “wish-list” of Lepidoptera species can
be matched against a list of the host plants necessary for the
species to establish themselves.
Rapid access to data on the insects attacking particular plant
species (rather then vice versa) is vital to applied entomologists.
The recent discovery of novel damage to cypress foliage in
nurseries in East Anglia required a rapid response and using the
HOSTS database we were able to narrow the possibilities to two
probable and two possible North American Argyresthiidae species
in less than five minutes. Eliminating three of the four (leaving
one of the two “probables”) by checking voucher specimens
against a near-comprehensive reference collection took another
ten minutes. This identification would have taken considerably
longer using conventional means.
Access to comprehensive or near-comprehensive host plant
data is also invaluable in biocontrol studies, helping to suggest
appropriate groups and regions for further investigation, to
narrow searches and to warn of potential problems in species
that are not host-specific.
HOSTS, while at present by no means giving universal
coverage, provides us with the wherewithal to interrogate a large
databank to find the host plants or host plant ranges of a species,
or group of species, and to do the opposite and search for the
larvae that feed on a plant or group of plants. We can perform
these searches at all taxonomic levels and limit searches by
country or zoogeographic region. We can examine the numerical
structure and frequency distribution of host plant utilization
(Robinson, 1998), examine correlations, and provide printed
compendiums and indexes listing either plants and the larvae that
eat them, or larvae and their host plants at geographical scales
from country to global.
In this paper the methods used for data capture, database
structure, editing and validation processes and the inherent
limitations of the project are described. The current status of
the HOSTS database, its actual and potential products, and
possible directions for future development are outlined, and the
problems inherent in making it widely available while safeguarding
intellectual property rights to the entire compilation are discussed.
3
Data acquisition and data sources
Our early priorities were to abstract major printed compen-
diums of host plant information together with major manuscript
resources to provide a large and credible base of information
that could then be further developed by the addition of sources
that contained fewer records but were complementary to the
major sources. Examples of major printed sources that were
abstracted include McGugan et al. (1958-1965), Tietz (1972) and
Scott (1986) — North America, Silva er al. (1968) — Brazil,
Yunus & Ho (1980) — Malaysıa, Emmet (1992) — Great Britain
and Ireland.
Major manuscript resources included: Edward Meyrick’s ledger
of the host plants of the world’s Microlepidoptera, culled from
correspondence, literature and the many thousands of specimens
that passed through his hands in the space of some sixty years
from about 1876 to 1936; the card index compiled by Comstock
and Henne for North American Microlepidoptera that comple-
ments Tietz (1972) and which is housed in the Los Angeles
County Museum of Natural History, and the comprehensive card
catalogue of Nymphalidae host plants developed by Phillip
Ackery (The Natural History Museum (NHM), London).
Progressively smaller sources were included as the project
progressed; literature searches and the polling of fellow-specialists
for suggestions of key works for inclusion resulted in a steady
accumulation of data. In 1995 it was decided that North America
would be the first geographical priority for full development of
the database, followed by the Oriental region.
Electronic and manuscript lists of host plants were solicited
from colleagues both in the NHM and elsewhere. A demonstration
database was established on the World Wide Web and information
solicited either as e-mail, word-processor files, databases or
directly via a WWW input form (see below). The response to
this “public appeal” was surprisingly generous; large data sets
donated include Japanese Lepidoptera on Fagaceae (Dr. N.
Teramoto), world Lycaenidae (Dr. Konrad Fiedler) and California
butterflies (Ms. Marian Fricano). We would be delighted to
receive additional contributions!
Abstracting was carried out, for the most part, by volunteers
(work experience students) and by students undertaking vacation
38
work. The minimum usable information — names of Lepidoptera
and host plants — was typed into a temporary Paradox database
together with any additional relevant information such as ab-
breviated details of damage, locality and cited (secondary)
sources. The field structure of the temporary database was
restricted to the bare minimum required and expanded only later
to the complete format (see below). Repeated information, such
as author and date of the source, was added subsequently as
a global change. The accuracy of transfer was, overall, surprisingly
good and the tenacity and responsibility of our work-experience
students, some as young as fourteen and dealing with a subject
entirely novel to them, was laudable.
Despite initial optimism, comparatively few sources proved
suitable for data acquisition by optical character recognition —
the narrative rather than tabular form of most sources precluded
efficient conversion and even where the format was suitable, poor
print quality often resulted in an unacceptably high level of error
in conversion. But OCR has proved useful in some cases and
we consider it a valuable adjunct to abstracting by manual
methods. In these cases the source is scanned using a Hewlett-
Packard Scanjet 6100C and OCR performed to deliver ASCII
text using Omni-Page (Caere). From this, column-tabulated files
are generated (for checking) then converted into delimited ASCII
text using WordPerfect 6.1 and imported into Paradox.
Database structure
HOSTS is a “flat” database comprising 23 alphanumeric fields
totalling 313 characters. Abstractors fill a maximum of 15 of
these fields (* — asterisked), but the abstracting of a single source
typically involves only seven or eight fields. Unfilled fields are
either left blank, filled globally, filled from other relational
databases, or involve check “signatures” as part of subsequent
editing and validation. The fields are as follows (field length is
in brackets):
Family (5): Abbreviation of family-group name, e.g. NOCTU(idae), derived from first
five letters; ambiguities such as HELIOdinidae and HELIOzelidae are resolved by
adaptation, e.g., HELID and HELIZ. This field and the next are entered automatically
by relational linking to a database of the generic names of the Lepidoptera (derived
from Nye (1975-91) and developed by B. R. Pitkin) and act as a check on spelling
of the generic name.
39
Subgp (5): Abbreviation of (usually) subfamily derived as above.
NCA (3): Name Check Authority — an entry indicates verification that the insect
name is currently valid and comprises initials of checker or source used (e.g., CLE
indicates that the name used is compatible with Checklist of the Lepidoptera of Europe
by Karsholt & Razowski (1996)).
Genus (20)*: Insect generic name.
Species (20)*: Insect species name.
Subspecies (20)*: Insect subspecies name.
Author (16)*: Insect author(s) — in full unless exceeding field length; names are
abbreviated according to a table of standards (e.g., Hiibner, Denis & Schiff.).
Damage (20)*: Succinct damage descriptor which may be abbreviated (e.g., in leaves,
on fls/fruits/leaves); “in” is used specifically to denote internal feeding or specified
concealed feeding (“in rolled leaves”); the use of “on” tends to be somewhat generalised
in the literature but we have tried to restrict its use to external or unspecified concealed
(but not internal) feeding. This field may also include indications of, for example,
ant associations (“on flowers + ants”).
Plantgenus (17)*: Genus of host plant or, in the occasional case of a carnivorous
larva, the insect prey. Very rarely plant and insect genera have identical names and
ambiguity is avoided by suffixing an insect generic name with a “Z”.
Plantspecies (20)*: Species of host plant or prey insect.
Plantsubspecies/var (20)*: Subspecies or varietal name of host plant.
Plantfamily (17)*: Family of host plant. This field is entered automatically by relational
linking to a database of the generic names of plants (derived from Brummitt (1992))
which acts as a check on spelling and current validity of the generic name. The terms
polyphagous and detritophagous may be used in this field with appropriate modifiers
in the Damage field. Other non-standard terms used are: Algae; Filicopsida (i.e.,
unidentified fern(s)); Fungi; Insecta (i.e. predaceous — with generic name of host in
the Plantgenus field (see above); Lichenes; Musci.
PCA (3): Plant check authority. As NCA above. “JTK”, for example, indicates the
name is valid in Kartesz’s (1994) checklist of the vascular flora of North America.
Locality (20)*: Country from which the host record originates. Large countries (e.g.,
Brazil, USA) are subdivided into states and the state entered from a table of standard
abbreviations (e.g., USA: TX). Occasional captive rearing records (see below) refer
to rearing of stock originating from one country on a “substitute” food plant in another.
Provenance data for species involved in such “hobby rearings” is recorded as, for
example, “Ecuador (prov.)”. A relational database can be used to provide a link from
this field to the major zoogeographic region from which the record originates.
Source (16)*: The source from which the record was abstracted or received (i.e., the
primary source). This may be an author’s name (e.g., “Fletcher”, “Brown et al.”),
40
indicate a manuscript or database source, (“Meyrick MS”; “Intachat db”) or an
unpublished source that cannot be consulted (“Jones pers. comm.”; “WWW input”).
Source details are held in a bibliography maintained as a word-processor file; this
will be converted eventually into a database.
Date (6)*: Date of the source; field size permits use of square brackets where source
date is determined by external evidence.
Secondary source (16)*: If the source cites an earlier publication as the original source
of the record this is entered here; a blank field may not guarantee that the source
is the original. Abstractors have often had difficulty in identifying secondary source
citations; in the abstracting of some sources, secondary citations were ignored.
Sec-date (6)*: Date of secondary source.
Original name (30): Entered globally as a concatenation of Genus + Species +
Subspecies fields (above) immediately after abstracting; permits back-tracking of the
name in the original reference. This was not recorded in the early stages of database
development and an entry followed by “[R]” indicates retrospective entry. Retrospective
entries may not match the version of the name used in the source.
Original host name (30): Entered for the host plant as the preceding field, and with
the same limitations.
CR (1)*: Captive record: the plant is not known to be a host in the field but is
accepted by larvae in captivity. The entire record is only included if development
was completed successfully. Entries are “Y” (yes), “N” or blank (no), or “?” (maybe).
Reliab (1)*: Reliability. Possible entries are “?” (record dubious), “N” (record is an
error), or “O” (oviposition — only — observed). Doubtful identifications of insect
or plant are indicated by suffix queries in the name fields (e.g., “Solanum tuberosum
(?)” [Solanum, but only maybe tuberosum]; “Solanum (?)” [maybe a Solanum]; the
latter is vague enough to earn also a “?” in the Reliability field.
Nathost (1): Possible entry is “N” when the host plant is definitely not native to the
country or area where the record originates. Many crop plants and ornamentals, for
example, are not native to the countries in which they are grown. This field is not
used in this phase of database development.
Editing and validation of nomenclature
Once abstracting is complete, new records are reformatted with
the full field structure of the HOSTS database and any global
fills (such as source and date) are performed. The Original name
and Original host name fields are filled as described above.
Subsequent phases of editing and validation involve cycles of
progressive refinement, to correct mis-spellings and to modernise
and standardise insect and plant nomenclature. Problem entries
41
are carried over into another cycle. Once a substantial number
of records have been prepared for editing, the automatic checking
of the insect and plant generic names described above provides
an opportunity to correct spellings and plant generic synonymy.
Author names are standardised and plant and insect names are
then checked electronically against two databases of previously-
validated names. These databases allow us also to correct
automatically many frequently-encountered plant and insect
synonymies and to convert many common vernacular names of
plants. Names that still fail to achieve a validation check are
then processed against the other nomenclatural databases available
to us (such as Missouri Botanical Gardens’ database of Peruvian
plants and Scoble’s (NHM) catalogue of Geometridae) and
recombined or synonymized as necessary to achieve a contem-
porary and consistent nomenclature.
Remnant non-validated names are then checked manually
against recent authoritative sources (checklists and monographs,
the Missouri Botanical Gardens VAST database on the WWW)
and, as a final resort the NHM Lepidoptera systematic card
catalogues (most families updated only to 1982) and Index
Kewensis on CD-ROM (which only records the existence of a
plant name but does not give its current status).
Editing and rendering current and consistent the insect and
plant nomenclature and other elements in the HOSTS database
is the most time-consuming part of the operation. It inevitably
throws up inconsistencies between regional taxonomies for plants
and Lepidoptera and requires compromise.
Limitations, accuracy and problems
No global catalogue of Lepidoptera host plants can ever be
comprehensive. Neither can its content ever be entirely accurate.
While it would in theory be possible to search and abstract the
entire world’s entomological literature, the resource implications
of such a task are monumental. So in practice a strategy of
prioritisation is needed to achieve a credible compilation using
finite resources. The strategy adopted here is that of abstracting
the largest sources first then adding complementary key works,
as described above. In a few instances, complementary key works
may include the entire oeuvre of a particular author who has
42
specialised in the monographing of reared material (e.g., Kumata
on Gracillariidae).
While it would be admirable to trace all host plant records
to their original source, this is not considered practical for the
entire Lepidoptera. However, in developing adjunct databases to
HOSTS for the world’s bombycoid moths and the Neotropical
Rhopalocera respectively, Kitching & Beccaloni (in prep.) are
attempting just this. Several authors (e.g., Sattler, 1967 for
Palaearctic Ethmiidae) have published catalogues of host plants
for smaller groups in which all records have been back-tracked
to their original source.
The potential sources of error in any compilation of host plant
records are manifold. At the root lies misidentification of either
plant or insect by the original observer or recorder. Further errors
may occur in the transcription of records, a classic case being
the confusion of E.[ugenia] malaccensis with E.[ndospermum]
malaccense, which resulted in persistent citation of Myrtaceae
as a host family for Uraniidae rather than Euphorbiaceae (Lees,
pers. comm.). Confusion may occur between similar or identical
plant and insect names (e.g., Aristotelia — Gelechudae or
Elaeocarpaceae) or a transcriber may confuse similar generic
names such as Asperugo (Boraginaceae) and Asperula (Rubia-
ceae). Confusion may occur when the context is in a language
with which the abstractor or transcriber is unfamiliar. A history
involving synonymy that is later reversed may result in a perfectly
valid host record being switched from one species to another.
Rearing caterpillars obtained from eggs from a captured female
on a host plant found acceptable by trial and error may result
in the publication of a host record that is erroneous in that the
relationship is entirely artificial. Such laboratory rearings are not
always clearly cited as such.
Erroneous host plant records are cumulative — repeated
citation gives them a spurious authority and they are extremely
difficult to detect and delete. As errors accumulate, there is a
danger that the “noise” of different erroneous records may
obliterate a correct insect-plant relationship especially if this is
a single observation on a unusual host plant.
Much of the original abstracting for this work was carried
out by volunteers unfamiliar with plant and insect nomenclature
43
and unsure of the meaning of some contexts. Manuscript sources
were not always perfectly legible. So there is potential for further
errors being added in the abstracting process. Resources did not
permit us to trace all records to origin nor to check all abstracting
work.
HOSTS: current status
At the time of preparation of this paper (June 1998) the
HOSTS database contained 102,981 records covering:
Lepidoptera Plants
Families 99 299
Genera 3103
Species 10,216
Geographical coverage of the database shows some regional
bias, reflecting geographical priorities for abstracting. Numbers
of records for each major zoogeographic region are:
Palaearctic
Nearctic
Neotropical
Afrotropical
Oriental
Australasia
There are additionally some 251 records from Hawaii, 164 from
New Zealand and 3609 records that are attributed either to the
Holarctic region or have no location attributed. “Pantropical”
and “cosmopolitan” species are counted here as if they were from
the Oriental region.
HOSTS: the products
It is intended that a series of major products from HOSTS
should include printed compendiums of data for at least some
of the major zoogeographic regions covering all Lepidoptera and
plant groups. Such a compilation has just been completed for
North America (Robinson er al, in prep.) and one is in
preparation for the Oriental region. Poorly served by existing
published sources, a host plant catalogue for the Afrotropical
au
region is also badly needed but development of the database to
the point where this can be produced will necessitate additional
funding.
Other medium-term products envisaged include catalogues of
the Lepidoptera that feed on particular plant families. The current
level of interest in legume biology, for example, suggests that
this would be an appropriate group for a global catalogue.
The HOSTS database can also be used to generate data for
question-driven research and collaboration in this area is currently
being solicited, and an extension of preliminary work on frequency
distribution of host plant specificity is envisaged.
HOSTS on the WWW and the future
The current demonstration database on the Web
http://www.nhm.ac.uk/entomology/hostplants
contains some 3000 records and is intended to publicise the
HOSTS project as well as provide useful public-domain infor-
mation. The database search program permits the user to search
by genus or species name of plant or insect and then to perform
cross-referencing searches. The site also includes an input form
that allows the user to contribute individual records to the
database and includes a request for additional information in
a variety of electronic formats (see above).
The value of HOSTS as a look-up tool for specific Lepidoptera-
plant associations is inestimable, and it is inevitable that, in
response to demand, the entire database will be made available
for search on the Internet in the near future. However, the
resources that have been devoted to the development of HOSTS
are such that Internet availability cannot jeopardise the published
products and other possible commercial or academic applications
of the database.
The search structure of the present WWW database would
result in an unmanageably large number of records being returned
to the enquirer if the database were to be enlarged and would
permit downloading of unacceptably large slices of the dataset
if it were applied to HOSTS. We envisage that HOSTS will be
mounted on the Web with a search routine that requires the user
to narrow his search by taxonomic (plant and insect) and
geographic criteria, and possibly omit fields until the number of
45
records retrieved falls below a specified limit. Only then will data
be transmitted to the enquirer.
Further into the future, we envisage rapid growth of metadata
handling capabilities in which cross-linking to other databases
will be possible. This will allow the almost instantaneous retrieval
of supplementary taxonomic data on the plants and the insects,
geographic information, illustrations and, indeed, all that we can
presently retrieve by pulling the drawers of reference collections
and combing the shelves of libraries together with much, much
more.
Pooling resources of host plant information is just one way
in which we can propel data into the public domain. We would
be delighted to hear from anyone wishing to share their data
with us with this aim in view.
References
BRUMMITT, R. K., 1992. Vascular plant families and genera. — Royal Botanic
Gardens, Kew. [v1] + 804 pp.
EMMET, A. M., 1992. Life history and habits of the British Lepidoptera. In:
Emmet, A. M. & Heath, J. (eds.), The Moths and Butterflies of Great
Britain and Ireland, 7(2): 61-300. — Harley Books, Colchester.
KarsHo Lt, O. & Razowskı, J., 1996. The Lepidoptera of Europe: a
distributional checklist. — Apollo Books, Stenstrup. 380 p.
Kartesz, J. T., 1994. A synonymized checklist of the vascular flora of the
United States, Canada, and Greenland. — Timber Press, Portland. 1.
Checklist. Lx1 + 622 p.; 2. Thesaurus. vi + 816 p.
McGucan, B. M. (ed.), 1958-1966. Forest Lepidoptera of Canada recorded
by the Forest Insect Survey. Canadian Department of Agriculture Pub-
lication 1034: 1-6 (1958, [vol. 1]); Canada Department of Forestry Forest
Entomology and Pathology Branch, Bulletin 128: 77-281 (1962, vol. 2 —
Prentice, R. M., ed.); Canada Department of Forestry, Forest Entomology
and Pathology Branch, Publication 1013: 283-543 (1963, vol. 3 — Prentice,
R. M., ed.); Canada Department of Forestry Publication 1142: 546-840
(1966, vol. 4 — Prentice, R. M., ed.).
Nye, I. W. B. (ed.), 1975-91. The generic names of moths of the world 1:
568 p. (Noctuoidea (part.) — Nye, I. W. B., 1975); 2: xıv + 228 pp.
(Noctuoidea (part.) — Watson, A., Fletcher, D. S. & Nye, I. W. B., 1980);
3: xx + 243 pp. (Geometroidea — Fletcher, D. S., 1979); 4: xıv + 192
pp. (Bombycoidea to Zygaenoidea — Fletcher, D. S. & Nye, I. W. B.,
1982); 5: xv + 185 pp. (Pyraloidea — Fletcher, D. S. & Nye, 1.W.B. 1984);
6: xxix + 368 pp. (Microlepidoptera — Nye, I. W. B. & Fletcher, D.
S., 1991). — British Museum (Natural History)/The Natural History
Museum, London.
46
Rosınson, G. S., 1998. Bugs, hollow curves and species-diversity indexes.
— Stats, American Statistical Association 21: 8-13.
Rosinson, G. S., ACKERY, P. R., KITCHING, I. J. & BECCALONI, G. W., in
prep. Hostplants of the moth and butterfly caterpillars of America north
of Mexico. Ca. 400 p.
SATTLER, K., 1967. Ethmiidae. Microlepidoptera Palaearctica. 2. — Verlag
Georg Fromme & Co, Wien. xvi + 185 p. 106 pls.
SCOBLE, M. J. (ed.), in press. Geometer moths of the world: a catalogue
(Lepidoptera, Geometridae). — CSIRO Publications, Melbourne.
Scott, J. A., 1986. The butterflies of North America. — Stanford University
Press, Stanford, x1 + 583 p.
SILVA, A. G. D’”ARAUJO, GONCALVES, C. R., GALvo, D. M., GONCALVES,
A. J. L., Gomes J., SizvA, M. Do NASCIMENTO, Simoni, L. DE, 1968.
Quarto catalogo do Insetos que vivem nas plantas do Brasil, seus parasitos
e predadores 2(1) — Ministério da Agricultura, Rio de Janeiro. — xxvii +
622 p.
Tietz, H. M., 1972. An index to the described life histories, early stages and
hosts of the Macrolepidoptera of the continental United States and Canada.
— A. C. Allyn, Sarasota, Florida. — vol. 1: 1-536, vol. 2: 537-1041.
Yunus, A. & HO, T. H., 1980. List of economic pests, host plants, parasites
and predators in West Malaysia (1920-1978). — [ Bull. Malays. Dept. Agric.
153.]: 1-ım + 1-538. (Ministry of Agriculture, Malaysia).
ZHANG, B. C., 1994. Index of economically important Lepidoptera. — CAB
International, Wallingford. — 599 p.
47
Nota lepid. 22 (1): 48-57; 01.111.1999 ISSN 0342-7536
A commercial interest in systematics, or
a systematic interest in commerce?
The Moroccan butterfly names of M. R. Tarrier
W. John TENNENT
1 Middlewood Close, Fylingthorpe, Whitby, North Yorkshire YO22 AUD),
England
Summary. Moroccan butterfly names recently raised by M. R. Tarrier (1996, 1998c)
are critically appraised. Rarity status allocated to Moroccan butterflies (Tarrier, 1998a)
is shown to be highly subjective and closely correlated to prices in a commercial butterfly
price list (Tarrier, [1997b]). It is suggested that the basis on which names have been
raised and on which calls for the protection of butterfly habitats have been made,
represent a cynical attempt to promote commercial butterfly sales. It is further suggested
that journal editors must bear responsibility for facilitating publication of such material.
The names amelnorum, antiatlasicus, arahoui, edithae, fairuzae and megalatlasica are
synonymised with existing names.
Zusammenfassung. Die von M. R. Tarrier (1996, 1998c) kiirzlich aufgestellten Namen
fiir marokkanische Tagfalter werden kritisch revidiert. Der vermeintliche “Seltenheits-
status” marokkanischer Tagfalter im Sinne Tarriers (1998a) ist hochgradig subjektiv
und korreliert eng mit den Preisen in einer kommerziellen Tagfalterliste desselben
Autors (Tarrier, [1997b]). Obwohl die Benennungen auch als Argument zum Schutz
der Tagfalterhabitate ins Feld geführt wurden, scheint die Grundlage für die vorge-
nommenen taxonomischen Anderungen ein zynischer Versuch zu sein, den kommer-
ziellen Schmetterlingshandel mit “seltenen” oder “endemischen” Taxa zu steigern.
Herausgeber wissenschaftlicher Zeitschriften müssen sich bewußt sein, daß sie mit-
verantwortlich sind für die Verôffentlichung derartig fragwürdiger Arbeiten. Die Namen
amelnorum, antiatlasicus, arahoui, edithae, fairuzae und megalatlasica werden formell
mit bereits existierenden Taxa synonymisiert.
Résumé. Des noms de papillons marocains récemment érigés par M. R. Tarrier (1996,
1998c) sont évalués de façon critique. Il est démontré que le statut de rareté attribué
aux papillons marocains (Tarrier, 1998a) est hautement subjectif et en étroite corrélation
avec les prix dans une liste de vente commerciale de papillons (Tarrier, [1997b]). Il
est suggéré que la base sur laquelle des noms ont été érigés et des appels pour la
protection d’habitats lépidoptériques ont été adressés, représente une entreprise cynique
ayant pour but la vente commerciale de papillons. Il est également préconisé que les
éditeurs de revues ont une large part de responsabilité en facilitant la publication d’un
tel matériel. Les noms amelnorum, antiatlasicus, arahoui, edithae, fairuzae et megal-
atlasica sont établis comme synonymes de noms existants.
Key words: Lepidoptera, Rhopalocera, nomenclature, rarity status, commercial
price, Morocco.
48
Introduction
In preparing a book on Maghreb butterflies (Tennent, 1996),
the author became aware of several unfamiliar Moroccan butterfly
names: Euchloe falloui fairuzae, Plebejus allardi antiatlasicus,
Melanargia occitanica megalatlasica, Melanargia ines arahoui
and Neohipparchia hansii edithae, and learned from a colleague
that they had first appeared in a commercial butterfly catalogue
produced by Michel Tarrier, Malaga, Spain. Although the names
were not then published in the International Code of Zoological
Nomenclature sense, the sales list was widely distributed. When
Tennent (1996) went to press, the names were believed to also
be in press.
Since then a series of papers on Moroccan butterflies by Tarrier
have been published, including formal descriptions of the above
names (Tarrier, 1996). More recently, a plea for the conservation
of butterfly habitats in Morocco, said to be based on species
rarity status was presented (Tarrier, 1998a) and a further new
taxon, Tomares mauretanicus amelnorum, described (Tarrier,
1998c). In the opinion of the present author, these publications
combine to add significantly to confusion surrounding Palaearctic
butterfly systematics and equate, collectively, to a cynical attempt
to promote commercial interest at the expense of nomenclatural
stability. They also raise the serious question of how such papers
find their way into print.
This paper synonymises ‘new’ names with previously named
taxa and presents hitherto unpublished data concerning type
material. It also comments on the perceived status of some
Moroccan butterflies, making a comparison with prices in the
latest butterfly price list available to the author (Tarrier, 1997b)
and suggests a close connection between the two.
The author’s acknowledgement for having rendered material
assistance in research leading to these publications (Tarrier, 1996:
211; 1998a: 213) is misleading, conferring as it does an assumption
of accordance with the content. Some background is appropriate
and this is adequately illustrated by examining the circumstances
leading to publication of the name antiatlasicus Tarrier, 1996.
In 1993, the author provided M. Tarrier with copies of various
early entomological papers on request, including Oberthiir (1874),
without knowledge of the line of research being pursued, or
49
indeed whether any line of research was being followed. Early
in 1994 a colleague telephoned to enquire what the author knew
of a number of unfamiliar butterfly names, including antiatlasicus,
seen in a recent sales list (Tarrier, [1994]) and the author
subsequently obtained from Tarrier a copy of the draft of a
manuscript, a substantially revised version of which was later
published in the journal Alexanor (Tarrier, 1996). This draft
introduced the name antiatlasicus but did not, for example,
include in the references a paper by De Prins et al. (1992), which
provides critical information for anyone carrying out research
into North African Plebejus.
The author learned that justification for raising the name
antiatlasicus was based on perceived phenotypic differences
between the allardi population reported from the Anti-Atlas
mountains of Morocco by Bozano & Giacomazo (1988), and
the original brief description of allardi provided by Oberthiir
(1874). M. Tarrier was unaware of the paper by De Prins et
al. (1992) or that allardi was locally common in Tunisia and had
not seen any material from those countries.
It was also learned that the manuscript had apparently, in 1993
or early in 1994, been rejected by the editor of a European journal.
It is probable that by this time, advertisement and subsequent
sale of specimens of ‘new’ races of butterflies made retraction
of names virtually impossible. A revised version of the manuscript,
which did refer to De Prins et al. (1992) and to other publications
overlooked in the original draft, was published in Alexanor
several years later (Tarrier, 1996).
Prior knowledge of the intended publication of five of the six
new names synonymised in this paper, provided the opportunity
of examining type material which the early draft indicated had
been deposited in the collections of the Muséum National
d’Histoire Naturelle, Paris, and the Departement de Zoologie et
d’Ecologie Animale, Institut Scientifique, Université Mohammed
V, Rabat, Morocco. Relevant details appear below. Published
data relating to type material included a specific date of capture,
although it will be seen that the actual dates which accompany
type specimens are general and cover a two week period. The
whereabouts of paratypes said to be deposited in ‘coll. Tarrier’
is not known and they are considered likely to have been sold.
50
New synonymy
Euchloe falloui Allard, 1867
Euchloe falloui fairuzae Tarrier, 1996, syn. n. — Alexanor 19(4): 195.
Type data published. Holotype 5, Tizi-n-Tinififft, Maroc,
djebel Sarrho, Anti-Atlas oriental, 1600 m, 5.iv.1993, M. Tarrier
leg. (Rabat); ‘numerous’ male and female paratypes, same locality,
1500-1800 m, 5 and 6.iv.1993 (Paris, Rabat, Tarrier).
Type material examined (8 4, 2 ©). Holotype À, Tizi-n-Tinififft,
1-15.1v.1993,;, M. Tarrier leg.; 34, Q paratypes, same data
(Rabat); 4 4, 9 paratypes, same data (Paris).
Comment. Said to be smaller than typical falloui and with
a more pointed forewing apex. Like Melanargia ines Hoffman-
segg, 1804 (see below), it is not unusual to find individuals or
populations of butterflies in arid regions that are generally smaller
than the same species in cooler or in more northern habitats
(cf. figs. 21, 22, 28 on pl. 5 of Tennent, [1996]. The name fairuzae
is a Junior subjective synonym of falloui.
Tomares mauretanicus Lucas, 1849
Tomares mauretanicus amelni Tarrier, [1997b] — Lepidopterum [sic, recte
Lepidopterorum] Catalogus, butterflies of Morocco, general pricelist 1997: 3
(unpublished manuscript name).
Tomares mauretanicus amelnorum Tarrier, 1998, syn. n. — Alexanor 20(2):
120.
Type material not examined. Tomares mauretanicus is an
immensely variable species, with some characters subject to
considerable local and individual variation and others clinal
(Tennent, 1996: 28). The name amelnorum is a junior subjective
synonym of mauretanicus.
Plebejus allardi Oberthiir, 1874
Plebejus allardii antiatlasicus Tarrier, 1996, syn. n. — Alexanor 19(4): 198.
Type data published (21 3, 7 ©). Holotype 4, Tizi-n-Tarakatine,
Maroc, Anti-Atlas sud-occidental, 1600 m, 10.iv.1993, M. Tarrier
leg. (Rabat); 18 4, 4Q paratypes with same data, but 8 and
51
10.iv.1993; 2 4, 3 ©, Ait Abdallah, Maroc, Anti-Atlas occidental,
1500 m, 9.1v.1993, M. Tarrier leg. (Paris, Rabat, Tarrier).
Type material examined (8 4, 59). Holotype @, Tizi-n-
Tarakatine, 1-15.1v.1993, M. Tarrier leg.; 3 4, 49 paratypes,
same data (Rabat); 4 4, 9 paratypes, same data (Paris).
Comment. Upperside blue suffusion of female ‘antiatlasicus’
was said to be very extensive, especially on the hindwings (‘weak’
blue suffusion in nominotypical allardi). Orange submarginal
lunules were said to be usually present on the upperside forewing
of the female, whilst those on the hindwing were said to be large
or very large (in nominotypical allardi absent on forewings, large
on hindwings). Comparison with the four female uppersides of
allardi illustrated by Tennent (1996: pl. 12, figs. 33-36) shows
that this is not so. All diagnostic features provided for antiatlasicus
fall within the range of typical allardi which is a variable butterfly,
particularly in the female sex. The name antiatlasicus is a junior
subjective synonym of allardi.
Melanargia ines ines Hoffmansegg, 1804
Melanargia ines arahoui Tarrier, 1996, syn. n. — Alexanor 19(4): 206.
Type data published. Holotype 8, Tizi-n-Taghatine, Maroc,
djebel Siroua, Anti-Atlas oriental, 1800 m, 7.vi.1993, M. Tarrier
leg. (Rabat); ‘numerous’ males and females, same data (Paris,
Rabat, Tarrier).
Type material examined (10 4, 49). Holotype &, Tizi-n-
Taghatine, 1-15.1v.1993, M. Tarrier leg.; 6 6, 2 Q paratypes, same
data (Rabat); 3 4, 2 paratypes, same data (Paris).
Comment. Said to be small and dark with extensive dark
markings. Individuals with extensive black markings are not
uncommon (f. jahandiezi Oberthiir, 1922). In arid places, including
the Moroccan Anti-Atlas and southern regions of Algeria and
Tunisia, small specimens are not unusual (Tennent, 1996: 72).
The name arahoui is a junior subjective synonym of ines.
Melanargia occitanica pelagia Oberthür, 1911
Melanargia occitanica megalatlasica Tarrier, 1996, syn. n. — Alexanor 19(4):
204.
5?
Type data published. Holotype &, Tizi-n-Talhremt, Maroc,
Haut Atlas septentrional, 1900 m, 28.v.1993, M. Tarrier leg.
(Rabat); ‘numerous’ males and females, same locality, v.—vi.1992
and 1993 (Paris, Rabat, Tarrier).
Type material examined (10 4, 4Q). Holotype male, Tizi-n-
Talhremt, 1-15.v1.1993; M. Tarrier leg.; 5 4, 4 © paratypes, same
data; à, same locality, 16-31.v.1993 (Rabat); 3 & paratypes, same
data (Paris).
Comment. Features said to separate megalatlasica (black
markings ‘thinner’ on both surfaces, ocelli smaller) from Moroccan
populations of occitanica fall within the range of occitanica
pelagia Oberthiir, 1911 and the name megalatlasica is a junior
subjective synonym of pelagia. A female specimen illustrated by
Tennent (1996: pl. 20, fig. 17) is wrongly identified (Tennent, 1996:
160) as M. ines ines; this should read M. occitanica pelagia.
Neohipparchia hansii Austaut, 1879
Hipparchia hansii tansleyi Tarrier, 1995 — Linn.belg. 15(1): 42, 40 (figs.
7 [9, 10], 8 [7, 8], 9 [8)).
Hipparchia hansii edithae Tarrier, 1995 — Linn.belg. 15(1): 40 (figs. 7 [7],
8 [5], 9 [6]) nom. nud.
Hipparchia hansii edithae Tarrier, 1996, syn. n. — Alexanor 19(4): 208.
Type data published. Holotype &, Tizi-n-Talhremt, Maroc,
Haut Atlas septentrional, 1900-2200 m, 28.viu.1993, M. Tarrier
leg. (Rabat); ‘numerous’ male and female paratypes, same locality,
10 and 2x 1992-17, 195.21, 22 and 28:vin.1993, (Paris; Rabat,
Tarrier).
Type material examined (15 4, 19). Holotype @, Tizi-n-
Talhremt, 16-31.vin.1993, M. Tarrier leg.; 11 À, no 9 paratypes,
same data (Rabat); 4 4, 9 paratypes, same data (Paris).
Comment. Individual variation in Neohipparchia hansii is great
and it is difficult to find two specimens alike. A seasoned ‘splitter’
would no doubt be able to support separation of almost every
hansii population into subspecies, and variation is probably best
viewed as being ecologically based (Tennent, 1996: 75). The name
edithae ıs synonymous with hansii. It is noted that in the
catalogues examined, female butterflies command double the
price of males and that although the type series was said (Tarrier,
1996) to include ‘numerous’ specimens of both sexes, type material
I,
available for examination consisted of 15 males and only one
female.
The author did not know of the existence of the name tansleyi
until publication and type material has not been examined. The
name tansleyi is a junior subjective synonym of hansii (Tennent,
1996: 75).
Habitat protection
There is no doubt that natural habitats throughout the world
require protection, nor is it in doubt that butterflies are useful
indicators of biodiversity, since they are generally well known,
moderately easy to identify and are sensitive to environmental
pressures and conditions. Assessing the status of key species and
offering advice on long-term habitat protection is a sensitive issue
and one that carries with it a high degree of responsibility if
advice is ever to be taken seriously. The list of butterfly habitats
prepared by Tarrier (1998a), and accompanying allocation of
I.U.C.N. status indicators, bears a positive correlation to prices
in Tarrier’s latest butterfly sales list (Tarrier, [1997b]) and is
subjective to the point of irresponsibility.
Status allocated to Moroccan butterflies (Tarrier, 1998a) falls
into four categories, from ‘Critically Endangered’ (CR) through
“Endangered’ (EN) and ‘Vulnerable’ (VN) to ‘Lower Risk’ (LR).
Almost all the taxa so categorised are also offered for sale
(Tarrier, [1997b]). It is apparent that there is confusion between
‘Critically Endangered’ and ‘Locally Common’ as well as strong
positive correlation between ‘Critically Endangered’ and ‘expen-
sive’ (table 1).
Table 1. Moroccan butterflies: comparison of rarity status with average price
Declared status (Tarrier, 1998a) Price per pair, DM
(Tarrier, [1997b])
CR (Critically Endangered)
EN (Endangered)
VU ea
LR (Lower Ris
It is not intended to enter into detailed reasons as to why
much, if not most of the data in Tarrier (1998a) is inaccurate,
54
although it would certainly be possible to do so. Some specific
examples will serve to illustrate the point.
In Morocco, five taxa of the genus Pieris Schrank, 1801 occur.
Of these, P rapae mauretanica Verity, 1908 is a crop pest,
described as LR (Tarrier, 1998a: 200) and offered for sale (Tarrier,
[1997b]: 2) at DM 6.00 per pair. P brassicae Linnaeus, 1758,
also LR, is offered for sale at DM 12.00 per pair and P napi
segonzaci Le Cerf, 1923, described as VU, is for sale at DM
30.00 per pair. This last butterfly was considered for many years
to be confined to Djebel Toubkal in the Moroccan High Atlas
and is common in the Toubkal National Park (Tennent, 1997).
In recent years it has been found to be much more widespread
than previously realised and probably flies throughout the High
Atlas mountains (Tennent, 1996: 10). Although moderately local
in distribution, it cannot by any presently acceptable criterion
be considered Vulnerable.
The remaining two Pieris taxa, P. napi atlantis Oberthür, 1925
and P mannii haroldi Wyatt, 1952 are two of the most local
and scarce butterflies in Morocco. On the very edge of their
species range, they may even warrant ‘CR’ listing but it is surely
hypocritical in the extreme to claim that they are in critical danger
of extinction (Tarrier, 1998a: 200) whilst also offering wild caught
specimens for sale at DM 300.00 per pair (Tarrier, [1997b]: 2).
Likewise, Maurus vogelii vogelii Oberthür, 1920 and M. vogelii
insperatus Tennent, 1996 are allocated CR status and offered for
sale at DM 120.00 and DM 150.00 per pair respectively, despite
the fact that, although vogelii was only known from one locality
in the Moroccan Middle Atlas mountains for 74 years after its
discovery (Tennent, 1996: 39), it is now known from a number
of localities in the Middle and High Atlas mountains. Ironically,
recent knowledge on the distribution of vogelii vogelii in the
Middle Atlas is due largely to the efforts of Tarrier (1998b). The
very local distribution of both races barely merits Vulnerable
status and neither can be said to be Critically Endangered.
The nomenclature of western Palaearctic butterflies is in a sorry
state and that used by Tarrier (1998a etc.) adds significantly to
the confusion. For example, in the opinion of the author, the
Satyrine butterflies Melanargia ines, Neohipparchia hansii, Pseu-
dotergumia fidia Linnaeus, 1767 and Pseudochazara atlantis
35
Austaut, 1905 each fly in Morocco in a single race (Tennent,
1996), whereas Tarrier ([1997b], 1998a) listed 13 names for these
four species. The very nature of systematics provides scope for
a disparity of views and, whilst it would be naive to hope that
the nomenclature of Tennent (1996) was universally acceptable,
it did represent an attempt to bring some stability to North
African butterfly nomenclature. It is difficult to avoid the
suspicion that, for a commercial butterfly dealer, a profusion of
names, regardless of their validity, roughly equals a profusion
of Deutsche Marks.
The activities of amateur workers, of which the author is one,
and professional alike, are constantly under scrutiny by misguided
and ill-informed individuals who seek to stop collection of insects
and other animals for any purpose. Manipulation of systematics
for commercial gain by an irresponsible minority does consi-
derable harm to those carrying out responsible field work and
is to be deplored.
Hauser & Nekrutenko (1998) strongly urged journal editors
to use restraint in accepting papers for publication and it is clear
that journal editors must accept a major part of the responsibility
for aiding and abetting publication of irresponsible material.
Acknowledgements
Mohammed Arahou, Departement de Zoologie et d’Ecologie
Animale, Institut Scientifique, Universite Mohammed V, Rabat,
Morocco, kindly allowed access to the University collections;
Georges Bernardi, Muséum National d’Histoire Naturelle, Paris,
kindly provided relevant data from the Museum collection. A
number of anonymous colleagues assisted with some translation,
provided the author with copies of commercial lists and com-
mented on a draft of this paper.
References
Bozano, G. C. & GiAcomazo, E., 1988. The Moroccan Anti-Atlas: a four
day survey of the Rhopalocera in April 1987 (Lepidoptera). — Nota lepid.
11(1): 83-84.
DE Prins, W. O., VAN DER POORTEN, D. & BALINT, Zs., 1992. Taxonomic
revision of the North African species of the genus Plebejus Kluk, 1802
(Lepidoptera: Lycaenidae). — Phegea 20(1): 11-34.
56
HAuser, C. L., & NEKRUTENKO, Y. P., 1998. Comments on “Nomina
Lepidopterorum nova” by S. K. Korb (Papilionidae, Nymphalidae). —
Nota lepid. 21(1): 74-84.
OBERTHÜR, C., 1874. Lépidoptères nouveaux d'Algérie. — Petites Nouv. Ent.
1(103): 412-413.
TARRIER, M. [E. Z. BRANES FLORES|, [1991]. Butterflies of Morocco [pricelist]
1991. — 2 p.
TARRIER, M. [E. Z. BRANES FLoRES|, [1992]. Butterflies of Morocco [pricelist]
1992. — 2 p.
TARRIER, M. [E. Z. BRANES FLORES|, [1993a]. Lepidopterum [sic, recte
Lepidopterorum] Catalogus, butterflies of Morocco, pricelist 1993. — 4
P-
TARRIER, M. [E. Z. BRANES FLorEs], [1993b]. Lepidopterum [sic, recte
Lepidopterorum] Catalogus, Palaearctic butterflies (general stock) [pricelist],
December 1993 + January-February 1994. — 4 p
TARRIER, M. [E. Z. BRANES FiorEs], [1994]. Butterflies of Morocco, pricelist
1994. — 4 p.
TARRIER, M., 1995. Hipparchia hansii (Austaut, 1879) au Maroc: (Première
note). Éléments éco-éthologiques, ébauche biogéographique et aspects
raciaux (Lepidoptera: Nymphalidae, Satyrinae). — Linn.belg. 15(1): 33-44.
TARRIER, M., 1996. Nouveaux taxa des Atlas marocains (Lepidoptera
Rhopalocera). — Alexanor 19(4): 195-213.
TARRIER, M., [1997a]. Lepidopterum [sic, recte Lepidopterorum] Catalogus,
various Palaearctic Rhopalocera [pricelist], dated October 1996. — 5 p.
TARRIER, M., [1997b]. Lepidopterum [sic, recte Lepidopterorum] Catalogus,
butterflies of Morocco, general pricelist 1997. — 8 p.
TARRIER, M., 1998a. Protection d’habitats lépidoptériques au Maroc. Seconde
partie: nouvelles considérations et inventaire final. — Linn.belg. 16(5):
197-215.
TARRIER, M., 1998b. Note phénologique en apport à la connaissance de
Plebejus (Maurus) vogelii (Oberthür, 1920) (Lepidoptera: Lycaenidae). —
Linn.belg. 16(5): 216-218.
TARRIER, M., 1998c. Trois cents nouveaux jours de lépidoptérologie au Maroc.
— Alexanor 20(2): 81-127.
TENNENT, W. J., 1996. The butterflies of Morocco, Algeria and Tunisia. —
Gem, Wallingford. xxxvi + 217 p., 32 pls.
TENNENT, W. J., 1997. Butterflies of the Toubkal National Park and its
environs, Morocco (Lepidoptera: Rhopalocera). — Br.J.Ent.nat. Hist. 10:
25-29.
57
Nota lepid. 22 (1): 58-66; O1.III. 1999 ISSN 0342-7536
Flower visitation patterns of butterflies and
burnet moths in the Aggtelek-Karst (Hungary)
Gabriella Dosa
Szabadsag ut. 13, H-2100 Gödöllö, Hungary
Summary. The article is based on the results of a series of observations in the Aggtelek-
Karst (northern Hungary) over several years. The plant species in the survey area,
the butterfly species visiting these plants and the number of visits are recorded.
Zusammenfassung. Der Aufsatz arbeitet eine Beobachtung-Serie von mehr Jahre aus,
die wir an dem Berg Aggteleki-karszt (Nordhungarien) gemacht haben. Wir haben
an dem herauswählenden Gelände die Schmetterlingbesucher, beziehungsweise die Zahl
der Besuchung registriert.
Résumé. L’article est basé sur les résultats d’une série d’observations faites dans la
région karstique d’Aggtelek (nord de la Hongrie), étalées sur plusieurs années. Les
espèces végétales de la région étudiée, les espèces de papillons visitant ces plantes et
le nombre de visites sont enregistrés.
Key words: Butterflies, plants, flower visits, nectar supply, pollination, Hungary.
Introduction
Observations during several years can generate an important
information about the plants of a given survey area, the
composition of its butterfly fauna, as well as diversity and changes
in diversity within the area. Every population is part of a
community. Regarding the population of pollinators and the
plants visited by them, the quality and quantity of resources (i.e.
nectar producing plants) used is determined by the presence of
nectar producing plants (Gonseth, 1992). Flowering plants should
ensure the energy requirements of visitors. Visitors search for
the most suitable sources, and their choice for a flower is
dependent on many factors, such as:
— The size of the population of flowering plants. If this is not
large enough there will not exist a stable pollination system
(Vogel & Westerkamp, 1991);
— The colour, smell, shape etc. of the flower (Harborne, 1982);
— The position of nectary, thus the accessibility of nectar.
58
Methods
The study area is the Aggtelek-Karst (northern Hungary, 48°
28’ 36” N, 20° 33’ 38” E). The surveys were carried out between
1990 and 1994, during each July, every day between 8 a.m. and
6 p.m., because flower visitors are most active during this time
(Gonseth, 1992; Olesen & Warncke, 1989). The flora of the area
can be described as Polygalo-Brachypodetum and Caricetum
humilis in the group of Cirsio-Brachypodion association. Do-
minant species in this area are for example: Dorycnium german-
icum, Coronilla varia, Teucrium chamaedrys, T. montanum,
Salvia verticillata, Stachys recta, Centaurea scabiosa, Inula
salicina, I. ensifolia, Carex humilis etc. With the strating bordering,
rimming (Versaumung), Brachypodium pinnatum, Carex mon-
tana and sprouting dicotyledons covering as much as 50% in
patchwork. There are several important and protected species,
such as Dracocephalum austriacum, Adonis vernalis, Centaurea
triumfetti, Polygala major, Cirsium pannonicum, Cytisus pro-
cumbens etc. The original climax vegetation here must have been
Querco-Carpinetum and Corno-Quercetum, and larger or smaller
areas of these plant associations can still be found in many places
in similar situations.
Results and discussion
Table | gives a list of selected plant species visited by butterflies
in the Aggtelek-Karst. Visited plants are arranged in 5 columns
by the number of contacts: the first four contain the species of
the main four families while the fifth gives plant families, some
species of which were rarely visited. We have examined, regarding
all of the contacts, if there were annual differences in the visits
to the different plant families and in the number of butterfly
visits. The results show that there are significant differences in
both. (Plant families: ANOVA, Fr4.9) = 4.43, p = 0,01; butterfly
families: ANOVA, Fu 0) = 2.87, p = 0,01).
Forty-one plant species were used by the butterflies in the
Aggtelek-Karst. Table 2 shows the 10 most frequently visited plant
species in decreasing order. At the same time these plants are
the most abundant in the study area, especially the first four
39
€ sninga SNINQUDS | asuajoad winyofily | DIY nu] (85, ] ‘snoeuury) 1dou g
I snjnga snonguvs
| adpsjna wnipodouay) | syoumıfJo piajog Q SAPIOYIUDID SNNPADT) (GL ‘snaeuury) 2215501 21]
7 D2N2]01/90 DSO19DIS Z 2SUAAID UNIS)
[ wnynsay NUIT | sısuaaıD DIINDUY 6 SaPIOYIUDID SNNPAD) (SLI ‘snovuury) aody 7)
Z PIJO/isua pynu]
€ ASUOAID WNISAI)
Z DSOIQDIS D2ANDIU9")
Q D2N2]0420 DSO1QDIS | SaPIOyIuD2D snnp.)
[ SISUaAdD DYNDUY | asuajpid winyofiy [ DUOJOUN) SIWAayIUp G06] ‘aqgqry sisuativon{jp spo)
| asuorıd winyofuy
| vuyndn] ospaipay
[ uns1uDuod wniUdd.og
| apiapaquod snyjuviq | adp3sjna wnuDdug Z snqjo snsud) (¢/] ‘snovuury) sidouis vapydeT
€ snjnga snanquiny | DSO1QD9S D21NDIU9")
[ adpsjna wniyoq ST Saployjunov snnp.v) (CL | ‘snoeuury) snuyopod sapyaiydy
DIALY '
€Z ne a
| asuaAıD uns)
| wınsoqud.1o9 wnwayuosduy)
L DSOIQD9S vaınDıua)
6 D2N2]01Y20 DSO1QDIS | vuyndn] ospaipay [T Saployjuov snnpav)
| sisuadan snjnajoauoy p syouioyfo paiuojag ¢ sIsuadiD DIINDUY € sngqjp snsud) [ puopun sıwoymy (ÇSS] ‘AO 9 JOWAIg) DIDUAA sapo]Yyoo
p D9N0]0.1y90 DS01QDIS | DSOIQDOS Daınpıua)
€ sypuioyfo vo1U01ag p SISUAAID DIINDUY QZ SaPIOYIUDID SNNP1D7) (8ÇL] ‘snovuury]) pwwos Diadsay
Du ]
6 Sali iy
Z DSOIQDIS D2ANDIU")
p SAPIOYIUDID snnp.D)
| asuajoid winyofiay p DUOJIUL sıwayıuy
Z SISUaAID DYNDUY | DIDU0409 DIIIU0L0) | wnyofayiu vayiyop (I9LI ‘epoqd) susoajds ‘7
C] 21J0/isua Du]
€ DSOIQD9S D21ND]U9°)
| SAPIOYIUDDD snnpivy)
Q WNINSAY WNUIT [ sısuaa.ın DIINDUY Z snqjp snsud) | Unijofojpuu vayıyoy (SOSI ‘awloyuasyoQ) Djoauyy snoowdyL
9 pyofisua DINU]
€ DanajolyI0 DSO1QDIS € DSOIgDIS DainDjUay (GL | ‘snaeuury) apajow snöudg
Z D9N2]0.1490 DSO1QDIS TI PS01QD9S vainvjua)
[ 2408jna wnuDdug | SDIUD] snopsdıq] | Soployjueoe snnpıe) (g5/,] ‘snaeuurT) sadn) sıuudıq
AVIVIEVT AVAOVOVSdId AVAOVEVA AVAOVUALSV VAILdOAIdII
(9661 TISMOZEY 9 JOoysiey SUIMOIIO] eısydopıda sy} Jo aınyepsusuıou)
7661-066] “(Aredung) ISIEY-NI[2I33V oy} Ul syJout Joumq pue sampspyng Aq ussoys syuejd SUHSMOIX ‘I SQL ©
6
Z snjnga snanquivg
Z apiapaiuod snyjuviq]
0€ Snjnga snonquinns
€ 24D5JNA WNUDSUC)
| piomondoa maps
| 24DànA WINUDSUC
| adpsjna wnuDd1ug
| Dioymondoa DIAJDS
L adDsjna WiNUDSUC
Z sıyoumı/fo paiuojag
| aup3jna wınuDaug
€ ponpnbo nyjuayy
¢ o1najna WNUDÈI()
€] pononbo ya
| Danajoayoo DSO1QDIS
Z SISUaAAD DIINDUY
Z DanajOlyIO DSO1GDIS
| SISUaAdD DYNDUY
€ D9n2]0.1490 DSO1QDIS
| SISUOAUD DIINDUY
€ DIN2]01Y20 DSO1QDIS
Ç SISUAAAD DIINDUY
€ SNJDINNULOI SNOT
| Windes WnIU(410
{ DIDUO1OD D][1U0107)
| sngpp snsud)
| SNJDINIIUOD SNOT
| asuajpid winyoflay
Z puyndny ospaipay
7 wunatupu1od wnusdlog
| snopuusno snsnd)
| pundny ospaipay
¢ DUINAN] ospripay
| sngqjp snsud)
€ winuiqnuuns wnuorpdnz
Z SUD uns.)
9 saployjuvon snnp.AD)
Z puyofisuo pynu]
6 Dso1gD»s Danvuo)
| Saployjuvon snnp.ın)
I no fau vayjiyoy”
OT pıjofisua pynu]
Ç] PSOIQDIS DoAnD1uo)
| uunoforu varıyoy
| pyofisuo vnuy
79 DSOIQDIS naınn]ua)
Z puuopun sıwayluy
| pofisuo ppnup
LE pyofisuo pjnuf
| Pso1gDads D91ND]U9")
| P1j0/isua vynu]
7 asuadsD uns)
6£ DSOIQDIS Da.np1uo)
Ç pyofisua pjnu]
Z DSOIQDIS Daınp1ua)
9] pyofisua pynu]
| 20/isuo vjnuy
| DJ DINU]
Z wnsoqwd.4o9 WNWAYJUDSAAY)
9 DIUOJIUI] SIMAaYyUp
Copy]
| pyofisuo nu]
| winyofaiu Dao
| DSO1QDOS DANDIU9")
p P1J0/isuo pjnu]
DOHA
ZI pyyofisuo onu]
7 WNWAYIUDINA] ')
g uunsoqud.409 wnwaytuosduy)
g DLIOWUN SIMOYIUF
| unmofoynwu vayyoy
OI 21j0/isuo pynuf
7 2SU4UD uns.)
| DSOIQDS D21NDIU9T)
| SaP1OYIUDID Snnp1D°)
p pıjofisuo vynu]
| DSOIQDIS D21NDIU9)
g SOPIOYIUDID SNNPAD)
(g52.] ‘snovuury) oydod siuudsup
(I9L1 ‘EPOd) 40pPL0 "yy
(GLLI nquonoy) snunjoq puasnajayy
(SL | Bnquonoy) snuooı snpounuodjog
(E62, | smiorigeg) soX1oxDJ4D DIIUp
(6LLI 1Ossensdirag) vomoudouddın q
(SLLI
(1921 ‘snovuury) sop! q
(SLI snaeuur) snaup smiagaj
(rogI ‘ddasuuew JOH) 80105]0 ')
ILI “SIC d) Soppıdın 7)
(L8L] ‘smougeg) 0019090 'S
mans 9 stuaq]) turds ‘¢
SLI ‘Yoouy) uungpp-M wnudıog
(ecu snaeuur]) gna sduydoyjp)
([9L] ‘epod) sada "7
(g5/.] 'snoeuurT) 20240514 *T
(ZO8] ‘YWoMeH]) Aodsıp vuavod]
(8 ‘sneeuury) aaypydop puuog
(RG. | ‘snoeuury) apdos 4
61
Z winaixojaoula WNYouvud)
| ablapajuod snyjuviq
] wnaixojaoua winyououd)
9 WNIIXOJOIUIA winyououd)
| SLpapuDyo wintional,
| wnvıopo MST
p ablapajuod snyiuviq
| HMNMIIXOJOUIA wnyououd)
| absapajuod snyjuniqg
[I snjnga snonguos
Z| Douonbo vyjuay
€ DIDI[IYAAA DIAS
y 2108/N4 WNUDSUC)
Z apiapajuod snyruı
Ç DIDI[LOILA9A DIA]DS
€ DIDI[LOILAAA DIADS
[| vouonbo vyjuay
AVLVIGV 1
| Danajo4yro DSO1QDS
9] SISUAAUD DIINDUY
| vanajo4yro vso1qnag
6 SISUAAAD DIINDUY
I] SISUOAID DIINDUY
p Danajo.yoo DSO1QDIS
| Sısuoa4D DIINDUY
7 vonajolyIo DSO1QDIS
€ SISUAAAD DINDUY
p SISUOAID DIINDUY
¢ sisuadD DIINDUY
[ sısuaaıo DYNDUY
AVAOVOVSdId
O1 wnotuouund wuny ONAL
| winoiupuias Wnu)(10
ÿ DIDUOLOD DII1U010)
Muni ONAL
ZI wnoiupuiad wnu2410(
(7 Wnoubu128 Wniu2410(]
€ DLIDA D][IUO10°)
| wnoiupuas wniu(10
6 wnsıuDunad unu2(10
AVI VAVA
9 oyofisua pynu]
| DSOIQDDS Daınpıua)
€ DUIY T
BL DIJO/ISU9 DINU]
€ aSUaAdD uns)
¢ unsoqu{102 wnwayiuvs{iy)
[] DSOIQD9S vaanvjuay
p DUOJOUL) sıwayıuy
€ winyofayjim vonyoy
ÿ DIU ]
Lp piyofisuo njnuy
7 aSUandD NIS)
¢ wınsogqud109 wnwayunsday)
9 DSOIQDIS D2NDIU9")
| winyofoyjia vayyoy
6 DHIY ]
79 yofisua ea
Z nsoqud109 winuayjuDsAly)
9 DSOIQDIS vaanDjUua’)
| ungojogiu vonyoy
C DIAIY ]
87 pyyofisua DjNUT
ASUAAAD WNISA)
ZZ DSOIQDOS Daınpıua)
7 Saployjuvon snnp.D)
| puopun sıwayıuy
¢ pyjofisua pynu]
I DAY 7]
LI 210fisue nu]
| winsoquidio) wnwayrunsd4y)
p DSOIQDIS DANDIU9")
Z DUOJOU SIMOYIUY
| winyofarjia vaypiyoy
€ Duty ]
¢ pyofisua Dinu]
| wanyjofayiu vayııyoy
| Saployjuvon snnp.)
[ asuansD uns.)
| DSOIQDS vaınvıua)
£7 SaPIOYIUDD snnpiv)
€ DSOIQDIS Da.nDıuo)
€] S2PIOYIUDID snnpiv)
AVAOVUALSV
(£91 ‘Wodoog) auyan vsudoT
(SLLI ‘Sinquiayoy) vyoyin ‘Wy
LPSI ‘UUEUISSY smumworug ‘JA
0581 HOXOIN P24ND “py
(8LLI ‘“Jedsq) vudpip vaniyay
(LOLT ‘snaeuurT) Dip 210104
(SLLI ‘Lammuntayryos 9 suaq])) 21224 ‘4
islet “BInquianoy) Ou! sIyiMadg
BCL] ‘shaeuurT) DIUOYID] DOS]
(GSLI ‘snaeuurT) agoiu “py
(SLLI
ornunapypg + stuaq]) addipo ‘y
VAALdOAIdTI
62
| apsapajuod snyjuniq
| apiapajuod snyruniq
| ablapaquod snyjuviq
Z snjnga snonguog
6 abiapaquod snyuviq
[ wnaixojaouia wnyouvud)
GT snjnga snonquing
| WNIDAO WNWAYIUDIH
8 2D1apaluod snyjubiq
| SISUOAUD SNINAJOAUOT)
Z apiapajuod shyruviq
€ sypuioyffo vouo1ag
Z 24D3fNA WNUDsUC)
7 syouioyfo v1U012g
| DID][01404 DIADS
7 DIDIILOA DIAJDS
| adpsjna nuvël()
| adpsjna WNUDsUC
| pononbo vyjuayy
| syoumıffo voiu010/4
] DIDIPIIAAA DIAJDS
6 24D5jNA WNUDSUC)
¢] vouonbo vyjuayy
¢ sypuiaiffo D91U012g
Z Ssıpumıflo pauojag
] D1D][I1H404 DIAJDS
6 voyonbo vyjuayy
€ sıpunıffo v21U012
€ SısuoAAD DIINDUY
8 vINaJOAYIO DSOLGDIG
Gh SISUAAAD DIINDUY
| SISUOAD DINDUY
Ç D9N2J0.4y90 DSO1QDIS
S] SISUAAUD DINDUY
Z SISUaAAD DIINDUY
7 DanajodyIO DSO1GDIS
9] SISUOAUD DYNDUY,
ZI Donajolys0 DSO1QD9S
Gh SISUOAUD DINDUY
7 SISUAAAD DIINDUY
] Danajolyso DSO14DIS
] SISU94ID DIINDUY
p asuajpid winyofiay
€ UNDIUDUI2S wnusdlog
€ snqjo snsud)
Ç LUDA DIIIU010)
uno
| WnUDu125 wniUdd1og
7 DIDUO109 D]14010°)
Ç WUNIUDUI98 wnUdd.og
Z suognı WNOfUT
| DID9jDf ospaipayy
| wnsoquidsoy wnwaygups,
7 myofisua Did
4)
| DSOIQDIS Daunvjuay
L pyofisua pynu]
9 2SU2UD WNISAI)
Op PS01QD9S DaunvjUay
GZ SaPIOYIUDID SNNp1D)
Z pıjofisua pynu]
7 DSOIGDOS Da.npıua)
7 uunmojogpiu Day
Z pyofisua pynu]
Z SUD WINISALD
09 PS01QD9S Da1nDIU9")
| Saployjuvon snnp1D)
| osuoaın WNISA1)
97 DSOIQDIS Da.npıua)
7 sopıoyıuv>oD snnp.w)
| pyyofisuo pynu]
€ DSOIQDIS Da.nDJua)
€ SPIOYIUDID snnp.w)
9] pyyofisuo pjnuy
ÿ asuaaıD uns.)
| Dsoıgvos vaanvjuay
8 SAPIOYIUDID snp.)
you ]
0€ pyyofisuo pynu]
ÿ asuaaın uns)
CQ DSOIQDIS DaınDJUa)
TT SapıoyuvoD snnp.4D)
| winyofoyjiu vayyoy
OT BuloiDs |]
987 myofisua npnuy
| Winsoquid.sod wnwayuosd4uy)
ÇÇ OSUOAID WINISAL)
[9] PSO1QD9S vaanvjuay
POI Saployjuvov snp.)
| puopun SIMaYJUp
| winyofarjiud vayiyoy
OI 21j0/isua pjnuy
| DSOIQDIS Daınpıua)
6 2SU24UD WNISAL)
| myofisua oynu]
SI pyofisua pnur
| asuaaıD uns)
IT vsoıgv>s vasnvjuay
Ip myofisua onu
p] asuaaın WINKS)
ÿ DSOIQDIS D2ANDIU9")
(19/,] ‘snaeuur]) univ vydwuiduoueo)
(LLLI ‘UaAayos) apsaoiuo) ‘7
(SSL ‘snoeuur7) anpnpuadın/ 7
(SLLI Laruns 2 sua) au zZ
(£9L1 ‘0d09S) roi) “7
(¢9L] ‘yoruunsg) syrandind vuo8{7
(861 ‘snovuur]) vodayd viouy
(€9L] ‘odoog) sodup stouyy
(Q¢/| 'snaeuurT) 22/1008 D1S1DUDJAN
(g5/] ‘snaeuury) vuyunl pjounpy
(gL ‘snoeuury) snjupsaddy sndojunydy
(8621 ‘snoeuury) snprydiund ‘>
‘ds oyduıduouoo)
(88L] ‘uasneyysog) uonaäds ')
63
Table 2. Relative frequencies of visits on the different plant species (prf) and
number of visiting butterfly species / visits on the different plant species (pv/vp)
Most frequently visited plants
. Inula ensifolia
. Centaurea scabiosa
. Carduus acanthoides
Knautia arvensis
Cirsium arvense
. Inula hirta
Sambucus ebulus
Scabiosa ochroleuca
. Mentha aqutica
Dorycnium germanicum
l
2
3
4.
3.
6
Ue
8.
9
0.
(Inula ensifolia, Centaurea scabiosa, Carduus acanthoides, Knau-
tia arvensis). This fact has a significant effect on food searching
behaviour of butterflies. Colours of the plants mentioned above
are mostly lilac or purple and, more rarely, yellow or white. These
data agree with our knowledge concerning the colour selectivity
of insects (Harborne, 1982; Jolivet, 1986). Besides, these plants
are robust and tall, which could also have importance for food-
recognition of insects (Porter et al., 1992). Table 2 shows the
relative frequencies of visits on the different plant species (prf)
and the ratio of the number of the visiting butterflies to the
number of the visits on the different plant species. These values
(pv/vp) show how many butterfly species were responsible for
the contacts. Thus, for example, on Cirsium arvense and Scabiosa
ochroleuca fewer visits were paid by more butterfly species, and
on the first three plant species more visits were paid by fewer
butterfly species.
The family Asteraceae dominated throughout the survey period
(over 50% in every year), especially in 1991 (87.4%) and 1994
(79.46%). This is the most species-rich plant group — they are
present on almost all continents and habitats. Thus, they provide
enough food for numerous flower visitors. Their lack or decrease
in the area would substantially affect species composition of the
insects.
Changes in flower visits were identified at family level between
1990 and 1994. In 1990, species of Nymphalinae were the main
flower visitors while in 1994, by a gradual process, the Satyrinae
64
had become main visitors. Regarding the vegetation of the study
area the main feature is the expansion of Brachypodium pin-
natum, which surpasses that of important nectar-producing
plants. This phenomenon can provide explanation for the do-
minance changes in flower visits mentioned above. Butterfly-
indication shows clearly the absence or decrease in those plant
species that are their main nectar sources. With some exceptions,
nectar plant specialisation is not characteristic for butterflies.
Although the Asteraceae are the preferred plant family among
butterflies, this does not mean that other plant families are not
visited by them. The preference for Asteraceae lies in the shape
of their inflorescence. The heads of their flowers serve as an
appropriate roost for butterflies, and after landing they only have
to reach out for nectar. As flower heads (capitulum) of the
Asteraceae contain many flowers, the amount of nectar is enough
to satisfy the appetite of visitors. Nectary is usually present at
the base of the flower, at the base of the style or between the
pistil and stamen. The shape of butterflies prevents them from
climbing into the flower as in the case of bees.
Regarding the butterfly species, the main visitor was Maniola
Jurtina (on 21 plant species 726 contacts were registered). Its food
plant list observed by us is more or less the same as previously
indicated in the literature (Gonseth, 1992; Weidemann, 1995).
Ebert & Rennwald (1991) have listed 65 out of 164 plant species
known to occur in Baden-Wiirttemberg. In contrast to the
Meadow Brown, the Lycaenidae pay the fewest visits. This
supports, on one hand, a hypothesis that the quality of the
vegetation in the study area has an influence on the presence
of butterflies. On the other hand, it is well known that the
Lycaenidae prefer fewer nectar-producing plants. Most species
of this butterfly family occupy a large range and can be found
in many kinds of plant associations. In contrast to this, there
are many species among the Lycaenidae and Nymphalinae that
are more confined to plant associations. Thus, the disappearance
of important food sources could affect their distribution pattern.
Choice of food plants by butterflies depends on different factors.
Thus, for example, Melanargia galathea chooses plants with lilac
or purple flowers, species of Papilionidae (/phiclides podalirius)
and Nymphalinae (Argynnis paphia, A. adippe, A. niobe, Issoria
65
lathonia) prefer robust plants overhanging the vegetation cover
in their habitat (Centaurea scabiosa, Carduus acanthoides, etc.).
Conclusions
Several plant species can be ranked as food plants (nectar
sources) of butterflies. An important factor is the availability of
plants in a given area. The continuous — year by year — presence
of these plant species also has certain effects on the pollinator-
population. We cannot find a unified methodology to explain
the food plant choice of butterflies. Depending on the circum-
stances, these insects prefer the different food sources. That is
why it is so important to take into consideration their indicative
role, they can be pollinators only when the food plant is present.
References
EBERT, G. & RENNWALD, E. (eds.), 1991. Die Schmetterlinge Baden-Wiirt-
tembergs, Bd.I.-II. — Eugen Ulmer, Stuttgart. 552 S. (Bd. I) + 535 S.
(Bd. II).
GonsETH, Y., 1992. Relations observées entre Lépidoptères diurnes adultes
(Lepidoptera, Rhopalocera) et plantes nectariféres dans le Jura occidental. —
Nota lepid. 2: 106-122.
HARBORNE, J. B., 1982. Introduction to Ecological Biochemistry. — Academic
Press, London.
JOLIVET, P., 1986. Insects and plants. Flora & fauna handbook, no. 2. —
E. J. Brill Flora & Fauna Publications, USA.
KARSHOLT, O. & RAzowski, J. (eds.), 1996. The Lepidoptera of Europe.
A Distributional Checklist. — Apollo Books, Stenstrup. 380 p.
OLESEN, J. M. & WarnckE, E., 1989. Flowering and seasonal changes in
flower sex ratio and frequency of flower visitors in a population of Saxifraga
hirculus. — Holarctic Ecology 12: 21-30.
PORTER, K., STEEL, C. A. & THomas, J. A. 1992. Butterflies and communities.
In: Dennis R. L. H. (ed.). The Ecology of Butterflies in Britain. — University
Press, Oxford, New York, Tokyo. pp. 139-177.
VOGEL, S. & WESTERKAMP, C., 1991. Pollination: an integrating factor of
biocenoses, species conservation: a population-biological approach. —
Birkhauser Verlag, Basel. pp. 159-170.
WEIDEMANN, H. J., 1995. Tagfalter beobachten, bestimmen. 2. Auflage. —
Naturbuch-Vlg., Augsburg. 659 S.
66
Nota lepid. 22 (1): 67-73; 01.111.1999 ISSN 0342-7536
Wing deformation in an isolated Carpathian
population of Parnassius apollo
(Papilionidae: Parnassiinae)
Pawel ADAMSKI* & Zbigniew WITKOWSKI
Institute of Nature Conservation, Polish Academy. of Sciences, ul. Lubicz 46,
31-512 Krakow, Poland
* e-mail: noadamsk@cyf-kr.edu.pl
Summary. The last native population of Parnassius apollo (Linnaeus, 1758) in the
Pieniny Mts. (Polish Carpathians) has been isolated for at least 20 years. In captive
breeding, individuals with crippled or even missing wings were frequent. Crippled
individuals were also observed in the field. However, while in the field only deformed
males were found, in captivity the number of deformed females was about twice that
of deformed males. Some genetic models for this situation are discussed.
Zusammenfassung. Die letzte Population von Parnassius apollo (Linnaeus, 1758) im
Pienin (Karpathen, Poland) ist seit mindestens 20 Jahren genetisch isoliert. In einer
Gefangenschaftszucht traten zahlreich Individuen mit verkrüppelten oder sogar völlig
fehlenden Flügeln auf. Das Phänomen wurde auch im Freiland registriert. Während
im Freiland jedoch nur deformierte Männchen beobachtet wurden, sind in der Zucht
Weibchen doppelt so häufig deformiert wie Männchen. Hierzu werden einige genetische
Modelle diskutiert.
Resume. La dernière population autochtone de Parnassius apollo (Linnaeus, 1758)
aux Monts Pieniny (Carpathes polonaises) a été isolée depuis au moins 20 ans. Lors
d’un élevage en captivité, des individus à ailes malformées, voire même totalement
manquantes, étaient fréquents. Des individus malformés furent également observés dans
la nature. Toutefois, alors qu’à l’état sauvage seulement des mâles déformés ont été
trouvés, en captivité le nombre de femelles déformées était le double de celui des
mâles. Quelques modèles génétiques susceptibles d’expliquer cette situation sont
discutés.
Key words: Lepidoptera, Parnassius, populations, teratology, genetics, Poland.
In the course of restoring a Parnassius apollo (Linnaeus, 1758)
metapopulation in the Pieniny Mts. (Polish Carpathians) the last
native population of that species was investigated (Witkowski
& Adamski, 1996; Witkowski et al., 1993). This population has
been isolated for at least 20 years. At the beginning of the nineties
its size did not exceed 20-30 individuals; hence, one may suppose
67
that the long-term isolation and inbreeding connected with the
small size of the population has lead to genetic degradation
manifested in certain phenotypic characters.
Recovery measures on the population have included captive
breeding based on individuals originating from that last isolated
population. In captivity, a few phenotypic characters indicating
genetic degradation were noticed (Allendorf & Leary, 1986; Chen,
1971):
— high mortality of pupae (>50% individuals) (Witkowski et al.,
1993),
— appearance of individuals with changed pattern of wing veins
(Witkowski et al., l.c.),
— considerable variation of egg hatching (with statistically sig-
nificant difference between lines) (Witkowski et al., l.c.),
— appearance of individuals with partially reduced or even
vestigial wings (Witkowski et al., |.c.).
As this last character was observed in both captive and wild
populations, and has not appeared in the literature on 2 apollo
(recently such a phenomenon was reported from Turkey (Kovanci
et al., 1996)), it seems proper to present this question in detail.
Captive breeding was established in 1991, based on L3 and
L4 larvae collected in the field. The second year commenced with
eggs laid by two captive females and was completed with eggs
obtained from two other females in the field. In that year the
first individuals with deformed wings were observed in captivity.
For experimental purposes, one wingless female was mated with
a normal male. It appeared that wingless females were able to
copulate, and eggs laid by them did not differ from the other
females.
In two successive years (1993 and 1994), despite supplementary
breeding using material from wild females, both mortality of
captive population and fraction of wingless individuals increased
(Budzik, unpubl. ms). In 1993, the fraction of wingless individuals
amounted to about 16% of the captive population (Table 1).
The handicapped individuals form three groups (fig. 1). The
first comprises wingless individuals. The second are individuals
with deformed wings; these were unable to complete development
(wing expansion); these wings are stuck together and are severely
68
creased. The third group includes individuals that almost com-
pleted wing development (attained normal expansion) but whose
wings were nevertheless creased. It is worthy of notice that single
handicapped individuals like these were observed each year in the
wild population, too. They were males that tried to fly, hopping?
in long leaps much as cockchafers (Cicindelidae) do. Females
in the wild were much less active and no handicapped individuals
of this sex were found.
In 1994, the captive population was reinforced with wild
individuals from a larger neighbouring population (Slovakian
part of the Pieniny Mts.) and in subsequent years handicapped
individuals appeared only sporadically.
In 1993, in the captive breeding population (before reinforcing
it with the Slovakian individuals), a proportion of normally
developed individuals to handicapped ones was as 601 to 175
(Table 1). The proportions of sexes among handicapped indi-
viduals were as follows:
— group | (wingless individuals) — 74 females and 24 males;
— group 2 (deformed wings, unable to fly) and group 3 (deformed
wings, able to make short leaps) — 29 males and 24 females
(table 1).
These proportions point to some statistical regularities:
— In the group of wingless individuals the sex ratio markedly
differed from 1:1 (Chi-square test for 2x2 2:2 tables = 4.27,
p < 0.0288, Hp = sex ratio not different from 1:1 was rejected).
— A difference between the sex ratio in wingless individuals and
the sex ratio in individuals with deformed wings is also
statistically significant (Chi-Square test = 4.81, p = 0.0282,
Hp = equivalent sex ratio in both cases of 1:1 was rejected).
Table 1. Number and percentages of normal and handicapped individuals
of Parnassius apollo (Pieniny Mts. race) hatched during captive breeding in
1993
Damaged Wingless
number I en
male 29 45
female BUS 24 I,
percentages
male 79 8 13
female 76 6 19
69
® EEE
SH
Sr
Snsasunununs
ST u nn u un
PETER TRE
EUERERERERT ees Sas see eRe mI eas Em tt EUREN SnnnasnanaEasas
SERRATE ris DR Sees ET ace
ISRSSSRSSRRASSS ASSES eS Sees eRe ee: mens RER
INSSASRTS: ER REE RER
HER TH SEBUSEHnREEnuNE
LÉO TENTE Sy sessssnsus
SRESLISSGRASES SSS HE
70
Fig. 1. Wingless (left) and deformed (right) individuals of Parnassius apollo during
captive breeding of a restored metapopulation in the Pieniny Mts. (Polish Carpathians)
(upper : females ; lower : males).
2
Since the fraction of handicapped individuals in captive
population is ponderable, a hypothesis that the deformation of
wings has a genetic background is very probable. Theoretically
we may expect two possibilities:
1. A quantitative polygenic inheritance. Individuals with par-
tially deformed wings were in captive breeding less numerous
than completely wingless individuals. This suggests that the degree
of wing development is not a quantitative character, which may
assume values from the full development to the complete lack
of wings. In such a case the wingless forms (the extreme morph)
would occur least numerously or, at low frequencies of alleles,
they would not be observed at all (Fisher, 1930). Wingless forms
should occur with low frequency even in the case of significant
differences in natural selection pressure on males and females.
2. A qualitative single-locus inheritance. In this situation we
assume that the lack of wings is a qualitative character, but that
defective wing expansion is a separate phenomenon regulated in
a different way.
Another problem is the sex ratio of wingless individuals, which
approximates 2:1 in favour of females (Chi-square = 0.34, p =
0.56, Hy = sex ratio not different from 2:1 was not rejected).
This phenomenon may be caused by one of the following
alternatives:
A. The locus responsible for the wingless condition is located
on the sex chromosome X. In this case a most fraction of
phenotypes in which this locus becomes manifested should be
expected in the heterogametic sex i.e. females (Haldane’s rule).
B. Expression of the allele for “winglessness” is facilitated in
females depending on genetic background. In this case the sex
ratio diverging from 1:1 indicates the operation of natural
selection which leads to differences in the expression of “win-
glessness” alleles between males (for which flightlessness is always
a loss) and females (for which it may sometimes be an advantage)
(Witkowski & Adamski, 1996). The fact that wingless individuals
are not eliminated suggests that this character is “treated” by
natural selection as at least a neutral mutation (Witkowski &
Adamski, 1996).
12
Acknowledgements
Dr. Mirostaw Nakonieczny (Silesian University, Katowice)
kindly sent us information about Prof. Kovanci, Msc. Witold
Ryka (Institute of Nature Conservation, Krakow) provided us
with excellent photos.
This paper was granted by the Committee for Scientific
Research (KBN), project 6 PO4F 039 10.
References
ALLENDORE, F. W. & LEARY, R. F., 1986. Heterozygosity and fitness in natural
populations of animals. /n: Soule M. E. (ed.). Conservation biology: the
science of scarcity and diversity. Sinauer Associates, Inc., Sunderland,
Mass.: 57-76.
Bupzik, J., unpubl. ms. Parnassius apollo captive breeding (reports from
1991-1994). Library of the Pieniny National Park, Kroscienko.
CHEN, P. S., 1971. Biochemical aspects of insect development. — Monographs
in Developmental Biology. Vol. 3. S. Kargel, Basel.
FisHER, R. A., 1930. The genetical theory of natural selection. Clarendon
Press, Oxford.
Kovancı, B., GENCER, N. S. & Kaya, M., 1996. Population dynamics of
Parnassius apollo (L.) in Uludag-Bursa, Turkey. — Proceedings of XX
International Congress of Entomology. Firenze, Italy, August 25-31: 309.
WITKowskI1, Z., PLONKA, P. & Bupzixk J., 1993. Vanishing of the local race
of the apollo butterfly, Parnassius apollo frankenbergeri Slaby 1955 in the
Pieniny Mountains (Polish West Carpathians) and measures taken to
restitute its population. Jn: A. W. Biderman & B. Wisniewski (eds.).
Preservation and restitution of declining species in natural parks and nature
reserves . Pradnik (Suppl.): 103-119. (in Polish).
WitkowskI, Z. & ADAMSKI, P., 1996. Decline and rehabilitation of the apollo
butterfly Parnassius apollo in the Pieniny National Park (Polish Carpa-
thians). In: Settele J., Margules C. R., Poshold P., Henle K. (eds.). Species
Survival in Fragmentated Landscapes: 7-14.
78
Nota lepid. 22 (1): 74-80; 01.111.1999 ISSN 0342-7536
Book reviews @ Buchbesprechungen @ Analyses
Maso, A. & PısoAn, M.: Observar Mariposas.
17 X 28.5 cm, 319 pp., text in Spanish, hardback. Published by Editorial
Planeta S.A., Barcelona, 1997. ISBN 84-08-02072-2. To be ordered from:
Editorial Planeta S.A., Corcega Str., 273-279, E-08008 Barcelona, Spain.
Price: Pesetas 5.300.
The work entitled “Observing butterflies and moths” begins with a prologue
by Dr. Richard S. Peigler, followed by a useful introduction where the authors
explain the aim of the book and reveal how it has been structured. It consists
of 62 independent subjects, that can be read independently from one another,
hence it is not necessary to begin with subject 1 to finish with subject 62.
They are included within five thematic chapters as follows.
Chapter 1, “Understanding butterflies and moths”, includes nine subjects. Here
the authors introduce the layman into the world of Arthropoda, Insecta and
finally Lepidoptera. The species concept, the evolution and origin of the
Lepidoptera, their special senses and vision, their wing patterns, colours and
wing scales are also considered in this first chapter.
Chapter 2, “The living cycle”, includes nine subjects. In this chapter, the four
stages of a lepidopteran life cycle — from egg to adult — are considered
as well as some of the special adaptations they show to cope with the different
environments they live in. Other aspects dealt with in this chapter are sexual
di- or polymorphism, gynandromorphism, seasonal polyphenism and diapause.
Chapter 3, “The Lepidoptera and their environment”, includes 12 subjects,
all dealing with the ecology s.l. of the Lepidoptera. Subjects as food chains,
food resources, predators and parasites, pests, dispersal and conservation of
endangered species are dealt with in this chapter.
Chapter 4, “Defense and Behaviour”, includes 16 subjects, all concerned, as
the title indicates, with the different defense systems and behavioural patterns
shown by the Lepidoptera. Subjects as larval and adult camouflage, aposematic
coloration, Miillerian and Batesian mimicry, female and male sex pheromones,
flight mechanism and migration are dealt with in this chapter.
Chapter 5, “Lepidoptera and man”, which also includes 16 subjects, deals
with aspects related to the long-lasting relationship between man and
Lepidoptera. Lives of famous writers and entomologists, from Aristotle to
Niko Tinbergen, through Carolus Linnaeus, Alfred Russell Wallace, Charles
Darwin, Jean-Henry Fabre, Vladimir Nabokov and Ernst Jiinger, are briefly
narrated in this wonderful chapter, showing the fascination these colourful
and graceful insects arose in all these sensible great men. Other aspects as
the presence of the Lepidoptera in all manifestations of the Arts, ancient and
modern, as well as in Western, Eastern and Mexican mythology, are considered
74
here. Two of the subjects of this Chapter are of special interest: one is devoted
to the production of silk and the historical Silk Way between China and
Europe; another analizes the importance that the larvae of some Lepidoptera
have as a food resource for some people, mostly in Africa and Asia. The
book ends with a basic Bibliography, a useful thematic index and the
acknowledgements.
It is a very good vulgarizing work dealing with the world of the Lepidoptera,
mostly addressed to children and non-lepidopterists, though amateur and
professional lepidopterists will also enjoy it. For that reason it was conceived
in a very didactic way. It is extensively and superbly illustrated with colour
photographs, which help understanding the meaning of what is stated in the
text.
The text, though kept as simple as possible, has been written with scientific
rigour and, having been checked by specialists on the different subjects dealt
with, mistakes are kept to a minimum, which is important for such a work.
Some minor ones, though, have slipped into the captions of the photographs,
which no doubt is not the authors’ fault. For example, on page 151, there
are two photographs showing the nymphalid Erebia pandrose; the top one
shows the butterfly upperside, the bottom one shows its underside. However,
the caption states that the top photograph shows the papilionid Parnassius
apollo. Also on page 153, the bottom photograph is supposed to illustrate
a larva of the saturniid moth Aglia tau, where in fact it is showing a dead
caterpillar of a nymphalid butterfly belonging to the genus Apatura (ilia or
iris). Also, on page 159, dealing with tropical rainforests, the text makes
reference to CITES protected species and quotes the birdwings (genus
Ornithoptera) as an example. However the butterfly illustrated which accom-
panies this text is not an Ornithoptera representative but Teinopalpus
imperialis, another papilionid protected by CITES. In this last case it would
have been more appropriate to illustrate one Ornithoptera species instead of
Teinopalpus as children and non-lepidopterists might be led to assume the
illustrated one is an Ornithoptera.
In sum, this book is well conceived and structured, very didactic, superbly
illustrated and probably the best vulgarizing work on Lepidoptera published
so far in Spain. Translation into other languages would help to fully appreciate
its value. The Publisher, Editorial Planeta, should also be congratulated for
the high quality reproduction of photographs and text as well as for the
editorial work, all contributing to a fine product that will certainly help
beginners to discover the fascinating world of butterflies and moths.
Victor SARTO 1 MONTEYS
FiB1GER, Michael: Noctuidae Europaeae. Volume 3. Noctuinae III.
22.2 X 29.2 cm, 418 pp., hardback. Published by Entomological Press, Sor,
1997. ISBN 87-89430-05-0. To be ordered from: Apollo Books, Kirkeby Sand
73
19, DK-5771 Stenstrup, Denmark. Price: DKK 890,- excl. postage (10%
discount to subscribers to the whole series, Vol. 1-12).
The present bilingual book (in English and French) is the third — and last,
at least for the moment — in a series devoted to the noctuid subfamily
Noctuinae, within the more ambitious series Noctuidae Europaeae, which deals
with all European Noctuidae. The previous two parts (Fibiger, 1990; 1993)
dealt with revisions and analyses of taxonomy (morphology, mainly of the
imagines), nomenclature, bionomics (partly) and the distribution of the species
and subspecies of European Noctuinae.
This third book deals primarily with the morphology of the male and female
genitalia of all the European species of Noctuinae, totalling 262 known species
in September 1996. The number of European Noctuinae species has increased
considerably since Hartig & Heinicke published their list in 1974 (they listed
186 species). Since the publication of the first two volumes on Noctuinae,
five species have been transferred from Noctuinae to Ipimorphinae (Amphi-
pyrinae) as follows: Actinotia polyodon, A.radiosa, Chloantha hyperici,
Mesogona acetosellae and M.oxalina. For the sake of consistency between
volumes 1, 2 and 3, the genitalia of all five species are described and illustrated
in the present volume.
The book is organized as follows: it begins with a preface and acknowledge-
ments, followed by a short introduction where the author, among other
matters, explains why photographs instead of drawings have been chosen to
illustrate the genitalia. A very useful section is devoted to the technique used
for making genitalia preparations (male and female), including how to evert
the male vesica from the aedeagus. Follows a very useful taxonomic and
nomenclatural summary. The achievements of Fibiger’s work are impressive:
one lectotype designation for Euxoa foeda (Lederer, 1855); two newly
described genera, Basistriga and Albocosta, four newly described species,
Euxoa penelope, Euxoa montivaga, Yigoga insula and Yigoga soror; five newly
described subspecies; nine existing taxa raised to species level and three raised
to subspecies level; 76 new synonyms, nomina nuda, revised synonyms; 24
new combinations. Then comes the systematic part. Before getting into the
different Noctuinae genera, Fibiger defends the monophyly of the subfamily,
quoting ten character states. He also presents very convincing arguments (at
least to me) to reject most, if not all, of the new nominal taxa published
by Beck (1996). The step taken by Fibiger here is important. One might agree
or disagree with the systematic order adopted by a particular author, but
in Science solid arguments against or in favour of determined points of view
should always be clearly presented so that followers can decide whom to
follow. Ego should be left aside, at least when writing a scientific text. As
usual, the test of time will always have the last word. There are also some
interesting considerations on the species-subspecies dilemma, accompanied by
a definition of these terms as used by the author. After that, the proper
systematic part begins, dealing with the 43 genera of European Noctuinae
plus the genera Mesogona, Actinotia and Chloantha which, as explained
76
above, have been transferred to the Ipimorphinae. For each genus, there is
an introductory section which includes useful diagnostic features along with
drawings of (for the genus) generalized male genitalia, male everted vesica
and female genitalia. Then comes a classification of the European species-
groups and, when applicable, of the subgenera within the genus. Finally, the
European species are dealt with one by one, including taxonomic notes when
necessary and numerical references to male armature, vesica and female
genitalia to be found on the numerous photographic plates; also, comments
about the genitalic differences from other closely related species are brought
forth if needed.
The photographic plates, which take half the book, show the male genitalia,
the aedeagus with everted vesica and the female genitalia of all 262 European
species (and some subspecies) of Noctuinae (plus those of the Ipimorphinae
Mesogona oxalina and M. acetosellae, Actinotia polyodon and A. radiosa,
and Chloantha hyperici).
The book ends with a Corrigenda to Noctuidae Europaeae, vol. 1 and 2,
a specialized Bibliography and a useful Index.
The order brought into the subfamily by M. Fibiger’s work was very much
needed and no doubt will be appreciated for a long time. As appears
unavoidable in such a huge work, some minor mistakes have slipped into
it, for example, on page 15 one reads “The aedeagus is transferred to absolute
isopropanol and injected from the anterior end (through ductus seminalis)
with isopropanol ...”. Obviously the injection should take place through the
ductus ejaculatorius, not through the ductus seminalis. Also some numerical
references given to genitalic preparations in the text do not coincide with
their corresponding photographic plates. For example, on page 34, the male
armature for Euxoa lidia is gen. prep. 2058. However, when going to the
corresponding photographic plate, the number does not coincide (it is 11369
instead of the expected 2058).
A comment on the presence of species in “Europe” is as follows. Fibiger
states that Euxoa beatissima Rebel, 1913, and Euxoa canariensis Rebel, 1902,
“have never been found in Europe”, so they have not been included in his
book that deals with European Noctuinae, although other authors, e.g. Beck,
include them in their European lists. It is necessary, however, to point out
that both species are found on the Canary islands, which politically belong
to Spain and thus geopolitically to “Europe”. Certainly Fibiger, in the first
book of the series, sets his limits of biogeographical “Europe”, including the
Azores and Madeira but not the Canary islands. In that respect I agree with
Fibiger’s biogeographical view, but other authors might consider the fauna
of the Canary islands as European too, so the sentence quoted above should
have been used more carefully.
In sum, this book by the Danish author Michael Fibiger succesfully closes
the study of one of the most difficult subfamilies within the Noctuidae, the
Noctuinae. For the first time ever in Europe, a detailed comparative study
of the male and female genitalia of an entire subfamily, including illustrations
77
of the everted vesica, has been published. This book, together with volume
1 and 2, is a must for researchers working on noctuid moths, a very significant
group, both from the point of view of basic phylogenetic studies and of its
economic importance, as several species are serious pests of agricultural crops.
Victor SARTO I MONTEYS
PAMPERIS, Lazaros N.: The Butterflies of Greece.
22 X 29.7 cm, xm + 559 pp., 44 text figures (11 in colour), 8 tables (listed
as “plates”), 129 distribution maps, 234 diagrams, 1174 colour photographs,
hardback. Published by A. Bastas-D. Plessas Graphic Arts S.A., Athens,
September 1997. ISBN 960-7418-20-4. To be ordered from: Bastas-Plessas
Publications, Herons Sir. 21, GR-104 42 Athens, Greece, Tel.: (00
31)51.35.325-7; fax; 51.39.115; e-mail: basphe hol.gr. http://www.hol.gr/
business/ basple/. Price: GRD 30.000, excl. postage.
Greece has one of the richest butterfly faunas in whole Europe, and it appears
therefore quite surprising that no comprehensive book dealing with it had
been published so far. The title of the present work suggests that this gap
is filled at last and, at a first glance, the result seems quite impressive indeed.
The numerous beautiful photographs, showing living butterflies in their natural
environment, and sometimes the early stages as well, contribute largely to
this effect. For this achievement, the author deserves respect. The text,
however, is absolutely substandard. Scientific names are published without
author’s name and year of publication, nowhere printed in italics and, the
more, an out-dated nomenclature is used (e.g. “ Agrodiaetus” escheri, amanda
and thersites, “ Plebicula” dorylas, “Lysandra” coridon, philippi and bellargus,
“Erebia” phegea). The placing of some taxa is also questionable, e.g. of
Satyrium ledereri between Zizeeria karsandra and Lampides boeticus! Some
misspellings (e.g. Hipparchia cristenseni [recte christenseni] on p. 340; Maniola
Jurdina [recte jurtina] on pp. 394-395) are quite disturbing, as are some species
names used (e.g. Elphinstonia charlonia [sic!] instead of E. penia: it is the
latter species that occurs in Greece, the former one being restricted to Spain,
North Africa and parts of the Near East; Pseudochazara cingovskii instead
of P mniszechii: the former taxon does not occur in Greece, being restricted
to the Prilep area in ex-Yugoslav Macedonia, the latter is represented in Greece
by subspecies tisiphone, a name which is not mentioned anywhere at all).
Some identifications appear questionable (e.g. Pseudochazara amymone on
p. 351 which, the more, is most probably a male and not a female as stated
in the text).
The author is clearly a nature lover and without any doubt his intentions
are sincere. His hostile attitude towards collecting is, however, unjustifiable
and even counterproductive. The author seems to forget that the current
knowledge on which he has based his field trips in order to obtain his data,
was gathered by a number of entomologists who collected representative
samples of each nominal taxon for comparative purpose as well as for
78
identification (it is, for instance, impossible to distinguish some taxa without
examination of some structural characters, i.e. mainly the genitalia as in e.g.
the genus Hipparchia). The external features illustrated by the author and
supposed to help in the identification of “difficult” taxa (e.g. the “brown
Agrodiaetus” on p. 200, Hipparchia on p. 334, Pseudochazara on pp. 348-349
and Pyrgus and related genera on pp. 440-441) appear of no use. Some taxa
have been identified (mainly) following electrophoretic investigations (e.g.
Pontia edusa (referred to as daplidice in the present work), Maniola chia),
a fact that seems to have escaped the author’s attention. The reviewer would
be much interested to know on which evidence the occurrence and distribution
of Agrodiaetus ripartii in Greece is based (the postulated difference in the
white streak on unh between ripartii and pelopi does not appear very
convincing, compare illustrations on pp. 201 and 204-205). Karyological
studies (for which one does, indeed, have to kill some specimens) would seem
much more reliable.
In many instances, the conservation status of nominal taxa is indicated as
rare, because of “collectors’ interest”, a highly ludicrous statement for taxa
like, for instance, Pseudochazara amymone, Maniola halicarnassus and M.
megala, that have probably ever been collected in Greece by only one or
two people so far! The reviewer further fails to see how species like Parnassius
mnemosyne, Hamearis lucina, “ Quercusia” quercus, “Strymonidia” w-album
and pruni, “ Eumedonia” eumedon, “Lycaeides” argyrognomon and Erebia
euryale, to name but a few, would be threatened by collectors’ interest, being
widespread at least all over Central Europe.
The photographs of butterflies and biotopes are never accompanied by any
precise data as to the locality or even general area of origin, thus undoing
any scientific value to these observations. No voucher specimens are at hand
to confirm some questionable reports and the reviewer puts question marks
to many dots on the distribution maps the author was willing to produce.
One single example will illustrate this. On p. 100, a distribution map of
“Nordmannia” ilicis includes the island of Rödos (Rhodes) among the available
records. The reviewer has never been able to observe this species on that
island, neither did any of his predecessors since lepidopterological explorations
started there. It would have been very useful and interesting had Pamperis
collected — be it one single — voucher specimen to substantiate this record.
Hence on present evidence this record has to be dismissed as unconfirmed.
Another case, perhaps the most exciting one dealt with in this book, is that
of Zizeeria karsandra, which the author reports from “AEG” and “CRE”.
This species had previously been mentioned in literature (see OLIVIER, 1993.
The butterflies of the Greek island of Rödos (...): 192 and references mentioned
therein for a review): it would have been of the greatest value had Pamperis
published from where his original data have been gathered (the photographs
prove beyond doubt that these specimens are indeed Z. karsandra and that
the butterfly thus is a true resident of the Greek butterfly fauna). “Collectors’
interest” cannot be accounted for as a potential threat, as virtually nobody
79
ever observed this butterfly on any Greek island so far. On the contrary,
habitat destruction could very conceivably cause its extinction in this country,
if the butterfly appears to live in only one or a few localities. Without any
more precise data it appears simply impossible to start any conservation
programme on this issue!
The real threats to the butterfly fauna of Greece (habitat destruction,
overgrazing by goats and sheep, large-scale burning of forest and maquis,
destruction of natural coastal and lowland habitats for the building of touristic
accomodation, ...) are given only marginal attention. The “collector”, who
appears by the way to be the only really competent specialist to judge on
matters of taxonomy, distribution, ecology and, ultimately, conservation, is
accused of being the main cause of decline of butterflies (which, for the time
being, appears fortunately enough to be minor in comparison to what is
currently happening in the industrialised countries of northwestern Europe).
Such an attitude could lend support to politicians and governmental (including
so-called “conservationist”) bodies to instore a law imposing a total ban on
collecting, as is already the case in Germany and Spain, two countries where,
ironically (is this coincidence?), there is a flourishing trade in butterflies!
The author missed a unique opportunity to achieve a real great work, in
not having consulted a qualified team of “collectors” [recte entomologists],
who could have reviewed the manuscript thoroughly before it went to press.
Many erroneous, unpleasant and largely unjustified statements could thus have
been prevented from appearing into the public domain.
To sum up in short, the butterfly illustrated on the cover page symbolizes
very well the content of this book: the specimen is a male Lycaena candens.
The author, however, refers to it as “ Palaeochrysophanus” hippothoe, a species
that does not even occur in Greece, having its southern distribution limit
on the Balkans in Bosnia. The most obvious difference between both species
resides in the male genitalia (UV reflectance photography is an additional
aid). Had nobody ever dissected any specimen, we would still be ignorant
of the very fact that these are two species. To conclude, the reviewer regrets
to have to express his own opinion that it would have been better if this
book had never been written, at least in its present form.
Alain OLIVIER
80
INSTRUCTIONS FOR AUTHORS
Manuscripts and all correspondence related to editorial policy should be sent to the editor: Alain Olivier,
Lt. Lippenslaan 43, bus 14, B-2140 Antwerpen-Borgerhout, Belgium.
D med to Nota lepidopterologica should be original contributions to any aspect of lepidopterology.
1b n languages are English, German and French. All manuscripts will be reviewed by a board of assistant
ors ‘odd by at least two appropriate referees. The editors reserve the right to make textual corrections
do not alter the author’s meaning.
La The manuscript should be submitted in triplicate and on a PC-compatible (not Macintosh) disk. Please
_ do not send registered mail! The papers should be accompanied by a summary not exceeding 200 words.
a _ For acceptable style, format and layout please examine recent issues of the journal. Latin names of genera
species should be underlined or italicised. The first mention of any living organism must include the
li scientific name with the author and the year of publication, but thereafter the author and date can be
4 | omited and the generic name abbreviated. Male and female symbols have to be coded as @ and # respectively.
3 and other names in languages where other than Latin characters are used (e. g. Armenian, Chinese,
os Fc Ukrainian etc.) should be given in transliteration/transcription (not translation !).
The authors should strictly follow provisions of the current edition of the International Code of Zoological
… Nomenclature. New taxa must be distinguished from related taxa (diagnosis, key). The abbreviations gen.
oe ne n., syn. n., comb. n. should be used to distinguish all new taxa, new synonymies and new combinations.
In describing new genus group taxa, the nominal type-species must be designated in its original combination
Sad with reference to the original description immediately after the new name. In describing new species
group taxa, one specimen must be designated as the holotype; other specimens mentioned in the original
description and included into the type series are to be designated as paratypes — all immediately after the
name. The complete data of the holotype and paratypes, and the institutions in which they are deposited
- (abbreviated as explained in the introductory section), must be recorded in the original description as follows:
Material. Holotype @, Turkey, Hakkari, 8 km E. of Uludere, 1200 m, 10.V1.1984, H. van Oorschot
"Jeg. (ITZA). Paratypes: 7@, 3#, labelled as holotype; @, #, “Achalzich Chambobel 1910 Korb” (NHMW);
2@, #, Iraq, Kurdistan, Sersang, 1500 m, L. Higgins leg. (BMNH); @, Iraq, “Shaglawa, 2500 ft, Kurdistan,
24 May 1957” L. G. Higgins leg. (BMNH).
All material examined should be listed in similar format: localities should be cited in order of increasing
Precision as shown in the examples; in cases when label text is quoted, it should be included between opening
Figures must be drawn in black waterproof ink and should be submitted about twice their printed size,
labelled with stencilled or pre-printed lettering or numbering in Arabic numerals large enough to allow reduction.
_ Photographs must be best quality prints on glossy paper. Each drawing, graph or photograph should be
_ Signed on the back by the author’s name and the fig. (or plate) number; the top should be indicated.
» _ References in the text should be cited by author, date (and page, table, plate, figure if necessary) and
should be collated at the end of the paper in alphabetical and then in chronological order in the following
form (please draw attention to the punctuation and the use of Em (—) and En (-) dash not replaced with
a nonbreaking hyphen (-):
é | Hicons, L. G., 1950. A descriptive catalogue of the Palaearctic Ewphydryas (Lepidoptera: Rhopalocera).
L — Trans. Rent. Soc. Lond 101: 435-489, figs. 1-44, 7 maps.
_ HiGoins, L. G. & Rey, N. D., 1980. A field guide to the butterflies of Britain and Europe. 4th ed. —
4, Collins, London. 384 p., 63 pls.
STAUDINGER, O., 1901. Famil. Papilionidae - Hepialidae. Jn: Staupincer, O. & Reser, H. Catalog der
% Lepidopteren des palaearctischen Faunengebietes. 3. Aufl. — Friedlander & Sohn, Berlin. XXX+411 p.
3, (Tagfalter p. 1—97).
à | All authors quoted in the text are to be included in the list of References and vice versa. Titles of journals
"a Sn be given in complete or abbreviated according to the World List of Scientific Periodicals.
4. Twenty-five reprints of each paper will be supplied free of charge to the first author; additional copies
- may be ordered on a form enclosed with the proofs.
Kopien dieser Hinweise in deutscher Sprache sind beim Redaktor erhaltlich.
Copies de ces instructions en français sont disponibles auprès de l'éditeur.
ISSN 0342-7536
idopterologica
A quarterly journal devoted to Palaearctic lepidopterology
Published by Societas Europaea Lepidopterologica
Wot INO. 2 1999
SEL SOCIETAS EUROPAEA LEPIDOPTEROLOGICA e.V.
CouNCIL
President: Prof. Dr. Niels P. Kristensen Vice-President: Dr. Jacques Lhonoré
General Secretary: Dr. Christoph L. Hauser Treasurer: Manfred Sommerer
Membership Secretary: Willy O. De Prins Editor: Alain Olivier
Ordinary Council Members: Dr. Jaroslaw Buszko, Michael Fibiger,
Mark Parsons, Steven Whitebread. Dr. Alberto Zilli
COMMITTEES
Literature: Steven Whitebread
Habitat and Species Protection: Dr. Jacques Lhonoré
HONORARY MEMBERS
Jean Bourgogne (F), Pamela Gilbert (GB),
Läszlé Gozmany (H), P. Sigbert Wagener (D)
Applications for membership, changes of address and orders for Nota lepidopte-
rologica back volumes and other literature should be sent to the treasurer. Subscriptions
should be paid to your country’s representative (see SEL-News 25) or to the treasurer:
SEL M. Sommerer, VolpinistraBe 72, D-80637 Miinchen, Germany
Postgiroamt Köln Nr. 1956 50-507
In Deutschland Einzahlungen/Überweisungen auch auf das Bankkonto der SEL
bei Bayerische Vereinsbank (BLZ 700 202 70) Nr. 2692511 (German residents only).
Annual subscription fees (to be paid at the beginning of each year):
Ordinary members DEM 65.—
Corporate members DEM 80.—
Admission fee DEM 5.—
Overseas and mail charges DEM 15.—
Non-members and institutions may order Nota lepidopterologica through our agent:
Apollo Books Aps., Kirkeby Sand 19, DK-5771 Stenstrup, Denmark.
News. All items for SEL-News should be sent to Willy De Prins, Diksmuidelaan 176,
B-2600 Antwerpen, Belgium (e-mail: willy.deprins@village.uunet.be).
For all other matters contact Dr. Christoph L. Hauser, SEL General Secretary,
Staatliches Museum fiir Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart,
Germany (e-mail: 11327.3422@compuserve. com).
Copyright © Societas Europaea Lepidopterologica, 1999
Printed by Imprimerie Universa Sprl, 24 Hoenderstraat, B-9230 Wetteren, Belgium
All rights reserved. No part of this journal may be reproduced or transmitted in any form or
by no means, electronic or mechanical including photocopying, recording or any other information
storage and retrieval system, without written permission from the publisher. Authors are
responsible for the contents of their papers.
NOTA LEPIDOPTEROLOGICA
A journal of the Societas Europaea Lepidopterologica
Published by Societas Europaea Lepidopterologica
Vol 22 No. 2 Basel, 15.VI.1999 ISSN 0342-7536
Editorial Board
Editor: Alain Olivier, Lt. Lippenslaan 43, bus 14, B-2140 Antwerpen (B)
Assistant Editors: Dr. Roger L. H. Dennis (Wilmslow, GB),
Prof. Dr. Konrad Fiedler (Bayreuth, D), Dr. Enrique Garcia-Barros (Madrid, E),
Ole Karsholt (Kobenhavn, DK), Dr. Yuri P. Nekrutenko (Kiev, UA),
Dr. Enk J. van Nieukerken (Leiden, NL), Dr. Alexander Pelzer (Wennigsen, D)
Contents @ Inhalt e Sommaire
KALLIES, A. Revision of the south-western Palaearctic species of
SyRanSphleeiai(Sesudae)...............................u.a..... Aa re
SÜSSENBACH, D. & FIEDLER, K. Noctuid moths attracted to fruit baits:
testing models and methods of estimating species diversity 0...
Nuss, M. & SPEIDEL, W. A new crambid moth species from the north-
castemmeparton Turkey (Crambidae: Crambinae) ...........................................
BOOK REVIEW @ BUCHBESPRECHUNG @ ANALYSE ......nnunn.
82
IS
155
160
81
Nota lepid. 22 (2): 82-114; 15.VI.1999 ISSN 0342-7536
Revision of the south-western Palaearctic species
of Synansphecia (Sesiidae)
Axel KALLIES
Ploner Str. 13, D-19057 Schwerin
e-mail: kallies@fmp-berlin.de
Summary. The type specimens of Synansphecia atlantis (Schwingenschuss, 1935),
S. borreyi (Le Cerf, 1922), S. powelli (Le Cerf, 1916) and S. aistleitneri Spatenka,
1992 have been studied and the species are revised and redescribed in detail. The
taxon powelli is transferred back to Chamaesphecia, its original combination. Two
new species, S. hispanica sp. n. and S. maroccana sp. n., are described from Spain
and from Morocco, respectively. A key to the Palaearctic species of the S. triannuliformis
and S. muscaeformis group is presented. S. atlantis is known only from the High
Atlas Mts in Morocco from altitudes between 2000 and 2900 m. Its host plant is
supposed to be an Armeria species (Plumbaginaceae). It is closely related and similar
to S. borreyi and S. koschwitzi. S. borreyi is known from different localities in Morocco
from about 400 m up to 2200 m. Host plants are Limonium species (Plumbaginaceae).
S. hispanica sp. n. is represented in many collections but usually has been confused
with S. atlantis. It is widely distributed in Spain and is also found in southern France.
It occurs from the coastline up to more than 2000 m in the Sierra Nevada. It is closely
related to S. maroccana sp. n. and S. triannuliformis (Freyer, 1845). The host plants
are various Rumex species (Polygonaceae). S. maroccana sp. n. is widely distributed
in the Atlas Mts in Morocco and found at altitudes between 1600 and 2700 m. The
host plant is a Rumex species (Polygonaceae). Chamaesphecia powelli comb. rev. was
known for certain from the type locality in Algeria only. Recently, it has also been
found in the High Atlas Mts in Morocco. It was reared from the roots of a Nepeta
species (Lamiaceae). Additionally, S. affinis erodiiphaga (Dumont, 1922) is recorded
from Morocco and southern Spain for the first time.
Zusammenfassung. Das Typenmaterial von Synansphecia atlantis (Schwingenschuss,
1935), S. borreyi (Le Cerf, 1922), S. powelli (Le Cerf, 1916) und S. aistleitneri Spatenka,
1992 wurde untersucht, die Arten werden revidiert und detailliert beschrieben. Das
Taxon powelli wird der Gattung Chamaesphecia zugeordnet, die Orginalkombination
wird damit revitalisiert. S. hispanica sp. n. und S. maroccana sp. n. werden aus Spanien
bzw. aus Marokko beschrieben. Ein Bestimmungsschliissel fiir die Arten der Synan-
sphecia triannuliformis- und S. muscaeformis-Gruppe wird vorgelegt. S. atlantis ist
aus dem Hohen Atlas in Marokko aus Höhenlagen von 2000 bis 2900 m bekannt.
Vermutlich ist die Futterpflanze eine Armeria sp. (Plumbaginaceae). Die Art ist nahe
verwandt mit S. borreyi und S. koschwitzi und ähnelt beiden Arten. S. borreyi ist
von einer Reihe von Lokalitäten in Marokko, aus Höhenlagen von 400-2200 m,
bekannt. Futterpflanzen sind verschiedene Limonium-Arten (Plumbaginaceae).
82
S. hispanica sp. n. ist in zahlreichen Sammlungen vertreten, wurde jedoch meistens
mit S. atlantis verwechselt. Die Art ist in Spanien weit verbreitet, wird aber auch
in Südfrankreich gefunden. Sie kommt von der Küste bis in eine Höhe von mehr
als 2000 m in der Sierra Nevada vor. Die Art ist nahe verwandt mit S. maroccana
sp. n. und S. triannuliformis (Freyer, 1845). Futterpflanzen sind verschiedene Rumex-
Arten (Polygonaceae). S. maroccana sp. n. ist im Hohen und Mittleren Atlas in
Marokko in Höhen zwischen 1600 m und 2700 m weit verbreitet. Sie lebt ebenfalls
in einer Rumex-Art (Polygonaceae). Chamaesphecia powelli comb. rev. war bisher
mit Sicherheit nur vom Typenfundort in Algerien bekannt. Inzwischen wurde sie im
Hohen Atlas von Marokko aus Wurzeln einer Nepeta (Lamiaceae) gezogen. Außerdem
wird S. affinis erodiiphaga (Dumont, 1922) erstmals für die Fauna Marokkos und
Südspaniens nachgewiesen. |
Résumé. Le matériel-type de Synansphecia atlantis (Schwingenschuss, 1935), S. borreyi
(Le Cerf, 1922), S. powelli (Le Cerf, 1916) et S. aistleitneri Spatenka, 1992 a été étudié
et les espèces sont révisées et redécrites en détail. Le taxon powelli est retransféré
au genre Chamaesphecia, la combinaison générique originale de l’espéce. Deux
nouvelles espèces, S. hispanica sp. n. et S. maroccana sp. n., sont décrites respectivement
d’Espagne et du Maroc. Une clé de détermination des espèces paléarctiques des groupes
de S. triannuliformis et de S. muscaeformis est presentée. S. atlantis n’est connue
que du Haut Atlas au Maroc, entre 2000 et 2900 mètres d’altitude. Sa plante-hôte
est supposée être une espèce du genre Armeria (Plumbaginaceae). Elle est étroitement
apparentée et semblable a S. borreyi et a S. koschwitzi. S. borreyi est connue de
différentes localités au Maroc, de 400 a 2200 m. Les plantes-hôtes sont des espèces
du genre Limonium (Plumbaginaceae). S. hispanica sp. n. est représentée en de
nombreuses collections, mais elle a généralement été confondue avec S. atlantis. Elle
est largement distribuée en Espagne et se rencontre également dans le Midi de la
France. Elle est trouvée de la côte jusqu’à plus de 2000 m dans la Sierra Nevada.
Elle est étroitement apparentée à S. maroccana sp. n. et a S. triannuliformis (Freyer,
1845). Les plantes-hôtes sont plusieurs espèces de Rumex (Polygonaceae). S. maroccana
sp. n. est largement répandue aux monts Atlas marocains, se trouvant a des altitudes
de 1600 à 2700 m. La plante-hôte est une espèce de Rumex (Polygonaceae). Chamae-
sphecia powelli comb. rev. n’était connue avec certitude que de la localité-type en
Algérie. Récemment, elle a également été trouvée dans le Haut Atlas au Maroc. Elle
a été élevée a partir des racines d’une espèce de Nepeta (Lamiaceae). De plus, S.
affinis erodiiphaga (Dumont, 1922) est mentionnée pour la première fois du Maroc
et du sud de l’Espagne.
Key words: Lepidoptera, Sesiidae, Synansphecia, hispanica sp. n., maroccana sp. n.,
atlantis, borreyi, Chamaesphecia powelli comb. rev., bionomics, revision, Morocco,
Spain, France, Palaearctic.
Introduction
A study of the rich material of Synansphecia species collected
mainly by German lepidopterists in Morocco, Spain and France
raised a necessity to examine a number of type specimens of
83
south-western Palaearctic species of Synansphecia Capuse, 1973.
Examination of the type material of Synansphecia atlantis
(Schwingenschuss, 1935), S. borreyi (Le Cerf, 1922), S. aistleitneri
Spatenka, 1992, and S. powelli (Le Cerf, 1916) revealed a
misinterpretation of these species. With the numerous and fresh
material now available from the area and the extended knowledge
of host plants there is a better basis and also the need to revise
these species.
Material mentioned in this article 1s deposited in the following
collections: The Natural History Museum, London, U. K.
(BMNH); Muséum national d’Histoire naturelle, Paris, France
(MNHP); Museum Witt, München, Germany (MWM); Natur-
historisches Museum, Wien, Austria (NHMW); Niederösterrei-
chisches Landesmuseum, Wien, Austria (NLMW); Museum für
Naturkunde der Humboldt Universität zu Berlin, Germany
(MNHB); Zoologisches Forschungsinstitut und Museum Alex-
ander Koenig, Bonn, Germany (ZFMK); Zoologische Staatssamm-
lung München, Germany (ZSM); Museum für Naturkunde
Karlsruhe, Germany (MNK).
Private collections: CDB — coll. D. Bartsch, Stuttgart, CBH —
coll. D. Baumgarten, Hamburg; CEB — coll. E. Bettag, Duden-
hofen; CRB — coll. R. Bläsius, Eppelheim; CTD — coll.
T. Drechsel, Neubrandenburg; CJG — coll. J. Gelbrecht, Königs
Wusterhausen; CTG — coll. T. Garrevoet, Antwerpen; CAK —
coll. A. Kallies, Schwerin; CUK — coll. U. Koschwitz, Eppen-
brunn; CAL — coll. A. Lingenhöle, Biberach; CHL — coll.
H. Löbel, Sondershausen; CZL — coll. Z. Laëtüvka, Brno; CMP
— coll. M. Petersen, Pfungstadt; CFR — coll. F. Rämisch, Berlin;
CHR — coll. H. Riefenstahl, Hamburg; CTS — coll. T. Sobczyk,
Hoyerswerda; CKS — coll. K. Spatenka, Prag; CRS — coll.
R. Stübinger, Hamburg.
The following abbreviations have been used throughout the
text to designate particular areas of the forewing: ETA — external
transparent area; ATA — anterior transparent area; PTA —
posterior transparent area.
The structure of the genus Synansphecia Capuse, 1973
Morphological and taxonomical data of the closely related
genera Synansphecia Capuse, 1973, Dipchasphecia Capuse, 1973
84
and Chamaesphecia Spuler, 1910 have been provided by Laëtüvka
(1990a, 1992). The genus is also closely related to the genus
Pyropteron Newman, 1832.
The genus Synansphecia Capuse, 1973 is restricted to the
western Palaearctic and includes 17 species at present. The larvae
are root borers utilizing host plants of a wide range of plant
families: Plumbaginaceae, Polygonaceae, Geraniaceae, Cistaceae,
and Rosaceae. Within Synansphecia there are several groups of
closely related species which can be separated by genitalic and
external characteristics and which are restricted to specific host
plant families.
a. S. triannuliformis group: S. triannuliformis (Freyer, 1845), S. meriaeformis (Bois-
duval, 1840), S. maroccana sp. n., S. hispanica sp. n.
Diagnosis. 6 sometimes, © always with white or yellow subapical spot of antenna;
male genitalia very homogenous within the different species, with simple gnathos
and crista sacculi (figs. 18, 19).
Host plants. Polygonaceae (Rumex spp.). S. triannuliformis has also been reported
from Geranium, Geraniaceae (Spatenka er al., 1997).
Distribution. Northwest Africa, Europe, Middle East.
b. S. muscaeformis group: S. muscaeformis (Esper, 1783), S. borreyi (Le Cerf, 1922),
S. atlantis (Schwingenschuss, 1935), S. koschwitzi Spatenka, 1992
Diagnosis. & without, ® usually with white to yellowish subapical spot of antenna; male
genitalia very homogeneous, with simple gnathos and crista sacculi (figs. 20, 21).
Host plants. Plumbaginaceae (Armeria spp., Limonium spp.).
Distribution. Northwest Africa and south-western Europe, but S. muscaeformis
extending to central and eastern Europe.
c. S. leucomelaena group: S. leucomelaena (Zeller, 1847), S. aistleitneri Spatenka,
1992, S. kautzi (Reisser, 1930), S. affinis affinis (Staudinger, 1856), S. affinis erodii-
phaga (Dumont, 1922)
Diagnosis. & without, © sometimes with white to yellowish subapical spot of antenna;
male genitalia with specialized gnathos (crista medialis and crista lateralis linked
distally), crista sacculi hooked distally, setae often separated in two fields.
Host plants. Rosaceae (Poterium spp.), Cistaceae (Helianthemum spp., Fumana spp.),
Geraniaceae (Erodium sp.). Unknown for S. aistleitneri and S. kautzi.
Distribution. Holomediterranean.
d. S. umbrifera group: S. umbrifera (Staudinger, 1870), S. cirgisa (Bartel, 1912),
S. koshantschikovi (Püngeler, 1914)
Diagnosis. Rather large species; discal spot of hindwing broad, sometimes connected
by scaled area to outer margin of wing; male genitalia with simple gnathos, setae
of crista sacculi separated in two fields.
Host plants. Plumbaginaceae (Limonium spp.).
Distribution. South-eastern Europe, Middle East to western Central Asia.
85
e. S. mannii group: S. mannii (Lederer, 1853), S. hera Spatenka, 1997
Diagnosis. Small to medium sized species; ground-colour brownish; male genitalia
with simple gnathos, crista sacculi strongly hooked distally, setae continuously.
Host plants. Geraniaceae (Geranium spp.), unknown for S. hera.
Distribution. Eastern Mediterranean (Bulgaria, Greece, Turkey).
Note. According to bionomic characteristics, S. doryliformis (Ochsenheimer, 1808)
is similar to the Synansphecia triannuliformis-group, but isolated by genitalic and
external characteristics. However, the species shows strong affinities to the genus
Pyropteron Newman, 1832. The generic position of S. doryliformis and consequentely
the status of the genus Synansphecia in relation to Pyropteron should be carefully
investigated.
Synansphecia triannuliformis and S. muscaeformis species groups
The members of the S. triannuliformis and S. muscaeformis
groups form a complex of closely related species. Due to their
homogeneous external appearance and the lack of suitable
differences in their genitalia they are often difficult to distinguish.
Nevertheless, both groups are well separated by their bionomical
characteristics, with larvae feeding either in species of the
Polygonaceae (S. triannuliformis group) or Plumbaginaceae (S.
muscaeformis group). In the adults, the two species groups can
be distinguished by the presence (S. triannuliformis group) or
absence (S. muscaeformis group) of a yellow to white spot of
the male antenna dorso-subapically. However, this spot is usually
absent in @@ of S. triannuliformis itself, while it is present in
all 9° of both species groups.
The following characteristics of the male genitalia are common
to both groups: valva with simple crista sacculi, curved apically,
with broad scale-like setae dorsally; uncus-tegumen complex
Figs. 1-8. 1-2 — Synansphecia maroccana sp. n., Morocco, Oukaimeden: 1 — @,
paratype (CAK), wingsp. 21.5 mm. 2 — Q, paratype (CHR), wingsp. 21.5 mm. 3-4 —
Synansphecia hispanica sp. n., Spain: 3 — 4, paratype (CAK), wingsp. 21.0 mm; 4 —
Q, paratype (CAK), wingsp. 21.0 mm. 5-7. Synansphecia atlantis (Schwingenschuss,
1935): 5 — À, paralectotype, Morocco (NLMW), wingsp. (reconstructed) 20.0 mm;
6 — labels of paralectotype; 7 — 2, Morocco, Oukaimeden (BMNH), wingsp. 21.0 mm.
8 — Synansphecia aistleitneri Spatenka, 1992, 2, holotype, Spain (MWM), wingsp.
2275 am.
86
strong, curved dorsally; crista lateralis and medialis simple, ear-
shaped, not connected to each other; scopula androconialis long
and strongly covered with setae; aedeagus about as long as valva,
with numerous small shark tooth-shaped cornuti; saccus narrow,
about half as long as aedeagus.
S. triannuliformis species group
Synansphecia triannuliformis (Freyer, 1845)
Sesia triannuliformis Freyer, 1845: 35. Type locality: Konstantinopel (Istanbul, Turkey).
Type material: lost.
Bembecia triannuliformis: Heppner & Duckworth, 1981: 40.
Synansphecia triannuliformis: Lastüvka, 1990a: 94; Laëtüvka, 1990b: 129-132; Spatenka
et al., 1993: 103; Laëtüvka & LaStüvka, 1995: 96; de Freina, 1997: 166-169.
Material examined. There was no material from France available for examination.
Extensive material from Germany, the Balkan Peninsula and Asia Minor has been
studied.
According to LaStüvka & Lastuvka (1995), in the south-western
Palaearctic this ponto-mediterranean species has only been re-
corded from south-eastern France, where it reaches the most
western part of its range. Literature records from Spain and
Morocco (de Freina, 1997) are likely to refer to Synansphecia
hispanica sp. n., S. maroccana sp. n. or S. borreyi (Le Cerf,
1922). From these species it can easily be distinguished by the
anal tuft of the male (divided into three tufts in S. triannuliformis,
simple in the species compared), the absence of the white
subapical spot of the antenna of males (present in S. hispanica
sp. n. and S. maroccana sp. n.), and bionomical characteristics
(the larvae of S. borreyi live in Limonium spp., those of S.
triannuliformis in Rumex spp.). For details, see the key below.
—>
Figs. 9-16. 9-10 Synansphecia koschwitzi Spatenka, 1992, Spain, Aranjuez: 9 —
& (CAK), wingsp. 19.0 mm; 10 — 9 (CAK), wingsp. 19.0 mm. 11-14 — Synansphecia
borreyi (Le Cerf, 1922): 11 — 9, Morocco, Ifrane (CAK), wingsp. 23.5 mm; 12 —
Q, Morocco, Mrirt (CAK), wingsp. 23.5 mm; 13 — @, lectotype (MNHP), wingsp.
23.0 mm; 14 — labels of lectotype. 15-16 — Chamaesphecia powelli Le Cerf, 1916:
15 — Q, holotype, Algeria (MNHP), wingsp. 16.0 mm; 16 — labels of holotype.
88
ger. rear (xx
Be re 7
fo » shoti0%
lover y
PIS pNIR y tod
2
a
ce]
&
S
Pe
=
S
2
a
=
Chubat-el-Hamma
4" juin 1921
iis GhAeD We MIs a
x tz fe)
a y
ce
re)
27.
14
oh elle ee x,
CHFIHAC LH
ce
st #,
re ÿl'sr Via! m)
dur pep 37
72)» armed.
CK ary
Synansphecia maroccana Sp. n. (figs. 1, 2, 17a, 18)
Lastüvka & Laëtüvka, 1995: 96, fig. 62; pl. 6, fig. 8 (as S. borreyi, misidentified);
de Freina, 1997: 167, 171-172 (part.), figs. 159, 163; pl. 13, figs. 28-34 (as S. borreyi,
misidentified), fig. 43 (as S. atlantis, misidentified).
Material examined. Holotype &, “Marokko, Haut Atlas, Oukaimeden, 2600 m,
5.-10.V11.1994 Ph[eromon] Flang]., leg. Th. Drechsel” (MNHB). Paratypes (191,
39, all from Morocco): 744, same data as holotype (CAK, CMP, CKS, CHR, CEB,
CJG, CFR, CTD, CZL, CTG, MNHB, ZFMK); 564, High Atlas, Oukaimeden,
2300-2700 m, 5.-10.VII.1994 leg. Dr. Lobel (CHL, CAK, CDB, CHR, CJG, CFR);
6, High Atlas, Oukaimeden, 2650 m, 12.VIII.1996, leg. R. Bläsius (CRB); 4, same
data, but reared from Rumex sp., 9.1V.1997 e.l. (CRB); 4, High Atlas, Oukaimeden,
2300-2700 m; 12.-15.V11.1976, leg. W. Thomas; 354, 9, High Atlas, Oukaimeden,
2700 m, 22.-25.V1.1998, leg. A. Lingenhöle (CAL, CAK); ¢, High Atlas, Tizi-n-Tichka,
north-side, 2000 m, 14.VI.1996, leg. A. Kallies (CAK); 98, 9, Middle Atlas, Ifrane,
1700 m, 27.VI.-6.VII.1994, leg. Riefenstahl (CHR, CAK, CZL); 108, ©, Ifrane, 1650 m,
28.V1.-8.V11.1994, leg. Stübinger (CAK, CRS); 28, Middle Atlas, Tizi n° Tretten,
30.V1.-5.V11.1994, 2200 m, leg. Riefenstahl (4, gen. prep. by A. Kallies, prep. No.
30-96) (CAK, CHR); 4, Daiet-Achlef, Deuxieme quinzaine de juillet, Harold Powell
(ERS):
The species is present in many collections but has usually been
confused with S. borreyi (Le Cerf, 1922). However, both species
belong to different species groups.
Description (4 holotype, paratype, fig. 1). Wingspan 21.0 mm;
body length 12.5 mm; forewing length 9.5 mm; antenna 7.0 mm.
Head. Antenna black, with white spot dorso-subapically,
scapus black, yellow ventrally; frons yellowish grey, yellow
laterally and before antenna; labıal palpus yellowish white, middle
and apical joint black laterally; vertex black mixed with orange
scales, without white spot between antenna and ocellus; perice-
phalic hairs yellow.
Thorax. Fuscous dorsally, with a narrow yellow line medially;
patagia black; tegula with narrow yellow inner margin and apex;
metathorax with two yellow patches submedially; fuscous ven-
trally, with patches of yellow scales.
Legs. Fore coxa fuscous, yellowish white apically and laterally;
fore femur, tibia and tarsus fuscous, strongly mixed with yellow
ventrally; mid and hind leg brownish, tibiae almost ochreous
white throughout, spurs yellowish white, tarsi strongly mixed with
yellow scales.
90
Abdomen. Blackish brown dorsally, covered with ochreous
brown, partly yellow scales throughout, with a weak interrupted
line medially; tergites 2, 4 and 6 each with a narrow white margin
posteriorly; blackish brown ventrally, with single white scales
medially; sternites 3-5 each with weak white margins posteriorly;
anal tuft blackish brown dorsally, with yellow and ochreous scales
medially; anal tuft ochreous yellow ventrally, blackish brown
medially.
Forewing. Veins blackish brown, covered with ochreous brown
scales almost throughout; ETA rounded, somewhat broader than
discal spot, with a narrow extension of apical area into ETA
along R,/R;; apical area as broad as ETA, brown, ochreous
between veins; discal spot blackish brown, outer half strongly
covered with light brown and yellow scales; ATA well developed;
PTA weak, not reaching discal spot, partly covered with ochreous
brown scales; cilia brownish grey; with brown veins ventrally,
covered with yellow scales almost throughout; apical area yellow
between veins.
Hindwing. Veins dark brown; discal spot very broad (fig. 17a);
obtuse triangular, not reaching M;; outer margin brownish; cilia
brownish grey.
Male genitalia (fig. 18). Uncus-tegumen complex broad, strongly
curved dorsally; gnathos with crista medialis relatively low,
membranous extending towards proximal part; aedeagus with
comparably few cornuti; saccus relatively short.
Female (paratype, fig. 2). Wingspan 21.0 mm; body length
13.0 mm; forewing length 9.5 mm; antenna 6.0 mm. Similar to
4, but discal spot of forewing broader, that of hindwing almost
reaching M;; anal tuft with two submedial bunches of ochreous
scales dorsally, somewhat darker ventrally; ATA shorter and
broader; PTA present, but very narrow.
Female genitalia. Not examined.
Variation. Less variable in wingspan, size of transparent areas
and coloration; wingspan from 19.0 to 22.0mm (extreme
16.0 mm).
Differential diagnosis. This species is characterized by its
ochreous brown coloration and the broad and short discal spot
of the hindwing. It is closely related to S. hispanica sp. n.,
described below (see there for diagnosis). Superficially, it is also
91
RES,
RASE mn tek A
DS A aor ARS CE
FT tenses
Fig. 17. Discal spots of hindwings of Synansphecia species: a — S. maroccana sp. 0.;
b — S. hispanica sp. n.; c — S. atlantis (Schwingenschuss, 1935); d — S. borreyi
(Ke Cer1922);
similar to S. borreyi. From this species it can be easily distin-
guished by the presence of a white subapical spot of the antenna
of the 4 (not present in S. borreyi), by the broad and short
discal spot of the hindwing (very narrow in S. borreyi), by the
shape of the PTA (well developed in S. borreyi) and by the
absence of the white spot between the base of antenna and the
ocellus (present in S. borreyi).
Distribution. This species is known from the High and Middle
Atlas Mts, Morocco.
Habitat and bionomics. The species was collected at altitudes
between 1650 and 2700 m, adults flying from mid June to early
August. The host plant is an unidentified species of Rumex,
similar to R. acetosa (Drechsel & Bläsius, pers. comm.).
Synansphecia hispanica sp. n. (figs. 3, 4, 17b, 19)
Laëtüvka & Laëtüvka, 1995: 94, fig. 59; pl. 6, figs. 2, 3 (as S. atlantis, misidentified);
de Freina, 1997: 166-167 (part.), 172, fig. 160, 164; pl. 13, fig. 36-42; pl. 24, fig. 6
(as S. atlantis, misidentified); pl. 13, fig. 51 (as S. koschwitzi, misidentified).
92
Material examined. Holotypus & “5.6.1993 e.l., S[ierrja Baza [ca. 2000 m], Prov.
Almeria, Spanien, [ex] Rumex scut[atus]., leg. R. Bläsıus” (MNHB). Paratypes, from
Spain (954, 229): 54, 49, same data as holotype, 6.11.-10.VI.1993 el. (CRB, CMP);
38, Prov. Almeria, Sierra Baza, 1600 m, 10.VII.1993, leg. R. Bläsius (CRB); 9,
Andalusia, Sierra Baza, Escullar, 19.VI.1993, ex Rumex scutatus, 25.-27.V1.1993 e.l.,
leg. D. Bartsch (CDB); 26, 2, Prov. Almeria, Sierra Filabres, Albanchez, ca. 1000 m,
1.V.-10.V1.1993 e.l., ex Rumex scutatus, leg. R. Bläsius (CRB, CHR): 84, Prov.
Malaga, Jubrique, Sierra Bermeja, 500-600 m, 16.VII.1993 resp. 7.VI.1993, leg. R.
Bläsius (CRB, CJG, CAK, CZL, CTS); 34, Prov. Almeria, Puerto Lumbreras,
25.V.1994, leg. E. Bettag (CEB); 4 Ex., Prov. Almeria, Sierra Filabres, e.l. 28. V1.1994,
leg. E. Bettag (CEB); 36, ©, Prov. Malaga, Ronda, 800 m, 29.V.1995 resp. 21.VII.1992
resp. 15.V11.1993, leg. R. Bläsius (CRB, CAK); 29, same data, but 18.IV. and 5.V.1993
e.l. leg. R. Bläsius (CHR, CZL); 48, Andalusia, Ronda, 500 m, 26.-27.V1.1993, leg.
Bartsch (CDB); 74, 59, Andalusia, Sra de Ronda, Madronal, 600 m, 1.VII.1994, leg.
Z. Lastüvka (CZL); 34, Andalusia, Sra de Ronda, El Burgo, 1100 m, 28.V1.1994,
leg. Z. Laëtüvka (CZL); 24, Andalusia, Sra Guillimona, 1800 m, 16.V11.1993, leg.
Z. Laëtüvka (CZL); 9, Sra Nevada, N Laujar, 1600 m, 29.V1.1992, leg. Z. Laëtüvka
(CZL); 84, 9, Prov. Malaga, Benahavis, 25.V1.1991, 200 m, leg. Riefenstahl (CHR,
CMP, CKS); 3, Prov. Malaga, Casares, 600 m, 22.VI.1991, leg. Riefenstahl (CKS);
6, Prov. Malaga, St. Perdo, 24.VI.1991, 100 m, leg. Riefenstahl (CAK); 28, ©,
Andalusia, Carratraca, 300 m, 12.-13.V11.1993, leg. Z. Laëtüvka (CKS, CZL); 64,
same data, but 27.V1.1994 (CZL); 746, Prov. Malaga, Rio Genal, Pujerra, 30.V.1995,
leg. E. Bettag (CEB); 44, Prov. Malaga, Ganciu, 600 m, 30.V.1995, leg. R. Bläsius
(CRB); 24, Prov. Malaga, Juzcar, 800 m, 13.VII., 16.VII.1993 resp., leg. R. Blasius
(CRB); 6, Prov. Granada, Sierra Blanquilla, Benaojan, 26.VI.1989, leg. K. Spatenka
(CKS); 26, Prov. Granada, Sierra Nevada, Bayarcal, 1400 m, 15.V11.1992, leg. Bläsius
(CRB); 48, Prov. Granada, Sierra Nevada, Trevelez, 1500 m, 20.VII.1993, leg. R.
Bläsius (CRB); 3, Prov. Murcia, Puerto Lumbreras, 600 m, 23.V.1994, leg. R. Bläsius
(CRB); 10¢, Prov. Huelva, Mazagon, 0 m, 24.V.1991, leg. M. Petersen (CMP, CKS,
CZL); 26, Prov. Cadiz, Tarifa, 0 m, 19.V.1994 bzw. 1.VI.1995, leg. R. Bläsius (CRB);
6, Prov. Cadiz, Barbate, 0 m, 19.V.1994, leg. R. Bläsius (CRB); 6, Prov. Leon, N
Parada Secca, N Villa Franca, 6.VJI.1992, leg. Fery (MNHB); 3, Cuenca (Cast.),
“an Artemisia fliegend”, Korb 31.7.[18]96 / coll. Osthelder (ZSM); 2, Cuenca (Cast.),
“an Salvia fliegend”, Korb 31.7.[18]96 / coll. Osthelder (ZSM). Paratypes, from France
(183, 169): 73, 139, Dep. Hérault, Marseilan Plage, 26.VI.1990, leg. Baumgarten
(4, gen. prep. by A. Kallies, No. 107-96; 4, gen. prep., Synansphecia muscaeformis
Esp. [sic!], det. Riefenstahl) (CBH, CHR, CAK); 24, Gallia mer., Aigues Mortes,
19.VI.1994, leg. Z. Laëtüvka (CZL); 94, 39, Camargue, vic. Aigues-Mortes, larvae
24.111.1995 ex Rumex tingitanus, 16.V1.-19.V11.1995 e.l., leg. D. Bartsch (CDB).
This species is represented in many collections, but usually
confused with S. atlantis (Schwingenschuss, 1935). However, both
species belong to different species groups. S. atlantis is known
only from the High Atlas Mts, Morocco, while S. hispanica sp.
n. is restricted to south-western Europe.
93
Description (¢ holotype, paratype, fig. 3). Wingspan 19.0 mm;
body length 13.0 mm; forewing length 9.0 mm; antenna 6.5 mm.
Head. Antenna black, with prominent white spot dorso-sub-
apically, scapus black, grey ventrally; frons leaden grey, white
laterally; labial palpus white, middle and apical joint mixed with
black scales laterally and dorsally; vertex black, with some yellow
scales anteriorly; a small white spot between antenna and ocellus
present; pericephalic hairs yellow dorsally, white ventrally and
laterally.
Thorax. Black dorsally, with a weak yellow line medially;
patagia black; tegula with narrow yellow inner margin; meta-
thorax yellowish white, black ventrally, with patches of pale
yellow and white scales.
Legs. Fore coxa white, blackish grey interiorly; fore femur,
tibia and tarsus blackish grey; mid and hind leg blackish, mid
femur with anterior margins pale yellowish white; mid tibia white
dorsally, spurs grey; proximal two thirds of hind tibia white
dorso-laterally, spurs white.
Abdomen. Fuscous; tergites partly with brown scales anteriorly;
tergite 1 with some yellowish white scales posteriorly; tergites
2, 4 and 6 with narrow white margins posteriorly; sternites fuscous
with a few white scales on sternites 3 and 4; abdomen with an
almost complete narrow white line laterally; anal tuft fuscous
dorsally, with single yellow scales medially, with some submedial
yellow scales ventrally.
Forewing. Black; ETA rounded, as broad as discal spot,
consisting of a small cell between R; and R,/Rs, three long cells
between R,/R; and M, and a small cell between M; and Cu,
(the small cells more or less covered with whitish hyaline scales);
discal spot black, with a few ochreous scales externally; apical
area blackish, light grey between veins; ATA well developed; PTA
developed, not extending to discal spot; cilia black; veins black
ventrally, but discal spot and apical area strongly dusted with
white scales; apical area black, with white scales between veins.
Hindwing. Veins black; discal spot (fig. 17b) broad triangular,
extending to half distance between M, and M;; outer margin
black; cilia black; veins black ventrally, dusted with white scales.
Male genitalia (fig. 19). Similar to S. maroccana. Uncus-
tegumen complex narrower, less strongly curved; gnathos with
94
crista medialis relatively high and more strongly curved, not
extending towards proximal part; aedeagus with many small
cornuti; saccus slightly longer.
Female (paratype, fig. 4). Wingspan 20.0 mm; body length
13.0 mm; forewing length 9.0 mm; antenna 6.0 mm.
Females differ from males by the following characteristics: PTA
weak, covered with black scales almost throughout; ATA bordered
with yellow scales; veins in ETA covered with yellow scales; costal
margin yellow subapically; abdomen with well-developed yellow
line medially (more or less disrupted in spots); yellow posterior
margins of tergites broader; anal tuft with two white submedial
tufts dorsally.
Variation. Wingspan from 18.0 to 21.0 mm in @¢@ (exceptionally
14.0 mm), 18.0 to 23.0 mm in QQ. This species is somewhat
variable in the size of the ETA, usually consisting of 5 cells, in
CO frequently only of 3 to 4 cells. The medial dorsal line of
the abdomen is often weakly expressed. Specimens from France
are usually somewhat larger than those from Spain.
Differential diagnosis. S. hispanica is closely related to S.
maroccana, but differs by the black coloration and the white
pattern of the body and legs (ochreous brown with yellowish
pattern in S. maroccana), by the small discal spot of the hindwing
(broad in S. maroccana), and by the presence of a small snow-
white spot between base of antenna and ocellus (absent in S.
maroccana). There are additional differences in the discal spot
of the forewing in the 2% (broader in S. maroccana), in the ATA
(shorter in S. maroccana), and the PTA (well developed in S.
maroccana).
Distribution. This species is known from Andalusia (Malaga,
Almeria, Granada, Murcia, Cadiz, Huelva) and Castilia (Cuenca,
Leon) to the Mediterranean coast in southern France.
Habitat and bionomics. In Spain this species is found at
altitudes from sea level up to more than 2000 m in the Sierra
Nevada, adults being observed from the middle of May to the
end of July. In France the species was found only at sea level
close to the coast in June. In Spain, Rumex scutatus was recorded
as the larval host plant by R. Bläsius. In southern France S.
hispanica lives in Rumex tingitanus (D. Baumgarten & D.
Bartsch, pers. comm.). Males are attracted by artificial phero-
95
S
à
N
II
RSS
ar 5. 8
96
mones in the afternoon between 2:00 and 5:30 p.m. (Riefenstahl,
pers. comm.). According to the attached labels two specimens
collected by Korb were observed visiting Artemisia and Salvia.
Synansphecia meriaeformis (Boisduval, 1840)
Sesia meriaeformis Boisduval, 1840: 42. Type locality: Andalusia (Granada), Spain.
Type material: lost.
Chamaesphecia meriaeformis: Heppner & Duckworth, 1981: 35.
Synansphecia meriaeformis: Lastüvka, 1990a: 94; Spatenka et al., 1993: 103; Lastüvka
& Laëtüvka, 1995: 92; de Freina, 1997: 176-178.
Material examined. Numerous specimens from France and Italy were studied. The
species is present in most of the collections mentioned above.
A well-known species occurring in southern France, Spain, and
Italy. It is the smallest species of the genus and it can usually
be distinguished easily from all congenerics (see the key below).
S. muscaeformis species group
Synansphecia muscaeformis (Esper, 1783)
Sphinx muscaeformis Esper, 1783: 217. Type locality: Frankfurt/Main (Germany).
Type material: lost.
Bembecia muscaeformis: Heppner & Duckworth, 1981: 39.
Synansphecia muscaeformis: LaStüvka, 1989: 177-180; Laëtüvka, 1990a: 94; Spatenka
et al., 1993: 103; Lastüvka & Laëtüvka, 1995: 98; de Freina, 1997: 169-171.
Material examined. 23, 29, [France] Sene, 31. Mai-6. Juin / J. de Joannis O2 dom.
(lectotype and paralectotypes of Sesia philanthiformis ssp. occidentalis de Joannis,
1908; designated by Spatenka, 1992a); &, Spain, Prov. Lerida, Coll. del Canto, 1600 m,
19.V11.1993, leg. et coll. Lasttvka. Additional extensive material from Germany,
Austria, and Italy has been examined.
<—
Fig. 18. Synansphecia maroccana sp. n., paratype 6, Morocco, Oukaimeden, genitalia
(gen. prep. AK27) (CAK): a — tegumen-uncus complex; b — valva; c — aedeagus;
d — vinculum, saccus. Reference bar 0.5 mm.
Fig. 19. Synansphecia hispanica sp. n., paratype 4, Spain, Malaga, genitalia (gen.
prep. AK97) (CAK): a — tegumen-uncus complex; b — valva; c — aedeagus; d —
vinculum, saccus. Reference bar 0.5 mm.
97
FH
\
NE
U 17} h
a eu aa à
MAS
dites
98
According to Laëtüvka & Laëtüvka (1995), in addition to the
main part of its range in central Europe this species occurs in
northern and western France, and in the Pyrenees.
The only specimen from Spain, which was available for
examination was collected in a population of Armeria (LaStüvka,
pers. comm.).
Synansphecia borreyi (Le Cerf, 1922) (figs. 11, 12, 13, 14, 17d,
222)
Chamaesphecia borreyi Le Cerf, 1922: 133. Type locality: Morocco, Chabat-el-Hamma.
Lectotype: & (MNHP, designated by Spatenka, 1992a). Heppner & Duckworth,
1981: 35.
Synansphecia borreyi: Spatenka, 1992a: 490; Spatenka er al., 1993: 102; Laëtüvka &
Lastüvka, 1995: 96 (part.); de Freina, 1997: 171-172 (part.).
Material examined. Lectotype 4, with labels illustrated on Fig. 14; Paralectotypes:
24, 3Q with identic labels (4 gen. prep. AK26, © gen. prep. AK50) (MNHP). Additional
material from Morocco: 9, same data as holotype, without type label (CTG); 94,
89, Middle Atlas, Tizi n° Tretten, 1900 m, 10 km south of Ifrane, larva: 16.1V.1997,
reared from Limonium sp., 10.-15.V1.1997 e.l., leg. A. Kallies (CAK); 43, 49, Middle
Atlas, Skm NNE Mrirt, ca. 1200 m, larva: 14.IV., reared from Limonium sp.,
15.-31.V.1997 e.l., leg. A. Kallies (CAK); 354, 49, Middle Atlas, Ifrane, 1700 m,
27.V1.-6.V11.1994, leg. Riefenstahl (CHR, CAK, CEB, CKS, CZL, CAL); 206, 29,
same data, but leg. Stübinger (CRS, CHR, CAK); 56, ®, Middle Atlas, Tizi n° Tretten,
30.V1.-5.V11.1994, 2200 m, leg. Riefenstahl (CHR).
This species was described from a series of specimens taken
in western Morocco. Later, it has usually been confused with
S. maroccana Sp. n. (Laëtüvka & Laëtüvka, 1995; de Freina,
1997), described above. According to the bionomical data and
the external characteristics both species belong to different species
groups.
Fig. 20. Synansphecia atlantis (Schwingenschuss, 1935), paralectotype 6, Morocco,
Dj. Oucheddene, genitalia (gen. prep. AK86) (NLMW): a — tegumen-uncus complex;
b — valva; c — aedeagus. Reference bar 0.5 mm.
Fig. 21. Synansphecia borreyi (Le Cerf, 1922), paralectotype 4, Morocco, Chabat-
el-Hamma, genitalia (gen. prep. AK21) (MNHP): a — tegumen-uncus complex; b —
valva; c — aedeagus; d — vinculum, saccus. Reference bar 0.5 mm.
99
Fig. 22. Synansphecia borreyi (Le Cerf, 1922), paralectotype 9, Morocco, Chabat-
el-Hamma, genitalia (gen. prep. AK50) (MNHP). Reference bar 0.5 mm.
100
Description (3 lectotype, fig. 13). Wingspan 23.0 mm; body
length 13.5 mm; forewing length 10.5 mm; antenna 7.5 mm.
Head. Antenna black, without white spot subapically; frons
leaden grey, white laterally; vertex black with orange-yellow scales
anteriorly; labial palpus white, middle joint with narrow black
stripe laterally, apical joint mixed with black; a white spot
between base of antenna and ocellus.
Thorax. Black, with a narrow yellow line medially; patagia
black, white ventro-laterally; tegula black, with narrow yellow
inner margin and yellow scales apically; mesothorax with two
white patches submedially; thorax fuscous ventrally, with small
patches of white to pale yellow scales laterally.
Legs. Fore coxa snow-white (other parts missing); mid femur
fuscous, with white hair-like scales and with yellowish white
anterior margin, white interiorly; base of mid tibia brownish grey
externally, ochreous distally, white interiorly; spurs white; mid
tarsus grey, mixed with white scales (hind leg broken off)
Paralectotype: hind femur fuscous with white hair-like scales,
anterior margin yellowish white; hind tibia white ochreous,
exteriorly fuscous subapically, base interiorly fuscous; spurs
white; hind tarsus fuscous, dusted with white scales.
Abdomen. Black, covered with beige brown scales almost
throughout; tergites 2-7 with white line medially; tergite |
scattered with a few yellow-white scales; tergite 2 with white scales
at posterior margin laterally; tergite 4 with narrow white margin
posteriorly; sternites black, each with a narrow white posterior
margin, dusted with white scales throughout; anal tuft black
dorsally, with tufts of white scales medially and lateraily; anal
tuft white almost throughout ventrally.
Forewing. ETA broader than high, about 1.8 as broad as discal
spot, consisting of 5 cells, with a small projection of apical area
into ETA between R,/R;; apical area fuscous with yellowish
ochreous scales between veins, near M, narrower than ETA; ATA
and PTA well developed; PTA almost reaching discal spot of
forewing; discal spot fuscous, with brownish ochreous scales
exteriorly; veins fuscous, dusted with yellow to ochreous scales;
cilia fuscous; similar ventrally, but veins strongly dusted with
white scales.
101
Hindwing. Discal spot narrow, triangular, extending to half
way between M, and M,/Cu,; veins and cilia fuscous; similar
ventrally, but veins heavily dusted with white scales.
Male genitalia (fig. 21). Uncus-tegumen complex relatively
narrow; gnathos with crista medialis of medium hight, somewhat
membranous towards proximal part; aedeagus with small cornuti;
saccus long and narrow.
Female (figs. 11, 12). Similar to male, but differing by the
smaller ETA (rounded, about 1.3 as broad as discal spot); apical
area broader, almost as broad as ETA at vein M,; the white
to yellow mediodorsal abdominal line more strongly expressed;
antenna with few white scales subapically.
Female genitalia (fig. 22). Papilla analis membranous, slightly
sclerotized ventrally, covered with long setae; posterior apophysis
longer than anterior apophysis; antrum well sclerotized, less so
in medial part; bursa rounded, membranous, with only very weak
sclerotization near ductus bursae.
Variation. A rather variable species, both in size and coloration
even within populations. Wingspan of dd 18-23 mm, 99
19-24 mm; the yellow mediodorsal line on thorax and abdomen
may be absent; the ochreous to brown scales vary in abundance;
the extension of the ETA varies (1.8 to 2.5 as broad as discal
spot in dd, 1 to 1.5 in QQ), fore coxa sometimes with grey scales
interiorly in SL.
Diagnosis. S. borreyi is closely related and similar to S.
koschwitzi and S. atlantis. Both differ from S. borreyi in the
ETA (small and rounded in the species compared); the apical
area (broader); the coloration of body and wings (without
ochreous brown scales); in the PTA (shorter); the discal spot of
the hindwing (broader) and by the fore coxa in the & (always
black interiorly). See also key below.
Distribution. This species is known from the type locality near
Rabat in western Morocco and from the Middle Atlas Mts in
central Morocco. Literature records from Spain (Lastuvka &
Lastuvka, 1995) refer to Synansphecia hispanica sp. n. described
above.
Habitat and bionomics. Specimens were bred from roots of
two different Limonium species from the Middle Atlas near Mrirt
(Petersen & LingenhGle, pers. comm.; Kallies, pers. obs., 1997)
102
and Ifrane (Kallies, pers. obs., 1997), respectively. The species
is known from altitudes between 400 and 2200 m. Adults have
been collected between Ist and 29th of June. Most likely the
flight period starts in mid May at lower altitudes. In the cold
spring of 1997 fully grown larvae and pupae were found in April.
Synansphecia koschwitzi Spatenka, 1992 (figs. 9, 10)
Synansphecia koschwitzi Spatenka, 1992b: 437. Type locality: Central Spain, Prov.
Toledo, Aranjuez. Type material: holotype, @ (MWM). Laëtüvka & LaStüvka, 1995:
98, fig. 63; pl. 6, fig. 7; de Freina, 1997: 175-176, figs. 165, 167; pl. 13, figs. 47-50.
Material examined. Numerous specimens from the type locality (CKS, CUK, CAK,
CHR).
This species was described after a series of @@ taken near
Aranjuez, central Spain (Spatenka, 1992b). Later, it was reared
from larvae boring in roots of a Limonium sp., which was
identified as L. toletanum (Koschwitz, pers. comm., Spatenka
et al., 1996).
The female (fig. 10) had not yet been described or figured.
It differs from the @ by the white subapical spot in the antenna,
the smaller ETA (consisting of 5 cells, anterior and posterior cell
usually covered with pale yellow to white scales), the weak PTA,
the entirely white coxa of the fore leg, and the anal tuft (mixed
with white dorsally).
Note. It can not be excluded that S. koschwitzi represents only
an isolated subspecies of S. borreyi. However, both taxa can
easily be distinguished by the shape of the ETA and the discal
spot (cf. diagnosis for S. borreyi). It would be most interesting
to study populations of Synansphecia spp. from southern Spain
and northern Morocco living in Limonium. A record of S.
koschwitzi from Malaga (de Freina, 1997) refers to S. hispanica
sp. n., described above.
Synansphecia atlantis (Schwingenschuss, 1935) (figs. 5, 6, 7, 17c,
20)
Chamaesphecia atlantis Schwingenschuss, 1935: 106. Type locality: Morocco, High
Atlas, Dj. Oucheddene, 2200 m. Type material: lectotype, & (NLMW, designated
by Spatenka, 1992a). Heppner & Duckworth, 1981: 35.
103
Synansphecia atlantis: Spatenka, 1992a, 499; Spatenka er al., 1993: 102; Lastüvka &
Lastüvka, 1995: 94 (part.); de Freina, 1997: 172-173 (part.).
Material examined. Paralectotype & (fig. 5), with labels illustrated on fig. 6 (NLMW).
Additional material from Morocco: 94, High Atlas, Tizi-n-Tichka, north-side, 2000 m,
14.V1.1996, leg. A. Kallies, M. Petersen & U. Koschwitz (CAK, CMP, CUK); 2,
High Atlas, Oukaimeden, 2800 m, 8.V11.1975, leg. E. Reichl (CAK); 4, High Atlas,
Oukaimeden, 2500 m, 17.V1.1994, leg C. Kassebeer (CHR); 9, High Atlas, Oukaimeden,
2600-2700 m, 24.-30.V11.1985, W. G. Tremewan (BMNH); 9, High Atlas, Djebel
Oukaimeden, 2650-2900 m, 24.-28.V11.1985, W. G. Tremewan (BMNH); 9, High Atlas,
Djebel Oukaimeden, 2700-2850 m, 20.VII.1979, leg. H. Hepp (CHR); 386, 29, High
Atlas, Oukaimeden, 2700 m, 22.V1.1998, leg. A. Lingenhöle (CAL, CAK).
This species was described after two male specimens collected
in the High Atlas (Djebel Oucheddene, south of Jjoukak) at an
altitude of 2200 m. Both specimens were examined by Spatenka
(1992a). Later, specimens of a related species of Synansphecia
were discovered in Spain and France. They were usually referred
to S. atlantis. However, detailed examination of the paralectotype
of S. atlantis revealed striking differences between the Moroccan
and south-western European populations of these Synansphecia
species, both belonging to different species groups. Therefore, it
appeared necessary to redescribe Synansphecia atlantis and to
describe the European populations as a new species, S. hispanica
sp. n.
Description (3 paralectotype, fig. 5). Wingspan (reconstructed)
20.0 mm; forewing length 9.0 mm; antenna 6.5 mm.
Head. Antenna black throughout; frons white mixed with
leaden grey scales, scapus with white scales ventrally; labial palpus
white, strongly tufted with black scales ventro-laterally, apical
joint black laterally; vertex black; pericephalic hairs orange
dorsally, white ventrally and laterally.
Thorax (somewhat descaled). Black dorsally; patagia black,
white ventro-laterally; tegula with narrow white inner margin and
white scales apically; black ventrally, with a patch of white scales
below forewing.
Legs. Black; outer margin of fore coxa with a white stripe;
fore tibia with white hairs dorsally; mid tibia with white tufted
hairs dorsally; basal two-thirds of hind tibia with white tufted
hairs; spurs black ventrally, whitish dorsally.
104
Abdomen. Fuscous; tergite 2 with narrow white margin
posteriorly and white scales laterally (remaining parts missing).
Forewing. ETA rounded, consisting of 5 cells, only slightly
broader than discal spot; posterior and anterior cell small, with
single white scales at cross vein; ATA short, scaled near base;
PTA short, extending to discal spot of hindwing only; apical
area as broad as ETA, black with white scales between veins;
veins dusted with white scales ventrally.
Hindwing. Veins black; discal spot (fig. 17c) black, triangular,
extending to M3.
Male genitalia (fig. 20). Similar to S. borreyi. Gnathos with
crista medialis raised and strongly curved, somewhat exceeding
crista lateralis proximally.
To complete a description of the male the following abdominal
characteristics observed in recently collected specimens from the
High Atlas are added: abdomen fuscous, with undefined white
mediodorsal line, fuscous with scattered white scales ventrally,
with narrow white line laterally. Tergites 2, 4 and 6 with narrow
white posterior margins; sternites 3-7 with white scales at
posterior margin; anal tuft fuscous, with groups of white scales
laterally and ventrally.
Female (fig. 7). Wingspan 23.0 mm; body length 12.0 mm;
forewing length 10.0 mm; antenna 7.0 mm. Similar to male, but
differing by a small patch of white scales on the antenna dorso-
subapically; inner margin of tegula yellow; metathorax with two
small patches of white scales submedially; tergites with white
scales medially, forming an undefined interrupted mediodorsal
line; anal tuft with two tufts of white scales submedially; fore
coxa white almost throughout; thorax with large yellowish white
patch of scales laterally.
Variation. Only a single @ (paralectotype) of the original type
series could be located and examined. According to Spatenka
(in litt.) and to the original description both type specimens were
found to be identic. Some of the subsequently collected specimens
differ by the shape of the ETA (somewhat broader) and by the
extension of the discal spot of the hindwing (not reaching M;/
Cu,). In one © the posterior as well as the anterior cell of the
ETA is covered with scales throughout, the PTA is extremely
short. Wingspan in @@ ranging from 16.0-22.0 mm, in 9Q from
18.5-23.0 mm.
105
Diagnosis. This species is probably closely related to S. mus-
caeformis, but more similar to S. koschwitzi and S. borreyi (see
there for diagnosis). S. muscaeformis can be distinguished by
the discal spot of the hindwing (narrow, pointed, reaching M;/
Cu,) and by the coloration of body and wings (with yellow scales
especially in labial palpus, frons, abdomen and along margins
of transparent areas).
Distribution. Synansphecia atlantis probably occurs over the
entire range of the High Atlas. In addition to the type locality,
specimens from the Tizi-n-Tichka and from Oukaimeden are
known.
Habitat and bionomics. The type specimens were collected at
about 2200 m at the end of June (Schwingenschuss, 1935). In
mid-June 1996, M. Petersen, U. Koschwitz and the author col-
lected a small series of specimens near the Tizi-n-Tichka in the
High Atlas, at an altitude of about 2000 m. These specimens were
attracted to artificial pheromones in the afternoon. The habitat
was a high mountain meadow densely covered with a white
flowering Armeria species (A. allioides?), common in the High
Atlas. In the roots of this Armeria a fully grown larva was found,
which unfortunately died. It is assumed that the specimens
collected at that place developed in Armeria. Specimens were
observed in similar habitats near Oukaimeden (Lingenhôle, pers.
comm.). Here S. atlantis has been collected in Armeria popu-
lations at altitudes between 2500 and 2900 m from the middle
of June to the end of July.
Key to the south-western Palaearctic species of the Synansphecia
muscaeformis and S. triannuliformis group
1. Antenna yellow to ochreous ventrally; abdomen brown in @, more or
less covered with yellow scales; tegula with red inner margin in Q; legs
manly yellowl. QU Aine Ra AS ee S. doryliformis
—. Antenna black, sometimes with white subapical spot in @, usually so
in Q; tegula with white or yellow inner margin ..…................................ 2
2. Anal tuft divided into 3 tufts in 4; antenna usually without white
subapical spot in 4; PTA well developed in 9 (Asia Minor, south eastern
and central Europe to south-eastern France, host plants Rumex spp.)
PA AVAL BB SES, DRE ER IR eee eee S. triannuliformis
—. Anal tuft simple, antenna with or without whitish subapical spot in @;
PTA developed or‘covered! with-scalesamOn "27 EP 3
106
Antenna usually with white subapical spot in both sexes (host plants
ResterasppsBolygonaceag)i:.. man... ane sd. ATA —
Antenna without white subapical spot in @, in © typically present, rarely
absent; (host plants Armeria spp., Limonium spp., Plumbaginaceae) ... 6
Wingspan usually 14-16 mm; subapical spot of antenna undefined in
G; PTA in both sexes covered with scales almost throughout; ETA small,
usually consisting of three cells (Italy, southern France, Iberian Peninsula)
Be: te ON TOUT, Pee reat ios Gk aie S. meriaeformis
Wingspan usually 18-23 mm; subapical spot of antenna well defined in
G; PTA well developed in 4; ETA broader, usually consisting of five
ECS TOR eae AN LE HIER ET Tes 5
Coloration of abdomen and veins mainly black, vertex black, a small
white spot between base of antenna and ocellus; PTA covered with scales
almost throughout in © (Spain and southern France) ......... S. hispanica
sp. n.
Coloration of abdomen and veins mainly ochreous brown, vertex mixed
with orange scales, without white spot between antenna base and ocellus;
PTA small in © (Morocco, Atlas Mts) ..................... S. maroccana sp. n.
Ground colour yellowish brown, labial palpus, frons and margins of
transparent areas of forewing with yellow scales (host plants Armeria
SSP POE ne TR ce ais UT dou S. muscaeformis
Ground colour blackish grey, labial palpus, frons and margins of
transparent areas of forewing with white or pale yellow scales ............ 7
ETA usually twice as broad as discal spot, PTA almost reaching discal
spot, discal spot of hindwing narrow, pointed; transparent areas well
developed in 9 (Morocco; host plants Limonium spp.) .......... S. borreyi
ETA as broad as discal spot or slightly broader, discal spot of hindwing
broad and not pointed, transparent areas very small in @ ................... 8
PTA short, usually extending to discal spot of hindwing only (Morocco,
EMA AS host plant Armeria SD.) ..-....--..ssc-ces.ccosseecccvecceuree S. atlantis
PTA very short, usually not extending to discal spot of hindwing (Spain;
NOSHMAMULIHOMILEMN SPIELE SS... S. koschwitzi
S. leucomelaena species group
Synansphecia leucomelaena (Zeller, 1847)
Sesia leucomelaena Zeller, 1847: 410. Type locality: Turkey, Macri (now Fethiye). Type
material: lectotype & (BMNH, Spatenka design., 1992a).
Chamaesphecia leucomelaena: Le Cerf, 1916: 497; Heppner & Duckworth, 1981: 36.
Synansphecia leucomelaena: Laëtüvka, 1990a: 94; Spatenka, 1992a: 496; Spatenka er
al., 1993: 103; Laëtüvka & Laëtüvka, 1995: 100; de Freina, 1997: 180-182.
Material examined. Numerous specimens from southern France, southern Spain and
Portugal (CFR, CAK, CJG, MWM). In addition, extensive material from Turkey
and Greece has been studied.
107
According to Laëtüvka & Laëtüvka (1995), in the south-western
Palaearctis this species is known from southern France, the
Iberian Peninsula and Northwest Africa. Records from southern
Spain and Northwest Africa should be carefully examined to
exclude confusion with S. aistleitneri.
Synansphecia aistleitneri Spatenka, 1992 (fig. 8)
Synansphecia aistleitneri Spatenka, 1992b. Type locality: Spain, Andalusia, Prov.
Granada, Sierra de Guillimona. Type material: holotype Q (MWM). Spatenka er
al., 1993: 102; Laëtüvka & Laëtüvka, 1995: 94, fig. 60; pl. 6, fig. 1; de Freina,
1997: 173, fig. 166; pl. 13, figs. 44-45.
Material examined. Holotypus Q, “Hispania, Prov. Granada sept., Sra. Guillimona,
1900 m, 15. 7. 88, leg. Aistleitner, coll. Nr. 88/09a” / “Synansphecia aistleitneri sp.
n., Holotypus 9, K. Spatenka des. 1989”.
This species was described after two specimens originating from
the Sierra de Guillimona, the 9 holotype (fig. 8) and a @ paratype
(Spatenka, 1992b). The genitalia of the & clearly prove that it
forms part of the /eucomelaena species group. However, it can
not be excluded that the male paratype represents a species
different from the holotype. In the past, the holotype © was placed
close to S. hispanica sp. n. (misidentified as S. atlantis) and the
identity of both taxa has been proposed (Lastuvka & Laëtüvka,
1995). Comparison of the holotype of S. aistleitneri with numerous
female specimens of S. hispanica and S. atlantis has shown that
this species is in fact different from both species. S. aistleitneri
is associated here with the S. /eucomelaena species group.
Differential diagnosis. Differences between the holotype Q of
S. aistleitneri and QQ of S. hispanica sp. n. (misidentified as S.
atlantis) have been discussed by Laëtüvka & Lastuvka (1995).
The following points should be added: ATA in S. aistleitneri fairly
short and broad (longer and narrower in S. hispanica.); PTA
short in S. aistleitneri, but well developed (extremely narrow and
covered with scales almost throughout in hispanica); costal
margin of forewing black subapically (white in S. hispanica);
abdomen black ventrally (brownish black in S. hispanica);
without white line laterally (white line present in S. hispanica).
Distribution. Known from the type locality in southern Spain
only. Male specimens resembling the paratype of S. aistleitneri
108
were also collected in different localities in the High and Middle
Atlas by Petersen & Kallies in 1996, but their identity has not
yet been established.
Habitat and bionomics. The type series (4, ®) was collected
in a rocky site at 1900 m in the Sierra de Guillimona in the
middle of July. Specimens from Morocco which might belong
to S. aistleitneri were collected at altitudes between 1700 and
2200 m in June.
Note. Without the knowledge of the host plant and analysis
of clearly conspecific males the exact systematic position of S.
aistleitneri within the genus Synansphecia cannot be established.
Synansphecia kautzi (Reisser, 1930)
Chamaesphecia kautzi Reisser, 1930: 104. Type locality: Spain, Sierra Nevada, Monte
del Lobo. Type material: lectotype Q (MNK, designated by Spatenka, 1992a,
destroyed)
Chamaesphecia kautzi: Heppner & Duckworth, 1981: 36.
Synansphecia kautzi: Lastüvka, 1990a: 94; Spatenka, 1992a: 499; Spatenka er al., 1993:
103; Lastüvka & LaStüvka, 1995: 106; de Freina, 1997: 191.
This species was previously known only after 5 female type
specimens from the Sierra Nevada, Spain. Three of these,
including the lectotype, were destroyed. The remaining two
paralectotypes are deposited in the MNK and NHMW,, respec-
tively.
Recently a male of this species was captured near the type
locality. This specimen shows strong similarities with the species
of the S. leucomelaena group by external appearance and
characteristics of the genitalia (Pühringer & Pöll, 1999). However,
since the bionomics of S. kautzi (Reisser, 1930) are unknown,
this species cannot be assigned with certainty to a species group
at present.
Synansphecia affinis affinis (Staudinger, 1856)
Sesia affinis Staudinger, 1856: 278. Type locality: Bolzano (Italy). Type material:
lectotype © (MNHB, designated by Spatenka & Laëtüvka, 1988).
Chamaesphecia affinis: Heppner & Duckworth, 1981: 34.
Synansphecia affinis: LaStüvka, 1990a: 94; Spatenka er al., 1993: 102; Laëtüvka &
LaStuvka, 1995: 100; de Freina, 1997: 178-180.
109
Material examined. Extensive material from Germany, Hungary, Greece and Turkey
has been investigated.
According to Laëtüvka & LaStuvka (1995), in the south-western
Palaearctic this species is known from southern and south-western
France and from the Iberian Peninsula.
Synansphecia affinis erodiiphaga (Dumont, 1922)
Chamaesphecia erodiiphaga Dumont, 1922: 215. Type locality: Tunis (Tunisia). Type
material: lectotype 2 (NHMP, designated by Spatenka, 1992a). Heppner &
Duckworth, 1981: 36.
Synansphecia affinis ssp. erodiiphaga: Spatenka, 1992a: 491; Spatenka er al., 1993:
102; de Freina, 1997: 180.
Material examined. 4, Morocco, Middle Atlas, Mischliffen crater, 1950 m, 1.VI.1984 /
W. G. Tremewan, BM 1984-236 / gen. prep. by A. Kallies, gen. prep. AK87 (BMNH);
4, Spain, Malaga, 8.VI.1994, leg. H. Riefenstahl (CHR).
So far, this subspecies had only been recorded from Tunisia.
Recently, two dd from Morocco and Spain were collected. They
differ from typical S. affinis affinis by the large ETA (consisting
of 5 cells) and the wider wingspan (19-20 mm). These specimens
are referred to S. affinis erodiiphaga here though this identification
remains provisional since the larval hosts of the southern Spanish
and Moroccan populations are not known.
Note. Larvae of S. affinis erodiiphaga were found in the roots
of Erodium arborescens (Geraniaceae), whereas the larvae of S.
affinis affinis live in Cistaceae species. Records of larvae from
Erodium spp. are known only from Tunisia. The status and
distribution of the subsp. erodiiphaga requires further attention
because it may represent a species distinct from S. affinis.
Excluded from Synansphecia
Chamaesphecia powelli Le Cerf, 1916 (comb. rev.) (figs. 15, 16)
Chamaesphecia powelli Le Cerf, 1916: 15, pl. 321, fig. 4664. Type locality: Algerie,
Lambese. Type material: holotype 2 (MNHP). Heppner & Duckworth, 1981: 37.
Synansphecia powelli: Spatenka, 1992a: 490; Spatenka et al., 1993: 103; de Freina,
1997; 174; pl. 13, fig. 46; pl. 20, fig. 57.
110
Material examined. Holotype © (fig. 15), with labels illustrated on fig. 16 (NHMP);
29, Morocco, High Atlas, Tizi-n-Test, north side, 1900 m, reared from Nepeta sp.
(Lamiaceae), end of June 1995 e.l., leg. Kallies & Petersen (CMP, CAK).
This species was originally described in the genus Chamae-
sphecia Spuler, 1910 and has been transferred to Synansphecia
by Spatenka (1992a). However, a revision of the holotype
revealed that it belongs in fact to Chamaesphecia and is closely
related to Chamaesphecia aerifrons (Zeller, 1847) and C. micra
Le Cerf, 1916. Both taxa, C. powelli and C. micra are likely
to represent junior subjective synonyms of C. aerifrons. This
species uses a broad range of Lamiaceae host plants (Spatenka
et al., 1996). Moreover, it is known to be highly variable in
wingspan and in the size of the transparent areas of the forewings.
However, it is refrained from formal synonymization until more
material is known.
In 1996 two 99 from the High Atlas were bred from roots
of Nepeta sp. (leg. Petersen & Kallies). Both specimens agree
perfectly with the holotype of Chamaesphecia powelli from
Algeria.
Description (Q holotype, fig. 15). Wingspan 16.0 mm; body
length 9.5 mm; forewing length 7.5 mm; antenna 5.5 mm.
Head. Antenna black, scapus white ventrally; frons blackish
grey, with white scales medially; labial palpus white, medial joint
black distally, apical joint black laterally; vertex black with orange
hair-like scales posteriorly; pericephalic hairs orange-yellow.
Thorax. Black; patagia black, orange-yellow ventro-laterally;
tegula with orange-yellow inner margin; metathorax with an
orange-yellow medial stripe, extending to medial stripes of equal
colour on thorax and first tergites of abdomen, respectively.
Legs. Fuscous; fore coxa white, fuscous interiorly; basal half
of hind tibia white laterally.
Abdomen. Fuscous, with undefined yellow line mediodorsally;
tergite 1 with an orange-yellow spot medially and white laterally;
tergite 2 with a few white scales posteriorly; tergites 4 and 6 with
narrow white posterior margins; tergite 4 white laterally; sternites
1 and 2 with white scales medially; sternite 4 white laterally; anal
tuft black, white baso-laterally and ventro-apically.
111
Forewing. Fuscous; ETA small, rounded, consisting of four
cells, two-thirds as broad as discal spot; ATA short, slightly longer
than discal spot; PTA covered with black scales throughout;
apical area dark brown black, almost twice as broad as ETA,
with single pale ochreous scales between veins; cilia fuscous;
ventral side of same colour, but dusted with ochreous scales.
Hindwing. Veins, discal spot and outer margin fuscous; discal
spot triangular, reaching M;; cilia fuscous; similar ventrally, but
costal margin and vein M, covered with ochreous scales through-
out.
Genitalia. Not examined.
Differential diagnosis. No significant differences were found
between C. powelli, C. micra and C. aerifrons. Additional ex-
tensive material is necessary to establish the relation between these
taxa. C. powelli is also similar and related to C. maurusia
Püngeler, 1912 and C. anthrax Le Cerf, 1916. From both it differs
by the smaller ETA (with 4-5 cells in the species compared).
From C. anthrax it can also be distinguished by the wider ATA
and PTA. The entire group of species mentioned here should
be revised in the future.
Acknowledgements
My cordial thanks are due to Dr. J. Minet (MNHP), Dr. G. S.
Robinson, Mr. K. Tuck (both BMNH), and Mr. Th. Witt
(MWM) for the loan of material under their care, as well as
to Dr. M. Lödl (NHMW) and Mr. M. Nuß (MNHB) for
arranging the loan from the NLMW and the MNHP, respectively.
I would like especially to thank Prof. C. Naumann (ZFMK) for
critical reading of the manuscript. I am also indebted to my
friends and colleagues for giving me the possibility to study the
material in their collections and for supporting information:
D. Bartsch (Stuttgart, Germany), D. Baumgarten (Hamburg,
Germany), E. Bettag (Dudenhofen, Germany), R. Bläsius (Ep-
pelheim, Germany), Th. Drechsel (Neubrandenburg, Germany),
J. de Freina (München, Germany), T. Garrevoet (Antwerpen,
Belgium), J. Gelbrecht (Königs Wusterhausen, Germany), U.
Koschwitz (Eppenbrunn, Germany), Z. Lastuvka (Brno, Czech
Republic), A. Lingenhöle (Biberach, Germany), H. Löbel (Son-
dershausen, Germany), M. Petersen (Pfungstadt, Germany),
11112
F. Rämisch (Berlin, Germany), H. G. Riefenstahl (Hamburg,
Germany), F. Pühringer (Scharnstein, Austria), T. Sobczyk
(Hoyerswerda, Germany), K. Spatenka (Prag, Czech Republic),
and R. Stübinger (Hamburg, Germany).
References
BoispuvAL, J. B. A. D., 1840. Genera et index methodicus Europaeorum
Lepidopterorum. — Paris. 238 pp.
DE FREINA, J., 1997. Die Bombyces und Sphinges der Westpalaearktis (Insecta,
Lepidoptera). Vol. 4: Sesioidea: Sestidae. — München. 431 S., 241 Abb.,
27 (+4) Taf., ills., 126 Karten.
Dumont, C., 1922. Diagnoses de lépidoptères nouveaux du nord de l’Afrique.
— Bull. Soc.ent.Fr. 1922: 215-220.
Esper, E. J. C., 1778 [1804]. Die Schmetterlinge in Abbildungen nach der
Natur mit Beschreibungen. Vol. 2 — Erlangen: W. Walthers. 234 S., Taf.
1-36, Supplement 52 S., Taf. 37-47.
FREYER, C. F., [1831]-1858. Neuere Beiträge zur Schmetterlingskunde mit
Abbildungen nach der Natur. 7 Volumes. — Augsburg, beim Verfasser;
in Kommission bei der Math. Rieger’schen Buchhandl.; Himmer.
HEPPNER, J. B. & Duckworth, W. D., 1981. Classification of the Superfamily
Sesioidea (Lepidoptera: Ditrysia). — Smithson.Contrib.Zool. 314: 1-144.
LASTÜVKA, Z., 1989. Zur Taxonomie und Morphologie von Synansphecia
muscaeformis (ESPER) (Lepidoptera, Sesiidae). — Acta Univ. Agric. Brno
34(4) (1986): 177-180.
LASTÜVKA, Z., [1990a]. Zur Taxonomie der Gattungen Chamaesphecia Spuler,
Synansphecia Capuse und Dipchasphecia Capuse (Lepidoptera, Sesiidae).
— Acta Univ. Agric. Brno 36(1) (1988): 93-103.
LASTÜVKA, Z., [1990b]. Zur Taxonomie von Synansphecia triannuliformis
(FREYER, 1845) (Lepidoptera, Sesiidae). — Acta Univ. Agric. Brno 37(3-4)
(1989): 129-132.
LASTÜVKA, Z., [1992]. Zur Systematik der Paläarktischen Gattungen der
Tribus Synanthedonini, 2. Phylogenese (Lepidoptera, Sesiidae). — Acta
Univ. Agric. Brno 38(3-4) (1990): 235-243.
LASTÜVKA, Z. & LASTÜVKA, A., 1995. An Illustrated Key to European Sesiidae
(Lepidoptera). — Brno. 173 pp., 8 pls., 105 figs.
LE CERF, F., 1916. Aegeriidae de Barbarie. Jn: OBERTHÜR, C. Explication
des planches. — Er. Lep.comp. 11 (planches): 11-17, pls. 74-124.
LE CERF, F., 1922. Aegerüdae. In: OBERTHUR, C. Les Lépidoptères du Maroc.
— Et.Lép.comp. 19(1): 13-403.
PÜHRINGER, F. & POLL, N., 1999. Das bisher unbekannte Männchen von
Synansphecia kautzi (Reisser, 1930) (Lepidoptera, Sesiidae). — Z.Arb
Gem. 6st. Ent. 51(1-2): 1-8.
REISSER, H., 1930. Eine neue europäische Sesude. — Z.öst.EntVer. 15(11):
101-104, Taf. 13.
SCHWINGENSCHUSS, L., 1935. Aegeriidae. In: ZERNY, H. Die Lepidopterenfauna
113
des Großen Atlas und seiner Randgebiete. — Mem.Soc.Sci. Nat. Maroc 42:
1-163.
SPATENKA, K., 1992a. Contribution a la stabilisation de la taxinomie des
Sesiides paléarctiques (Lepidoptera, Sesiidae). — Alexanor 17: 479-503.
SPATENKA, K., 1992b. Weitere neue paläarktische Sesiiden (Lepidoptera, Sesii-
dae). — Alexanor 17: 427-446.
SPATENKA, K. & LASTÜVKA, Z., 1988. Typen der Glasflügler der Staudinger-
und Püngeler-Sammlung im Zoologischen Museum Berlin. — Dt.ent.Z.,
N. F. 35: 331-339.
SPATENKA, K., LASTÜVKA, Z., GoRBUNOV, O., TosEvski, I. & Arita, Y.,
1993. Die Systematik und Synonymie der palaearktischen Glasflügler-Arten
(Lepidoptera, Sesiidae). — Nachr.ent.Ver. Apollo, N.F. 14: 81-114.
SPATENKA, K., GORBUNOV, O., LASTÜVKA, Z., TosEvski, I. & Arita, Y.,
1996. Die Futterpflanzen der paläarktischen Glasflügler (Lepidoptera,
Sesiidae). — Nachr.ent.Ver. Apollo, N.F. 17: 1-20.
STAUDINGER, O., 1856. Beitrag zur Feststellung der bisher bekannten Se-
sien-Arten Europa’s und des angrenzenden Asien’s.— Stettin.ent.Ztg 17:
193-224, 257-288, 323-338.
ZELLER, P. C., 1847. Verzeichniß der vom Professor Dr. Loew in der Türkey
und Asien gesammelten Lepidoptera. — Isis (von Oken) Jena 1847(1): 3-39.
114
Nota lepid. 22 (2): 115-154; 15.V1.1999 ISSN 0342-7536
Noctuid moths attracted to fruit baits: testing
models and methods of estimating species diver-
sity
Dirk SUSSENBACH & Konrad FIEDLER
Lehrstuhl Tierökologie I, Universität Bayreuth, D-95440 Bayreuth, Germany
e-mail: konrad.fiedler@uni-bayreuth.de
Summary. Using red-wine based baits we sampled 3015 noctuid moths representing
119 species over one season at two sites in northeastern Bavaria. These samples were
used to address the question as to whether baiting yields adequate data for analysing
the diversity of a moth community. At both sites the samples closely matched the
log-series model. The diversity parameter a was estimated as 23-24 in both communities,
which is in the range typical for temperate-zone noctuid communities as revealed by
light-trapping. Hurlbert rarefaction analyses likewise indicated that both samples were
drawn from communities of equal diversity. The numbers of noctuid species and
individuals recorded varied strongly between two different bait mixtures and three
exposition techniques, but the resulting diversity estimates were not significantly
affected. Numbers of species and individuals recorded at baits positively correlated
with ambient temperature, but were not affected by wind speed. Estimates of /-diversity
showed that both communities had similar species composition, but differed in
abundance relationships. Of various estimates of total species richness based on different
extrapolation algorithms, the Michaelis-Menten model yielded reasonable, but con-
servative approximations of “true” species numbers in the communities. Collectively,
these results demonstrate that recording noctuid moths at baits provides data perfectly
suitable for diversity analysis, as long as effects of sampling effort and sample sizes
are controlled for.
Zusammenfassung. An Rotwein-Zucker-Ködern wurden während einer ganzen Vege-
tationsperiode an 2 Standorten in Nordostbayern 119 Noctuidenarten in 3015 Exem-
plaren nachgewiesen. Jeder Standort wurde zweimal pro Woche besammelt. Anhand
dieses Datenmaterials wurde die Eignung von Köderfangdaten zur Beurteilung der
Diversität von Nachtfalterartengemeinschaften geprüft. An beiden Standorten entspra-
chen die Arten-Abundanz-Verteilungen in sehr guter Näherung dem Modell der
logarithmischen Serie. Der Diversitätsparameter a der logarithmischen Serie war mit
Schätzwerten von 23-24 an den beiden Standorten gleich groß und lag im Bereich
publizierter, aus Lichtfangdaten abgeleiteter Werte für Noctuiden-Gemeinschaften der
nördlichen gemäßigten Zonen. Ein Vergleich der Standorte mittels der Rarefaction-
Methode nach Hurlbert zeigte ebenfalls, daß die 2 untersuchten Artengemeinschaften
in ihrer Diversität übereinstimmten. Zwei verschiedene Ködermischungen und drei
Ausbringungstechniken hatten zwar großen Einfluß auf die absolute Anzahl der
115
nachgewiesenen Individuen und Arten, die resultierenden Schätzungen der Diversität
waren davon aber unbeeinflufit. Mit steigender Lufttemperatur nahm auch die Zahl
der pro Abend anfliegenden Individuen und Arten zu, Windgeschwindigkeit oder
Niederschlag hingegen hatten auf den Köderfang keinen signifikanten Einfluß. Ahn-
lichkeitsindizes als Maße der B-Diversitat zeigten, daß sich die 2 Artengemeinschaften
weniger in ihren Artenspektren als in den Abundanzverhältnissen unterschieden. Von
mehreren Extrapolationsmethoden zur Schätzung der “tatsächlichen” Artenzahl ergab
das Michaelis-Menten-Modell die robustesten, wenn auch konservativsten Werte.
Insgesamt zeigen unsere Ergebnisse, daß Koderfangdaten für Eulenfalter in gleicher
Weise wie Lichtfangdaten geeignet sind, die Diversität lokaler Artengemeinschaften
zu schätzen, sofern die Einflüsse von Aufsammlungsintensität und Stichprobengröße
in adäquater Weise berücksichtigt werden.
Résumé. L utilisation d’appäts au vin rouge a permis d’Echantillonner 3015 Noctuidae,
représentant 119 espèces, au cours d’une saison sur deux sites du nord-est de la Bavière.
Ces échantillons ont été utilisés pour savoir si l’usage d’appâts peut fournir des données
satisfaisantes sur l’analyse de la diversité d’une communauté de papillons de nuit. Sur
les deux sites, les échantillons se rapportent à un modèle “série-log”. Les paramètres
de diversité a ont été évalués à 23-24 dans les deux communautés, ce qui est un
ordre de grandeur classique pour les communautés de Noctuides en zone tempérée,
comme cela a déjà été montré par piégeage lumineux. L’analyse de la raréfaction par
le coefficient de Hurlbert semble indiquer que les deux échantillons sont issus de
communautés d’égale diversité. Le nombre d’espèces de noctuelles et d’individus
recensés varie fortement entre les deux types d’appâts et les trois modalités d’application,
mais la diversité résultante exprimée n’est pas significativement modifiée. Le nombre
d’espèces de noctuelles et d’individus recensés par les appâts est positivement corrélé
a la température ambiante, mais non affecté par la vitesse du vent. L’estimation de
la diversité ß montre que les deux communautés ont des compositions spécifiques
similaires mais diffèrent par les critères d’abondance. Parmi plusieurs estimations de
la richesse totale basées sur plusieurs extrapolations algorithmiques, le modèle Michae-
lis-Menten paraît raisonnable, et compatible avec l’approximation modérée du “vrai”
nombre d’espèces dans les communautés. Globalement, ces résultats démontrent que
les méthodes de capture des noctuelles par appât donnent des résultats parfaitement
valables pour l’analyse de la biodiversité, aussi longtemps que l’effort d’échantillonnage
et que la taille des échantillons seront contrôlés.
Key words: Lepidoptera, Noctuidae, biodiversity, research methods, traps, baits,
Bavaria, Germany.
Introduction
With an estimated richness of 150,000-250,000 extant species
(Heppner, 1991), the Lepidoptera comprise a sizeable, yet com-
paratively well known fraction of biotic diversity on Earth. It
is thus not surprising that many studies use butterflies or moths
as model organisms for biodiversity research. A critical issue for
116
all such studies is the reliability and usefulness of any measures
of “biodiversity” which can be derived from samples of real
communities. Such samples are, by necessity, incomplete and
influenced by a large (and often unknown) number of extrinsic
factors. For example, unpredictable weather conditions and
stochastic variation in abundance of species in communities all
contribute to sampling error (Mawdesley, 1996).
For nocturnal moths, attraction to artificial light sources is
the most commonly used method of sampling, although phero-
mone traps or other techniques have also been applied (reviewed
in Muirhead-Thomson, 1991). It is well established that moth
samples from light traps can be described, with reasonable
accuracy, using mathematical models such as the logarithmic
series (Fisher er al., 1943) or the log-normal distribution (Preston,
1948). Therefore, such models have been widely and successfully
applied to the analysis of moth communities from temperate
(Kempton & Taylor, 1974) as well as tropical regions (Robinson
& Tuck, 1996).
As early as the last century it was observed that certain moths
(mainly in the family Noctuidae) can be attracted with liquids
containing sugar (e.g. Steiner & Nikusch, 1994). Such artificial
baits imitate natural food sources, like rotting fruits, honeydew,
or sap oozing out of wounded trees. For a useful bait mixture
many recipes have been described (Steiner & Nikusch, 1994), but
the main ingredients are always similar. A bait is offered that
provides the scent of a solution containing sugar, alcohol, and
volatile compounds such as esters which naturally occur in rotting
fruits. A variety of techniques has been suggested as to how to
offer baits. The commonest ways of presentation are patches of
liquid bait directly applied to trees or poles, or suspending
materials (strings, pieces of fabric, dried fruits) which have been
soaked with the liquid bait mixture (Lederer, 1959; Nippel, 1976).
Baiting has been extensively used for faunistic inventories in
the past. Hartwieg (cited in Cleve, 1971), for example, recorded
between 1904 and 1956 nearly 80% of the noctuid species which
occur in the region of Braunschweig (north-central Germany) by
baiting. When baiting and light trapping are done simultaneously,
moths of some noctuid genera (e.g. Amphipyra, Conistra,
Agrochola or Catocala) often appear at the baits in much larger
117
numbers (Cleve, 1971; Mörtter, 1988), suggesting that estimates
of abundance based on light-trapping results alone can be
misleading. Hence Steiner & Nikusch (1994) postulated that for
a “complete” faunistic or ecological inventory of the moth fauna
of any given site it is necessary to combine both recording
techniques. For practical purposes (e.g. nature conservation:
Meineke, 1995), light-trapping seems to be the superior way of
monitoring since it usually yields larger samples with smaller time
effort, covers a broader range of nocturnal moth taxa, and
elaborate methods of analysis have been developed (Southwood,
1978; Robinson & Tuck, 1996).
Light-trapping, however, is based on an artificial stimulus, and
the behavioural mechanisms underlying the attraction of moths
to UV-light sources are still not satisfactorily understood (Butler
& Kondo, 1991; Muirhead-Thomson, 1991). Hence, any sampling
method which makes use of a more natural behavioural context,
such as the search for food resources in the case of baiting, might
have the potential to reveal ecological community patterns more
accurately. In fact, bait-traps are now widely used in studies on
the community ecology of fruit-feeding nymphalid butterflies in
tropical realms (DeVries et al., 1997). We therefore set out to
investigate whether recording moths at baits over one entire
season in a northern temperate zone may yield adequate samples
for quantitative assessments of the diversity and richness of the
noctuid guild attracted to such food resources.
Most published papers, which we are aware of, present results of bait-trapping moth
surveys only in a qualitative manner, e.g. as species lists (Nippel, 1976; see Kozlov
et al., 1996 for one of the rare exceptions). At most these lists are supplemented with
subjective assessments of relative abundance (“rare”, “common”). Although most
authors offer numerous, and often contrasting, subjective opinions as to how weather
conditions may influence the attraction of moths to baits, or which method of presenting
the bait (or preparing bait mixtures) may be most effective, practically no quantitative
tests of these factors have been carried out thus far. Instead, even the proponents
of baiting for faunistic studies appear to assume, at least by implication, that baiting
as a sampling method is inherently subject to so much variation that its results can
neither be compared between studies, nor used for more than supplementary or
qualitative information (Steiner & Nikusch, 1994).
In this paper we explicitly address some questions relevant to
the usefulness of bait-trapping as a method of assessing moth
diversity:
118
1. How well do samples of noctuid moths assembled at baits
correspond with the log-series model?
2. Can the log-series model, or rarefaction methods, be used to
quantitatively describe and compare species diversity (a-
diversity) of samples from different communities?
3. Can similarity indices (as a measure of B-diversity) successfully
be applied to such samples?
4. How do various estimates of absolute species richness perform
when applied to our data set?
5. Are the results obtained with different baits, or techniques,
after all comparable? More precisely, this relates to the
question as to whether samples obtained with different baits,
or different exposition methods, yield corresponding estimates
of diversity of the community from which the samples have
been drawn.
6. How large is the influence of abiotic factors like temperature
and wind speed on the success of bait-trapping?
7. How strongly are the estimates of diversity affected by sample
size (i.e. numbers of recorded individuals) or sampling effort
(i.e. recording nights per habitat)?
The results presented here strongly support the idea that, much
the same as with light-trapping, data obtained by baiting can
be used for estimating diversity of noctuid moths, if sufficiently
large samples are obtained with a standardized sampling regime.
Materials and methods
Study sites. For our study we selected two sites near Bayreuth
(Germany, north-eastern Bavaria). Both were chosen so as to
represent typical habitats in a central European cultural landscape,
rather than habitats where a particularly rich fauna would be
expected. The first site is situated in the botanical garden (BG
hereafter) of the University of Bayreuth (355 m a.s.l.) and is
mainly characterized by large, almost plain meadows (ranging
from moist to moderately dry), interrupted by small stands of
young trees and a couple of ponds. The nearest closed forest
is situated approximately 600 m to the south, while 300 m to
the west an allotment area continues. At this site the bait lines
and patches were installed at the south-facing edge of a small
119
stand of scots pine (Pinus sylvestris) and spruce (Picea abies)
approximately 5 m high and 15 years old.
The second site was situated 5 km southeast of Bayreuth near
Wolfsbach. The meadow at the Schlehenmühle (400 m a.s.1., SM
hereaïter), located on an east-facing slope to the river Roter Main,
is much smaller in comparison to the botanical garden and is
largely surrounded by closed woodland. The forest mainly
consists of pine and spruce, but is at the edge interspersed with
deciduous trees. The understorey (blueberry (Vaccinium myrtillus)
and grasses) is sparse due to the very dense canopy. The
vegetation along the river bank consists mainly of black alder
(Alnus glutinosa) and a few oak trees (Quercus robur). The bait
lines and patches were placed along the forest edge. Due to its
facing the river, the microclimate of the Schlehenmiihle site is
colder and more humid than in the botanical garden.
Field Methods. We used two different bait mixtures. For the
sugar mixture 500 g sucrose were dissolved in approx. 200-300 ml
red wine in a glass of 600 ml volume. For the same amount
of banana mixture we mixed 400-500 g of mashed bananas with
200-300 ml red wine. Bait mixtures were prepared about 4 d
before first use, and were subsequently used for 3-5 d. The idea
behind these two bait mixtures was that the sugar mixture may
provide a carbohydrate resource suitable for a range of generalist
moth species, whereas the banana mixture might preferably be
used by species which regularly feed on ripe or rotting fruits.
Two different ways were used to expose the bait. Either liquid
bait was painted in patches (size approx. 10 x 15 cm?) on tree
trunks at a height of 50 or 200 cm (n= 16 each), respectively.
Alternatively, we tightened a string (length approx. 6m) at a
height of 200 cm between two trees from which we suspended
pieces of cotton cloth (size approx. 10 x 15 cm?, n = 20) soaked
with the liquid bait. We expected that the latter way of bait
exposition should attract a larger number of moths because the
scent plume would diffuse freely in all directions. With both
presentation techniques the two bait mixtures were alternated
regularly so as to minimize potential positional bias in their
attractiveness.
On each sampling night the baits were exposed freshly around
sunset. Then, all baits were checked for the presence of moths
every 30 min over a period totalling 3 h. The first check of the
120
baits took place in early dusk, i.e. after being exposed for approx.
30 min. The timing of the sampling throughout the season was
standardized so that each evening the second check round at
the baits invariably occurred at a light intensity of <10 Ix
(Bioblock Scientific, LX-101). At the beginning of each check,
air temperature and wind speed at a height of 200 cm were
measured (anemometer: Testoterm-Technovent 4000). For each
sampling night, all temperature and wind speed data were
averaged to provide a single rough measure of these important
climatic data for subsequent analyses.
All moths encountered during each round were captured for
identification (using Skou (1991) as principal reference work,
supplemented by special papers where needed) and to avoid
multiple counts. The complete species list and abundance data
have been published elsewhere (Süssenbach & Fiedler, in press).
In all analyses presented here, only species of the family Noc-
tuidae were included.
The first sampling occurred on 01.1V.1997 and the last one
on 10.X.1997. At each study site samples were taken twice a
week, resulting in a database of 106 nights (53 per locality).
Data analysis. Many quantitative measures have been developed
to assess “diversity” of ecological communities (Southwood, 1978;
Magurran, 1988; Krebs, 1989; Mawdesley, 1996). As a measure
for a-diversity (diversity within a habitat, or sample) we here
use Williams’ a which is derived from the “/ogarithmic series”,
or log-series (Fisher et al., 1943). This mathematical model (see
Hayek & Buzas, 1997 for a general introduction and multiple
references to further applications) describes the distribution of
individuals across species, and in particular accounts for the well
known observation that in natural communities there are usually
only very few “abundant”, but a large number of “rare” species.
According to this model, species number (S$) and number of
individuals (N) in a sample are related to each other as:
N
S=a log, (1 +— )
a
where a can be interpreted as an index of diversity. To allow
for comparisons between samples the 95% confidence limits are
calculated:
121
Clos, = à + t959, VVar a
with the estimate of variance being:
DINGO
2 = |
(N + a) log, VE Na
= 2)
inti (SN + Sa - Na)
where tos, = 1.96 is the two-tailed threshold value of statistical
significance of Student’s t-distribution at the selected significance
level (here: p < 0.05) for an infinite number of degrees of freedom
(Sachs, 1992). a and x were calculated using the program
“logserie” of Krebs (1989), while var a was calculated using the
formula originally derived by Fisher er al. (1943). We chose this
variance estimate, instead of the widely used Anscombe estimate,
because for large samples (1.e., in the hundreds, as ours) its
mathematical properties are superior (Hayek & Buzas, 1997).
Williams’ a provides a measure of diversity that is particularly robust over a wide
range of conditions as long as sample sizes are sufficiently large (say, 2100 individuals:
Hayek & Buzas, 1997). We test the goodness-of-fit between the log-series model and
our empirical data using the Pearson correlation coefficient r between the observed
and expected abundances (the latter are expressed as the Whittaker plot by the program
“logserie”). In addition, we compare the observed and expected numbers of species
in abundance classes (scored in octaves: Preston, 1948) using y? statistics.
An alternative way to compare species diversity between
samples of communities are the “rarefaction methods” (Hurlbert,
1971; Achtziger et al., 1992; note that also the log-series model
can be used to rarefy if one assumes it to accurately describe
a community: Hayek & Buzas, 1997). Generally, it is invalid to
simply compare absolute species numbers between samples unless
the sample sizes are equivalent, because with increasing sample
size the number of recorded species also increases due to
stochastic effects, even if the samples are drawn from the identical
community. The Hurlbert rarefaction allows the comparison of
species numbers between samples where the total numbers of
individuals are different: the larger sample(s) can be rarified to
the smallest sample size, and an expected species number can
122
be calculated (together with a confidence interval: Simberloff,
1978) for any fixed sample size. Note that extrapolation from
Hurlbert rarefaction curves is invalid (Müller-Schärer et al., 1991).
The necessary calculations were made with the program “rarefact”
of Krebs (1989).
While diversity indices such as Williams’ a, or the rarified
expected species richness for a given sample size, provide
mathematically ‘exact’, but rather abstract figures, it might often
be interesting to know about the ‘absolute’ number of species
which make up a given community. Since complete inventories
are practically always impossible to achieve (from statistical
reasons alone), one may use extrapolation methods, which
estimate the total number of species from empirical samples.
Recent advances in mathematical methodology have provided
a set of extrapolation procedures that are in part based on
relatively complicated formulae and rather different assumptions
(see Colwell & Coddington, 1994). These algorithms estimate
species richness either from extrapolation of randomized species
accumulation curves (e.g. Michaelis-Menten model, where a
hyperbolic function is fitted, whose asymptote serves as richness
estimator), or they derive an estimate from the ‘rare’ species in
the sample, because it is most likely that all species not yet covered
by sampling would belong to these lowest abundance categories
(see Colwell & Coddington, 1994 for further discussion and
references). An important difference between such extrapolation
methods and the log-series is that mathematical models underlying
extrapolation procedures are usually asymptotic (1.e. converge to
a ‘true’ value of total species richness, if sampling effort increases),
whereas the log-series does not have an asymptote.
We have here chosen five different estimators. First, a Michaelis-
Menten model was fitted to the sampling data (after randomizing
them 50 times, using the MM Means procedure of Colwell, 1997).
Michaelis-Menten type models describe well the accumulation
of species records as sampling increases, with steadily increasing
likelihood of adding new species (Lamas er al., 1991). Second,
four estimators which emphasize the ‘rare’ species in the samples
were used. The two versions of Chao’s estimator (based on those
species which occur in only one or two specimens in the entire
sample: Chaol; based on species which occur in only one or
123
two sampling nights: Chao2) are particularly easy to calculate
and have produced promising results in recent empirical tests
(Leön-Cortes et al., 1998; Peterson & Slade, 1998). Two coverage
estimators (abundance-based: ACE, incidence-based: JCE) were
also included because of their promising mathematical features
(Lee & Chao, 1994; Colwell, 1997), although we are unaware
of any experiences with real biological data sets published so
far. ACE is based on all species represented with 10 or fewer
individuals in the total sample, while /CE uses all species
represented in 10 or fewer sampling nights.
The calculations were done with the program ‘EstimateS5’
(Colwell, 1997; where also the formulae for ACE and ICE and
the variance estimates can be found). The definitions of Chaol
and Chao2 are as follows:
D
A dt
Chaol obs 2F,
Qi
S ao = a S ae
Chao2 bs T 5 O,
where S\,, is the number of species observed; F, the number
of species represented by one specimen only (i.e. singletons); F;
the number of species represented by two individuals only; Q,
the number of species which occur in exactly one sample (i.e.
found in just one collecting night); and Q, the number of species
represented in just two samples. Confidence intervals were
calculated using the standard deviation estimates produced by
the program, multiplied with the 95% threshold value of the t-
Statistics (1.96).
We also wanted to know whether baiting samples of noctuids
are suitable for differentiation between communities. For that
purpose, we calculated similarity indices as measures of f-
diversity (between-habitat diversity). In the ecological literature
a plethora of similarity indices have been proposed, many of
which have serious drawbacks (Wolda, 1981; Lande, 1996).
Basically similarity indices can be divided in two classes: binary
measures which only take into account the presence or absence
of species, and others which also use abundance information.
124
We have selected two binary indices (the Sörensen or Czekanowski
index, and the Dice or association index), and two abundance-
based measures (Morisita and Renkonen index). Of the binary
indices, Sôrensen similarity has been widely used in community
ecology. The Dice index can be advantageous if one sample is
much smaller than the other, but this difference is largely due
to sampling efficiency (and not an ecological property of the
community: Wolda, 1981). Of the two abundance-based measures
widely used, Morisita’s index seems to be particularly suitable
for most ecological comparisons (Wolda, 1981; Magurran, 1988).
To assess differences between samples in relation to bait
mixture or method of bait presentation, we apply elementary
statistical procedures (x? contingency tests) in addition to the
diversity measures detailed above. The influence of temperature
and wind speed on sampling efficiency is tested by standard
correlation techniques.
Finally, we will address the question as to how sampling effort
(i.e. number of sampling nights) influences the results. We have
selected two approaches. First, we apply the Shinozaki rarefaction
method (Achtziger et al., 1992) which yields estimates for the
expected number of species to be observed as a function of the
number of sampling units (here: baiting nights). Calculations were
made with a program written by W. Achtziger (cf. Achtziger et
al., 1992). Second, we compare our results on diversity and species
richness between subsets of our samples. Because we sampled
both sites twice a week, a simple way of obtaining two subsamples
for each site was to use either only the results of the first, or
alternatively the second, sampling night per site and week.
Results
Structure, a-diversity and similarity of the two moth communi-
ties. During the entire sampling period in 1997 we recorded 106
noctuid species with 1976 individuals at site BG, and 88 species
with 1039 individuals at site SM (species lists and abundance
data in Süssenbach & Fiedler, in press). While the absolute
abundances of moths at both localities obviously differed strongly,
the rank-abundance plots showed a very similar shape. There
were only a few very frequent and many rare species. At BG,
39.6% of the species were singletons or doubletons, representing
125
250 a
200
150
100
Abundance
50
2507 b
200 T
150 +
100
Abundance
50
4
6
1
56
61
Species rank
Fig. 1. Rank-abundance plots of the noctuid moth communities attracted at baits
in the botanical garden BG (a) and at the Schlehenmühle SM (b).
126
a)
250 Y =-0.61 + 1.03 X
r= 0.98, r2 = 0.97
p<0.0001
200
on
oO
observed abundance
o
oO
on
oO
0 50 100 150 200
expected abundance
b)
Y= -1.26 £111 X
r=0.98, r2=0.96
p<0.0001
observed abundance
0 20 40 60 80 100
expected abundance
Fig. 2. Correlation between recorded abundance (Y-axis) and expected values (X-axis;
from the Whittaker plot) under the log-series model, for the species community at
the botanical garden BG (a) and the Schlehenmiihle SM (b). At both sites observed
and expected values are highly significantly correlated.
127
but 2.8% of all individuals. The respective proportions at SM
were 46.6% of species, and 5.9% of individuals.
The empirical rank-abundance distributions closely match the
log-series model (fig. 2). At both sites, observed and expected
frequencies correlate highly significantly. Only for the most
dominant species does the log-series model underestimate the
observed abundance. Moreover, at both sites the observed
numbers of species in abundance octaves closely matched pre-
dictions based on the respective parameter estimates of a and
x (BG: Year = 4.36, p > 0.62; SM: Year = 3.62, p > 0.72).
Therefore, the noctuid communities attracted at baits can be very
well described by the log-series model, and accordingly Williams’
a provides a reasonable measure of the diversity of both
communities. The a-values were 23.96 = 2.29 for site BG, and
22.95 + 2.67 for site SM, with strong overlap of the confidence
intervals.
Application of the Hurlbert rarefaction method yields analogous
results (fig. 3). The curves for the two sites are almost completely
congruent. Rarefaction of the larger sample (BG) to the size of
the smaller sample (1039 individuals, as at the site SM) reveals
that the expected number of species at both localities is identical.
Collectively, the a-values and rarefaction curves for both sites
strongly indicate that, in spite of the differences in the recorded
numbers of species and individuals, the structure and a-diversity
of both communities of noctuids attracted to baits are virtually
identical.
The results of various extrapolations of the ‘true’ species
richness from our empirical data are summarized in Table 1.
Included here are four estimators which rely largely on rare
species (ACE, ICE, Chaol, Chao2) and one estimator based on
the Michaelis-Menten model (MM Means (fig. 3); see Colwell,
1997). These estimators uniformly indicate that, as expected, the
communities of noctuid moths which could have been attracted
to baits were not exhaustively covered during our survey. For
the BG site estimators based on rare species indicate that the
fauna comprised 135-145 species, of which only 73.1-78.5% have
actually been sampled. According to the Michaelis-Menten model
(with a lower asymptote of 123 species), 86.2% of the expected
fauna has been recorded within one single season of baiting. At
128
the SM site all estimators converge between 99 and 108 species,
which implies that the local community has been sampled with
a coverage of 81.5-88.9%.
120 o 00000
jpg 0098 80000 oocouoooou0000000000000888 at
On RE 0e 000
Le) ee
© gw 1007 o o°
& © 00
oO O °°
Qo © oo
© (ok 80 fo)
= -
DE gg Bit
D © %
O GS 7
re /
oO = y
See A
wa = / — BG Hurlbert
® SM Hurlbert
20 BG MMMeans
a SM MMMeans
oa
0
(0) 500 1000 1500 2000
number of individuals
Fig. 3. Hurlbert rarefaction curves for the baited noctuid communities of the botanical
garden and the Schlehenmühle, and performance of Michaelis-Menten richness
estimators (MM Means) as a function of randomized sample accumulation.
Table 1. Estimated “total” number of species (95% confidence intervals where
applicable) at the two sampling sites as revealed by different extrapolation
algorithms (see Colwell, 1997)
= en Botanical Garden (BG) Schlehenmühle (SM)
Species richness | “Total” species | Percent observed | “Total” species | Percent observed
estimator number of estimated total number of estimated total
The second column for each site gives the proportions of the actually recorded
number of species (BG: 106; SM: 88) as percentages of the respective estimator for
“total” species richness.
1229
The communities of noctuids attracted to baits at the two sites
were remarkably similar. Overlap in species composition was 0.77
(Sörensen index) to 0.85 (Dice index). When abundance data
were included, the communities could be separated more clearly
(Morisita index: 0.60, Renkonen index: 0.55). These data suggest
that, with regard to bait-feeding noctuids, the two study sites
differed in relative abundance and dominance characteristics of
the component species, but less so in species composition.
Comparison of different bait mixtures and between methods
of bait presentation. One central aim of our study was to test
if and how the choice of bait mixtures or presentation techniques
affects the noctuid samples attracted to the baits. For these
analyses data of both study sites were combined since we have
shown above that diversity of both communities was identical
and species compositions did not differ markedly. In addition,
Williams’ a for the combined BG + SM sample (a = 24.73 = 2.11)
is not significantly different from the parameter estimate for each
site.
As a first step, we compared the numbers of species and
individuals attracted to the two bait mixtures (only considering
moths attracted to suspended baits), the effectiveness of exposing
the bait (at the same height, 200 cm) on tree trunks vs. suspended
pieces of cloth, and the influence of presentation height at a tree
trunk (50 vs. 200 cm). All these factors strongly (and in 5 out
of 6 comparisons significantly) affected sampling efficiency (Table
2). Almost twice as many species, and almost ten times the
number of individuals, were attracted to the sugar rather than
the banana bait mixture. Exposing baits on freely suspended
pieces of cloth attracted twice as many individuals and slightly
increased the number of recorded species, as compared to
painting the bait on tree trunks at the same height. Baits exposed
at a height of just 50 cm were the least effective.
So, different baiting mixtures and techniques heavily influenced
the absolute numbers of recorded individuals and species. If the
diversity of samples is considered, however, these methodological
differences largely disappear. The values of Williams’ a are
practically identical for all subsamples (Table 2). Likewise,
Hurlbert rarefaction curves reveal a remarkably high correspon-
dence between the two bait mixtures as well as among the various
130
Table 2. Comparisons of recording efficiency between the two bait mixtures
(sugar vs. banana; suspended baits only), and between methods of bait
presentation (suspended vs. painted on tree trunks, height 200cm (=
“tree200”); painted on tree trunks, 50 (= “tree50”) vs. 200 cm)
es Sugar... Banana | Suspended | Tree200 Tree200 Tree50
Number of 1800 193 1993 866
individuals
rap = 1295.8, p < 0.0001 | y2,4¢ = 444.3, p<0.0001 | Ya = 516.1, p< 0.0001
Number of 107 59 110 84 47
species
Statistics | X 13.88, p < 0.001 | YA —349,p>0.05 | YA 10.45, p < 0.005
Sorensen
Dice
Morisita
Renkonen
Statistical comparisons between numbers of species or individuals are made with
xf ests (null hypothesis: equal distribution between methods). As a measure of sample
iversity, values of Williams’ a of the log-series (with 95% confidence interval, Cl)
are presented. Similarity between subsamples is expressed as Sörensen, Dice, Morisita,
and Renkonen indices.
presentation methods (fig. 4). In no case do the expected species
numbers differ significantly between the larger sample (when
rarified) and the smaller sample. Furthermore, the subsamples
were all quite similar with regard to their species composition
and abundance relationships. The Dice index (which is the most
appropriate binary index here since samples of different species
richness are compared, but differences are due to sampling
efficiency) reveals a correspondence between 83 and 98.3%. Also
the abundance-based Morisita and Renkonen indices indicate
similarities between 52 and 91%.
Examination at species level showed that none of the more
common species (1.e. represented by more than five individuals
in our total sample) was exclusively observed at the banana bait
or with only one specific method of bait presentation. Only four
species (Agrochola litura, Euplexia lucipara, Phlogophora me-
ticulosa and Polia nebulosa) were exclusively caught at the sugar
bait. Given the overall much lower attractiveness of the banana
bait, however, this is probably a stochastic effect of sample size
rather than a hint towards specific avoidance of the banana
mixture.
131
oO
© 100
©
®
Q
a
— 80
O
=
®
ro
= 160
=}
=
TD
Ores x40
® sugar bait
= J. 95 % confidence limits
DAT of sugar bait
banana bait
0
0 500 1000 1500
number of individuals
pieces of cloth
95 % confidence limits
of pieces of cloth
tree trunk at 200 cm
expected number of species
0 500 1000 1500 2000
number of individuals
tree trunk at 200 cm
tree trunk at 50 cm
95 % confidence limits
of tree trunk at 200 cm
expected number of species
0 200 400 600 800
number of individuals
132
In sum, although we found considerable variation in the
effectiveness of attracting moths depending on bait mixture or
baiting method, there was no evidence that either bait type or
method drew significantly different subsamples from the com-
munity of noctuid species which frequent such baits. The
similarity between the subsamples was high, and estimates of a-
diversity (based on Williams’ à or Hurlbert’s rarefaction method)
provided entirely concordant results, irrespective of methodolo-
gical details.
Influence of weather conditions on baiting success. Most moths
are ectothermic animals that depend on appropriate climatic
conditions (e.g. temperature) for maintaining flight activity. Even
though certain noctuids which are active in winter possess
elaborate methods of thermoregulation (e.g. Lithophane, Eupsilia:
Heinrich & Mommsen, 1985), one should expect that overall
attraction of noctuids to baits is strongly influenced by temper-
ature. Wind speed might also interfere with the efficiency of bait-
trapping. On the one hand, higher wind speed and concomitant
stronger convective cooling should constrain flight activity, in
particular at lower air temperatures. On the other hand, the scent
plume of baits might distribute more freely, and reach further,
if carried by air currents. We tested the influence of both climatic
variables on the number of individuals and species attracted to
the baits. For these tests we combined data from both localities
and for all bait mixtures or presentation methods, and then
calculated the Pearson correlation coefficient between the total
nightly catch and the average temperature and wind speed score
for the respective evening.
—-Fig. 4. Hurlbert rarefaction curves for the comparison of samples (a) sugar vs.
banana bait, (b) suspended pieces of cloth vs. bait painted on tree trunk (height 200 cm),
and (c) bait on tree trunks (200 cm vs. 50 cm). In all three cases, the rarefaction curve
of the smaller sample lies completely within the confidence limits of the rarefaction
curve of the larger sample, i.e. the diversity of samples is not significantly different.
133
a)
Y = 0.367 + 0.217 X
6 | r =0.64
$2 r2 = 0.41
vA N = 106
© p < 0.0001
&
SA
D
=
Le)
=
©
© 2
Q
E
=)
=
=
0
0 5 10 15
temperature [°C]
b)
Y = 2.680 + 0.034 X
r=0.018
5 E r2= 0.0003
Bo N = 106
Oo
Sa à où à p>0.1
4 o O O Oo o
90 oo O0
O O
9000 8 o o 2
In (number of individuals + 1)
0 1 2 3 4
windspeed [m/s]
Fig. 5. Relationship between the number of individuals caught at baits (transformed
as In(x+1)) and (a) temperature or (b) windspeed.
134
We found a significant positive correlation between the number
of attracted moths and temperature (fig. 5a). A similar relationship
was found between temperature and recorded number of species
(r = 0.68, ? — 0.46, p < 0.0001). In contrast, wind speed had
no detectable influence on the number of arriving moth individuals
(fig. 5b), nor species (r = -0.040, r? = 0.002, p > 0.1), although
the largest samples were taken on evenings with little wind.
Assessing the intensity of recording. As shown above, baiting
noctuids at the two study sites twice a week over an entire season
yielded a large, robust database, from which the diversity and
species richness of the moth communities could be reliably
estimated. However, this recording scheme required an immense
time effort. To assess how well the communities could be
described with only half the recording effort, we partitioned our
samples from both sites into two subsamples. Subsample |
consisted of only the first recording night per week at each of
the localities, subsample 2 only of every second recording night
per week per site. Both of these subsets of data were then
compared with each other and with the complete data set. As
expected, with half the sampling effort we recorded at both sites
roughly half of the individuals, and approximately 70-80% of
the species (Table 3). By chance, the subsample SMI was
distinctly poorer than SM2.
Table 3. Numbers of species and individuals in the subsamples and in the
complete set of data for each study site
RE: Garden = rn mm
seien ES] | total | sme HSE | total |
Number mu 89 86 106 65 76 88
species
Number of 1054 1976 1039
individuals
Williams’ a of the log-series reveals that a-diversity neither
differed significantly between the subsamples at any site, nor
between any subsample and the corresponding total catch (fig.
6). Similarly, the Hurlbert rarefaction method (based on recorded
135
28
26
24
22
Williams o
20
18
16
BG1 BG2 BG SM1 SM2 SM
Site
Fig. 6. Williams’ a of the log series (+ 95% confidence intervals) for the subsamples
and the complete set of data for both study sites (BG, SM).
individuals: fig. 7) as well as the Shinozaki rarefaction method
(based on sampling nights: fig. 8) show that at both study sites
the two subsamples agree very closely with each other, as well
as with the rarefaction curves for the entire data set. Hence, a-
diversity and community structure of the noctuid moths attracted
to baits could have been assessed with equal reliability through
only one sampling event per week. Not only diversity, but also
species composition was very similar between the two subsamples
at each study site. The Morisita index, in particular, revealed
a very close correspondence between the data subsets.
With reduced sampling effort, one invariably misses an increas-
ing proportion of the species present in a community (Table 3,
figs. 7 & 8). Therefore, it will become more and more difficult
to estimate the ‘true’ species richness. An empirical approach to
assess the potential of estimating absolute species richness from
reduced samples is the application of the extrapolation estimators
136
a)
100
80
60
AGE ei — BM total
expected number of species
20 } 95 % confidence limits
6 of BM total
0 500 1000 1500 2000
number of individuals
b)
expected number of species
95 % confidence limits
of SM total
0 200 400 600 800 1000
number of individuals
Fig. 7. Hurlbert rarefaction curves of the entire baiting samples of noctuids, and the
corresponding subsamples, for both study sites (a: BG, b: SM). The rarefaction curves
of the subsamples lie entirely within the 95% confidence limits of the rarefaction curve
for the whole data set, indicating that diversity did not differ between subsamples,
nor between any subset and the complete data set.
189
120
100
80
60
40
expected number of species
— BM total
20
0 10 20 30 40 50 60
number of capture nights
b)
100
80
60
40
— SM total
20
expected number of species
0 10 20 30 40 50 60
number of capture nights
Fig. 8. Shinozaki rarefaction curves of the entire baiting samples of noctuids, and
the corresponding subsamples, for both study sites.
138
Table 4. Indices for the comparisons between sub-
samples for each study site
BG1/BG2 SMI/SM2
Sörensen 0.79 0.75
Di
Table 5. Performance of the estimators (495% confidence intervals where
applicable) of “absolute” species richness (Colwell, 1997) based on the
partitioned subsamples collected at both sites
Species richness Botanical Garden (BG) Schlehenmühle (SM)
BGI BG2 SMI
112 50700 0720.1) 92 130 112 (+4.6%)
6
estimator
107 (-20.7% 107 (-20.7% 85 (-21.3% )
DI=E31l 1430 146+ 39 à 80+16 CHA (+15. 2%)
124435 (-14.5%) | 131443 (-9.7%) | 87222 (-14.7% 10431 N 8%)
MMMeans 117 (4.9% 124 (+0.8% 99 (-6.6% 118 (+11.3%
Per cent values (in parentheses) denote changes relative to the respective estimator
for the entire data set (see Table 1)
(ACE, ICE, Chaol, Chao2, MMMeans: Colwell, 1997 and
above) on the partitioned subsets of data (Table 5).
When compared to the estimator values calculated for the
entire data sets (Table 1), three patterns emerge. (1) For the first
four models of extrapolation (ACE to Chao2, which are based
on ‘rare’ species in the samples) most figures as estimated from
the partitioned data sets are smaller than those for the entire
data set (but extrapolations for SM2 show the reverse trend).
(2) Estimates based on these four algorithms tend to show quite
large deviations (11 out of 16 cases differ by about 10 to 20%,
SM2 again provides the only exception) from the species richness
calculated for the entire data set. (3) In contrast, extrapolations
according to the Michaelis-Menten model differ by less than 10%
from the ‘complete’ estimate.
139
Discussion
Applicability of quantitative diversity measurers to catches at
baits. Within one season of regular baiting we sampled 3015
noctuid moths representing 119 species at two study sites. This
large material allowed us to test the suitability of a variety of
models and methods employed in biodiversity research. For both
sites the rank-abundance plots revealed the usual pattern of
natural communities, which are made up by only a few very
frequent species, while most species are ‘rare’. Such a structure
is typical for moth communities sampled by light-trapping
(Kempton & Taylor, 1974; Taylor et al., 1976). Our baiting data
showed an excellent fit to the frequency distributions as predicted
by the log-series model, which has mostly been applied thus far
to light-trap data. This close correspondence is a clear indication
that (a) with regular baiting a noctuid guild (namely those which
feed on carbohydrate resources other than flowers) can be
sampled adequately and (b) that Williams’ a, as an easily
computed measure of diversity, can be used to characterize such
a community. Two great advantages of Williams’ a are (a) that
it is largely independent of sample size (so long as samples are
adequately large, preferably > 100 individuals) and (b) that it
condenses information of species presence and abundance into
one figure (with confidence limits), thus facilitating further
comparisons (see Southwood, 1978; Wolda, 1981; Hayek &
Buzas, 1997).
The second type of diversity assessment, Hurlbert’s rarefaction
method, also performed well on our data set. Hurlbert (1971)
strongly opposed the use of any ‘diversity indices’ and developed
his alternative probabilistic parameter-free concept for assessing
and comparing species richness as a function of recording
intensity. With the advent of computer facilities to perform the
complex calculations, these rarefaction methods are now widely
used in community ecology and conservation biology (e.g.
Achtziger et al., 1992; Hayek & Buzas, 1997). When applied to
our data set, the Hurlbert approach always led to the same
conclusions about diversity as the calculation of Williams’ o (see
below).
Comparability of different bait mixtures and exposition tech-
niques. Above, we have shown that quantitative analytical
140
uow Ç'€ [B101) E661 1661 epnsurusg e]0%
‘sIS910J [e210q PIPUIS9pP ‚eıssny
(uOU ¢°9) L661 BUBAEY AN
‘adeospury] Jeınypna poxtu :Aueunlon)
8861 L86I elleäcg S
‘adeospury [eınypna poxtuu ‘AUBUII90)
9861-5861 soutAoid Jury
‘sadAJ 53.107 SNOLIBA :Aueunlan)
IE ET Jus 1L6] ‘UOSS194 ‘suopies qingns
ay Gam IG 1ST] tL6I ‘Ae ‘adeospur] payeATNO pue JS210F PAXIUU ‘ÂABMION S
FETE 9861-1861 BIUISITA M
6 8£-0'0€ SI] 166] ‘Opuoy 9 ang ‘JS9IOF P3ABI[peOIg SNONPI99P ‘VSN
(uou 7) 0661 HOIMSUNIY MON
8°67 ua 9661 ‘SEWOUT
‘(Adour 3Aoge) }S9107 SNOISJIUO9 ‘epeued
(uou Z) 0661 JOIMSUnIg MON
P66] ‘SELIOUT 9 sewouy] ‘(Adours uIUJIM) 389107 SNOISFUOI 'epeuey
6861 L861 ueqes
OLI-tr just] T661 ‘’/? 12 APMOIIOH ‘suomyejuejd pue sjsoloj ures ‚eıskefeW 4
eMmeIeS
‚eısäefeW I
sueyed
‘BISAEIEN M
8L61 L/61
‘sodA} 153107 ure.I SNOLIeA
0861 6/61
‘Is210J AIBpUO99S [esıdor}
7861 ‘AEMOIIOH
eu | mm
poor | mm
(0 SUBIT M) poypu
AISIOAIG UOTDI[OD
6861 POMIOM 2 MOTE
291N0S Apnjs Jo uoreInp ‘2]qQUH Anunoy
(uoseas pue d}IS Paıpnys YOR 107 Afoyeredas
pamnduos 219m sanfeA © ‘oyqeormdde J19yM) AJISISAIP SEPINIOON UO S9IPNJS PAJ99[9S WOAF 0 ,SUBIIILAA JO sonjeA ‘9 SIqeL
l
4
l
methods may be applied to noctuid samples from baits. However,
most studies known to us about bait-trapping of moths in
temperate regions are restricted to qualitative lists of species.
Moreover, even proponents of baiting for faunistic studies usually
emphasize that too many factors affect the success of baiting to
allow for quantitative elaboration of such data (e.g. Steiner &
Nikusch, 1994). We have empirically tested two sets of factors
(i.e. methodological and climatic) which are commonly proposed
as objections against more sophisticated analyses of baiting data.
A prime requirement to allow for comparisons between
different studies (and this is the basic reason why quantitative
methods have been developed at all) is that, if drawn from the
same community, samples obtained with different methods must
yield congruent results. Specifically, this means that neither bait
mixture nor exposition method should affect the assessment of
a given community. In fact, we observed that the two bait
mixtures differed drastically with regard to numbers of species
and individuals attracted, and bait presentation also had a
profound effect on baiting efficiency. Thus, at a first glance these
results seem to support the pessimistic attitude towards baiting
as a quantitative method.
Calculation of Williams’ a (Table 2) and application of
Hurlbert’s rarefaction method (fig. 4), however, demonstrated
that, with regard to diversity, differences between samples were
all minimal and not significant. Hence, the two bait mixtures
and three presentation techniques only differed in the number
of moths attracted, but all these methods drew samples of equal
diversity pattern from the same natural community. Further
support for this conclusion comes from the estimates of similarity
between samples caught with the different methods or baits.
Values of all similarity indices tested were high (mostly 270%).
Only the sample of noctuids attracted to baits on tree trunks
at a height of 50 cm differed more, but at these baits so few
moths were caught that this result should not be overrated. Still,
the Dice index (the most suitable for such impoverished samples)
indicates a similarity of 83% to the sample caught higher up at
tree trunks. Finally, we obtained no evidence that any of the
commoner moth species could be exclusively observed at one
bait mixture or with one exposition method. Hence, apparent
142
methodological differences are effects of sample size and empha-
size the general notion that comparisons of mere numbers of
recorded species are usually inadequate to assess diversity when-
ever sample sizes, or sampling effort, are variable (Mawdesley,
1996).
Why did bait mixtures or presentation techniques differ in
absolute effectiveness? Since we have not addressed this question
experimentally, we can only propose some explanatory arguments.
It seems likely that the odour plume dissipating from baits
suspended from a rope distributes more freely as compared to
bait patches on tree trunks. From the same reasoning, baits at
a height of 200 cm at tree trunks are probably easier to locate
for a flying moth than those at 50 cm. Accordingly, the differences
in effectiveness between the exposition techniques are likely due
to the intensity and range of the olfactory cues which emanate
from the food source.
The distinct preference for the sugar mixture over the banana
bait is more difficult to explain. In particular in late summer
and autumn, rotting fruits are important natural food sources
of bait-visiting moths (Steiner & Nikusch, 1994; Steiner, 1997).
Thus, one might have expected the banana bait, with its (for
the human observer) more intensive smell of decaying and
fermenting fruits, to be more attractive, but the opposite was
true. For preparation of the two bait mixtures, equal fresh weights
(500 g) of sucrose and bananas, respectively, had been used.
Hence, the sugar content of the banana bait was certainly lower,
and this might be one reason for the preference pattern observed.
One should expect that noctuid moths, with their substantial
energy consumption during warming up and active flight (Heinrich
& Mommsen, 1985), would be predominantly attracted to the
most profitable food source. The cues used for resource location,
however, still need to be addressed with suitable experiments.
Our observation that, under otherwise equal conditions, a wine-
sugar mixture was more effective than a wine-banana bait calls
into question the significance of strongly smelling additives in
baits. Nutrient concentration may be more influential than the
presence of fruit esters (e.g. maleic acid diethyl ester) or the use
of manifold “secret” mixtures as employed by older authors
(Lederer, 1957; Steiner & Nikusch, 1994). In full agreement with
143
our results, Pinker (1970) and Nippel (1976) also observed highest
attractiveness with simple red wine-sugar baits.
In sum, our methodological comparisons reveal that noctuid
samples obtained by baiting can be used to characterize the
diversity of a moth community even if different mixtures or
presentation methods are employed. Methodology does affect
sample sizes, but not estimates of community structure extracted
from the samples. The better standardized both bait mixture and
exposition are, the more reliable the results will be. Most
importantly, our findings open up the venue to quantitative
comparisons between studies at different locations or in different
years. It is only required to obtain sufficiently large samples with
a standardized recording technique, and with all species and
individuals being noted. The objection (e.g. Steiner & Nikusch,
1994) that results of baiting surveys could a priori never be used
for quantitative analyses is no longer tenable.
Climatic factors and the response to baits. As expected, the
number of noctuid individuals and species attracted to baits was
strongly affected by temperature: the warmer an evening the more
moths appeared. Below 5°C very few moths were caught, and
9 out of 10 evenings when not a single noctuid showed up at
the baits had mean temperatures below 7°C. This strong
temperature-dependence corresponds well with the observations
of Lederer (1959) at baits (the same applies to light-traps:
Muirhead-Thomson, 1991).
Wind speed, in contrast, had no detectable influence, although
the highest catches occurred at nights with but little wind. Wind
may influence the effectiveness of light traps because it facilitates
passive drift as well as migration flights (Hausmann, 1990;
Muirhead-Thomson, 1991). Our data indicate that noctuid moths
in search for food (the behavioural context in which they are
attracted to baits) are less affected by wind, at least in the range
of wind speeds recorded during our observation period (up to
4 m/s).
Rainfall occurred on 18 of 106 sampling evenings. We always
noted at least some moths at the baits when it was raining.
Numbers of attracted individuals were not noticeably lower on
rainy nights. In July, the month with highest precipitation in
1997, for example, we caught between 12 and 57 individuals at
144
the baits on 6 evenings with rain, compared to 12-83 individuais
on 12 nights without rain (tjgar = 1.02, p > 0.3). In early spring
or autumn rainfall might even be advantageous for baiting,
because then usually temperature does not drop as much as on
cloudless nights. In any case, rainfall does not per se negatively
affect bait-trapping success (see also Nippel, 1976).
Baiting versus attraction to artificial light sources. Today, most
quantitative studies of moth communities use attraction to
artificial light sources (termed “light-trapping” hereafter for
convenience) as the basic method of sampling (e.g. Mörtter, 1988;
Hausmann, 1990; Wolda et al., 1994 for temperate regions;
Robinson & Tuck, 1993, Chey et al., 1997 for tropical commun-
ities). The applicability of quantitative diversity measures to light-
trapping data has been extensively explored (Kempton & Taylor,
1974; Taylor et al., 1976; Robinson & Tuck, 1996) and lends
high credibility to results of such studies. However, as with any
sampling method, light-trapping may be influenced by a large
number of factors which all may bias or even heavily distort
the results. Among the factors known to interfere with light-
trapping efficiency are spectral composition of light stimulus,
ambient temperature, light environment, lunar period and wind
speed (review: Muirhead-Thompson, 1991). Most disturbingly,
the physiological mechanisms underlying the attraction of moths
to lights are not yet satisfactorily understood (Steiner & Nikusch,
1994). Even among closely related species the response to light
sources may differ distinctly, and in any case the sampling
procedure is based on an unnatural stimulus. Despite all these
drawbacks, light-trapping data have empirically demonstrated
their usefulness as a tool in community ecology and biodiversity
research.
From the data presented in this study we conclude that bait-
trapping data can be equally useful. Just as with light-trapping,
a number of factors (such as ambient temperature, bait mixture,
baiting technique) do affect the efficiency of recording, but the
resulting samples can well be evaluated using much the same
analytical techniques. There is no generally “superior” method
of sampling nocturnal moths. Light sources have the advantage
of attracting a larger taxonomic range of moths in usually larger
numbers (thus increasing scope and decreasing time effort), but
145
often have the disadvantage of highly male-biased sex ratios in
samples (Mörtter, 1988; Hausmann, 1990). Certain abundant
species (such as in the genera Amphipyra or Conistra) are
selectively under-represented at light as compared to records at
baits. Bait-trapping, in contrast, utilizes a natural behavioural
context and stimulus for attraction and yields more even sex
ratios. In our sample the cumulative sex ratio was 1418 males
to 1578 females (not all specimens were sexed; comparison against
null hypothesis of even sex ratio: Xjar = 8.55, p<0.005), thus
even indicating a significant slight surplus of females. Bait-
trapping therefore has the potential of revealing certain ecological
aspects of a community (e.g. patterns of abundance and dom-
inance) more accurately, but only that fraction of moths which
utilize food resources similar to the exposed baits can be
monitored (mainly Noctuidae, but also many Geometridae:
Siissenbach & Fiedler, in press).
How does the diversity of our baiting samples rank in
comparison with published data derived mostly from lght-
trapping? In Table 6 we have summarized examples from studies
on noctuid moths where Williams’ a has been presented explicitly,
or could be calculated using the published data. Our diversity
figures agree surprisingly well with other data obtained from light-
trapping studies at medium latitudes in northern temperate zones.
Only samples from industrially degraded subarctic landscapes in
northernmost Russia or dense spruce plantations in western
Germany have much lower, and samples from tropical moist
forests much higher diversity. The close correspondence between
our baiting data and the published light-trapping studies suggest
that noctuid communities at latitudes between 45° and 55°N can
be generally characterized by values of Williams’ a ranging from
20-40, and that baiting is equally suitable to assess such values
with sufficient accuracy. Unfortunately, most faunistic surveys we
have come across were not conducted in a quantitative manner,
or the data have not been published in a form which would
allow post hoc calculations of diversity statistics. Hence, a critical
comparative re-appraisal of diversity figures for different moth
taxa and across geographical gradients still awaits to be done.
Discrimination between communities. Biodiversity research is
not only concerned with adequately measuring “richness” of
146
communities (a-diversity), but also with discriminating between
communities (B-diversity). With regard to the former, our samples
indicate that noctuid a-diversity did not differ markedly between
the two sites despite their different vegetation structure. The main
difference was that on the BG site we captured about twice as
many moth individuals as at the SM site. It is always critical
to infer abundance from quantitative samples, because practically
all sampling methods, at least for mobile organisms, are biased
by factors such as activity or specific differences in catchability
of the animals in question. Although our data indicate that at
the SM site the guild of bait-visiting noctuids was less numerous,
such a result needs to be validated by independent measures of
abundance (e.g. based on larval densities) which we presently
do not have.
However, with regard to species composition, both sites
showed strong similarity. Similarity was particularly high if only
presence of species was evaluated (Sôrensen and Dice index:
77-85%), while the two communities could be more clearly
separated using the abundance-based Morisita and Renkonen
indices (55-60%). This finding agrees with Wolda’s (1981) per-
ception that Morisita’s index is particularly suitable for assessing
community similarity and again underlines that baiting data for
noctuid moths are well suited for studies in community ecology.
Estimating diversity and species richness. Numerous methods
of expressing “diversity” have been suggested, and most of these
have advantages as well as disadvantages (see Southwood, 1978;
Magurran, 1988; Lande, 1996 for thoughtful discussions). Two
widely used ways of measuring diversity yielded congruent results
in our study, namely fitting one parametric model (Williams’ a)
and probabilistic estimation of species richness by controlling for
sample size effects (Hurlbert’s rarefaction). Both these methods
are highly suitable for analysing quantitative bait-trapping data,
because they effectively suppress the bias resulting from variation
in sample size and sampling effort, as long as all samples used
for the calculations have been assembled with the same stan-
dardized methods, are randomly drawn from the community, and
are sufficiently large.
A disadvantage common to both methods is that they produce
rather abstract figures. For many purposes, including conservation
147
biology, the “real” number of species in a community would
provide a more meaningful and convincing measure. However,
at least with mobile organisms, it is in principle impossible to
be sure that one has ever sampled a community exhaustively
(i.e. that further sampling would not add any more species to
the records). The collecting effort necessary to approach real
saturation increases with species richness and diversity of a
community.
Extrapolation from samples to communities might provide a
solution to that dilemma (Colwell & Coddington, 1994). In the
present study we have tested some extrapolation methods sug-
gested by Colwell (1997). These methods have not yet been widely
used, but tests using samples of Mexican hawkmoths (Leon-
Cortés et al., 1998) as well as model data sets (Peterson & Slade,
1998) both arrive at the conclusion that a Michaelis-Menten
process (termed Clench’s function there) yields the most robust
asymptotic estimation and that Chao’s estimates likewise give ~
robust estimates.
From our own data set, the following patterns emerge. (1) As
expected, all extrapolations arrive at higher numbers than
actually recorded species. Despite very intensive sampling effort
at neither site have we achieved a complete inventory of the
noctuid guild attractable to baits. (2) For both habitats, the
estimators converge to similar figures (123-145 spp. at the BG
site, 99-108 spp. at SM), which would suggest that “true” species
richness lies somewhere in these intervals. (3) The estimators
perform differently on the two data sets. In the larger BG sample,
the randomized species accumulation after the Michaelis-Menten
model produces a low estimate, while it yields a medium estimate
in the smaller SM sample. This could be an effect of samples
size: all else being equal, the larger the sample is, the closer the
randomized hyperbolic function should be to its asymptote.
(4) The Michaelis-Menten estimator changed less when sample
sizes were “experimentally” halved. The four other estimators
showed no uniform response when applied to rarified samples.
How realistic are the estimated species numbers? No data are
available exactly for our two study sites, but from the vicinity
of Bayreuth (radius about 10 km) at least 246 Noctuidae species
have been recorded thus far (Wolf, 1981; Siissenbach & Fiedler
148
in press). According to the multi-volume monograph of the
noctuid fauna of SW Germany (Ebert, 1997; Steiner, 1997;
Steiner & Ebert, 1998), about 61% of all noctuid species have
been observed visiting fruit baits. Applied to the north-eastern
Bavarian fauna, one might therefore expect a regional pool of
150 species (61% of 246 spp.) as potentially attracted by baits.
Then, estimated totals of about 100 (SM site) or 130 (BG site)
bait-visiting noctuid species are not unrealistic.
The applicability and validity of species richness estimators
needs to be tested against more data sets derived from a broader
(taxonomical, methodological, geographical) range of studies.
The newly proposed methods from Colwell (1997; i.e. ACE and
ICE), in particular, require further testing. Though promising in
theory and from the results on the entire data sets, their unstable
performance when applied to subsamples throws doubt on their
usefulness. As it stands, the Michaelis-Menten model appears to
be a robust, albeit conservative method of estimating total species
richness (see also Leön-Cortes et al., 1998; Peterson & Slade,
1998).
Baiting and recording effort. A final point worth discussion
is the sampling effort needed to assemble meaningful data sets.
Sampling effort is usually a cost factor (time and manpower
needed to conduct the sampling, but also for mounting, sorting,
and identification). Hence it seems advisable to limit the sampling
effort and sample sizes so as to optimize the relationship between
costs (of labour and materials) and benefits (reliability of results
and conclusions). For light-trapping surveys, such strategies have
already been proposed and tested (Thomas & Thomas, 1994).
We have used two approaches to assess the effect of reduced
sampling effort. First, we compared the data subsets which were
accumulated during either the first, or second, sampling evening
of each week. Although subsamples covered only 70-80% of the
species as compared to the total samples, estimates of a-diversity
were not affected significantly. Subsamples were also very similar
to each other in species composition and abundance. However,
most estimates of true species richness tended to decrease (and
confidence limits to increase) for subsamples. Thus, reducing
sampling effort to one evening per site and per week did not
change conclusions abcut a- and ß-diversity, but certainly would
149
be less sufficient for studies aimed at compiling species inventories
or estimating “true” richness.
Rarefaction methods provide a second approach to study
effects of sampling effort. The Hurlbert curves show that with
500 moths sampled per site about 60-80 species will be covered,
corresponding to 25 sampling evenings as revealed by Shinozaki
rarefaction. The Shinozaki model assumes that with each sampling
unit all species have the same likelihood of being captured. Given
the strong climatic seasonality at the study sites, and the profound
variation between evenings in the number of moths attracted,
this assumption is oversimplistic. If sampling is limited to weather
conditions where larger numbers of moths can be expected (\.e.
on evenings with >7°C mean temperature, and concentrating
the sampling in summer and autumn, where abundance and
diversity of moths at the baits was higher than in spring:
Süssenbach & Fiedler in press), then as few as 10-15 sampling
nights per site and season should reveal much of the community
patterns, but at a cost with regard to species coverage. As a
methodological standard, a simple saturated red wine-sugar bait
mixture exposed on suspended pieces of cloth at a height of 2
m above ground should be sufficient for such purposes.
Sampling methods should always be selected according to the
aim of a study. As we have shown above, baiting noctuids in
a standardized manner can easily reveal sufficient information
to characterize the noctuid community, its diversity and principal
abundance structure. Reliable results can be expected even with
much reduced sampling effort. When species inventories are the
objective (which from statistical reasons alone will almost never
be “complete”), light-trapping (with its broader taxonomic cov-
erage) or a combination of recording methods may be chosen
as more appropriate. However, for many typical questions of
community ecology and biodiversity research, including conser-
vation biology, it is no longer justified to disregard baiting as
a potentially powerful tool.
Acknowledgements
We are deeply indebted to Dr. Gaden S. Robinson (London)
and one anonymous reviewer for their manifold constructive and
linguistic comments which substantially improved the manuscript.
150
Further thanks go to Jan Beck who drew our attention to various
references, to Dr. Roland Achtziger (now Freiberg) who provided
access to the computer program used for calculating the Shinozaki
rarefaction, and to Dr. Wolfgang Nässig (Frankfurt) who kindly
read and criticized an earlier manuscript version. The district
government (Regierung von Oberfranken, Bayreuth) granted
permission to conduct the present study. Dr. Gregor Aas (director
of the Botanical Garden, Bayreuth University) provided free
access to one of our study sites.
References
ACHTZIGER, R., NIGMANN, U. & ZWÔLFER, H., 1992. Rarefaction-Methoden
und ihre Einsatzmôglichkeiten bei der zooökologischen Zustandsanalyse
und Bewertung von Biotopen. — Z. Ökol. Naturschutz 1: 89-105.
BAKKE, A., 1974. Abundance and diversity in the fauna of nocturnal moths
at two sites in South Norway. — Norsk ent. Tidsskr. 21: 173-184.
Bartow, H. S. & Worwop, I. P., 1989. Moth diversity of a tropical forest
in Peninsular Malaysia. — J. Trop. Ecol. 5: 37-50.
BUTLER, L. & Konpo, V., 1991. Macrolepidopterous moths collected by
blacklight trap at Cooper’s Rock State Forest, West Virginia: a baseline
study. — Bull.agric.Forest exper.Station, West Virginia Univ. 705: 1-25.
CHEY, V. K., HoL_toway, J. D. & SPEIGHT, M. R., 1997. Diversity of moths
in forest plantations and natural forests in Sabah. — Bullent.Res. 87:
371-385.
CLEVE, K., 1971. Der Anflug der Nachtschmetterlinge an das Licht und an
den Köder. — Ent. Z. 12: 121-136.
CoLweEL1, R. K., 1997. EstimateS: Statistical estimation of species richness
and shared species from samples. Version 5. User’s guide and application
published at: http:/ / viceroy.eeb.uconn.edu/ estimates.
CoLWELL, R. C. & CoDDINGTon, J. A., 1994. Estimating terrestrial biodiversity
through extrapolation. — Phil. Trans. R.Soc. Lond. B 345: 101-118.
DeVries, P. J., Murray, D., & LANDE, R., 1997. Species diversity in vertical,
horizontal, and temporal dimensions of a fruit-feeding butterfly community
in an Ecuadorian rainforest. — Biol. J. Linn.Soc. 62: 343-364.
EBERT, G. (ed.), 1997. Die Schmetterlinge Baden-Wiirttembergs. Band 3
(Nachtfalter I). — Eugen Ulmer, Stuttgart. 575 pp.
FISHER, R. A., Corset, A. S. & WıLLıams, C. B., 1943. The relation between
the number of species and the number of individuals in a random sample
of an animal population. — J. Anim. Ecol. 12: 42-58.
HAUSMANN, A., 1990. Zur Dynamik von Nachtfalter-Artenspektren. Turnover
und Dispersionsverhalten als Elemente von Verbreitungsstrategien. —
Spixiana, Suppl. 16: 1-222.
Hayek, L.-A. C., & Buzas, M. A., 1997. Surveying natural populations. —
Columbia Univ. Press, New York. xvi + 563 p.
151
HEINRICH, B., & MOMMSEN, T. P., 1985. Flight of winter moths near 0°C. —
Science 228: 177-179.
Heppner, J. B., 1991. Faunal regions and the diversity of Lepidoptera. —
Trop. Lepid. 2, Suppl. 1: 1-85.
HorLowAy, J. D., 1984. The larger moths of the Gunung Mulu National
Park: a preliminary assessment of their distribution, ecology, and potential
as environmental indicators. — Sarawak Mus.J., N.S. 30 (51): 149-190.
HoLLowaAY, J. D., Kirk-SPRIGGS, A. H. & CHEY, V. K., 1992. The response
of some rain forest insect groups to logging and conversion to plantation.
— Phil. Trans. R.Soc. Lond. B 335: 425-436.
Hur pert, S. H., 1971. The nonconcept of species diversity: a critique and
alternative parameters. — Ecology 52: 577-586.
Kempton, R. A. & TAYLOR, L. R., 1974. Log-series and log-normal parameters
as diversity discriminants for the Lepidoptera. — J. Anim. Ecol. 43: 381-399.
Kozıov, M. V., JALAVA, J., Lvovsky, A. L. & Mikko a, K., 1996. Population
densities and diversity of Noctuidae (Lepidoptera) along an air pollution
gradient on the Kola Peninsula, Russia. — Entom. Fenn. 7: 9-15.
Kress, C. J., 1989. Ecological methodology. — Harper Collins Publishers,
New York. 654 p.
Lamas, G., RoBBins, R. K., & HARVEY, D. J., 1991. A preliminary survey
of the butterfly fauna of Pakitza, Parque Nacional del Manu, Peru, with
an estimate of its species richness. — Publ. Mus. Hist.nat. Univ. Nacion.
Mayor de San Marcos, Ser. A (Zool.) 40: 1-19.
LANDE, R., 1996. Statistics and partitioning of species diversity, and similarity
among multiple communities. — Oikos 76: 5-13.
LEDERER, G., 1959. Nahrungssuche und Nahrungsaufnahme der in der
Dämmerung und in der Nacht fliegenden Lepidopteren. — Fnt.Z.,
Frankf.a.M. 69: 25-40, 42-56, 67-80, 94-100, 109-124, 126-132, 136-144.
LEE, S.-M. & CuHao, A., 1994. Estimating population size via sample coverage
for closed capture-recapture models. — Biometrics 50: 88-97.
LEOGN-CORTÉS, J. L., SOBERON-MAINERO, J. & LLORENTE-BOUSQUETS, J.,
1998. Assessing completeness of Mexican sphinx moth inventories through
species accumulation curves. — Diversity & Distributions 4: 37-44.
MAGURRAN, A. E., 1988. Ecological diversity and its measurement. — Croom
Helm, London. 179 p.
MAWDESLEY, N., 1996. The theory and practice of estimating regional species
richness from local samples. Jn: Edwards, D. S., Booth, W. E. & Choy,
S. C. (eds.): Tropical rainforest research — current issues. — Dordrecht,
Kluwer. Pp. 193-214.
MEINEKE, T., 1995. Nachtfalter in der naturschutzrelevanten Raumplanung:
Grundlagen, Methoden, Auswertung. — SchrReihe Landschaftspfl. &
Natursch. 43: 79-106.
MÖRTTER, R., 1988. Vergleichende Untersuchungen zur Faunistik und Öko-
logie der Lepidopteren in unterschiedlich strukturierten Waldflächen im
Kottenforst bei Bonn. — Neue ent. Nachr. 21: 1-182.
MUIRHEAD-THOMSON, R. C., 1991. Trap responses of flying insects. —
Academic Press, London. x1 + 287 p.
132
MÜLLER-SCHÄRER, H., LEWINSOHN, T. M. & LAWTON, J. H., 1991. Searching
for weed biocontrol agents — when to move on? — Biocontrol Sci. Technol.
1: 271-280.
Nipper, F., 1976. Erfahrungen bei dem Köderfang von Schmetterlingen. —
Mitt. int.ent. Ver. 3: 17-35.
Persson, B., 1971. Flight activity of noctuids — a study based on light trap
experiments in south Sweden. — PhD thesis, Lund Univ., 59 pp. +
Appendix (38 tables, 99 figures).
PETERSON, A. T., & SLADE, N. A., 1998. Extrapolating inventory results into
biodiversity estimates and the importance of stopping rules. — Diversity
& Distributions 4: 95-105.
Pinker, R., 1970. Ratschläge für den modernen Licht- und Köderfang. —
Ent.Z., Frankf.a.M. 80: 241-244.
PRESTON, F. W., 1948. The commonness, and rarity, of species. — Ecology
29: 254-283.
Rosinson, G. S. & Tuck, K. R., 1993. Diversity and faunistics of small
moths (Microlepidoptera) in Bornean rainforest. — Ecol.Entomol. 18:
385-393.
Rosinson, G. S. & Tuck, K. R., 1996. Describing and comparing high
invertebrate diversity in tropical forest — a case study of small moths in
Borneo. Jn: Edwards, D. S., Booth, W. E. & Choy, S. C. (eds.): Tropical
rainforest research — current issues. — Dordrecht, Kluwer. Pp. 29-42.
Sacus, L., 1992. Angewandte Statistik. 7th ed. — Springer Verlag, Berlin.
xxxil + 846 p.
SIMBERLOFF, D., 1978. Use of rarefaction and related methods in ecology.
In: Dickson, K. L. & Livingston, R. J. (eds.): Biological data in water
pollution assessment: quantitative and statistical analyses. — Amer. Soc.
Testing and Materials. Pp. 150-165.
SKOU, P., 1991. Nordens ugler. — Apollo Books, Stenstrup. 565 pp.
SOUTHWOOD, T. R. E., 1978. Ecological methods with particular reference
to the study of insect populations. 2nd ed. — Chapman & Hall, London.
XXIV + 524 pp.
STEINER, A., 1997. Die Schmetterlinge Baden-Wiirttembergs, Band 6: Nacht-
falter IV. Noctuidae (Fortsetzung). — Eugen Ulmer, Stuttgart. 622 p.
STEINER, A. & EBERT, G., 1997. Die Schmetterlinge Baden-Wiirttembergs,
Band 7: Nachtfalter V. Noctuidae (Schluß). — Eugen Ulmer, Stuttgart.
582 p.
STEINER, A., & Nikxuscu, I. 1994. Beobachtungsmethoden bei Nachtfaltern.
Pp. 28-50 in: Ebert, G. (ed.): Die Schmetterlinge Baden-Wiirttembergs.
Band 3 (Nachtfalter I). — Eugen Ulmer, Stuttgart.
SUSSENBACH, D. & FIEDLER, K., 1999. Faunistische Ergebnisse einer K6-
derfangstudie an Eulenfaltern (Noctuidae) im Obermain-Hiigelland. —
Ber.naturw. Ges. Bayreuth 24 (in press).
TAYLOR, L. R., KEMPTON, R. A. & Worwop, I. P., 1976. Diversity statistics
and the log-series model. — J. Anim. Ecol. 45: 255-272.
Tuomas A. W., 1996. Light-trap catches of moths within and above the canopy
of a northeastern forest. — J. Lepid.Soc. 50: 21-45.
153
Tuomas A. W. & THomas, G. M., 1994. Sampling strategies for estimating
moth species diversity using a light trap in a northeastern softwood
forest. — J. Lepid. Soc. 48: 85-105.
Wo pa, H., 1981. Similarity indices, sample size and diversity. — Oecologia
50: 296-302.
WoLDA, H., Marek, J., SPITZER, K. & Novak, I., 1994. Diversity and
variability of Lepidoptera populations in urban Brno, Czech Republic. —
Eur.J. Entomol. 91: 213-226.
Wo tr, W., 1981. Die sogenannten Großschmetterlinge des nordöstlichen
Bayreuther Umlandes (Insecta, Lepidoptera). Ein Beitrag zur Kenntnis des
Obermain-Hügellandes. — Ber.naturw. Ges. Bayreuth 17: 145-254.
154
Nota lepid. 22 (2): 155-159; 15.VI.1999 ISSN 0342-7536
A new crambid moth species from the north-
eastern part of Turkey (Crambidae: Crambinae)
Matthias Nuss * & Wolfgang SPEIDEL **
* Staatliches Museum für Tierkunde, Königsbrücker Landstraße 159, D-01109
Dresden, Germany
** Museum für Naturkunde, Institut für Systematische Zoologie, Invalidenstr.
43, D-10115 Berlin, Germany
Summary. Metaeuchromius yusufeliensis sp. n., is described from the north-eastern
part of Turkey. Figures of the moth, the male and female genitalia and features of
the abdomen are presented.
Zusammenfassung. Metaeuchromius yusufeliensis sp. n., wird aus der nordöstlichen
Türkei beschrieben. Abbildungen des Falters, der Genitalien sowie von Merkmalen
des Abdomens werden gegeben.
Resume. Metaeuchromius yusufeliensis sp. n. est décrite du nord-est de la Turquie.
L’adulte, les genitalia mâle et femelle, ainsi que les caractères de l’abdomen sont illustrés.
Key words: Crambidae, Metaeuchromius, new species, Turkey.
Metaeuchromius yusufeliensis sp. n.
Holotype & with labels: “NE-Turkey Prov. Artvin Kackar Mts.: Yusufeli, 40°50’N
41°31’E, 650 m, M. VII.1995, leg. A. Kallies, ad lumen” and “Holotypus &
Metaeuchromius yusufeliensis sp. n. sel. Nuss & Speidel, 1997”. Deposited in Museum
für Naturkunde, Berlin (Germany). Paratypes 2 dd, 2 99, same data, in coll.
Nuss and coll. Speidel.
Description
Imago (fig. 1). Forewing length 9-10 mm; ocelli present,
chaetosemata prominent; frons rounded; labial palpi long and
porrect, slightly curved downwards, tuft-like scaled, three times
as long as diameter of eyes; maxillary palpi brush-shaped and
upright; antennae half the length of forewings, underside pubes-
cent, upperside scaled. Ground-colour of forewings white, almost
entirely covered by black scales. The typical pattern found in
the other species of Metaeuchromius Bleszynski, 1960 and in the
related genera Euchromius Guenée, 1845 and Miyakea Marumo,
153
vt
6
15
:
;
8
Figs. 1-5. Metaeuchromius yusufeliensis sp. n.: 1 — holotype; 2-3 - & genitalia (GU
Nuss 773); 4 - & abdomen, showing tympanal organ and coremata of 3rd abdominal
sternite (GU Nuss 773); 5 - Q genitalia (GU Nuss 809).
157
1933 is strongly reduced. Antemedial fascia white, distally edged
by ochreous scales in the central part of the wing; discocellular
stigma spot-like, black, surrounded by a white ring; postmedial
fascia white, sparsely covered by ochreous scales adjacent to the
medial area; six ochreous patches at the external side of the
postmedial fascia; termen black with six small white spots with
the ochreous patches lying in the interspaces; first row of fringes
shiny grey, second one chequered creamy white and brown. Male
retinaculum with hamus. Hindwings uniformly pale brown, first
row of fringes chequered creamy-white and pale-brown.
Abdomen (fig. 4). Tympanal organ with praecinctorium, ramus
tympani interrupted mid-ventrally, venulae secundae short, pro-
cessus tympani reduced. Male with coremata inserted cranio-
laterally on 3rd abdominal sternite.
Male genitalia (figs. 2, 3). Uncus narrow, with single setae.
Gnathos strongly sclerotized, clearly broader than uncus, duck-
bill shaped, distally with tiny thorns; juxta axe-blade shaped; two
swellings in the diaphragma situated laterally to the juxta are
covered with five larger and some smaller thorns; vinculum large,
v-shaped, with comparatively small saccus; costal margin of
valvae with small distal thorn; aedeagus with 4 slender, slightly
curved cornuti.
Female genitalia (fig. 5). Corpus bursae ovoid, membraneous,
without signum; ductus bursae short, wrinkled, posteriorly to the
insertion of the ductus seminalis a wrinkled knot, antrum and
ostium membraneous without any sclerotisations; ovipositor and
apophyses extremely long. Spermatophores globular.
Differential diagnosis. Forewings predominantly scaled black
with two contrasting white fasciae strongly reminiscent of some
Scopariinae. Labial palpi, however, three times as long as
diameter of eyes, which is a typical character for most crambines.
The species is characterised by its dark coloration.
Biology. Unknown.
Derivatio nominis. The species is named after its type locality,
Yusufeli in Asia minor.
Relationships
Schouten (1997) revised the crambine genus Metaeuchromius
Bleszynski, 1960 and substantiated the monophyly of the genus
158
by the presence of male scent organs situated on the 3rd sternite.
This apomorphy is shared by M. yusufeliensis sp. n. The species
is very similar to M. circe Bleszynski, 1965 from East and Central
China (cf. Schouten, 1997) according to the structure of the
genitalia. M. yusufeliensis sp. n. differs in the male genitalia by
the roundish, swollen processus basalis and the weakly developed
cornuti.
Acknowledgements
We thank our friend Axel Kallies (Berlin, Germany) for the
kind gift of the material and Barry Goater (Chandlers Ford, U.K.)
for correcting our English typescript. Useful comments were also
received from Rob Schouten (’s-Gravenhage, The Netherlands)
and Yuri Nekrutenko (Kiev, Ukraine).
Reference
SCHOUTEN, R., 1997. Revision of the genus Metaeuchromius Bleszynski
(Lepidoptera: Pyralidae: Crambinae). — Tijdschr. Ent. 140: 111-127.
159
Nota lepid. 22 (2): 160; 15.VI.1999 ISSN 0342-7536
Book review @ Buchbesprechung @ Analyse
Harpy, Peter B.: Butterflies of Greater Manchester.
20.9 X 14.8 cm, [4] + 127 pp., 16 black-and-white habitat photographs, 15
colour photographs printed inside front and rear covers, 170 figs. [read: maps],
paperback. Published by PGL Enterprises, Sale, Cheshire, 1998. ISBN
0-9532374-0-0. To be ordered from: PGL Enterprises, 10 Dudley Road, GB-
Sale, Cheshire M33 7BB, United Kingdom. Price: £ 9,- excl. postage.
Urban landscapes are frequently dismissed as wastelands for wildlife. The
present atlas of the butterflies of Greater Manchester clearly demonstrates
that such a picture is far from true. While surrounding rural areas become
quickly impoverished as a result of modern agricultural practice there are,
on the other hand, sites throughout Manchester with a butterfly diversity
as rich as that of rural areas beyond its boundary.
The Introduction deals with survey methods, Manchester environments,
species richness and distribution, distribution changes and conservation. Then
follows a chapter on species accounts proper: for each species, short paragraphs
deal resp. with habitats, host plants, broods, distribution and behaviour. A
table lists the species recorded in the 7 X 5 km zone, indicating the number
of 100 m squares in which each species has been recorded in 1994-1997; a
next one lists the nectar sources noted during 1996 and 1997 with both the
species number as well as the average number of specimens per day, while
a third one lists the usage of nectar sources by each single butterfly species.
Then follows a list of references (50 entries). The remainder (more than half)
of this work is devoted to the various maps.
This book is unique in the way maps at different scales are presented.
Distribution maps are shown for each of the 27 butterflies and 2 burnet moths,
either resident or not, that have been reported from 1980 on in the area
considered, using the standard “tetrad” units of 2 X 2 kilometres; older records
are mapped to 10 km square. Further maps of environmental features as
urban cover, the road system and various open areas that are either potentially
suitable or unsuitable as habitat, are presented. Mapping at smaller scales
of butterfly distributions, down to 100 metre square level, is also shown,
alongside with various environmental parameters. Finally, for a 3 X 2 km
zone within a 7 X 5 km zone, maps for species and for their host plant habitats
are presented for 100 X 100 meter squares.
The author deserves our congratulations for having presented original first
hand data in a most useful and innovative way, setting a standard for future
studies on wildlife in city areas. This nice little book will be of interest to
naturalists, conservationists and nature lovers.
Alain OLIVIER
160
INSTRUCTIONS FOR AUTHORS
Manuscripts and all correspondence related to editorial policy should be sent to the editor: Alain Olivier,
Lt. Lippenslaan 43, bus 14, B-2140 Antwerpen-Borgerhout, Belgium.
Papers submitted to Nota lepidopterologica should be original contributions to any aspect of lepidopterology.
Publication languages are English, German and French. All manuscripts will be reviewed by a board of assistant
editors and by at least two appropriate referees. The editors reserve the right to make textual corrections
that do not alter the author’s meaning.
The manuscript should be submitted in triplicate and on a PC-compatible (not Macintosh) disk. Please
do not send registered mail! The papers should be accompanied by a summary not exceeding 200 words.
For acceptable style, format and layout please examine recent issues of the journal. Latin names of genera
and species should be underlined or italicised. The first mention of any living organism must include the
full scientific name with the author and the year of publication, but thereafter the author and date can be
omitted and the generic name abbreviated. Male and female symbols have to be coded as @ and # respectively.
Geographic and other names in languages where other than Latin characters are used (e. g. Armenian, Chinese,
Georgian, Greek, Russian, Ukrainian etc.) should be given in transliteration/ transcription (not translation!).
Summary, tables, footnotes, the list of figure legends and references must be on separate sheets. The title
of the paper should be informative and concise. The name and full postal (and e-mail if available) address
of the author(s) to whom all correspondence should be addressed should be given on the first page.
The authors should strictly follow provisions of the current edition of the International Code of Zoological
Nomenclature. New taxa must be distinguished from related taxa (diagnosis, key). The abbreviations gen.
n., Sp. n., syn. n., comb. n. should be used to distinguish all new taxa, new synonymies and new combinations.
In describing new genus group taxa, the nominal type-species must be designated in its original combination
and with reference to the original description immediately after the new name. In describing new species
group taxa, one specimen must be designated as the holotype; other specimens mentioned in the original
description and included into the type series are to be designated as paratypes — all immediately after the
name. The complete data of the holotype and paratypes, and the institutions in which they are deposited
(abbreviated as explained in the introductory section), must be recorded in the original description as follows:
Material. Holotype @, Turkey, Hakkari, 8 km E. of Uludere, 1200 m, 10.V1.1984, H. van Oorschot
leg. (ITZA). Paratypes: 7@, 3#, labelled as holotype; @, #, “Achalzich Chambobel 1910 Korb” (NHMW);
2@, #, Iraq, Kurdistan, Sersang, 1500 m, L. Higgins leg. (BMNH); @, Iraq, “Shaglawa, 2500 ft, Kurdistan,
15/24 May 1957” L. G. Higgins leg. (BMNH).
All material examined should be listed in similar format: localities should be cited in order of increasing
precision as shown in the examples; in cases when label text is quoted, it should be included between opening
and closing inverted commas.
Figures must be drawn in black waterproof ink and should be submitted about twice their printed size,
labelled with stencilled or pre-printed lettering or numbering in Arabic numerals large enough to allow reduction.
Photographs must be best quality prints on glossy paper. Each drawing, graph or photograph should be
signed on the back by the author’s name and the fig. (or plate) number; the top should be indicated.
References in the text should be cited by author, date (and page, table, plate, figure if necessary) and
should be collated at the end of the paper in alphabetical and then in chronological order in the following
form (please draw attention to the punctuation and the use of Em (—) and En (-) dash not replaced with
a nonbreaking hyphen (-):
Hicetns, L. G., 1950. A descriptive catalogue of the Palaearctic Euphydryas (Lepidoptera: Rhopalocera).
— Trans. R.ent.Soc. Lond. 101: 435-489, figs. 1-44, 7 maps.
Hicons, L. G. & Rire, N. D., 1980. A field guide to the butterflies of Britain and Europe. 4th ed. —
Collins, London. 384 p., 63 pls.
STAUDINGER, O., 1901. Famil. Papilionidae - Hepialidae. /n: Staupincer, O. & Reser, H. Catalog der
Lepidopteren des palaearctischen Faunengebietes. 3. Aufl. — Friedlander & Sohn, Berlin. XXX+411 p.
(Tagfalter p. 1—97).
All authors quoted in the text are to be included in the list of References and vice versa. Titles of journals
should be given in complete or abbreviated according to the World List of Scientific Periodicals.
Twenty-five reprints of each paper will be supplied free of charge to the first author; additional copies
may be ordered on a form enclosed with the proofs.
Kopien dieser Hinweise in deutscher Sprache sind beim Redaktor erhältlich.
Copies de ces instructions en français sont disponibles auprès de l'éditeur.
ISSN 0342-7536
ota ar
idopterologica
A quarterly journal devoted to Palaearctic lepidopterology
Published by Societas Europaea Lepidopterologica
More. N0.3: 1999
SEL SOCIETAS EUROPAEA LEPIDOPTEROLOGICA e.V.
CoUNCIL
President: Prof. Dr. Niels P. Kristensen Vice-President: Dr. Jacques Lhonoré
General Secretary: Dr. Christoph L. Hauser Treasurer: Manfred Sommerer
Membership Secretary: Willy O. De Prins Editor: Alain Olivier
Ordinary Council Members: Dr. Jaroslaw Buszko, Michael Fibiger,
Mark Parsons, Steven Whitebread. Dr. Alberto Zilli
COMMITTEES
Literature: Steven Whitebread
Habitat and Species Protection: Dr. Jacques Lhonoré
HONORARY MEMBERS
Jean Bourgogne (F), Pamela Gilbert (GB),
Laszl6 Gozmany (H), P. Sigbert Wagener (D)
Applications for membership, changes of address and orders for Nota lepidopte-
rologica back volumes and other literature should be sent to the treasurer. Subscriptions
should be paid to your country’s representative (see SEL-News 25) or to the treasurer:
SEL M. Sommerer, Volpinistraße 72, D-80637 München, Germany
Postgiroamt Köln Nr. 1956 50-507
In Deutschland Einzahlungen/Überweisungen auch auf das Bankkonto der SEL
bei Bayerische Vereinsbank (BLZ 700 202 70) Nr. 2692511 (German residents only).
Annual subscription fees (to be paid at the beginning of each year):
Ordinary members DEM 65.—
Corporate members DEM 80.—
Admission fee DEM 5.—
Overseas and mail charges DEM 15.—
Non-members and institutions may order Nota lepidopterologica through our agent:
Apollo Books Aps., Kirkeby Sand 19, DK-5771 Stenstrup, Denmark.
News. All items for SEL-News should be sent to Willy De Prins, Diksmuidelaan 176,
B-2600 Antwerpen, Belgium (e-mail: willy.deprins@village.uunet.be).
For all other matters contact Dr. Christoph L. Häuser, SEL General Secretary,
Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart,
Germany (e-mail: 11327.3422@compuserve. com).
Copyright © Societas Europaea Lepidopterologica, 1999
Printed by Imprimerie Universa Sprl, 24 Hoenderstraat, B-9230 Wetteren, Belgium
All rights reserved. No part of this journal may be reproduced or transmitted in any form or
by no means, electronic or mechanical including photocopying, recording or any other information
storage and retrieval system, without written permission from the publisher. Authors are
responsible for the contents of their papers.
NOTA LEPIDOPTEROLOGICA
A journal of the Societas Europaea Lepidopterologica
Published by Societas Europaea Lepidopterologica
Vol. 22 No. 3 Basel, 01.1X.1999 ISSN 0342-7536
Editorial Board
Editor: Alain Olivier, Lt. Lippenslaan 43, bus 14, B-2140 Antwerpen (B)
Assistant Editors: Dr. Roger L. H. Dennis (Wilmslow, GB),
Prof. Dr. Konrad Fiedler (Bayreuth, D), Dr. Enrique Garcia-Barros (Madrid, E),
Ole Karsholt (Kobenhavn, DK), Dr. Yuri P. Nekrutenko (Kiev, UA),
Dr. Erik J. van Nieukerken (Leiden, NL), Dr. Alexander Pelzer (Wennigsen, D)
Contents @ Inhalt e Sommaire
ABös, L. & STEFANESCU, C. Phenology of Charaxes jasius (Nympha-
lidae : Charaxinae) in the north-east Iberian Peninsula .......................... 162
Jaros, J. & Spitzer, K. Notes on the ecology and distribution of
two species of the genus Epicopeia in Korea and Vietnam (Epicopeiidae) 183
LOELIGER, E. A. & KARRER, F. Low-melting point paraffin used to
close puncture wounds improves success of ecdysis triggered by
CPCS TSC NC ae a ee ee eee 190
OLIVIER, A., DE Prins, W., VAN DER POORTEN, D. & PUPLESIENE,
J. On the identity of Polyommatus (Agrodiaetus) dama, with lectotype
designation and redescription of its karyotype (Lycaenidae)................ 197
Mey, W. Notes on some Western Palaearctic species of Bucculatrix
(cat o dE ds Bucculattieidae)....................oocooooßccooccoß.. 212
Exiasson, C. U. Correction to “The Life history and ecology of
Euphydryas maturna (Nymphalidae : Melitaeini) in Finland” by Niklas
Wanlibenea ame Vota-lepid. 203): 154-169)... 227
Book REVIEWS @ BUCHBESPRECHUNGEN @ ANALYSES .............c.. 229
161
Nota lepid. 22 (3): 162-182; 01.1X.1999 ISSN 0342-7536
Phenology of Charaxes jasius
(Nymphalidae: Charaxinae) in the north-east
Iberian Peninsula
Lloreng ABös* & Constanti STEFANESCU**
* Unitat de Biologia Animal, Facultat de Ciències, Universitat de Girona,
Campus Montilivi, 17071 Girona, Spain. e-mail: calaa@fc.udg.es
** Can Liro, 08458 Sant Pere de Vilamajor, Spain. e-mail: can-
liro@balearkom.es
Summary. Between 1994 and 1997 a population of Charaxes jasius (Linnaeus, 1767)
was intensively studied in Catalonia (north-east Iberian Peninsula). Phenological data
on adults were obtained by means of standardised transect counts and bait traps.
Additional data were obtained from a number of transect routes throughout Catalonia,
as part of a Butterfly Monitoring Scheme. Data on the immature stages were obtained
during a systematic study of eggs and larvae. C. jasius is bivoltine, and the phenology
is highly coincident in every season over a wide area. The first brood flies from the
end of May to mid-July, and the second from the end of July to the end of September
or beginning of October. In some years the second brood has a markedly bimodal
emergence. Population size is much higher in the second than first brood. Hibernation
occurs in the larval stage, usually between November and March, when daily mean
temperatures fall below 11.5-13°C. Larvae from any instar may be found at the start
of winter, but at the end of this period almost all individuals are in 3rd to 5th instars.
Although C. jasius is potentially a continuously brooded species, these results indicate
that the limitations imposed by thermal conditions set an upper limit of two broods
per year in the north-east Iberian Peninsula.
Zusammenfassung. In den Jahren 1994 bis 1997 wurden an einer Population von
Charaxes jasius (Linnaeus, 1767) in Katalonien (nordöstliche Iberische Halbinsel)
Daten zur Phänologie der Imagines mittels standardisierter Transekte und Köderfallen
erhoben. Zur Ergänzung dienten Beobachtungen entlang weiterer Transekte in ganz
Katalonien im Rahmen eines Tagfalter-Monitoring-Schemas. Phänologische Beobach-
tungen der Entwicklungsstadien wurden durch systematische Suche erbracht. In
Katalonien bildet C. jasius zwei Generationen aus, die über das Untersuchungsgebiet
synchronisiert sind: von Ende Mai bis Mitte Juli, und von Ende Juli bis Ende
September oder Anfang Oktober. In einigen Jahren bilden sich während der zweiten
Generation zwei getrennte Populationsmaxima aus. Die zweite Generation ist stets
viel individuenstärker als die erste. Die Überwinterung erfolgt als Larve, normalerweise
von November bis März, wenn die mittleren Tagestemperaturen unter 11.5-13°C fallen.
Zu Beginn des Winters werden Larven aller Stadien angetroffen, am Ende des Winters
befinden sich fast alle Tiere im dritten bis funften Larvalstadium. Obwohl C. jasius
162
eine Art mit potentiell ununterbrochener Generationenfolge ist, begrenzen die Tem-
peraturbedingungen im Nordosten der Iberischen Halbinsel den Lebenszyklus auf zwei
Generationen pro Jahr.
Résumé. De 1994 à 1997, une population de Charaxes jasius (Linnaeus, 1767) de
Catalogne (nord-est de la péninsule ibérique) a été étudiée intensivement. Des données
sur la phénologie des adults ont été obtenues au moyen de comptes standardisés suivant
des routes fixées ainsi que des trappes à appât. Un complément de données fût fourni
en provenance d’un nombre de routes fixées à travers toute la Catalogne, faisant partie
d’un Programme d’Inventarisation des Papillons Diurnes. Une étude systématique des
œufs et des chenilles fournit des données quant à la phénologie des premiers états.
C. jasius est bivoltine, et la phénologie est hautement synchronisée à chaque saison
à travers une large région. La première génération vole de fin mai à la mi-juillet,
et la deuxième de fin juillet à fin septembre ou début octobre. Certaines années, la
deuxième génération montre deux périodes distinctes d’éclosion maximale. La deuxième
génération est toujours nettement plus nombreuse que la première. L’hibernation a
heu à l’état larvaire, en général de novembre à mars, quand les températures moyennes
journalières descendent en dessous de 11.5-13°C. Des larves à chaque état peuvent
être rencontrées au début de l’hiver, mais à la fin de cette période la quasi totalité
des individus appartiennent du troisième au cinquième état. Bien que, potentiellement,
C. jasius soit une espèce à générations multiples et continuelles. ces résultats indiquent
que des limites imposées par les conditions thermales réduisent le nombre de générations
à deux par an dans le nord-est de la péninsule ibérique.
Key words: Nymphalidae, Charaxinae, Charaxes jasius, phenology, Catalonia,
Iberian Peninsula.
Introduction
Charaxes jasius (Linnaeus, 1767) is a widely distributed species
in the Afrotropics and a sole representative of the genus in the
Mediterranean region (Larsen, 1986; Henning, 1989). The main
host plants in the Mediterranean are the mulberry trees Arbutus
unedo L. and, in the eastern part, A. andrachne L. (Higgins &
Riley, 1980; Hesselbarth er al., 1995). Other host plants have
been recorded from the west and east Mediterranean (e.g. Nel,
1979; Feierabend, 1986; Larsen, 1986; Stefanescu, 1995) but these
are only occasionally used.
The adult ıs bivoltine and has two well-defined broods, the
first mainly in June-July and the second in August-September.
A partial third brood may occasionally exist, as recorded from
the south of the Iberian Peninsula during favourable winters
(Verdugo, 1984). The eggs are laid individually on the upper
surface of mulberry tree leaves and, depending on temperature,
hatch within 8-15 days. They are readily located by their bright
163
yellow colour and large size (ranging from 1.5 to 2 mm). The
larvae, which pass through five instars, are hardly mobile and
remain chiefly on the upper surface of the resting leaf, where
they spin a silk mat shortly after hatching. In many cases this
resting leaf 1s conserved throughout development. In the last
instar, the larvae usually abandon the host plant to pupate in
the nearby vegetation. The duration of larval development
significantly varies between the first and second brood. Larvae
from the first adult brood complete growth in some two months
whereas those from the second adult brood take about eight
months.
C. jasius has been the subject of previous studies both on
morphology and distribution (Agenjo, 1967; Verdugo, 1984;
Jugan, 1998), and biology (Castro, 1949; Jauffret & Pujol, 1961;
Loritz, 1963; Verdugo, 1984; Sanetra & Peuker, 1993; Hesselbarth
et al., 1995). This research, however, is based mainly on data
from laboratory breeding but not on systematic field studies
covering a long period of time. The present contribution aims
at filling this gap and, using data from several populations from
the north-east Iberian Peninsula monitored over the last four
years, gives precise information on the phenology of the species.
The adult flight period and the relative abundance of both annual
broods are quantified, and data on larval development in the
wild are provided.
Material and methods
Most of the data used in this study were collected at the locality
of Fitor (UTM 31TEG04, altitude 200 m), in Catalonia (north-
east Iberian Peninsula), between 1994 and 1997 (fig. 1). This site
is located in the north of the Gavarres mountain range with a
maximum altitude of 535 m. The climate is typically Mediter-
ranean, with maximum rainfall in autumn and spring and
summer drought. Temperatures are high in summer and mild
in winter (Table 1). The area is siliceous in nature and dominated
by Cork Oak (Quercus suber L.) with areas of Aleppo Pine (Pinus
halepensis Mill.) and Stone Pine (Pinus pinea L.). The mulberry
tree is extremely abundant and constitutes one of the most
characteristic plants of the range vegetation (Dominguez et al.,
1992). This allows Fitor, together with the rest of the Gavarres,
164
LA
eg
nel
rs P
a As
EB
Sa
fice
2A
Fig. 1. Location of Fitor (A) and rest of the BMS sites (@) with breeding populations
of Charaxes jasius.
to support one of the largest populations of C. jasius in Catalonia
and possibly in the Iberian Peninsula.
Phenological data both on imagoes and immature stages were
obtained at this locality. Monthly mean daily maximum and
minimum temperatures and rainfall for the period 1993-1997
were recorded at La Bisbal meteorological station, located at an
elevation of 39 m, approx. 6 km from Fitor (Table 1).
Two different methods were used to study the imagoes: species
abundance estimates from fixed transect counts and individual
captures from bait traps. Transect counts followed the standard
165
British Butterfly Monitoring Scheme (BMS) methodology (Pol-
lard, 1977; Pollard & Yates, 1993). The transects were walked
once a week and only those butterflies seen within 5 m in front
of the recorder were counted. At the end of the season, an annual
index of abundance was calculated for each brood as the sum
of the weekly counts, including a few missing values estimated
as the mean of the preceding and succeeding counts (see Pollard,
1977, for more details). Sampling began on March Ist and ended
on September 26th, thus comprising a total of 30 weeks. Because
some individuals were still on the wing during October in most
years, standardised counts were also conducted during that
month, but data were not used in the calculations of the annual
index to allow direct comparison with data from the other
transects (see below). Nevertheless, numbers were usually very
low in October and hence the exclusion of these counts had a
minor effect in the resulting annual index. Recording was always
restricted between 9:00 and 14:00 Spanish Summer Time (7:00
and 12:00 GMT). When the temperature drops below 15°C, the
transects were passed through only if sunshine occurred on 75%
of transect sections.
Additional data on the seasonal abundance of C. jasius were
obtained from a number of fixed transect routes throughout
Catalonia (north-east Spain) (fig. 1), as part of the Butterfly
Monitoring Scheme conducted there since 1994 (Stefanescu, in
press). The number of transects with breeding populations of C.
jasius increased during the four years of the study, from an initial
total of 5 in 1994 to 12 in 1997. A collated index of abundance
for each brood was calculated from the transect data of the BMS
sites (excluding Fitor).
The weighted mean date of the counts (MD), together with
the standard deviation about this date (SD), were calculated for
each brood and for every year in Fitor and at the rest of the
sites, as described by Brakefield (1987) and Pollard (1991). Both
measures represent estimates of the mean date and degree of
synchronisation of the adult flight period. As in Pollard (1991),
the recording weeks were used as the unit of time instead of
the day of counts.
The data collected at Fitor with the aid of bait traps for a
parallel study on adult behaviour were also used to analyse
166
phenology at this site. C. jasius adults never visit flowers but
do, on the other hand, feed avidly on rotting fruit (especially
figs), tree sap and animal excrements. This behaviour means they
are susceptible to capture in bait traps, as is also the case with
other Charaxes species (Rydon, 1964; Henning, 1989; Sourakov
& Emmel, 1995). During the flight period of the two 1996 and
1997 broods a total of eight Blendon traps (Platt, 1969; Austin
& Riley, 1995) were installed along the transect route. The traps
were installed 7-12 times during the flight period of each brood.
Ripe banana with a trace of anise was used as bait, a combination
which proved to be strongly attractive to this species. Traps were
installed from 10:00 to 20:00, and the catch has been taken out
every hour (except between 13:00 and 17:00 h when the traps
were emptied every two hours due to the high number of
individuals captured). For each individual sex, in 1997, wing wear
using an arbitrary scale ranging from | to 5 (1 - mint; 2 - fine
but some scales lost; 3 - slight wing damage; 4 - notable wing
damage; 5 - strong wing damage) was recorded. Ageing was
estimated for either sex by regressing wing wear on date from
the beginning to the end of the sampling period and differences
between sexes were assessed using covariance analysis.
Data on the immature stages were obtained from the systematic
study of eggs and larvae at Fitor, for the period 1996-1997. A
series of fixed routes were established in zones where the highest
Oviposition activity had been observed and were walked every
2-7 days from spring to autumn and approximately every 15
days in winter. The eggs and larvae found were marked with
numbered plastic tags situated at the base of the leaf stalk. At
each visit the larval instar was noted (from I to V). The low
mobility of the larvae made periodical monitoring easy, and losses
occurring between samples were attributed to death due to
predation or other causes. For each sample, a value representing
the mean stage of immatures (MSI) was calculated according
to the following scale: 0 — egg; 1-5 - larval instars I — V; 6 — pupa.
Results
At Fitor (as in the other studied localities) C. jasius adults
have a clearly bivoltine phenology. The flight curves at Fitor for
the period 1994-1997 are shown on figure 2. Although important
167
number of individuals
ne 102117312237 714 152216917218 219202 1772723274 72516 EP 7ER SEP IST EI RSS
eat May Jun Jul Aug Sep Oct
Fig. 2. Seasonal abundance of Charaxes jasius adults in 1994-1997 at Fitor site, as
recorded by weekly transect counts.
abundance variations exist between years (as detected by changes
in the annual index for each brood — see Table 2), the two
broods are well separated in time. The first brood flies from the
end of May to mid July (weeks 12 to 20), while the second is
on the wing from the enu of July to the end of September and
even October (weeks 22 to 34). Occasionally, the second brood
has a bimodal emergence, as can be seen from the flight curve
for 1997. This bimodality is reflected perfectly by the data
obtained using the bait traps (see below). The apparent bimodality
of the first brood of 1997 is in reality an artefact of sampling,
due to unfavourable weather conditions (very cloudy and low
temperatures) affecting week 15 counts.
In all years the number of the second brood individuals was
much higher than that of the first (fig. 2). On average the first
brood represented 14.9% of individuals counted throughout the
season (range: 10.2-22.9%; Table 2). The relation between the
two broods is very similar when data from the rest of the BMS
(mean 14.7%; range: 7.5-18.3%) are considered.
168
+ 4.50
2 9
S n
= 3
2 2
T =
£ =
m
5 :
3 2
E £
3 3
22.V.97 24.V.97 27.V.97 30.V.97 5.VI.97 11.VI.97 16.VI.97 23.VI.97
Date
B 160 - r 5.00
140 + + 4.50
|
|
120 + + 4.00
(|
2 100 — + 3.50 &
= |
= B
> | [=]
3 =
zu sg 7 3.00 &
Q 3
3 >
= £
3 60+ + 2.50 3
|
40 + + 2.00
20 + + 1.50
0 - 1.00
2.VII.97 8.VIII.97 12.VIII.97 18.VIII.97 22.VIII.97 27.VIII.97 4.IX.97 11.IX.97 18.IX.97 24.IX.97 29.IX.97 4.X.97
Date
(individuals —#-— wing-wear total —à— wing-wear males —®— wing-wear females |
Fig. 3. Ageing of population as detected by wing wear increase from the beginning
to the end of sampling in first brood 1997 (A) and second brood 1997 (B). Numbers
of butterflies (histograms) are captures in bait traps.
169
If the results from Fitor are compared to the rest of the BMS
network, a remarkable coincidence in flight periods during the
four years is observed (Table 2). In only one of the eight broods
studied (the first in 1995) a significant difference was observed
(t-test, p < 0.01) between the MD at Fitor and the rest of the
sites. Logically, the great similarity between the Fitor values and
those from the BMS resulted in a strong coincidence in the time
separating the two annual broods (dif MDs) in a given season
and all over the studied area.
Throughout the four years of the study, MD variability was
greater in the first brood than in the second. In the whole BMS
network the first brood MD oscillated between 14.16 (1997) and
16.68 (1995), that is a difference of two and a half weeks in the
flight period maximum. In contrast, the second brood MD varied
in little more than half a week from 25.73 (1994) to 26.36 (1996).
It should be noted, however, that the MD of the 1997 second
brood would be slightly increased if data for counts during
October were included. In that year the flight period of the second
brood was considerably extended not only at Fitor (fig. 2) but
at many localities, where a bimodal emergence pattern was also
observed.
With reference to the SD, values are higher for the second
than the first brood (Levene test, p< 0.01 in the four years
tested), indicating that the first brood emergence period is more
compact than the second. This is reflected perfectly in figure 2,
where it can be seen that the first brood flight period at Fitor
oscillates between 5-7 weeks, while for the second this is 7-13
weeks.
Data obtained through the use of bait traps confirm and
complement the above results. The number of individuals captured
with this methodology (843 in 1996, 1365 in 1997; Table 3) is
much higher than the number of individuals detected by the
counts, so the phenological data are more reliable. Even so a
great coincidence in the period in which population maxima occur
can be observed between the two methodologies (cf. figs. 2 and
3, Table 3). There are notable differences, however, with respect
to proportions between the first and second broods. In 1996 the
first brood represented 36.1% of total captured individuals while
in 1997 it was 29.3%, these values being some 1.5-2 times higher
than those obtained during transect counts.
170
For the four sampled broods the sex ratio can be taken as
1:1 (x test, p = 0.11). However, a predominance of females in
the first brood of 1996 (p < 0.05) and of males in the second
of 1997 (p < 0.0001) was found.
Figure 3 shows population ageing for the two 1997 broods.
In both cases, wing wear increased with time (first brood: y =
0.06x + 1.44, r = 0.964, p < 0.001; second brood: y = 0.03x
+ 1.95, r = 0.881, p < 0.001; where y is wing-wear from | to
5, and x are the days from the beginning of the first sample).
The regression equation slopes of males and females did not differ
significantly in either case (ANCOVA, Fy 12) = 1.326, p = 0.27
and Fi; 2) = 0.009, p = 0.93, respectively). On the other hand,
the regression equation slopes pooled for both sexes differed
significantly between the first and second brood (ANCOVA, F 16)
= 5.326, p = 0.035), suggesting that first brood adults become
worn more quickly.
The existence of a bimodal emergence in the second brood
of 1997 (fig. 2) is well documented by the bait traps. So, on
4th and I1th September there was a noticeable increase in the
number of captures after the decrease that occurred during the
last week of August (Table 3). This decrease was not the result
of poor weather as all sampling in the second brood was done
on hot and sunny days. Moreover, newly emerged specimens
appeared in the population towards the second half of the flight
period as shown by a noticeable decrease of wing wear (fig. 3).
The short time separating the two peaks of abundance (four
weeks compared with an average of dif MDs of 10.21 weeks
in the period 1994-1997, Table 2) means that the existence of
a third brood can be rejected.
Data from the monitoring of immature stages is presented in
Table 4. Development of the individuals which give the second
brood occurs largely during the second fortnight of June, July
and early August. Important differences in development time were
observed during the two years of study. Larvae grew faster in
1996 than in 1997, probably because of the higher summer
temperatures of 1996 (overall mean temperature of June—July
22.69 and 21.65°C, respectively).
Hibernation occurs in the larval stage. Eggs laid by second
brood adults in September and October hatch in two weeks and
171
CL98 | 6 LSI wu) [fejurey
(I ,) ueaWw JfeIIAQ
(D 9) UNUIUIU ueoW
(I ,) wnuxeu ueaW
L661-£661 pond sy} 107 (W 6€ “PODALT€) UoNeIS B9I80101097auu
jegsıg PT Ul p2p10991 jfejurei pue saımyersdus) ueaw [feIsao pue WNUUIUIU ‘wnunxew ÂAFBP urow ÂJJJUOIN ‘[ [QUIL
172
the larvae continue growing while temperatures permit. Although
larvae in any instar may be found at the inception of winter,
at the end of this period almost all individuals are at the third
and fourth instars (Table 4). In 1996/1997, larval growth stopped
between November and February and was resumed in March.
On the other hand, in 1997/1998 the MSI increased continuously,
though slowly, all over the winter. Moreover, in 1997/1998 larval
populations took about a month longer to reach a MSI value
higher than 3.00 and, while 3.5 was reached in the first winter
at the end of October, this score was just attained two months
later the following season (Table 4).
Discussion
C. jasius has a typically bivoltine phenology in the NE Iberian
Peninsula, with a first brood flight period in June and early July
and a second in August and September. The second brood is
Table 2. Comparison between data obtained in transect counts at Fitor and
the rest of the BMS sites. In brackets, number of sites with breeding
populations of Charaxes jasius, excluding Fitor; Al-annual index of
abundance of first (1) and second (2) broods ; MD - mean date of the counts
of each brood ; SD - standard deviation about this date ; dif MDs - difference
between MD of the first and second broods; t - t-test values to test for
differences in MD between Fitor and the rest of BMS sites for the first (t,)
andmsccOna@ (ts) broods (sienificanee at: * p< 0.05; ** p< O01; ***
p< 0.001)
199
BMS sites (n=5)
Fitor
199
BMS sites (n=8)
22 SAINTE MIE Olas 25:8) 228 2 6528 -0.694
Fitor 30) SS TE WIE E52
1996
BMS sites (n=11) 28 1255 Gps) Pe digs ND GAS EI -0.081 0.0421
Fitor 24 MIS ps ZOE ESC
50
32)
26.5
24.8
199
BMS sites (n=12)
Fitor
Average 1994-1997
BMS sites
Fitor
22085 PA —1.73
222} NAD
12695 | AO || ZO 5109
99h 2038 lesa 99
175
DD
—_— OD
of
— et
Pr
aD
1
ND
aD
D DD
SO
Dw
Se
Nn
fore)
1409 16.4 |
Table 3. Capture data of Charaxes jasius with bait traps at Fitor in 1996-1997.
Columns indicate number of single captures of males and females, number
of individuals recaptured and number of unmarked individuals. Sex ratios
(see text) are based on single captures of males and females
first generation
| samples | 1996 ]BMS wk | Total | male
13 2 2
11.V1.96 = =
13.V1.96
15.V1.96
19.V1.96
24.V1.96
1.V11.96
11.VIL.96
Total
first generation
22.V.97 12 9 6 3 0 0
24.V.97 13
27N OT 13
30.797 13
S'VEO07 14
11.V1.97 15
16.V1.97 16
PENN 17
00 -J ON LA B © D —
Total ze
je | _ er |e utero 04 0.45
174
second generation
1996 | BMS wk %
24 1 5 2
10. VIII.96
17.VIIL.96
21.VIIL.96
26.VIIL.96
2.1X.96
10.1X.96
16.1X.96
28.1X.96
Total
Total 1996 843
recaptured 115
unmarked 139
OS PP © D —
second generation
3 12 6 3
VAC 2
8.V 111.97
123V11.97
18.V 111.97
22.V111.97
27.V111.97
4.1X.97
11.1X.97
18.1X.97
24.1X.97
29.1X.97
4.X.97
|
2
3
4
5
6
7
8
9
Total 1997 1365
recaptured 113
unmarked 223
a sors ent
Total 1996/97 2208
Total male 840
Total female 778
175
INTL, fac SN on ac a I Co a a 6 CO CC STE Oa lel S9581S Jınyeunun JO IdUPY
LOS 006 LIP OC 08€ OU eve STE ITE S6T EST 90°C i i ; ISW
Ol OI a €7 CE 8€ LS LL 6 S[PNPIAIPUI JO JoquunN
S661 UONPIOUIE JS11}
Cp M ANT EISEN TTS V0 5 SNS) A 8 sadejs 91N)PUUUI JO 28uP y
SLs 006 06 Y Lye L8T 89°C SI [ | ISW
9€ Lv LS L6 S[BNPIAIPUI JO 1aquunN
166] UONPIOU9 JS11}
S988)S Junyeunu JO due}
ISW
S[PNPIAIPUI JO Joaquin
L66] uone1auad puodas
S98]S aınyeuwi JO Sduey
ISW
S[PNPIAIPUI JO JOQUINN
9661 UONPIAUIS PUOI9S
(SITEIOP
9I0UI IOJ 3X9} 395) papraoïd st (ednd - 4 : A : Apamaadsaı A-I SIPISUI [PAIE] - AI-IT : 333 - A) saseis Jo aZueı sy)
pue (ISW) saınyewwn Jo sdejs ueaw ou} Zunussaıdaı anjeA e ‘opdures y9e9 10, 'IoylL,g UI sayıs uonmsodıao PaınoARJ Je
SJUNnO9 JOoSUBI} UI PUNOJ (661-9661 JO SPoOIq Puo9as pue say) snısp[ saxDADYD JO saınyewwr JO JOQUUNN ‘p IQR
176
always more abundant than the first, a common feature of
bivoltine species at middle latitudes (Pollard, 1984) and, in the
case of C. jasius, a direct consequence of the high mortality of
the hibernating larvae (unpubl. data).
The differences found with respect to the relative abundance
of the two broods when transect counts or bait trap data are
considered may be attributed to two different reasons. Firstly,
the number of second brood individuals is so high that the traps
become saturated in the middle part of the day and population
size 1s underestimated. Secondly, the availability of ripe fruit is
far greater in August and September than in June and so the
traps are more effective during the first brood.
A comparison between a very large population and several
other populations monitored within the Catalonian BMS, revealed
a highly coincident phenology in every season over a wide area.
Thus, no significant differences were detected in the MDs
(calculated from transect data) in seven out of eight broods
studied. Moreover, the only significant value (first brood 1995)
was probably due to an abnormally high count towards the end
of the flight period in Fitor, when several individuals were
concentrated on excrements along the transect route.
Even though the number of BMS stations with breeding
populations of C. jasius increased during the four years of the
study (from an initial total of five, excluding Fitor, to eleven),
the MDs continued to coincide. This synchrony shows that the
populations are subject to very similar climatic conditions typical
of littoral and prelittoral Mediterranean ecosystems of the NE
Iberian Peninsula (fig. 1). This coincidence also indicates that
the standardised transect counts used in the BMS provide a very
accurate description of the flight period, even though C. jasius
is ordinarily a scarce butterfly at most sites and correspondingly
counts are low.
There is no doubt that the principal conditioner in advance
or delay of the flight period between different seasons is temper-
ature and its corresponding effect on the development period of
the immature stages (Scriber & Slansky, 1981). A clear example
can be seen in the 1997 season, where abnormally high temper-
atures in March—May (15.5 vs. 14.08°C for the period 1993-1996)
and abnormally low for the period June-July (21.65 vs. 22.72°C
177
for the period 1993-1996) were combined. The first brood
advanced slightly more than two weeks with respect to the
corresponding mean for 1994-1996, while the second showed the
opposite trend as revealed by the highest dif MDs value recorded
that year over the whole period (Table 2).
The temperature effect is particularly evident in the case of
larvae resulting from the second brood. In 1996/1997 development
suspended between November and February, when mean temper-
atures oscillated between 9.28 and 11.57°C. In contrast, though
mean temperatures from December to February were lower
(9.2-10.4°C) in 1997/1998, MSI values increased continuously,
though slowly, during this period (Table 4). These results seem
somewhat contradictory, as they suggest that the species’ lower
thermal threshold varies depending on the season. Nevertheless,
this apparent paradox may arise, in part, from the differences
in the timing of the second brood of adults coupled with the
highest mortality usually experienced by eggs and young larvae
(unpubl. data). As a result of the bimodality of the second brood
in 1997 (fig. 2), eggs were found until late November and first
instar larvae occurred until late December, that is, one month
and a half later than in the previous season (Table 4). The more
severe mortality acting on these young stages could lead to an
increase of the MSI values during the first half of the winter,
even in the case that larvae were in a complete growth arrest.
The steady increase of the MSI values during January and
February is more difficult to explain, but could also be a
consequence of the haphazardly disappearance of older larvae
due to predation and the corresponding variation in the size and
structure of the samples.
It is interesting to note that an increase in summer temperatures
does not always lead to a reduction of larval development time.
Thus, the summer of 1994 was the hottest of the period considered
but the time separating the two broods was longer than in 1995
(Table 2). Both July and August 1994 were extremely hot: mean
maximum temperatures exceeded 31°C and maximum temper-
atures near 40°C were recorded on several days. These unusually
high temperatures can affect caterpillar growth detrimentally in
different ways. They may be outside the thermal optimum
temperature of the species and hence increase respiratory expen-
178
diture (e.g. Casey, 1993), but may also affect food quality by
dramatically reducing the leaf water content in periods of drought
stress (e.g. Slansky, 1993 and references given), as usually happens
with the mulberry tree (Castell, 1997).
These results indicate that the restrictions imposed by thermal
conditions set an upper limit of two broods per year in the NE
Iberian Peninsula. Mean temperatures from December to Feb-
ruary are always less than 12.5°C along the littoral and prelittoral
(Clavero et al., 1996) and under such circumstances larval growth
is much reduced if not completely arrested. This is the usual
phenology throughout the rest of the area of distribution
including the southern limit in North Africa (Tennent, 1996).
Exceptionally, however, a third brood of adults may exist in the
south of the Iberian Peninsula in December-January in years
with an exceptionally mild winter (Verdugo, 1984). This third
brood is also obtained when larvae from the second brood are
reared indoors with high temperatures and natural photoperiod
(pers. obs.) and, therefore, C. jasius, like many other Charaxes
spp. (Owen & Chanter, 1972), is in fact a potentially continuously
brooded species.
The existence of two peaks of butterfly abundance during the
second brood in some years (e.g. in 1997, fig. 2), may be
confounded with a multivoltine cycle with three broods. The data
obtained through the bait traps in 1997 clearly indicate that this
bimodal curve is real (Table 3, fig. 3) and is a consequence of
a multimodal emergence and not a third brood. The same
conclusion is reached for the immature stages, where monitoring
never confirmed the existence of a third brood (Table 4). In
contrast to other butterflies where bimodal emergence has been
established (e.g. Papilio glaucus — Hagen & Lederhouse, 1984;
Maniola jurtina — Goulson, 1993), in the case of C. jasius this
does not seem to resemble an intrinsic population characteristic
repeated annually. It seems more likely that this appears occa-
sionally in response to particular environmental conditions. For
example, the unusually cold temperatures recorded at the end
of June 1997 could have affected eggs and larvae differentially
and thus enhanced differences in the total development time
between parts of the population. A similar reasoning was
suggested by Dennis (1985) to explain the multimodality within
broods in British Aglais urticae.
179
Further laboratory experiments under controlled temperatures
would be necessary to assess not only those abiotic factors
governing larval development but also the potential variation and
plasticity of individual growth. Undoubtedly, this information will
help to interpret correctly specific patterns found in natural
populations.
Acknowledgements
Josep Botey kindly allowed us to work in his property in Fitor.
Meteorological data from La Bisbal were kindly provided by
Josep Pareta. Susan Watt prepared the English version. Emil
Garcia-Berthou gave statistical advice. Thanks are due to all the
recorders of the Butterfly Monitoring Scheme. We would like
to acknowledge the useful and extensive comments on the
manuscript by an anonymous reviewer. The Butterfly Monitoring
Scheme in Catalonia is funded by the Departament de Medi
Ambient de la Generalitat de Catalunya. The Departament
d’Agricultura, Ramaderia i Pesca de la Generalitat de Catalunya,
the Diputacié de Barcelona and the Patronat Metropolita Parc
de Collserola have also given financial support to this project.
References
AGENJO, R., 1967. Morfologia, distribuciön geogräfica y bionomia en España
de la “cuatro colas” Charaxes jasius (L., 1767) (Lep. Nymphalidae). —
Eos 43: 345-355.
AUSTIN, G. T. & Rırey, T. J., 1995. Portable bait traps for the study of
butterflies. — Trop. Lepid. 6(1): 5-9.
BRAKEFIELD, P. M., 1987. Geographical variability in, and temperature effects
on, the phenology of Maniola jurtina and Pyronia tithonus (Lepidoptera,
Satyrinae) in England and Wales. — Ecol. Ent. 12: 139-148.
CASEY, T. M., 1993. Effects of temperature on foraging caterpillars. In: Stamp,
N. E. & Casey, T. M. (eds.). Caterpillars. Ecological and evolutionary
constraints on foraging. — Chapman & Hall, New York: 5-28.
CASTELL, C., 1997. Ecofisiologia de dues espècies rebrotadores mediterranies:
l’arboç (Arbutus unedo) ı Valzina (Quercus ilex). — Institut d’Estudis
Catalans, Arxius de les Seccions de Ciències 117, Barcelona. — 262 p.
CASTRO, L. DE, 1949. Algunas observaciones sobre la biologia de Charaxes
Jasius (L.). — Bol. Soc.esp. Hist.nat., tomo extraordinario: 141-149.
CLAVERO, P., MARTIN VIDE, J. & Raso, J. M., 1996. Atlas climatic de
Catalunya. Termopluviometria. — Institut Cartografic de Catalunya,
Barcelona. 42 pls.
180
Dennis, R. L. H., 1985. Voltinism in British Aglais urticae (L.) (Lep.,
Nymphalidae): variation in space and time. — Proc. Br. Ent.nat. Hist.Soc.
18: 51-61.
DomincueEz, A., VILAR, L. & Poo, L., 1992. Composiciön y estructura de
los alcornocales de Girona. — Scientia gerundensis 18: 163-175.
FEIERABEND, D., 1986. Eine bemerkenswerte Futterplanze von Charaxes jasius
(Lepidoptera: Nymphalidae). — Ent.Z., Frankf.a.M. 96: 341.
Goutson, D., 1993. The evolutionary significance of bimodal emergence in
the butterfly, Maniola jurtina (Lepidoptera: Satyrinae). — Biol.J. Linn. Soc.
49: 127-139.
HAGEN, R. H. & LEDERHOUSE, R. C., 1984. Polymodal emergence of the
tiger swallowtail, Papilio glaucus (Lepidoptera: Papilionidae): source of a
false second brood in central New York State. — Ecol.Ent. 10: 19-28.
HENNING, S. F., 1989. The Charaxinae butterflies of Africa. — Aloe Books,
Johannesburg, vu + 457 p.
HESSELBARTH, G., VAN OORSCHOT, H. & WAGENER, S., 1995. Die Tagfalter
der Tiirkei unter Beriicksichtigung der angrenzenden Lander. — Selbstverlag
Sigbert Wagener, Bocholt, 1354 S., 21 Tab. 75 Abb., 2 Farbkarten, 36
Farbtaf. (mit 306 Abb.) (Bd. 1 & 2) + 847 S., 128 Farbtaf., 13 Taf., IV
+ 342 Verbreitungskarten (Bd. 3).
Hicains, L. G. & Ritey, N. D., 1980. A field guide to the butterflies of
Britain and Europe. 4th ed. — Collins, London, 384 p., 63 pls.
JAUFFRET, P. & PuJor, R., 1961. Monographie du Charaxes jasius L. (Lep.
Nymphalidae). — Scienc. et Nat. 47: 21-33.
JUGAN, D., 1998. Sur la répartition en France de deux hôtes de l’Arbousier:
Charaxes jasius L. et Callophrys avis Chapman (Lepidoptera Nymphalidae
et Lycaenidae). — Alexanor 20(5): 259-270.
LARSEN, T. B., 1986. Tropical butterflies of the Mediterranean. — Nota lepid.
9(1-2): 63-77.
Loritz, J., 1963. Note complémentaire sur la chenille et l’imago de Charaxes
Jasius (Lep. Nymphalidae). — Bull. Soc.ent. Mulhouse 1: 87-114.
Nex, J., 1979. Une nouvelle plante nourricière pour Charaxes jasius (Lep.
Nymphalidae). — Alexanor 11(4): 157-158.
Owen, D. F. & CHANTER, D. O., 1972. Species diversity and seasonal
abundance in Charaxes butterflies. — J. Ent. (A) 46: 135-143.
PLATT, A. P., 1969. A lightweight collapsible bait trap for Lepidoptera. —
J. Lepid.Soc. 23(2): 97-101.
POLLARD, E., 1977. A method for assessing changes in the abundance of
butterflies. — Biol. Conserv. 12: 115-134.
POLLARD, E., 1984. Fluctuations in the abundance of butterflies, 1976-82.
— Ecol. Ent. 9: 179-188.
POLLARD, E., 1991. Changes in the flight period of the hedge brown butterfly
Pyronia tithonus during range expansion. — J.Anim.Ecol. 60: 737-748.
POLLARD, E., E. & Yates, T., 1993. Monitoring butterflies for ecology and
conservation. — Chapman & Hall, London, 256 p.
Rypon, A., 1964. Notes on the use of butterfly traps in east Africa. —
J.Lepid.Soc. 18(1): 51-58.
181
SANETRA, M. & PEUKER, W., 1993. Über die Zucht des Erdbeerbaumfalters
Charaxes jasius (Linnaeus, 1767) (Lepidoptera: Nymphalidae). —
Nachr.ent. Ver. Apollo, Frankfurt, N. F. 13(4): 507-529.
SCRIBER, J. M. & SLANSKY, F., Jr., 1981. The nutritional ecology of immature
insects. — Annu. Rev. Ent. 83: 25-40.
SLANSKY, F., Jr., 1993. Nutritional ecology: the fundamental quest for
nutrients. In: Stamp, N. E. & Casey, T. M. (eds.). Caterpillars. Ecological
and evolutionary constraints on foraging. — Chapman & Hall, New York:
29-91.
SOURAKOV, A. & EMMEL, T. C., 1995. Bait trapping for butterflies in Kenya.
— Trop. Lepid. 6(1): 1-2.
STEFANESCU, C., 1995. Ovoposiciö de Charaxes jasius (Linnaeus, 1767) sobre
llorer (Laurus nobilis) als Aiguamolls de ’Emporda. — Butll. Soc. Cat. Lep.
76: 23-24.
STEFANESCU, C., in press. El Butterfly Monitoring Scheme en Catalunya: los
primeros cinco años. — Treb.Soc.Cat.Lep. 15.
TENNENT, J., 1996. The butterflies of Morocco, Algeria and Tunisia. — GEM
Publishing Company, Brightwell cum Sotwell, Wallingford, 217 p., 32 pls.
VERDUGO, A., 1984. Charaxes jasius L. (Lepidoptera: Nymphalidae) en la
provincia de Cadiz. Distribuciön, ecologia y bionomia. — SHILAP Revta
lepid. 12(47): 237-242.
182
Nota lepid. 22 (3): 183-189; 01.IX.1999 ISSN 0342-7536
Notes on the ecology and distribution of two
species of the genus Zpicopeia in Korea and
Vietnam (Epicopeiidae)
Josef JAROS & Karel SPITZER
Institute of Entomology, Czech Academy of Sciences, BraniSovska 31,
CZ-370 05 Ceské Budéjovice, Czech Republic
Summary. Two species of the genus Epicopeia Westwood were studied in the field
during entomological expeditions to Korea and Vietnam (1980-1995). Epicopeia mencia
Moore, 1874 was recorded in northern Korea (Pyongyang env.), Palaearctic Region.
Epicopeia hainesii Holland, 1889 was observed in northern Vietnam (Tam Dao Mts.),
Oriental Region. E. mencia was reared successfully in the laboratory. The activity
of the adults of both species in the field was observed.
Zusammenfassung. Zwei Arten der Gattung Epicopeia Westwood wurden auf ento-
mologischen Expeditionen nach Korea und Vietnam (1980-1995) im Freiland studiert.
Epicopeia mencia Moore, 1874 wurde im nördlichen Korea (Umg. Pyongyang) in
der palaärktischen Region gefunden. Epicopeia hainesii Holland, 1889 wurde im
nördlichen Vietnam (Tam Dao Mts.) in der orientalischen Region beobachtet. E.
mencia wurde erfolgreich im Labor gezüchtet. Es wurden Beobachtungen zur Aktivität
von Faltern beider Arten im Freiland gemacht.
Résumé. Deux espèces du genre Epicopeia Westwood ont été étudiées dans leur habitat
naturel lors d’expéditions entomologiques en Corée et au Vietnam (1980-1995).
Epicopeia mencia Moore, 1874 a été rapportée de Corée du Nord (environs de
Pyongyang), en région paléarctique. Epicopeia hainesii Holland, 1889 a été observée
dans le Nord-Vietnam (Mts. Tam Dao), en région orientale. E. mencia fit élevée avec
succès en laboratoire. Lactivité des adultes des deux espèces dans la nature fût observée.
Key words: Lepidoptera, Epicopeia, life cycle, rearing, Korea, Vietnam.
Epicopeiidae (Drepanoidea — Minet, 1991) is a small moth
family distributed in the Oriental region and in the southeastern
parts of the Palaearctic. Adults of this family mimic butterflies
of the family Papilionidae, especially the genus Atrophaneura.
There is little information on the distribution, biology and
habitats of the Epicopeiidae (see Janet, 1913, Strelkov, 1932,
Inoue et al., 1982 and Yen et al., 1995).
183
Fpicopeia mencia Moore, 1874
This species was observed in northern Korea, Ryongak-san
Hill in the Taedong-gang Basin, Pyongyang env., at an elevation
of ca. 150-250 m: (39°00° N, 125°357 E): TOME:
27.VII-6.VIIL.1990, 200-300¢4, 39. This hill is covered by
secondary growth, which consists predominantly of deciduous
oak forest (about 200 ha). The surrounding landscape is agri-
cultural land. For a detailed description of this locality, which
is a “habitat island”, see Jaros et al. (1992). The adults are diurnal
and heliophilous; the @@ fly usually from 15:00 until sunset.
Many specimens (ca. 40/hr) were observed flying above the tree
canopy. The 99 remain on the trees, and only 3 29 were found,
two of them in copula. This species was never collected at night
by light trapping.
The eggs were deposited in batches of about 20-100, usually
on the upper surface of leaves of Ulmus spp. They are yellow,
but one day before hatching the black heads of the larvae are
visible. The larvae were reared in the laboratory at 25°C
(23-27°C) on leaves of Ulmus laevis Pallas. The leaves of other
Ulmus species (U. minor Miller and U. glabra Hudson) appeared
to be equally suitable for rearing the larvae. The mean duration
of the immature stages of E. mencia is given in Table 1. After
hatching, the larvae aggregate on the upper surface of a leaf but
do not feed. These Ist instar larvae are coloured yellow orange,
head black. After moulting to the 2nd instar, the larvae start
to feed gregariously at the margin of a leaf. 2nd instar larvae
are covered with white waxy powder. From the 4th instar until
pupation, larvae live individually. 2nd to 6th instar larvae are
of a pale brownish colour, covered with 1-3 mm of a white waxy
powder, and have a black head. The full-grown 6th instar larva
is about 4-6 cm long. Larval mortality in laboratory was very
low, less than 3%, apparently caused by handling. No diseases
were observed. The larvae pupated in the soil in a thin silken
cocoon covered with the larval waxy powder. The pupa is black,
about 18-22 mm long. The pupae were kept either outdoors
(average temperature about 0-2°C, decreasing to min. ca. -10°C),
or in a cold room at 3-5°C. No mortality was observed during
water with honey. Mean longevity of females (n = 25) was 15-25
184
sf #
Fig. 2. Epicopeia mencia, egg batch on Ulmus leaf.
Fig. 3. Epicopeia mencia, 3rd instar larvae; small larvae are perhaps mimics of some
mealybugs (Pseudococcidae).
Fig. 4. Epicopeia mencia, 6th instar larva.
ill).
hern Korea (Ryongak-san H
in nort
1a
la menc
f Epicope
itat o
Hab
5
Fig.
d
1a Teare
(days) of the immature stages of E. menci
ion
20)
Table |. The mean durat
fare
ex ovo In Captivity
ei
°
p=)
SA
En
Du
ate
187
(max. 29) days, fecundity 150-200 (max. 271) eggs. About
100-120 eggs were deposited within 1-2 days after copulation
under laboratory conditions, usually in one batch.
Epicopeia hainesii Holland, 1889
This species was observed in northern Vietnam, Tam Dao Mts.,
75 km North of Hanoi, at an elevation of ca. 800-900 m (21°30’
N, 105°40’ E) only: 10.X.1984, &; 11.-22.1X.1988, 238;
5.V1.-8.V11.1991, 544, $; 15.-31.V111.1993, 4; 25.V.-13.V1.1995,
248€. The locality is a small ridge, reaching over 1200 m, covered
by 19,000 ha of evergreen montane rain forest (cf. Spitzer et
al., 1993). The adults fly in the evening and at night, with flight
activity starting just after sunset. The males fly above the trees
usually from 18:00 until it becomes dark. They are readily
attracted to light shortly after sunset (from 19:00 to 20:00). Only
one female was caught by a light trap and no eggs were laid.
Conclusions
Epicopeia mencia is strictly associated with Ulmus spp. (Ul-
maceae) of the East Palaearctic temperate deciduous forests (cf.
Janet, 1913; Strelkov, 1932; Jaros et al., 1992: Yenerara 33):
The adults are dıurnal and heliophilous with peak flight activity
occurring in the afternoon. The species is monovoltine in northern
Korea and it hibernates at the pupal stage. In Taiwan a
polyvoltine life cycle was observed (Yen et al., 1995). It is easy
to rear in the laboratory. The pupa can survive the rigorous
Korean winter in the soil. The laboratory mortality is very low.
Epicopeia hainesii is a subtropical-tropical species, and was
collected by the authors only in the montane cloud rain forest
in northern Vietnam. The food plant is not Lindera spp.
(Lauraceae) (cf. Janet, 1913), but plants of the genus Cornus
(Cornaceae) (Yen et al., 1995). The adults are nocturnal with
activity starting just after sunset and are attracted by light. The
species is probably polyvoltine (bivoltine?) in Vietnam. It is
stenotopic and very characteristic of tropical cloud rain forest
distributed in some parts of the southern East Palaearctic Region
and northern Oriental Region (Janet, 1913; Yen, 1995 and pers.
comm.). The ranges of both species do not appear to overlap.
188
There are no records of these two species coming into contact
in southern China nor in other parts of their distribution, except
of Taiwan (see Heppner & Inoue, 1992 and Yen et al., 1995).
E. mencia and E. hainesii are mimics (probably Batesian) of
Atrophaneura spp., and perhaps Pachliopta spp. (Papilionidae),
which are present at the localities in Korea and Vietnam (cf.
Jaro et al., 1992; Spitzer et al., 1993).
Acknowledgements
This research was supported partially by the Grant Foundation
of the Czech Republic (Grant No. 204/94/0278) and by the Czech
Academy of Sciences. We are grateful to Dr. Shen-Horn Yen
(Taiwan) for comments.
References
Heppner, J. B. & INoug, H. (eds.), 1992. Lepidoptera of Taiwan. Volume
1. Part 2: Checklist. — Association for Tropical Lepidoptera, Gainesville.
276 p.
INOUE, H., Sucı, S., KuRoko, H., MoriurTi, S. & KAWABE, A., 1982. Moths
of Japan. — Kodansha, Tokyo. I, 966 p., II, 552 p., 392 pls.
JANET, A., 1913. 2. Familie: Epicopeidae. Jn: Seitz, A. (Hrsgb.). Die Gross-
Schmetterlinge der Erde. I. Abt. Die Gross-Schmetterlinge des Palaeark-
tischen Faunengebietes. 2. Bd. Die Palaearktischen Spinner und Schwärmer
— A. Kernen, Stuttgart: S. 35-36.
JAROS, J., SPITZER, K., HAVELKA, J. & Park, K.-T., 1992. Synecological
and biogeographical outlines of Lepidoptera communities in North Korea.
— Insecta Koreana 9: 78-104.
Minet, J., 1991: Tentative reconstruction of the ditrysian phylogeny (Lepi-
doptera: Glossata). — Ent.scand. 22: 69-95.
SPITZER, K., Novotny, V., TONNER, M. & LeEps, J., 1993. Habitat preferences,
distribution and seasonality of the butterflies (Lepidoptera, Papilionidae)
in a montane tropical rain forest, Vietnam. — J. Biogeogr. 20: 109-121.
STRELKOV, V., 1932. Epicopeiidae. — Publ. Mus. Hoang ho Pai ho (Tien Tsin),
7: 3-13.
SUGI, S., 1994. “Post MJ”. Additions of species and changes in names of
Japanese moths. — Publ. Japan Heteroc.Soc. Tokyo. 97 p.
YEN, S.-H., Mu, J.-H. & JEAN, J.-L., 1995. The life histories and biology
of Epicopeiidae of Taiwan. — Trans.lepid.Soc.Japan 46: 175-184.
189
Nota lepid. 22 (3): 190-196; 01.1X.1999 ISSN 0342-7536
Low-melting point paraffin used to close
puncture wounds improves success of ecdysis
triggered by ecdysone injection
E. A. LOELIGER * & F. KARRER **
* Hofdick 48, NL-2341 ND Oegstgeest, The Netherlands
** Rebbergstrasse 5, CH-4800 Zofingen, Switzerland
Summary. The injection of ecdysone into pupae of Sphingidae (Lepidoptera) is more
successful when the puncture wound is closed with low-melting point paraffin instead
of soluble collodion, the common approach in this field. As a result of this change
in procedure, the rate of flawless eclosion increased from 1:3 (Loeliger & Karrer, 1996)
to more than 9:10 (p = 0.005). Glue and polish were found to be even more noxious
than collodion. Mastering the paraffin closure technique requires no more than a little
practice. Ecdysone-induced synchronisation of the eclosion of adults which under mid-
European climatic conditions only haphazardly enter metamorphosis, a notorious
example being Hyles centralasiae siehei, will easily be obtained with this new technique
for closure of the puncture wound.
Zusammenfassung. Die Erfolgsrate der Injektion von Ecdyson in Puppen von
Schwärmern (Sphingidae, Lepidoptera) ist höher, wenn die Einstichwunde mit
niedrigschmelzendem Paraffin verschlossen wird anstelle von gelôstem Kollodium, wie
es gemeinhin üblich ist. Als Ergebnis dieses geänderten Vorgehens stieg die Rate
fehlerlos geschliipfter Tiere von 1:3 (Loeliger & Karrer, 1996) auf mehr als 9:10
(p = 0.005). Klebstoff und Lack erwiesen sich als noch schädlicher als Kollodium.
Die Paraffin-Verschlusstechnik erfordert nur wenig Ubung. Durch Ecdyson lässt sich
die Synchronisierung des Schlupfs der Imagines mancher Arten induzieren, die unter
mitteleuropäischen Klimabedingungen nur sporadisch metamorphosieren; ein notori-
sches Beispiel ist Hyles centralasiae siehei. Mit der neuen Technik zum Verschluss
der Injektionswunde wird dies leicht zu erzielen sein.
Résumé. L’injection d’ecdysone en des chrysalides de Sphingidae (Lepidoptera) est
mieux couronnée de succès quand la blessure causée par celle-ci est fermée au moyen
de paraffine fusible à basses températures, plutôt qu’avec du collodion soluble,
l’approche habituelle en ce domaine. Suite à ce changement de procédure, la proportion
d’eclosions parfaites augmenta de 1:3 (Loeliger & Karrer, 1996) a plus de 9:10
(p = 0.005). La colle et la laque s’avérèrent encore plus nocives que le collodion. La
maîtrise de la technique de la fermeture a la paraffine ne demande qu’un peu de
pratique. La synchronisation de l’éclosion des adultes, qui n’entrent qu’accidentellement
en métamorphose sous les conditions climatiques d’Europe centrale, est rendue possible
par l’ecdysone, un exemple notoire en étant fourni par Hyles centralasiae siehei.
Key words: Lepidoptera, Sphingidae, metamorphosis, ecdysone.
190
Introduction
Shortly after the publication on the induction of metamorphosis
of Lepidoptera by means of the injection of ecdysone or 20-
hydroxy-ecdysone (Loeliger & Karrer, 1996), Spanish researchers
pointed out by letter their experience with the ecdysone-induced
metamorphosis of Graellsia isabellae (Graëlls, 1849) four years
earlier (YIla & Bellés, 1992). These authors had treated their
pupae without anesthesia and without wound coverage. The
pupae had been immobilized by exposure to ice for 10-15
minutes. The eclosing moths were flawless. Herewith, the authors
indirectly suggested that collodion coverage of the wound might
be toxic and therefore responsible for the low rate of flawless
eclosion. Unfortunately, exposure to ice as applied by the Spanish
researchers only insufficiently immobilizes pupae of Sphingidae
and large amounts of lymph may be lost already before the
injection site can be closed, resulting in insufficient unfolding of
the wings upon eclosion. Nevertheless, the excellent results as
obtained by the Spanish authors were an incentive to look for
expert advice. We turned to professor Gilbert of the Biology
Department of the University of North Carolina at Chapel Hill,
a well-known expert in the field of endocrine control of moulting
(Gilbert, 1989). By letter, he explained that “The procedure for
closing a wound elicited by an injection is very simple. First,
you make sure that the surface of the wound area is completely
dry and then add a very small drop of a low-melting point paraffin
that has been heated on a needle”; and: “I am sure that with
very little practice you will master the technique”. Hereupon, we
decided to undertake further experimentations.
Materials and methods
Collodion: 3% dinitrocellulose in ethanol/ diethylether 20/77.
Glue: marketed under the trade name UHU Alleskleber in
Germany and Switzerland, produced by UHU G.m.b.H., Bühl
(D).
Polish: marketed under the trade name Bourgois, Formule aux
Protéines, Paris (F).
Both glue and polish were applied by means of thin paint
brushes, in one or two rapidly drying layers.
191
Paraffin: Paraffinum solidum 48-51. Pharmacopoeia Neder-
landica VI.
Injection technique: as described earlier (Loeliger & Karrer,
1996). For the site of injection, we randomly chose the traditional
apex of the head of the pupa as well as the abdomen, 1.e., segment
5 between the anterior midline and the right-hand spiracle.
Application of paraffin: the head of an ordinary pin (synthetic
material, 3.5 mm diameter) was immersed in liquid paraffin
heated to the boiling point and, after a few seconds, abruptly
removed; as a rule a substantial droplet hung from the head of
the pin. After rapid transfer to the puncture wound in the cuticle
of the pupa, the drop coagulated almost instantaneously.
Live stock: Hyles centralasiae siehei pupae obtained from
larvae collected in 1995 in two different parts of Turkey, kindly
placed at our disposal by F. Renner, Erbach Ringingen (D), and
purchased by one of us (FK), respectively. From some of the
latter parasitoids emerged. One pupa of each of the two series
displayed spontaneous metamorphosis in the spring of 1997, the
emerging adults being crippled, however.
Hyles euphorbiae mauretanica: non-inbred eggs kindly supplied
by H. Harbich, Salz (D). Loss-free breeding (EAL) of larvae
resulted in flawless pupae.
Hyles euphorbiae dahlii: apparently healthy pupae obtained
from mature larvae collected just before pupation in Sardinia
(I), purchased by one of us (FK).
Results
Table 1 summarizes the results obtained with three different
materials used for wound closure after uncomplicated ecdysone
injection into non-hybrid pupae of two Sphingidae species. Males
and females are not shown separately as there was no difference
in eclosion rates between the two sexes.
Of the Hyles euphorbiae pupae, those belonging to the
subspecies mauretanica apparently were the healthiest: the 14
pupae treated with paraffin all displayed flawless eclosion irres-
pective of whether the ecdysone had been injected via the apex
of the head deep into the thorax or via the abdominal segment
into the abdomen. Accordingly, the vitality and mating behaviour
of the imagines were normal with abundant progeny, the number
192
(S70 < X d) uowopae eIA jeu} 0) ejrums 9721 ssa9ons e ur payNSaI peay IA uoroafu u
usye) 912 SMEIJ JUSIJS pue Juou FI C—O’) > ‘X d) saulsewm 94A199J9P A2A9A9S 4 pue Apysıpss paonpoid ¢ ‘aednd payean
[uo
-ystjod pue onjs 7] oy) Jo ‘Ajeuiou dofoasp pue 95099 JOU pip IInpe suo ‘sednd pojeosj-uyyered oy) JO ‘ON
DIIUDJAANDUL
apiqioydna ‘H
AAD
apiqioydna ‘H
layals
9DISD]DAIU99 'H
ulyered ysıpod uswopqe
UJIM Jınsop punom payoafur J9QUNN
(e1>}dopıd3]) sepıduryds jo sednd prqÂy-uou ojur uonoafur auosApos payeormduooun Jo synsoy ‘[ AlqeL
193
of eggs deposited by one of the females on Euphorbia exceeding
300.
All four Hyles euphorbiae dahlii pupae treated with paraffin
emerged, although two of them displayed some defects. In sharp
contrast, none of the 12 pupae treated with either glue or polish
resulted in normal imagines, 7 being severely defective. However,
also those treated with paraffin had low vitality. Mating did not
occur in spite of conditions similar to those prevailing for Hyles
euphorbiae mauretanica moths. Dissection of the females revealed
a strikingly low number of apparently mature eggs.
For Hyles centralasiae siehei, the results were as follows. The
two spontaneously developing pupae both produced abnormal
adults. One female emerging from an injected pupa displayed
obstruction of the cloaca, pointing to some kind of disturbed
intestinal function of the caterpillar at the time of pupation.
However, five of the six pupae injected, the injection wound being
closed with paraffin, appeared to be suitable for mating and —
Oviposition, although the conspicuous restlessness known for
moths of this species hampers their feeding and causes wing
damage such that flying is no longer possible after one week.
Three of these five, one female and two males, emerged on July
2nd and were placed together in a gauze-covered circular cage
65 cm across and 80cm high, in a large well-ventilated and
daylight-illuminated loft. Mating took place within the first 24
hours after eclosion, the night being cold (lowest temperature
10°C) due to brightness of the sky. There was no moonlight
illumination as new moon occurred on 3/4 July. Copulation,
observed when the second male was still flying, lasted from 22:00
till 04:00, when the position of the pair had changed from vertical
to horizontal. Room temperature had decreased from 19°C to
17°C. Oviposition could be observed from the second day after
copulation on. Deposition of the eggs occurred exclusively on
the gauze of the cage in the centre of which a bouquet of
abundantly flowering Kniphofia (Liliaceae) had been placed,
flowers which had been accepted for oviposition in earlier
experiments. The female died eight days after mating, after having
deposited 14 eggs, all sterile, however. On dissection only 85 more
of apparently mature oocytes were counted.
194
Discussion and conclusion
As pointed out in the Introduction above, toxicity of collodion
was suggested indirectly by Spanish researchers, who observed
a 100% flawless eclosion rate after injection of ecdysone into
pupae, the puncture wound of which not being covered with this
rapidly drying material. Collodion consists of solid dinitrocel-
lulose. Of its dissolvent, an ethanol/diethyl ether mixture, the
alcohol component is unlikely to be toxic as it is also used to
dissolve ecdysone. Ether, however, is a well-known neurotoxic
substance, which indeed might be responsible for the rather high
failure rate observed in our earlier experiments with ecdysone
injections and coverage of the puncture site with collodion
(Loeliger & Karrer, 1996).
The procedure as suggested by Gilbert for closing the wound
elicited by the ecdysone injection appeared easy to apply and
haemolymph leakage no longer ever occurred. More important,
in contrast to what we had observed for glue, polish and
collodion, paraffin obviously causes no toxic damage despite the
fact that it enters the pupa in small amounts, as demonstrated
microscopically. (Sucking in of the material is the result of the
negative intrapupal pressure which develops during the cooling
down period when CO, vapour emerges from the dry ice crystals
and surrounds the pupa).
It is perhaps astonishing that no difference in eclosion success
was observed between pupae injected via the apex of the head
deep into the thorax and those injected intra-abdominally. But
the small amount of injected fluid obviously does not disturb
the loose anatomical structures of the thorax and abdomen.
Lastly we warn not to rely on too short a dissolution time
for the crystalline ecdysone, the dissolution rate of which is
directly proportional to its surface area. Larger crystals take up
to half an hour at room temperature to dissolve.
In conclusion, low-melting point paraffin appears to be the
material of choice for non-toxic and safe closure of the wound
made by the injection needle during ecdysone treatment of pupae
of Sphingidae. After injection of appropriate amounts of the
hormone, normal development can be expected for healthy
pupae, resulting in adults which easily mate and produce normal
amounts of fertile eggs. Synchronisation of eclosion and breeding
195
of even the most difficult species, such as Hyles centralasiae siehei,
which as far as we know has never been successfully bred in
captivity, should now be feasible.
Acknowledgements
We gratefully thank H. Harbich and F. Renner for the generous
donation of livestock material, and Mrs L. A. Nijssen-Kosters
for secretarial assistance.
References
GILBERT, L. I., 1989. The endocrine control of molting: the tobacco hornworm,
Manduca sexta, as a model system. Jn: Ecdysone: from Chemistry to Mode
of Action. Georg Thieme Vlg., Stuttgart, New York: 448-471.
LOELIGER, E. A. & KARRER, F., 1996. On the induction of metamorphosis
of Lepidoptera by means of ecdysone and 20-hydroxy-ecdysone. Data on
268 hybrid and non-hybrid Sphingidae and 14 Bombyces. — Nota lepid.
19(1/2): 113-128.
YLLA, J. & BELLÉS, X., 1992. Determinismo endocrino de la diapausa pupal
en Graellsia isabellae (Graells) (Lepidoptera, Saturnidae). Efecto de la 20-
hidroxiecdisona. — Ecologia 6: 297-302.
196
Nota lepid. 22 (3): 197-211; 01.1X.1999 ISSN 0342-7536
On the identity of Polyommatus (A grodiaetus)
dama, with lectotype designation and redescrip-
tion of its karyotype (Lycaenidae)
Alain OLIVIER *, Willy DE Prins **, Dirk VAN DER POORTEN ***
& Jurate PUPLESIENE ****
* Luitenant Lippenslaan 43 B 14, B-2140 Antwerpen
** Diksmuidelaan 176, B-2600 Antwerpen
*** ] anteernhofstraat 26, B-2140 Antwerpen
**** Institute of Ecology, Akademijos 2, LT-2600 Vilnius
Summary. The karyotype of Polyommatus (Agrodiaetus) dama (Staudinger, 1892)
from near Malatya, in central-eastern Turkey, is described and figured: the haploid
chromosome number n = 41 has been identified, quite in agreement with the results
of de Lesse (1959c). Syntopic and synchronous occurrence of P (A.) dama with the
nominal taxa P (A.) poseidon (Herrich-Schäffer, [1851]), PR (A.) hopfferi (Herrich-
Schäffer, [1851]) and 2 (A.) theresiae Schurian, van Oorschot & van den Brink, 1992
is confirmed, old historical specimens of both P (A.) dama and P (A.) theresiae from
“Hadjin” (now Saimbeyli in Turkey, Adana province) having been located at the
Museum für Naturkunde der Humboldt-Universität zu Berlin. All four taxa further
differ markedly morphologically and karyologically, additionally supporting their
specific distinctness. The identity of P (A.) dama is established by designation of a
lectotype. Similarities between P (A.) dama from Malatya and the nominal taxa P
(A.) dama karindus (Riley, 1921) and P (A.) hamadanensis (de Lesse, 1959), both
from the Zagros Mts. in Iran, are underlined and their placement in a distinct P
(A.) dama group is advocated. While the current status of P (A.) dama karindus
(subspecies of P (A.) dama or distinct species) is at present unresolved as its
chromosome number and karyotype remain unknown, P (A.) hamadanensis is
definitely a distinct species, with a haploid chromosome number of n = 21-22 (de
Lesse, 1959a). Syntopic and synchronic occurrence of both Iranian taxa is confirmed.
Current evidence fully agrees with the view that de Lesse (1959c) correctly identified
the specimens he ascribed to P (A.) dama.
Zusammenfassung. Der Karyotyp von Polyommatus (Agrodiaetus) dama (Staudinger,
1892) aus der Zentraltürkei (Umgebung von Malatya) wird beschrieben und abgebildet.
In Übereinstimmung mit Angaben von de Lesse (1959c) beträgt der haploide
Chromosomensatz n = 41. Das syntope und synchrone Auftreten von P (A.) dama
mit den nominellen Taxa P (A.) poseidon (Herrich-Schäffer, [1851]), P (A.) hopfferi
(Herrich-Schäffer, [1851]) und P (A.) theresiae Schurian, van Oorschot & van den
Brink, 1992, wird bestätigt, unter anderem durch die Entdeckung historischer Exemplare
aus “Hadjin” (heute Saimbeyli, Prov. Adana, Tiirkei) im Museum fiir Naturkunde
Nor
der Humboldt-Universität zu Berlin. Die genannten vier Taxa sind morphologisch und
karyologisch deutlich verschieden, was ihren Artstatus bestätigt. Die Identität von P
(A.) dama wird durch Designation eines Lectotypus fixiert. Ahnlichkeiten zwischen
P. (A.) dama aus Malatya und den nominellen Taxa P (A.) dama karindus (Riley,
1921) und P (A.) hamadanensis (de Lesse, 1959), die beide aus dem Zagros-Gebirge
in Iran beschrieben wurden, legen nahe, diese drei Taxa in einer eigenen Artengruppe
zusammenzufassen. Der Status von P. (A.) dama karindus (Unterart von P (A.) dama
oder eigene Art?) kann derzeit mangels karyologischer Daten nicht geklart werden,
während P (A.) hamadanensis mit einem haploiden Chromosomensatz von n = 21-22
(de Lesse, 1959a) als distinkte Spezies aufgefaBt wird. Das syntope und synchrone
Vorkommen beider iranischer Taxa wird bestätigt. Alle verfügbare Evidenz zur Karyo-
logie und Verbreitung bestätigt, dass de Lesse (1959c) die seinen Arbeiten zugrunde-
liegenden Exemplare korrekt als P (A.) dama identifizierte.
Résumé. Le caryotype de Polyommatus (Agrodiaetus) dama (Staudinger, 1892) des
environs de Malatya, en Turquie du centre-est, est décrit et figuré: le nombre haploide
de chromosomes n= 41 a été déterminé. en total accord avec les résultats obtenus
par de Lesse (1959c). La cohabitation dans le méme endroit, au méme moment, de
P. (A.) dama avec les taxa nominaux P (A.) poseidon (Herrich-Schäffer, [1851]), P
(A.) hopfferi (Herrich-Schäffer, [1851]) et P (A.) theresiae Schurian, van Oorschot
& van den Brink, 1992 est confirmée, des exemplaires historiques anciens d’aussi bien
P (A.) dama que de P. (A.) theresiae en provenance de “Hadjin” [actuellement Saim-
beyli en Turquie, province d’Adana] ayant été retrouvés au Museum für Naturkunde
der Humboldt-Universität zu Berlin. De plus, ces quatre taxa diffèrent clairement tant
par leur morphologie extérieure que du point de vue caryologique, ce qui corrobore
leur statut spécifique. LVidentité de P (A.) dama est établie par la désignation d’un
lectotype. Des similitudes marquantes entre P (A.) dama de Malatya et les taxa
nominaux P (A.) dama karindus (Riley, 1921) et P (A.) hamadanensis (de Lesse,
1959), tous deux en provenance des monts Zagros en Iran, sont soulignées, justifiant
leur placement au sein d’un groupe distinct autour de P (A.) dama. Alors que le
statut actuel de P. (A.) dama karindus (sous-espèce de P. (A.) dama ou espèce distincte)
ne peut étre résolu tant que son nombre de chromosomes et son caryotype resteront
inconnus, P. (A.) hamadanensis est certainement une espèce distincte, ayant un nombre
haploïde de chromosomes n = 21-22 (de Lesse, 1959a). La coexistence des deux taxa
iraniens est confirmée. Les données présentées ici tendent a prouver que de Lesse
(1959c) identifia correctement les exemplaires qu’il attribua a P (A.) dama.
Key words: Lycaenidae, Polyommatus (Agrodiaetus) dama, Polyommatus (Agro-
diaetus) dama karindus, Polyommatus (Agrodiaetus) hamadanensis, Polyommatus
(Agrodiaetus) theresiae, Polyommatus (Agrodiaetus) poseidon, Polyommatus (Agro-
diaetus) hopfferi, karyotype, Turkey, Iran.
Introduction
Staudinger (1892: 234-235) described “Lycaena Dama Stgr.”
after a large series collected by Johann J. Manisadjian near
Malatya in central-eastern Turkey in late July 1884. This butterfly
198
cannot be confused with any other Polyommatus (Agrodiaetus)
species group taxon occurring in Turkey, being highly charac-
teristic by its large size, its wing shape and the complete absence
of any trace of a white streak on hindwing underside in both
sexes (figs. 2-13, 20; for a detailed description see Staudinger,
loc.cit., Forster, 1961: 42-44 and Hesselbarth er al., 1995: 727,
Taf. 118).
Recently, Schurian & Eckweiler (1997) reported their redis-
covery of P (A.) dama near Malatya and questioned the mention
by de Lesse (1959c), as they both did not find the specimens
referred to by this author in the Muséum National d’ Histoire
Naturelle, Paris. As material ascribed to P (A.) theresiae
Schurian, van Oorschot & van den Brink, 1992 from Taskent
(Turkey, Konya province) has a haploid chromosome number
of n = 41-42 (Kandul & Lukhtanov, 1997), i.e. exactly the same
number as P (A.) dama sensu de Lesse (1959c), the authors of
the present contribution decided, in early August 1997, to try
to locate topotypical material of both P (A.) dama and P. (A.)
theresiae and to fix testes for karyological examination. The
results of our study of P (A.) theresiae that, quite unexpectedly,
lead to the description of a new species, have been dealt with
elsewhere (Olivier et al., 1999): here those with P (A.) dama are
discussed at length.
Material and methods
In 1997, only one single rather fresh, but damaged ¢ of P
(A.) dama (figs. 10-11) was collected in a habitat near Malatya,
kindly communicated to us by Dr. Klaus G. Schurian. The testes
were fixed almost immediately after collecting and, later on, a
side mount (97019/1 (WDP)) was prepared by Dr. Seppo
Nokkala, who also made the photograph reproduced here on
fig. 1 (methodology followed as described in Olivier er al., 1999).
Karyotype of Polyommatus (A grodiaetus) dama
The haploid chromosome number identified is 7 — 41. The
karyotype is exactly asymmetric. The bivalents are round shaped
and form two distinct groups which strongly differ in size: one
group of 11 large bivalents forms a dimensional series in size,
199
Fig. 1. Karyotype of Polyommatus (Agrodiaetus) dama, prep. 97019/1 (S. Nokkala),
M-I, Turkey, Malatya province, vic. Malatya, 1200 m, 5.VIII.1997, leg. W. De Prins,
A. Olivier & D. van der Poorten, in coll. Vlaamse Lepidoptera Collectie Antwerpen.
while the other group of 30 medium-sized bivalents accounts for
about 40-50% of the area of the bivalents of the first group.
The large bivalents are situated in two compact groups of the
metaphase plate (M-I). The medium-sized bivalents are isopyc-
notically less stained, almost of equal size, showing only a very
slight degree of diminution. Most of these are located in the centre
of the metaphase I plate. No additional elements or univalents
were observed, nor were telomeric associations between the
bivalents. It is noteworthy that the karyotype figured by de Lesse
(1959c: 312, fig. 1) shows the medium-sized bivalents to be
situated at the edge of the plate. The differences observed could
be due to the fact that, in irregular plates such as in our
preparation, due to the squashing technique or hypotonic solution
treatment, the place of certain chromosomes can vary.
Sympatry with other Polyommatus (A grodiaetus) species-group
taxa and differentiating characters
Near Malatya, we found P (A.) dama to be syntopic and
synchronous with a.o. P. (A.) poseidon (Herrich-Schäffer, [1851 ])
200
and P. (A.) hopfferi (Herrich-Schaffer, [1851]). Material of P
(A.) poseidon (figs. 18-19), however, can easily been told apart
by the distinctly lighter blue colour of the 4, the generally
somewhat smaller size and the presence of a white streak (though
not always very clearly) on underside hindwing in both sexes.
Staudinger (1892: 233-234) described the population of poseidon
from near Malatya as “Lycaena Poseidon Led. var. Mesopotamica
Stgr.”, which is at present generally considered to be a junior
subjective synonym of Polyommatus (Agrodiaetus) poseidon
poseidon (Herrich-Schäffer, [1851]) (Schurian er al., 1992: 222;
Hesselbarth er al., 1995: 726, but see Eckweiler & Häuser, 1997:
120, 155). We fixed material from near Malatya and found n = 20
(Olivier, De Prins & van der Poorten, unpublished). The chromo-
some number of P (A.) poseidon varies from n= 18 to n = 27
(de Lesse, 1963; Kandul & Lukhtanov, 1997) and it is quite
possible that it covers more than one species. Anyway, it differs
significantly from that of P (A.) dama.
P. (A.) hopfferi (fig. 21) also cannot be confused with P (A.)
dama. It is only of anecdotic interest to report that Staudinger
(1892: 234-235) emphasized the sometimes close resemblance of
both taxa on the underside (the upperside is completely different,
being yellowish-, greenish- or bluish-grey in hopfferi 3). The
chromosome number of P. (A.) hopfferi is n = 15-16 (de Lesse,
1959b, 1959c, 1960; Lukhtanov er al., 1998), additionally sup-
porting the specific distinctness of hopfferi and dama.
Olivier et al. (1999) discussed at length the suggestion by
Kandul & Lukhtanov (1997) and Lukhtanov er al. (1998) that
P. (A.) dama and P. (A.) theresiae could possibly be subspecies,
on account of their supposedly allopatric distribution and similar
chromosome number. Obviously, this ıs not the case: during a
visit t0 the Museum für Naturkunde der Humboldt-Universität
zu Berlin by the first author in late November 1998, one &
specimen of P (A.) dama was found that bears a label “Had-
jin | [18]84 Man.[isadjian]” (figs. 12-14), 1.e. that was collected
in the very type locality of P (A.) theresiae, now named Saimbeyli
(Turkey, Adana province) and, a few days later, Dr. Yuri P.
Nekrutenko (pers. comm.) also found a genuine ?. (A.) theresiae
specimen from “Hadjin” (figs. 15-17) in the Püngeler collection
at the Museum für Naturkunde der Humboldt-Universität zu
201
Berlin (these two specimens are probably the ones referred to
by Staudinger (1892: 234) under “Lycaena Poseidon Led. var.
Mesopotamica Stgr.” as “aus Hadjın ein paar @@ einer
ähnlichen etwas grösseren Form mit etwas verschiedenem Blau
der Oberseite...”). Furthermore, the chromosome number of P
(A.) theresiae is n>59, presumably 63 (Nokkala found
n = 65-66, cf. Olivier et al., 1999). Finally, the latter taxon always
has a white streak on underside hindwing in both sexes and a
striking androconial patch on @ upperside forewing. It thus
appears that the nominal taxa P (A.) dama, P. (A.) poseidon,
P. (A.) hopfferi and P. (A.) theresiae do occur (or have occurred)
in sympatry at Saimbeyli (Hesselbarth er al., 1995; this study)
and, the more, differ significantly both morphologically and
karyologically. It can therefore be concluded that all are spe-
cifically distinct.
Lectotype designation
Considering the confusion that has repeatedly aroused around
its identity (vide supra), and in order to establish it ultimately,
a lectotype of Polyommatus (Agrodiaetus) dama (figs. 2-4) is
designated here.
Lycaena Dama Stgr. n. sp.” Staudinger, O., 1892. Neue Arten und Varietäten
von Lepidopteren des paläarktischen Faunengebiets. — Dt.ent.Z.Iris 41891):
234-235 (Mitte Februar 1892). Type locality: “...bei Malatia...” (now Turkey,
Malatya province, vic. Malatya).
— Lectotype 3, with labels: handwritten (Staudinger) “Dama | Stgr.” (on white paper),
handwritten “Malatia | [18]84 Man.[issadjian]” (on yellow paper), printed “Origin.”
(on pink paper), printed “Zool. Mus. | Berlin” (on pale yellow paper), printed with
handwritten (P. S. Wagener) inscriptions “Abgebildet in Hesselbarth | van Oorschot
& Wagener: | Tagfalter der Tiirkei. | Tafel 778 Figur 29” (on white paper), printed
Figs. 2-9. Polyommatus (Agrodiaetus) spp.: 2 — P. (A.) dama (Staudinger, 1892),
lectotype & (upperside), [Turkey, Malatya province], [vic.] Malatya, [late July] 1884,
leg. Manisadjian, in coll. Museum für Naturkunde der Humboldt-Universität zu Berlin;
3 — same (underside); 4 — same (labels); 5 — P (A.) dama (Staudinger, 1892),
paralectotype © (upperside), [Turkey, Malatya province, vic. Malatya, late July 1884,
leg. Manisadjian], in coll. Museum fiir Naturkunde der Humboldt-Universitat zu
Berlin; 6 — same (underside); 7 — same (labels); 8 — P (A.) dama (Staudinger,
1892), paralectotype @ (upperside, aberrant ground-colour); 9 — same (underside).
202
203
DES Vas
ei’
ol. Mus. &
Zo
falter der Turk
A18
Le
D
fo
VD te
D ©
ac
où ©
oO OV
v0
oz
ks
Le)
c
et à)
oO
# €
oO
DT
Ces he
AO
nO
u
nc
EN
[>
Tag
“Lycaena Dama Staudinger, 1892 | LECTOTYPUS G | design. Olivier, De Prins,
van | der Poorten & Puplesiene, 1999” (on red paper); in coll. Museum für
Naturkunde der Humboldt-Universität zu Berlin.
— Paralectotypes 53, 49, with circles of yellow locality label paper, printed “Origin.”
(on pink paper), some with small date labels, and printed “Zool. Mus. | Berlin”
(on pale yellow paper); one @ bears also new handwritten labels “20.” (on cross-
lined notebook paper) and “dama” (on white paper), one @ with handwritten label
(Staudinger) “Dama | Stgr.” (on white paper) and handwritten date label “25/7”
(on white faded paper), one © with handwritten label “21.” (on cross-lined notebook
paper), handwritten (Wagener) “Lycaena dama | Stgr. 1892 © | Malatia 84 Man.”
(on white paper) and printed with handwritten (P. S. Wagener) inscriptions
“Abgebildet in Hesselbarth | van Oorschot & Wagener: | Tagfalter der Türkei. | Tafel
118 Figur 52 <recte: 49>” (on white paper), 5 times printed “Lycaena Dama
Staudinger, 1892 | PARALECTOTYPUS @ | design. Olivier, De Prins, van | der
Poorten & Puplesiene, 1999” (on red paper), 4 times printed “Lycaena Dama
Staudinger, 1892 | PARALECTOTYPUS © | design. Olivier, De Prins, van | der
Poorten & Puplesiene, 1999” (on red paper); all in coll. Museum fiir Naturkunde
der Humboldt-Universitat zu Berlin.
Through the courtesy of Dr. Axel Hausmann, we received a
small series of P (A.) dama (34, 22) on loan from the
Zoologische Staatssammlung München, including 24, 29 that
each bear a handwritten label “Cotypus | Lycaena © | dama Stgr”
(on pink paper). We are not convinced, however, that any of
these specimens actually belonged to the original syntype series
and therefore we do not list any of these specimens among the
paralectotypes of P (A.) dama (see also Hesselbarth er al., 1995:
72):
Figs. 10-17. Polyommatus (Agrodiaetus) spp.: 10 — P. (A.) dama (Staudinger, 1892)
& (upperside), Turkey, Malatya province, vic. Malatya, 1200 m, 5.VIII.1997, leg. W.
De Prins, A. Olivier & D. van der Poorten, in coll. Vlaamse Lepidoptera Collectie
Antwerpen, specimen examined karyologically, prep. 97019/1 (S. Nokkala), cf. fig.
1; 11 — same (underside); 12 — P (A.) dama (Staudinger, 1892) 4 (upperside), [ Turkey,
Adana province], Hadjin [Saimbeyli], 1884, leg. Manisadjian, in coll. Museum für
Naturkunde der Humboldt-Universität zu Berlin (excluded from type series); 13 —
same (underside); 14 — same (labels); 15 — P (A.) theresiae Schurian, van Oorschot
& van den Brink, 1992 & (upperside), [Turkey, Adana province], Hadjin [Saimbeyli],
[leg. Manisadjian?], in coll. Museum fiir Naturkunde der Humboldt-Universitat zu
Berlin; 16 — same (underside); 17 — same (labels).
204
205
Distribution of P. (A.) dama in Turkey
In Turkey, P (A.) dama is now known from the provinces
of Malatya, Maras and Mardin (Hesselbarth et al., 1995: 727)
and from Adana province (this study). The record by Hesselbarth
et al. (op.cit.: 727) from “Kubbe Dagi, 1990, HAN(ROSE, pers.
Mitt.)” further has to be corrected as Adiyaman province, Nemrut
Daÿ Milli parkı (Hanus & Hoareau, 1998).
Systematic position of P. (A.) dama
Turkish P (A.) dama shows striking similarities with the
nominal taxa P. (A.) dama karindus (Riley, 1921) and P (A.)
hamadanensis (de Lesse, 1959), that were described resp. from
“Harir, Karind, and Karind Gorge, N. W. Persia” (Iran, Zagros
Mts., Bakhtaran (Kermänshäh) province — Riley, 1921: 597) and
from “col route Kazvin a Hamadan (Iran W) env. 2350 m” (Iran,
Zagros Mts., Hamadan province — de Lesse, 1959a: 14-15), in
its size, wing shape and lack of the white streak on underside
hindwing and it is probably not a coincidence that both Iranian
taxa have originally been described as subspecies of P (A.) dama.
According to Riley (1921: 597), Forster (1961: 44-45) and
Hesselbarth et al. (1995: 727), P. (A.) dama karindus (figs. 22-23)
differs from Turkish P (A.) dama in the complete discal series
of spots on hindwing underside and the stronger development
Figs. 18-25. Polyommatus (Agrodiaetus) spp.: 18 — P (A.) poseidon (Herrich-Schäffer,
[18511 & (upperside), Turkey, Malatya province, vic. Malatya, 1200 m, 5.VIII.1997,
leg. W. De Prins, A. Olivier & D. van der Poorten, in coll. Vlaamse Lepidoptera
Collectie Antwerpen; 19 — same (underside); 20 — P (A.) dama (Staudinger, 1892)
& (upperside), Turkey, Malatya province, vic. Malatya, 1400 m, 27.VII.1998, leg. D.
van der Poorten & W. De Prins, in coll. Vlaamse Lepidoptera Collectie Antwerpen;
21 — P (A.) hopfferi (Herrich-Schäffer, [1851]) & (upperside), Turkey, Malatya
province, vic. Malatya, 1200 m, 5.VIHI.1997, leg. W. De Prins, A. Olivier & D. van
der Poorten, in coll. Vlaamse Lepidoptera Collectie Antwerpen; 22 — P (A.) dama
karindus (Riley, 1921) & (upperside), Iran, Zagros Mts., Lorestan province, Saravand
Dorüd, 2000-2300 m, 2-5.VIII.1979, leg. E. Görgner, in coll. Vlaamse Lepidoptera
Collectie Antwerpen; 23 — same (underside); 24 — P. (A.) hamadanensis (de Lesse,
1959) & (upperside), Iran, Zagros Mts., Lorestan province, Saravand Dorud,
2000-2300 m, 2-5.V111.1979, leg. E. Görgner, in coll. Vlaamse Lepidoptera Collectie
Antwerpen; 25 — same (underside).
206
207
DNA
EEE eeeee—CSSCCC
of the submarginal row of markings on underside in both sexes,
as well as in the lighter blue ground-colour on @ upperside and
the lighter brown ground-colour on @ upperside. We have
compared a small series of 74 of nominotypical P (A.) dama
that we collected near Malatya (1997 & 1998) with 2¢ of P (A.)
dama karindus (all material in coll. Vlaamse Lepidoptera Collectie
Antwerpen) and were able to partly confirm these differences in
the 4. Solving the question whether karindus really belongs to
dama awaits the future identification of its chromosome number
and karyotype (see Olivier et al., 1999: 22-23 for a further
discussion on the systematic value of such characters).
The chromosome number of “Agrodiaetus dama hamadanen-
sis” was established as n = 21-22 by de Lesse (1959a); subse-
quently, when he established the chromosome number of no-
minotypical dama, de Lesse (1959c) raised hamadanensis to
species level. P (A.) hamadanensis & (figs. 24-25) further differs
markedly from P (A.) dama by its dark violet ground-colour
on upperside, which lead Hesselbarth er al. (1995: 706, 727) to
place it in the “carmon-Gruppe” (van Oorschot, pers. comm.),
a view we do not share. It has the submarginal row of markings
on underside better expressed in both sexes, as compared to P
(A.) dama. Among material of the latter taxon, one occasionally
encounters aberrant @ specimens that are dark greyish violet
(Staudinger, 1892: 234, specimen figured here on figs. 8-9; de
Lesse, 1959c: 312; Forster, 1961: 44), slightly reminiscent of P
(A.) hamadanensis in this respect.
Eckweiler & Häuser (1997: 133-134, plate 3) figure specimens
of P (A.) dama karindus and P. (A.) hamadanensis (leg.
Eckweiler) collected on the very same spot, while in coll. Vlaamse
Lepidoptera Collectie Antwerpen, there is also one single @ of
P. (A.) dama karindus collected at the same locality and on the
same day as a small series of P (A.) hamadanensis (Iran, Zagros
Mts., Lorestan province, Saravand Dorüd, 2006-2300 m,
2-5. VIII.1979, leg. Görgner; cf. figs. 22-25), confirming their
specific distinctness.
We agree in the placement of the three nominal species group
taxa discussed in this heading in a P (A.) dama group, as
suggested by Hesselbarth er al. (1995) and Eckweiler & Häuser
(1997), though the former authors excluded P. (A.) hamadanensis,
208
as already stated, and the latter authors include P (A.) theresiae,
a taxon that in our view belongs to a different, 1.e. the P (A.)
transcaspicus, group (Olivier et al., 1999).
Le Cerf (1913: 69) lists “L. dama Stgr. Deh-Tcheshma, 31-
VII-1898: 19” (now in Iran, Bakhtaran (Kermänshäh) province).
The specimen could belong either to karindus or to hamadanensis:
as we have not seen this specimen, we will not comment further
on this issue.
Forster (1961: 46-47) described “A.[grodiaetus| hamadanensis
splendens” from Keredji, in the Elburs Mts. (northern Iran) after
one single @. Hauser & Eckweiler (1997: 102) correctly pointed
out that the name is invalid, being a junior secondary homonym
of Polyommatus (Plebicula) escheri splendens Stefanelli, 1904.
We cannot comment on their statement that “A replacement is
not needed, because splendens FORSTER, 1961 appears to be a
subjective synonym of Polyommatus (Agrodiaetus) hamadanen-
sis”, as we have not seen the holotype.
Considering all that has been said here, we have every reason
to consider that de Lesse (1959c) correctly identified the specimens
he ascribed to P (A.) dama.
Acknowledgements
It is our pleasure to thank the following persons for their help
and information: Dr. Yuri P. Nekrutenko (Schmalhausen Institute
of Zoology, Kiev) for help in locating types and other significant
material of Polyommatus (Agrodiaetus) during a visit of one of
us (AO) to the Museum fiir Naturkunde der Humboldt-Univer-
sität zu Berlin in late November 1998; Dr. Wolfram Mey
(Museum für Naturkunde der Humboldt-Universitat zu Berlin)
for allowing the first author to study relevant Polyommatus
(Agrodiaetus) material under his care; Dr. Axel Hausmann
(Zoologische Staatssammlung Miinchen) for the loan of material
of P (A.) dama; Dr. Seppo Nokkala (Laboratory of Genetics,
Department of Biology, University of Turku, Finland) for the
preparation of testes, and the resulting photograph of the
karyotype of P (A.) dama reproduced here on fig. 1; Dr. Klaus
G. Schurian (Kelkheim/Ts., Germany) for orienting us on the
habitat of P (A.) dama near Malatya; Mr. Jos Dils (Stabroek-
Hoevenen, Belgium) and Mr. Hans Henderickx (Mol, Belgium)
209
for photographing some of the specimens figured in the present
study; Prof. Dr. Konrad Fiedler (Lehrstuhl Tierôkologie, Uni-
versitat Bayreuth) for the German summary and two anonymous
referees for their constructive comments.
References
DE LESSE, H., 1959a. Description d’une nouvelle sous-espèce d’Agrodiaetus
dama Stgr (Lep. Lycaenidae) et de sa formule chromosomique. —
Bull.Soc.ent. Mulhouse 1959: 13-15.
DE LESSE, H., 1959b. Description d’une nouvelle sous-espèce d’Agrodiaetus
hopfferi H.S. (Lep. Lycaenidae) et de sa formule chromosomique parti-
culière. — Bull.mens.Soc.linn. Lyon 28(5): 149-151.
DE LESSE, H., 1959c. Sur la valeur spécifique de deux sous-espèces d’Agro-
diaetus (Lep. Lycaenidae) récemment décrites. — Bull.mens.Soc.linn. Lyon
28(10): 312-315, 5 figs.
DE LESSE, H., 1960. Spéciation et variation chromosomique chez les Lépi-
doptères Rhopalocères. — Annls Sci.nat., Zool. (sér.12) 2(1): 1-223, 222
figs. (Thesis).
DE LESSE, H., 1963. Variation chromosomique chez les Agrodiaetus [Lep.
Lycaenidae]. — Revue fr. Ent. 30(3): 182-189, 4 figs.
ECKWEILER, W. & HAUSER, C. L., 1997. An illustrated checklist of Agrodiaetus
Hiibner, 1822, a subgenus of Polyommatus Latreille, 1804 (Lepidoptera:
Lycaenidae). — Nachr.ent. Ver. Apollo (Suppl.)16: 113-166, 11 col. pls.
Forster, W., 1960-1961. Bausteine zur Kenntnis der Gattung Agrodiaetus
Scudd. (Lep. Lycaen.) II. — Z.wien.ent.Ges. 45: 105-142, Taf. 10-14; 46:
8-13, 38-47, 74-79, 88-94, 110-116, Taf. 10-15.
Hanus, J. & HOAREAU, D., 1998. Polyommatus (Agrodiaetus) dama (Stau-
dinger, 1892) on the Nemrut dag in Turkey (Lepidoptera: Lycaenidae).
— Nachr.ent. Ver. Apollo, N.F. 18(4): 416.
HÄUSER, C. L. & ECKWEILER, W., 1997. A catalogue of the species-group
taxa in Agrodiaetus Hiibner, 1822, a subgenus of Polyommatus Latreille,
1804 (Lepidoptera: Lycaenidae). — Nachr.ent.Ver.Apollo (Suppl.)16:
53-112.
HESSELBARTH, G., VAN OORSCHOT, H. & WAGENER, S., 1995. Die Tagfalter
der Tiirkei unter Beriicksichtigung der angrenzenden Lander. — Selbstverlag
Sigbert Wagener, Bocholt, 1354 S., 21 Tab., 75 Abb., 2 Farbkarten, 36
Farbtaf. (mit 306 Abb.) (Bd. 1 & 2) + 847 S., 128 Farbtaf., 13 Taf., IV
+ 342 Verbreitungskarten (Bd. 3).
KANDUL, N. P. & LUKHTANOV, V. A., 1997. Karyotype Variability and
Systematics of Blue Butterflies of the Species Groups Polyommatus
(Agrodiaetus) poseidon and Polyommatus (Agrodiaetus) dama (Lepido-
ptera, Lycaenidae). — Zool.Zh. 76: 63-69, 2 figs. [in Russian] (Ent. Rev.
77: 256-262, 2 figs. [English translation|).
LE CERF, F, 1913. Contribution a la faune lépidoptérologique de la Perse
VAY
(Catalogue des Rhopalocères). — Annls Hist.nat. Délég. Perse 2(2): I-XII,
1-88, 46 figs., 2 pl., 1 carte.
LUKHTANOY, V. A., KANDUL, N. P., DE Prins, W. O. & VAN DER POORTEN,
D., 1998. Karyology of species of Polyommatus (Agrodiaetus) from Turkey:
new data and their taxonomic consequences (Lepidoptera: Lycaenidae).
— Holarctic Lepid. 5(1): 1-8, 1 tab., 15 figs.
OLIVIER, A., PUPLESIENE, J., VAN DER POORTEN, D., DE Prins, W. &
Wiemers, M., 1999. Revision of some taxa of the Polyommatus (Agro-
diaetus) transcaspicus group with description of a new species from Central
Anatolia (Lepidoptera: Lycaenidae). — Phegea 27(1): 1-24, 2 col.pls., 2
tabs., 7 figs.
Rırey, N. D., 1921. Some undescribed Rhopalocera from Mesopotamia and
N.W. Persia; and other notes. — Ann. Mag.nat. Hist. (9)8(47): 590-600.
SCHURIAN, K. G. & ECKWEILER, W., 1997. Wiederfund von Polyommatus
(Agrodiaetus) dama Staudinger, 1892 in der Türkei (Lepidoptera: Lycae-
nidae). — Nachr.ent. Ver. Apollo (Suppl.)16: 49-52.
SCHURIAN, K. G., VAN OORSCHOT, H. & VAN DEN Brink, H., 1992.
Polyommatus (Agrodiaetus) poseidon (H.-S.) und Polyommatus (Agro-
diaetus) theresiae sp. nov. aus der Türkei (Lepidoptera: Lycaenidae). —
Nachr.ent. Ver. Apollo, N.F. 12: 217-232, 1 Farbtaf., 2 Abb.
STAUDINGER, O., 1892. Neue Arten und Varietäten von Lepidopteren des
paläarktischen Faunengebiets. — Dr.ent.Z.lris 4(1891): 224-339, 4 Taf., 5
Abb.
20
Nota lepid. 22 (3): 212-226; 01.1X.1999 ISSN 0342-7536
Notes on some Western Palaearctic species of
Bucculatrix (Gracillarioidea, Bucculatricidae)
Wolfram Mery
Museum für Naturkunde, Humboldt-Universität Berlin, InvalidenstraBe 43,
D-10115 Berlin
Summary. The type material of 12 species of Bucculatrix Zeller, 1839 deposited in
the Museum fiir Naturkunde Berlin is revised. B. imitatella Herrich-Schaffer, [1855],
and B. jugicola Wocke, 1877, are sunk in synonymy of B. cristatella (Zeller, 1839).
Two other synonyms have been established: B. alpina Frey, 1870 = B. leucanthemella
Constant, 1895, syn. n.; B. infans Staudinger, 1880 = B. centaureae Deschka, 1973,
syn. n. The male genitalia of the species are figured. Lectotypes have been designated
for 5 species.
Zusammenfassung. Es wird das Typenmaterial von 12 Arten der Gattung Bucculatrix
Zeller, 1839 revidiert, die sich im Museum fiir Naturkunde Berlin befinden. Zwei Namen
stellten sich als neue Synonyme heraus: B. imitatella Herrich-Schäffer, [1855], syn.
n. und B. jugicola Wocke, 1877, syn. n. von B. cristatella (Zeller, 1839). Zwei weitere
Synonyme werden bekanntgemacht: B. leucanthemella Constant, 1895, syn. n. von
B. alpina Frey, 1870 und B. centaureae Deschka, 1973, syn. n. von B. infans Staudinger,
1880. Für fünf Arten werden Lectotypen festgelegt.
Résumé. Le matériel-type de 12 espèces du genre Bucculatrix Zeller, 1839, déposé
au Museum für Naturkunde Berlin, a été révisé. Deux noms sont apparus comme
étant de nouveaux synonymes: B. imitatella Herrich-Schäffer, [1855], syn. n. et B.
jugicola Wocke, 1877, syn. n. de B. cristatella (Zeller, 1839). Deux autres synonymes
sont révélés: B. leucanthemella Constant, 1895, syn. n. de B. alpina Frey, 1870 et
B. centaureae Deschka, 1973, syn. n. de B. infans Staudinger, 1880. Pour cinq espèces,
un lectotype a été désigné.
Key words: Lepidoptera, Bucculatricidae, Bucculatrix, types, taxonomy, Europe,
Turkey.
Introduction
The genus Bucculatrix Zeller, 1839 is a large group of leaf
miners (at least as early instars) and gall makers. The genus has
a worldwide distribution. More than 220 species have been
recognised up till now (Heppner, 1991). A concentration of
species can be observed in North America and Eurasia with about
100 and 80 species respectively (cf. Baraniak, 1996; Davies, 1963;
212
Seksjaeva, 1993). From other continents much lower numbers
of species are known: South and Central America — 14, Africa —
21, South Asia — 10 (Heppner, 1991), Australia — 14 (Nielsen
et al., 1996). It is questionable if this contrasting diversity reflects
a real difference between the northern and southern continental
regions. South America, Africa and Australia are largely un-
explored. A more intensive faunistic and taxonomic work in these
areas will undoubtedly lead to the discovery of many more
species. However, the discovery of unknown species in North
America or Europe is by no means a closed chapter. New species
descriptions are published frequently (e.g. Deschka, 1992a, b;
Deschka & Huemer, 1997; Rubinoff & Osborne, 1997; Seksjaeva,
1996). The permanent addition of new species to the Western
Palaearctic fauna was regrettably not accompanied by a taxo-
nomic treatment of the genus nor prompted it such a synthetic
study. Meanwhile the genus has become unwieldy and difficult
to handle especially in the Mediterranean and adjacent regions.
Many species are very similar both in genitalic characters and
wing patterns. They are difficult to identify correctly without
performing a comparison based on extensive material of all
related species. Photographs and line drawings of the genitalia
are often not sufficient enough to allow a clear separation. In
addition, the type material of species established during the 19th
Century (e.g. Constant, Millière, Chrétien, Staudinger, Frey,
Herrich-Schäffer etc.) has hardly been a subject of revisionary
studies, which had been followed by a subsequent publication
of the results. The only exception is the account on the
Scandinavian species by Svensson (1971). Thus, there are still
a lot of associations between species and names, which are based
on outdated opinions, new interpretations or conventions, but
not on the types. Today, an examination of these types is a basic
requirement because it helps to clarify specific names attribution
and to stabilize the taxonomy of Bucculatrix.
During curatorial work on the Bucculatricidae material of the
Museum fiir Naturkunde Berlin I found type specimens of a
number of European Bucculatrix species. According to labels
some of them have been studied earlier by Deschka, Hering and
Patzak, but no comments or redescriptions have been published
so far. The other part of type specimens apparently remained
213
untouched since Staudinger’s time. Some specimens were inade-
quately labelled, and their status as types thus remains doubtful.
Others were simply misplaced. It soon became obvious that a
rearrangement of the Bucculatrix material could not be done
without a revision of the type material. It is not my intention,
however, to provide an elaborate revision of the species including
a complete synonymy and detailed descriptions. These are issues
for a monographic revision. Because a revision of the Western
Palaearctic species cannot be expected to appear within the next
years, a publication on the types deposited in the Museum für
Naturkunde Berlin might be a helpful step towards taxonomic
clearness in Bucculatricidae of the Western Palaearctic.
Methods
The structures of the genitalia are at a premium in recognition
of the species-group taxa identity. Consequently, the genitalic
characters were used extensively to define the species. The
genitalic preparation followed common practice: maceration in
boiling KOH, rinsing in distilled water, clarification in alcohol,
staining with “Kongorot”, embedding in Euparal as genital slide
or in glycerine in a small tube attached to the pin, labelling.
The figures of the genitalia were produced after staining and
mounting all structures in natural position.
Abbreviations
NHML — The Natural History Museum, London,
MNHB — Museum für Naturkunde der Humboldt-Universität,
Berlin.
List of species
Bucculatrix alpina Frey, 1870 (fig. 1)
B. alpina Frey, 1870: 287.
B. leucanthemella Constant, 1895, syn. n.
Lectotype @, (designated here) with handwritten label “Schweiz, Engadin, Sils
Maria, Juli 1867”, printed “Frey Coll. Brit. Mus. 1819-62”; genitalia slide labelled
on printed form “Brit. Mus. (Nat. Hist). Microlepidoptera” with handwritten inscription
“26610 3” designated with printed label on red paper “Lectotypus” (NHML).
214
Paralectotypes: @, same label data as of lectotype; genitalia preparation (glycerine
tube pinned to the specimen) “Mey 4/1998” (NHML); 24, with handwritten (Herrich-
Schaffer hand) label “n. sp. / Samaden”, printed “H.-Sch.”, coll. Herrich-Schäffer
in coll. Staudinger, genitalia slide: Mey, 12/97 (MNHB); 26, 2 with handwritten labels
“19/7.[1867]’, “Ob. Engadin, m.[ihi]” (both Staudinger hand), coll. Staudinger,
genitalia slides (4): Mey 5/97 (MNHB).
According to the original description, the type series was
collected by Herrich-Schäffer, Nickerl, Staudinger and Frey
during a joint excursion. The species was tentatively identified
as B. imitatella H.- S. Later on, Herrich-Schäffer sent a specimen
of his B. imitatella to Frey. He recognized the species as being
quite different and described an alpine species as B. alpina.
Herrich-Schäffer obviously came to the same conclusion, because
he wrote on the label of his Engadin specimens “n. sp.”. His
collection, together with the Staudinger collection, is deposited
now in the Museum fiir Naturkunde Berlin. While visiting the
Natural History Museum in London in December 1997, I
examined Frey’s type specimens and found them to be conspecific
with the specimens of Herrich-Schäffer and Staudinger. Since
all the material was mentioned in the original description, it
should be considered as belonging to the type series.
Comparison of material of B. leucanthemella Constant, 1895
in the Staudinger and Hinneberg collection (MNHB), collected
by Constant in Cannes, revealed its conspecificity with B. alpina.
Bucculatrix argentisignella Herrich-Schaffer, [1855] (figs. 2, 6, 7)
B. gracilella Frey, 1856 — Staudinger, 1901: 220.
Lectotype © (designated here), with labels: printed on white paper
“H [errich]-Sch.[äffer]”, printed on pink paper “Origin.”, designated with printed label
on red paper “Lectotypus”; genitalia slide Mey 14/97. Paralectotypes: 59, one
with handwritten (Herrich-Schäffer hand) label on white paper in printed box
“argentisignella / HS / *” and printed on pink paper “Origin.”, no locality label;
one with printed labels “H.-Sch.” and “Origin”, one with small handwritten “16/5
Klbg”, two without labels; all from coll. Herrich-Schäffer, in coll. Staudinger (MNHB).
The Staudinger collection contains a couple of B. argentisignella
H.-S. collected while in copula by Frey near Zürich. The sexual
dimorphism in this species is thus obvious and very pronounced.
The male has a uniform grey colour and lacks the four silvery
spots on the forewings. Thus, the male resembles small specimens
215
of B. cristatella (Zeller, 1839), with which it was sometimes
confused (cf. Leraut, 1997).
Bucculatrix atagina Wocke, 1877 (fig. 3)
Lectotype @ (designated here), with labels: handwritten on green paper in printed
box “Meran / 15.7.[18]76 Z[ucht] / Artem.[isia] camp.[estris]” printed on pink paper
“Origin.” printed on white paper “Genitalpräparat / No. [no number inscribed] / J.
Klimesch, Linz a. D.” designated with printed label on red paper “Lectotypus”, coll.
Staudinger (MNHB).
The genitalic armature in the slide is slightly distorted. However,
the diagnostic characters are clearly visible. Figure 3 is made
from another male specimen collected at the type locality.
Bucculatrix artemisiella Herrich-Schäffer, [1855]
No type specimens of B. artemisiella H.-S. were found in the
Staudinger collection.
Bucculatrix basifuscella Staudinger, 1880 (fig. 8)
Lectotype & (designated here), with labels: handwritten on white paper “10/5”,
handwritten on yellow paper “Amasia m.[ihi] [10.5.1875]’, printed on pink paper
“Origin.”, handwritten (Staudinger hand) on white paper “Basifuscella Stgr.”. It is
supplied now with a printed label on white paper with handwritten inscription “Genit.
Unters. / Nr. Deschka | Zool. Mus. Berlin”. coll. Staudinger, designated with printed
label on red paper “Lectotypus” (MNHB). Paralectotypes: 29, 10.5. and 31.5.1875,
same label data as lectotype (MNHB).
The genitalic structures of the species were never published.
As far as I know the species is only known from the type locality.
Certainly, it has a much wider distribution and perhaps is
recorded under a different name.
The male genitalia are very peculiar, especially the shape of
the valvae and the internal structure of the phallic complex.
The preparation consists of two slides: one for the genitalia
and another for the rest of the abdomen (both labelled by
Deschka).
Bucculatrix cristatella (Zeller, 1839) (figs. 11-13)
B. imitatella Herrich-Schäffer, [1855], syn. n.
B. jugicola Wocke, 1877, syn. n.
216
B. imitatella H.-S.: Holotype © (by monotypy) with labels: handwritten (von Heyden
hand?) “Juli vom Waldgras im / Taunusgebirge <illegible> / Fiihler solang als
<allegible>”, handwritten (Herrich-Schäffer hand) on white paper in printed box
“imitatella HS.”, printed on pink paper “Origin.”, coll. Herrich-Schäffer, in coll.
Staudinger; designated with printed label on red paper “Holotypus” (MNHB).
B. jugicola: Lectotype @ (designated here), with handwritten (Wocke hand) label
on white paper “Jugicola Wk.”, handwritten on yellow paper “[Süd-Tirol] Trafoi ,
m. [ihi]”, and printed on pink paper “Origin.”; genitalia slide: Mey 4/97; designated
with printed label on red paper “Lectotypus” (MNHB). Paralectotypes: 28, 59,
with printed label on pink paper “Origin.”. coll. Staudinger, (MNHB);
The holotype is almost completely destroyed. Only the head
and the pro- and mesothorax have remained on the minuten.
The colouration of frons, vertex, collar and frontal tuft is very
similar to B. cristatella (Zeller, 1839). In the absence of any other
diagnostic differences I consider the holotype of B. imitatella as
conspecific with B. cristatella. Thus, B. imitatella is put into the
synonymy of B. cristatella. This is also in accordance with the
distributional area of B. cristatella, which extends from France
to Russia. Further specimens in the collections of the MNHB
identified by Herrich-Schäffer and Staudinger as B. imitatella
proved to be B. alpina. This species is known to occur in France
and Italy, under the name B. leucanthemella (Baraniak, 1996).
There are no clear morphological characters, both external and
genitalic, that enable a differentiation between B. jugicola and
B. cristatella. Klimesch (1942) noted a slight variability in the
wing coloration of the alpine specimens, which is observable in
lowland populations too. The long separation of B. cristatella
and B. jugicola (e.g. Burmann, 1991) was probably maintained
because of the different larval host plants in the Alps (Chry-
santhemum alpinum) and in other regions (Achillea millefolium).
Interestingly, B. jugicola was already considered a synonym
by Seksjaeva (1993: 107). However, she did not clearly indicate
this new synonymy.
A male specimen of B. jugicola in NHML bears a lectotype
label. This designation is unavailable, since the specimen does
not belong to the original type series.
Bucculatrix demaryella (Duponchel, 1840) (fig. 10)
B. scoticella Herrich-Schäffer, [1855] — Rebel, 1901: 219.
Daley
B. scoticella: Holotype & (by monotypy) with labels: printed on blue stripe-like
paper “6. Demaryella, Sta[inton?|”, handwritten (Herrich-Schäffer hand) on white
paper in printed box “scoticella HS. / England”, coll. Herrich-Schäffer, in coll.
Staudinger, genitalia slide: Mey 10/97; designated with printed label on red paper
“Holotypus” (MNHB).
The type specimen was sent to Herrich-Schäffer by Stainton.
The dark pattern of the forewings is in strong contrast to
specimens from Central Europe, and this obviously prompted
Herrich-Schäffer to describe it as a distinct species. However,
the genitalic preparation revealed the specimen to be conspecific
with B. demaryella (Duponchel, 1840).
Bucculatrix humiliella Herrich-Schäffer, [1855] (figs. 4, 5)
B. fatigatella var. obscurella Klemensiewicz, 1899, syn. n.
B. capreella Krogerus, 1952 — Deschka, 1992b: 19.
B. merei Pelham-Clinton, 1967 — Svensson, 1971: 100; Deschka, 1992b: 19.
Lectotype @Q (designated here), with labels: printed on white paper
“HA [errich]|-S.[chaffer]” and on pink paper “Origin.”, “Genit. Unters. / Nr. Mey 7/
97 / Zool. Mus. Berlin” coll. Herrich-Schäffer, in coll. Staudinger, designated with
printed label on red paper “Lectotypus” (MNHB). Paralectotypes: @, 29, with
the same printed labels, one bearing handwritten “Mai” and “851” (MNHB). Genitalia
preparations: paralectotype 9, Mey 8/97; paralectotype @, Mey 9/97 (MNHB).
The type series of B. humiliella was never examined. Therefore,
in the absence of any illustrations, the species was treated as
dubious or incertae sedis in the European literature (cf. Baraniak,
1996). However, the types have been available all the time in
the MNHB. Their present examination shows them to represent
a distinct species described under three different names in the
past.
Bucculatrix infans Staudinger, 1880 (fig. 9)
B. centaureae Deschka, 1973, syn. n.
Holotype @ (by monotypy), with labels: handwritten (Staudinger hand) on white
paper “Infans / Stgr.”, handwritten on yellow paper “Amasia m.[ihi]”, printed on
pink paper “Origin.” and small hand-written “25/7”, coll. Staudinger (MNHB).
Genitalia slide: G. Deschka 1979 (without name and number on labels) (MNHB).
Since the external appearance of the holotype corresponds
perfectly with a photograph of B. centaureae as well as the
218
genitalic structures do (fig. 9), there is no doubt as to the identity
of B. infans with B. centaureae.
Bucculatrix oppositella Staudinger, 1880
Holotype @ (by monotypy), with labels: handwritten (Staudinger hand) on white
paper “Oppositella Stgr.”, handwritten on yellow paper “Amasia m.[ihi]”, printed on
pink paper “Origin.” and small handwritten “10/5”, coll. Staudinger (MNHB).
Genitalia slide: G. Deschka 1979 (without name and number on the labels, genitalia
armature lacking) (MNHB).
The only known type specimen designated here as holotype
by monotypy. There is no record of other specimens in the
literature.
At a first glance, the holotype looks like a specimen of B.
albella Stainton, 1867. The colour of head and thorax and the
forewing pattern correspond quite well with the characters of
B. albella.
However, the lackıng abdomen of the holotype makes it
impossible to decide finally about the status of B. oppositella.
New material of Bucculatrix from the region of Amasya would
be helpful to clarıfy the identity of the species.
Bucculatrix rhamniella Herrich-Schäffer, [1855]
Lectotype © (designated here), with labels: printed on white paper
“H.[errich}-Sch.[äffer]” and on pink paper “Origin.”, coll. Herrich-Schäffer, in coll.
Staudinger; “Eukitt Präparat Nr. 915” / G. Deschka”, designated with printed label
on red paper “Lectotypus’(MNHB). Paralectotype (sex unknown; left-side fore-
and hindwings only, head, thorax and abdomen lost) with same printed labels as
lectotype (MNHB).
The species was recently redescribed by Buszko (1992). His
figures fit perfectly with the traits of the lectotype and its genitalic
preparation. So, I can resign from producing a new illustration.
Bucculatrix ulmifoliae Hering, 1931 (fıgs. 14, 15)
Lectotype @ (H. Patzak designated here) with labels: printed on white paper with
handwritten inscriptions “Crossen a. O. [now in Poland] / 19. VII.1931 / No. 3843
[Zucht] Hering”, printed on white paper with handwritten (Hering) inscriptions “Mine
an: Ulmus | campestris’ handwritten (Hering) “Bucculatrix | ulmifoliae mlihi] 4
Type” on printed form “det. Mart. Hering”, printed on green paper “coll. Hypon.
/ M. Hering”, handwritten (Patzak) on white paper in box “Genit. Präp. / & 2678
219
Figs. 1-4. Male genitalia of Bucculatrix spp., lateral view: 1 — B. alpina Frey, paratype,
2 — B. argentisignella H.-S., 3 — B. atagina Wke, lectotype, 4 — B. humiliella H.-S.
220
Figs. 5-7. Female genitalia of Bucculatrix spp.: 5 — B. humiliella H.-S., paratype,
6, 7 — B. argentisignella H.-S., paratype (5, 6 — lateral view, 7 — ventral view).
221
Figs. 8-9. Male genitalia of Bucculatrix spp., caudal view: 8 — B. basifuscella Stgr.,
lectotype, 9 — B. infans Stgr., lectotype.
222
Figs. 10-15. Male genitalia of Bucculatrix spp.: 10 — B. demaryella Dup. (holotype
of B. scoticella H.-S.), 11-13 — B. cristatella Z., 14, 15 — B. ulmifoliae Her. (10,
11, 14 — lateral view, 12 — dorsal view, 13, 15 — ventral view).
225
/ H. Patzak”; designated with a handwritten (Patzak) label on pink paper “Lectotypus
/ B. ulmifoliae / Patzak desig.” (MNHB); Paralectotypes: 4, same data as
lectotype; 9, Berlin-Karlshorst, 1.6.1930, coll. Hering, genitalia slide: Patzak 2679; &,
Berlin-Buch, 18.7.1921, Zucht 1827 on Ulmus campestris, coll. Hering (all in MNHB).
The genitalic armature of this species is pretty distinctive and
sharply different from that of B. ulmella Zeller, 1848, which
externally is extremely similar to B. ulmifoliae. There are no
appropriate illustrations of the male genitalia in the literature.
The figures in Seksjaeva (1993) are misleading. They probably
prevented Puplesis ef al. (1991) to correctly associate their newly
described Bucculatrix caspica Puplesis & Sruoga, 1991, reared
from Ulmus carpinifolia in Southern Russia, with B. ulmifoliae.
The genitalic armature of both species is remarkably similar.
There are only slight differences visible from the original drawings
of B. caspica. However, they could be regarded as caused by
the preparation process. Future studies have to show if B. caspica
really represents a distinct species. For comparison purposes I
give here a figure of the male genitalia (figs. 14, 15) of specimens
collected in Potsdam (coll. Hinneberg, MNHB).
Acknowledgements
For the loan or donation of material I would like to express
my gratitude to M. Gerstberger, Berlin, Dr. A. Hausmann,
München, Dr. P. Huemer, Innsbruck and Mr. K. R. Tuck,
London. Helpful comments of P. Huemer are gratefully acknow-
ledged.
References
BARANIAK, E., 1996. Bucculatricidae. Jn: Karsholt, O. & Razowski, J. (eds.).
The Lepidoptera of Europe. — Apollo Books, Stenstrup. 380 p. (p. 47-48)
Braun, A. F, 1963. The genus Bucculatrix in America north of Mexico
(Microlepidoptera). — Mem.Am.ent.Soc. 18: 1-207.
BuRMANN, K., 1991. Beitrage zur Microlepidopteren-Fauna Tirols. XV.
Bucculatricidae (Insecta: Lepidoptera). — Ber.naturw-med. Ver.Innsbruck
78: 161-172.
Buszko, J., 1992. Studies on the mining Lepidoptera of Poland. XII.
Redescription of Bucculatrix rhamniella Herrich-Schäffer, 1855 (Buccula-
tricidae), with comments on its present distribution. — Polskie Pismo ent.
61: 71-78.
224
ConsTANT, M. A., 1895. Microlépidoptères nouveaux de la faune française. —
Bull. Soc.ent.Fr. 11: 1-4.
Davies, D. R., 1963. Lyonetiidae. In: Hodges, R. W. et al. (eds.). Check
list of the Lepidoptera of America north of Mexico. — E. W. Classey
Ltd., London. XXI + 284 p.
DEscHKA, G., 1973. Bucculatrix centaureae spec. nov. (Lepidoptera, Buccu-
latricidae). — Ent. Ber. Amst. 33: 141-144.
DEscHKA, G., 1992a. Bucculatrix frigida sp. nov. aus der borealen Nearktis
(Lepidoptera, Lyonetiidae). — Entomofauna 13(33): 545-556.
DEscHKA, G., 1992b. Blattminierende Lepidopteren aus dem Nahen und
Mittleren Osten. VI. Teil: Bucculatrix armeniaca sp. n. aus Russisch-
Armenien (Lepidoptera, Lyonetüdae). — Z.ArbGem.öst. Ent. 44(1-2): 17-19.
DESCHKA, G. & HUEMER, P., 1997. Eine neue Bucculatrix-Art aus den Alpes
Maritimes (Frankreich) (Lepidoptera, Bucculatricidae). — NachrBl.bayer.
Ent. 46: 54-57.
Frey, H., 1856. Die Tineen und Pterophoren der Schweiz. — Meyer & Zeller,
Zürich. 430 p.
Frey, H., 1870. Ein Beitrag zur Kenntnis der Microlepidopteren (Schluss). —
Mitt.schweiz.ent. Ges. 3: 277-289.
Heppner, J. B., 1991. Faunal regions and the diversity of Lepidoptera. —
Tropical Lepidoptera 2, suppl. 1: 1-85.
HERING, E. M., 1931. Minenstudien 12. — Z.Pflkrankh. Pfl Path. PflSchutz.
41: 529-551.
HERRICH-SCHAFFER, G. A. W., 1853-1855. Systematische Bearbeitung der
Schmetterlinge von Europa, zugleich als Text, Revision und Supplement
zu Jakob Hübner’s Sammlung europäischer Schmetterlinge. Band 5: Die
Schaben und Federmotten. — Regensburg. 394 p.
KLIMESCH, J., 1942. Bucculatrix jugicola Hein.-Wck. (Lep., Bucculatrigidae
[sic]). — Z.wien.ent. Ver. 27: 259-266.
LERAUT, P., 1997. Liste systématique et synonymique des Lépidoptères de
France, Belgique et Corse. — Paris. 526 p.
NIELSEN E. S., 1996. Bucculatricidae. /n: Nielsen, E. S., Edwards, E. D. &
Rangsi, T. V. (eds.). Checklist of the Lepidoptera of Australia. —
Monographs on Australian Lepidoptera 4: xıv + 529 p.
Pupresis, R., SEKSJAEVA, S. & SRUOGA, V., 1991. Leaf-mining Lepidoptera
(Nepticulidae, Bucculatricidae, Gracillariidae) from Ulmus in Northern
Caspiya (Kaspia). — Tijdschr. Ent. 134: 69-73.
REBEL, H., 1901. Catalog der Lepidopteren des palaearctischen Faunengebietes.
2. Teil: Famil. Pyralidae-Micropterygidae. — Friedlander & Sohn, Berlin.
368 p.
RUBINOFF, D. Z. & OSBORNE, K. H., 1997. Two new species of Asteraceae-
feeding Bucculatrix (Bucculatricidae) from California. — J. Lepid.Soc.
51(3): 227-236.
SEKSJAEVA, S. V., 1993. Review of the mining moths (Lepidoptera, Buccu-
latricidae) of the fauna of Russia. — Trudy zool.Inst. St. Petersburg 255:
99-120 (in Russian).
225
SEKSJAEVA, S. V., 1996. Additions to the fauna of bucculatricid moths
(Lepidoptera, Bucculatricidae) of the Primorsk Territory, Russia. —
Ent. Obozr. 75: 884-887 (in Russian).
STAUDINGER, O., 1880. Lepidopteren-Fauna Kleinasiens. — Horae
Soc.ent. Ross. 15: 159-435.
SVENSSON, I., 1971. Scandinavian Bucculatrix Z. (Lep. Bucculatricidae). —
Ent.scand. 2: 99-109.
Wocke, M. F., 1877. Die Motten und Federmotten, Heft II. /n: Heinemann
H. v. & Wocke, M.F.: Die Schmetterlinge Deutschlands und der Schweiz.
Zweite Abteilung, Kleinschmetterlinge. — Schwetschke und Sohn, Braunsch-
weig. P. 389-825.
226
Nota lepid. 22 (3): 227-228; 01.1X.1999 ISSN 0342-7536
Correction to “The life history and ecology of
Euphydryas maturna (Nymphalidae: Melitaeini)
in Finland” by Niklas Wahlberg (in Nota lepid.
21 (3): 154-169)
Claes U. ELIASSON
Backtorpet, Torphyttan 16, S-711 91 Lindesberg, Sweden
In the paper “The Life history and ecology of Euphydryas
maturna (Nymphalidae: Melitaeini) in Finland”, Niklas Wahlberg,
Nota Lepid. 21(3): 15-169, the author incorrectly states that only
field observations of caterpillars were taken as evidence of life
cycles covering several years in Sweden. In his introduction he
writes: “Eliasson (1991) reports a study on maturna, in which
he suggests a perennial life cycle for the species in Sweden. His
evidence is however rather circumstantial”. In his discussion he
writes: “Eliasson (1991) suggested a two or even three year life
cycle as normal for E. maturna. The evidence he presents is that
there are three size classes of larvae to be found in spring (after
diapause)”. The true evidence presented in Eliasson (1991) of a
triennial life cycle was one brood with hibernations of natural
length and one more submitted as the paper was in press. A
translation from Swedish of a section in the chapter on the length
of development reads: “In one brood from Vs the major part
of the caterpillars completed a triennial life cycle (Andersson,
pers. comm.; own breeding result 1991). This may be more usual
than what has previously been noted, because fewer butterfly
collectors care to perform the breeding outdoors. To my know-
ledge E. maturna is the only one out of the Swedish Lepidoptera,
leaving aside the wood feeding species, that has been proved to
have a triennial life cycle. Contrary to many species with a
biennial life cycle no periodicity has evolved. A triennial life cycle
means that it hibernates three times, during two summers, only
feeding in May, and that the intervals are spent in diapause”
(= post-hibernation caterpillars, pre-hibernation instars described
in an earlier part of the text).
22
ELIASSON, C., 1991. Study on the occurrence and biology of Euphydryas
maturna (Lepidoptera: Nymphalidae) in Västmanland (in Swedish with
English summary). — Ent. Tidskr. 112(4): 113-124.
STOLTZE, M., 1996. Danske dagsommerfugle. — Gyllendal, Copenhagen.
383 p.
228
Nota lepid. 22 (3): 229-232; 01.1X.1999 ISSN 0342-7536
Book reviews @ Buchbesprechungen @ Analyses
LAFONTAINE, J. D.: The Moths of America North of Mexico including
Greenland. Fascicle 27.3 Noctuoidea. Noctuidae (part). Noctuinae (Part —
Noctuini).
28 X 21.5 cm, 348 pp., 36 monochrome plates and 8 colour plates, 130 text
figures, mainly distribution maps. Published by The Wedge Entomological
Research Foundation, Washington, 1998. ISBN 0-933003-09-9. To be ordered
from: The Wedge Entomological Research Foundation, 85253 Ridgetop Drive,
Eugene, Oregon 97405, U.S.A. Also obtainable from Apollo Books Aps.,
Kirkeby Sand 19, DK-5771 Stenstrup, Denmark. Price: Danish Kroner 920,
excl. postage.
This is the second part of three fascicles to revise and describe the subfamily
Noctuinae in America north of Mexico. The first part (Lafontaine, 1987) was
a revision of the genus Euxoa in the tribe Agrotini and included 171 species.
This part treats 169 species and the remaining part will deal with approximately
130 species, which gives a total of approximately 470 species of Noctuinae.
In the European catalogue (Karsholt & Razowski, 1996), 246 Noctuinae are
mentioned. Only the genus Euxoa consists of 171 American species and only
43 European species. These figures give an impression of the big differences
between the faunas of the two regions.
In this comprehensive revision four new genera are proposed: Prognorisma,
Agnorisma, Tesagrotis and Parabagrotis. Furthermore twenty-one new species
are described.
In the general introduction to this part the classification of the Noctuoidea
is discussed. Lafontaine and Poole (1991) divided the trifid noctuids into two
large monophyletic groups, but as this viewpoint has not received general
acceptance, the author accordingly has retained the use of Noctuinae as in
Karsholt & Razowski (1996) etc. It is a pleasure that the generally accepted
classification is used until a new one based on profound scientific research
can give a new stable arrangement of genera and species. The general
introduction is closed with one key to the genera of Noctuini based on adults
and another based on mature larvae.
Each genus is treated the same way. The scientific name followed by the
quotation of the primary literary source and the designation of the type species
with full reference. All synonyms are listed with full reference and comments
when necessary. The general description — which is very accurate — of the
genus is followed by one key based on adults and one based on mature larvae,
if there are more than one species in the genus.
229
Each species is treated the same way as for the genera, again with full
synonymy and reference. The author is very accurate and he has listed all
the known synonyms. As an example, under Graphiphora augur (Fabricius,
1775) no less than 26 names are treated with detailed comments on any
peculiarity in the case. The following name is worth mentioning: Rhyacia
augur ab. striata Blach Petersen, 1951, Flora Fauna, Silkeborg, 57: 110. Type
locality: Gjeding Mose by Arhus, Denmark. This form is described in a small
Danish publication by a Danish merchant, who at first started to collect when
he retired. Not many Danes know this publication nor the form, which is
very rare.
Then the species is described and both similarities and differences with other
species are discussed. The larva is described in detail. All known host plants
are mentioned and the habits of the species detailed. A description of
distribution, biotope and abundance is given. The whole text cannot be praised
enough, especially because all doubtful cases are discussed and affinities to
Palaearctic sibling species or forms are quoted. This gives the reader a feeling
of getting all the known information from the author, making this book quite
readable.
The distribution in North America and Greenland is shown on maps for each
species. Only data on examined material is plotted on these.
Some of the species treated, especially many of the Xestia, occur in Siberia
and some also in Europe. It would have been better had the total distribution
been shown, as was done by the author in earlier publications by means of
“circumpolar” maps.
All species except Hemipachnobia subporphyrea (Walker, 1858) are figured
in natural size on seven colour plates of high quality. Usually several specimens
showing different forms are presented to give an idea about the variation
in the species. Many species are only represented by male specimens, and
sometimes single specimens overlap others or are cut at the edge of the plate.
One more plate could have solved these problems. The last colour plate shows
24 nice pictures of full grown larvae.
On the 36 monochrome plates, again of a very high quality, the male and
female genitalia of nearly all species are shown. The adult of the forementioned
species and its sibling species is figured on one of the monochrome plates.
Traditionally, American literature does not affect Europeans very much. Only
the very professional and semi-professional people buy American literature.
This is highly regrettable for two reasons. Only some species are holarctic,
but the history of European lepidopterology is full of examples of species,
which have been overlooked as being holarctic and hence have been named
more than once in history. The other reason is that knowledge of the diversity
within a genus in one part of the world can help in a better understanding
of this genus in another part of the world. A quick look at the colour plates
of this book gives the impression that several species appear hard to distinguish
230
from European species. On plate two, figures 36 and 37, Xestia smithii (Snellen,
1896) is shown. It can only be recognized as distinct by its genitalia. The
question remains as to how many holarctic species are still to be found.
To illustrate the affinities between the Nearctic and Palaearctic faunas I will
list here some species occurring in both regions.
Palaearctic species accidentally introduced to North America:
Noctua pronuba (Linnaeus, 1758), introduced about 1979 at Halifax, Nova
Scotia and now spreading.
Noctua comes (Hiibner, 1813), introduced at Vancouver about 1982 and now
spreading.
Xestia xanthographa (Denis & Schiffermiiller, 1775), introduced several times
and now common in the central parts of the West Coast.
Species with a holarctic distribution, mostly occurring in the northern part
of the forest zone or in close association to it (8 cases):
Eurois occulta (Linnaeus, 1758), Graphiphora augur (Fabricius, 1775), Ana-
plectoides prasina (Denis & Schiffermiiller, 1775), Xestia c-nigrum (Linnaeus,
1758), Xestia speciosa (Hiibner, 1813), Xestia tecta (Hübner, 1808), Xestia
lorezi (Staudinger, 1891) and Xestia atrata (Morrison, 1874). Last-mentioned
species was, until a few years ago, only known after a few specimens found
in central Siberia and in spruce forest in North America, but a few specimens
have now been found in central Sweden close to the Norwegian border in
primary spruce forest.
Species with a holarctic distribution, occurring in coastal regions along the
arctic sea (3 cases):
Xestia quieta (Hiibner, 1813), Xestia lyngei (Rebel, 1923) and Xestia liquidaria
(Eversmann, 1848).
Species occurring in the nearctic and in central and northern Siberia (12 in
total), some of these recorded from the islands of Novaya Zemlaya or from
northern Russia (Siberia). The author mentions three species from northern
Russia, and it is not the European part but in fact northern Siberia. Most
of these species could occur in northern Europe, Russia and the Ural
mountains, either or not in isolated populations.
Two of the treated species occur in Greenland, which is of special interest
to Danish people.
Rhyacia quadrangula (Zetterstedt, 1839), occurring in southern Greenland,
central and eastern Asia and also on Iceland, where it is common. It is also
a European species.
Spaelotis clandestina (Harris, 1841), occurring in southern Greenland and
mentioned in the European catalogue. This species is now established as
different from the north European species Spaelotis suecica (Aurivillius, 1890).
The whole discussion and the differential diagnosis of the two sibling species
is presented in detail in the book.
231
In the work “The Moths of America North of Mexico” there are now four
volumes, that have been published in 1987, 1991, 1995 and the present in
1998. They all represent milestones in the study of the world noctuid fauna.
It cannot be welcomed enough that people spend their time and efforts to
produce such important works to the benefit of all people interested in studying
the diversity of nature.
Knud LARSEN
Nowacki, Janusz: The Noctuids (Lepidoptera, Noctuidae) of Central Europe.
17 X 23.5 cm, 130 pp., 41 black and white plates, 24 colour plates, hardback.
Published by F. Slamka, Bratislava, 1998. ISBN 80-967540-4-1.
After a short introduction, some comments are given on the phylogeny, the
general morphology and the different stadia of the Noctuidae. In the systematic
part 597 species are described shortly. The systematic order follows the one
in Nowacki & Fibiger (1996) with a few exceptions. Every species is treated
in the same way: the general distribution and the occurrence are given, the
habitat is characterised briefly and the flight period of the adult is given,
the foodplant(s) of the caterpillar is listed as well as the best time to search
for these larvae. The text part concludes with a list of references and an
alphabetic species index (genera are omitted).
The biggest part of this book consists of a series of plates. On 41 black and
white plates nearly all male and female genitalia of the described species are
given, mainly drawn after earlier publications, and completed with original
drawings. Though most of these drawings are clear and sharply printed, some
of them are too small to give all the details. The 24 colour plates contain
photographs of all described species. Most of these plates are of very good
quality. The species are very well recognisable.
The delimitation of the geographical area covered is rather arbitrary, and
one may especially regret that the Alps are not included in the present book.
Anyway, for the Central European lepidopterist who wants to identify his
Noctuid specimens, this book can serve as a valuable tool, taking into account
that both male and female genitalia, as well as a photograph of the adult,
are at hand.
Guido DE PRINS
232
INSTRUCTIONS FOR AUTHORS
Manuscripts and all correspondence related to editorial policy should be sent to the editor: Alain Olivier,
Lt. Lippenslaan 43, bus 14, B-2140 Antwerpen-Borgerhout, Belgium.
Papers submitted to Nota lepidopterologica should be original contributions to any aspect of lepidopterology.
Publication languages are English, German and French. All manuscripts will be reviewed by a board of assistant
editors and by at least two appropriate referees. The editors reserve the right to make textual corrections
that do not alter the author’s meaning.
The manuscript should be submitted in triplicate and on a PC-compatible (not Macintosh) disk. Please
do not send registered mail! The papers should be accompanied by a summary not exceeding 200 words.
For acceptable style, format and layout please examine recent issues of the journal. Latin names of genera
and species should be underlined or italicised. The first mention of any living organism must include the
full scientific name with the author and the year of publication, but thereafter the author and date can be
omitted and the generic name abbreviated. Male and female symbols have to be coded as @ and # respectively.
Geographic and other names in languages where other than Latin characters are used (e. g. Armenian, Chinese,
Georgian, Greek, Russian, Ukrainian etc.) should be given in transliteration/ transcription (not translation!).
Summary, tables, footnotes, the list of figure legends and references must be on separate sheets. The title
of the paper should be informative and concise. The name and full postal (and e-mail if available) address
of the author(s) to whom all correspondence should be addressed should be given on the first page.
The authors should strictly follow provisions of the current edition of the International Code of Zoological
Nomenclature. New taxa must be distinguished from related taxa (diagnosis, key). The abbreviations gen.
n., Sp. n., syn. n., comb. n. should be used to distinguish all new taxa, new synonymies and new combinations.
In describing new genus group taxa, the nominal type-species must be designated in its original combination
and with reference to the original description immediately after the new name. In describing new species
group taxa, one specimen must be designated as the holotype; other specimens mentioned in the originai
description and included into the type series are to be designated as paratypes — all immediately after the
name. The complete data of the holotype and paratypes, and the institutions in which they are deposited
(abbreviated as explained in the introductory section), must be recorded in the original description as follows:
Material. Holotype @, Turkey, Hakkari, 8 km E. of Uludere, 1200 m, 10.VI.1984, H. van Oorschot
leg. (ITZA). Paratypes: 7@, 3#, labelled as holotype; @, #, “Achalzich Chambobel 1910 Korb” (NHMW);
2@, #, Iraq, Kurdistan, Sersang, 1500 m, L. Higgins leg. (BMNH); @, Iraq, “Shaglawa, 2500 ft, Kurdistan,
15/24 May 1957” L. G. Higgins leg. (BMNH).
All material examined should be listed in similar format: localities should be cited in order of increasing
precision as shown in the examples; in cases when label text is quoted, it should be included between opening
and closing inverted commas.
Figures must be drawn in black waterproof ink and should be submitted about twice their printed size,
labelled with stencilled or pre-printed lettering or numbering in Arabic numerals large enough to allow reduction.
Photographs must be best quality prints on glossy paper. Each drawing, graph or photograph should be
signed on the back by the author’s name and the fig. (or plate) number; the top should be indicated.
References in the text should be cited by author, date (and page, table, plate, figure if necessary) and
should be collated at the end of the paper in alphabetical and then in chronological order in the following
form (please draw attention to the punctuation and the use of Em (—) and En (-) dash not replaced with
a nonbreaking hyphen (-):
Hıccıns, L. G., 1950. A descriptive catalogue of the Palaearctic Euphydryas (Lepidoptera: Rhopalocera).
— Trans. R.ent.Soc. Lond. 101: 435-489, figs. 1-44, 7 maps.
Hıccıms, L. G. & Ritey, N. D., 1980. A field guide to the butterflies of Britain and Europe. 4th ed. —
Collins, London. 384 p., 63 pls.
STAUDINGER, O., 1901. Famil. Papilionidae — Hepialidae. Jn: STAUDINGER, O. & Reset, H. Catalog der
Lepidopteren des palaearctischen Faunengebietes. 3. Aufl. — Friedlander & Sohn, Berlin. XXX+411 p.
(Tagfalter p. 1—97).
All authors quoted in the text are to be included in the list of References and vice versa. Titles of journals
should be given in complete or abbreviated according to the World List of Scientific Periodicals.
Twenty-five reprints of each paper will be supplied free of charge to the first author; additional copies
may be ordered on a form enclosed with the proofs.
Kopien dieser Hinweise in deutscher Sprache sind beim Redaktor erhältlich.
Copies de ces instructions en français sont disponibles auprès de l'éditeur.
ie
ISSN 0342-7536
pidopterologica
A quarterly journal devoted to Palaearctic lepidopterology
Published by Societas Europaea Lepidopterologica
Vol. 22 No.4 1999
SEL SOCIETAS EUROPAEA LEPIDOPTEROLOGICA BV. ti
CoUNCIL Peek, 1 3
President: Prof. Dr. Niels P. Kristensen Vice-President: Dr. Jacques N
General Secretary: Dr. Christoph L. Häuser Treasurer: Manfred SOHN
Membership Secretary: Willy O. De Prins Editor: Alain Olivier
Ordinary Council Members: Dr. Jaroslaw Buszko, Michael Fibiger,
Mark Parsons, Steven Whitebread. Dr. Alberto Zilli
COMMITTEES
Literature: Steven Whitebread
Habitat and Species Protection: Dr. Jacques Lhonoré
HONORARY MEMBERS
Jean Bourgogne (F), Pamela Gilbert (GB),
Läszlö Gozmäny (H), P. Sigbert Wagener (D)
Applications for membership, changes of address and orders for Nota lepidopte-
rologica back volumes and other literature should be sent to the treasurer. Subscriptions
should be paid to your country’s representative (see SEL-News 25) or to the treasurer:
SEL M. Sommerer, Volpinistraße 72, D-80637 München, Germany
Postgiroamt Köln Nr. 1956 50-507
In Deutschland Einzahlungen/Überweisungen auch auf das Bankkonto der SEL
bei Bayerische Vereinsbank (BLZ 700 202 70) Nr. 2692511 (German residents only).
Annual subscription fees (to be paid at the beginning of each year):
Ordinary members DEM 65.—
Corporate members DEM 80.—
Admission fee DEM 5.— Les 4
Overseas and mail charges DEM 15.— ie
Non-members and institutions may order Nota lepidopterologica through our agent:
Apollo Books Aps., Kirkeby Sand 19, DK-5771 Stenstrup, Denmark.
News. All items for SEL-News should be sent to Willy De Prins, Diksmuidelaan 176,
B-2600 Antwerpen, Belgium (e-mail: willy.deprins@village.uunet.be).
For all other matters contact Dr. Christoph L. Hauser, SEL General Secretary,
Staatliches Museum fiir Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart,
Germany (e-mail: 11327.3422@compuserve. com).
Copyright © Societas Europaea Lepidopterologica, 1999
Printed by Imprimerie Universa Sprl, 24 Hoenderstraat, B-9230 Wetteren, Belgium
All rights reserved. No part of this journal may be reproduced or transmitted in any form or
by no means, electronic or mechanical including photocopying, recording or any other information
storage and retrieval system, without written permission from the publisher. Authors are
responsible for the contents of their papers.
NOTA LEPIDOPTEROLOGICA
A journal of the Societas Europaea Lepidopterologica
Published by Societas Europaea Lepidopterologica
Vol. 22 No. 4 Basel, 01.XII.1999 ISSN 0342-7536
Editorial Board
Editor: Alain Olivier, Lt. Lippenslaan 43, bus 14, B-2140 Antwerpen (B)
Assistant Editors: Dr. Roger L. H. Dennis (Wilmslow, GB),
Prof. Dr. Konrad Fiedler (Bayreuth, D), Dr. Enrique Garcia-Barros (Madrid, E),
Ole Karsholt (Kobenhavn, DK), Dr. Yuri P. Nekrutenko (Kiev, UA),
Dr. Enk J. van Nieukerken (Leiden, NL), Dr. Alexander Pelzer (Wennigsen, D)
Contents @ Inhalt e Sommaire
SATTLER, K. The systematic position of the genus Bagdadia
RENTE) etienne REPARER ee N RE 234
Roos, P. H. & Huck, S. Entwicklung und Morphologie der Präima-
ginalstadien von Erebia montana (Nymphalidae: Satyrinae) ......... SEPA
SAUTER, W. & HATTENSCHWILER, P. Zum System der palaearktischen
Psychiden (Psychidae) 2. Teil: Bestimmungsschliissel für die Gattungen. 262
In memoriam: Zdravko Lorkovic (1900-1998) ..................................... 296
Book REVIEWS @ BUCHBESPRECHUNGEN @ ANALYSES .00. 306
VoL. 21 — 1999
Dates of publication — Publikationsdaten — Dates de publication 323
New taxa described in Vol. 22 — Neue Taxa in Band 22 beschrieben —
None taxa décrits dans le Vol. 22 2... 7... 323
233
Nota lepid. 22 (4): 234-240; 01.XI1I. 1999 ISSN 0342-7536
The systematic position of the genus Bagdadia
(Gelechiidae)
Klaus SATTLER
Department of Entomology, The Natural History Museum, Cromwell Road,
London SW7 5BD, UK. e-mail: K.Sattler@nhm.ac.uk
Summary. The systematic position of Bagdadia Amsel, 1949 is discussed; one synonymy
at generic level (Capidentalia Park, 1995, syn. n.) and eleven new combinations are
established. A lectotype is designated for Bagdadia irakella Amsel, 1949, and its male
genitalia are illustrated.
Zusammenfassung. Die systematische Stellung von Bagdadia Amsel, 1949 wird
diskutiert; ein Synonym im Gattungsrang (Capidentalia Park, 1995, syn. n.) und elf
neue Kombinationen werden festgestellt. Ein Lectotypus wird festgelegt fiir Bagdadia
irakella Amsel, 1949, und die männlichen Genitalien werden abgebildet.
Résumé. La position systématique de Bagdadia Amsel, 1949 est discutée; un synonyme
au niveau générique (Capidentalia Park, 1995, syn. n.) et onze nouvelles combinaisons
sont établis. Un lectotype est désigné pour Bagdadia irakella Amsel, 1949 et les genitalia
males sont illustrés.
Key words: Lepidoptera, Gelechiidae, systematics, Bagdadia, synonymy, eastern
Palaearctic.
Introduction
The gelechiid genus Bagdadia Amsel, 1949 has had an un-
fortunate early history. Originally placed in the family Scythri-
didae, its description was accompanied by an inaccurate drawing
of the wing venation and an illustration of the wrong male
genitalia. It is unsurprising, therefore, that the name has remained
no more than a catalogue entry. Bagdadia was later transferred
to the Gelechiidae (Sattler, 1973: 175) after the type-specimens
of the type-species, B. irakella Amsel, 1949, ex coll. Wiltshire,
had been examined and incorporated into the world collection
of The Natural History Museum (British Museum [Natural
History] — BMNH). A lectotype was selected at that time, but
not formally designated, and preparations of the wings and male
genitalia were made. As a result, Bagdadia was placed near
234
I
Hypatima Hübner and other chelarııne genera and ‘Nothris
salicicolella Kuznetsov was recognized as being congeneric with
B. irakella. In the course of more recent studies of Far Eastern
Chelariinae, further described and undescribed species were
discovered and the genus was described a second time (Park,
1995: 84, as Capidentalia).
Bagdadia Amsel, 1949
Bagdadia Amsel, 1949: 321. Type-species: Bagdadia irakella Amsel, 1949: 322, pl. 9,
fig. 64, pl. 11, figs 78, 79, pl. 12, fig. 99, by original designation and monotypy.
Capidentalia Park, 1995: 84. Type-species: Hypatima claviformis Park, 1993: 31, figs
9, 28, 47, 64, by original designation. — Syn.n.
Frons evenly convex, ocellus absent. Antenna about % to 34
length of forewing, scape without pecten. Proboscis developed,
squamose; maxillary palpus probably four-segmented, folded
over base of proboscis. Labial palpus recurved, segment 2 with
dense sub-triangular tuft beneath, segment 3 as long as 2 or
slightly longer, simple, acute. Forewing lanceolate-ovate with
complete gelechiid venation. Costa with moderate pterostigma
between Sc and R;; Ry; stalked, R; to costa; M, at base
approximated to R,ı;, M, at base approximated to M;; distance
(at base) M;-CuA, slightly less than CuA,—CuA,. Hindwing sub-
trapezoid, costa straight, termen weakly concave beneath apex.
R, present, Sct+R, to distal third of costa, Rs and M, on long
common stalk, M, strongly curved, at base near M3, on termen
almost equidistant between M, and M,; M,—CuA, separate at
base. Male genitalia with uncus articulated at base, tilted dorsad,
almost at right angles to body axis.
In the original description the genus Bagdadia was associated
with the ’Metzneria-Isophrictis-Megacraspedus relationship’,
which are undisputed Gelechiidae (Anomologinae), but was
placed in the family ScythrildJidae. That placement followed a
concept of Börner (1925-1959), based on the presence or absence
of a so-called ‘Achselkamm’ on the underside of the forewing.
The ‘Achselkamm’, a more or less extensive group of micro-
trichia, is the alar part of a wing-locking system and links up
with a similar group of microtrichia on the mesepimeron to lock
the forewing firmly to the sides of the thorax when the moth
takes up its resting position (Sattler, 1991). It is situated on the
255
underside of the forewing, close to the wing base, where it covers
part of the denuded humeral field, 1. e. the basal area between
the costa, vein Sc and the obsolete humeral cross-vein. The
presence or absence of the “Achselkamm’ 1s closely dependent
on the natural resting pose of a particular species, and it should
be noted that the Gelechiidae sensu Börner comprise taxa with
and without an ‘Achselkamm’. Although Börner (1939: 1385)
himself considered the ‘Achselkamm’, whose function remained
unknown to him, to be of lesser importance and unsuitable for
determining family groups, he had made some use of it in his
keys and system adopted and variously modified in editions 3
to 8 of Fauna von Deutschland (Borner, 1925-1959). In that work
he divided the ‘Familienreihe Gelechioidea’ into the Hyponomeu-
tina and Gelechiina. Whilst the Hyponomeutina coincide more
or less with the current Yponomeutoidea but include also the
Alucitidae and Pterophoridae, the Gelechiina comprise the Gele-
chioidea in the current sense plus some Choreutidae. The
Gelechiina are divided into only two families, distinguished by
the presence (Gelechiidae; illustrated example: Borkhausenia
Hiibner, fig. 667) or absence (Scythrididae; illustrated example:
Coleophora Hübner, fig. 669) of the ‘Achselkamm’ (Börner, 1959:
389). In terms of families as they are currently recognized
(Karsholt & Razowski, 1996), Börner’s Gelechiidae comprise the
Ethmiidae, Depressariidae, Elachistidae, Agonoxenidae, Chima-
bachiidae, Oecophoridae (part.), Momphidae, Autostichidae (Sym-
mocinae), Amphisbatidae, Cosmopterigidae (part.), Gelechudae
(part.) and Choreutidae whilst his Scythrididae comprise the
Scythrididae s. str., Oecophoridae (Stathmopodinae), Batrached-
ridae, Coleophoridae, Cosmopterigidae (part.) and Gelechudae
(part.). From edition 5 onwards the genera Paltodora Meyrick,
1894, and Metzneria Zeller, 1839, were included in the Scythri-
didae: Scythridinae (Borner, 1944: 403).
Amsel was unable to ascertain whether Bagdadia had an
“Achselkamm’ but placed the genus with Metzneria and Isoph-
rictis, almost certainly on account of the great similarity of the
genitalia as illustrated in his fig. 64. In fact, that illustration 1s
erroneous; it has nothing to do with B. irakella but depicts
probably a Metzneria sp. The correct genitalia are described and
illustrated below under B. irakella (Fig. 3).
236
The wing drawings accompanying the original description (figs
78, 79) are crude and somewhat inaccurate with regard to the
wing shape and proportions. For example, the hindwing tornus
is less pronounced than illustrated. Moreover, a key character,
‘the striking venation of the hindwing’ (fig. 79) is a misinter-
pretation. The stalked veins labelled ‘r,’ and ‘rr’ (=Rs) are in
fact Rs and M, respectively, as one would expect. In the
Gelechiidae vein R,, if present, leaves Rs at about the basal third
where it anostomoses with Sc; the first vein to reach the costa
is therefore always Sct+R,. That anastomosis of R, with Sc is
clearly present in Bagdadia but was overlooked by Amsel; the
apparent connection of Rs and Sc in his fig. 79 is a line irregularity
in the original drawing. Vein ‘m,’ is merely the median fold; it
cannot be a true vein because it extends all the way from the
base of the wing to the termen, across the discocellular vein,
whereas in Gelechiidae the media is never present as a tubular
vein in the cell.
The morphological structure, in particular that of abdominal
sternite II and the male genitalia, indicates that Bagdadia is
misplaced in Anomologinae and must be transferred to Chela-
runae. In that subfamily the specialized articulated uncus places
Bagdadia as a senior synonym of Capidentalia Park (syn. n.).
In view of the great confusion in the original description, the
incorrect family association, wrong genitalia and misinterpreted
wing venation, it would seem forgivable that Bagdadia has been
ignored in recent studies of chelariine Gelechiidae. However, the
genus, its type species, B. irakella, and a second species, B.
salicicolella (Kuznetsov), have been correctly associated with
chelariine genera in the BMNH collection for over 30 years.
Although Park has otherwise made extensive use of the BMNH
collection, he seems to have overlooked Bagdadia when describing
Capidentalia.
Biology. Host plants: unknown for all but three species. Salix
(Salicaceae) (two species), Sapota (Sapotaceae) (one species).
Distribution. Iraq, central Asia, China, Russian Far East,
Korea, Japan, Taiwan, Vietnam, India, Sri Lanka, Andaman
Islands, Indonesia (Java), South Africa. A record for South
America (Ponomarenko, 1997: 49) is in error (Ponomarenko,
pers. comm.).
237
Checklist
Bagdadia Amsel, 1949
Capidentalia Park, 1995, syn. n.
B. claviformis (Park, 1993) (Hypatima) comb. n.
B. cymoptila (Meyrick, 1929) (Chelaria) comb. n.
B. eucalla (Li & Zheng, 1998) (Capidentalia) comb. n.
B. gnomia (Ponomarenko, 1995) (Capidentalia) comb. n.
B. irakella Amsel, 1949 (Bagdadia)
B. isosema (Meyrick, 1921) (Chelaria) comb. n.
B. paroctas (Meyrick, 1913) (Chelaria) comb. n.
B. salicicola (Park, 1995) (Capidentalia) comb. n.
B. salicicolella (Kuznetzov, 1960) (Nothris) comb. n.
B. sapindivora (Clarke, 1958) (Chelaria) comb. n.
B. tugaella (Ponomarenko, 1995) (Capidentalia) comb. n.
B. yanglingensis (Li & Zheng, 1998) (Capidentalia) comb. n.
Bagdadia irakella Amsel, 1949
Bagdadia irakella Amsel, 1949: 322, pl. 9, fig. 64, pl. 11, figs
78, 79, pl. 12, fig. 99. LECTOTYPE. 6, IRAQ Pete
21.11.1937 (Wiltshire) (genitalia and wing slides nos. 15 800;
BMNH), here designated.
Genitalia & (Fig. 3). Uncus trapezoid, distal margin truncate,
with pair of short spines and three pairs of short to very short
stiff setae. Distal part of gnathos hook of ploughshare shape,
trailing edge with spines. Valva long, far exceeding uncus,
moderately broad, widest at level of uncus, distally rounded.
Anellus lobes pointed. Saccus tapered, distally rounded. Aedeagus
curved, basal third bulbous, apex pointed.
Genitalia $ unknown. The only available female has lost its
abdomen.
Remarks. B. irakella was described from three specimens. In
the BMNH there are two specimens from Baghdad, labelled
“Typus & and “Typus 9’ respectively, the latter lacking the
abdomen and left-hand wings; the male is here designated as
the lectotype. It should be noted that, according to their labels,
both specimens were collected on 21.ii1., not 31.1. as stated in
the original description. The third specimen, a male from Karbala
238
1
Figs 1-2. Bagdadia irakella Amsel: 1 — lectotype d, BMNH; 2 — paralectotype 9,
BMNH (right-hand wings, image reversed).
Fig. 3. Bagdadia irakella Amsel, lectotype 4, genitalia slide no. 15 800, BMNH.
desert, ıs currently not available and presumably is preserved in
coll. Amsel, Landessammlungen für Naturkunde, Karlsruhe. It
is the specimen from which presumably a genitalia preparation
was made although the genitalıa ıllustrated (fig. 64) are probably
239
those of a Metzneria sp. and, in any case, not those of Bagdadia
(Fig. 3).
Biology unknown. The adults have been collected in March.
Distribution. Iraq (Baghdad; Karbala [‘Kerbela’] desert; Go-
rashala [‘Gora Skala’]) (Amsel, 1959: 64)).
Acknowledgement
The photomicrographs of the male genitalia were produced
by the Photographic Unit, BMNH, those of the adults by Ms
M. Vaswani, Department of Entomology, BMNH, London.
References
AMSEL, H. G., 1949. On the Microlepidoptera collected by E. P. Wiltshire
in Iraq and Iran in the years 1935 to 1938. — Bull.Soc. Fouad I Ent. 33:
271-351, text-figs. 1, 2, pls 1-12.
AMSEL, H. G., 1959. Irakische Kleinschmetterlinge, II. — Bull. Soc.ent. Egypte
43 (52 Année): 41-83, pls 1-10.
BÖRNER, C., 1925. 22. Ordn. Lepidoptera, Schmetterlinge. Jn: Brohmer, P.,
Fauna von Deutschland (edn 3). — Leipzig. Pp. 358-387, figs. 540-603.
BÔRNER, C., 1939. Die Grundlagen meines Lepidopterensystems. —
Verh.VILint.Kongr.Ent. 2: 1372-1424, 51 figs.
BÖRNER, C., 1944. 22. Ordn. Lepidoptera, Schmetterlinge. Jn: Brohmer, P.,
Fauna von Deutschland (edn 5). — Heidelberg. Pp. 382-421, figs. 638-750.
BÖRNER, C., 1959. 22. Ordn. Lepidoptera, Schmetterlinge. Jn: Brohmer, P.,
Fauna von Deutschland (edn 8). — Heidelberg. Pp. 382-421, figs. 638-750.
KARSHOLT, O. & RAzowsKki, J., 1996. The Lepidoptera of Europe. — Apollo
Books, Stenstrup. 380 p.
Park, K.-T., 1993. A review of the genus Hypatima and its related genera
(Lepidoptera, Gelechiidea) in Korea. — Insecta koreana 10: 25-49, figs.
1-72.
Park, K.-T., 1995. Gelechiidae of Taiwan. Il. Hypatima and allies, with
descriptions of a new genus and five new species (Lepidoptera: Gelechioidea).
— Tropical Lepid. 6: 67-85, figs. 1-86.
PONOMARENKO, M. G., 1997. Catalogue of the subfamily Dichomeridinae
(Lepidoptera, Gelechiidae) of the Asia. — Far Eastern Entomologist 50:
1-67.
SATTLER, K., 1973. A catalogue of the family-group and genus-group names
of the Gelechiidae, Holcopogonidae, Lecithoceridae and Symmocidae. —
Bull. Br. Mus.nat. Hist. (Ent. Ser.) 28: 153-282.
SATTLER, K., 1991. Der “Achselkamm” der Lepidoptera und seine Funktion.
— Dt.ent.Z. (N.F.) 38: 7-11, figs. 1-6.
240
In diesen Bestimmungstabellen werden vor allem äussere
Merkmale verwendet. Auf Genitalmerkmale wird nur zurückge-
griffen, wo äussere Merkmale nicht genügen. Ein zusätzlicher
Schlüssel zu den Gattungen auf Grund der männlichen Genitalien
ist aber in Arbeit. Das hat bereits zu interessanten Erkenntnissen
geführt, der Schlüssel bedarf aber noch einiger Ergänzungen. Wir
haben uns deshalb entschlossen, ihn erst im nächsten Teil dieser
Arbeit zu publizieren.
Die hier vorgelegten Schlüssel liegen in den Grundzügen schon
lange vor. Sie haben von der verzögerten Publikation insofern
profitiert, als eine Reihe neuer Erkenntnisse und auch inzwischen
beschriebene neue Taxa eingebaut werden konnten. Ferner haben
wir uns bemiiht, bei anfallenden Bestimmungsarbeiten den Schliis-
sel immer wieder zu beniitzen und auch andere damit arbeiten
zu lassen. Dabei sind zahlreiche kleine Anderungen eingearbeitet
worden, die niitzlich sein diirften.
Es zeigt sich schon heute, dass aus den Erkenntnissen beim
Erarbeiten der Schliissel auch einige Anderungen im System
abzuleiten sein werden. Im Moment wird jedoch nur eine
Anderung vorweggenommen, sie ist in den Schliisseln bereits
eingebaut: Die Tribus Metisini muss von den Oiceticinae abge-
trennt und als eigene Unterfamilie betrachtet werden. Die Be-
gründung wird im nächsten Teil der Arbeit im Zusammenhang
mit dem Genitalschliissel erfolgen.
In Karsholt & Razowski (1996) sind die Gattungen Eumasia
Chrétien und Pygmaeotinea Amsel durch die Editoren an die
Tribus Apteronini angeschlossen worden. Dies erfolgte ohne
unsere Zustimmung und ist sicher nicht berechtigt. Die Stellung
von Eumasia innerhalb der Psychidae bleibt abzuklären, ebenso
diejenige von Pygmaeotinea, welche wir bisher nicht selber
untersuchen konnten und die wir nach der Beschreibung nicht
als Psychide auffassen möchten. Darauf soll in einem letzten Teil
der Arbeit später genauer eingegangen werden.
Nomenklatorische Berichtigungen und Ergänzungen zur Liste der
palaearktischen Psychidae in Teil 1.
In der Zwischenzeit haben sich einige Korrekturen und Zusätze ergeben. Erstere
beruhen vor allem auf der Arbeit von Nye & Fletcher (1991), die uns bei der
Drucklegung des ersten Teils noch nicht zugänglich war. Danach sind folgende
nomenklatorische Berichtigungen notwendig:
263
Diplodoma laichartingella: Die gültige Beschreibung von marginepunctella Stephens
datiert von 1835, diejenige von Stephens 1829 ist nomen nudum).
Dahlica: Typus D. larviformis Enderlein, 1912. Nach Stys 1960 ist der Typus dieser
Art, ein Weibchen, verschollen. Die Abb. bei Enderlein zeigt ein Tier mit
fünfgliedrigen Tarsen, was, zusammen mit der Herkunft („Umgebung von Berlin“)
am ehesten auf triquetrella Hübner schliessen lässt. Auf eine formelle Synonymi-
sierung muss aber vorerst verzichtet werden.
Taleporiinae: Der Autor ist Herrich-Schäffer, 1857.
Taleporiini: ebenfalls Herrich-Schäffer, 1857.
Placodoma: als Synonym beifügen: Schediastis Meyrick, 1921.
P. palaestinella: syn.: epiphracta Meyrick, 1921.
Melasina: Typhonia Boisduval, 1834 (Typus: Bombyx lugubris Hübner, [1808]) hat
Vorrang vor Melasina Boisduval, 1840. Beide haben subjektiv den gleichen Typus.
Dissoctena ochraceella: Rebel in Zerny, 1935.
Dissoctena ellisoni: Rebel in Zerny, 1935.
Psychinae: Boisduval, 1840 (nicht 1829).
Psychini: ebenso.
Bruandia Tutt, 1900 ist ein jüngeres Homonym und damit nicht verfügbar. Als
subjektiver Ersatzname wäre Anaproutia Lewin, 1949, Typus: norvegica Heylaerts,
verfügbar, doch wird die Gattung in Zukunft wohl mit Proutia oder Psyche Schrank
vereinigt werden müssen.
Bruandia norvegica: Schöyen, 1880 ist nomen nudum, die gültige Beschreibung stammt
von Heylaerts, 1882.
Atelopsyche: Richtige Schreibweise: Atelopsycha.
Epichnopteryginae: richtige Schreibweise Epichnopteriginae.
Epichnopterygini: ebenso: Epichnopterigini.
Bijugis Heylaerts, 1879 (der Name wurde von Heylaerts 1881 nochmals aufgestellt).
Epichnopterix: Hübner, 1816 (nicht 1825).
Epichnopterix siederi Agenjo, 1966 ist als nomen nudum zu streichen.
Oiketicinae Herrich-Schäffer 1855 (nicht 1850).
Brachycyttarus Hampson, 1892 (nıcht 1893).
Pteroma Hampson, 1892 (nicht 1893). de Freina 1993 stellt Brachycyttarus als Synonym
hieher, seine Geäderabbildungen stimmen aber mit unseren Untersuchungsergeb-
nissen (siehe Bestimmungstabelle der Männchen, Punkt 142), welche ihrerseits die
Angaben von Dierl 1971 voll bestätigen, überhaupt nicht überein, sodass wir seiner
Argumentation nicht folgen können.
Amicta: nach de Freina 1989 sind acutella Krüger, 1939, caliginosa Krüger, 1939,
und syrtana Krüger, 1939 synonym zu maliarda Krüger, 1936. Es wurden allerdings
keine Typen untersucht, die Synonymisierung erfolgte auf Grund der kärglichen
Urbeschreibungen. Uns lagen diese Arten nicht vor.
Oiketicoides: Amictoides Gerasimov, 1937 ist invalid; beifügen: Amictoides Bourgogne,
1949; Paramictoides Koçak, 1980.
Manatha: Moore, 1877 (nicht 1872); Typus ist M. albipes Moore, 1877 (nicht
palaearktisch).
Pachythelia: Typus ist Penthophera nigricans Curtis, 1828
Auchmophila Rebel, 1906 (nicht 1907).
264
Aspina: Kozhanchikov, 1960 (nicht 1956). Ein jüngeres Homonym und damit nicht
verfügbar, kein objektiver Ersatzname vorhanden; /ureiventris Kozhanchikov, 1960
(nicht 1956). Die Art lag uns bisher noch nicht vor. Da wir uns auch über die
Stellung dieser Gattung nicht ganz ım Klaren sind, sehen wir davon ab, jetzt schon
einen Ersatznamen aufzustellen.
Lepidoscioptera: Gültiger Name ist Leptopterix Hübner, 1816 (nicht 1827).
Phalacropterygini: recte Phalacropterigini
Phalacropterix: Hübner, 1816 (nicht 1825).
Sterrhopterix: Hübner, 1816 (nicht 1825).
Ferner sind folgende Ergänzungen zur Liste 1991 nachzutragen:
Diplodoma samurica Zagulajev, 1992 V: Dagestan
Diplodoma talgica Zagulajev, 1993 R
Narycia maschukella Zagulajev, 1994 R: Pjatigorsk
Narycia tarkitavica Zagulajev, 1993 V: Dagestan
Eosolenobia suifunella (Christoph, 1881) O: Amur, Ussuri
Dahlica kurentzovi (Solyanıkov, 1990) O: Maritime Territory
Dahlica maritimella (Solyanikov, 1990) O: Maritime Territory
Dahlica modestella (Solyanıkov, 1990) O: Maritime Territory
Dahlica dubatolovi (Solyanikov, 1990) S: Yakutsk
Dahlica karadagica (Zagulajev, 1992) R: Ukraine Krim
Dahlica samurensis (Zagulajev, 1993) V: Dagestan
Dahlica pallidella (Zagulajev, 1997) comb.nov. R: Krasnodar
Siederia sazonovi (Solyanıkov, 1990) Z: Kirgizstan
Siederia kopetdagica (Zagulajev, 1992) Z: Turkmenistan
Siederia turkestanica Weidlich, 1996 Z: Uzbekistan
Brevantennia herrmanni Weidlich, 1996 B: Ungarn
Taleporia actatopis Meyrick, 1936 V: Irak
Taleporia isozopha Meyrick, 1936 Cc
Taleporia euxina Zagulajev, 1997 V: Gelendzhik, Betta
Pseudobankesia casaella Hattenschwiler, 1994
Pseudobankesia leleupiella Henderickx, 1997
W
: Pyrenäen
I: Westpyrenäen
Pseudobankesia hauseriella Henderickx, 1998 B: Kreta
Sciopetris karsholti Hättenschwiler, 1996 A: Tunesien
Kozhantshikovia borisi Solyanikov, 1990 O: Ussuri
Luffia gomerensis Henderickx, 1996 A: Gomera (Canar.)
Bruandia caucasica (Solyanikov, 1991) comb.nov. V: Armenien
Bruandia talgarica (Solyanikov, 1991) comb.nov. Z: Trans-Ili Alatau
Bruandia tshatkalica (Solyanikoy, 1991) comb.nov. Z: Chatkal Gebirge
Psyche baikalensis (Raigorodskaia, 1965) comb.nov. S: Irkutsk
Psyche bundeli (Solyanikov, 1995) comb.nov. Z: Kirgizstan
Psyche ghilarovi (Solyanikov, 1991) comb.nov. V: Armenien
Psyche hissarica (Solyanikov, 1993) comb.nov. Z: Tadschikistan
Peloponnesia haettenschwileri Hauser, 1996 B: Kreta
265
Bijugis alba Solyanikov, 1990, R: Estland
Reisseronia sg. Tsikalasia Hauser, 1996
T. (Tsikalasia) malickyi Hauser, 1996 B: Kreta
Montanima aurea Hättenschwiler, 1996 S: Altai
Psychidopsis saridzhazi Solyanikov, 1993 Z: Terskei-Alatau
Oketicoides saurica Solyanikov, 1997 Z: Kazakhstan
Acanthopsyche apsheronica Solyanikov, 1993 V: Azerbaidjan
Acanthopsyche murzini Solyanikov, 1993 S: Gornyi Altai
Acanthopsyche monticola Solyanikov, 1993 Z: Uzbekistan
Acanthopsyche tzvetaevi Solyanikov, 1996 Z: Uzbekistan
Acanthopsyche subnigra Solyanikov, 1996 Z: Kazakhstan
Acanthopsyche tshemalica Solyanikov, 1996 Z: Gobi Altai
Pachythelia villosella ssp quadratica de Freina, 1983 V
Ptilocephala piae Hattenschwiler, 1996 I
Megalophanes hyalina (Solyanikov, 1993) comb.nov. Z: Uzbekistan
Eumasia libanotica Zagulajev, 1996 V: Beirut
Eumasia communita (Meyrick, 1928) A: Marokko
Eumasia brunella Hattenschwiler, 1998 I
Genus Solemasia Zagulajev, 1996
Solemasia araxella Zagulajev, 1996 V: Ordubad
Zum Gebrauch der Schliissel
Geädermerkmale unterliegen bei den Psychiden einer gewissen
Variabilitat in der Ausbildung einzelner Adern, auch sind die
Anhangszellen wie die eingeschobenen Zellen manchmal schlecht
zu sehen, wenn eine begrenzende Ader nur schwach ausgebildet
ist. Es empfiehlt sich deshalb, das Geäder notfalls am entschuppten
Flügel zu verifizieren, auch sollten wenn möglich mehrere Ex-
emplare einer Art, mindestens aber die Flügel beider Körperseiten
kontrolliert werden. Genitalmerkmale sind im Schlüssel für die
Männchen nur dort verwendet, wo es unumgänglich war. An-
gaben zu den Weibchen sind in diesem Schlüssel nur als
manchmal erwünschte Ergänzung beigegeben.
Im Schlüssel für die Weibchen werden auch Puppenmerkmale
mit verwendet, da mindestens die ungeflügelten Weibchen ja meist
aus der Puppe gezogen oder auf dem Sack sıtzend gefunden
werden. Trotzdem kann der Schlüssel verschiedentlich nicht bis
zu den Gattungen geführt werden.
Der Schlüssel für Puppen ist als Hilfe bei der Bestimmung
gefundener leerer Säcke, bei denen die Exuvie noch vorhanden
ist, gedacht. Er führt je nach Geschlecht und je nach Gattung
266
verschieden weit und wird sich zweifellos mit weiterer Erfahrung
noch verbessern lassen.
Schliesslich folgt eine Merkmals-Matrix für alle Gattungen mit
Merkmalen beider Geschlechter, die uns oft gute Dienste geleistet
hat und deshalb hier als Ergänzung wiedergegeben werden soll.
Sie dient als Uberblick, kann aber auch als Bestimmungshilfe,
die den Einstieg über ein beliebiges Merkmal erlaubt, benutzt
werden.
267
Schlüssel für Männchen. (Bis Gattung)
(z.T. mit ergänzenden Merkmalen der Weibchen und
Säcke)
Verwendete Abkürzungen: ALES
AHZ= Anhangzelle
Adern gestielt
an = Analader A
Ant = Antennen > in
cua = Cubitus anterior Retinaculum mo pe
cup = Cubitus posterior Zs
dkz = doppelkammzähnig Basal-
DZ = Discoidalzelle (Mittelzelle) Sehllage
DZ-Adern = Adern, die frei oder gestielt Mittelzele
aus der DZ entspringen, (Discoidalzelle, DZ) Engin Zelle
also rl-r5, ml-m3, cual-2.
Epi = Epiphyse der Vtb
EZ = Eingeschobene Zelle
Fee hice
Hfl = Hinterfligel
Htb = Hintertibia
KZ = Kammzähne
m = Medianader (Media)
Mtb = Mitteltibia
Oc = Ocellen Flügelspitze
ie = Radialader (Radius) vag (Apex)
ı = Radialramus (r2-r5) (Costa)
sc = Subcosta ani
il Vorderflügel (Aussenrand)
Vtb = Vordertibia
Basalschlinge innencind
Schliissel zu den Unterfamilien und Triben.
1) Ant nicht dkz, fadenförmig, oft stark bewimpert
oder beborstet (Abb. 1b). 2
- Ant dkz (Abb.1a), Oc fehlen (excl. Ate/opsyche).
5
2) Oo Ant ringsum zerstreut bewimpert, dorsal
nur am Glied-Ende mit einem Schuppenkranz,
der etwas zahnartig vorspringt. Q Q (voll
geflügelt) Ant ringsum nur beschuppt (Abb.
3a+b). Oc fehlen. Vfl ohne AHZ und EZ, mit 7,
Hfl mit 5 DZ-Adern. Eumasia
- o © Ant dorsal beschuppt, nur ventral bewim-
pert (Abb. 2a,11,12). (nur bei Sciopetris = b
karsholti ringsum bewimpert, aber auch ohne
den dorsalen Schuppenkranz: Abb.2b). Vfl 8- Abb.l: © Fühler, a = doppelkamm-
10 DZ-Adern. 3 zahnig, b = fadenformig.
268
3)
4)
5)
6)
7)
8)
o © Ant quadrifasciculat, die vier Wimpern-
büschel sitzen je auf einem kurzen Zahn
(Abb.2a). Oc fehlen. Vtb mit grosser Epi.
Vfl mit AHZ und EZ, mit 9, Hfl mit 6 DZ-
Adern. Placodominae 60
o © Ant ventral zerstreut bewimpert, selten
Wimpern in 1 oder 2 Kränzen angeordnet. 4
Aedeagus meist stark gebogen, mit Stiitzstab
(Abb.4). Oc fehlen (excl. Dip/odoma, deren Epi
aus einem Borstenbüschel besteht). © Q
geflügelt oder ungeflügelt. _ Naryciinae 11
Aedeagus gestreckt oder leicht gebogen, ohne
Stützstab (Abb.5). Oc meist vorhanden (excl.
Altobankesia, Kozhantshikovia, Sciopetris
karsholtiund Solemasia). Epi klein bis fehlend
(gut entwickelt bei So/emasia). Taleporiinae 12
Vfl Analadern nach Bildung der Analschlinge
wieder divergierend und getrennt in den Saum
mündend (Abb.6). Mtb und Htb ohne Sporne
(höchstens zwei kleine Endsporne). 6
Vfl Analadern nach der Schlinge bis zum Saum
verschmolzen (Abb.7). Sporne an Mtb und Htb
vorhanden. 7
(Meist) grosse, kräftige Falter, Ant etwa die
halbe Vfl-Länge erreichend (excl. die ostpalae-
arktischen Gattungen Manatha und Mahasena).
Hfl Adern m2 und m3 entspringen kurz gestielt,
aus einem Punkt oder leicht getrennt und diver-
gieren gegen den Saum zu. (Abb.9). Mit basalen
Fortsätzen (gabel-artig) am 8. Abdominal-
sternit. (Abb.42+43). Oiketicinae 17
Sehr zierliche, meist kleine Falter. Ostpalaeark-
tisch. Ant etwa ein Drittel der Vfl-Länge. Sack an
Faden aufgehängt. Hfl m2 und m3 entspringen
getrennt und bleiben parallel bis zum Saum oder
vereinigen sich vor Erreichen des Saumes
(Abb. 10). Ohne basale Fortsätze an 8. Abdominal-
sternit. Vtb stets mit grosser Epi. Metisinae 140
Vfl mit 10 DZ-Adern, Hfi mit 6 (Dissoctena 5)
DZ-Adern. Typhoniinae 13
Vfl mit 8-9, Hfl mit 5 DZ-Adern. 8
Vfl mit 9 DZ-Adern, Vfl mit AHZ, (Zelle ist nicht
immer deutlich sichtbar). 10
Vfl mit 8-9 DZ-Adern, Vfl ohne AHZ. 9
Abb.2a: Fühler von Placodoma
oasella, quadrifasciculat (vier
Borstenbündel auf jedem Glied).
Abb.2b: Sciopetris karsholtı
Ausschnitt aus Antenne, Geissel ist
ringsum beborstet.
Abb.3a+b: Eumasia parietariella, Aus-
schnitt aus Antenne,
a=do,.b=9®
Abb.3c+d: Solemasia araxella, Aus-
schnitt aus Antenne c = lateral und d
= ventral, die Beborstung besteht aus
zwei Kränzen pro Glied (dorsal
beschuppt ?).
(nach ZAGULAJEV. 1996).
269
9) F1 Schuppen einspitzig (Abb.18) oder gemischt
mit kurzen, breiten, mehrspitzigen Schuppen
(Abb.17). Ant KZ unbeschuppt oder nur mit
einzelnen feinen, einspitzigen Schuppen besetzt.
(Psychidopsis und Psychocentra ?). Vfl meist
mit EZ (excl. Psychidopsis).
Epichnopteriginae 16
- FI Schuppen meist breit, immer mehrspitzig
(Abb.17). Ant KZ meist beschuppt, Vfl mit
oder ohne EZ. Psychinae 15
10) Labialpalpen 3-gliedrig, Körper kräftig.
Typhoniinae 13
(Tribus Dissoctenioidini und Genus Penestoglossa)
- Labialpalpen rudimentär, auf ein Glied reduziert.
Zierliche Falterchen mit zartem Körper.
Psychinae 15
Naryciinae
11) Epi gut sichtbar, aus einem Borstenbüschel be-
stehend (Paranarychia ?). Labialpalpen lang,
deutlich 3 Glieder. Vfl 9-10 DZ-Adern. Q mit
geschlossenem Kranz von Afterwolle.
Naryciini 20
- Epi nur mikroskopisch sichtbar oder ganz fehlend.
Labialpalpen rudimentär. Vfl 9 DZ-Adern. After-
wolle der © nur ventral. Dahlicini 30
Taleporiinae
12) Oc vorhanden, Hfl mit EZ, Vfl ohne AHZ und EZ,
Q Q gefliigelt. Eotaleporiini 40
- Oc vorhanden oder fehlend. Vfl oft mit AHZ
(fehlt So/emasia, Kozhantshikovia und Sc.
karsholti), Hfl ohne EZ (excl. S. karsholtı).
Q Q ungeflügelt. (Q Q von So/emasia und
S. Karsholti unbekannt). Taleporiini 50
Typhoniinae
13) Vfl mit 9 DZ-Adern (Zumelasına 10; soll aber
nach KOZHANCHIKOV 1956 2 AHZ haben {?},
Abb. 13), KZ unbeschuppt (Dissoctenioides ?)
Labialpalpen 3 Glieder. 14
270
Stützstab
Abb.4: Aedeagus von Dahlica
triquetrella.
Abb.5: Aedeagus von 72/eporia
tubulosa.
Abb.6: Aderverlauf im hinteren Teil
des Vfl bei Oiketicinae. Analadem
sind betont.
Abb.7: Aderverlauf im hinteren Teil
des Vfl bei mehreren Unterfamilien.
Analadem sind betont.
CA)
Abb.8: Kopf-Brustplatte der Puppe
mit Hocker, Pfeil (Tribus Typhoniini).
14)
Vfl mit 10 DZ-Adern, mit EZ (excl. Eochorica).
KZ beschuppt. Labialpalpen 1-3 Glieder, kurz,
aber mit langem Haarbusch. Puppen Kopfplatte
mit Hécker (Abb.8). Typhoniini 90
Vtb mit grosser Epi. Gesicht angedriickt be-
schuppt, Labialpalpen nach vorn gerichtet.
Penestoglossini 70
Vtb ohne Epi. Gesicht abstehend behaart,
Labialpalpen fein. Dissoctenioidini 80
Psychinae
15)
Vtb ohne Epi. Oc fehlen, KZ beschuppt
(Pseudofumea ?). Peloponnesini 110
Vtb mit Epi. Oc nur bei Afelopsyche, KZ mit
oder ohne Schuppen. Psychini 100
Epichnopteriginae
16)
Labialpalpen sehr lang, 3-gliedrig, Vtb ohne Epi.
Vfl 8 DZ-Adern, ohne EZ. Htb nur mit End-
spornen. Stichobasiini 130
Labialpalpen rudimentär, Vtb mit oder ohne Epi.
Htb mit Mittel- und Endspornen (excl. Rersse-
ronia). Vfl (6)-8-9 DZ-Adern, fast stets mit EZ.
Epichnopterigini 120
Oiketicinae
19)
Vtb mit grosser Epi. Acanthopsychini 150
Vtb ohne Epi. 18
Vfl mit 9-10, Hfl mit 5-6 DZ-Adern.
Phalacropterigini 180
(Aspina und Chalioides schlüsseln hier aus.
KOZHANCHIKOV, 1956 stellt sie zur Tnbus Acantho-
psychini, vergl. Punkt 150).
Vfl mit 7-8, Hfl mit 3-5 DZ-Adern. 19
Vfl mit 7-8, Hfl mit 3-4 DZ-Adern, Hfl sc mit rr
vôllig verschmolzen. Ant stark gekämmt. die KZ
schlank. Oreopsychini 170
Vfl mit 8, Hfl mit 5 DZ-Adern und sc frei. Ant
KZ nur im basalen Teil lang, auffallig abgeflacht
(Abb. 46). Apteronini 190
Abb.9: Flügelgeäder von Acantho-
psyche atra. Der Verlauf von m2 und
m3 im Hfl ist betont.
N m2
m3
m2
m3
Abb.10: Flügelgeäder der Metisinae :
m2 und m3 vereinigen sich oder
laufen parallel.
Abb.11: Anordnung der Antennen-
Borsten bei Bankesza.
Abb.12: Anordnung der Antennen-
Borsten bei Pseudobankesia.
271
Schlüssel zu den Gattungen.
Naryciinae
Naryciini
20) © © mit Oc, Vfl 10 DZ-Adern, Hf mit EZ.
Diplodoma
- Oc fehlen, Vfl 9 DZ-Adern, Hfl mit oder
ohne EZ. 21
21) Vfl mit AHZ, Hfl ohne EZ, Vtb Epi aus einem
Borstenbiischel bestehend. Narycia Abb. 13: Flügelgeäder von Zumelasina
- Vfl ohne AHZ, Hfl mit EZ, Vtb Epi sehr klein ardua KOZH.
oder ganz fehlend (Japan, Sibirien, Fernost). (nach KOZHANCHIKOV 1956).
Paranarychia
Dahlicini
30) Vtb mit Epi (Vorsicht, die Epi sind sehr klein
und meist nur im mikroskopischen Praparat
sichtbar). Siederia
- Vtb ohne Epi. 31
31) Vfl und Hfl mit EZ. Eosolenobia ‘
ö Vet ohne EZ 32 Abb.14: Flügelgeäder von Penesto-
rs glossa dardoinella.
32) Vfl mit AHZ. 33
- Vfl ohne AHZ. 34
33) 0 Säcke stark aufgeblaht, sehr breit, Breite
meistens mehr als die Hälfte der Lange.
(Q: Ante- und Postvaginalplatte verschmolzen,
Abb.15). Praesolenobia
- © Säcke schmal, 3-5 mal so lang wie breit.
(2: die beiden Platten getrennt, Abb. 16).
Dahlica
Abb.15: Genitalplatte des 9 von
Praesolenobia clathrella
(nach SAUTER 1956).
34) Hfl mit 5 DZ-Adern, Flügelspannweite 7-10 mm.
(2 mit langen Ant mit 12-16 Gliedern).
Postsolenobia
- Hfl mit 6 DZ-Adern. Flügelspannweite 11-15 mm,
(2 mit kurzen Ant mit 3-10 Gliedern).
Brevantennia
Taleporiinae
Eotaleporiini Abb.16: Genitalplatte des 2 von
Dahlıca trıquetrella
40) Nur eine Gattung. Eotaleporia (nach SAUTER 1956).
DD
Taleporiini
50)
51)
52)
53)
o mit Oc, Vfl 8-10 DZ-Adern. 51 | I |
oO und © ohne Oc, Vfl 7-10 DZ-Adern. 54
Vfl 8 DZ-Adern, Hfl meist 5, Vfl ohne AHZ, Vtb 1 2
mit Epi, Ant an der Basis der Glieder mit antero-
ventralem Halbkranz von Borsten (wie Abb.11).
Sciopetris
Vf1 9-10 DZ-Adern. 2
3 4
6
Vfl 9 DZ-Adern, Hfl 6, Vfl mit AHZ, © Ant
mit einem antero-ventralen Halbkranz von
Borsten (Abb.11). Vtb ohne Epi. (Q mit 3
Tarsengliedern). Bankesia
Vfl 10 DZ-Adern, Hfl 6, Ant ventral gleichmässig
5
bewimpert (Abb.12), Vtb mit oder ohne Epi.
(Q mit 5 Tarsengliedern). 53
y
Abb.17: Breiteklassen der zwei- bis
mehrspitzigen Schuppen
(nach SAUTER 1956).
Hfl mit EZ, Vtb mit gut sichtbarer Epi, Sack 2-3
mal so lang wie breit, weich, haufig mit Teilen
von weisslichen Krustenflechten belegt.
Pseudobankesia
Hfl ohne EZ, Vtb mit kaum sichtbarer, da unter
den Haaren versteckter Epi, Sack 4-8 mal so lang
wie breit, hart, meist ohne Fremdteile. Ta/eporia
Vfl mit AHZ (Nepal). Altobankesia
Vfl ohne AHZ. 55
Hfl mit EZ. Vfl 8, Hfl 6 DZ-Adern. © Ant
ringsum unregelmässig bewimpert (Abb.2b), 2
Tunesien. "Sciopetris' karsholti
Hf ohne EZ. 56
© Ant unten zerstreut beborstet. Vfl 9, Hf 6 DZ-
Adern., Vfl und Hfl mit Y-förmigen Schuppen.
Habitus von Dahlica. Japan, Sibirien, Fernost.
Kozhantshikovia
© Ant unten Borsten in zwei Querreihen ange- f
ordnet (Abb.3c+d), dorsal beschuppt ?. Vfl |
(nach ZAGULAJEV, 1996) 7, Hfl 5 DZ-Adern |
Habitus von Eumasia. Armenien, Aserbaidschan.
Solemasia
(Exemplare aus Westirian: Kermanshah stimmen im
Genital sehr gut damit überein, das Geäder aber stark
abweichend: Vfl 9, Hfl 6 DZ-Adem. Im Moment ist
unklar, wie die Differenz zu deuten ist, die Typen von Abb.18: Breiteklassen der ein-
Solemasia haben uns nicht vorgelegen). spitzigen Schuppen.
on
273
Placodominae
Placodomini
60) Nur eine Gattung. Placodoma
Typhoniinae
Penestoglossini
70) Vfl mit 10 DZ-Adern (nach KOZHANCHIKOV,
1956 mit zwei AHZ ?), ohne EZ, Hfl 6 DZ-
Adern (Abb. 13). Aedeagus hufeisenförmig gebo-
gen. (© Fl rudimentär). Eumelasina
- Vfl mit 9 DZ-Adern, AHZ und EZ, Hf mit
5 DZ-Adern (Abb.14). Aedeagus gestreckt. ( Q
meist normal gefliigelt). Penestoglossa
Dissoctenioidini
80) Nur eine Gattung. Dissoctenioides
Typhoniini
90) Vtb mit Epi. (Q geflügelt oder ungeflügelt). 91
- Vtb ohne Epi. (© ungeflügelt). 92
91) Vfl mit AHZ und EZ. 93
- Vfl nur mit AHZ, Vfl cup lang, mündet oft ın
an. Hfl mit 6 DZ-Adern. (2 ungeflügelt).
Eochorica
(REBEL sagt in der Beschreibung: "Vorderschiene
ohne Dom", alle verglichenen Tiere vom loc. class.
haben aber eine lange anliegende Epi. Tiere aus der
Typenserie im Wiener Museum haben ebenfalls lange
Epi an den Vorderbeinen).
92) Vfl mit EZ und AHZ, Hfl mit 5 DZ-Adern.
Dissoctena
- Vfl nur mit EZ, Hf mit 6 DZ-Adern. Melapsyche
93) Hfl m2 und m3 meistens getrennt, seltener
gestielt, Körper robust, cup kurz, äusseres Ende
meist frei. (Q gefliigelt). Typhonia
- Hflm2+m3 gestielt, Körper zierlich, fein. (Q
ungeflügelt). Eudissoctena
274
Abb.19: Genitalapparat von Bijugis
bombycella. Die Pfeile zeigen die
Einschnürung des Vinculums.
Abb.20: Genitalapparat von Rebelia
spec.
Abb.21: Genitalapparat von
Montanima karavankensis, der
Aedeagus ist winklig gebogen.
Abb.22: Geäder von Amicta spec., die
Unterschiede gegenüber Oiketicoides
sind betont.
Psychinae
Psychini
100) Männchen mit Oc. Atelopsyche
- Ohne Oc. 101
101) Ant KZ kurz, ca. 0.8-1.5 mal so lang wie das
Glied, weit getrennt, unbeschuppt, distal ver-
breitert und abgeflacht. Vfl meist mit AHZ. 102
- Ant KZ lang, ca. 2-4 mal so lang wie das Glied
(B. raiblensis nur 1.5), eng stehend, distal nicht
abgeflacht verbreitert. Ohne AHZ (drei schwie-
rig zu trennende Gattungen). 103
102) Vfl einfarbig dunkel, Hfl m2+m3 und cul deutlich
und oft weit getrennt (Abb.24). Bacotia
- Vfl hell gegittert, Hfl m2+m3 und cul gestielt,
wenn auch nur sehr kurz (Abb.25). Luffia
103) Vfl ohne EZ, nicht gegittert, Ant-KZ beschuppt..
Psyche
- Vfl mit EZ. 104
104) Ant KZ meist unbeschuppt (excl. P. breviserrata).
Vfl mit EZ, ohne Gitterung. Proutia
- Mehr oder weniger deutlich gegittert. Ant KZ
unterschiedlich stark beschuppt (Bruandia
raiblensis, norvegica oder sichotealinica KZ
kaum beschuppt). Bruandia
Peloponnesiini
110) Vfl mit EZ, Ant mit 14-17 KZ, total 16-21
Glieder. Peloponnesia
- Vfl ohne EZ, Ant mit 13 KZ, total 16 Glieder.
Pseudofumea
Epichnopteriginae
Epichnopterigini
120 Vfl mit nur einspitzigen Schuppen der Klassen
1-4 (Abb.18). Htb mit 2 Spornpaaren. 121
- Vfl einspitzige Schuppen der Klassen 1-3 (Abb.
18) durchmengt mit mehrspitzigen Schuppen
der Klassen 2-4 (Abb.17). Htb nur mit Endsporn-
paar. Kleine, dunkle Falterchen bis etwa 10 mm
Fl-Spannweite. Reisseronia
Abb.23: Geäder von Manatha albipes
(nach DIERL 1971).
m2+m3
cul
Abb.24: Hfl-Geäder von Bacotia spec.
=...
cul
Abb.25: Hfl-Geäder von Luffia spec.
Abb.26: Geäder von
Orketicoides
>
Abb.27: Geäder von Mahasena yuna,
(nach CHAO 1982).
2753
121) Vtb mit Epi. 122
- Vtb ohne Epi. 127
122) Vfl mit 9 Adern aus DZ, r3 und r4 gestielt bis
aus einem Punkt (Byjugis kurz gestielt bis leicht
getrennt). 123
- Vfl mit 8 oder weniger DZ-Adern. 126
123) Vfl einspitzige Schuppen (Abb.18) gemischt mit
breiteren Schuppen (Abb.17), dunkle Falterchen.
Femur und Tibia aller Beine lang, oft abstehend
behaart. Heliopsychidea
- Vfl Beschuppung nur einspitzig, Klassen 1-5
(Abb.18). Behaarung der Beine kurz, anliegend
oder nur schwach abstehend bei Gattung
Montanima. 124
124) Genital: Vinculum seitlich eingeschnürt
(Abb. 19), Intersegmentalhaut zwischen Seg-
ment 7 und 8 ohne Bedornung. Fl Farbe meist
hell, gelblich, mit mehr oder weniger deutlicher
Gitterung (Bijugis bombycella ssp. helvetica,
B. pectinella und einige östliche Arten sind
braun bis grau und ohne Gitterung). Säcke mit
Grasteilen längs belegt. Bijugis
- Genital: Vinculum seitlich nicht eingeschnürt
(Abb.20), Intersegmentalhaut zwischen den
Segmenten 7 und 8 mit dorsaler Bedornung.
Ohne Gitterung. 125
125) Fl breit, Farbe braun bis blassgrau, oft dunkel.
Aedeagus schwach gebogen, Tegumen breit
(Abb.20). Säcke nur mit Sand belegt. Rebelia
- Fl schmal, blasse Farbe, hyalin, zarte Falterchen,
Aedeagus nahezu rechtwinklig gebogen, Tegu-
men schmal (Abb.21). Säcke mit Grasteilen
längs belegt. (Karawanken bis Griechenland
und Russland). Montanima
126) Vfl nur 8 DZ-Adern, ohne EZ. Psychidopsis
- Vfl nur 6 DZ-Adern, Vfl mit EZ. (bis heute nur
ein Exemplar einer Art bekannt, P. millierer
HEYLAERTS). Psychocentra
127) Vfl mit 9 DZ-Adern. 128
- Vfl mit 8 DZ-Adern. 129
128) Augenabstand grösser als Augenhöhe (Abb.40),
zarte Falterchen, Fl Fransen weisslich, Labial-
palpen so lang wie Augenhöhe. Psychidea
276
Abb.28: Geäder von Zumeta
cramerii, die EZ sind sehr lang.
Genital-Breite
Aedeagus-Länge
Abb.29: Genitalapparat von
Canephora, Aedeagus lang mit Wulst
am distalen Ende (rechts).
|
Genital-Breite
! !
eee
Abb.30: Genital von Acanthopsyche
atra, langer Aedeagus, ohne Wulst.
- Augenabstand gleich oder kleiner als Augen-
hohe (Abb.39), zarte Falterchen, Fl-Fransen
weiss, Labialpalpen etwa halb so lang wie
Augenhöhe. Acentra
129) Mittelgrosse Falterchen mit 12-18 mm Fl-Spann-
weite (nur FE. ardua 8-12 mm), dunkle, schwarz-
braune Färbung, ohne Zeichnung oder
Gitterung. Epichnopterix
- Kleine Falterchen mit weniger als 12 mm FI-
Spannweite, Fl hell mit dunklen Wellenlinien.
Whittleia
Stichobasini
130) Nur eine Gattung. Stichobasis
Metisinae
Metisini
140) Vfl mit 10 DZ-Adern. 141
- Vfl mit 8-9 DZ-Adern. 142
141) Vfl und Hfl mit EZ, Vfl der hintere Teil der DZ ist
kürzer und schmaler (Abb.34). Metisa
- Vfl und Hf ohne EZ, Vfl die DZ ist symme-
trisch geteilt (wie Abb.35). Eumetisa
142) Ant KZ beschuppt. Vfl DZ durch den m-Stamm
annahernd symmetrisch geteilt, er miindet
zwischen m1 und m2 (Abb.35). Brachycyttarus
- Ant KZ unbeschuppt. Vfl DZ durch den m-
Stamm asymmetrisch geteilt, er mündet
zwischen m3 und cul (Abb.36). Pteroma
Oiketicinae
Acanthopsychini
150) Vtb mit Epi. 152
- Vtb ohne Epi. 151
151) Aedeagus etwa so lang wie das gesamte Genital
(Südwest-China, Junan Prov. Nur eine Art, A.
Juteiventris KOZHANCHIKOV bekannt). Vfl ohne
EZ, Hfl 5 DZ-Adem. Aspina
(Die Gattung Aspina kennen wir nicht aus eigener
Erfahrung, KOZHANCHIKOV, 1960 stellt sie zur
Tribus Acanthopsychini).
- Aedeagus etwas kürzer. Vfl mit grosser EZ, Hfl
6 DZ-Adem. Chalioides
Abb.31:
Junodı.
Geäder von Chalıopsis
Abb.32: Valve und Tegumen von: a =
Chaliopsis junodi, b = Kotochalıa
shirakii (nach BOURGOGNE 1990).
ae: Breite |
=
ren pastors Länge
Ye
Abb.33: Genital von Nipponopsyche
fuscescens (nach SEINO 1976).
Aedeagus kurz, mit Wulst.
Abb34 Vorderfligel-Geader von
Metisa plana, DZ ist asymmetnsch
geteilt.
277
152) Vfl mit 10 DZ-Adern. 153
- Vfl mit 9 DZ-Adern. 159
153) Vfl ohne EZ. 154
- Vfl mit EZ. 157
154) Ant KZ unbeschuppt. 155
- Ant KZ beschuppt. 156
155) Hfl 6 DZ-Adern, rr mit sc durch Querader
verbunden oder kurz anastomosierend (ver-
schmolzen). Vfl cup kräftig gebogen, in an!
mündend (Abb.26), Sack längs belegt.
Oiketicoides
- Hfl 4 DZ-Adern, ır durch 1-2 Queradern mit sc
verbunden. Vfl cup nicht in an mündend.
Urobarba
156) Hfl 6 DZ-Adern, Anastomose zwischen ır und sc
ausserhalb der DZ. Geäder wie Abbildung 22,
Sack quer belegt. Amicta
- Vfl (8-) 10, Hf 5-6 DZ-Adern, der vordere Teil
der EZ sehr schmal. (Geäder variiert, M. nıgrıpes
DIERL Vfl 8, Hfl 4 DZ-Adern), Vfl cup kräftig
gebogen, in anl mündend (Abb.23). Manatha
157) Hfl mit 5 DZ-Adern, ohne EZ. Einfarbig, dunkel
gefärbt. Bambalina
- Hfl 6 DZ-Adern, mit EZ. 158
158) Kurze EZ ım Vfl und Hfl (Abb.27), Ant KZ teil-
weise beschuppt. (Q ohne Spitzen auf dem
Kopf). Mahasena
- Sehr lange EZ im Vfl und Hfl, oft bis zur
Wurzel der Zelle reichend (Abb.28). Ant KZ
unbeschuppt, Vfl braun, bei den paläarktischen
Arten meist mit auffalligen, creme oder hell-
braunen Zeichnungen. (9 mit 2 sklerotisierten,
hornartigen Spitzen auf dem Kopf). Eumeta
159) Vfl und Hfl ohne EZ, Hfl sc und DZ sehr kurz
anastomosierend oder mit Querader verbunden.
160
- Vfl und Hfl mit EZ, Hfl sc anastomosiert mit
DZ und ır über grosse Länge. 161
160) Hfl 5-6 DZ-Adern, sc mit Querader oder mit
kurzer Anastomose im mittleren Teil der DZ.163
- Hfl 4 DZ-Adern, sc anastomosiert mit dem dis-
talen Teil der DZ. Ptilamicta
278
Abb.35: Vfl-Geäder von Brachycyt-
tarus spec, DZ ist symmetrisch geteilt.
Abb.36: Vfl-Geäder von Pferoma
plagiophleps, DZ ist asymmetrisch
geteilt.
Genital-Länge
Saccus
Abb.37: Genital von Leptoptenx
hirsutella, der Saccus ist kurz.
Genital-Lange
Saccus
Abb.38: Genital von Ptilocephala
albida, der Saccus ist lang.
161) Hfl nur 4 DZ-Adern. Auchmophila
- Hfl 5 DZ-Adern, Vfl teilweise mit doppelter EZ
(Abb.31). Alle Fl weitgehend unbeschuppt,
Fl-Membran glasklar. 162
162) © Genital mit schmaler Valve und gerundetem
Tegumen (Abb.32b). Nur eine Art aus Formosa /
Taiwan bekannt. Kotochalia
- © Genital mit breiter Valve und eckigem
Tegumen (Abb.32a). Vertreter in Siidafrika und
Vorderasien. Chaliopsis
163) Aedeagus mit auffalligem Wulst am distalen Ende,
der mehr als den doppelten Durchmesser des
Aedeagus erreicht (Abb.29). 164
- Aedeagus mit kleinerem Wulst (Abb.30), unbe-
schuppte oder sehr schwach beschuppte KZ.
Acanthopsyche
164) Aedeagus langer als Breite des Genitalapparates
(Abb.29+30). 165
- Aedeagus kurz, nur etwa die halbe Breite des
Genitalapparates erreichend (Abb.33).
Nipponopsyche
165) Ant KZ schwach beschuppt, FI mit breiten,
einspitzigen Schuppen der Klassen 5-6 (Abb. 18).
Flügel dicht beschuppt, undurchsichtig, von
dunkler Farbe. Canephora
- Ant KZ meistens unbeschuppt (excl. ssp. qua-
dratica). Fl mit schmalen, einspitzigen Schuppen
der Klassen 1-3 (Abb.18), Flügel hell, hyalin.
Pachythelia
Oreopsychini
170) Vfl mit 7-8 DZ-Adern, Saccus am männlichen
Genital nur etwa halb so lang wie der Rest des
Genitalapparates (Abb.37). Fl Membran braun
oder bräunlich, milchig, nicht transparent. 171
- Vfl mit 7 DZ-Adern, seltener 8, Saccus lang,
etwa die Länge des restlichen Genitalappara-
tes erreichend (Abb.38). Robuste Falter, F1
Membran transparent oder leicht milchig
getrübt. Ptilocephala
171) Vfl breit, Saum kaum kürzer als Innenrand. FI
Membran milchig-grau, Körper schlank, grau
bis gelblich behaart. Oreopsyche
=
Kopfhöhe
e zn (ase
|
| oeenhehe
= = :
Augenabstand
Abb.39: Kopf von Sferrhopterix fusca
von vom, die Augenhöhe etwa gleich
der Kopfhöhe, Augenabstand klein.
U Augenhöhe
Ÿ LE oe
| Red
Augenabstand
en
Abb.40: Kopf von Phalacropterix
graminifera von vom. Augenhöhe
kleiner als Kopfhohe, Augenabstand
gross.
eee
Augenhôhe
rer ON NS DS
I
- Augenabstand
> —
Abb.41: Kopf von Megalophanes
viciella von vom, Augenhöhe kleiner
als Kopfhöhe, Augenabstand etwa 1-
1.5 mal Augenhöhe.
1+2 Hé
3 ih
ı CY
PEN à
6 lou GENE
ı mV
8 =
Abb.42: Abdominal-Sternite (links)
und Tergite (rechts) von
Megalophanes viciella.
279
Vfl schmal, Saum wesentlich kürzer als der
Innenrand. Fl Membran braun oder milchig-
braun, Körper robuster, struppig, schwarz
behaart. Lepidopterix
Phalacropterigini
180) Hfl sc mit rr lang gestielt, ebenso m2+m3, DZ in
beiden Fl sehr breit, Vfl 10 DZ-Adern, r2+r3+r4
gestielt, auch m2+m3 gestielt. Sack breit, kugelig
mit quer liegenden Halmen belegt. (Erst aus
Tadschikistan bekannt). Eopsyche
Hfl sc frei oder durch Querader mit ır
verbunden. 181
181) Vfl mit 9-10, Hfl mit 6 DZ-Adern. (P. bruandi 5-6
DZ-Adern, m2+m3 lang gestielt oder ganz ver-
schmolzen). 182
Vfl mit 9, Hfl mit 5 DZ-Adern. Loebelia
182) Robuste Falter, Augenabstand 1-2 mal Augen-
höhe, Augen kleiner als Kopfhöhe (Abb.40) 183
Zarte Falter mit breiten Fl und grosser FI-
Fläche, Körper schlank, Augen sehr gross,
so hoch wie der Kopf, Abstand kleiner als
Augenhöhe (Abb.39). Säcke wirr mit Pflanzen-
teilen belegt. Sterrhopterix
183) Vfl stark gerundet mit einspitzigen Schuppen der
Klassen 1-2 (Abb. 18). Ant KZ nur beschuppt,
ohne Bewimperung, äusseres Ende meistens
deutlich abgeflacht (Abb.44). Abdominalsternite
4-6 T-förmig (Abb.42). Augenabstand etwa 1-1,5
mal Augenhöhe (Abb.40). Sack quer mit runden
Grasstücken belegt, ohne äussere Umspinnung.
Megalophanes
Vfl mit spitzem Apex und kurzen, ein- bis mehr-
spitzigen Schuppen der Klassen 1-2 (Abb. 17)
und Klassen 2-4 (Abb.18). Ant KZ beschuppt und
bewimpert (P. bruandi keine oder nur mikros-
kopisch sichtbare Wimpern), äusseres Ende im
Querschnitt rundlich (Abb.45). Abdominalsternite
4-6 drei- oder rechteckig (Abb.43). Augenabstand
gegen zwei mal Augenhöhe (Abb.40). Sack quer
belegt, mit äusserem Hüllgespinst (P. praecellens
und P. graminifera sind nur schwach umsponnen).
Phalacropterix
Apteronini
190) Nur eine Gattung
280
Apterona
1+2 KR
u
4 w\
5 any
6 RZ
Ve CEE
8 Mr
Abb.43: Abdominal-Stemite (links)
und Tergite (rechts) von
Phalacropterix apiformis.
Abb.44: Antenne von Megalophanes
mit beschuppten Kammzähnen, ohne
Bewimperung.
(Nach HÄTTENSCHWILER 1992)
Abb.45: Antenne von Phalacropterix
mit beschuppten und bewimperten
Kammzähnen.
(Nach HÄTTENSCHWILER 1992)
Abb.46: Antenne von Apferona spec.,
die Kammzähne sind deutlich
abgeflacht, stark beschuppt, ohne
Bewimperung.
a = Apterona helicoidellaf. crenulella
b = Apterona nylandert
(gez. E. TRAUGOTT-OLSEN).
Schlüssel für Weibchen. (Bis Tribus)
1)
2)
3)
4)
5)
6)
Voll gefliigelt und flugfahig oder mit reduzierten
aber noch gut sichtbaren, beschuppten Flügeln. 2
Ungefliigelt, Flügel auf kaum sichtbare Lappen
reduziert oder ganz fehlend. 7
Postvaginalplatte mit langen, nach hinten gerich-
teten Dornen. Antevaginalplatte mit feinen,
kurzen und locker stehenden Dornen (Abb.3B)
Kopfplatte der Puppe mit 2-3 Borstenpaaren
(Abb.1), Puppen Abdominalsegmente mit dorsa-
len Dornenfeldern (Abb.4A). (Bei Eotaleporiini
ist das dorsale Dornenfeld reduziert und oft nur
als nach hinten gerichtete Reihe erkennbar). 3
Postvaginalplatte ohne Dornen, Antevaginal-
platte mit dichtem Feld von langen, nach hinten
gerichteten Dornen (Abb.3A). Kopfplatte der
Puppe mit 4-5 Borstenpaaren (Abb.2), wovon
1-2 auf dem Scheitel; auf mehreren Abdominal-
segmenten der Puppen zwei Dornenreihen
(Abb.4B). 4
Vorderflügel hell und dunkel gezeichnet, Fl
Spannweite grösser als 8 mm. Puppen-Kopf-
platte mit 2 Borstenpaaren. Naryciini
Vorderflügel einfarbig grau, Fl Spannweite
5-6 mm. Puppen-Kopfplatte mit 3 Borsten-
paaren. Eotaleporiini
Kopfplatte der Puppe mit 5 Borstenpaaren,
wovon zwei Paare auf dem Scheitel (Abb. 2),
Kopfplatte mit höcker- oder rippenartigem
Langswulst zwischen den Ant Ansätzen. Ant
oft fein gezahnt. Kraftige Falter mit dunklen,
meist einfarbigen oder nur schwach gezeich-
neten F1. Typhoniini, 7yphonia
4 Borstenpaare auf Puppen-Kopfplatte, ohne
Wulst. 5
Vfl 9-10 DZ-Adern, kräftige Falter, Fl graubraun,
oft mit unregelmässig eingestreuten hellen und
dunklen Flecken. Penestoglossini
Vfl 7-8, selten 9 Dz-Adern; feine, zierliche Falter,
Fl gelb und braun-schwarz gemustert. 6
Vfl mit 8-9 DZ-Adern. Placodomini
Vfl mit 7 DZ-Adern, Ant ringsum beschuppt,
Scapus mit langem Haarbusch (Abb.6).
(incertae sedis). Eumasia
Abb.l:
alpestrella mit 2
(Pfeil).
Puppen-Kopfplatte von P.
Borstenpaaren
Abb.2:
Dissoctena
Puppen-Kopfplatte von
granigerella mit 5
Borstenpaaren, wovon 2 auf dem
Scheitel (Pfeil)
> i 2
st = /Postvaginalplatte
/
|
AE)
=}
DR
Abb.3: Umgebung der Genitalöffnung
der Q von:
A = Typhonia ciliaris,
B = Diplodoma laichartingella
Abb.4: Abdominaltergite der Puppe.
A = Domenfeld, B = Domenreihen.
(Aus: "Pre Natura - Schweizerischer
Bund für Naturschutz (Hrsg. 1997)
Schmetterlinge und ihre Lebens-
raume, Bd. 2", gez. W. ETTMULLER)
281
Many
Abb.5: @ von: A = Dahlicini, Afterwolle nur ventral am Segment 7, B = Taleporiinae und Typhoniinae,
Afterwolle als Kranz um das ganze Abdomen auf Segment 7, C = Psychinae, Kranz auf Segment 7, D =
Epichnopteriginae, starker Kranz auf Segment 7 und schwächere Kränze auf den Segmenten 2-6, E =
Oiketicinae, Anordnung wie bei D
7)
8)
282
Ant und Beine vorhanden, Gliederung deutlich
erkennbar, Zahl der Tarsenglieder oft reduziert,
aber meist vollstandig. Mit Ausnahme der
Epichnopteriginae verlassen sie den Sack zum
Anlocken der © und zur Kopula. 8
Ant und Beine fehlen, oder sind auf kleine
Stummel von maximal 2-3 Gliedern reduziert.
Das © verlässt den Sack nicht. 16
Abdominalsegmente der Puppe mit je einem
dorsalen Dornenfeld (Abb.4A), Kopfplatte mit
2 Borstenpaaren. 9
Abdominalsegmente der Puppe mit meist zwei
dorsalen Dornenreihen (Abb.4B), Kopfplatte
mit 4-5 Borstenpaaren. 10
Afterwolle auf dem Abdominalsegment 7 nur
ventral (Abb.SA). Dahlicini
Afterwolle auf dem Abdominalsegment 7 als
Kranz rings um den Körper (Abb.5B). Taleporiini
Puppen-Kopfplatte mit 5 Borstenpaaren, davon
zwei Paare auf dem Scheitel (Abb.2).Typhoniini
Puppen-Kopfplatte mit 4 Borstenpaaren, davon
ein Paar auf dem Scheitel. 11
Legeröhre lang, ausstreckbar, oft so lang wie
der restliche Körper, zum Teil stark sklerotisiert.
Nur ein Kranz von Afterwolle am 7. Abdominal-
segment (Abb.5C). Q verlässt den Sack zum
Anlocken der © und zur Kopula.
(Pseudofumea ?). Psychinae
Abb.6: Fühlerbasis des Q Fühlers
von Eumasia, rechts Ausschnitt, die
Geissel ist ringsum beschuppt
Abb.7: Puppen-Kopfplatten der 2
von Epichnopteriginae: A = Rebelia
kruegeri, B = Epichnopterix plumella,
C = Stichobasis helicinoides
Abb.8: Oiketicinae: D = Canephora
unicolor, E = Ptilocephala plumifera
12)
Legeröhre kürzer, wenig sklerotisiert, kann
kaum oder nicht ausgestreckt werden. Afterwoll-
kränze auf mehreren Abdominalsegmenten (oft
abgeschabt und undeutlich sichtbar), wobei der
Kranz auf Segment 7 am stärksten ausgebildet
ist (Abb.5D, E). Q verlassen den Sack nicht,
höchstens nach der Eiablage. 12
Puppen-Kopfplatte mit deutlich erkennbaren
Fühlersc .:ıden (Abb.7A, B). Stichobasis
hat schon weitergehende Verwachsungen.
(Abb.7C). Epichnopteriginae
Puppen-Kopfplatte stark verwachsen, einzelne
Teile wie Fühlerscheiden kaum noch erkennbar
(Abb.8D, E). 13
Kopf klein, vom Prothorax deutlich überragt
und teilweise verdeckt (Abb.9). Metisinae
Kopf vom Prothorax nicht überragt, gut sichtbar
(Abb. 10). 14
Kopf stark vorstehend (Abb.11, 12). 15
Kopf flach, nicht oder kaum vorstehend
(Abb. 10). 16
Kopf stark nach vorn-unten eingebogen, Körper
gestreckt (Abb. 11). Phalacropterigini pp.
Sterrhopterix. (Eopsyche ?)
Kopf stark nach vorn-unten eingebogen, Körper
stark eingekrümmt (Abb.12). Apteronini
Puppenhülle schwarz, an beiden Enden braun,
(P. apiformis mındestens schwarze Interseg-
mentalhäute). Phalacropterigini pp.
Ganze Puppenhülle hellbraun. 17
Beine stummelförmig. Acanthopsychini
Beine fehlen ganz oder sind nur noch als Punkte
oder kleine, fleischige Zäpfchen erkennbar.
(Unterscheidung von voriger Tribus oft
schwierig). Oreopsychini
Abb.9: Vorderes Körperende der 9
von: a= Metisa plana,
b = Brachycyttarus fasciatus,
c = Pteroma pendula
Abb.10: Vorderes Kôrperende des Q
von Canephora unicolor
Abb.11: Q von Sterrhopterix fusca,
Kôrper gestreckt
Abb.12: © von Apterona helıcoidella,
der Kôrper ist stark gebogen. (aus:
"Schmetterlinge und ihre Lebens-
räume Bd.2", gez. W. ETTMÜLLER)
283
Schlüssel für Puppen (Bis Tribus soweit môglich)
Die Anhänge der Puppenhüllen (Exuvien) sind oft etwas asymmetrisch ausgebildet, wenn
möglich mehrere Exemplare vergleichen ! Der Schlüssel ist mit Vorsicht zu gebrauchen, da
bisher nur ein Teil der Gattungen untersucht werden konnte. Ganz fehlen die
Dissoctenioidini, Placodomini und So/emasia.
Abkürzungen wie im Hauptschlüssel.
Scheitel
Borstenpaare
Antennen-
scheiden
Zi
Kopfplatte Kopfplatte
Rüssel-
scheiden
Labialpalpen-
scheiden
scheiden
1) © © Dorne auf den Abdominaltergiten in Fel-
dern angeordnet (Abb.1). Puppe tritt beim
Schlüpfen aus den Sack vor, dieser ist drei-
kantig. Kopf mit 2 Borstenpaaren. 2
= © © Dorsale Dorne in Reihen angeordnet
(Abb.2). Sack nicht dreikantig. Kopf mit 4-5
Borstenpaaren. 3
NER TERN ;
tre à
gtr tele,
rity fr nr r
MAMA dur 4
y Af "tay “ (A) à
1
i ut AA
2) © QScheiden der Labialpalpen bis zum Ende Abbe Don SR PA bdo-
parallel (Abb.3). | Naryciinae 13 minaltergiten der Puppen beider
= Q Scheiden der Labialpalpen am Ende Geschlechter. (Aus: "Schmetterlinge
divergierend (Abb.4). Taleporiinae 14 und ihre Lebensräume, Bd. 2", gez.
W. ETTMULLER)
3) Fl-Scheiden voll entwickelt. Puppe schiebt sich
beim Schlüpfen ein Stück weit aus dem Sack
hervor. (Hieher alle © sowie die Q der in bei-
den Geschlechtern geflügelten Gattungen). 8
- Fl-Scheiden reduziert (Hieher nur 2). 4
nr LIT ES
En 17
Zi. HNMR \CA
4) Die Puppe tritt beim Schlüpfen aus dem
Sack vor. Labialpalpenscheiden kurz, dreieckig,
wenig länger als die Rüsselscheiden (Abb. 5).
Vordere Reihe der Tergaldornen auf den |
; : : minaltergiten der Puppen beider
Abdominalsegmenten nach hinten gerichtet, Geschlechter. (Aus: "Schmetterlinge
hintere Reihe nach vorn. (excl. Dissoctena). und ihre Lebensräume, Bd. 2", gez.
Kopf mit 4 oder 5 Borstenpaaren, davon 1-2 W. ETTMÜLLER)
om PTTSELLLILLIEE
“ re
Abb.2: Domenreihen auf den Abdo-
284
5)
6)
7)
8)
9)
10)
11)
auf dem Scheitel. Q Typhoniini p.p. 15
Puppe bleibt beim Schlüpfen im Sack. 5
Ant-Scheiden überragen den Rand des Kopf-
schildes deutlich (Abb.3, 11A-C). Fl-Scheiden
noch vorhanden. Q Psychinae 16
Ant-Scheiden nur etwa so lang wie der Kopf,
manchmal kaum noch erkennbar (Abb.6). 6
Fl-Scheiden noch vorhanden. Ant-Scheiden
manchmal noch deutlich erkennbar
(Abb.11, D-H).
Fl-Scheiden fehlen (rudimentär bei
Oiketicoides). Stets starke Verschmelzungen
im Bereich des Kopfes, die Ant-Scheiden sind
kaum noch erkennbar (Abb.12). 7
Puppensack an einem Faden aufgehängt. Kopf
und Prothorax der Exuvie auffallend dünn und
schwach sklerotisiet. Q Metisinae
Puppensack auf der Unterlage festgesponnen
oder frei am Boden liegend. Ganze Puppe gleich
stark sklerotisiert. Q Oiketicinae
Ant-Scheiden an der Basis breit, dann
allmählich zugespitzt (Ant dkz).
Hieher nur © ©. 10
Ant-Scheiden gleichmässig schlank
(Ant einfach). 9
Labialpalpenscheiden relativ lang, um ein mehr-
faches länger als die kleinen Rüsselscheiden.
(Abb.8,10A). Oo Q Eumasia
(Unterschiede gegen vorige zu prüfen, liegt uns
nicht vor). Placodoma
Q Labialpalpenscheiden deutlich kiirzer, nur
wenig länger als die Riisselscheiden.
Penestoglossa
Kopf mit Stimhécker (Abb.5), mit 5 Borsten-
paaren, davon 2 auf dem Scheitel.
oO QTyphoniini p.p. 15
Kopf ohne Stirnhöcker, mit 4 Borstenpaaren,
davon 1 auf dem Scheitel. 11
Puppensack an einem Faden aufgehängt.
oO Metisinae
Puppensack auf der Unterlage festgesponnen
oder frei am Boden liegend. 12
Q Epichnopteriginae 17
Höhe des
Kopfes
Lange der
Labialpalpen-
scheiden a
Länge der
Fühlerscheiden
Abb.3: Kopf-Brust-Schild einer 9
Puppe einer Naryciini
Rüssel-
~ scheiden
\ Labialpalpen-
scheiden
Abb.4: Kopf-Brust-Schild einer Q
Puppe einer Taleponini
Hocker
Labialpalpen-
scheiden
dreieckig
Abb.5: Kopf-Brust-Schild einer 2
Puppe einer Typhoniini
Abb.6: Kopf-Brust-Schild einer 9
Puppe einer Epichnopterigini
285
Abb.7: Kopfschilder von © Puppen der Naryciinae und Taleporiinae. A = Diplodoma laichartingella
(Beinscheiden nicht gezeichnet), B = Narycia duplicella, C = Dahlıca lichenella, D = Taleporıa tubulosa,
E = Pseudobankesia alpestrella, F = Bankesia conspurcatella, G = Brevantennia siederi.
12) Sack schneckenhausartig gewunden.
oO Apteronini
- Sack nicht schneckenhausartig.
© Typhoniinae pp. (Penestoglossini)
® Psychinae,
Oo Epichnopteriginae,
oJ" Oiketicinae (ohne Apteronini)
(sichere Trennung der Unterfamilien derzeit
nicht möglich).
Naryciinae
13) QLabialpalpenscheiden viel länger als die
Rüsselscheiden, etwa so lang wie der Kopf
(Abb.3, 7A, B). Fl-Scheiden voll entwickelt.
Naryciini
- Q Labialpalpenscheiden ebenso lang wie die
Rüsselscheiden, kürzer als der Kopf
(Abb.7C, G, 9). Fl-Scheiden verkürzt. Dahlicini
Taleporiinae
14) QFl-Scheiden voll entwickelt. Eotaleporiini
- Q Fl-Scheiden verkürzt, Kopfplatten
Abb:7D, E, FE). Taleporiini
286
Riissel-
scheiden
kurz
Labialpalpen-
scheiden lang
Abb.8: Kopf-Brust-Schild einer Q
Puppe von Eumasia pariefariella
Hohe des
Kopfschildes
Lange der
Labialpalpen-
scheiden
Abb.9: Kopf-Brust-Schild einer 2
Puppe, Beispiel einer Dahlicini
Abb.10: Kopfplatten von 9 Puppen der Gattung Eumasia, der Typhoniinae und der Peloponnesini.
A = Eumasia pariefariella, B = Penestoglossa dardoinella, C = Typhonia ciliaris, D = Dissoctena
granigerella, E = Peloponnesia glaphyrella.
Typhoniinae (Abb. 10)
15) © © Kopf mit 5 Borstenpaaren, davon 2 auf
dem Scheitel. Auffälliger Stirnvorsprung
(Hocker) zwischen den Ant Basen (Abb.5). Fl-
Scheiden © rudimentär oder (Dissoctena) ver-
kürzt, oder voll entwickelt (7yphon1a).
Typhoniini
- Kopf mit 4 Borstenpaaren, davon 1 auf dem
Scheitel. Ohne Stirnhôcker. 9 Fl-Scheiden
vollständig (Zumelasina ?). Penestoglossini
Psychinae
16) © Ant-Scheiden etwa gleich lang oder wenig
länger als der Kopf (Abb. 10E). Peloponnesiini
- Q Ant Scheiden viel länger als der Kopf
(Abb.11 A-C). Psychini
Epichnopteriginae
17) © Beinscheiden vorhanden jedoch stark rück-
gebildet, Gliederung selten noch sichtbar. Ant-
Scheiden kurz, überragen den Kopf kaum.
Wenn Ant-Scheiden mit Kopf verschmolzen,
dann ist dieser wesentlich breiter als hoch
(Abb. 11D-G). Epichnopterigini
- © Kopf etwa gleich breit wie hoch. An Stelle
der Beinscheiden sind nur noch Ausstülpungen
erkennbar. Ant-Scheiden mit Kopf verwachsen
(Abb. 11H). Stichobasini
Abb.11: Kopfschilder von @ Puppen
der Psychinae und Epichnopteriginae
A = Luffia lapıdella
B = Proutia betulina
C = Psyche casta
D = Byugis bombycella ssp. helvetica
E = Reısseronia magna
F = Rebelia kruegeri
G = Epichnopterix plumella
H = Stichobasis helicinoides
287
Oiketicinae © Q (Abb.12)
18) Sack schneckenhausartig gewunden,
etwa 2 1/2 Umgänge. Apteronini
- Sack gerade oder leicht gebogen.
Acanthopsychini
Oreopsychini
Phalacropterigini
Verkümmerte
Beinscheiden IE.
LEE
Abb.12: Kopfplatten von 2 Puppen der Oiketicinae. A = Amicta cabrerai, B = Canephora unicolor,
C = Phalacropterix praecellens, D = Oreopsyche tenella, E = Ptilocephala plumifera, F = P. pyrenaella,
G = Apterona helicoidella
Merkmals - Matrix
Diese Tabelle (siehe die nachfolgenden fünf Seiten) enthält die systematisch wichtigen
Merkmale für alle Gattungen. Deren Reihenfolge entspricht der Liste im I. Teil (SAUTER &
HATTENSCHWILER 1991). Die wichtigsten nomenklatorischen Anderungen sind jedoch
beriicksichtigt.
*** Bemerkung zum Merkmal "Legeröhre der Q Q":
L = Legeröhre lang ausstreckbar, stark sklerotisiert. K = Legeapparat klein, oft unauffällig,
nicht ausstreckbar, schwach sklerotisiert. 1/2 = Legeapparat wulstig, wenig langer als ihr
Durchmesser, nur schwach sklerotisiert, nicht ausstreckbar. 1/4 = Legeapparat wulstig,
kaum so lang wie dessen Durchmesser, nur schwach sklerotisiert, nicht ausstreckbar.
288
uaBunyewuy AT
D Se IS ep SS5e55 2
17
ne) E22 888355 = +8885 3
cee T © © © © © = COBDS ES
+ é nejs eindog Jepuy OM G55 vo0000 5 BONnNHDOH D £
ELLE EREHEREBEIE = CHENEIEIELE =>
Ot © © © © © © © © © O © © © © © & Ass
8 co
Ot “SHBMYONI =y‘“JOA=A ‘pje4=4 x yee
‘addng jne uauiopjesiog Pe NEE : es 2S 5
ayeldjdoy-ueddnd er
ne aleeduajsiog NN NANNNNN NAN €32
ES one ae on, LE ©
page eee | ss un LOS
be * ı ı 1 1 1 ' : : : 1 i ı ı 1 i ' Ao) = =
Zueb JUej=- Ziny=y DUE/=| = Ce ie
‘Sn99ES ‘|e}1UaD 2 0 6 DT cit comet 1 ise Scene =! = = ata
Diqidsiyew=W ‘biaidsule=e = seg@ =
"Bunddnyasagjsßn] EIENE EE EBENE pe) S{Slele a Qn ec
Jddnussequn=n oa tH OO
jddnyoseq=q “suuBZWIWUeY eset im ae ae. Ur Û CPL D? DIE ie fis a 3 2
Bluyezwweyjaddop=p 553232<00
Biuuojuepes=} JejunZ eee Se a = Re S556 55
3187 eueqoyosebuls at 2 5 eer f
eBn Wey ! 1 1 ! ' ' ! ' ' ' L ' O O © © Fr Fr
Z]]azjepIoosıg Jap sne Ulepy Soe 8200.
5 juezuy :jsBnjusjuH ooo LOLOONO © O © © ON” © DOSES
djjezbuequy = 2 = =
D 1e6nlLepion + +: + +++ 11. + +++ 1 292257
3]9Z eueqoyosebulg = 3 S9RRS5TLS
Je6nuepion ss ay yuh 7g 0 8 ' pete se a + “= = = 2 3
2]|2Z|2PI09SIQ Jep sne 2 2 2 ==
wiapy |yezuy ‘JeBnyJeplo, 200 oo ro) POOROO a
aulods JUEZUY Le ro
eIQI | -H wen +++ + + wero fF eR KE ++
aulods [yezuy :
BIG -N NNN NNNNNN ' NANNNNN ®
SSOID=5 ‘US =} FD Sr
esAudidz ‘eIqiL-A OO FT DT A ru Si ave ie 22 2282 2 © o 2
. . . — fo
16PSIS Jap [UEZUV=IUEZ mao wanna D Hem Sou
ZINY=} uadjed see ar I Gp Gr sp sr oF + + a = ©
Cc
9 Ÿ ©
3
U8||8290 Hit no a, + Mr RO
ps a na mm m mn en oe oe oe oe oe mn a ee ee ee ee ee ee eue ee eme ue ue ee ee eue ee ee a u = = =
® _
u8l1820 + ' ' L ' LU ' ' 1! + ' ' ' ' ' ' ul = a
Palo Jap [UEZUV=IUEZ DI = © © coe
zıny=4 usedjed CEST +++ + + + bé (pti = © =
TzInyIon=p/L Mza C/L a=
xxx ZNY=>Y ‘"Bue|=7 ‘2140186837 == pS St = = SS — ‘© = ©
aZUely SJalyaw=yy ÊE =
eNUSA=A "ZUEIY=Y S]l0omMISyY “<x = > Se > x a MEER pie
addnd Jep ue or
oO
uapleuosiajyun4 +++ + + + + + + + + + + + + + 238
= (0)
Ot 1elun 4 + + + + + + + + + + RÉ ee Din
~eddnd Jep E35
Ot uapiayosuiag +++ + + + + + + + + + + + + ESS
575
auisg + + + + + + + + + + unsere ES
: ©
addnd Jap >a 2
uepleyosjeBbn|4 + + + + + + + + + + + + + N S =
186n]- aP SP SE ie gine fe hy a + QMO te MCP AD Own
25
© © = ~
Le) e OD = LL AV) U
= See oc S Q Q < 5 >
LL = = 9
See eax < T Sa à Ÿ 2 A = x
eISOESASO > x IS À © OÙ, B= La a of Sc =
SOSESLS ais es 85 CG E55 EL a SukSG
ex DE Ce te — cm oO = & Ÿ © À 2 O © © RSS =
5£=09256%0 OLRIT SSSITSS AFR 08408
mn EESSS EDÉSSUS URS SRSZESS
_ + — =
foie al oy olsen SS ISIS! FES BERHTSS
eo ve > ZZQSZA AUQQUAQ fru -TRAQgHKY
289
Aedeagus stark gebogen, hufeisenförmig
Puppenkopfplatte mit "Höcker"
Labialpalpen kurz, 1 (-3) Glieder
Labialpalpen kurz, 3 Glieder
Aedeagus gerade (gestreckt)
=
*4
45
*6
ay!
Arten kombiniert mit kleiner Epiphyse
Ein Borstenpaar auf dem Scheitel
**= Zwei Borstenpaare auf dem Scheitel
Labialpalpen 3 Glieder hängend
G*= Eumasia trägt einen Borstenpinsel, bei einigen
“1 = Labialpalpen 3 Glieder, nach vorn gestreckt
"2
À © le
20) ese Fa MN Se QS (oi
D E de eee =
+ é We}s ejndod Japuy oM\ © Oo a © O2 o © ©
= = = = e=e= =
Ot (0) © © © © © © ©
Ot ‘SHEMYONM =Y JOA=A‘Pie4=4 = = Sr
‘addnd jne usuJopjesiog
sperddoy-usddndg FE
jne aleeduajsiog = = in
usays|eulWopay g We 18929 tin, l'OS
Zueb }|Uaj= - Ziny=4 Duej=| cn
‘SN29ES ‘jeyUaS ' x x = <x
DIqIdsIyewi=W ‘bizyidsule=e
‘Bunddnudseqjebn|4 ! = E EEEE
}ddnyosequn=n =
jddnuoseq=q :suyezuwey : os = eho) net
bluyezuiweyjoddop=p
Biwiojuepe]=] ‘Je|un + — = T D T TD DU TU UTD
3]9Z eueqoyosebuls
JoBnjulsjuiH ' ! ! ' ' ! ' ' ' ! ı
3jlazjeplIoosıq Jop sne Ulepy
©) lyezuy sÖnineyug © un wo o w © NN © © ©
te) SEE N + ee + + + + +++
186n1ep1on
2127 sueqoyosebuly 7 R FRET
186n1epioA LR
82e PI09SIQ Jep sne @ as = = SES
wapy |yezuy ‘j26nIL12ploA © = sers
SUIOdS jyezuy +
e1qIL-H + + SS + +++
dulods jyezu
EN N NN NN N NNNNN
SSOID=5 UeN=Y ¥
asAydıdg ‘eiqi|-A O 00 OO : & 7 OE
Tapal|S Jap jyezuy=|yez n ro) (57) EEE
Ziny=) usdied + + + GP Se Ge
Uu9|1890 0 Ù ' Cau tisch)
Us||S9O 1! ' ' ' ' ' ' '
Tapal|d Jop jyezuy=|yez om = Go) = x
Zıny=y uadjed + + + + ı +
3Z21NH18A=ÿ/L MZq Z/L
ur ZINY=Y ‘Buel=7 ‘asyquebeq — = = = os
EM EE EME")
JENUSA=A "ZUBIY=Y 'S]|0OMISYY x < Se
eddnd 19p ue x = A:
uapleyosieiyn4 + ET
Jejun + + + + + + + + + + +
Ot "addnd 12p
uapieyosuleg + + + + + + + + + +
Ot allog + + + + + + + + + +
5ddn Jap
uspieuos|eBni + + + + + + +
je6ni4 + + ot + er
‚2 JS;
© 85 Af WwW
no) c Oo = < — = WY
Oo as = we =
(= = Z — ANY} — ®
eS Re Ol 5 2 an mon SB
Dec 50V SES O1 , ZEIS CS 2 ne
SODESSSE DES ‘an ZIP 58 ERHLIS
Zzz-. S.-=-c£c2 77. co fo) = © OL2a%S its eon Du
ec To O TD oN = GO o Q S Q ON
© © 2 5 62 SE 089 tHE IV oS 28SueS
Ste Seah hee 35 © & À RCE RTE LS à © 0 À
i Ul leer oN OSS S SG. oo S895 oo
+: = > DER zum Freud SS FRSUUS
290
uabunyewuy -NANTNE torte Po Luwuwuw m
* *£ + © + + CT CC ST; nn x in Ri ie eer +
(ob) —
IEEE xx a ©
> ee ee
i é REIS B|NdOD Jepuyy OM eee Le DD ONU 26 =
Or TTT TG oo EEEEEE EEEE Eo Oo
zg
é : ©
Or SUEMHONI =N JOA=A‘piej4=4 rrerrer X mr X O24 02 Ss ©
:sddnd jne usulopjesiog 22227 7 AA HU Ghee TG 5
ayeldjdoy-usddng nm =
jne eJeedus}siog +++ + + +++ + + ++ Su E ©
po nn nn nn ee = ‘©
JU18}S[EUIUOPa\, 8 ie leqeS ı ! ı 1 ! 1 1 1 i : : 1 ı 1 © =
= [en
Zueb JU2J=- Ziny=4 Duej=| = 93 Me
‘SNn99ES ‘jeyiueD SNSGNGNGRZ opel x NICE ME NZ x D & ~~
DIMidsiyew=W “bDIqIdsule=e EE © os
-‘Bunddnyoseq|ebn| SE EEE E ESovo D D D © © = se
jddnussequn=n 22 iS EE
jddnyoseq=q :suyezwwey 35353532 = Baas = oa BEE DS
Bluyezwweyjeddop=p See
Hiwwojuaepej=} ‘1e|un+ TD TU TU TU TU TD TD DT DUT TUTUUTUUTUUUU vost
allez eueqoyosebuly 5 g De
186nILeJuIH ! ! ! 1 ! ' ' ' ! ! 1 ! 1 ' ' 1 1 ! ' = = & =
D allezjeploosiq Jep sne Ulepy Tie Kap Leen © 2= =
jyezuy jjeGnyeyuiy oS ig wow LN) LN) LN LN) LN LN LN LN ND LN NI wo io = © S
de a]jezDUeYyUY . Ÿ 2 2
oBnjuspioA + + ! ' ' ı 1! ' ' ! ' ! ' ' 1 ı 1! ' ' 5 WwW ® =
2127 eueqoyosebuly En Secs =
j@BNWepsoA ee oc or + +++++tıt+r++T + Does
Z]lezjepIossıq Jep sne =
Di ae a ie oo QO o © © © © © ss ADDO o Sz>2n
ulapy jyezuy '|oBnjuopIoN © Re
aUJOdS |yeZuy TRES
eIqIL-H +++ ++ Rss ss + + N * + + &
[=
2U1OdS |yezuy ©
eiaql | -W NNN N N NN NNNNNNNNNN NS N =
SSO1B=9S ‘UI2 = 2
esAydida ‘eiqi]-A 00000 MC GES Em. 1 ' 9
Tapa Jap |YeZzuy=|4eZ ©
oO
Cc
U9|1890 ' ' L ! ! + ! , L L L Li ' ' ' L ! 1 ' =
[e)]
el ee ee ee one ee m a ee ee oe mn ame mm a oo Üben ee ee ee ee ee ee ee ee ee ee ee ee an eu ee ee an ee am ee mme a an an =
Uell820 1 ! ! ı ! : ' ' 1 ' ' 1 1 ' ! ' | ' =
Jopall9 Jap |yYezuy=|YeZ 2
ZINY=Y uadjed UT OT erh = 4 Xie) “uy QUE ' ' ' ©
JZMYIOA=p/L MZ CIE SEES: Sg =
+ ZINH=M ‘Buej=7 2110186987 1 — See RE “au =
aZUeIY 2101UeUI=N c D
BJUSA=A ‘ZUBIY=y 'SjlomIayYy XYXKXYXX xx XXxYvY>2 = 22 x S
addnd Jep ue oD
uspleyosiajyun4 35 ar SP an Sr FETE te op Rr oF or + ' ' =
oO
SEITE oe er Se er Ir ar GP aR Oe = f 1. 0 = E
( # sdand jsp a
© =
Ot auieg + +++ + + + +++ +. eee = =
addng op co
uapieuos|e6n]- +++ ++ + + + + u + — <= of 8
P5ES
ER 1 1 1 1 1 1 ! 1 1 i] ' ' 1 1 1 1 1 = © o =
u a u a m ed a u m a m u u a eS u a a m u a a u a aa a aa a a a a a ana u aaa m u m a oO = =
z085
u O © = ©
Z = ec
= = ~ En E [e] = ®
® os O ==> joa)
D ed = = ooo...
Sorge =e = He 9% 2205
= o & = 3:
9259520 _ —+ LI nos Ee d 4 & À — ŒÉc<
2252; 38V < = OAS TR ANUS d EN 0958
sOdveSagre zZ Ge tete Se SOC CES CINE nH UD. &
SLDESSS- = Oe Ee ISS Se ics Sg UR Soe UN 0 05 D
SER SES ES TE Bwedswse@ oss CO, S@SSVSVHEegg 22988332
sS92>5352 OSERTSSSISF SPS FESvssHssssess 28
> SE À SES IN So SS Ss Ss ECS CUT
nt Il LAIT HOasSlrg® OOH RaRDISDTunnOQS SSL
ote > Ad ITU GAC BuosRrESraeaeaecysS FHIrHKLF
ZN
uoßunyuswuy
‘Oo PET N? F EE
© PARLE Oveveveweruue w~wuevvveuvv~
rit SSee Ss8eesss eeeesees
+ e RER PBEM DOW CONDNNDNDD DOM
Or EEEE SEEEEEE EEEEEEEE
“SHEMINI =M'IOA=A ‘Pjej4=4 OS Om fag (ag (0c [oe re WO O46) NE
Or -eddnq jne ueu1op|esioq A 22772 > Pr eee
spelddoy-usddnd
jne e1eedue}siog NT +++ vy owt +++
JUISJSIeUIWIOPqY g WE jaqed
ZuUeD }jU®}= - Ziny=4 Duej=|
‘Sn929ES ‘|eJU29 ' 1 SAN
DIqIdsiyew=wW Biz}dsus=S =e
. ‘Bunddnyoseq|abin|4 o Ee © ©
jddnyssequn=n
jddnyoseq=q :suyezwwey 223 2
bluyezuuexeddop=p
Biuuojuapej=) JejunZ 1s} Te} 12) ie) nef gesasi 1s} 19) 19) 12} tells) 79) 12) 121 79) 72) etre te
aljez eueqoyosebuly
186nuejuIH AP of oO oO eo wo a a ce of OP eee
2||2ZJ2PI09SIQ Jap sne UJOPY
Cres
Iyezuy e6nejuiH
e|ezbueuuy
Je6ny1epion
39Z euUaeqoyudsebulg
JeBnruepion
2||2Z|2PI09SI( Jap sne
ulepy |yezuy ‘86n|HeP10A
eu1odS jyezuy
e1qI1-H
ausjods |yezuy
eIqIL-W
SSOID=5 ‘UIS|}=M
esAudida ‘eiqi1-A
TapallS Jap |yYezuy=|4eZ
Ziny=x uodjed
U8|820
U8|l820
18P8IIO Jap |YeZUY=|Ye7
Zinÿ=} uadjed
JZ1NH18A=ÿ/L MZ C/L
xx ZINY=Y ‘Buej=7 314019837
azuely SJalysuı=yy
‘|BAJUSA=A "ZUEIY=Y ‘S||OMISYV
addnd Jep ue
uspleyosia|4Ns
ÊULE
addnd Jep
uapleyosuieg
auleg
eddnd Jep
uaplayosjebin|4
fehlt ganz oder
vorhanden, gut
sichtbar
weitgehend
r = rudimentär noch
variabel
nicht bekannt
+ = vorhanden
V
20
10
10
9
K
K
K
M
M
M
Eumetisa
Brachycyttarus
Pteroma
METISINAE
Metisa
Metisini
OIKETICINAE
Acanthopsychini
Amicta
Oïiketicoides
Eumeta
10
B-10
Manatha
Urobarba
Nipponopsyche
Mahasena
Ptilamicta
Acanthopsyche
Canephora
Bambalina
Pachythelia
Auchmophila
Kotochalia
Chaliopsis
5-6| +
Chalioides
Aspina
Antennen teilweise sehr schwach beschuppt
Aderung variabel, EZ in Vfl und Hfl oft undeutlich,
sc + rr von Basis bis etwa Zellmitte verschmolzen
Hinterflügel sc / rr verschmolzen
*4
*5
*6
Paarung teilweise in Puppe, Hinterflügel sc / rr kurz anastomosierend
Hinterflügel sc ganz frei
und und vereinigen sich nachher
*1 = Sack an Faden aufgehängt, Hinterflügel sc / rr entspringen getrennt
"2
pi)
ueHunyiswuy
©
; Wey}s eindog jepuy o =
é HENS e| 2 }8pul} OM D D D ©
EEE =
“SHEMYINI =Y JOA=A‘pje4=J crore rerrer o
:sddnd jne uauJopjesiog === a ds >
syeldjdoy-usddng
jne e1eedus}siog +++ +++ + +
JUISJSJeUIWIOPqY g WE jsqea hub RUE +
zueb JUSj= - Ziny=4 DUEj=|
‘SNn292S ‘eue MS SI NER ON INS NE
BIzıdsIysw=Ww bigidsuls=s |
‘Bunddnudseqjebin Bee NR =
jddnysssqun=n
jJddnysssq=q :suyezwwey
Bluyezwweyjsddop=p
Biwlojuspe/=} JejynZ
2127 susgqoyasaBulg
JaBnjusjul} CI Le U 89)" 8
2]|2ZJEPIO9SIQ Jep sne Ulepy
Iyezuy 86ny1ejuiH
2|ezbueuuy
1e86n12p10A
319Z susgqoyassBulg
jsBnjusploA
3]laZzjepIo9sIg 18p sne
ulapy |Jyezuy '|sBnjuopIoA
SUl0dS |yEZUy
e1qI1-H PEUR 09°
auUl0dS |yezuy
eiql|-W BL eSitieray.& is 1
SSOID=5 USN=Y
esAudida ‘eig L-A nt ER, :
JEpal|D 18p |YeZUY=|YeZ
Ziny=4 usdjedg 1 75 ER '
Cro
UZ||SIO my ay te be Fare es 1
NEITERIe)
18p8I|9 18P |JyeZUy=|UEZ
mny=4 usdjed tome EEE -
J21NH18A=ÿ/L MZq Z/L
+ ZINY=Y ‘Huej=q e1uo186e7
azuely aJalyaw=yy
‘|BIJUBA=A "ZUBIY=Y 'S]l0mUSyY
addnd Jap ue
usplsyosis|yn4 pana 5 Ba
12|un+ ' ' ! ' ! 1 ' '
~addng Jap
Ot
uspleyosuisg ER
Ot
3uleg
sdand jsp
uapiayos|26n]4
Hinterflügel sc getrennt, Antennen sind speziell gebaut. Borsten auf Puppen-Kopfplatte oft verkümmert
Hinterflügel Aderung variiert oft. 5-7 Adern aus DZ wurden beobachtet
Copula bei einigen Arten in der Puppe
Hinterflügel sc teilweise anastomosierend
Hinterflügel sc frei
“1 = Hinterflügel sc / rr verschmolzen
22
EC)
*4
nO
*6
fehlt ganz oder
weitgehend
r = rudimentär noch
vorhanden, gut
sichtbar
nicht bekannt
variabel
Phalacropterigini
+ = vorhanden
Oreopsychini
Oreopsyche
Leptopterix
Ptilocephala
Megalophanes
Phalacropterix
Loebelia
Sterrhopterix
Eopsyche
Apteronini
Apterona
Vv
293
Dank
Den folgenden Herren sind wir zu Dank verpflichtet: Jean
Bourgogne, Paris (Vergleich von Tieren mit der Museumssamm-
lung in Paris, Beschaffung von Literatur); Erwin Hauser, Sierning,
Oesterreich (Beschaffung von Literatur und Uberpriifung von
Typenmaterial, Erprobung der Schliissel); Stefan Naglis, Moriken
AG (Erprobung der Schlüssel); Gaden Robinson, London (Be-
schaffung von Literatur); Ernst Traugott-Olsen, Marbella, Spanien
(Zeichnungen der Apterona-Fühler).
Literatur
BOURGOGNE, J., 1990. Un genre nouveau pour le Wattle Bagworm. — Revue
fr. Ent. (N.S.) 12(1): 18-20.
Cuao, C. L., 1982. Bagworm Moths, Feeding Habits of Larvae and description
of a new Species. — Acta ent.Sinica 25 (4): 436.
DE FREINA, J. J., 1989. Beitrag zur Bombyces- und Sphinges-Fauna Algeriens
und Tunesiens. Ergebnisse einer Frühjahrsexkursion mit supplementärer
Auflistung der Rhopaloceren- und Noctuiden-Nachweise (Insecta, Lepido-
ptera). — Entomofauna 10(6): 73-94.
DE FREINA, J. J., 1993. Pteroma langkawiensis sp.n., eine neue Psychide der
Unterfamilie Psychinae Boisduval, 1829 aus Südostasien. —
NachrBl.bayer. Ent. 42(3): 90-94.
DiErRL, W., 1971. Biologie und Systematik einiger asiatischer Psychidae-Arten.
— Khumbu Himal. 4(1): 58-79.
DierL, W., 1978. Revision einiger afrikanischer Psychidae-Gattungen mit
einem provisorischen Verzeichnis der bekannten afrikanischen „Makro-
psychiden“. — Mitt.münch.ent.Ges. 61: 16-63.
HATTENSCHWILER, P., 1992. Megalophanes turatii Stgr. neu für die Schweiz. —
Mitt.ent.Ges. Basel 42(2): 40-45.
KARSHOLT, O. & Razowskı, J., 1996: The Lepidoptera of Europe. A
Distributional Checklist. — Apollo Books, Stenstrup. — 380 p.
KozHANCHIKoy, I. V., 1955. Tschechlonostsy meschetschnitsy (sem. Psychidae).
In: Fauna SSSR. Nasekomye tscheschuekrylye 3(2). Moskau-Leningrad.
— 158 S. (Russisch).
KozHANCHIKOV, I. V., 1960, New and little known Asiatic Psychidae. —
Ent.Obozr. 39(3): 679-689 (Russisch).
Nye, I. W. B. & FLETCHER, D. S. 1991. The Generic Names of Moths of
the World. Vol. 6, Microlepidoptera. — Natural History Museum Publi-
cations, London. — 367 p.
Pro NATURA, 1997. Schmetterlinge und ihre Lebensräume, Bd.2, Psychidae —
S. 165-308.
SAUTER, W., 1956, Morphologie und Systematik der schweizerischen Sole-
nobia-Arten. — Revue suisse Zool. 63(27): 451-550.
294
SAUTER, W. & HATTENSCHWILER, P. 1991. Zum System der palaearktischen
Psychiden (Lep. Psychidae). 1.Teil: Liste der palaearktischen Arten. — Nota
lepid. 14(1): 69-89.
SEINO, A., 1976. Notes on Psychidae (IV), Nipponopsyche fuscescens Yazaki.
Yugato 63: 11-17 (Japanisch).
STYS, P. 1960. On the lepidopterous nature of the previously dipterous genus
Dahlica Enderlein, 1912 (Lepidoptera, Psychidae — Diptera, Fungivoroidea).
— Cas.ceské Spol.ent. 57: 76-83.
ZAGULAJEV, A. K., 1996. New and little known species of moths (Lepidoptera:
Psychidae, Tineidae, Pterophoridae, Alucitidae) of the fauna of Russia and
neighbouring territories. IX. — Ent.Obozr. 75(1): 117-131 (Russisch).
295
Nota lepid. 22 (4): 296-305; 01.X11.1999 ISSN 0342-7536
Zdravko Lorkovic (1900-1998):
short biography and scientific work
>
Situ cS en. h \ = a eat
Zdravko Lorkovié was an eminent biologist in world terms
and one of the greatest in Croatia in the 20‘ Century. He was
an entomologist and lepidopterist, taxonomist and ecologist, a
geneticist and experimental biologist; and, an expert in all these
fields. He was born in Zagreb, Croatia and spent the whole of
his life there. He studied Natural Sciences at the Faculty of
Philosophy, University of Zagreb, then became assistant in the
296
Mineralogical and Petrological Museum, under Professor F.
Tuéan, and later assistant at the Biological Institute of the Faculty
of Medicine under Professor B. Zarnik. He received his Ph.D
in 1928 and was for many years Professor of Biology at the
Medical and Veterinary faculties. At the same time he taught
zoology and entomology to students of the Agriculture and
Forestry Faculty, and genetics to students of the Natural Science
Faculty and to post-graduate students of the University of Zagreb.
From 1965 he was a regular member of the Yugoslav Academy
of Sciences and Arts (now, the Croatian Academy of Sciences
and Arts). He was a member of the Zoological Academy in Agra
(India), the European Lepidopterological Society, the Lepidop-
terists’ Society of the USA, the Entomological Society of the
Kingdom of Serbs, Croats and Slovenians, the Yugoslav Ento-
mological Society, the Croatian Entomological Society and the
Croatian Biological Society. He was, for many years, the chief
editor of the journal Acta entomologica jugoslavica and during
the last years of Entomologia Croatica. He was also on the
editorial boards of the journals Genetika, Periodicum biologorum,
Natura Croatica and Shilap. He published 86 scientific papers
(including three important summaries of congress reports), and
more than 50 professional papers, congress reports and obituaries.
For many Holarctic lepidopterists Lorkovié was, above all,
a highly respected taxonomist (Lorkovié, 1927, 1930-31, 1938,
1943, 1950, 1953c, 1955c, 1960, 1967, 1968, 1969, 1976a, 1985,
1989b, 1993a, 1998). As a butterfly specialist, especially in
Pieridae, Lycaenidae and Nymphalidae (incl. Satyrinae), he
described several new butterfly species, namely Leptidea lactea
Lorkovic, 1950, Erebia calcaria Lorkovic, 1953, E. nivalis Lor-
kovié & de Lesse, 1954, Pieris (napi) balcana Lorkovic, [1970].
He also described many subspecies, for example, Cupido argiades
tibetanus Lorkovic, 1943, Erebia styx trentae Lorkovic, 1952, E.
gorge vagana Lorkovié, 1955, E. stirius kleki Lorkovic, 1955,
Leptidea reali melanogyna Lorkovic, 1993. In making taxonomic
revisions, before the advent of modern sophisticated computer
methods, he established the foundations of distinguishing among
closely related and phenotypically similar species. He did so by
identifying discontinuities arising from the correlation of inherited
qualitative and quantitative characteristics (Lorkovic’s method
DOT
with estimation of total and partial transitions; Lorkovié, 1927,
1928, 1943) generated by reproductive isolation. At the same time,
he recognised the taxonomic importance of morphological dif-
ferences in non-functional parts of organs (Lorkovic, 1931, 1953a,
1955a).
Professor Lorkovié was one of the pioneers in the experimental
investigations of phenotypic plasticity of butterfly pupae (Lor-
kovié, 1929a) and of seasonal polyphenism among butterflies in
the temperate zone (Lorkovic, 1929b). From the time of his
dissertation onwards, he devoted practically the whole of his life
to the study of speciation. From the very onset of his scientific
work, it was clear that he supported the idea of evolution accepted
in its entirety today. He was cited by evolutionist Ernst Mayr
himself (1963) as author of a classic example of a complex
morphological, genetic and ecological analysis of sibling species
of butterflies of the genus Everes (= Cupido). In this work, dating
from the first half of the 20th Century (Lorkovic, 1928, 1938, —
1942, 1943), he gave firm support to the biological species
concept. Professor Lorkovié was one of the pioneers of cyto-
taxonomy, and was the first to report the number of haploid
chromosomes for more than 60 species of Palaearctic butterflies
(Lorkovié, 1941, 1952, 1966, 1968). He was the founder of the
hypothesis that through diffuse kinetochore-induced ploidy the
appearance of exceptionally large (Leptidea, Polyommatus) or
small (Erebia) numbers of chromosomes in butterflies could be
explained (Lorkovié, 1941, 1949). His great knowledge of butterfly
chromosomes and their meiotic behaviour (Lorkovic, 1974a,
1978) resulted in his being entrusted with the writing of a special
chapter about chromosomes and their role in systematics and
phylogeny in the book Introduction to Lepidopterology (Lor-
kovic, 1990) from the series of monographs The Butterflies of
Europe.
Professor Lorkovié introduced new methods of artificial but-
terfly copulation (Lorkovié, 1947, 1953a), thereby increasing the
experimental knowledge of phylogenetic relationships and the
pathways of microevolution in butterflies (Lorkovié, 1978, 1997).
In so doing, he demonstrated that, in nature, speciation occurs
in different guises. Two of Lorkovic’s examples are of special
interest. The Erebia tyndarus group and the Pieris napi aggregate
298
illustrate taxa that have only partially undergone the process of
differentiation through reproductive isolation into new species
(Lorkovié, 1953b, 1953c, 1957, 1958b, 1962b. 1989a). For such
taxa, he accepted and modified Mayr’s definition of the concept
of semispecies, and urged that the semispecies category be
accepted in international rules of zoological nomenclature (Lor-
kovic, 1955b, 1958a, 1962a; Kiriakoff & Lorkovic, 1958; Lorkovic
& Kiriakoff, 1958). This was eventually accomplished in nomen-
clature rule Article 6(b) for members of the aggregate (= Mayr’s
term ’superspecies’) of species or subspecies within a species
(ICZN, 34 ed., 1985). He also recognised the independent
existence of different reproductive isolation mechanisms (Lor-
kovic, 1958b, 1961b, 1978), and proved their independence of
total genetic diversity (Lorkovic, 1986).
Professor Lorkovic bequeathed a collection of about 40,000
butterflies to the Croatian Natural History Museum in Zagreb.
Half of these comprise a faunistic collection, mostly from the
neighbourhood of Zagreb and from Mt. Velebit in Croatia, as
well as from the Alps and the high mountains of the western
Balkans. Half are specimens from crossing experiments (mainly
between Pieridae from Europe, and with taxa from Asia and
North America). Preserved with them is their documentation.
The collection is kept as a special unit, with his microscope slides,
library, letters, photographic documentation, diaries and notes
in the Croatian Natural History Museum in Zagreb, where
offprints of his papers can be obtained. (e-mail: Martina.
Sasic@hpm.hr).
Chronological list of publications (co-)authored by Zdravko Lorkovic
1. Lorkovié, Z., 1923. Contribution to mineral deposits of Yugoslavia. —
Glasn. Hrvatsk. Prir. Drustva 35(1-2): 17-20 (in Croatian).
2. LorKkOVIC, Z., 1927. Leptidea sinapis ab. major Grund als selbständige
Art aus Kroatien. — Glasn.ent.druStva kr.Srba, Hrvata i Slovenaca. 2(1):
26-41, 2 Taf. (in Croatian, with German summary).
3. Lorkovié, Z., 1928. Analyse des Speziesbegriffes und der Variabilität der
Species auf Grund von Untersuchungen einiger Lepidopteren. —
Glasn. Hrvatsk. Prir. Drustva 39-40: 1-64, 2 Taf. (in Croatian, with German
summary).
4. Lorkovic, Z., 1929a. Gesetzmessigkeit in der Faltergrösse der jahreszei-
tlichen Generationen. — Glasn.Jugoslov. Ent. Drustva 3-4(1-2): 109-116 (in
Croatian, with German summary).
299
11.
[222
. Lorkovié, Z., 1929b. Unterschiede zwischen homo- und heterodynamer
Entwicklung bei den Insekten. — Jahrb. Univ. Zagreb: 283-297 (in Croatian,
with German summary).
. Lorxovic, Z., 1930. Dasychira grundi, eine neue europäische Art. —
Verh.zool.-bot.Ges Wien 80(1-2): 5-11.
. Lorkovié, Z., 1930-1931. Verwandschaftliche Beziehungen in der morsei-
major-sinapis-Gruppe des Gen. Leptidia. — Z.üst.Ent Ver. 14(6) (1930):
61-67, 85-88, 95-100, 109-111, 113-118; 15(1) (1931): 9-13, 37-39, 45-48,
2 Taf.
. Lorxovic, Z., 1931. Die Bedeutung der Form des Genitalapparates für
die Systematik der Lycaenini. — Glasn.Jugoslov. Ent. Drustva 5-6(1-2):
118-132 (in Croatian, with German summary).
. LORKOVIÉ, Z., 1932. Zugfalter und Winterschlaf. — Int. Ent.Z. 25(46):
466-471.
. LoRKovIc, Z., 1933a. Die Aufklärung der artlichen Zugehörigkeit der
Lycaena dubia Schulz. — Int. Ent.Z. 27(5): 55-58.
Lorkovié, Z., 1933b. Beiträge zur Ernährungsbiologie der Insekten. —
Recueil de trav. offert. à J. Georgévitsch: 163-176 (in Croatian, with
German summary).
Lorkovic, Z., 1938. Studien über den Speziesbegriff. I. Artberechtigung
von Everes argiades Pall., E. alcetas Hffgg. und E. decolorata Stgr. —
Mitt.münch.ent.Ges. 28(2): 215-246.
. Lorkovic, Z., 1939. Entomological investigations in Vardar valley. —
Ljetopis Jugoslavenske akademije znanosti i umjetnosti 51: 159-162 (in
Croatian).
. Lorxovic, Z., 1941. Die Chromosomenzahlen in der Spermatogenese der
Tagfalter. — Chromosoma 2(2): 155-191.
. Lorkovié, Z., 1942. Studien über den Speziesbegriff: II. Artberechtigung
von Everes argiades Pall., E. alcetas Hffgg. und E. decolorata Stgr. —
Mitt.münch.ent.Ges. 32(2): 599-624, 3 Taf.
. Lorkovié, Z., 1943. Modifikationen und Rassen von Everes argiades Pall.
und ihre Beziehungen zu den klimatischen Faktoren ihrer Verbreitungs-
gebiete. — Mitt.münch.ent.Ges. 33(2-3): 431-478, 5 Taf.
. Lorkovic, Z., 1947. Modes artificiels d’accouplement des papillons. —
Biol.Glasn. 1: 86-98 (in Croatian, with French summary).
. Lorxovic, Z., 1949. Chromosomenzahlen-Vervielfachung bei Schmetter-
lingen und ein neuer Fall fünffacher Zahl. — Rev. Suisse Zool. 56(4):
243-249.
. Lorkovié, Z., 1950. Neue ostasiatische Arten und Rassen der Gattung
Leptidea nebst Nomenklaturberichtigungen. — Biol.Glasn. 2-3: 57-76.
. Lorkovié, Z., 1952. Beiträge zum Studium der Semispecies. Spezifität
von Erebia stirius Godt. und E. styx Frr. — Z.Lepidopt. 2(3): 159-176.
. Lorkovié, Z., 1953a. L’accouplement artificiel chez les lépidoptères et son
application dans les recherches sur la fonction de l’appareil génital des
insectes. — Physiol. Comp.Oecol. 3(2-3): 313-320.
300
DR
23.
24.
25}
26:
Zi:
28.
29)
30.
3:
32:
38:
34.
89.
Lorkovic, Z., 1953b. Spezifische, semispezifische und rassische Differen-
zierung bei Erebia tyndarus Esp. I. Drei neue allopatrische Formen von
Erebia tyndarus Esp. und der Grad ihrer Fortpflanzungsisolation. —
Bull.Int. 10: 163-192. (Extract of Croatian version from Acad. Yougoslave
Sci., Cl.Sci. 294: 269-309). |
Lorkovic, Z., 1953c. Spezifische, semispezifische und rassische Differen-
zierung bei Erebia tyndarus Esp. ll. Differenzierungsgrad und verwand-
schaftliche Verhältnisse der europäischen Formen von Erebia tyndarus Esp.
— Bull.Int. 10: 193-224. (Extract of Croatian version from
Acad. Yougoslave Sci., Cl.Sci. 294: 315-358).
Lorkovic, Z. & DE LESSE, H., 1954a. Expériences de croisements dans
le genre Erebia (Lépidoptères Satyridae). — Bull Soc.Zool. France 79(1):
31-39.
Lorxovic, Z. & DE LESSE, H., 1954b. Nouvelles découvertes concernant
le degré de parenté d’Erebia tyndarus Esp. et E. cassioides Hohenw. —
Lambillionea 54(9-10): 58-67, (11-12): 78-86.
Lorkovic, Z., 1955a. Variability of the organs of the genital armature
in insects -due to their functional value. — Zbornik I.kongresa
biol. Jugoslavije, Zagreb 12.-15.V11.1953. — Biol.Glasn. 7: 234-235. (in
Croatian, with English summary).
Lorkovic, Z., 1955b. Semispecies a necessary new taxonomic category.
— Zbornik I.kongresa biol.Jugoslavije, Zagreb 12.-15.V11.1953. —
Biol.Glasn. 7: 236-237. (in Croatian, with English summary).
Lorkovic, Z., 1955c. Die Populationsanalyse zweier neuen stenochoren
Erebia-Rassen aus Kroatien. — Biol. Glasn. 8: 53-76.
LORKOVIC, Z. & DE Lesse, H., 1955. Note supplémentaire sur le groupe
d’Erebia tyndarus Esp. — Lambillionea 55(7-8): 55-8.
LorkoOVIC, Z., 1957. Die Speziationsstufen in der Erebia tyndarus Gruppe.
— Biol.Glasn. 10(1-2): 61-110, 2 Taf.
Lorkovic, Z., 1958a. Die Merkmale der unvollständigen Speziationsstufe
und die Frage der Einführung der Semispezies in die Systematik. —
Uppsala Univ. Arsskr. 1958: 159-168.
Lorkovic, Z., 1958b. Some peculiarities of spatially and sexually restricted
gene exchange in the Erebia tyndarus Group. — Cold Spring
Harb. Symp.quant. Biol. 23: 319-325.
Lorkovié, Z. & HERMAN, C., 1958. The genetics of morphism in Colias
croceus Fourc. from the surroundings of Zagreb. — Biol.Glasn. 11(1-4):
55-59.
KIRIAKOFF, S. G. & Lorxovic, Z., 1958. Proposed insertion in the “Règles”
of provisions recognising “superspecies” as a special category for the
classification and nomenclature of taxa belonging to the above group as
now proposed to be defined. — Bull. Zool.Nom. 15/B (case 57): 1024-1030.
Lorxovic, Z. & KIRIAKOFF, S. G., 1958. Proposed insertion in the “Règles”
of provisions recognising “semispecies” as a special category for the
classification and nomenclature of definite groups of taxa as now proposed
to be defined. — Bull. Zool.Nom. 15/B (case 58): 1031-1033.
301
36.
TE
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48
49.
50.
SL
32:
Lorxovic, Z. & DE Lesse, H., 1960. Recherches sur la distribution
géographique des représentants du groupe d’Erebia tyndarus Esper. Erebia
calcarius au Monte Cavallo au nord de Venise. — Boll. Soc.ent.ital. 90(7-8):
123-129.
Lorxovic, Z., 196la. Zwei neuerliche Publikationen über einige Glieder
der Erebia tyndarus-Gruppe (Lep., Satyridae). — Ent.Tidskr. 82(3-4):
197-202.
Lorkovic, Z., 1961b. Abstufungen der reproduktiven Isolationsmecha-
nismen in der Erebia tyndarus-Gruppe und deren Systematik. —
Int. Congr. Ent. (11)1(1960): 134-142.
Herman, C. & Lorkovié, Z., 1961. Olivegreen mutation of the larvae’s
color. Biol. Glasn. 14 (3-4): 151-153.
Lorkovic, Z. & HERMAN, C., 1961. The solution of a long outstanding
problem in the genetics of dimorphism in Colias. — J. Lepid.Soc. 15(1):
43-55.
Lorkovic, Z., 1962a. Wesen, Anwendungsbereich und Nomenklatur des
Taxons Semispecies. — Int. Congr. Ent. (11)3(1960): 325-328.
Lorkovié, Z., 1962b. The genetics and reproductive isolating mechanisms
of the Pieris napi-bryoniae group. — J. Lepid.Soc. 16(1): 5-19, (2): 105-127.
Herman, C. & Lorkovic, Z., 1962. New “spotted” gene in caterpillars
of Colias croceus Fourc. — Bull.Sci.Cons.Acad. RPF Yougoslave, A.7(3):
59-60.
HERMAN, C. & Lorkovié, Z., 1963. Changes of the genetic structure in
laboratory populations of Colias croceus. — Bull. Sci. Cons. Acad. RPF
Yougoslave, A.8(3-4): 67.
Lorkovic, Z., 1965. Über die neuerliche Verwirrung um die 2. Generation
von Euchloé orientalis Brem. — NachrBl.bayer. Ent. 14(1): 1-4, (2): 10-15.
LoRKoVIG, Z. & Suaric, R., 1967. Der Grad der morphologischen und
ökologischen Differenzierung zwischen Aricia agestis (Schiff.) and A. allous
(Hbn.) in der Umgebung von Sarajevo. — Glasn.zemalj. Muz.Bosni
Herceg. 6: 129-170 (in Croatian, with German summary).
Lorkovic, Z., 1968. Systematisch-genetische und ökologische Besonder-
heiten von Pieris ergane HBN. (Lep., Pieridae). — Mitt.schweiz.ent.Ges.
41 (1-4): 233-244.
. Lorxovic, Z., [1970]. Karyologischer Beitrag zur Frage der Fortpflan-
zungsverhältnisse südeuropäischer Taxone von Pieris napi (L.) (Lep.,
Pieridae). — Biol. Glasn. 21(1-4) (1968): 95-136.
Lorxovic, Z., 1971a. Färbungsanpassung einiger Rhopaloceren an den
Steinboden im Karste. — Ekologija 6(2): 245-246.
Lorkovié, Z. 1971b. Pieris napi (L.) morph funebris, an unusual new
crossing recombination. — Acta ent.jugosl. 7(1): 5-9 (in Croatian, with
English abstract and German summary).
Lorkovic, Z., 1971c. Gegenes nostrodamus F. and G. pumilio Hffgg. on
the eastern Adriatic coast. — Acta ent.jugosl. 7(2): 56.
Lorkovié, Z. & Korunic, Z., 1971. A new mutant of the insect Tribolium
confusum Duval (Coleoptera) found in Yugoslavia. — Acta ent.jugosl.
7(2): 49-55 (in Croatian, with English summary).
302
53.
54.
SSR
56.
II
58.
59.
60.
61.
62.
Gar
64.
63:
66.
67.
68.
Lorkovié, Z. & MLADINOv, L., 1971. Butterflies of the upper Kupa valley.
I. Rhopalocera and Hesperiidae. — Acta ent.jugosl. 7(2): 65-70 (in
Croatian, with English summary).
Lorkovic, Z, 1972. Karyological identification of the Caucasian species
of the Erebia tyndarus Group (Lep., Satyridae). — Acta ent.jugosl. 8(1-2):
111-121.
Lorkovic, Z., 1973. 150 Jahre bis zur Entdeckung der präimaginalen
Stadien von Spialia orbifer Hbn. (Lepid., Hesperiidae). — Acta ent.jugosl.
9(1-2): 67-70.
Lorkovic, Z., 1974a. Meiotic chromosome behaviour in Pieris napi X
P melete hybrids (Lep., Pieridae) and its taxonomic significance. —
Period. Biol. 76(2): 93-100.
Lorkovic, Z., 1974b. Die Verteilung der Variabilität von Hipparchia
statilinus Hufn. (Lepid., Satyridae) in Beziehung zum Karstboden des
ostadratischen Küstenlandes. — Acta ent.jugosl. 10(1-2): 41-53.
Lorkovié, Z., 1975a. Die westliche Arealgrenze der Leptidea morsei Fent.
und deren Faktoren (Lep., Pieridae). Anlässlich des Erstfundes der Art
für Bosnien und Herzegowina. — Wiss. Mitt.bosn.-hrzeg. Landesmus. (C)
4-5 (1974-1975): 143-151.
Lorkovic, Z., 1975b. Karyologische Übereinstimmung sibirischer und
nordamerikanischer Erebia callias Edw. (Lepidopt., Satyridae). — Acta
ent.jugosl. 11(1-2): 41-46.
Lorkovic, Z., 1976a. Taxonomische, ökologische und chorologische
Beziehungen zwischen Hipparchia fagi Scop., H. syriaca Stgr. und A.
alcyone D.&S. (Lepidopt. Satyridae). — Acta ent.jugosl. 12(1-2): 11-33.
Lorkovic, Z., 1976b. Apatura metis Frr., neue Art für SR Kroatien und
Jugoslawien (Lep., Nymphalidae). — Acta ent.jugosl. 12(1-2): 34 (in
Croatian, with German summary).
Lorkovic, Z., 1977. Über die “Seltenheit” einzelner Nachtfalternarten in
der S.R. Kroatien. — Acta ent.jugosl. 13(1-2): 93-94 (in Croatian, with
German summary).
Lorkovic, Z., 1978. Types of hybrid sterility in diurnal Lepidoptera,
speciation and taxonomy. — Acta ent.jugosl. 14(1-2): 13-26.
Lorkovié, Z., 1979. Eine unerwartete nachträgliche Bestätigung. —
Atalanta (Würzburg) 10(2): 158.
MLADINOv, L. & LorkoOVIC, Z., 1979. Characteristics of the lowland Erebia
oeme Hbn. ssp. nov. from the upper Kupa Valley in NW Yugoslavia in
comparison to the mountain populations. — Acta ent.jugosl. 15(1-2):
35-54, 1 tab.
Lorkovic, Z., 1981. Ectropis crepuscularia Hbn. in SR Kroatien (Jugo-
slavien)? — Acta ent.jugosl. 17(1-2): 155-156 (in Croatian, with German
summary).
LORKOVIÉ, Z. & SILADJEV, S., 1982. Der Erstfund der Raupe von Apatura
metis (FREYER, 1829) in Europa und deren Biotopen. — Atalanta
(Wiirzburg) 13(2): 126-135.
Lorkovic, Z., 1982a. Bemerkungen zu dem Fund von Leptidea morsei
in Griechenland. — Nota lepid. 5(2-3): 111-113.
303
69.
70.
Tle
12.
Se
74.
73.
76.
DE
78.
79.
80.
81.
82.
Lorkovic, Z., 1982b. Berichtigung zu dem Aufsatz: Bemerkungen zu dem
Fund von Leptidea morsei FENT. in Griechenland (Pieridae). — Nota
lepid. 5(4): 169-170.
Lorkovic, Z., 1983a. Zusätzliches zu dem präimaginal Stadien von
Apatura metis (FREYER, 1829) (Lep., Nymphalidae ). — Atalanta (Würz-
burg) 14(1): 12-23.
Lorkovic, Z., 1983b. A new Syrichtus and two doubtful Pyrgus species
for the fauna of Yugoslavia. — Acta ent.jugosl. 19(1-2): 33-41.
SIJARIC, R., Lorkovic, Z., CARNELUTTI, J. & JAKSIC, P. 1984. Rho-
palocera. In: Nonveiller, G. (Ed.), The Fauna of Durmitor I. CANU 18,
Section of nat. sci. 11: 95-184 (in Croatian, with English summary).
Lorkovic, Z., 1985. Taxonomische Differenzierung der südöstlichsten
Populationen von Erebia stirius Godart 1824 (Lep., Satyridae). — Acta
ent.jugosl. 21(1-2): 9-15.
MLADINOV, L. & Lorkovié, Z., 1985. Distribution of mountain Macrole-
pidoptera fauna in S.R.Croatia, Yugoslavia. — Acta ent.jugosl. 21(1-2):
17-36 (in Croatian, with English abstract and German summary).
Lorxovic, Z., 1986. Enzyme electrophoresis and interspecific hybridization
in Pieridae (Lepidoptera). — J. Res. Lepid. 24(4): 334-358.
Lorxkovic, Z. & MiHLJEVIC, B., 1988. Discovery of Lycaena (Palaeoch-
rysophanus) hippothoe Linnaeus 1761 in Bosnia and Hercegovina and the
first detection of its sympatry with L. (P) candens H.-S. 1844 (Lepidoptera,
Lycaenidae). — Glasn. Zemaljsk. Muz. Bosne i Hercegovine, Prir.nauke 27:
119-131.
LorkoOVIC, Z., 1989a. Der Karyotypus und die reproduktiven Beziehungen
des Taxon balcana Lorkovié 1968 zu Pieris napi Linnaeus 1758 und P
pseudorapae Verity 1908 (Lepidoptera, Pieridae). — Glasn. Zemaljsk. Muz.
Bosne i Hercegovine, Prir.nauke NS 28: 155-175.
Lorxovic, Z., 1989b. Experimental evidence for the specific distinction
between Colias hyale L. and C. alfacariensis Ribbe (Pieridae). Summ. of
the 6t* European Congress of lepidopterology, Sanremo 5.-9.4.1988. —
Nota lepid. 12, suppl.1: 34-35.
Lorxovic, Z., 1990. The butterfly chromosomes and their application in
systematics and phylogeny. /n: Kudrna, O. (ed.), Butterflies of Europe.
Vol. 2, Introduction to Lepidopterology. — AULA-Verlag, Wiesbaden,
pp. 332-396.
LORKOVIC, Z., SILADJEV, S. & KRANJCEV, R., 1992. Die Einwanderung
von Colias erate (ESPER, 1804) nach Mitteleuropa in den Jahren 1989
und 1990, ihre Uberwinterung, Polymorphismus und Genetik. — Atalanta
(Wiirzburg) 23 (1-2): 89-102.
Lorxovic, Z., 1993a. Leptidea reali REISSINGER 1989 (= lorkovici REAL
1988), a new European species (Lepid., Pieridae). — Nat. Croat. 2(1): 1-26.
Lorkovic, Z., 1993b. Ecological association of Leptidea morsei major
Grund 1905 (Lepidoptera, Pieridae) with the oak forest Lathyreto-
quercetum petraeae Hr-t 1957 in Croatia. — Period. Biol. 95(4): 455-457.
304
83.
84.
85.
86.
Lorkovic, Z., 1997a. High vitality versus low fertility in artificial
interspecific F, hybrids of butterflies (a preliminary report). — En-
tomol. Croat. 2(1-2): 5-10.
Lorxovic, Z., 1997b. Occurrence of Pieris ergane Geyer (Lepidoptera,
Pieridae) on mount Sljeme near Zagreb, Croatia. — Entomol. Croat.
2(1-2): 27-30.
Kueric, M. & Lorkovic, Z., 1998. The distribution of the genus Chresotis
1840 (Insecta, Lepidoptera, Noctuidae) in Croatia. — Nat.Croat. 7(2):
113-120.
Lorkovic, Z., 1998. Über die gestielte Ader MI bei Pieriden (Lepidoptera,
Pieridae). — Stapfia 55: 281-284.
Nikola Tvrtkovıc & Mladen Kucınıc
305
Nota lepid. 22 (4): 306-322; 01.X11.1999 ISSN 0342-7536
Book reviews @ Buchbesprechungen @ Analyses
BAEZ, Marcos: Mariposas de Canarias.
15 X 21 cm, VI + 216 pp., 63 + 323 colour figures, paperback. Published
by Editorial Rueda, S. L., Alcorcön (Madrid), 1998. ISBN 84-7207-110-3.
To be ordered from Editorial Rueda, S. L., Porto Cristo 13, E-28924 Alcorcon
(Madrid). Tel. 0091 619.27.79 — 619.25.64. Fax 0091 610.28.55.
Thirteen years after the publication of a field guide on the dragonflies of
the Canary Islands, the present work deals with one of the best known and
most popular insect groups of the Archipelago, the Lepidoptera. While these
islands have, naturally, an impoverished fauna as far as the species number
is concerned, the percentage of endemics is comparatively one of the highest
of any region of the Western Palaearctic. At a time when considerable threats
are imposed on nature in the Canaries, it is of great importance to document
its biodiversity in order to demonstrate its high value and, ultimately, to ensure
its long-term conservation. As far as the Lepidoptera are concerned, no less
than about 200 out of the 600 species known from the Canaries are endemic
to the Archipelago!
After a brief introductory section (pp. 1-13), dealing with topics like the origin
of the Lepidoptera, their place in the ecosystems, variability and polymorphism,
development and metamorphosis, larval morphology and diversity, the
descriptive part starts with a brief overview of all known Lepidoptera families
of the islands, for most of which a living specimen of one or two characteristic
species is figured. The next section (pp. 36-201) makes up most of the
remainder of the book. 303 species (nearly 50 %) of Canarian Lepidoptera
are treated individually and set specimens are figured. All, or the very most
of, the species of butterflies, sphingids, noctuids, geometrids and arctiids are
shown, while a selection only (the most common or conspicuous, as well
as the endemic species) of the “micro’s” are dealt with. For each species,
a brief description is presented, followed by a review of its distribution and
status in the Canary Islands, and of its bionomics (habitat, phenology, larval
host plants). A selective bibliography (only 31 entries), a systematic list of
(all) Lepidoptera species known by then from the Archipelago, and an index
of resp. its Lepidoptera and plant taxa close this pretty little book.
Taking into account what it is — a field guide and not an exhaustive
monograph — this book is highly recommended to the lepidopterist travelling
to the Canary Islands.
Alain OLIVIER
306
Kuprna, Otakar: Die Tagfalterfauna der Rhön.
14.5 X 20.5 cm, 166 pp., Oedippus 15: 1-158. 48 colour photographs, 2 +
110 maps, paperback. Published by Gesellschaft für Schmetterlingsschutz e.V.,
Dr. Otakar Kudrna, Brombergstraße 6, D-97424 Schweinfurt, Germany. Tel/
fax: 0049 0 9721 805200; e-mail: kudrna.meb@t-online.de, 1998. ISSN 1436-
5804. To be ordered from the publisher. Price: DEM 35.
Until about 15 years ago, the butterfly fauna of the valley of the Rhôn —
a hilly area situated in Central Germany, in the northwestern part of Bavaria
and the adjacent border regions of Thuringia and Hesse — was insufficiently
known, despite the fact that, with 109 indigenous species being known there
at present, it is one of the lepidopterologically richest parts of Germany. There
are various reasons to this: no heavy industry or high population density,
high climatic and ecological diversity, resulting in a great variety of habitat
types with many characteristic stenoecious butterfly species, a generally not
too intensive land use. Some species are represented here by very strong
populations for Central European standards. Six butterfly species — Parnassius
mnemosyne, Maculinea arion, M. nausithous, M. teleius, Euphydryas aurinia
and Coenonympha hero — that are listed in the annexes of the EU Habitat
Directive (FFH) 94/43/EEC, are currently still extant in the Rhôn, while
two other ones (Euphydryas maturna, Lasiommata achine) have already
become extinct in the Rhôn, as have indeed 13 out of the 121 species that
have been found in the district since about 1900. Ironically, mistaken manage-
ment of nature reserves, implemented by the nature conservation authorities
responsible, has been one of the causes of extinction, as the author illustrates
by a series of examples. The successful re-establishment of the extinct Colias
palaeno is documented.
Every single species is treated in the special part, with data on distribution,
bionomics and conservation status. Intensive studies, carried out from 1984
until 1997, have resulted in the distribution atlas, which forms the second
subdivision of the special part of the present study.
A conservation plan, aimed at the securing of strong (often not immediately
threatened) populations of the most valuable species, is proposed. Species
specific conservation measures (i.e. habitat management as it is practised for
instance in Great Britain) are proposed for 18 priority species and their most
important habitats. The great importance of monitoring of butterfly species
and conservation measures is stressed. Conservation measures are also
proposed for butterfly communities in the 26 most important sites. The
localities have been selected after the principle of “critical faunas” and should
enable the conservation of almost the whole species spectrum of the Rhön.
Guidelines for habitat management for butterflies are outlined. Generously
supported monitoring, surveillance and research without bureaucratic hindrance
(e.g. the general ban on butterfly collecting in Germany!) of the field work
and laboratory research are preconditions of success.
307
The study ends with a references list (77 entries) and an index. It will be
of great interest for nature lovers concerned with butterflies. Many of the
proposed measures for the protection of species and habitats can, with slight
modifications perhaps, be applied to other taxa and areas. Therefore, it is
also highly recommended literature to nature conservation authorities, that
will hopefully pay more attention to invertebrates in general, and to butterfies,
that are excellent bioindicators, especially. It is further of interest to both
amateur and professional entomologists, both for its content and for the
methodology behind it.
Alain OLIVIER
TsHIKOLOVETS, Vadim V.: The Butterflies of Turkmenistan.
21 X 30 cm, 237 pp., 24 colour plates with 1047 figures, 10 black-and-white
plates with 66 figures, 4 + 157 maps, bound in coloured dust jacket. Published
by the Author, Kiev, Brno, 30.X1.1998. ISBN 966-02-0511-2. To be ordered
from: Willy De Prins, Diksmuidelaan 176, B-2600 Antwerpen, Belgium. Tel.
00323 322.02.35; e-mail: willy.deprins@village.uunet.be (Western Europe) or
from Vadim V. Tshikolovets, Zoological Museum, B. Khmelnitsky str. 15, |
Kiev-MSP, UA-01601, Ukraine; e-mail: vadimchik@glul.apc.org (Eastern
Europe). Price: BEF. 2,600 excl. postage.
One year and a half after the publication of his “Butterflies of Pamir”, the
author has produced the present work, dealing with the butterflies of
Turkmenistan. In the Introduction, the history, geography, geomorphology,
climate, vegetation and animal life of the present-day republic are reviewed,
followed by a history of the study of butterflies in Turkmenistan and the
obligatory Acknowledgements section. Then a list of localities is presented,
with the names in use before 1991. The name is followed by a note, establishing
whether it refers to a town, village, gorge, river, mountain (range) or nature
reserve, and a code consisting of one letter (A to J) followed by one number
(1 to 12), corresponding to squares on a map. This makes it easy to locate
any locality mentioned in this work. An Abbreviations section applies to the
museum collections referred to. Then follows a checklist of the species-group
taxa said to occur within the boundaries of present-day Turkmenistan, with
the exception of Kugitang in the extreme east, that belongs to the Pamiro-
Alai. This region, covering a very small area, will be treated in a future book
on the butterflies of Uzbekistan. The checklist includes 176 species-group taxa
(actually 174 species, of which two — Satyrus amasinus and Melitaea didyma
— include two subspecies each). The main body of the work, “A survey of
Turkmenistan butterflies” (pp. 35-154) covers each taxon in detail. The species
name (genus, species, author and date of publication) is followed by its range.
Then comes the subspecies name (followed, when figured, by the reference
to the illustrations on the corresponding plates at the end of the book) and
the reference to the primary sources, i.e. the original literature reference
(original combination and publication) and a list of the extant type material
308
and its depository. When it applies, the synonymy is given (again with complete
references to the primary sources). Then comes an exhaustive list of all
literature records for Turkmenistan, eventually followed by new records,
resulting either from the author’s own collecting activities in this country,
which he visited three times (in 1986, 1989 and 1990) or from data gathered
in several museum collections. The distribution in Turkmenistan, flight period
and habitat (including altitudinal range) are briefly quoted and for almost
each and every taxon a distribution map is presented. In some cases, when
judged appropriate, some comments are given, mostly about the taxonomic
status. Then comes the Plates section, including 24 colour plates, totalling
1,047 figures, on which most taxa can be located. On the whole they are
of a very good quality. With the exception of. plates 3 and 24, that show
all known Papilionidae as well as some unmistakable species of other families
like Danaus chrysippus, Libythea celtis, Limenitis reducta, Nymphalis poly-
chloros, Vanessa atalanta, V. cardui, Aglais urticae and Anaphaeis aurota only
on the upperside, all taxa are figured on the upperside on one plate, followed
by their undersides on the next one. The next ten plates show line drawings
of male genitalia of selected species-group taxa. On pp. 214-215 is a list of
species considered erroneously recorded from Turkmenistan. The book ends
with a References list (no less than 298 entries!) and an Index to (genus-
and species-group) taxa.
This is the first illustrated guide to the butterfly fauna of Turkmenistan, a
fauna of interest to all students of both West-Palaearctic and Central Asian
taxa. Indeed, here the southern desert fauna of the Middle East and Iran
comes in contact with the Central Asian desert fauna. On the Kopet Dagh
mountain range one can find, beside some endemics, several European and
Central Asian species flying together. For certain species characteristic for
Asia Minor, the Kopet Dagh mountains constitute the extreme eastern limit
of their range, while it is also the westernmost outpost of several taxa belonging
to the Central Asian and Afghan-Pakistani fauna. Therefore this work is very
welcome to every student of these faunas. While the book contains a wealth
of information, some important shortcomings have unfortunately to be dealt
with as well. To the reviewer, the main one is the inclusion in the main section
of no less than 23 species-group taxa (i.e. about 13 %!) that have nothing
to do there. The nominal taxa Spialia geron struvei, Muschampia poggei
poggei, Pyrgus carthami carthami, Pelopidas thrax thrax, Pieris bowdeni
bowdeni, Satyrium hyrcanica hyrcanica, S. lunulatum lunulatum, Neolycaena
iliensis iliensis, Callophrys suaveola suaveola, Tomares callimachus callimachus,
Plebeius ferganus ferganus, P. caeruleus caeruleus, Lasiommata maera maera,
Hyponephele naricina naricina, H. wagneri wagneri, Hipparchia stulta stulta,
Pseudochazara mamurra schahrudensis, Chazara persephone transiens, C.
staudingeri staudingeri, Melitaea didyma neera and Argynnis adippe adippe
are included solely based on some unconfirmed literature quotations, with
no extant collection material known to the author. The inclusion of Polyom-
matus elbursicus elbursicus is based on the misidentification by the author
of a specimen of P transcaspicus, figured in a publication by Carbonell and
309
correctly ascribed to that taxon by that author! Polyommatus mofidii mofidii
is included solely because of its presence on the Iranian side of the Kopet
Dagh! Pelopidas thrax thrax is a Palaeotropical species that can only survive
in the Western Palaearctic along the Mediterranean and Aegean coast of
Turkey and on the Greek island of Samos: evidently, the quotations by
Christoph and Heyne relate to Eogenes alcides! It would have been better
if the author had, on pp. 214-215, named that section “A list of unconfirmed
and erroneous records of species-group taxa for Turkmenistan” and had
included all forementioned taxa therein. The “loss” of taxa in the main section
could have been compensated for by the inclusion of the butterfly fauna of
the Kugitang region (five nominal species-group taxa, cf. p. 215). On the other
hand, Favonius quercus quercus and Satyrium acaudatum acaudatum are
included only “conditionally”, although unmistakable collection material
(which the author figures on plate 8) exists. The nominal taxa Coenonympha
leander transcaspica and Satyrus amasinus kyros, though perhaps described
after mislabelled specimens, have their place in this section as their type locality
is quoted as from within the boundaries of present-day Turkmenistan. Colias
alfacariensis is included as “Colias sareptensis sareptensis”: during a visit to
the Museum fiir Naturkunde der Humboldt-Universitat zu Berlin in November
1998, the reviewer has examined the syntypes of the latter taxon and noticed
that they are nothing else but yellow Colias erate specimens! Some further
minor mistakes have been noted as well: for instance, Pontia callidice (p.
67) does not occur in the Balkan Peninsula. Hesperia comma starts flying
only well into July and not in May (p. 50): the relevant data, taken from
literature, certainly apply to the nominal taxon listed as “Ochlodes sylvanus
faunus”. An explanation for the choice of that name, considering the current
nomenclatural debate, would have been desirable, as it would have been, for
instance, for the choice of the subspecies names Pieris brassicae ottonis, P.
napi pseudorapae and Aporia crataegi pellucida. Data on the bionomics of
each taxon are very limited. While the English used in the Introduction is
quite good, the comments about the nomenclatural status of some taxa are
sometimes really poor (e.g. on p. 110; elsewhere read “worn” instead of
“overflown”, “temperate Asia” instead of “moderate Asia”); the more,
typographical errors appear all too often throughout the text. Sometimes,
a literature reference was not re-checked thoroughly (e.g. on p. 19: Staudinger
(1901: XXX)).
All these details clearly give the impression that this book, for some reason,
was hastily edited and published.
Despite all these critical remarks, the author has to be congratulated for this
highly informative and comprehensive book, that fills an important gap in
our knowledge of the butterfly fauna of this region. No serious student of
Palaearctic butterflies should miss it. It is hoped, however, that the minor
drawbacks reported in the present review will not be evident anymore in the
announced book on the butterflies of Uzbekistan.
Alain OLIVIER
310
Maes, Dirk & Van Dyck, Hans: Dagvlinders in Vlaanderen. Ecologie,
verspreiding en behoud.
17 X 25 cm, 480 pp., 29 text figures, 32 tables, 124 maps (unnumbered),
50 diagrams (unnumbered), 112 colour photographs (unnumbered), hardback.
Published by Stichting Leefmilieu vzw/ KBC in association with Instituut voor
Natuurbehoud and Vlaamse Vlinderwerkgroep vzw, Antwerpen, 10.1V.1999.
ISBN 90-76429-02-2. To be ordered from: Stichting Leefmilieu vzw/KBC,
Kipdorp 11, B-2000 Antwerpen. Tel. 0032 3 231.64.48 - fax 0032 3 232.63.98;
e-mail: leefmilieu@village.uunet.be. Price: BEF. 1,250.
The butterfly fauna of Northwestern and Central Europe is in a more and
more precarious situation. At the same time it is among the best studied
invertebrate groups in the world. For nearly each species, we have now rather
detailed information on its ecology, biology, status and distribution and over
the last decennium a series of books and distribution atlases appeared, dealing
with the butterfly faunas of Northwestern Europe in general (the well-known
“Ecologische Atlas van de Dagvlinders van Noordwest-Europa” by Fritz A.
Bink in 1992), as well as with several countries or regions specifically (the
British Isles, the Netherlands, Denmark, Switzerland, Baden-Wurttemberg,
Austria, Poland). A book on the butterflies of Germany is in preparation.
The present book deals with the butterflies of Flanders (i.e. the northern half
of Belgium) and has been written by two professional scientists who work
respectively at the Nature Conservation Institute of the Flemish Community
and at the University of Antwerp. As a result of hard work over the last
decennium, aided by intensive inventarisation and monitoring activities by
a working-group of enthusiastic and benevolous collaborators, the Vlaamse
Vlinderwerkgroep vzw, the authors have produced the present excellent work.
As its subtitle states, the book consists of three main parts: ecology, distribution
and conservation.
The book starts, however, with a separate chapter, a general introduction,
documenting the scope of the present book and its aims, a history of research
on butterflies in Flanders and the Butterfly project in se: the data (from
collections, literature, field observations, monitoring) and their handling, the
resulting distribution maps, rarity formerly and presently, coverage of inven-
tarisation activities. Then comes the first main part. This is a very exhaustive
tréatise of the various aspects, integrating in a masterly way all data compiled
from the growing body of — both foreign and national or regional —
publications on various aspects of butterfly bionomics, along with own new
data (e.g. as a result of the junior author’s research on Pararge aegeria).
Environmental influences on the occurrence of butterflies are reviewed, weather
and climate, including its seasonality, for instance, as well as the responses
of butterflies to these, both physiologically (e.g. thermoregulation) and
phenologically (adjustments of the flight period of the adult and of the feeding
period of the larvae), or in their (micro-)habitat use. Further, adult and larval
food are briefly considered, followed by the topics mating (with the various
strategies, 1.e. perching, patrolling, leks, etc.), egg-laying, larval feeding habits,
311
ant-associations in Lycaenidae, enemies (predators, parasites and parasitoids,
diseases). The relationships and responses of butterflies to the various
landscape and vegetation types also receive wide attention, and so does their
invaluable role as bioindicators. Their symbolic value is also emphasized in
its various aspects (collection or decorative objects, pictural objects in art,
on post stamps) as well as their possible role in education and conservation
and the large sympathy they enjoy by the larger public. Distribution patterns,
mobility and population structure (open vs. closed) are topics that also receive
large attention. Methods to study these subjects (inventarisation, MRR, etc.)
are also dealt with. Dispersal in its various forms is then treated and the
results of various studies on butterfly mobility are considered, along with their
potential value in colonisation and gene exchange between populations. A
whole chapter is then devoted to population dynamics and the first part ends
with another chapter on butterfly populations in fragmented landscapes. The
results of fragmentation (habitat loss, edge effects, isolation along with its
effect on mobility) are reviewed, after which the metapopulation concept and
its great significance for conservation are emphasized and, finally, the role
of barriers and corridors in the modern agricultural landscape.
The second part, dealing with the distribution of butterflies in Flanders, is
by far the largest one. First, a review of the butterflies of Flanders is presented:
they are divided in several categories, each of which is briefly defined:
indigenous, migrant, vagrant, stray, adventive. The scientific (latin names) and
their order of presentation follow the well-known “The Lepidoptera of Europe.
A distributional checklist”, edited by Karsholt & Razowski (1996). Then comes
a checklist of the 88 butterfly species that have been observed in Flanders
so far. Their scientific name is followed by their vernacular name. Of these
taxa, 64 are indigenous, 4 are regular migrants, 19 are strays and one
(Polyommatus damon) is considered adventive. 17 more taxa have further
been reported from Flanders, either dubiously (no extant collection specimens
exist) or, most probably, as a result of wrong identification: they are briefly
reviewed but not considered anymore in the remainder of the book. The
detailed treatment of each single species makes up the bulk of the book (pp.
152-366). Especially the indigenous species and the regular migrants are dealt
with most comprehensively. Their vernacular and latin (scientific) name is
presented, followed by the most commonly used (both vernacular and
scientific) synonyms. Then their ecology is dealt with, comprising a brief
characterization of the habitat, flight period, mobility and a treatise on their
biology and larval host plants. After a brief discussion of its range in Europe,
the distribution of each species in Flanders is treated in detail, aided by a
distribution map before 1991 and — when the butterfly is not extinct yet
— since 1991. Changes in the distribution during the 20 Century are
illustrated by means of a diagram, hence it is easy to discern whether the
species has progressed or declined. A separate section deals with its legal
conservation status in Flanders, in Belgium and in Europe, the specific threats
and the suggested conservation measures to maintain or improve its status.
For extinct and Red List species, the possible relevance of re-introduction
312.
is briefly discussed. Additional literature references applying to each single
species are mentioned as a last item. The adult of each of these taxa is figured
by means of a beautiful colour photograph of a living specimen, often in
either basking or resting position. The strays and adventives are dealt with
more briefly and only one is figured in the relevant section. The three last
chapters of the second part deal respectively with an analysis of the status
of the butterfly fauna of Flanders (changes in species number and composition,
both generally and in relation to each of the main ecological regions and
habitat types, rarity classes, a Red List of the butterflies of Flanders), the
reasons of the general decline of this fauna (catching and collecting, habitat
fragmentation and loss, fertilizers, dessication, acidification, herbicides and
pesticides, climat change) and a brief mention of the status of the butterfly
faunas in Wallonia (southern half of Belgium), in Belgium, in The Netherlands,
in Germany, in Great Britain, in Europe and worldwide. A checklist of the
butterflies of Belgium can also be found in this section. The situation of the
butterfly fauna of Flanders is alarming: 16 species have become extinct during
the 20 Century, 17 species have experienced a significant decline, 20 species
have more or less maintained a status quo and 11 speces have progressed.
Species that used to be rare have become very rare or extinct, while species
that used to be common have become very common (“banalization” of the
fauna). This trend also applies to the butterfly fauna of the British isles or
to the herpetofauna of Flanders.
The third and last part deals with conservation, with an emphasis on strategies
for the conservation and restoration of the butterfly fauna of Flanders,
including the use and application of the Red List, the role of governmental
bodies, legislation and action plans, and priorities and education. This
extremely well-documented book ends with a very comprehensive references
list (no less than 828 entries!), an appendix listing all contributors to the project
as well as the consulted collections and literary sources, an appendix listing
the vernacular, the scientific and the English names of the butterfly species
of Flanders, a glossary, an index and a brief presentation of the conservation
bodies, both governmental and non-governmental.
The use of the Dutch language, fully justified in the present context, as it
is conceived for use mainly by a Flemish readership and governmental and
conservation bodies, will of necessity somewhat restrict the international
interest of this excellent work and the reviewer would have preferred the
inclusion of a checklist of all plant species, of which only the vernacular name
is used throughout, with both the vernacular and scientific name. Nevertheless,
it deserves to be distributed more widely than in Flanders and The Netherlands
alone and people acquainted with German or any Scandinavian language
should not experience too many difficulties in reading it. It is very well
readable, very well structured and hence methodologically also an example.
It is to be hoped that the existence of such a tool will now serve as a stimulus
for the implementation of a real conservation policy and, ultimately, an
improvement of the quality of the environment in which we live ourselves,
313
both in Flanders and abroad. Nature conservators, sensibilized landowners,
decisionmakers, as well as all lepidopterists and nature lovers should read
this book.
Alain OLIVIER
NAUMANN, Clas M., TARMANN, Gerhard M. & TREMEWAN, W. Gerald: The
Western Palaearctic Zygaenidae (Lepidoptera).
17 X 24 cm, 304 pp., 178 text figures, 4 tables, 12 colour plates (with 375
figures), 115 maps (unnumbered), hardback. Published by Apollo Books,
Stenstrup, January 1999. ISBN 87-88757-15-3. To be ordered from: Apollo
Books Aps., Kirkeby Sand 19, DK-5771 Stenstrup, Denmark. Tel. 0045 62
26.37.37 — fax 0045 62 26.37.80. Price: DK 600 excl. postage.
This long-awaited book is the condensed result of a lifelong study of the
western Palaearctic representatives of this fascinating family by three of the
foremost specialists on the group. It is beautifully introduced by a nice
foreword by Miriam Rothschild, followed by one by the authors. The general
part (pp. 13-95) treats topics such as systematics and phylogeny, Zygaenid
life cycles, structures and functions (including a generalized description of
larval morphology and chaetotaxy, pupae and cocoons, adult internal
morphology, senses and orientation, nutrition), genetics and individual variation
(with special attention to some phenomena like polymorphism in Zygaena),
zoogeography (geographical variation, distribution patterns), fossil records,
ecology and behaviour (habitat preferences, host plants, cyanogenesis, defensive
and reproductive biology, flower-insect relationships, reproductive strategies,
mimicry and behaviour, predation and diapause, parasitoids), the role of
Zygaenids as indicator species both in dispersal studies and in conservation,
breeding, collecting techniques and an interesting review of history of research
on the Zygaenidae, a list of vernacular names of Zygaenidae and a selected
references list (96 entries). This general part is highly interesting throughout
and some parts, like e.g. polymorphism, cyanogenesis, reproductive strategies
and diapause, were most fascinating reading to the reviewer. First class black-
and-white illustrations (including a.o. line drawings and remarkable SEM-
photographs of endo- and exomorphological structures, and portrets of some
famous deceased authorities on Zygaenidae) contribute much to the high
quality of the whole.
The systematic part (pp. 97-290) starts with a checklist of the western
Palaearctic Zygaenidae (at species level). The area covered here includes the
whole of Europe with the Ural Mts., North Africa (the Maghreb countries
plus the mediterranean coastal areas of Libya and Egypt including the Sinai),
Jordan, Israel, Lebanon, Syria, the whole of Turkey, Transcaucasia and the
Caucasus. Iran and Iraq however are not, or only marginally, considered.
After a brief diagnosis of the family Zygaenidae and a key to its subfamilies,
the first subfamily to be treated in detail is the Procridinae: after a
characterization and diagnosis and a key to its genera, with a diagnosis of
the relevant genus to which it belongs, each species is treated in detail. After
314
its scientific name, author(s) and year of description and a reference to the
plate on which the imago is figured, a brief description follows in the following
order: forewing length — male — male genitalia (with reference to the text
figure on which they are depicted) — female — female genitalia (with reference
to the text figure on which they are depicted) — similar species (with their
resp. diagnostic features) — individual variation — geographical variation
(with a list of subspecies (including a reference to the plate on which the
imago is figured), their characteristics and distribution) — distribution —
ecology — behaviour — egg — larva — larval foodplants — pupa and cocoon.
For each species, a distribution map is presented. Separate identification keys
are presented for western Palaearctic Rhagades, male Jordanita, female
Jordanita, male Adscita (Adscita) and female Adscita (Adscita). On pp.
160-185, excellent line drawings of resp. the male and female genitalia of
all the species are presented. The subfamily Chalcosiinae, represented in the
western Palaearctic by only one genus (Ag/aope) and two species (infausta
and /abasi), is treated similarly but without illustration of the genitalia. The
subfamily Zygaeninae, consisting of one genus (Zygaena) with three subgenera
(Mesembrynus, Agrumenia and Zygaena), each with a brief diagnosis, and
one general key to its western Palaearctic species, is treated similarly, but
genitalia are (partly) figured only occasionally for identification purposes, in
critical cases (e.g. Zygaena purpuralis group, Z. transalpina group, Z.
filipendulae group). Colour plates 1 to 6 show set specimens of all species
of Procridinae (1 and 2), Chalcosiinae (2) and Zygaeninae (3 to 6), plates
7 and 8 show living specimens of several taxa, either in resting posture or
in copula, plate 9 shows some interesting behavioural features (e.g. extruded
pheromone gland of a ‘calling’ female Zygaena, extruded male coremata of
a Zygaena) as well as some parasitoids and predators, plate 10 shows some
larvae and one cocoon and, finally, plates 11 and 12 offer a selection of
habitats. The book ends with an appendix on the recently described Jordanita
(Jordanita) fazekasi and an index.
With the present work, it should be possible to identify without too many
difficulties, each and every species of (adult) western Palaearctic Zygaenid.
The only serious criticism the reviewer would make, is the total absence of
any reference to primary sources (both type specimens and literary source).
Any lepidopterist, also the non-specialist, with any interest in this beautiful
and, in more than one respect, highly interestig butterfly family, can simply
not do without the present work. The authors deserve our warmest congrat-
ulations.
Alain OLIVIER
ErETov, Konstantin A. & TARMANN, Gerhard M.: Forester Moths. The genera
Theresimima Strand, 1917, Rhagades Wallengren, 1863, Jordanita Verity,
1946, and Adscita Retzius, 1783 (Lepidoptera: Zygaenidae, Procridinae).
17 X 24 cm, 192 pp., 415 text figures (241 in colour, on 12 unnumbered
plates), 4 tables, hardback. Published by Apollo Books, Stenstrup, 1999. ISBN
315
87-88757-23-4. To be ordered from: Apollo Books Aps., Kirkeby Sand 19,
DK-5771 Stenstrup, Denmark. Tel. 0045 62 26.37.37 — fax 0045 62 26.37.80.
Price: DK 460 excl. postage.
A few months after the book on western Palaearctic Zygaenidae by Naumann,
Tarmann & Tremewan, Apollo Books have published the present work which,
as will be shown, is largely complementary to the first-mentioned one. It treats
all the 63 Procridinae species occurring in Europe, North Africa and the
western and central parts of Asia, 1.e. the western and central Palaearctic.
After an introduction, followed by a “definition” of the Procridinae, some
significant diagnostic characters of the Procridinae are discussed, i.e. chaetotaxy
of first instar larvae, chromosome numbers of several species belonging to
different (sub-)genera and some peculiarities of both the proboscis and the
fore tibia, after which some character combinations are treated. Subsequently,
possible phylogenetic relationships are discussed, with a separate heading for
Theresimima, Rhagades and Jordanita and Adscita. Next, a checklist of
species-group taxa (species, subspecies and their synonyms, some of these
newly) in these genera is presented. Then comes the systematic catalogue.
For each species-group taxon, the genus and species name, followed by the
author(s) and year of description, is quoted, immediately followed by a
reference to the different figures on which the taxon is figured (male and
female genitalia, adult male and female, early stages). Then a reference to
the primary sources is stated in full, 1.e. original combination, publication,
depository of type (holotype or lectotype). Synonyms are listed and the type
locality is documented. When a lectotype is newly designated (for 17 taxa
in the present work), labels are listed fully. The range and host plants are
also mentioned, the latter with reference to the literary source when known
already. Two new subgenera, Tremewania and Procrita, are described. A next
chapter consists of several keys to genera, to subgenera and to species,
sometimes including different keys to males and females, with figures of
features such as wing venation, forelegs, distal end of male antennae, forewing
scales and pupae. A separate chapter consists only of (excellent) line drawings
of resp. male and female genitalia, executed by the late Vyacheslav V. Kislovsky
(1974-1998), who also produced the majority of the other line drawings. In
a next chapter, the immatures and life histories of six species of Jordanita
and Adscita are described. Then comes a series of new records of parasitoids,
followed by the acknowledgements section. After this, colour illustrations of
adult moths, early stages, host plants and biotopes are presented. Five colour
plates (figs. 175-307) show paintings of set specimens, followed by seven colour
plates consisting of photographs of lectotypes, early stages, adults and
biotopes. The book ends with a comprehensive list of references (344 entries)
and indices, resp. of Lepidoptera names, authors and larval host plants.
The present book is an attempt to summarize new data and to enable the
identification of all known species of the group. No distribution maps are
included, but in the Introduction it is stated that a distribution atlas is planned
at a later date. Data on nomenclature and taxonomy, along with a larger
316
geographic coverage and hence additional species, make this book a welcome
addition to the work of Naumann, Tarmann & Tremewan. For students of
Zygaenidae in general, and of Procridinae specifically, this is an absolute must.
Alain OLIVIER
KRISTENSEN, N. P. (ed.): Lepidoptera, Moths and Butterflies. Volume 1:
Evolution, Systematics, and Biogeography. Part 35 in M. Fischer (Ed.):
Handbook of Zoology. Volume IV Arthropoda: Insecta.
21 X 29.7 cm, 494 p., numerous figures, hardback. Published by de Gruyter,
Berlin, New York, 1999. ISBN 3-11-015704-7.. To be ordered from: Walter
de Gruyter & Co., Genthiner Str. 13, P.O. Box 303421, D-10728, Berlin, or
from Walter de Gruyter Inc., 200 Saw Mill River Road, Hawthorne, NY
10532, USA. Price: DEM 398 plus postage.
While it was still possible to write treatises on insect groups in the past (e.g.
the Diptera volume in 1972 by W. Hennig) in this ambitious series “Handbook
of Zoology” founded by W. Kiikenthal, this is no longer possible in such
large insect orders as the Lepidoptera. Furthermore, the editorial principles
and standards have changed considerably to ensure that the series can continue
to fulfill its intended role in the biological reference literature. Therefore, the
editor has gathered a team of 29 specialists, who are responsible for the texts
of the separate chapters. Much original research work was carried out to
put the present state of knowledge at the most recent level and many texts
which were completed for the first deadline in 1997 have been changed since
that year in order to reflect the most recent state of the art. Many contributions
had to be shortened because of publisher’s demands and some even have
been published elsewhere in full length while the present book just contains
a Summary of these.
Two Lepidoptera volumes are planned. The plans for a third volume on
ecology and behaviour were abandoned because it was considered more
appropriate to publish such a volume not focusing on the order of Lepidoptera
alone. Nevertheless, several topics on Lepidopteran ecology and behaviour
are included in the present volume and in the forthcoming second volume
at relevant places. This first volume concentrates on systematics, evolution
and biogeography, while in the second one the emphasis will be put on
morphology and physiology. The present volume consists of 21 chapters.
Chapter 1. “Historical Introduction”. Because Lepidoptera are very conspicuous
insects, they have been the subject of many publications before the Linnean
landmark of 1758. In this chapter a very brief outline is given of these pre-
Linnean publications, as well as of those in the Linnean period, while the
emphasis lays on the 19tt Century achievements in Lepidopteran studies.
Chapter 2. “Phylogeny and Palaeontology”. The monophyly of the Lepidoptera
has been established by an impressive series of synapomorphies, separating
this order from its sister group Trichoptera, the two groups forming the higher
367
rank taxon Amphiesmenoptera. This chapter first treats the ground plan and
intrinsic phylogeny of the Lepidoptera. Subsequently the palaeontological
contributions to the knowledge of Lepidoptera evolution are surveyed. A
tentative phylogenetic tree of all extant superfamilies is given, indicating the
species richness of all groups. The chapter further contains pictures of fossil
Lepidoptera, preserved in amber or stone.
Chapter 3. “Classification and Keys to Higher Taxa”. The systematic chapters
in this Handbook are all written on the basis of “Henigian” phylogenetic
principles. Therefore, all taxa which are identified as likely poly- or paraphyletic
have been rejected, or they are accepted merely as preliminary groupings,
pending further analysis. Many disagreements were encountered during the
preparations of the texts for those systematic chapters, many authors having
different views on the ways in which phylogenetic study results should be
transformed into a written classification. While in several publications the
Linnean categories have been discussed and rejected as useful tools for present-
day classifications, they have been retained in the present book. This chapter
contains a key to identify the different superfamilies, using adult characters,
and a key to families, using larval characters.
Chapters 4-19. In these chapters a systematic treatment is given of all extinct
and extant Lepidoptera. The chapters are divided as follows: The Non-
Glossatan Moths (Micropterigoidea, Agathiphagoidea, and Heterobathmoi-
dea), The Homoneuros Glossata (Eriocranioidea, Acanthopteroctetoidea,
Lophocoronoidea, Neopseustoidea, Mnesarchaeoidea, and Hepialoidea), The
Monotrysian Heteroneura (Nepticuloidea, Incurvarioidea, Palaephatoidea,
and Tischerioidea), The Tineoidea and Gracillarioidea, The Yponomeutoidea,
The Gelechioidea, The Zygaenoidea, The Cossoid/Sesioid Assemblage (Se-
sioidea and Cossoidea), The Tortricoidea, The Smaller Microlepidoptera-
Grade Superfamilies (Galaticoidea, Simaethistoidea, Choreutoidea, Urodoidea,
Chreckensteinoidea, Epermenioidea, Alucitoidea, Pterophoroidea, Copromor-
phoidea, Immoidea, Hyblaeoidea, Thyridoidea, and Whalleyanoidea), The
Pyraloidea, The Axoidea and Calliduloidea, The Butterflies: Hedyloidea,
Hesperioidea and Papilionoidea, The Drepanoid/Geometrid Assemblage
(Drepanoidea and Geometroidea), The Bombycoidea and Their Relatives
(Mimallonoidea, Lasiocampoidea, and Bombycoidea), and The Noctuoidea.
All these chapters contain information on their morphology and systematics
and are well illustrated with diagrams of morphological structures, pictures
of set adult specimens and caterpillars. Also still unresolved problems are
mentioned throughout. Keys to families and subfamilies are included where
appropriate. Every chapter ends with a reference list to further reading.
Chapter 20. “Evolution of Larval Food Preferences in Lepidoptera”. Because
the majority of lepidopteran larvae live at the expense of living seed plants,
it has been thought that evolution within the Lepidoptera is closely related
to that of plants. On the other hand, non-phytophagous habits are found
primarily in basal lineages of Lepidoptera, suggesting that these might have
had non-phytophagous ancestors. In this chapter the evidence for and against
these contrasting views of feeding habit evolution are summarised.
318
Chapter 21. “Biogeography of the Lepidoptera”. The combination of high
diversity in Lepidoptera (being one of the four major insect groups) and a
detailed information on geographical coverage available in numerous museum
collections, mean that Lepidoptera are very well suited as a subject of
biogeographical studies. It is observed indeed that Lepidoptera studies are
prominent in many areas of biogeographical research. This chapter gives an
account of the past studies in this area and also puts forward some hypothesis
emerged from recent discussions amongst biogeographers.
The book ends with an index of scientific Lepidoptera names. It is extremely
well edited, and it contains a wealth of information in condensed form, brought
together by the contemporary world’s leading specialists. It is a pity, however,
that in a present-day publication of such an importance no colour illustrations
are used to depict such colourful insects as the Lepidoptera, especially when
one takes into account its rather high price. Because of this economical barrier,
many of the relevant information contained in this book will not find its
way to the broad public of serious students of Lepidoptera who have not
easy access to university or museum libraries. It is hoped, however, that the
second volume will be published in due course.
Willy DE Prıns
ScoBLE, Malcolm J. (Herausgeber): Geometrid Moths of the World. A
Catalogue.
21 X 29 cm, 1400 S., hardback, 2 Bande mit einer CD-ROM. CSIRO
Publishing und — fiir Europa — Apollo Books, 1999. ISBN 87-88757-29-
3. Bestellungen an: Apollo Books Aps., Kirkeby Sand 19, DK-5771 Stenstrup,
Denmark. Preis: DKK 1.990/ US$ 295, ohne Versand.
Angesichts der rapide fortschreitenden Bedrohung der Biodiversitat durch
Umweltschäden versteht sich der Katalog als ein Schritt in Richtung auf die
Erarbeitung einer “Passagierliste” fiir unser Raumschiff Erde. Die Zielgruppe
für einen verlaBlichen Katalog aller bekannten Arten der Geometriden, die
mit den Pyraliden und den Noctuiden die drei größten Schmetterlingsgruppen
der Welt darstellen, ist daher auch umfassend: “Entomologen, Systematiker,
Evolutionsbiologen, Ökologen”.
Ausgehend von dem legendären “card index” im Natural History Museum,
London, will der Katalog die — teilweise noch unveröffentlichte — taxo-
nomische Information zu allen nomenklatorisch verfügbaren (im Sinne des
Code von 1985) Namen der Geometridenarten der Welt zusammenfassen und
rasch und einfach zugänglich machen. Zu diesem Zweck sind ca. 35.000
Artnamen in ihrer originalen Schreibweise (was zutreffend begründet wird)
alphabetisch den — ebenfalls alphabetisch gereihten — Gattungen zugeordnet
und mit Autor, Jahr, Fundstelle der Urbeschreibung, ursprünglichem Genus,
Typenverbleib und Angaben zu Typus/ Typen einschließlich Typengeographie
und — soweit bekannt — schließlich auch den Futterpflanzen aufgelistet.
319
Synonyme und Homonyme sind bei den validen Artnamen angegeben. Bei
den Gattungsnamen werden Autor, Jahr, Fundstelle und die Subfamilie
genannt. Diese Fülle an Daten läßt wohl kaum einen Wunsch offen.
Stichprobenartige Recherchen ergaben, daß der Katalog tatsächlich vollständig
ist: Man kann getrost davon ausgehen, daß mehr als 99,9 % der bis 1998
publizierten, verfügbaren Namen enthalten sind! In beinahe täglicher Benutzung
des Kataloges über zwei Monate hinweg konnten nur in den seltensten Fällen
Schreibfehler ausgemacht werden, z.B. Photoscotosia “elagantissima“ (S. 746
und Index) statt ”elegantissima“!
Welchem hohen Zuverlässigkeitsanspruch der Katalog genügt, läßt sich schon
daran ermessen, daß für alle ca. 35.000 Artnamen die Urbeschreibungen
eingesehen wurden. Das heißt nicht, daß Experten bei gründlicher Nachsuche
nicht noch einzelne Fehler entdecken könnten. So ist Eupithecia luteostrigata
deverrata Chrétien (S. 359) synonym und homonym mit Eupithecia deverrata
Dietze (S. 338), da sich beide Namen auf Material derselben Zucht stützen
(Herbulot pers. Mitt.). Die Arten obliqua B.-Bak., sudanica Herb., viridans
Prt. und xanthostephana Prt. sind in die Gattung Thelycera (S. 933)
einzureihen, nicht in Mixocera (S. 612) wie schon Prout (in Seitz 16 (1930):
45) bemerkte.
Es handelt sich hier aber um seltene Ausnahmen, was bei einem solchen
Monumentalwerk freilich insgesamt nicht ins Gewicht fällt. In welchen
Intervallen und in welcher Form Berichtigungen und künftige Ergänzungen
nachgereicht werden, ist wohl noch nicht entschieden.
Daß die Fundstellen zitierfähig wiedergegeben sind und die geographischen
Angaben aktuell ergänzt wurden, ist praxisfreundlich. Der Benutzer wird es
den Verlegern außerdem sehr danken, daß ein vollständiger Namensindex
jedem der beiden Bände beigegeben wurde. Auf der CD-ROM finden sich
eine Liste der validen Namen mit Autor (ohne Jahr, ohne aktuelle oder
ursprüngliche Gattung) sowie 59 attraktive Farbbilder von Geometriden.
Verdienstvollerweise enthält der 2. Band einen Anhang mit einer systematischen
Reihung der Genera entsprechend der Anordnung in der weltweiten Sammlung
des Natural History Museums, London. Dies läßt auf einen weiteren Effekt
dieses meisterlichen Katalogwerkes in der Sammlungspraxis hoffen: Fast alle
großen Museen haben mehr oder weniger bedeutende Mengen an Geometriden
außerpaläarktischer Herkunft, die aber wegen der nicht vollendeten Bearbeitung
im Lepidopterorum Catalogus und im “Seitz” nur in seltenen Fällen syste-
matisch “aufgestellt” wurden. Mit dem Katalog haben die Kuratoren endlich
eine Grundlage für die Zu- und Einordnung ihrer Bestände, die dann — ganz
im Sinne der Katalogverfasser — der Bearbeitung und Forschung zugänglicher
werden als bisher. Packen Sie’s an!
Der Katalog setzt auf höchstem Niveau Maßstäbe für Inhalt und Aufbereitung
globaler taxonomischer Information und ist tatsächlich, wie es im Vorwort
heißt, “a benchmark”. Die Leistung des namhaften Bearbeiterteams (Mark
320
S. Parsons, Martin R. Honey, Linda M. Pitkin, Brian R. Pitkin) um Dr.
Malcolm J. Scoble, den Geometridenspezialisten im Natural History Museum,
ist aller Anerkennung wert. Kritisches? Allenfalls, daß ein Werk dieses
Schlages, das man mit so viel Gewinn und Sympathie zur Hand nimmt, schon
einen farbenfrohen Einband verdient hatte!
Axel HAUSMANN & Manfred SOMMERER
HUEMER, Peter & KARSHOLT, Ole: Microlepidoptera of Europe, Volume 3,
Gelechiidae I (Gelechiinae: Teleiodini, Gelechiini).
24 X 17 cm, 356 pp., 47 text figures, 14 colour plates (depicting 321 specimens),
114 black-and-white plates (depicting 151 male genitalia and 151 female
genitalia), hardback. Published by Apollo Books, Stenstrup, January 1999.
ISBN 87-88757-15-3. To be ordered from: Apollo Books Aps., Kirkeby Sand
19, DK-5771 Stenstrup, Denmark. Tel. 0045 62 26.37.37 — fax 0045 62 26.37.80.
Price: DK 500 excl. postage.
While some families of the so-called Microlepidoptera are treated in numerous
publications, others hardly receive any attention of the authors. Descriptions
of new taxa, records on the distribution, flight period and biology are scattered
all over the entomological literature. This applies very well to the Gelechiidae.
Apart from some taxonomic treatments of single genera (e. g. Mirificarma,
Teleiopsis), no general review of the family as a whole has ever been published
for the European fauna. The main reasons for this may be the inconspicuous
external appearance of the adults and the difficulties encountered while
identifying the specimens.
This book aims to fill part of this gap and will be followed (soon?) by three
more volumes treating part of the Gelechiidae. In this first part 151 species
are recognised, belonging to the tribes Teleiodini and Gelechiini. Ten new
species are described: Stenolechiodes macrolepiellus (Greece), Teleiodes albi-
dorsella (Spain), Carpatolechia intermediella (Spain), Pseudotelphusa occiden-
tella (Morocco, Portugal, Spain, southern France), Xenolechia pseudovulgella
(Greece, Turkey), Xenolechia lindae (Greece), Altenia elsneriella (Croatia,
Macedonia, Greece, Cyprus), Mirificarma pederskoui (Spain), Aroga balca-
nicola (Macedonia, Greece, Iran), and Neofriseria baungaardiella (Greece,
Spain). Sixteen new synonymies are established, while two taxa are recalled
from synonymy. Sixteen new combinations are introduced. Lectotypes are
designated for fifteen taxa.
The book starts with introductory chapters about collecting methods, genitalia
preparation, the morphology of the Gelechiidae and their systematics and
classification, and a key to the subfamilies of European Gelechiidae. The
systematic part starts with a key to the European genera of Teleiodini and
Gelechiini, based on male and female genitalial structures, and a check-list
of the species treated in this part with full synonymy. The same complete
synonymy can be found in the systematic treatment of every species, but here
321
including the original combination and with complete references to the source
of description. The text of each species furthermore includes a short diagnosis,
some words about the variation and reference to similar species with which
the taxon can be confused. There are short descriptions of male and female
genitalia and data on the distribution in Europe, the biology (in many cases
only including a reference to the larval food plant, or lacking at all!), and
the flight period. In most cases also a short paragraph is added containing
additional remarks on taxonomy, synonymy and so on. The text is accom-
panied by 47 text-figures, mainly illustrating the eighth abdominal segment
of the male, which in many cases gives good taxonomic characters. This part
of the book concludes with a taxon of which the systematic position is unclear,
and with a distribution catalogue similar to that of the recently published
account of the European Lepidoptera.
All species are illustrated on 14 colour plates depicting 321 neatly set specimens,
in most cases allowing identification without further examination of morpho-
logical characters, also because the specimens are enlarged (the exact scale
is missing). These plates are of excellent quality and printed with much care.
Because the species are numbered throughout the book and these numbers
are mentioned under each figure and in the accompanying text about the
origin and whereabouts of the specimens, it is very easy to use these plates
in combination with the relevant parts in the main text and with the
corresponding plates of male and female genitalia. The latter follow immediately
after the colour plates and contain photographs of the genitalia preparations.
Also these plates are of excellent quality and easy to use.
The book ends with a list of references and three alphabetical indices: to
the entomological genus names, to the entomological species names and to
the host plants. This very well edited and produced book will be welcomed
by many European students of Microlepidoptera who finally have a tool to
identify part of their Gelechiidae. It is hoped that the next three volumes
will follow soon.
Willy DE PRINS
322
Nota lepid. 22 (4): 323; 01.X11.1999 ISSN 0342-7536
Vol 22 — 1999
Dates of publication — Publikationsdaten — Dates de publication
22 (1): 01.11.1999 pp. 1-80
22 (2): 15.VI.1999 pp. 81-160
22 (3): 01.IX.1999 pp. 161-232
22 (4): 01.X11.1999 pp. 233-323
Contents — Inhalt — Sommaire
New taxa described in Vol. 22
Neue Taxa in Band 22 beschrieben
Nouveaux taxa decrits dans le Vol. 22
TINEIDAE
Eudarcia (Abchagleris) verkerki Gaedike & Henderickx, 1999 ...... | 3
PSYCHIDAE
Siederia transsilvanica Herrmann & Weidlich, 1999 .................... l 12
SESIIDAE
Synanspheciamaroccana Kallies, 1999... 27290
Spnanspheeiahispanica Kallies, 1999 ..............cs0cccc.sesccensssosasevecens my OP)
CRAMBIDAE
Metaeuchromius yusufeliensis Nuss & Speidel, 1999 .................... 222155
323
sf 2
“4 q Eve aa
on
>
Se
INSTRUCTIONS FOR AUTHORS
Manuscripts and all correspondence related to editorial policy should be sent to the editor: Alain Olivier,
Lt. Lippenslaan 43, bus 14, B-2140 Antwerpen-Borgerhout, Belgium.
Papers submitted to Nota lepidopterologica should be original contributions to any aspect of lepidopterology.
Publication languages are English, German and French. Al! manuscripts will be reviewed by a board of assistant
editors and by at least two appropriate referees. The editors reserve the right to make textual corrections
that do not alter the author’s meaning.
The manuscript should be submitted in triplicate and on a PC-compatible (not Macintosh) disk. Please
do not send registered mail! The papers should be accompanied by a summary not exceeding 200 words.
For acceptable style, format and layout please examine recent issues of the journal. Latin names of genera
and species should be underlined or italicised. The first mention of any living organism must include the
full scientific name with the author and the year of publication, but thereafter the author and date can be
omitted and the generic name abbreviated. Male and female symbols have to be coded as @ and # respectively.
Geographic and other names in languages where other than Latin characters are used (e. g. Armenian, Chinese,
Georgian, Greek, Russian, Ukrainian etc.) should be given in transliteration/ transcription (not translation!).
Summary, tables, footnotes, the list of figure legends and references must be on separate sheets. The title
of the paper should be informative and concise. The name and full postal (and e-mail if available) address
of the author(s) to whom all correspondence should be addressed should be given on the first page.
The authors should strictly follow provisions of the current edition of the /nternational Code of Zoological
Nomenclature. New taxa must be distinguished from related taxa (diagnosis, key). The abbreviations gen.
n., Sp. n., syn. n., comb. n. should be used to distinguish all new taxa, new synonymies and new combinations.
In describing new genus group taxa, the nominal type-species must be designated in its original combination
and with reference to the original description immediately after the new name. In describing new species
group taxa, one specimen must be designated as the holotype; other specimens mentioned in the original
description and included into the type series are to be designated as paratypes — all immediately after the
name. The complete data of the holotype and paratypes, and the institutions in which they are deposited
(abbreviated as explained in the introductory section), must be recorded in the original description as follows:
Material. Holotype @, Turkey, Hakkari, 8 km E. of Uludere, 1200 m, 10.V1.1984, H. van Oorschot
leg. (ITZA). Paratypes: 7@, 3#, labelled as holotype; @, #, “Achalzich Chambobel 1910 Korb” (NHMW);
2@, #, Irag, Kurdistan, Sersang, 1500 m, L. Higgins leg. (BMNH); @, Iraq, “Shaglawa, 2500 ft, Kurdistan,
15/24 May 1957” L. G. Higgins leg. (BMNH).
All material examined should be listed in similar format: localities should be cited in order of increasing
precision as shown in the examples; in cases when label text is quoted, it should be included between opening
and closing inverted commas.
Figures must be drawn in black waterproof ink and should be submitted about twice their printed size,
labelled with stencilled or pre-printed lettering or numbering in Arabic numerals large enough to allow reduction.
Photographs must be best quality prints on glossy paper. Each drawing, graph or photograph should be
signed on the back by the author’s name and the fig. (or plate) number; the top should be indicated.
References in the text should be cited by author, date (and page, table, plate, figure if necessary) and
should be collated at the end of the paper in alphabetical and then in chronological order in the following
form (please draw attention to the punctuation and the use of Em (—) and En (-) dash not replaced with
a nonbreaking hyphen (-):
Hicoins, L. G., 1950. A descriptive catalogue of the Palaearctic Euphydryas (Lepidoptera: Rhopalocera).
— Trans. R.ent.Soc.Lond. 101: 435-489, figs. 1-44, 7 maps.
Hicoins, L. G. & Ritey, N. D., 1980. A field guide to the butterflies of Britain and Europe. 4th ed. —
Collins, London. 384 p., 63 pls.
STAUDINGER, O., 1901. Famil. Papilionidae - Hepialidae. Jn: STAUDINGER, O. & Reser, H. Catalog der
Lepidopteren des palaearctischen Faunengebietes. 3. Aufl. — Friedlander & Sohn, Berlin. XXX+411 p.
(Tagfalter p. 1—97).
All authors quoted in the text are to be included in the list of References and vice versa. Titles of journals
should be given in complete or abbreviated according to the World List of Scientific Periodicals.
Twenty-five reprints of each paper will be supplied free of charge to the first author; additional copies
may be ordered on a form enclosed with the proofs.
Kopien dieser Hinweise in deutscher Sprache sind beim Redaktor erhältlich.
Copies de ces instructions en français sont disponibles auprès de l’editeur.
RARE
DRAN LIES
5 t
RATER
Livhotret
Sterne?
Satadobies
a Sh ANE HE Madey
PERSE OL ROE ph eRe
LUS BUR
EU
ba nues Am
Memo wir area
ASE tals WRT A
pease Sey
ren
405 Gitta if
x
,
tu
wee
one
wy
foe
ter
Il
3 9088 01058 9422
‘ von . 4 . i
re Cyn code sen sen
‘ ‘ ‘ our ; 4
x ; te ’
oo. CPL AOL pal ge ’ ‘ ‘
Peron Me kee a . ‘ '
tual HO \ ‘ ‘
’ seu délits ‘ ' '
‘ . ‘ 1
x . Ber no
Vee vo wee ' u ..
‘ ‘ vo . . ‘