iM/HO
Nouvelle Série, Tome XI, Faso. 3-4
1% J L'-t Ci. ^
1976
REVUE
ALGOLOGIQUE
LABORATOIRE DE CRYPTOGAMIE
MUSÉUM NATIONAL D’HISTOIRE NATURELLE
12, RUE DE BUFFON - 75005 PARIS
Publication Trimestrielle
Sorti des presses le 20 janvier 1977
Nouvelle Série, Tome XI, Fasc. 3-4
1976
REVUE
ALGOLOGIQUE
Fondée en 1922 par P. ALLORGE et G. HAMEL
Directeurs : P. BOURRELLY et R. LAMI
Secrétariat de Rédaction : M. RICARD
SOMMAIRE
P. BOURRELLY. - Einar TEILING (1888-1974). 205
Y. LE CALVEZ. - Georges DEFLANDRE (1897-1973). 209
U. GERSON. - The associations of Algae with Arthropods (2nd part,
Addendum).213
J. P. CULLINANE. - Vaucheria on «Coral» ( Lithothamnion ) Sand.249
E. FJERDINGSTAD, Bo HOLMA and E. J. FJERDINGSTAD. - The
structure of Oscillatoria limosa Ag. (Cyanophycea) and the formation
of hormogonia and necridia.261
A. COÛTÉ. — Étude comparative du cycle de Liagora tetrasporifera Bôrg.
et du Liagora distenta (Mert.) C. Ag. en culture.273
H. M. PARKES. — The presence of tetrasporangia and carposporophytes
on the same thallus in Pterosiphonia thuyoides .299
D. M. JOHN. — The marine algae of Ivory Coast and Cape Palmas in Libe¬
ria (Gulf of Guinea).303
R. T. TSUDA. — Some marine benthic algae from Pitcairn island.325
M. KHAN and A. MATHUR. — Algal flora of the rice-fields around Dehra-
dun, India.333
P. COMPERE. — Bourrellyodesmus, nouveau genre de Desmidiacées.339
M. RICARD. - Premier inventaire des diatomées marines du lagon de
Tiahura (île de Moorea, Polynésie Française).343
P. BOURRELLY. - ANALYSES BIBLIOGRAPHIQUES.357
205
EINAR TEILING (1888-1974) *
P. BOURRELLY
Le 21 août 1974, Einar TEILING, le doyen des algologues d’eau douce, s’est
éteint doucement à Lund, à l’âge de 86 ans.
Il était né le 21 mars 1888 à Stockholm où il prépara à l’Université, de 1907
1917, la licence de Sciences Naturelles. A cette époque, tout en continuant
es études, il enseignait à l’école Beskow de 1908 à 1919; il acheta alors son
Je remercie très vivement mon ami, le Dr. K. THOMASSON, de l’Université d’Uppsala, de
l’avoir fourni les documents nécessaires à la rédaction de cette notice (voir THOMASSON,
975, Sv. Bot. Tidskr. 69 : 191-197.
Rev. Algol, N. S., 1976, XI, 3-4 : 205-208.
Source : MNHN, Paris
206
P. BOURRELLY
premier microscope et s’intéressa vivement à la géologie et à l’algologie des
eaux douces. Il fut, à l’Université, l’élève du Prof. G. LAGERHEIM.
Son intérêt passionné pour les algues le mit en relation avec le grand desmidio-
logue O. BORGE. Celui-ci lui ouvrit largement sa riche bibliothèque et sa col¬
lection de dessins algologiques. Le jeune TEILING, qui était excellent dessina¬
teur, comprit l’importance capitale de la documentation et commença alors à
se constituer une iconothèque et une bibliothèque spécialisée.
Ces collections ont été léguées à la section algologique de l’Université d’Up-
psala. Le Dr. TEILING était avant tout un homme de «terrain» et ses vacances
se passaient à récolter des algues planctoniques des innombrables lacs suédois.
Dès 1912 il put ainsi publier sa première note sur le Phytoplancton d’un lac
proche de Stockholm. En 1916, une nouvelle note suivra où il décrira le nou¬
veau genre de Chlorococcale : Tetrallantos.
Au début de la première guerre mondiale il travaille pendant un mois dans le
laboratoire du Prof. KOLKWITZ à Berlin et se familiarise ainsi avec la notion
des algues indicatrices de pollution.
En 1916 il publia, sur les conseils de WESENBERG qu’il a visité en 1913,
une étude sur la formation phytoplanctonique qu’il appelle «calédonienne»
(comparable à celle trouvée par W. et G. S. WEST en Ecosse) et l’oppose à
une formation «baltique». Ces formations, floristiquement très différentes, se
retrouvent dans des lacs voisins mais se distinguent par leur âge géologique, leur
sous-sol, et leur environnement. Ce travail, écrit en suédois, resta malheureuse¬
ment inconnu hors de Suède. Cela est fort regrettable, car il contenait en germe
la distinction fondamentale entre plancton d’eau pauvre en éléments nutritifs
(calédonien) et plancton d’eau riche en substances dissoutes (baltique). C’est ce
que NAUMANN en 1919, appellera milieu oligotrophe et milieu eutrophe.
TEILING, cependant, insistait davantage non sur la productivité mais sur
l’aspect qualitatif du phytoplancton.
Sa licence terminée TEILING est nommé professeur à l’École Normale de
Stràngnâs (1919-1931) puis à Vâxsjô (1931-1937) et enfin à Linkôping (1937-
1953). Il va ainsi pendant 25 années se consacrer uniquement à l’enseignement.
Mais en 1940, le Prof. G. E. DU RIETZ, ayant retrouvé Tetrallantos dans un lac
voisin d Uppsala, entre en relation avec le Dr. TEILING, lui demande confirma¬
tion de ses déterminations d’algues et l’encourage à reprendre ses travaux de re¬
cherches. TEILING étudie alors avec soin le phytoplancton de plus de 600 lacs
suédois et publiera jusqu’en 1967 une série de notes et de mémoires qui font
autorité. Il se penche particulièrement sur la morphologie des chloroplastes des
Desmidiées, et montre son importance tant pour la taxinomie que pour la phylo¬
génie. Il arrive ainsi par des voies différentes à des conclusions voisines de celles
de CHADEFAUD sur l’évolution des plastes.
Ses études sur le polymorphisme de ces algues lui permettent de ressusciter
le genre Actinotaenium et de créer le nouveau genre Staurodesmus. Ce dernier
taxon groupe, en une synthèse intelligente, des formes bipolaires et multipo-
EINAR TEILING
207
laires que la systématique classique séparait sous des noms de genres différents
tels que Staurastrum et Arthrodesmus. Ce genre Staurodesmus créé par TEI¬
LING en 1948 a fait l’objet en 1967 d’une monographie qui restera comme un
modèle de clarté et de logique.
La grande activité scientifique de E. TEILING est enfin reconnue officielle¬
ment et de 1945 à 1958 il est chargé de cours d’écologie et de taxinomie du
phytoplancton à l’Institut Limnologique de l’Université de Lund et au Labora¬
toire d’Aneboda. Enfin en 1950, il reçoit la distinction suprême de Docteur
honoris causa de l’Université de Lund.
En 1960, il s’installe à Lund mais garde des liens étroits avec l’Université
d’Uppsala. Malgré son âge avancé, il demeure le conseiller des jeunes algologues
(et même des «moins jeunes») et sa bibliothèque et sa vaste érudition sont à la
disposition de tous les chercheurs.
Il ne faudrait pas croire que l’enseignement et l’algologie suffisaient à remplir
la vie de E. TEILING. Il adhérait à de nombreuses sociétés savantes et fut le
doyen des membres de la société botanique suédoise. De plus, grand amateur de
musique, il avait participé à la fondation de la Société de Musique de Stockholm;
il était aussi membre d’un club automobile et d’une société de photographie
dont il était le fondateur.
Ce grand algologue dont nous venons de retracer brièvement la vie nous laisse
• e souvenir d’un esprit curieux, amateur et observateur passionné de la nature et
de ses secrets, et en même temps ouvert aux côtés humains de l’existence.
Ainsi tous ceux qui l’ont approché ont apprécié sa grande culture, sa bonté
ouriante, sa simplicité, son esprit plein d’humour et d’indulgence.
Je le connaissais personnellement depuis 25 ans et ses conseils et son amitié
îe m’ont jamais fait défaut. Je me souviens toujours avec émotion du jour de ma
outenance de thèse où je reçus de Suède, avec une lettre de félicitation, une
gerbe de fleurs de sa part. Ce geste montre toute la délicatesse de son amitié.
L’algologie a perdu avec le Dr. TEILING, un de ses maîtres, et moi un ami
rès cher.
PUBLICATIONS PHYCOLOGIQUES D’EINAR TEILING
■ 909 — En fossilfôrande postglacial ôstersjôlera. Geol Fôren. Fôrh. 31 : 52-64.
1912 — Phytoplankton aus dem Rastasjôn bei Stockholm. Svensk bot. Tidskr. 6 : 266-281.
L916 — Schwedische Planktonalgen. 2. Tetrallantos, ein neue Gattung der Protococcalen.
Svensk. bot. Tidskr. 10 : 59-66.
208
P. BOURRELLY
1916 — En kaledonisk fytoplanktonformation. Svensk. bot. Tidskr. 10 : 506-519.
1941 — Aeruginosa oder flos-aquae. Eine kleine Microcystis Studie. Svensk bot. Tidskr.
35 :337-349.
1942 — Schwedische Planktonalgen. 3. Neue oder wenig bekannte Formen. Bot. Notiser :
63-68.
1942 — Schwedische Planktonalgen. 4. Phytoplankton aus Roslagen. Bot. Notiser : 207-217.
1944 — Vara viktigare fytoplankter. Biol, larar. Fôren. Medlemsbl. : 15-24, 39-43, 46-58.
1946 — Zur Phytoplanktonflora Schwedens. Bot. Notiser : 61-88.
1947 — Staurastrum planctonicum and St. pingue. A study of planktic évolution. Svensk
bot. Tidskr. 41 : 218-234.
1948 — Staurodesmus, genus novum. Bot. Notiser : 49-83.
1950 — Radiation of desmids, its origin and its conséquences as regards taxonomy and
nomenclature. Bot. Notiser : 299-327.
1952 — Evolutionary studies on the shape of the cell and of the chloroplast in desmids.
Bot. Notiser : 264-306.
1952 - Phytoplankton associations of Swedish lakes. Proc. 7th int. bot. Congr. Stockholm
1950 :828-829.
1954 — Açtinotaenium genus Desmidiacearum resuscitatum. Bot. Notiser : 376-426.
1955 -Some mesotrophic phytoplankton indicators. Verh. int. Ver. Limnol. 12 : 212-215.
1955 - L’authentique Staurodesmus dejectus (Bréb.). Compte-rendu Ville Congr. Int. Bot.
17 :128-129.
1955 -Peridinium gatunense Nyg. i Sverige. Svensk bot. Tidskr. 49 : 240-246.
1956 — On the variation of Micrasterias mahabuleshwarensis f. Wallichiu Bot. Notiser 109 :
260-274.
1957 - Some little known Swedish phytoplankters. Svensk. bot. Tidskr. 51 : 207-222.
1957 — Morphological investigations of asymmetry in desmids. Bot. Notiser 110 : 49-82.
1958 -Eulimnion, an original place of new forms. Verh. int. Ver. Limnol. 13 : 879-882.
1967 - The desmid genus Staurodesmus. A taxonomie study. Ark. bot., Ser. 2, 6 : 467-
629.
209
Georges DEFLANDRE (1897-1973)
Y. LE CALVEZ
Georges, Victor DEFLANDRE naquit à Dizy-Magenta (Marne) le 18 mars
1897. Il reçut de son père artiste-peintre et cheminot, de son grand-père paternel
organiste et compositeur ses dons artistiques : il dessinait fort bien et, excellent
musicien, jouait indifféremment de l’orgue et de l’harmonium, du piano et du
clavecin, du violon et du violoncelle. De son grand-père maternel, inventeur
d’une horloge électrique et artisan du premier wagon-dynamometre construit en
France, il hérita ses qualités d’observation, son amour de la recherche, son goût
de la découverte.
Obligé en 1913 d’interrompre ses études secondaires brillamment commen¬
cées, il devint employé du Chemin de fer, puis en 1915 instituteur. Mobilisé en
Rev. Algol, N. S., 1976, XI, 3-4 : 209-211.
Source : MNHN, Paris
210
Y. LE CALVEZ
1916, Georges DEFLANDRE, d’abord Aspirant, puis Sous-Lieutenant d’infan¬
terie, fut blessé et fait prisonnier en 1918. A son retour de captivité, il retrouve
son poste d’instituteur mais, désireux d’accroître ses connaissances scientifiques,
il reprend seul ses études et commence dès 1922 à fréquenter assidûment le La¬
boratoire de Cryptogamie du Muséum, dirigé par L. MANGIN. Tout le temps
que lui laisse ses obligations professionnelles, il le consacre à la recherche et, en
1926, il soutient sa thèse de Doctorat d’Université. Nommé en 1930 préparateur
à l’École Pratique des Hautes Études dans le Laboratoire de L. MANGIN, il est
en 1932 boursier à la Caisse Nationale des Sciences et accueilli au Laboratoire
d’Évolution des Etres Organisés. En 1943, l’École Pratique des Hautes Études
créait pour lui le Laboratoire de Micropaléontologie qu’il devait diriger jusqu’en
1967, et le C.N.R.S. lui conférait en 1953 le titre de Directeur de Recherche.
Plusieurs fois Lauréat de l’Académie des Sciences, Président de la Société Fran¬
çaise de Microscopie (1933), Fondateur et Directeur des Annales de Protisto-
logie (1928-1936), G. DEFLANDRE était membre d’Honneur de nombreuses
sociétés tant françaises qu’étrangères, Correspondant de l’Académie des Sciences
et Chevalier de la Légion d’Honneur.
L’œuvre scientifique de G. DEFLANDRE est immense et couvre l’ensemble
de la Micropaléontologie et de la Protistologie. Il n’est pas possible ici d’analyser
tous ses travaux, aussi me bornerai-je à donner un très bref aperçu de l’essentiel
de ses recherches consacrées aux Algues.
Lorsqu’en 1920 il commença à s’intéresser aux Algues microscopiques uni-
cellulaires des eaux douces, ce groupe était très délaissé et de nombreuses régions
de France restaient encore à explorer. G. DEFLANDRE en quelques années
apporta une contribution notable a la floristique de la France en publiant une
série de notes relatives d’abord aux environs de Paris, puis à la Basse Normandie,
enfin à la Bretagne, aux Vosges, aux Pyrénées et aux Ardennes. Au point de vue
morphologique et systématique, les Desmidiées tiennent une large place dans ses
recherches mais il ne néglige pas pour autant les autres Chlorophycées.
Puis, pendant de nombreuses années, G. DEFLANDRE va consacrer une gran¬
de partie de son activité à l’étude des Flagellés. Ses premiers travaux se rappor¬
tent aux Phytoflagellés et principalement aux Eugléniens dont il étudie la mor¬
phologie et la cytologie : sa monographie du genre Trachelomonas sera le sujet
de sa these et en 1959, il signalera l’existence des premiers Trachelomonas fossi¬
les dans un schiste bitumineux du Pliocène de Madagascar. Il se penche ensuite
sur les Silicoflagellés ou Flagellés siliceux et établit une nouvelle classification
des Chrysomonadines, créant pour 65 d’entre elles la famille des Archaeomona-
dacées. Il s intéresse aussi aux Ebriidés et publie de nombreux articles concer¬
nant leur morphologie et leurs tendances évolutives.
C’est en 1939 qu’il commence ses observations sur les Flagellés calcaires, avec
celles des Coccolithophoridés, aujourd’hui très étudiés, mais qui ne comptaient
alors qu un petit nombre de spécialistes. Là encore, il crée de nombreux genres,
espèces et la famille des Braarudosphéridés.
Dans le même temps, son intérêt se porte sur les microfossiles des silex cré-
Source : MNHN, Paris
Georges DEFLANDRE
211
tacés (Dino flagellé s, Hystrichosphéridés, etc.) et sur les Diatomées.
Tous ces travaux ont abouti à plus de trois cents publications, écrites dans un
style précis, clair, élégant et illustrées de dessins qu’il exécuta lui-même ou de
photographies dont il était l’auteur.
A côté de ces recherches originales qui ont fait de lui le grand précurseur de la
Micropaléontologie moderne, G. DEFLANDRE est l’auteur d’ouvrages de vulga¬
risation qui ont largement contribué à faire connaître l’existence des micro-orga¬
nismes : «La microscopie pratique» parue en 1930 et la «La vie créatrice des Ro¬
ches» publiée en 1941, traduite dans toutes les langues et dont la dernière édi¬
tion date de 1967.
Dans le traité de Zoologie (Directeur P. P. GRASSÉ), G. DEFLANDRE rédi¬
gea les chapitres relatifs aux Phytomonadines, aux Xanthomonadines, aux Ebrié-
diens, aux Silicoflagellés, aux Chrysomonadines fossiles, aux Coccolithophoridés,
aux Flagellés fossiles incertae sedis. Enfin, en collaboration avec Mme Marthe
DEFLANDRE-RIGAUD, sa femme, il publia au C.N.R.S. le Fichier Micropalé-
ontologique Général concernant tous les groupes de Protistes, et qui contient
plus de 4000 fiches se rapportant aux seules Algues.
Cet autodidacte, qui était à la fois Algologue, Protistologue, et Micropaléon¬
tologiste, et qui embrassa au cours de sa carrière scientifique le vaste domaine du
nannoplancton, était aussi un naturaliste complet. Sa grande érudition, ses dons
d’observation, sa connaissance des langues étrangères (il parlait couramment
l’anglais et l’allemand, traduisait l’italien et l’espagnol, et possédait des notions
de russe) le poussaient à s’intéresser à tout ce qui l’entourait et c’était un plaisir
de l’entendre commenter, toujours avec beaucoup d’esprit, telle ou telle idée
nouvelle, telle ou telle découverte récente.
En la personne de G. DEFLANDRE, la Micropaléontologie perd l’un de ses
plus éminents représentants. Son nom restera toujours attaché à cette discipline
et son œuvre est le témoin d’une vie toute entière consacrée à la Recherche et à
la Science.
Source : MNHN, Paris
213
THE ASSOCIATIONS OF ALGAE
ARTHROPODS - II *
WITH
U.GERSON **
6. DELETERIOUS EFFECTS OF ALGAE ON ARTHROPODS
6. 1 PHYSICAL INTERFERENCE
Several cases of algal growth on arthropods were noted above. Some appear
to be fortuitous, others serve to camouflage the hosts, and in additional ones, to
be discussed below, the algae parasitize the arthropods. The overgrowing plants
may also adversely affect the host through physical interférence. A pertinent re¬
port (GLYNN 1970) concerns algae growing on the marine isopod Dynamenella
perforata, causing it indirect harm by interfering with crawling, swimming, fee-
ding and other functions. BARNES and TOPINKA (1969) wrote that Fucus ini-
tially receives some protection from the barnacles on which it grows, but later
the plants kill the animais by interfering with their feeding activity.
Indirect physical interférence through decreasing transparency brought about
by increasing phytoplankton production in lakes and rivers was postulated by
FREY (1969) to affect populations of chydorid cladocerans. These animais
utilize rooted aquatic plants as their main substrate, and the greater and deeper
the area inhabited by the plants, the more varied the cladoceran populations. In
low-productivity water bodies the plants extend to deeper zones, due to the
greater transparency of the water. But with increased phytoplankton production
transparency decreases, the extent of rooted aquatic plants becomes restricted,
and consequently the number of cladoceran species déclinés.
6. 2 OXYGEN DEPLETION AND OVERPRODUCTION
The déplétion of oxygen in ponds by algae, or its overabundant production
there, are spécifie mechanisms whereby arthropod populations may be affected
* Part I : Rev. Algol, N.S., 1973 (1974), XI, 1-2 :18-41.
** The Hebrew University, Faculty of Agriculture, Rehovot, Israël.
Rev. Algol., N. S., 1976, XI, 3-4 : 213-247.
Source : MNHN, Paris
214
U. GERSON
(EHRLICH 1966). Chara fragilis was léthal to some mosquitoes apparently due
to excessive oxygen production (DARBY 1962). MARSHALL (1966) stated
that Daphnia suffered prénatal mortality when held in a Chlamydomonas culture
kept in the dark, possibly due to déplétion of dissolved oxygen by the algae. Wa-
ter trapped by large brown seaweeds (such as Fucus and Ascophyllum) at low
tide becomes déficient in oxygen during the night or on cloudy days (WIESER
and KANWISHER 1959). The lack of oxygen may paralyze or kill the arthro-
pods which usually inhabit these brown algae. Efforts to reduce the amplitude
of the diurnal oxygen curve in stabilization ponds so as to maintain Daphnia
populations which help in water clarification, were detailed by EHRLICH
(1966).
6. 3 INHIBITORY SUBSTANCES
SAUNDERS (1957) stated that there is some evidence for antagonistic
activity of algal populations towards microcrustaceans, often enhanced by re-
lease of a substance from ingested cells within the animais. A tannin which im-
mobilized the Sargassum epifauna was discovered by SIEBURTH and CONO-
VER (1965), the branch tips of the seaweed being observed to be virtually
free of the usual epibiota. Appropriate chemical tests suggested the causal factor
to be a tannin, which adversely affected copepods at dilutions up to 1 : 125,
but not at higher ones (SIEBURTH and CONOVER 1965). Some other ins¬
tances of this phenomenon were presented in reviews by LUCAS (1961) and
SIEBURTH (1968). The term «ectocrines» was coined by LUCAS (1947) to
dénoté biologically active excretory products of aquatic organisms that may
hâve effects in marine ecology. A pertinent example was presented by SIE¬
BURTH (1968). The brown alga Ralfsia verrucosa sécrétés some polyphenols
which kill barnacle nauplii, thereby preventing their settlement in pools where
the alga abounds.
6. 4 WATER BLOOMS AND TOXINS
The best known cases of toxin production by algae are those associated with
«water blooms». The causes and development of these phenomena were discus-
sed by LUND (1965), ROUND (1965), STRICKLAND (1965) and many others.
These great outbursts of algal growth are often associated with widespread poi-
soning of fishes, birds, crustaceans and even terrestrial animais, which may
suffer after drinking the waters (ROUND 1965). The pertinent literature was
recently summarized by SCHWIMMER and SCHWIMMER (1968) (but see also
VALKANOV 1964). Copepods, cladocerans, amphipods and decapods were
among the affected crustaceans.
RYTHER (1954) believed that in rapidly multiplying algal populations
some inhibitory substance («chlorellin») accumulâtes, which seems to exclude
the grazers (the basis for this postulate, HARDY’s exclusion theory, was discus-
sed in a former paragraph). Later writers (RIGLER 1961;TAUB and DOLLAR
Source : MNHN, Paris
ASSOCIATIONS OF ALGAE W1TH ARTHROPODS
215
1968, and others) criticized RYTHER and did not accept his chlorellin theory.
TAUB and DOLLAR (1968), for instance, explained Daphnia inhibition at high
algal concentrations by nutrient defïciencies rather than by toxic substances. A
case where an alga is poisonous to arthropods only in spécial circumstances was
described by STANGENBERG (1968). The plant was Microcystis aeruginosa,
which contains a toxic substance. When Daphnia and Eucypris were kept on
normal cultures, no mortality occured. But the toxin may be discharged from
the algal cells by refrigerating and defrosting them. Considérable copepod mor¬
tality took place when such refrigerated-and-defrosted cells were placed in the
cultures.
6. 5 THE BIOLOGICAL CONTROL OF MOSQUITOES BY ALGAE
Se ver al authors hâve remarked on the effect of Characeae and other algae on
mosquito larvae. FRITSCH (1956, p. 447) noted the frequent avoidance of
waters harboring these algae by the larvae, though there was no clear evidence
for the production of any larvicidal substances by the Characeae. REMUSAT
(1962) claimed to hâve experimental proof that the larvae disappear from Cha-
raceae-containing waters because of the algae. It is only one step from such
observations to utilizing them, i. e., manipulating the algae in order to control
insect pests biologically. A review of such projects was presented by FRANZ
(1961), who noted that most of these efforts were against mosquito larvae. The
best results were reported by GERHARDT (1953, 1955). This author noticed
that rice fields free from mosquito larvae supported rich blue-green algae, whe-
reas the pests abounded in fields with lesser algal growths. GERHARDT ( l . c.)
wrote on the algae employed, on their culture and on successful introduction
experiments. The green alga Oedogonium princeps is another promising agent for
the control of anopheline larvae (GHOSH and HAT1 1964). Other species may
also prove useful in this respect, and on the whole it seems that the utilization of
algae against insect (and other) pests which live in aquatic environements has
been rather neglected.
6.6 PARAS1TISM
Several algae are parasitic on arthropods, although it may sometimes be diffi-
cult to distinguish this association from the mere utilization of the animais as
substrates (discussed in section 5. 2). FRITSCH (1956) cites CHATTON’s work
on endoparasitic algae, including the généra Paradinium and Blastodinium. Mem-
bers of the latter genus castrate their copepod hosts (SEWELL 1951) and sex re¬
versai in an attacked animal was reported by CATTLEY (1948). Many Euglenoi-
dina were recently described as parasites of fresh-water copepods (MICHAJLOW
1966, 1968, etc. ). The parasites attack the eggs and intestines of the hosts,
often causing their death. In some cases the parasites begin their development in
the nauplial eye and then spread to other parts of the body (MICHAJLOW
1966).
216
U. GERSON
6.7 ENTANGLEMENT
This mechanism was reported in regard to fïshes, not arthropods, but it is per¬
tinent to note it here. The water net, Hydrodictyon reticulatum, is a colonial
alga whose cells become 4-5 mm long, forming a network with a mesh size of
6-8 mm in older plants. The colony forms a sac measuringup to 50 mm in diameter
and 200 mm in length (LEWIS 1961).Manysmall£ishesbecomeentangledin thenet,
and, if unable to free themselves, they eventually die there.LEWIS (/.c.) thoughtthat
the alga may indirectly dérivé nutrients from the decaying fish, exerting a signifi-
cant effect on small fish and fïngerling populations. It is quite likely that some
of the larger aquatic arthropods may similarly become entangled.
6. 8 INDIRECT EFFECT OF HYDROLYZED SEAWEED
Some reports hâve been published in recent years concerning the indirect, ad¬
verse effects of algae, as hydrolyzed seaweed, on arthropods pests of agricultural
crops. Some of the daims in these reports may hâve commercial undertones, but
it seems worthwhile to note them in the présent context. STEPHENSON (1966)
stated that liquified seaweed, marketed as «Maxicrop» in the United Kingdom,
may confer on broad beans, sugar beets and potatoes some résistance to infesta¬
tion by aphids. The résistance was considered to be behavioral rather than nutri-
tional, as the aphids (some of which are important plant virus vectors) were wan-
dering restlessly on the plants. Maxicrop was also reported to protect orchard
trees against infestation of red spider mites (Tetranychidae), almost like com¬
mercial pesticide treatments. The seaweed product appeared to hâve the additio-
nal advantage of continuously building up its effect, so that after 2-3 years the
degree of control achieved was as good or better than that obtained by conven-
tional acaricides. These effects were thought to be due to the enhanced effect
of predators, which were unaffected by Maxicrop (STEPHENSON, l. c.).
The mecanisms protecting the Maxicrop-treated plants against these pests are
not clear, but it is beleaved that the effect is mediated through the plants, and
that it is not insecticidal (STEPHENSON 1966). Growth-regulating properties
were also claimed for Maxicrop, and these may be involved in protecting the
plants (BOOTH 1969).
A case of historical interest, concerning an attempt to protect potato plants
from «potato bugs» with the help of algae, was related by SCHWIMMER and
SCHWIMMER (1968). «Green lake scum» was applied to the potatoes, apparen-
tly to control the bugs. As a resuit both potato plants and bugs died.
7. ALGA-ARTHROPOD COMMUNITIES
7.1 COMMUNITIES ON SEAWEED AND ON FRESHWATER ALGAE
Certain arthropods hâve been associated with algae for prolonged periods, du-
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
217
ring which they formed some spécifie communities. One such community is
attached to Sargassum seaweed in the Sargasso Sea. This plant, originally coming
from the coasts of the Caribbean and covering large areas in the Sargasso Sea,
affords the base for a nomadic fauna of littoral origin, presumably stemming
from the home of the seaweed (ALLEE and SCHMIDT 1951). There are only 16
animal species directly attached to this Sargassum. The animais had to undergo
several adaptations in order to survive on this pseudobenthos, adaptations which
include specialized attachment behavior, nest building and protective coloration.
There are some arthropods among them, such as the crab Planes minutus and the
shrimps Leander tenuicornis and Latreutes ensiferus (ALLEE and SCHMIDT
1951). A note of historié interest may be inserted here again. As Columbus was
Crossing the Atlantic in 1492, his crew observed seaweed floating by, with a
crab attached to it. This sight suggested the proximity of land to the sailors, but ac-
tually they were only about midway across the océan, sailing through the Sar¬
gasso Sea (BERRILL 1966).
ANDREWS (1945) recognized several faciations of algae and animais inhabi-
ting kelp beds in the sea near the coast of California. Arthropods are involved
in two of these faciations, one of which consists of Macrocystis and the decapod
Pugettia, and appears to be seasonal. Nereocystis and the amphipod Amphithoe
make up the other faciation which is permanent throughout the year. Assembla¬
ges of algae and ostracods were distinguished by WHATLEY and WALL (1969)
in the Southern Irish Sea. The laminarian assemblage was exclusively found on
the holdfasts of Laminaria digitata and L. hyperborea, and its dominant ostracod
was Loxoconcha rhomboidea. The littoral assemblage was dominated by Cy there
lutea and Heterocythereis albomaculata, and occured on Cladophora, Entero-
morpha and Corallina, but never on Laminaria. A Fucus serratus community,
which includes many alga-feeding arthropods, were postulated to exist near the
Swedish coast by HAGERMAN (1966). This author also noted that the alga’s
surface has a pronounced effect on the associated fauna, filamentous, scrub-like
dgae having richer faunae than leaf-like ones. Similar observations were recorded
by JANSSON (1967), WHATLEY and WALL (1969) and others.
7. 2 COMMUNITIES LIVING IN SEASHORE WRACK
BACKLUND (1945) conducted an extensive study of the faunae occuring
in seashore wrack on Scandinavian shores, listing many arthropods. Later litera-
ture on this subject was reviewed by STRENZKE (1963), in the introduction to
his experimental study of arthropod succession in seaweeds. This investigator
placed fresh Fucus and Enteromorpha in open wire baskets near the seashore,
and studied the arthropods occuring therein for a period of one year. Four dis¬
tinct faunistic phases, correlated with sodium chloride content, were observed.
In the initial, colonizing phase, during the first fortnight of sampling, the antho-
myiid fly Fucellia intermedia and the mesostigmatic mite Halolaelaps marinus
predominated. Little decay occured during this phase, nor were there any signi-
ficant changes in the NaCl or water content. The second, «decayed matter» pha¬
se lasted from the third week to the beginning of the fourth month, and the do-
218
U. GERSON
minant arthropods were the spheroceriid Aies Limosina spp. and the mite Halo-
laelaps celticus. NaCl content was still above 10%. During the third, «transitio-
nal» phase, the sait concentration fell to below 2%. This phase lasted up to 7-8
months from the experiment’s beginning, and the more abundant animais were
certain Aies, such as the syrphid Syritta and the scatopsid Scatopse. The final
phase was characterized by large numbers of the mosquito Trichocera and the
collembolan Hypogastrura. Water content was believed to hâve an important
modifying effect on this succession (which could be replicated during several
years), but the dominant factor was considered to be sodium chloride content.
Additional work along the same Unes has more recently been reported by
MOELLER (1967), who found that Collembola, which tend to avoid high salini-
ty conditions, hâve no effect on algal décomposition. YONGE (1949) considered
the seaweeds to represent a «factor of the first importance» in the lives of many
shore animais (arthropods included). Other observations on intertidal, kelp-uti-
lizing insects were recorded by EVANS (1968), who also summed up many of
the previous reports. One group which deserves spécial mention is the dipterous
famüy Coelopidae, the seaweed or kept Aies. These insects, occuring the year
round in seashore wrack, spend their entire lives therein, as it provides them
with a warm, humid environment and with the nourishing slime upon which the
larvae feed (OLDROYD 1964).
The possible significance of seaweed banks as sites where the transition of
animais from aquatic to terrestrial habitats could take place was discussed by
LAWRENCE (1953). This author studies the cryptic soil arthropods of South
African forests and noted that many of these animais had relatives able to live
in the littoral. He believes that many archaic arthropods, in their attempts to live
on land, initially colonized the intertidal zone where heaps of seawrack could
afford them temporary shelter. Thus LAWRENCE (/. c.) thinks that seaweed
beds, with their perpetually-moist interiors, might serve as terrestrial outposts
for the colonizing arthropods eventually destined to live in forest soil. This theo-
ry was also discussed by KUEHNELT (1961), who did not however accept it.
7.3 COMPETITION FOR SETTLING SITES
Intertidal zones are sometimes the scene of compétition for settling sites
between arthropods (such as barnacles) and algae. A universal System of zona¬
tion for the area between tide-marks on rocky coasts was introduced by STE-
PHENSON and STEPHENSON (1949), who designated the middle part of the
shore as the Balanoid zone. Various algae, among them fucoids, are known to
interfère with the barnacles there. One such scene was described by RIGG and
MILLER (1949) from the vicinity of Neah Bay, Washington, U.S.A. The ani¬
mais were usually more successful in occupying the available sites, often comple-
tely crowding out the algae to the very borders of the barnacle colonies. In other
areas algae gained additional anchorage by pushing their holdfasts among the
animais. On the other hand, the latter were sometimes restricted to narrow belts
above the algal beds, as the plants were apparently better adapted to the imme-
Source : MNHN, Paris
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
219
diatly-adjacent vertical ranges (RIGG and MILLER 1949).
Germlings of Fucus vesiculosus attach onto barnacles and clams better than
onto rocks, but their holdfasts are also easier to detach from the former surface.
Fucus subsequently kills the barnacle on which it grows, and the empty shell
with its algal growth is devoured by grazing limpets. These interactions were
shown by BARNES and TOPINKA (1969) to affect the compétition for space
between barnacles and algae.
In exposed areas Fucus is less abundant than barnacles, as the alga often deta-
ched by wave action before attaining a size sufficient to kill the animais. With
decreasing exposure the algae succeed in developing bigger plants, subsequently
killing the barnacles (which are then removed by limpets). As a resuit the shel-
tered areas become available for further colonization by the algae, which grow
on other substrates and deny access to invading barnacles. Additional observa¬
tions on this subject were reported by MACFARLANE (1952) and GLYNE
(1965) published an extensive study on algal-barnacle relationships and com-
inunities. Compétition between algae and other arthropods - simuliid larvae - for
space on rocks was reported by FEE (1967).
7. 4 COMMUNISTES AFFECTED BY TECHNOLOGICAL CHANGES
Modem technology is bringing about many changes in algal distribution and
.bundance (and presumably in their associated arthropod fauna), and some re¬
présentative cases will be noted. The hulls of present-day fuel tankers are generally
free of animal fouling forms, apparently because of the ships’ fast movement
from tropical, warm seas to temperate waters. While this wide range of environe-
mental conditions largely excludes animal foulers, it is highly favorable to cer-
ain algae, especially Enteromorpha (EVANS and CHRISTIE 1970). It may be
redicted that this fouling alga, currently invading a new habitat, will eventu-
lly be found to hâve its own characteristic associated arthropod fauna on the
rnkers’ hulls.
Lake Kariba in Central Africa is an artificial lake created in 1958 by damming
ie Zambezi River. Submerged trees serve as a newly-created substrate for ani-
:als (including arthropods) in this lake. The richest faunal standing crop was
>und where benthic algal populations were well developped (McLACHLAN
970). In this case alga-arthropod communities are also evolving on a new and
rtificial substrate, but probably in the pattern they follow elsewhere.
Another example pertains to terrestrial epiphytic algae. ELTON (1966) noted
liât Pleurococcus viridis appears to be relatively résistant to industrial soot pol-
ution in England, thus sometimes remaining the dominant epiphyte on tree
runks. Many arthropods dépend on various epiphytic algae and lichens for food
BROADHEAD 1958; ELTON 1966). The relatively recent dominance of Pleu-
ococcus will eiuher exclude the animais which cannot utilize this alga, or make
them change their diet.
Source :MNHN. Paris
220
U. GERSON
The effects of pollution and its often resulting eutrophication of waterways
and lakes on algae and their grazers hâve been discussed by various authors; a
useful summary was presented by BROOKS (1969).
7. 5 SOME GEOLOGICAL ASPECTS OF ALGA-ARTHROPOD ASSOCIA¬
TIONS
The frequent concomitant occurence of algae and arthropods in fossil beds
attests to their manifold associations in the geological past. Algae hâve an affi-
nity for silica, transforming it to the colloidal State, in which animais may be
trapped. The resulting fossils are silicifïed arthropods which occur in calcareous
lakebed nodules (PIERCE 1961).
The évolution of animais which feed on and burrow in algae was believed by
GARRETT (1970) to hâve caused the décliné of stromatolites. These are lami-
nated structures built by dense mats of blue-green algae which selectively trap
and bind sédiment particles among their mucilaginous filaments. Stromatolites
abounded in the Precambrian and declined from the Ordovician to become
scarce in the Cenozoic. GARRETT (/. c.) suggests that this décliné can probably
be correlated with the évolution of new grazing and burrowing animais which
began to appear during the Ordovician expansion. Further, the available geolo¬
gical data indicate that stromatolites and animais are usually mutually exclusive.
To support his arguments, GARETT (/. c.) présents evidence that grazing and
burrowing animais (gastropods, polychaetes, fishes and some arthropods such as
shrimps and crabs) may prevent the formation of mats of blue-greens and des-
troy algal laminations.
Past periods of increasing phytoplankton production and lake eutrophication
were deduced by FREY (1964) from changes in cladocerans occuring in Quater-
nary sédiments. Bosmina longirostris is considered to be characteristic of more
productive situations, and its replacing B. coregoni is thus considered evidence
for increasing productivity in the water bodies whose sédiments were studied.
Although FREY later (1969) expressed some réservations about his interpréta¬
tions, the method still appears to be rather suitable for similar reconstructions.
Such an effort was made by SEBESTYEN (1969), who postulated past changes
in the water level of Lake Balaton (Hungary) from the relative abundance of the
alga Pediastrum and of cladoceran remains in lake sédiments. As the alga is belie¬
ved to be planktonic, its greater abundance (relative to Cladocera) indicates past
periods during which a high water level persisted, with a corresponding domi¬
nance of planktonic life. The relative dominance of the Cladocera in the sédi¬
ments, on the other hand, would suggest decreased water level periods during
which benthic life was more abundant.
Past associations between arthropods and algae may hâve some bearing on the
origins of oil, as discussed in section 2. 4. A different link was suggested by 10-
VINO and BRADLEY (1969). These authors found that the ooze in Mud Lake,
Florida, consists exclusively of minute faecal pellets produced by larvae of the
Source : MNHN, Paris
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
221
fly Chironomus whilst feeding on blue-green algae. The résultant pelletai ooze
appears to be similar to lacustrine organic ooze believed to be the precursor of
rich oil shale beds in North America. The analogy between the lacustrine copro-
pel of Mud Lake and Eocene oil shale precursors is enhanced by the discovery of
minute faecal pellets in thin sections of oil shale, and of immature chironomid
remains in rich oil shale beds.
8. EFFECT OF PESTICIDES
8. 1 EFFECT OF ALGICIDES ON ARTHROPODS
Many herbicides are currently being used to control algae in various habitats
(MULLIGAN 1969). Copper sulfate, among the better known and more widely
used compounds, is toxic to Daphnia and other aquatic arthropods (FISHER
1956; ROSE 1954). The toxicity of various aquatic herbicides to Daphnia was
avaluated by CROSBY and TUCKER (1966), who concluded that several of
these compounds may présent a hazard to various major organisms in the food
chain.
8. 2 EFFECT OF INSECTICIDES ON ALGAE
Insecticides may reach the algae in their aquatic or terrestrial habitats both
ntentionally an unintentionally. In the former case, the Chemicals are applied
iirectly, to control arthropods grazing on algae (RAGHU and MACRAE 1967),
rustacean parasites of commercial fish (LAHAV and SARIG 1967) or flies bree-
ling in washed-up seaweeds (MARX 1967). Unintentionally, insecticides reach
lgae through runoff or drift from treated areas. The various responses of diffe-
ent algae to insecticides were discussed by several authors. MENZEL, ANDER-
ON and RANDTKE (1970) showed that three chlorinated-hydrocarbon pesti-
ides vary greatly in their effects on four species of marine algae. The most sensi-
ive of these, Cyclotella nana, was inhibited in its photosynthetic activity and in
ts growth by concentrations as low as 0.1 -1.0 parts per billion. Dunaliella
ertiolecta, on the other hand, was completely insensitive, and the other two
pecies were intermediate in this respect. The possibility that the differential
ffect of pesticides may affect the succession and dominance of certain algae was
Iso discussed by MENZEL et al. (1970). Additional insecticides were similarly
ested by MOORE and DORWARD (1968), who also found that various algae
vere differently affected by these Chemicals. Malathion, an important organo-
’hosphorous insecticide, was quickly metabolized by some algae, a finding
vhich led to the conclusion that these plants may be important factors contri-
mting to the disappearance of pesticides from natural communities. The use of
dgae as pesticide indicators was advocated by MOORE (1967), though CHOL-
NOKY-PFANNKUCHE (1969) warned against generalizations obtained from
ûoessay tests with these plants.
222
U. GERS ON
Some algae which may be quite résistant to insecticides appear capable of
biologically concentrating these compounds in their bodies (VANCE and
DRUMMONS 1969). The crustacean suspension feeders, in their turn, also con-
centrate such substances from their algal food, and may thus ingest and accumu-
late high insecticide doses. Generally, the aquatic arthropods are far less insecti-
cide-resistant than are the algae. The danger of such poisoning and its effect on
the food chains in the océans was noted by MARX (1967).
9. DISCUSSION
9. 1 THE SCARCITY OF SYMBIOSIS
Apparently the only arthropods so far reported to hâve symbiotic or mutua-
listic associations with algae are damsel fly naiads (SELVARAJ and JOB 1965;
WILLEY et al. 1970) and chironomid larvae (BROCK 1960). One thus becomes
aware of what is perhaps the outstanding feature of the associations between
algae and arthropods, namely, the extreme scarcity of symbiosis between these
two groups of organisms. Both groups hâve many times evolved symbiotic rela-
tionships with représentatives of other phyla. The insects (to mention the domi¬
nant arthropod class) hâve bacteria, yeasts and fungi as their plant symbionts
(BUCHNER 1965). Various symbiotic alage hâve Protozoa, Porifera, Coelente-
rata, Ctenophora, Rotatoria, Platyhelminthes, Annelida, Mollusca, Echinoderma-
ta and Tunicata as their animal hosts (DROOP 1963; McLAUGHLIN and ZAHL
1966). No arthropod host for algae was listed by any of these authors, nor has a
symbiotic alga been recorded as présent within an arthropod host by BUCHNER
(1965).
Though one is at a loss to explain the rareness of symbiotic relationships
between algae and arthropods, several ideas corne to mind. The foremost is that
so few of these associations hâve been recorded simply because they hâve not
yet been discovered. McLAUGHLIN and ZAHL (1966) noted that additional
alga-bearing animais are constantly being reported. Further, as DROOP (1963)
remarked, tropical animais, which hâve higher rates of metabolism than their
temperate-zone counterparts, may hâve a greater need for the complementary
services of symbiotic algae. It is just these tropical arthropods which are the less
known, and it is among them that additional symbiotic relationships with algae
may be found. The recent reported instances of arthropod-algal symbiosis
(SELVARAJ and JOB 1965; WILLEY et al 1970) lend support to the
argument that many symbiotic associations remain undiscovered.
Another possibility is that algal symbiosis has, in fact, evolved in some ar¬
thropods, but as these became extinct, the relationship died out.
DROOP (1963) noted that, despite the occurence of algal symbiosis in ani¬
mais representing many phyla, few algal types participate in these associations,
the commonest being zoochlorellae of the genus Chlorella. This suggested to
DROOP (/. c.) that few algae are sufficiently tolérant to their hosts to be able to
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
223
Uve within them. The lack of enough algal candidates for symbiosis may thus
contribute to their scarcity in arthropods. And even algae capable of such asso¬
ciations may require a change in host résistance through some weakness in order
to become establish^d. A recent case ofhuman algal infection is pertinent in this
respect. KLINTWORTH, FETTER and NIELSEN (1968) reported on a case of
human cutaneous infection caused by Prototheca wickerhamii, an achloric alga
which sometimes occurs saprophytically on animais and men. The patient, suffe-
ring from diabètes mellitus and breast cancer, was under heavy drug treatment.
To explain the pathogenic occurence of Prototheca, KLINTWORTH et al. (/. c.)
postulated that both the disease and the drugs altered and lowered body résis¬
tance, thus enabling the alga to become cutaneously established. It is of interest
to note that Prototheca «appears to be no more than a colorless Chlorella »
(FRITSCH 1956), the commonest symbiotic zoochlorella.
A different factor contributing to the scarcity of algal-arthropod symbiosis
may be the production of inhibitory substances by the algae : see reviews by
LUCAS (1961) and SIEBURTH (1968). It is noteworthy that some coral zoo-
xanthellae produce terpenes which inhibit and exclude other animais (Mc-
LAUGHLIN and ZAHL 1966).
Whatever the validity of these spéculations (and admitting that they do no-
ching to explain symbiosis between algae and other animais), the scarcity of
algal-arthropod symbiosis remains an unexplained biological phenomenon.
9.2 A PROPOS AL FOR ALGAL MANAGEMENT
This survey of algal-arthropod associations has shown that algae may be both
bénéficiai and harmful . They are involved in sewage treatment and enrich the
soil with nitrogen, they form the base of the great food chains in the océans (and
some fish ponds) and are utilized for many commercial purposes. On the other
hand, algae cause «water blooms» that are sometimes toxic, and the «decay» of
water bodies (FERGUSON 1968); they are weeds in kelp beds (CHENG 1969)
and even pests of woody plant cuttings (COORTS and SORENSON 1968) and
cea and coffee crops (FRITSCH 1956). For a detailed «algal ledger», presenting
the crédits and débits of algae, see PRESCOTT (1969).
The above présentation is intended to convey the idea that a greater effort
;hould perhaps be made to manipulate algal populations. The harm algae do may
>e reduced or, conversely, their bénéficiai effects can be enhanced. The poten-
ial of algae as biological control factors has hardly been tapped, and the possibi-
ity of biologically suppressing algal pests is still only a suggestion (MULLIGAN
1969). Such manipulation obviously calls for an interdisciplinary attack on algal
ecology (SIEBURTH 1968), for better management of algal resources or, to use
a term currently in vogue, for algal management. (The term was recently intro-
duced in a more restricted sense by MULLIGAN 1969). Evidently the préserva¬
tion and manipulation of algal resources is to be but part of the préservation of
ail marine and freshwater resources, as advocated by various authors (i. e., MARX
1967). However, because of the dual potential of algae, their ability to be both
224
U. GERSON
bénéficiai and harmful, some spécial measures are needed, and hence this pro¬
posai for algal management.
AC KNO WLEDGMENTS
Dr. D. K. McE. KEVAN Chairman, Department of Entomology, MacDonald College of
McGill University, critically reviewed the manuscript, added some references and permitted
me to use unpublished personal observations. Dr. F.E.A. CUTTEN, also of MacDonald Col¬
lege, likewise made useful suggestions. Dr Ralph A. LE WIN, of Scripps Institution of Ocea-
nography, read the first draft of the manuscript and offered some useful critical comments.
Drs D. KAHAN and M. RAHAT, both of the Hebrew University of Jérusalem, made several
helpful suggestions. I wish to express my gratitude to ail of them.
BIBLIOGRAPHY
ALEEM, A. A., 1969 - Mimicry between Pseudoprotella phasma (Mont.) (amphipod) and
Dictyota linearis (Ag.) Grev. (brown alga) in the Bay of Naples. Pubbl. Staz. Zool. Napoli
ALLEE, W. C., and SCHMIDT, K. P., 1951 - Ecological Animal Geography. John Wiley &
Sons, New-York.
ANDREWS, H. L., 1945 — The kelp beds of the Monterey région. Ecology 26 : 24-37.
AVIGAN, J., and BLUMER, M., 1968-On the origin of pristane in marine organisms. J.
Ltptd Res. 9 :350-352. J
BACRLUND, H. O., 1945 - Wrackfauna of Sweden and Finland. Opusc. Entomol. Suppl.
BAINBRIDGE , R., 1953 - Studies on the interrelationships of zooplankton and phyto-
plankton.J. Mar. Biol Ass. U. K. 32 : 385-447.
BARLOW, J. P., and BISHOP, J. W., 1965 - Phosphate régénération by zooplankt
Cayuga Lake. Limnol Oceanogr., suppl. to Vol. 10 : R15-R24.
on in
BARNES, H., and TOPINKA, J. A., 1969 -Effect of the nature of the substratum on the
rorce required to detach a common littoral alga. Am. Zoologist 9 : 753-758.
BARNES, R. D., 1963 - Invertebrate Zoology. W. B. Saunders Co., Philadelphia.
BEKLEMISHEV, C. W., 1962 - Superfluous feeding of marine herbivorous zooplankton.
Rapp. P. -v. Reun. Cons. perm. int. Explor. Mer. 153 :108-113.
BENDORAITIS J. G., BROWN, B. L., and HEPNER, L. S., 1962 - Isoprenoid hydrocar-
bons m petroleum. Isolation of 2, 6, 10, 14-tetramethylpentadecane by high température
gas-liquid chromatography. Anal Chem. 34 : 49-53.
BERRILL, N. J., 1966 - The Life of the Océan. McGraw-Hill, New-York.
BOf !5 Y '.f' ‘i'-’ } 965 ~ Aspects of the biol °gy of the seaweeds of économie importance.
Adv.Mar. Biol 3 :105-253.
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
225
ROOKHOUT, C. G., and COSTLOW, J. D. Jr., 1959 -Feeding, molting arid growth in
barnacles. In D. L. RAY (ed.), «Marine Boring and Fouling Organisms». Seattle, 1959.
BOOTH, E., 1966 — Some properties of seaweed manur e. Proc. 5th Intem.Seaweed Symp.,
Halifax -349-357.
BOURRELLY, P., 1959 —Quelques algues épibiontes des Crustacés Phyllopodes. Rev.
Algol.,U.S.,4:275-279.
BROADHEAD, E., 1958 - The psocid fauna of larch trees in northern England - an ecologi-
cal study of mixed species populations exploiting a common resource./. Anim. Ecol 27
: 217-263.
BROADHEAD, E., and WAPSHERE, A. J., 1966 -Mesopsocus populations on larch in En-
gland. The distribution and dynamics of two closely-related coexisting species of Psocop-
tera (Corodentia) sharing the same food resource. Ecol Monogr. 36 : 327-388.
BROCK, E. M., 1960 — Mutualism between the midge Cricotopus and the alga Nostoc. Eco-
logy 41 :474-483.
BROCK, M. L., WIEGERT, R. G., and BROCK, T. D., 1969 - Feeding by Paracoenia and
Ephydra (Diptera :Ephydridae) on the microorganisms of hot springs. Ecology 50 :192-
200.
BROOK, A. J., 1955 — The aquatic fauna as an ecological factor in studies of the occurence
of freshwater algae. Rev. algol. 1 :141-145.
BROOKS J. L., 1969 — Eutrophication and changes in the composition of the zooplank-
ton. In «Eutrophication : Causes, Conséquences, Correctives». National Academy of
Sciences, Washington, D. C.
BROOKS, J. L., and DODSON, S. I., 1965 - Prédation, body size and composition of
plankton. Science 150 : 28-35.
BUCHNER, P., 1965 — Endosymbiosis of Animais with Plant Microorganisms. Interscience
Publishers, New-York.
CALEF, G. W., and GRICE, G. D., 1966 - Relationship between the blue-green alga Tricho-
desmium thiebautii and the copepod Macrosetella gracilis in the plankton of north-
eastern South America. Ecology 47 : 855-856.
CAMPBELL, S. A., 1969 — Carotenoid metabolism in the commensal crab Pinnotheres
pisum. Comp. Biochem. Physiol 30 : 803-812.
CATTLEY, J. G., 1948 - Sex reversai in copepods. Nature 161 : 937.
1HAPMAN, D. W„ and DEMORY, R. L., 1963 - Seasonal changes in the food ingested
by aquatic insect larvae and nymphs in two Oregon streams. Ecology 44 :140-146.
CHENG, T. H., 1969 — Production of kelp - a major aspect of China’s exploitation of the
sea. Econ. Bot. 23 : 215-236.
CHOLNOKY-PFANNKUCHE, K., 1969 — Untersuchungen über Toxizitât. 1 . Hydrobiologia
33 :209-222.
CLARKE, G. L., 1954 - Eléments of Ecology. John Wiley & Sons, New-York.
CONOVER, R. J., 1966 — Factors affecting the assimilation of organic matter and the ques¬
tion of superfluous feeding. LimnoL Oceanogr. 11 :346-354.
CONOVER, R. J., 1968 — Zooplankton - life in a nutritionally dilute environment. Am.
Zoologist 8 :107-118.
COORTS, G.D., and SORENSON, C.C., 1968 - Organisms found growing under nutrient
mist propagation. Hort Science 3 :189-190.
CORNER, E. D. S., and COWEY, C. B., 1968 - Biochemical studies on the production of
marine zooplankton. Biol Rev. 43 :393-426.
226
U. GERSON
CRIBB A B., 1964 - Notes on Trentepohlia from Queensland including one growing on a
spider. Univ. Queensland Dept. Bot. Pap. 4 : 99-108.
CROSBY, D. G., and TUCKER, R. K., 1966 - Toxicity of aquatic herbicides to Daphnia
magna. Science 154 : 289-291. y
CUSHING, D. H., 1964 - The work of grazing in the sea. In D. J. Crisp (ed.), «Grazing in
1 errestrial and Marine Environments». Blackwell Scientific Publications, Oxford.
CUSHING, D. H. and VUCETIC, T., 1963 - Studies on a Calanus patch. III. The quantity
ot tood eaten by Calanus finmarchicus. J. Mar. Biol Ass. U. K. 43 :349-371.
DARBY, R. E 1962 - Midges associated with California rice fïelds, with spécial reference
to their ecology (Diptera : Chironomidae). Hilgardia 32 :1-206.
DEWEY, J. E-, and PARKER B. L., 1964 - Mass rearing of Daphnia magna for insecticide
bioassay./. Econ. Entomol 57 : 821-825. *
DROOP, M R 1963 - Algae and invertebrates in symbiosis. In P. S. Nutman and B. Mosse
l eas l> «oymbiotic Associations». Cambridge University Press.
DU ™ LE ™ N ; L t' i ’’ l 969 ~ A n ‘ w s P ecies of Ephydrella Tonnoir and Malloch (Diptera ■
Ephydrrire) hot aprmgs and notes on other Diptera from mineralised waters.Muc
Zealand Entomol 4 : 38-46.
E DGA R , W. D., and MEADOWS, P. S., 1969 — Case construction, movement, spatial distri-
5o“ 0 247 n 253 UbStrate eCt ‘° n in the ,ma ° f Chironomus ripariut Meigen E x p. BioL
EHRLICH S. 1966 - Two experiments in the biological clarification of stabilkation-pond
effluents. Hydrobiologia 27 : 70-80. p
ELTON, C. S., 1966 - The Pattern of Animal Communities. Methuen Sr Co., London.
EN bly H 5o’/io T 70-io75 -Zo ° pLmkton «'“‘"S rMs estimated under field conditions.Eco-
EV th^ S British > 'l ? HE Ô L , S '/-, G " “ d MACp ARLANE, D„ 1961 - The Terrestrial Acari of
London^ ^ ^ Introductlon and “ology. British Muséum (Natural History),
EV ûha S ’l L 'ZoJ“' t d C f H ,b IS J IE ’ A - °" 197 V Studies the *ip-fooling alga Enteromo,-
pha. 1. Aspects of the fine-structure and biochemistry of swimming and newly settied
zoospores. Ann. Bot. 34 : 451-466. ' seccieu
EV 44f236'24l’. 1968 ~ S ° me in " rtidal insKts fr0 ” Mexico. Pan-Pac. Entamai
FEE, E. J., 1967 - The diatoms in a small Io wa creek. Iowa State J. Sci. 41 : 393 - 411 .
FE ti E n J ' , J md DRUM ', R - W - 1965 ~Diatoms epizoic on copepods parasitking fishes in
the Des Moines river, Iowa. Amer. Mid. Nat. 74 : 318-324. °
FE S S °^r1* 9 2 6 f^ 8 V93" myOPiC aPPrMCh “ ‘ he Pr0blem ° fe “ ess ^ 8r ™ ths '
FIS BafidfeÈ s ’°‘ C0PP ” Sulphate °“ "■icroorganisms i" fish ponds.
“i.Academic Pr^ Vi Tw“' ^ Wa " rma " ^ ° f C ™.
F °m-142 E ’ 1969 ~ SuIÏ ’ vaI of “*8“ under adverse conditions. S. E. B. Symposia, XXIII :
R^,ST he Handbuch der Pflan-
FR E Y , D. G„ 1964 — Remains of animais in Quaternary lake and bog sédiments and their
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
227
interprétation. Ergeb. LimnoU 2 : 1-114.
FREY, D. G., 1969 — Evidence for eutrophication from remains of organisms in sédiments,
pp. 594-613 in «Eutrophication : Causes, Conséquences, Correctives». National Acade-
my of Sciences, Washington, D.C..
FRITSCH, F. E., 1956 et 1959 - The Structure and Reproduction of the Algae. Cambridge
University Press, Vol. I, 1956; II, 1959.
FRYER, G., 1957 — The food of some freshwater cyclopoid copepods and its ecological si-
gnificance.J. Anim. Ecol. 26 : 263-286.
GAEVSKAYA, N. S., 1958 — Feeding and food relationships between animais living in ben-
thic végétation in the shore surf débris of the Black Sea. IV. Feeding oîldothea baltica
(Pallas) (Isopoda). Zool. Zhur. 37 :1593-1615 (in Russian).
GANNING, B., 1970 — Population dynamics and salinity tolérance of Hyadesia fusca (Loh-
man) (Acarina, Sarcoptiformes) from brackish water rockpools, with notes on the micro¬
environment inside Enteromorpha tubes. Oecologia 5 :127-137.
GARRETT, P., 1970 — Phanerozoic stromatolites : noncompetitive écologie restriction by
grazing and burrowing animais. Science 169 :171-173.
GERHARDT, R. W., 1953 — Blue-green algae - a possible anti-mosquito measure for rice
fields. Proc. Papers 22nd Annu. Conf. Calif mosq. Cont. Assoc. : 50-53.
GERHARDT, R. W., 1955 - Further studies during 1954 on blue-green algae - a possible
anti-mosquito measure for rice fields. Pro. Papers 23nd Annu. Conf. Calif. Mosq. Cont.
Assoc. : 120-123.
GERSON, U, 1969 - Moss-arthropod associations. The Bryologist 72 : 495-500.
GHOSH, S. M., and HATI, A. K., 1964 -Oedogonium princeps (Chlorophyceae : Oedogo-
niaceae) an useful agent for biological control of anopheline larvae. Sri. Cuit. 30 :461-
462.
GIBOR, A., 1956 - Some ecological relationships between phyto- and zooplankton. Biol.
Bull. 111 :230-234.
GILAT, E., 1967 - On the feeding of a benthonic copepod, Tigriopus brevicomis O. F.
Miiller. Sea Fish. Res. Sta. Haifa, Bull. 45 : 79-95.
GLYNN, P. W., 1965 -Community composition, structure and inter-relationships in the
marine intertidal Endocladia muricata - Balanus glandula association in Monterey Bay,
California. Beaufortia 12 :1-198.
GLYNN, P. W., 1970 -Growth of algae epiphytes on a tropical marine isopod. J. Exp.
Mar. Biol. Ecol. 5 : 88-93.
GOAD, L. J., 1970 -Sterol biosynthesis. In T. W. Goodwin (ed.), «Natural Substances
Formed Biologically from Mevalonic Acid». Academie Press, London.
GREEN, J., 1963 - A Biology of Crustacea. H. F. & G. Witherby, London.
GRESSITT, J. L., 1967 -Notes on arthropod populations in the Antarctic Peninsula -
South Shetland Islands - South Orkney Islands area./n J. L. Gressitt (ed.), «.Entomology
of Antarctica». Washington, D.C..
GRESSITT, J. L., SAMUELSON, G. A., and VITT, D. H., 1968 - Moss growing on living
Papuan moss-forest weevils. Nature 217 : 765-767.
GRESSITT, J. L., SEDLACEK, J., and SZENT-IVANY, J. H. H., 1965 - Flora and fauna
on backs of large Papuan moss-forest weevils. Science 150 :1833-1835.
GRESSITT, J. L., and SHOUP, J., 1967 — Ecological notes on free-living mites in North
Victoria land. In J. L. Gressitt (ed.), « Entomology of Antarctica.» Washington, D.C.
GREZE, I. I., 1968 — Feedings habits and food requirements of some amphipods in the
Source :MNHN. Paris
228
U. GERSON
Black Sea. Marine Biology 1 : 316-321.
GUPTA, A. B., 1966 - Algal flora and its importance in the economy of rice fields.Hvdro-
biologia28 :213-222. J
HAERTEL, L., OSTERBERG, C., CURL, H. Jr., and PARK, P. K., 1969 - Nutrient and
plankton ecology or the Columbia river estuary .Ecology 50 : 962-978.
H AGE RM AN, L., 1966 - The macro- and microfauna associated with Fucus serratus L
wxth some ecological remarks. Ophelia 3 :1-43.
HA n E ’f CoUembola of eroding blanket bog./n J. Doeksen and J. van der
Dnft (eds.), «Soi! Orgamsms». North-Holland Publishing Co., Amsterdam.
HAMNER, W. M., SMYTH, M., and MULFORD, E. D. Jr, 1969 - The behavior and life
history of a sand beach isopod, Tylos punctatus. Ecology 50 : 442-453.
HA ? DY ’ A ' C19 , 36 - plankton ecology and the hypothesis of animal exclusion. Proc
Ltntu Soc. (London). 148th session, 64-70.
HA U.™ Y 19 H 775’792 34 An " UaI Variati0n ° f P llmktonic végétation. J. Mar. Biol Assoc.
HA pr™ Y ' H ' W ’’ 1963 Tb ‘ Chemistry and Fettüity of Sea Waters. Cambridge University
HA TA M., and HATA, M., 1969 -Carotenoid metaboUsm in Artemia salira L. Comp.
Btochem. PhysioL 29 : 985-994. F
HEYERDAHL, T, 1950 - The Kon-Tiki Expédition. Allen and Unwin, London.
HOLDICH, D. M, 1968. Reproduction, growth and bionomies of Dynamene bidentata
(Crustacea : Isopoda)./. ZooL 156 :137-153.
G ' El ’ 1967 _A Treatise Limnology. John Wiley & Sons, New-York,
HYNES, H. B. N., 1960 - The Biology of Polluted Waters. Liverpool University Press.
IDYLL.C.P., 1965 - Shrimp nursery : science farms the sea. National Geog. 127 : 636-659.
^dirion) 0 ’’ 1957 ~ A general textbook of Entomology. Methuen & Co., London (Ninth
' A ' h and BRADLEY ' W. H„ 1969 - The rôle of larval Chironomidae in the pro-
14™ 98-905.'“ C ° Pr ° P Lake ' Mari °" C ° Un,y ’ Florida ' Limnal OceaZgr.
““ÛXS °- T " 1932 -°" a - a -
JA1 S»„ A 'f 5 ': vïüf &0d Web ° f ^Cladapbara-bdt fauna .Helgoldnder Wissen.
^^ommôifinsècts^f^thë maiir-s*rieam°J 0 At^m^Ecoi. 0 ;!9^*1 SSUl?!^ 6 ' 30 ^ ! ^ f °° d ° f * h =
JOE c ÏOn Ligia (LJ in der “ stlkh “
JORGENSEN, C. A., 1966 - Biology of Suspension Feeding. Pergamon Press, London.
KALSHOVEN, L. G. E., 1958 - Observations on the black termites, Hospitalitermes sp of
Java and Sumatra. Insectes sociaux 5:9 30. F iraniennes sp., or
KEVAN, D. K. McE., 1968 - Soil Animais. H. F. & G. Witherby, London, 2nd ed.
KIMERLE R. A., and ENNS, W. R., 1968 - Aquatic insects associated with midwestern
waste stabilization lagoons Water Poil. Cont. Fed. 40 : R31-R41.
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
229
KING, S. F., 1964 — Uptake and transfer of cesium-137 by Chlamydomonas, Daphnia,
and bluegill fîngerlings. Ecology 45 : 852-859.
KLINTWORTH, G. K., FETTER, B. F., and NIELSEN, H. S. Jr., 1968 - Protothecosis, an
algal infection : report on a case in man.J. Med. Microbiol. 1 : 211-216.
KNUDSEN, J. W., 1959 — Shell formation and growth of the California xanthid crabs. Eco¬
logy 40 :113-115.
KUDO, R-, 1954 — Protozoology. Charles C. Thomas, Springfîeld, III.
KUEHNELT, W., 1961 — Soil Biology, with Spécial Reference to the Animal Kingdom.
Faber 8r Faber, London.
LAHAV, M., and SARIG, S., 1967 -Ergasilus sieboldi Nordman infestation of grey mullet
in Israël fish ponds. Bamidgeh 19 : 69-80.L
LAKE, P. S., 1969 - The effect of température on growth, longevity and egg production in
Chirocephalus diaphanus Prévost (Crustacea : Anostraca). Hydrobiologia 33 : 342-351.
LASKER, R., 1960 — Utilization of organic carbon by a marine crustacean : analysis with
carbon-14. Science 131 :1098-1100.
LAWRENCE, R. F., 1953 - The Biology of the Cryptic Fauna of Forests, with Spécial
Reference to the Indigenous Forests of South Africa. A. A. Balkema, Cape Town, Am¬
sterdam.
LEE, W. L., 1966 — Color change and the ecology of the marine isopod Idothea (Pentido-
tea) montereyensis Maloney, 1933. Ecology 47 : 930-941.
LEIGHTON, D. L., JONES, L. G., and NORTH, W. J., 1966 - Ecological relationships bet-
ween giant kelp and sea urchins in Southern California. Proc. 5th Intem. Seaweed Symp.
Halifax, 141-153.
LEWIS, W. M., 1961 — Mortality of fingerling shiners resulting from becoming entangled in
the alga Hydrotictyon. Ecology 42 : 835-836.
LITTLEWOOD, C. F., 1967 - A surface stérilisation technique used in feeding algae to
Oribatei. Proc. 2nd Intem. Cong. Acarology, Sutton Bonington : 53-56.
LONGHURST, A. R., LORENZEN, C. J., and THOMAS, W. H., 1967 - The rôle of pelagic
crabs in the grazing of phytoplankton off Baja California. Ecology 48 :190-200.
LOOSANOFF, V. L., HANKS, J. E., and GANAROS, A. E., 1957 -Control of certain
forms of zooplankton in mass algal cultures. Science 125 :1092-1093.
LUCAS, C. E., 1947 — The ecological effects of external métabolites. Biol. Rev. 22 : 270-
295.
LUCAS, C. E., 1961 - On the significance of external métabolites in ecology. S. E. B. Sym-
posia, XV : 190-206.
LUND, J. W. G., 1965 - The ecology of the freshwater phytoplankton. Biol. Rev. 40 : 231-
293.
LUND, J. W. G., 1967 - Soil algae. In A. Burges and F. Raw (eds.) «Soil Biology». Acade¬
mie Press, London.
LYNN, R., and BROCK, T. D., 1969 - Notes on the ecology of a species of Zygogonium
(Kütz.) in Yellowstone National Park. J. PhycoL 5 :181-185.
MACFARLANE, C., 1952 - A survey of certain seaweeds of commercial importance in
Southwest Nova Scotia. Can. J. Bot. 30 : 78-97.
MACGINITIE, G. E., and MACGINITIE, N., 1949 -Natural History of Marine Animais.
McGraw- Hill, New-York.
MARGALEF, R., 1967 - The food web in the pelagic environment. Helgolànder Wissen.
Meeresunt. 15 : 548-559.
Source: MNHN, Paris
230
U. GERSON
MARSHALL, J. S., 1966 - Population dynamics of Daphnia pulex as modified by chronic
radiation stress. Ecology 47 : 561-571.
MARSHALL, S. M., and ORR, A. P., I960 — Feeding and nutrition. In T. H. Waterman
(ed.j, «The Physiology of Crustacea», Academie Press, New-York,Vol. 1.
MARTIN, J. H., 1965 — Phytoplankton-zooplankton relationships in Narragansett Bay.
Limnol. Oceanogr. 10 :185-191.
MARTIN, J. H., 1968 - Phytoplankton-zooplankton relationships in Narragansett Bay. III.
Seasonal changes in zooplankton excrétion rates in relation to phytoplankton abundan-
ce. Limnol. Oceanogr. 13 : 63-71.
MARX, W., 1967 — The Frail Océan. Coward-McCane, New-York.
MAUCHLINE, J., and FISHER, L. R., 1969 — The biology of euphausiids. Adv. Marine
Biology, Vol. 7.
MACLACHLAN, A. J., 1970 -Submerged trees as a substrate for benthic fauna in the
recently created Lake Kariba (Central Africa)./. Appl. Ecol. 7 : 253-266.
MACLAUGHLIN, J. J. A., and ZAHL, P. A., 1966 — Endozoic algae./n S. M. Henry (ed.)
«Symbiosis», Academie Press, New-York, Vol. 1.
MENZEL, D. W., ANDERSON, J., and RANDTKE, A., 1970 - Marine plankton vary in
their response to chlorinated hydrocarbons. Science 167 :1724-1726.
MICHAJLOW, W., 1966 - Biological adaptation of Euglenoidina to parasitism in Copepo-
da. Bull. Acad. Polon. Sci. 14 : 639-644.
MICHAJLOW, W., 1968 - Naupliicola austriacus sp. n., Naupliicola danubii sp. n. and some
other Euglenoidina copepod parasites from the Alte Donau in Vienna (Austria). Bull
Acad. Polon. Sci. 16 : 29-31.
MÏLUGER, L E., STEWART, K.W., and SILVEY, J. K. G., 1971 - The passive dispersai
or viable algae, protozoans and fungi by aquatic and terrestrial Coleoptera. Ann. Ento-
mol Soc. America, 64 : 36-45.
MOELLER, J., 1967 - On the Collembola in marine seaweed wrack during décomposition
of algae. In O. Graff and J. E. Satchell (eds.), «Progress in Soil Biology». F. Wieweg and
Son, Braunschweig. 6
MOORE, R. B., 1967 - Algae as biological indicators of pesticides./. Phycol. 3 (Supp.) : 4.
MOORE, R. B., and DORWARD, D. A., 1968 - Accumulation and metabolism of pesticides
by algae./. Phycol. 4 (Supp.) : 1-7.
MULLIGAN H. F., 1969 - Management of aquatic vascular plants and algae./n «Eutrophi-
ton°D c CaUSES ’ Conse< ï uences . Correctives». National Academy of Sciences. Washing-
MULLIN, M. M., 1967 - On the feeding behaviour of planktonic marine copepods and the
95 P 5% a 62° n ° f thClr eC ° logical mches - ■ PrOC - S y m P‘ Crustacea, Ernakulam.India, Pt. 3 :
1969 7/ r °n UC , ti0n ° f zoo P lankton in th « océan : the présent status and
problems. Oceanogr. Mar. Biol Ann. Rev. 1 : 293-314.
MURPHY, R. C., 1962 - The oceanic life of the Antarctic. Sci. Amer. 207 :186-210.
NA 184^89Mm! 1927 _L ' S a% " eS P erfor “ tes la mer Noire. C. R. Acad. Sci. Paris,
NE «ddentf;^ 1 t 6 e 8 7 S r°r al successi ° n of b “' h “ algae and their macroinvertebrate
residents in a head-water limestone stream./. Water Poil. Cont. Fed. 40 : R10-R30.
^Eœbgy 35 E ' R '' 1954 ~ °” ,urtles : some additional considérations.
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
231
NEUNES, H. W-, and PONGOLINI, G. F., 1965 - Breeding of a pelatic copepod, Euterpina
acutifrons (Dana) in the laboratory. Nature 208:571-573.
ODUM, E. P., 1953 — Fundamentals of Ecology. W. B. Saunders, Philadelphia.
OLDROYD, H., 1964 - The Natural History of Flies. Weidenfeld & Nicholson, London.
OMORI, M., 1969 - Weight and Chemical composition of some important oceanic zoo-
plankton’in the North Pacific Océan. Marine Biology 3 :4-10.
OTSUKI, A., HANYA,T., and YAMAGISHI, H., 1969 - Residue from bacterial décomposi¬
tion of green algal cells as food for Daphnia. Nature 222 : 1182.
PAINE, R. T., and VADAS, R. L., 1969 -Calorific values of benthic marine algae and their
postulated’relation to invertebrate food preference. Marine Biology 4 : 79-86.
PATTERSON, G. W., 1969 - Sterols of Chlorella. III. Species containing ergosterol. Comp.
Biochem. PhysioL 31 : 391-394.
PEQUEGNAT, W. E., 1958 - Whales, plankton and man. Sci. Amer. 198 : 84-90.
PETIPA, T. S., and MAKAROVA, N. P., 1969. Dependence of phytoplankton production
on rhythm and rate of élimination. Marine Biology 3 :191-195.
PIERCE, W. D., 1961 — The growing importance of paleoentomology. Proc. EntomoL Soc.
Washington 63 : 211-217.
PRESCOTT, G. W., 1969 — The Algae : A Review. Thomas Nelson & Sons. London.
PROVASOLI, L„ SHIRAISHI, K., and LANCE, J. R., 1959 - Nutritional idiosyncrasies of
Artemia and Tigriopus in monoxenic culture. Ann. N. Y. Acad. Sci. 77 : 250-261.
RAGHU, K., and MACRAE, I. C., 1967 - The effect of the gamma-isomer of benzene
hexachloride upon the microflora of submerged nce soils. 1. Effect upon algae. Can.
J.MicrobioL 13 :173-180.
RAMCHANDRA RAO, Y., 1960 - The Desert Locust in India. Monogr. Indian Counc. Agr.
Res., New Delhi, No. 21.
RAYMONT, J. E. G., 1966 — The production of marine plankton. Adv. Ecol. Res. 3 :117-
205.
REESE, E. S., 1969 — Behavioral adaptation of intertidal hermit crabs.Am. Zoologist 9 .
343-355.
REMUSAT R. L., 1962 — A contribution to the study of Characeae for the control of
schistosomes : Spécial communication with new observations and systematic and mor-
phological studies of the Characeae. Ann. Soc. Bot. Brasil 11 : 21-34. (In Portugese).
REVILL, D. L., STEWART, K.W., and SCHLICHTING, H. E. Jr„ 1967 - Dispersé of viable
algae and Protozoa by horse flies and mosquitoes (Diptera :Tabamdae, Culicidae). Ann.
Entomol. Soc. Amer. 60 :1077-1081.
RIGG, G. B., and MILLER, R. C., 1949 - Intertidal Plant and animal zonation in the vicim-
ty of Neah Bay, Washington. Proc. Calif. Acad. Sci. 26 : 323-351.
RIGLER, F.H., 1961 — The relation between concentration of food and feeding rate of
Daphnia magna Straus. Can. J. Zool. 39 : 857-868.
ROSE, E. T., 1954 — Blue-green algae control at Storm Lak e. Proc. Iowa Acad. Sci. 61 .
604-614. ’
ROTH, L. M., and WILLIS, E. R., 1960 - The biotic associations of cockroaches. Smith-
son Mise. Collect. 141 :1-470.
ROUND, F. E., 1965 - The Biology of the Algae. Edward Arnold, London.
RYTHER, J. H., 1954 — Inhibitory effects of phytoplankton upon the feeding of Daphnia
magna with reference to growth, reproduction and survival. Ecology 35 : 522-533.
232
U. GERS ON
SASA, T., KUNIEDA, R., and TAMIYA, H., 1960 — Growing Daphnia (water fleas) with
Chlorella. J. Gen. Appl. MicrobioL 6 : 252-255.
SAUNDERS, G. W., 1957 - Interrelationships of dissolved organic matter and phytoplank-
ton. Bot. Rev. 33:389-409.
SCHWIMMER, M., and SCHWIMMER, D., 1968 — Medical aspect of phycology. In D. F.
Jackson (ed.), «Algae, Man and the Environment». Syracuse University Press.
SCOTT, D., 1958 -Ecological studies on the Trichoptera of the River Dean, Cheshire.
Arch. HydrobioL 54 :340-392.
SEBESTYEN, O., 1969 - Studies on Pediastrum and cladoceran remains in the sédiments of
Lake Balaton, with reference to lake history. Mitt. Internat. Verein, Limnol. 17 : 292-
SEEGER, W., 1971 - Morphologie, Bionomie und Ethologie von Halipliden, unter besonde-
rer Berücksichtigung funktionsmorphologischer Gesichtspunkte (Haliplidae : Coleopte-
ra ). Arch. HydrobioL 68 : 400-435.
SELVARAJ, A. M., and JOB, S. V., 1965 — On the occurence of the symbiotic alga Chloro-
sarcina in the caudal lamella of damsel fly nymphs. Proc. Indian Acad. S ci. 62 :176-179.
SE '!f EI î 1 '’ R " B ‘ S- ’ 1951 ~ The e P>bionts and parasites of the planktonic Copepoda of the
Arabian Sea .Sci. Rept. Murray Exp. ed. 11 : 255-394.
SHIRAISHI, K., and PROVASOLI, L., 1959 — Growth factors as suppléments to inadéqua¬
te algal foods for Tigriopus japonicus. Tohoku J. Agric. Res. 10 : 89-96.
SIEBURTH J. McN., 1961 - Antibiotic properties of acrylic acid, a factor in the gastro-
intestinal antibiosis of polar marine animais. J. Bact. 82 : 72-79.
SIEBURTH, J. McN., 1968 - The influence of algal antibiosis on the ecology of marine
microorganisms. Adv. Sea. MicrobioL 1 : 63-94.
SIEBURTH, J- McN., and CONOVER, J. T., 1965 -Sargassum tannin, an antibiotic which
retards fouling. Nature 208 : 52-53.
SINGARAJAH, K V., MOYSE, J., and KNIGHT-JONES, E. W.,1968 - The effect of
ffjjj the P rototac tic behavior of cirripede nauplü. J. Exp. Mar. Biol. EcoL
SLOBODKIN, L. B., 1962 - Energy in animal ecology. Adv. Ecol. Res. 1 : 69-101.
SMYLY, W. J P 1968 -Number of eggs and body-size in the freshwater copepod Diap-
tomus gractlts Sars in the English Lake district. Oikos 19 : 323-338.
SOURIE, R. 1962 --Les tufs à chironomides dans quelques ruisseaux de la région de
Campan {Hautes PyreneesJ. Vie Milieu 13 : 741-746.
STANGE N BER G , M. ,1968 -Toxic effects of Microcystis aeruginasa Kg. extracts on
Daphnia Umgispina O. F. Muller and Eucypris virent Jurine. Hydrobiologia 32 : 81-87.
STEPHENSON, T. A., and STEPHENSON, A.. 1949 - The universal features of aonation
oetween tide-marks on rocky coasts./. Ecol. 37 : 289-305.
STEPHENSON, W. M 1966 - The effect of hydrolysed seaweed on certain plant pests and
diseases. Proc. 5th Intem. Seaweed Symp., Halifax : 405-415. P
STEWART, K. W., MILLIGER, L. E., and SOLON, B. M., 1970 - Dispersai of algae pro-
Ttichoptera and ° ther a<iui “ ic
ST ™kfeü iSoSe^X^^ ""
19 a27 1 162r PhytOPknk, ° n “ d ^ Primary Pr ° dUC,ion -
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
233
STROSS, R. G., UNGER, F. M., JONES, J. C., and VAIL, J. M.,1965 - Utilization of algae
by Daphnia as influenced by cell senescence and UV irradiation. Proc. Industrial Waste
Conf Purdue Univ. 20 : 706-714.
SUS Kl, Z. W., 1967 -Tarsonemid mites on apple trees in Poiand. VIII. Daidalotarsonemus
vandevriei n. sp. (Acarina, Tarsonemidae). BulL Acad. Polon. Sci. 15 : 227-233.
TAUB, F. M., and DOLLAR, A. M., 1968 - The nutritional inadequacy oiChlorella and
Chlamydomonas as food for Daphniapulex. Limnol. Oceanogr. 13 :607-617.
TIFFANY, L. H., 1958 - Algae, the Grass of Many Waters. Charles C. Thomas, Springfield,
III.
ULFSTRAND, S., 1967 - Microdistribution of benthis species (Ephemeroptera, Plecoptera,
Trichoptera, Diptera : Simuliidae) in Lapland streams. Oikos 18 : 293-310.
USINGER, R. L., and KELLEN, W. R., 1955 - The rôle of insects in sewage disposai beds.
Hilgardia 23 :263-321.
VALKANOV, A., 1964 — Untersuchungen über Prymnesium parvum Carter und seine
toxische Einwirkung auf die Wasserorganismen. Kieler Meeresfor. 20 : 65-81.
VAN LANDINGHAM, S. L., 1964 - Some physical and generic aspects of fluctuations
in non-marine plankton diatom populations. Bot. Rev. 30 : 437-478.
VANCE, B. D., and DRUMMOND, W., 1969 - Biological concentration of pesticides by
algae. Amer. Water Works Ass. J. 61 : 360-362.
WALL WORK, J. A., 1967 - Acari. In A. Burges and F. Raw (eds.), «Soil Biology». Aca¬
demie Press, London.
WEBB, K. L., and JOHANNES, R. E., 1969 - Do marine crustaceans release dissolved
amino acids t.Comp. Biochem. PhysioL 29 : 875-878.
WEBBER, H. H., 1968 - Mariculture. BioSci. 18 : 940-945.
WHATLEY, R.C., and WALL, D. R., 1969 - A preliminary account of the ecology and
distribution of Recent Ostracoda in the Southern Irish Sea. In J. W. NEALE (ed.),
«The Taxonomy, Morphology and Ecology of Recent Ostracoda». Oliver & Boyd,
Edinburgh.
WHITNEY, J. O., 1970 - Absence of sterol biosynthesis in the blue crab Callinectes sapidus
Rathbun and in the barnacle Balanus nubilus Darwin. J. Exp. Mar. Biol. EcoL 4 :229-
237.
WIESER, W., and KANWISHER, J., 1959 - Respiration and anaérobie survival in some
seaweed-inhabiting invertebrates. Biol. BulL 117 : 594-600.
WILLEY, R. L., BOWEN, W. R., and DURBAN, E., 1970 -Symbiosis between Euglena
and damselfly nymphs is seasonal. Science 170 : 80-81.
WILLIAMS, L. G., 1947 - A comparative size study of the mole crab, Emerita talpoida
Say, associated with epizoic Enteromorpha flexuosa (Wulfen) J. Ag. Ecology 28 :
204-207.
WIMPENNY.R. S., 1966 - The Plankton of the Sea. Faber and Faber, London.
WOODRING, J. P., 1963 -The nutrition and biology of saprophytic Sarcoptiformes.
Adv. Acarol. 1 : 89-111.
YONGE, C. M., 1949 - The Sea Shore. Collins, London.
ZAHAR, A. R., 1951 - The ecology and distribution of blackflies (Simuliidae) in south-east
Scotland./. Anim. EcoL 20 : 33-62.
ZANDEE, D. L., 1967 - Absence of cholestérol synthesis as contrasted with the presence of
fatty acid synthesis in some arthropods. Comp. Biochem. Physiol. 20 : 811-822.
Source : MNHN. Paris
234
U. GERSON
ZARNECKI, S., 1968 — Algae and fish relationships. In D. F. JACKSON (ed.), «Algae, Man
and the Environment». Syracuse University Press.
ZILLIOUX, E. J., and WILSON, D. F., 1966 — Culture of a planktonic calanoid copepod
through multiple générations. Science 151 : 996-997.
THE ASSOCIATIONS OF ALGAE WITH ARTHROPODS
ADDENDUM
U. GERSON
Many additional papers and books which discuss various aspects of the asso¬
ciations between algae and arthropods hâve become available since the prépara¬
tion of this article. Only the more relevant ones will be noted, arranged under
he same section headings and in the same order.
1. INTRODUCTION
A review on the associations between lichens and arthropods was prepared
md published (GERSON 1973) whilst awaiting publication of the présent paper.
. 2 SEASONAL, DIURNAL AND STAGE-DEPENDENT FEEDING
DEONIER (1972) reviewed the algophagus habits of adult shore Aies (family
Ephydridae). These Aies use their prestomal teeth to scrape algae off the sub-
trates, leaving dépréssions in the algal mats.
JOSEPH (1974) reported on the effect of tidal rhythm on the feeding acti-
ity of Hyale hawaiensis. This intertidal amphipod feeds on the green alga
nteromorpha compressa, feeding being most intense at high tide, as the algal
>elt becomes covered by rising water. Ebb entails decreased feeding. This rhyth-
nic phenomenon is believed (JOSEPH, l. c.) to be caused by the inhibitive effect
of depleted oxygen caused by algal respiration.
2. 3 AL G A-A RTH ROP OD FOOD CHAINS
The book «Marine Food Chains», edited by STEELS (1970), contains some
relevant papers on marine arthropods. CUMMINS (1973), in his review on
trophic relations of aquatic insects, notes various alga-feeding species.
236
U. GERSON
2. 5 PHYTOPLANKTON-ZOOPLANKTON INTERACTIONS
ESAIAS and CURL (1972) conducted grazing experiments with 3 species
of bioluminescent dinoflagellates and 3 calanoids. Ingestion rates were lowest
for the highly bioluminescent dinoflagellates. The authors attach considérable
survival value to the dinoflagellates’ flashes of light, postulating that these flashes
serve to defend their emitters by startling and confusing copepod grazers.
ESAIAS and CURL (Z. c.) further believe that this bioluminescence, by causing
sélective feeding, could be a factor in the formation of red tides and permanent
blooms of biolumenescent dinoflagellates.
2. 8 REARING ARTHROPODS ON ALGAE UNDER CONTROLLED CON¬
DITIONS
Various laboratory studies hâve recently been published on the effects of di¬
verse algal diets on aquatic arthropods (ARNOLD 1971; BATTAGLIA 1970;
BETOUHIM-EL and KAHAN 1972; NASSOGNE 1970; SCHINDLER 1971,
and others). The results of these studies support the opinion that increasing the
number of algal species in culture media enhances the survival rate of more ar¬
thropods species. This is due to the considérable selectivity exercised by the ar¬
thropods (mainly copepods) in regard to the species of algae available, their size
and concentration. SCHINDLER (1971) expressed the opinion that phyto-
plankton-zooplankton corrélations, often used to show relationships, are défi¬
cient whithout a better understanding of feeding relationships between algae
and their grazers.
2. 9 THE UNSUITABILITY OF SOME ALGAL DIETS FOR ARTHROPODS
The algae Anacystis nidulans, Merismopedia sp. and Synechocytis sp. showed
some toxicity or inhibition toward Daphnia pulex when offered as food (AR¬
NOLD 1971). Calanus helgolandicus releases most of its daily captured ration of
the diatom Biddulphia as undigested foodstuff (CORNER, HEAD and KIL-
VINGTON 1972). The reason is not known; explanations offered include dif-
ficulties in diatom cell assimilation or possible inhibitory substances présent
therein. Best growth rates of the harpacticoid copepod Euterpina acutifrons
were obtained with algal cells of medium size (7-16 pm) (NASSOGNE 1970).
Smaller (6-7 pm) or wider (> 16 pm ) algae gave lower rates or did not support
adult survival; algal food size may therefore be a limiting factor for these arthro¬
pods. Somewhat similar observations were reported by WINTERBOURNE
(1971) in regard to larvae of the caddisfly Banksiola crotchi. They feed on
stripes which they scrape from filamentous algae. As these larvae cannot digest
unbrocken algal cells, algae with broad and long cells constitute the food best
utilized; stripes from such algae hâve the highest ratio of brocken to unbrocken
cells. On the other hand, algae with small cuboidal cells, such as Hyalotheca,
constitute inefficient diets (WINTERBOURNE 1971).
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
237
PORTER (1973) conducted experiments on differential grazing by crustacean
zooplankton on a natural phytoplankton community in Fuller Pond, Connecti¬
cut, U.S.A.. From her results PORTER (1973) concluded that, by their response
to grazing, algae can be divided into three major groupings that eut across taxo¬
nomie Unes. One group contains large, rare or filamentous species which are
either unavailable to the grazers or actively rejected. Algae in the second group
are small and edible, while those in the third are encased in thick gelatinous
sheaths. Such algae pass intact through the ahmentary System of their grazers,
coming out in viable condition. Consequently, algae in the first group remain un-
affected by such grazers, those in the second decrease in numbers, and species
in the third group increase (through fragmentation and competitor suppression).
Data on the protection afforded bioluminescent dinoflagellates against
copepod grazers (ES AI AS and CURL 1972) were noted in the addendum to
section 2. 5.
2. 12 ARTHROPODS AS PESTS OF ECONOMICALLY-IMPORTANT AL¬
GAE
The periodical Nova Hedwigia has devoted its Heft 32 to «The biology of
riant Kelp Beds (Macrocystis) in California», edited by W. J. NORTH (1971).
t contains several papers on kelp grazers, including arthropods.
The manipulation of arthropods for the biological control of some seawed
ests was suggested by MANN (1973). Sea urchins ( Strongylocentrotus spp.)
aze heavily on seaweed and kelp in many parts of the world. MANN (/. c.)
ostulated that recent sea urchin outbreaks were triggered by réductions in the
opulations of their predators. The lobster Homarus americanus is considered to
e the key sea urchin predator in eastern Canada. Its numbers were seriously
:duced through human activity, and MANN (1973) advocates the protection
nd augmentation of lobster populations for the purpose of sea urchin control.
. 1 FEEDING ON ALGAE IN THE INTERTIDAL ZONE
The thysanuran Petrobius brevistylis lives in rock crevices along the beach,
here it feeds on Pleurococcus (LARINK 1968). Grapsid crabs were reported
y GRIFFIN (1971) to feed on red and green algae, which they scrape off the
irface of rocks in Tasmania.
.2 FEEDING ON SOIL ALGAE
The collembolan Hypogastrura viatica feeds exclusively on uniceUular algae,
vhich are very abundant in the upper soil layers where it Uves. Subsoil algae be-
ome available to Hypogastrura through the burrowing activities of other insects,
uch as beetles and fly maggots (KRAAN and VREUGDENHIL 1973). RAPO-
’ORT and TAGLIABUE (1964) applied dried and ground littoral algae as soil
238
U. GERS ON
fertilizer, and noted first a decrease and subsequently an increase in soil arthro-
pod populations. The authors believe this increase to be due to the enhanced
fecundity of algae-feeding arthropods as well as to attraction of outside animais
to the new and abundant food source.
WHEELER, HAPP, ARAUJO and PASTEELS (1972) isolated a pygidial
sécrétion from the staphylinid beetle Bledius. One or more components of
this sécrétion may regulate the growth of algae which flourish within the bur-
rows of Bledius and upon which the beetles feed.
4. 1 CASE AND TUBE CONSTRUCTION
The importance of algae in the behavioral ecology of the shrimp Alpheus cly-
peatus was pointed out by BOWERS (1971). He found that the algal tubes
which the animais construct play a significant rôle in their pair formation and
species spacing within the habitat. Presence of algae curtailed the shrimps’ ag-
gressive behaviour whilst enhancing the survival rate of their heterosexual pairs.
BOWERS (/. c.) concluded that algal tubes provide the basis for a territorial
social system which 1) allows the shrimps a higher population density, 2) increa-
ses the exploitable surface of their habitat.
4.3 SUBSTRATE AND SHELTER
WALLNER (1935) published an hitherto unnoticed paper on interactions
between lime-depositing algae and chironomid Aies. He concluded that the pre
sence of such algae enables the flies to initiate their colonization of fast-flowing
streams. BROCK (1970), in his review on High Température Systems, included
several instances of arthropods which live in algal mats in relatively hot (ca.
40 C) waters. A new method for mass- rearing the dipteran Chironomus riparius
was described by CREDLAND (1973), a method based on the availability of
more larval settling sites on filamentous algae maintained in plastic tanks. BAR
NARD (1972), who collected amphipods in New Zealand, noted that Caulerpa
beds were especially rich in these animais, whereas Hormosira was generally a
poor refuge for amphipods.
Tropical floating marine algae were observed by TEETER (1973) to accom-
modate some ostracods. These findings suggest an explanation for the trans
oceanic dispersai of ostracods within tropical latitudes (TEETER, Z. c.). Another
mode of ostracod dispersai may be while attached to sections of algae floating
in water taken into bilge tanks of oil tankers and bulk-carrying ships during
ballasting while sailing across the Panama Canal (TEETER 1973).
5. 1 NUTRIENT REGENERATION
CORNER and DAVIES (1971) reviewed the rôle of plankton in the nitrogen
and phosphorus cycles taking place in the sea, and included diverse algal-arthro-
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
239
pod grazing relationships. BROCK (1970) noted that colonization of algal mats
by ephydrid Aies promotes mat mineralization, usually a rather slow process.
The shells of diitoms ingested by some copepods are voided while encased
within a membrane which protects the enclosed diatoms from dissolution during
their descent to océan floor (SCHRADER 1971). These pellets sink many times
faster than a single shell, thus rapidly transporting silica from surface water to
deeper layers. The process may deplete the upper waters of silica (and other
nutrients), while delivering an abundance of this minerai to the océan floor.
Such excess extraction drives surface water toward undersaturation, until solu¬
tion rates on the océan floor provide the necessary balance for equilibrium of
silica réservoirs in the océan (SCHRADER, l. c.).
5. 3 MUTUALISM AND SYMBIOSIS
WILLEY (1972) described the cycle of the euglenoid Colacium which inha¬
bits damsel-fly hindguts in an interdunal pond in Indiana, U.S .A. During fall
Colacium flagellâtes enter the insects’ rectum by swimming directly through the
anus. The alga later sécrétés a gelatinous material by which it is held to the rec¬
al walls. Large Colacium colonies are then formed, which occur in the rectum of
he damsel-fly naiads as green plugs, easily seen through the hosts’ abdominal
valls. In spring some Colacium cells leave the host organ with fecal pellets, but
nost are ejected with the rectal cuticle as it is cast off during molt. Damsel-fly
iaiads are not reinfected prior to emerging as adults.
Other observations on Colacium were published by ROSOWSKI and KU-
RENS (1973). These authors were mainly concerned with the formation and
orphology of attachment material, an important character in the taxonomy of
olacium. They suggested that structure and formation of attachment material
roduced by copepod-colonizing Colacium may be affected by concentrations
f trace éléments in the arthropods’ exoskeleton.
Some additional observations on the Nostoc-Cricotopus mutualism were pu-
lished by TODD (1971), while recording new algae from Colorado, U.S.A..
.4 DISPERSAL
The mud dauber wasp, Sceliphron caementarium, and the cabbage butterfly,
Heris protodice, were shown by S1DES (1970, 1971) to transport viable algae
and protozoa). The algal cultures obtained were similar to those found by
ormer investigators. It was concluded (SIDES, l. c.) that Sceliphron may be a
elatively important carrier of algae and protozoa, but that the cabbage butterfly
is only a minor vector. SOLON and STEWART (1972) reported that carnivorous
nsects such as dragonflies (Odonata), preying on other insects which live near
water, may also transport viable algal cells, this dispersai being merely acciden¬
tai or incidental.
Source : MNHN. Paris
240
U. GERSON
ANDERSON, LEIDHAL and BRASHIER (1971) reported on the presence of
viable algae in the anterior and posterior gut parts of the chironomid fly Tendi-
pes plumosa. Presence of algae in the latter part suggests that they may also
be dispersed by this midge.
Dissémination of viable algal propagules into the tissues of another plant by
chironomid larvae was postulated by BERG (1950). That author found small
larvae of Cricotopus flavipes excavating longitudinal mines in stems of the ma-
crophyte Potamogeton. Viable algae, identified as Nostoc, Anabaena and others,
were also found in the excavations. BERG (/. c.) thought it possible that the lar¬
vae had introduced the original algal propagules into the mines, where the algae
were growing as rapidly as they were being eaten by the larvae.
6. 4 WATER BLOOMS AND TOXINS
O’ BRIEN and DE NOYELLES (1972) reported on a pH-related mortality
factor which affected cladocerans in nutrient-enriched ponds maintaining very
high levels of primary production. Ryther’s 1954 results were reinterpreted by
O’ BRIEN and DE NOYELLES (1972) as having been caused, in part, by a simi-
lar elevated pH mortality factor.
6. 5 THE BIOLOGICAL CONTROL OF MOSQUITOES BY ALGAE
A signifie an t contribution in this area was made by AMONKAR (1969) in his
Ph. D. thesis (later summarized by REEVES 1970). Amonkar isolated several
algal cultures from Southern California freshwater bodies in which natural con-
trol of mosquito larvae was apparently taking place. Cultures of Cladophora glo-
merata (denoted as culture AL-001), Schizothrix friesii (AL-003), Chara fragilis
(AL-004), Chlorella ellipsoidea (AL-005) and Chara elegans (AL-010, AL-011,
AL-012) exhibited marked larvicidal properties. The effects of these algae were
assayed by their stérile, spent growth media whose usually alkaline reaction did
not, by itself, affect the larvae. This indicates that the larvicidal activity is due to
toxic substances which the algae release into the surrounding water (or culture
medium).
The spent algal media (and purified concentrations prepared thereof) delayed
mosquito egg hatching, reduced larval weights and, most significantly, proved to
be highly larvicidal. AL-001 and AL-003 were the more toxic. Histopathological
studies on mosquito larvae treated with the chromatographically-purified AL
001 toxic fraction revealed destructive effects on the épithélial lining of the
alimentary canal. This damage disrupted normal food passage through the ali-
mentary canal, causing leakage of gut contents into the haemocoel.
The toxin secreted by AL-001 is a heat-stable, non-dialyzable compound,
whose ultraviolet and infra-red spectroscopic patterns suggest that it is an unsa-
turated organic substance with a nitrile group as well as terminal methylenes.
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
241
The active fraction from AL-003 appears to be a similar although different com-
pound. The toxic sécrétions of AL-004, 010, 011 and 012 are identical, having
sulfoxide and terminal methylene groups.
These natural toxins appear to be quite spécifie mosquito larvicides, as no
adverse effects on other organisms - including water insects - could be detected
in the original freshwater bodies. The findings of AMONKAR (1969) are there-
fore of wide practical importance, a point which he emphasized. He also revie-
wed most of the literature on algae which inhibit or kill mosquito larvae. Delete-
rious aspects of the use of algae to control mosquitoes were discussed by YEO
(1972), who suggested that such algae - especially Chara and Cladophora may
cause some aquatic nuisance problems.
The findings about a toxic substance secreted by Cladophora glomerata bring
to mind results reported by 1SHAC and BISHAI (1968) regarding the effect of
this alga on Biomphalaria boissyi, the snail host of Schistosoma mansoni, the
causal agent of bilharziasis. Growth of C. glomerata on the shells of the snails
reduced the latters’ fecundity as well as egg fertility and hatchability. ISHAC
and BISHAI (/. c.) attributed these effects to presence of acrylic acid
CH^=CH— COOH) in Cladophora. The toxic compound isolated by AMON-
KAR (1969) from C. glomerata could thus hâve been a polymerization product
of acrylic acid, whose carboxyl group was replaced by a cyanide to form a
nitrile.
6. 8 INDIRECT EFFECTS OF HYDROLYZED SEAWEED
HAMSTEAD (1970) conducted two experiments with the hydrolyzed sea-
weed product Sea-Born intended to control the two-spotted spider mite,
Tetranychus urticae. In the first experiment a substancial decrease took place in
che pest populations following applications of the seaweed hydrolysate and
^eleases of a predaceous mite, as compared to predator releases combined with
water sprays. In the second, more detailed experiment, no discernible décliné
in pest populations followed applications of Sea-BornW by itself.
7. 1 COMMUN1TIES ON SEAWEED AND ON FRESHWATER ALGAE
Compétition within an animal community living on algal belts in the Baltic
Sea off the Swedish coast was studied by JANSSON (1969). She found that
early in july the belts are colonized by juvéniles of the isopods Idotea baltica and
I. chelipes which feed on the algae and on sessile diatoms living thereon. Their
feeding causes various compétition patterns to occur among the isopods as well
as among the rotifers and ciliates which live in the same community.
WIEGERT and MITCHELL (1973) studied the effect of algal mat stability on
adult brine fly ( Paracoenia turbida) parasitization by the water mite Partnuniella
thermalis. The fly lives in and on mucilaginous mats formed by blue-green
algae and bacteria in hot springs at Yellowstone National Park. Paracoenia has a
Source :MNHN. Paris
242
U. GERS ON
short life cycle (14 days at 35 C), and its voracious larvae can rapidly destroy
suitable mats. The mite, on the other hand, has a slower life cycle, consequently
parasitizing its host-flies only in relatively stable mats. The mite-fly intersect
(i. e., percent of flies parasitized and size of mite load on these flies) may there-
fore be used as a sensitive measure of mat stability.
7. 3 COMPETITION FOR SETTLING SITES
LIPKIN and SAFRIEL (1971), in their studies on the zonation of Mediterra-
nean rocky shores at Mikhmoret, Israël, found that populations of the barnacle
Chthamalusstellatus may be suppressed by algae in the mid-midlittoral intertidal
zone. Individual barnacles may, however, survive under the algal cover.
7. 4 COMMUNITIES AFFECTED BY TECHNOLOGICAL CHANGES
Algal growth on flooded trees in the man-made Volta Lake (Ghana) supports
a great abundance of the borrowing mayfly Povilla adusta (PETR 1971). The
insects are heavily exploited by commercial fish. A man-made alga-insect-fish
food chain, of considérable importance in the convertion of algae into animal
protein, has thus evolved as a resuit of technological changes.
The pollution-associated disruption of invertebrate communities which live
in kelp forest holdfasts in the North Sea was described by JONES (1973). He
noted that many species (including numerous arthropods) hâve disappeared from
these communities. Mechanical harvesting (raking) of Irish moss (Chondrus
crispus ) near Prince Edward Island damages many «moss»-associated lobsters,
reducing their landed value by about 7% (SCARRATT 1973).
The réduction of herbivorous crustaceans by insecticide treatments of fresh-
water ponds was observed by HURLBERT, MULLA and WILLSON (1972) to be
foliowed by phytoplankton increases to bloom dimensions.
7. 5 SOME GEOLOGICAL ASPECTS OF ALGA-ARTHROPOD ASSOCIA¬
TIONS.
Some copepods produce diatom-containing fecal pellets which are enclosed
within a membrane (SCHRADER 1971). These pellets form deep-sea diatom
sédiments occuring down to 4000 m off the coast of Portugal. The diatoms
would not hâve sunk by themselves, without being enclosed by the membrane,
as they would hâve been completely dissolved before reaching such depths. This
illustrâtes the rôle of copepod-produced fecal pellets in the sédimentation of
pelagic diatoms.
Source : MNHN. Pari.
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
243
8. 2 EFFECT OF INSECTICIDES ON ALGAE
Insecticide concentration in algae, the differential reaction of diverse algal
species to insecticides, and effect of the résultant variable mortality (or inhibi¬
tion) on aquatic ecosystems and food chains were discussed in some recent
papers.
COX (1970) found that the level of DDT and some of its métabolites was tri-
pied in phytoplankton samples collected off the Californian coast from 1955 to
1969. Several freshwater algae, such as Anacystis nidulans, Scenedesmus obli¬
quas and Euglena gracilis, concentrated DDT 850, 630 and 100 fold, respecti-
vely, from their media (GREGORY, REED and PRIESTER 1969). The organo-
phosphorus insecticide parathion was concentrated by these algae about 50-70
times. The ability of algae to retain and concentrate insecticides may hâve im¬
plications for control of pests which live in and feed on these plants. BURTON
(1973) discussed such possibilities upon finding huge numbers of black fly (Si-
mulium) larvae feeding exclusively on Oedegonium filaments in Ghana.
EGLOFF and PARTRIDGE (1972) showed thatChlamydomonas reinhardtii
was not affected by concentrations of 100-1000 ppb of DDT. These authors
speculated that such relatively-resistant species might displace less tolérant ones
in polluted situations and thereby reduce or alter species composition in fresh¬
water bodies exposed to insecticides.
This idea was experimentally explored by MOSSER, FISHER and WURSTER
(1972). DDT or polychlorinated biphenyls were added to mixed cultures of the
insecticide-susceptible diatom Thalassiosira pseudonana and the résistant greén
alga Dunaliella tertiolecta. In mixed control cultures the diatom grew faster and
became dominant. But the dominance of Thalassiosira diminished on introdu-
cing the Chemicals, even at concentrations that had no apparent effect when
added to pure algal cultures. MOSSER et al. (/. c.) concluded that such stable
pollulants «could profoundly affect the health, distribution and abundance of
many animal populations higher in the food web». A more moderate opinion as
to the effect of DDT on oceanic life was expressed by JUKES (1974).
The interactions of pesticides and algae were discussed within the context of
pesticide-microorganism reviews by PFISTER (1972) and by WARE and ROAN
(1970).
Several more technical papers on this subject were recently published in the
Bulletin of Environmental Contamination and Toxicology but they are outside
the scope of the présent review.
9. 1 THE SCARCITY OF SYMBIOSIS
Doubts about the validity of the reported wide systematic range of inverte-
brate hosts for algae were expressed by TAYLOR (1973). He argued that most
animais which participate in symbiotic associations with algae are characterized
by a relatively low level of intercellular co-ordination. The introduction of alien
244
U. GERS ON
cells into tissues of such invertebrates would do little to disrupt the animais’
underlying organization. Further, these animais hâve low or non-existent immu-
nological barriers. Cohabitation with algal cells thus causes little cellular difficul-
ties for the host. TAYLOR (l. c.) also pointed out that the majority of symbiotic
hosts are carnivores, hence less likely to be capable of digesting their associated
algae. The establishment of symbiosis with herbivores probably dépends upon
algal résistance to digestion as well as increased host susceptibility.
These remarks go a long way towards explaining the scarcity of symbiosis
between arthropods and algae. They cannot however apply to associations invol-
ving bacteria, yeasts and fungi, as these organisms often occur as symbiotes of
insects, animais with highly developed cellular co-ordination. One thus feels
that algae are rather different from other microorganisms in their relative suitabi-
lity for symbiosis, as already suggested by DROOP (in main reference list).
TAYLOR (1973), as noted, pointed out that most invertebrates which host
algae are carnivorous. It is therefore of interest that the only arthropods hitherto
reported to hâve algal symbiotes are damsel Aies, which are predaceous insects. It
is of further interest that the symbiotic algae studied by WILLEY (1972) enter
their host via its rectum, and those reported by SELVARAJ and JOB (in main
reference list) live in the caudal lamellae of their host, near the main trachéal
branches. The symbiotic algae are not very likely to be much affected by their
hosts’ digestive System in either case.
BIBLIOGRAPHY
AMONKAR, S. V., 1969 — Fresh water algae and their métabolites as a means of biological
control of mosquitoes. Ph. D. thesis, University of California, Riverside.
ANDERSON, R. G., LEIDAHL, G., and BRASHIER, C. K., 1971 — Viable algae in chiro-
nomid larvae.J. Phycol. 7 (Supl.) : 10.
ARNOLD, D. E., 1971 — Ingestion, assimilation, survival and reproduction by Daphnia
pulex fed seven species of blue-green algae. Limnol. Oceanogr. 16 : 906-920.
BARNARD, J. L., 1972 — The marine fauna of New Zealand : algae-living littoral Gammari-
dea (Crustacea : Amphipoda ). New Zealand Dept. Sc. Indust. Res. Bull 210.
BATTAGLIA, B., 1970 — Cultivation of marine copepods for genetic and evolutionary re-
search. Helgolander Wissen. Meeresunt. 20 : 385-392.
BERG, C. O., 1950 — Biology of certain Chironomidae reared from Potamogeton. Ecol.
Monogr. 20 :83-101.
BETOUHIM-EL, T., and KAHAN, D., 1972 —Tisbe pori n. sp. (Copepoda : Harpacticoidea)
from the Mediterranean coast of Israël and its cultivation in the laboratory. Marine Bio¬
logy 16 : 201-209.
BOWERS, R. L., 1971 — The behavioral ecology o (Alpheus clypeatus Coutière (Decapoda,
Alpheidae). Diss. Abst. Inter. 31 : 5070-B.
Source : MNHN, Paris
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
245
BROCK, T. D., 1970 — High température Systems. Annu. Rev. Ecol. Syst. 1 :191-220.
BURTON, G. J., 1973 — Feeding of Simulium hargreavesi Gibbins larvae on Oedegonium
algal filaments in Ghana./. Med. Entomol. 10 :101-106.
CORNER, E. D. S., and DA VIES, A. G., 1971 — Plankton as a factor in the nitrogen and
phosphorus cycles in the sea .Adv. mar. Biol. 9 : 101-204.
CORNER, E. D. S., HEAD, R. N., and KILVINGTON, C. C., 1972 — On the nutrition and
metabolism of zooplankton. VIII. The grazing of Biddulphia cells by Calanus helgolandi-
cus. J. mar. biol. Ass. U. K. 52 : 847-861.
COX, J. L., 1970 — DDT residues in marine phytoplankton : increase from 1955 to 1969.
Science 170 :71-72.
CREDLAND, P. F., 1973 — A new method for establishing a permanent laboratory culture
ofChironomus riparius Meigen (Diptera : Chironomidae). Freshwater Biology 3 : 45-51.
CUMMINS, K. W., 1973 — Trophic relations of aquatic insects. Annu. Rev. Entomol. 18 :
183-206.
DEONIER, D. L., 1972 — Observations on mating, oviposition, and food habits of certain
shore Aies (Diptera : Ephydridae). Ohio J. Sci. 72 : 22-29.
EGLOFF, D. A., and PARTRIDGE, R., 1972 - Résistance to DDT of a freshwater alga.
Ohio J. Sci. 72 : 6-10.
ESAIAS, W. C., and CURL, H. C. Jr., 1972 — Effect of dinoflagellate bioluminescence on
copepod ingestion rates. Limnol. Oceanogr. 17 : 901-906.
GERSON, U., 1973 — Lichen-arthropod associations. The Lichenologist 5 : 434-443.
GREGORY, W. W. Jr., REED, J. K., and PRIESTER, L. E. Jr., 1969 - Accumulation of
parathion and DDT by some algae and protozoa./. Protozool. 16 : 69-71.
GRIFF1N, D. J. G., 1971 — The ecological distribution or grapsid and ocypodid shore crabs
(Crustacea : Brachyura) in Tasmania./. Anim. Ecol. 40 : 597-621.
HAMSTEAD, E. O., 1970 — Seaweed extract spray against Tetranychus urticae with and
without association of the predaceous mite Typhlodromus fallacis. J. Econ. Entomol.
63 :1717-1718.
HURLBERT, S. H., MULLA, M. S., and WILLSON, H. R., 1972 - Effects of an organo-
phosphorus insecticide on the phytoplankton, zooplankton and insect populations of
fresh-water ponds. Ecol. Monogr. 42 : 269-299.
ISHAC, M. M., and BISHAI, H. M., 1968 — The possible rôle of the algae Cladophora glo-
merata on the biological control of Biomphalaria boissyi, the snail host of S chistosoma
mansoni. Hydrobiologia 32 : 168-180.
JANSSON, A. M., 1969 — Compétition within an algal community. Limnologica 7 : 113-
117.
JONES, D. J., 1973 — Variation in the trophic structure and species composition of some
invertebrate communities in polluted kelp forests in the North Sea . Marine Biology 20 :
351-365.
JOSEPH, M. M., 1974 - Tidal rhythm in the feeding activity of the intertidal amphipod
Hyale hawaiensis (Dana ).Proc. Indian Nat. Sci. Acad. 38B : 456-461.
JUKES, T. H., 1974 — Insecticides in health, agriculture and the environment. Naturwissen-
schaften 61 :6-16.
KRAAN, C. VAN DER, and VREUGDENHILL, A. P., 1973 -Presence and accessibility of
food for Hypogastrura viatica Tullb. 1872 (Collembola-Hypogastruridae). Neth. J. Zool.
23 :125-129.
LARINK, O., 1968 — Zur Biologie des Küstenbewohnenden Machiliden Petrobius brevistylis
(Thysanura, Insecta). Helgolander Wissen. Meeresunt. 18 :124-129.
Source : MNHN , Paris
246
U. GERSON
LIPKIN, Y., and SAFRIEL, U., 1971 — Intertidal zonation on rocky shores at Mikhmoret
(Mediterranean, Israël)./. Ecol 59 :1-30.
MANN, K. H., 1973 — Seaweeds : their productivity and strategy for growth.Science 182 :
975-981.
MOSSER, J. L., FISHER, N. S., and WURSTER, C. F., 1972 -Polychlorinated biphenyls
and DDT alter species composition in mixed cultures of algae. Science 176 : 533-535.
NASSOGNE, A., 1970 — Influence of food organisms on the development and culture of
pelagic copepods .Helgolànder Wissen. Meeresunter. 20 :333-345.
NORTH, W. J., (Editor), 1971 — The Biology of Giant Kelp Beds {Macrocystis) in Califor¬
nia. Nova Hedwigia, Beiheft 32.
O’ BRIEN, W. J., and DE NOYELLES, F. Jr., 1972 — Photosynthetically elevated pH as a
factor in zooplankton mortality in nutrient enriched ponds. Ecology 53 : 605-614.
PETR, T., 1971 — Macroinvertebrates of flooded trees in man-made Volta Lake (Ghana)
with spécial reference to the borrawing mayfly Povilla adusta Navas. Hydrobiologia
36 :373-398.
PFISTER, R. M., 1972 — Interactions of halogenated pesticides and microorganisms : a
review. Critical Rev. MicrobioL 2 :1-33.
PORTER, K. G., 1973 — Sélective grazing and differential digestion of algae by zooplank¬
ton. Nature 244 :179-180.
RAPOPORT, E. H., and TAGLIABUE, A., SELINKA de, 1964 — Ensayo sobre la aplicacion
de algas como fertilizantes y su efecto sobre la micro y mesofauna del suelo. Rev. Inves-
tig. Agropec. 1, ser. 3 :133-144.
REEVES, E. L., 1970 — Pathogens of mosquitoes. Proc. Papers 38th Annu. Conf. Calif.
Mosq. Cont. Assoc. : 20-22.
ROSOWSKI, J. R., and KUGRENS, P., 1973 — Observations of the euglenoid Colacium
with spécial reference to the formation and morphology of attachment material /.
Phycol. 9 :370-383.
SCARRAT, D. J., 1973 — The effects of raking Irish moss ( Chondrus crispus) on lobsters in
Prince Edward Island. Helgolander Wissen. Meeresunt. 24 : 415-424.
SCHINDLER, J. E., 1971 — Food quality and zooplankton nutrition./. Anim. Ecol. 40 :
589-595.
SCHRADER, H. J., 1971 — Fecal pellets : rôle in sédimentation of pelagic diatoms. Science
174 :55-57.
SIDES, S. L., 1970 — Dispersai of algae and protozoa by the mud dauber wasp ( Sceliphron
caementarium Drury). Proc. Okla. Acad. S ci. 49 : 9-12.
SIDES, S. L., 1971 — Observation on dispersai of algae and protozoa by the cabbage butter-
fly . Trans. Amer. Micros. Soc. 90 : 96-97.
SOLON, B. M., and STEWART, K. W., 1972 — Dispersai of algae and protozoa via the ali-
mentary tracts of selected aquatic insects. Environ. Entomol. 1 :309-314.
STEELE, J. H., (Editor), 1970 — Marine Food Chains. Oliver & Boyd, Edinburgh.
TAYLOR, D. L., — The cellular interactions of algal-invertebrate symbiosis. Adv. Mar. BioL
11 :1-56.
TEETER, J. W., 1973 — Géographie distribution and dispersai of some Recent shallow-
water marine ostracods. Ohio J. Sci. 73 :46-54.
TODD, D. J., 1971 — New algal species record from Colorado./. Phycol 7 : 266-267.
WALLNER, J., 1935 — Ueber die Beteiligung kalkablagernder Algen am aufbau der Chiro-
nomidentuffe. Beith. Bot. CentraJbl Abt. 54 :142-150.
ASSOCIATIONS OF ALGAE WITH ARTHROPODS
247
WARE, G. W., and RO AN, C. C., 1970 - Interaction of pesticides with aquatic microorga-
nisms and plankton. Residue Rev. 33 :15-45.
WHEELER, J. W., HAPP, G. M., ARAUJO, J., and PASTEELS, J. M., 1972 - 7 -dodecalac-
tone from rove beetles. Tetrahedron Letters 46: 4635-4638.
WIEGERT, R. G., and MITCHELL, R., 1973 -Ecology of Yeüowstone thermal effluent
Systems : Intersects of blue-green algae, grazing Aies ( Paracoenia , Ephydridae) and water
mites ( Partnuniella , Hydrachnellae). Hydrobiologia 41 : 251-271.
WILLEY, R. L., 1972 - The damselfly (Odonata) hindgut as host organ for the euglenoid
flagellate Colacium. Trans. Amer. Micros. Soc. 91 : 585-593.
WINTERBOURNE, M. J., 1971 - An ecological study of Banksiok crotchi (Banks) (Tri-
choptera, Phryganeidae) in Marion Lake, British Columbia. Can. J. Zool 49 : 637-645.
YEO, R. R., 1972 - The algae, Chara and Ctadophora : the problems they cause and their
control. Proc. Papers 40th Annu. Conf. Calif. Mosq. Cont. Assoc. : 81-83.
Source : MNHN, Paris
249
VAUCHERIA ON «CORAL» (LITHOTHAMNION) SAND
J J>. CULLINANE*
SUMMARY. — Species of the genus Vaucheria usually grow in or on very damp soil or mud
or even submerged in either fresh or sait water. In the Connemara district of County Galway
in the west of Ireland, Vaucheria was found growing on coral sand ( Lithothamnion calca-
reum). This very coarse and brittle substrate contrasts completely with the more usual type
of habitat. Four species hâve been found, namely : Vaucheria geminata (Vauch.) de Candol-
le, V. sessilis (Vauch.) de Candolle, V. de Baryana Woronin and V. pachyderma Walz. The
latter two species hâve not been previously recorded from Ireland.
RÉSUMÉ. - Les espèces du genre Vaucheria poussent habituellement sur ou dans des sols
humides, boueux ou même recouverts par des eaux douces ou salées. Dans le district de
Connemara dans le comté de Galway, à l’ouest de l’Irlande, des Vaucheria ont été récoltées
sur des sables à Lithothamnion calcareum. Ce type de substrat différé totalement de 1 habi¬
tat type usuel de cette algue. Quatre espèces ont été récoltées : Vaucheria geminata (Vauch.)
de Candolle, V. sessilis (Vauch.) de Candolle, V. de Baryana Woronin et V. pachyderma
Walz. Les deux dernières espèces sont signalées pour la première fois en Irlande.
I. INTRODUCTION
The Vaucheria was first noticed on the coral sand on march 3, 1969 at Ard-
more on the Carna side of Killkieran bay and later on june 23 at Carraroe. In
march 1970, it was found on a third coral strand at Streamstown bay, north of
Clifden. In april 1970 it was found on another coral strand on the western side
of Gorumna island. The habitat was unique. At Ardmore, Carraroe and Mannin
bay drainage from the fields above créâtes a channel in the coral sand and the
Vaucheria grows in this. Heavy rains fill the channel so that the Vaucheria is
then submerged in fresh water. Either the fresh water drainage or the high tide
can cause the sand in the channel to collapse and cover the Vaucheria but within
a few days it grows up through the sand and forms a new mat on the surface. At
both Streamstown bay and Gorumna island, the habitat was essentially the
same but the Vaucheria grew in very small amounts on large clean coral directly
underneath a trickle of water which seeped from a rock.
The four species recorded from this type of habitat are not included in the
Check-lists of British Marine Algae (PARKE and DIXON 1968). However, where
they were growing on the coral sand they were subjected to submersion by the
high tide. Examination of specimens following or during a high tide showed that
* Botany Department, University College, Cork, Ireland.
Rev. Algol., N. S., 1976, XI, 3-4 : 249-259.
Source : MNHN, Paris
250
J. P. CULLINANE
the Vaucheria was plasmolysed and it then usually became extremely fertile
within a few days. Material of V. geminata collected from coral strands at both
Ardmore and Carraroe was compared with material of the same species from the
Cambridge Culture Collection. The latter was plasmolysed by 40% saltwater
whereas the coral strand material was only slightly plasmolysed 50% saltwater.
Aplanospores and akinetes from the coral strand material germinated in fresh
water, half seawater and in full seawater but survived for far longer period in half
seawater. Although growing in very saline conditions the Vaucheria on the coral
does dépend on the fresh water drainage as it does not grow during the dry
summer months when even the channels are not présent. The Vaucheria reappears
early in october and remains throughout the winter months. However, its
occurence dépends more on rainfall than on the actual seasons since, following
about four days of very heavy rain during june 1969 and july 1970, the Vauche¬
ria was found but it soon disappeared when the channel again dried out.
None of the specimens growing on the coral were impregnated with calcium
as were samples collected by CHRISTENSEN (1969) from the rapids of a brook
and described by him as «small cushion-like masses so heavily encrusted with
lime that they felt hard and stone-like when collected».
II. DESCRIPTION OF THE SPECIES
a. VAUCHERIA DE BARYANA WORONIN. (fig. 1-15).
WORONIN (1880) in naming this species after DE BARY States that he
found it in small fast running rivers and in the well of a spring. VAUCHER
(1803) States that it grows in dull green masses in ditches with stagnant water.
CHRISTENSEN (1969) collected this species on soil near running water and
actually in water and in places flooded by water now and then. These and other
records of this species, GOETZ (1897), DANGEARD (1939), RIETH (1965)
contrasts with the maritime conditions on the hard brittle coral sand.
The fïrst specimen collected at Ardmore coral strand formed a thick mat
about six inches in diameter and dark green in colour with pale edges. The mat
was divided into four parts and these were kept in separate crude cultures and
each became fertile within four days. The reproductive organs and filament
widths matched those of V. de Baryana as described and illustrated by WORO¬
NIN (1880), VENKATARAMAN (1961), RIETH (1965) and CHRISTENSEN
(1969).The oogonia were on stalks 80-100 jUm long and were slightly oval in
shape and measured approximately 40 by 60 nm. The mature oogonium had an
inconspicuous terminal beak (fig. 1-3). The oospores frequently germinate while
still attached (fig. 4). The antheridium was situated between the two oogonia and
was on a long stalk. It had the characteristic flattened anvil shape, which along
with the small filament width readily distinguishes this species from ail others.
The antheridium had two latéral openings, with three on rare occasions. On an
VAUCHERIA ON «CORAL» SAND
251
average it measured 20 nm high by 35 nm wide.
Twenty-seven days after collection the plant died off but filaments reappea-
red after twelve days and were fertile within another twelve days. The reproduc¬
tive organs were similar but the oogonia were on shorter stalks and in some cases
were almost sessile so that they were at a lower level than the antheridium (fig.
5-7). This variation is also illustrated by VENKATARAMAN (1961, fig. 68 ) and
by CHR1STENSEN (1969, fig. 6848a). By the time the culture was eight weeks
old, the oogonia were almost ail completely sessile with only one to each anthe¬
ridium, a feature which was consistent in one sample described by CHRISTEN-
SEN. In the final stages of the culture, twelve weeks after collection, ail the oo¬
gonia were completely sessile with only one to each antheridium. The culture
was then feebly producing its third crop of reproductive organs. V. de Baryana
was collected at Ardmore on eight different occasions and once from Mannin
bay. Each collection from Ardmore was kept in culture. Nearly ail cultures survi-
ved through three stages of reproduction which regularly alternated with stérile
periods. The pattern in each case was similar, as the culture aged the oogonia be-
came sessile and reduced to one per antheridium. In three to four months old
cultures, the antheridia were no longer terminal but were on very short latéral
branches which originated from the same part of the filament as did the short
oogonial branches (cf. fig. 8). This variation is similar to that illustrated by
RIETH (1965, p. 504, fig. c). This «unhealthy» State was also common in a sam¬
ple at the time of its collection from Mannin bay. This sample was not in good
condition as it looked brown in colour and was almost completely devoid of
chlorophyll at the time of collection. In some samples collected at Ardmore
which formed only loose threads, the oogonia présent at the time of the collec¬
tion were frequently almost sessile. Prolifération was only observed three times
(fig. 9). Branches with deformed antheridia and oogonia occured in the latter
stages of culturing but were never frequent. Inthese cases the shape of the an¬
theridia and oogonia were recognisable but they were not eut off (fig. 10-14).
Although the reproductive organs changed with the âge of the culture they were
always recognisable as those of V. de Baryana. This was especially true of the an¬
theridium which only altered slightly in shape (fig. 15). The antheridial stalk was
never hooked as illustrated by RIETH and CHRISTENSEN and mentioned by
VENKATARAMAN. No other form of reproduction was ever observed in this
species. The width of the filaments always remained within the original limits of
20-50 iim.As stated by VAUCHER (1803), these dimensions are «very much
finer than those of V. geminata and ail the dimensions of its fruiting organs are
about half of those found in V. geminata».
b. VAUCHERIA GEMINATA (VAUCH.) DE CANDOLLE. (fig. 16-23).
In may 1969 Vaucheria was collected from a second location at Ardmore
coral strand. The species was identified as V. de Baryana by the reproductive
organs présent and the filament width (18-48 /im). However, a large portion of
the filaments varied in width from 40-110 fim. After three weeks in culture these
252
J. P. CULLINANE
filaments became fertile and were identified as V. geminata. The V. de Baryana,
which was extremely fertile at the time of collection and even had numerous
oospores germinating in situ, died off after two weeks and did not recover. These
two species were found intermingled in at least seven different samples from
Ardmore and in one sample from Mannin Bay. CHRISTENSEN (1969) also re¬
cords V. de Baryana growing mixed with several other species but does not in-
clude V. geminata among them. At Carraroe V. geminata was frequently found
growing on the coral sand but it was never accompanied by any other species.
The V. geminata was identified from the descriptions and illustrations of
VENKATARAMAN (1961), and CHRISTENSEN (1969). The cylindrical circi-
nate antheridium was terminal, on a short stalk and opened by a single large ter¬
minal pore. It was situated between two oogonia which were on short latéral
branches. The oogonia were fiat or concave on one side and had a small beak
facing the antheridium. In one collection the darker green centre of the material
was more fertile than the paler edges. The oogonia were on longer branches but
were smaller in size and measured from 65-80 nm in width in the darker central
parts, whereas those on the shorter branches in the paler portions measured from
90-120 /im in width. V. geminata frequently survived in culture for over three
months. A second and third stage of sexual reproduction was observed but the
reproductive organs did not alter much, except for a tendency to reduce the
number of oogonia to one per antheridium in a few cases and a tendency to-
wards more sessile oogonia. The fruiting organs did not alter with âge as much as
in V. de Baryana and neither was the alternation of fertile and non fertile phases
as pronounced. Prolifération of branches showing as many as five pairs of sessile
oogonia was observed in cultures after three months but was never abundant. It
was, however, very common in one collection from Carraroe in which Vauche-
ria was extremely fertile as a resuit of having been covered by the sand, follo-
wing submersion by a high tide (fig. 16, 17). In rare cases in old cultures the
antheridial branches were extremely short and swollen into broad triangular
shapes as much as 210 flm wide but oogonia were never observed in such cases
(% 18).
After nearly four months in culture the filaments had not altered their width
beyond the original 40-110 /im but they eventually broke up into short thick
walled irregular pièces or akinates. These were very common in old cultures of
this species. Aplanospores were observed at various stages of culturing. They
were oval in shape and measured 68-119 by 119-153 fim.
c. VAUCHERIA SESSILIS (VAUCH.) DE CANDOLLE. (fig. 24-29).
On june 26 1969 it was noticed that at the entrance to Ardmore strand low
down on the shore, within fourteen feet of the then high tide, the coral sand was
coloured red by the iron seepage. Although no Vaucheria was visible a sample of
the sand was kept in the laboratory and after a few days it revealed two species :
V. geminata and V. sessilis. These two species could only be distinguished by
VAUCHERIA ON «CORAL» SAND
253
their fruiting bodies as the filaments of the former varied from 35-95 /im in
width and those of the latter varied from 30-92 pm.
The V. sessilis agreed with the description given by CHRISTENSEN in that
«the species varied a good deal with regard to the direction of the beak of the
oogonium and the width of the filaments, and the tendency to form only one
oogonium near each antheridium». The cyündrical antheridium is either circina-
te or rarely straight, erect or coiled downwards and it opens by a single large ter¬
minal opening. The antheridium is either near a single oogonium or situated
between two oogonia. The oogonia are either sessile or on very short pedicels
and hâve a short beak which varies in position but usually faces the antheridium.
V. sessilis was collected from the red tinged coral sand at this location on
four other occasions. In culture the fruiting bodies remained continuously for up
to two months without variation, other than already described and without al-
cernating fruiting periods.
As was the case with the previous species the occurence on the hard brittle
coral sand close to the high tide level contrasts with its more usual habitat.
CHRISTENSEN for example records it from swiftly running water, on soil at a
vatercourse, and from stagnant water. As was the case with the samples collec-
ed by CHRISTENSEN, the coral sand samples, with the exception of the first,
vere always fertile at the time of collection.
. VAUCHERIA PACHYDERMA WALZ. (fig. 30-34).
A sample of sand from Ardmore taken in december 1969 was placed in cultu-
e and shown to contain V. de Baryana. Some wider filaments ranging from 40
o 95 pm in width, became fertile after three weeks and matched the descrip-
ion and drawings of V. pachyderma as given by VENKATARAMAN (1961)
md CHRISTENSEN (1969). DANGEARD (1939) gives the filament width
or this species as being 35-45 pm whereas VENKATARAMAN gives it as 40-
123 pm. The latter measurements are more in keeping with those of the coral
.and samples. This species is characterised by the extremely thick wall of the
oogonium which measured as much as 7 pm in thickness and consists of 5-7
ayers. The oogonia varied very much in shape and were sometimes almost sphe-
ical and in other cases very flattened and paralleled to the filament. They varied
n width from 95-180 pm and in height from 90-140 pm. They were usually ses-
ile or rarely slightly pedicillate. The antheridia matured much earlier than the
jogonia and they resembled those of V. sessilis in that they were cylindrical,
talked and frequently circinate and were situated next to the oogonium but
here was always only one oogonium to each antheridium. The antheridium
îsually grew downwards. The prominent beak on the oogonium was situated
nore on the side and often pointed downwards. Collections made in april 1970
rom this location contained only V. pachyderma.
One collection was made at Streamstown bay. Only a minute amount of
254
J. P. CULLINANE
Vaucheria was présent and it never became fertile. Similarly a collection from a
coral strand on the western side of Gorumna island never became fertile. How-
ever, in both of these cases the filaments were too wide to belong to the species
V. de Baryana.
e. INTERMINGLING OF SPECIES.
As appears to be typical of Vaucheria in general the various species found
growing on the coral sand were frequently intermingled with each other as is
summarised in the table. At Carraroe however, V. geminata was the only species
ever recorded. Material collected at Ardmore strand, in october 1969, was kept
in crude culture and became fertile after two weeks and was V. geminata, two
weeks later however the fertile filaments were V. sessilis. Some very fine fila¬
ments présent in the material from the time of collection only became fertile
after three months and this species was then identified as V. de Baryana. This
was the only collection to contain three species and it is of interest that the
V. de Baryana did not become fertile untü after the death of the other twc
species. By the time it did become fertile the V. de Baryana was old and unheal
thy in appearance and the reproductive organs présent were those typical of old
cultures as described earlier and illustrated in fig. 8.
Table 1 : locations of species (+intermingling species)
Ardmore
Ardmore Carraroe
Mannin bay
Gorumna isl.
Entrance
offshore
north-eastern
side
V. de Baryana
V. geminata V. geminata
V. geminata
V. pachyderma
V. pachyderma
V. de Baryana
V. geminata
V. geminata
V. de Baryana
V. de Baryana
V. geminata
V. sessilis
V. de Baryana
V. pachyderma
V. de Baryana
V. geminata
V. sessilis
Grid Référencés, according to Irish Ordonance Survey Maps, sheet 10 (scale 1/2
inch to a mile) :
Carraroe : L. 91 22; Ardmore : L. 82 29; Mannin bay : L. 63 48; Streamstown
bay : L. 58 54; Gorumna Island : L. 85 23.
VAUCHERIA ON «CORAL» SAND
255
acknowledgments
I wish to thank Professor M. de Valera, University College, Galway, for directing this
work and for her kindness and assistance at ail times during the préparation of this pa-
per.
BIBLIOGRAPHY
’HRISTENSEN, T., 1969 — Vaucheria collections front Vaucher’s région. K. Dansk
y, idensk. Selskab Biol. Skrift., 16, 4 : 35, 17 fïg.
)ANGEARD, P., 1939 — Le genre Vaucheria, spécialement dans la région du sud-
>uest de la France. Le Botaniste, 29, 5-6 : 184-254, pl. 11-15.
30ETZ H., 1897 — Zur systematik der Gattung Vaucheria DC. Flora, 83, 2.
ARKE, M. et DIXON, P.S., 1968 - Check-list of british marine algae (second révision).
Mar. Biol. Ass. U. K., 48 : 783-832.
UETH, A., 1965 — Beitràge zur Kenntniss der Vaucheriaceen. XI. Vaucherien aus Tad-
hikistan. Die Kulturpflanze, Akad. Verlag Berlin, 13 : 495-507, 7 fig.
AUCHER, JP., 1803 - Histoire des Conferves d’eau douce, Genève.
ENKATARAMAN, G.S., 1961 — Vaucheriaceae. I.C.A.R., New-Dehli : I-XI, 1-119,
4 fig.
'ORONIN, M., 1880 - Vaucheria DC de Baryana n. sp., Bot. Zeit., 38, 25 : 1-4, 1 pl.
256
J. P. CULLINANE
Vaucherta de Baryana : fig. 1-15; V geminata : fig. 16-23; V. sessilis : fig. 24-29; V. pachv-
aerma : fig. 30-34. J
VAUCHERIA ON «CORAL» S AND
257
Source : MNHN, Paris
258
J. P. CULLINANE
Source : MNHN, Paris
VAUCHERIA ON «CORAL» SAND
259
Source : MNHN, Paris
Source : MNHN, Paris
261
THE STRUCTURE
OF OSCILLATORIA LIMOSA AG. (CYANOPHYCEA)
AND THE FORMATION
OF HORMOGONIA AND NECRIDIA
A STUDY USING THE LIGHT MICROSCOPE, THE SCANNING AND
TRANSMISSION ELECTRON MICROSCOPES
E. FJERDINGSTAD, Bo HOLMA, and Ejnar J. FJERDINGSTAD *
SUMMARY. - The structure and reproduction of the biue-green alga Oscillatoria limosa Ag.
as seen with the light microscope, the scanning and transmission électron microscopes. The
results emphasize the necessity of a higher resolving power than it is possible to obtain with
conventional techniques using light microscopy for classifying the blue-green algae according
to morphological characteristics, e. g. the formation of hormonia by means of necridia has
given rise to erroneous establishment of Oscillatoria refringens and O. lauterbomii fa. calyp-
tra.
RÉSUMÉ. - L’observation de la structure et de la reproduction de Oscillatoria limosa Ag.
au microscope photonique ainsi qu’aux microscopes électroniques à transmission et à
balayage soulignent la nécessité d’utiliser de fortes résolutions supérieures à celles du micro¬
scope photonique pour réussir à distinguer les Cyanophycees d’apres leurs caractères mor¬
phologiques, comme le prouve la création erronée d'Oscillatoria refringens et O. lauterbor-
nii fa. calyptra.
I. INTRODUCTION
The appearance of the scanning électron microscope (SEM), which has a
higher resolving power (depth of focus about 300 times better than that of the
light microscope, cf. GRAY), and in which the image, unlike that of the light
microscope, is three-dimensional, has made it possible to study more closely the
taxonomically highly significant external structure of the microorganisms. Thus
the scanning microscope has been used successfully for the study of Diatoms and
Foraminifera, (cf. BARLETT 1967; BE 1968; BENS & DREWS 1967; HAY &
* Institute of Hygiene and Institute of Zoology, University of Copenhagen.
Rev. Algol., N. S., 1976, XI, 3-4 : 261-272.
Source : MNHN, Paris
262
E. FJERDINGSTAD
SUNDBURG 1967; HONJO & BERGGREEN 1967), of soil microorganisms by
GRAY (1967), of fossil diatoms by MILLER (1969), and of desmids by LYON
(1969). Cyanophyceae as Merismopediaglauca, Anacystis montana, and Oscilla-
toria formosa hâve been studied with the scanning électron microscope by
ECHLIN (1968), but the figures given by this author provide no useful informa¬
tion on the surface structure since the organisms hâve been covered by the élec¬
tron dense layer - a phenomenon frequently observed by the authors of the
présent article, for instance in the case of Spirulina major, Oscillatoria chalybea,
and Phormidium foveolarum etc. (cf. fig. 1 a-b). Incidentally, BRINGMANN
(1950: 557) and METZNER (1955 : 53) State that trichomes of Cyanophyceae
in the transmission électron microscope (TEM) are frequently seen to be sur-
rounded by an outer électron dense layer, even at high électron potentials. It is
understandable, therefore, that the scanning électron microscope has not as yet
been as useful in the study of the morphology and taxonomy of Cyanophyceae
as might hâve been expected. That it is nevertheless possible by means of this
technique to disclose structures which cannot be seen with the light microscope
will appear from the micrographs of Oscillatoria limosa Ag. in the présent article.
The scanning électron microscope will thus be a valuable supplément to the
transmission électron microscope and the light microscope in the study of blue-
green algae.
II. MATERIAL AND METHODS
The material studied in the présent work was collected two to three years ago
from various localities in Denmark. Duplicate samples were collected, one
sample was at once fixed in 4% formaldéhyde solution, while living cells of the
other sample were viewed with the light microscope.
For use with the scanning électron microscope material stored in formaldé¬
hyde was used. It was washed in distilled water for 30 minutes, transfered to
60% alcohol for 30 minutes, and to absolute alcohol for 30 minutes. After this,
a drop of the concentrated sample was spread as a thin uniform layer on a cir-
cular cover glass, 9 mm in diameter, and dried gently. The cover glass with the
layer of algae upwards was then secured to a stub with little dab of synthetic
glue. Before being viewed with the scanning électron microscope the organisms
were coated with a conductive substance (gold) in a vacuum evaporator.
The scanning électron microscope studies were made in collaboration with
Analytical A. B., Sollentuna, Sweden.
It is the présent authors’ expérience that Cyanophycea material which has
been kept for considérable time in formaldéhyde gives better results (no shrin-
kage) than material which has been fixed for a short time only.
For use with the transmission électron microscope material which had been
kept in formaldéhyde was washed in distilled water for twelve hours, fixed in
buffered 2% osmium tetroxide solution for one hour and embedded in Epon.
Sections were eut on a LKB Ultrotome, and the sections were picked up on
STRUCTURE OF OSCILLATORIA LIMOSA
263
carbon stabilized Parlodion films, poststained on the grid with zinc uranyl acéta¬
te + lead citrate and viewed with a Siemens Elmiskop I b. and Cari Zeiss E M 9.
The microscope was operated at 40 kV.
This part of the study was made in the Institute of General Zoology.
III. OBSERVATIONS
a. LIGHT MICROSCOPY
GEITLER (1932) describes Osciïlatoria limosa Ag. as having more or less
straight trichomes, usually forminga dark blue-green, brownish or olive-green mass.
Trichomes are not, or only slightly, constricted at cross walls, mostly 13-16 pm
in diameter, cells are 2-5 /Jm long, end cells are fiat, rounded with thickened
membrane - occasionally with sheath formation.
In a recent paper FJERDINGSTAD (1971) has accounted for the résulte of
examinations of a very great number of trichomes of Osciïlatoria limosa deriving
in part from material collected by the author in Denmark, in part from different
exsiccate materials, and in part from herbarium materials stored in the Botanical
Muséum of the Copenhagen University. With regard to the morphological featu-
res it appears from FJERDINGSTAD’s examinations that in most of the tricho¬
mes the outer membrane of the end cell is not thickened. A slight atténuation at
the tips was observed in about 50% of the samples, a slight constriction at the
cross walls in about 36%, and granules at the cross walls in about 47%. The pré¬
sence of a firm sheath was observed, however, only infrequently. Most frequen-
tly there is a thin, hyaline layer along the outer walls of the trichome correspon-
ding to the thin, mucous sheath occuring in some species of the genus Phormi-
dium.
As regards the dimensions of the organisms in the materials dealt with here
the diameters of trichomes of O. limosa from Ketting brook (fig. 2) were :
minimum 12 /im, maximum 19 pm mean, and dispersion 14.5 ± 0.9(8) pm,
from a spring in Askemose forest (fig. 5-7) the figures were 10 pm, 16 pm and
12.4(5) ± 0.8(4) pm respectively, and from Lille Holmehave brook 12 pm,
19 pm and 14.5 ± 0.9(8) pm.
Hormogonia are developed through the formation of necridia (fig. 2b, 2d).
The septa of the neighbouring cells on both sides of a necridium assume convex
shape whereby the protoplasm of the necridium is compressed, and it becomes
biconcave. Now the only connection between the neighbouring cells is the cir¬
culât border of each intervening septum, cp. also KOHL (1903). Laterally a
necridium often bulges slightly so as to produce a curve in the otherwise linear
outline of the trichome. When the séparation between the cells is completed,
the necridium dies. Necridia are frequent in the material of O. limosa studied in
the présent work.
A specimen of O. limosa with necridia has been described by GARDNER
264
E. FJERDINGSTAD
(1927), erroneously, as an independent species : O. refringens - although GARD-
NER herself mentions that some trichomes, especially young ones, lack such
«réfringent» cells, cp. also FJERDINGSTAD (1971).
When the séparation at the necridium is completed, remnants of the necridial
cell wall may sometimes be found on the outside of the end cell (fîg. 2d). Due to
erroneous interprétation of this phenomenon a variety ofO. lauterbornii Schmi-
dle, viz. var. calyptra, has been established. According to the figure given by
CLAUS (1955) it is not a case of actual calyptra formation, but obviously
remnants of a (necridial) cell membrane which has been interpreted as a caly¬
ptra. Thus var. calyptra Claus should not be considered an indépendant taxon.
b. SCANNING ELECTRON MICROSCOPY
With lower as well as higher magnification blue-green algae often appear in
the scanning électron microscope to be covered with an outer, électron dense
layer which appears as a uniform coating (fig. 1 a-b).
As mentioned in the above, when viewed with the light microscope O. limosa
showed a slight constriction at the cross walls in about 36% of the material.
Viewed with the scanning électron microscope this constriction appears very
clearly in specimens in which there is no électron dense layer (fig. 3-4). It
appears from fig. 5 that constrictions at the cross walls do not always occur.
There are thus two types of O. limosa, but no taxonomie significance should be
asenbed to this morphological différence, since FRITSCH (1953) in Phormi-
dtum strata found trichomes with constrictions and trichomes without constric-
tions, while FJERDINGSTAD (1969) mentions that trichomes of Anabaena
vanabihs may be found with constrictions in one half of the trichomes and none
in the other half. The same may be observed in O. limosa, cp. FJERDINGSTAD
In culture experiments with a Lyngbya species PEARSON & KINGSBURY
(1966 : 198) hâve shown that the presence or absence of constrictions at the
septa is a characteristic that often varies, even within the same culture vessel.
A S early as 1933 WEBER (1933 : 403) stated that in connection with a species
as Calotnnx Braunu Born. et Flah. no weight can be attached to the presence of
constrictions at the septa, since filaments with and without constrictions occur
Gom la SEM P v'MM "rT J Üt n S £“ l5 °° 0i ^ lb '~ OsciUatorm chalybea (Mertens)
c.om., isEM x 2000, Fig. 2. -OscOataria limosa A. from different localities in Denmark
S erTrwXiÊM x 20 X 0„ b : d ; 87 a 5
walls SEM x 6500- Fit» ^ _ n ■ ® sclllatori ‘* l, mosa mfh constnedons at the cross
n Fig-5. OsciUatoria limosa without constrictions, SEM x 5000- Fia 6
and 0 Ær SEM r 2 “00 D - & fr ° m —", ïïh'dïtase
266
E. FJERDINGSTAD
together. This feature is not mentioned by DARLEY (1968 : 177) in connection
with the species Calothrix parietina Thuret, but following studies of Danish ma-
terials the présent authors are able to confirm that WEBER’s observation applies
also to this species.
Formation of hormogonia occurs as a resuit of the development of necridia,
see in the above. The latéral bulge of the necridium influences either the prece-
ding or the subséquent cell or both so as to cause a protrusion of the middle
part of the new end cell, while at the same time there is a constriction of the
sides which is greater than in the other cells in the trichome. This phenomenon,
which with the light microscope is frequently only just visible, appears very
clearly viewed with the scanning électron microscope (fig. 5).
The outer structure of the trichome surface is another detail which is disclo-
sed by the scanning électron microscope. In O. limosa this surface consists of re
gular, vertical, parallel ribs connecting the septa of the cells and a horizontal
band in the middle of the cell connecting the side walls of the trichome. This
band is probably located at the point where a future cell division might tak<
place (fig. 4).
Preliminary studies hâve shown a corresponding structure in O. animalis Ag.
O. tenuis Ag., and Oscillatoria species from Greenland, and in Phormidiun
autumnale (Ag.) Gom, while the structure of O. rubescens de Candolle differ
from that of the above mentioned in that it is netshaped with irregular, angula
meshes of varying size and appearance (fig. 6). In Symploca muscorum (Ag.
Gom. and in Hydrocoleus the structure corresponds closely to that of O. limosa
In Petalonema, which belongs to the family Scytonemataceae, there are, on th<
other hand, wavy cross ribs which connect the side walls of the trichome and art
more or less parallel to the septa. Whether décisive taxonomie significanct
should be ascribed to the différence in structure will only appear after furthe
studies, but it is a reasonable assumption that it will be of significance, particu
larly to the arrangement of blue-green algae in families, since species of thi
généra Oscillatoria, Phormidium, Symploca, and Hydrocoleus which ail belong
to the family Oscillatoriaceae hâve the same structure. If this holds good, t
species as O. rubescens cannot rightly be referred to the genus Oscillatoria
Plate 2
7. — Oscillatoria limosa showing the photosynthetic apparatus, small osmiophilic gra
nules (ribosomes, lipid granules, polyphosphate granules and incipient cell division, TEM x
6000; Fig. 8. — Oscillatoria limosa, oblique section, TEM x 9000; Fig. 9. — Oscillatorù
limosa, detail of fig. 8, aging cells with many vacuoles and lipid granules, TEM x 19500
Fig. 10. — Oscillatoria limosa showing the clubshaped thickenings at the trichome membra
ne > TEM x 60000; Fig. 11. — Oscillatoria limosa, formation of necridia, TEM x 5800; Fig
12. — Oscillatoria limosa, a later stage of necridium formation with incipient vacuolation
TEM x 16250; Fig. 13. - A young hormogonium of O. limosa (oblique section), TEM x
16250.
STRUCTURE OF OSCILLATORIA LIMOSA
267
Source : MNHN. Paris
268
E. FJERDINGSTAD
c. TRANSMISSION ELECTRON MICROSCOPY
The internai structure was studied by transmission électron microscopy. As it
appears from fig. 7 the morphological form of the photosynthetic apparatus is
lamellar, each lamella consisting of two membranes confïning a space of variable
width. This closed sac, mostly 16.6 to 20 nm broad, has been termed a thyla-
koid. The lamellae are situated next to the membranes at the side walls. Accor-
ding to ECHLIN (1965 : 149) the number and arrangement of the lamellae show
considérable species variation, ranging from tightly packed stacks to a réticulum.
However, variation occurs also according to the âge of the organism (ECHLIN
1964).
Among the thylakoids there are some small osmiophilic bodies which are
globules of lipid, much larger lipid globules, up to 350 x 416.6 nm, are to be
found scattered in the cells (fig. 7).
Ribosomes are small, dense granules occuring in very great numbers in any
cytoplasmic space which is not occupied by other components (LANG 1968 :
Vacuoles appear in some micrographs in great numbers, in others there are
only very few. According to LANG vacuolation becomes more pronounced in
aging cells (fig. 8-9).
NIKLOWITZ & DREWS (1957) mention the presence of a clubshaped
thickened border line at the place where side walls and septa join. HAGEDORN
(1961 . 826), who studied material fixed in potassium permanganate, confirmed
the presence of this clubshaped thickening, but says that it does not represent
any expansion of the membrane. As appears from fig. 10, our micrographs do
not show any clubshaped thickening of this type where longitudinal wall and
cross wall join, but in each cell there are thickenings which do not touch the
cross walls. Their dimensions are 66.6 nm wide by 250 nm long. In the space
between them cell division takes place.
Formation of hormogonia through necridia is seen clearly in fig. 11-13.
IV. DISCUSSION
As mentioned in the above, it was stated as early as 1903 by KOHL that
species of Oscillatoriaceae and Scytonemataceae form hormogonia through
necridia rather than through the septa between living cells. CROW (1925 : 41)
mentions the formation of hormogonia in Lyngbya nigra Ag. through the deve¬
lopment of necridia and writes that «their formation is not preceded by a fissure
of the protoplasm, division is merely a resuit of their formation». In his compré¬
hensive studies of Oscillatoria amoena FUHS (1958 : 523) observed only trans¬
cellular breakage of trichomes, while HALL & CLAUS (1962 : 360) with regard
to the hormogonium formation in Oscillatoria chalybea writes that «there is a
strong indication that the filaments break up by cleavage between the two mem-
STRUCTURE OF OSCILLATORIA LIMOSA
269
branes of the interval». These membranes should thus become the outer mem¬
branes of the wall of the newly formed end cells at the site of the previously
existing cross wall. When HALL & CLAUS further write that «this explanation
would eliminate the theory of FUHS requiring the death of a cell intermediary
between two nascent hormogonia» we do not agréé with these authors as far
as O. limosa is concerned since our micrographs, both in scanning and transmis¬
sion électron microscopy, clearly show the coopération of necridia in the for¬
mation of hormogonia. Nor could LAMONT (1969 : 241) after électron micro¬
scopie examination of a Lyngbya species (identified according to DROUET as
Microcoleus vaginatus (Vauch.) Gom.) find evidence for the hypothesis advanced
by HALL & CLAUS, and he refers quite rightly to the fact that even HALL &
CLAUS’s fig. 1 does not support their claim that a septum of O. chalybea may
split symmetrically to yield an intact cell on either side. HAGEDORN’s (1961 :
827) examinations of O. limosa also show that hormogonium formation takes
place by means of necridia and, unlike HALL & CLAUS, this author writes that
in spite of the fact that cell cross walls consist of three layers, they cannot split,
but form a morphological unit. Even after treatment with enzymes as trypsin,
pepsin, diastase, papain or with acids, bases, or salts it was impossible for HA-
GEDORN to effect a séparation of the layers. As regards Porphyrosiphon Nota-
risii RIS & SINGH (1961 : 65) postulate «that during the hormogonia formation
che cross walls split down the middle and show a peculiar grid-like pattern at the
point of séparation», but the figure (fig. 8) given by the authors does not appear
to confirm this assertion.
In 1962 GIESY (1962) published his observation of the ultra structure in O.
imosa Ag. However, he describes this alga as a filamentous alga with trichomes
ranging from 2 to 6 /im in diameter - «each cell is approximately 2 /im thick». If
the dimensions mentioned do not represent an erratum, this cannot be a spéci¬
men of O. limosa the diameter of which is 10-22 /im, rarely more than 22 /im,
see in the above. It may be mentioned in this connection that the value of élec¬
tron microscopie examinations of organisms using DROUET’s (1968) highly
simplified nomenclature is small if the conventional nomenclature is not given at
the same time.
As mentioned in the above, ECHLIN (1965) has pointed out that the structu¬
re of the lamellar photosynthetic apparatus is species spécifie, and the examina¬
tions made hitherto and being made at présent by the présent authors seem to
confirm this assertion. ECHLIN (1968 : 138) further says «that it may be possi¬
ble, solely on structural grounds, to consider as blue-green algae those organisms
which possess peripheral photosynthetic lamellae while, conversely, the absence
of these structures would indicate that the organisms were bacteria». If bioche-
mical démonstration of the presence of c. phycobilins is added as an indicator of
blue-green algae, «this will begin to delineate the group from other organisms».
CRESPI et al. (1962) write that the action of lysozyme on the different species
differ, some species, for instance O. tenuis and Phormidium luridum , are highly
sensitive to treatment with this enzyme while other species, for instance O. for-
mosa, are not influenced by it. They suggest, therefore, that sensitivity to lyso¬
zyme may be of taxonomie value.
270
E. FJERDINGSTAD
It may be mentioned that in experiments on the influence of diastase and
protease in progress at présent we hâve likewise found the sensitivity of the
individual species to these enzymes to differ greatly.
It would not be realistic to base a révision of the taxonomy of blue-green
algae solely on light microscopie features, even though déterminations of the
range of variability of the width and length of trichome cells with statistical
détermination of mean and dispersion would be highly valuable. The informa¬
tion which may be obtained by means of scanning électron microscopy of the
highly signifïcant outer structure as well as the visualization of the internai
structure provided by transmission électron microscopy, possibly supplemented
by biochemical analyses, should also be utilized.
V. CONCLUSIONS
Structural features of O. limosa Ag. were studied with the light microscope
as well as with the scanning and the transmission électron microscopes.
Hormogonia formation takes place through the development of necridia,
and this has given rise to erroneous establishment of the species O. refringens
Gardner and O. lauterbomii Schmidle/a. calyptra Claus.
The scanning électron microscope shows that the trichome surface in O. limo¬
sa has a peculiar structure which is also observed in other Oscillatoria species,
with the exception of O. rubescens , and in other species belonging to the family
Oscillatoriaceae. This structure differs from the structure in Petalonema of the
family Scytonemataceae. It is reasonable to assume that the outer structure of
the trichome may be utilized for systematical purposes in distinguishing between
the families of blue-green algae. If so, it cannot be correct to refer O. rubescens
to the family Oscillatoriaceae.
As regards the observation by NIKLOWITZ & DREWS (1957) of a clubsha-
ped thickening at the point where the side wall adjoin the cross wall, an observa¬
tion confirmed by HAGEDORN (1961 : 826), we hâve been unable to trace this
phenomenon in our TEM micrographs.
It is finally mentioned that a révision of the taxonomy of Cyanophyceae
should also take into considération the information which scanning électron
microscopy and transmission électron microscopy may provide with regard to
the outer and inner structure of blue-green algae, possibly supplemented with
biochemical tests.
STRUCTURE OF OSCILLATORIA LIMOSA
271
BIBLIOGRAPHY
BARLETT, GA., 1967 — Scanning reflection microscopy : potentials in the morphology
of microorganisms. Science 158 :1318-1319.
BE, A., 1968 — Porosity of recent planktic Foraminifera as climatic index. Science 161 :
881-884.
BENS, I. M., and DREW, C. N., 1967 — Diatomaceous earth : scanning électron microscopy
of «chromosorb». Nature 216 :1046.
BRINGMANN, G., 1950 — Vergleichende Licht- und Elektronenmikxoskopische Untersu-
chungen an Oscillatorien. Planta 38 : 541-563.
CLAUS, G., 1955 — Studien über die Algenvegetation der Thermalquelle von Bükkszek.
Arch. Hydrobiol. 55 :1-20.
CRESPI, H. J., MANDEVILLE, S. E., and KATZ, J. J., 1962 - Action of lysozyme on
several blue-green algae. Biochem. Biophys. Res. Comm. 9 : 569-573.
CROW, W. B., 1925 — Variation in the hormogones of Lyngbya nigra Ag.. Trans. R. Micr.
Soc. : 37-42.
DARLEY, J., 1968 —Contribution à l’étude systématique et biologique des Rivularia-
cées marines. Le Botaniste 51 : 142-200.
DROUET, Francis, 1968 — Révision of the classification of the Oscillatoriaceae. Acad. Sci.
Phil., monogr. 15 :1-370.
ECHLIN, P., 1964 — The fine structure of the blue-green a\%a Anacystis montana fa. minor
grown in continuous illumination. Protoplasma 58 : 439-457.
ECHLIN, P., 1965 — The relationship between blue-green algae and bacteria. BioL Rev.
40 :143-187.
ECHLIN, P., 1967 — The use of the scanning reflection microscope in the study of plant
and microbial material./. Roy. Micr. Soc. 88 :407-418.
ECHLIN, P., 1968 — The culture of the blue-green algae and the use of the électron micro¬
scope in identification and classification ; in : Identification methods for microbiologists,
Part. B, Academie Press : 137-149.
FJERDINGSTAD, E., 1969 — Cell dimensions and taxonomy of Anabaena variabilis Kütz.
emend. (Cyanophycea). Schweiz. Z. HydroL 31 :59-80.
FJERDINGSTAD, E., 1971 — Dimensions and taxonomy of Oscillatoriaceae, I . Oscillatoria
limosa Ag. and Oscillatoria nitida Schkorb. emend. Schweiz. Z.Hydrol. 33 :171-199.
FRITSCH, F., 1953 — The annual cycle of a Phormidium-strata. Oest. bot. Z. 100:657-668.
FUHS, G. W., 1958 — Bau, Verhalten der Kernàquivalenten Strukture bei Oscillatoria amoena
(Kütz.) Gom. Arch. MikrobioL 28 : 270-302.
GARDNER, N. L., 1927 — New Myxophyceae from Porto Rico. Mem. N. York Bot. Garden
7 :1-144.
GEITLER, L., 1932 — Cyanophyceae : Rabenhorst Kryptogamen-Flora 14 :1-1196.
GIESY, R. M., 1962 — Observztions on the cell structure of Oscillatoria limosa Agardh.
Ohio J. Sc. 62 :119-124.
GRAY, T. R. G., 1967 — Stereoscan électron microscopy of soil microorganisms. Science
158 :1318-1319.
GRAY, T. R. G. — Recent methods for direct observation of microorganisms in soil : Elec¬
tron microscopy and the fluorescent antibody technique, (reprint 1969 ?).
HAGEDORN, H., 1961 — Untersuchungen über die Feinstruktur der Blaualgenzelle. Z.
Source : MNHN , Paris
272
E. FJERDINGSTAD
Naturforsch. 16 b : 825-829.
HALL, F. G., and CLAUS, G., 1962 — Electronmicroscope studies on ultrathin sections of
Oscillatoria chalybea Mertens. Protoplasma 54 : 355-368.
HAY, Wm. W., and SUNDBURG, P. A., 1967 — The scanning électron microscope, a major
breakthrough for micropaleontology. MicropaleontoL 13 : 407-418.
HONJO, S., and BERGGREEN, W. A., 1967 — Scanning électron microscope studies of
planktonic Foraminifera. MicropaleontoL 13 : 393-407.
KOHL, F. G., 1903 — Ueber die Organisation und Physiologie der Cyanophyceenzelle und
die mitotische Teilung ihres Kernes. G. Fisher, Jena (cited from LAMONT).
LAMONT, H. C., 1969 — Sacrifïcial cell death and trichome breakage in an Oscillatoriacean
blue-green alga : The rôle of murein. Arch. MikrobioL 69 : 237-259.
LANG, N. J., 1968 — The fine structure of blue-green algae. Ann. Rev. MicrobioL 22 :
15-46.
LYON, T. L., 1969 — Scanning électron microscopy : new approach to the Desmidiaceae.
J.Phycol. 5 :380-382.
METZNER, I., 1955 — Zur Chemie und zum submikroskopischen Aufbau der Zellwânde,
Scheiden und Gallerten von Cyanophyceen. A rkiv Mikrobiol. 22 : 45-77.
MILLER, U., 1969 —Fossil diatoms under the scanning électron microscope. Sveriges
Geol. Unders., Ser. C 642, 63 (5) : 1-65.
NIKLOWITZ, W., and DREWS, G., 1957 — Beitrâge zur Cytologie der Blaualgen, IV. Ver-
gleichende elektron-mikroskopische Untersuchungen zur Substruktur einiger Hormogo-
nales. Arch. Mikrobiol. 27 .150-165.
PEARSON, J. E., and KINGSBURY, J. M., 1966 — Culturally induced variation in four
morphologically diverse blue-green algae. Amer. J. Bot. 53 : 192-200.
RIS, H., and SINGH, R. N., 1961 —Electron microscope studies on blue-green algae./.
Biophys. and Biochem. Cytology 9 : 63-80.
WEBER, R., 1933 - Beitrâge zur Kenntnis der Gattung Calothrix. Arch. Protistk. 79 :
391-414.
273
ETUDE COMPARATIVE DES CYCLES DU
LIAGORA TETRASPORIFERA B0RG. ET DU
LIAGORA DISTENTA (MERT.) C. AG. EN CULTURE.
A. COÛTÉ *
RÉSUMÉ. - Alors que le Liagora distenta a un cycle trigénétique hétéromorphe avec un té-
trasporophyte nain bien individualisé, le Liagora tetrasporifera a un cycle digénétique hété¬
romorphe sans tétrasporophyte, les carpotétraspores produisant un nouveau gamétophyte.
Les cycles morphologiques de Liagora distenta et Liagora tetrasporifera ont été étudiés sur
des cultures réalisées en lumière du jour naturelle à la température de 12 C.
SUMMARY. — The morphological cycles of Liagora distenta and L. tetrasporifera, grown in
cultures at 12° C in daylight, are compared. L. distenta shows true alternation of généra¬
tions as do most of the Nemalionales studied with a trigenetic heteromorphous cycle with a
tétrasporophyte. L. tetrasporifera has a digenetic heteromorphous cycle without tetraspo-
'ophyte.
INTRODUCTION
Après les travaux de SVEDELIUS et de KYL1N on a longtemps considéré les
''lémalionales comme haplobiontes, c’est-à-dire comme des individus portant des
arposporocystes, en admettant que les carpospores produisaient directement les
gamétophytes, le zygote subissant la méiose. Dans ces conditions, leur cycle était
digénétique et haplophasique.
Mais les recherches cytologiques de MAGNE ont montré que les carpospores
sont diploïdes et ont laissé supposer l’existence d’un tétrasporophyte, inconnu
jusque-là, libérant des tétraspores haploïdes. De nombreux auteurs ont confirmé
les recherches de MAGNE en mettant en évidence l’existence d’un tétrasporo¬
phyte nain, réduit à un thalle hétérotriche (= «Nématothalle» de CHADE-
Ce travail a constitué la partie principale d’une thèse de doctorat de 3e cycle soutenue
le 19 juin 1972 à l’Université de Paris VI. La bibliographie ne comporte donc pas de réfé¬
rences ultérieures à cette date.
* Laboratoire de Cryptogamie, Muséum National d’Histoire Naturelle, 12 rue de Buffon,
75005 Paris - L. A. n° 257 (C.N.R.S.).
Rev. Algol., N. S., 1976, XI, 3-4 : 273-297.
Source : MNHN, Paris
274
A. COÛTÉ
FAUD) engendré par la germination de la carpospore. Ce fut ainsi le cas de VON
STOSCH avec le Liagora farinosa Lamour. (1965), UMEZAKI avec le Nemalion
vermiculare Suringar (1967) et plus récemment avec le Scinaia japonica Setchell
(1971), FRIES avec le Nemalion multifidum (Weber & Mohr) J. Ag. (1967),
BOILLOT avec le Scinaia furcellata (Turner) Bivona (1968, 1969) et avec 1’ Hel-
minthora divaricata (C. Ag.) J. Ag. (1971), et enfin RAMUS avec le Pseudo-
gloiophloea confusa (Setchell) Levring (1969). VON STOSCH, de plus, avec le
Liagora farinosa, a démontré que la méiose a lieu dans le tétrasporocyste, lors de
la formation des tétraspores, comme chez les autres Floridées.
Toutefois restait posée la question de certaines algues chez lesquelles le con¬
tenu des carposporocystes subit une division en quatre, engendrant ainsi quatre
carpotétraspores. Pour l’ensemble du globe, on en compte actuellement huit qui
se répartissent en trois genres : Liagora tetrasporifera Bôrg. (B0RGESEN,
1927), L. pinnata Harvey (YAMADA, 1938), L. brachyclada (Decaisne) Monta¬
gne (LEVRING, 1941), L. papenfussii Abbott (ABBOTT, 1945), L. harveyana
Zeh (WOMERSLEY, 1965), Helminthocladia hudsoni (C. Ag.) J. Ag. (FELD-
MANN, 1939), H. senegalensis Bodard (BODARD, 1971) et enfin Yamadaella
cenomyce Abbott (ABBOTT,1970).
Le remarquable travail de B0RGESEN sur le Liagora tetrasporifera (1927)
avait conduit à admettre, malgré les points de vue contraires de SVEDELIUS et
de KYLIN, sans preuve, que les divisions nucléaires aboutissant à la formation
des noyaux des carpotétraspores constituaient une méiose et que les carpotétra¬
spores haploïdes redonnaient directement un gamétophyte.
Très récemment, BODARD (1971) a démontré avec VHelminthocladia
senegalensis, que la division du carposporocyste engendrant les quatre tétra¬
spores, est une méiose. Cependant il restait encore à préciser, chez ces algues à
carpotétraspores, l’alternance de générations. Ce fut le but de ce travail.
Ayant eu la chance de récolter, au cours de plongées effectuées entre Banyuls-
sur-mer et Cerbère, au mois de septembre 1969, 1970 et 1971, le Liagora tetra¬
sporifera pourvu de carpotétraspores, nous en avons entrepris des cultures dans
1 espoir de résoudre le problème du rôle de la carpotétraspore et de son devenir.
A la même époque, ayant récolté une autre espèce du même genre, le Liagora
distenta, qui elle possède des carpospores indivises, nous avons tenté aussi d’en
réaliser des cultures pour établir une étude comparative entre ces deux espèces.
La culture de cette deuxième espèce présentait aussi un autre intérêt, à savoir
qu’elle permettait de faire une comparaison avec les résultats obtenus par VON
STOSCH avec le Liagora farinosa (1965) qui possède également des carpospores.
II. MATERIEL ET MÉTHODES
Le matériel qui a servi à la mise en route des cultures a été exclusivement ré¬
colté dans la région de Banyuls-sur-mer. Des échantillons ont été trouvés aussi
bien près du cap Béar, de l’anse des Elmes, qu’au voisinage du cap du Troc, du
cap l’Abeille et de l’anse de Terrambou, toujours dans les localités assez abritées
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
275
et à une profondeur n’excédant pas, ou rarement - 5 m. La fertilité des échantil¬
lons n’a été constatée qu’entre les mois d’août et septembre pour les années
1969, 1970 et 1971. D’autre part, aucun thalle n’a jamais été observé avant le
mois de mai, ce qui revient à dire que ces algues sont annuelles. La durée de vie
de leur forme macroscopique est très réduite, les thalles disparaissent à la mi-
octobre. Cette caractéristique a constitué une difficulté supplémentaire majeure
pour leur étude.
Ces observations, toutefois, sont propres à la région de Banyuls-sur-mer, car,
en ce qui concerne le Liagora tetrasporifera, BQRGESEN signale avoir trouvé des
échantillons fertiles aux Iles Canaries au mois de mars.
Après la récolte, les échantillons sont rapidement rapportés au laboratoire
pour préparer immédiatement les cultures. Les apex fertiles des thalles sont sé¬
lectionnés sous la loupe binoculaire. On les reconnaît aisément à la présence de
renflements rouge foncé sur la croûte blanche du Liagora tetrasporifera, rose
chez le Liagora distenta. Ces formations traversant la croûte calcifiée du thalle
et affleurant à sa surface, sont constituées par les gonimoblastes portant à l’ex¬
trémité de leurs filaments les carpotétraspores chez la première espèce et les
carpospores chez l’autre.
Ces apex, une fois isolés, sont déposés sur des lames de verre préalablement
dégraissées et stérilisées, de préférence à la surface non lisse (afin de faciliter
l’implantation des jeunes germinations), immergées dans un bac rempli d’eau de
mer fraîche, filtrée sur papier. On abrite contre les poussières, la lumière trop
vive et une température trop élevée, les échantillons générateurs de spores et on
laisse ainsi durant quarante huit heures pendant lesquelles les spores sont libé¬
rées et s’implantent sur les lames. Ces dernières avec les spores fixées sont ensuite
débarrassées des fragments macroscopiques et disposées dans des boîtes de Pétri
stérilisées remplies à demi de milieu de VON STOSCH modifié (1964) dont la
composition est la suivante :
NaNÛ 3
Na2HP04 + 12H20
FeS04 + 7 H 20 + 0,01 ml H 2 SO 4 conc.
MnCb + 4 H 2 O
E. D. T. A.
Cobalamine (B 12)
Aneurine HCl
Biotine
IH
AS2O3
42,5 mg/litre eau de mer
10,75 mg/litre eau de mer
0,278 mg/litre eau de mer
0,0198 mg/litre eau de mer
3,72 mg/litre eau de mer
0,0007 mg/litre eau de mer
0,0086 mg/litre eau de mer
0,0061 mg/litre eau de mer
0,664 mg/litre eau de mer
0,197 mg/litre eau de mer
A ce milieu de culture a été ajouté, à raison de 5 ml par litre, une solution
d’oxyde de germanium (WEST, 1969) dont le rôle est d’empêcher la prolifé¬
ration des diatomées.
Les jeunes germinations sont éclairées en lumière du jour naturelle; des essais
nombreux, réalisés avec des éclairements variés, mais sans tenir compte de la lon¬
gueur d’onde, ont mis en évidence que les meilleurs résultats étaient toujours
Source: MNHN. Paris
276
A. COÛTÉ
obtenus en fournissant aux cultures la lumière du jour ou des éclairements très
voisins.
En ce qui concerne les températures auxquelles les algues sont soumises, ce
sont les valeurs situées entre 12 et 15 C qui sont les plus favorables à leur bon
développement, avec un rendement maximal pour la valeur de 12 .
Après deux à trois semaines de séjour dans ce milieu, nécessaires pour faire
disparaître totalement les diatomées, les jeunes individus sont transplantés à
l’aide d’une micropipette dans de nouvelles boîtes de Pétri contenant du milieu
de VON STOSCH normal, sans germanium. Cette transplantation est indispensa¬
ble pour isoler les germinations des nombreuses algues épiphytes implantées en
même temps que les spores, qui, si l’on se contentait seulement de changer de
milieu, risqueraient, en se développant, d’entraver les cultures. On est ainsi par¬
venu à obtenir des cultures unialgales.
Après la transplantation les milieux ont été régulièrement changés tous les
mois.
III. RÉSULTATS
A. COMPARAISON MORPHOLOGIQUE ET ANATOMIQUE DES DEUX
ESPECES.
On peut très facilement distinguer le Liagora distenta du Liagora tetraspori-
fera grâce à deux caractères, l’un morphologique, l’autre anatomique. Les deux
espèces présentent, en effet, toutes deux une dichotomie générale de leur thalle
mais, chez le Liagora distenta des petits rameaux supplémentaires apparaissent
de façon constante sur l’axe du thalle, ce qui n’est pas le cas chez le Liagora te-
trasporifera.
Anatomiquement on peut aussi séparer une espèce de l’autre, en particulier en
observant des coupes transversales des thalles. Chez le Liagora distenta les cellu¬
les de l’axe se distinguent nettement des rhizoïdes : leur diamètre est, en effet,
cinq fois plus grand et leur paroi beaucoup plus mince que celles des cellules rhi-
zoïdiennes, très réfringeantes. Par contre chez le Liagora tetrasporifera les cellu¬
les axiales se distinguent difficilement des cellules rhizoïdiennes : leur diamètre
est à peine deux fois plus grand et leur paroi très épaisse de sorte que l’on a du
mal à séparer les rhizoïdes des cellules de l’axe.
B. COMPARAISON DES APPAREILS SEXUELS DES DEUX ESPECES.
Les deux espèces étudiées ici diffèrent par leur mode de reproduction; en
effet, le Liagora tetrasporifera, très clairement décrit par BQRGESEN (1927),
est monoïque, c’est-à-dire que l’on trouve, réunis sur le même thalle, les ra¬
meaux carpogoniaux et les spermatocystes (Pl. Il, fig. 4), alors que le Liagora
distenta est dioïque, certains thalles ne portant que des rameaux carpogoniaux
PI. I. — 1 : Liagora distenta, portion de thalle femelle avec rameau carpogonial (flèche).
2 : L. distenta, portion de thalle mâle avec spermatocystes (flèches). 3 : L. distenta, go-
nimoblaste avec carposporocystes, soit vides (flèche simple), soit contenant la carpospore
(flèche double).
Toutes les échelles sont exprimées en jUm.
Source :MNHN. Paris
278
A. COÛTÉ
(Pl. I, fig. 1) d’autres seulement des spermatocystes (Pl. I, fig. 2). Cette particula¬
rité du Liagora distenta n’a été nettement mentionnée, jusqu’alors, que par un
seul auteur, HAMEL (1930), pour des échantillons provenant aussi de Méditerra¬
née. Des échantillons récoltés à Madère en 1966 par CABIOCH (com. pers.) sont
également dioïques. La dioïcité de cette espèce semble donc être un caractère
constant.
Si l’on considère maintenant les rameaux carpogoniaux des espèces concer¬
nées, peu de différences sont à noter. Ils sont respectivement portés par une
cellule d’un rameau de filament assimilateur, non distincte cytologiquement.
Les uns comme les autres sont composés de quatre à cinq cellules (B0RGESEN,
1927, dans les Algues marines des Canaries, mentionne, pour le Liagora tetraspo-
rifera, uniquement trois cellules pour le rameau carpogonial), dont l’aspect, bien
que très hyalin par absence de toute pigmentation, laisse supposer une grande
richesse en réserves, étant données les très nombreuses petites inclusions sphéri¬
ques contenues. La largeur des cellules composant l’appareil femelle est d’envi¬
ron 10 pm pour les deux espèces, mais on peut toutefois constater que les ra¬
meaux carpogoniaux du Liagora distenta ont un aspect plus trapu que ceux du
Liagora tetrasporifera dont le carpogone est d’ailleurs plus allongé en général.
Pour les deux espèces, le trichogyne s’allonge et apparaît à la surface de la
croûte.
Les spermatocystes des deux espèces ne présentent pas non plus de différence
nette. Leur diamètre n’excède pas 3 pm ce qui les rend difficilement observables.
Ils sont portés par les filaments assimilateurs, à l’apex de rameaux constitués de
petites cellules (3 pm de large sur 5 pn î de long), de sorte qu’ils sont générale¬
ment localisés dans la partie superficielle du thalle.
Après la fécondation, le carpogone subit une première division transversale
donnant ainsi une nouvelle cellule à partir de laquelle naissent les filaments spo-
rophytiques du gonimoblaste, composés de cellules grossièrement en forme de
tonnelet, de 5 pm environ de côté. Ces filaments constituent un bouquet dense
qui apparaît à la surface du thalle comme un petit coussin rouge foncé chez le
Liagora tetrasporifera (Pl. II, fig. 5) et rose chez le Liagora distenta (Pl. I, fig. 3).
La plupart du temps, d’ailleurs, l’importance des coussins est due à la fusion des
filaments sporophytiques de plusieurs rameaux carpogoniaux fécondés contigus.
Chez ces algues on ne voit pas d’involucre autour du gonimoblaste, bien que des
filaments stériles, issus de rameaux végétatifs voisins, soient entrelacés avec les
filaments gonimoblastiques.
Enfin, à l’extrémité des rameaux carposporophytiques ainsi développés, com¬
posés parfois seulement de deux cellules, prennent naissance des cellules globu¬
leuses dont l’aspect est different selon l’espèce considérée. Chez le Liagora tetra¬
sporifera la formation globuleuse de 8 à 10 pm environ de diamètre, est subdi¬
visée en quatre cellules nommées carpotétraspores (Pl. II, fig. 6); chez le Lia¬
gora distenta une seule cellule constitue cette formation globuleuse à l’apex du
filament gonimoblastique (Pl. I, fig. 3) : c’est un carposporocyste renfermant une
carpospore unique, de 10 pm de diamètre et de 20 pm de long environ, son allu¬
re générale étant piriforme.
PL II. — 4 : L. tetrasporifera, portion de thalle avec rameau carpogonial. 5 : L. tetrasporife¬
ra, portion de thalle avec un rameau carpogonial fécondé montrant les premiers filaments
gonimoblastiques. 6 : L. tetrasporifera, gonimoblaste mûr avec carpotétrasporocystes
(flèches). 7-8-9 : L. tetrasporifera, stades successifs de l’émission des carpotétraspores.
Leur forme amiboïde est nette ici.
Toutes les échelles sont exprimées en /im.
Source : MNHN. Paris
280
A. COÛTÉ
C. EMISSION DES SPORES.
Pour que la comparaison des stades communs aux deux espèces soit plus ai¬
sée, nous avons choisi de traiter non pas le cycle morphologique complet de cha¬
que algue successivement, mais de considérer parallèlement les différents stades
dans leur suite logique dans le temps, pour les deux espèces, lorsque cela était
possible.
Les carpotétraspores du Liagora tetrasporifera sont émises très rapidement
d’un seul bloc. Elles ne se séparent qu’une fois sorties du carpotétrasporocyste
(Pl. II, fïg. 7, 8, 9). Leur observation montre alors qu’elles sont plus denses que
l’eau de mer car elles tombent au fond du récipient. Elles ne cessent de modifier
leur contour pendant un temps assez long (de trois à cinq heures en moyenne)
par des déformations amiboïdes. Leur contenu est très dense et pigmenté, sans
toutefois qu’on puisse y distinguer un ou plusieurs plastes. Leur taille est d’envi¬
ron 8 à 10 pm.
Les carpospores du Liagora distenta ont la même cytologie que les carpotétra¬
spores du Liagora tetrasporifera. Leur taille est légèrement supérieure (10 à
12 pm). Elles sont douées également de modifications amiboïdes pendant quel¬
ques heures encore après leur émission. VON STOSCH a observé aussi le même
phénomène chez le Liagora farinosa (1965).
D. GERMINATION DES SPORES,
a. chez le Liagora distenta :
Les carpospores se fixent rapidement au substrat, en l’occurence la lame de
verre, auquel elles adhèrent solidement. Vingt-quatre heures après leur fixation,
elles se divisent pour donner un filament unisérié. Deux modes de germination
sont apparus ici : ou bien la spore se vide de son contenu (comme chez le Nema-
lion pulvinatum (UMEZAKI, 1967), le Nemalion vermiculare (UMEZAKI,
1967)...) au profit de la cellule nouvellement formée et dégénère rapidement,
ou bien la spore conserve une cytologie normale et participe, comme une banale
cellule végétative, à l’édification de la partie prostrée.
Le filament engendré par la spore germante est composé de cellules allongées,
de 20 à 30 pm de long sur 5 pm de large. La plupart du temps, ce n’est que lors¬
qu’il a environ dix cellules qu’on observe les premières ramifications, mais il
arrive qu’il s’en forme déjà une alors que le filament n’est encore constitué que
de deux ou trois cellules. Les ramifications du filament original sont ensuite très
nombreuses, engendrant ainsi un protonéma très enchevêtré. Sur les lames où
ont été récoltées les carpospores, on observe d’ailleurs, en général, les nombreux
protonémas rouge vif enchevêtrés, issus de chaque carpospore. Ce n’est que sur
des carpospores isolées sur la lame de verre lors de l’émission, ou sur des carpo¬
spores mises en culture à l’écart à l’aide de la micropipette, que l’on peut bien
observer le développement individuel.
Cette partie rampante donne naissance à des filaments dressés unisériés, cons-
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
281
titués de cellules atteignant 40 pm de long et 10 Jim de large. Ces cellules, bien
que plus longues et plus larges que celles de la partie rampante, ont la même
cytologie, à savoir un plaste unique, plurilobé et pariétal, un gros pyrénoïde et
de nombreux granules de rhodamylon, qui, très souvent, gênent l’observation.
L’allure de la partie dressée est celle d’un Acrochaetium. VON STOSCH, en
1965, avait déjà signalé ce fait à propos du tétrasporophyte du Liagora farinosa
et cela semble être la caractéristique de la plupart des tétrasporophytes des autres
Némalionales cultivées jusqu’à présent.
Deux mois environ après la mise en culture des carpospores, les tétrasporo-
cystes sont apparus sur ces filaments dressés du protonéma hétérotriche (Pl. III,
fig. 10). Ils se forment, soit à l’extrémité du filament dressé lui-même, en bou¬
quets denses, soit à l’extrémité de courts rameaux nés du filament principal. Ils
sont sphériques et leur diamètre est d’environ 20 Jim (Pl. III, fig. 11). Leur
cytologie est très différente de celle des cellules végétatives. En effet, alors que
ces dernières ont un contenu très pigmenté, les tétrasporocystes ont un contenu
pâle et homogène. On n’y repère ni plaste, ni pyrénoïde, ni granule de rhodamy¬
lon, mais la réfringence de la cellule est forte, ce qui laisse supposer une grande
richesse en réserves.
Pour les deux raisons énoncées ci-dessus, cette phase du cycle a été difficile à
repérer sur le matériel vivant, les tétrasporocystes, petits et pâles, passant la plu¬
part du temps inaperçus à la loupe binoculaire et ce n’est pratiquement qu’à
'objectif à immersion que l’on peut déceler la segmentation en quatre de leur
contenu.
Remarquons encore que chez une autre Nemalionale, le Nemalion vermicu-
are, UMEZAK1 (1967) a vu apparaître des tétrasporocystes non pédicellés, insé-
és directement sur le filament dressé du protonéma hétérotriche issu de la ger-
nination de la carpospore.
La disposition des tétraspores à l’intérieur du tétrasporocyste est, en général,
ie deux types : soit tétraédrique, soit cruciée, alors que chez d’autres Némaliona-
es telles le Pseudogloiophloea confusa ou le Scinaia japonica, elle peut, en plus
les formes précédentes, être, soit décussée, soit zonée.
La durée d’existence des tétrasporocystes est très courte, au plus trois ou qua¬
re jours, ce qui rend encore plus difficile leur observation. Dans les cultures réa¬
isées, il ne s’en est formés que deux fois, une en décembre 1970 et une en
uillet 1971, sur des tétrasporophytes issus de carpospores émises et récoltées en
eptembre 1970. Il n’est toutefois pas exclu que d’autres tétrasporocystes
oient nés à d’autres périodes de l’année et soient passés inaperçus, pour les
aisons données ci-dessus. D’autre part, s’il n’y a eu effectivement que deux pé¬
riodes de fertilité des filaments tétrasporophytiques, c’est que, peut-être, les
conditions de milieu n’ont pas été favorables. Il n’a pas encore été possible,
en effet, de préciser les conditions d’apparition des tétrasporocystes, ceci pour
des raisons de temps et de matériel. Des essais sont toutefois en cours, basés
sur les résultats de FRIES (1967) qui constate l’induction de l’apparition des
tétrasporocystes chez le Nemalion multifidum lorsque le taux des phosphates
PL III - 10 : L. distenta, tétrasporocyste. 11 : L. distenta, portion de rameau tétrasporo-
phytique avec un tétrasporocyste mûr et deux immatures. 12 : L. distenta, tétrasporo-
cystes immatures non segmentes et tétrasporocystes vides dans lesquels de nouvelles
cellules repoussent.
Toutes les échelles sont exprimées en /Um.
Source : MNHN, Paris
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
283
diminue, et sur les très brillants résultats de RAMUS (1969) avec le Pseudo-
gloiophloea où les tétrasporocystes apparaissent en grand nombre lorsque la
concentration en nitrates diminue.
Les tétraspores sont libérées groupées, l’apex du tétrasporocyste éclatant.
Elles se dissocient rapidement et tombent au fond de l’eau, leur densité étant
légèrement plus forte que celle de cette dernière. Comme les carpospores, elles
sont, pendant plusieurs heures, l’objet de déformations amiboïdes. Leur diamè¬
tre est d’environ 15 à 20 /un. Parfois, on trouve des tétraspores plus volumi¬
neuses, ce fait étant dû à une turgescence momentanée (Pl. IV, fig. 13 et 14).
Cet état turgescent des spores est favorable à l’observation du plastidome qui
apparaît composé de plusieurs plastes étoilés, munis chacun d’un gros pyrénoïde
bordé de massifs granules de rhodamylon.
Après émission des tétraspores, la paroi apicale du tétrasporocyste vide
s’effondre, tandis que, la plupart du temps, une nouvelle cellule croît dans l’an¬
cienne enveloppe (Pl. III, fig. 12) qui s’est repliée vers l’intérieur. Sur les échan¬
tillons en culture, ces repousses ont toujours donné naissance à des cellules de
cype végétatif. RAMUS, dans le cas du Pseudogloiophloea confusa (1969) et
UMEZAKI, avec le Scinaia japonica (1971), montrent que, dans les tétrasporo¬
cystes vides, peuvent se reconstituer de nouvelles cellules capables de donner
naissance, à nouveau, à des tétraspores. Rien n’interdit de penser qu’ici il en soit
de même.
Par ces repousses végétatives, le tétrasporophyte poursuit sa croissance, se
amifiant activement pour constituer finalement un buisson filamenteux d’un
ose intense, pouvant atteindre 2 à 3 cm de haut. Jamais, dans la nature, ces or-
anismes n’ont été rencontrés, mais, il est vrai que nous n’avons jamais eu l’occa-
ion de pouvoir les rechercher à Banyuls-sur-mer en décembre ou janvier. Il
aut dire aussi, qu’étant donnée leur petite taille, ils ont facilement pu passer
aaperçus et que leur ressemblance avec les espèces du genre Acrochaetium a
)u entraîner une confusion. Il serait néanmoins très intéressant de les trouver
lans la nature pour s’assurer de leur existence réelle et confirmer les résultats
les cultures. A ce propos, il faut noter que, seule de tous les algologues ayant
lémontré l’existence d’un tétrasporophyte dans le cycle d’une Nemalionale,
RIES a réussi à retrouver celui-là in situ (Nemalion multifidum, 1969).
La germination des tétraspores s’effectue quelques jours seulement après leur
ixation au substrat, parfois même 24 heures après. La première indication de la
germination est le développement d’un petit renflement de la paroi de la spore,
qui s’allonge pour devenir l’apex du filament initial prostré (Pl. IV, fig. 15). De
temps en temps, deux filaments prostrés se développent à partir de la même spo¬
re. Ces filaments naissant de la germination de tétraspores sont tout à fait analo¬
gues, par leur cytologie et leurs dimensions de cellules, à ceux engendrés par la
germination des carpospores. Les cellules qui les composent ont 25 à 30 pm de
long sur 7 à 8 /im de large. Elles renferment un plaste unique, étoilé, pariétal,
muni d’un gros pyrénoïde. Le jeune filament rampant unisérié se ramifie rapi¬
dement, parfois même après la formation de la première cellule, dans le plan du
substrat, donnant ainsi naissance à un protonéma rampant, formant, à un stade
Source : MNHN. Paris
16
pl - rv - 13 et 14 : L. distenta, tétraspores turgescentes montrant de nombreux plastes plu-
lobés. 15 : L. distenta, germination de deux tétraspores. 16 : L. distenta, gamétophyte
nouvellement formé, à l’extrémité de son filament porteur (flèche), ancien filament
dressé du protonéma hétérotriche né de la germination d’une tétraspore. 17 : L. disten¬
ta, jeune gamétophyte avec sa couronne de poils unicellulaires dans la partie apicale.
Toutes les échelles sont exprimées en /Jm.
Source : MNHN, Paris
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
285
ultérieur, des filaments dressés. Ce protonéma hétérotriche, de couleur rouge vif,
a un aspect tout à fait semblable à celui du protonéma hétérotriche tétrasporo-
phytique. Comme ce dernier, il présente parfois des poils hyalins, unicellulaires,
avec une grande vacuole, le cytoplasme n’étant visible qu’à l’apex. Ces poils
naissent des cellules rampantes.
Il faut toutefois mentionner que l’extension de ces nouveaux protonémas est
plus limitée que celle des protonémas tétrasporophytiques. Cela est-il dû au
mode d’entretien des cultures qui souvent a entraîné la fragmentation des fila¬
ments, ou cela est-il le fait de l’haploïdie présumée des cellules ? Il est vrai que
les filaments, ici, sont constitués de cellules un peu plus petites (25 à 30 /tm sur
7 à 8 /tm) que celles qui contituent les filaments tétrasporophytiques (40 /tm sur
10 /tm), diploïdes, elles. Aucune réponse valable n’a pu être encore fournie à
cette question.
Les cellules assurant la croissance du protonéma, ou encore les apicales des fi¬
laments rampants, ont un contenu très dense mais non pigmenté et sans pyré-
noïde distinct.
C’est sur les filaments dressés du protonéma hétérotriche que naissent, à
partir d’une ou deux cellules, souvent apicales ou subapicales du filament, des
bourgeonnements très denses de rameaux à cellules plus courtes et plus renflées
que celles du filament; leur diamètre moyen est d’environ 10 /tm. Ce sont ces
bourgeons, très compacts, qui engendrent les thalles gamétophytiques. En
effet, le bourgeon s’organise rapidement, montrant une zone centrale multi-
axiale non pigmentée, faite de cellules très claires, longues de 60 /im en moyenne
et larges de 10 /im. Ces cellules, constituant les filaments axiaux, portent à leur
partie supérieure un seul rameau fait de cellules très pigmentées, en forme de
tonnelet, d’environ 12 /im de diamètre, qui possèdent un plaste pariétal unique
plurilobé avec un très volumineux pyrénoïde.
A la base de ce thalle embryonnaire, s’allongent des filaments unisériés, aux
cellules longues et étroites (50 /im sur 10 /im), légèrement pigmentées. La
disposition de ces filaments est rayonnante, donnant ainsi au jeune thalle un
aspect un peu arachnéen (Pl. IV, fig. 16). Ce sont les futurs rhizoïdes, qui cons¬
titueront l’appareil fixateur propre du nouvel individu formé, lorsqu’il aura
acquis son indépendance.
Ainsi on voit que le thalle gamétophytique ne naît pas directement de la
partie prostrée. Chez le Liagora distenta, le jeune gamétophyte est donc suppor¬
té, dans la première phase de sa vie, par un filament dressé du protonéma hétéro¬
triche, engendré après germination d’une tétraspore. Ce n’est qu’après quelques
jours de croissance du nouveau thalle que le filament générateur et porteur va se
courber sous la masse grandissante du jeune individu, amenant ce dernier au
contact du substrat. Dès cet instant, les rhizoïdes particuliers du nouveau thalle
se fixent solidement. Le filament générateur se confond alors avec les rhizoïdes
et participe, à son tour, à l’arrimage au substrat. Très souvent, il se brise et dégé¬
nère, libérant totalement de son protonéma originel le jeune gamétophyte.
On peut supposer, ici, que la dispersion des thalles et leur propagation dans la
P ' ,Y 18 : L : distent ?’ zone apicale d’un jeune gamétophyte. Les filaments latéraux de
axe apparaissent très clairs alors que les filaments latéraux sont fortement pigmentés.
IV : L. dtstenta, details de la base de deux filaments latéraux d’un jeune gamétophyte,
chacune avec un rhizoïde (flèche). 20 : L. distenta, fragment d’un jeune thalle gaméto-
pnytique obtenu en culture, présentant de petits rameaux latéraux (flèches) qui sont
caractéristiques de cette espèce.
Toutes les échelles sont exprimées en /im.
Source :MNHN. Paris
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
287
nature, sont dues à la fragilité des filaments générateurs qui, sous l’action de la
houle, peuvent facilement se briser, libérant ainsi les jeunes individus dont la
fixation au substrat sera fonction des courants.
Remarquons, ici, que dans les cultures, tous les thalles formés ne se sont pas
toujours présentés au sommet d’un filament porteur, mais bien souvent directe¬
ment sur une partie rampante réduite. Cette particularité est due au morcelle¬
ment fréquent des filaments dressés du protonéma hétérotriche, lors du nettoya¬
ge des cultures. Les fragments isolés des filaments dressés, à potentialité généra¬
trice de gamétophyte, se fixent et reconstituent une partie rampante réduite
parfois à quelques filaments, mais organisée non comme un protonéma mais plu¬
tôt comme un cladome (voir le même phénomène chez le Liagora tetrasporife¬
ra ). C’est sur cette partie prostrée que naît le gamétophyte dans de nombreux
cas.
Les gamétophytes, dans nos cultures, sont apparus pour la première fois au
mois de mars, soit environ six mois après l’émission des carpospores dont ils
dérivent (Pl. IV, fig. 17, Pl. V, fig. 18 -19 - 20).
Il faut noter ici que les résultats obtenus par BOILLOT avec 1 ’Helminthora
divaricata (1971) en culture, présentent une étonnante similitude avec les nôtres.
Mais, comme elle, nous n’avons pu observer avec précision l’organisation des ra¬
meaux dont l’association engendre un gamétophyte.
Le Liagora distenta, comme le Liagora farinosa, possède donc trois généra¬
tions : un gamétophyte macroscopique différencié en cladome multiaxial, un
carposporophyte parasite sur le gamétophyte et morphologiquement très réduit,
et un tétrasporophyte nain ressemblant au protonéma du gamétophyte. Son
cycle peut donc être défini comme trigénétique hétéromorphe et vraisemblable¬
ment haplodiplophasique. Le tétrasporophyte réduit à un thalle hétérotriche,
analogue au protonéma juvénile du gamétophyte, peut être considéré comme
néoténique.
b. chez le Liagora tetrasporifera :
Vingt quatre à quarante huit heures après leur émission, les carpotétraspores
germent (Pl. VI, fig. 21), donnant naissance à un filament unisérié, quelques fois
à deux. Comme pour le Liagora distenta, on observe les mêmes caractéristiques
concernant la spore, à savoir qu’elle peut soit se vider et dégénérer après avoir
germé (Pl. VI, fig. 22), soit conserver son contenu et persister alors comme une
cellule végétative (Pl. VI, fig. 23). Avant leur germination, elles sont aussi l’objet
de déformations amiboïdes. Les cellules végétatives du filament de germination
renferment un plaste unique, étoilé, pariétal, muni d’un volumineux pyrénoïde,
bordé de gros granules de rhodamylon (Pl. V, fig. 24 - 25). Elles ont, en moyen¬
ne, 20 pm de long et 15 pm de large. Leur aspect général, tant que le filament
n’a que quelques cellules (3 à 5 au plus), est celui d’un tonnelet.
Ce filament unisérié est à l’origine d’un protonéma hétérotriche, constitué
d’une partie rampante et d’une partie dressée, tout à fait semblable, en aspect et
en dimension, à celui engendré par la germination des tétraspores du Liagora
O
10
PI. VI — 21 : L. tetrasporifera, début de germination d’une carpotétraspore. 22 : L. tetra-
sporifera, début de germination d’une carpotétraspore dont le contenu s’est vidé pour
donner naissance au filament germinatif. 23 : L. tetrasporifera, carpotétraspore et son
filament germinatif. 24 : L. tetrasporifera, carpotétraspores et leurs filaments germina¬
tifs. 25 : L. tetrasporifera, extrémité d’un filament germinatif de carpotétraspore. La
cellule terminale possède une cytologie très différente de celle des autres cellules. 26 :
L. tetrasporifera, protonéma engendré par la germination d’une carpotétraspore. Seule la
partie prostrée est visible ici.
Toutes les échelles sont exprimées en jLtm.
Source :MNHN, Paris
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
289
distenta. En effet, le filament initial, après avoir atteint une longueur d’environ
dix cellules, se ramifie activement pour donner une lame d’un beau rouge vif
(Pl.VI fig. 26). A partir de cette lame prostrée se dressent des filaments unisériés
du type Acrochaetium (Pl. VII, fig. 27). Les cellules les composant sont allon¬
gées et cylindriques (50 pm de long et 12 fim de large). Leur contenu est carac¬
térisé par un plaste plurilobé, pariétal, muni d’un volumineux pyrénoïde à très
gros granules de rhodamylon. On a d’ailleurs pu suivre la formation de l’organi¬
sation du contenu cellulaire dans les parties apicales de certains filaments et
montrer qu’il n’existe qu’un seul plaste par cellule, mais si lobé, au stade adulte,
que l’on peut être amené à croire à la présence de plusieurs plastes. Les cellules
apicales des filaments ont un contenu non pigmenté et très réfringent, avec de
nombreux granules dont la présence atteste l’existence de nombreuses réserves.
C’est sur ces filaments dressés que naissent directement les bourgeons gamé-
tophytiques. Il y a d’abord ramification assez lâche du filament dressé, puis, dans
la partie subterminale, quelques cellules sans aucune caractéristique spéciale,
bourgeonnent activement sur un même rameau ou sur des ramifications voisines
(Pl. VII, fig. 28) du même filament dressé. Ce bourgeonnement engendre de nou¬
veaux filaments dont la première cellule est à l’origine de deux types de ra¬
meaux, simultanément : les uns, faits de cellules cylindriques allongées (50 à
60 pim de long et 6 à 7 pim de large), à phototropisme négatif, les autres, faits de
cellules en tonnelet (12 pim de long et 8 pim de large), à phototropisme positif.
Les premiers sont fort peu pigmentés alors que les autres sont d’un rouge très vif.
La première division de la cellule initiale de ces rameaux engendre donc deux
cypes de cellules à potentialités très différentes, les unes destinées à jouer un rôle
fixateur, non photosynthétiques, les autres, au contraire, destinées à constituer
les axes d’un futur thalle gamétophytique. Il serait intéressant d’étudier la phy¬
siologie de ce type de cellule.
Comme on l’a déjà noté pour le Liagora distenta, la formation des jeunes
gamétophytes (Pl. VII, fig. 29) est ici aussi très semblable à celle observée par
BOILLOT chez VHelminthora divaricata (1971), mais ici la distinction entre
les rameaux rhizoïdiens et les rameaux axiaux est beaucoup plus nette.
Ici, comme chez le Liagora distenta et le Liagora farinosa, le nouvel individu
formé est porté par le filament dressé du thalle hétérotriche engendré par la germi¬
nation de la carpotétraspore. Chez le Liagora harveyana, il semble se former directe¬
ment à la germination de la carpotétraspore mais WOELKERLING (qui a cultivé
cette algue, voir ABBOTT, Yamadaella, 1970) n’a-t-il pas été abusé par le phéno¬
mène décrit page 287.
Le Liagora tetrasporifera présente donc une alternance de générations digéné-
tique, les carpotétraspores produisant directement le gamétophyte. WOELKER¬
LING est parvenu, semble-t-il, à la même conclusion avec le Liagora harveyana
Zeh.
Le Liagora tetrasporifera, comme, sans doute, les autres Nemalionales à car¬
potétraspores, a donc une alternance de générations digénétique, le gamétophy¬
te étant directement produit par les carpotétraspores issues du carpotétrasporo-
PI. VII. — 27 : L. tetrasporifera, partie dressée du protonéma né de la germination d’une
carpotetraspore, avec début de la formation de bourgeons gamétophytiques. 28 : L. te¬
trasporifera, detail des rameaux engendrant un gamétophyte. 29 : L. tetrasporifera, jeu-
ne gametophyte porté par les filaments dressés dont il est issu.
Toutes les échelles sont exprimées en jUm.
Source : MNHN, Paris
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
291
phyte (B0RGESEN l’avait très clairement supposé dès 1927). La méiose, selon
toute vraisemblance (comme BODARD l’a démontré chez 1 ’Helminthocladia
senegalensis , 1971), doit s’effectuer lors de la formation des carpotétraspores.
Le cycle nucléaire est, par conséquent, haplodiplophasique, avec un raccourcisse¬
ment de la durée de la diplophase, limitée, en l’absence de tétrasporophyte indé¬
pendant, au seul carpotétrasporophyte.
On pourrait dire aussi, avec MAGNE (sous presse), que le Liagora tetraspori¬
fera possède une alternance de générations trigénétique : le gamétophyte macro¬
scopique porte les deux autres générations; le carposporophyte représenté par
les quelques cellules du gonimoblaste développé à partir du carpogone fécondé
in situ, et le tétrasporophyte réduit à la carpospore, le carposporocyste, par la
méiose qu’il subit, donnant naissance directement à un tétrasporocyste. Le car¬
potétrasporophyte contiendrait ainsi les générations carposporophytique et
tétrasporophytique condensées. Une évolution régressive importante aurait
donc frappé, ici, deux des trois générations fondamentales caractérisant le cycle
de toutes les algues rouges (FELDMANN, 1952).
E. EXISTENCE DE MONOSPORES CHEZ LE LIAGORA DISTENTA.
Sur le tétrasporophyte de cette espèce, nous avons observé, une fois
l’émission des tétraspores effectuée, l’apparition de monosporocystes. Les mono¬
spores qui s’en échappent, en germant, redonnent de nouveaux tétrasporophy-
tes. Il s’agit donc, ici, de multiplication végétative. Cette possibilité de donner
naissance à des monospores a été notée chez plusieurs autres Nemalionales.
C’est ainsi que les tétrasporophy tes du Liagora farinosa Lamour.(VON STOSCH,
1965), du Nemalion helminthoides (Velley) Batters (CHANG, 1962), du Nema-
lion pulvinatum Grünow (UMEZAKI, 1967), du Nemalion multifidum (Weber
et Nohr) J. Ag. (FRIES, 1967) et du Pseudogloiophloea confusa (Setchell)
Levring (RAMUS, 1969), sont capables de se reproduire par monospores. Par
contre, aucune monospore n’a été observée encore sur les filaments du protoné-
na gamétophytique. Ceci ne signifie toutefois pas qu’il soit incapable d’en for¬
mer, mais les conditions nécessaires à l’apparition de celles-ci n’ont sans doute
pas été réunies dans nos cultures.
Chez le Liagora tetrasporifera, aucune monospore n’a été formée ni émise
par le protonéma gamétophytique.
VON STOSCH, de même, a constaté que les monospores ne se sont pas
développées sur les gamétophytes du Liagora farinosa en culture, mais sur
les échantillons qu’il a récoltés aux Iles Lipari, elles semblaient présentes.
IV. DISCUSSION ET CONCLUSION
Avant de conclure sur le cycle du Liagora tetrasporifera et sur celui du Liago¬
ra distenta, il faut apporter une remarque importante concernant les résultats
obtenus en culture. Dans la nature, le développement des différentes phases de
292
A. COÛTÉ
ces algues est lié à de nombreux facteurs externes de leur environnement. Les
échantillons cultivés au laboratoire, en milieu artificiel, ne sont pas dans les
conditions normales, il faut donc accepter les résultats obtenus avec le maximum
de prudence, quand on sait que l’expression phénotypique d’un génotype peut
varier selon les conditions extérieures.
Cependant, la découverte, dans la nature du sporophyte du Nemalion multi-
fidum par FRIES (1969), sur la côte occidentale de Suède, dont elle avait mis
la présence en évidence, en cultivant au laboratoire des fragments de thalles
gamétophytiques non fertiles, est une confirmation spectaculaire de l’expéri¬
mentation et la preuve que les individus formés en milieu artificiel peuvent être
similaires de ceux formés dans les conditions normales.
Il serait donc souhaitable, pour que les présents résultats expérimentaux
prennent toute leur valeur, que soient trouvés dans la nature les formes que l’on
a vues se développer in vitro. Mais leurs dimensions très réduites et leur ressem¬
blance avec les espèces du genre Acrochaetium rendent ce travail difficilement
réalisable.
En tenant donc compte des remarques précédentes, on peut résumer les résul¬
tats obtenus comme suit :
- le cycle de développement du Liagora tetrasporifera présente une alternance
de générations digénétique (ou trigénétique selon MAGNE, cf. ci-dessus), les
carpotétraspores engendrant directement un protonéma hétérotriche nain, sur les
filaments dressés duquel apparaissent de nouveaux gamétophytes. On trouve
donc une génération, selon toute vraisemblance diploïde, composée par les
filaments gonimoblastiques parasites du gamétophyte parental, et une génération
sans doute haploïde, composée par le protonéma hétérotriche et les gaméto¬
phytes qu il engendre. Les observations faites sur le Liagora harveyana semblent
confirmer ce point de vue, du moins pour ce qu’on en sait par ABBOTT ( Yama-
daella, 1970). Le tableau suivant réunit toutes les données précédentes :
GAMETOPHYTE (N) CARPOTETRA.
-p EC0NDATI0N -►
MONOÏQUE
f
I
I
FRONDE CLADOMIENNE
i
PROTONEMA STERILE
CARPOTETRASPORES (n)-*- MEIOSE ?
SPOROPHYTE
PARASITE (2N)
Source : MNHN. Paris
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
293
- De son côté, le Liagora distenta a un cycle de développement qui présente
une alternance de générations trigénétique, comprenant : un gamétophyte ma¬
croscopique naissant d’un protonéma hétérotriche, différencié en cladome multi-
axial, un carposporophyte parasite sur le gamétophyte parental, morphologi¬
quement très réduit, et un tétrasporophyte nain né de la germination de la carpo-
spore, ressemblant au protonéma du gamétophyte. Son cycle peut donc être dé¬
fini comme trigénétique hétéromorphe et vraisemblablement haplodiplophasi-
que, les générations diploïdes étant constituées sans doute par les filaments goni-
moblastiques ou encore carposporophytiques, et par le tétrasporophyte, tous
deux de dimensions réduites, et la génération haploïde constituée par le proto¬
néma nématothallien gamétophytique et la fronde fertile qu’il porte. Ces résul¬
tats sont résumés par le tableau suivant :
GAMETOPHYTE (N).
DIOIQUE
A
FRONDE CLADOMIENNE
FERTILE
FECONDATION
ROTONEMA NEMATOTHALLIEN
STERILE
ETRASPORES (N) -*■
MEIOSE ?
CARPOSPOROPHYTE (2N)
PARASITE
MONOSPORES ;
: t :
i i i
i i i
i i i
t ! T
-—TETRASPOROPHYTE (2N)
NEMATOTHALLE FERTILE
L’existence d’un tétrasporophyte chez le Liagora distenta confirme, avec
ON STOSCH (1965), FRIES (1967), UMEZAKI (1967, 1971), BOILLOT
1968) et RAMUS (1969), les assertions de MAGNE à propos des Némalionales
c contribue à réfuter l’opinion de SVEDELIUS (1915) et de KYLIN (1916),
laçant la méiose dans le carpogone, immédiatement après la fécondation. La
lassification des Némalionales selon KYLIN (1956) est donc à modifier.
Ce tétrasporophyte est néoténique; c’est en effet le protonéma né de la carpo-
•pore qui devient fertile à ce stade juvénile, alors que le gamétophyte se déve-
oppe sur un protonéma stérile, issu de la tétraspore.
294
A. COÛTÉ
Les tétraspores sont disposées de deux manières dans les tétrasporocystes du
Liagora distenta : cruciée et tétraédrique. Il en est de même chez 1 e Liagora fari-
nosa. Chez le Pseudogloiophloea confusa, chez le Scinaia furcellata et le Scinaia
japonica, la disposition des tétraspores peut être, en plus des deux précédentes,
zonée et décussée. Le mode de segmentation des tétrasporocystes n’a donc,
selon toute vraisemblance, aucune signification taxinomique dans ce groupe.
Le tétrasporophyte du Liagora distenta, tout comme celui du Liagora farino-
sa, du Nemalion multifidum, du Nemalion helminthoides , du Nemalion pulvina-
tum et du Pseudogloiophloea confusa, est capable de se reproduire par monospo¬
res. Il est donc totalement indépendant du gamétophyte. Ce dernier, au contrai¬
re, dépend totalement, pour son existence, du tétrasporophyte, car il ne peut
pousser qu’à partir de tétraspores produites dans les tétrasporocystes du tétra¬
sporophyte, et il manque de moyen de multiplication végétative (absence de
monospores mentionnée aussi par VON STOSCH chez le gamétophyte du Liago¬
ra farinosa).
Les conditions d’apparition des tétraspores, des monospores et des bourgeons
gamétophytiques restent à préciser. La caryologie de ces deux espèces demeure
aussi une inconnue actuellement et doit être appronfondie pour confirmer la
localisation présumée de la méiose, au moment de la formation des carpotétra-
spores chez le Liagora tetrasporifera, et des tétraspores chez le Liagora distenta.
Enfin, l’organisation des axes de la zone centrale des thalles gamétophytiques,
à partir des bourgeons primordiaux, et, surtout, la différenciation des frondes ga¬
métophytiques multiaxiales dérivant d’une cellule unique, soit tétraspore pour le
Liagora distenta, soit carpotétraspore pour le Liagora tetrasporifera, sont deux
problèmes qui demeurent entiers.
BIBLIOGRAPHIE
ABBOTT, I. A., 1945 - Genus Liagora in Hawaï : Liagora papenfussii, n. s. Bernice P.
Bishop Muséum, occasional Papers XVIII, 10 :166-168.
ABBOTT, I. A., 1970 - Yamadaella, a new genus in the Nemaliales (Rhodophyta). Phycolo-
gta 9, 2 :115-123. J
AGARDH, C. A., 1823 — Species Algarum. XXVIII Liagora, I. Liagora distenta, 394-395.
AGARDH, J. G., 1851 -Sp. G. et O. Alg. LXVTI Liagora, 3. Liagora distenta, 426-427.
BISHOFF, H. W., 1965 -Thorea rickei, sp. nov., and related species. J. Phycol. I. 111.
BODARD, M. 1971 - Etude morphol. et cytolog. d’Helminthocladia senegalensis Némalio-
nale nouvelle a carpotetraspores et à cycle haplodiplophasique. Phycologia 10, 4 :361-
BOILLOT, A., 1968 - Sur l’existence d’un tétrasporophyte dans le cycle àe Scinaia furcel¬
lata ( Turner J Bivona, Némalionales. C. R. Acad. Sc. Paris 266 D : 2205-2207.
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
295
BOILLOT, A., 1969 — Sur le développement des tétraspores et l’édification du gamétophyte
chez le Scinaia furcellata (Turner) Bivona, Némalionales, Rhodophycées. C. R. Acad.
Sc. Paris, 268 D : 273-275.
BOILLOT, A., 1971 — Sur le cycle d 'Helminthocladia calvadosii (Lamour.) Setchell. Bull.
Soc. PhycoL Fr. 16 : 106-110.
BOILLOT, A., 1971 — Sur la présence de tétraspores dans le cycle de l’ Helminthocladia
divaricata (C. Ag.) J. Ag., Némalionales, Rhodophycées. C. R. Acad. Sc. Paris 272 D :
932-933.
BOILLOT, A., 1971 — Sur le cycle du Scinaia turgida Chemin. BulL Soc. PhycoL Fr. 16 :
68-69.
BQRGESEN, F., 1927 — Marine algae from the Canary Islands, especially from Teneriffe
and Gran Canaria. III. Rhodophyceae. Part. I. Bangiales and Némalionales. KgL Danske
Vidensk. Selsk. Meddelelser VI, 6, Copenhague : 1-97.
CHANG, T. J., 1962 — Studies on the life history of Nemalion. I. Prostrate filaments of
Nemalion helminthoides (Valley) Batt., var. vermiculare (Sur.) Tseng, and their mono¬
spores. A et. Bot. Sin. 10, 1 : 58.
CHEMIN, E., 1926 - Sur le développement des spores dans le genre Scinaia, et sur la néces¬
sité d’une espèce nouvelle. Bull. Soc. Bot. Fr. 73 : 92-102.
:HEMIN, E., 1927 — Sur le développement des spores chez quelques Némaliées. Bull. Soc.
Bot. Fr. 74 :163-167.
'HEMIN, E., 1937 — Le développement des spores chez les Rhodophycées. Rev. Gén. de
Bot. 49 : 164.
CORTEL-BREEMAN, A. M. et HOEK, C. van den, 1970 — Life history studies on rhodo¬
phyceae I. Acrosymphyton purpuriferum (J. Ag.) Kyl. Act. Bot. Neerl. 19, 2 : 265-
284.
OUTÉ, A., 1971 — Sur le cycle morphologique du Liagora tetrasporifera comparé à celui
du Liagora distenta (Rhodophycées, Némalionales, Helminthocladiacées). C. R. Acad.
Sc. Paris 273 D : 626-629.
>IXON, P.S. et RICHARDSON, W. N., 1969 — The life historiés of Bangia and Porphyra
and the photoperiodic control of spore production. Proc. IntL Seaweed Symp. St.
Jacques de Compostelle 1968, 6 :133-139.
>IXON, P. S. et RICHARDSON, W. N., 1970 — Growth and reproduction in red algae, in
relation to light and dark cycles. Ann. New York Acad. Sc. 175, 2 : 764-777. (Phylo-
genesis and morphogenesis in the algae).
>REW, K. M., 1949 —Conchocelis phase in the life history of Porphyra umbilicalis (L.)
Kützing. Nature 164 : 748.
>REW, K. M., 1952 — Studies on the Bangioideae. I. Observations on Bangia fuscopurpu-
rea (Dillw.) Lyngb. in culture. Phytomorpholgy 2, 1 :38-51.
’REW, K. M., 1958 — Studies in the Bangiophycideae. IV. The Conchocelis phase of Bangia
fuscopurpurea (Dillw.) Lyngb. in culture. Pub b L Staz. Zool. Napoli 30 : 358-372.
ELDMANN, G., 1955 — Développement comparé des spores du Dudresnaya verticillata
(Withering) Le Jolis et de VAcrosymphyton purpuriferum (C. Ag.) Sjôstedt. Rev. Gén.
Bot. 62 :1-11.
ELDMANN, G., 1965 — Le développement des tétraspores du Falkenbergia rufolanosa et
le cycle des Bonnemaisoniales. Rev. Gén. Bot. 72 : (857), 621-626, (2 pl.).
ELDMANN, J., 1939 — Une Némalionale à carpotétraspores -.Helminthocladia hudsoni
(C. Ag.) J. Ag. Bull. Soc. Hist. Nat. Af. du Nord 30 : 87-97.
?ELDMANN, J., 1952 — Les cycles de reproduction des algues et leurs rapports avec la phy-
296
A. COÛTÉ
logénie. Rev. Cyt. et Biol Vég. 13 :1-49.
FELDMANN, J. & G., 1939a — Sur le développement des carpospores et l’alternance de gé¬
nérations de YAsparagopsis armata Harvey. C. R. Acad. Sc. Paris 208 :1240 1242.
FELDMANN, J. & G., 1939b — Sur l’alternance de générations chez les Bonnemaisoniacées
C. R. Acad. Sc. Paris 208 :1425-1427.
FELDMANN, J. & G., 1942 — Recherches sur les Bonnemaisoniacées et leur alternance de
générations. Ann. Sc. Nat. Bot., sér. 11, 3 : 75-175.
FRIES, L., 1967 — The sporophyte of Nemalion multifidum (Weber & Mohr) J. Ag. Svensk
Bot. Tidskr. 61,4: 457-462.
FRIES, L., 1969 - The sporophyte of Nemalion multifidum (Weber & Mohr) J. Ag. found
on the Swedish west coast. Svensk. Bot. Tidskr. 63, 1 :137-141.
FRITSCH, F. E., 1945 — The structure and reprodcution of the algae. Vol. II (Rhodophy-
ceae, Myxophyceae). Cambridge University Press, 1-939.
GIRAUD, G. et MAGNE, F., 1968 — La place de la méiose dans le cycle de développement
de Porphyra umbilicalis. C. R. Acad. Paris 267 D : 586-588.
HAMEL, G., 1930 — Floridées de France VI. Les Némaliées. Rev. Algol. 74-80.
HOEK, C. van den, et CORTEL-BREEMAN, A. M., 1969 — The life historiés of Acrosym-
phyton purpuriferum (J. Ag.) Kylin et Halymenia floresia (Clem.) Ag. in unialgal cultu
res. Br. Phycol. J. 4, 2 :213.
HOEK, C. van den, et CORTEL-BREEMAN, A. M., 1970 — Life history studies on Rhodo-
phyceae II. Halymenia floresia (Clem.) Ag. Act. Bot. Neerl 19 : 341-362.
HOEK, C. van den, et CORTEL-BREEMAN, A. M., 1970 — Life history studies on Rhodo-
phyceae III. Scinaia complanata (Collins) Cotton. Act. Bot. Neerl. 19, 4 : 457-467.
JONES, W. E., et SMITH, R. M., 1970 — The occurence of tetraspores in the life history of
Naccaria wiggii (Turn.) Endl. Br. Phycol.J. 5, 1 : 91-95.
KUETZING, F. T., 1843 — Phycol. Gener. : 1-457, (80 pl.).
KUETZING, F. T., 1849 - Sp. Alg. LV : 537-539.
KUETZING, F. T., 1857 - Tab. Phycol. VIII : 148, (100 pl.).
KYLIN, H., 1917 — Ueber die Keimung der Florideensporen: Ark. fürBot., Stockholm 14,
22:1-16.
KYLIN, H., 1928 - Entwicklungsgeschichtliche Florideenstudien. Lunds Univ. Arsskr.
N. F. II, 24, 4 : 1-127.
KYLIN, H., 1956 - Die Gattungen der Rhodophyceen. C. W. K. Gleerups, Lund, 1-673.
LAUR, M. H., 1966 — Sur le développement des carpospores de Lemanea catenata (Kütz.)
Sirod.C. R. Acad. Sc. Paris 263 :1578-1581.
LEVRING, T., 1941 - Die Meersalgen der Juan Fernandez Inseln. The Nat. Hist. offuan
Fernandez andEaster Isl. II : 633-634.
L HARDY-HALOS, M. Th., 1967 —La croissance de Neomonospora pedicellata (Smith)
G. Feldmann et Meslin (Floridées, Ceramiaceae) et son intérêt morphologique. Bull. Soc.
Bot. Fr. 114, 7-8 :281-285.
L HARDY-HALOS, M. Th., 1970 — Recherches sur les Céramiacées (Rhodophycées, Céra-
miales) et leur morphogenèse. Rev. Gén. Bot. 77, (911-912-913) : 211-287.
MAGNE, F., 1961a — Sur le cycle cytologique du Nemalion helminthoides (Velley) Batters.
C. R. Acad. Sc. Paris 252 D : 157-159.
MAGNE, F., 1961b — Sur la caryologie de deux rhodophycées considérées jusqu’ici comme
a cycle cytologique entièrement haplophasique. C. R. Acad. Sc. Paris 252 D : 4023-
LIAGORA TETRASPORIFERA ET LIAGORA DISTENTA
297
MAGNE, F., 1964a — Les Rhodophycées à cycle haplophasique existent-elles ? C. R. IVe
Congrès Int. des Algues Marines , Biarritz 1961, 112-116.
MAGNE, F., 1964b — Recherches caryologiques chez les Floridées (Rhodophycées). Cah.
Biol. Mar. 5, 5 : 461-671 (17 pl.).
MAGNE, F., 1967b — Sur l’existence chez les Lemanea (Rhodophycées, Némalionales)
d’un type de cycle de développement encore inconnu chez les algues rouges. C. R. Acad.
Sc. Paris. 264 D : 2632-2633.
MAGNE, F., 1967c — Sur le déroulement et le lieu de la méiose chez les Lémanéacées
(Rhodophycées, Némalionales). C. R. Acad. Sc. Paris 265 D : 670-673.
MAGNE, F., (sous presse) — Le cycle de développement des Rhodophycées et son évolu¬
tion. Bull. Soc. Bot. Fr. (comm. Coll, sur les cycles sexués et l’alternance de générations
chez les Algues, Paris, Nov. 1970).
OLTMANS, F., 1904-1905 — Morphologie et Biologie des Algues. Iena, I, 2.
RAMUS, J., 1969 — The developmental sequence of the marine red alga Pseudogloiophloea
in culture. Univ. California PubL Bot. 52 : 1-42 (12 pl.).
SMITH, R. M., et JONES, W. E., 1970 — The occurence of tetraspores in the life history of
Naccaria wiggii (Turn.) Endl. Br. PhycoL J. 5,1: 91-95.
STOSCH, H. A. von, 1964 — Wirkungen von Iod und Arsenit auf Meersalgen Kultur. 4e Con¬
grès Int. des Algues Marines, Biarritz 1961, Pergamon Press,142-150.
STOSCH, H. A. von, 1965 — The sporophyte of Liagora farinosa Lamour. Br. PhycoL Bull.
2,6 :486-496.
SVEDELIUS, N., 1931—Nuclear phases and alternation in Rhodophyceae. Beih. Bot.
Centrabl. 48, 1 : 38-59.
DE TONI, J. B., 1924 — «Syll. Alg. Omn. Nue. Cognit.». Padua.
JMEZAKI, I., 1967 — The tetrasporophyte of Nemalion vermiculare Suringar. Rev. Algol,
N. S. 9, 1 : 19-24.
JMEZAKI, I., 1967 — On a microscope phase in the life cycle of Nemalion pulvinatum
Grünow (Nemalionaceae, Rhodophyta). Publ. Seto. Mar. Biol Lab.XV, 4 : 311-318,
(Article 19).
JMEZAKI, I., 1971 — The tetrasporophyte of Scinaia japonica Setchell (Némaliales). Publ.
Seto. Mar. Biol Lab. XIX, 2/3 : 65-71, (Article 6).
VEST, J. A., 1968 — Morphology and reproduction of the red alga Acrochaetium pectina-
tum in culture./. Phycol. 4 : 89-99.
VEST, J. A., 1969 — The life historiés of Rhodochorton purpureum and R. tenue in cultu¬
re./. Phycol. 5, 1 : 12-21.
VOMERSLEY, H. B. S., 1965 — The helminthocladiaceae (Rhodophyta) of Southern Aus-
tralia. Australian J. Bot. 13 : 450-485.
/AMADA, Y., 1938 — The species of Liagora ffom Japan. Sci. Pap. Inst. Algol Res. Hok-
kaido Univ. 2 :1-34 (pl. 1-15).
VAMADA, Y., 1941 — Notes on some japanese algae IX. Sci. Pap. Inst. Algol Res. Hokkai-
do Univ. 2, 2 : 195-215 (pl. 40-48).
ZANARDINI, G., 1860 —Icon. Phycol. Adriat. Ser. Floridae. Ord. Helminthocladieae.
Tavol. XCV : 61-64, (95 pl.)
ZEH, W., 1912 — Neue Arten der Gattung Liagora. Berlin Univ. Bot. Gart. Notizbl 5 : 268-
273.
Y
299
THE PRESENCE OF TETRASPORANGIA AND
CARPOSPOROPHYTES ON THE SAME THALLUS
IN PTEROSIPHONIA THUYOIDES
H. M. PARKES *
SUMMARY. — The simultaneous occurence o£ tetrasporangia and carposporophytes in
Pterosiphonia thuyoides (Harv. in Mackay) Schm. is recorded from Ireland.
RÉSUMÉ. — La présence simultanée des tétrasporanges et des carposporophytes de Ptero-
siphonia thuyoides (Harv. in Mackay) Schm. est signalée en Irlande.
While carrying out observations on species of Pterosiphonia to be found on
he coast of county Dublin a specimen of Pterosiphonia thuyoides (Harv. in
dackay) Schm. bearing tetrasporangia and carposporophytes was collected at
'.andycove (Irish National Grid 0 26 28) in september 1960.
The specimen was normal in appearance as were the fruiting bodies. The te-
rasporangia, which were carried on the ultimate branches of the thallus, were
îumerous and many were mature. At the base of these fertile branches four
arposporophytes were found, one containing fully developed carpospores.
Unfortunately this specimen was preserved before these facts were observed
■o that it was not possible to carry out any culture studies.
At Sandycove, where P. thuyoides is found growing in pools in the lower
ittoral, phenological observations of this species were kept during a three year
.'eriod. These indicated that the main fruiting season for both types of sporangia
s summer and autumn and that tetrasporic plants predominate. No other «ab-
îormalities» were found.
The occurence of tetrasporangia and sexual organs on the same thallus among
the species of Rhodophyceae is an established fact and has been discussed by
/arious authors (DIXON 1961; DREW 1951, 1955; FRITSCH 1945; LAWSON
& RUSSELL 1967). In the case of the genus Pterosiphonia the phenomenon has
* 32 Eglinton Road, Dublin, Eire.
Rev. Algol., N. S., 1976, XI, 3-4 : 299-301.
Source : MNHN, Paris
300
H. M. PARKES
only been recorded in one of the species, P. parasitica (Huds.) Falkenb., by
LODGE (1945/7) and SUNESON (1940). There do not appear to be any publi-
shed records for such occurences in P. thuyoides.
The Sandycove material has been deposited in the herbarium of the Botany
Department of University College, Galway.
BIBLIOGRAPHY
DIXON, P. S., 1961 — The occurence of tetrasporangia and carposporophytes on the same
thallus in Euthora cristata (L. ex Turn.) J. Ag. Can. J. Bot. 39 : 541-543.
DREW, E. M., 1951 — Rhodophyta. In Manual of Phycology, Smith, G. M. Ed., Waltham
167-191.
DREW, K. M., 1955 — Life historiés in the algae with spécial reference to the Chlorophyta
Phaeophyta and Rhodophyta. Biol. Revs. Cambridge Phil. Soc. 30 : 343-390.
FRITSCH, F. E., 1945 — The structure and reproduction of the algae. Vol. II. Cambridge.
LAWSON, R. P., & RUSSELL, G., 1967 — Simultaneous occurence of carposporophytes
and Tetrasporangia in Polysiphonia urceolata. Br. phycol. Bull. 3 : 239-250.
LODGE, S. M., 1945/7 — Additions to algal records for the Manx région. Rep. Mar. Biol.
Stn. Pt. Erin. 58-60 : 59-62.
SUNESON, S., 1940 — Studies on the structure and the reproduction of Pterosiphonia
parasitica. Svensk. bot. Tidskr. 34 : 315-333.
Source : MNHN, Paris
PTEROSIPHONIA THUYOIDES
301
Fig. 1. — Part of frond of Pterosiphonia thuyoides bearing tetrasporangia and carposporo-
phytes. x 22; Fig. 2. — Enlargement from fig. 1 of a carposporophyte with carpospores.
x 100; Fig. 3. — Enlargement from fig. 1 of a mature tetrasporangium. x 400.
Photographs by Mr P. Cooke.
.
303
THE MARINE ALGAE OF IVORY COAST AND
CAPE PALMAS IN LIBERIA (GULF OF GUINEA)
David M. JOHN *
SUMMARY. — This annotated list of marine algae from Ivory Coast and Liberia recognises
103 separate entities of which 95 hâve been identifîed to species. Over a third ofthe algae
are reported for the first time from these two countries. Information on the ecology,
reproductive status, local distribution in the Gulf of Guinea, details of collection and
features of spécial taxonomie interest, are included for each of the separate entities.
INTRODUCTION
The first general account of the littoral ecology of the rocky shores of Ivory
Joast and also Cape Palmas in Liberia has only recently been published (JOHN
972). Sporadic collecting of marine algae has taken place in these two countries
irior to this ecological work but only a few of these hâve been reported in the
ather scattered literature relating to West Africa. Mostly single records are given
or Ivory Coast in publications by AMOSSE (1970), BODARD (1966a, 1966b),
AWSON and PRICE (1969), POST (1963, 1966a, 1966b) and for Liberia by
4SKENASY (1888, p. 39) also cited in FOX (1957).
A large proportion of the marine algae mentioned in this paper were collected
iuring a short visit to these two countries made between december 1971 and ja-
îuary 1972. Various other collections hâve also been located and these speci-
nens are also included.
^YSTEMATIC LIST
In this annotated list the généra are arranged alphabetically within the major
^roups and the species in their respectiv généra are also in alphabetical order.
ncluded under each species is information on its ecology, geographical distribu-
-ion in the Gulf of Guinea, presence and type of reproductive organs, as well as
iny points of spécial taxonomie interest. The terminology of LEWIS (1961) is
-ised when referring to the position of a plant on the shore whilst the four
k Department of Botany, University of Ghana, Legon, Ghana.
Rev. Algol, N. S., 1976, XI, 3-4 : 303-324.
Source : MNHN. Paris
304
D.M. JOHN
categories of exposure to wave action are used in a similar sense to those given
by LAWSON (1956). The place names of the collecting localities are taken from
MICHELIN map numbei 175 and are shown in figure 1. Ali the collections of
plants from Sassandra were made about 6 km to the west of the town at Baté-
lébré whilst the Canal de Vridi is just a few kilométrés from the center of Abid-
jan.
The largest number of specimens were collected by Mr. F. O. K. SEKU and
myself and for convenience our names are abbreviated as J & S. Examined also
were herbarium sheets of algae collected by Professor R. SOURIE (S) from Ivory
Coast and now deposited in the herbarium of Professor J. FELDMANN in Paris.
Another collection studied was one of dried material sent to us from the «Cen¬
tre O.R.S.T.O.M. d’Adiopodoumé» in Abidjan. Many of these sheets hâve more
than one collecting number and so each has also been given a new number
(6500 - 7500) when it has been incorporated into the phycological section of
the herbarium in the Botany Department, University of Ghana, Legon (GC).
These specimens were collected by the following persons whose names hâve been
abbreviated by the letters shown in brackets : Y. ATTIMS (A), F. BERNARD
(B), G. CREMERS (C), F. HALLE (H), C. HUTTEL (Hu) and P. DE RAHMS
(R). Finally some collections in spirit were kindly given to us by the «Départe¬
ment de Biologie, Université d’Abidjan», and were without the names of the
collectors. Whenever possible the number of each collection of a species is given
along with the name of the collector or collectors, the date and the locality it
camé from. Ail plants marked with an asterisk are species reported from this
part of the Guinea Coast for the first time.
The majority of the plants mentioned in this paper are deposited in the her¬
barium at the Botany Department of the University of Ghana, Legon whilst over
forty sheets are in Professor J. FELDAMNN’s herbarium in Paris. A number
of duplicates are also lodged in the cryptogamie herbarium at the British Mu¬
séum (Natural History), London.
CHLOROPHYTA
Bryopsis pennata Lamouroux
Occuring as soft and flaccid plants forming large patches particularly in mode-
rately wave-sheltered tidepools and on horizontal rock surfaces in the lower
eulittoral subzone.
Found at Cape Palmas (J & S., 6963, 6995, 2.1.72) in Liberia and Sassandra
(J & S., 6867, 30.12.71) and Fresco (S. 490, 491, 2-6.2.54) in Ivory Coast.
This plant has previously been reported in the Gulf of Guinea from Cameroun,
Dahomey, Ghana, Nigeria, Togo and the offshore island of Sao Tomé.
* Caulerpa taxifolia (Vahl) C. Agardh
Collected at Fresco (S., 2-6.2.54) in Ivory Coast by Pr. R. SOURIE but
without a number and with no accompanying ecological information. This
Source :MNHN, Paris
MARINE ALGAE OF IVORY COAST
305
plant is reported in the Gulf also from Ghana, Sao Tomé and with doubt from
Principe.
Chaetomorpha antennina (Bory) Kützing
As coarse and hair-like tufts growing in the upper part of the lower eulitto-
ral subzone on moderately wave-exposed rocks.
Collected at Cape Palmas (J & S., 6943, 6954, 2.1.72), Tabou (J & S., 6908,
1.1.72), Grand Bassam (7027, 17.11.61), Sassandra (A., 10, 6552, 12.12.66;
J & S., 6853, 30.1.72) and from Fresco (S., 2-6.2.54), known also from Came¬
roun, Ghana, Nigeria and Sao Tomé in the Gulf.
Chaetomorpha linum (O. F. Müller) Kützing
Found as a few filaments mixed in with other small algae growing in modera¬
tely wave-sheltered situations in the eulittoral zone.
Gathered at Cape Palmas (J & S., 6995, 2.1.72) and Sassandra (J & S., 6927,
30.12.71) being also reported in the Gulf of Guinea from Cameroun, Ghana (as
Chaetomorpha area) and Togo.
* Chaetomorpha nodosa Kützing
A few filaments found in amongst Cladophora plants collected at Grand
Lahou (C & H., 565, 7031, 12.2.67) and from a jetty in the Canal de Vridi near
Abidjan (S., 504, 27.1.54). Reported previously in the Gulf from Cameroun and
Togo.
Cladophora albida (Hudson) Kützing
Plants either growing as dense spongy tufts on the floor of shaded tidepools
n the littoral fringe or as larger looser tufts or mats in the lower part of the eu-
ittoral zone on wavecut platforms and especially abundant in brackish-water.
Found at Cape Palmas (J & S., 6954, 6969, 2.1.72) and with some doubt
rom Grand Lahou (C & H., 563 to 565, 6575 to 6578, 12.2.67), Fresco (A &
:., 20, 683, 6573, 12.7.67; S., 524, 2-6.2.54) and the Canal de Vridi (S. 504,
27.1.54). It has previously been reported along the Guinea Coast from Cameroun,
lhana, Nigeria and Togo.
'ladophora proliféra (Roth) Kützing
Growing as dark green and coarse cushion-like tufts on rocks and lithotham¬
nia in moderately sheltered to moderately wave-exposed situations in the lower
aulittoral subzone.
Collections from Cape Palmas (J & S., 6944, 6997, 2.1.72), Tabou (J & S.,
6906, 7009, 1.1.72), Sassandra (J & S., 6850, 30.12.71) and Fresco (S., 511,
2.-6.2.54) being previously reported in the Gulf from Ghana (as Cladophora
trichotoma ), Sao Tomé and with doubt from Cameroun and Gabon.
306
D. M. JOHN
* Cladophora vagabunda (Linnaeus) Van den Hoek
Occuring in amongst other algae usually growing on moderately wave-shelte-
red beach rocks in the lower part of the eulittoral zone.
Gathered at Sassandra (J & S., 6982, 30.12.71) and Fresco (S., 499, 512,
522, 2-6.2.54) and also known from Ghana (as Cladophora fascicularis), Nigeria
(as C. fascicularis ) and Togo.
* Codium guineense Silva
Forming bushy clumps in some abundance especially in wave-sheltered tide-
pools in the lower part of the eulittoral zone.
Found at Sassandra (J & S., 6879, 30.12.71) and Tabou (J & S., gametangia -
6898, 1.1.72) in Ivory Coast.
This plant appears to be common in various places along the West African
coast but has not as y et been validly published. For comments regarding the
status of this species refer to LAWSON and PRICE (1969).
* Enteromorpha clathrata (Roth) Greville
Collections of this plant hâve been made in Ivory Coast at Fresco (A& C., 167,
679, 6736, 12.7.67) and Grand Lahou (C & H., 566, 6572, 12.2.67) and it is
also known in the Gulf from Cameroun (unpublished), Ghana, Nigeria, Sao
Tomé and Togo.
Enteromorpha flexuosa (Wulfen ex Roth) J. Agardh
Subspecies flexuosa J. Agardh
Growing in brackish-water conditions often mixed with Cladophora, or on
moderately wave-sheltered beach rocks in the upper eulittoral subzone; occasio-
nally as low mats on stranded logs and then in the littoral fringe.
Gathered at Sassandra (J & S., 6983, 6987, 29.12.71), Grand Bassam (7027,
17.11.61), Canal de Vridi (S., 506, 504, 27.1.54) and a few fragments found in a
collection from Cape Palmas (J & S., 6964, 2.1.72). This species has also been
reported in the Gulf from Cameroun (as Enteromorpha compressa), Ghana, Ni¬
geria, Sao Tomé and Togo.
Rhizoclonium africanum Kützing
Filaments usually entangled with small red algae growing in cracks, crevices or
beneath rock overhangs, or on the underside of logs in the littoral fringe and
especially in brackish-water situations.
Collections made at Tabou (J & S., 6979, 6890, 6981, 1.1.72), Sassandra (J &
S., 6988, 29.12.71) and also on mangroves at Azuretti (A, C & H., 567, 6563,
14.2.67) which is near to Grand Bassam. Known in the Gulf of Guinea from
Cameroun (unpublished) and Ghana (as Rhizoclonium hookeri ).
* Rhizoclonium riparium (Roth) Harvey
Occurring on «Plateforme d’abrasion au niveau de la basse mer de vive eau» at
Fresco (S., 524, 2-6.2.54) according to the label on the specimen. Found in the
Gulf also in Cameroun, Ghana and Togo.
Source : MNHN, Paris
MARINE ALGAE OF IVORY COAST
307
* Siphonocladus brachyartus Svedelius ?
Growing as dense, spongy, cushion-like tufts or as a springy «turf» on nearly
horizontal rocks in the eulittoral zone and extending into the littoral fringe
beneath rock overhangs and in shaded tidepools at the entrance to the Tabou
River (J & S., 6894, 1.1.72).
This plant was originally reported to be a Valoniopsis (JOHN 1972) but on
further considération it seems to be closely related to Siphonocladus brachyartus
described by SVEDELIUS (1895) from the Magellan Straits in South America.
It resembles this species in the dimensions of the cells of the branches and the
branching pattern. In both plants longitudinal division in the branches is very
rare and there are often cross-walls associated with the side branches. In fact, the
only important différence between this genus and Valoniopsis is in the form and
development of the branching which in the case of the latter genus is fully
described and illustrated by B0RGESEN (1934). The Ivorian and South Ame¬
rican plants are very similar not only in form but are found in similar habitats,
nevertheless, the identification of the West African material is still considered
with some doubt. The main reason for this doubt is the wide disparity in climate
between the two régions with the Magellan Straits having arctic-boreal condi¬
tions. Unfortunately attempts to trace the type material of Siphonocladus
brachyartus hâve so far been unsuccessful; correspondence with the curator of the
Uppsala Muséum (UPS) has revealed thç possibility that the collection might
hâve been lost.
Struvea anastomosans (Harvey) Piccone et Grunow
Occuring as semi-prostrate clumps in the «algal turf» growing on moderately
wave-sheltered rocks in the lower eulittoral subzone.
Found at Sassandra (J & S., 6924, 30.12.71) and Fresco (S., 519, 2-6.2.54)
in Ivory Coast and previously reported in the Gulf of Guinea from Cameroun,
Gabon, Ghana and Sao Tomé.
Ulva fasciata Delile
Occuring most commonly in moderately sheltered to moderately wave-
exposed tidepools in the lower eulittoral subzone.
Collections from Cape Palmas (J & S., 6996, 6945, 2.1.72) and Grand Bassam
(7012, 17.11.63) in Ivory Coast and previously known from Ghana and Sao
Tomé.
Ulva lactuca Linnaeus
As dense mats growing over logs in the littoral fringe being associated with a
good deal of sand or as small solitary plants on larger algae in the «turf» found
in the lower eulittoral subzone.
Gathered at Cape Palmas (J & S., 6999, 2.1.71, 6849, 30.12.71) whilst re-
corded also from Dahomey, Ghana, Principe, Sao Tomé and Togo.
* Ulva rigida C. Agardh
Growing on logs in the littoral fringe at Sassandra (J & S., 6875, 30.12.71;
A., 13, 6534, 12.12.66) and Fresco (S., 2-6.2.54) and known previously in the
Gulf of Guinea only from Ghana.
308
D. M. JOHN
PHAEOPHYTA
Bachelotia antillarum (Grunow) Gerloff
Forming small soft tufts or more usually as extensive mats growing on mode-
rately wave-sheltered rocks in the upper eulittoral subzone, often associated with
a good deal of sand when found on beach rocks.
Collected at Cape Palmas (J & S., plurilocular sporangia - 6937, 2.1.72) and
Sassandra (J & S., 6923, 6927, 30.12.72) and also reported from Ghana, Nigeria
and Sao Tomé.
* Basispora africana John et Lawson
As black and often very slippery expansions over moderately sheltered to
moderately wave-exposed rocks, sometimes in the form of coalescing rings,
growing just above the lithothamnia subzone.
Collected at Sassandra (J & S., unilocular sporangia - 6860, 2.1.72), Tabou
(J & S., unilocular sporangia - 6929, 1.1.72) and Cape Palmas (J & S., 6932,
unilocular sporangia - 6873, 2.1.72).
Chnoospora minima (Hering) Papenfuss
Growing as coarse clumps in the lower part of the upper eulittoral subzone on
moderately wave-exposed rocks.
Found at Cape Palmas (J & S., 6938, 2.1.72) and Fresco (A & C., plurilocular
sporangia - 24, - 687, 6565, 12.7.67) whilst also known from Dahomey, Ghana,
Nigeria, Sao Tomé and Togo.
Colpomenia sinuosa (Roth) Derbès et Solier
Plants to about 2 cm across and growing on larger algae in moderately wave-
sheltered situations in the lower subzone of the eulittoral.
Gathered only from Sassandra (J & S., 6881, 30.12.71) in Ivory Coast and
elsewhere in the Gulf known from Ghana, Togo and Sao Tomé.
Dictyopteris delicatula Lamouroux
Occuring as dense low mats on moderately wave-sheltered rocks and forming
small and compact clumps in more wave-exposed situations in the sublittoral
fringe and in tidepools at higher levels on the shor'e.
Collected at Cape Palmas (J & S., 6939, 2.1.72) and Sassandra (A., 1, 6551,
12.12.66; J. & S., 6858, 30.12.71, 6990, 29.12.71) and in other parts of the
Gulf of Guinea known from Ghana and Nigeria.
* Dictyota bartayresii Lamouroux
A few small plants found growing in moderately wave-sheltered tidepools.
Found only at Cape Palmas (J 6c S., 6953, 2.1.72) in Liberia and also repor¬
ted from Cameroun, Ghana, Principe and Sao Tomé.
Source : MNHN. Paris
MARINE ALGAE OF IVORY COAST
309
* Dictyota cervicomis Kützing
Form curvula Taylor
Found on «rochers de Tabou» (B, C, Hu & R., 583, 6557, ?.2.67) in Ivory
Coast and unpublished records for this plant exist for both Ghana and Sao
Tomé.
Dictyota ciliolata Kützing
Growing as bushy clumps on moderately wave-sheltered rocks in tidepools in
the lower eulittoral subzone.
Collections from Sassandra (J & S., oogonia and sporangia - 6885, - 6889,
31.12.71) and Tabou (B, C, Hu & R., 583, 6559, sporangia - 585, 6561, ?.2.67)
being known also in the Gulf from Ghana, Nigeria and Sao Tomé.
Ail Ivory Coast plants were somewhat unusual in having wide concentric
bands of alternating lighter and darker brown on dried specimens with the
darker ones being irridescent in freshly collected material.
* Dictyota dichotoma (Hudson) Lamouroux ?
A few small and immature plants found growing on wave-cut platforms or as
an epiphyte on a species of Laurencia in a moderately wave-sheltered tidepool.
Found at Sassandra (J & S., 6973, 30.12.71) and Fresco (S., 517, 518, 2-6.
2.54) and known from Sao Tomé and Principe and with doubt from Ghana (un¬
published) and Togo.
This record is given here with some réservation as the possibility does exist
that these plants from Ivory Coast are just immature forms of some of the other
Dictyota species mentioned above.
Ectocarpus breviarticulatus J. Agardh
As rope-like tufts on rocks and occasionally as an epiphyte on Chnoospora
growing on moderately wave-exposed rocks in the upper eulittoral subzone.
Collected at Cape Palmas (J & S., plurilocular sporangia - 6940, - 6938,
2.1.72) Monogaga (C., 531, 6568, 1.1.76) and Fresco (A. & C., 22: 685, 6566,
12.7.67) being reported in the Gulf also from Dahomey, Ghana, Nigeria and
Togo.
* Ectocarpus rhodochortonoides Bôrgesen
Growing on Gracilaria dentata in the lower eulittoral subzone on moderately
wave-exposed rocks.
Gathered near Sassandra (J & S., plurilocular sporangia - 6991, 29.12.71) in
Ivory Coast and also known from Ghana.
* Giffordia rallsiae (Vickers) Taylor
Forming small globose tufts on rocks and Siphonaria shells in moderatly
wave-exposed situations in the upper part of the eulittoral zone.
Found at Cape Palmas (J & S., plurilocular sporangia - 7005, 2.1.72) in Libe-
310
D. M. JOHN
ria and also reported in the Gulf of Guinea from Dahomey, Ghana and Togo.
Giffordia sp.
A few stérile plants in which the chloroplasts were contracted or occasionally
discernable as a number of dises hâve been collected at Fresco (A & C., 20, 683,
6573, 12.7.67).
Lobophora variegata (Lamouroux) Womersley
The prostrate form of this species has been found growing in moderately
wave-exposed tidepools in the eulittoral zone.
A single collection from Cape Palmas (J & S., 6960, 2.1.72) and previously
recorded in the Gulf of Guinea as Pocockiella variegata from Principe, Came¬
roun and Ghana.
* Padina australis Hauck ?
A few small plants collected from «Plateforme d’abrasion au niveau de la
basse mer de vive eau, peu abondant.» at Fresco (S., sporangia - 520, 2-6.2.54) in
Ivory Coast and also known from Cameroun (as Padina gymnospora).
This détermination must be regarded with some doubt since the plants are
small and rather fragmented though the thickness of the thallus does vary from
two cells at the margin to four below and the hair zones are very indistinct.
Padina tetrastromatica Hauck
Growing as small patches on moderately wave-sheltered rocks in the lower
eulittoral subzone and often abundant and as large plants when in shallow tide¬
pools.
Gathered at Sassandra (J & S., 6878, 30.12.71) and Tabou (J & S., 6903,
1.1.72) and in the Gulf also known from Ghana and Togo.
Padina vickersiae Hoyt
Occuring as variously sized patches on moderately wave-sheltered rocks in the
lower eulittoral tidepools and usually associated with Sargassum.
Collections from Cape Palmas (J. & S., 6904, 6947, 2.1.72), Tabou (B, C,
Hu & R., 581, 6570, ?.2.67) and near Sassandra (J 6c S., sporangia - 6880, 30.
12.71) and also known in the Gulf from Cameroun, Sao Tomé and Principe.
Ralfsia expansa (J. Agardh) J. Agardh
As crusts covering moderately sheltered to moderately wave-exposed rocks in
the lower eulittoral subzone and at higher levels in rocky tidepools.
Found at Cape Palmas (J & S., 6962, 2.1.72) and Sassandra (J & S., 6873,
6859, 30.1.71) and reported also from Cameroun, Dahomey, Ghana and Togo.
Sargassum vulgare C. Agardh
Occuring in abundance in shallow rocky tidepools and présent on open rocks
Source :MNHN. Paris
MARINE ALGAE OF IVORY COAST
311
except where wave action is severe, usually defines the upper limit of the sub¬
littoral fringe.
Found at Cape Palmas (J & S., 6948, 2.1.72) and Sassandra (J & S., 6857,
6948, 30.12.71; A., 8, 6538, 12.12.66) and known from ail countries bordering
the Gulf of Guinea from which collections hâve been made.
* Sphacelaria furcigera Kützing
It has only been found as propagules trapped in the «algal turf» collected
from Cape Palmas (J & S., 7006, 2.1.72) and Sassandra (J & S., 6888, 30.12.71)
and previously reported from Dahomey, Ghana and Cameroun.
Sphacelaria tribuloides Meneghini
Forming small cushion-like tufts on moderately wave-exposed rocks and Si-
phonaria shells in the upper eulittoral subzone.
Collected at Cape Palmas (J & S., propagules - 6958, - 7004, 2.1.72) and also
known in the Gulf from Ghana and Togo.
RHODOPHYTA
Amphiroa beauvoisii Lamouroux
Growing on moderately wave-exposed rocks in the lower eulittoral subzone.
Collected in Ivory Coast only from Sassandra (J & S., 6864, 30.12.71) and
recently also reported from Ghana.
Amphiroa peruana Areschoug
Forming semi-prostrate clumps in the lower eulittoral subzone on moderatly
sheltered to moderatly wave-exposed rocks.
Found at Sassandra (J & S., 6884, 30.12.71) and Cape Palmas (J & S., 6773,
2.1.72) and previously reported from Ghana.
* Audouinella dasyae (Collins) Woelkerling
As a fine felty layer over the foliar appendages of Sargassum vulgare growing
in moderately wave-sheltered tidepools in the eulittoral zone.
Found in a collection from Cape Palmas (J & S., monosporangia - 6948, 2.1.
72) and known also from Ghana.
* Audouinella daviesii (Dillwyn) Woelkerling
Occuring as tufts to about 1 mm in height on the upper parts of the filaments
of Chaetomorpha antennina growing on moderately wave-exposed rocks.
Plants bearing monosporangia found on Chaetomorpha collected at three
localities - Cape Palmas (J & S., 6943, 2.1.72), Tabou (J & S., 6908, 1.1.72) and
Grand Bassam (7027, 17.11.63). This is the first report of this plant from the
Guinea Coast though in West Africa it is also known from the Canary Islands.
312
D. M. JOHN
Bostrychia calliptera Montagne
Growing on moderately wave-sheltered rocks together with other small red
algae such as Caloglossa in the littoral fringe at the entrance to the Tabou
River.
Collected at Tabou (J & S., 6890, 1.1.72) having previously been recorded in
the Gulf of Guinea from Ghana.
Bostrychia radicans Montagne
Form hapteromanica Post
Found together with other species of red algae growing in the littoral fringe
at the entrance to the Tabou River.
This form, only collected at Tabou (J & S., 6890, 6893, 6891, 1.1.72) in
Ivory Coast, has previously been reported from Cameroun though the species
is also known in the Gulf from Cameroun, Ghana, Nigeria and Sao Tomé.
Bryocladia thyrsigera (J. Agardh) Schmitz
Occuring most commonly as loose mats growing on moderately sheltered to
moderately wave-exposed beach rocks which are gently sloping and sand-scou-
red, occasionally mixed with the «algal turf» in the lower part of the eulittoral
zone.
Found at Cape Palmas (J & S., 6935, 2.1.72), Sassandra (J & S., tetrasporan-
gia - 6975, 30.12.71), Tabou (J & S., 6909, 1.1.72) and Fresco (A & C., 15, 678,
12.7.67, tetrasporangia and cystocarps - 6558, 12.7.67; S., 478, 2-6.2.54) in
Ivory Coast having previously been recorded in the Gulf from Ghana, Nigeria
and Togo.
*Callithamniella tingitana (Schousboe ex Bornet) Feldmann-Mazoyer
Growing as a few stérile filaments mixed with a fine Polysiphonia on the
floor of a moderately wave-sheltered tidepool in the upper eulittoral subzone.
Gathered at Cape Palmas (J & S., 6961, 2.1.72) in Liberia and also found in
Ghana (unpublished).
* Callithamnion sp.
A plant believed to be referable to this genus was found as an epiphyte on
Gracilaria dentata growing in sheltered situations on rocks in the lower part of
the eulittoral zone.
Found at Tabou (J & S., 7007, tetrasporangia - 7008, 1.1.72) in Ivory Coast
whilst no published records exist for this genus in the Gulf of Guinea.
Caloglossa leprieurii (Montagne) J. Agardh
Occuring as semi-prostrate clumps in cracks, crevices and beneath rock over-
hangs in the littoral fringe, and in the «turf» of green algae in the eulittoral zone
within the entrance of the Tabou River.
Collected only at Tabou (J & S., 6880, 6889, tetrasporangia - 6981, 1.1.72)
Source : MNHN, Paris
MARINE ALGAE OF IVORY COAST
313
in Ivory Coast and known previously in the Gulf from Cameroun, Ghana and
Nigeria.
Caloglossa ogasawaraensis Okamura
Found in the same situations as Caloglossa leprieurii in the entrance to the
Tabou River (J & S., 6981, 1.1.72) and also reported in the Gulf from the off¬
shore island of Sao Tomé.
Catenella impudica (Montagne) J. Agardh
On wave-sheltered rocks in the littoral fringe at the entrance to the Tabou
River (J & S., 6890, 6981, 1.1.72) and known also from Cameroun in the Gulf.
Centroceras clavulatum (C. Agardh) Montagne
A common alga at most localities either growing in the «algal turf» on mode-
rately wave-exposed rocks or as small and often bleached tufts in the upper
eulittoral subzone in more wave-exposed situations.
Collected at Tabou (B, C, Hu & R., 587, 6562, ?.2.67; J & S., 6910, 1.1.72),
Fresco (A & C., 17, 680, 6567, 12.7.67; S., 514, tetrasporangia - 494, 2-6.2.54)
and Sassandra (A., 2, 6550, tetrasporangia - 3, 6539, 12.12.66; J & S., 6845,
30.12.71) in Ivory Coast and Cape Palmas (J & S., 6941, tetrasporangia - 6968,
2.1.72) in Liberia. Occurs in other parts of the Gulf of Guinea in Ghana, Nigeria,
Cameroun, Togo, Dahomey and the offshore island of Sao Tomé.
* Ceramium ledermanni Pilger
Growing on larger algae in moderately sheltered to moderately wave-exposed
situations.
Found at Cape Palmas (J & S., on Grateloupia doryphora, carposporangia and
tetrasporangia - 6980, - 6955, 2.1.72) and Tabou (J & S., on Gracilaria dentata,
tetrasporangia - 7008, 1.1.72) and previously only known in the Gulf from Ca¬
meroun from where it was fïrst described.
* Ceramium tenuissimum (Roth) J. Agardh
According to the label accompanying the specimens collected from Fresco
(S., tetrasporangia - 513, - 514, - 515, 2-6.2.54) it was found on «Plateforme
d’abrasion au niveau de la basse mer de vive eau.». This species has previously
been only reported in the Gulf of Guinea from Cameroun.
Ceramium sp.
A few small fragments of a plant belonging to this genus were found together
with filaments of Platysiphonia growing in a moderately wave-sheltered tidepool
at Tabou (J & S., tetrasporangia - 6914, 1.1.72). The fragments were insufficient
to make possible a positive détermination.
Source :MNHN. Paris
314
D. M. JOHN
* Champia parvula (C. Agardh) Harvey
A single collection made at Fresco (S., tetrasporangia - 513, 2-6.2.54) growing
in the same situation as Ceramium tenuissimum. Reported in the Gulf also from
Cameroun and the islands of Sao Tomé and Principe.
Coraïlina pilulifera Postels et Ruprect
Occuring as large clumps or occasionally as extensive mats growing over the
lithothamnia subzone of the eulittoral, particularly abundant on gently sloping
surfaces subject to current or wave surge and in the overflow channels of tide-
pools.
Found at Sassandra (J & S., 6846, 6907, 30.12.71) and Cape Palmas (J & S.,
6772, 2.1.72) and having previously been reported from Ghana.
Cryptonemia luxurians (C. Agardh) J. Agardh
Growing usually in moderately wave-sheltered tidepools in the lower part of
the eulittoral zone.
Collected at Sassandra (J & S., 6921, 30.12.71) and Fresco (S., 477, 2-6.2.
54) and also reported from Ghana as Cryptonemia seminervis.
This species and Cryptonemia seminervis are very closely related with both
having a partial midrib présent but C. luxurians has the tetrasporangial sori
confined to marginal «leaflets» and not scattered over the frond. This distinc¬
tion between these two species is a doubtful one and it remains to be seen whe-
ther these plants are really not conspecifïc.
* Erythrocladia irregularis Rosenvinge
Forming minute dises on the surface of larger algae growing in moderately
wave-exposed situations in the eulittoral zone as well as in tidepools and brackish-
water habitats.
Occurs at Cape Palmas on Sargassum (J & S., 6948, 2.1.72), Chnoospora
(J & S., 6968, 2.1.72), Laurencia intermedia (J & S., 6968, 2.1.72) and Chae-
tomorpha antennina (J & S., 6943, 2.1.72), also on this latter species at Tabou
(J & S., 6908, 1.1.72) and Grand Bassam (7027, 17.11.61) whilst at Fresco
found on Struvea anastomosans (S., 519, 2-6.2.54) and Rhizoclonium riparium
(S., 524, 2-6.2.54). In other parts it has been reported as Erythrocladia subinte¬
gra from Ghana and Nigeria.
* Erythrotrichia carnea (Dillwyn) J. Agardh
Occuring as soütary plants on larger algae growing in moderately wave-shelte¬
red tidepools in the lower eulittoral subzone.
Collected at Cape Palmas growing on Laurencia tenera (J & S., 6951, 2.1.72)
and Padina vickersiae (J & S., 6947, 2.1.72) and recorded in the Gulf also from
Dahomey, Ghana and Togo.
Source : MNHN. Paris
MARINE ALGAE OF IVORY COAST
315
Galaxaura marginata (Ellis et Solander) Lamouroux
As solitary individuals occuring on moderately wave-sheltered rocks, espe-
cially abundant in lower eulittoral tidepools.
Collections obtained from Sassandra (J & S., 6983, 6932, 30.12.71) and
Tabou (B, C., 586, Hu & R., 6560, ?.2.67; J & S., 6902, 1.1.72) and also known
from Cameroun, Gabon (as Brachytrichia australis) and the islands of Sao Tomé
and Principe.
* Galaxaura oblongata (Ellis et Solander) Lamouroux
Growing in some abundance in the lower part of the eulittoral on modera-
tely-sheltered rocks, often found in tidepools.
Plants found at Tabou (J & S., 6900, 1.1.72) and Fresco (S., cystocarps - 487,
2-6.2.54) and known in the Gulf also from Gabon (as Galaxaura fragilis), Sao
Tomé (as Galaxaura cylindrica), Ghana and Principe.
Galaxaura rugosa (Ellis et Solander) Lamouroux
According to the label accompanying the specimen it was collected on «ro¬
chers de Tabou» (B, C, Hu & R., cystocarps - 584, 6534, ?.2.67); this plant has
previously been reported in the Gulf from both Cameroun and Sao Tomé.
* Gelidiopsis variabilis (J. Agardh) Schmitz
Occuring in moderately sheltered to moderately wave-exposed situations as
oarse and erect clumps growing in the upper part of the lithothamnia subzone,
«pecially abundant in tidepools.
Found at Tabou (J & S., 6901, 1.1.72) and Sassandra (J & S., 6887, 30.12.
'1) in Ivory Coast and also known from Ghana, Cameroun and Sao Tomé.
jélidium corneum (Hudson) Lamouroux
As bushy clumps in the lower eulittoral subzone on moderately wave-exposed
it Cape Palmas (J & S., 7003, tetrasporangia - 6998, 2.1.72) and has previously
;een reported from Liberia as Gelidium arbuscula. It has previously been repor-
ed in the Gulf of Guinea from Togo (as Gelidium arbuscula ), Nigeria (as Geli-
lium pusillum) and is known from Ghana (unpublished).
There is some confusion regarding the typification of this species since the
niginal description of this plant was based on material now known to be refera-
>le to Gelidium sesquipedale (DIXON, 1967).
' Gelidium elminense Dickinson
According to the label with this specimen from Fresco (S., tetrasporangia -
182, 2-6.2.54) it was found at «Niveau inférieur des marées, abondant.» and the
Dnly previous report of this plant from the Gulf is from the type locality at El-
nina, Ghana.
This plant has the main axes terete except for near the branch tips whilst
oranches often arise opposite to one another and give the uppermost branches a
316
D. M. JOHN
trifïd appearance. This species might be regarded as falling into the Gelidium cri-
nale complex as defined by DIXON (1958, 1966) in his révision of the European
représentatives of this genus.
Gelidium pusillum (Stackhouse) Le Jolis
Plants readily referable to this species usually occuring as low ring-like pat-
ches growing on moderately sheltered to moderately wave-exposed rocks and
lithothamnia in the lower eulittoral subzone. Larger plants from 1-2 cm in
height and forming dense cushion-like tufts or mats on moderately wave-shel-
tered granité boulders may be considered to be a variety of this species.
This species (J & S., 6933, 2.1.71) and the variety pulvinatum (C. Agarth)
J. Feldmann (J & S., 6949, 7030, 2.1.71) were found at Cape Palmas in Liberia.
The variety bears a close resemblance to Gelidium foliosum described by
DANGEARD (1951) from Sénégal. He points out the close relationship between
his new plant and Gelidium pusillum var. pulvinatum stating it to be «...plus
développé plus luxuriant.» Gelidium reptans, which has been reported from Sao
Tomé, was considered by B0RGESEN (1943) to be referable to this variety of
Gelidium pusillum though it had earlier been given spécifie rank by KYLIN
(1938). It seems unwarranted at the présent time to afford spécifie rank to
plants if there is any doubt regarding their spécifie status until a global re-apprai-
sal has been made of this extremely polymorphie genus. The species has been re¬
ported in the Gulf of Guinea also from Cameroun, Dahomey, Togo, Ghana (un-
published) as well as from Sao Tomé (as Gelidium reptans).
Gracilaria dentata J. Agardh
Forming extensive patches on moderately wave-sheltered rocks and as smaller
clumps in more wave-exposed situations, usually found in the lower eulittoral
subzone and very abundant in large tidepools.
Found at Cape Palmas (J & S., cystocarps - 6936, 2.1.72), Sassandra (J & S.,
6919, 30.12.71; A., cystocarps - 9, 6542, 12.12.66;cystocarps - 7025, 12.4.60)
and Fresco (S., tetrasporangia, cystocarps - 483, 2-6.2.54). Reported in the Gulf
of Guinea previously from Cameroun, Ghana, Nigeria and Sao Tomé.
Gracilaria disputabilis (Bodard) Bodard
According to the label on the specimens from Fresco (S., ?485, cystocarps -
484, 2-6.2.54) found at «Niveau inférieur des marées, dominant sur rocher ho¬
rizontal.» and is also known in the Gulf only from Ghana (unpublished).
Gracilaria verrucosa (Hudson) Papenfuss
A few solitary individuals growing in the «alga turf» in the lower eulittoral
subzone on moderately sheltered rocks.
Collected at Sassandra (J & S., cystocarps - 6985, - 6869, 30.12.71) and also
reported from Cameroun, Ghana, Togo and Sao Tomé.
Source : MNHN, Paris
MARINE ALGAE OF IVORY COAST
317
Gracilaria sp.
A few small plants collected on «Plateforme d’abrasion au niveau de la basse
mer de vive eau, rare.» at Fresco (S., tetrasporangia - 526, 2-6.2.54). The flatte-
ned nature of the fronds and the branching is suggestive of Gracilaria foliifera.
Grateloupia doryphora (Montagne) Howe
Occuring as widely dispersed plants on rocks and barnacles in moderately
sheltered to moderately wave-exposed situations in the eulittoral zone.
Found in the Canal de Vridi near Abidjan (S., cystocarps - 509, 27.1.54, te¬
trasporangia - 475, 2-6.2.54), Sassandra (J & S., 6855, 30.12.71; A., 7, 6535, 12.
12.66) and Cape Palmas (J & S., 6955, 2.1.72) being previously reported in the
Gulf from Ghana as Grateloupia gibbesi.
Grateloupia filicina (Lamouroux) C. Agardh
Growing in the eulittoral zone in greatest abundance in moderately wave-shel-
tered situations as loose mats on sand-scoured rocks or where there is freshwater
nfluence, forming only small coarse clumps in very wave-exposed places.
Collected at Tabou (J & S., 6897, 1.1.72), Sassandra (J & S., 6854, 30.12.
71), Fresco (A & C., 21, 684, 6569, 12.7.67; S., 479, 480, 2-6.2.54) and at a
etty in the Canal de Vridi near Abidjan (S., 505, 27.1.54). Known in the Gulf
lso from Cameroun, Dahomey, Ghana, Nigeria and Togo.
",riffithsia schousboei Montagne
Occuring as bright red and globose tufts on larger algae such as Amphiroa,
'■elidiopsis and Corallina growing in moderately sheltered to moderately wave-
xposed situations in the lower part of the eulittoral subzone.
Found at Sassandra (J & S., tetrasporangia - 6870, 30.12.71) and Tabou
J & S., spermatangia - 7006, 1.1.72) and recently reported from Ghana.
Gymnogongrus nigricans Dangeard ?
A few small plants drying almost black hâve been collected near Sassandra
A., 4, 6541, 12.12.66) in Ivory Coast whilst elsewhere in the Gulf of Guinea
is known from Cameroun, Dahomey and Ghana.
Gymnogongrus tenuis (J. Agardh) J. Agardh
Plants having flattened branches becoming somewhat attenuate towards the
ips were gathered on rocks at Fresco (A & C., 18, 681, 6555, 12.7.67; S.,
99, 2-6.2.54) and this species has also been reported from Nigeria.
gymnogongrus spp.
a - — Plants having terete and not noticeably fastigiate branches were collected
t Fresco (A & C., 277, 6564, 12.7.67; S., 481, 2-6.2.54) and Cape Palmas (J &
,6952, 2.1.72).
b. — A larger and more robust plant having flattened branches with acute tips
318
D.M. JOHN
was found as dense clumps on moderately wave-exposed rocks at Tabou (J & S.,
6912, 1.1.72) and Sassandra (J & S., 6922, 30.12.71). It is not inconceivable
that this might be no more than a form of Gymnogongrus tenuis.
Herposiphonia densa Pilger
Growing as low ring-like patches on moderately wave-exposed rocks and li¬
thothamnia in the lower eulittoral subzone though in less exposed situations
found often in the «algal turf».
Found at Cape Palmas (J & S., tetrasporangia - 6931, 2.1.72), Tabou (J & S.,
6915, 1.1.72) and Sassandra (J & S., 6844, 6856, 30.12.71) being also reported
in the Gulf from Cameroun, Ghana and Togo.
* Herposiphonia tenella (C. Agardh) Ambronn
Forming small and felty circular or ring-like patches on moderately wave-
exposed rocks or lithothamnia in the lower part of the eulittoral zone.
Gathered only on one occasion at Cape Palmas (J & S., 6994, 2.1.72) in
Liberia but common in Ghana though not reported from any other countries
bordering the Gulf of Guinea.
* Hildenbrandia prototypus Nardo
Occuring as dark red patches covering often large areas of rock in the upper
eulittoral subzone where exposure to wave action is moderate.
Collected at Tabou (J & S., 6928, 1.1.72) and Sassandra (J & S., 6886, 30.
12.71) in Ivory Coast and Cape Palmas (J. & S., tetrasporangia - 6984, 2.1.72)
in Liberia whilst previously reported from Sao Tomé (as Hildenbrandia rosea)
and Ghana.
* Hypnea cervicomis J. Agardh
As intricate cushion-like clumps growing on moderately wave-exposed rocks
in the lower part of the eulittoral zone.
Found only at Cape Palmas (J & S., 6950, 6958, 2.1.72) but reported in the
Gulf also from Ghana and both the islands of Principe and Sao Tomé.
Hypnea musciformis (Wulfen) Lamouroux
Growing as loose clumps or else forming part of the «algal turf» on moderate¬
ly sheltered to moderately wave-exposed rocks in the lower eulittoral subzone.
Gathered at Cape Palmas (J & S., tetrasporangia - 6956, 2.1.72), Tabou (J &
S., 6911, 1.1.72) and near Sassandra (J & S., 6975, 30.12.71; A., 11, 6536, 12.
12.66), also known in the Gulf from Cameroun, Ghana, Nigeria, Togo, Sao
Tomé and Principe.
* Jania crassa Lamouroux
Forming small clumps on moderately wave-exposed rocks and as more exten¬
sive patches in moderately wave-sheltered tidepools or on sand-scoured beach
Source : MNHN. Paris
MARINE ALGAE OF IVORY COAST
319
rocks in the lower part of the eulittoral zone.
Found in Ivory Coast at Tabou (J & S., 6905, 7010, 1.1.72), Fresco (S., 488,
2-6.2.54) and Sassandra (J & S., 6865, 6989, 30.12.71 ; A., 12, 6537, 12.12.66)
whilst in other parts of the Gulf it has been reported from Ghana and Gabon as
Jania natalensis.
Jania fastigiata Harvey
Growing in the «algal turf» or over larger algae and is in greatest abundance in
moderately wave-sheltered situations in the eulittoral zone.
Gathered at Sassandra (J & S., 6882, 30.12.71) and as a few small and rather
fragmentary plants at Cape Palmas (J & S., 6953, 6971, 7002, 2.1.72) being
previously only known in the Gulf from Ghana.
* Lasiothalia sp.
As a small epiphyte growing on larger algae in a moderately wave-sheltered
tidepool at Cape Palmas (J & S., carposporangia - 7000, 2.1.72) and as a few
filaments in a collection from Tabou (J & S., 7008, 1.1.72),
This material was identified by Dr. E. WOLLASTON who was not able to
give it spécifie rank until a révision of this little known genus is completed. This
genus has not previously been reported from West Africa though it is conceivable
that it might in the past hâve been confused with the closely related Callitham-
nion.
* Laurencia galtsoffi Howe
Occuring as erect clumps growing on moderately wave-exposed rocks in the
lower part of the eulittoral zone only at Cape Palmas (J & S., 6930, 2.1.72) in
Liberia and recently recorded from Ghana.
* Laurencia intermedia Yamada
Fonping coarse and usually reddish-purple clumps on moderately wave-expo-
sed rocks in the lower eulittoral subzone.
Collected both at Cape Palmas (J & S., 6774, 6993, 2.1.72) and Sassandra
(J & S., 6863, 30.12.71) whilst elsewhere in the Gulf of Guinea it is only known
from Ghana where it is the most common Laurencia species.
* Laurencia nidifica J. Agardh ?
Just a few fragments hâve been collected from Sassandra (A., tetrasporangia -
3, 6540, 12.2.66) and these are insufficient to make an absolutely positive déter¬
mination. This species has previously been reported in the Gulf from Ghana.
* Laurencia tenera Tseng
Growing usually as low clumps or more extensive spongy mats and only very
rarely epiphytic, particularly common in moderately wave-sheltered tidepools
but occasionally in wave-exposed situations.
Source :MNHN, Paris
320
D.M. JOHN
Found at Cape Palmas (J & S., tetrasporangia - 6951, 2.1.72), Sassandra
(J & S., 6888, 30.12.71) and Fresco (S., cystocarps - 487, 2-6.2.54) whilst also
reported from Ghana and Togo.
Lophosiphonia reptabunda (Suhr) Kylin
Occuring as tufts or forming extensive mats mixed with other small algae in
cracks, crevices and beneath rock overhangs, occasionally on the lower surface
and the eut ends of stranded logs; grows in the upper eulittoral subzone though
most commonly to be found in the littoral fringe.
Collected at Fresco (S., cystocarps and tetrasporangia - 493, 2-6.2.54) and
Sassandra (J & S., 6987, tetrasporangia - 6976, 29.12.71) in Ivory Coast and
known in the Gulf also from Cameroun and Ghana as Lophosiphonia obscura.
*Peyssonnelia polymorpha (Zanardini) Schmitz
Forming dark reddish-brown crusts in the lower part of the eulittoral zone
growing over moderately wave-exposed rocks.
Found only at Sassandra (J & S., tetrasporangia - 6883, 30.12.71) in Ivory
Coast having not been reported from elsewhere in the Gulf of Guinea.
Platysiphonia miniata (C. Agardh) Bôrgesen
As soft filamentous tufts, often mixed with other algae, growing on modera¬
tely wave-sheltered rocks in the lower eulittoral subzone or as small patches on
the floor of shallow and wave-sheltered tidepools.
Collected at Tabou (J & S., 7008, tetrasporangia - 6914, 1.1.72), Sassandra
(J & S., 6917, tetrasporangia - 6925, - 6990, 1.1.72) and Fresco (S., tetraspo¬
rangia - 492, 2-6.2.54) having been previously reported in the Gulf only from
Ghana.
Polysiphonia ferulacea Suhr ex J. Agardh
Growing as hair-like tufts or low mats both on rocks and large barnacles ( Ba-
lanus tintinnabulum) in the lower eulittoral subzone in moderately wave-expo-
sed situations or in the «algal turf» in places where the wave action is less.
Gathered at Cape Palmas (J & S., 6943, tetrasporangia - 6942, - 6966, - 7001,
2.1.72), Sassandra (J & S., 6856, 30.12.71) and Fresco (S., cystocarps and te¬
trasporangia - 489, 2-6.2.54) having previously been reported both from Nigeria
and Ghana.
Polysiphonia sp.
As tufts of fine filaments growing on moderately wave-sheltered rocks and
sometimes in tidepools in the lower part of the eulittoral zone at Sassandra
(J & S., tetrasporangia - 6844, 30.12.71) and Cape Palmas (J & S., tetrasporangia
- 6961, 2.1.72). This unidentified species has irregularly divided, flexuous fila¬
ments, about 40 - 50 pm in diameter, arising from a creeping base whilst the
number of pericentral cells is just four.
Source :MNHN, Paris
MARINE ALGAE OF IVORY COAST
321
* Pterocladia capillacea (Gmelin) Bornet et Thuret
Growing as a loose mat on moderately wave-sheltered rocks in the upper part
of the lower eulittoral subzone.
Found at Cape Palmas (J & S., 6934, 2.1.72) and Fresco (A & C., tetrasporan-
gia - 19, - 682, 6556, 12.7.67) having been reported on the Guinea Coast from
Cameroun (as Pterocladia pinnata) and Ghana.
Taenioma perpusillum (J. Agardh) J. Agardh
Occuring as low ring-like patches on rocks, lithothamnia and occasionally
over Ralfsia, growing in moderately wave-sheltered situations and usually found
in the «algal turf» in more wave-sheltered places.
Collected at Cape Palmas (J & S., tetrasporangia - 6964, - 6968, 2.1.72),
Sassandra (J & S., 6972, 6873, tetrasporangia - 6923, - 6871, 30.12.72) and
Fresco (S., tetrasporangia - 496, 2-6.2.54) whilst having previously been reported
in the Gulf only from Ghana.
* Wrangelia argus (Montagne) Montagne
Growing as soft and plumose tufts on Laurencia tenera in moderately wave-
sheltered situations in the lower eulittoral subzone.
Found at Cape Palmas (J & S., carposporangia - 7006, 2.1.72) in Liberia and
known also from Cameroun (unpublished), Ghana and Togo.
CYANOPHYTA
Anacystis dimidiata (Kiitzing) Drouet et Daily
Growing together with filamentous blue-green algae as a scum floating on the
surface of pools in the littoral fringe which are influenced only by sea spray.
Found at Cape Palmas (J & S., 6959, 2.1.72) in Liberia and previously repor¬
ted from marine habitats in the Gulf of Guinea from Ghana and the offshore
island of Sao Tomé (as Chroococcus turgidus var. submarinus).
Microcoleus lyngbyaceus Gomont
Occuring mixed with larger algae or forming small dark greenish patches in
the upper eulittoral subzone, occasionally as a scum with other blue-green algae
on the surface of pools in the littoral fringe.
Collections from Cape Palmas (J & S., 6965, 6970, 6959, 2.1.72), Tabou
(J & S., 6918, 1.1.72) and Sassandra (J & S., 6977, 30.12.72) whilst also known
in the Gulf from Cameroun, Dahomey, Gabon, Ghana, Nigeria, Principe, Sao
Tomé and Togo.
Oscillatoria lutea Gomont
Forming a dirty yellowish-green slime on open rocks in the littoral fringe at
the entrance to the Tabou River (J & S., 6895, 1.1.72) in Ivory Coast having
previously been reported from Ghana.
322
D. M. JOHN
Schizothrix calcicola Gomont
Growing together with other blue-green algae as small slimy patches on mode-
rately wave-exposed rocks in the upper eulittoral subzone and also as a scum on
the surface of pools in the littoral fringe.
Found only at Cape Palmas (J & S., 6965, 6959, 2.1.72) and known previous-
ly from Dahomey, Ghana, Nigeria and Togo.
Schizothrix mexicana Gomont
Forming a lining over the floor of a shallow pool in the littoral fringe at the
entrance to the Tabou River (J & S., 6918, 1.1.72) in Ivory Coast and known
previously from Ghana and Nigeria in the Gulf of Guinea.
Fig. 1 — Map showing the localities along Ivory Coast and Cape Palmas in Liberia from
which collections were made.
AC KN OWLEDGEMENTS
I am most grateful to Pr. R. SOURIE, Laboratoire de Zoologie, Université de Poitiers,
for information regarding his collection of marine algae from Ivory Coast and to Pr. J.
FELDMANN, Laboratoire de Biologie Végétale Marine, Université de Paris, for loaning me
these plants. Thanks go to the Centre O.R.S.T.O.M. d’Adiopodoumé in Abidjan and the
Département de Biologie, Université d’Abidjan, for sending me what collections they held. I
am also grateful to Dr. F. DROUET, Academy of Natural Sciences, Philadelphia, U.S A., for
determining the Cyanophyta, to Dr. E. POST, Kiel, West Germany, for giving her opinion on
the brakish-water algae, and to Dr. E. WOLLASTON, Botany Department, University of
Adelaide, Australia, for identifying the Lasiothalia. Finally I wish to express my thanks to
Source : MNHN, Paris
MARINE ALGAE OF IVORY COAST
323
the Sous-Préfet at Tiassale and Tabou for their hospitality when in Ivory Coast and spécial
thanks go to Mr. F.O.K. SEKU for his most able assistance during ail phases of this study.
BIBLIOGRAPHY
AMOSSÉ, A., 1970 — Diatomées marines et saumâtres du Sénégal et de Côte d’ivoire. Bull.
I.F.AJ4. sér. A, 32 : 289-311.
ASKENASY, E., 1888 — Algen, mit Unterstützung der Herren E. BORNET, A. GRUNOW,
P. HARIOT, M. MOEBIUS, O. NORDSTEDT, 1-50, In ENGLER, A., Die Forschungs-
reise S Al.S. «Gazelle»... IV. Theil : Botanik (Algen), Berlin, 58 p.
BODARD, M., 1966a — Les Gracilaria et Gracilariopsis au Sénégal. Annls. Fac. Sci. Univ.
Dakar 19 :27-55.
BODARD, M., 1966b — Première liste des espèces d’algues présentes sur la Pointe de Sarène
(Sénégal). Notes afr. 3 : 81-89.
BCJRGESEN, F., 1934 — Some marine algae from the northern part of the Arabian Sea with
remarks on their geographical distribution. K. danske Vidensk. Selsk. Biol. Medd., 11 :
1-72.
BORGESEN, F., 1943 — Some marine algae from Mauritius. III. Rhodophyceae. Pt 2. Geli-
diales, Cryptonemiales, Gigartinales. Ibid., 19 : 1-85.
DANGEARD, P., 1951 — Sur les Gélidiacées de Dakar et de Port Etienne. Botaniste 35 :
21-24.
DIXON, P. S., 1958 — The structure and development of the thallus in the British species of
Gelidium and Pterocladia. Ann. Bot. 22 : 353-368.
DIXON, P. S., 1966 — On the form of the thallus in the Florideophyceae. 45-63. In CUT¬
TER, E. G. (ed.). Trends in plant morphogenesis, London and Colchester, 329 p.
DIXON, P. S., 1967 — The typification of Fucus cartilagineus L. and F. comeus Huds.
Blumea 15 : 55-62.
FOX, M., 1957 — A first list of marine algae from Nigeria. J. Linn. Soc. (Bot.), 55 : 615-
631.
JOHN, D. M., 1972 — The littoral ecology of rocky parts of the north-western shore of the
Guinea Coast. Botanica marina 15 :199-204.
KYLIN, H., 1938 — Verzeichnis einiger Rhodophyceen von Südafrika. Acta Univ. Lund 34 :
1-26.
LAWSON, G. W., 1956 — Rocky shore zonation on the Gold Coast./. Ecol. 44 : 153-170.
LAWSON, G. W., & PRICE, J. H., 1969 — Seaweeds of the western coast of tropical Africa
and adjacent islands : a critical assessment. I. Chlorophyta and Xantophyta. Bot. J. Linn.
Soc. 62 :279-346.
LEWIS, J. R., 1961 — The littoral zone on rocky shores - a biological or physical entity ?
Oikos 12 : 281-301.
POST, E., 1963 — Zur Verbreitung und Oekologie der Bostrychia-Caloglossa-Assozia.tion.
Int. Rev. ges. Hydrobiol. Hydrogr. 48 : 47-152.
POST, E., 1966a —Caloglossa ogasawaraensis in Westafrika. Hydrobiologia 27 : 317-322.
POST, E., 1966b — Neues zur Verbreitungsôkologie neuseelândischer und mittelamerika-
nischer Bostrychia-Caloglossa-Assoziation. Revue algol. 8 :127-150.
324
D. M. JOHN
SVEDELIUS, N. E., 1895 — Algen aus den Lândern der Magellanstrasse und Westpatogo-
nien. I. Chlorophyceae. 283-316. In Svenska Expeditionen Till Magellanslàndern. 3. Bo-
tany, Stockholm, 304 p.
325
SOME MARINE BENTHIC ALGAE FROM
PITCAIRN ISLAND
R. T. TSUDA *
SUMMARY. — The 21 species reported here include 4 Cyanophyta, 7 Chlorophyta, 5
Phaeophyta, and 5 Rhodophyta. The majority of the species are Malayan in origin, except
for the branching form of Lobophora variegata (Lamx.) Womersley ( Pocockiella nigrescens
(Sonder) Papenfuss sensu Papenfuss, 1943) which seems to be localized around Australian
or adjacent shores. Ail specimens are deposited in the author’s Herbarium at the University
of Guam.
RÉSUMÉ. — De cette île volcanique 21 espèces ont été identifiées. Elles sont d’origine ma¬
laise, à l’exception de la forme branchue de Lobophora variegata (Lamx.) Womersley qui
semble être localisée sur les rivages australiens adjacents.
I. INTRODUCTION
The marine benthic algae of those islands (Tuamotus, Marquesas and Pitcairn)
situated on the eastern fringe of Polynesia between 120 and 150 W longitude
are the least known in the tropical-subtropical Pacific Océan. The reason for our
limited knowledge of the algae in this area does not reflect the lack of interest
but the logistic difficultés in getting to these islands.
The only algal studies, thus far, reported from this area were carried out on
Raroia Atoll in the Tuamotus by DOTY (1954) and NEWHOUSE (1954). How-
ever, no systematic compilation of algae has been made for the Tuamotus,
except for the paper on the blue-green algae by NEWHOUSE (1954). There has
also been no published account on the marine algae of the Marquesas Islands. We
expect this situation to be changed by Dr. G. Valet of the University of Paris
who has informed me that he is presently studying the collections made from
this island group. The algae from the volcanic island of Pitcairn has never been
reported on nor has any listing of algae appeared for the three adjacent coral
islands (Henderson Island, Ducie Atoll, and Oeno Atoll).
When a proposed trip was being planned by the B. P. Bishop Muséum to this
area of the Pacific, I prevailed upon Dr John E. Randall to collect any algal spe-
* The Marine Laboratory, University of Guam, Agana Guam 96910 - Contribution n° 00.
Rev. Algol, N. S., 1976, XI, 3-4 : 325-331.
Source :MNHN, Paris
326
R.T. TSUDA
cimens he could fïnd from the area. The small collection reported here repre-
sents algal specimens collected by him from Pitcairn Island during december
1970 and january 1971. In addition, a collection of algae was also made from
the Marquesas which I forwarded to Dr Valet to be incorporated into his own
studies on the marine algae from this island group.
II. BRIEF DESCRIPTION OF ISLAND
Pitcairn Island (24 04’ S lat., 130° 06’ W long.) is a volcanic island about
4.5 km in circumference and 360 m high which lacks the typical cotai reef
formations found on most Pacific islands. The climate is subtropical with air-
temperature ranging from 20° C in august and september to 25° C in february
and march. The average annual rainfall.is about 175 cm (70 inches); the summer
months are slightly wetter than the winter months. The tidal range is about one
meter. For further information on the physical aspects of this island, I refer you
to CARTER (1967) from which most of the above information is taken.
III. STATION DESCRIPTIONS
The fïve stations where algal specimens were collected are described below.
The specimen numbers are those of the author.
Station 1 - Large tidepools and on rocks awash at shore, West Harbor, de¬
cember 29, 1970. (RT 4430 - 4445).
Station 2 - Large tidepool in surge zone, Christian’s Point, december 31,
1970. (RT 4446 -4451).
Station 3 - Off Gudgeon Harbor, 13 m deep, january 2, 1971. (RT 4452 -
4460).
Station 4 - Large pool, 5 m deep, St. John, january 7, 1971. (RT 4461 -
4463).
Station 5 - Boulder bottom with some sand and live corals, 21m deep, south
coast, january 20, 1971. (RT 4464).
IV. ANNOTED SPECIES LISTING
1. Division Cyanophy ta
Microcoleus lyngbyaceus (Kütz.) Crouan
DROUET, 1968 : 262.
Station 1 (RT 4433a) - The filaments are intermixed with Hormothamnion
enteromorpij.oides.
Hormothamnion enteromorphoides Bornet & Flahault
DAWSON, 1954 : 379, fîg. 3n.
Station X (RT 4433a) - The Blaments, 5 to 6 ftm in diameter, are beadlike in
appearance and possess conspicuous intercalary heterocysts.
BENTHIC ALGAE FROM PITCAIRN
327
Brachytrichia quoyi (Ag.) Bornet & Flahault
TILDEN, 1900 : 294, pl. 20 (Fig. 18).
Station 1 (RT 4445) - This alga appears a5 dark green hollow colonies about
5 mm in diameter. The beaded branched filaments, 2.5 to 4 pm diameter, taper
at one end and appear hair-like. Basal heterocystes are conspicuous and occasio-
nally intercalary heterocysts are présent.
Calothrix pilosa Harvey
FAN, 1956 : 130, fig. 2.
Station 1 (RT 4441b) - The few filaments présent are epiphytic on the green
alga Dictyosphaeria cavernosa.
2. Division Chlorophyta
Cladophora coelothrix Kütz.
VAN DEN HOEK, 1963 :40, fig. 55-78.
Station 1 (RT 4435b) - The alga appears in tufts, about 15 mn high, and
possesses sparingly branched filaments which arise in a dichotomous or trichoto-
mous manner. The cells are 350 to 600 pm long, and vary from 75 to 100 pm
in diameter at the base. However, the cells at the apex range from 25 to 30 pm
in diameter.
Bryopsis pennata Lamx.
EGEROD, 1952 : 370, fig. 7.
Station 3 (RT 4458) - This alga consists of pinnate siphons up to 25 mm high.
'Zaulerpa pickeringii Harvey & Bailey
VEBER VAN BOSSE, 1898:272, pl. 11, fig.7-8;TRONO, 1968 :167, pl. 15, fig. 5.
Station 3 (RT 4453) - This alga, up to 5 cm high, possesses whorls of bran-
:hing, ramuli which completely clothe the rizomes and assimilators (fig. 1). The
mly other Pacific islands on which this species has been reported are from Yap
TRONO 1968), Tahiti and the Tuamotus (WEBER VAN BOSSE 1898).
Mulerpa racemosa (Forsskal) J. Ag.
WEBER VAN BOSSE, 1898 : 357, pl. 31, fig. 5-8.
Station 1 (RT 4436, var. macrophysa), Station 2 (RT 4449, var. peltata).
‘ialimeda incrassata (Ellis) Lamx.
DAWSON, 1957 :109, fig. 13; HILLIS, 1959 : 365.
Station 1 (RT 4432), Station 4 (RT 4463) - The Pitcairn Island specimens do
not resemble the typical Halimeda incrassata specimens as found in the Micro-
nesian area, but strongly resemble DAWSON’s (1957) figure of H. tridens f. la-
mourouxii (J. Ag.) Weber van Bosse which HILLIS (1959) later places under H.
incrassata (fig. 2). My specimens are bushy with a small discoid holdfast. The
reniform segments are more or less similar in size and never exceed 3 mm in
length and 4 mm in width. Two tiers of utricles are présent. The secondary
utricles, 25/im long and 20 pm wide, give rise to 2 to 4 peripheral utricles which
are about 32 pm and 20 to 24 pm wide.
328
R. T. TSUDA
Cladophoropsis gracillima Dawson
DAWSON, 1950 :149, fïg. 12-13.
Station 1 (RT 4433b) - The filaments are sparingly branched and possess cells
which are up to 65 £tm in diameter and 1 mm long. Shorter basal cells, about
250 jUm long, are occasionally présent.
Dictyosphaeria cavernosa (Forsskal) Boerg.
EGEROD, 1952 : 350, fig. lb-f, 2f and 2g.
Station 1 (RT 4441) - A small specimen, 1.6 cm across, is ail that is présent in
the collection. However, the monostromatic thallus and the absence of trabecu-
lae seem to place the specimen in this species.
3. Division Phaeophyta
Ectocarpus breviarticulatus J. Ag.
DAWSON, 1954 : 398, fig. 14a-b.
Station 1 (RT 4437) - The specimen, intermixed with Sphacelaria tribuloides,
is stérile but possesses the characteristic hamate branches.
Sphacelaria tribuloides Meneghini
DAWSON, 1954 : 400, fig. 14i-j.
Station 1(RT 4444) - The propagulae of these specimens possess «horns»
which are not as protrusive as the Micronesian of Hawaiian specimens but still
fall within the circumscription for this species.
Dictyota acutiloba J. Ag.
SETCHELL, 1926 : 93.
Station 2 (RT 4450) - These specimens form loose clumps which are similar
in habit to growth-forms found in Hawaii. The branches are usually twisted
and possess acute apices. Reproductive bodies, which on these plants can be
either oogonia or potential tetraspores prior to cleavage, are scattered through-
out the médian surface of the thalli. This species has been reported from Tahiti
by SETCHELL (1926).
Lobophora variegata (Lamx.) Womersley
WOMERSLEY, 1967 : 221, PAPENFUSS, 1943 : 467, fig. 1-10; TAYLOR,
1971 :150, % 16-18.
Station 2 (RT 4447), Station 3 (RT 4452, RT 4454), Station 4 (RT 4461),
Station 5 (RT 4464) - The Pitcairn Island collection consists of one prostrate
specimen (RT 4454), (fig. 3). Ail of the other specimens are of the branching
form. It is with considérable hésitation that I place both forms under this one
species, since our prostrate Guamanian specimens never transform into the
branching form.
Sargassum coriifolium J. Ag.
WOMERSLEY and BAILEY, 1970 : 295, fig. 6, pl. 24, fig. 14.
Station 1 (RT 4430, RT 4442), Station 2 (RT 4446, RT 4448), Station 3
(RT 4455, RT 4456), Station 4 (RT 4462) - The majority of the specimens,
although showing a range in variation, seem to fit the description and figures
of the Solomon Island specimens (WOMERSLEY and BAILEY 1970). Ail of
BENTHIC ALGAE FROM PITCAIRN
329
the thalli possess terete branches (fîg. 4). The «leaves» vary considerably in
size and shape varying from entire, dentate, or duplicate. Ail specimens are
stérile except for one specimen (RT 4430) which possesses narrow straplike
«leaves» with elongate terete réceptacles unlike the réceptacles illustrated by
WOMERSLEY and BAILEY (1970). Further collections and observations are
needed of fruiting thalli before a defmite détermination can be made.
4. Division Rhodophyta
Gelidiopsis intricata (Ag.) Vickers
DAWSON, 1954 : 423, fig. 34.
Station 1 (RT 4438), Station 3 (RT 4457) - The specimens occur in tufts and
possess terete to compressed branches up to 500 jUm in diameter. One intercalary
stichidium is présent which has not been attributed to this species.
Corallina cuvieri Lamx.
Station 1 (RT 4434), Station 3 (RT 4460) - These fertile specimens were
identified by Dr. H. W. Johansen to whom I am most grateful.
Botryocladia skottsbergii (Boerg.) Levring
DAWSON, 1956 : 52, fig. 48.
Station 1 (RT 4443) - The collection consists of a single thallus which pos¬
sesses small subglobose vesicles about 3 mm in diameter on a 5 mm long bran-
ching stalk.
Centroceras clavulatum (C. Ag.) Montagne
DAWSON, 1954 : 446, fig. 54h.
Station 1 (RT 4435a) - The sparingly branched thalli are 100 to 150 pm in
diameter and possess the characteristic cellular spines at the nodes.
Chondria intricata Okamura
OKAMURA, 1912 :180, pl. 99.
Station 2 (RT 4451) - It is with hésitation that the Pitcairn Island specimen
is placed here.
ACKNOWLEDGEMENTS
I am grateful to Dr. John E. RANDALL of the B. P. Bishop Muséum for taking the time
from his busy fish collecting schedule to collect algal specimens for me. I also thank Dr. H.
William JOHANSEN of Clark University for his détermination of Corallina cuvieri Lamx.
Source :MNHN, Paris
330
R. T. TSUDA
Fig. 1. —Caulerpa pickeringii Harvey and Bailey, habit; Fig. 2 —Halimeda incrassata (Ellis)
Lamx., habit; Fig. 3 — Lobophora variegata (Lamx.) Womersley, habit of branching form;
Fig. 4. — Sargassum coriifolium J. Ag., habit.
BIBLIOGRAPHY
CARTER, R. M., 1967 — The geology of Pitcairn Island, South Pacific Océan. B. P. Bishop
Mus. Bull. 231 :1-38.
DAWSON, E. Y., 1950 — Notes on Pacific Coast marine algae IV. Amer. J. Bot. 37, 2 :
149-158.
DAWSON, E. Y., 1954 — Marine plants in the vicinity of the Institut Océanographique de
Nha Trang, Viet Nam.Pac. Sci. 8, 4 : 373-469.
DAWSON, E. Y., 1956 — Some marine algae of the Southern Marshall Islands. Pac. Sci.
10, 1 :25-66.
DAWSON, E. Y., 1957 — An annotated list of marine algae from Eniwetok Atoll, Marshall
Islands. Pac. Sci. 11, 1 : 92-132.
DOTY.M. S., 1954 —Floristic and ecological notes on Raroia .AtollRes. Bull. 33 : 1-41.
DROUET, F., 1968 — Révision of the classification of the Oscillatoriaceae. Monogr. Acad.
Nat. Sci. Philad. 15 :1-370.
EGEROD, L. E., 1952 —An analysis of the siphonous Chlorophycophyta. Univ. Calif.
PubL, Bot. 25, 5 :325-454.
FAN, K. C., 1956 — Révision of Calothrix Ag. Rev. Algol. 2, 3 :154-178.
HILLIS, L. W., 1959 — A révision of the genus Halimeda (Order Siphonales). Inst. Mar. Sci.
Texas 6 :321-407.
NEWHOUSE, J., 1954 - Ecological and floristic notes on the Myxophyta of Raroia. Atoll
Res. Bull. 33 :42-54.
OKAMURA, K., 1912 — Icônes of Japanese algae. Tokyo. 2 :1-191.
PAPENFUSS, G. F., 1943 —Notes on algal nomenclature. II. Gymnosorus J. Agardh.
Amer. J. Bot. 30 : 463-468.
SETCHELL, W. A., 1926 — Tahitian algae collected by W. A. Setchell, C. B. Setchell and
H. E. Parks. Univ. Calif. Publ., Bot. 12 : 61-142.
TAYLOR, W. R., 1971 — Notes on algae from the tropical Atlantic Océan. V. Br. PhycoL
7.6,2:145-156.
TILDEN, J. E., 1900 — The Myxophyceae of North America and adjacent régions, including
Central America, Greenland, Bermuda, the West Indies, and Hawaii. Minnesota Aloae 1 :
1-328.
TRONO, G. C. Jr., 1968 — The marine benthic algae of the Caroline Islands, I. Introduction,
Chlorophyta, and Cyanophyta. Micronesica 4, 2 :137-206.
VAN DEN HOEK, C., 1963 — Révision of the European species of Cladophora. Leiden.
WEBER VAN BOSSE, A., 1898 — Monographie des Caulerpes. Annls. lard. Bot. Buitenz.
15:243-401.
WOMERSLEY, H. B. S., 1967 - A critical survey of the marine algae of Southern Australia.
II. Phaeophyta. Aust. J. Bot. 15 :189-270.
WOMERSLEY, H. B. S., and BAILEY, A., 1970 — Marine algae of the Solomon Islands.
Phil. Trans. Roy. Soc. London. B.Biol Sci. 259, 830 : 257-352.
BENTHIC ALGAE FROM PITCAIRN
331
Source ; MNHN, Paris
Source : MNHN, Paris
333
ALGAL FLORA OF THE RICE-FIELDS AROUND
DEHRADUN, INDIA
M. KHAN & A. MATHUR *
SUMMARY. — 24 species of Cyanophyta and 24 species of Chlorophyta collected from the
rice-fields at the village Majra, situated near Clement Town, Dehradun hâve been recorded.
The successive occurence of various algal species through the months july-october are dis-
cussed in detail. The algal communities like tychophytes, benthophytes and epactiphytes
are prédominent while planktophytes and periphytes are found to be comparatively very
rare in the rice-fields. During présent survey 2 généra (Drapamaldiopsis and Zygogonium),
12 species of Cyanophyta and 17 species of Chlorophyta hâve been recorded for the first
time from Dehradun.
RÉSUMÉ. — 24 espèces de Cyanophycées et 24 espèces de Chlorophycées ont été récoltées
dans les rizières du village de Majra, situé près de Clement Town (Dehradun). La succession
des diverses espèces d’algues de juillet à octobre est analysée : les communautés tychophy¬
tes, bentophytes et epactiphytes sont prédominantes alors que les planctophytes et les péri-
phytes sont rares. Au cours de cette étude 2 genres (Drapamaldiopsis et Zygogonium) et 12
espèces de Cyanophycées ainsi que 17 espèces de Chlorophycées ont été récoltées pour la
première fois à Dehradun.
I. INTRODUCTION
Algal survey reported so far (GONZALVES et GANGLA 1949; GUPTA
1966; SHUKLA 1971; SINGH 1939, 1961; SUBRAHMANYAN et al. 1965;
VENKATARAMAN 1971) from different parts of India can not be deemed as
adéquate and commensurative with the needs of the wast rice-growing areas
spread out in many parts of the country. Also, there exist no previous compré¬
hensive records on the algal flora of rice fields of Doon Valley, Western Uttar
Pradesh (cf. KHAN 1970 a, b et c; KHAN & USHA 1971; KHAN & KUMARI
1972; KHAN & BARTHWAL in press).
a. LOCATION AND PERIOD OF STUDY
The area under study is Clement Town which is situated on both sides of Sa-
haranpur road near village Majra at the altitude of 548 meters. Observations hâve
been made on the algal flora of the rice-fields from the month of july till the end
of october during the years 1971 and 1972, which coincide with the sowing har-
* Department of Botany, D. A. V. post-graduate College, Dehradun, U. P., India.
Rev. Algol., N. S., 1976, XI, 3-4 : 333-337.
Source : MNHN. Paris
334
M. KHAN & A. MATHUR
vesting months of rice crop in the area.
b. CLIMATE AND SOIL CONDITIONS
The climate of the valley is best suited for the cultivation of the rice. The
mean température in the last week of june is 26 C and in october 21 C, which
is idéal for sowing and maturity of the crop respectively. During the month of
july climate is very humid (84 - 94%) due to heavy rain fall (472 - 599 mm). The
water table is 12 meters below the surface and irrigation facilities are adéquate.
The soil is rich loamy and one of the best in the whole of Dehradun valley.
II. SUCCESSION OF ALGAE IN NATURE
The mansoon usually sets in, in this région in the third or fourth week of june
and the fields are ploughed after one or two rain falls. The early variety of paddy
is sown in the upland fields in the first week of july. As the fields are in a conti-
nuously disturbed State, there is apparently no growth of algae. The extra water
is drained into low lying areas and the low land fields are there fore floodcd. The
common algae (Table I) in the upland fields were Cylindrospermum majus, C.
stagnale, Anabaena torulosa, Aulosira aenigmatica and Oedogonium vanoyea-
num. Species of Spirogyra and Zygnema were in a végétative State. Anabaena
torulosa, Cylindrospermum majus and C. stagnale were found as elongated
colonies on moist soil immersed in three to five centimeters deep in water. Spi¬
rogyra grew in drains, along the sides or where water had accumulated in the
fields. In addition Microcoleus vaginatus and Aulosira aenigmatica formed a
green or bluish green stratum on moist soil in some fields. The low land fields are
usually in knee deep water and as the water was muddy no growth of algae was
therefore visible during this month.
There was heavy rain fall during the first fortnight of August, and the maxi¬
mum and minimum température varied from 22 to 26 C and 26 -30 C respec¬
tively. The high température and humidity (49 - 97%) provided very suitable
conditions for the growth of algae and these were on the whole found to be very
abundant. The most common algae found during this period were the species of
Cylindrospermum and Microcoleus, which covered the entire surface of the soil
in some of the upland fields. The well developed colonies assumed a palmate
form with long finger like processes.
In a few fields a very prominent associations of Nostoc, Cylindrospermum
and Microcoleus were found to cover the surface of water as leathery dirty-
bluish stratum. As the water receded in these fields the algal stratum remained
sticking to the stalks of paddy plants. Among the other forms Mougeotia, Chae-
tophora and Nitella were conspicuous. During the later half of the month of
august a number of other forms like Nostoc punctiformae, Oscillatoria annae, O.
sancta, Anabaena sphaerica, A. iyengarii and Scytonema hofmanni were pré¬
sent, the latter which was présent from the beginning of the month spread consi-
derably on moist soil in the fields.
ALGAL FLORA OF THE RICE-FIELDS
335
The low land water logged fields flooded due to heavy and continuous rains
were fïlled with disturbed and muddy water, due to which no algal forms were
apparently growing during the second fortnight. Only a few free floating masses
of Anabaena, Sirogonium inflatum and Lyngbya martensiana hâve been collec-
ted.
There were light rains during the earlier part of september and the maximum
and minimum température varied from 17-21 C to 26-30 C respectively. Du¬
ring the later half of the month there is a dry spell and température showed a
iittle variation. Many of the upland fields dry up and are harvested. Species of
Cylindrospermum was still conspicuous during this month. At the end of the
month it desappeared almost completely. The abundant algal species during this
period were Scytonema hofmanni, Nitella dictyosperma, N. translucens. Chara
appeared later in abundance along with Iittle amount of Draparnaldiopsis indica.
In a few fields Chaetophora elegans, Scytonema hofmanni and Nostoc continued
to be prominent component of the algal végétation till the fields dried up.
In the low land fields number of algae increased considerably. Scytonema
coactile which occurs in free floating masses formed bright bluish green cushion
of erect filaments on moist soil along the sides of the fields. Microcoleus vagina-
tus appeared to be very common on moist soil in and around these fields. Gra-
dually a very profuse growth of Chara and Nitella took place in most of the
fields which were in végétative condition. Aulosira fertilissima was common in
most of the fields. A number of chlorophycean members like Zygnema collinsia-
num, Zygogonium indicum and species of Spirogyra were also found.
In october the upland fields were completely dry and rice crop had already
been harvested by now. No growth of the algae was apparent. At this time the
low land fields were rich in algal growth. The water level fell considerably and
there was an abundant growth of Mougeotia and Aulosira fertilissima. Species
of Spirogyra and Zygnema were the other prominent constituents of the algal
végétation. In the middle of the october species of Chara, Nitella, Aulosira and
Oedogonium were abundant in low land fields.
III. DISCUSSION
It is apparent from the table-I and also from the foregoing succession ac-
counts that the species of Cylindrospermum are common during the beginning
and Scytonema and Oedogonium are at the end of the season.
Though the percentage of blue-green and green algae are equal but so far the
frequency and dominance are concerned, the blue-green algae are very prédomi¬
nent. Generally, the blue-green algae show a overwhelming prépondérance over
the other classes of algae particuiarly Chlorophyceae in India (GONZALVES &
GANGLA 1949; GUPTA 1966; SUBRAHMANYAN et al. 1965; VENKATA-
RAMAN 1971) as against the temperate soil where reverse is the case. However,
in the fields under discussion green algae are equally dominant as it was shown
earlier by SINGH (1939) and SHUKLA (1971).
336
M. KHAN & A. MATHUR
The members of Cyanophyta are abundant in early months of july and
august while during september and october, the members of Chlorophyta are
prédominent. The présent investigation shows that the growth of the algae in
nature is controlled to a great extent by the seasonal variations as well as by
ecological conditions to some extent as it was earlier shown by GUPTA (1966).
In the rice-fields of U. P. and Bihar occur a dominant and widespread nitro-
gen-fïxing algal community of blue-green algae constituted mainly by Aulosira
fertilissima (SINGH 1936, 1961; SHUKLA 1971). VENKATARAMAN (1971)
and SUBRAHMANYAN et al. (1965) also hâve recorded ubiquitous occurence
of Aulosira fertilissima in the States of Madras and Kérala and Orissa respective-
ly. However, in Maharashtra this genus has not been recorded from the rice fields
(GONZALVES and GAN GLA 1949).
The distribution of Charophyta is very interesting. Species of Chara are
confined to central régions of the fîelds whereas the species of Nitella are found
only on the margins.
The algal species which were growing in the rice-fields, on the basis of their
habitat may be categorised into fïve algal communities as tychophytes, bento-
phytes, epactiphytes, periphytes and planktophytes. Planktophytes and periphy-
tes are comparatively rare.
It is also interesting to note that in the rice-fields of Doon valley members of
Volvocales, Chlorococcales, Ulotrichales and Cladophorales are endrely absent in
contrast to the observations of SHUKLA (1971) and GONZALVES and GAN-
GLA (1959).
ACKNOWLEDGEMENT
The authors are grateful to Dr. Y. S. R. K. SARMA, Professor of Botany, Benaras Hindu
University, Varanasi-5, for his valuable ad vice.
ALGAL FLORA OF THE RICE-FIELDS
337
TABLE I. Algal species showing their frequency in rice-fields
* Recorded for the First time from Dchradun, a - abundance, c - common, r - rare,
B - Benthophytes, E - Epactiphytcs, P - Periphytes, PI - Planktophytes, T - Tychophytes.
S.
N.
TAXA ^TypT 1 ^ July Aug ' Sept ' ° ct-
1. Oscillatoria annae Van Goor B
2. *0. sancta (Kutz.) Gomont B
3. O. obscura Brühl et Biswas B
4. O. subbrevis Schmidle. B
5. Lyngbya martensiana Menegh. B
6. Microcoleus vaginatus (Vaucher) Gomont. B
7. Cylindrospermum majus Kutz. P
8. *C. stagnale (Kutz.) Born.et Flah. P
9. C. doryphorum Brühl et Biswas P
10. Nostocpunctiforma (Kutz.) Hariot. T
11. N. muscorum Ag. B
12. *N. pruniforme { L.) Ag. T
13. *AnabaenasphaericavaT.attenuataBh!ü:!Ld. T
14. *A. oryzae Fritsch. T
15. *A. iyengarii var. tenuis Rao T
16. *A. torulosa (Carm.) Lagerh. B
17. *Aulosira fertilissima var. tenuis Rao PI
18. *A. aenigmatica Fremy B
19. A. prolifica Bharadwaja PI
20. Scytonema coactile Mont, ex Born.et Flah. T
21. *S. bohneri Schmidle T
22. *S. hofmanni Ag. P
23. *S. bewsii Fritsch et Rich T
24. S. miràbile (Dillw.) Born. T
25. *Mougeotia drouetii Transeau T
26. *M. laetivirens (Braun) T
27. Zygnema collinsianum Transeau T
28. *Zygogonium indicum Randhawa T
29 *Spirogyra parvula (Trans.) Czurda E
30. *S. submaxima Transeau E
31. *S. rectangularis Transeau E
32. *Sirogonium inflatum Dixit T
33. *Oedogonium hindustanense Kamat E
34. *0. crassum (Hassal) Wittrock E
35. O. fragile vclt. Abyssinicum Hirn. E
36. *0. himii Gutwinskii P
37. *0. vanoyeanum Gauth-Liev. E
38. *Drapamaldiopsis itidica Bharadwaja E
39. Chaetophora elegans (Roth.) Agardh P
40. Nitella acuminata Braun E
41. *N. translucens Agardh E
r r
c a
a
a a
338
M. KHAN & A. MATHUR
42. *N. flagellifera Groves et Allen E
43. *N. dictyosperma Groves E
44. *N. pseudotenuissima Kundu E
45. Chara burmanica Pal B
46. C. vulgaris Linn. B
47. C. contraria Kutz. B
48. *C. bharadwajae Sarma et Khan B
BIBLIOGRAPHY
GONZALVES, E. A., and GANGLA, K. S.,1949 — Observations on the algae of Paddy field
soils. Jour. Uni. Bombay 18 : 51-59.
GUPTA, A. B., 1966 — Algal flora and its importance in the economy of rice-fields. Hydro-
biologia 28 :213-222.
KHAN, M., 1970 a — Fundamentals of Phycology. Pub. Bishen Singh Mahendra Pal Singh,
Dehradun, India : 21-22.
KHAN, M., 1970 b — Algal flora of Dehradun. I. Myxophyceae. P/iyfeos 9 : 126-131.
KHAN, M., 1970 c — Algal flora of Dehradun. II. Chlorophyceae. G. K. V. J. Sc. R. 2 :
87-92.
KHAN, M., and BARTHWAL, S. D., in press — Algal flora of Dehradun. V. Ulotrichales,
Siphonales and Charales. G. K. V. J. Sc. R.
KHAN, M., and KUMARI, S., 1972 — Some additions to the algal flora of Dehradun. III.
Cyanophyta. Jour. Ranchi Uni. 8 : 298-300.
KHAN, M., and USHA, Y., 1971 — Algal flora of Dehradun. IV. Zygnemaceae. G. K. V. J.
Sc. R. 3 : 26-28.
SHUKLA, A. C., 1971 — Systematic description of algae from Panki rice-fields, India. Rev.
Algol. 3 :257-270.
SINGH, R. N., 1939 — An investigation into the algal flora of Paddy field soils of the
United Provinces. l.Indian Jour. Agri. Sci. 9 : 55-77.
SINGH, R. N., 1961 — Rôle of blue-green algae in nitrogen economy of Indian Agriculture.
Pub. I. C. A. R., New Dehli, India.
SUBRAHMANYAN, R., RELWANI, L. L., and MANNA, G. B., 1965 — Fertility build up of
rice-field soils by blue-green algae.Proc. Indian Acad. Sci. 62 : 252-272.
VENKATARAMAN, G. S., 1971 — Handbook of Manures and Fertilizers. Pub. I. C. A. R.,
New-Dehli, India : 240-252.
339
BOURRELLYODESMUS
NOUVEAU GENRE DE DESMIDIACEES
Pierre COMPERE *
Depuis que TEILING (1948, 1967) a reclassé dans le genre Staurodesmus les
Desmidiacées à membrane lisse pourvues d’une seule épine à chaque angle de la
cellule, le genre Arthrodesmus, tel qu’il est compris par BOURRELLY (1966,
p. 432) ou par COÛTÉ et ROUSSELIN (1975, p. 115) est devenu extrêmement
hétérogène, groupant, d’une part des espèces à membrane lisse pourvues de plu¬
sieurs épines à chaque angle et d’autre part des espèces à membrane ornementée
pourvues d’une seule épine à chaque angle. En bonne logique, on ne peut laisser
dans le même genre les sections Polyancanthium et Ornatae, qui ne diffèrent de
Staurodesmus que par un seul caractère (nombre d’épines par angle ou ornemen¬
tation de la membrane) mais qui diffèrent l’une de l’autre par ces deux caractères
réunis.
Nous avons montré par ailleurs (COMPERE 1976a) que le nom de genre Ar¬
throdesmus Ralfs 1848 (Desmidiacées), homonyme postérieur de Arthrodesmus
Ehr. 1838 (Scénédesmacées) est un nom illégitime et qu’il ne paraît pas très
opportun de le conserver en raison des vues divergentes exprimées récemment
par divers auteurs (BOURRELLY, loc. cit.; B1CUDO 1975a) sur ses limites et sur
sa typification.
La plus grande partie des espèces groupées jusqu’ici dans le genre Arthrodes¬
mus (section Tetracanthium, à membrane lisse et angles de l’hémisomate portant
une seule épine) ont déjà été reclassées par TEILING au sein de son nouveau genre
Staurodesmus; on pourrait y joindre certaines espèces de la section Octacan-
thium comme A. mucronulatus : la belle étude que B1CUDO (1975b) vient de
consacrer à la variabilité de cette espèce, notamment en ce qui concerne le nom¬
bre et la disposition des épines, montre bien qu’il est impossible de la séparer, au
niveau générique, des espèces du genre Staurodesmus (voir notamment ses figu¬
res 3, 4, 5, 6 et 7, montrant des spécimens à une épine par angle et des spéci¬
mens dichotypiques, où un des hémisomates montre deux épines par angle et
l’autre une seule épine par angle).
D’autres espèces des sections Octacanthium et Polyacanthium, portant qua¬
tre, six ou un plus grand nombre d’épines par hémisomate, trouveraient proba-
* Jardin Botanique National de Belgique, Domaine de Bouchout, B 1860 Meise, Belgique.
Rev. Algol., N. S., 1976, XI, 3-4 : 339-342.
Source : MNHN, Paris
340
P. COMPERE
blement mieux leur place dans le genre Xanthidium ; cela a déjà été proposé par
RALFS (1848) pour Xanthidium octocorne Ralfs et par DEFLANDRE (1929)
pour Xanthidium impar (Jacobs.) Défi. Une révision du genre Xanthidium et
de ces deux sections d’Arthrodesmus serait certainement des plus utiles pour
nous fixer sur ce point.
Reste alors le cas des espèces à membrane ornementée, pourvues d’une seule
épine de chaque côté de l’hémisomate, comme par exemple Arthrodesmus heimii
Bourr., connu de diverses parties de l’Afrique et que nous retrouvons dans quel¬
ques récoltes de la région du lac Tchad (COMPERE 1976b). Il n’est pas possible
d’en faire un Staurodesmus, à cause de l’ornementation de sa membrane; on ne
peut non plus le rapporter au genre Xanthidium, puisqu’il ne présente qu’une
seule épine de chaque côté de l’hémisomate. On a bien proposé d’en faire un
Cosmarium (LIND 1971, p. 548) mais nous pensons, avec COÛTÉ et ROUSSE-
LIN (1975, p. 115), qu’il n’est pas opportun de réintroduire dans le genre
Cosmarium une forme possédant de telles épines latérales, et d’ajouter ainsi à
l’hétérogénéité de ce genre énorme, déjà beaucoup trop hétérogène. Finalement,
la seule solution respectant une certaine homogénéité des différents genres im¬
pliqués paraît bien être la création d’un nouveau genre pour ce dernier groupe
d’anciens Arthrodesmus. Cette conclusion resterait d’ailleurs valable si le nom
Arthrodesmus devait être conservé, soit dans le sens de BICUDO (1975a) pour ce
qui est actuellement appelé Staurodesmus, avec A. convergens comme type, soit
dans le sens de BOURRELLY (1966), avec A. octocornis comme type, pour les
espèces à membrane lisse possédant deux ou plusieurs épines de chaque côté de
l’hémisomate. Nous sommes heureux de pouvoir dédier ce nouveau genre de
Desmidiacées au Professeur P. BOURRELLY, du Muséum National d’Histoire
Naturelle de Paris, qui a été le premier à découvrir son espèce la plus caracté¬
ristique.
BOURRELLYODESMUS COMPERE, GEN. NOV.
a Staurodesmo membrana in media parte incrassata, verrucis vel scrobicula-
tionibus omata differt; a Xanthidio angulis unispinosis differt.
Semi-cellulae ellipsoidales vel reniformes, ab apice visae ellipticae, spina
unica utroque munitae, in media parte incrassatae, verrucosae vel scrobicula-
tae.
Species typica : BOURRELLYODESMUS HEIMII (Bourrelly) Compère,
comb. nov., fig. 1.
Basionyme -.Arthrodesmus heimii Bourr., Bull. I.F.A.N. 19 : 1079, fig. 105,
106 (1957).
Synonymes : Arthrodesmus stellifer Grônblad & Scott, Acta Bot. Eenn. 58 :
38, fig. 265-267 (1958).
Cosmarium tagmasterion Sc. & Presc. var. africanum Lind, Nova
Hedwigia 22 : 548, pl. 4 fig. 5, pl. 10, fig. 18 (1971).
BOURRELLYODESMUS
341
ig. 1 : Iconotype de Bourrellyodesmus heimii; reproduction des figures originales de Ar-
throdesmus heimii (BOURRELLY 1957 : pl. 12, fig. 105 et 106). Le petit trait au voi¬
sinage de chaque figure indique l’échelle de lOpm.
Il est très probable que d’autres espèces de l’ancien genre Arthrodesmus,
:lles que A. incrassatus Lagerh., A. notochondrus Lagerh., A. spechtii Scott et
resc., possédant à la fois une inflation médiane ornementée et une seule épine
e chaque côté de l’hémisomate, doivent rentrer dans le genre Bourrellyodesmus;
imme nous n’avons pas vu de matériel de ces espèces, nous nous abstiendrons
e proposer ici d’autres nouvelles combinaisons.
BIBLIOGRAPHIE
ICUDO, C. E. M., 1975a — Typification of the generic Desmid name Arthrodesmus (Des-
midiaceae). Beih. Nova Hedwigia 42 : 33-38.
1DUDO, C. E. M., 1975b — Polymorphism in the desmid Arthrodesmus mucronulatus and
its taxonomie implications. Phycologia 14 : 145-148, 9 fig.
OURRELLY, P., 1966 — Les algues d’eau douce. I : Les algues vertes, Paris, N. Boubée &
Cie, 511p., 117 pl.
OMPERE, P., 1976a — The typification of the genus Arthrodesmus (Algae-Chlorophyta).
Taxon 25 (sous presse).
342
P. COMPERE
COMPERE, P., 1976b — Algues de la région du lac Tchad. VI. Desmidiées. Cah. O.R.S.T.
OJM., sér. Hydrobiol. 10 (en préparation).
COÛTÉ, A. et ROUSSELIN, G., 1975 — Contribution à l’étude des algues d’eau douce du
Moyen-Niger (Mali). Bull. Mus. Nat. Hist. Nat., sér. 3, 277 : 73-175, 19 pl.
DEFLANDRE, G., 1929 — Notes sur 1 ’Arthrodesmus impar (Jacobs.) Groenbl. et ses varia
rions, suivies de remarques sur la délimitation des genres Arthrodesmus et Xanthidium.
Bull. Soc. Bot. France 76 :130-139.
LIND, E. M., 1972 — Some Desmids from Uganda. Nova Hedwigia 22 : 535-585, 13 pl.
RALFS,J., 1848 — TheBritish Desmidieae, XXII, 226 p. 35 pl.
TEILING, E., 1948 — Staurodesmus genus novum containing monospinous Desmids. Bot.
Not. 49-83, 72 fig.
TEILING, E., 1967 — The desmid genus Staurodesmus, a taxonomie study. Ark. Bot. 6
468-629,31 pl.
Source : MNHN, Paris
343
PREMIER INVENTAIRE DES DIATOMEES MARINES
DU LAGON DE TIAHURA
(ILE DE MOOREA - POLYNESIE FRANÇAISE).
M. RICARD *
ÉSUMÉ. — Au cours de deux missions en Polynésie Française, en juillet 1974 et août 1975,
•es récoltes de phytoplancton ont été effectuées à la surface du lagon de Tiahura (île de
loorea) au moyen d’un filet à phytoplancton. L’inventaire préliminaire des diatomées de ce
igon et de l’océan environnant est accompagné de mesures quantitatives et de données
hysico-chimiques. Chaque taxon est assorti de commentaires sur sa fréquence et sa répar¬
don géographique. Les résultats sont comparés avec ceux obtenus dans les lagons de Tahiti.
JMMARY. — A preliminary list of diatoms collected in two stations at Moorea island
rench Polynesia) is given here and its biogeographic composition is discussed. 235 taxa of
atoms hâve been identified from net samples and some quantitative data are presented :
•Ils counts after sédimentation of water samples, physical and chemical values. Phyto-
ankton populations in Tahiti and Moorea are compared.
INTRODUCTION
Nous avons effectué, en juillet 1974 et août 1975, deux séjours à l’Antenne
i Muséum et de l’Ecole Pratique des Hautes Etudes de Moorea (Polynésie
rançaise) afin d’étudier la concentration en pigments chlorophylliens et la pro-
ictivité primaire des eaux du lagon de Tiahura. A cette occasion nous avons ré-
ilté, au filet, le phytoplancton de surface du lagon et de l’océan; ces récoltes
nt permis de dresser un premier inventaire taxinomique des diatomées et d’en
ire un bilan quantitatif grâce à des prélèvements d’eau. La liste taxinomique
t accompagnée de remarques sur la fréquence et la répartition biogéographique
; chaque taxon. Les résultats obtenus à Moorea sont comparés à ceux de Tahi-
. MATERIELS ET METHODES
RECOLTES
Les récoltes ont été réalisées, en surface, au moyen de bouteilles à hydrologie
Laboratoire de Cryptogamie, Muséum National d’Histoire Naturelle, 12 rue de Buffon,
5005 Paris — L. A. n° 257 (C.N.R.S.) et Antenne du Muséum et de l’E. P. H. E., B.P. 562,
apeete, Tahiti, Polynésie Française.
ev. Algol., N. S., 1976, XI, 3-4 : 343-355.
Source : MNHN , Paris
344
M. RICARD
de type Van Dorn et de filets à microplancton de vide de maille de 42jUm, traî¬
nés à faible vitesse durant 10 minutes à l’arrière d’une embarcation à moteur.
Les prélèvements ont été faits dans le lagon puis dans l’océan à 500 mètres
environ de la barrière récifale. Les échantillons ont tous été fixés au formol
neutre à 4% et conservés 3 à 6 mois avant l’observation. Les échantillons des¬
tinés à l’étude qualitative ont été examinés au microscope ordinaire à fond clair
après avoir subi un traitement destiné à les nettoyer et à les inclure dans une ré¬
sine réfringente (RICARD 1975 b). Les comptages quantitatifs ont été réalisés
sous un microscope inversé Wild M40 selon la technique décrite par UTER-
MOEHL (1958).
b. AIRES DE REPARTITION BIOGEOGRAPHIQUES
Les aires de répartition des diatomées et des dinoflagellés sont assez mal défi
nies et chaque auteur donne une signification différente aux termes antérieure
ment définis ou bien en introduit de nouveaux. DEACON (1933) et HENDEY
(1937) parlent de formes antarctiques, subantarctiques et subtropicales, alors que
KARSTEN (1907) préfère parler d’espèces ubiquistes, tempérées, tempérées tropi
cales et tropicales, et STEEMAN-NIELSEN (1939) de formes tropicales et subtro
picales. ANGOT (1961) définit les mers tropicales comme celles dont la tempéra
ture ne descend jamais au-dessous de 22 C tout au long de l’année, etSOURNIA
(1969) reprend ces définitions ainsi que certains termes utilisés par les auteurs pré
cités dans sa liste taxinomique du phytoplancton du canal du Mozambique (1970)
La nomenclature la plus complète concernant les aires de répartition a éti
introduite par CUPP (1943) : elle considère des espèces arctiques, boréales
tempérées nord, tempérées sud, subtropicales, tropicales et ubiquistes.
Tous les auteurs emploient ces différents termes mais rares sont ceux qu
donnent, à l’exemple de DEACON, une définition précise de chaque aire. Le:
aires de répartition que nous proposons sont au nombre de quatre : arctique
antarctique, tempérée, intertropicale; l’aire tempérée est divisée en deux sous
aires, tempérée chaude et tempérée froide.
aire arctique et antarctique :
Elles s’étendent d’une part du pôle nord jusqu’à la latitude de 60° N, et d’autr-
part du pôle sud jusqu’à la latitude de 60° S. Ces deux aires correspondent res
pectivement aux anciennes aires arctiques et subarctiques, ou antarctiques e
sub an tare tiques.
aire tempérée :
L’aire tempérée froide va des latitudes 60° N ou S aux latitudes 48° N ou S
elle correspond, pro parte, aux zones boréales et aux zones tempérées Nord oi
Sud. L’aire tempérée chaude va des latitudes 48° N ou S aux latitudes 25° N ot
S; elle correspond, pro parte, aux zones tempérées Nord ou Sud ainsi qu’au.'
zones tempérées tropicales. Cette subdivision en 2 zones tempérées froide ei
DIATOMÉES MARINES DE TIAHURA
345
chaude est plus particulièrement applicable aux mers européennes,
aire intertropicale :
L’aire intertropicale englobe les tropiques du Cancer et du Capricorne et s’étend
de la latitude 25 N à la latitude 25 S; cette aire recouvre les anciennes zones
équatoriales, tropicales équatoriales, tropicales, ainsi qu’une partie des zones
tempérées tropicales.
Cette division en quatre zones est arbitraire dans la mesure où elle ne tient pas
compte des courants marins et des convergences océaniques pas plus que des
formes de transition entre ces différentes aires, mais permet la distinction entre
les taxons endémiques et les taxons cosmopolites. Cette distinction n’est pas
réalisée pour les répartitions qui font intervenir les formes de transition, qu’elles
soient subtropicales, subantarctiques ou subtempérées. Sans nier l’existence des
formes de transition entre les différentes aires de répartition, nous considérons
qu’une espèce de transition peut être classée comme appartenant en propre aux
deux aires.
Pour chaque taxon nous avons fait une compilation des différents lieux de
récolte en nous attachant plus particulièrement aux auteurs ayant travaillé dans
les eaux intertropicales des trois océans. Citons plus particulièrement SUBRAH-
vlANYAN (1946, 1958 a et b), SUBRAHMANYAN et SARMA (1960), WOOD
1961 a et b, 1963 a et b) pour l’océan Indien, SILVA (1956, 1960), SOURNIA
1966, 1968 a et b), TRAVERS et TRAVERS (1965), ANGOT (1966) pour
Madagascar et le canal de Mozambique, REYSSAC (1966 a et b) pour la Côte
i’Ivoire, ALLEN (1937), ALLEN et CUPP (1938), CUPP (1943) pour la côte
:st des Etats-Unis, GILMARTIN et REVELANTE (1974) pour les Iles Hawaii,
l)ESROZIERES (1969) et HASLE (1959, 1960) pour le Pacifique équatorial.
. CALCUL DES FREQUENCES DES ESPECES
Sur la liste taxinomique sont indiquées les fréquences respectives de chaque
axon pour les récoltes réalisées dans les lagons, en haute mer et en eau douce,
^a fréquence s’exprime en pourcentage et correspond au rapport entre le nombre
les individus d’un même taxon et le nombre total des individus observés dans
a récolte (REYNAUD-BEAUVERIE 1936). La fréquence s’oppose à l’abon-
lance qui est une notion d’appréciation quantitative qui s’exprime en degrés
d’abondance allant de 1 à 5.
La fréquence de chaque taxon a été calculée après un comptage effectué sur
1000 individus dénombrés sur 4 lames différentes pour remédier le plus possible
à une répartition non homogène des diatomées sur la préparation. Il apparaît
expérimentalement qu’il est nécessaire de compter un certain nombre d’indi¬
vidus pour obtenir des fréquences stables : au-delà de 500 individus dénombrés,
les fréquences se stabilisent et se répètent si plusieurs comptages sont effectués
sur une même récolte, alors que pour des valeurs inférieures ces fréquences
oscillent largement. Pour des facilités de calcul et d’écriture nous avons compté
Source : MNHN. Paris
346
M. RICARD
1000 individus par récolte.
Les fréquences indiquées correspondent aux fréquences cumulées des taxons
inventoriés dans tous les lagons de Tahiti et de Moorea, soit 115 récoltes. Nous
n’avons pas pris en considération les populations des lagons des îles sous le vent
en raison du faible nombre de récoltes.
Nous avons choisi 3 écarts de pourcentage pour définir les fréquences suivan¬
tes :
Très fréquent
Fréquent
Rare
Absent
50 à 100 % TF
10 à 50% F
Oà 10% R
0% (-)
III. RESULTATS
a. COMPOSITION TAXINOMIQUE
L’inventaire qualitatif compte 235 taxons dont 67 diatomées centriques et
168 diatomées pennées qui se répartissent ainsi (cf. Annexe) :
- 69 taxons cosmopolites
- 88 taxons tempérés tropicaux
- 33 taxons tropicaux
- 34 taxons tempérés signalés pour la première fois en milieu tropical
- 2 taxons arctiques et/ou antarctiques
Les diatomées tropicales endémiques représentent 14% de la population glo¬
bale, les diatomées cosmopolites 30% et les diatomées tempérées tropicales 36%.
Ces valeurs correspondent à celles trouvées par SOURNIA à Tuléar (1968) : 11%
de diatomées tropicales endémiques, 33% cosmopolites et 35% tempérées tropi¬
cales.
La répartition des taxons dans le lagon et l’océan est la suivante :
- 111 taxons (52 centriques et 59 pennées) peuplent à la fois le lagon et
l’océan, soit 48% du total.
- 109 taxons (7 centriques et 102 pennées) sont récoltés uniquement dans le
lagon, soit 47% du total.
- 14 taxons (12 centriques et 2 pennées) se trouvent seulement dans l’océan,
soit 5% du total.
Cette répartition met en évidence la prépondérance des diatomées benthiques
dans les eaux du lagon, mais également la forte influence des eaux océaniques
qui se traduit par la présence, dans le lagon, de diatomées planctoniques et plus
particulièrement de diatomées centriques.
La comparaison entre les populations de Moorea et de Tahiti (RICARD 1970
a et b, 1974, 1975 a et b) accuse la différence de composition qualitative des
deux populations : à Tahiti, la part des diatomées pennées représente 84% de la
DIATOMÉES MARINES DE TIAHURA
347
population globale du lagon alors qu’à Moorea elle n’atteint que 73%; inverse¬
ment, la composition du plancton océanique est la même pour les deux îles à
proximité de la barrière récifale : 50% de diatomées centriques et 50% de diato¬
mées pennées. D’autre part la diversité spécifique est plus grande dans les lagons,
227 taxons ont été dénombrés à Moorea et 491 à Tahiti, que dans les prélève¬
ments réalisés à l’extérieur de la barrière, 125 taxons seulement ont été dénom¬
brés à Moorea et 144 à Tahiti où les récoltes ont été pourtant dix fois plus nom¬
breuses.
b. COMPOSITION QUALITATIVE
Les comptages cellulaires au microscope inversé font apparaître une extrême
pauvreté numérique du phytoplancton : 1500 à 5600 cellules par litre dans le
lagon et 1100 à 2200 cellules par litre dans l’océan. Dans le lagon de Vairao
(Tahiti) les valeurs sont légèrement supérieures mais indiquent également une
plus forte densité par rapport à l’océan :
La majorité des cellules récoltées dans le lagon appartiennent aux diatomées
pennées et aux dinoflagellés cuirassés ou nus, ces deux groupes étant spécifique¬
ment très diversifiés. L’essentiel de la biomasse apparaît constitué de flagellés, en
particulier des Coccolithophoridés, et d’algues unicellulaires qui forment le
îannoplancton. Leur présence est mise en évidence par des mesures de produc¬
tivité primaire s’adressant à des échantillons d’eau filtrée ne contenant plus
^ue des cellules de dimensions inférieures à 30 /im : la productivité de ces
ellules représente 80% de l’activité photosynthétique totale (SOURNIA et
RICARD 1976).
. PARAMETRES PHYSICO-CHIMIQUES
Au cours des mois de juillet 1974 et août 1975, les valeurs des principaux
paramètres physico-chimiques ont été les suivantes :
T° (1)
S %o
NO 3 (2)
PO 4 (2)
Si0 4 (2)
O 2 dissous l 1 )
dans le lagon
24° à 26° C
36 à 38 %o
0.18 à 0.32
0.18 à 0.21
2.02 à 2.70
5.72 à 7.22 ml/l
- dans l’océan
25° à 26° C
35 %o
0.16
0.21
2.48
7.77 ml/l
(1) - Les valeurs de la température et de l’oxygène dissous sont les moyennes des valeurs mi¬
nimales et maximales relevées au cours de la période diurne.
(2) - les valeurs indiquées sont en /Jgr. at/litre de N 2 , P et Si pour les nitrates, phosphates et
silicates.
Source : MNHN. Paris
348
M. RICARD
IV. CONCLUSIONS
L’étude de la composition qualitative et quantitative des récoltes réalisées
dans le lagon de Tiahura (île de Moorea) met en évidence les faits suivants :
-la diversité spécifique des peuplements de diatomées contraste avec la pau¬
vreté numérique du microplancton et met en évidence le rôle prépondérant
du nannoplancton.
- les diatomées récoltées dans les lagons ont peu d’affinité avec le phytoplanc-
ton du large en raison de la prépondérance des formes benthiques : cette forte
opposition entre le phytoplancton de l’océan et le tychoplancton du lagon
caractérise, au même titre que la diversité spécifique, les lagons de Polynésie.
- le rôle de la barrière récifale est prépondérant car, suivant son extension et
l’importance du lagon qu’elle détermine, le pourcentage des diatomées plancto-
niques et benthiques reflète le degré des influences océaniques : à Tiahura
(Moorea) le lagon est moins développé qu’à Vairao (Tahiti) et les diatomées
planctoniques sont mieux représentées dans les récoltes du lagon.
- les taxons tropicaux endémiques sont peu nombreux par rapport aux taxons
cosmopolites ou tempérés tropicaux, mais leur taux semblerait constant dans les
récoltes côtières de l’océan Pacifique et de l’océan Indien.
BIBLIOGRAPHIE
ALLEN, W. E., 1937 — Plankton diatoms of the gulf of California obtained by the G. Allan
Hancock Expédition of 1936. Hancock Pacific Exp., Scripps Instit., Océanogr.3, 4 :
47-59.
ALLEN, W. E., 1938 - Id. Ibid. 3, 5 : 61-98, 15 pl.
ANGOT, M., 1961 — Vie et économie des mers tropicales. Payot Ed., Paris : 1-326, 26 fxg.
ANGOT, M., 1966 —Le phytoplancton de surface pendant l’année 1964 dans la baie
d’Ambaro près de Nossy-Be. Cah. ORSTOM , Océanogr. 3, 4 : 5-18.
CUPP, E. E., 1943 — Marine plankton diatoms of the west coast of North America. Bul.
Scripps Instit. Océanogr. 5, 1 :1-238, pl. 1-5, 168 text fig.
DESROZIERES, R., 1969 — Surface macrophytoplankton of the Pacific océan along the
Equator. Limnol. Océanogr. 14, 4 : 626-632.
GILMARTIN, M., et REVELANTE, N., 1974 - The «Island Mass» effect on the phyto
plankton and primary production of the Hawaian Islands. J. Exp. Marine Biol. Ecol.
16 :181-204.
HASLE, G. R., 1959 — A quantitative study of phytoplankton from the équatorial Pacific.
Deep-Sea Res. 6 : 38-59.
HASLE, G. R., 1960 — Phytoplankton and ciliate species from the tropical Pacific. Skr.
Norske Vid. Ak. Oslo, I : Mat. Naturv. Kl 2 : 1-50.
HENDEY, N. I., 1937 — The plankton diatoms of the Southern seas. Discovery Rep. 16
DIATOMÉES MARINES DE TIAHURA
349
1-151.
KARSTEN, G., 1907 — Das indische Phytoplankton nach dem Material der deutschen
Tiefsee-Expedition, 1898-99. Wiss. Ergebn. Dtsch. Tiefsee-Exp. «Valdivia», 1898-99,
II, 2 : 221-544, Taf. 35-54.
REYNAUD-BEAUVERIE, M. A., 1936 — Le milieu et la vie en commun des plantes.
Encyclopédie Biologique, P. Lechevallier Ed. : 1-237.
REYSSAC, J., 1966 a — Quelques données sur la composition et l’évolution annuelle du
phytoplancton au large d’Abidjan (mai 1964-mai 1965). ORSTOM, Doc. Scient, prov.
003 : 1-31.
REYSSAC, J., 1966 b —Diatomées et Dinoflagellés des eaux ivoiriennes pendant l’année
1965 .ORSTOM, Doc.Scient, prov. 010 :1-22.
RICARD, M., 1970 a — Premier inventaire des diatomées et des dinoflagellés du plancton
côtier de Tahiti. Cah. Pacif. 14 : 245-254, 2 pl.
RICARD, M., 1970 b - Observations sur les diatomées du genre Ethmodiscus Castracane.
Rev. Algol. N. S. X, 1 : 56-73, 4 pl.
RICARD, M., 1974 —Etude taxinomique des diatomées marines du lagon de Vairao.
I. Le genre Mastogloia. Rev. Algol., XI (1-2) : 161-178, 4 pl.
RICARD, M., 1975 a — Ultrastructure de quelques Mastogloia (diatomées benthiques)
marines d’un lagon de Tahiti. Protistologica XI, 1 : 49-60, 4 pl.
RICARD, M., 1975 b — Quelques diatomées nouvelles de Tahiti décrites en microscopie
photonique et électronique à balayage. Bull. Mus. Hist. Nat. Bot. 23, 326 : 201-229,
4 pl.
SILVA, E. S., 1956 — Contribuçao para o estudo do microplancton marinho de Mozam¬
bique./fa. Invest. Ultramar, Est. Ens. Doc. 28 : 1-97, pl. 1-14.
SILVA, E. S., 1960 — O microplancton de superficie nos meses de Setembro e Outubro na
estaçao de Inhaca (Mozambique). Trabhs Cent. Biol. pisc. Lisboa 28 :1-56, pl. 1-25.
SOURNIA, A., 1966 — Premier inventaire du phytoplancton littoral de l’île Maurice. BuL
Mus. Nat. Hist. Nat. Paris, 2e sér. 37, 6 : 1046-1050.
SOURNIA, A, 1968 a—Diatomées planctoniques du canal de Mozambique et de l’île
Maurice. Mém. ORSTOM 31 : 1-120, 13 pl.
iOURNIA, A., 1968 b — Quelques données nouvelles sur le phytoplancton marin et la
production primaire à Tuléar (Madagascar). Hydrobiologia 31, 3-4 : 545-560.
SOURNIA, A., 1969 — Cycle annuel du phytoplancton et de la production primaire dans les
mers tropicales. Marine Biol. 3, 4 : 287-303.
SOURNIA, A., 1970 — A checklist of planktonic diatoms and dinoflagellates from the
Mozambic channel. Bull. Mar. Sci. 20, 5 : 678-696.
SOURNIA, A., et RICARD, M., 1976 — Phytoplankton and its contribution to primary
productivity in two coral reef areas of French Polynesia. Micronesica 11, 2 :159-166.
STEEMANN-NIELSEN, E., 1939 — Die Ceratien des Indischen Ozeans. Dana Rep. 17 :
1-33.
SUBRAHMANYAN, R., 1946 — A systematic account of the marine plankton diatoms of
the Madras Coast .Proc. Indian Ac. Sc., sec. B 24, 4 : 85-197.
SUBRAHMANYAN, R., 1958 a — Phytoplankton organisms of the Arabian sea of the west
coast of India./. Indian Bot. Soc. 35, 4 : 431-441.
SUBRAHMANYAN, R., 1958 b — Ecological studies on the marine phytoplankton of the
west coast of India. Mem. Indian Bot. Soc. 1 : 145-151.
SUBRAHMANYAN, R., et SARMA, A. H. V., 1960 — Studies on the phytoplankton of
350
M. RICARD
the west coast of India. III. Seasonal variation of the phytoplankters and environmental
factors. Indian J. Fish. VII : 307-336.
TRAVERS, A., et TRAVERS, M., 1965 - Introduction à l’étude du phytoplancton et des
Tintinnides de la région de Tuléar (Madagascar). Rec. Tr. Stn. Mar. Endoume 26, 41 :
7-139.
UTERMOEHL, H., 1958 -Zur Vervollkommung der quantitativen Phytoplankton Metho-
dik. Mitt. Int. Ver. LimnoL 9 :1-38.
WOOD, E. J. F., 1961 a — Studies on Australian and New Zealand diatoms. IV. Descrip¬
tions of further sedentary species. Trans. R. Soc. N. Z. 88, 4 : 669-698, pl. 50-56.
WOOD, E. J. F., 1961 b —Id. V. The Rawson collection of recent diatoms. Ibid. 88, 4 :
699-712, pl. 50-56.
WOOD, E. J. F., 1963 a — Checklist of diatoms recorded from the Indian océan. CSIRO,
Div. Fisf. Oceanogr. Rep. 36 :1-311.
WOOD, E. J. F., 1963 b — Studies on Australian and New Zealand diatoms. VI. Tropical
and subtropical species. Trans. R. Soc. N. Z., Bot. 2, 15 :199-218, pl. 1-4.
DIATOMÉES MARINES DE TLAHURA
351
ANNEXE : LISTE DES TAXONS RÉCOLTÉS A TIAHURA
Diatomées Centriques Distribution Répartition
Lagon
Océan
Mondiale
Actinocyclus ehrenbergii Ralfs
TF
R
C
Actinocyclus ehrenbergii var. tenella (Breb.) Hust.
F
R
C
Actinocyclus subtilis (Greg.) Ralfs
TF
R
C
Actinoptychus senarius (Ehr.) Ehr.
F
R
C
Actinoptychus splendens (Shadb.) Ralfs
R
R
C
Actinoptychus undulatus (Bailey) Ralfs
F
R
C
Arachnoidiscus ehrenbergii Bailey ex Ehr.
F
T, t
Asterolampra marylandica Ehr.
TF
F
T, t
Aulacodiscus kittoni var. africana (Cottam) Rattray
F
R
T, te
Auliscus coelatus Bailey
R
T, te
Auliscus sculptus (Wm. Smith) Ralfs
F
T, t
Bacteriastrum delicatulum Cleve
F
TF
T, t
Biddulphia aurita (Lyngb.) Bréb.ex Goddart
TF
R
C
Biddulphia pulchella Gray
R
T, t
Biddulphia reticulata Roper
TF
R
T, te
Biddulphia rhombus (Ehr.) Wm. Smith
R
F
C
Biddulphia titiana (Grunow) Grunow
F
T, te
Biddulphia tuomeyi (Bailey) Roper
F
T
Cerataulus turgidus (Ehr.) Ehr.
R
T, t
Ghaetoceros atlanticum Cleve
R
TF
C
Chaetoceros compressum Lauder
R
TF
C
Chaetoceros curvisetum Cleve
TF
TF
C
Chaetoceros messanense Castracane
F
TF
T, te
Chaetoceros peruvianum Brightwell
R
R
C
Chrysanthemodiscus floriatus Mann
TF
R
T, te
Climacodinium frauenfeldianum Grunow
TF
T, te
Corethron criophilum Castracane
R
C
Coscinodiscus centralis Ehr.
R
R
C
Coscinodiscus centralis var. pacificus Gran & Angst
F
T, t
Coscinodiscus concavus Ehr.
R
T, te
Coscinodiscus excentricus Ehr.
R
F
C
Coscinodiscus jonesianus (Grev.) Ostenfeld
R
T, t
Coscinodiscus marginatus Ehr.
R
R
C
Coscinodiscus nitidus Gregory
TF
F
C
Coscinodiscus nodulifer A. Schmidt
F
F
C
Cyclotella meneghiniana Kützing
R
R
c
Ditylum brightwelli (West) Grunow
F
F
T, t
Ethmodiscus appendiculatus (Grunow) Ricard
TF
F
T
Ethmodiscus gazellae (Janish) Hustedt
R
R
T, t
Endictya oceanica Ehr.
F
R
C
Fréquences dans le lagon (col. 1) et dans l’océan
R : rare; (-) : absent.
(col. 2) : TF
: très fréquent; F : fréquent;
Répartition mondiale (col. 3) : C : cosmopolite; T : intertropical; t : tempéré; te : tempéré
chaud; tf : tempéré froid; A : arctique et/ou antarctique.
352
M. RICARD
Eucampia zoodiacus Ehr.
Hemiaulus hauckii Grunow R
Hemiaulus sinensis GreviUe F
Hemidiscus cuneiformis Rattray F
Hyalodiscus laevis Ehr. R
Leptocylindrus danicus Cleve R
Melosira dubia Kützing R
Melosira sol (Ehr.) Kützing R
Planktoniella sol (Wallich) Schütt
Podosira hormoides (Montagne) Kützing
Podosira stelliger (Bailey) Mann F
Rhizosolenia alata Brightwell/a alata R
Rhizosolenia hebetatafa semispina (Hensen) Gran R
Rhizosolenia imbricata Brightwell/a imbricata F
Rhizosolenia imbricata var. shrubsolei (Cleve) Schrôder F
Rhizosolenia setigera Brightwell R
Thalassiosira excentrica Cleve R
Thalassiosira hyalina (Grunow) Gran F
Triceratium alternans Bailey R
Triceratium calvescens Castracane TF
Triceratium dubium Brightwell F
Triceratium favus fa quadrata Grunow
Triceratium formosum Brightwell fa formosum TF
Triceratium formosum fa quadrangulare (Greville)
Hustedt F
Triceratium réticulum fa hexagonale Ricard F
Triceratium shadboltianum Greville TF
Triceratium spinosum Bailey F
Diatomées pennées
Achnanthes brevipes Agarth F
Achnanthes brevipes var. angustata (Kütz.) Cleve F
Achnanthes citronella (Mann) Hustedt R
Achnanthes longipes Agardh R
Achnanthes rhombica Oestrup TF
Amphiprora alata (Ehr.) Kützing F
Amphiproragigantea vai.sulcata (O’Meara) Cleve R
Amphora acuta var. arcuata (A. Schmidt) Cleve F
Amphora angularis Gregory F
Amphora angustata var. ventricosa (Gregory) Cleve F
Amphora bigibba Grunow R
Amphora cingulata Cleve F
Amphora coffeaeformis (Agardh) Kützing F
Amphora crassa Gregory var. crassa F
Amphora dubia Gregory F
Amphora egregia Ehr. R
Amphora exigua Gregory R
Amphora granulata var. bigibbosa Ricard R
Amphora mexicana A. Schmidt var. mexicana TF
Amphora obtusa Gregory var. obtusa TF
F
F
F
F
R
F
R
F
F
R
F
F
R
R
R
F
R
R
F
R
R
R
R
R
R
R
R
R
R
F
R
R
C
T, t
T, te
T, te
C
C
C
C
T, t
C
C
C
C
C
T, t
t
T, t
C
C
T, t
T, te
T, t
T, t
T, t
T
T, te
C
C
T
t
T, t
T, t
T, t
T, te
t
C
T, t
T, te
C
C
T, t
T, te
T, t
T
T
T, t
Source: MNHN, Paris
DIATOMÉES MARINES DE TIAHURA
353
Amphora obtusa var. rectangubta Peragallo F
Amphora ostrearia Bréb. ex Kütz. var. ostrearia F
Amphora staurophora (Castracane) Cleve R
Asterionella glacialis Castracane F
Asterionella notata Grunow R
Auricula complexa (Gregory) Cleve F
A uricula insecta (Grunow) Cleve F
Bacillaria paradoxa Gmelin F
C aloneis bacillum (Grunow) Meereschkowsky R
Cabneis liber (Wm Smith) Cleve F
Cabneis silicub (Ehr.) Cleve R
Campylodiscus biangubtus Grevilla R
Campybdiscus incertus A. Schmidt TF
Campybdiscus innominatus Ross et Abdin F
Campybdiscus btus Shadbolt TF
Campybdiscus ralfsii Wm Smith F
Campybdiscus wallichianus Greville F
Climacosphenia elongata Bailey F
Climacosphenia moniligera Ehr. TF
Cocconeis britannica Naegeli TF
Cocconeis heteroidea Hantzsch var. heteroidea TF
Cocconeis pellucida Hantzsch TF
Cocconeis pbcentub Ehr. var .pbcentub F
Cocconeis scutellum Ehr. var. scutellum R
Cocconeis vairaensis Ricard TF
Cylindrotheca cbsterium (Ehr) Reiman et Lewin TF
Oimeregramma dubium (Grunow) Grunow TF
Dimeregramma minor (Gregory) Ralfs F
Dipbneis bomboides (A. Schmidt) Cleve TF
Diploneis bombus Ehr. var. bombus TF
Dipbneis chersonensis (Grunow) Cleve F
Dipbneis crabro (Ehr.) Ehr. var. crabro F
Dipbneis coffaeiformis (A. Schmidt) Cleve TF
Dipbneis debyi (A. Schmidt) Cleve F
Dipbneis fusca (Gregory) Cleve var .fusca F
Diploneis smithii (Bréb.) Cleve TF
Dipbneis suborbicubris (Gregory) Cleve R
Dipbneis vacilbns var. renitens (A. Schmidt) Cleve R
Grammatophora gibberub Kützing R
Grammatophora hamulifera Kützing TF
Grammatophora oceanica Ehr. var. oceanica TF
Grammatophora undubta Ehr. F
Gyrosigma balticum (Ehr.) Rabenhorst TF
Gyrosigma ebgans Ricard TF
Gyrosigma infbtum Ricard TF
Gyrosigma gibbosum Ricard TF
Gyrosigma spenceri (Wm Smith) Griffith et Henfrey F
Hydrosilicon mitra Brun F
Licmophora ehrenbergii (Kütz.) Grunow F
Licmophora ehrenbergii fa angustata (Grun.) Grun. F
Licmophora mediterranea Meereschkowsky R
R
R
R
R
R
F
F
R
F
R
R
R
R
F
R
R
R
T, te
C
C
T, t
T, t
T, t
C
t
C
tf
T, te
T, te
t
T, te
T, t
T, te
T, t
T, t
T, t
T
T, t
C
C
T
C
T, te
t
C
C
C
C
t
T, te
t
C
T, t
T
T, t
C
T,t
T
T, t
T
T
T
te
T
t, A
t
te
Source : MNHN, Paris
354
M. RICARD
Licmosphenia clevei Meereschkowsky R
Licmosphenia peragalli Meereschkowsky R
Mastogloia achnanthiodes Mann F
Mastogloia affirmata (Leuduger et Fortmorel) Cleve R
Mastogloia aspera var. crassa Ricard F
Mastogloia asperuloides var. angustatissima Ricard F
Mastogloia baldjickiana Grunow TF
Mastogloia binotata (Grunow) Cleve TF
Mastogloia citrus Cleve TF
Mastogloia composita Voigt F
Mastogloia corsicana Grunow TF
Mastogloia decussata Grunow F
Mastogloia erythrea Grunow F
Mastogloia fimbriata (Brightwell) Cleve TF
Mastogloia horvathiana Grunow TF
Mastogloia inaequalis Cleve F
Mastogloia kjelmanii Cleve F
Mastogloia punctatissima (Greville) Ricard R
Mastogloia quinquecostata Grunow F
Mastogloia schmidtii Heiden et Kolbe R
Mastogloia undulata Grunow F
Navicula clavata Gregory F
Navicula cancellata Donkin R
Navicula cryptocephala Kützing var. cryptocephala F
Navicula cyprinus (Wm Smith) Boyer TF
Navicula directa var. remota Cleve F
Navicula granulata Bailey TF
Navicula grevilleoides Hustedt F
Navicula longa (Gregory) Ralfs TF
Navicula lyra fa typica A. Schmidt R
Navicula lyroides Hendey F
Navicula marina Ralfs F
Navicula perobesa A. Schmidt TF
Navicula perrhombus Hustedt F
Navicula plicatula Grunow F
Navicula pseudony Hustedt F
Navicula rhombica Gregory R
Navicula robertsiana fa typica Hustedt TF
Nitzschia acuta Cleve R
Nitzschia amphibia Grunow R
Nitzschia angularis Wm Smith F
Nitzschia constricta var. bombiformis Grunow TF
Nitzschia delicatissima Cleve F
Nitzschia distans Gregory F
Nitzschia graeffii Grunow F
Nitzschia majuscula Grunow TF
Nitzschia maxima Grunow F
Nitzschia panduriformis Gregory F
Nitzschia seriata Cleve R
Nitzschia sigma (Kütz.) Wm. Smith var. sigma F
Nitzschia sigma var. intercedens Grunow F
R
R
R
F
F
R
R
F
F
R
R
te
T
T
T
T
T, t
T, t
T, te
T
T, te
T
T, te
T
T, te
T, t
T, te
T, t
T
T, te
T, te
C
t, A
t
t, A
C
C
T, te
t
T, t
T, t
te
T
T
T, te
T, te
T, t
T
T, t
C
C
T, te
T, t
C
C
C
C
Source : MNHN. Paris
DIATOMÉES MARINES DE TIAHURA
355
Nitzschia spathulata Brébisson F
Nitzschia ventricosa Palmer TF
Opephora pacifica (Grunow) Petit F
Plagiogramma atomus Greville F
Plagiogramma interruptum (Gregory) Ralfs R
Plagiogramma staurophorum (Greg.) Heiberg TF
Pleurosigma angulatum (Quekett) Wm Smith F
Pleurosigma décorum Wm Smith R
Pleurosigma formosum Wm Smith F
Pleurosigma itium Ricard R
Pleurosigma longum Cleve F
Pleurosigma rigidum Wm Smith TF
Pleurosigma tahitianum Ricard R
Podocystis adriatica (Kütz.) Ralfs R
Podocystis spathulata (Shadbolt) Van Heurck TF
Progonaia musca (Gregory) Schrader F
Pseudoeunotia doliolus (Wallich) Grunow R
Rhabdonema adriaticum Kützing TF
Rhabdonema punctatum (Harvey et Bailey) Stodder
ex Boyer R
Rhaphoneis amphiceros var. tetragona Grunow F
Rhoicosigma antillarum Cleve TF
Sceptroneis peragalli (Leud et Fort.) Meister F
Stauroneis polynesiae (Brun) Hustedt TF
Stauroneis salina Wm Smith F
Surirella fastuosa Ehr. . fastuosa TF
Surirella fastuosa var. cuneata (A. Schmidt) Per. TF
Surirella martensiana (Grun.) Peragallo F
Surirella reniformis Peragallo F
Synedra crystallina (Ag.) Kütz. var. crystallina TF
Synedra laevigata Grunow var. laevigata TF
Synedra robusta Ralfs R
Synedra ulna (Nitzsch) Ehr. F
Synedra undulata Bailey TF
Synedrospheniagomphonema (Jan. et Rab.) Hustedt F
Thalassionema nitzschioides Grunow R
Thalassiotrix frauenfeldii Grunow
Thalassiotrix mediterranea var. pacifica Cupp
Trachyneis aspera (Ehr.) Cleve var. aspera TF
Trachyneis velatoides Ricard F
Tropidoneis lepidoptera (Greg.) Cl. var. lepidoptera TF
Tropidoneis maxima var. subalata Cleve F
Tropidoneis maxima (Gregory) Cleve TF
R
R
R
R
F
F
R
R
R
F
R
R
F
F
R
R
R
R
R
F
F
F
R
R
F
R
F
C
T, te
T
T, te
T, te
C
t
C
c
T
t, A
T, t
T
T, t
T, te
C
T, te
C
T, te
T
T
T
T
t
T, t
t
T
T, te
t
T, te
T, te
C
T, te
T, te
C
C
te
T, t
T
T, t
T, t
T,t
Source : MNHN, Paris
357
ANALYSES BIBLIOGRAPHIQUES
P. BOURRELLY
BOURRE LLY, P. - Quelques algues d’eau douce de Guinée. Bull. Mus. Nat.
Hist. Nat. 3e sér., n° 276, Bot. 20 : 1-72, 11 pl.
L’étude de quelques récoltes de Guinée permet de reconnaître 220 taxons
d’algues d’eau douce (Diatomées exclues). Les Desmidiées, avec 144 taxons sont
les formes dominantes. Cinq nouveautés des genres Euastrum, Micrasterias, Stau-
rodesmus, et Staurastrum sont décrites. L’élément tropical est représenté par 80
taxons. Des notes de systématique critique et une abondante iconographie com¬
plètent ce travail.
CASPER, S.J. - Grundzüge eines natürlichen Systems der Mikroorganismen. G.
Fischer Ed., Iena, 1974, 1 vol., 1-232, 42 fig., 34 tabl.
Dans ce volume d’une conception très originale, l’auteur fait une synthèse de
nos connaissances sur les organismes microscopiques végétaux et animaux : c’est-
à-dire les Bactéries, les Algues, les Champignons, les flagellés incolores, les Proto¬
zoaires. Il étudie 28 exemples types et s’attache particulièrement à l’ultrastructu-
re des flagelles et à la cytologie fine des organismes.
Il aboutit ainsi à une classification très proche de celle qui est actuellement
admise mais avec une terminologie de Zoologiste, et non de Botaniste.
Ce livre, sous une forme réduite, présente une documentation extraordinaire.
La bibliographie occupe 26 pages, elle est très complète, avec cependant quel¬
ques petites lacunes sur les procaryotes. Même si on ne partage pas les concep¬
tions de l’auteur, cet ouvrage rendra de grands services : c’est une véritable mine
de renseignements. Citons particulièrement les 34 tableaux qui résument, de fa¬
çon très didactique, les caractères des Microorganismes (pigments, réserves, types
des plastes, type de flagelles, etc...).
Grâce à cet ouvrage, le lecteur aura une vue d’ensemble très précise sur le
monde microscopique et il faut remercier son auteur de nous faire part de son
érudition.
COR1LLION, R. - Flore des Charophytes (Characées) du Massif Armoricain et
des contrées voisines d’Europe occidentale. In Flore et Végétation du Massif
Armoricain, Jouve Ed., Paris, 1975, t. IV, 1 vol. : 1-216, 18 cartes, 16 pl.
Ce volume soigneusement présenté fait partie de la Flore du Massif Armori¬
cain préparée par H. des ABBAYES. Le Massif Armoricain renferme 15 especes
Source : MNHN, Paris
358
BIBLIOGRAPHIE
de Chara, 1 de Lamprothamnion, 1 de Nitellopsis, 10 de Nitella et 6 de Toly-
pella.
De plus l’auteur décrit en appendice les Characées françaises non rencontrées
en Bretagne (1 de Lychothamnus, 1 Nitella, 1 Tolypella) : ainsi le lecteur a, sous
un format pratique, une véritable flore des Charophytes de France. L’ouvrage
n’est d’ailleurs pas simplement une flore, mais une étude simple et très complète
de ces algues. Une trentaine de pages est consacrée aux généralités : écologie, dis¬
tribution géographique, morphologie, cytologie. Les lecteurs non spécialistes ap¬
précieront le glossaire des termes descriptifs particuliers aux Characées. 18 cartes
montrent la distribution des taxons dans le Massif Armoricain. La partie analyti¬
que des espèces, avec des clefs de détermination, figures abondantes, variétés,
écologie, constitue en 120 pages le corps de l’ouvrage. Le lecteur trouvera des
renseignements précis sur le nombre chromosomique, un tableau des caractères
comparés des organes reproducteurs, un abrégé phylogénétique, un historique,
etc.
Cette rapide énumération montre l’intérêt de cet ouvrage, qui est à la fois
simple, précis et complet. Sa présentation très claire, ses illustrations originales,
en font un instrument de travail fort pratique qui fait honneur à son auteur, et
qui permettra à tous les botanistes, même non spécialisés, de pouvoir déterminer
toutes les Characées de la Flore française.
CORILLION, R. et GUERLESQUIN, M. — Recherches sur les Charophycées
d’Afrique occidentale, systématique, phytogéographie et écologie, cytologie,
Bull. Soc. Sc. Bretagne 1972, 47 : 1-169, 18 pl. 23 phot.
Ce mémoire étudie les Characées de Mauritanie, Sénégal, Mali, Côte d’ivoire,
Guinée, Togo et Ghana. Il est composé de trois parties : Systématique, Ecologie
et Phytogéographie, Cytologie.
Dans le chapitre systématique nous trouvons 15 taxons de Chara, et 15 de
Nitella (dont une nouvelle espèce). Toutes les unités systématiques sont décrites
en détail et l’illustration originale est abondante (8 planches et 23 photos).
Dans ce chapitre figurent aussi des précisions sur l’écologie, la phytosociologie
et la distribution géographique. Des clefs de détermination très précises complè¬
tent cette mise au point.
La deuxième partie traite de la phytogéographie et de l’écologie et présente
les associations intertropicales des Characées africaines et leur relation avec les
autres groupements d’hydrophytes. 22 cartes montrent les répartitions africaines
et mondiales des espèces les plus remarquables.
La dernière partie est une étude des nombres chromosomiques de 9 taxons de
Nitella et de 2 de Chara accompagnée de 10 planches et de 3 cartes de réparti¬
tion géographique des diverses lignées chromosomiques.
Une bibliographie très complète, un index, un vocabulaire terminent ce tra¬
vail.
L un des auteurs, R. CORILLION, a déjà publié un ouvrage désormais classi¬
que : «Les Charophycées de France et d’Europe occidentale». Le présent mémoi¬
re le complète en quelque sorte, en l’étendant sur une partie de l’Afrique dont la
végétation charologique était mal connue.
BIBLIOGRAPHIE
359
DROUET, Fr. - Révision of the Nostocaceae with cylindrical trichome (forme-
ly Scytonemataceae and Rivulariaceae). Hafner Press, 1973 : 1-292, 83 fig.
Voici le troisième ouvrage monographique de l’auteur sur les Cyanophycées,
ouvrage encore plus explosif et plus déroutant que les précédents.
Il étudie ici les Nostocales des familles des Scytonematacées, Rivulariacées et
Microchaetacées, et quelques genres des Borzinématacées à trichomes non toru-
leux.
Pour l’auteur, forme du thalle, type de ramification, présence ou absence de
gaines ou d’hétérocystes, sont des caractères sans valeur systématique et sous l’u¬
nique dépendance des conditions du milieu. Le seul critère valable est donné par
la forme de la cellule végétative terminant le trichome. Les coupures génériques
se font ainsi :
1) cellule terminale hémisphérique devenant presque sphérique : Scytonema.
2) cellule terminale d’abord hémisphérique puis conique, obtuse ou cylindrique
à pointe arrondie : Calothrix.
3) cellule terminale d’abord hémisphérique puis plus ou moins conique aigüe :
Raphidiopsis.
Ainsi ce grand ensemble qui groupait jusqu’alors 15 genres et près de 300 es¬
pèces est réduit à 3 genres et 4 espèces.
Le genre monospécifique Scytonema tel qu’il est défini renfermera sous le
nom unique de Scytonema hofmannii aussi bien les Scytonema vrais que les To-
lypothrix, Plectonema sans hétérocyste, les Desmonema, et même les Handeliella
à ramification véritable du type Stigonema. Par contre Scytonematopsis est pla¬
cé dans les Calothrix. Le genre Calothrix avec deux espèces, l’une pour les eaux
douces (C. parietina) et l’autre (C. crustacea) pour les eaux marines, groupe Ri¬
vularia, Aphanizomenon, Microchaete, Aulosira, Homeothrix, Gloeotrichia etc...
Ainsi Rivularia haematites, Gloeotrichia natans, Homeothrix juliana et Anabaena
unispora par exemple appartiennent tous à l’espèce Calothrix parietina. De mê¬
me tous les Rivularia marins, Microchaete grisea, Richelia intracellularis et Kyr-
tuthrix dalmatica portent le même nom de Calothrix crustacea. Quant au genre
monospécifique Raphidiopsis il s’accroît des Anabaenopsis à hétérocystes api¬
caux terminaux coniques et des Aphanizomenon à apex très effilés car l’auteur
indique dans sa diagnose la présence d’hétérocyste, caractère non signale par
FRITSCH et RICH, inventeurs du genre.
L’ensemble de ce travail, solidement documenté par une investigation très
poussée des échantillons d’herbiers du monde entier, bouleverse entièrement la
systématique classique. Malheureusement, à notre avis, il est fondé non sur une
expérimentation convaincante, mais sur le postulat des «écophènes» qu’il faut
accepter sans preuves réelles. Nous n’ignorons pas l’importance du polymor¬
phisme des Cyanophycées et de ses relations avec le milieu, cependant nous n’ad¬
mettons pas sans preuves suffisantes les conclusions de l’auteur pour qui tout est
écophène. Ainsi il est impossible d’admettre que Aphanizomenon flos aquae soit
un Microcoleus vaginatus et que sa variété gracile soit un Calothrix parietina. De
même il est curieux que Microchaete tenera soit un Scytonema tandis que M. gri¬
sea et M. diplosiphon sont deux Calothrix.
Enfin du point de vue nomenclatural nous comprenons mal pourquoi le nom
360
BIBLIOGRAPHIE
Calothrix Agardh 1824 est préféré à celui de Rivularia Roth. 1797 (ou mieux
1802-1806). De même le type de Scytonema nous semble être 5c. myochrous
(Dillwyn 1802) Agardh 1812 et non hofmannii Agardh 1817.
A notre grand regret, nous ne pouvons accepter cette nouvelle nomenclature
qui par sa simplification excessive et arbitraire conduit à donner le même nom à
des organismes très différents et de ce fait rend impossible toute étude floristi¬
que ou écologique. Malgré ces critiques, cet ouvrage rendra de grands services par
sa bibliographie et son index particulièrement exhaustif.
GAYRAL, P. — Les algues, morphologie, cytologie, reproduction, écologie.
Doin Ed., Paris, 1975 : 1-166, 84 fig.
Cet ouvrage, destiné aux étudiants, est un modèle de clarté et de précision.
Dans un texte relativement court, l’auteur fait une synthèse de nos connaissances
sur le grand monde des algues.
Le plan suivi : 1) généralités, avec morphologie, cytologie et reproduction.
2) caractères des grands groupes d’algues.
3) quelques aspects de l’écologie et de la physiologie des algues :
phytoplancton et algues non planctoniques.
montre bien que tout le domaine de l’algologie est abordé.
Un glossaire, un index alphabétique, un tableau synoptique des algues (jus¬
qu’à l’ordre), de nombreux schémas, en font un travail d’une haute valeur, tant
pédagogique que scientifique.
Ce livre qui rendra de grands services aux étudiants et à leurs maîtres, intéres¬
sera aussi les algologues spécialisés car il donne une vue d’ensemble moderne et
bien documentée sur les algues qu’elles soient micro- ou macroscopiques, marines
ou dulçaquicoles.
Cet ouvrage démontre de façon très nette qu’on peut être à la fois bon cher¬
cheur et excellent professeur.
KALBE, L. — Kieselalgen’ in Binnengewàssern. Die neue Brehm Bücherei, 1973
467 :1-206, 37 pl.
L’auteur, diatomiste bien connu, nous donne un petit livre sur les Diatomées
d’eau douce qui est une synthèse très complète de nos connaissances sur ces al¬
gues.
La moitié du livre est consacrée à la structure, la reproduction et l’écologie
des Diatomées. Tous les problèmes posés par l’étude de ces organismes sont
traités, brièvement, mais avec précision. Nous y trouvons aussi bien des rensei¬
gnements sur la préparation, le montage des Diatomées que sur le dessin, la
microphotographie ou le comptage.' La partie écologique de 50 pages renferme
des listes d’espèces caractéristiques hallobiontes et saprobiontes.
La dernière partie donne, suivant la systématique classique, une brève diagno¬
se de chaque genre de Diatomées et est complétée par 465 figures groupées en
37 planches représentant les formes les plus communes. Pour chaque figure, le
nom d’espèce est accompagné de renseignements écologiques. Chaque chapitre
possède une bibliographie très complète. Le livre se termine par un double in¬
dex : matière et noms des espèces.
En conclusion un petit volume, bien documenté, bien présenté, qui est une
BIBLIOGRAPHIE
361
excellente initiation à la connaissance des Diatomées dulçaquicoles.
KOMAREK, J. - The morphology and taxonomy of Crucigenioid algae (Scene-
desmaceae, Chlorococcales). Arch. Protistensk. 1974, 116 : 1-75.
L’auteur présente une étude des Chlorococcales autosporées à cénobes plats
fondée sur le mode de division lors de la formation des autospores.
Grâce à de nombreuses cultures et à l’étude du matériel sauvage, l’auteur re¬
connaît deux grands types de division : 1 - l’orientation de la croix dessinée par
les 4 autospores est identique à celle des 4 cellules du cénobe paternel. 2 - l’o¬
rientation de cette croix lors de l’autosporulation fait un angle de 45 avec les
branches de la croix formée par les cellules du cénobe paternel. Dans le premier
type se place les genres : Tetrastrum, Crucigeniella, Willea, Westella et Tetrachlo-
rella. Dans le deuxième type on trouve : Crucigenia et Hofmania.
L’auteur donne une étude monographique de tous ces genres et une descrip¬
tion de toutes les espèces. Le genre Crucigeniella Lemm. est repris pour les an¬
ciennes espèces Crucigenia rectangularis, lunaris, truncata, apiculata, pulchra,
crucifera et neglecta. De même le genre Willea Schmidle est ressuscité pour Cru¬
cigenia irregularis Wille et Dispora vilheimii Fott. Cet intéressant mémoire pré¬
sente de nombreuses nouvelles combinaisons et donne un aperçu sur la phylogé¬
nie possible de la famille des Scenedesmacées. Une très importante illustration de
102 figures complète cette belle monographie.
LEE, K.W. et BOLD, H.C. - Phycological studies 12. Characium and some Cha-
racium like Algae. Texas Publ. 1974, 7403,: 1-127.
Ce travail très intéressant est fondé sur des cultures d’algues. Les auteurs y
étudient 10 espèces de Characium (dont 8 nouvelles espèces) une nouvelle espèce
de Pseudocharacium à zoospore quadriflagellée, une nov. sp. d'Ankyra à trois
épines, parmi les algues vertes chlorococcales. De plus une Tétrasporale, nouvelle
espèce de Characiochloris , est décrite. Enfin, les auteurs donnent quelques com¬
pléments sur deux Xanthophycées des genres Characiopsis et Pseudocharaciopsis.
Pour chacune de ces espèces on trouve une étude morphologique et taxino¬
mique accompagnée d’une étude physiologique portant surtout sur la nutrition
de ces algues. Signalons aussi le chapitre sur la fixation des zoospores qui montre
que chez quelques espèces de Characium , la zoospore se fixe non par le pôle api¬
cal, mais par le pôle postérieur, après rotation de la cellule accrochée d’abord
par ses flagelles.
L’illustration, très abondante, comprend 223 figures. Malheureusement il s’a¬
git le plus souvent de photographies qui ne permettent pas, comme un bon des¬
sin, d’avoir une idée précise de la morphologie de ces algues.
MARGALEF, R. — Ecologia. Oméga Ed., Barcelona, 1974 : VII-XV, 1-951.
Voilà un livre impressionnant par son volume et par l’ampleur du sujet :
l’écologie. Après un rappel historique sur la naissance de cette discipline, l’auteur
traite l’écologie sous tous ses aspects dans sept chapitres consacrés au milieu, à la
biogéographie, à l’écologie descriptive, à l’écologie trophique, à l’écologie démo¬
graphique, à l’écosystème dans le temps et à l’écosystème dans l’espace. L’ou¬
vrage se termine par un chapitre de synthèse dans lequel l’auteur donne une con¬
clusion pour chacun des chapitres précédents. Chaque chapitre est abondamment
362
BIBLIOGRAPHIE
illustré de planches et de graphiques et se termine par une bibliographie très
complète.
Cet ouvrage est certainement le plus intéressant et le plus complet de tous
ceux qui ont été consacrés, à ce jour, à l’écologie et sera par conséquent d’une
aide précieuse aussi bien aux écologistes avertis que débutants.
MOLLENHAUER, D. — Erstes Internationales Desmidiaceensymposium, Bieber
(Spessart) Sept. 1971. Beih.Nov. Hedwigia 1975, 42 : 1-316.
L’auteur a organisé le premier symposium international sur les Desmidiales, et
il nous présente les comptes-rendus de cette réunion qui groupait 17 spécialistes.
Tous les sujets ont été abordés : nomenclature (ANDRESEN, BICUDO), cycle
de vie (BIEBEL), cytologie et ultrastructure (CHARDARD, DOBBERSTEIN,
GERRATH), sexualité (DUBOIS-TYLSKI, KIES, LENZENWEGER, LIPPERT,
GERRATH), caryologie (KASPRIK), rapport entre ultrastructure des membra¬
nes et systématique (MIX), polymorphisme et systématique (RUZICKA) cultu¬
res synchrones (SCHULLE), sociologie et écologie (TASSIGNY), formation des
Chlamydospores (LHOSTKY). L’organisateur, après une introduction rappelant
le vaste champ d’études offert par les Desmidiées, donne une communication
très documentée sur la phylogénie des Zygnématales. Ce coup d’oeil trop rapide,
suffira cependant à montrer l’intérêt et la richesse de ce beau volume soigneuse¬
ment illustré. Espérons et souhaitons que ce premier symposium aura une des¬
cendance nombreuse et remercions MOLLENHAUER de son initiative.
NOVA SCOTIA RESEARCH FOUNDATION - Selected bibliography on algae.
Nov. Scotia res. Found. Darthmouth 1973, 14 : 1-200.
Voici, malheureusement, le dernier fascicule de cette intéressante publication
bien connue de nos lecteurs. Ce dépouillement bibliographique est fort bien fait,
les travaux principaux y sont cités et signalons la part importante qui est don¬
née à la «pratique», cultures des algues, utilisations médicales, alimentaires, in¬
dustrielles, etc... dont la bibliographie est souvent négligée.
STARMACH, K. — Cryptophyceae, Dinophyceae, Raphidophyceae. Flora Slod-
kowdna Polski 1974, 4 :1-519.
Voici le 12e volume de l’œuvre monumentale du Pr. STARMACH. Il offre les
mêmes qualités de présentation et de clarté que les précédents. Dans les trois
grands groupes étudiés, une série de clefs dichotomiques permet d’arriver à l’es¬
pèce. Pour chaque espèce la diagnose est complétée par une ou plusieurs figures
et par la répartition géographique. Une bibliographie accompagne chaque grou¬
pe. La systématique suivie est celle de notre ouvrage (Algues d’eau douce, 3,
1970).
Signalons que l’auteur indique quelques espèces de la Baltique (parmi les Di-
nophycées). L’illustration très abondante, 643 figures, rendra de grands services
au lecteur ignorant la langue polonaise.
TUPA, D.D. — An investigation of certain Chaetophoralen Algae. Beih. Nov.
Hedwigia 1974, 46 :1-V, 1-155, 291 fig.
Cet important travail est consacré à la systématique de certaines Chlorophy-
cées Chaetophorales d’eau douce. L’auteur, uniquement à l’aide de cultures, é-
Source : MNHN, Paris
BIBLIOGRAPHIE
363
tudie de nombreuses espèces des sept genres suivants : Protoderma, Gongrosira,
Pleurastrum, Microthamnion, Pseudendoclonium, Chamaetrichon et Aphano-
chaete. Il s’agit d’algues épiphytes ayant toutes, à l’exception de Microthamnion,
un thalle prostré à leur base. Une série de tableaux met en évidence les caractères
taxinomiques de tous les genres de Chaetophorales ainsi qu’une analyse histori¬
que critique.
L’auteur, avec PRINTZ, place les espèces dulçaquicoles d 'Ulvella parmi le
genre Protoderma. De même le genre Pleurothamnion Borzi est donné comme
synonyme de Gongrosira. Le genre Pleurastrum, très proche de Gongrosira, dont
seul l’aspect piriforme de la zoospore l’en sépare, groupe entre autres les Lepto-
sira à pyrénoïde et le Rheximena paucicellulare. Le nouveau genre monospécifi¬
que, Chamaetrichon, à thalle entièrement prostré, possède des zoospores quadri-
flagellées : c’est la grande différence avec Protoderma. Une étude physiologique
termine ce mémoire.
Ce travail bien documenté rendra de grands services aux systématiciens : l’il¬
lustration photographique, fondée sur des cultures, est fort intéressante, mais il
est dommage qu’elle ne soit pas complétée par une documentation sur le maté¬
riel «sauvage».
vVUTHRICH, M. — Contribution à la connaissance de la flore algologique du
Parc National Suisse : Les Diatomées. Resuit. Rech. Sc. Parc Nat. Suisse
1975, 14,72 :273-369.
Comme le remarque, avec ironie, l’auteur, le guide scientifique du Parc Natio-
îal Suisse (1966) indique que 558 plantes sont connues dans ce parc, avec seule-
nent une dizaine d’espèces d’algues; le guide ajoute : «Si l’on compare la flore
les algues du Parc avec celle des plantes à fleurs, la différence la plus frappante
éside dans le nombre restreint des espèces composant la première, dont quel¬
ques unes seulement ont été citées, comparée à la grande richesse en espèces des
ihanérogames de la région...». L’auteur, après étude d’un petit nombre de sta-
ions, signale, simplement pour les Diatomées, 468 taxons répartis en 36 genres,
îlle décrit 4 taxons nouveaux appartenant aux genres Achnantes, Anomoeoneis
:t Pinnularia. 41 plantes groupant plus de 450 dessins originaux illustrent ce
>eau travail. Le lecteur y trouvera des remarques de systématique critique et des
îotes sur l’écologie et la chimie des eaux. Un beau mémoire dont la finesse des
igures comblera d’aise les Diatomistes.
/ACUBSON, S. — Catalogo e iconografia de las Chlorophyta de Venezuela. Bol.
Centr. investig. biol. Univ. Zulia 1974, 11 : 1-143.
L’auteur qui a déjà publié un catalogue des Cyanophytes du Vénézuéla, (voir
Zev. Alg. XI, 1/2 : 202), nous donne aujourd’hui, avec une illustration de 436 fi¬
gures groupées en 31 planches, la catalogue des 434 Chlorophycées d’eau douce
signalées dans son pays. Les Desmidiacées s’y taillent la part du lion et y occu¬
pent 35 pages du texte et 22 planches. Pour chaque espèce, figure une illustra¬
tion et le lieu des récoltes, ainsi que les auteurs qui ont signalé l’espèce.
Ce travail rassemble ainsi, sous un faible volume, toute l’iconographie consa¬
crée aux Chlorophycées du Vénézuéla. Un excellent ouvrage qui permettra main¬
tenant de prospecter en profondeur ces eaux si riches en algues.
364
BIBLIOGRAPHIE
KOMAREK, J. — Taxonomie review of the généra Synechocystis Sauv. 1892,
Synechococcus Nâg. 1849 and Cyanothece gen. nov. (Cyanophyceae). Arch.
Protistenk. 1976, 118 : 119-179.
A l’aide de matériel «sauvage» pris dans la nature et de culture l’auteur étudie
3 genres de Chroococcales unicellulaires, solitaires le plus souvent. La forme des
cellules et le processus de division permet de séparer :
1 -Synechocystis à cellules globuleuses solitaires se divisant successivement
suivant deux plans perpendiculaires (comme chez Merismopedia).
2 - Synechococcus à cellules allongées, ellipsoïdales ou cylindriques se divisant
toujours par un plan perpendiculaire au grand axe en cellules filles souvent de
taille inégale.
3 - Cyanothece, nouveau genre créé pour les cellules ellipsoïdales, presque glo¬
buleuses, toujours solitaires et se divisant toujours en 2 cellules filles identiques
et suivant un plan perpendiculaire au grand axe.
Synechocystis groupe 17 espèces.
Les genres Rhabdoderma Schm. et Lauterb., Raciborskia Koczw., Romeria
Koczw., Amalia De Toni, Chroobacter Pringsh. et Lauterbomia Pringsh. sont
placés dans le genre Synechococcus Nâg. qui renferme 39 espèces dont certaines
forment de courts filaments irréguliers, d’un petit nombre de cellules, parfois
enrobés dans une gelée homogène. On trouve dans ce genre ainsi défini, entre
autre le célèbre «Anacystis nidulans» dont les cultures ont fait l’objet de nom¬
breux travaux de physiologie et de biochimie.
Enfin le nov. gen. Cyanothece, avec comme espèce type C. aeruginosa (= Sy¬
nechococcus aeruginosus Nâg.) réunit 10 espèces.
Cette étude est une monographie très complète et pour chaque espèce sont
données une diagnose, une répartition géographique et une série de figures.
8 tableaux précisent les caractères des espèces, suivant les différents auteurs.
L’illustration, abondante et soignée, groupe 130 figures où sont toujours repro¬
duites les figures originales des premiers descripteurs.
Nous ferons un petit reproche à ce travail : l’absence de clefs de détermina¬
tion, clefs qui auraient facilité la tâche du systématicien. Un travail remarquable
qui met enfin un peu d’ordre dans un groupe très difficile où les caractères
systématiques sont rares.
SKUJA, H. — Zur Kenntnis der Algen Neuseelândischer Torfmoore. Nov. Act.
Reg. Soc. Sc. Upsal. Ser. V : C, 1976, vol. 2 : 1-159.
Il s’agit d’un mémoire posthume du grand algologue décédé en 1972 et dont
K. THOMASSON a publié la biographie dans la Rev. Algol, vol. 11, 2. L’auteur
étudie les algues microscopiques de quelques tourbières acides de Nouvelle Zé¬
lande : 11 récoltes de l’île du Nord et 8 récoltes de l’île méridionale. Il s’agit
d’un travail systématique portant sur un ensemble de 389 espèces et 64 variétés.
Les Zygophycées (ou Conjuguées) occupent la première place avec 237 taxons,
puis viennent les Diatomées : 104 unités systématiques. Les autres groupes
d’algues sont plus faiblement représentés : 32 Cyanophycées, 9 Euglénophycées,
7 Chrysophycées, 4 Xanthophycées. Comme dans toutes les tourbières acides,
les Chlorococcales, avec 27 espèces, sont peu abondantes.
L’île du Sud avec 445 taxons dépasse largement l’île du Nord : 290 taxons.
BIBLIOGRAPHIE
365
Parmi les Desmidiées, algues préférentielles des eaux acides, le genre Cosmarium
(88 taxons) est dominant; il est suivi par Euastrum (30) et Closterium (30)
puis par Staurastrum (25). Dans les Diatomées, la première place revient à
Pinnularia (24 taxons), puis viennent Eunotia (15), Cymbella (11) et Navicula
(H)-
A côté de nombreuses algues acidophiles des régions tempérées, on rencontre
un élément tropical important surtout parmi les Desmidiées et les Diatomées.
Comme il était facile de le prévoir, les nouveautés systématiques sont nom¬
breuses : nous avons dénombré 16 sp. nov., 21 var. nov. et 2 nov. comb. Ces
taxons nouveaux se rencontrent dans les genres Anabaena, Hormidium, Zygo-
gonium, Zygnemopsis, Zygnema, Closterium, Pleurotaenium, Cosmarium (4 nov.
sp. et 7 var. nov.), Arthrodesmus, Xanthidium, Euastrum, Micrasterias, Stauras¬
trum, Spondylosium, Desmidium et Lagynion. Comme on le voit, là aussi les
Conjuguées tiennent la première place.
L’auteur est peu favorable aux innovations systématiques : ainsi il conserve
le nom d'Hormidium (en citant cependant Chlorhormidium) ; il n’accepte pas le
genre Staurodesmus proposé si heureusement par TEILING, et conserve à Ar¬
throdesmus ses limites anciennes. Il utilise encore Gymnozyga au lieu de Bambu-
sina et Ankistrodesmus pour Monoraphidium...
Cette analyse systématique est accompagnée pour de très nombreux taxons,
de remarques et de commentaires très importants. Ainsi il consacre une longue
discussion au genre Zygogonium et montre clairement que le genre Pleurodiscus
n’est qu’un synonyme du précédent.
Comme pour tous les travaux de SKUJA il faut signaler la beauté, la précision
:t l’abondance des illustrations. Le volume se termine par une série de 16 plan¬
tes vraiment merveilleuses qui groupent près de 300 figures.
Ce mémoire est précédé d’une courte préface biographique écrite par T.
■VILLEN et ornée d’une photographie de SKUJA. Comme tous les ouvrages de
e grand algologue, ce mémoire prendra place parmi les classiques de l’algologie
i’eau douce.
SOUTH, G. R. et CARDINAL, A. - Contributions to the flora of marine algae
of Eastern Canada. 1. Introduction, historical review and key to the généra.
Natural. Canad. 100 : 605-630.
Après un rapide historique de l’algologie marine des côtes de l’Est canadien,
es auteurs, dont l’un a déjà dressé un catalogue des algues benthiques de cette
égion, présentent une clef de détermination des genres de Chlorophycées (37
jen.), Phéophycées (61 gen.) et Rhodophycées (70 gen.) recueillies sur les côtes
anadiennes. Une abondante bibliographie complète cette utile mise au point.
366
TABLE DU TOME XI
ABÉLARD, C. et L’HARDY-HALOS, M. T. — A propos de l’ontogenèse des cladomes
surnuméraires et notamment des cladomes épirhizoïdiens chez quelques Delesseria-
cées (Rhodophycées, Céramiales). 72
AHMAD, M. R. - The effect of gibberellic Acid, Kinetin and Indole-3-Acetic acid on
the growth of blue-green Algae in culture.154
ARCHIBALD, R. E. M. — Obituary : Dr B. J. Cholnoky (1899-1972). 8
BOURRELLY, P. - Einar TEILING (1888-1974). 205
COMPERE, P. - Bourrellyodesmus, nouveau genre de Desmidiacées.339
COÛTÉ, A. — Etude comparative du cycle de Liagora tetrasporifera Bôrg. et du Liagora
distenta (Mert.) C. Ag. en culture.273
CULLINANE, J. P. — Vaucheria on «Coral» ( Lithothamnion) Sand.249
FJERDINGSTAD, E., Bo HOLMA and FJERD1NGSTAD, E. J. - The structure of
Oscillatoria limosa Ag. (Cyanophycea) and the formation of hormogonia and ne-
cridia ).261
GASSE, F. - Ultrastructure de quelques Diatomées centriques fossiles d’Ethiopie
révélée par le microscope électronique à balayage.137
GERSON,U. — The associations of Algae with Arthropods (Ire partie). 18
GERSON, U.-The associations of Algae with Arthropods (2nd part, Addendum) . . . 213
JOHN, D. M. - The marine algae of Ivory Coast and Cape Palmas in Liberia (Gulf
of Guinea. 3Q3
KHAN, M. and MATHUR, A. - Algal flora of the rice-fïelds around Dehradun, India. . 333
KAMAT, N. D. — Life history of Dichotomosiphon tuberosus (A. Br.) Ernst.132
LE CALVEZ, Y. - Georges DEFLANDRE (1897-1973). 209
LEMOINE, M. — Contribution a l’étude du genre Lithoporella (Corallinacées). 42
PARKES, H. M. - The presence of tetrasporangia and carposporophytes on the same
thallus in Pterosiphonia thuyoides .299
RICARD, M. - Etude taxinomique des diatomées marines du lagon de Vairao (Tahiti). 161
RICARD, M. - Premier inventaire des diatomées marines du lagon de Tiahura (île de
Moorea, Polynésie Française). 343
SCHWABE, G. H. — Karl Behre (1901-1972) in memoriam. 15
TAYLOR, Wm. R. - Notes on algae from the Tropical Atlantic océan-VIII. 58
THOMASSON, K. — Prof. Henrichs SKUJA (1892-1972). 3
TSUDA, R. T. — Some marine benthic algae from Pitcairn island.325
YACUBSON, S. - El fïtoplancton de la laguna de San Javier del Valle (Esta Mérida)
Venezuela. q.
Source : MNHN, Paris
367
Table des noms d’Auteurs dont les Travaux sont analysés
dans la Bibliographie
Algological studies, 178
ARCHIBALD, R. E. M., 178
BATKO, A., 179
BODARD, M., 179
BOLD.H.C., 361
BOUK, C. B., 179
BOURRELLY, P., 180, 357
BLUMJ.L., 180
CABIOCH, J., 181
CARDINAL, 365
CARR, N. G., 182
CASPER, S. J., 357
COHEN-BAZIRE, G., 183, 198
CORILLION, R., 357, 358
CRAWFORD, R. M., 186
CROASDALE, H. T., 196
DESCY.J.P., 183
DESIKACHARY, J. V., 184
DODGE, J. D., 184, 185, 186
DRAGANO, S.J., 186
DROUET, F., 359
EDWARDS, M. R., 189
FAY, P., 187
FERRARIO, M. E., 186
FEUILLADE, M., 187
FOGG, G. E., 187
FORSTER, K., 188
FOTT.B., 188
GANTT, E., 189
GASSE, F., 189
GAYRAL, P., 360
GREEN, J. C., 194, 195
GUARRERA, S. A., 189
GUERLESQUIN, M., 358
HEYWOOD, P., 189
HIBBERD, D. J., 190
HORTOBAGYI, T., 191
KADLUBOWSKA, J. Z., 192
KALBE.L., 360
KANN.E., 192, 193, 194
KOMAREK, J., 193, 194, 361, 364
KUNISAWA, R., 198
LEADBEATER, B. S. G., 194
LEE, K.W., 361
LEEDALE, G. F., 190
LOPEZ, F. P., 189
LUDVIK, J., 194
MALACALZA, C., 189
MANDEL, M., 198
MANTON, I., 195
MARGALEF, R., 361
MOLLENHAUER, D., 362
Norvegian Journal of Botany, 195
Nova Scotia Research..., 362
PARKE, M., 195
PRESCOTT, G. W., 196
PROVASOLI, L., 189
REINECKE, P., 196
RINOJ. A., 196
ROOS, R., 197
SCHOEMAN, F. R., 197
SEAGRIFF, S. C., 197
SIMS, P. A., 197
SKUJA, H., 364
SOUTH, G. R., 365
STANIER, R. Y., 198
STARMARCH, K., 198, 362
STARR, R. C., 199
STEINJ.R., 199, 200
STEWARD, W. D. P., 187
Surtsey Island, 200, 201
SWALE, E. M. F., 201
TAKAHASHI, E., 201
THRONDSEN, J., 201
TROUGHTON, S. C., 197
TSCHERMAK-WOESS, E., 202
TUPA, D. D., 362
VINYARD, W. C., 196
WALSBY, A.E., 187, 202
WHITTON, B. A., 182
WUTRICH, M., 363
YACUBSON, S., 171,363
Source : MNHN, Paris