ben
Pre PRE T 23
ZIEH
DBIS Er:
Arten abesenan dr
et bannen ee PREPeBRN
Pre a Re IE ELSE BREI
nenn andern
ee
PORN 2
nur fon pre den En
In ureer en un mente ern tet
Ber
kann
mE ala Een MT
een ade Eve
hang
name Duite EBARS EIN ENESAEENT ER
er nel im
.r PEOFFBEERR EIER TEE A 2
PERONERERER ERROR EDEN TE
init y FOR De Pe
BRRPPRRR ER EIER TUE re Eli Bnciet
F “ arme Kanada tinehr
eins ht re euren st
ea naht Br
PERLE EL ER uns
Fa Lee Ze 2
Kun una en ehren . z ee Fe
Eteiean an anne innen a
Era. Bu emenimen heard © yozs in
ie en nen jr.
ehem nnrel:
nice
En ee
un 36
wen]
arten
Bar
unensien 2
a
Eunsansienn det
FREEPER
ken eninh,
wurde
Le
N ES
Bea IE TE Er
VEEEPEIET
De zu
RAR:
ui entoreh
mnne
Ber
2ER NER
inet ders nur
ad nett
Bersomnnrnengee
Sense
a
Akne
Ehen an ERRR
ner ahnt na ehlik
Varna Bude REN Loef.
Benni ET
Ze
wipze ie I
WRERCDE BER TE
ent nnnr
Karen en een
er
PIRHRBRET IE D5
hm nn sets
ern a
Br 2)
un mnr Una
Bene nd a ränlin
Weruren tue
# wen, Meier
Berner
EREIEE? 5 ?
PRBONEBESEBSECETET TEEN
EEHERTELFELRITE ESEL
NR x
BEE
EUER NEUERE URN
PRLT RZ EEn SENSE DE SE NETTE
BESSERE NEE NE NEN Terere
ESTER REN RE BESSERE HEHE PEST 5 una
er N rejol DENE m nse 1earar nennen aas ns Khnettng aa DA Beenden ke ReAr Mn TaianAn äh een ann ihn een
PERSON EBENE ra Te er REN BENERHESENUEEER BE BERT EEE TEN ELITE BEUTE
a Br ER FIRE UBER B SEE DENE Peer se DE Here SDR WER Sean
REN RER PER RER EROTT DE RSTRCRE PERLE TE DL ELESRNELON FERSEEAULE ZONE ROH IL Hera
nn nn ä BRNERUCRHRRUNDEGRRPÄNENRORRREN BE BES IRUENEE RER DE BE RRERTE NABEERL EEE LE EETRE WERE DE FE NL LLLE NE FE ER ae
RE Se Rec RETTEN Denn nn an angaalen an onarm 28 Ch me Balanere
PRsPFE HERE EGE NEESEE NIE SESERTERRUSE TE BEN ETE BESSERE RE REN SE SC RE HESORSBENCHEIFRIN. KETTE SI SEE SER
DR NEL ER ENEREEE E Senats NOFSRNERERRTRGRRREIR BEE DES SORT NERISOT IE SORRe x
Denn ern mr ae hard EREEEE UehERetee: PVRTRRER HERENUBFURREZ DERCERPERERORG HERE RE TEN ne
Be VB PROSARDD SS: EHE nn ZEITEN) PD ER Tre nen Tan an nahen DR ze ne
. n f x BE VEREINTEN EL NER NRNRE NER EIER. ELERERSSELETE BLEOEEL TESTER
PERREEERWEDE PRESE RE PEE PL RESESPEST PILLE ELELTE FE LEREESSLIULERG ER
PRESSEN EEE PERL EEE NETTE PAR PREEFRBE WE BEPERLEL DE REOT N E
BRURBOO NR SEDEENIESEERTENETETOT DE SE URS. NE TEE SERRES HL SEE LE EIS BESELTE SE SEE SENEE
zer PORN REHREBENRHE RER ESBEE SHE NOHENE ST SEES We
Bern a ea nenn m aa Bann naeh Reihe at MAD rim ee ar he Say ne Re UNE Ahnen Da Fra Da
RENTE TER z RE Brass 1 PRESSURE BETEN ET ER DERSE ERREGT TEN ERSSEHLSENENZERN
DI Ver ET BE P 222 a E re N EN EL SD ELSE a
EERRReN
PER NESERENTERE TE
Ar rem dehen
Dee
End a
MI ERERENDELDT SOLIDE REDE NE SE SER
Saw amnas
Ben rnanteen
BODEN HERE
Fee
Naar ae "
ERERT
Aarau Maid Zar
MÜREOORREBENDE BEL WESER
ann dh Rn et Tee tn ART TEN N.
PRIOR Or De N Eng REN a NT
a Anne ’ er erh RER
RUE Aa A Ta ER FE
Sera
San an anne
wre
ne Yen:
PRRENORESS SE EN
Aero maehen
et uein nei nde
uw. 5 % > N = <
N zZ 3 zZ = =
S5 2 8 2° 8 =)
N 2 E z E = E
> = » = : > =
B = ? [77] = [77] > ee 177) »
/4811_ LIBRARIES, SMITHSONIAN_ INSTITUTION NOLLNLLLSNI_NVINOSHLIWS SI1 UV 81
z w (MM N u
a = = SN -
= <; = N :
: - N 8
= I Ir
UTION _NOILNLILSNI_NVINOSHLINS_S314YY9171_LIBRARIES_ SMITHSONIAN _ INSTITUTION
» yr
11
s3l1y3Vvygl7_LiB
INSTITUTION NOLLNLILSNI
s31yVv4y9117
INSTITUTION NOILNLILSNI
INSTITUTION
Ss3ıyvyg
—
LIBRARIES SMITHSONIAN_ INSTITUTION NOILNLILSNI _NVINOSHLINS, S31UVYYg17
SMITHSONIAN
NVINOSHLINS
NVINOSHLIWS
NYI NOSHLINS
x
N
SMITHSONIAN
NR
N
UTION NOILNLILSNI NVINOSHLINS saıyvuan LIBRARIES SMITHSONIAN INSTITUTION
4
=
=
oO
(N
=E
=
=
17]
u z u E u 5
Ze _ = | FE |
x — [a4 — ke, u
< = lee = = 3
a o 2 E) = ö
_’ z Be z “ = j
4811 LIBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI s31uVygI
= — a oO
a — "9 — [00] ==
) = b) = >) =
: 272 E Sg:
= m HL n r 2 =
a 27 5 2 m ®
UTION._NOILNLILSNI NYVINOSHLINS S31UVWUHII LIBRARIES SMITHSONIAN INSTITUTION
r an = 12] 4 PR 12] _ SL.
N = .S = 77 .S N = < ER
Tr bus | = — “L % > | Fr \n
N 2 E 78: = =
= [77] we, 77) N -- 7 „
’/4811 _LIBRARIES SMITHSONIAN _INSTITUTION NOILNLILSNI NVINOSHLINS S31UVYGI
3917 LIBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI NYVINOSHLINS SI1YYY917
x E‘ } 2
= 2 z “n ze on
7) \.
3 =. s = We
Ber <: {4 < 4 \ NS <
c x < x < N [12
= m a m = Rn
-— [®) ud —
2 a = - = ne
UTION _ NOILNLILSNI_ 23 ıuvyg Ju LIBRARI ES__SMITHSONIAN INSTITUTION
oO ex ° = oO DH, ©
E 2 = 5 5 FM,2
>) »> A = >» je} +" fi >
= a = Be) 2 (7, ER a
Er & m E,%W P#7
5 = in = SR; >
z 17 = on = 7)
7)
ES
_
=E
“7,
OÖ
2
>
N
AR
MITHSONIAN
/INOSHLIWNS
MITHSONIAN
YINOSHLINS
MITHSONIAN
NVINOSHAIV
SMITHSONI/
7,
NVINOSHLIY
NYINOSHLIY
*
IES SMITHSONIAN _INSTITUTION NOILNLILSNI
SMITHSONIA
ARIES SMITHSONIA
ES
LIBRARIES_ SMITHSONIAN
LIB RARIES
NOILNLILSNI
NOILNLILSNI
LSNI _NVINOSHLINS INSTITUTION NOILNLILSNI
>
INSTITUTION
N: 2
N ad
SJIUYNSIT LIBR
INSTITUTION NOILNLILSNI
s314V4y917
rl fs
INSTITUTION
LES _SMITHSONIAN INSTITUTION
N
2
S
S31UV49171 LIBRARIES
NOILNLILSNI _NVINOSHLINS S31UVY 817
DA \ N
ISNI_NVINOSHLINS S31IUVYAI1 LIBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI
NVINOSHLIWS
SMITHSONIAN
NWINOSHLINS
SMITHSONIAN
NVINOSHLIWS
SMITHSONIAN
ILSNI NVINOSHLINS S31UVYAII_LIBRARIES
E 2 3 n 3 2
= = = a As %
4 = = == - nz
© 2 S a © -
2 ; zZ 2 = z _
IIES SMITHSONIAN. INSTITUTION NOILNLILSNI NVINOSHLINS S31IUVYUAIT LIBRARIES
ri Lam = > z r z =
oO I (=) = (e) =
> v2 Are a = r ® r
SID 5 3 2
272 46 E E %
m IH — > r 2
BP 5 2 - m
= = = )
142)
S
=
=:
(dp)
fe)
zZ
>
2
= = < z
Pr Z ZA ANZ E
7: P2 927, 2 2°
TE O 30555: pa es =
zıE = 77 # = =
N = = f 3 % 2 a ”
R DE 5. SMITHSENIAN INSTITUTION NOLLNLLISNI_ NYINOSHINS 53 IUVYSI1_LIBRARIES
2 == Du 2 SS w z
3 .s = 2 SS : =
= 2 < EN: =
& fer‘ | [04 SEN N & I
2 ) = e) A =)
R _ iR = _ z er =
ILSNI NVINOSHLINS. S314VUg17 LIBRARIES SMITHSONIAN _INSTITUTION _NOILNLILSN
aa z 2 z ee z
(us) ö _ {00} — [0v} —
2 5 > = 2 5
»> NS > > > r
a = a = 'z =
dp) E= a; en (2)
> = u z ” z
—
NSTITUTION NOILNLILSNI NVINOSHLINS S31UV4817
RIES SMITHSONIAN
7
a
one
MITHSONIAN
JVINOSHLINS
SMITHSONIAN
MITHSONIAN
JYINOSHLIWNS
w
jun
r ya Il
A, ITR 7
Fan
Nünche®
oPIAIAN
Zeitschrift für Zoologie
Herpetofauna Caboverdiana
Von Hans Hermann Schleich
SPIXIANA Supplement 12
München, 30. Juni 1987
ISSN 0177-7424
WW
SPIAIANA
ZEITSCHRIFT FÜR ZOOLOGIE
herausgegeben von der
ZOOLOGISCHEN STAATSSAMMLUNG MÜNCHEN
SPIXIANA bringt Originalarbeiten aus dem Gesamtgebiet der Zoologischen Systematik mit
Schwerpunkten in Morphologie, Phylogenie, Tiergeographie und Ökologie. Manuskripte werden
in Deutsch, Englisch oder Französisch angenommen. Pro Jahr erscheint ein Band zu drei Heften.
Umfangreiche Beiträge können in Supplementbänden herausgegeben werden.
SPIXIANA publishes original papers on Zoological Systematics, with emphasis on Morphology,
Phylogeny, Zoogeography and Ecology. Manuscripts will be accepted in German, English or
French. A volume of three issues will be published annually. Extensive contributions may be
edited in supplement volumes.
Redaktion — Editor-in-chief Schriftleitung — Managing Editor
Prof. Dr. E. J. FITTKAU Dr. F. BACHMAIER
Manuskripte, Korrekturen und Bespre- Manuscripts, galley proofs, commentaries
chungsexemplare sind zu senden an die and review copies of books should be
adressed to
Redaktion SPIXIANA
ZOOLOGISCHE STAATSSAMMLUNG MÜNCHEN
Münchhausenstraße 21, D-8000 München 60
SPIXIANA - Journal of Zoology
published by
The State Zoological Collections München
Herpetofauna Caboverdiana
Von Hans Hermann Schleich
Gewidmet dem jungen Staate Cabo Verde -
für eine Kontinuität der Regenzeit
München, 30. Juni 1987 ISSN 0177-7424
SPIXIANA Supplement 12
[N —— —n
Dr. Hans Hermann Schleich,
c/o Zoologische Staatssammlung, Münchhausenstraße 21, D-8000 München 60
Gesamtherstellung: Gebr. Geiselberger, Altötting
Herpetofauna Caboverdiana
Von Hans Hermann Schleich
Inhaltsverzeichnis
MoLworte. 22 2 OTTO SATIODDEE SITHETTRORERITTEN AAN AAN,
AN Samamentassungs hun Ar re EN ee a ER ee ee Are:
Emleitunga me N ee SORT Lew Stck erEtt,
INIlgEmeimersKeill nr ANTRIEBE ERTENIEN SSER RN,
WiesKapyerdischenälnselnsn®NTakaronesienen en ee
Bemerkungen zur Geographie, Geologie und Klimatologie ..............
Narerialsund N ethocik rer NL N N N NND
Artenliste mit Merkmalscharakteristik und Verbreitungstabelle der
kapyerdischen, Echsen A. mer Insassen name een Mask angel
SystematischerTeil >... Merle bestnelal. yobnu. en IRAR
Seineidae — Genuse@Mabuyalaoieid ort IEREBINIRLIEN IA ER.
Mabuyardelalandu (DUNErm Se BERONMISSS)E2 2
WIGbuyaaogoenSsıs(O)SEAUGEINESSK LSA). en:
Mabuya fogoensis fogoensis (O’SHAUGHNESSY, 1874) .. 2.2.2222 nenennn
NIab2ayaBo 20ensısim.colauensisnovasspa
INabeyalosoensissantaoensis noy..sspa nr. 2
Pdrbuyasstangen. (GRAS 1SAD) 2 200 0 cn ne ee:
NiEboyalstangen stanzen.(Gras 182) ee:
Mabeyalstanzenmaioensisa MERTENSIOSSE. TE Senn
ab ayastanzen salensısu N Gen, 19550 ee:
WIabuyastangenuspinahs BOULENGER, 19006, 2. 2 20 0:
NiAbuyakvanllantıBoulENeerylBSZ
Grekkondae &enuspljarentolaWe
LlanentolaanudısaB OUBENGERSL OO
Manentolamedismudis HB OUNEN GER IO
DanentolammudısunaioenSsishS CENEICEI SA
Manerttolamudıspnotogigas|OGERSTOSAE De reg:
Manentolandarwınıs]ocER, 1984 zo. en oe
NckentolarcabovendianauS eEmE CE 98T
Tarentola caboverdiana caboverdiana SCHLEICH, 1984 . 2 2... 2 once.
Tarentola caboverdiana nicolauensis SCHLEICH, IIBA . . . oo... ....n nn.
ManentolarcabovendianamazianaS emrrıern, 198 ee
Manentolalcaboverdianasubstitutaloc 19842. anne
Manentolaaasası Bockern 189) a a
Üanentolasıgasigas BoctcHMls96)E a ee
Manentolassasasibrancoensis,Semueiem, [984 Mr Ware
4.2 Gekkonidae Genus Hemidachyjlus 2... 2...2. . Denken ee 51
4.2.5 Hemidactylus brooki angulatus TIALLOWELL, 1852 „. .n ureenocrocnonens 51
4.2.6 Hemidactylas bondier (BOCouRT, 1870). een 52
4.2.6.1 Hemidactylus:bouvieri boavien (Boca; 1870) 2.2 An nn nun: 52
4.2.6.2 Hemidactylus bouvieri boavistensis BOULENGER, 1906 . .... 2.2... cn eenen 53
4.2.6.3 Hemidactylus bouvieri razoensis GRUBER & SCHLEICH, 1982 ........ cr... 54
4.3 Testmehmesun Ste, ee ee 55
4.4 Amphibia Butonidaer 2 era ee el lt ee er en ee 56
5. Die einzelnen Inseln. - Zu ihrer Geographie und
Biologie - Okologie der einzelnen Arten... u. a oa en 56
51 SAL, Artenspektrum, Fundorte, Biologsie-OÖkologie... .. 2... Meran 56
52 BOA VISTA, Artenspektrum, Fundorte, Biologie-Ökologie ............. 59
53 MAIO, Artenspektrum, Fundorte, Biologie-Ökologie ........ 2.2.22. 60
5.4 SAO THIAGO, ILHEU ST. MARIA, Artenspektrum, Fundorte,
Biologie-Okolosie.. 2: sus4 20 2008208 20er. BNEE 60
55 FOGO, Artenspektrum, Fundorte, Biologie-Ökologie ................ 63
5.6 BRAVA, Artenspektrum, Fundorte, Biologie-Ökologie ............... 64
De ET EISDORHOMBOL,. 37 Klara aan waren kr 66
5.8 SANTO ANTÄO, Artenspektrum, Fundorte, Biologie-Ökologie ......... 66
5.9 SAO VICENTE, Artenspektrum, Fundorte, Biologie-Ökologie .......... 67
5.10 SANTA LUZIA, Artenspektrum, Fundorte, Biologie-Ökologie .......... 68
Se BRANCO, Artenspektrum, Fundorte, Biologie-Ökologie .............. 69
5412 RAZO, Artenspektrum, Fundorte, Biologie-Ökologie ................ 70
5313 SAN NICOLAU, Artenspektrum, Fundorte, Biologie-Ökologie .......... 72
6. Biotop-und’Artenschutze. 3.24 Sen... 020er N 73
2: Schrifttum. 2... en Se ee ee Se 74
Abkürzungen für Sammlungen und Museen:
ZSM Zoologische Staatssammlung München
BMNH British Museum (Natural History) London
ZFMK Zoologisches Forschungsinstitut und Museum A. Koenig Bonn
MCNG Museo Civico di Storia Naturale Genova
Vorwort
Eine ungezählte Namensliste kapverdischer Bürger, seien es Bauern, Fischer oder Kinder, die mit Rat und Tat,
mit Fanghilfe und Hinweisen meine Arbeiten unterstützten, aber auch viele entgegenkommende Entwicklungshel-
fer, die sich um mein und meiner Begleiter Wohlergehen kümmerten, wären hier anzufügen. Allen sei hier aufrich-
tigst gedankt.
Einen wohl kaum in Dankesworte ausdrückbaren Beitrag zum Gelingen des Projektes leisteten meine Reise-
begleiter D. BENDER (Basel), H.-J. GRUBER (Schliersee) und M. WUTTKE (Frankfurt).
Mein allerherzlichster Dank für ihr persönliches Engagement und zuweilen auch tatkräftige Unterstützung bei
Recherchen, aber auch im Gelände, gilt besonders E. STEIN, weiter I. FARIA, M. DUARTE-ALMEIDA, H. SOARES,
A. PırEs, X. BARBOZA, M. ALMEIDA (alle genannten Cabo Verde) sowie H. & K. ZILLER.
Dr. U. GRUBER und Dr. W. KASTLE korrigierten freundlicherweise das Manuskript und trugen durch ihre
freundschaftlich kollegiale Kooperationsbereitschaft sehr zum Gelingen dieser Arbeit bei.
Für die Exkrement-Rückstandsuntersuchung zur Analyse der Nahrungszusammensetzung bin ich Dr. E.-
G. BURMEISTER zu verbindlichstem Dank verpflichtet.
4
Leihmaterial stand mir dankenswerterweise aus den Museen Wien, Turin und London zur Verfügung. Eine Aus-
leihe des MERTENS’schen Materials aus dem Senckenberg-Museum Frankfurt war leider auch nach mehrmaligen
Versuchen über Jahre hinweg nicht möglich. Der Deutsche Akademische Austauschdienst (DAAD) förderte durch
seine Finanzierungshilfe der zweiten Reise im Frühjahr 1981 den Fortgang der Arbeit.
Besonderer Dank gebührt auch Dr. W. LoBIn (Frankfurt) für die Zusammenarbeit und Korrektur dieser und
vorhergehender Kapverdenarbeiten.
Sowohl einige Exemplare der beiden Riesengeckoarten der Inseln Branco und Razo als auch Mabuya vaillanti
von $. Thiago befinden sich zu Beobachtungs- und Nachzuchtzwecken in Terrarienhaltung bei Herrn H.-J. GRU-
BER und mir. Betreffs letztgenannter Art Mabuya vaillantı danke ich herzlichst Herrn R. STEFFENS für die Fund-
orthinweise, aber auch für das Überlassen von drei Zuchttieren.
Aus Prioritätsgründen mußte leider ein Teil zur Systematik der Geckos (Gattung Tarentola) vorab (SCHLEICH
1984) publiziert werden.
Zusammenfassung
Die Herpetofauna der Kapverdischen Inseln wird beschrieben und revidiert. Die der Beschreibung zugrunde lie-
genden Informationen stammen aus der bisher bekannten Literatur sowie aus dem in den Jahren 1977-1981 neu auf-
gesammelten Material.
Sieben Formen werden neu beschrieben (incl. SCHLEICH 1984), zwei revalidisiert sowie zwei aus dem Unterart- in
den Art-Status erhoben. Aufgrund der Ausbeute von Fischern, der auf den Märkten angebotenen Ware und den In-
formationen durch die SCAPA-Dienststellen waren Angaben über das Vorkommen von Seeschildkröten möglich.
Neben den systematisch-taxonomischen Beschreibungen werden Angaben über die einzelnen Inseln sowie zur
Ökologie und Biologie ihrer Herpetofaunen, basierend auf Geländenotizen, Terrarienhaltung, Zuchterfolgen und
Kotuntersuchungen gegeben. Ein dem Autor dringend notwendig erscheinender Arten- bzw. Biotopschutz wird
diskutiert.
Summary
The herpetofauna of the Cape Verde Islands is described and partially revised. The paper is based on the literature
and own collections and descriptions of the material collected in the years 1977-1981. Several new forms are descri-
bed or their taxonomic status is discussed.
Informations about the seaturtles are due to the public merchandise or informations from SCAPA. Beside the sy-
stematic and taxonomic work informations about the islands, their biological-herpetological facts based on fieldno-
tes or terraristic observations are given. The necessity of a general protection of species and habitats is discussed.
Resume
L’herpetofaune des Iles du Cap Vert est descrite et revisee (en partie). Les informations qui font la base de cette
description, sont tirees de la litterature d&ja existante A ce sujet, ainsi que du materielnouvellement collectionne dans
les annees 1977-1981. Il s’agit d’une nouvelle description pour sept formes (incl. SCHLEICH 1984), ainsi que d’une
discussion de leur statut taxonomique.
Les informations sur les tortues de mer sont dues ä la marchandise publique et aux renseignements de laSCAPA.
En plus des descriptions systematiques et taxonomiques, ce rapport contient des informations sur les differentes is-
les, concernant l’Ecologie et la biologie de leur composition herpetofaunistique, bas&es sur des notes sur le terrain,
des observations en captivite, des succes d’elevage et des analyses des excrements.
L’auteur y ajoute une discussion sur la necessite absolue d’une protection des especes et des habitats.
Resumo
A herpetofauna das Ilhas de Cabo Verde & descrita e revisada. As descrigöes baseam-se na literatura e no material
das colecgöes novas dos anos 1977-1981.
Sete formas säo descritas de novo (incl. SCHLEICH 1984), duas säo revälidadas e duas subespecies säo elevadas ao
nivel de especies.
O estudo da pesca e dos mercados de peixe assım como as informagöes da SCAPA facilitaram indicagöes da pre-
senga das tartarugas do mar. Junto das descrigöes sistemäticas e taxonömicas esta publicagäo contem informagöes da
cada Ilha por sı e da ecologia e biologia da herpetofauna. Estas indicagöes baseam-se nas noticias do terreno, nas
estudos do terrario, nas criagdes e nos anälises dos excrementos.
O autor discute a necessidade e a maneira prätica duma protecgäo das especies e dos biotopos.
1. Einleitung
Die Untersuchungen und Bearbeitungen der Kriechtiere der Kapverden wurden durch die erneute
Aufnahme von Nachforschungen zur Überlebensfrage von Macroscincus coctei (s. SCHLEICH 1979a
und 1982) eingeleitet. Eine erste Sammelreise im Sommer 1979 führte dabei auf die Inseln Boa Vista,
Sao Thiago, Fogo, Branco, Brava und S. Nicolau. Während eines Aufenthaltes auf den Inseln Branco
und Razo, dem einstigen Lebensraum von Macroscincus coctei, konnten leider keinerlei Spuren und
Anzeichen für ein Überleben des kapverdischen Riesenskinks gefunden werden. Zwei weitere Reisen
im Frühjahr und Spätsommer 1981, mit jeweils mehrwöchigen Aufenthalten auf den Inseln Santa Lu-
zia, Branco und Razo, erbrachten ebenfalls nur negative Ergebnisse bezüglich der Nachforschungen
zur Überlebenschance dieser Großechse. Der Hinweis von Einheimischen über das Vorkommen eines
großen Skinkes (kreol.: ‚‚Chinel‘; s. SCHLEICH 1982) auf Fogo und Sao Thiago lenkte erneut die Auf-
merksamkeit des Autors auf die Suche nach Macroscincus coctei. Nach Abschluß der letzten Sammel-
reise im September/Oktober 1981 konnten nun von allen Inseln (außer den unbewohnten Felsinsel-
chen der Rhombosgruppe) Reptilien und Amphibien aufgesammelt werden, so daß vorliegende Zu-
sammenfassung ermöglicht wurde.
Die Widersprüche der einzelnen Bearbeiter zur Herpetofauna der Kapverden kamen in der Tabelle
über die Verbreitung der Reptilien auf den Kapverden (SCHLEICH 1982: 246) deutlich zur Geltung.
Nicht nur aus diesen Unklarheiten bisheriger Bearbeitungen, sondern auch im Rahmen eines inter-
nationalen Gesamtforschungsprojektes ‚‚Makaronesische Inseln“, war nun endlich die Neubearbei-
tung der kapverdischen Herpetofauna erwünscht. Bewußst wurde dabei versucht, alle Inseln selbst zu
bereisen, um über die wirkliche Herkunft der Aufsammlungen Klarheit zu haben. So basiert auch, bis
auf wenige Ausnahmen, der Hauptteil dieser Arbeit auf eigenen Aufsammlungen.
Historischer Überblick
Mit der Erstbeschreibung von Macroscincus coctei als Euprepes Coctei lieferten DUMERIL & BIBRON (1839) den
ersten herpetologischen Beitrag über die Kapverden. Weitere Grundlagen zur Kenntnis der Kapverden-Reptilien
sind durch BOCAGE (1896), ANGEL (1935, 1937) und MERTENS (1955) geschaffen worden. BANNERMAN & BAN-
NERMAN (1968) geben einen zusammenfassenden Überblick über die Herpetofaunenverteilung auf Gesamt-Maka-
ronesien wieder. GREER (1976) berichtete in einer ersten Detailstudie ausführlich über Macroscincus coctei, worauf
SCHLEICH (1979, 1980, 1982) sowie GRUBER & SCHLEICH (1982) mit weiteren Nachforschungen und Bearbeitungen
zu den Riesenechsen der Inseln Branco und Razo als letzte Bearbeiter folgten. Weitere systematische Beschreibun-
gen lieferten GRUBER & SCHLEICH (1982) und SCHLEICH (1984).
2. Allgemeiner Teil
2.1 Die Kapverdischen Inseln in Makaronesien
Nachdem in letzter Zeit von verschiedensten Autoren verstärkt Augenmerk auf die wissenschaftli-
che Bearbeitung der Kanaren gelegt wurde, stehen nun die Azoren, Madeira, Selvagens und die Kap-
verden in vergleichender Betrachtung zu ihrer Faunen- und Florenentwicklung. Während das Problem
6
von Migrationen und Besiedlung dieser atlantischen Inselgruppen zum Hauptdiskussionspunkt wur-
de, drängt sich natürlich die Frage nach bestandenen Festlandsverbindungen, aber auch jene der inter-
und intrainsularen Zusammenhänge auf. Besteht auf den Azoren die Kriechtierbesiedlung aus nur einer
Form (Lacerta dugesi), so weist das südlichere, festlandsnähere Madeira bereits ein Faunenspektrum
von acht Arten auf. Auf den Kanaren steigt die Artenfülle bereits auf 19 Arten an, die sich letztlich bei
den Kapverden auf nun 23 Formen beläuft.
Bemerkenswert ist ebenfalls das Verhältnis von ‚‚Kriechtier-Endemiten‘ auf den jeweiligen Insel-
gruppen. Sie stehen im Verhältnis (nach BANNERMAN & BANNERMAN, 1968, BISCHOFF, 1985 und vorlie-
gender Bearbeitung)
MARK: A RMOFNDERSCOIMERN
+50 Fer ar ar Ar 0+
50 40 30 20 10 0
X
Yy
N
EN
+0 = ; Azoren 40
= >
Madeira.
a :
Salvages
+30 a: 30+
Ga Kanarische Inseln ’.®, 4
=
m
+20 »
R Kr)
Kapverdische 8
Inseln *
Azoren (0) : Madeira (4) : Kanaren (11) : Kapverden (21),
woraus sich für die Kapverden der höchste Endemitenanteil ergibt.
Zu berücksichtigen sind bei solchen Zahlen jedoch noch vielerlei Umstände bei der Diskussion um
die Speziationen, wie beispielsweise Landbrücken, Klima, Driftmöglichkeiten, Entfernung u. a. m.
2.2 Bemerkungen zur Geographie, Geologie und Klimatologie
Die Kapverden, seit 1975 unabhängiger, selbständiger Inselstaat, bestehend aus 10 größeren und 8
nennenswerten kleineren Inseln, liegen ca. 400-600 km westlich vor Senegal zwischen 14°48 ’ und
17°12 30’ ’ nördlicher Breite und zwischen 22°44 ’ und 25°22’ westlicher Länge zwischen dem
Wendekreis des Krebses und dem Äquator. Orographisch betrachtet lassen sich die Inseln in flache,
wüstenhafte Inseln (Sal, Boa Vista, Maio, Säo Vicente, Ilhas do Rhombo, Branco, Razo und Santa Lu-
zia) sowie in die vegetationsreicheren gebirgigeren Inseln Sao Thiago, Brava, Fogo, St. Antäo und
S. Nicolau gliedern.
In nachstehender Tabelle sind die höchsten Erhebungen (H, in m) der Inseln sowie ihre ungefähre
Flächenerstreckung (F, in qkm) in ‚,‚ca.““-Werten angegeben.
Sal Boa Vista Maıio S. Vicente Rhombos Branco Razo
lol 406 390 436 774 96 327 164
F 200 620 250 220 3 7
St. Luzia S. Thiago Fogo Brava St. Antäo S. Nicolau
H 395 1392 2829 976 1979 1304
F 16 1000 500 65 730 350
Ein allgemeiner Abrif3 zum Vegetationsbild der Inseln wurde von Login und GroH (1979, 1980) und
von SCHLEICH & WUTTKE (1983) für die kleinen Eilande St. Luzia, Branco und Razo gegeben. Die geo-
logischen Fakten zur Entstehung des Archipels bzw. der einzelnen Inseln sind noch relativ undurch-
sichtig. Verallgemeinert kann gesagt werden, daß der gesamte Archipel atlantischen Ursprungs ıst. Die
vulkanische Entstehung der Inseln im Tertiär, wahrscheinlich Miozän, kann angenommen werden;
eine Festlandsverbindung zum afrıkanischen Kontinent, auch in jüngeren geologischen Epochen, er-
scheint aber aufgrund der bis zu 3000 m tiefen Beckenregionen zwischen dem Archipel und dem Fest-
land nıe bestanden zu haben. Daß viele Inseln noch bis in die Quartärzeit (Fogo bis rezent) vulkanisch
aktıv waren, ist durch die unverwitterten vulkanischen Formationen zu erwarten.
Einen Eindruck zur Klimatographie der Kapverden sollen folgende Angaben liefern:
Klimatologisch können die Kapverden als gemäßigt ozeanisch, aber mit einem sehr trockenen Klima
betrachtet werden. Die Regenzeit fällt dabei in die heißeste Jahreszeit während der Monate Juli bis Ok-
tober, während die kälteste Jahreszeit auf die Monate November bis Dezember kommt.
Aus den Klimatabellen des Meteorological Office sind für Mindelho ($. Vicente) und für Praia
(S. Thiago) folgende Werte zu entnehmen:
Mindelho für die Zeitperiode von 1892 bis 1925:
tägl. Max. Temp.: 25 °C; monatl. © Max. Temp.:30 °C
tägl. Min. Temp.: 20,6°C; monatl. © Min. Temp.: 14,4°C
bei einer durchschnittlichen monatlichen Niederschlagsmenge von 99,1 mm.
Praia für die Zeitperiode von 1904 bis 1930:
tägl. Max. Temp.: 27,2°C; monatl. @ Max. Temp.: 32,2°C
tägl. Min. Temp.: 22,2°C; monatl. @ Min. Temp.: 17,2°C
bei einer durchschnittlichen monatlichen Niederschlagsmenge von 259,1 mm.
8
nl DER
Ss „Grande. a
l S SANTO ANTAO
2 Pt. Novo \\ BR
Mindelho SAO VICENTE = %gr
N
ie
Io, OS
Blava r
"ISANTA zRS BRANCı
| SAO NIcoLAU
_ ee
VN.Cintra fg S.Filipe .. Re a ur 2
25° BRAVA .. nn... er ei 23°
Nach dem Annuario Climatolögico de Portugal (1973, Vol. 27) können folgende jährliche Gesamt-
niederschlagsmengen für 1973 wiedergegeben werden:
$. Vicente (Mindelho) —
jährlicher Niederschlag: 1012,8 mm
mittl. Lufttemp. (°C): 21,4 (2 Min.); 30,2 (Max.) -6. Sept.
17.82 Vin.) 20. eb.
Sal -
jährlicher Niederschlag: 1008,6 mm
mittl. Lufttemp. (°C): 20,1 (® Min.); 31,4 (Max.)- 8. Sept.
26,2 (© Max.)
15,4 (Min.).— 16. Feb.
S. Thiago (S. Jorge dos Orgaos) —
mittl. Lufttemp. (°C): 18,3 (® Min.); 12,5 (Min.) - 21., 25. Jan.
Fogo (Monte Velha) —
mittl. Lufttemp. (°C): 11,0 (Min.);— 23. Jan.
Fogo (S. Felipe) —
mittl. Lufttemp. (°C): 25,8 (® Min.); 29,0 (Max.)
33,5 (Max.) - 8. Okt.
18,0 (Min.) — 6. Feb.
Nachstehende Tabelle (aus Sasına, A. A., 1977**) gibt die „‚Krisenjahre‘“ der Inseln mit dem Aus-
bleiben der Regenzeit an:
mit ljähriger Dauer mit 2-3jähriger Dauer Jahre mit Regen Jahre ohne Regen
(partiell) (generell)
1719 1748-1750 1775 1718
1754 1773-1775 1778 1743
1764 1789-1791 1855 1753
1814 1811 1864 1763
1825 1831-1833 1884 1772
1845 1864-1866 1886 1788
1850 1885 1887 1810
1875 1901-1903 1906 1813
1889 1921 1918 1824
1896-1900 1941 1919 1831
1946-1948 1927 1845
1951-1952 1928 1850
1959-1960 1938 1854
1962-1965 1943 1858
1966-1967 1950 1863
1968-1976 1951 1874
1952 1883
1953 1896
1954 1902
1955 1920
1956 1932
1957 1940
1958 1941
1946
1947
1949
2.3 Material und Methodik zZ
Das gesammelte Material verteilt sich auf die jeweiligen Inseln wie folgt:
Insel Mabuya Tarentola Hemidactylus
Exemplare Exemplare Exemplare
Sal 9 — 7
Boa Vista 4 - 23
Maio 30 9 -
S. Thiago 47 9 2
Ilheu St. Maria 11 - -
Fogo 6 11 4
Brava 4 — =
St. Antäo 9 17 =
S. Vicente 3 11 4 (2)*
St. Luzia 9 10 _
Branco 5 18 =
Razo 14 27, 7,
S. Nicolau 7. 11 5
> 158 123 47
* (BMNH, Hemidactylus bouvieri bouvieri)
** Eingesehen am Landwirtschaftsministerium Praia/CABOVERDE.
10
Auf verschiedenen Inseln oder insbesondere von Lokalitäten mit schwach oder aber schützenswert erscheinen-
den Populationen wurden aus Gründen des Artenschutzes,keine Tiere oder, falls unumgänglich, nur eine geringe
Anzahl gefangen.
Die Bearbeitung beinhaltet neben der rein deskriptiven Darstellung Abbildungen zu den Zeichnungsmustern
bzw. Färbungsvarianten jeweiliger Formen bzw. sind diese in den Tafeln dargestellt. Für die umfangreichen Unter-
suchungen der Gattungen Mabuya und Tarentola wurden bei ersterer 8 und bei letzterer 12 Parameter zur allome-
trischen Streckenerfassung gemessen. Soweit Tiere zur Beobachtung im Terrarium gehalten wurden, entstammten
die Maßangaben von diesen lebenden Exemplaren, die nun von den konservierten Tieren verschieden sein können.
Die Allometrieangaben beinhalten folgende Meßstrecken:
GL: Gesamtlänge = Schnauze-Schwanzspitze (KR + SL)
SL: Schwanzlänge = Strecke Kloakenspalt-Schwanzspitze
KR: Kopfrumpflänge = Strecke Schnauzenspitze-Kloakenspalt
KL: Kopflänge = Strecke Schnauzenspitze-post. Nuchaliagrenze
KB: Kopfbreite = Strecke über den Augen
A: Augdurchmesser
O: _ Ohrdurchmesser
OA: Strecke anteriorer Ohr-posteriorer Augrand
AS: Strecke Auge-Schnauzenspitze
MSP: Maulspaltlänge von Schnauzenspitze bis Mundwinkel
ML: Mentale-Länge
MB: Mentale-Breite (mittlere)
Anhand der gemessenen und auf Lochkarten gespeicherten Parameter wurden am Leibniz-Rechenzentrum
(LRZ) München nach dem angebotenen Statistik-Programm-System SPSS 8 (NIE, N. H. & Hurt, L. K., 1980)
„„Scattergrams“ erstellt und daraus sowie über die Statistikprozedur ‚‚Pearson Correlation“ die notwendigen stati-
stischen Berechnungen!) gewonnen. Die dazugehörigen Reinzeichnungen der Diagramme!) wurden ebenfalls am
selbigen Institut gefahren. Für die kollegiale Unterstützung bei der Durchführung dieser Arbeiten möchte ich
Herrn W. SPIEGEL (München) herzlichst danken.
Die ın den Diagrammen und variationsstatistischen Angaben verwendeten Abkürzungen lauten:
Gliederung zu den Diagrammen allometrischer Meßwerte an kapverdischen Skinken der Gattung Mabuya -
Dargestellt wurden je 9 Diagramme mit folgenden Parametern:
GL/KR = Gesamtlänge : Kopfrumpflänge
SL/KR = Schwanzlänge : Kopfrumpflänge
KL/KR = Kopflänge : Kopfrumpflänge
A/KL = Augdurchmesser : Kopflänge
OA/KL = Strecke anteriorer Ohrrand-posteriorer Augrand : Kopflänge
A/O = Augdurchmesser : Ohrdurchmesser
KB/KL = Kopfbreite : Kopflänge
O/KL = Ohrdurchmesser : Kopflänge
A/OA = Augdurchmesser : Strecke OA
Gliederung zu den Diagrammen allometrischer Meßwerte an kapverdischen Geckos der Gattung Tarentola —
Dargestellt werden je 12 Diagramme mit folgenden Parametern:
GL/KR = Gesamtlänge : Kopfrumpflänge
SL/KR = Schwanzlänge : Kopfrumpflänge
KL/KR = Kopflänge : Kopfrumpflänge
A/KL = Augdurchmesser : Kopflänge
OA/KL = Strecke Ohr-Auge : Kopflänge
AS/KL = Strecke Auge-Schnauzenspitze : Kopflänge
") Aus finanziellen und drucktechnischen Gründen war eine Übernahme in vorliegender Arbeit nicht mehr mög-
lich. Die Diagramme können zusammen mit den Berechnungen in der Bibliothek der ZSM eingesehen werden.
11
KB/KL = Kopfbreite : Kopflänge
O/KL = OÖhrdurchmesser : Kopflänge
A/O = Augdurchmesser : Ohrdurchmesser
MSP/KL = Maulspaltlänge : Kopflänge
MSP/OA = Maulspaltlänge : Strecke OA
A/OA = Augdurchmesser : Strecke OA
Diagramme zur Allometrie und variationsstatistischen Analysen.
Die variationsstatistischen Angaben sind im Anschluß an die jeweiligen Diagramme eines Verbreitungsgebietes
bzw. einer Art aufgeführt.
Ihre Abkürzungen lauten:
n = Anzahl der ausgewerteten Exemplare
R = Pearson Correlation; Grad der Beziehung zwischen 2 Variablengruppen
Corr = Korrelationskoeffizient
Intcp A = Schnittpunkt mit der y-Achse
Slope B = Steigung der Regressionsgeraden
Std. Err = geschätzter Standardfehler (= Std. Err. Est.)
Std. Err (A) = geschätzte Standardabweichung der y-Werte
Std. Err (B) = geschätzte Standardabweichung der x-Werte
MW = Mittelwert
Std.Dev. = Standardabweichung
Neben diesen statistisch verwerteten Messungen kommen noch folgende weitere Informationen zur Indikation
und Beschreibung der jeweiligen Formen hinzu:
Anzahl der Schuppen um die Rumpfmitte
Anzahl der Supra/Sublabialia (OL/UL)
Anzahl der Aurikulartuberkel
Anzahl der Subdigitallamellen
Anzahl der Streifen- bzw. Bänder des Zeichnungsmusters.
Die dritte, hinter den Inventarnummern der ZSM erfolgte Durchnumerierung diente ebenfalls den statistischen
Berechnungen bei der EDV.
3. Artenliste mit Merkmalscharakteristik und Verbreitungstabelle der kapverdischen Echsen
Scincidae:
Glatte bis schwach gekielte Schuppen, keine verbreiterten Finger mit Haftlamellen:
Nur 1 Gattung Genus Mabuya
KR bis ca. 68 mm, 42-50 Schuppenreihen, dunkle Achselocellen, rostbrauner breiter, hell gesäumter
Rückenstreifen M. delalandii
KR bis ca. 80 mm, 58-60 Schuppenreihen um die Rumpfmitte, dunkel, fast melanotisch, Dorsalıa un-
gekielt bis tricarinat; 3-6 anteriore Aurikulartuberkel M. fogoensis fogoensis
KR bis ca. 87 mm, 52-60 Schuppenreihen um die Rumpfmitte, Dorsalia ungekielt bis doppelkielig, 0°
ventrolateral deutlich rot gefärbt; 2-3 anteriore Aurikulartuberkel M. fogoensis nicolauensis
KR bis ca. 67 mm, 50-54 Rumpfschuppen, Dorsalia doppelkielig, sehr dunkel gefärbt; 3 anteriore Au-
rikulartuberkel M. fogoensis antaoensıs
KR bis max. 80 mm, meist 4246 Schuppenreihen, je einen hellen Dorsolateralstreifen
M. stangeri stangeri
12
KR bis max. 80 mm, 3640 Schuppenreihen, schwach tricarinat, helle Oberschenkelocellen
M. stangerı maioensis
KR bis max. 87 mm, 36-44 Rumpfschuppen, zwei- bis dreikielig. Schmaler dunkler Dorsomedian-
streifen, der von Dorsolateralstreifen gesäumt wird M. stangeri salensıs
KR bis max. 70 mm, 34-38 Schuppenreihen, Dorsalıa tricarinat, helle Schenkelocellen, Ohröffnung
oft nur halber Augendurchmesser, M. stangeri spinalıs
KR bis 122 mm, Schnauzenspitze orange, 50-56 Schuppenreihen, 3 helle Rückenstreifen
M. vaillantı
Gekkonidae:
Finger und Zehen verbreitert, mit Subdigitallamellen
Subdigitallamellen ungeteilt Genus Tarentola
Subdigitallamellen geteilt Genus Hemidactylus
Genus Tarentola
KR-Länge adulter Tiere zwischen 55 bis 72 mm, 12-18 Tuberkelreihen, Mentalialänge entspricht etwa
doppelter Mentaliabreite, 4-5 Rückenbänder Tarentola rudis
Verhältnis von Supra-/Sublabialia 9/11 bis 7/11; 16-18 Tuberkelreihen, ca. 72 mm max. KR-Länge,
4-5 Rückenbänder T. rudıs rudis
KR-Länge bis ca. 68 mm, 12-18 Tuberkelreihen, meist jedoch 14, Verhältnis von Supra-/Sublabialia
8/9 bis 7/8; 5 Rückenbänder T. rudis maioensis
KR-Länge max. 98,5 mm, 144-181 Schuppen um die Körpermitte, Verhältnis Supra-/Sublabialia
11(-9)/11(-7), 16 Tuberkelreihen, 4-5 Rückenbänder T. rudis protogigas
Beschuppung ‚‚samtig“, perlgrau, 14-18, meist 16 Tuberkelreihen; bis ca. 54 mm KR-Länge, Supra-/
Sublabialia 8/13 bis 7/10; 4, meist 5 Transversalbänder Tarentola darwini
KR-Länge max. bis 60 mm, 14-20 relativ kräftige Tuberkelreihen, 3-6 Rückenbänder, Mentale länger
als seine halbe Breite Tarentola caboverdiana
KR-Länge max. bis 48 mm, 14-16 Tuberkelreihen (meist 16!), 5(4)-6 Bänder, meist 5.
T. caboverdiana caboverdiana
KR-Länge max. bis ca. 54 mm, 14 bis meist 18 Tuberkelreihen, 4-6, meist 5 Transversalbänder
T. caboverdiana nicolauensis
KR-Länge max. bis ca. 53 mm, 16(-18) Tuberkelreihen, 3—4 Transversalbänder
T. caboverdiana razıana
KR-Länge max. 60 mm, 146-167 Schuppen um die Körpermitte, Vorderbeine kürzer als Kopflänge,
Verhältnis Supra-/Sublabialia 11(-8)/9(-7), 14-20 Tuberkelreihen, 4-5 Rückenbänder
T. caboverdiana substituta
Kräftig gackernde Stimme, massige große Tiere, KR bis ca. 135 mm, Mentalelänge mehr als doppelte
Breite Tarentola gıgas
KR-Länge bis ca. 135 mm T. gigas gigas
KR-Länge bis ca. 114 mm T. gigas brancoensis
Genus Hemidactylus
Rosa bis graubraun mit warzigen Tuberkeln Hemidactylus brooki angulatus
Einfarbig bis bunt gezeichnet, glatte Schuppen Hemidactylus bouvieri
13
Vorkommen
REPTILIA - SCINCIDAE EISSTLLLLE
Mabuya delalandii
| dogoensAÄs
fogoensÄis $ogoensis
gogoensis antaovensÄd
gogoensis nicolauensid
stangeni
stangeni sLangeni
stangeri masoensis
stangeni salensÄs
stangeni spinalis
vailkanti Man IE RN EI EEE
S.Vicente
Branco
9, Nicola
Boa Vista
9, Mage
Saar
Rhombos
REPTILIA - GEKKONIDAE
Tarnentola caboverdiana
Tarentola cabovendiana caboverdiana
Tarentola caboverdiana nicolauensis
Tarentola caboverdiana raziana
Tarentola caboverdiana Aubstituta
Tarnentola darnwini
Tarnentola
Tarentola gÄ gigas
Tanentola gÄ brancoensis
Tarentola
Tanentola (3 nudis
Tanentola (34 maLoendis
Tarentola (4 protogigas
HemidactyLus bouvieni
Hemidacty£Lus bouvierni bouvieri
HemidactyLus bouvieri boavistensis
HemidactyLus bouvieri nazoensis
@ - in vorliegender Arbeit behandelt u. nachgewiesen (s.a.SCHLEICH, 1982)
Vorkommen wahrscheinlich oder von vorhergehenden Autoren angeführt;
als Neunachweis bislang noch nicht bestätigt
®
il]
14
KR-Länge bis ca. 38 mm H. bouvieri bouvieri
KR-Länge bis ca. 50 mm H. bouvieri boavistensis
KR-Länge bis ca. 29 mm H. bouvieri razoensis
4. Systematischer Teil
4.1 Scincidae - Genus Mabunya
Nach intensiven Recherchen und Nachforschungen zur Überlebensfrage von Macroscincus coctei,
dem kapverdischen Riesenskink, wird dieser von mir (s. SCHLEICH 1982 b) als ausgestorben betrachtet.
Die einzig verbleibende Skinkgattung Mabuya kommt nach meinen Untersuchungen mit4 Arten und
9 Unterarten/Arten vor.
4.1.1 Mabuya delalandıi (Dumeril & Bibron, 1839). (Taf. I, Fig. 1)
Material:
4 Ex. ZSM 367/1978; Brava. 7 Ex. ZSM 5/1982; S. Thiago-Praia, Flughafen. 12 Ex. ZSM 7/1982; S. Thiago-Praia,
Stadt. 4 Ex. ZSM 369/1978; S. Thiago-C. Velha. 1 Ex. ZSM 154/1981;S. Thiago-Tarrafal.2 Ex. ZSM 157/1981; S.
Thiago-St. Cruz. 2 Ex. ZSM 8/1982; Ilheu St. Maria (S. Thiago). 4 Ex. ZSM 11/1982; Fogo-S. Felipe. 3 Ex. ZSM
373/1978; Boa Vista. 5 Ex. ZSM 155/1981; S. Thiago — 5 km S.-Tarrafal.
1839 Euprepis delalandii DUMERIL & BIBRON
1845 Euprepis delalandii. — GRAY
1845 Euprepis belcheri. — GRAY
1857 Euprepis venustus. — GIRARD
1867 Euprepis delalandü. — BOCAGE
1869 Euprepis delalandii. — PETERS
1875 Euprepis delalandi. — BOCAGE
18837 Mabuya vaillanti. - BOULENGER (non del.)
1935 Mabuya delalandei. — ANGEL
1937 Mabuya vaillanti. — ANGEL (non del.)
1951 Mabuya delalandei. — DEKEYSER & VILLIERS
1955 Mabuya delalandıi. - MERTENS
1976 Mabuya delalandı. — GREER
1982b Mabuya delalandii. — SCHLEICH
Terra typica: Cap de Bonne Esperance
Bisherige Verbreitung: S. Thiago, Fogo, Brava, Rhombos
Nachgewiesen von: S. Thiago, Ilheu St. Maria, Fogo, Brava, Boa Vista
Artcharakteristika nach:
MERTENS (1955) —
14 Exemplare, von verschiedenen Inseln; (er bezeichnet seine 6 Stücke von Praia als Topotypen).
Frontoparietalia sowie Parietalia mit Interparietalia zu einem Schild verschmolzen. 5. (6.) Supralabiale ist eigent-
lich Suboculare. Zwischen 48 und 52 Rückenschuppen, dorsal scharf dreikielig, heller Dorsolateralstreifen gezackt
abgegrenzt.
GREER (1976) —
KR: 80 mm. Schuppenreihen um Körpermitte: 46-52
DEKEYSER & VILLIERS (1951) —
18 Exemplare; min. 48, max. 80 mm (74 mm; reg. Schwanz). MW: 67,7 mm KR-Länge. 46 Schuppenreihen um
den Körper, Verbreitung: Brava, Fogo, Rhombos, S. Thiago
ANGEL (1935) —
Frontoparietalia verwachsen, 46-50 Schuppen um die Körpermitte, 5. Labiale viel größer als 6., bildet Subokula-
re. Augdurchmesser gleich Ohrdurchmesser
15
Diagnose:
KR-Länge bis ca. 80 mm, SL ca. 1,6% KR. 42-50 (?52) Schuppenreihen um die Rumpfmitte.
Ohrdurchmesser gleich oder nur geringfügig kleiner als Orbit. 7-8 Supra- bei 6-7 Sublabialia. 5. Su-
pralabiale vergrößert unter dem Auge. Dorsalia 2-3 kielig, Ventralia glatt. Interparietale mit Parietale
verschmolzen; darauf Pinealforamen. Braune Rückenfärbung, mit einem Dorsalstreifen mit lateraler
Begrenzung durch helle Streifen. Ventral beige; dunkle Achselocellen.
Beschreibung:
Anmerkung
Von der vor Praia (Sao Thiago) liegenden kleinen Insel St. Maria, sowie von Brava und Boa Vista
konnte Mabuya delalandii nachgewiesen werden. Für Boa Vista ist dies ein Neunachweis.
Habitus
Der allgemeine Habitus von Mabuya delalandii ıst von kräftiger, mittelgroßer Gestalt. Während der
Kopf gut bis weniger stark vom Rumpf abgesetzt ist, ist dies beim Schwanz meist deutlich der Fall. Die
Schwanzlänge beträgt immer weniger als die anderthalbfache KR-Länge. Die Beine sind kurz, der
Schwanz rund bis dorsoventral abgeflacht. Die O'C’ sind von den PP durch ihre dickere Wangenpartie
und den so breiter erscheinenden Kopf unterscheidbar.
Pholidose
Zwischen 42 bis max. 50 Schuppen können um die Rumpfmitte gezählt werden, wenngleich sich
auch bei Populationen bestimmter Verbreitungsgebiete enger begrenzte Schuppenzahlen zu stabilisie-
ren scheinen. So konnten für Brava und Boa Vista wie auch für die kleine vor Praia liegende Insel
St. Maria bei Mabuya delalandii 44-50 Schuppen gezählt werden, wo hingegen die Tiere von
S. Thiago (5 km S-Tarrafal) 44 Schuppen aufweisen.
Generell können 8 Supra- und 6 Sublabialia ausgebildet sein, wo wiederum auch eine deutliche
Häufung von Exemplaren mit je 7 Supra- und 6 Sublabialıa auffällig ist.
Die Dorsalschuppen sind im Normalfall drei-, seltener zweikielig, die Ventralia glatt. Die Pileus-
pholidose ist neben der Färbung wohl das deutlichste Artmerkmal. Zwischen drei und fünf vordere
Ohrrandtuberkel sind ausgebildet. Von den meist sechs Supralabialia ist das fünfte oft deutlich vergrö-
ßert und liegt direkt unter dem Auge. Eine transparente, relativ klare Palpebralschuppe ist ausgebildet.
Die Supranasalia trennen das Rostrale vom Frontonasale, welches wieder durch die Präfrontalia vom
Frontale getrennt ist. Vier Supraocularıa und bis zu 6 Supraciliaria sind ausgebildet. Nur ein, meist tra-
pezförmiges, Frontoparietale ist typisch. Das Interparietale ist mit den Parietalia zu einer großen
halbmondförmigen Schuppe verschmolzen, worauf ein Pinealforamen ausgebildet ist. Zwei Nuchalıa
begrenzen caudal die Pileuspholidose.
Färbung
Die Tiere sind dorsal hell- bis kupferbraun, ventral cremefarben bis gelbbraun. Unter den Achseln
sind typische dunkle Achselocellen ausgebildet. Die Zeichnung besteht fast ausnahmslos aus dem brei-
ten unıfarbenen Rückenlängsstreifen, der dorsolateral von zwei hellen, weißlichen Streifen begrenzt
ist. Diese beginnen über den Augen und ziehen bis zur Schwanzbasis, meist von einer dunkelbraunen
Punktreihe gesäumt. Lateral schließt ein dunkler — meist dunkler als die Rückenfärbung -Flankenstrei-
fen an, der vom Rostrale bis zur Schwanzbasis zieht. Ventrolateral kann daran noch ein weißlicher
Streifen folgen, meist aber schließt direkt an den dunklen Flankenstreifen eine dunkelbraune Tüpfe-
lung an, die sich auch auf den Kehlbereich ausdehnen kann. Die Ventralseite ist bis auf eben den bei ei-
nigen Individuen getüpfelten Kehlbereich einfarbig hell.
16
Tafel I
7
Tafel 1: Fig. 1: Mabuya delalandiüi von S. Thiago. Fig. 2: Mabuya vaillanti von S. Thiago. Fig. 3: Mabuya stangeri
spinalis von S. Thiago. Fig. 4: Mabuya stangeri salensis von Sal. Fig. 5: Mabuya stangeri maioensis von Maio.
Fig. 6: Mabuya fogoensis fogoensis von Fogo. Fig. 7: Mabuya fogoensis nicolauensis von S. Nicolau. Fig. 8: Ma-
buya stangeri stangeri von Branco.
17.
Maßtabelle
Mabuya delalandii von S. THIAGO - Praia, Flughafen
n
Nr. ZSM GL KR SL KL KB [(@) A OA OL/UL Schuppen
3827. 114,0 40,0 74,0 8,0 540 1,6 DD. 4,0 7/7 43
5.82.6 146,0 56,0 90,0 1255 755 2,6 3,0 4,1 8/7 44
5.82.5 152,0 54,0 98,0 11-3) 6,1 1077 DT, 5,0 7/6 43
5.82.4 179,0 78,0 101,0 14,0 8,4 11,55) 353 6,5 8/7 42
5.82.3 178,0 73,0 105,0 1550 8,6 1,8 387, 6,0 7/6 42
5.82.2 192,0 78,0 114,0 1545 10,0 1,6 3,6 6,5 7/6 42
en 185,0 75,0 110,0 14,8 11,0 DR, 3,0 7,0 7/6 42
— Praia, Stadt
Has 108,0 40,0 68,0 9,8 58 0,0 0,0 0,0 _ _
7.82.11 116,0 BAU 63,0 11,4 6,3 5) 3,0 4,2 7/6 46
7.82.10 148,0 51,0 97,0 11,4 6,0 155 255 4,0 7/6 _
2) 151,0 55,0 _ 13 6,6 0,0 0,0 0,0 _ _
7.82.8 _ 76,0 _ 14,6 985 20 5 6,7 7/6 46
182.7: _ 80,0 - 17,0 11,0 159 BZ 6,5 7/6 46
7.82.6 _ 68,0 _ 127 725 2il DR2 555 7/6 46
7.82.5 165,0 60,0 105,0 12,8 72 20) 2,5 359 6/6 48
7.82.4 175,0 64,0 111,0 l.®, 8,0 2AO 255 53 7/7 47
7.82.3 _ 72,0 _ 14,4 10,2 2,4 353 6,0 ZT 47
TRS282 _ 72,0 = 14,7 10,3 2] 355 5,6 7/7 48
SZ - 80,0 _ 14,5 NZ 23 3,5 6,1 8/7 48
— Cidade Velha
369.78.3 130,0 52,0 78,0 10155 7,0 1,8 2,5 4,5 ZT. 42
369.78.2 99,0 44,0 55,0 10,0 555 152 253 Sl 7/6 44
369.78.1 135,0 54,0 81,0 12,0 6,8 185 23 4,0 7/7 42
— Tarrafal
154.81.1 TBeo re O5 11,5 3.0 ro 7/7 44
— 5 km S-Tarrafal
155.81.5 = 75,0 4 Baier 5,8 717 44
155.81.4 eos 118 25 30.68 7/7 44
155.81.3 iss 770 111.0, 155° or ae 7/6 44
155.81.2 2000 ao 125,0 70149 95. Bor De 7/7 44
155.81.1 = 68,0 E ee 5,2 7/6 44
— St. Cruz
157.81.2 = 78,0 % TEIOR, M1IkOs a; zi7 44
157.31@1 173,0 ZE\-{0) 102,0 1555 90 255 332 5,8 7/6 46
von ILHEU ST. MARIA
8.82.2 a 68,0 2 len oh oe 7/6 44
8.82.1 eo 720 O1 loan en 7/6 48
von FOGO
11.82.4 120,0 48,0 72,0 ılao) 6,0 1,8 v0) 4,2 8/7 46
11.82.3 120,0 50,0 70,0 11,8 6,0 1,6 220) 4,0 7/6 46
10822 116,0 5240 64,0 1055 6,3 2,0 28 4,1 7/6 50
11.82.1 135,0 51,0 84,0 11,0 6,3 1,8 2,0 4,5 8/7 46
18
von BRAVA
367.78.4 (114,0) 46,0 ( 68,0) 10,5 5,8 11577 20) 3,7 7/6 46
367.78.3 _ 72,0 - 13,5 110,0) 2,1l 2,3 6,2 8/7 46
367.78.2 _ 75,0 _ 14,6 82 2,0 Al 6,3 8/7 50
367.78.1 _ 80,0 _ 1555 12,8 3,0 3,0 7,0 7/6 48
von BOA VISTA
373.78.3 110,0 46,0 64,0 10,0 6,5 1,4 2,0 3,9 8/7 42
373.78.2 _ 43,0 - 10,2 6,0 1,5 AN 4,0 8/7 42
373.78.1 = 58,0 _ 13,0 8,0 1,8 — 4,9 8/7 44
4.1.2 Mabuya fogoensis (O’Shaugnessy, 1874)
1874 Euprepes fogoensis O’SHAUGNESSY
1887 Mabuya fogoensis. - BOULENGER
1935 Mabuya fogoensis. - ANGEL
1937 Mabuya fogoensis. — ANGEL
1951 Mabuya fogoensis. — DEKEYSER & VILLIERS
1955 Mabuya fogoensis. -— MERTENS
1976 Mabuya fogoensis. — GREER
1982 Mabuya fogoensis. - SCHLEICH
Terra typıca: Fogo, Sao Vicente
Bisherige Verbreitung: Fogo, St. Antäo, Sao Vicente, San Nicolau
Nachgewiesen von: Fogo, San Nicolau, St. Antao
Artcharakteristika nach:
MERTENS (1955) —
60-66 Schuppenreihen, Schuppen dorsal zweikielig bis undeutlich dreikielig; Neigung zum Melanısmus; Kopf-
unter-, Bauchseite dunkelgrau bis schwarz gefleckt. KR: 66 mm, SL: 95 mm
GREER (1976) —
KR: 78 mm, 60-66 Schuppenreihen
DEKEYSER & VILLIERS (1951) —
46 Exemplare; KR max: 81 mm, min. 54 mm; KR - MW: 67,2 mm, zwischen 53 und 68 Schuppenreihen
4.1.2.1 Mabuya fogoensis fogoensis (O’Shaugnessy, 1874) (Taf. I, Fig. 6)
Material: 4 Exemplare BMNH 1946 8.18.8-11.
Terra typıca: Fogo
Bisherige Verbreitung: Fogo
Nachgewiesen von: Fogo
Diagnose:
KR-Länge ca. 80 mm, Schwanzlänge ca. 1,1X KR-Länge. 58-60 Schuppenreihen um die Rumpf-
mitte; Dorsalia ungekielt bis schwach dreikielig; 7 Supra- und 6 Sublabialia;4 Supraocularıa. 3-6 ante-
rıore Aurikulartuberkel. Dunkelbraun mit Tüpfelung oder Flankenstreifen.
Beschreibung:
Habitus
Die Skinke sind von lacertiformem Habitus mit abgesetztem Kopf und rundem Schwanz. Die KR-
Länge beträgt max. ca. 8 cm bei 17 bis 18 cm Gesamtlänge. Die Ohröffnung ist etwa gleich groß wie
der Augdurchmesser.
Pholidose
58-60 Schuppen werden um die Rumpfmitte gezählt. Die Dorsalschuppen sind ungekielt bis
schwach dreikielig, die Ventralia glatt. 8-10 vergrößerte Präanalschuppen und je 7 Supra- und Subla-
19
bialia (1X 6), sowie 3-6 sehr kleine, vordere Ohrrandschuppen sind ausgebildet. Das5. Supralabiale ist
vergrößert und liegt direkt unter dem Auge. Die transparente Palpebralscheibe ist relativ groß. 4 Su-
praocularıa und 6 Supraciliaria können gezählt werden. Das Interparietale mit einem schwach sichtba-
ren Pinealforamen ist deutlich kleiner als die beiden Frontoparietalia. Die Parietalia sind sehr groß und
umgreifen fast das Interparietale. Posterocranial begrenzen zwei Nuchalia die Pileuspholidose.
Färbung
Typisch für die 4 Alkohol-Exemplare aus der Sammlung des BMNH ist eine dunkelbraune Tüpfe-
lung auf hellbraunem Grund. Dabei sind die Flecken dorsal in2 Doppeltüpfelreihen, die meist einen
hellen kleineren Mittel- oder Randfleck aufweisen, angeordnet. Dorsolateral tritt dieses gleiche Zeich-
nungsmuster — in einer intensivierten Dunkelfärbung zuweilen auf einem dunkleren Farbrand — das
vom Auge bis zum Schenkelansatz reicht, auf. Die Flanken sind gesprenkelt, der Kopf gelblich braun.
Maßtabelle
Mabuya fogoensis fogoensis von FOGO
n
BMNH-Inv. Nr. GL KR SL ISIE KB (6) A OA OL/UL Schuppen
1946.8.18.8 173,0 80,0 93,0 16,5 11,2 2,2/0 3 6,8 7/6 60
1946.8.18.9 173,0 76,0 97,0 15,5 11,0 2,6/4 3,0 6,6 7/6 58
1946.8.18.10 — 66,0 z 14,0 9,5 2,0/3 259 3,2 7/6 58
1946.8.18.11 108,0 58,0 50,0 13,0 8,0 2,0/2 2,6 >51 7/6 58
4.1.2.2 Mabuya fogoensis nicolauensis nov. ssp. (Taf. I, Fig. 7)
Material: 7 Exemplare; Holotypus — ZSM 1.82.1, S. Nicolau. Paratypen — ZSM 1.82.2-7.
Terra typica: $. Nicolau
Verbreitung: $. Nicolau
Derivatio nominis: nicolauensis, von S. Nicolau
Diagnose:
KR-Länge bis 87 mm; zwischen 52-60 Schuppen um die Körpermitte. In der Regel 7 Supralabialıa.
2-3 anteriore Aurikulartuberkel. Dorsalia ungekielt bis doppelkielig; Ventralia glatt. Bei O’O’ auffäl-
lige Rotfärbung der Bauchseite.
Beschreibung des Holotypus:
Der Holotypus ist das größte Individuum der gefangenen Serie von sieben Exemplaren. Seine Ge-
samtlänge beträgt 16,4 cm, wobei 8,7 cm auf die Kopf-Rumpflänge entfallen; 5,5 cm der Schwanz-
länge sind regeneriert. Die Kopflänge mißt 17,5 mm bei 13,0 mm Breite. Ohr- und Augdurchmesser
sind mit je 3,1 mm gleich groß. Sieben Supra- und Sublabialia sind ausgebildet, um die Rumpfmitte
zählt man 54 Schuppen. Das Exemplar ist dorsal braun gefärbt und trägt die zwei typischen hellen
Dorsolateralstreifen, die zu den Flanken hin mit einer dunklen Punktreihe gesäumt sind. Die hellen
Streifen reichen vom hinteren Augenwinkel bis auf den Schwanz. Die mittlere linke Zehe ist kupiert,
ebenfalls der linke Hemipenis. Ventral ist das Tier ab den Vorderextremitäten rötlich beige gefärbt mit
einer lateralen Rotintensivierung.
Beschreibung:
Habitus
Der Habitus der max. bis 87 mm (KR) lang werdenden Tiere ist von typisch lacertider Form mit vom
Rumpf abgesetzten Kopf und Schwanz. Insbesondere bei den adultenoO° ist deutlich die Wangen-
region verdickt. Der Schwanz ist dorsolateral rundlich und mit basaler Abflachung.
20
Abb. 1-5: Schematisierte Rückenzeichnungen kapverdischer Skinke der Gattung Mabuya. 1) Mabuya dela-
landii; 2) Mabuya fogoensis fogoensis; 3) Mabuya fogoensis nicolanensis; 4a, b,) Mabuya fogoensis antaoensıis;
5) Mabuya stangeri stangenı.
Pholidose
52-60 Schuppen können um die Rumpfmitte gezählt werden. Von den Lippenschildern sind mit je
einer Ausnahme (1X8 Supralabialia, 1x6 Sublabialia) 7 ausgebildet.
Das Augenlid bedeckt eine relativ große, klare Palpebralscheibe. Den vorderen Ohrrand zieren
meist nur 2-3 kleine Spinalschuppen. Zwei Supranasalia trennen das Rostrale vom Frontonasale. Die
Frontoparietalia sind nur wenig größer als das Interparietale. Vier Supraocularia sind vorhanden. Zwei
Nuchalia begrenzen caudal die Schädelpholidose. Die Dorsalschuppen weisen, falls überhaupt er-
kennbar, nur eine schwache Doppelkielung auf, die Ventralia sind glatt.
21
Färbung
Vier der konservierten Exemplare zeigen eine deutlich orange-rote Kehl- und Bauchfärbung. Mögli-
cherweise handelt es sich bei dieser Färbung um einen Geschlechtsdimorphismus, da alle vier Exem-
plare ausgestülpte Hemipenes zeigen, während die drei verbleibenden kleineren Exemplare ventral nur
gräulich gefärbt sind. Alle Exemplare zeigen zwei helle Lateralstreifen, die zur Rückenmitte von dun-
kelbraunen Tupfen gesäumt werden und an den Flanken von einer feinen, abwechselnd dunkelbrau-
nen, hellbeigen Tüpfelung begrenzt sind. Helle Tüpfel zieren die Caudalseiten der Oberarme. Die
Rückengrundfärbung ist mitteldunkelbraun, die Flecken sind graubraun.
Maßtabelle
Mabuya fogoensis nicolanensis nov. ssp. von $S. NICOLAU
n
Nr. ZSM GL KR SL KL KB (®) A OA OL/UL Schuppen
12822] - 87,0 _ 1743 1550 I! Sl Te NT. 54
1822 164,0 72V 92,0 14,0 11,4 2,6 2,8 6,2 7/7 54
823 15940 64,0 95,0 IB 8,7 2,4 2,6 5385 7/7 60
1.82.4 147,0 58,0 89,0 155 7,0) 1,8 2>2 4,7 7/6 52
1.82.5 121,0 49,0 72,0 10,8 6,5 220) 3,0 4,1 ZT, 52
1.82.6 94,0 42,0 52,0 10,0 5330 12,0 S)-0) Be 7/7 54
1982R72 —_ 5220 _ 14163 Tail 2,0 0,0 4,2 8/7 52
BMNH-Inv. Nr.
1906.3.30.36 160,0 72,0 80,0 15,0 11,0 2,5/3 3,0 6,0 THRTE 58
4.1.2.3 Mabuya fogoensis antaoensis nov. Ssp.
Material: 9 Exemplare; Holotypus — ZSM 23.1982.1. Paratypen — ZSM 23.1982.2-9.
Terra typica: St. Antäo
Verbreitung: St. Antao
Derivatio nominis: antaoensis, von St. Antao
Diagnose:
KR-Länge bis ca. 67 mm, SL meist ca. 1,3-1,5X KR; 50-54 Schuppen um die Rumpfmitte. In der
Regel 7 Supra- und 6 Sublabialia; 3 anteriore Aurikulartuberkel. Dorsalia doppelkielig; Ventralia
glatt.
Beschreibung des Holotypus:
Als Holotypus wurde das Exemplar mit der größten KR-Länge gewählt. Seine Gesamtlänge beträgt
13,6 cm bei 6,7 cm KR-Länge, wobei 4 cm auf das Schwanzregenerat entfallen.
Das Tier ist dunkelbraun und erscheint am Rücken nur sehr schwach gezeichnet. Lateroventral löst
sich die Färbung in eine unregelmäßige Fleckenreihe auf; dieselbe Fleckung erstreckt sich auch auf den
gesamten Kehlbereich. Die Bauchmitte sowie die Extremitätenunterseite sind hellbeige/grau gefärbt.
Auf dem heller gefärbten Schwanzregenerat wird die Streifung wieder deutlicher. Weitere allometri-
sche Werte sind nachfolgender Maßtabelle zu entnehmen.
Beschreibung:
Habitus
Das von der Ostseite von St. Antäo stammende Material umfaßt eine kleine Serie von 9 Skinken ju-
veniler bis adulter Tiere. Ihrer phänotypischen Erscheinung nach gleichen sie sehr denen von $. Vicen-
te. Mit 67 mm KR-Länge erscheint das größte ©’ vom Körperbau her bedeutend gedrungener als ein
vergleichbares Exemplar von S. Nicolau. Der Kopf erscheint kürzer als bei besagter Form und ist
22
ebenso wie der Schwanz nur undeutlich vom Rumpf abgesetzt. Der Körper ist ziemlich gleichförmig,
der Schwanz rund.
Pholidose
Zwischen 50 und 54 Schuppen können um die Rumpfmitte gezählt werden. 7 Supra- und 6 (eine
Ausnahme mit 7) Sublabialia sind ausgebildet. Das Augenlid besitzt eine klare Palpebralscheibe; am
vorderen Ohrrand sind 3 Spinalschuppen vorhanden. Die Dorsalschuppen sind doppelkielig, die Ven-
tralia glatt. Die Supranasalia trennen das Rostrale vom Frontonasale. Die Zahl der Supraocularschilder
beträgt 4. Die Frontoparietalia sind nur geringfügig größer als das Interparietale. Die Pileuspholidose
wird durch zwei Nuchalia begrenzt.
Färbung
Die Tiere sind von tief dunkelbrauner Grundfärbung am Rücken und den Flanken, die Bauchseite ist
dunkel graubraun.
Bis auf ein Exemplar ist der Mittelstreifen nur als dünner heller Strich, zuweilen ganz als Strichlinie
ausgebildet. Seitlich davon liegen ebenfalls in mehr oder wenig deutlicher Ausbildung noch je zwei
feine helle Streifen, die oft auch nur als Punktlinien angedeutet sein können. Die Flanken sind leicht
hell gesprenkelt. Der Übergang zur helleren Bauchfärbung erfolgt meist erst auf der Ventralseite und
nicht scharf begrenzt. Die Kehle erscheint ebenfalls deutlich marmoriert.
Maßtabelle
Mabuya fogoensis antaoensis nov. ssp. von ST. ANTAO
n
Nr. ZSM GL KR SL KL KB (6) A OA OL/UL Schuppen
23.82.9 122,0 47,0 75,0 10,5 6,5 1,6 2,0 353 7/6 50
23.82.8 - 42,0 — 8,8 5,5 — — — — —
23.82.7 102,0 38,0 64,0 9,0 553 _ — _ — —
23.82.6 100,0 43,0 57,0 10,0 552 — — = = —
23.82.5 _ 53,0 — 12,0 753 DEP. 2,6 5,0 7/6 50
23.82.4 104,0 42,0 62,0 10,2 6,5 1,9 2,2 4,0 7/6 54
23.82.3 100,0 43,0 57,0 10,0 6,5 2,0 2,0 3,8 7/6 52
23.82.2 — 63,0 _ 1255 8,2 23 2,5 4,0 7/6 50
23.82.1 — 67,0 _ 1855 2) 2,0 255 559 7/7 54
4.1.3 Mabuya stangeri
4.1.3.1 Mabuya stangeri stangeri (Gray, 1845) (Taf. I, Fig. 8)
Material: 3 Ex. ZSM 159/81; S. Vicente. 3 Ex. ZSM 15/82; Branco. 3 Ex. ZSM 14/82; Branco. 14 Ex. ZSM 3/82;
Razo. 1 Ex. ZSM 13/82; Razo. 2 Ex. ZSM 12/82; Razo. 11 Ex. ZSM 2/82; St. Luzia.
1845 Euprepis stangerı GRAY
1869 Euprepis polylepis. — PETERS
1875 Euprepis hopfferi. - BOCAGE
1887 Mabuya stangeri. — BOULENGER
1937 Mabuya stangeri. — ANGEL
1951 Mabuya stangeri. — DEKEYSER & VILLIERS
1955 Mabuya stangeri stangeri. — MERTENS
1976 Mabuya stangeri. — GREER
Terra typica: Westafrika
Bisherige Verbreitung: (?) Sal, (?) Boa Vista, (?) Brava, $. Vicente St. Luzia, Branco, Razo
Nachgewiesen von: $. Vicente, St. Luzia, Branco, Razo
228)
7 8 9
Abb. 6-9: Schematisierte Rückenzeichnungen kapverdischer Skinke der Gattung Mabuya. 6a-d) Mabuya stan-
geri maioensis; 7) Mabuya stangeri salensis; 8) Mabnya stangeri spinalis; 9) Mabuya vaıllantı.
Artcharakteristika nach:
MERTENS (1955) — von 54 Exemplaren:
42—46 Schuppenreihen, dreikielig; 5-7 Supraciliaria, 5-6 Labialia unter dem Auge, Praefrontale kann mit den
Frontoparietalia und das Interparietale mit dem Parietale verschmolzen sein.
GREER (1976) —
KR-Länge für M. stangeri: 90 mm. 36-46 Körperschuppen um die Rumpfmitte.
DEKEYSER & VILLIERS (1951) —
Verbreitung: $. Vicente, Branco, Razo, Sal, Boa Vista, Brava.
KR: max. 90 mm, min. 50 mm. 49-44 Schuppenreihen um den Körper, 5 Supraciliaria.
Diagnose:
KR-Länge bis max. 80 mm, SL wenig mehr als KR.
24
42 (1x38)46 Schuppenreihen um die Rumpfmitte, 6/5 bis max. 7/7 Supra- bzw. Sublabialia. 34 an-
teriore Aurikulartuberkel. Dorsalia tricarinat. Ventralia glatt. Ohrdurchmesser oft kleiner als Aug-
durchmesser. Dorsal dunkelbraun mit je einem hellen Dorsolateralstreifen, ventral hellgrau bis rötlich.
Beschreibung:
Habitus
Kopf und Schwanz der bis zu 160 mm lang werdenden Tiere sind deutlich vom Rumpf abgesetzt.
Der Augdurchmesser ıst meist größer oder gleich groß dem Ohrdurchmesser.
Pholidose
Zwischen 42 und 46 Schuppen können um die Rumpfmitte gezählt werden, wobei die Tiere mit
42 Schuppenreihen häufiger sind. Von den Labialıa sind meistens 7 Supra- sowie 7 Sublabialıa ausge-
bildet, wenngleich auch Exemplare mit je 6 oder 7 Supra- und 5 Sublabialia vorkommen. Der vordere
Ohrrand ist von 3 oder 4 kleinen Spinalschuppen bestanden. Die Dorsalschuppen sind schwach drei-
gekielt. Vier Supraocularıa und 5 Supraciliarıa sind ausgebildet.
Das Rostrale wird durch die Supranasalia deutlich vom Frontonasale getrennt. Das Interparietale ist
gleich groß oder nur geringfügig kleiner als die Frontoparietalia. Sowohl das 5. als auch 6. Sublabiale
liegen unter dem Auge. Zwei Nuchalia begrenzen caudal die Pileuspholidose.
Färbung
Die dorsal relativ dunkelbraun gefärbten Tiere zeigen alle beiderseits je einen helleren Dorsolateral-
streifen. Dazwischen kann eine dunkle Fleckung, teilweise mit hellen Punkten versehen, auftreten, die
auf den Flanken bei allen Exemplaren vorkommen. Die Bauchseite ist hellgrau gefärbt und bei einigen
Exemplaren (O'C") mit rötlichen Ventrolateralstreifen gezeichnet.
Maßtabelle
Mabuya stangeri stangeri von $S. VICENTE
n
Nr. ZSM GL KR SL KL KB OÖ A OA OL/UL Schuppen
159.81.5 _ 72,0 —_ 13,0 10,0 ZA 2,3 5,5 6/6 44
159.81.4 155,0 75,0 80,0 13,8 11,1 Dal 3,1 5,5 6/6 46
159.81.3 92,0 36,0 56,0 8,5 5,0 12 1,8 3,0 6/6 42
159.81.2 _ 56,0 _ 13,0 8,5 2,5 2,3 4,8 _ _
159.81.1 130,0 52,5 77,5 10,9 Ze 1,8 DD, 4,5 - _
von St. LUZIA
2.82.9 13820. 02 62/0) 760, 1212:5 So EL. MO 6/5 44
2.82.8 oo 3a a 0 52 hs 1,8 3,2 7/6 42
2.82.7 nano 50 Aa oo Ro 9 a0 7/5 44
2.82.6 117,0 44,0 73,0 9,1 5,5 1,3 2,5 Do 7/6 42
2.82.5 117,0 43,0 74,0 9,0 6,0 1,5 2,0 3,5 6/5 42
2.82.4 — 51,0 — 10,0 6,5 1,5 2,6 4,1 7/5 44
2.82.3 116,0 63,0 53,0 12,2 8,5 2,0 2,8 4,9 6/5 42
2.82.2 130,0 57,0 73,0 12,0 8,1 1,8 | 4,1 7/6 44
2.82.1 _ 63,0 — 12,9 9,4 1,8 za 5,0 7/6 42
von BRANCO
15.82.3 = 74,0 ® 14,5 OO 3 5,0 7/6 38
15.82.2 0 370. 220 00.0 0 = _
15.82.1 = 80,0 & DOW OO ERE oE 355 7/7 44
von ?BRANCO
14.82.1 Sole az er ae an a7 7/6 44
14.82.2 a 74,0 s 141) all 10:70, 3 6,0 7/6 44
25
3.82.14 133,0 65,0 68,0 1350 8,0 2,0 25H 5,0 7/6 42
3R8213 143,0 66,0 77,0 13,0 8,2 22 ZN 352 7/6 an
3282212. - 75,0 _ 14,0 9,8 11577 3,0 5,8 7/7 42
3.82.11 - 72,0 — 14,0 9,0 2,6 2,8 4,3 6/6 -
3.82.10 154,0 71,0 83,0 az 352 2,0 23 3 7/6 42
328259, _ 68,0 _ 13,0 953 2 2,8 5,3 7/7 42
3.82.8 _ 74,0 - 13,9 10,1 2 253 539 717 42
382.7, 151,0 68,0 83,0 12,8 10,2 2 29 555 7/7 42
3.82.6 — 65,0 — 13,0 9,0 2,8 25 >53 717 44
3.82.5 154,0 75,0 79,0 14,0 10,0 3,0 3,0 353 7/7 44
3.82.4 151,0 67,0 84,0 12,8 950 259 22) 553 7/7 42
3.82.3 156,0 71,0 85,0 13,0 10,0 2,0 2,8 558 717 44
BNS22 140,0 63,0 77,0 1252 8,2 2,0 253 5,0 717 46
382 _ 76,0 Z— 1554 10,0 2,0 257 5,8 717 44
4.1.3.2 Mabuya stangeri maioensis Mertens, 1955 (Taf. I, Fig. 5)
Material: 30 Ex. ZSM 160/1981; Maio. 1 Ex. ZSM 10/1982; Pt.-Cais-Maio.
1955 Mabuya stangeri maioensis MERTENS
1982 Mabuya stangeri maioensis. — SCHLEICH
31 semiadulte bis adulte Exemplare liegen von Maio vor. Während 30 Individuen aus dem Gebiet ca. 10-20 km
nördlich von Vila do Maio gefangen wurden, stammt ein juveniles Exemplar (ZSM 10/1982) von der Fischerstation
Pt. Cais im Norden der Insel.
Terra typica: Maio
Bisherige Verbreitung: Maio
Nachgewiesen von: Maio
Artcharakteristika nach:
MERTENS (1955) —
‚„‚Sehr nahestehend der spinalis-Rasse von Fogo, aber die Längsstreifen, auch der dunkle Vertebralstreifen, ver-
löschen bzw. werden durch dunkle, in Längsreihen stehende Fleckchen ersetzt.“
Anmerkung: Die Artbeschreibung von MERTENS geschah nur nach einem einzigen Exemplar. Eine Diagnose und
Beschreibung wird nachfolgend gegeben.
Diagnose:
KR-Länge bis 80 mm, SL ca. 1,2x KR. 3640 Schuppen um die Rumpfmitte. Dorsalia schwach tri-
carınat, Ventralia glatt. 4-5 vordere Ohrrandtuberkel. Dorsal graubraune Färbung dominierend; helle
Oberschenkelocellen.
Beschreibung:
Habitus
Der Gesamthabitus der Skinke ist von rundlichem Körper mit wenig bis nicht abgesetztem Kopf-
und Schwanzansatz. KR-Länge bis 80 mm, SL oftüber 1,5x KR-Länge. Augdurchmesser nur gering-
fügig kleiner oder größer als Ohrdurchmesser. Der Schwanz ist rundlich viereckig, der Kopf kurz und
gedrungen.
Pholidose
36-40 Schuppen können um die Rumpfmitte gezählt werden. Sechs bis acht, meist jedoch sieben Su-
pralabialia sowie sechs bis sieben, meist jedoch ebenfalls sieben Sublabialia sind ausgebildet. Zwischen
vier bis fünf, meist jedoch vier Spinalschuppen liegen am vorderen Ohrrand.
Eine große Palpebralscheibe bedeckt das Augenlid. Das Rostrale stößt mit den Supranasalia und dem
Frontonasale zusammen. Die beiden Frontoparietalia sind geringfügig größer als das Interparietale.
26
Zwei Nuchalia begrenzen caudal die Schädelpholidose. Die Dorsalia sind schwach dreigekielt, die
Ventralia glatt.
Färbung
Während ein Drittel der Maio- Aufsammlung aus dorsal mehr oder weniger einfarbig graubraun ge-
färbten Tieren besteht, scheint der Rest aus ‚‚Intergrades“ aller auf den Kapverden vorkommenden Ar-
ten zu bestehen. Die abgebildeten Zeichnungsmuster liegen innerhalb des Bereiches der auf Maio vor-
kommenden Typen. Wie bei Mabuya stangeri spinalis sind auch hier helle Oberschenkelocellen ausge-
bildet.
Eine typische Juvenilfärbung ist nicht zu erkennen, wenngleich auch die Mehrzahl der gefleckten
bzw. mit Streifen gemusterten Tiere kleinere Exemplare sind. Die Dunkelfärbung des Rückens reicht
auf Flankenhöhe ziemlich genau bis auf die Höhe der Beinoberseite bzw. des Beinansatzes. Alle Exem-
plare tragen auf der Caudalseite der Oberschenkel zwei bis drei, meist kreisrunde, helle Flecken. In
Abbildung 6.a-d ist die Variabilität der Zeichnungsvariationen von Mabuya stangeri maioensis darge-
stellt.
Anmerkung: Für Maio, bislang geologisch als älteste der kapverdischen Inseln betrachtet, läge nun
der Gedanke nahe, an eine Entwicklung oder Erstbesiedlung dieser Insel zu glauben, von wo aus radia-
tiv die verschiedenen Nachbarinseln besiedelt worden wären. Ein Vergleich aller typischen Zeich-
nungsmuster verwandter Arten könnte diese Ansicht stützen.
Maßtabelle
Mabuya stangeri maioensis von MAIO
n
Nr. ZSM GL KR SL KL KB (6) A OA OL/UL Schuppen
160.81.30 96,0 43,0 53,0 953 5,8 1,6 21 4,0 7/7 40
160.81.29 _ 37,0 — 9,6 7,1 1,8 ol 3,5 717 36
160.81.28 _ 45,0 85,0 10,3 6,8 2,0 253 4,0 8/7 36
160.81.27 _ 52,0 74,0 11,0 6,6 2,0 252 5,0 7/7 36
160.81.26 _ 43,0 84,0 12,0 5,4 25] 252 ) 7/7 38
160.81.25 - 51,0 79,0 12,0 6,5 2,0 253 4,5 7/7 38
160.81.24 - 59,0 — 15,0 76 BR 252. De) 717 38
160.81.23 - 56,0 - 12,0 8,1 2,3 29 5,0 8/7 36
160.81.22 154,0 56,0 98,0 12,0 763 2,0 2,4 4,7. 8/7 36
160.81.21 _ 74,0 — 13,2 9,8 255 Sal 6,0 7/7 36
160.81.20 153,0 56,0 97,0 1155 8,0 1,8 2,4 4,6 7/7 36
160.81.19 _ 71,0 — 1553 8,7 2,4 252 6,0 6/6 36
160.81.18 166,0 68,0 98,0 13,0 8,0 2,0 De) 6,0 7/7 40
160.81.17 _ 75,0 - 1357 9,0 N! 253 6,0 7/17 40
160.81.16 — 75,0 - 14,0 8,8 15%) 253 5,9 7/7 38
160.81.15 — 77,0 _ 14,8 9,0 22. 252. 6,5 ZUR 36
160.81.14 130,0 75,0 55,0 14,1 10,1 2) 2,8 6,0 7/6 38
160.81.13 — 80,0 — 15,0 9,8 349 3,0 6,0 7/6 38
160.81.12 _ 65,0 - 12,2 9,0 2,4 2,6 5,0 7/6 38
160.81.11 — 76,0 - 12,5 359 Da 2,6 552 ZUR 36
160.81.10 — 71,0 - 13,8 10,0 253 2,6 6,0 7/17 38
160.81.9 - 67,0 — 12,1 8,9 2,0 253 5,5 7/7 38
160.81.8 — 75,0 — 13,5 9,5 DRS 2,5 6,3 8/7 36
160.81.7 _ ZARO - 13,9 Do 2,6 ZN 6,0 7/7 38
160.81.6 _ 76,0 _ 14,5 10,0 2,6 2,8 6,0 7/7 38
160.81.5 175,0 80,0 95,0 1355 9,5 3,1 2,8 6,1 717 38
160.81.4 - 53,0 — 11,1 6,5 243 I, 5,0 7/7 38
27
160.81.3 — 75,0 _ 14,0 9,8 253 27 6,0 7/7 40
160.81.2 — 77,0 — 13,3 8,5 23 2,6 6,1 7/6 38
160.81.1 - 74,0 — 14,0 10,7 DAT 243 357. 8/7 38
4.1.3.3 Mabuya stangeri salensis Angel, 1935 (Taf. I, Fig. 4)
Material: 8 Exemplare, ZSM 4/1982; Sal. 1 Exemplar, ZSM 16/1982; Sal. 1 Exemplar, ZSM 374/1978; Boa Vista.
1935 Mabnya salensis ANGEL
1937 Mabuya salensis. - ANGEL
1951 Mabuya stangeri. — DEKEYSER & VILLIERS
1955 Mabuya stangeri salensis. - MERTENS
1982 Mabuya stangeri salensis. — SCHLEICH
Terra typica: Sal
Bisherige Verbreitung: Sal, (?) Boa Vista
Nachgewiesen von: Sal, Boa Vista
Artcharakteristika nach:
ANGEL (1935) —
Schnauze kurz, längengleich zu dem Abstand zwischen Augenhinterrand und Ohröffnung. Nasenlöcher auf der
Naht zwischen Rostrale und dem ersten oberen Labiale. Oberes Augenlid mit einer durchsichtigen Scheibe, unge-
teilt. Ein Postnasale. Vorderes ‚‚Frenale“ nicht in Kontakt mit erstem Labiale, Supranasalia posterior von Rostrale
begrenzt. Frontonasale viel breiter als lang, in Kontakt mit Frontale. Präfrontalia ohne Mediansutur. Frontale viel
länger als Frontoparietalia und Interparietale zusammen. 2. und 3. Supraokulare in Kontakt mit Frontale. 4 Su-
praokularıa nach Größen geordnet: 2.3.4. und 1.
DreiSupraciliaria, das erste gleich lang wie die beiden verbleibenden. Frontoparietalia größer als das Interparieta-
le. Parietalia mit einer kurzen Sutur an die nachfolgenden Schuppen. Ein Paar Nuchalia. Sieben obere Labialia, das
5. und 6. unter dem Auge, kaum verkleinert; Ohröffnung groß, oval, ihr Vertikaldurchmesser gleich lang wie der
Augendurchmesser, mit davorliegenden, etwas vergrößerten Schuppen.
Dorsal- und Nackenschuppen unterschiedlich, dreigekielt. 39-40 Schuppen um die Körpermitte. Glatte Finger-
lamellen. Schwanz ca. 1,2 mal der KR-Länge. 3 Supraciliarıa, 5. und 6. Labiale unter dem Auge.
Maße:
GE: 124 mm Vordergliedmaßen: 16 mm
KL: 12 mm Hintergliedmaßen: 22 mm
KB: 8 mm SL: 67 mm
KR: 45 mm
Färbung:
Dunkelgrau mit Spuren einer Rückenlinie, irregulär mit hellen, dorsolateralen Schuppen.
Reihen weißer Tupfen auf den Flanken, die ebenfalls Anzeichen zu zwei Längsreihen bilden.
Anmerkung:
Nach einem Vergleich mit ‚‚Mabuya spinalis“ gibt ANGEL (1937) für Mabnya stangeri salensis folgende Unter-
scheidungsmerkmale an: 32-40 Schuppen um die Körpermitte, 5-6 Labiale unter dem Auge, 3 Supraciliaria, vorde-
res „‚Frenale“ nicht in Kontaktmit 1. Labiale, Präfrontalia ohne Mediansutur, kürzerer Schwanz, unterschiedliche
Färbung.
MERTENS (1955) —
KR: 90 mm; SL: 119 mm; Sal.
MERTENS betrachtete seine Exemplare von Sal als Topotypen. Praefrontalia bilden untereinander eine Naht.
1. Supralabiale steht mit vorderem Loreale (1 Ausnahme) in Kontakt; ferner 4 (1 Ausnahme mit drei) Supraciliaria
ausgebildet. 39-(40)42 Schuppenreihen, Schuppen dreikielig (bei Juvenilen zweikielig!).
Diagnose:
KR-Länge bis ca. 90 mm, Gesamtlänge bis ca. 210 mm. 3644 Schuppenreihen um die Körpermitte;
zweigekielt, selten dreigekielt. 6-7 Supra-/Sublabialia. 3-6 anteriore Aurikulartuberkel. Dunkler Dor-
somedianstreifen, helle Oberschenkelocellen.
28
Beschreibung:
Habitus
Nach Mabuya vaillanti ist dies die zweitgrößte und auch kräftigste Mabuyenart der Kapverden. Bis
87 mm KR-Länge und 210 mm Gesamtlänge maß das größte, im Frühjahr 1981 gefangene Exemplar
von Sal. Der Schwanz mißt nie über anderthalbmal die KR-Länge. Der Kopf ist deutlicher als bei Ma-
buya vaillanti vom Rumpf abgesetzt. Der kreisrunde Schwanz verschmälert sich ab Rumpfbasis deut-
lich. Der Augdurchmesser ist deutlich größer als der Ohrdurchmesser. Meist 7 (6) Supra- und 7 (6)
Sublabialia sind ausgebildet.
Pholidose
Zwischen 36 und 42 (?44) Schuppen zählt man bei den Tieren von Sal um die Körpermitte, bei den
Exemplaren von Boa Vista 40. Die Rückenschuppen sind schwach zweigekielt, selten dreigekielt. Das
Exemplar von Boa Vista hat7 Supra- und 6 Sublabialia, ebenso ein Exemplar von Sal, wo auch ein wei-
teres mitje 6 Lippenschildern vorkam. Eine deutlich erkennbare, große Palpebralschuppe ist ausgebil-
det. Drei bis sechs (meist 5) gut sichtbare vordere Ohrrandtuberkel sind vorhanden. Sowohl das 5. als
auch 6. Supralabiale kommen unter dem Auge zu liegen.
Die Supranasalnaht zwischen Rostrale und Frontonasale ist sehr kurz. Das Nasale wird vom Ro-
strale und 1. Supralabiale begrenzt. 4 Supraokularia und 4-5 Supraciliaria sind ausgebildet. Die Fron-
toparietalia sind geringfügig größer als das Interparietale. Ein Foramen parietale ist nicht erkennbar.
Zwei Nuchalia begrenzen caudal die Schädelpholidose.
Färbung
Das typische Zeichnungsmuster der meist hell- bis gelbbraun gefärbten Tiere ist ein dorsomedianer,
schmaler, dunkler Streifen, der von hellen Längsstreifen begrenzt oder nur als Fleckenlinie auf einem
hellen Mittelstreifen liegt. Daran folgt beiderseits ein dunkelfleckiger Längsstreifen, der wieder von
zwei schmalen, hellen Dorso-Lateralstreifen gesäumt wird. Den Übergang zu den Flanken bilden
meist ein bis zwei hellgetüpfelte Punktreihen. Die Bauchfärbung der Tiere ist hell-weißlich. Auf der
Hinterseite der Oberschenkel sind, wie für spinalis und maioensis ebenfalls typisch, helle Ocellen aus-
gebildet.
Maßtabelle
Mabuya stangeri salensis von SAL
n
Nr. ZSM GL KR SL KL KB (6) A OA OL/UL Schuppen
4.82.8 _ 86,0 —_ 16,0 12,0 3,0 353 6,5 7/7 42
4.82.7 98,0 38,0 60,0 353 2 1,8 2 952 7/7 —
4.82.6 _ 72,0 — 13,9 8,5 249 29 5,2 7/7 38
4.82.5 153,0 65,0 88,0 13,0 9,0 2,3 3,0 4,5 7/7 36
4.82.4 166,0 70,0 96,0 13,0 10,5 3,0 357, 4,5 7/7 40
4.82.3 210,0 87,0 123,0 14,9 11,0 3,1 4,0 6,0 TUT, 42
4.82.2 — 64,0 _ 13,0 8,7 2,4 3,0 4,9 6/6 38
4.82.1 _ 86,0 — 15,0 10,0 243 3,2 559 7/6 40
16.82.1 88,0 31,0 57,0 8,5 4,8 — = = — =
16.82.2 90,0 — — _ — _ — = — —
16.82.3 95,0 — — — — _ - _ = —
von BOA VISTA
Mabuya stangeri salensis vel M. st. stangeri (= M. st. salensis)
ZSMS a 10 0 an Be 40
29
4.1.3.4 Mabuya stangeri spinalis Boulenger, 1906 (Taf. I, Fig. 3)
Material: 9 Ex. ZSM 30/82; (1X intermed. mit Mabuya vaillantı); Insel St. Maria. 1 Ex. ZSM 6/82; Praia —
S. Thiago. 3 Ex. ZSM 363/78; Tarrafal — S. Thiago. 1 Ex. ZSM 364/78; (intermed. mit M. vaillantı; Tarrafal -
S. Thiago).2 Ex. ZSM 156/81;5 kmS. Tarrafal-S. Thiago.2 Ex. ZSM 368/78; Fogo. 1 Ex. BMNH 1906.3.30.40;
Fogo.
1906 Mabuya spinalis BOULENGER
1935 Mabuya spinalıs. - ANGEL
1937 Mabuya spinalıs. -— ANGEL
1955 Mabuya stangeri spinalis. — MERTENS
1982 Mabuya stangeri spinalis. — SCHLEICH
Terra typica: Igreja und S. Filipe, Fogo
Bisherige Verbreitung: Fogo, Sal
Nachgewiesen von: Praia, Tarrafal, S. Thiago; Ilheu St. Maria; Fogo
Artcharakteristika nach:
BOULENGER (1906) — Übersetzung
Schwanz kurz, stumpf. Unteres Augenlid mit ungeteilter, transparenter Scheibe. Nasenlöcher hinter der Vertika-
len der Sutur zwischen Rostrale und 1. Labiale; 1 Postnasale; vorderes Loreale gewöhnlich in Kontakt mit 1. La-
biale. Supranasalia in Kontakt hinter dem Rostrale. Frontonasale breiter als lang. Präfrontalia in Kontakt mit ihrem
inneren Winkel, oder eine kurze Sutur bildend.
Frontalia so lang wie Frontoparietalia und Interparietaliazusammen; in Kontakt mitdem2. und 3. oder 1.,2. und
3. Supraoculare. Vier Supraocularia, wobei das 2. am größten ist. Vier oder fünf Supraciliaria; unterschiedliche
Frontoparietalia, größer als das Interparietale. Parietalia bilden eine Sutur hinter dem letzten Schild; ein Paar Nu-
chalia. 5. oder 6. oberes Labiale am größten und unter dem Auge gelegen.
Ohröffnung oval; beinahe so groß wie Orbit; mit wenigen, leicht vorspringenden Granulae an der Vordergrenze.
Nuchale und Nackenschuppen streng dreigekielt (tricarinat). 36 oder 38 ungleiche Schuppen um die Körpermitte.
Die Hinterextremität reicht bis zum Handgelenk oder dem Ellbogen der abgespreizten Vorderextremität. Glatte
Subdigitallamellen. Schwanz etwa 1,5 mal so lang wie KR. Dorsal oliv, mit oder ohne kleine schwarze Flecken; eine
mehr oder weniger differenzierbare schwarze Vertebrallinie und ein blasser Streifen auf jeder Rückenseite vom Su-
praciliarrand bis zur Schwanzbasis. Unter diesem hellen Streifen ein dunkler oder schwarzer Streifen, der wieder
von einem helleren unteren begrenzt wird; Nacken und manchmal Körperseiten mit kleinen weißen Flecken; weiße
Flecken auf der Hinterseite der Schenkel; unterer Teil gelblich-weiß.
GL 146 mm
Kopflänge 13 mm Vorderextremität 185 mm
Kopfbreite 9 mm Hinterextremität 26 mm
KR 46 mm Schwanz 86 mm
Verbreitung: Igreja und $. Filipe, Fogo
Artverwandt mit M. stangeri, aber leicht unterscheidbar durch das Vorhandensein eines einzigen echten Sub-
oculare, der geringeren Anzahl von Körperschuppen um die Rumpfmitte und dem Vorhandensein einer dunklen
Vertebrallinie.
MERTENS (1955) — 1 Exemplar von Fogo:
Interparietale vollständig entwickelt, 3 (statt 4-5) Supraciliaria. Unter dem Auge befindet sich 6. Supralabiale,
das größer aber niedriger als das 7. ist. Um den Körper stehen 36 (36-38 bei den Cotypen) Schuppenreihen, dreikie-
lig; dunkle, hellgesäumte Vertebrallinie ist vorhanden.
ANGEL (1937) —
Nur 1 Labiale (5. oder 6.) unter dem Auge. 4 oder 5 Supraciliaria; eine weiße Dorsolateral-Linie.
Diagnose:
KR-Länge bis ca. 70 mm bei ca. 180 mm Gesamtlänge. 34-38 Schuppenreihen um die Körpermitte;
8-6 Supra- und 5-7 Sublabialia; Dorsalia tricarinat, Ventralia glatt. 4-6 anteriore Aurikulartuberkel;
4 Supraciliaria, -ocularia. 2 Schenkelocellen auf der Rückseite der Oberschenkel, helle Tüpfelung zwi-
schen Ohr und Achsel.
30
Beschreibung:
Vorab ist zu erwähnen, daß aus zwei verschiedenen Kollektionen, nämlich einer Aufsammlung von
der Insel St. Maria vor Praia (ZSM 30/82) sowie aus einer Aufsammlung von Tarrafal (ZSM 363/78)
zwei phänotypisch intermediäre Formen mit M. vaıllanti auftraten. Beide Exemplare heben sich auf-
grund ihrer Rückenzeichnung (Längsstreifen mit hell/dunklen Sattelflecken) deutlich von den übrigen
Tieren ab, sind aber möglicherweise als intermediäre Formen abzugrenzen. Zudem besitzen sie die
größte KR-Länge dieser Serie. Das Exemplar von Tarrafal (ZSM 364/78) zeichnet sich zudem noch
durch die höhere Rumpfschuppenzahl (44) in seiner Serie ebenso wie das Tier von Ilheu St. Maria
(ZSM 30/82.9) mit 40 Rumpfschuppen aus. Die Pileuspholidose entspricht wieder der von Mabuya
stangeri stangerı.
Habitus
Die kräftig gebauten Tiere sind von relativ kurzer, gedrungener Gestalt. Der stumpfe Kopf hebt sich
ebenso wie der dorsoventral abgeflachte Schwanz kaum vom Rumpf ab. Die Ohröffnung ist kleiner als
bei den anderen Formen, oft nur halb so groß wie der Augdurchmesser.
Pholidose
34-38 Rumpfschuppen sind ausgebildet, zwischen 9-6 Supra- und 5-7 Sublabialia kommen vor.
Dorsal sind die Schuppen dreigekielt, ventral glatt. Vier bis sechs vordere Ohrrandschuppen, 4 Su-
praciliaria und 4 Supraocularia sind ausgebildet. Die übrige Schädelpholidose entspricht dem stange-
rı-Typ.
Färbung
Für alle phänotypisch reinen ‚‚stangeri spinalis“-Tiere ist ein einheitliches Zeichnungsmuster cha-
rakteristisch.
Am auffallendsten sind dabei die systematisch wertvollen Schenkelocellen auf der Rückseite der
Oberschenkel. Meist sind zwei runde, weiße Flecken auf dem Oberschenkel, beimanchen Exemplaren
ebenfalls auf dem Unterschenkel vorhanden. Ebenfalls ist eine unregelmäßige, helle Tüpfelung zwi-
schen Ohr und Achsel typisch.
Die Tiere sind dorsal von graubrauner Grundfärbung, ventral cremefarben. Dorsolateral flankieren
dünne helle Streifen, vom hinteren Augenrand ausgehend bis über die Schwanzbasis hinaus, den ein-
farbigen oder dunkel gesprenkelten Rücken. Ein deutlich hellerer oder gleich heller Fleckenstreifen
verläuft zwischen Achsel und Oberschenkelansatz, worauf lateroventral nochmals ein dunkler Streifen
folgt, der dann von der hellen Bauchfärbung abgelöst wird.
Maßtabelle
Mabuya stangeri spinalis von ILHEU ST. MARIA
n
Nr. ZSM GL KR SL KL KB oO A OA OL/UL Schuppen
30.82.9 _ 72,0 _ 13,4 9,0 2,8 3,6 4,9 6/6 40
30.82.8 104,0 36,0 68,0 8,9 5,2 1574 2,5 IH 7/6 -
30.82.7 95,0 33,5 61,5 9,0 Sol 1,5 Al 7, 7/6 _
30.82.6 85,0 37,5 48,5 9,8 Sa A 2,9 4,0 7/6 36
30.82.5 _ 40,0 _ 9,5 6,2 59 3,3 RD. 6/5 36
30.82.4 180,0 67,0 113,0 13,6 8,9 1,9 4,0 SR 7/5 36
30.82.3 _ 61,0 _ 195 7,5 2,0 3,9 4,5 8/5 37
30.82.2 168,0 69,0 99,0 18%5 8,0 2,1 4,0 5,0 6/5 36
30.82.1 7AO 62,5 114,5 1252 9,0 2,5 3,6 5,4 7/5 36
Praia Hafenstraße / S. THIAGO
6.82.1 0 20 2 ae 6/7 30
31
S - Tarrafal / S. THIAGO
363.78.3 - 60,0 - 13,5 8,5 255 4,0 5,0 6/5 36
363.78.2 157,0 64,0 83.0 12,6 8,2 255 3,0 4,8 7/6 34
363.78.1 188,0 72,0 116,0 125 353 2,4 255 5,0 6/6 38
364.78, _ 80,0 — 15,0 10,0 3,0 3 6,0 7/6 44
156.81.2 180,0 67,0 113,0 13,5 355 25 3 4,8 7/7 36
156.81.1 177,0 67,0 110,0 13,0 9,0 3,0 3,0 5,0 7/6 36
368.78.2 - 53,0 — lo) 6,0 153 3,0 4,0 7/6 40
368.78.1 _ 57,0 — 12,2 Zi 167 3,0 5,0 7/7 36
FOGO
BMNH
1906.3.30.40 120,0 57,0 63,0 12,0 PR. 2, Mo 258 353 7/6 36
4.1.4 Mabuya vaillanti Boulenger, 1887 (Taf. I, Fig. 2)
Material: 6 Ex. ZSM 152/1981, St. Cruz -S. Thiago. 1 Ex. ZSM 364/1978, Tarrafal - S. Thiago (intermed. mit
M. stangeri spinalıis; s. dort). 3 Ex. BMNH 1946/81825, 81826; BMNH 1906/33043, Fogo.
1887 Mabuya vaillanti BOULENGER
1937 Mabuya vaillanti. - ANGEL
1955 Mabuya delalandü. — MERTENS
1976 Mabuya vaillanti. — GREER
1982 Mabuya vaillanti. — SCHLEICH
Terra typica: $S. Thiago
Bisherige Verbreitung: S. Thiago, Fogo, Rhombos
Nachgewiesen von: $. Thiago, Fogo (Material: BMNH)
Artcharakteristika nach:
ANGEL (1935) —
54 Schuppen um die Körpermitte, 5. und 6. Supralabiale verschieden, bilden Subokularia. Ohröffnung viel grö-
ßer als Augöffnung.
GREER (1976) —
KR: 122 mm; 54 Schuppenreihen.
Diagnose:
KR-Länge ca. 13 cm bei ca. 29,5 cm Gesamtlänge. Kopf klein, stumpf, wenig abgesetzt.
50-56 Schuppen um die Rumpfmitte, 7 Supra- und 6 Sublabialia. 4-6 posteriore Aurikulartuberkel.
5. Supralabiale vergrößert unter Auge. Parietalia mit Interparietale verschmolzen; ein oder zwei Nu-
chalia; Dorsalia schwach tricarinat. Gelb-orange Schnauzenfärbung; Rückenzeichnung typisch drei-
streifig.
Beschreibung:
Diese größte kapverdische Art der Gattung Mabuya konnte aufgrund ihrer scheuen, relativ ver-
steckten Lebensweise erst spät, nach einem Hinweis von Herrn R. STEFFENS, entdeckt werden. Ihm
und Frau E. STE gebührt hier ein besonderer Dank beı der Auffindung dieser von MERTENs 1955 mit
Mabuya delalandii synonymisierten Art.
Sympatrisch mit Mabuya delalandii und Mabuya stangeri spinalis konnte Mabuya vaillanti bei
Tarrafal (S. Thiago) beobachtet werden.
Habitus
Bis zu 295 mm Gesamtlänge bei 122 mm KR-Länge maß ein Tier von St. Cruz. Der Schwanz ist nıe
länger als das 1,5fache der KR-Länge. Der Körper der Tiere ist relativ breit, rundlich und Kopf wie
Schwanz nur wenigvom Rumpf abgesetzt. Der Schwanz ist rundlich, relativ lang. Der Kopf ist in Rela-
tion zur Körpergröße klein und schmal. Die Ohröffnung ist größer oder nur geringfügig kleiner als der
Augdurchmesser.
32
Pholidose
Die sechseckigen Dorsalia sind zwei- bis meist dreikielig, auf den Ventralia ist die Dreikielung nur
noch angedeutet zu erkennen. Zwischen 50 und 56 Schuppenreihen zählt man um die Rumpfmitte.
Der Pileus zeigt eine deutliche, nur für vazllantı spezifische Pholidose. Das breite Rostrale reicht bis
unter die Nasalia. Zwei Supranasalia schließen sich an. Das folgende Frontonasale ist von gleicher
Breite wie die beiden Supranasalia zusammen. Zwei Präfrontalia, 1 Frontale sowie 4 Supraocular-
schilder begrenzen seitlich und von vorne das ungeteilte Frontoparietale. Ein großes ungeteiltes Parie-
tale reicht beidseits fast bis an die hinteren Ciliarıa. Ein großes Nuchale von fast der Breite des Fronto-
parietale grenzt die Pileusschuppen von den Dorsalia ab. Eine typische Palpebralscheibe ist ausgebil-
det.
Zwei Postocularia und zwei Postsubocularia sind erkennbar. Neun Temporalia liegen zwischen dem
Postoculare und den Aurikulartuberkeln. Meist sind 7 Supra- und 6 Sublabialia zu zählen, zwei Post-
labialia begrenzen Oberlippen und Ohr. Die ventrale Kopfbeschuppung besteht aus einem umfassen-
den, bis unter die Mitte des 1. Supralabiale reichenden Mentale, einem bis unter die Mitte des 2. Sub-
labiale reichenden Postmentale sowie je Seite 3 Submaxillaria, deren 1. und 2. ein Inframaxillare flan-
kieren.
Färbung
Von der graubraunen bis kräftig braunen Grundfärbung heben sich auf dem Rücken drei hellbraune
Streifen ab. Die Seitenstreifen sind etwa anderthalbmal bis doppelt so breit wie der Mittelstreifen und
beginnen kurz oberhalb und hinter dem Ohr, um dann nach etwas mehr als der Hälfte der Schwanz-
länge wieder zusammenzulaufen. Der dünnere Mittelstreifen dagegen beginnt erst ab Achselhöhe. Die
gesamte Schnauzenspitze bis etwa zum 2. Labiale inklusive des Mentalbereiches ist kräftig orange ge-
färbt. Die dazwischen liegenden dunkleren Streifen werden von noch dunkleren braunen Punkten im
Abstand von ca. 0,5 mm eingefaßt. Ab dem hinteren Ohrrand hebt sich ein schwarz/gelber Fleck ab,
dessen Farbgrenze ziemlich genau auf der Mitte des Ohres liegt. Entlang der Flanken zieht eine Punkt-
reihe weißer Flecken. Darunter wechselt die Flankenfärbung nach grau mit schwarzen Sprenkeln, die
sich über die Ventralseite fortsetzen können. Die Hand- bzw. Fußsohlen sind ebenso wie Schnauze
und Kehle orange gefärbt. Bei O’CO’ tritt diese Färbung auch auf dem Bauch auf. Bemerkenswert ist das
Zeichnungsmuster noch zwischen Kehl- und Achsel-Bereich. Ab dem posterioren Ende der orangen
Kehlfärbung verlaufen beidseits je drei Streifen zum Ohr, zwei etwa auf halber Länge Ohr/Achsel und
der dritte bis kurz vor der Achsel. Die Vorder- wie Hinterextremitäten können ebenfalls gesprenkelt
erscheinen. Schwach bis deutlich erkennbare schwarz/(gelbe) Achselocellen können auftreten.
Maßtabelle
Mabuya vaillanti von St. Cruz / S. THIAGO
n
Nr. ZSM GL KR SL KL KB (@) A OA OL/UL Schuppen
152.81 _ 130,0 _ 23,0 15,0 4,0 4,5 9,5 7/6 52
152.81 295,0 122,0 173,0 21,6 14,5 4,7 4,0 9,0 7/6 54
152.81 233,0 116,0 117,0 12 14,5 3,8 4,2 8,0 7/6 52
152.81 _ 80,0 _ 16,0 10,5 So) Sal 6,0 7/6 54
152.81 151,0 71,0 80,0 13,5 9,0 Dal 2) 5,8 7/6 50
152.81 281,0 110,0 171,0 21,6 15,9 4,1 4,2 9,0 7/6 54
Trockenexemplar 21,2 17,0 5,2 3,8 8,6 7/6 52
BMNH
1946.81825 2 zo ee a ze ie 50
1946.81826 25,0 100,0 123,0 180 a az 50
von FOGO
1906.33043 0 a a a az er 7/6 56
33
4.2 Gekkonidae - Genus Tarentola
Während Dumrrır & Bıgron (1836) Platydactylus (= Tarentola) delalandii als Form mit einfachen,
ovalen, nur sehr schwach gekielten Dorsaltuberkeln mit einem Ohrloch ohne zackige Randschuppen
und einer Schuppenreihenzahl von 6 auf dem Schwanz als Tiere von Tenerife darstellen, beschreibt
STEINDACHNER (1891) Tarentola delalandi boettgeri als eine Form mit den gleichen Merkmalen, die er
durch die höhere Anzahl von 16-18 Tuberkelreihen von Tieren von Gran Canaria und jenen mit
12-14 Reihen von Tenerife, Palma und Gomera unterscheidet. Hinzu kommt, daß Dumerı & BiBRON
keine Angaben über die Anzahl der Tuberkelreihen gemacht hatten, ihre Beschreibung aber gänzlich
der Art boettgeri sensu STEINDACHNER, entsprechen würde. Nach Materialvergleichen mit Aufsamm-
lungen sowohl von den Canaren als auch den Kapverden und all den verwirrenden Beschreibungen
nachfolgender Autoren wäre fast an eine Fundortverwechselung von Dumrrir & Bısron zu denken.
Verwirrender wird letztlich noch die Synonymisierung von LOVERIDGE (1947, S. 5, 6) mit folgender
Erklärung: ‚As a further consequence of these studies nearly fifty described forms or species appear to
be unrecognizable... The following, however, are believed to be referred to the synonymy for the first
time:
‚„‚Tarentola gigantea (lapsus) Scherer = T. delalandii gigas (Bocage)
Tarentola d. var. boettgeri Steindachner = T. d. delalandü Dumeril & Bibron
Tarentola d. var. boettgeri Boulenger = T. d. delalandii Dumeril & Bibron.“
MerTens (1955, $. 6) stellte sämtliche kapverdischen Tarentolas (außer den Tieren von Branco und
Razo) zu Tarentola delalandii rudis, ‚‚weil das vorliegende Material trotz seiner Variabilität in seiner
Gesamtheit einen anderen Eindruck macht, als die auf den Kanaren lebenden Angehörigen von Ta-
rentola delalandii“, und sieht sowohl Tarentola delalandii delalandii (von Tenerife) und delalandıi
boettgeri von Gran Canaria als lediglich auf den Kanaren verbreitete Rassen an. Bei den Tieren von
Fogo erwähnt er nur ein durch seine Größe von der übrigen Aufsammlung herausfallendes Exemplar,
sieht dieses jedoch wiederum innerhalb der Variabilität dieses Rassenkreises an:
T. delalandii: Schnauze ein wenig länger als die Entfernung zwischen Auge- und Ohröffnung. Das Mentale ist in
der Mitte nicht länger als seine dreifache Breite.
T. gigas: Schnauze nicht viel länger als der Aug/Ohr-Abstand. Die Kinnschuppenlänge entspricht ihrer dreifa-
chen Breite.
Während er für 7. delalandıi die ‚Varietäten‘ wie folgt abgrenzt:
T. del. delalandii: 12 Längsreihen vergrößerter Tuberkel, glatt oder gekielt.
T. del. rudis: 16-18 Tuberkelreihen, deutlich gekielt, 4 Transversalbänder mit hellen Mittelflecken, Schwanz-
schuppen spinös.
T. del boettgeri: 18-20 glatte Tuberkelreihen, gerade Transversalbänder.
JOGER (1984) trägt nun, nach meinem Versuch (SCHLEICH 1984) die Systematik der kapverdischen
Tarentolas zu er- und überarbeiten, erneut zu größerer, hauptsächlich nomenklatorisch taxonomischer
Verwirrung bei, indem er längst ‚‚verschollene“ nomina oblita zu revalidisieren versucht.
Eine Klärung dieser neu entstandenen Problematik ergibt sich jedoch zwangsläufig aus der Beach-
tung der Internationalen Regeln für die Zoologische Nomenklatur, insbesondere mit ihren 1970 erfolg-
ten Ergänzungen, so daß die alteingeführten nomina conservanda von Tarentola gigas und Ta-
rentolarudis selbstredend erhalten bleiben können. Hierfür einige Auszüge aus besagten Ergänzungen:
(Erklärung 43 n. Fassung v. 1.1.1970 zu $ 23b I-VIII)
$ 33bI: ‚Einschränkung. — Ein Name, der sich in fortlaufendem, allgemeinen Gebrauch befindet und minde-
stens50 Jahre verfügbar gewesen ist, darf nach 1960 nicht durch ein unbenutztes älteres Synonym ersetzt werden.“
„Ein Name ist als in fortlaufenden allgemeinem Gebrauch befindlich anzusehen, wenn er in den unmittelbar vor-
ausgehenden 50 Jahren von mindestens fünf verschiedenen Autoren und in mindestens zehn Veröffentlichungen als
mutmaßlich gültiger Name auf ein bestimmtes Taxon bezogen wurde.
34
(II) Ein älteres Synonym ist als unbenutzt anzusehen, wenn es im Laufe der unmittelbar vorausgehenden 50 Jahre
kein einziges Mal auf ein bestimmtes Taxon als dessen mutmaßlich gültiger Name bezogen wurde. Ein älteres unbe-
nutztes Synonym, das nach 1960 unter Verletzung der Vorschriften von Artikel 23 b verwendet wurde, sei es, um
das jüngere Synonym ausdrücklich zu ersetzen oder nicht, verliert hierdurch nicht seinen Status als unbenutzter
Name.
(III) Die Erwähnung eines Namens in der Synonymie oder lediglich dessen Aufnahme in eine Referier-Veröffent-
lichung, einen Nomenklator oder sonstigen Index oder eine Liste von Namen bedeutet keinen Gebrauch im Sinne
von Artikel 23b.
(IV) Jedes Zitat ist für sich zu werten, ohne Rücksicht auf Art oder Titel der Arbeit, in welcher der Name vor-
kommt.“
Zusammenfassen läßt sich so nach Absatz 4 der Normen der Verfügbarkeit:
Tarentola borneensis wurde 1965 von WERMUTH im Sinne von LOVERIDGE (1947: 33!) als synonym zu Tarentola
delalandıi delalandii betrachtet und wäre außerdem so nicht als für Tarentola gigas angewandt zu betrachten. Un-
abhängig davon wurde von beiden Autoren Tarentola delalandii gigas als eigenständig gültiges Taxon dargestellt.
Außerdem tritt für den von JOGER zitierten Fall eindeutig $ 23b Ill in Kraft. Eine gesonderte Synonymieliste zur
Demonstration der Erfüllung dieser Verfügbarkeitsnormen ($ 23b I) ist im Kapitel Tarentola gigas aufgeführt. Die
Forderung von $ 23b sind alle rechtmäßig erfüllt, die Zoologische Nomanklaturkommission wurde dazu von mir,
folgend $ 23b V, informiert.
Bestehen bleibt, daß sich sowohl nach morphologischen als auch nach Pholidose- und Zeichnungs-
merkmalen folgende 4 Artengruppen von Tarentola als eigenständige Formenkreise ausgliedern las-
sen:
Tarentola rudıs, eine durch besonderes Größenwachstum gezeichnete Art, wird von den Inseln
Fogo, S. Thiago mit St. Maria und Maio beschrieben. Sie kommt auf $S. Thiago neben einer ‚‚samt-
schuppigen‘“ Form, mittlerweile als Tarentola darwini beschrieben, vor. Das sympatrische Vorkom-
men dieser beiden phänologisch eindeutig unterscheidbaren Arten zieht taxonomische und nomenkla-
torische Schlußfolgerungen nach sich. Dementsprechend wird neben Tarentola darwini Tarentola ru-
dis als eigenständige Kapverden-Art betrachtet, deren verschieden phänotypisch-morphologische
Ausbildungen der unterschiedlichen Inselformen, Rassenkreise unter den Kapverden-Inseln abzu-
grenzen zwingt. Daneben konnte Tarentola caboverdiana Schleich 1984 mit diversen Unterarten aus-
gegliedert werden.
Die Riesengeckos der beiden Inseln Branco und Razo werden wiederum als eigene Formen der Art
gigas betrachtet.
Entgegen meiner Darstellung (SCHLEICH, 1982a) in der Tabelle 1 zu ‚‚Vorläufige Mitteilungen zur
Herpetofauna der Kapverden“ mit Tarentola delalandıi delalandii als ‚Hauptform“ der kapverdi-
schen ‚„‚Mauer‘geckos und rudis als Rassenkreis davon, bleibt die von Dumezrır & Bısron (1836) be-
schriebene ‚‚Platydactylus“ delalandıı für Tenerife, Madeira und Senegal bestehen.
Tarentola delalandii rudis Boulenger wurde 1906 mit der Terra typica-Angabe: S. Filipe auf Fogo
sowie Praia von $. Thiago bekannt und war so neben den Riesengeckos die einzige von Caboverde be-
schriebene Tarentola.
Daraus ergab sich für ‚‚rudis“ die Notwendigkeit, jene Form als kapverden-typisch anzusprechen,
während die Unterarten Tarentola delalandıi boettgeri und Tarentola delalandır nur im nordmakaro-
nesischen Raum mit den Unterarten boettgeri und delalandı vertreten sind.
Zu dem von mir für Tarentola gigas betrachteten eigenen Artstatus stimme ich in bezug auf Größe
und Morphologieaffinitäten zu Tarentola rudis protogigas mit JOGER’s Ansicht überein, jedoch sind
die Formen von Branco und Razo in ihrem Verhalten und in ihren ökologischen Ansprüchen so von al-
len übrigen Kapverdengeckos verschieden, daß eine Gleichheit auf Artniveau angezweifelt werden
muß. Als gravierende Merkmalsunterschiede wären nach umfangreichen Gelände- und Gefangen-
schaftsbeobachtungen zwischen den beiden erwähnten Formen zu nennen:
35
Tarentola (r.) protogigas
Lautäußerungen konnten nıe wahrgenom-
men werden.
Eiablage ungeklärt, erfolgt den Lebensge-
wohnheiten nach wahrscheinlich an Mauer oder
vergleichbarem Trockensubstrat.
Tiere bewegen sich speziell auf vertikalen
Wänden.
Tarentola gigas
Lautäußerungen spielen im sozialen Verhal-
tensmuster eine deutliche Rolle (spez. epiga-
misch).
Eiablagen erfolgen nur unter ausgesucht spe-
ziellen Bedingungen (s. SCHLEICH 1980).
Adulte Tiere sind kaum in der Lage, sich in
der Vertikalen zu halten (zu großes Körperge-
wicht), und konnten als über 95% bodenstän-
dig in ihren Lebensäußerungen beobachtet
werden. Eine positive Selektion zum Riesen-
wuchs war durch fehlende inter-/intraspezifi-
sche Competition möglich.
Eine besondere Fettspeicherung fehlt. Eine extreme Fettspeicherung ist typisch.
4.2.1 Tarentola rudis Boulenger, 1906
4.2.1.1 Tarentola rudis rudıs Boulenger 1906 (Taf. II, Fig. 3; Taf. IV, Fig. 2)
Material: 3 Ex. ZSM 139/1981 -S. Thiago / Praia-Flughafen. 1 Ex. ZSM 372/1978-S. Thiago / C. Velha. 2 Ex.
ZSM 135/1981 — S. Thiago / Praia. — Paralectotypus n. JOGER (1984: 101); MCNG 28149/2.
1906 Tarentola delalandii var. rudis BOULENGER
1935 Tarentola delalandii. -— ANGEL
1937 Tarentola delalandii. -— ANGEL
1947 Tarentola d. var. rudis BOULENGER
= Tarentola d. delalandii (DUMERIL & BIBRON). — LOVERIDGE
1955 Tarentola delalandıi del.. — DEKEYSER & VILLIERS
1955 Tarentola delalandii rudis. — MERTENS
1984 Tarentola rudis rudis. — SCHLEICH (part.)
1984 Tarentola b. (= borneensis) rudis. — JOGER
Terra typıca restricta: Praia — S. Thıago, ?S. Filipe-Fogo
Bisherige Verbreitung: Sal, Boa Vista, Maio, $. Thiago, Fogo, Brava, St. Luzia
Nachgewiesen von: $. Thiago (Praia), Ilheu St. Maria (von dem kleinen Eiland St. Maria vor Praia wurden aus
Schutzgründen keine Tiere gefangen)
Artcharakteristik nach:
BOULENGER (1906) —
Hervorstechende Tuberkel, mehr oder weniger unterschiedlich gekielt, auf dem Schwanz fast spinös; in 16-18
Transversalreihen auf der Körpermitte; Schläfe mit sehr unterschiedlich vergrößerten Tuberkeln; 4 verschiedene,
wellige oder w-förmige dunkle Querbänder, deren mittlerer Sinus an einen hellen Fleck grenzt. KR bis 88 mm.
Diagnose:
Eine Diagnose ergibt sich nach SCHLEICH (1984) und JOGER (1984) wie folgt:
Kopf-Rumpflänge max. 8,5 cm, PP kleiner (6,5 cm). 16 Tuberkelreihen; zwischen 10/11 Supra-
und 9/10 Sublabialia. 16-19 Interorbitalschuppen; 130-165 Schuppenreihen um die Körpermitte. Dor-
saltuberkel undeutlich gekielt. Fünf dunkle Transversalbänder. Orbit meist doppelt so groß wıe Ohr-
durchmesser. Auf dem ersten Finger 12, auf dem dritten 13 Subdigitallamellen. Verhältnis Mentalia-
länge : -breite ca. 2:1. Maulspaltlänge um mindest die Hälfte länger als die Strecke zwischen vorderem
Augenrand bis Schnauzenspitze. Entfernung Ohr-Auge geringer als Augvorderrand-Schnauzenspit-
ze.
Beschreibung des Lectotypus: s. JOGER (1984: 101)
36
Anmerkung: JOGER designierte aus BOULENGER’s Syntypen von ‚,S. Jago“ eines der Exemplare als
Paralectotypus zu ‚7. b. rudis Boul., 1906“ von S. Thiago mit der Terra typica restricta: „‚Dist. di
Praia, Calhetta de S. Martinho“. Da mir seinerzeit dieses Originalmaterial nicht zur Verfügung stand,
ich selbst aber umfangreichere Aufsammlungen von Fogo, St. Maria (S. Thiago) und von Praia selbst
tätigte, glaubte ich, daß die von genannten Lokalitäten gefangenen Exemplare alle einem sehr variablen
Rassenkreis angehören würden. Mittlerweile möchte ich mich aber der Ansicht JoGEr’s anschließen
und den südl. Bereich von S. Thiago als Vorkommen für Tarentola rudis rudis bestätigen.
Beschreibung:
Für die von mir gesammelten Exemplare von Praia ergibt sich: Kopf-Rumpflänge bis 58,5 mm, der
Schwanz ist meist länger, so daß sich max. eine Gesamtlänge von 120,5 mm ergibt. Der Schädel ist
deutlich länger als breit, der Augdurchmesser etwa doppelt so groß wie der Ohrdurchmesser. Der Ab-
stand Ohr/Auge ist wenig kleiner als der Abstand Auge/Schnauzenspitze. Der Maulspalt reicht bis
hinter das Auge. Das Mentale ist etwa doppelt so lang wie breit. An Lippenschildern sind 10-11 Supra-
und 9-10 Sublabialia ausgebildet. Die Rückentuberkel sind in 16 Längsreihen angeordnet. Die Tiere
sind grau bis graubraun gefärbt und tragen 5 Transversalbänder.
Maßtabelle
Tarentola rudis rudıs von S. THIAGO;
Mentale Tub. Lam.
Nr. ZSM GL KR SL KL KB © A OA AS MSP L BIOR/ULZERE Jr Bd
139.81.1 10 SD SD Az el zZ rl 70 0 Az 5 2,8 10/9 16 _ 5
139.81.2 1116,0556,0000,0818,0212,8 2 2312 AN E77 8122050235 10/9 16 12/13 5
139.81.3 2.059585568:0818:021055251585.770=26752:23:0527125 8,5: 0002 5 le 16 = 5
4.2.1.2 Tarentola rudis maioensis Schleich, 1984 (Taf. II, Fig. 5; Taf. IV, Fig. 1)
Material: Holotypus — ZSM 136/81.6. Paratypen — ZSM 136/81.1-5 u. 7-9.
1954 Tarentola delalandii rudıs. - MERTENS (part.)
1984 Tarentola rudis maioensis. — SCHLEICH
1984 T. b. (borneensis) maioensis. — JOGER
Terra typica: Maio
Verbreitung: Maio und n. JOGER (1984: 102) auch Boa Vista
Diagnose:
Gesamtlänge bis ca. 139 mm bei max. 68 mm KR-Länge. Die Kopflänge entspricht dem 1,3-1,6fa-
chen der Kopfbreite. Der Abstand zwischen vorderem Ohrrand und Auge ist meist gleich groß der
Entfernung vom Auge zur Schnauzenspitze. 12-18 Tuberkelreihen; eine Dorsalbänderung ist kaum
wahrnehmbar.
Beschreibung:
Die Tiere sind von relativ plumper, kräftiger Gestalt und bis ca. 139 mm lang, ihr Kopf erscheint
groß und breit. Der Maulspalt reicht deutlich hinter den Pupillenspalt, der Ohrschlitz ist auffallend
klein und etwa nur halb so groß wie der Augdurchmesser. Die Tuberkelschuppen sind konisch bis
leicht apikal.
Alle Tiere sind graubraun gefärbt, ohne deutliche Rückenbänderung. Falls erkennbar sind 5, relativ
breite, schwach dunkle Transversalbänder mit hellem Kernfleck oder Mittelstreifen typisch. Zwischen
Ohr und Auge zieht sich bis zu den Nasenlöchern ein heller Streifen.
97.
Maßtabelle
Tarentola rudis maioensis von MAIO
Mentale Tub. Lam.
Nr. ZSM GEW KR SE: U KL "KBim@s "AH 1OAU ASHMSPILTITM BI OPT ORTE
136.81.1 _ 0 TEE IE 9/7 27 AV
136.81.2 — fo —_ ae ee re I I re 8/7 14 87 -
136.81.3 = Ge are 2 er oe RD ee Fe 8/7 6105
136.81.4 - 47.0 — 25,0 710,0 21,87 020772050 5229 8/7 14 11/11 5
136.81.5 112875960500.6255, 2.0101 379223277 089 O PS ENTE 14 14/11 5
136.81.6 159208.68:0872130822, 0516. 0,2775 ES Sales Bis 9/7 18713715775
136.81.7 955084820. 45:0 75 SE 155 270 E40 E60 6500529 9/8 16021225
136.81.8 = ln ee 7 2 8 el 5 ee 9/8 14 11/12
136.81.9 102053593 5E175217 25 14 02H IA OEA IE 9/8 14 11/13
4.2.1.3 Tarentola rudis protogigas Joger, 1984 (Taf. II, Fig. 1, 2, 4; Taf. IV, Fig. 7)
Material: 11 Ex., ZSM 145/1981 - Fogo. Holotypus: ZSM 145/1981.1 — Fogo. Paratypus: ZSM 145/1981.2 -
Fogo und Exemplare des BMNH u. MCNG C. E. (s. JOGER, 1984: 101).
1906 Tarentola delalandiüi var. rudis BOULENGER (part.)
1947 Tarentola delalandii. — LOVERIDGE (part.)
1984 Tarentola rudis rudis. — SCHLEICH (part.)
1984 Tarentola b. (borneensis) protogigas. — JOGER
Terra typıca: Fogo
Anmerkung: Ein isoliertes Vorkommen von einer allerdings recht kleinen Population konnte auf dem Inselchen
St. Maria in der Hafenbucht vor Praia entdeckt werden. Die Tiere erreichten mindest die Körperlänge der Exem-
plare von Fogo. Aus Schutzgründen wurde hier jedoch selbst auf Belegexemplare verzichtet, da wir nur sehr wenige
große Individuen zu sehen bekamen.
Verbreitung: Fogo, Ilheu St. Maria (S. Thiago) und nach JOGER (1984: 101) Brava, Rhombos-Inseln
Diagnose:
Mit Tarentola gigas die größte kapverdische Tarentola mit morphologischer Merkmalsausbildung
der T. rudis-Gruppe. Rückentuberkel schwach gekielt, 144-181 Schuppen um die Körpermitte. Max.
KR-Länge 98,5 mm. Schwanz kürzer als Kopf-Rumpflänge. Die Anzahl der Subdigitallamellen be-
trägt bei der 1. Zehe 12-14 und an der 5. Zehe 22-26 bis zur Zehenbasis gezählt.
Beschreibung:
Die bis knapp 10 cm (KR) lang werdenden Tiere sind kräftig gebaut, jedoch nicht so massig und dick
wie die Riesengeckos (T. gigas) der Inseln Branco und Razo. Auf die Kopflänge entfallen dabei etwa
!/; bis '/ der KR-Länge.
Der Maulspalt reicht bis hinter das Auge. Der Ohrschlitz ist meist halb so groß wie der Augdurch-
messer. Die Tuberkelschuppen sind relativ flach, leicht apıkal und von entsprechend kleinen Schuppen
umgeben. Die leicht vorgezogene Spitze ist nur wenig erhaben. In meist 16 Längsreihen (1 Ausnahme
mit 18) sind die Rückentuberkel angeordnet. Die Mentalialänge entspricht etwa zweimal ihrer mittle-
ren Breite. Meist sind 10-11 Supra- und 8-9 (7, 11) Sublabialia ausgebildet.
Die grau bis graubraun gefärbten Tiere tragen 4-5 Transversalbänder.
38
Tafel II
7
Tafel II: Fig. 1: Tarentola rudis protogigas von Fogo; adultes Exemplar, in katasematischer Färbung. Fig. 2: Ta-
rentolarndis cf. protogigas von Fogo. Fig. 3: Tarentolarudisrudis von S. Thiago. Fig. 4: Tarentola rudıis cf. pro-
togigas von Ilheu St. Maria. Fig. 5: Tarentola rudis maioensis von Maio. Fig. 6: Tarentola darwini von Tarrafal-
S-Thiago. Fig. 7: Tarentola caboverdiana substituta von S. Vicente. Fig. 8: Tarentola caboverdiana raziana von
St. Luzıa.
Maßtabelle
Tarentola rudis protogigas von FOGO; n=11
Mentale Tub. Lam.
Nr. ZSM GE SR SIE IS 108 (© NEO REENSESNSPEEITE B OL/UL R. % Bd
145.81.1 _ SD 7925 3,8 6:0 Sole 020 16 4
145.81.2 - u 2er Is ee ed Br 10 16 4
145.81.3 = FE ZI Ir 755 10,0 15,0 30 3 OR 16 13/15 4
145.81.4 _ 2,0 = I Per 2 5 2 1ER 16 5
145.81.5 _ SU Teams 418 16:5, 725015705508 16 5
145.81.6 = SSR EE 09025 5507 10:0 7115021720767 la 18 5
145.81.7 - SO OeE r57255545, 650, 10FOE5 3703 16 4
145.81.8 - ee ae I 25 50 7 1 re 3 eo 16 5
145.81.9 - I = A I 30 7 Del 8 3 9/7 16 5
145.81.10 - DON =11910515555554,0,,478,,.06,80278012557276,0,2286 9/8 16 4
145.81.11 = 20 ee 2a er Te Ne rev 16 5
4.2.2 Tarentola darwini Joger, 1984 (Taf. II, Fig. 6; Taf. IV, Fig. 3)
Material: 22 Ex. Holotypus - ZFMK 37256 (coll. et don. Schleich, 1978), S. Thiago-Tarrafal, und 21 Ex. ZSM
365/78, 146/81, 147/81, 29/82, S. Thiago-Tarrafal. Paratypen (nach JOGER, 1984): 365/78, 146/1981, 147/1981.
1906 Tarentola delalandıi boettgeri BOULENGER
1947 Tarentola delalandii delalandii. — LOVERIDGE
1954 Tarentola delalandii rudıs. — MERTENS
1982 Tarentola sp. — SCHLEICH
1984 Tarentola sp. - SCHLEICH
1984 Tarentola darwini. — JOGER
Terra typica: Tarrafal, S. Thiago
Verbreitung: Tarrafal, S. Thiago; Igreja, Fogo
Die Vermutung JOGER’s (1984) für ein Vorkommen auf Nicolau und Sal erscheint mir spekulativ, für Fogo dage-
gen wahrscheinlich.
Diagnose:
Eine Diagnose ergibt sich nach JOGER (1984: 96) und SCHLEICH (1984: 102):
Kopf-Rumpflänge bis 62 mm. Flache, meist glatte Tuberkel mit nur schwachem Kiel. 18-20 Tuber-
kelreihen.
Deutlich abgesetzte, zu Ketten verwobene Härchen der Schuppenoberflächen, die sich dadurch
samtig anfühlen. Zahlreiche, meist glatte Rückentuberkel zwischen den Hinterseiten der Vorder- und
Hinterbeinansätze. Dorsal enge bis unregelmäßige Transversalbänder bis marmorierter Zeichnungs-
typ.
Die weiteren von JOGER (op. cit.) unter „Diagnose“ erwähnten Merkmale sind differentialdiagnostisch.
Beschreibung:
Für die Tiere von Tarrafal ergeben sich folgende Merkmale: Die bis 110 mm Gesamtlänge messen-
den Tiere sind von relativ kleinem Habitus mit auffallend kleinem Kopf. Die Kopflänge entspricht etwa
1,1- bis 1,4mal der Kopfbreite. Die Ohröffnung ist klein, meist kleiner als der halbe Augdurchmesser.
Der Abstand Ohr-Auge ist nur geringfügig kleiner als der vom Auge zur Schnauzenspitze. Zwischen
8-13 Supra- sowie 7-10 Sublabialia können ausgebildet sein. An einem Exemplar konnten an der ersten
Zehe 9 und an der dritten 13 Subdigitallamellen gezählt werden. Die Mentaliabreite entspricht etwa der
halben Mentalialänge. Die Tuberkel sind rundlich bis oval, schwach gekielt und kaum erhaben; sie sind
in 14-18 Längsreihen angeordnet. Das Mentale wird von 2 Submaxillarıa flankiert.
40
13
der Gattung Tarentola (s. SCHLEICH,
Abb. 10-13: Schematisierte Rückenzeichnungen kapverdischer Geckos
Tarentola caboverdiana nicolauensıs;
1984): 10a, b) Tarentola gigas brancoensis; 11) Tarentola gigas gigas; 12)
13) Tarentola caboverdiana caboverdiana.
41
In der Färbung und Zeichnung sind die Tiere von allen anderen kapverdischen Geckos gut zu unter-
scheiden. Die Grundfärbung ist gräulich bis graubraun, der Bauch hell. Eine dorsale Bänderzeichnung
ist kaum bis nur sehr schwer erkennbar; vier bis fünf Bänder können gezählt werden. Im allgemeinen
ist jedoch eine silbrig graue Grundfärbung mit dunkler Sprenkelung vorhanden. Die Supralabialia sind
dunkel gefleckt, die Sublabialia können hell bleiben. Ein schwacher heller Streifen verläuft von den Na-
senlöchern zum vorderen Ohrrand.
Anmerkung: JOGER (1984: 98) gibt an, daß von Sal ein Einzeltier in sehr schlechtem Erhaltungszu-
stand überliefert ist und begründet die mögliche Artzurechnung zu darwini lediglich mit der hohen
Anzahl der Rückentuberkel. Weitere Angaben über Herkunft und Aufsammlung fehlen. Für die
Zuordnung von Jocer’schen darwini-Typen von $. Nicolau bestehen ebenfalls Zweifel, und er selbst
schreibt (S. 97): „Die Zuordnung dieser beiden Exemplare erfolgt unter Vorbehalt.“
Maßtabelle
Tarentola darwini von Tarrafal / S. THIAGO
Mentale Tub. Lam.
Nr. ZSM EIMIKR/STL KL KBlO A,/ON AS MP L BNOLUE TRIER
29.82.1 _ 520) — ls, RA 22 8 70 75 US es 2 EyAlle) 16 _ =
29282.2 = ler 1A 22 7 ae ee NS 18 - 4
295823 = 56 oO l6 OR 238 A 6 97123 16 - (4)5
29.82.4 = a er rear 7 NN 25 OT 16 _ 5
298223 - elzeeearere 2e Taro — = 8/7 16 - 4
29.82.6 = Te nee er ee 7 re 2 le 16 = 4
DORSDT, - re Ze ae TO N aD en 255 9/7 16 = 4
29.82.8 - DNB 4565ER 9/9 16 _ 5
365.78.1 _ ee OS rs er = _ 10/7 16 - 5
147.81.1 - 56081611450, 2755410618 740 O5 E20 14 931375
147.81.2 - 560 SROSTTEZEE 25373,97 24794 O7 9/7 16 _ 5
146.82.1 10,0, GELERNT AT er la 52 16 = 5
146.82.2 - Do 8012720 530551701255 022 9/7 16 _ 5
o
4.2.3 Tarentola caboverdiana Schleich, 1984
4.2.3.1 Tarentola caboverdiana caboverdiana Schleich, 1984 (Taf. IV, Fig. 6)
Material: 30 Ex. Holotypus — ZSM 141/81.03, Paratypen — ZSM 141/81.01-02; 141/81.04 - 17.
1947 Tarentola delalandıi delalandii. — LOVERIDGE (part.)
1954 Tarentola delalandii rudis. — MERTENS (part.)
1984 Tarentola caboverdianus. — SCHLEICH
1984 Tarentola caboverdiana. — JOGER
Terra typica: St. Antao
Diagnose (s. SCHLEICH 1984: 98 ff.):
Gesamtlänge bis 103 mm, wobei die Schwanzlänge immer geringer als die Kopfrumpflänge ist. Die
Kopflänge ist 1,5-1,8mal die Kopfbreite (Imal 1,2X). Der Ohrschlitz ist meist länger als der halbe
Augdurchmesser. Die Entfernung Ohr-Auge ist gleich lang oder kürzer als Auge/Schnauzenspitze.
3 Submaxillaria. 14-16 Tuberkelreihen mit caudaler Farbintensivierung.
Beschreibung:
Die bis 103 mm lang werdenden Tiere besitzen einen relativ schlanken Kopf. Der Schwanz ist dor-
soventral abgeflacht, immer kürzer als die Kopfrumpflänge und erscheint dorsal hell/dunkel geringelt.
42
Die Dorsaltuberkel sind leicht gekielt und in 14 bis 16 Längsreihen angeordnet. Die Zahl der Oberlip-
penschilder schwankt zwischen 9 und 13, jene der Unterlippenschilder zwischen 7 und 10. Zwischen
Augen und Nasenlöchern verläuft ein heller, dunkel gesäumter Streifen, der sich zwischen Auge und
Ohr fortsetzt. Die Labialıa sind weiß gefärbt. Die Rückenzeichnung besteht aus 4-6, meist 5, Trans-
versalbändern.
Maßtabelle
Tarentola caboverdiana caboverdiana von St. ANTÄO
Mentale Tub. Lam.
Nr. ZSM GL KR SL KL KB © A OA AS MSP L B OL/UL R. Bel
141.81.1 _ > 1 120 28 7 7,0 1,5550 2,0 Ay 16 - (4)5
141.81.2 _ 6O,0BE E15, 095 022720519, 012 1519, 16 - (4)5
141.81.3 217528 59, 02.477,2016, 68.115,42 2,052, 222 6,1277,0,1 03,5 ET 5
141.81.4 _ 52 2 510555010,03702735 5,06: AO Orr rg 9/8 14 _ 6
141.81.5 _ A = 10 I AO 5 50 Zi 100 A522 OR 16 - 5
141.81.6 m re ae 2 2 a ae 23 9/9 14 _ 5
141.81.7 103,0 0 EI 1 2 12er 751 5 10 16 = 5
141.81.8 2,0 20 300 az NOS 1,8 8 ed aa a2 9/8 14 - 4
141.81.9 0 29 A re 1 2,070 7 ee 2‘ 9/8 14 = 5
141.81.10 _ 42 = aD NO IR ie rel 9/- 16 = 6
141.81.11 ID SD 40,0 15,0 12,0 227 BZ 80 74 953020 9/8 16 5
141.81.12 90,0 45,5 44,5 15,0 11,6 2,1 4,0 6,0 7,0 10,0 4,0 1,6 10/9 16 = 5
141.81.13 O1, 32,0 29,0 Als ZI a 2 re ee 7 30 9/8 16 _ 3
141.81.14 _ 790 = 15 105 23° 39 80 98 32 1.9 WY 16 = 5
141.81.15 _ 2 IR 2,0 re 7a 1 20 9/8 14 _ 5
141.81.16 770 32 ID 1,2 18,9 2.0 927500 ed ee TR 16 _ 5
141.81.17 31,0 Al 3 1er 1 2er ee ae 207 1 16 _ 5
4.2.3.2 Tarentola caboverdiana nicolauensis Schleich, 1984 (Taf. IV, Fig. 4)
Material: 11 Ex. Holotypus — ZSM 138/81.2, Paratypen — ZSM 138/81.1,3-11.
1984 Tarentola caboverdianus nicolauensis SCHLEICH
1984 Tarentola c. nicolanensis. — JOGER
Terra typıca: S. Nicolau
Verbreitung: S. Nicolau
Diagnose (s. ScHLEicH 1984: 100):
Kopf-Rumpflänge bis 61 mm, Schwanzlänge annähernd gleichlang KR-Länge. Kopflänge
1,2-1,5mal Kopfbreite. Der Abstand Ohr-Auge ist deutlich kleiner als vom Auge zur Schnauzenspit-
ze. 14-18 Tuberkelreihen; Tuberkel länglich, ‚‚kantig“. 9-11 Supra- und 8-9 Sublabialia. 4-6, meist
aber 5 Transversalbänder.
Beschreibung:
Die Art wird bis ca. 120 mm lang, ihr Kopf-Rumpf/Schwanz Längenindex entspricht 1,1. Der Schä-
del ist etwa 1,1- bis 1,5mal so lang wie breit. Zwischen 9-11 Supra- und 8-9 Sublabialia sind ausgebil-
det. Auf dem dorsalen Ohrrand liegen meist zwei kleinere Schuppengranulae. 14-18 dorsale Tuberkel-
längsreihen können ausgebildet sein. Zwischen Nasenloch und Augrand verläuft je ein heller, dunkel
gesäumter Streifen, die Lippenschilder sind einheitlich weiß. Die Rückenzeichnung besteht aus 4-6
meist dünnen Transversalbändern.
43
Maßtabelle
Tarentola caboverdiana nicolauensis von S. NICOLAU
Mentale Tub. Lam.
Nr. ZSM CIZERRZESEE NT FERB © Ar OA AS MS IE 1% KOILAUIE IR: Bel
138.81.1 115,08572055840216 951358722 SEA 0 6, 75 OO SER 9/8 18 12/14 5
138.81.2 0,20 32,0 30 ZINN ee 7 a ee 10/9 14 12/14 5
138.81.3 DR 0245, 024620212, 8511105922205 355,4787658,,,977.0535 80145 10/9 16 12/14 5
138.81.4 8420.43, 02414 0215572.11105222403, 272570, 60a 10/8 15° BABrE5
138.81.5 = 57.022 1550155858755, 27 0575er 10/8 18 12/14 5
138.81.6 - H2RO Et 108 203595527740 AR6 2RO 11/8 16. [BHBzE5
138.81.7 - (SL) EZ lee) MS 2 ee ee, eo ARE) 9/8 18 12/14 6
138.81.8 = Ikea 1 I ae aloe 11/9 Io aD >
138.81.9 1720500805572. 20 I EB SEP BESTE 9358469, 9/9 16 14/14 5
138.81.10 10553570259, 0, PAD TZD BT ED 5107727 3A A, 11/9 16 12/14 4
138.81.11 _ SS 0 OB SEO, 10/9 17 BMAZ5
4.2.3.3 Tarentola caboverdiana raziana Schleich, 1984 (Taf. II, Fig. 8; Taf. III, Fig. 1; Taf. IV,
Fig. 5)
Material: 20 Ex. Holotypus - ZSM 133/81.1 von St. Luzia, Paratypen — ZSM 133/81.2-10 v. St. Luzia,
134/81.1-10 v. Razo.
1984 Tarentola caboverdianus razianus SCHLEICH
1984 T. c. raziana. — JOGER
Terra typica: St. Luzia
Verbreitung: St. Luzia, Razo
Diagnose (s. SCHLEICH 1984: 101):
Kopf-Rumpflänge bis 60 mm; die Kopflänge beträgt 1,2-1,6mal der Kopfbreite. Die Entfernung
zwischen Auge-Schnauzenspitze ist deutlich länger als jene zwischen Ohr und Auge. 9-11 Supra- und
8-9 Sublabialia sind ausgebildet. 16 Tuberkelreihen und 3 bis max. 4 Transversalbänder zieren den
Rücken.
Beschreibung:
Lediglich ein Individuum der Serie von 20 Exemplaren hat einen unregenerierten Schwanz, der et-
was länger als die Kopf-Rumpflänge ist. Die KR-Länge beträgt max. 60 mm. Die Kopflänge mißt
1,2-1,6mal der Kopfbreite. Der kleine Ohrschlitz ist nur etwa halb so lang wie der Augdurchmesser.
Der Abstand vom vorderen Ohrrand zum Auge ist deutlich kürzer als jener zwischen Augvorderrand
und Schnauzenspitze. Zwischen 9-11 Supra- (meist 10) und 7-9 (meist 8 od. 9) Sublabialıa sind ausge-
bildet. Die Tuberkel sind in 16-18 Längsreihen angeordnet und von rundlich kegelförmiger, leicht ge-
kielter Gestalt. Die Tiere sind einheitlich braungrau gefärbt und tragen drei bis vier sich caudal verdun-
kelnde Transversalbänder, wobei entweder das 4. oder 5. auf der Schwanzbasis liegt. Das Schwanz-
regenerat ist bei lebenden Exemplaren rötlich. Zwischen Nasenloch und Ohröffnung verläuft je ein
heller, dunkel gesäumter Streifen. Zumindest die Sublabialıa sind kaum oder nicht gefleckt und weiß.
Maßtabelle
Tarentola caboverdiana raziana von St. LUZIA
Mentale Tub. Lam.
Nr. ZSM GIZEIRRTESISERITERBEE OZZENGEOATENSENSPERTE B; OL ORG ae
133.81.1 = rare ee ee 0 5 ll 3,0 2,8 10/9 16 10/13 4
133.81.2 = rd N I 2.5 2 6 7 Me DZ 1/9, 16 _ 4
IS = Sa re DE A Di 2 11/9 16 _ 3
44
Tafel III
Tafel III: Fig. 1: Tarentola caboverdiana raziana von Razo; adultes Exemplar. Fig. 2: Tarentola gigas gigas von
Razo; frisch geschlüpftes Jungtier. Fig. 3: Tarentola gigas brancoensis von Branco; adultes Exemplar. Fig. 4: He-
midactylus bouvieri boavistensis von Sal; Straße nach St. Maria; adultes Tier. Fig. 5: Hemidactylus bouvieri razo-
ensis von Razo; adultes Tier. Fig. 6: Hemidaciylus brooki angulatus von Sal; adultes Tier.
45
133.81.4 - Ries Are Deo So) 2 9/8 16 - 3
133.81.5 - ar A 3 NO Al 11/9 16 - 3
133.81.6 - Sl, = DO 20 are ra ee 10/8 16 = 4
133.81.7 _ u) = 17 NO 2 ee Te en 10/9 16 _ 4
133.81.8 = SB. 0m OS 358, 510072010585 47700226 10/8 16 - 3
133.81.9 - DO Fer 43076: 0,6, 925] 9/8 16 - 4+
133.81.10 - A902 116551052 40 50 AO 6:83.45, 2°0 10/9 16 - 4
von RAZO
134.81.1 - 60,022 28,52.114.02207 74,87 16,2. 7.07 Ne 10/9 16 - 3
134.81.2 - Ad 1 le ie 7a OD 7 250 10/9 16 - 4
134.81.3 _ 56:0 8315029407 76:25 50er 10/9 16 - 4
134.81.4 89, 05242,5240,595:1353331105955270, 23597 55: 077208117 2E4575229 9/8 18 - 4
134.81.5 = 48:02 215, 0ER E2XOF 4075,07 00 0270 10/9 18 - 3
134.81.6 - 42,0 A503 AO EE5S O7 11055402209 10/8 16 - 4
134.81.7 _ SB, 0,2 21650 ROSEN O5 20700122052 10/8 16 - 4
134.81.8 - ee TO re eb ler 10/7 18 _ 4
134.81.9 = 54,0, Zee 55725150 4,6, 255 10/8 18 - 4
134.81.10 = ee ie re ee 10/8 18 - 4
0)
4.2.3.4 Tarentola caboverdiana substituta Joger, 1984 (Taf. II, Fig. 7)
Material: 17 Ex. ZSM 371/78; 140/81.1-10.
1984 Tarentola caboverdianus caboverdianus. — SCHLEICH (part.)
1984 Tarentola caboverdiana substituta. — JOGER
Terra typica: $. Vicente
Verbreitung: $S. Vicente
Diagnose (s. JOGER 1984: 103):
„Schuppen kleiner als bei den anderen Subspezies, daher mehr Schuppen um die Körpermitte:
146-167. Vorderbeine kürzer als die Kopflänge (bei allen anderen Kapverdengeckos mindestens
ebenso lang). 4-5 Rückensättel, caudal oft von weißen Tuberkeln umrahmt, vom Nacken bis in die
Sakralregion. Maximale Kopf-Rumpf-Länge 60 mm (J), 56 mm (P).“
Anmerkung: Eigenartigerweise erwähnte JOGER das ihm zur Verfügung gestandene Münchner Ma-
terial hier nicht. Es ist zu hoffen, daß das von ihm beschriebene Material dieser zum Großteil lang zu-
rückliegenden Aufsammlungen wirklich von $. Vicente stammt und dessen Herkunft - wie bei vielen
anderen alten Kapverdenkollekten - nicht nur gemutmaßt wurde.
An den von mir selbst gesammelten Tieren von $. Vicente und deren untersuchten Merkmalen erga-
ben sich für mich keine signifikant genug erscheinenden Differenzierungsmöglichkeiten für einen be-
rechtigten eigenen Unterartstatus, so daß ich nach den von JOGER untersuchten Merkmalen die Art hier
übernehme und die morphometrischen Werte der Münchner Exemplare hier mit anführe.
Beschreibung:
Für die von mir selbst gesammelten und in der ZSM hinterlegten Exemplare gilt:
Die Kopf-Rumpflänge des größten Exemplares beträgt 57,3 mm bei einer Schwanzlänge von
55,7 mm; hieraus ergibt sich eine max. Gesamtlänge für die gefangenen Exemplare von 113 mm.
Die Kopflänge mißt 1,2 bis 1,8(MW 1,6)mal der Kopfbreite. Der Ohrspalt ist etwa so lang oder grö-
ßer als der halbe Augdurchmesser.
Der Abstand vom vorderen Ohrrand zum Auge ist kürzer als der vom Augvorderrand zur Schnau-
zenspitze. Die Länge des Maulspaltes reicht deutlich hinter den hinteren Augenrand. Das Mentale ist
etwa doppelt so lang wie breit. An Lippenschildern sind 8-11 Supra-/, 7-9 Sublabialia ausgebildet.
Zwischen 14 u. 20 Tuberkelreihen können gezählt werden. Die Rückenzeichnung besteht aus
4-5 Bändern.
46
8 9
Tafel IV: Dorsolateraltuberkel kapverdischer Tarentola; REM-Aufnahmen. Fig. 1: Tarentola rudis maioensis von
Maio; 22x. Fig. 2: Tarentola vudis rudis von Praia-S. Thiago; 25x. Fig. 3: Tarentola darwini von Tarrafal-
S. Thiago; 24x. Fig. 4: Tarentola caboverdiana nicolanensis von S. Nicolau; 22X. Fig. 5: Tarentola caboverdiana
raziana von St. Luzia; 23x. Fig. 6: Tarentola caboverdiana caboverdiana von St. Antäo; 23x. Fig. 7: Tarentola
rudis cf. protogigas von Fogo; 24%. Fig. 8: Tarentola gigas brancoensis von Branco; 29x. Fig. 9: Tarentola gigas
gigas von Razo; 26x.
47
Maßtabelle
Tarentola caboverdiana substituta von S. VICENTE
Mentale Tub. Lam.
Nr. ZSM SL IR SL SC 18 (© A OA AS MSP L B OL/UL R. Bd
377,821 - 40,9 —- = 9202.2,05.4,05 4:0556: 02111070, = - 10/8 14 = 4
140.81.1 - 21,07 2 8,1 45 - 1,9, Pa 255 - 9/8 14 - 4
140.81.2 50=26:0224:082.9,0725,02 A035 6,0 - 10/7 20 - 4
140.81.3 - 2.0 = Ah Fe a Zee EZ az 10/8 18 = 4
140.81.4 _ 0.0 = I Tai 2 ee ae le 8/7 16 - 5
140.81.5 0 An ee ler re 90 or 2,0 9/8 14 _ 4
140.81.6 105410555205 527 0.218.012 52 24 24126387, 011240) 4585255 9/9 18 - 5
140.81.7 IE 056:0555, 0217, 0 EN 52,5 E24,93 76:10 7971270 O2 11/9 16 - 5
140.81.8 15208575355577..118,05 125527822, 556:555,9X 01140) 530238 10/9 16 - 5
140.81.9 100:0=55,0=25,0=15,05.19552 2757 2750561022770 2105 5022. 10/8 16 - 4
140.81.10 1072050585502 218702 330223 1 6 IE 752 11/9 14 - 4
4.2.4 Tarentola gigas (Bocage, 1875)
1875 Ascalabotes gigas BOCAGE
1884 Platydactylus gigas. -— ROCHEBRUNE
1885 Tarentola gigas. — BOULENGER
1896 Tarentola gigas. -— BOCAGE
1907 Tarentola giganten. — SCHERER
1937 Tarentola gigas. — ANGEL
1947 Tarentola delalandii gigas. — LOVERIDGE
1955 Tarentola delalandii gigas. — MERTENS
1979 Tarentola delalandii gigas. — SCHLEICH
1980 Tarentola delalandıi gigas. — SCHLEICH
1982 Tarentola ‚‚delalandii“ gigas. — SCHLEICH
1982 Tarentola delalandı gigas. - GRUBER & SCHLEICH
1983 Tarentola delalandü gigas. - BAEZ & SANCHEZ-PINTO
1983 Tarentola delalandii gigas. —- SCHLEICH & WUTTKE
1984 Tarentola gigas. — SCHLEICH
1984 Tarentola borneensis. — JOGER
4.2.4.1 Tarentola gigas gigas (Bocage, 1875) (Taf. III, Fig. 2; Taf. IV, Fig. 9)
Material: 17 Ex. ZSM 131/1981; Razo.
1875 Ascalabotes gigas BOCAGE
1884 Platydactylus gigas. — ROCHEBRUNE
1885 Tarentola gigas. — BOULENGER
1896 Tarentola gigas. — BOCAGE
1907 Tarentola giganten. — SCHERER
1937 Tarentola gigas. — ANGEL
1947 Tarentola delalandi gigas. —- LOVERIDGE
1955 Tarentola delalandii gigas. -— MERTENS
1984 Tarentola gigas gigas. — SCHLEICH
1984 Tarentola b. borneensis. — JOGER
Terra typica: Razo
Verbreitung: Razo; s. a. SCHLEICH & WUTTKE (1983). Die JOGER’sche Verbreitungsangabe (1984: 100) erscheint
unbelegt, stammt aber vermutlich aus SCHLEICH & WUTTKE (op. cit.).
48
Diagnose:
KR-Länge bis 13,5 cm; kräftig gackernde Stimme. Kopflänge 1,2- bis 1,8mal der Kopfbreite. Kleine
Rückentuberkel in 16 Längsreihen. Entfernung Ohr-Auge nur geringfügig kleiner als Entfernun
Auge-Schnauzenspitze. Zwischen 9 und 12 (meist 10) Supra- und 7-9 (meist 8 oder 9) Sublabialia.
Schwanz deutlich kürzer als KR-Länge. Mentale etwa doppelt so lang wie breit. 2-3 Submaxillaria sind
ausgebildet.
Beschreibung:
Der kräftige Habitus der bis 13,5 cm KR-Länge (freilebend) messenden plumpen Tiere unterschei-
det sie deutlich von allen anderen Arten der Gattung Tarentola. Das schwerste ©’ von über 80 auf Razo
gemessenen Exemplaren wog 81 g. Geschlechtsdimorph sind die O'C’ von den PP durch ihren deut-
lich breiteren Kopf zu unterscheiden. Der Maulspalt reicht bis hinter den Pupillenspalt. Die Tuberkel
der in einzelnen Querreihen angeordneten Schwanzsegmente sind alternierend unterschiedlich groß.
Die Rückenfärbung der Tiere ist meist hellgrau, die Bauchseite cremefarben. Die Zeichnung besteht
aus in der Dorsomedianen unterbrochenen, aber auch durchgehenden Transversalbändern, die poste-
rior dunkel gesäumt sind. Die Flanken sind gesprenkelt. Zwischen Nasenlöchern und Ohr verläuft ein
dunkel gesäumter, heller Streifen. An einem Exemplar wurden an der ersten Zehe 14 und an der dritten
15 Subdigitallamellen gezählt. Eine Auswertung der umfangreichen Freilanduntersuchungen befindet
sich in Bearbeitung.
Maßtabelle
Tarentola gigas gigas von RAZO
Mentale Tub. Lam.
Nr. ZSM GL KR SL KL KB © A OA AS MSP L B OL/UL R. 5 adl
131.81.1 1:80 02105,0775,05 0, 022155722438725. 97712 0713 a1 ES 10/9 16 - 5
131.81.2 184,0 98,0 86,0 27,0 22,0 4,0 6,0 12,5 13,0 20,0 7,8 3,3 10/7 16 - 4
131.81.3 — 1082006 253.0,37235,07 5.07 6:012,5213597 2240728722430 10/9 16 = 4
131.81.4 -— 120,0 - 36,3 26,0 5,0 6,4 15,0 15,0 25,0 8,9 4,5 10/9 16 - 4
131.81.5 165508288:.0275, 02220219, 0 54,85 25772 10 0 E57 527, A355 10/9 16 = 5
131.81.6 212507120,0792,0/ 34,5, 25,0 24,57 76,5. 13,42 16,.0724,379,7. 452 12/9 16 - 6
131.81.7 — 520,022 735072653: 74555 76,55 14,74 16,0035525,9587 2550 10/8 16 14/15 6
131.81.8 — O3 0 PZFSERR, 26:05 12585135 OB - 9/9 16 _ 5
131.81.9 — 527.072 235, 0925,0 24555 26,35. 15,0516,2292583710,07274,0 11/9 16 = 6
131.81.10 — 117,0 - 31,0 26,5 4,5 6,0 14,0 14,5 19,0 9,0 3,8 10/8 16 - 4
131.81.11 271610511116, 0/100,0729X0.724 567 74,07 25,42 13,52 14,3 21755, 78,173,9 10/9 16 - 4
131.81.12 29320, 171140924072 370224, 02385 25,52.,121e5135068118,22@787 2356 10/7 16 _ 4
131.81.13 — 105,0 - Ze a Ne 1256 II 7 10/8 16 - 4
131.81.14 1924051072.0585,0229,55.22,0723,27 25.521052 135 6,419,077:98 5354 10/8 16 _ _
131.81.15 1614 02285,027706:022558. 318,0, 54.05 55,52 10 DS, 0 E F7EE350 9/8 16 - 4
131.81.16 199105107,02831022970221,67 24,35 76,55 14, 51.552. 2055, 28,022440 9/8 16 _ 5
131.81.17 — E50 33, 0528357 74,55 26, 015,52 15,022556, 10,027555 9/8 16 _ 4
4.2.4.2 Tarentola gigas brancoensis Schleich, 1984 (Taf. III, Fig. 3; Taf. IV, Fig. 8)
Material: 18 Ex. Holotypus — ZSM 362/78.1, Paratypen - ZSM 362/78.2-6, 19/82.1-12.
1875 Ascalabotes gigas BOCAGE
1884 Platydactylus gigas. - ROCHEBRUNE
1885 Tarentola gigas. — BOULENGER
1907 Tarentola giganten. — SCHERER
1937 Tarentola gigas. — ANGEL
49
1947 Tarentola delalandıi gigas. — LOVERIDGE
1955 Tarentola delalandıi gigas. — MERTENS
1980 Tarentola delalandii gigas. — SCHLEICH
1982 Tarentola ‚‚delalandii“ gigas. — SCHLEICH
1984 Tarentola gigas brancoensis. — SCHLEICH
1984 Tarentola b. borneensis. — JOGER
Terra typıca: Branco
Verbreitung: Branco
Diagnose:
Unterscheidet sich von der Nominatform durch geringere Körpergröße. KR-Länge nur bis 11,4 cm.
Kräftig gackernde Stimme. KL 1,2- bis 2,2mal KB; kleine Rückentuberkel in 16 Längsreihen; Entfer-
nung OA nur wenig kleiner als AS; Ohröffnung ?/s bis mehr als die Hälfte des Augdurchmessers. Zwi-
schen 8-12 Supra- und 7-9 Sublabialia. Schwanz kürzer als KR-Länge. 2-3 Submaxillarıa.
Beschreibung:
Die Maximalwerte von Geländemessungen an 100 Tieren ım Frühjahr 1981 betrugen 11,4 cm KR-
Länge mit einem Gewicht von ca. 53 g. Durch ihren kräftigen, gedrungen wirkenden Körperbau sind
sie von den anderen Tarentola- Arten gut zu unterscheiden. Der Ohrspalt ist meist größer als die Hälfte
des Augdurchmessers. Die Entfernung zwischen Auge/Schnauze ist nur wenig größer als zwischen
Ohr/Auge. Falls eine Transversalbänderung ausgebildet ist, zählt man zwischen 4 und 6 Querbänder,
die jedoch selten durchgehend sind, sondern durch einen hellen Dorsomedianstreifen oder längliche,
miteinander verschmolzene Kernflecken getrennt sein können, die wiederum anterior dunkel gesäumt
sind. Weitere Angaben s. SCHLEICH, 1980.
Eine Auswertung der umfangreichen Freilanduntersuchungen befindet sich in Bearbeitung.
Maßtabelle
Mentale Tub. Lam.
Nr. ZSM GEEIKRESLIKE CKBLTO A 4 IOAN ZASZMSPL Bi: !OL/UE RZ YytaBa
| 75400.42.0.33.07440909.8 1537 4;0,5,3°'7,0710,07 451,3 9/8 16 - -
19.82.2 - 113,0 - 35.074025 13203, 12/9 16 - 5
19.82.3 - 98.54 —- 26020304537 555711,5°12,2° 208,0’ 7,0 3,6 11/9 16 - 5
19.82.4 — 10807 E7312724.0 4,1769 73, BIT 753 750 12/8 16 - 5
19.82.5 _ 98.077 781,972293,6 6,1 12,0 13,0720,37 8.1 4,0 12/9 16 - 6
19.82.6 u ER e e e e B Aolı IAZE EI EN et 1179 16 - 5
19.82.7 - 99,0 - - 2.548 60 2,0 30 195 30740 9/8 16 - 5
19.82.8 = 408.0 TB 5222 Bez 8/8 16 - 4
19.82.9 - 92.0°— "25,07 20,673, 5.374132, 3555 7.0 30 10/7 16 - 4
19.82.10 174:0° 94.080.0255722,0 3,2 5,2 10,1712;0 46,2 6,7 3,1 11/8 16 _ _
le Rs | - 22.0 25,049,53.0%5 57410.071,53. 3.077.132 9/7 16 - +
19.82.12 — #100 750.024 47357563037 9/8 16 _ 4
362.78.1 - 9137,85 2,2555, 3 11/9 16 13/14 5
362.78.2 - ar - 232 150 32 350739 102 165 ©&1 31 9/7 16 _ -
362.78.3 - 35.0 = 20 853 = - - - - - - - _ _ _
362.78.4 - 87.8 - 29.0 26,0 3,2. 5557 16.9, 11,0, 19,0. 753 30 10/9 16 - “
362.78.5 - 500 — ' 25,0721,07 2,8 4,8 1051107180 75 3,0 10/8 16 - -
362.78.6 = 920 = .e28,5 2255 12,6 - 5561100: 12,0) 19,0 77,3 738 9/8 16 _ -
50
4.2 Gekkonidae - Genus Hemidactylus
Anmerkung: Herr Dr. R. CromBıE, Washington, teilte mir freundlicherweise mit, daß Hemidacty-
lus cyanogaster von GirARD (1858) von den Kapverden beschrieben wurde, jedoch erscheint eine
Zuordnung bislang noch nicht möglich').
4.2.5 Hemidactylus brooki angulatus Hallowell, 1852 (Taf. III, Fig. 6)
Material: 2 Ex. ZSM 149/1981; Praia, S. Thiago. 7 Ex. ZSM 151/1981; Sal. 4 Ex. ZSM 150/1981; S. Vicente.
4 Ex. ZSM 148/1981; Fogo.
1852 Hemidactylus angulatus HALLOWELL
1858 Hemidactylus cyanogaster. — GIRARD
1937 Hemidactylus brookı. -— ANGEL
1947 Hemidactylus brookiı angulatus. — LOVERIDGE
1951 Hemidactylus brookii angulatus. — DEKEYSER & VILLIERS
1955 Hemidactylus brookiı angulatus. — MERTENS
1982 Hemidactylus brooküi angulatus. — SCHLEICH
Terra typica: ‚‚afrikanische Westküste“
Bisherige Verbreitung: Sal, Boa Vista, S. Thiago, Fogo, Brava, St. Antäo, $. Vicente, IIheu Grande
Nachgewiesen von: S. Thiago, Sal, S. Vicente, Fogo, ? Ilheu St. Maria
Artcharakteristik nach:
LOVERIDGE (1947) —
KR-Länge 51-69 mm; gewöhnlich 8 (4+4) Tuberkel auf4 Schwanzsegmenten. Tuberkel der Dorsolateralia drei-
flächig; weniger Supralabialia, durchschnittlich 8.
Diagnose:
KR-Länge bis 54 (69) mm, im Habitus ähnlich Hemidactylus brookı brooki mit Rückentuberkeln in
10-20 Längsreihen.JJ mit 22-25 Präanofemoralporen; 4-6 Subdigitallamellen am ersten und 7-8 am
dritten Finger.
Maßangaben für vom Autor gesammelte Exemplare:
Sal KR GL S. Vicente KR GL
ZSM 151/81 6,0 cm 12,4 cm Mindelho 5,4cm
5,4cm reg ZSM 150/81 6,1cm
5,0cm reg DANCE
4,6cm reg 1,9 cm 5,1cm
4,8cm reg
3,6cm 7,6 cm Fogo,S. Felipe 5,2cm
4,8 cm ZSM 148/81 5,4cm
4,6cm 6,1cm
5,9cm
S. Thiago 5,9cm
Praia 3,2 cm 5,1cm 10,7 cm
ZSM 149/81 3,6cm
") Während der Drucklegung der Arbeit teilte mir Dr. R. CROMBIE/Washington freundlicherweise die Erwähnung
von Hemidactylus cyanogaster durch GIRARD (1858) für die Kapverden mit, wofür ich ihm herzlich danken
möchte. GIRARD gab eine kurze Beschreibung und Charakteristik sowie eine relativ umfangreiche Synonymie
für die von ihm „‚ım Oktober 1838 nach dem Leben gezeichneten Tiere von Praia (‚Port Praja, San Jago‘)‘‘, wor-
aus ersichtlich wird, daß er sein Material seinerzeit (1858: 284-285, Taf. 25) Hemidactylus turcicus zuschrieb.
Sl
4.2.6 Hemidactylus bouvieri (Bocourt, 1870)
4.2.6.1 Hemidactylus bouvieri bouvieri (Bocourt, 1870)
Material: 2 Ex. BMNH. 66.4.12.3,4; S. Vicente.
1870 Emydactylus bouviere BOCOURT
1873 Hemidactylus cessacii. -— BOCAGE
1884 Hemidactylus bouvieri. - ROCHEBRUNE
1885 Hemidactylus bouvieri. -— BOULENGER
1935 Hemidactylus bouvieri. — ANGEL
1937 Hemidactylus bouvieri. -— ANGEL
1947 Hemidactylus bouvieri bouvieri. — LOVERIDGE
1955 Hemidactylus bouvieri bouvieri. -— MERTENS
1982 Hemidactylus bouvieri bouvieri. — SCHLEICH
1982 Hemidactylus bouvieri bouvieri. - GRUBER & SCHLEICH
Terra typica: $. Vicente
Bisherige Verbreitung: $. Vicente, St. Antäo, $. Thiago, Fogo, Brave
Nachgewiesen von: $. Vicente
Artcharakteristika nach:
MERTENS (1955) —
Von einem Exemplar von Praia; unter dem 1. Finger 4 (5, falls prox. dazugezählt wird) Haftlamellen. Oberseite
dunkelgrau, durch 4 schmale, helle Querbinden unterbrochen. 7 Querbänder auf der Schwanzoberseite, jene auf
der Schwanzwurzel bilden nach hinten gerichteten Winkel.
LOVERIDGE (1947) —
Schnauze wenig länger als Entfernung zwischen Aug- und Ohröffnung. Schnauzengranula größer als rückwärti-
ge. Nasenlöcher begrenzt vom Rostrale, 1 Labiale und 3—4 kleinen Nasalıa.
7-8 obere Labialia, 6-7 untere Labialia. Ein Paar große Postmentalia in Kontakt mit Mittellinie sowie ein äußeres,
aber kleines Paar Kinnschilder. Rücken mit ziemlich großen einheitlichen Granula. Ventralia glatt, gerundet,
schindelartig. O0" 2 Präanalporen; Finger frei, leicht verschmälert mit ziemlich kurzen Endgliedern, innerhalb
Haftlamellen, 3 unter 1. Zehe, 4-5 unter Mittelzehe. Schwanz zylindrisch, dorsal mit glatten einheitlichen Schup-
pen, ventral mit glatten Schindelschuppen, deren Mittelreihe transversal vergrößert ist. Schwanzlänge geringfügig
kürzer als KR-Länge.
Färbung: Dorsal schwach braun, mit dunklem Streifen von den Nasenlöchern über das Auge, der auf der Flanke
und der Schwanzbasis fortgesetzt sein kann. Oberlippe weiß. Rücken mit 5-6 dunkelbraunen Querbändern, ventral
hell, GL 67 (36+31) mm.
Diagnose:
Hemidactylus bouvieri bouvieri mißt bis ca. 38,5 mm KR-Länge. Unter der ersten Zehe besitzt
Hemidactylus bonvieri bonvieri 344 und unter der 3. Zehe 4-5 Subdigitallamellen. Eine dorsale Bän-
derzeichnung ist für die Art charakteristisch, muß aber nicht immer ausgebildet sein.
Beschreibung:
Hemidactylus bouvieri unterscheidet sich von Hemidactylus brooki durch das Fehlen der Rük-
kentuberkel. H. bouvieri konnte leider nie selbst von mir gefangen werden, so daß sich diese Angaben
auf Leihmaterial aus dem Britischen Museum sowie auf Literaturangaben beziehen (s. GRUBER &
SCHLEICH 1982). Die Größenvariabilität von 5 Exemplaren konnte in einem Diagramm (op. cit.: 305,
Abb. 2) dargestellt werden. Die maximale Kopf/Rumpflänge scheint ca. 38 mm zu betragen und liegt
damit zwischen razoensis und boavistensis. Die Anzahl der Subdigitallamellen beträgt 34 an der er-
sten und 4-5 an der dritten Zehe. Das Supralabiale ist mit der Nasenöffnung in Kontakt. Die beiden
vorliegenden Exemplare tragen 5 sich caudal verdunkelnde braune Transversalbänder, wobei das erste
ım Nacken und das 6. auf Höhe des Oberschenkelansatzes beginnt.
32
4.2.6.2 Hemidactylus bouvieri boavistensis Boulenger, 1906 (Taf. III, Fig. 4)
Material: 8 Ex. ZSM 366/1978; Boa Vista. 9 Ex. ZSM 20/82; Sal, Straße zur Saline. 3 Ex. ZSM 21/82; Sal, Straße
nach St. Maria.
1906 Hemidactylus boavistensis BOULENGER
1935 Hemidactylus chevalieri. - ANGEL
1937 Hemidactylus chevalieri. - ANGEL
1937 Hemidactylus boavistensis. — ANGEL
1947 Hemidactylus bouvieri boavistensis. — LOVERIDGE
1947 Hemidactylus bonvieri chevalieri. - LOVERIDGE
1951 Hemidactylus bouvieri chevalieri. - DEKEYSER & VILLIERS
1955 Hemidactylus bouvieri boavistensis. — MERTENS
1982 Hemidactylus bouvieri boavistensis. - GRUBER & SCHLEICH
Terra typıca: Boa Vista
Bisherige Verbreitung: Boa Vista, Sal
Nachgewiesen von: Boa Vista, Sal
Artcharakteristika nach:
BOULENGER (1905) —
In Pholidose und Morphologie Hemidactylus bouvieri ähnlich, aber ziemlich stark verlängerte Zehen und mit
mehr Lamellen. 4-5 davon unter der 1. und 6-8 unter der 3. und 4. Zehe. Das Paar Kinnschilder hinter der Sym-
physe ist ebenfalls länger als bei bouvieri. Dorsal gelb, rötlich oder blaß-graubraun, gewöhnlich dunkelbraun ge-
sprenkelt, mit 5 gebogenen und welligen braunen, dunkelgesäumten Querbändern, wovon das erste zwischen den
Augen über den Occiput und das zweite im Nacken läuft. Diese Bänder können von einer Reihe dunkelbrauner
Flecken entlang der Rückenmittellinie unterbrochen sein, oder sie sind alle zusammen kaum unterscheidbar. Ein
dunkler brauner Strich verläuft beidseits der Schnauze, mit einem gelblichen darüber liegenden. Schwanz mit mehr
oder weniger unterschiedlich halbmondförmigen dunklen Rückenbändern bei weißer Ventralseite. Bei Hemidacty-
lus bouvieri fehlen die hellen Streifen auf der Schnauze, und die dunklen Bänder seitlich des Kopfes reichen bis zum
dunklen Nackenband.
Boa Vista von 0-600 m
6) 2 6) 2
GL 81 83 Körper 28 29
SL 39 39 Vorderextr. 14 14
Kopflänge 14 15 Hinterextr. 18 19
Kopfbreite 10 11 (Angaben in mm)
LOVERIDGE (1947) —
Hemidactylus bouvieri boavistensis unterscheidet sich von Hemidactylus bouvieri bouvieri nur in leicht verlän-
gerten Fingern mit konsequent mehr Haftreihen, nämlich 4-5 unter der ersten Zehe, 6-8 unter der dritten und vier-
ten. Dorsal, gräulich, gelblich oder rötlichbraun, ein dunkelbrauner Streifen vom Rostrale ist von oben gelb be-
grenzt und reicht bis zum Auge. Von Auge zu Auge zieht ein welliges dunkelgesäumtes Band, ein weiteres im Ge-
nick, drei weitere auf dem Rücken, der auch dunkel gesprenkelt oder einfarbig sein kann. Die Bänder können mesial
von einer Serie dunkelbrauner Flecken unterbrochen oder beinahe weißlich sein. Dieser leichte helle canthal-Strei-
fen fehlt bei Hemidactylus bouvieri, wobei der dunkle sich niemals bis zum Nackenband oder den Flanken wie bei
bouvieri fortsetzt. - Größe: GesamtlängeQ’ 81 (42 + 39),Q 83 (44 + 39).
MERTENS (1955) —
Von 33 Exemplaren von Sal und Boa Vista
Hemidactylus chevalieri von Sal ist identisch mit boavistensis, da die Zahl der Lamellen unter dem 1. Finger (4-5)
sich auf 6 erhöhen kann. Zeichnung sehr variabel, neben Individuen mit dunklen Querbändern (1 Nacken-, 3 Rük-
ken-, 1 Schwanzwurzelband) haben einige eine helle, dorsale Mittellinie, andere dagegen sind bis auf eine feine
Tüpfelung zeichnungslos. Der regenerierte Schwanz ist meist hell mit 3 dunklen Längsstreifen.
53
Diagnose:
Von der Nominatform bouvieri bonvieri deutlich durch die etwa '/; größere Körperlänge unter-
scheidbar. Die Anzahl der Subdigitallamellen beträgt an der ersten Zehe 5-6 und an der dritten Zehe
7-8. Kopf/Rumpflänge bis ca. 50 mm.
Beschreibung:
Hemidactylus bouvieri boavistensis ähnelt im Habitus mehr einer kleinen Tarentola caboverdiana
als Hemidactylus brooki angulatus. Von letzterem ist er durch die gleichmäßig glattere Pholidose gut
zu unterscheiden. Das erste Supralabiale steht in Kontakt mit dem Nasale. Die Tiere erreichen eine Ge-
samtlänge von ca. 80 mm. Die Größenverteilung der gesammelten Exemplare ist in GRUBER &
SCHLEICH (1982: 305, Abb. 2) in einem Diagramm dargestellt.
Die Anzahl der Subdigitallamellen beträgt bei Hemidactylus bouvieri boavistensis 5-6 an der ersten
und 6-8 an der dritten Zehe.
Die Tiere können einfarbig hell gefärbt oder stark akzentuiert gebändert sein, wobei dann die meist
vier bis fünf Transversalbänder dunkel gesäumt sind.
4.2.6.3 Hemidactylus bouvieri razoensis Gruber & Schleich, 1982 (Taf. III, Fig. 5)
Material: Holotypus: ZSM 129/1981; Razo. Paratypen:5 Ex. ZSM 130/1981; Razo. 1 Ex. ZSM 22/1982; Razo.
1982 Hemidactylus bouvieri razoensis GRUBER & SCHLEICH
1983 Hemidactylus bouvieri razoensis. -— SCHLEICH & WUTTKE
Terra typica: Razo
Verbreitung: Razo
Diagnose (nach GRrUBER & SCHLEICH 1982):
„Die neue Form zeichnet sich durch ihre geringere Körpergröße (KR max. = 29 mm) sowie eine
verringerte Anzahl von Subdigitallamellen (1. Finger: 2-3; 3. Finger: 4, selten 5) aus. Die Nasenöff-
nungen stehen nicht in direktem Kontakt mit den ersten Labialıa.‘“
Beschreibung (nach GRUBER & SCHLEICH 1982):
Habitus
Die Schnauze der Tiere ist spitz, ihre Beine sind kurz; das nach vorne gelegte Hinterbein reicht nicht
bis zur Achselhöhle. Der runde Schwanz ist spitz auslaufend und an der Basis etwas dünner als in der
Mitte. Der Augdurchmesser beträgt durchschnittlich 1,9 mm.
Pholidose
Die Schnauze ist- vor allem zwischen Auge und Nasale — von gegenüber den Dorsalia vergrößerten,
oft hexagonalen Schuppen bedeckt. Von den beiden Postnasalia trennt das jeweils untere die Nasenöff-
nung vom ersten Supralabiale. In Ausnahmefällen kann das untere Postnasale — unter Verbleib einer
schwachen Naht - mit dem Labiale verwachsen sein. Je sieben bis acht Supralabialia sind ausgebildet,
wobei das letzte hinter der Augenmitte liegt. Sie sind durch mindestens eine Reihe kleiner Schuppen
vom Auge getrennt. Die Pileusschuppen sind nur geringfügig kleiner als die Dorsalıa.
Das nach hinten spitz zulaufende Mentale endet auf halber Länge zwischen dem ersten der beiden
aneinanderliegenden Paare der Postmentalia. Die je sechs bis sieben Sublabialia werden von vergrößer-
ten Gularıa gesäumt. Die Gularia sind von rundlicher Form, flach und kleiner als die Dorsalıa. Diese
sind glatt, rundlich und nach hinten zunehmend gewölbt. Alle Dorsalia sind annähernd gleich groß.
Die dorsalen Schwanzschuppen sind rechteckig, größer als die Dorsalia und in Querreihen angeordnet.
Die vergrößerten Ventralia haben eckige Gestalt, überlagern sich und sind in der Körpermitte ın ca. 25
versetzten Längsreihen angeordnet. Die stark vergrößerten Subcaudalia sind oft in nur einer Reihe vor-
zufinden. Alle Exemplare weisen beiderseits der Schwanzwurzel zwei, selten einen Postanaltuberkel
auf, die bei den &'C° deutlicher ausgeprägt sind. Die Anzahl der mit Haftborsten versehenen Subdigi-
54
tallamellen beträgt am 1. Finger drei und am 3. Finger vier (selten fünf oder eine zusätzliche, vergrö-
ßerte basale Schuppe). Weist der 1. Finger nur zwei Lamellen auf, ist meist ebenfalls eine vergrößerte
basale Schuppe zu erkennen. Das Rostrale ist hinten schmäler und von dort zu ”/z seiner Länge in der
Mitte gespalten. Im Anschluß daran befinden sich zwei, selten drei große Internasalia.
Färbung
Kopf und Körperseite sind sandfarben. Die Rückenzeichnung besteht aus fünf 2-3 mm breiten,
dunkelbraunen Transversalbändern, die nach caudal zunehmend dunkler werden. Das erste befindet
sich am Nacken, das letzte an der Schwanzbasis. Auf der Schwanzoberseite verwischt die Bänderstruk-
tur der Zeichnung, während die Grundfarbe des Schwanzes in Orange übergeht. Der vordere, obere
Augenrand ist gelblich, ebenso die Labialia. Über den Supralabialia zieht sich ein dunkler Streifen von
der Schnauzenspitze über das Auge bis zum lateralen Ende des ersten, selten des zweiten Transversal-
bandes. Ventral dieses Streifens erstreckt sich ein weißes Lateralband vom Mundwinkel bis zur
Schwanzwurzel. Die Bauchseite ist weißlich, etwas durchscheinend und mit feinen, schwarzen Spren-
keln überzogen.
Diskussion (siehe GRUBER & SCHLEICH 1982).
4.3 Testudines
Nur sehr wenige Literaturangaben gibt es zu Schildkrötenhinweisen auf den Kapverden.
BOULENGER (1905: 197) erwähnte ‚‚Chelone imbricata‘‘ von Fogo, und BANNERMAN & BANNERMAN
(1968: 40) berichten aus Bourne’s Expedition von 1951 über die Rhombos-Inseln: ... ,,as one comes
ashore on little beaches of white sand marked with the excavations of turtles“, und von Maio (op. cit.:
S. 14)...,,‚and ata certain Season ofthe Year, as May, June, July and August, a sort of small sea-tor-
toise came hithere to lay their eggs; but these turtles are not so sweet as those in the West Indies.“
SCHLEICH (1979) berichtete über eine ‚‚Sea Turtle Protection needed at the Cape Verde Islands“ und
erwähnt dabei ‚‚Hawksbill‘“ and ‚‚Loggerhead‘“ als die durch intensiven Fang gefährdeten Arten. In
den ‚vorläufigen Mitteilungen zur Herpetofauna der Kapverden“ SCHLEICH (1982: 247) werden vier
Arten von Seeschildkröten, die auf den Kapverden vorkommen und intensivst bejagt werden, erwähnt:
Caretta caretta caretta, Eretmochelys imbricata, Chelonia mydas mydas und Lepidochelys olivacea
olivacea.
Neben dem großen Schaden durch hohe jährliche Abfangraten und Sammeln sowohl der Tiere als
auch ıhrer Gelege durch Privatleute, Fischer und bislang der staatlichen Fischereiindustrie, wurden die
Bestände der Seeschildkröten stark dezimiert. Nicht unerwähnt soll trotzdem ihre Bedeutung auf den
Kapverden als Eiweißlieferant, aber auch die Verwendung des Rückenpanzers als Transportbehältnis
sein. Nach meinem Bericht (SCHLEICH 1979) und intensivem Drängen bei den Fischereibehörden wurde
mir von Direktor M. DUARTE-ALMEIDA seitens der SCAPA versichert, daß der industriell-gewerbliche
Schildkrötenfang verboten wird. Andererseits werden natürlich noch immer genug Tiere auf dem
Markt angeboten oder direkt von den Fischern gehandelt. Auch das Absuchen weiter Sandstrände nach
frischen Gelegen seitens der Einheimischen sowie streunender Hunde führt zu einer weiteren intensi-
ven Bedrohung der Tiere. Die Verfolgung eines Schutzprojektes wäre hier dringlichst notwendig!
Als bevorzugt ‚‚angelaufene“ Inseln gelten natürlich alle mit flachen Sandstränden und Buchten, so
besonders Sal, Boa Vista, Maio, S. Vicente, St. Lucia und Branco. Auf Maio wurde mir berichtet, daß
die Seeschildkröten zwischen Mai und Juni zur Eiablage an Land gehen und dort sofort von den Ein-
heimischen gefangen werden. Offiziell sei nur eine Rate von ca. 70 Tieren bekannt, Herr M. Rıvas
(frdl. mdl. Mittlg./20.1.81) nahm jedoch eine Dunkelziffer von mehr als 100 Tieren pro Jahr an.
Das von MErTENSs (1955) für Ilheu St. Maria (in der Hafenbucht vor Praia gelegene kleine Insel) er-
wähnte Vorkommen von Süßwasserschildkröten der Art Pelusios subniger derbianus wurde von mir
(SCHLEICH 1982) als nicht mehr existent und seinerzeit anthropogen eingeführt, abgehandelt.
55
4.4 Amphibia — Bufonidae
Bufo regularıs Reuss
Material: 11 Ex. ZSM 18/1982; S. Nicolau. 3 Ex. ZSM 17/1982; S. Thiago.
SCHLEICH (1982) erwähnte erstmals Froschlurche von den Kapverden. Herr M. Tanpy bestätigte die
Zugehörigkeit der Kröten zu Bufo regularıs. Von Angestellten des Landwirtschaftsministeriums der
Kapverden (MDR) wurde versichert, daß die Kröten, bislang von S. Thiago und $S. Nicolau bekannt,
bereits zur Zeit der portugiesischen Kolonialherrschaft zur Dezimierung der Mückenplage in den öf-
fentlichen Wasserreservoirs eingesetzt wurden.
5. Die einzelnen Inseln
Zu ihrer Geographie und Biologie-Ökologie der einzelnen Arten (s. a. Pkt. 2)
Verwendete Abkürzungen:
LT°C = Luft-Temperatur in °C
BT’C = Boden-(Substrat)-Temperatur in °C
KT°’C = Körper-(Kloaken)-Temperatur in °C
LF% = relative Luftfeuchte in %
5.1 Sea
Sal, die südöstlichste, als einzig autonome Insel der Republik Cabo Verde hat eine Oberfläche von
ca. 200 km? und eine maximale Höhe von 406 m. Die gestreckte, ca. 24 km lange und nur knapp 10 km
breite Insel zeigt durch ihre geringen orographischen Unterschiede ein einheitliches Bild - eine mono-
tone Steinwüste in typischer Serirausbildung geprägt. Gelegentliche Sanddünen, Bodenbildungen und
Basaltberge wechseln das sonst eintönige Landschaftsbild.
Nur wenige größere Ribeiras und ebensowenige Oasen zeichnen sich ab.
Palmeira aPedra Lume
Ilheu de Rabo ,
de Junco D Ilheus
‚fe do Chano
Sudpedih VA S’A MARIA
56
Abb. 14: Sal; Straße nach St. Maria; Biotop von Mabuya stangeri salensis und Hemidactylus bouvieri boa-
vistensis.— Abb. 15: Dünenlandschaft auf Boa Vista; Biotop von Hemidactylus bouvieri boavistensis und Mabuya
delalandü. — Abb. 16: Im Inselinnern von Maio; Biotop von Mabuya stangeri maioensis und Tarentola rudis
maioensis.
57
Artenspektrum
Nachgewiesen wurden: Mabuya stangeri salensis, Hemidactylus brooki, Hemidactylus bouvieri
boavistensis. In der Geschichte der kapverdischen Herpetofaunistik wurden für Sal bereits 8 verschie-
dene Reptilienarten nachgewiesen, unter anderem auch eine Schlange, Psammophis sibilans sibilans
durch DEkEYsER & VILLiers (1951), die selbst aber berichteten, daß dieser einmalige Nachweis sicher auf
eine anthropogene Verschleppung zurückzuführen ist (s. auch SCHLEICH 1982).
MERTENS konnte für Salnur Mabuya stangeri salensıs als einzigen Skink bestätigen. Das von AnGeı
(1935, 1937) gemutmaßte Vorkommen von Mabuya (stangerı) spinalis, konnte von mır bislang nicht
bestätigt werden. Die 9 Exemplare umfassende Kollektion an Skinken beinhaltet ebenfalls nur Ma-
buya stangeri salensis. Die Variationsbreiten ihrer Merkmalsausbildungen sind in den Diagrammen
und in der Beschreibung (4.1.3.3) dargestellt. Leider gelang es mir auf keinem meiner insgesamt sechs-
maligen Aufenthalte auf Sal eine Tarentola nachzuweisen.
Fundorte
1 ca. 3 km vor Palmeira: Mabuya stangeri salensıs
2 Oase auf der Strecke nach St. Maria: Mabuya stangeri salensis und Hemidactylus bouvieri bouvieri, unter Pal-
menresten und Lesesteinen im Dünensand
Lagerhaus beim Flughafenhotel: Hemidactylus brooki angulatus
4 Steinwüste ca. 5 km südlich Flughafen: Mabuya stangeri salensis
Straße zur Saline (Pedra Lume): Mabuya stangeri salensis, Hemidactylus bouvieri boavistensis
Straße nach St. Maria: Mabuya stangeri salensis, Hemidactylus bouvieri boavistensis
wo
a
Zur Biologie - Ökologie
Geländenotizen, Körpertemperaturen, Biotopcharakteristika:
16. 1. 81 — windig, bedeckt
Datum Uhrzeit LT LF BT Taxon KT Bemerkungen
€ % ® ®
61% 14.00 24 - 30 Mabuya 29 unter Lavafels auf Sandboden
28 45 28,5 Mabuya (70% LF, 23,5°C unter Stein);
Boden leicht lehmig feucht
14.45 - - - Mabuya 26,5 (24°C unter Stein)
Mabuya 25,0
15.008522 — 29 Mabuya 30,0 (28°C unter Stein, semiadult)
ab 20.00 - — - Hemid. 24-26 Lagerhaus bei Hotel
ab 24.00 - - 22 brooki
17.2. Hemid. kühl und windig, 7 Tiere gesichtet,
b. boav. Richtung Pedra Lume unter Steinen
Anmerkungen:
Bei einem Gespräch am 19.9. 1977 auf Sal (St. Maria) mit Einheimischen bezüglich Reptilienvorkommen auf der
Insel wurde mir einstimmig entgegnet, daß es auf Sal eigentlich gar nichts gibt, weder Pflanzen noch Echsen, und
nur im Norden der Insel vereinzelt kleine Skinke vorkommen.
Zur Biologie der Echsen insbesondere von der zweitgrößten kapverdischen Mabuyenart Mabuya
stangeri salensis ıst bislang noch nichts bekannt.
Die Kotanalysen erbrachten folgendes Nahrungsspektrum für die im Januar gefangenen Mabuyen:
Acridiidae, Curculionidae, Heteroptera, Myrmeleonidae, Tenebrionidae.
Für Hemidactylus brooki angulatus von den Lagerhallen des Flughafenhotels setzten sich die Rück-
stände wie folgt zusammen: Coleoptera, Tenebrionidae, Arachnidae, zahlreiche Blattaria und Ortho-
ptera.
Für Hemidactylus bouvieri boavistensis ergaben die Rückstandsuntersuchungen folgende Zusam-
mensetzung: Aranea, Tettigoniidae, Aphidina, Hymenoptera, Formicidae, Diptera, Coleoptera.
58
5.2 BOA VISTA
Boa Vista ist neben Sal und Maio eine der wüstenhaftesten bewohnten Inseln des Archipels, von
rundlicher Form, ca. 620 qkm Flächenausdehnung und mit 390 m höchster Erhebung ebenfalls relativ
flach. Der N-S-Mittelstreifen der Insel ist etwas gebirgiger und trennt die Bereiche der großen Sanddü-
nen, die hauptsächlich auflandig der Westküste der Insel auftreten. Das typische Landschaftsbild der
Insel sind vulkanische Gesteins- bzw. Gebirgsmassive mit Sanddünen, teilweise Sedimentgesteinen
und Oasen- bzw. Ribeirabewirtschaftung.
BEOFA VS A
Iheu dos Pässaros
a !!heu do Cascalho
Ilheu Holandes
Ilheu do Sal Rei ee
VADE SAL REI \
x Se ae @ Ilheu do Baluarte
ER N _>fFundo de Figueras
Ya „iCabego de Tarafes
Ilheu do
Lagosteiro
Artenspektrum
Neben Mabuya delalandü (ZSM 373/78) wurde noch eine größere Mabuya gesichtet. Leider
konnte das Tier nicht gefangen werden. An Geckos kamen noch Tarentola (nach Aussagen der Bevöl-
kerung) und Hemidactylus bouvieri boavistensis (ZSM 366/78) vor. Leider gelang uns nur der Nach-
weis von letzterem!
Fundorte
1 Aufgrund verkehrstechnischer Verbindungsschwierigkeiten waren wir auf ein Sammelgebiet im
Umkreis der Stadt Sal Rei beschränkt.
Steinwüste, Talalluvionen und Sanddünen beherrschen diesen Landschaftsabschnitt. Einzelne Lese-
steine oder gestürzte Palmstämme bzw. kleine Pflanzeninseln auf den Sanddünen waren Unter-
schlupf und Zufluchtsraum für Skinke (Mabuya delalandı, M. sp. indet.) und Halbfingergeckos
(Hemidactylus bouvieri boavistensis). Die Mauern der Straßeneinfriedungen waren ebenfalls belieb-
ter Zufluchtsort der Skinke.
Zur Biologie - Ökologie
Geländenotizen:
Auf eine Fläche von ca. 1-2 qkm kamen etwa 1 Skink und ca. 3 Geckos. In einem ca. 4 qkm großen Areal wur-
den 15 Hemidactyli und 8 Mabuyen gefangen. Am 22.7.1977 entdeckte ich unter einem Palmstück 37 Hemidacty-
lus-Eier, wovon zu diesem Zeitpunkt bereits etwa '/3 geschlüpft waren. Die Fluchtdistanz junger Mabuyen betrug
ca. 15 m.
Sehr hell klingendes ‚‚Geckogekreische‘“ war in Gefangenschaftshaltung von 2 verbissenen Hemi-
dactyli (? Streit, Kopula) sowohl am 9.3. als auch am 10.3.79 nachmittags zu hören. Weder vorher
noch nach diesem Zeitraum war jemals wieder solch eine Lautäußerung vernommen worden. Am
9.3.79 wurde ein rundes, kleines hartschaliges Ei von etwa 2 g und 0,85 cm Durchmesser abgelegt.
59
Von Einheimischen wurde mir berichtet, daß eine größere Geckoart (? Tarentola) innerhalb der
Häuser anzutreffen sei, leider glückte mir selbst der Nachweis bislang nicht.
An ‚‚natürlichen“ Freßfeinden konnten wir hauptsächlich Katzen sehen.
5.3 MAIO
Maio gehört neben $. Thiago, Fogo, Brava und den Rhombos-Inseln ebenfalls noch zur Sotavento-
gruppe und hat mit die kleinste Einwohnerzahl aller kapverdischen Inseln. Maio ist von ovalem Umriß
mit einer Flächenausdehnung von ca. 250 qkm und mit dem Mt. Renose im Inselzentrum, bis auf
436 m aufragend. Das Inselinnere ist relativ stark zergliedert. Tief eingeschnittene Ribeiras, Hochpla-
teaus, Sandstrände und Kalkgesteinmassive wechseln mit Steinwüsten, Sanden, Talalluvionen und
Vulkaniten ım Landschaftsbild. Plattig absondernde Kalkschichten bieten mit ihren wie scherbenüber-
streuten weiten Bodenflächen hervorragende Kleinstbiotope und Unterschlupf für Reptilien. Selbst
auf den Salzklippen der Salınen waren Mabuyen zu finden.
X Aue da Horta
92
Falk
Artenspektrum
Nachgewiesen wurden Mabuya stangeri maioensis sowie Tarentola rudis maioensıs.
Fundorte
1 Ribeira zwischen Vila do Maio und Morro (19.1.81): Mabuya, Tarentola
2 Salınas: Mabuya
Zur Biologie-Ökologie
Die Populationsdichte in einem Biotopausschnitt von ca. 100 qm betrug etwa 30 Skinke und 10 Ta-
rentolas, wobei meist 1-2 Skinke auf 1 Gecko unter einer Gesteinsplatte kamen.
Die Kotrückstandsuntersuchungen ergaben folgende Bestandteile für die Mabuyen:
Coreidae-Lygaeidae, Formicidae, Tenebrionidae
und für die Tarentolas:
Tettigonüdae, Blattaria, Cydnidae, Tenebrionidae, Acridiidae.
5.4 SAO THIAGO
S. Thiago (Santiagio, S. Jago) ist mit der Hauptstadt Praia flächenmäßig und der Einwohnerzahl
nach die größte aller kapverdischen Inseln. Die Insel ist von tropfenförmigem Umriß mit einer Flä-
60
chenausdehnung von ca. 1000 qkm und reicht mit dem Pico da Antonia auf eine maximale Höhe von
1392 m. Landschaftlich, orographisch wie faunistisch und floristisch istS. Thiago wohl die vielgestal-
tigste aller Cabo-Verde-Inseln. Die gesamte Insel ist relativ stark zerklüftet, mit tief einschneidenden
Ribeiras, schroffen Vulkanschluchten und grünen Plantagen. Herpetologisch von Bedeutung war die
kleine ehemalige Strafgefangeneninsel Ilheu St. Maria in der Hafenbucht vor Praia mit ihren alten Rui-
nenmauern.
Artenspektrum
Bislang waren von S. Thiago an Skinken nur Mabuya delalandii (und Mabuya stangeri) bekannt,
d. h. vor MERTENs’ Synonymisierung von Mabuya vaillanti mit Mabuya delalandiüi auch jene Art.
Nach der Bearbeitung der Geckos (s. Pkt. 4.2) verbleiben für S. Thiago Tarentola darwini (Tarrafal),
Tarentola rudis rudıs und Hemidactylus brooki angulatus.
An Skinken verbleiben so der größte Kapverdische Skink (kreol.: Chinel) Mabuya vaillanti (ZSM
364/78), Mabuya delalandıi (ZSM 363/78) und Mabuya stangeri spinalıs, die meist sympatrisch einen
Biotop besetzen.
Fundorte und Belege
1 Praia-Hafenstraße : Mabnya delalandii, M. stangeri
Tarentola rudis rudıs
2 Praia-Flughafen : Mabuya delalandıı
Tarentola rudis rudıs
3 Cidade Velha : Tarentola rudis rudıs
Mabuya delalandıi
4 S. Jorge dos Orgaos : Bufo regularis
Su arcafal : Tarentola darwiniı
Mabuya delalandıi
6 5km von Tarrafal : Mabuya vaillantı
Mabuya delalandıi
Mabuya stangeri
7 er Cm : Mabuya vaillanti
8 Ilheu St. Maria : Mabuya spec.
Tarentola spec.
Zur Biologie - Ökologie
Geländenotizen, Körpertemperaturen:
Die Messungen erfolgten kurz nach einem Regenschauer, alle Skinke wurden unter Steinen gefan-
gen.
Datums Uhrzeit LT JeE: BT Taxon KT Bemerkungen
IC % RC IC
I 17.00 24,5 90 22 M. del. 24,5 teilweise noch aktıv
17.15 25 90 23,50 Midel: 23,5
17.20 24,5 90 DOSE Madel. 2353
17.25 24,5 90 22,5 M. sta. 25 leichter Regen
12502215 2 DASS M Adel. uWE251 22%) Regen
18.00 21 - 25, M. del. 2332559525
21-21.30 20 _ 20 Tarentola 23; 23; 22,5; 23,5 BT = Mauertemperatur
18 7.0 01.9 95 - — windig
11.20 26,5 71 — - windig, Mabuyen aktiv
61
SE el. [en RED EINE)
-643 /
RN DO TARRAFAL 23°30°
|
IS. jo
»Rib. da. Prata / \ |
SIUWRZDN
Figleira BER Naus’
© Achada | da Igreja --( >
_1021( „..| J020 Teves z BES
1392 PA
) ‚>. Domingos I; - _#°” 2
| ; N Milho Branco-”
ee "550 / ste Ana
| Da are
23°50' \ RS PN N
"Ile ei \l)) AL bs Nova
& PRAIA
A
Cidade Velhs IIh&u de S.f@ Maria
Auffallend ist die äußerst hohe Konzentration von M. delalandii ım Bereich der Poussada Praia-
Mar bis zur Hafenbucht. Sie erscheinen dort augenfällig als Kulturfolger und profitieren dabei aus den
Fäkalien- und Abfallansammlungen am Straßenrand.
Interessant ist das Artenverhältnis in einem etwa 1 qkm großen Beobachtungsgebiet ca. 5 km süd-
lich von Tarrafal, wo auf 2 adulte und 2 juvenile Mabuya vaıllantı ca. 30 bis50 Mabuya stangeri und
einige hundert Mabuya delalandıi kamen. In der Nähe von Praia ließe sich ein Verhältnis von etwa 100
Mabuya delalandii auf 10 Mabuya stangeri und 1 Mabuya vaillanti angeben. In Straßenunterführun-
gen konzentrieren sich Geckos der Gattung Tarentola, die an Hauswänden nur seltenst anzutreffen
sind, dafür diese aber öfters von einzelnen Hemidactylus brooki angulatus besetzt sind.
Interessante Beobachtungen glückten bei der erfolgreichen Nachzucht von Mabuya vaillantı. Als
epigamische Reaktionen können ein hochfrequentes Vertikalnicken des Kopfes angesprochen werden,
anschließend verbeißen die O'C’ sich kurz in die P, um diese an der Flucht zu hindern, und dann zur
Paarung einen Flankenbiß anzusetzen.
Bei Paarungsunwilligkeit des @ verbeißt dieses das ©’. Die Kopula erfolgt mit Flankenbiß. Sowohl
kurz nach der Kopula als auch während dieser, kann das intervallartige hochfrequente Nicken während
des Verbissenseins bei beiden Partnern anhalten. Mabuya vaıllanti ist lebendgebärend. Die Größe der
in Gefangenschaft mehrmals nachgezüchteten, neugeborenen Jungtiere betrug ca. 8 cm.
In Terrarienhaltung konnte beobachtet werden, daß Mabuya vaillanti meist omniphag, weniger
Mabuya delalandii, und Mabuya stangeri nur noch carnıvor war.
Die Kotanalyse getrockneter Exkrementrückstände von Mabuya vaillanti von St. Cruz ergab fol-
gende Bestandteile: Acridiidae, Formicidae, Coleoptera, viele junge Blätter und Knospen möglicher-
weise von Cistaceae.
Die Nahrungsrückstände von Mabuya delalandii und Mabuya stangeri setzten sich wie folgt zu-
sammen:
Heteroptera, Coreidae-Lygaeidae, Coleoptera, Tenebrionidae.
Bei den Tarentolas wurde getrennt nach den Formen von $. Thiago sowie nach jenen von Ilheu
St. Maria ausgewertet:
Praia: Aranea, Heteroptera, Cydnidae, Coreidae-Lygaeidae, Hymenoptera, Formicidae, Coleopte-
ra, Tenebrionidae.
62
St. Maria: Acridiidae, Heteroptera, Cydnidae, Pentatomidae, Coreidae-Lygaeidae, Formicidae,
Diptera, Tenebrionidae.
Freßfeinde
Sowohl aufS. Thiago wie auf Fogo konnten relativ viele Eisvögel (Halcyon leucocephala acteon) be-
obachtet werden. BANNERMAN & BANNERMAN (1968: 17) berichteten dazu: ‚,...the kingfisher which
tamely sits on the branches of the castor-oil plants and thence darts on grasshoppers and lizards.“
DOLEOCO
Fogo ist von rundlicher Gestalt und typischem Schichtvulkan-Habitus. Bis 2829 m ragt der Pico de
Fogo aus dem Meer, die Flächenausdehnung der Insel beträgt ca. 500 qkm, Hauptstadt ist S. Felipe.
Der Pico, die große Caldeira, weite Lavafelder und tiefeingeschnittene Ribeiras kennzeichnen die In-
sel.
Fajasinha
S. Lourengo ze
ee 2469 1790
FEE Dr, N IN ß
ı IIDN
1 N
\
CEDE SFELIPE
Artenspektrum
Obwohl Mabuya vaillanti aus der Aufsammlung des British Museum für Fogo (Igreja) bekannt
war, gelang es mir nicht, diese Art nachzuweisen. Der geographisch höchste Nachweis eines Skinkes
auf den Kapverden gelang auf dem Pico bei ca. 2800 m. Leider wurde das Tier nur gesichtet, so daß
seine Feldbestimmung als Mabuya cf. fogoensis unbestätigt bleibt. Mabuya stangeri kommt im offe-
nen Gelände zusammen mit Mabuya fogoensis vor. Hemidactylus brooki angulatus wurde vornehm-
lich an Gemäuern in S. Felipe gefunden. Tarentola rudis rudis dagegen hauptsächlich im offenen Ge-
lände, unter Wasserdurchlässen oder an freistehenden alten Häusern.
Fundorte
1 Pico de Fogo : Mabuya spec.
DIES Relipe : Mabuya, Tarentola, Hemidactylus
3 3km N-Mira Mira : Mabuya
4 S. Lourengo : Tarentola
5 Igreja : M. vaıllanti (BMNH)
63
Zur Biologie - Ökologie
Geländenotizen, Körpertemperaturen:
Datum Uhrzeit LT LF BT Taxon KT Bemerkungen
TC % _@ EC
dot. 7.00 #29. „., Sonne: > S. Felipe
21.45 24 24 Hemidact. 24 BT = Wand/Mauertemperatur
22.30 23 23 Hemidact. 26
23.45 23 23 Hemidact. 26 zusammen unter Brücke
Tarentola 26
24.00 225 >» Tarentola 23
2235 19 20 Tarentola 21 S. Lourengo
20 22 Tarentola 22
Die Kotanalysen ergaben folgende Nahrungskomponenten:
Tarentola: Aphidina, Coleoptera, Tenebrionidae, Scarabaeidae, Tettigoniidae, Mantidae, Formici-
dae.
Hemidactylus: Isoptera, Formicidae, Diptera, Coleoptera.
5.6 BRAVA
Brava ist die südlichste Insel des Archipels und gehört noch zur Sotavento-Gruppe. Die Insel ist von
rundlicher Gestalt bei einer Flächenausdehnung von ca. 65 qkm. Mit dem Monte Mato erreicht Brava
976 müber NN. Quellen, Wasserläufe, massives Kalkgestein und eine üppigere Vegetation geben der
Insel ihr eigenes charakteristisches Aussehen.
BRAVA
Ilheu da Areia oO
[>)
VAN SINTRA
Artenspektrum
Bislang waren von Brava (s. ScHLEıcH 1982: 246) Mabuya delalandi, Mabuya stangeri, Tarentola
delalandii (rudis) sowie Hemidactylus bouvieri bouvieri und Hemidactylus brooki angulatus bekannt.
Bei einem leider nur kurzen Aufenthalt konnten lediglich 8 Mabuya delalandii gefangen werden.
Fundorte
1 Forainhas bei Mato Grosso; vor dem Friedhof unter Lesesteinen: Mabuya delalandıii (ZSM 370/78).
64
Abb. 17: Tarrafal-S. Thiago; Biotop von Mabnya vaillantı, M. delalandii und M. stangeri. - Abb. 18: Brava;
Biotop von Mabuya delalandı. — Abb. 19: S. Vicente; Biotop von Tarentola caboverdiana substituta im Inselin-
nern.
65
Zur Biologie - Ökologie
Geländenotizen:
Am 29.7.1977 wurden auf einer Ackerbaufläche von ca. 250-300 qm unter Lesesteinen 8 Skinke gefangen.
5.7 ILHEUS DO RHOMBO
Die nahe vor Brava liegenden Ilheus do Rhombo sind unbewohnte Felseilande, deren drei größte In-
seln Luz Carneiro, Sapado Grande und Cima sind. Mit96 m erreichen sie auf Ilheu Grande die höchste
Erhebung.
Leider konnten die Inseln von mir selbst nie besucht werden. SCHLEICH (1982: 246) gibt nach MEr-
TENS und AnGer Mabuya delalandıi, Mabuya vaillanti, Tarentola delalandii = (T. rudis) und Hemi-
dactylus brooki angulatus an. JOGER (1984: 101) führt auch ‚‚Tarentola borneensis protogigas“
(= T. rudis protogigas) an.
2 o Q
ILHEU GRANDE o
{e] ß
9° ILHEU DE CIMA
Be ILHEU LUZ
CARNEIRO
5.3 SANTO ANTÄO
Santo Antäo, die nordwestlichste der kapverdischen Inseln, zählt neben $. Vicente, den Islas Deser-
tas, S. Nicolau, Sal und Boa Vista zur Gruppe der Barlaventos.
Die Insel besitzt annähernd rechteckige Grundform bei einer Fläche von 730 qkm. Santo Antäo ist
auch in extremsten Trockenperioden neben $. Thiago und Brava eine der Inseln mit ständig offenen
Fließwässern. St. Antäo ist die gebirgigste, zerklüftetste und landschaftlich beeindruckendste aller In-
seln. Die Südostseite ist bis zu dem längs über die Insel ziehenden Gebirgskamm trocken, steinig und
von wüstenartigem Gepräge. Die NW -Seite dagegen zeichnet sich durch üppig grüne Landschaften mit
steilen Felswänden, Tälern und überraschender Fruchtbarkeit aus.
Artenspektrum
Erst der zweite Besuch auf St. Antäo war bezüglich des Reptilienfanges erfolgreich. Wir suchten auf
der trockenen SE-Seite der Insel erfolgreich, wogegen auf der NW-Seite im Bereich von Ribeira-
Grande weder Geekos noch Skinke zu finden waren. Einheimische meinten, daß es hier keine Echsen,
insbesondere Geckos mehr gäbe, da sie von den erst vor kurzem durch Saatkartoffeln aus Kontinental-
afrika eingeschleppten Skolopendern ‚‚aufgefressen‘‘ worden wären. Leider glückte auch hier kein
Nachweis von Hemidactylus bouvieri bouvieri (s. SCHLEICH, 1982: 246), dagegen von Mabuya fogoen-
sis antaoensis und Tarentola caboverdiana caboverdiana ca. 4 bis 10 km nördlich der Straße von Porto
Novo nach Chä da Monte.
66
m LA
25020" S a A N f A 0) N FAR ae
e —uN
171° — —
|
ÄS
' N
\ Rib.da Cruz‘,
o
Ilheu Lombo
„Janela
z de Boi
1586
PORTO NOVO
—— 17°
25°
Tarrafal do z
Monte Trigo /F
Fundorte
1 Gebiet ca. 4-10 km nördl. der Straße von Porto Novo nach Chä da Monte: Mabnya fogoensis antaoensis, Ta-
rentola caboverdiana caboverdiana.
Zur Biologie — Ökologie
Geländenotizen:
Am 24.9. 81 konnten wir nachmittags im beschriebenen Areal bei einer LT von ca. 23—40°C aktive Mabuyen und
Tarentolas unter Lesesteinen fangen. Auffallend war dabei ein großer Anteil diesjähriger Jungtiere, der auch zu die-
ser Zeit auf allen anderen Inseln bemerkt wurde.
5.9 SAO VICENTE
Sao Vicente liegt im NW des Archipels zwischen St. Antäo und den Islas Desertas. Mit der Ilha do Sal
ist Sao Vicente als eine der wüstenhaftesten des Archipels zu bezeichnen. Die Insel ist von rundlich-
rautenförmiger Gestalt und hat eine Gesamtausdehnung von ca. 220 qkm bei einer maximalen Höhe
SIeRY ERBEN ITNE
ı
1
67
von 774 m mit dem Monte Verde. Große Gebirgszüge, weite öde Wüstenstrecken und junge, von vul-
kanischer Aktivität gezeichnete weite Lavagebiete sowie Dünengürtel kennzeichnen die Insel.
Artenspektrum
In einer früheren Arbeit (SCHLEICH 1982: 246) erwähnte ich nach verschiedenen Autoren Mabuya fo-
goensis und Mabuya stangeri, die ich vorbehaltlich noch als Mabuya spp. indet. ansprach und nach der
systematischen Überarbeitung als zu Mabuya stangeri stangeri gehörig betrachte.
An Geckos wurde ‚‚Tarentola delalandu“ als Tarentola caboverdiana substituta (s. Pkt. 4.2.3.4)
berichtet, Hemidactylus brooki angulatus nachgewiesen und Hemidactylus bouvieri bouvieri durch
zwei Exemplare aus dem British Museum (GRUBER & SCHLEICH 1982) belegt.
Fundorte
1 Küstenabschnitt südl. von Madeiral:
Mabuya stangeri stangeri
2 ca. 3 km westl. von Madeiral:
Tarentola caboverdiana substituta
3 Häuserfront der Hafenstadt Mindelho:
Hemidactylus brooki angulatus
Anmerkung: Weite Bereiche der Insel wurden neben den genannten Fundpunkten abgesucht, jedoch ohne Er-
folg.
Zur Biologie - Ökologie
Geländenotizen:
Der Biotop (Fundpunkt ‚,2‘“) der am 4.8.77 gefangenen Tarentolas bestand in einer im Umkreis weniger qkm ve-
getationslosen Sand-Stein-Wüste, wo unter einzelnen, wenigen Lesesteinen meist 2 Tarentolas zu finden waren.
Skinke wurden hier keine gesehen. Etwa 2 km westlich von Punkt 2 konnten zwei vereinzelte Jungtiere von Ma-
buya stangeri stangeri gefangen werden. Im gesamten Bereich zwischen Mindelho und $S. Pedro wurde intensivst
5 8 ger 5 5 5
gesucht, jedoch ohne einen einzigen Nachweis erbringen zu können.
Für Tarentola caboverdiana substituta erbrachte die Analyse der Kotproben folgende Zusammen-
setzung:
Zahlreiche Cydnidae, viele Coreidae-Lygaeidae und Coleoptera sowie Pentatomidae, Tettigonii-
P
dae, Scarabaeidae, eine Spinne (Aranea) sowie eine Lepidopteren-Larve und drei Geckoschwanz-
P
enden.
510 STALUZIA
In SCHLEICH & WUTTkE (1983) wurden die Islas Desertas mit St. Luzia, Branco und Razo gesondert
abgehandelt, so daß eine detaillierte Wiederholung hier entbehrt werden kann. Weitere Angaben zu
den Islas Desertas finden sich bei SCHLEICH (1977, 1980 und 1982) und GRUBER & SCHLEICH (1982).
ShelaslnZz I» A
68
Artenspektrum
Nach einem längeren Aufenthalt und intensiven Begehungen und Suchaktionen konnte lediglich
Mabuya stangeri stangeri und Tarentola caboverdiana raziana nachgewiesen werden.
Fundorte
Gesammelt wurde auf der ganzen Insel, vornehmlich im Bereich des Mittelteiles.
Zur Biologie - Ökologie
Geländenotizen, Körpertemperaturen:
Datum Uhrzeit LT LIE BT Taxon KT Bemerkungen
@ % C SC
2,281 1 225 31,0 Tarentola 29,0 windig, ca. 300 m NN auf windexponiertem
ungeschütztem Felsgrat
T°C unter Stein: 21,5°C, auf Stein: 26,5°C
RS 29,0 Tarentola 25,5
11.40 225 29,0 Tarentola 27 T°C unter Stein: 1°C
DRS 29 Mabuya 28
22,5 29 Mabuya 26,5
13.00 22 32,5 Mabuya 30 adultes Tier
.20 22 33,5 Mabuya 30 adultes Tier, sehr windig, sonnig
14.25 22 33 Tarentola 28,5 26°C unter Stein
Tarentola 29,5 adultes Tier
14.45 22,5 33 Tarentola 31,5 °2 mit 1 Eı (Schatten - T°C)
26,5 33,5 Tarentola - (Sonne — T°C)
14.55 32 al Q mit 1Eı
RS d, T°C unter Steinplatte: 28°C
Hemipenes beim Messen ausgestülpt
15.00 2355 5255 Hl Q mit Ei
15.10 25 35 Mabuya 28,5 Adulti, unter Steinplatte eingegraben
(BT unter Platte: 26°C)
15.30 24 32 Mabuya 30,5 aktiv, semiadult
21.20 21 20 Tarentola 20
21.45 19 18 Tarentola 19 19°C unter Steinplatte
32. 13.30 Tarentola 27 25°C in ca. 20 cm ‚„‚Bautiefe“
24.00 19 82
4.2 6.30 17 Sonnenaufgang
Do 7.00 17 82
9.00 24 65
SIEBRLNNEO,
Branco, die mittlere der3 Islas Desertas, ist an einigen Sandbuchten von der SW-Seite aus anlandbar.
Detaillierte Informationen zur Inselbeschreibung finden sich bei SCHLEICH & WUTTKE (1983) sowie bei
SCHLEICH (1979, 1980).
Artenspektrum
Mehrere längere Aufenthalte auf Branco bestätigten lediglich 2 Echsenarten: Tarentola gigas bran-
coensis und Mabuya stangeri stangeri. Ein frisches Gelege einer Seeschildkröte konnte im Sommer
1977 entdeckt werden. Nach SCHLEICH (1982) gilt Macroscincus als ausgestorben.
Fundorte
Gesammelt wurde auf der ganzen Insel, jedoch konzentrieren sich die Riesengeckos auf den mittleren Bereich ım
69
BRANCO
SW der Insel. Detaillierte Angaben zur Struktur, Fauna und Flora der Insel s. SCHLEICH (1980) u. SCHLEICH &
WUTTKE (1983).
Zur Biologie - Ökologie
Geländenotizen, Körpertemperaturen:
Datum Uhrzeit LT EE BT Taxon KT Bemerkungen
ce % I® @
6.1.8, 212.20 22 86 32 Tarentola 24,5 ausgegraben, ca. 80 cm tief in Sandhöhle
(T°C: 25)
14.45 23 - 23 Mabuya 29 ca.20m NN, Steilhang N-Seite
17.05 22 - 25 Mabuya 28 (T°C unter Steinplatte: 28)
in ca. 40 cm Bautiefe: 86 % LF; 22°C
5.12 RAZO
Eine detaillierte Beschreibung zu Razo findet sich bei SCHLEICH & WUTTKE (1983).
24°37'
6 RAZO
70
Abb. 20: Blick auf Branco; deutlich sind die Sanddünen - das Hauptverbreitungsgebiet von Tarentola gigas bran-
coensis - zu erkennen. Im Hintergrund rechts: St. Luzia. Im Vordergrund Razo mit dem Biotop von Hemidactylus
bouvieri razoensis, Tarentola gigas gigas und Mabuya stangeri stangeri.
RN SIEERIIRAN x x 58 ben I
Abb. 21: Bereich im Innern von St. Luzia, der Biotop von Tarentola caboverdiana raziana und Mabuya stangeri
stangert.
Artenspektrum
Razo wurde von meinen Begleitern und mir in den letzten Jahren gründlich herpetologisch durch-
forscht, wobei folgende Taxa studiert wurden:
Tarentola gigas gigas
Tarentola caboverdiana razıana
Mabuya stangeri stangeri
Hemidactylus bouvieri razoensis
Fundorte
Gesammelt wurde auf der ganzen Insel, jedoch scheinen außer Mabuya die übrigen Arten auf bestimmte Inselab-
schnitte gebunden zu sein oder zumindest sich dort zu konzentrieren (s. SCHLEICH & WUTTKE 1983).
71
Zur Biologie - Ökologie
Geländenotizen, Körpertemperaturen:
Datum Uhrzeit LT BT Taxon KT Bemerkungen
@ °C ®
10,2 8 22) 2765 Mabuya LS) aktıv
19.00 il Tarentola 21
Zur Biologie von Hemidactylus bouvieri razoensis Gruber & Schleich wurde 1982 gesondert berich-
tet; eine detaillierte Sammeldarstellung zu Tarentola gigas ist in Vorbereitung. Weitere Angaben sind
aus SCHLEICH & WUTTKE (1983) zu entnehmen.
Die Kotanalyse erbrachte folgendes Nahrungsspektrum für
Mabuya:
Acridiidae, Tettigoniidae, Cydnidae, Pentatomidae, Coreidae-Lygaeidae, Formicidae, Coleoptera,
Tenebrionidae
Tarentola caboverdiana razıana:
Opiliones, Acridiidae, Cercopidae, Heteroptera, Pentatomidae, Diptera, Coleoptera, Tenebrionidae,
pflanzliche Reste
Tarentola gigas gigas:
Opiliones, Tettigoniidae, Mantidae, Formicidae, Coleoptera, Tenebrionidae, Carabidae.
5.13 35. NICOLAU
S. Nicolau, zu den Barlaventos gehörend, hat eine Flächenerstreckung von 350 qkm bei einer maxi-
malen Höhe von 1304 m. Ähnlich St. Antäo ist auch hier eine fast lineare landschaftsklimatologische
Zweigliederung der Insel in den sehr trockenen Südteil und den vegetationsreicheren Nordteil zu er-
kennen, wo in letzterem auch vorwiegend die Reptilien gefangen werden konnten.
Ss. NRErOTEA U
436
‚Praia Branca
„$Fiqueirae
deCoxe +619
Fontainhas
Tarrafal ,.- 790
...- " Prequiga'
WiS
R Castilhiano
I
2 km
Artenspektrum
Mabuya fogoensis und Tarentola caboverdiana nicolauensis scheinen hier als einzige Arten neben
Bufo regularis vorzukommen.
Fundorte
1 Ribeira Brava: Bufo regularıs
2 Etwa halbe Strecke zwischen Preguiga und Rib. Brava: Tarentola, Mabuya
72
Zur Biologie - Ökologie
Geländenotizen:
1977 konnten bei den offenen Wasserbecken der Quellfassung von Ribeira Brava ca. 100 Kröten gezählt werden,
wovon 1981 nach Verbauung der Quelle nur noch wenige einzelne Tiere vorhanden waren.
Die Kotanalyse erbrachte folgendes Nahrungsspektrum für
Mabuya: Cercopidae, Heteroptera, Coreidae-Lygaeidae, Formicidae, Coleoptera, Carabidae,
pflanzl. Reste
Tarentola: Aranea, Cydnidae, Heteroptera, Coreidae-Lygaeidae, Formicidae, Coleoptera, Curcu-
lionidae.
Die Tiere wurden am 20.7.81 gefangen.
6. Biotop- und Artenschutz
BANNERMAN & BANNERMAN (1968) wiesen wohl als erste auf einen dringend notwendigen Arten-
schutz der kapverdischen Fauna hin. Ihr Bericht (op. cit., S. 5) über die ‚laws for the protection of na-
ture“ basiert verständlicherweise noch auf den Angaben aus der portugiesischen Kolonialzeit mit Ge-
setzen von 1955. Aus BANNERMAN & BANNERMAN (Op. cit.) sei zitiert:
„Here is a list of the birds that cannot be killed in the Archipelago, it being true that the only other
animal whose life is safeguarded by law is the skink Macroscincus coctei: most of the species of swifts,
larks, flamingos (Phoenicopterus ruber) and the cattle egret (Ardeola ıbıs).
The following species can only be hunted during the game season from 1st December to 31st July:
rock-pigeon Columba livia, the quail Coturnix coturnix, and the guinea-fow| Numida galeata.“
Von weiteren Bedrohungen bzw. Ausrottungen berichten BANNERMAN & BANNERMAN (Op. cit.,
S. 42). |
Jedoch wiesen bereits viele Autoren schon kurz nach der Erstbeschreibung von Macroscincus coctei
auf dessen Schutzwürdigkeit bzw. bevorstehende Ausrottung (s. SCHLEICH 1979) hin.
In gleicher Weise sprach ich bereits von einer dringlichen Notwendigkeit eines Schildkrötenschutz-
projektes.
SCHLEICH & WUTTKE (1983: 41) müssen leider von intensivsten Nachstellungen der Avifauna auf den
kleinen unbewohnten Inseln Branco und Razo berichten, denen sicher auch die Ausrottung von Ma-
croscincus coctei anzulasten ist.
Als dringlich erachte ich in Zusammenarbeit mit der kapverdischen Regierung die Erstellung von
Arten- bzw. Biotopschutzprogrammen für folgende Reptilien:
Cheloniidae spp.
Mabuya vaillantı
Tarentola gigas ssp.
Hemidactylus bouvieri razoensıs
Ein umfassender zusätzlicher Biotopschutz, insbesondere der unbewohnten Inseln Branco und
Razo (möglicherweise auch der Rhombos-Inseln, jedoch liegen mir hier keine persönlichen Aufzeich-
nungen vor), würde nicht nur deren Herpetofauna, sondern auch die Avifauna schützen! Entscheidend
scheint mir dabei, die beiden Inseln überhaupt vor unkontrolliertem Betreten zu schützen, um nicht
Mäuse und Ratten einzuschleppen. Auf St. Luzia (s. SCHLEICH & WUTTkE 1983) können die Mäuse be-
reits als richtige Plage bezeichnet werden, die sicher auch für den niedrigen Reptilienbesatz auf dieser
unbewohnten Insel verantwortlich sind.
Ein detailliertes Aufklärungsprogramm über sinnvolle Nutzung und Schutz sowohl der Herpeto-
fauna als auch der Avifauna scheint mir unabdingbar.
73
Nachtrag: Nach Fertigstellung des Manuskripts erfolgte von IUCN/WWF erfreulicherweise die
Herausgabe von Ersttagsbriefen, -karten mit englischem und deutschem Begleittext zu den schutzbe-
dürftigsten Arten kapverdischer Reptilien. Hierzu sind Tarentola g. gigas, T. g. brancoensis, Hemı-
dactylus bouvieri razoensis und Mabuya vaillanti abgebildet auf 4 verschiedenen Briefmarken der Re-
publik Cabo Verde unter dem Titel ‚‚Protecäo de Especies em Via de Extingäo“ erschienen.
7. Schrifttum
ANGEL, F. 1935: Lezards des Iles du Cap Vert, rapportes par M. le Professeur Chevalier. Description de deux espe-
ces nouvelles. — Bull. Mus. Hist. nat. Paris (2)7: 165-169
— — 1937: Sur la faune herpetologique de !’Archipel du Cap-Vert. — XIIe Congres International Zool., Sec-
tion IX: 1693-1700, Lisbonne 1935
BAEZ, M. & SANCHEZ-PINTO, L. 1983: Islas de Fuego y Agua. - Edit. Regional Canaria, Las Palmas-Gran Canaria,
184 S.
BANNERMAN, D. A. & BANNERMAN, W. M. 1968: Birds of the Atlantic Islands. 4 Vol. IV. History of the Birds of
the Cape Verde Islands. — Oliver & Boyd, 459 S.
BERTIN, C. 1946: Le peuplement des Iles Atlantides en vertebres heterothermes. - Mem. Soc. Biogeogr. 7: 87-107
BISCHOFF, W. 1985: Die Herpetofauna der Kanarischen Inseln I. — Herpetofauna 7 (34): 11-22
BOCAGE, J. V. B. du 1873a: Notice sur !’habitat et les characteres du Macroscincus coctei (Euprepes coctei Dum. et
Bibr.). — J. Sci. math. phys. nat. 16: 12 S.; ebenfalls nachgedruckt in: J. Zool. 3: 1-15
— — 1873b: Note sur l’habitat de l’Euprepes coctei Dum. et Bibr. - Proc. Zool. Soc.: 703-704
— — 1875: Sur deux reptiles nouveaux de !’Archipel du Cap Vert. — J. Sci. math. phys. nat. 5: 108-112
— — 1896: Reptis des algumas possessöes portuguesas d’Africa que existem no museu de Lisboa. — J. Sci. math.
phys. nat. 14 (2): 65-73
BOULENGER, G. A. 1887: Catalogue of the lizards in the British Museum (Natural History), 3: 1-575
— — 1906: Report on the reptiles collected by the late L. Fea in West Africa. - Ann. Mus. civ. storia nat. Genova
3 (2): 196-213
CHABANAUD, P. 1924: Reptiles recueillis par M. Th. Monod en Mauritanie et aux Iles du Cap-Vert. — Bull. Mus.
Hist. Nat. 1: 54-56
DEKEYSER, P. L. & VILLIERS, A. 1951: Mission J. Cadenat aux Iles du Cap Vert. — Bull. Inst. frangais d’Afrique
noire 13(4): 1152-1158
Dumekrir, A.M.G. & BIBRON, G. 1839: Erpetologie generale ou histoire naturelle complete des reptiles. — 854 S.
GERVAıS, P. 1874: Plate of the head and skull of Macroscincus coctei the reprint of Bocage’s 1873a article. - J. Zool.
Bla
GIRARD, CH. 1858: United States Exploring Expedition. Herpetology. — Lippincott & Co., Philadelphia
GREER, A. E. (1976): On the evolution of the giant Cape Verde scincid lizard Macroscincus coctei. — J. nat. Hist. 10:
691-712
GRUBER, H. J. & SCHLEICH, H.-H. 1982: Hemidactylus bouvieri razoensis nov. ssp. von den Kapverdischen In-
seln. — Spixiana 5 (3): 303-310
HONEGGER, R. 1975: Red Data Book 3, IUCN 1975 9(1) F. Code: 24 10211
JOGER, U. 1984: Die Radiation der Gattung Tarentola in Makaronesien. - Cour. Forsch. Inst. Senckenberg 71:
91-111
Kraus, O. 1970: Internationale Regeln für die Zoologische Nomenklatur. - W. Kramer-Verlag; Frankfurt; 92 S.
LOBIN, W. & GROH, K. 1979: Die Kapverdischen Inseln - ein Reisebericht. — Natur u. Museum 109 (12): 394405
— — & — — 1980: Die Kapverdischen Inseln -— ein Reisebericht II. - Natur u. Museum 110 (10): 289-304
LOVERIDGE, A. 1947: Revision of the African lizards of the family Gekkonidae. - Bull. Mus. comp. Zool. 98: 1469
METEROLOGICAL OFFICE 1975: Tables of Temperature, Relative Humidity and Precipitation for the World.
Part. IV. Africa, the Atlantic Ocean south of 35 N and the Indian Ocean. Her Majesty’s Stationery Office,
London 208 S.
MERTENS, R. 1934: Die Inselreptilien, ihre Ausbreitung, Variation und Artbildung. —- Zoologica 84: 209 S.
— — 1955: Die Eidechsen der Kapverden. - Soc. Sci. fenn. Comment. biol. 15(5): 1-16
Nie, N. H. & Hutr, C. H. 1980: SPSS 8. Statistik-Programm-System für die Sozialwissenschaften. —3. Auflage,
300 S., Fischer-Verlag; Stuttgart
74
ORLANDI, $. 1894: Note anatomiche sul Macroscincus coctei (Bearb. d. Boc.). — Atti. Soc. Lingustica 5: 175-204
O’SHAUGNESSY, A. W. E. 1874: Descriptions of new species of Scincidae in the collection of the British Museum. —
Ann. Mag. nat. Hist. 13 (4): 298-301
PERACCA, M. G. 1891a: Sulla oviparitä del Macroscincus coctaei Dum. e Bibr. - Boll. Mus. Lab. Zool. Anat. comp.
R. Univ. Genova 6 (105): 1 S.
— — 1891b: Osservazioni sul Macroscincus coctaei D. B.- Boll. Mus. Lab. Zoo. Anat. comp. R. Univ. Genova
6 (107): 1-5
SCHLEICH, H.-H. 1979a: Der Kapverdische Riesenskink, Macroscincus coctei, eine ausgestorbene Echse? - Natur
und Museum 109 (5): 133-138
— — 1979b: Sea Turtle Protection needed at the Cape Verde Islands. - Marine Turtle Newsletter 12: 12
— — 1979c: Kapverden, Vergessene Inseln im Atlantik. - (Farbabbildungen von Echsen der Kapverden); Film
und Video 12: 56-65
— — 1980: Der kapverdische Riesengecko, Tarentola delalandı gigas (Bocage, 1896). — Spixiana 3 (2): 147-155
— — 1982a: Vorläufige Mitteilung zur Herpetofauna der Kapverden. - Cour. Forsch.-Inst. Senckenberg 52:
215-248
— — 1982b: Letzte Nachforschungen zum Kapverdischen Riesenskink Macroscincus coctei (D. & B.). — Sala-
mandra 18 (1/2): 78-85
— — 1984: Die Geckos der Gattung Tarentola der Kapverden. Reptilia: Sauria: Gekkonidae- Tarentola. - Cour.
Forsch.-Inst. Senckenberg, 68: 95-106
— — 1986: Geckos und Skinke (engl. Desert Island Lizards). - (Begleittext zu Ersttagsbriefen, Marken u. Karten
etc. von Cabo Verde) 6 S., 10 Farbabb. (Hrsg.: IUCN/WWF)
SCHLEICH; H.-H. & WUTTKE, M. 1983: Die kapverdischen Eilande, St. Luzia, Branco und Razo - ein Reisebericht.
Natur und Museum 113 (2): 3344
TROSCHEL, F. H. 1875: Über die Rieseneidechse der Inseln des Grünen Vorgebirges. - Arch. Naturgesch. 41 (1):
111-121
VAILLANT, L. 1882: Sur les Macroscincus cocteı, D. B., recemment arrıves a la menagerie du Museum d’Histoire na-
turelle. - C. r. hebd. Seanc. Acad. Sci. 94 (12): 811-812
WERMUTH, H. 1965: Gekkonidae, Pygopodidae, Xantusiidae. Das Tierreich 80: I-XXII, 1-246; (R. MERTENS &
W. HENNIG, Hrsg.); DE GRUYTER, Berlin
Manuskriptannahme: 1. März 1985
75
VE ERER
per dann nennt hänherraeni ringe Se
BALL OL
Baur 1 2077717227723 du! won. ach ’ Mn u balvan nor Bun,
wu ehe en ee IN may
Auer
a! a1, ah Ne re KEN
pre uhr a a EMERTEN uie han Eon
ur” PoL, we Ruh Kia PERRHE nen anni Las l FRE K 1
2 JENE
4 »i > h
137 Rempt srhinakh art BI aa 18,\ inte Ya +8
IM
w Er it u Ba:
Ban Mina. HER ME ko =
Reel Be Era hd uf a re Ki ‚ “ er Ir Pr Ka)
IIIy ARE Or 2 er un ah mir Pe Be
De ner 7 es MELDE PET er " ar
Ih Pe % Pi
a eine Mo Ai BA ae Loy k dr
Pe . ir Fra); aut © y
2
| Das 5 7 Sep =
Er er u Po
TEE N |
u 27 mu zz |
Bi ra: 1%
aM: u8
ww. man Mer
Bisher erschienene Supplementbände der SPıxıana:
Supplementband 1: GUSTAV PETERS, 1978
Vergleichende Untersuchung zur Lautgebung einiger Feliden
(Mammalia, Felidae).
206 Seiten und 80 Seiten mit 324 Abbildungen und 20 Tabellen.
Supplementband 2: HERMANN ELLENBERG, 1978
Zur Populationsökologie des Rehes (Capreolus capreolus L., Cervidae)
in Mitteleuropa.
211 Seiten mit 47 Abbildungen und 42 + 6 Tabellen.
Supplementband 3: JENSLEHMANN, 1979
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
(Systematik, Ökologie, Verbreitung und Produktionsbiologie).
Teil I: Kivu-Gebiet, Ostzaire.
144 Seiten mit 252 Abbildungen und 11 Tabellen.
Supplementband 4: KLAUS HORSTMANN, 1980
Revision der europäischen Tersilochinae Il
(Hymenoptera, Ichneumonidae).
76 Seiten mit 150 Abbildungen und 2 Tabellen.
G. VAN ROSSEM, 1980
A revision of some Western Palaearctic Oxytorine genera
(Hymenoptera, Ichneumonidae).
59 Seiten mit 3 Abbildungen und 2 Tafeln.
Supplementband 5: JENSLEHMANN, 1981
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
Teil Il: Die Region um Kisangani, Zentralzaire.
85 Seiten mit 3 Abbildungen, 2 Tabellen und 26 Tafeln.
Supplementband 6: MICHAEL VON TSCHIRNHAUS, 1981
Die Halm- und Minierfliegen im Grenzbereich Land-Meer der Nordsee.
(Diptera: Chloropidae et Agromyzidae)
416 Seiten mit 25 Diagr., 89 Tabellen und 11 Tafeln.
Supplementband 7: 1982
First International Alticinae Symposium, Munich, 11-15 August 1980
7 Beiträge, 72 Seiten.
Supplementband 8: OSKAR KUHN, 1982
Goethes Naturforschung.
48 Seiten.
Supplementband 9: 1983
Festschrift zu Ehren von Dr. Johann Baptist Ritter von Spix.
30 Beiträge, div. Abbildungen und Tabellen, 441 Seiten.
Supplementband 10: 1984
Tropische Regenwälder - eine globale Herausforderung.
14 Beiträge, div. Abbildungen und Tabellen, 160 Seiten.
Supplementband 11: 1985
Beiträge zur Systematik der Chironomidae, Diptera.
16 Beiträge, zahlr. Abbildungen, 215 Seiten.
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
45,—
Sa —
36,—
43,50
29,80
20
46,—
oPIAIMN
Zeitschrift für Zoologie
A Revision of the Holarctic
Species of Orthocladius
(Euorthocladius)
(Diptera: Chironomidae)
By Annelle R. Soponis
Herausgegeben
von
E. J. Fittkau
Zoologische Staatssammlung München
SPIXIANA Supplement 13 München, 31. Januar 1990 ISSN 0177—7424
SPIAIANA
ZEITSCHRIFT FÜR ZOOLOGIE
herausgegeben von der
ZOOLOGISCHEN STAATSSAMMLUNG MÜNCHEN
SPIXIANA bringt Originalarbeiten aus dem Gesamtgebiet der Zoologischen Systematik mit
Schwerpunkten in Morphologie, Phylogenie, Tiergeographie und Ökologie. Manuskripte werden
in Deutsch, Englisch oder Französisch angenommen. Pro Jahr erscheint ein Band zu drei Heften.
Umfangreiche Beiträge können in Supplementbänden herausgegeben werden.
SPIXIANA publishes original papers on Zoological Systematics, with emphasis on Morphology,
Phylogeny, Zoogeography and Ecology. Manuscripts will be accepted in German, English or
French. A volume of three issues will be published annually. Extensive contributions may be
edited in supplement volumes.
Redaktion - Editor-in-chief
Prof. Dr. E.J. FITTKAU
Manuskripte, Korrekturen und Bespre- Manuscripts, galley proofs, commentaries
chungsexemplare sind zu senden an die and review copies of books should be
adressed to
Redaktion SPIXIANA
ZOOLOGISCHE STAATSSAMMLUNG MÜNCHEN
Münchhausenstraße 21, D-8000 München 60
SPIXIANA - Journal of Zoology
published by
The State Zoological Collections München
A Revision of the Holarctic
Species of Orthocladius
(Euorthocladius)
(Diptera: Chironomidae)
By Annelle R. Soponis
SPIXIANA Supplement 13 München, 31. Januar 1990 ISSN 0177— 7424
Gesamtherstellung: Gebr. Geiselberger, Altötting
A Revision of the Holarctic Species of Orthocladius
(Euorthocladius)
(Diptera: Chironomidae)
By Annelle R. Soponis
Contents
A N EEE N 3
EoELOdUCLONN ER. et ren a LER Bl ee a er N er Se 4
Er-knowledementst te. as ne 3 LEN Re ee ee RR 5
Berertalsand4Methodset..n..1. 0 et ee ER 6
fine Subgenus Orthocladıus (Euorthocladinus) Thienemann ... ........uceoeeoeeueeauen. 6
PB 20.nosisgand3Deseriptions:. ne ee EEE SEE HE 7
Keys to Holarctic Species of O. (Enorthocladius) and Subgenera of Orthocladins:
ErdultsNlalesgBupaeslarvae. 15.000000. N ee RE 9
abiskoensis Thienemann and Krüger rl
Erreilist (Ro back ERTL E EN N L TrER IR. ee ee Das uleredkt 16
SETS ae al A TE ENTER HE BEhe r5 2 Er REINER NEED 17
220908 naar ct ee ee oe NR OR EEE 19
SD na hi EN large yattekc Kits 20
Bzalısleundbeck)i zur. sen: 2u::ue eg Re re Eu ng al
3.2008 (OSTEN 22
Erzipes1@oetshebuers.ne.rn. Sr let 23
Br co/aATelen A N N ae eh 26
BarloynmsKuelternse ra u a re N la ar 5 30
EERSSEH ZEIT EST REN AEON IE, I ERTENN, 2 a e 34
5230929 (Molke) Re 3 Se 36
EZSpensus okumara)a a. det. ae 27 herckcr ea En Arsen era adag Kl" anne 38
Rlochaerus3Banstonsn Tec Se ee RE 40
BurenemannuKuelter.e 2.2.5 0 ce et en 40
Rieierencesppg ns RT ee a BE NE 44
MlaStraTon St PN u 49
Abstract:
The classification of the Holarctic species of the subgenus Orthocladius (Enorthocladius) is revised. Keys to spe-
cies for adult males, pupae, and larvae are given. Keys to subgenera of Orthocladius are included for adult males,
pupae, and larvae. Fifteen names of Orthocladius (Euorthocladius) are recognized as valıd. Redescriptions or notes
on previously-known species and descriptions of three new species are presented. The new species are: ashei, coff-
mani, and roussellae. Type Material was examined for the following species: abiskoensis, anteılis, calvus, difficalis,
3
kanii, luteipes, saxosus, suspensus, telochaetus, and thienemanni. Lectotypes are designated for abiskoensis Thiene-
mann and Krüger, rivulorum Kieffer, and for the type of the subgenus, thienemanni Kieffer. The type of rivicola
Kieffer could not be located.
Introduction
Adults of Orthocladius (Enorthocladins) are small to medium-sized, yellow, green, brown, or black
chironomids. In the temperate zone they emerge primarily in spring, fall and winter, although some
are taken at high altıtudes and latitudes in summer.
Live larvae have brown head capsules and green, brown, or yellow bodies, and live in gelatinous
tubes in cold springs or fast-flowing waters of inlets, creeks, streams, and rivers. These gelatinous
tubes are inıtially clear, and can be covered with sand or algae, appearing brown or green depending
on the habitat. In the rivicola-group, larvae live in ellipsoid tubes fastened along their margins to sto-
nes and rocks. In some species, e. g. saxosus and thienemanni, larvae are gregarious. In the rzvulorum-
group, larvae live in suspended tubes, attached by one end to stones and rocks. Larvae of certain spe-
cies have been collected from moss (ashei, abiskoensis, rivolorum), reeds (thienemanni), Ranunculus
(ashei), and algal mats (roussellae). Larvae collected from mud have probably occured there acciden-
tally.
Species of Orthocladius (Euorthocladius) can be sympatric ands synchronous, and it is not unusual
to collect exuviae of different species, e. g. rivicola with either ashei, Inteipes, or thienemanni, in the
same sample.
Based primarily on pupal characters, the species can be placed in one of two groups: the rivicola-
group (ashei, calvus, difficılis, kanıı, Iuteipes, rivicola, thienemanni); and the rivulorum-group (antei-
lis, coffmani, rivulorum, roussellae, suspensus). The species abiskoensis and saxosus share characteris-
tics of both groups.
Characters separating species can be very subtle, and several species remain undescribed. Intraspe-
cific variation is apparently large, and needs to be studied further. Three species found in Japan are
almost identical morphologically to certain species from Europe and/or North America, but because
of important morphological differences in the pupa or adult male, the incipient species in the sub-
genus, and the lack of series of reared specimens, these species are not synonymized here: suspensus
and rivulorum, kanii and Iuteipes, and saxosus and telochaetus.
Although names of Orthocladius (Euorthocladius) have appeared often in the literature, actual mu-
seum specimens are few, given the number of species. Whether this reflects low abundances or
inadequate collecting of natural populations remains unanswered.
The subgenus Orthocladius (Enorthocladius) is recorded only from the Holarctic Region. Because
the genus Orthocladius is distributed worldwide (Soponis 1977), it would not be surprising to find
species of Orthocladius (Euorthocladins) in other regions of the world in cold or fast-flowing waters.
Species of O. (Enorthocladius) are most easily identified in the pupal stage. Specific identification
of adult males is particularly difficult because of intraspecific variation and morphological similarity
of congeners. Specific identifications of larvae can be made with more confidence than of adult males,
but for accurate specific identification larvae should be associated with the pupal stage.
Prior to the present study, sıx species of Orthocladius (Enorthocladius) were recorded from the
Palearctic region (Sasa & Yamamoto 1977, Fittkau & Reiss 1978) and two species from the Nearctic
region (Sublette & Sublette 1965). Presently ten species are reported from the Nearctic region and nine
species from the Palearctic region, with six species occuring in both regions. There has been uncer-
tainty about whether or not to place frigidus and abiskoensis in the subgenus O. (Euorthocladins). Or-
thocladius frigidus belongs to Orthocladins (Orthocladins). (Soponis, 1987), and Orthocladins abisko-
ensis has been placed in O. (Euorthocladins) by Säwedal (1978), which is accepted here.
4
The primary objective of this study was to revise the classification of the Holarctic species of Ortho-
cladius (Euorthocladius), thereby gaining a better understanding of the genus Orthocladius. Adult
males of Orthocladius are difficult to place to subgenus, but pupae and larvae can be assigned with re-
lative ease. Adult males and larvae of Orthocladius are difficult and sometimes impossible to place to
species, but pupae can be determined to species with relative ease.
The following keys should be considered tentative; the most accurate specific identifications of Or-
thocladius (Euorthocladins) will be those based on specimens associated with the pupal stage. Caution
must be used in identifying Palearctic material since the species-rich Orthocladius (Orthocladius) of
the Palearctic still needs revision.
Acknowledgments
It is my pleasure to thank all those who contributed to this project over the years, and I apologize for any omis-
sions: W. P. Coffman for testing the pupal key; P. S. Cranston for helping with literature and types; J.H. Epler for
discussing systematic problems; E.]. Fittkau for providing the opportunity to publish; R.W. Flowers for transla-
ting Tokunaga 1964; P. Grootaert for facılitating loans of the Goetghebuer types; L.C.V. Pinder for providing an
early version of the Orthocladius calvus manuscript; F.Reiss for facilitating access to the ZSM collection and the
Thienemann types and notebooks; and, J.E. Sublette for supplying photographs of Orthocladins anteilıs.
I also thank W.M. Beck, Jr., L.C. Ferrington, Jr., D.R. Oliver, and M.E. Roussel Dillon for help with the lit-
erature; J.H. Epler, F. Reiss, A.E. Gordon, M.D. Hubbard and W.L. Peters for discussions on nomenclature and
taxonomy; P.S. Cranston, D.R. Oliver, M. Rodriguez, and K.W. Simpson for comments on the manuscript; and
USDA/CSRS, Florida A&M University, and the Alexander von Humboldt-Stiftung for supporting this research
project.
The following individuals and institutions kindly loaned specimens:
ANSP Academy of Natural Sciences of Philadelphia, S.S. Roback, D. Azuma
BMNH _ British Museum (Natural History), London, P. S. Cranston
BRUX Institut Royal des Sciences Naturelles de Belgique, Bruxelles, P. Grootaert; also R.1I.Sc. NB.
CALD B. A. Caldwell, Stone Mountain, Georgia
ENE Canadian National Collection, Ottawa, D.R. Oliver
CORE W.P. Coffman, Pittsburgh, Pennsylvanıa
DUB University College, Dublin, Ireland, P. Ashe, D. Murray
FBA Freshwater Biological Association, England, L. C. V. Pinder
FDER Florida Department of Environment, Punta Gorda, A.S. Walton, Jr.
FSCA Florida State Collection of Arthropods, Tallahassee
FWI Freshwater Institute, Winnipeg, Canada, B. Bilyj
GUTH P. Guthrie, Gainesville, Florida
HEY . M.W.Heyn, Columbus, Georgia
HUD P.L. Hudson, Ann Arbor, Michigan
INHS Illinois Natural History Survey, Urbana, D. W. Webb
KYU Kyushu University, Japan, Y. Hirashima
LUND University of Lund, Sweden, R. Danielsson
MAS P. Mason, Regina, Canada
MINN University of Minnesota, St. Paul, E.F. Cook, P.J. Clausen
NAT N. Natchev, Bistriza, Bulgarıa
NCNR North Carolina Department of Natural Resources, Raleigh, D. R. Lenat
NMI National Museum of Ireland, Dublin
NYSH New York State Department of Health, Albany, K. W. Simpson
OSU Oregon State University, Corvallis, J. Furnish
ROSS B.Rossaro, Milan, Italy
SBSK State Biological Survey of Kansas, Lawrence, L. C. Ferrington, Jr.
SUB J. E. Sublette, Pueblo, Colorado
UCOP University of Copenhagen, C. Lindegaard
USGS United States GeologicalSurvey, Atlanta and Tucson, B. Steiner, J. Doughman
USNM United States National Museum, Washington, D.C.,W. W. Wirth, R. V. Peterson
YAM M. Yamamoto, Fukuoka, Japan
ZMB Zoological Museum Bergen, Norway, O. A. Saether, G. Halvorsen
ZSM Zoologische Staatssammlung, Munich, West Germany, F. Reiss, E. J. Fittkau
Materials and Methods
This study was based on an examination of approximately 700 specimens, representing 15 species of Orthocladius
(Enorthocladius). Type material was remounted in Canada balsam after treating the specimen in sequential baths of
10% potassium hydroxide (KOH), distilled water, glacial acetic acid, 2-propanol, and 2-propanol-cedarwood oil
(Oliver & Roussel 1983). Specimens stored for long periods in alcohol dehydrate and fade. Maceration (“clearing“)
of the internal tissues is often impossible to accomplish without simultaneously making the exoskeleton invisible.
Using cold 2% KOH for a longer time rather than hot 10% KOH briefly macerates tissue while maintaining spe-
cimens in better condition. Euparal appears to cause more collapse of structures than balsam. Although balsam may
be considered the choice for mounting museum specimens, Hoyer’s may be a better alternative for teneral and pro-
blem specimens. Handling specimens through successive dehydrations and chemical treatments ıs avoided with the
use of Hoyer’s.
For the most part, terminology follows Saether (1980). Figures, counts, and measurements are my own, and fol-
low Soponis (1977). In adult males of Orthocladius, two kinds of eyes can be distinguished: those with typically,
slightly extended medial margıns, here called male-like (Fig. 12), and those with widely separated medial margıns,
here called female-like (Fig. 13). The entire length of the leg was measured, rather than the median axis (cf. Schlee
1968). Since Orthocladius adults do not have prominent tibial extensions as do adults of, e.g. Corynoneura, there
is no advantage in measuring along the median axis. In adult males, AW is the antepronotal width measured me-
dially.
Here, cast-off pupal skin(s) is/are referred to as exuviae (Ex) as recommended by Langton (1984). A cast off larval
skin is referred to as a larval skin (LS).
Only the fourth larval instar was studied, unless otherwise indicated. For the larvae the mental ratio (MR) (Sopo-
nis 1987) is used: width of the median tooth/width of fırst lateral tooth of the mentum.
Other standard ratios used are:
AR — (male, — antennal ratio (Edwards 1929): length of last flagellomere/total length of flagellomeres 1-12
AR — (larva — antennal ratio (Fittkau 1962, modified by Schlee 1966): length of basal segment/total length of ter-
minal segments
LR — legratio (Edwards 1929): length of first tarsal segment/length of tıbia
HR — hypopygium ratio (Saether 1968): length of gonocoxite/length of gonostylus
The Subgenus Orthocladius (Euorthocladius)
Euorthocladius Thienemann, 1935; 1944.
Spaniotoma (Orthocladius) group Euorthocladius. Johannsen, 1937.
Orthocladius (Orthocladius) [partim]. Andersen, 1937. Goetghebuer, 1942.
Hydrobaenus (Bryophaenocladius) [partim]. Kloet & Hincks, 1945.
Orthocladius van der Wulp [partim]. Chernovskii, 1949. Sublette & Sublette, 1965. Pankratova, 1970. Sasa& Yama-
moto, 1977. Oliver, 1981.
Orthocladius (Enorthocladius). Brundin, 1956. Fittkau et al., 1967. Hamilton etal., 1969. Kloet & Hincks, 1975. So-
ponis, 1977. Fittkau & Reiss, 1978. Pinder, 1978. Cranston, 1982. Ashe, 1983. Cranston et al., 1983. Oliver &
Roussel, 1983. Coffman & Ferrington, 1984.
Hydrobaenus group Euorthocladius. Roback, 1957a.
Hydrobaenus Fries [partim]. Wirth & Stone, 1968. Cole, 1969.
?Lapporthocladius Thienemann. Brundin, 1956.
Lapporthocladius Thienemann. Säwedal, 1978.
Type of Subgenus: Orthocladius thienemanni Kieffer, designated by Thienemann, 1935: 201.
Diagnosis
Adult males and immature stages of Orthocladius (Euorthocladius) resemble those of the other sub-
genera of Orthocladius. Most adult males of Orthocladius (Euorthocladius) can be distinguished by
the multiserial scutellars and the rounded anal point. If the scutellars are uniserial, then the female-like
eyes will distinguish most males of Orthocladius (Euorthocladins).
Pupae of O. (Eunorthocladius) can be distinguished by the lack of anal macrosetae.
Larvae of O. (Euorthocladius), except for rivulorum, can be distinguished by the brown head cap-
sule, 5-segmented antenna, robust Lauterborn organs, sparse chaetulae laterales, shortened teeth of
the mandible, and 13 to 15 teeth on the mentum.
Description
Adult Male
Small, medium or large chironomids. Yellow, green, brown, or black. Head. Eyes widely separated;
temporals uniserial except in roussellae, doubled or clumped near the coronal suture. Postorbitals
present except in suspensus and some rivulorum. AR usually 1.00-2.15 (0.80 recorded for alpine rivi-
cola). Palps normal to long, with segment 3>4, except in anteilıs, suspensus, and thienemanni, segment
3<4. Thorax. Antepronotal lobes weak to robust, wide or narrow medially. Lateral antepronotals
present; acrostichals present or absent within and between species; prealars present; dorsocentrals
uniserial except in some roussellae, biserial; scutellars usually biserial or multiserial, except in some ri-
vicola and some abiskoensis, uniserial. Mesonotal pit usually absent; if present, weakly developed.
Wings. Length 1.30—3.45 mm. Finely to moderately punctate with anal lobe right-angled, or slightly
to strongly produced. VR 1.00-1.22. Brachiolum with 1—2 setae, R with 2-12, squama with 8-40.
R4+5 bare except in single specimens of abiskoensis, calvus, roussellae, and telochaetus. Costa ending
above or distal to M3+4. R2+3 ending about '/; the distance between Ri and R4+5. Legs. Hind tibial
comb composed of 6-13 setae. Tarsal spines absent on p1; 2 spines usually present on tal and ta2 of
p2 and p3. Tarsal beard present on p3. LR1 0.57-0.77 (0.80 recorded for saxosus); LR2 0.43—0.56;
LR3 0.47—0.60. Sensilla chaetica present or absent between and within species. Sensilla chaetica pre-
sent on basal half of tal in p2 and sometimes in p3.
Hypopygium (Fig. 1). Virga present or absent between species and within species. Anal point me-
dıum to long, weak to robust, armed laterally with setae, and usually with a rounded tip, pointed tip
only in some abiskoensis and coffmani. Superior volsella collarlike except in abiskoensis, triangular. In-
ferior volsella well developed with dorsal part squared, rounded, nose-like, either covering most of
ventral part, or with ventral part extended weakly or prominently below. Gonostylus haired, robust,
with grooved spine between two strong setae. Crista dorsalis long, absent only in abiskoensis. HR
close to 2.00 or higher, except in some specimens of rivicola and thienemanni.
Variation. The tip of the anal point will apear more rounded if it is flattened down under the coverslip. Microtri-
chia appear on the anal point ın specimens from the high arctic (e. g. telochaetus, thienemannı).
The crista dorsalis can appear strongly to weakly developed, depending on the orientation of the gonostylus. The
effect of orientation on the gonostylus has been illustrated by, e.g. Oliver (1976, figs. 10-12) for Oliveria tricornis
(Oliver).
The spine on the gonostylus is grooved and appears bifid. This may not be noticed unless the gonostylus is exten-
ded, exposing the spine. Usually the spine appears to’be blunt at high magnification because of light shining between
the bifurcation. This condition is not as pronounced as in some other chironomids, e.g., Zalutschia briani Soponis
(1979).
The apodemes of the hypopygia are thickened in some species but this character is too variable within Zuortho-
cladius to be of diagnostic value, as Schlee (1968) found for the Corynoneura group. Schlein and Gratz (1972) used
daily growth in the skeletal apodemes of mosquitoes and in genitalic apodemes of muscoid flies in their studies, sug-
gesting that the genitalic apodemes of chironomids may also be subject to variations produced by daily growth.
The virga is not agood diagnostic character in the subgenus Euorthocladius. Most members of the rivicola-group
appear to have a virga present, but in some species of this group it may be present or absent. Whether the virga was
never present or subsequently lost (e.g. after mating) is unknown.
The length of the palps is positively correlated with the interocular distance in rivicola, but not in roussellae, the
only two species examined for this relationship.
The degree of the development of the antepronotal lobes corresponds to the orientation of the specimen, and is
not a useful species character.
Oliver (1970) was the first to point out that acrostichals could be present or absent within O. (Euorthocladius).
Pupa (Exuviae)
Light to dark brown; darker shading on cephalothorax; apophyses on tergites. Length 2.5—6.5 mm,
variation in all species. Largest individuals belong to roussellae, luteipes, thienemanni, and coffmani;
smallest individuals belong to rivicola, rivulorum, and saxosus.
Cephalothorax. Frontal setae absent. Frontal warts weak or absent, except in saxosus, robust; ce-
phalic tubercles usually absent, but may be weakly developed in some species; 3 precorneals, usually
clumped; 1—2 median antepronotals, 0-1 lateral antepronotals, 3 dorsocentrals in rivicola-group,
4 dorsocentrals in rivulorum-group and abiskoensis and saxosus. Development of cephalothoracic
setae variable, from weak to well developed, except in ashei, thick and robust. Thoracic horn absent
in abiskoensis; short (30— 110 um), ellipsoid, and stalked in rzvicola-group and saxosus; long (170—440
m), tubular, and bubbled or smooth in rivulorum-group. Cephalothorax can be dorsally smooth,
wrinkled, granular, or rugose, and is variable and inconsistent within species except in roussellae and
rugose.
Abdomen. Tergites with spine arrangements of 2 kinds: rows of straight spines on III-IV to VIII
(rivicola-group); or hooklets on II or II-V (rivulorum-group). Some species (abiskoensıis, rivulorum,
roussellae) with shagreen of the Orthocladius (Orthocladius) type. In all species except roussellae, seg-
ment I bare of spines. Sternites with spinules on II-VII in different patterns. Dorsal o-setae in coff-
mani, luteipes, rivulorum, roussellae, and saxosus; absent in abiskoensis, ashei, calvus, rivicola, and
thienemanni. Anal macrosetae absent. Anal lobe reduced laterally in rivzcola-group and saxosus;
strongly developed as large, circular lobes in coffmanı, suspensus, and rivnlorum-group; extended dis-
tally as long lobes ın abiskoensis and roussellae. Spines on lobes of roussellae. Seta on distal half of lobe
in ashei, abiskoensis, coffmani, kanıi, rivicola, and roussellae; at midpoint in abiskoensis, kanıı, rivi-
cola, roussellae, and thienemanni; absent ın calvus, Iuteipes, rivulorum, and saxosus. Lobe bare ven-
trally, covered with spinules dorsally, usually in a small anterior patch. Genital sheaths of males extend-
ed beyond tips of anal lobe in all species; extended beyond tips in females of /uteipes, rivicola, saxosus,
and thienemanni. Pedes spurii B absent in abiskoensis, and rivicola-group; present in saxosus and rivn-
lorum-group. Pedes spurii A present in calvus, luteipes, roussellae, and saxosus.
Variation. The hooklets and spines in the spine rows on tergites II-VIII may be directed anteriorly or poste-
riorly. The direction of these moveable spines has no value as a taxonomic character. Hooklets and spines are prob-
ably moved as the pupa leaves its site upon eclosion. Hooklets, or recurved spines, are similar to those in Orthocla-
dius (Orthocladius). In the rivicola-group, calvus has a patch of spines on tergite II; these are not recurved, but
straight and thorn-like (Fig. 37a).
The thoracic horn is stalked in the rivicola-group. The horn of saxosus is similar to that of /uteipes, with a weakly
developed stalk and a more easily collapsed horn. The thoracic horns of rivicola, thienemanni, and ashei are similar,
with amore prominent stalk and a less easily collapsed horn.
Five dorsocentrals occur in some specimens of rivulorum, and no dorsocentrals can be found in some specimens
of saxosus. The arrangement of dorsocentrals is inconsistent within species (see rivulorum, roussellae, saxosus).
Dorsocentrals can be branched or forked (ashei, rivicola).
Larva (Fourth Instar)
Live larvae with body yellow, brown, or green, or variations of these, as in saxosus (yellowish-
brown, reddish-brown, or greenish-brown). Head capsule light brown, except in saxosus, kanıi, and
rousselae, dark brown; occipital margin and mouthparts darker. Eyespots both fused and bipartite, ex-
cept in rivicola, saxosus, and thienemanni, fused. Mentum convex, with 13 teeth, except in roussellae,
15teeth, and in rivulorum, 17—21 teeth. Mandible with 3 inner teeth, 4th tooth either separate or fused;
length of apical tooth not longer than combined lengths of next 3 inner teeth except for rivnlorum;
seta interna absent only in roussellae when present with 6 branches, apices pointed; outer margin of
mandible notched opposite seta subdentalis, rest of margin smooth or crenulate. Epipharynx with 3-
toothed pecten; 4 chaetulae laterales, except in rivulorum, 9 (Thienemann’s ”moustache”); 2 chaetulae
basales; spinules variable; ungula U-shaped; premandible usually simple, although often notched, ex-
cept in calvus, roussellae and one specimen of saxosus, bifid; premandible irregularly shaped, blunt,
wide, and with a noticeable, rounded inner lobe, except ın rivulorum, pointed and without a lobe; SI
bifid; SII robust, long, simple; SIII slender, long, simple; SIV peg-like, with base; SV peg-like, with-
out base. Antenna 5-segmented; AR 1.38—3.08; Lauterborn organs robust, except in rivulorum and
roussellae, weak to moderately developed; blade usually extended to 4th or 5th segment, except in
some saxosus, extended beyond the tip. Procercus with 6 terminal and 2 lateral setae. Anal tubules
long, rounded, and subequal in abiskoensıis, rivulorum, roussellae, and thienemanni; dorsal pair shor-
ter and thicker than ventral pair in /uteipes, rivicola, and saxosus.
Variation. The color of the head capsule deteriorates after long storage in alcohol; brown head capsules may ap-
pear light yellow. Younger instars may have lighter head capsules, especially after molting. The shade or intensity
ofthe head capsule is also geographically variable. Larval skins of ashei and rıvicola reared from Norway have much
darker head capsules than larval skins of ashei reared from Ireland and larval skins of rivicola reared from Canada.
The length of the apıcal tooth of the mandible depends on the orientation of the specimen. The apical tooth can
appear greatly or slightly reduced in the same species, and there appears to be no trend within or between species.
Whether the 4th tooth of the mandible appears to be true (separate) or false (fused) is a character that is both con-
sistent and variable, depending on the species. In ashei, rıvicola, and thienemanni, the 4th tooth is fused to the man-
dible (false). In abiskoensis and rıvulorum, the 4th tooth is separated from the mandible by a groove or space (true).
Both conditions occur in saxosus. In the type mateial and in reared material from Montana, the tooth is fused; in
reared material from Alberta, the tooth is separate. In specimens of roussellae collected in the same sample from
Wyoming, some specimens have the 4th tooth fused, others separate. Chernovskii (1949) originally used this cha-
racter in his key to orthoclad larvae, and Pankratova (1970) and Soponis (1977) used this character in Orthocladius.
The large and oddly-shaped premandible was rarely orientated in a favorable position to draw. It was difficult
to determine whether or not the premandible was notched.
Setae on the larval body appear in different patterns (Fig. 57) and these may be taxonomically useful. Many of
the larvae examined, however, had either no setae or only a few short, simple setae. Setae can be lost when larvae
are not handled carefully during collection and preservation. Mounting media also affect the retention of setae dif-/
ferently, e.g. setae are retained better in Hoyer’s than in either Euparalor balsam. Setae are commonly lost from the
procercus. In rivulorum, 3 to 6 setae per procercus were observed.
The keys
To use the following keys effectively, good slides are essential. The Palearctic Orthocladius (Orthocladins) need
to be revised, and there may be difficulties keying these species to subgenus. See Soponis (1977) for labelled struc-
tures.
Key to Adult males of Orthocladins
1. Hypopygium without well developed dorsal part of inferior volsella (Fig.2)............
GBA IETE IE e Aere EIERN I Orthocladius (Eudactylocladius)
Hypopygium with well developed dorsal part of inferior volsella (Figs.1,3,4)........... 2
10.
kl
12:
16.
Eyesiextended'dorsamedially, mälelike'(EiE112). 00 FREE
BEREE EHE EEE NASSEN VERLEIHEN, Orthocladins (Orthocladius) (part) (Soponis 1977)
Eyes widely separated, temale-Iike (Fıs- 13)... =. a0 0 ne anne a Sage ar a
Anal lobe of wing strongly produced; fore tarsal beard present; scutellar setae uniserial or
biserial; hypopygium as in Fig. 3... . Orthocladius (Pogonocladius) consobrinus (Holmgren)
With:anothercombinätion.ot. charäctersun lau. ea een alea nase
Seutellar setaetunisental Ko nous N
Seutellar.setae biserial,or. multiserial . :...... cn serie 20 ae
Gonostylus-wichirobust eristaidorsalis. (Eigs 32,33) er: 2 Han 2 2
EIER TÄLER SSPERTEI DE OT TERSPERER) Orthocladius (Enorthocladius) rıvicola Kieffer (part)
Gonastylkas with weakor nocHisea dorsalisi(Figs!7,8). HEILER
Vıirea present orsuperior volsellacollar-fike_ __ .._..... „..._..... ee
EEE EN ERE Orthocladius (Orthocladıus) (part) (Soponis 1977)
Virga absent and superior volsella triangular (Figs. 2,8). .1...4:1u.......5 26 22
EEE Orthocladius (Euorthocladius) abiskoensis Thienemann & Krüger (part)
Antennae reduced and gonostylus with large projection on dorsal edge proximally (Fig. 5)...
a a ER A Are N A LARAH EN a Orthocladius (Orthocladius) ferringtoni Soponis
Antennae not reduced and gonostylus without large projection on dorsaledge...........
Superior voksellateollarkkeifkig. 2 un U De ee ee
Superior volsella.not eollarlike.... .... „see... Orthocladius (Orthocladius) (part)
Dorsocentral setae biserial to multiserial Orthocladius (Orthocladius) smolandicus Brundın
Dprsocentraksetae uniserial.. - zu 4.2.00. 1: 2 se a ege ei 2 er
Gonostyluswith;weak or.neieristadorsalisı(Figs.7 8) na:
EHEN Sa Orthocladius (Orthocladius) abiskoensis Thienemann & Krüger (part)
Gonestylus wıthrobust.cristadorsahs 9.0. 0e 00 000.0 22.0200000 0 A
Genostylus complex; hypopygium (Fig: A). 2.0.0.0. 3 22232. I82 187 ABER BE
I ROAUERIIT ICH SEINE IE RN ZEHAWB! Orthocladius (Orthocladius) trigonolabis Edwards
Gonestylus;simple; hypopygıum otherwise... . 2.0... Sr 20 aus 5 rare at eh. 2 ee
Inferior volsella appearıng doubled, dorsal part subequal to ventral part as in some Ortho-
eladıus, (Orthocladius).(Bigs. 9,510). une Bra a: 3 ee ee ee
Inferior volsella not appearing doubled, dorsal part not subequalto ventralpart..........
Palpal,segment3>4; anal point weak (Eis. a a a es Mr le: coffmanin.sp.
Palpalsegment3<4analpointrobust (PRITNFFIIFN EIN DI ER anteilis (Roback)
Lateral antepronotals >8; hypopygium as in Figs. 11,14,15............ roussellae n. sp.
Laterallantepronetals<8;hypopysiumnotasabeve..2...... une eeucun eu
Inferior volsella with ventral part extended ventrally and laterally to dorsal part (Figs. 16, 18)
Inferior volsella with ventral part not extended, or only extended ventrally below dorsal part
Anal point with apical seta (Fig. 16); squamals >23............... telochaetus Langton
Anal point without apical seta (Figs. 18, 19);squamals<23.......... saxosus (Tokunaga)
Inferior volsella with dorsal part arched convexly (Figs. 20,21)....... rivulorum (Kieffer)
Inferior volsella with dorsal part notarched convexly.................- rivicola-group
NR IsPolackın a So a a re TE Er A Far RP
NR GES Ve ee Le ee ee wen ee ae
Interiorvolsella withidorsalparewıde,squared. (Figs. 22,23)... m... een.
Interionvolsella wıth dorsalparenarrow, long\(Eigs.25, 28)... ... 0...
Europe, North America; hypopygiumasınFig.23.......... Iuteipes Goetghebuer (part)
IepanshypopyzumasınEis Dan en kanü (Tokunaga) (part)
Balpalisesment 3>44hypopyzıumasın Eigs25, 26... .0.....0.2.0 calvus Pınder
Palpal segment 3<4; hypopygium as in Figs. 27,28. .............. thienemanni Kieffer
Inferior volsella with most of ventral part covered by dorsal part (Figs. 17,22,23).........
Inferior volsella with most of ventral part extended below dorsal part (Figs.29—33).......
Balpalsesment3=4;hypopysiumasın Fie.1Z... 22... .2 u... suspensus (Tokunaga)
Balpallsesment3>=4:hypopygaumasın E19S222,23.... rss Se
Europe, North America; hypopygiumasınFig.23.......... Iuteipes Goetghebuer (part)
japanıhy,pepySiumasınErs pam ner esse. kanı (Tokunaga) (part)
Inferior volsella with ventral part extended prominently below dorsal part (Fig. 31); Green-
amel a ee ae A Er ARE BE EEE difficıhis (Lundbeck)
Inferior volsella with ventral part less prominently extended below dorsalpart...........
Sensilla chaetica absent on ta 1 of p 2; hypopygium as in Figs.29,20.......... ashein.sp.
Sensilla chaetica present on ta 1 ofp2; hypopygium as in Figs. 32,33. .rivicola Kieffer (part)
Key to Pupae (Exuviae) of Orthocladius
Nmallobewith3anallmaerosetaen nk nn. Orthocladius (Orthocladius)
2 ee A AT ed EEE Orthocladius (Pogonocladius)
Re RN ET Orthocladius (Eudactylocladius)
Anallobewithoutanalmacrosetae. .e..... 2... Orthocladius (Euorthocladius)
Tergite II with median patch of hooklets along posterior margın (Figs.38a,39)..........
N RE N u rıvulorum-group
Tergite II usually bare (Figs. 48, 49); if wıth median patch along posterior margin, then patch
wiehstraishtspines andnothookletsi((Fıg.37a). ....... ie zn zuerse: rivicola-group
Tergite III with central round patches of strong spines anteriorly (Figs.38a,39..........
Tergite III without central round patches of strong sspinesanteriorly..................
Tergite III with large (>200 um wide) round patch of spines anteriorly that reaches
midlimeioßtersitel(Eien3g) ran ee ee u coffmani.n. sp.
Tergite III with small (<150 um wide) round patch of spines anteriorly that does not reach
midlinssoktersitel(E 19-38. a) elseA ea eg Vers Arsen (a air
Thoracice horn bubbled (Fig. 34 b); tergites IV-VI with rows of spines along posterior
REIT EB er en EEE ER EI EN rivulorum Kieffer
23
25
24
26
10.
KT.
12.
Thoracic horn smooth; tergites IV—-VI without rows of spines along posterior margins....
al a N a ie Meleabe Be Be suspensus (Tokunaga)“
Analllobe,withspines ontips (ig AD.r user a roussellae n. sp.
Analilobe withoutspineson ups sr... u ine er el ee
Frontal warts robust (Fig. 43); thoracic horn present (Fig. 34 e); hooklets on tergite II with
>100 spines; hooklets in a large patch of 3-5 rows (Fig. 44).......... saxosus (Tokunaga)
Frontal warts weak or absent; thoracic horn absent; hooklets on tergite II with <50 spines;
hooklets in a small patch of 1-2 rows (Fig. 45)........ abiskoensis Thienemann & Krüger
Tergite II with median patch of strong thorn-like spines along posterior margin (Fig. 37 a)
BREEANESUN nn ni nr at EIERN. TREND PELMEN PEN E A calvus Pinder
Terstellibaret Mill. a... ee Me tar 75 MS
Pedes spurii A present on sternite VI; spines individually slender (Fig. 37 b) in rows on
posterior margins.of tergıtes,(Figs- 46, AY ea ne Bee ensure. Iuteipes Goetghebuer
Pedes spurii A absent on sternite VI; spines individually robust (Figs. 37 c, d, e) in rows on
POStEHIOr MAargıns OLtergites Zr... cyan a a rauch ae er
Tergite III with rows of spines on posterior margin (Fig. 42)........ thienemanni Kieffer
Tergite III wıthout rows of spines on posterior margın .. e.2.2.2.02. Kersin
Dorsocentrals thick, robust (Fig. 36); spines in spine rows on posterior margins of tergites
IV—-VIll individually robust (Fig. 37 e); spines on VI<40 (Fig.48)........... ashein.sp.
Dorsocentrals normally developed (Fig. 35); spines in spine rows on posterior margins of
tergites IV—VIII individually normally developed (Fig. 37 c); spines on VI>40..........
Europe, North America, abdomen asın He Age. a........02... rivicola Kieffer
aa ee ER kan (Tokunaga)*
Mentumswich reiht! vs. san: Orthocladius (Orthocladius) lignicola Kieffer
Mentum wath 3 or moreteeth.. 2.1 ee a
Mentum wich 13teeth. 2... 2... 00 Be Orthocladius (Enorthocladius) (part)
Mentumswith I3xteeth.s... 245 aa a ea Ra ee ee Fe re
Mentum with 15 teeth (Fig. 50 e) mandible without seta interna (Fig.50c).. .roussellae n. sp.
Mentum with >15 teeth (Fig. 51 e); mandible with seta interna .. ......... u... .enaes-
Burspes@Noxth. America; Eig; 51.4... EINE FIT rivulorum Kieffer
Japan;...... Ms erllsorunae erlassenen suspensus (Tokunaga)“
Head capsuleiyellov. su Hp nen aA: Orthocladius (Orthocladius)
Head zapsuleibrown.: „iin. tesa teen ieh a Dr) u Dr Be
Antenna 4-sesmented; Lauterborn organs weak... .n.. u. un a ee
aa on rl rn HR Orthocladins (Pogonocladins) consobrinus (Holmgren)
Antenna5-segmented; Lauterborn organszebust. ......u.c nen. ae
* based on literature; specimens not seen
12
10
Il
12
leadicapsuleldarksreddishibrownee sr. 20 Orthocladius (Eudactylocladius)
Head capsule light to dark brown, notreddish........ Orthocladius (Enorthocladins)part 8
8. Mentum with median tooth >1.5X width of Ist lateral (MR >1.5)................... 9
Mentum with median tooth <1.5X width of Ist lateral (MR <1.5).................... 12
DRBEINRE 1:89 2.2 1.8 272.2. RE ET ET NL NE NE EBFRHRITN U 10
ENBER SS 0, See a a re ERNRNEN NHE PIERRE. RABEN SEHEN. Tb BANN 11
IDErremandibleibitid. wessen ers Aansersatar Aelen: calvus Pinder
Bremandiblesimpleie ns 2 en 0. 2 RER NDR ER thienemanni Kietfer
BSR urope, N orthr’Americasjheadkcapsulebrowne 2... 2... 20.0... Inteipes Goetghebuer
apansiheadkeapsuleidarkbrownerman ne ee kanı (Tokunaga)*
IDREENR SO were 1:.80). Den a RER ashei nn. sp., rivicola Kieffer
INRehichten (1480) were ar ee rn er Eh ee Re Ace TE 13
IEET-Teackcapsuledark browaen me a en saxosus (Tokunaga)
Kleadieapsulellischrbrowntonbrown 2 a abiskoensis Thienemann & Krüger
Orthocladius (Euorthocladius) abiskoensis Thienemann & Krüger
Figs. 6-8, 45, 60
”Orthocladins” abiskoensis Thienemann & Krüger, 1937: 257—265, 267, figs. 1a, 3a, 4a, 5, 6a, 8a, 9a [pupal, larval
description].
Lapporthocladius abiskoensis (Thienemann & Krüger), 1937: 266.
Orthocladius (s. str.) abiskoensis Edwards, 1937: 144—145 [adult description].
Lapporthocladius abiskoensis (Edwards). Zavrel, 1938: 8, 9 [comparative analysis of larvae]. Thienemann, 1941: 66,
68, 82, 150, 180 [ecology, distribution]. Thienemann, 1944: 564, 647, figs. 20, 21, 197a, 198a [in pupal, larval
keys]. Thienemann, 1954: 182, 188, 355, 357 [notes]. Brundin, 1956: 103 [systematic placement]. Fittkau et al.,
1967: 358 [checklist]. Fittkau & Reiss, 1978: 418 [checklist].
Orthocladıius (O.) abiskoensis Edwards. Goetghebuer, 1942: 35, 37 [in male key, adult description].
”Orthocladius” abiskoensis Edwards. Saether, 1969: 65 [note].
Orthocladius (Lapporthocladius) abiskoensis Edwards. Pankratova,.1970: 173, 174, 182, 183, fig. 110 [pupal, larval
description, in pupal, larval keys].
Orthocladius (Enorthocladius) abiskoensis Edw. Säwedal, 1978: 85, 86 [ecology].
Orthocladius (Euorthocladius) Type III Soponis, 1977: 15-17, fig. 122 [pupal, larval diagnosis, in pupal, larval
keys].
[non] Orthocladins (Enorthocladins) Type III sp., Simpson & Bode, 1980: 52 [misidentification of /uteipes and rıvı-
cola].
Type Locality: Sweden, Lappland nr. Abisko.
Type Material: Lectotype: Male pupa, Lappland, Sweden, 10 VI 1936, A. Thienemann, labelled by Thienemann
as Orthocladius abiskoensis Edw. Lappland 1936 3d (ZSM). On a slide with paralectotypes, lectotype indicated in
ink as in Fig. 7. Paralectotypes (23): same data as lectotype, 8Ex (7M, IF), 1 larval head capsule, 3MP, 1FP, 1MP
abdomen. Same data as lectotype except 3c, 4FP, 5L. The specimens are mounted in balsam on a total of 6 slides and
kept at the ZSM. According to notes of Thienemann (pers. comm. F. Reiss), 3d indicates that diverse chironomid
larvae were reared, but only 2 specimens hatched and the others died (as pupae); 3c indicates that isolated larvae of
abiskoensis were reared. The specimens described above are hereby designated lectotype and paralectotype.
* based on literature; specimens not seen
15
Diagnosıs
Orthocladius abiskoensis can be distinguished from other Holarctic species of ©. (Euorthocladius)
by a combination of characters. Adult Male: details of the hypopygium (Figs. 6-8). Pupa: thoracic
horn absent, frontal warts weak or absent, tergites II-V with hooklets on posterior margins, hooklets
in small patches of 1-2 rows; tergite III without central round patches of strong spines anteriorly.
Larva: mentum with 13 teeth, MR<1.5, AR>1.80, head capsule brown.
Derivation of Name: Abisko; L. ensis, denoting place, locality.
Description
Adult Male (n=17)
Brown. Small to medium species. Head. Verticals 9— 14, postorbitals 1-3. Palps long with 3>4. AR
1.22—1.71. Thorax. Lateral antepronotals 2-6. Acrostichals 1-13, robust, begin within 2AW. Dor-
socentrals 4-12. Prealars 4-7. Scutellars 7-14, usually uniserial, less often biserial (20%). Wing.
Length 1.38—2.32 mm. R with 2-10 setae. Squamals 14—33. In one specimen 2 setae on R4+5. VR
1.03—1.12. Anal lobe moderately produced. Legs. LR1 0.57—0.67. LR2 0.44—0.53. LR3 0.48—0.59.
Sensilla chaetica on tal of p2, 6-22 (15), and p3, 0-8 (15). Hypopygium (Figs. 6-8). Virga absent.
Superior volsella triangular with pointed or blunt apices. Inferior volsella with dorsal part nose-like,
covering most of ventral part. Crista dorsalis weak.
Variation. The material examined contains variants in 2 or 3 populations. Males of high arctic populations from
Isachsen, Northwest Territories, are large specimens, with a robust anal point, squared inferior volsella, and full su-
perior volsella (Fig. 8a). Males from more temperate populations of Caribou Bar Creek, Yukon Territories,
(Fig.8c) more closely resemble Edward’s original material (Fig. 6) from Abisko in the superior volsella and slender
anal point. At least one specimen from Abisko has a robust anal point. The immature stages of rearings from three
Canadian sites (Hazen Camp, Banks Island, Caribou Bar Creek) agree with each other in diagnostic features. The
scutellars can be either uniserial or biserial. The number of sensilla chaetica varies in this species. The crista dorsalis
is not evident in all specimens.
Edwards (1937) separated abiskoensis by the relative lengths of palpal segments 5 to 4, aratio of 1.5. Here (n=14),
the ratio varies from 1.2 to 1.7. The color of the thorax or the patterns of the scutal stripes in abiskoensis, characters
used by Edwards, were not analysed here because these characters cannot be accurately assessed in slide-mounted
material. The shading of the scutellum is also unreliable in slide-mounted specimens, since it is essentially the same
in all the material.
Pupa (Exuviae)
Light brown, with dark apophyses on II-VII (variable); length about 3.0—4.25 mm (10). Cephalo-
thorax. Frontal warts weak and cephalic tubercles absent. Precorneals clumped; 2 median anteprono-
tals, 1 lateral antepronotal, moderately developed; 4 dorsocentrals, slightly shorter than precorneals
but thicker; arrangement varies. Thoracic horn absent. Thorax dorsally slightly wrinkled along eclo-
sıon line.
Abdomen (Fig. 45). Tergites: I bare; II-V with small central patch of recurved hooklets in 1-2
rows along posterior margin; III-VIII with large central patch of spinules separated from posterior
spine patch. Sternites: I bare; II- VII with spinules anteriorly in varying amounts; VIII with 2 off-cen-
ter patches of spinules anteriorly.
Setae on segments I— VIII:
2 I
1
SUR PETE,
Aynase daran 4
14
Anal lobe developed as slender processes with tendency for tips to curve inwards; 2 robust or fine
setae, one on proximal half and one at midpoint; genital sheaths extended beyond lobe in male, not in
female. Pedes spurii A, pedes spurii B absent.
Variation. Spine patterns are varıable: the sternites may appear bare, and anterior spine patches on the tergites
may be less developed than described here.
Larva (Fourth Instar)
Body yellow or brown. Head capsule brown. Eyespots bipartite or fused. Head capsule (Fig. 60c)
widest midway between eyespots and postoccipital margin. Mentum (Fig. 60b) convex with 13 teeth,
median tooth about as wide as 1st lateral; MR 1.0—1.3 (3); median tooth as high as Ist lateral. Ventro-
mental plates extended anteriorly between 2nd and 3rd laterals. Epipharynx (Fig. 60a) with premandı-
ble simple, narrowed before enlarged apex; apex is notched in Thienemann material. Chaetula laterales
sparse. Mandible (Fig. 60g) with apical tooth as long or longer than Ist inner tooth; outer margin
notched opposite seta subdentalis, rest of margin smooth except for occasional notch posteriorly; seta
interna present. Antenna (Fig. 60h) with robust Lauterborn organs; blade extended to 4th segment.
AR 2.00--2.50 (3). Body bare except in one specimen, haired. Anal tubules (Fig. 60f) subequal.
Variation. Pankratova (1970) described the body as bare, greenish-brown, and the head capsule as dark brown.
She described the premandible with 3 blunt teeth. In material examined here, the premandible appears simple.
Biology. Larvae and pupae were collected near Abisko in the moss of a spring. Pupae in gelatinous,
half-ellipsoid cases were also collected on bare stones, without vegetation. The species occurs in cold
rivers, streams, and springs. Males swarm beside Micropsectra (?) brunippes Zett. (Thienemann &
Krüger, 1937, Thienemann 1941, 1954). Orthocladius abiskoensis was previously recorded only from
high latitudes, but exuviae have also been collected in Kansas. Adults emerge in June and July in the
arctic, and in March in Kansas.
Distribution. Palearctic: Sweden. Nearctic: Canada, USA.
Material Examined. Type material. Non-type Material: Canada (CNC). Northwest Territories: Isachsen, 14-VII-1960,
J. F. Mc Alpine, CH1075, 10M, 3F; Hazen Camp, 81° 49’N 71° 18’W, 13-VII-1961, D. R. Oliver, CH1133, 1M w/Ex; same
data except 27-VII-1961, Ch1047, 2MP, 2Ex; Banks Is., Masik R., 4-VI-1968, W. R. M. Mason, CH2063, M, F in copula;
Harris River, 61° 52’N 121° 19°W, 18-V-1973, FWI Pipeline Proj., CH803.12, 1M w/Ex: CH803.23, 1MP; Bathurst Is., 75°
24’N, 100° 24’W, 25-VII-84, B. Hayes, 1M w/Ex, Yukon Territory: Carıbou Bar Creek, 67° 28’N 140° 37’W, 11-VI-1973,
D. R. Oliver, CH874, 3M, 1P, 7Ex; same data except 20-VI-1972, CH126, 1M; 19-VI-1972, CH128, 1M; 15-VI-1973,
CH562.1, M w/Ex, LS; 18-VI-1973, J. Robillard, CH564.6, M w/Ex, LS, CH564.10, MP w/LS, 29-VI-1972, FWI Pipeline
Proj., CH6205, IL. Sweden: Lappland, 1936, 3d, Thienemann, 5P, 8Ex, ILS; Lappland, 1938, No. 125, Thienemann, 7L
(ZSM). USA. Kansas: Leavenworth Co., Plum Creek, 1.2 mi S, 0.2 mi E of Kickapoo, 24-III-1982, L. Ferrington, 2Ex
(KSBS).
Remarks. This species was collected by Thienemann as adult and immature stages in the summer of 1936 at a
spring among dwarf birches, near the road Abisko-Björkliden in Swedish Lappland (Thienemann & Krüger 1937,
Edwards 1937, Säwedal 1978). Thienemann sent the adult males to Edwards, who initially determined them as „Or-
thocladius ? rubicundus Mg. var. or decoratus Holmgren?“ (Thienemann & Krüger 1937). Thienemann questioned
the determination of the adult because of the associated immature stages. The pupa of rubicundus belonged to Thie-
nemann’s Rheorthocladius (=Orthocladins s. str.), and Thienemann thought that the unusual pupa of abiskoensis
belonged to a new species.
To provide Thienemann with a name for the new species, Edwards (1937) published a brief adult description, pri-
marily distinguishing abiskoensis from rubicundus and decoratus by the shading of color on the thorax. He also used
the lengths of palpal segments 3 and 4 (here 4 and 5) to distinguish abiskoensis from rubicundus, adding that the cha-
racter ıs individually variable. Edwards regarded abiskoensis as a pupal species: ”the pupae are so strikingly diffe-
rent, but the adults scarcely if at all distinguishable.”
The same year Thienemann & Krüger (1937) provided a detailed description including figures of the pupa and
larva of abiskoensis, comparing it with the immature stages of rubicundus. They cited Edwards’s pending adult
description, but their own paper was published first. Thienemann & Krüger (1937) was published 15 March 1937
and received in the BM(NH) 8 April 1937. Edwards (1937) was published July 1937 and received in the BM(NH)
16 July 1937 (pers. comm. P. S. Cranston). According to Article 50 of the rules of the International Code of Zoolo-
15
gical Nomenclature, ı.e. the author of a name is the person who first validly publishes it, the authors of abiskoensis
are Thienemann & Krüger.
Thienemann & Krüger (1937) used ”Orthocladius” abiskoensis in the title and referred to the binomen O. abisko-
ensis once again in the paper. However, inthe last paragraph of the summary, they erected the genus Lapporthocla-
dius to accommodate abiskoensis. Because the authors referred twice to abiskoensis as Orthocladius, and because the
original specimens are labelled in Thienemann’s handwriting as Orthocladius abiskoensis, this is interpreted to mean
that the authors described abiskoensis in Orthocladius, and then erected Lapporthocladins for the species. Thiene-
mann (1941, 1944, 1954) and others (Fittkau et al. 1967, Fittkau & Reiss 1978) placed abiskoensis in the monotypic
genus Lapporthocladius. Säwedal (1978) synonymyzed Lapporthocladins with Orthocladins.
Hamilton et al. (1969) recommended that a genus should have all three life stages in a relatively discernible group.
Because the male of abiskoensis is not distinguishable from other adult Orthocladius at the generic level, abiskoensis
is not placed in another genus, ı.e. Lapporthocladius. Also, abiskoensis is not placed in its own subgenus because the
immature stages belong to O. (Euorthocladins) as defined here.
Zavrel (1938) considered the generic placement of abiskoensis in a description of the immature stages of Orthocla-
dius frigidus. He concluded that the larva of abiskoensis is closer to the larvae of Thienemann’s Euorthocladius (ex-
cepting rivulorum) than to the larva of frigidus, and that on the whole, abiskoensis belongs to Euorthocladius.
Pankratova (1970) redescribed the pupa and larva of abiskoensis, reproducing the figures of Thienemann & Krü-
ger (1937). She placed abiskoensis in the genus Orthocladius, subgenus Lapporthocladius, and stated that the species
would probably occur in the USSR.
Goetghebuer (1942), treating adults, followed Edwards (1937) and separated abiskoensis from rubicundus prima-
rıly on AR, thoracic color, and palpal proportions. He provided no figures.
Brundin (1956) reviewed the systematic position of abiskoensis as an example of incongruity of adult and imma-
ture chironomids. He examined two males (one a pupa) of Edwards’s original material, specimens in poor condition
due to long storage in alcohol. Brundin observed strewn scutellar setae that would place the adult in his subgenus
O. (Euorthocladius). However, he concluded that the position of abiskoensis was still unstable. Saether (1969) refer-
red to the incongruity, and both Soponis (1977), as Type III, and Säwedal (1978) placed abiskoensis in O. (Enortho-
cladius).
Until now, no figure of the hypopygium of abiskoensis has been available. It was impossible to identify the adult
of this species without the associated pupal skin. The species is still difficult to identify in the adult male, but this
situation occurs in other Orthocladius, not just abiskoensis.
Orthocladius (Euorthocladius) anteilis (Roback)
Fig. 10
Hydrobaenus anteilis Roback, 1957b: 14, figs. 41-45 [description of female]. Roback, 1959: 2—3, figs. 7-10
[description of male and female]. Cole, 1969: 101 [notes].
Orthocladius anteilis (Roback). Sublette & Sublette, 1965: 155 [checklist].
Type Locality: USA: Utah, Provo River.
Type Material: Holotype. Female, remounted by M. E. Roussel Dillon, in Canada balsam under 5 coverslips,
genitalıa in lateral view. Original white label: 8. ant. wing Hydrobaenus anteilis Roback 6803 det. $.S. Roback. Red
label: Utah, Summit Co., South Fork of Provo River on Stewart’s Ranch, 20 Feb. 1954, Gerald D. Brooks (ANSP).
Paratype. Female, same data, not seen, reportedly in University of Utah collection.
Diagnosis: The male of Orthocladius anteilis can be distinguished from other males of O. (Euortho-
cladius) by palpal segment 3<4 and details of the hypopygium (Fig. 10). The pupa and larva are
unknown.
Derivation of Name: ant; L. ilis, having the nature or quality of.
Description: See Roback (1957b, 1959).
Biology: Adults have been collected along rivers in western USA.
Distribution: Nearctic: USA.
16
Material Examined: Type Material. Non-type Material: Idaho: Freemont-Teton Co. border, north Fork of Teton R.,
Hwy. 32, 6-III-1965, A. v. Nebeker (MINN), 1 M. Photographs of males and females of Montana specimens of Roback
(1959), supplied by J. E. Sublette.
Remarks: Roback (1957b) described this species from two females collected along the Provo River in Utah. Later
Roback (1959) described the male and gave a further description of the female based on five males and two females
collected along the Blackfoot and Clard Fork Rivers in Montana.
The holotype is an adult female, but the female of anteilis has never been associated through rearing or by copu-
lation with the male. The males and females from Montana, also unassociated, do not convincingly belong to antei-
his. Other species of ©. (Enorthocladius), e.g. saxosus and coffmani, occur in mountain rivers of the western USA
so that locality and habitat cannot determine species in this subgenus. Although the study of females has advanced
(e.g. Saether 1977) since Roback’s description, it ıs still not possible to distinguish females of O. (Enorthocladius)
to species.
To define the limits of anteilis, it is necessary to study reared females and reared males. Until such specimens be-
come available, the males described by Roback (1959) are tentatively recognized as anteilıs.
Orthocladius (Euorthocladius) ashei n.sp.
Figs. 29, 30, 36, 37 e, 48, 54
Orthocladius rivicola Kieffer. Thienemann, 1911: 637 [pupa].
Orthocladius (Euorthocladius) cf. thienemanni (Kieffer). Halvorsen et al., 1982: 119 [record ın Norway].
Orthocladius (Euorthocladius) rivicola ß Rossaro, 1982: fig. 31 [pupa]. Langton, 1984: 142, fig. 49 [pupa].
Orthocladius (Euorthocladins) ? rusticus Goetghebuer. Murray & Ashe, 1983: 224, 225, 230 [checklist, pupa].
Type Locality: Ireland: River Flesk.
Type Material: Holotype. Reared male with larval skin and exuviae. Ireland, Kerry Co., Sta. 6, Clydagh Br., Ri-
ver Flesk, 16-V-1978, Drift D7, W114826, reared 16th- 19th, P. Ashe, ın gelatinous case. On slide, deposited in the
National Museum of Ireland, Type No. NMI 106: 1984. Paratypes (83). Same data as holotype, 1 reared M w/LS,
l reared M with LS, Fx Bulgaria, r. Bistriza, outfall, 14-IV-1971, N. Natchev, 1 Ex (NAT). Germany. River Isar,
ca. 500 m oberhalb Loisach-Mündung, 3-IV-1986, F. Reiss, 5 Ex; Stauseen, Unterer Inn, drift, 6-IV-1978, Egla, F.
Kohmann, 1 Ex; Westfalia, Urf-Talsperre, Sta. I, 4+-IV-1910, A. Thienemann, 5 Ex; Westfalia, Glor, 7-VI-1908, A.
Thienemann, 2 Ex; Westfalia, Fulbecke-Talsperre, 14-IX-1909, Oberfl., A. Thienemann, 1 Ex Ireland. Kerry Co.,
River Flesk, Sta. 1a, V964894, Ranunculus, 14— 17-V-1978, P. Ashe, 1 reared F w/Ex (slide), 2 reared F w/Ex (alco-
hol); same data except 14—-19-V-1978, 1 F w/Ex (alcohol); River Doddler, above Bohemabroinne Bridge, 3-IV-
1978, P. Ashe, 1 F w/Ex, probable LS$ (alcohol). Italy. Po River, 1975, 1976, B. Rossaro, 12 Ex (slides), 40 Fx (alco-
hol). Norway. Ekse, HOi: Vaksdal, “The Weir Project,“ 11-VI-1979, E. Wilassen, 1 reared M w/Ex, LS (ZMB)
(data in Halvorsen et al., 1982). Sweden. Lappland, Thienemann: River Abisko, 24-IV-1936, 48a, ex mosses, 2 Ex;
Lake Abisko, 23-IV-1936, 40, ex moses, 3 Ex; Lke Kanevegge, 17-VII.1937, 98c, surface drift, 2 Ex; delta of River,
17-VII-1937; Abisko, 19-VII-1937, 101, surface drift, 1 Ex (ZSM). Paratypes will be deposited as follows: 2 reared
F, Ireland, alcohol (NMI, No. NMI 106: 1984); 1 reared F, Ireland, alcohol (BMNH); 1 reared M, Ireland, slide,
l reared F, Ireland, alcohol (DUB); 1 reared M, slide Ireland (FSCA); 1 reared M, Norway, slide (ZMB); 1 reared
F, Ireland, slide, (ZSM); Ex, Bulgaria, slide, (NAT); Fx, Italy, alcohol, (ROSS); Ex, Italy, slides (CNC, BMNH,
FSCA, COFF); Ex, Sweden and Germany (ZSM).
Diagnosıs:
Orthocladius ashei can be distinguished from other Holarctic O. (Euorthocladins) by acombination
of characters. Adult male: low AR (<1.80),'absence of sensilla chaetica on tal of p2, and details of the
hypopygium (Figs. 29, 30). Pupa: tergite II bare, robust dorsocentrals and robust spines on margins
of tergites IV—- VIII. Larva: mentum with 13 teeth, MR<1.5; cannot be distinguished from rivicola.
Derivation of Name: this species is named after Patrick Ashe, for his help in providing reared material and for
his interest in this new species.
17.
Description
Adult Male (n=4)
Dark brown to light yellow. Small species. Head. Verticals 12-13, postorbitals 1—2 (3). Palps nor-
mal with 3>4. AR 1.18-1.62. Thorax. Lateral antepronotals 5-7 (3). Acrostichals 5-8, robust, be-
ginning within 1-2 AW. Dorsocentrals 8-11. Prealars 5-7. Scutellars 7-15 (3), weakly biserial
(Norway) to multiserial. Wing. Length 1.68-1.90 mm (3). R with 6-10 setae. Squamals 8-18. VR
1.03—1.22 (2). Anal lobe slıghtly produced. Legs. LR1 0.69—0.77 (3). LR2 0.48—0.56 (2). LR3
0.53—0.59 (3). Sensilla chaetica absent. Hypopygium (Figs. 29, 30). Virga present, moderately well
developed. Superior volsella collar-like. Inferior volsella with dorsal part nose-like, or squared, and
ventral part weakly extended below. Crista dorsalis long.
Pupa (Exuviae)
Light brown; length 3.1—3.4 mm (5).
Cephalothorax. Frontal warts absent; cephalic tubercles weak. Precorneals clumped, PC1, thick
and almost 2x as long as PC2 and PC3; 1 median antepronotal, 1 lateral antepronotal, 3 dorsocentrals
(Fig. 36), slightly longer than PC1 and thicker. Thoracic horn ellipsoid, light brown, clear, stalked,
length 30-60 um (5). Thorax dorsally wrinkled to granulose along eclosion line and anterior to wing
base.
Abdomen (Fig. 48). Tergites: I-III bare; IV-VIII with rows of individually heavy spines along
posterior margin (Fig. 37e); V-VIII with central patches of robust spinules anteriorly. Sternites: I,
VIII bare; II, III with large central patch of spinules; IV—VII with anterior patch of spinules.
Setae on segments I-VIII (robust):
Sie ui zul > int a ar E DE ze 13. 3 m Z
a Ad 4‘ DE 20, 07.0.7 0,0
Anal lobe greatly reduced; 2 setae on distal half. Pedes spurii B and pedes spurii A absent. Genital
sheaths extended beyond lobe in male, not in female.
Variation. Dorsocentrals can be forked. The spines in the posterior rows on tergites IV— VIII are individually ro-
bust (Fig. 37e), much more robust than those in rivicola (Fig., 37c). The number of spines in these rows are higher
in females than in males, and are not significantly different.
ashei females (n = 5) ashei males (n = 5) Student’s t
IV 30.60 + 11.04 (20-45) 22.60 + 8.20 (14-33) 1.3009
V 33.20 # 8.87 (27-48) 25.60 + 5.86 (20-34) 1.5988
VL 128.20, 2,832 (22.40) 22.20 + 6.26 (18-33) 1.2887
VII 22.20 + 7.22 (16-30) 18.60 + 2.97 (14-22) 1.0307
VII 16.00 + 5.20 (12-25) 14.60 + 3.36 (11-20) 0.5058
The number of spines in these rows can be used to distinguish most specimens of ashei from rivicola ‚and are signi-
ficantly different.
ashei (n = 10) rivicola (n = 10) Student’s t
IV 26.60 + 10.09 (14-45) 64.10 + 25.30 (36-104) 4.3544
V 29.40 + 8.14 (20-48) 69.30 + 21.15 (47-100) 5.5676
VI 25,20, 22277:630.(118409) 62210822209 12241103) 5.2428
Vu 20.40 # 5.54 (14-30) 50:70.+.18:874337- 190) 4.8725
VII BSIEHIE 25) 35A0rE 16245, 2079) *3.7893
(p >.001 except for *,p >.01)
18
Exuviae from Italy show variation in size, shade of color, and thickness and length of dorsocentrals. Generally
ashei is lighter and more weakly chitinized than rıvicola, and the cephalothorax of ashei is as light as the abdomen,
whereas in rivicola the cephalothorax tends to be darker than the abdomen. Separation of exuviae of ashei from
rivicola in alcohol is not foolproof, and slides should be made for positive determinations.
Larva (Fourth Instar)
Body green with blue tinge when live (Thienemann notebooks). Head capsule brown; preserved,
yellow. Eyespots absent in reared specimens. Mentum (Fig. 54e) with 13 teeth, median tooth about as
wide as 1st lateral; MR 1.3 (3); median tooth as high as Ist lateral. Ventromental plates extended ante-
riorly between 2nd and 3rd laterals. Premandible simple, with blunt or squared apex; apex may appear
notched. Chaetula laterales sparse. Mandible (Fig. 54c) wıth apıcal tooth as long or longer than Ist
inner; outer margin notched opposite seta subdentalis; rest of margin smooth except for occasional
notch posteriorly; seta interna present. Antenna (Fig. 54d) with robust Lauterborn organs; blade ex-
tended to 4th segment. AR 1.80 (1). Body with simple setae, some short and stiff, some long and
curved, apparently arranged like that of saxosus. Anal tubules not distinguishable.
Biology: The larvae live in gelatinous tubes in running water and are associated with plants. Ashe
reared larvae from Ranunculus, and Thienemann collected exuviae from mosses in Lake Abisko and
River Abisko. The species occurs with rivzcola in Brehm, Italy, and River Isar, Germany (Ex). Adults
emerge in April, May, and June.
Distribution: Palearctic: Bulgaria, France, Germany, Ireland, Italy, Norway, Sweden.
Remarks: This species was reared by Patrick Ashe from the River Flesk, Ireland. Originally Ashe (pers. comm.)
suspected that this species might be Orthocladius rusticus Goetghebuer, based on a slide of an exuviae labelled rustz-
cus in the Humphries collections (Murray & Ashe 1983). Professor Humphries reared larvae to adults, then sent the
adults to Goetghebuer or Freeman for 3 positive determination to species. When the name was provided she labelled
the associated immature material with the corresponding determination. The holotype male of Orthocladius rusti-
cus Goetghebuer belongs to Chaetocladins (Soponis 1986) and is not conspecific with Orthocladius ashei.
Dr. Declan Murray (Murray & Ashe 1983) has seen material of O. ashei in the Humphries collection collected
by Thienemann in “Norway”, identified by Thienemann as Euorthocladius thienemanni. Murray has collected
ashei in Norway and France.
Orthocladius ashei is morphologically similar ın all stages to rivicola: the larvae of these two species could not be
distingushed. These two species can most easily be distinguished as pupae.
Orthocladius (Euorthocladius) calvus Pinder
Figs. 25a, 26, 37a, 37f
Orthocladius (Euorthocladius) calvus Pinder, 1985: 235—241, figs. 1-3 [description of male, female, pupa, and
larval].
Orthocladius (Enorthocladius) calvus Pinder. Ladle et al., 1985: 243—254 [biology]].
Orthocladius (Euorthocladius) Pel. Langton, 1984: 140, figs. 48b [in pupal key].
Spaniotoma (Orthocladius) thienemanni Kieffer. Edwards, 1929: 344, 345, fig. 6m.
Type Locality: England: Dorset, Waterston.
Type Material: Holotype (not seen). Male with associated exuviae, Dorset, Waterston experimental channel,
7 May 1981, J.A.B. Bass (BMNH). Assorted paratypes, BMNH and FBA (Pinder 1985).
Diagnosıs:
Orthocladius calvus can be distinguished from other Holoarctic species of ©. (Enorthocladius) by
acombination of characters. Adult Male: high AR (1.73—2.08), palpal segment 3>4, and details of the
hypopygium (Figs. 25, 26). Pupa: patch of straight thorn-like spines on tergite II (Fig. 37a) and rows
of spines on posterior margins of tergites III— VIII. Larva: mentum with 13 teeth, MR>1.5, high AR
(>2.00), and premandible bifid.
19
Derivation of Name: L. calvus, hairless. Pinder (1985) named this species for the absence of dorsal setae on the
anal lobe of the pupa.
Description: See Pinder (1985).
Biology: Larvae are early colonızers of artificial recirculating streams where they inhabit gravel
(Pinder 1985). For a detailed account of growth, development, and production of calvus see Ladle et
al. (1985). Based on adult males, Orthocladius calvus occurs with thienemanni in the River Schwen-
tine.
Distritution: Palearctic: England, Germany.
Material Examined: Paratypes. England, Dorset, Waterston Experimental Channel, 7-V-1981, coll. J.A.B. Bass, L.C.V.
Pinder, IM w/Ex, IF w/Ex, IL. Nontypes. England. Hitchin, Herts, 28-IV-1916, F. W. Edwards, 1916-105, 1M (BMNH)
(misident. of thienemanni); Gloucester, Minchinghampton, 16-IV-1893, Miss G. Ricardo, B. M. 1920-126, 1M (BMNH)
(misident. of thienemanni). Germany. River Schwentine, East Holstein, 1935, leg. A. Thienemann, Schwentine 1935 S. 4,
1 M (ZSM) (misident. of thienemanni).
Remarks: Pinder (1985) described this species from several males and females with associated exuviae, and from
larvae collected in an artificial recirculating stream system in southern England.
The adult males of calvus are very similar to thienemanni and will present problems in identification unless asso-
ciated exuviae are available. The male of calvus can be distinguished from that of thienemanni by therrelative lengths
of palpal segments 3 and 4, and by the relatively straight margin of the dorsal part of the inferior volsella. Although
this hypopygial character holds for the type material and one male from River Schwentine in Germany (Fig. 26),
the margin in the calvus from Gloucester, England looks rounded (Fig. 25a) as in all thienemanni (Figs. 27, 28), and
the margin in thienemanni from River Schwentine (Fig. 25b) looks like that in calvus (Fig. 26). The Herts material
was identified as O. thienemanni by Edwards, but this material belongs to calvus based on the relative length of pal-
pal segment 3 and 4. Brundin’s (1956) figure of O. thienemanni looks like thienemanniı.
The exuviae of calvus and Inteipes (Figs. 46, 47) are morphologically similar; calvus can be distinguished by the
central spine patch on the posterior margin of tergite Il (Fig. 37a) and the less robust spines in the tergal spine rows
(Fig. 37f) and shagreen. The bifid premandible of the larva is distinctive in calvus. However, whether or not the pre-
mandible is bifid is difficult to determine in O. (Enorthocladius), and has not been clearly established for most spe-
cies.
Additions to Pinder’s (1985) description include: Male. Head female-like, scutellars, biserial, sensilla chaetica
absent in paratype male, present on tal of p2 in nontype male. Pupa. Pedes spurii A on IV or V to VII.
Orthocladius (Euorthocladius) coffmani n. sp.
Figs. 9, 34a, 39
Orthocladius (Enorthocladius) species 2, Coffman & Ferrington, 1984: figs. 25.394, 25.395 [pupa].
Type Locality: USA Alaska, Portage.
Type Material: Holotype. Male pupa, USA, Alaska, Portage Glacial Pool, 20-VII-1977, #23, D. Wartinbee.
Specimen dissected and parts placed in Canada balsam under 6 coverslips on a slide. Deposited in the FSCA. Para-
types (10). Canada. Alberta, Waterton Park, 21-VII-1967, A. L. Hamilton, A.3.1., 4 Ex (FWI). USA. Colorado,
Gunnison Co., Beaver Dam on East R. 3.1 mi. N. of Gothic, 13-VII-1982, L. Ferrington No.-Co. #19, 3 Ex
(KSBS). Idaho, East Fork Salmon River, 11-IV-1977, #PE 122, J. Sedell, 2 Ex (COFF). Montana, Beartooth-Absa-
roka Wilderness Area, 31-VII-1979, E.A. Wells, CH6965.1, 1FP (CNC).
Diagnosıs:
Orthocladius coffmani can be distinguished from other Holarctic species of O. (Enorthocladius) by
a combination of characters. Adult Male: palpal segment 3>4, multiserial scutellars, and details of the
hypopygium (Fig. 9). Pupa: hooklets on II, large round patches of spines on III-VII, seta on anal
lobe. Larva: Unkown.
Derivation of Name: This species is named after William P. Coffman, for providing associated material of this
species and exuviae of other Orthocladius over the years.
20
Description
Adult Male (n=1)
Brown. Medium species. Head. Verticals 12, postorbitals 1. Palps long with 3>4. AR cannot be de-
termined. Thorax. Lateral antepronotals 3. Acrostichals absent. Dorsocentrals 15. Prealars 5. Scutel-
lars 16, multiserial. Wing. Squamals 20. Other characters cannot be determined. Legs. Measurements
cannot be determined. Hypopygium (Fig. 9). Virga absent. Superior volsella collar-like. Inferior vol-
sella with dorsal part squared and ventral part protruding like dorsal part, appearing double-lobed.
Anal point weak with pointed apex. Crista dorsalis robust.
Variation. The virga is not visible, but it may be concealed in a mass of tissue.
Pupa (Exuviae)
Brown with darker apophyses on all tergites, and darker shading on cephalothorax and anal lobe.
Length 3.7—4.8 mm (3). Cephalothorax. Frontal warts absent; cephalic tubercles weak; protuberan-
ces between bases of antennal sheaths below cephalic tubercles. Precorneals clumped, almost 3x as
long as dorsocentrals; 1 median antepronotal, weak, O lateral antepronotals; 4 dorsocentrals, reduced
spaced in arow. Thoracic horn (Fig 34a) long, tubular, bubbled, light brown, length 220-310 um.
Thorax dorsally wrinkled along eclosion line.
Abdomen (Fig. 39). Tergites: I bare; II with large patch of recurved hooklets in about 15 rows; re-
duced patch of hooklets on IIT-V; IIT-VII with large cırcular patch of posteriorly-directed spines
along anterior margin; patches of spinules on II—-VIII. Sternites: I, IV, V bare, or at most with some
spinules anteriorly; II, III with central patch of spinules along anterior margin; VI-VII with 2 off-
center patches of spinules anteriorly.
Setae on segments I- VII:
D 4
2
ar or) DRS IG ie 713
V NE ZN) 303 1
5 I ID
3 1 xl 0 @ Oh lgelereluhl
Anal lobe strongly developed into large, circular lobes; usually margin is smooth, at most margın is
wrinkled along distal ?/;; 1 ventral robust seta, on distal half. Pedes spurii A absent; pedes spurii Bon
II, weak. Genital sheaths extended beyond lobes in male, not in female.
Variation. Females appear larger than males.
Biology: Exuviae were collected from cold waters of mountain rivers and glacial pools. Adults
emerge in April and July.
Distribution: Nearctic: Canada (Alberta); USA (Alaska, Colorado, Idaho, Montana)
Remarks: This species is a member of the rivulorum-group. The weak and pointed anal point is a distinguishing
feature of the male, found only in one other species of O. (Enorthocladius), abiskoensis. The hypopygium resembles
that of O. (Orthocladius) more than that of O. (Enorthocladins). The pupa may be confused with rıvulorum, but
the spine patches on tergites III-VIII are much larger in coffmanı. In Coffman & Ferrington (1984), this species
will key to couplet 45. The female and larva remain unknown.
Orthocladius (Euorthocladius) difficilis (Lundbeck)
Fig. 31
Chironomus dıfficilis Lundbeck 1898: 282 [description of male, female].
Orthocladius difficilis Lundbeck. Kertesz, 1902: 217 [catalogue]. Johannsen, 1905: 267, 277 [in adult key;
description of male, female].
21
Orthocladius (Orthocladius) difficilis Lundbeck. Andersen, 1937: 63 [in adult key].
Orthocladius difficılis (Lundbeck). Sublette & Sublette, 1965: 156 [checklist].
Orthocladius (Euorthocladius) difficilis (Lundbeck). Oliver, 1970: 103, 104, figs. 4-6 [designation and description
of lectotype male].
Type Locality: Greenland; Kangersuak.
Type Material: Lectotype: Adult Male, Greenland, Kangersuak, 22/9/1890. Mounted in balsam under 5 cover-
slips on slide (UCOP). Typed label Chironomus difficilis Ldbk. Written LECTOTYPE, D. R. Oliver 1969. Red
label with Type written; also date written.
Diagnosıs
The male of Orthocladius difficilis can be distinguished from other males of O. (Enorthocladius) by
the low AR and details of the hypopygium (Fig. 31). The pupa and larva are unknown.
Derivation of Name: L. difficılis, not easy, troublesome.
Description: See Oliver (1970).
Biology: Unknown.
Distribution: Nearctic: Greenland.
Material Examined: Lectotype.
Remarks: This species was reported in the literature primarily as occurring in Greenland, and was not identifiable
until Oliver’s (1970) redescription, where he also designated a lectotype and provided a figure of the hypopygium.
The male is a typical O. (Enorthocladius) with female-like eyes, biserial scutellars, crista dorsalis on gonostylus,
and collar-like superior volsella. Acrostichals are absent.
This species is part of the rivicola-group, and the male can be distinguished from thienemanni by the lower AR
(1.24 in difficılis, >1.80 in thienemanni) and from rivicola by salient features of the hypopygium. Both rivicola and
thienemanni occur in Greenland, and specimens from Greenland were examined: a single male of rivicola (acrosti-
chals present, AR=1.35) and exuviae of thienemanni.
The immature stages of difficılis are unknown. Rearings of difficilis from southwest Greenland are needed to bet-
ter understand the species.
Orthocladius (Euorthocladius) kanii (Tokunaga)
PiE722
Spaniotoma (Orthocladius) kanıi Tokunaga, 1939: 315—318, figs. 13, 36, 53, 54, 68, 76, 86, 91, 104, 114, 121, 131,
142, 157 [description of male, female, pupa, and larva]. Tokunaga, 1959; 1973: 641 [pupa, larva, fide Sasa & Ya-
mamoto, 1977]. Thienemann, 1954: 345 [note].
”Spaniotoma (Orthocladius)“ kanıı Tokunaga. Thienemann, 1944: 567, 649 [in pupal, larval keys].
Orthocladius (sen. str.) Ranıi Tokunaga. Tokunaga, 1964: 17, fig. 4 [male, female].
Orthocladius kanıi (Tokunaga, 1939). Sasa & Yamamoto, 1977: 310 [checklist].
Orthocladius (Euorthocladius) kanii (Tokunaga, 1939). Sasa, 1979: 26—28, figs. 40—43 [description of male, female,
pupa, and larva]. Sasa, 1981:87 [survey record].
Type Locality: Japan: Kyoto.
Type Material: Holotype. Male, Japan, Kyoto, Nishigamo, Jan 1936, M. Tokunaga (2 white labels, printed). Ab-
domen from segment Il to hypopygium mounted on a slide in Canada balsam under one coverslip by A.R. Soponis.
Paratypes (?8). Same data as holotype, parts of males and females mounted in Canada balsam on 4 slides. Slide 1:
hypopygium with abdominal segments VII, VII. Slide 2: hypopygium with abdominal segment VII. Slide 3: 4
coverslips, with 4 thoraces, 3 thoraces, 8 heads (4M, 4F), and parts of antennae, legs, thoraces. All type materials
are retained in the Entomological Laboratory of Kyushu University. The only locality data in the vials were those
of the holotype, and paratypes were assumed to have the same data. Paratypes from other dates and localities were
not located.
22
Diagnosıs
Orthocladius kanıi can be distinguished from other species of ©. (Euorthocladius) by acombination
of characters. Adult Male: details of the hypopygium (Fig. 22); distinguishable from /uteipes by distri-
bution. Pupa: tergite II bare; rows of spines on margins of tergites IV VIII; distinguishable from r:-
vicola by distribution. Larva: mentum with 13 teeth, MR>1.5, low AR (<1.85); head capsule brown;
distinguishable from /uteipes by distribution.
Derivation of Name: This species was named for Mr. T. Kani, who collected the type specimens with M. Toku-
naga (Tokunaga 1939: 318).
Description: See Tokunaga (1939) and Sasa (1979).
Biology: The larvae are widely distributed in torrential streams throughout Japan (Sasa, 1979: 28).
The larvae live in oval, clear, gelatinous cases, 8-10 mm long, 4-5 mm wide, and 3-5 mm high, often
covered with diatoms, and closely adhering to surfaces of stones on these streams (Tokunaga, 1939).
Distribution: Japan.
Material Examined: Type material.
Remarks: Tokunaga (1939) described this species from an unspecified number of males, females, pupae, and lar-
vae collected in torrential streams in the suburbs of Kyoto, Japan. Sasa (1979) gave another detailed description of
the species in all stages.
Orthocladius kanıi is morphologically similar to /uteipes in the adult male and larva. However the pupae are dif-
ferent: weaker spines occur in rows on IV—VIIl in /uteipes, whereas stronger spines occur in rows on IV- VIII in
kanıi; pedes spurii A are present on sternites V-VII in /uteipes, and entirely absent in kanii. There was no oppor-
tunity to examine pupal material of kanıi; however, detailed illustrations of the pupal abdomen (Sasa 1979, fig. 42 b)
and the pupal sternite VII (Tokunaga 1939, fig. 76) show no pedes spurii A. It is unlikely that both authors would
have missed these prominent structures in their drawings. In addition, the tergal spine patterns of kanıı more closely
resemble those of rivicola than of Iuteipes. Thienemann (1954) remarked that he knew of no European parallel of
kanii. f
The extant type series, which contains only parts of male and female adults, was slide-mounted and examined.
Variation of the hypopygium can be seen here (Fig. 22), and in Sasa (1979, fig. 41), Tokunaga (1939, fig. 36), and
Tokunaga (1964, fig. 4). The figure in Tokunaga (1964) looks distorted and the specimens have amuch higher AR
(1.5—2.2) than that recorded for the species (1.4—1.7).
Orthocladius (Euorthocladius) luteipes Goetghebuer
Figs. 1, 23, 24, 37b, 46, 47, 53
Orthocladius luteipes Goetghebuer, 1938: 457, 458, fig. 6 [description of male]. Reiss, 1983: 176 [checklist]. Ros-
saro, 1984: table 2 [record].
Euorthocladius Iuteipes Goetghebuer. Thienemann, 1939: 6, 7 fig. 2b [description of pupa, larva]. Thienemann,
1944: 559, 648, fig. 14b [in pupal, larval key]. Thienemann, 1954: 347 [ecology]].
Orthocladius (Orthocladins) Inteipes Goetghebuer. Goetghebuer, 942: 34, 49, fig. 75 [description of male; in key
to males].
“Orthocladius” Iuteipes G. Fittkau et al., 1967: 363 [checklist]. Fittkau & Reiss, 1978: 422 [checklist].
Orthocladius (Euorthocladius) luteipes (Goetghebuer). Rossaro, 1978b: 184, 185 fig. 1 [record, notes on males and
species]. Langton, 1984: 144, fig. 49b [in pupal key]. Sahin, 1984: 81, figs. 203—205 [in larval key].
Orthocladius (Euorthocladius) Type Ill sp. Simpson & Bode, 1980: 13, 52 [partim] [larval description, photograph,
in larval key].
Orthocladius (Euorthocladius) cf. Inteipes. Coffman, 1973: Table 1 [ecology].
Orthocladius (Euorthocladius) species 4 Coffman & Ferrington, 1984: figs. 25.410, 25.411 [pupa].
Type Localıty: Austria.
Type Material: Holotype. Male, Basse-Autriche, Dr. Mitis, TN18 (1938) (2 original ink labels of Goetghebuer),
R.1.Sc. N. B. 18.073. Mounted on slide in Canada balsam under 2 coverslips by A. R. Soponis; in poor condition,
body still pressed between celluloid.
23)
Diagnosıs
Orthocladius Iuteipes can be distinguished from other Holarctic species of O. (Enorthocladius) by
a combination of characters. Adult Male: details of the hypopygium (Figs. 23, 24). Pupa: Pedes spurii
A on sternites V-VIII; tergites IV-VIII with rows of slender spines on posterior margins. Larva:
mentum with 13 teeth, MR>1.5, AR<1.85 (separable from Kanii by distribution).
Derivation of Name: L. luteus, yellow; most likely refers to the color of the adult male as described by Goetghe-
buer (1938).
Description
Adult Male (n=3)
Dark brown (OD: yellow with black bands, abdomen brownish). Medium species. Head. Verticals
16-20 (2), postorbitals 2-3 (2). Palps normal with 3>4. AR 2.00 (1) (OD: 2.04). Thorax. Lateral an-
tepronotals 2-5. Acrostichals 0-4, robust, begin within 2 AW. Dorsocentrals 6-11. Prealars 6-8
(2). Scutellars 15-18, biserial or multiserial. Wing. Length 2.15—2.58 mm (2). (OD: 2.15). R with
7—11 setae. Squamals 24—31. Anal lobe cannot be determined in my material (OD: produced). Legs.
LR1 0.69 (1). LR2 0.48 (1). LR3 0.53 (1). (OD: LR1 0.78). Sensilla chaetica on tal of p2 (7-11) (2).
Hypopygium (Figs. 23, 24). Virga present. Superior volsella collar-like. Inferior volsella with dorsal
part squared, covering ventral part. Crista dorsalis long.
Variation. The acrostichals are missing on the type, and a single male specimen has sockets but no setae. Acrosti-
chals are present on the male pupa. Rossaro (1978b) reported that /uteipes has an average AR of 1.6 and an average
wing length of 2.8 mm.
Pupa (Exuviae)
Light brown to brown with darker apophyses on I-VI, variable; some parts of conjunctives V-VI
and VII-VIII darker. Length 3.50-5.00 mm (20). Cephalothorax. Frontal warts weak and cephalic
tubercles absent. Precorneals weak, 1'/,x as long as dorsocentrals; 2 median antepronotals, 1 lateral
antepronotal, weak to strong; 3 dorsocentrals, robust, thicker than procorneals. Thoracic horn ellip-
soid, light brown, filled or clear, stalked but not often seen; length 80— 110 um (20). Dorsum of thorax
usually smooth, may be wrinkled or sculptured, expecially along eclosion line with granular pattern
mesad of wing base.
Abdomen (Figs. 46, 47). Tergites: I-III bare; IV-VII with rows of straight, slender spines along
posterior margin (Fig. 37b); V-VIII with central patch of spinules, more extensive on each suc-
ceeding tergite; VII, VIII with spinules along anterior margin. Sternites: I bare; II-V with spinules
on anterior half; VI-VIII with 2 off-center patches of spinules anteriorly.
Setae on segments I— VIII:
De ee JE I MR 109RS 1000. a SIR € Dagre Was
VE WO Or uieet 1 7
Anal lobe greatly reduced, setae absent. Genital sheaths extended beyond lobe in male and female. Pe-
des spurii B absent; pedes spurii A robust, on V- VII.
Variation. Tergites may have sculpturing; pedes spurii A may be absent on V, VII, always present on VI. Setae
are weak (Germany) to strong (Italy). Shagreen may be a small to large patch (Figs. 46, 47). Specimens are small
(North America) to large (Europe). European specimens have more spines in spine patch IV-VIII than North
American specimens. North American specimens have more dark apophyses than European. Posterior spine rows
are absent from IV in one specimen from Germany.
Larva (Fourth Instar)
Body yellow. Head capsule brown. Eye spots bipartite or fused. Mentum (Fig. 53c) with 13 teeth,
median tooth about 2x as wide as Ist lateral; MR 1.6—2.4 (6); median tooth as high as 1st lateral. Ven-
24
tromental plates extended anteriorly between 1st and 2nd laterals. Premandible simple, with notched
apex. Chaetula laterales sparse. Mandible (Fig. 53a) with apıcal tooth as long or slightly longer than
1st inner tooth; outer margin notched opposite seta subdentalis, rest of margin smooth except for
occasional notch posteriorly; seta interna present. Antenna (Fig. 53b) with robust Lauterborn organs;
blade extended to 4th segment. AR 1.50-1.88 (6). Body with simple setae, most likely arranged like
that of saxosus. Anal tubules long, rounded, with dorsal pair shorter and thicker than ventral pair.
Biology: This species has been collected from rivers and creeks. It occurs with rivicola in habitats
in Oregon (South Santiam River) and Pennsylvania (Delaware River, Big Bushkill Creek, and Lines-
ville Creek). Thienemann (1939, 1954) reported free-living larvae and pupae in gelatinous cases on
stones. Adults emerge in April in Pennsylvanıa (Coffman, 1973), and generally from February
through May.
Distribution: Palearctic: Austria, Germany, Italy, Turkey. Nearctic: USA (Georgia, New York,
North Carolina, Oregon, Pennsylvanıa).
Material Examined: Type material. Non-type Material: Germany: Lunzer — 1940, 2-IV-40, A. Thienemann, 25 Ex; Par-
tenkirchen 1933 No. 72, A. Thienemann, IL, Mitis No. 19, 3L (ZSM). Italy: t. Ticiur, 26-3-1973, Rossaro, IM; Brembo 2,
1-III-1980, Rossaro, 2Ex; T. Piovena, 3-II-1976, Rossaro, 1MP (ROSS). USA: Georgia, Fanın Co., Noontootla Cr. at
Newport Rd., IV-24-1979, B. A. Caldwell, IL (CALD). New York, Lewis Co., Black River nr. Port Leyden, 7-VII-1976,
1L; Niagara Co., NiagaraR. nr. Youngstown, 6 Oct. 1976, 5L (NYSH). North Carolina, Iredell Co., Buffalo Shoals Creek,
Jan 1981, K. Dechart, I1L(NCNR). Oregon, South Santiam River, 18 May 1977, PE462, W. P. Coffman, 1Ex (COFF); Echo
Creek, 3 Oct. 1978, W. P. Coffman, #25, 4Ex (COFF). Pennsylvanıa, Monroe Co., Delaware River, n. of Party’s Beach,
15 April 1976, #1, D. Wartinbee, 3Ex (COFF); same data except 9 May 1976, #3, 9Ex (COFF); Lineville Creek, 13-IV-
1971, W. P. Coffman, 2Ex (CNC). Monroe Co., Big Bushkill Creek, Resica Falls, 17-IV-1976, 3Ex (COFF).
Remarks: Goetghebuer (1938) described this species in Orthocladıns from a single male collected ın Austria. The
figure ofthe hypopygium, with ahaired, pointed anal point and squared inferior volsella, resembles males of Ortho-
cladıns (Orthocladins). Goetghebuer (1942) later reproduced the figure and description, and placed /uteipes in his
heterogeneous O. (Orthocladins). He separated /uteipes from similar species of the subgenus by the VR and exten-
sion of the R4+5 and Costa, characters that are usually too variable for species determination in Orthocladius (So-
ponis 1977). However, having to use these characters showed the difficulty of separating the adult male of this spe-
cies, as does the key given here.
Not only is the male difficult to ıdentify, but the type was virtually impossible to view because it was melted by
Goetghebuer between 2 pieces of celluloid. Although the celluloid is not completely dissolved, the type can now
be examined clearly, but it is in poor condition. The type does agree with Goetghebuer’s (1938, 1942) ıllustrations.
Thienemann (1939) described the larva and pupa of /uteipes, and distinguished them from rivicola, a species with
which it ıs still confused today. Thienemann distinguished the pupa of /uteipes from rıvicola by the more slender
spines of the more numerous rows on tergites IV— VIII, and the larger thoracic horn. In the material examined here,
the thoracic horn of Iuteipes (80-110 um, n=20) is larger than that of rivicola (45-70 um, n=20). It is easiest to
identify /uteipes by the pedes spurii A on sternites V- VII, which Thienemann described but did not use in his key.
Later, Thienemann (1944) included /uteipes in his larval and pupal keys.
Simpson and Bode (1980), in their diagnosis of ©. (Enorthocladius) type Ill sp. larva, provided a photograph of
alarva of /uteipes with MR>1.5 and AR of 1.73. Examination of their material showed that rivicola was also present.
Easily identifiable only in the pupal stage, /uteipes has not been recorded frequently in the literature. Fittkau et
al. (1967) and Fittkau & Reiss (1978) recorded /uteipes in Limnofauna Europeae as an uncertain ”Orthocladins”.
Rossaro (1978b) illustrated the hypopygium and provided notes on /uteipes. In Coffman & Ferrington (1984), the
pupa will key to couplet 55.
Orthocladins luteipes belongs to the rivicola-group and is most easily determined by the exuviae. Males will be
difficult to determine without associated exuviae. Altough the type and the male from Italy have a high AR (2.00,
2.04), Rossaro (1978b) reported an average AR of 1.6 for /uteipes. The pupae are easily separable from rıvicola with
the characters provided, and become distinctive when many specimens of both species are examined. The larvae are
close to thienemanni, and Inteipes can be distinguished by the wide median tooth (high MR) and lower AR.
This species occurs with other O. (Euorthocladins), including rıvicola, and has probably been misidentified as rz-
vicola (pupa) and thienemanni (larva). Undoubtedly /uteipes occurs more widely than documented here, although
perhaps not as widely as rivicola, for example.
25
Orthocladius (Euorthocladius) rivicola Kieffer
Figs. 32, 33, 348, 37, 49, 55
Orthocladius rivicola Kieffer, 1911: 181 [original description; adult in key]. Thienemann, 1911:637 [notes on pupa,
locality data]. Thienemann, 1912: 74 [notes]. Potthast, 1914: 264, figs. 6-9 [pupa, larva]. Goetghebuer, 1932: 74,
88 [female, ın key to females]. Thienemann, 1935: 203—205 [in pupal, larval key; synonymy]. Pankratova, 1970:
173, 174, 178, fig. 106 [in pupal, larval keys; pupal, larval descriptions]. Reiss, 1983: 176 [checklist]. Rossaro,
1984: table 2 [record]. Bitusik & Ertlova, 1985: 603, 606, table 2 [ecology]].
Orthocladius (Chaetocladius) rivicola Kieffer. Goetghebuer, 1934: 89, 90, fig. 4 [male description].
Euorthocladius rivicola (Kieffer). Thienemann, 1936: 191 [record]. Thienemann, 1939: 7, fig. 2a [pupa]. Thiene-
mann, 1941: 65, 68, 78, 79, 82, 153, 180 [ecology, distribution]. Thienemann, 1944: 559, 648, fig. 13, 14a, 195 [in
pupal, larval keys]. Dittmar, 1955: 470, 481, 482, 484, table 30 [ecology]. Romaniszyn, 1958: 82 [in larval key].
Thienemann, 1954: 23, 31, 48, 49, 288, 301, 303, 333, 346, 347, 349, 355, 357, fig. 133.
Orthocladins (Orthocladius) rıvicola Kieffer. Goetghebuer, 1942: 32, 53, fig. 87 [male description, in male key].
Orthocladius ex gp. rivicola Kieff. Chernovskii, 1949: 205, 282 [in larval key, synonymy].
Orthocladins (Euorthocladius) rivicola Kieffer. Brundin, 1956: 101 [record]. Fittkau et al., 1967: 362 [checklist].
Saether, 1968: 463 [ecology ]. Saether, 1969: 61 [record]. Lehmann, 1971: 486 [ecology]. Kloet & Hincks, 1975:
(V)15 [checklist]. Rossaro, 1977: 122 [notes]. Rossaro, 1978a: 290, table 1 [distribution]. Rossaro, 1978b: 185
[distribution]. Säwedal, 1978: 87 [record]. Fittkau & Reiss, 1978: 421 [checklist]. Prat, 1979: 67, 68, fig. 19 [male
description]. Kownacki & Zosidze, 1980: 75, 79—81, table 2 [ecology]. Halvorsen et al., 1982: 119 [record]. Ros-
saro, 1982: 42—44 [in pupal, larval keys]. Mason & Lehmkuhl, 183: 207, fig. 19 [ecology]. Murray & Ashe, 1983:
230 [checklist]. Mason & Lehmkuhl, 1985: 878, table 1 [distribution]. Caspers & Schleuter, 1986: 323 [checklist].
Orthocadius (Enorthocladius) rivicola «. Rossaro, 1982: fig 31 [pupa].
Orthocladius (Enorthocladius) Thienemann type I. Soponis, 1977: 15-17, figs. 84c, 90, 101, 120 [pupal, larval de-
scription; in pupal, larval keys].
Orthocladius (Euorthocladius) species 6 [partim]. Coffman & Ferrington, 1984: fig. 25.415 [pupa].
Orthocladius (Euorthocladius) cf. thienemanni-saxosus |partim]. Coffman, 1973: table 1 [ecology].
Orthocladius fusiformis Goetghebuer. Goetghebuer and Dorier, 1939: 30-32, fig. 1-5.
Type Locality: Germany.
Type Material: Could not be located, believed lost.
Diagnosis
Orthocladins rivicola can be distinguished from other Holarctic species of O. (Euorthocladius) by
a combination of characters. Adult Male: lower AR (0.08- 1.76), sensilla chaetica on midleg, and de-
tails of the hypopygium (Figs. 32, 33). Pupa: absence of pedes spurii A and hooklets on tergite II, pre-
sence of posterior spine rows on tergites IV— VIII, and normally developed dorsocentral setae; can be
distinguished from kanıi by distribution. Larva: mentum with 13 teeth, MR<1.5, AR<1.8; cannot be
distinguished from asbhei.
Derivation of Name: L. rıvus, stream; L. cola, dweller, inhabitant.
Description
Adult Male (n = 27)
Small to medium species. Head. Verticals 9—20 (26), postorbitals 1-2 (21). Palps long with 3>4.
AR. 1.00-1.76 (82). Thorax. Lateral antepronotals 1—9 (26). Acrostichals 0-10, weak, begin within
l1or more AW. Dorsocentrals 7-16. Prealars 4-7. Scutellars 8-26, often multiserial, also biserial, or
multiserial. Wing. Length 1.30—2.80 mm (81). R with 2-9 setae. Squamals 10-36. VR 1.02-1.16
(25). Anal lobe slightly produced. Legs. LR1 0.61—0.75 (26). LR2 0.43—0.54 (26). LR3 0.47—0.59
(26). Sensilla chaetica (25) on tal of p2 (3-16). In addition, 3 specimens have sensilla chaetica on tal
of p3, 2 (25). Hypopygium (Figs. 32, 33). Virga present or absent. Superior volsella collar-like or
sightly triangular. Inferior volsella with dorsal part squared or rounded, and ventral part slightly ex-
tended below. Crista dorsalis long, robust.
26
Variation. The length of the terminal flagellomere is highly positively correlated with wing length in rivicola
(r=+0.943, p>.001, n=80) as it is in most Orthocladius (Soponis 1977). However, wing length is not as highly cor-
related with either the length of the basal flagellomeres 1-12 (r=+0.747, p>.001, n=80) or with AR (r=+0.753,
p>.001, n=80). Prat (1979) found a positive correlation between AR and wing length (WL 2.24 mm, AR 1.25; WL
3.00 mm, AR 1.6 to <1.8), and these were related to geographical locality. However, correlations with rations
should be interpreted carefully and are not usually biologically meaningful (Soponis 1977).
In the 80 specimens measured, no obvious relatinship exists between wing length and locality. Considerable va-
riation was found between specimens collected at the same locality, e.g. Trails Pond, Idaho, and at a generalllocality,
e.g. Alaska. But little variation was also found between specimens collected at the same locality, Baffin Island.
The palps appear longer in some specimens, and for a small sample there is a fairly high positive correlation be-
tween interocular distance and total palpal length (r=+0.810, p>.001, n=14). In rzvicola, at least, males with eyes
more wıdely separated tend to have longer palps. Again, there was no apparent relation between locality and either
of these two measurements.
Values from other studies of rıvıcola fall within the variation recorded in this material. AR: 1.40—1.50 (Rossaro
1978b); 1.50 (Lehmann 1971); 1.25—<1.80 (Prat 1979). Lower values of AR have been reported for high altitude
specimens: 0.80 at 1100 m (Goetghebuer 1934) and 0.90, altitude presumably high (Rossaro 1978b). Rossaro
(1978b) also reported 4—11 sensilla chaetica on tal of p2.
The hypopygium is highly variable, as seen here (Figs 32, 33), in Prat (1979), and in Goetghebuer (1934). In ma-
ture pupae (n=14), acrostichals were present or absent, and scutellars were uniserial, biserial, or multiserial.
Pupa (Exuviae)
Brown to pale brown, cephalothorax darker. Length 2.5—4.0 mm. Cephalothorax. Frontal warts
and cephalıic tubercles absent. Precorneals clumped, Pc1 usually longer and thicker than Pc2 and Pc3;
2 median antepronotals, 1 lateral antepronotal, 3 dorsocentrals, strong to weak, about as long as Pc1.
Thoracic horn (Fig. 34g) small, ellipsoid, dark brown, filled or clear, stalked; length 45-70 um (20).
Thorax dorsally wrinkled along eclosion line.
Abdomen (Fig. 49). Tergites: I bare; IV-VIII with central rows of moveable straight spines along
posterior margin (Fig. 37 c); II-VIII with small patches of spinules anteriorly; IV—VIII with central
patch of spinules anteriorly. Sternites: I bare; II-VIII with central patch of spinules anteriorly.
Setae on segments I—- VIII:
Den 4.4 5 1 IL I 39.533 3
9423 0) Odessa 0. 02, 92 009
SR Wer Non 12) 2
V 2 2402. 490,8 0)
Anal lobe greatly reduced, with two seta, one on distal half and one at midpoint. Genital sheaths
extended beyond lobe in males and females. Pedes Spurii A and B absent.
Variation. There is considerable variation in this widespread species. Spines in rows IV— VIII may be individually
weak to robust; these spines may be in 1-5 rows on the tergites; spines may be spaced close together or far apart.
The number of spines in the rows is higher in females than in males, but is not significantly different (t-test,
p>.001”).
rıvicola females (n = 5) rıvicola males (n = 5) Student’s t*
IV 80.20 # 21.19 (54-104) 48.00 + 18.51 (36-80) 2.5590
V 79.60 + 18.61 (60-100) 59.00 + 19.87 (47-94) 1.6918
VI 69.80 + 25.29 (44-103) 54.40 + 13.99 (41-76) 1.19135
VII 57.40 + 20.84 (39-90) 44.00 + 15.95 (33-72) 1.1417
VIII 41.20 + 19.80 (23-70) 29.60 + 10.83 (20-47) 1.1491
Lehmann (1971) found two distinct types of rivicola pupae in the Fulda. One type had 2 or more rows of spines
on the posterior margins of tergites IV VIII, the other had only a single row of spines. In the Plön (now ZSM) col-
lection he found many transitional forms between his two basic types, and he attributed these differences to intra-
specific varıation. It is possible that ashei was confused with rivicola, and ashei was the species with the single row
of spines.
27,
Setae on the abdomen are generally robust and easy to see in this species. Dorsocentrals can be forked or branch-
ed, weak to robust, but never as robust as in ashei. The thoracic horn can be filled or clear, small or large. The size
of the thoracic horn is unreliable for distinguishing rivicola from thienemanni or ashei. However, all Iuteipes have
larger thoracic horns than ashei, rivicola, and thienemanni.
There is considerable variation in the exuviae of rivicola. Several undescribed species may exist, including one
from northwestern North America with individually robust spines on IV—- VII.
Larva (Fourth Instar)
Body yellow or brown. Head capsule brown. Eye spots fused. Mentum (Fig. 55d) with 13 teeth,
median tooth about as wide as Ist lateral; MR 1.00-1.50 (7); median tooth as high or lower than Ist
lateral. Ventromental plates extended anteriorly between 2nd and 3rd laterals. Epipharynx (Fig. 55a)
with premandible simple. Chaetula laterales sparse. Mandible (Fig. 55b) with apical tooth as long or
slightly longer than Ist inner tooth; outer margin notched opposite seta subdentalis, rest of margin
smooth except for occasional notch posteriorly; seta interna present. Antenna (Fig. 55c) with robust
Lauterborn organs; blade extended to 5th segment. AR 1.38— 1.80 (7). Body with simple setae, some
short and stiff, some long and curved, and arranged like saxosus. Anal tubules moderately long, round-
ed, with dorsal pair thicker than ventral pair.
Variation. The variation of the larvae is underestimated in this material. Consequently, larvae associated with pu-
pae will be most accurately determined.
Biology: The larvae live on stones in currents of springs, brooks, streams, and rivers (Thienemann
1935, 1941, 1954; Dittmar 1955; Lehmann 1971). Larval and pupal tubes are similar to those of thiene-
manni (Fig. 40). Larvae usually live in individual gelatinous tubes covered with sand grains and detri-
tus, cemented along their lengths to the stone. Pupae usually live in individual, clear, half-ellipsoid, ge-
latinous tubes with holes at both ends for the current. Larvae are rheobionts and eurytherms (Thiene-
mann 1912, fide Dittmar 1955). Illies (1952, fide Dittmar 1955) found larves of rivicola in the mud, but
such finds may be accidental for rheobionts like rivicola. Thienemann (1941, 1954) observed large
numbers of free-living mature larvae and prepupae in submerged reeds (Hydrurus) collected in Swit-
zerland.
Based on exuviae, rivicola occurs with thienemanni in at least 7 different sites: Ottawa River, On-
tarıo, Canada; River Fulda, Germany; Linesville Creek, Pennsylvania; East Fork of Chattoga River,
South Carolina; Fall Creek, South Carolina; Seneca Creek, South Carolina; and, Pigeon River, Ten-
nessee. Bitüsik and Ertlovä (1985) found rivicola and thienemanni in the River Rajcıanka. They con-
cluded that rivicola occurs in small numbers in every lotic zone studied, but thienemanni is largely
confined to the 2. zone of high diatom density, occurring in high numbers. Kownacki & Zosidze
(1980) found rivicola dominant in certain zones of rivers and streams of the Little Caucasus Moun-
tains.
The adults emerge from November to May in Italy, and can be found at higher altitudes in July and
August (Rossaro 1977, 1978a, b). Dittmar (1955) found adults in Germany from January to April.
Thienemann (1954) found two generations in the Lunzer Gebiet: at the beginning of June, and from
August to October. Lehmann (1971) recorded two emerging generations from the Fulda in Germany;
the first from March to May/June, and the second in October/November. In Canada, Mason and
Lehmkuhl (1938) found rivicola emerging from April to October, with only slight differences be-
tween emergence upstream and downstream of a hydroelectric development. In South Carolina,
adults emerge from December to May.
This species also occurs at high altitudes and high latitudes (Thienemann 1936, 1941, 1954; Rossaro
1978b; Goetghebuer 1934).
Mites have been associated with rivicola (Thienemann 1954).
Distribution: Palearctic: England, France, Germany, Ireland, Italy, Poland, Sweden, Switzerland.
Nearctic: Canada, Greenland, USA.
28
Material Examined: Non-type material: Austria. Lunz, Thienemann, 2M, 3Ex (ZSM). Bulgaria. Blagoevgrad, r. Bistriza,
28-II-1978, N. Natchev, 1Ex (NAT). Canada. Alberta: Waterton Natl. Park, 21-VII-1967, A. L. Hamilton, A.3.1, 4Ex
(FWI); A. L. Hamilton and ©. A. Saether, 1M, 1M w/Ex (FWI); Calgary, 4-VIII-1970, J. Martin, 1M (CNC). Manitoba:
Duck Mtns, South Duck, 14-V-1980, IM; 16-V-1980, 1M; Duck Mtns, Cowan G.,24-V-1980, 1M (FWT); Edwards Cr. Stn.
1, Riding Mtn. Natl. Pk., 50°59°15”, 100°04°00“, 4-VII-1975, 1M (CNC). Ontario (CNC): Ottawa, 21-X-1971,J. R. Dow-
nes, IM; Ottawa, Central Expmntl Farm, 28-X-1966, J. Martin, 4M; Ottawa, Britannıa Flitration Plant, 5-V-1971, D.R.
Oliver, IM; Ottawa, Ottawa R. Beach at Woodrufe, 9-V-1972, A. R. Soponis, 1M; OttawaRR. at Ottawa, 22-IV-1966, J.
Martin, IEx; Ottawa, OttawaR. at Rumic Rapids, drift, 16-IV-1985, P. S. Cranston, 13Ex; Green Creek, coll. 31-V-1979,
em. 2-VI-1967, DRO, LHS, RDM, 1F w/Ex. Quebec (CNC): Ile Ste. Helene, Montreal, 2-3-VII-1964, A. Nimmo, Shadfly
Project, 1M; 16-17-VI-1964, 1M. Northwest Territories (CNC): Oscar Creek, 25-V-1972, FWI Pipeline Project, 2FP,
5MP; Trail R., 11-VIII-1972, FWI Pipeline Project, 1MP; Ft. Laird, 60°15’N 123°28’W, 5-VI-1973, D. R. Oliver, IM; Ba-
thurst Is., J. Bissett, 4-VIII-1977, 2M; 5-VIII-1977, 2M; 6-VIII-1977, 3M; 12-VIII-1977, 5M; Bathurst Is., 75°24’N
100°24’W, 25-VII-1984, B. Hayes, 1M w/Ex; Martin R., FWI Pipeline Project, 10-VIII-1972, 3M; 18-VIII-1972, 1M; Ma-
sik R., Banks Is., W. R. Mason, 18-VII-1968, 1M; Head of Clyde Inlet, Baffın Is., 7-VIII-1958, G. E. Shewell, IM.
Yukon-Territory: Carıbou Bar Creek, FWI-Pipeline Project, 19-VI-1972, 4M; 2FP, 1MP; 20-VI-1972, 2MP, 3FP, 15M;
12-VII-1972, 1M; J. Robillard, 18-VI-1973, 1M w/Ex, LS; Driftwood River, 19-VII-1972, 1L (CNC); Little Bear Creek,
Mile 1022 Alaska Hwy, 3-VI-1978, D. R. Towns, 1M w/Ex (FSCA). Germany. Partenkirchen 125, 167, 94e, 1934, A. Thie-
nemann, 5Ex (ZSM); Fulda, 10-III-1964, E. J. Fittkau, IM, 1Ex, 1FP; Rhuhr, 8-V-11, bei Oloberg, A. Thienemann, 2MP,
1FP; Pullach, 26-11-1978, E. Ott, 1M w/Ex; River Isar, ca. 500 m oberhalb Loisach-Mündung, 3-IV-1986, F. Reiss, 5Ex
(ZSM). Greenland. Nedre Midsommer So, 10-VII-1966, Can. Pearyland Expd., IM (CNC). Italy. Po River, 1975, 1976, B.
Rossaro, Ex; Brembo, 1-IX-1980, B. Rossaro, 3Ex, 1MP (ROSS); 21-VII-1980, 2M (ROSS). Norway. Ekse, HOi: Vaksdal,
9-VII-1979, E. Willassen, 1 reared M; same data except 11-VI-1979, 2 reared M; same data except 9-VII-1979, 1 reared M
(ZMB). Sweden. Stordalen Sta., 7-VII-1958, D. R. Oliver, 3Ex (CNC); Lappland, 1936-1937, A. Thienemann, 2Fx, 1MP,
3FP (ZSM). Switzerland. Nationalpark Nadig, No 417, in Hydranus, A. Thienemann, 3FP, 1MP (ZSM). USA. Alaska:
K. M. Sommermann, jeep trap (USNM): Palmer, VI-1964, 4M; Kenai Pen., Johnson L.-Soldatna, 19-VI-1965, IM; Mata-
nuska Eklutna Hwy, 22-VI-1964, 4M; Palmer-Anchorage Hwy., 22-VI-1964, 3M; Anchorage-Potter-Mt. Alyeska, 21-IX-
1966, 2M; Anchorage-Eagle R.-L. Susitna R., 22-IX-1966, 7M; 24-IX-1964, 4M (USNM); Unnamed creek above Galbraith
Camp 208075, 9-VII-1976, drift net, USGS, 2L, 1Ex (CALD). Arkansas: Benton Co., Prairie Cr., NW !/,, Sec. 2. TI9N,
R29W, 4-I-1963,O. A. Hiteand L. K. Aggus, on bridge, 1M (SUB). Colorado: Delta Co., 1 mı. N Hotchkiss, 9-VIII-1971,
M. Beard, at light, 1M (SUB). Georgia: Fannin Co., Noontootla Creek at Newport Rd., 24-IV-1979, B. A. Caldwell, 2L,
1M w/Ex (CALD); Stekoa Creek at Wolf Creek Rd. (Savannah R. Drng.), 13-X-1973, E.P. D., IL(CALD). Idaho: Latah
Co., Trails Pond, 7-III-1969, J. M. Gillespie, found on ice and vegetation, 8M (MINN). Kansas: Kiowa Co., Rezeau Ranch,
spring fed creek, 19-III-1982, No. 31, B. G. Coler, J. K. Gelhaus, 17Ex (SBSK). Minnesota: Minneapolis, 4-VI-1969, D. E.
Maschwitz, at light, 1M; Cook Co., Min. F. $. Hovland, 9-VI-1969, E. F. Cook NJ Mosquito Trap, 1M; Ramsey Co., St.
Paul, 21-V-1968, R. A. Hellenthal, U of M vacuum trap, 1M; St. Louis Co., U of M Duluth, 6-VIII-1968, E. F. Cook, NJ
Mosquito Trap, 1M (MINN). Montana: Hamilton, outside lab bldg., 19-III-1960, C. B. Philip, 2M (SUB); Rock Creek,
17-VIII-1974, W. P. Coffman, 2Ex (COFF). New York: Erie Co., Cazenovia Creek at East Aurora, 80 m upstream Mill
Rd. bridge, multiplate sample, 29-VII-1976, K. W. Simpson, L (NYSH); Green Co., Gooseberry Creek nr. Tannersville,
coll. 10-VI-1978, em. 11-VI-1978, R. W. Bode, scraped from rock, IEx w/wing (NYSH); Niagara Co., Niagara R. nr.
Youngstown, 6-X-1976, L, 1Ex (NYSH); Rensselaer Co., Cropseyville, Route 2, Quackenkill Creek, 23-IV-1985, R. Bode,
3Ex (NYSH); St. Lawrence Co., St. Lawrence River nr. Waddington, 4-X-1977, L (NYSH); Ithaca, Apr., IM (SUB).
Tompkins Co., Ellis Hollow, 15-VI-1963, ©. ©. Berg, LT, 4M (USNM); Wash. Co., Hudson R. at Hudson Falls, 1km.
upstrm. Bakers Falls dam, 8-VI-1976, K. W. Simpson, L (NYSH). North Carolina: Orange Co., Little River, II-1979, D.
Lenat, S. Mozley, 1L(NCNR); Transylvanıa Co., Horsepasture R., 20-11-1976, P. Hudson, 2M (HUD); Wake Co., Cane
Creek, II-1980, D. Lenat, S. Mozley, 1L (NCNR). Oregon: Aumsville, 22-II-1963, K. Goeden, light, 3M (USNM). Penn-
sylvanıa: Crawford Co., Lindesville Creek, 7-IV-1971, W. P. Coffman, 4Ex (CNC); same date except 13-IV-1971, 5Ex
(CNC); stream nr. PA 285/179 btwn. Cochranton and Geneva, 28-V-1975, #4, W. P. Coffman, 2Ex (COFF); Shawnee,
stream, 4-IV-1976, #2, D. Wartinbee, 2Ex (COFF); Monroe Co., Big Bushkill Creek, Resica Falls, 17-IV-1976, 4Ex
(COFF). South Carolina (HUD): Oconee Co., East Fk. Chattooga R., Nat. Fish Hatchery, 28-I-1981, P. L. Hudson, 4M;
same data except 27-XII-1979, 1Mw/Ex; 15-II-1976, 1M w/Ex, IM; Oconnee Co., Seneca, Fall Creek, Lake Keowee, 30-
IV-1974, P. L. Hudson, 1Fx; same data except 10-X-1975, 1Ex; Oconee Co., Seneca Creek, 22-I-1976, 1FP, 2M, 1L; same
data except 10-11-1977, 1MP; 26-III-1977, 1MP; 1-V-1977, 1MP; Oconee Co., Salem, Horsepasture River, 20-II-1976, P.
L. Hudson, 3Ex; 18-XI-1977, 1M w/Ex; Pickens Co., Six Mile Creek, 4-II-1976, P. L. Hudson, IM. South Dakota: Clay
Co., Missouri R., Vermillion, 26-IV-1976, P. L. Hudson, channel, 1MP (HUD). Tennessee: Pigeon R., Gattlinburg, 3-V-
1977, P. L. Hudson, IEx (HUD). Virginia: Falls Church, Holmes River, 17-VI-1960, W. W. Wirth, lighttrap, IM (USNM).
Washington: Benton Co., Hanford, Columbia R., D. R. Oliver, 20-III-1952, 1M w/Ex; 27-III-1952, 2MP; 3-IV-1952, 1M
w/Ex (CNC); Yakıma Co., 17-18-XII-1971, B. J. Landis, ex yellow water traps, 1M (SUB).
Remarks: Kieffer (1911) described this species in a key to adults of Orthocladins. He distinguished rivicola by the
greenish-white abdomen, bare wings and veins, and cubitus not extended. He stated that the specimens were
collected in Germany and were obtained by rearing the immature stages, which would subsequently be described
by Thienemann. Kieffer did not mention the sex or number of specimens, nor did he designate a holotype. In cor-
respondence between Thienemann and Kieffer, Kieffer wrote Dactylocladus rivicola nsp O’P for specimens collect-
ed 8.IX.09 from Lenne bei Schmallenberg. This same material was cited by Thienemann (1911/12:74) as Orthocla-
29
dius rivicola Kieffer, so most likely this was the original material that Kieffer used to describe rivicola. A search of
the ZSM collection resulted in no specimens from this locality that could qualify for lectotype designation. Speci-
mens from other localities mentioned by Thienemann (1911/12:74) were also not found. Consequently a neotype
for rivicola will not be designated here because this is not an exceptional circumstance (Rules of ICZN, Article 75a),
and suitable (reared) material from the type locality in Germany does not exist.
Goetghebuer (1932) briefly described the color and wings of the female of rivicola, and included the species in a
key to females. Later Goetghebuer (1934) described the male of rivicola, and placed it in the subgenus Orthocladius
(Chaetocladius). He included characters of body length, wing variation, AR, and LR. The figure of the hypopygium
shows the dorsal lobe of the gonocoxite rounded and in a low position, which closely resembles a male from Idaho
(Fig. 33a). Goetghebuer noted the similarity of the males of rıvicola and thienemanni, and separated them by the
high AR of thienemanni (2.00). The AR of 0.80 is low for rıvicola, and this may be linked to high altitude. Later
Goetghebuer (1942) reproduced essentially the same figure and description of the male, and placed it in Orthocla-
dius (Orthocladius).
Prat (1979) provided the most recent figure of the hypopygium of rivicola, which he distinguished from the male
of thienemanni by the lower AR (1.50). Most Nearctic specimens have amore squared dorsal part of the basal lobe
of the gonocoxite (Fig. 32, 33b) than Prat’s figure.
The immature stages of rıvicola have been recorded more often than the adults. Potthast (1914) described and fi-
gured the larva and pupa, and included the distribution. Potthast could not separate the larva of rıvicola and thiene-
manni, but separated the pupae by differences in the spine rows and the larger thoracic horn of rivicola. In the ma-
terial examined here, both species have similarly-sized thoracic horns (30-60 um for rivicola, 30— 70 um for thie-
nemannı). -
Thienemann (1944) separated rivicola larvae from other Euorthocladius by the equally long anal tubules, low AR,
small body length, and distribution. Chernovskii (1949) distinguished the rivicola group from the thienemanni
group ın his larval keys by the lower AR (1.10 versus 2.00) and the smaller body size (5 versus 8 mm). Romaniszyn
(1958) uses AR and body length in his larval keys. Pankratova (1970) used Thienemann’s figures, and separated the
larvae of rivicola and thienemanni on the AR alone (1.40 versus 2.00) She also mentioned that the premandible was
bifurcate and showed a crenulated margin on the mandible, characters not seen in this material. Soponis (1977)
briefly described rıvicola as O. (Enorthocladius) Type land included it in subgeneric larval and pupal keys. Rossaro
(1982) provided larval keys but did not separate rivicola from Iuteipes.
Thienemann (1939) distinguished the pupae of /uteipes and rivicola by the stronger, shorter, darker, and denser
spines in the posterior spine rows and the smaller thoracic horn of rıvicola. Later, in his pupal keys, Thienemann
(1944) used these same characters but he could not distinguish the pupae of rivicola and fusiformis. An exuviae of
fusiformis determined by Dorier deposited in the ZSM collection was examined, and it is a good rivicola.
Pankratova (1970) did not distinguish between the pupae of thienemanni, rivicola, and saxosus.
Rossaro (1982) provided an excellent review of the Italian species in the subgenus with workable keys and figures
of the species. He distinguished two forms of the pupae of rivicola, called @ and 8. Some of this material has been
examined, and form « is rivicola, whereas form ß is the new species asheı.
Coffman and Ferrington (1984) included rivicola in their pupal keys; rivicola will key to couplet 55.
Orthocladius (Euorthocladius) rivulorum Kieffer
Figs 20, 21, 34b, 38a, 51
Orthocladius rivulorum Kieffer, 1909: 48 [adult description]. Kieffer & Thienemann, 1909: 32 [notes]. Potthast,
1914: 264— 266, figs 10— 14 [larval, pupal descriptions]. Thienemann, 1935: 203, 204, fig. 1 [in pupal, larval keys,
synonymy]. Pankratova, 1970: 173, 174, 178, 179, fig. 107 [larval, pupal descriptions]. Brennan et al., 1981: 149,
table 2, 4 [ecology]. Reiss, 1983: 176 [checklist]. Rossaro, 1984: table 2 [record].
Orthocladius (Dactylocladius) rıivulorum Kieffer. Goetghebuer, 1933: 215, 216, 218, figs 7, 7a [description of male,
female; in keys to males, females].
Spaniotoma (Orthocladius) rivulorum Kieffer. Johannsen, 1937: 56, 58, 62, 72, fig. 240 [in larval, pupal keys].
Euorthocladius rivulorum Kieffer. Thienemann, 1935: 201—204, fig. 1 [in pupal, larval keys, distribution, syn-
onymy]. Thienemann, 1936: 191 [ecology]. Thienemann, 1944: 558, 648, fıgs 9, 11, 201 [in pupal, larval keys].
Thienemann, 1954: 23, 49, 108, 147, 191, 301, 303, 309, 344, 345, 347, 349, 356, 360, 670, figs 30, 142 a. Romanis-
zyn, 1958: 27, 82 [in larval key].
30
Orthocladius (Orthocladius) rivulorum Kieffer. Goetghebuer, 1942: 33, 53, fig. 88 [description of male, female, in
key to males].
Orthocladins ex gp. rivulorum Kieffer. Chernovskii, 1949: 205, fig. 129a [in larval key].
Orthocladius (Euorthocladius) rivulorum Kieffer. Brundin, 1956: 101, fig. 64 [record]. Fittkau et al., 1967: 362
[checklist]. Saether, 1968: 464 [record]. Lehmann, 1971: 486 [ecology]. Lindegaard-Petersen, 1972: 482 [eco-
logy]. Fittkau & Reiss, 1978: 421 [checklist]. Pinder, 1978: 70, figs 35G, 111 B [in key to males]. Rossaro, 1978a:
290, table 1 [ecology]. Rossaro, 1978b: 185 [ecology]. Kownacki & Zosidze, 1980: table 2 [ecology]. Cranston,
1982: 102, fig. 39e [in larval key]. Drake, 1982: 234, fig. 6 [ecology]]. Rossaro, 1982: 42, figs 30, 31 [in pupal, larval
keys]. Murrary & Ashe, 1983: 230 [checklist]. Langton, 1984: 142, fig. 49a [in pupal key]. Sahin, 1984: 80, figs
198, 199 [larval description, ın larval key].
Hydrobaenus rivulorum ? (Kieffer). Roback, 1957 a: 76, 80, figs 183, 184 [in pupal, larval keys].
Orthocladins (Euorthocladius) sp. 1 Oliver et al., 1978: 18, fig. 167 [in larval key].
Orthocladius (Euorthocladius) cf. rivnlorum-suspensus. Coffman, 1973: table 1 [ecology]].
Orthocladius (Euorthocladius) Alaska sp. III Tilley, 1979: 138, 139, fig. 8 [larva).
Orthocladius (Euorthocladius) species 1 Coffman & Ferrington, 1984: figs 25.391— 25.393 [in pupal key].
Orthocladius (Euorthocladius) sp. Coffman & Ferrington, 1984: fig. 25.203 [in larval key].
Chironomus (Orthocladius) sordidellus Zetterstedt sensu Taylor, 1903: 521-523, figs 1, 2 [ecology] [misidentifica-
ton].
Orthocladius sordidellus Zetterstedt sensu Kieffer & Thienemann, 1906:148, 152, 153, figs 7—9 [misidentifikation].
Type Locality: Germany, Ennepe, in Westphalıa.
Type Material: Lectotype: A single female exuviae, labelled by Thienemann as Ennepe, Orthocladius sordidellus,
then later labelled by Thienemann as Orthocladius rivulorum n.sp. These two labels were the only labels on the
slide. The lectotype is circled on the slide as the lower exuviae under the right cover slip when the labels are on the
left side. A paralectotype female exuviae is under the same coverslip: adamaged male exuviae (non-type material)
is under a broken cover slip on the same slide.
Based on Thienemann’s correspondence it’s certain that this is the material associated with the adult females that
Kieffer (1909) used to describe rıvulorum. In a letter sent to Kieffer dated 17-VI-1908 Thienemann wrote: „Ortho-
cladius sordidellus, Ennepe, dicht unter der Sperre 5.VI.08, Gallertgehause wie sie von Taylor u. Lauterborn be-
schrieben“. Kieffer’s answer written in the same letter, in his own handwriting, was ”Orthocladius rivulorum n.sp.
Q”. According to Opinion 1147, Ruling 1 (ICZN 1981), this material qualifies for lectotype designation. I am
hereby designating this material described above as lectotype and paralectotype. There was no other material from
Ennepe collected by Thienemann in the ZSM.
Diagnosis
Orthocladius rivulorum can be distinguished from other Holarctic species of O. (Euorthocladius)
by acombination of characters. Adult Male: lower AR (1.30) and details of the hypopygium (Figs 20,
21). Pupa: hooklets along posterior margin of tergite II, small round spine patches on tergites
IIT-VII, and bubbled thoracic horn. Larva: 17—21 teeth on mentum, weak Lauterborn organs,
squared head capsule, isolated 4th tooth of mandible, slender shape of mandible, and distribution.
Derivation of Name: L. rivulus, a small brook.
Description
Adult Male (n = 4)
Brown (O. D.: yellow body with black bands). Medium to large species. Head. Verticals 12-16,
postorbitals 0-4. Palps long with 34 (1). AR 1.29—1.30 (2). Thorax. Lateral antepronotals 5-9 (3).
Acrostichals absent. Dorsocentrals 5-9. Prealars 4-5 (3). Scutellars 15-27, biserial to multiserial.
Wing. Length 2.05-2.38 mm (2). R with 6-9 setae (2). Squamals 21-31 (3). VR 1.11-1.12 (2). Anal
lobe slightly produced. Legs. LR1 0.73 (2). LR2 0.50—0.53 (2). LR3 0.55—0.56 (2). Sensilla chaetica
on tal of p2, 7-8 (2) and p3, 7-8 (2). Hypopygium (Figs 20, 21). Virga present but difficult to see.
Superior volsella collar-like. Inferior volsella with dorsal part arched convexly, nose-like, and ventral
part covered or slightly extended below.
31
Variation. The varıation in the adult male is not understood. Apparently the immature stages of rivulorum are
recognized more often than the adults. The reared male from Ireland (Fig. 20) is typical of this species.
Pupa (Exuvia)
Light brown; apophyses on I-VI, variable; length 2.5-4.3 mm. Cephalothorax. Frontal warts
weak or absent; cephalic tubercles absent. Precorneals spaced from each other evenly, 2—3x as long
as dorsocentrals; 2 median antepronotals, O lateral antepronotals, 4—5 dorsocentrals, weak but often
with large sockets; spacing variable (1-1-1-1, 1-1-2, 2-1-1, 2-2). Thoracic horn (Fig. 34b)
long, tubular, filled, with bubbled surface; length 170-260 um. Thorax dorsally smooth with some
sculpturing and/or rugosity mesad of wing base and posteriorly along eclosion line.
Abdomen (Fig. 38a). Tergites: I bare; II-V with median patch of recurved hooklets along posterior
margin; III-VII with small anterior circular patch of posteriorly-directed spines; on VIlIa patch ıs ın-
dicated; [IV—-VI with strong spines in horizontal patch on either side of medial patch; anterior patch
of spinules on II-VIII, most extensive on VI—- VIII. Sternites: I, VIII bare; II-III with central patch
of spinules anteriorly; IV, VII with spinules anteriorly; VIII with 2 off-center patches of spinules an-
teriorly.
Setae (weak) on segments I- VII:
Diva STR Pe 72 IE 1 PR, TRORR JOnBB:. BIN BE PURE C9P & WORR..
Wu A E FEpE SE: N Ode te tt
Anal lobe strongly developed into large, circular lobes; setae absent. Genital sheaths slightly extended
beyond lobe in male, not in female. Pedes spurii B on II; pedes spurii A absent.
Variation. The patches of hooklets are moveable. The arrangement of the dorsocentrals is variable. The thoracic
horn can be weakly or strongly bubbled.
Larva (Fourth Instar)
Body yellow, brown, or green. Head capsule brown; preserved, yellow. Eye spots bipartite or fu-
sed. Head capsule (Fig. 51f) squared. Mentum (Fig. 5le) with 17—21 teeth, usually 19; median tooth
more than 4x as wide as 1st lateral; MR 4.8-8.5 (10); median tooth much higher than Ist lateral. Ven-
tromental plates extended anteriorly between 2nd and 3rd laterals, less commonly between Ist and
2nd or between median and Ist. Epipharynx (Fig. 5la) with premandible simple, slender, and similar
to that in Orthocladius (Orthocladins). Cheatula laterales full, moustache-like. Mandible (Fig. 51c)
with apıcal tooth longer that combined length of 3 inner teeth; 4th tooth separated by space from rest
of mandible; outer margin notched opposite seta subdentalis; rest of margin smooth except for small
notch posteriorly; seta interna present. Antenna (Fig. 51 b) with moderately developed or weak Lau-
terborn organs; blade extended to 5th segment. AR 1.88—2.22 (8). Body with simple, single setae and
possibly arranged like that of saxosus. Anal tubules long, rounded, subequal, with dorsal pair thicker
than ventral pair.
Variation. Chernovskii (1949) and Pankratova (1970) reported an AR of 2.5.
The number of teeth on the mentum are highly variable. Based on figures in the literature, these numbers of teeth
were counted: 17 (Tilley 1979; Sahin 1984); 18 (Romaniszyn 1958; Coffman & Ferrington 1984; Cranston 1982);
19 (Potthast 1914, reproduced in Thienemann 1944, Chernovskii 1949, Pankratova 1970; Johannsen 1937); 21 (Oli-
ver etal. 1978, Rossaro 1982); and 23 (Kieffer & Thienemann 1906). In 18 examined specimens, the number of teeth
on the mentum were: 21 (3), 20 (1), 19 (10), 18 (2), and 17 (2). Sometimes the number of teeth are not symmertrical
(here, and cf. Coffman & Ferrington 1984). Whether the variation in mental teeth is due to instar age, species diffe-
rences, or other factors remains to be determined.
Biology: The larvae usually live on stones and sometimes on moss in fast flowing waters of brooks,
streams, and rivers (Thienemann 1935, 1936, 1954). The gelatinous, cylindrical larval tube is attached
32
to the substrate at one end, and is often overgrown with one or more species of diatoms (Taylor 1903,
Lauterborn 1905, Thienemann 1954). The tube is transformed into a pear-shaped pupal case, suspend-
ed by an anchor at one end (Fig. 51d). Mites and mermithids have been found associated with rıvu-
lorum (Taylor 1903, Thienemann 1954).
The adults emerge during the winter or early spring. They emerge March to May in the Fulda, Ger-
many (Lehmann 1971); May in Denmark (Lindegaard-Petersen 1972); November, February and
April in Italy (Rossaro 1978a, b); and April and May in Pennsylvanıa, USA (Coffman 1973).
This species also occurs at high altitudes; e.g. alpine brooks (Thienemann 1936, 1954).
Distribution: Palearctic: Austria, Denmark, England, Germany, Ireland, Poland, North Africa
(Lehmann 1971), Norway, Sweden, Switzerland, Turkey. Nearctic: Canada, USA.
Material Examined: Lectotype and paralectotypes. Non-type material: Canada (CNC). Quebec: R. Blanche, $. of Per-
kins, 9-V-1972, A.R.Soponis and J. Robillard, 1MP. New Brunswick: Kouchibouguac Nat’] Park, 30-V-1978, D. R. Oliver
and M.E. Roussel, 1M. N. W.T.: Oscar Creek, 25-V-1972, FWI Pipeline Project, 1L. Yukon Territory: (FWI Pipeline Pro-
ject) Bluefish River, 14-VIII-1972, 2L; Old Crow River, 25-V-1972, 2L; Driftwood River, 16-VIII-1971, 1L; Lord Creek,
19-VII-1972, 1L; Carıbou Bar Creek, 20-VI-1972 1L; 10-VIII-1972, 1L. Denmark: Jutland, Linding Ä., 14-V-1964, Claus
Lindegaard: 14-V-1964, 1L; 22-V-1965, 1F; 3-VII-1968, 1F; V-1968, 1Ex; 20-V-1969, 2L (UCOP). England: East Sussex,
Marsh Green, 17-IV-1978, P. S. Cranston, 5L (BMNH); Tadnoll Brook, 17-V-1976, L. C. V. Pinder, 1 reard M, 1 reared
F (FBA). Germany. A. Thienemann: Bach Kossau, Ostholstein, IV-1936, 1Ex; Partenkirchen, Oberbayern, 3L (ZSM). Ire-
land. River Flesk, Clydagh Bridge, drift, 16-19-V-1978, P. Ashe, 1M w/Ex (DUB). Italy. (B. Rossaro, ROSS): Brembo, 16-
III-1981, 3L, 1Ex; 23-X11-1975, 3L;9-I-1980, 1Ex; Lot Entraygnes passerelle, 22-IX-1977, 1Ex; 26-11-1979, 1Ex. USA. Ar-
kansas: Wash. Co., Tuttle Branch off Rt. 74, 10-I-68, Allen and Fuller, 1M (INHS). Colorado: Arapahoe Co., S. Platt River,
5-XI-1981, M. W. Heyn, 2L (HEY); same locality, 6-XI-1981, P. Guthrie, 1L (GUT). Minnesota (MINN): Cook Co., Min.
F. $. Hovland, N. J. Mosquito Trap, 13-V-1968, E. F. Cook, IM; Mississippi River, Montecello, 19-II-1976, IM; same
locality, 23-II-1978, 1M North Carolina: Mitchel Co., N. Toe River, 2-II-1978, K. Dechart, 3L (NCNR). Oregon: Meto-
lius River, 3-X-1978, W. P. Coffman, 4Ex (COFF). Pennsylvanıa: Crawford Co., Linesville Creek, 13-IV-1971, W. P.
Coffman, 2Ex, (CNC); 7-IV-1971, 2Ex (CNC); 6-V-1971, 2Ex (CNC); Delaware River, 9-V-1976, D. Wartinbee, 6Ex
(COFF); Monroe Co., Big Bushkill Creek, Resica Falls, 17-IV-1976, 1Ex (COFF). South Carolina: Oconee Co., Horse
Pasture River, Salem, 17-III-1977, P. L. Hudson, IM (HUD).
Remarks: Kieffer (1909) described this species from Germany using adult specimens reared by Thienemann. He
separated rivulorum from O. pedestris by the wings, yellow body with black legs and black markings, cubitus not
extended, and non-branched antennal sensillae, adding that the larvae live in gelatinous tubes. He did not provide
figures, he did not mention how many specimens he had, and he did not designate a holotype.
Goetghebuer (1933) placed rıvulorum in Dactylocladius based on the adult characters, and provided the first fi-
gure of the hypopygium and female antenna, as well as amore complete description. He used characters such as
body length, AR, LR, wing venation, and hypopygium. In his material the AR was about 1.00. In his figure of the
hypopygium, the anal point ıs not haired, although the drawing looks like rıvnlorum. However, the examination
of several Goetghebuer types shows that Goetghebuer did not always draw setae on the anal point when present.
Later, Goetghebuer (1942) essentially reproduced the same hypopygial figure and description, and included the
male in akey with AR of 1.00.
Brundin (1956) included rzvulorum in his subgenus Euorthocladins and provided a more accurate figure ofthehy-
popygium, with haired anal point and slight crista dorsalis. Pinder (1978) provided the most recent figure of the hy-
popygium, and included rıvulorum in his key to males of Britain.
The tubes of the larvaand pupa of rivulorum were described as belonging to Chironomus (Orthocladius) sordidel-
lus by Taylor (1903, fıgs. 1, 2) and to an unnamed chironomid by Lauterborn (1905, fig. 15). Taylor’s figures were
reproduced in Thienemann (1954, fig. 30) and here (Fig. 51d).
Potthast (1914) described the larva and pupa of rıvulorum, along with its habits, and provided figures of the man-
dible, mentum, proleg claws, exuviae, and thoracic horn. In his figure of the exuviae, tergite II appears bare. The
patch of recurved spines on II most likely overlapped with the rounded spine patch of III (cf. Fig. 38a).
Thienemann, in Kieffer & Thienemann (1906), provided a figure of the mentum, mandible, pupal spines, and se-
tae of rivulorum. He treated the immature stages as sordidellus, based on the description of the larval and pupal tu-
bes by Taylor (1903). Thienemann compared his material with the descriptions of the immature stages of sordidellus
by Johannsen (1905), who actually described a species of Orthocladins (Orthocladius). Within a few years, Kieffer
& Thienemann (1909) knew they had rivulorum and not sordidellus.
Thienemann (1935) placed rivulorum in his genus Euorthocladius, and gave synonymy, distribution, and keys to
larvae and pupae. He distinguished the larvae by the 8-9 pairs of lateral teeth on the mentum, unequal apices of SI,
moustache-like epipharynx, and unique tubes. He distinguished the pupae by the spines on tergites III- VIII, tho-
33
racic horn, and unique tubes. Thienemann (1944) used these characters in his keys. He distinguished the larvae of
rivulorum from those of suspensus by distribution; the pupa, by the thoracic horn and spine patterns.
Johannsen (1937) used the thoracic horn and 8—9 pairs of lateral teeth on the mentum to distinguish the immature
stages in his keys, and Roback (1957 a) largely followed him, and figured the simple premandible.
Chernovskii (1949) included rivulorum in his larval keys, and noted an AR of 2.5, green body color, and body
length of 5 mm. Romaniszyn (1958) reproduced the figures of Potthast (1914) and distinguished rivulorum by the
8—10 pairs of lateral teeth on the mentum. Pankratova (1970) also reproduced Potthast’s (1914) figures and used the
9 lateral teeth on the mentum and the long thoracic horn to distinguish rivulorum in her larval and pupal keys. She
recorded the larval body as brown, the AR as 2.5, and the premandible as bifurcate.,
Oliver et al. (1978) included rivulorum as O. (Euorthocladius) sp. 1 in a key to larvae, with a photograph of the
mentum.
Rossaro (1982) included the larva and pupa of rivulorum in his keys, and provided figures. He distinguished the
larvae by the 8-10 lateral teeth on the mentum and the moustache-like epipharynx, and the pupae by the spines on
III— VII. Sahin (1984) included rivulorum in his larval keys, along with figures of the mentum and mandible. Coff-
man & Ferrington (1984) included the pupa and larva in their keys; the pupa keys to couplet 45, the larva keys to
couplet 43.
Orthocladius (Euorthocladius) roussellae n.sp.
Figs. 11, 13—15, 34c, 34d, 41, 50
Orthocladius (Euorthocladius) type II Soponis, 1977: 15, 17, figs. 20, 84e, 92, 100, 121, 107b [larval, pupal descrip-
tions; in larval, pupal keys].
Orthocladius (Euorthocladius) species 3 Coffman & Ferrington, 1984: figs. 25.406, 25.407 [in pupal key].
?Orthocladins (Euorthocladius) sp. Ferrington, 1984: table 7 [drift].
Type Locality: Canada, Northwest Territories, Axel Heiberg Island.
Type Material: Holotype. Male, Canada, NWT, Axel Heiberg Island, 79°25’N, 90°45’W, Gypsum Hill, 20-VII-
1963, H. K. Rutz, CH3635 (CNC). Paratypes (78). (From CNC unless indicated otherwise). Canada. Alberta,
Highwood Pass, 16-VII-1977, D. R. Oliver, CH7131, 1FP w/LS, 1 M w/Ex,LS, 1 F w/Ex,LS; Marmot Creek, 29-
VI-1977, D. R. Oliver, CH7079, 1MP w/LS, 2FP w/LS. Northwest Territories. Melville I., Bailey Point, J. E.H.
Martin: 27-VII-1965, CH25, 3M; 24-VII-1965, CH23, 1M; 20-VII-1965, CH21, 3M; 25-VII-1965, CH27, 1M.
Baffın I., Head of Clyde Inlet, 7-VIII-1958, G. E. Shewell, CH1162, 3M; Frobisher Bay, 5-VIII-1948, F. G. Dil-
abio, CH3653, 1M; Banks I., Masik R., 9-10-VII-1968, W. R. Mason, CH265, 1IFP w/LS; Axel Heiberg I.,H.K.
Rutz, 21-VII-1963, CH 1164, 1M; Slop E, 7-8-1963, CH3656, 3M; Expedition R., 26-VII-1963, CH3634, 4M;
4-VIII-1963, CH1281,3M; Creek SE Gypsum Hill, 21-VII-1963, CH 1164, 2M; Hazen Camp, 81°49’N, 71° 18’W,
D. R. Oliver: 14-VIII-1961, CH3619, 7M 5-VIII-1961, CH3329, 6M; 1M (ZMB); CH3631, 1 male; NE217,
11-VIII-1961, CH3649, 1M, 1MP; 31-VII-1961, CH3594, 1M; Alert, 24-VIII-1963, D. R. Oliver, CH3627, 4M;
Alert, Parr Creek, 25-VIII-1963, D. R. Oliver, CH3627, 3MP, 6Ex. Greenland. Nedre Midsommer So, Can.
Pearyland Expd.: 16-VII-1966, CH 3632, 2M, 19-VII-1966, CH1102, 2M, CH1417, IM. USA. Alaska. Portage
Glacier-Pool, 20-VII-1977, #16, D. Wartinbee, 3Ex (COFF). Wyoming, Inlet Run to Frozen lake, algal mats, 8-
VIII-1981, W. P. Coffmann, 43, 3Ex, #8, 4P, 4LS (Coff).
Diagnosis
Orthocladius roussellae can be distinguished from other Holarctic Euorthocladius by acombination
of characters. Adult Male: low AR (1.02-1.56), numerous and multiserial scutellars, numerous lateral
antepronotals and prealars, and details of the hypopygium (Figs. 11, 14, 15). Pupa: spines on the tips
of anal lobe, hooklets along posterior margin of tergite II, and the long, tubular thoracic horn. Larva:
mentum with 15 teeth, premandible bifid, Lauterborn organs weak, and mandible without seta in-
terna.
Derivation of Name: This species is named after my friend Mary E. Dillon, formerly Mary E. Roussel.
34
Description
Adult Male (n = 24)
Dark brown. Large species. Head. Verticals 11-30, postorbitals 1-5. Temporals doubled or
clumped medially by coronal suture (Fig. 13). Palps long with 3>4. AR 1.02—1.56. Thorax. Lateral an-
tepronotals 9-27. Acrostichals 1-23, robust, beginn within 1 or 2 AW. Dorsocentrals 6-21, some-
times biserial. Prealars 6-18. Scutellars 25-60, multiserial. Wing. Length 2.52-3.35 mm. R with
6-12 setae. Squamals 19-37. In one specimen, 1 seta on R4+5. VR 1.00-1.08. Anal lobe produced.
Legs. LR1 0.68-0.72. LR2 0.46—0.56. LR3 0.55—0.60. Sensilla chaetica on tal of p3 (6-18, 21). Hy-
popygıum (Figs. 11, 14, 15). Virga absent or, if present, weakly developed, often difficult to see. Supe-
rıor volsella collar-like. Inferior volsella with dorsal part long or short, rounded or square, covering
ventral part. Crista dorsalıs long.
Variation. There is not a high correlation between interocular distance and total palpal length (r=+0.641, p»0.02,
n=15).
Pupa (Exuviae)
Brown, with darker apophyses on II-VI, variable. Length 4.6-6.5 mm (10). Cephalothorax.
Frontal warts moderately developed, cephalic tubercles weak or absent. Precorneals clumped, 2x as
long as dorsocentrals; 2 median antepronotals, 1 lateral antepronotal, 4 dorsocentrals, weak, arranged
1-1-2 or 2-2. Thoracic horn tubular, bare, brown, with expanded base usually smooth (Fig. 34 d);
sometimes collapsed (Fig. 34 c) or partially bubbled; length 230-440 um. Thorax dorsally extensively
rugose.
Abdomen (Fig. 41). Tergites: I bare; II with large central patch of recurved hooklets in 5-6 rows
along posterior margin; III-V with central patch of spines anteriorly, separated from small horizontal
patch of spines along posterior margin; VI as V but without posterior patch; large patch of spinules
on III-VI, small patch of spinules along anterior margin on VII, VIII. Sternites: I with spinules late-
rally; II-IV with large central patch of spinules; V-VIII with 2 off-center patches of spinules ante-
riorly.
Setae on segments I-VIII:
Anal lobe slightly extended with heavy spines on tips; 3 dorsal setae, 2 at midpoint, often branched,
and one on inner margın of distal half. Genital sheaths extended beyond lobe in male, not in female.
Pedes spurii B on II, III, developed with tubercles; pedes spurii A on IV—-VI.
Variation. Sculpturing occurs on tergites VII, VIII. On one male pupa there are 5 L setae on VII. In the three ex-
uviae from Alaska (COFF) the thoracic horns have the surface partially collapsed and bubbled, but not bubbled as
uniformly as in rivulorum (Fig. 34b).
Larva (Fourth Instar)
Body yellow or brown. Head capsule dark brown. Eye spots bipartite or fused. Mentum (Fig. 50e)
with 15 teeth, median tooth as wide or slightly wider than 1st lateral (Fig. 50d); MR 1.2-1.5 (7); me-
dian tooth as high or lower than Ist lateral. Ventromental plates extended anteriorly between 1st and
2nd laterals. Epipharynx (Fig. 50a) with premandible bifid. Chaetula laterales sparse. Mandible (Fig.
50c) with apical tooth as long or longer than Ist inner; outer margin notched opposite seta subdentalis
and crenulated on posterior half on margin; rest of margin smooth, except for notches posteriorly; seta
interna absent. Antenna (Fig. 50b) with weak to moderately developed Lauterborn organs; blade ex-
tended to 5th segment. AR 2.08-3.08 (14). Body with simple setae, short and stiff and long and cur-
ved, at least on I, II; arranged most probably like those in saxosus (Fig. 57). Anal tubules long, roun-
ded, subequal.
35
Variation. The anterior extension of the ventromental plates is difficult to determine in this species. It merges into
thickenings of the mentum and appears to end between the Ist and 2nd laterals.
Biology: Reared larvae were collected from creeks (Alberta) and rivers (NWT), and from algal mats
in an inlet run to a lake (Wyoming).
Distribution: Nearctic: Canada, Greenland, USA.
Additional Material Examined: Northwest Territories: Axel Heiberg Island, 4M; no label, 1M. Yukon Territory: Cari-
bou Bar Creek, 5L. Alaska: 2L.
Remarks: This species could be confused in the adult male with two sympatric species possessing remarkably si-
milar hypopygia, ©. (Orthocladius) frigidus and ©. (Pogonocladius) consobrinus. The male of roussellae can be di-
stinguished from frigidus by the female-like eyes, and from consobrinus by the numerous, multiserial scutellars, ab-
sence of a fore tarsal beard, and the normally produced anal lobe of the wing. The clumped temporals will separate
males of roussellae from most males of frigidus and consobrinus. However, at least one frigidus and one consobrinus
were examined that have clumped, multiserial temporals instead of the normal uniserial arrangement.
Orthocladius roussellae occurs with frigidus primarily in mountains of temperate regions, and with consobrinus
in the high arctic. The immature stages of these three species are easily separable.
Soponis (1977) incorrectly stated certain characters of the new species. For pupae, PSA occur on IV—-VI, noton
IV-VIJ; frontals are absent, not present. For larvae, the seta interna of the mandible is absent, not present.
Coffman and Ferrington (1984) included the pupa in their keys; roussellae will key to couplet 53.
Ferrington (1984) collected an unnamed species of O. (Euorthocladius) from Inlet Run, Wyoming, where both
roussellae and saxosus have been collected.
Orthocladius (Euorthocladius) saxosus (Tokunaga)
Fıigs. 18, 19, 34 e, 43, 56-59
Spaniotoma (Orthocladius) saxosa Tokunaga, 1939: 326-329, figs. 16, 39, 61, 77, 97, 109, 117, 125, 134, 146, 153
[description of male, female, pupa, and larva]. Tokunaga, 1959; 1973: 642 [pupa, larva, fide Sasa & Yamamoto,
1977).
Euorthocladius sp. Thienemann, 1941: 180 [record from Lappland].
Euorthocladius saxosus (Tokunaga). Thienemann, 1944: 558, 649 [in pupal, larval keys]. Thienemann, 1954: 301,
303, 32,51
Orthocladius (Euorthocladius) saxosus (Tokunaga). Brundin, 1956: 101, fig. 65 [male]. Fittkau et al., 1967: 362
[checklist]. Fittkau & Reiss, 1978: 421 [checklist]. Kownacki & Zosidze, 1980: table 2 [ecology].
Orthocladius saxosus (Tokunaga, 1939). Pankratova, 1970:173, 174, 180, 181, fig. 108 [pupal, larval descriptions; in
pupal, larval keys]. Sasa & Yamamoto, 1977:310 [checklist]. Rossaro, 1984: table 2 [record].
Orthocladius (Euorthocladius) sp. Säwedal, 1978:87 [record of Abisko].
Orthocladius (Euorthocladius) species 5 Coffman & Ferrington, 1984: figs. 25.412— 25.414 [pupa].
®Orthocladius (Euorthocladius) sp. Ferrington 1984: table 7 [drift].
Type Locality: Japan, Kyoto, Kibune.
Type Material: Holotype. Male, Japan, Kyoto, Kibune, Mar 25, 1936, M. Tokunaga (two white labels, one print-
ed). Only the hypopygium and abdominal segments VI- VIII exist, mounted on a slide under one cover slip in Ca-
nada balsam by A. R. Soponis. Paratypes (?8). Same data as holotype. Parts of male and female, including genitalia,
and exuviae; mounted in Canada balsam under eight coverslips on two slides by A. R. Soponis. Previously mount-
ed, two larvae on two slides and parts of female on two slides.
Diagnosıs.
Orthocladius saxosus can be distinguished from other Holarctic species of O. (Euorthocladius) by
a combination of characters. Adult Male: details of the hypopygium (Figs. 18, 19). Pupa: hooklets
along posterior margin of tergite II, with >100 spines, and frontal warts robust. Larva: head capsule
dark brown, mentum with 13 teeth, MR<1.5, and AR>1.80.
Derivation of Name: L. saxum, rock; L. osus, having the nature of, usually indicating abundance. This is probably
a reference to the larvae that aggregate on rocks.
36
Description
Adult Male (n = 2)
Brown to black. Medium species. Head. Verticals 15-19, postorbitals 1. Palps long with 3>4. AR.
1.19-1.20 (OD: 1.3). Thorax. Lateral antepronotals 4-5. Acrostichals absent. Dorsocentrals 8-9.
Prealars 3-4. Scutellars 13—19, biserial to multiserial. Wing. Length 2.08-2.20 mm. R with 6 setae.
Squamals 18-19. VR 1.00-1.03. Anal lobe not produced. Legs. LR1 0.76 (OD: 0.80). LR2
0.55—0.56. LR3 0.60 (OD: 0.61). Sensilla chaetica on tal of p2 (5) and p3 (8-11). Hypopygium (Figs.
18, 19). Virga present, weak to well developed. Superior volsella collar-like. Interior volsella with dor-
sal part squared, ventral part prominently extended laterally and ventrally below.
Pupa (Exuviae)
Dark to pale brown. Length 2.5—4.0 mm. Cephalothorax. Frontal warts (Fig. 43) large to small; ce-
phalic tubercles absent. Cephalothoracic setae weak and difficult to see. Precorneals short, about
11/,% as long as dorsocentrals, with light sockets; 1 median antepronotal, O lateral antepronotals, 0-4
dorsocentrals, weak; arrangement of dorsocentrals varies. Thoracic horn (Fig. 34) ellipsoid, dark to
light brown, filled, stalked; length 50-100 um. Thorax dorsally granulose anteriorly and along eclo-
sıon line.
Abdomen (Fig. 44). Tergites: I, II bare. II-V with central patch of recurved hooklets along poster-
ior margin; patch on II almost 2X as large as other patches; VI, VII with patch of straight spines along
posterior margin; IIT- VIII with patch of spinules anteriorly. Sternites: I, VIII bare; II—-VI with cen-
tral horizontal patch of spinules anteriorly; VI with spinules along posterior margin; VI, VII with 2
off-center patches of spinules anteriorly.
Setae on segments I-VIII:
D 4
1
So en VarOr2Z PR
L Da aa as Er 2072) OdHrO ar
Anal lobe greatly reduced, setae absent. Genital sheaths extended beyond lobe in male and female. Pe-
des spurii B on I, II, III, and sometimes IV; pedes spurii A on VI, VI.
Variation. The size and color of the thoracic horn, and the size and shape of frontal warts vary. Setal counts here
do not agree with the original diagnosis. Hooklets are moveable, but the direction of hooklets on tergites ıs not
diagnostic. The arrangement of the DC is variable, and the number of DC varies from 0—4. The body setae are
weak. Small frontal tubercles are found in the type material, and in the material from Wyoming and Sweden. Large
frontal tubercles are found in the material from Alberta, Montana, and Alaska (glacial). The dimorphism does not
appear to be sexual.
Larva (Fourth Instar)
Body yellowish-brown, reddish-brown, or (OD) greenish-brown. Head capsule dark brown; pre-
served, yellow. Eye spots fused. Mentum (Figs. 58c, 59c) with 13 teeth, median tooth about as wide
as Ist lateral; MR 1.2-1.5 (6); median tooth as high as Ist lateral. Ventromental plates extended ante-
riorly between 2nd and 3rd, 3rd and 4th, or 4th and 5th laterals; less commonly, between 1st and 2nd
laterals. Epipharynx (Fig. 56) with premandible simple, blunt, with enlarged apex. Chaetula laterales
sparse. Mandible (Figs. 58a, 59a) with apical tooth as long or longer than Ist inner tooth; outer margin
notched opposite seta subdentalis; rest of margin smooth except for occasional notch posteriorly. Seta
interna present. Antenna (Figs. 58b, 59b) with robust Lauterborn organs; blade extended to 5th seg-
ment or beyond. AR 1.80—2.22 (6). Body with setal arrangement in 4 different patterns (Fig. 57):
those on I, II, III and IV-X. Anal tubules moderately long, rounded, with dorsal pair shorter and
thicker than ventral paır.
97,
Variation. The apical tooth of the mandible is variable, appearing more reduced in Nearctic than in type material,
but this may be due to orientation. Also, the mandible has 5 true teeth in the type material and in the Montana ma-
terial, but 4 true teeth and a false tooth in the Alberta material. The premandible is deeply bifid in a single reared
larva from Montana.
Distribution: Palearctic: Italy, Sweden. Japan. Nearctic: Canada (Alberta). USA (Alaska, Colo-
rado, Montana, North Carolina, Oregon, Wyoming).
Material Examined: Type material. Non-type material: Canada. Alberta: Marmot Creek, 29-VI-1977, D. R. Oliver,
7079, 5MP w/LS; 1FP w/LS (CNC). Japan. Mt. Hıkosan, Kyushu, III-18-1980, L. T., M. Yamamoto, 2M, 1F (YAM). Swe-
den. Lappland 1936, 41, orig. Thienemann material, 4Ex (ZSM). USA. Alaska: Portage glacial pool, 20-VII-1977, #19, D.
Wartinbee, 2Ex (COFF). Colorado: Gunnison Co., Beaver Dam on East R., 3.1 mi. N of Gothic, 13 July 1982, L. Ferring-
ton, No.Co. #9, 6Ex, IP (SBSK). Montana: Beartooth-Absaroka Wilderness area, 31-VII-1979, E. R. Wells, CH6965.1, 1
MP w/LS (CNC). Glacier Nat’] Park, small stream in west meadow w of Logan Pass (Continental Divide), 11-VIII-1975,
R. W. Lichwardt, MBL-13, 27a, 1Ex, 1FP w/LS$, 14a, 1FP w/LS (ANSP). North Carolina. Richmond Co., Forest Creek,
24-I-1981, D. Lenat, 1L; Wake Co., Cane Creek, 9-II-1980, D. Lenat and $S. Mozley, 1L; Wake Co., Reedy Creek at US
40, 28-XII-1979, D. Lenat and K. Eagleson, 2L (NCDNR). Oregon: Deschutes Co., Century Drive, Goose Creek, Head-
water Springs, 20-VIII-1983, B. Wisseman, gelatinous sheat, wood, 4L; Lane Co., H. J. Andrews Exp. For., Mack Cr., 11
mi. NE of Blue River, 20-V-1982, 1M; 26-V-1984, 1M; 18-19-II-1977, B. B. Frost, drift sample, 6pm—9am, clearcut, 1Ex
(OSU). Wyoming: Trib. to Beartooth Lake, 19-VIII-1974, S1.2, W. P. Coffman, 4Ex (COFF); Park Co., ”Inlet Run”-Fro-
zen Lake nr. Beartooth Pass, 5-VIII-1978, L. Ferrington, 20Ex (SBSK).
Biology: Larvae lıve in clear, irregular gelatinous tubes 10— 16 mm long and 3—5 mm wide, closely
adhering to stones along small crevices in rapid mountain streams. Pupal tubes are more oval, 7—10
mm long and 4-6 mm wide, with 3 mm long stems. Larvae are common in winter (Tokunaga 1939).
This species occurs with suspensus. Mites have been associated with saxosus (Thienemann 1954). Fer-
rıngton (1984) collected an unnamed species of O. (Euorthocladius) from Inlet Run, Wyoming, where
both saxosus and roussellae have been collected.
Remarks: Tokunaga (1939) described this species from an unspecified number of males, females, pupae, and lar-
vae collected in a rapıd stream at Kibune, Kyoto, Japan. Type material of all stages still exists.
Thienemann (1944) recognized saxosus as belonging to his genus Euorthocladins and included the pupae and lar-
vae in his keys. He separated the pupae primarily by the patches of hooklets on tergites II-V, and the larva by the
anal tubules and labrum. He also recognized that his pupal skins in the 1941 Lappland work belonged to this species.
Brundin (1956) placed saxosus in the subgenus Orthocladius (Euorthocladius) and provided the first complete il-
lustration of the hypoygium. Pankratova (1970) provided a description of the pupa and larva with figures reprodu-
ced from Tokunaga (1939). In the pupal keys she did not separate saxosus from thienemanni and rivicola, but did
so in the larval keys using the dorsal pair of anal gills which are shorter than the ventral pair.
Pankratova (1970) mentioned that the larval premandible is bifurcate, seen only in one examined specimen from
Montana.
This species has been included in several checklists (Fittkau et al., 1967, Fittkau & Reiss 1978, Sasa & Yamamboto,
1977), probably because it could be easily identified. The male and pupa of saxosus are very distinctive. In addition,
Brundin’s (1956) illustration of the hypopygium and Thienemann’s (1944) pupal key have contributed to the rela-
tive ease of identification of the species.
Coffman & Ferrington (1984) included the pupa in their keys; saxosus keys to couplet 55.
Orthocladius (Euorthocladius) suspensus (Tokunaga)
Fig. 17
Spaniotoma (Orthocladius) suspensa Tokunaga, 1939: 323—326, figs. 15, 38, 63, 64, 70, 80, 85, 100, 118, 122, 135,
145, 151 [description of male, female, pupa, and larva]. Tokunaga, 1959; 1973: 642 [pupa, larva, fide Sasa & Ya-
mamoto, 1977].
Euorthocladius suspensus (Tokunaga), Thienemann, 1944: 558, 649 [in pupal, larval key.]. Thienemann, 1954: 345
[note].
Orthocladins (sen.str.) suspensus (Tokunaga). Tokunaga, 1964: 17, fig. 2 [notes on adult].
Orthocladius suspensus (Tokunaga, 1939). Sasa & Yamamoto, 1977: 310 [checklist].
[non] Orthocladius suspensus (Tokunaga, 1939) sensu Ree & Kim, 1981: 176, 177, plate 27 [misidentification].
38
Type Locality: Japan, Kyoto, Kibune.
Type Material: Holotype. Male, mounted on a slide under 5 coverslips in Canada balsam by A. R. Soponis. Japan,
Kyoto, Kibune, Mar. 25, 1936, M. Tokunaga (typed label). Preserved in Kyushu University.
Diagnosis
Orthocladius suspensus can be distinguished from other Holarctic species of O. (Euorthocladius) by
a combination of characters. Adult Male: low AR (<1.8) and details of the hypopygium (Eier17).
Pupa: hooklets along posterior margin of tergite II, small patches of spines on tergites IIT- VIII,
smooth thorcic horn, absence of spine rows on posterior margins of tergites IV—-VI. Larva: mentum
with about 19 teeth; distinguishable from rivulorum by distribution.
Derivation of Name: L. suspendere, to hang up. This is probably a reference to the larval tube, which is suspended
from stones by one end.
Description: (See also Tokunaga 1939)
Adult Male (n = 1, holotype)
Brown (OD: black). Large species. Head. Verticals 12. postorbitals 0. Palps long with 3<4. AR 1.68
(OD: 1.5-1.7). Thorax. Lateral antepronotals 3. Acrostichals absent, but sockets may be present.
Dorsocentrals 10. Prealars 4. Scutellars 23, multiserial. Wing. Length 3.28 mm. R with 6 setae. Squa-
mals 34. VR 1.08. Anal lobe not produced, almost right-angled. Legs. (OD: LR1 0.69. LR3 0.57). Sen-
silla chaetica could not be determined. Hypopygium (Fig. 17). Virga absent or vestige present. Super-
ior volsella collar-like. Inferior volsella with dorsal part nose-like, covering most of ventral part. Cri-
sta dorsalis long.
Biology: The larvae occur in mountain streams in Japan. They live ın cylindrical tubes, 20-37 mm
long, 2.6—-3.5 mm wide, coated with a thick growth of diatoms that makes the tubes look green. Pupal
tubes are smiliar in size to larval tubes, with an oval chamber at the free and. The oval chamber is
pointed at the distal end, with one respiratory opening at either end of the chamber, 7 mm long and
3.2 mm wide (Tokunaga, 1939). Both Taylor (1903) and Lauterborn (1905) have described tubes of
rivulorum smilarly. This species occurs with saxosus.
Distribution: Japan.
Material Examined: Holotype.
Remarks: Tokunaga (1939) described this species from an unspecified number of males, females, pupae, and lar-
vae collected in amountain steam at Kibune, Kyoto, Japan. Only the holotype, acomplete male, was located among
the original type material at Kyushu University (Dr. Y. Hirashima, pers. comm.).
It has not been easy to identify saspensus in the adult male. Tokunaga (1939, fig. 38) illustrated only part of the
hypopygium. Later, Tokunaga (1964, fig. 2) illustrated ahypopygium that was dorsoventrally compressed with the
ventral part of the inferior volsella pushed below the dorsal part. He had placed suspensus in Orthocladins (s.s.)
without comment, probably influenced by the distorted inferior volsella. In addition, these specimens had an AR
of 3.00, a record for the species and for the genus Orthocladius. This may prove to be a misidentification, but be-
cause the figured specimen was distorted, and only the holotype has been examined, it is difficult to decide.
Ree & Kim (1981), most likely following Tokunaga’s (1964) work, described as suspensus the male and female of
a species of Orthocladins (Orthocladius). This species belongs to the subgenus Orthocladius because of the uniserial
scutellars, presence of acrostichals, pointed anal point, and double-lobed inferior volsella.
The immature stages of suspensus are morphologically similar to those of rıvulorum, and the larvae of both species
live in similar tubes. The adult male of suspensus has a distinctly different hypopygium (Fig. 17) from that of rivu-
lorum (Figs. 20, 21), particularly in regard to the inferior volsella. Tokunaga (1939) provided characters to separate
the pupae of rivulorum from suspensus, and so did Thienemann (1944), based on Potthast’s (1914) description of
rivulorum. Characters used in the keys are based on the original description.
Thienemann (1954) briefly commented on the similarity of suspensus and rivulorum.
39
Orthocladius (Euorthocladius) telochaetus Langton
Fig. 16
Orthocladius (Euorthocladius) telochaetus Langton, 1985: [description of male].
Type Locality: Spitzbergen: Advent Bay.
Type Material: Holotype. Male, Spitzbergen, Advent Bay, Holmgren (two white labels), 116 79 (pink label),
Riksmuseum Stockholm (green label), ”These 2 ©’ apparently = decoratus-F. W. E.” (tan label), ”Ch. limbatellus
Holmgren 1869 OÖ PARALECTOTYPE Orthocladius (Euorth.) telochaetus n. sp. Langton P. H. 1985 HOLO-
TYPE” (white label). Paratype. Male, similar green and white labels with 115 79 on pink label.
Diagnosis
The male of Orthocladius telochaetus can be distinguished from other males of O. (Enorthocladins)
by details of the hypopygium (Fig. 16), primarily the apical seta on the anal point. The pupa and larva
are unknown.
Derivation of Name: Gr. telos, end; chaite, seta. Langton named this species for the apical seta on the anal point
of the hypopgyium.
Description: See Langton (1985). Additional characters include: head female-like; VR 1.09; acrosti-
chals absent; >5 dorsocentrals, uniserial; 3 prealars; anal point with microtrichia.
Biology: Unknown.
Distribution: Palearctic: Spitzbergen.
Material Examined: Type material. Non-type material: Spitzbergen: Gipsdalen, 17-VII-1954, Tage Roos,
CH3659, 1M (CNC).
Remarks: Langton (1985) described this species from two males in the mixed type series of Chironomus limbatel-
Ius Holmgren. One aspect of the hypopygium makes this species unique in Orthocladins: a single apical seta on the
anal point. Microtrichia on the anal point, while rare, occur in other O. (Euorthocladius) from high latitudes.
The male of telochaetus is morphologically similar to saxosus, as Langton (1985) pointed out. These two species
can be distinguished by these characters of telochaetus: the more numerous squamals (27—31, 3; saxosus 13—19, 2);
absence of sensilla chaetica on tal of p3, lower LR’s, and more robust virga. Both species occur at high latitudes,
although saxosus is found in low arctic (Lappland) and telochaetus is found in high arctic (Spitzbergen).
Orthocladius (Euorthocladius) thienemanni Kieffer
Figs. 25b, 27, 28, 34f, 37d, 40, 42, 52
Orthocladius thienemanni Kieffer. Kieffer & Thienemann, 1906: 143, 144, 146— 149, figs. 1-5 [description of adult,
pupa, larva]. Kieffer & Thienemann, 1909: 32 [ecology]. Potthast 1914: 263, figs. 1-5 [pupa, larva]. Thienemann,
1935: 203— 205, fig. 2[synonymy, in pupal, larval keys, notes, distribution]. Pankratova, 1970: 173, 174, 177,178,
fig. 105 [pupal, larval descriptions; in pupal, larval keys]. Illies, 1971: 46, table 5 [ecology]. Drake, 1982: 231, 234,
240, fig. 6 [ecology]. Reiss, 1983: 176 [checklist]. Rossaro, 1984: table 2 [record]. Bitüsik & Ertlovä, 1985: 604,
606, table 2 [ecology].
Orthocladius (Orthocladius) thienemanni Kieffer. Goetghebuer, 1932: 75, 89, fig. 144 [adult description, in adult
key]. Goetghebuer, 1942: 34, 36, 55, fig. 95 [male, female descriptions; in male, female keys].
Spantiotoma (Orthocladius) thienemanni Kieffer. Johannsen, 1937: 56, 60, 62, 72 [in pupal, larval keys; notes].
Enorthocladius thienemanni Kieffer. Thienemann, 1944: 559, 648, fig. 12 [in pupal, larval keys]. Romaniszyn, 1958:
27, 82, fig. 122, 126, 127 [in larval key]. Thienemann, 1954: 146, 182, 345, 349, 356, 360, 364, fig. 102 [notes].
Hydrobaenus (Bryophaenocladius) thienemanni (Kieffer). Kloet & Hincks, 1945: 337 [checklist].
Hydrobaenus thienemanni (Kieffer). Roback, 1957: 76 [in pupal, larval keys].
Orthocladius ex gp. thienemanni Kieffer. Chernovskii, 1949: 205, 282, fig. 129b [synonymy, in larval key].
Orthocladius (Euorthocladius) thienemanni Kieffer. Brundin, 1956: 95, 96, 101, fig. 63 [notes, distribution]. Fittkau
et al., 1967: 362 [checklist]. Lehmann, 1971: 486 [ecology]. Kloet & Hincks, 1975: (V)15 [checklist]. Rossaro,
1977: 122 [distribution]. Rossaro, 1978a: 290 [distribution]. Rossaro, 1978b: 185 [distribution]. Fittkau & Reiss,
1978: 421 [checklist]. Pinder, 1978: 70, fig. 35E, 111C [in key to males]. Cranston, 1982: 102, figs. 39a, c, f [in
40
larval key]. Moubayed & Laville, 1983: 223 [distribution]. Murray & Ashe, 1983: 230 [checklist]. Langton, 1984:
144, fig. 49d [in pupal key]. Sahin, 1984: 82, figs. 200-202 [in larval key]. Michailova, 1985: 149, 158, 159, 163,
164, pl. v, viii [cytology].
Orthocladius (Euorthocladius) ct. thienemanni-saxosus [partim]. Coffman, 1973: table 1 [ecology].
Orthocladius (Euorthocladius) species 6 |partim]. Coffman & Ferrington, 1984: fig. 25.415 [pupa].
[non] Spaniotoma (Orthocladius) thienemanni Kieffer sensu Edwards, 1929: 344, 345, fig. 6m [partim] [in key to
males] [misident. ].
[non] Orthocladins (Enorthocladius) cf. thienemanni (Kieffer). Halvorsen et al., 1982:119 [record].
Type Locality: Germany: Insel Rügen: Thuringen (see Cranston 1984).
Type Material: Lectotype. Male, original label hand-written, Orthocladius thienemanni K.; printed label, R. 1.
Sc. N.B. 18.073, coll et det M. Goetghebuer; typed label. Boites no 6 Types Kieffer. Previously mounted in balsam
under two coverslips on a slide; overcleared. Abdomen III-IX dissected from body; hypopygium intact. Wings
crumpled and folded over; head squashed; only antennal flagellomeres 1 and 2 present; parts of legs missing.
Hereby designated as lectotype.
Presumably original labels have been replaced, and other labels added to the lectotype in routine curation, be-
cause ”coll et det M. Goetghebuer” makes no sense in a species reared by Thienemann and described by Kieffer.
Presently there appear to be no other sepcimens that unquestionably belong to the original type series.
Diagnosıs
Orthocladius thienemanni can be distinguished from other Holarctic species of ©. (Euorthocladius)
by a combination of characters. Adult Male: high AR (>1.75), relative lengths of palpal segments
(3=4), and details of the hypopygium (Figs. 27, 28). Pupa: rows of spines on anal margins of tergites
HI —- VIII; thoracic horn present; absence of hooklets on II and absence of pedes spurii A. Larva: 13
teeth on the mentum, wide median tooth (MR>1.5), and high AR (>1.8).
Derivation of Name: Kieffer named this species after A. Thienemann.
Description
Adult Male (n = 5)
Dark brown. Large species. Head. Verticals 10-23, postorbitals 1-3 (4). Palps long with 3<X4 (4)
(Type: 3=4). AR 1.75—2.15 (2). Thorax. Lateral antepronotals 2-7 (4). Acrostichals absent. Dorso-
centrals 4-16. Prealars 3-7. Scutellars 15—26, biserial to multiserial (Type: 22, multiserial). Wing.
Length 2.80-3.18 mm (4). R with 4-10 (3) setae. Squamals 30—40 (4). VR 1.06-1.14 (4). Anal lobe
moderately produced (OD: right-angled). Legs. LR1 0.68-0.74 (3). LR2 0.45—0.53 (4). LR3
0.53—0.56 (4). Sensilla chaetica on tal of p2 (7-13) (4), absent on p3. Hypopygium (Figs. 27, 28).
Virga present. Superior volsella collar-lıke. Inferior volsella with dorsal part slender, inner margin
rounded, apex rounded or squared, and ventral part covered or extended below. Crista dorsalis long,
robust.
Variation. Only six specimens, two originally collected and identified by Thienemann, have been examined. Leh-
mann (1971) reported the AR of thienemanni as 1.80—2.00 from his Fulda material.
Pupa (Exuviae)
Light brown, with darker apophyses on I-VIII, variable. Length 3.15—4.29 mm (10). Cephalotho-
rax. Frontal warts weak to moderately developed; cephalic tubercles absent. Precorneals clumped,
weak to strong, 1'/,x as long as dorsocentrals; 2 median antepronotals, 1 lateral antepronotals, 3 dor-
socentrals in a row, thicker than precorneals. Thoracic horn (Fig. 34f) ellipsoid, light brown, filled or
clear, stalked; length 30-70 um (10). Thorax dorsally wrinkled to granulose anteriorly along eclosion
line.
Abdomen (Fig. 42). Tergites: I bare; II— VII with 2—4 rows of strong spines along posterior mar-
gin (Fig. 37d); II-VIII with central patch of spinules anteriorly. Sternites: I, VIII bare; I—VII with
2 off-center patches of spinules anteriorly.
41
Setae on segments I-VIII:
D 4
1
Su u, Da 2 BR: SE ae LE
V Ba a Fa @d=720270=0>°0)0 0 0.0
Anal lobe greatly reduced, one seta at midpoint. Genital sheaths extended beyond lobe in male and fe-
male. Pedes spurii A and B absent.
Variation. Associated exuviae from the Fulda (collected by Lehmann) and from Bathurst Island, NWT, as well
as pupae from Kansas were examined here. The European material is more robust than the North American mate-
rial. Anterior shagreen may be absent on tergite II.
Larva (Fourth Instar) (n = 11)
Body yellow, brown, or green. Head capsule brown; preserved, yellow. Eye spots fused. Mentum
(Fig.52c) with 13 teeth, median tooth about 2X as wide as Ist lateral; MR 1.5—2.3; median tooth
higher than 1st lateral. Ventromental plates extended anteriorly between 2nd and 3rd laterals. Preman-
dible simple. Chaetula laterales sparse. Mandible (Fig.52a) with apical tooth as long or longer than first
inner tooth; outer margin notched opposite seta subdentalis, rest of margin smooth except for occasio-
nal notch posteriorly; seta interna present. Antenna (Fig.52b) with robust Lauterborn organs; blade
extended to 4th segment. AR 1.85—2.56. Body with simple, long setae, most likely arranged like that
in saxosus (Fig. 57). Anal tubules subequal, moderately long, all same length and thickness, weakly
pointed (Thienemann 1944: rounded).
Variation. Cranston (1982) recorded the head capsule as yellow-brown, and figured the mandible without the
margin notched opposite the seta subdentalis. In one specimen excamined here, the premandible appears notched.
Material from Sabina Creek, Arızona, shows considerable varıation in the width of the median tooth. With a lo-
wer MR, theese larvae will key to saxosus. The larvae of both of these species occur gregariously on stones.
Thienemann (Kieffer & Thienemann 1906) described the larva as green. In the material examined here, all
preserved on slides, the body is either yellow, green, or brown.
Biology: Larvae live on the surfaces of larger stones in fast-flowing brooks, streams, and rivers
(Kieffer & Thienemann 1906, Thienemann 1935, 1944, 1954, Lehmann 1971). Larvae live in clear ge-
latinous tubes encrusted with sand grains, often in fissures and depressions of the stone. Larvae are
also associated with algal growth on stones (Thienemann 1954) and with the common bulrush, Schoe-
noplectus lacustris (Drake 1982). In a chalk stream of southern England, Drake (1982) found that thie-
nemanni was the most abundant species of larval chironomid in the cold months. In his study, larvae
were present during high discharge, but absent in low flow.
Pupae live in the enlarged larval tubes: half-ellipsoid, 6 mm long, 3 mm wide, 2 mm high, clear
gelatinous tubes covered with small particles. The pupa undulates, causing water to flow through
openings at both ends of the tube, as figured here (Fig.40) and in Thienemann (1954, fig.102) after
Miall and Hammond (1900, fig.5). The pupal stage lasts 3-7 days (Kieffer & Thienemann 1906, Thie-
nemann 1954).
Gregarious pupation of thienemanni in a spring-fed tributary of Sabina Creek near Pigeon Springs,
Arızona, was observed by Jan Doughman (pers. comm.). In February, 1984, water temperature was
4°C with ice on the surface. Larvae were feeding on a thin film of diatoms on rocks. Larvae congregat-
ed in small (0.5 cm dıam) vertical depressions on a 1’ X 1’ granite rock, then stopped feeding, and spun
a gelatinous sheath over themselves (up to eight larvae under one sheath). Mature pupae alone, or pu-
pae with mature larvae were found under some sheaths.
This species occurs with rivicola (based on exuviae) in seven localities (see rıvicola); and with calvus
(based on adults) in Germany.
Adults swarm in large numbers (Thienemann & Kieffer 1906). Thienemann (1935) reported adults
appearing in the first of spring. Illies (1971) recorded emergence of adults from April to August in
Breitenbach, Germany. Lehmann (1971) reported two generations in the Fulda: the first from January
42
to May, the second in October. In southern England, Drake (1982) found two generations in 1976 and
1977, the first emerging January to April, the secound in March and April. In South Carolina, adults
emerge from January through April.
Doughman (pers. comm.) has observed that the adults of thienemanni hold their wings rooflike
over the abdomen.
Distribution: Palearctic: Denmark, England, Germany, Ireland, Lebanon, Switzerland, and Tur-
key. Nearctic: Canada, Greenland, USA.
Material Examined: Lectotype. Non-type material: No locality: coll. et det. M. Goetghebuer, R.I.Sc.N.B. 18.073, 1M
(BRUX). Canada. Northwest Territories: Oscar Creek, 25-V-1972, FWI-Pipeline Project, CH6475, 2P. Ontario: Ottawa,
Ottawa River, 22-IV-1966, Jon Martin, 0122-1, 2PEx (CNC); Rushing River, 9-V-1978, W.P. Coffmann, 2PEx (COFF).
Denmark. Zealand, Lellinge Ä, 20-V-1968, C. Lindegaard, 3Ex, 2L (? COP). England. Fast Sussex, nr. Forest Row,
51414347, 17-IV-1978, P. S. Cranston, BM1978-197, 1L (BMNH); Bucks, River Chess, 16-11-1982, W. R. Karsteter, IL
(FSCA). Germany. River Schwentine, East Holstein, 1935, A. Thienemann, IM; Insel Rügen, A. Thienemann, 1M, 2P,
Baumberge, bei Münster, Westfalen, 2-II-1908, Thienemann, IM; Fulda, Hessen 10-I-1969, Nr. 27b, J. Lehmann, IM w/
PEx; Fulda, Br. Sandlofs, 17-X-1952, E. J. Fittkau, 12 PEx (ZSM). Greenland. Tilloe Narssag Elv. hole 740, 24-VIII-1981,
C. Lindegaard, 3PEx; 9DR, 11-12-VII-1981, M w/Ex (? COP). Switzerland. Stein am Rhein, 20-III-1966, F. Reiss, 1M
(ZSM). USA. Alaska. N.Fk. Chena R., 11-VII-1978, D. Wartinbee, 1Ex (COFF); Jım River above Prospect Camp, left
bank, 095073, USGS, 1Ex (CALD). Arızona. coll J. Doughman: Pima Co., Sabino Creek at Summerhaven (0.6 mi up forest
rd.) on Mt. Lemmon nr. Tucson, from rocks, 5-II-1984, 840205, 1FP, 1MP, 10L; 26-11-1984, 840226, 1MP, 1FP, 1L; Pinal
Co., Boyce-Thompson Arb., Queen Cr., Cladophora zone, 840201, 1FP, 4L (USGS). Georgia. Fannin Co., Noontootla
Creek at Newport Rd., 24-IV-1979, 1L, 1FP(CALD). Kansas. Johnson Cop., Cedar Creek, 29-XII-1977, P.L., 4FP,4MP;
Douglas Co., Deer Creek, 0.5 mı $ of Stull, 20-III-1981, L. Ferrington, 13PEx; Atchinson Co., stream 5.5mi S, 0.2 mi At-
chinson, 24-III-1982, L. Ferrington, 1F w/Ex, IM w/Ex (SBSK). North Carolina. Yancey Co., Cane R., Sta. 4, XI-1980,
K. Dechart, 1L; Macon Co., Calor Fork, 15-I-1981, K. Dechart, 1L; Mitchel Co., N. Toe R., 2-II-1978, K. Dechart, IL;
Iredell Co., Buffalo Shoals Creek, Jan 1981, K. Dechart, 1L; Haywood Co., Pigeon R., May 1980, site #4, IL, Surry Co.,
Ararat R., 14-IV-1981, K. Eagleson, 1L; Transylvanıa Co., French Broad R., nr. Rosman, 25-IV-1978, D. Penrose, IL
(NCNR). Pennsylvania: Linesville Creek, 7-IV-1971, W.P. Coffmann, 1Ex (CNC). South Carolina. Oconee Co., Seneca
Cr., Seneca, 22-I-1977, P.L. Hudson, 1Mw/Ex (HUD); 10-11-1977, 1M w/Ex; Oconee Co., East Fk, Chattoga River, Natl
Fish Hatchery, 9-III-1978, P.L. Hudson, 1MP (HUD); Oconee Co., Seneca, Flat Shoals River, 9-II-1977, P.L. Hudson,
1M, 2Ex (HUD); Oconee Co., Fall Creek, Lake Keowee, 30-IV-1974, P.L. Hudson, 1Fx (HUD). Tennessee. Pigeon River,
Gatlinburg, 3-V-1977, P.L. Hudson, 1 Ex (HUD).
Remarks: In a joint publication (Kieffer & Thienemann 1906), Kieffer named and described this species from the
adult male and female. He did not designate a holotype, nor give any information on his material. He did describe
"general body characters, but gave no figures or details of the genitalia. In the same paper, Thienemann described the
pupa and larva of the named species. The description of the immature stages was sufficiently complete to allow the
species to be understood, particularly in the pupal stage.
Edwards (1929) included thienemanni under his Group C, or Orthocladius (s.str.) of his subgenus Spaniotoma
(Orthocladius). He separated the males of thienemanni and O. glabripennis by the absence of afore tarsal beard and
an AR of 2.00 in thienemanni. His figure 6m was the fırst available reproduction of the hypopygium. Until recently
this figure was interpreted as representing O. thienemanni. However, I have examined some of Edwards’s material
from Herts and Gloucester that he used for his 1929 work. Some of these specimens belong to arecently described
species, O. (Euorthocladins) calvus Pinder, which can be distinguished from thienemanni in adult male essentially
by the relative lengths of palpal segments 3 and 4.
Goetghebuer (1932) reproduced Edwards’s (1929) figure of O. thienemanni and separated it from other ©. (Or-
thocladıus) by color, AR, LR, and hypopygial details. Later Goetghebuer (1942) essentially reproduced the same
figure and description, and included females in his keys to adults.
Brundin (1956) provided a figure of the hypopygium and listed thienemanni as type of the subgenus O. (Ortho-
cladius) without providing other characters of the species. Pinder (1978) provided the most recent illustration of the
hypopygium of thienemanni, and included the species in a key to males on the British chironomids.
The immature stages, particularly the pupa, have received more attention in the literature than the adults. Thiene-
mann’s larval description (Kieffer & Thienemann 1906) was brief and without drawings. He compared the larva of
thienemanni to the larva of O. sordidellus as described by Johannsen (1905), probably an Orthocladius (Orthocla-
dius). Ithad an AR of 1.66, an MR of 1.5, and the Lauterborn organs were either weak or absent, based on Johann-
sen’s figures. The pupa of sordidellus was certainly not O. (Euorthocladius), but Thienemann made no mention of
this. His pupal description of thienemanni was more complete, but Thienemann mistakenly recorded the diagnostic
spine rows as present on tergites II-VII, although his figure 2 correctly shows them on tergites III-VIII.
43
Thienemann (1935) erected the genus Euorthocladius with thienemanni as type. He gave a synonym for thiene-
manni and its known distribution as Germany, England, and Switzerland. In his larval keys he separated thiene-
manni from rivicola by the higher AR (1.85 versus 1.28) and the longer body. In his pupal keys Thienemann sepa-
rated thienemanni from rivcıcola by the spine rows on III, smaller thoracic horn (see remarks under rivicola), and
longer body.
Johannsen (1937) treated thienemanni in the group Euorthocladius under his subgenus Spaniotoma (Orthocla-
dius). He distinguished the larva of thienemanni from the larva of rivulorum by the equally long forks of the SI (after
Thienemann 1935, figs. 1, 2), and from obumbratus by the robust Lauterborn organs and sparser pecten. He distin-
guished the pupa of thienemanni from the pupa of rivulorum by the thoracic horns.
In keys, Thienemann (1944) separated the pupa of thienemanni from other Euorthocladins pupae by the arrange-
ment of spines on the abdominal tergites, the structure of the thoracic horn, and the body length. He separated the
larva from other Euorthocladius by the length of the anal tubules, AR (1.85), teeth on the mentum, SI, and pecten.
Chernovskii (1949) largely followed Thienemann (1935) and treated the thienemanni group in alarval key, distin-
guished from rivicola by higher AR (2.00 versus 1.10) and longer body (8 mm).
Roback (1957 a) included’ thienemanni in his keys and separated the larvae (on a subgeneric level) from other Or-
thocladius (as Hydrobaenus) by the large Lauterborn organs. He distinguished the pupae by the thoracic horns and
the spine patterns of the abdominal tergites.
Pankratova (1970) separated the larvae of thienemanni from rivicola by the higher AR (2.00 versus 1.40), but did
not distinguish the pupa of thienemanni from rıvicola or saxosus. She gave a complete description of both larva and
pupa, and reproduced figures from Chernovskii (1949), and mentioned that the premandible was bifurcate. A
notched premandible was seen in only one specimen here, but this is a difficult character to assess in O. (Euortho-
cladins). A morphologically similar species, calvus, can be distinguished from thienemanni by the bifid preman-
dible.
Cranston (1982) separated thienemanni from frigidus and rivicola by the Lauterborn organs and SI of the mandi-
ble, and provided figures of the mentum (MR>1.5) and the antenna (AR=1.8).
Romaniszyn (1958) used Potthast’s (1914) figures and separated thienemanni from rivicola by AR and body
length. Coffmann & Ferrington (1984) included the pupa in their keys; thienemanni will key to couplet 55. Halvor-
sen et al. (1982) referred to their material of O. ashei as cf. thienemanni.
References
Andersen, F. $. 1937: Über die Metamorphose der Ceratopogoniden und Chironomiden Nordost-Grönlands. —
Meddr. Gronland 116: 95 pp.
Ashe, P. 1983: A catalogue of chironomid genera and subgenera of the world including synonyms (Diptera: Chiro-
nomidae). — Ent. scand. Suppl. 17: 1-68.
Bitüsik, P. & Ertlova, E. 1985: Chironomid communities [Diptera, Chironomidae] of the River Rajcıanka [north-
western Slovakia]. — Biol. [Bratislava] 40: 595 —608.
Brennan, A., Walentowicz, A. T., & McLachlan, A. J. 1981: Midges [Diptera: Chironomidae] from the upper rea-
ches of a spate river. — Hydrobiol. 78: 147-151.
Brundin, L. 1956: Zur Systematik der Orthocladiinae (Dipt. Chironomidae). — Rep. Inst. Freshwat. Res. Drott-
ningholm 37:5— 185.
Caspers, N. & Schleuter, A. 1986: Chironomidae des Großraums Bonn (Insecta, Diptera). — Decheniana (Bonn)
1393:319 329}
Chernovskii, A. A. 1949: Opredelitel lichinok komarov semeistva Tendipedidae. (Identification of larvae of the
midge family Tendipedidae). — Izd. Akad. Nauk, SSR 31: 1— 186.
Coffman, W. P. 1973: Energy flow in a woodland stream ecosystem: II. The taxonomic composition and pheno-
logy ofthe Chironomidae as determined by the collection of pupal exuviae. — Arch. Hydrobiol. 71:281—322.
—— & Ferrington, Jr., L. C. 1984: Chironomidae, pp. 551-652. — In: Merritt, R. W. & Cummins, K. W. (eds.):
An Introduction to the Aquatic Insects of North America, 2nd. ed. Kendall/Hunt, Dubuque, Iowa. 772 pp.
Cole, F. R. 1969: The flies of western North America. — Univ. Cal. Press, Berkeley, Los Angeles, 693 pp.
Cranston, P. S. 1982: A key to the larvae of the British Orthocladiinae (Chironomidae). — F. B. A. Scient. pub. No.
45: 152 pp.
—— 1984: Chironomidae in Rügen. — Chironomus 3: 13—14.
44
—— Oliver, D.R. & Saether, O. A. 1983: 9. The larvae of Orthocladiinae (Diptera: Chironomidae) ofthe Holarctic
region — keys and diagnoses, pp. 149-291. — In: Wiederholm, T. (ed.). Chironomidae of the Holarctic region
keys and diagnoses. Part 1. Larvae. — Ent. scand. Suppl. 19: 1457.
Dittmar, H. 1955: Ein Sauerlandbach. Untersuchungen an einem Wiesen-Mittelgebirgsbach. — Arch. Hydrobiol.
50: 305-552.
Drake, C.M. 1982: Seasonal dynamics of Chironomidae (Diptera) on the Bulrush Schoenoplectus lacustris in achalk
stream. — Freshwat. Biol. 12: 225-240.
Edwards, F. W. 1929: British non-biting midges (Diptera, Chironomidae). — Trans. ent. Soc. Lond. 77:279—430.
—— 1937: XIV. — Chironomidae (Diptera) collected by Prof. Aug. Thienemann in Swedish Lappland. — Ann.
Mag. nat. Hist. Ser. 10, 20: 140-148.
Ferrington, L. C., Jr. 1984: Drift dynamics of Chironomidae larvae: I. preliminary results and discussion of impor-
tance of mesh size and level of taxonomic ıdentification in resolving Chironomidae diel drift patterns. Hydro-
biol. 114: 215-227.
Fittkau, E. J. & Reiss, F. 1978: Chironomidae. — Ir: Illies, J. (ed.): Limnofauna Europaea: 404-440, G. Fischer,
Stuttgart.
—— ,‚Schlee, D., & Reiss, F. 1967: Chironomidae. — /n: Illies, J. (ed.): Limnofauna Europaea: 346-381, G. Fi-
scher, Stuttgart.
Goetghebuer, M. 1932: Dipteres (Nematoceres). Chironomidae IV. Orthocladiinae, Corynoneurinae, Clunioni-
nae, Diamesinae. — Faune Fr. 23: 1— 204.
—— 1933: Ceratopogonidae et Chironomidae nouveaux ou peu connus d’Europe (Troisieme Note). — Bull. Annls.
Soc. r. ent. Belg. 73: 209-221.
—— 1934: Ceratopogonidae et Chironomidae recoltes par M. le Prof. Thienemann dans les environs de Garmisch-
Partenkirchen (Haute-Baviere). — Bull. Annls. Soc. r. ent. Belg. 74: 87-95.
—— 1938: Quelques Chironomides nouveaux de l’Europe. — Bull. Annls. Soc. r. ent. Belg. 78: 453 —464.
—— 1942: 13g. Tendipedidae (Chironomidae). f) subfamily Orthocladiinae. — /n: Lindner, E. (ed.): Die Fliegen
der palearktischen Region 3: 208 pp.
—— & Dorier, A. 1939: Description sommaire de la nymphe et de l!’adulte d’Orthocladius fusiformis Goetgh.
[Dipt. Chironomidae]. — Bull. Soc. ent. Fr. 44: 30-32.
Halvorsen, G. A., Willassen, E., & Saether, ©. A. 1982: Chironomidae (Dipt.) from Ekse, Western Norway. —
Fauna norv. Ser. B. 29: 115-121.
Hamilton, A. L., Saether, ©. A., & Oliver, D. R. 1969: A classification of the nearctic Chironomidae. — Fish. Res.
Bd. Can. Tech. Rpt. 124: 42 pp.
Illies, J. 1952: Die Mölle. Faunistisch-ökologische Untersuchungen an einem Forellenbach im Lipper Bergland. —
Arch. Hydrobiol. 46: 424—612.
—— 1971: Emergenz 1969 im Breitenbach. Schlitzer produktionsbiologische Studien (1). — Arch. Hydrobiol. 69:
14-59.
International Commission on Zoological Nomenclature. 1981: Opinion 1147. — Bull. Zool. Nomencl. 37: 11—26.
Johannsen, O. A. 1905: Aquatic nemantocerous Diptera II. Chironomidae. — In: Needham, J. G., Morton, K. ]J.,
Johannsen, O. A. (eds.): May flies and midges of New York. — Bull. N. Y. St. Mus. 86: 76-330.
—— 1937: Aquatic Diptera. III. Chironomidae: subfamilies Tanypodinae, Diamesinae, and Orthocladiinae. —
Mem. Cornell Univ. agric. Exp. Stn. 205: 3—84.
Kertesz, C. 1902: Cataloga dipterorum hucusque descriptorum. I. — Lipsiae, Budapestini, 399 pp.
Kieffer, J. J. 1906: Description de nouveaux Dipteres nematoceres d’Europe. — Annls. Soc. scient. Brux. 30:
311-348.
—— 1909: Diagnoses de noveaux Chironomides d’Allemagne. — Bull. Soc. Hist. nat. Metz 26: 37—56.
—— 1911: Nouveaux Tendipedes du groupe Orthocladins (Dipt.) (1re note). — Bull. Soc. ent. Fr. 8:181— 187.
—— & Thienemann, A. 1906: Über die Chironomidengattung Orthocladins. I. Zwei neue Orthocladins-Arten
(Kieffer) II. Larven und Puppen der Gattung Orthocladius (Thienemann). — Z. wiss. InsektBiol. 2:143— 156.
—— 1909: Beiträge zur Kenntnis der westfälischen Süßwasserfauna. I. Chironomidae. — 37. Jb. d. zool. sekt. d.
Westf. Provinz. Ver. f. Wiss. u. Kunst, Münster 1909: 30-37.
Kloet, G.$. & Hincks, W. D. 1945: A check list of British insects. — Stockport, 483 pp.
—— 1975: A check list of British Insects (2nd ed.). Part 5. Diptera and Siphonaptera. — Hndbk. Ident. Br. Insects
11:139 pp.
Kownacki, A. & Zosidze, R. S. 1980: Taxocens of Chironomidae (Diptera) in some rivers and streams of the Adzhar
ASSR (Little Caucasus Mts). — Acta Hydrobiol. 22: 67-87.
45
Ladle, M., Cooling, D. A., Welton, J. S., & Bass, J. A. B 1985: Studies on Chironomidae in experimental recircula-
ting steam systems. II. The growth, development and production of a spring generation of Orthocladius
(Euorthocladius) calvus Pinder. — Freshwat. Biol. 15: 243—255.
Langton, P. H. 1984: A key to pupal exuviae of British Chironomidae, 324 pp.
—— 1985: Review of type specimens of the limbatellus group, with a provisional key to known females of Psectro-
cladius Kieffer (Diptera: Chironomidae). — Ent. scand. 15: 477—486.
Lauterborn, R. 1905: Zur Kenntnis der Chironomiden-Larven. — Zool. Anz. 29: 207-217.
Laville, H. 1981: Recoltes d’exuvies nymphales de Chironomides (Diptera) dans le Haut-Lot, de la source (1295 m)
au confluent de la Truyere (223 m). — Annls. Limnol. 17: 255— 289.
Lehmann, J. 1971: Die Chironomiden der Fulda (Systematische, ökologische und faunistische Untersuchungen).
— Arch. Hydrobiol. Suppl. 37: 466-555.
Lindegaard-Petersen, C. 1972: An ecological investigation of the Chironomidae (Diptera) from a Danish lowland
stream (Linding Ä). — Arch. Hydrobiol. 69: 465-507.
Lundbeck, W. 1898: Diptera groenlandica. — Chironomidae, pp. 269-295. — Vidensk. Meddr dansk naturh. Fo-
renY57230 314:
Mason, P. G. & Lehmkuhl, D. M. 1983: Effects of the Squaw Rapids hydroelectric development on Saskatchewan
River Chironomidae (Diptera). — Mem. Amer. Ent. Soc. 34: 187—210.
—— 1985: Origin and distribution of the Chironomidae (Diptera) from the Saskatchewan River, Saskatchewan,
Canada. Can. J. Zool. 63: 876-882.
Miall, L.C.& Hammond, A.R. 1900: The structure and life-history of the Harlequin Fly (Chironomus). — Claren-
don Press, Oxford, 196 pp.
Michailova, P. 1985: Cytotaxonomic review of some species of the genus Orthocladins van der Wulp (Diptera, Chi-
ronomidae). — Ent. Abh. Staat. Mus. Tierkunde Dresden 48: 149-165.
Moubayed, Z. & Laville, H. 1983: Les Chironomides (Diptera) du Liban. I. Premier inventaire faunistique. —
Annls. Limnol. 19: 219— 228.
Murray, D. A. & Ashe, P. 1983: An inventory of the Irish Chironomidae (Diptera). — Mem. Amer. Ent. Soc. 34:
223—233.
Oliver, D.R. 1970: Designation and description of lectotypes of the six Greenland Orthocladiinae (Dipt. Chirono-
midae) described by Lundbeck in 1898. — Ent. scand. 1: 102-108.
—— 1976: Chironomidae (Diptera) of Char Lake, Cornwallis Island, N. W. T., with descriptions of two new spe-
cıes. — Can. Ent. 108: 1053-1064.
—— 1981: Chironomidae, pp. 423—458. — In: Manual of Nearctic Diptera, vol. I. J. F. McAlpine, Petersen, B. V.,
Shewell, G. E., Teskey, H. J., Vockeroth, J. R.,& Wood, D.M. (coord.) Res. Br. Agric. Can. Mon. 27:674 pp.
—— ‚McClymont, D., & Roussel, M. E. 1978: A key to some larvae of Chironomidae (Diptera) from the Macken-
zie and Porcupine River watersheds — Can. Fish. Mar. Serv. Tech. Rep. 791: 73 pp.
—— & Roussel, M. E. 1983: The insects and arachnids of Canada Part 11. The genera of larval midges of Canada
Diptera: Chironomidae. — Pub. Res. Br. Agric. Can. 1746: 263 pp.
Pankratova, V. Ya. 1970: Lichinki ı kukolki komarov podsemeystva Orthocladiinae fauny SSR (Diptera, Chirono-
midae=Tendipedidae). (Larvae and pupae of the midges of the subfamily Orthocladiinae (Diptera, Chirono-
midae=Tendipedidae) of the USSR fauna). — Izd. Nauka, Leningr., 344 pp.
Pinder, L. C. V. 1978: A key to the adult males of the British Chironomidae (Diptera), the non-biting midges, vol.
1,2. Freshwat. Biol. Assoc. Sci. Pub. 37: 169 pp, 189 pls.
—— 1985: Studies on Chironomidae in experimental recirculating stream systems. I. Orthocladius (Enorthocla-
dius) calvus sp.nov. — Freshwat. Biol. 15: 235— 241.
—— & Cranston, P. S. 1976: Morphology of the male imagines of Orthocladius (Pogonocladius) consobrinus and
O. glabripennis with observations on the taxonomic status of O. glabripennis (Diptera: Chironomidae). —
Ent. scand. 7: 19—23.
Potthast, A. 1914: Über die Metamorphose der Orthocladins-Gruppe. Ein Beitrag zur Kenntnis der Chironomi-
den. — Arch. Hydrobiol. Suppl. 2: 243-376.
Prat, N. 1979: Quironömidos de los embalses Espanoles (1.a parte) (Diptera). — Graellsia 33: 37—96.
Ree, H. 1. & Kim, H. $. 1981: Studies on Chironomidae (Diptera) in Korea. 1. Taxonomical study on adults of Chi-
ronomidae. — Proc. College nat. Sci. Seoul Natl. Univ. 6: 123— 226.
Reiss, F. 1983: Teil 2. Die faunistische Erfassung der Chironomidae Bayerns (Diptera, Insecta). — /n: Burmeister,
E. G. & Reiss, F. (eds.). Die Faunistische Erfassung Ausgewählter Wasserinsektengruppen in Bayern (Ein-
46
tagsfliegen, Libellen, Steinfliegen, Köcherfliegen, Zuckmücken), 143—193. Bayerisches Landesamt für Was-
serwirtschaft.
Roback, S. S. 1957a: The immature Tendipedids of the Philadelphia area. — Monogr. Acad. nat. Sci. Philad. 9:
1-152 pp.
—— 1957b: Some Tendipedidae from Utah. — Proc. Acad. nat. Sci. Philad. 109: 1-24.
—— 1959: Some Tendipedidae from Montana. — Not. Nat. 315: 1-4.
Romaniszyn, W. 1958: Klucze do oznaczania owadöw Polski. Cz. 28, Muchöwki-Diptera, Zesz. 14a, Ochotko-
wate — Tendipedidae. Larwy. — Polski Zwiazek entomologiczny 22: 1—137.
Rossaro, B. 1977: Note Sulle Orthocladiinae Italiane con Segnalazione di Specie Nouve per lanostra fauna (Diptera
Chironomidae). — E. Boll. Soc. ent. ital. 109: 117—126.
—-— 1978a: Composizione tassonomica e fenologia delle Orthocladiinae (Dipt. Chironomidae) nel Po a Caorso
(Piacenza), determinate mediante analısi delle exuvie delle pupe. — Riv. Idrobiol. 17: 287—300.
—— 1978b: Contributo alla conoscenza dei generi Orthocladius, Parorthocladius e Synorthocladius. Rassegna delle
specie catturate sinora in Italia (Diptera Chironomidae). — E. Boll. Soc. ent. ital. 110: 181-188.
—— 1982: Guide per ıl Riconsoscimento delle specie anımalı delle acque interne Italiane. 16. Chironomidi, 2 (Di-
ptera Chironomidae: Orthocladiinae). — Con. Naz. Ricerche AQ/1/171: 80 pp.
—— 1984: The chironomids of the Po River (Italy) between Trino Vercellese and Cremona. — Aquat. Ins. 6:
123—135.
Saether, ©. A. 1968: Chironomids of the Finse Area, Norway, with special reference to their distribution in a glacier
brook. — Arch. Hydrobiol. 64: 426-483.
—— 1969: Some Nearctic Podonominae, Diamesinae, and Orthocladiinae (Diptera: Chironomidae). — Bull. Fish.
Res. Bd. Can. 170: 154 pp.
—— 1977: Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys. — Bull. Fish.
Res. Bd. Can. 197: 209 pp.
—— 1980: Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. scand. Suppl. 14:
1-51.
Sahin, Y. 1984: Dogu ve Güney Dogu Anadolu Bölgeleri Akarsu ve Göllerindekı Chironomidae (Diptera) Larva-
larinin Teshisı ve Dagilislari. - Anadolu Univ. Yayinlari 57: 145 pp.
Sasa, M. 1979: A morphological study of adults and immature stages of 20 Japanese species of the family Chirono-
midae (Diptera). — Res. Rpt. Natl. Inst. Envr. St. 7: 148 pp.
—— 1981: Studies on chironomid midges of the Tama River. Part 4. Chironomidae recorded at a winter survey. —
Res. Rpt. Natl. Inst. Envr. St. 29: 79—148, ix-xi.
—— & Yamamoto, M. 1977: A checklist of Chironomidae recorded from Japan. — Jap. J. Sant. Zool. 28:301—318.
Säwedal, L. 1978: The non-biting midges (Diptera; Chironomidae) ofthe Abisko area. — Fauna Norrl. 1: 174 pp.
Schlee, D. 1966: Preparation und Ermittlung von Mefßßwerten an Chironomidae (Diptera). — Gewäss. Abwass.
41/42: 169—193.
—— 1968: Vergleichende Merkmalsanalyse zur Morphologie und Phylogenie der Corynoneura-Gruppe (Diptera,
Chironomidae). — Stuttg. Beitr. Naturk. 180: 150 pp.
Schlein, J. & Gratz, N. G. 1972: Age determination of some flies and mosquitos by daily growth layers of skeletal
apodemes. — Bull. WHO 47: 71-76.
Simpson, K. W. & Bode, R. W. 1980: Common larvae of Chironomidae (Diptera) from New York State streams
and rivers with particular reference to the fauna of artificial substrates. — N. Y. St. Mus. Bull. No. 439: 105 pp.
Soponis, A.R. 1977: A revision of the Nearctic species of Orthocladius (Orthocladins) van der Wulp (Diptera: Chi-
ronomidae). — Mem. ent. Soc. Can. 102: 187 pp.
—— 1979: Zalutschia brıani n.sp. from Florida (Diptera: Chironomidae). — Ent. scand. Suppl. 10: 125-131.
-— 1983: Orthocladius (Orthocladius) ferringtoni, n. sp. from Kansas (Diptera: Chironomidae). — J. Kans. Ent.
Soc. 56: 571-577.
—— 1986: The transfer of Orthocladius rusticus Goetghebuer to Chaetocladius with a redescription of the type.
— Ent. scand. 17: 299—300. 1987. Notes on Orthocladius (Orthocladius) frigidus (Zetterstedt) with a rede-
scription of the species (Diptera: Chironomidae). — Ent. scand. Suppl. 29: 123— 131.
Sublette, J. E. & Sublette, M. S. 1965: Family Chironomidae (Tendipedidae). — In: Stone, A. etal. (eds.): A catalo-
gue of the Diptera of America north of Mexico: 142-181, U. S. Dept. Agric. Handb. 276: 1676 pp.
Taylor, T. H. 1903: XXII. Note on the habits of Chironomus (Orthocladins) sordidellus. — Trans. Ent. Soc. Lond.
1903: 521-523.
47
Thienemann, A. 1911: Hydrobiologische und fischereiliche Untersuchungen an den westfälischen Talsperren. —
Zeit. wissenschaft. Landwirtschaft 41: 535— 716.
—— 1912: Beiträge zur Kenntnis der westfälischen Süßwasserfauna. IV. Die Tierwelt der Bäche des Sauerlandes.
— ]Jber. westf. Prov.-Ver. Wiss. Kunst 40: 43—83.
—— 1935: Chironomiden-Metamorphosen. X. ”Orthocladius-Dactylocladius” (Dipt.). — Stettin. ent. Ztg. 96:
201-224.
—— 1936: Alpine Chironomiden. [Ergebnisse von Untersuchungen in der Gegend von Garmisch-Partenkirchen,
Oberbayern]. — Arch. Hydrobiol. 30: 167—262.
—— 1939: Chironomiden-Metamorphosen XVII. Neue Orthocladiinen-Metamorphosen. — Dt. ent. Z.: 1-19.
—— 1941: Lappländische Chironomiden und ihre Wohngewässer. (Ergebnisse von Untersuchungen im Abisko-
gebiet in Schwedisch-Lappland). — Arch. Hydrobiol. Suppl. 17: 253 pp.
—— 1944: Bestimmungstabellen für die bis jetzt bekannten Larven und Puppen der Orthocladiinen (Diptera Chi-
ronomidae). — Arch. Hydrobiol. 39: 551—664.
—— 1954: Chironomus. Leben, Verbreitung und wirtschaftliche Bedeutung der Chironomiden. — Binnengewässer
20:834 pp.
—— & Krüger, F. 1937: ”Orthocladius“ abiskoensis Edwards und rubicundus (Mg.), zwei ”Puppen-Species” der
Chironomiden. (Chironomiden aus Lappland. II.) — Zool. Anz. 117: 257— 267.
Tilley, L. J. 1979: Some larvae of Orthocladiinae, Chironomidae from Brooks Range, Alaska with provisional key
(Biptera)= Ban. Pac. Ent.'55:127=146.
Tokunaga, M. 1939: Chironomidae from Japan (Diptera), XI. New or little-known midges, with special reference
to the metamorphoses of torrential species. — Philipp. J. Sci. 69: 297—345, pls. 1-5.
—— 1959; 1973: Chironomidae. — /r: Nihon Konchu Zukan, Descriptions of 18 species of chironomid larvae. —
Hokuryukan, Tokyo: 637—664.
—— 1964: Supplementary notes on Japanese Orthocladiinae midges. — Akitu 12:17—20.
Wirth, W. W. and Stone, A. 1968: Aquatic Diptera, Family Tendipedidae (=Chironomidae), pp. 406-424. In:
R. L. Usinger (ed.). Aquatic insects of California, with keys to North American genera and California species.
Univ. Calıif. Press, Berkeley.
Zavtel, J. 1938: Chironomidarum larvae et nymphae I. — Spisy vydav. prir. Fak. Masaryk. Univ. 268: 1-10.
48
Ir - a -transverse
\ sternapodeme
superior volsella
virga
anal point >
ventral part
of inferior volsella
dorsal part of
inferior volsella
crista dorsalis
1 gonostylus
II Im
Fig. 1. Orthocladins (Euorthocladins) luteipes Goetghebuer, hypopygium, dorsal. Fig. 2. Orthocladius (Eudac-
tylocladius) sp., hypopygium, dorsal. Fig. 3. Orthocladius (Pogonocladius) consobrinus (Homgren), hypopy-
gium, dorsal.
50
Fig. 4. Orthocladius (Orthocladius) trigonolabis Edwards, hypopygium, dorsal.
Fig. 5. Orthocladius (Orthocladius) ferringtoni Soponis, hypopygium, dorsal.
3 |
lectotyped'
Figs. 6-8. Orthocladins (Enorthocladius) abiskoensis Thienemann & Krüger. 6. Hypopygium, dorsal, Edwards
type material. 7. Lectotype slide. 8. Hypopygia, dorsal. a. Isachsen, NWT b. Hazen Camp, NWT ce. Carıbou Bar
Creek, NWT.
51
52
Big. 9,
Orthocladius (Euorthocladius) coffmani n.sp., hypopygium, dorsal, holotype.
Fig. 10.
Orthocladius (Enorthocladius) anteılis (Roback), hypopygium, dorsal, Idaho.
>
ANErE
SI
ST
=
EN
>=
Figs. 11-15. 11. Orthocladins (Enorthocladius) roussellae n.sp., hypopygia, dorsal, partypes. a. Baffın Island,
NWTb. Axelheiberg Island, NWT c. Greenland d. Melville Island, NWT. 12. Orthocladius (Orthocladins) frigidus
(Zetterstedt), head, frontal. 13-15. Orthocladius (Euorthocladins) roussellae n.sp. 13. Head, frontal. 14, 15. Hypo-
pygia, dorsal, paratypes, Hazen Camp, NWT.
Fig. 16. Orthocladius (Euorthocladins) telochaetus Langton, hypopygium, dorsal, holotype.
55
Figs. 18-19. Orthocladius (Euorthocladius) saxosus (Tokunaga), hypopygia, dorsal. 18. holotype. 19. a, b. Japan,
non-type material.
54
Figs. 20-21.
Orthocladins (Enorthocladius) rivnlorum Kieffer, hypopygia, dorsal. 20. Ireland. 21
. England.
55
56
Fig. 22.
Orthocladius (Euorthocladius) kanıi (Tokunaga), hypopygium, dorsal, paratype.
Fig. 23.
Othocladins (Enorthocladius) luteipes Goetghebuer, hypopygium, dorsal, Italy.
Fig. 24.
Orthocladius (Euorthocladins) Inteipes Goetghebuer, hypopygium, dorsal, holotype.
5%
Figs. 25-26. Orthocladius (Euorthocladius) calvus Pinder, hypopygia, dorsal. 25. a. Gloucester, England. 26. Ri-
ver Schwentine, Germany. 25. b. Orthocladius (Euorthocladius) thienemanni Kieffer, hypopygium, dorsal. River
Schwentine, Germany.
58
Figs. 27—28. Orthocladius (Euorthocladius) thienemanni Kietfer, hypopygia, dorsal. 27. a. Switzerland b. det.
Goetghebuer. 27. lectotype.
59
Figs. 29-30. Orthocladius (Euorthocladins) ashei n.sp., hypopygia, dorsal, paratypes. 29. Norway. 30. Ireland.
Fig. 31. Orthocladius (Euorthocladius) difficılis (Lundbeck), hypopygium, dorsal, lectotype.
60
33
Figs. 32-33. Orthocladius (Enorthocladius) rivicola Kietfer, hypopygia, dorsal. 32. Ottawa. 33. a. Idaho b. South
Carolina c. NWT.
61
>
ee
SG
OS 0702008 u TU ESTER
I DLINURAELRI RAIN
KÜHNE \
a \
\
ad
| n ul N ln
N
} ne
ar
N
r
<
S
a
ine
Eh ( hr Von!
® DZ 7 A 4 UHR '
=
3a ° 3 ö
en vn PALh| Yy
Mu DÄEEIRERE HB FHINE
AR ae
Veoh
pe a Ta RTL 711 2A
35 ?
N ur u 2
> a UNTEN li) ‚
ZN u ET Lg nz er
36 | r i
f
Figs. 34-37. Orthocladius (Euorthocladius), pupal thoracic horns. a. coffmani n.sp. b. rivnlorum Kieffer c-d.
roussellae n.sp. c. Alberta d. NWT e. saxosus (Tokunaga) f. thienemanni Kieffer g. rivicola Kieffer. 35-36. Ortho-
cladius (Enorthocladius), pupal dorsocentral setae. 35. rıvzcola Kieffer. 36. ashei n.sp. 37. pupal spines. Tergite II: a.
calvus Pıinder. Tergite IV: b. /uteipes Goetghebuer c. rıvicola Kieffer d. thienemanni Kieffer e. ashei n.sp. f. caluns
Pinder.
62
iO
TE
_ Sharon ;
N hy: \
Figs. 33-41. Orthocladius (Euorthocladius), pupal abdomen, dorsal. 38a. rıvunlorum Kieffer. 39. coffmani n.sp.
Anal lobe. 38b. ?n.sp. nr. rvnlorum. Orthocladius (Euorthocladius), pupae. 40. thienemanni Kieffer, pupa in tube,
after Miall and Hammond (1900). 41. rousselae n.sp., pupal abdomen, dorsal.
63
ve I ö a &
\ NEN,
MUST uaiinner
N
Figs. 42, 44,45. Orthocladius (Euorthocladius), pupal abdomen, dorsal. 42. thienemanni Kieffer. 44. saxosus (To-
kunaga). 45. abiskoensis Thienemann & Krüger, frontal warts, lateral. Fig. 43. saxosus (Tokunaga).
64
s——H j—-
1 FRI ( |)
Un din u
art tk
L I )
SQ =
! \rme; \
Ä
erstma —
UN LOL
DER Su
Aurngapgr
nn >
In,
vs
rer
Ka
[a DR
Figs. 46-49. Orthocladius (Enorthocladins), pupal abdomen, dorsal. 46. Inteipes Goetghebuer, Pennsylvanıa,
USA. 47. Goetghebuer, Italy, segments IV-IX. 48. ashei n.sp. 49. rivicola Kieffer.
65
Fig. 50. Orthocladius (Enorthocladius) roussellae n.sp., larva. a. epipharynx b. antenna c. mandible, with variation
d. variation of mental teeth e. mentum.
b
Fig. 51 Orthocladius (Euorthocladius) rivulorum Kieffer, larva. a. epipharynx b. antenna c. mandible d. larval
(left) and pupal (right) tubes, after Taylor (1903) e. mentum f. head capsule, dorsal.
66
52a N | j ) , U
54
N AR
2 c © { c e
Figs. 52-54. Orthocladius (Enorthocladius), larvae. 52. thienemanni Kieffer. a. mandible c. antenna c. mentum.
53. Iuteipes Goetghebuer. a. mandible b. antenna c. mentum. 54. ashei n.sp. a. maxilla, dorsal b. maxilla, ventral c.
mandible d. antenna e. mentum.
Fig. 55. Orthocladius (Euorthocladius) rivicola Kieffer, larva. a. epipharynx b. mandible c. antenna d. mentum.
67
Fig. 56-59. Orthocladius (Euorthocladius) saxosus (Tokunaga), larva. 56. epipharynx 57. body, segments I-IV,
ventral (left), dorsal (right). 58. Alberta: a. mandible b. antenna c. mentum. 59. Type series: a. mandible b. antenna
c. mentum.
Fig. 60. Orthocladius (Euorthocladius) abiskoensis Thienemann & Krüger, larva. a. epipharynx b. mentum c. head
capsule, dorsal d. maxilla, dorsal e. premento-hypopyaryngeal complex, dorsal (left) and ventral (right) f. posterior
body, anal tubules and procercus g. mandible h. antenna.
Bisher erschienene Supplementbände der SPixıana:
Supplementband 1: GUSTAV PETERS, 1978
Vergleichende Untersuchung zur Lautgebung einiger Feliden
(Mammalia, Felidae).
206 Seiten und 80 Seiten mit 324 Abbildungen und 20 Tabellen.
Supplementband 2: HERMANN ELLENBERG, 1978
Zur Populationsökologie des Rehes (Capreolus capreolus L., Cervidae)
in Mitteleuropa.
211 Seiten mit 47 Abbildungen und 42 + 6 Tabellen.
Supplementband 3: JENS LEHMANN, 1979
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
(Systematik, Ökologie, Verbreitung und Produktionsbiologie).
Teil I: Kivu-Gebiet, Ostzaire.
144 Seiten mit 252 Abbildungen und 11 Tabellen.
Supplementband 4: KLAUS HORSTMANN, 1980
Revision der europäischen Tersilochinae Il
(Hymenoptera, Ichneumonidae).
76 Seiten mit 150 Abbildungen und 2 Tabellen.
G. VAN ROSSEM, 1980
A revision of some Western Palaearctic Oxytorine genera
(Hymenoptera, Ichneumonidae).
59 Seiten mit 3 Abbildungen und 2 Tafeln.
Supplementband 5: JENSLEHMANN, 1981
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
Teil Il: Die Region um Kisangani, Zentralzaire.
85 Seiten mit 3 Abbildungen, 2 Tabellen und 26 Tafeln.
Supplementband 6: MICHAEL VON TSCHIRNHAUS, 1981
Die Halm- und Minierfliegen im Grenzbereich Land-Meer der Nordsee.
(Diptera: Chloropidae et Agromyzidae)
416 Seiten mit 25 Diagr., 89 Tabellen und 11 Tafeln.
Supplementband 7: GERHARD SCHERER (Hrsg.) 1982
First International Alticinae Symposium, Munich, 11-15 August 1980
7 Beiträge, 72 Seiten.
Supplementband 8: OSKAR KUHN, 1982
Goethes Naturforschung.
48 Seiten.
Supplementband 9: ERNST JOSEF FITTKAU (Hrsg.) 1983
Festschrift zu Ehren von Dr. Johann Baptist Ritter von Spix.
30 Beiträge, div. Abbildungen und Tabellen, 441 Seiten.
Supplementband 10: W. ENGELHARDT & E.J. FITTKAU (Hrsg.) 1984
Tropische Regenwälder - eine globale Herausforderung.
14 Beiträge, div. Abbildungen und Tabellen, 160 Seiten.
Supplementband 11: ERNST JOSEF FITTKAU (Hrsg.) 1985
Beiträge zur Systematik der Chironomidae, Diptera.
16 Beiträge, zahlr. Abbildungen, 215 Seiten.
Supplementband 12: HANS HERMANN SCHLEICH, 1987
Herpetofauna Caboverdiana
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
45,—
39, —
36, —
43,50
29,80
SI —
20
46,—
S—
Supplementband 13: ANNELLE R. SOPONIS, 1989
A Revision of the Holarctic Species of Orthocladius
(Euorthocladius) (Diptera: Chironomidae) DM 35,—
Supplementband 14: ERNST JOSEF FITTKAU (Hrsg.) 1988
Festschrift zu Ehren von Lars Brundin
28 Beiträge, div. Abbildungen und Tabellen, 259 Seiten DM 80,—
Rünche®
oPIAIAN
Zeitschrift für Zoologie
FESTSCHRIFT
zu Ehren von
LARS BRUNDIN
Herausgegeben
von
E. J. Fittkau
Zoologische Staatssammlung München
SPIXIANA Supplement 14
ISSN 0177— 7424
München, 15. Juli 1988
SPIAIANA
ZEITSCHRIFT FÜR ZOOLOGIE
herausgegeben von der
ZOOLOGISCHEN STAATSSAMMLUNG MÜNCHEN
SPIXIANA bringt Originalarbeiten aus dem Gesamtgebiet der Zoologischen Systematik mit
Schwerpunkten in Morphologie, Phylogenie, Tiergeographie und Ökologie. Manuskripte werden
in Deutsch, Englisch oder Französisch angenommen. Pro Jahr erscheint ein Band zu drei Heften.
Umfangreiche Beiträge können in Supplementbänden herausgegeben werden.
SPIXIANA publishes original papers on Zoological Systematics, with emphasis on Morphology,
Phylogeny, Zoogeography and Ecology. Manuscripts will be accepted in German, English or
French. A volume of three issues will be published annually. Extensive contributions may be
edited in supplement volumes.
Redaktion — Editor-in-chief
Prof. Dr. E. J. FITTKAU
Manuskripte, Korrekturen und Bespre- Manuscripts, galley proofs, commentaries
chungsexemplare sind zu senden an die and review copies of books should be
adressed to
Redaktion SPIXIANA
ZOOLOGISCHE STAATSSAMMLUNG MÜNCHEN
Münchhausenstraße 21, D-8000 München 60
SPIXIANA - Journal of Zoology
published by
The State Zoological Collections München
FESTSCHRIFT
zu Ehren von
LARS BRUNDIN
Herausgegeben
von
E. J. Fittkau
Zoologische Staatssammlung München, 1988
Gesamtherstellung: Gebr. Geiselberger, Altötting
RE
A
Lars Brundin
zum 80. Geburtstag
Jeder, der heute mit Chironomiden arbeitet, ist im Grunde genommen ein Schüler von
Lars Brundin. Er war es, der die Chironomidenforschung mit einem neuen Konzept in die
2. Hälfte unseres Jahrhunderts führte. Er setzte neue Maßstäbe auf diesem Gebiet der
aquatischen Entomologie. Seine Zeichenkunst erschloß der Chironomidensystematik bis-
lang entbehrte Grundlagen. Seine Arbeitskraft, Konzentrationsfähigkeit und Zielstrebig-
keit demonstrierten, zu welch umfassenden Aussagen und Leistungen man bei Benthos-
untersuchungen kommen kann. Seine große wissenschaftliche Begabung machte es ihm
möglich, seinen taxonomischen Erfahrungsschatz und nicht zuletzt seine tiefe Naturliebe
in phylogenetische und biogeographische Grundlagenforschung einzubringen. Er war
wohl der erste Zoologe, der das Werk von W. Hennig: „ Grundzüge einer Theorie der
phylogenetischen Systematik“ durchgearbeitet und seine grundlegende Bedeutung für die
biologische Forschung erfaßt hat. Er wurde der überzeugendste Interpret Hennigs bis
zum späteren weltweiten Durchbruch dieser Theorie.
Wir schätzen uns sehr glücklich, daß Prof. Brundin immer noch aktiv an der Chirono-
midenforschung und der Diskussion innerhalb der Phylogenie und Biogeographie teil-
nımmt. Zu seinem 70. Geburtstag widmete ihm die schwedische Entomologische Gesell-
schaft eine Festschrift. Dort erschien auch eine Würdigung seiner bisherigen vielseitigen
und umfangreichen wissenschaftlichen Arbeit, einschließlich eines Verzeichnisses seiner
Veröffentlichungen. Inzwischen liegt eine Reihe weiterer bedeutender Publikationen von
ihm vor, bzw. sind im Druck.
Mit dieser Sammlung von chironomidologischen Beiträgen unterschiedlicher For-
schungsrichtungen wollen seine Freunde, seine „Schüler“, Lars Brundin danken für seine
wegweisenden Arbeiten, seine anregenden Gespräche, seinen gewichtigen Beitrag zur mo-
dernen Chironomidenforschung. Diesem Dank und dem Glückwunsch zum 80. Geburts-
tag schließen sich zahlreiche Freunde und Fachkollegen an, die sich an dieser Festschrift
nicht beteiligen konnten.
30. Maı 1987
Ernst Josef Fittkau
INHALT — CONTENTS
ARMITAGE, P. D. & J. Tuiskunen: Thalassosmittia atlantica (Stora) comb.
nov. Description of adult female and immature stages
from Tenerife, Canary Islands (Diptera, Chironomidae)
CaspErRs, N.: Zwei neue Smittia-Arten aus dem süddeutschen Raum
(WWiptera@hironomidae)Ere ern,
COoFFMANN, W.P., Yurasıts, L. A. & C. pe a Rosa: Chironomidae of South
India. I. Generic composition, biogeographical relation-
ships and descriptions of two unusual pupal exuviae (Dip-
tenay @hironomidae) nt za ea
CONTRERAS-LICHTENBERG, R.: Tanytarsus curvicristatus spec. nov., eine neue
Chironomidenart aus Kolumbien (Diptera, Chironomi-
N) Level he be AR
CransToN, P. $S. & D. R. OLıver: Aquatic xylophagous Orthocladiinae —
systematics and ecology (Diptera, Chironomidae)......
Devaı, G.: Emergence patterns of chironomids in Keszthely-basın of
Lake Balaton (Hungary) (Diptera, Chironomidae).....
Errer, L.H.: A reconsideration of the genus Apedilum Townes, 1945
(Bipseray@hironomidae)er re
Facnanı, L. P.& A. R. Soponis: The occurrence of setal tufts on larvea of
Orthocladius (Orthocladins) annectens S&ther (Diptera,
Ehironomidae)ir Ri MOMAIDEHEERUIR SRRSEIGINEEMNMDE
Fırrkau, E. J. & D. A. Murray: Bethbilbeckia floridensis: anew genus and
species of Macropelopiini from the South Eastern Ne-
arenie(Wiprtera,Chironomidae)ar rear
Haıvorsen, G. A.: Redescription of Paratrissocladins acuminatus (Ed-
wards) comb. nov. (= Cardiocladius acuminatus Ed-
wards) from Southern Chile (Diptera, Chironomidae)...
HırvenoJa, M. & E.: Corynoneura brundini spec. nov. Ein Beitrag zur Sy-
stematik der Gattung Corynoneura (Diptera, Chironomi-
BERN: Wald. eilt. bas-ry rer...
Kress, B. P. M.: Some Records of two rare Chironomid species in the Ne-
therlands (Diptera,@hironomidae)n... 2: ren.
LavıLte, H. & F. Reıss: Rheomus, un nouveau genre du complexe Harni-
schia avec deux nouvelles especes d’Afrique du Nord
(Dipteray@hironomidaeppea ne
MAKARCHENKO, E. A., KıKNADZE, J. J. & J. E. Kerkıs: Morphokaryological
description of Euryhapsis subviridis (Siebert) from the
South of the Soviet Far East (Diptera, Chironomidae)...
Seite
25— 28
175-181
155-165
101-104
143—154
201-211
105-116
139—142
253—259
85— 89
213—238
29— 33
183—190
129—137
MicHai.ova, P. VL.: A Review of the Genus Polypedilum Kieffer. The cy-
totaxonomy of Polypedilum aberrans Tshernovskji (Dip-
tera, Chronemidaee ra:
Murray, D. A. &E. J. Fırrkau: Schineriella schineri gen nov. comb. nov.,
placement of Tanypus schineri Strobl 1880 (Diptera, Chi-
FOROIMdAR,, „er ee ee
Reiıss, F.: Die Gattung Kloosia Kruseman, 1933, mit der Neube-
schreibung zweier Arten (Diptera, Chironomidae).....
Rosack, $. $. & R. P. Rurrer: Denopelopia atrıa, anew genus and species
of Pentaneurini (Diptera: Chironomidae: Tanypodinae)
item Elanıda vice re
Rossaro, B.: A contribution to the knowledge of chironomids in Italy
(Diptera, Chironomidae) a... 2.2 u. ee
SATHER, O. A.: Diplosmittia recisus spec. nov. from Peru (Diptera, Chiro-
nomidae)y. So a 2 0 u
SETHER, ©. A. & O. A. Schnerı: Heterotrissocladius brundini spec. nov.
from Norway (Diptera, Chironomidae).............
SATHER, OÖ. A. & O. A. SchneLL: Two new species of the Rheocricotopus
(R.) effusus group (Diptera, Chironomidae)..........
SATHER, OÖ. A. & E. Wırrassen: A review of Lappodiamesa Serra Tosio,
with the description of L. boltoni spec. nov. from Ohio,
USA (Diptera, Chironomidae).. ... - 2.0lzrerzgersge ge
SCHNELL, A. & O. A. SarHer: Vivacricotopus, anew genus of Orthocladii-
nae from Norway (Diptera, Chironomidae)..........
WIEDERHOLM, T.: Changes in the profundal Chironomidae of Lake Mälaren
during 17 years u Ri in re
Wırrassen, P. E. & B. Serra-Tosıo: Description de trois femelles de Dia-
mesa Meigen dont D. cinerella Meigen (Lectotype et Pa-
ralectotype) (Diptera, Chironomidae)..............: =.
Wırson, R.S.: A survey of the zinc-polluted River Nent (Cumbria) and
the East and West Allen (Northumberland), England,
usingichironomid.pupalewıyiae 3. sb en a
WÜLKER, W. & J. Herrmann: Die weiblichen Gonodukte in normalen und
parasitierten Chironomus Imagines (Diptera, Chironomi-
daele a a un
239-246
247-252
35—44
ee,
191-200
45— 47
57— 64
65— 74
75— 84
49— 55
7-15
91-100
167-174
17-24
SPIXIANA | “ Supplement 14 | 7-15 | München, 15. Juli 1988 ISSN 0177-7424
Changes in the profundal Chironomidae of Lake Mälaren
during 17 years |
By T. Wiederholm
Abstract
The profundal benthos of Lake Mälaren was sampled in September/October each from 1970 and onwards. Con-
siderable fluctuations in population densities of the most abundant taxa occurred. In many cases the temporal pat-
terns were similar between stations, indicating common causal mechanisms. The role of food, climatic conditions
and biotic interactions is discussed.
Introduction
Lake Mälaren is the third in sıze of Sweden’s lakes. The lake serves as a water supply to Stockholm
and other surrounding communities, supports a significant fishery and is used for various recreational
activities among the population of 1.1 million within its drainage area.
Limnological monitoring of Lake Mälaren and ıts main trıbutaries has been performed since 1966.
Studies of the bottom fauna were started in 1969. Sampling network and methods have been the same
since 1970. Earlier results were reported in WIEDERHOLM (1974, 1978). In the present paper I describe
the changes that have taken place among the major taxa of profundal Chironomidae and discuss the
importance of trophic conditions and other factors to these changes.
Methods and material
Five Ekman samples (15x 15x30 cm) were taken in September/October each year from 19 stations throughout
the lake. Eight of these stations, representing the major subareas of the lake, are discussed here (Fig. 1). The sedi-
ments were washed through a 0.6 mm net and preserved in 70% ethanol in the field. The samples were stained using
Bengal Rose, sorted under microscope and the animals identified to species or genus (Chironomidae and others) or
higher taxonomic level (Oligochaeta, Hydracarina). Data were stored and treated with the use of codes in MAIT-
LAND (1977) (amended by myself and co-workers), Uppsala University’s computer (SAS, own programmes) and
PC:s (statistics and diagrammes in this paper).
The chemical and biological conditions in Lake Mälaren are described in detail by WILLEN (1984). The lake is
composed of several more or less isolated basins. The western and northern parts are the most eutrophic, with con-
siderable variation within and between years in phytoplankton biomasses and water chemistry. The central basins
are deeper, somewhat colder and more homogenous temporally.
Results
General
The profundal Chironomidae of Lake Mälaren was predominated for the most part by seven taxa.
Chironomus anthracinus Zett., C. plumosus L. and Procladius spp. dominated in the western and
7
a
$ ,
E Wi n zZ
: Swede: G
60° N 60°N Bes
"LAKE MÄLAREN
Lake Hjälmaren
Denmark
@ GG Sigtunafjärden
{} Sy
>
R N
Ü +
nr i 2 N. Prästfjärd
= astijarden
= Blacken Granfjärden x ° J
o
OD TG Ge
z TG
G
) DD Ga
. TG
0 10 20 km >
= S. Björkfjärden G
Fig. 1. Lake Mälaren with sampling stations.
northern basins (Blacken, Granfjärden, Ekoln and Sigtunafjärden in Fig. 1). C. neocorax Wülker &
Butler occurred in western Lake Mälaren. Micropsectra spp., Tanytarsus spp. and Procladins spp. do-
minated in the central part of the lake, where Chironomus was absent. Sergentia coracına and Stictochi-
ronomus spp. were also part ofthe fauna of the central basins but in lower numbers than the other taxa.
It has not been possible to identify all larval material to species. Imagines of Micropsectra caught by
hand-net at the central basıns were identified as M. insignilobus Kıieffer by Säwepaı (1976). Several
species of Tanytarsus and Procladius have been found and at least two species of Stictochironomus, one
of which was S. rosenschoeldi (Zett.), have been reported to occur in hand-netted material (WIEDER-
HOLM 1974). Chironomus larvae of the salinarius type from western Lake Mälaren were described as
C. neocorax by WüLker & Butter (1983) and none of the other species with thıs larval type are likely
to occur ın the lake. The identity of ©. plumosus and C. anthracinus has not been established from
chromosome identifications, but these species are the most likely ones to occur in great numbers at the
depth that has been sampled here, viz 15 m (cf. LINDEBERG & WIEDERHOLM 1979).
Considerable temporal variation in numbers have been noted for most groups of benthic organısms
during the study period. Oligochaeta and Chironomidae decreased in numbers at most stations
throughout the period. Chaoborus flavicans became more abundant during later years (station Blac-
ken in Fig. 2). Crustaceans occurred in high numbers in the central part of the lake during some few
years (station N. Prästfjärden in Fig. 2).
Chironomus anthracinus
C. anthracinus occurred in particularly high numbers ın Blacken and Sigtunafjärden during the first
part of the period (Fig. 3). The species then decreased at all stations and population density was rather
low throughout the 1980’s. Considerable variation occurred between individual years, and the corre-
Oligochaeta
Pisidium spp
P. affinis
C. flavicans
Chironomidae
ODNSESH
Oligochaeta
Pisidium spp
P. affinis
Chironomidae
=
4
DI
Oligochaeta
Pisidium spp
P. affinis
Chironomidae
year
Fig. 2. Occurrence of major groups of benthic organisms 1970— 1986 (ind. m?) in western (stn. Blacken) and cen-
tral Lake Mälaren (stn. N. Prästfjärden).
lation coefficients between the various data sets for single years were low, except between Blacken and
Sigtunafjärden. The general pattern of development was quite similar at all stations, however, as appe-
ars from the figures and the correlation coefficients for running means (Fig. 3, Table 1).
C. plumosus
C. plumosus fluctuated in numbers at most stations without any clear general trend or correlation
between stations (Fig. 3, Table 1). High numbers occurred in Ekoln during the first part of the study
period, but the population density decreased strongly at the end of the 1970’s and remained low
throughout the remainder of the study period.
C. neocorax
This species has a rather uneven distribution within Lake Mälaren. Similar to the other Chironomus
species it is absent from the central basıns, and it occurs in high numbers only in some of the modera-
tely eutrophic western basıns. Of the stations dealt with here, only Granfjärden had high population
densities of C. neocorax, and there was no clear temporal pattern or correlation between stations
(Fig. 3, Table 1).
Micropsectra spp.
Large numbers of Micropsectra were found during only afew years (Fig. 3). Distinct peaks occurred
at all stations between 1973 and 1976 and the running means of the 30 and 50 m depths in both
N. Prästfjärden and $. Björkfjärden were strongly correlated (Table 1). The overall occurrence of
Micropsectra was low throughout the 1980’s.
Tanytarsus spp.
The occurrence of Tanytarsus was similar to that of Micropsectra (Fig. 3). Peaks occurred at all sta-
tions in 1974 and 1976, and very low numbers were found after 1979. The data sets from the various
stations were strongly correlated (Table 1).
Sergentia coracına
This species was rare or absent most years, but distinct peaks occurred in 1976 or 1977 in three out
of four stations in the central part of Lake Mälaren (Fig. 3).
Stictochironomus spp.
Stictochironomus (not shown in figure or table) had its main occurrence in 1976-79, i. e. somewhat
after the peaks of Micropsectra and Tanytarsus. Significant numbers were found only in N. Präst-
fjärden.
Procladius spp.
Two peaks occurred at the 30 m stations in central Lake Mälaren — one around 1976 and the other
one in 1982-83 (Fig. 3). The running means from these stations were strongly correlated (Table 1).
At 50 m depth in N. Prästfjärden the second peak was much less pronounced, but the general pattern
was similar. The 50 m station in S. Björkfjärden showed much less variation, but the highest numbers
occurred in the first part of the study period.
In the western and northern basins temporal variation was seemingly greater, without much sımi-
larity between stations (Fig. 3, Table 1). A general tendency to decreasing abundances may be noted,
however.
10
The occurrence of Procladins was similar to that of Micropsectra and Tanytarsus. Running means of
Procladius were strongly correlated to those of Micropsectra (r = 0.91—0.97) (not shown in table) at
the 30 m stations, though less so at the 50 m stations (r = 0.17—0.38). There was also a positive corre-
lation with running means of Tanytarsus or Tanytarsus plus Micropsectra (r = 0.65—0.91) atthe 30 m
stations, though again this trend was weaker at the greater depth.
Discussion
Considerable variation occurred between years. However, for most taxa trends or regular patterns
of varıation are clearly discernible. In many cases the similarity between stations, as indicated by high
correlation coefficients between the data sets, indicates acommon causal mechanism for the observed
variation. For example, the high numbers of Micropsectra, Tanytarsus, S. coracına and Stictochirono-
mus at most stations in central Lake Mälaren during the mid—1970’s would seem to have acommon
reason. Decreasing numbers of C. anthracınus were common to the stations of western and northern
Lake Mälaren and one may suspect acommon structuring factor here also. The numbers of Procladius
were strongly correlated at stations in the central part of the lake, but not at the western and northern
stations, and this may indicate that different factors are predominating. No pattern could be seen in
the numbers of C. plumosus and C. neocorax, except for the marked decrease of the former species at
station Ekoln.
Food, weather conditions and biotic factors are important determinants acting independently or
collectively in governing population density. Improved sewage treatment in all major communities
around the lake has brought about a 50 % reduction of the phosphorus loading on Lake Mälaren since
the middle of the 1960°s. The occurrence of a series of dry years up to 1976 added to this and the total
phosphorus loading decreased to less than half of its maximum during the last 20 years. Evidently as
a result of this, the excessive blooms of bluegreen algae in the western and northern parts of the lake
decreased in intensity and duration (Wirren 1987). Small species of algae (e. g. flagellates) became more
common and the number of species increased. The average total biomass of algae did not decrease to
any great extent, however, except for the most eutrophic parts of the lake.
The significance of these changes to the bottom fauna is not immediately clear. Both quantitative
and qualitative changes in profundal food supply may have resulted. Because many of the small, non-
colonial species of algae are more effective producers than large, colonial species, there is reason to be-
lieve that the total planktonic primary production per unit area is about the same as before or even
higher. Measurements to support this conclusion are lacking, however. One might assume that a grea-
ter proportion of the phytoplankton is metabolized in the water column when small and mobile forms
are more predominant. Bluegreens such as Anabaena are also metabolized in the water phase (FaLLon
& Brock 1980), but others sink and decompose on the lake bottom. This may result in increased sedi-
ment oxygen demand, but the increased microbial production favours many invertebrates that tolerate
low oxygen levels. Among these are several species of Oligochaeta. Hence the reduced numbers of
Oligochaeta in many parts of Lake Mälaren (cf. Fig. 2, station Blacken) may therefore be understood
as reflecting a reduced nutrient flow through bacteria and sediments, resulting from the reduced oc-
currence of bluegreen algae.
Little information is available on food utilization of aquatic insects — certain types of ingested mat-
ter are probably of little value, whereas small amounts of other material may be critical (LAMBERTINI &
Moore 1984). C. anthracinus and C. plumosus are both detrivores, but algae sometimes make up a
considerable part of the gut content (Jönasson 1972, LAMBERTINI & MooRrE 1974). Johnson (1985) con-
cluded that C. anthracinus is more of a deposit feeder, ingesting particulate matter scraped from the
recently deposited surface sediments, whereas C. plumosus is a filter feeder with the nutritional qualı-
ty of ingested matter depending primarily on pelagic inputs. This would explain the decreasing num-
11
C. anthracinus C. plumosus C. neocorax Procladius spp
Blacken
Blacken
Granfjärden
Bra
Ze, :
N |
ir
BNEo.2
Bas
A
es
ul
Sigtunafjärden
Micropsectra spp Tanytarsus Spp S. coracina
200
N. Prästfjärden 30 m N. Prästfjärden 30 m
vr DEREN
- o
1000
S. Björkfjärden 30 m
O abe of a
Ha BR 4 Bere Pa
eu Be TEenken
0
a
Fig. 3. Occurrence of major profundal Chironomidae 1970-1986; yearly and 5 yr running means (ind. m).
Please observe differences in scales.
bers of C. anthracinus if, as argued above, one accepts that the changes in phytoplankton species com-
position has increased the relative importance of the pelagic metabolism relative to that of the benthic
one.
The decrease of C. plumosus at station Ekoln is probably more of a local change than part of agen-
eral pattern. Hypereutrophic conditions occurred at thıs station before effective sewage treatment was
installed in the nearby city of Uppsala, and C. plumosuns endured this better than C. anthracınus. It is
surprising, however, that both species have decreased to virtual extinction during later years.
Contrary to the other species dealt with here, Procladius spp. are predominantly carnıvorous, al-
though algae and detritus may also be found in their gut content (TArwın 1969, BAKER & MCLACHLAN
1979). Oligochaetes, other chironomid larvae and small benthic crustaceans are the preferred prey.
Data on the ocurrence of crustaceans are not available. There was a positive correlation between the
running means of Procladins spp. and those of Oligochaeta at two of the four stations in western and
northern Lake Mälaren. The correlation was negative and very weak at the central stations, where Mi-
cropsectra and Tanytarsus were better correlated with Procladius. This may indicate that the fluctua-
tions in numbers of Procladins depended on fluctuations of their prey organisms, but it may also indi-
cate that some of these taxa responded to some other factor that led to acommon temporal pattern (cf.
below).
Micropsectra, Tanytarsus, Sergentia coracıina and Stictochironomus had their maximum occurrence
during the mid—-1970’s. All are presumably browsers or filter feeders and typical inhabitants of the
mesotrophic or moderately oligotrophic lake types as characterized by Brundin (1956). They were
characteristic members of the profundal chironomid communities in the central part of Lake Mälaren
throughout the study period dealt with here, but high population densities occurred only during a few
years. It seems unlikely that this pattern would have been due to adirectional change toward more me-
sotrophic or oligotrophic conditions that would have presented optimal conditions during these years
only. Thus underlying factors with a more stochastic varıation should be sought to explain the occur-
rence of these taxa. Weather conditions coincident with emergence may be one such factor. Calm and
warm weather should be favourable to swarming, egg-laying, and hence the recruitment of young lar-
vae, particularly in species with a short and well synchronized flight period. Phenological data is
scarce, however, and the available information indicates rather long or even several flight periods.
Imagines of M. insignilobus are common in May and June at the central basins of Lake Mälaren (Wır-
DERHOLM 1974). Stictochironomus rosenschoeldi and another species of Stictochironomus occur in June
and July. Records of adult Sergentia coracina from southern and central Sweden include late June and
September (Brunnın 1949); no adults have been found from Lake Mälaren. If one assumes that the 4th
instar larvae found in September— October were born in the early summer the same year, weather con-
ditions ın May and June should be important. Weather records show that these months were particu-
larly warm in 1976, with 230 day degrees above the average for 1970-85 and nearly 350 day degrees
above the minimum during the period, which occurred in 1982. Micropsectra, Tanytarsus and Sergen-
tia coracina had population peaks in 1976 at some stations. Peaks did occur in other years also, howe-
ver, when temperatures were below average (e. g. 1985). Nevertheless it is still possible that the peaks
in larval abundance that occurred during these years were related to weather conditions, but more de-
tailed life history information is needed to support this conjecture.
Between 5000 and 10000 ind. m ?, occasionally as much as 20000 ind. m?, of Pontoporiea affınis
may be found at 50 m depth at station S. Björkfjärden (WIEDERHoLM unpubl.). The physical disturban-
ce by such numbers of crustaceans should have a negative influence on the sessile, tube-living and
rather fragile larvae of Tanytarsus and Micropsectra, and a strong negative correlation did occur
between running means of P. affinis and the two chironomid taxa (r = —0.85 and —0.91, respec-
tively). Hence, the absence of large numbers of P. affinis might be a prerequisite for Tanytarsus and
Micropsectra to occur in reasonably large populations densities even during years when weather
conditions and other circumstances were favourable to recruitment of young.
13
C. anthracinus
Blacken Granfj. Sigtunafj. Ekoln
Blacken 0.48/0.91 0.72/0.92 0.39/0.63
Granfj. 0.08/-0.51 0.60/0.98 0.34/0.78
Sigtunafj. 0.01/0.61 -0.22/-0.77 0.60/0.83
Ekoln 0.17/0.60 0.12/-0.32 0.08/0.51
C. plumosus
C. neocorax
Blacken Granfj. Sigtunafj. Ekoln
Blacken 0.15/-0.47 ORSIELAOMTEI
Granfj. 0.46/0.60 0.21/-0.43
Sigtunafj. -0.04/-0.28 -0.11/-0.27 -/-
Ekoln 0.34/0.55 0.08/0.26
Procladius spp
Micropsectra spp
N. Prästfj. 30 S. Björkfj. 30 N. Prästfj. 50 S. Björkfj. 50
NerPrast£je 30 0.30/0.76 0.47/0.89 0.2570275
S-«#BJorkf]j= 30 0.68/0.89 0.20/0.59 0.95/0.99
NesPrastrn.,50 0.67/0.92 0.80/0.98 0.19/0.57
S2B1)0rkl 2250 0.75/0.85 0.92/0.99 0.82/0.97
Tanytarsus spp
Sergentia coracina
N. Prästfj. 30 SEMBJOrkf. 30 N. Prästfj. 50 S» BJörkf3.350
N. Prästfj. 30 0.05/0.59 0.28/0.64 0.06/0.60
5“, BIockE 230 0.67/0.97 0.32/0.75 0.94/0.99
Ne=PrastrRj-50 0.65/0.87 0.73/0.94 0.60/0.82
SS BJOrKRIJ 2 50 0.60/0.75 0.46/0.80 0.53/0.91
Procladius spp
Table 1.
Correlations between stations for the dominant chironomid species; yearly data/5 yr running means.
The deep profundal of temperate lakes is sometimes thought of as a zone of stable environmental
conditions with little variation in population densities and community composition. The studies re-
ported here are not the first to demonstrate that considerable fluctuations do occur (cf. Jonasson 1972,
HorLoramen & Jönasson 1983). Few time series exist, however, that describe long-term variation ın
profundal Chironomidae. Observations from such series may be used to formulate hypotheses on the
role of abiotic factors, food, competition and predation to variation in population density and com-
munity structure. In particular, long series of field observations are the only practical way to assess the
significance of climatic varation to population densities of profundal Chironomidae. To understand
14
the role of biotic interactions, more information is needed, in particular, on life histories of Chirono-
midae and how these are linked to seasonal variation of phytoplankton production and deposition of
organic matter on lake bottoms.
Acknowledgements
Lars Eriksson identified and counted the Chironomidae. Richard Johnson read the manuscript.
References
BAKER, A. $. & MCLAcCHLAN, A. J. 1979. Food preferences of Tanypodinae larvae (Diptera: Chironomidae). —
Hydrobiologia 62: 283-288.
BRUNDIN, L. 1949. Chironomiden und andere Bodentiere der südschwedischen Urgebirgsseen. Fin Beitrag zur
Kenntnis der bodenfaunistischen Charakterzüge schwedischer oligotropher Seen. — Rep. Inst. Freshwater
Res. Drottningholm 30: 1— 914.
—— 1956. Die bodenfaunistischen Seetypen und ihre Anwendbarkeit auf die Südhalbkugel. Zugleich eine Theorie
der produktionsbiologischen Bedeutung der glazialen Erosion. — Rep. Inst. Freshwater Res. Drottningholm
37: 186—235.
FALLON, R. D. & Brock, T. D. 1980. Planktonic blue-green algae: Production, sedimentation, and decomposition
in Lake Mendota, Wisconsin. — Limnol. Oceanogr. 25: 72—88.
HOLOPAINEN, 1. J. & JONAssoN, P. M. 1983. Long-term population dynamics and production of Pisidium (Bival-
via) in the profundal of Lake Esrom, Denmark. — Oikos 41: 99-117.
JOHNSON, R. K. 1985. Feeding efficiencies of Chironomus plumosus (L.) and C. anthracinus Zett. (Diptera: Chiro-
nomidae) in mesotrophic Lake Erken. Freshwater Biology 15: 605-612.
JONAssonN, P. M. 1972. Ecology and production of the profundal benthos in relation to phytoplankton in Lake Es-
rom. Oikos Suppl. 14: 1— 148.
LAMBERTINI, G. A. & MOORE, J. W. 1984. Aquatic insects as prımary consumers. In: RESH, V. H. & ROSENBERG,
D.M. (Eds.) The ecology of Aquatic Insects. — Praeger Publishers, New York.
LINDEBERG, B. & WIEDERHOLM, T. 1979. Notes on the taxonomy of European species of Chironomus (Diptera:
Chironomidae). — Ent. scand. Suppl. 10: 99— 116.
MAITLAND, P. $. 1977. A coded checklist of animals occurring in fresh water in the British Isles. — Institute of Ter-
restrial Ecology, Edinburgh, 76p.
SÄWEDAL, L. 1976. Revision of the notescens-group of the genus Micropsectra Kieffer, 1909 (Diptera: Chironomi-
dae). — Ent. scand. 7: 109— 144.
TARwıD, M. 1969. Analysis of the contents of the alimentary tract of predatory Pelopiinae larvae (Chironomidae).
= Eko]a Bol Ser 2241721261511:
WIEDERHOLM, T. 1974. Studies of the bottom fauna of Lake Mälaren. — The National Environmental Protection
Board Report 415. (In Swedish with summary in English.)
—— 1978. Long-term changes in the profundal benthos of Lake Mälaren. — Verh. Internat. Verein. Limnol. 20:
818-824.
WILLEN, E. 1984. The large lakes of Sweden: Vänern, Vättern, Mälaren and Hjälmaren. In: TAus, F. B. (Ed.) Lakes
and Reservoirs. — Elsevier Science Publishers, Amsterdam.
—— 1987. Phytoplankton and reversed eutrophication in Lake Mälaren, Central Sweden, 1965-1983. — Br. phy-
col. J. 22: 193—208.
WÜLKER, W. F. & BUTLER, M. G. 1983. Karyosystematics and morphology of Northern Chironomus (Diptera:
Chironomidae): Freshwater species with larvae of the salinarins-type. — Ent. scand. 14: 121-136.
Dr. Torgny Wiederholm
National Environmental Protection Board
Environmental Quality Laboratory
Box 8005
75008 Uppsala, Sweden
15
ae
Hiskirnesontil. erg a m Ve Falten Bar “el 1A ie
uxL RD
ur je Be Re ein at wohl "
ou j LITE) wor 2 ud ei linear. > sun Nimm A
warn le -1 :OX mild
wen BugbeulnlguT ing da Yu een ee een ur
mlodyeienvd ll ara Jul nd eat nis
aolteuıjmasah br „un mınsunibe ung aa anna Oo
BT air. 2; > na
Jet m art “bog a Lu 0l EL EN? ur uot ee 6,
wıL deu] mu] ae In eh
2 WIESEN T # FR ET ee hen, 1” we) run; ya
a Mi INT PErRT, PROrEE Bee | “ik ) ulaodegeg n
RT add org rw Bea ni BEI SAN EEE EN rule bite er en \ a
ea 7) Rn
BAER Wr a ee EN up RW [, soo A
Bun >7.°7 zer DR. WW T DPFRERDER on PETE Er FL ee I
N re) I en anne wer Ta Pr
| Da BE BE I er
Tai Bares ee Be lin Ya nl ba A
TE > ar. zu zu ibl 7 un
unter 9 a a sieh erg ein au ve acatun.aa anieee
j zur u aus N SM EEE:
TE TE RRZ we yraunlerin Verein. gıbienmil a) anal ku a0
ER j . IE at De
Na landen an ae sl N ai tar
2 Be . Fihetgnet arm ‚ ee
DE anuı! ‚ae una une it ren
Er
Ersaliniti: ws .
ne RT ren BR tl ran! sb EIRET
ale} Fre hi en y un KILUL Dr “ PR
un 1 ee ee) una ereun
Duke na am
past) hote amainan ı hir
Maker or ae
Pr
N 1 Lore
I a a NR Knlaluh:,
naruto ia dinger r
= iur, burn Au in
00), Sure sy br
sale wi eelaien Vratlähipe
RE ice ale
1äl
SPIXIANA | Supplement 14 | 17—24 | München, 15. Juli 1988 ISSN 0177 — 7424
Die weiblichen Gonodukte in normalen und parasitierten
Chironomus Imagines*
(Diptera, Chironomidae)
Von Wolfgang Wülker und Iris Herrmann
Abstract
The histological and functional differences of the four sections of female Chironomus gonoducts are characteri-
zed by light- and ultramicroscopical techniques. The foremost part of the oviductus communis with its high (pos-
sibly glandular) epithelium may produce secretions with importance for egg transport or sperm activatıon. The se-
cond broad part with flat epithelium is able to store eggs after deliberation from the ovary. The third part, charac-
terized by a muscular valve, restricts the egg passage to only one egg at atime. The genital chamber (vagina) ıs re-
sponsible for guiding the penis to the „Spermathekenmündungsplatte“, insemination of ripe eggs, addition of mu-
cus from the gluten gland and extrusion of the inseminated eggs. With regard to these functions, the actions of the
„Spermathekenmündungsplatte“, the attached coxosternapodemes and their musculature, and the processes pro-
truding into the genital chamber from the lateral and ventral sides are discussed. Effects of mermithid worms (Ne-
matoda) on Chironomus gonoducts are variable. Nevertheless, as a rule, the parasitogenic deficiencies begin from
the oral components (oviduct, spermathecae). The „Spermathekenmündungsplatten“ are often misshaped and re-
stricted to the caudal part. In consequence, the coxosternapodemes have arıgid median connection and can not be
moved in the normal way. Histologically, inhibition of development (e. g. oviduct), excess growth (e. g. intima) and
disintegration (e. g. musculature) can be observed. Thus, the sterility of parasitized females is not only a matter of
undeveloped ovaries, but also of the incompleteness, aberrant histological structure and functional incompetence
of the gonoducts.
Einleitung
Die Änderung des Geschlechtsapparates von Chironomus durch parasitäre Mermithiden (Nema-
toda) ist lange bekannt (Remreı 1940, WüLker 1961, Remper etal. 1962). Die weiblichen Imagines wer-
den „kastriert“, d. h. ihre Gonaden werden gar nicht ausgebildet (Remper 1940) oder erreichen nur
etwa !/oo der normalen Größe und enthalten unentwickelte oder degenerierende Keimzellen (WÜüLkEr
1961,:1971). Das 8. Abdominalsternit, in dem die weiblichen Gonodukte ausmünden, verliert ım pa-
rasitierten @ mehr oder minder die typischen Strukturen (z. B. geteiltes Borstenfeld, Subgenitalbucht,
Notum, Öffnungen der Gonodukte) und wird damit scheibenartig wie beim & (Würker 1961, Götz
1964); die zugehörige Genitalimaginalscheibe des 8. Segmentes der Larve ist dementsprechend un-
vollständig (WüLker 1975).
Über die innen liegenden sekundären Geschlechtsmerkmale ist weniger bekannt. Die aus dem
9. Abdominalsegment des @ hervorgehende Schleimdrüse fehlt der parasitierten weiblichen Imago
* Der größte Teil der Untersuchungen wurde vom Erstautor bei der 64. Jahrestagung der Central States (Kansas)
Entomological Society in Lincoln/Nebraska April 1985 vorgetragen.
17
oder ist winzig (Y/ıoo der normalen Größe, Görtz 1964), ihre Anlage ist bei parasitierten Larven nur in
Form eines ziemlich ungeordneten Zellhaufens vorhanden (Würker 1961, 1975, 1976). Spermatheken,
die aus der Genitalimaginalscheibe des 8. Segmentes hervorgehen, fehlen im parasitierten Tier (REmpeı
1940, WÜLKER 1961, 1978, GöTz 1964). Von den Geschlechtsausführgängen sagt WÜLker (1961), daß
sie meist nur in Andeutungen vorhanden sind, „die aber nur kurz verfolgt werden können und beim
weiblichen Intersex keine Verbindung zum rudimentären Ovar haben“. Nach boraxkarmingefärbten
Totalpräparaten sind sie auf eine Zellmasse am Hinterrand des 8. Segmentes der Imago beschränkt
(Würker 1978), einige zugehörige Muskeln (M. dilatator vaginae, M. dil. oviducti) können identifi-
ziert werden, sind aber unvollständig. Histologische und funktionelle Betrachtungen sind bei norma-
len Imagines selten (z. B. Wenster & Remper 1962, Photographien in SAETHER 1977), für parasitierte
fehlen sie völlig.
Wir haben bei histologischen Untersuchungen an C. anthracinus Zettund C. riparius K. gefunden,
daß schon die Gonodukte normaler weiblicher Imagines unbekannte Strukturen bieten, die der mor-
phologischen und funktionellen Betrachtung wert sind. Bei Parasitierung von C. anthracinus durch
Limnomermis anthracini Kaiser, Wülker & Skofitch 1987 wollten wır feststellen, welche der Gono-
duktabschnitte und Strukturen im parasitierten @ zumindest fragmentarisch gebildet werden, ob sie
typische oder aberrante Form haben, und wieweit die Gonodukte noch zu ihrer normalen Funktion
geeignet erscheinen.
Material und Methoden
Es wurde hauptsächlich an Imagines von Chironomus anthracinus Zett. aus Freilandfängen vom Schluchsee/
Hochschwarzwald (930 m über NN) gearbeitet. Zur Ergänzung ist der leicht im Labor züchtbare C. riparius K.
herangezogen worden. Beide Arten unterscheiden sich in den hier betrachteten Strukturen nur unwesentlich.
Zur Analyse des zellulären Aufbaus bestimmter Strukturen eignet sich alk. Boraxkarminfärbung nach Fixierung
in Carnoy (ROMEIS 1968). Selektive Darstellung der chitinisierten Teile mit der üblichen KOH-Behandlung (10%).
Die mazerierten und gründlich gewässerten Hinterenden können dann zur Untersuchung bestimmter Teile (z. B.
Spermathekenmündungsplatte) mit Mikronadeln präpariert und für rasterelektronenmikroskopische Darstellung
vorbereitet werden. Dazu werden die Objekte in üblicher Weise in Acetonstufen entwässert, critical point-getrock-
net (Balzers Union, CPD 020) und mit Gold beschichtet. Betrachtung in einem Nanolab 7 ZEISS. Die histologi-
schen Schnittserien sind nach Fixierung der Objekte in Glutaraldehyd (6%) in Cacodylatpuffer, Nachfixierung in
1% OsO4, Entwässerung über Alkohol/Propylenoxid und Einbettung in Epon mit 1 um Dicke auf einem Reichert
Om U2 Ultramikrotom geschnitten und mit Toluidinblau gefärbt. Lebendbeobachtungen der Imagines nach leich-
ter Betäubung mit Äther. In der Terminologie der beobachteten Strukturen folgen wir SAETHER 1980.
Ergebnisse und Diskussion
Gonodukte normaler Imagines
Am caudalen Ende der beiden Ovarien findet sich in Querschnittserien unreifer QP der zunächst
zweigeteilte, dann einheitliche Zellpfropf, der den Eiern den Eintritt ins Ovar versperrt (vgl. WENSLER
& Rempeı 1962, Fig. 45). Es gibt, wie schon Azur. Nasr (1950) festgestellt hat, keine paarigen lateralen
Ovidukte. Vielmehr beginnt das Lumen des Ovidukts (odc) gleich unpaar und ist von voluminösen
Zellen (Abb. 2a) umgeben. Dieser Anfang des ersten Oviduktabschnittes liegt noch im 7. Abdominal-
segment und ist durch das große Ganglion (g), in das dasjenige des 8. Segmentes eingeschmolzen ist,
von der Ventralwand des Segmentes getrennt. Es gibt Hinweise auf drüsige Zellkomplexe und sekre-
torische Funktion in diesem Abschnitt, was in Übereinstimmung mit dem Vorhandensein von Drüsen
im Ovidukt bei Culiciden (Cıements 1963) und der Produktion von Gleitsekreten oder Sekreten zur
Spermienaktivierung bei anderen Dipteren (z. B. Drosophila, Übersicht Sanper 1985) stünde.
18
-sngojfesssefonua\ = [a rulsery = 31 ‘9po sap nua\ = A ‘auejdsdunpunurusyayreunsds = duıs
‘Zunuyousyaweunadg = sd ‘snepdjenusdisog = d3d ‘srunuuros smInpAQ = >po ‘union = OU ‘swopodeu1mısoxoy sap snsI9asuen 'W = X NONPIAO
JOWLNSUO9 snInISNN = O9W ‘uarge] = [| "ewnuruny) = ul “(puej3 usınj3) asnıpunajyag = 83 “(sassa901d ayı]-1adurg) 9Z1es1107 odrunop1adurr = dy “1dıoy2,] =}
‘puemunee] = Mp Zuedusyayreunsdg = sp ‘sngoppesswosiog = [UP “yangjesrusdgng ‘p pueımpioy) usdog = q ‘“(IIIA »sAydodeuon,) sngojumpody = jde
;(e ur aım Bunogo13Ia A Syd1a]9 "nonisered “snumvugıur ‘I (q
‘ogejqy Iop 104 sarzg soul UOISUaWIL] usIun SIy99Yy 'TeUNOU smuvdi4 snwouoag)y (e "IynPou0oH uaysıglM aıp yaınp anuysssäue] spentsesereg :I 'qqV
e
19,
Der zweite Oviduktabschnitt (nicht abgebildet) ıst kurz und besteht aus flachen Zellen, die ein
ebenfalls sehr flaches Lumen zwischen sich haben und der Außencuticula unmittelbar benachbart
sind. Auf rasterelektronenmikroskopischen (REM) Präparationen ist dieser Abschnitt oft auf- oder
abgerissen und hinterläßt auf der Cuticula einen etwa rhombenförmigen Abdruck von beträchtlicher
Breite (ca. 120 um). Vermutlich werden in diesem Abschnitt im reifen Weibchen die aus dem Ovar
ausgetretenen Eier gespeichert. Unmittelbar dorsal von ihm liegen die Spermatheken.
Der dritte Oviduktabschnitt (Abb. 1a, 2b) ist durch Vorhandensein der voluminösen Ovidukt-
muskulatur (M. constrictor oviducti, mco, M. dilatator oviducti, mdo) gekennzeichnet, die an einem
im Querschnitt T-förmigen Apodem, dem Notum (no, Gabelapodem), ansetzen. Zunehmende
Mächtigkeit des Epithels läßt eine Art Ventil (v) entstehen (Abb. 1a), das den Durchrritt einzelner
Eier reguliert. Lebendbeobachtungen am narkotisierten Tier machen diese Einzelabgabe von Eiern
unmittelbar deutlich. Da der M. constrictor oviducti schräg am Notum ansetzt (WENSLER & REMPEL
1962, Morısch & WüLker 1987), wird bei seiner Kontraktion nicht nur der Ovidukt verengt, sondern
gleichzeitig das Eı nach hinten gezogen.
Als Vagina (vg, Genitalkammer, Abb. 1a) kann schließlich derjenige Oviduktabschnitt bezeichnet
werden, in dem sich die Übertragung des Samens in die Spermathek (evtl. mit Hilfe einer Spermato-
phore, NiErsen 1959, SAETHER 1977), die Besamung der reifen Eier sowie ihre Versorgung mit Schleim
und ihre Austreibung abspielt.
Die dorsale Wand der Vagina beginnt mit der Spermathekenmündungsplatte smp (pelvis-like struc-
ture Nıeısen 1959, small flat plate WensLer & Rempeı 1962, zeichnerische Darstellung bei Görtz 1964
at
©.»
Abb. 2: C. anthracinus, Querschnitte durch die weiblichen Gonodukte. a) In Höhe des ersten Oviduktabschnittes,
b) in Höhe des dritten Oviduktabschnittes, c) in Höhe der fingerförmigen Fortsätze (Vagina), d) in Höhe des hin-
teren Teiles der smp (Labien). Schleimdrüse entsprechend ihrem Knick nach hinten zweimal getroffen.
g = Ganglion, h = Hämolymphe, mdo = Musculus dilatator oviducti, mdv = M. dilatator vaginae, ml = M. late-
ralis, mv =M. ventralis,n = Nerv, ra= Rami des Notums, sgb = Subgenitalbucht, tr = „Trichter“. Andere Abkür-
zungen wie in Abb. 1.
20
und SAETHER 1977). Mit der Dorsalfläche der smp sind oral die Rami des Notums (ra, „Äste des Gabel-
apodems“ Götz 1964), seitlich die Spangen des Coxosternapodems (csa, Lateralspangen bei GöTz) fest
verbunden (Abb. 3a) und bilden mit ihr eine sklerotisierte Einheit. Die Vordergrenze der smp ist
schwer erkennbar, weil die Stärke des Chitins hier kontinuierlich abnimmt. Stärker chitinisiert ist der
beckenähnliche Teil (Abb. 3c), dessen Vorderrand zur Mitte hin dunkler und hakenartig erscheint
(hk, offenbar die „Haken“ bei GöTz, die er jedoch der Subgenitalbucht zurechnet). Nach vorn beglei-
tet aber noch eine schwächere, immer mehr verjüngte Chitinplatte den unpaaren Teil des Notums
(Abb. 3a).
In der Mitte der smp findet sich eine ovale Region, die wir als „Spermathekenmündungsfeld“ (smf,
Abb. 3a, c, d) bezeichnen. Das smf erscheint hell, weil es nur von der durchsichtigen Intima ausgefüllt
ist. Diese springt etwas in die Genitalkammer vor (se, Abb. 3b, „Spermathekeneminenz“ SAETHER
1977) und wird vom unpaaren Spermathekengang durchbrochen. Der Hinterrand des smf ist dorsad
wulstartig verstärkt (Abb. 3a, c). Die hintere Fläche der smp liegt unmittelbar vor der Schleimdrüsen-
öffnung (ggo) und ist räumlich kompliziert gestaltet. Im parasagittalen Längsschnitt (Abb. 1a) sieht
man einen schräg nach unten abgeknickten Teil, der den Ausgang der Schleimdrüse abdeckt. In einem
REM-Präparat, in dem mehr oder minder zufällig die Schleimdrüse (und die Verbindungsmembran
zur Postgenitalplatte) nach hinten abgerissen war (Abb. 3b), ist weiterhin erkennbar, daß in der Mitte
dieser schrägen Fläche ein nach ventral offener konischer Trichter (tr) liegt, dessen Ränder stellen-
weise mit kleinen Zähnchen bestanden sind.
Die Funktion des Komplexes aus smp, Notum und Coxosternapodem muß in bezug auf die Kopu-
lation einerseits, die Besamung und Austreibung des Eies andererseits analysiert werden. Bei der Be-
gattung wird der Penis dem smf zur Spermien-(oder Spermatophoren-)abgabe nahegebracht (Reıss
1966). Von hinten direkt auf das smf gerichtet ist die trichterartige Aussparung im hinteren Teil der
smp, sie könnte dem Penis die nötige Führung geben. Da über der Dorsalseite der smp ein starker
Muskel (M. transversus) die Knickstellen des linken und rechten Coxosternapodems verbindet
(WENSLER & Remper 1962, Morısch & WÜLkER 1987) und die schwach chitinisierte smp sicher elastisch
ist, dürfte der Trichter im Ventralbereich bei der Kontraktion des Muskels sich weiter öffnen
(Abb. 2b, d). Ein anderer Muskel (M. dilatator vaginae, mdv) setzt im wesentlichen an der (nach au-
ßen schrägen) Außenfläche der Rami des Notums (ra) an (Abb. 2c). Bei seiner Kontraktion wird das
smf gedehnt und damit vielleicht die Öffnung des Spermathekenganges zur Besamung des Eies freige-
geben. Möglich ist außerdem, daß bei der erwähnten Kontraktion des M. transversus die Mitte der
smp so nach vorne gestoßen wird, daß diese Bewegung zum Ausstoß des Eies beiträgt. Der M. lateralis
(ml, Abb. 2d), der vom Coxosternapodem zum Hinterrand des 9. Tergits verläuft (WEnster & Rempe
1962, Morısch & WüLker 1987), zieht Coxosternapodem und smp dorsad und macht dementspre-
chend die Genitalkammer für den Eidurchrritt geräumiger. Lebendbeobachtungen haben gezeigt, daß
die Spangen des Coxosternapodems bei der Eiablage lebhaft in deren Rhythmus bewegt werden,
ebenso wie die mit ihnen muskulös verbundenen Cercı, die sich beim Eidurchtritt weit öffnen. Vorher
wird jedoch das Ei noch mit dem quellbaren Schleim umgeben, der für Gelege von Chironomus ty-
pisch ist. Das Epithel um die breite Schleimdrüsenöffnung (ggo) ist an der schrägen Hinterfläche der
smp gewissermaßen ausgespannt (Abb. 3d) und wird nur von häutigen Anhängen dieser Hinterflä-
che, den Labien, median überdeckt. Durch diese Gebilde könnte der in jedem Gelege median verlau-
fende, helixartig gewundene „Zentralfaden“ (Strenzke 1959, „twisted fibres“ MıaLı & HammonD 1900)
bei seinem Austreten aus der Schleimdrüse geführt und von den beidseitigen Schleimströmen umge-
ben werden.
In der ventralen Wand des Ovidukts beginnt am sog. „Bogen“ (Görz 1964, vgl. auch b in Abb. 3c)
ein medianer Spalt, der die beiden Dorsomesalloben (dml) der Gonapophyse VIII voneinander trennt
(REM-Darstellung Morisch & WüLker 1987). In diesem Spalt sind zahlreiche fädige Gebilde, wahr-
scheinlich Sensillen, nachweisbar, deren Funktion wahrscheinlich im Zusammenhang mit der Begat-
tung wichtig ist. In diesem Spalt wird wahrscheinlich der Steg des T-Träger-artigen processus analıs
21
Abb. 3: Spermathekenmündungsplatte. a) C. anthracinus, Gesamtansicht mit Blickrichtung auf die dorsale
Oberfläche der smp (vom Körperinneren her!). REM nach KOH-Mazeration. Schleimdrüsenrest verdeckt hinte-
ren Teil der smp. b) C. anthracinus, Einblick von hinten in die Genitalkammer, Ventralseite unten. Schleimdrüse
und Verbindungsmembran zur Postgenitalplatte nach hinten abgerissen. c) C. anthracinus, vorderer Teil der smp
in Ventralansicht, KOH-Mazeration. Pfeil = wulstiger Hinterrand des smf. d) C. riparius, hinterer Teil der smp mit
Trichter und Labien, Ventralansicht. Boraxkarminfärbung. Man beachte, daß das vordere Epithel der Schleimdrü-
senöffnung (Pfeil) der Hinterfläche der smp fest anliegt. Gleicher Maßstab wie in c)
bf = Borstenfelder des 8. Abdominalsternites (von innen gesehen), csa = Coxosternapodem, ggo = Schleimdrüsen-
öffnung, hk = „Haken“, Ih = Leibeshöhle, ra = Rami des Notums, se = Spermathekeneminenz, sgb = Subgenital-
bucht, smf = Spermathekenmündungsfeld, tr = „Trichter“, tra = Tracheen um Spermathekengänge. Andere Ab-
kürzungen wie in Abb. 1.
des männlichen Hypopygiums geführt, während dieser in die Subgenitalbucht eindringt (Reıss 1966).
Wenn er sich dem Bogen nähert, ist im Körperinneren der Penis dem smf nahe und der Transfer von
Spermien oder Spermatophoren muß eingeleitet werden. Die fädigen Gebilde erstrecken sich nach
hinten bis zu den bisher unbeschriebenen, in Abb. 2c dargestellten „fingerförmigen Anhängern“ (fp),
auf denen zahlreiche Borsten stehen. Weiter caudad sind dann auf dem parasagittalen Schnitt der
Abb. 1a zwei Loben der Gonapophyse VIII (Dorsomesal- und Apodemlobus, dml, apl) sichtbar. Da
das Ei (Abb. 1a) größer ist als das Lumen der Genitalkammer, klaffen diese Loben bei Eiaustritt weit
auseinander (Lebendbeobachtung). Der dritte Lobus (Ventrolaterallobus, vll) der Gonapophyse, der
lange Borsten trägt, ragt von der Seite in die Genitalkammer. Unsere Arbeitshypothese ist, daß das Ei
in der Genitalkammer durch diese ventralen und seitlichen Stützen (oder Sensoren) in eine Lage ge-
bracht wird, in der die zum Spermieneintritt geeignete Region der Eihülle (Micropyle?) zur Sperma-
thekenöffnung orientiert ist. Ein solcher Vorgang würde den hohen Besamungsprozentsatz (nahe
100) bei Chironomus erklären und auch mit dem bei anderen Dipteren beobachteten Prinzip des
„alignment“ der Eier in Genital- oder Besamungskammern übereinstimmen (z. B. Musca Lzoroıp,
1980, Übersicht Sanper 1985). Auch Wenster & Remper 1962 haben die Ventrolateralloben als „egg-
guides“ angesehen.
22
Zusammenfassend sind wir der Meinung, daß eine Abschnittsgliederung der Gonodukte von Chr-
ronomus vor allem nach den aufeinanderfolgenden Funktionen (1. Sekretbeigabe ?, 2. Eispeicherung,
3. Durchlaß einzelner Eier, 4. Begattung, Besamung, Schleimzugabe) sinnvoll ist. Auch strukturelle
Grenzen sind, wie WÜLkEr et al. 1979 angedeutet haben, brauchbar, aber eher willkürlich. Die funk-
tionellen Vorstellungen, die wir aus den morphologischen Befunden abgeleitet haben, sind vorwie-
gend Arbeitshypothesen, die mit weiteren Untersuchungen, vor allem Beobachtungen am lebenden
Tier, Klärung der Frage, ob und wo eine Mikropyle vorhanden ist, ultramikroskopische Untersu-
chung der Borsten an den fingerförmigen Fortsätzen und Ventrolateralloben und Beobachtungen
über die zeitliche Reihenfolge von Eireifung, Begattung, Übertritt der Eier in den Oviductus commu-
nıs und Eiablage geprüft werden müssen.
Gonodukte parasitierter Imagines
Schnittserien durch das Abdomenende parasitierter Weibchen führen ebenso wie die äußere In-
spektion der 8. Abdominalsternite (WÜLKER 1961, GöTz 1964) zu sehr unterschiedlichen Ergebnissen;
kein Tier ist dem anderen gleich. Die Skala reicht von noch guter Erkennbarkeit der Gonoduktteile
bis zur Beschränkung auf eine mehr oder weniger undefinierbare Zellmasse am Ende des 8. Abdomi-
nalsternites (vgl. WüLker 1978). Als Beispiel für unsere Befunde zeigt Abb. 1b noch relativ gut struk-
turierte Gonodukte: Der Ovidukt ist verkürzt und erreicht nur etwa die Mitte des 8. Abdominalseg-
mentes. Ein Oviduktlumen ist nur auf manchen Schnitten sichtbar. Der Ovidukt ist in mehrere Aus-
läufer aufgeteilt, der Musculus constrictor oviducti im Umfang reduziert, jedoch in normaler Posi-
tion. Weiter caudal sind linkes und rechtes Coxosternapodem durch die hier verstärkte smp in der
Mitte starr verbunden. Dorsal ist ein kräftiger M. transversus aufgelagert, der hintere Teil der smp ist
meist vorhanden. Bei Betrachtung im REM ist manchmal auch seine trichterförmige Einsenkung
(S. 21) noch erkennbar. Der vordere Teil der smp ist dagegen meist mißgestaltet oder fehlt. Die
Schleimdrüse ist ein begrenzter Zellkomplex. Ventral der Genitalkammer schließlich liegt eine hyper-
trophierte Gonapophyse VIII, deren Dorsomesal- und Apodemlobus nicht mehr klar voneinander
abgrenzbar sind. Bemerkenswert ist die aberrant starke Entwicklung der Chitinintima.
Trotz der Variabilität der Befunde an parasitierten Weibchen ergibt sich als Regel, daß die morpho-
genetischen Mängel der Gonodukte oral beginnen (Ovidukt, Spermatheken) und caudad fortschrei-
ten. Ähnlich hat Baumerr-BenriscH (1960) bei Strepsipterenbefall der Zikade Calligypona nur bei 7
von 44 Imagines den Ovidukt, aber bei 32 die Vagina ausgebildet gefunden.
Histologisch ist erstens davon auszugehen, daß in den wachstumsgehemmten Bereichen der Zellzy-
klus verlangsamt ist (WüLker 1978). Zweitens scheint das normale entwicklungsphysiologische Pro-
gramm der Zellen in Richtung auf aberrante hypertrophe Bildungen geändert. Drittens wird der nor-
male Zellverband gelockert und irregulär. Befunde an Totalpräparaten haben gezeigt (unveröff.), daß
z. B. die Muskulatur von Ovidukt und Vagina, wenn sie beim Wachstum median eine nur noch un-
vollständig eingesenkte Subgenitalbucht mit mangelhaft ausgebildeten Gonodukten „antrifft“, sich
regellos und ohne nennenswerten Zellverbund von einer Segmentseite zur anderen ausspannt („criss-
cross“-Muster der Muskulatur). Zelldegeneration schließlich wurde in unseren Befunden nicht direkt
nachgewiesen, ist aber nach Erfahrungen am geschädigten Ovar (Würker 1971) früher oder später
auch in den geschädigten Gonodukten zu erwarten.
Danksagung
Wir danken Frau R. Rössler für viel technische Hilfe und fruchtbare wissenschaftliche Diskussionen.
23
Literatur
ABUL NASR, $. 1950: Structure and development of the reproductive system of some species of Nematocera (Order
Diptera: Suborder Nematocera). — Phil. Trans. R. Soc. Lond. B 234: 339-396
BAUMERT-BEHRISCH, A. 1960: Der Einfluß des Strepsipteren-Parasitismus auf die Geschlechtsorgane einer Ho-
moptere. — Zool. Beitr. (N. F.) 6: 85-126, 291—332
CLEMENTS, A. N. 1963: Physiology of mosquitoes. — Pergamon Press, Oxford
GöTz, P. 1964: Der Einfluß unterschiedlicher Befallsbedingungen auf die mermithogene Intersexualität von Chiro-
nomus (Dipt.). — Z. Parasitenkd. 24: 484-545
KaıseR, H., WÜLKER, W. & SKOFITSCH, G. 1987: Limnomermis anthracinin. sp. and L. bathophili n. sp., sympatric
species of Mermithidae (Nematoda) in different Chironomid (Diptera) hosts. — Zool. Jb. Syst. 114:141—156
LEOPOLD, R. A. 1980: Accessory reproductive gland involvement with the sperm-egg interaction in muscoid flies.
In: „Advances in Invertebrate Reproduction“ (H. W. CLARK, Jr. and T. S. Apams, eds.) Elsevier-North Hol-
land, Amsterdam, pp. 253-270
MiarL.L.C.& HAMMOND, A.R. 1900: The structure and life history of the Harlequin fly (Chironomus). — Claren-
don Press, Oxford
MORISCH, U. & WÜLKER, W. 1987: Formation of the cerci, abdominal segment X and postgenital plate in the genital
imaginal discs of female larvae and pupae in Chironomus (Diptera). — Ent. Scand. Suppl. 29:91 —96
NiIELSEN, E. T. 1959: Copulation of Glyptotendipes (Phytotendipes) parıpes Edwards. — Nature Lond. 184:
1252-1253
Reıss, F. 1966: Zum Kopulationsmechanismus bei Chironomiden (Diptera). Chironomidenstudien IV. — Zool.
Anz. 176: 440-449.
REMPEL, J. G. 1940: Intersexuality in Chironomidae induced by nematode parasitism. — J. exp. Zool. 84: 261—289
—— NAYLOR, J. M., ROTHFELS, K. & OTTONEN, B. 1962: The sex chromosome constitution of chironomid inter-
sexes parasitized by nematodes. — Can. J. Gen. Cytol. 4: 92-96
RoMEIS, B. 1968: Mikroskopische Technik. R. Oldenbourg-Verlag, München— Wien
SANDER, K. 1985: Fertilization and cell activation in insects. — In: Biology of fertilization (METZ, C. B., MONROY,
A.eds) Vol. 2, 409—430
SAETHER, O. A. 1977: Female genitalia in Chironomidae and other Nematocera: morphology, phylogeny, keys. —
Bull. Fish. Res. Bd. Can. 197: 209 pp
—— 1980: Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. Scand. Suppl. 14:
53
STRENZKE, K. 1959: Revision der Gattung Chironomus Meig. I. Die Imagines von 15 norddeutschen Arten und Un-
terarten. — Arch. Hydrobiol. 56: 1-42
WENSLER, R. ]. D. & REMPEL, J. G. 1962: The morphology of the male and female reproductive system ofthe midge
Chironomus. — Can. J. Zool. 40: 199—229
WÜLKER, W. 1961: Untersuchungen über die Intersexualität der Chironomiden nach Paramermis-Infektion. —
Arch. Hydrobiol., Suppl. 25: 127-181
—— 1971: Untersuchungen über die Ultrastruktur der Gonaden von Chironomus (Dipt.) 2. Ovarstruktur nach
Schädigung durch parasitäre Mermithiden. — Z. Parasitenkd. 36: 73—94
—— 1975: Parasite-induced castration and intersexuality in insects. — In: Intersexuality in the anımal kingdom
(REINBOTH, R. ed.), pp. 121-134. Springer-Verlag Berlin — Heidelberg — New York
—— 1976: Influence of mermithids (Nematoda) on insect imaginal discs. — Proc. Ist Int. Coll. Invertebr. Pathol.
Queens Univ. Kingston Ontario, pp. 255—258
—— 1978: Parasitäre Einflüsse auf undifferenzierte Gewebe. — Z. Parasitenkd. 57: 255-267
—— RÖSSLER, R. & v. Essen, $. 1979: Studies on the development of imaginal discs of Chironomus (Diptera). The
female imaginal disc in abdominal segment VIII. — Zool. Jb. Anat. Ontog. Tiere 101: 136-153
Prof. Dr. Wolfgang Wülker,
Irıs Herrmann,
Institut für Biologie I (Zoologie) der Universität
Albertstr. 21a,
D-7800 Freiburg ı. Br.
SPIXIANA | Supplement14 | 25-28 München, 15. Juli 1988 | ISSN 0177-7424
Thalassosmittia atlantica (Storä) comb. nov. Description of adult
female and immature stages from Tenerife, Canary Islands
(Diptera, Chironomidae)
By P.D. Armitage and J. Tuiskunen
Abstract
Descriptions of adult female, pupa and larva of the species Eukiefferiella atlantica Storä are presented. On theba-
sis of these new data and re-examination of adult males the species is transferred to Thalassosmittia.
Introduction
Arnrtace (1986) redescribed the male of Eukiefferiella atlantica Storä from type material and speci-
mens collected in December 1983 over rock pools at El Medano, Tenerife. Generic placement of the
species was however still in doubt and further data were required to confirm its identity. In December
1985 collections at the same site were made by P. D. A. in and around rock pools. These collections
contained E. atlantica males, together with associated females which keyed-out to Thalassosmittia
Strenzke & Remmert with Sarther (1977) although the Tenerife specimens had finely pubescent eyes.
In addition, pupal exuviae and last ınstar larvae associated with the adults were also identified as Tha-
lassosmittia from descriptions given in STRENZKE & REemmerT (1957). Further evidence for thenew com-
bination ıs provided by adult males of E. atlantica which key-out to Thalassosmittia with the most re-
cent key to holarctic adult male Orthocladiinae (Cransrton et al., in prep.). The species atlantica Storä
is therefore transterred to Thalassosmittia.
Thalassosmittia atlantıica (Stora) comb. nov.
(Figs. 1-11)
Eukiefferiella atlantıca Storä (1936). Lectotype (©* imago, specimen A) Tenerife, Puerto Cruz, coll. R. Frey
28.7.1931. Slide mounted lectotype deposited in Zoological Museum, Helsinki, Finland.
Adult female (n = 6)
Colour: Abdomen and ground colour of thorax greenish grey. Scutal stripes well separated, brown.
Wings pale brown.
Head: Temporal setae 4-5, clypeals 17-25. Eyes not produced dorsally, with pubescence. Palps
5-segmented, lengths of 4 ultimate segments: 18—26 um, 38—50 um, 44—62 um, 74—88 um. Sensilla
clavata of segment 3 lacking. Antennal flagellum (Fig. 1) 5-segmented, lengths of segments:
48-60 um, 30—40 um, 32—42 um, 32—42 um, 68-86 um. AR 0.46—0.52. Sensillar setae present on
all tlagellar segments.
500
11
Figs 1-11. Thalassosmittia atlantica (Storä): adult female, 1 Antenna, 2 Thorax lateral, 3 Wing. 4 Genitalia; pupa,
5 Tergites II-VIII. 6 Tergite IX and genital sac (C’); larva, 7 Antenna, 8 Seta interna of mandible, 9 Premandible,
10 Mandible, 11 Mentum. (Bar lines in um.)
Thorax: (Fig. 2). Antepronotals 0 (rarely 1). Some very weak and curved acrostichals present in an-
terior /s—1/4 of thorax. Dorsocentrals 7—11, uniserial, arising from pale spots. Prealars 3, scutellars
6-8 in one row.
26
Wing (Fig. 3): Membrane without macrotrichia. Granulation fairly coarse, visible at a magnifica-
tion of X100. Veins bare except R wıth 4-8, R, with 2-4 and R, ‚; with 7-10 setae. Brachiolum with
1 seta. Squama bare. Costa extending beyond R,; ;, free end about 70-100 um. R,,, poorly separated,
reaching wing margin near the tip of Ry; 5. Cu; slightly curved. Anallobe moderately developed. Wing
length 1.05-1.24.
Legs: LR (P,) 0.44—0.49, P, 0.44—0.45, P; 0.52—0.57. Alltibiae with one spur. Length of front tibial
spur 20-22 um, mid tibial spur 20-22 um and hind tibial spur 22-26 um. Hind tibial comb with
9—11 setae. Pulvilli lacking. BR of hind tibıa 2-3.
Genitalıa (Fig. 4): Gonocoxite with 3—6 longer and 3-7 shorter setae. Cercus 50-80 um long. Se-
minal capsule oval, with indistinct neck, 75—80 um long and 46-56 um broad. Seminal duct with a
loop.
Pupa (n = 2)
Total length 2.0-2.3 mm. Colour: pale brown, thorax somewhat darker than abdomen.
Cephalothorax: Thoracic horn absent. Frontal setae obviously lacking (not identifiable on both
slides examıned). Frontal warts normally developed. One postorbital seta present. Verticals absent.
2 moderately developed medial antepronotals, 3 precorneals of about equal length. 4 dorsocentrals,
2 of which very short. Thorax somewhat rugulose dorsally. Wing sheaths smooth.
Abdomen: Tergite I without shagreenation. Spinules of tergites II—VIIl as in Fig. 5. Medial spinule
group very weak, lacking on tergite II-IV but present on V-VIII. Spinules of anterior group directed
backwards but those of posterior group forward, consisting of 2-4 rows of spinules. Spinules of an-
terior and posterior groups distinctly weaker in segment VIII than in other segments. Sternites I-IV
without shagreenation. Sternites V- VIII with 2-3 rows of moderately strong spinules near posterior
margin of segment, and a group of very weak, irregularly arranged spinules on the anterior part of ster-
nites. CoFFMAN etal. (1986) refer to conjunctives of both tergites and sternites. These do not occur in
the present specimens and are not shown in the figure of Thalassosmittia in LanGgron (1984). Poorly
developed pedes spurii A present on sternites II-VI. Pedes spurii B absent.
Chaetotaxy of abdomen: Dorsal setae of segment II-VII as in Fig. 5. I—VIII with 3 weak, VIII
with 2 somewhat longer setae. Setae of tergite I not visible on examined exuviae. Lateral setae ob-
viously 1 on each segment. Ventral setae 3 in each sternite except VIII with 1. Tergite IX (Fig. 6) more
or less rectangular, with posteriorly directed spinules on anterior half and with 2 moderately long se-
tae. Genital sac with ventral groups of well developed spinules.
Larva (n = 2) (fourth instar)
Body length 2.4-2.7 mm. Head capsule 280-360 um long. Body colour (after preservation) pale,
head capsule brown with mentum, mandibles and caudal margins darker brown.
Head: Antenna (Fig. 7) 5-segmented, lengths of segments: 16 um, 8-10 um, 4—6 um, 5—6 um.
AR 1.63. Antennal blade 20 um long, antennal style 7 um long. Labrum: SI setae with about 6 bran-
ches, other S-setae simple. Pecten epipharyngis indistinct in preparations. Premandible (Fig. 9)
54-66 um long, dark brown apically, pale basally. Mandible as in Fig. 10, 100-120 um long, with 5
teeth. Seta interna of mandible as ın Fig. 8, with 4-5 branches. Mentum (Fig. 11) with single pointed
(orrounded) median tooth and 4 pairs of more or less pointed lateral teeth. At sides of the mentum a
pair of toothlike structures arısing from the ventral surface. Width of mentum 84—90 um.
Body: Parapods present divided and short. Anterior parapods with both simple and serrate claws.
Posterior parapods with simple claws only. Procercus absent. Remaining features of anal segment not
clear in specimens available.
27
Discussion
Thalassosmittia was erected by STRENZKE & RemMmERT (1957) for the species thalassophila Bequaert &
Goetghebuer. The genus also includes 3 Nearctic species formerly in Camptocladius van der Wulp,
pacıificus Saunders 1928, marinus Saunders 1928 and clavicornis Saunders 1928, and a species from Ja-
pan nemalione Tokunaga 1936 formerly in Spaniotoma (Smittia). To these five holarctic species can
now be added T. atlantıca (Storä) which is known at present from the Canary Isles, the Azores and
Madeira. Male adults of atlantica may be separated from the other palaearctic species T. thalassophila
on the hypopygium which ıs distinctive in T. thalassophila. Other points of difference are the A.R.
(0.68 ın thalassophila, 0.29 ın atlantica) and the eyes which are bare in thalassophila and finely pubes-
cent in atlantica (ArmıtaGe 1986).
The ecology and lıfe histories of the 3 Nearctic species are discussed in Mor£y & Rıng (1972b) and
a key to these species (as Saunderia Sublette 1967, spp.) is presented in Morı£Y & Rıng (1972a). Toku-
naGA (1936) provides detailed descriptions of all life history stages of T. nemalione which is found in
algal mats in the tidal zone of rocky shores in Japan. STRENZKE & REmMERT (1957) give similar informa-
tion for the western palaearctic species T. thalassophila. All6 Holarctic species are found in the marine
littoral zone. The genus is widely distributed in the Holarctic region and further collections in the
southern hemisphere may reveal a worldwide distribution.
Acknowledgements
We are most grateful to Dr. P. Cranston (BMNH), Dr. C. Pinder (FBA) and Bernhard Lindeberg (Zoological
Museum, Helsinki) for their help and encouragement.
Literature
ARMITAGE, P. D. 1986: A redescription of male Eukiefferiella atlantica Storä (Chironomidae, Diptera) based on
type material and recently collected specimens from Tenerife, Canary Islands. — Aquatic Insects 8: 105-109.
COFFMAN, W.P.,P. S. CRAnsToN, D. R. OL!vEr and O. A. SAETHER, 1986: The pupae of Orthocladiinae (Diptera:
Chironomidae) of the Holarctic region — keys and diagnoses. — Ent. scand. Suppl. 28: 147—296.
CRANSTON, P. $S., D. R. OLIvER and ©. A. SAETHER, in prep.: The adults of Orthocladiinae (Diptera: Chironomi-
dae) of the Holarctic region — keys and diagnoses. — Ent. scand. Suppl.
LANGTON, P.H. 1984: A key to pupal exuviae of British Chironomidae. — P.H. Langton, March, Cambridgeshire
324 pp.
MoRLEY, R.L. and R. A. Rıng, 1972a: The intertidal Chironomidae (Diptera) of British Columbia. I Keys to their
life stages. — Can. Ent. 104: 1093— 1098.
MORLEY,R.L. and R. A. Rıng, 1972b: The intertidal Chironomidae (Diptera) of British Columbia. II Life history
and population dynamics. — Can. Ent. 104: 1099-1121.
SAETHER, O. A. 1977: Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys.
— Bull. Fish. Res. Bd Can. 197: 1—209.
SAUNDERS, L. G. 1928: Some marine insects of the Pacific Coast of Canada. — Ann. ent. Soc. Am. 21: 521-545.
SToRA, R. 1936: Chironomidae — In: Frey, R., Die Dipterenfauna der Kanarischen Inseln und ihre Probleme. —
Commentat. biol. 6: 21-30.
STRENZKE, K. and H. REMMERT, 1957: Terrestrische Chironomiden. XV. Thalassosmittia thalassophila (Bequ. v.
Goetgh.). — Kieler Meeresforsch. 13: 263—273.
SUBLETTE, J. E. 1967: Type specimens of Chironomidae (Diptera) in the Canadıan National Collections, Ottawa.
— J. Kans. Entomol. Soc. 40: 290-331.
Dr. Patrick D. Armitage, Dr. Jarı Tuiskunen,
Freshwater Biological Association, River Laboratory, Zoological Museum, University of Helsinki,
East Stoke, Wareham, Dorset BH20 6BB, Great Britain. P. Rautatiekatu 13, SF-00100 Helsinki 10, Finland.
28
| SPIXIANA Supplement 14 | 2953 | München, 15. Juli 1988 ISSN 0177— 7424
Some records of two rare chironomid species in the Netherlands
(Diptera, Chironomidae)
By B. P.M. Krebs“
Abstract
Recent finds of two rare chironomid species in the Netherlands are described. Dicrotendipes pallidicornis Goetgh.
has been found in two small brackish waters in the southwest of the Netherlands. Parachironomus mauricü Kruse-
man was collected from a freshwater ditch in the north of the Netherlands. Both finds are compared with reports
from elsewhere in and outside Europe.
Introduction
In this article the Dutch records of the rare Chironomid species Dicrotendipes pallidicornis Goet-
ghebuer and Parachironomus mauricii Kruseman are considered. D. pallidicornis ıs a new find for the
Netherlands. This species was found at two places ın the Delta-region in the south-west of the Nether-
lands.
Since the description of P. mauricu by Kruseman ın 1933, this species was not found in the Nether-
lands until 1979 when it was rediscovered by dr. W. van Vierssen in Friesland in the northern part of
the Netherlands (Van Vıerssen, 1982). Both species will be dealt with here.
Dicrotendipes pallidicornis Goetgh.
D. pallidicornis was first described by GoETGHEBUER (1934) on the basis of material collected on 13
to 15 April 1926 at Basra, Iraq, close to the Persian Gulf. Since then the species has been reported from
several European countries. In the collection of the Zoologische Staatssammlung in Munich, FRG, I
found some specimens from several parts of Europe, as indicated below (a to c):
a) One came from Lake Kurnas on Crete, Greece, collected by Dr. H. Malicky (Biological Station
Lunz, Austria) on 16-5-1971. Dr. Malicky kindly supplied some chemical information about Lake
Kurnas: it ıs an oligotrophic brackish water lake with a chlorinity that varıed between 4.8 and 8.0 %oo
CI during the period 1972-1980. The find of an adult doesn’t necessarily indicate that it came from
this lake.
b) The second specimen was one collected by Setta (Mendl) on 30—-9— 1975 at Lake Pineto, near Ba-
stia, Corsica. About this find no further details are known.
c) On 7-8-1978 R. Kühbandner caught one male on the surface of a freshwater pond near Novalja
on the island Pag, Yugoslavia. As above, this doesn’t indicate that the midge grew up in this lake as a
larva.
* Communication nr. 387, Delta Institute for Hydrobiological Research, Yerseke.
29
The following references were found in the literature. PrAar (1980) reports the species from the Cala
reservoir near Sevilla in the south of Spain. It is a male, caught on 16-3-1974 and was by that the first
known Spanish record of this species. Birk£rr (1984) described some finds of England. On 19 August
and 1 September 1975 he visited the sandhills at Sandscale Hawes Warren in Cumbria and caught ma-
les and females. The species is established in this part of north-west England, shown by frequent sub-
sequent captures. Since then the species has been found by Langton in Swan Pool, near Falmouth,
Cornwall, south-west England in a partly brackish pool. Birkett’s conclusion is that these records sug-
gest a discontinuous distribution at present, and he is expecting that further collecting in and around
coastal dune slacks may reveal the species to be more widespread.
The finds for the Netherlands are listed below:
a) The first sampling-station was the Doolman, a “weel” on Zuid-Beveland in the Delta-region. A
“weel” or “wiel” is around pool which is a result of a dikeburst. The Doolman has a diameter of ap-
prox. 50 meters and its largest depth is 5 meters. It contains brackish water; the chlorinity in 1978 fluc-
tuated between 1.70 and 1.90 Yo Cl . In 1975 fluctuations were somewhat larger: 2.60-5.90 Yo CI .
In the deeper parts of the pool a vertical salt gradient existed. Locally, the shallower parts were grown
with reeds and the substrate consisted of soft mud. D. pallidicornis was found while sampling this
shallow litoral zone on 6-4-1978 and 11-7-1978. On these sampling days the chlorinity was 1.90 and
1.70 Yo Cl ‚respectively. Collected larvae were reared in the laboratory. Identifications of the midges
were confırmed by dr. R. Lichtenberg (Naturhistorisches Museum, Vienna). D. pallidicornis from 6-
4-1978 was found in combination with larvae of Procladins choreus (Meigen) and Glyptotendipes bar-
bipes (Staeger). For the 11-7-1978 sample Chironomus salinarius Kieffer, Chironomus annularius Mei-
gen, Chironomus halophilus Kieffer and Cricotopus ornatus (Meigen) were additional to the combina-
tion mentioned before.
b) The second sampling-station was a in 1975 newly created pool in the recreational area “Het Poel-
bos”, also on Zuid-Beveland. This pool, which was sampled on 15-3-1978, is rather shallow with reeds
Phragmites australis (Cav.) Trin. ex Steud, salt-marsh club-rush Scirpus maritimus L. and bulrush
S. lacustris L. growing on its shore. The submerged vegetation consisted largely of Ranunculus sp., Po-
tamogeton pectinatus L. and Myriophyllum spicatum L. Chlorinity at that time was 0.92 %o. Again,
collected larvae were reared in the laboratory. Besides D. pallidicornis, we identified G. barbipes,
C. halophilus, C. annularius, C. salinarius, C. plumosus (L.), Microchironomus deribae (Freeman),
C. ornatus and P. choreus, a species composition that shows close resemblance to the combination
found in the Doolman.
Table 1
Species Brackish Freshwater Freshwater Reference
water- species with species with
species moderate to- slight tole-
lerance for rance for
brackish brackish
water water
Chironomus halophilus PARMA & KREBS, 1977
PARMA & KrEBs, 1977
PARMA & KREBS, 1977
PARMA & Kress, 1977
PARMA & KrEBs, 1977
KreEps, 1979
KreEps, 1982
KRrEBs, 1982
Chironomus annularius
Chironomus salinarius
Chironomus plumosus
Glyptotendipes barbipes
Microchironomus deribae
Cricotopus ornatus
Procladius choreus
30
Both the additional species from the Doolman, as well as those from the Poelbos are rather common
in the southwestern part of the Netherlands and typical for oligohaline-mesohaline waters (Table 1).
For the species composition of the accompanying macrofauna see Table 3.
From the above, the tentative conclusion can be that D. pallıdicornis shows a preference for slightly
brackish water. The question, whether it is a true brackish water species or a freshwater species with
a tolerance for brackish water has to remain unanswered due to a lack of sufficient data. The Dutch
and English data do suggest the former.
Fırrkau & Reıss (1978) classified D. pallidicornis as being a species of stagnant lakes. On basıs of the
Dutch records, we could add to this the smaller (brackish) waters. D. pallidicornis is likely to have at
least two generations a year, because larvae of the species were found both on spring (March) and on
summer (July).
Parachironomus mauricii Kruseman
W. van Vierssen (Landbouwhogeschool, Wageningen, The Netherlands) sent me some chirono-
mids reared from larvae collected in several pools and ditches in Friesland in the norther part of the
Netherlands. One of these samples was especially interesting since ıt contained P. manricı.
This species has originally been described by GoETGHEBUER (1931) as Cryptochironomus lıttorellus.
The description being based on a specimen collected on 8-9-1931 at “de Panne”, a dune area in the
southwest of Belgium. The species name “littorellus” gave rise to some confusion since Meigen used
it also for another species. Therefore Kruseman (1933) renamed the species Parachironomus manrıcn,
“mauricii” referring to Goetghebuer’s Christian name.
For the Netherlands, Kruseman reports 2 finds. One concerns a specimen from his own collection
and collected in the dunes near Vogelenzang in May 1931; the other one being a specimen from the
“de Meijere-collection” and caught near Diemen, Noord-Holland, in September 1920.
LeHmann (1970) reports the species ın his revision of the European Parachironomus species. Besides
the finds from Belgium and the Netherlands, Lehmann reports the species for Germany as well
(though with a questionmark) and concludes that nothing is known about its lifecyle.
In the collection of the Zoologische Staatssammlung Munich two male specimens were found. One
of these came from the Netherlands and was identified by Kruseman as Parachironomus varus limnaei
Guibe, but renamed by Reiss as P. maurıcii. About the origin of this material no further details are
known. The second specimen, collected by Prof. Feliksiak in 1954 came from the region of Lodz, Po-
land. About this find we have no additional information either.
P. mauricü is also known from England. Langton found this species in Flood’s Ferry, near March
in Cambridgeshire (Cranston, 1974).
The first record for the Sovietunion comes from SHıLovA (1976) who reared 4 males from larvae col-
lected in an artificial pond with a depth of 70 cm and amuddy, sandy bottom. The pupae hatched by
the end of May and July.
Table 2
Potamogeton pectinatusL. 25 %
Zannichellia pedunculata Rchb. 20%
Lemna gibbaL. 20%
Lemna trisulca L. 10%
Potamogeton pusıllus L. 10%
Green algae 10%
Si
As stated above, the most recent Dutch find was done in Friesland by W. van Vierssen on the 22rd
of August, 1979. Larvae of P. mauricii were collected from a small ditch, running through arable land.
Its breadth was 2.5 m, and depth approx. 40 cm. The substrate consisted of clay. The water was very
clear and its level did not fluctuate. The vegetation is given in Table 2 (after van Vierssen, 1982). For
the species composition of the accompanying macrofauna see Table 4.
Unfortunately, the chlorinity is unknown, but regarding the species composition of the vegetation,
the water will have been fresh or slightly brackish at the most. Rearing of larvae resulted in 2 males and
6 females. Other species either were not present or did not hatch. After identification the midges were
compared with specimens from the collection in Munich.
Like D. pallidicornis, Fırrkau & Reıss (1978) consider P. mauricii to be a stagnant lake species. On
basis ofthe concise data given above it would be more likely to consider P. mauricii as a species typical
Table 3
Species composition of the accompanying macrofauna at the sampling locations of Dicrotendipes pallidicornis.
Doolman Doolman Poelbos
64-1978 11-7-1978 15-3-1978
Plea leachi McGreg. & Kirk x
Callicorixa concinna (Fieber) x x x
Callicorixa praeusta (Fieber) x
Sıgara stagnalıs (Leach) x x x
Sigara lateralis (Leach) x x x
Sıgara striata (L.) x x x
Corixa punctata (lllig.) x
Halıplus lineatocollis Marsh. x
Anacaena globulus (Payk.) x
Procladius choreus (Meigen) x x x
Chironomus salinarius Kieff. x x
Chironomus halophilus Kieff. x x
Chironomus annularius Meig. x x
Chironomus plumosus (L.) x
Glyptotendipes barbipes (Staeger) x x x
Microchironomus deribae (Freeman) x
Cricotopus ornatus (Meigen) x x
Limnephilus affınis Curtis x
Ischnura elegans v.d.L. x x
Electra crustulenta (Pallas) x
Hydrobia sp. x
Lymnaea palustris (Müller) x
Neomysis integer (Leach) x x
Corophium sp. x
Orchestia gammarellus (Pallas) x
Gammarus duebeni Lilljeborg x x
Gammarus zaddachi Sexton x x x
Palaemonetes varians (Leach) x "x
32
for small fresh waters (Kleingewässer). P. mauricü ıs mostly found in the northern-German lowlands
and their offshoots. Regarding the finds of Kruseman in May and September, of van Vierssen in Au-
gust and of Shilova by the end of May and July, the species can at least be considered bivoltine.
Table 4
Species composition of the accompanying macrofauna at the sampling location of Parachironomus mauricü
Coleoptera Heteroptera Mollusca
dominant Sigara striata (Fıeb.) Lymnaea peregra (Müller)
Hygrotus inaequalıs (Fabr.) Sigara stagnalıs (Leach) Lymnaea palustris (Müller)
Laccobius minutus (L.) Sıgara falleni (Fieb.) Lymnaea stagnalıs (L.)
frequent Corixa punctata (11l.) Planorbis planorbis (L.)
Haliplus lineatocollis Marsh. Corixa affınıs Leach Planorbis corneus (L.)
Haliplus immaculatns Gerh. Corixa panzeri (Fieb.) Bithynia tentaculata (L.)
Hesperocorixa linnei (Fıieb.) Physa fontinalıs (L.)
scarce
Laccophilus hyalınus (Deg.)
Gerris thoracicus Schumm.
Notonecta glauca L.
References
BIRKETT, N. L. 1984: Some unusual brackish water chironomids (Diptera) from Cumbria. — Entomol. Gaz. 35 (3):
197-198
CRANSTON, P. S. 1974: Corrections and additions to the list of British Chironomidae (Diptera). — Entomologist’s
Mon. Mag. 110: 87—95
FITTKAU, E. J. & F. Reıss 1978, in Illies, J.: Limnofauna Europa, Chironomidae: 404—440. — Gustav Fischer Ver-
lag, Stuttgart and Swets & Zeitlinger B. V., A’dam
GOETGHEBUER, M. 1931: Ceratopogonidae et Chironomidae nouveaux d’Europe. — Bull. Annls Soc. r. ent. Belge
71: 211-218
—— 1934: Zur Erforschung des Persischen Golfes, Beitrag Nr. 15; Ceratopogonidae et Chironomidae. — Arb.
morph. taxon. Ent. Berl. 1: 36-39
Kress, B. P. M. 1979: Microchironomus deribae (Freeman, 1957) (Diptera, Chironomidae) in the Delta region of
the Netherlands. — Hydrobiol. Bull. 13: 144—151
—— 1982: Chironomid communities of brackish inland waters. — Chironomus 2: 19—23
KRUSEMAN, G. 1933: Tendipedidae Neerlandicae. Pars I. Genus Tendipes cum generibus finitimis. — Tijdschr. Ent.
76: 119-216
LEHMANN, J. 1970: Revision der europäischen Arten (Imagines O’C’) der Gattung Parachironomus Lenz (Dipt.,
Chironomidae). — Hydrobiologia 33: 129—158
PARMA, S. & B.P. M. KreBs 1977: The distribution of chironomid larvae in relation to chloride concentration in a
brackish water region of the Netherlands. — Hydrobiologia 52: 117-126
PRAT, N. 1980: Quironömidos de los embalses Espanoles (2.° parte). — Graellsia 34: 59—119
SHILOVA, A. I. 1976: Khironomidy Rybinskogo Vodokhranilishcha. (Chironomiden des Rybinsker Stausees). —
Izd. Nauka, Leningrad 1976, 249 pp.
VAN VIERSSEN, W. 1982: The ecology of communities dominated by Zannichellia taxa in Western Europe. II. Di-
stribution, synecology and productivity aspects in relation to environmental factors. — Aquatic Botany 13:
385—483
Bernard P.M. Krebs
Delta Institute for Hydrobiological Research
Vierstraat 28
4401 EA Yerseke
The Netherlands
33
ale er a rn Facpiisne en ee a init
De nn gen re a ae eg nad De 25
Vers) NO EDEN REG beten En rer
r u.
Ri |
his Diehers Ar write An Desent nr) > Allen a ve
aa Dura 2 Iran run PIE 4) D>
GnahtnRA Kraul Äh Perms B Arms Der ee ka Te Z
! vnahiveh nr „ Du ARP I W
(1) uhamgan. warug, a A wg? ee er
N drug ah vw {.J) unsanhug aan)
> inaenas uhr 221 ia ae ll
ee Ta T) ee %
‚Araturtee er rar
’ PTPeeT { TI, &
Een un i . ı
Pi ve NT ea Kırk ü
OB. ice
i all. army PAR 2477, dl ERTL ERTL R PL
MR Paracle L
eye Sr) N nd nnd imargit 1) abraten eidanıd Wbeunerunoz:
Kuafe il, Tel!
SsigolomnA Ey Her oe en ta hc ro bus ano
@R--T2 OhkH
3 Hari srl he Drgepusnör Alina I rent are
kind eh Av null weh
er 1.0 an Ind od hassen alien N re kan. Dein 24° I :1ERT , Hr
Freak ı | EN 1
ar u ra ee una m rue
erinnere H et a ET en ar
I mais 6 Huch all nt (sebunane u, ) een N ae] Air ua
2 PrET I Mi -aAr:ttNa Joldrbv Hl =
Url "Fe DI sc und rsen bauer duskserd In rauen
au. uhshiit Br re) Ferm 0 anne »pbibserbuaT
uch) wun.] zung ‚gruzo O ah hr) ar NENBUTTTAT- Er.) wine, vo
Wi-Bir 6 uuulaldeniui Hl =
u nano 3 bil let) ’ ar older ui sch kumunanıta lu nniteninrub el STR Br ME ;
! —EI-11 :R idone - khustudrabt li Vo ange w
eir=-DR Ellen Ay ‘ salshem Tl anlzdııa ul sb ob “7
(und ae Veh RR ER HRS RZ IN RT, our Bere
a Pi Are
Le mel onen DEU sr wi eK rd karanimah alu lo
it ano 5 En Frosaa) Immer kenn cn umher me era yıiynauhong ai
En
Amy na 4 Ps j
Ee
SPIXIANA Supplement 14 | 35—44 | München, 15. Juli 1988 | ISSN 0177-7424
Die Gattung Kloosia Kruseman, 1933 mit der Neubeschreibung
zweier Arten
(Diptera, Chironomidae)
Von Friedrich Reiss
Abstract
Through the description of Kloosia africana spec. nov. (C’ imago and pupa) from Kenya, Kloosia koreana spec.
nov. (© imago) from North Korea and additional unassociated exuviae of a probable new species from southwest
China, the previous Holarctic distribution of the genus Kloosia is extended south to tropical Africa and to the
Oriental Region. The collection of O’ pupae allows positive association between imagines and pupal exuviae and in-
direct association with larvae. New synonymies and records presented herein document that Xloosza pusilla (Linne)
is amember of the sand-bottom fauna of large rivers. Larvae of other congeners quite likely occur in the same habı-
tat.
Einleitung
Seit ihrer Beschreibung stellte die monotypische und kaum zitierte Chironomini-Gattung Kloosia
Kruseman, 1933, von der nur ©’ Imagines bekannt waren, ein recht fragliches Taxon mit ungeklärten
Verwandtschaftsbeziehungen dar. Erst ın allerjüngster Zeit konnte SAETHER (1986, 1987) durch die
Synonymisierung von Kloosia mit der ebenfalls monotypischen, nearktischen Gattung Oschia Saet-
her, 1983 belegen, daß Kloosia einerseits dem Harnischia-Gattungskomplex angehört und anderer-
seits mit nunmehr 2 Arten holarktisch verbreitet ist.
Eine weitere offene Frage waren die unbekannten Jugendstadien von Kloosza und ihre ökologischen
Bindungen. Den ersten Hinweis hierzu gab kürzlich Kıınk (1985) mit der Vermutung, daß K. pusilla
eine potamale Art mit einer von Pacast (1936) beschriebenen Larve und Puppe sei.
Im Verlauf der vorliegenden Untersuchungen erwiesen sich die vermuteten und morphologisch
auffälligen Jugendstadien von K. pusilla als mehrfach beschrieben und konnten durch © Puppen der
Art sicher zugeordnet werden. Das dabei gewonnene Gattungskonzept für ©’ Imagines und Puppen
erlaubte es zudem, unbeschriebene Taxa fraglicher Gattungszugehörigkeit aus den Beständen der
Zoologischen Staatssammlung München der Gattung Kloosia zuzuordnen.
Herrn Prof. ©. A. Saether, Bergen, danke ich für die Einsicht in das zitierte unveröffentlichte Manuskript, Herrn
Dr. H. Laville, Toulouse, für die Bereitstellung © Puppen von Kloosza pusılla.
Kloosia Kruseman, 1933
Differentialdiagnose
Imago Cd:
Untere Volsella des Hypopysgs nicht verkürzt, schmal und schlank, das Distalende der Analspitze
erreichend oder dieses weit überragend. Bei allen anderen Gattungen des Harnischia-Komplexes fehlt
85
die untere Volsella völlig oder ist unterschiedlich stark verkürzt und endet weit vor dem Distalende
der Analspitze. Von den anderen Chironomini-Gattungen unterscheidet sich Kloosia durch das völ-
lige Fehlen von Makrosetae auf der unteren Volsella.
Puppe: |
Die posteriore Hakenreihe auf Tergit II ist median um etwa die Länge einer Hälfte unterbrochen.
Eine solch weit unterbrochene Hakenreihe besitzen unter den Chironomini nur noch die Gattungen
Chernovsküa Saether und Beckidia Saether (vgl. Pınper & Reıss 1986, Tafel 10.4 und 10.5). Von diesen
unterscheiden sich Kloossa-Puppen durch je eine anteriore und posteriore, zum Teil unterbrochene
Querreihe langer heller Dornen auf den Abdominalsterniten I-III. Außerdem hat Kloosia ein schma-
les posteriomedianes Feld dicht stehender, grober, kurzer oder langer Spitzen auf Tergit VI, an das
sich oralwärts ein breiter werdendes Feld zerstreut stehender Kurzspitzen anschließt, so daß ein Cha-
grinfeld in der Form eines umgekehrten Dreiecks entsteht. Die beiden anderen Gattungen haben ein
rechteckiges Chagrinfeld, das sich analwärts nicht verjüngt. Außerdem können bei Kloosia auf den
Tergiten II-V auffällig kammartige, posteriore Querbänder mit sehr langen Spitzen auftreten. Becki-
dia-Puppen sind zudem einfach an den gut entwickelten Pedes spurii B der Segmente II, die dicht mit
kurzen Dornen besetzt sind, zu erkennen. Bedornte Pedes spurii B kommen bei keiner anderen Chi-
ronomini-Gattung vor. Hinzu kommt, daß bei Chernovskiia am Cephalothorax sowohl die Frontal-
als auch die Dorsocentralborsten fehlen, die bei den beiden anderen Gattungen vorhanden sind.
Weitere geringe, differentialdiagnostisch fragliche Unterschiede finden sich bei den drei genannten
Gattungen in der Zahl der lateralen Setae an den Abdominalsegmenten II-IV, in der Chagrinierung
der Tergite I, VII und VIII sowie im Auftreten der dorsalen Setae der Schwimmplatte.
Larve:
Da kein Material zur Untersuchung verfügbar war, wird auf SAETHER (1987) verwiesen.
Kloosia koreana spec. nov.
Chironomini gen. K 1 (Reıss 1980: 147, 149)
Imago Cd:
Größe: Sehr kleine Art, Flügellänge 1,1— 1,2 mm.
Färbung: Körper durch Alkoholfixierung ausgebleicht, gelbbraun. Thoraxfärbung nicht klar zu er-
kennen, vermutlich Vittae und Postnotum rotbraun. Tarsenglieder 2—5 aller Beinpaare vermutlich
angedunkelt.
Antenne: Mit 11 Flagellomeren. AR = 1,25— 1,34.
Kopf: Augen dorsal kräftig stegartig verlängert. Mit 8-10 Clypeusborsten und 8—9 Vertexborsten.
Stirnzapfen fehlen. Länge der Palpenglieder 2-5 in um (Holotypus): 30, 68, 98, 130.
Thorax: Mit 3-4 Acrostichal-, 6 Dorsocentral-, 3 Praealar- und 4 Scutellumborsten.
Flügel: Alle Adern, mit Ausnahme von 2 proximalen Setae auf R, nackt. Squama ebenfalls nackt.
Beine: Länge der Glieder in um (Holotypus):
Fe Ti Ta, Ta, Ta; Ta; Tas
P| 430 350 480 235 180 115 70
Pıı 410 360 175 90 75 50 40
Pın 420 470 260 145 125 85 60
LR = 1,37— 1,42. Kämme der Mittel- und Hintertibien schmal getrennt und mit je 1 Sporn. Pulvil-
len fast so lang wie die Klauen.
36
Abb. 1: Kloosia koreana spec. nov., Hypopyg dorsal.
Hypopyg (Abb. 1): Analtergitbänder verschmolzen, Y-förmig, medianer Ast die Basıs der Anal-
spitze erreichend. Mediane Analtergitborsten fehlen, apıkale Analtergitborsten lang, lateralwärts kür-
zer werdend. Analspitze mittellang, schlank, distal verbreitert und stumpf gerundet; nur schwach
ventralwärts gekrümmt. Obere Volsella schlank, lang, schwach S-förmig gebogen und die Analspitze
deutlich überragend; nackt bis auf 2 mediane, weit auseinanderstehende und oralwärts weisende Setae.
Untere Volsella schlank, gerade, subapikal leicht verbreitert und die Analspitze ebenfalls deutlich
überragend; dicht mit auffallend langen Mikrotrichien bestanden, Makrosetae fehlen vollständig.
Obere und untere Volsella etwa auf gleicher Höhe endend. Gonostylus schlank, lang, medianwärts
gekrümmt und distal nicht verdickt; Innenkontur mit 8-9 zarten, geraden Setae besetzt.
Imago 9, Puppe und Larve: Unbekannt.
Material: Holotypus 1 © Imago, Nordkorea, Provinz South Pyongan, Pyongyan, Pyongyan-Hotel-Garten,
Malaise-Falle, 2.9.1971, leg. S. Horvatovich & J. Papp (Probennummer 234 in Papp & HORVATOVICH 1972); das
Euparal-Dauerpräparat befindet sich im Ungarischen Naturwissenschaftlichen Museum Budapest. Paratypen der-
selben Herkunft befinden sich, teils als Dauerpräparate, teils alkoholkonserviert, im Museum Budapest und in der
Zoologischen Staatssammlung München: 4.-5.8. (Probennummer 142), 7.-8.8. (150), 9.-10.8. (156) und
31.8.1971 (225).
Differentialdiagnose
Die neue Art Kloosia koreana unterscheidet sich von den anderen Gattungsvertretern durch Hypo-
pygmerkmale: Obere und untere Volsella etwa gleich lang, die Analspitze deutlich überragend; obere
Volsella auf der Innenkontur mit 2 weit auseinander stehenden, oralwärts gerichteten Setae. Die ande-
ren Arten haben unterschiedlich lange Volsellae, die obere Volsella ist anders geformt, ihre beiden me-
dianen Setae stehen eng zusammen und zumindest eine davon ist nicht oralwärts gerichtet.
3%
Verbreitung und Ökologie
Kloosia koreana ist bisher nur vom locus typicus bekannt geworden. Die vorliegenden relativ zahl-
reichen ©’ Imagines verteilen sich über die gesamte Aufenthaltszeit der 2. Ungarischen Nordkorea-
Expedition am Fundort, die von Anfang August bis Mitte September reichte. Demnach ist anzuneh-
men, daß die Art eine lange, diesen Zeitraum überschreitende Flugzeit besitzt. Das gleichzeitige Auf-
treten von potamalen Arten, wie Rheopelopia ornata (Meigen) und Robackia pilicanda Saether in den
Proben macht es wahrscheinlich, daß auch die Jugendstadien von X. koreana im nahegelegenen Fluß
Te-dong siedeln, was der allgemeinen ökologischen Charakterisierung der Gattung Kloosia als pota-
males Faunenelement entsprechen würde.
Kloosia afrıcana spec. nov.
Imago d:
Größe: Sehr kleine Art, geschätzte Flügellänge 1,1 mm (nach Vergleich mit der pupalen Flügel-
scheidenlänge von K. pusilla).
Färbung: Körper in alkoholfixiertem Zustand bei schlüpfreifer Imago gelbbraun, Scutum mit scharf
getrennten braunen Vittae, braunem Postnotum und Praeepisternum. Scapus ebenfalls braun. Beine
ohne erkennbare Farbmuster.
Antenne: Mit 11 Flagellomeren. AR = 1,05.
Kopf: Augen dorsal kräftig stegartig verlängert. Mit 10 Clypeusborsten und ca. 5 Vertexborsten.
Stirnzapfen fehlen. Länge der Palpenglieder 2-5 in um: 20, 57, 71, 93.
Thorax: Mit 6 Acrostichal-, 7 Dorsocentral-, 3 Praealar- und 6 Scutellumborsten.
Flügel: Nicht entfaltet.
Beine: Länge der Glieder in um (in den pupalen Beinscheiden):
Fe Ti Ta, Ta, Ta; Tas Ta;
P} 300 265 325 150 140 100 75
Pı —310 290 150 75 60 40 40
Pın -350 370 —190 120 210) 65 65
LR = 1,23. Kämme der Mittel- und Hintertibien schmal getrennt und mit je 1 Sporn. Pulvillen lap-
penförmig, etwa 2/3 so lang wie die Klauen.
Hypopys (Abb. 2): Analtergitbänder kurz, weit getrennt. Zwei mediane lange Analtergitborsten,
die nicht deutlich von den etwa ebenso langen 13 apikalen Analtergitborsten getrennt sind. Analspitze
fast paralellseitig, mittellang, distal stumpf gerundet und nur schwach ventralwärts gekrümmt. Obere
Volsella nackt bis auf 2 apikale Setae, schlank, Distalhälfte medianwärts geknickt und damit im Umriß
golfschlägerförmig. Die Analspitze überragt die obere Volsella. Untere Volsella ebenfalls schlank,
leicht einwärts gekrümmt und dicht mit auffallend langen Mikrotrichien bestanden; Makrosetae feh-
len gänzlich. Analspitze auf gleicher Höhe mit unterer Volsella endend. Gonostylus schlank, lang,
medianwärts gekrümmt und distal deutlich keulenförmig verdickt; Innenkontur mit 9 zarten, geraden
Setae.
Imago P: Unbekannt.
Puppe:
Größe: Sehr klein, Länge 2,8—4,0 mm (n = 6).
Färbung: Cephalothorax und Abdominalsegmente I-V blaßbraun, restliches Abdomen farblos.
Cephalothorax (Abb. 3c): Oralhörnchen flach gerundet, apıkal mit einem kurzen spitzen Dorn.
Frontalborsten zart, einfach und mittellang. Frontalwarzen fehlen. Thorakalhorn büschelförmig,
Einzeläste glatt. Basalring oval, mit 1 Tracheenast. Thorax dorsal kräftig granuliert, Höhe und Zahl
38
j ; ; 2
“Li we Kr on l
A “u
Fe
hihi, „
üü a HN u,
in Y
hy Mu ui
Au hal 1
KR
a Yyv
ey an ae
“r wi
ab iu
ä En B* u |
t Ran
IR N
TANZ TUR
!
a I:
METALL AUTRURNN
?
ya ATS
25 um //
Abb. 2 links: Kloosia afrıcana spec. nov., Hypopyg dorsal. 3 (rechts): Puppe. a) Abdominaltergite I-VIII; b)
Abdominalsternite I-III; c) Frontalplatte.
der Granula anal- und ventralwärts abnehmend. Ein flach gerundeter, länglicher praealarer Tuberkel
vorhanden. Scutumtuberkel fehlt. 2 schlauchförmige, sehr lange Antepronotal- und 2 Humeralbor-
sten sowie 4 einfache, kürzere, paarig stehende Dorsocentralborsten.
Abdomen (Abb. 3a, b): Tergit I mit anteriolateralen Feinchagrinfeldern, II-V mit einem posterio-
ren, transversalen, mehrreihigen Band kurzer kräftiger, etwa gleich großer Spitzen; oralwärts schließt
sich ein Feld locker stehender Spitzen gleicher Größe an, das durch spitzenfreie Flecken unterbrochen
ist. Tergit VI mit der prinzipiell gleichen Spitzenanordnung, jedoch ist das posteriore Band stark ver-
kürzt. VII und VIII mit anteriolateralen Feinchagrinflecken. Schwimmplatte mit einem anteriolatera-
len schmalen Streifen Feinchagrin. Posteriolaterale Ecken der Tergite V und VI mit einem Fleck sehr
feiner Spitzchen.
Sternite I- III mit je einer anterioren und posterioren transversalen Reihe heller, mäßig langer Spit-
zen; anteriore Reihe auf I und III median unterbrochen. Außerdem tragen die Sternite I-Ill einen zu-
sätzlichen Langspitzenfleck in den anterioren Ecken. Sternite IV—-VI chagrinfrei, VII- VIII mit 2 an-
terioren Feinchagrinflecken.
Posteriore Hakenreihe auf Tergit II median um etwa die Länge einer Hälfte unterbrochen; jede
Hälfte mit 11-17 Haken. Konjunktive nackt. Pedes spurii A vorhanden, Pedes spurii B fehlen. Seg-
ment VIII ohne Kämme oder Sporne.
Segment I ohne L-Borsten, II-IV jederseits mit 3 kurzen L-Borsten, V-VIII mit 4 LS-Borsten.
Analloben jederseits mit 1 langen dorsalen Schlauchborste. Schwimmhaarsaum aus 24-29 einzeilig
stehenden Schlauchborsten bestehend. © Gonopodenscheiden die Analloben mit der Hälfte ihrer
Länge weit überragend. Q Gonopodenscheiden entsprechend kurz, apikal mit einem kleinen warzen-
förmigen Fortsatz.
39
Larve: Unbekannt.
Material: Holotypus 1 schlüpfreife & Puppe, Kenia, Meru National Park, Rojewero-Flußdrift, 900 m Höhe,
März 1983, leg. E. J. Fittkau. Paratypen 5 Exuvien von derselben Lokalität. Die Typenserie befindet sich als Eupa-
ral-Dauerpräparate in der Zoologischen Staatssammlung München.
Differentialdiagnose
Die O Imago von Kloosia africana unterscheidet sich von den anderen Gattungsvertretern durch
Hypopygmerkmale: Obere und untere Volsella überragen die Analspitze nicht; obere Volsella kürzer
als die untere Volsella, golfschlägerförmig medianwärts gebogen, die beiden apikalen Setae eng zu-
sammenstehend. Die beiden anderen Arten haben lange, die Analspitze weit überragende untere Vol-
sellae, die oberen Volsellae sind nicht golfschlägerförmig und mindestens so lang oder länger als die
Analspitze.
Die Puppe von Kloosia africana ist durch posteriore Kurzspitzenbänder der Abdominaltergite
II—VI gekennzeichnet. Kloosia pusilla und Kloc sia sp. tragen dort ein Querband langer bis sehr langer
Spitzen.
Verbreitung und Ökologie
Kloosia africana ist nur vom locus typicus, einem Flüßchen in Nordkenia bekannt. Das Fließgewäs-
ser ıstan der Fundstelle etwa 5 m breit, 0,7 m tief, rasch strömend und kommt von den 2500 m hohen
Nyambeni Hills. Das Bett bestand überwiegend aus Sand mit gelegentlichen Kiesbeimengungen. In
Anlehnung an die Fließgewässerzonierung gemäßigter Breiten kann die Probestelle mit Einschrän-
kung dem oberen Potamal zugeordnet werden.
Kloosia pusilla (Linn&, 1767)
Tipula pusilla LinN£ 1767: 975
nec Chironomus pusillus LUNDSTRÖM 1910: 13
nec Chironomus pusillus LUNDSTRÖM & FREY 1916: 8
Kloosia pusilla KRUSEMAN 1933: 152— 154
Cryptochironomus sp. PAGAsT 1936: 273— 275
? Kloosia pusilla SOOT-RYEN 1943: 16
Cryptochironomus sp. (Pagast) CHERNOVSKI 1949: 52
Cryptochironomus lv. vytshegdae sp. n. ZVEREVA 1950: 271—272. Nov. syn.
Cryptochironomus serpancus sp. n. KIRPICHENKO 1961: 780. Nov. syn.
Cryptochironomus vytshegdae PANKRATOVA 1964: 192— 196
Kloosia pusilla ALgu 1980: 173— 174
Cryptochironomus vytshegdae SROKOSZ 1980: 199; table III
Cryptochironomus vytshegdae PANKRATOVA 1983: 166— 168
Cryptochironomus sp. Pagast ROssARO 1984: 131
Cryptochironomus sp. Pagast KLınk 1985: 2— 3
Chironomini Genus E PıNDER & REıss 1986: 364
Taxonomische Bemerkungen
Die Typusart der Gattung, K. pusilla, war bisher nur als O’ Imago bekannt, bis Kıınk (1985) wahr-
scheinlich machen konnte, daß die unter Cryptochironomus sp. (Pacast 1936) schon seit langem be-
schriebene Larve und Puppe dieser Art zugehören. Durch den aktuellen Fund J Puppen in Nord-
afrıka (Dr. H. Laville, unveröffentlicht) hat sich die Vermutung Klink’s voll bestätigt. Ein Vergleich
des nordafrikanischen Materials mit Exuvien aus Griechenland und der Puppenbeschreibung bei Pan-
KRATOVA (1964, 1983) lassen keinen Zweifel, daß auch Cryptochironomus vytshegdae — und damit
auch Cryptochironomus serpancus — jüngere Synonyme von Kloosia pusilla sind. Das Chironomini
Genus E bei Pınper & Reıss 1986 ist ebenfalls identisch mit K. pusilla.
40
Abb. 4: Kloosia pusilla (Linne). Hypopyg dorsal. a) Obere Volsella, Variation.
Differentialdiagnose
Die © Imagines von Kloosia pusilla lassen sich nach Hypopygmerkmalen (Abb. 4) von X. afrıcana
undK. koreana (Form und Länge der oberen und unteren Volsellae in Relation zur Analspitzenlänge)
und von der sehr ähnlichen nearktischen Art X. dorsenna (Saether) durch die Struktur des Tentoriums
(SAETHER 1987) unterscheiden. Die bekannten Puppen sind artlich ebenfalls gut zu trennen (vgl. Dif-
ferentialdiagnose von Kloosza afrıcana sowie Tafel 10.90 bei Pınper & Reıss 1986).
Ökologie und Verbreitung
Ein Vergleich der vorliegenden Daten zeigt, daß die Larven von Kloosia pusılla ein potamales Fau-
nenelement sind. Sie leben vorwiegend in Sandsedimenten größerer Flüsse, wobei die höchste durch-
schnittliche Larvenabundanz von Sroxosz (1980) mit 938 Ind./m? im Unterlauf der Nida, Polen, ge-
funden wurde. Eine gute Habitatcharakterisierung findet sich bei Pacast (1936): „...ım Flußsand mit
wenig organischer Substanz bei schwacher Strömung in !/4 m Tiefe.“
Die Art ist in der Westpalaearktis auch heute noch, trotz hoher Gefährdung ihres Lebensraumes,
den Flußsanden, offenbar weit verbreitet.
Funde liegen vor aus der UdSSR (Flüßchen in Livland, Oka, Pechora, Vychegda, Wolga, mittlerer Dnepr), Polen
(Nida-Unterlauf), Italien (mittlerer Po), diversen Lokalitäten in Holland (Kıınk 1985), Rumänien (ALBU 1980) und
eventuell Norwegen (SOOT-RYEN 1943; Nachbestimmung notwendig). Neunachweise liegen vor aus dem Fluß
Axios (Vardar) O Chalkidon, Griechenland, 5.5.1983, zahlreiche Exuvien aus Oberflächendrift, leg. M. Baehr so-
wie aus dem Aras-Tal W Karakurt, Provinz Hakkari, Osttürkei, 1300 m Höhe, 4.7.1985, 2 SC Imagines, leg. W.
Schacht. Das Material befindet sich in der Zoologischen Staatssammlung München. Außerdem sind JG Puppen und
Exuvien aus Tunesien bekannt (Coll. H. Laville, Toulouse; det. F. Reiss): Fluß Medjerda bei Jendouba, 146 mNN,
41
I Exuvie, 12.4.1985, max. Wassertemperatur 24° C; Bourheurtma, linker Zufluß des Medjerda, 133 m NN, 2 Ex-
uvien, max. Wassertemperatur 23°C; Oase Tozeur, Thermalquelle in einem Palmenhain, 3 0° Puppen aus Sandbo-
den sowie 2 Exuvien, 10.4.1985, Wassertemperatur 30,5°C; Oase Nefta, Thermalquelle in einem Palmenhain, san-
dig-kiesiges Substrat, 1 Exuvie, 10.4.1985, Wassertemperatur 28,3°C.
Die finnischen Funde von Kloosia pusilla, zitiert bei LUNDSTRÖM 1910 und LUNDSTRÖM & FREY 1916 sind Fehl-
bestimmungen, wie die kürzliche Durchsicht des kompletten Originalmaterials aus dem Zoologischen Museum
Helsinki durch den Autor ergeben hat.
Kloosia dorsenna (Saether, 1983)
Oschia dorsenna SAETHER 1983
Von dieser nearktischen Art aus South Carolina, USA, sind derzeit nur O’ Imagines bekannt. Sie
sind Kloosia pusilla sehr ähnlich. Unterschiede finden sich in der Tentorium-Struktur und in 1—2 zar-
ten Setae an der Squama, im Kontrast zur ausnahmslos nackten Squama bei pusilla.
Bezüglich der Kloosia-Gattungsdiagnose läßt sich am untersuchten Typenmaterial von dorsenna er-
gänzend feststellen, daß die obere Volsella, wie bei allen anderen Gattungsvertretern, keine Mikro-
trichien trägt und daß das Analtergit median getrennte Analtergitbänder besitzt. In der Originalbe-
schreibung muß die Abb. Ic entsprechend korrigiert werden.
Kloosia sp.
Puppe:
Entspricht in Größe (Länge 3,0—3,4 mm), Färbung und Chaetotaxie (Analflosse mit 23—26 Setae)
weitgehend der Art pusilla. Ein Unterschied besteht in der Länge der posterioren Nadelspitzen auf
den Abdominaltergiten II-V. Sie sind bei Xloosia sp. merklich länger als bei X. pusilla. Eine spezifi-
sche oder subspezifische Wertung dieses Merkmals kann ohne zugehörige Imago nicht erfolgen.
Verbreitung und Ökologie
Der vorliegende Fund aus Südwestchina ist der erste Nachweis der Gattung Kloosia aus der Orien-
talis: Prov. Yünnan, 7 km O Mung Lun, Schutzgebiet Tri Ping Fung, Flußdrift, 28.5.1980, leg. E. ].
Fittkau. Der Fluß, ein Zufluß des Mekong, ist an der Fundstelle und am Ende der Trockenzeit ca.
50-70 m breit und weist vorwiegend grobkiesigen Untergrund auf. Das mit 3 Individuen ausgespro-
chen seltene Auftreten von Kloosia sp. in einer sonst sehr arten- und individuenreichen Driftprobe läßt
sich wohl mit dem Mangel an Sandsedimenten als geeignetes Larvenhabitat erklären. Soweit über-
haupt bestimmbar, enthielt die Probe an weiteren potamalen Faunenelementen Exuvien von Robackia
sp., Sublettea sp. und von Chironomini Genus D (Pınper &Reıss 1986), einem in anderem Zusammen-
hang zu behandelnden Taxon.
Diskussion
In zunehmendem Maße erweist sich ein beträchtlicher Teil der Arten des Harnischia-Gattungs-
komplexes weltweit als bedeutende Komponente der Chironomidenfauna großer Fließgewässer.
Aufgeführt sei in diesem Zusammenhang die Zusammensetzung der Chironomidenfauna einer klei-
nen Oberflächendriftprobe aus dem griechischen Fluß Axios östlich Chalkidon vom 5.5.1983 (leg.
M. Baehr). An der Probestelle wies der Fluß etwa 150 m Breite, 2 m Tiefe, Sand- und Schlickbänke bei
kräftiger Strömung auf. Von den insgesamt 162 Exuvien gehörten 48 (29,6%), von den 19 Arten 6
(31,6%) zum Harnischia-Komplex, wobei Kloosia pusilla mit 30 Individuen dominant war.
42
Ein hoher Anteil dieser potamalen Komponente innerhalb des Harnischia-Komplexes ist auf Art-
und Gattungsniveau taxonomisch nicht oder erst in jüngster Zeit erfaßt worden. Eines der Beispiele
dafür ist die Gattung Äloosia, die — bis vor kurzem nur mit einer ökologisch bezugslosen europäi-
schen Art vertreten — nunmehr mindestens 4 Arten ın 3 zoogeographischen Regionen, der Holarktis,
Afrotropis und Orientalis, aufzuweisen hat. Zudem darf man annehmen, daß damit noch nicht das ge-
samte Arteninventar dokumentiert ıst.
Einer der Gründe für das späte Erkennen und verzögerte Erfassen dieses potamalen Faunenanteils
bei Chironomiden ist in methodischen Schwierigkeiten zu suchen, die eine faunistisch-biologische,
vor allem aber ökologisch-quantifizierende Bearbeitung von Fluß- und Stromzoozönosen mit sich
bringt. Große, physikalisch und biologisch extrem dynamische Fließgewässer lassen sich ungleich
schwieriger bewältigen als die relativ statischen stehenden Gewässer aller Größenklassen. Hinzu
kommt die vergleichsweise frühzeitige, zivilisatorisch bedingte Degradierung und Kontaminierung
der meisten großen Fließgewässer gemäßigter Breiten, die die Untersuchung ihrer naturnahen Fauna
in den vergangenen Jahrzehnten nicht mehr zuließen. Jedoch zeigt gerade die Erfahrung der letzten
Jahre, daß viele in Europa als erloschen gegoltene Potamobionte lokal in Klein- und Kleinstpopulatio-
nen offensichtlich überlebt haben und damit, wenn auch nicht dem Ökologen, so doch dem Taxono-
men zur Bearbeitung verfügbar blieben.
Bei den Chironomiden finden sich potamobionte Arten des Harnischia-Komplexes vor allem ın
den Gattungen Acalcarella, Beckidia, Chernovsküa, Cyphomella, Gillotia, Kloosia, Robackia, Saethe-
ria und Chironomini Genus D. Hinzu kommen zahlreiche Arten ungeklärter Gattungszugehörigkeit,
von denen zum Teil nur das Larvenstadium beschrieben ist. Etwa ein Dutzend davon ist unter Cryp-
tochironomus bei PankrarovA (1983) zu finden. Mindestens dieselbe Zahl noch unbeschriebener Lar-
ventypen unbekannter Gattungszugehörigkeit sind mir aus dem Stromsystem des Amazonasbeckens
bekannt. Hinzu kommen weitere, offenbar an größere Fließgewässer gebundene und ebenfalls unbe-
schriebene Taxa aus Nordafrika, dem tropischen Afrika, Madagaskar, Nordindien, Südwestchina und
Neukaledonien.
Global gesehen, entsteht bei der Betrachtung der potamalen Komponente des Harnischia-Komple-
xes zunehmend der Eindruck einer generisch ausnehmend stark differenzierten und phylogenetisch
alten Entwicklungslinie, die ihre Anpassung an einen archaischen aquatischen Lebensraum durch
zahlreiche Apomorphien, speziell bei Larven, dokumentiert.
Literatur
Augu, P. 1980: Fam. Chironomidae — Subfam. Chironominae. — Fauna Republ. Social. Romania, Insecta, Diptera
11: 320 p.
CHERNOVSKI, A. A. 1949: Identification of larvae of the midge family Tendipedidae. — Izd. Akad. Nauk, SSSR 31:
186p.
KIRPICHENKO, M. Ya. 1961: A new form of the larvae Cryptochironomus serpancus sp.n. — Zool. Zh. 40: 780-781
KLink, A. 1985: Een inventarisatie van volwassen Chironomidae bij Kampen (Ijssel). — Rapp. Mededel. 21: 1-5
KRUSEMAN, G. 1933: Tendipedidae Neerlandicae. I. Genus Tendipes cum generibus finitimis. — Tijdschr. Ent. 76:
119-216
LUNDSTRÖM, C. 1910: Beiträge zur Kenntnis der Dipteren Finnlands. VI. Chironomidae. — Acta Soc. Fauna Flora
fenn. 33: 1-46
LUNDSTRÖM, C. & FREY, R. 1916: Beiträge zur Kenntnis der Dipteren Finnlands. — X. Suppl. 4. Bibionidae, Chi-
ronomidae, Tipulidae. — Acta. Soc. Fauna Flora fenn. 44: 5—25
PAGAST, F. 1936: Chironomidenstudien I. — Stettin. ent. Ztg. 97: 270-278
PANKRATOVA, V. Ya. 1964: The larvae of Tendipedidae (Chironomidae) of the Oka river. — Trudy zool. Inst., Le-
nıngr. 32: 189— 207
PANKRATOVA, V. Ya. 1983: Larvae and pupae of midges of the subfamily Chironominae of the USSR fauna (Dip-
tera, Chironomidae = Tendipedidae). — Izd. Nauka, Leningrad, 295 p.
43
Papp, J. & HORVATOVICH, $. 1972: Zoological collectings by the Hungarian Natural History Museum in Korea.
2. A report on the collecting of the second expedition. — Folia ent. Hung. 25: 187—227
PinDEr, L. C. V. & Reıss, F. 1986: 10. The pupae of Chironominae (Diptera: Chironomidae) of the Holarctic re-
gion — Keys and diagnoses. — Ent. scand. Suppl. 28: 299-456
Reıss, F. 1980: Zur Zoogeographie der Chironomidenfauna (Diptera, Insecta) Nordkoreas. — In: MURRAY, D. A.
(ed.): Chironomidae. Ecology, systematics and physiology. — Proc. 7th Int. Symp. Chironomidae. Dublin,
Aug. 1979, Pergamon Press: 145— 149
RossARO, B. 1984: The chironomids of the Po river (Italy) between Trino Vercellese and Cremona. — Aquat. In-
sects 6: 123—135
SAETHER, O. A. 1983: Oschia dorsenna n. gen., n. sp. and Saetheria hirta n. sp., two new members of the Harnischia
complex (Diptera: Chironomidae). — Ent. scand. 14: 395—404
SAETHER, O. A. 1986: On the systematic positions of Dolichprymna, Amblycladius and Kloosia (Diptera: Chirono-
midae). — Abstr. First Int. Congr. Dipterology, Budapest: 215
SAETHER, O. A. 1987: On the systematic position of Dolichprymna, Amblycladius and Kloosia (Diptera: Chirono-
midae). — (im Druck)
SooT-RyeEn, T. 1943: A preliminary list of Norwegian finds of Heleidae and Tendipedidae. — Tromsö Mus. Arsh.
(Nat. Avd.) 64: 1-24
SROKOSZ, K. 1980: Chironomidae communities of the river Nida and its tributaries. — Acta Hydrobiol. 22:
191215
ZVEREVA, O. S. 1950: New forms of Tendipedidae larvae from the rivers Pechora and Vychegda. — Ent. Obozr. 31:
262—284
Dr. Friedrich Reiss,
Zoologische Staatssammlung,
Münchhausenstr. 21,
D-8000 München 60
44
q SPIXIANA Supplement 14 | 45—47 | München, 15. Juli 1988 ISSN 0177-7424
Diplosmittia recisus spec. nov. from Peru
(Diptera, Chironomidae)
By Ole A. Szther
Abstract
The male of Diplosmittia recısus spec. nov. is described from Peru. It differs from D. harrison: Szther from the
Eastern Lesser Antillean Islands, and D. carınata S&ther from Michigan, the two previously known members ofthe
genus, in having only 9 flagellomeres and a strongly extended costa.
Introduction
SATHER (1981) described four new genera from the British West Indies. Three of these genera later
were described also from the southeastern parts of the U.S.A. (S£THer 1982). The remaining genus,
Diplosmittia, recently was described from Michigan (S£THEr 1985). Recently Dr. F. Reiss, Zoologi-
sche Staatssammlung, Munich, sent me a male imago collected in Peru. It proved to belong to a new
species of Diplosmittia closely related to the previously described species.
Methods and morphology
The general terminology follows SETHER (1980) with the exception that the apical spine of the gonostylus is ter-
med the megaseta. In the figure of the male hypopygium the dorsal aspect is shown to the left, the ventral aspect
and the apodemes to the right.
Diplosmittia Szther, 1981: 29, emended
Antenna with 9-13 flagellomeres, flagellomeres 2-8 or possibly sometimes only 2-5, and ultimate
with sensilla chaetica. Costa not or barely to relatively strongly extended, with or without additional
false vein extending beyond costa nearly to wing tip. Otherwise as in SETHER (1981: 29).
Diplosmittia recisus spec. nov.
(Fig. 1)
Type material: Holotype, male, Station Koepke Panguana, about 260 m a. s. |., 9°37'S, 74°56’W, Peru,
17.2.1974, W. Kurz (Nr. 10), in the collection of Zoologische Staatssammlung, Munich.
Diagnostic characters
Nine flagellomeres, costal extension moderately long (about 68 um), LR, 0.36, LR, 0.36, LR; 0.43.
45
Fig. 1. Diplosmittia recisus spec. nov., male imago. — A. Wing. — B. Hypopygium.
Etymology: From Latin, recisus, cut back, cut short, referring to the reduced number of flagellomeres.
Description
Male imago (n = 1)
Total length 1.33 mm. Wing length 0.79 mm. Total length/wing length 1.68. Wing length/length of
profemur 2.98. Coloration brown.
Head (as in D. harrisoni, Szther 1981 fig. 13 A). Nine flagellomeres, ultimate 244 um long. AR
0.80. Temporal setae apparently consisting of 1 inner vertical. Clypeus apparently with 4 setae. Tento-
rıum and stipes not measurable. Palp segments length (micrometers): 15, 19, 41, 45, 45.
Thorax (as in D. harrisoni, Szrner 1981 fig. 13B). Antepronotum apparently with 1 lateral seta
only. Dorsocentrals 4, prealars 3. Scutellum with 2 setae.
Wing (Fig. 1A). VR 1.44. C extension 68 um long. Brachiolum with 1 seta.
Legs. Spur of front tibia 26 um long, spurs of middle tibia 15 um and 11 um long, of hind tibia
32 um and 15 um long. Width at apex of front tibia 26 um, of middle tibia 23 um, of hind tibia 23 um.
Comb with 8 setae, 17—23 um long. Lengths (micrometers) and proportions of legs:
fe ti ta, ta, ta, ta, ta, LR BV SV BR
Pl 266 341 124 79 56 30 3010236275 321547 498. 223
P, 323 356 129 79 58 30 327 7053687 71077 5225 er.
PJ 293 328 143 90 94 24 30 0.43 3.08 4.36 303
46
Hypopygium (Fig. 1B). Anal point with 6 lateral and basal setae, laterosternite IX with 2 setae.
Phallapodeme 63 um long, transverse sternapodeme 54 um long. Virga 38 um long. Gonocoxite
92 um long. Gonostylus 49 um long, with lobe 57 um long, apical megaseta 6 um long. HR 1.91, HV
PRT2.
Acknowledgement
I am much indebted to Dr. F. Reiss, Zoologische Staatssammlung, Munich, for the type material.
Literature
SETHER, ©. A. 1980: Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. scand.
Suppl. 14: 1-51
-— 1981: Orthocladiinae (Diptera: chironomidae) from the British West Indies, with descriptions of Antillocla-
dius n. gen., Lipurometriocnemus n. gen., Compterosmittia n. gen. and Diplosmittia n. gen. — Ent. scand.
Suppl. 16: 1-46
—— 1982: Orthocladiinae (Diptera: Chironomidae) from SE U.S.A., with descriptions of Plhudsonia, Unniella
and Platysmittia n. genera and Atelopodella n. subgen. — Ent. scand. 13: 465-510
Prof. ©. Szther
Museum of Zoology
University of Bergen
N-5007 Bergen, Norway
47
bt rl = Aachen
PERL EEE TTeR; /
-f
j
FE ee Teen P KITu I) sa
> 22 nm: er
me Ra. Io nom Abe: ver re et ie br: L I Mae hr
mer nap ra A
aalitnd Yo anauginab Aıbwr
bean = 0 .n Birk
am? CI 57
aalım.., lasmsaul F r7>
ETETEU BIETE uınl) \ L
Yinno fl .usgdkont .
bit { N
APR Eee DE e
Beazıiyas % Er
ine en ugs a
Ting an Ds, a wie te
Tr uw si 7 u . ß E
Bad Ihe An dk innen - (neh ren, alu
308 7 era ree rn ser! u 8 ErTy zu 1,8 spyarentiy
um ul nei tv va h En m: ‚ 5,18, 41, ,
The iu ını% fr hey tur h i ia 18 A,s.r B 2) appatcnihy
only Panteoenınli 4, usa 5 Du 0A im
Binz [ie FAR VR UM I ar een, .
bag Spt oil Ing or Da ar IF wi oo 11 un.
32 AYIETITe IB zum lung gun u N a, mE mnIN.: Par?
ta wir R sera. 17 DB iR DATEN a oa ofleg
Be 2° j 3 Pa © Zn Fr
, 26 2: u = = » am 1,
> Pass 7) . > =» 2% 2388
up, m m ;8 > |
\
SPIXIANA Supplement 14 49 —55 München, 15. Juli 1988 ISSN 0177— 7424
Vivacricotopus, a new genus of Orthocladiinae from Norway
(Diptera, Chironomidae)
&yvind A. Schnell and Ole A. S&ther
Abstract
A new genus and species of Orthocladiinae, Vivacricotopus ablusus, is described as male imago and pupa. The
imago has hairy eyes; well developed pulvilli; coarse punctation of microtrichia on wing membrane; two median
acrostichals; long, bare anal point; and a virga; which is a unique combination. The pupa has thoracic horn and anal
fringe, and a unique arrangement of simple, branched and broadly filamentous L-seta. The genus apparently occu-
pies a plesiomorphic position within the Rheocricotopus group of genera.
Introduction
During the investigations of the area around the Jostedal Glacier in connection with the future
building of hydroelectric power stations and dams, some peculiar pupal exuviae were found in the
partly glacier fed river Jostedola. Closer examination showed that also a male belonging to an un-
known genus with the same affinities was present in the same sample. The new genus and species is
described below.
Methods and Morphology
The mounting procedure used is outlined by S£ETHER (1969: 1). The general terminology follows SETHER (1980)
with the exception that the vannal fold is called the postcubitus, and the apical spine of the gonostylus the megaseta.
The measurements are given as ranges followed by a mean, followed by the number measured in parenthesis (n).
Vivacricotopus gen. nov.
Type species: Vivacricotopus ablusus spec. nov. by present designation.
Diagnostic characters
The combination of hairy eyes; large pulvilli; two central acrostichals; relatively coarse punctation
on wing membrane; nearly straight Cu, ; long, narrow and bare anal point; and presence of virga will
separate the male imago from all other orthoclads. The absence of antepronotals, the low number of
dorsocentrals and scutellars, and the absence of a crista dorsalıs also are characteristic.
The pupa has a unique pattern of shape of L-setae with L, split in 2-6 branches on segments
III—- VI; L, on VI filamentous; 4 filamentous L-setae on VII and 5 filamentous L-setae on VIII, with
the two posterior on each segment very broad. Also the caudolateral extension of segments VII and
VII and the very strong anal macrosetae are unique features.
49
Fig. 1. Vivacricotopus ablusus gen. nov., spec. nov., male imago. — A. Head. — B. Thorax. — C. Cibarial pump,
tentorium, and stipes. - D. Hypopygium, dorsal aspect to the left, ventral aspect to the right. — E. Wing.
Etymology: From the type locality Viva, near the river Jostedola, and Cricotopus, a common genus name and
ending among Orthocladiinae meaning ringed legs.
Description
Male imago
Medium sized species, wing length about 2 mm. Coloration brown with ringed tibia and pale tarsı.
Eyes hairy with short, wedge-shaped dorsomedial extension.
Antenna with 13 flagellomeres; antennal groove beginning at flagellomere 3; flagellomeres 2, 3, 4
and 13 with thin sensilla chaetica; AR lower than 1.0. Temporals divided into very short inner verti-
cals, longer outer verticals and longest postorbitals.
Clypeus as wide as pedicel. Anterior margin of cibarial pump deeply concave. Five palpal segments,
third and fifth subequal in length, third palpal segment with weak apical projection and apparently
without apical sensilla clavata, fourth segment with indication of similar apical projection.
50
Antepronotum well developed; median lobes not medially narrowed, gaping, separated in front of
scutal projection; no lateral setae. Two acrostichals in centre of scutum, dorsocentrals and prealars
few, supraalars absent. Scutellum with few setae.
Wing membrane with relatively coarse punctation of microtrichia, free of setae. Anal lobe well de-
veloped, slightly projecting. Costa slightly extended; R,,, running in the middle between R, andR,;;,
ending at !/s the distance between end ofR; and R, ,5; Ry;s ends clearly distal to end of M,,,; FCu lies
distally of RM, Cu, nearly straight, posteubitus ends far distally of FCu, anal vein ends slightly distally
of FCu. R with a few setae, R, bare, R,;; with seta(e) at apex. Sensilla campaniformia in normal num-
bers (about 12 at base, 3 below seta and 13 at apex of brachiolum, 2 on subcosta, 1on FR, and 1 at base
of R,). Squama with few setae in fringe.
Fig. 2 Vivacricotopus ablusus gen. nov., spec. noV., pupa. 7 A. Tergites. — B. Sternites. —- C. Frontal apotome and
ocular field. - D. Thoracic horn and precorneal setae. — E. Caudolateral corner of segment V.
Sl
Tibıal spurs and hind tibial comb normal. Tibia with pale rings. Pseudospurs absent. Sensilla chae-
tica present in basal !/2 of tarsomere 1 of hind leg. Pulvilli well developed, about 3/4 as long as claws.
Tergites with setae in 2-3 rows of median setae and 2—3 rows of lateral and posterior setae, or more
scattered. Anal point long, free of microtrichia, with several setae at base on tergite IX. Phallapodeme
normal, transverse sternapodeme curved with well developed oral projections. Virga consisting of clu-
ster of 2-3 spines. Gonocoxite with low inferior volsella and no superior volsella. Gonostylus evenly
wide for most of its length, with well developed megaseta, without crista dorsalıs.
Pupa
Median sızed pupae about 4 mm long. Frontal seta moderately long, on frontal apotome. Frontal
apotome with weak to moderately developed warts, slightly wrinkled. Antennal sheath at most with
2—4 pearls above pedicel. Ocular field with 2 postorbitals. Antepronotum with 2 median and 2 lateral
setae, all well developed. Thoracic horn cylindrical, tapering towards apex, covered with not very
dense spinules. Two anterior setae subequal in length and about twice as long as posterior seta. Second
dorsocentral longer than the others, anterior 3 dorsocentrals grouped or third equidistant from second
and fourth. Thorax slightly wrinkled, wing sheath nearly smooth. Sheath of coxae with 1 minute seta
each.
Tergite I without shagreen, II-IX with weak anterior and narrow median shagreen grading over
into caudal spines on II- VII. Sternites I and IX without shagreen; II- VIII with weak anterior group
shagreen, more extensive on posterior sternites and grading over into weak caudal spines. Tergites
II- VIII with about 4 rows of weak caudal spines, weaker on VIII. Tergite II without caudal hooklets.
Caudal margin of sternites II-VII with 3—4 rows of similar, but weaker caudal spines, very weak or
reduced to a few spinules on II. No spinules on conjunctives. Pedes spurii A and B absent. Segment I
with 4 D setae, 1 L seta and 2 V setae. Segments II-VII with 5 D setae, 4 L setae, 4 V setae, and O
setae in pattern B (Corrman 1979, 2 dorsal and 1 ventral pair of O setae). Segment VIII with 1 D seta,
5 Lsetaeand 1 V seta. L, on segments III- VI split into 2—6 branches, L; on segment VIandallL setae
on VII and VIII filamentous, L, and L; very broad on segments VII and VIII. Segments VII and VIII
with conspicuous, rounded, darkened caudolateral projections. Apophyses well delineated. Anal lobe
with sparse fringe of lamelliform setae and 3 very strong macrosetae about 2 as long as the lobe with
lateral macroseta slightly weaker then the median ones. Male genital sac not reaching apex of anal lobe.
Systematics
Especially the pupa but also the male imago of the new genus shows an unusual combination of
characters. The hairy eyes, the large pulvilli, the median acrostichals, and the pupal horn, spine pattern
and anal lobe fringe apparently place the genus in the Rheocricotopus Thienemann & Harnisch group
of genere (Brunpın 1956: 118; SETHER 1977 fıg. 36, 1980b: 131, 1981: 224, 1983 a fig. 5, 1985: 63).
However, Rheocricotopus, Paracricotopus Thienemann & Harnisch, Mesocricotopus Brundin, Nano-
cladius Kieffer, Doncricotopus Szther and Psectrocladius Kieffer all lacks a virga and the 5 first have a
platelike superior volsella not found in Vivacricotopus. The male imago also resembles Sublettiella
Szther (1983b) in the absence of lateral antepronotals, the low thoracic chaetotaxy, the wing puncta-
tion and venation except for the somewhat less curved Cu,, the hairy eyes, the presence of pulvilli, the
virga, and the low inferior volsella. Vivacricotopus, however, differ from Sublettiella for instance in the
absence of pseudospurs, the presence of sensilla chaetica on hind leg, the presence of 2 median acrosti-
chals and the long bare anal point.
The pupa of Vivacricotopus will key to Unniella Szther ın Corrman et al. (1986). However, it does
show few similarities with that genus. Among genera with anal lobe fringe and thoracic horn no other
genus is at the same time lacking pedes spurii A and B and caudal hooklets on tergite II. Caudal hook-
lets are absent only in Parametriocnemus Goetghebuer and Paratrissocladius Zavtel, pedes spurii A
92
may be absent in some Zalutschia Lipina, while Paracricotopus, Nanocladius subgen. Plecopteracolu-
thus Steffan, Zalutschia, many Psectrocladins, some Rheocricotopus, and some Heterotanytarsus
Spärck lack pedes spurii B. The shape oftheL setae with L, branched and the posterior L setae on seg-
ments VII and VIII very broad is unique. The B pattern of O setae is not very common in the Ortho-
cladiinae, but is the pattern found in Psectrocladius, Rheocricotopus and Unniella.
Although the genus most likely belong near or in the Rheocricotopus group it probably occupies a
plesiomorphic position relative to the other genera of the group. It also show similarities with Szblet-
tiella and the genera near Bryophaenocladius Thienemann and partly with Unniella. As most likely for
the last genus in which the pupa appear to belong to the Rheocricotopus group, the larva to the Para-
kiefferiella group and the male imago to the Mesosmittia group, the similarities of Vivacricotopus with
the Rheocricotopus group may be based on plesiomorphies. In that case a placement near Sublettiella
is the most likely one.
Vivacricotopus ablusus spec. nov.
(Figs 1, 2)
Type locality: Norway, Sogn & Fjordane, Luster, Jostedola river, Viva.
Type material: Holotype, male, Viva, Jostedola river, Luster, Sogn & Fjordane, Norway, 23. VII. 1986. Leg.:
&.A. Schnell and A. Fjellheim (ZMBN No. 107). Paratypes, 6 pupal exuviae, same data as holotype. Types in coll.
Mus. Zool., Ent. coll. Univ. of Bergen (ZMBN).
Diagnosis: See diagnosis of the new genus.
Etymology: From Latin ablusus, meanıing different, unlike, referring both to the unique combination of charac-
ters and to the very different types of L-setae on the pupae.
Description
Male Imago
Total length 3.10 mm. Wing length 1.93 mm. Total length/wing length 1.61. Wing length/length of
profemur 2.91. Coloration brown, halterers pale brown, tarsı and middle 2/3 of tibiae pale.
Head (Figs 1A + 1C). AR 0.72. Ultimate flagellomere 364 um long. Temporal setae 7, including 3
inner verticals, 2 outer verticals, and 2 postorbitals. Clypeus with 7 setae. Cibarıal pump, tentorium
and stipes as ın Fig. 1C. Tentorium 150 um long, 32 um wide. Stipes 139 um long, 56 um wide. Palp
segments length (micrometers): 30, 53, 120, 88, 116. Third palpal segment with weak apical projection,
apparently no sensilla clavata; fourth segment with similar projection.
Thorax (Fig. 1B). Antepronotum bare. Humeral pit weak, normal. Dorsocentrals 3, acrostichals 2,
prealars 3. Scutellum with 2 setae.
Wing (Fig. 1E). Wing membrane with punctation of microtrichia visible at 150X. C extension
45 um long. R with 6 setae, R, bare, R,,; with 1 apical seta, C extension with 1 non-marginal seta.
Squama with 7 setae.
Legs. Spur of front tibia 49 um long, spurs of middle tibia 24 um and 23 um long, of hind tibia
49 um and 19 um long. Width at apex of frontttibia 38 um, of middle tibia 36 um, ofhind tibia 41 um.
Comb of hind tibia with 12 setae, 19—49 um long. Sensilla chaetica 8 at 0.19—0.49 on ta, of hind leg.
Lengths (micrometers) and proportions of legs:
fe ti ta, ta, ta, ta, bar LR BV SV BR
PJ GEBE ze Al a 85 BL Bee Bf 2
P, 695 709 312 189 142 ie Ah Fo ee 26
P, 709 832 416 2a ae AO Te 0 Fe Se Bo
53
Hypopygium (Fig. 1D). Anal point 41 um long, with 14 setae at base on tergite IX;; laterosternite
IX with 5 setae. Phallapodeme 79 um long, transverse sternapodeme 109 um long. Virga 24 um long.
Gonocoxite 193 um long, inferior volsella weak. Gonostylus 77 um long, megaseta 19 um long. HR
2.51, EILV.4.03:
Pupa (n = 6, except when otherwise stated).
Total length 3.70—4.03, 3.88 mm. Exuviae pale brownish grey.
Cephalothorax. Frontal setae on frontal apotome (Fig. 2C), 75-116, 99 um long. Postorbitals
75—116, 95 um and 56-94, 70 um long. Median antepronotals both 75-113, 96 um long. Thoracic
horn (Fig. 2D) 188-221, 209 um long; 36—43, 40 um wide; 1.06-1.19, 1.14 times as long as anal ma-
crosetae. Anterior precorneal seta 79—131, 94 um long; 4— 17, 10 um in front of median seta. Median
precorneal seta 105-135, 126 um long; 4-15, 8 um in front of posterior seta. Posterior precorneal
seta 45—86, 61 um long; 38—45, 41 yum in front of horn. Second dorsocentral (Dc,) 68-105, 82 um
long; other dorsocentrals 45—64, 55 um long. Distance between Dc, and Dc, 15—23, 17 um; between
Dec, and Dec; 15—38, 24 um; between Dec; and Dec, 39—68, 50 um. Setae on coxal sheaths 2-11, 6 um
long on front leg; 11—26, 20 um long in middle leg; 23—30, 26 um long on hind leg.
Abdomen (Fig. 2A, B). Shagreenation, caudal spinesand chaetotaxy as in generic diagnosis. Ma-
ximal length (micrometers) of caudal spines on TI— VIII as: 6-9, 7;8— 11,10; 11-15, 13; 15-17, 16;
17— 23,21; 13—21, 19; 4—8, 6. L, on segment III split into 2 branches; on IV and V ın 3—4,4 branches
(Fig. 2E); on VI in 3-6, 4 branches. Anal lobe 263—278, 268 um long; with 8-12, 10 setae in fringe;
macrosetae 176-193, 183 um long. Genital sac of male ending 11-23, 17 um (5) short of apex of anal
lobe; of female ending 98 um (1) short of anal lobe.
Ecology and Distribution.
The pupal exuviae and the drowned male imago were collected in an eddy where the river Jostedola runs into a
small lake at Viva (alt. 890 m a. s. |., UTM ref. 32V MP 474184) in the uppermost part of the valley Jostedal. The
type locality is situated above the timber line only a few kilometers east of the Jostedal Glacier, which is the largest
glacier on mainland Europe, covering an area of approximately 486 sq. km.
The water temperature varies between near 0°C during the period of ice cover; from middle of the november to
end of may; to 11.7°C the day the specimens were sampled, the highest measured at Viva in the years —85 and —86.
The pH varies between 5.0 to 6.0, the conductivity (uS/cm) between 5.7 to 9.5 during —85 and —86. (A. Fjellheim
pers. comm.). The river ıs heavily loaded with silt from the nearby glacier.
Some other chironomids found at the type locality were: Diamesa lindrothi Goetghebuer, Psendodiamesa cf. ni-
vosa (Goetghebuer), Eukiefferiella minor (Edwards), several new species of Limnophyes SETHER 1988, Mesocrico-
topus thienemanni (Goetghebuer), Orthocladius (Eudactylocladius) grampianus (Edwards), Orthocladius
(Euorthocladius) frigidus (Zetterstedt), Orthocladius (Euorthocladius) rivicola Kieffer, Orthocladins (Enortho-
cladius) thienemanni Kieffer, Psectrocladius (Allopsectrocladius) sp., Rheocricotopus (Rheocricotopus) effusus
(Walker), Rheocricotopus (Rheocricotopus) reduncus Sether & Schnell 1988, Micropsectra recurvata (Goetghebuer).
The new species is known only from the type locality.
Acknowledgements
We are indebted to the Norwegian Water Resource and Electricity Board for financial support and to Arne Fjell-
heim at Museum of Zoology, University of Bergen, for providing us with information on thetemperature and water
properties of the type locality.
54
Literature
BRUNDIN, L. 1956: Zur Systematik der Orthocladiinae (Dipt., Chironomidae). — Rep. Inst. Freshwat. Res. Drott-
ningholm 37: 5—185
COFFMAN, W.P., P. $S. CRANSTON, D. R. OLIVER & O. A. SETHER. 1986: 9. The pupae of Orthocladiinae (Diptera:
Chironomidae) of the Holarctic region. — Keys and diagnoses. — Ent. scand. Suppl. 28: 147—296
SETHER, O. A. 1969: Some Nearctic Podonominae, Diamesinae, and Orthocladiinae (Diptera: Chironomidae). —
Bull. Fish. Res. Bd Can. 170: 1-154
1977: Female genitalia in Chironomidae and other Nematocera: Morphology, phylogenies, keys. — Bull. Fish.
Res. Bd Can. 197: 1—209
1980a: A glossary of chironomid morphology terminology (Chironomidae: Diptera). — Ent. scand. Suppl.
ss
1980b: The females and immatures of Paracricotopus Thienemann & Harnisch, 1932, with the description of
a new species (Diptera: Chironomidae). — Aquatic Insects 2: 129— 145
1981: Doncricotopus bicandatus n. gen., n. sp. (Diptera: Chironomidae) from the Northwest Territories, Ca-
nada. — Ent. scand. 12: 223—229
1983 a: The canalized evolutionary potential — inconsistencies in phylogenetic reasoning. — Syst. Zool. 32:
343—359
1983 b: A rewiew of Holarctic Gymnometriocnemus Goetghebuer, 1932, with the description of Raphidocla-
dius subgen. n. and Sublettiella gen. n. (Diptera: Chironomidae). — Aquatic Insects 5: 209-226
1985: A review of the genus Rheocricotopus Thienemann & Harnisch, 1932, with the description of three new
species. — Spixiana Suppl. 11:59 —108
1988: A revision of the genus Limnophyes Eaton from the Holarctic and Afrotropical regions (Diptera: Chi-
ronomidae, Orthocladiinae). — Ent. scand. Suppl.
SETHER, ©. A. & SCHNELL, ©. A. 1988. Two new species ofthe Rheocricotopus (R.) effusus group (Diptera: Chiro-
nomidae). — Spixiana Suppl. 14: 65-74
©. A. Schnell
Prof. ©. A. Sxther,
Museum of Zoology, University of Bergen,
N 5007 Bergen, Norway.
53
„7.
i Marti urieoil hung, rt arm
DER Er 2222777) ie DO AA,
ae a Sul are
) BR een» rat une
u ren | Kuala vr a a 7
Ast tee
ad. JEDE ln
HAT „7 PETE Ba long. Mika ur
TORE RE VE IE pe Vene an a rare ’
jr han Kr irs r Y; 1} IM ak [1 vollen
Yranayaamı le Je RAR beat A ee 1 rau bag ea
Hr:
"Duty? aan unanenul, ig fr
w_
4% F) 1 per ‚r
pe Ka Int da a m Yan Y a eh: u ER rer Ba | Te
x nz, 1 %
v2 IFEXEPFT Ze PANTHER bil ns ne k WON; ED Nr rn:
j a dt TAN iu D, t , rs F rc
erkiehubiilienten nach late ren 1 ale ALS,
ueber eaherie 725 TEN I794 bu And
2 nid ja gauuinegk Bw eBEEh CLONE EA Phanun: Be 0 \
j“ u Fr n y f v Bi
im‘ as ur v v i It ,
rn Yan niyaalapianınn oz! burin ana HRre nn muaih ange: Ana, asen‘ an PAR
huge Im We v.} akırial ihn ae
ZUNTERIREIN 7 nn POT { ara elle ul EP #6 EIIYG*
2 av an ein ie ” Ha hai his = A
Ik pu ln sl at ih ol mel en . Ser vr dere
ra lie ai Ve er. MM uns } : antolibr
pe his y a Kira a oh, Ös K l f kzief, wm
ash ri rn ar A rl | rg
| a + .’® 10 Se Inn euahille A
PR 2 =.07 url nz , \ Bu j
ara > 2 a z > al “ER
ei j I Ex p
mes we te u eher
sn ic il (ee vr S aUEBE
pen IA \R . e “ Eile =
if tee urn weg vu»
Id rn Eee, denn du rare
Wolken) Rlerminirafias ih iasert ex a.
TI ea a ee ars
v ass
Vaart) und inahe Menu © - erde re re
hama Muenu.od Bash, Unkrenun as Beben N he
braten uhr He Ku lie
SPIXIANA Supplement 14 57-64 München, 15. Juli 1988 ISSN 0177-7424
Heterotrissocladius brundini spec. nov. from Norway
(Diptera, Chironomidae)
By Ole A. S&ther and Oyvind A. Schnell
Abstract
Heterotrissocladins brundini spec. nov. is described in all stages and both sexes. It apparently form the plesiomor-
phic sister species of A. maeaeri Brundın.
Introduction
Langron (1984: 88, fig. 28a) illustrated a pupa of Heterotrissocladius with imbedded spines on seg-
ments VI-VIIl and very large frontal warts. During an investigation of some acıidified lakes in the sou-
thernmost part of Norway the junior author found all stages of apparently the same species. Later it
was found also in western and northwestern Norway.
Methods and morphology
Morphological nomenclature follows S£THER (1980) with the exception that the apıcal spine of the gonostylus
is termed the megaseta. The measurements are given as ranges followed by amean when four or more measurements
are made, followed by the number measured in parentheses (n).
The type material is kept at the Museum of Zoology, University of Bergen (ZMB).
Heterotrissocladius Spärck 1922, emended
Imago — Eyes completely naked, with a few microtrichia between marginal ommatids or pubes-
cent, i. e. with microtrichia between all ommatids, with reticulation between central ommatids.
Otherwise as in SETHER (1975: 3).
Pupa — Frontal warts weak to strongly developed. Frontal setae on frontal apotome (most species)
or on prefrons (at least A. latilaminus Sether). Caudolateral corners of segments VI-VIll occasionally
with inner sclerotization resembling imbedded spines (H. brundini spec. nov), these strong on VII,
weaker on VI, and only indicated on VIII. Otherwise as ın SETHER (1975: 4).
Larva — Anterior parapods with apical claws grading over into basal hair-like spines anteriorly and
on acommon base. Otherwise as in SETHER (1975: 4).
57
Heterotrissocladius brundini spec. nov.
(Figs 1-3)
Heterotrissocladins Pe 1, Langton 1984: 88
Type locality: Norway, Aust-Agder, Birkenes, Lake Repstadvatn.
Type material: Holotype, male, Lake Repstadvatn, Birkenes, Aust-Agder, Norway, 19/9/86, leg. H. Segrov &
©. A. Schnell, in coll. Mus. Zool. Univ. of Bergen (ZMB No. 115).
Paratypes: 5 males, 4 females, 2 male pupae, 147 pupal exuviae, 6 larval exuviae, as holotype; 5 pupal exuviae,
Lake Store Hovvatn, Birkenes, Aust-Agder, Norway, 6/9/86, ©. A. Schnell mature female pupa, Lake Jolster, Jol-
ster, Sogn & Fjordane, Norway, 18/8/87, H. S&grov; mature male pupa, Lake Litlebovatn, Volda, More & Roms-
dal, Norway 26/7/86, ©. A. Schnell; Other material (?): Male, Nordseter, Lillehammer, Oppland, Norway, 31/8/
86, R. Bergo.
Diagnostic characters
The normal clypeus and cıbarıal pump combined with the moderately short acrostichals starting
some distance from the scutal projection and the few setae on the wing membrane will separate the
species from other Heterotrissocladius except H. maeaeri Brundin. However, the stipes isreduced, the
wing slightly darker, the AR lower (0.7-1.1), the LR, higher (0.76—0.78) and the number of setae in
cell r,;; usually lower (7-18, except in one mature male pupa apparently with about 50 setae and an-
other possible specimen with 45 setae, see remarks) in 4. brundini spec. nov. The pupa can be separat-
ed from other members of the genus by means of the large frontal warts and the imbedded spines on
segments VI-VIII. The larva can be distinguished by the narrowly separated two median teeth of the
mentum with distinct lateral notches, the brownish black submentum which is conspicously darker
than the surrounding areas of the head capsule, and the VM ratio of 1.1-1.5.
Etymology: Named in honour of Prof. emer. Lars Z. Brundin to his 80 year birthday and to signify his eminent
contribution to chironomidology and lake typology where Heterotrissocladius has occupied a central position.
Description
Male imago (n = 7-9, except when otherwise stated).
Total length 3.93—4.22, 4.03 mm (6). Wing length 2.10-2.19, 2.14 mm (4). Total length/wing
length 1.82—1.96, 1.90 (4). Wing length/length of profemur 2.44—2.55, 2.50 (4). Coloration brown
with central parts of scutellum conspicuously pale. Wing pale yellowish brown.
Head. Eye with weak microtrichia between all ommatids. AR 0.92-1.05, 0.98 with one antenna of
one specimen with an AR of 0.68. Ultimate flagellomere 424—484. 460 um long with one antenna of
one specimen with ultimate flagellomere 381 um long. Pedicel 129-160, 139 um wide. Temporal
setae 10-17, 14, including 3-5, 4 inner verticals; 2—5, 4 outer verticals; and 5-8, 7 postorbitals.
Clypeus 123-138, 132 um wide; with 6-13, 10 setae. Cibarial pump, tentorium and stipes as in
Fig. 1A, of doubtful specimen from Nordseter as in Fig. 1B. Tentorium 150-176, 162 um long,
35-55, 42 um wide. Stipes with reduced sclerotization in basal half and reduced median plate;
105-139, 120 um long; 19—38, 26 um wide (normal in possible specimen from Nordseter, see re-
marks). Palp lengths (micrometers): 29—45, 32; 41—62, 51; 109-149, 134; 86— 103, 98; 106-138, 125.
Third palpal segment with 2-4, 3(6) sensilla clavata at apex.
Thorax (Fig. 1C). Antepronotum with 6-14, 11 setae. Dorsocentrals 15—25, 18; acrostichals 5-9,
7, starting some distance from scutal projection ranging from !/3—!/2 the length of scutum, longest
acrostichal 38—56, 45 um long; prealars 7—9,8. Scutellum with 16-23, 19 setae.
Wing (Fig. 1D). VR 1.13—1.19, 1.16 (4). Brachiolum with 1—2, 2 setae; R with 11-15, 13 (6): R,
with 4-11, 7 (6); Ry,; with 7-10, 9 (6); M, ,, with 0-8, 2 setae; other veins bare. Cell r,,; with 7—18,
14 (5) setae, apparently with about 50 setae in mature male pupa from Volda; cell m, ,, with 0-3,
1 seta; cell an with 0-1, 0 setae. Squama with 18—21, 19 setae.
58
Legs. Spur of front tibia 47—56, 50 um long; spurs of middle tibia 35—38, 36 um and 21-34, 25 um
long; of hind tibia 50-67, 62 um and 18—26, 22 um long.
Width at apex of front tibia 44-50, 47 um (4); of middle tibia 47—53, 49 um (4); of hind tibia
56-59, 56 um (4). Comb with 11-12, 11 setae; shortest seta 21—29, 24 um long; longest seta 53—70,
61 um long. Sensilla chaetica absent. Lengths (micrometers) and proportions of legs (n = 4):
fe
P 849-860
857
Br 801-860
837
IP 884-956
935
ti
884-920
905
777-848
822
920-1004
980
681-717
696
406-418
412
568-6.21
599
341-382
360
227
311-335
323
3
245-263
258
167-173
170
251-263
260
ta,
179-185
181
131
155-167
158
ta,
126-132
127
114-120
116
126-132
131
LR
0.76-0.78
0.77
0.49-0.52
0.50
0.60-0.62
0.61
BV
2.58-2.70
2.66
3.10-3.27
3.22
2.80-2.94
2.89
sV
2.47-2.56
2.53
3.83-4.12
4.02
3.15-3.28
3.20
Fig. 1. Heterotrissocladins spp, male imago: A, C-E. H. brundini spec. nov; B,F. H. brundini or maeaeri (Brun-
din); A, B. Cibarial pump, tentorıum and stipes; C. Thorax; D. Wing; E-F. Hypopygium.
Hypopygium (Fig. IE). Anal point 53-70, 63 um long; tergite IX including anal point with
20-27, 23 setae; laterosternite IX with 4-8, 7 setae. Phallapodeme 117-139, 125 um long; transverse
sternapodeme 106-116, 111 um (6) long. Virga very weak and inconspicuous, consisting of one or
59
two clusters of all together 6-7 spines; 11—15, 13 um (5) long. Gonocoxite 255—278, 268 um long;
inferior volsella rounded, with long setae on distal side. Gonostylus 117-141, 127 um long; outer
margin rounded; crista dorsalis long, relatively pronounced, rounded near apex; megaseta 10-15,
12 um long. HR 1.96-2.28, 2.12; HV 2.95— 3.46, 3.18.
Female imago (n = 9-11, except where otherwise stated).
Total length 3.28—4.00, 3.61 mm. Wing length 2.11—2.33, 2.18 mm. Total length/wing length
1.51—1.80, 1.66. Wing length/length of profemur 3.01—3.24, 3.12 (8). Coloration as in male.
Head. Flagellomere lengths (micrometers): 83-109, 98; 45-60, 55; 53-64, 59; 56-69, 64;
120-156, 136. Pedicel 68-82, 73 um wide. AR 0.44—0.55, 0.50. Temporals 9— 14, 12; including 4—6,
5 inner verticals; 2-5, 3 outer verticals; and 2-5, 3 postorbitals. Clypeus 138-161, 151 um wide;
1.85— 2.22, 2.06 times as wide as pedicel; with 7—15, 11 setae. Tentorium 138— 154, 146 um (8) long;
18-26, 22 um (8) wide. Stipes 86-149, 118 um (8) long; 9—23, 16 um (8) wide. Palp segments length
(micrometers): 26-35, 31; 38—49, 43; 82-103, 94; 68—88, 78 (7); 98-135, 118 (7). Two specimens
with fourth and fifth palp segments fused; 120-135 um long. Third palpal segment with 3-5, 4 sen-
silla clavata at apex. Coronal suture incomplete; 64—98, 82 um long.
Thorax. Antepronotum with 8-17, 11 lateral setae. Dorsocentrals 14—29, 19; acrostichals 4—7, 5;
prealars 6-10, 8. Scutellum with 16-24, 19 setae.
Wing. VR 1.11-1.16, 1.13. Brachiolum with 2 setae; R with 12-25, 17; R, with 5-13, 8; R,,; with
12-33, 24; M, ,, with 0—2, 1 setae; other veins bare. Cell r,,; with 23—54, 36; cell m, ,, with 4-17,
13 (8) setae; cell an with 2-14, 6 (8) setae. Squama with 15—25, 21 setae.
Legs. Spur on front tibia 41-56, 50 um long; spurs on middle tibia 30—41, 37 um and 23—34,
28 um long; on hind tıbia 60-71, 66 um and 18—26, 24 um long. Width at apex of front tibia 38—47,
43 um; of middle tıbıa 41—53, 48 um; of hind tıbia 49—59, 53 um. Comb of 7-10, 8 setae; shortest
seta 23—34, 29 um long; longest seta 49—67, 56 um long. Sensilla chaetica 1-7, 4 at 0.20—0.30, 0.28
(8) to 0.40—0.60, 0.53 on ta, of hind leg; apparently absent in mid leg. Lengths (micrometers) and pro-
portions of legs (n = 7-9):
fe ti ta, ta, ta, ta, ca, LR BV SV BR
PJ 669-753 753-848 548-624 274-321 194-217 137-151 99-131 0.72-0.76 2.68-2.92 2.47-2.63 2.1-3.1
697 793 582 291 200 143 106 0.74 2.87 2.54 2.9
PJ 690-807 717-807 359-384 191-227 142-167 95-120 85-114 0,.49-0,51 3.23-3.47 3.76-4.10 2.1-3.0
716 749 Shit 203 149 106 99 0,50 3081 3.89 ED
pP, 784-896 884-992 548-624 293-335 227-263 135-161 99-134 0.61-0.65 2.78-2.98 2.88-3.10 2.9-3,9
817 921 576 - 303 242 144 114 0.63 2.88 3.02 Sr3
Abdomen. Number of setae on tergites I-VII as: 33—53, 42; 38—46, 42; 26-40, 25; 24—44, 34;
24—38, 31; 19-35, 28; 19—35, 24; 9—26, 16. Number of setae on sternites I-VIII as: 0; 3-7, 5;5-10,
7:8-17, 1131220, 15; 14-24, 17; 1523, 18, 4371, 56.
Genitalıa (Fig. 2). Gonocoxite with 13—20, 16 setae. Tergite IX well divided, with 20-31, 25 setae.
Cercus 114—142, 133 um long. Seminal capsule 76-101, 86 um (8) long; excluding 11-26, 17 um
long neck; 64-79, 71 um wide. Notum 105-161, 132 um long.
Pupa (n = 11, except when otherwise stated)
Total length 3.76—4.78, 4.31 mm (9). Length of thoracic horn/length of anal macrosetae 1.10— 1.50,
1.34. Thorax of exuviae pale brownish grey, abdomen nearly transparent.
Cephalothorax. Frontal warts (Fig. 3A) conspicuous, 82-117, 97 um high; 35-53, 40 um (10)
wide at base. Frontal setae on frontal apotome; 59—83, 73 yum (8) long. Postorbitals 59— 73, 66 um (4)
and 41-56 um (2) long. Median antepronotals 117—147, 140 um (9) and 103—132, 120 um long; la-
teral antepronotals 73—88, 80 um and 0—44,9 um long (when absent reduced to setal mark). Thoracic
horn (Fig. 3B) 290-396, 349 um long; 44—70, 54 um (9) wide; 5.44—8.00, 6.57 (9) times as long as
wide. Anterior dorsocentral 44—88, 65 um long; Dc, 53— 117, 88 um long; Dec; 32—129, 68 yum long;
60
Apl
Fig. 2. Heterotrissocladius brundini spec. nov, female genitalia: A. Dorsal view; B. Ventral view; C. Lateral view;
D. Lobes of gonapophysis VII (DmL dorsomesal lobe; VIL, ventrolateral lobe; ApL, apodeme lobe).
Dc, 64-88, 78 um long. Distance between Dc, and Dc, 18-67, 42 um; between Dec, and Dec; 15-53,
28 um; between Dc, and Dec; 23—82, 58 um. Prealar observed in one specimen, 18 um long. Wing
sheath with fine marginal lines.
Abdomen (Fig. 3C, D). Shagreen absent on tergite 1 (T I) and T IX, weak median on T II, more ex-
tensive and stronger posterior on TIII—-VI, weak anteriomedian on T VII- VIII. Sternites I (S I) and
IX bare, S II-II with weak anterior and median shagreen, S TV- VII with weak anterior shagreen and
a few posterior spinules asS VI. Pedes spurii A present on sternites IV-VIland occasionally VIII (3 in-
dividuals). Pedes spurii B wider than high. Caudal hooklets 20-40, 32 on T II. Sternite VIII of male
with 19-33, 27 (7) posterior spines. Caudolateral corners of segments VI-VIII with imbedded spı-
nes, distinct on VII, only indicated on VI and VIII. L setae on segments I-VIII as: 1—2 (4): 3:3: 3:
3: 3: 3-4, 3: 5; 3 lJamelliform on VII, 4 lamelliform on VIII, occasionally also fıfth L seta on VIII
slightly lamelliform. Anal lobe 269-337, 302 um long; with 19—25, 22 setae in fringe; anal macrosetae
234—293, 261 um long. Genital sac of male overreaching anal lobe by 88-124, 109 um (4).
Larva (n ='6, except when otherwise stated)
Total length about 6 mm (larval exuviae). Head capsule length 447-502 um (3).
Head. Antenna as in Fig. 3E. Lengths of antennal segments (micrometers): 82—88, 86; 35—41, 36;
3—4, 4; 18-22, 19 (4); 6-9, 7 (4); 4—6, 4 (4). AR 1.07-1.16, 1.12 (4). Basal antennal segment 18-21,
20 um wide; 4.05—4.32, 4.24 times as long as wide; distance from base to annular organ 9-18, 15 um;
to distal mark of seta 21-35, 31 um; blade at apex 50-64, 50 um long; accessory blade 7-9, 9 um
long. Subapical style of second segment 6-9, 7 um (5) long. Labrum and epipharyngeal areas as ın
61
Fig. 3. Heterotrissocladins brundini spec. nov, pupa: A. Frontal apotome; B. Thoracic horn; C. Tergites of male;
D. Sternites of male. — larva: E. Antenna; F. Labrum and epipharyngeal area; G. Mandible; H. Maxilla; I. Mentum.
62
Fig. 3F. S I broad, finely plumose. Labral lamellae rounded apically. Median spine of pecten epipha-
ryngis narrower than lateral spines. Premandible 79-85, 83 um (5) long. Mandible (Fig. 3G)
158-176, 168 um (4) long. Maxilla as in Fig. 3H. Mentum (Fig. 31) with two close median teeth each
with distinct lateral accessory tooth, width of one median tooth including accessory tooth 18—21,
19 um; ventromental plates 21-26, 25 um (4) wide; 1.08-1.50, 1.32 times as wide as one median
tooth including accessory tooth. Postmentum distinctly darker than surrounding areas of head cap-
sule; 208-229, 222 um long.
Abdomen. Procercus 38-47, 43 um high; 29—32, 31 um wide; anal setae 647-747, 706 um (5)
long. Supraanal seta 234—264, 242 um long; 0.32—0.35, 0.34 (5) times as long as anal setae. Anal tubu-
les and posterior parapods not measurable.
Remarks
A male imago from Nordseter near Lillehammer is not included in the type material. Judging from
the leg proportions and the antennal ratio the specimen belong to A. brundini. The normally
sclerotized stipes (132 um long, Fig. 1B) and the more numerous setae on the wing membrane (45
setae in cell r,,;, 7 setae in each of m}, and m; , 4), however, indicate that ıt belongs to H. maeaeri. The
hypopygium (Fig. 1F) could belong to any ofthetwo species. Associated pupal material is needed to
decide whether the stipes and the wing setation is more variable within 7. brundini or whether the
specimen represents FH. maeaerı or an additional new species.
The pupa described by Langton (1984: 88) do not quite fit 77. brundini. The thoracic horn of Hete-
rotrissocladius Pe 1 of Langton is wider (length/width 4.0-5.1), and there are more numerous setae in
the anal lobe fringe (26-30). These variations, however, probably ıs not more than can be expected
between various populations.
Ecology and distribution
H. brundini has been found in two acidified lakes in Southern Norway, two lakes in the provinces
of More & Romsdal and Sogn & Fjordane, and ın Lake Assynt in the Sutherland District of Scotland.
It could conceivably be an indicator species of oligotrophic acid lakes.
Systematics
SETHER (1975: 57—62, fig. 15) does a phylogenetic analysis of Heterotrissocladius and related genera.
In the scheme of argumentation H. brundini will be synapomorphous for trends 57, 58, 59, 60; 9, 10,
11; and 51, 52, showing that the species is a good Heterotrissocladius. It is symplesiomorphous for
trends 41 and 44, apomorphous for trends 42 (reduced acrostichals) and 43 (reduced number of setae
on the wing membrane). The last two trends show parallelisms between the subpilosus and the maeaeri
groups. However, there are no pearl rows on the pupal wing sheaths (trend 37), only 4 filamentous se-
tae on segment VIII of the pupa (trend 39), and no setae dorsad of the genital sac (trend 40), showing
that the species belong with the maeaeri and marcidus groups. However, the pedes spurii A which may
occur on sternite VIII and the fifth L seta which in some specimen is somewhat filamentous, indicate
a plesiomorphic position within these groups.
The species is synapomorphous with A. maeaeri for trends 32 (short acrostichals) and 35 (distribu-
tion of L setae in pupa). It is plesiomorphous for trends 33 (PSB), 34 (PSA), 36 (median teeth of men-
tum), and apomorphous for trends 30 (setae on male tergite IX) and 31 (AR of larva), indicating a pla-
cement in the marcidus group. However, trends 30 and 31 are not very significant, representing con-
tinuous variation and probably good only as specific autapomorphies. Also several additional synapo-
morphies between H. maeaeri and H. brundini can be found in the male hypopygium in the shape of
the inferior volsella, the inner margin of the gonocoxite and in the shape of the gonostylus. We feel re-
latively certain about the phylogenetic position of the species as the sister species of H. maeaeri.
63
There are few problems fitting the imagines and the pupa within the concept of the maeaeri group
(SETHER 1975: 22); the stipes of the imagines and the pedes spurii B of the pupa have to be deleted
as dıstinguishing characters. However, the larva will key to H. marcidus (Walker) in the larval key
(SETHER 1975: 9) because of the two median teeth of the mentum. The median teeth, however, are
closer together than in other described species except for Heterotrissocladius sp. E from Lake Superior
(Sather 1975: 55) which is mentioned as intermediate between the marcidus and maeaeri groups.
Heterotrissocladius sp E almost certainly is close to 7. brundini. A redefinition of the maeaeri group
to include larvae with median teeth close together and distinct accessory teeth will make a separation
between the maeaeri and marcıdus groups still feasıble.
The imbedded spines found in the pupa is nearly unique within the orthoclads, otherwise found in
some members of Zalutschia Lipina only. S#rHer (1976) did not attempt to classify Oliveridia Szxther,
Hydrobaenus Fries, Trissocladius Kieffer and Zalutschia combined as a monophyletic group. Accor-
ding to S£rHer (1977: 82), however, the genera apparently form a monophyletic unit based on the
shape of the female gonapophysis VIII. This trend, however, is rather insecure as similar gonapophy-
ses occur elsewhere including in the Heterotrissocladins group of genera. Itthus is possible that Zalut-
schia is more closely related to the Heterotrissocladius group than to Hydrobaenus, and that the im-
bedded spines represent an underlying synapomorphy occurring in some, bot not allmembers of both
Zalutschia and Heterotrissocladius. We have observed indication of imbedded spines also in some ex-
uviae of A. marcidus. On the other hand the imbedded spines merely represent a strengthening of the
paratergital margin and could easily be a result of parallel selection.
The larvae of Heterotrissocladins all have hair-like spines at base of the anterior parapods similar to
those illustrated by Srrenzke (1950 fig. 11) for Paraphaenocladius Thienemann, but not found in Pa-
rametriocnemus Goetghebuer or apparently in the same form in other orthoclads. However, other
synapomorphies seem to confirm the relationship shown by Sruer (1975 fig. 15) and these spines
must be regarded either as secondarily reduced in Parametriocnemus or as an underlying synapomor-
phy for the whole group. |
Acknowledgements
We would like to thank Laboratory for Freshwater Ecology and Inland Fisheries Bergen for financial support.
We also are indebted to Mr. Tien van Trieu for doing the illustrations and to Mrs. N. Waagsberg for typing the ma-
nuscript.
Literature
LANGTON, P. H. 1984: A key to pupal exuviae of British Chironomidae. — P.H. Langton, March, Cambridgeshire,
324 pp
SETHER, OÖ. A. 1975: Nearctic and Palaearctic Heterotrissocladius (Diptera: Chironomidae). — Bull. Fish. Res. Bd
Can. 11931167
—- 1976: Revision of Hydrobaenus, Trissocladius, Zalutschia, Paratrissocladius, and some related genera (Diptera:
Chironomidae). — Bull. Fish. Res. Bd Can. 195: 1—287
—— 1977: Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys. — Bull. Fish.
Res. Bd Can. 197: 1- 209
—- 1980: A glossary of chironomid morphology terminology (Chironomidae: Diptera). — Ent. scand. Suppl. 15:
1-51
STRENZKE, K. 1950: Systematik, Morphologie und Ökologie der terrestrichen Chironomiden. — Arch. Hydrobiol.
Suppl. 18(2): 207—414
Prof. Ole A. S&ther
&yvind Schnell
Museum of Zoology
University of Bergen
N-5007 Bergen, Norway
64
SPIXIANA Supplement 14 | 65-74 | München, 15. Juli 1988 ISSN 0177-7424
Two new species of the Rheocricotopus (R.) effusus group
(Diptera, Chironomidae)
By Ole A. Szther & ©yvind A. Schnell
Abstract
Two new species belonging to the Rheocricotopus (Rheocricotopus) effusus group are described; R. (R.)reduncus
spec. nov. as male imago and pupa; R. (R.) unidentatus spec. nov. as male and female imago, pupa and larva. R. (R.)
reduncus is intermediate between R. (R.) paucıiseta Szther and the rest of the effusus group. R. (R.) unidentatus ıs
intermediate between R. (R.) effusoides Sether and R. (R.) effusus (Walker).
Introduction
The genus Rheocricotopus Thienemann & Harnish, 1932, recently was revised (S£THER 1985). It was
divided into two subgenera, Psilocricotopus Sether and Rheocricotopus s. str. Of the three species
groups in Rheocricotopus s. str. only the effusus group clearly was shown monophyletic.
Recently Michael Bolton from the Ohio EPA in Columbus, Ohio, sent the senior author some rear-
ed specimens collected in a spring stream in Ohio. These specimens showed a puzzling combination
of characters. The pupa appeared to belong to AR. (R.) effusoides SETHER, while the adults apparently
belonged in R. (R.) effusus (Walker). The associated larva, however, had a single median mental tooth
and thus resembled R. (R.)tuberculatus Caldwell. A closer examination showed that also the pupa and
the adult could be separated from the closest related species although perhaps only in insignificant de-
tails. The species is described below as R. (R.) unidentatus spec. nov.
The junior author during investigations around the Jostedal Glacier, found some males and pupal
exuviae of a species of the effusus group in the partly glacier fed rıver Jostedola. The males appeared
quite similar to R. (R.) panciseta Szther except for the quite distinct superior volsella, while the pupa
showed similarities to R. (R.) tuberculatus with L-setae on segments V—-VIII as 3:3:3:4—5. The spe-
cies ıs described below as R. (R.) reduncus spec. nov.
Methods and morphology
Morphological nomenclature follows SETHER (1980), with the exception that the apical spine of the gonostylus
istermed the megaseta. The measurements are given as ranges followed by amean when four or more measurements
are made, followed by the number measured in parentheses (n). In the figures of the male hypopygia the dorsal
aspect is shown to the left, the ventral aspect and the apodemes to the right.
The type material is kept at the Museum of Zoology, University of Bergen, Norway (ZMB).
65
Rheocricotopus (Rheocricotopus) reduncus spec. nov.
(Eigsal; 2A AGHE)
Type localıty: Jostedola River, Luster, Sogn & Fjordane, Norway.
Type material: Holotype, male, Jostedola River at inletto smalllake, Luster, Sogn & Fjordane, Norway, 23/7/86,
A. Fjellheim and ©. A. Schnell (ZMB No. 116). Paratypes: 3 males, 1 male pupa, 7 pupal exuviae, as holotype.
Diagnostic characters
The strongly curved, narrow-based, tooth-like projection of the superior volsella combined with
the small and indistinct humeral pit will separate the male from other members of the genus. The me-
dian spine patches on the tergites grading over in shagreen, presence of pedes spurii B on segment II,
combined with L setae of segments V— VIII as 3:3:3:4—5 will separate the pupa from other known pu-
pae of the genus.
Etymology: From Latin, reduncus, curved (hooked) backwards, referring to the shape of the superior volsella.
Description
Male imago (n = 4, except when otherwise stated).
Total length 2.69—2.90, 2.80 mm. Wing length 1.58-1.73, 1.94 mm. Total length/wing length
1.41—1.47, 1.45. Wing length/length of profemur 3.01—3.11, 3.06. Coloration dark brown.
Head. AR 0.83—0.90, 0.87. Ultimate flagellomere 402-442, 426 um long. Temporal setae 5-7, 6;
including 0-1, 1 inner vertical; 0-2, 1 outer vertical; and 3—5, 4 postorbitals. Clypeus with 10—20,
16 setae. Cibarial pump, tentorium and stipes as in Fig. 1A. Tentorium 149-155, 151 um long;
29—31,29 um wide. Stipes 149— 161, 154 um long; 53—64, 60 um (3) wide. Palp segments length (mi-
crometers): 23—29, 27; 59—64, 62; 88-104, 99; 94— 105, 100; 155-177, 167. Third palpal segment
with 1-3, 2 sensilla clavata.
Thorax (Fig. 1B). Antepronotum with 6-9, 8(5) lateral setae. Humeral pit small and indistinct.
Dorsocentrals 7—9, 8(5); acrostichals 7—9, 8, all situated in front except for in one specimen with an
additional median seta, longest acrostichals 44—47, 46 um (5) long; prealars 2-3, 3 (5). Scutellum with
610,85) setae.
Wing (Fig. 1C). VR 1.10-1.16, 1.13. Wing membrane with punctation visible at 250X. Anal lobe
reduced. C extension 35—59, 52 um long. Brachiolum with 1-2, 1 seta; R with 6-8, 7; R, with 0-1,
0; R,;; with 0-1, 1; C extension with 0-3, 1 non-marginal setae. Squama with 2-3, 3 setae.
Legs. Spur of front tibia 43—47 um (2) long; spurs of middle tibia 18—25, 21 um (5) and 15 um (2)
long; of hind tibia 44-50, 47 um and 16-18 um (2) long. Width at apex of front tibia 38-41, 40 um;
of middle tıbia 41 um; of hind tıbia 47 um. Comb of 12-14, 13 setae; shorter seta 21—23, 23 um (5)
long; longest seta 44—56, 49 um long. Sensilla chaetica0—1,0(5) at 0.25 of ta, of middle leg; 1-3, 2 (5)
at 0.20—0.35 of ta, of hind leg. Lengths (micrometers) and proportions of legs:
de ige ta, ta, ta, ta, u LR BU SV BR
PJ 609-681 735-807 490-526 311-335 221-227 137-149 84-90 0,65-0.67 2.42-2,.52 2.74-2.83 2.4-2.7
645 777 511 325 226 143 89 0.66 2.48 2.78 2.6
PJ 681-741 681-735 347-376 197-125 143-155 72-84 72-84 0.50-0.51 3.42-3.52 3.92-4.02 3.0-3.3
sul zııl 360 208 148 80 8l 0,50 3.48 3.95 BR
pP, 645-729 789-878 454-478 245-263 191-209 90-108 71-84 0.53-0.58 3.11-3.20 3.16-3.39 3.4-4.1
689 843 466 254 200 98 78 0.56 3.16 3.29 3.9
Hypopygium (Fig. 1D). Anal point 38 um (2) long; with 6-11, 9(5) setae; laterosternite IX with
3-5,4(5) setae. Phallapodeme 67 —76, 72 um long; transverse sternapodeme 79—98, 88 um long. Go-
nocoxite 202-220, 208 um long; with strongly developed, digitiform, narrowbased, caudomesal pro-
jection of superior volsella, superior volsella 59—67, 64 um (5) long; inferior volsella single, blunt-
66
Fig. 1. Rheocricotopus (Rheocricotopus) reduncus spec. nov., maleimago: A. Cibarial pump, tentorium and stipes;
B. Thorax; C. Wing; D. Hypopygium.
tipped. Gonostylus 105-111, 109 um long; crista dorsalis low, very long and relatively well devel-
oped, but appearing as absent in some views; megaseta 19—21, 20 um (3) long. HR 1.82—2.00, 1.90;
HV 2.48-2.63, 2.56.
Pupa (n = 8, except when otherwise stated).
Total length 3.38—3.80, 3.57 mm (7). Length of thoracic horn/length of anal macrosetae 1.00-1.17,
1.12 (7). Exuviae relatively dark greyish brown.
Cephalothorax. Frontal seta 44—73, 64 um (7) long; on frontal apotome (Fig. 2A). Postorbitals
44— 73,63 um (7) long. Median antepronotals 147— 190, 172 um (7) and 88— 176, 134 um long; lateral
antepronotal 50-73, 59 um long. Thoracic horn (Fig. 2C) 264—308, 295 um (7) long; 47—56, 53 um
(4) wide. Anterior precorneal seta 132-176, 154 um (6) long; median seta 88-147, 129 um (4) long;
posterior seta 44—59, 48 um 15 long. Anterior dorsocentral (Dc,) 26-82, 47 um long; De, 32-103,
75 um long; Dc, 26-53, 33 um long; De, 59— 100, 72 um long. Distance between De, and De, 23—38,
28 um; between Dc, and Dc; 21-41, 31 um; between Dc; and De, 50-11, 70 um.
Abdomen (Fig. 2E). Shagreen absent on tergitel(T I), weak anterior on T II, stronger and extensive
on T II-VI, reduced laterally on T VII- VIII, present anterior on T IX. Sternites1(S I) and IX bare,
shagreen anterior on S II; S III-IV with anterior and lateral S V-VII with extensive, S VIII with an-
terior shagreen. Pedes spurii A on S III-VI, sometimes indicated on S VII. Pedes spurii B on segment
II, well developed. T II with about 120-170, 49 caudal hooklets. Conjunctives IIV/IV, TV/V and so-
67
metimes V/VI with anteriorly directed spinules. Number of spines in median patches on T IV—Vlas:
10-45, 29; 35—80, 68; 55—80, 70. Maximal length (micrometers) of spines as: 6-12, 9; 12—18, 15;
9—18, 14. L setae on segments I-VIIl as: 2,3, 3, 3,3, 3, 3, 4-5; all lamelliform on segments VII and
VIII. Anal lobe with 16-20, 18 setae in fringe; anal macrosetae 249-270, 263 um long. Genital sac
of male folded and not measurable in males, of female ending 64 um (1) short of apex of anal lobe.
Larvae unknown
Remarks
The systematic positions of this and the following species are treated in the systematics part at the
end of this paper.
Ecology and distribution
The male imagines, pupa and pupal exuviae all were collected in a back eddy where the river Jostedola enters a
small lake at Viva (alt. 850 ma.s. |.) inthe uppermost part of the valley Jostedal. The type of locality is situated above
the timber line only a few kilometers east of the Jostedal Glacier, which is the largest glacier on mainland Europe,
covering an area of approx. 486 sq. km.
Some environmental parameters and a list of some other chironomids found at the locality is given by SCHNELL
& SA£THER (1987). At least three species, Vivacricotopus ablusus Schnell & Szther, a new species of Limnophyes and
R. (R.) reduncus spec. nov. appear to be endemic to the area.
Rheocricotopus (Rheocricotopus) unidentatus spec. nov.
(Bigs2B, DIE: 3:2)
Type locality; Camp Lazarus, Delaware Co., Ohio, U.S.A.
Type material: Holotype, male with pupal and larval exuviae, spring stream, Camp Lazarus, Delaware Co.,
Ohio, U. S. A., 18/4/86, M. J. Bolton, in coll. Mus. Zool. Univ. of Bergen (ZMB No. 117).
Paratypes: 2 males reared from larva, 2 females, reared from larvae, 3 larvae, as holotype; 3 larvae as holotype ex-
cept 1/4/86.
Diagnostic character
The high number of dorsocentrals (18—22 in males, 18—33 in females) and acrostichals (30-36 ın
males, 43—47 in females) will separate the imagines from R. (R.) effusus and R (R.) effusoides, the clo-
sest relatives. The pupa has more numerous spinules (65— 120) in the spine patches of T V and VIthan
in R (R.) effusus, and a pale greyish brown coloration of the exuviae separating it from the darker co-
lour of R. (R.) effusoides. The single median tooth of the mentum combined with the lack of ventral
tubercles on the head capsule will separate the larva from other members of the genus.
Etymology: From Latin, »ni-, one, and dentatus, toothed, referring to the single median tooth of the larval men-
tum.
Description
Male imago (n = 3, except when otherwise stated).
Total length 3.08-3.42 mm. Wing length 1.51-1.83 mm. Total length/wing length 1.87— 2.04.
Wing length/length of profemur 2.59— 2.69. Coloration brown.
Head. AR 1.10-1.36. Ultimate flagellomere 394-563 um long. Temporal setae 4—8, including
0-1 inner verticals, 1-4 outer verticals and 3 postorbitals. Clypeus with 10-14 setae. Cibarial pump,
tentorium, and stipes as in Fig. 3A. Tentorıum 146-169 um long, 38-47 um wide. Stipes
135—158 um long, 45—53 um (2) wide. Palp segments length (micrometers):38—41,68—81, 90-116,
101-124, 69—184. Third palpal segment with 2-3 sensilla clevata.
Thorax (Fig. 3B). Antepronotum with 4—8 lateral setae. Humeral pit very large, elongate ellipsoid
with smaller rounded pit below. Dorsocentrals 18-22; acrostichals 30-36, the longest reaching
68
SS SS
NIISSN
— N
II AS
\N h N \ ERKTILLLLNET \ Ler) Y
N \ < \ SS - S — ANA TR [d =
ze) km : 3,1, > > Sum E e} FEFZET
A)
— R
2 > l IS 5
n IL ENS SS
69
Fig. 2. Rheocricotopus (Rheocricotopus) spec., pupae: A-B. Frontal apodeme; C-D. Thoracic horn; E-F. Ter-
gites. A, C, E. R. (R.) reduncus spec. nov.; B, D, F. R. (R.) unidentatus spec. nov.
Fig. 3. Rheocricotopus (Rheocricotopus) unidentatus spec. nov., male imago: A. Cibarial pump, tentorium and stıi-
pes; B. Thorax; C. Wing; D. Hypopygium.
26-38 um in length (15—26 um in R (R.) effusus and R (R.) effusoides); prealars 4. Scutellum with
6-9 setae.
Wing. (Fig. 3C). VR 1.08-1.14. Wing membrane with fine punctation of microtrichia visible at
150X. Anal lobe protruding. C extension 38—49 um long. R with 6-10 setae. Squama with 3-11 se-
tae.
Legs. Spur of front tibia 49—64 um long, spurs of middle tibia 21-26 um and 19—23 um long, of
hind tibia 45-58 um and 19—23 um long. Width at apex of front tibia 34—41 um, of middle tibia
38-49 um, of hind tibia 41-53 um. Comb of 11-12 setae, shortest seta 30—34 um long, longest seta
49—60 um long. Sensilla chaetica absent. Lengths (micrometers) and proportions of legs:
fe ti ta, ta, ta, ta, ta, LR BV SV BR
PJ 567-709 662-841 493-595 265-340 180-236 123-151 61-80 0.71 2.60-2.71 2.56-2.60 2.2-2.8
E 576-747 586-747 302-395 „1512-208 115-151 57- 80 47-66 0.52-0.53 3.58-3.97 3.72-3.84 2.5-2.7
2
P, 558-709 671-869 397-491 203-274 165-222 80-113 57-71 0.57-0.59 3.04-3.22 3.02-3.21 3.2-4,4
Hypopygium (Fig. 3D). Anal point 41—60 um long, with 8-12 setae, laterosternite IX with 5-6
setae. Phallapodeme 79-109 um long, transverse sternapodene 99—154 um long. Gonocoxite
218-251 um long; with well developed tooth-like caudomesal projection on superior volsella,
62-71 um long; inferior volsella single with pointed apex. Gonostylus 90—101 um long; crista dor-
salis low and long, relatively well developed, but not visible in some views; megaseta 13—15 um long.
FHR2422250; HV 3.393,47.
70
Female imago (n = 2, except when otherwise stated).
Total length 3.34—4.20 mm. Wing length 1.81-2.07 mm. Total length/wing length 1.85—2.03.
Wing length/length of profemur 2.61-2.65. Coloration yellowish brown with dark brown separate
vittae and thoracic markings, scutellum yellowish brown ın central area.
Head. Flagellomere lengths (micrometers): 98-105, 56, 53-60, 60-64, 113-116. AR 0.41—0.45.
Temporals 7-18, including 1-4 inner verticals, 2-8 outer verticals and 4-6 postorbitals. Tentorium
180 um long, 38-41 um wide. Stipes 161-180 um long, 49—68 um wide. Palp segments length (mi-
crometers): 41-49, 79—86, 113-114, 128-133, 218—225. Third palpal segment with 2-3 sensilla cla-
vata at apex. Coronal suture complete.
Thorax. Antepronotum wıth 8-10 lateral setae. Humeral pit as in male. Dorsocentrals 18-33;
acrostichals 43-47, longest 38—49 um long; prealars 6-7. Scutellum with 19—22 setae.
Wing. VR 1.01-1.16. C extension 79—90 um long. Brachiolum with 1-2 setae, R with 22-37, R,
with 10-17, R,,; with 26-51, extended part of costa with 5-8 non-marginal setae. Squama with
9722’ setae.
Legs. Spur of front tibia 30-38 um long, spurs of middle tıbia both 23-26 um long, of hind tibia
53-56 um and 21-23 um long. Width at apex of front tıbia 43—53 um, of middle tibia 45-56 um,
of hind tıbia 53-73 um. Comb of 12-14 setae, 30-60 um long. Sensilla chaetica apparently absent.
Lengths (micrometers) and proportions of legs:
fe zat ta, ta, ta, ta, ta, LR BV SV BR
P} 680-784 765-954 468-586 255-302 170-217 113-142 66-80 0.61 3.15-3.16 2.98-3.09 1.5-2.0
P, 718-803 713-851 317-425 161-217 113-161 57- 85 57-76 0.44-0.50 3.79-4.51 3.89-4.52 1.5-1.8
pP, 671-794 784-959 421-539 208-279 161-227 76-109 61-85 0.54-0.56 3.26-3.71 3.25-3.46 1.3 (1)
Abdomen. Number of setae on tergites I- VIII as: 27—48, 34—66, 32-55, 39—55, 40-59, 39 —49,
43, 36-47. Number of setae on sternites I-VIII as: 0, 0-3, 2-6, 7-11, 19-21, 23—29, 20-27,
28—46.
Genitalıa (Fig. 4A-C). Gonocoxite wıth 13— 17 setae, including 7—8 strong and 5-10 weak setae.
Tergite IX strongly divided with 22-26 setae. Cercus 90-128 um long. Seminal capsule 101-116 um
long, including 23-30 um long neck; 77—90 um wide. Notum 139 um long.
Pupa (n = 5, except when otherwise stated)
Total length 3.31—4.83, 3.92 mm. Length of thoracic horn/length of anal macrosetae 0.87—1.22,
1.00. Exuviae pale greyish brown, with darker apophyses and thoracic markings.
Cephalothorax. Frontal seta 90-120 sum (2) long, on frontal apotome (Fig. 2B). Vertical not mea-
surable; postorbitals 23—49, 35 um (4) long. Median antepronotals both 120-199, 163 um long; late-
ral antepronotals 41-88, 62 um long and small peg, 11-19 um (3) long. Thoracic horn (Fig. 2D)
259-390, 303 um long; 38—53, 44 um wide. Anterior precorneal seta 131—233, 186 um long; median
seta 83-218, 165 um long; posterior seta 49—161, 95 um long. Anterior dorsocentral (Dc,) 75-105,
82 um long; other dorsocentrals each 41-101, 65 um long. Distance between De, and Dec, 64-116,
92 um; between Dc, and Dec, 15-83, 50 um; between Dc; and Dec, 23-53, 37 um.
Abdomen (Fig. 2F). Shagreen absent on tergite I (T I), weak median on T II, stronger and more ex-
tensive on T III- VI, median on T VII- VIII, anterior on T IX. Sternites I (S I) and IX bare; shagreen
on $ II-IIl anterior, median and laterally; on S TV—VI posterio-laterally, not very strong; on S VII—
VIII anterior group shagreen. Pedes spurii A present on S IV-VI with indications also on S VII-
VIII in most specimens. Pedes spurii B well developed on segment II and present also on segment
III. About 140-260, 150 caudal hooklets on T II. Conjunctives IIV/IV, IV/V and usually V/VI with
rows of anteriorly divided spinules, medially interrupted or (in one specimen) absent on V/VI. Num-
ber of spinules in median patches on T IV-VI as: 34-75, 49; 65-118, 79; 68-120, 91. Maximal
71
Fig. 4. Rheocricotopus (Rheocricotopus) unidentatus spec. nov., female imago and larva: A-C. Female genitalia,
ventral (A) and dorsal (B) aspect and lobes of gonapohysis VIN (C) (DmL, dorsomesal lobe; VIL, ventrolateral
lobe; ApL, apodeme lobe); D. Larval mentum; E. Posterior end of larva.
lengths (micrometers) of spines as: 11—23, 15; 15—26, 19; 15— 26, 20. L setae on segments II- VIII as:
4,4,4,4,4, 4, 4-5; all lamelliform on segments VII-VIH. Anal lobe with 21—26, 23 setae in fringe;
anal macrosetae 281-319, 301 um long. Genital sac of male not measurable, of female ending
86—124 um (2) short of apex of anal lobe.
Larva (n = 10-11, except when otherwise stated)
Total length 3.97—7.24, 5.15 mm. Head capsule length 397—473, 438 um.
Head. Antenna as in R. (R.) effusoides Sther 1985 (fig. 21 A). Lengths of antennal segments (micro-
meters): 69— 87,78; 16—23, 18; 9—14,12;7—9,8;7—9,8. AR 1.55—1.96, 1.70. Basal antennal segment
15—24, 18 um wide, distance from base to ring organ 8-15, 10 um; to basal mark of seta 7-13, 9 um
(8); to distal mark 41—48, 44 um (7). Lauterborn organs and apical style of second segment each 6-9,
8 um long. Labrum as in R. (R.) effusoides (Szther 1985 fig. 21 B). Premandible 69— 79, 74 um long.
Mandible 116-158, 138 um long; with 7 branches in seta interna. Mentum (Fig. 4D) with one median
tooth with lateral notches; width of median tooth including notches 27-38, 32 um; ventromental pla-
tes 19—25, 22 um wide; with 28-40, 33 setae underneath. Postmentum 223—249, 233 um long.
Abdomen (Fig. 4E). Procercus 30-38, 34 um high; 21-28, 24 um wide; with 5-6 anal setae
450-563, 520 um long. Supraanal seta 98-131, 112 um long; 0.90—0.23, 0.21 times as long as anal se-
tae. Anal tubules 98-158, 118 um long; 38-56, 49 um wide at base. Posterior parapods 263—319,
290 um (8) long.
76%
Systematics
SETHER (1985) erected a scheme of argumentation delineating the cladogenesis of the genus Rheocri-
cotopus. Both species treated here are synapomorphous for trends 17, symplesiomorphous for trends
18, showing that they both belong in the nominal subgenus.
Trends 16 contain sıx different trends of which all except one for each species are symplesiomor-
phous for both species. In R. (R.) unidentatus, however, there is a single median tooth of the mentum
as in R. (R.)tuberculatus; and R. (R.) reduncns has L setae of the same distribution as in R. (R.)tuber-
culatus. However, none of these two trends are very significant since there is a tendency to reduction
to one median mental tooth in for instance R. (R.) effusoides, and to reduction of theL setae in the fs-
cipes group. Trend 15 is synapomorphous for R. (R.) unidentatus; unknown, but probably also syn-
apomorphous for R. (R.)reduncus. Both species are synapomorphous for trend 9, a highly significant
trend. It is thus clear that both species belong in the effusus group.
R. (R.)reduncus is somewhat intermediate for trends 8, while the species ıs synapomorphous for the
first of trends 7 (with tooth-shaped projection of the superior volsella), symplesiomorphous for the
second (with small humeral pit). The phylogenetic placement thus ıs relatively obvious. It form the si-
ster species of the rest of the effusus group minus R. (R.) pauciseta, while the latter form the sister spe-
cies of R. (R.) reduncus plus the rest of the group. An alternative placement could be as the sister spe-
cies of R. (R.) pauciseta alone, something further indicated by the similarity of the anal points of the
two species.
The placement of R. (R.) unidentatus also ıs relatively simple. Trends 7 and 3 are synapomorphous,
8 and 4 symplesiomorphous, meaning that R. (R.) unidentatus belong in a group with AR. (R.) effusus
and R. (R.) effusoides. Trends 1 and 2 indicate that R. (R.) effusus is the closest species.
R. (R.) reduncus and R. (R.) unidentatus ıs compared with their closest relatives in Table 1.
Table 1. Comparisons of some members of the Rheocricopus (R.) effusus group. Lengths in um.
R. pauciseta R. reduncus R. effusoides R. unidentatus R. effusus
Male:
AR 0.60 - 0.83 0.83 - 0.90 1.39 - 1.61 1.10 - 1.36 0.99 - 1.33
LRı 0.62 - 0.74 0.65 - 0.67 0.64 - 0.67 0.71 0.70 - 0.74
No. dorsocentrals 5-7 7-9 12-16 18 - 22 9-16
No. acrostichals 12-17 7-9 14 - 21 30 - 36 18 - 26
Max. 1. acrostichals 25 44 - 47 15 - 26 26 - 38 15 - 26
Huneral pit small small large, ellipsoid large, ellipsoid large, ellipsoid
Anal point setae 6-8 6-1 15 - 20 8-12 5-13
HR 2.61 - 2.69 1.82 - 2.00 1.92 - 2.07 2.42 - 2.50 -
Fenale:
No. acrostichals - - 21 - 2 43-47 18 - 26
Pupa:
Coloration pale yellow- dark greyish dark yellow- pale greyish pale greyish
ish brown brown ish brown brown brown
L. frontal seta 84 - 100 4-73 56 - 101 90 - 120 38 - 64
W. thoracic horn 48 - 58 47 - 56 49 - 86 38 - 53 34 - 53
Spines patch T IV ca. 0 - 15 10 - 45 6-43 34 - 75 22 - 46
N a TV ca. 25 35 - &0 36 - 79 65 - 118 28-47
a a ca. 30 55 - 80 35 - 74 68 - 120 26 - 55
No. setae in fringe 11-13 16 - 20 18 - 27 21 - 26 1-21
Larva:
Med. mental tooth double - double single double
L. basal antennal seen. 62 - 64 - 70 - 86 69 - 87 55 - 69
73
Acknowledgements
We would like to thank the Norwegian Water Resource and Elektricity Board for financial aupport. We also are
indebted to Mr. Michael Bolton, Ohio EPA, Columbus, Ohio, for the type material of R. (R.) unidentatus spec.
nov., to Mr. Tien van Trieu for doing the illustrations, and to Mrs. I. Wiese-Hansen for typing the manuscript.
Literature
SETHER, OÖ. A. 1980: A glossary of chironomid morphology terminology (Chironomidae: Diptera). — Ent. scand.
Suppl. 15: 1-51
—— 1985. A review of the genus Rheocricotopus Thieneman & Harnisch, 1932, with the description of three new
species (Diptera, Chironomidae). — Spixiana Suppl. 11: 59— 108
SCHNELL, ©. A. & O. A. SETHER 1988: Vivacricotopus, a new genus of Orthocladiinae (Diptera, Chironomidae).
— Spixıana Suppl. 14: 4955.
Prof. Ole A. Szther
&yvind A. Schnell
Museum of Zoology, University of Bergen
N-5007 Bergen, Norway
74
| SPIXIANA Supplement 14 75—84 | München, 15. Juli 1988 ISSN 0177-7424
A review of Lappodiamesa Serra Tosio, with the description of
L. boltoni spec. nov. from Ohio, USA
(Diptera, Chironomidae)
By Ole A. Sxzther and Endre Willassen
Abstract
The genus Lappodiamesa Serra-Tosio is emended. Lappodiamesa brundini Serra-Tosio is regarded as a junior
synonym of. vidua (Kieffer) comb. nov. The female of L. vidua and the male and female imagines, pupa and larva
of Lappodiamesa boltoni spec. nov. are described in full detail. The genus apparently forms the sister group of Psen-
dodiamesa Goetghebuer.
Introduction
The previously monotypic genus Lappodiamesa was described by SErrA-Tosıo (1968) from two ma-
les collected by L. Brundin ın N.-Sweden, close to the Norwegian border. The immature stages were
unknown when the keys and diagnoses to the Holarctic Diamesinae were elaborated by OLıver (1983,
1986). After the initial description of L. brundini Serra-Tosio no additional records were made of the
species until MAKARCHENKO (1983) described the male, pupa and larva from the Chukotskii Peninsula.
Having the opportunity to describe all stages of a recently discovered Nearctic species, we decided to
examine putative types of Syndiamesa vıidua Kieffer, a species which for a while has been suspected
to represent a synonym of L. brundini. Through the courtesy of Dr. E. Makarchenko, we also were
able to reexamine some specimens used in his description.
Methods
The material was mounted in Canadabalsam (Sx&ther, 1969) or in Euparal. Terminology follows S&ther (1980).
In the descriptions measurements are given as ranges. When more than 4 specimens have been measured, the range
is followed by a mean and the number of specimens measured in parenthesis.
Lappodiamesa Serra-Tosio, 1968, emended
Diagnosıs
Male antenna plumose, female antenna with six or seven flagellomeres. Eyes with weak or strong
pubescence, in male moderately extended medially. Frontal and orbital setae absent. Maxillary palp
about as long as width of head, with weak indication of sensilla capıtata on segment three or devoid
ofsensilla capitata. Antepronotum deeply notched dorsally. Acrostichals present or absent, dorsocen-
trals uniserial or biserial posteriorly. Wing membrane almost smooth (Makarchenko, 1983) or punc-
tated with microtrichia, R, distinctly arched, FCu clearly proximal to FR, MCu slightly proximal of
RM, R,;; with a few setae distally, anal lobe prominent. Fourth tarsal segment of legs cylindrical and
subequal in length to fifth segment. Male hypopygium with anal point and pars ventralis, with or with-
MD
out rounded and setose superior volsella, and with weekly delineated inferior volsella. Female genita-
lia with 3 rounded seminal capsules, gonocoxite IX with moderate projection and tergite IX clearly
divided into two setigerous protrusions. Pupa with rugulose cephalothorax, thoracic horn absent; ab-
domen reticulate with strong and dark apophyses on tergites and sternites, L-setae simple or bifid and
mostly subequal; anal lobe overreaching genital sac, with 3 anal macrosetae, without fringe or median
setae, with or without pointed apical tubercle. Larva with 2 pairs of serrate labral lamellae, labral sen-
silla $S T-S III simple, pecten epipharyngis with 7 scales, premandible with 4-5 teeth, mentum with
1 median and 8-9 lateral teeth, body setae pale and moderately long, procercus about as long as wide
with 8-9 anal setae and 2 subapical setae.
Lappodiamesa vidua (Kieffer) comb. nov.
Fiıgs 1A-C
Syndiamesa vidna Kieffer, 1922: 23—24, fig. 15.
Lappodiamesa brundini Serra-Tosio, 1968: 140— 145, pl. 5. syn. nov.
Diagnosıs
Female with 6 flagellomeres. Acrostichals present. R,;; of wing ending close to R,; male without
superior volsella; female apparently without sensilla chaetica on front and middle legs. Pupa with dis-
tinct apical tubercle on anal lobe. Larva with first lateral teeth of mentum about equally wide as median
tooth.
Male imago
Scutellum with more than 30 setae in 2-3 irregular rows. LR, 0.64, LR;, 0.47, LR; 0.57; BV, 3.72,
SV, 2.72, SV, 2.20, SV; 3.38. Tergite IX (Fig. 1 A) with 22 setae, laterosternite with 14 setae; transverse
sternapodeme 131 um long, with or without distinct orolateral corners; phallapodeme 120 um long,
pars ventralis 34 um long, gonocoxite 304 um long, gonostylus 165 um long. Otherwise about as in
descriptions by Kırrrer (1922), SERRA-Tosıo (1968) and MAKARCHENKO (1983).
Female imago (n = 2)
Total length 4.53—4.58 mm. Wing length 3.37—3.58 mm. Total length/wing length 1.28—1.34.
Wing length/length of profemur 3.64—3.68.
Head: Pedicel with 3-4 setae. Length of flagellomeres (um): 83, 56-64, 53-56, 45-49, 49,
150-165. AR 0.57—0.59. Flagellomeres 1-3 with 1-2 apical sensilla coeloconica dorsally, ultimate
flagellomere with about 20 sensilla chaetica and a few sensilla coeloconica. Ultimate flagellomere with
1—2 subapical setae. Coronal suture faint or reduced. Temporal setae 17— 20, including 6-8 postorbi-
tals, 7—9 inner- and 3—4 outer verticals. Eyes with strong pubescence (sensu S£THER, 1980). Clypeus
with 5-7 setae. Palp segments 4 and 5 fused in one specimen; palp segments length (um) in normal
specimen: 45, 64, 131, 116, 154; about 4—5 sensilla clavata observed on palp segment 3. Tentorıium
180—214 um long. Stipes length/width 191/60—68 um.
Thorax: Antepronotum with 9-12 lateral setae. Dorsocentrals 16-17, acrostichals 13—16, supra-
alars absent, prealars 10-13. Scutellars 38—43, in 3—6 rows.
Wing: VR 0.92-0.96. Costa produced 83—90 um beyond R, ;;. Anal lobe with well developed pro-
jection. Microtrichia of wing membrane visible under 100X magnification. R with 10-13 setae, R,
with 7—9, R,;; with 6-9 setae. Alula with 4—5 setae. Squama with 40-50 setae. Subcosta with 3 sen-
silla campaniformia, R, with 1, R,,; with 2 and R,,; without sensilla campanıformia.
Legs: Spur of front tibia 68-71 um, spurs of middle tibia 49 um and 53—58 um, of hind tibia
45—51 um and 77-85 um long. Width at apex of front tibia 64— 71 um, of middle tibia 60 um, of
hind tibia 79—86 um. Comb on hind tibia with 7—9 setae 45—60 um long. Middle and hind legs with
following numbers of pseudospurs on ta, +; respectively: 4—9 plus 0-2 apical, 0, 0 (P,); 6-8 plus 2
76
Fig. 1. Lappodiamesa vidua (Kieffer) comb. nov., imago. — A. Male hypopygium. — B-C. Female genitalia, la-
teral (B) and ventral (C) view (cerci damaged).
apical, 0, 0 (P;). Front and middle ta, without sensilla chaetica; hind ta, with 18 sensilla chaetica
distributed from 0.29—0.39 to 0.83—0.88. Lengths (um) and proportions of legs:
fe ti ta, ta, ta, ta, ta, LR BV SV BR
Pl 926- 973 1106-1181 728-751 383 (1) 236 (1) 161 (1) 137 (1) 0.64-0.66 3.17 (1) 2.79-2.87 2.6 (1)
P, 1096-1143 1001-1158 576-595 293-321 208-217 132 113-123 0.51-0.52 3.65-3.72 3.81-3.87 2.9 (1)
P, 1247 1351-1427 756-832 389-444 265-288 142 (1) 142 (1) 0.56-0.58 3.59 (1) 3.22-3.44 2.2 (1)
Genitalia (Figs 1B-C): Sternite VIII with a total of 28-49 setae in amore or less contiguous distri-
bution; gonocoxapodeme strongly sclerotized. Seminal capsules rounded, 98-132 um long inclusive
19—23 um long neck, width 79-86 um; surface with possible indication of scattered, tubercle-like
microtrichia. Notum 109-120 um long, ramı long and curved towards midline. Flap (WırLassen,
1982) poorly developed. Ventrolateral lobe large with dense lanceolate microtrichia. Apodeme lobe
ill-defined. Gonocoxite rounded with 15—16 setae. Tergite IX clearly dıvided with a total of 35—50
setae.
Remarks
Kieffer based his original description on two males and one female collected by Dr. Okland on No-
vaja Semlja. According to Kırrrer (1922: 24) one male and the female were collected on 10th August
and labelled No. 239. The second male was collected 23th August and was labelled No. 258. After
completing his first description of Syndiamesa vidna, Kieffer received a second batch of specimens
which he published on later (see Kırrrer, 1923: 4, 11): two males plus one female collected on 19th Au-
gust, labelled No. 239, and three females with No. 228 and collection date 17th August.
We have studied one male and two females which according to the labels seem to belong to the se-
cond batch of Kırrrers specimens. However, they are all labelled “Types” and the male carries two ad-
ditional labels: one reading “Diamesa vidua” det. D. R. Oliver, the other “lectotypus det. D. R. Oli-
ver”. According to curator Mr. J. E. Raastad (personal communication to E. W.) four males (No. 239,
19th August) and one female (No. 228, 17th August) in addition to the ones examined here remain in
Museum of Oslo, and he indicates that “10th August” is an error which should read “19th August”.
Unfortunately, this does not seem to solve the problem of authenticity satisfactory and thus our ques-
tion of the validity of the lectotype-designation remains open. Nevertheless, based on the available
specimens and the detailed description of Serra-Tosıo (1968) it seems clear that Zappodiamesa brun-
dini ıs asynonym of S. vidna.
Material studied
Lectotype, male: Diamesa vidua (Kieffer) (D. R. Oliver det.) USSR: Novaj. Semlja, Ökland leg., Pankratjef Pe-
ninsula, 19. Aug. No. 239, (with additional numbers: Gl 2772 and 12463); Litselustina Bay, 17. Aug., No. 228
(with additional numbers 12461 and 12462), 2 females; in coll. Mus. Zool., Oslo. Chukotka, Chegitun River,
4. Aug. 1981, E. Makarchenko, 2 male hypopygia, 3 pupal exuviae, 3 larvae; 8. Aug. 1981, 1 larva; in coll. Mus.
Zool. Bergen.
Lappodiamesa boltoni spec. nov.
Figs 2-4
Type locality: USA, Ohio, Franklin County, Sharon Woods Park.
Holotype: Pharate male pupa labeled: USA, Oh., Franklin Co. Sharon Woods Pk, 3/25/86, leg. M. J. Bolton,
ZMBNNGo. 114.
Paratypes: 5 males, 2 females, 1 pharate female pupa with associated larval exuviae, 4 pupal exuviae, 1 larva; as
holotype. Types in coll. Museum of Zoology, University of Bergen, Norway.
Diagnosıs
Female with 7 flagellomeres. Acrostichals absent. Wing punctated with microtrichia visible under
30x magnification, R,,; ending in middle between R, and R,;;, hind leg without distinct tibial comb,
female with sensilla chaetica on ta, of all legs. Pupa without apical tubercle on anal lobe. Larva with
first lateral teeth of mentum clearly narrower than median tooth.
Descriptions
Male imago (n = 5, unless otherwise stated)
78
Dr
F-
“
1.
ur
SS N
Fig. 2. Lappodiamesa boltoni spec. nov., imago. — A. Male head. — B. Female head. — C. Cibarıal pump. — D.
Stipes. — E. Thorax. — F. Male wing. - G-L. Male hypopygium with varıation of anal point (H-]), details of su-
perior volsella (J), and gonostyli (K-L).
79
Total length 4.37—4.82, 4.58 mm. Wing length 2.63—2.84, 2.69 mm. Total length/wing length
1.68—1.81, 1.72. Wing length/length of profemur 2.55— 2.75, 2.65.
Head (Figs 2A, C-D): AR 2.32— 2.53, 2.46. Ultimate flagellomere 732—860, 819 um long. Coro-
nal suture complete. Temporal setae 12-21, 15 (6) including 6-11 postorbitals, 3—6, 5 outer verticals
and 1-5, 3 inner verticals. Eyes pubescent (not hairy) between allommatids. Clypeus with 0-8, 3 (6)
setae. Palps with long setae, sensilla clavata not apparent. Palp segments length (um): 38—43, 40;
90-113, 99; 150-169, 156; 116-137, 122; 124— 154, 142. Tentorium 203—244, 231 yum long. Cibarial
pump as in Fig. 2C. Stipes (Fig. 2D) length/width 158-188, 168/49—68, 57 um.
Thorax (Fig. 2E): Antepronotum deeply notched; with 3— 10, 6 lateral setae. Dorsocentrals 14— 26,
17 (4); supraalars and acrostichals absent; prealars 4—11, 6; Scutellars 14— 17 (2), more or less biserial.
Wing (Fig. 2F): VR 0.81—0.89, 0.84. Costa produced 94— 113, 99 um beyond R;;;. Ry,; in middle
between R, and R,,;. Microtrichia of wing membrane visible under 30% magnification. Brachiolum
with 1-2, 2 (4) delicate setae. R with 8-10, 9 setae; R, with 2-6, 4; R,,; with 2—3, 2 setae. Squama
with 22-55, 40 (6) setae. Subcosta with 3 sensilla campaniformia, R, with 1, R,,, with 3 and R,;;
without sensilla campaniformia. Anal lobe with well developed projection.
Legs: Spur of front tibia 71-83, 77 (4) um long; spurs of middle tibia 45-68, 54 and 44-49, 44
(4) um; of hind tibia 64—68, 65 and 41-47, 43 (4) um long. Width at apex of front tibia 53—73, 66
(6) um; of middle tıbia 60— 71, 65 um; of hind tibia 68-79, 74 um. Apex of hind tibia with somewhat
irregularly dispersed setae, but without distinct setal comb. Middle and hind legs with the following
numbers of pseudospurs on ta,_, respectively: 8-15, 11 plus 2 apical; 0-4, 2 plus 2 apical (P,); 6-14,
11 plus 2 apical; 1-4, 3 plus 0—2 apical (P;). Other tarsal segments without pseudospurs. Posterior
ta, with 6-13, 10 sensilla chaetica distributed from 0.66—0.83, 0.77 t0 0.93—0.95,0.94. Pulvilli weak.
Lengths (um) and proportions of legs:
fe ti ta, ta, ta, ta, ta, LR BV SV BR
Pl 983-1049 1210-1266 888-945 369-397 255-284 142-161 104-123 0.72-0.75 3.32-3.64 2.39-2.53 3.0-4,4
1015 1249 910 384 267 148 113 0.73 3.49 2.49 3.9
P, 1088-1134 1134-1200 633-661 279-302 208-217 123-132 98-113 0.54-0.58 3.87-4.03 3.41-3.66 2.7-4.0
1101 1164 647 294 213 128 106 0.56 3.94 3.50 3.
P, 1229-1380 1436-1539 805-841 416-444 265-321 142-175 104-118 0,.52-0.56 3.60-3.77 3.32-3.66 4.6-5.2
1304 1500 814 428 289 158 112 0.54 3.67 3.44 4,9
Hypopygium (Figs 2G-L): Tergite IX with 20-30, 25 setae. Laterosternite with 8-14, 10 setae.
Anal point (Figs 2G-I) 53-105 um, (apparently broken in 3 of 6 specimens), slender with delicate
apıcal hair sensillum or more stout with double to triple apical spines. Transverse sternapodeme ap-
proximately 95—150 um wide, without oral projections. Aedeagal lobe broad, rhomboid to spatulate;
phallapodeme well sclerotized, 101-180, 151 um long; pars ventralis (Fig. 2G) small and knoblike.
Gonocoxite 296—360, 338 um long; basally with rounded, setigerous superior volsellae (Figs 2G, J);
inferior volsellae weakly delineated. Gonostylus (Figs 2G, K-L) 150-210, 173 um long; with well
developed crista dorsalis, macroseta relatively short. HR 1.71—2.20, 1.97. HV 2.27—2.95, 2.67.
Female imago (n = 2)
Total length 5.06-5.39 mm. Wing length 2.86-2.94 mm. Total length/wing length 1.77—1.83.
Wing length/length of profemur 3.46.
Head (Fig. 2B): Pedicel without setae. Length of flagellomeres (um): 79-83, 45-53, 53—60,
45—53, 45-56, 49—62, 120-161; 7th flagellomere partially divided 45—68 um from base. AR 0.32.
Flagellomeres 1-6 with 1 pair of apical sensilla chaetica dorsally and 0-2 sensilla chaetica ventrally;
ultimate flagellomere with 18 sensilla chaetica; ringed sensilla coeloconica absent. Ultimate flagello-
mere with 1-2 subapical setae. Coronal suture incomplete or faint. Temporal setae 6-7, including
2-3 postorbitals, 2 inner- and 2 outer verticals. Eyes with weak pubescence which is mostly concealed
by overlying ommatid lenses. Clypeus with 0-4 setae. Palp segments length (um): 41-45, 83—90,
80
Fig. 3. Lappodiamesa boltoni spec. nov., female genitalia. — A. Ventral view. — B. Lateral view.
94-98, 83-90, 109-128; no sensilla clavata observed on palp. Tentorium 191 um (1) long. Stipes
length/width 154/71 um.
Thorax: Antepronotum with 4-6 lateral setae. Dorsocentrals 16-17, supraalars and acrostichals
absent, prealars 7. Scutellars 22-32, in biserial pattern.
Wing: VR 0.92-0.94. Costa produced 98-116 um beyond R,;;. Projection of anal lobe slightly
less developed than in male. Microtrichia of wing membrane visible under 30x magnification. Bra-
chiolum with 1—2 weak seta. R with 10-11 setae, R, with 5-7, R,;; with 5-6 setae. Alula with 5 se-
tae. Squama with 36—44 setae. Subcosta with 4 sensillacampaniformia, R, with 1, R,,, with3 and R, ;;
without sensilla campaniformia.
Legs: Spur of front tibia 60-64 um, spurs of middle tibia 45 um and 49—56 um, of hind tibia
45 um and 60-64 um long. Width at apex of front tibia 64 um, of middle tibia 64—68 um, of hind ti-
bia 71-75 um. Comb on hind tibia absent. Middle and hind legs with following numbers of pseudo-
spurs on ta,_, respectively: 7—10 plus 2 apical, 3-5 plus 2 apical, 0-1 (P,); 7—8 plus 2 apical, 0—3 plus
0-2 apıcal, 0 (P;). Front ta, with 4-9 sensilla chaetica distributed from 0.51—0.64 to 0.84—0.85;
middle ta, with 17-21 sensilla chaetica from 0.23—0.38 to 0.86—0.91; hind ta, with 8-18 sensilla
chaetica from 0.52—0.54 to 0.90—0.94.
Lengths (um) and proportions of legs:
fe ti ta, ta, ta, ta, ta, LR BV sv BR
PL 827- 851 973-1002 628-643 260-284 180-194 118-132 104-113 0.64-0.65 3.45-3.67 2.86-2.88 2.0-2.1
P, 983-1011 1044-1063 473-501 208-246 146-170 104-128 95-113 0.45-0.47 3.92-4.52 4.14-4.29 1.9-2.0
P 1096-1125 1257-1323 647-652 340 227-246 137-151 113-123 0.49-0.52 3.60-3.67 3.64-3.75 2.7
Genitalia (Figs 3A-B): Sternite VIII with 12-16 setae to each side of midline; gonocoxapodeme
narrow. Seminal capsules rounded, 139— 154 um long inclusive 8 um long neck, width 113—128 um;
surface covered with dense, very fine microtrichia (500X) and scattered, tubercle-like microtrichia.
Notum 94— 101 um long, ramı long and curved towards midline. Flap (Wırrassen, 1982) poorly devel-
oped. Ventrolateral lobe large with dense lanceolate microtrichia. Apodeme lobe with microtrichia.
Gonocoxite rounded with 14-16 setae. Tergite IX divided with 30-48 setae.
s1
Pupa (n = 5, unless stated otherwise):
Total length 5.98—6.51, 6.20 mm. Exuviae brownish grey. Thorax rugulose. Abdomen with dark
brown, strongly delineated apophyses.
Cephalothorax: Frontal apotome weakly rugose, without frontal warts or cephalic tubercles. Fron-
tal setae 71—98, 80 um long (4); postorbital seta 38—90, 58 yum long (4).
Median antepronotals 75—95, 86 um and 41-68, 54 um long; lateral antepronotal seta 75-90 um
long (3). Anterior precorneal seta 45—83, 68 um long; median precorneal 79—98, 90 um; posterior
precorneal seta 49-68, 59 um long. Distance between anterior and median precorneals 19—28,
26 um; between median and posterior precorneals 23-56, 41 um. Thoracic horn absent. Dorsocen-
tral setae Dc, 41-53, 41 um long; Dec, 23—56, 37 um long; distance between Dc, and Dc, 143—236,
189 um. Metanotal seta (only one?) 15—38 um long (3). Supraalar seta 23—26 um long (3). Wing
sheath nearly smooth.
Abdomen (Figs 4 A—B): Tergite Imore or less bare, but reticulate; T Il with weak median shagreen,
T III-IX with anterior, median and more extensive posterior shagreen composed of slightly coarser
spinules; conspicuous polygonous reticulation laterally. Sternites land IX bare, S II-VIII with ante-
romedian shagreen. O-setae absent. Some tergal connectives with a few anteriorly directed spinules.
T I—-VII with 5 pairs of subequal, thin and simple D-setae. Segment I with 3 L-setae, segment II-VII
with 4 ventral subequal, simple or bifid L-setae, L-setae of segment VIII displaced dorsomedially.
Anal lobe 488-525, 499 um long (6); overreaching genital sac by 30-56 um in male (2); 90-101,
94 um in female, without apical tubercle. Length of anal macrosetae 289—308, 297 um.
Fig. 4. Lappodiamesa boltoni spec. nov., immatures. — A-B. Pupa, tergites VII-IX (A) with detail of shagreen
near apophysis (B). — C-I. Larva; labrum and epipharynx (C) with detail of SI — SIV (D), mandible (E), maxilla
(F), mentum (G), posterior body segments (H) and detail of procercus (I).
82
Fourth instar larva (n = 3, unless stated otherwise):
Total length 8.96—-9.92 mm. Head capsule length 0.44—-0.52 mm.
Head: Antenna with 5 segments. Length of antennal segments (um): 60-73, 17-22, 9-12, 3—4,
3-4. AR 1.74—1.85. Basal antennal segment 20-21 um wide; distance from base to ring organ
13—20 um, to basal mark of seta 17-34 um, to distal mark 31-53 um; blade 28—29 um long, acces-
sory blade 15 um (1). Apical style of second segment 8-9 um long. Third segment with about 7 an-
nuli. Lengths of setae S 1-S 10 respectively (um): 45 (1), 56 (2), 45, 75-105, 120-131, 86-120,
120-135, 158— 184, 139— 150. Labrum and epipharynx as in Figs: 4C-D; labral lamella consisting of
2 pairs of pectinate lobes, each pair respectively with about 16-25 and 21-30 branches; SI simple and
hairlike, SII (Fig. 4 D) stouter with scalelike base, SIII very weak and simple, STV a short and conelike
with cuplike base, SI Vb small and digitiform without cuplike base; 14 simple chaetae, some very
short, and 8 spinulae present. Pecten epipharyngis consisting of 7 elongate scales, chaetulae laterales
4, chaetulae basales 2. Premandibles (Fig. 4C) 41-49 um (2) long, with 5 teeth; lateral spine not appa-
rent. Mandible (Fig. 4E) 116-128 um long, seta interna with 17—18 branches including 10 plumose
branches; seta subdentalis short. Maxilla as in Fig. 4F. Mentum (Fig. 4G) with broad median tooth
and 8 (9?) lateral teeth, first lateral teeth equally high as median tooth, but distinctly narrower.
Abdomen: Shorter claws of anterior parapods with 2-4 inner teeth. Body setae moderately long.
Procercus 68-79 um long, 45-53 um wide; with 8-9 numbers of 533—555 um long anal setae; late-
ral setae 49-56 um long. Supraanal setae 338-356 um long. Posterior parapods 469—488 um long.
Longest anal tubulus 248-281 um long, 94 um wide at base, 53—60 um wide at middle.
Remarks:
The peculiar furcate anal point in two males of the material studied apparently is adimorphism. The
few males available appear to fall into two groups regarding the numbers of setae on the squama
(52-55 and 22-30 respectively) and the HR ratio (1.71-1.88 and 2.00—2.20 respectively). Themore
normal-looking anal point is somewhat similar to those of Pseudodiamesa Goetghebuer and Pseudo-
kiefferiella parva (Edwards), ı. e with a delicate apical hair sensillum. The hypopygium is similar to
L. vidua apparently differing only in the slightly more massive and less acute shape of the gonostyli,
but the diagnostic characters will otherwise suffice to separate the two species.
The female genitalia of Z/. boltoni are quite “normal-looking”. The pattern of microtrichia on the
genitalia is somewhat similar to some Potthastia species. The microsculpture on the seminal capsules
may be unique, and the presence of sensilla chaetica on the front leg will separate the species from all
other known female Diamesinae.
The pupa differs most conspicuously from L. vıdna by lacking apical tubercles on the anal lobe.
Also, the L-setae are apparently much longer.
According to MAKARCHENKO (1983) the labral sensillum S I is pectinate in the larva of /. vidua. Re-
examination of his material, however, shows that he misidentified S I and that this structure actually
belongs to the labral lamella, thus making both S I, S II and S III simple in this species, just like ın
L. boltoni. The scale at the base of S II both in /. boltonı and L. vidua is similar to that found onS II
in Pseudokiefferiella parva and in the Diamesa latitarsis group (see FErRARESE & Rossaro, 1981: figs 15,
35). Reexamination of Z. vidna also shows that this species has 7 scales in the pecten epipharyngis. The
larva of L. vidua apparently differs from /. boltoni by having the first lateral teeth of the mentum
about equally wide as the median tooth. The median tooth area, however, is highly variable and asym-
metric in all the specimens.
Lappodiamesa was regarded as the sister group of Diamesa Meigen, Sympotthastia Pagast and Pot-
thastia Kieffer combined by Serra-Tosıo (1968). Later the genus was placed provisionally as the sister
group of Diamesa (Serra-Tosıo, 1973). The immature stages as well as the male imagines, however,
will key out near Psendodiamesa in the keys of OLıver (1983, 1986, 1988). A good synapomorphy for
Lappodiamesa plus Pseudodiamesa appears to be the seven elongate scales of the pecten epipharyngis
and we are convinced that Zappodiamesa at least belongs in the same group as Pseudodiamesa together
83
with Arctodiamesa Makarchenko, Pagastia Oliver, Potthastia, and Sympotthastia. The overall simila-
rities of the larvae with Pseudokiefferiella Zaviel probably are symplesiomorphies.
Acknowledgement
We thank Mr. M. J. Bolton who provided the specimens of L. boltoni, Mr. J. E. Raastad for arranging a loan of
putative types of Syndiamesa vidua, and Dr. E. A. Makarchenko who sent us additional specimens of L. vidua for
comparison. Prof. emeritus H. Kauri spent some time revealing the contents of Russian text for us.
Literature
FERRARESE, U. & B. RossARO 1981: 12. Chironomidi, 1. (Diptera, Chironomidae: Generalitä, Diamesinae, Prodia-
mesinae). — In: Ruffo, S. (ed.): Guide per il riconoscimento delle specie animali delle acque interne italiane.
Consiglio Nazionale delle Ricerche AQ/1/129, Verona, XIX + 97pp
KIEFFER, ]. J. 1922. Chironomides de la Nouvelle-Zemble. — Rep. sc. Results Norw. Exped. Novaya Zemlya 1921
2124
—— 1923: Nouvelle contribution ä l’etude des Chironomides de la Nouvelle-Zemble. — Rep. sc. Results Norw.
Exped. Novaya Zemlya 1921 9: 3—11
MAKARCHENKO, E. A. 1983: K sıstematike ı raspostraneniyu Lappodiamesa brundini Serra-Tosio (Diptera, Chiro-
nomidae). Pp. 52-56 in Ekologija i sistematika presnovoliykh organinemov dal’nego vostoka. — Akad. Nauk
SSSR, Vladivostok
OLIVER, D. R. 1983: The larvae of Diamesinae (Diptera: Chironomidae) of the Holarctic region — Keys and dia-
gnoses. — Ent. scand., Suppl. 19: 115—138
—— 1986: The pupae of Diamesinae (Diptera: Chironomidae) of the Holarctic region — Keys and diagnoses. —
Ent. scand., Suppl. 28: 119—137
—— 1988: The male imagines of Diamesinae (Diptera: Chironomidae) of the Holarctic Region. — Ent. scand.,
Suppl. (in press)
SETHER, OÖ. A. 1969: Some Nearctic Podonominae, Diamesinae, and Orthocladiinae (Diptera: Chironomidae). —
Bull. Fish. Res. Bd Can. 170: 1—154
—— 1980: Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. scand., Suppl. 14:
sl
SERRA-TOSIO, B. 1968: Taxonomie phylogenetique des Diamesini: les genres Potthastia Kieffer, Sympotthastia Pa-
gast, Parapotthastia n. g. et Lappodiamesa n. g. (Diptera, Chironomidae). — Trav. Lab. d’Hydrobiol. Piscic.
Univ. Grenoble 59—60: 117—164
—- 1973: Ecologie et biogeographie des Diamesini d’Europe (Diptera, Chironomidae). — Trav. Lab. d’Hydobiol.
Piscic. Univ. Grenoble 63: 5— 175
WILLASSEN, E. 1982: Descriptions and redescriptions of female Diamesa Meigen (Diptera: Chironomidae); with a
comparative morphology, keys, phylogenetic and biogeographical notes. — Dr. scient. thesis, Dept. Syst.,
Mus. Zool., Univ. Bergen, Norway, V + 316 pp
Prof. O. A. Szther
Dr. E. Willassen
Museum of Zoology
University of Bergen
N-5007 Bergen, Norway
84
j SPIXIANA | Supplement 14 | 85—89 | München, 15. Juli 1988 | ISSN 0177-7424
Redescription of Paratrissocladius acuminatus (Edwards) comb. n.
(= Cardiocladius acuminatus Edwards) from Southern Chile
(Diptera: Chironomidae)
By Godtfred A. Halvorsen
Abstract
The holotype of Cardiocladins acuminatus Edwards, 1931: 274, is redescribed and transferred to the emended ge-
nus Paratrissocladius Zavrel, 1937. The terminology ofthe chironomid wing venation is discussed and posterior cu-
bitus — PCu, and second anal vein — An, ıs used instead of vannal fold and Ax-vein respectively.
Introduction
While revising the genera in the Cardiocladius group, the holotype of Cardiocladius acuminatus Ed-
wards (1931: 274) from Southern Chile was examined. As mentioned by Brunpin (1956: 66) the pre-
sence of astout anal point with setae suggests that the species does not belong in Cardiocladins Kieffer.
Lacking knowledge of other stages than the male makes the generic placement of the species somewhat
uncertain. However, the species will in recent keys (Pınper, 1978; OLıver et. al. [MS]) key out to Pa-
ratrissocladins Zavrel, as defined by S£THEr (1976: 253).
Morphology
The morphological terminology follows S£THEr (1980) with some additions discussed below. Mea-
surements and ratios follow SCHLEE (1966) with additions and modifications given by S£THEr (1969,
1976).
The presence of a second anal vein (An,) is a plesiomorphous character in the Diptera (Hennig 1954,
1969). In the chironomids only the first anal vein (An,) is well developed, while An, usually is strongly
reduced. However, in several genera it ıs possible to trace remnants of the vein as often is indicated in
the figures. Epwarps (1929: 285, text to fig. 1; 317) used the term Ax-vein, and so did also Brunpın
(1956: 24, fig. 5; 66). An, is especially well developed in Cardiocladins Kieffer and was used by Ed-
wards as a diagnostic character for the genus. In Brunpın’s (1956) figure of the wing of C. capucınus
(Zetterstedt), An, is clearly forked with astem, ashort and weak anterior branch and a stronger poste-
rior branch. This condition is present in all species of Cardiocladins I have examined, as well as in Pa-
ratrissocladius acuminatus (Fig. 1C). However, it is not so clearly developed in the latter species. In
other genera where An; is indicated, including the two other species of Paratrissocladins, ıt always ap-
pears unbranched. Edwards stated that when present, the Ax-vein was lying between two anal folds.
According to Worron (1979: 88) and LinpegerG (1983: 168) the anterior fold (a. f. 1 of Edwards) pro-
bably is the claval furrow, a flexion line which runs posterior to An, in the Diptera. Thus, the anterior
branch of An; clearly present in Cardiocladins may be interpreted as this flexion line, Iying very close
to the true vein and appearing as a part ot it.
85
Following LinneserG (1983) and Worron (1979) the term vannal fold as used by Hansen & Cook
(1976) and S£THer (1980) is erroneous, and posterior cubitus (PCu) has to be adopted in its place.
Systematics
Eowarps (1931: 274) apparently placed P. acuminatus in Cardiocladins due to the presence of a cor-
diform ta,. This character is at least not agood synapomorphy. Brunpin (1966: 363) made a review of
the occurrence of a cordiform ta, in the Chironomidae, and he regarded the character as a plesiomor-
phy and a probable adaptation to a life in strong currents. Furthermore, the degree of cordiformity va-
ries inside Cardiocladius. C. capucinus (Zetterstedt) has for instance an almost cylindrical ta, at least
on the front leg, slightly shorter than ta; only, while other species in the genus have a more or less dis-
tinctly cordiform ta,. In addition, ta, of P. acuminatus ıs slightly different from that in Cardiocladius
in that ıt is stronger produced beneath the base of tas. These different types of cordiformity are also
found inside the Diamesinae (WırLassen, pers. com.), and may be interpreted as different trends. Ho-
wever, the tendency to get a cordiform ta, can be interpreted as an underlying synapomorphy inside
the Orthocladiinae. S£THER (1977: 86), Sether & Halvorsen (1981: 283) and Szther (1983 a: 284) indi-
cates that the sistergroup of the Cardiocladins group is the Heterotrissocladius group, and that the
Parakiefferiella group is the sistergroup of these two combined. The tendency to get a cordiform ta,,
interpreted as an underlying synapomorphy, would support the hypothesis of these genus groups
being amonophyletic unit, possibly including Psilometriocnemus S&ther, and with one parallel devel-
opment only, the Corynoneura group.
One of the reasons for transferring the species to Paratrissocladins is the shape of the anal point.
S&THER (1983 b: 355) made a phylogenetic analysis of the anal points in the Heterotrissocladius group,
stating that his Type 1 present in all species of Paratrissocladius and Heterotrissocladius, and in some
species of Parametriocnemus Goetghebuer and Paraphaenocladius Thienemann, was unique. This
Type 1 anal point is present in P. acuminatus also, and is regarded as an underlying synapomorphy for
the Heterotrissocladius group.
SETHER (1975: 62) regarded the presence of strong microtrichia only on the wingmembrane asassyn-
apomorphy for Paratrissocladius, and the presence of both microtrichia and setae as the plesiomor-
phous character alternative for the rest of the Heterotrissocladins group. The situation in the Cardio-
cladius group where the microtrichia are very weak, may be seen as the apomorphous alternative in a
three step trend, and exclude P. acuminatus from being a member of that group.
The presence of a virga consisting of a group of minute spines also shows affinity with the Hetero-
trissocladius group. This is Type 5 in SzrHer (1983 b: 356) and is also found in some Paraphaenocla-
dius. SETHER (1976: 253) states that the spines of the penis cavity in Paratrissocladius apparently are
very small. Only Tokunagaia Szther and Tvetenia Kieffer possess virga in the Cardiocladius group,
the first one has Type 4, the latter one a derivation of Type 4 which possibly is a sixth type of virga in
the orthoclads.
The presence of tarsal pseudospurs may indicate a closer relationship with the Cardiocladins group.
These are absent in the Heterotrissocladius group, but present in the Cardiocladius group except in the
Eukiefferiella claripennis and coerulescens groups, in Dratnalia S&ther & Halvorsen, and in Tvetenia
where they are both present and absent.
The strong Parakiefferiella-lıke bend of the gonostylus is unique for P. acuminatus. However, an
indication of a bend is at least present in P. natalensis (Freeman). Until additional knowledge of the
other stages of P. acuminatus is available, the species can best be placed in Paratrissocladins.
86
Diagnosis
The following corrections and emendations have to be included in the diagnosis given by S£THER (1976: 253):
Eye scarcely to moderately elongated dorsally. Flagellomere 2 and 3, or 2-6 with sensilla chaetica.
Dorsocentrals numerous to normal, with or without humerals. Acrostichals numerous to few. An,
distinct. ta, cylindrical or cordiform. Pseudospurs absent or present. Sensilla chaetica present on mid
or hind legs. Anterior margin of transverse sternapodeme convex or straight. Virga present as a small
cluster of minute spines. Gonostylus with more or less Parakiefferiella-like bend.
Paratrissocladius acuminatus (Edwards) comb. nov.
Eisler E
Cardiocladius acuminatus Edwards 1931: 274, male described.
The male is characterızed by an AR of 1.40; eyes scarcely elongated dorsally; 6 temporal setae; ta,
cordiform; pseudospurs present; sensilla chaetica on mid ta, only; humerals absent; gonostylus with
marked bend.
Male imago (n = 1)
Total length 3.67 mm. Wing length 2.23 mm. Total length/wing length 1.65. Wing length/length of
profemur 2.72.
Antenna: (Fig. 1 A) Flagellum with 13 flagellomeres, last flagellomere 534 um long. AR 1.40.
Head: (Fig. 1B) Temporal setae 6, including 1 inner vertical, 1 outer vertical, and 4 postorbitals.
Clypeus with 8 setae. Tentorıium 183 um long, 28 um wide at sieve pore. Stipes 151 um long, 50 um
wide. Palp missing.
Thorax: (Fig. 1C) Antepronotum with 11 setae. Dorsocentrals 16; acrostichals 5 (some probably
lost in preparation); prealars 4. Scutellum with 7 setae.
Fig. 1. Paratrissocladius acnminatus (Edwards) comb. n.; A — antenna; B — head; C — thorax; D — wing; E —
male hypopygium, dorsal view; F — male hypopygium, ventral view.
87
Wing: (Fig. 1D) Anal lobe well developed. R,;; ending slightly before the middle of the distance
between R, and R,;;. VR 1.13. Brachiolum with 2 setae; R with 14 setae; R, with 5 setae; and R,;;
with 1 seta. Squama with 16 setae.
Legs: Spur on front tibia 65 um long. Spurs on mid tibia 48 um and 33 um long; on hind tibia
65 um and 38 um long. Width at apex of front tibia 50 um; of mid tıbia 45 um; and of hind tibia
50 um. Comb on hind tibia with 10 setae; longest seta 40 um long; shortest seta 23 um long. Mid leg
with 2 pseudospurs on ta, and ta,, and 1 on ta;; hind leg with 2 on each. Mid leg with 10 sensilla
chaetica apıcally on ta,; hind leg without. Leg lengths (micrometers):
fe at ta] ta, ta, ta, er LR BV SV BR
PJ 819 1051 859 440 252 78 88 0.82 3.18 2.18 243
P, 890 971 516 272 138 55 88 0253 4.30 are 222
pP, 950 1183 748 390 163 60 95 0.63 4.07 2.85 ---
Abdomen: Setae on tergites numerous, more or less uniformly scattered. Sternites 5—8 with median
patches of large setae in addition to lateral lines with weaker setae.
Hypopygium: (Figs. 1 E, F) Ninth tergite with 27 setae, including setae on anal point; laterosternite
with 7 setae. Phallapodeme 110 um long. Transverse sternapodeme 68 um long. Gonocoxite 282 um
long; gonostylus 124 um long. HR 2.28. HV 2.96.
Female, Pupa and Larva unknown.
Material examined and distribution: Holotype, male, slide labelled “Cardiocladius acuminatus Edw., F. W. Ed-
wards det. 1931, Peulla: 12-13. XII. 1926, Southern Chile: Llanquihue Prov., F.& M. Edwards., B.M. 1927-63”.
(In the British Museum.) The species is known from the type locality only. This is the first record, of the genus from
South America.
Acknowledgement
I am much indebted to Dr. P. S. Cranston, British Museum (Nat. Hist.), London, for lending me the holotype,
and to Prof. O. A. Sether, Museum of Zoology, Bergen, for valuable discussions.
Literature
BRUNDIN, L. 1956: Zur Systematik des Orthocladiinae (Dipt., Chironomidae). — Rep. Inst. Freshwat. Res. Drott-
ningholm 37: 5—185
—— 1966. Transantarctic relationships and their significance, as evidenced by chironomid midges. With a mono-
graph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. — K. Svenska Vetensk.
Akad. Handl. Ser. 4, 11: 1-472
EDWARDS, F. W. 1929: British non-biting midges (Diptera, Chironomidae). — Trans. R. ent. Soc. Lond. 77:
279—430
—— 1931. Diptera of Patagonia and Southern Chile. — II, 5, Chironomidae: 233—331, British Museum, London
HaNSsEN, D. C. & E. F. Cook 1976: The systematics and morphology of the Nearctic species of Diamesa Meigen,
1835 (Diptera: Chironomidae). — Mem. Am. ent. Soc. 30: 1— 203
HENNIG, W. 1954: Flügeläder und System der Dipteren unter Berücksichtigung der aus dem Mesozoikum be-
schriebenen Fossilien. — Beitr. Ent. 4: 246—388.
—— 1969. Die Stammesgeschichte der Insekten. — Frankfurt am Main, 436 pp.
LINDEBERG, B. 1983: Terminology of the wing-veins in Chironomidae (Diptera). — Mem. Am. ent. Soc. 34:
165-168
88
PiNDER, L. C. V. 1978: A key to the adult males of British Chironomidae. — Freshwat. Biol. Assoc. Scient. Publ.
37: 169pp. + 189 fig.
SETHER, O. A. 1969: Some Nearctic Podonominae, Diamesinae, and Orthocladiinae (Diptera: Chironomidae). —
Bull. Fish. Res. Bd Can. 170: 1-154
—— 1975: Nearctic and Palaearctic Heterotrissocladins (Diptera: Chironomidae). — Bull. Fish. Res. Bd Can. 193:
1-67
—— 1976: Revision of Hydrobaenus, Trissocladius, Zalutschia, Paratrissocladius, and some related genera (Diptera:
Chironomidae). — Bull. Fish. Res. Bd Can. 195: 1—287
—— 1980: Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. scand. Suppl. 14:
1-51
—— 1983. a: Three new species of Lopescladins Oliveira, 1967 (syn. “Cordites” Brundin, n. syn.), with aphylogeny
of the Parakiefferiella group. - Mem. Am. ent. Soc. 34: 279—298
—— 1983b: The canalized evolutionary potential: Inconsistencies in phylogenetic reasoning. — Syst. Zool. 32:
343—359
SCHLEE, D. 1966: Präparation und Ermittlung von Meßwerten und Chironomiden (Diptera). — Gewäss. Abwäss.
41/42: 169-193
WOTTON, R. J. 1979: Function, homology and terminology in insect wings. — Syst. Ent. 4: 81-93
ZAVREL, J. 1937: Eine neue Trissocladius Art. — Spisy. vydav. prir. Fak. Masaryk. Univ. 139: 1-12
89
Yersabuih Tan 3 chem uaKd ben ch Mer
en nie Mes: iA hischiolem fh 2 serpoyk nich} ve Fe
wi Wähherrunehhahe re ee ne Sen ‚erninmole/l amasl
kuss “aul An Ya bi > Mi Ir u pur ar seh AN BAL= Aa ng h ki
hf 4 2b ur re ol 7) BLUT Mare Tu a ' a: ae ol En ru: Ba | # z
\ 2 Bien;
5 um. CAukbon b bes ich KO arte; I 7. un h i \
. Aptis ' ans IE) Bio I POT! ii X te u. Kulyos yı n Hi Ed aa una 2 erh
MER i 7 .# STEH Se Mas Sa
il N erteni: kuononunirks tor)
ikarefl vn 0 ill a0 1 to na ern id
f Bor er 7 Is A ll ra 2
17 vr - I u) sr uriten a TER) unotwlon baltind U 08
; "3 WERE
7 leg |. ne Kae ı Bias, | Alban SETurr N
m:
Är ‘2
vr oe
v we. 7 era ale ee
fi
Wu ’ j r
| erg
wir u La IT, gi
D ä .
a 1 ee
ah Ye \
wre il [607
| u
, ’ dis aan dem Mask
| | re ar“ Mic An Ai
[ SPIXIANA ä Supplement 14 | 91-100 | München, 15. Juli 1988 ISSN 0177-7424
Description de trois femelles de Diamesa Meigen dont D. cinerella
Meigen (Lectotype et Paralectotype)
(Diptera, Chironomidae)
Par Endre Willassen et Bernard Serra-Tosio
Abstract
A lectotype has been selected and a full description is given of the types of the genus Diamesa: D. cinerella Mei-
gen, 1835. Examination of the types confirms that our present concept of the genus is correct. The female of D. ka-
symovi Kownacki & Kownacka is described for the firsttime and the female of D. dampfi (Kietfer) is redescribed.
Introduction
Au cours des ans, une considerable confusion de nomenclature a regne dans la litterature consacree
aux chironomides ä propos de la date de creation du genre Diamesa et de son auteur. Les causes de
cette confusion sont multiples. Certaines d’entre elles ont et€ passees en revue par Hansen & Cook
(1976) et par Ashe (1982). Il semble maintenant Evident que la premiere description valıde du genre
Diamesa doit Etre mise au credit de Meigen (in Gistı, 1835) (cf. FREEMAN & CransTon, 1980) et que
Diamesa cinerella est le type de genre par monotypie originale. La description posterieure de D. cine-
rella par Meigen (in Wartı, 1837) n’etait evidemment qu’une simple repetition de la description origi-
nale (comme l’indiquait le sous-titre de l’article: „Aus dem ‚Faunus‘ von GistL“). Meigen consid£rait
les specimens examines comme des mäles, mais on peut &mettre quelque doute sur cette opinion quand
on lit sous sa plume: „Verdient genauere Beobachtung, besonders des Geschlechtsunterschiedes we-
gen“ (in GistL, p. 67).
Plus tard, et pour des raisons inconnues, MEIGEN (1838) rebaptise tout simplement l’espece Diamesa
waltlır. Il est tres probable que la description de D. waltlıı est basee sur les m&mes specimens qui
avaıent Et€ anterieurement appeles D. cinerella (BERGROTH, 1887; Hansen & Cook, 1976).
GOETGHEBURR (1923) examina lestypes de D. waltlii et constata qu’il s’agissait de femelles qu’il asso-
cia de facon erron&e avec les mäles de Tanypus praecox Meigen (= Prodiamesa olivacea [Meigen]). Par
voie de consequence, il declara que le quatrieme article du tarse de l’esp£ce £tait cylindrique. Plus tard
cependant (GOETGHEBUER, 1932), il considera D. waltlii comme une esp£ce valide et fit une courte des-
_ cription du mäle et de la femelle. En m&me temps, il ne donnait aucune reference sur la synonymie an-
terieure de D. waltlii avec T. praecox et dEcrivait le quatrieme article du tarse comme cordiforme.
Pasasr (1947), qui fit la premiere grande revision des Diamesa et genres voisins, supprima le nom
D. waltlii et le remplaca pour des raisons de priorite par D. cinerella. Cependant, comme les types du
genre Diamesa £taient des femelles, il s’abstint apparemment de les examiner, de sorte qu’il n’est pas
sür que le concept actuel du genre Diamesa corresponde ä P’ıdentite des types (Hansen & Cook, 1976).
Sur la base d’une &tude comparee des imagos femelles de Diamesa faite par l’un de nous (WırLassen,
1982), nous estimons que le moment est venu de reexaminer le type du genre et d’en presenter une des-
cription detaillee. En m&me temps, nous en profitons pour decrire les femelles, inconnues jusqu’icı, de
91
Diamesa kasymovi Kownacki & Kownacka et de D. dampfi (Kieffer), cette derniere espece &tant im-
possible ä identifier d’apres sa description originale.
Diamesa cinerella Meigen
(Fig. 7)
Diamesa cinerella Meigen in GIsTL, 1835: 66; MEIGEN in WALTL, 1837: 283—284 (description de la femelle).
Diamesa waltlii Meigen, 1838: 13 (femelle).
? Diamesa cinerella Meigen: PAGAST, 1947: 482—484 (description du mäle).
Imago mäle
Cf. SErRA-Tosıo, 1971.
Imago femelle (lectotype)
Diagnose
Antenne avec dorsalement une sensille coeloconique ä microtriches sur les flagellomeres 1 et 2.
Flagellomere 7 avec 132 soies pr&apicales et 2 soies apicales. Yeux a pubescence longue. Ta; de chaque
patte cordiforme. Capsules spermathecales de taille moyenne, au nombre de deux. Gonapophyse VIII
avec un pan («flap» de Willassen, 1982) recourb& ventralement. Gonocoxite en forme de plaque con-
vexe et plus ou moins triangulaire. Tergite IX avec deux plaques arrondies. Segment X avec, en vue
ventrale, un tubercule digitiforme.
Description
Longueur/largeur de l’aile: 5,20/2,06 mm. Longueur de l’aile/longueur du femur anterieur: 3,04.
Antenne: scape sans soies. Pedicelle avec 2 soies. Flagellomeres 1 & 6 avec respectivement lenombre
de soies suivant: 6,5, 6,4, 4, 1. Dernier flagellomere avec 1 a 2 soies preapıcales et 2 soies apıcales. Lon-
gueur maximale des soies antennaires: 147 um. Longueur/largeur du pedicelle: 72/120 um. Lon-
gueur/largeur des flagellomeres 137: 112/49, 68/41, 68/41, 52/38, 49/41, 41/34, 196/45 um. AR 0,46.
Une sensille coeloconique a microtriches dorsalement sur chaque flagellomere 1 et 2.
Tete: suture coronale ne depassant pas le nıveau des sensilles frontales. Sensilles frontales & 132 um
l’une de l’autre, et chacune A environ 40 um de l’apex de la protuberance frontale. Protuberances fron-
tales bien saillantes. Soies temporales: 43 au total, dont 1 soie frontale et 11 soies postorbitales. Micro-
triches oculaires denses, depassant tres largement les facettes laterales. Clyp&us avec 15 soies. Lon-
gueur/largeur du clypeus: 135/233 um. Longueur/largeur des articles du palpe: 38/56, 105/64, 169/
72, 177/45, 252/45 um. «Palpal stoutness» (Hansen & Cook 1976) (= rapport longueur du palpe ä
partır de l’article 2 sur somme des largeurs des articles 245): 3,11. Tentorium avec un processus ante-
rolateral bien marque.
Thorax: antepronotum depassant un peu la protuberance scutale, avec 21 soies pronotales laterales.
Soies acrosticales absentes. 17 A 18 soies dorsocentrales. 13 ä 14 soies prealaires disposees sur 1A 3
rangs. Protuberance de l’epımeron avec 4 soies. Preepisternum sans soies. 50 soies scutellaires.
Aile: coloration brunätre. VR 0,96. R, peu arqu£e, faiblement recourbee vers l’avant et prolongee
du cöte distal, presque parallele ala costa A partir de son milieu. RM bien courbee. R,,; arqu&e. Micro-
triches de la membrane alaire visibles des le grossissement 30x. Brachiolum avec 3 soies distales et 1
soie basale. R avec 19 soies, R, avec 20 soies, R,,, sans soies, R,,; avec 20 soies et RM avec Oäl soıe.
Alula avec 12 soies. Squame avec environ 70 soies. Sensilles campaniformes: 4 sur Sc, 2 sur R,, 2 sur
R,;3, 4 sur R,; >.
Pattes: eperons des tibias: 64 um (P,); 68 et 64 um (P;); 109 et 72 um (P;). Largeur de l’extremite
du tibia de P, A P; respectivement: 98, 90, 117 um. Peigne du tibia de P; avec 19 soies (45 A 87 um). 2
soies spiniformes apicales sur seulement chacun des deux premiers articles de chaque tarse. Soies spi-
nıformes preapicales des tarses: 4,0,0 (P,); 18,9,4 (P5); 26,8,4 (P;). Sensilles chetiformes: environ 220
92
disposees sur 1 A3 rangs depuis le 0,06 jusqu’au 0,61 du metatarse de P;. Pattes ä 4e article du tarse cor-
diforme (cf. Fig. 2.3). Pulvilles petites, visibles au grossissement 300x.
Longueurs (en um) et proportions des articles des pattes:
fe ol ta, ta, ta, ta, ta, LR BV SV
pP] 1710 1971 1140 624 422 163 172 0.58 3.49 SorS)
P, 1971 1781 760 451 307 154 181 0.43 4.12 4.94
P, 2018 2256 1235 784 428 144 182 0.55 3.58 3.46
1.8
2.0
Hypopyge (Fig. 1): sternite VIII avec de chaque cöte 17 & 20 soies. Gonocoxapodeme distinct, for-
tement courbe en vue ventrale. Pan (= «flap») recourbe ventralement, formant de la sorte, en vue ven-
trale, une saillie arquee ä l’avant du lobe ventrolateral. Capsules seminales de taille moyenne, avec une
ponctuation superficielle visible des le grossissement 300X. Conduits seminaux de longueur moy-
enne. Gonocoxite en forme de plaque convexe et plus ou moins triangulaire, A partie moyenne faible-
ment protuberante; 17 soies sur chaque gonocoxite. Tergite IX avec deux plaques arrondies, comple-
tement separees l’une de l’autre; chacune avec ä peu pres 25 soies longues. Partie posterolaterale du
segment X avec, en vue ventrale, un tubercule digitiforme dirige vers l’arriere. Cerques prolonges ven-
tralement, a face laterale un peu plissee.
N
IS
N
RR
IN
N,
Fig. 1. Diamesa cinerella Meigen (lectotype), femelle; hypopyge en vue laterale.
Nymphe
Cf. Serra-Tosıo, 1971; FERRARESE & Rossaro, 1981.
Larve
Cf. Rossaro, 1980; FERRARESE & Rossaro, 1981.
8
Remarque
L’affirmation par GOETGHEBUER (1923) que Ta; a une forme cylindrique est erronee. La morphologie
de la femelle decrite ci-dessus confirme l’appartenance reelle du type de genre au genre Diamesa tel que
nous le concevons actuellement. D’ailleurs le pan recourb& de la gonapophyse et la saillie digitiforme
du segment X montrent que cette espece appartient au groupe cinerella. Cette appartenance &tait ä
l’origine fondee sur des caracteres du mäle et de lanymphe (SerrA-Tosıo, 1971). Le groupe cinerella
est donc facile aussi ä caracteriser gräce aux genitalia femelles (Wırrassen, 1982). Mais malgre le large
eventail de variation des caracteres distinctifs specifiques constate A l’interieur du groupe, on n’est pas
parvenu jusqu’ä present ä des resultats probants pour l’identification des especes en utilisant les imagos
femelles. Il est pourtant interessant de noter que le gonocoxite possede une ebauche de saillie arrondie
du cöte medıan. Il est possible que cette caract£ristique soit sujette ä variation, puisque cette saillie est
moins apparente chez les specimens suppos&s appartenir ä l’espece D. cinerella. Une saillie arrondie
assez developpee se rencontre chez Diamesa lavillei Serra-Tosio et ce caractere a ete utilise par Wırras-
sen (1982) pour separer cette espece des autres femelles du groupe cinerella. Bien que l’espece D. cine-
rella ait et& associee avec le mäle decrit par Pacasr (1947) et par des auteurs ulterieurs, il n’y a pas jus-
qu’a present de preuves Evidentes d’une telle association.
Repartition
Massifs montagneux d’Europe moyenne (arc alpin, For&t Noire, Massif Central, Pyrenees) (SerRA-
Tosıo, 1971).
Materiel examine
Lectotype et paralectotype (par designation actuelle) femelles en pr¶tions au baume du Canada, portant des
etiquettes A texte original suivant: Diamesa waltli, Meigen (et derriere la m&me &tiquette le numero 267/40), Mu-
seum National d’Histoire Naturelle, Paris, France, No 133.
Diamesa kasymovi Kownacki & Kownacka
(Fig. 2.1-6)
Diamesa kasymovi Kownacki & Kownacka, 1973: 32—36 (description du mäle, de la nymphe et de la larve).
Imago mäle
Cf. Kownackı & Kownacka, 1973.
Complements ä la description originale: dans la publication de Kownackı & Kownacka (1973), la tete
du mäle de D. kasymovi est dessinee fig. 8. L’antenne y est representee avec 9 flagellom£res, donc 10
articles apparents si l’on compte le pedicelle, alors que le texte correspondant indique 9 articles, c’est-
a-dire le pedicelle plus 8 flagellomeres (come D. sakartvella decrit par les memes auteurs dans lam&me
publication). Nous avons examine un specimen mäle de D. kasymovi provenant du Caucase et aussi
plusieurs specimens de la Turquie et du Liban. Nous avons pu constater qu’une des antennes de quel-
ques specimens comptait bien 8 flagellomeres, mais l’autre 7 seulement. Nous estimons cependant que
le nombre normal d’articles du flagelle antennaire de D. kasymovi doit &tre de 8. La figure de Kow-
NACKI & Kownacka est donc erron&e, comme nous l’a confırme A. Kownackı ın litt.
Dans la me&me publication, Kownackı & Kownacka representent l’hypopyge mäle de D. kasymovi
(fig. 9) avec de longues soies dorsales sur la partie proximale de l’appendice du coxite. En fait ces soies
(correspondant au «basimedial setal cluster» de Hansen & Cook, 1976) sont ventrales et portees par
un tubercule, ce que nous a confirm& aussi A. Kownackı (in litt.).
Imago femelle
Diagnose: cf. D. cinerella
94
Fig. 2.1-6. Diamesa kasymovi Kownacki & Kownacka, femelle. 2.1 aile, 2.23 Ta, des pattes en vue laterale et
en vue dorsale, 2.4 hypopyge en vue laterale, 2.5 lobe ventrolateral en vue ventrale, 2.6 hypopyge en vue ventrale.
Description (n=1a5)
Longueur totale: 4,00 mm. Longueur/largeur de l’aile: 3,00/1,17 mm. Longueur totale/longueur de
l’aile: 1,33. Longueur totale/longueur du femur anterieur: 2,27.
Antenne: scape sans soies. Pedicelle avec 3 soies. Flagellomeres 1 & 6 avec respectivement lenombre
de soies suivant: 4,4, 4, 2,4, 1. Dernier flagellomere avec 1 soie preapicale et 2 soies apıcales. Longueur
maximale des soies antennaires: 98 um. Longueuer/largeur du pedicelle: 64/94 um. Longueur/lar-
geur des flagellom£res 1 a 7: 98/42, 49/33, 51/29, 43/25, 43/29, 25/23, 130/29 um. AR 0,42. Une sen-
sille coeloconique A microtriches dorsalement sur chaque flagellomere 1 et 2. Remarque: chez le spe-
cimen decrit, le flagellom£re 6 est incompletement separe du flagellomere 7; chez les autres specimens
examines, les flagellomeres 6 et 7 sont au contraire bien separ&s; le coefficient AR reste dans tous les
cas a peu pres le m&me.
Tete: suture coronale complete. Sensilles frontales ä 90 um l’une de l’autre, et chacune environ
35 um de l’apex de la protuberance frontale. Protub£rances frontales aplaties, peu saillantes. Soies
temporales: 33 & 36 au total (dont 1 &2 soies frontales et 7 & 8 soies postorbitales). Microtriches oculaı-
res denses, depassant tres largement les facettes laterales. Clypeus avec 5 soies. Longueur/largeur du
clypeus: 140/160 um. Longueur/largeur des articles du palpe: 39/60, 95/54, 125/49, 130/39, 230/35
um. «Palpal stoutness» (Hansen & Cook, 1976): 3,47. Tentorium avec un processus anterolateral peu
marque.
Thorax (n = 5): antepronotum depassant un peu la protuberance scutale, avec 10 & 21 soies prono-
tales laterales. Soies acrosticales absentes. 13 ä 17 soies dorsocentrales, disposees sur 1 a 2 rangs en
avant et en arriere. 8& 12 soies prealaires disposees sur 1A 2 rangs.Pas de soies supraalaires. Protube-
rance de l’epimeron avec 8ä 15 soies. Preepisternum sans soies. 34 & 68 soies scutellaires.
Aile (Fig. 2.1): coloration brunätre clair. VR 0,91. R, arquee, faiblement recourbee vers l’avant et
prolongee du cöte distal, rapprochee de la costa et presque parallele ä elle a partir de son milieu. RM
fortement courbee. Microtriches de lamembrane alaire visibles des le grossissement 50x. Brachiolum
avec 3 soies distales, 1 soie mediane et 1 forte soie basale. R avec 20 soies, R, avec 19 soıies, Ry;; avec
22 soies. RM sans soies. Alula avec 7 soies. Squame avec 37 soies. Sensilles campaniformes: 2-3 sur
Sc,2surR,1a3 sur R,,,436sur R;;;.
95
Pattes (Fig. 2.2—3): eperons des tibias: 52 um (P,); 46 et 56 um (P;); 58 et 90 um (P;). Peigne du
tıbıa de P; avec 16 soies (68 A 83 um). 2 soies spiniformes apıcales sur seulement chacun des deux pre-
miers articles de chaque tarse. Soies spiniformes preapicales des tarses: 0,0,0 (P,); 11,4,0 (P,); 17,6,0
(P;). Sensilles chetiformes: environ 235 reparties depuis le 0.06 jusqu’au 0.63 (soit environ les 2) du
metatarse de P;. Pattes a 4e article du tarse cordiforme (Fig. 2.2-3). Pulvilles petites, visibles au gros-
sissement 350xX.
Longueurs (en um) et proportions des articles des pattes:
fe ti ta, ta, ta, ta, ta, LR BV SV BR
P] 13207 21657 710557 7450 295 110 150 OS 72 22823017.364 1%
P, 1377022 41335 62525320 200 110 140 0.47 4.32 4.33 19
P, 1615 1690 1100 595 295 215 1507 70.65 773.812 73500 1.8
Hypopyge (Fig. 2.4—6) (n = 5): sternite VIII avec de chaque cöte 16 a 28 soies. Gonocoxapodeme
distinct, fortement courbe& en vue ventrale. Pan (= «flap») recourbe ventralement, formant de la sorte,
en vue ventrale, une saillie arquee en avant du lobe ventrolateral. Capsules seminales de taille mo-
yenne, a ponctuation superficielle visible des le grossissement 300x. Conduits seminaux de longueur
moyenne. Gonocoxite en forme de plaque convexe et plus ou moins triangulaire, partie moyenne avec
une petite protuberance arrondie; 16 ä 23 soies sur chaque gonocoxite. Tergite IX avec deux plaques
arrondies, completement separees l’une de l’autre; chaque plaque porte 16 ä 29 soies longues. Partie
posterolaterale du segment X avec, en vue ventrale, un tubercule digitiforme dirige vers l’arrıere. Cer-
ques prolonges ventralement, & face laterale un peu plissee.
Remarque
La femelle de Diamesa kasymovı, dont c’est ıcı la premiere description, est tres semblable aux femel-
les de la plupart des especes du groupe cinerella (sauf D. lavillei Serra-Tosio).
Le faible nombre d’exemplaires de D. kasymovi disponibles presente un nombre significativement
plus eleve (U-Test de Mann-Whitney) de soies sur le sternite VIII que les femelles appartenant proba-
blement ä l’espece D. tonsa (Halıday) provenant de Turquie. Cependant l’analyse statistique des ca-
racteres dans le groupe cinerella est actuellement basee sur des donnees incompl£tes, et on ne sait pas
si le nombre de soies sur le sternite VIII peut Etre utilise comme caractere general pour separer les fe-
melles de D. kasymovi et celles de D. tonsa.
Repartition
Versants asiatique et europeen du Caucase (Kownackı & Kownacka, 1973, 1974), Liban (MousaveEn
& Lavirıe, 1983), Turquie (Reıss, 1985).
Materiel examine
Liban: Mont Liban, 1100 ä 1450 m; leg. Z. Moubayed, 1981 et 1982; 7 mäles, 9 femelles, 2 nymphes femelles;
coll. B. Serra-Tosio, Grenoble, France. Turquie: Prov. Rize, Ovit-Paß, südlich Ikizdere; 2600 m; leg. W. Schacht;
10.7.1986; 4 mäles, Zoologische Staatssammlung, Munich, R. F. A.
Diamesa dampfi (Kieffer)
(Fig. 3.1-6)
Syndiamesa dampfi Kieffer, 1924: 50.
Imago mäle
Cf. Serra-Tosıo, 1970.
96
Fig. 3.1-6. Diamesa dampfi (Kieffer), femelle. 3.1 aile, 3.23 Ta, des pattes en vue laterale et dorsale, 3.4 hypo-
pyge en vue ventrale, 3.5 lobe ventrolateral et pan (= «flap») en vue ventrale, 3.6 hypopyge en vue laterale.
Imago femelle
Diagnose
Antenne avec dorsalement une sensille coeloconique a microtriches sur les flagellomeres 1 & 3.
Flagellom£re 6 sans soies et flagellomere 7 sans soies preapicales. Yeux A pubescence courte. Ry;; de
l’aile fortement courbee. Ta; de chaque patte un peu aplati et @largı ä l’extremite distale, mais pas
nettement bilobe. Capsules spermathecales grosses. Bord posterieur du pan (= «flap») Echancre au
niveau du lobe ventrolateral. Tergite IX avec deux plaques £troites transversales. Gonocoxite digiti-
forme. Cerques arrondis, un peu allonges du cöte posterieur.
Description (n = 1)
Longueur totale: 5,01 mm. Longueur/largeur de l’aile: 4,04/1,43 mm. Longueur totale/longueur du
femur anterieur: 2,62.
Antenne: scape sans soies. Pedicelle avec 2 soies. Flagellomeres 1 a 6 avec respectivement lenombre
de soies suivant: 6,5, 5, 4, 4, 0. Dernier flagellomere avec 2 soies apıcales. Longueur maximale des soies
antennaires: 169 um. Longueur/largeur du pedicelle: 45/102 um. Longueur/largeur des flagellomeres
127:83/45,53/38, 60/34, 60/26, 41/15, 146/30 um. AR 0,39. Une sensille coeloconique a microtriches
dorsalement sur chaque flagellomere 1-3.
Tete: suture coronale complete. Sensilles frontales a 130 um l’une de l’autre, et chacune environ A
25 um de l’apex de la protuberance frontale. Protuberances frontales tres saillantes. Soies temporales:
97
environ 40. Microtriches oculaires ne depassant pas les facettes laterales. Clypeus avec 4 soies. Lon-
gueur/largeur du elypeus: 140/150 um. Longueur/largeur des articles du palpe: 45/45, 87/49, 169/49,
154/41, 245/30 um. «Palpal stoutness» (Hansen & Cook, 1976): 3,86. Tentorium avec un processus
anterolateral bien marque.
Thorax: antepronotum depassant un peu la protuberance scutale, avec 9 soies pronotales laterales.
Soies acrosticales absentes. 13 a 15 soies dorsocentrales. 11 soies prealaires disposees sur 1 & 2 rangs.
Protuberance de l’epimeron et preepisternum sans soies. 26 soies scutellaires.
Aile (Fig. 3.1): coloration brunätre clair. VR 0,90. R, peu arquee, faiblement recourbee vers l’avant
et prolongee du cöte distal. RM tres courbee. R,;; relativement fortement arquee. Microtriches de la
membrane alaire visibles des le grossissement 50x. Brachiolum avec 1 soie distale et 1 soie basale. R
avec 24 soıes, R, avec 19 soies, R,,;, avec0ä 1 soıe, R,;; avec 20 soies, et RM avecOä1soie. Alula avec
1 soie. Squame avec environ 30 soies. Sensilles campanıformes: 4 sur Sc, 2 sur R,, 1 sur R,,,,3& 4 sur
Ry;;.
Pattes (Fig. 3.2—3): eperons des tibias: 86 um (P,); 83 et 79 um (P,); 128 et 75 um (P;). Peigne du
tibia de P; avec 16 soies (414 79 um). 2 soies spiniformes apicales sur seulement chacun des deux pre-
miers articles de chaque tarse. Soies spiniformes pr£apicales des tarses: 0,0,0 (P,); 13,6,0 (P,); 22,7,4
(P;). Sensilles chetiformes: environ 160 reparties depuis le 0,13 jusqu’au 0,92 du metatarse de P;. 4e ar-
ticle du tarse un peu aplati dorsoventralement, en vue dorsale faiblement elargi ä l’extremite (Fig. 3.3).
Pulvilles petites, visibles au grossissement 300x.
Longueurs (en um) et proportions des articles des pattes:
ge ti ta, ta, ta, ta, ta, LR BV SV BR
P| IS43T lesbar 2ser586 374 135 165° 0.65: 3.66 2.80 Sal
P, 1663 1734 8l6 432 256 113 162707 Et ell6 2.4
pP, 18527 OST 23562 374 128 ea ef Seile 2.4
Hypopyge (Fig. 3.4—6): sternite VIII avec de chaque cöte 8 & 12 soies. Gonocoxapodeme distinct,
plus ou moins parallele au bord posterieur du sternite. Gonapophyse VIII triangulaire en vue ventrale,
a bords median et posterieur formant un angle aigu; bord median tres allonge ventralement, formant
une saillie parallele a l’axe du corps; bord posterieur Echancre au niveau du lobe ventrolateral
(Fig. 3.4—5); lobe ventrolateral presque entierement entoure par le pan (= «flap»), sauf dans sa partie
mediodistale (Fig. 3.5). Capsules seminales grosses, ovoides; longues d’environ 240 um, apparem-
ment sans ponctuation superficielle. Conduits spermathecaux tres longs. Gonocoxite ä limite basale
indistincte; partie distale droite, digitiforme et dirigee vers l’arriere, portant 9 soies sur son extremite.
Tergite IX avec deux plaques transversales, assez &troites et completement separe&es l’une de l’autre;
chaque plaque porte 17 & 18 soies longues. Protuberance du segment X faiblement developpee. Cer-
ques allonges du cöte posterieur.
Nymphe
Cf. Serra-Tosıo, 1970; FERRARESE & Rossaro, 1981.
Larve
Cf. Rossaro, 1980; FERRARESE & Rossaro, 1981.
Remarque:
La femelle de D. dampfı a Ete insuffisamment d&crite par Kieffer (1924) et en pratique elle est restee
inconnue jusqu’ä maintenant. Par rapport aux autres femelles de Diamesa, on remarque dans legroupe
dampfi (Serra-Tosio, 1970) une synapomorphie nette dans la configuration des spermatheques, c’est-
a-dire des capsules tr&s larges et des conduits longs. On remarque aussi des differences distinctives
entre les trois especes du groupe dampfi. Cette espece se distingue de D. permacra (Walker) et de
D. thomasi Serra-Tosio en particulier par le gonocoxite digitiforme de son hypopyge.
98
Repartition
Alpes frangaises, Foret-Noire, Tyrol (Serra-Tosio, 1973).
Materiel examine
France: Revel (38), bords du Domenon en amont de l’Oursiere; 1610 m; leg. B. Serra-Tosio; 10.9.1982; 1 mäle,
1 femelle. Huez (38), affl. du lac Besson; 2110 m; leg. B. Serra-Tosio; 8.9. 1983; 2 exuvies nymphales mäles, 3 nym-
phes femelles.
Remerciements
Nous remercions les Drs. A. Kownacki (Cracovie), L. Matile (Paris), F. Reiss (Munich) qui nous ont aimable-
ment prete certains des specimens utilises dans cette Etude.
Travaux cites
AsHE, P. 1983: A catalogue of chiıronomid genera and subgenera of the world including synonyms (Diptera: Chiro-
nomidae). — Ent. scand. Suppl. 20: 1-68
BERGROTH, E. 1887: Entomologische Parenthesen. — Ent. Nachr. 10: 147-153
FERRARESE, U. & B. Rossaro 1981: Chironomidi, 1 (Diptera, Chironomidae: Generalitä, Diamesinae, Prodiame-
sinae). — Guide per il riconoscimento delle specie animalı delle acque interne 12. Consiglio Nazionale delle Ri-
cerche AQ/1/129, Verona, XIX + 97pp
FREEMAN, P. & P. S. CRANSTON 1980: Family Chironomidae, pp. 175—202. In: CROSSKEY, R. W. (Ed.): Catalogue
of the Diptera of the Afrotropical Region. — British Museum (Natural History), London, 1437 pp
GisTL, J. 1835: Neue Arten von Diptern aus der Umgegend von München, benannt und beschrieben von Meigen,
aufgefunden von Dr. J. Waltl. — Faunus 2: 66-72
GOETGHEBUER, M. 1923: Etude critique des Chironomides de la collection Meigen conservee au Museum d’Hi-
stoire Naturelle de Paris. 2e note, genre Tanypus Meigen. — Bull. Soc. ent. Belg. 5: 120-129
GOETGHEBUER, M. 1932: Dipteres Chironomidae IV (Orthocladiinae, Corynoneuriinae, Clunioninae, Diamesi-
nae) — Faune de France 23: 1— 204
GOETGHEBUER, M. 1939: Tendipedidae — Diamesinae. A. Die Imagines. — In: LINDNER, E. (Ed.). Die Fliegen der
Palaearktischen Region 3(13d): 1-28
HANSEN, D. C. & E. F. Cook 1976: The systematics and morphology of the Nearctic species of Diamesa Meigen,
1835 (Diptera: Chironomidae). — Mem. Am. ent. Soc. 30: 1— 203
KIEFFER, J. J. 1924: Chironomides nouveaux ou rares de l’Europe centrale. — Bull. Soc. Hist. nat. Moselle 30:
11-110
Kownackı, A. & M. Kownacka 1973: Chironomidae (Diptera) from the Caucasus. Diamesa Waltl group steın-
boecki. — Bull. Acad. pol. Scı. Cl. II Ser. Sci. biol. 21: 131-138
Kownackt, A. & M. KownackA 1974: Relation of Chironomidae from Tatra and the Caucasus Mts. — Ent.
Tidskr. Suppl. 95: 129— 138
MEIGEN, J. W. 1838: Systematische Beschreibung der bekannten europaeischen zweiflügeligen Insekten. 7: IV +
401 pp, Pls 55-66. Hamm
MOUBAYED, Z. & H. LAVvILLE 1983: Les Chironomides (Diptera) du Liban. I. Premier inventaire faunistique. —
Ann. Limn. 19: 219-228
PAGAST, F. 1947: Systematik und Verbreitung der um die Gattung Diamesa gruppierten Chironomiden. — Arch.
Hydrobiol. 41: 435-596
Reıss, F. 1985: A contribution to the Zoogeography of the turkish Chironomidae (Diptera). — Israel J. Entomol.
19: 161-170
Rossaro, B. 1980: Description of some unknown larvae of Diamesa genus and corrections to previous descriptions
(Diptera, Chironomidae). — Arch. Hydrobiol. 90: 298-308
SERRA-TOSIO, B. 1970: Les Diamesa du groupe dampfi. Description d’une espece nouvelle (Diptera, Chironomi-
dae). — Trav. Lab. Hydrobiol. Grenoble 61: 107— 146
SERRA-TOSIO, B. 1971: Contribution A l’&tude taxonomique, phylogenetique, biogeographique et Ecologique des
Diamesini (Diptera, Chironomidae) d’Europe. — These Univ. Scient. Med. Grenoble, T. I: 1-303, T. II:
304—462
99
SERRA-TOSIO, B. 1973: Ecologie et biog&ographie des Diamesini d’Europe (Diptera, Chironomidae). — Trav. Lab.
Hydrobiol. Piscic. Univ. Grenoble 63: 5—175
WALTL, J. 1837: Neue Gattungen von Mücken bei München. — Isis 21: 283—287
WILLASSEN, E. 1982: Descriptions and redescriptions of female Diamesa Meigen (Diptera: Chironomidae); with a
comparative morphology, keys, phylogenetic and biogeographical notes. — Dr. scient. thesis, Dept. Syst.,
Mus. Zool., Univ. Bergen, Norway, V + 316pp
Endre Willassen
Museum de Zoologie
Museplass 3
N-5007 Bergen
Norvege
Bernard Serra-Tosio
Universite Joseph Fourier (Grenoble I)
Boite Postale No 53 X
F-38041 Grenoble Cedex
France
100
| SPIXIANA Supplement 14 | 101-104 | München, 15. Juli 1988 | ISSN 0177— 7424
Tanytarsus curvicristatus spec. nov. eine neue Chironomidenart
aus Kolumbien
(Diptera, Chironomidae)
Von Ruth Contreras-Lichtenberg
Abstract
A new species of Tanytarsini is described on the morphological characters of the male imago from Colombia,
South America. The specimens have been collected in the Central Andes, south of the Nevado del Ruız ın 2115 m
above sea-level. Larvae, pupae and females of the new species are unknown, as well as its ecology.
Einleitung
Im Juni 1976 konnten in Kolumbien schwärmende Männchen einer Tanytarsus-Art gesammelt
werden. Die Tiere stammen aus der Zentralkordillere, südlich des Nevado del Ruiz, aus dem Bereich
des Rio Otün und wurden bei einer Forellenzuchtstation „El Cederal“ 25 km östlich von Pereira ın
2115 m Seehöhe gefangen. Der Fundort liegt in der subtropischen Klimaregion Kolumbiens.
Aus Südamerika sind nur wenige Tanytarsini-Arten beschrieben (Kırrrer 1917, 1925, Remper 1939,
Rosack 1960, Reıss 1972, 1985, Reıss & SUBLETTE, 1985).
Tanytarsus curvicristatus spec. nov.
Etymologie: Latein, der Name bezieht sich auf die deutlich median- und dorsalwärts gekrümmten Analkämme.
Material: Holotypus, ©, 9 Paratypen, CC’. (Holotypus und 7 Paratypen Naturhistorisches Museum Wien,
1 Paratypus Zoologische Staatssammlung München, 1 Paratypus Instituto de Ciencias Naturales, Universidad Na-
cional Bogotä, Kolumbien), alles Mikropräparate, Fuparal; El Cederal, Forellenzuchtstation ım Bereich des Rıo
Otun, 2115 m SH, Lichtenberg leg. 17.6.1976.
Imago CO
Färbung: dunkelbraun, Thorax im mazerierten und präparierten Zustand: längs der Mitte heller als
lateral, Scutellum und Postnotum dunkel, Postnotum mit heller Mittellinie, Halteren braun, Beine
braun, Tibien der PII und PIII mit dunklen Kämmen und Spornen.
Größe: größere Art, Flügellänge 2,02 (1,8-2,3) mm; n = 5
Kopf: keine Stirnzapfen vorhanden, 8 (8-10) Vertexborsten (n = 5), 13 (10-15) Clypeusborsten
(n = 4), Augen unbehaart. Länge der Palpomeren in um: Pm 1:36 (32—44); Pm 2: 54 (48-60); Pm
3:119 (116-120); Pm 4: 89 (80-100); Pm 5: 154 (140-160); n = 3.
Antenne: mit 13 Flagellomeren, AR = 0,69 (0,51—0,86);n = 5.
Flügel: (Abb. 1 E) Costa nicht über R,,; hinaus verlängert, Subcosta ın Falte proximal von RM en-
dend. R,,; und R,,; eng nebeneinander parallel verlaufend, nur kurz vor der Mündung von R;,; ın
101
Abb. 1: Tanytarsus curvicristatus spec. nov. A, B, Thorax dorsal und lateral; C, P,-Tibia. D, P,-Tibia; E. Flügel.
Maßstab: A, B, E — 100 um. C, D - 50 um.
die Costa divergierend. M,,;;, knapp vor der Mündung in den Hinterrand des Flügels deutlich ge-
schwungen. An auf der Höhe von FCu endend.
VR = 1,20 (1,16-1,23);n = 5.
Macrotrichien auf R,, R,,; und R,,; sowie auf M, ;, weiters auch an der Flügelspitze zwischen den
Längsadern und parallel dem Flügelhinterrand, proximales Drittel des Flügelhinterrandes ohne Ma-
crotrichien. Squama ohne Haarsaum.
Thorax: (Abb. 1 A, B) Pronotum stark reduziert, von dorsal nicht sichtbar. Humeralborsten feh-
lend, 8-9 Dorsocentralborsten, 4 Acrostichalborsten, jederseits 2 Präalarborsten, 6 Scutellumbor-
sten.
Beine: (Abb. 1C und D) Tibien der P, mit einem Sporn, Vordertarsen ungebartet, Tibien der P, und
P; mit zwei voneinander getrennten schmalen Kämmen, jeder der beiden Kämme mit einem Sporn.
Länge der Beinglieder in um
Fe Ti Ta Ta Ta Ta Ta LR
PJ 880(n=5) 419(n=5) 1004(n=2) 569(n=2) 450(n=2) 332(n=2) 163(n=2) 2,4 (n=2)
(821-949) (386-455) (940-1068) (534-603) (425-475) (307-356) (158-168)
P, 880(n=7) 674(n=7) 407(n=6) 206(n=6) 155(n-=6) 104(n-=6) 79(n=6)
(831-940) (613-712) (366- 455)(188-227) (148-168) ( 99-109) (69-89)
P, 980(n=7) 838(n=7) 527(n=3) 353(n=3) 304(n=3) 191(n=3) 99(n=3)
(910-1058) (762-910) (504-544) 346-356) (297-307) (178-198) (89-109)
Hypopyg: (Abb. 2) Analtergitbänder lang, konvergierend, gegen die Analspitze zu parallel verlau-
fend, am Ende der Analtergitbänder je zwei Setae. Analspitze deutlich ventralwärts gekrümmt, mit
einem oralwärts gerichteten stangenförmigen Fortsatz, jederseits der Analspitze fünf Setae. Ein Paar
102
Abb. 2: Tanytarsus curvicristatus spec. nov. A, Hypopyg, dorsal; B, Hypopyg, lateral; C, Anhang 2, lateral;
D, Anhang 2a; E, Analspitze. Maßstab: A, C, D. E — 50 um; B — 100 um.
deutliche median- und in Lateralansicht dorsalwärts gekrümmte Analkämme vorhanden. Jederseits
der Analspitze ein Zahn. Anhänge 1 medianwärts mit einem Lobus und fünf in einer Reihe stehenden
Setae, an der Basıs zwei weitere, starr medianwärts gerichtete Setae. Digitus schmal, nicht über den
Anhang 1 hinausragend, auf einem breiten basalen, eine Borste tragenden Höcker sitzend. Anhänge 2
keulenförmig, distal schwach zweilappig, mit über die gesamten Anhänge verbreiteten Microtrichien
und distalen, dorsalwärts gekrümmten Setae. Anhänge 2a kurz, gerade, distal mit schlanken, spitzen,
gespaltenen Lamellenborsten.
Imago 9, Larve und Puppe: unbekannt.
Differentialdiagnose
Fehlende Stirnzapfen, knapp vor der Mündung in den Hinterrand des Flügels deutlich geschwun-
gene M;,,. Hypopyg: je 2 Setae am Ende der Analtergitbänder. Die Art unterscheidet sich von allen
anderen Tanytarsus-Arten durch die median- und dorsalwärts gekrümmten Analkämme, die sich bei-
derseits der stark ventralwärts gebogenen Analspitze befinden sowie die Kombination dieser mit fol-
genden Merkmalen: querorientierte in einen medianwärts gerichteten Lobus endende Anhänge 1,
Analspitze mit oralwärts gerichtetem stangenförmigem Fortsatz schmaler, nıcht über den Anhang 1
hinausreichender Digitus, distal keulenförmig erweiterte Anhänge 2 mit schwach angedeuteter Zwei-
teilung, kurze Anhänge 2a mit distalen, schlanken, spitzen, gespaltenen Lamellenborsten.
Die auffällig gekrümmten Analkämme könnten eine Zugehörigkeit zum Genus Paratanytarsus ver-
muten lassen (Reıss & Säwepar, 1981). Die Art wird aber dennoch zu Tanytarsus gestellt, da sie sich
103
von den Arten des Genus Paratanytarsus Thienemann & Bause, 1913 durch die lange Analspitze und
den kurzen, schmalen Digitus unterscheidet. Weitere Arten mit einer oralwärts gerichteten Stange auf
der Analspitze sind die vermutlich holarktische Art Tanytarsus signatus v. d. W. (Reıss & Fırrkau,
1971) sowie die aus Australien beschriebene Art Tanytarsus liepae GLovEr 1973.
Danksagung
Herrn Dr. F. Reıss (Zoologische Staatssammlung München) danke ich für die Hilfe und wertvolle Hinweise bei
der Diskussion der neuen Art.
Literatur
BAUSE, E., 1913: Die Metamorphose der Gattung Tanytarsus und einiger verwandter Tendipediden. — Arch. Hy-
drobiol. Suppl. 2: 1-126
GLOVER, B., 1973: The Tanytarsını (Diptera, Chironomidae) of Australia. — Austr. J. Zool. Suppl. 23: 403-478
KiEFFER, J. J., 1917: Chironomides d’Amerique conserves au Musee National Hongrois de Budapest. — Annls.
hist.-nat. Mus. natn. hung. 15: 292— 364
—— 1925: Chironomides de la Republique Argentine. — Annls. Soc. scient. Brux. 44: 73—92
Reıss, F., 1972: Die Tanytarsını (Chironomidae, Diptera) Südchiles und Westpatagoniens. Mit Hinweisen auf die
Tanytarsını-Fauna der Neotropis. — Stud. neotrop. Fauna 7/1: 49—94
—— 1985: Die panamerikanisch verbreitete Tanytarsini-Gattung Skutzia gen. nov. (Diptera, Chironomidae). —
Spixiana, Suppl. 11: 179—193
Reıss, F. & Firtkau, E. J., 1971: Taxonomie und Ökologie europäisch verbreiteter Tanytarsus-Arten (Chironomi-
dae, Diptera). — Arch. Hydrobiol. Suppl. 40: 75—200
Reıss, F. & SÄwEDAL, L., 1981: Keys to males and pupae of the Palaearctic (excl. Japan) Paratanytarsus Thienemann
& Bause, 1913, n. comb., with descriptions of three new species (Diptera: Chironomidae). — Ent. scand.
Suppl. 15: 73-104
Reıss, F. & SUBLETTE, J. E., 1985: Beardius new genus with notes on additional Pan-American taxa (Diptera, Chi-
ronomidae). — Spixiana, Suppl. 11: 179— 193
REMPEL, J. G., 1939: Neue Chironomiden aus Nordostbrasilien. — Zool. Anz. 127: 209— 216
ROBACK, $. S., 1960: New species of South American Tendipedidae (Diptera). — Res. Cath. Per.-Amaz. Expedi-
tion. — Trans. Amer. ent. Soc. 86: 87-107
Dr. Ruth Contreras-Lichtenberg,
Naturhistorisches Museum Wien,
Burgring 7, A-1014 Wien
104
SPIXIANA | Supplement 14 | 105-116 | München, 15. Juli 1988 | ISSN 0177 — 7424
A reconsideration of the genus Apedilum Townes, 1945
(Diptera: Chironomidae)
By J. H. Epler
Abstract
The taxonomy of the genus Apedilum Townes, 1945 is reviewed. The adult males and females, pupae and larvae
of the two Nearctic species, A. elachistus Townes and A. subcinctum Townes, are redescribed. A key for both spe-
cies in all life stages is provided, and notes on the biology of the genus are given.
Introduction
The genus Apedılum was established by Townes (1945) for 2 species, A. elachistus Townes and
A. subcinctum Townes (the type species). Chironomus nigrohalteris Malloch, 1915 was also included;
this species was considered by Townes (1945: 33) to be a senior synonym of Ch. (Lauterborniella) bra-
chylabis Edwards, 1929. Rosack (1957: 97) noted that Lenz (1941:48) had established the genus Para-
lauterborniella for Ch. (L.) brachylabıs. Since then, all 3 species have been treated as members of Pa-
ralauterborniella. However, as demonstrated in this paper, A. elachistus and A. subcinctum are not
congeneric with P. nıgrohalteris. The genus Apedilum ıs resurrected for the species elachistus and sub-
cinctum, and Paralauterborniella becomes a monotypic genus.
The larva and pupa of A. elachistus (as Paralanterborniella) were briefly described by Beck & Beck
(1970); the larva and pupa of A. subcinctum (as Paralauterborniella) were fiıgured and keyed by Dargy
(1962). Portions of the pupal morphology of A. subcinctum (as Paralauterborniella) were illustrated
and discussed in Pınper & Reıss (1986). In this paper the adult males and females, pupae and larvae of
both species are described/redescribed.
Methodology
Terminology follows EPLER (1987) and SAETHER (1980); methodology follows EPLER (1987). The female notum
was measured from the anterior apex to its posteriormost point. Means are not given for samples of less than 3; all
measurements are in micrometers unless otherwise stated. Abbreviations for collections from which material was
borrowed are: BC = B. A. Caldwell, Georgia Dept. Natural Resources, Atlanta, GA, USA; CN = Canadian Na-
tional Collection, Ottawa, Ontario, Canada (D. R. Oliver); FS = Florida State Collection of Arthropods at Florida
A &M University, Tallahassee, FL, USA; GG = G. Grodhaus, California Dept. of Health, Vector Biology and
Control Section, Berkeley, CA, USA; JE = J. H. Epler; KS = State Biological Survey of Kansas, Lawrence, KS,
USA (L. €. Ferrington, Jr.); ZS = Zoologische Staatssammlung, Munich, West Germany (F. Reiss).
105
Biology
Apedilum larvae most often inhabit submerged vegetation. Darsy (1962: 145— 146) and Macr etal.
(1970) give more detailed information on biology and emergence phenology for A. subcinctum. Mr.
Broughton A. Caldwell (pers. comm., 1987) has been kind enough to provide the following informa-
tion for A. elachistus collected ın Georgia:
On collecting dates in June and August, water temperatures ranged from 25.0° to 39.0° C. The following water
quality parameters were recorded from the collection site in June: flow = 0.10 cfs; D. ©. = 7.2 mg/l; pH = 6.8;
conductivity = 10lumho/cm; BOD, = 3.0 mg/l; fecal coliform = 4900 MPN/100 ml; total solids = 88 mg/l; su-
spended solids = 10 mg/l; total ammonia = 0.06 mg/l (as N); NO, + NO; = <0.02 mg/l (as N), and total P =
0.53 mg/l.
Collection data for A. elachistus ın Florida indicate that adult emergence takes place year round. In
addition to occurring in freshwater, I have collected A. elachistus larvae from submerged vegetation
in a brackish pond in Florida.
Systematics
Apedıilum ıs distinguished from Paralauterborniella by the following characters (Paralanterbor-
niella ın parentheses):
adult male: superior volsella globose (digitiform), gonostyli well developed (strongly reduced);
adult female: labia without microtrichia (with microtrichia), seminal capsule with distinct neck
(without distinct neck);
pupa: cephalic tubercles absent (present), no nose present on wing sheath (present), 5 lateral lamel-
lar setae on T VIII (4);
larva: mentum with deeply bifid median tooth (dome-shaped single median tooth), S II with short
basal segment (long basal segment), pecten epipharyngis a single plate (2 plates), ventromental plates
finely striated (coarsely striated), maxillary plate with well defined striae (weakly defined striae), man-
dible with 2 dorsal teeth and well developed pecten mandibularis (no dorsal teeth and reduced pecten
mandibularis) and supraanal setae approximately equal to length of anal tubules (much longer than
anal tubules).
Apedilum is probably most closely related to Zavreliella Kieffer and Paralauterborniella, and pos-
sıbly Oukuriella Epler, as suggested by Erı£r (1986). The sclerotized neck of the seminal capsule is a
synapomorphy shared with Zavreliella (as Lauterborniella in SAETHER 1977).
At least one other species of Apedilum occurs in the Neotropics. I have examined associated larvae
and pupae from the Rio Marauiä, Amazonas, Brazil which represent a new species. Only pharate
adults within their pupal exuviae were available. The genitalia were similar to those of A. elachistus and
A. subcinctum, but the larvae and pupae were distinctive. The undescribed larva has 52-55 maxillary
plate striae and 2 sclerotized areas on the anteromedial portion of the frontoclypeal apotome. (A. ela-
chistus and A. subcinctum larvae have the anterolateral portions of the frontoclypeal apotome sclero-
tızed.) The pupa has 5 lateral lamellar setae of equal width, only 11-20 T II hooklets, the T VIII cau-
dolateral comb is a cluster of small spines, and the thoracic horn has only 3 branches. Because com-
pletely developed, associated adults are not available, acomplete description is not offered at this time.
Genus Apedilum Townes
Apedilum TowNnss, 1945: 32. Type-species: Apedilum subcinctum Townes, 1945, by original designation (misspell-
ed as succinctum).
Paralauterborniella Lenz, 1941 (partim): ROBACK 1957: 97 (synonymized Apedilum with Paralauterborniella);
PıiNDER & Reıss 1983: 330 (larva); PINDER & Reıss 1986: 341 (pupa).
106
Adult male.
Small chironomids, light brown to greenish-brown in general coloration. Wings with or without
spots, wing length 1.1-1.8 mm.
Eyes bare. Temporal setae in single row beginning mesad to dorsomesal extension of compound
eye, ending behind approximate middle of eye. Frontal tubercles minute (<2 micrometers). Antennal
flagellum with 13 flagellomeres. Maxillary palp 5-segmented, basal segment weakly sclerotized. Cly-
peus subquadrate, setose. Cibarial setae present.
Antepronotum bare, narrowed and weakly notched dorsomesally. Thoracıc scar small; humeral
“pit” present as a single tubercle or 1 large tubercle with smaller tubercles, dorsocaudally to thoracic
scar. Scutal tubercle absent. Acrostichal setae present in double row, anteriorly beginning close to an-
tepronotum and running posteriorly to approximate mid-scutum. Dorsocentral setae in single row/
side, with scattered sensilla campanıformıa along setal row. Scutellar setae usually in 1 row. Supraalar
seta 1/side. Prealar setae about 1-4/side.
Wing membrane without macrotrichia; squama without setal fringe. Brachiolum with 1 seta and 2
groups of campanıform sensilla; R, R, and R,;; usually with setae, R,,; occasionally bare; costa ends
at Ry,;; FCu distal to RM; RM oblique to RR, ; ;.
Metatarsal beard absent on foreleg. Foretibia without apıcal scale or spine. Middle and hind tibiae
each with 2 combs, apparently fused; outer comb bearing one larger spine which projects beyond
others. Sensilla chaetica present on metatarsus of middle leg, confined to apıcal !/5; also sometimes pre-
sent on apical !/s of hind metatarsus. Pulvilli vestigial; empodıum thın, with sparse ventral fringe.
Gonostylus moderately inflated, short, slightly longer than gonocoxite, with straight inner margin;
bearing several long setae along inner margın. Superior volsella well developed; globose-pediform,
with microtrichia dorsally and ventrally; often membranous apically; bearing several to many large
sensilla chaetica on mesal and dorsal surface. Inferior volsella well developed, elongate-digitiform,
slightly arched dorsoventrally, with preapıcal and apical sensilla chaetica. T IX with small group of se-
tae on each side posteriorly; anal point present or absent.
Female.
Generally similar to male; abdomen and wings stouter, and overall generally more setose than male.
Antennae with 5 apparent flagellomeres. Frontal tubercles vestigial or absent.
Mid and hind metatarsı with 1-2 rows of sensilla chaetica on distal /a—27.
Genitalia with well developed dorsomesal and ventrolateral lobes; a narrow, bare apodeme lobe
present. Posteromesal angle of S VIII with a shelf which extends partially over ventrolateral lobe. La-
bia without microtrichia. Seminal capsules spherical with distinct, more heavily sclerotized neck;
spermathecal ducts without major loops or bends.
Pupa.
Small pupae, 3-5 mm long. Exuviae colorless to pale brown with light yellow-brown margins, ce-
phalothorax darker. Cephalic tubercles absent, frontal setae well developed, lamellar. Dorsum of tho-
rax moderately granulose, without scutal tubercle. Thoracic horn with 4 (6?) partly spinose or serrate
branches; base of thoracic horn circular, with 1 apparent tracheal bundle. Thoracic setae/side: precor-
neal 2; dorsocentral 4 in 2 groups; median antepronotal 1; lateral antepronotal 1. Wing sheath without
“nose” or at most a slight protuberance.
Abdominal segment I without lateral setae; segment II with 4 lateral hairlike setae, III with 4 lateral
hairlike setae or 3 haırlike setae and 1 lamellar seta or 2 haırlike setae and 2 thin lamellar setae; IV with
2 hairlike and 2 lamellar lateral setae or 3 haırlike and 1 lamellar lateral setae; V-VII with 4 lateral lamel-
lar setae; VIII with 5, rarely 4, lateral lamellar setae. Anal lobe with a pair of thin dorsal caudolateral
setae and a fringe of 15-30 ventral lateral lamellar setae on each lobe. An uninterrupted median row
of caudal hooklets on T II.
107
Intersegmental conjunctiva of T IIV/IV/V with fine to coarse spinules (usually poorly developed or
absent on T III).
Caudolateral corners of VIII with one large spine or a comb of several smaller spines. Shagreen ab-
sent on T I. Dorsal shagreen on T II-VI subquadrate in outline, slightly wider anteriorly; shagreen
points larger anteriorly. Segments VIland VIII with rounded anterolateral shagreen areas. Anal lobes
without shagreen. Ventral shagreen present only on S VII and VIII as paired, weakly developed,
round anterolateral areas. Pedes spurii A present on $ IV, pedes spurii B present on segments I and II.
Segments II-VIII with one dorsal and one ventral pair O-setae.
Larva.
Small larvae, 3-5 mm long. Body greenish-gold (Darsy 1962: 145) in life. Head capsule pale yel-
low, with 2 pairs of eyespots.
Antenna with 6 segments, segment 4 approximately equal to 2. Antennal blade approximately as
long as flagellum, with small accessory blade. Lauterborn organs well developed, alternately placed at
apices of 2 and 3; a well developed style present near apex of segment 3. Ring organ present at appro-
ximate middle of basal segment.
Frontoclypeal apotome narrowed anteriorly, wıth anterolateral corners produced and more heavily
sclerotized. Labrum with setae I-IVA+B present; S I broad, plumose, with toroidal bases joined me-
dially; S II large, fringed, with short basal segment; S III hairlike, with small basal pedestal; S IVA
small, two-segmented; S IVB smaller than S IVA, inflated, simple. Labral lamella with fringe. Pecten
epipharyngis a distally broader, quadrilateral plate with 8-15 distal teeth. Premandible distally bifid,
the inner blade wider than outer blade, with 1 smaller inner medial tooth; a medial premandibular
brush present.
Mandible with apical tooth, 2 dorsal preapical teeth, and 3 inner teeth. Pecten mandibularis
composed of 8-11 strong setae. Seta subdentalis simple, well developed, 8-15 times longer than wide.
Seta interna with 4 main branches, united basally.
Mentum with deeply bifid pale median tooth and 6 pairs of darker lateral teeth; Ist lateral teeth small
and appressed to 2nd lateral teeth. Ventromental plates about twice as wide as long, with smooth an-
terior margin and continuous fine striae. Setae submenti simple. Maxillary plate with well developed
striations. Triangulum occipitale not visible in ventral view.
Lateral and ventral tubules absent; 2 pairs of conical anal tubules. Procercus about as wide as long,
with 6—8 large apical setae and 2 small, fine anterolateral preapical setae. Supraanal setae subequal to
anal tubules.
Key to all stages of Nearctic Apedilum
Wanduhr aka eene ee Vre ena yore Bohr erfor Fe 2
=: Iulmmature stagesit.\aryse nl uk me IS BR RAN RER DIS 3
2. ‚Wing wich’ pale spots;male never withanal’poine WI. A ENTE A. elachistus
— Wingimmaculate;male withor withoutanalpoint .........2.2220.. A. subcinctum
SealaPupaeıpal: a5 gta ap a Blog dägrstaege Dre Jap zuayla 8 Inn 2 4
rl rBatwe.: VA Nee rer A Fre 5
4. Caudolateral angle of T VIII with 1 large spur or large spur with smaller basal spur (s); T VIII
Iateralserae ofequal’wideh (Fries adden Roms Ne ee A. elachistus
— Caudolateral angle of T VIII with group of smaller spurs; T VIII with lateral seta thinner than
atkter 4 (K1es Dr eh) Tee er En DAR EN E Ru u Eau) Rn A. subcinctum
5:905105,masüllargjplase striag se... dan ae as en ae A. elachistus
= 9110-123maxıllary pltesärraet en. BEI FI N ER A. subcinctum
108
Apedılum elachistus Townes
Apedilum elachistus TOWNES, 1945: 33 (adult description).
Paralauterborniella elachista (Townes): SUBLETTE & SUBLETTE 1965: 173 (placement); BECK & BECK 1970: 30
(pupa, larva description).
nec Paralauterborniella elachista (Townes): DARrBY 1962: 47, 64, 88, 143 (misdetermination of A. subcinctum).
Male Imago (n = 5)
Color. Head and thorax light brown to dark brown; abdomen light brown to brown suffused with
green, or completely light green with light brown areas on dorsum. Legs cream to pale brown, apices
of femora sometimes darker brown. Wings with pale gray spots surrounding base of R,,;; in center
and apex of r,;; (these 2 spots sometimes joined by a narrow bridge); along R, ,; from approximate
midpoint to apex; at FCu and extending along Cu,; and below An (see Townes 1945: fig. 205).
Length. Total 2.12—2.97, 2.69 mm. Thorax 0.69—0.84, 0.80 mm. Abdomen 1.43—2.13, 1.39 mm.
Head. Setae: temporal 20-32, 26; clypeal 12-16, 14; cibarıal 4. Palpomere lengths (4): 28-40, 32;
D0.159951069—90,72799 105310 123 37146 AR 0,85 — 1237206:
Thorax. Setae: acrostichals 10-12, 11; dorsocentrals 16-24, 20; scutellars 6-9, 7; prealars 1—4, 4.
Wing. Length 1.13-1.48, 1.38 mm; with 0.35—0.49, 0.43 mm. VR 0.74—0.78, 0.76. Setae: R+R,
BSR. 0 10,8,
Fig. 1. Male genitalia. A. elachistus: a. hypopygium; b-d. variations of superior volsella. A. subeinctum: e-h. va-
riations of caudal apex T IX, anal point; ı—k. variations of superior volsella.
109
Legs. Palmate sensilla chaetica: 4-11, 7 on middle metatarsus, 0-1 on hind metatarsus. Lengths
and proportions of legs:
d fe ti ta, ta, ta, ta, var LR BV sV
pP 500-650, 415-550, 590-660, 280-330, 220-255, 135-180, 90-100, 1.07-1.27, 2.12-2.40, 1.77-1.95,
1 586 513 618 (3) 297 (3) BER) 152 (3) 93 (3) 1.16 (3) 2.29 (3) 1.85 (3)
P 560-725, 440-570, 290-335, 130-169, 90-115, 50-70, 40-70 0.57-0.66, 3.67-4.16, 3.45-3,.89,
2 637 5ıl 308 147 107 65 60 0.60 3.85 Salz
pP 580-750, 500-640, 380-475, 190-260, 170-220, 90-110, 60-80, 0.73-0.76, 2.63-3.01, 2.80-2.93,
3 672 6 444 (4) 235 (4) 204 (4) 103 (4) 73 0.74 (4) 2.79 (4) 2.85 (4)
Hypopygium (Figs 1a-d). As in generic description. Anal point absent.
Female Imago (n = 4)
Color. Sımilar to male.
Length. Total 1.85—2.17, 2.04 mm (3). Thorax 0.65—0.76, 0.71 mm (3). Abdomen 1.20-1.46,
1.33 mm (3).
Head. Setae: temporal 23—24, 24; clypeal 19-25, 23; cıbarıal 3-5, 4. Palpomere lengths: 22—28,
24, 23—33, 27,53-58, 55; 70-90, 81; 113—128, 120 (3). AR 0.41-—-0.49, 0.45.
Fig. 2. Female genitalia. A. elachistus: a. apex of abdomen, ventral aspect; b. DmL, Apl, VIL. A. subcinctum:
c. apex of abdomen, ventral aspect; d. DmL, ApL, VIL.
110
Thorax. Setae: acrostichals 6-11, 9; dorsocentrals 26-32, 29; scutellars 7—8, 8; prealars 4.
Wing. Length 1.26-1.43, 1.36 mm; width 0.48— 0.54, 0.51 mm. VR 0.70—0.74, 0.72. Setae: R+R,
DD OR 10 105
Legs. Palmate sensilla chaetica: 18-25, 21 on middle metatarsus; 17—22, 20 on hind metatarsus.
Lengths and proportions of legs:
ij \B BV SV
je} fe ti ta, ta, ta, ta, 3; LR
P] 460-520, 415-470, 470-520, 195-220, 140-160, 90-110, 65-75, 1.09-1.17, 2.65-2,74, 1.80-1.94,
494 444 504 2ıl 150 103 73 1.14 2.69 1.86
PR, 520-585, 420-480, 240-270, 105-130, 70-85, 40-55, 45-55, 0.56-0.57, 4,17-4.54, 3.89-3.94,
561 463 261 118 79 48 53 0.57 4.35 3.92
P_ 560-630, 510-580, 350-400, 185-220, 160-190, 70-90 60-70, 0.68-0.69 2.85-2.99, 3.03-3.11,
603 553 378 204 174 8l 68 0.68 2.92 3.06
Abdomen. Notum 162-175, 168; cercı 73-87, 81 long. S VIII with 5-9, 7 setae/side; T X with
12-21, 15 setae; Gc IX with 1-2 setae/sıde. DmL, VIL and Apl as ın Figs. 2a, b.
Pupa: (n=7)
Color. Clear with pale yellow-brown borders.
d
Fig. 3. Pupa. A. subcinctum: a. frontal apotome; c. abdomen, dorsal; fh. lateral margin, T VIII. A. elachistus:
b. thorax, lateral aspect; d-e. lateral margin, T VIII.
ut
Length. Total 1.98—2.34 mm (3). Cephalothorax 0.66 mm (1). Abdomen 1.68 mm ().
Abdomen (similar to A. subeinctum, Fig. 3c). Shagreen as in generic description. Posterior margin
of T II with transverse row of 26-30, 28 (4) hooklets. T VIII with 5 equally sızed lamellar lateral setae.
Caudolateral spurs on T VII (Figs. 3d, e) single or with small basal spurs. Anal lobes with 16-28, 20
Setae, DR4165 3,20,223:
Fourth instar larva: (n = 9)
Color. Head capsule light yellow.
Head. Postmentum length 113— 125, 118 (8). Mandible (Fig. 4c) length 103— 113. Pecten mandibu-
larıs composed of 8-11, 10 setae. Mentum width 80-90, 84 (5). Ventromental plate with smooth an-
terior margin; width 69-80, 74; length 32-37, 35; VPR 1.86— 2.41, 2.13; IPD 15-18, 17 (3); PSR
4.11—5.33, 4.61 (3); 90-105, 100 (8) maxillary plate striae. Length of antennal segments (7): 60—66,
62; 13-16, 15 (6); 16-28, 17; 12—14, 1356-9, 7;4=6, 5. AR0,95-—-1.15, 1.05 (6). Frontocypese po
tome as in Fig. 4b.
Remarks.
There are 2 apparent forms of adult male A. elachistus. Those with alow AR (0.83—0.85) have high
R+R;, (23-25) and R,,; (17-19) setal counts and a low number (4-5) of palmate sensilla chaetica on
the mid metatarsus. Those with a higher AR (1.19—1.21) have 8-12 R+R, and 0-2 R,,; setae and a
higher number (7— 11) of palmate sensilla chaetica on the mid metatarsus. These differences were not-
ed in California and Florida populations.
I have also examined 2 males from Piedra de los Indios, Colonia, Uruguay which probably are this
species. The genitalia are indistinguishable from A. elachistus and the wing markings, although much
fainter, are sımilar.
Townes (1945) also recorded A. elachistus from Alabama, Mississippi and its type locality ın Galve-
ston, Texas.
Material examined (BLT = black, light trap): U.S.A.: CALIFORNIA: Imperial Co., Wister Wildlife Manage-
ment Area nr Niland, swarming along canal, 26-XII-1981, leg. J. H. Epler, 30 males (JE). FLORIDA: Broward Co.,
Plantation Canal, 9-II-1960, W. Beck, 1 larva (FS); Dade Co., Gould’s Monkey Jungle, BLT, 24-IV-1968, R. E.
Woodruff, 1 male (FS); Homestead, BLT, R. Baranowski, I male (FS); Duval Co., Jacksonville, BLT, 30-IX-1969,
R. King, 12 males (FS); Hamilton Co., roadside ditch nr Occident, 6-IX-1967, W. Beck, 1 male/Pex/Lex (FS);
Leon Co., Tallahassee, 2112 Faulk Dr., at light, 5-VI-1980, Leg. A. R. Soponis, 1 male (FS); Marion Co., Sharpe’s
Ferry Field Sta., malaise trap, 8-13-X-1975, W. R. H., 1 male (FS); Monroe Co., Big Pine Key, light trap, 10-IV-
1970, W. W. Wirth, 7 males, 1 female (FS); Big Pine Key, BLT, 25-V-1978, L. Stange, 1 male (FS); Stock Island,
BLT, 25-I-1967, F. A. Buchanan, 1 male (FS); Palm Beach Co., Palm Beach (residence), 4-X1II-1979, R. P. Toma-
sello, 9 males, 3 females (FS); St. John’s Co., St. John’s River, W. Beck, 1 male/Pex/Lex (FS); Taylor Co., Hickory
Mounds Impoundment, 20-11-1983, leg. J. H. Epler, 51 males (JE); Wakulla Co., St. Marks Natl. Wldlf. Ref., light-
house pool, 19-TV-1980, swarms totaling approx. 600 males & females (JE); same locality & collector, 30-IV-1980,
37 males, 1 female (JE); same locality & collector, BLT, 30-V-1980, 66 males, 3 females (JE); same locality & collec-
tor, 6-11-1983, 80 males (JE); same locality & collector, 8-III-1986, 1 larva (JE); St. Marks Natl. Wldlf. Ref., Stony
Bayou Pool, 23-IX, 27-X-1984, leg. J. H. Epler, 75 males (JE); St. Marks Natl. Wldlf. Ref., Nature Trail, 25-XII-
1984, leg. J. H. Epler, 14 males (JE). Also probably from FL: 5 males/Pex/Lex — no data — (FS). GEORGIA:
Pierce Co., Sixty Foot Branch 1.0 mi downstream of confluence “Patterson Creek”, 18-VI-1986, leg. B. A. Caldwell
& V. Barnes, 2 pupae, 5 larvae (BC); same locality, 20-VIII-1986, leg. B. A. Caldwell & C. Stevens, 1 pharate female
pupa/Lex (BC).
Apedilum subcinctum Townes
Apedıilum subcinctum TOwNEs, 1945: 33 (adult description).
Paralauterborniella subcincta (Townes): SUBLETTE 1960: 202 (adult description, placement); DARBY 1962: 47, 64,
88, 143 (figures of larva, pupa, adult; biology); SUBLETTE & SUBLETTE 1965: 173 (placement); May, et al. 1970:
112
115 (biology ; although often cited as pp. 116-119, a note from Grodhaus on the reprint indicates original pagi-
nation was 115-119).
Paralauterborniella subcincta alamedensıis Sublette, 1960: 203 (description of variant subspecies).
Male Imago (n = 5)
Color. Head and thorax brown to almost black; abdomen light brown to dark brown, sometimes
suffused with green, or completely green with light brown areas on dorsum. Legs pale brown, base of
femora sometimes lighter; femora darker than remainder of leg. Wings immaculate.
Length. Total 2.43—3.20, 2.74 mm (4). Thorax 0.68-0.90, 0.70 mm (4). Abdomen 1.75—2.30,
ie95 mm.
Head. Setae: temporal 18-38, 28 (4); clypeal 13—22, 18 (4); cıbarıal 4-5, 4 (3). Palpomere lengths
(4): 40-49, 44; 33—58, 43; 85-161, 116; 88-150, 116; 140-180, 164 (3). AR 0.66--1.59, 1.15 (4).
Thorax. Setae: acrostichals 9-12, 11; dorsocentrals 15—30, 21; scutellars 6-10, 8; prealars 3—4, 4.
Wing. Length 1.25-1.73, 1.48 mm; wıdth 0.37—0.46, 0.41 mm. VR 0.78-0.81, 0.79 (3). Setae:
R+R, 13-16, 15 3); R,,; 1-22, 9. w
Legs. Palmate sensilla chaetica: 4-7, 6 on middle metatarsus, 0-2 on hind metatarsus. Lengths and
proportions of legs (4):
fe jest ta ta ta ta, ta, LR BV SV
P 600-740, 460-680, 570-650, 280-360, 215-270, 140-185, 85-105, 0.96-1.28, 2.16-2.29, 1.80-2.18,
655 583 603 320 243 165 96 1.06 2.24 2.03
P, 650-800, 515-665, 310-360, 140-205, 105-160, 65-100, 60-80, 0.53-0.60, 3.31-3.99, 3.76-4.09,
718 595 329 178 136 88 74 0.55 3.49 3.99
P, 670-890, 580-790, 410-560, 220-330, 190-290, 95-160, 65-95, 0.71-0.72, 2.55-2.91, 2.96-3.05,
u) ‚696 490 (3) 280 (3) 243 (3) 132 (3) 83 (3) 0.71 2.68 (3) 3.00 (3)
Hypopygium (sımilar to A. elachistus, Fig. 1a). As in generic description; with or without anal
point (Figs. 1e-h)
Female Imago (n = 5)
Color. Similar to male.
Length. Total 1.67—2.19 mm (2). Thorax 0.74—0.87, 0.82 mm (4). Abdomen 0.93— 1.35 mm (2).
Head. Setae: temporal 20-23, 22 (3); clypeal 15-16, 16 (3); cibarial 4 (3). Palpomere lengths:
28-35, 31 (3); 38-42, 39 (3); 105 (2); 110-118 (2); 167 (1). AR 0.47—0.53, 0.49 (4).
Thorax. Setae: acrostichals 9-12, 10 (4); dorsocentrals 24—40, 34; scutellars 7—11, 10; prealars 4.
Wing. Length 1.56-1.73, 1.63 mm; wıdth 0.57—0.61, 0.59 mm. VR 0.76—0.79, 0.78. Setae: R+R;
EDER. 254,31.
Legs. Palmate sensilla chaetica: 19—24, 22 on middle metatarsus; 17—24, 20 on hind metatarsus.
Lengths and proportions ot legs (4):
fe Bat ta] ta, ta, ta, ta, LR BV SV
P, 550-620, 460-580, 495-575, 240-280, 170-215, 110-145, 80-90, 0.95-1.22, 2.15-2.71, 1.80-2.33,
580 531 543 263 189 121 86 1.03 2.52 2.09
P, 660-760, 545-645, 300-330, 150-170, 110-125, 70-85, 60-75, 0.51-0.55, 3.81-3.90, 4.02-4.26,
709 591 313 158 116 75 69 0.53 3.86 4.16
P, 680-820, 620-750, 430-525, 245-355, 200-230, 105-120, 80-100, 0.69-0.70, 2.47-2.88, 2.95-3.02,
751 691 483 289 216 111 89 0.70 2.73 2.99
Abdomen. Notum 163-173, 168 (3); cerci 85-93, 90 (3) long. S VIII with 5 setae/side (3); T X with
15-22 (2) setae; Gc IX with 1 seta/side (2). DmL, VIL and ApL as in Figs. 2c, d.
Pupa: (n = 9)
Color. Clear with pale yellow-brown borders.
115
vr
Fig. 4. Larva. A. elachistus: a. mentum, maxillary plate striae (left), ventromental plate striae (right); b. frontocly-
peal apotome; c. mandible; d. pecten epipharyngis; e.S I; f. S II; g. premandible; h. antenna.
Length. Total 2.56-3.14, 2.88 mm (5). Cephalothorax 0.74—0.93, 0.80 mm (5). Abdomen
1.81-2.79, 2.20 mm (6).
Abdomen (Fig. 3c). Shagreen as in generic description. Posterior margin of T II with transverse
row of 20-35, 28 hooklets. T VIII with 5 lamellar lateral setae, one of which is usually narrower than
the others; occasionally some setae are bifid (Figs. 3f-h). Caudolateral spurs on T VIII (Figs. 3f<h)
a comb of small spines. Anal lobes with 20-28, 24 setae. DR 1.63—3.29, 2.22.
Fourth instar Larva: (n = 6)
Color. Head capsule light yellow.
Head. Postmentum length 116-148, 133 (5). Mandible length 108-133 (3). Pecten mandibularis
composed of 9-11, 10 setae. Mentum with 68-96, 80 (4). Ventromental plate with smooth anterior
margin; width 71-87, 82 (5); length 37—44, 42 (4); VPR 1.97—2.21, 2.06 (4); IPD 16-25, 22 (4); PSR
3.28—4.44, 3.72 (4); 110-125, 118 maxillary plate striae. Length of antennal segments (5): 59-79, 69;
15-17, 16; 16-18, 17; 14—19, 16; 8-10, 9 (4); 5-6, 6 (4). AR 0.91-1.13, 1.00 (4). Frontoclypeal apo-
tome similar to A. elachistus (Fig. 4b).
Remarks.
Townes (1945: 33) stated that the genitalia of A. subcinctum were similar to A. elachistus except for
the presence of an anal point and “the slightly longer superior appendage”. Measurements of the
length and width of the superior volsellae revealed no significant differences between the 2 species in
the length or width of the superior volsellae.
The male’s anal point may be present or absent. SusL£ttE (1960: 202) believed that the presence or
absence of an anal point was due to differences in mounting technique. I have found that this generally
is not the case with this species. Although the anal point, when present, may be dislocated laterally due
to cover slip pressure (Fig. 1g), many specimens I examined possessed no anal point (Figs. le, f). No
differences were noted in the immature stages associated with males with or without anal points.
Darsy (1962) encountered pointless males in his study and considered them to belong to A. elachistus;
114
however, the lack of wing spots, as noted by Darby, and the illustrated pupal T VIII spurs (Darsy
1962: fig. 137) identify his specimens as A. subeinctum.
Although Darsy (1962: fig 136) illustrated a pupal thoracic horn with 6 branches, I have not been
able to discern more than 4 branches on the thoracic horn of either A. subcinctum or A. elachistus.
Macy et al. (1970) have noted that at times of peak emergence, A. subcinctum can be considered a
pest species.
Townes (1945) also recorded this species from its type locality in Reno, Nevada.
Material examined: Canada: ONTARIO: Marmora, 1-VII-1952, J. Vockeroth, -3’males (CN). Mexico: JA-
LISCO: Guadalajara, Zucht aus Springbrunnen, 15-V-1981, leg. H. Fittkau, 1 male/Pex, 2 Pex (ZS). U.S.A.: ARI-
ZONA: Coconino Co., Lake Elaine nr Flagstaff, light trap, 15-X-1986, K. Brenneman & H. Speidel, 2 males (JE).
CALIFORNIA: Imperial Co., Hot Mineral, pool from hot spring overflow, 29-III-1967, leg. R. Soroker &
G. Grodhaus, 1 male/Pex, 1 pharate male pupa/Lex, 2 larvae (GG); Lassen Co., 3 mi. SE Johnstonville, reared
from Typha leaf, leg. G. Grodhaus, 1 male, 1 female, 1 pharate male pupa/Lex, 2 Pex, 1 larva (GG); Merced Co.,
Los Banos Reservoir, 1-V, 28-VII-1968, E. W. Mortenson, 3 males (GG); San Luis Obispo Co., San Luis Obispo,
Laguna Lake, 30-VII-1964, 1 female (GG); same locality, 20-VII-1966, leg. G. Grodhaus, 1 male, 1 pharate male
pupa (GG); same locality & collector, 26-VIII-1965, 1 pharate male pupa, 1 larva (GG); same locality, light trap,
8-IX-1965, leg. J. Montez, 2 males (CN); Solano Co., Vallejo, Lake Dalwigk, 2 males, 3 females, 2 larvae (GG).
KANSAS: Barber Co., North Elm Creek, 12.0 mi. N, 7.0 mi. W of Medicine Lodge, 10-VIII-1981, leg. J. Gelhaus,
1 male (KS); Montgomery Co., Verdigris River, 3.0 mi. E, 2.5 mi. Sof Independence, 23-VIII-1980, leg. J. Gelhaus,
1 male (KS). NEW MEXICO: Albuquerque, drainage ditch nr Rio Grande, 20-IV-1967, 1 male/Pex/Lex gCN).
Acknowledgements
I wish to thank Mr. B. A. Caldwell, Dr. L. C. Ferrington, Jr., Mr. G. Grodhaus, Dr. D.R. Oliver and Dr. F. Reiss
for the loan of specimens. Dr. M. D. Hubbard provided helpful comments. This research was partially supported
by a USDA/CSRS grant to Florida A & M University.
Literature
BECK, W.M. & E. C. Beck. 1970. The immature stages of some Chironomini (Chironomidae). — Q. Jl. Fla Acad.
Sc1. 33: 2942
Dargy, R. E. 1962. Midges associated with California rice fields, with special reference to their ecology (Diptera:
Chironomidae). — Hilgardıa 32: 1—206
EDwARDs, F. W. 1929. British non-biting midges (Diptera, Chironomidae). — Trans. R. ent. Soc. Lond. 77:
279430
EPLER, J. H. 1986. Oukuriella, a new genus of Chironomidae (Diptera) from South America. — Ent. scand. 17:
157— 163
—— 1987. Revision of the Nearctic Dicrotendipes Kieffer, 1913 (Diptera: Chironomidae). — Evol. Monogr. 9:
1-139
LENZ, F. 1941. Die Jugendstadien der Sectio Chironomariae (Tendipedini) connectentes (Subf. Chironominae =
Tendipedinae). Zusammenfassung und Revision. — Arch. Hydrobiol. 38: 1-69
MAcy,H. I., G. GRODHAUS, J. D. GATES & J. MONTEZ. 1970. Pondweed — a substrate for chironomids, especially
Paralauterborniella subcincta. — Calıf. Mosq. Control Ass. 37: 115-119
ROBAcK, S. S. 1957. The immature tendipedids of the Philadelphia area. - Monogr. Acad. Nat. Sci. Philad. 9:
1-152
SAETHER, ©. A. 1977. Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys.
— Bull. Fish. Res. Board Can. 197: 1—209
—— 1980. Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. scand. Suppl. 14:
1-51
SUBLETTE, J. E. 1960. Chironomid midges of California. I. Chironominae, exclusive of Tanytarsini (= Calopsec-
trını). — Proc. U. S. natn. Mus. 112: 197—226
115
SUBLETTE, J. E. & M. S. SUBLETTE. 1965. Family Chironomidae. In: A catalogue of the Diptera of America north
of Mexico. — U. S. Dept. Agric. Handb. No. 276: 142-181
Townes, H. K. 1945. The Nearctic species of Tendipedini [Diptera, Tendipedidae (= Chironomidae)]. — Am.
Midl. Nat. 34: 1— 206
Dr.)]. HliEpler,
Entomology, Florida A & M University,
Tallahassee, FL 32307, U.S.A.
116
| SPIXIANA | Supplement 14 | 1171277 | München, 15. Juli 1988
I" ISSN 0177-7424
Denopelopia atria, a new genus and species of Pentaneurini
(Diptera: Chironomidae: Tanypodinae) from Florida
By Selwyn S. Roback and Robert P. Rutter
Abstract
The larva, pupa and J’ and 9 adults of anew genus of Pentaneurini, Denopelopia n. gen. and Denopelopia atrıa
n. sp. are described from Florida. Comparison is made with the genera Pentaneurella, Monopelopia, Telmatopelo-
pia, Krenopelopia, Xenopelopia, and Zavrelimyıa. To date, this species is known only from the type locality, a 7y-
pha sp. — choked drainage ditch in southwest Florida. The larvae are tolerant of extended periods ot low dissolved
oxygen and relatively high iron concentrations, and consume chironomid larvae, naidid worms, ploimate rotifers
and diatoms.
Introduction
The new genus and species herein described were collected and reared by Mr. Rutter from a small ditch near the
Florida Department of Environmental regulation (FDER) laboratory in Punta Gorda, Florida. The specimens
listed are in the collections of the Academy of Natural Sciences of Philadelphia. Additional material is in the Punta
Gorda FDER laboratory. Most of the specimens are slide mounted, those in ethanol are indicated by (Alc.) under
specimens examined.
Abbreviations and Terminology
The following abbreviations and terminology are used in the descriptions, figures and tables. With some excep-
tions they follow SAETHER (1980). The ® genitalic terminology is after SAETHER (1977). The adult wing venation
and pupal abdominal setae follow FITTKAU (1962), the pupal thoraic setae follow COFFMAN (1983) and the ventral
head setae, KOWALYK (1985). The measurements of the ligula and the ratio of the inner and mesal teeth to the outer
teeth are illustrated in ROBACK (1985, Fig. 86). Land W are used to indicate length and width.
Adult Ta} _;, tarsal segments
Ti, tibia
A.1I-X, abdominal segments
I-II, pro, meso-, metathoraic legs
AR, antennal ratio
Ce, cerci 5
Csa, coxosternapodeme A. IX, ® genitalia EDS
F, femur A.I-VIII, abdominal segments
Gc, gonocoxite, © genitalia
GCa, gonocoxapodeme VII, Q genitalia
Gp, gonapophysis A. VIII. Q genitalıa
Gs, gonostylus, ©’ genitalia
HR, hypopygium ratio Gc/Gs
LR, leg ratio Ta,/Ti
NO, notum, ® genitalıa
R, ramı, 9 genitalia
SCa, seminal capsules, Q genitalia
SDu, spermathecal duct, Q genitalia
Aet, aeropyle tube of respiratory organ
AL, anal lobes
ANi, apical nipple, respiratory organ
D,_;, dorsal abdominal setae
Des 1, 2, 4, dorsocentral thoracic setae
L, , lateral abdominal setae
LS, _;, lateral filaments, abdomen, AL
GS, genital sacs
O , O,, anterior setae, abdomen
V,, ventral abdominal setae
117
Larva
a-e, apical palpal sensillae
aa, antaxial seta of lacınıa
A,_,, antennal segments
ABl, accessory blade
AeT, aeropyle tube
ANi, apical nipple
AR, antennal ratio A,/A;_;
Bl, blade
BR, basal ring of Bl
CS, campaniform sensillum
IC, head ratio Y/L
Lc, lacınıa
LCh, lacinıal chaeta
Li, ligula
pa, paraxial seta of lacinia
Pl, paraligula
PH, pecten hypopharyngis
S|_3, lateroventral mandibular setae
Sy_0, genal setae
SP,, sensory pegs A,
SSm, setae submenti
VP, ventral pore
Denopelopia gen. nov.
Type species, Denopelopia atria spec. nov., by present designation
Diagnosıs
Adult — AR 1.6-1.7; CO antenna with 14 flagellomeres, @ with 11; verticals and orbital setae in
simple row (Fig. 9); wing densely haired with slight pattern in both sexes (Figs. 11, 12); costa not ex-
tended beyond R,,;; (Figs 11-13) ends between apices of M and CU, (Figs. 11, 12); m-cu close to
r—m (Fig. 14); tibial spurs with elongate apıcal tooth (Figs. 1-3) more than half the length of the
Comparison of some characters of Denopelopia (D) with those of Pentaneurella (P), Monopelopia (M),
Krenopelopia (K), Xenopelopia (X), Telmatopelopia (T) and Zavrelimyia (Z). C = concave, E = even,
Table 1.
I = inner, OU = outer, + = present, — = absent.
B M K
Adult
AR 1.0 1.0 1.4
Produced Costa 2 = +
end of Costa % Cu,>M >M
T.IX setae = + ir
Ge, basidorsal lobes - = -
Pupa
RO L/W 3.0 Je2 3.0
distinet ANi = = =
long Aet = = =
no. LS.VII 4 4 3
IGS/AL 0.66 >1.00 0.75
AL spines I-OU OU =
Sticky sheath LS,
AL = = =
Larva
SPa sessile + + +
CS,A, position <0.5 025-026 0.607
apices of Li Teeth C (& c
no. Pl teeth 2 2 2
no. PH teeth 15 1 1
118
1:5-148,1...1:6 RE ı
- + - +
Eur SMI, u=ıM EuToMunelM
- + + +
+ + & -
5.0 5.0 11.0 4.0-5.0
£ E + 3
\ 2 + e
4 3 4
0.80 0.66 0.52 1.00+
OU OU ou I-oU
+ - + +
+ + + -
0.5 0.5 0.6 0.6
E E
2 2 3
10 9 11 15
entire spur in length; claws sharp; © genitalia simple (Fig. 18); tergite A. IX with transverse row of
setae; anal point conical; hypopygium ratio about 1.6; goncoxite without internal lobes; L/W >2.00;
DO genitalia (Figs. 15, 16); anterior end of notum slightly expanded; notum/rami 1.4; coxosternapo-
deme 1X curved, broadened mesally; gonocoxapodeme VIII very poorly developed; gonapophysis
VIII rounded somewhat trıangular; labıa bare.
Pupa — Wholly brown; respiratory organ elongate with apical nipple (Figs. 20—22) and small plas-
tron plate; respiratory atrıum with constrictions, about 11 times as long as greatest width; distinct tho-
racıc comb present (Fig. 32) Dcs 1 very short with apparent apıcal points (Fig. 25); scar A. I distinct,
pigmented in shape of inverted T; shagreen of abdomen, short scattered spinules (4 um); venter, A. II
with arcs of combs (Fig. 28); D setae appear shaped as in Fig. 24; A. VII with three LS filaments, A.
VIII with five (Fig. 29); anal lobes elongate-triangular (Fig. 29) with arow of spinules on outer margin
only (Fig. 30); ©’ genital sacs about half as long as anal lobes (Fig. 29); LS filaments of anal lobes with
sticky sheaths (Fig. 29).
Larva — Body of instar IV red, ıinstar III more orange; head IC ratio about 0.50; lauterborn organs
(SP;) on A, sessile (Figs. 35, 36); ligula with all teeth fairly even in length (Fig. 41); paraligula trifid
(Fig. 41); posterior prolegs with two smaller claws with large inner spurs (Fig. 39) and some outer pec-
tination; medium claws (Fig. 39) with a single small inner spine; all claws (14) pale; anal tubules
(Fig. 45) shorter than posterior prolegs.
Discussion
On the basıs of its overall characters Denopelopia appears most closely related to Telmatopelopia
Fittkau and Zavrelimyia Fittkau. The adult head and thoracic chaetotaxy (Figs. 6, 9) closely resemble
that of T. nemorum (Goetg.) as figured in Fırrkau (1962) Figs. 218, 219, 220. The tibial spurs (Figs.
1-3) are also close to those of T. nemorum as are the O’ genitalia (Fig. 18). The wing macrotrichial
pattern (Fig. 11) ıs similar to that of Z. signatipennis (Kieffer) as figured (Fig. 240) by Fırrkau (1962).
The pupa is very close to that of T. nemorum in the form of the Des setae (Figs. 25—27) the form of
the D setae (Fig. 24) and the form and setae of the AL (Figs. 29, 30). The shape of the unusual RO of
Denopelopia (Fig. 20) can be possibly derived by elongating the RO of T. nemorum (Fırrkau 1962,
Fig. 226) with its suggestion of an ANi. The pupa of Denopelopia differs in having a distinct thoracic
comb (Fig. 32) and only three LS on A. VII (Fig. 29). The larval Li (Fig. 41) is close to that of Zavre-
limyia and Telmatopelopia but the trifid Pl is distinct from either of those genera. The two claws of
the PP with large inner spurs (Fig. 39) resemble those of Zavrelimyia. The latter genus has none to
only one claw of that form. Telmatopelopia possesses several pectinate claws on the PP.
The sessile SP, (Fig. 36) would superficially appear to relate Denopelopia to Pentaneurella Fittkau
& Murray, Monopelopia, Fittkau, Krenopelopia Fittkau, Xenopelopia Fittkau, and Telmatopelopia
Fittkau. However, as noted above, the only one of those genera to which it appears more clearly rela-
ted on the basis of other characters is Telmatopelopia. Zavrelimyıa lacks the sessile SP,. Table 1 com-
pares some of the characters of all those genera with those of Denopelopia and will serve to help differ-
entiate them.
The ® genitalia of Denopelopia (Figs. 15-17) will key to Zavrelimyıa in SAETHER (1977), differing
in the slightly expanded anterior end of NO and the broader R of Gp IX. The other characters in
Saether’s description of the Zavrelimyıa Q genitalia fit Denopelopia closely. The Q genitalia of Telma-
topelopia as described by RopovA (1971) and cited by SAETHER (1977) possess only two seminal capsu-
les.
Geographically Denopelopia poses somewhat of a problem. Telmatopelopia has not been to-date re-
corded from either the Nearctic or Neotropical Regions. The presence of Denopelopia in southern
Florida would suggest a Neotropical derivation. This is possible, inasmuch as the Neotropical fauna
is still very poorly known. T. nemorum has been found only in the western Palaearctic.
111%)
Denopelopia atria spec. nov.
In the following descriptions, unless otherwise indicated, the n for th x in the CO’ adult = 4 and for the pupa and
larva = 5.
Adult ©’ — head brown; eyes bare; outer verticals 107 um long, uniseriate; orbitals uniseriate ex-
tend to center of dorsal eye extension (Fig. 9), 63 um long; pedicel with five setae, 141 um diameter
(Fig. 9), pedicel 1.41% interocular space; AR 1.63—1.71 (X 1.683); flagellomere 14, 80 um long with
Figs 1-10. Adult. 1. spur, tibia I; 2. spurs, tibia II; 3. spurs, tibia III; 4. comb, tibia III; 5. apex of Ta, II;6. scutum,
male, dorsal view; 7. apices of dorsocentrals and acrostichals, female; 8. antepronotum, lateral view; 9. anterior view
of male dorsal eye extensions and head setae; 10. flagellomeres 8 and 9, female antenna.
120
Table 2. The range of and x of the leg segment measurements um and LR for adult Q’ and ? Denopelopia atrıa,
x ın parentheses, n = 3.
d F Te! Ta, Ta, Ta, Ta, Ta, LR
P] 636-722 677-833 592-707 318-370 266-322 181-204 89-107 0.85-0.88
(673.3) (762.2) (661.3) (Se) (299.7) (192.3) (96.3) (0.867)
PJ 699-792 629-751 496-555 237-278 162-222 103-130 73-89 0.74-0.79
(698.0) (701.7) (534.0) (261.7) (192.0) (117.0) (82.7) (0.763)
P, 629-722 803-940 666-755 352-407 248-300 148-181 78-104 0.80-0.83
(674.7) (879.3) ASS) (386.3) (281.3) (169.0) (91.7) (0.813)
[) I abal Ta, Ta, Ta, Ta, Ta, LR
P 592-622 703-777 570-599 307-315 233-252 155-167 93-100 0.77-0.82
\ (608.3) (734.0) (581.0) KR) (244,3) (167.7) (96.3) (0.793)
P, 685-770 681-740 459-496 241-266 163-167 107-118 89-93 0.66-0.67
(725.7) AO) (477.3) (249.3) rESENT) (112,0) (90.3) (0.667)
B 629-692 870-932 629-648 333-370 241-274 148-167 89-100 0.70-0.72
3 (655.0) (909.0) (640.3) (354.0) (260.3) (159.3) (94.0) (0.707)
preapical seta 61 um L; clypeus with 22 long setae; palpus segments ın ratio 26, 78, 141, 170,301 um;
campanıform sensillum ventral on segment 3; antepronotum (Fig. 8) with 2-3 antepronotals and an
upper (15 um L) and lower (32 um long) membranous projections; scutum (Fig. 6) pale brown; vit-
tae, episterna, postnotum, bare, dark brown; scutellum paler brown; 9— 12 setae on disc + 15 anterior
smaller setae; three humerals; dorsocentrals irregularly uniseriate (Fig. 6); acrostichals biseriate, ex-
tend to caudal end of median vittae; a single seta mesal and behind dorsocentrals; six-nine prealars and
one supra-alar; wing (Fig. 11) with overall hair pattern, slightly paler mesally; length 1.6—- 1.7 mm; co-
sta not produced (Fig. 13) ends between M and Cu,; R, not present; m—cu 0.30 arculus to wing tip;
crossvein area of wingas in Fig. 14; legs pale, unmarked; leg measurements and ratios in Table 2; ratio
of longest hairs of Ti, Ta, , to mesal segment width in Table 3; slight beard present on Ta, ; I; hairs on
Ti, Ta, II, III longer than on I; spur Ti I 48-54 um L with three lateral teeth (Fig. 1); spurs Ti II
413
N
\
Figs. 11-14. Adult. 11. male wing; 12. female wing; 13. detail of apex of costa, female wing; 14, detail base of ra-
dial sector and r-m, m-cu crossveins.
127
57-58 and 31-35 um long with three lateral teeth (Fig. 2); spurs Ti III 73-77 and 34—35 um long
with three lateral teeth; comb Ti III (Fig. 4) of seven setae; pseudospurs on Ta,, Ta; (Fig. 5) and Ta; ,
Il; none could be discerned on leg III; abdomen with A. I-III pale; basal third of A. IV brown; A.
V-VIII wholly brown; A. IX with 8-10 setae; A. X conical, membranous; genitalia as in Fig. 18,
pale; Gc 118-126 um L (x 124.0); Gc length/width 2.00-2.27 (x 2.133); Gs 74-81 um L (x 77.8);
HR 1.45—1.70 (x 1.598); megaseta of Gs, 11 um L; only strut 3 clearly discernible (Fig. 18).
Figs. 15-18. Adult genitalia. 15. female, ventral view; 16. female, lateral view; 17. detail of seminal capsule and
duct; 18. male, dorsal view.
Adult Q — Head verticals and orbitals as in CO’; pedicel with 6-7 setae; scape with 4—6 setae;
pedicel 81 um diameter, equal to interocular space; antenna with 11 flagellomeres; flagellomere 1
73-76 um L; flagellomeres 2-4, 44—51 um long; flagellomeres 5-8, 55-61 um L; flagellomeres
9—10, 64-70 um long; flagellomere 11 145—146 um L with 115 um preapical seta; flagellomeres 8,
9 as in Fig. 10; basiconic sensillum 73 um long; clypeus and palpus as in O’; antepronotum and scutum
marked as in ©; 8-11 humerals; 8-12 prealars; dorsocentrals extended caudad as are acrostichals
(Fig. 7); 10 scutellars across disc; postnotum as in ©’; wing 1.30—1.33 mm; wing venation as in CO;
hairs in basal third of wing denser and darker (Fig. 12); apex of C and R, ;; (Fig. 13); legs as in CO’, un-
marked; tibial spurs and comb III as in O’; leg measurements and ratios in Table 2; longest hairs on
Ta, ; I not longer than those on Il and III (Table 3); hairs on Ti and Ta, II, III longer than those on
Tı, Ta, I as ın J (Table 3); abdomen wholly brown; genitalia as in Figs. 15, 16; SCa (Fig. 17) pale
Table 3. Ratio of longest hairs/mesal segment width for O’ and 9 Ti, and Ta,_; all legs, Denopelopia atrıa.
o* Tat Ta, Ta, Ta, [) rat Ta, Ta, Ta,
Pl 4,40 4.62 133 6.50 E12 3275 ST 3.43 2.85
P) 6.00 5.29 4.50 3.83 2056400 5.00 3.14 er 1
P2 8.00 7.69 3.883 6.00 P2 6.67 6.00 5.43 3
122
brown, 63x55 um; L/W 2.25; SDu (Fig. 17) thın walled with special secretory cells; NO 108 umL,
slightly widened anteriorly; R 77 um (Fig. 15); NO/R 1.40; Gca VIII poorly developed; Csa IX cur-
ved, slightly broadened mesally (Figs. 15, 16); gonocoxite IX small; gonotergite IX well developed,
bare, appears transversely striate; Gp VIII apically rounded, somewhat triangular (Fig. 15) labia bare;
X with three-four setae on each side (Figs. 15, 16), Ce (Figs. 15, 16) 63x55 um; L/W 1.15; Sca/Ce
1.40; Sca/NO 0.58.
Pupa — Exuviae including wing pads medium to dark brown; frontal apotome as in Fig. 19; respi-
ratory organ (Fig. 20) elongate, narrow with a distinct apıcal nıpple (Figs. 21, 22); overall length of re-
spiratory organ 480-533 um (x 508.0); respiratory atrıum with varıable constrictions; 432—480 um
long (x 460.8); L/W 10.7—11.5 (x 11.14); greatest width of respiratory atrıum 0.37 from its base; apical
nipple, lightly sclerotized, 66-76 um L (x 70.0); L/W 2.22—3.46 (x 2.586); aeropyle tube with bend
toward base (Figs. 21, 22); overall 61-67 um_L (x 64.2); plastron plate (Fig. 21) ovoid, 15-16 um L
(x 15.3, n = 4); L/W 0.53—0.79 (x 0.643, n = 4); base of respiratory organ with small surface spines
(Fig. 23); a distinct thoracic comb of 10-11 short conical tubercles present (Fig. 32); precorneal setae
not clearly discernible; dorsocentral setae in Figs. 25-27, Dcesl, short with 3,4 points, 9 um L (Fig.
25); Dcs2 (Fig. 26) 20 um L; Des4 (= Sas) 27 umL (Fig. 27); scar A. I distinct, pigmented in the form
of an inverted T; abdominal shagreen of scattered fine spinules about 4 um L; venter of A. I with arcs
of spinule combs, 5-12 um_L (Fig. 28); A. I with three D setae; A. I and A. VII (Fig. 34) with four
D setae; A. III-VI (Fig. 33) with five D setae; L, appears present on A. I-VI; L, on A. I-VII; V, ,
on A. III-VII; almost aligned and close together on A. VII (Fig. 34); arrangement of D, L, V setae of
A. V shown in Fig. 33; D setae appear shaped as ın Fig. 24; most D setae distorted in mounting; on
* dr
r nn ANNDADP =
Figs. 19-34. Pupa. 19. frontal apotome; 20. respiratory organ; 21. detail of apex of respiratory organ, dorsal; 22.
detail of apex of respiratory organ, lateral; 23. detail of base of respiratory organ; 24. seta D;, A. IV; 25. seta Desl;
26. seta Dcs2; 27. seta Dcs4 (= Sas); 28. ventral combs of A. II; 29. A. VII, VII and anal lobes; 30 detail of anal
lobe; 31. detail apex of anal lobe; 32. thoracic comb; 33. setal pattern of A. V; 34. setal pattern of A. VII.
123
A.V D, 73 um L; D, (Fig. 24) 5l um L; D; 24 um L; Op and Oy in anterior segment margins
(Fig. 33); on A. VIL (Fig. 34) Op, Oy distinctly caudad of anterior margins; anterior of A. III-V pro-
duced strap-like (Fig. 33) with transverse grooves; A. VII with three LS filaments about 348 um L
(Fig. 29); filaments placed at 0.47, 0.74, 0.94 from base to apex of segment; A. VIII with five LS fila-
ments about 481 um L (Fig. 29); filaments placed at 0.28, 0.54, 0.72, 0.87; 0.98 from base to apex of
segment; on some specimens L, of A. VL ıs enlarged into filament 222 um L; anal fins elongate. trian-
gular (Fig. 29) with row of 9-13 spinules (Fig. 30) on outer margin; spinules 8-9 um L; anal lobes
344—418 umL (x 387.8); L/W 3.21—3.64 (x 3.492); lateral filaments of anal lobes with sticky sheaths
(Fig. 29); LS, about 222 umL placed at 0.39—0.42 (x 0.408) from base to apex of anal lobes; LS, about
259 um L placed at 0.49—0.52 (x 0.506) base to apex of anal lobes; apex of anal lobes knob-like
(Fig. 31); ©’ genital sacs, slightly narrowed apically; 0.49—0.55 (x 0.523, n = 3) length of anal lobes;
Q genital sacs 0.26 (x 0.275, n = 2) length of anal lobes.
Figs. 35—45. Larva. 35. apıcalantennal segments; 36. detail of apex of A}; 37. maxillary palpus and apical sensillae;
38. detail of lacinia of maxilla; 39. smaller claws of posterior prolegs; 40. mentum; 41. ligula, paraligula and pecten
hypopharyngis; 42. ventral head setal pattern; 43. detail of lateroventral mandibular setae; 44. detail of apex of man-
dible; 45. anal tubules, lateral view.
124
Larva — Head pale brown; length 739-749; IC 0.51; depth/length 0.52; labrum similar to Abla-
besmyia (Roback, 1985, Figs. 11, 12); So, Sjo, SSm and VP (Fig. 42) similar to Monopelopia (Kowauyk,
1985); A, 300-318 um (& 307.8); CS, A, 0.55-0.61 (x 0.570) from base; A, 94-100 um (Fig. 35)
(x 96.7,n = 3); L/W A, about 12; A; 4 um; A,4—-5um; AR 2.75—2.91 (x 2.846); Bland ABl (Fig. 35)
subequal in length to A,_4; BV/A,_,0.95—0.98 (x 0.963, n = 4); Bl 100-111 um (x 104.8,n = 4); ABl
102-111 um (x 105.8,n = 4); basal ring (BR) 24 um L; '/W 3.00 (Fig. 35); sensory pegs (Lauterborn
organs) of A, 4-5 um L; sessile on apex of A; (Figs. 35, 36); blade of A, (Fig. 35) about 7 um L; man-
dible 107-122 um; lateroventral setae (S,_;) as in Fig. 43; S, short and peg-like; inner teeth and seta
subdentalis (Fig. 44); apıcal tooth of mandible about 0.30 length of mandible and 2.75 as long as width
at base; A,/mandible 2.57—2.80 (x 2.656); palpus (Fig. 37) 44-47 um L (x 45.0); 1/W 4.43—5.17
(x 4.758); CS of palpus 0.64—0.71 from base (x 0.690); apical segments ot palpus (b) and sensillae (a,
c,d, e, f) shown in Fig. 37; lacınıa as ın Fig. 38 with border of LCh; antaxial seta and paraxial setae on
membranous projections, simple (Fig. 38); A,/palpus 6.45—7.07 (x 6.848); ligula (Fig. 41) 77-78 um
(x 81.8); inner and mesal teeth appear slightly paler; inner teeth and mesal tooth 1.00-1.02 length of
outer tooth (x 1.012); paraligula trıfid (Fig. 41); 44—45 um L (x 44.4); first inner tooth apex at about
0.75 base to apex; second inner tooth apex 0.65 base to apex; pecten hypopharyngis with 11-12 teeth
(Fig. 41); mentum as ın Fig. 40; pseudoradula slightly broadened basally, pustules random; M appen-
dage and ventromentum clearly separated, laterally separation appears partially sclerotized with al-
veoli (Fig. 40); two dorsomental teeth present; body red in fourth ınstar, more orange ın third; ante-
rior prolegs about 469 um L, fork about 0.76 of their length from base; claws 29-58 um L, simple;
those under 29 um with 1-3 fine inner spines; procercus 159-170 um (x 163.8, n = 4); L/W
4.74—5.38 (x 5.000, n = 4); with seven apical elongate setae; two lateral setae below procercus; upper
simple, 38 um; lower multibranched, 92 um; supraanal setae about 350 um L; three lateral setae be-
low supraanal seta, upper bifid 114 um; mesal seta simple 27 um; lower bifid 54 um; subbasal seta of
posterior prolegs simple, about 230 um L; claws of posterior prolegs pale brown; two shortest claws
(Fig. 39) with strong inner teeth and some spinules on outer margins, three slightly larger claws with
one small internal spine (Fig. 39); nıne longer teeth narrow, finely pectinate; anal tubules as ın Fig. 45;
upper about 192 um L; lower 155 um; both slightly more than 4 times as long as greatest wıdth.
Specimens examined
Holotype — ©’ pupal exuviae-adult, shallow ditch near FDER laboratory, Punta Gorda FL, VII-1986, coll. Rutter.
Allotype — ? pupal exuviae — adult, same data
Paratypes - 50°C, 39 pupal exuviae — adult, same data; 3PP pupal exuviae — adult, same data (Alc.)
Non-types — 12 larvae; 400°, 3 Q pupae, same data: 19 larvae; 200°, 3 Q pupae, same data: (Alc.).
Habitat, Ecology and Rearing
To date this midge is known only from the type locality, a shallow drainage ditch surrounding the
Punta Gorda Branch Office of the Florida Department of Environmental Regulation (FDER) in
Charlotte County. Charlotte County lies in the transition zone between the humid subtropical clı-
mate that prevails over much of the southeastern United States and the quasi-tropical climate of
southernmost Florida. Freezing temperatures are rare. Rainfall averages between 127 and 140 cm per
year. Although some rainfall normally occurs every month, there is a distinct rainy season extending
from May through September and a low rainfall season from October through April. About 60 to 65
percent of the annual rainfall occurs during the late spring-summer rainy season (FERNALD & PATTON
1984, p. 179).
The 3 m wide ditch, at least 12 years old, was constructed to aid in stormwater drainage but has wa-
ter yearround due to groundwater seepage. Ditchbank vegetation includes cinnamon fern (Osmunda
125
cinnamomea), royal fern (O. regalıs var. spectabilis), water prımrose (Ludwigia sp.), wax myrtle (My-
rica cerifera), exotic Brazilian pepper (Schinus terebinthifolins), swamp willow (Salıx caroliniana),
southern fox grape (Vitis munsoniana), and south Florida slash pine (Pinus elliottii var. densa). Emer-
gent species are cattail (7’ypha sp.), present throughout the ditch, duck-potato (Sagıttaria lancifolia)
and pickerelweed (Pontederia lanceolata). Overstory canopy is restricted to the shoreline, but the
dense growth T'ypha sp. effectively shades much of the open water areas.
The pupae and adults were reared from fourth instar larvae collected in mid-July and early August
1986. A D-frame aquatic dip net was pulled swiftly backward along the bottom among the cattails pro-
ducing currents which suspended the surficial detritus, then the direction was rapidly reversed and the
mouth of the net bag was pushed forward through the incoming water. In this manner about 24 larvae
were collected with a minimum of debris from an area of approximately 3 m’.
Water depth in the area where D. atria larvae were collected was 613 cm and water movement was
barely perceptible. The bottom was 34 cm of accumulated leaf and needlefall from rıparian and emer-
gent vegetation, overalain by an orange floc. Values for selected physicochemical parameters measu-
red at this location at a depth of 4 cm on 14 July 1986 were: temperature 27.5C, specific conductance
370 umhos/cm, pH 7.1, dissolved oxygen 0.3 mg/l, Fe 1.2 mg/l. On 19 December 1986 values were:
21.5 C, 345 umhos/cm, 7.1, 0.6 mg/l and 2.8 mg/l, respectively. An iron concentration of 108 mg/l
was recorded for a floc sample collected from the bottom on 22 December 1986.
Midges coexisting with D. atrıa in August were Chironomus sp., Goeldichironomus holoprasinus
(Goeldi) and Zavreliella varipennis (Coquillett); in December were Chironomus sp., Einfeldia austini
Beck & Beck and Tanypus carinatus Sublette. Larvae of the phantom cranefly, Bittacomorpha sp.,
were also present in both months. Gut contents of 15 slide-mounted D. atria larvae included Chirono-
mus sp. larvae, naidid worm setae, unidentified arthropod parts, the ploimate rotifer Lecane sp., a va-
riety of pennate diatoms (Achnanthes sp., Cymbella sp., Gomphonema sp., Navicula spp., Nitzchia
spp., Pinnularıa sp.) and undifferentiated detritus.
Fourth instar larvae were held communally in a 5.0X 8.5 cm clear glass container filled with 75 ml
of ditchwater, several detrital willow leaves and floc. In the rearing container larvae clung either to the
underside of the willow leaves or to the small irregular clumps of floc/fine detritus. The larvae readily
pupated and each pupa was placed in to a 17x60 mm 2dram clear glass vial containing 4 ml (depth
25 mm) of ditchwater and either a toothpick or willow leaf extending through the air/water interface.
Pupae typically assumed a “C” configuration against the submerged portion of the leaf or stick, and
often times were observed with the respiratory organs against the water surface. When prodded they
were strong swimmers. However, all pupae died within 36H, some in the process of eclosion. Subse-
quently all but 3 mm of water was drained from the vials and some willow leaf fragments were placed
on the bottom. This worked nicely and several adults emerged successfully. It appears that the pupa
of this species may leave the water partially or entirely at some time prior to ecolosion.
A multitude of habitats and water quality conditions in southwest Florida rivers, streams, canals,
lakes and ponds have been sampled for benthic macroinvertebrates since 1980 as part ofthe FDER wa-
ter quality monitoring program, but not a single specimen of D. atrıia has been collected. This suggests
restrictive ecological requirements for the species, most likely the larval stage. FDER sampling in
ditches is rate, but such habitats are not uncommon in southwest Florida. Ditching to improve
drainage for pastureland, cropland and residential developments has been and still is extensively
employed. Southwest Florida has an extensive surficial aquifer system (FernaLp Parron 1984, p. 36),
and in Charlotte County the water table may be at or above land surface for months in poorly drained
areas. Many wells that tap this aquifer in the central portion of the county produce water with more
than 2 mg/l of iron (Surcuirre 1975). According to Woransky (1978) a significant but unknown
amount of discharge from this unconfined aquifer is into canals and drainage ditches. Further
collecting in ironrich groundwater seeps may reveal additional populations of Denopelopia atria.
126
Acknowledgements
We would like to thank Andy Barth who identified gut content diatoms, Robert A. Christianson who supplied
literature on Charlotte County groundwater, Douglas L. Fry who identified the rotifers, Don E. Sessions who mea-
sured some physicochemical parameters, and Gail M. Sloane who identified some ditchbank vegetation.
Literature
COFFMAN, W.P. 1983. Thoracic chaetotaxy of chironomid pupae (Diptera: Chironomidae). — Mem. Amer. Ent.
Soc. 34: 61-70.
FERNALD, FE. A. & D. J. PATTON (eds.). 1984. Water resources atlas of Florıda. — Florida State Univ., Tallahassee.
291 pp.
FITTKAU, E. J. 1962. Die Tanypodinae (Diptera: Chironomidae). — Abhandl. z. Larvalsyst. der Insekten. 6: 453 pp.
KOowALYK, H. E. 1985. The larval cephalic setae in the Tanypodinae (Diptera: Chironomidae) and their importance
in generic determinations. — The Can. Ent. 117: 67-94.
ROBACK, S. S. 1985. The immature chironomids of the Eastern United States VI. Pentaneurini — Genus Ablabes-
myıa. — Proc. Acad. of Nat. Scı. of Phila. 137 (2): 153-212.
RoDovA, R. A. 1971. Lichinka ı samka Telmatopelopia nemorum (Geotghebuer, 1921) (Diptera; Chironomidae).
— Tr. Inst. Biol. Vnutrennikh Vod, Akad. Nauk SSR 22 (25): 144—151.
SAETHER, O. A. 1977. Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys.
— Bull. Fish. Res. Board Can. 197: V + 209 pp.
—— „1980. Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. Scand. Suppl. 14:
51 pp.
SUTCLIFFE, H., Jr. 1975. Appraisal of the water resources of Charlotte County, Florida. — Florida Bureau of Geo-
logy, Rept. of Invest. 78. Tallahassee. 61 pp.
WOLANSKY, R. M. 1978. Feasibility of water-supply development from the unconfined aquifer in Charlotte
County, Florida. — USGS, Water-Resources Invest. 7826. Tallahassee. 34 pp.
Dr. Selwyn S. Roback,
Academy of Natural Sciences of Philadelphia,
19th and the Parkway, Phila., PA 19103, USA
Mr. Robert P. Rutter,
State of Florida, Dept. of Environmental Regulation
7451 Golf Course Blvd., Punta Gorda, FL 33950-0359, USA
112%
ee Ishitpiäie Sa hi wi rad ke ae nase ta
=
u u iz
ı r|
ren ma tunen 2 ren ar, arte urn j
be ee len Ber er teeis Habafhierh rung will (Sfr a
tk art
arch ATR sh > range
dee ine Ten a re Maler a ee |
ame Ar ae N Barren im faul y nett bern Ph & Is
jan A fr fiune iii ur rt w an rule dieh keit an ag a ind din bernaune andaun a
RA RAR A KT a ee
ZEN DER IP 2 rer zarte ilorwardW rue ie Bufissiın: wurter. Entlil menge
ersceeere bet er reeeaeer rs.L.l
un depik wahren uva de - » iS cra ind wat
ae Kader) la N BERLIN ELBE.
DDMRRD al a unnperide): sunait) Mn 4 Aykkee En Irahdlri
eg eo SAR ud nn) 5 Zange “+
KURS and faulen IV rot: Emm Aal Ba been ee DE?
‚iz 77 RE OL A Ye ad et Te BR, j
ln Iyteh lpEr ce) N ARTE ri
u) pre) ler {ot mie Cost vierte E Te Wa Key ‚fol
Rsoeldi) Ark Aatrelic he nern. ee Te 1 «] SEELE 47, inne eh Ha
ar disk En nl te Kalddı m rn ag: Qlbr: ne Jemmasufbate
we an Don ih Bart rar Do 4 Auer 1 ia: ü
RR RE RR a Bu auphee oe Br Sr Als
Ev fl Dale #, Y s 3
Jigıy HELEN h , EFEER
Be 2) alla” uns Bar it in! ori ger Die te | de
« b
SE esthlarin I5Ad u; ir‘ BAER CHURT, a gu are r vair Ww Edel &
Forerh dtastar larvag Wer Tr 5
ut it N ea DER Fota
fdachwatet, vevardl una 3! willen ı are fh, Ith: N are ie
Serra heile Inarca on KR RraRtE hagtiues A Are
Dip) and edglsälhinn - Diieh PYRD EP BRATEN, drar Iear file ara] + ran
Eu RAT A reihen ber oe a eure
uerpir uea"l" confeuraton aueh re reihe
Blu Ira wen See ri POS LIE BELEG 7 = PL TE
ve POSIBAKBrA ie here u. dr pioeifah af
Ar a EZ EN su wre ee
in. bie ken, Var wurk: 3% wz ı, zul ware Fe np u
bie ginn ar Master de wnier fiawunlie or ankırol er re
Akte es nd Ws das)ır ausfh; os Yartda Arecs, ae
1ARcı And fasten hama an rrpihend kerki act a RO ar
v. ality MAYER FURLLEN, Du DE Fa DEP Zeile = a url 75
RATE ST En re" WErrtLar en vie Be anna u an tige us R
decken. narr, Diner abi 5 ererüinn 12 #5 Florida ı Une
Bralnage ia Dame u, seo ri sul mal dr TR su men and e
pie yeıhwen lurida hass 00 damginvo g InTenune I ern t? Fundiar® 11.4 ">
and in CAarlstte Cnansy cha wat ae nn ea er eerlarrheni $ jr
Ara». Aluny wreibs si an ıhla anne un tie cruutee) ga ala . et eralace £
aa Atmg/b ol ap Kruste 1375), Aueirurg m Wars EEE ir her “
wre ehere sn braunen rd sul a rag Ir
i wilsenmg un ügtich Eruun WIE ee Ay he adlirlenal gar siaiona of
ku
u
eo
EEE EEE
SPIXIANA Supplement 14 | 129-137 München, 15. Juli 1988 ISSN 0177-7424
Morpho-karyological description of Euryhapsis subviridis (Siebert)
from the South of the Soviet Far East
(Diptera, Chironomidae)
By E. A. Makarchenko, ]J. J. Kiknadze and J. E. Kerkis
Introduction
The species Euryhapsis subviridis (Siebert) belongs to the primitive Orthocladiinae including also
chironomids of the genera Eurycnemus Wulp, Xylotopus Oliver, Brillia K. and Irisobrillia Oliver
(Ouıver, 1981, 1982, 1985; OLıver & Rousser, 1983). Out of the genera given, only species Brıllia and
mainly B. longifurca K.' and B. modesta Mg. (Pankratova, 1970; SHiLovAa, 1976) are widespread over
the USSR. In addition to representatives of this genus (B. flavifrons Joh., B. modesta, B. laculata Olı-
ver & Roussel’, we have found two species of Euryhapsis Oliver: E. cılum Oliver and E. subviridis
(Siebert) in the Soviet Far East, the metamorphosis of the latter being examined from larva to imago
and the larvae fixed for karyoanalysıs.
Chironomids of the genus Euryhapsis which is new to the USSR fauna at all stages of development
are close to Brillia, however they can be easily recognized by the structure of male hypopygium (wide
transverse sternapodeme, distomedial lobe of gonostylus with 2 terminal and few subterminal lamel-
late macrosetae and shorter than subapical lobe, by structures of pupa sternites (sternites VII—VIII
each with a posterior row of spines on low protuberance) and by antenna structure of larva (the 2nd
segment is never divided into 2 parts).
There are detailed descriptions of the preimaginal stages in E. cılium and imago of North America
and Mongolia (OLıver, 1981) whereas E. subviridis was identified by the only male from Austria (Sır-
BERT, 1979). That is why the present work deals with description of larva and pupa of this species as
well as the re-description of a male obtained in the Soviet Far East. As the larvae of Euryhapsıs are
poorly distiguished by their external morphological characters we considered it necessary to carry out
the karyological analysis of E. subviridis and to give the first description of its karyotype demonstra-
ting the photomap of the polytene chromosomes as well as to present information about the chromo-
some polymorphism in the Sakhalın population studied.
Karyotype analysis has contributed much to our current knowledge of the taxonomy and evolution
on Chironomidae (Keyı, 1961, 1962; Marrın et al., 1974; Marrın, 1979; WULKER & BUTLER, 1983; BE-
LYANINA et al., 1983). The karyotypes of more than 130 species of the subfamily Chironominae have
been most extensively studied. Based on karyological data, the taxonomic position of many species
was made more precise, anumber of new ones described (among which of particular interest are the
sibling-species), and the phylogenetic relation of the species to each other were established (Kryı,
! In our opinion B. longifurca Kieffer, 1921 should be considered as a synonym of B. flavifrons Johannsen, 1905
because the male hypopygium of these species are identical.
* Previously this species was known only from North America (OLIVER & RoUussEL, 1983).
129
1962; Marrın, 1979; WÜLKER & BUTLER, 1983; Devaı etal., 1983; Ryser etal., 1983; KıknapzE & Kerkıs,
1984, 1986). Other subfamilies, however, in particular Diamesinae and Orthocladiinae, have been less
studied on karyological grounds. At present the number of Orthocladiinae species studied is just 40
or so, Diamesinae — about 7 (KuserskayaA, 1974, 1979, 1984; MECHELKE, 1953; MıcHA1LovA, 1976, 1980,
1985, Perrova, 1983), and this is clearly insufficient for a general consideration of the karyosystema-
tics of the entire Chironomidae family.
Materials and methods
Material for morphological studies of E. subviridis: 20°C’, Primorye, Khasan Region, Barabashevka River,
17. VII.1975 (E. Makarchenko); 10°, Primorye, Dalnegorsky Region, Inza River, 1.X.1983 (E. Makarchenko);
10), ibid., Partizansk Region, Partizanskaya River, 18.V.1984 (E. Makarchenko); 1 0°, Sakhalin Island, Tym Ri-
ver, 18.1X. 1979 (E. Makarchenko); 20°0°, 1399, 8 pupae, 12 larvae, ibid., Sokol Village, 18. VII. 1986 (E. Ma-
karchenko). Larvae and pupae were fixed by 70% ethanol and imagines by Udemans solution.
Terminology and abbreviation to A. I. SHıLOVA (1976) and SAETHER (1980).
The larvae for karyological analysis were fixed in 3:1 ethanol-acetic acid and stored in arrefrigirator. Analysis was
performed on squashed spreads of salivary gland polytene chromosomes prepared by the standard aceto-orcein
technique. The gonads and the imaginal discs stained with aceto-orcein were used for the meiotic and mitotic meta-
phase chromosome spreads. Determination of larvae age was based on the morphology of the imaginal discs
according to WÜLKER & GÖTZ (1968). The total number of larvae studied was 28.
Euryhapsis subviridis (Siebert) comb. nov.
SIEBERT, 1979: 167— 168 (Brillia)
Male (n = 8).
Total color greenish-white or yellowish white. Head brownish or reddish, eyes black, antenna
brownish, thorax yellowish or greenish. Legs white or greenish, spurs of tibia black. Length,
4.5—5.9 mm; TL/WL 1.4—1.7.
Head. Verticals, 13-25; postorbitals, 6-11; clypeals, 11-28. AR 1.58—2.27. Length of last four
maxillary palp segments (gu): 55— 75.8; 250-345; 160— 244; 157.5—247.5.
Thorax. Antepronotum with 3—6 dorsomedial and 8-16 ventrolateral antepronotals. Dorsocen-
trals, 36-55; prealars, 11—21; supraalars, 1; scutellars, 34—36.
Wing with micro-and macrotrichias. Length, 2.7—3.8 mm. Squamal setae, 9-51.
Legs. LR, 0.86-0.88; LR; 0.55—0.59; LR; 0.57—0.75; SV, 2.0-2.1;SV, 3.5-3.74; SV, 2.49—2.98;
BV, 2.17-2.38; BV, 2.8—3.48; BV, 2.61—2.72. Hind tibial comb consisting of 8-9 spines.
Hypopygium (fig. 1 A—H). Tergite IX with 12-28 setae; sternite IX laterally with 4-9 setae. Go-
nocoxite parallel-sided, without stout setae on dorsomedial margin. Superior volsella with 18-30 se-
tae (about 30 u of length). Distomedial lobe of gonostylus about three-quartes as long as subapical
lobe and with 2 terminal and 6-8 subterminal lamellate macrosetae. Transverse sternapodeme square
to rectangular with a truncated apex.
Pupa (n = 6)
Colour grey or dark grey, anal lobe yellowish or greyish; length, 6.3—-8 mm. Exuviae grey.
Thoracic horn brownish-yellow or yellow; large, pointed and covered with spinules only in the up-
per three quarters (fig. 2A). Length of thoracic horn 481.4—572.7 u; ratio of length of thoracic horn
to width of thoracic horn 5.2—6.9.
Tergites II-V each with rough shagreen on all surface (fig. 3D); tergite VI medial with tender sha-
green only. Tergites II-VI each with posterior row or rows of spines (fig. 3C, E). Tergites VII-VIII
130
Fig. 1. Male of Euryhapsıs subviridis: A-C — hypopygium (A — from Sakhalın Island, B-C — from Primorye),
D-F — gonostylus, G-H -— transverse sternapodeme (G — from Primorye, H — from Sakhalın Island).
| H
Fig. 2. Pupa(A-B) and larva (C-H) of Euryhapsis subviridis: A — thoracic horn; B — segments VII-IX ofmale,
ventral; C — SI-SIV setae of labrum; D — premandible; E — frontal apotome, clypeus, and labral sclerites; E —
antenna, G — mandible, H — mentum.
without shagreen and posterior rows of spines. Sternites II-III each with very tender anterior sha-
green only. Male sternites VI-VIII each with a posterior row of spines, on low protuberance on VII
(fig. 3F) and two low protuberance on VIII (fig. 2 B); female sternites VI- VII similar to male, and two
large, flap-like protuberance on VII (fig. 3G). Number of spines of posterior row of sternites
VI-VII: 14-17; 13—14; 10-16. Conjuctives IVIII-IV/V with spinules (fig. 3A-B). Segments
I-VIII each with 4 L-setae; length of lateral setae of segments I-V 105.6—-132 u, of segments
VI-VII 161.7—-264 . Anal lobe with complete lateral fringe of 26-34 setae and 3 anal macrosetae
(fig. 2B).
1
Fig. 3. Structures of tergites and sternites of pupa Euryhapsis subviridis: A — posterior row of spines tergite Il and
conjuctives IV/III, X275; B — ibid, X525; C — posterior rows of spines tergite III, x525; D — shagreen of tergite
III, x525; E — posterior row of spines tergite VI, X525; F — posterior row of spines sternite VII, X275; G — poste-
rior row of spines sternite VIII of female, X 275.
Larva, fourth instar (n = 6)
Colour white or greenish; length, 8.2—8.9 mm. Head capsule yellow, width of head 0.4—0.5 mm;
eye spot, apical half of mandible and mentum black.
Labrum granular on lateral; labral sclerites as on fig. 2E. SI setae of labrum distal plumose,
S II-SIII simple, S IV present, but very small (fig. 2C).
Antenna yellowish-brown, 4-segmented; ring organ near base of first segment; antennal blade ab-
out 1.5—1.6 times as long as combined length of flagellar segments (fig. 2F); AR 1.63—1.95. Preman-
dible distal with 3 teeth (fig. 2D).
132
Mandible with 5 teeth; basal tooth blunt and shorter as other inner teeth. Seta subdentalıs long, api-
cally slightly curved, ending at level of apex of second inner tooth; seta interna with 5 plumose bran-
ches (fig. 2G).
Mentum with one median tooth and 6 pairs of lateral teeth present; sızth lateral tooth lower as other
lateral teeth (fig. 2H).
Procercus about 1.5—1.6 times as long as wide, posterior part strongly sclerotized; bearing 8 apıcal
and 2 subapical anal setae, the lowest of them about 2—3 times as long as the upper one.
Oecology
Larvae inhabit the low course of foothill rivers on gravel-pebble grounds with sandy filling at the
rate of 0.5—0.7 m/s.
Karyological analysis of larva of fourth instar
Observation of the diplotene nuclei and mitotic metaphases (of imaginal disc mitoses) in E. subviri-
dis show three pairs of very small chromosomes (fig. 4a). Because of the somatic pairing characteristic
of Diptera, the homologues lie close to each other, and the number of chromosomes discernible at the
mitotic metaphase often appears to be three. Judging by the morphology of the metaphase chromoso-
mes, two pairs are metacentrics, and the third one is submetacentric. As expected from the mitotic ar-
rangement, in the salivary gland nuclei there are three chromosomes, each of them exhibits two paired
homologues (fig. 4b). The chromosomes have been numbered I to III in order of decreasing length
and tentatively given left and rıght ends. The major division has been numbered consecutively throug-
hout each chromosome, and each major one subdivided into minor ones denoted by letters (fig. 5).
E. subviridis polytene chromosomes have distinctive banding patterns making them advantageous for
karyological analysis. However, we encountered difficulties when attemping to identify the centro-
meres because there were no associated large blocks of heterochromatin. We succeeded in defining the
Fig. 4. The entire chromosome complement of Euryhapsis subviridis. a — mitotice chromosomes; b — salivary
gland polytene chromosomes. IL-IR; IIL-IIR; IIIL—-IIIR — chromosome arms. The arrows indicate the putative
candıdates for the centromeric bands. N — Nucleolar organızer, BR — Balbıanı ring.
133
centromeric regions only after thoroughly examining of many preparations. The bands we thought to
represent the centromeric regions in all the larvae studied were distinguished from all other bands of
the polytene chromosome by their homogenous staining.
Chromosome I (175+ 5.2 u) is the longest of the complement. It is ametacentric chromosome con-
taining section 1— 21. The centromeric region is identified in section 9. A characteristic feature isthe
presence of a nucleolus at the end of arm IL in section 1. Reviable markers of arm IL are the constric-
tions in sections 3 and 8 as well as dark bands in sections 4, 6 and 7. Such markers in arm IR are the
constriction in section 10, heavy bands in sections 16, 17 and 18. A prominent puff develops in some
larvae in section 15. Heterozygous inversions in arm IL were detected only ın one larvae of all those
examined (fig. 6a).
Chromosome II (168 +8 u) ıs nearly as long as chromosome I. It is a metacentric like chromosome
I (fig. 5). It consists of 21 sections. The centromeric region shows two dark bands in section !%Yıı. Arm
IIL is distinguished by the presence of constriction in sections 2 and 4, clear-cut banding in section 5
and pale bands in section 8; arm IIR has a constrictions in section 11, bands distinct ın sections 12, 13
and 15). There is a small puff in section 20 in all the larvae studied, and also ın sections 10 and 18
in some (fig. 4-5). No nucleoli and Balbianı rings were identified in chromosome II, neither were
rearrangements.
Chromosome III (152# 4.5 u) is the shortest of the complement, and it is divided into 17 sections.
It is asubmetacentric (fig. 4-5). The centromere was deduced by the presence of a dark band in section
10. There ıs a Balbianı ring near section 9 of arm IIIR and a nucleolus in section 15. The main markers
@ HR
TB '
IL IR
Fig. 5. A standard map of the salivary gland chromosomes of Euryhapsis subviridis. The designations are the same
as in fig. 4.
134
of arm IIIL are groups of bands in sections 4, 5, 6, 7 and 8; and those of arm IIIR are groups of pale
bands in section 11 and dark ones in sections 12 and 17 (fig. 5). Heterozygous inversions were obser-
ved in both arms in 33 % of the larvae (fig. 6).
The distinctive morphological features of the salivary gland of E. subviridis deserve some com-
ments. The morphology of the salivary glands of some other Orthocladiinae species have been consi-
dered elsewhere (MEcHeık£, 1953). The salivary glands of Orthocladiinae have been described as flat
sacs composed of three lobes. The glands are paired organs asymmetrically arranged in the larval body.
The cell nuclei in the lobes differ in polyteny level, puffing and nucleolus patterns (MEcHELKkE, 1953).
The paired salivary glands of E. subviridis are sacshaped too. One gland is elongated and the other is
ovoid. In E. subviridis, the salivary gland cells are radıally arranged cells with low ploidy level lyıng
in a semicercle closer to the centre, and the level of chromosome polyteny increases with the distance
from the center (fig. 6d-e). An attempt was made to compare the polytene chromosomes from the
central and peripheral parts of the salıvary gland according to the activities of the nucleolı and Balbiani
rings. This seemed reasonable because some Orthocladiinae species were found to differ markedly in
the activities of these regions in some of the gland cells. However, no such differences were observed,
so far, for E. subviridıs.
The peripheral gland cells have the highest level of polyteny, and they are, consequently, advanta-
geous for karyological analysis.
It has been reported that ecological and ontogenetic factors affect the structure of the polytene chro-
mosomes (ILımskaya, 1984; Demin & IrımskayA, 1986). There are also indications in the literature that
compactization of the salivary gland chromosomes in summer may be manifested as loss of the fine
structural details. However, we have not observed that this might be the case. Although the E. subvi-
ridis larvae were fixed in June, the polytene chromosome retained their distinct banding patterns. The
discrepance between the observations reported in the literature and ours may be due to the fact that
they were made on the represent actives of different Chironomidae subfamilies.
IR
IIL
Fig. 6. Arm IL (a), arm IIIR (b), arm IIIL (c) heterozygotes. The morphology of the salivary glands of Euryhapsıs
subviridis: d— magnified part of the gland near the duct; e — general appearance. Cells with nuclei at different levels
of polyteny are distinctly seen.
135
Notes
E. subviridis males are very close in the structure of hypopygium to the North American species
E. ılloba Ol., however they differ from it in the value of AR (AR = 1.06 ın E. ılloba). Individuals of
the Far East differ also from the male of the type locality in higher values of ARand LR (AR = 1.25,
LR = 0.80 in E. subviridis from Austria).
Within the genus Euryhapsis the preimaginal stages were previously known only for E. cilium. Pupa
of E. subviridis differs from E. cilinm in the form of thoracic horn which is bifurcated and totally co-
vered with fine spinules whereas in E. subviridis ıt is simple and covered with spinules only in the up-
per three quarters. Larvae of E. cilium and E. subviridis are very similar and they can be distinguished
only by certain characters. SI of labrum in E. subviridis with 7—9 lobes (more than 10 in E. cilium),
the seta interna with 5 plumose branches (7 in E. cılium), the 6th lateral tooth of mentum is rounded,
larger than the 5th and much lower as the other lateral teeth (the 5-6th lateral teeth of mentum of
E. cilium are of similar shape and size and arranged close to each other).
Comparisions ofthe major karyotypic features of E. subviridis with those of the other Orthocladii-
nae studied demonstrate similarities with respect to diploid chromosome number (2 n = 6), location
of the centromeric region (2 metacentrics, 1 submetacentric) (MicHaıLovA, 1976, 1985).
There are some karyotypic features, specific to E. subviridis to be noted. The level of chromosome
polyteny is higher in E. subviridis as compared with that established for the other members of the Or-
thocladiinae subfamily (MicHarova, 1976, 1985). This facilitates chromosome mapping in E. subviri-
dis. Another specific feature ofthe E. subviridis karyotype is the unusual telocentric localization ofthe
nucleolar organizer in chromosome I. Futhermore, its polymorphism level is 0.4 heterozygous inver-
sions per individual, higher than reported for the other representatives of the Orthocladiinae subfa-
mily (MıcnaiLova, 1985).
It would be of interest to study karyotypes of other species of the genus Euryhapsis to provide a
broader bases for comparision of the structural organization of chromosomes and also to make judge-
ments about their interrelated evolutionary history.
Literature
BELYANINA, S. I., MAXIMOVA, F. L., BUCHTEEVA, N. M., ILIINSKAYA, N. B., PETROVA, N. A. & L. A. CHUBAREVA
1983: Karyotype of Chironomus plumosus. — In: Chironomus plumosus. Moskow: Nauka p. 61-95
DEnmin, $. Yu. & N. B. ILınskAYA 1986: Phenotypic variants of the polytene chromosomes of salıvary glands in
chironomid larvae of natural populations of Chironomus plumosus and closely related species. — In: Evolu-
tion, speciation and systematics of chironomids. Novosibirsk, p. 107—112
D£vaı, G., WÜLKER, W. & A. ScHooL 1983: Revision der Gattung Chironomus Meigen (Diptera). IX. C. balato-
nicus sp. n. aus dem Flachsee Balaton (Ungarn). — Acta Zool. Ac. Sci. Hung. 29: 357—374
ILınskAYA, N. B. 1984: Characteristics of the polytene chromosomes of various degree of compactness in larvae
of natural Chironomus population. — Cytology 24: 543—551
K£yı, H. G. 1961: Chromosomenevolution bei Chironomus. I. Strukturabwandlungen an Speicheldrüsen-Chro-
mosomen. — Chromosoma 12: 26-47
K£yı, H. G. 1962: Chromosomenevolution bei Chironomus. II. Chromosomenumbauten und phylogenetische
Beziehungen der Arten. — Chromosoma 13: 464—514.
KIKNADZE, 1. I. & I. E. KErkıs, 1984: Karyotypical characteristic of Chironomaus f. . reductus with 2 n = 6 from
Ob Reservoir. — Cytologia 26: 735—740
KIKNADZE, 1. 1. & I. E. KERKIS 1986: Comparative analysis of the polytene chromosome banding patterns in sibling
species Chironomus balatonicus and Ch. muratensis. — Cytologia 28: 430—436
KUBERSKAYA, E. F. 1974: On the characteristics the karyotype and some special features of the nucleus structure ın
Psendodiamesa nivosa from the Lake Baikal area. — Cytology 16: 1426-1432
KUBERSKAYA, E. F. 1979: Karyotypical characteristic of chironomids subfamily Diamesinae (Diptera, Chironomi-
dae) from Baikal area. — In: Karyosystematic of invertebrate anımals. — Leningrad Nauka, p. 47—50
136
KUBERSKAYA, E. F. 1984: The morphology of salivary glands and karyotypical characteristic Diamesa tsutsui Tok.
(Diptera, Chironomidae) from Prymorie. — In: The biology of freshwater animals of the Soviet Far East. Vla-
divostok, p. 102-106
KURAZHKOVSKAYA, T. N. 1969: The structure of salıvary glands in chironomid larvae. — In: Physiology of aqueous
organısms and their role in circulation of the organic matter. Leningrad: Nauka, p. 185— 195
MARTIN, J. 1979: Chromosomes as tools in taxonomy and phylogeny of Chironomidae (Diptera). — In: SETHER,
O. A. (ed.): Recent development in chironomid studies (Diptera, Chironomidae). Ent. scand. Suppl. 10:
67-74
MECHELKE, F. 1953: Reversible Strukturmodıfikationen der Speicheldrüsenchromosomen von Acricotopus lucidus.
— Chromosoma 5: 511-543
MICHAILOVA, P. 1976: Cytotaxonomical diagnostics of species of the genus Cricotopus (Chironomidae, Diptera).
— Caryologia 29: 291-306
MICHAILOVA, P. 1980: A review of the european species of genus Clunıo Haliday, 1855 (Diptera, Chironomidae).
— Zool. Anz., Jena 205: 417-432
MICHAILOVA, P. 1985: Cytotaxonomic review of some species of the genus Orthocladius Van Der Wulp (Diptera,
Chironomidae). — Entomol. Abh. 48:
OLIVER, D. R. 1981: Description of Euryhapsis new genus including three new species (Diptera, Chironomidae).
u CansEnt 2113.72 722
OLIVER, D. R. 1982: Xylotopus, a new genus of Orthocladiinae (Diptera, Chironomidae). — Can. Ent. 114:
167—168
OLIVER, D. R. 1985: Review of Xylotopus Oliver and description of Irisobrillia n. gen. (Diptera, Chironomidae).
— Can. Ent. 117: 1093—1110
OLIVER, D.R. & M. E. Rousseı 1983: Redescription of Brıllia Kieffer (Diptera, Chironomidae) with descriptions
of Nearctic species. — Can. Ent. 115: 257—279
PANKRATOVA, V. YA. 1970: Larvae and pupae of midges of the subfamily Orthocladiinae (Diptera, Chironomidae
= Tendipedidae) of the USSR fauna. Leningrad, 344 pp.
PETROVA, N. A. 1983: Karyotype and unstable associations of polytene chromosomes in Syndiamesa nıvosa (Di-
ptera, Chironomidae). — Zool. zhurn. 62: 69— 74
RySsEr, N. M., SCHOOL A. & W. WÜLKER 1983: Revision der Gattung C'hironomus Meigen. VII. C. nudiventris n.
sp. und C. muratensis n. sp. Geschwisterarten aus der plumosus-Gruppe. — Rev. suisse Zool. 90: 299— 361
SETHER, O. A. 1980: Glossary of chironomid morphology terminology (Diptera, Chironomidae). — Entomol.
scand. Suppl. 14: 51 pp.
SIEBERT, M. 1979: Two new chironomids (Diptera, Chironomidae) from Germany and Austria. — Aquatic Insects
1: 165-168
SHILOVA, A. I. 1976: Chironomids of Rybinsk Reservoir. Leningrad: Nauka, 251 pp.
WÜLKER, W. & P. GÖTz 1986: Die Verwendung der Imaginalscheiben zur Bestimmung des Entwicklungszustandes
von Chironomus-Larven (Diptera). — Ztschr. Morphol. Tiere 62: 362-388
WÜLKER, W. & M. G. BUTLER 1983: Karyosystematics and morphology of northern Chironomus (Diptera, Chiro-
nomidae): freshwater species with larvae of the salinarıus type. — Ent. scand. 14: 121-136
E. A. Makarchenko,
Institute of Biology and Pedology, Far East Science Center, USSR
Academy of Sciences, Vladivostok, USSR,
1. I. Kiknadze, I. E. Kerkis,
Novosibirsk University,
Novosibirsk, USSR
137
N a
”_
each renraeter la ia ke 1:
near nl urn . MITTE a man m nen
eig > u ei 4 BON Mi ne
‚® ah: Alınmaı, am u x ’ ig j
eu Be De Yeah. in ch: nis u It ke AN N vB, ra
j HT m. . dueyi hart Y EN R un ’ % EN. 7 pr Pa zn
nr hr re‘ . ER alte: DIN u Bun PTIE yalılla om EN Mar ZT 1% . Br N - w
er RR Ban ”.ı {bl DIIETLE 6; a jez I), larme im au ‚samdo Jevah ff $
HIF B rn kn ‚nonıy for& al
ELBE SEEN a ee of a Erre Hear Ban 22.
{ t 1 äh Krimi -
aa rt 1 Re en aan In oPi SR FON TEEEE &
Daxıne v4 ‚eh
| RAR Tarndind =
id tes re ehe et = ;: t yY U DUarENAIT Trepge
r cr. yet AL h
2 F - ar wine
ler | ts to rue) IOREE
- j s
A a4n le ‘sl r #
Aut >
a: / me 3 Nehi fi ba TR
u 1 u nA ı Sur la 4 uhhot ir
& A L- 5 ' \ i vu Al b j vos irn j,+ %
öko ea er
N "rn teren ine. Aus rer
Yeaile ’ ner au, mtewd
Ihzreish
70: 15/378
ol ee
PT Vınma Negro en Spech
en
3
eye . ulansiied und [
udn vn F
»
2
Soerhe Anl
An 7
.
j “
Ka Aa) Kirvası 5 1 nl teyturet Al ihe m
Piriian ’ i we ImE er alE u
' ey ty; chi cl „“ ‚ fy BETT, TErTE
- Lenagrad 8
SPIXITANA Supplement 14 | 139-142 | München, 15. Juli 1988 ISSN 0177-7424
The occurrence of setal tufts on larvae of
Orthocladius (Orthocladius) annectens Saether
(Diptera, Chironomidae)
By J. P. Fagnani and A. R. Soponis
Abstract
Setal tufts are described and illustrated for larvae of Orthocladius (O.) annectens Saether. The usefulness of this
character for distinguishing genera must be re-examined.
Introduction
This is the first report of setal tufts on larvae ofthe genus Orthocladins. The occurrence of setal tufts
has been a traditional character for distinguishing larvae of some species of Cricotopus from larvae of
all species of Orthocladius.
A setal tuft is a group of setae arısing from a single base and occurring laterally in 1 to 4 pairs on ab-
dominal segments in larvae of some Chironomidae. Although the fourth lateral seta is most often de-
-veloped as a setal tuft, lateral setae 1 to 3 can also occur as setal tufts. SAETHER (1980) did not define setal
tufts in his glossary.
Orthocladius (Orthocladius) annectens Szther
Larval exuviae of O. (O.) annectens reared from Otsego Lake, New York, possess distinct setal tufts
(Fig. 1). One pair occurs on each of segments IV to IX, situated posterolaterally in place of the L4 se-
tae. The tufts can be long and robust (Fig. 1a, b) to short and weak (Fig. 1c). Each tuft is composed of
approximately 9 to 16 setae which can sometimes appear to be a single thick seta (Fig. 1a, Ic).
Setal tufts have been noted previously in three genera of Orthocladiinae: Cricotopus, Stackel-
bergina, and Symposiocladins (THIENEMANN 1944 ; CHERNOvsKI 1949; HırvEnoJA 1973; SHıLova and ZeEı.-
ENTSOV 1978; CrAnsTon 1982a; CransTon et al. 1983; Orıver and Rousser 1983). Similar plumose setae
have been described in Parorthocladius and Synorthocladius. Setal tufts have been referred to as bristle
tufts (JOHANNSEN 1937); hair pencils (JoHAnnsen 1937; Rogack 1957; Darsy 1962; Mason 1973; BECK
1975, 1976; Sınrson and Bone 1980); setal tufts (THIENEMANN 1944; CHERNOVSKII 1949; CRANSTON
1982a; Cranston et al. 1983); setal brushes (THIENEMANN 1944; Cranston 1982b; CraAnsTon et al.
1983); many-branched brush setae (CHernovsku 1949); hair tufts (Mason 1973); plumose setae (OLı-
ver et al. 1978; Cransron 1982a; OLıver and Rousser 1983); and group of setae (Corrman and FERRING-
Ton 1984). THIENEMANN (1944, and earlier) used both Büschelborsten (setal tufts) and Borstenpinsel
(setal brushes) for these setae in Crzcotopus.
To our knowledge there is no published record of the occurrence of setal tufts in larvae of Orthocla-
dius. SAETHER (1969) originally described O. annectens, but he did not include body setae in the larval
139
description. Soronis (1977), in her redescription, did not examine body setae on the larvae, but the pre-
sence of setal tufts on those specimens was verified by D. R. Oliver (pers. comm.). Soronis (1977) cor-
rectly synonymized Hydrobaenus sp. 2 0f Rogack (1957) with O. annectens, but Rosack reported that
the unassociated larvae lacked hair pencils on the body. Sımpson and Bope (1980) provided photo-
graphs of the larva of O. annectens (as O. [O.] prob. annectens), and stated that the larval abdomen
lacked haır pencils. Presumably, the setal tufts were obscured or destroyed on the specimens exami-
ned, or these authors overlooked them. Setal tufts vary in size on larvae of O. annectens, and they are
difficult to see on larval exuviae and larvae that have been mounted in self-clearing media for some
time. In alcohol-preserved larvae, prominant setal tufts are generally visible at 25 to 50x under a dis-
secting microscope, but they may be lost or obscured after slide-mounting. Rosack (1957) pointed out
that, „These haır pencils are often broken off in handling and mounting and must be searched for with
great care“.
Figs 1-2. Orthocladius annectens Szther. 1 a-c: Setal tufts in slide-mounted larvae (scale = 0.2 mm). 2: Larval
mentum.
Orthocladius annectens ıs Nearctic and is found throughout most of North America (Soronis 1977).
This widely distributed species lives in small streams, large rivers, and lakes (Soronis 1977; Sımpson and
Bope 1980). The larvae of O. annectens can be distinguished from all morphologically similar species
of Orthocladius and Cricotopus by the unusual 13-toothed mentum with the 5 light median teeth ex-
tended anteriorly (Fig. 2). However, because of setal tufts, the larva of O. annectens will key to Crico-
topus in most recent keys (e. g., OLıver etal. 1978; Simpson and Bone 1980; Cranston 1982a; CRANSTON
etal. 1983; OLıver and Rousseı. 1983; Corrman and FERRINGToN 1984).
The functions of setal tufts are not clear. Menzıe (1978, 1981) theorized that setal tufts on Cricotopus
sylvestris enhanced the larva’s ability to stay on aquatic plants in a strong tidal current. The setal tufts
could adhere to leaves, stems and filamentous algae, preventing the larva from being washed out ofthe
vegetation. Hershey and Dopson (1984 and pers. comm.) found that larvae of Cricotopus sylvestris,
which possess large setal tufts, were less susceptible to predation from Hydra than Cricotopus bicinc-
tus, which possess smaller setal tufts. In addition to attachment and anti-predation, other functions of
setal tufts may include floating, swimming, feeding, and antifouling.
140
As stated above, the occurrence of setal tufts has been a traditional character for separating the larvae
of some species of Cricotopus from all species of Orthocladins. Whether setal tufts occur in other lar-
vae of Orthocladins has yet to be determined.
Material examined: Rat Cove, Otsego Lake, Cooperstown, Otsego Co., New York, J. P. Fagnani: 1 male with
lar. and pup. ex., Ekman grab, 10° water, 24.1V.1982; 1 pharate female pupa with lar. ex., Ekman grab, 3’ water,
24.1V. 1982; 1 pharate female pupa with lar. ex., Ekman grab, 8.1V. 1981; pup. ex. and assoc. lar. ex., rock in 0.5° wa-
ter, 25.V1.1980; 1 pharate female pupa with lar. ex., ventral surface of Nuphar varıegatum leaves, 24. VI. 1980; 2
pre-pup. larvae. Ekman grab, 23.V.1980; 2 mature larvae, Ekman grab, 8.1V. 1981.
Acknowledgements
We would like to thank D. R. Oliver and P. S. Cranston for verifying the occurrence of setal tufts on additio-
nal larvae of Orthocladius annectens. This research was supported by the Biological Field Station, State University
of New York, College at Oneonta; the Wadsworth Center for Laboratories and Research, NYSDH; and CSRS,
USDA (FLAX 79009).
Literature
BECK, W.M., Jr. 1975: Chironomidae, pp. 159-180. In: F. K. Parrish (Ed.). Keys to the water quality indicative
organisms of the southeastern United States. - USEPA, Environmental Monitoring and Support Lab., Cin-
cinnati, Ohio. 195 pp.
—— 1976: Biology of larval chironomids. — Florida Dept. of Environ. Reg. Tech. Ser. 2. 58 pp.
CHERNOVSKII, A. A. 1949: Identification of larvae of the midge family Tendipedidae. (Trans. E. Lees, ed. K. E.
Marshall). — Nat. Lending Lib. for Sci. and Tech., Boston Spa., Yorkshire, England, 1961.
COFFMAN, W. P. and L. C. FERRINGTON 1984: Chironomidae, pp. 551-652. In: R. W. Merritt and K. W. Cum-
mins (Eds.). — An Introduction to the Aquatic Insects of North America, 2nd Ed., Kendall/Hunt, Dubuque,
Iowa. 722 pp.
CRANSTON, P. $. 1982a: A key to the larvae of the British Orthocladiinae (Chironomidae). — Freshwatr. Biol. As-
soc. Scı. Pub. 45. 152 pp.
—— 1982b: The metamorphosis of Symposiocladius lignicola (Kieffer) n. gen., n. comb., awood-mining Chirono-
midae (Diptera). — Ent scand. 13: 419—429
CRANSTON, P. S., D. R. OLIVER, and ©. A. SAETHER. 1983: 9. The larvae of Orthocladiinae (Diptera: Chironomi-
dae) of the Holarctic region — Keys and diagnoses, pp. 149-291. In: T. Wiederholm (Ed.). — Chironomidae
ofthe Holarctic Region. Keys and Diagnoses. Part 1. Larvae. — Ent. scand. Suppl. 19. 457 pp.
Dargv, R. E. 1962: Midges associated with California rice fields, with special reference to their ecology (Diptera:
Chironomidae). — Hilgardıa 32: 1—206
HERSHEY, A. E. and $. I. Dopson. 1984: Predator avoidance in Cricotopus: the importance of being big and hairy
(Abstract). — Bull. Ecol. Soc. Amer. 65: W185
HIRVENOJA, M. 1973: Revision der Gattung Cricotopus van der Wulp und ihrer Verwandten (Diptera, Chironomi-
dae). — Ann. Zool. fenn. 10. 363 pp.
JOHANNSEN, O. A. 1937: Aquatic Diptera. Part III. Chironomidae: Subfamilies Tanypodinae, Diamesinae, and
Orthocladiinae. — Mem. Cornell Univ. agr. Exp. Stn. 205. 84 pp.
Mason, W. M. 1973: An introduction to the identification of chironomid larvae. — USEPA, National Einviron-
mental Res. Center, Cincinnati, Ohio. 90 pp.
MENZIE, C. A. 1978: Productivity of chironomid larvae in alittoral area of the Hudson River Estuary. — Ph. D. the-
sis. The City University of New York. 127 pp.
—— 1981: Production ecology of Cricotopus sylvestris (Fabricius) (Diptera: Chironomidae) in a shallow estuarine
cove. — Limnol. Oceanogr. 26: 467-481
OLIVER, D. R., D. MCCLyMoONT, and M. E. RousseL 1978: A key to some larvae of Chironomidae (Diptera) from
the MacKenzie and Porcupine River watersheds. — Can. Fish. Marine Ser. Tech. Rpt. 791. 73 pp.
OLIVER D. R.andM. E. RousseL 1983: The Insects and Arachnids of Canada. Part 11. The genera of larval midges
of Canada (Diptera: Chironomidae). — Agric. Can. Pub. 1746. 263 pp.
141
ROBACK, $. $. 1957: The immature tendipedids of the Philadelphia area (Diptera: Tendipedidae). — Acad. Nat. Scı.
Philad. Monogr. 9. 152 pp.
SAETHER, O. A. 1969: Some Nearctic Podonominae, Diamesinae, and Orthocladiinae (Diptera: Chironomidae). —
Bull. Fish. Res. Bd. Can. 170. 154 pp.
—— 1980: Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. scand. Suppl. 14.
151 pp.
SHILOVA, A. I.and N. I. ZELENTSOV 1978: (A new genus and species of the subfamily Orthocladiinae [Diptera, Chi-
ronomidae]). — Zool. Zh. 57: 1584—1588
Sımpson, K. W.and R. W. BoDE. 1980: Common larvae of Chironomidae (Diptera) from New York State streams
and rivers with particular reference to the fauna of artifical substrates. — Bull. N. Y. St. Mus. 439. 105 pp.
Soronis, A. R. 1977: A revision of the Nearctic species of Orthocladius (Orthocladius) van der Wulp (Diptera: Chi-
ronomidae). — Mem. Ent.Soc. Can. 102. 187 pp.
THIENEMANN, A. 1944: Bestimmungstabellen für die bis jetzt bekannten Larven und Puppen der Orthocladiinen
(Diptera: Chironomidae). — Arch. Hydrobiol. 39: 551 —564
Joseph F. Fagnanı
Wadsworth Center for Laboratories and Research
New York State Department of Health
Albany, NY 12201 U.S.A.
AnnelleR. Soponis
Department of Entomology
Florida A & M University
Tallahassee, FL 32307 U.S.A.
142
SPIXIANA | Supplement 14 143 — 154 München, 15. Julı 1988 ISSN 01777424
Aquatic xylophagous Orthocladiinae — systematics and ecology
(Diptera, Chironomidae)
By P. S. Cranston and D.R. Oliver
Abstract
Wood-mining Orthocladiinae are reviewed. Chaetocladins ligni, the first xylophagous member of the genus, is
described as new to science. Symposiocladius Cranston, erected for lignicola Kieffer, is synonymised with, and trea-
ted as a subgenus of, Orthocladius Wulp. Extensive morphological variation in O. lignicola is recognized and dis-
cussed. Observations on the biology of xylophagous chironomids are reviewed with suggestions for further study.
Introduction
Larval Chironomidae occur in the most diverse geographic and habitat ranges of any insect family,
from high Arctic lakes, permanent montane snowfields and glaciers through temperate and tropical
ecosystems to terrestrial mosses in the Antarctic. In many aquatic biotopes, chironomids may domi-
nate in abundance and even biomass, despite their relatively small size. Studies on systematics and eco-
logy of northern hemisphere Chironomidae have elucidated their importance in lake classification,
both extant (e. g. Brunpın, 1949; SAETHER, 1979; WIEDERHOLM, 1976) and historic (e. g. WAarwıck, 1975),
and allowed recognition that chironomid community structure is an integral part of environmental
monitoring and assessment of lotic water quality.
A research area that has received rather less intensive study ıs the röle of larval chironomids in the
decomposition of aquatic immersed wood. Foremost amongst those examining invertebrates in such
ecosystems is N. H. Anderson and his associates at Oregon State University. Their work has resulted
in both research and review publications (e. g. AnDERson et al., 1978; Dupıey & Anperson, 1982) and
the provision of specimens of wood-mining Chironomidae for systematic studies. This material re-
veals that taxonomic problems remain and there are still undescribed xylophagous species of ecologi-
cal significance. We take this opportunity to describe a new species of wood-mining Chaetocladıns
Kieffer, to reassess the taxonomy of Symposiocladins Cranston, and to consider the range and diversity
of xylophagous Chironomidae. We conclude with some observations on past studies and make
suggestions for future research.
Methods and abbreviations
Allnew material examined is slide mounted in Canada Balsam or Euparal and deposited in the Canadian National
Collection, Ottawa, Canada (CNC), unless otherwise stated. Abbreviations of other Institutes are as follows:
OSU _-— Oregon State University, Corvallis, Oregon, U.S.A.
BMNH British Museum (Natural History), Cromwell Road, London, England.
MZBN - Museum of Zoology, Bergen, Norway.
USNM United States National Museum, Washington, D. C., U.S.A.
ZSBS _- Zoologische Staatssammlung, Munich, German Federal Republic.
143
Morphological terminology follows SAETHER (1980). Other abbreviations used in text: dc, _, — Pupal dorso-
central setae; Fe — Femur; L. — Larva; Le. — Larval exuviae; L. R. — Leg ratio = Length of tarsomere 1: Length
of tibia; P. — Pupa; Pe. — Pupal exuviae; pc,_; — Pupal precorneal setae; Ta,_; — Tarsomeres; Tı — Tibia.
Chaetocladius (Chaetocladius) ligni spec. nov.
Adult male (n = 5):
Body length 2.8-3.4 mm, wing length 1.48— 1.82 mm.
Antennal ratio 0.55—0.99, apical flagellomere 213-340 um long. Head with 3-5 inner verticals
continuous with 6-9 outer verticals and postorbitals; 7-10 clypeals; palp segment 4 shorter than 3rd
and 5th segments, 5th segment longer than 3rd.
Thorax with 7—9 lateral antepronotals, 13—18 uni— to partly biserial dorsocentrals, 5—8 uniserial
posterior prealars, 6— 10 uniserial scutellars.
Wing wıth obtuse anal lobe, brachiolum with 1 setae, R with 5—21 setae, R, with 5-9 setae, R,,;
with 12—21 setae; 5-8 squamals.
Legs with pseudospurs on tarsomere 1 and 2 of mid and hind legs; tarsomere 1 of mid leg with 0 sen-
silla chaetica, hind leg with 0-3 sensilla chaetica on apical one-quarter and sometimes also on middle
third; pulvilli small. Fore leg ratio, 0.71—0.76; mid leg ratio, 0.42—0.47; hind leg ratio, 0.55—0.58.
Hypopygıum (Fig. 1) with long, narrow anal point. Virga consisting of cluster of long, dark spines.
Gonocoxite with dorsal part of inferior volsella narrow, bare, apically rounded and slightly curved
posteriorly; ventral part variable in shape, usually rounded, sometimes almost absent. Gonostylus
with rounded outer corner and low, broad, crista dorsalıs.
Figs. 1-5. Chaetocladins ligni spec. nov. Adult male, — 1 Hypopygium . Adult female, — 2 genitalia, — 3 tergite
IX. Male pupa, — 4 segments I and II, left tergites, right sternites, — 5 segments VIII and anal end, left dorsal, right
ventral.
144
Adult female (n = 2):
As male, except, wing length 1.66-1.82 mm.
Antenna with 5 flagellomeres, apical flagellomere with strong apical seta. Head with 11-12 tempo-
rals, 10-13 clypeals.
Thorax with 9-12 lateral antepronotals, 26-33 dorsocentrals, 8-9 posterior prealars, 9 scutellars.
Wing with obtuse (almost rıght-angled) anal lobe; R wıth 18-20 setae, R, with 12-16 setae, R,;;
with 29—30 setae; 6-9 squamals.
Legs. Tarsomere 1 of mid leg with 27 (n = 1) sensilla chaetica on distal two-thirds, hind leg with
29—32 sensilla chaetica on distal two-thirds. Fore leg ratio, 0.74—0.75; mid leg ratio, 0.41—0.45; hind
leg ratio, 0.56.
Genitalıia (Fig. 2) very similar to those illustrated for the genus by S£THer (1977, fig. 54 A—C) ex-
cept concavity of distal margin of tergite IX deeper (Fig. 3). Also 2 long, strong setae arise from each
cercus.
Pupa (n = 12):
Length, 2.9-3.7 mm.
Frontal apotome with small frontal seta on small cephalic tubercle.
Thoracic horn cylindrical with spinose apex (Fig. 9), 112-165 um long. Narrow, pointed to
bluntly rounded tubercle on scutum dorsomedial to base of thoracic horn (Fig. 9).
Tergites II-VIII covered wıth coarse spinules grading into posterior spine band; sternites with
weak shagreen on II becoming more extensive and stronger on successive posterior sternites; posterior
margin of sternite VIII straight with spines (C') or bilobed without spines (9) (Figs. 4-6). All L-setae
hair-like. Anal lobe broad with outer margin up-curved; megasetae about 10x as long as wide, with
middle megaseta located close to posterior megaseta (Figs. 5, 6).
Figs. 6-13. Chaetocladins lıgni spec. nov. Pupa, — 6 female, segments VI & VIII and anal end, left dorsal, right
ventral, 9 thoracic horn, precorneal setae and scutal protuberence/spine. Larva, — 7 mentum, — 8 antenna, — 10 la-
brum and premandibles, — 11 maxilla, — 12 mandible, — 13 anal end.
145
Larva, Fourth instar (n = 15):
Antenna (Fig. 8) five-segmented with segments consecutively shorter or segments 3 and 4 subequal;
antennal blade ending at level of segment 5; Lauterborn’s organs large, subequal in length to segment
3. Antennal ratio, 1.06—-1.43 (n = 13).
Labrum (Fig. 10) with anterior part folded under frontoclypeus; SI smooth, lamelliform, $ II and
S III smooth, S IV consisting of 2 simple pegs; labral lamellae absent; labral chaetae and spinulae
smooth with chaeta media serrate on one margin; pecten epipharyngis consisting of 3 small spines;
median pair of chaetulae laterales large, rectangularly rounded, covering rest of chaetulae; chaetulae
basales with bifid apex; basal sclerite large.
Premandible with 1 apical tooth and low-rounded accessory tooth; brush weak.
Mandible (Fig. 12) 144—166 um (n = 11) long with short apical tooth and 4 inner teeth; seta interna
with 5 serrate branches and 1 long smooth to serrate branch.
Mentum (Fig. 7) with long apically bifid median tooth and 4 pairs of shorter lateral teeth; lateral
notch present at level of base of 4* lateral tooth; ventromental plates small.
Maxilla (Fig. 11) with weak pecten galearis.
Abdomen (Fig. 13) with preanal segment curved over remaining posterior segments; procercus
with 6 anal setae, directed posteriorly.
Type-material: Holotype O’ slide-mounted in Canada Balsam: U.S.A., Oregon: Benton County, Berry Creek,
15.X.1984 (mass reared from immersed wood) (N. H. Anderson) (CNC No. 19701). Paratypes: U.S.A., Oregon:
same locality as holotype, 12.X.1982—12.XI. 1984 (mass reared from immersed wood) (N. H. Anderson) (19,20
P. with associated Le., 19 P., 11 Pe., 20L.); Crook County, Allen Creek, 26. VIII.1978 (T. Dudley) (19 P.),
Ochoco Creek, IX. 1978 (T. Dudley) (1 0°); Lake County, Mack Creek, 7. VII.—28.1X. 1982 (mass reared from ım-
mersed wood) (N. H. Anderson) (20°C, 10° with associated Pe., 19,1 P.,2L.)(BMNH, CNC, MZBN, USNM,
ZSBS).
Remarks:
Adult males of C. ligni are similar to those of C. melaleucus (Meigen) (Epwarps, 1929; PINDER, 1978),
differing by having a lower antennal ratio and a smaller inferior volsella. The presence of two long cer-
cal setae will distinguish the adult females from all other Chaetocladins including C. melaleucus (see
GOETGHEBUER, 1942). Also the immature stages do not equate with the adult male resemblance (see
Pınper & ArMITAGE, 1985, for detailed descriptions of the immature stages of C. melaleucus).
The distinctive scutal tubercle is not known to occur on other Chaetocladius pupa except on asingle
pupal exuviae mass reared from immersed wood (Quebec, Gatineau Park, stream nr. Beech Grove,
5.V1.1985, P. S. Cranston & M. E. Dillon). This exuviae, otherwise similar to C. ligni, has an almost
smooth thoracic horn and short (c. 3X as long as wide), thorn-like megasetae. An adult male obtained,
at a later date, from the same rearing container cannot be distinguished from C. ligni. At present, it is
not possible to determine if the pupal differences are due to variation because of the absence of larvae
and positive association of the two life history stages. Therefore, eastern specimens, including an adult
male from New Hampshire (White Mountain National Forest, Ammonoosuc River, 26. V.1981, D.
R. Oliver & M. E. Roussel) are not included in the type series of C. ligni.
The larva differs from the generic diagnosis of Cranston et al. (1983) plus the addition by Pinder
and Armrrace (1985). SI is simple not serrated, plumose or branched, the premandible has 1 tooth api-
cally, not 2, the basal sclerite is large, and the preanal segment is curved over the posterior segments.
Furthermore, the mentum has only 4 lateral teeth although the lateral notch may be the remains of the
notch between the 4" and 5" lateral teeth.
Orthocladius Wulp subgenus Symposiocladius Cranston stat. nov.
Orthocladius WuLp, 1874: 132. Type-species: Tipula stercoraria DEGEER, 1776: 388 sensu Wulp (misident.) (des.
COQUILLETT, 1910: 581) = Chironomus oblidens WALKER, 1856.
146
Symposiocladius CRANSTON, 1982: 419. Type-species: Orthocladius lignicola Kieffer in POTTHAST, 1915: 273 (orig.
des.). Syn. nov.
Symposiocladins was erected for the xylophagous Orthocladius lignicola Kieffer, a species with a
highly distinctive larva, but closely resembling Orthocladius (Orthocladius) in pupa and adult (Cran-
ston, 1982). The major reason given for the erection of anew genus was the presence of the larval ab-
dominal l, seta developed as a setal brush, which Cranston described as an unique inside parallelism/
underlying synapomorphy for the lineage Synorthocladius to Cricotopus (1. e., excluding Orthocla-
dius). Two recent discoveries expose the fallacy of this reasoning: Orthocladius annectens Saether has
previously unrecognized larval setal tufts and, since there is no doubt that annectens is truly an Ortho-
cladius, setal tufts do occur in the Orthocladins lineage. Furthermore, lignicola larvae with only simple
abdominal 1, setae are now known (see below). The case well illustrates the erroneous nature of phy-
logenetic reasoning based upon ambiguous characters, particularly the use of non-unique derived cha-
racter states (”"underlying synapomorphies”).
However, since the larva is highly distinctive and the pupa and female can be distinguished from ot-
her subgenera of Orthocladius, Symposiocladius can be retained as a subgenus of Orthocladius s. |. un-
til the phylogeny ıs assessed and the ranking of other taxa presently given generic status, such as
Stackelbergina Shilova and Zelentzov, is resolved.
Orthocladius (Symposiocladius) lignicola Kieffer
Orthocladius lignicola Kieffer ın POTTHAST, 1915: 273; CRANSTON, 1982: 421. Type-locality: West Germany, Sau-
erland, Haspersperre. Lectotype pupa examined CRANSTON, 1982: 421 (ZSBS).
Cransrton (1982) described all stages of O. lignicola — “typical” lignicola in this discussion refers to
this description. All specimens are closely associated as larvae with wood immersed in running water.
Localities referred to in the discussion are cited in detail below.
In Berry Creek, O. (Symposiocladius) larvae (n = 100+) virtually always have a simple, or at most
2 branched abdominal l, seta and have more or less fused lateral mental teeth (Fig. 15a) but otherwise
resemble typical lignicola, with all measurements falling into the lower end of the range cited (Cran-
ston, 1982: 426). This larval type (“A”) is associated with pupae (type “A”) lacking frontal setae, with
a weakly spinose thoracic horn (Fig. 14a) 200-280 um long (n = 40), and with a blunt spinose apex
to the anal lobe (Fig. 16a). Adult males from Berry Creek fall towards the small end of the ranges cited
by Soronis (1977: table ZZ, as tryoni) except for the terminal antennal flagellomere (450-550 um
long) and antennal ratio (0.98-1.18,n = 9) which fall at or below the cited range. Females cannot be
distinguished from typical lignicola (Cranston, 1982: 421). Despite the apparent identity of the geni-
talıa of both sexes, the low male antennal ratio, simple larval I, seta, absence of pupal frontal setae and
differences in pupal anal lobe conventionally would indicate specific distinction. However, from
Berry Creek we have seen a single ©. (Symposiocladius) larva with fused lateral mental teeth, but with
abdominal l, setal tufts with 6-8 branches about 80 um long (typical lignicola have 20+ branches, up
to 160 um long) and one typical ignicola pupa with pharate adult (terminal flagellomere 620 um long,
antennal ratio 1.4). Furthermore a single prepupal larva oftype “A” from Yukon contains a pupa with
typical lignicola curved spinose apex to the anal lobe, but the frontal setae and thoracic horn cannot
be seen.
In Mack Creek only typical lignicola larvae have been found (n = 25). Pupal exuviae derived from
mass rearing from colonised immersed wood (not directly associated) all have a curved, spinose anal
lobe apex typical of lignicola, a rather densely spinose cigar-shaped thoracic horn (Fig. 14c), length
165-201 um, but lack frontal setae (n = 17). This pupal type is associated with typical lignicola larvae
associated with prepupae and a pupa from Starvation Creek. Mass rearings from immersed wood from
Mack Creek give rise to males with a relatively long apical flagellomere (c. 600-650 um) but rather
1574
14
ns
ww
w
ee
a b 16 c d
Figs. 14-16. Orthocladius (Symposiocladius) lignicola Kieffer. Pupa, — 14 thoracic horn (a — Berry Creek,
b — Beech Grove, c — Mack Creck), — 16 apex of anal lobe (a — Berry Creek, b and c — Beech Grove, d — Mack
Creek). Larva, — 15 mentum (a — Berry Creek, b — Beech Grove).
low antennal ratio (1.2—1.3). This Mack Creek pupal type also occurs in Flynn Creek, together with
type “A” pupae. Both typical /ignicola and type “A” larvae were present, but no associations are avai-
lable.
Re-examination of most of the material studied by Cranston (1982) confirmed that none of these
“aberrant” types mentioned above were present, unrecognized, and showed that frontal setae (omit-
ted from the description) were invariably present in earlier examined Nearctic and Palaearctic speci-
mens. However, the low antennal ratio (relative to the mean value) cited by Soronis (1977: table ZZ)
suggests that some adults associated with the larval types above are included, since adults associated
with typical lignicola larvae and pupae tend to have an antennal ratio of at least 1.5.
In order to resolve the status of the specimens discussed above, immersed wood, mostly Alnus sp.,
known to contain O. (Symposiocladius) larvae was collected in mid-June and again in mid-July from
a stream in Gatineau Park near Beech Grove. This was kept in an oxygenated aquarium cooled to ap-
proximately 12°C and emergent adults, cast skins and pharate adults were collected at intervals over
the ensuing four months. Individual rearings were not possible since lignicola larvae are easily dama-
ged in handling and die very readily. However, some larval/pupal and pupal/adult associations were
made through failed emergence at the aquarium water surface. Alllarvae examined (n = 29) are typical
lignicola, with well developed setal tufts, although the lateral mental teeth division is somewhat varıa-
bly developed (Fig. 15b). Most pupae (n = 38 of 40) have frontal setae, amoderately spinose thoracic
horn 220-275 um long (Fig. 14b) and an anal lobe intermediate (Figs. 16b—c) between that of type
“A” and typical lignicola (Figs. 16a, 16d). One pupa, otherwise similar to this, has only 1 scar of a
frontal seta on one side of the frons, with no trace on the other side. One pupa has no trace of frontal
148
setae, a weakly spinose thoracic horn 160 um long and a blunt spinose apex to the anal lobe, closely
resembling pupal type “A”. The pharate adult within this pupa has an apical flagellomere length
415 um and antennal ratio of 1.13. Adult males associated with the dominant pupal type in this mass
rearing could not be distinguished from typical lignicola, having an apical flagellomere 540-640 um
long and antennal ratio of 1.4—-1.6 (n = 10). Adult females cannot be distinguished from typical ligni-
cola.
Clearly, from the evidence above, it is impossible to recognize separate species which can be confir-
med from all life history stages. The adult males could be divided into those with an antennal ratio be-
low 1.2 and a relatively short apical flagellomere (for example, below 550 um) and those with a higher
antennal ratio and longer apical flagellomere, but there is virtually continuous variation in these cha-
racters. There is remarkably little variation in both absolute size and wing length in all specimens ex-
amined, with the range less than 10 % each side of the mean, thus it is unlikely that the increased length
ofthe apical flagellomere and antennal ratio is explained by allometry. Although the low antennal ratio
male is apparently associated with the type “A” larva and pupa, this ıs not exclusively so. The highest
values of antennal ratio and apical flagellomere length are found in association with typical Jignicola
larvae and pupae in Nearctic and Palaearctic populations. Intermediate values of antennal ratio and
apical flagellomere length are found in Mack and Flynn Creek and Quebec populations which have
typical lignicola larvae but at least 3 different combinations of pupal characters. However, there is no
detectable correlation between pupal characters of the anal lobe, frontal setae and thoracic horn and
the complex tergal and sternal spine patterns, pedes spurii A and B and thoracic setation. Adult fema-
les, increasingly recognised as valuable in the detection of cryptic species, are relatively invariate and
indicate a single species.
In each intensively sampled habitat more than one pupal type occurs, but this is not always correla-
ted with the occurrence of more than asingle type of larva or male. The variation evident in the Quebec
pupae, for example is not evident ın larvae or adults. We conclude by suggesting that on present evi-
dence O. lignicola ıs a single species and cannot yet be divided.
At present, it is not possible to explain the variation seen in Jignicola, although several possibilities
can be raised. There may be a clinal varıation in the length of the apical antennal flagellomere and an-
tennal ratio. The highest values for both are found in the easternmost populations examined in Quebec
and the lowest values in Oregon. Superimposed on this, there is some evidence that winter (Oregon)
or spring (Quebec) adults have a lower antennal ratio and shorter apical antennal flagellomere than
adults emerging later. This must be analysed in more detail, with more individual associations of all
life history stages and with control over the effect of rearing in laboratory cultures.
The apparently excessive varıation in O. lignicola, ın characters that are believed to be of specific
importance in other taxa, might suggest a faulty species concept or inability to discriminate closely re-
lated species. However, recognition is growing that some taxa do show high variation in terms of tra-
ditional characters used in delimitation of chironomid species. For example, the hygropetric Ortho-
cladıus (Eudactylocladius) fuscimanus Kieffer and O. (E.) dubitatus Johannsen both show as much va-
ration as does O. lignicola. In all cases the varıation is demonstrated to be intraspecific through recog-
nıtion of high variation present within a single population.
New material examined: CANADA, Yukon Territory: Alaska Highway, Watson Lake Campground, 60°07'N,
128°48’ W, 23.V.1982 (E. Fuller) (1 prepupal L.); Quebec: Pontiac County, Gatineau Park, 8 km N. Beech Grove,
45°35’N, 76°8'’W, 18.V.1983 (D. R. Oliver & M. E. Roussel) (3 Pe.), 17. VI.1985 (mass reared from immersed
wood) (P. S. Cranston and M. E. Dillon) 1090, 8 P9,1C'and 19 with associated Pe., 1 P. with associated Le.,
44Pe., 29L., slide mounted, many more in spirit); Missisquoi County, Im. N. Abercorn, (reared ex Acer)
19.-27. VIII. 1980 (A. Borkent) (30'0',1Q P. with associated Le., 9Pe.,). U.S.A., Oregon: Benton County, Berry
Creek, 14.-28. VII. 1982 (mass reared from immersed wood) (N. H. Anderson) (9 0'C', 10° with associated Pe.,
1099,1QP. with associated Le., 40 Pe., 100+L); Lincoln County, Flynn Creek, 30. VII.-28. XII. 1982 (mass rea-
red from immersed wood) (N. H. Anderson) (20°C, 1C°’P., 1QP., 8Pe., 20+L.); Lane County, Mack Creek,
7.VII.—28.1X.1982 (mass reared from immersed wood) (N. H. Anderson) (3 0°C’, 17Pe., 20+L.); Hood River
149
County, w. of Hood River, Starvation Creek, 27. V1.1981 (A. Borkent) (1 Le. with associated prepupa, 5 L.). Some
Berry, Flynn and Mack Creek specimens in collection of N. H. Anderson (OSU), remainder in CNC.
Discussion
A major impediment to the elucidation of the röle of Chironomidae in aquatic wood decomposi-
tion, even in the best studied north temperate regions of the world, has been taxonomic. For example,
Cranston (1982) traced the first discovery of a distinctive larva (called “acutilabis”) to Konstantınov
(1948), yet it was 30 years before its xylophagy was established, despite Thienemann’s knowledge that
the eventually associated pupa and adult belonged to a xylophage (hence the specific name lignicola gi-
ven by Kieffer). Similarly, although the genus Stenochironomus Kieffer has been known to include
wood-mining larvae since ZagLotskt (1939), it was not until BORKENT’s (1984) monograph that its great
taxonomic diversity and the wood-mining of its relatives was revealed.
Figs. 17—22. Larva, outline of anterior margin of mentum. — 17 Orthocladius (Symposiocladins) lignicola Kieffer,
— 18 Chaetocladins ligni sp. nov., — 19 Limnophyes sp. ident., — 20 Xylotopus par (Coquillett), — 21 Polypedilum
(Polypedilum) fallax (Johannsen), — 22 Harrisius pallidus Freeman, — 23 Stenochironomus (Stenochironomus) hila-
rıs (Walker), — 24, Xestochironomus subletti Borkent.
There are several reasons for the relative paucity of taxonomic studies, including failure to include
woody substrates in routine aquatic invertebrate surveillance, difficulties in sampling immersed wood
and the fragile nature of many xylophagous larvae. However, there is no doubt that suitably located
immersed wood of an appropriate age, especially Alnus spp., may have dense mixed populations of
wood-mining Chironomidae, contributing substantially to the diversity and biomass of the aquatic
biota. For example, Kaurman (1983) reported an annual standing biomass of 5000 mg/m? of Xylotopus
par (Coquillett) and Anderson (in prep), a lower figure of 57 mg/m? from a mean of 618 C. lignı and
O. lignicola/m?. Sampling can pose difficulties and assessment of adult emergence from rearings from
aquarium retained wood may avoid many problems. However this method, widely used by Anderson
and his colleagues, only allows, at best, circumstantial larval/adult associations. Furthermore, wood
held in the laboratory gives rise to adult emergence from both xylophages and insects using the wood
surface as a substrate for other feeding methods. High pressure hosing of the wood after recovery from
the aquatic habitat may remove many non-stenotopic invertebrates, but ambiguity remains. How-
ever, obligate wood feeders starve if removed from wood. Thus the optimum method to obtain asso-
ciations of xylophagous larva, pupa and adult is to mass rear in natal wood, obtaining larval head
capsules by recovery from mines that contain pupae whose identity can be established through pupal/
adult associations either as pharate adults or through partial emergence.
150
Mass rearıng, as discussed above, does not readily discriminate between obligate xylophages and
other benthic insects associated in a less stenotopic manner with woody substrates. Discussions con-
cerningxylophagy are handicapped by our still limited knowledge of the precise nature of associations
with wood. A major criterion is the making of mines or galleys in wood, and/or the domination of the
larval gut contents by wood. Even observations on gut contents may be ambiguous, since insects de-
riving epilignic nutrients (from superficial components on immersed wood) will ingest non-dietary
wood fibres, particularly from extremely soft and decomposing woods. Analyses of xylophagous chi-
ronomid guts to establish the presence either of cellulases or a symbiont cellulose decomposer fauna,
required to confirm stenoxylophagy, have been made only in X. par (Kaurman et al., 1986) and even
this study failed to demonstrate cellulase activity of gut microflora. Therefore, our assessments of ha-
bit are of necessity somewhat circumstantial, but we present the following list and categories of xylo-
phagous Chironomidae:
Taxa strongly suspected of being obligate xylophages, only found mining in immersed wood, and
with guts consistently filled with wood fibres, include: Chironominae: Stenochironomus (Stenochiro-
nomus), Harrisins Freeman and Xestochironomus Sublette & Wirth species (BorkENT, 1984); Polype-
dilum (Polypedilum Kiefter), including at least Nearctic fallax (Johannsen) (JOHANNsEN, 1937, ROBACK,
1953); Orthocladiinae: Chaetocladins ligni sp. nov.; Orthocladins (Symposiocladius) lignıcola Kieffer
(Cransron, 1982); Xylotopus par (Coquillett) (OLıver, 1982; 1985).
Taxa which may be obligate xylophages but confirmation is lacking include: Chironominae: Glyp-
totendipes (Phytotendipes) testaceus Townes (reared from a water soaked log in Arkansas, Derreoux
Creek, W. Pine Bluff, route 270, 12.111. 1972, H. Teskey, C.N.C.); other perhaps misidentified Glyp-
totendipes, including gripekoveni (Kieffer) from the Netherlands (Grirekoven, 1914) glaucus (Meigen)
(= pallens [|Meigen]) from England (Burrr, 1940) and “dendrophila” from the Soviet Union (ZvErEvA,
1950); Orthocladiinae: ZLimnophyes sp. indet. unreared from Oregon streams, perhaps associated with
L. pilicistulus Saether adults emerged from laboratory mass rearıngs of immersed wood (N.H. Ander-
son).
Taxa with distinct associations with immersed wood, but either unsubstantiated as miners and/or
having a wood diet: Chironominae: Stelechomyia perpulchra (Mitchell) from S. E. USA (Reiıss, 1982);
Polypedilum (Polypedilum) including palaearctic pedestre (Meigen); Orthocladiinae: Brillia, particu-
larly flavifrons group species in Palearctic and Nearctic regions; Diamesinae: Pagastıa larval type A
of OLıver and Rousser, 1982 (Nearctic observations by CRAnsToN).
Many other Chironomidae have been recorded from immersed woody substrates but the nature of
the wood association is unclear. For example, many of the genera listed by Dupıry and AnDERSON
(1982) appear to be no more than casual visitors using the wood as either resting sites or for feeding.
Our categories above reflect our knowledge of mining: we have too little evidence to consider the röle
of these epiphytic taxa ın wood degradation.
_ The wood mining taxa listed above show no close phylogenetic relationships to one another, with
the exception of internal relationships within the Stenochironomus complex. Thus several unrelated
(or at least very distantly related) taxa have come to occupy aquatic woody microhabitats. Three sub-
families are represented: the Diamesinae, Orthocladiinae and Chironominae. Only within the Steno-
chironomus complex (BorkeEnT, 1984) is there evidence of species formation in amonophyletic grou-
ping probably following ancestral adoption of the wood mining habit (BorkENT, 1984). In other taxa
here considered the mining habit has been independently acquired. Phyletically close relatives of
mining taxa tend to be rheophilic and, where known, appear to be Aufwuchs grazers. Taxa in which
mining is probable, but not established with certainty, include some species that otherwise burrow in
immersed leaves (Brillia, Stelechomyia, Polypedilum). Since there are examples of presumed wood
mining in which the immersed wood is so soft that it is friable by hand, there may be little distinction
between grazing on immersed leaf surfaces and on soft wood. In either case, the source of nutrition
may be other than wood derived cellulose since the chironomid gut contents frequently contain algae
and fungi in addition to wood fibre.
151
Given that wood mining Chironomidae are not related, are there morphological features (conver-
gences) associated with the larval habit? One of the few characteristics that unite many miners, irre-
spective of subfamily, is the very flimsy body cuticle, which cannot support the flaccid larva outside
the mine. This is particularly striking in O. (Symposiocladins) and Stenochironomus, less so in Xyloto-
pus, and explains the fragility of the larva leading to larval death if extracted live from wood for rearing.
Within the Orthocladiinae, structures of the wood miners’ head capsule show some convergence, with
the mental teeth characteristically elongate (Figs. 17—20) and heavily sclerotised relative to non-mi-
ning congeners or close relatives. Other similarities include the broadening and shortening ofthe man-
dible and the narrowing of the anterior labrum, with a folding of the anterior part beneath the fronto-
clypeus in such a way that it cannot be flattened readily for microscope examination. In C. ligni, O.
(S.) lignicola and the undescribed mining Limnophyes species referred to above, the SI seta is simple
compared to the condition in congeners, but there is little evidence of any further reduction in head
capsule appendages such as the antenna, maxilla, and labral chaetae, or in the abdominal appendages
(prolegs, procerci, and anal tubules). In contrast, the obligate wood miner X. par lacks these orthocla-
diine character state changes associated with the mining habit, with the exception of the lateral com-
pression and strong folding of the labrum beneath the frontoclypeal apotome.
In contrast to the Orthocladiinae, mining Chironominae do not have an anteriorly projecting me-
dian part of the mentum (Figs. 21-24). Stenochironomus do indeed have a modified mentum, but this
mentum is transverse with very reduced teeth. The very great reduction of the striae of the ventromen-
tal plates is also characteristic, is perhaps associated with a loss of silk making and is part of a transfor-
mation series that includes non-wood mining species. Polypedilum miners appear little different from
non-mining congeners and neither does Glyptotendipes testaceus differ greatly from its non-(wood)
mining relatives. The diamesine Pagastıa (larval type A) has a most curiously modified mentum with
the teeth obscured by lying ventral (and posterior) to a continuous ventromental plate (OLıver &
Rousser, 1982, fig. 4). It is impossible to speculate on how this unusual structure may be related to fee-
ding, let alone to wood mining.
Although much work remains to be done, some ecological generalisations can be made concerning
wood-mining Chironomidae. Firstly, mining Chironomidae may be locally abundant but by no me-
ans all immersed wood contains larvae. In lotic systems, suitable wood must be anchored in the cur-
rent, but not such that it becomes covered in sediment. Mining Orthocladiinae are not found in poorly
oxygenated running waters, although at least in Britain, O. ($.) lignicola larvae can tolerate high orga-
nic loadings in fast current. In contrast to the situation in lotic systems, Orthocladiinae are much less
common in lentic habitats, where Chironominae (notably Stenochironomus) dominate the wood-mi-
ning chironomids. Once again, immersed wood must be free from sediments for successful colonisa-
tion (A. Borkent, pers. comm.).
The quality and texture of wood is important in relation to the frequently observed differences in
colonisation of different wood species. For example, it isacommon observation that alder (Alnus spp.)
in the Holarctic, and maple (Acer) in the Nearctic, are strongly preferred substrates for many miners.
Unquantified observations in Britain show that in a stream known to support O. lignicola, freshly pla-
ced Alnus branches were colonised after five winter months and larvae were not found in any other
immersed wood, ranging from oak (Quercus) to pine (Pinus). O. lignicola is most abundant in wood
so recently immersed that a knife is required to excise larvae and is not found in soft wood. In contrast,
X. par and Pagastia larval species A appear to be most abundant in wood friable enough to crumble
by hand. However, faunal succession in relation to temporal changes in wood quality are littleknown
at present. The röle of chironomids in wood breakdown and their dietary use of apparently refractory
wood and/or associated microbial flora are poorly understood and elucidation through further study
is required.
Acknowledgements
We wish to acknowledge Professor N. H. Anderson and his colleagues at Oregon State University, Corvallis, for
providing much material examined in preparation of this paper. We thank M. E. Dillon for her technical assistance
in field work, rearing and preparation of materials of wood-mining Chironomidae. Part of this study was underta-
ken while P.S.C. held a postdoctoral fellowship from the National Science Environmental and Research Council,
Canada at the Biosystematics Research Institute.
Literature
ANDERSON, N. H., J. R. SEDELL, L. M. ROBERTS & F. J. TrıskA 1978: The role of Aquatic Invertebrates in rasen
sing of Wood Debris in Coniferous Forest Streams. — Am. Midl. Nat. 100: 64-82
BORKENT, A. 1984: The systematics and phylogeny of the Stenochironomus complex (Xestochironomus, Harrisins,
and Stenochironomus) (Diptera: Chironomidae). — Mem. ent. Soc. Can. 128: 1—269
BRUNDIN, L. 1949: Chironomiden und andere Bodentiere der südschwedischen Urgebirgsseen. Ein Beitrag zur
Kenntnis der bodenfaunistischen Charakterzüge schwedischer oligotropher Seen. — Rep. Inst. Freshwat. res.
Drottningholm 30: 1-914
BURTT, E. T. 1940: A filter feeding mechanism in the larvae of the Chironomidae (Diptera: Nematocera). — Proc.
R. ent. Soc. Lond. (A) 15: 113-121
COQUILLETT, D. W. 1910: The types of North American genera of Diptera. — Proc. U. S. natn. Mus. 37: 499— 647
CRANSTON, P. S. 1982: The metamorphosis of Symposiocladius lignicola (Kieffer) n. gen., n. comb., awood-mining
Chironomidae (Diptera). — Ent. scand. 13: 419-429
CRANSTON, P. S., D. R. OLIVER & O. A. SAETHER 1983: 9. The larvae of the Orthocladiinae (Diptera: Chironomi-
dae) of the Holarctic region — Keys and diagnoses. Ent. scand. Suppl. 19: 149— 291
DE GEER, C. 1776: Memoires pour servir a l’histoire des insectes. 6: VIII + 523 pp. Stockholm
Dupte£y, T.& N. H. ANDERSON, 1982: A survey of invertebrates associated with wood debris in aquatic habitats.
— Melanderia 39: 1—21
EDWARDS, F. W. 1929: British non-biting midges (Diptera, Chironomidae). — Trans. R. ent. Soc. London 77:
279—430
GOETGHEBUER, M. & F. LENZ 1942: Tendipedidae-Orthocladiinae (Chironomidae-Orthocladiinae). — [part]. Flie-
gen palaearkt. Reg. 13g: 25-64
GRIPEKOVEN, H. 1914: Minierende Tendipediden. — Arch. Hydrobiol. Suppl. 2: 129—230
JOHANNSEN, O. A. 1937: Aquatic Diptera IV. Chironomidae: Subfamily Chironominae. — Mem. Cornell Univ. ag-
tic2B9.79:n.210:3,.56
KAUFMAN, M. G. 1983: Life history and feeding ecology of Xylotopus par (Coquillett) (Diptera; Chironomidae).
— Unpubl. MSc. thesis, Central Michigan Univ., Mount Pleasant, Michigan. 102 pp
KAUFMAN, M. G., H. S. PANKRATZ, & M. J. KLuG 1986: Bacteria associated with the Ectoperitrophic Space in the
Midgut ofthe Larva ofthe Midge Xylotopus par (Diptera: Chironomidae). — Appl. Env. Microb. 51: 657—660
KONSTANTINOV, A. S. 1948: © Chironomidae basseina r. Amur. — Dokl. Akad. Nauk. SSSR 63: 333 — 336
OLIVER, D. R. 1982: Xylotopus, a new genus of Orthocladiinae (Diptera: Chironomidae). — Can. Ent. 114:
167-168
—— 1985. Review of Xylotopus Oliver and description of /risobrillia n. gen. (Diptera: Chironomidae). — Can. Ent.
117: 1093-1110
OLIVER, D.R.& M. E. RousseL 1982: The larvae of Pagastia Oliver (Diptera: Chironomidae) with descriptions of
three Nearctic species. — Can. Ent. 114: 849-854
PiNDER, L. C. V. 1978: A key to the adult males of British Chironomidae. — Scient. Publs Freshwat. biol. Ass. 37:
vol 1, 1-169, vol 2, Figs 77-189
PiNDER, L.C.V.&P. D. ArMITAGE 1985: A description ofthe larvaand pupa of Chaetocladins melalencus (Meigen)
(Diptera: Chironomidae). — Entomologist’s Gaz. 36: 119—124
POTTHAST, A. 1915: Über die Metamorphose der Orthocladius-Gruppe. (Ein Beitrag zur Kenntnis der Chironomi-
den). — Arch. Hydrobiol. Suppl. 2: 243-376
Reıss, F. 1982: Hyporhygma n. gen. und Stelechomyia n. gen. aus Nordamerika (Diptera: Chironomidae). — Spi-
xıana 5: 289— 302
159
ROBACcK, S. S. 1953: Savannah River tendipedid larvae (Diptera: Tendipedidae-Chironomidae). — Proc. Acad. nat.
Sci. Philad. 105: 91-132
SAETHER, ©. A. 1977: Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys.
— Bull. Fish. Res. Bd. Can. 197: 1—209
—— 1979: Chironomid communities as water quality indicators. — Holarct. Ecol. 2: 65-74
—— 1980: Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. scand. Suppl. 14:
Bil
Soponis, A. R. 1977: A revision of the Nearctic species of Orthocladius (Orthocladius) van der Wulp (Diptera, Chi-
ronomidae). — Mem. ent. Soc. Can. 102: 1—187
WALKER, F. 1856: Insecta Britannica: Diptera. 3. — London. 352 pp.
WARWICK, W.F. 1975: The impact of man on the Bay of Quinte, Lake Ontario, as shown by the subfossil chirono-
mid succession. — Verh. int. Verein Limnol. 19: 3134—3 141
WIEDERHOLM, T. 1976: Chironomids as indicators of water quality in Swedish lakes. — Naturvardsverkets limnol.
unders. inf. 10: 1-17
Wurp, F.M. vAnDEr 1874: Dipterologische aanteekneningen. — Tijdschr. Ent. 17: 109-148
ZABLOTSKI, A. A. 1939: Lichinki ı kukolki Stenochironomus fascipennis Zett. — Uchen Zap. leningr. gas. Univ. 35:
143—148
ZVEREVA, ©. $. 1950: Novye formy lichinok Tendipedidae (Diptera) iz rek Pechory i Vychegdy. — Ent. Obozr.
31: 262— 284
Dr.P.S. Cranston,
ANIC
CSIRO Entomology
Canberra, ACT 2601, Australia
Dr. D.R. Oliver,
Biosystematics Research Centre,
Agriculture Canada, Ottawa K1A 0C6, Canada
154
| SPIXIANA | Supplement 14 | 155-165 | München, 15. Juli 1988 | ISSN 0177-7424
Chironomidae of South India. I. Generic composition, biogeogra-
phical relationships and descriptions of two unusual pupal exuviae
(Diptera, Chironomidae)
By William P. Coffman, L. A. Yurasits, Jr. and Carlos de la Rosa
Abstract
Collections of pupal exuviae were made from 25 sites (lotic, lentic and marine) in the states of Tamil Nadu and
Kerala, South India. Species-level taxa belonging to 55 named genera (35 new to India) were encountered — increas-
ing the number of named genera known to occur in India from 38 to 73. An additional 20 possibly “new” genera
were also discovered. Descriptions for two of these “new” genera, which are not referable to any known subfamily,
are given. Almost all of the named genera collected in S. India are known to occur widely in the Holarctic region,
and many are subcosmopolitan. The 20 “new” genera may represent an endemic component in $. India. However,
there is some evidence that at least a few of these “new” genera may occur elsewhere in the Oriental region.
Introduction
SUBLETTE & SUBLETTE (1973) list 56 genera of Chironomidae from the Oriental Region. Due to synonymy only
53 of the generic names they give are still considered to be valid (AsHE, 1983). Of these, only 21 had been recorded
from India (Table 1). Since 1973 anumber of investigators have added to our knowledge of the generic composition
of the chironomid fauna of India (BHATTACHARYA et al., 1985 a, 1985 b; CHAUDHURI & DEBNATH, 1985; CHAUD-
HURI & GHOSH, 1981, 1982a, 1982 b, 1986; CHAUDHURLI et al., 1984; CHAUDHURI et al., 1979; GHOSH & CHAUD-
HURI, 1983; Hirvenoja, 1985; SINGH & KULSHRESTA, 1975; SINHARAY & CHAUDHURI, 1978, 1984; SINHARAY et al.,
1978). As a result of these efforts, the number of genera known to occur in India has risen to 38 (Table 1).
Nearly all of the distribution records given for the Chironomidae of India in SUBLETTE & SUBLETTE
(1973) and all but one (Chaetocladins) of the more recent additions to the Indian fauna have come from
Indian states bordering on the Himalayas. In this paper we are presenting the results (at the generic
level) of a series of collections of pupal exuviae made in the southern Indian states of Tamil Nadu and
Kerala. Broad biogeographical affinities of this fauna are discussed and two unusual pupal exuviae,
that cannot be placed in any subfamily, are described. Forthcoming papers will treat the subfamilies
Tanypodinae, orthocladiinae and Chironominae.
Material and Methods
All of the specimens utilized in this study were collected using the surface drift pupal exuviae method (BRUNDIN,
1966; COFFMAN, 1973; PINDER, 1986; WILSON & BRIGHT, 1973). Collections were made with fine mesh drift nets
and soil sieves (125 microns) and field preserved in 70% EtOH. Collections were sorted at 12X and series of each
species from each sample were slide mounted with Euparal for identification and study. Abbreviations utilized in
the descriptions are from SAETHER (1980).
155
Table 1.
sources.
SUBLETTE & SUBLETTE (1973)
Chironomidae genera reported from India in SUBLETTE & SUBLETTE (1973) and from recent literature
Recent Literature
TANYPODINAE
Ablabesmyia Paramerina (CHAUDHURI & DEBNATH, 1985)
Clinotanypus
Procladius
Tanypus
DIAMESINAE
Diamesa
Sympotthastia
ORTHOCLADIINAE
Brıllia Bryophaenocladius (GHOSH & CHAUDHURI, 1983)
Cricotopus Chaetocladinus (CHAUDHURI & GHOSH, 1982)
Heterotrissocladius Eukiefferiella SHINHARAY et al., 1978)
Parametriocnemus Limnophyes (CHAUDHURI et al., 1979)
Metriocnemus (SHINHARAY & CHAUDHURI, 1978)
Nasuticladins (SINHARAY & CHAUDHURI, 1984)
Orthocladins (CHAUDHURI & GHOSH, 1982 b)
Paracladius (HIRVENOJA, 1985)
Paratrichocladius (HIRVENOJA, 1985)
Thienemannia (BHATTACHARYA et al., 1985 a)
CHIRONOMINAE
CHIRONOMINI
Chironomus Beckidia (BHATTACHARYA et al., 1985 b)
Cryptochironomus Cladopelma (BHATTACHARYA et al., 1985 b)
Dicrotendipes Gillotia (BHATTACHARYA et al., 1985 b)
Glyptotendipes Kiefferulus (CHAUDHURI & GHOSH, 1986)
Harnischia
Lauterborniella
Nilodorum
Paratendipes
Polypedilum
Stenochironomus
TANYTARSINI
Micropsectra Paratanytarsus (CHAUDHURI et al., 1984)
Tanytarsus (SINGH & KULSHRESTA, 1975)
Taxonomic placement
It has been established that pupal exuviae of most chironomids are easily placed at the generic level.
There are, however, a few striking exceptions; for example, Baetotendipes, Chironomus and Einfeldia
species group C (Pınner and Reıss, 1986). For this reason, as well as others, the list of chironomid ge-
nera given here should be considered to represent a minimum number of genera actually present. A
further complication in taxonomic placement was encountered frequently in this material. Many of
the species placed in named genera do not conform exactly to all aspects of the pupal diagnoses of ge-
nera given in WIEDERHOLM (1986). When the differences were only slight, the species were placed in the
156
Fig. 1. Map of extreme southern India — numbers indicate areas in which collections were made: 1—2, Ootaca-
mund-Coimbatore Road; 3-4, Kodaikanal-Madurai Road; 5, Periyar; 6, Rajapalaıyam; 7, Cape Cormorin.
appropriate named genera. However, when the differences were considered to have a greater probabi-
lity of taxonomic significance, the species were either placed in a named genus, with the name given
in quotation marks in the list, or the species were considered to be different enough to warrant place-
ment in separate, numbered genera.
Collection sites
Most of the 25 collection sites were first to fourth order streams and were visited only once. however, a few lentic
systems (ponds and reservoirs) and one marine locality were also sampled. T'wo areas were collected relatively ex-
tensively: the Palnı Hills in the vicinity of Kodaikanal and the Nilgiri Hills in the vicinity of Ootacamund. Additio-
nal collections were made from a stream in the vicinity of Rajapalaiyam, Tamil Nadu, a stream near Periyar Lake,
Kerala and tidal rock pools at Cape Comorin (Fig. 1).
Results and Discussion
Among the approximately 150 species-level taxa represented in these collections, 55 named genera
(including Chironomini Genus D and Genus E of Pınper & Reıss [1986]) were identified (Table 2). All
but one of these (Sublettea) is known from the Palaearctic, and all buttwo oftheremaining genera (Pa-
ratrissocladins and Virgatanytarsus) are Holarctic in distribution. In addition to the 55 named genera
represented in these collections, another 20 “new” genera were recognized. These categories were
established for species-level taxa that could not be placed in any of the genera for which diagnoses are
given in WIEDERHOLM (1986) or other literature, even when the generic limits were reasonably expand-
ed to allow for some differences (Table 2).
Thirty-five of the named genera represented in the collections from South India are recorded here
for the first time from India-bringing the total number of genera with known distributions in India to
Varlabler2).:
RoBack & Corrman (in press) found that the fauna of high altitude regions of Nepal, with only four
possible endemic genera (all Tanytarsini and based on larvae), was overwhelmingly Holarctic in distri-
bution. The results of other workers in the northern regions of the Indian subcontinent have included
157
Table 2. Genera of Chironomidae collected as pupal exuviae from South India. *indicates new to India.
TANYPODINAE CHIRONOMINI (continued)
Ablabesmyia Glyptotendipes
Conchapelopia” Harnischia
Hayesomyia” Microtendipes“
Larsia“ Nilodorum
Nilotanypus” Parachironomus*
Paramerina Paracladopelma*
Procladius Paralauterborniella*
Tanypus “Paratendipes”
Zavrelimyia” Phaenopsectra*
Pentaneurini Genera 1-5 Polypedilum
ORTHOCLADIINAE Bora
Saetheria”
Bryophaenocladins Stenochironomus
Cardiocladius“
“Stictochironomus””
Clunio* S Chironomini Genus D*
Corynoneura® (PINDER & Reıss, 1986)
Cricotopus Chironomini Genus E*
Eukiefferiella (PINDER & Reıss, 1986)
Heleniella* Chironomini Genera 1-6
Krenosmittia”
Limnophyes TANYTARSINI
Nanocladius“ Cladotanytarsus”
Paracricotopus” Rheotanytarsus“
Parakiefferiella Stempellinella”
Parametriocnemus” Sublettea”
Paratrissocladius” Tanytarsus
Rheocricotopus” “Virgatanytarsus””
Rheosmittia” Zavrelia”
Thienemanniella” Tanytarsıni Genera 1-3
Orthocladiinae Genera 1-4 PSEUDOCHIRONOMINI
CHIRONOMINAE Psendochironomus”
CHIRONOMINI UNKNOWN CHIRONOMIDAE
Chironomus Taroa
Cladopelma Tazem2
Cryptochironomus
Cryptotendipes*
Dicrotendipes
only two endemic genera (Asclerina, Reiss [1968] and Neopodonomus, Chaudhuri & Ghosh (1981).
Neopodonomus has, however, been shown to be a synonym of Boreoheptagyia (ROBACK & COFFMAN,
in press). These results are, perhaps, not surprising since the areas that have been most extensively col-
lected (montane regions) are ecologically more closely related to the Palaearctic than they are to the
Oriental Region. The fauna of South India, as revealed by these collections, is clearly dominated by
genera that have widespread distributions, but there is also a major component of apparently “ende-
mic” genera. It is not clear whether these genera are limited to South India (perhaps including Sri
Lanka) or aremore widespread in the Oriental Region. Unfortunately, no comprehensive study ofthe
chironomid fauna of any other part of the Oriental Region has been carried out. The limited data that
do exist would seem to indicate that at least some part of this group of “endemic” genera may occur
in other parts of the Oriental Region. Thienemann, Johannsen, Zavrel and Lenz found a chironomid
158
fauna on the Greater Sunda Islands that may be similar to that of South India. The $. Indian species
that is here placed in “Stictochironomus” bears some resemblance to Stictotendipes Lenz (1937) and the
Rheotanytarsus anomalus group of Zavreı (1934) reported from Sumatra also occurs in the South In-
dian material. There are other known connections of the South Indian fauna with other parts of the
Oriental Region. The species of Sublettea from South India is very similar (perhaps identical) to that
found by Fittkau in SW China and reported by Pınner & Reiss (1986). Chironomidae Genus 2 (de-
scribed below), or something very similar, has recently been found in China and in collections from
Burma (E. J. Fittkau, personal communication).
Descriptions of pupae of two unusual taxa
Taxon 1
Pupa (Figs. 2-8):
Size demonstrating strong sexual dimorphism, total length of females 7.0 mm — 8.3 mm, x =
7.6 mm, n = 4; total length of males 5.3 mm — 6.5 mm, x = 5.4mm,n = 6.
Cephalothorax: antepronotum, ventral structures of thorax, cephalic region and leg sheaths yellow;
dorsal parts ofthorax and wing sheaths yellow-brown; Cephalıc area (Fig. 2): frontal apotome strong-
ly sclerotized; frontal setae absent; frontal apotome without tubercles or warts; ocular field with one
postorbital seta; Thorax (Fig. 3): antero-dorsal region of mesonotum with a field of very strong spine-
like processes; fields of rugulosity dorsal of the dorsocentral setae, on the prealar lobe and on a lobe-
like process posterior to the precorneal setae — the latter somewhat stronger than the other two fields;
all leg sheaths recurved under wing sheaths; wing sheaths without pearl rows or terminal protube-
rance; thoracic horn absent; Chaetotaxy of thorax: two narrowly separated MAps; one LAps located
on a low protuberance; four Dc setae, Dc2 (apparently) located much ventral of Dei, Dc3 and Dc4
forming a posterior pair; three Pc setae of varıable lengths, but Pc1 is usually shorter than the other
two; no Pa or Mn setae present.
Abdominal segments I- VIII (Figs. 4-8): mostly yellow-brown, but armature and adjacent areas
reddish-brown to black.
Shagreenation — tergites: tergite I without, tergites II and III with extensive fields of dense fine sha-
green, slightly larger toward the posterior margıns (Figs. 4-5), tergite IV with a narrow transverse an-
terior band and posterolateral areas of dense fine shagreen (Figs. 4 and 6), tergite V with two narrowly
separated anterior groups and a transverse posterior band of fine dense shagreen (Figs. 4 and 6), tergite
VI with most of the central area covered by fine, but less dense, shagreen, expanded laterally along the
posterior margin (Figs. 4 and 7), tergite VII with central area covered with weak shagreen (Fig. 4), ter-
gite VIII with a weak transverse anterior band or without shagreen (Figs. 4 and 8).
pleurites: pleurite I without, pleurites II and III with small anterior areas of fine shagreen, usually
much weaker on III (Figs. 4-5), pleurites IV and V with extremely fine shagreen on posterior halves
(Fig. 4), pleurites VI-VIII with extremely fine shagreen over much of surface, sometimes absent on
VII and much of VIII.
Sternites: sternites I- VI with at most very fine and very sparse shagreen spinules, sternite VII with
a weak anteromedian group of shagreen spinules, sternite VIII without shagreen.
Armature and other structures of abdomen: rows of approximately 50-60 Hl on posterior margıns
of tergites Il and III (Figs. 4-5); tergites III (II)—IV with transverse anterior rows of sharp dark poste-
riorly directed spines (Figs. 4-5), tergite IV with a posteromedian transverse group of sharp, dark,
anteriorly directed spines of varying lengths (Figs. 4 and 6); tergite V with a sinuous row of large,
dark, posteriorly directed spines (Figs. 4-6); tergite VI with a dense, anteromedian, semicircular
patch of spines (Figs. 4 and 7); tergites VII and VIII without armature; PSB absent on II, but a PSB-
like structure present on segment III (Figs. 4-5); PSA absent on all segments.
199
anni,
ne
oo?
.
= os oO?
Figs. 2-6. Taxon 1, pupa, — 2. cephalic region, — 3. thorax, lateral, — 4. abdomen, dorsal, — 5. segment 3, dorsal,
— 6. posterior armature of tergite 4 and anterior armature of tergite 5.
160
Figs. 7-10. Taxon 1, pupa. — 7. Anteromedian armature of tergite 6, — 8. posterior margin of segment 8 and anal
lobes, dorsal; Taxon 2, pupa. — 9. cephalic area, — 10. thorax and adjacent structures of cephalic region, lateral.
Chaetotaxy — tergites (Figs. 4-5 and 8): tergite I with 4 D setae; tergites II-V with 7 D setae; ter-
gites VI and VII apparently with 6 D setae; tergite VIII with 1 D seta.
Pleurites: pleurite I with 1 L seta; pleurites II-VII with 3 L setae; pleurite VIII with one relatively
large posterior L seta (Figs. 4-5 and 8).
Sternites: sternite I with V setae apparently absent; sternites II-VII with 4 V setae; sternite VIII
with 2 V setae.
Anal lobes and segment IX (Figs. 4 and 8): tergite IX with lateral and median fields of shagreen; AL
without marginal fringe of setae, but with several rows of small spine-like protuberances; each AL
with a dorsal and ventral seta on the disc; inner margins of AL with small groups of weak spinules;
genital sheaths of male extend to tip of AL.
Specimens examined:
Kodaikanal area, Palni Hills, Tamil Nadu, South India — small stream along Madurai — Kodaikanal Road, at
milepost 36, 1 female pupal exuviae, 18 Mar. 1978; 3rd order stream along Madurai — Kodaikanal Road, about
161
4 km east of Kodaikanal, Tiger Forest stream, 2 female pupal exuviae, 20 Mar. 1978; 2nd order stream along Madu-
rai — Kodaikanal Road, between mileposts 17/5 and 17/6, 1 male and 1 female pupal exuviae, 18 Mar. 1978; Oota-
camund area, Nilgiri Hills, Tamil Nadu, South India — Vellappalam stream (2nd or 3rd order) along Coimbatore
— Ootacamund Road, 1 male pupal exuviae (fragment), 5 May 1979; 2nd order stream along Coimbatore — Oota-
camund Road, 3 male pupal exuviae, 8 May 1979; Kallar River (4th order stream) at base of Nilgiri Hills along Co-
imbatore — Ootacamund Road, 2 male pupal exuviae, 8 May 1979.
Taxon 2
Pupa (Figs. 9-15):
Moderate sexual dimorphism in size, total length of females 3.0 mm — 3.5 mm, x = 3.2 mm, n =
6: total length of males 2.5 mm — 3.25 mm, x = 2.9 mm, n = 12.
Cephalothorax: All thoracic structures yellow to yellow-brown; Cephalic area (Fig. 9); frontal
apotome strongly sclerotized; frontal setae absent; frontal apotome without tubercles or warts; ocular
field with one postorbital seta; Thorax (Fig. 10): dorsal surface of thorax not rugulose, but with very
weak sculpturing; all leg sheaths recurved under wing sheaths; wing sheaths without pearl rows or ter-
minal protuberance, but with an angular process on the inner margin near the base, adjacent to and fit-
ting closely against the prealar lobe; thoracic horn absent; Chaetotaxy ofthorax: two widely separated
MAps; one LAps located on a low protuberance; four Dc setae, Dc2 or Dei located more ventrally
than others, Dc3 and Dc4 forming a posterior pair; three relatively strong Pc setae of approximately
equal size; no Pa or Mn setae present.
Abdominal segments I- VIII (Figs. 11-15): tergites light reddish-brown, armature of tergites dark
reddish-brown; tergites II-VII with lateral, longitudinal dark brown lines; pleurites and sternites
with little or no pigmentation.
Shagreenation — tergites: tergites II-VIII with lateral and/or anterior groups of very weak sha-
green spinules (Figs. 11-15).
Pleurites: all pleurites without shagreen.
Sternites: sternites II-VIII with lateral, moderately dense groups of very fine shagreen spinules in
irregular arching rows.
Armature and other structures of abdomen: posterior margins of tergites II and III with rows of ab-
out 25-30 strong Hl (Figs. 11-12); tergites III-V with anterior rows of strong Hl, 25—30 on tergite
III, about 18 on tergite IV and about 12 on tergite V (Figs. 11-13); tergite IV with a posterior median
group of anteriorly directed spines, the median spine in this group much larger than the others
(Figs. 11 and 13); tergite VI with a pair of very large anteromedian Hl (Fig. 11); tergites VII and VIII
without armature; PSB and PSA absent on all segments.
Chaetotaxy — tergites (Figs. 11-13): tergite I with 4 D setae; tergites II- VII with 7 D setae; tergite
VIII with 2 D setae.
pleurites: pleurite I with 1 L seta; pleurites II-VII with 3 L setae; tergite VIII with 1-2 L seta.
sternites: sternite I without V setae; sternites II-VII with 4 V setae; sternite VIII with 1—2 V setae.
Anal lobes and segment IX (Figs. 11, 14 and 15): tergite IX without shagreen; AL without marginal
fringe, but margin weakly crenulate; each AL with a dorsal and ventral seta on the disc; AL and seg-
ment IX forming a Telmatogetoninae-like concave, oval plate; the posterior margin of tergite VIII
heavily sclerotized and crenulate, forming an arching ridge above the AL.
Specimens examined:
Ootacamund area, Nilgiri Hills, Tamil Nadu, South India — Kallar River (4th order), at base of Nilgiri Hills
along Coimbatore — Ootacamund Road, 16 male and 10 female pupal exuviae, 8 May 1979.
162
\ AI NNUR 2
= ee
Sy
Figs. 11-15. Taxon 2, pupa. — 11. abdomen, dorsal, — 12. segment 3, dorsal, — 13. segment 4, dorsal, — 14. seg-
ment 8 and anal lobes, dorsal, — 15. posterior margin of segment 8 and anal lobes, lateral.
163
Comments on taxa 1and 2
Although the pupal exuviae of these unusual taxa differ from each other in size and many structural
features, they have a number of basic similarities that, most probably, indicate a close relationship.
Among these features are: 1). the absence ofa TH; 2). the absence of FS; 3). the ventral position of one
of the anterior De setae; 4). the unusual position of the LAps on a low protuberance; 5). the absence
of LS on all abdominal segments; 6). the presence of only one L seta on segment VIII; 7). the presence
of seven D setae on most tergites; 8). the absence of an AL fringe; 9). the presence of dorsal and ventral
setae on the disc ofthe AL; and 10). the presence of unusual armature on the abdominal tergites.
Each of these taxa undoubtedly represents anew genus and, since the combination of characters that
they possess is not consistent with any described subfamily, they most likely represent a new higher
taxon as well, perhaps a new subfamily. The number and distribution of thethoracic setae ofthese taxa
would seem to indicate a relationship with Orthocladiinae. However, the abdomen of Taxon 1 shows
a number of relationships with Pseudochironomus, e. g., the shape of the AL and the presence of a
nearly circular patch of spines on tergite VI. Some species of Pseudochironomus also have no fringe on
the AL. The abdomen of Taxon 2 does not, however, show this possible relationship. Instead, the
unusual arrangement of segment VIll and IX, with the AL, appears to represent a remarkable conver-
gence with Telmatogetoninae. Clarification of the taxonomic position and phylogenetic relationships
of these taxa must await discovery of the larvae and/or adults.
Acknowledgements
This work was supported by Smithsonian Institution Grant FC-70117000 to Dr. George Saunders, whose en-
couragement and interest are gratefully acknowledged. We are indebted to Professor $S. Krishnaswamy, Dr. George
Michael and Mr. Navaneethakrishnan for their considerable logistic help in making the field work possible. Appre-
ciation is expressed to numerous postdoctoral and graduate students at Madurai Kamaraj University for field assi-
stance. Lastly, thanks are given to Stephan Coffman, whose enthusiasm and companionship aided greatly.
Literature
AsHE, P. 1983: A catalogue of chironomid genera and subgenera of the world including synonyms (Diptera: Chiro-
nomidae). — Ent. scand. Suppl. 20: 1-68
BHATTACHARYA, F., DUTTA, T. K. & P. K. CHaupDHurı 1985a: A study on Orthocladiinae (Diptera: Chironomi-
dae) in India. Genus T’hienemannia Kieffer. — Jour. Beng. Nat. Hist. Soc. N. S. 4: 40—48
—— 1985b: The adults of three littleknown chironomine genera (Diptera: Chironomidae) from India. — The Burd-
wan Univ. $cı. Jour. 2: 177—183
BRUNDIN, L. 1966: Transantarctic relationships and their significance, evidenced by chironomid midges. With a
monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. — K. Svenska Ve-
tensk. Akad. Handl. 11: 1-472
CHAUDHURI, P. K.& R. K. DEBNATH 1985: Two new species of Paramerina Fittkau from India. — Spixiana Suppl.
1129167171
CHAUDHURI, P. K.& M. GHOsH 1981: A new genus of podonomine midge (Chironomidae) from Bhutan. — Syste-
matic Entomology 6: 373—376
—— 1982a: Orthocladid midges of the genus Orthocladius van der Wulp (Diptera: Chironomidae) from eastern
Himalayas. — Annales Zoologici 36: 491—500
—— 1982b: Record of Chaetocladius Kieffer (Diptera: Chironomidae) from India. — Folia entomologica Hunga-
zica, 432 9 7,
—— 1986: Two Indian species of Kiefferulus Geotgh. (Diptera: Chironomidae). — Systematic Entomology 11:
277.292
CHAUDHURI], P. K., GUHA, D. K.& M. GHosH 1984: Tanytarsıni (Diptera: Chironomidae) from India. — Orient.
Insects 18: 31—41
164
CHAUDHURT, P. K., SINHARAY, D. C. &$. K. DasGUPTA 1979: A study on Orthocladiinae (Diptera: Chironomidae)
of India. Part II. Genus Zimnophyes Eaton. — Aquatıc Insects 1: 107—134
COFFMAN, W.P. 1973: Energy flow in a woodland stream ecosystem: II. The taxonomic composition and pheno-
logy ofthe Chironomidae as determined by the collection of pupal exuviae. — Arch. Hydrobiol. 71: 281-322
GHOSH, M. & P. K. CHAUDHURI 1983: Indian species of the genus Bryophaenocladius Thien. (Diptera: Chironomi-
dae). — Jour. Beng. Nat. Hist. Soc. N. S. 2: 27—33
HIRVENOJA, M. 1985: New species of the genera Cricotopus v. d. Wulp and Paratrichocladius Santos Abreu from
Himalaya. — Spixiana Suppl. 11: 161-166
LENZ, F. 1937: Chironomariae aus Niederlandisch-Indien. Larven und Puppen. — Arch. hydrobiol. Suppl. 15:
1-29
PiNDER, L. C. V. 1986: The pupae of Chironomidae (Diptera) of the Holarctic region — Introduction. — Ent. scand.
Suppl. 28: 5-7
PiNDER, L. C. V. & F. Reıss 1986: The pupae of Chironominae (Diptera: Chironomidae) of the Holarctic region
Keys and diagnoses. — Ent. scand. Suppl. 28: 299456
Reıss, F. 1968: Neue Chironomiden-Arten aus Nepal. — Khumbu Himal 3: 55— 73
ROBACK, S.$. & W. COFFMAN: Results of the Nepal alpine zone research project, Chironomidae (Diptera). — Proc.
Acad. nat. Sci. Philad. in press
SAETHER, O. A. 1980: Glossary of chironomid morphology terminology. — Ent. scand. Suppl. 14: 1-51
SINGH, S. and A. K. KULSHRESTA 1975: Three new species of Tanytarsus (Diptera: Chironomidae). — Orient. In-
sects 9: 419424
SINHARAY, D.C. & P. K. CHAUDHURI 1978: A study on Orthocladiinae of India. Part III. Genus Metriocnemus van
der Wulp (Diptera: Chironomidae). — Spixiana 1: 281-286
—— 1984: New species of the genus Nasuticladius Freeman (Diptera: Chironomidae) from India. — Jour. Beng.
Nat. Hist. Soc. N. S. 3: 56-62
SINHARAY, D. C., CHAUDHURI, P. K. & D. K. CHAUDHURI! 1978: Studies on Orthocladiinae (Diptera: Chironomi-
dae) of India. Genus Eukiefferiella Thienemann. — Orient. Insects 12: 347—354
SUBLETTE, J. E. & M. $. SUBLETTE 1973: Family Chironomidae. — In: Delfinado, M. and Hardy, E. D. (eds.): Ca-
talogue of the Diptera of the Oriental region, 1: 289-422, Suborder Nematocera. Hawaii
WIEDERHOLM, T. (Ed.). 1986: Chironomidae of the Holarctic region — keys and diagnoses. Part 2 pupae. — Ent.
scand. Suppl. 28: 1482
WILSON, R.S. & P.L. BRIGHT, 1973: The use of chironomid pupal exuviae for characterizing streams. — Freshwat.
Biol. 3: 283—302
ZAVREL, J. 1934: Tanytarsuslarven und -puppen aus Niederlandisch-Indien (mit Beiträgen von A. Thienemann). —
Arch. Hydrobiol. Suppl. 13: 139—165
Dr. William P. Coffman,
L. A. Yurasiıts, Jr.
Dr. Carlos de la Rosa,
Department of Biological Sciences,
University of Pittsburgh
Pittsburgh, PA 15260, USA
165
(inet era ME
ber-Tot Terme aiupk & ara wood,
rl errang Simunaehrel-d mann 15 Fr er
ta es le Eee |
Amen dee ee een) RE ae |
I I. Ye Knaaa) £ Mo D Pd 1 ee SH
Pe Beer a Ay a ee ” =
euch]
g
nu iX EL. .
ie Inn? Nrdtakıün SER Kal on a URANGHARTUE US DInEESEr
uns a ud ng erg 2 U dee name af the
ni HN * RTL auch ns rigen re ses
u RC Fairy Y rlH ; ury Jeac rd Dunn If more Ukdly® an 1: b
u TE BENSEEER dest EIER En a 277 DEE, ‚oe Anni a) 5
mol seem u indie a elatianuhup wi 23: 1ARERAETr
I number of relaos Er rennen Ana Vi pas Se TE
Rune > kai er tar! uErHr voreh }, zaus v: tt ung IuTaı ur ed, In BI wi; Ba Y Al f
47 \ . a ar
sılE ara tııT. N ei 4% ir f 4% u Yun
5 JECUHTE
17 Jeger 0% ‚kırye > 1, KL, tolanıy y tagen Blnyon as 107 rar 15"
111533
up dasc ar Bi, arte ser mini us Br den Ä er arte Ian, 1 Pu Wi al erh #7 PS Aa Br? k
' Ira Ei k ni 2 alu N sr [ar Paz) uwiand ıy It
E* er?
RITTER N a Te 18 IE
ıR in ıT auge „Ahlmon rl »E Teer wi
et urut - ‚sinn mn! (Hismonnrık) say) z er UNTEN ET vos ul to zurseN f M&
j PUDHER K-brık 2 ZESSR ur
Imst) ende) saoubebsarint) sin aubun? BR I iA wu). 3 1a .N.9 RD kl e 22
un TE DEE FSRT TER ZESSHT IM) © MkennET EOS SE N
Mr a) II Her Bun Var NP Hl ee ae EEE > ar aan 1 1a 3
31 uahe 5 ir Au}, Ti in Kia 8 £ R Urriplts iii 2) if Kr Ion Mi ’ 4 EX fi Fir Br
ie = i f y . ' v l e si 78 WIE a,
zwi e UFER zansı Warren No art ealagı Q hinrurko In au Wi uf ‚el, 657 Mal; . a0 ”
Ina ge
y
unkraredT „A ers mag Ye) re er sur bau arwlee
BL YEI ur a2 od
Ber ‘ H i Bez
naar! ara i nhackeilianhikn
en ” | 1
0A & sb ofre 2. ” j . B 4 na Du
Rn 7 elek: = Sole bo Iimsarnugsl]
ern) ’ ne FE Buy Wi ee
1
a b 7 F u ® ihr MııF Y
PR
(% K 4 i weg N ihzsu from Indie =
Fi \ sen A 1493 wre ur ur In 7m 77 Ara De
ı ‚ 4 nah wer ' 5 4 Pr / BERUFT u dat “ug (ihpimog:k Ins
erddla fa 6 sw 68 ‚ +
t ! j Fi oE% ng } ns iiNowrari ww rer: IPUBR BE der? Te . ichs
. »
- LT wre Truck 20 Auzu» Do Amts La sw. Dig rk N TERT ne) f
7. j
Lens y.RuramD 6 BLM. Oma a Fuzi Höhe Chkyyı
en EEE j Eu
ie
ES
eat
Ar ® u e
SPIXIANA Supplement 14 167—174 München, 15. Juli 1988 | ISSN 0177-7424
A survey of the zinc-polluted River Nent (Cumbria) and the
East and West Allen (Northumberland), England, using
chironomid pupal exuviae
By RR.S. Wilson
Abstract
Collections of chironomid pupal exuviae from zinc-enriched sites on the Rivers Nent, and East and West Allen
in the English Pennines, showed consistently lower diversities than those from low-zinc sites. The dominant species
found at zinc-enriched sites differ between the Nent and the Allens, being Krenosmittia camptophleps in the Nent,
and Eukiefferiella clypeata and Tvetenia calvescens in the West Allen. The low-zinc sites may contain chironomid
communities close to those which would live in normal unpolluted rivers of similar types to those investigated.
These communities will vary as conditions change between different sites or rivers, but will form the basic set of
species from which a zinc-tolerant sub-set will be selected in each case.
Introduction
The area of the North Pennine orefield in Britain, is notable for the extensive mining operations that
were carried out principally during the eighteenth century (Dunham, 1949). Currently there is very
little mining activity in the area, but previous workings and accumulations of mine spoil have left aleg-
acy of acıd and heavy metal enriched streams. The Rivers Nent and the East and West Allen, rise in
the high moors near Alston, at the intersection of the three counties, Cumbria, Durham and North-
umberland. This paper reports an investigation carried out in 1983, into the chironomid fauna of the
zinc-enriched Nent and the Allens, using collections of chironomid pupal exuviae. It was hoped to
gain some understanding of the distribution of the chironomid fauna in relation to the stream condi-
tions, and ın particular to the concentration of zinc in the water.
The rivers are affected by acid mine drainage from old mine workings, and are particularly rich in
zinc. Certain locations also receive organic effluents of domestic and agricultural origin. ArMmITAGE
(1980), studied the macroinvertebrates of an extensive series of sites on the Nent and its tributaries,
and has related their distribution and abundance to broad categories of zinc concentrations. He also
gives figures for certain chemical measurements related to organic and metal concentrations in the wa-
ter. ABEL & GREEN (1981) have reported on the ecology and distribution of macroinvertebrates on the
Allens in relation to the zinc concentrations, which are significantly higher in the West, as opposed to
the East, Allen.
In the Nent, ArnıtAce (1980) showed that there was a significant negative correlation between the
zinc level and the number of taxa per site, although the situation was complicated by localised inflows
of calcium-rich water. Summer growths of Stigeoclonium tenue may also have affected the faunal dis-
tribution. AsEL & GREEN (1981) showed that the fauna in the zinc-enriched West Allen was quantitati-
vely and qualitatively restricted as compared to that in the East Allen, and suggest that this is directly
due to the toxic effects of the zinc. They also showed a significant negative correlation between num-
bers of species of macroinvertebrate and the concentration of zinc in the water.
167
Haltwhistle
[>
10 km
Fig. 1: Diagrammatic sketch-map of the section of the River South Tyne and its tributaries the River Nent and
the East and West Allen. Sampling sites are shown in circles.
Other work on the effects of heavy metals on river invertebrates includes the classical studies on the
Rivers Ystwyth and Rheidol in North Wales (see eg. CarrENTER, 1924; Jones, 1940), and on the Willow
Brook by Sors£ (1977), while a general discussion may be found in Wnrrton (1975). Little of the data
refers in detail to the Chironomidae, however, and the work reported in this paper is an attempt to re-
medy this omission by examining data from a series of collections of chironomid pupal exuviae made
in July 1983 in the same area as worked by Armırace (1980), and by Assı & Green (1981).
Locality and Methods
The River Nent rises south-west of Nenthead (NGR NY 801421) at an altitude of 656 m and flows north-west-
ward into the River South Tyne at Alston after a course of only 16 km. The East and West Allens are a pair of very
Table 1: Sampling sites and physical and chemical data.
Chemical ranges* -
Site River and site National Altitude Gradient Width PH ca zn Pb
code Grid Ref. m o/coo range mg/l mg/l mg/l
Nl Nent, u/s Dowgang Level NY782434 433 33 4-5 6-7 5-10 0.5-1 <0.05
N2 Nent, d/s Dowgang Level NY781435 432 33 4-5 7-8 10-20 1-2 <0.05
DL Dowgang Level adit NY782435 433 - 1 7-8 50-100 5-10 <0.05
DB Dowgang Burn NY780435 428 125 2-3 3-4 5-10 0.1-0.5 0.1-0.2
FB Foreshield Burn NY750467 338 50 2-3 7-8 20-50 <o.1 <0.05
ST South Tyne, Bardon Mill NY781643 90 3 80-100 7-8 10-20 <o.1 <0.05
WAL West Allen, Corryhill Br. NY782524 245 16 10-20 7-8 20-50 1-2 trace
WA2 West Allen, Whitfield Weir NY782570 175 14 10-20 7-8 20-50 1-2 trace
EAl East Allen, Rye Close Ford NY842509 294 11 10-20 7-8 20-50 <0.2 trace
EA2 East Allen, Thornley Gate Br. NY831567 193 10 10-20 7-8 20-50 <0.2 trace
* data modified from ARMITAGE (1980), ABEL & GREEN (1981)
168
Table 2: List of samples from the River Nent, West and East Allen,
and South Tyne, showing numbers of exuviae and taxa, and certain
exuvial and diversity indices.
Percentages to the nearest
whole percent. KEY: Nl and N2, Nent; DL, Dowgang Level adit;
DB, Dowgang Burn; FB, Foreshield Burn; ST, South Tyne;
WA, West Allen; EA, East Allen; %It, %Intolerant taxa;
%Ii, % Intolerant individuals; %Sedt, % Sediment-dwelling taxa;
%Sedi, % Sediment-dwelling individuals; Men D, Menhinick
Diversity; S-W D, Shannon-Weaver Diversity.
No. of ko. of
Station exuviae taxa
Nl 303 13
N2 477 18
DL 1 1
DB 51 4
FB 118 23
ST 225 3l
WA 45 13
EA 315 37
ITaxa indices
%It %Sedt
69 3l
56 39
(0) 25
52 17
71 45
69 15
62 22
Men
D
Exuvial indices
1
ı
1}
ı
sw ı
$3Ii Sei D I
I
ı
6 9%
ES,
1}
= zZ ı
2 an
epras!
TOR 2!
2:
24 2.6 |
similar rivers which rise im mediately east of the Nent (NGR: NY802442, NY860432), and flow northwards paral-
lelto each other for 30—40 km, before joining and entering the South Tyne approximately 33 km downstream from
the Nent junction.
Fig. 1 is a diagrammatic sketch-map of the area, showing the rivers and the sampling stations. The two sites on
the Nent were both near the village of Nenthead, N1 approximately 200 m above and N2 300 m below the zinc-rich
output from an old mine adit, the Dowgang Level; DL was on the outflow from the Dowgang Level, which flows
for only about 3 m before entering the Nent; DB was on the Dowgang Burn tributary which is highly acidic
(pH c.4) with effluent from an old coal mine; FB was on the Foreshield Burn tributary, which is organically en-
riched from a local farm but has few heavy metals; and ST was on the South Tyne. Two samples were taken from
both the East (EA1, EA2) and West Allen (WA1, WA2).
taxa
exuviae
—
0 50
% similarity
100
N2 FB DB ST WA
N2 FB DB ST WA
% similarity
Fig. 2: Dendrograms of percentage similarity derived from average linkage clustering of Sorensen’s and Czeka-
nowski’s coefficients of similarity; A. taxa presence/absence; B. number of exuviae. The matrices of similarıty from
which the dendrograms are derived are also shown.
169
Sets of exuvial collections were made at each site over atwo day period (18th and 19th July 1983) by both hand-
net and surface drift-nets (similar to Brundin nets but with lateral floats, BRUNDIN, 1956; WıLson & MCGiLL,
1977), and all collections were lumped for each site. On the Nent and its tributaries, small drift-nets were set out
overnight so as to increase the numbers of exuviae collected.
Table 3. List of species and percentage abundance found in chironcmid
exuvial collections fram rivers in the North Pennine orefield in July 1983.
Figures are whole percentages; + = <0.5%; . = absent from sample.
KEY TO SITES: N1,N2, Nent; DL, Dowgang Level adit; DB, Dowgang Burn;
FB, Foreshield Burn; ST, South Tyne; WA, West Allen; EA, East Allen.
Percentages (nearest whole percent) -
TAXA Nl N2 DL DB FB ST WA EA TOTAL
BUCHINOMYINAE
Buchincmyia thienemanni Fitt . . . ® En an 5
PODONOMINAE
Paraboreochlus minutissimus (Strobl) 1 1 . E o 2 ® & +
TANYPODINAE
Macropelopia nebulosa (Mg) 5 5 © o a, ıl
Ablabesmyia longistyla Fitt. Bach 02: - - ö > +
Conchapelopia viator (K) a ae Be 3
Rheopelopia maculipennis (Zett) - e 5 5 il +
Thienemannymia laeta (Mg) Pel/2 Se or er er +
Trissopelopia longimana (Staeg) Rees TR +
DIAMESINAE
Diamesa insignipes K Ste: Ist uno 0 +
Diamesa thienemanni K ö o ® - & + +
Potthastia Pela A . . & = . 5 +
Potthastia longimana K = . . & & + - 5 +
Potthastia sp.2 . B . 5 de 6 1
PRODIAMESINAE
Prodiamesa olivacea (Mg) 5 E ® = ° - ser! +
ORTHOCLADIINAE
Brillia modesta (Mg) a 3 . 6 6 h 5 2 1
Cardiocladius fuscus s o . > - R - + +
Chaetocladius Pe2 FL SRE21007 05T R E P +
Corynoneura spp. . . . . 4 . . +
Cricotopus (C) Pe2 ?similis Goet Aue A a a TE N DS +
Cricotopus (C) bicinctus (Mg) - - b c - e SIE +
Cricotopus (C) pulchripes Verr 4.107 == > Ze > Ö 4
Cricotopus (C) spp. oft Orig oki mer u In KALT. +
Cricotopus (C) tremulus (L) Se ed +
Cricotopus (C) trifascia Edw ER 5 Se SARER 5 ° +
Cricotopus (I) brevipalpis (K) a: Q we] 2 1
Eukiefferiella brevicalcar (K) . . - : : ö BD +
Eukiefferiella claripennis (Lund) Ha 02022 30, 0 12 4
Eukiefferiella clypeata (K) NS 5 - - Bo |
Eukiefferiella coerulescens (K) Hu Fre B ee | l
Eukiefferiella devonica (Edw) ER: s - SER EEG) EL 2
Eukiefferiella ilkleyensis (Edw) ae u a ee 23 1
Eukiefferiella minor (Edw) ö 2 0 . 3 . .. + +
Heleniella omaticollis (Edw) 3... e 5 1 R o o 3
Krenosmittia camptophleps (Edw) EEE ee ot 36
Limnophyes spp. 5 5 92 c B Gr 3
Metriocnemus hygropetricus (K) gp. SR + +
Nanocladius bicolor (Zett) er: Q De +
Nanocladius rectinervis (K) B B o ee: £ +
Orthocladius (Eudact) obtexens Brundd . + . 1 + +
Orthocladius (Euorth) rivicola K es 9 2
Orthocladius ?rubicundus Edw . . & . il +
Orthocladius Pel . o © . e + +
Orthocladius rhyacobius K B . . 5 Tl! B +
Orthocladius rubicundus sensu Edward . . Au 6 2
Orthocladius sp.A Pinder - 1 Br 3r
Paracladius conversus (Walk) + x e R Ö : +
Parametriocnemus stylatus (K) 5 . £ 2 10 Sa +
Paratrichocladius rufiventris (Mg) 5 e S e 2 +
Paratrissocladius excerptus Pel nt +
Pseudorthocladius sp. . 4 . > - B e a +
Pseudosmittia Pel b + 5 5 R = E + +
170
Rheocricotopus chalybeatus (Edw) R 3 0 0 1 2
Rheocricotopus dispar (Goet) Se: . o .
Rheocricotopus effusus (Walk) Sn 0.02
Thienemannia gracilis K ö ö ö ö ö ö ö
Tvetenia calvescens (Edw) en 0 SO AEO Er?!
Tvetenia discoloripes (Goet) ae 0 0 5 EA
CHIRONOMINAE
CHIRONOMINI
Microtendipes spp. . . o ö gl .
Paratendipes Pe2 . . . . . . Der
Polypedilum Pe2 . ö S . 1 es 23 ee
Polypedilum albicorne (Mg) A RO ne] :
Polypedilum cultellatum Goet ö ö o © o 0 o
Polypedilum laetum (Mg) BETT ET Et
TANYTARSINI
Cladotanytarsus ?nigrovittatus Goet . . . . . 1
Micropsectra aristata Pind He 2 OMA
Micropsectra atrofasciata K . ° o . he a cn
Micropsectra apposita (Walk) SER sh o..abl
Parapsectra nana (Mg) gt
Rheotanytarsus pentapoda K +
Tanytarsus brundini Lind pw © Ron
Tanytarsus eminulus (Walk) 2 N ee PAR
Tanytarsus palmeni Lind 4
+w
wWO++Hr
++Pr++u Ho+n++
H+rt+tt+toHret+
TOTAL TAXA IN SAMPLE 13 18 1 4 23 31 13 37 72
TOTAL EXUVIAE IN SAMPLE 303 477 1 51 118 225 45 315 1535
TOTAL PERCENTAGE (nearest whole $) 99 102 100 % 104 1009 % 96
Results
Most of the samples contained satisfactory numbers of exuviae, but some were numerically poor.
The Dowgang Level mine adit (DL) yielded only a single exuviae, and the acıd Dowgang Burn (DB)
only 51 exuviae in 24 h drift-netting. The Allens were sampled with hand and drift nets for about an
hour at each site, and WA1 and WA2 on the West Allen, yielded only 4 and 41 exuviae respectively;
whereas the two East Allen samples EA1 and EA2 on the other hand yielded 65 and 250 exuviae. It
was therefore decided to lump EA1 and EA2, and WA1l and WA2, together for analysis, forming a
single composite sample for each of the East Allen (EA) and the West Allen (WA).
Table 1 gives some basic parameters such as altitude, slope of site, and grid reference for each site,
as well as chemical data derived from the papers by Arnırace (1980) and Ageı & Green (1981) which
illustrate the chemical conditions. Table 2 shows the numbers of exuviae and identified taxa found in
each sample together with certain exuvial and diversity indices. Table 3 gives the complete species list
found in the samples in taxonomic order, while Table 4 lists only those species which were found mak-
ing up 5% or more of the exuviae in any one sample.
Fig. 2 shows the dendrograms plotted from data from average linkage clustering of the species col-
lected from each site, using Sorensen’s and Czekanowski’s coefficients of similarity for taxa presence/
absence and numbers of individual exuviae respectively.
Discussion
The cluster analysis data (see Fig. 2) show that the two Nent sites (N1, N2) are very similar ın both
taxa and numbers of exuviae (N1:N2 taxa, 58%; exuviae, 76%). They are also closely linked to the
Foreshield Burn (FB) by taxa presence/absence (N1:N2, 58% ; N1:FB, 56 % ; N2:FB, 49%), but not
by numbers of individual exuviae (N1:FB, 8%; N2:FB, 8%). Similarly the West Allen and the East
Allen are similar in taxa (WA:EA, 48%) but not in numbers of exuviae (WA:EA, 17 %). The zinc-en-
riched sites also show a lower diversity of species (N1: Menhinick, 0.7; Shannon, 0.9; N2: Menhinick,
0.8; Shannon, 1.3) in contrast to the higher diversity in the low-zinc sites (FB: Menhinick, 2.1, Shan-
non, 2.4; EA: Menhinick, 2.1; Shannon, 2.6).
121
Table 4: Table of principal species (>5% in any sample) in the
Nent, East and West Allen, and South Tyne. Figures to the
nearest whole percent. KEY: Nl and N2, Nent; DB, Dowgang Burn;
FB, Foreshield Burn; ST, South Tyne; WA, West Allen; EA, East Allen;
+ = <0.5%; . = absent from sample.
Percentäages -—
Species N N2 DB FB ST WA _EA
Krenosmittia camptophleps (Edw) TSF TESgLzE. ES nr
Heleniella ornata (Edw) Din Korte ul nr
Cricotopus (C) pulchripes Verr A Or e E
Polypedilum albicorne (Mg) AN PS EL, WET Me
Limnophyes spp. - a. ° < ee
Eukiefferiella claripennis (Lund) E24 1 02,730, AZ
Tvetenia calvescens (Edw) dus; 15,200547395529
Micropsectra aristata Pinder oe te 2 7719,54, 9,214
Brillia modesta (Mg) ee STTHoweee en
Conchapelopia viator (K) Fr ea Zu
Microtendipes spp. . . ° 31 . .
Micropsectra apposita (Walk) “= ee) ae,
Eukiefferiella clypeata (K) 0 eye einen Cu
Eukiefferiella devonica (Edw) - - N et PR
Orthocladius (ss) rubicundus Edw = - B sa. wrTaide
Orthocladius (Euorth) rivicola K > e . - ® Be)
Total taxa in sample 33,218, 4.237 7312137237,
Total exuviae examined 303 477 51 118 225 45 315
If the taxa composition is similar between comparable zinc-enriched and low-zinc sites, but the
abundances of individual species differs, and the diversity is lower at the enriched sites, then it seems
possible that the fauna of the zinc-enriched sites (N1, N2 and WA), comprise those species that have
higher tolerance of the zinc, and represent subsets of the unpolluted chironomid communities of these
rivers. The low-zinc sites (FB and EA) may exemplify the unpolluted fauna.
It is important, however, to note that the species found in the zinc-enriched Nent were very dif-
ferent from those in the similarly zinc-enriched West Allen. The Nent samples (N1 and N2) were
dominated by Krenosmittia camptophleps (Edwards) (78% and 65 %), but also contained substantial
numbers of Heleniella ornata (Edwards) (5% and 6%), Cricotopus (C.) pulchripes Verrall (4% and
10%) and Polypedilum albicorne (Meigen) (4% and 9%): in contrast, the West Allen samples (WA)
were dominated by Eukiefferiella clypeata (Kieffer) (36%) and Eukiefferiella claripennis (Lundbeck)
(13%), and did not contain any of the four species characteristic of the Nent.
It appears therefore that the Nent and the Allens, although adjacent and similar stony rivers, differ
in some way meaningful to the Chironomidae. It is therefore not possible from these samples to de-
signate a characteristic “zinc-tolerant” community of chironomid species, which might be found
wherever zinc-enrichment occurs, in the same way thata characteristic “organic-tolerant” community
may be defined which is linked to organic enrichment in many different rivers and situations. Zinc-
tolerance may develop in anumber of different species, selected as appropriate from those available at
the particular site.
It is well-known that chironomid communities differ in different sections of a single river, and that
different communities are found associated with different gradients and substrates (THIENEMANN,
1954; Kownackı & Kownacka, 1972). The Nent sites N1, N2 and FS have gradients of from 30—50%,
whereas the sites on the Allens have gradients of from 10— 16%. It is possible therefore that the chi-
ronomid communities found in the Nent are characteristic of higher gradients than those of the Allens,
even though the rivers are basically similar.
The dominant species in the Nent in samples N1 and N2, Krenosmittia camptophleps, Heleniella or-
nata, Cricotopus (C.) pulchripes and Polypedilum albicorne are all characteristic of upland streams and
often associated with hygropetric conditions (CRAnsToN, 1982; WIEDERHOLM, 1983; LAnGTon, 1984). In
contrast, Eukiefferiella and Tvetenia spp., which dominate the samples from the West Allen, are nor-
172
|
Pe u
mally more abundant at lower altitudes, and especially where there is increased growth of moss (Hun-
PHRIES & Frost, 1937; THIENEMANN, 1954; CrAnsToN, 1982; LAnGTon, 1984).
The calcium concentrations in the the Nent were lower than in the Allens (see Table 1). It is widely
held that heavy metals are less toxic in calcium-rich water than in acid, low calcium water (Hynes,
1960; WARREN, 1971; Wurtton & Say, 1975; Mason, 1981), and this effect may influence the response
of the chironomids to the river conditions.
The sample from the acid Dowgang Burn (c. pH 4) is quite different from all the other samples, and
is dominated by Limnophyes spp. (92%). The single exuviae from the very short outfall from the
Dowgang Level, which has a high zinc content of 5-10 mg/l, was a Chaetocladius sp. (Pe2 in Lanc-
ton, 1984), also found in low numbers in the Nent and the Foreshield Burn. The River South Tyne at
Bardon Mill Ford is amuch larger river with more fine sediment, and has amuch lower gradient (3%)
than the Nent and Allens, and this is reflected in the dominance of sediment-living taxa such as Micro-
tendipes spp. and Micropsectra apposita (Walker) found in the sample (31% and 11 %, respectively).
In the cluster analysis, the South Tyne sample (ST) showed closest similarity with the Foreshield Burn
(ST:FB taxa, 30 % ; exuviae, 16%) and with the East Allen (ST:EA taxa, 32 % ; exuviae, 27 %), but the
linkage is weak. As the South Tyne has a low zinc content (<0.1 mg/l), it it might be expected to link
with the other low-zinc sites.
More data is required before the ideas advanced in this paper can be considered valid, but it is hoped
that they will point the way to further, more detailed, work using chironomid pupal exuviae on the
effects of heavy metals on chironomid communities.
Acknowledgements
I am grateful to Dr. P. D. Armitage, Dr. B. A. Whitton and Dr. P. J. Say for discussion and encouragement, and
to Mrs. S. E. Wilson for discussion and invaluable help with the samplıng.
References
ABEL,P.D.& D. W.]. GREEN 1980: Ecological and toxicological studies on invertebrate fauna of two rivers in the
Northern Pennine Orefield. — In: Heavy Metals in Northern England: Environmental and Biological
Aspecıs. Eds: P. J. Say and B. A. Whitton. University of Durham, Department of Botany
ARMITAGE, P. D. 1980: The effects of mine drainage and organic enrichment on benthos in the River Nent system,
Northern Pennines. — Hydrobiologia 74: 119—128
BRUNDIN, L. 1956: Transantarctic relationships and their significance, evidenced by chironomid midges, with a
monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. — Kgl. Sven.
Vetenskapsakad Handl. 11: 1-472
CARPENTER, K. E. 1924: A study of the fauna of rivers polluted by lead mining in the Aberystwyth district of
Cardiganshire. — Ann. appl. Biol. 11: 1-23
CRANSTON, P. S. 1982: A key to the larvae of the British orthocladiinae (Chironomidae). — Freshwater Biological
Association, Scientific Publication No. 45
DunHam, K. 1949: Geology of the Northern Pennine Orefield Vol. I. Tyne to Stainmore. — Mem. Geol. Surv. 6:
1-357
HUMPHRIES, C. F. & W. E. Frost 1937: River Liffey survey. The chironomid fauna of the submerged mosses. —
Proc. R. Irısh Acad. 18: 161-181
Jones, J. R. E. 1940: A study of the zinc-polluted river Ystwyth in North Cardiganshire, Wales. — Ann. appl.
Biol. 27: 368—378
Hynes, H. B. N. 1960: The biology of polluted waters. — Liverpool University Press
Kownacka,M. & A. Kownackı, 1972: Vertical distribution of zoocoenoses in the streams of the Tatra, Caucasus
and Balkan Mts. — Verh. Int. Ver. Limnol. 18: 742—750
Langrton, P.H. 1984: A Key to pupal exuviae of British Chironomidae. — Private publication
173
Mason, C. F. 1981: Biology of freshwater pollution. — Longman, London
SOLBE, ]J. F. DE L. G. 1977: Water quality, fish and invertebrates in a zinc-polluted stream. — In: Biological Moni-
toring of Inland Fisheries, Editor J. S. Alabaster, Applied Science Publishers, London
THIENEMANN, A. 1954: Chironomus, Leben, Verbreitung und wirtschaftliche Bedeutung der Chironomiden. —
Binnengewässer, XX. Schweizerbartsche Verlagshandlung, Stuttgart
WARREN, C. E. 1971: Biology and water pollution control. — W. B. Saunders Co., Philadelphia
WHITTON, B. A. & P. J. Say 1975: Heavy Metals. — In: River Ecology, Editor B. A. Whitton, Studies in Ecology
Vol. 2., University of California Press, Berkeley
Wırson, R. $. & J. D. McGıtr 1977: A new method of monitoring water quality in a stream receiving sewage
effluent, using chironomid pupal exuviae. — Wat. Research., 11: 959—962
WIEDERHOLM, T. (Ed.) 1983: Chironomidae of the Holarctic Region. Keys and diagnoses. Part 1. Larvae. — Ent.
Scand. Suppl. No. 19
Dr.R.S. Wilson,
Department of Zoology,
University of Bristol, Bristol BS8 1UG,
Great Britain
174
SPIXIANA Supplement 14 VS München, 15. Juli 1988 ISSN 0177-7424
Zwei neue Smittia-Arten aus dem süddeutschen Raum
(Diptera, Chironomidae)*)
VonN. Caspers
Abstract
Two new species of the genus Smittia Holmgren are described from southern Germany. The description of Smit-
tıa scutellosetosa n. sp. is based on several male (and one female) imagines, that of Smittia amoena n. sp. on one male
only. Both species are characterized by the peculiar shape of the male genitalia. Larvae and pupae are unknown.
Most probably the larvae settle in dry, gravelly sediments of river banks in southern Germany.
Einleitung
Die weltweit verbreitete Gattung Smittia Holmgren umfaßt ausschließlich Arten mit terrestrischen
bzw. hygrophilen Larvenstadien. Die Gattungszugehörigkeit der Arten im Imaginalstadium ist leicht
am Besitz einer kräftigen Subapikalborste auf dem Antennenendglied der Männchen erkennbar. Le-
diglich die nearktische Saetheriella amplicristata Halvorsen besitzt ebenfalls eine Subapikalborste auf
dem Antennenendglied; die Analspitze ist jedoch bei dieser Art im Gegensatz zu den Arten des Genus
Smittia kurz und breit (Harvorsen 1982). Die infragnerische Gliederung des Taxons Smittia bereitet
zur Zeit noch außerordentliche Schwierigkeiten. Die enorm hohe Artenzahl, die oft nur subtilen Un-
terschiede in der Genitalmorphologie der Männchen, vielleicht auch die etwas ungewöhnlichen Habi-
tate vieler Smittza-Arten vereitelten bis zum heutigen Tage die Durchführung einer dringend benötig-
ten Revision des Gattungskomplexes. Die Abbildungen und Beschreibungen in der älteren Literatur
— insbesondere bei GOETGHEBUER (1940-1950) — sind aus heutiger Sicht völlig unzureichend und
nicht für eine gültige Differenzierung der Arten verwendbar. Zur Zeit sollte eine Beschreibung neuer
Smittia-Arten sinnvollerweise nur dann vorgenommen werden, wenn eindeutige und auffällige Merk-
male ihre Eigenständigkeit herausstellen. In der vorliegenden Arbeit werden zwei derartige Smittia-
Arten mit besonders markantem Hypopygbau beschrieben.
Smittia scutellosetosa spec. nov.
(Abb. 1-5)
Fundort: Isarinsel bei Aumühle (Nähe Schäftlarn in Oberbayern, Bundesrepublik Deutschland).
Material: Holotyp ©’, Barberfalle, 26.5.1982, leg. M. Baehr; in coll. Zoologische Staatssammlung München
(Objektträgerpräparat gemäß SCHLEE 1966). Paratypen: 3 0'C', mit gleichen Funddaten wie der Holotyp; 6 O’C',
Aumühle, Barberfalle, 13.5.1983, leg. M. Baehr (in sehr schlechtem Erhaltungszustand); 1 0°, Gerolfing (Nähe In-
golstadt, Bundesrepublik Deutschland), Barberfalle, 3.5.1983, leg. M. Baehr; 1 0°, Weichering (Nähe Ingolstadt),
Barberfalle, 6.5.1982, leg. M. Baehr.
Alle Paratypen werden in der Zoologischen Staatssammlung München aufbewahrt.
*) mit finanzieller Unterstützung der Deutschen Forschungsgemeinschaft
175
Diagnose: Die neue Art ist insbesondere durch genitalmorphologische Merkmale hinreichend ge-
kennzeichnet: extrem lange Analspitze ohne Mikrotrichien in der apikalen Hälfte; caudad gebogene,
fast digitiforme Basalloben; Gonostylen abweichend von allen bisher beschriebenen Smittia-Arten:
Crista dorsalis abgerundet, extrem stark vorgewölbt. Auffällig ist darüberhinaus auch die intensive
Beborstung des Skutellums.
Imago O (Holotypus), Terminologie wie bei SAETHEr (1980). Daten der Paratypen als Klammerzu-
sätze.
Körperlänge 2,72 mm (2,44— 2,83). Flügellänge 1,83 mm (1,74—1,82). Verhältnis Körperlänge/Flü-
gellänge 1,49 (1,41—1,59). Verhältnis Flügellänge/Länge des Profemur 3,02 (3,00—3,22). Färbung von
Thorax und Abdomen einheitlich dunkelbraun.
Kopf. Länge des Antennenendgliedes 507 um (432-520). AR 1,88 (1,57—1,84). Augen behaart,
dorsalwärts mäßig verlängert. Temporal- und Postorbitalborsten (nicht deutlich voneinander diffe-
renziert): 8 (8-10). 4 (2-6) Clypeusborsten. Länge der Palpenglieder (Mikrometer): 24 (22-24), 50
(44-46), 104 (88-96), 88 (80-88), 102 (84-90).
Thorax. Antepronotum wie bei anderen Smittia-Arten entwickelt, mit 2 lateralen Borsten. 21
(14-21) Dorsocentralborsten, zum Teil in doppelter Reihe. Anzahl der Acrostichalborsten (= Dor-
somedianborsten) beim Holotypus wegen Seitenlage der Thoraxpartie nicht bestimmbar; bei den Pa-
ratypen wurden bis zu 15 Acrostichalborsten gezählt, die weit vorne am Pronotum beginnen. 5 (5-8)
Präalarborsten. Anzahl der Skutellarborsten beim Holotypus wegen Seitenlage des Thorax nicht ex-
akt zu ermitteln; bei den Paratypen bis zu 21 (!) Skutellarborsten von verhältnismäßig geringer Größe
vorhanden.
Abb. 1u.2: Smittia scutellosetosa C': 1. Flügel, Maßstab = 0,5 mm; 2. Hypopygium (dorsal), Maßstab = 0,1 mm.
176
Flügel (Abb. 1). VR ca. 1,0. Verlängerung der Costa (jenseits der Mündung von R,;;): 86 um
(76-104). Brachiolum mit 1 Borste (1-2). 3 (3) Borsten auf R,, 7 (8-13) Borsten auf R,;;, 13 (3-13)
Borsten aufR.
Beine. Sporn der Vordertibia 44 um (42-52) lang, Sporne der Mitteltibien 20 um (18-22) und
22 um (20-28) lang, Sporne der Hintertibien 22 um (20-22) und 50 um (48-52) lang. Breite der
Vordertibia im distalen Bereich: 32 um (32-34); Breite der Mitteltibia im distalen Bereich: 32 um
(32); Breite der Hintertibia im distalen Bereich: 42 um (42-48). Tibialkamm mit 10 (9—12) Borsten,
die kürzesten 26 um (24-26), die längsten 40 um (40-42) lang.
Länge (Mikrometer) der Beinglieder und Längenrelationen:
Fe 4bat Ta, Ta, Ta, Ta, Ta, LR BV SV
BE 592 740 357 229 144 98 84 0,48 3,04 313
545 - 598 697 - 748 321 - 387 205 - 241 134 - 144 92 - 104 80 - 86 0,46-0,52 3.,01-3,06 3,48-3,87
P 653 669 273 158 116 80 80 0,41 3,68 4,84
626 - 700 639 - 700 261 - 289 148 - 168 112 - 120 78 - 80 76 - 84 0,41 3,63-3,74 4,81-4,85
B 700 772 405 221 172 92 90 0,53 3,26 3,64
651 - 724 700 - 780 381 - 421 196 - 225 158 - 182 88 - 100 84 - 94 0,54-0,55 3,13-3,29 3,50-3,57
Abdomen. Die Beborstung der Abdominaltergite wurde nur bei einem Paratypus überprüft. Die
Anzahl der Borsten auf den Tergiten I-VIII betrug: 28, 62, 67, 55, 52, 47, 40, 50. Beim gleichen Indi-
viduum betrug die Anzahl der Borsten auf den Sterniten I-VIII: 0, 0, 11, 14, 26, 26, 24, 23.
Hypopygium (Abb. 2). Länge der Analspitze 94 um (90-94). Länge des Gonocoxits 156 um
(140-172). Länge des Gonostylus 90 um (80-92). Griffel 13 um (12-14) lang. Virga 26 um (26-28)
lang. HR 1,73 (1,59—1,95). HV 3,02 (2,77-3,54).
Ökologie. Die Jugendstadien von Smittia scutellosetosa spec. nov. liegen nicht vor. Es ist jedoch mit
großer Wahrscheinlichkeit davon auszugehen, daß Habitate im unmittelbaren Umfeld der exponier-
ten Barberfallen, in denen die Imagines gefangen wurden, besiedelt werden.
Das Untersuchungsgebiet auf hochgelegenen Kiesbänken im Auengebiet der Isar ist in der Tat ein
ungewöhnlicher Lebensraum für terrestrische Chironomiden — oder wohl richtiger: ein bisher wenig
| Abb. 3: Smittia scutellosetosa Q: Kopf, Maßstab = 0,2 mm.
NE
MT ae
beachteter und entsprechend wenig besammelter Lebensraum: auf engstem Raum kommt es hier un-
ter dem prägenden Einfluß der ökologischen Faktoren Temperatur und Bodenfeuchte/-trocknis zur
Bildung eines vielgestaltigen Biotopmosaiks, in dem bei überraschend hohen Artenzahlen vor allem
xerophile Faunenelemente — z. B. bei den Arachniden und Carabiden (mündl. Mitt. M. Baehr) — eine
wichtige Rolle spielen. Die knapp bemessene Zufuhr von Wasser beschränkt sich auf gelegentliche Re-
genfälle und nächtliche Tauniederschläge, die von einer lückigen Moosdecke für kurze Zeit gespei-
chert werden können, ansonsten aber im kiesig-sandigen Untergrund rasch versickern. Nur bei extre-
men Hochwässern der Isar ist in größeren Zeitabständen mit kurzfristigen Überflutungen dieser
Standorte zu rechnen.
Imago
Ob die hohe Zahl der Skutellarborsten bei Smittia scutellosetosa spec. nov. differentialdiagnostische Wertigkeit
hat, kann angesichts des unrevidierten Status der Gattung Smittia zur Zeit nicht endgültig entschieden werden.
Hinweise, die dies jedoch richtig erscheinen lassen, ergeben sich bei Durchsicht der umfangreichen Belegsammlung
des Autors an westpaläarktisch verbreiteten Smittia-Sıppen: alle hierauf überprüften Arten wiesen 2 bis maximal
8 Skutellarborsten auf.
Im Rahmen von Emergenz-Studien (CAspErs 1980, 1983) gefangene Smittia-Arten, bei denen infolge überein-
stimmender phänologischer Daten eine direkte Zuordnung von Männchen und Weibchen möglich war, zeigten
darüberhinaus keine bedeutenden geschlechtsspezifischen Unterschiede in der Skutellarbeborstung an.
Es spricht somit einiges dafür, daß die Skutellarbeborstung der neuen Smittia-Art ein hochwertiges diagnosti-
sches Merkmal darstellt und daß es sich bei dem nachstehend beschriebenen Smittia-Weibchen (mit 20 Skutellar-
borsten) aus einer Barberfalle bei Aumühle um das Weibchen von Smittia scutellosetosa handelt:
Hi At 2335
Abb. 4u.5: Smittia scutellosetosa 9:4. Flügel, Maßstab = 0,5 mm; 5. Genital (ventrolateral), Maßstab = 0,2 mm.
178
Körperlänge 2,30 mm. Flügellänge 1,54 mm. Verhältnis Körperlänge/Flügellänge 1,49. Verhältnis
Flügellänge/Länge des Profemur 3,29. Färbung von Thorax und Abdomen einheitlich dunkelbraun.
Kopf (Abb. 3). Länge und Breite des Pedicellus (Mikrometer): 48/56. Länge und Breite der Flagel-
lomeren 1-5 (Mikrometer): 68/31, 46/26, 46/24, 46/24, 66/23. Temporal- und Postorbitalborsten
(nicht deutlich voneinander differenziert): 10. 6 Borsten auf dem Clypeus. Länge der Palpenglieder
(Mikrometer): Länge der Palpenglieder 1 und 2 bei dem vorliegenden Objektträger-Präparat nicht ex-
akt meßbar; Palpenglied 3: 83. 4: 64. 5: 80.
Thorax. Antepronotum wie im männlichen Geschlecht ausgebildet. 30 bzw. 38 Dorsocentralbor-
sten, 12 Acrostichalborsten. 16 bzw. 15 Präalarborsten. 22 kleine Skutellarborsten.
Flügel (Abb. 4). Verlängerung der Costa (jenseits der Mündung von R,,;): 168 um. Brachiolum mit
3 Borsten. R, mit 6 Borsten, Ry,; mit 24 Borsten, R mit 16 Borsten.
Beine. Sporn der Vordertibia 31 yum lang, Sporne der Mitteltibien 18 und 22 um lang, Sporne der
Hintertibien 12 und 30 um lang. Breite der Vordertibia im distalen Bereich: 32 um; Breite der Mittel-
tibia im distalen Bereich: 32 um; Breite der Hintertibia im distalen Bereich: 42 um. Tibialkamm mit
11 Borsten, die kürzesten 24 um, die längsten 38 um lang.
Länge (Mikrometer) der Beinglieder und Längenrelationen:
Fe Ti Ta, Ta, Ta, Ta, Ta, LR BV SV
P] 476 516 221 144 94 ed Ti 0,43 Heil
D, 570 535 205 124 96 Sg? Or ne 5,
P 582 610 331 168 146 18 Te 0,54 19,25 2,650,
Abdomen. Anzahl der Borsten auf den Abdominaltergiten I-VII: 48, 49, 40, 34, 29, 39, 47. Anzahl
der Borsten auf den Abdominalsterniten I-VII: 0, 8, 13, 21, 22, 20, 38.
Genitalien: Abb. 5.
Smittia amoena spec. nov.
(Abb. 6-7)
Fundort: Kiesbänke in der Flußaue der Donau bei Gerolfing (Nähe Ingolstadt, Bundesrepublik Deutschland).
Material: Holotyp ©’, Barberfalle, 3.5.1983, leg. M. Baehr; in coll. Zoologische Staatssammlung München
(Objektträgerpräparat).
Diagnose: Auch Smittia amoena weist ein vom üblichen Smittia-Typ stark abweichendes Hypo-
pyg-Merkmal hoher differentialdiagnostischer Wertigkeit auf: die hyaline Crista dorsalis ist deutlich
ausgeprägt und extrem stark vorgewölbt.
Imago JO’ (Holotypus)
Körperlänge 2,44 mm. Flügellänge 1,54 mm. Verhältnis Körperlänge/Flügellänge 1,58. Verhältnis
Flügellänge/Länge des Profemur 2,87. Färbung von Thorax und Abdomen einheitlich dunkelbraun.
Kopf. Länge des Antennenendglieds 374 um. AR 1,15. Augen behaart, dorsalwärts nicht verlän-
gert. I innere, 2 äußere Temporalborsten; soweit am Typusexemplar erkennbar, keine Postorbital-
borsten. Clypeus mit 2 Borsten. Länge der Palpenglieder (Mikrometer): 1 nicht meßbar am Typusex-
emplar; 40, 78, 76, 64.
Thorax. Antepronotum fehlt am Typusexemplar. 12 Dorsocentralborsten in einfacher Reihe.
Acrostichalborsten beginnen vorne am Pronotum, am Typusexemplar sind 4 deutliche Borsten er-
kennbar. 6 Präalarborsten, die vorderen schwächer ausgebildet als die hinteren. Anzahl der Skutellar-
| borsten am Typusexemplar nicht deutlich erkennbar, mindestens 4 Borsten vorhanden.
Flügel (Abb. 6). R,,; erreicht nicht ganz die Costa. Verlängerung der Costa (jenseits der Mündung
| von R,,;): 80 um. Brachiolum ohne Borsten. 6 Borsten auf R,, 6 Borsten auf R,;;, 6 Borsten aufR.
179
NEIN K
Abb. 6u.7: Smittia amoena O': 6. Flügel, Maßstab = 0,5 mm; 7. Hypopygium (dorsal), Maßstab = 0,1 mm.
Beine. Sporn der Vordertibia 42 um lang, Sporne der Mitteltibien 16 und 20 um lang, Sporne der
Hintertibien 20 und 48 um lang. Breite der Vordertibia im distalen Bereich: 30 um; Mitteltibia:
32 um; Hintertibia: 40 um. Tibialkamm mit 9 Borsten, 20 bis 40 um lang.
Länge (Mikrometer) der Beinglieder und Längenrelationen:
Fe Ti Ta, Ta, Ta, Ta, Ta, LR BV SV
PJ 538 645 297 182 130 84 84 0.46 3.08 3.98
P, 620 613 233 132 110 68 78 0.380 73.18 5.29
P 632 661 357 166 156 88 88 OS5ANEE Sn 3.62
Abdomen. Die Beborstung der Abdominaltergite und -sternite ist am Objektträger-Präparat des
Typusexemplars nicht genau zu bestimmen, entspricht aber offensichtlich etwa der Beborstung von
Smittia scutellosetosa.
Hypopygium (Abb. 7). Länge der Analspitze 88 um. Länge des Gonocoxits 162 um. Länge des
Gonostylus 96 um. Griffel 8 um lang. Innere Skleritstrukturen des Hypopygiums am Typusexem-
plar nicht in Einzelheiten erkennbar. HR 1,69. HV 2,54.
180
© Imago nicht bekannt.
Ökologie. Auch bei dieser neuen Art ist zu vermuten, daß der Lebensraum der — vorerst nicht be-
kannten - terrestrischen Larven in der Nähe der Barberfallen-Standorte zu suchen ist: die männlichen
Imagines der Smittia-Arten zeichnen sich — soweit dies bekannt ist — nicht durch auffällige Flugakti-
vität bzw. einen größeren Aktionsradius aus.
Von seinen allgemeinen physiographischen Verhältnissen ähnelt der Standort „Kiesbänke/Donau-
Auwald bei Gerolfing“ dem Locus classicus von Smittia scutellosetosa am Isarufer bei Aumühle. Auf
den ersten Blick ist der im Vergleich noch stärker xerotherme Charakter an schütteren Wacholder-
und Kiefernbeständen auf weitgehend vegetationsfreiem Untergrund erkennbar. Auch bei Betrach-
tung der ökologischen Standortansprüche epigäischer Raubarthropoden (mündl. Mitt. M. Baehr) er-
gibt sich eine eindeutige Dominanz wärmeliebender Arten.
Es ist davon auszugehen, daß der Fundort von Smittia amoena — ca. 200 m Entfernung von der Do-
nau bei Normalwasserstand — auch bei extremen Hochwasserbedingungen nicht überflutet wird.
Literatur
CaspERS, N. 1980: Die Emergenz eines kleinen Waldbaches bei Bonn. — Decheniana-Beihefte (Bonn) 23: 1-175.
CASPERS, N. 1983: Chironomiden-Emergenz zweier Lunzer Bäche, 1972. — Arch. Hydrobiol. Suppl. 65: 484549.
GOETGHEBUER, M. 1940— 1950: Tendipedidae (Chironomidae). f) Subfamilie Orthocladiinae. A. Die Imagines. —
In LINDNER, E. (Hrsg.): Die Fliegen der palaearktischen Region. 13g: 1— 208.
HALVORSEN, G. A. 1982: Saetheriella amplicristata gen. n., sp. n., anew Orthocladiinae (Diptera: Chironomidae)
from Tennessee. — Aquatic Insects 4: 131-136.
SAETHER, O. A. 1980: Glossary of chironomid morphology terminology (Diptera: Chironomidae). — Ent. scand.
Suppl. 14: 1-51.
SCHLEE, D. 1966: Präparation und Ermittlung von Meßwerten an Chironomidae (Diptera). —- Gewässer und Ab-
wässer 41/42: 169— 193.
Professor Dr. Norbert Caspers,
Morgengraben 8, D-5000 Köln 80
181
uch as. ira "yaller
alien Head kr re
- a tue nah z
virirgeknobner? harlaeızah
mäws ImotT-sgtusbt
hen Te Reh regen
1 de =
en, x
. ab rhe
En
{ >. |
Bri=1 15 (muodh) Fibsehidhsensine IK nd PNDREI” MED E ET. nyhmil EirE.
02 = Mh 18a Saal kalelerbn FI AT el rer ne: rg imo 703"
aan “u; ee" ee ( "audi I; ut dag 7ozer Da
i
seyzt ‚hallh Kemer, m pb ao er
u . : ’ 4 2
NO a ling ey un alezrm R A
ET ae uleup = &
ol aa MuDE: 7,
{ +
tsehblemunti) zeralgrch)
x J {
LA bu weni) - en] ahirantonı!D 5 nr or anulnang br BAR: gi Ti "
1 Li
be — ie 5 i R u
=;
ray.) neh A oT 7
08 53 9002.08 uch h
Alb. 06 2 Ana er fe lüget. Mila bo B LI se » een,
Behra-Sprım dus Vontertdiess Ei zare lang, Jenna Ak tum [a und FO u
Hintarmiiien 2 we ka Be der Vonakeeiins in: realen Beraachıe
a Herne Palin gli Ü Nanet Oi Ben All ann darge 5
Line (Mikrainerzef der kinder und Längen
e-
. 5 w % Bf
f
- - « P r Mn
3 h “yE { ‚ 6 N) 7 AroR
7 Ds u i En a 5 u. u Tr
Khöornec lite Kehareguyg der Absiiuninallenges ai aärwite ver au.R)
Topusewmmlars ruche jemau an bestimmen, entsprihke dee che E
Gehlid ae limerman . i
Miygaiypum (Abba 7). Täsiie dcr Arralnpkruun ib nn Ilka des Gonäcabeite
Gorosse us 46 gun. Teiilel 8 Zum eng, Innere Setertiiruktunie Ss Hypap
plır antun Birnen ken HRS z
u x
2
De
=
2,0
men
nz
<
10 -
“
.
“
SPIXIANA | Supplement 14 | 183— 190 | München, 15. Juli 1988 ISSN 0177-7424 |
Rheomus, un nouveau genre du complexe Harnischia avec deux
nouvelles especes d’Afrique du Nord
(Diptera, Chironomidae)
Henri Laville et Friedrich Reiss
Abstract
Rheomus, a new genus of the Harnischia complex with two new species from North Africa (Diptera, Chirono-
midae)
Rheomus, a new genus of the Harnischia complex is established for two new species from North Africa. The
imago ©’, the pupal exuvia, of R. yahiae recorded in Morocco and Tunisia and the imago ©’ of R. alatus only
recorded in Morocco are described. From the imaginal characteristics, Saetheria seems the most related genus but
the pupal characteristics are rather related with the genus Cryptotendipes. Nevertheless, its throw-back anal lobe is
a very original one among Chironomini.
Introduction
L’etude des Chironomides recoltes par derive dans un affluent rive droite de l’Oued Medjerda (Tu-
nisie) par M. Boumaiza nous a permis d’isoler une nymphe CO’ originale dont 3 imagos C’, dejä connus
du Maroc et conserves A la Zoologische Staatssammlung München, se rangent dans le complexe Har-
nischia.
Les caracteres nettement regressifs du lobe anal de la nymphe autorisent la creation d’un nouveau
genre avec deux nouvelles especes connues seulement d’Afrique du Nord.
Nous remercions M. M. Boumaiza (Universite de Tunis) pour le leg du mat£riel de Tunisie.
Rheomus gen. nov.
L’espece type est Rheomus yahiae spec. nov.
Imago C:
Petit, longueur de l’aile 1,2—1,65 mm. Yeux nettement prolonges dorsalement et juste separes de la
longueur du prolongement. Tubercules frontaux cyclindriques presents. Antenne avec 11 flagellome-
res, AR = 1,2-1,3. Palpes normaux, non raccourcis. Nombre de soies thoraciques peu eleve en
rapport avec la petite taille du corps; soies acrostichales presentes. Scutum avec tuberecule. Aile avec
lobe anal tr&s peu developp&, squama seulement avec 2-3 soies. FCu Eloignee distalement de RM, C
se terminant avant M et non prolongee au-delä de R4+5. Seule R avec quelques courtes soies, les
autres nervures sans soies. Surface alaire sans soies ni taches. Pattes normales non raccourcies. Grosses
pulvilles presentes. Peignes du tibıa plats, courts et non separ&s avec seulement un court Eperon.
183
Hypopyge avec un tergite anal ä bandes assez superficielles reunies par une zone brunätre dans la
partie mediane. Pointe anale longue, en forme de raquette et nue. Tergite anal sans soies medianes, avec
des soies apicales Ecartees de la base de la pointe anale. Volsella superieure en forme de pied ou de mas-
sue, ämembrane souple, avec ou sans tubercule apical, sans soies dorsales, avec 2-3 longues soies ven-
trales issues d’une zone Amicrotriches. Volsella inferieure de taille petite amoyenne, garnie de longues
microtriches se prolongeant loin vers sa base tout le long du bord interne du gonocoxite. Gonocoxite
avec seulement 3 longues soies medianes marginales. Gonostyle effile, avec dans sa moite apicale une
lamelle dorsale ou mediane, une zone dorsobasale depourvue de microtriches, une dent apicale absente
et des soies me&dianes en partie fourchues distalement.
Nymphe:
Seule lanymphe de R. yahiae est connue. Sa description ci-apres peut egalement servir de genero-
type.
Repartition et Ecologie
Le genre Rheomus est actuellement connu d’Afrique du Nord (Maroc et Tunisie).
Il s’agit probablement d’el&ments faunistiques du Potamal dont les larves colonisent de preference
les sediments sableux des grands cours d’eau.
Diagnose differentielle
L’imago JO de Rheomus se differencie des autres representants du complexe Harnischia surtout par
la combinaison des caracteres suivants de l’hypopyge: bandes du tergite anal droites pratiquement non
reunies dans la partie mediane d&pourvue de soies; pointe anale longue, en forme de raquette et nue;
Volsella superieure en forme de pied ou de massue, dorsalement nue et avec deux longues soies ventra-
les dans une zone de microtriches; Volsella inferieure de longueur courte amoyenne; gonocoxite avec
une lamelle dorsale ou mediane dans sa moite apicale. De plus, l’imago possede des tubercules fron-
taux, de longues soies acrostichales (dorsom&dianes), un petit tubercule scutal ainsi que des peignes du
tibia non separes et avec un seul petit &peron sur Pr et Pıyı. Rheomus se distingue du genre en apparence
le plus proche, Saetheria Jackson, 1977 par la presence d’un seul Eperon tibial court & la place de deux
eperons forts, par la presence d’un petit tubercule scutal, absent chez Saetheria, par des bandes en
forme de V, pratigquement separees dans la partie mediane du tergite anal et en forme de Y chez Saethe-
ria, par l’absence de soies medianes sur le tergite anal (pr&sentes en petit nombre chez Saetheria et in-
serees ä l’extremite distale des bandes du tergite anal), par une pointe anale fortement elargie distale-
ment en forme de raquette (legerement &largie chez Saetheria) par une Volsella superieure dorsalement
nue (en 2 lobes separes: le distal couvert de microtriches, le basal sans microtriches), enfin par la pre-
sence d’une lamelle dorsale ou mediane dans la partie terminale du gonostyle, absente chez Saetheria.
Nymphe: nous renvoyons ä la diagnose differentielle de Janymphe de R. yahiae.
Rheomus yahıae spec. nov.
Imago d’:
Taille: petit, longueur de l’aile 1,35—1,65 mm.
Coloration: corps brun (dans l’alcool). Vittae (bandes m&sonotales) brun fonce ainsi que les 2/3
posterieurs du postnotum, le praeepisternum et une tache sur l’anepisternum.
Tete: yeux fortement prolonges dorsalement et separes dans la partie mediane de la longueur du
prolongement. Tubercules frontaux cylindriques, jusqu’ä 10 um de long. Antenne avec 11 flagello-
meres, AR = 1,22. Longueur des articles 2-5 des palpes en um (Holotype): 27, 106, 124, 189.
Thorax: avec 5 soies acrostichales, 5-8 dorsocentrales, 2—3 prealaires et 6-7 scutellaires. Scutum
avec un petit tubercule arrondı.
184
Aile: lobe anal peu developpe. Squame avec seulement 2-3 soies. FCu Eloignee distalement deRM,
C non prolongee au-delä de R4+5 et finissant avant M. R2+3 debouchant au !/3 proximal entre R1
et R4+5. Seule R porte 3-5 soies.
Pattes: longueur des articles en um (Holotype):
Fe Ti Ta, Ta; Ta; Ta; Ta;
Pı 600 460 630 305 235 170 100
Pıı 540 540 200 130 100 70 80
Praeio 640 370 210 175 100 90
LR = 1,32-1,37. Pulvilles presque aussi longs que les griffes. Tarses anterieurs non barbus. Sensilla
chaetica non visible sur le Ta; de Pı,. Peignes des tibias moyens et posterieurs plats, courts, non separes,
avec seulement un court Eperon.
Hypopyge (fig. 1): bandes du tergite anal en V, assez superficielles, ne se rejoignant pas dans la par-
tie mediane oü une simple zone brunätre les relie. Pointe anale a base £troite et partie terminale arron-
die en forme de disque, un peu recourbee ventralement (fig. 1a). Partie basale plus courte que la partie
terminale. Tergite anal sans soies medianes, soies apicales legerement Ecartees de la base de la pointe
et regroup£es en touffe. Volsella superieure en forme de pied lateralement deporte. Partie distale A
membrane d’ apparence delicate, sans soies dorsales, avec 2—3 soies ventrales issues d’une zone de mi-
crotriches.
Volsella inferieure arrondie distalement, tres courte, n’atteignant pas la base du gonostyle.
Fig. 1. Rheomus yahiae spec. nov., Hypopyge dorsal. a. Pointe anale, vue laterale. Fig. 2. Rheomus alatus spec.
_ nov., Hypopyge dorsal, a. Gonostyle, vue laterale.
185
Fig. 3. Rheomus yahiae spec. nov., Nymphe ®. a. Apotome frontal. b. Anneau basal de la corne thoracique. c.
Thorax. d. Tergites abdominaux I-VII. e. Sternites V-VIII, f. Corne thoracique.
186
La Volsella inferieure se raccorde tout le long du bord interne du gonocoxite. Gonocoxite avec seu-
lement 2-3 longues soies medianes et marginales. Gonostyle avec une partie basale etroite, un bord
interne tres concave, une partie distale &largie et aplatie en lame de couteau, progressivement retrecie
vers l’apex. Partie distale du gonostyle entierement couvert de microtriches, partie basale avec une
zone dorsale depourvue de microtriches; soies du bord interne partiellement fourchues a leur extre-
mite.
Imago Q: inconnue.
Nymphe 9:
Longueur 3,2—3,7 mm (n = 8). Exuvie pratiquement incolore.
Cephalothorax (fig. 3a): soies frontales courtes, fines, inserees & l’extremite de petits tubercules ce-
phaliques coniques. Tubercules frontaux absents. Corne thoracique de type Chironomini, caracterı-
stique (1 = 0,7—0,9 mm): formee par 5 branches bifurquees dans leur moitie distale en branches plus
fines, avec ä sa base une touffe de filaments courts et fins; anneau basal ovale avec une structure alveo-
laire bien visible (fig. 3b, f). En avant de l’anneau, presence d’un processus conique legerement colore.
Thorax finement granuleux dorsalement, par ailleurs lisse (fig. 3c). Tubercule prealaire developpe
en projection conique courte et plissee. Tubercule du scutum peu developpe. Fourreau alaire, aux
bords legerement colores, sans nez ni perles. Soies thoraciques: 2 precorn£ales, 2 antepronotales, 4
dorsocentrales.
Abdomen (fig. 3d, e): tergite I nu; II-VII avec une paire de tubercules medio-posterieurs garnis
d’&pines courtes et portant une forte soie plus chitinisee. Tergite II sans rangee de crochets. Conjonctif
et pleures sans chagrin; fin chagrin aux angles anterieurs des tergites VI, VII, VIII, sur la partie me-
diane des tergites III-VI ainsi que sur la moitie ant&rieure du segment anal. Pedes spurii A absents; Pe-
des spurii B aux angles anterieurs du segment I, absents du segment II. Sternites pratiquement sans
chagrin avec deux lobules posterieurs portant chacun une longue soie plus chitinisee; quelques spinu-
les seulement presentes pres des lobules des sternites V et VI. Segment VIII sans Epines nı &perons a
P’angle posterieur. Segment anal avec deux lobes allonges, termin&s par une pointe effilee et recourbee
ventralement, avec chacun deux L setae inserees au tiers anterieur. Sac genital P distalement trilobe.
Setation abdominale: segments II-VII avec 3 L setae courtes. Segment VIII avec 3 L setae plus lon-
gues. 4 L setae observees sur un cöte d’une seule exuvie. La setation des tergites et des sternites V-VII
est representee sur la figure 3d et 3e.
Mat£riel: Holotype 1 imago CO’, Maroc, S. Yahia Boka, juin 1967, leg. Choumara. Paratypes: 3 imagos JO’ du
locus typicus, 20.4.1967 et juin 1967.
Maroc: 1EQ Oued Fes, 20.12.1987, leg. Azzouzi. Tunisie: INC’,5EQ Oued Tessa, 15.5.1983; 1EQ Oued Med-
jerda (Jendouba) 12.4.1985; 2EQ Oued Medjerda (Bathan), 6.4.1985, leg. Boumaiza.
L’Holotype se trouve dans la Zoologische Staatssammlung München. Paratypes dans la collection H. Laville,
Toulouse et dans Z. S. M. Tous les exemplaires sont montes dans l’Euparal.
Repartition et Ecologie
R. yahiae est connue du Maroc et de Tunisie.
Au Maroc, la station de l’Oued Fes, petit affluent (22 km) de l’Oued Sebou, est situee 3 km en
amont de Fes et ä 380 m d’altitude: elle est large de 13 m, profonde de 0,8-1 m, avec un substrat de
gravter et de sable grossier; la temperature de l’eau Etait de 22°C le 20 avrıl 1986.
Deux stations tunisiennes se situent dans le principal fleuve du Nord de la Tunisie l’Oued Medjerda,
la troisieme dans l’Oued Tessa, 2 km en amont de sa confluence avec la Medjerda.
Il s’agit de cours d’eau de plaine (28 m—146 m), larges (8-12 m), ä fond sableux a sablo-vaseux,
avec des temperatures de 24°C en juin etde 12°C en fevrier. La vegetation bordante estrare ou absente.
Dans l’Oued Medjerda, pres de Jendouba, l’espece a Et£ r£coltee en compagnie de l’espece Kloosia pu-
silla (L.) (12.4.85) et s’avere, comme cette derniere, un nouvel exemple d’un element faunistique du
potamal au sein du complexe Harnischia.
187
Diagnose differentielle
L’imago © se differencie bien de l’imago © de alatus au niveau des caracteres de l’hypopyge: Vol-
sella superieure en forme de pied, sans tubercule (en forme de massue avec un petit tubercule apical);
gonostyle avec un bord interne nettement concave et une moitie distale elargie en lame de couteau
(bord interne droit avec une lamelle laterodistale sur la face dorsale). De plus, yahiae est de coloration
nettement plus fonc&e que alatus.
La nymphe de R. yahiae se caracterise par un segment anal d’un type original et apparement unique
chez un Chironomini: de plus, la reduction de la setation anale 4 2 simples L setae le rapprocherait de
celui d’un Tanypodinae. Seulement 3 L setae aux segments V—-VIII (normalement 4 LS setae chez le
complexe Harnischia).
Rheomaus alatus spec. nov.
Imago d:
Taille: petit, longueur de l’aile 1,2—1,35 mm.
Coloration: corps brun-jaune (dans l’alcool). Vittae brun, bien separ&es. Postnotum brun avec une
etroite bande basale plus claire. Praeepisternum, une tache sur l’anepisternum, pedicellus, articles 2—4
du palpe, egalement brun; article 5 brun clair. Balanciers clairs. Tergites abdominaux I-VI avec une
bande medio-longitudinale brune. Pattes entierement brunes excepte la base du femur anterieur plus
claire et les femurs moyens et posterieurs clairs avec toutefois une bande longitudinale brune.
Tete: yeux fortement prolonges dorsalement et separes dans la partie mediane de la longueur du
prolongement. Tubercules frontaux cylindriques, jusqu’ä 16 um de long. Antenne avec 11 flagello-
meres, AR = 1,17—1,33 (n = 3). Longueur des articles 2-5 des palpes en um (Holotype): 38, 88, 103,
133
Thorax: avec 6 soies acrostichales, 5-7 dorsocentrales, 3—4 prealaires et 6-7 scutellaires. Scutum
avec un petit tubercule arrondı.
Aile: lobe anal peu developpe&. Squame avec seulement 2 soies. FCu eloignee distalement de RM, C
non prolonge&e au-delä de R4+5 et finissant avant M. R2+3 debouchant au !/3 proximal entre Ri et
R4+5. Seule R porte 4—6 soies.
Pattes: longueur des articles en um (Holotype):
Fe Ti Ta; Ta; 1a; len Ta;
P, 480 365 460 235 170 120 7
Pır 420 415 150 95 70 55 60
Pın 490 500 265 150 126 65 70
LR = 1,26-1,40 (n = 2). Pulvilles presque aussi longs que les griffes. Tarses anterieurs non barbus.
2 sensilla chaetica subapicales sur Ta, de Pı,. Peignes des tibias moyens et posterieurs plats, courts, non
separ&s, avec seulement un court Eperon.
Hypopyge (fig. 2): bandes du tergite anal en V, assez superficielles, ne se rejoignant pas dans la par-
tie mediane oü une simple zone brunätre les relie. Pointe anale ä base £troite et partie terminale elargie
en forme de disque, un peu recourb&e ventralement. Partie basale presque aussi longue que la partie
terminale. Tergite anal sans soies medianes, soies apicales legerement Ecartees de la pointe et regrou-
pees en touffe. Volsella superieure &troite, presque droite, Elargie distalement et avec une ebauche de
tubercule apical; dorsalement sans soies et avec 2 longues soies subapicales dans une zone de microtri-
ches sur la face ventrale. Volsella inferieure triangulaire et effil&e, de longueur moyenne, atteignant la
partie basale du gonostyle et garnie de tr&s longues microtriches. La Volsella inferieure se raccorde
tout le long du bord interne du gonocoxite. Gonocoxite avec seulement 3 longues soies medianes et
188
marginales. Gonostyle avec un bord interne droit, legerement elargi au centre; la partie distale avec au
bord externe une lamelle peu apparente en vue dorsale, seulement visible en position laterale (fig. 2a);
soies du bord interne partiellement fourchues ä leur extremite.
Imago 9, Nymphe et Larve: inconnues.
Materiel: Holotype 1 imago O’, Maroc, Meknes, 553 mN.N., 23.8.1979, leg. G. Fontain. Paratypes: 1 imago JO’,
Maroc, Haut-Atlas du Sud, Oasis Meski, 1160 m N.N., 2.5.1979, leg. F. Auer & K. Werner; 2 imagos JO’, Ma-
roc, Oued Tensift, rive Sud, Palmeraie de Marrakech, 10.5.1979, leg. D. Masson.
Les preparations & l’Euparal de l’Holotype et du Paratype premier nomme se trouvent dans la Zoologische Staats-
sammlung München, les deux autres Paratypes dans la collection H. Laville, Toulouse.
Repartition et €cologie
L’espece n’est jusqu’ici connue que du Maroc. Son Ecologie n’est pas connue.
Diagnose differentielle
L’espcce se differencie du second representant du genre (yahiae) par les caracteres suivants de ’hy-
popyge: Volsella superieure en forme de massue et avec une Ebauche de tubercule apical (en forme de
pied, sans tubercule); gonostyle avec un bord interne droit et une lamelle latero-distale peu apparente
dorsalement, bien visible en vue laterale (bord interne, en partie concave, et lamelle medio-distale en
lame de couteau).
Discussion
Les caracteres imaginaux montrent (voir diagnose differentielle du genre) que Rheomus se rappro-
che le plus du genre Saetheria qui, de son cöt&, a montre de grandes affinites avec le genre Paraclado-
pelma Harnisch, 1923. Malgre la pr&sente description d’un nouveau genre au sein de ce groupe par-
ental, les limites du genre doivent rester provisoires, car d’une part, un grand nombre d’especes dont
les stades jeunes sont inconnus different beaucoup du generotype et d’autre part, plusieurs especes
non decrites existent dont l’analyse des caracteres peut amener des transformations taxonomiques.
L’appartenance douteuse au genre existe pour Paracladopelma mikiana (Goetgh., 1973) espece Ouest-
Palearctique, ainsi que pour les trois especes afrotropicales P. melutense (Freem., 1957), P. pullata
(Freem., 1957) et P. reidi (Freem., 1957). Une nymphe © de l’espece essentiellement afrotropicale
P. graminicolor (Kieff., 1929), recemment trouvee ä la Zoologische Staatssammlung, s’est revelee ap-
partenir nettement au genre Cryptotendipes Lenz, 1941. Paracladopelma tamanıpparai Sasa, 1983 du
Japon, d’apres la description originale et les figures se range sans aucun doute dans le genre Saetheria.
Ces quelques exemples justifient la necessit€ de nouvelles &tudes taxonomiques dans cette partie du
complexe Harnischia.
La nymphe presente une corne thoracique caract£ristique de type Chironomini.
L’absence de rangee de crochets au tergite II et l’absence de peignes ou d’Eperons latero-posterieurs
au segment VIII larapproche du genre Harnischia (Pinder & Reiss 1986). L’ornementation des tergites
abdominaux I-VIII ressemble davantage ä celle du genre Cryptotendipes.
L’absence de parente reelle de lanymphe avec quelques genres de la tribu des Chironomini interdit
toute speculation phylogenetique. La forte regression du segment anal de lanymphe de R. yahiae in-
cite A considerer le genre Rheomus comme autapomorphe.
L’&cologie de R. yahiae, comparable & celle des genres Kloosia et Demicryptochironomus (Irmakia)
(Reiss 1988 a, b), est un nouvel exemple d’un genre potamobionte au sein du complexe Harnischia.
189
Bibliographie
FREEMAN, P. & CRANSTON, P. S. 1980: Family Chironomidae: In Crosskey R. W. (Ed.): Catalogue of the Diptera
of Afrotropical Region. British Museum (Natural History), London: 175—202
JACKSON, G. A. 1977: Nearctic and Palaearctic Paracladopelma Harnisch and Saetheria n. gen. (Diptera: Chirono-
midae). — J. Fish. Res. Board Canada, 34: 1321-1359
PinDEr, L. C. V. & Reıss, F. 1986: The pupae of Chironominae (Diptera: Chironomidae) of the Holarctic region
— Keys and diagnoses. — Ent. scand. Suppl. 28: 299-471
Reıss, F. 1988a: Die Gattung Kloosia Kruseman, 1933 mit der Neubeschreibung zweier Arten (Chironomidae,
Diptera) — Spixiana Suppl. 14:
Reıss, F. 1988b: /rmakia, ein neues Subgenus von Demicryptochironomus Lenz, 1941, mit der Beschreibung von
4 neuen Arten (Chironomidae, Diptera). — Spixiana Suppl. 14:
SAETHER, ©. A. 1977: Taxonomic studies on Chironomidae: Nanocladius, Psendochironomus and the Harnischia
complex. — Bull. Fish. Res. Board Can. 196: 143 p
Dr. Henri Laville,
Laboratoire d’Hydrobiologie, UA 695, CNRS,
Universite Paul Sabatier, 118 route de Narbonne,
F-31062 Toulouse Cedex.
Dr. Friedrich Reiss,
Zoologische Staatssammlung,
Münchhausenstr. 21,
D-8000 München 60.
190
SPIXIANA | Supplement 14 | 191-200 | München, 15. Juli 1988 ISSN 0177— 7424
A Contribution to the knowledge of Chironomids in Italy
(Diptera, Chironomidae)
By B. Rossaro
Abstract
In recent years Chironomid research ın Italy has developed greatly. 359 species have been recorded. The subfami-
lies are represented by 42 Tanypodinae, 23 Diamesinae, 3 Prodiamesinae, 143 Orthocladiinae, 148 Chironominae,
59 belong to the tribe Tanytarsini and 89 to Chironomini. Another 45 taxa tentatively identified must be added to
these. Most species are widely distributed in the Palearctic region. Few Mediterranean (6), Afrotropical (5) or Pan-
paleotropical (3) species have been found. The list includes five previously considered to be Nearctic species, which
have Holarctic distribution according to the present evidence.
Introduction
Chironomid research in Italy is very active. In the last ten years the number of species known to be
present has gone up steeply. Information was very scanty before 1968, grew slowly up to 1976, then
quickly. One important stimulus has been a series of volumes with identification keys for the aquatic
fauna published by the Italian National Research Council (C.N.R.). Four volumes deal with Chiro-
nomids: FERRARESE & Rossaro (1981), Rossaro (1982), FERRARESE (1983) & Nocenrini (1985). Only the
larvae of all subfamilies and the pupal exuviae of all subfamilies except Chironominae are considered
in these volumes. The literature about Chironomids in Italy has been reviewed by Rossaro (1979) and
FERRARESE (1982).
The interests in Chironomid research are three. There are systematic, zoogeographic and ecological
problems that stimulate the study. Italy is in the centre of the Mediterranean area and is a natural
bridge between Central Europe and Africa. There are several very different biotopes in Italy: cold
springs and glacier streams in the Alps, large lakes in the pre-Alps (Garda, Maggiore, Como), rivers
in the Padana lowland (Po, Adige, Ticino, Adda, etc.), Mediterranean streams in central and southern
Italy. A very long list of species was to be expected and this is indeed the case, although at present it
is very incomplete. The first reason is that no extensive sampling effort has been made. Pollution is the
second reason. The capture of springs and the creation of reservoirs for water supply are also unfavou-
rable factors for the preservation of autochthonous, highly diversified fauna. Eury-topic and eury-
ecious species are favoured. The large spread of insecticides and water drainage to fight malarıa in the
Mediterranean countries after the second World War destroyed the species living in marshes. Ob-
viously, pollution is not exclusive to Italy, but in some very urbanized areas it has certainly drastically
modified the species composition, favouring the more common ones more than elsewhere. The mas-
sive development of Chironomus salinarius in the Venetian and Orbetello lagoons is an example (Arı
& Majorı 1984).
The list of species in a country must be continuously updated, as new species are captured. Genera
are submitted to revision, synonyms are created, species change names obeying the principle of prio-
rity. Some species can be easily identified thanks to peculiar morphological characters, but it is diffi-
191
Fig. 1. Location of sampling sites in Italy. Only the sites sampled most intensely indicated.
1— Cold springs and glacier streams in Aosta valley (Valle d’Aosta)
2— Ortles-Adamello group; many different biotopes, springs, streams, small lakes, all above 1000 m, etc. (Lom-
bardıa and Trentino-Alto Adige)
3— the Ticino river near Turbigo and Boffalora (Lombardia)
4— Springs near Milano, called “fontanili” and the Lambro (Lombardia)
5— prealpine streams near Bergamo (Brembo and Serina) (Lombardia)
6— the Po River near Trino Vercellese (Torino) and Casale Monferrato (Piemonte)
7— the Po River between Piacenza and Cremona (Emilia Romagna)
8— Mantova lakes, along the Mincio river (Mantova) (Lombardia)
9— Reno and other streams on the northern side of the northern Apennines (Emilia Romagna)
10— the Potenza near Macerata (Marche)
11— the Aso near San Benedetto del Tronto (Marche)
12— Springs and streams in Parco Nazionale Abruzzi (Abruzzi e Molise)
13— Occhito artificial basin between Molise and Puglia, and the Fortore in Molise
14— the Cedrino and other small stream in northern Sardinia (Sardegna)
15— Rio Mannu and brackish waters in southern Sardinia (Sardegna)
16— Dirillo artificial basin and the Dirillo (Sicilia)
192
cult to give names to species belonging to genera that requiere revision such as Chaetocladius, Bryo-
phaenocladins, Smittia, Micropsectra atrofasciata group, Microtendipes, Cryptochironomus, etc.. The-
refore, the list in this paper represents only a transitory phase in our developing knowledge.
Methods, sampling sites
The list of species is based on determinations on adult males in most cases. Sometimes determinations are made
on pupal exuviae. Larvae were obtained alive from some sites (always from sites 4 and 7, sometimes from other sites,
see Figure 1) and reared to adults in the laboratory. In laboratory-reared material one can associate larvae and pupae
with the adults and this procedure is highly recommended. For species determination in the genus Chironomaus, sa-
livary gland chromosomal analysis was carried out C. annularius, C. anthracinus, C. melanotus and C. riparins
were identified by this technique.
Sampling efforts were made in different regions in Italy, but Lombardia has been the most intensively sampled.
Figure 1 is amap showing the sites at which the most intensive sampling was carried out. Each sampling site includes
many different stations and covers a large area. In each sampling site, captures were made throughoutthe year. Sites
that were sampled only at intervals are not reported in Figure 1.
Collecting was done with hand-nets, light traps, surface drift nets.
Results and Discussion
Table 1 lists the known species in Italy. It has been necessary to separate them into the following
groups:
1— Species well described and identifiable: within this group, we further separate:
1a— species present in the author’s collection (Department of Biology, University of Milan):they are
marked with + ın Table 1;
1b-— species as 1a, new for Italian fauna: they are marked with =;
1c-species reported in the literature as present in Italy, but not in the author’s collection; this material
is deposited in different collections and it has not been possible for the author to verify the validity of
all these findings. All these species are marked with £. In this group, species determinations before
1950 are especially dubious.
2— Species whose presence is unsure because:
2a— determinations were made on ill-preserved specimens or only pre-imaginal stages are available;
2b — species belong to genera that require revision.
Species belonging to 2a—- and 2b- are marked with *.
Table 1: Chironomidae taxa from Italy (see text for explanation)
Namppadinze + M. sp. Schweiz
+ Chnotanypus nervosus (Mg.) £ Natarsia punctata (Fabr.)
£ Tanypus kraatzi (K.) + Psectrotanypus varıns (Fabr.)
+ T. punctipennis (Mg.) + Alabesmyia longistyla Fitt.
+ T. villipennis (K.) £ A. monhlıis (L.)
* Procladius choreus (Mg.) + Arctopelopia griseipennis (v. d. W.)
P. sagittalıs K. + Krenopelopia binotata (Wied.)
+ Apsectrotanypus trıfascipennis (Zett.) £_ Conchapelopia melanops (Wied.)
+ Macropelopia fehlmanni (K.) + C.pallidula (Mg.)
£ M. goetghebueri (K.) + Monopelopia tenuicalcar (K.)
+ M.nebulosa (Mg.) + Paramerina divisa (Walk.)
£ AM. notata (Mg.) + P. cingulata (Walk.)
193
PaspsA
Rheopelopia acra Roback
R. maculipennis (Zett.)
R. ornata (Mg.)
Telopelopia fascigera Verneaux
Thienemannimyia carnea (Fabr.)
T. fuscipes (Edw.)
T. geijskesi (G.)
T. northumbrica (Edw.)
T. psendocarnea Murray
T. woodi (Edw.)
Xenopelopia falcigera (K.)
Telmatopelopia nemorum (G.)
Trissepelopia longimana (Staeg.)
Zavrelimyia barbatipes (K.)
Z. hırtimana (K.)
Z. melanura (Mg.)
Z. nubila (Mg.)
Z. punctatissima (G.)
Z. signatipennis (K.)
Larsıa atrocincta (G.)
Nilotanypus dubius (Mg.)
I Se I
mm mm + m + m ı + 1 ml + |
Diamesinae
Boreoheptagyia cinctipes Edw.
Psendodiamesa branicki (Now.)
P. nıvosa (G.)
Syndiamesa nıgra
Diamesa dampfi (K.)
D. permacer (Walk.)
. steinboecki (G.)
. longipes G.
. latitarsıs (G.)
. goetghebueri Pag.
.lindrothi G.
. laticanda Ser.-Tos.
modesta Ser.-Tos.
. bertrami Edw.
. aberrata (Lundb.)
sp. A
.incallida (Walk.)
. insignipes K.
. cinerella (Mg.)
thienemanni K.
. vaillantı Ser.-Tos.
. zernyi Edw.
Pseudokiefferiella parva (Edw.)
Potthastia gaedii (Mg.)
P. longimanus K.
® + "++ +++ HtH+r HN
+
SESESESESESESZ SUSE SEES ESESESD
++ ++++++++
Prodiamesinae
+ Prodiamesa olivacea (Mg.)
+ P.rufovittata (G.)
194
Sympotthastia spinifera Ser.-Tos.
Monodiamesa sp.
+ Odontomesa fulva (K.)
Orthocladiinae
II Se Sell N
"+ +++ 1
E+ ++ ++++H+H+
I++++++++
IF ++ I +++ HH IHN
Diplocladius cultriger K.
Euryhapsis annuliventris (Mall.)
Brıllia longifurca K.
B. modesta (Mg.)
Cardiocladius capucinus (Zett.)
C. fuscus K.
Tvetenia bavarica (G.)
T. calvescens (Edw.)
T. discoloripes (G.)
T. verralli (Edw.)
T. scanica (Br.)
Eukiefferiella gracei (Edw.)
. coerulescens (K.)
. devonica (Edw.)
. ilkleyensis (Edw.)
. fittkani Lehm.
. minor (Edw.)
. brehmi Gow.
. cyanea Th.
. clypeata (K.)
. psendomontana G.
. dittmari Lehm.
. fuldensis Lehm.
.lobifera G.
. brevicalcar (K.)
. tirolensis G.
. hospita Edw.
Tokunagaia rectangularıs (G.)
T. tonollii (Ross.)
Psectrocladius (Psectrocladius) psilopterus K.
P. (P.) brehmi K.
P. (P.) edwardsi Br.
P. (P.) limbatellus (Holm.)
P. (Monospectrocladius) octomaculatus Wülk.
P. (M.) schlienzi Wülk.
P. (Allopectrocladius) gr. dılatatus
Rheocricotopus (Psilocricotopus) atrıpes (K.)
R. (P.) chalybeatus (Edw.)
R. (P.) glabricollis (Mg.)
R. (Rheocricotopus) effusus (Walk.)
R. (R.) fuscipes (K.)
Paracricotopus nıger (K.)
Nanocladius balticus Pal.
N. bicolor (Zett.)
N. rectinervis (K.)
N. spiniplenus Saether
Parorthocladius nudipennis (K.)
Synorthocladius semivirens (K.)
Orthocladius (Eudactylocladins) fuscimanus (K.)
O. (E.) gelidus (K.)
nyyubhbmyhmnmtmmntmnmn&m m m m &
Et t+t+t+Ht+tHtHr ++
Su
"+ +++
N Ne NM NM Frl MM Sr ar
"rer Va Me ara
NM rel
O. (E.) olivaceus (K.)
O. (E.) sp. A
Orthocladius (Euorthocladius) ashei Soponis
O. (E.) frigidus (Zett.)
O. (E.) Inteipes (G.)
O. (E.) rivicola (K.)
O. (E.) rıvulorum (K.)
O. (E.) saxosus (Tok.)
O. (E.) thienemanni (K.)
Orthocladius (Orthocladius) excavatus Br.
O. (O.) rubicundus (Mg.)
O. (O.) tubicula K.
O. (O.) wetterensis Br.
O. (O.) sp. A Pinder
O. (O.) Pe 1 Langhton
O. (O.) Pe 10 Langhton
Symposiocladius lignicola (K.)
Acricotopus lucens (Zett.)
Paratrichocladius rufiventris (Mg.)
P. skirwithensis (E.dw.)
ESP
Paracladius conversus (Walk.)
P. alpıcola (Zett.)
Halocladius stagnorum (G.)
H. varıans (Staeg.)
Cricotopus (Cricotopus) polarıs K.
C. (C.) tibialis (Mg.)
C. (C.) fuscus (K.)
C. (C.) tremulus (L.)
C. (C.) annulator G.
©. (C.) curtus Hırv.
C. (C.) pulchripes Verr.
C. (C.) triannulatus (Macq.)
C. (C.) alindraceus (K.)
C. (C.) patens Hirv.
C. (C.) festivellus (K.)
C. (C.) bicinctus (Mg.)
©. (C.) vierriensis G.
C. (C.) trıfascia Edw.
Cricotopus (Isocladius) ornatus (Mg.)
C. (1.) sylvestris (Fabr.)
C. (I.) glacıalis Edw.
C. (I.) trıfasciatus (Mg.)
C. (I.) intersectus (Staeg.)
C. (I.) tricinctus (Mg.)
Hydrobaenus distylus (K.)
Zalutschia tatrica (Pag.)
Metriocnemus fuscipes (Mg.)
M. hirticollis (Staeg.)
M. hygropetricus K.
Thienemannia gracılis K.
Chaetocladius dissipatus (Edw.)
C. gelidus Br.
C. laminatus Br.
C. perennis (Mg.)
> | > 69
+
SH ++t+t+ttHHtHmm HI
"mmmMm
ı m +Mm+ mM |
C. setilobus Marc.
C. suecicus (K.)
Paratrissocladius fluviatılis (G.)
Heterotrissocladius marcidus (Walk.)
H. grimshavi (Edw.)
Parametriocnemus stylatus (K.)
P. boreoalpinus Gow.
P. eochvus Saether
Paraphaenocladins impensus (Walk.)
Parakiefferiella gracillima (K.)
P. bathophila (K.)
P. coronata (Edw.)
Epoicocladius sp. A
Rheosmittia spinicornis Br.
Krenosmittia boreoalpina (G.)
K. camptophleps (Edw.)
K. sp. A (?=hispanica Wülk.)
Stilocladins montanus Ross.
Heleniella dorieri Ser.-Tos.
H. ornaticollis (Edw.)
TISPEN
Parachaetocladius abnobaenus Wülk.
Limnophyes bidumus Saether n. sp.
(Saether in press)
L. minımus (Mg.)
L. natalensıs K.
Psendorthocladius curtistylus (G.)
Gymnometriocnemus subnudus Edw.
G. volitans (G.)
Bryophaenocladius aestivus Br.
. llımbatus Edw.
. inconstans (Br.)
. scanıcus Br.
.subvernalis (Edw.)
. tuberculatus (Edw.)
. vernalis (G.)
Smittia aterrima (Mg.)
S. edwardsi G.
S. foliacea (K.)
5. giordani-soikai Marc.
S. gridellii Marc.
S. httorella G.
S. malarodaı Marc.
S. nudipennis G.
S. pratorum G.
Parasmittia carıinata Str.
Camptocladius stercorarins (d. Geer.)
Mesosmittia flexuella (Edw.)
Psendosmittia angusta Edw.
P. d’anconai (Marc.)
P. gracilis (G.)
P. holsata T. & Str.
P. mathildae Albu
P. recta Edw.
P. subtrilobata (Freem.)
Du u u u I
196
£ P.tnlobata (Edw.)
* Georthocladius sp. A
* Thienemanniella clavicornis K.
T. obscura Br.
= T.partita Schlee
= Corynoneura coronata (Edw.)
+ C. edwardsi Br.
= C. fittkani Schlee
= C.lacustris Edw.
C. lobata Edw.
+ C. scutellata Winn.
Chironominae
Tanytarsıni
=
Zavrelia pentatoma K.
Zavreliella marmorata (v.d. W.)
Stempellinella brevis Edw.
Stempellina bausei (K.)
S. subglabripennis Br.
Neozavrelia fuldensis Fitt.
Tanytarsus bathophilus (K.)
T. brundini Lind.
T. buchonius Reiss & Fitt.
T. chinyensis G.
T. curticornis K.
T. eminulus Walk.
T. fimbriatus Reiss & Fitt.
T. gracilentus Holm.
T. heusdensis G.
T. horni G.
T. lestagei G.
T. lugens K.
T. miriforceps K.
T. nemorosus Edw.
T. nigricollis G.
T. pallidicornis Walk.
T. recurvatus Br.
T. sylvaticus v. d. W.
T. usmaensıs Pag.
Virgatanytarsus maroccanus (Kügler & Reiss)
V. triangularis (G.)
Stilotanytarsus inguilinus Krüger
Cladotanytarsus atridorsum (K.)
C. mancus (Walk.)
Rheotanytarsus curtistylus G.
R. montanus Lehm.
R. muscicola K.
R. nigricauda Fitt.
R. pentapoda K.
R. photophilus G.
R. ringei Lehm.
Paratanytarsus austriacus K.
P. bituberculatus (Edw.)
Ta en Es die a a Et a, ren
TI „ca > BerEGe 3> 50 \> BOTBRE ı> Bo Base Tao BE 30 ZT „0 Zur Su zZ
P. confusus Pal.
P. inopertus (Walk.)
P. lauterborni K.
P. mediterraneus Reiss & Sawedal
P. penicıllatus G.
P. tenellulus (G.)
Micropsectra (Lauterbornia) coracına K.
Micropsectra apposita (Walk.
M. atrofasciata K.
attennata Reiss
bidentata G.
clastrieri Reiss
groenlandica And.
Juncı (Mg.)
lindrothi G.
miki Marc.
notescens (Walk.)
pharetrophora Fitt.
recurvata G.
roseiventris K.
tenellula G.
Pseudochironomini
Pseudochironomus prasinatus (Staeg.)
Chironominıi
*+ +1 +mm
"++ ++++++ 1 + Pmmm +
Mm ++++mM
Pagastiella orophila (Edw.)
Paratendipes albimanus (Mg.)
P. nubilus (Mg.)
P. plebejus (Mg.)
Microtendipes britteni Edw.
M. chloris K.
M. diffinis Edw.
M. pedellus (de Geer)
M. tarsalıs (Walk.)
Nilothauma (= Kribioxenus) brayi (G.)
*Paralauterborniella nigrohalteralis (Mall.)
Phaenopsectra flavipes (Mg.)
P. punctipes (Wiedemann)
Polypedilum (Pentapedilum) nubens Edw.
P. (P.) sordens (v. d. W.)
Polypedilum (Polypedilum) acutum K.
P. (P.) albicorne (Mg.)
P. (P.) convictum (Walk.)
P. (P.) cultellatum G.
P. (P.) laetum (Mg.)
P. (P.) nubeculosum (Mg.)
P. (P.) pedestre (Mg.)
P. (P.) nubifer (?= aberrans Chern.) (Skuse)
Polypedilum (Tripodura) acıfer Townes
P. (T.) aegyptinm (?=pruina Freeman) K.
P. (T.) apfelbecki (?= elongatum Albu) (Strobl.)
P. (T.) bicrenatum K.
P. (T.) breviantennatum Chern.
£ P.(T.) pullum (Zett.) £ Einfeldia carbonarıa Mg.
+ P.(T.) quadriguttatum K. = E.longıpes (Staeg.)
+ P.(T.) scalaenum Schr. £ E. gr. pagana
+ Endochironomus albipennis (Mg.) * _ Sergentia sp.
£ E.dıispar (Mg.) + Xenochironomus xenolabis K.
£ E.lepidus (Mg.) £ Cladopelma edwardsi Krus.
+ E.tendens Fabr. + C. virescens (Mg.)
* Stictochironomus pictulus (Mg.) + C. viridula (Fabr.)
+ Stenochironomus ranzül Ross. + Cryptotendipes holsatus Lenz
£ 5. gibbus Fabr. + Microchironomus tener K.
= S$. spatuliger K. + Parachironomus arcuatus G.
* Fleuria lacustris K. + P. longiforceps K.
= Dicrotendipes lobiger K. = P. monochromus (v.d. W.)
+ D.nervosus (Staeg.) + P.panılis (Walk.)
+ D. notatus (Mg.) EN Pavaras@-
= D. peringueyanus Freem. + P. vitiosus G.
£ D.pulsus (Walk.) + Paracladopelma camptolabis K.
+ D.tritomus K. £ P.nigritula G.
* Glyptotendipes gripekonveni K. * Genus near Paracladopelma
G. pallens (Mg.) + Harnischia angularis Albu & Botn.
" G.paripes Edw. + AH. curtilamellata (Mall.)
£ _G. severmni G. + AH. fuscimana (K.)
+ Camptochironomus pallidivittatus (Mall.) £ Demicryptochironomus vulneratus (Zett.)
+ Chironomus annularius (Mg.) + Cryptochironomus albofasciatus (Staeg.)
+ C.anthracinus Zett. + C. defectus K.
+ €. calipterus K. + C.obreptans (Walk.)
£ C. cingulatus (Mg.) + C.rostratus K.
£__C. dorsalis (Mg.) + C. supplicans (Mg.)
= C.melanotus Keyl + “Cryptochironomus” sp. Pagast
+ C.obtusidens G. + Saetheria sp. 1 Jackson
+ C.plumosus L. £ Chernovskiia macrocera (Chern.)
+ C.riparius Mg. + Genus near Robackia
+ C. salinarius K. + Robackia pilicauda Saether
+ Kiefferulus tendipediformis G. = Beckidia tethys (Townes)
+ Halliella noctivaga K.
Table 2 summarizes the present knowledge of Chironomids in Italy. 76 species new to the Italian
fauna and 45 dubious determinations that require further study and additional material emphasize that
there is still room for knowledge about Italian Chironomids to progress.
Most species are widely spread in the Palearctic region, some have more restricted areas of distribu-
tion. This is due to their ecology more than to zoogeographical reasons. Cold-stenothermal species are
restricted to highlands (most Diamesinae and many Orthocladiinae): most of these species are wide-
spread in the Alps (Region 4 in Fırrkau & Reıss 1978), many are also present in cold countries in
Northern-Europe (Fırrkau & Reıss 1978). Many species found in the Alps are not present ın cold wa-
ters in the Apennines, but this may be because of insufficient sampling. A lack of glaciers and of very
cold water in the Apennines might be other reasons.
Three species (Syndiamesa nigra, Tokunagaia tonollii and Stilocladins montanus) were found on the
southern side of the Italian Alps, but not on the northern side. $. montanus is also present in the Apen-
nines (Rossaro 1984). This supports the existence of cold-stenothermal species with an endemic distri-
bution in the Alps or with a wider southern distribution, as there are known to be for other species in
the Mediterranean area. For example, Diamesa lavillei and D. thomasi are known from the Pyrenees
only (Serra-Tosıo 1973), whereas D. veletensis was previously known only in the Sierra Nevada
197
(Spain) but was then captured in the Atlas mountains (Morocco) and in Mongolıa, suggesting it has a
wider distribution in southern and oriental parts of the Palearctic Region (SErrA-Tosıo 1983). The cap-
ture of another species of Stilocladins (S. clinopecten Saether) in the southeastern United States favours
a Gondwanian origin for this genus (SAETHER 1983). The southern side of the Alps has large extensions
of Gondwanian origin, so this hypothesis has good geological support.
Table 2: Summary of the present information about Chironomids in Italy:
+ taxa well identified, deposited in the author’s collection
= species new to the Italian fauna
£ species belonging to the Italian fauna according to the literature but not present in the author’s
collection
total: sum of +, =,£
species only tentatively identified because of a lack of adult males, ill-preserved material or species
belonging to genera that require revision
+ = = total
Tanypodinae 21 8 13 42 3
Diamesinae 2a 2 0 23 4
Prodiamesinae 3 0 0 3 1
Orthocladiinae 82 47 14 143 27
Tanytarsını 26 11 22 59 1
Pseudochironomini ) ) 0 ) 1
Chironominıi 61 8 20 89 8
Total 214 76 69 359 45
Reıss (1968) did not find any differences in Chironomid species composition in lakes on the nor-
thern and southern sides of the Alps, suggesting that the Alps are not a zoogeographical barrier for
Chironomids. This does not contradict our findings. Indeed Chironomid species from the upper rea-
ches of the mountains and their springs (Brunpın 1966) have more chance of showing an endemic dis-
tribution than species from lakes. In any case the number of endemic species seems to be very low.
The percentages of Mediterranean, Afro- and Panpaleotropical species in Italy are also of interest.
The Chironomids from the Mediterranean area have been studied only recently, but rather intensively
in recent years. According to Reıss (1977), the Mediterranean fauna contains 22.7 % of Palearctic Me-
diterranean species and about 9% of Ethiopian species. PrAat (1979, 1980), MoUBAYED & LavirLe (1983)
and Rrıss (1985, 1986) give lists of species from single countries within the Mediterranean area. There
are low percentages of endemic Mediterranean species and lower percentages of Afro- and Panpaleo-
tropical species in most cases, with a dominance of Palearctic species. Even lower percentages are
known in Italy. Two species with a Panpaleotropical distribution (Reıss 1985, 1986) that extend their
presence to the Mediterranean region are restricted to southern areas of Italy. These are Chironomus
calipterus, found in Sardinia, and Dicrotendipes peringueyanus in Sicily. Another species with a Pan-
paleotropical distribution, Polypedilum nubifer, is probably present in northern Italy, in the Po and
Adige rivers (Nocenrinı, 1985), but unfortunately only larvae are available and species determination
is uncertain. On the other hand, some species with an Afrotropical distribution are definitely present
in northern Italy: they are Rheotanytarsus montanus, Polypedilum aegyptium and Stenochironomus
spatuliger. Two other Afrotropical species known to occur in Italy are Psendosmittia subtrilobata
from Sardinia and Tanytarsus horni from Sicily (Reıss 1977). R. montanus was collected from the Ti-
cino (Lombardia) and the Potenza (Marche) (stations 3 and 10, Figure 1). It fits all the details in the
description of Lenmann (1979) except for the A. R., which is larger (= 0.8). It does not fit the descrip-
tions of the other European species. P. aegyptium comes from the Po river, 5. spatuliger from the
Mantova lakes (Figure 1). The halobiont species Haliella noctivaga and Halocladius stagnorum were
198
included in the Mediterranean faunal component by Reıss (1977). Other endemic Mediterranean spe-
cies captured in Italy are: Paratanytarsus mediterraneus, Tanytarsus maroccanus, Polypedilum agıfer
and Harnischia angularıs.
It is interesting to note that five species reported as Nearctic have been found in Italy: Rheopelopia
acra, Euryhapsis annuliventris, Nanocladius spiniplenus, Parametriocnemus eoclivus and Saetheria
sp. 1 Jackson. According to this, Holarctie distribution must be assigned to them.
In any case, the lack of knowledge or uncertain information for large areas suggests caution in draw-
ing conclusions about geographical distribution. Very often new findings extend the distribution area
of species very greatly. For example, T. tonollii was recently captured in Norway (Tuiskunen pers.
comm.). More extensive knowledge ofthe Chironomids in Italy is very desiderable, because of its stra-
tegic position between the Palearctic and Afrotropical regions.
There is very scanty information for central and southern Italy at present. More detailed knowledge
about these areas will probably raise the number of Mediterranean and Afrotropical species. Another
very interesting field is the faunal composition in the cold waters on the southern side of the Alps and
in the Apennines: it is important to confirm or refute the existence of cold-stenothermal Chironomid
species with a southern distribution.
Acknowledgements
I am much indebted to Dr. Reiss, Zoologische Staatssammlung, München, and to Prof. Saether, Zoologie Mu-
seum, Bergen, for having examined species.
Literature
Aıı, A. & MAJoRI, G. 1984: A short-term investigation of chironomid midge (Diptera: Chironomidae) problem in
saltwater lakes of Orbetello, Grosseto, Italy. — Mosq. News 44: 17-21.
BRUNDIN, L. 1966: Transantarctic relationships and their significance, as evidenced by Chironomid midges. —
Kungl. Sv. Vetenskapsakad. Handl. 11: 1-472.
FERRARESE, U. 1982: Chironomid research in Italy. — Chironomus 2(4): 29— 33.
—— 1983: Chironomidi, 3 (Diptera, Chironomidae: Tanypodinae). Guide per il riconoscimento delle specie anı-
mali delle acque interne italıane. - CNR AQ/1/204 26: 1-67.
FERRARESE, U. & ROssARO, B. 1981: Chironomidi, 1 (Diptera, Chironomidae: Generalitä, Diamesinae, Prodiame-
sinae). Guide per il riconoscimento delle specie anımali delle acque interne italiane. - CNR AQ/1/129 12:
197
FITTKAU, E. J. & F. Reıss 1978: Chironomidae. — In Illies J. (ed.) Limnofauna Europea: 404440. G. Fischer, Stutt-
gart.
LEHMANN, J. 1979: Chironomidae (Diptera) aus Fließgewässern Zentralafrikas (Systematik, Ökologie, Verbrei-
tung und Produktionsbiologie). Teil I: Kivu-Gebiet, Ostzaire. — Spixiana Suppl. 3: 1—144.
MOUBAYED Z. & LAVILLE, H. 1983: Les Chironomides (Diptera) du Liban. I. Premier inventaire faunistique. —
Annls. Limnol. 19: 219— 228.
NOcENTINI, A. 1985: Chironomidi, 4 (Diptera, Chironomidae: Chironominae, larve. Guide per il riconoscimento
delle specie anımalı delle acque interne ıtaliane. - CNR AQ/1/233 29: 1— 186.
PRAT, N. 1979: Quironömidos de los embalses espanoles (1a parte). — Graellsia 33: 37—96.
—— 1980: Quironömidos de los embalses espanoles (2a parte). — Graellsia 34: 59—119.
Reıss, F. 1968: Verbreitung lakustrischer Chironomiden (Diptera) des Alpengebietes. — Ann. Zool. Fenn. 5:
INY)-125,
—— 1977: Verbreitungsmuster bei paläarktischen Chironomidenarten (Diptera, Chironomidae). — Spixiana 1:
BI
—— 1985: A contribution to the zoogeography of the turkish Chironomidae (Diptera). — Israel Journal of Ento-
mology. 19: 161-170.
—- 1986: Ein Beitrag zur Chironomidenfauna Syriens (Diptera, Chironomidae). — Entomofauna 7: 153— 168.
199
Rossaro, B. 1979: Contributo alla conoscenza delle Orthocladiinae e Diamesinae italiane (Diptera, Chironomidae)
(seconda nota). — Boll. Museo Civico Storia Naturale Verona 6: 79— 94.
—— 1982: Chironomidi, 2 (Diptera, Chironomidae: Orthocladiinae). Guide per il riconoscimento delle specie anı-
malı delle acque interne italiane. - CNR AQ/1/171, 16: 1-80.
—— 1984: Stilocladius Rossaro, 1979 reconsidered, with descriptions of the female and larva of $. montanus Ros-
saro (Diptera: Chironomidae, Orthocladiinae). — Ent. scand. 15: 185-191.
SAETHER, ©. A. 1983: Three new Species of Lopescladius Oliveira, 1967 (syn. “Cordites” Brundin, 1966, n. syn.),
with a Phylogeny of the Parakiefferiella group. — Mem. Amer. Ent. Soc. 34: 279—298.
SERRA-TOSIO, B. 1973: Ecologie et biogeographie des Diamesini d’Europe (Diptera, Chironomidae). — Trav. Lab.
Hydrobiol. Grenoble 63: 5- 175.
—— 1983: Nouveax Diamesinae de la Palearctide meridionale et orientale. — Spixiana 6: 1—26.
Prof. Dr. Bruno Rossaro
Department of Environmental Sciences
Vıa $. Sısto 20
I-67100 L’Aquila, Italıa
200
SPIXIANA Supplement 14 201 2 | München, 15. Juli 1988 ISSN 0177— 7424
Emergence patterns of chironomids in Keszthely-basin of
Lake Balaton (Hungary)
(Diptera, Chironomidae)
By György Devai
Abstract
The author tries to give a general idea of the characteristic features and patterns of the emergence of chironomids
relying upon two series of examinations of along period between March 11 and October 18, 1980 as well as between
March 15 and August 31, 1983, which were performed on the Keszthely shoreline of the biggest shallow lake of
Europe, Lake Balaton. Relying upon the comparative analysis and computer processing of the data set of the daily
observations as well as that of 53 and 147 samples of pupal exuviae collected in 1980 and 1983, respectively, the au-
thor presents the characteristic emergence types and states the main emergence periods. He analyses in detail the
essential changes which occurred in the taxonomic composition of samples of pupal exuviae between 1980 and 1983.
Introduction
One of the decisive and obviously the most spectacular moments of the life of chironomids is their
emergence. Moreover, this process has an outstanding significance also in the settling dynamics and
matter circulation of water bodies (D£fvaı et al. 1979, Devaı 1980a, 1980). Thus it is understandable
that the rough and regular interventions performed in the environs of water bodies as e. g. mosquito
extermination by aeroplane or helicopter inevitably raise the question how the chironomids are en
dangered.
In the case of Lake Balaton there was another important viewpoint to be said for the fact that mos-
quito extermination should follow the emergence dynamics and swarming peculıarities of chirono-
mids. It is well-known that land-fauna exterminated in consequence of mosquito extermination is re-
latively soon supplemented from the neighbouring regions due to the so-called vacuum-effect (SArın-
GER etal. 1984). However, at insects flying out of water, especially in the case if extermination covers
the predominant part of the shoreline (as e. g. in the case of Lake Balaton as well), the decrease of in-
dividual number can be so drastic among the animals generally assembling here that the population
sustains permanent loss through it and the standing mass can decrease to 10 or 20% of the original
number. This condition of risk especially exists in the case of Lake Balaton, the peculiar chironomid
fauna of which rests first of all on self-revival since the fauna practically cannot or can only be slightly
supplemented from the neighbouring regions failing water bodies of a similar type and size.
Accordingly it was justified from several viewpoints to investigate the emergence dynamics of the
chironomid fauna of Lake Balaton thoroughly. In my present paper I wish to give a survey about the
results of our investigations of emergence performed in 1980 and 1983.
According to the reports of the majority of papers (see e. g. Parm£n 1958, 1962, Dans 1971, STAHL
1975, LiNDEGAARD & JOnasson 1979, BUTLER 1980) the emergence of chironomid adults from the pupal-
exuviae and at the same time their emergence from the water bodies occur in periods characteristic of
201
the different species and they do not show more than little temporal shift in the subsequent years. The
emergence can be generally observed once or maximum two or three times a year and on these occa-
sions the animals emerge in great mass. At the same time certain experiences in the field (e. g. Heın &
SCHMULBACH 1972, Jonsson & SanpLunn 1975, Arı et al. 1983, 1985) or laboratory experiments (e. 8.
Danks 1978) refer to the fact that the emergence period of certain species can be significantly long-
drawn and during this long period several generations can emerge. According to the data up to now
the emergence was synchronized with one of the abiotic environmental factors or the joint effect of
two of them. Such factors can be e. g. water temperature, light conditions, air pressure or ebb and flow
(Lenz 1962, Parm£n 1962, Danks 1971, 1978, Hein & SCHMULBACH 1972, HasHımoTo 1975, HEIMBACH
1978, Bacce et al. 1980).
Material and Method
Our examinations were performed on the biggest shallow lake of Central Europe, Lake Balaton (its detailed cha-
racterization see in papers by BiRÖ 1984, and D£vA1 et al. 1984). Our main sample area out of the regions of the lake
with different water qualities was the Keszthely-basin mostly endangered by the accelerated eutrophication of
recent years.
A series of observations during a period of 236 days was performed on the shoreline of Lake Balaton at Keszthely
in 1980 in order to examine the emergence in a pragmatical way. The regular surveys were performed on the pier
of the harbour of Keszthely each day from March 11 to October 28. This point of the shoreline was proved to be
convenient from several viewpoints: the pier projects far into the open water of the lake (to a distance of 200 m), at
its end the water depth is already near the average (about 2 m) and no reeds of a large extension can be found at the
pier (in a district of approximately 500 m). In this way this site of observation and sampling was suitable to reflect
satisfactorily the conditions of the open water of almost the whole Keszthely-basin. The second series of examına-
tions of 170 days was performed in the same place from March 15 to August 31, 1983.
Relying upon our earlier experiences collections of pupal exuviae proved to be the most suitable for establishing
the frequency and intensity of emergence. Therefore parallel with the observations on the occasions of great emer-
gences we also took samples of pupal exuviae from the floating material accumulated along the pier. From this view-
point the choice of the sample area was very favourable since the peculiar flow conditions of the Keszthely-basin
(GYÖRKE et al. 1980) ensured with the greatest possibility that the pupal exuviae material characteristic of the total
water surface could drift together.
For the sampling of pupal exuviae we used a sack-like “skimming-net” of our planning. The samples were
preserved in 70% ethylalcohol in of 50-200 ml cubic capacity depending on the quantity of the collected material.
The pupal exuviae were selected and counted by means of a stereomicroscope of Technival type and of Zeiss (GDR)
make. In order to unify the processing permanent preparations were made from the pupal exuviae of different type
for an ıdentifying and comparative collection (SCHLEE 1966).
On the occasions of great emergences several hundred or sometimes several thousand pupal exuviae could often
be found in the samples. For their processing the application of the following method seemed to be expedient. After
a careful shaking a certain number of pupal exuviae was taken out of the sample with Leonhard forceps, the genera
occurring in it were determined and the number of their pupal exuviae was in the percentage of all the counted ones.
We had only two obligations regarding the quantity taken out of the sample. One of them was that the number of
examined exuviae should be above 100 and the other was that any additional pieces taken out were also counted.
The first obligation ensured that the obtained quantities should reflect roughly the proportions in the whole sample.
And by counting all the pupal exuviae taken out we avoided the mistake of conscious choice.
Relying upon our literary studies and our field experiences we chose factors from the system of factors being able
to influence the emergence and their detailed analysis was expected to result in the knowledge of phenomena and
processes producing and synchronizing the emergence. The factors investigated were the following: the real daily
mean value, maximum and minimum of the air temperature; the sum of the daily radiation and the duration of sun-
shine; the daily most frequent direction of wind; the real daily most frequent direction of wind; the real daily mean
value of the wind speed as well as the extent of its daily fluctuation; the real daily mean value of the air pressure and
the extent of its fluctuation; the daily mean value of the air humidity; the daily sums of the evaporation and preci-
pitation; the value of the morning and evening water temperature; the strength of waviness in the morning and in
202
the evening; the values of the air temperature, wind direction, wind speed and air humidity measured at 7 p. m.
These factors were measured partly by ourselves and partly the data of the Keszthely Synoptic Station of the Natio-
nal Meteorological Service as well as those of the Research Institute of the Atmosphere Physics were utilized by us,
for the conveyance of which data we express our thanks.
The nearly 10 thousands data were fixed on a magnetic band and processed by the Robotron (GDR) computer
ofR 55 M type of the Computing Centre of the L. Kossuth University. The evaluation of the data was performed
by means of the hierarchical cluster analysis programme functioning on the basis of Euclidean distances as well as
the stepwise discriminance analysis programme of BMDP. In order to increase the certainty of the processing, we
took notice first of all of the great emergence cases (indicated with double or triple motive on Figure 1) or we drew
into the processing only those of the emergences of less intensity (indicated with one motive) which could be iden-
tified regionally or could be delimited from one another temporarily with proper certainty.
Apfil_ DE
EN ? ? ? 7?
June 1m pn nn m
July m
Aug: Bi ae mer m. nn
* Ey ”
DE Se Takko En Sue *
Eu ? 2 * x *
5 10 1b 20 25 30
x small intensity * middleintensity * great intensity ? uncertainly decidable emergence
*
Fig. 1. Emergences in 1980 and their intensities on the basis of pupal exuviae collections.
Results and Discussion
Although the processing procedure detailed above, could not bring absolutely exact results, it made
the present opinions about the emergence dynamics and the change in taxonomic composition of the
chironomids of Lake Balaton more exact even in its first approach to a great extent. On the basıs of
our field experiences and the results of our evaluation we can draw the following main statements.
The emergence dynamics of the chironomids in Lake Balaton is almost unprecedented considering
both the long-drawn period of the emergence and the frequency of the emergences. According to our
observations in 1980 the period of emergence lasted from the middle of March until the end of October
(Fig. 1). From May to September emergence was observed on an average every second day, it was even
of middle intensity every fifth day. The main emergence periods were May 26-27, June 20-25, July
29-August 4 and August 25—27.
203
In 1983 the emergence was considered to be even more uniform, disregarding some small inter-
ruptions it lasted almost continuously. Emergence cases of great intensity were observed on 5 oc-
casions: April 11-18, June 25-July 3, July 30-August 2, August 21-26 and September 12-18. Regar-
ding the mass of the emergence the first emergence case was specially striking. It is definitely worth
mentioning that during nearly the whole month of May emergence of medium strength went on and
no doubt it was entirely at least as significant as any other very strong emergence lasting for a short
time. As a result of our observations performed on the whole territory of the Lake Balaton in
1980— 1985 we can state that significant differences can be experienced in the frequency and strength
of the small emergence cases along the total shoreline of Lake Balaton. However, according to the
experiences up to now the great emergence cases are never limited to a smaller region or any basin but
they go on simultaneously on the whole surface of the lake.
Comparing the results of the observations performed in 1980 and 1983 it can be seen that emergence
cases became definitely more frequent by 1983. It manifested itself in not only the number but also the
strength of the emergence cases. The most conspicuous sign of it was that mass emergence cases also
increased, namely with two peaks in the middle of April and in the middle of September. In the same
periods of 1980 we observed only medium emergence. The change can be obviously explained with
the significant increase of the food supply and the change in the species composition (Devat et al.
1984). The earlier peak at the end of May — due to similar causes — changed into an emergence period
of middle strength lasting almost continuously in May, which well can be brought into correlations
with the results of larval investigations (Devaı 1985). However, the three great summer emergence
DISSIMILARITY
0,00
0,300
0.200
SEO RRRORIITIIEN SRLRNISRRREITIRÄRRTOSCTETIKAFAn EN En ERS Serigl number
SIEHSFISTEETEEHKÜTESTETKIFIETERISIFELTETITCEHEHESLETSTSSIHTEETETSTS ze
SISLRITKRITSSUTESKRKTELNLNESKTSÜSATTSSEIKTKRTNTRILEISIITEES
Fig. 2. Dendrogram of pupal exuviae samples collected on occasions of important emergences in 1980.
204
periods remained the same, disregarding a shift of some days due to the actual change in weather con-
ditions.
The field experiences showed that mass emergences mainly occurred at sudden change of tempera-
ture and they seemed to be characterized roughly with the changes of meteorological factors. This hy-
pothesis was supported by the observations that mass emergence often followed the red storm signals,
however, they did not occur if wave activity was permanently strong and especially if combing waves
were observed.
Accordingly, when making an effort to understand the effects inducing or at least promoting the
emergence we analysed the examined meteorological factors successively and compared them at first
separately and later in different combinations to the emergence pattern. Naturally, in the latter case
we took into consideration that between the factual occurrence and the observation of emergence
there were significant temporal differences, depending upon the actual weather conditions (first of all
wind conditions) amounted to at least 2-3 hours, generally 6-10 hours but sometimes even 12—24
hours.
We did not get an unambiguous and comprehensive relationship in any case, not even the discrimi-
nance analyses brought satisfactory results. We only succeeded in establishing that groupings made on
the basis of empirical facts and the discriminance function may correspond each other in an acceptable
way (in approximately 70-75 % of all the cases) if we consider the values of the daily radiation and
the average air temperature or those of the water temperature in the morning. However, this relation-
ship weakens if we take notice that for example the emergence of the Chironomus balatonicus, the
most abundant and frequent chironomid species occurred at the values of the water temperature
between 10-28°C alıke.
Relying upon all these findings we drew the conclusion that in the future we have to put the maın
stress on the examination of the relationship of emergence and front situations since the separate study
of individual meteorological factors does not reflect properly the change in the weather conditions
caused by the different meteorological fronts (Kıss 1959). At the same time the results obtained called
our attention to the fact that in the peculiar weather conditions of Carpathian basin that are characte-
ristic of the environs of Lake Balaton, it is hardly probable that the start or stop of the emergence can
be attributed to only one or 2-3 factors as well. It can be rather postulated that the emergence dyna-
mics of the chironomids do not depend upon the change of a certain meteorological element but upon
the joint effect of several, often a series of factors, they can be practically interpreted as the resultant
of them; naturally with the exception of extreme cases. However, by means of demonstrating the re-
gularities still observable in the emergences as well as elucidating their causes we see the possibility of
predicting mass emergences both in region and in time and so of successfully promoting the preven-
tion of the permanent damage of fauna.
At the samples of 1980 in the percentage distribution of exuviae belonging to different genera two
main groups could be separated on the basis of the results of both comparative analyses and cluster
analysis (Fig. 2). In one of them the Chironomus exuviae dominated, their proportion was mainly
above 70 % but it always exceeded 50 %, except one sample. Four separate subgroups occurred within
this group. It was characteristic of the first subgroup that Chironomus exuviae represented 85-98 %
of all the exuviae (samples 1-31). In the other samples the remaining proportion (15-55 %) in addi-
tion to the Chironomus exuviae was represented by mainly Procladius exuviae in the second group
(samples 25-50), by Tanypus exuviae in the third group (samples 16-49) and by Cricotopus exuviae
and those belonging to other Chironominae taxa in the fourth group (samples 46-19). The samples
being present within this group constitute the most significant proportion, approximately 53 % of all
the examined samples.
The other great group shows amuch more colourful picture than the previous one and far more sub-
groups could be separated within it mainly relying upon the exuviae belonging to genera occurring in
greater proportions. On such a basis four subgroups could be recognised with more or less certainty.
205
Sıhrinmornlarmausiniyapge
30.07.1980
PA Or Or MRard IK U, Sr—HUeyUpDVe
12.08.1980
®
®
L)
..
DOCH,
ne °
DOICHHLILIE
CHEM HMMM
CHE HEHEHCHCHOHCHHHHMMMM
IN DOOLCKHHHHHHMMMMMNN
ICE N IOICHCHCHEH HMMM MI
ee . x
DIR)
“ee LLLUIORN
III HT, OLE,
EICHE NE DH) IT
DOCH HEHE } =
DOCH MS
RICK
DOCHCHIH I
“oo.
DEIEHL
®
Gtyptotend.,pDes — zu vyipe
4.07.1980 28.06.1980
a 1-2]
?
++
++
Ei
+++ tt tt tt tt tt tt
Ftttt+tt++t
++t+tt+t+++F
rt ttttttHtrHtHr Tr
++t+t+t+t+t+t+t++++*
++ +t++t++++++
+++ t+tt+t+t+t+t+++++
++ +t+t+t+t++t++++++
tt tt tt tt tt HH HH
+
+
+
7= Microchironomus 8-Parachironomus
Fig. 3. Different types of emergence patterns in 1980 on the basis of pupal exuviae collections.
206
Tanypus-type
30.05.1980 27.05.1980
09.06.1980
Parachironomus-
subtype subtype
Endochironomus-
Cryptochironomus —
subtype
+++t++t++++++++
++ t+t+t+t+t+t+t++t+++++ 3
++t+t+t+t++t+++++++++
++t+t+t+t+t+t+tt+tt+t+t+++H+ +
++t+t+t+t+t+t+t+t+tt+t++++++
++ +t+t+t+t+t+tt+t+t+t+t++++++
+++t+t+t++t+t++t+++++++
22.05.1980
20.06.1980
1 Hre°et
LE |
aals
N
N
11.08.1980
taxa
25.08.1980
Subtype of other
Cricotopus-
subtype
Polypedilum —
subtype
23.09.1980
27.04.1980
Tanypus
A=
Other taxa
BSR:
Cricotopus
10 =
207
In the first one the relatively high percentage (between 43—81%) of Procladius exuviae (samples
11-44), in the second one that of Tanypus exuviae (samples 8-10), in the third one that of Glyptoten-
dipes exuviae (samples 7—33) and the smaller quantity of Chironomus exuviae (in the majority of cases
under 25%) in all the three could be considered as a separative feature. These subgroups represent
11%, 6% and 11% of allthe examined samples, respectively. The other samples drawn in the fourth
group are of very varied composition. In fact this constitutes an independent subgroup because of its
separation from the former ones. The samples grouped here in addition to the Chironomus exuviae of
the proportion mainly above 30% either contain exuviae that belong to some genera not mentioned
in the foregoing in a proportion of approximately 30% or their composition according to genera
shows a very varied picture. These cases constitute about 19% of all the examined samples. The circle
diagrams shown in Figure 3 illustrate some of the typical cases of these emergence patterns.
The summarized evaluation of the frequency of occurrence of pupal exuviae belonging to genera
that were detectable in a significant amount was performed in two different ways from the data of the
53 selected samples. On the one hand we examined in what proportion the pupal exuviae were present
by genera compared to the total amount of counted pupal exuviae. For the genus Chironomus this va-
lue was 51 %, for Procladins it was 15%, for Glyptotendipes ıt was 11% and for Tanypus it was 7%
i. e. these genera constituted 84% of all the pupal exuviae. Altogether only 16% was the proportion
of the other genera under the frequency limit of 5% (Cryptochironomus, Endochironomus, Microchi-
ronomus, Parachironomus, Polypedilum, Cricotopus).
Somewhat different picture was obtained if the frequency of occurrence was evaluated only on the
basis of presence and absence independently of quantitative results. Although the order of the first
four species did not change since among the pupal exuviae found in the samples Chironomus occurred
in 96% of the cases, Procladius occurred in 79%, Glyptotendipes occurred in 75% and Tanypus
occurred in 60% of all cases. However, in this summarizing the presence of pupal exuviae belonging
to other genera was also significant since they occurred in 96 % of the samples.
An opportunity presented itself for an even more comprehensive evaluation by combining the two
procedures i. e. by establishing the presence or absence above or under certain quantitative limits. The
following results were achieved by this method:
The percentage frequency At
of occurrence A B E D E
genera (in %)
In case of a quantity above 75 % 32 4 ) 0 0
In case of a quantity above 50 % 53 11 9 4 4
In case of a quantity above 25 % 76 23 13 8 28
In case of a quantity above 10% 87 36 25 25 47
In case of a quantity above 5% 92 49 34 34 68
In case of a quantity under 5% 4 30 41 26 28
The frequency of the cases when the pupal
exuviae belonging to the given genus did
not occur in the sample 4 21 25 40 4
(A =Chironomus, B =Procladius, C = Glyptotendipes, D = Tanypus, E = Other taxa)
It can be seen from the data that already in 1980 the Chironomus exuviae could be considered as
most significant not only regarding the number of occasions but also quantitatively since they proved
to be absolute dominant in more than half of the examined cases and they were the determinants of
type (in an amount of above 25 %) in more than three-quarters of them. The Procladius exuviae could
be considered to a much less extent but still unambiguously characteristic as regards both the fre-
quency of occurrence and the quantitative conditions.
208
We got pictures fairly similar to each other with the exuviae belonging to the Glyptotendipes and
Tanypus genera, which occurred as the determinants of type in a part of the cases and as absolute do-
minants in some cases. However, all together they did not prove to be more significant than Procladius
itself. The difference between them was fırst of all that the Glyptotendipes exuviae were present more
times in great (above 50 and 25%) and small (under 5%) amounts than Tanypus exuviae, however, the
latter were more frequently absent in the samples.
The total amount of exuviae belonging to nearly 8-10 other genera could not be considered as neg-
ligible in spite of the fact that they have individually never proved to be absolute dominants, they oc-
curred as the determinants of type in only 6 cases even the number of the cases when they were sepa-
rately detectable in an amount above 10% was only 18.
At last, relying upon the data of 1980 we wished to see whether the differences in the distribution
according to genera corresponded to any temporal emergence pattern. Unfortunately relying upon
the processed samples, satisfactory answer cannot be given to this question. We could state with a
more or less certainty all in allthat Chironomus dominance could be demonstrated continuously while
a proportion exceeding the average was observed for Procladius exuviae first of all from the end of May
to the middle of June and in August, for Tanypus exuviae mainly in June and in the first half of Septem-
ber and for Glyptotendipes exuviae in the middle of May, at the end and beginning of June as well as
after that on several occasions during certain shorter periods (e. g. about July 14, 26, August 10, 25,
30, September 8). The samples in which the representatives of the other genera were present in a signi-
ficant amount, sporadically originated from the whole emergence period but the samples collected in
May and September seem to be at least relatively somewhat more frequent among them.
If we compare the data of the series of samples from 1983 to the results of 1980, the following im-
portant differences come out. In the percentage summarizing according to the amount of pupal
exuviae the proportion of Chironomus exuviae strikingly increased (by 16%) and that of the Procla-
dins, Glyptotendipes and Tanypus exuviae significantly decreased (by 4-6%). The proportion of the
exuviae belonging to other genera did not change significantly (only decreased by 2%). These shifts
of the proportion totally coincide with the experiences of larval examinations (D£vaı 1985).
The examination of the frequency of occurrence on the basis of presence and absence brought
somewhat different results compared to the foregoing. A decrease was experienced only for Glypto-
tendipes exuviae and it was only slight (altogether 7%). With the exception of that arise could be esta-
blished in the case of all the genera.
The following data obtained by combining these two methods let us conclude to the real relations
most of all.
The percentage frequency At
of occurrence A B C D E
genera (in %)
In case of an amount above 75 % 29 0) ) 0 0
In case of an amount above 50 % 90 0 (6) 0 0
In case of an amount above 25 % 100 1 1 0) 7
In case of an amount above 10% 100 57 10 5 65
In case of an amount above 5% 100 88 30 28 90
In case of an amount under 5% 0 11 38 54 10
The frequency of the cases when the pupal
exuviae belonging to a given genus did not
oceur in the sample 0 dc 32 18 0
(A =Chironomus, B =Procladius, C = Glyptotendipes, D = Tanypus, E = Other taxa)
These results unambiguously show the almost absolute dominance of Chironomus exuviae and the
significant depression, of the proportion of all other genera. For example it is characteristic that ın
209
1983 in the case of the Keszthely basın we did not find an example of the Procladius dominance remin-
ding of the picture of the original fauna in Lake Balaton and still detectable on some occasions in 1980.
The tendencies recognized here support our ideas which we formed of the transformation of the sedi-
ment-dwelling chironomid fauna of Lake Balaton and of the cases and trends of the resulted changes
(Devaı 1985).
When we wanted to determine the emergence periods for the quantitatively significant genera on
the basıs of the samples taken continuously in 1983, maybe we got into an even more difficult situation
than in the case of sporadically taken samples of 1980. Namely these data really give evidence of the
fact that emergence lasts almost continuously for the representatives of almost all the genera.
Although the strength of emergence changes and it can decrease on several occasions for periods of
some days or at most one or two weeks, however, it only rarely ceases entirely on these dates.
Acknowledgements
The sampling and the processing of the collected material were performed with the financial support of the Cen-
tral Research Fund of the Hungarian Academy of Sciences and that of the National Research Programme (sign A-
12) coordinated by the National Authority for Environment Protection and Nature Conservation. Iowe my thanks
to Professor P. Jakucs (Department of Ecology, L. Kossuth University) for the continuous support of my work. I
express my thanks to the members of our Balaton-research group (first of all D. Rönai, Dr. F. Gyulai, Z. Gyurko-
vics and I. Zsupän as well as Zs. Enyedi, Dr. A. Koväcs, J. Moldovän, E. Nagy, Ä. Petrö and I. Molnär). For their
co-operation in the evaluation of the results I am grateful to my co-workers Dr. I. Devai, Dr. G. Lörincz and B.
Töthmeresz. In arranging my paper Zs. Bälint, Zs. Dienes, M. Miskolczi and E. Szilagyi were very helpful, for
which I offer my thanks to them. Iowe special thanks Dr. I. Meszäros for the conscientious professional and lingu-
istic revision of my manuscript.
Literature
Auı, A., STANLEY, B. H. & G. Majorı, 1985: Daily abundance patterns of pestiferous Chironomidae (Diptera) in
an urban lakefront in Central Florida. — Environ. Entomol. 14: 780-784
——, STANLEY, B. H. & $S. R. STAFFORD 1983: Short-term daily emergence of adult midges (Diptera: Chironomi-
dae) from a natural lake and an artıificial reservoir. — Environ. Entomol. 12: 765-767
BAGGE, P., ILus, E. & L. PAAsıvIRTA 1980: Emergence of insects (esp. Diptera, Chironomidae) at different depths
in the archipelago of Lovisa (Gulf of Finland) in 1971. — Ann. Ent. Fenn. 46(4): 89— 100
Birö, P. 1984: Lake Balaton: a shallow Pannonian water in the Carpathian Basin. — In: TAuB, F. B. (ed.) Lakes and
reservoirs. — Elsevier Sci. Publ. B. V., Amsterdam: 231—245
BUTLER, M. G. 1980: Emergence phenologies of some arctic Alaskan Chironomidae. — In: MURRAY, D.E. (ed.)
Chironomidae — ecology, systematics, cytology and physiology. — Pergamon Press, Oxford: 307—314
Danks, H. V. 1971: Life history and biology of Einfeldia synchrona (Diptera: Chironomidae). — Can. Ent. 103:
1597—1606
—— 1978: Some effects of photoperiod, temperature, and food on emergence in three species of Chironomidae
(Diptera). — Can. Ent. 110: 289— 300
D£vaı, Gy. 1980a: Investigations of the sediment-dwelling chironomid (Diptera: Chironomidae) fauna of Lake Ba-
laton. Workshop comment. — In: KARPATI, I. (ed.) New results concerning the research of Lake Balaton I. —
MTA VEAB Monogräfiäi 12: 82-84 (in Hung.)
—— 1980b: Vorstudien zur Bedeutung der sedimentbewohnenden Zuckmücken im Stoffhaushalt des Balatonsees
(Ungarn). — In: MURRAY, D. E. (ed.) Chironomidae — ecology, systematics, cytology and physiology. — Per-
gamon Press, Oxford: 269— 273.
—— (ed.) 1984: Studies of the ecological effects of Lake Balaton and River Zala sediments on chironomids (Diptera:
Chironomidae). — Acta Biol. Debr. Oecol. Hung. 1: 1- 183, Tab. 1-7, Fig. 1-59
—— 1985: Ecological background and importance of the change of chironomid fauna in the shallow Lake Balaton
(Hungary). — IXth Int. Symp. on Chironomidae, Bergen — Museum of Zoology, Bergen, 38-39
210
——, D£vaı, I., KovAcs, A. & I. MOLNAR 1979: Preliminary studies on the significance of the sediment-dwelling
chironomids in the matter circulation of Lake Balaton. — National Congress of the Hungarian Hydrological
Society, Keszthely — MHT, Budapest, II/A/11: 1—22 (in Hung.)
GYÖRKE, O., MUSZKALAY, L. & L. RAköczı, 1980: Morphological characteristics of Lake Balaton, the movement
of lakewater. — In: BARANYI, S. (ed.) Research and regulation of Lake Balaton. — Vıruk1 Közl. 27: 175—210
(in Hung.)
HASHIMOTO, H. 1975: Seasonal emergence of Clunio aquılonius Tokunaga (Diptera: Chironomidae). — Kontyü
43: 4954
HEIMBACH, F. 1978: Sympatric species, Clunio marınus Hal. and Cl. balticus n. sp. (Dipt., Chironomidae), isolated
by differences in diel emergence time. — Oecologia 32: 195—202
HEIN, J. & J. C. SCHMULBACH 1972: Larval development and adult emergence periodicity of Chironomus pallidivit-
tatus (Chironomidae: Diptera). — Proc. S. Dak. Acad. Scı. 51: 110-113
Jonsson, B. & ©. T. SANDLUND 1975: Notes on winter activity oftwo Diamesa species (Dipt. Chironomidae) from
Voss, Norway. — Norw. J. Ent. 22: 1-6
Kıss, I. 1959: The high increase (mass production) of plant microorganisms, as manifestation of bioindication. —:
Biol. Közl. 6(2): 111-118 (in Hung.)
LENZ, F. 1962: Gedanken zur Phaenologie der Tendipediden. — Z. angew. Zool. 49: 15—24
LINDEGAARD, ©. & P.M. JOnAssoN 1979: Abundance, population dynamics and production of zoobenthos in Lake
Myvatn, Iceland. — Oikos 32: 202-227
PALMEN, E. 1958: Periodic emergence in some North European chironomids. — Verh. Internat. Ver. Limnol. 13:
817-822
—— 1962: Studies on the ecology and phenology of the chironomids (Dipt.) of the Northern Baltic. 1. Allochirono-
mus crassiforceps K. — Ann. Ent. Fenn. 28: 137—168
SARINGER, GY., TOTH, $., DEVAI, GY., FORRÖ, L., VASÄRHELYI, T., PonYı, J. & G. Körüs 1984: The experiences
concerning mosquito control around Lake Balaton. — Termeszet Viläga 115 (7): 294—297 (in Hung.)
SCHLEE, D. 1966: Präparation und Ermittlung von Meßwerten an Chironomiden (Diptera). — Gewäss. Abwäss.
41/42: 169-193
STAHL, J. B. 1975: Emergence, occurrence, and mating behavior of Hydrobaenus pilipes (Malloch) (Diptera, Chiro-
nomidae). — Ent. News 86: 69-72
Dr. György Devaı,
Department of Ecology, L. Kossuth University,
H-4010 Debrecen, Hungary
211
a
} { 5
En iz air by nr F
ar U Arkreen L A alla Le Ber: ee
” =
' "a
Rn
ze
1 “
REREREE ABER AT ach, RE
» a is > U 9 an u el mar2@
Pr er) ur un ar ir ayerhm cn ® Anke he
f i A erteilen
A u bag zacpaı warn kulae ba lan. DEE m Rau ETE7 77 ANMIEE
a & PS
ar iITu42.02 Jarsih di PPW Tau „nee wär:
® j ’ H \ ich
mem siham nat. vor) ei are OR ON aan um 12n ıcı TR RR,
ra Ska Ws
tor ms - If
f BE Ark IN sans z . 211207 hsikslorraH u re
Er im ler mu i 5 } HITZE y ag oe NE Ins } Mi Zi ET ,
y t e Na ent hl |
On Liu pain
v r 7 Lo eh
5 N ak y f ’ dam ade
2 | nv ae
ik tal Te teila | L ii | | Pi ik ua 0 Aare
u L 5
- LT - DR a ur ee
u
. “
'
5 N ) Inne
’ E j “ri
. Bun - ' i
Pe : Chironemdiek
’ Dr
| j har are
u
L, f In » e - ni EUREN. an
Yan ’ F am vi Sara chi: Lab
EM | | Be
» sun \ ‘ ’ . u] 2®
ya : or ure ä wirken um yuofliausbalig
Pe 2° vol ar yh Z
2 -
Älter
CHA f 4 R ol. br a re a zu BE
j Ay 7,7 W@ Aurnoimidi ni hin ah u |
r 5 bon r Er " or ' ars, Mi
& j u
it,
u
oo.
SPIXITANA | Supplement 14 213—238 München, 15. Juli 1988 ISSN 0177-7424
Corynoneura brundini spec. nov. Ein Beitrag zur Systematik der
Gattung Corynoneura
(Diptera, Chironomidae)
Von Mauri und Elina Hirvenoja
Zusammenfassung
Für Corynoneura scutellata, der Typusart der Gattung Corynoneura Winn. wird ein Neotypus designiert und die
systematische Stellung der Art geklärt. Arten der Untergattungen Corynoneura s. str. und Paracorynoneura im
Sinne von Goetghebuer (1939) werden in die Corynoneura scutellata-, C. edwardsi- und C. carriana-Gruppen ein-
geordnet. Corynoneura brundini spec. nov. ist nächstverwandt mit Corynoneura edwardsi Brund.
Einführung
In der älteren Literatur findet man eine Reihe von Arten und auch höheren Taxa, die in den Verwandtschaftskreis
der Gattung Corynoneura gehören. Bis heute liegt keine umfassende Revision der europäischen Arten vor, so daß
eine Artbestimmung vielfach nur mit Vorbehalt möglich ist. In der Limnofauna Europaea sind von FITTKAU und
Reıss (1978) 28 Artnamen aufgeführt. Es handelt sich um jene „Arten“, die, meist beschrieben von Kieffer, schon
im „LINDNER“ von GOETGHEBUER (1939) aufgelistet worden sind.
Die taxonomischen Probleme mit der Gattung Corynoneura beginnen bereits mit der Originalbeschreibung der
Gattung von WINNERTZ (1846: 12):
„Fam. Tıp. culiciformes. Antennae prorectae, fıliformes; marıs novem-articulatae, plumosae, inferioribus octo
ovatıs, ultimo majore, clavato, apice pılis coronato; feminae quinque-articulatae, pilosae, inferioribus quatuor ova-
tıx, ultimo eongato, pilis brevioribus coronato quam marıs. Palpi incurvi, 4-articulati; articulo ultimo elongato.
Oculi subrotundi, intus paullulum emarginati. Ocelli nulli. Alae lanceolatae, nudae, defelexae. Costa brevissima, in
clavae formam dılatata; marıs circiter ad quartam partem, feminae ad medium marginis antıci pertinens.“
Aus der ausführlichen illustrierten Diagnose auf Deutsch geht deutlich hervor, daß es sich um eine Chironomide
handelt, die eine sehr charakteristische 10gliedrige Antenne (Pedicellus mitgezählt) mit einer großen und unge-
wöhnlichen apikalen „Rosette“ besitzt. Weiter ist zu ersehen, daß es sich bei der Gattungsdiagnose eindeutig um
die Art Corynoneura minuta Winnertz (1846: 13) handelt. EDwARrDSs (1929: 367—368) hat das einzige Männchen,
das der Originalbeschreibung von C. minuta zu Grunde lag, gesehen. Er bestätigt die Anzahl der Antennenglieder,
wie sie bei der Originalbeschreibung gegeben ist. Die Abbildungen bei Winnertz sind außerdem so gut, daß die Art
leicht erkannt werden kann. Im Naturhistorischen Museum in Wien befindet sich ein als Typus markiertes Weib-
chen, das die Identität mit dieser Art bestätigt.
COQUILLETT (1910: 528) faßte nach den damals eingeführten nomenklatorischen Regeln Corynoneura scutellata
als Typus auf, da sie die erstaufgeführte, wenn auch ganz ungenügend beschriebene Art in der Arbeit von Wın-
NERTZ (1846: 13) ıst. WINNERTZ erwähnt u. a., daß die Rosette von C. scutellata kurz ist.
Die dritte Corynoneura-Art, C. lemnae beschrieb SCHINER (in FRAUENFELD 1866: 974). Frauenfeld selbst er-
gänzt die Beschreibung dieser Art mit Angaben über deren Ökologie und Metamorphosestadien. GOETGHEBUER
(1939: 7) sieht C. lemnae als ein nomen dubium an. C. lemnae ist aber auf Grund des Originalmaterials (vgl. weiter
unten) gut definierbar. SCHINER versucht bei seiner Beschreibung von C. lemnae diese Art mit C. scutellata zu ver-
gleichen. Seine Auffassung von C. scutellata ist belegt mit einem Weibchen seiner Sammlung, heute aufbewahrt im
Naturhistorischen Museum in Wien. Dieses Exemplar ist jedoch ein Weibchen von C. coronata Edw. einer Artmit
einer deutlichen Antennenrosette.
213
Von KıEFFER (1906: 328) wurde das O’ einer weiteren Art, C. bitensis, beschrieben. Nach der damaligen Vorstel-
lung von Kieffer können die Antennen der Männchen von Corynoneura 10- oder 11gliedrig (wie bei C. bitensis)
sein, wobei das letzte Glied etwa ebenso lang ist, wie die vorhergegangenen zusammen. Die Beschreibung bei Kief-
fer ist ungenügend. Da aber das 2. Palpenglied beim Männchen von C. bitensis länger als breit sein soll, kann es sich
auch um eine Art der später beschriebenen Gattung Thienemanniella Kieff. handeln. Kieffer vergleicht die Art bi-
tensis mit ©. celeripes WINNERTZ (1852).
Kieffers Vorstellung von C. celeripes wurde von ihm (1899: 825—27) sehr gut begründet. Die illustrierte Be-
schreibung zeigt eindeutig eine Art, die in die C. scutellata-Gruppe gehört, wie sie in der vorliegenden Arbeit defi-
niert ist. Kieffer hatte jedoch eine falsche Zuordnung vorgenommen. Nach EDWARDSs (1929: 367—368) besitzt
C. celeripes eine 13gliedrige Antenne. Aus dem Text bei EDWARDS geht hervor, daß er Originalmaterial gesehen hat.
EpDwarDs (1919: 226) beschrieb aus einer parthenogenetischen Population das Weibchen von C. innupta und
später (1924: 188, 189 Fig. 11) auch das Männchen. C. innupta wurde von ihm (1929: 369) mit C. scutellata synony-
misiert, obgleich C. innupta keine Antennenrosette hat. Es hat sich gezeigt, daß C. innupta und C. lemnae artiden-
tisch sind (vgl. unten).
Das Fehlen der Antennenrosette bei gewissen Arten wurde von Edwards (1924: 188) diskutiert, als er den Bau
der rosettenlosen Antenne von C. celeripes Winn. erwähnt und bezweifelt, daß Kieffer diese Art richtig verstanden
hat. Als Edwards C. innupta beschrieb, erwähnt er, daß C. innupta C. scutellata ähnelt, aber daß die letzterwähnte
Art, ihm unbekannt ist. Edwards hatte offenbar noch vor 1929 das Originalmaterial aller von Winnertz beschriebe-
nen Corynoneura-Arten untersucht. Vermutlich ist dieses während des Entomologenkongresses in Bonn gesche-
hen (Dr. P. Cranston in litt.), wenngleich Edwards nichts davon in seinen Veröffentlichungen erwähnt.
Der Auffassung Edwards folgend wurde seine Gruppe B mit C. scutellata als Untergattung Corynoneura s. str.
von GOETGHEBUER (1939) verstanden. Die der Originalbeschreibung der Gattung zu Grunde liegende Art C. mi-
nuta müßte wegen der „Antennenrosette“, die beide Geschlechter besitzen (ein Merkmal, das auch bei den bekann-
ten Arten stets gegeben ist) in die Gruppe A von EDWARDS (1929: 368) oder zur Untergattung Eucorynoneura
GOETGHEBUER (1939: 4) gestellt werden.
Die Schwierigkeiten, die die oben erwähnten Autoren in der Klassifizierung gehabt haben, werden auch dadurch
deutlich, daß GOETGHEBUER (1939: 6) selbst C. brevipennis Goetgh. in Corynoneura s. str. gestellt hat. C. brevi-
pennis ıst eine Art mit Antennenrosette und weiteren Merkmalen der Eucorynoneura-Gruppe und sollte darum
nicht zu Corynoneura s. str. im Sinne Goetghebuers gestellt werden. EDWARDS (1929: 369) seinerseits ordnet C. fus-
cihalter Edw. zu den Arten seiner Gruppe A, obgleich diese Art zum Verwandtschaftskreis von Corynoneurella
Brund. gestellt werden muß, wie das erhaltene Originalexemplar erkennen läßt.
Unter dem Namen C. scutellata sind noch weitere Arten in der Literatur aufgefaßt worden. EDWARDS hat u. a.
das Männchen von C. gratias Schlee C. innupta zugeordnet. PıNDER (1978, 125 A) versteht unter C. scutellata die
von Schlee beschriebene Art C. gratias. Eine Varietät von C. scutellata (sensu EDWARDS 1929: 369) wurde von
BRUNDIN (1949: 833) als C. edwardsi beschrieben. SCHLEE (1968: 26) seinerseits grenzte C. gratias ab ohne zu wis-
sen, welche Art C. scutellata im Sinne von Winnertz ist. Als C. scutellata wurde von SCHLEE (1968: 107) eine Art
aufgefaßt, deren Hypopygium von LINDEBERG (1962: 8, sub C. scutellata) abgebildet worden ist. Zuvor hatten ne-
ben KıEFFER (1899, sub C. celeripes) und EDWARDS (1924, sub C. innupta) auch GOETGHEBUER (1932: 136, sub
C. scutellata) von diesem Hypopyg-Typ mehr oder weniger gute Abbildungen gebracht. Wegen der Art C. ed-
wardsi hatte LINDEBERG (1962) versucht, mit dem ihm vorliegenden finnischen Material die Art C. scutellata abzu-
grenzen. Später zeigte sich jedoch, daß die von ihm wegen ihres Hypopygiums als C. scutellata aufgefaßte Art
C. arctica Kieff. war.
In Europa kommen wenigstens 3 Arten mit einem ähnlichen Stylus vor. Der Typus von C. scutellata ist jedoch
ein Weibchen. SCHLEE (1968) konnte auf Grund genauerer Untersuchungen der Innenstrukturen des Hypopy-
giums 2 „C. scutellata-Arten“ unterscheiden. Seine Auffassung von C. scutellata gewann er nicht zuletzt auf Grund
von Exemplaren aus einem Torfstich, M,, Riihimäki, Südfinnland, und aus dem Fluß Luiro, Sodankylä, Finnisch-
Lappland, leg. HırvENOJA (vgl. SCHLEE 1968: 107). Vermutlich befanden sich in dem unpräparierten, ihm zur Ver-
fügung gestellten Material mehrere Arten. Dafür spricht, daß Schlee die abweichende Apikalborste von Ti/P; bei
C. scutellata erwähnt, jedoch ein Hypopygium ohne Coxitlobus abbildet, das zu C. arctica gehört.
Die Tatsache, daß Edwards nicht den Typus von C. scutellata bis zur Art bestimmen konnte, ist bedauerlich,
denn er war offensichtlich der letzte, dem Originalmaterial vorlag. Nach HORN & KAHLE (1935— 1937: 305) war
der größte Teil des Corynoneura-Materials 1881 an das Zoologische Museum in Bonn, weitere Exemplare auch an
das Naturhistorische Museum von Wien, und nach Senckenberg, Frankfurt/Main, gekommen. Jener Teil der Insek-
tensammlung mit den Chironomiden ist in Bonn während des 2. Weltkrieges verloren gegangen.
214
1 GRDRR 5
Fig. 1 Corynoneura scutellata. A Segmentgrenze der Puppenexuvie im Dunkelfeld mit intersegmentalen Dörn-
chen der Tergite und Sternite; B intersegmentale Dörnchen, REM-Aufnahme; C lange Spitzchen von Sternit 2;
D Chagrinierung von Tergit 4.
Bemerkungen zur Morphologie von Corynoneura
Imago
Bei der Beurteilung der Corynoneura-Imago wird in diesem Zusammenhang von der Diagnose aus-
gegangen, die Brunin (1956: 172) gegeben hat. Brundin grenzt die Gattung im Sinne von Winnertz
ab. ScHLEE (1968) faßt die Gattung Corynoneurella Brunpin (1956: 171) als ein Synonym von Coryno-
neura auf. Es wird hier verzichtet, Stellung zu dieser Entscheidung zu nehmen, weil die Metamorpho-
sestadien der in Frage kommenden Arten von Corynonerella nahezu unbekannt sind (Syn. ? Bauseia
Kieffer 1922). Es ist nur die volle Metamorphose von C. fittkani Schlee bekannt, die eventuell zur
Gattung Corynoneurella gehören könnte. Diese Art zeigt Unterschiede gegenüber den nachstehend
behandelten Arten, deren Wertung jedoch derzeit noch nicht möglich ist.
Zu den morphologischen Merkmalen, denen bisher noch nicht genügend Aufmerksamkeit ge-
schenkt worden ist, gehört die Ausbildung des Clavus beim Flügel. Brunpın (1956: 26) illustriert des-
sen Entwicklungstrend, wobei die Costa, Ri und R4+5 (vielleicht auch R2+3) zunehmend ver-
schmelzen. In den Diagnosen wird jedoch nicht erwähnt, daß R4+5 offenbar nur beim Weibchen von
Corynoneura vorhanden ist und beim Männchen mehr oder weniger reduziert zu sein scheint. Der
Grad der Verschmelzung der erwähnten Adern kann bei der Bestimmung hilfreich sein.
Puppe (vgl. Zavreı 1928, Lenz 1939).
Exuvie ohne Thorakalhorn, mit für die meisten Chironomiden charakteristischem Borstenbesatz.
An den Segmenten 3 bis 8, vier Lateralborsten. Auf Tergit 7 scheinen oft 5d-Borsten zu stehen; ihre
Zahl pflegt jedoch auf den vorderen Segmenten geringer zu sein. Zusätzlich zu den 3 Analborsten, wie
215
sie charakteristisch für Ortholadiinen sind, kommt noch ein viertes (? plesiomorphes) medianes Paar
vor. Die Beborstung zeigt eine starke Tendenz zur Entwicklung von Schlauchborsten, die jedoch
nicht immer erkennbar sein muß. Die Chagrinierung der Segmente ist ziemlich einheitlich und besteht
aus kleinen Spitzchen, die sich auch auf die Analsegmente ausdehnen; Reihen von stärkeren interseg-
mentalen Dörnchen reichen auf die Analränder der Tergite und Sternite (2) 3-7. Ihre Ausbildung
scheint zwischen den Populationen zu variieren. Sie sind im Text berücksichtigt worden, weil sie
leicht zu erkennen sind und ihre taxonomische Bedeutung überprüft werden sollte. Dieser sonst so
charakteristische Dörnchenbesatz scheint z. B. bei C. minuta zu fehlen. Diese Art hat eine abwei-
chende, wohl stärker apomorphe Chagrinierung in Form von langen Spitzchen an den Abdominalseg-
menten. Lange und schmale Spitzchen kommen bei den nachstehend behandelten Arten sonst nur auf
den Sterniten 1 und/oder 2 vor.
Larve (vgl. Zavreır 1928, Lenz 1939 und Cranston & al. 1983).
Kopf länglich, glatt oder mit verschiedenartigen Oberflächenstrukturen. Antennen nahezu so lang
oder länger als der Kopf, 4gliedrig, 3. und 4. Glied verwachsen. Nach Lenz (1939: 17) hat Goetghe-
buer bei den Larvulae ein zweiteiliges Antennenbasalglied gesehen. Erstes Glied etwa so lang wie die
Summe der Endglieder; Unterschiede zwischen den Arten scheint es u. a. in der absoluten Länge und
im Längenverhältnis der einzelnen Glieder zu geben; 2. Glied etwas geknickt. Ringorgan etwa in der
Mitte des ersten Gliedes, zwei winzige Borsten in der distalen Hälfte; apıkale Blattborste des ersten
Gliedes sehr kurz. S, einfach. Zahnleiste der Labialregion mit oder ohne kleinem, unpaaren Median-
zahn und 6 Lateralzähnen. Mandibeln neben dem Apikalzahn (bei den vorliegenden Larven) mit
4 Lateralzähnen, von denen der erste am größten ist; ssd klein, bei sı können nach Zavreı (1928: 655)
Unterschiede zwischen den Arten existieren. Prämandibeln mit mehreren kleinen Zähnen, von denen
die am weitesten ventralen am breitesten sind. Maxillen Fig. 9: 7. Thorakalsegmente 2 und 3 verwach-
sen. Ansonsten zeigen die Larven den normalen Habitus der Chironomiden. Zwei Ventralborsten von
Segment 10 sind auffallend stark und oft verzweigt. Vier Analpapillen.
Dem vorliegenden Manuskript liegen teilweise Untersuchungsergebnisse zu Grunde, die schon vor mehr als
20 Jahren zusammengestellt worden sind. Ein erheblicher Teil der Präparationsarbeiten und Messungen an finni-
schen Thienemanniella- und Corynoneura-Arten ist seiner Zeit von Mag. phil. Elina Hirvenoja vorgenommen
worden.
Für eine befriedigende taxonomische Beurteilung der Corynoneura-Arten sind die Weibchen ebenso wichtig,
wie die Metamorphosestadien. Auf Grund unserer damaligen Erfahrungen können einige Auffassungen von
SCHLEE (1968) nicht akzeptiert werden. Bedauerlicherweise waren wir seitdem nicht in der Lage, eine umfassende
Monographie der Gattung durchzuführen. Ein großes Hemnis war dabei die Schwierigkeit, die Taxonomie von
C. scutellata, der Typusart der Gattung Corynoneura zu klären. Dieses war im Herbst 1987 möglich.
SCHLEE (1968) beschreibt die Männchen, der ihm vorgelegenen Arten sehr gründlich. Nachstehend werden seine
Angaben noch ergänzt mit Meßwerten und Beschreibungen, die insbesondere an den selben Populationen von den
beiden Geschlechtern gemacht werden konnten. Die Zahlenangaben basieren zwar nur auf relativ wenigen Indivi-
duen, dürften aber einer allgemeinen Orientierung sehr dienlich sein, zumal z. B. der LR-Wert erfahrungsgemäß
höchstens um etwa 0,1 variiert. Die Beborstung (siehe BRUNDIN 1956: 172) der behandelten Arten ist von uns auch
untersucht worden, aber weil die Unterschiede zwischen den Arten nicht überzeugend sind, wird auf sie nicht wei-
ter eingegangen. Es wird ebenfalls auf die BR-Werte verzichtet, die etwa 3,5 erreichen und keine erkennbaren Ar-
tenunterschiede erkennen lassen.
Aufgrund unserer neueren Erfahrungen ist die Chagrinierung der Exuvie besser an getrockneten als an in Euparal
eingebetteten Häuten zu sehen. Es lassen sich auch Unterschiede in der Gestalt der Dörnchen, wenigstens zwischen
den Artengruppen, erkennen. Sie sind jedoch nachstehend nicht genügend berücksichtigt worden. Leider stand
nicht ausreichend genug unpräpariertes Material zur Verfügung.
Die Corynoneura scutellata-Gruppe
Zu den auffälligsten morphologischen Veränderungen innerhalb der Gattung Corynoneura gehören die Trends
bei der Ausbildung des Sternapodems X und der Phallusarmatur. Die Richtung der Anagenese ist wahrscheinlich
216
so zu verstehen, wie sie bereits von SCHLEE (1968: 145) aufgezeigt wurde. Am Ende dieser Entwicklungsrichtung
steht nach SCHLEE (1968) C. celtica Edw. in seinem Sinne (diese Art ist jedoch C. brevipennis Goetgh.). SCHLEE
(l. c.) verwendet für die Begründung der stammesgeschichtlichen Beziehungen in erster Linie die Strukturen des
Sternapodem X und der Phallusarmatur. Andere Merkmale wurden von ihm als weniger aussagekräftig interpre-
tiert. Zu den letzteren gehört u. a. der Bau der Antennen, der von den älteren Autoren als wichtig betrachtet wurde
und, wie gezeigt werden kann, nicht zu vernachlässigen ist. Ein besonders wichtiges Merkmal bei der Beurteilung
der Weibchen sind die Antennen. Sie zeigen ähnliche Tendenzen in der Entwicklung der Beborstung wie die Männ-
chen. Der Stammbaum von SCHLEE (1968: 145) weist hier schwer zu deutende Diskrepanzen auf. Immer wieder be-
finden sich getrennt von einander Arten, in denen sowohl bei den Männchen als auch bei den Weibchen Antennen
eine Apikalrosette besitzen und daneben die Hintertibien gleichzeitig auch eine stark s-förmige Apikalborste („A“
T. eAlwardsi CT. apnaca €. brundini
)
W
Fig. 2: Hypopygien von Corynoneura-Arten der scutellata-, edwardsi- und carriana-Gruppe.
277
bei Fig. 112 von SCHLEE 1968) tragen. Natürlich sind solche gemeinsam auftretenden Strukturen als Parallelismen
denkbar, aber ebenso wahrscheinlich ist auch eine parallele Entwicklung des Hypopygiums in verschiedenen Li-
nien.
Eine befriedigende Diskussion dieser Problematik ist derzeit mit dem vorliegenden Material noch nicht möglich.
Hennig und Brundin haben oft genug betont, daß die phylogenetische Systematik das Suchen der Schwesterarten
oder -gruppen ist. Es wird sich zeigen müssen, ob die hier zusammengestellte scztellata-Gruppe monophyletisch
ist. Sie besteht aus einander sehr ähnlichen Arten, die bisher nicht gut unterschieden werden konnten. Viele der ge-
meinsamen Merkmale scheinen Symplesiomorphien zu sein, z. B. der Bau der Antennen oder die Innenkontur des
Hypopygiums, vielleicht auch der „Doppelstylus“.
Diagnose
Imagines bräunlich, grünlich getönt. Antennen des Männchens 11gliedrig; Apikalteil des letzten
Gliedes keulig verdickt, gegen das Ende zugespitzt, distal proximalwärts bis über die Verdickung mit
Sensilla chaeticae besetzt; im Proximalteil des letzten Antennengliedes viele normale Antennenbor-
sten. Antennen des Weibchens 7gliedrig, entspricht im Bau dem der Weibchen der Familie, wobei
letztes Glied Sensillen nahezu auf der ganzen Länge bis zum Apex trägt. Auf dem Flügel erreichen die
Costa bzw. der Clavus beim ® etwa !/, beim O’ kaum die Hälfte der Flügellänge; beim @ R4+5 mit
den vorderen Teilen des Clavus wenigstens bis zur Hälfte des Clavus verschmolzen, beim J ist der
Clavus höchstens etwa zweimal länger als breit. Hypopygium des O’ mit Styli, die eine mehr oder we-
niger lobusähnliche Crista dorsalıs tragen; die proximalen Anhänge (?PV) reichen etwa bis zur Mitte
der Gonocoxite. Puppe mit langen Spitzchen auf 2. Sternit oder oft auch an den Lateralteilen vom
1. Sternit. Eindeutige Gruppenmerkmale fehlen jedoch im Puppenstadium. Larven mit einer Kopf-
kapsel, die mehr oder weniger deutliche Skulptur zeigt. Antenne länger als der Kopf. Zahnleiste der
Labialregion mit einem kleinen, unpaaren Medianzahn und 6 etwa gleichgroßen Lateralzähnen. Die
großen Ventralborsten von Segment 10 mit langen proximalen Nebenstacheln, die individuell zu vari-
ieren scheinen.
Corynoneura gratias Schlee (1968: 26-29, C')
Typus-Material ist nicht vorhanden. Die Artbeschreibung bei Schlee ist jedoch eindeutig.
Imago,
AR 0,77-1,00, LR 0,52—0,60. Als Ergänzung zur Originalbeschreibung einige Werte (n = 3; Ma-
terial aus dem Fluß Puujoki, Ryttylä, Hausjärvi, Südfinnland, Juni/Juli 1964 gezüchtet). Palpenglie-
der: 18-22, 22-27, 27—31 und 45—54 um. Flügellänge etwa 1 mm; der Clavus etwa zweimal so lang
wie breit.
Beine ın um:
Fe le Ta, Ta, Ta, Ta, =: LR
P\ 268-299 321-366 192-214 96-107 54-63 18-27 31-36 0.58-0.61
PJ 384-429 348-402 219-232 94-107 45-58 18-18 34-40 0.58-0.61
PJ 313-357 339-375 188-219 94-107 40-49 18-18 36-40 0.53-0.58
Charakteristisch für das Hypopygium ist das Gelenk des Phallapodems. Arttypisch sind auch die
im Vergleich zu anderen Arten der C. scutellata-Gruppe stärkeren Borstenbuckel am Hinterrand des
Analtergits wie auch die Kürze des Phallapodems. Gonocoxite ohne Innenlobus.
218
Imago, 9
Zusammen mit den obigen Männchen wurden viele Exemplare von C. edwardsi gezüchtet, aber ein
neugeschlüpftes Weibchen war verschieden und wegen des rundlichen dritten Palpangliedes, der
Beinmaßen und Merkmalen der Puppenexuvie konnte es als C. gratias bestimmt werden. Maße der
Palpen: 13, 17, 17 und 40 um. Flügel geschrumpft, Clavus ähnelt C. scutellata.
Beine in um:
Be Aral Ta, Ta, Ta, Ta, 2 LR
PJ 214 268 15 Ol 88 18 36 0.58
P, 304 Sg 18922168 40 18 36 0.58
P, 260 Zutat! IS a 18 36 0.57
Spermatheken oval, etwa 80 um.
Puppe
Material: Puujoki, vgl. oben.
Länge der Exuvie 2,2—2,3 mm. Vorderteil des Nahtrandes schmal, schwach gekörnelt oder ge-
dornt. An den Flügelscheiden 1-4, meist verhältnismäßig schwache Perlenreihen. Schwer sichtbare
(? kurze) Spitzchen auf Sternit 2. Dorsale Chagrinierung auf den Segmenten 2-9, fehlt lateral von den
d-Borsten. Intersegmentale Dörnchen an den Hinterrändern der Segmente 3-7, dorsal und ventral
meist weniger als 10 (4-12) in jeder Reihe. Die (?4) I-Borsten von Segment 2 einfache Spitzborsten.
Gonopodenscheiden des Männchens enden zwischen dem Hinterrand des Analsegments und den
Sockeln des medianen Analborstenpaares. Scheiden der Cerci des Weibchens enden weit vor dem me-
dianen Analborstenpaar. Schwimmhaarsaum des Analsegments mit 33—47 Borsten (n = 7).
Larve
Material: Puujoki, vgl. oben, Zuordnung nicht sicher.
C. gratias lebte in dem Fluß Puujoki u. a. zusammen mit C. edwardsi. Die Larvenhäute einer Ein-
zelzucht von C. edwardsi aus Tvärminne (wie einige aus Puujoki) hatten kürzere Antennen als die
Larvenhäute des letzten Larvenstadiums einiger Larven, die hier als zu C. gratias gehörig aufgefaßt
worden sind. Kopfkapsel schwach und unregelmäßig skulpturiert. Antenne 370-390 um lang, höch-
stens 1/4 länger als der 320-360 um lange Kopf; Längenverhältnisse der Antennenglieder:
100:39:47:3;, 100:38:44:3; 100:34:46:3.
Mundteile wie bei C. scutellata. Die großen Ventralborsten von Segment 10 nahezu einfach, nur
mit kleinen, proximalen Nebenstacheln besetzt.
Verbreitung
In Finnland ist C. gratias etwa bis zum 62°N bekannt.
Corynoneura scutellata Winnertz (1846: 13, ?)
Neotypus, 9, aus der Kollektion Winnertz, in Euparal eingebettet, Museum National d’Histoire Naturelle, Pa-
rıs. Dort auch noch ein genadeltes anderes, unpräpariertes Weibchen.
Synonymie
Corynoneura lemnae Schiner (in FRAUENFELD 1866: 974, Imago)
Syntypen, 4Q in einer Glastube im Naturhistorischen Museum Wien. Ein Exemplar davon in Euparal gebettet,
als Lectotypus hier festgelegt. Den vorliegenden Individuen fehlen die Antennen oder wenigstens das letzte An-
2A
05 mm
EC. gpnocera €. carriana
UT. carriana
EC edWwardsi
220
€. gratias
CL. arctica
C. edWnardei
TC. edWwardsi
€. carriana
Fig. 4: Antennen der Corynoneura-Arten der scutellata-, edwardsi- und carriana-Gruppe.
tennenglied, aber die charakteristische Apikalborste (A) am Ende der Ti/P; belegt eindeutig die Zuordnung, da die-
ses Merkmal bisher von keiner Art sonst aus Europa bekannt ist.
Corynoneura innupta Edwards (1919: 226, ?)
Syntypen, 4Q aus Letchworth, Hertfordshire, England; VI. 1918, F. W. Edwards leg. Ein Exemplar davon in Eu-
paral gebettet, hier als Lectotypus festgelegt.
Corynoneura longipennis Tokunaga (1936: 50, O’ und 9)
Das Typusmaterial (siehe TOKUNAGA 1936: 51) wurde ı. J. 1964 untersucht und konnte nicht von den aus Finn-
land vorliegenden bisexuellen Exemplaren unterschieden werden. Das Material war damals nicht in Kyoto, wıe ın
der Originalbeschreibung erwähnt wird, sondern in dem entomologischen Laboratorium der Universität Kyushu,
Fukuoka, Japan. Es war jedoch nicht möglich, die Artidentität der parthenogenetischen und der bisexuellen Popu-
lationen zu beweisen. Geringe Unterschiede bei den Puppenexuvien und Imagines der vorliegenden Populationen
lassen sich nicht werten.
Allgemeine Bemerkungen
Die Maßangaben beziehen sich jeweils auf 5°’ und 5 9 von mehreren Lokalitäten in Riihimäki, Südfinnland, wo
diese Art auch, aus einem Tonstich stammend (T,), 1964 im Laboratorium gezüchtet werden konnte. Die Zuchten
ergaben sowohl Männchen als auch Weibchen. Es zeigte sich später, daß sich in den Aquarien viele Jahre hindurch
auch eine parthenogenetische Population hielt, die sich nicht von den bisexuellen Tieren unterscheiden ließ. Der ge-
naue Ursprung der parthenogenetischen Population konnte nicht geklärt werden. Das Schlüpfen der Imagines voll-
zog sich täglich.
Bzell
Nach FRAUENFELD (1866: 974) sollten die Puppen von C. lemnae zu beiden Seiten des Anallobus nur 8 Borsten
und die Larven nur 2 Analpapillen haben. Falls diese Beobachtungen der Wirklichkeit entsprächen, wäre die obige
Synonymisierung mit der bisexuellen Population fraglich. Weil das Typusmaterial aber sowohl von €. scutellata als
auch von C. lemnae aus Weibchen besteht, ist es jedoch wahrscheinlich, daß beide aus parthenogenetischen Popu-
lationen stammten. EDWARDS (1919: 226.227) schildert ein ähnliches Zuchtergebnis aus seinem Labor im Zusam-
menhang mit der Beschreibung von C. innupta (innupta = Jungfrau). Er bezweifelt allerdings, daß sich die Angabe
von Goetghebuer (siehe Lenz 1939: 17) über die Parthenogenese von C. celeripes, also auf C. scutellata, auf C. in-
nupta beziehen. Dies dürfte jedoch zutreffen, denn wie bereits erwähnt, hatte KIEFFER (1899) eindeutig eine Art der
C. scutellata-Gruppe als C. celeripes Winn. neubeschrieben und illustriert.
Imago, J
AR 0,77-1,00. Palpenglieder: 17—24, 24-29, 31—36 und 50-62 um. Flügellänge: 1,0—-1,2 mm;
der Clavus 1,5 oder höchstens zweimal so lang wie breit.
Beine ın um:
Fe rm Ta, Ta, Ta, Ta, Zr LR
P\ 238-305 333-371 195-219 105-114 57-67 29-33 42-43 0.55-0.60
P, 362-433 376-400 210-229 95-105 48-57 20-29 33-43 0.54-0.60
P, 305-362 333-429 195-248 100-114 48-48 29-29 38-43 0.57-0.59
Apikalborste (A) von Ti/P; senkrecht zur Längsachse von Ti, kurz S-förmig. Charakteristisch für
die Art ist auch ein sehr kleiner, unter dem Stylus leicht unsichtbar bleibender Innenlobus der Gono-
coxite. Gelenkzapfen des Penisapodems in dem Sternapodem X lateral gerichtet.
Imago, 9
Letztes Antennenglied etwa so lang wie 1,5—2 der vorhergehenden zusammen. Palpenglieder:
17-19, 22—26, 26-31 und 50-55 um. Flügellänge etwa 1,1 mm; die distale Hälfte des Clavus ver-
wachsen, aber an der proximalen Hälfte R4+5 weit von dem Vorderteil des Clavus getrennt.
Beine in um:
Fe Ta, Ta, Ta, Ta, Ta Ta, LR
PJ 238-286 276-357 152-190 76-95 38-57 29-29 38-43 0.51-0.58
P, 343-405 310-390 190-238 76-95 43-57 24-29 33-48 0.58-0.62
P, 295-352 290-384 171-219 86-100 38-48 24-29 38-135 20853-035577
Apikalborste wie beim Männchen, kurz S-förmig. Sie ist das wichtigste Merkmal bei der Bestim-
mung der Art innerhalb der Gruppe. Besonders bei parthenogenetischen Tieren die letzten Tarsen-
glieder und die Enden der anderen Glieder etwas verdunkelt. Spermatheken oval, etwa 80 um.
Puppe
Material: Riihimäki und Tvärminne, Südfinnland, M.H. leg., vgl. auch LANGTON 1984, sub innupta.
Exuvie 2.0—2.4 mm lang. Nahtrand schwach gekörnelt. An den Flügelscheiden 1-4 kurze Perlen-
reihen, oft sehr schwach ausgebildet. Chagrinierung auf allen Segmenten, das 1. ausgenommen. Lange
Spitzchen auf Sternit 2. Lateralteile von Sternit 1, besonders bei den parthenogenetischen Tieren, mit
Spitzchen wie bei C. arctica. Sterniten 3-5 (6) spärlich mit winzigen Dörnchen bis zum Lateralrand
der Segmente. Intersegmentale Dörnchen, etwa 10 (7-12), an den Hinterrändern der Tergite und
Sternite 3-7. Gonopodenscheiden des @ enden etwa in der Mitte zwischen den Sockeln der medianen
Analborsten und dem Hinterrand des Analsegments; ihre Gestalt ist auch unter dem Deckglas stärker
wurstförmig als bei anderen Arten. Scheiden der Cerci beim ® enden weit vor dem medianen Anal-
borstenpaar. Schwimmhaarsaum mit 31—42 Borsten.
222
Auf Segment 2 waren im obigen Material, die Borsten |; und ], oft eine Schlauchborste. Aus dem See Puruvesi lie-
gen Puppenexuvien, B. Lindeberg leg., vor, bei denen I, -1; bzw. I,-1, Schlauchborsten sind. Obgleich die Zugehö-
rigkeit der Exuvien nicht mit Zuchten belegt war, wird hier intraspezifische Variation vermutet. Die Puppe von
C. scutellata ähnelt sehr der von C. gratias. Wenn beide nebeneinander liegen, ist die Unterscheidung durch den
Habitus möglich, aber für eine Einzelbestimmung sind kaum andere Merkmale als die schwachen Unterschiede in
der lateralen Chagrinierung der mittleren Segmente und die Unterschiede am Analsegment zu verwenden. Die Ar-
ten sind jedoch bisher nie nebeneinander vorkommend angetroffen worden.
Larve
Material: Riihimäki.
Wenigstens auf dem Hinterteil der Kopfkapsel, allerdings nur mit starker Vergrößerung sichtbar,
mit netzartiger Skulptur; nur in einem Falle, bei dem größten Larvenkopf, war die Skulptur nahezu
ebenso deutlich wie auf dem Kopf von €. arctica. Antenne etwa 340-450 um lang, etwa !/4 länger als
der etwa 300-340 um lange Kopf; Längenverhältnisse der Antennenglieder: 100:42:43:3;
100:49:53:3; 100:46:51:3.
Weitere Strukturen der Larve auf Fig. 10.
Verbreitung
In Finnland ist C. scutellata aus Brackwasser, Flüssen, Seen und Teichen von der Südküste bis Lappland bekannt
(bei TUISKUNEN & LINDEBERG 1986 sub C. longipennis).
2 = €. gratias
€. scutellata
arctica
CT edlWnardgi
de : €. brundini
€. tarriana
50 um €. gpnocera
Fig. 5: Palpen der Corynoneura-Arten der scutellata-, edwardsi- und carriana-Gruppe.
225
Corynoneura arctica Kieffer (1923: 4, ©)
Lectotypus d, designiert von D. R. Oliver, aus Novaja Semlja, F. Okland leg. in den Sammlungen des Zoologi-
schen Museums der Universität Oslo.
Material: 3J und 2 9, aus dem Fluß Luiro, Sodankylä, Finnisch-Lappland, August 1960;2 0’ und 2Q aus einem
Torfstich in Riihimäki, Südfinnland, Mai— Juni 1962, M. H. leg. ; 10°, 1 P, Felsentümpel bei Tvärminne an der Süd-
küste Finnlands, B. Lindeberg leg.
Imago, ©
AR 1,02 (0,87—1,09). Palpenglieder: 22-26, 29-34, 36-46 und 67-82 um. Flügellänge
1,1- 1,4 mm; der Clavus etwa zweimal so lang wie breit. Beine in um:
i A Ta LR
Fe 7 Ta, Ta, Ta, a, 5
PJ 314-362 371-429 210-238 114-124 67-76 29-33 38-48 0,.53-0.57
P, 438-505 424-176 238-257 114-119 62-67 29-29 48-48 0,.56-0.59
PJ 376-419 429-464 250-268 123-138 57-67 29-33 43-48 0.54-0.60
Apikalborste (A) von Ti/P; etwas gekrümmt, steht in einem ein wenig größeren Winkel zur Tibial-
längsachse als bei C. gratias. Hypopygium mit Gelenkzapfen des Penisapodems, der lateral gerichtet
ist. Gonocoxite ohne Innenlobus.
Imago, 9
Letztes Antennenglied etwa so lang wie die zwei vorhergehenden zusammen. Palpenglieder:
17—22, 23—34, 30-34, 30—36 und 48-60 um. Flügellänge 1,2—1,3 mm; Clavus nahezu vollständig
(wenigstens bei typischen Exemplaren) verwachsen. Beine in um:
Fe Tr Ta, Ta, Ta, Ta, Tar LR
PJ 280-395 357-371 190-210 90-105 52-57 20-33 38-43 0.53-0.59
P, 419-429 390-414 229-252 105-105 52-57 26-33 38-48 0.57-0.64
PJ 348-376 393-429 225-241 110-119 43-48 24-33 38-48 0.56-0.60
Aus dem kleinen See Posolampi (ein Cladotanytarsus-See), nicht weit vom oligotrophen Fluß Luiro in Sodan-
kylä, schlüpften 1962 in den Fangtrichtern eine große Zahl Weibchen, die eine parthenogenetische Population oder
jedenfalls ein sehr abweichendes Q-Q-Verhältnis repräsentierten. Die Tiere sind kleiner als die ursprünglich be-
schriebenen, aber aufgrund der Puppenexuvien und des LR-Wertes konnten sie als C. arctica bestimmt werden. Es
ist nicht auszuschließen, daß die erwähnte Kleinheit und das abweichende O’-Q-Verhältnis von dem Lebensraum
abhängt. Die Arten auch anderer Chironomiden-Gattungen waren dort kleiner als in anderen Gewässern. Die ge-
nauen Werte werden hier gegeben, weil die Exemplare wegen der geringen Größe sehr C. gratias und auch C. ed-
wardsi ähnelten, von denen in demselben Biotop eine deutlich bisexuelle Population vorkam. Die Beinlängen in
um:
Fe bt Ta, Ta, Ta, Ta, ur LR
PJ 210-250 254-304 143-170 66- 85 38-39 18-18 34-36 0.56-0.57
P, 311-366 281-339 165-213 76- 98 40-46 18-19 31-40 0,.59-0.63
P, 268-339 277-348 154-192 84-105 36-45 21-19 31-40 0.55-0.55
Apikalborste (A) von Tı/P; wie beim Q. Spermatheken etwa 75-80 um. Sowohl beim J als auch beim ® sind
die drei letzten Tarsusglieder und die Apikalenden der anderen Beinglieder bisweilen etwas verdunkelt. Vielleicht
224
ist dies eine Eigenschaft, die auch bei anderen Arten mehr oder weniger deutlich ausgeprägt ist, aber vor allem bei
mit Fangtrichtern gesammelten und in Alkohol aufbewahrten Tieren nicht zu sehen ist.
Puppe
Material: Rıihimäki, Südfinnland und Sompio-Gebiet in Sodankylä, Finnisch-Lappland, M. H. leg.; Tvärminne,
B. Lindeberg leg.
Exuvie 2,1—2,8 mm lang. Nahtrand schmal, schwach gerunzelt oder gekörnelt. Die erste deutliche
Perlenreihe an den Flügelscheiden kurz, dazu kommen weitere 2—4 mehr oder weniger deutliche Rei-
hen. Chagrinierung auf allen Segmenten; auf den Sterniten 3—5 kleine Spitzchen, spärlich, bis zum La-
teralrand des Segments. Intersegmentale Dörnchen an den Analrändern der Tergite und Sternite 3—7
je mit mehr als 10 (10-18), bei britischen Exemplaren weniger; auf Tergit 2 bei Puppenhäuten aus
Finnland eine unregelmäßige Reihe mit wenigen Dornen. Lange Spitzchen auf Sternit 2. An den oral-
lateralen Ecken von Sternit 1 sind diese Spitzchen verhältnismäßig lang, in der Mitte des Sternits sehr
klein. Gonopodenscheiden des O reichen bis zum Hinterrand des Analsegments oder sind etwas län-
ger. Scheiden der Cerci beim Weibchen reichen nicht zu den Sockeln des medianen Analborstenpaa-
res. Schwimmhaarsaum des Analtergits mit 40-50 Borsten.
Larve
Material: 1 aus Tvärminne, Finnland, B. Lindeberg leg; 2 Larven mit Puppenexuvien ohne Imagines, sub innupta
Edw. aus der Sammlung des British Museum, London, $. ©. Howard leg., konnten nicht von dieser unterschieden
werden.
Kopfkapsel mit ziemlich starker netz- oder schuppenförmig angeordneter Skulptur. Antenne
495—560 um lang, etwa 1,5mal länger als der etwa 370 um lange Kopf; Längenverhältnisse der An-
tennenglieder: 100:40:36?(fehlt) (Tvärminne); 100:41:41:2; 100:42:38:2 (England).
Die großen Ventralborsten von Segment 10 entweder mit wenigen oder vielen proximalen Neben-
stacheln (die britischen Tiere mit wenigen zarten proximalen Ästen; bei der Larve aus Finnland die an-
dere Borste mit vielen Ästen besetzt).
Verbreitung
In Finnland in Schmelzwasserlachen, Tümpeln, Flüssen und Seen von den Felsentümpeln an der Südküste bis
Lappland (bei TUISKUNEN & LINDEBERG 1986 sub C. scutellata).
Die Corynoneura edwardsi-Gruppe
Die Begründung von Schwesternarten sollte nach Möglichkeit von apotypischen Arten ausgehen. Auf den ersten
Blick sehen die Arten der C. edwardsi- oder C. carriana-Gruppe ziemlich abgeleitet aus, aber bei näherer Betrach-
tung zeigen sich viele plesiomorphe Züge. Die Abgrenzung einer C. edwardsi-Gruppe mag unnötig erscheinen,
aber sie erleichtert in jedem Fall die artliche Zuordnung bei der Bestimmung.
Betrachtet man die Antennen oder die Strukturen des Hypopygiums beim Männchen, scheinen die Arten der
C. edwardsi-Gruppe das Ergebnis gewisser Reduktionstendenzen von der anagenetischen Stufe der C. scutellata-
Gruppe zu sein. Auch die Unterscheidung der Weibchen oder der Metamorphosestadien beider Gruppen vonein-
ander ist bisweilen sehr schwierig. Der Bau des Flügels, der der Puppe und der Larve in der C. edwardsi-Gruppe
zeigen ım Vergleich zu allen Arten der C. scutellata-Gruppe jedoch relativ ursprünglichere Züge.
Die C. edwardsi-Gruppe wird hier als die unmittelbare Schwestergruppe zur C. scutellata-Gruppe verstanden.
Innerhalb der C. edwardsi-Gruppe, ist C. brundini als eine apomorphe Schwesternart von C. edwardsi aufzufas-
sen.
Diagnose
Die Imagines ähneln in vielen Merkmalen denen der C. scutellata-Gruppe. Antenne 11gliedrig,
letztes Antennenglied kurz. Palpen können länger sein. Beim Flügel des & nehmen die starken Vor-
derrandadern wenigstens 25, beim ® wenigstens die Hälfte der Flügellänge ein. R4+5 deutlich er-
kennbar bis zur Hälfte, beim 9 bis 2/3 von der Länge des Clavus. Beim ©’ Clavus wenigstens zweimal
225
UM
UM
scutellata
=2— ——
h
20 um
CL. brundin
Fig. 6: Apikalenden der Hintertibien der Corynoneura-Arten der scutellata-, edwardsi- und carriana-Gruppe.
so lang wie breit. Apikalborste (die Borste „A“ bei ScHLeE 1968, Fig. 111-112) der Hintertibien nur
schwach gekrümmt. Medianteil des Sternapodems X beim Hypopygium sehr reduziert; Gelenkzap-
fen des Penisapodem lateralwärts gerichtet. Penisapodem lang und stark bogenförmig. Proximaler
Anhang der Gonocoxite kurz und distal spitz; im mediodistalen Teil der Gonocoxite sehr schwach an-
gedeutet, ein breiter, flacher Lobus. Stylus einfach, aber mit mehr oder weniger leicht sichtbarer,
schmaler, dorsaler Crista besetzt. Puppe mit langen Spitzchen auf den beiden ersten Abdominalsterni-
ten. Von den Puppen und von den Larven liegen nicht eindeutige Gruppenmerkmale vor; Antenne der
Larve so lang oder wenig kürzer als die Kopfkapsel.
Corynoneura edwardsi Brundin (1949: 698, 831-833, (')
Typusmaterial (Riksmuseum, Stockholm, Schweden).
Material: 5C und 5Q aus den Seen Sompiojärvi und Seitajärvi, nebst aus dem Fluß Luiro, Sodankylä, Finnisch-
Lappland, 1959-1960, M. H. leg.
Imago, ©
AR 0,68-0,87. Letztes Flagellomer so lang wie die 6-8 vorhergehenden zusammen. Palpenglieder:
21-23, 28-32, 38-50 und 55—71 um. Kopf und Thorax etwas, auch der Raum zwischen den Meso-
notalbinden verdunkelt. Flügellänge 1,1—1,3 mm; Clavus etwa 2mal länger als breit. Beine ın um:
Fe hal Ta, Ta, Ta, Ta, Ir LR
P\ 298-333 377-412 197-239 101-118 57-83 26-31 35-39 0.54-0.57
PJ 417-500 377-465 228-280 101-127 57-70 26-31 35-41 0.56-0.60
PJ 346-412 355-421 206-237 96-118 39-53 22-31 35-39 0.54-0.58
Abdomen etwas verdunkelt, anale Hälfte von Tergit 7 mit hellem Fleck. Hypopygium wie in Fig. 2.
Imago, 9
Farbe wie beim Männchen, aber der Raum zwischen den Mesonotalbinden heller. Das 6. Anten-
nenglied so lang wie die 2—2,5 vorhergehende zusammen. Palpenglieder: 17—21, 23—29, 38—44 und
57—67 um. Flügellänge 1,2—-1,5 mm; Costa bzw. der Clavus endet etwa in der Mitte des Flügels;
R4+5 nur im apikalen Drittel mit dem Clavus verschmolzen; wenn mehr, ist die Trennung der Adern
jedenfalls deutlich. Beine in um:
Fe Ti Ta, Ta, Ta, Ta, Ta, LR
PJ 263-333 325-412 162-211 70- 92 44-53 22-35 31-39 0.47-0.51
PJ 377-482 360-465 162-281 88-114 48-61 26-35 35-39 0.57-0.60
pP, 324-430 342-390 171-219 88-114 35-48 22-31 31-44 0,.52-0.56
Spermatheken 80-100 um lang, oval, vor der Mündung zu einem Hals verschmälert und ge-
krümmt; dieser scheint bisweilen zu fehlen oder ist wegen der Lage in Präparaten nicht immer zu
sehen.
Puppe
Material: Züchtungen aus dem Fluß Puujoki, Ryttylä, Hausjärvi, Juni/Juli 1964 und aus dem Brackwasser bei
Tvärminne, 23.— 27.7.1970, Südfinnland; Fangtrichtermaterialien aus dem See Sompiojärvi, Finnisch-Lappland,
M.nH. leg.
Exuvie 2,2—2,5 mm lang. Nahtrand schmal, schwach gerunzelt und gekörnelt. Auf den Flügel-
scheiden eine lange und etwa 3 schwächere Perlenreihen vorhanden. Alle Puppenexuvien, die aus
Finnland zusammen mit den Imagines von C. edwardsi angetroffen wurden, haben lang Spitzchen auf
den Sterniten 1 und 2, etwa wie „Corynoneura Pe 1a“ in der Arbeit von LanGron (1984: 82—83,
Fig. 25c). Nach Langton sollte C. edwardsi dagegen nu: aut Sternit 2 solche Chagrinierung haben.
Anzahl der intersegmentalen Dörnchen am Analrand der Tergite 2-7 und Sternite 3-7 etwa 10
(6-15). Beim CO enden die Gonopodenscheiden im Bereich des Hinterrandes des Analsegments. Beim
© reichen die Scheiden der Cerci nahezu an die Sockeln des medianen Analborstenpaares. Schwimm-
haarsaum mit 38—48 (n = 8) Borsten.
3 09° or
€. gratiag €. arctica N €. carriana
C. scutellata C. edWwardgi €. brundini
Fig. 7: Spermatheken der Corynoneura-Arten der scutellata-, edwardsi- und carriana-Gruppe.
227
Larve
Material: Einzelzuchten aus Tvärminne, vgl. oben.
Kopfkapsel teilweise schwach, unregelmäßig gerunzelt, im Hinterteil ist eine schwache netzartige
Skulptur zu erkennen. Antenne 330-350 um, ebenso lang oder etwas kürzer als der 330-340 um
lange Kopf; Längenverhältnisse der Antennenglieder (n = 2): 100:43:50:3; 100:42:42:2.
Labialregion mit einer Zahnleiste, bei der sich ein kleiner, unpaarer Medianzahn zwischen den ver-
wachsenen größeren Zähnen befindet und 5 freien, etwa gleich großen Lateralzähnen. Mandibel ne-
ben dem Apikalzahn mit 4 Lateralzähnen, von denen der apikale am größten ist. Prämandibeln mit
7-8 Apikalzähnen, die breitesten und am meisten ventral liegenden sind apikal gerundet. Die großen
Ventralborsten am 10. Abdominalsegment nahezu einfach, proximal nur mit undeutlichen, dünnen
Nebenstacheln besetzt.
Verbreitung
C. edwardsi bevorzugt offensichtlich Flüsse und größere stehende Gewässer und lebt auch im Brackwasser. In
Finnland bis Lappland bekannt.
Corynoneura brundini spec. nov.
Holotypus, ©’, und Paratypen aus dem Kleinsee Posolampi (zur Zeit ein Teil des Stausees Lokka), Sodankylä,
Finnisch-Lappland, M.H. leg., in Coll. Zoologisches Museum der Universität Helsinki, Finnland. Ein Teil der 9 ©
und 4 Q wurde vermessen.
Die neue Art ähnelt C. edwardsı, aber läßt sich von dieser u. a. durch einen kleineren AR-Wert, kürzere Palpen
und die Beinmaße gut unterscheiden. Von den zahlreichen von Kieffer beschriebenen Arten mit 11gliedrigen An-
tennen, besitzt C. tyrolensis (Kieffer 1925: 565) ein etwa ebenso niedriges AR. Darüber hinaus gibt es jedoch Ab-
weichungen im Bau der Antenne. Aus der Beschreibung von C. tyrolensis bei ALBRECHT (1924: 196) sind die abwei-
chenden Merkmale (von Eucorynoneura) deutlich erkennbar.
Imago, CO
Das ganze Tier etwas, auch der Raum zwischen den Mesonotalbinden dunkel gefärbt. Letztes Fla-
gellomer mit vielen langen, normalen Antennenborsten, so lang wie die 3—3,5 vorhergehenden Glie-
der zusammen; AR 0,39—0,47. Palpenglieder: 24-26, 29—31, 29—34 und 34—43 um. Flügellänge
1,0-1,1 mm; Costa bzw. Clavusreichen ın die Nähe der Mitte des Flügels, Clavus 3—4mal so lang wie
breit. Beine ın um:
Fe Aral Ta, Ta, Ta, Ta, Ta, LR
P\ 276-333 305-371 124-143 52-57 33-38 24-29 38-43 0.38-0.41
P, 381-429 352-381 190-210 86-95 48-52 29-29 38-48 0.53-0.57
P_ 295-343 386-436 190-218 67-76 29-38 24-29 38-38 0.49-0,54
Hypopygium etwa wie bei C. edwardsi, aber die Styli sind stärker gekrümmt.
Imago, 9
Die Pigmentierung gleicht dem des Männchens, aber der Raum zwischen den Mesonotalbinden
bleibt hell. 6. Antennenglied etwa so lang wie die 2 vorhergehenden zusammen. Palpen: 17—24,
22—24, 24—32 und 34—38 um. Flügellänge 0,9—-1,2 mm; Costa bzw. Clavus reichen etwa bis in die
Mitte des Flügels; Beim Clavus R4+5 proximal deutlich von den vorderen Adern getrennt, die distale
Hälfte vom Clavus ist geschlossen. Beine in um:
228
(E. arctica CT. scutellata FT. cacriana
Fig. 8: - Analenden von Puppenexuvien der Corynoneura-Arten der edwardsi-, scutellata- und carriana-Gruppe.
1 Anb = laterale Analborsten undm Anb = mediane Analborsten des Analsegments.
229
Fe en Ta Ta Ta Ta Ta LR
1l 2 3 4 5
PJ 229-276 276-324 114-133 48-52 29-33 24-29 29-38 0.40-0.45
PJ 333-371 | 305357 % 171-1907 57-76 38-38 24-29 29-3 0,.51-0.59
PJ 276-333 370-420 200-230 62-71 29-34 24-29 38-38 0,51-0.56
Spermatheken oval, etwa 70-100 um lang.
Puppe
Material: !!ine Puppenexuvie des Männchens liegt aus den Tümpeln, den sogenannten „Lompolos“ in der Nähe
des Sees Kilpisjärvi, Enontekiö, Finnisch-Lappland, 15.7.1969, B. Lindeberg leg., vor. Die Exuvie zeigt eine ge-
wisse Ähnlichkeit mit der von C. edwarasi, läßt sich aber deutlich von dieser durch die Länge der Gonopodenschei-
den unterscheiden. Weil in derselben Probe neben den Imagines von C. brundini auch solche von anderen Coryno-
neura-Arten vorhanden waren, ist die Zugehörigkeit nicht ganz gesichert. Aus der Typuslokalität liegt eine ähnli-
che Exuvie eines Weibchens vor, ihr fehlt das 9. Segment.
Exuvie etwa 1,3 mm lang. Nahtrand schmal, schwach spitzenartig gekörnelt und gerunzelt. Fine
lange und deutliche und 4 kürzere und schwächer werdende Perlenreihen an den Flügelscheiden. Ster-
nite 1 und 2 mit langen Spitzchen; am Medianteil von Sternit 1 scheinen die Anzahl und Länge der
Spitzchen jedoch deutlich geringer als bei C. edwardsi zu sein. Chagrinierung der übrigen Abdomi-
nalsegmente etwa wie bei C. edwardsi; sehr kleine Chagrinierung wenigstens auf 3. Sternit, auch au-
ßerhalb der d-Borsten bis zum Lateralrand des Segments. Anzahl der intersegmentalen Dörnchen am
Hinterrand der Sternite und Tergite 3-7, etwa 10 (8-14), am 2. Tergit nur 2-3. Gonopodenscheiden
überragen nicht die Sockeln des medianen Analborstenpaares. Schwimmhaarsaum vom 9. Segment
mit nahezu 40 Borsten.
Larve unbekannt.
Verbreitung
C. brundini lebt in Seen und Teichen in ganz Finnland.
Die Corynoneura carriana-Gruppe
SCHLEE (1968: Fig. 204) sieht in C. carrıana besonders aufgrund der Strukturen des Hypopygiums eine Schwe-
sterart von C. edwardsi. Ihre proximalen (?PV) Anhänge des Hypopygiums stellen jedoch nicht zwingend das Er-
gebnis derselben Entwicklungslinie dar. Vergleicht man die Flügel, so reicht bei C. carrıana die Costa bzw. der Cla-
vus (plesiomorph) weiter distal als bei allen hier behandelten Arten. Ferner hat C. carriana nach SCHLEE (1968: 30)
die Borsten auf den Metatarsen gegenüber den anderen Corynoneura-Arten in 6 (nicht in 5) Längsreihen wie bei
Thienemaniella angeordnet. Die (apomorphen) Antennen lassen sich von der Form ableiten, wie sie u. a. bei der
C. scutellata- oder C. edwardsi-Gruppe oder bei „Corynoneurella“ ausgebildet ist. Wegen der plesiomorphen
Züge ist die C. carriana-Gruppe jedoch nicht von der C. edwardsi-Gruppe abzuleiten, noch weniger von der
C. scutellata-Gruppe. Diese beiden können als die Schwestergruppen der C. carriana-Gruppe verstanden werden.
C. gynocera ist leicht als eine apomorphe Schwesterart von C. carrıana zu erkennen. Die carriana-Gruppe ent-
spricht der Gruppe C bei EDWARDS (1928: 369). Ob diese Gruppe als eigene Untergattung Paracorynoneura Goet-
ghebuer (1939: 7) anerkannt werden kann, wird sich erst klären lassen, wenn die zugehörigen Metamorphose-
stadien besser bekannt sind.
Diagnose
Imago:
Färbung ähnlich wie bei den Arten der vorhergehenden Artengruppen. Antenne beim JO’ höchstens
l1gliedrig, 6gliedrig beim P. Länge der einzelnen Haare des Flagellums höchstens 100 um (bei den
anderen Artengruppen sind sie länger, bis etwa 200 um). Das letzte Glied bei beiden Geschlechtern
230
apikal ohne Sensilla chaeticae, besonders beim ©’ spielkegelförmig. Im Proximalteil des letzten Glie-
des keine oder sehr wenige normale Antennenborsten. Costa bzw. Clavus reichen bis zur Flügelmitte
oder darüber hinaus; beim ©’ ist der Clavus wenigstens 4mal so lang wie breit. Beim Hypopygium
sind die proximalen Anhänge kurz, apikal nicht spitz. Stylus einfach. Medianteil des Sternapodems X
stark reduziert mit lateral gerichtetem Gelenkzapfen für das Penisapodem; letzteres lang und stark ge-
bogen.
Puppe nur schwer von der der C. scutellata-Gruppe zu unterscheiden. Lange Spitzchen kommen
auf 2. Sternit und sehr winzige auf 1. Sternit vor.
Larve unbekannt.
Corynoneura carriana Edwards (1924: 188-189, O', P)
Als eventuelle Synonyme von C. carrıana geben EDWARDS (1929: 369) und GOETGHEBUER (1939: 7) folgende Ar-
ten an:
C. acuticornis Kieffer (1912: 101-102, 9)
C. heterocera Kieffer (1915: 87, ©’)
C. crassipes Kieffer (1925: 564, ©’)
C. acuticornis könnte wegen der FJügeladerung mit C. carrıana artidentisch sein.
C. heterocera hat nach EDWARDS (1924: 189) ähnliche Antennen aber die Flügel sind verkürzt. Weil die Antennen
nach der Originalbeschreibung ohne Federbusch sind, hat GOETGHEBUER (1939: 7. 11) C. hbeterocera vermutlich
nicht synonymisiert. Goetghebuer faßt jedoch C. crassipes als ein Synonym auf. Die beiden letztgenannten Arten
sind wegen des Baues der Antennen und der Palpen sehr wahrscheinlich Synonyme von C. carrıana. Eine weitere
Art, die nach der Originalbeschreibung eine 11gliedrige Antenne mit kurzem Haarbusch besitzt, ist C. marına
Kieffer (1923: 43, O', 9).
Alle vier hier aufgeführten Arten werden vorerst als naomina dubia betrachtet und nicht als Synonyme zu €. car-
rıana gestellt, bis ihre genaue Zuordnung an Originalmaterial geprüft worden ist.
Typusmaterial von C. carrıana befindet sich im British Museum, London. Es wurde verzichtet Originalmaterıal
zu überprüfen, da die Zuordnung des finnischen Materials sicher erscheint.
Material: 3’ und 29 aus dem Brack wasser bei Tvärminne, Brännskär, Juni/Juli 1963, Elina Hirvenoja leg., 10°
aus Tvärminne, Jovskär, 27.7.1971, B. Lindeberg leg. und 1 aus einem Torfstich, Riihimäki, 1.7.1956, M. Hirve-
noja leg. Die Exemplare aus Rıihimäki sind deutlich kleiner als die aus dem Brack wasser.
Imago, ©
Antenne 11gliedrig; Apikalglied etwa so lang wie die 3-4 vorhergehenden zusammen, bisweilen
mit einigen normalen Antennenborsten im Proximalteil; die längsten von den locker sitzenden Feder-
buschborsten etwa 100 um; AR 0,37—0,45. Palpenglieder: 18-22, 22—24, 24—33 und 34—46 um.
Flügellänge 0,7—1,1 mm; Clavus etwa 4mal so lang wie breit. Beine ın um:
Fe eis Ta, Ta, Ta, Ta, Ta, LR
PJ 258-325 289-356 144-182 71-89 40-52 18-22 31-40 0.47-0.52
P, 338-409 307-383 169-182 71-89 37-45 18-22 35-40 0.48-0.55
P, 289-365 280-352 151-182 89-107 36-37 18-22 35-35 0.50-0.57
Hypopygium wiıe in Fig. 2.
Imago,
Bei typischen Exemplaren etwa das apikale Viertel des letzten Antennengliedes ohne Sensilla chaeti-
cae; Palpenglieder: 15-18, 18-22, 20-23 und 39—42 um. Flügellänge 1,1-1,3 mm; Clavus reicht
über die Mitte des Flügels, die einzelnen Adern stark verschmolzen. Beine in um:
23]
Fe en Ta Ta Ta Ta Ta LR
J: 2 3 4 5
PJ 285-303 338-343 160-173 71-84 40-49 20-22 40-40 0.47-0,51
P, 365-405 351-378 191-196 80-80 36-40 22-27 36-40 0.52-0.54
P, 347-365 329-356 178-187 89-90 36-36 20-20 36-45 0,53-0.54
Spermatheken 80-90 um lang; vor dem Ductus charakteristisch gekrümmt und etwas verjüngt.
Puppe
Material: Tvärmınne
Exuvie 2,0—2,4 mm (n = 3) lang. Nahtrand oral schmal, schwach gekörnelt oder gerunzelt. Apex
der Flügelscheiden mit 2-3 kurzen Perlenreihen. Auf 1. Tergit bisweilen einige Dörnchen und auf
50um
(12)
50um
(2-11)
Fig. 9: Corynoneura scutellata Winn., Larve: 1 Kopf; 2 Skulptur des Kopfes; 3 Sinnesfeld des Labrums, Epipha-
rynx und Praemandibeln. 4 Augen; 5 Maxille; 6 Praementum; 7 Mandibel; 8 Klauen der Vorderfüße; 9 Zahnleiste
der Labialregion nebst ventralen Borsten von Postgena; 10 Praeanale Borstenträger (Procerci); 11 Ventralborsten
des 10. Abdominalsegments; 12 Antenne.
232
1. Sternit an den oral-lateralen Ecken sehr kleine Spitzchen. Chagrinierung normal, nicht sehr breit,
beginnt auf 2. Segment. 2. Sternit mit langen Spitzchen. Intersegmentale Dörnchen dorsal und ventral
auf den Hinterrändern des 3.—-7. Segments, einige bisweilen auf 2. Tergit, meist etwa 10 (6-16). Go-
nopodenscheiden reichen etwa bis zum Hinterrand des Analsegments; beim O’ enden die Scheiden der
Cerci deutlich vor den Sockeln der medianen Analborsten. Analer Schwimmhaarsaum mit etwa
32-55 Borsten.
Larve unbekannt.
Verbreitung
C. carriana ist in Finnland bisher etwa bis zum 62°N Breitengrad angetroffen worden. Die Angaben von TUISKU-
NEN & LINDEBERG 1986: 366, über C. carrıana in Lappland, beziehen sich auf C. brundini spec. nov.
Corynoneura gynocera Tuiskunen (1983: 0’, Puppe).
Typusmaterial Coll. Zoologisches Museum der Universität Helsinki, Finnland.
CT erWwardgi %
un 08
wf 0S
CF. arctica en BE
(? carriana)
Fig. 10: Corynoneura spec., Larve: Antennen, Ventralborsten von Abdominalsegment 10, Apikalteile der
Praemandibeln nebst Skulpturen der Larvenköpfe von C. edwardsi Brundin, der vermuteten Larve von C. gratias
Schlee (mag die individuelle Variation von C. edwardsi repräsentieren!) und C. arctıca Kieff. Ferner Teile (die An-
tenne abgebrochen) eines Larvenkopfes aus einem Brackwasserbiotop bei Tvärminne, wo u. a. C. carrıana Edw.
angetroffen wurde.
233
Imago, d
Es ist nur das © mit der eigentümlichen 7gliedrigen Antenne (Pedicellus mitgezählt) bekannt; AR
(nach Tuiskunen) 0,58—0,72. Ergänzungen zur Originalbeschreibung: Palpen (Holotypus): 20, 28, 36
und 45 um. Die Flügel zeigen die ursprünglichste Gestalt der hier behandelten Arten; der Clavus
reicht deutlich über die Flügelmitte und ist etwa 6mal so lang wie die größte Breite.
Beine (Holotypus) in um:
Fe Abt Ta, Ta, Ta Ta, Ta, LR (nach Tuiskunen)
PJ 312120347 169 88 49 22 40 0.47-0.53
P, BSsregiT 178 80 45 27 45 0.47-0.52
P_ 338 342 178 98 45 27 45 0.47-0.53
Das Hypopygium weist eine bemerkenswerte Struktur auf. Ein geschlossenes Sklerit scheint einen
Annulus um das Analsegment zu bilden. Penisapodem verhältnismäßig kurz, etwa wie bei C. gratias,
aber sein Gelenkzapfen im X. Sternapodem ist stärker lateral gerichtet.
Puppe
Ergänzungen und Korrekturen zur Originalbeschreibung: Besonders an den oral-lateralen Ecken
vom 1. Sternit winzige Spitzchen, auf Sternit 2 sind diese lang und deutlich. Die dorsale Chagrinie-
rung fängt auf dem 3. Tergit an; an den Hinterrändern der Segmente dorsal und ventral mit etwa 10
(8-12) größere Dörnchen in jeder Reihe (n = 10).
Larve unbekannt.
Verbreitung
Die Art ist nur von der Fundlokalität in Finnisch-Lappland bekannt.
Bestimmungstabellen
Die hier behandelten Arten bzw. Artengruppen werden als eine monophyletische Einheit aufgefaßt. Dieser Ar-
tenkomplex repräsentiert zum Teil Corynoneura s. str. und Paracorynoneura im Sinne von GOETGHEBUER (1939).
Bei ihnen ist das Apikalende der Hintertibien stark angeschwollen. Das Apikalglied der Antennen hat beim O ent-
weder eine spielkegelförmige Gestalt und ist apikal ohne Sensilla chaeticae, oder es bleibt terminal verschmälert und
ist distal der subapikalen Verdickung mit Sensillae besetzt.
EIS.
1 (4) Der apikale Teil des spielkegelförmigen (Fig. 4) letzten Antennengliedes wenigstens auf
!/ı der Länge ohne Sensilla chaeticae: Apikalglied etwa so lang wie die 3-4 vorhergehen-
den Glieder zusammen; Behaarung der Flagellomeren kurz... .............. 2...
ae Me nee ke EEE. : 2: 00 aanae: Corynoneura carriana-Gruppe 2
2 96) Antenne Ileliedmer 2.22... 20 a N C. carrıana Edw.
312) Antenne zeliedusep Me... 0 2 a C. gynocera Tuisk.
4 (1) Apikalglied der Antenne anders (Fig. 4) geformt, distal von der Verdickung breit mit
Sensilla chaeticae und proximal mit vielen langen Antennenborsten besetzt (= normaler
Flaarbusch)s ge ee 0 Sr 5
5 (10) Stylus mit einer hyalinen, lobusähnlichen Crista dorsalis. Proximale (?PV) Anhänge der
Gonocoxite reichen in die Mitte der Gonocoxite. Apikalglied der Antennen nahezu so
lang wie die übrigen Flagellomeren zusammen. ............ Corynoneura-Gruppe 6
234
6 (m
7 (6)
Se)
9 (8)
10 6)
11 (12)
12 (11)
1.)
2 (0)
3.6)
” ©)
5 (6)
6 6)
7. (8)
u)
9 (10)
10 (9)
Gelenkzapfen des Penisapodems im Sternapodem X ventral gerichtet. Vorletztes Palpen-
glied kaum länger als die ersten freien, kugeligen Glieder ........ C. gratias Schlee
Gelenkzapfen des Penisapodems im Sternapodem X lateral gerichtet. Vorletztes Palpen-
eliedmahezurzyyeimallläangeralsibreitage en.
An der distalen Hälfte der Gonocoxite ein sehr kleiner Lobus. Apikalborste (A) der
Hintertibien steht senkrecht zur Längsachse von Ti, kurz S-förmig (Fig.6)...........
rer tenls bon wassge C. scutellata Winn.
Gonocoxite ohne Lobus. Apikalborste (A) nicht S-förmig, zwar etwas gekrümmt, aber
deutlich ım spitzen Winkel zur Tibiallängsachse stehend .......... C. arctica Kieff.
Crista dorsalis nicht wie ein Lobus, sondern eine mehr oder weniger deutlich längere
Leiste. Die proximalen Anhänge (?PV) der Gonocoxite kurz, distal ziemlich spitz.
Apikalglied der Antennen höchstens so lang wie die 8 vorhergehenden Flagellomeren
ZUSAM EHE ee eg: nee Se she ter, Wasch: Corynoneura edwardsi-Gruppe
AR > 0.6; Apikalglied so lang wie die 6-8 Flagellomeren zusammen. Das letzte Palpen-
glied länger als die Summe der zwei ersten freien Glieder ...... C. edwardsı Brund.
AR < 0.5; Apikalglied so lang wie die 3-3.5 vorhergehenden zusammen. Das letzte
Palpenglied nicht länger als die beiden ersten freien Glieder zusammen. .............
BEN EEE RER RENNEN Ah LI DEE DAHIN So Sn ee C. brundini spec. nov.
(Das Weibchen von C. gynocera ist unbekannt).
Antenne apikal ohne Sensilla chaeticae. Das dritte Palpenglied kaum länger als die zwei
ersten kugeligen Glieder zusammen. Spermatheken proximal verschmälert, gekrümmt
(Eig.9.x4, SW EB IBIE = DUR. 1). nl tab SUR N C. carrıana Edw.
Wenigstens die distale Hälfte des Apikalgliedes der Antennen mit Sensilla chaeticae
Apikalborste (A) von Ti/P; kurz S-förmig und etwa senkrecht zur Längsachse der Tibia
SEe Te N C. scutellata Winn.
Apikalborste (A) von Ti/P; etwas gekrümmt, aber niemals senkrecht zur Längsachse der
Hibiasstehendi ee we en een Seiser ee ah Mar Dale
LR/P, < 0.45. Das letzte Palpenglied kürzer als die zwei vorhergehenden zusammen...
IE ee Rt se C. brundini spec. nov.
TRUE SO ASS ee ee
Letztes Palpenglied etwa ebenso lang wie die beiden rundlichen vorhergehenden Glieder
Letztes Palpenglied etwas länger als die beiden vorhergehenden zusammen. Auf P;
VE ee I EN N SER RE
LR/P, etwa 0.55. Drittes freies Palpenglied weniger als zweimal so lang wie breit. Clavus
wenigstens auf der distalen Hälfte mit völlig verschmolzenen Adern. Spermatheken etwa
ms Omslanehf ee, er ae hab: Sc C. arctica Kieff.
LR/P, ungefähr 0.50. Drittes freies Palpenglied etwa zweimal so lang wie breit. Clavus
wenigstens im distalen Drittel mit verschmolzenen Adern, im proximalen Teil ist R4+5
deutlich von den vorderen Adern zu trennen. Spermatheken größer (80-100 um).....
N NEL NEE EEE ERSTER SE ER al HE C. edwardsı Brund.
—
—
5
235
Puppe
Die weiblichen Puppen von C. gynocera und C. brundini sind unbekannt. Die Tabelle ist nur als ein Versuch an-
zusehen, da das vorliegende Material unzureichend ist.
1 (7) Mehr oder weniger lange, farblose Spitzchen auf dem 1. und 2. Sternit, die meisten von
ihnen mehimalslänger alsbrae# 1.2 u. a Erle 2
2 (3) Lange Spitzchen auf der ganzen Fläche der Sterniten 1 und 2. Gonopodenscheiden
reichen etwa bis zum Hinterrand des Analsegments. Scheiden der Cerci reichen etwa bıs
zu den Sockeln der medianen Analborsten ..........-......- C. edwardsi Brund.
3 (2) Spitzchen in der Mitte des 1. Sternits, wenn vorhanden, sehr klein, stets viel kleiner als
ari den, Lateralieilen tn... Harn a0 a ee re 4
5 (4) Gonopodenscheiden reichen bis zum Hinterrand des Analsegments oder darüber hinaus
sin de Ansteroen ers. hilden. Pers sea kartin.er C. arctica Kieff.
7 (1) Segment I ohne dorsale und ventrale Chagrinierung oder, wenn vorhanden, mit
winzigen Spitzchen oder Dörnchen, die höchstens 2mal so lang wie breit sind. Eine
sichere Bestimmung der Weibchen ist schwierig, oder nicht möglich... ............. 8
8 (13) Winzige Dörnchen bis zum Lateralrand der Exuvie auf den Sterniten3-5(6)......... 9
9 (10) Gonopodenscheiden auffallend groß, überragen den Hinterrand des Analsegments sehr
deutlich. Antennenscheiden des O ungewöhnlich kurz (etwa 200 um). Auf Tergit 2 sehr
wenige Dörnchen. Flügelscheiden mit vielen deutlichen Perlenreihen................
10 (9) Gonopodenscheiden kürzer. Antennenscheiden des O' 300-500 um lang........... 11
11 (12) Gonopodenscheiden mit parallelen Seiten, enden auf der Mitte zwischen dem Hinter-
rand des Analsegments und den Sockeln der medianen Analborsten. Flügelscheiden mit
wenigen Perlenreihen, bisweilen schwer zu erkennen. Am Hinterrand des 2. Segments
fehlen oft die großen Dörnchen. Antennenscheiden des O’ etwa 400-500 umlang.....
N N a ne ara re ee C. scutellata Winn.
12 (11) Gonopodenscheiden schwach konisch, reichen etwa bis zum Hinterrand des Anal-
segments. Am Hinterrand des 2. Segments oft große Dörnchen. Perlenreihen stets
deutlich erkennbar. Antennenscheiden des Q’ etwa 300-400 um lang. . C. carrıana Edw.
13 (8) Chagrinierung verhältnismäßig spärlich, reicht lateral oft nicht über die Dorsalborsten
hinaus. Gonopodenscheiden reichen kaum bis zum Hinterrand des Analsegments.....
BEREIT U SCI EAN. LIVEERGEN SER URTCAL DZ BER AO ANI N BL. C. gratias Schlee
Larven
Die Tabelle ist nur als ein Versuch anzusehen, da das vorliegende Material zu unvollständig ist. Es sei darauf hin-
gewiesen, daß sich die Antenne vom ersten bis letzten Larvenstadium verlängert. Bei den Corynoneura-Arten
scheinen darüber hinaus auch Längenunterschiede zwischen den Arten gegeben zu sein. Die längsten Antennen be-
sitzt C. celeripes Winn. (sensu Edwards nec. Schlee), sie sind etwa 2,5mal so lang ist wie der Kopf.
1 (8) Zahnleiste der Labialregion mit einem sehr kleinen unpaarigen Medianzahn zwischen
demerwa:gleiehgroßen F:ateralzähnen 22... autan) aan la. OR Nero re BE 2
2 (3) Antenne bis etwa 330-350 um lang, höchstens so lang wie der Kopf. Kopf schwach
skulmturiertt ne A UEIE KO IC. VIRDLREL ES NER LER PER C. edwardsi Brundin.
3-. (2) Antenne länger,als der. Kopf»... dert varna seta Aackelaae a Aaee 4
4 -(7). Antenne etwal/längerals der Kopt u PR ae. 22 EEE TEE 5
5 (6) Antenne etwa 370-390 um lang. Kopf schwach und unregelmäßig skulpturiert
N AR AN tete ns eh ebene C. gratias Schlee
6 (5) Antenne etwa 340-450 um lang. Der Kopf meist schwach und netzartig skulpturiert....
N ee C. scutellata Winn.
7 (4) Antenne bis 495-560 um lang, etwa um halbe Kopflänge länger als der Kopf. Kopf deut-
lichmerzartig;skulpsumiereee Sr ee ee. C. arctica Kieff.
8 (1) Der Medianzahn der Zahnleiste der Labialregion reduziert (Fig. 10). ..............-
NE nee 5 0 EIER Corynoneura spec. (? C. carrıana Edw.)
Danksagung
Originalmaterial für diese Studie stellten folgende Museen zur Verfügung: British Museum (Natural History),
London, England (Dr. P. S. Cranston); Institut Royal des Sciences Naturelles de Belgique, Bruxelles, Belgique (Dr.
P. Grootaert); Kyusyu University, Entomological Laboratory, Fukuoka, Japan (Dr. K. Yano und Prof. Dr. K.
Yasumatsu); Museum National d’Histoire Naturelle, Paris, France (Dr. L. Matile); Naturhistorisches Museum,
Zoologische Abteilung, Wien, Österreich (Dr. R. Contreras-Lichtenberg); Zoologisk Museum, Universiteti Oslo,
Oslo, Norge (Dr. J. E. Raastad) und auch das Zoologische Museum in Helsinki (Dr. B. Lindeberg). Bei den genann-
ten Kustoden und für wertvolle Informationen bei den Herren Dr. W. Tobias (Frankfurt am Main), Dr. H. Ulrich
(Bonn) sind wir zu großem Dank verpflichtet. Unser Dank gilt besonders auch Herrn Prof. Dr. E. J. Fittkau für
die sprachliche Überarbeitung des Manuskripts.
Literatur
ALBRECHT, ©. 1924: Die Chironomidenlarven des Mittersees bei Lunz (Nieder-Österreich). — Ver. Int. Ver. Lim-
nol. 2: 183—209.
BRUNDIN, L. 1949: Chironomiden und andere Bodentiere der südschwedischen Urgebirgseen. Eın Beitrag zur
Kenntnis der bodenfaunistischen Charakterzüge schwedischer oligotropher Seen. — Inst. Freshw. Res. Drott-
ningholm 30: 1— 914.
—— 1956: Zur Systematik der Orthocladiinae. — Inst. Freshw. Res. Drottningholm 37: 1—185.
CoquiLLETT, D. W., 1910: The type-species of the North American genera of Diptera. — U. S. Natl. Mus. Proc. 37:
499 — 647.
CRANSTON, P. S., OLIVER, D. R. & ©. A. SAETHER 1983: 9. The larvae of Orthocladiinae (Diptera: Chironomidae)
of the Holarctic region — Keys and diagnoses. — Ent. Scand. Suppl. 19: 149-291.
EDwarDs, F. W. 1919: Some parthenogenetic Chironomidae. — Ann. Meg. Nat. Hist. (ninth series) 3: 222228.
—— 1924: Some British species of Corynoneura. — Ent. Month. Mag. 9: 182-189.
—— 1929: British non-biting midges (Diptera, Chironomidae). — Trans. Ent. Soc. London 77: 279430.
FITTkAU, E. J. & F. Reıss 1978: Chironomidae. In: Illies, J. (ed.) Limnofauna Europaea. Zweite Auflage: 404-440.
FRAUENFELD, G.R. 1866: Zoologische Miscellen X. — Verh. zool. bot. Ges. Wien 16: 961-982.
GOETGHEBUER, M. 1932: Dipteres Chironomidae IV (Orthocladiinae, Corynoneurinae, Clunioninae, Diamesi-
nae). — Faune de France 23: 1—204.
GOETGHEBUER, M. 1939: Tendipedidae (Chironomidae). e) Subfamilie Corynoneurinae. A. Die Imagines. In:
Lindner, Die Fliegen der paläarktischen Region 13f: 1-14.
Horn, W. & KAHLE, I. 1935-1937: Über entomologische Sammlungen, Entomologen & Entomo-Museologie.
(Ein Beitrag zur Geschichte der Entomologie) I-III. — Entomologische Beihefte 2-4: 536pp. + 38 Tafeln.
Berlin-Dahlem.
KIEFFER, J. J. 1899: Observations sur le groupe Chironomus avec descriptions de quelques especes nouvelles. —
Ann. Soc. Ent. France 68: 821-827.
—— 1906: Description de nouveaux Dipteres Nematoceres d’Europe. — Ann. Soc. scient. Bruxelles 30: 311-348.
—— 1911: Nouveaux Tendipedides du groupe Orthocladius (Dipt.) (2me note). — Bull. Ent. Soc. France 1911:
199— 202.
2%
—— 1913: Description de quatre nouveaux Tendipes (Dipt.). — Bull. Soc. Ent. France 308: 86-88.
—— 1915: Neue Chironomiden aus Mitteleuropa. — Broteria. Ser. Zool. 13: 65-87.
—— 1922: Chironomides nouveaux ou peu connus de la region palearctique. — Ann. Soc. scient. Bruxelles 42(2):
132—180.
—— 1923: Nouvelle Contribution a l’etude des Chironomides de la Nouvelle-Zemble. — In Holtedahl, O. (ed.),
Rep. Sci. Res. Norwegian Exp. Novaya Zemlya 1921, 1(9): 1-11.
—— 1924: Chironomides nouveaux ou rares de l’Europe centrale. — Bull. Soc. Hist. Nat. Moselle 30: 11-110.
—— 1925: Deux genres nouveaux et plusieurs especes nouvelles du groupe des Orthocladiariae (Dipteres, Chiro-
nomides). — Ann. Soc. scient. Bruxelles 44: 555566.
LANGTON, P. H. 1984: A key to pupal exuviae of British Chironomidae. — 324 pp. Selbstverlag.
Lenz, F. 1939: Tendipedidae (Chironomidae). e) Subfamilie Corynoneurinae. B. Die Metamorphose der Coryno-
neurinae. In: Lindner: Die Fliegen der paläarktischen Region 13f: 14—18.
PinDEr, L. C. V. 1978: A key to the adult males of the British Chironomidae (Diptera) the non-biting midges. —
Freshw. Biol. Assoc. 37 (1-2): 1—-169 + Figs. 77-189.
SCHLEE, D. 1968: Vergleichende Merkmalsanalyse zur Morphologie und Phylogenie der Corynoneura-Gruppe
(Diptera, Chironomidae). Zugleich eine allgemeine Morphologie der Chironomiden-Imago (C°). — Stuttg.
Beitr. Naturk. 180: 1-150.
TOKUNAGA, M. 1936: Japanese Cricotopus und Corynoneura species (Chironomidae, Diptera). Tenthredo / Acta
da, IIN)E =D,
TUISKUNEN, J. 1983: A description of Corynoneura gynocera sp. n. (Diptera, Chironomidae) from Finland. — Ann.
Ent. Fenn. 49: 100-102.
TUISKUNEN, J. & LINDEBERG, B. 1986: Chironomidae (Diptera) from Fennoscandia north of 68°N, with a descrip-
tion of ten new species and two new genera. — Ann. Zool. Fennici 23: 361-393.
WINNERTZ, J. 1846: Beschreibung einiger neuer Gattungen aus der Ordnung der Zweiflügler. — Ent. Zeit. Stettin 7:
1120:
—— 1852: Dipterologisches. — Ent. Zeit. Stettin 13: 49—58.
Elina und Dr. Mauri Hirvenoja
Sotilaskorventie 13
SF-01730 Vantaa 73
Finland
238
| SPIXIANA | Supplement 14 | 239-246 München, 15. Juli 1988 ISSN 0177 — 7424
A Review of the Genus Polypedilum Kieffer
The cytotaxonomy of Polypedilum aberrans Tshernovskji
(Diptera, Chironomidae)
By Paraskeva VI. Michailova
Abstract
The male, female and pupa of Polypedilum aberrans Tshernovskji are described for the first time. The species is
characterised cytotaxonomically. The banding patterns of the polytene chromosomes of P. aberrans and P. nubifer
are compared. Analysis of the banding pattern indicates that the relationships of these species are close. Sequences
in arms A, E, and F are apparently quite ancient, probably ancestral, because of their occurence in P. nubifer (A,/
Aı; Ey/Es; Fı/F,) P. nubeculosum, and P. aberrans. The species is female heterogametic. The females always being
heterozygous for the differential heterochromatic end on chromosome IV. The two species: P. aberrans and P. nu-
bifer are very similar but are readily distinguishable by the hypopygium of the males and by their cytology.
Introduction
Polypedilum aberrans Tshernovskji is a species known through a larva described by 'TsHERNovsKYı
(1949). Pınper & Reıss (1983) considered this species as a synonym of Polypedilum nubifer (Skuse).
The two species have alternate Lauterborn organs on the larval antenna.
The imago (C’) of P. nubifer has been reviewed by Freeman (1961), and the cytology has been des-
cribed by PorTEr & Marrın (1977). P. nubifer has been recorded from North Africa, Iraq, Srı Lanka
and Australia (Freeman, 1961).
A description of the imago and pupa of P. aberrans does not exist. Marker features of the chromo-
somes of this species have been given by MıcHa1Lova (in press). PANKRATOVA (1983) reviewed the larva
of this species and presented its known distribution: USSR, Bulgaria and Hungary.
The purpose of the present paper is to describe the adult and pupa stages of P. aberrans from mate-
rıal reared in the laboratory; to characterise this species cytotaxonomically and to show that the imma-
ture stages and cytology serve to separate P. aberrans and P. nubifer. They are readily recognisable
species. The karyotypic relationships between these species is also indicated.
Material and methods
Larval material of P. aberrans was collected in lake Durankulak, VII. 1979. Specimens of this species from Hun-
gary, collected in Kondor-tö VII. 1983 and VIII. 1986, were also studied. In the laboratory larvae grow to maturity
in about 3—4 weeks. Laboratory reared adults were used for keeping a stock of this species. The crossing of adult
midges was made by a method described earlier (MICHAILOVA, 1985).
18 specimens (100°C’ and 8Q 9), 5 pupae and 35 larvae have been examined. Adults were fixed in 70% alcohol
and the preparations made according to SCHLEE (1966). Larvae were fixed in 3:1 ethanolacetic acid and stored in a
deep freeze. The general terminology follows SAETHER (1980).
299
Karyological preparations of salivary glands and gonads of IVth instar larvae (35 specimens: 5 from Durankulak
and 30 from Kondor-tö) were prepared applying the well known acetorcein method. After analysis the slides were
made permanent by freezing in liquid nitrogen, to enable removal of the cover glass, and mounting in euparal.
The chromosomes of P. nubifer have been proposed as a standard for the comparative cytotaxonomy of the genus
Polypedilum (PORTER & MARTIN, 1977).
Following the homology with the chromosomes of this standard, the chromosomes of P. aberrans were designa-
ted as: Ist(AB), IInd (CD), IIIrd(EF) and IVth(G). Every chromosome has been divided into sections, beginning
from 1 in the left arm of every chromosome. This division is not the same as that of P. nubifer, done by PORTER &
Marrın (1977) (a photo map of each arm of P. nubifer was not given). The common sections of the chromosomes
between these species have been shown in outline in the text.
External morphology of Polypedilum aberrans
(Fir 1,2)
Imago: &
Colour: Thorax and abdomen dark brown, legs, light brown.
Thorax: Antepronotal and dorsocentral lobes well formed, dark brown, about 35 dorsocentral setae
in 2 rows. Scutellum dark brown with 20 setae in two rows. Postnotum brown.
Legs: With middle and hind tibial combs, each with one spur (Fig. 1A). Legs proportions: (um,
n=5).
F 7 zu T 2, T au
1 an & Ay 5
En 485 425 480 275 255 180 105
P, 550 440 300 160 130 85 75
PJ 600 515 400 135 190 115 90
Hypopygium: (Fig. 1B). Gonocoxite consists of two parts, distal part is as long as wide. Gonosty-
lus 2X as long as wide. Volsella apically curved. Anal pofnt is straight from the very beginning. Anal
field oval. Coxpodeme well developed. Phallapodeme rod-like.
Imago: ?
Colour: light brown
Genitalia. (Fig. 1C). Gonosternite oval, with long setae and darkly coloured edges. Gonapophysis
IX well formed, reaches almost the middle of SV II. Coxosternapodeme dark, dense and arched.
Pupa:
Exuvia light brown. 2. segment in a lower part with a row of setae. 3.— 7. segments with a group of
setae in an upper and lower part. Posterolateral spurs of segment 8. with 8 or 9 spines (Fig. 1D).
Larva:(Fıg.2A,B,G).
Antenna, labrum, mandible and premandible as in Tshernovskjt (1949, fig. 47) and PAnKRATOVA
(1983, fig. 201).
Fig. 1. Polypedilum aberrans. A, Hind leg with comb and spur. B, Hypopygium; Ca — coxapodeme; Pha — phal-
lapodeme; AnP — anal point; Ge — gonocoxite; Gs — gonostylus. C, Genitalia (P); Gca — Gonocoxapodeme;
Va — vaginal apodeme; Ce — cercus. D, Pupa: 8. segment, posterolateral spur with 8 spines.
240
x
N
Rs
241
Fig. 2. Polypedilum aberrans. A, Antenna. B, Labrum. C, Mandible. D, Heterozygous inversion ın arm B.
The karyotype of Polypedilum aberrans
(Fig.3 A,B,@,D)
2n = 8. Chromosome I (AB), and II (CD), Ist (AB), IInd (CD) chromosomes — metacentric; Chro-
mosome III (EF) — submetacentric and IV (G) — acrocentric. Every chromosome with a dark hetero-
chromatin band in the centromere region. Sex chromosomes were not found. The species is female he-
terogametic. The females always being heterozygous for the heterochromatic end on the chromosome
IV.
Chromosome polymorphism has been observed only in arm B of Ist chromosome.
The chromosome markers have been described by MıcHA1LovA (in press).
Chromosome I with arms AB similar to its counterpart in P. nubifer. Porter & Marrın (1977) re-
ported five rearrangements in arm A. Only two ofthem are in homozygous condition. P. aberrans has
only one type of band sequence. Part of which coincides with that of P. nubifer (A,/A,) and part —
with Ay/A..
Chromosome I
P.inubifer v2 3 4 5 56, 7.829 10T zes
P. aberrans) 1221 3 445.6 . 789 Pia ee
B.jnubtjerse 1, 24..32 2,559:6-.40,28,7 9.10.02 Ile, 22015
242
Arm B of P. nubifer has four rearrangements in heterozygous condition (PoRTER & Marrın, 1977)
on both populations of P. aberrans, we found only one type of heterozygous inversion with a very
low frequency (Fig. 2D).
Chromosome II, with arms CD showing considerable change from the sequences seen in P. nubi-
fer. Three rearrangements have been recognized in arm C of P. nubifer (Porter & Martın, 1977). In
arm C of P. aberrans only onetype of band sequence was found. The two groups of dark bands in sec-
tion 2-3 of P. aberrans exist in P. nubifer, described by Porter & Marrın (1977) as C,/C, and Cy/C,.
The other sequences of P. aberrans must have changed considerably in appearance compared with the
standard. Arm C shows a sequence not previously reported.
Chromosome II
Br nubi fer Nor: I 22 723722526
EHE
P. aberrans 1 ZB le Dt 8 5
Ban nubierwnlleeo lar NETTO ZN FE E24 257 26
Arm D is considerably changed in P. aberrans.
Chromosome III, with arms EF. There are four rearrangements in arm E of P. nubifer (PoRTER &
Marrın, 1977). All have been seen in the homozygous condition. In P. aberrans only one type of band
sequence was seen in which the banding pattern on section 1-6 is very similar to that of E/E; of P. nu-
bifer. The bands after this sequence appear to differ from that of P. nubifer.
There were four rearrangements in arm F of P. nubifer (Porter & Marrın, 1977). Two ofthem have
been seen in the homozygous conditions. Arm F of P. aberrans has only one type of sequence. Section
9—11 of P. aberrans ıs identical to F,/F, described by Porter & Marrın (1977) for P. nubifer.
Chromosome II
P. nubifer zZ 730 DEZE 27
NE |
P. aberrans 1 2 3 4 5 6 7
P. nubifer 31 52 335 1.35.1358
en)
P. aberrans 8 9 10 11
Chromosome IV, or arm G, appears similar to P. nubifer. When a detailed analysis of the chromo-
some is attempted the bands in section 4 of P. aberrans can be positively correlated with those in the
middle of P. nubifer.
Chromosome IV
P. nubifer SE 158,059 EERA0F Fi
P. aberrans 1 2 3 4 5 6
PoRTER & Marrın (1977) reported six rearrangements in arm G of P. nubifer. In P. aberrans there
are only two types of sequences which are in one and the same salivary gland. These differ in their
functional activity.
245
P. aberrans is female heterozygous for a heterochromatic end (Fig. 3 D, G,), while males are homo-
zygous for this. The female rearrangements are similar to G,/G; of P. nubifer.
B ”
Fig. 3. Polypedilum aberrans. A, Chromosome Ist (AB). B, Chromosome IInd (CD). C, Chromosome IlIrd
(EF). D, Chromosome IVth (G, or G,); N — nucleolus; BR — Balbiani ring; c — centromere region.
244
Discussion
Detailed study of adults of P. nubifer and P. aberrans indicated that there are two different species.
These species are very similar but are readily distinguishable by the male hypopygium. The coxite of
P. nubifer consists of two parts. The second part ıs strongly prolongated (Frezman, 1961). The second
part of coxite of P. aberrans ıs as long as wide. Between these parts in P. aberransthere isa well formed
concavity (Fig. 1B). Such a concavity is not seen in P. nubifer (Freeman, 1961). The volsella of
P. aberrans ıs terminally recurved (Fig. 1B). The hypopygium of P. aberrans differs from that of
P. nubifer by having broader gonostyli while the gonostyli of P. nubifer are more slender (Freeman,
1961). The two species differ in the shape of the anal point. That of P. nubifer is narrower basally while
the anal point of P. aberrans ıs straight from base to apex (Fig. 1B).
Cytogenetical investigations of material which keys out as P. nubifer (Porter & Marrın, 1977) and
P. aberrans revealed the existence of two readly recognisable species with four chromosomes in the sa-
livery gland. The banding patterns of P. aberrans and P. nubifer also indicate a close relationship. The
salivary gland chromosomes of P. aberrans show sufficient similarity in banding pattern to those of
P. nubifer, mainly ın arms A, E, and F. In the genus Polypedilum as in the genus Chironomus arms A,
E, and F seem to have been more stable in evolution. Arms B, C, D, and G as we have seen show more
differences between the species. However within the arms it is not yet possible to suggest homology
of more than a few of the most conspicious band groups. Every species has marker features on each
chromosome. Some sequences differ between these species by a simple inversion.
There is no cytological evidence and external morphological data to support the suggestion that
P. aberrans should be considered as a synonym of P. nubifer.
In the present case a few species of Polypedilum have been studied cytologically: P. nubifer (Porter
& Marrın, 1977), P. aberrans, P. nubeculosum and Polypedilum sp. (Chironominae genuinae N3 Li-
pina) (MicHaA1Lova, in press). This allows determination of the relative age of some sequences. Phylo-
genetically central sequences with wide distribution are more ancient than sequences with restricted
distribution. With the exception of the G chromosome, the other chromosomes of P. aberrans and
P. nubeculosum have only one type of band sequence. PoRTER & Marrın (1977) reported few rearran-
gements for arms A, C, E, F, G of P. nubifer. One of them is common for P. nubifer, P. aberrans and
P. nubeculosum. The banding pattern of P. aberrans arm A, section 2-5 and the banding pattern of
the same arm of P. nubifer, section 2-4a9 (A,/A,) are common for the species. In arm C there are also
common patterns: bands in section 2-3 of P. aberrans and 15 (C,/C, or C,/C,) of P. nubifer. The
banding pattern of arm E of P. aberrans, section 2-6 corresponds with that of P. nubifer, section
27—-30-27al (Ey/E;). Arm F: the banding pattern, section 9-11 (P. aberrans) and section
33c9—-36b12 (P. nubifer) is common for both species. The banding pattern (,)ofarm G (P. aberrans)
and that in the middle of arm G (P. nubifer) are common.
These band sequences have been found in P. nubecnlosum also (MicHa1LovA, in press). These pat-
terns could be considered as “basic patterns” of genus Polypedilum in sense of Würker (1980). Perhaps
these common patterns existed in a hypothetical stem species. Starting from the hypothetical species
these patterns have been retained in one species but in an other (P. nubifer) have undergone different
mutations. On that way P. nubifer displays a high frequency of chromosomal rearrangements. There
is an other explanations also: the common ancestor was polymorphic for anumber of sequences which
still occur as polymorphism only on P. nubifer.
PoRTER & Marrın (1977) reported a female heterogamety of P. nubifer. They have also found hete-
rozygous males. A more lıkely explanations is that the species is still in the process of changing from
the normal male heterogamety to female heterogamety (PorTEr & Marrın, 1977). In P. aberrans this
process ıs going forward. Only females always carry the large heterochromatinized differential seg-
ment.
245
Literature
FREEMAN, P. 1961: The Chironomidae (Diptera) of Australia. — Aust. J. Zool. 9: 611-737
MICHAILOVA, P. 1985: Method of breeding of the species from the Family Chironomidae, Diptera in experimental
conditions. — Compt. rendus de !’Academie Bulgare des Sciences 9: 1179— 1181
—— (in press): Polytene chromosomes and their significance for the Systematics ans Phylogeny of the family
Chironomidae, Diptera. — Izd. Bulgarian Academy of Sciences, Sofia.
PANKRATOVA, V. Ya. 1983: Larvae and pupae of midges of the subfamily Chironomidae (Diptera, Chironomidae
= Tendipedidae) of the USSR fauna. — Izd. “Nauka”, Leningr., 295 pp.
PINDER, C. V. & F. Reıss 1983: The larvae of Chironominae (Diptera, Chironomidae) of the Holarctie region —
Keys and diagnoses. — Ent. Scand. Suppl. 10: 293—435
PORTER, D. L. & J. MARTIN 1977: The Cytology of Polypedilum nubifer (Diptera, Chironomidae). — Caryologia
1:41—-62
S£THER, ©. A. 1980: Glossary of Chironomid morphology terminology (Diptera, Chironomidae). Ent. Scand.
Suppl. 14:51 pp.
SCHLEE, D. 1966: Präparation und Ermittlung von Meßwerten an Chironomidae (Diptera). —- Gewäss. Abwäss. 41/
42: 189—193
TSHERNOVSKJI, A. A. 1949: The key of larvae of midges of the family Tendipedidae. — Izd. Acad. Nauk. USSR,
Moskow and Leningr. 185 pp.
WÜLKER, W. 1980: Basic patterns in the chromosomes evolution of the genus Chironomus (Diptera). — Z. zool. Sy-
stematik Evolutionsforschung 2: 112-123
Dr. Paraskeva Michailova,
Institute of Zoology, Bulgarian Academy of Sciences, 1,
Russky Blvd., 1000-Sofia, Bulgarıa
246
SPIXIANA | Supplement 14 | 247-252 | München, 15. Juli 1988 ISSN 0177— 7424
Schineriella schineri gen. nov., comb. nov., placement of
Tanypus schineri Strobl 1880
(Diptera: Chironomidae)
By D. A. Murray and E. J. Fittkau
Abstract
The new genus Schineriella is erected for the species Tanypus schineri Strobl 1880. Diagnoses for the adult male
and pupa are given. The type species is, by monotypy, Schineriella schineri (Strobl).
Introduction
The species Tanypus schineri was recognised by StrosL (1880) from material collected and pre-
viously identified by ScHmer (1862) as Tanypus binotatus (Wiedemann). The adult male is readily re-
cognised by its distinctive abdominal pigmentation pattern and was included by Epwarps (1929) and
GOETGHEBUER (1936) in keys to the British and Palaearctic chironomid fauna as Pentaneura schineri
and Ablabesmyıa schineri respectively.
In the revision of European Tanypodinae Fittkau (1962) indicated that the adult male of this species
was sufficiently distinct to warrent its assignment to a new genus within the Pentaneurini. However,
he refrained from erecting a new genus at that time in the absence of juvenile material and referred to
the taxon as Pentaneurini gen ? Schineri. In more recent years pupae and pupal exuviae of this species
have been obtained in East Holstein and Southern Bavaria, Germany (leg. Reiss). Frrrkau and Murray
(1986) included a diagnosis for the pupal stage (as Tanypodinae Genus II) in the recently published
keys and diagnoses to chironomid pupae of the Holarctic Region (WıEDErHOLM, 1986).
The new genus Schineriella is now erected for this species and generic diagnoses are given for the
adult male and pupa.
Schineriella gen. nov.
Type and only included species: Schineriella schineri (Strobl 1880) by present designation.
Generic diagnosis
Imago C:
Small to medium sized species, winglength 2.5—3.0 mm, terminal antennal flagellomere noticably
narrower and distinctly set off from penultimate falgellomere. Scutal tubercle absent. Wings unmar-
ked, R,,; absent, costa not produced, anal lobe not developed. Anterior tarsus with beard, tibial spurs
with main tooth and 3—4 side teeth. Tibial comb of 6-7 setae on hind leg. Volsella absent, transverse
sternapodeme pointed anteriorly.
Pupa:
Thoracic horn somewhat swollen, “sausage” shaped; horn sac fills most of the lumen; plastron plate
laterally displaced, circular and only 0.1%X horn length. Shagreen spines narrow, sparse. Posterior bor-
der of tergite VIII projects backwards over anal lobe. Segment VII with only 3 LS setae, all in the distal
!/2. Anal macrosetae with adhesive sheaths.
Larva:
The larva is as yet unknown
Generic description
Imago Cd:
Small to medium sized species, wings 2.5—3.0 mm long. Body pigmentation cuticular; thorax
brownish, vittae and median anepisternum somewhat darker; legs pale yellow; abdomen varıously
pigmented.
Head: Pale; eyes with dorsal, parallel-sided, extension, minimum width of eye bridge with 4 ocelli;
temporal setae uniserial, inner verticals beginning level with apex of coronal triangle and merging im-
perceptably with outer verticals and post orbitals. Palps almost as long as the antennae and 1.5x as
long as head width; palpomeres 3 and 4 equal in length and almost 2x as long as palpomere 2. Cly-
paeus long, narrow, slightly more than 2X as long as broad. Posterior tentorial pit close to tip of ten-
torıum. Antenna with 14 flagellomeres; terminal flagellomere noticably narrower than penultimate
flagellomere, 4—5xX as long as broad and more or less cylindrical. AR about 2.0.
Thorax: Antepronotum reduced, scutal tubercle absent. Dorsocentral setae more or less uniserial
between the vittae. Acrostichals biserial, almost reaching to the pre-scutellar field; scutellar setae bise-
rıal. Scutal tubercle absent, 3—4 flagelliform setae present in mid scutal region. Postnotum round
posteriorly.
Wing: Membrane with macrotrichia, unpigmented. MCu beyond FCu, RM close to MCu, R; ;; ab-
sent, Ry;; close to Ri and costa. Costa not produced beyond end of R,,; and ending clearly before tip
of M, ,, midway between M, ‚, and M;,,. Anal lobe not developed.
Legs: Anterior tarsus with distinct beard, LR 0.91; tibial spur sinuous, with main tooth, reaching
to 0.5X spur length, and 3—4 side teeth. Outer spur small on mid and hind legs, hardly reaching 0.5x
inner spur length. Tibial comb, of 6-7 setae present on hind leg. Pulvilli absent, empodium approxi-
mately as long as the terminally spatulate claws.
Hypopygium: Anal point large, triangular and broadly rounded apıcally. Gonocoxite more or less
cylindrical, slightly swollen basally; dorsal and median surfaces setose on the distal 2/3, longest seta
equal to, or slightly longer than, the gonocoxite width; entire surface with a more or less uniform co-
vering of macrotrichia which are more dense in the anterior median field. Gonostylus slender, swollen
basally and distally narrow, reaching 3— 3/4 gonocoxite length. Terminal spur expanded medially, apı-
cally curved and pointed. Transverse sternapodeme distinctly pointed anteriorly.
Pupa:
Medium sized species, exuviae 6.0 mm in length and light, golden brown in colour.
Cephalothorax: Thoracic horn somewhat swollen, 3.0x as long as broad, slightly arched and more
or less “sausage” shaped. External membrane with solitary spines. Horn sac fills most of the horn lu-
men, narrow basally, gradually expanded and connected to a small plastron plate by a narrow, sı-
nuous, neck. Plastron plate slightly laterally displaced, set on a small tubercle, more or less circular ın
outline and only 0.1X horn length. Thoracic comb of 10-12 elongate, distally round or pointed, tu-
bercles. Basal lobe distinct, conical and round apically. Thoracicmembrane otherwise smooth. Thora-
cic setae filamentous and distally round, Dc, 5.0X as long as Dc,, Sa slightly longer than Dec.
Abdomen: Elongate, pigmented scar on tergite I. Shagreen spines narrow, solitary and relatively
sparse. Posterior border of tergite VIII projects backwards over the anal lobe. Abdominal setation; D,
V and L setae filamentous, distally round, D3 unusually long. Segment VII with only 3 LS setae,
248
Figs. 1.6. Schineriella schineri gen. nov., comb. nov., adult male: 1. head; 2. terminal antennal flagellomere;
3. flagelliform setae on scutum; 4. wing; 5. tibial spurs; 6. hypopygium.
0.75x segment length, all in the distal 1/2. Segment VIII with 5 LS setae, 1.5% segment length. Anal
lobe 1.5x as long as broad. Points evenly tapered. Outer border toothed in the distal !/2, inner border
smooth. Anal macrosetae, with adhesive sheaths, arising from the middle !/3 of the outer border.
Larva:
The larva is so far unknown.
Schineriella schineri (Strobl) comb. nov.
Tanypus schineri Strobl 1880 p. 55
Pentaneura schineri Edwards 1929 p. 294
Ablabesmyia schineri Goetghebuer 1936 p. 45
Pentaneurini gen ? schineri Fırtkau 1962 p. 275
Tanypodinae “Genus Il” Fittkau & Murray, 1986 p. 64
249
Figs. 7.—13. Schineriella schineri gen. nov., comb. nov., pupa: 7. thoracic horn, basal lobe and thoracic comb;
8. thoracic setae; 9. tergite I; 10. segment IV; 11. shagreen; 12. segments VI-VIII and anal lobe; 13. anal lobe and
female genital sacs.
250
Imago © (Figs. 1-6)
Additional to generic diagnosis: Temporal setae 18, including inner and outer verticals and post-
orbitals. Clypaeus with 21 setae. Lateral antepronotal setae 4—5, humerals 3-4, dorsocentrals 20-22,
acrostichals 36, prealars 7-8, supra alars 1. Abdominal tergites I-III and VI pale yellow, IV and V
mostly dark brown with a pale posterior band, VII and VIII entirely dark brown. Tergite IX with a
posterior transverse row of 12-15 backwardly directed setae.
Pupa:
See generic diagnosis and Figs. 7-13
Material studied: Imagines, 10°, Murnauer Moos, Oberbayern, Germany 11/7/77; 10 same localıty 21/6/78,
both leg. Reiss; 1°, Hart Saltacher See, Oberbayern, 16/6/80, leg. Plassmann; 1 © Province of Adiyaman, Turkey,
21/6/85, leg. Schacht; 10° Witherslack, Westmorland, Great Britain, leg. Edwards, V1/1929; 10° Pe, Krebssee,
Murnauer Moos, Oberbayern, 11/7/77, leg. Reiss; 19 Im and Pe (reared), Unter Ausgrabenssee, Plön, Holstein,
Germany, 20/5/74 leg. Reiss.
Distribution and Ecology
Records of S. schineri exist from Austria (Strogı 1880), Belgium (GoETGEHBUER 1936), Great Britain
(Epwarps 1929) and more recently from Holstein and Bavarıa, Germany (leg. Reiss) and the Province
of Adiyaman, Turkey (leg. Schacht). Although the larva has yet to be found it is likely to occur in se-
diments of small, nutrient rich ponds and small lakes containing much decayıng leaf litter. Reiss (pers.
comm.) has reared a pupa from such sediments taken from a depth of 1.5 m.
Systematic position of Schineriella
The new genus clearly belongs to the tribe Pentaneurini within the Tanypodinae. Fırrkau (1962)
tentatively indicated a relationship between Pentaneurini gen ?schineri and Krenopelopia on the basıs
of similarity in structure of the tibial spurs and male hypopygium. However, adult male imagines of
the new genus are clearly separable from Krenopelopia by the presence in the latter of a well developed
wing vein R,;,, which clearly divides into its constituent veins R, and R;. Moreover, the pupal stages
of Krenopelopia and Schineriella are quite different, especially with regard to the thoracic horn which
is trumpet shaped and with a well developed plastron in Ärenopelopia in contrast to the bulbous horn
and reduced plastron in Schineriella (see also Fırrkau and Murray 1986 under Tanypodinae “Ge-
nus II”).
Within the tribe Pentaneurini wing vein Ry,; is absent or reduced, together with Schineriella, in the
genera Labrundinia Fittkau, Monopelopia Fittkau and Nilotanypus Fittkau. However, adults of the
latter genera have either only a single tibial spur or no spur (Labrundinia) on the mid and hind legs ın
contrast to the two tibial spurs present on the mid and hind legs in Schineriella. The pupa of Schine-
riella most closely resembles Zabrundinia in the form of the thoracic horn but may be readily separa-
ted by the backwardly projecting corners of tergite VIII and the presence of only 3 LS setae on tergite
VII in Schineriella. The overall similarity is also apparent in the adult stage but apart from the tibial
spurs further differences are evident in the terminal antennal flagellomere which is only weakly set off
from the penultimate flagellomere in Zabrundinia in contrast to the well differentiated and distinctly
set off, narrower, terminal flagellomere in Schineriella. Additionally, the abdominal pigmentation is
cuticular in Schineriella while Labrundina has subcuticular pigmentation.
251
Literature
EDWARDS, F. W., 1929: British bon-biting midges (Diptera: Chironomidae). — Trans. Ent. Soc. London, 77, 2:
279-430.
FiTTkAu, E. J., 1962: Die Tanypodinae (Diptera, Chironomidae). Die Tribus Anatopyiini, Macropelopiini und
Pentaneurini. Abh. Larvalsyst. Insekten 6: 453 pp. Akademie Verlag. Berlin.
FITTKkau, E. J.& D. A. MuRRAY, 1986: The Pupae of Tanypodinae (Diptera: Chironomidae) of the Holarctic region
— Keys and diagnoses. Ent. scand. Suppl. 28: 31-113.
GOETGHEBUER, M., 1936: Tendipedidae (Chironomidae). a) subfamiliae Pelopiinae (Tanypodinae). A. Die Imagi-
nes. — In: LINDNER, Die Fliegen der Palaearktischen Region, 13b: 1-50.
SCHINER, 1862: Fauna Austriaca: Die Fliegen (Diptera) Il.
STROBL, 1880: Progr. Gymnas. Seitenstetten 55.
WIEDERHOLM, T., 1986: (Ed.) Chironomidae of the Holarctic region. Keys and diagnoses. Part 2, Pupae, Ent.
scand. suppl. 28: 1—482
Dr.D. A. Murray,
Department of Zoology, University College Dublin,
Belfield, Dublin 4, Ireland.
Prof. Dr. E.J. Fittkau,
Zoologische Staatssammlung,
Münchhausenstr. 21, D-8000 München 60,
Bundesrepublik Deutschland.
252
SPIXIANA Supplement 14 253—259 | München, 15. Juli 1988 | ISSN 0177-7424
Bethbilbeckia floridensis: a new genus and species of
Macropelopiini from the South Eastern Nearctic
(Diptera: Chironomidae)
By E. J. Fittkau and D. A. Murray
Abstract
The genus Bethbilbeckia ıs established for a species of Macropelopiini from the South Eastern United States. Ge-
neric diagnoses for the larva, pupa and adult male are given together with descriptions of all life stages of the single
included new species Bethbilbeckia floridensis spec. nov.
Introduction
While reviewing some types and material of tanypodine species in connection with the ongoing co-
operative work on keys and diagnoses to genera of the holarctic Chironomidae (Wiederholm 1983,
1986 et seq.) some Macropelopiini specimens were kindly donated by Elizabeth and Bill Beck, Jack-
sonville, Florida. The material in question had been reared from the larval stage and thus larval and pu-
pal exuviae and adult male imagines were available for study. Such significant differences in morpho-
logy exist, in all life stages, that the specimens cannot readily be associated with any currently recog-
nısed genera. A description of the pupal exuviae of these specimens was given as Tanypodinae “Ge-
nus I” in Fırrkau and Murray (1986). It gives us much pleasure to name the genus after Elizabeth and
Bill Beck as a gesture of appreciation for their contribution to chironomid science. A complete generic
diagnosis for the larva, pupa and male adult of Bethbilbeckia gen. nov. and descriptions of Bethbil-
beckia floridensis spec. nov. are given ın this paper.
The terminology and abbreviations used in the descriptions follow SAETHER (1980). The slide mounted holotype
and one paratype is deposited in the collections of the Academy of Natural Sciences of Philadelphia; a second para-
type is deposited in Zoologische Staatssammlung, Munich.
Bethbilbeckia gen. nov.
Type species. Bethbilbeckia floridensis spec. nov., by present designation.
Generic description
Imago C:
Medium sized species, winglength about 3.0 mm; Antennae with 14 flagellomeres, apical flagello-
mere indistinctly set off from preapical, A. R. about 2.9; eyes with dorsal extension; Temporal setae
uniserial; antepronotum well developed, lobes well separated medially ; scutal tubercle distinct; lateral
antepronotal, anepisternal, preepisternal and postnotal setae present. Wings unmarked, membrane
evenly covered with macrotrichia, MCu almost directly above FCu on M,;‚ ‚, costa strongly produced,
255
R,., present and forked, R2 distinct, anal lobe well developed; tibia I without comb, tibia III with
comb of 4-5 setae; tibial spurs with main tooth and 9—13 side teeth; pulvilli absent. Tergite IX with
strong setae posteriorly; gonocoxite more or less cylindrical, evenly setose and with pocket-like lon-
gitudinal depression anteriorly on inner border; volsellae absent; gonostylus abruptly bent through
90° near base and tapering towards apex.
Imago 9: Unknown.
Pupa:
Medium sized, approximately 7.0 mm long, brownish in colour; thoracic horn tubular, expanding
gradually from base to apex, 4.0X as long as maximum apical width; horn sac thinwalled, not quite fil-
ling the horn lumen, plastron plate oval, slightly longer than broad, 0.25% horn length; thoracic comb
and basal lobe absent; thoracic setae simple, pointed or round apically; scar on tergite I elongate and
pigmented; shagreen spines short, blunt and partially serially arranged in groups of 2-4; abdominal
setae D, on segments II-VII large, distinct and arising from very large and prominent tubercles; D,,
D,; on segments III- V arısing from small tubercles; 4 short LS setae on segment VII, 0.25% segment
length; segment VIII with 5 LS setae, 0.75% segment length; anal lobe longer than broad, with simple
spine shagreen laterally, outer border fringed with long seta-like spinules and more or less convex, spi-
nules reduced to indistinct decumbent spines at the distal end; inner borders divergent, without fringe
but with 5-7 preapical decumbant spines; anal macrosetae arise from the basal !/4.
Larva:
Antenna 5 segmented, 1.25% as long as mandible, basal segment 8x as long as basal width, ring or-
gan at apical !/, AR about 9; ring organ at basal !/s of basal palp segment; mandible slender, curved,
basal tooth distinct; ventrolateral setae 1 and 3 simple, 2 bifid; dorsomentum medially almost reaching
the pseudoradula; ligula with 5 teeth; tooth row distinctly concave; inner teeth straight; paraligula bi-
fid, pecten hypopharyngis with about 14 teeth; posterior parapods with normal and 3—4 wide claws.
Bethbilbeckia floridensis, spec. nov.
Imago J (Figs. 1-6.)
Head: Pale brown, pedicel darker; eyes with dorsal extension. Frontal setae present, inner verticals
6-7, outer verticals 7—8, post orbitals 5-6. Antennal ratio 2.9; pedicel with three anteroventral and
two lateroventral setae; flagellum with 14 flagellomeres, terminal flagellomere more or less conical,
1.5x as long as basal width.
Thorax: Brownish with vittae slightly darker; antepronotum well developed, lobes separated, with
9 lateral antepronotal setae; humerals XX; dorsocentrals irregularly biserial; supraalars 22, prealars
20-22; acrostichals biserial; preepisternals 4-6; anepisternals 2-4; scutellum with about 30 setae;
postnotals 10 on either side; scutal tubercle distinct.
Table 1. Leg measurements (t) and ratios for the holotype (a) and paratype (b) of B. floridensis spec. nov.
Leg le Tı ter a Ta 3 Ta 4 Ta5 LR BV
la 947 1026 774 379 205 190 142 0.75 2.99
b 1010 1184 900 442 300 190 142 0.76 2.88
IIa 916 1011 490 268 221 142 110 0.48 3.26
b 1105 1200 663 315 245 186 142 0.55 3.24
Illa 868 1176 781 418 300 201 142 0.66 39%
b 1026 1374 908 _ _ _ _ 0.66 =
Figs. 1-6. Bethbilbeckia floridensis gen. nov., spec. nov., adult male: 1. head; 2. terminal antennal flagellomere;
3. scutal tubercle; 4. wing; 5. tibial spurs; 6. hypopygium.
Wing: About 3.0 mm long, with macrotrichiae; MCu on M3;4 close to FCu; RM removed from
MCu by length of MCu; R,, ; present and forked, R; distinct; costa distinctly produced beyond R;;;.
Legs: Pale, with faint indication of bands on apices of femora and bases of tibiae; spur Ti I with 13
side teeth, comb absent; spurs Ti II, Ti II with 9-10 side teeth; apex Ti III with comb of 4-5 setae;
pulvilli absent; claws terminally pointed; leg ratios in Table 1.
Abdomen: Uniformly brown, densly setose; ninth tergite with posterior multiserial row of 22-27
setae. Hypopygium (Fig. 6.) anal point triangular; gonocoxite more or less cylindrical, evenly setose
and with pocket-like longitudinal depression anteriorly on inner borders; gonostylus setose, swollen
basally and bent anteriorly through 90° near base.
Female. Unknown.
Pupa (Figs. 7-11.)
Medium sized, approximately 7.0 mm long, brownish in colour.
Thoracic horn tubular, relatively narrow, expanding gradually from base to apex, 4.0X as long as
maximum apical width; external membrane smooth, with few spinules; horn sac thin-walled, not
quite filling the horn lumen, evenly expanded towards the apex and connected to a more or less oval
shaped plastron by two short necks; plastron plate slightly longer than broad, 0.25 horn length.
Thoracic comb and basal lobe absent, thoracic membrane with transverse ridges extending to the me-
dian suture. Thoracic setae Dc, simple, pointed; Dc, extremely small, rounded, approximately 0.25 as
long as Dc, ; Sa simple, long and pointed, 3.5X as long as Dc..
255
er Ze u
Bizs-2 12:
Bethbilbeckia floridensis gen. nov., spec. nov., pupa: 7. thoracic horn; 8. thoracic setae; 9. tergites
I-III; 10. segments IV-VIII and anal lobe; 11. shagreen; 12. anal lobe and © genital sacs.
256
Abdomen: Scar on tergite I elongate and pigmented; shagreen spines short, blunt and partially se-
rıially arranged in groups of 2-4. Abdominal setae D, on segments II-VII large, distinct and arising
from very large and prominent tubercles; remaining D and V setae of varying sizes, D,, D; on seg-
ments III—V arising from small tubercles; segments I-VII with 2 L setae; 4 short LS setae on segment
VII, 0.25% segment length; segment VIII with 5 LS setae, 0.75x segment length. Anal lobe longer
than broad, with simple spine shagreen laterally, outer border fringed with long seta-like spinules and
more or less convex, spinules reduced to indistinet decumbent spines at the distal end; inner borders
divergent, without fringe but with 5-7 pre-apical decumbant spines. Anal macrosetae 0.5X segment
length, arise from the basal !/4.
Larva. (Figs. 13-18.)
Head capsule yellowish; antenna 5 segmented, 1.25X as long as mandible, basal segment 8x as long
as basal width, ring organ at apıcal !/s, AR about 9; basal segment of maxillary palp about 3x as long
as wide, ring organ at basal '/3. Mandible slender, curved, basal tooth distinct with apically directed
crest extending over inner margin and smaller inner tooth; ventrolateral setae 1 and 3 simple, 2 bifid.
Dorsomentum on each side with 5—6 side teeth, inner part extending medially and almost reaching the
pseudoradula. Ligula about !/3 longer than apical width, with 5 teeth; tooth row distinctly concave,
outer tooth 2.5x middle tooth; inner teeth straight. Paraligula bifid, 0.5x as long as ligula. Pecten hy-
popharyngis with 14 teeth, inner tooth large, medially directed and with a low rounded protuberance
on outer border. Posterior parapods with normal and 3—4 wide claws.
Figs. 13.18. Bethbilbeckia floridensis gen. nov., spec. nov., larva: 13. antenna; 14. maxillary palp; 15. mandible;
16. mentum; 17. ligula and paraligula; 18. pecten hypopharyngis; 19. Claws of posterior parapod.
(
257,
Material studied: Holotype; Larval and pupal exuviae and adult male (reared) slide mounted in Euparal in the col-
lections of the Academy of Natural Sciences of Philadelphia (ANSP). Coll. E. & W. Beck, Peter’s Creek, Clay
County, Florida 6.7.68.
Paratypes: 1 associated larva-pupal-adult male, slide mounted, in coll. ANSP; 1 associated larva-pupa-adult
male, slide mounted in coll. Zoologische Staatssammlung, Munich, West Germany. Both paratypes were collected
at the same site as the holotype.
Systematic position
The new genus clearly belongs to the tribe Macropelopiini which was recently enlarged to include
the genus Radotanypus (Fırrkau and Murray 1985) and is now considered to be composed of the ge-
nera Psectrotanypus Kieffer, Derotanypus Roback, Alotanypus Roback, Brundiniella Roback, Macro-
pelopia Thienemann, Radotanypus Fittkau and Murray, Apsectrotanypus Fittkau, Fittkanimyia
Karunakaran and Bethbilbeckia. The larva of Derotanypus and Psectrotanypus differ from those of all
other genera in the tribe by having only 4 teeth in the ligula in contrast to the more usual arrangement
of5. It is thus not necessary to consider these two genera further in the present context. In Fırrkau and
Rosack (1983) the larva keys easily to couplet 12 which leads to the genera Alotanypus, Brundiniella,
Apsectrotanypus and Macropelopia. Alotanypus differs from these and the recently described larva of
Radotanypus (Erıer 1986) in having all ventrolateral mandıbular setae simple while in the remaining
above mentioned genera ventrolateral setae 1 and 3 are multibranched. In Bethbilbeckia setae 1 and 3
are simple and seta 2 is clearly bifid only. The pupa of Bethbilbeckia ıs readily separable from all other
members of the Macropelopiini. Although superficially similar to Macropelopia it is easily distinguis-
hed by the prominent, straight D, setae which arise from distinct tubercles- larger than those present
in other Macropelopiini. The very short, weak, LS setae on segment VII are also diagnostic for the ge-
nus. In the key to genera of holarctic tanypodine pupae Bethbilbeckia has been included as “Tanypo-
dinae Genus I” (Frrrkau and Murray 1986 p. 64, Fig. 5.46).
In Rosack (1972) the adult male keys to couplet 9 which includes Macropelopia decedens (Walk.
and Parapelopia serta Roback. The former is “a large northern species” in the U.S.A. while the latter
is a “small Florida species” (Rosack op. cit p. 87). Rogack (1982) has already drawn attention to the
possible synonomy between Parapelopia Roback and Fittkauimyia Karunakaran. The adult male of
Bethbilbeckia differs from all other Macropelopiini, with the exception of Fittkanimyia in the unise-
rial arrangement of the temporal (inner and outer vertical and postorbital) setae. However Bethbil-
beckia may be easily separated from Fittkauimyia in having preepisternal setae and a posterior multi-
serial row of setae on tergite IX oftheabdomen. An additional differential character is seen in the tibial
spurs where Bethbilbeckia has a maximum of 13 side teeth compared with 13—20 in Fıttkauimyıa.
Literature
EPLER, J. H. 1986: The larva of Radotanypus submarginella (Sublette) (Diptera, Chironomidae). Spixiana 9:
285-287.
FITTKAU, E. J. & S. S. ROBACK 1983. The larvae of Tanypodinae (Diptera: Chironomidae) of the Holarctic region
— Keys and diagnoses. In T. Wiederholm (Ed), Chironomidae of the Holarctic region — Keys and diagnoses.
Part I, Larvae. Ent. scand. Suppl. 19: 34— 110.
—-— &D. A. Murray 1985. Radotanypus a new genus of Tanypodinae from the Nearctic (Diptera, Chironomi-
dae). — Spixiana Suppl. 11: 209-213.
-— & —--— 1986. The pupae of Tanypodinae (Diptera: Chironomidae) of the Holarctic region — Keys and dia-
gnoses. In T. Wiederholm (Ed), Chironomidae of the Holarctic region — Keys and diagnoses. Part 2, Pupae.
Ent. scand. Suppl. 28: 31-113.
ROBACK, 5. S. 1971. The subfamily Tanypodinae in North America. Monogr. Acad. Nat. Sci. Phila. 17: 1-410.
258
—— 1982. The Tanypodinae (Diptera: Chironomidae) of Australia II. Proc. Acad. Nat. Sci. Phila. 134: 80-112.
SAETHER, O. A. 1980. Glossary of Chironomid Morphology Terminology. Ent. scand. Suppl. 14: 1-51.
WIEDERHOLM, T. (Ed.) 1983 Chironomidae of the Holarctic region — Keys and diagnoses. Part I, Larvae. Ent.
scand. Suppl. 19: 1—457.
—— 1986. ibid. Part 2, Pupae. Ent. scand. Suppl. 28: 1—482.
Prof. Dr. Ernst Josef Fittkau,
Zoologische Staatssammlung,
Münchhausenstraße 21,
D-8000 Munich 60, West Germany.
Dr. Declan A. Murray,
Department of Zoology, University College Dublin,
Dublin 4, Ireland.
259
= au
> RT
= HR
4 Wine a Fairen Ach
Erz
N
uw ur
‚IS lrmnse
lan bel DE binel wa. j j
u CHR 2 a A > = Brüche respärlg
j eu aufn it de
“ 5 ui
/ FRE, Ken rn 5 Hy eumeltmickks Wr
Pe Treenenihan, Kadırarypin Al warf. Pi
neun) Pirbbilleshin. The larva uf a, te BR 207 =
orlier gänersin she teile bi Kavons culy Stecch wre = net ee PH
ob nie Bir Hexktary tn nen uder Ihe ev a en ie, u ee erruen d use
RR (HE File Iarea keys anlv u roupler 1! wi. ren A 2
WET Ranypus aa Mo melonie Alnnerupas hält we Narben ce
Aashtarcrpws Era 16) van al ven uote ia es Ar wre vs
Be nacien] Kenner ventroliteral sure I.anı Sure nrenlemunch ad. In Berblnfbcuiing ’
a Knolle and mia 2 ie chenelv brliel only. Tiurpims of Besenhrrk.: x readiivierirable
enben oh the Masenzelopuni, Althouch muportwiahr ren Kia bc %
Bad ie de prominent. muaig he Di sei which anne Igendiinet vo Arches ugs
mühe Mairogkiopuni Che very shot, wre, 23 ode a dern WEL are ale
a Ir ihie em 14 gehera of balarztie tar port = nur en ha ba u
ehren 1” IPreraau and Mina + He Fi, rer -
BIROBaE IT Ne ad ale kan couple I ec een Mur Peine i
nö. serss Kuilsck, Fhe former "lage are pn" io UM UEA
ra Fire pass (Komacz ub00 p.E. Won RE te
poamble ueekiny Ieewuen Pauuneloma Höback an Putbauirana Karunalarım.
Betkbibr ia dire from all ander Ma RERER pe ee
nal rain ci Khe anızusral arten ar! uune weriiial null print nah) ra, w
bein may rei) wre tree Frkiikınrals in as nm rue ei u ,
Plant] 1 ILIEN ZU EP DEE be eunen. da dr onrtldlurnera
ibutl where Belbisiberdse bs e unaxirum if Ve er ee
(sss8/ |
ums) #8. Mit: Tier lea od Haken ber lee) [iiteiüieı, Chi
ZB2-I87, zZ)
aa E 1, AR Bormca td, Te tee cd Free het here
- Kreml ding tan. Kin 1 “ ohrriehe (ad Chirammmche il cr rer Agaie
Pr actte. Eos. und. Sagel. 8. 23-418
> 2 en Miaeav 166%. Kalle sk ne Ed er une kr hr Nina
r Yiann duypi. tt 2080-25, Pur
-- 4 == 1886 The gun: of Turppparkuue rnens innen) ol hr ep
ee. abe ee ensnen an sgegn Ze
in wenn. Sup um dt Alb,
Gear 3,8. tert. Thewuhlamikg Ser N erg
en
a ae ee
Bisher erschienene Supplementbände der SPixıana:
Supplementband 1: GUSTAV PETERS, 1978
Vergleichende Untersuchung zur Lautgebung einiger Feliden
(Mammalia, Felidae).
206 Seiten und 80 Seiten mit 324 Abbildungen und 20 Tabellen.
Supplementband 2: HERMANN ELLENBERG, 1978
Zur Populationsökologie des Rehes (Capreolus capreolus L., Cervidae)
in Mitteleuropa.
211 Seiten mit 47 Abbildungen und 42 + 6 Tabellen.
Supplementband 3: JENSLEHMANN, 1979
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
(Systematik, Ökologie, Verbreitung und Produktionsbiologie).
Teil I: Kivu-Gebiet, Ostzaire.
144 Seiten mit 252 Abbildungen und 11 Tabellen.
Supplementband 4: KLAUS HORSTMANN, 1980
Revision der europäischen Tersilochinae Il
(Hymenoptera, Ichneumonidae).
76 Seiten mit 150 Abbildungen und 2 Tabellen.
G. VAN ROSSEM, 1980
A revision of some Western Palaearctic Oxytorine genera
(Hymenoptera, Ichneumonidae).
59 Seiten mit 3 Abbildungen und 2 Tafeln.
Supplementband 5: JENSLEHMANN, 1981
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
Teil Il: Die Region um Kisangani, Zentralzaire.
85 Seiten mit 3 Abbildungen, 2 Tabellen und 26 Tafeln.
Supplementband 6: MICHAEL VON TSCHIRNHAUS, 1981
Die Halm- und Minierfliegen im Grenzbereich Land-Meer der Nordsee.
(Diptera: Chloropidae et Agromyzidae)
416 Seiten mit 25 Diagr., 89 Tabellen und 11 Tafeln.
Supplementband 7: 1982
First International Alticinae Symposium, Munich, 11-15 August 1980
7 Beiträge, 72 Seiten.
Supplementband 8: OSKAR KUHN, 1982
Goethes Naturforschung.
48 Seiten.
Supplementband 9: 1983
Festschrift zu Ehren von Dr. Johann Baptist Ritter von Spix.
30 Beiträge, div. Abbildungen und Tabellen, 441 Seiten.
Supplementband 10: 1984
Tropische Regenwälder - eine globale Herausforderung.
14 Beiträge, div. Abbildungen und Tabellen, 160 Seiten.
Supplementband 11: 1985
Beiträge zur Systematik der Chironomidae, Diptera.
16 Beiträge, zahlr. Abbildungen, 215 Seiten.
Supplementband 12: HANS HERMANN SCHLEICH, 1987
Herpetofauna Caboverdiana
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
As
Sa
SI. —
43,50
29,80
20
46,—
SI m
Sale Se staaz,,
uH S
<
2
=
2
3
=
S
Nünche®
PIAIAN
Zeitschrift für Zoologie
Wanderungen der Schwebfliegen
(Diptera, Syrphidae)
am Randecker Maar
Wulf Gatter und Ulrich Schmid
Herausgegeben
von
E. J. Fittkau
Zoologische Staatssammlung München
SPIXIANA Supplement 15 München, 31. Juli 1990 ISSN 0177— 7424
SPIAIANA
ZEITSCHRIFT FÜR ZOOLOGIE
herausgegeben von der
ZOOLOGISCHEN STAATSSAMMLUNG MÜNCHEN
SPIXIANA bringt Originalarbeiten aus dem Gesamtgebiet der Zoologischen Systematik mit
Schwerpunkten in Morphologie, Phylogenie, Tiergeographie und Ökologie. Manuskripte werden
in Deutsch, Englisch oder Französisch angenommen. Pro Jahr erscheint ein Band zu drei Heften.
Umfangreiche Beiträge können in Supplementbänden herausgegeben werden.
SPIXIANA publishes original papers on Zoological Systematics, with emphasis on Morphology,
Phylogeny, Zoogeography and Ecology. Manuscripts will be accepted in German, English or
French. A volume of three issues will be published annually. Extensive contributions may be
edited in supplement volumes.
Redaktion - Editor-in-chief
Prof. Dr. E.J. FITTKAU
Manuskripte, Korrekturen und Bespre- Manuscripts, galley proofs, commentaries
chungsexemplare sind zu senden an die and review copies of books should be
adressed to
Redaktion SPIXIANA
ZOOLOGISCHE STAATSSAMMLUNG MÜNCHEN
Münchhausenstraße 21, D-8000 München 60
SPIXIANA - Journal of Zoology
published by
The State Zoological Collections München
Aus der Station Randecker Maar/Schwäbische Alb
Vogelzug — Insektenwanderungen
Die Wanderungen der Schwebfliegen
(Diptera, Syrphidae)
am Randecker Maar
Von Wulf Gatter und Ulrich Schmid
unter Mitarbeit von
Walter Gatter, 8019 Glonn, und Günther Jauch, 7311 Dettingen/T.
Die Veröffentlichung wurde durch die Aktionsgemeinschaft
Natur- und Umweltschutz Baden-Württemberg e.V. —
Landesnaturschutzverband (ANU) — unterstützt
Mit Förderung des Deutschen Bundes für Vogelschutz —
Landesverband Baden Württemberg
SPIXIANA Supplement 15 München, Juli 1990 ISSN 0177— 7424
en
Adressen der Autoren:
Wulf Gatter, Buchsstraße 20, D-7318 Oberlenningen
Ulrich Schmid, Rothweilerin 17, D-7440 Nürtingen
Die Schwebfliege Episyrphus balteatus. Zwei C'O fliegend; auf der Blüte nach oben zwei Q® (Ph. E. Kotzke).
Zum zwanzigjährigen Bestehen der
Station Randecker Maar
Während es in der Zoologie bis heute die verschiedensten Modeströmungen gab, denen teils jahr-
zehntelang das bevorzugte Augenmerk der Forschung galt, hat die Migrationsforschung zu keiner
Zeit etwas von ihrer Faszination verloren und ist heute so aktuell wie früher.
Im Gegensatz zur Vogelzugforschung fanden aber dıe Insektenwanderungen erst spät das Interesse
der Fachwelt und das erste Fachbuch zu diesem Thema wurde 1930 publiziert. Dabei waren es vielfach
die Vogelzugforscher, die uns frühe Hinweise auf Insektenmigrationen übermittelten. Heinrich
Gätke verdanken wir Berichte aus dem vorigen Jahrhundert über Massenwanderungen von Schmet-
terlingen nach Helgoland. Schon 1872 erkannte er die Zusammenhänge von abnormen Wetterlagen
und dem Auftreten südlicher Vögel und Schmetterlinge auf der Insel: „Lepidoptera (-migrations)...
are subjects to the same meteorogical influences as birds. . .“ Neben Verdichtungen des Zuges entlang
der Küsten haben Kanalisierungseffekte an Gebirgspässen ın allen Teilen der Welt bei der Erfassung
des Vogelzugs wie auch der Insektenmigrationsforschung eine große Bedeutung.
C. W. Mackworth-Praed, der berühmte Afrika-Ornithologe, wies als einer der ersten auf Massen-
wanderungen von Schwebfliegen über den Kanal hin. Das britische Forscherehepaar D. & E. Lack
entdeckte bei Vogelzugbeobachtungen in den Pyrenäen auffälligen Insektenzug und machte die
Wissenschaft auf die dortigen Pässe aufmerksam.
Auch die Bedeutung des Bretolet-Passes in der Westschweiz, langjähriges entomologisches Ar-
beitsgebiet für J. Auberts Migrationsforschungen an Insekten, war bei ornithologischen Untersu-
chungen erkannt worden.
Schon Anfang der sechziger Jahre faszinierten uns die Admirale, die jeden Herbst mit der Zugrich-
tung der Vögel über die Schwäbische Alb nach Südwesten zogen. Als die Station Randecker Maar nach
ersten Versuchen von 1967 bis 1969 im Jahre 1970 einen regelmäßigen Stationsbetrieb aufnahm, lagen
die Arbeitsschwerpunkte „OGELZUG — INSEKTENWANDERUNGEN“ fest. Seitdem sind
zahlreiche Veröffentlichungen zu beiden Themen erschienen. Mit dem vorliegenden Schwebfliegen-
heft findet ein erstes Projekt der Station seinen Abschluß. Monographien über den Zug der Schmetter-
linge und der Vögel werden folgen.
Ursprünglich war die Stationsarbeit auf wenige Jahre konzipiert. Doch die zahlreichen Fragen, die
nach zwei Jahrzehnten blieben, zeigen immer mehr, daß manche Aspekte nur in Langzeitprojekten zu
klären sind. Neben vielen ungelösten Problemen ist die Spannbreite der Erscheinungsformen im
Migrationsbereich selbst nach 20 Jahren offenbar nicht annähernd erfaßt, wie uns die alljährlichen
Überraschungen zeigen.
Dies dürfte einer der Gründe sein, weshalb sich manche der inzwischen über 350 jungen Mitarbeiter
(Biologen, Schüler und Studenten) über Jahre hinweg, von erstaunlichem Enthusiasmus getragen,
ehrenamtlich an der oft harten Stationsarbeit beteiligen. Regen, Schnee und Wind ausgesetzt, wurden
die Beobachtungen in den ersten Jahren bis in den Dezember hinein ausgedehnt. Ein Schäferkarren
diente gleichermaßen als Küche und Büro wie auch als spartanische Schlafstatt und hatte wenig gemein
mit der bescheidenen Gemütlichkeit der heutigen Stationsunterkunft.
Mit den 70000 bisher geleisteten Beobachtungsstunden kann inzwischen ein unersetzliches Mate-
rial von Millionen Daten zur Langzeitdynamik von etwa 100 Vogelarten und zahlreichen Insekten-
arten, und damit Basismaterial für die Naturschutzarbeit geliefert werden.
Die Station hat ihre Tätigkeit während der ersten Jahre ohne jegliche finanzielle Unterstützung be-
trieben.
Meinen Freunden von der Ortsgruppe Kirchheim/Teck und dem Landesverband Baden-Württem-
berg des Deutschen Bundes für Vogelschutz (DBV) ist es zu verdanken, daß schließlich durch jährli-
che Zuschüsse ein finanzieller Grundstock geschaffen wurde. Doch letztendlich wäre der Betrieb der
Station ohne die vielen privaten Spender und Helfer nicht möglich gewesen, denen ein besonderes
Kapitel auf Seite 95 gewidmet ist. Ganz besonders möchte ich mich bei meinen Freunden Prof. Dr.
H. Mattes und K. Sill bedanken, die zeitweise die organısatorischen Geschäfte der Station führten.
Ihnen und allen anderen, die unsere Arbeit unterstützten, herzlichen Dank.
Last not least, der herzlichste Dank an meine Frau Dorothea. Sie hat die Station nicht nur von An-
beginn durch alle Schwierigkeiten mitbegleitet, sondern hat sich neben ihrer Mitarbeit als Entomolo-
gin besonders um die Betreuung der Mitarbeiter bemüht und beim Organisatorischen mitgewirkt.
Lenningen, November 1989 Wulf Gatter
Inhaltsverzeichnis
Einleitung: Überblick über die bisherige Erforschung von
Schwebrliesenwanderungennur 2... 00
Material und Methode
BagerderStationsgRandecken Maar a
Banssder Schhwebtliegen ap 10 2.00
Resistrierumegden Wetterdaten mn. ee en
KlimadatenrdewSeationiRandecker Maar. 2
ANb kürZUn Ser RE EN RN Se nee een
Ergebnisse
SchwebiliegenantensamyRandecken aa
Schwebtliegenimi#zo0ophagensllarvenee
SchwebrlresenfmititertestrischentsaprophagennParven re
Schwebfliegen mit aquatischen sapro-/microphagen Larven ........ 222222220.
SchwuebtlresentmiaphytophagenelEarvene
Kyfeitenea VanderartensmEuropawey
SchnyebHlie senimigzo0phagenalauyene
Schwebiliegenimititerrestrisehen,saprophasen Larven
Schwebtliegenimi@sapro/200pha genWllarvene
Übersicht über die Wanderschwebfliegen Europas (Tabelle) ..................
Wanderaktivität in Abhängigkeit von den Windverhältnissen .................
Episynphasibalteatus| 980 un. rot ee ee
Blasycheimusichypeatuss) Son: ee
Bpssynphasibalteatusi 981 dar. A seem ae enaeerenee
Blasycheinuste)Deatas IS Mas re N
Das tageszeitliche Windangebot und seine Auswirkungen auf die Wanderaktivität
von Episyrphus balteatus und Platycheirus chypeatus ......... 2.222222 ceceeen.
Zusammenfassung: Windabhängige Wanderstrategien Saisonaler Migranten und
SarsomalerDismmistantene ee
SaisonaleMisranten gs EN N RR NE ae
SaisonaleaDismmipramtene „3. ee ee edel le ee ne
Bopulationsdymanmike Sr ar a
DISKUSSION FR IT REN N N ni see
Vergleich der Phänologie der Schwebfliegenwanderungen am Randecker Maar und
amk@olideBretolerır Se re N a te
Veränderungen der Zahlenverhältnisse der Geschlechter im Verlauf der Migration .
BrolosieidersN/andersehwyebtlie sen
Arten mit phytophagen und terrestrischen saprophagen Larven ...............
rtenkmitzoophagentlanven a
Artenimigaquatıschenlsapto/mierophasenllasvens re
Zur Bedeutung der Wanderschwebfliegen bei der biologischen Schädlings-
bDekamplunse en ee een ee ne nem
EN SgemenmeritspekterdenSchwebtliesenwanderungenn aa
Verbreitung Nee ee Ne
DiapausesundıNisratonee ne ee
Generationenfolge und Migration ..........20.--...2nosenunesenennenee
Die Stellung der Schwebfliegen innerhalb der Wanderinsekten ................
Zusammenfassung 13. Ve NE EN ES Bene CHR
Dank'W.
EI aan fallalafıer (ade Te) lo: Snlhon.e-Menkelieila' nat m etlenhniin Mia laf,eruuiie?; era ie. (ailluifeljarieiäin Aut in Lanin zZ npiwstiniiuit nateZtozrw zn une
a 0 OO ID EC SKOBDWOID: DE LEO IL AO RO D: DABEI II ELTELMOLOBDBONT HOSEN OD I
90
90
93
95
96
Die Wanderungen der Schwebfliegen (Diptera, Syrphidae)
am Randecker Maar
Von Wulf Gatter und Ulrich Schmid
Abstract
Hoverfly migration (Diptera, Syrphidae) at Randecker Maar, SW-Germany
During the years 1975-1987 (except 1983) hoverfly migration was investigated at the migration research station
“Randecker Maar — Schwäbische Alb” (SW-Germany; 48.35 N, 9.31 E, 772 m). From mid July or the end of July
to the beginning of October of these 12 years, 90049 syrphids migrating southward were collected with a large net
trap which opened to the north (S-trap). During 5 years, 9815 hoverflies migrating northward were caught with a
similar trap which opened to the south (N-trap) (see Tab. 1).
Aspects of the phenology of species with more than 50 individuals collected (see Tab. 2) are described in the pre-
sent paper (3.1, 3.2), e. g. the seasonal and diurnal activity patterns of the species and sexes, differences between the
two traps, sex-ratios, captures in relation to wind directions. Earlier observations of migrations of the species are
summarized, and each species is arranged (if possible) in one of the following categories:
I) Anemomigration (drift): passive transport of flight-inclined insects by wind without direction orientation.
II) Dismigration: endogenously (dispersal) and exogenously (spacing) released active dismigrations without or
with only indirect direction orientation (selection of favourable winds).
III) Migration: migration of individuals or species programmed to endogenous migration and direction orienta-
tion.
Both dismigration and migration can be expansive (without returning) or seasonal (migration to and return from
summer, winter or dıapause habıtats).
Tab. 3 shows all known migratory species of Europe.
The phenology of seasonal migrants (species which migrate orientated into winter and summer areas; see Tab. 3)
is characterized as follows:
1. The difference between numbers in traps and supplementary field observations show that the flies move in late
summer and autumn in southerly and southwesterly directions.
2. Field observations indicate that seasonal migrants move northward in spring.
3. There are characteristic differences in the phenology of seasonal migrants between the Randecker Maar and the
Col de Bretolet (Swiss Alps, 1923 m) which is situated 350 km to the southwest: in most cases maximum south-
bound migration peaks are later at Col de Bretolet. Migratory birds show the same shift ofthe maxima. During their
S and SW orientated migration, both birds and hoverflies cross Randecker Maar some days before they reach the
more southwesterly situated Col de Bretolet (4.1).
4. At Randecker Maar and more northerly sites, males and females of most seasonal migrants appear in nearly
equal numbers. At Col de Bretolet, females predominate clearly (see Tab. 5). — Females of Episyrphus balteatus
have a much longer lifespan than males. At the beginning of the migration period, males participate ın great num-
bers; during migration an increasing proportion of them dies. At the end of the migration period, only females are
left. The later peak at Col de Bretolet causes predominance of females at thıs site (4.2).
5. Only if there is a headwind do seasonal migrants fly close to the ground in order to diminish the unfavourable
influence of this wind. They make use of the helping influence of a tailwind by flying at a greater height. Therefore
southbound migrants are caught in the trap in much greater numbers when the wind blows from the south (3.4).
6. Seasonal and diurnal migration patterns are very similar from year to year apart from the high fluctuation of
numbers.
The group of dismigrating species (see Tab. 3), which have an active dispersal migration, can be less clearly char-
acterized. The following features of the phenology of these dismigrants are not shared by all species — a conse-
quence of the differing functions, extents and ranges involved:
1. The difference between numbers of flies collected in the two traps is often low; no preferred direction of flight
is distinguishable. — In some species the difference is higher; presumably they choose favourable wind directions
for migration.
2. In most cases there is no difference between the seasonal activity patterns of Randecker Maar and Col de
Bretolet (4.1).
3. The differences of sex ratios at Randecker Maar and Col de Bretolet which are shown by seasonal migrants are
not present in seasonal dismigrants (see above; Tab. 5; 4.2).
4. In all species, females predominate at Randecker Maar. Flight activity of females close to the ground level is
probably greater than that of males due to the females’ search for favourable egg laying habitats.
5. Seasonal dismigrants do not react to different wind directions in the same manner as seasonal migrants (see
above). Migrations with tailwind take place (at least in part) close to the ground (3.4).
For some ecological groups of the family Syrphidae, seasonal migrations are an integral part of their life cycles
(4.3, 4.4):
1. Seasonal migration is known only from species with zoophagous (aphidophagous) larvae or from species with
aquatic sapro-/microphagous larvae.
2. In particular species with hibernating imagines or puparia are seasonal migrants (see Tab. 3). These species can-
not survive the winter in northern parts of their summer range, or they survive only in small numbers under optimal
conditions. So they immigrate into these areas in spring. In summer and autumn they move back to the south. —
Some species with hibernating larvae migrate in the same manner. Presumably migration to southern Europe can
also reduce winter mortality of their larvae.
3. The adaptive advantage of migration to the south in summer and autumn is an increase of their chance of sur-
viving the winter. The advantages of spring migration to the north for aphidophagous species are the much better
conditions for larval development (maximum of aphids) and imaginal feeding (richness in “fly-flowers”) in central
and northern Europe; for aquatic species the presence of larval habitats in much higher densities and with much les-
ser risk of drying up than in the summer-arid southern Europe.
The most important function of dismigration is to find habitats with favourable conditions for larval develop-
ment. Also in such migrations species with zoophagous larvae are the most common participants (4.3); they depend
on food resources which occur unpredictably in time and space (species see Tab. 3).
Aphidophagous hoverflies show different life cycles, which are partly correlated with spring and/or autumn ma-
ximum of aphid density (mono- and bivoltine species). Polyvoltine species have to integrate migration periods in
their life cycles to enhance the chances for successful reproduction during aphid minimum in summer. They are
much less specialized in habitat selection and larval diet than mono- and bivoltine species. In polyvoltine zoopha-
gous syrphids two groups compete for larval food: seasonal migrants and seasonal dismigrants (see Tab. 3). The for-
mer are better direct competitors for food, the latter are able to use a higher variety of food (4.3).
Species with terrestrial saprophagous or phytophagous larvae are not forced to migrate to find their often predic-
tably occuring larval food resources. Some saprophagous hoverflies dismigrate over short distances (see Tab. 3). No
migratory species is known among the usually highly specialized phytophagous species (4.3).
The migration behaviour of Syrphidae shows much similarity to that of other well-known migratory insects, e.g.
the butterflies (Lepidoptera) (4.5). There are strong connections between diapause and migration (species with dia-
pausing imagines migrate; 4.5.2), number of generations per year and migration (in particular polyvoltine species
migrate; 4.5.3) and between the dimension of the distribution area and migration (migrants have vast areas; 4.5.1).
Some of our common hoverfly species are the most impressive migrants amongst European insects in respect of
dimensions and regularity of their migrations.
Furthermore most of the hoverfly species which are important as aphid predators in agriculture and forestry are
migrants. If some of these species offer the possibility to act as biological pest control a precise knowledge of the
life cycle of each species is necessary. The influence of migratory behaviour has been greatly underestimated up to
now in the research on biological pest control.
10
1. Einleitung: Überblick über die bisherige Erforschung von Schwebfliegenwanderungen
Wandernde Schwebfliegen haben gelegentlich schon früher Aufmerksamkeit erregt, wenn sie in ge-
waltigen Massen auftraten (z. B. Eimer 1880, Prell 1925, Walker 1864) oder extrem weit außerhalb
ihrer Verbreitungsgebiete gefunden wurden (z. B. Syrphus ribesü auf Spitzbergen; Elton 1925).
Auf die Möglichkeit regelmäßiger Schwebfliegenwanderungen wiesen aber erstD. & E. Lack (1951)
nach Beobachtungen von gegen den Wind nach WSW fliegenden Episyrphus balteatus an einem Pyre-
näenpaß hin. Williams et al. (1958) bestätigten und vertieften diese ersten Kenntnisse über regelmäßige
Syrphidenzüge.
Nachdem diese Beobachtungen auf völlig neue Aspekte der Ökologie von Dipteren hinwiesen,
brachten die folgenden Jahre so wenig neue Erkenntnisse, daß zwei in den 1960er Jahren erschienene
Standardwerke über Insektenwanderungen (Williams 1961, Johnson 1969) kaum mehr als eine Seite
benötigten, um das Wissen über Syrphidenmigration zusammenzufassen.
Erst die Forschungen von Aubert und seiner Arbeitsgruppe brachten wesentliche Fortschritte (Au-
bert 1962, 1964a, 1964b, 1964c, 1969; Aubert, Aubert & Goeldlin 1976; Aubert & Goeldlin 1981; Au-
bert, Goeldlin & Lyon 1969; Aubert & Jaccard 1981; Dethier & Goeldlin 1981, Goeldlin 1975). In den
Jahren 1962-1973 betrieb die Arbeitsgruppe jeweils ab Ende Juni oder Anfang Juli bis zu den ersten
stärkeren herbstlichen Schneefällen Insektenreusen am Col de Bretolet, einem in 1923 m Höhe gelege-
nen Paß in den wallisischen Alpen. Der Col de Bretolet liegt am Schluß des vom Rhönetal in südwest-
licher Richtung heraufziehenden Val d’Illiez. Die Ergebnisse dieser zwölfjährigen Beobachtungen
sind in Form von Tagessummendiagrammen und einer sehr knapp kommentierten Artenliste bei Au-
bert et al. (1976) dokumentiert.
Der paßähnliche Einschnitt im Norden des Randecker Maars.
11
Die Reuse am Randecker Maar.
Neben diesen Routinefängen wurden an verschiedenen Alpenpässen Massenfangaktionen mit sehr
großen Netzreusen durchgeführt. Durch Wiederfänge von dabei markierten Schwebfliegen sind
Wanderungen einzelner Individuen über maximal 111 km belegt! Über die von NE nach SW hinter-
einander liegenden Pässe Krinnenpaß (1659 m), Col de la Croix (1778 m), Col de Cou und Col de
Bretolet (1921 und 1923 m), Col de la Goleze (1671 m) und Col du Glandon (1961 m) konnten
Schwebfliegenwanderungen über ca. 160 km verfolgt werden. Im Verlauf dieser Wanderung wird
zwischen dem Col de la Croix und dem Col de Bretolet auch das Rhönetal (430 m) gequert.
Nach der Markierung am Col de Bretolet hatten die ersten Fliegen den 3,6 km entfernten Paß La
Goleze schon in 10-15 Minuten erreicht. Die unter sehr ungünstigen Witterungsbedingungen am
Col du Glandon in 111 km Entfernung wiedergefangenen Tiere waren vermutlich drei Tage vorher
markiert worden (Aubert et al. 1969).
An verschiedenen Stellen der Schweiz und Österreichs ergaben kurzfristigere Versuche (z. B. Au-
bert & Jaccard 1981, Dethier & Goeldlin 1981, Gepp 1975) ähnliche Beobachtungen, so daß die Phä-
nologie der herbstlichen Schwebfliegenwanderungen im Alpenraum als gut bekannt betrachtet wer-
den kann.
Aus anderen Gebieten fehlen längerfristige Beobachtungen allerdings fast völlig.
Nachdem an der Station Randecker Maar seit Anfang der 1960er Jahre immer wieder auffälliger
Schwebfliegenzug beobachtet worden war (z. B. Gatter & Gatter 1973, Gatter 1975a), begann man
dort daraufhin mit der systematischen Untersuchung der Wanderungen mit Hilfe von Insektenreu-
sen. Erste Ergebnisse aus dem Jahr 1975 liegen bereits publiziert vor (Gatter 1976); sie lassen hinsicht-
lich der Artenzusammensetzung große Übereinstimmungen zwischen den Beobachtungen in den Al-
pen und denen im südwestdeutschen Mittelgebirgsraum erkennen. In einer Analyse dieses Artenspek-
trums wurden charakteristische Merkmale einer von Wanderarten geprägten Schwebfliegenfauna
deutlich (Schmid & Gatter 1988).
112
Erste systematische Beobachtungen zum Auftreten von Schwebfliegen auf einer Nordseeinsel ohne
bodenständige Syrphidenfauna (Schmid 1987) deuten darauf hin, daß auch im norddeutschen Tiefland
regelmäßige spätsommerliche Syrphidenwanderungen stattfinden, an denen dieselben Arten wie im
Hoch- und Mittelgebirgsraum teilhaben.
Die am Randecker Maar gewonnenen und hier dargestellten Daten zum Wanderverhalten der
Schwebtliegen dürften also grundsätzliche Gültigkeit wenigstens für den mitteleuropäischen Raum
haben.
2. Material und Methode
2.1 Lage der Station Randecker Maar
Die Forschungsstation liegt im Südwesten der Bundesrepublik Deutschland (Abb. 1) am Nordrand der Schwäbi-
schen Alb, einem sich vonSW nach NE erstreckenden Mittelgebirge, das steil über seinem nördlichen Vorland auf-
ragt. Im Bereich der Station liegt das Vorland in ungefähr 400 m NN, der Albtrauf in ca. 800 m NN (Abb. 2a, 2b).
Der nahezu runde Kessel des Randecker Maars ist nach Norden geöffnet und unterbricht den Albtrauf mit einer
tiefen Kerbe. Diesen Einschnitt nutzen in breiter Front aus Nordost heranziehende Vögel und Insekten, um hier
mit geringerem Energieaufwand die Höhe der Albhochfläche zu gewinnen. Dadurch kommt es am Randecker Maar
zu starken horizontalen und vertikalen Verdichtungen des Zuggeschehens (Gatter 1978, 1981a).
Die Beobachtungsstation selbst (48.35 N, 9.31 E) befindet sich südlich des Maars am Rand einer kleinen Kuppe
in 772 müber NN (Abb. 2a). Sie bietet freie Sicht nach allen Himmelsrichtungen außer nach SE, wo die Kuppe von
Gebüschgruppen mit einigen niedrigeren Bäumen bewachsen ist.
Abb. 1: Die Lage der Station „Randecker Maar“ in Südwest-Deutschland.
Fig. 1: Position of the Migration Research Station “Randecker Maar” in SW-Germany.
13
2.2 Fang der Schwebfliegen
Die wandernden Schwebfliegen werden mit Hilfe einer trichterförmigen, nach NNE geöffneten Insektenreuse
gefangen. Die Reusenöffnung hatte in den Jahren 1975-1977 eine effektive Größe von 5 m? (2,5 m Höhe =2 m
Höhe über der Wiesenvegetation; 2,5 m Breite), in den Jahren 1978-1982 und 1984— 1987 eine effektive Größe von
10 m? (5 m Breite). Die Wände und das zum Fangbeutel hin leicht ansteigende Dach bestehen aus Fliegengitter. Den
nach SSW gerichteten inneren Abschluß bildet ein 20 cm breites, mit Plastikfolie bezogenes Fenster. Im oberen
Winkel der Reusenkonstruktion befindet sich eine 10X20 cm große Öffnung. Über diese Öffnung wird ein durch-
sichtiger Plastiksack gestülpt. Die aus NNE ankommenden Insekten fliegen in der Reuse, von den schräg stehenden
Wänden geleitet, bis zum Fenster, steigen an ihm empor und gelangen so in den Plastikbeutel. Dieser wurde in den
Jahren 1975-1977 von Sonnenaufgang bis Sonnenuntergang, ab 1978 von Sonnenaufgang bis 16 Uhr MEZ stünd-
lich gewechselt.
Am Arbeitsplatz in der wenige Meter entfernten Station werden die Insekten betäubt und bestimmt, wobei eine
Vergleichsammlung zur Verfügung steht. Nicht immer kann so eine sichere Artdiagnose gestellt werden, so daß
Zweifelsfälle zur späteren Nachbestimmung gesammelt werden. Das Gros der Fänglinge überlebt die Betäubung
und wird wieder in die Freiheit entlassen.
In den Jahren 1977 und 1979— 1982 wurde als Kontrolle zusätzlich eine baugleiche Reuse mit einer nach $ gerich-
teten Öffnung betrieben. In dieser Reuse gefangene Schwebfliegen wurden im Jahr 1979 nur pauschal erfaßt, in den
anderen Jahren artlich getrennt ausgezählt.
Tab. 1 und Abb. 27a geben einen Überblick über Reusengröße, Zeitraum der Erfassung und Anzahl gefangener
und bestimmter Schwebfliegen im Untersuchungszeitraum.
Tabelle 1: Fangzeitraum, Reusengröße und Zahl der gefangenen Schwebfliegen am Randecker Maar 1975-1987.
Tab. 1: Period of investigation, size of trap opening, and number of trapped hoverflies at Randecker Maar
1973— 1987.
Jahr Zeitraum Reusengröße Südflieger Nordflieger
(S-Reuse) (N-Reuse)
1975 2642-3009. 5 m? 4568
1976 6. 30488} 5 m? 1214
1977 DIN 9% 5m? 1519 299
1978 1602 12210: 10 m? 6462
1979 16 2731: 10, 10 m? 8910 1417
1980 TEICHE 10 m? 8869 2091
1981 227 12510! 10 m? 11511 3708
1982 1307 3.10, 10 m? 5323 2300
1983
1984 182 10. 10) 10 m? 7190
1985 29. 764: 30. 10 m? 13215
1986 13: il: 10 m? 11971
1987 19,723 9° 10 m? 9297
12 Jahre 90049 9815
2.3 Registrierung der Wetterdaten
Jede Stunde werden folgende Wetterdaten erfaßt:
— Windrichtung (N, NE, E, SE, S, SW, W, NW) und Windstärke (in Bft.); Messung mit Hilfe eines auf der Höhe
der Kuppe stehenden und über die Baumschicht hinausragenden Windmeßgerätes;
— Bedeckungsgrad des Himmels in Achteln;
— Temperatur;
— Sicht;
— Besondere Vorkommnisse wie Niederschlag, Gewitter, Nebel.
14
2.4 Klimadaten der Station Randecker Maar
An der in geringer Entfernung und auf ungefähr gleicher Höhe (764 m) liegenden Wetterstation Schopfloch be-
trägt die mittlere Jahrestemperatur 6,9°C, der mittlere Jahresniederschlag 1065 mm. Während der Beobachtungs-
periode liegen die Mittelwerte bei 15,7°C/120 mm im Juli, 15,2°C/108 mm im August, 12,1°C/93 mm im Septem-
ber, 7,2°C/72 mm im Oktober und 2,6°C/70 mm im November.
Im Albvorland (Kirchheim, 315 m) beträgt die mittlere Jahrestemperatur 9,0°C bei einem Niederschlag von
752 mm. Der Nordrand der Schopflocher Berghalbinsel, auf der die Station liegt, gehört zu den nebelärmsten
Punkten des mittleren Württemberg. Die Nebel des Albvorlandes steigen am nördlichen Steilabfall selten über
600 m NN hoch.
2.5 Abkürzungen
RM: Randecker Maar
CB: Col de Bretolet
S-Reuse: nach Norden geöffnete Reuse, die nach Süden fliegende Insekten fängt
N-Reuse: nach Süden geöffnete Reuse, die nach Norden fliegende Insekten fängt
©": Männchen
9: Weibchen
3. Ergebnisse
3.1 Schwebfliegenarten am Randecker Maar
Eine vollständige Artenliste der am Randecker Maar beobachteten Schwebfliegen liegt bereits vor
(Schmid & Gatter 1988). Hier werden deshalb nur die Arten berücksichtigt, von denen genug Material
(>50 Ex.) vorhanden ist, um gut begründbare Aussagen über ihre Phänologie zu treffen (Tab. 2).
Nach der Ernährungsweise der Larven lassen sich bei Schwebfliegen verschiedene Gruppen unter-
scheiden, die hier nacheinander abgehandelt werden:
— Schwebfliegen mit zoophagen (meist blattlausfressenden) Larven;
Abb. 2a: Das nach Norden geöffnete Randecker Maar in der Aufsicht. Aus Norden und Nordosten trifft der Breit-
frontzug auf den 400 m hoch über dem Vorland aufragenden Steilabfall der Schwäbischen Alb. Vögel und Insekten
ziehen bevorzugt durch den Einschnitt des Maars. Der Punkt zeigt die Lage der Station (aus Gatter 1981a).
Fig. 2a: “Randecker Maar” in topview. Migrating birds and insects use the cleft in the 400m steep slope of the
Schwäbische Alb. The spot shows the site of the station.
15
- 800m
— 400m
Abb. 2b: Am Steilabfall der Schwäbischen Alb (im Schnitt dargestellt) kommt es zu einer vertikalen Verdichtung
des Zuggeschehens. Der Punkt zeigt die Lage der Station (aus Gatter 1981 a).
Fig. 2b: Vertical concentration of migrants passing the Randecker Maar. The spot indicates the station site.
Tabelle 2: Zwölfjährige Fangsummen einzelner Arten in der S-Reuse des Randecker Maars. Zum Vergleich sind die
am Col de Bretolet in einem ebenfalls zwölfjährigen Untersuchungszeitraum (1962-1973) gewonnenen Fang-
summen aufgeführt (nach Aubert et al. 1976).
Tab. 2: Total amount of hoverflies trapped in the S-trap (trap with opening to the north) at Randecker Maar during
12 years compared with the data of Col de Bretolet (1962-1973).
vo oNONvpruvuND
16
. Episyrphus balteatus
. Melanostoma mellinum
. Platycheirus clypeatus
. Sphaerophorıa scripta
. Metasyrphus corollae
. Syrphus spec.
. Platycheirus albimanus
. Scaeva pyrastri
. Erıstalis tenax
. Platycheirus manicatus
. Helophilus pendulus
. Rhingia campestris
. Cheilosia pagana
. Sphaerophoria menthastri Gruppe
. Platycheirus peltatus
. Parasyrphus lineolus
. Meliscaeva cinctella
. Helophilus trivittatus
. Scaeva selenitica
. Neoascia podagrica
. Erıstalis arbustorum
. Syritta pipiens
. Erıstalis interrupta
. Erıstalis pertinax
. Melanostoma scalare
Sonstige
Randecker Maar
29546
15937
13450
11856
8426
Ss
1138
885
757
)
724
700
448
233
272
270
247
180
71
120
91
79
69
Su
51
389
90049
32,81%
15,48%
14,94%
13,17%
9,36%
5,72%
1,26%
0,98%
0,84%
0,82%
0,80%
0,78%
0,50%
0,33%
0,30%
0,30%
0,27%
0,20%
0,19%
0,13%
0,10%
0,09%
0,08%
0,06%
0,06%
0,43%
100,00%
Col de Bretolet
1264568
31.373
25
146210
160685
67121
3658
11168
635 294
1476
4189
356
10
127
40
21
180
3
45668
2396539
52,77%
1,32%
0,00%
6,10%
6,71%
2,80%
0,15%
0,47%
26,51%
0,06%
0,17%
0,01%
0,00%
0,01%
0,00%
0,24%
0,04%
0,08%
0,45%
0,00%
0,19%
0,00%
0,00%
0,01%
0,00%
1,91%
100,00%
ET —g
— Schwebfliegen mit terrestrisch lebenden, saprophagen Larven;
— Schwebfliegen mit aquatisch lebenden, sapro-/microphagen Larven;
— Schwebfliegen mit phytophagen Larven.
Innerhalb dieser Gruppen sind die Arten systematisch angeordnet.
Die Artabschnitte sind folgendermaßen gegliedert:
— Verbreitung (nach Angaben von Knutson et al. 1975, Sack 1932, Thompson et al. 1976, Violovitsh
1983, Wirth et al. 1965);
— Angaben zur Biologie: Flugzeit, Generationenfolge, Überwinterung, Häufigkeit;
— Hinweise auf Wanderverhalten;
— Phänologie am Randecker Maar;
— Status: In diesem Abschnitt wird versucht, die Art einer der bekannten Migrationsformen zuzu-
ordnen, wobei wir die als Arbeitshypothese vorgeschlagene Gliederung von Gatter (1981a: 19— 27,
1981c) zugrundelegen (vgl. Abb. 3).
Wander insekten
Dispersionsprozesse
Migrationsformen
Anemomigration
Verdriftung
/
Migration
(Richtungsorientiert)
(Navigierend)
Be
Saisonale Bagzabten
Migration
Saisonale
Migration
Dismigration
Zerstreuungswanderung
Expansive
Dismigration
mit geringer
Rückwanderung)
Saisonale
Migration
mit ausgeprägter
Rückwanderung
monovoltine Arten monovoltine Arten
ohne Diapause \ ohne Diapause
B monovoltine Arten mit Diapause
polyvoltine Arten mit Diapause
polyvoltine Arten ohne Diapause
Saisonale Horizontalwanderungen
Saisonale Vertikalwanderungen
C I et!
Aufsuchen von Diapausequartieren
Habitatwechsel
Abb. 3: Die Migrationsformen der Insekten. Die links mit Buchstaben bezeichneten Bereiche beziehen sich auf ob-
ligatorische Wanderer und bedeuten A) WIE, B) WER und C) WESHALB gewandert wird (aus Gatter 1981 a).
Fig. 3: Insect migration categories. Letters on the left mean A)HOW, B) WHO and C) WHY migration takes place.
177
Die Begriffsbestimmungen sollten dabei nicht als starre, restriktive Einteilung verstanden werden
(Baker 1978). Als Folge der großen biologischen Mannigfaltigkeit der Insektenwanderungen bestehen
zahlreiche Übergänge zwischen einzelnen Migrationsformen (vgl. 4.5.4):
1: Anemomigration (Verdriftung): Passive Verfrachtung flugbereiter Insekten durch den Wind
ohne Richtungsorientierung.
1. Dismigration (Zerstreuungswanderung): Endogen (dispersal) oder exogen (spacing) ausgelö-
ste aktive Zerstreuungswanderungen ohne bzw. mit nur geringer Richtungsorientierung
durch Selektion günstiger Winde.
Innerhalb der Dismigrationen können zwei verschiedene Formen unterschieden werden:
II.1 _Expansive Dismigration (Expansive Zerstreuungswanderung): Aktive Zerstreuungswande-
rung nicht oder nur indirekt richtungsorientiert wandernder Arten, die sich bei der Migration
vom Entwicklungsort entfernen. Sie und ihre Nachkommen kehren nicht zurück.
11.2 _Saisonale Dismigration (Saisonale Zerstreuungswanderung): Aktive saisonale Wanderung
nicht oder nur indirekt richtungsorientiert wandernder Arten in Sommer- bzw. Winterareale
oder Diapausequartiere und zurück. Durch saisonal unterschiedliche Winde (ohne Richtungs-
orientierung) oder Selektion günstiger Winde (indirekte Richtungsorientierung) können sai-
sonal unterschiedliche Hauptstoßrichtungen entstehen.
III. _ Migration (richtungsorientiert) (Richtungsorientierte Wanderung): Wanderungen von Indivi-
duen oder Populationen von Arten mit endogen programmierter Migrationsrichtung (kom-
paßorientiert).
III.1 Expansive Migration (Expansive richtungsorientierte Wanderung): Richtungsorientiert wan-
dernde Arten, die sich auch ohne Einfluß exogener Faktoren vom Entwicklungsort weg in eine
Vorzugsrichtung entfernen. Sie und ihre Nachkommen kehren nicht zurück.
III.2 Saisonale Migration (Richtungsorientierte Saisonwanderung): Richtungsorientierte Wande-
rungen in Sommer- oder Winterareale bzw. Diapausequartiere (Sommer- und Winterruhe)
und zurück, die von Individuen oder Populationen einer Art alljährlich ausgeführt werden.
Unter den Schwebfliegen fehlen Beispiele für reine Anemomigration und für Expansive Migration.
Ein Beispiel für eine Expansive Dismigration ist Volucella zonaria (vgl. 3.2.3).
Zahlreiche Syrphidenarten führen Saisonale Dismigrationen oder Saisonale Migrationen durch. Saisonale Zer-
streuungswanderungen stehen oft in sehr engem Zusammenhang mit dem Entwicklungszyklus einer Art. Sie die-
nen dabei neben dem Aufsuchen von Winter- oder Sommerarealen und von Diapausequartieren auch dem Auf-
suchen von Orten, die der Nachfolgegeneration günstige Entwicklungsbedingungen bieten. Treten z. B. Nah-
rungsressourcen, von denen die Larven einer Art abhängig sind, nicht gleichmäßig in Raum und Zeit auf (z. B.
Blattläuse), können sie durch saisonal dismigrierende Arten schneller und effektiver erschlossen werden.
Dismigrationen können von ganzen oder nur von Teilpopulationen durchgeführt werden; bei Migrationen sind
in vielen Fällen eher ganze Populationen beteiligt.
Saisonal unterschiedliche Winde oder Selektion günstiger Winde können saisonal unterschiedliche Hauptstoß-
richtungen entstehen lassen (bei Dismigrationen) oder solche unterstützen (bei Migrationen).
3.1.1 Schwebfliegen mit zoophagen Larven
Platycheirus albimanus (Fabricius 1781) (= cyaneus Müller 1764)
Verbreitung: holarktisch, orientalisch (Nepal?, Indien?, Philippinen)
Biologie: Platycheirus albimanus ist eine weit verbreitete und häufige Schwebfliegenart, die in vie-
len Lebensräumen angetroffen werden kann, wenn sie auch feuchtere Standorte mit dichtem Pflan-
zenwuchs bevorzugt. Sie ist in Mitteleuropa von (Ende März) Mitte April bis Mitte Oktober (Anfang
18
November) anzutreffen und bildet in Süddeutschland (Schmid 1986) wie in Großbritannien (Stubbs
& Falk 1983) drei Generationen. Die Larven sind meist in der Streuschicht und nur relativ selten an
Blattlauskolonien anzutreffen. Vermutlich leben sie dort zoophag mit weitem Beutespektrum (Rothe-
ray & Gilbert 1989). P. albimanus überwintert als diapausierende Larve.
Anzahl pro Pent. j
Anz. pro Tag (#+) 832 ZmMm3SmUus
1975 - 1987
200 |
Aoa- Ir &: 0: 6. 0 - 94 |
5% 25. 7 J
25% 2.8.
50% 13. 8
H 75% 24.8
95% 18. 9
Lerzabr10r
L
Anzahl pro Pent x
Anzahl pro Pent De 79 Anz. pro Tag (+) g3lbr1ı1m3amı ja
3 7 AOeENAN EIS V
inz. pro Tag (+) | 1975 - 1987
50 1975 - 1987 100 v Y v
25+[ Vu NV a Sa |r ar: 16.7 0 = 51 -
Er. 19. 6 (E 18 | 5425. 7 12 J 615
5 12 J= 218 Er mm
Ber a |
ul. 6.8.75 2 16. 7.76 3
40 80 z
50.1 50% 8.8. 25.7.76 27 on Zar Al nl 15. 8.77 1]
JS 6RLOR 28. 7.78 1 | 95% 19. 9 26. 7.78 7
2 9.0. AN. Tee) 1 | Le. 6.10. | 4.10.79 1
Le. 16.9. 1. 8.80 17 | 7
Bor |! 6.8.81 Hi 7
15 + 29. 7.82 4 7
14. 8.87 22 8
20
49 + 1
10 a
5+
1 al a Ulm h
b Jun Jul Aug Sep Okt
Abb. 4a: Nach Süden gerichtete Migration von Platycheirus albimanus in den 12 Jahren 1975-1982 und
| 1984— 1987 in Tages- und Pentadensummen (1.—5. Jan., 6.— 10. Jan. etc.). Auf der Ordinate werden Tagessummen
(untere Zahl, mit + markiert) und Pentadensummen (obere Zahl) angegeben. An welchem Tag 5, 25, 50, 75 und
| 95% der Gesamtsumme durchgezogen sind, kann links oben abgelesen werden. Die dreieckigen Pfeile über dem
| Diagramm kennzeichnen die Lage der 25 %-,50 %- und 75 %-Werte. Rechts oben kann die Zahl aller im 12jährigen
\ Untersuchungszeitraum gefangener Tiere (n) und der Jahresdurchschnitt (©) abgelesen werden. Darunter ist für je-
des Jahr die maximale Tagessumme aufgeführt.
Fig. 4a: Migration of Platycheirus albimanus in southerly direction over 12 years (1975-1982; 1984-1987) with
the sum of days and the sum of 5-day periods (1.-5. Jan., 6.— 10. Jan. ....). Sum of days (lower number, marked
| with +) and sum of 5-day periods (upper number) are shown on the ordinate. On the left upper side is shown on
| which day 5, 25, 50, 75 or 95% of total have passed. The triangles show the position of 25%, 50% and 75 % values.
| Above on the right the total number of trapped P. albimanus (n), the annual average (2) and of each year the day
with most specimens are shown.
| Abb. 4b: Nach Süden gerichtete Migration von Platycheirus albimanus-O'C..
ı Fig. 4b: Southbound migration of O'O° of Platycheirus albimanns.
Abb. 4c: Nach Süden gerichtete Migration von Platycheirus albimanus-Q2.
Fig. 4c: Southbound migration of PP of Platycheirus albimanus.
19
3JDIM3NMUS
vahre 1975 — 1987
albIimamus W albimsanus M
vahre 1975 —- 1987 vaehre 1975 - 1987
25%= 164
* 50%= 328
* 75%= 492
Max= 134
*N = 656
N = 596
r T 1 —
6 8 10 12 14 16 18 20 Unr 4
Abb. 4 d: Tageszeitliche Verteilung von Platycheirus albimanus nach Fängen aus der S-Reuse in den Jahren
1975-1982 und 1984— 1987.
Die Stunde, die den 50 %-Wert enthält, ist kreuzschraffiert, die Stunden, die die 25 %- und 75 %-Werte enthalten,
sind eng schraffiert. Die Strichmarkierungen über diesen Säulen bezeichnen die aus Stundenwerten errechnete Lage
des 25 %-, 50 %- und 75 %-Wertes genauer. Die zugrundeliegenden, kumulierten Individuenzahlen sind rechts an-
gegeben (* 25% etc.).
Nur in den Jahren 1975-1977 wurde von Sonnenaufgang bis Sonnenuntergang beobachtet (vgl. Abb. 8b). In den
anderen Jahren endete die tägliche Beobachtungszeit um 16 Uhr. Die Zugbewegungen am Spätnachmittag wurden
aus den dreijährigen Beobachtungen nach 16 Uhr hochgerechnert. Sie sind als weiße Säulen dargestellt.
N gibt die Zahl der tatsächlich gefangenen Schwebfliegen an, *N (ebenso wie alle anderen mit * versehenen Zahlen)
die durch die Hochrechnung der spätnachmittäglichen Zugbewegungen modifizierte Zahl.
Zur Veranschaulichung der Zahlenverhältnisse dient der „Max“-Wert, der für die längste Säule die Zahl der in dieser
Stunde gefangenen Individuen nennt.
Fig. 4d: Diurnal activity pattern of southbound migrating Platycheirus albimanus (1975—1982, 1984— 1987). 50 %
of the total numbers have passed between the early morning and the hour marked by cross hatching. The hour at
which 25% and 75% have passed respectively, are closely hatched. The small lines on top of the vertical bars indi-
cate exactly the position of 25%, 50% and 75 %.
Only in 1975-1977 did observations last from sunrise till sunset. In other years they ended at 4 p.m. The catches
later in the afternoon (white bars) are calculated from the observations in 1975— 1977. N is the real number of caught
albimanus, *N (and other numbers with *) is a fictitious number arrived at by extrapolization of the afternoon cat-
ches from 1975-1977 over the whole period of investigation. “Max” means the number of specimens indicated by
the longest bar.
20
Wanderungen: Obwohl die Art am Col de Bretolet in nicht geringer Zahl gefangen wurde, lassen
Aubert et al. (1976) offen, ob es sich dabei um eine Wanderart handelt („consideree comme migra-
trice“). P. albimanus erscheint am CB während der ganzen Beobachtungsperiode regelmäßig, ohne
daf® Maxima erkennbar wären. Ein weiterer Hinweis auf Wanderungen in den Alpen findet sich nur
bei Prell (1925), der während einer Insektenmigration einige Exemplare sammelte. Aus Norddeutsch-
land liegen Nachweise nicht bodenständiger Individuen von der Insel Scharhörn (Schmid 1987) und
von Feuerschiffen vor (Heydemann 1967). Unter Belegexemplaren wandernder Schwebfliegen aus
Südengland war auch ein albimanus-Q (Parmenter 1960).
Phänologie am Randecker Maar: Hier erscheint die Art in den meisten Jahren in — gemessen an
ihrer Häufigkeit — sehr bescheidenem Ausmaß in den Reusen (Tab. 2, Abb. 4a). Auch wenn man da-
von ausgeht, daß die Spätsommergeneration weniger zahlenstark ist als die Frühlings- und die Som-
mergeneration (Schmid 1986), kann man das als Hinweis darauf deuten, daß wohl keine regelmäßigen
weitreichenden Wanderungen der ganzen oder erheblicher Teile der Population stattfinden. In der S-
Reuse wurden erheblich mehr albimanus gefangen als in der N-Reuse (3,3:1; n = 740). Die Analyse
der Windrichtungen an Hauptflugtagen zeigt, daß albimanus zu einem erheblichen Teil bei Gegen-
winden ausSW, S oder SE (59,1 %) in die S-Reuse fliegt, während bei Rückenwinden aus NW, N oder
NE weniger Tiere gefangen werden (12,9%) (Abb. 26h).
Während die Flugzeit der G'O’Ende August schon fast vorüber ist, werden @ Qdurch den ganzen
September hindurch gefangen (Abb. 4b, 4c). Insgesamt treten OO’ wesentlich spärlicher auf als Q2
(@X07210.—1:258:n 1833)
P. albimanns ist eine Art, die hauptsächlich um die Mittagszeit gefangen wird (Abb. 4d). Knapp die
Hälfte gerät zwischen 11 und 14 Uhr in die S-Reuse.
Status: Saisonaler Dismigrant.
Hauptsächlich Q9 führen im Zusammenhang mit der Suche nach Eiablageplätzen Wanderungen
aus.
Platycheirus clypeatus © (Ph.: U. Schmid)
2
Platycheirus clypeatus (Meigen 1822)
Verbreitung: holarktisch
Biologie: Platycheirus clypeatus ist eine meist häufige, eurytope Art, die sich zu einem großen Anteil
von Pollen blühender Gräser ernährt. Die Flugzeit beginnt (Anfang April) Anfang Mai und endet An-
fang (Ende) Oktober. Innerhalb der Flugzeit werden mehrere Generationen gebildet. Die Larve über-
wintert. Auch c/ypeatus-Larven werden nur selten an Blattlauskolonien gesehen. Meist werden sie in
der Streuschicht gefunden, wo sie vermutlich als unspezialisierte Prädatoren von Bodenarthropoden
leben (Rotheray & Gilbert 1989).
Wanderungen: Zum Wanderverhalten dieser Art gibt es bisher nur wenige Beobachtungen, die
überwiegend aus dem Küstenbereich stammen. Bei starkem Südwind (6 Bft.) und Temperaturen bis
zu 24°C erschienen Tausende von Tieren mit dem Wind auf der 15 km nördlich der niedersächsischen
Küste liegenden und nur 14 ha großen Düneninsel Scharhörn (Schmid 1987). Lucas (in litt.,
24.1.1988) fand im Spülsaum der holländischen Küste bei ’s Gravenzande am 29.8.1987 neben den
Saisonwanderern Syrphus torvus, Metasyrphus corollae und Episyrphus balteatus auch 2 Exemplare
von clypeatus. Auf dem Feuerschiff „Fehmarn-Belt“ wurden innerhalb drei Wochen im Juli/August
20 Exemplare gefangen (Heydemann 1967). Dagegen gerieten am CB im Verlauf von zwölf Jahren le-
diglich 25 clypeatus in die Reuse (Aubert et al. 1976).
Phänologie am Randecker Maar: P. clypeatus ist nach Episyrphus balteatus und Melanostoma mel-
linum die dritthäufigste Art in der S-Reuse (Tab. 2). Sie zeigt ein sehr deutliches Maximum im August
(Abb. 5a) mit Median am 10.8. Die Verteilungskurve ist nahezu symmetrisch. Aus den Diagrammen
einzelner Jahre (Abb. 5b) wird deutlich, daß sie im Einzelfall zwar erheblich vom Summendiagramm
Anzahl pro Pent
Anz. pro Tag (+) elypbestös
3200 1975 - 1987
1600 +[ EN N ’ I
Er. 19.6 () 1120 |
5% 21.7 12 J)= 13450 |
25% 3.8 75 "
2880 5 1
1440 ER we 17 76 181
75% 18. 8 ee 3:
95% 4.9 = EN
Le. 6.10 15. 8.80 98 |
es 1.8. ee]
1280 + Re 51
8.54 172
| fe 12.8.85 175
9.8.86 333
2240 |
1120 + | 8.87 266
[0]
[0]
[0]
+
Abb. 5a: Nach Süden gerichtete Migration von Platycheirus clypeatus (vgl. Legende zu Abb. 4a).
Fig. 5 a: Southbound migration of Platycheirus clypeatus.
22
er u EEE ns: Er Re
abweichen können, insbesondere, wenn nur wenige Tiere gefangen wurden. Das Grundmuster mit
dem ausgeprägten Maximum Mitte August ist aber fast immer deutlich erkennbar.
Das Geschlechterverhältnis ist ausgeglichen (CO: = 1:1,1;n = 10968). Im jahreszeitlichen
Auftreten der beiden Geschlechter liegt der Unterschied vor allem im weitgehenden Fehlen der GC
im September. Deshalb liegt der Median der 0°C (10. 8.) etwas früher als der der P9 (15. 8.) (Abb. 5c,
5d).
Anzahl pro Pent
Anz. pro Tag (+)
800
400 +
560
280 +
320
160 +
80
40 +
1980
r
An. Bee 72
ID SREad. 7,
25% 3.8
| 50% 8.8
r 75% 18. 8
1984
Enmocbe,;
I SR729. 7;
25% 1.8
50% 5.8
I 75% 13. 8
95% 28.8
la. Be)
u ——
Anzahl pro Pent
Anz. pro Tag (+)
800
400 +
550
280 +
320
160 +
8o
40 +
T
L 75% 19
1985
Er. 29
5% 1
25% 9
50% 13
ommmm \n
95% 31
Le. 4.10
Tossa Toms Tamat
Jun
800 1982
400+[
= | 8
560 5%. 20.7
280+| 25% 1.8
50% 15. 8
320 75% 3.9
Acor | R
so Le. 27.9
40 +
Jun
800 1984
400
Ds Er
560 5%
320 | 7%
35%
80 Le
40+|
- T
Jun
bj}
Abb. 5 b: Nach Süden gerichtete Migration von Platycheirus clypeatus in den Jahren 1980 (oben) bis 1987 (unten)
in Tages- und Pentadensummen (1.-5. Jan., 6.-10. Jan. etc.). Auf der Ordinate werden Tagessummen (untere
Zahl, mit + markiert) und Pentadensummen (obere Zahl) angegeben. An welchem Tag 5, 25, 50, 75 und 95% der
Gesamtsumme durchgezogen sind, kann links oben abgelesen werden. Die dreieckigen Pfeile über dem Diagramm
kennzeichnen die Lage der 25 %-, 50 %- und 75 %-Werte.
Rechts oben wird die Jahressumme (n) und ihr Abweichen vom 12jährigen Mittelwert (in %) ausgewiesen. Die dar-
unter aufgeführten vier stärksten Zugtagc erleichtern eine Orientierung ım Diagramm.
Fig. 5b: Southbound migration of Platycheirus clypeatus in the years 1980 (above) to 1987 (below) with the sum of
days and the sum of 5-day periods (see legend of Fig. 4a). On the upper right side the total number of specimens
in each year (n), its deviation from the 12-year-average (in %) and the four days of the year with most migrating
specimens are shown.
Das tageszeitliche Fangmuster von clypeatus zeigt Abb. 5e: Die Art weist demnach beı nahezu
gleichmäßiger Verteilung einen typischen Höhepunkt am frühen Nachmittag auf. (Die nach Fängen
von 1975-77 extrapolierten Spätnachmittagsdaten nach 16 Uhr sind im Diagramm mit Sicherheit un-
terrepräsentiert.) Dieses Muster ist durchgängig zu beobachten (Abb. 5h). Ein geschlechtsspezifischer
Unterschied besteht in der längeren Aktivitätsphase der OO’ gegenüber einem deutlicheren nachmit-
täglichen Aktivitätsmaximum der PQ (Abb. 5f und 5g).
2%
Anzahl pro Pent
Anz. pro Tag (+) clypegtus W
1300 _ 1975 - 1987 TER ©
SE ERROLE 0=- an
5% 29.7 12 J= 5646
285% 7.8
alaiv [Ess lan & : z in 4
ea0+| mes. 8 25.8.7 29
95x 11729 6.8.79 69
ua Naraelıl 26. B.80 33
1120 | 1.0.01 89|
560 + POREIMBE 41
2.8.84 37
ale has 73
980 9.8.86 129
490 + 21. 8.87 118 4
Anzah! pro Pent |
Anz. pro Tag (#) erivBbezazlSs
1200 Kassel re sao |
SEE en ee © f) 443 420 + h 4
' K 12 U= 5322 |
5% 28 |
| 25% 3.8 6.8.5 2 |
o 50% 10. 8 m 700 | |
ln = u 3 15 = ) 350 + 12] ’
| 35% 31.8 | I ] 2.8.79 49
2 ] 1.8.80 67 |
eco | | 1.8.81 142 |
40 20. 7.82 40
2.8.84 135
| 12.8.8565 105
- | | 10. 8.86 221
Sc | ) 22.8.87 166 -
300 +
|
c ! um Jul ver. Se ee [6 | Jun Jul Aug Sep Okt
Abb. 5c: Nach Süden gerichtete Migration von Platycheirus clypeatus-C'O (vgl. Legende zu Abb. 4a).
Fig. 5c: Southbound migration of OO’ of Platycheirus clypeatus.
Abb. 5d: Nach Süden gerichtete Migration von Platycheirus clypeatus-? (vgl. Legende zu Abb. 4a).
Fig. 5d: Southbound migration of PP of Platycheirus chypeatus.
eIYPE3aLUS ce/ypeatus M
Jeanne 1.975 — 71987 vehre 1975 —- 1987
e f
* 25%= 3427 * 25%= 1399
S * 50%= 5854 * 50%= 2797
* 75%= 10281 * 75%= 4196
f Max= 1726 Max= 692
— * N = 13707 * N = 5594
RSS Je N = 12560 N = 4979
a 6 B 10 12 14 16 fi 18 m ; Unr a uhr
Abb. 5e: Tageszeitliche Verteilung von Platycheirus clypeatus (vgl. Legende zu Abb. 4d).
Fig. 5e: Diurnal activity patterns of Platycheirus clypeatus migrating southward.
Abb. 5f: Tageszeitliche Verteilung von Platycheirus clypeatus-I’T (vgl. Legende zu Abb. 4d).
Fig. 5f: Diurnal activity patterns of OO’ of Platycheirus clypeatus migrating southward.
24
Eine Analyse der Windrichtungen an den jeweils vier individuenreichsten Tagen aller Jahre
(Abb. 26i) ergibt, daß 29,2% der Fliegen bei Rückenwinden aus NW, N oder NE in die S-Reuse flo-
gen, 55,8% bei Gegenwinden aus SW, S oder SE (vgl. 3.4).
celypeatus
vahre 1975 — 1987 vanre 1975 —- 1977
4 f en 8 10 12 14 16 Ten ai 4.6 8 10 12 14 46 4B 20 Unr
Max= 39
30.9. \ N= 193
K NS
Max= 151
N= 871
cl/ypestus W
Max= 469 ei I Max= 18
16.- >16h= 2.3 %
N= 3070 31. 8. Y N= 88
[S Ih
vehre 19753 - 1987
Max= 880
*N= 7253 de
N= 6471 15.8
Max= 29
>416h= 12.1 %
I
Nas rag] N” 340
Zur rn — a EEE ra SE nn EB
EEE nn ET an
20 Unr 4 6 8 10 ı2 14 16 1B 20 Uhr 4 6 8 10 12 44 16 418 20 Uhr
Abb. 5g: Tageszeitliche Verteilung von Platycheirus clypeatus-QQ (vgl. Legende zu Abb. 4d).
Fig. 5g: Diurnal activity patterns of QP of Platycheirus clypeatus migrating southward.
Abb. 5h: Tageszeitliche Verteilung von Platycheirus clypeatus im Jahresverlauf nach Fängen aus der S-Reuse in den
Jahren 1975— 1977 (rechts; Erfassung von der Morgen- bis zur Abenddämmerung) und 1975— 1987 (links; Erfas-
sung bis 16.00 Uhr).
Die Einzeldiagramme zeigen die tageszeitliche Verteilung der Fänge in Halbmonatswerten von Juli bis November.
Die Stunde, die den 50 %-Wert enthält, ist kreuzschraffiert, die Stunden, die die 25 %- und 75 %-Werte enthalten,
sind eng schraffiert. Die Strichmarkierungen über diesen Säulen bezeichnen die aus Stundenwerten errechnete Lage
des 25 %-,50 %- und 75 %-Wertes genauer. Die Höhe der Maximalwerte der Einzeldiagramme ist vereinheitlicht.
Die Zahl der im betreffenden Zeitraum gefangenen Individuen (N) und der höchste Stundenwert (Max) ist jeweils
rechts angegeben. Die Tageszeit ist unten aufgetragen (Abszisse). Die flankierenden Begrenzungslinien zeigen den
Zeitpunkt des Sonnenauf- und Sonnenuntergangs für Stuttgart (Astronomisches Recheninstitut Heidelberg).
In der rechten Spalte ist mit >16 Uhr die Zahl der nach 16 Uhr gefangenen Fliegen angegeben. Auf dieser Basis wur-
den für die linke Spalte die “N-Werte hochgerechnet und die 25 %-,50 %- und 75 %-Werte errechnet. Damit sind
Schraffur und Markierungen beider Darstellungen rechnerisch und optisch vergleichbar.
Fig. 5h: Diurnal activity patterns of Platycheirus clypeatus migrating southward throughout the year in 19751977
(on the right; observations from sunrise to sunset) and in 1975-1987 (on the left; observations till 4 p.m.) (see le-
gend of Fig. 4d). Each diagram shows the diurnal pattern of a fortnight between July and November. On the right,
the total number of specimens (N), the number of specimens in the most frequented hour (Max) and after 4 p.m.
(>16h) are shown. *N is a fictitious number arrived at by extrapolization of afternoon catches from 1975— 1977
over the whole period of investigation. In all diagrams the 25 %, 50 %, and 75 % values are calculated from *N.
The side lines of the columns show the time of sunrise (left) and sunset (right).
72)
Das weitgehend ausgeglichene Verhältnis der Fangzahlen zwischen S-Reuse und N-Reuse (1,7:1;
n = 5964) (Abb. 27c) ist ein Hinweis darauf, daß Platycheirus clypeatus zumindest im bodennahen Be-
reich ohne ausgeprägte Richtungspräferenz wandert.
Status: Windabhängiger Saisonaler Dismigrant.
Die Beobachtungen aus dem Küstenbereich und vom RM zeigen, daß c/ypeatus regelmäßig und oft
in großer Zahl wandert. Das Fehlen von Wanderbeobachtungen der Art in den Alpen läßt darauf
schließen, daß sie nicht ın der Lage ist, größere vertikale Distanzen zu überwinden.
Platycheirus manicatus (Meigen 1822)
Verbreitung: Europa, Altaı
Biologie: Die eurytope Art P. manicatus fliegt von (Mitte) Ende April bis Ende September (Mitte
Oktober) und bildet in Mittel- und Nordeuropa vermutlich zwei Generationen, wobei die Frühjahrs-
generation wesentlich zahlenstärker als die Spätsommergeneration ist. P. manicatus ist weit verbreitet
und nicht selten. Im Larvenstadium ist manicatus vermutlich nicht obligatorisch, sondern fakultativ
aphidophag (Chandler 1968a). Die Larve überwintert in Diapause.
Anzahl pro Pent
Anz. pro Tag (+) MSNIZEcEsgteus
140 1975 - 1987 a : .
70 + [ Er ee () 61
r ou
| 5% 26. 7 | ] ; =
25% 6.8 | 0.9.7
120 | ie] 0.. 9.78 8
E05 1a. || 1.77% N
| 75% 25. 8 | ar BUY, |
95% 12.9 DE Ei
| Le. 6.10 | 6.8.79 1
100 L | | 26. 8.80 35 |
50+| | | 15. 8.81 16
| 8 11
| 8 18
|
80 |
20+| | A
o
30 +
40 |
|
4
|
———— © ill
a Jun Jul Aug Sep J Okt
Abb. 6a: Nach Süden gerichtete Migration von Platycheirus manicatus (vgl. Legende zu Abb. 4a).
Fig. 6a: Southbound migration of Platycheirus manicatus.
Wanderungen: In den Alpen ist der Status von manicatus unklar. Aubert et al. (1976) lassen offen,
ob die Art wandert („consideree comme migratrice“). Das Fangdiagramm weist ein sehr deutliches
Maximum in der letzten August- und der ersten Septemberdekade auf. Ein weiterer Hinweis auf Wan-
derung in den Alpen findet sich bei Burmann (1978). Funde von manicatus auf Feuerschiffen und In-
seln (Heydemann 1967, Schmid 1987) geben Hinweise darauf, daß die Art Wandertendenzen auf-
weist. Auch in Südengland wurde aus wandernden Schwebfliegen ein ©’ von manicatus gefangen (Par-
menter 1960).
26
Phänologie am Randecker Maar: Die Unterschiede zwischen der Anzahl der Fänge in beiden Reu-
sen (Abb. 27d) sind bei dieser Art sehr gering (S-Reuse :N-Reuse = 1,5:1;n = 826), so daß zweifelhaft
erscheint, ob manicatus im Herbst gerichtete Sidwanderungen durchführt. Die Fangzahlen sind aller-
dings angesichts der Spärlichkeit der Spätsommergeneration von P. manicatus recht hoch (Tab. 2).
MIMICIEUS Mamicatcus M
vahre 1975 —- 1987 veahre 1975 - 1987
* 25%= 186
vehre 1975 — 1987
Abb. 6b: Tageszeitliche Verteilung von Platycheirus manicatus (vgl. Legende zu Abb. 4d).
Fig. 6b: Diurnal activity patterns of Platycheirus manicatus migrating southward.
Abb. 6c: Tageszeitliche Verteilung von Platycheirus manicatus-J'J (vgl. Legende zu Abb. 4d).
Fig. 6c: Diurnal activity patterns of OO’ of Platycheirus manicatus migrating southward.
Abb. 6d: Tageszeitliche Verteilung von Platycheirus manicatus-?Q (vgl. Legende zu Abb. 4d).
Fig. 6d: Diurnal activity patterns of @ of Platycheirus manicatus migrating southward.
Am Randecker Maar wird P. manicatus überwiegend im August gefangen (Abb. 6a). Die Phänolo-
gie dieser Artam RM zeigt große Ähnlichkeit mit der am CB. Der einzige Unterschied liegt in der zeit-
lichen Versetzung des Maximums: Mitte August am RM, Ende August/Anfang September am CB.
Das Gros der O'CJ erscheint etwas vor dem der 2 (Median der CC’: 13.8.; Median der PP: 17.8.).
QQ werden etwas häufiger gefangen (J'O':Q 9 = 1:1,2;n = 550).
Während der wärmeren Vor- und Nachmittagsstunden gerät P. manicatus ziemlich gleichmäßig ın
die S-Reuse (Abb. 6b). Die Flugaktivität der O’C° ist am Vormittag deutlich höher als die der P
(Abb. 6c, 6d).
An starken Flugtagen gerät ungefähr die Hälfte (52,5%) der Fliegen bei Gegenwind aus SW, S oder
SE in die S-Reuse, ungefähr ein Viertel (24,2%) bei Rückenwinden aus NW, N oder NE (Abb. 26k).
Status: Saisonaler Dismigrant (?).
Die gleichartige Phänologie der Art am RM und CB mit der zeitlichen Medianverschiebung zwi-
schen RM (früher) und CB (später) lassen großräumige Wanderungen vermuten, die über den Rah-
men einer Dismigration hinausgehen (vgl. 4.1). Die geringen Unterschiede zwischen beiden Reusen
stellen allerdings solche weitreichenden richtungsorientierten Wanderungen der Gesamtpopulation
in Frage. Auch verhält sich manicatus gegenüber unterschiedlichen Windrichtungen wie der typische
Dismigrant P. chypeatus (Abb. 26i, 26k; vgl. 3.4). Vermutlich haben die Ähnlichkeiten der Phänologie
am RM und CB regionale Ursachen und spiegeln nur die Flugzeit der Herbstgeneration am jeweiligen
Ort wider. Um den Status dieser Art endgültig zu klären, bedarf es weiterer Beobachtungen.
27,
Platycheirus peltatus (Meigen 1822)
Verbreitung: holarktisch
Biologie: Die Art ist weit verbreitet und zahlreich. Sie fliegt zwischen (Ende März) Mitte Mai und
Mitte (Ende) Oktober mit Maxima im Mai/Juni und August/September. Die Larve ist vermutlich fa-
kultativ aphidophag (Chandler 1968). P. peltatus überwintert als Larve ın Diapause.
Wanderungen: Die einzigen Hinweise auf mögliche Wanderungen stammen aus dem Küstenbe-
reich, wo einige Individuen auf Feuerschiffen und einer Insel gefangen wurden (Heydemann 1967,
Schmid 1987). In den Alpen trat P. peltatus nicht als Wanderer in Erscheinung (Tab. 2; Aubert et al.
1976).
Anzahl pro Pent.
Anz. pro Tag (#) BWedIeEnee)S
1975 - 1987
22 Aue] R A| v 2.
ans la BD = 22
7
BABEITEBr 12 J 272
25% 14. B. 2.9.5 N
so | 50% 17.8. |
25 + 25.68.77 6
LOrSUTERE 152387779 16
si Es: 29. 8.80 10
Eer230r,9 16. 8.81 20
so | 18. 8.82 g |
40 +
Zoe N
zians5
so
30 +
50
eo
40 |
20 +
30 |
15 +
peltatus
20 A Jahre 1973 71987:
De b
= 2 * 25%= 64
= * 50%= 128
* 75%= 192
Max= 39
*N = 256
N = 256
r "a ame = | uf
a sr Sn AUS Sei elSıs > unr
Abb. 7a: Nach Süden gerichtete Migration von Platycheirus peltatus (vgl. Legende zu Abb. 4a).
Fig. 7a: Southbound migration of Platycheirus peltatus.
Abb. 7b: Tageszeitliche Verteilung von Platycheirus peltatus (vgl. Legende zu Abb. 4d).
Fig. 7b: Diurnal activity patterns of Platycheirus peltatus migrating southward.
Phänologie am Randecker Maar: P. peltatus wird überwiegend im August gefangen (Abb. 7a). CC
sind dabei wesentlich seltener als 9 (I’T':Q9 = 1:5,8;n = 203). In der S-Reuse werden mehr pel-
tatus gefangen als in der N-Reuse (3,0:1;n = 262) (Abb. 27e).
Das tageszeitliche Muster zeigt, von den frühen Morgenstunden abgesehen, eine gleichmäßig hohe
Aktivität (Abb. 7b).
Status: Saisonaler Dismigrant.
An den bodennahen Wanderungen nehmen überwiegend @ Q, wohl auf der Suche nach günstigen
Eiablageplätzen, teil.
28
Melanostoma mellinum (Linnaeus 1758)
Verbreitung: holarktisch, neotropisch? (Argentinien?)
Biologie: Melanostoma mellinum ist eine eurytope, meist sehr häufige Art, die in Mitteleuropa von
(Anfang) Mitte April bis Mitte Oktober (Mitte November) zu sehen ist. Innerhalb dieser Zeit sind oft
zwei Maxima im Frühsommer und im Spätsommer zu erkennen. Die größte Häufigkeit erreicht mel-
linum im Spätsommer. Melanostoma-Larven sind an Blattlauskolonien relativ selten. Häufiger kön-
nen sie in der Streuschicht gefunden werden (Rotheray & Gilbert 1989). Inwieweit dort auch pflanz-
liches Material aufgenommen wird, ist umstritten. Rotheray (1983) und Gilbert (1986) vermuteten,
Anzahl pro Pent.
Anz. pro Tag (+) me221mwum
3600 1975 - 1987 N:
SoSe a 7. D= 1161
BE. 7 12 U = 13937
s 25% 8.8. 15. 8.75 64
Pr GEIU SEISEE 16. 7.76 3
75% 23. 8. 17. 8.77 34
95% 11.9. 15. 8.78 436
Le. 13.10. 2.8.79 75
2sso | 15. 8.80 72
279 105% 7). 8.81 4177
26. 8.82 86
2.8.84 16
14. 8.85 244
BBeen 15. 8.86 109
1.9.87 209
mEell1MUM
vahre 1975 —- 1977 vehre 1975 — 1987
25%= 193 * 25%= 3759
9
B 10 12 14 16 18 20 Uhr
Abb. 8a: Nach Süden gerichtete Migration von Melanostoma mellinum (vgl. Legende zu Abb. 4a).
Fig. 8a: Southbound migration of Melanostoma mellinum.
Abb. 8b: Tageszeitliche Verteilung von Melanostoma mellinum in den Jahren 1975-1977 (vgl. Legende zu
Abb. 4d).
Fig. 8b: Diurnal activity patterns of Melanostoma mellinum migrating southward in 1975— 1977.
Abb. 8c: Tageszeitliche Verteilung von Melanostoma mellinum in den Jahren 1975-1987 (vgl. Legende zu
Abb. 4d).
Fig. $c: Diurnal activity patterns of Melanostoma mellinum migrating southward ın 1975-1987.
29
mellinum M mellinum W
vahre 1975 — 1977 vehre 1975 — 1977
h D\ S =
6 8 10 12 14 16 18 20 Uhr 4 6 8 10 12 14 16 18 20 Uhr
Abb. 8d: Tageszeitliche Verteilung von Melanostoma mellinum-J'C (vgl. Legende zu Abb. 4d).
Fig. 8d: Diurnal activity patterns of O’C’ of Melanostoma mellinum migrating southward.
Abb. 8e: Tageszeitliche Verteilung von Melanostoma mellinum-QQ (vgl. Legende zu Abb. 4d).
Fig. 8e: Diurnal activity patterns of PP of Melanostoma mellinum migrating southward.
daß mellinum-Larven auch verrottete Blätter aufnehmen. In einer jüngeren Arbeit (Rotheray & Gil-
bert 1989) vertreten sie dagegen die Auffassung, daß die Art rein zoophag sei und in der Streuschicht,
als Alternative zur bevorzugten Blattlausbeute, Bodenarthropoden nachstelle. Nach Bastian (1986)
gehört bei Nahrungsmangel neben Schmetterlingsraupen auch pflanzliches Gewebe zum Nahrungs-
spektrum von mellinum. Die Art überwintert im Larvenstadium.
Wanderungen: Am Col de Bretolet wurde M. mellinum so zahlreich in den Reusen gefangen, daß
Aubert et al. (1976) die Art als Wanderer bezeichnen (Tab. 2). Mellinum kommt dort während der
ganzen Beobachtungsperiode vor. Zwischen Mitte Juli und Mitte September ist sie immer häufig,
ohne daß Maxima erkennbar wären. Prell (1925) fing an einem Paß in den Vierwaldstätter Alpen wäh-
rend einer Insektenwanderung auch Belege von mellinum.
Aus dem Flachland fehlen entsprechende Beobachtungen. Angesichts der überall sehr großen Häu-
figkeit dieser Art sind Beobachtungen an Stellen, die nur durch Wanderung zu erreichen sind, wie
z. B. Nordseeinseln ohne bodenständige Populationen und Feuerschiffe, ziemlich spärlich (Heyde-
mann 1967, Lempke 1962, Schmid 1987).
Phänologie am Randecker Maar: Melanostoma mellinum ist nach Episyrphus balteatus die zweit-
häufigste in der S-Reuse gefangene Art (Tab. 2). Sie wird hauptsächlich im August gefangen und weist
in diesem Monat einen starken Höhepunkt auf. Der Median liegt am 15.8. (Abb. 8a). GC erscheinen
in wesentlich geringerer Zahl als PP (CT: PQ = 1:3,6; n = 11974). Die Phänologie beider Ge-
schlechter unterscheidet sich im wesentlichen nur dadurch, daß die GC (25% am 5.8., Median am
15.8., 75% am 20.8.) etwas früher auftreten als die PP (25% am 12.8., Median am 16.8., 75% am
26.8.).
Für M. mellinum ist eine ausgesprochen lange tägliche Aktivität typisch (Abb. 8b, 8c). Der im Dia-
gramm erkennbare Gipfel ın den frühen Morgenstunden geht auf das Konto der ?2 (Abb. 8e); die
IT zeigen dagegen einen gleichmäßigen Aktivitätsanstieg bis Mittag (Abb. 8d). In der S-Reuse wur-
den an den vier individuenstärksten Tagen aller Jahre 64,6 % der Tiere bei Gegenwinden ausSW,S und
SE gefangen, 22,3 % bei Rückenwinden aus NW, N oder NE (Abb. 261). Auch diese kleine und wenig
flugtüchtig scheinende Art kann also durchaus gegen schwache Winde anfliegen. Sie wandert vermut-
lich bei Rückenwinden zu einem erheblichen Teil oberhalb des Fangbereiches der Reusen.
Die Unterschiede in den Fangzahlen zwischen S-Reuse und N-Reuse sind nicht allzu hoch (2,4:1;
= 6678) (Abb. 27f).
Status: Saisonaler Dismigrant.
30
Auch bei dieser Art dominieren PP. Die meisten dieser PP haben fast kugelförmig angeschwol-
lene Hinterleiber. Ihre Wanderungen dürften hauptsächlich dazu dienen, günstige Eiablageplätze zu
finden (vgl. 4.4.4). Das weitgehende Fehlen dieser sehr häufigen Art an isolierten Beobachtungsstatio-
nen (z. B. Feuerschiffe) deutet darauf hin, daß ihre Wanderungen nur über kurze Distanzen führen.
Da mellinum selbst im Bereich der alpınen Matten in großer Zahl beobachtet werden kann, können
auch viele der am CB gefangenen Tiere aus der näheren Umgebung stammen.
Melanostoma scalare (Fabricius 1794)
Verbreitung: paläarktisch, orientalisch
Biologie: Melanostoma scalare ist, wenngleich immer noch häufig, so doch weniger zahlreich als
mellinum. Die Art ist besonders an waldigen Standorten zu finden. Die Flugzeit stimmt mit der von
mellinum überein. Auch scalare weist gewöhnlich zwei Maxima auf. Besonders häufig ist die Art im
Frühjahr. Die Larve überwintert. Ihre Ernährungsweise dürfte der von M. mellinum entsprechen.
Wanderungen: Am Col de Bretolet wurden fast keine scalare gefangen (Tab. 2). Auch weitere Hin-
weise auf Wanderungen im Alpenraum fehlen. Aus Norddeutschland liegen einige wenige Funde
nicht ansässiger Tiere von Feuerschiffen (Heydemann 1967, Lempke 1962) und von der Insel Schar-
hörn vor (Schmid 1987).
Phänologie am Randecker Maar: Die häufige Art wurde auch hier so selten in den Reusen gefangen
(Tab. 2), daß regelmäßige Wanderungen oder gelegentliches Verdriften in größerem Ausmaß ausge-
schlossen erscheint.
Status: Saisonaler Dismigrant mit sehr geringer Wanderdisposition.
Anzahl pro Pent
Anz. pro Tag (#) v2
1000 1975 - 1987 NER:
50o0o+[ ]
"7 2% 0.6
I Tl
rare
co
>
n
wo
®
—
nm
voomomsmmmmm m n
Dom mmmssusnsmn
ouLLnD-OoSDBHoNJau
o [nt [e]
[e]
S
[2]
>
Abb. 9a: Nach Süden gerichtete Migration von Syrphus vitripennis und Syrphus ribesü (vgl. Legende zu Abb. 4a).
Fig. 9a: Southbound migration of Syrphus vitripennis und Syrphus ribesii.
31
Anzahl pro Pent.
Anz. pro Tag (+) VIREN ENTER SEN
300 _ 1975 - 1987 n Al, !
an Ei: nie
5% 30.7 =
SSR dr 14. 8.75 4
wenn. 23. 8.76 44
er re Sr ;
ee 15. 8.78 g
Le. 10.10 14. 8.79 28
240 17. 9.80 5
seo 3.8.81 17
3.7.82 8
21. 8.84 37
210 59.8585 38
| | 20 3
Anzahl pro Pent .:
Anz. pro Tag (+) NEST 31 W |
240 1975 - 1987 186 | |
120+[ mlz Bo |
200 150 ! |
100+|[ 75+| |
i)
N
F
160 ıB 120 | |
een so+| |
1
II
120 so | ll: I |
za: 45 + { 53
1!
eu 80 if) |
Fr
40 + +
a |
20 +
TIDESII W
le lee — EEE
x
25%= 444
50%= 888
75%= 1332
Max= 253
N = 1776
N = 1549
* *
*
4 6 B 10 12 14 16 18 20 Unr
Abb. 9b: Nach Süden gerichtete Migration von Syrphus ribesü-QQ (vgl. Legende zu Abb. 4a).
Fig. 9b: Southbound migration of PP of Syrphus ribesii.
Abb. 9c: Nach Süden gerichtete Migration von Syrphus vitripennis-QQ (vgl. Legende zu Abb. 4a).
Fig. 9c: Southbound migration of PP of Syrphus vitripennis.
Abb. 9d: Tageszeitliche Verteilung von Syrphus ribesü-Q 9 (vgl. Legende zu Abb. 4d).
Fig. 9d: Diurnal activity patterns of QQ of Syrphus ribesii migrating southward.
32
VIETIDENMIS W
vahnre 1975 — 1987
* 25%= 274
* 50%= 548
* 75%= 821
Max= 177
* N = 1095
N = 1022
Uhr
Abb. 9e: Tageszeitliche Verteilung von Syrphus vitripennis-QQ (vgl. Legende zu Abb. 4d).
Fig. 9e: Diurnal activity patterns of PP of Syyrphus vitripennis migrating southward.
Syrphus ribesii (Linnaeus 1758)
Syrphus torvus Osten Sacken 1875
Syrphus vitripennis Meigen 1822
In den meisten Jahren wurde nur aufgrund der bei Sack (1932) genannten Kennzeichen zwischen
den Syrphus-Arten unterschieden. Die OO’ des Artenpaares rıbesi/vitripennis sind damit aber nicht
zuverlässig zu unterscheiden. Die drei häufigeren Syrphus-Arten werden deshalb hier gemeinsam ab-
gehandelt. Syrphus rıbesii und S. vitripennis dürften am RM in ungefähr gleich großer Häufigkeit vor-
kommen, Syrphus torvus ist hier wesentlich seltener.
Verbreitung: rıbesu: holarktisch; torvus: holarktisch, orıentalisch (Indien, Nepal, Thailand, For-
mosa); vitripennis: holarktisch, orientalisch (Formosa).
Biologie: Alle drei Arten sind weit verbreitet und gehören ın vielen Jahren zu den häufigsten
Schwebfliegenarten. Sie sind eurytop, wobei torvus seinen Schwerpunkt ın Waldbiotopen hat. Sie
überwintern als Diapause-Larven. Der Lebenszyklus von ribesiz wurde von Schneider (1948) nach
Daten aus der Schweiz genauer dargestellt: demnach können Imagines zwischen Mitte April (in Bel-
gien Mitte März; Verlinden & Decleer 1987) und Mitte November gesehen werden. In dieser Zeit wer-
den maximal vier Generationen gebildet. Meist treten jedoch nur zwei bis drei Generationen auf, weil
ein Teil der Altlarven — im Frühjahr weniger, im Herbst immer mehr — in Diapause geht. Insgesamt
ergibt sich so eine lange Flugzeit mıt Maxima ım Frühjahr und im Frühherbst.
Für S. torvus (Flugzeit [Mitte März] Anfang April bis Mitte Oktober) und $. vitripennis (Flugzeit
[Ende März] Mitte April bis Mitte Oktober [Ende November) sind ähnliche Verhältnisse zu erwar-
ten.
Syrphus-Larven sind aphidophag mit einem weiten Beutespektrum (Läska & Stary 1980) und so-
wohl auf Bäumen als auch an Büschen und Kräutern zu finden (Dixon 1960, Rotheray & Gilbert
1989).
Wanderungen: Gatter (1980) beobachtete im Mai 1979 ım Himalaya nordwärts gerichtete Dipte-
renwanderungen über einen 5400 m hohen Paß. Unter den 15 gesammelten Belegexemplaren gehör-
ten 6 zur Gattung Syrphus (4 S. rıbesii). Zahlreiche Beobachtungen von sommerlichen Südwanderun-
gen liegen von allen drei Arten sowohl aus dem Gebirge (Alpen: Aubert et al. 1976, Burmann 1978,
Gepp 1975, Jeekel & Overbeek 1968; Pyrenäen: Snow & Ross 1952, Williams et al. 1956) als auch von
Feuerschiffen und von den Küsten vor (Heydemann 1967, Lempke 1962, Mackworth-Praed 1929,
Overgaard Nielsen 1968, Schmid 1987). Syrphus ribesüi ist sogar von Spitzbergen nachgewiesen (Elton
1925). Ein ganzer Schwarm von ribesii wurde am 5.8.1957 nachts 200 km vom dänischen Festland
entfernt von einem hell erleuchteten Fischereiboot angezogen. „Die Menge der einfallenden Fliegen
war so groß, daß sie eine heftige Belästigung der auf dem Deck arbeitenden Mannschaft... darstellten“
(Weidner 1958). Auch in Lichtfallen auf Helgoland war ribesii mit Abstand die häufigste Schwebflie-
genart (Gatter 1981a: 67).
33
Alle drei Arten wurden von Aubert et al. (1976) als Wanderer eingestuft.
Phänologie am Randecker Maar: Die Syrphus-Arten werden hauptsächlich im August gefangen
(Abb. 9a). Die deutliche Zweigipfeligkeit des Diagramms kommt durch die unterschiedlichen Zugzei- |
ten der Syrphus-Arten zustande. Der erste Gipfel wird hauptsächlich von ribesii, der zweite von vitri-
pennis gebildet. Dies zeigt ein Vergleich der Diagramme der (in allen Jahren sicher bestimmten) O9
von ribesi und vitripennis (Abb. 9b, 9c) deutlich. Daß ribesii (Median am 15.8.) etwas früher fliegt als
vitripennis (Median am 21.8.) deckt sich mit den bei Aubert et al. (1976) gezeigten Diagrammen, die
für ribesii nach einer Zugperiode ohne deutliche Maxima eine starke Abnahme der Zahlen im Septem-
ber zeigen, während vitripennis im September das Maximum aufweist.
Syrphus rıbesiui O (Ph. U. Schmid).
Von vitripennis stammen auch Fernfunde in den Alpen markierter Tiere über eine Distanz von
111 km (Aubert et al. 1969). Während in den Alpen vitripennis (43832 Ex.) wesentlich häufiger ist als
ribesüi (4047), dominiert in den Fängen am Randecker Maar die letzte Art (1582 ausgezählte OP) über
die erste (1046 ausgezählte PP).
Das tageszeitliche Aktivitätsmuster beider Arten unterscheidet sich nur leicht (Abb. 9d, 9e): gegen-
über ribesii hat vitripennis einen etwas späteren Aktivitätshöhepunkt. Ein Vergleich zwischen N-
Reuse und S-Reuse zeigt, daß die Syrphus-Arten überwiegend in der S-Reuse gefangen werden (Abb.
278) (S-Reuse: N-Reuse = 3,6:1). Nach einer Auswertung der Windrichtungen an Hauptflugtagen
fliegen 76,2% der Tiere bei Gegenwind aus SW, S und SE in die S-Reuse und nur 7,5% bei Rücken-
wind aus NW, N oder NE (Abb. 26a).
Status: Alle drei Arten sind Saisonale Migranten.
34
Metasyrphus corollae (Fabricius 1794)
= Eupeodes corollae
Verbreitung: holarktisch, paläotropisch
Biologie: Metasyrphus corollae ist eine eurytope und meist häufige Art. Sie fliegt in Mitteleuropa ab
(ausnahmsweise Ende März) Mitte Mai, bildet mehrere Generationen und ist bis in den Spätherbst
hinein zu sehen. Selbst aus dem im Dezember existieren Beobachtungen (Schneider 1958). In Belgien
ist corollae im Frühsommer mäßig zahlreich, erreicht dann Ende Juli sehr schnell große Abundanzen,
die erst Anfang September wieder schnell nachlassen (Verlinden & Decleer 1987). M. corollae über-
wintert als Puparium (Scott 1939). Die spärlichen mitteleuropäischen Nachweise im zeitigen Frühjahr
lassen vermuten, daß die Zahl der Überwinterer hier nicht sehr groß ist. Im nördlichen Mitteleuropa
und Nordeuropa scheinen überhaupt keine Überwinterungsmöglichkeiten zu bestehen. Hier wan-
dern im Frühjahr befruchtete Weibchen von Süden her ein und bauen neue Populationen auf (Torp
1984). Dementsprechend wird corollae hier erst spät beobachtet. In den Niederlanden, in Dänemark
und in Südnorwegen erscheint die Art erst Mitte Mai (van der Goot 1981, Nielsen 1971, Torp 1984).
Die unspezialisiert aphidophagen Larven von corollae leben hauptsächlich an Büschen und in der
Krautschicht (Dixon 1960, Läska & Stary 1980, Rotheray & Gilbert 1989).
Wanderungen: Die Nordwanderung im Frühjahr ist nicht durch direkte Beobachtungen belegt,
wird aber durch das späte Erscheinen der Art im nördlichen Mitteleuropa deutlich. Dagegen existieren
zahlreiche Daten zu sommerlichen und herbstlichen Wanderungsbewegungen in südliche Richtungen
aus dem Gebirge wie auch von der englischen, schwedischen, dänischen und deutschen Küste (z. B.
Aubert et al. 1976, Aubert & Goeldlin 1981, Gepp 1975, Heydemann 1967, Jeekel & Overbeek 1968,
Johnson 1960, Johnson 1969, Lempke 1962, Overgaard Nielsen 1968, Schmid 1987, Svensson & Jan-
Metasyrphus corollae © (Ph. U. Schmid).
35
Anzahl pro Pent
Anz. pro Tag (+) er oOmMoO ae
2400 1975 - 1987 |
1200+[ INN B
Er. 45.7 | od ‚02
| 7 | 12 U 8426
Sn | ee s e 4.8.75 190
1080+| 75415. 8 5= A 2 %
95% 2.9 2.8.78 4
Le. 10.10 17. 8.79 234
1920 29. 8.80 23
960 + a a
8
B
B
Abb. 10a: Nach Süden gerichtete Migration von Metasyrphus corollae (vgl. Legende zu Abb. 4a) (eingefügte Zeich-
nung aus van der Goot 1981).
Fig. 10a: Southbound migration of Metasyrphus corollae.
zon 1984, Williams et al. 1956). Sowohl im Flachland als auch im Gebirge ist corollae oft einer der häu-
figsten Wanderer. Am Col de Bretolet stellte die Art nach Episyrphus balteatus (52,8%) und Eristalis
tenax (26,5 %) mit 6,7 % die meisten Fänglinge (Tab. 2) und wurde von Aubert et al. (1976) als Wan-
derer eingestuft. Das Durchzugsmaximum liegt im August. Über den Wiederfang markierter Exem-
plare berichten Aubert & Goeldlin (1981).
Phänologie am Randecker Maar: M. corollae wird in großer Zahl gefangen (Tab. 2). Die Art er-
scheint mit einem deutlichen Schwerpunkt in der ersten Augusthälfte (Abb. 10a). SC’ und P9 sind
ungefähr gleich stark vertreten (CO: P = 1:1,1;n = 7545). Die Diagramme der beiden Geschlech-
ter unterscheiden sich nur dadurch, daß PP in der zweiten Augusthälfte und im September etwas
zahlreicher sind (Abb. 10b, 10c).
M. corollae zeichnet sich durch eine lange tageszeitliche Aktivitätsperiode mit einem leichten
Schwerpunkt in den Vormittagsstunden aus (Abb. 10d). Bei QQ ist dieser Vormittags-Schwerpunkt
wesentlich deutlicher ausgeprägt als bei 0°C’ (Abb. 10e, 10f). Das Aktivitätsmuster ändert sich im Jah-
resverlauf durch die mit fortschreitender Jahreszeit zu beobachtende allmähliche Einengung der im
Sommer sehr langen Phase hoher Flugintensität (Abb. 10g). Dieses Aktivitätsmuster unterscheidet
sich grundsätzlich von dem von Grosser (1979) mit Hilfe von Gelbschalenfängen ermittelten. Hier lag
das sehr deutliche Maximum in den ersten drei Morgenstunden (5-8 Uhr). In dieser Zeit sucht corol-
lae also intensiv nach Nahrung; erst in den späteren Morgenstunden setzt dann die Migration ein.
An den Hauptflugtagen fängt sich corollae hauptsächlich bei Gegenwind in der S-Reuse (Abb. 26b):
75,7% aller Fliegen geraten bei SW-, S- oder SE-Wind in diese Reuse, nur 9,2% bei Rückenwind aus
NW,N oder NE.
36
Anzahl pro Pent. Anzahl pro Pent.
Anz. pro Tag (#) ceomNmoI2ZIlIse MM Anz. pro Tag (+) ZEINFEDN NEE W
ee 1975 - 1987
1200 1975 198 au yes “Tr vv 7
Sol 4.7 0 = 303 | Er. 15. 7. B= 35
9,7 12 4= 3644 BE. 7 12 J)= 3904
25% 1. B 4.8.75 A ae e5% 3.8. 4.8.75 79
1080 [50% 4.8 16.7.6 58-1 So | E78 Won €
SO AB Bo 2, 8.7 2 75% 18. 8 Me Be 3
95% 24. 8 2.8.78 12 95% 6.9 15. 8.78 35
Le. 10.10 zul 21. 8.79 85 Le. 9.10 21. 8.79 70
sso | 1.8.80 8 | 960 | 29. 8.80 19
480 + 7.8.81 234 A) =: 3.8.81 270
4.8.82 23 4.8.82 14
3.8.84 220 3. 8.84 61
au0 a a! m
ae Mo 2% 47 Zoe Bil 112
9.8.87 22 22. 8.87 25
720
360 +
800
300 +
a8o
2430 +
s60 |
150 +
240
120 +
120
80 +
Abb. 10b: Nach Süden gerichtete Migration von Metasyrphus corollae-J’C (vgl. Legende zu Abb. 4a).
Fig. 10b: Southbound migration of CO’ of Metasyrphus corollae.
Abb. 10c: Nach Süden gerichtete Migration von Metasyrphus corollae-QP (vgl. Legende zu Abb. 4a).
Fig. 10c: Southbound migration of QQ of Metasyrphus corollae.
Abb. 10d: Tageszeitliche Verteilung von Metasyrphus corollae (vgl. Legende zu Abb. 4d).
Fig. 10d: Diurnal activity patterns of Metasyrphus corollae migrating southward.
Die Schwankungen der jährlichen Fangzahlen sind hoch (Abb. 27h). In den vier Jahren, in denen
beide Reusen betrieben wurden, fingen sich in der S-Reuse dreimal soviel corollae wie in der N-Reuse
(S-Reuse :N-Reuse = 3,0:1;n = 3182).
Status: Saisonaler Migrant.
Svensson & Janzon (1984) beobachteten Anfang August 1981 in S-Schweden eine Schwebfliegen-
wanderung, die fast ausschließlich von M. corollae bestritten wurde. Sie halten solche Wanderungen
für unregelmäßig und exogen induziert. Demnach ermöglichte eine hohe Blattlausdichte im Jahr 1980
den Aufbau hoher Schwebfliegenpopulationen; im folgenden Jahr 1981 sollen niedrige Blattlauspopu-
lationen die Abwanderung der Schwebfliegen erzwungen haben. Das ist mit Sicherheit für M. corollae
nicht gültig, denn diese Art kann in Nordeuropa nicht überwintern (s. o.). Ihre Populationen sind dort
37
NL
coroillge M
JVanre 1973 — 1977
corollae
Pe Vanre 1975 - 1987 vahre 1975 - 1977
50%= 253
75%= 379
Max= 65
>16n= 32.7 X
N = 505
4 6 8 10 12 14 16 18 Gen 4 6 8 10 12 14 16 18 20 Uhr
6 8 12 14 16 18 20 Unr
25%= 1101
50%=- 2202
75%- 3303
Max= 482
N = 4403
N = 3319
unr Max= 5
Ne 20
corollge W
wahre 1975 - 1977 Max= 16
Ne 61
25%- 103 Max= 68
50%= 205
75%- 308 N= 416
Max= 56
>16h= 21.5 %
N = 410
1 Max= 226 Max= 5
Unr 16.- >16h= 17.6 %
N= 1363 31.8 Ne 34
vanre 1975 - 1987
Max= 633 Max= B0
"N= 5848 1.- Ä >16h= 30.9 X
N= 4468 15. 8 a 4 N= 599
IS * 25%= 1106
E Sos= = Max= 182 Jul Max= 37
= = ERS "N= 1837 16.- N >16h= 22.8 %
> N= 1496 31.7 NI|N= 328
2 N R = INDANOR N
N = 3641 mas
\ 4 6 8 10 i2 14 16 18 20 Uhr 4 6 8 10 12 14 16 18 20 Uhr
—— ı
14 16 18 20 Uhr 9
Abb. 10e: Tageszeitliche Verteilung von Metasyrphus corollae-J'J (vgl. Legende zu Abb. 4d).
Fig. 10e: Diurnal activity patterns of O’O’ of Metasyrphus corollae migrating southward.
Abb. 10f: Tageszeitliche Verteilung von Metasyrphus corollae-Q 9 (vgl. Legende zu Abb. 4d).
Fig. 10f: Diurnal activity patterns of PP of Metasyrphus corollae migrating southward.
Abb 10g: Tageszeitliche Verteilung von Metasyrphus corollae ım Jahresverlauf (vgl. Legende zu Abb. 5h).
Fig. 10g: Diurnal activity patterns of Metasyrphus corollae migrating southward throughout the year.
nicht von der Blattlausdichte des Vorjahrs abhängig, sondern von der Zahl der Einwanderer und der
Höhe der Blattlauspopulation im selben Jahr.
Sowohl die Einwanderung in Nordeuropa ım Frühjahr als auch die spätsommerlichen und herbst-
lichen Südwanderungen von corollae sind nicht exogen induziert, sondern integraler, endogen fixier-
ter Bestandteil des Lebenszyklus dieser Art.
Scaeva pyrastri (Linnaeus 1758)
Verbreitung: holarktisch
Biologie: $. pyrastri ist eine polyvoltine Art, die im zentralen Europa als Imago überwintern kann
(Schneider 1947, 1948, 1958, Dusek & Läska 1974). Zahlreiche Winter- und Frühlingsbeobachtungen
liegen aus den Schweizer Alpen vor (Schneider |. c.). Im Mittelgebirgsraum glückt die Überwinterung
wohl nur sehr selten (z. B. 19 am 8.3.1975; Kormann 1977. Je ein Februar- und Märznachweis aus
Belgien; Verlinden & Decleer 1987). Gewöhnlich sieht man die Art erst ab Mitte Mai. Aus den Nie-
derlanden gibt es einen April-Nachweis (20.4.1983, 1). Aus dem Mai liegen von dort insgesamt
Nachweise von 10 (20.5.) und 15 (ab 4.5.) vor. Im Juni wurden 49 9 beobachtet. Erst ab An-
38
Scaeva pyrastrı © (Ph. W. Gatter).
fang Juli waren beide Geschlechter zahlreich (van der Goot 1981, 1983, 1986a). Ähnlich ist die Situa-
tion in Belgien (Verlinden & Decleer 1987): wenige Frühjahrsbeobachtungen ausschließlich weiblı-
cher Tiere; erste O'C’ Anfang Mai; bis Mitte Juli mäßig häufig; Ende Juli bis Ende August sehr auffäl-
liges Maximum; Anfang September schnelles Absinken der Zahlen. In Dänemark erscheint pyrastrı ab
Ende Mai (Torp 1984), in Sidnorwegen ab Ende Juni (Nielsen 1971), ın Irland ım Juni (Speight et al.
1975).
Es handelt sich bei $. pyrastri also um eine Art, bei der befruchtete PP in Zentraleuropa überwin-
tern können. Das nördliche Mitteleuropa wird im Frühjahr durch von Süden her einwandernde Tiere
besiedelt. In welchem Ausmaß pyrastri im zentralen und alpinen Europa überwintert, ist unklar. Ob
das Herkunftsgebiet der Masse der mitteleuropäischen Einwanderer hier liegt, scheint zumindest
zweifelhaft. Wahrscheinlicher ist, daß — wie auch bei Episyrphus balteatus (S. 44) vermutet — die Me-
diterraneis Haupt-Überwinterungsgebiet ist.
Die Larven von pyrastri sind aphidophag; sie wurden an zahlreichen Blattlausarten v. a. in der
Krautschicht gefunden (Dixon 1960, Läska & Stary 1980, Rotheray & Gilbert 1989).
Wanderungen: Direkte Beobachtungen von Nordwanderungen im Frühjahr fehlen. Dagegen gibt
es zahlreiche Berichte von im Sommer und Herbst in südliche Richtungen wandernden Tieren aus den
Alpen, den Pyrenäen, von der Nord- und Ostseeküste und aus Süd-England (z. B. Aubert et al. 1976,
Gepp 1975, Heydemann 1967, Jeekel & Overbeek 1968, Johnson 1969, Lempke 1962, Mackworth-
Praed 1929, Overgaard Nielsen 1968, Schmid 1987, Walker 1864, Williams et al. 1956). Auch am Mit-
telgebirgsrand bei Halle (Saale) deutet eine Beobachtung auf Wanderungen von pyrastri hin (Grosser
& Klapperstück 1976; dort allerdings durch „synchronisiertes Schlüpfen vieler Tiere“ erklärt). Gele-
99
Anzahl pro Pent.
Anz. pro Tag (+) DERSEENT A
300 & 1975 - 1987 et
[®] -
a a a 58
5% 29. 7 1ie)= 885
2 8, Br Kae &
e70 50% 7.8. : sa
135+| 754 14.8 a :
95% 30.8 an 3
ler 3710 Bone 37
240 . 8.80 za
120 .8.81 70
ee 4
8.84 11
210 8.85 51
105+ Bi =
180
So
15:
75+[
eo |!
Bor:
so |
AUS) ==
80 Ik
Sie) Z-
30
45 +1,
Isla Inmwlgengl, Tmzalı T Tal: T
Okt
a Jun
Abb. 11a: Nach Süden gerichtete Migration von Scaeva pyrastri (vgl. Legende zu Abb. 4a) (eingefügte Zeichnung
aus van der Goot 1981).
Fig. 11a: Southbound migration of Scaeva pyrastri.
gentlich kann es zu gewaltigen Massierungen kommen (Rogers 1864 und Symes 1864 [zitiert in John-
son 1969], Williams 1961). Am Col de Bretolet ist pyrastri während der ganzen Beobachtungszeit an-
wesend, ohne ein ausgeprägtes Maximum aufzuweisen. Von Aubert et al. (1976) wird die Art, die hier
mit 11168 Ex. 0,5% der Fänge ausmacht (Tab. 2), als vermutlicher Wanderer geführt („espece consi-
deree comme migratrice“).
Phänologie am Randecker Maar: Hier steht pyrastri mit 885 gefangenen Exemplaren an achter Stelle
(Tab. 2). Die Art wurde überwiegend im August gefangen.” In der ersten Monatshälfte ist ein ausge-
* Im Jahr 1989 wanderte die Art am Randecker Maar erstmals in sehr großer Zahl. Am 16. Juli zogen hier Tausende
nach Süden.
40
PIF3SETI
vehre 1975 — 1977
e5x= 7
50%= 15
75%= 22
* 50%= 541
Abb. 11b: Tageszeitliche Verteilung von Scaeva pyrastri (vgl. Legende zu Abb. 4d).
Fig. 11b: Diurnal activity patterns of Scaeva pyrastri migrating southward.
prägter Gipfel ausgebildet (Abb. 11a). Q Q erscheinen häufiger als "CO (CC:QQ9 = 1:1,7;n = 654).
Das tageszeitliche Diagramm (Abb. 11b) zeigt eine nahezu symmetrische Verteilung. Der hohe
Wert zwischen 17 und 18 Uhr entstand durch Hochrechnung aus den Beobachtungen der Jahre
1975-1977, als die Beobachtungen bis Sonnenuntergang durchgeführt wurden (vgl. Legende zu
Abb. 4d). In diesen drei Jahren wurden insgesamt lediglich 29 pyrastri gefangen, davon 6 Expl. in die-
ser Stunde — der „Abendgipfel“ existiert also in der Realität nicht.
Zwischen den beiden Reusen bestehen erhebliche Unterschiede (Abb. 271): S-Reuse:N-Reuse =
6,0:1 (n = 341). Dabei fangen sich weitaus die meisten Tiere bei Gegenwinden aus SW, S und SE in
der S-Reuse (71,8%). Bei Rückenwinden aus NW, N und NE geraten nur 17,7% in die Reuse
(Abb. 26c).
Status: Saisonaler Migrant
Scaeva selenitica (Meigen 1822)
Verbreitung: paläarktisch, orıentalisch
Biologie: Wie bei Scaeva pyrastri überwintern auch bei dieser weniger häufigen Art befruchtete 2 9
(Schneider 1947, 1958). Überwinterungsmöglichkeiten finden die Imagines wieder im zentraleuropäi-
schen und alpinen Raum und - so ist jedenfalls zu vermuten — in weiter südlich gelegenen Regionen.
In den süddeutschen Mittelgebirgen kann die Art wenigstens gelegentlich ebenfalls erfolgreich über-
wintern (z. B. Kormann 1977), ebenso in den Niederlanden (van der Goot 1981), in Norddeutschland
(Schmid 1987) und in Süd-Norwegen (Nielsen 1971). Fehlende Frühjahrsdaten aus Dänemark (Torp
1984) und Großbritannien (Stubbs & Falk 1983) zeigen, daß Überwinterungen im nördlichen Mittel-
europa eher selten sind. Auch fehlen im Norden die im südlichen Mitteleuropa üblichen (z. B. Schmid
1986, Schneider 1. c.) späten Herbstbeobachtungen, die auf regelmäßige Überwinterungsversuche hin-
weisen könnten (späteste Daten aus Süd-Norwegen 16.8. [Nielsen I. c.], aus Dänemark Anfang Sep-
tember [Torpl. c.], aus Schleswig 22.8. [Claußen 1980]). Zum mindesten im nördlichen Mitteleuropa
sind für den Aufbau der Sommerpopulationen also im wesentlichen Zuwanderer aus Süden verant-
wortlich. — Die blattlausfressenden Larven von S. selenitica wurden auf Fichten und Kiefern gefun-
den (Dixon 1960, Kula 1980), was die leichte Präferenz der Art für Nadelwälder erklären könnte.
Wanderungen: Am Col de Bretolet wurde selenitica recht zahlreich gefangen (Tab. 2) und von Au-
bert et al. (1976) als vermutliche Wanderart eingestuft („espece consider&e migratrice“). Die Vertei-
lung zeigt von Anfang bis zum Ende der Erfassungszeit ein nahezu gleichmäßiges Vorkommen ohne
41
Anzahl pro Pent EN
Anz. pro Tag (#) SS NE NEED
ze. 1975 - 1987
SZ | jEn. 49.37 S
| 5% 23.7 | i
£ | 25% 28.7 | 29.
24 |50% 4.8 |
IS 75% 40..18
95% 9.9 |
|
ER AA10
2}
©
S
bennenvmenum> .n
1 L
[e:)
[e,]
Abb. 12: Nach Süden gerichtete Migration von Scaeva selenitica (vgl. Legende zu Abb. 4a).
Fig. 12: Southbound migration of Scaeva selenitica.
Maxima oder Minima. Auch an einer in Tirol beobachteten Schwebfliegenwanderung hatte die Artteil
(Jeekel & Overbeek 1968). Grey et al. (1953) sahen auch ın den Pyrenäen wandernde selenitica.
Aus Norddeutschland liegen Funde nicht bodenständiger Individuen von der Nordseeinsel Schar-
hörn vor (Schmid 1987). Weitere Hinweise auf Wanderungen sind Beobachtungen von Malec (1986),
daß die Art im Herbst bis in Stadtgärten komme (Umgebung von Kassel) und eigene Beobachtungen
aus Innenstädten (SW-Deutschland).
Phänologie am Randecker Maar: In den meisten Jahren werden nur wenige Individuen gefangen
(Abb. 27k). Dies dürfte einerseits auf die relative Seltenheit dieser Art zurückgehen, andererseits dar-
auf, daß diese großen und flugtüchtigen Schwebfliegen die Reuse oft als Hindernis erkennen und um-
fliegen (Gatter 1975). Selenitica erscheint überwiegend ım Juli und der ersten Augusthälfte (Abb. 12).
Dabei stellen QQ das Gros der Wanderer (FO:PY = 1:2,9;n = 149). In der S-Reuse werden deut-
lich mehr Tiere gefangen als in der N-Reuse (S-Reuse :N-Reuse = 5,4:1;n = 54).
Status: Saisonaler Migrant.
Parasyrphus lineolus (Zetterstedt 1843)
Verbreitung: holarktisch
Biologie: Diese Art kann zwischen Ende April und Anfang Oktober beobachtet werden. Am zahl-
reichsten ist sie im Hochsommer. Sie ist vor allem ın Wäldern und an Waldrändern zu finden. In den
Nordalpen ist lineolus nach eigenen Beobachtungen bis über die Baumgrenze verbreitet. Parasyrphus-
Larven leben überwiegend auf Bäumen (Rotheray & Gilbert 1989). Die aphidophagen Larven von
lineolus wurden in Fichtenwäldern gefunden (Kula 1980).
Wanderungen: Der einzige Hinweis auf herbstliche Wanderungen stammt aus den Alpen: Aubert
et al. (1976) fingen insgesamt 5746 Fx. (Tab. 2) und bezeichneten die Art, die zwischen Mitte Juli und
Mitte September in fast gleichmäßigen Zahlen gefangen wird, als Wanderer.
Phänologie am Randecker Maar: P. lineolus fiel lediglich in zwei Jahren auf: 1980 wurden 265 Ex.
in der S-Reuse und 16 Ex. in der N-Reuse, 1982 5 Ex. in der S-Reuse gefangen. Es ist möglich, daß
die Art in einigen anderen Jahren ebenfalls mit wenigen Stücken vorkam, aber übersehen wurde. In
den zwei Jahren, in denen lineolus festgestellt wurde, erschien die Art während eines eng begrenzten
Zeitraums Ende Juli (Abb. 13a). Ihr Aktivitätsmaximum hat sie während der Mittagsstunden
(Abb. 13b). PP überwiegen deutlich (I: PP = 1:3,0;n = 242).
Status: Saisonaler Dismigrant (Saisonaler Migrant ?).
Wahrscheinlich ist, daß die im allgemeinen eher spärlich vorkommende Art nur im Jahr 1980 hohe
Populationen aufbauen konnte und in der Folge als Wanderer in Erscheinung trat. Die Abundanzen
42
Anzahl pro Pent.
Anz. pro Tag (+) Zzimeolus
75 =
246) 188 1987 u
105+| &.80.7 i ge ee
5% 23.7. el
25% 25.7. 5.7.90 7
180 | 50% 28.7. 1.8.8 24
90+| 75% 1.8.
95% 3.8
IS: GE).
/1ImMeolus
vanre 1975 — 1987
Finn
a Jun |
Abb. 13a: Nach Süden gerichtete Migration von Parasyrphus lineolus (vgl. Legende zu Abb. 4a) (eingefügte Zeich-
nung aus van der Goot 1981).
Fig. 13a: Southbound migration of Parasyrphus lineolus.
Abb. 13b: Tageszeitliche Verteilung von Parasyrphus lineolus (vgl. Legende zu Abb. 4d).
Fig. 13b: Diurnal activity patterns of Parasyrphus lineolus migrating southward.
einer Schwebfliegenart können regional sehr unterschiedlich sein. Möglicherweise sind solche räumlıi-
chen Disparitäten für die ungewöhnlich starke Konzentration auf die S-Reuse verantwortlich.
Um den Status von P. lineolus zu klären, sind weitere Beobachtungen notwendig.
Meliscaeva cinctella (Zetterstedt 1843)
Verbreitung: holarktisch, orientalisch
Biologie: M. cinctella fliegt in vielen Lebensräumen, bevorzugt aber Wälder und waldnahe Gebiete.
Sie kann von (Mitte) Ende April bis Mitte Oktober beobachtet werden. Die größte Häufigkeit wird
im Spätsommer erreicht. Die aphıdophagen Larven von cinctella wurden auf Laub- und Nadelbäumen
gefunden (Eiche, Apfelbaum, Holunder, Kiefer, Fichte; Rotheray & Gilbert 1989). Wie die Art über-
wintert, scheint noch unklar zu sein. Die nahe verwandte Meliscaeva auricollis (vgl. 3.2.1) überwintert
als Imago (Schneider 1948).
Wanderungen: Herbstliche Wanderungen wurden bisher nur am Col de Bretolet festgestellt (Au-
bert et al. 1976). Obwohl die Art dort nicht sehr zahlreich erscheint (Tab. 2), wurde sie als Wanderer
eingestuft. Sie weist ein sehr deutliches Maximum in der ersten Septemberhälfte auf.
Phänologie am Randecker Maar: M. cinctella ist in den meisten Jahren eher spärlich (Tab. 2). Nur
im Jahr 1980 war sie mit 172 gefangenen Exemplaren zahlreicher. Starke Bestandsschwankungen sind
bei dieser Art, wie bei anderen aphidophagen Schwebfliegen, auch andernorts beobachtet worden
(z. B. Malec 1986).
M. cinctella tritt hauptsächlich im August auf (Abb. 14). Im September werden nur noch wenige
Tiere gefangen. In der S-Reuse wurden wesentlich mehr cinctella gefangen (S-Reuse:N-Reuse =
3,5:1;n = 258). Q2 dominieren (O:P9 = 1:3,8; n = 67).
Status: Saisonaler Migrant (?).
43
Anzahl pro Pent 4
Anz. pro Tag (+) e2necetells
1975 1987
ERAhRET, D = 20
e}
5% 30
05% 7
ee Le
75% 18
935% 2
LEm2A
oommm.
TER = Z—_
Aug Sep
Abb. 14: Nach Süden gerichtete Migration von Meliscaeva cinctella (vgl. Legende zu Abb. 4a).
Fig. 14: Southbound migration of Meliscaeva cinctella.
Phänologie, Geschlechterverhältnis und das häufige Vorkommen nur in einem Jahr (1980) ent-
spricht weitgehend den Beobachtungen bei der vermutlich saisonal dismigrierenden Art Parasyrphus
lineolus (S. 42). Der am RM und CB fast identische Verlauf der Fangkurven mit der für Saisonwande-
rer typischen Zeitversetzung von ca. 2—3 Wochen (vgl. 4.1) macht aber sehr wahrscheinlich, daß cinc-
tella ein Saisonaler Migrant und kein Dismigrant ist.
Episyrphus balteatus (De Geer 1776)
Verbreitung: paläarktisch, orientalisch, australisch
Biologie: Die eurytope Art E. balteatus ist eine der häufigsten Schwebfliegen. Sie kann in allen Mo-
naten beobachtet werden. Dusek & Läska (1974) wiesen nach, daß) weder Larven noch Puparien den
Winter ın Zentraleuropa überleben. Nur Imagines können hier überwintern. (Aufenthaltsorte über-
winternder @Q sind allerdings bis heute noch nicht gefunden worden.) An den ersten Frühjahrsblü-
hern sind in den Alpen (Goeldlin 1974) wie in den Mittelgebirgen (z. B. Malec 1986, Schmid 1986), im
nordwesteuropäischen Flachland (van der Goot 1981) und in England (Stubbs & Falk 1983) regelmä-
Rig auffallend dunkel gefärbte, befruchtete balteatus-Q Q zu sehen. Zum Aufbau der Ovarien ist, wie
Schneider (1948) nachwies, Pollenfraß nötig.
Nach den ersten Frühjahrsbeobachtungen folgt häufig eine Zeit, in der man kaum Imagines begeg-
net. Im Frühsommer ist balteatus dann zahlreich. Überaus häufig, oft geradezu massenhaft tritt die
Art dann im Hochsommer (ab Juli) bis in den Herbst hinein auf.
Die Larven leben auf den verschiedensten Pflanzen der Baum- und Krautschicht. Sie sınd auffällig
polyphag (Läska & Stary 1980). Neben ihrer Hauptnahrung, vielen verschiedenen Blattlausarten, er-
nähren sie sich auch von Käferlarven und Artgenossen (Goeldlin 1974). Die Larven entwickeln sich
stets ohne Diapause. So könnten, wenn zwischen einer Eiablage und der nächsten ca. 1!/2 Monate ver-
streichen, ungefähr 4—5 Generationen im Jahr gebildet werden, wie Schneider (1948) nach Laborver-
suchen herausfand. Allerdings werden im Freiland in der Regel nicht so viele Generationen gebildet.
Abb. 15a: Nach Süden gerichtete Migration von Episyrphus balteatus (vgl. Legende zu Abb. 4a); eingeschaltet ist
das Zugmuster am Col de Bretolet (aus Aubert et al. 1976).
Fig. 15a: Southbound migration of Episyrphus balteatus; the insertion shows the phenology at Col de Bretolet.
44
Anzahl pro Pent.
Anz.
8000
4000
7eo0®8
3600
8400
3200
5600
2800
4800
2400
4000
2000
3200
1600
2400
1200
1600
800
800
400
pro Tag (#)
1975 - 1987
+
er. 19, 8.
5% 2 dd,
2a . d,
SR dead.
Br 7% 7a
5% Sl, O,
Le, A4,.ı10,
+
+
+
+
+
+
+
Hm
Jun
SI eBeradeus
(e0) I] (00) (60) (co) (a0) (a0) {oo) (09) III (eo)
Il
» 48
„ 48
> HU
18
8)
. 80
. al
de
. 84
‚&8
. 86
7
45
w
Episyrphus balteatus 9 (Ph. W. Gatter).
Rotheray (1989) gibt für Großbritannien lediglich eine oder zwei Generationen pro Jahr an, Krüger
(1926) für Norddeutschland „mindestens zwei Generationen“.
Wanderungen: Episyrphus balteatus ist einer der auffälligsten Wanderer unter den Schwebfliegen.
Viele Einzelveröffentlichungen über Schwebfliegenwanderungen gehen auf Massenzüge dieser Art
zurück. Fast alle diese Beobachtungen betreffen spätsommerliche Bewegungen in südliche Richtun-
gen.
Direkte Beobachtungen von Nordwanderungen sind dagegen äußerst spärlich. Einen Hinweis auf
nordgerichtete Bewegungen über einen Alpenpaß Ende Mai verdanken wir L. Verlinden (in litt.,
27.6.1989): bei einem Aufenthalt im südtiroler Hochpustertal im Jahr 1985 waren bis zum 22.5. nur
dunkel gefärbte PP zu sehen (s. 0.). Am 23.5. (ca. 5°C, wolkig, nur gelegentlich sonnig, stärkerer
NW-Wind) waren in der Nähe des Kreuzbergpasses (Alpe Nemes, 1850 m NN) erstmals auch CC
zu beobachten, die gemeinsam mit QQ im Windschatten von Weidenbüschen schwebten. Von Zeit zu
Zeit, offensichtlich vor allem dann, wenn die Sonne kurzzeitig erschien, flogen kleine Gruppen gegen
den Wind, also in nördliche Richtung, ab. Von S$ her erschienen immer wieder neue Gruppen. Inner-
halb kurzer Zeit zogen so mehrere hundert balteatus durch. Schlechtes Wetter unterbrach diese Beob-
achtung wenig später. Das Beobachtungsgebiet liegt im Norden des Talsystems der Piave, das ziem-
lich direkt nach $ ins italienische Alpenvorland geöffnet ist.
An einem 3600 m hohen Hıimalayapaß in Nepal war im März Nordwanderung von Dipteren zu be-
obachten. Unter den Belegexemplaren waren auch zwei balteatus-QQ (Westmacott & Williams
1954). Ebenfalls im Himalaya sah Gatter (1980) Dipteren im Mai über einen 5400 m hohen Paß nach
Norden wandern. Auch an diesen Wanderungen hatte balteatus teil. Weitere Hinweise auf Nordwan-
derungen lassen sich aus faunistischen Daten schließen: im nördlichen Europa, wo Überwinterungen
der Art nie festgestellt wurden (Torp 1984), liegen die frühesten Beobachtungen am 8.6. in Schleswig
(Claußen 1980), am 4.6. in SE-Jütland (Torp 1981) und am 18.6. in S-Norwegen (Nielsen 1971). Bal-
teatus wandert also im Laufe des Juni dort ein.
46
Anzahl pro Pent
Anz. pro Tag (+)
4000 1975 - 1987 Pu
2000 + En. N). G- [) 1175 |
5% 26 -
05% 3
3600 | 50% 7
1800 + | 76% 17
95% 29.
Le 240) | 21
3200 1
1500 + | 3),
mmmmn
S
Anzahl pro Pent
Anz. pro Tag (+)
2800 1975 - 1987
oo R. B= 1085
| 12 J= 13031
oo onmommmnAao
© S
a
[e}
Abb. 15b: Nach Süden gerichtete Migration von Episyrphus balteatus-J'O (vgl. Legende zu Abb. 4a).
Fig. 15b: Migration of OO of Episyrphus balteatus in southerly direction.
Abb. 15c: Nach Süden gerichtete Migration von Episyrphus balteatus-QQ (vgl. Legende zu Abb. 4a).
Fig. 15c: Southbound migration of PP of Episyrphus balteatus.
Aber auch die mitteleuropäischen Populationen werden wohl alljährlich in großem Ausmaß von
Zuwanderern gestärkt. Verlinden & Decleer (1987) vermuten, daß der Frühsommerbestand in Belgien
von ansässigen balteatus aufgebaut wird, während die gewaltigen balteatus-Massen, die im Hochsom-
mer zu sehen sind, Folge von Einwanderungen aus dem Süden sind. Die Einwanderungen finden da-
bei allerdings nicht im Hochsommer statt — sämtliche beobachteten Wanderungen in dieser Zeit füh-
ren in südliche Richtungen — sondern im Frühjahr. Für das Populationsmaximum sind also nicht die
Einwanderer direkt, sondern deren Nachfolgegeneration verantwortlich.
Südwandernde balteatus wurden dagegen schon an zahlreichen Plätzen beobachtet. Einige dieser
Beobachtungen sollen hier kurz wiedergegeben werden, ohne Vollständigkeit anzustreben.
England:
— In Südengland erreichten zahlreiche balteatus gemeinsam mit anderen Arten Anfang August 1928 die Isle of
Wight über See aus nordöstlicher Richtung (Flugrichtung also SW) (Mackworth-Praed 1929). Am selben Ort
hatte schon Walker (1864) Mitte August große balteatus-Schwärme beobachtet. Anfang August 1960 wurde eine
aus SE kommende, z. T. von balteatus bestrittene Schwebfliegenwanderung in Sussex bemerkt (Spreadbury
1960, Parmenter 1960).
Nördliches Mitteleuropa:
— Feuerschiffe: Von 1388 während drei Wochen im Juli/August 1963 mit Gelbschalen gefangenen Schwebfliegen
gehörten 507 (255 30,252 Q 9) zu balteatus. Nach Metasyrphus corollae war balteatus damit die häufigste Art.
47
Anzahl pro Pent Anzahl pro Pent
JERZIEN EN ZHeKENSE
Anz. pro Tag (+] Anz. pro Tag (#)
5 1975 1979
1 00 “ir vw, [|
SH ee Er. 16.7 n = 2654
: + 7%
En 530.7 5% 30.7
1050 | -
S25+ 1 2% 3.8 25% 14. 8 21.8.= 434
50% 4.8 50% 17.8 14.8.- 25
600 | 75 8 75% 21.8 17.8.=- 1984
300 5X 16.8 9% 2.9 15. 8.= 198
Sc Le, 16. 9 )
= |
Jun Ju Aug Sep Se Jul Aug Sep Okt
He 1976
1500 _ Ei - 1500 Re 1980 = ß 4
so + =, 2
=> Sep. Aalı, D Se | Er. 17.7 n= 1323
: | -47%
| ax 16, 7 il 1050 | 5%.26.7 |
Hl os ı7. 7 in ses+ [25% 31,7 1.8.= 160
50% 18.7 16.7.= 47| I Ei 3. B.= 440
60 L7% 24.7 20.7.= 20 SSe L 75% 16.8 AUCH 97
300+| go 9.8 ne ke See Er | 26.7.= 8
Sc BasPSEaB | 150 [1 193.9
Er ı 1 7 ]
F ae San Lee
Jun Jul Aug Sep Okt Jun Jul Aug 1 Sep Okt
Y
50 +
1050
525 +
600
300 +
so 1978 E n , el 8 vw 7
"| Er. 46.7 R BEE SS ER n= 14587 |
+37% | a -36% |
| 29 |
+ 4 I}
3 |
8600 B |
300 + 3 |
|
50 |
2 h
oO
U
[1]
10]
[eo]
d; Jun Jul Aug Sep Okt d> 5
Anzahl pro Pent
Anz. pro Tag (+) 7
1500
750 +
1050
Sees
800
300 +
150
[e)
u
©
300 +
Jun ya) Aug | Sep Okt
oommm
d Jun Jul Aug Sep Okt
48
baltealcus balteatus M
vahre 1975 - 1977 vshre 1975 —- 1977
25%= 145
Max= 81
>16h= 12.4 %
Ne= 9
* 25%= 8300 * 25%= 3824
* 50%= 7649
* 75%= 11473
Max= 2929
* N = 15298
N = 13606
unr
baltestus W
VIREN VID ZEIT TE
* 25%= 3555
* 50%= 7109
* 75%= 10664
Max= 2307
* N = 14218
Dane
4 6 8 10 12 14 16 4B 20 Unr
Abb. 15e: Tageszeitliche Verteilung von Episyrphus balteatus (vgl. Legende zu Abb. 4d).
Fig. 15e: Diurnal activity patterns of Episyrphus balteatus migrating southward.
Abb. 15f: Tageszeitliche Verteilung von Episyrphus balteatus-O'J (vgl. Legende zu Abb. 4d).
Fig. 15f: Diurnal activity patterns of O'C of Episyrphus balteatus migrating southward.
Abb. 15g: Tageszeitliche Verteilung von Episyrphus balteatus-PP (vgl. Legende zu Abb. 4d).
Fig. 15g: Diurnal activity patterns of PP of Episyrphus balteatus migrating southward.
504 Expl. wurden dabei auf den zwei in der Ostsee liegenden Feuerschiffen „Kiel“ und „Fehmarn-Belt“ (Kü-
stenabstand 17-25 km) gefangen, nur 3 Expl. auf dem 30 km vor der Küste liegenden Nordsee-Feuerschiff „EI-
be I“ (Heydemann 1967). Dieser Unterschied dürfte darauf zurückgehen, daß balteatus, von Skandinavien
kommend, in sehr großer Zahl über die Ostsee wandert, während die offene Deutsche Bucht gewöhnlich wohl
nur selten in großer Zahl überflogen wird.
Auf dem zwischen England und den Niederlanden in ca. 70 km Küstenabstand liegenden Feuerschiff „Noord
Hinder“ konnte balteatus ebenfalls an einigen Tagen vor allem Ende Juli/Anfang August in größerer Anzahl ge-
fangen werden (Lempke 1962).
— Insel Scharhörn: Bei Planbeobachtungen im Jahr 1984 auf der 15 km vor der Küste im inneren Winkel der Deut-
schen Bucht gelegenen Insel, die keine bodenständige Schwebfliegenfauna aufweist, war balteatus zwischen
a rn ee
Abb. 15d: Nach Süden gerichtete Migration von Episyrphus balteatus in den Jahren 1975-1987 (vgl. Legende zu
Abb. 5b).
Fig. 15d: Southbound migration of Episyrphus balteatus in 1975— 1987.
49
B3altegstus balteatus M balteatus W
anre 1975 - 1987 Vanre 1975 - 1977 vanre 1975 - 1987 vanre 1975 - 1987
ı0 ı2 14 16
AI RreBe:
18 20 Unr 4 6 8 10 ı2 14 16 18 20 Unr 4 6 8 10 12 14 16 18 20 Unr 4
ee) era ee ee 6 8 10 ı2 14 16 18 20 Unr
NOV
Max= 9 Max= 27
y m
15.10 N= 29 | 15.10. N= 105
N NS DIN .
Max= 35
be NENNNN a 30.9 NR N N= 128
Max= 2
>16h= 18.2 % oz
N= 11 15. 9
Max= 101 Max= 129
N= 485 15.9 N \ N= 628
Max= 31
Max= 706 Max= 601
"Ne 7175 16 >46h= 11.4 % 16.- 16 “N= 3110
N= 6441 31.8 N= 158 31. 8 N= 3186 31.8 } IS N= 2837
DR NONE
Max= 3302 Max= 226 x] Max= 1821 Max= 1297
"N= 19229 1.- >16h- 18.5 % 1.- | "N= 8572 1.- - "N= 7588
N= 16229 15.8 Ne 1282 15.8 N N= 7913 15 IN N= 6931
JUL Max= 10 JUL Max= 38 JUL Max= 287
16.- Sl >16he 17.0 % 16.- "N= 2261 16.- 4 "N= 2232
31.7. [r ZNOAN Ne 711 31. 7. [RN = SON N= 1959 31.7 N= 1865
r 1 j r En | tr r Talstal
4 6 B 10 ı2 14 16 18 20 Unr 4 6 8 10 12 14 16 18 20 Uhr 4 6 8 10 12 14 16 :B 20 Unr
.
i k
Abb. 15h: Tageszeitliche Verteilung von Episyrphus balteatus im Jahresverlauf (vgl. Legende zu Abb. 5h).
Fig. 15h: Diurnal activity patterns of Episyrphus balteatus migrating southward throughout the year.
Abb. 151, 15k: Tageszeitliche Verteilung von Episyrphus balteatus-J'O' (151, links) und-QQ (15k, rechts) im Jah-
resverlauf (vgl. Legende zu Abb. 5h).
Fig. 151, 15k: Diurnal activity patterns of JO (151) and PP (15k) of Episyrphus balteatus migrating southward
throughout the year.
Ende Juli und Ende August an vielen Tagen oft zu Tausenden zu sehen. Gelegentlich konnten auch über dem
Watt nach $ fliegende Tiere beobachtet werden. Massenwanderungen fanden immer an warmen Tagen mit ab-
landigen (also aus NE, E, SE oder $ wehenden), schwachen oder mäßigen Winden statt (Schmid 1987). Während
desselben Jahres auf der Insel Mellum aus Farbschalenfängen gewonnene Daten (Barkemeyer 1988) zeigen die-
selben Häufigkeitsmaxima und dokumentieren damit den überregionalen Charakter der auf Scharhörn beob-
achteten Schwebfliegenwanderungen.
— Nördlicher Mittelgebirgsrand: Auf eine südwestwärts gerichtete Massenwanderung von E. balteatus bei Biele-
feld vom 7.—10. August weist Eitschberger (1973) hin. Meineke (1979) beobachtete am südwestlichen Rand des
Harzes Anfang September starken, ebenfalls nach SW gerichteten Zug.
Alpen:
— Am Col de Bretolet in den Walliser Alpen ist balteatus mit Abstand die häufigste Art (Aubert et al. 1976). Sie
stellt über die Hälfte aller Fänge (Tab. 2). Der Hauptdurchzugsmonat ist der August; der Zug setzt sich im Sep-
tember aber mit beachtlicher Stärke fort und reicht bis zum Ende der Beobachtungszeit im Oktober (Abb. 15a).
Dabei werden fast nur Weibchen gefangen. Eine Stichprobe ergab 93,4% @Q und nur 6,6% OO’ (15 Fangtage
zwischen 7.8. und 27.10.,n = 1569; Aubert 1962) (vgl. 4.2).
Von balteatus liegen auch einige Fernfunde markierter Individuen vor (Aubert et al. 1969, Aubert & Goeldlin
1981): die maximale Flugstrecke eines Individuums lag dabei bei 111 km (Col de Bretolet bis Col du Glandon).
Durch Fang- und Markierungsexperimente an mehreren in südwestlicher Richtung aufeinanderfolgenden Al-
50
penpässen konnte der Zug von balteatus (und anderen Arten) über ca. 160 km verfolgt werden. Dabei wird auch
das tief eingeschnittene Rhönetal gequert.
— An mehreren anderen Stellen der schweizer und österreichischen Alpen wurden südgerichtete Schwebfliegen-
migrationen beobachtet, bei denen gewöhnlich Episyrphus balteatus, im Herbst auch Eristalis tenax, die Haupt-
rolle spielte (z. B. Burmann 1978, Dethier & Goeldlin 1981, Gepp 1975, Harz 1965, Huss 1975, Jeekel & Over-
beek 1968, Prell 1925). Häufig gelangen diese Beobachtungen in Pässen. An „starken Zugtagen“ werden nach
Dethier & Goeldlin (1981) aber auch die höchsten Berggipfel überflogen. Zu auffälligen Massierungen an Pässen
kommt es insbesondere bei starkem Föhn; dann wandern die Schwebtliegen in großer Bodennähe gegen den
starken Wind und stauen sich an den Pässen (vgl. 3.4). Nach Burmann (1978) und Jeekel & Overbeek (1968) do-
minieren wie am CB Q9 stark. Reusenfänge im schweizer Jura zeigen keine Unterschiede gegenüber den Ver-
hältnissen in den Alpen (Aubert & Jaccard 1981).
Pyrenäen:
Am Paß Port de Gavarnie, auf der französisch-spanischen Grenze in über 2000 m (7500 ft.) gelegen, beobachte-
ten Lack & Lack (1951) am 13.10.1950 eine SW-Wanderung von Schwebfliegen. Die Belegexemplare gehörten zu
Episyrphus balteatus. Am selben Ort gelang Snow & Ross (1952) am 20.9.1951 folgende Beobachtung: bei Wind-
stille war zwar Schmetterlingswanderung nach SW, aber keine Schwebfliegenmigration festzustellen. Am Nach-
mittag begann ein allmählich stärker werdender Südwind zu wehen. Gleichzeitig setzte ein ebenfalls stärker wer-
dender Schwebfliegenzug ein. Die Fliegen zogen dabei in großer Bodennähe unterhalb 60 cm (vgl. 3.4). Am folgen-
den Tag hielten Wind und Schwebfliegenwanderungen an. Balteatus gehörte zu den häufigsten Arten. Williams et
al. (1956) beobachteten am 9. und 10. Oktober ebenfalls an diesem Paß Schwebfliegenwanderungen, an denen ne-
ben Eristalis tenax v. a. Episyrphus balteatus teilnahm. Auch Grey et al. (1953) sahen in den nördlichen Pyrenäen
Ende September/Anfang Oktober Schwebfliegenzug, der überwiegend von den Arten E. balteatus und Eristalis
tenax bestritten wurde.
Phänologie am Randecker Maar: Mit knapp 33 % der Fänge ist E. balteatus auch am Maar die häu-
figste Schwebfliegenart (Tab. 2). Sie wandert hauptsächlich im August (Abb. 15a) mitSchwerpunkt ın
der ersten Monatshälfte. Der Median liegt in der Hauptzugzeit am 7. August. Der steile Anstieg der
Fangzahlen Ende Juli geht z. T. darauf zurück, daß die Station den Betrieb in einigen Jahren erst in der
letzten Julidekade aufnahm. Das schnelle Abflauen des Fanges Ende August liegt jedoch voll in der
Beobachtungsperiode. Im September und Oktober erscheint balteatus mit 5% der Gesamtsummen
nur noch spärlich.
Beide Geschlechter sind am Maar ungefähr gleich stark vertreten (TO':PP = 1:0,92; n = 27135).
Die SC sind etwas stärker auf den Beginn der Zugzeit konzentriert (Abb. 15b, 15c).
Die Fangergebnisse weisen von Jahr zu Jahr starke Schwankungen auf (Abb. 271). Trotz dieser ho-
hen Variabilität lassen die jährlichen Durchzugsdiagramme (Abb. 15d) das Grundmuster der zusam-
mengefaßten Daten (Abb. 15a) fast immer erkennen. Nur in seltenen Fällen liegt der Medianwert au-
ßerhalb der ersten Augusthältte.
Das tageszeitliche Muster zeigt einen für balteatus typischen, ausgeprägten Vormittagsgipfel mit
einem Aktivitätsmaximum zwischen 8 und 11 Uhr (Abb. 15e). Bei OO’ ist diese einseitige Verteilung
sogar noch etwas extremer als bei 9 (Abb. 15f, 15g). Die Form der Aktivitätskurve bleibt im Jahres-
verlauf im wesentlichen erhalten (Abb. 15h). Nur der Medianwert, der im Juli noch vor zehn Uhr
liegt, verschiebt sich bis Mitte September in das Zeitintervall 10-11 Uhr und bis Mitte Oktober in das
Intervall 11-12 Uhr. Auch aus diesen Darstellungen wird ersichtlich, daß der Aktivitätsgipfel der
JO stets deutlich vor dem der QQ liegt (Abb. 151, 15k).
Mit Hilfe von Gelbschalenfängen ermittelte Grosser (1979) für balteatus ein sehr deutliches Akuvi-
tätsmaximum in den ersten zwei Stunden nach Sonnenaufgang (5-7 Uhr). In dieser Zeit widmet sich
balteatus also hauptsächlich der Nahrungsaufnahme. Erst nach dieser frühmorgendlichen Phase des
Nahrungserwerbs setzt die Migration ein.
In der N-Reuse wird balteatus nur sehr spärlich gefangen (Abb. 271): S-Reuse : N-Reuse = 7,4:1
(n = 8902). Es dürfte sich dabei um Tiere handeln, die in der Umgebung Nahrungsflüge unternehmen.
51
In die S-Reuse geraten die Fliegen vor allem bei Gegenwind, fast nie bei Rückenwind (Abb. 26d;
vgl. 3.4):79% werden bei Winden ausSW, S oder SE gefangen, nur 0,6 % bei Winden aus NW, N oder
INIE®
Status: Saisonaler Migrant.
Im südwestdeutschen Mittelgebirge zeigen die sehr starken quantitativen Schwankungen der im
Frühjahr beobachteten Q® (Schmid 1986 und i. Dr.), daß die Überwinterung hier mit großem klima-
tischem Risiko behaftet ist. In den Alpen dürften die Verhältnisse nicht wesentlich anders sein. Erst
im südlichen (mediterranen) Europa oder Nordafrika sind Bedingungen zu erwarten, die eine unge-
fährdetere Überwinterung gestatten. Hierhin dürften die spätsommerlichen Wanderungen von bal-
teatus führen. Allerdings sind die Lebensverhältnisse im Mittelmeergebiet im Sommer eher ungünstig.
Die dann weitgehend vertrocknete Krautflora steht als Blattlausnahrung nicht zur Verfügung. Die re-
lativ wenigen Blüten der sommerlichen Mittelmeerflora sind für die meist kurzrüsseligen Schwebflie-
gen überdies oft nicht leicht zugänglich. Wesentlich günstigere Verhältnisse findet balteatus im Som-
mer dagegen im humiden Mitteleuropa, wo für Larven ein großes Blattlaus- und für Imagines ein
reichhaltiges Blütenangebot zur Verfügung steht. Im Frühjahr wandert die Art deshalb nach Mittel-
europa ein.
Das hier skizzierte Bild des biologischen Hintergrundes der saisonalen Wanderungen von balteatus
ist aus wenigen Mosaiksteinen zusammengesetzt und hat deshalb noch weitgehend hypothetischen
Charakter.
Zur Überprüfung der Hypothese sind selbst auf den ersten Blick wenig aussagekräftige Beobach-
tungen wertvoll. So sah z. B. Gatter (unveröff.) im August in Tälern der nördlichen Appenninen und
der Pyrenäen auf ca. 1000-1800 m NN praktisch keine Syrphiden der bekannten und häufigen Wan-
derarten. Sie hatten diese von „einheimischen Populationen“ im Sommer freien Gebiete auf ihrer
herbstlichen Südwanderung vermutlich noch nicht erreicht.
Sphaerophoria scripta (Linnaeus 1758)
Verbreitung: paläarktisch, orıentalisch (Nordindien, Nepal)
Biologie: $. scripta ist eine sehr häufige und eurytope Art, die zwischen (Mitte März) Mitte April
und Mitte (Ende) Oktober beobachtet wird. Sıe bildet ın dieser Zeit mehrere Generationen (in Mittel-
deutschland nach Grosser & Klapperstück [1976] drei Generationen). Am zahlreichsten kommt die
Art im Hoch- und Spätsommer vor. In Belgien entspricht die Häufigkeitskurve von scripta weitge-
hend der von Episyrphus balteatus mit mäßig hohen Zahlen im Frühsommer und einem Maximum,
das Mitte Juli sehr abrupt beginnt und Anfang September fast ebenso abrupt endet (Verlinden &
Decleer 1987).
Scripta-Larven leben überwiegend in der Krautschicht, wo sie sich von Blattläusen ernähren (Ban-
kowska 1964). Nach Dusek & Läska (1974) überwintert scripta als Larve. Beweise für die von Ban-
kowska (1964) vermutete Überwinterung weiblicher Imagines fehlen.
Wanderungen: Nordgerichtete Frühjahrswanderungen von Dipteren, an denen auch S. scripta teil-
nahm, beobachtete Gatter (1980) an einem in 5400 m Höhe gelegenen Himalayapaß im Mai. Im Som-
mer und Herbst ist scripta ein auffälliger und zahlreicher Süd-Wanderer. Aus den Alpen liegen u. a.
Beobachtungen von Aubert et al. (1976), Gepp (1975) und Jeekel & Overbeek (1968) vor. Das Phäno-
logie-Diagramm bei Aubert et al. zeigt, nach steilem Anstieg ab Mitte Juli, einen ausgeprägten Gipfel
in der ersten Augusthälfte und ein rasches Abnehmen der Fangzahlen in der zweiten Augusthälfte.
Zwei am Krinnenpaß in der Schweiz markierte Individuen wurden am ca. 50 km südwestlich liegen-
den Col de Bretolet wiedergefangen (Aubert & Goeldlin 1981).
In Norddeutschland wurden nicht bodenständige Tiere dieser Art in einigen Exemplaren auf Feu-
erschiffen (Heydemann 1967, Lempke 1962) und in großer Zahl im Juli und August auf der Insel
52
Sphaerophoria scripta @ (Ph. W. Gatter).
53
Anzahl pro Pent.
Anz. pro Tag (#) Deren
3000 1975 - 1987
1500+[ N. ei
Eee BD = 988
5% 28.7 12 J= 11856
2544785
2700 40.8979 193
en 8. IT
73% ei. B. 2. 8,9% 45
95% 4.9. 248.78 62
ber 28210% el 8. 79 150
2400 29. 8.80 65
1200 + 7. 8.81 69
1982.82 69
3. 8.84 234
147. 8.285 332
2100
nenn 15. 8.86 245
222887 147
ı800 |
900 +
1500 |
750 +
2200 |
8600 +
900
450 +
600
300 +|
acer |.
150 +
ER
Jul Aug Sep Okt
a Jun
Abb. 16a: Nach Süden gerichtete Migration von Sphaerophoria scripta (vgl. Legende zu Abb. 4a) (eingefügte
Zeichnung aus van der Goot 1981).
Fig. 16a: Southbound migration of Sphaerophoria scripta.
Scharhörn (Schmid 1987) gefunden. Hinweise auf Wanderungen in S-England liegen ebenfalls vor
(Parmenter 1960).
Phänologie am Randecker Maar: $. scripta ist wie am Col de Bretolet eine der häufigsten Arten
(Tab. 2). Sie wird auch am RM hauptsächlich im August gefangen (Abb. 16a). Im September erschei-
nen nur noch wenige Individuen. P treten am Maar fast doppelt so häufig auf wie FO (CO: PP
= 1:1,7; n = 11204). Im jahreszeitlichen Muster ihres Vorkommens besteht kein Unterschied
(Abb. 16b, 16c).
Auch das tageszeitliche Aktivitätsmuster der beiden Geschlechter ähnelt sich stark. Insgesamt ist
die Verteilung nahezu symmetrisch mit einem Maximum in der Mittagszeit (Abb. 16d).
54
Anzahl pro Pent. Anzahl pro Pent. 4 j
Anz. pro Tag (+) SERrRZABES WM Anz. pro Tag (+) sense A
1000 1975 - 1987 1800 1975 - 1987
vv I vo
SIE 7. am RO ]
Us= 4136
5% 29. 7. = 5% 28.
25% 4.8. 4.8.75 108 25% 5.
S00 | 50% 14. 8. Ä 1520 | 50% 14.
2450 + Ava / 076 19 BI0
75% 20.8. 20.,8.77. 22 75% 21.
95% 37.9.. 15, 8.78 18 95% 5.
Le. 4.10. | 21.8.79 63 to, 0,
soo | 29. 8.80 24 | 1440 |
400 + | 7.8.8 21 720 +
rm 15. 8.82 25
| 3.8.84 114
14. 8.85 90
700 | 1260
350+| 17 ..8..186 83 | 8s30+|
| 22. 8.87 51
I oso |
540 +
900
||
720
360 +
540
270 +
360 |
180 +
180 |
90 +
a
C Jun
Abb. 16b: Nach Süden gerichtete Migration von Sphaerophoria scripta-J'O (vgl. Legende zu Abb. 4a).
Fig. 16b: Southbound migration of Q’C’ of Sphaerophoria seripta.
Abb. 16c: Nach Süden gerichtete Migration von Sphaerophoria scripta-? Q (vgl. Legende zu Abb. 4a) (eingefügte
Zeichnung aus van der Goot 1981).
Fig. 16c: Southbound migration of PP of Sphaerophoria scripta.
Das Verhältnis zwischen S-Reuse und N-Reuse liegt bei 3,5:1 (n = 2696). Eine Auswertung der
Windrichtungen an den Hauptflugtagen zeigt, daß scripta überwiegend bei Gegenwind aus SW, S und
SE (66,9%) und nur selten bei Rückenwind aus NW, N und NE (17,7%) ın die S-Reuse fliegt (Abb.
27m).
Status: Saisonaler Migrant.
„Sphaerophoria menthastri-Gruppe“
Unter diesem Namen werden mehrere Arten zusammengefaßt, die zu Beginn der Untersuchungen
mit den Bestimmungsschlüsseln von Sack (1932) nicht unterschieden werden konnten. Auch heute
sind oft nur die G'C° dieser Artengruppe genau bestimmbar. Überwiegend werden aber Weibchen ge-
fangen. Die in der ersten Hälfte unseres Jahrhunderts sämtlich als Sphaerophoria menthastri (Linnaeus
1758) bezeichneten Tiere dieser Gruppe erweisen sich als zahlreichen verschiedenen Arten zugehörig.
Erst jüngst beschrieb Goeldlin (1989) vier neue Arten aus der westlichen Paläarktis.
Die vorliegenden Belegexemplare lassen vermuten, daß S. menthastri (Linnaeus 1758) — nach
Goeldlin (1989) ist der gültige Name $. interrupta (Fabricius 1805) — am Randecker Maar die häufig-
ste Art der Gruppe ist. Außerdem wurden $. fatarum Goeldlin 1989 — in Schmid & Gatter (1988) un-
ter dem Namen abbreviata Zetterstedt 1859 aufgeführt — und S$. taeniata (Meigen 1822) nachgewie-
sen. Insgesamt sind Fliegen dieser Gruppe aber eher selten. Sie werden hauptsächlich im August ge-
55
e
GERNE.
Jahre 1979 — 1977
25%= 485
50%= 970
75%= 1454
Max= 335
>16h= 5.8 %
N = 1939
Unr
Varıze 1970,19
* 25%= 3045
* 50%= 6090
* 75%= 9135
Max= 2027
*N = 12180
N = 415415
-
Unr
seripta M SCrIpPt3 W
vehre 1975 - 1977 VEanrEe 1333 1977:
vahre 1975 — 1987
* 25%= 1794
* 50%= 3589
* 75%= 5383
Max= 1232
*N = 7178
N = 6876
Abb. 16d: Tageszeitliche Verteilung von Sphaerophoria scripta (vgl. Legende zu Abb. 4d).
Fig. 16d: Diurnal activity patterns of Sphaerophoria scripta migrating southward.
fangen. Ihre geringe Zahl läßt keinen Schluß auf mögliches Wanderverhalten zu. Auch von anderen
Gebieten fehlen Hinweise auf zahlenstärkere Wanderungen weitgehend. Goeldlin (1989) weist darauf
hin, daß die in Speziation befindliche „menthastri-Gruppe“ auch intraspezifisch sehr varıabel ist,
während die wandernde Art Sphaerophoria scripta im gesamten riesigen Verbreitungsgebiet bemer-
kenswert wenig variabel ist — ein weiterer Hinweis auf die sehr geringe Mobilität der „menthastri-
Gruppe“ (vgl. auch 4.5).
3.1.2 Schwebfliegen mit terrestrischen saprophagen Larven
Rhingia campestris Meigen 1822
Verbreitung: paläarktisch
Biologie: Die Larven von Rhingia campestris entwickeln sich in Kuhdung (Krüger 1926, Coe 1942).
Die Imagines sind zwischen (Mitte März) Mitte April und Mitte Oktober (Anfang November) zu se-
hen. Sie fliegen in zwei deutlich ausgeprägten Generationen vor allem im Frühling und im Spätsom-
mer. Vermutlich überwintern diapausierende Larven (Coe 1942).
56
Wanderungen: Hinweise auf Wanderungen von R. campestris existieren nicht. Die am Col de Bre-
tolet hauptsächlich zwischen Anfang August und Mitte September gefangenen Tiere (Tab. 2) entstam-
men wohl ansässigen Populationen (Aubert et al. 1976).
Anzahl pro Pent.
Anz. pro Tag (#) SEINWDSSENZS
1975 - 1987
Eh Rn
Fasz. D = 58
a. T. a 700
Er e5% 1.8. 16. 8.75 5
L h 8. 77 |
Br : 5.8.76 ?
: Ad. El. 27 ?
Je 20. 9.7 6
g. 3.8.79 3
BO ||: 20. 8.80 100 |
so+| 14.8.8 4
12.8.8 2
28. 7.85 4
10 11.08.87 35
SO +
80
AO: |
40 IL
e0O +
a Jum Jul | Aug sep , Okt
Abb. 17a: Fänge in der S-Reuse von Rhingia campestris (vgl. Legende zu Abb. 4a) (eingefügte Zeichnung aus van
der Goot 1981).
Fig. 17a: Trapped individuals with northerly opening trap (S-trap) of Rhingia campestris.
C3MPESEFTIS
JENE NIT LGETE
Abb. 17b: Tageszeitliche Verteilung von Rhingia campestris (vgl. Legende zu Abb. 4d).
Fig. 17b: Diurnal activity patterns of Rhingia campestris.
Phänologie am Randecker Maar: Auch im Bereich der kleinen, gebüschbestandenen Kuppe, auf der
die Station Randecker Maar liegt, lebt eine Population von campestris, von deren Sommergeneration
sich regelmäßig einige Fliegen in den Reusen fangen (Tab. 2 und Abb. 17a). Da die 0°C’ oft stunden-
lang schwebend an Gebüschrändern und über der Reuse in der Luft stehen, während die PQ auf Blü-
ten der Krautschicht Nahrung suchen, sind 0'O’ in den Reusenfängen leicht überrepräsentiert
(CO: DD = 1m 307).
57
Abb. 17b zeigt im Tagesverlauf bis zum frühen Nachmittag eine weitgehend ausgeglichene Vertei-
lung. Das Flugaktivitätsmaximum liegt am späteren Nachmittag. Es unterscheidet sich damit grund-
sätzlich vom Aktivitätsmuster der Wanderarten mit ihrem Aktivitätsmaximum am späten Vormittag
oder um die Mittagszeit (Gatter 1981b).
Das starke Ungleichgewicht zwischen den beiden Reusen (S-Reuse : N-Reuse = 5,3:1;n = 498) läßt
sich dadurch erklären, daß die S-Reuse auf der Kuppe in einer Schneise zwischen Büschen steht — dort
schweben die campestris-O'O' bevorzugt und dort sind in der Krautschicht auch im Spätsommer zahl-
reiche Blüten zu finden, an denen die nahrungssuchenden @Q zu sehen sind — während sich die
N-Reuse direkt auf eine offene, im Spätsommer nahezu blütenlose Wirtschaftswiese öffnet.
Status: Bivoltine Art ohne Migrationsneigung.
Neoascia podagrica (Fabricius 1775)
Verbreitung: paläarktisch
Biologie: Diese kleine Schwebfliege besiedelt viele Lebensräume und ist sehr häufig. Ihre Larven le-
ben saprophag von pflanzlichen und tierischen Abfällen. Die Flugzeit beginnt (Ende März) Mitte
April und endet Mitte Oktober. Nach Hartley (1961) überwintern die Larven. Nielsen (1972) vermu-
tet allerdings, daß Aprilbeobachtungen i in S-Norwegen auf überwinternde Imagines zurückgehen.
Wanderungen: Der einzige Hinweis auf nicht bodenständige Individuen liegt von der Nordseeinsel
Scharhörn vor, wo an einem Tag 7 Tiere gefangen wurden (Schmid 1987).
Phänologie am Randecker Maar: Diese häufige Art wird regelmäßig, wenn auch nicht sehr zahl-
reich, in den Reusen gefangen (Tab. 2, Abb. 18). Vermutlich werden die sehr zarten Fliegen vom
Wind dorthin verdriftet. Dabei geraten wesentlich mehr Fliegen in die S-Reuse (S-Reuse :N-Reuse =
4,6:1;n = 124). Der Grund dürfte derselbe sein wie bei Rhingia campestris: N. podagrica lebt über-
Anzahl pro Pent.
Anz. pro Tag (#) DBoalgeogräee
1975 - 1987
IM V V v
Sp, 29. 2% D = 10
5% 3.8 BuJ= 1
25% 15.8. ae 5
e4 50% 2.9. ;
ler BR 9,8. i
95% 28.9. :
Le. 11.10. 3
18 8 7
9g9+ 5
12 IL
8 +
6 Io
3+
Jun | Slam: Aug SIEIB Okt
Abb. 18: Fänge in der S-Reuse von Neoascia podagrica (vgl. Legende zu Abb. 4a) (eingefügte Zeichnung aus van
der Goot 1981).
Fig. 18: Trapped individuals with northerly opening trap (S-trap) of Neoascia podagrica.
58
|
]
|
|
|
|
wiegend im Bereich der einschürigen Wiese der Gebüschkuppe und wird deshalb überwiegend in der
S-Reuse gefangen.
Status: Polyvoltine Art mit geringer saıisonaler Dismigrationsneigung.
Syritta pipiens (Linnaeus 1758)
Vorkommen: holarktisch, orientalisch (Nepal)
Biologie: S. pipiens gehört zu den häufigsten Schwebfliegenarten. Sie ist zwischen (Ende März)
Mitte April und Mitte Oktober (Anfang November) in nahezu allen Lebensräumen zu beobachten.
Am häufigsten ist die Art im Hochsommer. Die Larven ernähren sich von pflanzlichen und tierischen
Abfällen wie Kompost, Dung usw. (Hartley 1961, Krüger 1926). Die Larven überwintern (Hartley
1961).
Wanderungen: Die einzigen Hinweise auf Wanderungen sind einige Funde (6 Expl.) auf Feuer-
schiffen (Heydemann 1967) und Beobachtungen (18 Expl.) auf der Nordseeinsel Scharhörn (Schmid
1987). Aus den Alpen fehlen Wanderbeobachtungen (vgl. Tab. 2).
Phänologie am Randecker Maar: Von dieser Art werden — verglichen mit ihrer est — nur
sehr wenige Tiere in den Reusen gefangen (Tab. 2). Sie entstammen mit großer Wahrscheinlichkeit der
ansässigen Population. In der Umgebung der Station, vor allem im 200 m südlich gelegenen Schopf-
locher Moor, ist die Art oft extrem häufig.
Status: Polyvoltine Art mit sehr geringer saisonaler Dismigrationsneigung.
3.1.3 Schwebfliegen mit aquatischen sapro-/microphagen Larven
Eristalis arbustorum (Linnaeus 1758)
Verbreitung: paläarktisch, orientalisch (Nordindien); nearktisch verschleppt
Biologie: Die eurytopen Imagines der häufigen E. arbustorum können zwischen (Anfang März)
Mitte April und Ende Oktober beobachtet werden, dürften also in mehreren Generationen auftreten.
Im Spätsommer ist die Art am häufigsten. Ansonsten können meist keine weiteren deutlichen Maxima
beobachtet werden. Die Larven werden gewöhnlich in stark eutrophierten Gewässern (Hartley 1961),
aber auch in Haufen faulender Pflanzen (Krüger 1926) gefunden. Die Larve überwintert (Hartley
1961, Krüger 1926).
Wanderungen: Am Col de Bretolet wird die Art, obwohl nicht allzu zahlreich gefangen (Tab. 2),
\ als Wanderer eingestuft (Aubert et al. 1976). Sie kommt dort fast während der ganzen Fangperiode
|
Anzahl pro Pent
Binz. pro Tag (#) =Iı
19757 1987
Erw o3 er, D = 7
52.29. 7 Aal STDUSTOTUM
Eu Al, Re E
=) 50% 20. B.
|| 7er. © b
95% 17.9.
kerEPaRag
10 25%= 21
5 + 50%= 42
75%= 63
Fo Max= 17
} | N = 84
| BRIUIRET > zu +
a Jum Jul 4 6 8 410 14 16 18 20 un
Abb. 19a: Nach Süden gerichtete Migration von Eristalis arbustorum (vgl. Legende zu Abb. 4a).
Fig. 19a: Southbound migration of Eristalis arbustorum.
Abb. 19b: Tageszeitliche Verteilung von Eristalis arbustorum (vgl. Legende zu Abb. 4d).
Fig. 19b: Diurnal activity patterns of Eristalis arbustorum migrating southward.
3%)
ohne ausgesprochene Maxima vor. Bei einer in Tirol beobachteten Schwebfliegenwanderung war
arbustorum ebenfalls unter den gesammelten Belegexemplaren (Jeekel & Overbeek 1968).
Aus Norddeutschland liegen einige Funde von Feuerschiffen (Heydemann 1967) und Beobachtun-
gen auf der Nordseeinsel Scharhörn vor (Schmid 1987). Dort erscheint die Art zwar regelmäßig, aber,
gemessen an ihrer Häufigkeit, in nur geringer Zahl.
Phänologie am Randecker Maar: Auch hier wird arbustorum nur in geringer Zahl hauptsächlich im
August in den Reusen gefangen (Tab. 2, Abb. 19a). Das tageszeitliche Aktivitätsmuster zeigt
Abb. 19b. Obwohl das Material sehr gering ist, ist der Unterschied zwischen den beiden Reusen deut-
lich (S-Reuse: N-Reuse = 5:1;n = 30.
Status: Saisonaler Migrant mit geringer Migrationsneigung.
Verglichen mit der Häufigkeit von arbustorum ist die Zahl der Wanderer klein. Für die alljährliche
Populationsentwicklung in Mitteleuropa dürften Migranten keine wesentliche Bedeutung haben.
Eristalis interrupta (Poda 1761) (= E. nemorum auct.)
Verbreitung: holarktisch
Biologie: Die Entwicklung dieser Art dürfte weitgehend der von arbustorum gleichen (Hartley
1961). Auch E. interrupta ıst eine eurytope, allerdings offene Habitate eher meidende, und häufige
Art; sie kann von (Mitte April) Anfang Mai bis Anfang (Mitte) Oktober gesehen werden. Ihre größte
Häufigkeit erreicht sie im Hochsommer.
Wanderungen: Von interrupta liegen keine auf Wanderungen hinweisende Beobachtungen vor.
Phänologie am Randecker Maar: Die Art wird — verglichen mit ihrer Häufigkeit — nur selten ge-
fangen (Tab. 2). Es dürfte sich dabei um Tiere der näheren Umgebung handeln.
Status: Der Status dieser Art entspricht möglicherweise dem von E. arbustorum. Die Wandernei-
gung von interrupta ist allerdings äußerst gering.
Eristalis pertinax (Scopoli 1763)
Verbreitung: westpaläarktisch
Biologie: Die sehr häufige, eurytope pertinax kann von (Ende Februar) Mitte April bis Ende Okto-
ber (Anfang November) beobachtet werden. Sie ist schon im Mai sehr zahlreich anzutreffen und ist
im Sommer oft eine der häufigsten Schwebfliegenarten. Die Larven leben in eutrophen Gewässern.
Die Art überwintert im Larvenstadium (Hartley 1961).
Wanderungen: Am Col de Bretolet trat die Art kaum in Erscheinung (Aubert et al. 1976; Tab. 2).
Die wenigen Fänge konzentrieren sich auf den August. Dethier & Goeldlin (1981) bezeichnen perti-
nax als Wanderart. Aus Norddeutschland liegt ein Fund von einem Feuerschiff vor (Heydemann
1967). Auf der Nordseeinsel Scharhörn konnte pertinax zwar nicht häufig, aber doch regelmäßig
nachgewiesen werden. Von hier stammen auch Beobachtungen nach SW fliegender Tiere (Schmid
1987).
Phänologie am Randecker Maar: Verglichen mit der Häufigkeit der Art wird pertinax in den Reusen
sehr selten gefangen (Tab. 2). Allerdings sagt das wenig über den tatsächlichen „Flugverkehr“ aus. Für
pertinax könnte hier dasselbe gelten wie für tenax: die meisten Fliegen erkennen die Reusen als Hin-
dernis und um- oder überfliegen sie gezielt. Einen Hinweis auf gerichtete Wanderungen von pertinax
geben die Zahlenverhältnisse zwischen den Reusen: auf 34 in der S-Reuse gefangene Ex. kam nur 1 Ex.
aus der N-Reuse.
Status: Saisonaler Migrant mit geringer Wanderneigung (vgl. E. arbustorum).
60
Eristalis tenax (Linnaeus 1758)
Verbreitung: kosmopolitisch
Biologie: PP von E. tenax überwintern selbst im nördlichen Europa noch regelmäßig (z. B. Torp
1984, Nielsen 1972). Sie sind im frühesten Frühjahr schon auf Blüten zu sehen. Im späten Frühjahr ist
tenax ausgesprochen selten. Erst im Frühsommer wird die Art wieder regelmäßig angetroffen. Im
Hoch- und vor allem ım Spätsommer und Herbst ist tenax eine der häufigsten Schwebfliegenarten. Sie
kann bis in den November hinein gesehen werden. Ihre Rattenschwanz-Larven leben in eutrophen
Gewässern. Selbst Extremhabitate werden besiedelt (Jauche, sich zersetzendes Aas etc.).
Wanderungen: Eristalis tenax gehört zu den auffälligsten Wanderern unter den Schwebfliegen. Gat-
ter (1980) beobachtete im Frühjahr (Mai) nordwärts gerichteten Schwebfliegenzug über einen 5400 m
hohen Himalaya-Paß. Unter den Belegexemplaren waren auch 3 Eristalis tenax. Beobachtungen
herbstlicher SW-Wanderungen liegen aus den Pyrenäen (Snow & Ross 1952, Williams et al. 1956), den
Alpen (z. B. Aubert etal. 1976, Eimer 1880, Prell 1925), den südwestdeutschen Mittelgebirgen (Gatter
1975a, 1976, Gatter & Gatter 1973) und aus dem mitteleuropäischen Küstenbereich vor (Lempke
1962, Schmid 1987). Williams (1961: 102) erwähnt regelmäßige Herbstwanderungen von Eristalis ent-
lang der Küste von New Jersey/USA in südliche Richtung. Möglicherweise handelt es sich auch hier
um E. tenax.
Erıstalis tenax ist, vor allem wenn es sich um Beobachtungen im Frühherbst handelt, oft die häufig-
ste und auffälligste Wanderart. Am Col de Bretolet ist tenax nach Episyrphus balteatus die am häufig-
sten gefangene Art (Tab. 2, Abb. 20a). Die Durchzugszahlen steigern sich von geringen Tagessum-
men im Juli bis zum sehr ausgeprägten Maximum im September und der ersten Oktoberdekade. Bis
Ende Oktober nehmen die Zahlen wieder sehr stark ab.
Eristalıs tenax © (Ph. W. Gatter).
61
Anzahl pro Pent.
Anz.
200
100
180
90
160
80
140
70
120
80
100
5o
=[6)
40
80
30
40
ei®
20
10
62
pro Tag (+)
1975 - 1987
+
ER /ER
SR 10 MER
25% 28.8
50%. 11,29%
a
95% 37210
ler, 4152.10
+
+
+
Jun
rtengax
ra
vooov0o0o00o 0
v v v
el RMV. 2 =
= 7.9 12 J 398
EO2SSIEEer 4.8.75 1
SOBE 50x 24.7.7 |
45 + 6. Wi
75% 19.9. 20. 8.78 2
9% 4.10. 17. 9.79 14
Le. 15.10. 19. 9.80 23
80 25. 9.81 4
205% 20. 9.82 3
Anzahl pro Pent. 4. 9.84 2
Anz. pro Tag (+) samaIE VU 19. 8.85 4
1975 - 1987 70 26. 8.86 19
N 7 35+| 20. 9.87 7-
Er. 44. 7. B = 18
3.8. 12 y 220
25% 30. 8. 19. 9.80 18 er
50% 11.9. 12.9.8 34 FH
9. 30 +
| 75x 19.9. 20. 9.82 2
95% 1.10. 29. 8.84 4
Le. 6.10. 19. 9.85 4
so | 15. 9.86 14 | 50
25 + 20. 9.87 2 e5+
40 40
eo + 20 +
30 30
As5+[T 15+
|
|
20 20
10+| 10 +
10 10
er 5+
|
I
KMITTUTTF T, T T: = -
b Jun Jul Aug Sep Okt C
Anzahl pro Pent.
Anz. pro Tag (+) tens3ax W
100 1975 - 1987
Abb. 20b: Nach Süden gerichtete Migration von Eristalis tenax-J'C' (vgl. Legende zu Abb. 4a).
Fig. 20b: Southbound migration of JO of Eristalis tenax.
Abb. 20c: Nach Süden gerichtete Migration von Eristalıs tenax-?Q (vgl. Legende zu Abb. 4a).
Fig. 20c: Southbound migration of QQ of Eristalis tenax.
Als große Insekten können fliegende Eristalis-Arten auch im Feld gut angesprochen und über kurze
Strecken mit dem Fernglas verfolgt werden. Wie Stichproben ergaben, handelte es sich am Randecker
Maar dabei überwiegend um E. tenax. Richtungsmessungen ergaben, daß die Fliegen fast ausschließ-
lich nach SW zogen (Gatter 1981a). Dabei entwickeln sie beachtliche Zuggeschwindigkeiten von ca.
25 km/h beı Windstille (Gatter 1981a mit weiteren Einzelheiten).
In den Alpen wurden am Col de Bretolet markierte tenax an einem 3 km südwestlich gelegenen Paß
innerhalb von 10-15 Minuten wiedergefangen (Aubert et al. 1969).
Phänologie am Randecker Maar: Hier steht tenax in der Fangstatistik mit 757 Expl. erst an neunter
Stelle (Tab. 2). Frühere Beobachtungen (Gatter & Gatter 1973, Gatter 1975a) belegen allerdings, daß
diese geringen Fangzahlen keineswegs Folgen eines nur sehr schwachen Zuggeschehens sind. Gatter
(1976) konnte beobachten, daß tenax die Reusen gewöhnlich als Hindernisse erkennt und um- oder
überfliegt. Trotzdem dürften auch die relativ wenigen Fänge zuverlässig Aufschluß über die Phänolo-
gie von tenax geben. Das auf den Fängen basierende Diagramm (Abb. 20a) dieser Art mit seinem typi-
schen Schwerpunkt erst im September entspricht im wesentlichen den durch Sichtbeobachtungen ge-
wonnenen Diagrammen bei Gatter (1975a). Auch am Col de Bretolet ist tenax die Art mit dem späte-
Abb. 20a: Nach Süden gerichtete Migration von Eristalis tenax (vgl. Legende zu Abb. 4a); eingeschaltet ist das
Zugmuster am Col de Bretolet (aus Aubert et al. 1976).
Fig. 20a: Southbound migration of Eristalis tenax; the insertion shows the phenology at Col de Bretolet.
63
FEN3IX
Wahre 1GFa EI GEZ
4.6 8 10 12 14 16 18 20 Uhr
L DIESE 1}
Ma 150 1
NEE 15. 9 N= 225
Uhr
Max= 32
> 16.-
CENGX M 31.8 Ne 443
Max= 15
Ike
15.8 N= 62
25%= 53
50%= 105
75%=- 158
Max= 50 JUL
N = 240
Unr e 4 6 8 10 12 414 16 18 20 Uhr
Abb. 20d: Tageszeitliche Verteilung von Eristalis tenax (vgl. Legende zu Abb. 4d).
Fig. 20d: Diurnal activity patterns of Eristalis tenax migrating southward.
Abb. 20e: Tageszeitliche Verteilung von Eristalis tenax im Jahresverlauf (vgl. Legende zu Abb. 5h).
Fig. 20e: Diurnal activity patterns of Eristalis tenax migrating southward throughout the year.
sten Maximum (vgl. Abb. 20a). PP werden am RM etwas häufiger gefangen als CC’ (O0: 29 =
1:1,3;n = 701). Die Diagramme für die beiden Geschlechter weichen nicht wesentlich vom Summen-
diagramm ab (Abb. 20b, 20c).
Auch das tageszeitliche Muster der Reusenfänge (Abb. 20d) bestätigt die durch Sichtbeobachtungen
(Gatter 1975a) gewonnenen Daten, nach denen das Gros in der Zeit von ungefähr 10-16 Uhr zieht,
während nach 16 Uhr nur noch wenige ziehende tenax beobachtet werden können. Mit fortschreiten-
der Jahreszeit verlagert sich der Aktivitätsschwerpunkt vom späten Vormittag auf den frühen Nach-
mittag (Abb. 20e). Das Aktivitätsmuster der beiden Geschlechter unterscheidet sich nicht wesentlich
voneinander.
Eristalis tenax wird Jahr für Jahr ın stark wechselnder Anzahl gefangen (Abb. 27n). Die weitaus
meisten Tiere geraten dabei in die S-Reuse (S-Reuse : N-Reuse = 46,5:1;n = 285). Gewöhnlich wer-
den sie dort bei Gegenwinden aus SW, S oder SE gefangen (75,8%, n = 317), nur gelegentlich bei Rük-
kenwind aus NW, N oder NE (7,5%) (Abb. 26f).
Status: Saisonaler Migrant.
Die Zahl der im mittleren und nördlichen Europa überwinternden Q 9 ist, im Vergleich zu der gro-
ßen Häufigkeit der Art, eher gering. Verlinden & Decleer (1987) vermuten, daß ein großer Teil der
Fliegen im Herbst nach Süden zieht. Die großen Zahlen (Hochrechnungen für das Randecker Maar
bei Gatter & Gatter 1973) zeigen, daß tatsächlich enorm viele Fliegen an der herbstlichen Wanderung
teilhaben.
64
Direkte Beobachtungen von Frühjahrswanderungen fehlen, jedoch lassen die sehr steil ansteigen-
den Zahlen im Sommer vermuten, daß Zuwanderung aus dem südlichen Europa für den Aufbau der
Sommerpopulationen mit verantwortlich ist. Dabei sind allerdings nicht die Immigranten selber, son-
dern deren Nachkommen für das Soemmermaximum verantwortlich.
Helophilus pendulus (Linnaeus 1758)
Verbreitung: paläarktisch
Biologie: H. pendulus ist eine eurytope und oft häufige Art. Die Larven wurden in eutrophen Ge-
wässern, aber auch in sehr nassem Dung und sich zersetzendem pflanzlichen Material gefunden. Die
Larven überwintern (Hartley 1961). Die Imagines können zwischen (Ende März) Mitte April und
Ende Oktober, gelegentlich auch noch im November und Dezember (Verlinden & Decleer 1987) ge-
sehen werden. Gewöhnlich wird im Juni ein erstes Maximum gebildet. Ihre größte Häufigkeit erreicht
die Art aber im Hochsommer (August).
Wanderungen: Am Col de Bretolet erscheint H. pendulus zwar nicht in sehr großer Zahl (Tab. 2),
aber regelmäßig, so daß Aubert et al. (1976) die Art als Wanderer einstufen. Das Maximum wird hier
Mitte September erreicht. Aus Norddeutschland existieren Beobachtungen nicht-ansässiger Tiere von
Feuerschiffen (Heydemann 1967) und von der Insel Scharhörn (Schmid 1987). Ein Mai-Nachweis von
dort stammt möglicherweise von einem Tier, das sich auf Nordwanderung befand. Regelmäßig wurde
die Art erst ab Anfang Juli gesehen.
Phänologie am Randecker Maar: H. pendulus wird in der S-Reuse nur wenig seltener gefangen als
Eristalıs tenax (Tab. 2). Der Zughöhepunkt liegt aber früher als bei dieser Art, nämlich an der Monats-
wende August/September (Abb. 21a). H. pendulus ist von den späten Vormittagsstunden bis in den
Nachmittag hinein ohne auffälliges Maximum flugaktiv (Abb. 21b). Der „Abendgipfel“ kommt durch
Volucella pellucens, eine monovoltine Art ohne saisonale Wanderungen (Ph.: W. Gatter).
65
Anzahl pro Pent
Anz. pro Tag (#) pendulaga
Es 1975 - 1987
e -
Se oe7 ar
De
5% 31.7
25% 21
8
Se EL E 16. 7.76 2
5% 10.9 15 78 6
9% 21.9 2 79 37
| te. 12.10
144 15 81 7£
72+ 4 82 3
no
{3
venoamomomnu MW
4
Ss
rn
pendaulg
Elan ee) EEE
Abb. 21a: Nach Süden gerichtete Migration von Helophilus pendulus (vgl. Legende zu Abb. 4a).
Fig. 21a: Southbound migration of Helophilus pendulus.
Abb. 21b: Tageszeitliche Verteilung von Helophilus pendulus (vgl. Legende zu Abb. 4d).
Fig. 21b: Diurnal activity patterns of Helophilus pendulus migrating southward.
die Extrapolation der Beobachtungen von 1975-77 (n = 14) zustande und bezieht sich nur auf zwei
gefangene Tiere, ist also zu vernachlässigen. Abb. 27 o zeigt die jährlichen Fangsummen und das Ver-
hältnis der Fangzahlen zwischen beiden Reusen: S-Reuse : N-Reuse = 6,5: 1 (n = 195).
Status: Saisonaler Migrant.
Helophilus trivittatus (Fabricius 1805)
Vorkommen: paläarktisch
Biologie: Die Larven von trivittatus und ihre Habitatansprüche sind nach unserem Wissen noch un-
beschrieben. Sie dürften aber denen von pendulus ähneln. Auch die Imagines von trivittatus sind eben-
sowenig an bestimmte Habitate gebunden wie die von pendulus. In vielen Gebieten ist trivittatus,
wenn auch nicht so häufig wie pendulus, in großer Zahl zwischen (Mitte April) Mitte Maı und Anfang
(Mitte) Oktober anzutreffen. Frühjahrsnachweise vor Mitte Mai sind ausgesprochen spärlich. Die
größte Häufigkeit wird meist im August und September erreicht.
Wanderungen: Aus den Alpen ist trivittatus vom CB als Wanderer mit ausgeprägtem Maximum in
der ersten Septemberhälfte bekannt (Tab. 2; Aubert et al. 1976). Williams et al. (1956) fingen 1 Expl.
unter migrierenden Syrphiden in den Pyrenäen. Auch aus Norddeutschland gibt es Wanderbeobach-
tungen von der Insel Scharhörn. Hier wurden die meisten Fliegen Ende August gesehen (Schmid
1987). Im Golf von Biskaya wurde 1 Expl. von trivittatus auf offener See gefangen (3.7.1957, Weidner
1958). Hinweise auf Wanderungen sind auch Herbstdaten aus Gebieten ohne Sommerbeobachtungen
(z. B. Schmid 1986).
66
Anzahl pro Pent.
Anz. pro Tag (+) ErRZAVZECECSES
1975 - 1987
V V V
Er. 18.7. ae 15
= 18
5% 26. 7 0
25% 13. 8. 1.8.7 >
36 50% 21.8.
a : u 24. 8.76 2
7% 3.9 15.08.78 7
95% 20.9. >3.8.79 6
leo 1oR 29. 8.80 4
30 | 15. 8.84 4
15 + oeae2 2
31. 8.84 3
13.8.85 2
15. 8.86 3
24
12 + 18. 9.87 5
18
9+
12
6 +
6
3+
N) BR [II }
Jun Jul Aug sep Okt
Abb. 22: Nach Süden gerichtete Migration von Helophilus trivittatus (vgl. Legende zu Abb. 4a) (eingefügte Zeich-
nung aus van der Goot 1981).
Fig. 22: Southbound migration of Helophilus trivittatus.
Phänologie am Randecker Maar: H. trivittatus erscheint zwar nur in geringer Zahl, aber regelmäßig
am RM (Tab. 2, Abb. 27p). Die Art wird dabei fast ausschließlich in der S-Reuse (S-Reuse :N-Reuse
= 33,5:1;n = 69) bei Gegenwinden aus SW, S oder SE (78,5 %) gefangen (Abb. 26g). Bei Rückenwin-
den aus NW, N oder NE geraten nur 6,8% der Fliegen in die S-Reuse. Trivittatus wandert überwie-
gend im August und September (Abb. 22). Das Maximum liegt am RM Ende August, während es am
CB erst in der ersten Septemberhältte erreicht wird.
Status: Saisonaler Migrant.
3.1.4 Schwebfliegen mit phytophagen Larven
Cheilosia pagana (Meigen 1822)
Verbreitung: paläarktisch
Biologie: Die sehr artenreiche Gattung Cheilosia ist in den Reusenfängen stark unterrepräsentiert
(vgl. Schmid & Gatter 1988). Lediglich die eurytope und häufige C. pagana, deren Larven phytophag
in Wurzeln des Wiesenkerbels Anthriscus sylvestris minieren (Stubbs 1980), wird zahlreich gefangen.
C. pagana bildet mehrere Generationen. Ihre Flugzeit beginnt gelegentlich schon Mitte März (Kor-
mann 1977), meist jedoch im April und dauert bis Mitte Oktober. Dabei sind oft Maxima ım Frühjahr
67
Anzahl pro Pent
nz. pro Tag (+) esgarna
1975 1987
Ep2 MER Z 1 D= 37 |
ala 7
| 25% 27.7 3.8.75 5
7 7 4
12. 8.77 1 PLIGaNgG
vahre 1975 - 1977
|
144 50% A
75% 14
95% 12
| Le. 30
wo omm
Dom.
* 25%= 125
* 50%= 250
* 75%= 376
Max= 82
*N = 501
N = 437
Uhr
Abb. 23a: Fänge in der S-Reuse von Cheilosia pagana (vgl. Legende zu Abb. 4a).
Fig. 23a: Trapped individuals with northerly opening trap (S-trap) of Cheilosia pagana.
Abb. 23b: Tageszeitliche Verteilung von Cheilosia pagana (vgl. Legende zu Abb. 4d).
Fig. 23b: Diurnal activity patterns of Cheilosia pagana.
und im Hochsommer deutlich. In welchem Entwicklungsstadium pagana überwintert, wird bei
Stubbs (1980) nicht deutlich. Zahlreiche Cheilosia-Arten überwintern als Puparium (z. B. Rotheray
1988, Smith 1979).
Wanderungen: Beobachtungen von Wanderungen fehlen bei sämtlichen Cheilosia-Arten. Am Col
de Bretolet sind zwar zahlreiche Arten nachgewiesen (Aubert et al. 1976), aber selbst im Bereich der
alpinen Matten lebende Cheilosien wurden nur in sehr geringer Zahl gefangen — Hinweis auf die im
allgemeinen sehr geringe Mobilität der Tiere. C. pagana ist nur mit 10 Expl. vertreten.
Phänologie am Randecker Maar: Auch die hohe Zahl von pagana-Fängen in den Reusen (Tab. 2)
dürfte nicht Ausdruck einer Wanderbewegung sein, sondern auf eine große ansässige Population zu-
rückgehen. Das an Doldenblütlern reiche Busch- und Wiesengelände der Stationsumgebung ist für
pagana ein ıdealer Lebensraum. Das Diagramm (Abb. 23a) spiegelt die lokale Häufigkeit der Art ge-
gen Ende des Hochsommer-Maximums wider.
Das Aktivitätsmaximum dieser Art liegt um die Mittagsstunden (Abb. 23b).
Der Unterschied zwischen den Reusen (S-Reuse:N-Reuse = 3,1:1;n = 232; Abb. 27q) geht ver-
mutlich auf die kleinräumigen Unterschiede im vor der Reusenöffnung gelegenen Lebensraum zurück
(vgl. Rhingia campestris, Neoascia podagrica).
Status: Polyvoltine Art ohne oder mit sehr geringer saisonaler Dismigrationsneigung.
3.2 Weitere Wanderarten in Europa
Nicht alle in Europa bisher wandernd beobachteten Syrphidenarten konnten am RM in einer zur
Klärung ihres Status hinreichend großen Zahl beobachtet werden. Deshalb soll hier zunächst ein
Überblick über diese Arten gegeben werden.
Die meisten Beobachtungen stammen vom Col de Bretolet. Hier konnten insgesamt 186 Schweb-
fliegenarten nachgewiesen werden (Aubert etal. 1976), von denen 30 als wandernd oder zumindest als
wanderverdächtig eingestuft wurden. In welche Kategorie diese Arten am CB eingestuft wurden, ist
jeweils sowohl übersetzt als auch im Wortlaut zitiert.
68
3.2.1 Schwebfliegen mit zoophagen Larven
Platycheirus scutatus (Meigen 1822)
Verbreitung: holarktisch
CB: n = 186, während der ganzen Beobachtungsperiode verteilt, vielleicht Wanderart („peut-etre
migratrice“); RM: n = 16, nur in zwei Jahren beobachtet.
Die Art ist im allgemeinen zahlreich. Sie kommt in Mitteleuropa von (Anfang April) Anfang Mai
bis Mitte Oktober (Anfang November) vor und bildet ı. a. zwei Generationen (Krüger 1926) die als
deutliche Maxima erkennbar sind (Verlinden & Decleer 1987). Angesichts der Spärlichkeit der Fänge
ist regelmäßiges Wandern in größerem Ausmaß ausgeschlossen. Gelegentliche Dismigrationen kön-
nen vorkommen (vgl. Schmid 1987). Die im Larvenstadium an Blattlauskolonien der Krautschicht le-
bende, obligatorisch aphidophage (Rotheray & Gilbert 1989) Art kann als Saisonaler Dismigrant mit
geringer Migrationsneigung betrachtet werden.
Xanthandrus comtus (Harrıs 1780)
Verbreitung: paläarktisch, orientalisch (Formosa)
CB: n = 441, Herbstwanderart („Migrateur automnal“) mit Maximum Mitte Oktober und Vor-
kommen 7.7.—21.10. Von den 441 Expl. allein 231 Expl. in einem Jahr; RM: n = 17.
Die in Mitteleuropa zwischen Mitte Mai und Mitte Oktober mit einem deutlichen Schwerpunkt im
Spätsommer vorkommende Art ist meist recht selten. Gelegentliches häufigeres Vorkommen könnte
mit Gradationen der Nahrungstiere zusammenhängen: comtus-Larven fressen v. a. Schmetterlings-
raupen, insbesondere Gespinstmotten (Yponomeutidae) und Wickler (Tortricidae), aber auch Kie-
fernprozessionsspinner (Thaumetopoea pinivora Tr.) (weitere Nahrungstiere in der Zusammenfas-
sung von Torp [1984]). Snow & Ross (1952) fingen comtus am 21.9. unter wandernden Syrphiden in
den Pyrenäen. Weitere Hinweise auf Wanderungen fehlen. Der Status der Art erscheint weiterhin un-
geklärt.
Metasyrphus lapponicus (Zetterstedt 1838)
= Enpeodes lapponicus
Verbreitung: holarktisch
CB: n = 10235, während der ganzen Beobachtungsperiode anwesend, Maximum variiert von Jahr
zu Jahr („Migrateur“); RM:n = 4.
M. lapponicus gehört zu den Arten, die in Mitteleuropa als Imago überwintern (Schneider 1958,
Goeldlin 1974, Dusek & Läska 1986) und kann deshalb schon früh im Jahr beobachtet werden (März).
Auch im Herbst ist die Art lange aktiv (November). Die Flugzeitangaben aus dem nördlichen Mittel-
europa und Nordeuropa (Belgien: Anfang April bis Ende August [Verlinden & Decleer 1987], Nie-
derlande: Ende Mai bis Anfang August [van der Goot 1981], Südnorwegen: Ende Mai bis Mitte Au-
gust [Nielsen 1971], Schleswig: Mitte Mai bis Mitte August [Claußen 1981], Dänemark: Ende Mai bis
Anfang September [Torp 1984]) zeigen, daß hier keine Überwinterung stattfindet. Die fehlenden
Spätherbstdaten lassen vermuten, daß eine Überwinterung auch nicht versucht wird. Die Art muß in
diese Gebiete also alljährlich einwandern. — M. lapponicus ist in Mitteleuropa in den meisten Jahren
eine eher seltene, waldbewohnende Art; nur gelegentlich ist sie häufiger anzutreffen. In den Alpen ist
lapponicus dagegen stets zahlreich. Möglicherweise ist das der Hauptgrund für die geringen Zahlen am
RM und den stärkeren Durchzug am CB mit Jahressummen zwischen 82 und 3765 Exemplaren.
Ein Hinweis auf Wandertendenzen dieser Art im Mittelgebirgsbereich ist z. B. die Bemerkung von
Malec (1986) aus dem Kasseler Raum, daß lapponicus im Herbst „mobiler“ zu sein scheine und dann
69
selbst in Großstadtgärten anzutreffen sei. Im Sommer 1989 war lapponicus nach einem sehr blattlaus-
reichen Frühling auch um Tübingen (SW-Deutschland) ungewöhnlich zahlreich und immer wieder in
Gärten und selbst in Häusern zu finden (Schmid unveröff.). Möglicherweise beziehen sich auch Hin-
weise auf Wanderungen von „Syrphus arcuatus“ in Südengland bei Walker (1864) auf lapponicus —
allerdings ist die Art in Großbritannien selten (Stubbs & Falk 1983).
Aufgrund ihres Lebenszyklus und der Flugzeiten in Mittel- und Nordeuropa ist zu erwarten, daß
M. lapponicus zu den Saisonalen Migranten gehört.
Metasyrphus latifasciatus (Macquart 1829)
= Eupeodes latifasciatus
Verbreitung: holarktisch
CB: n = 4909, während der ganzen Beobachtungsperiode anwesend, undeutliches Maximum An-
fang September („Migrateur“); RM: n = 20.
Der Lebenszyklus dieser Art entspricht weitgehend dem von M. corollae; allerdings scheint noch
nicht bekannt zu sein, in welcher Form die Überwinterung stattfindet. Typisch für latifasciatus sind
die extremen Häufigkeitsunterschiede von Jahr zu Jahr (Stubbs & Falk 1983, Verlinden & Decleer
1987). Am RM wurde die Art in vielen Jahren gar nicht beobachtet. M. latifasciatus ist eurytop mit
einer Vorliebe für offene und feuchte Habitate. Sie fliegt ab Anfang April bis Anfang Oktober und bil-
det mehrere Generationen. Um den Status der Art zu klären, bedarf es weiterer Beobachtungen.
Metasyrphus luniger (Meigen 1822)
= Eupeodes luniger
Verbreitung: paläarktisch, nordorientalisch (Assam)
CB: n = 12002, während der ganzen Beobachtungsperiode anwesend, Maximum variiert („Migra-
teur“),; RM:n =7.
Wie M. corollae ist auch luniger eine polyvoltine Art, die als Puparium überwintert (Scott 1939, Du-
sek & Läska 1974). Möglicherweise können gelegentlich auch Imagines überwintern (Gauss 1961,
Nielsen 1971), der Normalfall ist dies aber sicher nicht (Dusek & Läska 1986). Die Larven von /uniger
leben von zahlreichen Blattlausarten (Läska & Stary 1980) überwiegend in der Krautschicht (Dixon
1960, Rotheray & Gilbert 1989). M. luniger kann gewöhnlich zwischen Mitte April und Oktober be-
obachtet werden, gelegentlich auch noch später (9 QQ am 17. 12., [Schneider 1958]). Die früher oft als
häufig und weit verbreitet bezeichnete Art ist heute vielerorts ausgesprochen selten. Torp (1984)
spricht von einem sicheren Rückgang der Art in Dänemark. Dies dürfte für die wenigen Nachweise
der Art am RM mit verantwortlich sein. Der mit corollae übereinstimmende Lebenszyklus macht
wahrscheinlich, daß auch M. luniger zu den Saisonalen Migranten gehört, wenn auch Wanderdaten
nur spärlich vorliegen (z. B. Johnson 1960, Schmid 1987).
Dasysyrphus albostriatus (Fallen 1817)
Verbreitung: paläarktisch
CB: n = 548, Maximum Mitte September („Migrateur“); RM: n = 13.
D. albostriatus hat einen unter mitteleuropäischen Schwebfliegen ungewöhnlichen Lebenszyklus:
die Art ist bivoltin mit Hauptflugzeit im Frühjahr und Herbst und obligatorischer Larvendiapause
(Schneider 1948). Die zweigeteilte Flugzeit ermöglicht albostriatus die Ausbeutung des Frühjahrs-
wie des Herbstmaximums der Blattlauspopulationen (Dusek & Läska 1986). Die Art ist hauptsächlich
in Wäldern und an Waldrändern weit verbreitet, meist aber nur in geringer Anzahl anzutreffen. Dasy-
syrphus-Larven leben aphidophag überwiegend auf Laub- und Nadelbäumen (Rotheray & Gilbert
1989).
70
Am CB erscheint albostriatus vereinzelt ab Mitte Juli. Bis Anfang September steigern sich die Fang-
zahlen kontinuierlich, dann nehmen sie bis Anfang Oktober wieder ab. Hier spiegelt sich die Flugzeit
der Herbstgeneration getreulich wider. Vermutlich wandert D. albostriatus allenfalls in geringem
Ausmaß und ist als Saisonaler Dismigrant mit geringer Migrationsneigung zu betrachten.
Melangyna cincta (Fallen 1817)
Verbreitung: Westliche Paläarktıs, Nearktis
CB: n = 1075, deutliches Maximum Ende August/Anfang September, bis Mitte September sehr
schnelle Abnahme der Zahlen („Migrateur“); RM: n = 16.
Von Mitte April bis Mitte September kann diese Art vor allem ın Wäldern und an Waldrändern an-
getroffen werden. Ihre Larven wurden an Blattläusen auf Buchen (Fagus sylvatica) gefunden (Läska
& Stary 1980). Innerhalb ihrer Flugzeit ıst ein ausgeprägtes Maximum ım Frühjahr (Mai bis Anfang
Juni) ausgebildet. Im Sommer kann ein zweiter, schwächerer Höhepunkt ausgebildet sein. Dusek &
Läska (1962, 1986) halten cincta für eine univoltine Art; die Sommerdaten stammen demnach von ver-
früht geschlüpften und nicht erfolgreich fortpflanzungsfähigen Individuen. M. cincta kann am besten
mit Malaisefallen erfaßt werden (Schmid 1986, Verlinden & Decleer 1987); Angaben über die Häufig-
keit im Vergleich zu anderen Arten lassen sich somit nach Kescherfängen schlecht machen. Insgesamt
scheint cincta nicht selten zu sein, aber sehr starke Populationsschwankungen aufzuweisen (z. B. Ma-
lec 1986). — Der Status der Art erscheint unklar. Weitere Beobachtungen sind notwendig.
Parasyrphus annulatus (Zetterstedt 1838)
Verbreitung: paläarktisch
CB:n = 1786, Maximum zu Beginn der Beobachtungen im Juli („Migrateur probable“); RM: 3 Ex.
P. annulatus kann zwar gelegentlich bis in den Herbst hinein angetroffen werden, kommt aber nur
im Frühjahr in so großer Anzahl vor, daß sie lokal — so z. B. im Tübinger Raum (Schmid 1986), am
Alpennordrand (Schmid unveröff.) oder in der Westschweiz (Goeldlin 1974) — sehr häufig sein kann.
Möglicherweise ist die im Larvenstadium an Blattläusen in Fichtenwäldern (Kula 1980) gefundene Art
univoltin (z. B. Niederlande: Beobachtungen nur Mitte Mai bis Anfang Juli [van der Goot 1981]) mit
der Tendenz der Ausbildung einer zweiten Generation (vgl. Melangyna cincta). Überwintern dürfte
die diapausierende Larve. Von Arten mit einem solchen Entwicklungstyp sind keine gerichteten Sai-
sonwanderungen bekannt. P. annulatus führt Saisonale Dismigrationen im Zusammenhang mit der
Suche nach geeigneten Eiablageplätzen durch. Dafür spricht auch, daß in einem als Malaisefalle arbei-
tenden Gebäude am Rand von Tübingen ganz überwiegend PP gefangen wurden (Schmid 1986 und
unveröff.).
Parasyrphus punctulatus (Verrall 1873)
Verbreitung: Europa, Altai
Auch die QQ dieser ebenfalls nur in einer Frühjahrsgeneration auftretenden Art führen wie P. an-
nulatus saisonale Dismigrationen aus (vgl. Schmid 1986). Auch punctulatus ıst eine aphidophage Art,
die überwiegend, wenn auch nicht ausschließlich an Nadelbäumen lebt. Rotheray & Gilbert (1989) ge-
ben Funde von Abies, Pinus, Acer psendoplatanus und Rosa an. Bei Tübingen wurden Mitte Mai 1988
zahlreiche QQ bei der Eiablage an verlausten Fichtentrieben (Picea abies) beobachtet (Schmid unver-
öff.).
71
Parasyrphus vittiger (Zetterstedt 1843)
Verbreitung: paläarktisch
CB:n = 1568, undeutliches Maximum Ende August („Migrateur“); RM: 4 Ex.
Auch diese im allgemeinen eher seltene, im Larvenstadium an Blattläusen auf Tanne, Kiefer und
Johannisbeere (Ribes nigrum) lebende Art (Goeldlin 1974, Rotheray & Gilbert 1989) hat eine relativ
lange Flugzeit (Mitte April bis Mitte Oktober). Im Tübinger Raum existiert ein ausgeprägtes Früh-
jahrsmaximum (Schmid 1986). Hinweise darauf fehlen andernorts, so daß ungeklärt ist, wie viele Ge-
nerationen vittiger normalerweise ausbildet. In den Alpen kommt vittiger zahlreich bis über die
Waldgrenze vor (Goeldlin 1974, eigene Beobachtungen). Der Status dieser Art dürfte dem von P. an-
nulatus entsprechen: Saisonale Dismigration.
Didea alneti (Fallen 1817)
Verbreitung: holarktisch
CB: n = 817, ab Mitte Juli bis Ende September mit einem wenig ausgeprägten Maximum Ende Au-
gust („considere comme migrateur“); RM:n = 2.
D. alneti fliegt zwischen Mitte Mai und Mitte Oktober ohne deutliche Höhepunkte, dürfte also po-
lyvoltin sein. Diese aphidophage Art scheint nirgends zahlreich vorzukommen. Wanderhinweise ab-
seits des CB fehlen. Der Status der Art ist unklar.
Didea fasciata Macquart 1834
Verbreitung: holarktisch, orientalisch (Formosa)
CB: n = 3171, ausgeprägtes Maximum Ende Juli/Mitte August („Migrateur“); RM:n = 11.
Die Flugzeit dieser in Wäldern, aber auch in Gärten anzutreffenden, aphidophagen Art beginnt
Ende April und endet Ende Oktober. Maxima liegen in Dänemark Mitte Juni und Anfang August
(Torp 1984), in Belgien im August. Verlinden & Decleer (1987) vermuten, daß dieses Maximum durch
Wanderer verursacht wird. Direkte Hinweise auf Wanderungen gibt es außer vom CB nur noch aus
der Steiermark (Gepp 1975) und aus den Pyrenäen (1 Ex. am 10.10.; Williams et al. 1956). Der Status
von D. fasciata bedarf weiterer Klärung.
Meliscaeva auricollis (Meigen 1822)
Verbreitung: Westliche Paläarktis
CB: n = 3127, Maximum Ende September („Migrateur“); RM:n = 11.
Wie bei der sehr nahe verwandten Art Episyrphus balteatus können die PP, wie Schneider (1948)
im Alpenraum nachwies, als Imagines überwintern. Goeldlin (1974) nennt für die Westschweiz eine
Flugzeit von Februar bis November. Nördlich der Alpen scheint die Überwinterung nur in Ausnah-
mefällen zu glücken. Hier erscheint auricollis nur in Ausnahmefällen schon im Februar (Großbritan-
nien [Stubbs & Falk 1983]) oder im März (ein Fund am 26.3. in Belgien [Verlinden & Decleer 1987]).
Normalerweise fliegt die Art erst ab Mitte April, im Norden sogar erst ab Mai. Torp (1984) vermutet,
daß die dänische Population alljährlich von Einwanderern aufgebaut wird. Wandernde Exemplare
wurden auch in Südengland (Mackworth-Praed 1929) und auf der Insel Scharhörn festgestellt (Schmid
1987).
Die Larven von auricollis sind aphidophag und bewohnen Bäume, Büsche und Kräuter. Auch ın
Kolonien von Blattflöhen (Psyllidae) konnten sie gefunden werden (Dixon 1960, Laska & Stary 1980,
Rotheray & Gilbert 1989). Meliscaeva auricollis ist zwar sehr weit verbreitet, kommt aber meist nur
vereinzelt vor. Das erklärt ihre Seltenheit am RM. Der fast völlig mit dem von Episyrphus balteatus
übereinstimmende Lebenszyklus dieser Art und ihre Phänologie in Mitteleuropa machen sehr wahr-
scheinlich, daß auch sie zu den Saisonalen Migranten gehört.
72
3.2.2 Schwebfliegen mit terrestrischen saprophagen Larven
Xylota segnis (Linnaeus 1758)
Verbreitung: Westliche Paläarktis, nearktisch
CB: n = 130, einzelne Exemplare zwischen dem Beginn der Beobachtungsperiode und Anfang Ok-
tober; die Art könnte Wanderer sein? („pourrait etre migrateur?“) [dagegen Aubert mdl. an Gatter:
die Art wandert nicht]; RM: n = 47.
Diese häufigste und am weitesten verbreitete Xylota-Art kann zwischen (Ende März) Anfang Mai
und Mitte Oktober (Anfang November) beobachtet werden. Ihre Larven leben in vermoderndem
Holz, in nassem Sägemehl oder auch in Sılage (Hartley 1961). Sie überwintern und verpuppen sich im
Frühjahr. In SW-Deutschland werden vermutlich drei Generationen gebildet (Schmid 1986). Die O'C°
dieser Art verhalten sich territorial. Vor allem legereife PP zeigen dagegen ein ausgeprägtes saisonales
Dismigrationsverhalten, wohl auf der Suche nach Eiablageplätzen (Schmid |. c.). Weiterführende
Wanderungen finden nicht statt.
Xylota florum (Fabricius 1805)
Verbreitung: paläarktisch
CB:n = 24;RM:n=0.
Ein dem von X. segnis entsprechendes, vor allem von PQ ausgeführtes, saisonales Dismigrations-
verhalten zeigt auch die nahe verwandte X. florum. Diese Art wird deshalb ebenfalls sehr zahlreich in
Einflugfallen gefangen (vgl. Löhr 1987, Schmid 1986).
Xylota sylvarum (Linnaeus 1758)
Verbreitung: paläarktisch
CB:n=7;RM:n=15.
Auch sylvarum wird nicht selten in Einflugfallen gefangen (Löhr 1987, Schmid 1986). Hier sind
ebenfalls fast ausschließlich PQ an der nur über kurze Distanzen reichenden Saisonalen Dismigration
beteiligt, während die Q’C’ ein ausgesprochenes Territorialverhalten an den Tag legen (Schmid 1986).
3.2.3 Schwebfliegen mit sapro-/zoophagen Larven
Volucella zonaria (Poda 1761)
Verbreitung: südliche Paläarktıis
Volucella-Larven leben in Nestern von Hummeln und Wespen. Dort ernähren sie sich einerseits
von Abfällen und toten Tieren, andererseits zumindest gelegentlich auch von den Larven ihrer Wirte
(vgl. Torp 1984).
Volucella zonaria ist eine im Mittelmeergebiet sehr zahlreich vorkommende Art. Im Hochsommer
(meist August) wandern immer wieder einzelne dieser großen und sehr auffälligen Schwebfliegen in
Mitteleuropa ein. Gelegentlich kommt es zu zahlenstärkeren Einflügen (z. B. van der Goot 1986b).
Fast alle dieser Einwanderer sind weiblich. Infolge solcher expansiver Dismigrationen kann es zu
Arealerweiterungen kommen: V. zonaria etablierte sich in den 1940er Jahren in Südengland und ist
seither dort heimisch. Bis 1960 war die Art dort relativ häufig. In den letzten Jahren wurde sie wieder
seltener (Gilbert 1986). Diese Beobachtungen decken sich mit Arealausweitungen und -verlusten me-
diterraner Vogelarten in Mitteleuropa. Im Zusammenhang mit einer längeren Klimaphase mit hohen
Sommertemperaturen und geringen Niederschlägen in der Mitte des 20. Jahrhunderts dehnten solche
73
Arten ihr Verbreitungsgebiet weit in den mitteleuropäischen Raum hinein aus. Die in den 1970er Jah-
ren einsetzende, für diese Arten ungünstige Klimaphase mit feuchteren und kühleren Sommern führte
wieder zu starken Arealverlusten. Sowohl die Ansiedlung von Volucella zonaria ın Südengland wie
ihre zunehmende Seltenheit in den letzten Jahren dürften auf dieselben klimatischen Ursachen zu-
rückgehen.
Status: Expansiver Dismigrant.
Die Neigung zu expansiven Dismigrationen ermöglicht Volucella zonaria eine schnelle Reaktion
auf wechselnde Umweltbedingungen.
3.3 Übersicht über die Wanderschwebfliegen Europas
Tabelle 3: Übersicht über die Wanderschwebfliegen Europas.
Tab. 3: Migratory hoverfly species of Europe.
Larvennahrung Überwinterung Lebenszyklus #
Saisonale Migranten
Syrphus ribesu Blattläuse Larve 3
Syrphus torvus Blattläuse Larve 3
Syrphus vitripennis Blattläuse Larve 3
Metasyrphus corollae Blattläuse Puparium 2
Metasyrphus lapponicus Blattläuse Imago 1
Metasyrphus lunıiger Blattläuse Puparıum 2
Scaeva pyrastri Blattläuse Imago 1
Scaeva selenitica Blattläuse Imago 1
Melscaeva auricollis Blattläuse Imago 1
Melıiscaeva cinctella Blattläuse (Imgao?) (?1)
Episyrphus balteatus Blattläuse Imago 1
Sphaerophoria scripta Blattläuse Larve 3
Eristalis tenax aquat. sapro-/microphag Imago
Helophilus pendulus aquat. sapro-/microphag Larve
Helophilus trivittatus aquat. sapro-/microphag (Larve?)
Saisonale Migranten mit geringer Wanderneigung
Eristalis arbustorum aquat. sapro-/microphag Larve
Eristalis interrupta” aquat. sapro-/microphag Larve
Eristalis pertinax aquat. sapro-/microphag Larve
Saisonale Dismigranten
Platycheirus albimanus Zoophag in der Streu- Larve 3
schicht, Blattläuse
Platycheirus clypeatus Zoophag in der Streu- Larve 3
schicht, Blattläuse
Platycheirus manicatus” Blattläuse (fakultatıv) Larve 3
Platycheirus peltatus Blattläuse (fakultatıv) Larve 3
Melanostoma mellinum Blattläuse, zoophag Larve 3
in der Streuschicht
Parasyrphus annulatus Blattläuse Larve (?4)
Parasyrphus lineolus“ Blattläuse Larve (?3)
74
Parasyrphus punctulatus Blattläuse Larve (?7)
Parasyrphus vittiger Blattläuse Larve ?
Xylota florum terrestrisch saprophag Larve
Xylota segnis terrestrisch saprophag Larve
Xylota sylvarum terrestrisch saprophag Larve
Saisonale Dismigranten mit geringer Wanderneigung
Melanostoma scalare Blattläuse, zoophag Larve 3
in der Streuschicht
Platycheirus scutatus Blattläuse Larve 3
Dasysyrphus albostriatus Blattläuse Larve 6
Neoascıa podagrica terrestrisch saprophag Larve
Syrıtta pipiens terrestrisch saprophag Larve
Expansıve Dismigranten
Volucella zonarıia sapro- und zoophag in (Larve?)
Wespen- und
Hummelnestern
Status ungeklärt
Xanthandrus comtus Schmetterlingsraupen, Larve (25)
Blattläuse
Metasyrphus latıfasciatus Blattläuse ? 23)
Melangyna cincta Blattläuse Larve 4
Didea alneti Blattläuse Larve (?3)
Didea fasciata Blattläuse Larve (?3)
*: Status nicht ganz sicher
#:
1
2
5
4
5
6
7?
Aufbauend auf Schneider (1948, 1969) geben Dusek & Läska (1986) einen Überblick über die
Lebenszyklen der aphidophagen Syrphiden. Sie unterschieden (vereinfacht) folgende Typen
(der letztgenannte Typ 7 ist vorerst nur bei einer Art verifiziert (Dusek & Läska 1986), kommt
aber möglicherweise noch bei anderen Frühjahrsarten vor):
mehrere Generationen im Jahr, Überwinterung als Imago.
mehrere Generationen, Überwinterung als Puparium.
mehrere Generationen, Überwinterung als Larve.
eine Generation, Überwinterung als Larve, Flugzeit: Frühjahr.
eine Generation, Überwinterung als Larve, Flugzeit: Herbst.
zwei Generationen, Überwinterung als Larve, Flugzeit: Frühjahr und Herbst.
eine Generation im Frühjahr, Verpuppung im Herbst, Überwinterung als Puparium.
Bei Arten, deren Lebenszyklus noch nicht genauer beschrieben wurde, wird der aus der Phänologie
der Imagines geschlossene wahrscheinliche Zyklus in Klammern angegeben.
3.4
Wanderaktivität in Abhängigkeit von den Windverhältnissen
Unter den Wetterfaktoren, die Insektenwanderungen am stärksten beeinflussen, kommt dem Wind
eine herausragende Bedeutung zu (Gatter 1975, 1977a, 1977b). Die Beziehungen zwischen Schweb-
fliegenwanderungen und Windverhältnissen sollen deshalb ausführlicher dargestellt werden.
75
Im folgenden wird zunächst das Verhalten des Saisonwanderers Episyrphus balteatus und des Dis-
migranten Platycheirus clypeatus genauer analysiert.
Dazu werden zuerst Daten aus dem Jahr 1986 miteinander verglichen. In diesem Jahr waren beide
Arten annähernd gleich häufig. Anschließend werden die Verhältnisse im Jahr 1981 dargestellt. Aus
diesem Jahr liegen Daten aus beiden Reusen vor.
3.4.1 Episyrphus balteatus 1986
Abb. 24a zeigt, daß balteatus ganz überwiegend bei Gegenwind gefangen wird. Das größte Kontin-
gent bilden bei S- oder SW-Winden mit Stärken von 2-4 Bft. erfaßte Tiere. Dieses scheinbar paradoxe
Phänomen ließ sich am Randecker Maar durch Beobachtungen klären. Demnach nutzen die Fliegen
fördernde Rückenwinde aus, indem sie in größere Höhen aufsteigen. Den widrigen Einfluß von Ge-
genwinden versuchen sie dagegen dadurch zu verringern, daß sie bodennah ziehen. Bei mäßigen Ge-
genwinden geraten deshalb die weitaus meisten Tiere in die S-Reuse.
Schwebfliegen wie Episyrphus balteatus zeigen also ein Verhalten, wie es auch bei migrierenden
Schmetterlingen (Gatter 1981a) oder ziehenden Vögeln beobachtet werden kann.
Die Strategie des Unterfliegens widriger Gegenwinde wird am RM an vielen Tagen, an denen der
Wind dreht, deutlich (vgl. Gatter 1981b). Bei Gegenwinden fängt sich balteatus in großer Zahl in der
Reuse; sobald der Wind dreht, lassen die Fangzahlen schlagartig nach (Tab. 4). Stichprobenhafte Be-
obachtungen mit dem Fernglas zeigen dann häufig hohen Zug (vgl. 3.4.6.1).
3.4.2 Platycheirus clypeatus 1986
Der Saisonale Dismigrant P. clypeatus zeigt ein anderes Verhalten als der Saisonmigrant Episyrphus
balteatus. Ein großer Teil gelangt mit schwachen Rücken- oder Seitenwinden (1-2 Bft.) in die
S-Reuse (Abb. 24b). Die Art scheint demnach keine dem Verhalten von balteatus entsprechende Stra-
tegie der Nutzung günstiger Luftströmungen durch Aufsteigen in höhere Luftschichten zu haben.
Die Art wurde 1986 gewöhnlich bei etwas schwächeren Winden gefangen als E. balteatus
(Abb. 25a).
Abb. 24: (Seite 77) Windrichtung und Windstärke bei Wanderungen von Episyrphus balteatus und Platycheirus
chypeatus in ausgewählten Jahren.
Für einzelne Jahre wurden für sämtliche Individuen der jeweiligen Art Windrichtung und -stärke zum Zeitpunkt
des Fanges dargestellt. Die Diagramme zeigen, wie viele Individuen (in Prozent) bei welcher Windrichtung und
-stärke in der S-Reuse oder N-Reuse gefangen wurden. Die Zahlen geben den Anteil (in Prozent) am Gesamtfang
an. (Ablesebeispiel: 24a; 41,7 % aller im Jahr 1986 in der S-Reuse gefangenen balteatus wurden bei S-Wind gefan-
gen, die meisten davon bei Windstärken von 3 und 4 Bft.).
Fig. 24: Wind direction and wind force during migration of Episyrphus balteatus and Platycheirus chypeatus in selec-
ted years.
In each year for all specimens, wind direction and force at the time of trapping are shown. The diagrams indicate
how many individuals (in %) were collected in different wind conditions. (Example: Fig. 24a; 41,7 % of all catches
of E. balteatus in 1986 in the trap opening to the north are collected with a southerly wind, most of them at wind
forces of 3 and 4 Bft.). S-trap: trap with opening to the north (for south-flying insects); N-trap: trap with opening
to the south (for north-flying insects).
a) E. balteatus, S-Reuse/S-trap, 1986, n = 2937 b) P. clypeatus, S-Reuse/S-trap, 1986, n = 3485
c) E. balteatus, S-Reuse/S-trap, 1981, n = 4244 d) P. clypeatus, S-Reuse/S-trap, 1981, n = 1528
e) E. balteatus, N-Reuse/N-trap, 1981, n = 355 f) P. clypeatus, N-Reuse/N-trap, 1981, n=987
76
FU
Tabelle 4: Stündliche Fangsummen (S-Reuse) von Episyrphus balteatus an drei ausgewählten Tagen mit drehendem
Wind.
Tab. 4: Catches per hour of Episyrphus balteatus in the S-trap (trap with opening to the north) at three selected days
with shifting winds.
1.8.1982
Uhrzeit 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Wind SWFSWE SWR FSW. W W N N N N N N N N
Stärke l 1 1 1 1 1 1 3 ö) 2 3 2 3 2
balt. 3 22 130 10 30 42 6 — 1 2 1 _ _ _
22.8.1984
Uhrzeit 5 6 7 8 9 10 11 12 13 14 15
Wind S SE SE S SE S S N N N N
Stärke l 2. 1 2 2 1 1 1 1 2 1
balt. 3 3 4 70 84 126 43 22 4 7 8
14.8.1985
Uhrzeit 5 6 7 8 9 10 11 12 13 14 15 16
Wind S S S S SW NW N N S S SE SE
Stärke 2 2 2 2 1 2 2 1 2 1 2 2
balt. A DD 75554 169 37 10 9 25 12 12 16
3.4.3 Episyrphus balteatus 1981
Abb. 24c gleicht im wesentlichen Abb. 24a: ein großer Teil der Fliegen wird in der S-Reuse bei Ge-
genwinden mäßiger Stärke gefangen. Auch in die N-Reuse geraten die meisten Tiere gegen den Wind
(Abb. 24e). Auch hier handelt es sich also keineswegs um einen Verdriftungseffekt. Eher ist denkbar,
daß sich im Augenblick nicht wandernde balteatus gegen den Wind orientieren, um einer Verdriftung
entgegenzuwirken; zum anderen muß berücksichtigt werden, daß hochsteigende Syrphiden sich ge-
gen den Wind wenden, um danach ihre Wanderung mit dem Wind fortzusetzen (vgl. 3.4.6.1; Gatter
1981a).
In die N-Reuse fliegt balteatus überwiegend bei ganz schwachen Winden, während sich die Art in
der S-Reuse in größerer Zahl bei etwas stärkeren Winden fängt (Abb. 25a, 25b).
3.4.4 Platycheirus clypeatus 1981
Abb. 24d bestätigt die an Abb. 24b gewonnenen Ergebnisse: c/ypeatus wird überwiegend bei Rük-
kenwinden aus NW, N oder NE (59,8%) und nur in bedeutend geringerer Zahl bei Gegenwinden aus
SW, S oder SE (24,4%) in der S-Reuse gefangen. Auch in der N-Reuse fangen sich mehr c/ypeatus mit
dem Wind (47,0%) als gegen ihn (38,8 %) (Abb. 24f). Damit wird deutlich, daß c/ypeatus im bodenna-
hen Bereich in erheblichem Ausmaß mit dem Wind wandert.
Dabei könnte die Möglichkeit bestehen, für eine bevorzugte Migrationsrichtung günstige Winde zu
wählen und sich von ihnen „gezielt“ verdriften zu lassen. In die N-Reuse flogen nur 47,0% der dort
gefangenen c/ypeatus mit Rückenwinden aus SW, S oder SE, während 59,8% mit Rückenwinden aus
NW, N oder NE in die S-Reuse gerieten (Abb. 24d, 24f). Nicht zuletzt angesichts der Tatsache, daß
SW die häufigste Windrichtung ist, könnte dieses Zahlenverhältnis Ausdruck einer gezielten Auswahl
in südliche Richtungen führender Windrichtungen sein. Dafür könnte auch die Relation der Fangzah-
len mit der, allerdings nur wenig auffälligen, Überzahl der S-Flieger sprechen (S-Reuse: N-Reuse =
1,7:1;n = 5964). Allerdings fand die einzige andernorts beobachtete zahlenreiche Wanderung von
78
P. clypeatus bei starkem Südwind statt, so daß die Insekten nach Norden verdriftet wurden (Schmid
1987). Die Frage, ob die Dismigrationen von c/ypeatus zu einer gleichmäßigen Streuung im Raum füh-
ren oder durch Wahl bestimmter Windrichtungen gerichtete Komponenten enthalten (vgl. 4.5.4;
Abb. 28), muß vorläufig offen bleiben (siehe dazu Gatter 1981 c).
Die Flugaktivität von P. clypeatus beschränkt sich am RM weitgehend auf relativ windarme Zeiten
mit Windstärken zwischen 1 und 3 Bft. Zwischen den beiden Reusen ist kein Unterschied zu erkennen
(Abb. 25a, 25c).
3.4.5 Das tageszeitliche Windangebot und seine Auswirkungen auf die Wanderaktivität von
Episyrphus balteatus und Platycheirus clypeatus
Insekten wandern bevorzugt bei Hochdruck-(= Strahlungs-)wetter. Bei solchen Wetterlagen ist
am Randecker Maar (und nicht nur dort) eine typische tageszeitliche Drehung der dann im allgemei-
nen nur schwachen bis mäßigen Winde festzustellen (Gatter 1981a, 1981b mit zahlreichen Einzelhei-
ten). Wie auch ın Tab. 4 (3.4.1) deutlich zu erkennen ist, herrschen in den Morgenstunden Winde aus
südlichen Richtungen vor. Um die Mittagszeit dreht der Wind über West und bläst nun aus nördlichen
Richtungen.
balteatus clypeatus 2 Bft.
}
E ] Int
2
1
0
MT
s 4.0 0 2 090 0 10 2% 30 4 50%
6 Bft.
5
[N
3 b
2
1
0
OT OT HTM S 020050
6 Bft.
5
[A
3 c
2
1
0
50 40 30 20 10 0 %0 20 30 0 5 40 30 20 0 20 30 40 50%
Abb. 25: Windstärken bei Flugbewegungen von Episyrphus balteatus und Platycheirus clypeatus.
Fig. 25: Wind forces during migration of Episyrphus balteatus and Platycheirus clypeatus.
a) Beide Arten/both species, 1986, S-Reuse/S-trap, n (balteatus) = 2937, n (clypeatus) = 3485
b) E. balteatus, 1981, S-Reuse/S-trap (n= 4244) und N-Reuse/N-trap (n=355)
c) P. clypeatus, 1981, S-Reuse/S-trap (n = 1528) und N-Reuse/N-trap (n = 987)
79
Für Episyrphus balteatus bedeutet das, daß die Art vormittags niedrig und nachmittags in höheren
Luftschichten zieht. Damit wird deutlich, daß der bei dieser Art besonders ausgeprägte Vormittags-
gipfel (Abb. 15e, 15h) in der täglichen Verteilung nicht auf eine weitgehende Beschränkung der Zug-
aktivität auf die Vormittagsstunden zurückgehen muß, sondern vermutlich nur eine Folge der tägli-
chen Winddrehung ist: vormittags herrscht gewöhnlich Gegenwind und die niedrig ziehenden Fliegen
geraten in die Reuse, nachmittags überfliegen die mit Rückenwind ziehenden Insekten die Fangein-
richtung. Diese Strategie, mit den wechselnden Windrichtungen die Zughöhe zu ändern, ist wahr-
scheinlich einer der bedeutenden Grundpfeiler zur Ermöglichung transkontinentaler Insektenwande-
rungen (Gatter 1981a: 40ff, 1981 bb, Gatter & Gatter 1990).
Anders sind die Verhältnisse bei Platycheirus clypeatus. Diese Art weist im tageszeitlichen Verlauf
einen ausgeprägten Nachmittagsgipfel auf (Abb. 5e, 5h). Auch hierfür könnte das tageszeitlich wech-
selnde Windangebot verantwortlich sein. Während der Vormittagsstunden, an denen meist schwache
Winde aus südlichen Richtungen wehen, werden weniger clypeatus gefangen. Nachmittags fördern
leichte nördliche Winde die Südwanderung dieses Dismigranten und steigern damit auch die Fangzah-
len.
N
N N N
W E W E W E W E
S a S b c
S S q
N
N N
W E W E W E
e S f S g
S
N
N
„N N
W E W E W E W E
S ——
— S l
S— S ee
h k
Abb. 26: Windrichtungen an Hauptzugtagen. Für alle Individuen einer Art (= 100 %) sind die Windrichtungen an
den jeweils vier individuenstärksten Tagen jeden Jahres dargestellt. An der Länge der Linien ist ablesbar, wieviele
Individuen der Art bei welcher Windrichtung in der S-Reuse gefangen wurden. Der Maßstab rechts unten ent-
spricht 10 %.
Fig. 26: Wind direction at the four main days of migration in each year. The length of each of the eight lines is cor-
related with the number of individuals of the species which were caught in the S-trap (trap with opening to the
north) with the wind blowing from the direction to which the line points. Scale below on the right: 10 %.
a) Syrphus spec., n= 2013 g) Helophilus trivittatus, n= 102
b) Metasyrphus corollae, n = 3869 h) Platycheirus albimanus, n=418
c) Scaeva pyrastri, n= 209 i) Platycheirus clypeatus, n= 4612
d) Episyrphus balteatus, n= 13666 k) Platycheirus manıcatus, n= 322
e) Sphaeropharia scripta, n = 4420 l) Melanostoma mellinum, n = 4342
f) Eristalis tenax, n= 317
80
3.4.6 Zusammenfassung: Windabhängige Wanderstrategien Saisonaler Migranten und
Saisonaler Dismigranten
3.4.6.1 Saisonale Migranten
Die exemplarisch am Beispiel Episyrphus balteatus dargestellte Strategie der Nutzung günstiger und
Vermeidung ungünstiger Winde läßt sich auch bei anderen Saisonalen Migranten beobachten. Wie
balteatus wurden auch Syrphus spec., Metasyrphus corollae, Scaeva pyrastri, Sphaerophoria scripta,
Eristalis tenax, Helophilus pendulus und H. trivittatus zu einem sehr deutlich überwiegenden Teil bei
Gegenwinden gefangen (Abb. 26-9).
Diese am RM gewonnenen Ergebnisse lassen sich auf andere Orte und Situationen übertragen. Ty-
pisch ist z. B. die Bemerkung bei Snow & Ross (1952), die in den Pyrenäen südwärts gerichteten In-
sektenzug beobachteten: „Syrphids were notnnoticed until the wind got up. From then on they crossed
in increasing numbers, flying at 0 to 2 feet.“ Nachdem vorher Windstille geherrscht hatte, hatte ein
langsam immer stärker werdender Südwind eingesetzt. Die Schwebfliegenwanderungen verlagerten
sich deshalb in Bodennähe. Auch in den Alpen werden Massenwanderungen immer bei (oft föhnartig
starken) Gegenwinden auffällig (z. B. Burmann 1978, Gepp 1975, Harz 1965, Jeekel & Overbeek
1968, Prell 1925). Nur dann fliegen die Syrphiden in Massen in Bodennähe und stauen sich an Pässen.
Eindrucksvoll ist z. B. die Schilderung von einer Migration über den Weit-Riß-Paß (2350 m) bei Prell
(1925), die sich v. a. auf Eristalıis tenax, aber auch auf Episyrphus balteatus bezieht: „Ununterbrochen
kamen in geradem Flug aus der Richtung des Melchtales Insekten herangezogen, welche deutlich ge-
gen den von Süden her wehenden Föhn ankämpfend über den Grat hinwegzukommen versuchten.
Handhoch bis meterhoch über die Felskante hinwegstreichend, die höchsten etwa mannshoch flie-
gend, kamen die Tiere scharenweise heran. Deutlich konnte man sehen, daß manche sich bemühten,
den Windschatten hinter dem Grat auszunutzen und dann unter Anspannung aller Kraft den Grat
selbst zu überwinden. ... Nicht ein einziges Tier wurde während der ganzen Zeit in entgegengesetzter
Richtung fliegen gesehen.“
Nicht nur im Gebirge, sondern auch an Küsten wurden große Schwebfliegenkonzentrationen v. a.
bei Gegenwinden beobachtet (z. B. Mackworth-Praed 1929, Svensson & Janzon 1984).
Wie Syrphiden die in größerer Höhe stärkeren Rückenwind nutzen, hat Gatter (1981a: 51) anschau-
lich geschildert: „Große Arten der Gattung Eristalis, Scaeva usw. können mit einem normalen Fern-
glas etwa 200 m weit verfolgt werden. Dabei zeigt sich, daß das Hochsteigen bei Rückenwinden auch
hier durch Drehung gegen den Wind geschieht. Die Fliegen, die mit Rückenwinden im bodennahen
Bereich Geschwindigkeiten von 40 bis 56 Stundenkilometern erreichen können, drehen sich in
einem weiten Bogen gegen den Wind, werden dabei ca. 10 bis 30 m hochgerissen und fliegen dann mit
dem Wind weiter. Am 20.9.1980, einem sehr heiffen Sommertag mit günstigem Nordostwind um
15 km/h, verließen die wenigen ziehenden Tiere, die in Bodennähe flogen, fast alle auf diese Weise die
tiefere untere Zone. In 1200 bis 1500 m über Grund (ca. 2000 m NN) herrschte dagegen reges Zugge-
schehen wohl eben dieser Arten nach Südwest. Bei einer Eigengeschwindigkeit von 25 km/h und einer
Windgeschwindigkeit von 17 km aus Nordost zogen die Fliegen mit ca. 40 km/h... Das Hochsteigen
hat hier wohl auch den Zweck, eine drohende Überhitzung zu vermeiden. In 2000 m lag die Nachmit-
tagstemperatur an diesem Tag bei 12,8° (...). Die Schwebfliegen fanden hier stoffwechselphysiolo-
gisch günstigere Bedingungen zur Migration vor als im 28° warmen Tiefland.“
Insektenzug in großer Höhe ist natürlich nicht leicht zu beobachten. Gute Indikatoren sind in sol-
chen Höhen jagende Vogelschwärme (vgl. Gatter 1981a: 53f., Spreadbury 1960). Glick (1939, 1942,
1960) und Glick & Noble (1961) (zitiert in Johnson 1969) fingen mit Hilfe von Flugzeugen Schweb-
fliegen in Höhen bis zu 5000 Fuß.
81
3.4.6.2 Saisonale Dismigranten
Bei den Dismigranten wie Platycheirus clypeatus, P. albimanus, P. manicatus oder Melanostoma
mellinum ist die Streuung der Windrichtungen beim Fang in der S-Reuse größer als bei den Saisonalen
Migranten (Abb. 26h-1). Häufiger als diese geraten die Dismigranten bei Rückenwinden in die
S-Reuse — ein Hinweis darauf, daß die oben für Saisonwanderer geschilderte, windabhängige Wahl
1000
clypeatus
2000 100
albimanus
75 80 SEeeBst-
2000
1000
2000
10.000
3000
manıcatus
100 1000
mellinum
50 peltatus ]
75 80 - - 85 - 75 80 - 85
3000
500 Syrphus 500 corollae ri Dypasiki
75 80 - 85 75 80 = 85 75 80 - 85
1000
1000
2000
82
1000
50 selenitica | balteatus 500 scripta
75 80 = 85 75 80 = 85 75 80 S 85
1000
S m
50 pendulus 20
trivittatus
75 80 = 85 75 80 - 85
50 pagana
75 80 SM=3852=
Abb. 27: Fangsummen in der S-Reuse (unten) und der N-Reuse (oben) in den Jahren 1975— 1987. Der Pfeil gibt den
Zeitpunkt der Verdoppelung der Größe der S-Reuse an (1978). Zur besseren Vergleichbarkeit sind die verdoppelten
Fangzahlen der Jahre 1975-1977 gebrochen dazugezeichnet. Jahre ohne Erfassung der jeweiligen Art sind in der
Zeitspalte mit — gekennzeichnet.
Fig. 27: Numbers of Syrphidae caught in the S-trap (trap with opening to the north; below) and the N-trap (opening
to the south; above) in 1975— 1987. The arrow indicates the date when the S-trap size was doubled (1978). For better
comparison, the diagram shows double numbers of 1975— 1977 in broken lines. Years without identification of the
respective species are marked with — .
a) Syrphidae insgesamt/total g) Syrphus spec. n) Erıstalis tenax
b) Platycheirus albimanus h) Metasyrphus corollae o) Helophilus pendulus
c) Platycheirus clypeatus i) Scaeva pyrastri p) Helophilus trivittatus
d) Platycheirus manicatus k) Scaeva selenitica q) Cheilosia pagana
e) Platycheirus peltatus l) Episyrphus balteatus
f) Melanostoma mellinum m) Sphaerophoria scripta
der Zughöhen von Dismigranten nicht im selben Ausmaß durchgeführt wird. Dismigranten wandern
zwar hauptsächlich mit dem Wind. Die trotz allem hohen Zahlen der bei Gegenwinden gefangenen
Fliegen lassen aber ebenso wie die bei allen Arten zu beobachtenden zahlenstärkeren Fänge in der
S-Reuse vermuten, daß auch sie im Herbst eine Tendenz haben, in südliche Richtungen zu wandern
und dabei auch Gegenwindbewegungen durchführen können (vgl. 4.5.4). Diese Frage bedarf weiterer
Klärung.
83
3.5 Populationsdynamik
Tab. 1 und Abb. 27a zeigen die relativ starken Schwankungen der jährlichen Fangzahlen am RM.
Noch extremer sind die Häufigkeitsunterschiede von Jahr zu Jahr bei einzelnen Arten (Abb. 27b-q).
Ähnlich stark wie am RM sind diese Schwankungen am CB (Aubert et al. 1976). Sie sind auch überall
im Freiland zu beobachten.
Die Zahl der Jahr für Jahr in den Reusen gefangenen Insekten wird natürlich von sehr vielen Fakto-
ren beeinflußt. Wichtig ist mit Sicherheit der konkrete Witterungsverlauf während einer Fangperiode.
Allerdings ist das Wetter nicht direkt und allein für die schwankenden Fangzahlen verantwortlich.
Wie der unterschiedliche Verlauf der Kurven einzelner Arten zeigt (s. u.), spiegeln die Diagramme
auch die tatsächliche Häufigkeit der einzelnen Arten in den betreffenden Jahren wider.
Ausschlaggebend für den Populationsaufbau bei aphidophagen Formen — und dazu gehören fast
alle Saisonalen Migranten unter den Schwebfliegen (vgl. Tab. 3) — ist in erster Linie das Blattlausange-
bot im Frühjahr und Frühsommer. Die Diagramme für die aphidophagen Saisonwanderer Syrphus
spec., Metasyrphus corollae, Scaeva pyrastri, S. selenitica, Episyrphus balteatus und Sphaerophoria
scripta zeigen allerdings keinen einheitlichen Verlauf: im Jahr 1980 erschienen z. B. nur wenige baltea-
tus, corollae, pyrastri und scripta, während Syrphus spec. und Scaeva selenitica ausgesprochene Ma-
xima aufwiesen. Auch die Saisonalen Dismigranten Platycheirus albimanus, P. manicatus und P. pel-
tatus zeigen ausgeprägte Höhepunkte. Alle genannten Arten sind im Larvenstadium Blattlausfresser
mit weitem Beutespektrum, die auch weitgehend dieselben Habitate besiedeln (vgl. 3.1; Rotheray &
Gilbert 1989). Die Zahlen lassen vermuten, daß sich ihre Populationen gegenseitig über (Nahrungs-)
Konkurrenz beeinflussen. Nachgewiesen ist, daß Syrphus ribesii Blattlauskolonien effektiver nutztals
Melanostoma scalare (Rotheray 1983) und daß die Mortalität der Larven von Metasyrphus corollae bei
der Anwesenheit von rıbesii-Larven steigt (Benestad Hägvar 1972).
Auch aquatische Formen können starke Schwankungen aufweisen (Abb. 27n—p). Ihre Diagramme
lassen jedoch keine gegenseitige Beeinflussung erkennen.
4. Diskussion
4.1 Vergleich der Phänologie der Schwebfliegenwanderungen am Randecker Maar
und am Col de Bretolet
Bei zahlreichen Arten ist, wie in den Artabschnitten jeweils kurz erwähnt (vgl. 3.1), der Zughöhe-
punkt am Col de Bretolet deutlich später als am Randecker Maar. Besonders klar ist dieser Unter-
schied bei Episyrphus balteatus (Abb. 15a): An beiden Stationen steigen die Fangzahlen in der zweiten
Julihälfte stark an. Während der Durchzug am RM aber nach einem ausgeprägten Höhepunkt Anfang
August in der zweiten Monatshälfte so stark abflaut, daß im September nur noch wenige balteatus (ca.
5% der Gesamtsumme) gezählt werden, ist am CB nach dem ebenfalls in der ersten Augusthälfte er-
reichten Maximum bis Mitte Oktober starker Durchzug festzustellen. Der Median, am RM der 7.8.,
ist also am CB weit nach hinten verschoben. Auch im Geschlechterverhältnis besteht ein gravierender
Unterschied: am RM sind JO’ und 29 gleich stark vertreten, am CB werden fast ausschließlich PP
gefangen (vgl. 4.2).
Der Col de Bretolet liegt ca. 350 km südwestlich des Randecker Maars. Für den Brachpieper, einen
Zugvogel, dessen Winterquartiere südlich der Sahara liegen, errechnete Gatter (1970) eine Verschie-
bung des Herbstzugsmedians von zehn Tagen zwischen Kirchheim (am RM) und dem Col de Bretolet
und damit eine tägliche Vorrückstrecke von ca. 35 km. Eine solche Tagesetappe ist auch für Schweb-
fliegen mit Sicherheit gut zu bewältigen: trotz ungünstiger Wetterbedingungen fingen Aubert et al.
(1969) am Col du Glandon Schwebfliegen, die sie drei Tage zuvor am 111 km entfernten Col de Bre-
84
tolet markiert hatten. Die Medianverschiebung zwischen RM und CB dürfte bei Syrphiden genau wie
beim Brachpieper eine Folge der Lagebeziehungen der beiden Stationen sein: die in Zugrichtung nach-
geschaltete Beobachtungsstation am CB wird von der Hauptmasse der Durchzügler später erreicht.
Auch das Ende der Zugperiode wird von der Lage natürlich beeinflußt. Beim Brachpieper wie bei Epi-
syrphus balteatus endet die Zugzeit am CB wesentlich später als am RM.
Ähnlich deutlich wie bei balteatus ist die Verschiebung der Maxima und Verlängerung der Flugzeit
bei den Saisonalen Migranten Metasyrphus corollae (S. 35), Meliscaeva cinctella (S. 43), Eristalis tenax
(S. 61) und Helophilus trivittatus (S. 66) und bei dem Saisonalen Dismigranten (?) Platycheirus mani-
catus (S. 26).
Mehrere Arten zeigen zwar eine Verlängerung der Flugzeit, aber keine Verschiebung des Maxi-
mums (bzw. sind am CB keine deutlichen Maxima ausgeprägt), so die Saisonalen Migranten Syrphus
spec. (S. 33), Scaeva pyrastri (S. 38) und S. selenitica (S. 41) und der Saisonale Dismigrant Melano-
stoma mellinum (S. 29) sowie der Saisonale Dismigrant (?) Parasyrphus lineolus (S. 42).
Weitgehende Entsprechung der Phänologie beider Orte weist der Saisonale Migrant Sphaerophoria
scripta (S. 52) auf; das könnte auf kürzere Migrationsentfernungen schließen lassen.
4.2 Veränderungen der Zahlenverhältnisse der Geschlechter im Verlauf der Migration
Balteatus-O'O haben eine wesentlich geringere Lebenserwartung als O9. „Am 49. Gesamtlebens-
tag (d. h. ca. 4 Wochen nach dem Schlupftermin) waren bereits 50% der O’C' tot... Die Hälfte der
QQP wurde 60 Tage alt. Dieses Alter erreichten nur ca. 25% der O’O', während von den Q9 25% (13
von 52 Individuen) ein Alter von 80 Tagen und 9 Individuen sogar ein Alter von über 100 Tagen er-
langten. Eine deutlich erhöhte Sterblichkeit führte bei den O’C’ schon ab dem 55. Gesamtlebenstag zu
einer raschen Abnahme der Zahl der Überlebenden. Die durchschnittliche Lebensdauer ... war für die
QQP mit 39,5 Tagen ebenfalls deutlich höher als die der G'C’ mit 23,5 Tagen“ (Geusen-Pfister [1987]
nach Versuchen unter Gewächshausbedingungen). Dadurch erklärt sich die Beteiligung beider Ge-
schlechter von balteatus an den Fängen im RM (wie übrigens auch an den norddeutschen Feuerschif-
Tabelle 5: Geschlechter-Verhältnis von Wanderschwebfliegen an Feuerschiffen der Nord- und Ostsee (nach Hey-
demann 1967), am Randecker Maar und am Col de Bretolet (nach Aubert 1962).
Tab. 5: Sex ratios of migratory hoverflies at lightships in the North Sea and the Baltic Sea, at Randecker Maar and
at Col de Bretolet.
Art Feuerschiffe Randecker Maar Col de Bretolet
SL... @ SELRERU) SCH TERT)
P. albimanus 1:0,96 (165) 1:2,82 (833) 1:20,25 (85)
Pemanicasıs 1:0,44 (13) 1:1,18 (550) 1:0,11 (40)
M. mellinum 1:0,10 (34) 1:3,58 (11524) 1:2,34 (1535)
S. ribesi 1:2,00 (36) 1:8,00 (9)
S. torvus 1:1,86 (4030) 16 292 (16)
S. vitripennis 1:1635 (7) 68 29 (68)
M. corollae” SZ (526) 1811,07 (7545) 3072. (142)
M. lunıger 1:16,00 (17)
M. auricollıis 1:61,00 (62)
E. balteatus 1E0,99 (507) 1E0,92 (27135) 1:12,02 (1569)
S. scripta 1:1,71 (11204) 1:3,98 (209)
E. tenax 1:1,32 (511) 1611634 (1230)
= In Südschweden Anfang August 1:1,6 (n=4338) (Svensson & Janzon 1984).
85
fen [Heydemann 1967]) und das weitgehende Fehlen der Q'O’ am CB. Der CB mit seinem wesentlich
später liegenden Durchzugsmedian wird von O’O’ kaum mehr erreicht. Die meisten J’O’ sterben vor-
her. — (Leider liegen vom CB nur wenige Stichproben zum Geschlechterverhältnis vor [Aubert 1962],
ohne daß eine genaue zeitliche Zuordnung der Daten möglich ist. Zu erwarten wäre, daß ein zu Beginn
der Zugzeit weitgehend ausgeglichenes Verhältnis sich schnell zugunsten der 2 verschiebt. Am RM
wird jedenfalls deutlich, daß balteatus-J'O’ ım September praktisch nicht mehr vertreten sind [vgl.
Abb. 15b].)
Die Verschiebung des Geschlechter-Verhältnisses ist wie die Medianverschiebung zwischen RM
und CB ein Beleg dafür, daß sich eine Zugwelle wenigstens über das südliche Nord- und über Mittel-
europa hinweg bewegt.
Für einige häufigere Arten liegen Daten zum Geschlechter-Verhältnis von mehreren Orten vor
(Tab. 5).
Für die Saisonalen Wanderer Syrphus spec., Metasyrphus corollae, Episyrphus balteatus und Sphae-
rophoria scripta zeigt sich zwischen RM und CB durchgehend eine Verschiebung des Verhältnisses
zugunsten der Weibchen. Für alle diese Arten ist, wie oben für balteatus geschildert, anzunehmen, daß
im Verlauf einer großräumigen Migration die O’CO’ absterben. Das gilt auch für E. tenax, selbst wenn
hier als Folge der sehr späten Flugzeit das Geschlechterverhältnis zwischen RM und CB keine Unter-
schiede aufweist. Auch bei dieser Art dominieren zu Beginn der Zugzeit am CB im August und An-
fang September die O’CO’, später die PP (Aubert 1962); wie bei den anderen Saisonalen Migranten
werden also auch hier die S’C’ im Herbst seltener. Die Daten für die am RM seltenen Saisonwanderer
Meliscaeva auricollis und Metasyrphus luniger zeigen mit ihrem extremen Q Q-Überschuß am CB, daß
die Verhältnisse denen von E. balteatus wohl weitgehend entsprechen.
Während die aus Farbschalenfängen von norddeutschen Feuerschiffen (Juli/August) gewonnenen
Angaben im wesentlichen den Daten vom RM entsprechen, liefen sich die am CB beobachteten Zah-
lenverhältnisse auch andernorts in den Alpen bestätigen. Jeekel & Overbeek (1968) beobachteten am
9.8.1967 in Tirol für die Saisonalen Migranten Episyrphus balteatus, Sphaerophorıa scripta, Syrphus
torvus und $. vitripennis eine starke Dominanz der PP. Auch die von Burmann (1978) ebenfalls aus
Nordtirol mitgeteilten Daten lassen ein starkes Überwiegen der Q 9 bei Episyrphus balteatus, Syrphus
ribesüi, Metasyrphus corollae und Sphaerophoria scripta erkennen.
Demnach sind die oben für Episyrphus balteatus dargestellten Verhältnisse wohl für die ganze
Gruppe der Saisonalen Migranten unter den Schwebfliegen gültig.
Unter der Gruppe der Dismigranten (Platycheirus albimanus, P. manicatus und Melanostoma mel-
linum) sind die Verhältnisse weit weniger klar. Die Daten lassen aufgrund des geringen Umfanges der
meisten von anderen Orten vorliegenden Stichproben auch kaum weitergehende Deutungen zu. Mit
Sicherheit besteht aber der für die Saisonalen Migranten typische, auf weitreichende Wanderungen
hinweisende Unterschied zwischen dem Geschlechterverhältnis an den einzelnen Beobachtungssta-
tionen nicht. Der häufig zu beobachtende P Q-Überschuß geht auf die höhere Dismigrationsbereit-
schaft der PP zurück.
4.3 Biologie der Wanderschwebfliegen
Aus Tab. 3 (vgl. 3.3) wird zweierlei deutlich: (1) alle Saisonmigranten sind entweder aphidophag
oder aquatisch sapro-/microphag (vgl. Schmid & Gatter 1988). Unter den anderen trophischen Grup-
pen findet sich keine Art, die saisonale Migrationen durchführt und (2) sämtliche Schwebfliegenarten,
die nicht als Larve, sondern als Imago überwintern, gehören zur Gruppe der Saisonalen Migranten,
ebenso die als Puparium überwinternden polyvoltinen Arten. Diese beiden Ergebnisse werden im fol-
genden diskutiert.
86
4.3.1 Arten mit phytophagen und terrestrischen saprophagen Larven
Für eine Art wie beispielsweise Cheilosia fasciata Schiner & Egger 1853, deren Larven als Nah-
rungsspezialisten in Blättern des Bärlauchs (Allium ursinum) minieren, ist der Vorteil, nicht in größe-
rem Ausmaß zu wandern, deutlich: die Nahrungsquelle steht mit Sicherheit im nächsten Jahr am sel-
ben Ort wieder zur Verfügung. Ähnlich spezialisiert sind, soweit bekannt, sehr viele phytophage
Schwebfliegen z. B. der Gattungen Cheilosia (z. B. Smith 1979, Rotheray 1988), Merodon oder Eume-
rus. Die Überwinterung findet geschützt in der Erde statt. Damit wird plausibel, warum es unter den
phytophagen Schwebfliegen keine Wanderarten gibt.
Ähnliches dürfte für die Gruppe der terrestrischen saprophagen Syrphiden gelten. Auch sie beuten
eine Nahrungsressource aus, die im nächsten Jahr mit großer Wahrscheinlichkeit in der Nähe wieder
verfügbar ist. Mit Sicherheit bewegen sich die meisten dieser Arten vom Geburtsort weg; die Distan-
zen sind aber fast immer sehr gering. Lediglich einige Arten der Gattung Xylota führen Saisonale Dis-
migrationen aus, die etwas weiter führen (Tab. 3).
4.3.2 Arten mit zoophagen Larven
Aphidophage Schwebfliegen stehen dagegen vor dem Problem, daß ihre Larven eine Nahrungs-
quelle benötigen, die in Raum und Zeit oft unvorhersagbar auftritt. Hier helfen in den Lebenszyklus
integrierte Dismigrations- oder Migrationsphasen bei der Auffindung und Ausnutzung solcher Res-
sourcen.
Sehr viele aphidophage Schwebfliegen sind monovoltine Frühjahrsarten, die zudem oft mehr oder
weniger spezialisiert sind. Ihre Flugzeit deckt sich mit dem Frühjahrsmaximum der Blattlausentwick-
lung (vgl. Dusek & Läska 1986). Für einige dieser Arten (Parasyrphus) konnte oben nachgewiesen
werden, daß sie Dismigrationen durchführen. Es ist wahrscheinlich, daß sehr viel mehr dieser Arten
dismigrieren. Durch ihre frühe Flugzeit entgehen sie aber der Erfassung sowohl am RM wie am CB.
Saisonale Dismigranten sind, neben diesen monovoltinen Frühjahrsarten, vor allem Arten der in-
nerhalb der Zoophagen phylogenetisch ursprünglichen Gattungen (Rotheray & Gilbert 1989) Platy-
cheirus und Melanostoma. Bei beiden Gruppen stehen Wanderungen nicht im Zusammenhang mit
dem Aufsuchen von Winterquartieren, sondern dienen in erster Linie dem Auffinden von Eiablage-
plätzen. Bei den monovoltinen Frühjahrsarten erleichtert das Frühjahrsmaximum der Blattläuse diese
Suche, bei Platycheirus und Melanostoma ıhre weite ökologische Potenz. Fast alle Arten dieser beiden
Gattungen ziehen zwar Blattläuse als Nahrung vor, sind aber auch sehr oft in der Bodenstreu zu fin-
den, wo sie Jagd auf andere Arthropoden machen. Sie entgehen damit während des Soemmerminimums
der Blattläuse der Konkurrenz durch die aphidophagen, polyvoltinen Saisonwanderer. Rotheray
(1983) konnte zeigen, daß Syrphus ribesii Blattlauskolonien effektiver nutzen kann als Melanostoma
scalare.
Die Saisonalen Migranten unter den Aphidophagen sind alle polyvoltin und, was die Nahrung und
das Habitat (vgl. Chandler 1968b, Läska & Stary 1980) betrifft, zwar spezialisierter als die meisten Pla-
tycheirus- und Melanostoma-Arten, aber gewöhnlich wesentlich weniger spezialisiert als die unıvolti-
nen Arten. Sie stellen während des sommerlichen Minimums der Blattlausentwicklung die Haupt-
masse der Schwebfliegen (vgl. Dusek & Läska 1986). Ihre ausgeprägte Migrationsneigung kann (ge-
meinsam mit ihrem weiten Nahrungs- und Habitatspektrum) einerseits als Anpassung an die Not-
wendigkeit verstanden werden, die in dieser Jahreszeit nur spärlich vorhandenen Blattläuse aufzufin-
den, andererseits steht sie, zum mindesten bei den Formen, die den Winter als Puparien oder Imagines
überdauern, in engem Zusammenhang mit der Überwinterung. Für Episyrphus balteatus, die am be-
sten bekannte Art, wurde der adaptive Wert der spätsommerlichen und herbstlichen Wanderung ın
südliche Gebiete bereits diskutiert (S. 52). Es ist anzunehmen, daß das dort Gesagte auch auf die ande-
ren Arten übertragen werden kann. Demnach ist einerseits im nördlichen Europa Überwinterung
87
nicht oder nur sehr eingeschränkt möglich; auch in Mitteleuropa ist das Überwinterungsrisiko für
diese Arten beträchtlich, weshalb große Teile der Populationen im Herbst nach Süden ziehen. Ande-
rerseits finden die Larven (möglicherweise auch die Imagines) im Frühjahr und Sommer in Mittel-
europa bessere Entwicklungs- und Lebensbedingungen als in Südeuropa vor. Es bleibt zu prüfen, ob
die Wanderungen auch für die den Winter als diapausierende Larven überstehenden Saisonwanderer
Syrphus spec. und Sphaerophoria scripta einen ähnlichen adaptiven Wert besitzen.
Zusammenfassend (und vereinfachend) lassen sich also unter den zoophagen Schwebfliegen drei
Migrationsstrategien erkennen:
— Unspezialisierte, zoophage, polyvoltine Arten, die Saisonale Dismigrationen ausführen, um geeig-
nete Eiablageplätze aufzufinden: Arten der Gattungen Platycheirus und Melanostoma.
— Etwas stärker spezialisierte, aphidophage, polyvoltine Arten, die Saisonale Migrationen durchfüh-
ren, um einerseits Nahrungs- und Eiablageplätze, andererseits günstige Überwinterungsplätze zu
finden: Arten siehe Tab. 3.
— Spezialisierte, monovoltine Arten, die Dismigrationen durchführen, um geeignete Eiablageplätze
aufzufinden: Arten der Gattung Parasyrphus und vermutlich noch viele weitere Species.
4.3.3 Arten mit aquatischen sapro-/microphagen Larven
Larvenhabitate dieser Gruppe sind Gewässer — vom offenen Teich bis zur wasserdurchtränkten
mulmigen Baumhöhlung. Vor allem offene Kleingewässer können wetterabhängig leicht verschwin-
den; für manche Arten ist das Angebot an Larvenhabitaten somit vielfachen Schwankungen ausge-
setzt.
Unter den Arten der aquatischen Gruppe sind verschiedene Strategien erkennbar. Sehr viele Species
wandern nicht, so z. B. die häufige Myathropa florea (Linnaeus 1758), deren Larven in Kleinstgewäs-
sern zwischen Baumwurzeln o.ä. leben. Manche Arten wandern nur zu einem mehr oder weniger gro-
ßen Teil, so Eristalis arbustorum und E. pertinax. Sie verfolgen also eine „Doppelstrategie“, bei der
der Schwerpunkt bei der Überwinterung von Larven im Heimatgebiet ist. Bei Helophilus pendulus
und /. trivittatus ist die Wanderneigung dagegen sehr viel ausgeprägter. Für pendulus lassen die zahl-
reichen Beobachtungen im frühen Frühjahr vermuten, daß ein beträchtlicher Anteil als Larve in Mit-
teleuropa überwintert; bei trivittatus sind Frühjahrsbeobachtungen so spärlich, daß angenommen
werden muß, daß der Aufbau mitteleuropäischer Populationen überwiegend auf Immigranten zu-
rückgeht.
Die einzige Art dieser Gruppe, die als Imago überwintert, ist Eristalis tenax. Für das Überwinte-
rungsrisiko in Mitteleuropa dürfte dasselbe gelten wie bei den aphidophagen, als Imagines überwin-
ternden Schwebfliegen (4.3.2). Im Mittelmeergebiet überwinternde Tiere haben vermutlich wesent-
lich größere Überlebenschancen. Dagegen bietet im Sommer das humide Mitteleuropa den wasser-
lebenden tenax-Larven mit Sicherheit mehr und günstigere Entwicklungschancen als das trockene
Südeuropa. — Vermutlich spielen beim Aufbau der Sommerpopulationen in Mittel- und Nordeuropa
hier überwinternde tenax-QP gegenüber den Immigranten in den meisten Jahren nur eine unterge-
ordnete Rolle.
4.4 Zur Bedeutung der Wanderschwebfliegen bei der biologischen Schädlingsbekämpfung
Unter den aphidophagen Insekten kommen Marienkäfern (Coccinellidae), Florfliegen und Blatt-
lauslöwen (Chrysopidae und Hemerobiidae) und Schwebfliegen besondere Bedeutung zu (Rotheray
1989). Nach Versuchen von Sundby (1966) hat dabei die Larve der Schwebfliege Syrphus ribesii eine
größere Fraßleistung als die des Marienkäfers Coccinella septempunctata L. und die der Florfliege
88
Chrysoperla carnea St. Die hohe Nachkommenzahl der Florfliege läßt diese (im Labor) als den beiden
anderen Arten weit überlegenen Blattlausvertilger erscheinen. Außerhalb des Labors ist es von vielen
Faktoren abhängig (beteiligte Arten, Luftfeuchtigkeit, Temperatur etc.; vgl. Bastian 1986), welche der
drei Insektengruppen als effektivster Prädator auftritt.
Unter den aphidophagen Schwebftliegen gibt es weitgehend spezialisierte Arten wie z. B. Neocne-
modon vitripennis (Meigen 1822), eine hauptsächlich von Tannenstammläusen (v. a. Dreyfusia piceae
Ratzeburg) lebende Art, die einen mit den Populationsmaxima der Beutetiere synchronisierten bivol-
tinen Lebenszyklus aufweist (Delucchi et al. 1957). Zahlreiche univoltine Frühjahrsarten unter den
Schwebfliegen nutzen das Frühjahrs- und Frühsommermaximum der Laus-Populationen. Viele die-
ser Arten sind hauptsächlich in Wäldern anzutreffen (Arten der Gattungen Dasysyrphus, Parasyrphus,
Epistrophe).
Die häufigsten aphidophagen Schwebtliegenlarven in einem von Bastıan (1984) untersuchten Koni-
ferenjungwuchs waren allerdings keine solchen „Waldarten“, sondern typische Wanderschwebflie-
gen. Dazu gehörten die Saisonalen Migranten Syrphus rıbesü, S. torvus, S. vitripennis, Episyrphus bal-
teatus und Sphaerophoria scripta und der Saisonale Dismigrant Melanostoma mellinum. Bastian (1984)
konnte zeigen, daß unter den Blattlausprädatoren Schwebtliegen in einem Jahr mit witterungsbedingt
stark verzögertem Aufbau der Läusepopulationen am raschesten auf diese veränderte Situation rea-
gierten.
Voraussetzung für diese Flexibilität ist einerseits die hohe Mobilität der Wanderschwebfliegen, an-
dererseits ihr polyvoltiner Lebenszyklus und ihre geringe Spezialisierung auf bestimmte Beutetiere.
Die polyvoltinen Arten sind nicht an eng begrenzte Fortpflanzungszeiten gebunden; sie nutzen Blatt-
lauskolonien auch im Sommer, wenn die Populationshöhe und Fortpflanzungsrate der Läuse einen
Tiefpunkt erreicht hat und damit auch der Einfluß von Prädatoren höher wird. Die Merkmalskombi-
nation mobil/polyvoltin/wenig spezialisiert macht gerade Wanderschwebtliegen zu forst- und land-
wirtschaftlich bedeutenden Blattlausvertilgern. Will man sie ökonomisch im Rahmen der biologi-
schen Schädlingsbekämpfung nutzen, ist eine sehr genaue Kenntnis ihrer individuellen Lebenszyklen
unerläßlich. Gerade dem Phänomen der Migrationen muß hierbei wesentlich mehr Aufmerksamkeit
als bisher geschenkt werden.
4.5 Allgemeine Aspekte der Schwebfliegenwanderungen
4.5.1 Verbreitung
Gatter (1981a) wies darauf hin, daß Wanderinsekten große Verbreitungsgebiete haben. Dies trifft
auch auf die Wanderschwebfliegen zu.
Von den 18 als Saisonale Migranten eingestuften Arten (Tab. 3) sind neun wenigstens holarktisch
verbreitet. Unter diesen Arten sind viele auch im nordorientalischen Bereich zu finden; eine Art (Eri-
stalis tenax) ist sogar kosmopolitisch. Sieben der 18 Arten sind wenigstens paläarktisch verbreitet.
Auch von diesen kommen die meisten auch noch nordorientalisch vor, das Areal von Metasyrphus co-
rollae reicht bis in die Paläotropis, das von Episyrphus balteatus schließt die australische Region mit
ein. Lediglich zwei der 18 Arten haben ein relativ kleines Verbreitungsgebiet: Meliscaeva aurıcollis
und die nur in geringer Zahl wandernde Eristalis pertinax scheinen auf die westliche Paläarktis be-
schränkt zu sein.
Auch unter den 17 Dismigrantenarten sind acht wenigstens holarktisch und sieben wenigstens pa-
läarktisch verbreitet. Zwei Arten (Platycheirus manicatus, Parasyrphus punctulatus) kommen nach
heutiger Kenntnis nur in der westlichen Paläarktıis vor.
Demgegenüber haben z. B. viele Arten der im Larvenstadium phytophagen, sehr artenreichen Gat-
89
tung Cheilosia, von denen für keine Species weitreichende Wanderungen nachgewiesen sind, recht be-
schränkte Verbreitungsgebiete.
4.5.2 Diapause und Migration
„Unter Diapause verstehen wir eine unter natürlichen Bedingungen mehrere Wochen, Monate oder
sogar Jahre andauernde Depression im Wachstum embryonaler Gewebe oder der Ovarien, für welche
die herrschende Temperatur und andere Außenfaktoren nicht allein verantwortlich gemacht werden
können“ (Schneider 1948), also eine endogen fixierte Ruheperiode (Sommerruhe, Winterruhe etc.) der
Larve oder der Imago.
Auf den engen Zusammenhang zwischen der Diapause von Imagines und Migrationen machte
zuerst Johnson (1969) aufmerksam. Beispiele aus dem Bereich der Schmetterlinge werden unten aus-
führlich dargestellt (4.5.4). Unter den Käfern (Coleoptera) ist der Marienkäfer Coccinella septempunc-
tata L. die eindrucksvollste Wanderart in Europa. Die Jungkäfer schlüpfen meist zwischen Mitte Juli
und Anfang August. In Gradationsjahren — die fast immer mit denen der aphidophagen Syrphiden
zusammenfallen — klettern die Jungkäfer an Halmen hoch und starten an geeigneten Tagen, manch-
mal zu Millionen, zur Migration (Gatter & Gatter 1973, Hodec 1973). Bereits wenige Tage nach der
kurzen Migrationsphase suchen die meisten Tiere Sommer- und Winterruhequartiere auf, die bis zum
Frühjahr nicht mehr verlassen werden. Diesen Prädiapauseflügen (Hagen 1962, Williams 1961) folgen
Nachdiapauseflüge ım Frühling.
Während bei den zoophagen, sich meist von Blattläusen ernährenden Marienkäfern (vgl. 4.4) Pol-
lennahrung nur sehr untergeordnete Bedeutung hat, können Syrphiden beim Vor- und Nachdiapau-
seflug unentwegt Pollennahrung zu sich nehmen. Dies könnte die Evolution der Langstreckenmigra-
tion ım Sinne Johnsons (1969) begünstigt haben.
Wie oben gezeigt wurde (Tab. 3; 4.3), führen auch sämtliche als diapausierende Imagines überwin-
ternden Schwebfliegenarten richtungsorientierte Saisonwanderungen aus, die im Herbst dem geziel-
ten Aufsuchen günstiger Überwinterungsareale dienen, während die Nachdiapausewanderungen im
Frühjahr in Gebiete führen, die gute Entwicklungsbedingungen gewährleisten. Direkte Hinweise auf
diese Frühjahrswanderungen sind zwar spärlich (3.1; Gatter 1980, Westmacott & Williams 1954), was
aber mit Sicherheit einerseits an der Unauffälligkeit der Tiere und ihrer im Frühjahr gegenüber dem
Herbst erheblich niedrigeren Zahl hängt, andererseits aber auch daran, daß diesem Phänomen bisher
kaum Aufmerksamkeit geschenkt wurde.
4.5.3 Generationenfolge und Migration
Gatter (1981a) untersuchte die mitteleuropäischen Schmetterlinge und stellte erstmals fest, daß es
neben den Arten mit Diapause im Imaginalstadium (4.5.2) die Arten mit mehreren Generationen sind,
die ausgeprägt migrieren. Bei den Schwebfliegen bestätigt sich dieses Ergebnis: sämtliche Saisonalen
Migranten bilden in der Tat mehrere Jahresgenerationen aus (3.1, 3.2, Tab. 3).
Andererseits wandern nicht alle Arten, die in mehreren Jahresgenerationen auftreten. Unter den
polyvoltinen Syrphiden haben sich, in Anpassung an die ökologischen Bedürfnisse einzelner Arten
und Artengruppen, verschiedene Strategien herausgebildet, von denen Migration nur eine ist (vgl.
4.3). Die ausgeprägtesten Wanderer sind polyvoltine Arten, die zudem eine Winterruhe (Diapause)
haben und vor und nach dieser Winterruhe wandern. Die sich im Jahresverlauf ergebenden Habitatän-
derungen und die unterschiedlichen Ansprüche während verschiedener Lebensphasen bringen die
Notwendigkeit zum Ortswechsel mit sich (Gatter 1981c, Gatter & Gatter 1990). Die weitere Erfor-
schung dieser vitalen Wanderer wird noch manches aufregende Ergebnis bringen.
90
4.5.4 Die Stellung der Schwebtliegen innerhalb der Wanderinsekten
Der Monarch Danans plexippus L. (Lepidoptera) gilt als das klassische Wanderinsekt schlechthin.
Die Herbstgeneration dieses in der Alten und Neuen Welt beheimateten Schmetterlings wandert in
Amerika aus Kanada und den Vereinigten Staaten im Extremfall bis in das mexikanische Winterquar-
tier, um dort gesellig auf bewaldeten Berggipfeln zu überwintern. Nach der Überwinterung wandern
die Falter nordwärts. Im Verlauf ihrer Wanderung (und nicht erst am Endpunkt) legen die @Q Eier
ab. Die Nachkommen der Überwinterungsgeneration erreichen dann wieder die Gebiete des nördli-
chen Amerika (Urquhart 1960). — Der Monarch wandert kompaßorientiert und erreicht seine Über-
winterungsplätze navigierend.
In Europa kennen wir innerhalb der Schmetterlinge ähnliche Fälle. Geselliges Überwintern ist aller-
dings nicht bekannt; so waren — wenn man von den methodisch unglücklichen Versuchen bei Roer
(z. B. 1961) absieht (Baker 1978) — bisher keine Massenkennzeichnungen möglich, die die Verfolgung
der Zugwege einzelner Individuen ermöglicht hätten. Mit Distelfalter Vanessa cardni L. (Harz 1975,
Baker 1972), Admiral Vanessa atalanta L. (Baker 1972, Gatter 1981a), Gammaeule Autographa
gamma L. (Baker 1978, Gatter 1981a) und anderen Arten haben wir Schmetterlinge, deren Migra-
tionszyklus dem des Monarchen Danaus plexippus ähnlich ist. Bei Distelfalter (Baker 1978), Winden-
schwärmer Agrıins convolvul L. (Gatter & Gatter 1990) und weiteren Arten können sich bei diesen
Wanderungen Verbindungen bis in den nordafrikanischen und afrotropischen Bereich ergeben. Ver-
gleichen wir diese Lebenszyklen und Flugleistungen mit denen von Episyrphus balteatus (S. 44), so
finden wir zahlreiche Parallelen: Die Herbstgeneration zieht wochenlang, möglicherweise über Mo-
nate hinweg zu bisher unbekannten Überwinterungsgebieten. In Mitteleuropa, den Alpen und den
Pyrenäen führt die Wanderung kompaßorientiert in südwestliche Richtung. Die ?Q offensichtlich
derselben Generation wandern im Frühjahr wieder nach Norden. Ihre Nachkommen erreichen
Nordeuropa, wo sie nicht überwintern können. Die Sommergeneration wandert wiederum nach
Süden.
Hinsichtlich ihrer physischen Leistungsfähigkeit sind Schwebfliegen vielen Wanderfaltern überle-
gen. Bei der Überwindung von Gebirgspässen ist z. B. der Kleine Kohlweißling Pieris rapae L. als Sai-
sonaler Migrant unseren Wanderschwebfliegen derselben Kategorie weder in der Vitalität noch in der
Fluggeschwindigkeit gewachsen. Ein Vergleich der Relation von Körpergröße/-gewicht zur Flügel-
fläche zwischen Episyrphus balteatus und Danaus plexippus macht wahrscheinlich, daß die Fluglei-
stungen dieser Schwebtliegenart denen des Monarchen kaum nachstehen. Ihre Flugleistungen und
-geschwindigkeiten werden wohl nur von wenigen Libellen (Odonata) und Schmetterlingen (Lepi-
doptera) übertroffen.
Auch unter den wenigen Wanderinsekten, die Spitzbergen über das Nordmeer erreichen (Lokki et
al. 1978), ist eine Schwebfliegenart (Elton 1925). Zusammen mit einer Reihe anderer Syrphidenarten
gehört balteatus mit zu den leistungsfähigsten Wanderinsekten im paläarktischen Raum. Vergleichen
wir quantitatives Ausmaß und Regelmäßigkeiten dieser Schwebfliegenwanderungen mit dem der
Wanderungen der Schmetterlinge, Libellen und anderen Wanderinsekten, so stellen die Schwebflie-
gen das wohl eindrucksvollste Beispiel für Insektenwanderungen in Europa.
Neben diesen alljährlichen Migrationen über weite Strecken bei den physiologisch starken Fliegern
haben wir ein weites Feld von verschiedenen Formen der Dismigration (3.1.), wobei alle hier abgehan-
delten Migrationsformen und die Begriffsbestimmungen (3.1., Gatter 1981a, 1981c) nicht als starre,
restriktive Einteilung verstanden werden sollten (Baker 1978). Schon in den Abschnitten 3.1 und 3.2
wird deutlich, daß es zahlreiche Übergänge zwischen Migrationsformen gibt; trotzdem ist es notwen-
dig, mit der begrifflichen Kennzeichnung bestimmter biologischer Abläufe Abgrenzungen zu anderen
zu schaffen — schon um dadurch zu weiterer Forschungsaktivität anzuregen.
Bei den Dismigranten unter den Schwebfliegen kommen dem Migrationsvorgang die unterschied-
lichsten Bedeutungen zu. Der Verteilung der Individuen im Raum dienen die einfachen Formen der
91
Anemomigration oder Verdriftung und der Expansiven Dismigration. Durchmischung der Popula-
tionen, das Auffinden neuer Habitate und die Möglichkeit der Arealerweiterung sind einige der Ziele
dieser emigrationsähnlichen Formen der Wanderung. Im Ergebnis sind sie vielfältig: in der durch-
schnittlichen Emigrationsdistanz einer Generation unterscheiden sich die Wanderungen der winzigen
und sehr flugschwachen Neoascıa podagrıca von den Einflügen der großen, flugphysiologisch kräfti-
gen Volucella zonaria zwar sehr, biologisch ist es aber derselbe Vorgang.
Bei allen am Randecker Maar wandernden Dismigranten werden @ Q häufiger in den Reusen gefan-
gen als OO (3.1., Tab. 5). Oft sind erstere erheblich weniger flugtüchtig. Besonders deutlich ist dies
z. B. bei Melanostoma mellinum (S. 29). Hier dienen die Migrationen der 9 wohl in erster Linie dem
Aufsuchen günstiger Eiablageplätze, während die Q’CO’ den aktiveren Teil des Migrationsprozesses
übernehmen. Das würde den Dispersionsprozessen entsprechen, die wir von Spinnerarten (Bomby-
ces, Lepidoptera) kennen. Auch hier kommt den in vielen Fällen flugagileren G’CO’ der aktivere Teil des
Dismigrationsgeschehens zu, während sich die schwerfälligen PP nur wenig von ihrem Schlüpfort
entfernen (Schwerdtfeger 1977). Als bemerkenswerten Fall konnte Mikkola (1968) Einflüge der süd-
ostrussischen Rasse des Schwammspinners Lymantria dispar L. vom zentralen Eurasien nach Finn-
land nachweisen. Im Extremfall wandern selbst Männchen von Arten, deren 2 Q flügellos sind, große
Strecken. Im 19. Jahrhundert erreichte der Große Frostspanner Erannis defoliaria Cl. Helgoland in
ungeheuerer Zahl (Gätke 1900).
Abb. 28: Beispiel einer Saisonalen Dismigration unter dem Einfluß vorherrschender Windrichtungen: Wander-
insekten, die sich beispielsweise im Mittelmeerraum (1) entwickelt haben, dismigrieren ım Frühjahr. Nach Süden
wandernde Tiere kommen um (gestrichelte Linien). Nach Norden dismigrierende Tiere erzeugen eine zweite Ge-
neration in Mitteleuropa (2). Die mitteleuropäischen Tiere wandern im Herbst wieder mit der Vorzugswindrich-
tung. Nach Norden wandernde Tiere kommen um, nach Süden wandernde errreichen das Herkunftsgebiet (aus
Gatter 1981).
Fig. 28: Examples for seasonal dismigration under the influence of predominant wind directions: Migratory insects
which developed in the Mediterranean area (1) dismigrate in spring. Insects migrating southward will die (broken
lines). Insects migrating northward produce a second generation in Central Europe (2). In autumn, they will mi-
grate again with predominant wind directions. Insects migrating northward will die, insects migrating south will be
able to return to the Mediterranean area (see Gatter 1981a).
92
Neben diesen Formen der Zerstreuungswanderung gibt es bei den polyvoltinen Arten sicher alle
Übergänge zu höheren Migrationsformen. Bei flugschwachen Arten, die den bodennahen Bereich sel-
ten verlassen, würde die biologische Bedeutung dieser Dismigrationen der Fxpansiven Migration ent-
sprechen. Sobald sich aber wenigstens kleine Teile einer Population in größere Höhen begeben, setzen
sie sich den Windströmungen aus und wandern mit ihnen (Abb. 28). Seit den Untersuchungen von
Glick (z. B. 1939, 1942, 1960) wissen wir, daß sich fast alle Insektengruppen und selbst Milben und
Spinnen in großer Höhe mit saisonalen Vorzugswindrichtungen verdriften lassen. Ist diese Form der
Migration erfolgreich, so wird daraus die „Produktion von Migranten durch Selektion“ im Sinne
Johnsons (1969). Es gibt zahlreiche Hinweise, daß viele Insektenarten Strategien entwickelt haben,
aus dem Windangebot bestimmte, für sie vorteilhafte Winde zu selektieren (Baker 1978, Gatter 1977b,
1981a; vgl. Abb. 28).
Ebenso ist belegt, daß Dipteren außerhalb Europas so extreme Wanderungen ausführen, wie wir sie
für Episyrphus balteatus und andere Arten annehmen. Johnson (1969) nennt einen Fall, der vermuten
läßt, daß sich selbst Stubenfliegen Musca domestica L. (Muscidae) über große Entfernungen in Höhen
von 300-1500 m mit dem Wind verfrachten lassen. Für die amerikanische Fliege Chochlomyıa homi-
nivorax Cog. (Calliphoridae) sind individuelle Zugentfernungen von PP über 290 km nachgewiesen.
Sie sucht im Herbst nahrungsreiche Gebiete einige hundert oder tausend Kilometer weiter südlich auf
und wandert im Frühjahr zurück nach Norden. In beiden Zugzeiten wird angenommen, daß Selektion
die Fliegen fördert, die vorteilhafte Winde nutzen. Extrementfernungen zwischen Winteraufenthalt
und den nördlichsten Sommerfunden liegen 2400 km auseinander (Baker 1978). Die australische
„bushfly“ Musca vetustissima Walk. (Muscidae) wandert saisonal und legt dabei z. T. Entfernungen
von 1500 km in offenbar einer Generation zurück (Hughes & Nicholas 1974).
Unterschiedliche Lebenszyklen, kurze Lebensdauer einzelner und Langlebigkeit anderer Syrphi-
denarten haben unterschiedliche Anpassungen an die Jahreszeiten und an die vorhandene Nahrung
notwendig gemacht. Die unterschiedlichen Habitatansprüche von Larven und Imagines verschiede-
ner Generationen zu verschiedenen Jahreszeiten wie auch die Ansprüche an den Überwinterungsort
haben bei den Schwebtliegen zu einer breiten Palette von Anpassungen geführt, auf die mit Wande-
rung reagiert wird. Baker (1969, 1978) konnte nachweisen, daß zu- und abnehmende Tageslängen
bzw. Temperaturen während der Larvenzeit bzw. Überwinterung steuernd auf die Zugrichtung ein-
wirken, die ein Insekt später einschlägt. Diesbezügliche Ergebnisse für Dipteren stehen bisher völlig
aus.
5. Zusammenfassung
Im Zeitraum 1975— 1987 wurden an der Station Randecker Maar/Schwäbische Alb (SW-Deutschland; 48.35 N,
9.31 E; 772 m über NN) die Wanderungen der Schwebftliegen erforscht. Zwölf Jahre lang wurde hier zwischen
Mitte/Ende Juli und Anfang Oktober (Tab. 1) eine nach Norden geöffnete Reuse betrieben, die nach Süden flie-
gende Insekten erfaßte (S-Reuse). Während fünf Jahren wurden zusätzlich mit einer baugleichen, nach Süden geöff-
neten Reuse Insekten gefangen, die nach Norden flogen (N-Reuse). Während dieser Zeit wurden 90049 Syrphiden
in der S-Reuse und 9815 Syrphiden in der N-Reuse gefangen und determiniert (Tab. 1). Die Leerung der Reusen
erfolgte stündlich.
Mit Hilfe dieses Materials wird die Phänologie der am Randecker Maar im Untersuchungszeitraum mit über
50 Exemplaren festgestellten Arten beschrieben (3.1).
Untersucht und für jede Art dargestellt werden jeweils folgende phänologischen Aspekte:
— Jahreszeitliches Vorkommen der Art;
— Jahreszeitliches Vorkommen der Geschlechter;
— Tageszeitabhängige Aktivität der Art;
— Tageszeitabhängige Aktivität der Geschlechter;
— Veränderungen der tageszeitlichen Aktivität ım Jahresverlauf;
— Unterschiede zwischen S-Reuse und N-Reuse;
93
— Geschlechterverhältnis;
— Einflug in die S-Reuse in Abhängigkeit von der Windrichtung.
Zur Einordnung dieser Ergebnisse in den Zusammenhang enthalten die Artabschnitte kurze Abrisse der Biologie
der Art und eine Zusammenfassung der bisherigen Wanderbeobachtungen. Wenn möglich, wird die Art abschlie-
ßend einer der bekannten Migrationsformen zugeordnet (Definitionen s. 3.1).
Um einen Überblick über die Wanderarten in Europa zu erhalten, werden darüber hinaus auch Arten dargestellt,
die am Randecker Maar nur in geringer Zahl in Erscheinung treten, andernorts aber als Wanderer beschrieben wur-
den (3.2).
Daraus ergibt sich eine Darstellung und Bewertung des Status sämtlicher als Wanderarten bekannten
Schwebfliegen Europas (Tab. 3).
Dabei wurden typische Merkmale der Phänologie Saisonaler Migranten (Arten s. Tab. 3), die richtungsorien-
tierte Wanderungen in Winter- und Sommerareale ausführen, deutlich:
1. Der Vergleich der Fangergebnisse beider Reusen und direkte Beobachtungen zeigen, daß die spätsommerli-
chen und herbstlichen Flugbewegungen gerichtet in südliche und südwestliche Richtungen führen.
2. Einige direkte Beobachtungen machen deutlich, daß Saisonale Migranten im Frühjahr in nördliche Richtungen
wandern.
3. Zwischen dem Vorkommen am Randecker Maar und dem am 350 km südwestlich gelegenen Col de Bretolet
bestehen charakteristische Unterschiede. Die meisten Saisonmigranten weisen am Col de Bretolet ein später liegen-
des Maximum auf. Wie bei Zugvögeln dürfte das zeitversetzte Auftreten auf die unterschiedliche Lage der Stationen
zurückgehen; demnach wird die in Zugrichtung nachgeschaltete Station am Bretolet später erreicht (4.1).
4. Während die meisten Saisonwanderer am Randecker Maar und an weiter nördlich liegenden Stellen ein weitge-
hend ausgeglichenes Geschlechterverhältnis aufweisen, dominieren in den Alpen die @ 9 sehr stark. Für Episyrphus
balteatus konnte nachgewiesen werden, daß die P sehr viel langlebiger sind. Die wesentlich kurzlebigeren ’C’
nehmen anfangs noch an der Migration teil (Randecker Maar), sterben aber in ihrem Verlauf ab (Alpen) (4.2;
Tab. 5). Gegen Ende der Zugzeiten erscheinen auch am Randecker Maar fast nur noch 9. Der Durchzugs-Me-
dian liegt deshalb bei PQ stets später als bei OO’.
5. Saisonale Migranten wandern nur bei Gegenwinden in bodennahen Schichten, um den widrigen Einfluß des
Windes zu verringern. Dagegen nutzen sie den fördernden Einfluß von Rückenwinden, indem sie in größere Höhen
aufsteigen. Dementsprechend werden Südwanderer fast ausschließlich bei Winden aus südlichen Richtungen gefan-
gen (3.4).
6. Sowohl das jahreszeitliche als auch das tageszeitliche Muster des Auftretens der häufigen Saisonmigranten
zeigt von Jahr zu Jahr, von den hohen Populationsschwankungen abgesehen, relativ geringe Unterschiede. Das
spricht gegen eine exogene Auslösung und für eine genetische Fixierung der Migrationsphasen.
Die Gruppe der Dismigranten (Arten s. Tab. 3), die aktive Zerstreuungswanderungen ausführen, ist weniger
eindeutig charakterisiert. Nicht für alle Arten gelten sämtliche der angeführten Merkmale der Phänologie der Dis-
migranten — eine Folge unterschiedlicher Funktionen, Ausmaße und Reichweiten dieser Zerstreuungswanderun-
gen (vgl. 4.5.2).
1. Die Unterschiede zwischen den Fangsummen in den beiden Reusen sind oft nicht sehr hoch; eine eindeutige
Vorzugsrichtung ist damit nicht erkennbar. Allerdings lassen die bei manchen Dismigranten höheren Unterschiede
vermuten, daß sie gezielt günstige Windrichtungen nutzen, um in Vorzugsrichtungen zu wandern.
2. Zwischen dem jahreszeitlichen Auftreten am Randecker Maar und in den Alpen (Col de Bretolet) besteht meist
kein Unterschied (4.1).
3. Das Geschlechterverhältnis zwischen Randecker Maar und Col de Bretolet zeigt keine gleichsinnigen Verän-
derungen, die auf einen Zusammenhang schließen lassen (4.2.; Tab. 5).
4. Am Randecker Maar dominieren bei allen Dismigranten die Weibchen, deren Flugaktivität im bodennahen Be-
reich im Zusammenhang mit dem Aufsuchen günstiger Eiablageplätze größer ist als die der GC’.
5. Saisonale Dismigranten verfügen nicht über die weitreichende Strategie der Meidung widriger und Nutzung
günstiger Winde der Saisonwanderer. Bei ihnen finden auch Mitwindwanderungen wenigstens zum Teil in Boden-
nähe statt. Im Gegensatz zu reinen Driftinsekten geraten Dismigranten bei allen Windrichtungen in die Reuse; Mit-
windbewegungen überwiegen aber leicht (3.4).
Für verschiedene ökologische Gruppen unter den Schwebfliegen sind Saisonale Migrationen integraler Be-
standteil des Lebenszyklus (4.3, 4.5):
1. Saisonwanderungen sind nur von Arten mit zoophagen (aphidophagen) Larven und Arten mit aquatischen
sapro-/microphagen Larven bekannt.
94
2. Zu den Saisonwanderern gehören insbesondere die Arten, die als Imago oder Puparium überwintern (vgl.
Tab. 3). Diese Arten überstehen den Winter im nördlichen Bereich ihres Verbreitungsgebietes nicht oder nur in re-
lativ geringer und von den Witterungsbedingungen des Winters stark abhängiger Anzahl. Sie wandern deshalb in
jedem Frühjahr dort ein; im Herbst finden Rückwanderungen in südliche Richtungen statt. — Da auch einige Ar-
ten, die im Larvenstadium überwintern, solche Wanderungen durchführen, kann vermutet werden, daß auch für sie
das Überwinterungsrisiko im südlichen Europa geringer ist.
3. Der adaptive Wert der Sidwanderungen im Sommer/Herbst besteht in einer Vergrößerung der Überlebens-
chancen im Winter. Der adaptive Wert der Nordwanderungen im Frühjahr kann für die aphidophagen Arten darın
gesehen werden, daß in Mitteleuropa dann optimale Entwicklungs-(Blattlausmaximum) und Ernährungsbedingun-
gen (Reichtum an „Fliegenblumen“) für Larven und Imagines bestehen, für die aquatischen Formen darin, daß im
humiden Bereich die als Larvenhabitate benötigten Kleingewässer in wesentlich höherer Dichte und mit geringerem
Austrocknungsrisiko anzutreffen sind als im sommerlich-ariden Südeuropa.
Dismigrationen dienen im wesentlichen dazu, Stellen mit für die Larven günstigen Lebensbedingungen leichter
zu erschließen. An solchen Wanderungen haben wieder in erster Linie Arten teil, deren Larven zoophag sind (4.3),
d. h. auf eine in Raum und Zeit nicht vorhersagbar auftretende Ressource angewiesen sind (Arten s. Tab. 3).
Aphidophage Schwebfliegen haben unterschiedliche Lebenszyklen, die zum Teil mit dem Frühjahrs- und/oder
dem Herbstmaximum der Blattlauspopulationen korreliert sind (mono- und bivoltine Arten; vgl. Tab. 3). Um sich
während des Soemmerminimums der Blattläuse erfolgreich fortpflanzen zu können, müssen polyvoltine Syrphiden-
arten in ihren Lebenszyklus Wanderphasen integrieren. Darüber hinaus sind sie hinsichtlich des Habitats und der
Larvenbeute wenig spezialisiert. Zwei Gruppen konkurrieren dabei um die Larvennahrung: Die Gruppe der Saiso-
nalen Migranten und die der Saisonalen Dismigranten (vgl. Tab. 3). Während erstere in der direkten Nahrungskon-
kurrenz überlegen sind, können letztere ein wesentlich weiteres Nahrungsspektrum nutzen (4.3).
Bei den Schwebfliegenarten, deren Larven terrestrisch saprophag oder phytophag sind, sind keine weitreichen-
den Wanderungen nötig, um die in Raum und Zeit vorhersagbar auftretende Larvennahrung zu erschließen. Wäh-
rend unter den Saprophagen einige Arten über kurze Strecken dismigrieren (Tab. 3), sind von den gewöhnlich stark
spezialisierten Phytophagen keine Wanderungen bekannt (4.3).
Ein Vergleich mit anderen Wanderinsekten zeigt, daß das Wanderverhalten der Schwebtliegen weitgehende
Ähnlichkeiten mit dem anderer bekannter Wanderinsekten v. a. unter den Schmetterlingen (Lepidoptera) aufweist
(4,5).
Enge Zusammenhänge bestehen zwischen Diapause und Migration (als Imagines diapausierende Arten migrie-
ren; 4.5.2), zwischen Generationenzahl und Migration (v. a. polyvoltine Arten migrieren; 4.5.3) und zwischen Ver-
breitungsgebiet einer Art und ihrem Wanderverhalten (Wanderer haben riesige Verbreitungsgebiete; 4.5.1).
Die Leistungsfähigkeit einzelner Schwebfliegenarten und Ausmaß und Regelmäßigkeit ihrer Wanderungen ma-
chen die Migrationen der Schwebfliegen zum eindrucksvollsten Beispiel für Insektenwanderungen ın Europa.
Darüber hinaus gehört der weit überwiegende Teil der land- und forstwirtschaftlich wichtigen Blattlausvertilger
unter den Syrphiden in die Gruppe der aphidophagen Wanderschwebfliegen. Bei allen Versuchen, einzelne dieser
Schwebfliegenarten im Rahmen der biologischen Schädlingsbekämpfung zu nutzen, ist eine genaue Kenntnis des
individuellen Lebenszyklus von entscheidender Bedeutung. Dabei wurde in der bisherigen Forschung die Bedeu-
tung des Phänomens der Wanderungen weit unterschätzt.
6. Dank
Seit dem Bestehen der Station am Randecker Maar haben sich zahlreiche Mitarbeiter große Verdienste erworben
beim Aufbau und der Unterhaltung von Station und Fanganlagen, durch technische Hilfe im Bereich der Datener-
fassung und -auswertung und bei der Betreuung der Mitarbeiter der Station. Dafür danken wir R. Braun, E. Blo-
cher, B. Dauner, Dorothea Gatter, Martin Gatter, R. Gardner, H. Grau, Herr und Frau Dr. Höß, Dr. Hohloch,
Barbara Hoschek, E. Kotzke, V. Kirchner, R. Laih, Dr. H. Löhrl, Prof. Dr. H. Mattes, S. Maskow, E. Miller,
W. Neuhäuser, Frau P. Schmid, K. Sıll, J. Schweier, Chr. und I. Schwotzer, H. J. Ullrich, H. Graf Westarp (f) und
I. Gräfin Westarp (f).
An den Beobachtungen und dem Auswerten der Reusenfänge und der Betreuung der Reuse beteiligten sich fol-
gende Mitarbeiter, bei denen wir uns herzlich bedanken:
F. Alkemeyer, G. Arnold, S. Baumung, M. Behrndt, B., M. und W. Beissmann, Renate Benath, Heide Berger,
Anke Borchert, $. Bräger, R. Braun, Jutta Brüggemann, H. Buchmann, K. Burbach, A. Burnhauser, B. Dauner,
95
W. Dickore, T. Dolich, Ina Donat, W. Dornberger, M. Drösler, Dr. H. Ebenhöh, K. Einig, F. Engele, Dr. R. Er-
tel, D. Fausel, J. Fehling, H. Feil, K. H. Fiala, Ursula Firsching, M. Flade, U. Friedlin, D. Frühling, R. Gardner,
C. und P. Gatter, M. Göpfert, Christiane Guth, A. Hachenbersg, $. Häfele, V. Hennig, Ute Hermann, Eva Hesse,
C. Höller, R. Hömke, W. Hörnle, T. Hübner, B. Hündorf, K. Hund (f), D. Ikemayer, D. Ilg, ©. Jahn, R. Jahr-
aus, $. Jansen, W. Kantner, M. Kasparek, Ulrike Kay, Britta Kiesewetter, Dr. F. Kipp, C. Kleemann, Dr.
G. Klump, A. Koch, H.M. Koch, K.H. Kolb, Karın Krämer, ©. Krösche (f), Jutta Krusenbaum, V. Laske, Caro-
line Liepert, van Lin, F. Llimona, K. Lohrmann, K. Loos, K. H. Loske, Ehepaar Luce, E. Ludwig, J. Lüttmann,
M. Luy, U. Maier, D. v. Mallinkrodt, J. Maser, S. Maskow, Prof. Dr. H. Mattes, M. Mayer, Dr. T. Meineke, Mör-
gelin, Renate Mogck, W. Müller (}), Barbara Nebel, Dr. M. Neub, G. Neumann, ©. Neumann, Ursula Nigmann,
Silvia Nikulski, R. Oppermann, K. Penski, P. Pfeilsticker, Pfitzenmaier, R. Pliefke, Dr. H. Prahl, A. Prinzing,
Prof. Dr. R. Prinzinger, E. und B. Raddatz, D. Räpple, M. Ralston, B. Ratzke, K. Reiner, W. Remm, W. Riedel,
Dr. Ch. Rieger, J. Rinn, R. Rochau, M. und $. Rösler, Rotter, Andrea Ruf, H. Schlüter, I. Schmoll, W. Schreck,
I. Schröder, R. Schütt, Petra Schwartz, R. Seibold, F. Seifert, Dr. B. Seitz, K. Siedle, K. Sievers, Petra Sperlbaum,
T. Stadtlander, H. Stäbler, K. Steiof, D. Streng, H. Strunck, J. H. Stuke, M. Stumpf, J. Trittler, T. Volpers, Chr.
Wagner, H. Wahl, F. Weber, P. Weber, V. Weiß, Frau Winchenbach, Ursula Witte, Wolf.
Für technische Unterstützung bei der Datenauswertung danken wir den Firmen Hewlett Packard, IBM und
MBB.
7. Literatur
Aubert, J. 1962: Observations sur des migrations d’insectes au col de Bretolet (Alpes valaisannes, 1923 m). — Mitt.
Schweiz. ent. Ges. 35, 130-138.
Aubert, J. 1964a: Observations sur des migrations d’insectes au col de Bretolet (Alpes valaisannes, 1923 m). 2. Les
appareils de capture. — Mitt. Schweiz. ent. Ges. 36, 303—312.
Aubert, J. 1964b: Observations sur des migrations d’insectes au col de Bretolet (Alpes valaisannes, 1923 m). 3. La
migration dans la Plaine du Rhöne. — Mitt. Schweiz. ent. Ges. 37, 81-82.
Aubert, J. 1964c: L’activit€ entomologique de l’observatoire de col de Bretolet. — Bul. Murith., Soc. valaisanne Scı.
Nat. 81, 105-131.
Aubert, J. 1969: Un appareil de capture de grandes dimensions destine au marquage d’insectes migrateurs. — Mitt.
Schweiz. ent. Ges. 42, 135-139.
Aubert, J., J.-J. Aubert & P. Goeldlin 1976: Douze ans de captures systematiques de Syrphides (Dipteres) au col
de Bretolet (Alpes valaisannes). — Mitt. Schweiz. ent. Ges. 49, 115— 142.
Aubert, J. & P. Goeldlin 1981: Observations sur les migrations des Syrphides (Dipt.) dans les Alpes de Suisse occi-
dentale. — Mitt. Schweiz. ent. Ges. 54, 377— 388.
Aubert, J. & M. Jaccard 1981: La migration des Syrphides (Dipteres) dans le Jura vaudois. — Mitt. Schweiz. ent.
Ges. 54, 367—370.
Aubert, J., P. Goeldlin & J.-P. Lyon 1969: Essais de marquage et de reprise d’insectes migrateurs en automne 1968.
— Mitt. Schweiz. ent. Ges. 42, 140— 166.
Baker, R. R. 1969: The evolution of the migratory habits in butterflies. — J. Anımal Ecol. 38, 703— 746.
Baker, R. R. 1972: The geographical origin of the British spring individuals of the butterflies Vanessa atalanta (L.)
and Vanessa cardui (L.). — J. Ent. 46, 185— 196.
Baker, R. R. 1978: The Evolutionary Ecology of Animal Migration. London: Hodder and Stoughton.
Bankowska, R. 1964: Studien über die paläarktischen Arten der Gattung Sphaerophoria St. Farg. et Serv. (Diptera,
Syrphidae). — Ann. Zool. 22, 285-353.
Barkemeyer, W. 1988: Zum Vorkommen von Schwebfliegen auf den jungen Nordseeinseln Mellum und Memmert
(Dipt., Syrphidae). — Drosera ’88, 263— 286.
Bastian, O. 1984: Zum Vorkommen und zur Effektivität aphidophager Prädatoren in Koniferenjungwüchsen des
Tharandter Waldes. — Zool. Jb. Syst. 111, 245—279.
Bastian, ©. 1986: Schwebfliegen. (Neue Brehm-Bücherei Nr. 567) Wittenberg Lutherstadt: A. Ziemsen.
Benestad Hägvar, E. B. 1972: The effect of intra- and interspecific larval competition for food (Myzus persicae) on
the development at 20° of Syrphus ribesii and Syrphus corollae (Diptera, Syrphidae). — Entomophaga 17,
TR:
Burmann, K. 1978: Syrphiden-Wanderungen im Gebirge. Beobachtungen aus Nordtirol (Österreich) (Insecta:
Diptera, Syrphidae). — Ber. nat.-med. Ver. Innsbruck 65, 129— 137.
96
Chandler, A. E. F. 1968a: Some host-plant factors affecting oviposition by aphidophagous Syrphidae (Diptera). —
Ann. appl. Biol. 61, 415-423.
Chandler, A. E. F. 1968b: Height preference for oviposition of aphidophagous Syrphidae (Diptera). — Entomo-
phaga 13, 187—195.
Claußen, C. 1980: Die Schwebfliegenfauna des Landesteils Schleswig in Schleswig-Holstein (Diptera, Syrphidae).
— Faun.-Ökol. Mitt., Suppl. 1, 3—79.
Coe, R. L. 1942: Rhingia campestris Meigen (Dipt., Syrphidae): an account of its life-history and descriptions of
the early stages. — Ent. monthly Mag. 78, 121-130.
Delucchi, V., H. Pschorn-Walcher & H. Zwölfer 1957: Cnemodon-Arten (Syrphidae) als Räuber von Dreyfusia
piceae Ratz. (Adelgidae). — Z. angew. Entomol. 41, 246-259.
Dethier, M. & P. Goeldlin 1981: Les Syrphidae des pelouses alpines au Parc national suisse. — Mitt. Schweiz. ent.
Ges. 54, 65-77.
Dixon, T. J. 1960: Key to and descriptions of the third instar larvae of some species of Syrphidae (Diptera) occuring
in Britain. — Trans. R. ent. Soc. London 112, 345— 379.
Dusek, J. & P. Läska 1962: Beitrag zur Kenntnis einiger Syrphiden-Larven (Diptera, Syrphidae). — ActaSoc. Ento-
mol. Cechoslov. 59, 348-359.
Dusek, J. & P. Läska 1974: Overwintering and spring emergence of some common species of aphidophagous syr-
phids (Syrphidae, Dipt.) — Folia fac. scient. nat. Univ. Purkynianae Brunensis tom. 15, Biologia 43, op. 1,
75:
Dusek, J. & P. Läska 1986: Life cycle strategies of aphidophagous syrphids. In: J. Hodek (ed.): Ecology of Aphido-
phaga, 185-192. Dordrecht, Boston, Lancaster: Dr. W. Junk Publishers.
Eimer, T. 1882: Eine Dipteren- und Libellenwanderung, beobachtet im September 1880. — Jh. Ver. vaterl. Na-
turkde. Württemberg 38, 105— 113.
Eitschberger, U. 1973: Eine Massenwanderung von Epistrophe balteata Deg. (Dipt. Syrphidae). — Atalanta 4, 328.
Elton, €. S. 1925: The dispersal of insects to Spitsbergen. — Trans. R. ent. Soc. London 73, 289— 299.
Gätke, H. 1900: Die Vogelwarte Helgoland. 2. Auflage. Braunschweig: Joh. Heinr. Meyer.
Gatter, W. 1970: Der Brachpieper (Anthus campestris) ın Baden-Württemberg. — Vogelwelt 91, 1-11.
Gatter, W. 1975a: Regelmäßige Herbstwanderungen der Schwebfliege Eristalis tenax am Randecker Maar, Schwä-
bische Alb. — Atalanta 6, 78-83.
Gatter, W. 1975b: Massenwanderungen der Libellen Sympetrum vulgatum und Sympetrum flaveolum am Randek-
ker Maar, Schwäbische Alb. — Atalanta 6, 193—200.
Gatter, W. 1976: Der Zug der Schwebtliegen nach planmäßigen Fängen am Randecker Maar (Schwäbische Alb)
(Dip. Syrphidae). — Atalanta 7, 4-18.
Gatter, W. 1977a: Zusammenbruch der Nahrungsgrundlage als Auslöser einer Wanderung der Haarmücke Philia
febrilis L. — Atalanta 8, 247—253.
Gatter, W. 1977b: Eine Wanderung der Erdschnake Tipula oleracea L. Passive Verdriftung oder gerichtete Migra-
tion (Diptera, Tipulidae). — Nachr.-Bl. bayer. Ent. 26, 81-89.
Gatter, W. 1978: Planbeobachtungen des sichtbaren Zuges am Randecker Maar als Beispiel ornithologisch-ento-
mologischer Forschung. — Vogelwelt 99, 1-21.
Gatter, W. 1980: Nordwärts gerichtete Frühjahrswanderungen palaearktischer Schmetterlinge, Fliegen und Hum-
meln im Himalaya- und Transhimalayagebiet Nepals. — Atalanta 11, 188-196.
Gatter, W. 1981a: Insektenwanderungen. Greven: Kilda.
Gatter, W. 1981b: Anpassungen von Wanderinsekten an die tägliche Drehung des Windes. — Jh. Ges. Naturkde.
Württemberg 136, 191-202.
Gatter, W. 1981c: Die Migrationsformen der Insekten. — Ent. Z. 91, 1-16.
Gatter, W. & D. Gatter 1973: Massenwanderungen der Schwebfliege Eristalis tenax und des Marienkäfers Cocci-
nella septempunctata am Randecker Maar, Schwäbische Alb. — Jh. Ges. Naturkde. Württemberg 128,
148-150.
Gatter, P. & W. Gatter 1990: Notizen zu den Wanderungen des Windenschwärmers Agrıins convolvuli im west-
paläarktisch-afrotropischen Bereich. — Ent. Z. (im Druck).
Gauss, R. 1961: Zur Überwinterung von Syrphus luniger Meig. (Dipt. Syrphidae). — Mitt. bad. Landesver. Natur-
kunde u. Naturschutz N. F. 8, 65—66.
Gepp, J. 1975: Syrphidenwanderungen in der Nordweststeiermark. — Mitt. naturwiss. Ver. Steiermark 105,
279— 285.
97
Geusen-Pfister, H. 1987: Untersuchungen zur Biologie und zum Reproduktionsvermögen von Episyrphus baltea-
tus Deg. (Dipt., Syrphidae) unter Gewächshausbedingungen. — J. Appl. Ent. 104, 261-270.
Gilbert, F. S. 1986: Hoverflies. (Naturalists’ handbooks 5) Cambridge: Cambridge University Press.
Glick, P. A. 1939: The distribution of insects, spiders and mites in the air. — Techn. Bull. U. S. Dep. Agric. No.
673, 150p.
Glick, P. A. 1942: Insect population and migration in the air. In: F. R. Moulton: Aerobiology. — Publ. Amer. Ass.
Advert. Sci. No. 17, 88-98.
Glick, P. A. 1960: Collecting insects by airplane, with special reference to dispersal of the Potato Leafhopper. —
Tech. Bull. U. S. Dep. Agric. No. 1222, 16 p.
Goeldlin de Tiefenau, P. 1974: Contribution ä l’etude systematique et Ecologique des Syrphidae (Dipt.) de la suisse
occidentale. — Mitt. Schweiz. ent. Ges. 47, 151— 251.
Goeldlin de Tiefenau, P. 1975: Nouvelle observations sur les migrations d’insectes en Europe. — Mitt. Schweiz. ent.
Ges. 48, 204—205.
Goeldlin de Tiefenau, P. 1989: Sur plusier especes de Sphaerophoria (Dipt., Syrphidae) nouvelles ou meconnues des
regions pal&arctique et nearctique. — Mitt. Schweiz. ent. Ges. 62, 41—66.
Goot, V.S. van der 1981: De zweefvliegen van Noordwest-Europa en Europees Rusland, in het bijzonder van de
Benelux. Hoogwoud: Koninklijke Nederlandse Natuurhistorische Vereniging.
Goot, V.S. van der 1983: Enkele merkwaardige aspekten bij de halvemaanzweefvlieg Scaeva pyrastri (Linnaeus)
(Dipt.: Syrphidae). — Ent. Ber. Amst. 43, 128.
Goot, V. S. van der 1986a: Is Scaeva pyrastri L., de halvemaanzweefvlieg, in Nederland een trekker? — In V. S.
van der Goot: Zweefvliegen in kleur, 18-19. Hoogwoud: Koninklijke Nederlandse Natuurhistorische Ver-
eniging.
Goot, V.S. van der 1986b: Een andere trekker uit zuidelijke streken: Volucella zonarıa Poda. — In V.S. van der
Goot: Zweefvliegen in kleur, 19—20. Hoogwoud: Koninklijke Nederlandse Natuurhistorische Vereniging.
Gray, J. H., M. Locke & C. D. Putnam 1953: Insect migration in the Pyrenees. — Entomologist 86, 68-75.
Grosser, N. 1979: Zur tageszeitlichen Aktivität von Syrphus corollae (Fabr.) und Epistrophe balteata (Deg.) (Dip-
tera, Syrphidae). — Ent. Nachr. 23, 150-154.
Grosser, N. & J. Klapperstück 1977: Ökologische Untersuchungen an Syrphiden zweier Agrobiozönosen. — Her-
ceynıa N. F. 14, 124— 144.
Hagen, K.S. 1962: Biology and ecology of predaceous Coccinellidae. — Ann. Rev. Ent. 7, 289— 326.
Hartley, J. C. 1961: A taxonomic account of the larvae of some British Syrphidae. — Proc. zool. Soc. London 136,
505.373:
Harz, K. 1965: Massenwanderung der Schwebfliege Epistrophe balteata Deg. — Atalanta 1, 131-132.
Harz, K. 1975: Saisonwanderer unter den Schmetterlingen in den vergangenen 40 Jahren. — Ber. Naturwiss. Ges.
Bayreuth 15, 29-47.
Heydemann, B. 1967: Der Überflug von Insekten über Nord- und Ostsee nach Untersuchungen auf Feuerschiffen.
— Dtsch. Ent. Z.,N. F. 14, 185-212.
Hodec, I. 1973: Biology of Coccinellidae. — Den Haag: Dr. W. Junk.
Hughes, R.D.& W.L. Nicholas 1974: The spring migration of the bushfly (Musca vetustissima Walk.). — J. Animal
Ecol. 43, 411—428.
Hurst, G. W. 1969: Meteorologische Gesichtspunkte von Insektenwanderungen. — Endeavour 28, 77-81.
Huss, H. 1975: Ein Migrationsflug von Epistrophe balteata Deg. (Dipt., Syrphidae) in den Wölzer Tauern (Steier-
mark). — Ber. Arbeitsgem. ökol. Ent. Graz 6, 15-18.
Jeekel, C. A. W. & H. Overbeek 1968: A migratory flight of hover-flies (Diptera, Syrphidae) observed in Austria.
— Beaufortia 15 (Nr. 196), 123—126.
Johnson, C. G. 1960: Syrphid (Dipt.) migration on the Norfolk coast in August, 1960. — Ent. monthly Mag. 96,
196197.
Johnson, C. G. 1969: Migration and dispersal of insects by flight. London: Methuen.
Kormann, K. 1977: Schwebfliegen als Blütenbesucher an Salix caprea und Tussilago farfara. — Nachr.-Bl. bayer.
Ent 26,90 95:
Knutson, L. V., F. C. Thompson & J. R. Vockeroth 1975: Family Syrphidae. In: M. D. Delfinado & D. E. Hardy
(eds.): A catalog of the Diptera of the Oriental Region, Vol. II, 307-374. Honolulu: The University Press of
Hawaıı.
Krüger, F. 1926: Biologie und Morphologie einiger Syrphidenlarven. — Z. Morph. Ökol. Tiere 6, 83-149.
98
Kula, E. 1980: Pestrenky (Diptera, Syrphidae) zimujici v hrabance smrkovych porostü na Morave. — Cas. slez.
Mus. Opava (A) 29, 269-281.
Lack, D. & E. Lack 1951: Migration of insects and birds through a pyrenean pass. — J. Anımal Ecol. 20, 63—67.
Läska, P. & P. Stary 1980: Prey records of aphidophagous syrphid flies from Czechoslovakia (Diptera, Syrphidae).
— Acta ent. bohemoslov. 77, 228— 235.
Lempke, B. J. 1962: Insecten gevangen op het lichtschip „Noord-Hinder“. — Ent. Ber. Amst. 22, 101-111.
Löhr, P.-W. 1987: Schwebfliegen (Diptera: Syrphidae) aus den Emergenzfallen der Limnologischen Flußstation in
Schlitz am Breitenbach (Schlitzerland). — Beitr. Naturkde. Osthessen 23, 81-93.
Lokki, J., A. Kalevi, K. Malmström & E. Suomalainen 1978: Migration of Vanessa cardnı and Plutella xylostella to
Spitsbergen in the summer 1978. — Notulae ent. 58, 121-123.
Mackworth-Praed, C. W. 1929: Migration of hover-flies in the Isle of Wight. — Entomologist 62, 19.
Malec, F. 1986: Die Schwebfliegen (Diptera: Syrphidae) der Umgebung Kassels. Teil 1: Syrphinae. — Philippia V/
4, 346-379.
Meineke, T. 1979: Massenwanderung von Epistrophe balteata Degeer am südwestlichen Harzrand 1978 (Dipt. Syr-
phidae). — Atalanta 10, 96-99.
Mikkola, K. 1968: The migratory habit of Lymantria dispar (Lep. Limantriidae) adults of Continental Eurasia in
the sight of a flight to Finland. — Acta ent. fenn. 28, 107—120.
Nielsen, T. R. 1971: Syrphidae (Dipt.) from Jeren, Norway, I. With description of two new species. — Norsk ent.
Tidsskr. 18, 53— 73.
Nielsen, T. R. 1972: Syrphidae (Dipt.) from Jeren, Norway, II. — Norsk ent. Tidsskr. 19, 63—71.
Overgaard Nielsen, B. 1968: On a migration of hoverflies (Diptera, Syrphidae) and sawflies (Hym., Tenthredini-
dae) observed in Denmark, August 1967. — Ent. Meddr. 36, 215— 224.
Parmenter, L. 1960: Identification of migrating Syrphidae from Seaford. — Ent. Rec. J. Var. 72, 200-201.
Prell, H. 1925: Eine Insektenwanderung in den Alpen. — Biol. Zentralbl. 45, 21-26.
Roer, H. 1961: Wanderfalter-Forschung in Mitteleuropa. In C. B. Williams: Die Wanderflüge der Insekten,
203-213. Hamburg, Berlin: Parey.
Rotheray, G.E. 1983: Feeding behaviour of Syrphus rıbesu and Melanostoma scalare on Aphis fabae. — Entomolo-
gia exp. & appl. 34, 148— 154.
Rotheray, G.E. 1988: Larval morphology and feeding patterns of four Cheilosia species (Diptera: Syrphidae) asso-
ciated with Cirsium palustre L. Scopoli (Compositae) ın Scotland. — J. Nat. Hist. 22, 17—25.
Rotheray, G. E. 1989: Aphid predators. (Naturalists’ Handbooks 11) Slough: Richmond Publishing.
Rotheray, G. E. &F. S. Gilbert 1989: The phylogeny and systematics of European predacious Syrphidae (Diptera)
based on larval and puparial stages. — Zool. J. Linnean Soc. 95, 29-70.
Sack, P. 1932: Syrphidae. In: E. Lindner (ed., 1935): Die Fliegen der palaearktischen Region, Band IV.6, 1-451.
Stuttgart: Schweizerbart.
Schmid, U. 1986: Beitrag zur Schwebfliegen-Fauna der Tübinger Umgebung (Diptera: Syrphidae) — Veröff. Na-
turschutz Landschaftspflege Bad.-Württ. 61, 437—489.
Schmid, U. 1987: Zum Vorkommen von Schwebfliegen und Waffenfliegen (Diptera: Syrphidae et Stratiomyidae)
auf der Wattenmeerinsel Scharhörn. — Beitr. Naturkde. Niedersachsens 40, 249— 264.
Schmid, U. (1. Dr.): Zweiter Beitrag zur Kenntnis der Schwebfliegen-Fauna der Tübinger Umgebung (Diptera: Syr-
phidae) — Veröff. Naturschutz Landschaftspflege Bad.-Württ. 64.
Schmid, U. & W. Gatter 1988: Das Vorkommen von Schwebfliegen am Randecker Maar — ein faunistischer Über-
blick. — Nachr.-Bl. bayer. Ent. 37, 117-127.
Schneider, F. 1947: Zur Überwinterung von Lasiopticus pyrastri L. und Lasiopticns seleniticus Meig. (Dipt., Syrphi-
dae). — Mitt. Schweiz. ent. Ges. 20, 306-316.
Schneider, F. 1948: Beitrag zur Kenntnis der Generationsverhältnisse und Diapause räuberischer Schwebfliegen
(Syrphidae, Dipt.). — Mitt. Schweiz. ent. Ges. 21, 249— 285.
Schneider, F. 1958: Künstliche Blumen zum Nachweis von Winterquartieren, Futterpflanzen und Tageswanderun-
gen von Lasiopticus pyrastri (L.) und anderen Schwebfliegen (Syrphidae Dipt.). — Mitt. Schweiz. ent. Ges. 31,
2%
Schneider, F. 1969: Bionomics and physiology of aphidophagous Syrphidae. — Ann. Rev. Ent. 14, 103-124.
Schwerdtfeger, F. 1977: Ökologie der Tiere; 3 Bände. Hamburg, Berlin: Parey.
Scott, E. I. 1939: An account of the developmental stages of some aphidophagous Syrphidae (Dipt.) and their para-
sites (Hymenopt.). — Ann. appl. Biol. 26, 509-532.
99
Smith, K. G. V. 1979: The larva and puparıum of Cheilosia bergenstammi with a summary of the known biology
of the genus in Europa. — Ent. Rec. J. Var. 91, 190-194.
Snow, D. W.& K.F. A. Ross 1952: Insect migration in the Pyrenees. — Ent. monthly Mag. 88, 1-6.
Speight, M. C. D., P. J. Chandler & R. Nash 1975: Irish Syrphidae (Diptera): Notes on the species and an account
of their known distribution. — Proc.R. Ir. Acad. 75 B, 1-80.
Spreadbury, W. H. 1960: A migration of Syrphidae (Dipt.) at Seaford, Sussex. — Ent. Rec. J. Var. 72, 199—200.
Stubbs, A. E. 1980: The rearing of Cheilosia paganus and C. fraterna (Diptera: Syrphidae). — Ent. Rec. J. Var. 92,
Az
Stubbs, A. E. & S. J. Falk 1983: British hoverflies. London: British Entomological & Natural History Society.
Sundby, R. A. 1966: A comparative study of the efficiency of three predatory insects Coccinella septempunctataL.
(Coleoptera, Coccinellidae), Chrysopa carnea St. (Neuroptera, Chrysopidae) and Syrphus ribesii L. (Diptera,
Syrphidae) at two different temperatures. — Entomophaga 11, 395—404.
Svensson, B. G. & L. Janzon 1984: Why does the hoverfly Metasyrphus corollae migrate? — Ecol. Entomol. 9,
3293353:
Thompson, F. C., J. R. Vockeroth & Y. S. Sedman 1976: Family Syrphidae. In: A catalogue of the Diptera of the
Americas south of the United States 46, 1—195.
Torp, E. 1981: Syrphidefaunaen ı Grejsdalen ved Vejle med saerligt heublik pä visse arters okologi og udbredelse
(Diptera: Syrphidae). — Ent. Meddr. 49, 37—48.
Torp, E. 1984: De danske svirrefluer (Diptera: Syrphidae). Danmarks Dyreliv 1. Kobenhavn: Fauna Bager.
Urquhart, F. A. 1960: The Monarch Butterfly. Toronto: University Toronto Press.
Verlinden, L. & K. Decleer 1987: The Hoverflies (Diptera, Syrphidae) of Belgium and their faunıstics: Frequency,
distribution, phenology. — Koninklijk Belgisch Instituut voor Natuurwetenschappen, Brussel, Studiedocu-
menten Nr. 39.
Violovitsh, N. A. 1983: Syrphiden Sibiriens (Diptera, Syrphidae). Nowosibirsk (russisch; ins Niederländische
übertragen von V.S. van der Goot).
Walker, F. 1864: On the late swarms of Syrphi in the Isle of Wight. — Ent. monthly Mag. 1, 139— 140.
Weidner, H. 1958: Schwebfliegen auf hoher See. — Ent. Z. 68, 152-153.
Westmacott, H.M.& C.B. Williams 1954: A migration of Lepidoptera and Diptera in Nepal. — Entomologist 87,
232— 234.
Williams, C. B., J. F. B. Common, R. A. French, V. Muspratt & M. C. Williams 1956: Observations on the migra-
tion of insects in the Pyrenees in the autumn of 1953. — Trans. R. ent. Soc. London 108, 385—407.
Wirth, W. W., Y.S. Sedman & H. V. Weems 1965: Family Syrphidae. In: A. Stone, C. W. Sabrovsky, W.W. Wirth,
R.H. Foote & J. R. Coulson (eds.): A catalog of the Diptera of America north of Mexico, 557—625. Washing-
ton: United States Department of Agriculture.
100
Bisher erschienene Supplementbände der SPixıana:
Supplementband 1: GUSTAV PETERS, 1978
Vergleichende Untersuchung zur Lautgebung einiger Feliden
(Mammalia, Felidae).
206 Seiten und 80 Seiten mit 324 Abbildungen und 20 Tabellen.
Supplementband 2: HERMANN ELLENBERG, 1978
Zur Populationsökologie des Rehes (Capreolus capreolus L., Cervidae)
in Mitteleuropa.
211 Seiten mit 47 Abbildungen und 42 + 6 Tabellen.
Supplementband 3: JENSLEHMANN, 1979
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
(Systematik, Ökologie, Verbreitung und Produktionsbiologie).
Teil I: Kivu-Gebiet, Ostzaire.
144 Seiten mit 252 Abbildungen und 11 Tabellen.
Supplementband 4: KLAUS HORSTMANN, 1980
Revision der europäischen Tersilochinae Il
(Hymenoptera, Ichneumonidae).
76 Seiten mit 150 Abbildungen und 2 Tabellen.
G. VAN ROSSEM, 1980
A revision of some Western Palaearctic Oxytorine genera
(Hymenoptera, Ichneumonidae).
59 Seiten mit 3 Abbildungen und 2 Tafeln.
Supplementband 5: JENS LEHMANN, 1981
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
Teil Il: Die Region um Kisangani, Zentralzaire.
85 Seiten mit 3 Abbildungen, 2 Tabellen und 26 Tafeln.
Supplementband 6: MICHAEL VON TSCHIRNHAUS, 1981
Die Halm- und Minierfliegen im Grenzbereich Land-Meer der Nordsee.
(Diptera: Chloropidae et Agromyzidae)
416 Seiten mit 25 Diagr., 89 Tabellen und 11 Tafeln.
Supplementband 7: GERHARD SCHERER (Hrsg.) 1982
First International Alticinae Symposium, Munich, 11-15 August 1980
7 Beiträge, 72 Seiten.
Supplementband 8: OSKAR KUHN, 1982
Goethes Naturforschung.
48 Seiten.
Supplementband 9: ERNST JOSEF FITTKAU (Hrsg.) 1983
Festschrift zu Ehren von Dr. Johann Baptist Ritter von Spix.
30 Beiträge, div. Abbildungen und Tabellen, 441 Seiten.
Supplementband 10: W. ENGELHARDT & E.J. FITTKAU (Hrsg.) 1984
Tropische Regenwälder - eine globale Herausforderung.
14 Beiträge, div. Abbildungen und Tabellen, 160 Seiten.
Supplementband 11: ERNST JOSEF FITTKAU (Hrsg.) 1985
Beiträge zur Systematik der Chironomidae, Diptera.
16 Beiträge, zahlr. Abbildungen, 215 Seiten.
Supplementband 12: HANS HERMANN SCHLEICH, 1987
Herpetofauna Caboverdiana
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
45, —
EI —
EI,
43,50
29,80
SI,
20
46,—
SI,
Supplementband 13: ANNELLE R. SOPONIS, 1989
A Revision of the Holarctic Species of Orthocladius
(Euorthocladius) (Diptera: Chironomidae) DM 35,—
Supplementband 14: ERNST JOSEF FITTKAU (Hrsg.) 1988
Festschrift zu Ehren von Lars Brundin
28 Beiträge, div. Abbildungen und Tabellen, 259 Seiten DM 80,—
| sta
91615 g >laaz
% % 122 %
"a
& en.
> a
= oS f 2 E Q 2
Rin che®
CEIYINN!
Zeitschrift für Zoologie
Zur Dynamik |
von Nachtfalter-Artenspektren
Turnover und Dispersionsverhalten als Elemente
von Verbreitungsstrategien
Axel Hausmann
SPIXIANA Supplement 16 | München, 31. Dezember 1990 ISSN 0177-7424
SPIAIANA
ZEITSCHRIFT FÜR ZOOLOGIE
herausgegeben von der
ZOOLOGISCHEN STAATSSAMMLUNG MÜNCHEN
SPIXIANA bringt Originalarbeiten aus dem Gesamtgebiet der Zoologischen Systematik mit
Schwerpunkten in Morphologie, Phylogenie, Tiergeographie und Ökologie. Manuskripte werden
in Deutsch, Englisch oder Französisch angenommen. Pro Jahr erscheint ein Band zu drei Heften.
Umfangreiche Beiträge können in Supplementbänden herausgegeben werden.
SPIXIANA publishes original papers on Zoological Systematics, witn emphasis on Morphology,
Phylogeny, Zoogeography and Ecology. Manuscripts will be accepted in German, English or
French. A volume of three issues will be published annually. Extensive contributions may be
edited in supplement volumes.
Redaktion - Editor-in-chief
Prof. Dr. E.J. FITTKAU
Manuskripte, Korrekturen und Bespre- Manuscripts, galley proofs, commentaries
chungsexemplare sind zu senden an die and review copies of books should be
adressed to
Redaktion SPIXIANA
ZOOLOGISCHE STAATSSAMMLUNG MÜNCHEN
Münchhausenstraße 21, D-8000 München 60
SPIXIANA - Journal of Zoology
published by
The State Zoological Collections München
Zur Dynamik
von Nachtfalter-Artenspektren
Turnover und Dispersionsverhalten als Elemente
von Verbreitungsstrategien
Axel Hausmann
SPIXIANA Supplement 16 München, 31. Dezember 1990 ISSN 0177— 7424
Meiner Frau Silvia
Die vorliegende Veröffentlichung wurde bei der Biologischen Fakultät der Ludwig-
Maximilians-Universität München als Dissertation eingereicht.
Zur Dynamik von Nachtfalter-Artenspektren:
TURNOVER UND DISPERSIONSVERHALTEN ALS ELEMENTE
VON VERBREITUNGSSTRATEGIEN
von Axel Hausmann
Inhalt
I. ERFASSENDER TEIL: DAS ARTENSPEKTRUM
k; Einleitung ee hanorne non ie ee ae se ee een 4
2% Untersuchungsgebietar zur 2... 2. eat ass anna ep nehe ehe nee he nee een 5
Dal GLOBLaUmE NE a a ee: 5
2.2. ° Botanische Charakteristik der Fallenstandorte......................2z02220200s0eneneeennenn 6
2.3 KlimadatenundJWetter..............000 222020. RT en 11
3 Melhode N ee ee 11
3.1 Bann esscaohedeeasee en eere Te ee en ee E 11
3.1.1. Bebend„Lichtlangtees a ass rpalee eBensris re Re 11
Balz. AndereMethodikente. mn. ae nenege. eeeen r 13
3.2. Bangmodust en m m a see ds re a N: 14
RE TIERE REN REN RE 14
Bu2.2 Raum Re as a ee Eee 14
3.2.3 N 15
3.2.4. Zusätzliche, Experimenten... essen ern 16
33. PNUSWELLUNSEAR TE A a I ee en ee 16
3.4. Markierung a ee ee ee 17
35. Materialen ve N er Re een en ale ses enge ehren San ne rapie ee 19
4 INTEEHUSLE en Be ee ee 19
4.1. Vorbemerkungene ne a nee een es ee 19
4.2. Magtalter a ee ee ee TR, 20
4.3. Nachtfalten m nen ee RE N 21
4.4 Baunistischer Hinweise nt her nn RL nenn EN RL NEAR IR EINE DANKEN TOR RREU EBEN ET RORRR, 43
4.4.1. Arealenweiterungen.n. einen een miese 43
4.4.2. TEA VENIUSLEN N erste ae ensure res ee 43
4.4.3. Artensmit»lokalem; Vorkommen...................0.0.0..000.ensssneeseneeaan sangen 44
5% Das: Phänomen Turnovet.......r.:-.%.3.8---..H ee ne ee 46
ST @ Arten-Zeit-Beziehung ..... Aa IR ARENA N nennen 46
3.2; Fosrmeln...24.... 2 er RE ET RT ee 47
6. Interpretation des apparenten Turnovers .................040@0440404snnssnnnnennnnnennnnnnnnnnnn 49
6.1. Berechnung dersAusfauschraten 2:12. I ER RAN ee nnd anne none ne 49
6.1.1. Vorbemerkungen... 00 dee a 49
6.1.2. Liste der -Turnoverwerle.......tscsscseseineeae res RE 49
617214: Garten ("SINE 49
6.1.2.2. Zusammenstellung der in den letzten 3 Jahren festgestellten Turnoverwerte 51
6.1.3. Folgerungen‘. 2... 52
6.2. Turnover durch Kolonisationsversuche biotopfremder Arten.............u.zeusrsne0. 53
6.3. Abhängigkeit des Turnovers vom Flächeninhalt des abgedeckten Areals ....... 56
6.3.1: Vergleich: der Werte... 56
6.32. Rückschlüsse für faunistische Ansätze ...............z.0:0...0..000000000000000 nenne nee nennen 56
6.4. Turnover. Konstanz und. Fluktuation............5...sse0:0.0aane ame renen E 56
6.4.1. Tagfalter (unterer Inn: REICHHOLF, 1986).........uuuuesseeeeeeeeneesssssssssennnnnnnennnn 56
6.4.2. Nachtfalter im Gitschtal (WIESER, 1987)............uuunneseeeeesnaennennneessnnnnnnnennneenn 57
6.4.3. Nachtfalter in Oberschleißheim (Garten)..................uu4u0000000000@seneeeenennneeneeenenn 59
6.4.4. Nachtfalter in Oberschleißheim (Offenland: "HM" und "HO".)...................... 61
6.4.5. Eulenfalter (Noctuidae) in Südböhmen und England ........................22220022000000 64
1: Rückschlüsse aus den Häufigkeitsverteilungen .....................-2...02s0200002020en en 65
71: Artenzahl' und 'Stichprobengröße...........csc.cmccoseeeencnneen nenn anne een nano 65
12: Vergleich mit den "log-series" WILLIAMs (1964).............u.uussss0nnneneenneneen 67
1:3. Zum Problem der Erfassung der seltenen Arten.................z2s2s2s0s0snenenenen nenn 67
7.3.1: Artenzahl’ und’ Fangrhyihmus........ +... arena nennen ge ee 67
3.2: PRESTONS vet line" ee ee ne nen ana ae ee 69
II. EXPERIMENTELLER TEIL: DISPERSIONSVERHALTEN UND TRIVIAL MOVEMENT
8. Die Experimente: ....-...cc essen sine genen een en 72
8.1. Vorstellung der Markierungsexperimente ...........u.---40s444snennnennnnnnnn nennen nennen T2
SIT Allgemeines: .....uum.ens0sceseeneueneaanee nenne nennen ernennen ae 2
8-1.2- "Fern" -Wiederläange .....nsseasenanuessnnssennensen sten nnenen armen ee ae 72
8:13. Verringerte Fallendistanzen ........s.<u0040.00000040sS00neRann en ine ee nee 2.
8.1.4. Versetzexperiment ..........uu0 Herne ana snne nam eneen ernennen an san nee 12
8.1.5. Rückschlüsse aus Ortswiederfängen ...................u.susuensnossennnnonensnnnsnonnnnnnnennnne 23
8.2. “"Fern"-Wiederfänge ..........uusscssesssenncsnennunendennennee denne een ee ee 75
82:1. ÜDErsIcht nenn 75
8.2.2. DiskUSSIOR '.......4:0.00. 00.400 nase ons ernennen gerne ee 76
8.3: Verringerte Fallendistanzen .........üsosaneeuesnensssseuuenseneeneanennensn seen ag ara ne 77
823]: ÜBersicht"uber ‚das Material... {hl
8.3.2: Weitere Ergebnisse, aufgezeigt an ausgewählten Arten .............-ussussnsenennen 80
8.4. Versetzexperiment nen ER, 82
8.4.1 Übersicht#über" das Material... 0... 82
8.4.2 Ergebnisse Hin. N IE OL I Eee 83
8.4.3 Vergleich der sich ergebenden Muster _..........cesssessesssensnnnennnsnnesnnnnnnenennnn nenn 97
8.4.4 Hinweise für faunistische Arbeitsansätze .............. wagen 99
8.5. Rückschlüsse aus Ortswiederfängen ............uscccesensessesenennensensnnnsnnnnnnnnnnnnneenenn 99
8.5.1. Die Problematik atirta. lat a aa ein 99
8.5.2 Beispiel:JAmathes) triangulumn.. 222.....204. 2.8. er. rel alsan. 101
8.5.3 Beispiel:#Calospilosasylvatant an..n:n.. este Na a Vin erieden: 102
9. Übersicht über die Reaktion der Arten ......cnnesnneesenenennnnennnnenennenneennnnnnnn 103
9.1. Vorbemerkungen #r..2.. 2 HH IHN kuss .eteben seen. eh 103
I Attenlusten a ee ea Renee aa ade Nee 105
9E3% AUSWETLUNgHHA ME ee een ee ee ne ee a ea 195
9.3.1. T=K -Kontinuums Me an a a a ee 195
9.3.2 Elugdistanzen 2 an se ae seen 195
93.3. Ökotypenn a a a en 196
9.3.4 Arten jextremersJahreszeiten ru... nennen ee 197
9.33. Broterandrie tu. m nn 2 Nr sad I a a ea se aser en 197
9.3.6. Bi-2und Bolyvoltinismussı.. an. 197
9.3.7 Einflüsse der Witterung auf die Mobilität ...........eessesceneeeeeneenseenenneeeneeneennn 197
10. Ergebnisse zur Biologie von Nachtfalterpopulationen ..............ccucusesneeeneeen- 199
10.1. Wanderfalter ee 0a... 00:00 Me a ee no, 199
10.2. Direkter Einfluß>von=lichtquellen ı..... ra... nn 199
10.3. Eebensdauer. 2 nr ee RE. en er een can 200
10.4 Weibchen Raten 42. He Eat ee 200
10.5. Bi cund ;Polyvoltinismusu.e. 123... sa ee 201
10.6. Ortstreue/Habitattreue 1... 2. Mater een.) 201
10.7. Geländestrukturen rm. EN ts 201
10.8 Bopulationsdiehtener rs a el en 202
10.9. Nektarquellen®e....... 2. ee es een ande Nennen sen. Are 202
10.10 Witterung a ne are Biesiee 202
10.11 Dispersionsaktivität, trivial movement, Flugdistanzen ...............cccenneenne. 202
10.12 SPTALE RITA ee en en lei ee. ats 203
10.13 TrittsteınKolonisationens. eu... N es a kale 205
10.14 Wirtspflanzen, Spektren) 4.9 9 et ee ee 205
11. Zusammenhänge zwischen Artenspektren-Dynamik und Artendynamik ........ 205
11.1. Untersuchungsgebiet 8%... users 205
11.2. Fluktuation von Eulenfaltern in Südböhmen ...............uuus2cccenasseeenseeeenneeeneneen 206
12. Diskussionws a. ern ea are 207
ZUSAMMENFASSUNG HR. ER EMEEE ERILEETATRE NR en 208
N N 210
BMTERASTURS 3 37.00: 20 a rn ee anne nce denne sn ee ge 211
ANHANG: SUMMARY me nasse ee ee rasen 216
ANHANG: -ARTENREGISITER FE U ans a era 219
I. ERFASSENDER TEIL: DAS ARTENSPEKTRUM
1. EINLEITUNG
Die Dynamik von Arten, von Populationen einer Art und von Artenspektren eines defi-
nierten Areals sind wichtige Gesichtspunkte für ökologische Beurteilungen einer Art
oder eines Biotops und somit für den Naturschutz bedeutsam.
Bei vielen Tiergruppen sind wir heute, was die in den Artenspektren stattfindenden
Austauschprozesse betrifft, auf einem einigermaßen befriedigenden Kenntnisstand ange-
langt, wie bei den Vögeln (z.B. DIAMOND, 1969; JONES & DIAMOND, 1976; u.s.w.),
oder den sessilen marinen Organismen (SCHOENER & SCHOENER, 1981).
Die Tagfalter sind bezüglich der Artendynamik (z.B. Dispersionsverhalten) ebenfalls
recht gut untersucht, hier vermittelt vor allem die amerikanische (z.B. EHRLICH,
1961; EHRLICH & DAVIDSON, 1961; SCOTT, 1975; WATT et al., 1977, SCHRIER et
al. 1976) und die englische (z.B. DOWDESWELL, FISHER & FORD, 1940 und 1949)
Literatur ein einigermaßen solides Basiswissen, bestehend aus vielen Einzelinformatio-
nen. Zu interessanten Ergebnissen kamen SMOLIS & GERKEN (1986) in ihrer Arbeit
über die intrapopulare Mobilität von Widderchen (Zygaenidae).
Was jedoch auf der Ebene der Artenspektren die Austauschprozesse betrifft, die diese
Artendynamik durch ständiges lokales Verschwinden und Wiederbesiedelung hervorruft,
ist vergleichsweise wenig publiziert worden (z.B. REICHHOLF, 1986). Einen Versuch,
den einheimischen Tagfalterarten verschiedene Verbreitungsstrategien zuzuordnen, un-
ternahm WEIDEMANN (1986a; 1986b).
Bei den Nachtfaltern ergeben die bisher publizierten Arbeiten bezüglich der genann-
ten Thematik erst ein sehr bruchstückhaftes Bild. Erst UTSCHICK (1989) versucht bei
einer allerdings recht kleinen Stichprobe aus Lichtfallenfängen am Inn eine Biotop-
beurteilung über Artenumsatz-Raten. Ohne detailliertere Diskussion reißt auch MA-
LICKY (1974b) durch die Ermittlung einer Artenübereinstimmung von Jahr zu Jahr die
Problematik an.
Während beispielsweise bei den Vögeln selbstverständlich zwischen Brutvögeln und
Durchzüglern unterschieden wird, fehlt eine solche Differenzierung - abgesehen von
einigen wenigen Wanderfalterarten - in Publikationen von Nachtfalter-Artenspektren in
fast allen Fällen. Dies liegt in erster Linie an den durch Nachtaktivität und fehlendes
Revierverhalten verständlicherweise erschwerten Erfassungsbedingungen.
Nachdem in einer vorbereitenden Arbeit bei der Noctuiden-Unterfamilie Amphipyrinae
in der Methodik des Lebend-Lichtfallenfangs ein Jahr-zu-Jahr-Artenaustausch (Turn-
over) von ca. 35 % festgestellt wurde, aber offenbleiben mußte, wie stark die Methodik
dieses Ergebnis beeinflußte, war nun die Idee, ein ganzes Fangstellen-Netz zu errich-
ten. Mehrere Fallen sollten bei geringeren Distanzen parallel in den selben Nächten
betrieben werden, mit dem Ziel, anhand ausgewählter Arten Zusammenhänge zwi-
schen der Dynamik der Arten in Raum und Zeit und Austauschprozessen in der Zu-
sammensetzung der Artenspektren von definierten Arealen zu erarbeiten.
Hauptgegenstand der Untersuchung sollen die nachtaktiven Macroheteroceren-Familien
in der Methodik des Lebend-Lichtfallenfangs sein. Aus Markierungexperimenten resul-
tieren weitere Hinweise, vor allem auf die Dispersionsdynamik der Arten.
In fast allen Fällen waren bisher ähnliche Untersuchungen auf die großräumige Dyna-
mik der Wanderfalter gerichtet, jedoch können sich Erkenntnisse gerade über die Aus-
tauschprozesse, die sich in Distanzen von unter 5 km abspielen, als nützliche Hilfsmit-
tel erweisen, beispielsweise für Programme im Zuge von Biotopvernetzungsmaßnahmen.
2. UNTERSUCHUNGSGEBIET
2.1. GROSSRAUM
Das Gemeindegebiet Oberschleißheim (31 km?, 475-488 m ü. NN) liegt an einer inte-
ressanten Stelle im Nordwesten der Münchner Schotterebene (vergleiche hierzu die
Übersichtskarte, Abb. 1).
Abb. 1: Gemeindegebiet Oberschleißheim. 1 = Kiefern-Eichenwaldgürtel; 2 = Flughafen-
gebiet (Magerrasen); 3 = Dachauer Moos (entwässert und größtenteils landwirt-
schaftlich genutzt). Abkürzungen der Fundorte siehe Text (nach HAUSMANN, 1988,
verändert).
Types of habitat in the municipality of Oberschleissheim near Munich. 1 = Pine-Oak
forest belt, 2 = air strip (low fertility pasture), 3 = fen area of Dachau (drained and
mostly changed to arable land), Abbreviations cf text.
Das eigentliche Siedlungsgebiet (48°15 N/11°34 E) ist im Nordosten und Osten von
einem relativ trockenen Kiefern-Eichenwald ("Vaccino-vitis- idaea-Quercetum"), im
Süden von einem Magerrasengebiet, das einem Trespen-Halbtrockenrasen (Mesobrome-
tum erecti) nahekommt, und im Westen vom ehemaligen Niedermoor "Dachauer Moos",
das jetzt weitgehend landwirtschaftlich genutzt ist, begrenzt (siehe auch HAUSMANN,
A., 1988; HAUSMANN, S., 1982, 1984, 1987).
Das Gelände ist, von unbedeutenden Bodenwellen abgesehen, eben. Im ganzen Gebiet
bildet ein aus tonigen und sandigen Mergeln bestehender tertiärer Flinz eine wasser-
stauende Schicht, die von ca. 15 Meter mächtigen quartären und postglazialen Schot-
tern bedeckt ist (vergleiche HAUSMANN 1984 und 1987, Bayerisches Geologisches
Landesamt briefl.).
2.2. BOTANISCHE CHARAKTERISTIK DER FALLENSTANDORTE
Da praktisch alle Biotope in irgendeiner Weise vom Menschen beeinflußt oder sogar
geschaffen wurden, ist die im folgenden teilweise getroffene Einteilung in Pflanzen-
gesellschaften oft nur tendenziell zu verstehen.
Siedlung
Wie es für Wohngebiete typisch ist, zeichnet sich auch der Siedlungsbereich Ober-
schleißheim durch eine uneinheitliche, reichhaltige Staffelung der Vegetationselemente
aus. Standort und Artenzusammensetzung sind fast ausschließlich vom Menschen nach
ästhetischen Gesichtspunkten bestimmt.
- Siedlung Süd ("SiS"): Der Fangplatz befindet sich auf einem knapp 2 ha großen
ungenutzten Geländestreifen, der auf einer Seite vom Würmkanal, auf den ande-
ren Seiten von Gärten begrenzt ist. Die Krautschicht besteht fast nur aus Bren-
nessel-Giersch-Saum (Urtico dioicae-Aegopodietum), der stark von Brombeere
(Rubus fruticosus) durchsetzt ist. Im artenreichen Baumbestand dominieren Ge-
wöhnliche Esche (Fraxinus excelsior), Schwarzer Holunder (Sambucus nigra),
Hybrid-Pappel (Populus euramericana) und Weiden (Salix). Der Beschattungsgrad
beträgt ca. 70 %.
- Siedlung Mitte ("SiM"): Die nähere Umgebung der stark befahrenen Straßenkreu-
zung ist von Gärten beherrscht. Botanisch interessanter ist v.a. die Begleitflora
des Schloßkanals in 50 (fragmentarisch) bis 100 m Entfernung: Charakteristisch
sind Rohrschwingel-Rasen (Dactylo-Festucetum arundinaceae), Blaubinsen-Roßmin-
zen-Gesellschaft (Junco inflexi-Menthetum longifoliae) sowie Weiden und
Schneeball (Viburnum).
- Siedlung Nord ("SiN”): Es handelt sich hier um den Garten des Verfassers, der
Fangplatz befindet sich auf der Südseite des Hauses. Das Siedlungsgebiet ent-
stand 1952 unter partieller Rodung des Bergliwaldes, der Waldcharakter blieb
jedoch bestimmend. Unter den Bäumen dominieren 15-20 m hohe Kiefern (Pinus
sylvestris), Stieleiche (Quercus robur), Gemeine Fichte (Picea abies), Hängebirke
(Betula pendula), Winterlinde (Tilia cordata) und Hainbuche (Carpinus betulus).
Der Beschattungsgrad beträgt ca. 60 %. Im Garten wurde der größte Teil der
Wiesenfläche (ca. 200 m?) in den Jahren seit 1985 abgemagert, was zu einer
sehr artenreichen Krautschicht führte. In manchen anderen Gärten sind Ehren-
preis-Erdrauch-Gesellschaften (Veronico-Fumarietum officinalis) zu finden.
W
al
d
- Wald Süd ("WaS"): Dieser Standort befindet sich nur 30 m vom letztgenannten
entfernt, nämlich auf der gegenüberliegenden Seite des Hauses. Hier erstreckt
sich ein zwischen den Gärten liegender 20-40 m breiter Waldstreifen, der mit
dem 150 m entfernten Berglwaldgebiet in direkter Verbindung steht. Es dominiert
die Gemeine Fichte bei einem Beschattungsgrad von ca. 90 %. Erwähnenswert sind
ein Bergweidenröschen-Stinkstorchschnabel-Saum (Epilobio montani-Geranietum
robertiani) sowie ein Schlehen-Weißdorngebüsch (Pruno spinosae-Crataegetum) in
je 20-30 m Entfernung (Lageskizze siehe 8.1.).
- Wald Mitte ("WaM”): Der Fangplatz befand sich auf einer 0,5 ha großen baumlo-
sen Fläche im Berglwald (ca. 150jähriger Kiefern-Eichenwald mit starkem Laub-
holzunterwuchs), die in der Vergangenheit als Wildacker genutzt wurde, im
Untersuchungsjahr jedoch von Pionierpflanzen wie Acker-Kratzdistel (Cirsium
arvense), Gewöhnlichem Pastinak (Pastinaca sativa), Gemeinem Beifuß (Artemisia
vulgaris) aber auch von Tüpfel-Johanniskraut (Hypericum perforatum) und Gän-
se-Fingerkraut (Potentilla anserina) dominiert war. Die Flächenränder bestehen
aus Schlehen-Weißdorn-Gebüsch (Pruno spinosae-Crataegetum) mit viel (ange-
pflanztem) Liguster (Ligustrum vulgare).
- Wald Nord ("WaN"): Der Standort befindet sich im relativ naturnah gestalteten
Wasserwerksgelände am nordöstlichen Rand des Berglwaldes. Vor ca. 10 Jahren
bestand die Fläche (wie heute noch in der näheren Umgebung) aus einem ziemlich
abrupt in das angrenzende Ackerland übergehenden forstwirtschaftlich genutzten
Hochwald. 50 m südöstlich bzw. 100 m westlich von "WaN" liegen die Fangplätze
"WNo" und "WNw" (siehe Lageskizze).
Die ziemlich abgemagerten arten- und blütenreichen Wiesenflächen sind an man-
chen Stellen noch von Pionierpflanzen dominiert (Ackerkratzdistel, Gewöhnlicher
Pastinak), sie kommen an anderen Stellen jedoch dem Mittelklee-Odermennig-
Saum (Trifolio medii-Agrimonietum eupatoriae) nahe, häufig ist weiterhin die bun-
te Kronwicke (Coronilla varia). Diese Magerrasenflächen sind mit ähnlichen Bio-
topen in der Gegend der Fröttmaninger Heide und des Mallertshofer Holzes
("M") im Osten über Trittstein-Lebensräume im Abstand von 100-300 m vernetzt.
Am Standort "WNo" befindet sich ein ca. 20-30 m? großes Teichröhricht (Scir-
po-Phragmitetum).
Die von jungen Bäumen durchsetzten Gebüschflächen sind äußerst artenreich und
haben manchmal, vor allem an "WNw" den Charakter eines Schlehen-Weißdorn-
Gebüsches (Pruno spinosae-Crataegetum).
Im Süden schließt ein Kiefern-Hochwald (Unterwuchs nur Him- und Brombeere)
an, in der Waldfläche im Südwesten sind dagegen Wald-Kiefer und Gemeine
Fichte zu ungefähr gleichen Teilen vertreten. In der Nähe des Fangplatzes WNw
ist eine ca. 100 m? große Buchenenklave (Fagus sylvatica) eingestreut und im
Norden umgrenzt das Gelände schließlich ein kleines Fichtenwäldchen.
Der Flächeninhalt des teilweise verbuschten Magerrasens im Wasserwerksgelände
beträgt ca. 2,3 ha. Wenn man bedenkt, daß auch Tiere, die sich im toten Winkel
der Falle A (WaN) befanden (bereits relativ stark verbuschte Wiesenfläche), schon
durch geringe Ortsveränderungen in den Einzugsbereich der Falle gelangten, dann
wird deutlich, daß durch die 3 Standorte fast die gesamte Fläche abgedeckt wurde.
TR
<
Wald (>10m : : Gebüsch (1-5m
hoch) Ba hoch)
Abb. 2: Das Wasserwerksgelände Oberschleißheim mit den Fangplätzen "WaN" (=A),
"WNw" (=B) und "WNo"” (=C).
The localities "WaN" (A), "WNw" (B) and "WNo"” (C); dark grey = wood (trees
over 10 m), grey = shrubs (1-5 m).
- Das Mallertshofer Holz im Nordosten ("M"), stellt einen Ausläufer des Kiefern-
Eichenwaldgürtels dar. Für die vorliegende Untersuchung wichtige Teilflächen
dieses Gürtels sind der Berglwald ("B") im Norden, das Schweitzerholz ("S") im
Osten und das Korbinianiholz ("K") im Süden.
Halbtrockenrasen
Der Charakter des Trespen-Halbtrockenrasens (Mesobrometum erecti) ist auf dem
Flughafengelände (ca. 3,5 km?) im Süden des Siedlungsgebietes nicht eindeutig ausge-
prägt. Durch die extensive, nicht allzuhäufige Beweidung durch Schafe werden Pflan-
zenarten, die von den Schafen gemieden werden (z.B. Gemeine Schafgarbe, die an den
meisten Stellen sehr häufig ist), bevorzugt. Eine Entwicklung zu einem Enzian-Zwen-
kenrasen (Gentiano-Koelerietum pyramidatae) hat jedoch bisher nicht stattgefunden.
Abb. 2b: Luftbild des Wasserwerksgeländes Oberschleißheim (Freigabe Reg. v. Obb. GS
300/91 75/82.
Abb. 2c: Blick vom Fangplatz "WNw" nach "WaN" im Wasserwerksgelände Ober-
schleißheim.
- Halbtrockenrasen (Nord-)Ost ("HO"): Der Fangplatz befindet sich an der Stelle,
wo das Schweitzerholz und der Schloßpark (hier Stiel-Eiche als dominante Art)
aneinandergrenzen in einer kleinen Einbuchtung des Halbtrockenrasen-Gebietes.
Der Waldcharakter ist hier noch deutlich ausgeprägt. Durch die Randlage kommt
es zu einem großen Arten- und Strukturreichtum der Vegetation.
- Halbtrockenrasen Mitte ("HM"): Der Standort ist durch reinen Offenlandcharakter
bestimmt, zur Ausprägung des Trespen-Halbtrockenrasens siehe obige Bemerkun-
gen. Der Rand des Flughafengebiets ist in allen Richtungen ungefähr 800-1000 m
entfernt.
In ca. 150-300 m Entfernung befindet sich eine ca. 5 ha große ruderalartige Flä-
che ("R") mit 5-10 m hohen Weiden, Rainfarn-Beifuß-Gestrüpp (Tanaceto vulga-
ris-Artemisietum vulgaris) sowie Großer Brennessel (Urtica dioica), Schilfrohr
(Phragmites communis) und Land-Reitgras (Calamagrostis epigejos) als weitere
häufige Pflanzenarten.
Das im Südosten liegende Drittel des Flughafengebiets wird teilweise intensiv
landwirtschaftlich genutzt.
Am Flughafen-Nordrand befindet sich in ca. 800 m Entfernung ein neuentstande-
ner Teich mit Teichröhricht (Scirpo-Phragmitetum), Natternkopf-Steinklee-Gesell-
schaften (Echio vulgaris-Melilotetum) und einer Reihe von Pionierpflanzen in der
näheren Umgebung.
- Halbtrockenrasen West ("HW"): Am Westrand des Halbtrockenrasengebiets wurde
an einem offen strukturierten Standort gefangen, in dessen unmittelbaren Umge-
bung vereinzelt 1-2 m hohes Gebüsch und junge Bäumchen verschiedenster Arten
angepflanzt wurden.
In ca. 150 m Entfernung befindet sich der Würmkanal mit kleineren auwaldarti-
gen Baumbeständen. Die Sicht zur Lichtquelle war von dort durch ein 10 m ho-
hes Gebäude versperrt.
Dachauer Moos
10
- Würmauen ("Au"): Eine auwaldartige Begleitflora, durchsetzt von jahrhundertealten
Baumveteranen (siehe HAUSMANN, 1987) stellt zusammen mit einem an manchen
Stellen ausgeprägten Brennessel-Giersch-Saum (Urtico dioicae-Aegopodietum) ty-
pische Aspekte der Vegetation dieses Lebensraumes, der an der Fangstelle von
Ackerland begrenzt ist, dar.
Weiher im Torfeinfang ("We"): Der Torfeinfang ("T") ist ein Relikt ehemals aus-
gedehnterer "minerotropher Erlenbrücher" (Alnetalia glutinosae), die von den Be-
ständen der Moorbirke (Betula pubescens) beherrscht werden. Am Fangplatz sind
weiterhin Brennessel-Giersch-Saum (Urtico dioicae-Aegopodietum) und Teichröh-
richt (Scirpo-Phragmitetum) wichtige Pflanzenassoziationen.
Birket: Moorbirkenwald ("Mb"): Das Birket ist ein dem Torfeinfang recht ähnli-
cher Standort. Die Größe des relativ isolierten Wäldchens beträgt 16,9 ha.
Franzosenhölzl ("F"): In seiner Vegetation entspricht dieses ebenfalls isoliert
liegende Moorbirkenwäldchen den beiden vorhergehend beschriebenen Standorten.
Moorversuchsgut ("Mo"): Der Fallenstandort befindet sich auf einer kleinen Wirt-
schaftswiese, die an dieser Stelle von Brennessel-Giersch-Saum (Urtico dioicae-
Aegopodietum) begrenzt wird. In ca. 70 m Entfernung befinden sich 2 Entwässe-
rungskanäle, deren Vegetation als "Moorgebüsch"” (Frangulo-Salicion auritae)
bezeichnet werden könnte und von Weiden (Salix) dominiert wird. Einen ähnlichen
Charakter besitzt ein anderer Entwässerungsgraben ("E”) zwischen dem Birket
und dem Franzosenhölzl, von dem einige Beobachtungen stammen.
2.3. KLIMADATEN UND WETTER
Im langjährigen Mittel treten im Siedlungsgebiet Oberschleißheim Niederschlags-Jahres-
summen von 814 mm auf, in Badersfeld (500 m vom Birket entfernt) sind es 844 mm.
Das Temperaturmittel beträgt für Schleißheim 7,5 °C (Deutscher Wetterdienst/Wetter-
amt München, briefl.).
Insgesamt betrachtet dürften beide Fangjahre als durchschnittlich bis gut einzustufen
sein, was die Individuen- und Artenausbeute betrifft. Vergleichsweise katastrophal
wirkte sich jedoch die naßkalte Witterung von April bis Juni 1987 auf die Nachtfalter-
aktivitäten aus.
3. METHODE
3.1. FANG
3.1.1. Lebend-Lichtfang
Bei der repräsentativen Erfassung von Nachtfalter-Zönosen stellt die nächtliche Le-
bensweise einen Unsicherheitsfaktor dar. Durch moderne Methoden, vor allem durch
verbesserte Produkte der Beleuchtungsindustrie (z.B. UV-Röhren) konnten seit der
Jahrhundertwende gerade in der wichtigsten Methode, dem Lichtfang, entscheidende
Fortschritte erzielt werden.
Die "klassische" Methode besteht darin, an einem angestrahlten Tuch in Anwesenheit
des Beobachters die anfliegenden Tiere zu registrieren.
Moderne Lebend-Lichtfallen bieten dagegen bei Fragestellungen wie im vorliegenden
Fall eine Reihe von entscheidenden Vorteilen:
- Die mit UV-Röhren bestückten Fallen verbrauchen wenig Strom und sind daher vom
Stromnetz ohne aufwendige Apparatur (Aggregat) potentiell unabhängig.
- Der Beobachter wird nicht der schädlichen Strahlung ausgesetzt.
- Das Fangergebnis ist in gewissen Grenzen quantitativ auswertbar ("relative Häufig-
keiten"). Nach RETZBANYAI-RESER (1974) muß "die moderne faunistische For-
schung unbedingt auch quantitativ sein".
- Ein Parallelfang gleichzeitig mit mehreren Fallen ist durch einen Beobachter möglich.
- Die Methode ist konstant, so gut wie unabhängig vom Beobachter und in gewissen
Grenzen standardisierbar.
Einige Nachteile werden noch erörtert werden, diese können jedoch durch entsprechen-
de Maßnahmen auf ein Minimum reduziert werden.
Für die Parallelfänge wurden drei identisch gebaute Lichtfallen vom Minnesota-Typ
verwendet. Sie waren nach dem in REICHHOLF (1984) beschriebenen Prinzip konstru-
iertt und mit 18-W Schwarzlichtröhren (Maximum der relativen Leuchtstärke bei
360-370 nm) bestückt. Die Unversehrtheit der gefangenen Falter wurde durch Ver-
schlupfmöglichkeiten (Eierschachteln) und Regenschutz sowie durch einige in Kapitel
3.2. erwähnte Maßnahmen gewährleistet.
11
Abb. 2d: Lebendlichtfallen.
Abb. 2e: Die Lebendlichtfalle am Fangplatz "WaN” bei Sonnenaufgang. Die Auswer-
tung des Fangs an dieser Stelle war zum Zeitpunkt der Aufnahme bereits abgeschlossen.
12
Im Juli 1987 und von Juni bis August 1988 wurden zu Ergänzungsfängen teilweise noch
zwei weitere Fallen eingesetzt.
Eine der drei "Hauptfallen” wird von einer Autobatterie gespeist, die beiden anderen
arbeiten mit Netzstrom. Um die Konstanz der Methode zu gewährleisten, wurde gete-
stet, ob die Fangergebnisse der verschiedenen Fallen gleich waren. Hierzu wurden sie
im Flughafengebiet, wo an allen drei Standorten Netzstrom zu Verfügung stand, im
"Rotationsprinzip" jeweils durchgewechselt und die Verhältnisse der Individuen- bzw.
der Artenzahlen zu den beiden anderen Fallen ermittelt. Das Ergebnis zeigte eine
Drosselung der Individuen- und Artenausbeute bei der batteriebetriebenen Falle auf ca.
60 %. Dieses Manko wurde im Flughafengebiet und im Wasserwerk durch das erwähnte
Rotieren-Lassen ausgeglichen, an den Standorten SiS, WaM, Au, We und Mb ist bei
Vergleichen ein entsprechender Korrekturfaktor zu veranschlagen.
3.1.2. Andere Methodiken
Mit Lichtfang allein kann man kein 100 prozentiges Nachtfalter-Artenspektrum erfas-
sen. Dies hat seinen Grund darin, daß es nachtaktive Arten gibt, die Lichtquellen nicht
oder nur mit äußerst geringer Affinität anfliegen. Hierher gehören beispielsweise viele
Arten der Gattungen Cucullia und Catocala (Noctuidae). Manche Arten reagieren zwar
auf das Licht, fliegen die Lichtquelle jedoch nicht direkt an, so daß sie, wie manche
Flechtenbären (Nolidae), in Lichtfallen relativ selten erfaßt werden. Andere sind obli-
gatorische Tag- oder Dämmerungsflieger geworden, wie die Eulenfalter (Noctuidae)
Ectypa glyphica und Callistege mi, die Spanner (Geometridae) Archiearis parthenias
und Odezia atrafa sowie die meisten Sackträger (Psychidae) und Glasflügler (Aegerii-
dae). Ca. 5 % des Artenspektrums der Macroheteroceren dürfte in die bisher bespro-
chenen Kategorien fallen.
Andere Arten fliegen tagsüber und mehr oder wenig häufig auch nachts, z.B. die Wan-
derfalter Autographa gamma, Chloridea viriplaca und Macroglossum stellatarum (letz-
terer am Licht nur selten), aber auch Diacrisia sannio, Eustrotia olivana, Jaspidia de-
ceptoria, Phytometra viridaria, Hypena proboscidalis, Epirrhoe tristata, E. alternata,
Chiasmia clathrata, Ematurga atomaria, Siona lineata und einige weitere. Es handelt
sich hierbei ebenfalls um ca. 5 % des Artenspektrums.
Die Affinität zum Licht ist von Art zu Art, bei vielen Arten auch geschlechtsdifferen-
ziert verschieden, was beim Versuch einer Quantifizierung der Ergebnisse zu berück-
sichtigen ist.
Was kann also getan werden, um für faunistische Fragestellungen die Erfassung des
Artenspektrums zu optimieren?
Bezüglich der Tagflieger sind regelmäßige Tagexkursionen erforderlich. Diese wurden
im Untersuchungsgebiet in den letzten 15 Jahren jeweils 50-100mal pro Jahr bei einem
Zeitaufwand von 1-3 Stunden in den verschiedenen Biotopen durchgeführt. Zusätzlich
war bei der Installation der Lichtfang-Apparatur natürlich auch die Umgebung Ziel der
Aufmerksamkeit. In der Dämmerung schwärmende Falter wurden desöfteren mit dem
Käscher gefangen. Dies bringt vor allem im Frühsommer an blütenreichen Feldhecken
und Waldrändern oft erstaunliche Ausbeuten an Spannerarten (Geometridae).
Bei den Exkursionen wurden auch Präimaginalstadien gesammelt. Cucullia verbasci ist
beispielsweise im Raupenstadium in Oberschleißheim stets häufig, am Licht konnten
13
bisher jedoch noch keine Imagines beobachtet werden. Ähnlich wird dies auch bei vie-
len Psychiden und einigen anderen Taxa die Hauptmethodik sein, Artnachweise zu "lan-
den".
Köderfang erfolgte nur einige Male (ca. 20), meist mit schlechtem Erfolg (siehe UR-
BAHN, 1973). Hierbei war keine einzige Art zu "erbeuten”, die nicht auch irgendwann
ans Licht gekommen wäre.
3.2. FANGMODUS
Die letztgenannten Methodiken sollten Zusatzinformationen zur Vervollständigung der
einzelnen Artenspektren sammeln, um zu testen, ob in bestimmten Fällen apparente
Austauschprozesse von Jahr zu Jahr (turnover) in den Lichtfallen-Artenspektren nur
methodisch-bedingter Natur waren.
Um mit Hilfe der Lebend-Lichtfänge, die die Hauptgrundlage für die vorliegende Ar-
beit darstellen, in bezug auf die Fragestellungen verwertbare Informationen zu erhal-
ten, ist ein bestimmtes Muster in der angewendeten Methodik vonnöten. Dieses läßt
sich nach folgenden Kriterien gliedern:
1. Ökologie (Abdeckung verschiedener Habitate, Habitattypen)
2. Raum ("Fangstellennetz", verschiedene Distanzen)
3. Zeit (Fangnacht-Abstände)
4. Zusätzliche Experimente (Markierung)
3.2.1. Ökologie
Das Gebiet von Oberschleißheim wurde - generalisierend - in folgende vier "Haupt-
Biotoptypen” eingeteilt:
Siedlungsgebiet / Wald / Offenland (Halbtrockenrasen) / landwirtschaftlich genutztes Da-
chauer Moos (siehe "Untersuchungsgebiet”, Kapitel 2).
Es sollte, wo möglich, das Verbreitungszentrum der Arten ermittelt werden, um sie
in Einzelfällen an anderen Standorten als zugeflogene Gastarten einstufen zu können.
Hierzu war natürlich eine besondere Berücksichtigung der Larvalökologie nötig, um ei-
ne zahlenmäßig geringe aber bodenständige Anwesenheit einer Art aufgrund suboptima-
ler Bedingungen von solchen Dispersionsereignissen abtrennen zu können.
3.2.2. Raum
Es wurde jeweils mit drei identisch gebauten Lebend-Lichtfallen in derselben Nacht
parallel gefangen. Die drei parallel kombinierten Fangplätze blieben pro Jahr konstant
dieselben und lagen im gleichen Haupt-Biotoptyp.
So wurden 1987 jeweils drei Standorte im Flughafengebiet, im Berglwald und im Sied-
lungsbereich miteinander kombiniert. Im Birket (Mb) wurde zusätzlich gefangen, um
Verbreitungsschwerpunkte eventueller Zuflieger zu ermitteln, der Fang erfolgte hier
nicht über das Jahr hinweg parallel zu anderen Fangplätzen. Die Fallenabstände betru-
gen bei den Parallelfängen 0,5-2,0 km. Die Maximal- (Mb/HO) und Minimalabstände
(SIN/WaS) lagen bei 4,9 km bzw. 30 m.
14
1988 sollte durch eine Beibehaltung der Methode im Flughafengebiet ein Vergleich der
Jahre 1987/1988 ermöglicht werden. Am Nordrand des Waldes wurden die Fallendi-
stanzen um ca. eine Zehnerpotenz verringert (siehe Untersuchungsgebiet, Kapitel 2). Im
Siedlungsbereich erfolgte der Fang nur im Garten des Verfassers (SiN, WaS), meist
kombiniert mit den beiden anderen Standorten im Torfeinfang (We) und am Würmkanal
(Au).
Die durch dieses Netz "abgedeckte Fläche” (jedoch ohne vollständige Erfassung aller
Biotope!) beträgt ca. 6 km?, wenn man einmal die Standorte im Dachauer Moos unbe-
rücksichtigt läßt. In einzelnen Fällen sind nicht erfaßte Häufigkeits-Peaks oder sogar
zusätzliche Arten in dazwischenliegenden Biotopen außerhalb der Reichweite der Licht-
quellen zu erwarten (wohl v.a. im Bereich des Schloßparks).
Teilweise wurden auch Fangergebnisse aus den über 1000 Fängen der anderen Jahre
(1974-1986, 1989) berücksichtigt, von besonderem Interesse sind hierbei die an HO und
HM 1986 durchgeführten Parallelfänge.
3.2.3. Zeit
BETTMANN (1985a; 1985b; 1986) stützte seine Auswertungen auf Markierungs/Wie-
derfang-Versuche bei teilweise täglichem Lichtfang an einem definierten Standort, was
von verschiedener Seite kritisiert wurde (z.B. RETZBAYAI-RESER, 1980).
Um nicht zu stark in das Dispersionsgeschehen einzugreifen und den Tieren die Mög-
lichkeit zu geben, wegzufliegen, ohne in der darauffolgenden Nacht gleich wieder im
Bann der Lichtquelle gefangengehalten zu werden (bzw. nach anderen Theorien: "vom
Licht geblendet zu werden”, siehe SCHACHT & WITT, 1986), wurde ein Fang an der-
selben Stelle in zwei aufeinanderfolgenden Nächten vermieden. Eine Ausnahme wurde
1988 im Garten (WaS) gemacht (siehe II. Teil, "Vorstellung der Markierungsexperi-
mente", Kapitel 8.1.).
Die Anzahl der Fänge pro Monat verteilte sich nur im Garten und Wasserwerk 1988
im zweitägigen Rhythmus (vereinzelt Intervalle von 3 Tagen) gleichmäßig über das
Jahr, sie richtete sich ansonsten nach der schwerpunktmäßigen Verbreitung der Arten
auf die in den Markierungsexperimenten gezielt wurde. So wurde z.B. im Juni verstärkt
am Flughafen gefangen, wo in diesem Monat Pachetra sagittigera, Leucania comma,
Apamea sublustris und viele andere typische Falter offener, trockener Wiesen häufig
sind.
Die 1438 Fangnächte in den Jahren 1987 und 1988 verteilten sich folgendermaßen auf
die verschiedenen Monate:
15
300 N (Fangnächte)
F] 1987 BE 1988 > = 1438
Abb. 3: Verteilung der 1438 Lichtfänge auf die verschiedenen Monate der beiden Er-
fassungsjahre 1987 und 1988.
Distribution of the 1438 light-trap-captures over the months from January to De-
zember 1987 and 1988.
3.2.4. Zusätzliche Experimente
In einigen zusätzlichen Experimenten sollte anhand markierter Nachtfalter versucht
werden, weitere Aufschlüsse über Dispersionsverhalten und Austauschprozesse in Nacht-
falterpopulationen zu erhalten. Hierbei wurde jeweils mit besonderem Fangmodus gear-
beitet.
3.3. AUSWERTUNG
Die jeweils von Sonnenuntergang bis Sonnenaufgang betriebenen Fallen wurden noch
vor der Morgendämmerung aufgesucht, verschlossen, an einen kühlen, schattigen Ort
gebracht und an den heißesten Tagen im Hochsommer bisweilen auch mit etwas Eis
gekühlt, da sich in Spitzenflugnächten die Auswertung bis in den Vormittag hinein er-
streckte, obwohl sie bereits gegen 3.°° am Morgen begonnen wurde. Die frühe Aus-
wertung ist ratsam, um Verluste durch Vögel zu vermeiden und eine Schädigung der
Falter durch unnötig lange Gefangenschaft und Austrocknung zu verhindern. Zur Be-
schleunigung des Vorgangs halfen in der Hauptflugzeit desöfteren mein Vater Stefan,
meine Frau Silvia und meine Schwester Susanne Hausmann durch die Übernahme der
Schreibarbeiten.
Die in der Umgebung um die Falle herum sitzenden Falter wurden getrennt notiert, bei
den Auswertungen jedoch zum Fangergebnis gerechnet. Beim Öffnen der Falle wurde
mit größter Sorgfalt gearbeitet, so daß nur einzelne Tiere vor der Registrierung fliehen
konnten.
Die Artbestimmung erfolgte im Freiland nach den Bestimmungswerken KOCHs (1984)
und FORSTER & WOHLFAHRT (1955-1981). Bei markierten sowie bei offensichtlich
biotopfremden Tieren wurde auch das Geschlecht ermittelt.
16
Im Zuge einer fotographischen Dokumentation des Fangergebnisses entstanden in den
letzten 10 Jahren über 10.000 Fotos; in besonderen Fällen erschien es ratsam, Beleg-
exemplare in die Zoologische Staatssammlung München zu geben.
Ca. 80-90 % der im Untersuchungsgebiet vorkommenden Arten konnten an der Fang-
stelle determiniert werden. Bei einigen (artenmäßig vergleichsweise wenigen) proble-
matischen Arten mußten zusätzliche Differenzialmerkmale wie Fühlerbau oder (v.a.) die
Struktur der Genitalapparaturen untersucht werden. Letzteres wurde bei den Gattungen
Mesapamea, Amphipoea (1987) und vielen Arten der Gattung Eupithecia obligatorisch
durchgeführt, bei einer Reihe weiterer Gattungen wie z.B. Oligia, Hydraecia oder Opo-
rinia geschah dies in größerem Ausmaß. So wurden in den beiden Untersuchungsjahren
zur Absicherung der Determination über 1000 Genitalpräparate angefertigt, davon über
die Hälfte aus der Gattung Eupithecia.
Das Freilassen der Tiere erfolgte in einem Radius von 5-10 m um die Falle herum an
möglichst vielen verschiedenen Stellen in dichter und hoher Vegetation, auch dies, um
Verluste durch Vögel zu vermeiden.
3.4. MARKIERUNG
Zur Markierung der Falter wurden im Handel erhältliche Fingernagellack-Farben ver-
wendet, bei der Auswahl der 20 verschiedenen Farben wurde darauf geachtet, daß sie
auch nach dem Trocknen noch gut unterscheidbar waren; gleichzeitig sollten sie nicht
zu auffällig sein, um eine höhere Mortalität durch Vögel und andere Feinde zu verhin-
dern.
Von den beiden bei der Erstmarkierung aufgetragenen Punkten codierte der eine den
Fangplatz, der andere das Fangdatum.
Hierzu wurde der Thorax des Falters vorsichtig von Haaren und Schuppen freigepin-
selt, danach wurde die Farbe in Punkten von ca. 1 mm Durchmesser mit einem vorher
präparierten Pinselchen auf den Thorax aufgetragen, wobei darauf zu achten war, mit
dem Lack nicht in die Tergit-Fugen zu geraten, z.T. wurde zusätzlich ein "Sicher-
heitspunkt" auf dem Flügel angebracht. Einige kleinere Arten, vor allem Spanner (Geo-
metridae) konnten aus Platzgründen nur auf den Flügeln markiert werden.
Bei Wiederfängen wurde die den Tag codierende Farbe im Wurzelfeld des Flügels an-
gebracht, ab dem Zweitwiederfang waren die Tiere dann meist individuell erkennbar
und bedurften keiner weiteren Kennzeichnung.
Es zeigte sich, daß diese etwas kompliziert klingende Methodik bei einiger Übung eine
gute und rasche Markierung von Nachtfaltern zuließ: Von 23.492 markierten Faltern
mußten nur 17 wegen vermutlicher Schäden oder Behinderungen der Flugfähigkeit aus
der Wertung genommen werden.
Drei Fehlerquellen seien hier noch kurz besprochen:
- Obwohl die Farbe schnell trocknet, könnte es durch ein Abwischen beider Punkte zu
fehlerhaften Ergebnissen kommen. Der Anteil solcher Exemplare mit "Glatze”
betrug jedoch in den verwendeten Lichtfallen je nach Witterung ca. 2-5 %. Dieser
Prozentsatz war bei Arten, die nicht markiert wurden, genauso hoch. Eine bevor-
zugte "Glatzenbildung” bei markierten Tieren durch Abwischen der Farbe fand also
nicht statt. Es ist also nur eine sehr geringfügige Unterschätzung der Wieder-
fang-Quoten zu veranschlagen.
17
Abb. 3b: Mamestra w-latinum (d, HW, 16.6.87) mit zwei verschiedenfarbigen Markie-
rungspunkten auf dem Thorax.
18
- Verluste bzw. Beeinträchtigungen durch den Fangvorgang sind vermutlich zu ver-
nachlässigen: Einige Falter wurden 8-10mal gefangen und waren dennoch am Ende
in noch erstaunlich gutem Zustand.
- Verluste bzw. Beeinträchtigungen durch den Markierungsvorgang sind vermutlich
ebenfalls zu vernachlässigen: Ein erster Hinweis darauf ist die eben erwähnte Be-
obachtung. Weiterhin konnte dreimal beobachtet werden, wie markierte Falter eine
Kopula eingingen. Schließlich wurden einige markierte Falter (je 3 Noctuiden- und
Geometridenarten sowie eine Arctiide) in Gefangenschaft bei Fütterung gehalten und
die Überlebensdauern von 1-2 Wochen, in einem Fall von 16 Tagen zeigen, daß
diese Freilandfalter, die vor dem Anfliegen der Lichtfalle vielleicht schon einige
Tage alt waren, eine normale Lebenserwartung hatten. Ein 9 legte dabei seinen Ei-
vorrat ab.
3.5. MATERIAL
Folgende Werte stellen die Eckdaten für das 1987 und 1988 mit der Methodik des Le-
bend-Lichtfangs gesammelte Material dar:
49.072 Individuen (Macroheterocera)
462 Macroheteroceren-Arten (zusammen mit den Tagbeobachtungen und den Mel-
dungen aus den anderen Jahren: 514 Arten)
23.434 markierte Individuen (1989 384 weitere)
1290 Wiederfänge (1989 57 weitere)
Aus Tabelle 1 wird die Verteilung der gefangenen Individuen auf die verschiedenen
Monate des Jahres ersichtlich, in der Hauptflugzeit von Mitte Juni (11.6.) bis Ende
August flogen 81,6 % aller in den Lichtfallen ausgezählten Nachtfalter (Macrohetero-
cera).
Tab. 1: Verteilung der Individuen-Monatssummen in den Erhebungsjahren 1987 und 1988.
Distribution of the individuals over the months from January to Dezember 1987 and 1988.
Monat | Jan Feb März Apr Mai Juni Juli Aug Sep Okt Nov Dez
ee] - 1 309 2181 1836 9615 18.039 14.258 1764 643 458 6
4. ARTENLISTE
4.1. VORBEMERKUNGEN
Die Unterscheidung zwischen "Macro-" und "Microlepidoptera" entstand aus mehr äs-
thetischen Beweggründen der Sammler, die die kleineren "Motten" verschmähten. Diese
Einteilung entbehrt jedoch einer Grundlage in der Systematik. Einige üblicherweise zu
den "Großschmetterlingen" gezählte Familien, z.B. Hepialidae oder Psychidae müßten
bei genauerer Betrachtung der Verwandtschaftsverhältnisse ins System nahe bei
Schmetterlingfamilien gestellt werden, die zu den "Microlepidoptera" gehören. Dennoch
soll hier auf diese gängige Einteilung zurückgegriffen werden.
Hauptgegenstand der Untersuchung sind, wie erwähnt, die "Macroheterocera", worunter
alle "Großschmetterlinge"” mit Ausnahme der Tagfalter ("Rhopalocera") verstanden
werden. Die überwiegend tagaktiven Widderchen (Zygaenidae), Sackträger (Psychidae) und
19
Glasflügler (Aegeriidae) werden in Lichtfallen so gut wie nie erfaßt und werden daher
bei vielen der folgenden Auswertungen ausgeklammert. Die so eingegrenzte Gruppe von
Schmetterlingen bezeichnet MEINECKE (1984) als "überwiegend nachtaktive Groß-
schmetterlingsfamilien".
Die in der vorliegenden Untersuchung verwendete Nomenklatur und Systematik richtet
sich aus Praktikabilitätsgründen nach FORSTER & WOHLFAHRT (1955; 1960; 1971;
1981), da dieses Werk allgemein gebräuchlich ist. Neuere Erkenntnisse der Taxonomie
(z.B. LERAUT, 1980) sollen dadurch jedoch nicht in Frage gestellt werden. Lediglich
bei den Psychiden wurde einer moderneren Systematik gefolgt und beispielsweise die
früher zu den "Microlepidoptera" gerechnete Narycia monilifera mitaufgenommen. |
4.2. TAGFALTER (RHOPALOCERA)
Tab. 2: Im Untersuchungsgebiet 1974-1989 festgestellte Tagfalterarten (Legende/Häufızä
siehe Nachtfalterliste).
Species of Butterflies, recorded 1974-1989 in Oberschleißheim (Southern Bavaria). |
Häufigkeit ||
Nr. Art Häufigkeit "Ne. Art
1 Papilio machaon L. n-h 31 Clossiana selene Schiff. sh
2 Pieris brassicae L. h 32 Clossiana euphrosyne L. n-h
3 Pieris rapae L. h 33 Clossiana dia L. n-h
4 Pieris napi L. h-sh 34 Issoria lathonia h
>) Anthocharis cardamines L. h 35 Thecla betulae L. n
6 Gonepteryx rhamni L. sh 36 Nordmannia ilicis Esp. n
7 Colias hyale L. h 37 Strymonidia w-album Knoch 2
8 Colias australis Vrty. v 38 Strymonidia pruni L. 1
9 Erebia medusa Schiff. h 39 Callophrys rubi L. n-h
10 Melanargia galathea L. sh 40 Lycaena phlaeas L. n
11 Aphantopus hyperantus L. sh 41 Cupido minimus Fuessly n
12 Pararge aegeria L. n-h 42 Celastrina argiolus L. 1
13 _Lasiommata maera Il. h 43 Lycaeides idas L. h (Iokal)
14 _Lopinga achine Scop. n-h 44 Plebejus argus L. 2
15 Maniola jurtina L. sh 45 Aricia agestis Schiff. n
16 _Coenonympha glycerion Bkh. n 46 Cyaniris semiargus Rott. n
17 _Coenonympha arcania L. h-sh 47 Polyommatus icarus Rott. sh
18 _Coenonympha pamphilus L. sh 48 Lysandra bellargus Rott. n
19 Apatura iris L. n 49 _Lysandra coridon Poda h
20 Limenitis camilla L. n 50 Erymnis tages L. n
21 Vanessa atalanta L. h 51 Pyrgus malvae L. h
22 Vanessa cardui L. n-sh 52 Pyrgus alveus Hbn. 2
23 Aglais urticae L. sh 53 Spialia sertorius Hffmgg. z
24 Inachis io L. sh 54 Carterocephalus palaemon
25 Nymphalis polychloros L. 1 Pallas h-sh
26 Polygonia c-album L. h 55 Adopaea lineola O. n-h
27 Araschnia levana L. sh 56 Adopaea sylvestris Poda n
28 Mesoacidalia aglaja L. n 37 Qehiaden yenahu. Er ch
m Atsyaoispaphiacl, ah 58 Hesperia comma L n
30 Brenthis ino Rott. 1 ö
20
Aus Gründen der Vollständigkeit wird diese Großschmetterlingsgruppe, die eigentlich
nicht Gegenstand der Untersuchung ist, hier kurz aufgeführt. Bei einigen ökologischen
Mustern kann das Aufzeigen von Parallelen zu den Tagfaltern angebracht sein.
Die Tagfalterhäufigkeiten beziehen sich auf die addierten Jahressummen des ganzen
Untersuchungsgebietes und sind daher in dieser Form sehr verallgemeinernd dargestellt.
4.3. NACHTFALTER (MACROHETEROCERA)
In der Nachtfalterliste kam es ab dem 28.5.1988 am Fangplatz "WaS" aus zwei Grün-
den zu einer bisweilen starken Überhöhung der Werte: Durch (methodisch bedingte)
Wiederfänge sind durchschnittlich 18 % bei den betreffenden Arten zu veranschlagen. In
besonders krassen Fällen (»50%) wurden die Werte besonders ("mÜ”) gekennzeichnet.
Eine Überhöhung im Vergleich mit dem Fangplatz SiN erfolgte zusätzlich durch häufi-
geren Fang, das Ausmaß wird zumindest bei den in größerem Umfang markierten Arten
im II. Teil (Kapitel 9.2.) aus den Markierungstabellen ersichtlich. So ergibt sich bei-
spielsweise bei Mythimna impura aus einem SiN/WaS-Verhältnis von 4/32 nach der
Bereinigung ein Wert von 4/11, bei Lymantria monacha statt 2/ll nur 2/6 und bei
Arctia caja statt 2/13 sogar ein umgekehrtes Verhältnis von 2/1, bedingt durch ein an
WaS 10mal gefangenes d.
Einige besonders gekennzeichnete Nachweise stammen aus einer Bestandserhebung 1988
im Korbinianiholz (KOLBECK, in Vorber.).
Die Angaben zur Ökologie sind nur als eine approximative und vorläufige Charakteri-
sierung der Verhältnisse im Untersuchungsgebiet zu verstehen. Es wurden hierbei aus-
gehend von den Beschreibungen BERGMANNs (1951-1954), KOCHs (1984), GERST-
BERGER & STIESYs (1983) und REJMANEK & SPITZERs (1982) nach einer wegen der
Frage der geographischen Vergleichbarkeit sehr kritischen Betrachtung der Literaturan-
gaben die im Untersuchungsgebiet gemachten Beobachtungen interpretiert. Die Über-
tragbarkeit dieser Aussagen auf andere Gebiete kann, wenn überhaupt, jeweils erst
nach einer Überprüfung konstatiert werden, da oft ein und dieselbe Art in verschiede-
nen Höhenstufen, in verschiedenen Breitenlagen u.s.w. unterschiedliche ökologische An-
passungen zeigt.
Eine Schwierigkeit stelli auch der Umstand dar, daß die Einnischung verschiedener Ar-
ten oft von ganz unterschiedlichen Faktoren abhängt: Manchmal richten sie sich nach
mikroklimatischen Verhältnissen (z.B. die starke Sonneneinstrahlung bei polyphagen
Arten, die sowohl auf Heiden wie auch in Mooren vorkommen), oder sie ist fast nur
durch die Raupenfutterpflanze bestimmt (viele monophage Arten).
Viele Arten sind recht euryök. Aus diesem Grunde erfolgte in den meisten Fällen die
Angabe mehrerer möglicher Lebensräume, die jedoch als Anhaltspunkt stets auf ein
Hauptvorkommen "präzisiert" wurde.
21
In der Artenliste (Tab. 3) werden folgende Abkürzungen und Symbole verwendet:
Legende/Fangplätze:
SiS = Siedlung Süd
SiM = Siedlung Mitte
SiN = Siedlung Nord (Garten vor dem
Haus)
WaS = Wald Süd (Waldstreifen hinter
dem Haus)
WaM= Wald Mitte
WaN = Wald/Wasserwerk Nord
WNw= Wald/Wasserwerk Nordwest
WNo = Wald/Wasserwerk Nordost
HO = Halbtrockenrasen (Nord-) Ost
(Waldrand)
HM = Halbtrockenrasen Mitte (Offenland)
HW = Halbtrockenrasen West
Au = Auwald am Würmkanal
We = kleiner Weiher mit Moorbirken-
wäldchen (Torfeinfang)
Mb = Moorbirkenwald (Birket) im Inne-
ren
vor 1987:
Gar = Garten (1974-1986)
Mo = Moos zwischen zwei Entwässe-
rungsgräben, 250 m vom Birket
entfernt (1985)
HO = siehe oben (1986)
HM = siehe oben (1986)
weitere Fundorte:
Schw.holz = Schweitzerholz
Regattastr. = Ruderregattastrecke
Entw.graben = Entwässerungsgraben
Legende/Ökologie:
Ub = Ubiquisten
Wf = Wanderfalter
Wf(RR) = Wf nach RETZBANYAI-RESER
(siehe Literaturverzeichnis)
mGr = Arten der mesophilen Grasland-
schaften
Agr = Arten der unter
stehenden Flächen
Agrarnutzung
22
Geb = mesophile Arten der Hecken, Ge-
büsche und der Waldränder
Geb/R = Geb, jedoch bevorzugt an rude-
ralartigen Standorten
W = mesophile Arten der Wälder
WL = Laub- und Mischwaldarten
WN = Nadel- und Mischwaldarten
Hy = Hygrophile Arten im weiteren Sinn
Xe = Xerothermophile Arten im weite-
ren Sinn
Legende /Häufigkeiten:
1-3 = unter 4 Individuen
V = vereinzelt
n = nicht selten
h = häufig
sh = sehr häufig
sonstige Abkürzungen:
E = Fund von Eiern/Eigelegen
R = Raupenfund
P = Fund von Puppen bzw. Kokons
dd‘ = AmLicht nur dd
909 = AmLicht nur 99
Ex. = Exemplar
T = Imagines tag- bzw. dämmerungs-
aktiv, daher am Licht nicht
optimal erfaßbar
Däm = (Abend-)Dämmerungsflieger / in
der Dämmerung gekäschert
zus. = zusätzlichle, er, es)
Gen.prp. = Genitalpräparat (nur in wich-
tigen Fällen angegeben)
am L.n. opt. = am Licht nicht optimal
F.F.w.r. = Fänge in der Flugzeit wenig
repräsentativ
mÜ = methodisch bedingte Überhöhung
der Werte
In der Nachtfalterliste bezieht sich je-
weils die erste Zeile der ersten vier
Spalten auf das Erhebungsjahr 1987, die
zweite Zeile auf 1988.
Nr. Art
Nolkdae
69 Celama
confusalis
H.-S. 1847
Lymanträdae
60 Dasychira
selenitica
ESP. 1789
61 Dasychira
udibunda
. 1768
62 Orgyia
recens
HBN. 1819
63 Lymantria
monacha
L. 1768
64 Euproctis
chrysorrhoea
L. 1768
65 Porthesia
similis
FUESSLY 1776
Arotiidae
66 Cyboslia
mesomella
L. 1768
67 Miltochrista
miniata
FORSTER 177
68 Lithosia
quadra
L. 1768
69 Eilema
depressa
ESP. 1787
70 Eilema
lutarella
L. 1768
71 Eilema
complana
L. 1768
72 Eilema
lurideola
ZINCKEN 1817
73 Systropha
sororcula
HUFN. 1766
74 Atolmis
rubricollis
L. 1768
76 Phragmatobia
fulıginosa
L. 1768
76 Spilarctia
lubricipeda
L. 1768
77 Spilosoma
menthastri
ESP. 1786
78 Diacrisia
sannio
L. 1768
79 Arctia
caja
L. 1768
Endrosidae
80 Pelosia
muscerda
HUFN. 1766
Notodontidae
81 Harpyia
ua
CL. 1769
82 Cerura
vinula
L. 1768
(R)
[>78]
WALD
_
n>
ın
oa
64
174
-.
n
162
29
26
82
22
62
26
on
[+17]
107
no
n-
DS
26
13
109
12
23
40
Gar
n-h
VOR
1987
Mo HO HM
- 16 1
- 29 -_
6 -_ -
6651
2 - —
- 4 -
- 64 1
A ©
- 6 =
- 60 1
m 17 -
37 32 23
20 a
4 20 4
ı 08
67 3 8
en, 1 >
- 58
UKO-
LO-
GIE
Von)
eed)
Vsed)
Ub
Geb)
H
(m6r,
Hy
Geb
(wı)
Geb/R
FLUG-
ZEIT
E4-A6
E6
M6-E6
A7-M8
A7-A9
M7-E7
A7-M8
A6-E7
E6-AB
A7-AB
E6-A9I
E7-AB
E6-E8
M7-M8
M6-A7
A6-M7
AB-EB,
A7-E8
E6-M7
A6B-M7
E6S-A7,
AB-A9
M7-M9
E6
A7-M7
E4-M7
BEMER-
KUNGEN
1989 ein zus
Ex. im Korbi-
nianiholz
am 29.56.89 im
Mallertshofer
Holz ein 9
dd, auch T,
am L.n. opt.,
Birket 1083 E
S-Bahnhof
1987 1 Ex.
Im Mallertsho-
ter Holz 1989
9 Ex., auch T
® 1986 I R
1. Generation
selten
Birket 1983 h
2. Generation
1988 h, auch T
°ml.
R im Schw.-
holz h
23
SIEDLUNG WALD VOR UKO-
Nr. Art ı Garten | Wasserwerk 1987 LO- FLUG- BEMER-
ZEIT KUNGEN
SiS SIM} SIN Gar Mo HO HM | GIE
83 Stauropus = u nh- - - - - - - 6 ia = gan 4 A6-M7 *S-Bahnhof
fagı - 2 Ara 1 3 - x WAREN | Geb) 1 zus. Ex
L. 1768 1986
84 Hybocampa - - - - - - 1 - - - 2 - == Ws M6-A6 1989 im Fran-
Ba) = = S 1 48, < u - = Geb) zanenhölz| =
. 1776 an WaS je
u frisches \
85 Gluphisia = 1 = = - = = = m { 2 - Il 2 SR M6-A7 1989 m. zanı
crenata = = = = = = = = zosenhölzl +
EsP. 1786 eb] an We je ein
x.
86 Drymonia - - 1 4 — = 8 = 1 - v - 19 = L M6-E6
trimacula - 3 - 1 1 6 - - = = Geb)
ESP. 1786
87 Drymonia - - 2 1 7 1 16 - - - h -" 104 - vi E4-A6 °FEFwe,
ruflcornis - 1 1 2 - Ur - IR | Geb) im Kapuziner-
HUFN. 1766 holz 1989 h
88 Peridea — = 3 6 6 3 21 = 3 18 n-h - 656 - ws E4-M6 ®am Rand des
anceps 3 3 2m- 743 60 1 1 Du = Geb) Birkets
GOEZE 1781
89 Pheosia = = = - = 1 1 1 7 12 L) Ze 22T H E6-EB,
tremula = - = 1 = = 6 4 10712 m. M7-M8
CL. 1769 eb/R)
90 Pheosia 1 2 2 = - 1 1 2 2 43 n-h26b 6 4 H A6B-A7,
noma - 14 1 - 1 2 = 1 2 2 {w M7-M8
1972; eb
91 Notodonta = = = _ = = = = = - 1 a u = 7: E7
hoebe - - - - - - - - - = Geb)
IEBERT 1790
92 Notodonta — 1 2 1 = 2 = 2 1 1 v-h- 8.772 m A6-A7, SiN 1987 R
dromedarius 1 2 3 1 6 - - 1 3 WE WL) M7-M8
L. 1767
93 Notodonta = 2 = 2 1 2 1 10 6 7 3 A612 Geb/R AB-E6
ziezac 1 1 I u 1 aa (Ub) A7-ME
L. 1768
94 Leucodonta = = - 2 1 2 1 = = 4 1 - 2. }= 7: M6-A7 1989 an SiN
bicoloria = 2 - 1 = 6 = = - 1 Geb, M6 Io
SCHIFF. 1776 Hy
96 Odontosia - - - 1 - - - = = - - =e2 .}=- wL E4-A6 .FFwer
carmelita = - = = = - = = - -
EsP. 1799
96 Lophopteryx = - 2 4 2 1 6 = 4 9 ten = 117 7- Mr 6-M8
camelina 2 13 6 1 7. 12 1 4 17 6 Geb) 2 Gene-
L. 1768 rationen)
97 Lophopteryx - - 1 - = 1 9 = - 1 1 - 91 L M6-A8® Regattastr
AR. - 3 - 1 1 - - 1 1 - Weed) 1983 IR
EsP. 1786 = a
a
98 Ptilophora = = z = E S = = = - - ld no ws EIO-MI1
umigera - 2 - - 1 7 = 7 Geb)
CHIFF. 1776
99 Pterostoma 1 - 2 - - = = 2 4 | -v 6 1 4 | Geb/R Bar ® am Rand
alpina - 2 2 2 Zu ve 10 2 (Ub) 2 Gene- des Birkets
e 1769 rationen)
100 Phalera — = = 10 3 1 1 1 2 28 n-h 77720 °2 Geb E6-E7
bucephala - 6 4 1 1 6 1 2 7“ (wu)
L. 1768
101 Clostera 1 2 - = = 2 1 3 6 3 = 7 2 4 | Geb/R E4-Eß6,
curtula - - - 1 2 - - 3 - 6 (Hy) M7-AB
L. 1768
102 Clostera - - _ - - - - = 1 2 - 1 = cz "% AB, 1989 3 zus
anachoreta u - = = = = = = = = eb/R) E7-AB Ex. am Fran-
F. 1787 zosenhölzl
103 Clostera > = = = 1 1 1 3 4 3 - 2 - 6 Geb/R E4-M6, HM 1986 I R
igra -. - 1 1 - - - 2 = 03 (Hy) A7-E8 ®S-Bahnhof
FN. 1766 1988 1 Ex
Zygaenidae
104 Lictoria = = = = = = = = = = = = = - = - - - r M6-M7 T, 1989 im
achilleae = = = _ = = = = = = = = = = Xe Mallertsho-
4 Esp 170 Geb) a ie Holz h
105 Thermophila = = = = — = = = ° = = = = = = = . = =
meiion ee Br | Fe ee oen,
SP. 1793 r
106 Zzygaena z = = - + . + + . . . - + - - ne Geb E6-M8 T
IDESndlee = ie = = + + + + . . . Zueer > Imer,
. 1768
107 Huebneriana Se a de = = = = U Sl - - 0. > r M7® T, °1989 im
lonicerae = = = = = = = = = = = - = - Xe Mallertshofer
SCHEV. 1777 5 eb) Holz 1 Ex.
108 Burgeffia =/#= "1 > = = = zer . ° Z =. .= ar Na)e ie ne E7-M8 T *®200 m
ephlaltes - .- - - - - _ z + + = u mGr) vom Garten
L. 1767 entfernt
Cochiidiidae
109 Apoda 2 1 6 10 27, 44 22 21 24 che 219223 ur M6-E7
limacodes 2 10 2 2 2 17 2 8 1 2 WL
HUFN. 1766 Geb]
110 Heterogenea = 0-0 = = za pl ZIP) IR Sun = = - SE Wi: E6 am L. n. opt
ne a TO DO ee 1087 3. 1988
SCHIFF. 1776 40 Kokons
24
Nr. Art
Sphinsklae
111 Mimas
tiliae
L. 1768
112 Laothoe
Bepul
. 1768
113 Smerinthus
ocellata
L. 1768
114 Herse
convolvuli
L. 1768
116 Sphinx
ligustri
L. 1768
116 Hyloicus
Inastri
. 1768
117 Dellephila
elpenor
L. 1768
118 Deilephila
orcellus
. 1768
119 Macroglossum
stellatarum
L. 1768
120 Hemaris
tuciformis
L. 1768
Ihyatirkdae
121 Habrosyne
yritoides
FN. 1766
122 Thyatira
atis
L. 1768
123 Tethea
fluctuosa
HBn. [1803]
1796
124 Tethea
duplaris
L. 1761
125 Tethea
or
SCHIFF. 1776
126 Tethea
ocularis
L. 1767
127 Kohrploca
lavicornis
L. 1768
Drepanidae
128 Drepana
alcataria
L. 1768
129 Drepana
lacertinarla
L. 1768
130 Drepana
binaria
HUFN. 1767
131 Drepana
cultraria
F. 1776
132 Cilix
laucata
COP. 1763
Saturnidae
133 Eudia
avonia
. 1768
nn
vn
n-
13
14
16
19
SD
19
44
no
39
23
_
o-
_
23
43
Von
- 8 -
3 9
2 =
v-n 1 6
f-v - -
3 a
v-h- +
1° - =
v-n 12 11
TV
1 SS U
n 10 1
1 - =
n mel-
n IEE16
1 23
n-h 9 126
one 3
1 a
UOKO-
LO-
GIE
Med)
bebr)
Geb/R
Ub/Wt
Agr)
Geb
N .
Geb)
nA b/R,
w
SE
mGr)
Ub/Wt
Xe)
Geb
(w)
Fed)
Geb
Ver ®)
Hr.
Geb]
Geb
(wı)
Med)
Geb®®
(wı)
Von)
L
ir,
Veen)
Veen)
1)
Geb®®
FLUG- BEMER-
ZEIT KUNGEN
AB-E6 T: SIN 1987
1 Ex.
6-A8 "Mo" 1983
vermutl. 3 Ex.
Gener.)
M6-M7 "Mo" 1983
2 Ex
°m.d.
A7-A9
ES-M7 SiN 1977 R
AB-M8 SIiN 1988 R
“wt (RR)
M6-M7 WaN 1982 1
Ex. ruhend (T}
M6-M7,
M8 Ne
A6-M7 T, 1983 ein
AY-AIO Ex. am Licht
T,
° 1974
E6-AB
E6-M7, HO 1988 R
M7-E8
A7-E7 ® auch Moore
und Heiden
M6-M8
A6-M8
E65
E3-E4 ®FEFwer
se auch Moore
und Heiden
BE
2 Gene-
rationen)
6-M8
2 Gene-
rationen)
AB-M6, 3. Generation
M7-EB, nur partiell
M9
AB5-E5,
A7-E8
E7
E4-A6
am L:99, dd
nur T, Po dd
im Mallertshofer
Holz, ®F.F.wer.
@® auch Moo-
re und Heiden
25
Nr. Art
Lasiooampidae
134 Malacosoma
neustria
L. 1768
136 Poecilocampa
opuli
. 1768
136 Pachygastria
ariloll
SCHIFF. 1776
137 Macrothylatla
rubi
L. 1768
138 Philudoria
otatoria
. 1768
139 Cosmotriche
lunigera
ESP. 1784
140 Dendrolimus
ini
. 1768
Psyohidae
141 Sterrhopteryx
fusca
HAw. 1809
142 Psyche
crassiorella
BRUAND 1849
143 Psyche
casta
PALLAS 1767
144 Proutia
betulina
Z. 1839
146 Bacotia
seplum
SPR. 1846
146 Talaeporlia
tubulosa
RETZ. 1783
147 Dahlica
triquetrella
HBN. 1812
148 Narycia
monilitera
GEOFFR. 1786
Asgerikdae
149 Chamaespheclia
empiformis
EsP. 1783
Cossklao
160 Cossus
cossus
L. 1768
151 Zeuzera
prsa
. 1761
Heplalidao
162 Hepialus
umull
L. 1768
153 Hepialus
sylvina
L. 1761
164 Hepialus
ecta
L. 1768
26
{R)
no
n-
[R
WALD
er:
aa
u.
3 361
3 = —
eier
er
36 ire2
Be
R - = -
Eike Dee
RR al IR}
Ua)
Ua)
1 =
1 1
3 = 4
2 6
1 3 ng
zei
66
a 1
8 12
1,2
A
{R)® (R)
-a
'
BO
23, 2
(R)
Gar
v({R)
h(R)
1987
Mo HO HM
- (R)
UKO-
LO- FLUG- BEMER-
ee
AR E6-E7 Im Moos als
eb) R mehrfach
7 MIO-MII *®FF.wer.
Geb)
r AB-M9 IgG » am
6) L.{n) HH
viele R (1988
mer M6-M7 amLl. va. 99,
Geb/R) auch T, im
Bergliwald als
R regelmäßig
1989 wieder
Hs) A7-EB
Web) T
WN A6-M7
Hm E6
Geb
(w)
Fed)
Geb
(Hy)
Geb)
Geo)
up)
Geb)
Ten)
Geb M7
(Hy)
Geb A7-M8
(wı)
H A6-AB
{ms P
eb
rc A8-M9
Geb,
Ub
Geb A6-A7
(Hy)
1 cd im Garten
1989 1 Ex. im
Mallertshofer
Holz
T, d4,
® am Licht
T, dd
T, dd, * auch
im Schw.holz,
®® im Ruderal
T,dd
T,dd
T, dd, im
Mallertshofer
Holz 1989 1
Sack
IhonSgenese)
dd «+ e-
lügen 1989
1 Sack im Mal-
lertshoter Holz
T, Bergiwald
1982 1 Ex
® Entw.graben
1 Ex., dort 1983
Ex, amtL.n
opt.
®Däm. 10 Ex,
®®Däm. ein zus.
Ex., Bergiwald
1982/86 T2Ex
WALD
Nr. Art Wasserwerk
ı Garten |
SiS SIM, SIN |WaS} WaM WaN WNw WNo
Noctuldae
Noctuinae
155 Euxoa - - = = e S & = ei =
obelisca - 1 > > E 2 1 1 2. Er
SCHIFF. 1776
156 Euxoa - - 1 o - > a 5 2 a
tritici - - - 1 - = - 1
L. 1761
157 Euxoa - 1 _ o = S = = 5 u
nigricans - - - _ 5 a = 1 1 je
L. 1761
Euxoa _ - - - = 2 - 2 2 -
aquilina - = 16 = 6 = = 2 -
SCHIFF. 1776
Scotia > 3 2 1 = 2 3 1 4 -
segetum = = = = = < 1 1
SCHIFF. 1776
Scotia 3 28 32
clavis 27
HUFN. 1766
161 Scotia 2 38 36 29 9 62 66 32
u malionis 32 84 39 4 29 62 45
. 1768
Scotia 4 94 8 29 3
ipsilon 3 46
HUFN. 17686
Ochropleura 2 41 23 21 3 64 40 39 119 24
lecta 124 1656 18 28
. 1761
158
159
160 48
176 14 20 7 33 32
162
Ja
n
[e,}
ND
a
_
163
164 Eugnorisma - - - - - - = - = =
depuncta - - - - - - - = > en
L. 1761
166 Rhyacia - - - - - - - _ > E
ucipeta - - 1 - - - - — = =
SCHIFF. 1776
166 Rhyacia - - - - - - - - = =
simulans - - _ - = - & 1 3 &
HUFN. 1766
Noctua 9 38 18 80 4 26 45 26
ronuba 48 | 1011 76 94 42 12355135395 35 4
. 1768
Noctua - 7 5 6 _ 2 3 2
comes 5
Hen. [1813]
167
168
169 Noctua - 1
fimbriata
SCHREBER 17689
-n
n
'
Sp
w
ı
PP
170 Noctua 1 1
janthina 2 16 1 - 2
SCHIFF. 1776
171 Spaelotis - - - - - - - = = =
ravida = - 1 - 1 = = 1 & en
SCHIFF. 1776
172 Graphiphora = - - - - - - > _ w
augur 1 2 - - - = = = = a
F. 1776
173 Paradiarsia = - - = - 1 - = 1 7
unicea - - - - - 1 e = e =
BN. [1803]
Diarsia = = 2 g 3 2
mendica 1 23 4 ı0 4 g - = 1 =
F. 1776
Diarsia - 1 7 18 4 6 6 = - 1
brunnea 6 120 ih 9 8 3 = - 3 2
SCHIFF. 1776
174
176
176 Diarsia _ — _ 1
rubi = 3 4 = 1 3 S 6 1 1
VIEWEG 1790
Amathes - 82 9 16 6 30
c-nigrum 48 | 336 180 32
L. 1768
Amathes 8 6 12 23 3 44 25
ditrapezium 19 127 60 31 43 28
SCHIFF. 1776
Amathes 8 12 10
triangulum 69
HUFN. 1766
Amathes 1 2 2 10 - 22 31 1 6 8
baja 1
SCHIFF. 1776
181 Amathes 2 1 1 =
sexstrigata 1 22 141 62
HAWw. 1809
177 21 96 4
28
208 138 72 176 27 9
178
20
»
32 26
179
48
641 86 42 80 46 12 re ]
180
106 16 46 38
173 138 63 82 bzı
VOR
1987
Gar Mo HO HM
h-sh - 106 21
h-sh 9 66 16
h-sh 16 20 14
h 272398
VchEalZzse2
VE]
3 =I B2ı05=
v-hla= 362 5-
1 3 U =
n-sh 22° 13 16
h 126 62 11
OKO-
LO-
GIE
FLUG- BEMER-
ZEIT KUNGEN
M8-E8
M7-M9
A8-M9
M7-M8 Im Garten nur
1983
A6-E7, ewt (RR)
E8-MIO
A6-E7
MB5-E7, 2. Generation
E7-E8 nur sehr partiell
.wf AR)
A6-A11
A5B-M7,
M7-E9
A8 ®auch Heiden
und Moore
M8 ®wt (RR)
EI “wt (RR)
A6-AI11
A8-E9®® ®Wf (RR)
®®1 Ex. bereits
A7
M7-M9 ®Ww# (RR)
M7-E9I ewt (RR)
A7-M7, ®Wf (RR)
M9-E9
M6-M7
E6-M7 WaN 1989
1 Ex.
E6S-M7
M6-M8
MB-M6,
A7-A9
M65-A7, °"Mo” am
E7-MIO 6.6.83 11 yo
swf (RR
M6-M8
A6-AB
M7-M9
E7-A9
27
VOR
BR De FLUG- BEMER-
Mo HO HM K EN
182 Amathes bb 47,3 7 a 33 1827 2 h 7 93762 r M8-E9 ®| frisches E
xanthographa 4 36 32639 E17. 18 2107 226 6 1 = b, MIO® ? am 16.10.88 x
SCHIFF. 1776 Ub
183 Phalaena = = = = = = = = = = 1 1 Sn Geb M7-Ag® *®WaS 1989
typica - 3 Je ee u- - 1 (Hy) schon M6
L. 1768
184 Eurols - 1 - - 1 - - - - - 1 a r A7-EB
occulta = 2 = = = = = = = = W,
L. 1768 eb)
185 Anaplectoides u - _ 3 5 B 5 2 = 567727 7Geb A6-E7
rasina - 2211 3,4 - - 1 3 3 (mGr)
CHIFF. 1776
186 Cerastis = 1 1 1 2 48 6 6 2 = v | Gr E3-E6®® *®FFwre,
rubricosa - 2 39 26 26 10721 4 = = Geb) ®® am Ende der
SCHIFF. 1776 Beuel! frische
tücke
187 Cerastis - - - 1 - 8 1 = - z = -® 2 - I Geb M4-E5 ®FF.wır.
leucographa 1 - 1) =) 3 1 - - - -
SCHIFF. 1776
188 Mesogona — - - - - - - 4 = = = Ze We >) Geb/R EBS-E9
oxalina - - - - - - 1 - - 10 (Hy)
Hen. [1803]
Hadeninae
189 Discestra = ehe = = 3 1 = il = 3 ER TZE2E I EUHBAWIZGEBZAG 2. Generation
trifolü - 2 34 = ee! - > Agr) M7-Ad zahlreicher
HUFN. 1766
190 Polia = 1 - = 1 14 3 1 1 = v 3 310 Diet M6-AB
bombycina - 2 zit 42 10 AA = Geb)
HUFN. 1766
»
191 Polia ne} Bm er 1:03) = 3222, |5Geb A6-E7
nebulosa = 12 3 2 7 x = = 2,
HUFN. 1766
192 Pachetra - - - - - - 6 35 44 = = = 3 24 m M5-E6 WaN 1989
sagittigera - . - - - 3, Hr S15 -.- Xe) 2 Ex.
HUFN. 1766
193 Sideridis = - = - = - = 1 4 = = => Kal = M5-A7
albicolon - - - - - - - 1 == mGr)
Hen. [1813]
1809
194 Heliophobus = = - - - - - 4 4 = - - =. 2 e A6-M7
reticulata - - - - - 1 4 3 - .- mGr)
GOEZE 1781
196 Mamestra - 2 - 1 - 1 4 1 v = ia r2 gr® Ba ®wt (RR)
brassicae - 30 1 1 6 AA 6 - = mGr) (2 Gene-
L. 1768 rationen)
196 Mamestra 1 10 g 8 3 13 2 1 = - hr 28, ai A6-AB
ersicariae ıo| a7 De DER sr 5 (eb,
. 1761 na
197 Mamestra Ze] En SEN Te 1 3 - =. 2 | Geb E6-M7, *2. Generation
contigua = 3 Si u 2 2m - - (mGr) A8-A9® nur partiell
SCHIFF. 1776
198 Mamesitra = - - 1 - 65 1 7515 - -v - 1% r M5-A7
w-latinum = 3 = = = _ 27210 = = ee
HUFN. 1766
199 Mamestra - 2 4 U - 2 2 1 3 - - - M6- 198 E7
thalassina 2| 35 an © a ea 2 een En user
HUFN. 1766
200 Mamestra - 14 4 2 1 12 8 19 30 1 veh. (au aeg U E4A-E6, 2 vorzeitig ge-
suasa 6 58 49 10 658 8 920 167 7) = mGr, M7-M9 schlüpfte Ex. A7
SCHIFF. 1776 Agr)
201 Mamesitra = 7 & 6 1 1 = = = - - 6-AB = i I-
oleracea 3 | ee on N ee Dh 2 0 a
L. 1768
202 Mamestra sa - = JS, = ae =, y®, = = r A6-M7 *nur vor 1982
isi - - - - 1 = 2 = - - ur: r,
. 1768 Geb)
203 Hadena Zen. < == = Pr Ze = ev = - m a E5S-E6, *HM 1986 zu-
rivularis 5 2 ei BE CE == 1 - =» Agr) E7-A9 sätzlich I R
F. 1776
204 Hadena Sn = = = 5 = = 6 - 1 - .-..- Gr M6-M7 1989 wieder
lepida - - - - - - 1 3 - = Xe) 1 Ex. im Garten
EsP. 1790
2056 Hadena = = = 1 = = = = 1 - t-v - u r M6-M7
compta 1 1 - - - - = 1 - - Tee)
SCHIFF. 1776
206 Hadena = z 7 - - = 7 = 2 - 1 1 NE mGr E6
confusa Z = = = = 7 = = - =
HUFN. 1766
207 Hadena = = 1 = - = 1 = 2 - 1 - 1 _ r M6-AB, *1 Ex. 1987
bicruris - 1 - - Z = = = - .- Ted) A9*®
HUFN. 1766
28
Nr. Art
208 Lasionycta
209 Eriopygodes
imbecilla
F. 1794
210 Cerapteryx
raminis
. 1768
211 Tholera
cespitis
SCHIFF. 1776
212 Tholera
decimalis
PoDA 1761
213 Panolis
flammea
SCHIFF. 1776
214 Orthosia
cruda
SCHIFF. 1776
216 Orthosia
Bepul
TROM 1783
216 Orthosia
racilis
CHIFF. 1776
217 Orthosia
stabilis
SCHIFF. 1776
218 Orthosia
Incerta
HUFN. 1766
219 Orthosia
munda
SCHIFF. 1776
220 Orthosia
gothica
L. 1776
221 Mythimna
turca
L. 1761
222 Mythimna
conigera
SCHIFF. 1776
223 Mythimna
ferrago
F. 1787
224 Mythimna
albipuncta
SCHIFF. 1776
226 Mythimna
vitellina
Hen. [1808]
226 Mythimna
udorina
CHIFF. 1776
227 Mythimna
impura
Hen. [1808]
228 Mythimna
allens
. 1768
229 Mythimna
I-album
L. 1767
230 Leucania
comma
L. 1761
Amphipyrinae
231 Amphipyra
Buyamigea
. 1768
232 Amphipyra
berbera
RUNGS 1949
233 Amphipyra
tragopoginis
CL. 1769
30
29
26
17
DD
E20}
wm
wa
-a
>
67
38
-._
an
10
19
aan
60
18
37
22
71
99
23
29
67
a-
37
37
28
19
-.
wa
-oa
23
43
40
31
16
17
71
23
31
16
21
Gar
= Sud
n-h 1 27 130
h eg?!
nh -®6 2
2 -ı _e _e
Ve
h-she_u2232
hzsh2 2213556:
Vo Dee u
sh -® 29 20
Fi dd A
2 a
Dh 3
v en
1 -_ = =
n® Isa1bzEg
Vones2 02507017,
1° =. -_ -
1 EEE HATGT,
h 3 14 -
1 - - -
h 9 14
FLUG- BEMER-
ZEIT KUNGEN
Geb M6° °im Garten im
(mGr) Juli” 1983
Hy E6 1989 ein Ex
im Franzosen-
hölzl
u M8
Geb,
Hy
mGr A9-M9
mGr E8-M9
Sn M3-A6 ®F.F.wer.
Geb)
„: M3-M5 *F.F.wer.
Geb)
Geb M3-M4 ®FFwer.
(Hy)
ur A4-M5E *F.F.wır.
Hy)
U M3-M6 1987 noch am
WL 22.6. 1 Ex
eb] ®FF.wrr.
SR A3-M6 1982 noch am
WL 22.6. I Ex.
Geb] SFFwı
“RE M3-E4 Birket 1983 1 R,
Geb) HO 1987 2 R
®F.F.wır.
ur A3-E6 ®FEF.wır.
Geb)
H M6-E7
(Gen,
mGr
"5 5 E6-E7
\
Me E6-M8 ®Wf (RR)
Geb)
EN A6-M9
mGr) (2 Gene-
rationen)
e/Wt E7
mGr)
Hy E6-E7
"ll,
mGr)
Gr
Ub)
ME
Hy)
mGr
Weed)
Weed)
ee)
M6-AB®®, ®früher z.T
A8-E9 fehlbestimmt
2. Gen. e®A6 einzeln
nur part. Entwgr. "87 1Ex
A6-M7°®®, ®früher z.T
A8-AIO fehlbestimmt
°®E7 einzeln
M6 ®1977
M6-M7 1989 WaN
1cd
A7-MIO im Juli nur
einzel
®w#t (RR)
AI ®W#(RR), Kor-
binlaniholz 1988
2 Ex. Gen.prp.:
KOLBECK
E7-MIO | Ex. am 11.7.
1988)
29
236
236
238
239
240
241
242
243
244
245
246
247
248
249
250
261
262
264
266
256
267
2568
269
260
30
Art
Rusina
ferruginea
EsP. 1786
Talpophila
matura
HUFN. 1766
Euplexia
lucipara
L. 1761
Phlogophora
meticulosa
L. 1768
Ipimorpha
retusa
L. 1761
Ipimorpha
subtusa
SCHIFF. 1776
Enargia
aleacea
SP. 1788
Enargia
ipsilon
CHIFF. 1776
Cosmia
affinis
L. 1767
Cosmia
trapezina
L. 1768
Cosmia
yralina
CHIFF. 1776
Auchmis
comma
SCHIFF. 1776
Actinotia
Bann
L. 1769
Actinotia
hyperici
SCHIFF. 1776
Apamea
monoglypha
HUFN. 1766
Apamea
lithoxylea
SCHIFF. 1776
Apamea
sublustris
Esp. 1788
Apamea
crenata
HUFN. 1766
Apamea
characterea
HBn. [1803]
Apamesa
lateritia
HUFN. 1766
Apamea
remissa
HBn. [1809]
Apamea
unanimis
HBn. [1813]
Apamea
anceps
SCHIFF. 1776
Apamea
sordens
HUFN. 1766
Apamea
scolopacina
EsP. 1788
Apamea
ophiogramma
ESP. 1793
Oligia
strigilis
L. 1768
SIEDLUNG
ı Garten |
SiS SM) SiN
n-
WaS| WaM WaN WNw WNo
27
83
36
86
WALD
Wasserwerk
90
1 68 43
2
5 ©
IN3:
3
Su =>
1
6
BI
1
3 1 3
Jr
4
5 A v4
2
EL a
2
al 2
a2
Een
4
Br
31
Ei O8
6 9 8
2
a2
ur
24
23 13 24
nv
ea
19
21
63
21°
VOR
1987
Gar Mo HO HM
(EVA IE Fe]
- Me
= Sn
1 an =.
- 1 - -
h BIR217 2
ch 92 74. =
v =. al
v Er
v - 9 37
3 a |
v=h#3 2 =
= are HE
h 2 3
OKO-
io: FLUG- BEMER-
ZEIT KUNGEN
GIE
” E6-E7
Es:
mGr
mGr M7-M8
Geb E6-E7
en E6 1. Generation
mGr) M8-All nur 1 Ex. 1986,
1988 1 Ex. am
S-Bahnhof.
Geb/R ET7-A9 Regattastr.
Hy) 1983 2 R
H E7-M8
(Geb/R)
Geb® E7-AB ®v.a. Moore
und Heiden
H M7-E7
(Geb)
Geb Korbinianiholz
(wL) 19 Ex
KOLBECK
“s A7-M9 ®Birket-Rand
Geb) 1988 3 Ex
Geb E6-AB
(wı)
Geb A7-E8
(Xe)
> E6,
mG([, AB-M8
Geb
Xe M8
A - M6-A9
r,
eb)
g\ A6-AB
e
mGr)
mGr A6-A7
mer E6-E7
Geb)
Geb A6-E7
(mGr)
mGr AB
Gr E6-E7
Hy)
H E5-E6
(mGr)
gr E6-E7
mGr)
gr E6S-M7
mGfr,
eb
Geb M7-E8
(wıL
mGr)
Hy E7-M8
Geb E6-E7
(mGr)
auch T
auch T
®wt (RR)
WaN 1989 ein
Ex.
® "Mo"
1983 3 Ex.
261 Oligia
versicolor
BKH. 1792
262 Oligia
atruncula
SCHIFF. 1776
263 Miana
furuncula
SCHIFF. 1776
264 Mesapamea
secalis
L. 1768
265 Mesapamea
secalella
REMM 1983
266 Photedes
minima
HAw. 1809
267 Photedes
extrema
Hen. [1809]
268 Photedes
ftluxa
Hen. [1809]
268b siehe Addenda
269 Luperina
testacea
SCHIFF. 1776
270 Amphipoea
oculea
L. 1761
271 Amphipoea
ucosa
FRR. 1830
272 Amphipoea
lucens
FRR. 1846
273 Hydraecia
micacea
ESP. 1789
274 Gortyna
flavago
SCHIFF. 1776
275 Celaena
leucostigma
Hen. [1808]
276 Nonagria
typhae
HNBG. 1784
277 Nonagria
nexa
HBn. [1808]
278 Rhizedra
lutosa
Hen. [1803]
279 Meristis {
trigrammica
HUFN. 1766
280 Hoplodrina
alsines
BRAHM 1791
281 Hoplodrina
blanda
SCHIFF. 1776
282 Hoplodrina
ambigua
SCHIFF. 1776
283 Atypha
ulmonarls
SP. 1790
284 Spodoptera
exigua
Hen. [1808]
286 Caradrina
morpheus
HUFN. 1766
286 Paradrina
clavipalpis
ScoP. 1763
287 Eremodrina
ilva
ONZ. 1837
288 Agrotis
venustula
Hen. 1790
22
am
ww
26
20
-n
np
4
18 6
116
87 29
4
14 =
7
U 2
6
3 1
6
TO
2
4 =
a
29
34 8
1
7 3
=, 6
4 6
91
33311
1
6 1
4
4 =
64
23 26
1
8°
vu NR
60
14
22
20
40
N
63
14
PN
26
30
no
BTROK-
KENRASEN
=
-n
NN
u
26
17
n-
"DACH.
MOOS’
n-h
sh
v-h
VOR
1987
Mo HO HM
V..@ =
on
2 00
a1 -
3) - =)
= 3 fe)
289 =
716 16
6u17
23
Slee
SEE 2
- 26 34
67 48 18
I 2078
Hy
Hy
Hy
eb)
Teen,
mGr
Geb
(mGr)
Teer)
eye
Xe/Wt
"Imgı.
Geb,
r/Wt
Agr)
Ab)
e)
FLUG- BEMER-
ZEIT KUNGEN
M6-E7 1988 1 Ex. A6
A6-A8
M7-E8
M7-E8 alle Stücke
Gen.Prp.
E6-E8® alle Stücke
Gen.Prp
®E8 nur 2 Ex
E6-AB
E6-A7 1989 WaN Io,
Mallertshofer
Holz do
A7-M8 1988 1 Ex. E6
AB-M9
M7-M8
A7-M8
A8 Gen.Prp
M7-E9 viele GenPrp,,
noch keine
H. ultima
M9-AIO
M8 ®wt (RR)
M8-MI1O
A9
E9-MIO
M6-A7 1987 1 Ex. M7
M6-AB 1987 auch M8
und EB
M6-M8
E6-E6,
E7-E9
M7-E7 * feuchtwar-
me Standorte
AB8-E8
A6-A8® °1989 ab M6
E7-AB
A6-M7 S-Bahnhof 1988
2 Ex., ®zT.
Zuflug aus den
Alpen ("wtf
A6-E7 ®1 zus. Ex.
R]
Nr
Art
Cucullinae
289
290
291
292
293
294
296
296
297
298
299
300
301
302
303
304
306
306
307
308
309
310
31
312
313
314
315
32
Cucullia
lucifuga
SCHIFF. 1776
Cucullia
umbratica
L. 1768
Cucullia
verbascl
L. 1768
Cucullla L
scrophulariae
SCHIFF. 1776
Calophasia
lunula
HUFN. 1766
Brachionycha
sphinx
HUFN. 1766
Lithophane
socia
HUFN. 1766
Lithophane
ornitopus
HUFN. 1766
Lithophane
turcifera
HUFN. 1766
Xylena
vetusta
Hen. [1813]
Allophyes
oxyacanthae
L. 1768
Griposia
aprilina
L. 1768
Blepharita
satura
SCHIFF. 1776
Blepharita
adusta
EsP. 1790
Antitype
chi
L. 1768
Eupsilia
transversa
HUFN. 1766
Conistra
vaccinli
L. 1761
Conistra
rubiginosa
ScoPr. 1763
Agrochola
circellaris
HUFN. 1766
Agrochola
macilenta
HBn. [1809]
Agrochola
nitida
SCHIFF. 1776
Agrochola
helvola
L. 1768
Agrochola
litura
L. 1761
Agrochola
Iychnidis
CHIFF. 1776
Agrochola
lota
CL. 1769
Parastichtis
suspecta
Hen. [1817]
1814
Cirrhia
aurago
SCHIFF. 1776
SIEDLUNG
ı Garten |
= 96
2
1, =W5
1
2a
6
ve
65
= a
"sei
=
1
202
1
ı
18
om
wm
Aw
WALD
R
- 01
7
4
ee
3 6
6 00
3
ws
n-
n-
a
-n
{R)
30
VOR
1987
Gar Mo HO HM
Vlenzeise-
v{r) (R) (R) (R)
1 - - -
3 Su er
IV. = 3, =
(SV 2
1 = oe
2 - - -
vh = 0-0 -
v-h- 1 -
Geb
Geb
Geb
Geb
(mGr)
Geb
Geb
Geb
(Hy)
ed)
Tess)
FLUG- BEMER-
ZEIT KUNGEN
E6 am L.n. opt.
E6-AB am L. n. opt
am L. n. opt
®Ruderal und
nördl. Hügel
®®Birket-Rand
E6-A7 am L.n. opt.
im Schw holz
1987/88 eini-
ge R
M6,
E7-AB
A10-All 1983 im Bergl-
wald 2 R
E9-Win-
ter-E6
M3-A5 Überwinterer
M9-MIO Überwinterer
M3-M5 Überwinterer,
1989 I d am
Franzosenhölzl
M9-EIO
E9-AIO
EB-E9
M6
M8-M9
E9-Win- *am nördl
ter-AB Hügel I R,
eos lluR
M9-Win-
ter-M5
E1O-Win- *alle 1986
ter-M4
E9-EN
M9-AI11
A9-M9
E9-EIO
E8-A1O
M9-EIO
E9-MIO ANGE
1983 I R
M7-AB
EI
Nr. Art
316 Cirrhia
togata
ESP. 1788
317 Cirrhia
icteritia
HUFN. 1766
8 Cirrhia
ilvago
CHIFF. 1776
319 Cirhia
ocellaris
BKH. 1792
320 Cirrhia
citrago
L. 1768
3
=
Melicleptriinae
321 Chloridea
viriplaca
HUFN. 1766
322 Chloridea
eltigera
CHIFF. 1776
323 Pyrrhia
324 Panemeria
tenebrata
ScoP. 1763
3256 Axylia
utris
. 1761
Bryophilinag
326 Euthales
algae
F. 1776
327 Bryoleuca
raptricula
SCHIFF. 1776
Apatelinae
328 Panthea
coenobita
EsP. 1786
329 Daseochaeta
alpium
OSBECK 1778
330 Colocaslia
coryli
L. 1768
331 Subacronicta
megacephala
SCHIFF. 1776
332 Acronicta
aceris
L. 1768
333 Acronicta
leporina
L. 1768
334 Apatele
336 Apatele
si
. 1768
336 Hyboma
strigosa
SCHIFF. 1776
337 Pharetra
auricoma
SCHIFF. 1776
338 Pharetra
rumicis
L. 1768
339 Craniophora
ligustri
SCHIFF. 1776
SIEDLUNG
nes
2er
3
a
_e
a)
=
1
Se)
1
1 - -
am 2
3
E20
ı®
|
en) 2 a
=
4
ww
n
[Ay
WALD
76
44
Dn-
np
18
43
-n
w—
=n
w=
nn
3“
VOR
1987
Mo HO HM
3 - =
1 - -
Ss
ED
- 1 -
(bye ur?
1 1 1
1 En -
5.9 =
. 9 -
Au =
= 2 >
2 - -
= 1 &
T®® m -
= 1 -
a2
2. |
3 29
FLUG-
er) M9-MI1O
Geb/R EB8-A1O
(Hy)
Geb M9-E9
Geb M9
(Hy)
Geb E8-A1O
r/Wf EB-A7,
Geb/R, E7-AB
E8-M9
E6-AB
Teen) "°
en. EB-E7
Geb E7-&9
Xe E7-M8
Geb M6-E6
(wn)
Ms A6-E6
Geb)
WwL E4-M6,
M7-M8
H 6-M8B
(Geb) 2 Gene-
rationen)
Geb 6-M8
2 Gene-
rationen)
Geb E5-E7
Geb M6B-A7
Geb MO:
MB (2 Ex.)
Geb A6-E7
(wL)
Geb/R E4-M6,
(Agr) A7-M8
AR AB-M6,
eb/R) M7-E8
Geb einzeln:
(WL) AB-A6
2ER
BEMER-
ZEIT KUNGEN
auch T, 1981 in
Kiesgrube 500m
von WaN ent-
ternt IC T
T, 1989 3 Ex
in im Mal-
ertshofer Holz
°1i Ex. am
S-Bahnhof
“nur 1983
"FFwr.,
2. Genera-
tion 1986
bis 1988 n
SiN 1988 1 R
9891
Was)
als R verbrei-
tet, ® S-Bahn-
hof 1 zus. Ex.,
®®Birket-Rand
n Klesgruben
(Ber I-, Schw.-
olz) als Rh
33
VOR
Nr Art n . 1987 |
Gar Mo HO
Jaspidiinae
340 Jaspidia El = a lo0= 8 - | - - 1 = mGr EB-A7®® T häufiger, vo,
eceptoria - - mer 3 35 062007 it . = Geb) W un u
ScoP. 1763 Ruderal *®
“22.787 1 Ex
341 Jaspidia 3 716 47 14 286 99 3 2 12 h-shr 3872 un M6-AB8 auch T, zB
ygarga 22 127 361 417 494 102 2 10 4 8 Geb, Berglwald sh
FN. 1766 Ww)
342 Eustrotia = 0-0 => See Sr = ,2 EV, E7
uncula = = = = - - = - = =
CL. 1769
343 Eustrotia 1 = - - - 1 8 1 1 = 1 eg, mar A6-M7 T sh (M): HM
olivana - 1 - 1 3 9 -. - Sl Geb, Ruderal ®),
SCHIFF. 1776 Hy egattastr,
Schw.holz
Nycteolinaeg
344 Nycteola Sr= - 1 1 - - - - - 1 - = | WL MA-A6, Überwinterer
revayana - 3 - =. - - - =u = E7 (2 Ex)
ScOP. 1763
Beninae
345 Earias = = = = = 3 = = 1 1 = - = = Geb M6-E7
chlorana - - 3 a =. = - -.- (Hy)
L. 1761
346 Bena - - 1 3 1 6 8 - - - t-h - Be Ws M6-E7
rasinana 6 I 21 8 6 6 - 1 1 - Geb)
1768
347 Pseudoips = = = 1 = = = = = = 3 = om. = WL E6-E7 WaN 1989 2
bicolorana = = - = 5 = = = ZT 7 Ex
FUESSLY 1776|
Plusiinae
348 Chrysaspidia - - - = = _ = = = = = 1 EZ lEhy; E6
utnami - - - - - - - - =
ROTE 1873
349 Autographa 7 360131 81 21 74 69 70 127 2 sh 21 13 16 Up/Wt 6-A1l auch T, zB
gamma 30 65 28 6 23 17.12 47 1 1 Agr) 2 Gene- Entw.gräben,
L. 1768 rationen) BapaMBeL
Schw holz sh (M)
350 Autographa - 1 - - - - 1 - 1 - 1 mu = au A6-A8 .wi?
ulchrina = = = = = = = = - = Geb)
AW. 1809
361 Autographa - - - 1 1 - - - - - - - 0-0 - Geb*® M8-E8 “wtf (RR)
bractea - - = - - 0 => - - = (W, Hy)
SCHIFF. 1776
352 Macdunoughia - 0-3 1 - 2 - - 4 (R) Inh 2 - 14 Agr/Wtf M7-AlIO *auch hier
confusa - - - - - - = - = 4A (Xe (2 Gene- 1987 I R
STEPHENS mGr) rationen)
1860
363 Plusia 1 2 = 1 2 4 1 1 1 1 n-hı "Wi 22 Ub A6-E7 *1988 1 Ex.
chrysitis 3 12 3 7 3 6 4 7 - - . M8-M9® der 2. Gen.
L. 1768 schon AB
364 Plusia 1 = 1 3 - 1 1 - 8 -*!in 41 3 Ub E6-M7, ® Entw.graben
tutti - 13 - 2 2 6 - 2 - 1 AB-E8 1 Ex.
KOSTR. 1961
365 Plusia = = — = = = = = = = 1 = == H AB
chryson - - == = - 0 = - - = (Geb)
ESP. 1789
356 Polychrysia = = = = = E = = = = =) = = = Geb A7
moneta - - - - - - - - -.-
F. 1787
357 Chrysoptera - - = 1 - - = = = - 1 - - - Geb E6-E7
c-aureum 1 - - - - - - - 1 5 (wu)
KNOCH 1781
368 Abrostola - - = = — 2 1 = = — 3 Pe Geb 6-M8 Genprp.
triplasia = 4 _ = 2 1 5 1 1 - 2 Gene-
L. 1768 rationen)
369 Abrostola - - 1 = - 1 - - - = = =. er erlläGeb A6-E7 Gen.prp.
asclepiadis - 6 2 3 = - - - =. - (Xe)
SCHIFF. 1776
360 Abrostola - - - - 1 - 1 1 - - 2 - => Geb M6-E9 Gen.prp.
trigemina - 2 - = 4 2 - 1 - -
WERNEBG
1864
Catocalinae
361 Astiodes - - - = - - - - = - - = SZ WwL® E8 am L. n. opt
sponsa - 1 - - 0. - = - = “wi (RR)
L. 1767
362 Catocala - - 1 1 - - = 1 = - 1 Ge Ber Se Geb AB-E9I am L. n. opt
nupta - - - - - - - 1 - .- (wı)
L. 1767
363 Callistege - + - - — . . * . . . - - - - er er r M5-E6 T, auch
mi = + - - - + * + + + - . = - Agr, Regattastr.,
CL. 1769 eb) Schw.holz
34
m nn mn rn
VOR UOKO-
w An 1987 LO- Zei KUNGEN
Gar Mo HO HM | GIE
364 Ectypa . ® - = . . ° . « « . Q Ö > = ’ 0,0 Gr A5S-M7 T, auch
piyphica . + - - + . . + + ’ + * . = gen. E7 (1 Ex.) Be attastr,,
. 1768 Agr chw.holz
iderin
365 Scoliopteryx 1 = - 6 = 3 = - 1 1° tv 1 us Geb E6-E7 am Köder
libatrix - - 1 SE 1 - - > pc (Hy) Es-Win- besser,
L. 1768 ter-A6 ®zus. I R
e®zus. I P
366 Lygephila - > - - - 7 2 — 1 = 3 2 lEGeb E6-A8® ©1988 I Ex.
astinum - - 1 2 2 - 1 Se Imer. M6
R. 1826 e
367 Parascotia - - -. 2 = - - - = = Vo Be = “ E6-A9 “S- Bann
fuliginaria - 3 - - - - = - Zu = Geb) 1987 1 Ex
L. 1761
368 Phytometra SE ul - (= S |< ge} Ds AB-A6, auch T, Mal-
viridaria = = = 1 - - - 1 = = W A8-M8 Ruelaıeı Holz
CL. 1768 Xeb) 1989 3 Ex,
® auch 1 MöBıe
369 Rivula - - 1 2 3 4 13 - 1 67 Au. =, Se Geb 6-M9 auc
sericealis 3 20 8 14 22 35 - 6 118 (mGr) (2 Gene- Däm
ScoP. 1763 rationen)
Hypeninae
370 Laspeyria 1 1 6 26 2° 23 3 - 1 - n-h 164 1 Geb M6-M8 *WaM 1987
tlexula 12 71 40 34 37 2 1 1 S26 (w) zus. IR
SCHIFF. 1776
371 Colobochyla - — = = _ = - Ze = = Eee EGeb/RI AG v.a. T,
sallcalis - - 1 Ss - See Zi = (Hy) ®im Ruderal
SCHIFF. 1776 mehrere Ex
372 Herminia - — 2 1 1 1 6 = = - - = = Geb E6S-M7
barbalis - 6 - - 3 4 - 1 Ser - (wıL)
CL. 1769
373 Zanclognatha == 3 6 = 3 1 = 1 = 3 Zee Geb M6-M8® geopip
tarsıpennalis 2 48 3a 324 - = - - > (mGr) “in 8 frische
TR. 1836 Ex. einer 2.
Generation
374 Zanclognatha 8 = 6 16 326 = 1 42 n-h 11 SZ Geb A6-E7® 1987 1 Ex
tarsicrinalis 1 14 1327032 14 - - 6 18 (wı) am 128.,
KNOCH 1782 n Birket 1986
375 Zanclognatha = = - 4 — - - - - = 2 en, > Geb A6-E7
risealis - 8 1 - 2 1 - - 1 2 (wı)
CHIFF. 1776
376 Trisateles - 1 < 6 2 2 2 - - 1 Vene - SE E5S-E7
emortualis 2 1 1 - - 1 - 1 1 2 Geb)
SCHIFF. 1776
377 Hypena 62 6 14 - 2 2 2 1 10°| n-h 24 1 3 fe Ei auch T: (U
roboscidalis 13 68 2 6 7 3 - - 26 16 Geb/R) (2 en. Biken h
. 1768 rationen) 2. G
378 Hypena = - - = = = = = = - - Ze ee Geb A6° 1989 1 d im
obsealis = = = = = = - = SE (Hy) Franzosen-
TR. 1829 hadlzl,
berwinterer
Geomatrkdae
Archiearinae
379 Archiearis. - = = = = = 2 Z = "7 - _ 70h Geb E3-E4 T, Birket und
arthenias - - = = = = - - SEAT (WL, Regattastr
.. 1761 Hy) stets h
Oenochrominag
380 Alsophila 2° 4 67 ASE SZ, SEEE19 = h-sh -" -e -° L A3-E4 [2207
aescularia 8 9 7 = p2 2 - 1 29 1 Geb) °F Ewır.
SCHIFF. 1776
381 Odezia - = = = = = = = (T)| - - =. - mon A6-M7 T: Birket und
atrata = _ = = = = © - (m) Hy) Regattastr. n,
L. 1768 WaM 1983
1 Ex.
Geometrinag
382 Geometra - = 3 1 3 - 2 = 1 8 -v 10 91 [L E6-M8
Raptloneria - 1 - - 1 - - - > 2 Geb,
. 1768 Hy
383 Comibaena - S - = = = = = = - - - 4 - | WL E6
ustulata = - = - = = = = - -
FN. 1767
384 Hemithea 1 Ss u 2 2 = = 2 vn - 4 - | Geb M6-M7 Raupenfunde im
aestivarla 1 1 1 3 6 1 - - 2 3 (wu) Ort, WaM, HO
Hen. [1799]
1796
386 Thalera - = > - > = 1 3 4 - - - -.- e A7-M8
fimbrialis - - So, 0.000 1 1 6 Ir = mGr)
ScoP. 1763
386 Hemistola - = = = - = = = = - - - oo Geb E7
chrysoprasaria - = 1 - 1 = - — - -
ESP. 1794
387 lodis ee. = = = 1 - = 2°| 2 - (T:3) - | Geb M65-A7 Däm, amL
lactearia 2 2 - 1 2 6 - - Sun (wı) n. opt.,
L. 1768 °Däm 6 zus.
Ex., 1983 5 Ex
35
WALD VOR
Mr. Art i 1987
Mo HO HM
Sterrhinag
388 Sterrha - - - - - - - = = = = = en -
serpentata - - - = = = 5 = = a
HUFN. 1767
389 Sterrha = = = = = 4 - - 2 = > Sa. u
muricata - = 1
HUFN. 1767
390 Sterrha - _ 6 12 - 3 = = - 5 vh = 6 -
biselata 4 16 13 9 8 6 = 1 2.58
HUFN. 1767
391 Sterrha - - - - - - - - - a = = ih 2
inquinata - - 1 - = = < = & =
ScOP. 1763
392 Sterrha = = = = - - - - 3 Be
seriata 1 - - - - - - _ = =
SCHRANK 1802
393 Sterrha - .- 2 4 - 3 - - - = = 1 Pe Dr:
dimidiata 1
HUFN. 1767
394 Sterrha = = - - - - - 1 - - 1 Fr
emarginata - - - - - - = = = =
L. 1768
396 Sterrha 1 341 22 8.2 I) 2 9 6 h IE I5) ==
BEReate 24 84 9 20 14 9 - 7 2 6
. 1768
396 Ercppkoca - - - - - - - - - 4 t-n 1 1 -
my punctata 1 2 4 1 - 3 = = = 6°
HUFN. 1767
397 Cyclophora - - 6 19 3 2 29 - 3 6 h-sh - 44 -
unctaria 40 | 220 20 19 16 66 - 9 7
1768
398 Cyclophora - - - - 1 - - - - - 22 - - +
linearia 2 = = = = 1 = E - -
Hen. [1799]
1796
399 Calothysanis - - 3 3 3 3 9 (n
griseata 4 19 10 16 8 10 = 2 4 1
PETERSEN 1902
400 Scopula = wa) - - - 1 3 ı0 - - -#. mM 83
immorata - - - 1 he 1 2 47 - -
L. 1768
401 Scopula = = = 4 Sse1D 6 = = 8 3° = 87
nigropunctata 1 1 Skler ir! 3 - 1 - 3
HUFN. 1767
©
ao
<
!
=
n
en
>
w
402 Scopula - - - - - - - 6 2 - 1 a1 -
ornata - - 1 - - _ 2 3
ScoP. 1763
403 Scopula u > - - - - - - 6 = - =4 14 2
rubiginata - - 2 — 1 1 1 g - -
HUFN. 1767
404 Scopula = = — - - - - - - = 1 Se
immutata - - - - - - - - - =
L. 1768
405 Scopula = = 1 = = - - - - > 1 — (im =
lactata - - 2 2 = = - 2 = =
HAw. 1809
Larentiinag
406 Scotopteryx 1 -
chenopodiata
L. 1768
407 Anaitis - - - - = 1 = = = = = = =I2-
raeformata 1 - - - - =: en = = =
Bn. [1826]
408 Anaitis 3157210 10 =
efformata 6 39
GN. 1867
409 Acasis - - - - 1 - - - = = 2) u ae
viretata - - - - 1 - - Ss = —
Hen. [1799]
1796
12 143 13 17 37, it SE E6
119 218 26 = 150 2 =
2
>
{=}
n=hı = 79281
aw
_
>
-a
ı
a
&
ı
410 Nothopteryx Zu „= 1 = = = 1 = 1 = vn -+ -ı 0
olycommata - 2 1 - - - - = en =
CHIFF. 1776
411 Nothopteryx = - - - - 1 1 - - 1 = El u
carpinata - - - 1 1 3 - W 4%
BKH. 1794
412 Lobophora - - - - - = = = = = = 2.30
helterata 1 - - - - - - = = 1
HUFN. 1767
413 Pterapheraptery 1 4 1 - = 8 1
sexalata - = 7
RETZ. 1783
414 Operophthera {R) - 93 3 2 - 1 ı ({R -| h-sh -" 6 -
Duansia 66 106 8 I, - 18 = 3 22 8
. 1768
M7
A7-M8
Mo Ex)
M6
1 E5)
E6-A7,
AB-A9I
M6-E6,
AB-E8
A7
E6-E6
M7-A9
AB8-EB
M6-A7,
E7-AIO
AS-A6
E3-M4
M4-M6
AB-M6
M5-AB
EIO-A12
T 1989 im
Mallertshofer
Holz h
®auch Moore
Heiden, WaN
1978 +1986 2 E
Entw.graben
1987
®v.a. an Ge-
bäuden
va. an Ge-
bäuden, am L
nicht opt. 198
S-Bahnhof I E
Entw.graben
1987 4 Ex,
5- el 198
x“.
2. Generation
weniger zahl-
reich
Däm, Birket
1983 2 Ex,
®°Dam h
3. Generation |
nur sehr par-
tiell
1989 WaN I 9
auch T, Birker
1981/83 3 Ex
un raben
87 v, HM '86
WNo T 2 Ex, |
2. Gen. stärke
®im bewaldet
Teil, Schw. hol/f
1987 TI Ex, |
auch T- HW
1987 1 Ex
auch T,
2. Generation
störker
auch T
®Birket-Rend |
8 Ex, auch T:|
WaN, HO + HM]
Ruderal h-sh |
Genpr
auch Piv)
S-Bahnho
1988 1 Ex
1989 Dere
en SN I
°FFwer.
“FFwer.
®EFwer.
dd, ®FFwı
Nr. Art
Oporinia
dilutata
SCHIFF. 1776
416 Oporinia
autumnata
BKH. 1794
417 Triphosa
dubitata
L. 1768
418 Calocalpe
cervinalis
ScoP. 1763
419 Philereme
vetulata
SCHIFF. 1776
420 Philereme
transvorsata
HUFN. 1767
421 Lygris
runata
. 1768
422 Lygris
testata
L. 1761
423 Lygris
Bopulate
. 1768
424 Lygris
mellinata
F. 1787
425 Lygris
Pryabele
CHIFF. 1776
426 Cidaria
fulvata
FORSTER 177
427 Plemyria
rubiginata
SCHIFF. 1776
428 Thera
variata
SCHIFF. 1776
429 Thera
obeliscata
HBn. 1787
430 Thera
[nipersie
. 1768
431 Thera
firmata
Hen. [1822]
432 Chloroclysta
siterata
HUFN. 1767
433 Dystroma
truncata
HUFN. 1767
434 Dystroma
citrata
L. 1761
435 Xanthorhoe
tluctuata
L. 1768
436 Xanthorhoe
montanata
SCHIFF. 1776
437 Xanthorhoe
spadicearia
SCHIFF. 1776
438 Xanthorhoe
terrugata
CL. 1769
439 Xanthorhoe
biriviata
BKH. 1794
440 Xanthorhoe
designata
HUFN. 1767
441 Ochyria
uadrifasciata
L. 1769
13
86
n
(T:1)
6
62
97,87
201
-.
11
24
13
41
19
11
u)
a
ws
62
29
19
16
1
14
-n
PN
-n
a-
na
12
18
7°
1.
21°
Gar
1-v
n-h
n-h
VOR
1987
Mo HO HM
38
26
1°
UKO-
LO-
GIE
Med)
wı
Geb]
Geb®®
Geb
(wı)
Geb
(Ub)
Geb®
Geb®
Geb)
Gev)
Geb*®
Geb
(mGr)
Geb
Geo,
Hy
Web)
Weed)
Geb
(wN)
N
ev)
Geb
(wı)
7
Geb
(w. Hy)
b
nn
May)
Geb
W,
Ub)
U
(Geb)
Me b,
Hy
May)
God)
FLUG- BEMER-
ZEIT KUNGEN
AIO-Ali Genprp.
A1IO-MII Gen.prp.
M7-Win- ®am Sender-
ter-E6 gebäude,
“va. an Ge-
bäuden
E3-A6 °EF.we.
E6-E7 “Birket 1987 T
Ex., Garten
erst ab 1986
E6-MB8 ®v.a. an Ge-
bäuden
M6-A9 ®v.a. Gärten
A8
1988 3 Ex. im
Korbinianiholz
KOLBECK
Was 1989 1
M6-A7 ®v.a. Gärten
E6-M8
M6-E7
E6-E7®® ®T ein zus.
Ex., °°1987
1 Ex. M8
M6-A7, Gen.prp., keine
MB8-E9, T. britannica
M10 (2 Ex.)
E6-E7, ® regelmäßig
E7-AB® frische Ex
Jedoch 1. Gen
stärker
E9-EIO S-Bahnhof
1987 6 Ex
M8°-MIO *AB einzeln
M8-Win-
ter-M6
E6-M7 ®Birket 1983
8-EIO 1 Ex, M-EIO
A8 2 Ex.) z.T. frische Ex,,
Gen.Pr
AB-E9I “vor 1987 4
fotogr. Belege,
sonst Überse-
hen, Gen.Prp
AB-E6,
M7-E9,
MIO (1 Ex.)
A6-M7 T, *am L.n.
np! Birket
A 87 T) 600
x
Ab-EG6, GenPrp., auch
A7-E8 T: Birket-Rand
1987 3 Ex., 1988
1 Ex.
A6B-M6° °1987 bis E6,
A7-M9®® *®in 9 z.T. frisch
Genprp., auch
T: Birket-Rand n
M4-ABb, ®zus. IR,
E6-E7 “oT 2 zus. Ex
E6, SiN E6 1989 1
M/-M8 frisches 9
M6-E8® °1987 1 Ex. A9,
Entw.graben
1987 1 Ex
VOR
SEREE 1987 FLUG- BEMER-
ZEIT KUNGEN
Gar Mo HO HM
442 Nycterosea Ze 1 = = = = = - - - - - - | Ub/Wt Ai
obstipata - en E = = n - - -
F. 1794
443 Calostigia _ = 1 1 1 1 _ - - - 2 = Ic w M7-AB
olivata 1 8 = 1 = = - - — Se
SCHIFF. 1776
444 Calostigia = 2 77 N 2 - 4 - 3 > 5 Geb A6-E7, ® 1 Ex. 1989
ectinataria 2 22 6 7, 2 7 - > (mGr) E8®
NOCH 1781
445 Lampropteryx 1 - = 3 = 1 2 - 4 - f-V = -' = are M5-A7, Birket 1983
ocellata 1 21 1 4 16 30 = 7) 1 1 Geb) E7-A9 1 Ex.
L. 1768
446 Lampropteryx - - = - = 2 1 - - = EV == Geb A6B-M6
suffumata 1 1 2 1 4 2 = - - > (w)
SCHIFF. 1776
447 Coenotephria = - 6 18 4 7 7 1 7 2 h = 3 5 Geb AS-A7,
berberata 13 119 6 1 6 12 - 2 1 - (w) M7-A9
SCHIFF. 1776
448 Euphyia | 2 7 3 4 6 2 1 r in -- =. - | Geb A6B-AB
cuculata 4 6 10° 107 79 Pe] 4 =4 er (mGr,
HUFN. 1767 Ww
449 Euphyia - - - 1 - - - - - - 1 = =] = Geb E6-E7 WaN 1989
molluginata - 2 - 1 - - - - - > (mGr) 1 Ex
Hen. [1813]
1796
450 Euphyia (IT) 1 8 7 4 3 og 16 - n-h - 20 1 er A6-E9I auch T: HO +
bilineata - 48 a. 1 - VE) 2 - ee (1-2 Ge- HM-Ruderal
L. 1768 mGr neratio- stets h
nen
451 Diactinia - - - - - _ - = - - - = 2-7 =,ldH E6-M7 We 1989 1 Ex
capitata - 1 = = = > = - - 2 (Geb,
H.-S. 1839 W)
452 Diactinia - - - - 2 = z = = 202173 = 1 - M AB-A6, auch T/Däm:
silaceata 2 12 - 2 1 = = = 2 = Hy) A7-M8 ®Birket 2 Ex
SCHIFF. 1776
4563 Electrophaes = = = - = = - - = 2 th »-# 31 € L E65-A7
corylata 1 4 Be 1 | = = Geb)
THNBG. 1792
454 Mesoleuca = Def =# (MI = u 13 av ZI u M6-E8 auch T/Däm:
SRicHRte - 6 - - - = - - 8 Hy) Be % N
. 1768 stets h,
Schw.holz 1 Ex
455 Melanthia - - - - - - - - = = 2 -4 =] | Geb A6-A7,
rocellata - 3 - 1 1 - => - - .- (Xe) E7-M8
CHIFF. 1776
456 Epirrhoe 4 W02 - 1 - 711 3 - 18 1 I-V SE BI E mer A6-M7, auch T, va
tristata 2 6 86 28 33 ar 27760 I (hi Geb) M7-E8 WaN und HW,
L. 1768 un graben
x
457 Epirrhoe 456 1 12 2.426 10 1 31 14 h si 37% U 4-A9® auch Tü [)
ALERT 27 | 196 116 656 109 31 4 69 20 28 (T:6) (Geb) 2-3 h —_
LLER, O.F Genera- *In 9 zT. fri-
e 1764 tionen sche Ex
4568 Perizoma 1 9 8 6 1 9 12 - 21 9 h sh 2 1 U M6-EB
alchemillata 26 61 n 7 6 12 #38 621 [Geb)
L. 1768
469 Perizoma - - - - - - = = > = = = te e M8
bifaciata - 1 - = - = = = = = "Ins ,
HAw. 1809 eb
460 Perizoma = = - - - - - - - = 2 = =) = H A6-E6
blandiata - - - - = - = 4 = - (Geb)
SCHIFF. 1776
461 Perizoma - - - - - 1 - - - 1 - - - | Geb A6-M7
flavofasciata = - - - 2 - - - = = (mGr)
THNBG. 1792
462 Hydriomena 2 = 3 5 „ 2 - 1 6 1 sh 2 - | Geb E6-A8
furcata 1 3 Se ! 2 2 3 16 (w,
THN8G. 1784 Hy)
463 Hydriomena - - - 3 - 3 n = 2 35 n -- 4: - | Geb A5-M7 Birket 1983
coerulata 1 3 13 a7 6:5. = - - 3 (Hy) 3 Ex.
641777
464 Anticlea - - = - = 1 - = = - = - - .- Geb E3-E4A 1989 WaS Ic
badiata - - 1 3 1 - - - - -
SCHIFF. 1776
465 Pelurga - Sle = = Ver VUEZT -0e=T ES Gr E7-E8
comitata - 1 = = _ 1 4 2 = = Agr,
L. 1768 ar,
466 Hydrelia - - - 1 - 1 - - - 63 - af <7=%H E6-AB WaN 1989
testaceata - - - | - = - 3 10 (Geb) 1 Ex., im Fran-
DENOYAN zosenhölzl sh
467 Hydrelia - 1 1 2 6 3 - - 16 - =1 31 > L M6-AB8
flammeolaria 2 31 3 7 3 8 - 1 2 3 Geb,
HUFN. 1767 Hy
468 Euchoeca - - 2 2 - 9 10 - 1 30 - =3537 € L M6-A7, 1. Gen. 1987
nebulata 1 3 RE Er 21 - - 6 18 Hy. A7-E8 bis M7,
Scor. 1763 eb) 2. Gen. zahl-
reicher
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
Asthena
albulata
HUFN. 1767
Asthena
anseraria
H.-S. 1866
Eupithecia
tenuiata
Hen. [1813]
1796
Eupithecia
inturbata
Hen. [1817]
1814
Eupithecia
Iumbeolata
AW. 1809
Eupithecia
ini
ETZ. 1783
Eupithecia
bilunulata
ZETT. [1839]
Eupithecia
linarlata
SCHIFF. 1776
Eupithecia
exiguata
Hen. [1813]
1796
Eupithecia
valerianata
Han. [1813]
1796
Eupithecia
venosata
F. 1787
Eupithecia
egenaria
H.-S. 1848
Eupithecia
extraversaria
H.-S. 1862
Eupithecia
centauresata
SCHIFF. 1776
Eupithecia
selinata
H.-S. 1861
Eupithecia
trisignaria
H.-S. 1848
Eupithecia
intricata
ZETT. [1839]
Eupithecia
satyrata
Hen. [1813]
1796
Eupithecia
tripunctaria
H.-S. 1862
Eupithecia
absinthiata
CL. 1769
Eupithecia
assimilata
DOUBLEDAY
1866
Eupithecia
vulgata
HAw. 1809
entfällt
Eupithecla
castigata
Hen. [1813]
1796
Eupithecia
icterata
VILL. 1789
Eupithecia
succenturlata
L. 1768
Eupithecia
subumbrata
SCHIFF. 1776
Eupithecia
millefoliata
ROÖSSLER 1866
SIEDLUNG
ı Garten
SiS SIMı SiN
PW
-n
no
113
12
37
WALD
n-
21
N Wasserwerk
WaS! WaM WaN WNw WNo
KENRASEN
HO! HM HW
a-
N
wm
-n
-n
@anS
5°
Gar
3®
Ev)
Geb
(w)
Geb/R
Geb
Geb
(mGr)
WN
WN
gr
mGr
Geb/R)
Geb)"
FLUG-
BEMER-
ZEIT KUNGEN
ES-A7
A6-A7
E7-E8
E7-E8
A7-AB
ES-M6
AB-M6
A7-E8
AS5-M6
E6-M7
M6-E7
M6-M7
A7-E7
M5-A6,
E7-E8B
E6-E7
AB-M6,
AT7-E7
AB-E6
E6-E6
M6-A6,
M7-E8
A8-E8®
MB-AB6,
E7-E8
M5-A7
AB-E7
M7-E8
A7-E8
E6S-M7
A7-AB
im Garten
WaS) auch
989
Gen.prp.
Genprp.
Gen.prp
Gen.pr
Wa IR)
1 Ex.
“alle 1983,
Nachzucht,
WasS 1989 1
Gen.prp.
Gen.prp
Gen.prp.
Gen.prp
Gen.pr
® zus. ? 1 Ex
®® nur 1986
Gen.pr
® zus R
®® nur 1986
Gen.prp.
® nur 1d86,
2. Generation
aurker
en.prp.
°1987 1 Ex. E6
Gen.pr
eva. Gärten,
2. Generation
stärker
Genprp.
Gen.prp
°T 2 weitere
Ex.
Gen.prp
Gen.prp.
Gen.prp
Gen.prp.
39
SIEDLUNG VOR FLUG- BEMER-
N. Art | Garten ! 1987 ZEIT KUNGEN
SiS SM, SIN Gar Mo HO HM
497 Eupithecia = = - = = = = = = = n/ M6-E7
Talnuosarla = 4 - = = = = = - = Ru
Ev. 1848
498 Eupithecie 1 2 1 - = - = [ze Hz 9 WN AB-E6 Genprp
indigata 1 6 = = 1 = — = = = FF.wer.
Hen. [1813] Birket 1983
1796 1 Ex.
498 a siehe Addenda
499 Eupithecia - - - 1 - 1 = 3° a 2 r AB-EB Gen.prp.
roten - 1 - - - - - 1 = = ee) “nur Bas
HUFN. 1767
500 Eupithecia 2 2 - 1 - 2 3 2 = E4-A6 Gen.prp
"irgaureate 7 | 28 Das er | (Gen. E7-AQ"
DOUBLEDAY Ww
1861
601 Eupithecia - = - = = = = = a Io WL 1989 1 Ex. im
abbreviata = = _ = = = = = = = Korbinianiholz
STEPH. 1831 KOLBECK
602 Eupithecia = = = = = = 5 = = =, WL A6B-M6 1989 an SN »
dodoneata = = — = = = = TEE WaS 3 09
GN. 1867 Genprp.
503 Eupithecia - - - - - - Z i-h -_-.I- Geb E7-E8B Gen.prp.
sobrinata = = = = = = = 1 = =
Hen. [1817]
604 Eupithecla - 1 - 2 = = = = => =. = WN A6-M7 Gen.prp.
lariciata = 1 - = = = = = = =
FRR. 1842
505 Eupithecia 6 ul 3 3 - 1 1 Veh m 2. ui A5-A7 Gen.prp
tantillaria 6 19 1 6 052 a = = Geb)
Bsp. 1840
606 Eupithecia 2 1 - - - - = tn a 51 ur M4-M6 en.prp
lanceata 2 6 4 2 4 - - - Ze Geb) °FFwıI
Hen. [1826]
1816
607 Chloroclystis 6 U 6 14 1 2 8 h > u = U E4-M6 Gen prp
Tal 12 32 10 14 12 7 - 4 4 4 R& b, E6-MB'
HAW. 1809 Hy
508 Calliclystis 1 1 - - - - = = =. == Geb M6-AB Genprp, im |
chioerata - - I ap = Garten (Was) |
MABILLE 1870 u wieder
509 Calliclystis 17 7 - 2 - 6 4 h = 82 U M6-E7® Genprp
ar 17 29 2 - 6 4 - 9 > 1 Ioer. °1983:
L. 1768 Agr E6-E6
510 Horisme 1 - 1 - = = = = u Geb E6-E7
tersata 1 8 1 1 2) - - - == (w)
SCHIFF. 1776
Boarminnae
511 Arichanna - - - = - = Re E = Er
melanaria - - - 2 = = = = u = Hy A7
L. 1768
612 Abraxas - - - - - - - - = - = Geb® M7 “va. Gärten,
rossulariata - = - = E = = = = 1 We 1989 1
. 1768
613 es = A ae 2 Zur sr „ai2® - - 3 - | Geb M6-EB aut T (zahl-]
SCoP. 1763 1 (wı) reich
614 Lomaspilis 6 2 48 g SeEEB 3*| n 146 20 18 U A5B-MB®® ® h T: Birk
Damen 4 77, 6I 31 44 6 SI ln 16 71 [6 b, abe #
B Hy HM-Ruderal v, |
616 Ligdia 2008 3 1 1 4 hıı A A) VE E6
adustata 3|ı a 6, 6 Br 2 le 2 er |
SCHIFF. 1776
BIiombanıa = 1 = Se: ee| vn - 1 - L AB-A7 *Däm: Birket
bimaculata - 9 - 2 6 2 = = ı u Geb, 1981/87 je 1 Ex
F. 1776 Hy |
617 Bapta 7 4 10 4 - 3 9 n=h) = 97 = L AB-M7, *T ein weitere
temerata 8| 2 15° 26 12 7 1 .2|14 24 Ub, MB (IEx) Ex.
SCHIFF. 1776 Geb)
518 Cabera 9|ı7 27 Bi, 2 3|nh - 1 -| Geb 6-E8 _Genprp, auch
re 37 17.17 36 6 — 1 6 16 (wı) am Flug- T: nd (986/87 |
i zeitende Birket je 1 Ex |
2.T. frisch) s |
519 Cabera 4 6 37 1 3 = 49 -n 9 71 ur 6-E8 Genprp., auch |
exanthemata 3 16 26 21 42 10 6 3 130 Geb) (2 Gene- T/Däm:. v.a. im’)
ScoP. 1763 rationen) Dach. Moos h
620 Plagodis 1 1 1 Des e ER 4 a D |
abraria 3 5 eo 1 = = De v-h 10 Geb M6-E6 ed, ellorai
L. 1767 |
621 Ellopia - - - - - 1 - f-v _ - 1 - “a M6-M7 sensu FORSTER
asciaria - - - - - - - _ - .- Geb) & WCOHLFAHR
L. 1768 i
622 Elopa - = = == = ZelEvenS Saee on A6-A7 _sensu FORSTER)
rasinaria - 1 - :) = 2 a = - = Geb) & WOHLFAHRTI|
CHIFF. 1776 |
623 Campaea - - 1 - = = - vn - = [ke A6-E7,
margaritata 1 16 - - 3 1 - 2 1 - Geb) A9-M9
L. 1767
40
624
626
626
627
628
629
630
531
632
633
634
636
636
637
538
639
640
641
642
543
644
545
646
647
648
649
660
Ennomos
autumnaria
WRNBG. 1869
Deuteronomos
alniaria
L. 1768
Deuteronomos
fuscantaria
HAw. 1809
Deuteronomos
erosaria
SCHIFF. 1776
Selenia
bilunaria
ESP. 1796
Selenia
tetralunaria
HUFN. 1767
Apeira
syringaria
L. 1768
Gonodontis
bidentata
CL. 1769
Colotois
ennaria
. 1761
Crocallis
elinguaria
L. 1768
Angerona
runarla
. 1768
Ourapteryx
sambucaria
L. 1768
Opisthograptis
luteolata
L. 1768
Epione
repandaria
HUFN. 1767
Cepphis
advenaria
HBnN. 1790
Lozogramma
chlorosata
ScoPr. 1763
Macaria
notata
L. 1768
Macaria
alternaria
HBn. [1809]
1796
Macaria
signaria
HBn. [1809]
1796
Macaria
liturata
CL. 1769
Chiasmia
clathrata
L. 1768
Itame
wauaria
L. 1768
Itame
fulvarla
VILL. 1789
Theria
rupicaprarla
SCHIFF. 1776
Erannis
bajaria
SCHIFF. 1776
Erannis R
leucophaearia
SCHIFF. 1776
Erannis
aurantiarla
HBn. [1799]
1796
ı®
ı Garten
SIS SIM| SIN |WaS| WaM WaN WNw WNo
4
1
=
aan
n-
vn
Sa
w=
22
69
-.
23
14
20
10
P>
o-
-n
[Ay
]
14
24
12
DD
boenı
6 1
1 =
8 32
23
1 7
SasR2
ze
1 7
1 4
10 34
23
1 s
1 1
No
1 3
16°
84
23
14
94
UOKO-
LO- FLUG- BEMER-
ZEIT KUNG
GIE an
Geb E8-EIO
(wı)
Geb M8-A9
(wı)
Geb E7-M9
ws M7-M9
Geb)
1. MA-MS5,
Geb) A7-A8
wL M4-E6,
Geb) M7-M8
Geb A7-M8
(wı)
Geb AB-M6
(wı)
Geb E9-A11
(wı)
Geb A7-M8 ®zus. je I R
(wı)
Geb E6-E7 WaS 19891
(wı)
vs E6-E7
Geb)
Geb Ab-E6°® 21987 1 Ex. M7,
(wıL) auch Däm
Geb/R 6-E9
(Hy) 2 Gene-
rationen)
E6-E6 ®Birket 1983
My
“ M6
Hy)
Ws
Geb)
WwL A6-AB,
(Geb/R) AB-M8
Me A6-AB
Geb)
AS5-E7
AB8-M8
Sin M6-E7,
Geb) E7-M8
ac: AB6-E6,
ep: A7-E8
Agr
Geb*® E6-E7
Geb/R E6-M7
(Hy)
Geb E2-E3
Geb M10-M11
(Xe)
Ws A3-A4
Geb)
M10-M11
Veen)
2 Ex, auch T:
Birket stets h
2. Generation
nur partiell
2. Generation
nur partiell
auch T: Birket n
“alsRv
2. Generation
m.o.w. partiell
DICH am
aN|w, oJ, HO
HM-Ruderal, HW '
Birket 1983 1 Ex
®v.a. in Gärten
1989 WaS und
WaN je 1 Ex
Is, *FF. wer,
im Garten nur
1983 + 1989
II, ®F.F.w.r.
dd, ®F.F.w.r.
al
WALD
FLUG- BEMER-
Nr. Art ı Garten | Wasserwerk
H ) ZEIT KUNGEN
561 Erannis A3-M4®® dd, ®FFwr,
marginaria ®*1986 1 Ex
E17 4
6562 Erannis EIO-EN dd, ®FFwr
defoliaria
CL. 1769
6563 Phigalia AI-A4 dd, ®FFwr
edarla
. 1787
6564 Apocheima
hispidiaria
SCHIFF. 1776
E3 dd, ®F.Fwır
555 Lycia A3-MB *FFwı
hirtaria Gen.prp
CL. 1769
556 Biston - 2 - - - - - 1 1 - a Zi] Geb M3-E4 °EFwı
strataria 1 - - 2 - - - - - .- (wı)
HUFN. 1767
557 Biston 1 - 2 2 - 6 9 2 12 16 v eg #2 WE M6-E7 ® Entw.graben
betularia 4 3 19 6 - 8 == 112 34 Geb) 1983 8 Ex
L. 1768
558 Peribatodes 1 20 38 43 3 6 3 - 7 = h = F877= 7 AT7-A9
rhomboldaria 31 | 374 26 9 16 22 - 6 3 Geb)
SCHIFF. 1776
659 Peribatodes - = 1 8 1 12 2 — 3 1 n-h - 10 - 2 M7-E8B SIN + WaS
secundarla 4 73 40 69 12 n 1 9 1 - Geb) öfters als R
EsP. 1797
560 Cleora - - = = = 1 1 = = - - - 1 1 Gr A5B-M6 Mallertshofer
cinctaria - 1 - - - - - - - => Geb) Holz 1989 h,
SCHIFF. 1776 WaN 1989 2 «a
661 Deileptenia - - 4 18 14 7 16 2 1 8 3a Zu d- Y E6-MB®* "nur 1986,
ribeata 3 128 VERRLSIE iz 21 1 - 21 8 Geb) **1987 bis EB
CL. 1769 j
5662 Alcis 7 Aw 36 19 16 4 29 = 3 9 h-sh - 39 - " A6-AB, *3 Ex. 1988
repandata 18 | 728 72 169 132 69 1 4 n 9 Geb) M9-MIO®
L. 1768
663 Boarmia - = 2 = = 4 = = 21 1 In 7 E- WL M6-E7
roboraria 6 - - = 3 E 1 #12
SCHIFF. 1776
5664 Serraca - 1 4 15 1 2 31 1 4 16°| vn - 7 - Ss A5B-M7, *Birket 1983
unctinalis 6 39 8 3 10 26 - 8 566 21 Geb) E7*®® 3 Ex, **1988
COP. 1763 1 frisches Ex
565 Ectropis a 622137210, 9 - 1 16 h-sh - 8 2|U M3-E5°, S-Bahnhof 1988
bistortata 13 115 Br szel 14 - 2 13 9 W, E6-MB, 2.Ex., °2.T. bis
GOEZE 1781 eb) M9-MIO®® a sehr
partie
566 Ectropis - - - 2 - 1 - - - - (SE m: E6-A7
extersaria - 1 - = - — = = Pr Geb)
Hen. [1799]
1796
667 Aethalura — = = - 1 2 - = = 8 3 - 1 — LE M4-E6
unctulata - - 1 - 2 1 = = - 6 ir.
CHIFF. 1776 eb)
668 Ematurga N - - = (Mn 2 (n) 3 | - = 1m) Gr 6-M8 *T h-sh ("HM’>
atomaria - - De 3 1 6 a "ke 2 Gene- Ruderal),
L. 1768 eb) rationen) am L.n. opt
669 Bupalus - = 7 3 2 8 14 = 2 = n-h + = 26. = "s A6b-A7® ®1987 I Ex. M7,
iniaria 1 1 3 237 E19 icu == 2 - = Geb) Schw.holz 1988
1768 1Ex. T
570 Sons = EM = - - - \ I I - - - - 1 | mGr ES-A7 ee
neata = = = = = = nuderre=
ScoPr. 1763 BannStacke h
am L. n. op
Addenda:
268b Photedes - - - - - - - - - - - =. Se FSlcHy AB-A9 Wan 1989 2 dc
ygmina = = = = = = = = = =
AW. 1809
498b Eupithecia - = = = - - - - - - - - - - Geb A8 1989 im Mal-
impinellata = - - - - - - - = (Xe lertshofer Holz
BN mGr) 4 Ex
Artenzahlen: Gesamt: Tagfalter 68 Arten
Bombyces + Sphinges 96 Arten
Noctuidae 226 Arten
Geometridae 193 Arten
Summe 672 Arten
SIEDLUNG WALD HALBTROK- "DACH. VOR
Jahr ı Garten | Wasserwerk KENRASEN MOOS” 1987 2
SiS SIM} SN WaS!WaM WaN WNw WNo HO} HM HW Au We Mb Gar Mo HO HM
1987 116 136 217 240 171 260 267 160 266 181 431
1988 222 304 277 263 283 261 132 260 183 184 446
367 144 270 162 > 2 614
42
Die Artenzahlen spiegeln konstante, vom Jahr weitgehend unabhängige Muster wieder,
wie dies aus dem Beispiel des Flughafengebiets (HO, HM, HW) schön zu ersehen ist.
In gewissen Grenzen gilt das auch für die Individuenausbeuten, das Verhältnis HO/
HM/HW zeigt beispielsweise recht konstante Werte von 3,3/1/2,9.
4.4. FAUNISTISCHE HINWEISE
Auf eine eingehende Erläuterung der faunistischen Besonderheiten, so interessant dies
auch wäre, soll im Rahmen dieser Arbeit verzichtet werden. Da dies teilweise bereits
an anderer Stelle geschah, sei hier nur auf HAUSMANN (1988) verwiesen.
Einige für die Thematik relevante Informationen aus der Faunistik werden jedoch im
folgenden kurz aufgelistet. Es handelt sich hierbei um Arten, bei denen Arealerweite-
rungen festzustellen sind, solche mit Arealverlusten und schließlich Arten mit stark
lokaler Verbreitung. Die Angaben beziehen sich auf Prozesse bzw. Befunde dieses
Jahrhunderts in Südbayern.
Als Basis wird die von OSTHELDER (1925-1933) vor ca. 60 Jahren publizierte relativ
vollständige Fauna Südbayerns und der angrenzenden nördlichen Kalkalpen verwendet.
Die Hauptreferenz stellen die in der Folgezeit durch WOLFSBERGER (1945-1949;
1950: 1953/1954; 1954/1955; 1958; 1960; 1974 u.a.) veröffentlichten Ergänzungen dar.
4.4.1. Arealerweiterungen
Bei den Arealerweiterungen wie in den unten aufgeführten Fällen sind Ortsveränderun-
gen von Schmetterlingen (99) zu postulieren, die entweder in Vorstößen über viele Ki-
lometer hinweg (mindestens 10-50) oder in einer mehr oder weniger stetigen Weise
über mittlere Distanzen von 3-10 Kilometer erfolgten.
Derartige Ortsveränderungen entsprechen jedoch (meist) nicht dem "trivial movement"
(sensu SOUTHWOOD, 1978) der betreffenden Art. Vielmehr kommt es oft im Zuge
solcher Arealerweiterungen zu erfolgreichen Kolonisationen von geeigneten Habitaten,
wo die Art dann vergleichsweise orts- und habitattreu bleibt.
Folgende Arten sind zu dieser Gruppe zu rechnen:
Bombyces und Sphinges: Gluphisia crenata
Noctuidae: Euxoa tritici, E. aquilina, Noctua janthina, N. comes, Apamea scolopacina,
Hoplodrina ambigua, Eremodrina gilva, Calophasia lunula, Euthales algae, Bryoleuca
raptricula
Geometridae: Lygris mellinata, Thera juniperata, Eupithecia intricata, Eupithecia mille-
foliata, Eupithecia sinuosaria
Die Liste erhebt keinen Anspruch auf Vollständigkeit, bespielsweise könnten auch
Agrotis venustula, Zanclognatha tarsipennalis und Eupithecia virgaureata hierher gehö-
ren, u.U. wurden sie jedoch in vergangenen Zeiten auch nur übersehen bzw. verwech-
selt.
Wanderfalter, die neuerdings in Südbayern häufiger nachgewiesen werden, wie z.B.
Mythimna albipuncta interessieren uns in bezug auf die Thematik hier weniger.
4.4.2. Arealverluste
Arealverluste sind schwieriger zu belegen als Arealgewinne.
Wenn man den Blick jedoch nicht auf so große Areale, wie dies Südbayern ist, richtet,
43
sondern Arealverluste auf lokalerem Niveau untersucht, werden sich - vor allem kor-
reliert mit Zerstörungen von Lebensräumen - viele Beispiele finden lassen.
In einer vorbereitenden Arbeit konnte in diesem Sinne bei den hygrophilen Arten der
Noctuiden-Unterfamilie Amphipyrinae ein überdurchschnittlicher Rückgang in den Ar-
ten- und Individuenzahlen belegt werden. So sind beispielsweise die auf Schilf ange-
wiesenen Eulen Rhizedra lutosa und Mythimna pudorina im Untersuchungsgebiet nur
vereinzelt zu finden, während sie vor 60 Jahren von OSTHELDER (1925-1933) aus
Schleißheim noch als "sehr häufig” gemeldet wurden. Andere "Röhricht-Eulen” wie
Mythimna straminea TR., Leucania obsoleta HBn., Archanara geminipuncta HAw. unc
Archanara algae EsP. sind im Verlauf der letzten 100 Jahre aus dem Gebiet Ober-
schleißheim wohl ganz verschwunden. Diese Befunde sind mit hoher Wahrscheinlichkeit
auf die Zerstörung der Niedermoorflächen im Dachauer Moos zurückzuführen.
Eine parallele Entwicklung bei den Tagfaltern, nämlich die Extinktion von Populationen
vieler hygrophiler Arten v.a. im Dachauer Moos wurde in HAUSMANN (1988) belegt.
4.4.3. Arten mit lokalem Vorkommen
Das Verbreitungsmuster lokal verbreiteter Arten kann im Zusammenhang mit Speziali-
sierungen auf bestimmte Raupenfutterpflanzen wertvolle Informationen zur Beurteilung
von Verbreitungsstrategien liefern.
Auch die folgende Liste ist sicher nicht vollständig, sie spiegelt einige aus den Publi-
kationen OSTHELDERs (l.c.) und WOLFSBERGERs (l.c.) entnommene Verhältnisse
wieder, die für Südbayern bzw. im besonderen für die untere Hochebene des Faunenge-
bietes zutreffen. Eine Reihe von Zusatzinformationen stammt auch aus Gesprächen mit
verschiedenen Wissenschaftlern.
Bombyces und Sphinges: Dasychira selenitica, Eilema lutarella, Pelosia muscerda, Hy-
bocampa milhauseri, Lophopteryx cuculla, Heterogenea asella, Tethea ocularis,
Tethea fluctuosa, Cilix glaucata, Cosmotriche lunigera, Bacotia sepium, Narycia
monilifera
Noctuidae: Euxoa obelisca, Eugnorisma depuncta, Rhyacia lucipeta*, Rhyacia simulans*,
Sideridis albicolon, Eriopygodes imbecilla (Glazialrelikt), Cerapteryx graminis, Or-
thosia populi, Mythimna pudorina, Amphipyra berbera*, Talpophila matura, Ipimorpha
subtusa, Cosmia affinis, Apamea lateritia, Apamea unanimis, Photedes extrema, P.
fluxa (vielleicht ein Arealerweiterer), Amphipoea lucens, Nonagria typhae, Nonagria
nexa, Atypha pulmonaris, Cucullia lucifuga, Parastichtis suspecta, Cirrhia aurago,
Cirrhia gilvago, Cirrhia ocellaris, Hyboma strigosa (Arealerweiterer?), Chrysaspidia
putnami, Chrysoptera c-aureum, Parascotia fuliginaria, Colobochyla salicalis, Zanc-
lognatha tarsipennalis, Trisateles emortualis
Geometridae: Comibaena pustulata, Hemithea aestivaria, Hemistola chrysoprasaria,
Sterrha muricata, Sterrha inquinata, Sterrha dimidiata, Sterrha emarginata, Scopula
rubiginata, Anaitis praeformata, Acasis viretata, Lygris testata, Thera firmata, Xan-
thorhoe designata, Calostigia olivata, Euphyia molluginata, Perizoma bifaciata, Peri-
zoma flavofasciata, Anticlea badiata, Pelurga comitata, Hydrelia testaceata, Asthena
anseraria, Eupithecia inturbata, Eupithecia valerianata, Eupithecia venosata, Eupithe-
cia egenaria, Eupithecia extraversaria, Eupithecia selinata, Eupithecia abbreviata,
Eupithecia dodoneata (neu für Südbayern! HAUSMANN in Vorber.), Eupithecia laricia-
ta, Calliclystis chloerata, Arichanna melanaria, Abraxas grossulariata, Ellopia fasciaria,
44
Abb. 3c und 3d: Sterrha muricata (oben) und Abraxas grossulariata (unten), zwei in
Südbayern nur lokal verbreitete Spanner (Geometridae).
45
Deuteronomos alniaria, Lozogramma chlorosata, Itame fulvaria, Iheria rupicap-
raria, Erannis bajaria, Erannis leucophaearia, Apocheima hispidaria, Boarmia robo-
raria, Ectropis extersaria
Interessant sind auch die extremen Häufigkeiten von sonst weniger beobachteten Arten
wie Scotia clavis, Amathes sexstrigata, Peribatodes rhomboidaria und einiger anderer.
Die mit * gekennzeichneten Arten sind als wanderverdächtige Arten wie Chloridea
peltigera oder Nycterosea obstipata in bezug auf die Thematik dieser Arbeit natürlich dif-
ferenziert zu betrachten. Es handelt sich hierbei wohl nicht um stabile lokale Populationen.
5. DAS PHANOMEN TURNOVER
5.1. ARTEN-ZEIT-BEZIEHUNG
Jedem, der sich faunistisch mit der Erstellung von Nachtfalter-Artenspektren befaßt,
begegnet schon bald eine Reihe von Gesetzmäßigkeiten, wie z.B. das Phänomen, daß
man im ersten Erhebungsjahr bei einer "punktuellen"” Erfassung von Imagines auch
unter größten Anstrengungen (Licht-, Köder-, Pheromonfang u.s.w.) nie ein vollständi-
ges Artenspektrum eines definierten Standortes erhält. Es werden in den Folgejahren
immer weitere Arten hinzukommen.
So erwähnt URBAHN (1973) neben langfristig beobachteten Häufigkeitsfluktuationen
auch das Phänomen, daß manche Arten in Zeiträumen von einigen Jahren oder gar
Jahrzehnten tatsächlich verschwinden. Sie werden "gewissermaßen ersetzt durch Neuan-
kömmlinge. Dies alles ist bekannt und immer so gewesen ..." (URBAHN, .c.).
Wenn man sich als Beispiel einmal die im Garten (SiN) in den letzten 5 Erhebungs-
jahren nachgewiesenen Eulenfalter (Noctuidae) betrachtet, ergibt sich folgendes Bild (der
Kurvenverlauf wurde durch die Mittelwerte gelegt):
200
150
100
t (Jahre)
1 2 3 4 5 6
Abb 4: Zunahme der Artenzahl (n) der Familie Noctuidae im Lauf der letzten 5 Erhe-
bungsjahre im Garten des Verfassers (SiN).
Increase of species number (n) in the family Noctuidae during the last 5 trapping-
years in the garden of the author.
46
Der Kurvenverlauf zeigt eine Annäherung an eine Gesamt-Artenzahl von 170 Arten.
Nimmt man diesen Wert mit 100 % an, so ergibt sich im 1. Jahr ein Prozentsatz von
58,5 %, im 2. Jahr 72,6 %, im 3. Jahr 82,2 %, im 4. Jahr 89,4 % und im 5. Jahr 93,5 %.
Das bedeutet, daß bei derartigen punktuellen Methodiken Erfassungsintervalle von min-
destens 4 Jahren erforderlich sind, um ein einigermaßen "komplettes" Artenspektrum zu
erhalten.
In einem durchschnittlichen ersten Jahr fehlen also ca. 70 Arten. Es bleibt jedoch un-
klar, ob es sich um eine tatsächliche Abwesenheit handelt, bzw. wie hoch der Prozent-
satz der Arten ist, die lediglich nicht erfaßt wurden.
Bei einer flächendeckenderen Methodik ergeben sich vollständigere Werte für das erste
Jahr und eine schnellere Annäherung an die maximale Artenzahl (siehe 6.3.1.).
Zur Abschätzung der Fehlerquellen ist zu berücksichtigen, daß sich die Abbildung 4
ausschließlich auf die durchgeführten Lichtfallenfänge stützt. Eine Reihe von Arten (ca.
10), die ein offensichtlich nicht optimales Anflugverhalten ans Licht zeigen, wurde
daher ausgeklammert.
Inwieweit einige weitere Arten auf diese Weise methodisch bedingte "Zuwachsvorgänge"
vorgetäuscht haben könnten, muß an dieser Stelle ebenso offenbleiben wie die Frage,
wie groß der Anteil der Arten ist, die durch ihre Seltenheit in der vorliegenden Me-
thodik unter der "Erfassungsschwelle" geblieben sind. Da es sich bei Lichtfallenfängen
um eine Probeentnahme handelt, können sehr seltene Arten in einer Stichprobe auftau-
chen, in einer anderen jedoch fehlen und so zu einer Unterschätzung der Artenzahlen
in den ersten Erhebungsjahren führen. Weitere Aufschlüsse werden uns hierzu die
Häufigkeitsverteilungen (Kapitel 7) geben.
Fehlerquellen sind also theoretisch alle Faktoren, die Arten unerkannt lassen, die im
Einzugsbereich der Lichtfalle anwesend sind, wie z.B. auch die Witterung, der Fang-
rhythmus, Bestimmungsprobleme (siehe 3.3.), Fallenbeschaffenheit, Lichtqualität u.s.w..
Prognosen, die mittels Arten-Zeit-Beziehungen getroffen werden, können jedoch zu gu-
ten Ergebnissen führen: Die in HAUSMANN (1988) abgebildete Kurve postulierte für
das Jahr 1988 einen Artenzuwachs von 30 Arten, real waren es dann 28 neue Nach-
weise.
Bei der Betrachtung der Arten-Zeit-Kurven (z.B. Abb. 4) werden Artenumsätze von
Jahr zu Jahr ersichtlich: Im zweiten Jahr kommen im Garten, verglichen mit dem Aus-
gangsjahr, durchschnittlich 24 Noctuiden-Arten hinzu. Bei gleichbleibender Artensumme
bedeutet das auch 24 fehlende Arten. Diesen Artenaustausch bezeichnet man als "Turn-
over".
5.2. FORMELN
Die dynamischen Prozesse, die sich auf der Ebene der Artenspektren abspielen, finden
erst seit der richtungsweisenden Publikation MAC ARTHUR & WILSONSs (1967) in ver-
stärktem Maße Beachtung. Jene hatten anhand von kleinen Inseln sehr anschaulich ge-
zeigt, daß sich der Artenbestand in einem dynamischen Gleichgewicht befindet, das von
der Größe der Insel ("Auffangtrichter" für Immigranten) und den Barrieren gegen die
Verbreitung (Abstand zum Festland) abhängig ist. Dieses Modell ist in gewissen Gren-
| zen auch für "Habitat-Inseln auf dem Festland, z.B. ... einem zurückgebliebenen
47
Sumpf" anwendbar (MAC ARTHUR & WILSON, 1.c.). Man könnte also auch im Unter-
suchungsgebiet die Artenspektren relativ isolierter Standorte, wie beispielsweise das
Wasserwerk oder die verbliebenen Moorbirkenwäldchen (Birket, Torfeinfang, Franzo-
senhölzl) als in einem Gleichgewicht befindlich betrachten, das von einem ständigen
Artenaustausch geprägt ist (Immigration und Extinktion von Populationen). An weniger
verinselten Lebensräumen finden vermutlich auf lokalem Niveau ähnliche Prozesse
statt, die sich jedoch schneller wieder ausgleichen können.
Zur Berechnung der Arten-Austauschraten (Turnover, is) von Jahr zu Jahr verwen-
det man zweckmäßigerweise die Formel für den absoluten Turnover, dem prozentualen
Anteil der ausgetauschten Arten am Ausgangsartenspektrum:
(X, ? X,) 100 % S; = Ausgangsartenzahl
S, X] Zahl der neu hinzugekommenen Arten
X, = Zahl der fehlenden Arten
Wenn beispielsweise im Garten (SiN) 1987 90 Noctuidenarten, 1988 dagegen 89 festge-
stellt wurden, so spiegelt die Stabilität der Artenzahl keineswegs stabile Verhältnisse
in der Artenzusammensetzung wieder: 21 Arten kamen hinzu, 22 konnten nicht mehr
nachgewiesen werden. In die o.g. Formel eingesetzt ergibt sich folgender Artenumsatz:
(21 + 22) 100
a
90
Für unser eingangs erwähntes Beispiel der Austauschrate von Jahr I nach Jahr 2 in der
Arten-Zeit-Beziehung (Abb. 4) errechnet sich ein Turnover von 48,3 %.
Nach DIAMOND (1969) ist die Höhe des Turnovers von der Länge des "Census Inter-
valls" zwischen zwei Aufnahmen abhängig. Zur Berechnung des Relativen Turnovers
(T,) dient folgende Formel:
(T + E) 100 I = Zahl der hinzukommenden Arten
Tea less) E = Zahl der fehlenden Arten
S, = Gesamtartenzahl (1. Aufnahme)
S,= Gesamtartenzahl (2. Aufnahme)
-
u
Zeitspanne (Jahre) zwischen S, und S,
(Census Intervall)
Bei längeren Zeitspannen kommt in zunehmendem Maße ein "in-and-out-effect" (das
Wiederauftauchen ausgelöschter Populationen und umgekehrt) zum Tragen, wodurch die
Summe der Austauschereignisse unterschätzt wird (DIAMOND & MAY, 1976).
In den folgenden Berechnungen wird unter "Turnover” stets der absolute Turnover
verstanden.
Es erscheint wichtig, den "Pseudoturnover” (NILSSON & NILSSON, 1983), verursacht
durch Stichprobenfehler (siehe 5.1.) vom tatsächlichen Austauschgeschehen abzutrennen.
Bei punktbezogenen Erhebungen sind nun einige verschiedene Reaktionsmuster der Arten
denkbar: Bei mobilen, mehr oder weniger ubiquitären Arten hängt das Ausmaß von
48
verursachten Turnoverereignissen von der Abundanz ab, häufige Arten (z.B. die häufig-
sten Wanderfalter) werden stets nachgewiesen, seltene Arten verurachen Turnover;
hier wäre als Beispiel der Wanderfalter Nycterosea obstipata zu nennen.
Bei relativ ortstreuen Arten kommt es nun neben dem Ausmaß der Dispersionsaktivität
auf die Entfernung zum typischen Habitat an: Wird die Art im typischen Lebensraum
erfaßt, kommt es zu wenigen Turnoverereignissen, ist das Habitat sehr weit entfernt,
wird ein Zuflug selten erfolgen. Auch hier ist - in langen Zeiträumen betrachtet - der
Turnover vergleichsweise klein. Bei "mittleren" Entfernungen kommt es dagegen in
einer starken Weise zu einem Wechsel von Auftauchen und Verschwinden. Eine Ermitt-
lung solcher Distanzen kann für Fragen bezüglich der Vernetzungen von Biotopen von
Interesse sein.
6. INTERPRETATION DES APPARENTEN TURNOVERS
6.1. BERECHNUNG DER AUSTAUSCHRATEN
6.1.1. Vorbemerkungen
Um den Turnover über mehrere Jahre hinweg auf die Konstanz des Wertes hin zu te-
sten, werden in einem ersten Schritt die Austauschvorgänge im Garten des Verfassers
(SiN) etwas genauer beleuchtet. Für die Tests der Standortabhängigkeit und der Ab-
hängigkeit von verschiedenen Artengruppen (nach Kriterien der Systematik, der Jahres-
zeiten u.s.w.) scheinen sich v.a. die Werte, die sich aus den Fängen der letzten 3
Jahre errechnen, durch die konstant gehaltene Meihode zu eignen.
Für die Berechnungen wird die Formel für den absoluten Turnover verwendet.
Einige Arten mußten wegen ihres nicht optimalen Anflugverhaltens ausgeklammert
werden.
6.1.2 Liste der Turnover-Werte
6.1.2.1. Garten (SiN; Tab. 4):
In den 5 Erhebungsjahren wurde mit einigermaßen vergleichbarer Methode Lichtfang
betrieben: Standort und Bau der Falle waren praktisch konstant, die Anzahl der Fang-
nächte in der Hauptflugzeit (10.6.-31.8.) betrug 25, 39, 38, 30 bzw. 35. Mit einer Aus-
nahme (1985) wurde stets über 100mal pro Jahr gefangen.
Eine Verfälschung der Austauschraten 1983 > 1985 findet durch die Addition zweier
Jahresturnover und durch den "in-and-out-effect" statt: Es handelt sich um zwei ge-
genläufige Komponenten, die sich vielleicht mehr oder weniger egalisieren (vergleiche
DIAMOND & MAY, 1976).
49
"BOMBYCES UND SPHINGES" (ohne Zygaenidae, Sesiidae, Psychidae und einige
nicht optimal erfaßbare Arten, z.B. Macroglossum stellatarum)
für TO verwen- Immigrations- Extinktions- Arten
Re Turnover Ä
dete Arten 2 ereignisse ereignisse addiert
species-2, used accumulated
for turnover species-,
nur vor
1983 1 = - = (1)
1983 33 = = 2 33
1985 24 6 15 63,6 % 39
1986 29 12 Z 79,2 % 47
1987 30 9 8 58,6 % 49
1988 Z7 6 9 50,0 % 51
62,8 %
NOCTUIDAE (ohne einige nicht optimal erfaßbare Arten, z. B. Ectypa glyphica)
für TO verwen- Immigrations- Extinktions- Arten 2
IH R.33 Turnover Ä
dete Arten I ereignisse ereignisse addiert
nur vor
1983 1 = = = (1)
1983 111 = = - 111
1985 104 19 26 40,5% 130
1986 100 PER 31 55,8 % 148
1987 90 22 32 54,0% 154
1988 89 21 22 47,8 % 159
49,5 %
GEOMETRIDAE (ohne einige nicht optimal erfaßbare Arten, z.B. Ematurga atomaria)
für TO verwen- Immigrations- Extinktions- Arten &
sc Fi Turnover 3
dete Arten I ereignisse ereignisse addiert
nur vor
1983 2 = = = (2)
1983 97 = = z 97
1985 56* Se 46* 52,6*% 102*
1986 100 528 8* 107,1*% 129
1987 93 20 27 47,0% 141
1988 102 23 14 39,8% 146
((61,6 %))*
Die mit * gennzeichneten Werte sind verfälscht, da bei den Geometriden 1985 die
Artbestimmung nicht in allen Fällen mit der nötigen Genauigkeit durchgeführt wurde.
50
EEE
Der vom Jahr 1983 auf das Jahr 1986 berechnete Turnover beträgt 56,7 %, eine
Verfälschung dieses Austausches durch das Mehrjahresintervall und durch stattfin-
denden in-and-out-effect ist zu veranschlagen.
Der durchschnittliche Geometriden-Turnover im Garten würde dann 47,8 % (Mittel
aus drei Werten) betragen.
MACROHE TEROCERA &
für TO verwen- Immigrations- Extinktions- Arten 2
RN SR Turnover 2
dete Arten 2 ereignisse ereignisse addiert
nur vor
1983 4 = = = (4)
1983 241 = = = 241
1985 183* Zu 86* 47,1*% 271
1986 229 89* 45% 13.2°% 324
1987 213 51 67 51,5 % 347
1988 218 50 45 44,6 % 356**
(654,1 %))*
* Siehe Bemerkungen zur Familie Geometridae! Ein besserer Durchschnittswert er-
rechnet sich wohl aus den beiden letzten Werten mit 48 %.
*#*Dje bisher im Garten (vorne) festgestellte Gesamtartensumme unter Einschluß der
Arten, die für die Turnoverberechnungen nicht berücksichtigt wurden, beträgt 366.
Nimmt man auch die 30 m entfernt an WaS sowie die bis Juni 1989 neu festgestell-
ten Arten hinzu, so kommt man auf 414 Arten.
6.1.2.2. Zusammenstellung der in den letzten 3 Jahren festgestellten Turnoverwerte (Tab. 5)
"BOMBYCES UND SPHINGES"
SiN WaN HO HM HW Mittel
1986/87 58,6 % = 29,8 % 38,7% zu 153%
1987/88 500% 38,6% 455% 70,4 % 31,1% 3
Mittel 54,3% 38,6 % 37,6 % 54,6 % 31,1%
NOCTUIDAE
SiN WaN HO HM HW Mittel
1986/87 54,0% = 35,3% 61,0 % > } 46.0 %
1987/88 47,8 % 33,9% 40,7% 50,0 % 45,3 % :
Mittel 50,9 % 33,9 % 38,0 % 553% 45,3%
Sl
GEOME TRIDAE
SiN WaN HO HM HW Mittel
1986/8 47,0% = 48,4% 102,6 % = 578 %
1987/88 39,8 % 47,3% 420% 882% 47,1% A
Mittel 434% 473% 45,2 % 95,4 % 471%
MACROHE TEROCERA %&
SiN WaN HO HM HW Mittel
1986/87 51,5 % = 39,1% 66,9 % > hr
1987/88 44,6 % 39,8 % 42,0 % 62,9 % 43,4 % f
Mittel 48,1% 39,8 % 40,6 % 64,9 % 43,4%
6.1.3. Folgerungen
Der Turnover scheint an einem definierten Standort von Jahr zu Jahr konstant zu
bleiben, deutlichere Schwankungen wurden bisher nur bei den Bombyces und Sphinges
beobachtet (z.B. HO und HM), was aber vermutlich an der größeren Störanfälligkeit
aufgrund der geringen Stichprobengröße liegt.
Wie groß der Einfluß des Witterungsverlaufs eines Jahres auf den Turnover ist, läßt
sich anhand des Materials noch nicht abschätzen, da im Zeitraum der Untersuchun-
gen keine genügend krassen Unterschiede auftraten.
Das Ausmaß der Artenaustauschprozesse ist stark vom jeweiligen Standort (Biotop-
beschaffenheit) abhängig:
Der hohe Turnover im Offenland (HM) erklärt sich durch das vergleichsweise starke
Auftreten von Gastarten aus mehr oder weniger entfernten Habitaten (siehe 6.2.).
Am reich strukturierten Waldrand (HO) liegen zwei unterschiedliche Lebensraumty-
pen in unmittelbarer Nähe des Fallenstandortes. Zufliegende Nachtfalterarten spielen
hier eine geringere Rolle, der Turnover ist daher niedriger.
Der im Siedlungsgebiet (SiN) relativ große Artenaustausch deutet vermutlich eine
Abhängigkeit des Turnovers vom Sukzessionsstadium bzw. dem Ausmaß der Störungen
und Eingriffe in das Ökosystem durch den Menschen an. SPITZER & LEPS (1988)
wiesen eine Korrelation von Sukzessionsstadium des Lebensraumes und der Höhe der
Abundanz-Schwankungen (Fluktuation) der Arten nach. Inwieweit nun Turnover im
Artenspektrum und Fluktuationen in den Häufigkeiten der Arten miteinander verknüpft
sind, wird in einem folgenden Kapitel getestet (6.4.).
Die Frage, ob es sich nicht nur um eine Abhängigkeit von der Stichprobengröße han-
delt (diese war an den Standorten HM und SiN am kleinsten), bleibt primär jedoch
offen und wird gesondert untersucht (z.B. Kapitel 7).
Der Turnover ist abhängig von der gerade betrachteten Artengruppe. Besonders deut-
lich wird dies bei den Geometriden an HM, bei denen die ausgetauschten Arten bis-
weilen das Ausgangsartenspektrum an Zahl übertreffen. Da diese Familie vorwiegend
aus Bewohnern der Wälder und deren Ränder besteht, zeigt sich, daß die Abhängigkeit
52
von der Artengruppe im Grunde eine Abhängigkeit vom Ökotyp der betrachteten
Arten und den jeweiligen Distanzen und Flächengrößen der benachbarten geeigneten
Lebensräume ist.
Der Gesamtturnover für die Spanner (Geometridae) fällt wegen des Offenlandwerts
(HM) relativ hoch aus. In manchen Habitaten, z.B. im Garten (SiN) liegt er jedoch
niedriger als der Artenumsatz bei den Noctuiden.
Die Geometriden-Unterfamilie Boarmiinae fällt an Waldrand-Standorten mit einem
niedrigen Turnover von 36,9 % (HO, Mittelwert aus zwei Jahren) bzw. 37,1 % (WaN)
aus dem Rahmen. Im Garten lag er sogar noch darunter (siehe 6.4.3.). Im österrei-
chischen Gitschtal (aus WIESER, 1987) war Ähnliches festzustellen, hier war der
Effekt bei 44,0 % für die Geometriden und 23,4 % für die Boarmiinen noch stärker.
Bemerkenswert ist auch das gleichmäßige Niveau der Geometriden-Austauschraten an
allen Standorten, wenn man das Offenland (HM) außer Acht läßt: Es ergibt sich ein
Wert von 45,3 % bei einem Variationskoeffizienten von nur 7,7 %.
- Die Größenordnung des Turnover liegt in den meisten Biotopen zwischen 35 und 55
Prozent/Jahr, die Ergebnisse sind bei definierter Methodik reproduzierbar. Der Arten-
austausch von durchschnittlich 36,7 %, der sich aus den Zahlenkolonnen WIESERs
(1.c.) errechnet, liegt in diesem Rahmen und ähnelt stark den im Wasserwerk (WaN)
festgestellten Verhältnissen.
6.2. TURNOVER DURCH KOLONISATIONSVERSUCHE BIOTOPFREMDER ARTEN
Eine indirekte Methode, Artenspektren ökologisch zu gewichten, ist die Ermittlung des
"Spanneranteils”. In dieser Familie ist der Anteil an Wald- und Waldrandbewohnern
zwar deutlich höher, als z.B. bei den Eulenfaltern (Noctuidae), doch geben so ermit-
telte Werte nur einen sehr unvollständigen ersten Anhaltspunkt über die Präsenz
dieses Ökotyps.
An den Fangstellen ergibt sich folgendes Bild (Angaben in %):
Tab. 6: Spanneranteile (%) an den verschiedenen Standorten 1987 und 1988.
Percentages of the Geometridae at the various trapping-sites 1987 and 1988.
SIEDLUNG WALD HALBTROK- "DACH.
| Garten | Wasserwerk KENRASEN MOOS”
SiS SIM|SiN WaS|WaM WaN WNw WNo HO| HM HW Au We Mb
187 4 31 #3 4 40 3% TEEN Al
1988 46 43 ae 40 00 3 ae
Im Offenland (HM), aber auch an Randbiotopen mit leichtem Offenlandcharakter (SiM,
HW) ist der Spanneranteil niedriger. Sogar die etwas polarisierten Wasserwerks- Werte
sind mit der Lage der Standorte korreliert, da WNw dem Waldrand am nächsten liegt.
Genauere Informationen ergeben sich allerdings, wenn die Beurteilung auf der Basis
der in der Artenliste (4.3.) angegebenen ökologischen Charakteristik der Arten erfolgt.
Wertet man die Haupt-Ökotypen des Gesamtartenspektrums aus, so kommt man zu
folgender Zusammenstellung:
53
Tab. 7: Anteile der verschiedenen Ökotypen am Gesamtartenspektrum (Macroheteroce-
ra) im Untersuchungsgebiet.
Ecotype-percentages of the species spectrum (Macroheterocera).
UÜb: 50 Arten (9,8 %) Geb: 174 Arten (34,3 %)
mGr: 80 Arten (15,8 %) W: 120 Arten (23,6 %)
Agr: 17 Arten (3,3 %) Hy: 44 Arten (8,7 %)
Xe: 23 Arten (4,5 %)
Im Offenland (HM) zeigen sich bei einer derartigen Einteilung erwartungsgemäß deut-
lich erhöhte Werte bei den Ubiquisten (20,4 %) und den mesophilen Arten des Gras-
landes (23,1 %), leicht erhöht sind sie bei den Arten des Ackerlandes (5,4 %) und den
Xerothermophilen (5,0 %), während die Arten der Wälder, der Waldränder, der Ge-
büschformationen und Hecken deutlich unter den Gesamtwerten liegen (Geb: 24,9 %;
w: 17,2 %).
Man könnte also (verallgemeinernd) von ca. 46 % "biotopfremden” Arten sprechen,
wenn man einmal alle Offenlandarten ohne die hygrophile Fauna als biotoptypisch be-
zeichnet.
Eine verfeinerte Methode der Betrachtung wird zeigen, daß der Prozentsatz der "Über-
fremdung” dieses Standortes noch höher ist: Hierzu wurde unter Berücksichtigung der
Raupenfutterpflanzen getestet, welche Arten mindestens aus dem 150-300 m entfernten
Ruderalgelände (siehe 2.2 und 9.2.) und welche mindestens vom Flughafenrand
(800-1000 m) herbeigeflogen sein müssen.
Vom Ruderal stammen - so beurteilt - 88 Arten (39,8 %) und vom Flughafenrand 36
Arten (16,3 %). Bei diesem Anteil der Gastarten von 56 % handelt es sich wie gesagt
um Mindestangaben!
Tab. 8 zeigt, daß solche biotopfremde Arten verstärkt am Turnovergeschehen beteiligt
sind, daß also der apparente Turnover, der in den mit der vorliegenden Methodik erar-
beiteten Artenspektren zu beobachten ist, durchaus mit tatsächlich in der Natur statt-
findenden Prozessen verknüpft und keineswegs nur ein methodischer Artefakt ist.
Tab. 8: Artenzahlen und Turnover bei bodenständigen und zugeflogenen Arten im Of-
fenland (HM) 1986-1988.
Species number and turnover of within habitat propagating and the visiting species in
the study areas of open habitats.
Arten-2_ Turnoverereignisse
St 1986-1988 pro Art und Jahr
atus
2 ber events of turnover per
BROGIES NINE species and year
potentiell bodenständig 97 0,29
species potentially propagating in site
mindestens aus 150-300 m 88 0,57
at least from 150-300 m distances
mindestens aus 800-1000 m 36 0,54
at least from 800-1000 m distances
54
Wenn man eine grobe Abschätzung des Ausmaßes von Kolonisationsversuchen ins Of-
fenland hinein wagt, kann man von ca. 150 Wald-, Waldrand- bzw. Gebüscharten
ausgehen, die an den Rändern des Flughafengebiets vorkommen dürften, aber im Rude-
ral, wo Weiden die einzigen Bäume darstellen, keine Lebensgrundlage haben. Für ca.
1/4 dieser Arten konnte also im 3-Jahres-Zeitraum die Bewältigung der Distanz von
ca. 1 km nachgewiesen werden. Da sich darunter vergleichsweise wenige 99 befanden,
wäre ein hypothetisches, an dieser Stelle neugeschaffener Biotop in dieser Zeitspanne
nur von recht wenigen Arten dieser Gruppe besiedelt worden. Möglicherweise könnten
jedoch von den Futterpflanzen ausgehende Geruchsstoffe 99 bevorzugt anlocken.
Es zeichnet sich aber ab, daß man bei einer Anlage von solch isoliert liegenden Bio-
topen (z.B. auch im Ackerland) mindestens 10 Jahre, wenn nicht länger, warten muß,
um auf natürlichem Wege zu einem einigermaßen biotoptypischen Artenspektrum zu
gelangen. Ähnlich langsame Besiedelungsprozesse vermutet HEYDEMANN (1980) für
die Arten der Feuchtbiotope. Erfolgskontrollen nach 1-5 Jahren, wie sie oft praktiziert
werden, sollten in solchen Fällen daher differenziert betrachtet werden.
Im Ruderal kann man den Artenbestand, beurteilt nach Fläche und Reichhaltigkeit der
Vegetation (Krautschicht sehr artenreich, wenige Gebüsch- und Baumarten) auf ca.
250-350 Arten schätzen. Abzüglich der auch an HM möglicherweise bodenständigen
Arten ergeben sich 150-250 Arten, von denen in 150-300 m Entfernung ca. 1/3 bis die
Hälfte in der Zeitspanne von 3 Jahren beobachtet werden konnte. Zu berücksichtigen
ist hier die im Vergleich zu den umliegenden Wäldern geringere Ausgangsfläche (nur
ca. 5 ha).
An den anderen Standorten ist eine derartige Beurteilung schwieriger, es können nur
Einzelinformationen gegeben werden, wie im Fall der im Garten nachgewiesenen Nacht-
falter, die durch die Larvalökologie an Pflanzen der Gattungen Salix, Populus und Al-
nus gebunden sind. Keine dieser Pflanzen kommt in einem Radius von 200-300 m um
den Fangplatz herum vor.
In 5 Erhebungsjahren (siehe 6.1.2.1. und 9.2.) traten 17 so spezialisierte Arten auf, die
durchschnittlich 0,51 Turnoverereignisse pro Art und Jahr verursachten. Auch zwei
weitere außerhalb dieses Intervalls gefangenen und auf Weiden spezialisierte Arten
wurden nur in einem Jahr (? Austauschereignisse) beobachtet.
Für den Rest des Artenspektrums (339 Arten) errechnen sich 0,31 Turnoverereignisse
pro Art und Jahr. Diese Ergebnisse ähneln den an HM (Ruderal) gemachten Beobach-
tungen stark.
35
6.3. ABHÄNGIGKEIT DES TURNOVERS VOM FLÄCHENINHALT DES ABGEDECKTEN
AREALS
6.3.1. Vergleich der Werte
Tab. 9: Vergleich der Austauschraten in der Gesamtfläche mit denen eines Einzel-
standortes.
Comparison of turnover-rates in the total area with those of a single trap.
| GESAMTFLÄCHE l
Jahr | Standorte für Turnover ver- | GARTEN (SiN)
| wendete Arten-2 Turnover | Turnover
| TOTAL AREA |
year | localities species-2, used | GARDEN
| for turnover |
1986 4 351 = =
1987 10 416 24,8 % 31,5 %
1988 10 428 15,4 % 44,6 %
Eine Unschärfe dieses Vergleichs ergibt sich aus zwei Gründen: Erstens wurde durch
das Fallennetz nicht eine einheitliche Fläche abgedeckt, es war von Jahr zu Jahr ein
Ausweichen von Populationen in nicht fangabgedeckte, zwischen den Fallen liegende Bio-
tope möglich.
Zweitens sind einige "Austauschereignisse” auf der Gesamtfläche auf den Wechsel von
Standorten und die damit verbundene Veränderung der Biotopbeschaffenheit zurückzu-
führen. Daher sind vor allem die Jahre 1986/1987 wenig vergleichbar.
Nach einer Bereinigung dieser Unsicherheitsfaktoren würde der Gesamtflächen- Turnover
noch niedriger liegen, vermutlich bei 5-10 %!
Bei einer größeren Flächenabdeckung durch mehrere Fallen verringert sich also der
Turnover in einer drastischen Weise. Es findet eine Art Abpufferung des sich meist
lokal abwickelnden Artenumsatzes statt.
6.3.2. Rückschlüsse für faunistische Ansätze
Aus dem genannten Phänomen leitet sich ein erhöhter Wirkungsgrad der Methode ab:
Anstelle der normalerweise bei einer punktuellen Nachtfaltererhebung pro Jahr nach-
zuweisenden 50-65 % des Artenspektrums (siehe Arten-Zeit-Kurve, 5.1.) wurden 1987
und 1988 jeweils ca. 440 von 550 im Gebiet zu erwartenden Nachtfalterarten beo-
bachtet (siehe HAUSMANN 1988). Das bedeutet im ersten Jahr einen Anteil von 80 %,
im Zweijahresintervall 1987/1988 (473 Arten) sogar 86 %.
6.4. TURNOVER, KONSTANZ UND FLUKTUATION
6.4.1. Tagfalter (Unterer Inn: REICHHOLF, 1986)
Die Auswertung von umfangreichem Tagfalter-Material aus 10jährigen Linientaxierun-
gen am unteren Inn ergab den interessanten Befund, daß bei recht stabilen Artenzahlen
pro Jahr ein "außerordentlich hoher Artenumsatz ..., der im Mittel 36 % beträgt"
(REICHHOLF, 1.c.) festzustellen war. "»Stabilität« paart sich hier also mit starker
56
»Dynamik«" (REICHHOLF, 1.c.), was sich auch in der Konstanz des Auftretens nieder-
schlug: Diese verteilte sich keineswegs gleichmäßig über das Artenspektrum, sondern
es überwogen die ganz unregelmäßig sowie die sehr regelmäßig auftretenden Arten,
während Tagfalterarten mit mittlerer Konstanz unterrepräsentiert waren.
Im Tageslicht spielen bei der angewandten Methode der Linientaxierung - anders als
bei Lichtfallenfängen - die Möglichkeit einer unvollständigen Erfassung des Artenspek-
trums eine sehr untergeordnete Rolle. Und dennoch kam es in punkto Turnover zu
einem recht ähnlichen Ergebnis wie bei den Nachtfaltern in der vorliegenden Arbeit.
Inwieweit sich die Befunde auch im Hinblick auf die Konstanz des Auftretens entspre-
chen, wird im folgenden geprüft werden.
6.4.2. Nachtfalter im Gitschtal (WIESER, 1987)
Auf der Suche nach geeignetem Vergleichsmaterial stößt man bei den Nachtfaltern
schnell auf einen eklatanten Mangel an quantifizierten Artenlisten. Eine solche Quanti-
fizierung wird oft mit dem Argument, die Mengenangaben haben nichts mit den tat-
sächlichen Abundanzen in der Natur zu tun, unterlassen, sie unterbleibt bisweilen
jedoch wohl aus Angst vor Kritik. Auch wenn derartige Zahlenkolonnen natürlich nicht
direkte Rückschlüsse auf Populationsgrößen erlauben, so bieten dennoch die relativen
"Lichtfallen-Häufigkeiten” in bestimmten Fragestellungen wertvolle Informationen.
So kann die Nachtfalterfauna des Gitschtales (WIESER, 1987), die in Lichtfallenfängen
der Jahre 1983-1986 erstellt wurde, gut für die Berechnung von Konstanz, Fluktuation
und Turnover verwendet werden.
‚Das Problem, daß ein Zeitraum von 10 Jahren "als ein Mindestmaß einer verläßlichen
Beobachtung populationsdynamischer Vorgänge" gelten kann (VARGA & UHERKOVICH,
1974), kennzeichnet die folgenden Berechnungen als vorläufig. Statistische Fehlerquellen
werden hierbei zumindest teilweise durch die Betrachtung relativ großer Artengruppen
kompensiert.
Der mittlere Turnover, errechnet aus drei Austauschraten, beträgt im Gitschtal 36,7 %.
Tab. 10: Konstanz, Turnover und Fluktuation im Gitschtal (Österreich) 1983-1986, er-
rechnet aus WIESER (1987).
Constancy, turnover and fluctuation in the "Gitschtal” (Austria) from 1983 to 1986,
calculated from WIESER (1987).
KONSTANZ ARTEN TURNOVER- TURNOVEREREIG- VARIATIONS-
EREIGNISSE NISSE/ ART x JAHR KOEFFIZIENT
constancy species events of events of turnover coefficient of
turnover per species and year variation
20% 102 137 0,45 200,0 %
50% 59 110 0,62 129,1 %,
75% 74 115 0,52 91,9%
100 % 222 = 0,00 58,7%
GESAMT 457 362 0,26 104,7 %
total
a
n (Arten)
300 eh
V@%
200
200
100
100
25 50 IB, 100 y4 25 50 73 100
KONSTANZ
Abb. 5: Konstanz des Auftretens von Abb. 6: Variationskoeffizient (V, mit Staı
Nachtfaltern im Gitschtal. dardabweichung) in Abhängigkeit von d
Constancy of moths in the "Gitschtal" Konstanz bei Nachtfaltern im Gitschta
(Austria). Coefficient of variation (V, with Stan
dard deviation) and constancy in the
Gitschtal.
Die Abhängigkeit von der jeweiligen Artengruppe wird in Tabelle 11 ersichtlich.
Tab 11: Mittlerer Variationskoeffizient und Turnover verschiedener Artengruppen im
Gitschtal (errechnet aus WIESER, 1.c.).
Coefficient of variation and turnover of some systematic groups in the "Gitschtal".
ARTENGRUPPE VARIATIONSKOEFFIZIENT TURNOVER
group of species coefficient of variation turnover
Bombyces und Sphinges 103,0 % 32.2.%
Noctuidae 102,0 % 332%
Geometridae 108,9 % 44,0 %
(Boarmiinae 80,9 % 23,4%)
Die Arten mit mittlerer Konstanz sind wie bei den Tagfaltern am unteren Inn unterre-
präsentiert; es sind hier bei einer größeren Stichprobe (knapp 20.000 Individuen) und
einem kürzeren Erfassungsintervall im Vergleich mit REICHHOLF (1986) die regelmä-
Big auftretenden Arten (rechter Teil der Kurve) etwas stärker vertreten. Dennoch wird
ein nicht unbedeutender Teil des Artenspektrums sehr unregelmäßig nachgewiesen.
Konstanz und Fluktuation sind zwei streng negativ miteinander korrelierte Parameter.
Die meisten Turnoverereignisse eines definierten Artenspektrums werden von den sehr
58
unregelmäßig auftauchenden Arten verursacht. Pro Art und Jahr gerechnet sind es
allerdings die Arten mittlerer Konstanz, die die größten Austauschraten aufweisen. Das
häufige Auftauchen und Verschwinden solcher Arten kann durch die Position der Licht-
falle in einer bestimmten Distanz zum typischen Habitat bedingt sein: Wird im Rand-
bereich der potentiellen Dispersionsaktivität einer Art geleuchtet, werden verstärkt
derartige Effekte auftreten (siehe Schlußbemerkungen zu 5.2.).
6.4.3. Nachtfalter in Oberschleißheim (Garten)
Im 5-Jahresintervall 1983/1985/1986/1987/1988 wurden nur ausgewählte Arten aus den
Bombyces, Sphinges und aus der Familie Noctuidae berücksichtigt. In bezug auf die
Geometridae gilt die in 6.1.2.1. angesprochene Problematik. Bei einigen weiteren Arten
erschien die quantitative Vergleichbarkeit fraglich, sie wurden ebenfalls ausgeklammert.
Variationskoeffizienten aus 5-Jahresintervallen, wie sie in Tabelle 12 angegeben wer-
den, können allerdings nicht direkt mit 4-Jahreswerten (WIESER, 1987 oder Tabelle
13) verglichen werden. Zur Abschätzung der Korrelation der verschiedenen Parameter
liefern die folgenden Ergebnisse jedoch genügend Einzelinformationen.
Tab 12: Konstanz, Turnover und Fluktuation bei Nachtfaltern im Garten des Verfassers
(SiN) in 5 Erhebungsjahren.
Constancy, turnover and fluctuation of Macroheterocera in the garden of the author
in 5 trapping years.
KONSTANZ ARTEN-2 TURNOVER- TURNOVEREREIG- VARIATIONS-
EREIGNISSE NISSE / ART x JAHR KOEFFIZIENT
constancy species-2 events of events of turnover coefficient of
turnover per species and year variation
20 % 46 1122 0,39 223,6 %
40% 29 60 0,52 142,1 %
60 % 24 51 0,53 113,9 %
80 % 27 43 0,40 92,8%
100 % 39 = 0,00 69,5 %
GESAMT 165 226 0,34 135,3 %
total
59
n (Arten)
50
40
30
20
10
20 40 60 80
100
Abb. 7: Konstanz des Auftretens von
Nachtfaltern im Garten.
Constancy of moths in the
garden (Southen Bavaria).
200
100
% 20 40 60 80
KONSTANZ
Abb. 8: Variationskoeffizient (V, mit Stan-
dardabweichung) in Abhängigkeit von der
Konstanz bei Nachtfaltern im Garten.
Coefficient of variation (V, with Stan-
dard deviation) and constancy in the
garden.
Die Werte und Kurven ähneln im Prinzip den unter 6.4.1. und 6.4.2. gefundenen Ver-
hältnissen.
Die konstanten Arten (100 %) zeigen eine etwas stärkere Fluktuationsdynamik als die
des Gitschtales. Dies könnte auf größere anthropogene Störeinflüsse in Siedlungsgebie-
ten (siehe 6.4.5.) zurückzuführen sein. Jedenfalls entspricht dieser Befund auch der im
Gesamtbild festgestellten größeren Artenumsatz-Dynamik.
Nach verschiedenen systematischen Einheiten aufgegliedert, lassen sich folgende inte-
ressante Einzelwerte feststellen:
Tab. 13: Gegenüberstellung des mittleren Variationskoeffizienten und des
mittleren
Turnovers verschiedener systematischer Gruppen in unterschiedlichen Erfassungszeit-
räumen im Garten.
Mean of coefficient of variation and mean of turnover of various taxa in the gar-
den.
MITTLERER MITTLERER
VARIATIONSKOEFFIZIENT TURNOVER
mean of coefficient mean of
of variation turnover
(5 Erhebungsjahre)
5 years
Bombyces + Sphinges 138,9 % 62,8 %
Noctuidae 133,4 % 49,5 %
60
Tab. 13 (Fortsetzung)
MITTLERER MITTLERER
VARIA TIONSKOEFFIZIENT TURNOVER
mean of coefficient mean of
of variation turnover
(4 Erhebungsjahre: 1983, 1986, 1987, 1988)
4 years
Bombyces + Sphinges B32% 62,5 % (n=47)
Noctuidae 121.1 % 49,2 % (n=122)
Geometridae 112,2 % 47,8 % (n=131)
- Unterfamilie Boarmiinae 96,7% 28,9 % (n=42)
- Gattung Eupithecia 136,8 % 78,5 % (n=24)
Die gemittelten Variationskoeffizienten und der mittlere Artenumsatz einer definierten
Artengruppe sind also offensichtlich miteinander korreliert. Bei stärkeren Fluktuationen
kommt es statistisch häufiger zu Artenaustausch-Ereignissen.
Trotz der relativ hohen Turnoverraten und Fluktuationen bei den Bombyces und Sphin-
ges ist bei einzelnen Arten die Konstanz der Populationen bemerkenswert, wie z.B. bei
Spilosoma menthastri (100 % Konstanz, V = 25,0 %) oder Spilarctia lubricipeda (100 %
Konstanz, V = 43,9 %). Dieser Einzelbefund deckt sich gut mit den Ergebnissen in
REICHHOLF (1974).
Die in der Zeitspanne von 4 Jahren festgestellten Werte für die Spanner (Geometri-
dae) und die Unterfamilie Boarmiinae stimmen erstaunlich gut mit dem Material aus
dem Gitschtal (WIESER, 1987) überein. Die Boarmien, deren Raupen vorwiegend auf
Bäume angewiesen sind, sind durch die geringen Fluktuationen und den niedrigen Arte-
numsatz als Arten gekennzeichnet, die stabile, relativ ortsfeste Populationen bilden.
Dies steht im Einklang mit den extrem niedrigen Arten-Umsatzraten der Futterpflanzen.
Die erhöhte Dynamik der an SiN nachgewiesenen Eupithecienarten könnte z.T. im Zu-
sammenhang mit instabileren Ressourcen stehen, zu berücksichtigen ist jedoch stets die
Standortabhängigkeit solcher Phänomene: Am Fangplatz WaS beispielsweise scheinen
sich die populationsdynamischen Prozesse bei den Arten der Gattung Eupithecia auf
einem viel niedrigeren Niveau abzuspielen. Andersherum unterliegen die Boarmien im
Offenland (HM) einem relativ hohem Artenaustausch. Eine hohe Ortstreue der Eupithe-
cien konstatieren auch VARGA & UHERKOVICH (1974).
6.4.4. Nachtfalter in Oberschleißheim (Offenland: "HM" und "HO"”)
Im Flughafengebiet (HM und HO) stehen leider nur Ergebnisse aus drei Erhebungsjah-
ren (1986, 1987, 1988) zur Verfügung, wodurch Randeffekte, die zu einer Verzerrung
der Ergebnisse führen können, stärker in Erscheinung treten. Es wird sich aber zeigen,
daß sich dies durch die Fülle des Materials (über 200 Arten an HM) wohl zum großen
Teil gegenseitig ausgleicht und aufschlußreiche Folgerungen zuläßt.
Besonders wertvoll ist eine genauere Analyse der Verhältnisse im reinen Offenland
(HM), da hier die Abgrenzung der Habitate in einer schärferen Weise erfolgen kann
(vergleiche 6.2.):
61
Tab. 14: Konstanz des Auftretens verschiedener Macroheteroceren-Taxa im Offenland (HM).
Constancy of some Macroheterocera-Taxa in the open grassland (HM).
KONSTANZ" BOMESCEs } meer Re 0 00008
33,3 % 13 44 2 e
66,6 % 15 25 21 6l
Arten-2 42 117 62 “=
species-Z
Den tatsächlich festgestellten Kurvenverlauf der Konstanz, der ganz im Einklang mit
dem bereits diskutierten Befund einer Unterrepräsentation der Arten mittlerer Kon-
stanz steht, kann man sich nun in einem vereinfachten Modell als aus zwei Komponen-
ten zusammengesetzt vorstellen. Hierzu soll von einer hypothetischen scharfen Eintei-
lung in "biotoptypische”, und "biotopfremde"” Arten ausgegangen werden. Folgende
Einzelverteilungen bezüglich der Regelmäßigkeit des Auftretens sind zu erwarten:
\
Su beobachtet
N:
\
S\ „ biotoptypisch
50 Rn
8 biotopfremd
33,3 66,7 100 Konstanz ©.)
Abb. 9: Beobachtete und erwartete Konstanz des Auftretens, aufgeschlüsselt nach der
Bodenständigkeit der Arten.
Observed and expected constancy of species occurrence, separated into the catego-
ries ‘'habitat specific‘ (dotted line) and ‘origin off site‘ (of capture) (broken line).
The solid line gives the observed distribution of constancy .
Je weiter "das Heimathabitat" von der Falle entfernt ist, umso weiter sollte sich in
Abb. 9 die Kurve der Gastarten nach links verschieben. Je großflächiger und unge-
störter der typische Lebensraum um die Falle herum ist, umso steiler wird der Kur-
venverlauf der potentiell bodenständigen Arten sein.
Die Verteilung der Familie der Spanner (Geometridae) in den verschiedenen Konstanz-
klassen entspricht ziemlich genau der postulierten Kurve für biotopfremde Arten. Lenkt
man das Augenmerk darauf, daß der Wald für HM einen solchen entfernten Biotop
62
darstellt und die Spanner vorwiegend Wald-, bzw. Waldrandarten sind, so scheint
schon dies ein erster Anhaltspunkt für eine Bestätigung der Hypothese zu sein.
Da jedoch in den allerwenigsten Fällen ein solches 2-Biotope-Modell vorliegen wird,
sondern Überlagerungen von mehreren, verschieden weit entfernten Zuwanderungs-
quellen, so werden, falls Beurteilungen überhaupt möglich sind, differenziertere Tests
vonnöten sein.
Hierzu wurde das an HM nachgewiesene Artenspektrum über eine genauere Betrach-
tung der in der Literatur angegebenen Raupenfutterpflanzen, z.T. durch eigene Beo-
bachtungen präzisiert, in drei verschiedene Kategorien eingeteilt: Es können potentiell
bodenständige Arten von solchen abgetrennt werden, die entweder aus mindestens
150-300 m oder aus über 800 m Entfernung stammen müssen (siehe 6.2.). Es handelt
sich also um Mindestangaben. Andere Kleinstbiotope spielen in der näheren Umgebung
auf dem Flughafen eine nur sehr untergeordnete, zu vernachlässigende Rolle.
50 bodenständig
40
30
20
aus mind.
150-300 m
10
u... aus mind.
O 800-1000 m
33,3 66,7 100 Konstanz (%)
Abb. 10: Beobachtete Konstanz des Auftretens bei Nachtfaltern verschiedener "Hei-
mat-Habitate" im Offenland (HM).
Constancy of occurrence in the light-trap-captures in relation to distance of the
species‘ breeding sites (solid line = highly probable in site propagation, broken line =
distance 150 to 300 metres, dotted line = distance 800 to 1000 metres).
Abb. 10 bestätigt nun die eingangs aufgestellten Überlegungen:
- Der rechte Teil der Kurve (also die regelmäßig auftretenden Arten) besteht fast aus-
schließlich aus den potentiell bodenständigen Arten, während der linke Teil überwie-
gend von den zugeflogenen Gästen beherrscht wird. Das jedoch bedeutet, daß die in
Lichtfallenausbeuten festgestellte Konstanz des Auftretens als Parameter der Popu-
lationsdynamik durchaus mit real in der Natur ablaufenden Prozessen verknüpft ist.
63
Es handelt sich mit höchster Wahrscheinlichkeit nicht nur um den unregelmäßigen
Nachweis von ständig anwesenden Arten, sondern tatsächlich um ein unregelmäßiges
Auftreten. Dies wiederum bekräftigt den Aussagewert des in Lichtfallen-Artenspek-
tren auftretenden Turnovers!
- Mit zunehmender Entfernung der Ausgangs-Habitate verschiebt sich die Teilkurve der
biotopfremden Arten weiter nach links, wie dies im Falle der vom Flughafenrand
(800-1000 m) stammenden Nachtfalter geschah. Das Auftreten einer Art wird also
mit zunehmender Entfernung vom Habitat unregelmäßiger.
Schon im Gesamtbild (siehe 6.2.) fallen die in verstärktem Maße fehlenden Waldarten
auf. Eine Vielzahl von Arten dieses Lebensraumtyps, die in ca. 1 km Entfernung (z.B.
an HO) nachgewiesen werden konnte, ist also mit 0 % Konstanz zu veranschlagen.
An anderen Standorten ist eine Beurteilung schwieriger, da sich die Effekte einer Viel-
zahl mehr oder weniger kleiner Lebensräume verschiedenster Entfernungen überlagern
und das im reinen Offenland so klar ausgeprägte theoretische Modell im Gesamtbild
verwischen.
Am Flughafenrand (HO) ergibt sich beispielsweise folgendes Bild:
Tab. 15: Konstanz des Auftretens verschiedener Macroheteroceren-Taxa am Flugha-
fenrand (HO).
Constancy of some Macroheterocera-Taxa at the edge of a wood (HO).
KONSTANZ BOMBYCES +
onslancy SPHINGES NOCTUIDAE GEOMETRIDAE 2
33,3% 14 32 29 75
66,6 % 12 30 35 711
100 % 3 76 60 167
Arten-2 37 138 124 319
species-2
Die regelmäßig auftretenden Arten sind hier stärker vertreten, was dadurch erklärt
wird, daß an diesem Waldrand-Standort sowohl Waldarten wie auch Offenlandarten als
"biotoptypisch" angesprochen werden können. Diese auf den Standort bezogene verrin-
gerte Artenspektrendynamik schlägt sich in ebenfalls deutlich niedrigeren Artenum-
satz-Raten nieder als im Offenland.
6.4.5. Eulenfalter (Noctuidae) in Südböhmen und England
Umfangreiche, auf sehr großen Stichproben beruhende Auswertungen von Lichtfallenfän-
gen in Südböhmen und England ergaben wertvolle Informationen v.a. in bezug auf die
Fluktuationsdynamik. Die im folgenden kurz skizzierten Ergebnisse stützen sich auf die
Publikationen von REJMANEK & SPITZER (1982), SPITZER, REIJIMANEK & SOLDAN
(1984), GLAZIER (1986), GASTON (1988) und SPITZER & LEPS (1988). Einleitend
muß darauf hingewiesen werden, daß in diesen Arbeiten nur Arten mit einer gewissen
Mindestkonstanz des Auftretens bzw. einer Mindestabundanz berücksichtigt wurden.
Dies ist bei Vergleichen stets zu bedenken.
64
Nach SPITZER, REJMANEK & SOLDAN (1984) sind Variationskoeffizient und poten-
tielle jährliche Wachstumsrate der Population (PGR) miteinander stark positiv korre-
liert. Die Arten mit den höchsten festgestellten Variationskoeffizienten sind r-Strate-
gen, ihre Raupen sind polyphag.
Wie wir im vorigen Abschnitt (6.4.4.) gesehen haben wurden durch die bevorzugte
Verwendung konstant auftretender Arten bei diesen Berechnungen v.a. die potentiell
bodenständigen Arten erfaßt und statistisch verwertet. Außerhalb ihrer Habitate können
auch tendenziell von K-Strategen beherrschte Gruppen mitunter höhere Variationskoef-
fizienten aufweisen. Am Standort SiN trifft dies vielleicht bei den Eupithecien (6.4.3.)
zu. Hier waren bei den Berechnungen auch die unregelmäßig auftretenden Arten hinzu-
gezogen worden. Die Boarmien reagierten als K-Strategen mit niedrigen Fluktuationen
jedoch ganz im Sinne der o.g. Autoren.
Die Absolutwerte der in REIJMANEK & SPITZER (1982) publizierten Variationskoef-
fizienten für Arten ab einer Konstanz von 25 % (3 von 12 Jahren) liegen bei durch-
schnittlich 94,6 %. Sie sind mit Werten aus unterschiedlichen Erfassungszeiträumen
jedoch nicht direkt vergleichbar. Die relativen Abweichungen vieler Arten von diesem
Mittelwert entsprechen zumeist den Ergebnissen im Gitschtal und aus dem Untersu-
chungsgebiet.
Das Ausmaß der Abundanzschwankungen ist von der jeweils untersuchten Artengruppe
abhängig (REJMANEK & SPITZER, 1.c.): Wanderfalter und schädliche Arten, vor allem
die der Landwirtschaft, zeigen hohe Variationskoeffizienten, hygro- und mesophile
Arten des Graslandes sowie die Bewohner von "Baum- und Gebüschformationen” unter-
liegen dagegen geringeren Fluktuationen. Dies deckt sich mit den Beobachtungen im
Untersuchungsgebiet.
Die positive Korrelation von Variationskoeffizient und PGR belegen auch SPITZER &
LEPS (1988). Dieselben Autoren fügen hinzu, daB in einem Klimax-Ökosystem die
Häufigkeiten der Arten konstanter sind als in Ökosystemen früher Sukzessionsstadien
mit größeren Störeinflüssen. Für diesen Vergleich hatten sie die Variationskoeffizienten
der jeweils gleichen Arten herangezogen. Ephemere Lebensräume werden darüber hin-
aus von einer größeren Artenzahl an r-Strategen besiedelt. Dies könnte eine Erklärung
dafür sein, daß im Siedlungsgebiet von Oberschleißheim (anthropogene Störeinflüsse
relativ groß) etwas höhere Fluktuationen festzustellen waren, als beispielsweise im
Gitschtal. Diese größeren Häufigkeitsschwankungen führen statistisch häufiger zu einem
lokalen Verschwinden von Arten und damit zu einem höheren Turnover als an anderen
Standorten.
Populationen lokal vorkommender Arten, die als K-Strategen relativ stabile Ressourcen
und Habitate benutzen, besitzen niedrige Variationskoeffizienten (GLAZIER, 1986;
GASTON, 1988).
7. RUCKSCHLUSSE AUS DEN HAUFIGKEITSVERTEILUNGEN
7.1. ARTENZAHL UND STICHPROBENGRÖSSE
In einer ersten Betrachtung könnte man die höheren Umsatzraten im Garten (SiN) und
im Offenland (HM) auf die relativ geringen Individuenzahlen (ca. 1700 bzw. 1000 In-
dividuen pro Jahr) an diesen Standorten zurückführen und behaupten, daß hier durch ge-
ringere Erfassungsgenauigkeit ein größerer Einfluß methodisch bedingter Fehler vorliegt.
65
Die Abhängigkeit der Artenzahl von der Menge der gefangenen Individuen (ein Maß
der Diversität) - bezogen auf Jahressummen jeweils eines Standorts - geht aus Abbil-
dung 11 hervor.
Gesamtartenzahl,
Bodlren Yorller mach" Tue, Wie ae sk Bett .
Be
EN,
,* x
LERSR
27
I
200: ,
NOEMORO
n
(Individuen)
5000 10000
Abb. 11: Artensumme pro Jahr in Relation zur Individuenzahl; mit Kreis sind die Fang-
plätze We und Mb gekennzeichnet, mit x die übrigen Fangplatz-Jahresergebnisse.
Total species per year and number of individuals; o = two localities in wet woods
("We" and "Mb"): x = the results of the other localities.
Große Individuenzahlen pro Jahr bedeuten bei definierten Einzugsbereichen der Falle
aber auch biologisch reichhaltigere Habitate, die von Natur aus mehr Arten beinhalten.
Andersherum ausgedrückt ist die Stichprobengröße im Garten und im Offenland relativ
gesehen mit der der anderen Standorte vergleichbar, da die Proben aus einem kleineren
Individuen-Pool entnommen wurden.
Relativ stark aus dem Rahmen fallen die zwei mit Kreis gekennzeichneten Werte im
Dachauer Moos (We, Mb). Sie liegen vor allem wegen der überaus großen Häufigkeit
des Spanners Calospilos sylvata unter dem Niveau der anderen Fangplätze. Diese nied-
rigere Diversität könnte entsprechend den Ergebnissen MADERs (1980) in Zusammen-
hang mit der Störung des Lebensraumes durch die Zurückführung des ehemaligen
Niedermoors auf wenige kleinflächige Reliktstandorte und durch Einflüsse seitens der
Landwirtschaft von den Rändern dieser Restflächen her stehen. Deren Moorcharakter
ist seit vielen Jahren durch den stark gesunkenen Grundwasserspiegel verlorengegangen.
Die Stichprobenentnahme erfolgte an den drei Standorten im Dachauer Moos jedoch
mit geringerer Frequenz als an den anderen Stellen. Diese Problematik soll in Kapitel
7.3. besser beleuchtet werden.
Zur Abschätzung von Fehlerquellen bezüglich der Erfassungsgenauigkeit sollte man
vielleicht eher einzelne Standorte im Lauf der Jahre unter Berücksichtigung der Domi-
nanzstrukturen heranziehen.
66
7.2. VERGLEICH MIT DEN "log-series” WILLIAMS (1964)
Teilt man das 1987 und 1988 im Untersuchungsgebiet erarbeitete Artenspektrum in der
Weise ein, wie dies WILLIAMS (1964) in seinen Auswertungen des Fangergebnisses der
Lichtfalle in Rothamsted tat, so ergibt sich bei einer Zuteilung in die einzelnen geo-
metrischen X 3-Klassen das in Abb. 12 gezeigte Bild.
Artenzahl
number of species
100
80
60
40
20
I m m VW v VI VI VI x 3-Klassen
Abb. 12: Häufigkeitsverteilung der in den Lichtfallenfängen 1987 und 1988 nachgewie-
senen Arten in X 3-Klassen.
I = 1 Individuum IV = 14-40 Individuen VII = 365-1093 Individuen
2-4 Individuen V = 41-121 Individuen VIIIl= > 1093 Individuen
II = 5-13 Individuen VI = 122-364 Individuen
Abundance structure (in 3 geometric classes) of species of Macroheterocera,
caught by light-trap-captures 1987 and 1988.
|
-_
ll
Die Verteilung ähnelt am meisten derjenigen eines 8 Jahre dauernden, täglich erfolgten
Lichtfanges in Rothamsted bei einer Ausbeute von knapp 33.000 Individuen.
In bezug auf die Problematik der Erfassungsgenauigkeit interessieren uns nun vor allem
die selteneren Arten der ersten beiden Klassen an Einzelstandorten, sind es doch ge-
rade diese seltenen Arten, die in verstärktem Maße am Turnovergeschehen beteiligt
sind (SCHOENER, 1983).
17.3. ZUM PROBLEM DER ERFASSUNG DER SELTENEN ARTEN
7.3.1. Artenzahl und Fangrhythmus
Aus der Überlegung heraus, daß sich die beobachtete Artenzahl bei einer Optimierung
der Methode durch steigende Anzahl von Fangnächten pro Jahr an einen maximalen
Wert annähern sollte, soll nun die Abhängigkeit vom Fangrhythmus näher beleuchtet
werden. Durch ein auf die Fänge 1988 im Garten (WaS) gelegtes Raster wird getestet,
wieviele Arten nachgewiesen worden wären, wenn nur in jeder zweiten, vierten u.s.w.
Nacht geleuchtet worden wäre. Die Grundlage bilden die Ergebnisse aus den Fängen in
einem mittleren Rhythmus von 1,15 Tagen von Mai bis August bzw. von 1,45 Tagen
von April bis Oktober.
67
Das Ergebnis zeigt Abb. 13:
300 ee
200
100
Fangnächte (%)
50 100
Abb. 13: (Hypothetische) Artensumme n in Relation zur Anzahl der Fangnächte pro
Jahr (in % der 182 Gesamtfangnächte) am Standort WaS 1988.
Correlation of species number (n) and number of captures per year (in %X of the to-
tal of 182 nights) 1988 in the garden (Southern Bavaria).
Die Kurve zeigt eine Annäherung an einen Wert von 325 Arten im Jahr 1988. Wenn
man bedenkt, daß bei langjährigen Beobachtungen im Garten bisher 411 Arten nachge-
wiesen werden konnten, ist dies ein weiteres Argument dafür, daß in den Ergebnissen
der Einzeljahre tatsächlich Arten fehlen und das Artenspektrum somit einem mehr oder
weniger großen Artenumsatz von Jahr zu Jahr unterliegt.
Bei fast kontinuierlichem Betrieb der Lichtfalle scheinen etwas über 90 % des Arten-
spektrums nachgewiesen werden zu können. Für jede 2. Fangnacht errechnet sich ein
theoretischer Wert von 262,5 Arten (81 %); im Jahr 1987 waren bei einem (vergleich-
baren) durchschnittlichen Fangnachtabstand von 2,3 Tagen (Mai-August) bzw. 2,6
Tagen (April-Oktober) real 240 Nachtfalterarten beobachtet worden. Durch täglichen
Fang werden viele Individuen länger an der Lichtquelle festgehalten, als es einem
natürlichen Aufenthalt im Einzugsbereich der Falle ohne LichteinflußB entsprechen
würde. Dadurch kommt es zu einer leichten Überschätzung der theoretisch ermittelten
Artenzahlen für die Hälfte der Fangnächte. Dies fällt aber offensichtlich ab einer
gewissen Fülle von Einzelinformationen () 10.000 gefangene Individuen) nicht mehr so
stark ins Gewicht. Die Frage bleibt offen, inwieweit die Jahre 1987 und 1988 von der
Witterung her zu vergleichen sind.
In einem weiteren Test der Abhängigkeit der Artenzahl von der Fanghäufigkeit zeigte
die Familie Noctuidae im Jahr 1986 ähnliche Ergebnisse, obwohl hier fangfreie Nächte
zwischen den Stichprobenentnahmen lagen. Die Berechnungen stützen sich auf das
Fangergebnis im Garten am Fangplatz SiN. Die Gesamtartenzahl nähert sich an einen
Wert von ca. 125 Arten an. Bei Fangnachtabständen von durchschnittlich 2,3 Tagen
68
(Mai-August) und 2,0 Tagen (April-Oktober) waren demnach 79 % in der Probeentnah-
me enthalten, in der Hälfte dieser Fangnächte waren es noch 66 %. Im Jahr 1988
(WaS, alle Nachtfalterarten) betrugen die entsprechenden Werte 81 % bzw. 68 %!
7.3.2. PRESTONs "veil-line”-Theorie
Bei der Betrachtung der Häufigkeitsverteilung des am Flughafenrand (HO) für das Jahr
1988 nachgewiesenen Nachtfalter-Artenspektrums zeigt sich eine Dominanz der Arten,
die in 2-4 Individuen festgestellt wurden:
50 n
40
30
20
10
x 3-Klassen
I I III IV V VI VI
Abb. 14: Häufigkeitsverteilung der am Fiughafenrand (HO) 1988 nachgewiesenen Mac-
roheteroceren in x 3-Klassen (Legende siehe Abb. 12).
Abundance structure of Macroheterocera (in x 3-—-classes), captured 1988 at the
edge of a wood ("HO").
PRESTON (1948) unterstellte für derartige Häufigkeitsstrukturen eine lognormale Ver-
teilung (vergleiche auch MAY, 1980), bei der wie im vorliegenden Fall durch eine
begrenzte Stichprobenentnahme ein Teil der Kurve "abgeschnitten" wurde. Er nannte
diesen "Schnitt" bei den Individuen, die nur in einem Exemplar festgestellt wurden
"veil line”. Die Arten links davon waren in der Stichprobe nicht enthalten, hätten aber
in einer anderen auftauchen können (WILLIAMS, 1964).
Trägt man nun die aufsummierten prozentualen Anteile der Klassen I-VI an der Ge-
samtartenzahl gegen den Logarithmus der Klassenobergrenze auf (Abb. 15), so erhält
man unter der Annahme eines Nullwertes von 0 Arten einen etwas asymmetrischen
Kurvenverlauf. Dieser kann nun nach WILLIAMS (l.c.) auf der Basis größtmöglicher
Symmetrie durch eine Nullwert-Hypothese korrigiert werden (Abb. 15).
69
98% 7
log [upper
limit of class)
:
N (m) I) M MM
Abb. 15: Aufsummierte prozentuale Anteile der x 3-Klassen an der Gesamtartenzahl mit
und ohne Annahme eines Nullwertes am Fangplatz HO 1988 (vgl. WILLIAMS, 1964).
Accumulated percentage of the x 3-classes of the total species on the assumption
of no zero value and on the assumption of a zero value of 35 (see WILLIAMS, 1964).
Führt man diese Operation bei den Artenspektren aller drei Erhebungsjahre an HO
durch, so kommt man bei einer durchschnittlichen Gesamtartenzahl von 256 Arten auf
einen (hypothetischen) mittleren Nullwert von ca. 50 Arten.
Aus der Gesamt-Häufigkeitsstruktur der an diesem Standort 1986-1988 gefangenen
Nachtfalter (338 Arten) ergibt sich ein Nullwert von 40 Arten.
Diese Angaben könnte man benutzen, um die Arten-Zeit-Kurve (siehe 5.1.) zu korri-
gieren. Im ersten Jahr würde unter Annahme der oben genannten Nullwerte dann
durchschnittlich knapp 3/4 des Artenspektrums nachgewiesen werden können (statt ca.
60 %). Der Turnover würde sich von ca. 40 % auf ungefähr 30 % korrigieren.
Mit einer anderen Vorgehensweise waren wir schon an anderer Stelle (7.3.1.) zu einem
fast identischen Ergebnis gekommen: Bei einer Optimierung der Fangintensität wären im
Garten nach zwei voneinander unabhängigen Berechnungen (WaS, SiN) ungefähr 3/4
der hochgerechneten langjährigen Gesamtartenzahl in einem Einzeljahr nachzuweisen
gewesen (statt ca. 60 %).
Hervorzuheben ist allerdings der hypothetische Charakter dieser Aussagen, da offen-
bleibt, inwieweit sich ein solcher theoretisch ermittelter Nullwert mit der tatsächlich
unter der Erfassungsschwelle gebliebenen Artenzahl deckt!
70
Zu einer derartigen Beurteilung wären direkte Nachweise von methodisch bedingten
Artefakten nötig. Am Flughafenrand (HO) konnten beispielsweise im Sommer 1986
Raupen von Eupithecia tripunctaria und 1988 Raupen von Thyatira batis gefunden wer-
den. Die jeweiligen l. Generationen mußten also mit mindestens einem 9 im Gebiet
vertreten gewesen sein, obwohl in den betreffenden Jahren am Licht kein Imago be-
obachtet wurde. Der von Thyatira batis verursachte Turnover kann daher als methodisch
bedingt charakterisiert werden, bei Eupithecia tripunctaria ergibt sich jedoch ein zu-
sätzliches Turnoverereignis.
Derartige Einzelinformationen sind, gemessen an der Größe des Artenspektrums, nur
Mangelware und werden auch bei einer Optimierung anderer Methoden nie zu einem
umfassenden Bild des Anteils methodischer Störeinflüsse im apparenten Turnover füh-
ren.
Wertvolle Zusatzinformationen kann dagegen eine Betrachtung der Dynamik auf dem
Art-Niveau liefern. Wenn sich zeigen sollte, daß ein großer Teil des Artenspektrums
einer ausgeprägten Populationsdynamik unterliegt und die jeweilige Besiedelung eines
Habitats stark von einem Fließgleichgewicht abhängt, das durch ständige "Trittstein-
Sprünge", d.h. durch ein Neu-Aufsuchen, Bodenständig-Werden (mehr oder weniger
kurzzeitig) und bei Störungen durch ein Wieder-Verschwinden seitens der Arten ent-
steht, so sollte dies ein weiterer Hinweis darauf sein, daß der apparente Turnover eine
tatsächlich stattfindende Dynamik wiederspiegelt. Der apparente Artenumsatz mag nu-
merisch nicht ganz exakt sein, er stellt aber vielleicht eine brauchbare Annäherung
der Verhältnisse dar.
Hierzu sollen im II. Teil vor allem die Dispersionsaktivitäten der Arten in Zusammen-
hang mit Verbreitungsstrategien betrachtet werden.
71
II. EXPERIMENTELLER TEIL: DISPERSIONSVERHALTEN UND.
TRIVIAL MOVEMENT
8. DIE EXPERIMENTE
8.1. VORSTELLUNG DER MARKIERUNGSEXPERIMENTE
8.1.1. Allgemeines
Unter "Dispersionsdynamik" versteht man nach SCHWERDTFEGER (1978) "den durch
Ortswechsel ihrer Glieder sowie durch Dichteänderung bewirkten Wandel in der örtli-
chen Verteilung der Population".
Die Auftrennung der Nachtfalter-Flugaktivitäten in Dispersions- und Migrationsverhal-
ten einerseits und "trivial flights” andererseits soll im Sinne JOHNSONs (1969) ver-
standen werden (siehe Kapitel 12).
Zur Erforschung dieses Fluggeschehens sind drei Wege zu unterscheiden (REINHARDT
& DROBNIEWSKI, 1979):
- die Erfassung offensichtlich zugeflogener Arten,
- das Markieren und Freilassen von Faltern und
- zusätzliche experimentelle Arbeiten.
Insgesamt wurden im Untersuchungsgebiet über 23.800 Falter aus 131 Arten markiert.
Die Artauswahl richtete sich nach folgenden Kriterien:
- Abdeckung der Bandbreite verschiedener Taxa (Familien, Unterfamilien)
- Unterschiedliche Ökotypen
- Unterschiedliche Flugzeiten (auch Arten, die unter extremen Bedingungen fliegen)
- Unterschiedliche Körpergrößen
- Unterschiedliche Abundanz (insgesamt gesehen, wurden jedoch häufigere Arten bevor-
zugt)
- Repräsentanz von uni- und bivoltinen Arten
- Wanderfalter als "Nullprobe" geringer Ortstreue
8.1.2. "Fern"-Wiederfänge
Durch das Betreiben eines ganzen Standortnetzes (siehe 2.2., Abbildung 1) sollte gete-
stet werden, ob auf Distanzen von 400 m (SiS>SiM) bis 3,25 km (FW>WaN) Disper-
sionsaktivitäten markierter Nachtfalter direkt durch Wiederfang an einer anderen Stelle
nachgewiesen werden können.
Zur Technik der Markierungen siehe Kapitel 3.4..
8.1.3. Verringerte Fallendistanzen
Nachdem 1987 über die oben angeführten Distanzen bei 7617 markierten Faltern nur 2
Ortswechsler nachgewiesen werden konnten, wurde im Wasserwerk ein Parallelfang-
Versuch mit Fallenentfernungen gestartet, die ungefähr eine Zehnerpotenz unter denen
des Jahres 1987 lagen (siehe 2.2., Abbildung 2). Der Fang erfolgte mit einer Frequenz
von ca. 2-3 Tagen über das ganze Jahr.
8.1.4. Versetzexperiment
Um abschätzen zu können, welchen Anteil am Anflugverhalten die direkte Lichtattraktion
hat, und inwieweit Dispersionsaktivitäten eine Rolle spielen, wurde 1988 im Waldstreifen
72
hinter dem Garten (Fangplatzz WaS) ein Versetzexperiment durchgeführt: Die
Wiederfang-Wahrscheinlichkeiten von Tieren, die an der Falle freigelassen wurden,
geben im Vergleich mit solchen, die in 30 m/60 m/90 m und 120 m Entfernung freige-
lassen wurden, Aufschlüsse über die Anteile solcher Einflüsse.
Es wurde hierzu an WaS täglich geleuchtet, um "Verlustkurven" besser dokumen-
tieren zu können. Aus diesem Grund wurden auch die Wiederfänge in fast allen Fällen
bei "O0 m" (=Radius von ca. 7-8 m um die Falle herum, siehe 3.3.) ausgesetzt. Für das
Versetzexperiment wurden einige genügend häufige Arten ausgewählt.
Im Torfeinfang erfolgten 1988 einige Versuche an der Spannerart Calospilos sylvata,
um eine relativ ortsfeste Population mit hoher Populationsdichte auf deren Antworten
auf die Versuchsbedingungen zu testen.
Die Versetzdistanzen wurden im Garten laufend von Nacht zu Nacht vergrößert, so
daß in der jeweiligen 6. Nacht wieder bei 0 m begonnen werden konnte. In anderen
Fällen (z.B. bei Alcis repandata und Peribatodes rhomboidaria) wurde stets die Hälfte
der Exemplare bei 0 m und die andere Hälfte bei der jeweiligen Versetzdistanz frei-
gelassen, um durch eine Bereinigung mit Hilfe des mittleren "Null-Wertes” die Ergeb-
nisse aus den verschiedenen Entfernungen unabhängiger gegen Störeinflüsse zu machen
(z.B. Witterung). Die errechneten bereinigten Ergebnisse entsprachen jedoch in allen
Fällen denen, die ohne diese Maßnahme zustandegekommen wären.
Abb. 16: Garten des Verfassers mit den Fangplätzen SiN (A) und WaS (B); markierte
Tiere wurden in 30m (1), 60 m (2), 90 m (3) und 120 m (4) Entfernung freigelassen;
Flächen mit überwiegendem Waldcharakter (Kronenschluß) sind mit Raster gekenn-
zeichnet.
Garden of the author (SiN=A; WaS=B): marked specimens were released at distan-
ces of 30 m (1), 60 m (2), 90 m (3) and 120 m (4); reticulate: wood character.
73
Abb. 16b: Nähere Umgebung des Fangplatzes Was.
74
Im Grunde genommen stellen auch die 30 m südlich des Standorts WaS an SiN mar-
kierten Falter "versetzte" Exemplare dar, deren Anflug an WaS in den für SiN fang-
freien Nächten getestet wurde. Durch Vergleich mit den im Waldstreifen bei 30 m
freigelassenen Tieren ergeben sich Hinweise auf die Einflüsse der schlechteren Ein-
sehbarkeit der Lichtquelle sowie der vielleicht als Barriere wirkenden Häuser- und
Garagenzeile (2-10 m hoch).
Die Einsehbarkeit der Lichtquelle war bei keiner der vier Freilaß-Punkte gegeben, bei
30 m war diese jedoch nur durch einen Busch verstellt.
8.1.5. Rückschlüsse aus Ortswiederfängen
Die mit einigen Problemen behafteten Interpretationen von Ortswiederfängen bei Nacht-
faltern können bei Berücksichtigung der Fehlerquellen (siehe 8.5.) in vielen Fällen
Aufschlüsse über populationsdynamische Vorgänge liefern.
Nach BETTMANN (1986) benötigt man eine Stichprobe von mindestens 100 markierten
Faltern, um einigermaßen repräsentative Ergebnisse zu erhalten. Dies war im Untersu-
chungsgebiet bei 50 Arten der Fall.
8.2. "FERN-" WIEDERFÄNGE
8.2.1. Übersicht
Tab. 16: Wiederfänge über Mindestdistanzen (Luftlinie) ab 1 km 1987 und 1988 im
Untersuchungsgebiet.
Recaptures over distances of at least 1 km 1987 and 1988 in the study area.
JAHR ART GESCHLECHT STRECKE DISTANZ (km) INTERVALL (Tage)
year species Sex route distance (km) interval (days)
1987 Scotia clavis [6] HW>SIiS 1,0 3
Alcis repandata 6) SiIS>HW 1,0 3
1988 Scotia clavis 6) WaN>HO 1,9 2
Scotia clavis [oj HM>HO 1,0 2
Ochropleura plecta cd HO>HM 1,0 2
Noctua pronuba [6] WaS>WNo 1,4 2
Noctua pronuba q WaS> WNw 1,3 2
Amathes triangulum WaS> WNw 1,3 4
Rusina ferruginea q HM>HO 1,0 6
Meristis trigrammica SIN>WaN 1,4 3
Hoplodrina alsines cd HW>WNo 3,25 5
Hoplodrina alsines © WaS>HO 1,45 1
Peribatodes rhomboidaria WNo>HO 1,9 1
Alle Angaben wurden genanen Prüfungen unterzogen, auch die beiden Wiederfänge nach
1 Tag können als gesichert gelten. Eine Verschleppung mit der Falle durch ungenügen-
de Achtsamkeit beim Absammeln von markierten Faltern, die dort Unterschlupf such-
ten, konnte in den genannten Fällen durch Markierung der Fallen ausgeschlossen wer-
den: Die Falle des Erstfangs war am Wiederfundort nicht eingesetzt worden. Die
Auswertung erfolgte auch in genügendem Abstand zum Fahrzeug, und eine Tasche mit
75
den nötigen Utensilien wurde nur zur Auswertung, nicht jedoch beim Aufstellen der
Falle mitgenommen; auch dadurch können Fehlerquellen bezüglich einer Verschleppung
von Faltern ausgeschlossen werden.
In vier Fällen blieben diesbezüglich jedoch Zweifel übrig, die betroffenen Wiederfänge
wurden daher nicht berücksichtigt.
8.2.2. Diskussion
Bei der Betrachtung der 13 Wiederfänge, die über Distanzen von mindestens 1 km er-
folgten, zeigt sich, daß es sich hier vor allem um Eulenfalter (Noctuidae) handelt: Sie
stellen 64,1 % aller markierten Individuen, aber 84,6 % der Wiederfänge über größere
Distanzen. Auch die beiden Spanner (Geometridae) sind große Arten mit relativ star-
kem Thorax. Die Dispersionsaktivitäten über Distanzen von 1-4 km scheinen also in
Korrelation zur mechanischen Flugfähigkeit zu stehen, was jedoch nicht umgekehrt
bedeuten muß, daß für jede flugkräftige Art solche Entfernungen zum normalen
Dispersal gehören.
SCOTT (1975) stellte in seiner Untersuchung von Tagfalter-Flugaktivitäten fest, daß
die meisten Arten die Distanz von mehreren Kilometern nicht bewältigen. Der weiteste
nachgewiesene Flug fand über eine Strecke von 2940 m statt. Die Aussagen entspre-
chen dem im Untersuchungsgebiet für die Nachtfalter Gefundenen.
Bei allen Wiederfängen handelte es sich um Männchen. Die Weibchen-Rate bei den
markierten Faltern lag im Bereich von durchschnittlich 27 %. Es handelt sich also auch
hier um eine Überrepräsentierung.
Ubiquisten (r-Strategen) sind in der oben aufgeführten Liste verstärkt vertreten: Fallen
9,9 % der im Untersuchungsgebiet festgestellten Gesamtartenzahl in diese Kategorie, so
waren 56 % der Arten, bei denen größere Flugdistanzen beobachtet wurden, Ubiquisten.
Die Arten des mesophilen Graslandes sind mit 22 % vertreten (15,8 % im Gesamt-Ar-
tenspektrum). Stark unterrepräsentiert sind dagegen die Arten der Wälder, der Wald-
ränder und der Gebüschformationen mit 22 % statt 57,9 %. Diese können also als we-
niger expansiv gelten.
Der Befund, daß die als Wanderfalter bekannte Noctua pronuba in relativ kurzen Zeit-
spannen jeweils von Süd nach Nord flog, ist vermutlich auf ein solches Migrationsver-
halten zurückzuführen.
1987 ereigneten sich auffallend wenig Fern-Wiederfänge, nämlich 0,026 % der markier-
ten Falter im Gegensatz zu 0,070 % 1988. Vielleicht spielte hier die etwas feuchtere
Witterung (v.a. von April bis Juni) im Jahr 1987 eine Rolle.
Geländestrukturen spielen zumindest in Einzelfällen eine Rolle bei der Ausbreitung:
Beide Ortswechsel 1987 erfolgten entlang der auwaldartigen Kanalbegleitflora des
Würmkanals. Langgestreckte, schmale Strukturen sind auch nach WATT et al. (1977)
ein begünstigender Faktor für Dispersionsaktivitäten. Da auch die 1988 von Peribato-
des rhomboidaria zurückgelegte Strecke entlang der Luftlinie fast ausschließlich aus
Waldrandstrukturen besteht, sind beide Geometriden-Wiederfänge über größere Entfer-
nungen hinweg potentiell durch Geländestrukturen begünstigt worden.
Bei den Fern-Wiederfängen ist kein signifikanter Zusammenhang zwischen Entfernung
und Zeitspanne erkennbar. Die betreffenden Arten scheinen also nicht die Summe vie-
ler Tagesdistanzen zur Bewältigung der beobachteten Entfernung zu benötigen.
76
Aus den Tatsachen, daß bei einem derartigen Umfang der Stichprobe () 23.800) Wie-
derfänge über Distanzen von 1-4 km nicht einmal im Promillebereich und ausschließ-
lich von Männchen nachzuweisen waren, ist abzuschätzen, daß hypothetisch neugeschaf-
fene Biotope in einer entsprechenden Entfernung zu stabilen Nachtfalterpopulationen
des gleichen Lebensraumtyps nur langsam und unvollständig besiedelt werden können.
Eine Vernetzung von Biotopen sollte daher mit Abständen von unter 1 km erfolgen.
Diese Befunde stehen im Einklang mit den von SCOTT (1972) und WATT et al. (1977)
publizierten Ergebnissen, die bei nordamerikanischen Tagfaltern schon in einer Entfer-
nung von wenigen 100 m nur wenig Austauschereignisse bzw. eine weitgehende Isolie-
rung von Populationen feststellten.
8.3. VERRINGERTE FALLENDISTANZEN
8.3.1. Übersicht über das Material
Zur Beschreibung des Experiments und des Geländes siehe 8.1.2. und 2.2..
Im Jahr 1988 wurden im Wasserwerksgelände Oberschleißheim 5335 der 11.392 gefan-
genen Nachtfalter (Macroheterocera) markiert. Es erfolgten 159 Wiederfänge. Zu
Vergleichszwecken können auch die 1280 im Jahr 1987 markierten Nachtfalter (17
Rückfänge) herangezogen werden.
Aus Abb. 17 werden die 154 im Wasserwerk 1988 nachgewiesenen ÖOrtswiederfänge
bzw. Dispersionsaktivitäten ersichtlich. Fünf Rückfänge beziehen sich auf zugeflogene
Stücke anderer Fangplätze (siehe 8.2.).
37
ee
w I Ss
34
Abb. 17: Ortswiederfänge und Ortswechsler 1988 im Wasserwerk (siehe 2.2.).
Recaptures at the same site and changes of site 1988 in the pump station (see 2.2.).
Es zeigt sich ein deutlicher Abfall der Austauschraten um ca. die Hälfte schon bei ei-
ner Verdoppelung der Distanz von 50 m (WaN/WNo) auf 100 m (WaN/WNw). Die
Distanz scheint jedoch nicht der einzige die Verbreitung begrenzende Faktor zu sein,
da beispielsweise auf der Strecke WNo-WNw (120 m) ein größerer Individuenaustausch
stattfand als zwischen WaN und WNw. Hier spielen offensichtlich Geländestrukturen
eine Rolle. Hin- und Rückflug zeigen fast identische Werte: Es liegen, insgesamt ge-
sehen, keine konstanten, gerichteten Prozesse vor.
Die durchschnittliche Wiederfang-Quote lag mit 2,9 % deutlich über dem 1987 an WaN
festgestellten Wert von 1,3 %. 1988 wurden durch die bessere Abdeckung des Geländes
Du
(3 Fallen) auch die in der Nähe verweilenden Falter miterfaßt, die bei einem Einzel-
standort außerhalb der Fallenreichweite geblieben wären.
Dementsprechend verteilten sich auch die Anteile der 1988 festgestellten Wiederfang-
Quoten: An WaN entfielen von den 3,0 % beobachteten Wiederfängen 1,8 % auf orts-
treue Falter, der Rest stammte von den Nachbarstandorten.
Andersherum betrachtet konnte das Wiederfangergebnis durch die Erhöhung der Fallen-
zahl von 1,8 % um 1,2 %, die an den anderen Fallen wiedergefunden wurden, auf eben-
falls 3,0 % gesteigert werden.
Am Standort WNw war die geringste Stabilität nachzuweisen, hier lag die Ortswieder-
fang-Quote mit 0,7 % deutlich unter derjenigen der beiden anderen Fangplätze (WaN
und WNo jeweils 1,8 %).
Diese für alle markierten Arten etwas pauschale Skizzierung der Verhältnisse wird in
den Tabellen 17 und 18 etwas weiter differenziert: In die Liste wurden die Arten mit
aufgenommen, von denen mindestens 100 Individuen markiert wurden und/oder zumin-
dest 5 Wiederfänge vorlagen.
Tab. 17: Die wichtigsten Wiederfänge an den drei Standorten im Wasserwerk 1988,
geordnet nach der Wiederfang-Quote.
The most important recaptures of the three capture-sites at the pump station 1988,
according to their recapture-rate.
ART MARKIERT WIEDERFÄNGE WIEDERFANG-
QUOTE (%)
species marked recaptures percentage of
recaptures
Chiasmia clatrata (I+1I) 36 8 239
Diacrisia sannio 50 6 12,0
Cerastis rubricosa 83 7. 8,4
Mythimna impura 200 15 743
Spilosoma menthastri 125 9 1,2
Scotopteryx chenopodiata 326 19 5,8
Orthosia gothica 208 10 4,8
Amathes ditrapezium 124 6 4,8
Alcis repandata 294 9 3.1
Amathes sexstrigata 332 9 27
Amathes triangulum 184 5 27
Amathes xanthographa 106 2 |)
Apamea anceps 110 2 1,8
Rusina ferruginea 121 2 27
Eilema depressa 336 3 0,9
Ochropleura plecta 380 2 0,5
Amathes c-nigrum 361 1 0,2
Noctua pronuba 185 = 0,0
78
Es ergibt sich eine mehr oder weniger kontinuierliche Verteilung, deren Gradient ab-
gesehen von einigen Ausnahmen in etwa dem r-K-Kontinuum entsprechen dürfte. So
finden sich in der oberen Hälfte der Tabelle signifikant mehr Spanner (Geometridae)
und Spinner (Bombyces), während in der unteren Hälfte mehr Eulenfalter (Noctuidae)
vertreten sind. Aufgrund unterschiedlicher Raupenfutterpflanzen sind - wie schon im
ersten Teil angeklungen ist - bei den Noctuiden mehr r-Strategen zu finden als in den
anderen Gruppen. Dementsprechend befinden sich auch die in der Literatur als Wan-
derfalter bezeichneten Noctua pronuba und Amathes c-nigrum am Ende der Tabelle.
Zur Problematik der Interpretation von Ortswiederfängen sind einige Aspekte, die in
8.5. näher beleuchtet sind, zu beachten. In der Nähe herumvagabundierende Individu-
en dürften jedoch zu einem Großteil durch die Erhöhung der Fallenzahl erfaßt worden
sein.
Tab. 18: Die wichtigsten Wiederfänge im Wasserwerk 1988, geordnet nach der mittleren
Verweildauer.
The most important recaptures at the pump station 1988, according to their mean of
residence time.
ART MITTLERE MAXIMAL BEOBACH- MITTLERE
VERWEILDAUER TETE VERWEILDAUER FLUGDISTANZ
(Tage) (Tage) (Meter)
species mean of residence observed maximum of mean of flight
time (days) residence time (days) distance (m
Cerastis rubricosa 6,33 10 63
Diacrisia sannio 5,33 16 28
Orthosia gothica 022. 13 59
Chiasmia clatrata 5,00 11 40
Alcis repandata 4,14 7 (3 Exemplare) 13
Mythimna impura 3,92 9 (HO 1987 27 Tage) 37
Scotopteryx chenopodiata 3,83 15 26
Spilosoma menthastri 3,75 8 24
Amathes triangulum 3,20 7 (sonst 3 Tage) 54
Amathes sexstrigata 2,63 5 39
Amathes ditrapezium 2,33 3 33
Stichproben zu klein
Apamea anceps 3,50 4 25
Eilema depressa 2,66 3 17
Rusina ferruginea 2,50 3 120
Amathes xanthographa 2,00 2 60
Ochropleura plecta 2,00 2 50
Amathes c-nigrum 2,00 2 0
Noctua pronuba er > =
Die Frühlingsarten (O. gothica, C. rubricosa) fallen durch verlängerte Verweildauern
auf, ein vermutlich witterungsbedingtes Phänomen. Die eigentiichen Flugnächte liegen
hier zwischen Phasen der Unbeweglichkeit bei nicht ganz optimalen Flugbedingungen.
Bei den Arten des "Sommerblocks” erfolgen dagegen offenbar Ortsveränderungen auch
unter suboptimalen Voraussetzungen.
Unter der Annahme einer vergleichbaren Mortalität sind "residence time” und "disper-
sal" zwei negativ korrelierte Parameter (WATT et al., 1977).
Ein signifikanter Anstieg der mittleren Flugdistanzen von oben nach unten (zunehmend
starke r-Strategen) in der Tabelle ist nicht zu belegen, da die Flugstrecken der r-
Strategen in anderen Größenordnungsbereichen liegen. Bei den beobachteten Flugdistan-
zen handelt es sich vermutlich um trivial movement; auch die am meisten ortsgebun-
denen der untersuchten Arten können Strecken von ca. 100 m bewältigen.
Nach systematischen Gruppen aufgeschlüsselt ergibt sich für die Eulenfalter (Noctui-
dae) eine mittlere Flugdistanz von 51 m. Bei den Spannern (Geometridae) sind es wie
bei den Spinnern (Bombyces) 26 m, wenn man nur die Arten mit über 5 Wiederfängen
berücksichtigt. Die geringen Artenzahlen bei den Spannern (3) und Spinnern (2) stellen
für das Ergebnis jedoch noch Unsicherheitsfaktoren dar. Wenn man die Anzahl der
Wiederfänge (51) betrachtet, so stellen diese beiden Gruppen 50 % des Materials, was
genügen sollte.
8.3.2. Weitere Ergebnisse, aufgezeigt an ausgewählten Arten
Diacrisia sannio:
Bei Streifzügen durch magere Wiesen entdeckt man oft aufgeschreckte Exemplare
dieser Art. Diese fliegen dann normalerweise 5-10 m, höchstens 20 m weit und las-
sen sich dann wieder im Gras nieder.
An WNw war kein Ortswiederfang festzustellen, an den anderen Standorten je zwei.
Der westliche Fangplatz ist auch durch die geringeren Ausbeuten nur als suboptima-
ler Lebensraum für D. sannio charakterisiert. An ungünstigeren Stellen finden ver-
mehrt Austauschprozesse statt.
Ochropleura plecta:
Bei beiden Wiederfängen handelte es sich um 99, die vielleicht beim Kopulations-
oder Eiablagegeschehen eine größere Ortsfestigkeit zeigen als die dd.
Amathes ditrapezium:
Ähnlich dem Bärenspinner Diacrisia sannioe An WNw schlägt sich die vermutlich
durch die Habitatrand-Lage bedingte höhere Dynamik in den fehlenden Ortswieder-
fängen nieder. 5 der 6 Wiederfänge belegen ein Verbleiben in einem 50 m-Radius
des Verbreitungszentrums (WaN/WNOo), allerdings bei kurzen Verweildauern.
Amathes sexstrigata:
Ähnlich dem Bärenspinner Diacrisia sannio fehlten an WNw Ortswiederfänge, die
Ausbeuten waren hier geringer. Dies mag mit erhöhten Austauschprozessen und
Dispersionsaktivitäten an den Rändern von (Teil-)Populationen erklärt werden.
8 der 9 Wiederfänge, nämlich die Ortswiederfänge an WaN und WNo sowie die
Wechsler zwischen den beiden Standorten, zeugten von einem Verbleiben in einem
50 m-Bereich innerhalb des Verbreitungszentrums.
Cerastis rubricosa:
Trotz der hohen Wiederfang-Quoten und Verweildauern zeigt sich innerhalb des
Wasserwerkgeländes eine Dynamik auf relativ hohem Niveau: Es überwiegen hier die
Ortswechsler, und bei einem d' wurde sogar ein Ortswechsel von WaN> WNw> WNo
(220 m) über 8 Tage hinweg mitverfolgt.
80
Orthosia gothica:
Die hohe Wiederfang-Quote und Verweildauer sollte nicht vorschnell zu einer Cha-
rakterisierung dieser Art als K-Strategen führen. Auffallend ist schon die Verteilung
der Wiederfänge (siehe auch 9.2.): Ähnlich der vorhergehenden Art überwiegen auch
hier die Ortswechsler, Ortswiederfänge erfolgten nur an WaN (3). Bei einigermaßen
vergleichbaren Zahlen der markierten Individuen steht den 8 Wiederfängen an WaN
kein einziger an WNw gegenüber; an letztgenanntem Standort scheint die Dynamik
am höchsten zu liegen.
Da WNw auch am weitesten von der nächstgelegenen Weide, der wohl wichtigsten
Nektarquelle von O. gothica, entfernt liegt, ist hierin ein Zusammenhang zu vermu-
ten: An Standorten mit blühenden Weiden kommt es zu einer starken Reduktion des
trivial movement.
Bei einem J konnte ein Ortswechsel von WNw>WNo>WaN (170 m, 4 Tage) mit-
verfolgt werden.
Mythimna impura:
Es ist das gleiche Phänomen festzustellen wie bei Diacrisia sannio, Amathes ditrape-
zium und A. sexstrigata. Das Verbreitungszentrum ist hier WNo, dort erfolgten wie
auch an WaN drei Wiederfänge am selben Ort; an WNw fehlte ein solcher.
Im Gegensatz zu den drei oben genannten Bewohnern von tendenziell trockeneren
Wiesen ist M. impura eher an Schilf und Seggen gebunden. Dies ist eine denkbare
Erklärung für den Sachverhalt, daB in das dynamische Geschehen der Fangplatz
WNw stärker miteinbezogen wurde: Dies war in 6 der 15 Wiederfänge der Fall.
Zwei dd flogen von WNo nach WNw und wieder zurück (240 m). Dies ereignete
sich in einer Zeitspanne von 4 bzw. 7 Tagen.
M. impura ist ein schönes Beispiel dafür, daß offensichtlich ortstreuere Arten in Be-
reichen von ca. 100 m durchaus eine ausgeprägte Dynamik im Sinne eines trivial
movement besitzen.
Scotopteryx chenopodiata:
Diese Art reagierte nun etwas verschieden von den bisher besprochenen Mustern: An
allen Standorten erfolgten proportional ungefähr gleiche Anteile an Ortswiederfängen.
Diese lagen insgesamt mit 13 von 19 auf einem hohen Niveau. Man kann also auch
bei so klein gewählten Distanzen von geringen Austauschraten ausgehen!
Die 99 scheinen bei einer mittleren Flugdistanz von 17 m ortsfester zu sein als die
dc (30 m). Die mittlere Verweildauer der 99 liegt jedoch genau im Schnitt.
Chiasmia clathrata:
Wie Mythimna impura: Das Verbreitungszentrum liegt an WNo (tagsüber wie in der
Nacht!). 6 der 8 Wiederfänge spielten sich an/zwischen WaN und WNo ab. Am
westlichen Standort erfolgte kein Ortswiederfang, an dieser Habitatrand-Lage ist also
eine höhere Dynamik, verursacht durch geringere Bodenständigkeit zu beobachten.
Der hohe Anteil der Ortswiederfänge an den anderen beiden Fangplätzen (5 von 7)
kennzeichnet C. clathrata ebenfalls als vergleichsweise ortstreue Art.
Die Wiederfang-Quote liegt in der ersten Generation mit 26,3 % deutlich über den
17,6 % der zweiten Generation. Da ein J sehr früh in der 2. Generation zweimal
wiedergefangen wurde, kann man ab Mitte Juli von einer spürbar erhöhten Disper-
sionsaktivität ausgehen.
81
Alcis repandata:
Bei dieser Art wurde nur ein Ortswechsler bei 9 Wiederfängen festgestellt! Diese
eigentlich auf hohe Ortstreue hinweisende Beobachtung steht etwas im Gegensatz zu
den oft nur kurzen Verweildauern von 2 Tagen. Berücksichtigt man auch die niedri-
geren Fang- und Wiederfangzahlen an WaN, so ist zu vermuten, daß viele Exempla-
re von den Waldrändern herbeigeflogen waren und an WNo und WNw, die diesen
Rändern näher liegen, vielleicht ein mehrfaches Hin- und Herfliegen erfolgte.
Die 99 sind im Wiederfang (11 %) gegenüber den Erstfängen (34 %) unterrepräsentiert.
8.4. VERSETZEXPERIMENT
8.4.1. Übersicht über das Material
Die Zahl der 1988 im Garten (WaS) im Rahmen des Versetzexperiments (ausgewählte
Arten) markierten Individuen betrug 2465, es wurden 475 Wiederfänge verzeichnet.
Im Torfeinfang (We) wurden 1988 629 Spanner der Art Calospilos sylvata markiert,
von denen 46 rückgefangen werden konnten.
Da - wie bereits erwähnt - auch Ortswechsler zwischen SiN und WaS (30 m) als
"versetzte" Nachtfalter interpretiert werden können (wenn nicht eine präferenzielle
Rückkehr vorliegt, vergleiche KELLER, MATTONI & SEIGER, 1966), ist eine Betrach-
tung der zwischen diesen beiden Fangplätzen stattfindenden Austauschraten interessant:
- 1987 waren die Ortswiederfang-Quoten an SiN und WaS (bei fangfreien Nächten da-
zwischen) mit 1,5 % bzw. 1,2 % ungefähr gleich. In 30 m Entfernung waren bei einer
Richtung SiN> WaS nach einem Intervall von 1 Tag weitere 0,4 %, insgesamt weitere
1,0 % wiederzufangen. Umgekehrt betrugen die Werte 0,6 % und 1,0 %.
- 1988 zeigte sich an SiN bei gleicher Methode eine entsprechende Ortswiederfang-
Quote von 1,2 %, der nach WaS abwandernde Prozentsatz fiel mit 1,5 % etwas höher
aus, da dort über einen Großteil der Flugzeit hinweg täglich geleuchtet wurde und
die Erfassung somit vollständiger erfolgte. Durch diesen veränderten Rhythmus stie-
gen auch die Ortswiederfänge an WaS drastisch auf 21,5 %, während der Anteil der
von WaS nach SiN fliegenden Tiere mit 0,9 % ungefähr gleich blieb.
Die Berechnungen wurden durch Abzug der im eigentlichen Versetzexperiment ge-
sammelten Daten bereinigt.
Bei einem Vergleich mit dem Wasserwerk zeigt sich, daß der Individuen-Austausch
zwischen den Fallen beispielsweise im Vergleich mit dem Fallenpaar WaN/WNo bei
einer etwas kleineren Distanz ungefähr proportional höher ausfiel: Dividiert man die
Summe der ausgetauschten Individuen durch die Summe der an beiden Standorten
markierten Falter ergeben sich für den Garten (1987) 1.0 %, für das Wasserwerk
(1988, WaN/WNo) 0,8 % ausgetauschter Nachtfalter. Es handelt sich hierbei wohl-
gemerkt um keine Absolutzahlen, die realen Austauschraten liegen sicherlich höher.
Die Barriere der Häuserzeile scheint demnach zusammen mit den anderen Störein-
flüssen (Straßenbeleuchtung u.s.w.) kein Hindernis darzustellen, das sich wesentlich
von der Geländestruktur im Wasserwerk, nämlich einer relativ naturnahen halbver-
buschten Fläche unterscheidet.
Diese Aussage muß aber, da sie über eine gemeinsame Betrachtung aller markierten
Arten getroffen wurde, nicht für alle Arten gleichermaßen zutreffen.
82
8.4.2. Ergebnisse
Scotia clavis:
Tab. 19-21: Ausbeute, Markierungen und Wiederfänge im Garten 1988 bei Scotia clavis.
Numbers of individuals, marked specimens and recaptures of Scotia clavis in the
garden 1988.
Ausbeute (Individuen) Markierungen Wiederfänge/Mehrfachwiederfänge
SIiN WaS zZ SIiN WasS 2 W.L.1 2.2.0832.4: 51.6.7228 =
dc 25 158 183 23 119 142 26: x bed == NZ
99 20.202022 D1822 20 EEE ET a)
_ 27 178 205 25 137 162 28 ben Prise 40
Par. 23] 62
In Tabelle 19 ist eine Erhöhung der Werte durch die hier mitgezählten Wiederfänge zu
veranschlagen, eine Bereinigung der Angaben wird durch Tab 2i möglich.
Unter "Par." ist in der Tabelle 19 das aus den Parallelfang-Ergebnissen stammende di-
rekt vergleichbare Individuenverhältnis aufgeführt. Gelegentlich auftretende Differenzen
zu den in der Artenliste (4. Kapitel) angegebenen Zahlen entstehen durch entkommene
Exemplare, deren Artbestimmung erfolgte, nicht aber die Geschlechtsbestimmung.
Die Weibchen-Rate ist an WaS fast doppelt so hoch wie an SiN. Im Wiederfang sind
die 99 mit 5 % etwas unterrepräsentiert.
Tab. 22: Zwischen Fang und Wiederfang festgestellte Intervalle bei Scotia clavis 1988
im Garten.
Intervals (in days) between two catches of Scotia clavis 1988 in the garden.
lee DEE Re So an as
Wiederfänge SSCRE SE a ee EN OBEN 40
Das Intervall zwischen Fang und Wiederfang beträgt im Mittel 1,13 Tage.
Die Tabelle 22 offenbart bereits eine hohe Dynamik von Scotia clavis an diesem Stand-
ort, die kurzen Verweildauern, wie sie aus den Abbildungen 18 und 19 ersichtlich
sind, können nicht allein auf Mortalität zurückzuführen sein.
4 Aufsummierte Verweilzeiten (Annahme: Stän-
dige Anwesenheit, ‚nur nicht immer gefangen)
Wiederfä h in Relati
20 = ie ee lese x Tagen in Relation
1 2 3 4 5 (Tage)
Abb. 18: Apparente Verweilzeiten von Abb. 19: Aufsummierte Verweilzeiten und real
Scotia clavis 1988 im Garten. nach x Tagen beobachtete Wiederfänge.
Apparent residence times of Scotia Accumulated residence times and really
clavis 1988 in the garden. after the time x recaptured specimens.
83
Die durchschnittliche Verweilzeit, errechnet aus den Wiederfängen, betrug nur 1,57
Tage. Nicht berücksichtigt bleiben die Individuen, von denen keine Wiederfänge vorlie-
gen. Es handelt sich daher um einen relativen Wert.
Auch die Verlustkurven in Abb. 19 zeugen von einem schnellen Verschwinden aus dem
Einzugsbereich der Falle.
Tab. 23: Reaktion von Scotia clavis auf ein Versetzen in verschiedene Entfernungen.
Recaptures of specimens of Scotia clavis, released at different distances from the
light source.
0 m 30m 60 m 90 m 120 m
freigelassen* 95 22 20 25 12 *Summe aus markierten Faltern
released und einigen freigelassenen Wie-
Wiederfänge 25 4 3 3 1 derfängen.
recaptures
y2 26 18 15 12 8
Das Versetzexperiment zeigt einen kontinuierlichen Abfall der Wiederfang-Wahr-
scheinlichkeit mit zunehmender Versetzdistanz. Dies ist vermutlich auf ein zickzackar-
tiges, mehr oder weniger ungerichtetes Umherschweifen in der weiteren Umgebung zu-
rückzuführen (siehe Peribatodes rhomboidaria). Ausgeprägte und zielgerichtete Dynami-
ken würden zu einem stärkeren Abfall der Werte bei 90 und 120 m führen (siehe Noc-
tua pronuba).
Eine Verlängerung der Rückkehrdauer mit zunehmender Versetzdistanz war nicht zu
beobachten. Distanzen bis 120 m scheinen also im Bereich des trivial movement einer
Nacht zu liegen.
Scotia exclamationis:
Die Stichprobengröße bei Scotia exclamationis 1988 im Garten ist relativ klein (98
markierte, 14 wiedergefangene Falter). Der starke Abfall von 11 Erst- auf 3 Zweit-
wiederfänge entspricht ungefähr den Verhältnissen bei $. clavis.
Die Weibchen-Rate liegt auch hier an WaS deutlich höher als an SiN. Im Wiederfang
sind die 99 jedoch mit 64 % deutlich überrepräsentiert! Im Gegensatz zu S. clavis
scheinen bei S. exclamationis die dd‘ mobiler zu sein. Die 99 stellen auch alle beo-
bachteten Zweitwiederfänge.
Tab. 24: Zwischen Fang und Wiederfang festgestellte Intervalle bei Scotia exclamatio-
nis 1988 im Garten.
Intervals (in days) between two catches of Scotia exclamationis 1988 in the garden.
Intervall: (Tage) ne 1a»231.1 311.3 65.5 de Irni1O, AL =
Wiederfänge 12.7 1 = = _ = — 14
Das Intervall zwischen Fang und Wiederfang beträgt im Mittel 1,43 Tage.
Die mittlere Verweildauer liegt bei 1,73 Tagen, ein Unterschied zwischen den Ge-
schlechtern ist nicht ersichtlich.
Die Wiederfang-Quote der an der Falle freigelassenen Tiere entspricht mit 23 % in
etwa dem Wert von Scotia clavis (n=53). Von den in den verschiedenen Entfernungen
84
ausgesetzten Faltern (n=26) konnte nur ein d aus 60 m zurückgefangen werden. Die
Stichprobengröße ist hierbei noch zu klein, um nähere Rückschlüsse zu erlauben.
Noctua pronuba:
Als bekannter Wanderfalter sollte Noctua pronuba - wie es bei einer hochmobilen Art
zu erwarten ist - mit kurzen Verweildauern und sehr niedrigen Rückfang-Quoten bei
einem Versetzen um 90 bzw. 120 m reagieren. Letzteres deshalb, weil hier bei gerad-
linigen starken Flugaktivitäten Individuen, die nicht die Richtung der Lichtquelle ein-
schlagen (Winkel von ca. 330-340° = 92-94 % unter der Voraussetzung einer freien
Beweglichkeit ohne Barrieren) auf Nimmerwiedersehen verschwinden.
Bei einem Herumvagabundieren mit häufigeren Richtungswechseln kommt es dagegen zu
einer erhöhten Wiederfangwahrscheinlichkeit auch bei größeren Versetzdistanzen. Dies
ist jedoch bei manchen Arten auch durch eine "Kanalisierung” des Fluges durch die Bio-
topgrenzen im Waldstreifen denkbar. Die Unterschiede zu den Biotopstrukturen der
umliegenden Gärten sind jedoch nicht besonders gravierend.
Ein Vergleich mit einem ähnlichen Experiment an Spodoptera littoralis in Israel
(PLAUT, 1971), ebenfalls einem Wanderfalter, ist hier möglich.
Tab. 25-27: Ausbeute, Markierungen und Wiederfänge im Garten 1988 bei Noctua pronuba.
Numbers of individuals, marked specimens and recaptures of Noctua pronuba in the
garden 1988.
Ausbeute (Individuen) Markierungen Wiederfänge/Mehrfachwiederfänge
SIiN WaS = SIiN WaS 2 WiE.1152 73.2425, 007 BEE
dd 26 492 518 26 400 426 32,17, ,8,..3 2, 1,71 ze89
09 14 433 442 14 355 369 See re rene iR
>2 48 1011 1059 40 755 795 107.:36,.12. 37.217 Pie 7162
Par. 48 448
In Tabelle 25 ist eine Erhöhung der Werte durch die hier mitgezählten Wiederfänge zu
veranschlagen, eine Bereinigung der Angaben wird durch Tab 27 möglich.
Die Weibchen-Raten liegen an SiN (35 %) und WaS (47 %) auf ähnlich hohem Niveau
(NOVAK, 1974: 19 %), in den Wiederfängen zeigen sich die gleichen Verhältnisse.
Die proterandrische Phänologie kommt in Abbildung 20 gut zum Ausdruck. Sie steht im
Gegensatz zu dem von MEINEKE (1984) im südlichen Niedersachsen festgestellten Be-
fund. Nach NOVAK (l.c.) ist N. pronuba weder proterandrisch noch protogyn.
Abb. 20: Ansteigen der Weib-
chen-Rate (Proterandrie) im
Lauf der Flugzeit bei Noc-
tua pronuba im Garten
1988.
Increase of sex-ratio of
Noctua pronuba in the gar- (Stichprobe
den 1988.
A6 M6 E6 AT M7T ET A8 M8 ES AI MI
(Stichprobe
Hauptflugzeit lklen
85
Tab. 28: Zwischen Fang und Wiederfang festgestellte Intervalle bei Noctua pronuba
1988 im Garten.
Intervals (in days) between two catches of Noctua pronuba 1988 in the garden.
Intervall lTage) se. iv.ı2. 3 074.. Zee ea gm le 12 2
Wiederfänge 141 16 1 1 Zu 0 2 = | = = = 162
Das Intervall zwischen Fang und Wiederfang beträgt im Mittel 1,23 Tage.
Einige der nach einem 2-Tages-Intervall wiedergefangenen Tiere könnten sich in der
dazwischenliegenden Nacht in der Nähe der Falle versteckt haben und übersehen wor-
den sein. Die hohe Zahl der Wiederfänge täuscht also darüber hinweg, wie das Ergeb-
nis richtig zu interpretieren ist: Der Anteil an Wiederfängen, die man nicht auf ein
Festgehalten-Werden im Bann des Lichts zurückführen kann, liegt unter 1 %!
Aus Abbildung 21 errechnet sich eine mittlere Verweilzeit von 1,88 Tagen. Der Wert
der dd’ liegt mit 1,93 Tagen etwas über dem der 99 (1,82 Tage). Die genannten Zah-
len sind in Vergleichen (z.B. mit Scotia clavis) wohl zum großen Teil Ausdruck der
anziehenden Wirkung des Lichts, durch das der Aufenthalt in der Nähe der Lichtquelle
hinausgezögert wird. Noctua pronuba verweilt unter natürlichen Verhältnissen deutlich
kürzer in Flächenausschnitten, die dem Einzugsbereich der Lichtfalle entsprechen.
Aufsummierte Verweilzeiten (Annahme:
Ständige Anwesenheit, nur nicht gefangen)
Wiederfänge nach x Tagen in Relation
zum Erstfang
50
1 2 3 4 5 6 7 8 9 10 t (Tage)
Abb. 21: Apparente Verweilzeiten von Abb. 22: Aufsummierte Verweilzeiten und real
Noctua pronuba 1988 im Garten. nach x Tagen beobachtete Wiederfänge.
Apparent residence times of Noctua Accumulated residence times and really
pronuba 1988 in the garden. after the time x recaptured specimens.
Die weitgehende Übereinstimmung der beiden Kurven in Abbildung 22 ist auf die be-
sonders große Affinität zum Licht bei dieser Art zurückzuführen. Differenzen, die bei
anderen Arten durchaus auftreten können (siehe Alcis repandata), können zwei Ursa-
chen haben: Entweder ist die anziehende Wirkung des Lichtes nicht besonders groB und
viele in der näheren Umgebung verbleibende Falter werden in den Fangintervallen nicht
erfaßt, oder die Individuen bewegen sich in einer Art Zickzackflug und können so nach
mehreren Tagen der Abwesenheit wieder in den Einzugsbereich der Lichtquelle zurück-
kehren.
86
Wiederfang-Quote
© Bu Wfl
w£f£.2
® W£3
Sr
0 m 30m 60 m 90 m 120 m Versetzdistanz 0m 30 m 60 m 90 m 120 m Versetzdistanz
Abb. 23: Wiederfang-Quoten von Noctua Abb. 24: Korrelation: Rückkehrdauer
pronuba im Versetzexperiment. und Versetzdistanz.
Probability of recapture of Noctua Correlation of distance of displace-
pronuba, released at different distances. ment and time, needed for return.
Schon in einer Entfernung von 30 m ist ein starker Rückgang der Wiederfang-Wahr-
scheinlichkeit festzustellen. Hier nimmt der direkte Lichteinfluß ab und von den ver-
setzten Individuen wird nur der Anteil in den "Lichttrichter" wiedereingefangen, der
zufällig die entsprechende Richtung einschlägt. Daher kommt es mit abnehmendem
Winkel zu einem leichten Abfall zwischen 30 und 120 m.
Zwischen der Rückkehrdauer und der Versetzdistanz ist keine eindeutige Korrelation
festzustellen, ein Befund, der für diesen Wanderfalter zu erwarten war, da es bei der
Bewältigung einer Distanz von 120 m zu keinen Schwierigkeiten kommen dürfte.
Äußerst ähnliche Ergebnisse liegen von einem anderen Wanderfalter (Spodoptera litto-
ralis) in einer ganz anderen Gegend (Israel) vor: PLAUT (1971) berichtet ebenfalls von
einem starken Rückgang der Wiederfang-Wahrscheinlichkeit schon zwischen der ersten
und der zweiten Nacht nach dem Markieren sowie zwischen Versetzdistanzen von 10-50 m.
Die Ergebnisse scheinen also reproduzierbar zu sein.
Amathes c-nigrum:
Bei dieser Art erfolgte das Versetzexperiment nur in einer Serie von 5 aufeinanderfol-
genden Nächten. Die zu kleine Stichprobengröße läßt daher noch keine statistisch un-
termauerten Rückschlüsse zu.
Die Verteilung der Erst- und Zweitwiederfänge (47/5) zeugt von einer starken Dyna-
mik. Beim Wanderfalter Noctua pronuba und bei Scotia clavis waren die Mehrfachwie-
derfänge stärker repräsentiert, was aber teilweise durch eine größere Affinität zu
Licht bedingt sein könnte.
|, Abgesehen von einem nach 4 Tagen zurückgefangenen J ereigneten sich alle Wieder-
fänge nach 1- oder 2-Tages-Intervallen.
ı Auch die mittlere Verweilzeit von nur 1,21 Tagen belegt die hohe Mobilität von Ama-
| thes c-nigrum.
87
Tab. 29: Reaktion von Amathes c-nigrum auf ein Versetzen in verschiedene Entfernungen.
Recaptures of specimens of Amathes c-nigrum, released at different distances from
the light source.
0 m 30m 60m 9m 120m
freigelassen 239 12 20 17 18
released
Wiederfänge 50 2. _ = A
recaptures
% 21 17 > N £
Ein vergleichbares 30 m-Experiment stellen die 38 an SiN markierten Tiere dar, von
denen keines wiedergefangen wurde. Auch umgekehrt konnte von den 237 an WasS frei-
gelassenen Faltern keiner an SiN nachgewiesen werden. Ähnlich wie bei Noctua pronu-
ba sinken auch bei dieser wanderverdächtigen Art die Wiederfang-Quoten drastisch ab,
sobald sich die Lichtquelle außer Sichtweite befindet.
Rusina ferruginea:
Bezüglich der Stichprobengröße gilt hier das gleiche wie für die vorige Art.
Bei Rusina ferruginea fehlen Zweitwiederfänge gänzlich, und abgesehen von einem 9,
das in 3 Tagen von WaS (0 m) nach SiN flog erfolgten alle Wiederfänge nach einem
Tag und sind durch die Methode bedingt. Die mittlere Verweilzeit liegt dementspre-
chend auf einem sehr niedrigen Niveau von 1,13 Tagen.
Tab. 30: Reaktion von Rusina ferruginea auf ein Versetzen in verschiedene Entfernungen.
Recaptures of specimens of Rusina ferruginea, released at different distances [rom
the light source.
0 m 30m 60 m 90m 120 m
freigelassen 49 10 8 9 f)
released
Wiederfänge 10 | - 3 —
recaptures
% 20 10 - 33 -
Es wäre natürlich Unsinn, Rusina ferruginea aufgrund der oben erwähnten kurzen Ver-
weilzeiten als Wanderfalter zu bezeichnen, sicherlich nicht falsch ist dagegen die Kon-
statierung einer hohen Dynamik und Dispersionsaktivität bei dieser Art.
88
Meristis trigrammica:
Tab. 31-33: Ausbeute, Markierungen und Wiederfänge im Garten 1988 bei Meristis tri-
grammica.
Numbers of individuals, marked specimens and recaptures of Meristis trigrammica in
the garden 1988.
Ausbeute (Individuen) Markierungen Wiederfänge/Mehrfachwiederfänge
SiN WaS Z SIiN WaS 2 Wf.1h,2, 3,4 5,6 7er su!
dd AU 120 147 22 66 88 33 12. 8, 4.10 12m 58
09 1 5 6 1 322.6 m ee et =
>2 28 125722153 23 71 94 332 na il. ann, 8
Par. Zu) 30
In Tabelle 31 ist eine Erhöhung der Werte durch die hier mitgezählten Wiederfänge zu
veranschlagen, eine Bereinigung der Angaben wird durch Tabelle 33 möglich.
Drei Erstwiederfänge und ein Drittwiederfang erfolgten am Fangplatz SiN.
Die Weibchen sind im Wiederfangergebnis unterrepräsentiert, was aber nicht unbedingt
auf höhere Mobilität hindeutet, sondern auch durch das schlechtere Anflugverhalten in
Verbindung mit den dadurch bedingten statistischen Störeinflussen erklärt werden kann.
Tab. 34: Zwischen Fang und Wiederfang festgestellte Intervalle bei Meristis trigram-
mica 1988 im Garten.
Intervals (in days) between two catches of Meristis trigrammica 1988 in the garden.
Intervall (Tage). 1.2.23, 22075 76. 7.28. 9,10 11.2 >
Wiederfänge 39 8 8 1 RR N 1 1 - - = 58
Das Intervall zwischen Fang und Wiederfang beträgt im Mittel 1,72 Tage.
Im Gegensatz zu den bisher besprochenen Arten zeigt sich hier ein deutlich erhöhter
Anteil der Wiederfänge mit dazwischenliegenden Intervallen, was als Hinweis auf ver-
stärktes Verbleiben in der näheren Umgebung zu deuten ist.
4 Aufsummierte Verweilzeiten (Annahme:
Ständige Anwesenheit, nur nicht gefangen)
30
Wiederfänge nach x Tagen in Relation
zum Erstfang
20
23a Se Tao | (le) 123456789 10111213 ! (Tase)
Abb. 25: Apparente Verweilzeiten von Abb. 26: Aufsummierte Verweilzeiten und real
Meristis trigrammica 1988 im Garten. nach x Tagen beobachtete Wiederfänge.
Apparent residence times of Meristis Accumulated residence times and really
trigrammica 1988 in the garden. after the time x recaptured specimens.
89
Sowohl die hohe durchschnittliche Verweildauer von 3,00 Tagen als auch die deutliche
Differenz der Kurven in Abbildung 26 (siehe Bemerkungen zu Noctua pronuba) ver-
deutlichen, daß Meristis trigrammica im Rahmen des trivial movement zumindest im
Bereich des Gartens relativ ortstreu bleibt.
Wiederfang-Quote
(x)
t (Tage)
3
| I
| I)
mo Versetzdistanz 0 m 30 m 60 m 90 m* Versetzdistanz
Abb. 27: Wiederfang-Quoten von Meristis Abb. 28: Korrelation: Rückkehrdauer
trigrammica im Versetzexperiment. und Versetzdistanz (* n=3)
Probability of recapture of Meristis Correlation of distance of displace-
trigrammica, released at different distances. ment and time, needed for return.
* only three recaptures
In der Entfernung von 120 m wurde nur ein J freigelassen, das nicht mehr zurück-
kehrte. Vom 30 m entfernten Fangplatz SiN, wo 23 Individuen markiert wurden, flogen
3 (13 %) nach WaS, was für eine Barrierewirkung der Häuserzeile spricht. Umgekehrt
waren es nur 5,6 %, z.I. wohl aber durch den 2tägigen Fangrhythmus an SiN bedingt.
Die Darstellung (Abb. 27) erfolgte unter Hinzunahme der Mehrfach-Wiederfänge, da
einige Wiederfänge auch an den Versetzdistanzen freigelassen wurden.
In kühlen Nächten unternehmen die Tiere keine weiteren Flüge: Zwischen dem 4.6. und
dem 7.6.1988 beispielsweise flogen bei naßkaltem Wetter nach zwei Tagen 100 %, nach
drei Tagen noch 50 % der am 4.6. markierten Falter die Falle an.
Hoplodrina alsines:
Tab. 35-37: Ausbeute, Markierungen und Wiederfänge im Garten 1988 bei Hoplodrina
alsines.
Numbers of individuals, marked specimens and recaptures of Hoplodrina alsines in
the garden 1988.
Ausbeute (Individuen) Markierungen Wiederfänge/Mehrfachwiederfänge
SIiN WaS = SIiN Was 2 wenn VyR Su Tanzes
dd 23 216 239 21 186 207 214 5 1 0-0= Ve
99 i 26,29 La 126 1 - = og
>» 24 242 266 2221179233 VER EE: TEE ve nn an
Par. 24 69
Ein Wiederfang stellt einen Ortswechsler (WaS>SiN) dar, sonst handelt es sich aus-
schließlich um an WaS gemachte Beobachtungen.
90
Tab. 38: Zwischen Fang und Wiederfang festgestellte Intervalle bei Hoplodrina alsines
1988 im Garten.
Intervals (in days) between two catches of Hoplodrina alsines 1988 in the garden.
Intervall (Tage) 1 200374 2556 70582097: 10. 11% 012 &
Wiederfänge 21.04 Denen 1 - = - = 3
Das Intervall zwischen Fang und Wiederfang beträgt im Mittel 1,81 Tage.
= Aufsummierte Verweilzeiten (Annahme:
Ständige Anwesenheit, nur nicht gefangen)
Wiederfänge nach x Tagen in Relation
20 zum Erstfang
LEE t (Tage)
2a > a8 8 789.
Abb. 29: Apparente Verweilzeiten von Abb. 30: Aufsummierte Verweilzeiten und real
Hoplodrina alsines 1988 im Garten. nach x Tagen beobachtete Wiederfänge.
Apparent residence times of Hoplo- Accumulated residence times and really
drina alsines 1988 in the garden. after the time x recaptured specimens.
Die durchschnittliche Verweildauer beträgt 2,24 Tage, das einzige rückgefangene
Weibchen flog die Falle nach 4 Tagen zum zweiten Mal an.
Die beobachteten Intervalle und Verlustkurven deuten auf eine Ortstreue hin, die nicht
ganz so ausgeprägt ist wie bei Meristis trigrammica, jedoch deutlich höher als bei-
spielsweise bei Noctua pronuba oder Amathes c-nigrum.
Tab. 39: Reaktion von Hoplodrina alsines auf ein Versetzen in verschiedene Entfernungen.
Recaptures of specimens of Hoplodrina alsines, released at different distances from
the light source.
0 m 30 m 60 m 90 m 120 m
freigelassen 135 15 29 24 377,
release
Wiederfänge 24 = 2 1 3
recaplures
% 18 - 7 4 8
Anders als bei Meristis trigrammica zeigt sich hier ähnlich wie bei Noctua pronuba ein
Knick der Kurve bei 30 m. Es ist keine Korrelation zwischen Rückkehrdauer und
Versetzdistanz erkennbar.
Xanthorhoe ferrugata:
Wegen des starken Anfluges im Jahr 1988 mußte bei dieser Art das Versetzexperiment
abgebrochen werden, das Arbeitspensum wäre sonst nicht mehr zu bewältigen gewesen.
91
So wurden nur 5 Individuen dieser Art bei 30 m, 3 bei 60 m und 2 bei 90 m freige-
lassen. Von diesen markierten Faltern konnte keiner wiedergefangen werden.
Calospilos sylvata:
Diese Spannerart wurde 1988 am Fangplatz "We" im Dachauer Moos näher untersucht.
Zur Hauptflugzeit wurde 5 Fangnächte lang im 3-Tage-Rhythmus gefangen. Auf 629
markierte Falter kamen hierbei 46 Wiederfänge, die sämtlich an der Fangstelle freige-
lassen wurden. Einige Falter wurden dagegen in je 100 m Entfernung an verschiedene
Stellen gebracht um den Einfluß von Geländestrukturen auf die Rückkehr- Wahrschein-
lichkeit zu testen. Hierzu wurden ein Waldweg, eine Weidenhecke und eine Wirt-
schaftswiese ausgewählt.
Calospilos sylvata verweilt sehr lange am selben Standort, wie aus Abbildung 31 er-
sichtlich wird:
n
28
Abb. 31: Apparente Verweilzeiten von
Calospilos sylvata im Dachauer
Moos 1988.
Apparent residence times of Calo-
spilos sylvata in the "Dachauer
Moos" 1988.
3 6 9 12 t (Tage)
Aus den Verweildauern der Wiederfänge errechnet sich ein Durchschnittswert von 4,6
Tagen.
Tab. 40: Reaktion von Calospilos sylvata auf ein Versetzen an verschiedene Stellen.
Recaptures of specimens of Calospilos sylvata, released at different places.
0 m 100 m Hecke 100 m Wald 100 m Wirtschaftswiese
hedge. wood meadow
freigelassen 342+ 46 147 90 50
release
Wiederfänge 35 6 S) =
recaptures
% 9 4 6 e:
Ein Ortswiederfang-Ergebnis von 9 % nach zwei fangfreien Nächten ist als sehr hoch
einzustufen!
Zwischen zwei definierten Punkten scheint ein Individuenaustausch dann am meisten
begünstigt zu sein, wenn die dazwischenliegende Strecke waldartig strukturiert ist.
Im Offenland (Wirtschaftswiese) ist jedoch vermutlich eine höhere Mortalität durch
Freßfeinde zu veranschlagen.
92
Abb. 31b: Calospilos sylvata d (We, 4.7.88)
Abb. 3lc
Peribatodes rhomboidaria (WaS, 26.7.88)
93
Peribatodes rhomboidaria:
Tab. 41-43: Ausbeute, Markierungen und Wiederfänge im Garten 1988 bei Peribatodes
rhomboidaria.
Numbers of individuals, marked specimens and recaptures of Peribatodes rhomboida-
ria in the garden 1988.
Ausbeute (Individuen) Markierungen Wiederfänge/Mehrfachwiederfänge
SIN Was 2 SIiN Was 2 Wr. 102 3,805 ne LTE
dd 23 3197342 18207 285 44 ER Te
99 a 2 5 Zi __ ET NE EEE
ee ae -
> 31 374 405
Par. 31 154
Die Weibchen-Rate ist an SiN (17,9 %) mehr als doppeit so hoch als an WaS (7,2 %).
Die 99 sind im Wiederfangergebnis unterrepräsentiert, was auch hier durch nicht opti-
males Anflugverhalten und damit verbundene Störungen der statistischen Vergleich-
barkeit zu erklären ist.
Abbildung 32 verdeutlicht das proterandrische Erscheinungsbild dieser Art:
Abb. 32: Ansteigen der Weib-
chen-Rate (Proterandrie) im Lauf
der Flugzeit bei Peribatodes
rhomboidaria im Garten 1988.
Increase of sex-ratio of Periba-
todes rhomboidaria in the garden
1988.
Dekade
Tab. 44: Zwischen Fang und Wiederfang festgestellte Intervalle bei Peribatodes rhom-
boidaria 1988 im Garten.
Intervals (in days) between two catches of Peribatodes rhomboidaria 1988 in the
garden.
Intervallölfage )» 1.212. 32540075, "er 89, = 10, SET? FR
Wiederfänge 35.211 6 = 1 = = = = = = = 53
Das Intervall zwischen Fang und Wiederfang beträgt im Mittel 1,51 Tage.
94
Aufsummierte Verweilzeiten (Annahme:
Ständige Anwesenheit, nur nicht gefangen)
Wiederfänge nach x Tagen in Relation
zum Erstfang
t (Tage)
t (Tage)
Abb. 33: Apparente Verweilzeiten von Abb. 34: Aufsummierte Verweilzeiten und real
Peribatodes rhomboidaria 1988 im nach x Tagen beobachtete Wiederfänge.
Garten.
Apparent residence times of Periba- Accumulated residence times and really
todes rhomboidaria 1988 in the garden. after the time x recaptured specimens.
Die mittlere Verweildauer liegt mit 1,80 Tagen unter dem Wert von Noctua pronuba.
Dies verdeutlicht die Notwendigkeit einer vorsichtigen Interpretation solcher Einzelin-
formationen. Erst in Verbindung mit zusätzlichen Ergebnissen kann sich dann ein voll-
ständigeres Bild der Populationsdynamik ergeben. Im vorliegenden Fall könnte es durch
eine im Vergleich mit Noctua pronuba geringere Affinität ans Licht zu einem weniger
ausgeprägten "Festhaltephänomen" durch die direkte Lichtwirkung gekommen sein. Die
Vergleichbarkeit leidet auch unter den nicht exakt gleich verteilten Individuenzahlen an
den verschiedenen Versetzdistanzen. Da bei P. rhomboidaria (im Gegensatz zu N.
pronuba) überproportional viele Tiere direkt an der Falle freigesetzt wurden, könnte es
zu einer Überbetonung der 1-Tage-Wiederfänge und einer methodisch bedingten Ver-
ringerung der apparenten Verweildauern gekommen sein (siehe Alcis repandata).
Die Differenz der beiden Kurven in Abbildung 34 ist jedoch ein Hinweis auf weniger
dynamische Prozesse als bei den hochmobilen Arten wie Amathes c-nigrum oder Noc-
tua pronuba.
A ns 173
nach |
Ri Widrlng Qui
gesamt
t (Tage)
; / Versetz-
oe 30 m Fo 90 m 120 m Versetz- 0m 30m 60 m 90 m 120 m distanz
distanz
Abb. 35: Wiederfang-Quoten von Periba- Abb. 36: Korrelation: Rückkehrdauer
todes rhomboidaria im Versetzexperiment. und Versetzdistanz.
Probability of recapture of Peribatodes Correlation of distance of displace-
rhomboidaria, released at different distances. ment and time, needed for return.
95
Von den Wiederfängen (Distanz: 0 m) wurden am 1. Tag 11,8 %, und insgesamt 17,6 %
ein weiteres Mal gefangen. Dies entspricht dem Wert für die Erstfänge.
Bei einer gemäß den Ausführungen in 8.1.3. über die parallel laufenden 0 m-Werte
durchgeführten Bereinigung der Wiederfang-Quoten ergibt sich folgendes Bild, das sich
nicht grundlegend von den Ergebnissen in Abb. 35 unterscheidet:
Tab. 45: Versetzexperiment bei Peribatodes rhomboidaria, bereinigt über die parallel
laufenden 0 m-Werte.
Recapture-rates of Peribatodes rhomboidaria, released in different distances, after
correction by the means of the 0 m-terms.
Versetzdistanz
distance of displacement 0m 320m 60m 90m 120m
W.f.-Quote, 1.Tag (%) 1157 125 17,0 3.3 3,3
W.f.-Quote, 2 (%) 14,6 24,0 12,7 6,2 12,6
Im Prinzip gleiche Ergebnisse resultieren auch dann, wenn man nur die in der Haupt-
flugzeit dieser Art (1.8.-18.8.) gesammelten Daten berücksichtigt. Etwas aus dem Rah-
men fallen lediglich die in einer Entfernung von 120 m ausgesetzten Tiere mit Wie-
derfang-Anteilen von 7,4 % (1. Tag) und 18,5 % (Gesamt).
Aus der Beobachtung, daß am I. Tag nach dem Freilassen ein Gradient festzustellen
ist, der sich danach einigermaßen ausgleicht, könnte man schließen, daß bei zufällig in
verschiedene Richtungen startenden Exemplaren anfangs noch der Winkel zum Einzugs-
bereich der Lichtquelle bestimmend für die Wiederfang-Wahrscheinlichkeit ist. Später
könnte durch "zickzackartige” Richtungsänderungen umherschweifender Falter ein Wie-
dereinfangen in den Trichter der Lichtfallen-Reichweite erfolgen.
In diesem Sinne ist mit zunehmender Versetzdistanz eine Verlängerung der Rückkehr-
dauer feststellbar (siehe Abb. 36).
Ortswechsler von SiN nach WaS (30 m) waren mit insgesamt nur 4,3 % gegenüber den
versetzten Individuen (sogar dem 120 m-Wert) deutlich unterrepräsentiert. Hierbei mag
die Barrierewirkung der Häuserzeile eine besondere Rolle gespielt haben.
Ähnliches gilt für die Ortswechsler in umgekehrte Richtung (? Wiederfänge nach einem
Tag). Die aus 90 m (1) und 120 m (2) nach SiN geflogenen Stücke wurden jeweils
nach 2 Tagen wiedergefangen, was einen weiteren Hinweis auf eine Verlängerung der
Rückkehrdauern bei zunehmender Distanz (vergleiche Abb. 36) darstellt.
96
Alcis repandata:
Tab. 46-48: Ausbeute, Markierungen und Wiederfänge im Garten 1988 bei Alcis repandata.
Numbers of individuals, marked specimens and recaptures of Alcis repandata in the
garden 1988.
Ausbeute (Individuen) Markierungen Wiederfänge/Mehrfachwiederfänge
SIN WaS Du SiN Was 23 WR 2 3a 5 D=
dd 12 596 608 NES8B77234:8 de letters. eo 50
09 2 55 SU 253 55 Zu em, Ze 2
entkom- “
zen 4 77 81 _
ı 18 728 746
Par. 18 310
In der Weibchen-Rate liegen ähnliche Verhältnisse vor wie bei Peribatodes rhomboida-
ria, sie betrug an SiN 14,3 %, an WaS 8,9 %. Das nicht optimale Anflugverhalten
führte vermutlich zu der feststellbaren Unterrepräsentierung der o9 im Wiederfanger-
gebnis (siehe Bemerkungen zu Peribatodes rhomboidaria).
Ein proterandrisches Erscheinungsbild ist nicht erkennbar (Abbildung 37):
13 590 603 EN)
o9-Rate
(x)
Abb. 37: Verlauf der Weibchen-Rate in der
Flugzeit von Alcis repandata im Garten 1988.
Sex-ratio of Alcis repandata in the months
of the flight time. :
M6 E6 AT M7 Dekade
M
KawallIere) Ri Or
Wiederfänge 45 et Zen een 1 1 1 - 1 = = 58
Tab. 49: Zwischen Fang und Wiederfang festgestellte Intervalle bei Alcis repandata
1988 im Garten.
Intervals (in days) between capture and recapture of Alcis repandata 1988 in the garden.
Das Intervall zwischen Fang und Wiederfang beträgt im Mittel 1,76 Tage. Auffällig ist
auch die hohe Zahl von Intervallen über 2 Tagen (siehe Bemerkungen zu Noctua pronuba)).
Aufsummierte Verweilzeiten (Annahme:
Ständige Anwesenheit, nur nicht gefangen)
Wiederfänge nach x Tagen in Relation
zum Erstfang
t (Tage)
a 07, Be 9 Ne, TAN EETESON
Abb. 38: Apparente Verweilzeiten von Abb. 39: Aufsummierte Verweilzeiten und real
Alcis repandata 1988 im Garten. nach x Tagen beobachtete Wiederfänge.
Apparent residence times of Alcis Accumulated residence times and really
repandata 1988 in the garden. after the time x recaptured specimens.
97
Die durchschnittliche Verweildauer von 2,08 Tagen liegt zwar über dem Wert von
Noctua pronuba, jedoch nicht wesentlich. Dies ist, wie bereits unter Peribatodes rhom-
boidaria angedeutet wurde, durch eine Überrepräsentierung der bei 0 m freigelassenen
Tiere verursacht. Diese verblieben durchschnittlich nur 1,35 Tage im Fallenbereich,
bedingt durch einen hohen Anteil an Faltern, die sich eine Nacht lang an der Licht-
quelle festhalten ließen! Geht man von einer gleichmäßigen Verteilung auf die ver-
schiedenen Entfernungen aus, so ergibt sich ein theoretischer Wert von ungefähr 2,8
Tagen, also deutlich mehr als beim Wanderfalter Noctua pronuba.
Auch die relativ große Differenz der beiden Kurven in Abbildung 39 steht vermutlich
im Zusammenhang mit einer niedrigeren Mobilität als beispielsweise bei Noctua pronu-
ba oder Amathes c-nigrum.
%
t
[=] Nuederlang: gar De:
nach |
10 Se -Quote 4
gesamt
3
2
1
t Versetz-
oa ee 0 m 30 m 60 m 90 m 120 m distanz
Abb. 40: Wiederfang-Quoten von Alcis Abb. 41: Korrelation: Rückkehrdauer
repandata im Versetzexperiment. und Versetzdistanz.
Probability of recapture of Alcis Correlation of distance of displace-
repandata, released at different distances. ment and time, needed for return.
Die in Abbildung 41 für 60, 90 und 120 m angegebenen Werte sind wegen der geringen
Stichprobengröße (3, 2 und 2) noch wenig aussagekräftig.
Auch hier ergeben sich wie bei Peribatodes rhomboidaria für die Wiederfang-Wahr-
scheinlichkeiten der Mehrfachwiederfänge Prozentsätze, die dem Ergebnis bei 0 m ent-
sprechen. Die Bereinigung mittels der gemittelten 0 m-Werte sowie die ausschließliche
Berücksichtigung der Hauptflugzeit (17.6.-6.7.) führen im Prinzip zu den gleichen Aus-
sagen, wie sie den Abbildungen 40 und 41 zu entnehmen sind.
Das von Peribatodes rhomboidaria deutlich unterschiedene Ergebnis könnte auf vermin-
dert starke Ortsveränderungen im Zickzackmuster zurückzuführen sein. Vielleicht ver-
bleibt ein Teil der Falter, die ab einer Entfernung von 60 m ausgesetzt wurden, an
den entsprechenden Stellen. Wichtig ist jedoch, daß ein Muster, das dem des Wander-
falters Noctua pronuba ein wenig ähnelt - wenn auch ohne den starken Knick in der
Kurve bei 30 m - , nicht unbedingt entsprechend interpretiert werden kann. Die durch-
schnittlich längeren Intervalle zwischen Fang und Wiederfang deuten auf ausgeprägte
Unterschiede hin.
8.4.3. Vergleich der sich ergebenden Muster
Im Versetzexperiment waren in den Reaktionen z.T. deutliche Unterschiede zwischen
den bekannten Wanderfaltern und den Arten, von denen kein Migrationsverhalten be-
kannt ist, erkennbar: Noctua pronuba und Amathes c-nigrum kehren nach einem Ver-
setzen von 30 Metern und mehr nur mehr selten ans Licht zurück; der Prozentsatz
dürfte von dem Winkel vom Freilaß-Punkt zum Einzugsbereich der Lichtquelle abhängen.
98
Ganz ähnliche Ergebnisse erzielte PLAUT (1971) beim Wanderfalter Spodoptera litto-
ralis in einem ähnlichen Experiment.
Scotia clavis, Scotia exclamationis und Rusina ferruginea reagieren in etwa entspre-
chend, bei Hoplodrina alsines allerdings lassen sich schon Anzeichen für eine nicht so
hohe Dynamik finden.
Stärker sind solche Hinweise bei Meristis trigrammica, Peribatodes rhomboidaria und
Alcis repandata. Diese Arten schweifen vermutlich mehr oder weniger ungerichtet in
der weiteren Umgebung herum und verursachen so Wiederfänge, die nicht durch die
direkte Lichteinwirkung erkiärt werden können.
Die einzige relativ ortstreue Art, die getestet wurde, ist der Spanner Calospilos sylvata.
Im Garten war bei vielen Arten (z.B. Peribatodes rhomboidaria) die Barrierewirkung
der Häuser- und Garagenzeile (siehe 8.1.) aufgefallen.
8.4.4. Hinweise für faunistische Arbeitsansätze
Bei Lebend-Lichtfallenfängen mit quantitativen Arbeitsansätzen erscheint es wichtig,
nicht kontinuierlich zu fangen, da die Häufigkeiten durch verschiedene Wiederfang-
Wahrscheinlichkeiten verzerrt werden.
Ein 2-Tage-Rhythmus ist als die günstigste Methodik anzusehen. Häufigkeitsverfäl-
schungen spielen hier praktisch keine Rolle mehr.
Der direkte Einfluß der Lichtquelle (Schwarzlichtröhre) sinkt offensichtlich schon in
Entfernungen von 30-50 m drastisch ab. Die Grenzwerte einer positiven Antwort sind
artspezifisch verschieden. Diese Befunde entsprechen den Beobachtungen vieler anderer
Forscher (z.B. GROTH, 1951; DANIEL, 1952; SCHADEWALD, 1955 und 1956; RETZ-
BANYAI-RESER, 1986), auch wenn bezüglich der Reichweite noch andersartige Mei-
nungen existieren (z.B. SCHEERPELTZ, 1968 oder URBAHN, 1973).
In einem Versetzexperiment ermittelte PLAUT (1971) für einen Wanderfalter die Fal-
lenreichweite von ca. 30 m, in Tunnelexperimenten kamen GRAHAM et al. (1961) auf
40 m (allerdings an einer Argon-Lampe) und schließlich STEWART et al. (1969) auf
maximal 60-135 m Entfernung für eine positive Antwort auf Lichtreize, ermittelt an
jeweils nur einzelnen Arten.
8.5. RÜCKSCHLÜSSE AUS ORTSWIEDERFÄNGEN
8.5.1. Die Problematik
BETTMANN (1985 a; 1985 b; 1986) versuchte, über Interpretationen von Ortswiederfän-
gen die verschiedenen Nachtfalter hinsichtlich ihrer Ortstreue zu charakterisieren.
Ähnliches publizierten REINHARDT & DROBNIEWSKI (1979) für einige Tagfalterarten.
Als Grundlage diente BETTMANN Material, das aus einer kontinuierlich arbeitenden
Lichtfalle stammte.
Tab. 50: Wiederfänge bei Nacht-Großschmetterlingen in Rheydt (aus BETTMANN, 1986).
Recaptures of moths in Northern Germany (from BETTMANN, 1986).
Markiert Wiederfänge nach x Tagen
released recaptures alter x days
222730475 6-7 „8,59.,.10:,.11,:12.13214.:15,.16.,>16
4877 13 Role ar 3 ne 21, 2 ren a el
99
Abgesehen von der auffällig niedrigeren Wiederfang-Quote von durchschnittlich 3,5 %
gegenüber 18,8 % im Garten ab Mai 1988 (siehe Tab. 51) ergibt sich eine ähnliches
Verteilungsmuster wie im Untersuchungsgebiet. Berücksichtigt man die Tatsache, daß
BETTMANN die Wiederfänge nach x Tagen in Relation zum Erstfang ermittelte und.
nicht die apparenten Verweilzeiten, dann zeigt sich ein leichter Mangel an Wiederfän-
gen über mehrere Tage hinweg.
Tab. 51: Fang-Wiederfang-Intervalle (Interv.) und Apparente Verweildauern (Verw.) bei
täglichem Betrieb der Falle (WaS ab Mai 1988: 1 und 2) sowie Apparente Verweil-
dauern aus Fängen mit fangfreien Nächten dazwischen (3).
Capture-recapture-intervals (1) and apparent residence times (2) in a garden in Sou-
thern Bavaria (daily catches); apparent residence times (3) in the study area (with
census intervals of at least one night between the catches)
Markiert Fang-Wiederfang-Intervall/Apparente Verweildauer (Tage)
released Capture-recapture-interval/Apparent residence time (days
23456 7 89 1107 111 122703 SITES
1 WaS 4713 7290890 3115107 duilanl4 624 \elol iX imnliEieezEe
1988
Interv.
2 WaS 4444431 482123 76 ie ER Rt] 11 1 1 1
1988
Verw.
3 Gesamt- 18.721 ya Ve 1 3 LA SE a 3 Fa 1 a Br ä er ZN | 1 1 1
fläche
198 1458 * Ortswechsler SiN/WaS
Wenn wir nun die in 8.4. dargestellten Ergebnisse betrachten, wird schnell deutlich,
welche Probleme Beurteilungen mit sich bringen, die sich ausschließlich auf Material
aus kontinuierlichen Fängen stützen:
Von Noctua pronuba beispielsweise wurden über 40 % der Falter am nächsten Tag
wiedergefangen (bei BETTMANN nur 1,2 %). Dieser Prozentsatz sinkt schon dann, wenn
man jeweils nur eine fangfreie Nacht zwischen den Probeentnahmen läßt, je nach
Standort auf Werte um oder unter 1 %.
Das bedeutet, daß eine Nacht (mit einigermaßen günstigen Flugbedingungen) genügt, um
den Tieren ausreichend Gelegenheit zu bieten, sich in einem den natürlichen Gegeben-
heiten entsprechendem Maß zu vermischen. Bei einigen wenigen Arten, z.B. Calo-
spilos sylvata, scheint dies schon durch Tagaktivitäten zu erfolgen.
Dies erklärt auch die Überrepräsentierung der 1-Tages-Wiederfänge, wie sie auch
BETTMANN (l.c.) selbst hervorhebt. Es handelt sich hierbei zum Großteil um Tiere,
die durch die direkte Lichtwirkung "gefangengehalten” wurden.
Ein weiteres bereits angesprochenes Problem ist die unterschiedliche Affinität der Ar-
ten und Geschlechter ans Licht: Bei einigen Weibchen beispielsweise (z.B. Hoplodrina
alsines) wird nur ein kleiner Teil der tatsächlich anwesenden Individuen nachgewiesen.
Diese geringeren Stichproben-Ausschnitte haben - methodisch bedingt - aber eine klei-
nere Wiederfangwahrscheinlichkeit zur Folge.
100
REZBANYAI-RESER (1986) erläutert in seiner Antwort auf die Veröffentlichungen
BETTMANNs die Problematik in sieben Unterpunkten genauer und kommt zum Schluß,
daß "die Ortstreue von Nachtgroßfaltern mit der Kombination der Markierungs- und
Lichtfangmethode an einem einzigen Standort nicht ausreichend erforscht werden kann."
Die offenbleibenden Fragen der Mortalität, der Möglichkeit eines unerkannten Verblei-
bens in der weiteren Umgebung u.s.w. "könnte man eventuell beantworten, wenn im
weiteren Umkreis eines Markierungs-Standortes zahlreiche Lichtfallen oder Lichtfang-
Beobachtungs-Stationen regelmäßig verteilt, aufgestellt würden. Wenn die an einem
bestimmten Tag markierten Nachtgroßfalter aus der Gruppe der Nichtwanderer auch
weiterhin am Leben bleiben und ihre Aktivität unverändert ist, müssen sie auch in den
nächsten Tagen in der weiteren Umgebung durch Licht irgendwo angezogen werden.
Eine solche Untersuchung wäre sehr wünschenswert. Sie ist jedoch äußerst zeit- ar-
beits- und personalaufwendig ...” (REZBANYAI-RESER, l.c.).
Es ist sicherlich richtig, daß Rückschlüsse aus Ortswiederfängen an einem Einzelstand-
ort zu sehr verzerrten Ergebnissen führen können. Wenn man die in der von REZBA-
NYAI-RESER (l.c.) postulierten Methodik (Fangstellen-Netz) gesammelten Daten mit-
einschließt, können Beurteilungen aus Ortswiederfängen gute Zusatzinformationen lie-
fern.
8.5.2. Beispiel: Amathes triangulum
Insgesamt wurden bei 919 markierten Individuen 122 Wiederfänge registriert.
Im Garten (1988) verteilten sich Fänge und Wiederfänge folgendermaßen:
Tab. 51-53: Ausbeute, Markierungen und Wiederfänge im Garten 1988 bei Amathes tri-
angulum.
Numbers of individuals, marked specimens and recaptures of Amathes triangulum in
the garden 1988.
Ausbeute (Individuen) Markierungen Wiederfänge/Mehrfachwiederfänge
SiN WaS D SiN WasS 2 WEL 12 30 W4n SER SE 7Me RB OTEESE
dd 37 313 350 33 311 344 72: 14, 5.,222 02. 112°172127100
99 16 97 113 16 97 113 14,51 SZ ZZ 5
>x 53 410 463 49 408 457 86T 13A1I, 282272,2 El
Par. 5770, 200
Tab. 54: Zwischen Fang und Wiederfang festgestellte Intervalle bei Amathes triangu-
lum 1988 im Garten (nur Ortswiederfänge an WaS).
Intervals (in days) between two catches of Amathes triangulum 1988 in the garden.
Intervall ([age) ı 2 345 678 9 1 2 3 ZZ
Wiederfänge 84 13.3.4 1 2 en = = 1 1 109
Das Intervall zwischen Fang und Wiederfang beträgt im Mittel 1,62 Tage.
101
ni Aufsummierte Verweilzeiten (Annahme:
Ständige Anwesenheit, nur nicht gefangen)
Wiederfänge nach x Tagen in Relation
50 zum Erstfang
t (Tage) ie
age
da
5 10 15 20
1 5 10 15 20
Abb. 42: Apparente Verweilzeiten von Abb. 43: Aufsummierte Verweilzeiten und real
Amathes triangulum 1988 im Garten. nach x Tagen beobachtete Wiederfänge.
Apparent residence times of Amathes Accumulated residence times and really
triangulum 1988 in the garden. after the time x recaptured specimens.
Die durchschnittliche apparente Verweildauer beträgt 2,20 Tage. Die 99 (1,50 Tage,
n=14) scheinen wesentlich kürzer im Gebiet zu bleiben als die dd (2,63 Tage, n= 72).
Die Weibchen-Rate nimmt auch bei den Wiederfängen, stärker noch bei den Mehrfach-
wiederfängen ab.
Nimmt man als Bewertungsgrundlage nur die im Garten 1988 gesammelten Daten, so
ist die Ähnlichkeit mit dem bei Hoplodrina alsines (siehe 8.4.2.) festgestellten Muster
am größten. Es handelt sich demnach um eine Noctuide, deren Mobilität eine Zwi-
schenstellung zwischen den hochdynamischen Arten wie Noctua pronuba oder Amathes
c-nigrum und der relativ häufig in der weiteren Umgebung verbleibenden Meristis tri-
grammica einnimmt.
Diese Beurteilung deckt sich mit den Ergebnissen der anderen Standorte (siehe z.B.
8.3.1.).
8.5.3. Beispiel: Calospilos sylvata
Diese Art eignet sich durch die vergleichsweise hohe Ortstreue und durch das zahlrei-
che Auftreten im Dachauer Moos gut zu Berechnungen der Populationsgröße. Da nur
wenige Probeentnahmen bei relativ niedriger Fangfrequenz vorliegen, sind die Berech-
nungen als vorläufig anzusehen und bedürfen weiterer Untersuchungen zur Absicherung
der Ergebnisse.
Teilt man das Produkt der beiden Fangergebnisse zweier Probeentnahmen (in der ersten
Nacht nur die markierten Individuen) durch die Anzahl der in der zweiten Fangnacht
wiedergefangenen Individuen so erhält man einen ersten Anhaltspunkt über die absolute
Populationsgröße im Einzugsbereich der Lichtfalle.
So ergibt sich aus dem Fangergebnis vom 1.7.88 (159 markierte Falter) und den Beo-
bachtungen vom 4.7.88 (126 Individuen, davon 22 Rückfänge) eine Populationsgröße von
911 Individuen.
Am selben Standort ergab sich bei einem in zwei aufeinanderfolgenden Nächten 1989
durchgeführten Versuch mit ähnlichen Stichprobengrößen ein Wert von 685 Individuen.
102
Einen Überblick über die Problematik solcher Berechnungen geben unter anderen EHR-
LICH & DAVIDSON (1961), JOLLY (1965), ZINNERT (1966) und ROFF (1973 a und b).
9. UBERSICHT UBER DIE REAKTION DER ARTEN
9.1. VORBEMERKUNGEN
Aufbauend auf den Ergebnissen der Markierungsexperimente und genaueren Betrachtun-
gen der larvalökologischen Ansprüche wird versucht, das ganze im Untersuchungsgebiet
nachgewiesene Artenspektrum hinsichtlich Dispersionsverhalten, trivial movement und
Verbreitungsstrategien zu charakterisieren.
Nach einem Überblick über das 1987 und 1988 im Untersuchungsgebiet gesammelte
Material erfolgt eine Wertung der Wiederfangergebnisse Dies ist nötig, da nicht an
allen Standorten mit der gleichen Methodik vorgegangen wurde.
Bei einem Materialumfang von über 100 markierten Exemplaren werden Markierungs-
tabellen beigefügt. Hierin spiegelt "2 par." das aus den streng vergleichbaren Paral-
lelfängen stammende Fangergebnis wieder, während sich die unter "2 zus.” angegebe-
nen Individuensummen auf die zusätzlichen Fänge beziehen.
In einem zweiten Schritt wird die betreffende Art in das von SCOTT (1975) vorge-
schlagene System zur Beurteilung von (Tagfalter-)Flugdistanzen eingeteilt. Die vier
Gruppen sind folgendermaßen definiert:
1 = "Very small movements"” (gewöhnlich weniger als 100 m)
2 = "Larger movements” (manchmal einige 100 m)
3 = "Still larger movements” (manchmal 1 km)
4 = "Often move many kilometers (or can migrate many kilometers)"; Bewegungen
über viele Kilometer sind keine Seltenheit, hierher gehören auch die einheimi-
schen Wanderfalter.
Durch die Gruppeneinteilung wird ein Bereich abgesteckt, in dem sich das trivial mo-
vement sowie der größte Teil des Dispersionsverhaltens abspielt. Auf die Zuteilung in
eine 5. Gruppe (Wanderfalter über Distanzen von vielen Tausend Kilometern) soll hier
verzichtet werden.
Über eine genaue Betrachtung der Larvalansprüche können weitere Rückschlüsse gezo-
gen werden, diese sind im Abschnitt "Larvalökologie" festgehalten. Fehlende Nachweise
biotopfremder Tiere theoretisch auch durch vermindertes Anflugverhalten an solchen
Standorten bedingt sein. Dies erscheint jedoch angesichts der zahlreichen Beobachtungen
von Gastarten unwahrscheinlich. Außerdem ist oft eine Korrelation zwischen ausgepräg-
ten Häufigkeitsgradienten und stark lokal vorkommenden Raupenfutterpflanzen erkennbar.
Als Unsicherheitsfaktor ist hierbei zu berücksichtigen, daß in Einzelfällen die Literatur-
angaben zu Raupenfutterpflanzen nicht hinreichend präzise oder sogar falsch sind. Bei
einer Reihe von Arten flossen daher in die Beurteilung eigene Beobachtungen mit ein.
Als weitere Hinweise zur "Populationsbiologie” werden Angaben über Bivoltinismus und
sexuelle Koinzidenz gegeben, wenn möglich, erfolgen auch Schätzungen der Popula-
tionsgröße.
Der Versuch einer Einordnung in das r-K-Kontinuum ("r-Stratege”, "K-Stratege", "in-
termediärer Typ") bildet den Abschluß der jeweiligen Artcharakteristik. Das r-K-Kon-
tinuum stellt ein vereinfachtes Schema dar, ist aber, wie dies auch WEIDEMANN
103
(1986; 1986b) für die Tagfalter und SRITZER & LEPS (1988) für die Nachtfalter
betonen, eine plausible Art und Weise, Verbreitungsstrategien zu charakterisieren.
Als Beurteilungskriterien dienten
- die Ergebnisse aus den Fang/Wiederfangexperimenten
- Nachweise biotopfremder Tiere
- einige zusätzliche mehr oder weniger vage Hinweise, die mit der gebotenen Vorsicht
behandelt wurden: Schlechte Flugtauglichkeiten (z.B. flügellose 99), Ausmaß der
"Nacht-zu-Nacht-Fluktuationen” und Häufigkeitsgradienten. Vor allem der letzte
Parameter zeigt deutlich, wie vorsichtig man vorgehen muß, da auch hochmobile
Wanderfalter z.T. in solchen Häufigkeitsgradienten auftreten, was auf "Zugstraßen”
und nicht auf lokale Populationen zurückzuführen ist. Nach SCOTT (1975) sind solche
Gradienten jedoch in heterogenen Lebensräumen Hinweise auf Arten mit kurzen
Flugdistanzen. Arten, die mehr lokal verbreitet sind, benutzen relativ stabile Res-
sourcen und Habitate (GLAZIER, 1986), was ein Merkmal der K-Strategen darstellt.
Nicht berücksichtigt wurden hierbei Bi- bzw. Polyvoltinismus, welche nach MEINICKE
(1984) und GATTER (1981) für hochmobile Arten typisch sind. Dasselbe gilt für die
Fluktuationen von Generation zu Generation, deren Korrelation mit der Position im
r-K-Kontinuum SPITZER & LEPS (1988) bei den Noctuiden Südböhmens belegten.
So können in einem zweiten Schritt die entsprechenden Zusammenhänge vergleichend
getestet werden.
Abschließend wird die Art noch ergänzend hinsichtlich ihrer Verbreitung im Untersu-
chungsgebiet und ihrer beobachteten Habitat- bzw. Ortstreue charakterisiert. Hierzu
dienen folgende 6 Gruppen:
1. Gruppe: Wanderfalter oder "wanderverdächtig"” nach EITSCHBERGER & STEINI-
GER (1980).
2. Gruppe: Ubiquisten, deren Häufigkeit überall mehr oder weniger gleich ist.
3. Gruppe: Die Art ist mehr oder weniger überall anzutreffen, auch die Potenz zur
Verbreitung und die Mobilität sind hoch, es sind jedoch Verbreitungsschwerpunkte
festzustellen.
4. Gruppe: Die Art ist ebenfalls mehr oder weniger überall anzutreffen, sie ist je-
doch vergleichsweise ortstreu; es existieren Verbreitungsschwerpunkte.
5. Gruppe: Die Habitatbindung ist relativ stark ausgebildet, dennoch sind die Potenz
zur Verbreitung und die Mobilität (v.a. innerhalb des Habitats) groß.
6. Gruppe: Die Art ist in starkem Maße habitat- und ortstreu.
Es soll noch darauf hingewiesen werden, daß die Angaben die Verhältnisse im Unter-
suchungsgebiet wiederspiegeln; eine Übertragbarkeit auf andere Gebiete muß nicht un-
bedingt gegeben sein, beispielsweise wird die xerothermophile Actinotia hyperici im
Norden Münchens aufgrund des Mangels an geeigneten Biotopen zweckmäßigerweise
eine Strategie verfolgen, die eher in der K-Region zu suchen ist, während sie in Sü-
deuropa, wo die Gefahr, in biotopfremdes Gelände verschlagen zu werden, geringer
ist, als r-Stratege zu bezeichnen ist und manchmal in unvorstellbaren Mengen gefangen
wird. Es ist an distalen Bereichen des Vorkommens von Arten also bisweilen nicht nur
eine unterschiedliche ökologische Nischenbeanspruchung zu beobachten ("ökologische
Kompensation", siehe WEIDEMANN, 1986, p. 52), sondern auch eine Änderung der
Strategie.
104
9.2. ARTENLISTE
NOLIDAE
Celama confusalis (1 Individuum)
Distanzen: vermutlich 1-2
Verbreitungsstrategie: vermutlich K-Stratege,, 6. Gruppe
LYMANTRIDAE
Dasychira selenitica
Distanzen: 1-2
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Dasychira pudibunda
36 Individuen 11,1 % 9- Rate
33 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: 3
en:
Larvalökol gie. im Raupenstadium an Rot-Buche, Birke, Hain-Buche und Eiche ge-
bunden ( Si 1984), die beiden HM-Stücke sind also zugeflogen (mindestens
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Orgyia recens (7 Individuen)
Distanzen: o9 1 (flugunfähig); I 3
Larvalökologie: im Raupenstadium an verschiedenen Laubhölzern (auch Salix spec.),
das HM-Stück stammt also zumindest aus dem Ruderal (150-300 in).
Verbreit strategie: intermediärer Typ, 3. Gruppe; die o9 sind durch den Verlust
der Flugfähigkeit gezwungenermaßen biotop- und ortstreu, sie legen den Eivorrat
meist auf dem Puppenkokon ab. Die dc‘ sorgen dagegen durch ihre große Mobilität
für eine gute Gendurchmischung. Bei der Kolonisation neuer Lebensräume spielen
wohl die lang behaarten Einsupchen. die leicht vom Wind verdriftet werden, eine
besondere Rolle. Schon durch kurzes Anpusten können 1-3 m zurückgelegt werden.
Lymantria monacha
137 Individuen 1,4 % 9- Rate
65 markiert 5 Wiederfänge
Wiederfeng-Quote: niedrig, alle Wiederfänge WaS 1988 nach 1-Tages-Intervallen,
‚also durch die direkte Lichtwirkung gefangengehalten.
Distanzen: 2-3
Larvalökologie: an Bäume gebunden (v.a. Nadelhölzer), die Strecke von 1 km (nach
HM) wird normalerweise nicht bewältigt, schon in 50 m Entfernung vom Nadel-
waldrand starker Rückgang der relativen Häufigkeit (siehe Wasserwerk
Verbreitungsstrategie: intermediärer Iyp; 9. GEUppe: ei Massenvermehrungen wohl
erhöhte Mobilität; SCHWERDTFEG (1978) berichtet von Massenflügen diese
rn mobei es sich seiner Meinung nach nur um einen passiven Transport (Wind)
andelte.
Euproctis chrysorrhoea (2 Individuen)
Distanzen: 2-3
Larvalökologie: im Raupenstadium an Laubholz gebunden, vor allem an Obstbäume
und Eiche. Das HM- emntaralaı) legte also wahrscheinlich 800-1000 m zurück.
Verbreitungsstrategie: vermutlich r-Stratege, 3. Gruppe
Porthesia similis
138 Individuen 13,8 % o- Rate
46 markiert kein Wiederfang
105
Wiederfang-Quote: wohl niedrig, die Probeentnahme erfolgte im Moos jedoch nur in
wöchentlichen Abständen
Distanzen: 2 ee Siedlungsbereich noch nie festgestellt!)
Verbreitungsstrategie: K-Stratege, 6. Gruppe
ARCTIDAE
Cybosia mesomella
167 Individuen 0% 9- Rate
49 markiert 1 Wiederfang
Wiederfang-Quote: ein Wiederfang (4) erfolgte nach 6 Tagen (WaN>WNo= 50 m)
Distanzen: 2-3 i
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Miltochrista miniata (9 Individuen)
Distanzen: 1-2
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Lithosia quadra (17 Individuen)
Distanzen: 2-3
Larvalökologie: die Raupen dieser Art können bei Massenvermehrungen von Lyman-
u monacha als Mordraupe zur Einregulierung der Bestände dieses Schädlings
eitragen.
Verbreitungsstrategie: vermutlich ähnlich wie L. monacha intermediärer Typ, 5.
Gruppe; nach BAHN 11973) mit langfristigen Häufigkeitsschwankungen
Eilema depressa
siehe verringerte Fallendistanzen 8.3.
713 Individuen 55,1 % 9- Rate
575 markiert 4 Wiederfänge
Tab 55: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von Eile-
ma depressa
SIEDLUNG WALD HALBTROK- Dat WALD
l KENRASEN MOL 2 1988 Garten Wasserwerk
1987 | Garten |!
SIS SIMıSN WaS;ıWaM WaN HO HM HW eS WaN WNw WNo HO HM HW Au We
Z par. a So 3 2 6 42 1 1 2 136 Zpar. 7 13 173 162 81 107 2 Es - 1
zu = 0-8 Se 4 - - - 15 zus - 23 u. ER hi =
dd a 9 6 36 17 1 - 2 75 [0102 3 9 86 62 37 39 1 2 = =
99 -. - 6 - 6 26 28 _ 1 = 70 99 4 27 86 87 43 66 1 2 = =
Mark. 12 10 57 32 1 1 2 126 Mark. 6 27 146 124 66 76 1 3 = =
Wif. Ssshalrs il Asse Age - 1 we = = BE Ne nn >=. "| 2
Wiederfang-Quote: gering! An WaS trotz täglichem Fang 1988 kein Rückfang; WaS
1987 ein J nach 2 Tagen wiedergefangen
Distanzen: 3
Larvalökologie: die Raupen leben an Nadelholzflechten, die Strecke nach HM () 800 m)
wird regelmäßig bewältigt.
Populationsbiologie: deutlich proterandrisch!
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Eilema lutarella (\ Individuum)
Distanzen: vermutlich 2 E.
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Eilema complana
52 Individuen 36,6 % o- Rate
40 markiert 1 Wiederfang
Wiederfang-Quote: wohl durchschnittlich, der Wiederfang (9, HO) erfolgte nach 3
agen.
Distanzen: 2-3
Verbreitungsstrategie: r-Stratege, 5. Gruppe
106
HALBTROK- ze |
ER RR
Eilema lurideola (9 Individuen)
Distanzen: vermutlich 2-3
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Systropha sororcula
153 Individuen
112 markiert
14,2 % 9 - Rate
kein Wiederfang
Tab 56: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von Sys-
tropha sororcula.
DLUNG WALD HALBTROK- "DA! WALD
SIEDE! l KENRASEN MOOS: 2 1988 Garten
1987 ı Garten ! Wasserwerk
SiS SIMı SN WaS,WaM Wa HO HM HW N WaS WaN WNw WNo HO HM HW Au We
2Ep8l> 3 nmel 1 3 5 30 - - 3 43 I par. 1 - 16 15 18 34. - - 1 2
Zus - - 4 (ya - = - - 22 % zus. - 1 - - - > = 2 a =
dd - - 2 1 2 12 21 - - - 38 dd 1 1 8 12 12 23 - - - 2
99 a = ee DE. 1 1099 - - 2.1 Ze een =
Mark ZU > 1 48 Mark 1 ) Je ee #25
W.f. - - - = = = = > = = — W.f. - - - - = = = = = 3
Wiederfang-Quote: sehr niedrig
Distanzen: 3; innerhalb des Habitats ist die Art beweglicher (siehe "Wiederfang-
Quote”) als außerhalb davon (siehe "Larvalökologie"
Larvalökologie: im Raupenstadium auf Laub- und Nadelholzflechten angewiesen, das
HM-Stück ist also eın Zuflieger, die Strecke von (mindestens) 800-1000 m über
benopiremdes Gebiet wird nur gelegentlich bewältigt.
a biologie: ‚proterandeisch: O am 11.6.88 ein "schwarmartiges" Auftreten
21 Ex.), 2 Tage davor und danach jedoch kein einziges Stück; solch starke Fluk-
tuationen von Nacht zu Nacht sind oft mit Ortswechsel-Ereignissen korreliert.
Verbreitungsstrategie: r-Stratege, 5. Gruppe
Atolmis rubricollis (85 Individuen)
Distanzen: 2
Larvalökologie: Larvalansprüche wie bei der vorhergenannten Art, im Offenland bis-
her jedoch noch nie beobachtet.
Verbreitungsstrategie: iniermediärer Typ, 5. Gruppe
Phragmatobia fuliginosa
382 Individuen 6,8 % o- Rate
360 markiert 4 Wiederfänge
Tab 57: Fangergebnisse,
ı br Geschlechterverteilung und Markierungsergebnisse von
Phragmatobia fuliginosa.
HALBTROK- "DA
KENRASEN MOOS £
87
1
69
6
64
SEDLUNG WALD HALBTROK- IDAEE D HALBTROK- Be:
1987 ı Garten ! KENRASEN M 2 1988 Garten Wasserwerk KENRASEN M Di
SiS SMıSN WaS,WaM Wa HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
Z par. 1 2 - 10 35 65 41 48 12 215 Z par. 1 9 3 1422 33 9222 5 4 150
Sazusy SI Me - - - 107 0 9 = - 16 % zus. - 1 - - - 3 ©. 08 5 e 1
dd 1 1 1 _ 8 33 69 43 45 10 211 dd 1 10 27 14 18 30 7.19 6 3 134
99 SoE Sn 220 2 2E a Mi 3 1 1399 = - a Wen ana ea
Mark. 1 1 1 - 10 35 70 43 43 11 215 Mark. 1 9 31 14 20 33 87721 6 3 145
Wit. ee Sa > Me) - 4 wi - - =, TE Eee =
Wiederfang te: vergleichsweise niedrig, alle Wiederfänge erfolgten schon 2 Tage
nach dem Erstfang, auch am Wasserwerk 1988 keine besonders starke Ortstreue
nachgewiesen.
Distanzen; 3; an SiS ist eine as Häufigkeitsabnahme gegenüber dem Flughafen-
gebiet (200-300 m Entfern ‚in dem die Art wohl allgemein häufig ist, festzu-
stellen. Vermutlich ist ein Großteil der in der Siedlung festgestellten Exemplare
zugeflogen. Am 29.7.88 wurde hier aus einem wohl durchziehenden "Schwarm" 8
Stücke gefangen, tags darauf war noch ein Tier festzustellen, dann keines mehr. _
ulationsbiologie: bivoltin; im Mai 1989 wurden 3 dd‘ tagsüber bei hoher Agilität
gekäschert. Ein Nachweis einer solchen Flugaktivität steht für die 2. Generation
noch aus.
Verbrei strategie: intermediärer Typ, 3. Srunz est lich können auch die
Be schnell laufenden Raupen iR an warmen Herbsttagen) 100 m und mehr zu-
rücklegen.
107
Spilarctia lubricipeda (116 Individuen)
Distanzen: 2-3
Larvalökologie: findet durch Polyphagie überall Lebensgrundlage
Verbreitungsstrategie: K-Stratege, 4. Gruppe; zur Konstanz der Populationsverhält-
nisse vergleiche REICHHOLF (1974).
Spilosoma menthastri
siehe verringerte Fallendistanzen (8.3.) und Versetzexperiment (8.4.)
434 Individuen 10,1 % o- Rate
421 markiert 23 Wiederfänge
Tab 58: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von Spi-
losoma menthastri.
m on 2 SEE 5
SIEDLUNG WALD HALBTROK- DA WALD HALBTROK- "DA
1987 ! Garten ! KENRASEN M 2% 1988 Garten Wasserwerk M
SiS SIMıSN WaSıWaM WN HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
Diherc It Bye 2u2s- 26 - 26).:3.1,46 Muo3,-ass Zpar.* 3° 65 Mi 28. 60. 30 WS
Eh Te ee) 7 me 32 u - aa izüs er 7 - - - a zw =
dd 3.2 4 6 4.2,,68, 20 340 18 66 6 2 0 3% 27 55 36 Bess
9 a Aal 23. 2.08 3 2099 1 3 3 1 _,6 3 ja Dee
Merk. 3 3 5 10°, 2: 68:,,23 37482 7231 173 Mark. , (3 "13 38.27” 60’ W a0 a nn
Wit. RL = ir) alu 2 - 5 wi. = am u u
Wiederfang te: hoch, bei langen Verweildauern: Die 1987 insgesamt sowie die
1988 an HOÖ und HW registrierten Rückfänge (6 d’d', 10) erfolgten nach einem In-
tervall von durchschnittlich 4,6 Tagen.
tanzen: 2
Larvalökologie: S. menthastri findet durch Polyphagie überall eine Lebensgrundlage.
Populationsbiologie: der a an den iederfängen entspricht in etwa der
-Rate der Erstfänge. Dennoch dürften die 99 - vor allem diejenigen mit vollem
ivorrat - ortstreuer als die dc’ sein. Ein nicht optimales Anflugverhalten der 99
könnte das Wiederfangergebnis verfälscht haben. Die Konstanz der Populationsver-
hältnisse entspricht den Befunden in REICHHOLF (1974).
Verbreitungsstrategie: K-Stratege, 4. Gruppe; die schnelllaufenden Raupen können
100 m und mehr zurücklegen.
Diacrisia sannio
siehe verringerte Fallendistanzen (8.3.)
167 Individuen 0% 9-Rate
90 markiert* 6 Wiederfänge* *1989 weitere 19 markiert, 2 Wiederfänge
Tab 59: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von Dia-
crisia sannio.
WALD HALBTROK- DACH
198 Garten Wasserwerk KENRASEN M 2
SN WaS WaN WNw WNo HO HM HW Au We
pa. - - 19 14 24 6 4 34 1 - 102
og - - 19 14 24 6 4 34 1 - 102
2) = = E = = zu ik =
Mark. = - Ian] 6 4 29 1 - 90
W.f. - = 2 1 3 = = - - - 6
Wiederfang-Quote: am Wasserwerk hoch, am Flughafen bei vergleichbarer Abun-
danz niedrig! Die Ortstreue muß also nicht eine artspezifische Konstante sein,
sondern kann auch vom Biotop oder von der Geländestruktur abhängen. Auffallend
sind bei dieser Art die langen Verweildauern.
Distanzen: 2-3; im Ort wurde diese Art noch nie beobachtet, die Strecke von 1 km
wird also, zumindest über biotopfremdes Gebiet, so gut wie nie bewältigt.
Populationsbiologie: tagsüber sind durchaus auch 99 zu beobachten. Bivoltın.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Arctia caja
149 Individuen 24,4 % o- Rate
49 markiert 9 Wiederfänge
108
Wiederfang-Quote: alle 9 Wiederfänge beziehen sich auf ein d (SiN 1988), das die
Falle in 10 aufeinanderfolgenden Nächten anflog.
istanzen: 2-3, die nur recht vereinzelt im Ort anzutreffenden Stücke werden meist
am Flugzeitende beobachtet (Zuflug?).
Populationsbiologie: man könnte sich die Population in einem dynamischen Fließ-
gleichgewicht befindlich vorstellen, das zu dem beobachteten Ost/West-Gradien-
ten in der Häufigkeit führt. !
Verbreitungsstrategie: r-Stratege, 3. Gruppe; die schnellaufenden Raupen können
vermutlich 100 m und mehr zurücklegen.
ENDROSIDAE
Pelosia muscerda (1 Individuum)
Distanzen: vermutlich 2(-3?); _
Verbreitungsstrategie: vermutlich K-Stratege, 5. Gruppe; der Lebensraum am Was-
&
serwerk wurde jesoen vor einigen Jahren neu besiedelt, höchstwahrscheinlich sogar
über viele km hinweg (nächstgelegenes bekannte Vorkommen: Isarauen bei Lands-
hut, ca. 40 km, vielleicht aber auch bei Ismaning: ca. 7 km).
NOTODONTIDAE
Harpyia furcula (3 Individuen)
Distanzen: vermutlich 2-3 R
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Cerura vinula
15 Individuen 20,0 % o- Rate
15 markiert kein Wiederfang
Wiederfang-Quote: Stichprobe zu klein
Distanzen: 3
Larvalökologie: Raupenfunde im Gebiet bisher nur an Salix spec.; die HM-Exempla-
re stammen wohl aus dem Ruderal, die nächstgelegenen Raupenfutterpflanzen lie-
gen in dieser Richt 200-300 m entfernt. Die SiN-Stücke sind ebenfalls zugeflo-
gen: Einzelstehende Weiden sind in einer Entfernung von ca. 200-300 m zu finden.
Verbreitungsstrategie: r-Stratege, 5. Gruppe
Stauropus fagi
21 Individuen 0% o- Rate
16 markiert kein Wiederfang
Wiederfang-Quote: Stichprobe zu klein
Distanzen: 2-3 r
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Hybocampa milhauseri (1 Individuum)
Distanzen: vermutlich 2
Larvalökologie: mOnophas an Eiche; das 9 im Franzosenhölzl 1989 flog mindestens
50 m weit zur Lichtfalle, sonst nur im typischen Habitat.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Gluphisia crenata (5 Individuen)
Distanzen: 2-3
Larvalökologie: auf Populus spec. spezialisiert; von den Fundorten SiM und HW lie-
gen die nachstgelegenen Pappelvorkommen jeweis ca. 200 m entfernt.
Verbreitungsstrategie: K-Stratege, 5. Gruppe. Die Kolonisierung des Raums Ober-
schleißheim in den letzten Jahrzehnten erfolgte vermutlich von den Isarauen her,
die an der nächsten Stelle 7 km entfernt sind. Hierbei könnte die Begleitvegetation
des Schloßkanalsystems als Trittsteinle) eine besondere Rolle gespielt haben.
Drymonia trimacula
24 Individuen 0% o- Rate
23 markiert kein Wiederfang
Wirgerlang Quo wohl niedrig, Stichprobe noch zu klein
anzen:
Larvalökologie: oligophag (im Gegensatz zur folgenden Art)
109
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe; die Oligophagie erlaubt der. Art
eine größere Mobilität, die Gefahr, in ungeeignete Biotope zu gelangen ist geringer
als bei einer monophagen Art wie Drymonia ruficornis.
Drymonia ruficornis
56 Individuen 18,2 % o - Rate
55 markiert 2 Wiederfänge
Wiederf: te: relativ hoch; die beiden Wiederfänge (dd, HO) erfolgten nach
jeweils agen.
Distanzen: im Habitat 2-3, außerhalb 1-2
Larvalökologie: eine ee an Eiche SS nunlene Art, die sehr biotoptreu ist: Sie
wurde an den Fangplätzen HM und HW nie festgestellt, obwohl sie im KelesEs
Eichenwaldgürtel rund um den Flughafen herum allgemein verbreitet ist (1989
wurde auch südlich des Flughafengebiets eine beträchtliche Anzahl Eelongehhk Von
HO liegen. die OeHatzP1epenen Vorkommen ca. 800-1000 m, von HW 500-600 m
entfernt, einzelstehende Eichen befinden sich in letzterem Fall sogar noch näher.
Der normale Aktionsradius über biotopfremdes Gebiet von D. ruficornis sollte also
unter, diesen Werten liegen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Peridea anceps
112 Individuen 5,3 % 9- Rate
110 markiert 5 Wiederfänge
Tab 60: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von Peri-
dea anceps
SIEDLUNG WALD HALBTROK- "DA WALD HALBTROK- "DA
1987 ‚| Garten _! MOOS 2 1988 Garten Wasserwerk Moosr
SiS SIMıSN WaS,WaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We
Epe. - - - = -
EaesueBenh Hi unfpr tae Mz nd ue Ei Satin
oe ANERLZ Be EZ 1 3 de 3%: 09 2.0 ig Eee -
99 zwi - Ir taste = re - 4.09 = 1 zujente 1sıh= = SF:
Mark. - - 3 6 6 2 19 - 3 1 40 Mark 3 3 2 - 3 55 1 1 2 -
W.f. = pe yx Sur une Ina = - 1 wi. - - = 4 - > - >
Wiederfang-Quote: hoch, bezogen auf den Fangplatz HO 7,8 %! Bei den Wiederfän-
en handelt es sich um 5 dd‘, die nach einer durchschnittlichen Verweildauer von
‚8 Tagen wiedergefangen wurden.
Distanzen: 2-3
Larvalökologie: Wie die vorige Art monophag an Eichen. Im Prinzip gilt das für D.
ruficornis Gesagte, eine etwas größere Mobilität ist jedoch festzustellen. Die HW-
Stücke, vor allem das 9 stammen wohl von den einzelstehenden Bäumen der nä-
heren a Sue: 2-3 m hohe Eichen finden sich schon in ca. 100 m Entfernung.
Das HM-Stück ist jedoch aus mindestens 800-1000 m Entfernung bei windstillem
Wetter zugeflogen, was aber vielleicht schon die obere Grenze der Reichweite
über biotopfremdes Gebiet darstellt. Diese Art fällt auch durch einen etwas plum-
pen Flug auf. Im Franzosenhölzi wurden 1989 in 50 m Entfernung zu einer einzel-
stehenden Eiche 7 Exemplare, in 90 m Entfernung nur noch 2 Exemplare ge-
fangen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Pheosia tremula
54 Individuen 0 % 9- Rate
43 markiert kein Wiederfang
Wiederfang-Quote: relativ niedrig, im Birket 1987, wo die meisten Markierungen er-
folgten, wurde allerdings nur in wöchentlichem Fangrhythmus gefangen.
Distanzen: 2-3 e
Larvalökologie: im Larvenstadium hauptsächlich an Pappeln und Weiden. Die an HM
gefangbnen Tiere stammen wohl aus den 150-300 m entfernten Weidenbeständen
es Ruderals. An den auch im Ort vorkommenden Birken kann P. tremula_offenbar
keine auf Dauer erfolgreichen Kolonisationsversuche durchführen: Das Exemplar
1986 im Garten war vermutlich ein Zuflieger.
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
110
Pheosia gnoma
75 Individuen 0% o- Rate
73 markiert 2 Wiederfänge
Wiederfang-Quote: niedrig! Die beiden Falter (WaS 1988) waren durch die_direkte
‚Lichtwir ng festgehalten worden, ihre Rückfänge erfolgten nach jeweils 1 Tag.
Distanzen: 3- k
Larvalökologie: die Raupen fressen monophag an Birken. Umso erstaunlicher ist_das
fast regelmäßige Auftreten im Offenland {HM), wovon die nächstgelegenen Rau-
Beaiutierpflanzen 800-1000 m entfernt sind. Der Zuflug war hier im Jahr 1987 in
eiden Fällen von Westwinden begünstigt.
1988 wurden 10 der 12 WaS gefangenen Falter an 2 aufeinanderfolgenden Tagen
gefangen, was eher durch "schwarmartiges" Auftreten als durch eine eriolerciche
rut in der näheren Umgebung zu erklären ist: Ein solch synchrones Schlüpfen
sollte ein Zufall sein.
989 tauchte P. gnoma im Garten zum ersten Mal in der ersten Generation auf
frisches Stück). Es handelt sich vermutlich um eine erfolgreiche Kolonisation der
8 zugeflogenen Exemplare.
Populationsbiologie: bivoltin
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Notodonta phoebe
Distanzen: vermutlich 2-3 3 ei
Verbreitungsstrategie: vermutlich intermediärer Typ.
Notodonta dromedarius
27 Individuen 3,8 % 9 - Rate
26 markiert kein Wiederfang
Wiederfang-Quote: relativ niedrig, Stichprobe jedoch noch zu klein.
Distanzen: 2-3
Larvalökologie: SHFopas an einigen Laubholzarten; die ut der HM-Stücke
liegt wahrscheinlich in den eidenbeständen des Ruderals (150-300 m), diese
Strecke scheint regelmäßig bewältigt zu werden.
Populationsbiologie: bivoltiin
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Notodonta ziczac
46 Individuen 14,0 % o- Rate
43 markiert 1 Wiederfang
Wiederfang-Quote: durchschnittlich; ein 1987 an HM nach 2 Tagen rückgefangenes J
war in der dazwischenliegenden Nacht (günstige Flugnacht) wohl nicht am Fang-
latz verblieben, an dem die Art als ' jiopfremd, anzusprechen ist. Vermutlich
on das Stück die 150-300 m in das Ruderal (zurück) und dann erst wieder an die
ichtfalle, was einer Mindest-Gesamitstrecke von 450-900 m entspricht, unter der
Minimal-)Annahme, daß das J aus dem Ruderal stammt.
Distanzen: 5-4 A
Larvalökologie: Raupenfutterpflanzen sind Salix- und Populusarten. Die ne,
strecke der an HM festgestellten Tiere beträgt also 150-300 m (Ruderal ‚ die der ım
Garten Belangenen Stücke 200-300 m. Diese Entfernungen werden ohne Probleme und
in größeren Stückzahlen geflogen, im Falle des Gartens auch einmal von einem 9.
Populationsbiologie: bivoltin
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Leucodonta bicoloria
17 Individuen 0 % o-Rate (1989 1 9 am Licht)
13 markiert 2 Wiederfänge
Wiederfang-Quote: relativ hoch, Stichprobe jedoch noch zu klein. Ein Wiederfang ist
methodisch durch den direkten Lichteinfluß begründet, es handelt sich um ein nach
einem Tag rückgefangenes Tier 1988 WaS. Ein anderes c' wurde 1988 an HO nach
2 Tagen wiedergefangen.
Distanzen: 2-3
Larvalökplogie: monophag an Birke (nur selten Eiche). Diese Art ist nach OSTHEL-
DER (1925-1933) sowie nach WOLFSBERGER (1974) in Schleißheim bzw. allge-
mein ein typischer Bewohner der Birkenmoore, L. bicoloria wich wahrscheinlich
erst in den letzten Jahrzehnten nach der Trockenlegung des Dachauer Mooses
verstärkt auf andere Waldgebiete aus. Trittsteine für eine solche Besiedlung sind
in ausreichendem Maße vorhanden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
111
Odontosia carmelita (1 Individuum)
Distanzen: vermutlich 2-3 j J
Larvalökologie: Futterpflanzen nur Birke, Erle; bisher keine biotopfremden Tiere
Populationsbiologie: Art mit lokalem, inselartigem Vorkommen beı meist geringer Po-
pulationsdichte
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Lophopteryx camelina
93 Individuen 2,2 % o- Rate
78 markiert 2 Wiederfänge
Wisderfang-Quote: niedrig, beide rückgefangenen dd nach 1-Tages-Intervallen (1988,
a
Distanzen: 2-3
Larvalökologie: die Raupe ist auf abge angewiesen, das HM-co 1988 flog also
mindestens vom Ruderal her zu (150-300 m).
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Lophopteryx cuculla
19 Individuen 0 % 9 - Rate
16 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe jedoch noch zu klein
Distanzen: 2-3
Larvalökologie: oligophag an Ahornarten; an die HM-Falle flog 1986 bei windstillem
Wetter ein Exemplar, das mindestens 500 m zurückgelegt hatte: In dieser Entfer-
nung befinden sich einige junge Ahornbäumchen (Allecan flanzung).
Populationsbiologie: die Generationenfrage ist im Untersuchungsgebiet noch ungeklärt:
ie Daten bis 1988 deuten auf Monovoltinismus hin, wie ın KOCH (1984) be-
schrieben. Das Exemplar E5 1989 ist jedoch ein Hinweis auf "zwei voneinander
unabhängige Stämme” (FORSTER & WOHLFAHRT, 1960).
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Ptilophora plumigera
14 Individuen 0.%” = o- Rate
1 markiert 1 Wiederfang
Wiederfang-Quote: Stichprobe natürlich noch zu klein: I (WaS) nach 2 Tagen, in
‚der dazwischenliegenden Nacht erfolgte kein Lichtfang.
Distanzen: 2,
Larvalökologie: wie L. cuculla, jedoch keine biotopfremden Tiere festgestellt
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Pterostoma palpina
21 Individuen 0% o9-Rate
20 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: 3
50-300 m) wird ähnlich wie bei Notodonta ziczac ohne Probleme und regelmä-
iE geflogen.
Populationsbiologie: bivoltin
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Phalera bucephala
97 Individuen 4,2 % 9- Rate
95 markiert 4 Wiederfänge
Wiederfang te: durchschnittlich; 3 dd , die im Garten (WaS) nach einem 1-Ta-
es-Intervall wiedergefangen wurden, erklären sich durch das Gefangenschaft im
nziehungsbereich der täglich betriebenen Lichtfalle, 1 @ wurde im Birket 1987
nach 5 Tagen wiedergefunden.
Ein markiertes J ging interessanterweise am nächsten Tag in der Falle eine Ko-
pula mit einem unmarkierten 9 ein.
Distanzen: 3, £
Larvalökologie: Larvalansprüche sowie Bemerkungen wie bei Fer elome palpina
Verbreitungsstrategie: r-Stratege, 3. Gruppe; im Ort wurden (ähnlich wie bei Phrag-
matobia fuliginosa und Pheosia gnoma) 1988 sämtliche nachgewiesenen Stücke an
-4
O0 m} polyphag Laubbäume Kan Weide, Pappel); die Strecke Ruderal>HM
112
zwei aufeinanderfolgenden Tagen registriert. Ein solches Auftreten in "Schwärmen"”
im Siedlungsbereich steht den vermutlich geringeren Dispersionsaktivitäten in
feuchteren Wäldern (Dachauer Moos) gegenüber.
Clostera curtula
28 Individuen 4,3 % o9- Rate
23 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
istanzen: 2-3, in der 2. Generation mit größerer Dispersionsaktivität
Larvalökologie: an Salix Ep und Populus spec.. Die nächstgelegenen Raupenfutter-
pflanzen liegen von SiM wie von HM ca. 200-300 m entiernt. Solche Distanzen
scheinen ohne Mühe und regelmäßig bewältigt zu werden. Im Garten wurde C.
curtula dagegen nur einmal 1989 beobachtet: Die Distanz von I km (von SiM
bzw. 1,3 km (Wasserwerk) liegt nicht im normalen Aktionsradius der Art und wir
nur ausnahmsweise geflogen. N 2
Biotopfremde Tiere treten vor allem in der 2. Generation auf!
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Clostera anachoreta (3 Individuen)
Distanzen: vermutlich 2-3 :
Larvalökologie: wie C. curtula, biotopfremde Tiere wurden noch nicht beobachtet.
Populationsbiologie: bivoltin
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Clostera pigra
21 Individuen 4,8 % o- Rate
18 markiert kein Wiederfang
Wiederfang-Quote: wohl niedrig, Stichprobe noch zu klein
Distanzen: 2-3
Larvalökologie: wie C. curtula. Die Distanz von 150-300 m (Ruderal>HM) liegt
auch hier im Bereich der normalen Dispersion. Die Strecke von 1 km (Zuflug ın
den Garten) wird im Normalfall nicht bewältigt. Tas Exemplar am S-Bahnhof
28 uß mindestens 300 m zurückgelegt haben (nächstgelegene Raupenfutter-
anze).
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
ZYGAENIDAE
Diese Familie soll hier ausgeklammert werden, da die Imagines tagaktiv und mit
Lichtfang nicht zu erfassen sind.
Die Dispersionsaktivitäten von 5 Arten (darunter Zygaena filipendulae und Huebneriana
lonicerae) sind in SMOLIS & GERKEN (1 56) usführlich abgehandelt, zu den ökologi-
schen Ansprüchen der Arten siehe BLAB (19 2).
COCHLIDODAE
Apoda limacodes (196 Individuen)
Distanzen: 3-4
Larvalökologie: als Raupe an Laubgehölzen, v.a. Eiche und Buche. Nach HM, wo A.
limacodes keine Lebensgrundlage hat, erfolgt regelmä iz ein Zuflug, der seinen
Ursprung in mindestens 150-300 m Entfernung (Ruderal at, vermutlich jedoch in
den umliegenden Wäldern, deren Mindestabstand 800-1000 m beträgt.
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Heterogenea asella (1 Individuum, ca. 45 Kokons)
Distanzen: 1-
Larvalökologie: oligophag an Laubbäumen, v.a. Buche (Fagus sylvaticus); im Ver-
gleich mit der vorigen Art mit eingeschränktem Wirtspflanzenspektrum. Die Fund-
orte der Kokons konzentrieren sich auf ein relativ kleines Areal (ea. 50 ha) im
Nordosten des Berglwalds. An anderen Stellen des Berglwaldes wurde mit gleicher
Intensität ohne Erfolg gesucht. } ®
Die im Berglwald eingestreuten Buchenenklaven (je ca. 200 m2) liegen in Abstän-
den von durchschnittlich etwa 100 m, die offensichtlich noch bewältigt werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe. Der Unterschied in der Strategie
dieser Art zur vorigen erklärt sich nicht nur durch das eingeschränkte Wistepflanzen
spektrum, sondern auch durch die Kleinheit der wohl schlecht fliegenden Imagines.
113
SPHINGIDAE
Mimas tiliae
35 Individuen 3,1 % 9- Rate
32 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: 3-4
Larvalökologie: oligophag an Laubbäumen, das HM-Stück (1986) flog aus mindestens
800-1000 m herbei.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Laothoe populi
23 Individuen 13,0 % 9- Rate
21 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: 3_
Larvalökologie: ne rpil nern Arten der Gattungen Salix und Populus; die Distanz
von 150-300 m wird also häufig zurückgelegt: Zufliegende Exemplare wurden an
M, SiM und WaS beobachtet. An HM auch ein 9.
Populationsbiologie: vermutlich bivoltin
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Smerinthus ocellata
21 Individuen 14,3 % 9- Rate
20 markiert 4 Wiederfänge
Wiederfang-Quote: niedrig! Alle Wiederfange beziehen sich auf ein einziges d', das
im Garten (WaS 1988) in 5 aufeinanderfolgenden Nächten gefangen wurde, das al-
so von der Lichtwirkung gefangengehalten wurde. Stichprobe noch zu klein
Distanzen: 3 {
Parratkuingie: oligophag an Laubgehölzen, v.a. aus den Gattungen Salix und Popu-
lus. Die 150-300 m zwischen HM und dem Ruderal liegen im Bereich der norma-
len Dispersionsaktivität dieser Art. Im Ort tritt diese Art Haie auch die vorige
unregelmäßig auf; dies läßt den Schluß zu, daß Distanzen von 2 km (HM>S
nur selten geflogen werden. Vermutlich gibt es jedoch noch en Vor-
kommen dieser Ärt, die Obergrenze der "normalen" Flugaktivität (trivial move-
ment) verringert sich dementsprechend.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Herse convolvuli (4 Individuen)
Distanzen: 4 f
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Sphinx ligustri (4 Individuen)
Distanzen: 3-4
Larvalökologie: die Raupe lebt in erster Linie an verschiedenen Hecken und Büschen
wie Liguster, Flieder u.s.w.. Das HM-Stück stammt also wahrscheinlich nicht aus
dem Flughafengebiet und ist mindestens 800-1000 m geflogen.
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Hyloicus pinastri
89 Individuen 9,0 % o- Rate
86 markiert 1 Wiederfang
Wiederfang-Quote: niedrig; ein an WaN markiertes d wurde an WNo nach 4 Tagen
wiedergefunden. Die in dieser Zeit tatsächlich zurückgelegte Strecke ist vermutlich
bedeutend größer als nur die Luftlinie von 50 m.
Distanzen: 2-4 .
Larvalökologie: auf Nadelbäume spezialisiert; die Distanz von ca. 1 km (Zuflug nach
H kann in günstigen Jahren auch in größeren Stückzahlen geflogen werden. Der
Einflug 1986 nach HM deckt sich mit einem ähnlichen Phänomen beim Eulenfalter
Panolis flammea. Die als Kiefernschädlinge bekannten Schmetterlinge haben in
diesem Jahr günstige Bestandsentwicklungen durchgemacht. Daraus resultiert of-
fensichtlich eine vergrößerte Dispersionsaktivität aufgrund hoher Populationsdichte.
9 wurde ein d am Franzosenhölzl gefangen, die nächstgelegene Fichte befindet
sich ca. 500 m entfernt.
Verbräimpatzätenje r-Stratege, 5. Gruppe (in normalen Jahren); nach
SCHWERDTFEGER (1978) unternimmt H. pinastri in seinem Verbreitungsgebiet
und aus ihm hinaus Wanderungen.
114
Abb. 43b: Leucodonta bicoloria (Notodontidae; Mb, 12.6.87)
Abb. 43c: Deilephila porcellus & (Sphingidae; Garten, 12.6.85)
115
Deilephila elpenor
10 Individuen 22,2 % o- Rate
9 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: 3-4 (nach HEYDEMANN, 1981, "0,5 - 10 km und mehr")
Larvalökologie: das HM-Stück könnte aus dem Ruderal stammen (Epilobium-Vor-
kommen) und ist mindestens 150-300 m geflogen. Neue Epilobium-Standorte sind
meist bald mit Raupen besetzt.
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Deilephila porcellus
32 Individuen 32,1 % o-Rate
28 markiert 3 Wiederfänge
Wiederfang-Quote: hoch; bezogen auf den Standort HW 1987 sogar 16,7 %. Die
Fang-Wiederfang-Intervalle betrugen bei den 3 dd durchschnittlich 3,0 Tage.
Distanzen: 2(-3?
Larvalökologie: an Arten der Gattungen Galium und Epilobium; die HM-Stücke flo-
gen mindestens 150-300 m (Ruderal); diese Distanz scheint D. DOrseln: mehr oder
weniger regelmäßig zurückzulegen. Ein Sich-Entfernen vom Verbreitungszentrum
um 1000 m nach SıS konnte 1987 nicht nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Macroglossum stellatarum
Diese Art soll bei den weiteren Auswertungen ausgeklammert bleiben, da sie bedingt
durch die Tagaktivität in Lichtfallenfängen (mit Ausnahme eines Exemplars 1983) nicht
achzuweisen ist. Es handelt sich jesenfalle bekanntermaßen um einen Wanderfalter
r-Stratege, I. Gruppe). Distanzen:
Hemaris fuciformis
Auch H. fuciformis soll aus den o.g. Gründen ausgeklammert werden, die Art gehört
vermutlich einem intermediären Strategietyp der 5. Gruppe an. Distanzen: 2-3
THYA TIRIDAE
Habrosyne pyritoides (126 Individuen)
Distanzen: 2-3
Larvalökologie: auf Brom- und Himbeere spezialisiert; die HM-Exemplare stammen
vielleicht aus dem Ruderal (Brombeer-Vorkommen), sind also mindestens 150-300 m
geflogen, was offensichtlich regelmäßig geschieht.
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Thyatira batis (41 Individuen)
Distanzen: 2
Larvalökologie: Raupenfutierpflanzen wie H. pyritoides, interessanterweise im Offen-
land (HM) noch nie nachgewiesen. Bemerkenswert ist auch der fehlende Nachweis
an y w, obwohl gleichzeitig in 100 bzw. 120 m Entfernung 11 Stücke beobachtet
wurden.
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Tethea fluctuosa (6 Individuen)
Distanzen: 1-2
Larvalökologie: monophag an Birke. Bisher wurden keine biotopfremden Tiere festge-
stellt.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Tethea duplaris (96 Individuen)
Distanzen: 2-3 .
Larvalökologie: oligophag an Erle, Birke und ap bisher wurden nur wenige bio-
topfremde Tiere festgestellt: Lediglich die beiden HM-Stücke müssen 800-1000 m
zurückgelegt haben.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
116
Tethea or (7 Individuen)
Distanzen: 2
Larvalökologie: auf Salix und Populus spec. PpEzialieient, bisher wurden keine bio-
topfremden oder in den Siedlungsbereich einfliegenden Exemplare beobachtet.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Tethea ocularis
Distanzen: vermutlich 2-3
Larvalökologie: nur an Pappeln und Espe; das im Garten nachgewiesene Stück muß
mindestens 200 m geflogen sein.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Polyploca flavicornis
32 Individuen 11,8 % 9- Rate
16 markiert 1 Wiederfang
Wiederfang-Quote: vergleichsweise hoch, Stichprobe noch zu klein. Es wurde ein d’
(WaN nach 5 Tagen am gleichen Standort wiedergefangen.
Distanzen: 2
Larvalökologie: monophag an Birke (Betula spec.). 1989 war im Franzosenhölzl schon
in einer Entfernung von 40 m, verglichen mit dem Fangergebnis am Waldrand ein
Abundanzabfall auf die Hälfte festzustellen. Im Offenland wurde diese Art bisher
un festgestellt. Die Distanz von 1 km liegt außerhalb der normalen Dispersions-
aktivität.
Verbreitungsstrategie: K-Stratege, 6. Gruppe.
DREPANIDAE
Drepana falcataria (77 Individuen)
Distanzen: 2-3
Larvalökologie: Birke und Erle, vorwiegend an Büschen; diese Aussage, entnommen aus
dem Werk KOCHs (1984) impliziert eine vermutlich erhöhte Dispersionsaktivität, da
im Verlauf des Wachsens der Futterpflanzen desöfteren ein Standortwechsel zu
Stellen auftreten sollte, wo Jungformen von Alnus bzw. Betulus spec. vorkommen.
So wurden auch an HM 2 Exemplare festgestellt, die mindestens 1 km weit geflo-
gen waren, eines davon war ein fertiles ®; das zu einer Kolonisation fähig gewe-
sen wäre. In beiden Fällen wurde der Ortswechsel von z.T. böigen Winden unter-
stützt. Beide Fälle traten in der 2. Generation auf. Der starke Haufigkeitsabfall von
WaN nach WNo auf einer Sirecke von nur 50 m spricht jedoch eher gegen eine
höhere Austauschraten zwischen diesen beiden Standorten.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: intermediärer Typ, 4. Gruppe
Drepana lacertinaria (6 Individuen)
Distanzen: 1-2
Larvalökologie: ebenfalls nur an Birken und Erlen; bisher wurden keine biotopfrem-
den Tiere festgestellt (abgesehen von vier 1989 in 40 m Entfernung zum Franzo-
senhölzl gefangenen Exemplaren).
Populationsbiologie : bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Drepana binaria
111 Individuen 46,2 % o- Rate
88 markiert kein Wiederfang
Wiederfang-Quote: niedrig!
Distanzen: 3,
Larvalökologie: als Raupe an Eiche, Rot-Buche und Erle gebunden. An HM wurden 3
Exemplare festgestellt, die mindestens 800-1000 m geflogen waren: 2 dd‘ bei
windstillem Wetter und I 9 in einer stürmischen Nacht. h R
Populationsbiologie: bivoltin (einzelne Tiere einer 3. Generation); biotopfremde Stük-
e wurden auch in der I Generation gefunden.
Verbreitungsstrategie: r-Stratege, 3. Gruppe. Auch die starken Häufigkeitsschwan-
kungen von en zu Jahr und von Generation zu Generation deuten auf einen r-
trategen hin.
117
Drepana cultraria (92 Individuen)
Distanzen: 3
Larvalökologie: Raupenfutterpflanze: Buche, vermutlich auch Eiche. Die 3_HM-
Stücke legten also mindestens 800-1000 m zurück, in einem Fall war der Zuflug
durch hälge Winde unterstützt, an den beiden anderen Tagen herrschte windstilles
Wetter. Am Wasserwerk ist ein Häufigkeitsabfall auf 40% in ca. 100 m Entfer-
nung zum Habitat (WNw: Buchenwaldrand) zu erkennen.
Populationsbiologie:, bivoltin, biotopfremde Tiere auch in der I. Generation.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Cilix glaucata (3 Individuen)
Distanzen: vermutlich 1-2
Larvalökologie: an allen Fundorten wachsen in unmittelbarer Umgebung die Raupen-
futterpflanzen.
Populationsbiologie: bivoltin
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe; der Falter zeichnet zieh
überdies durch einen vergleichsweise plumpen, mit den Spannern (Geometridae
vergleichbaren Flug aus.
SA TURNIDAE
Eudia pavonia (3 Individuen)
Distanzen: 2 (09); 3-4 (dd); 1989 wurden zwei Jod bei einem raschen (ca. 20
km/h). sera inigen Flug über mehrere 100 Meter beobachtet.
<) stammt wohl aus dem Ruderal (150-300 m),
Larvalökologie: das HM-Stück (fertiles
orkommen von Raupenfutterpflanzen dieser
dort findet sich das nächstgelegene
Art (z.B. Weiden).
Populationsbiologie: am Licht wurden nur 99 festgestellt. Die dc’ fliegen tagsüber.
Verbreitungsstrategie: K-Stratege, 5. Gruppe; durch die große Agilität der dd‘ wird
eine gute Gendurchmischung erreicht.
LASIOCAMPIDAE
Malacosoma neustria (14 Individuen)
Distanzen: 2-3
Larvaliäningie: verschiedene Laubbäume, dementsprechend im Offenland nie beo-
achtet
Verbreitungsstrategie: r-Stratege, 5. Gruppe
Poecilocampa populi
116 Individuen 13,8 % 9- Rate
98 markiert kein Wiederfang
Wiederfang-Quote: niedrig! An HO wurde z.B. nach 46 in einer Nacht markierten
Stücken bei der Probeentnahme 2 Tage später kein einziges markiertes Exemplar
‚mehr nachgewiesen.
Distanzen: 3
Larvalökologie: durch die Raupenfutterpflanze an Laubhölzer geb den. Das an HM
SEIAngene Stück stammt zumindest aus dem Ruderal (150-300 m). Die Strecke von
km ins Flughafeninnere wird jedoch von den am Flughafenrand zahlreich vor-
handenen Exemplaren dieser Art nicht regelmäßig geflogen.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Pachygastria trifolii
117 Individuen 30,7 % 9- Rate*
109 markiert kein Wiederfang
* Ein Problem bei dieser Art, scheint zu sein, daß nur die 29 ans Licht kommen,
die gefangenen cd’ erklären sich durch indirekte Anlockung durch die Sexualphero-
mone von bereits gefangenen AR in der Falle. Darüber hinaus ist eine hohe Mor-
Bea der 99, die oft unmittelbar nach der Eiablage entkräftet sterben, zu veran-
schlagen.
118
Abb. 43d: Eudia pavonia 9 (Saturnidae; WaN, 22.4.88). Die im Tageslicht fliegenden
c’d' sind mit der Methodik des Lichtfangs nicht nachzuweisen.
119
MT — pe
Tab 61: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Pachygastria trıfolii.
SIEDLUNG HALBTROK- 2a
NRASEN M
W
1988 Garten Wasserwerk
SiN W
WALD HALBTROK- =
1987 ' Garten ! KENRASEN M L
SiS SIMı SN WaS,WaM WaN HO HM HW Mb aS WaN WNw WNo HO HM HW Au We
I par. - 0-0 - - - - 4 1’ WTA6 - 61 2 par. 1 - 3 - - 87 1232 - -
dd - - - = - - 3 I 37 = 47 dd 1 - - - — 4 Br 222 - -
99 = Bei him - - - 1 4 8 - 13 99 - - 3 - = 4 % 9 - -
Mark. - - = = = = 4 1 43 - 58 Mark. 1 - 3 = - 8 1128 - -
Wit. 2m 0. SIE: Se - = Wi. = = Ben re se Ste
Wiederfang-Quote: sehr gering, trotz aller methodischer Bedenken dena.) Die Flug-
zeit fällt der Hauptfangperiode im Offenland zusammen, bei Ortstreue hätten
Wiederfänge stattfinden müssen.
Distanzen: sy Außerhalb des Habitats nur selten anzutreffen: Keine Nachweise in
400 m (SiS) und 800 m (SiM) Entfernung. Schon am Rand (HO) eine deutliche
bnahme der Abundanz. Das Ex. im Garten (SiN, allerdings ein 9). sowie die
Trittstein-)Besiedelung des Wasserwerks lassen erkennen, daß in Mehrjahresin-
ver aen ausnahmsweise einmal 1 km bewältigt wird (über biotopfremdes Ge-
ıet).
Larvalökologie: P. trifolii gehört zu den Arten, die gut mit der Schafbeweidung zu-
recht kommen: Die Raupen leben zwar oberirdisch, sie sind aber durch ihre auf-
fällige Färbung gut sichtbar und werden gemieden.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Macrothylatia rubi (11 Individuen)
Distanzen: 2-3 ,
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Philudoria potatoria (8 Individuen)
Distanzen: 3; die ST WaS 1988/89 sind wohl zugeflogen. Die Population am Was-
serwerk ist als positives Resultat eines Kolonisationsversuchs innerhalb der letzten
10 Jahre zu verstehen.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe.
Cosmotriche lunigera
Distanzen: vermutlich 2
Larvalökologie: an Nadelbäume gebunden; bisher keine biotopfremden Tiere
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Dendrolimus pini (3 Individuen)
Distanzen: vermutlich innerhalb des Habitats 3, außerhalb 2
Larvalökologie: die Raupe lebt an Kiefer, Fichte und Weiß-Tanne werden nur aus-
nahmsweise angenommen; bisher keine biotopfremden Tiere beobachtet
Populationsbiologie: eine große Belat ale Populations-Wachstumsrate führt zu den
efürchteten gelegentlichen assenvermehrungen (vergleiche z.B. ODUM &
ICHHOLF, 1980)
Verbreitungsstrategie: r-Stratege, 5. Gruppe
PSYCHIDAE
Diese interessante Familie soll in der weiteren Auswertung ausgeklammert werden, da
ihre Vertreter im Gebiet (mit Ausnahme von Sterrhopteryx fusca) mit Lichtfängen
nicht nachgewiesen werden können. Die Arten dieser Gruppe haben bis auf wenige
iälen) eine flügellose 89 so daß den oft tagaktiven dd‘ (meist hohe Dispersionsaktivi-
0
täten) eine besondere le für die Gendurch en der Populationen zukommt. ni
entfällt bei einigen parthenogenetischen Arten (im Gebiet z. B. Dahlica triquetrella).
Für die Verbreitungsstrategie spielen vermutlich die Larvalstadien eine größere Rolle:
Die Eier werden oft direkt am Sack des 9 abgelegt, der in vielen Fällen an erhöhten
Standorten befestigt wird. Die schlüpfenden Eiräupchen "seilen sich ab” und können
durch Winde oder durch Vögel, die ım Flug den Faden und damit das Räupchen mit-
reißen, verbreitet werden.
Weiterhin zeichnen sich bisweilen die erwachsenen Raupen durch größere Mobilität aus
Die Arten sind wohl als K-Strategen der 6. Gruppe (zumindest, was die 99 betrifft)
zu bezeichnen.
In einem ca. 1 ha großen Kiefernwäldchen in der Nähe des Mallertshofer Holzes fan-
den sich Säcke von Psyche casta, Talaeporia tubulosa, Bacotia sepium und Narycia mo-
nilifera. Der Biotop ist stark isoliert und in allen Richtungen von mindestens 500 m
intensiv en Ackerland umgeben (seit über 15 Jahren). Dennoch können die ge-
nannten Ärten offensichtlich stabile Populationen unterhalten.
120
AEGERIIDAE
Auch diese Familie soll in der weiteren Auswert wegen der geringen Erfaßbarkeit
durch die angewandte Methodik unberücksichtigt bleiben.
COSSIDAE
Cossus cossus (1 Individuum)
Distanzen: vermutlich 2-3 N
Larvalökologie: zur Larvalentwicklung werden 2-4 Jahre benötigt; dies erlaubt C.
cossus keine Strategie, die eine rasche Wachstumsrate der Populationen bein-
halten würde. Da befallene Bäume des öfteren absterben, muß in der Folgegene-
ration das Aufsuchen neuer Futterquellen vorprogrammiert sein, die Polyphagie
gewährleistet dies jedoch. Es werden ältere Bäume bevorzugt.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Zeuzera pyrina (2 Individuen)
Distanzen: vermutlich 2-3
Larvalökologie: zur Larvalentwicklung werden 2-3 Jahre benötigt, siehe Bemer-
kungen zu C. cossus. Z. pyrina zeigt eine von voriger Art etwas unterschiedene
Einnischung: Es werden jüngere Bäume bevorzugt.
Verbreitungsstrategie: K-Siratege, 6. Gruppe
HEPIALIDAE
Hepialus humuli (20 Individuen)
Distanzen: 2-3, im trockeneren Offenland (HM, auch HW) noch nie beobachtet
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Hepialus sylvina
197 Individuen 22,7 % o- Rate
166 markiert 3 Wiederfänge
Tab 62: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Hepialus sylvina.
SIEDLUNG WALD HALBTROK- Dat WALD HALBTROK- "DA
1987 ! Garten ! KENRASEN M 2% 1988 Garten Wasserwerk KENRASEN M L
SiS SIMı SN WaSı WaM Wan HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
Soparı br 8 2 6 102-217 - 54 XZpar. 20 15 11 3 9 230225539 2,0 1 1265
Suse ls 1 - - >. 1 5 - Sr22272us} - 15 - - - - = 15
dd a7, N ee 2 SR) - 34 dd 13 24 BET NA 230 re 99
99 Sa a 3 3 sag - 22.99 1 2 As ae) - = 17
Mark. 4 - 8 84.2206 9-1 - 52 Mark. 14 26 oo... 0 20.2 & Zen MA
Wk. - 0 - a -.- 0 - - =... Wi. - 3 = 0-0 = 20-0 = - .- 3
Wiederfang-Quote: niedrig: Die 3 wiedergefangenen JG beziehen sich auf 2 Rück-
funde am Standort WaS 1988 nach 1-Tages-Intervallen und nur auf einen "ech-
ten" Wiederfang am selben Ort nach 2 Tagen (in der dazwischenliegenden Nacht
‚erfolgte kein Lichtfang).
Distanzen: 3-4
Larvalökologie: stark polyphag i
Beralalisuepin lo e: proterandrisch; im Garten fällt ein erhöhter Jco‘-Anteil auf, die
„ st jedoch auch hier bodenständig (Beobachtung eines schlüpfenden Exem-
plars). }
An HM ist der Häufigkeitswechsel 1986/1987 bemerkenswert. Auch diese Un-
stetigkeit kann als Hinweis auf eine hohe Dynamik in der Verbreitungsstrategie
dieser Art gewertet werden.
Verbreitungsstrategie: r-Stratege, 2. Gruppe
Hepialus hecta (? Individuen, in der Dämmerung einige weitere)
Distanzen: 2-3
Populationsbiologie: am Würmkanal (Au) wurden am späten Abend ca. 10 Exempla-
re beim Ausschwärmen beobachtet. Der Flug diente offensichtlich zum Auffinden
der Geschlechtspartner. Es wurde eine Kopula registriert. Die Aktivitäten be-
schränkten sich auf den Waldrand, wohingegen im Waldesinneren und auf dem
freien Feld kein Exemplar gefunden werden konnte.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
121
NOCTUIDAE
NOCTUINAE
Euxoe tritici (5 Individuen)
Distanzen: 3; das Exemplar, im Ort war vielleicht vom Verbreitungszentrum (Halb-
trockenrasen) zugeflogen (ca. I km).
Verbreitungsstrategien: r-Stratege, 5. Gruppe
Euxoa obelisca (3 Individuen)
istanzen: 3; die en im Ort waren vielleicht vom Verbreitungszentrum
Halbtrockenrasen) zugeflogen er. 1 Kar
Verbreitungsstrategien: r-Stratege, 5. Gruppe
Euxoa nigricans (? Individuen)
Distanzen: vermutlich 3; Verhältnisse wohl wie bei den vorhergehenden Arten.
Verbreitungsstrategien: vermutlich r-Stratege, 5. Gruppe
Euxoa aquilina (30 Individuen)
Distanzen: 3. Von den Verbreityngszentren (Halbtrockenrasen) her zufliegende
Exemplare gelegentlich im Ort (ca. I km), ein relativ starker Vorstoß 1983.
Verbrei strategien: r-Stratege, 5. Gruppe
Scotia segetum (18 Individuen)
Distanzen: 3-4
Larvalökologie: in früheren Zeiten oft an Getreide schädlich, durch Pestizideinsatz
nahmen die Bestände drastisch ab. Halbtrockenrasen scheinen im Untersuchungs-
gebiet Refugialstandorte darzustellen.
Verbreitungsstrategien: r-Stratege, 1. Gruppe
Scotia clavis
siehe Fernwiederfänge (8.2.) und Versetzexperiment (8.4.)
582 Individuen 17,8 % o- Rate
546 markiert 61 Wiederfänge
Tab 63: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Scotia clavıs.
SIEDLUNG WALD HALBTROK- Dez WALD HALBTROK-
1987 ! Garten ! KENRASEN M L 1988 Garten Wasserwerk KENRASEN M
SiS SIM ı SN WaSı WaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We
Bar NZ IITEIO ST ÜNERTG> Van» Diia* Mag 1 170° "Fpar.” 27..,62% | 20, 776 320
X zus. SER — 26 = 3 21 8 38 = 96 I zus. - 76 - - - - - - = -
dd 11923 27 3 7 47 21 48 = 196 dd 25 120 719 5 26 28 41 = =
99 1 877 13 2 * 8 - 1 67 99 2 18 6 1 2 6 4 4 1 =
Mark. 2 26 29 38 4 ll 65 20 53 1 239 Mark. 267 137 12 20 7 30 31 44 1 =
Wr& morıree BR aan are E 15 wi. 2.: „SB - ji ij ’= „35 n PRRR TE
Wiederfang-Quote: BREI bEE IE: Im Garten, HO und HW mit 3-10% Wieder-
fängen, die nicht auf Gefangenschaft durch die Lichtwirkung beruhen, relativ hoch.
Garten 1987 bei den 7 do‘ eine mittlere Verweildauer von 2,7 Tagen. HO und
HW bei den Ortswiederfängen (9 od, 1 Drittfang) eine mittlere Verweildauer von
5,0 Tagen, 3 Exemplare nach 14, 9 bzw. 8 Tagen! 3
Im Wasserwerk und HM niedrige Wiederfang-Quote, hier wohl erhöhte Disper-
sionsaktivitäten.
Distanzen: 2-4; im Moos tauchten bisher nur sehr wenige Stücke auf. In feuchte-
res Gelände hinein scheint die Mobilität dieser Art drastisch reduziert zu sein.
P Kuatiombiologie: proterandrisch;, abgesehen von den beiden im Versetzexperiment
ehandelten Stücken wurden keine 99 wiedergefangen! Die Ursache liegt viel-
leicht in einer höheren Mobilität der ‘99 (siehe Sc. exciamationis)
Verbreitungsstrategien: intermediärer Ip Er ZUpBE: im Vergleich zu $S. exclama-
tionis weniger expansiv, was als Erklärung für das in Bayern etwas lokalere
Vorkommen Ü) in Frage kommt. An anderen südbayerischen Standorten ist die Art
bisweilen recht selten.
122
Scotia exclamationis
siehe Versetzexperiment (8.4.)
679 Individuen 34,2 % o9- Rate
634 markiert 23 Wiederfänge
Tab 64: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Scotia exclamationis.
mm ss, ml m mV SV ——— ———
SIEDLUNG WALD HALBTROK- DACH, WALD HALBTROK- "DA\
1987 ı Garten ! KENRASEN M 3 1988 Garten Wasserwerk KENRASEN MOOS 2
SiS SIMıSN WaSıWaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We
Zpar. 2 37 29 3 9 3 46 31 60 - 258 2 par. 31 33 393 .4 22 62 45 69 - 4 36
zus: - 16 14 21 Be 7, = 67 I zus. _ 38 - - - - - - e = 38
dd - 21 25 5 6 29 34 25 651 - 206 og 18 34 zn 733838 64: - 2 25
9 2 15 8 9 217 146 1 - 85 29 n 35 mn I gy - 2 134
Mark. 2 35 32 23 8 45 47 30 63 I 285 Mark. 29 69 39 4 29 62 45 68 - 4 349
W.f. ae gi 2 Er = 453 = 9:3 wi 1 13 = Belle zu ee ae 14
Wiederfang-Quote: im Vergleich mit der vorigen Art deutlich niedriger; alle Wie-
derfänge, soweit sie nicht im Versetzexperiment behandelt wurden, erfolgten nach
einem Intervall von 2-3 Tagen! Im Gegensatz zum Garten wurden an den anderen
Standorten keine 99 iedergefängen. Da sich die Mortalität wohl auf einem
ähnlichen Niveau bewegt wie bei den J’c' lWiehe Versetzexperiment), scheinen hier
die 99 mobiler als die Jc' zu sein!
Distanzen: 3-4; z.T. hohe Nacht-zu-Nacht-Fluktuationen: 8 der 9 WaM-Stücke
wurden in einer Nacht gefangen; ein solch schwarmartiges Auftreten läßt ver-
muten, daß die Art hier nur zugeflogen war.
Am Wasserwerk zeit sich im Gegensatz zu S. clavis eine Häufigkeitsverteilung
wie bei den hochmobilen Arten Ochropleura plecta und Amathes c-nigrum. Man
könnte darin entlang der Waldränder ziehende Exemplare vermuten.
Populationsbiologie: proterandrisch; die 99-Rate sinkt mit zunehmendem Offenland-
charakter und ist an HM und HW relatıv niedrig.
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Scotia ipsilon
261 Individuen 44,1 % 9- Rate
215 markiert 11 Wiederfänge
Tab 65: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Scotia ipsilon.
SIEDLUNG WALD HALBTROK- DAR WALD
i 1 KENRASEN MOX 2 1988 Koauen Wasserwerk
1987 ! Garten !
SiS SIM,SN WaS,WaM WaN HO HM HW WaS WeaN WNw WNo 2 HO HM HW Au We
Z par 4 86 8 21 3 4 1 6 25 1 169 Z par. 3 15 7 4 5 2 7 10 2
& zus - 8 - 8 - 1 1 - - - 183 2 zus. - 19 - = = = = - -
ds 17 467776 11 1 2 6 3 11 - 86 dd 2 15 5 1 2 1 5 6 -
99 Ser26023 13 1 2 6 3 9 1 67 99 1 15 2 3 3 1 1 4 -
Mark. 4 0 8 24 2 3 12 6719 1 149 Mark. 3 30 17) 4 4 2 6 10 -
Wir. az ee _ wie Sa le Se Fre -
Wiederfang-Quote: sehr niedrig, alle Wiederfänge erfolgten nach 1-Tages-Interval-
len und sind somit kein Hinweis auf Ortstreue! Wie auch bei den anderen Wan-
derfaltern erwies sich die mark-recapture-Methode in einer solchen "Nullprobe"
als gut brauchbar.
Je ein d' und ein 9 konnten beim täglichen Fang WaS 1988 3 Tage lang festge-
halten werden.
Distanzen: 4 ö
Populationsbiologie: oft, jedoch nicht immer konnte Proterandrie beobachtet werden
9 ab September häufiger).
Verbreitungsstrategie: Se 1. Gruppe; die Art ist an den Inpise en "Wan-
derfalterstandorten” (SiM, HW, entlang der Hecken im Dachauer Moos) besonders
häufig, vermutlich handelt es sich um bevorzugte "Straßen", wie sie bei Autogra-
pha gamma direkt tagsüber) beobachtet wurden.
123
HALBTROK- "DA
EEE DöcH 5
65
19
37
30
66
1
Ochropleura plecta
siehe Fernwiederfänge (8.2.) und verringerte Fallendistanzen (8.3.)
1803 Individuen 49,8 % o- Rate
1578 markiert 59 Wiederfänge
Tab. 66: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
i9g7 SIEDLUNG WALD
Ochropleura plecta.
HALBTROK- "DA "0° SIEDLUNG WALD HALBIROK- "DACH
KENRASEN MOos 2 1987 SEDIME MAD 7 FRENRASEN MOOS
1.6 | arten | ı Garten |!
. Gen. sis SIMISIN WaS;ıWaM WaN HO HM HW Mb 2. Gen. sis SIMISN WaS;ıWaM WaN HO HM HW Mb
a a ie u u) Re 13 EN DE 5 3 45 26 32 12
2 zus ı St Su an 76 - 1) zizus) We 2 7 En 36 (oe = = f
de men auteiies.t refr2alie 6 A de en2ze] 2 - 2 5 10 3% 3 |
99 3 - M2 2, -E —- 343 4 150 - 26 9 m %3: 20. or 7 il
Mrk. 1 - 1 au U gm El Te 10 44 Mark. 1 37 19 13. 30 41, 275338101 oe a
Wi. Su ur Eli > - Eu we u 2 er =E Tu er <
W HALBTROK- mas 1988 WALD HALBTROK- Zac |
1988 Garten. Wasserwerk KENRASEN M I 50 Garten Wasserwerk KENRASEN M |
1. Gen. SN WaS WaN WNw WNo HO HM HW Au We . Gen. sn WaS WaN WNw WNo HO HM HW Au We |
Sonara A 13 Pe 29,u 78,280 3209 m 29 8 3 163 per. 100 188 233 49 96 180 40 126 25 10 10
zus, = 9 - - - ne = —z gr 72Tzus, 4 = 2220 - - - =. 20 Ir >
oc DNA. OA ZERO EN I 719 A 66. 162° 1377 1A, 371 Les Piz?
99 1 6 > O2 7 DE, 1 Aa 38'220 8630 a2 Warn 22m
Marktes #208 126.4 IB 26:0, 309 Ri 25 8 3067 Mark 82 3691 ?206.:'42° 727 168, a7 Tom ma Au
W.t. - 4 = = - = 1 - = = 5 W.t. 1 48 1 1 - 1 - - - -
Wiederfang-Quote: sehr niedrig bei sehr kurzen Verweildauern: Im Garten erfolg-
ten, abgesehen von 5 Wiederfängen nach 2 Tagen alle Rückfänge nach 1-Tages-
Intervallen. Die niedrige mittlere Verweildauer von 1,22 Tagen ist schon durch
festgehaltene Exemplare überhöht.
Die o-Rate liegt bei den Erstwiederfängen bei ca. 50 %. Bei den durch die Licht-
wirkung über mehrere Tage EN ehaltenen Stücken (Mehrfachwiederfänge) und bei
den "echten" Ortswiederfäangen (Fangnacht-Pausen dazwischen) zeigt sich ein stark
erhöhter 9-Anteil: 80 %. Auch der HO-Wiederfang 1988 nach 3 Tagen (das
längste festgestellte Intervall!) war ein 2
In beiden Generationen hohe Dispersionsaktivitäten!
Distanzen: 4
Larvalökologie: die Raupen finden wohl überall eine Lebensgrundlage.
P
ulationsbiologie: bivoltin, die o-Rate schwankt in Ort und Zeit bisweilen be-
rächtlich: Im Wasserwerk aN) waren am 10.8.88 noch 65 %, am 12.8.88 nur
noch 9 % 09 zu beobachten. we en war am 2.8.88) an zwei nur 50 m vonei-
nender entfernten Standorten aN, WNo) eine 9-Rate von 37,5, % bzw. 73 %
festzustellen. Dies und eine Reihe anderer Beobachtungen rechtfertigen die Hypo-
these von geschlechispolarisiorien Schwärmen.
Eine "Popu BVISSBEESEHNLEIE hnung” im Garten vom 1.8. auf den 2.8.88 (40 bzw.
47 Individuen, 6 iederfänge) ergäbe eine "Populationsgröße" von 313 Individuen
im Einzugsbereich der Lichtfalle, die hohe Mobilität dieser Art stört derartige
Berechnungen jedoch gewaltig.
Verbreitungsstraiegie: r-Stratege, 2. Gruppe; auch das besonders häufige Auftreten
in Wanderfalternächten und das Häufigkeitsmuster mit Peaks an denselben Stand-
orten wie bei den als Wanderfalter bekannten Arten sind bemerkenswert und
wohl als weiterer Hinweis auf die hohe Mobilität dieser Art zu verstehen. Es
(siche EITSCHBERGER & STEI-
handelt sich jedoch nicht um einen Wanderfalter
NIGER, 1980]
Eugnorisma depuncta
Distanzen: vermutlich 2
Larvalökologie: die Raupenfutterpflanzen sind überall verfügbar h h
Verbrei strategie: vermutlich K-Stratege, 5. Gruppe; einen Hinweis darauf gibt
das lokale Vorkommen bzw. die Seltenheit dieser Art.
Rhyacia lucipeta (1 Individuum)
Distanzen: 4, das Stück ist vermutlich aus den Alpen zugeflogen!
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Rhyacia simulans (1 Individuum)
Distanzen: 4, wie Rh. lucipeta
Verbreitungsstrategie: r-Stratege, 1. Gruppe
124
ESTER EERFEHEERERSEEEEERSEEEEREE
Noctua pronuba
siehe Fernwiederfänge (8.2.), verringerte Fallendistanzen (8.3.) und Versetzexperiment (8.4.)
1675 Individuen 44,2 % 9 - Rate
1457 Markiert 167 Wiederfänge
Tab. 67: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Noctua pronuba.
SIEDLUNG WALD HALBTROK- Dans WALD HALBTROK- DACH
1987 ! Garten ! KENRASEN M % 1988 Garten Wasserwerk KENRASEN M ”
SiS SIMıSiN WaSıWaM WaN HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
Ip. 9 2ı 8 74 4 23 40 26 54 - 259 Xpar. 48 48 75 9 42 193 3 5 35 A 977
zus. - 17 8 Be. Bro 70 - 3 LTzus - 40 SIDENRE re rn Ss Aal
gs 4 28 1 5° 1 18 28 10 34 - 184 de 26 403 4 47 24 60 3 37 9 - 640
99 Se 210, BE Do - 75.09 14. 7360,,,.26, „as an 63, SE Bo, ES a E78
Mark. 9 34 2 MN 4 20 37 21 49 - 257 Mark. 40 755 64 87 34 13 1 84 12 - 1200
WA. 2 TAN EUR - 3 wi. - 162 = 24 081 = 0 = ae fe 1168
Wiederfang-Quote: sehr iedde bie
Q),
h
Garten erfolgten nach 2 | g) und 4 Tagen. Die vereinzelten Ortswie-
derfänge, die nicht auf ein Festgehalten-Werden durch die Lichtwir zurück-
zuführen sind, deuten auf Einzelexemplare hin, die ortstreuer werden (v.a. 99).
Distanzen: 4 RD
Populationsbiologie: die. Sommerruhe, die diese Art einlegt ist nach MEINECKE
1984) ähnlich wie bei den bivoltinen Arten ein Hinweis auf hohe Dispersionsakti-
vitäten. Proterandrisch.
Verbreitungsstrategie: r-Stratege, 1. Gruppe
j 0.8. Eöperimenie); die Wiederfänge 1987 im
Noctua comes (112 Individuen)
Distanzen: 4; im Verbreitungsmuster und in den Flugnächten relativ stark mit Noc-
tua pronuba korreliert.
Verbreitungsstrategie: r-Stratege, 3. Gruppe; GYULAI & VARGA (1974) berichten
von gerichteten Bewegungen innerhalb des Areals dieser Art.
Noctua fimbriata (43 Individuen)
Distanzen: 3-4
Larvalökologie: entsprechend der Polyphagie der Raupen sind auch die Imagines
mehr oder weniger überall zu finden.
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Noctua janthina (35 Individuen)
Distanzen: 3-4
Larvalökologie: Siehe Bemerkungen zur vorigen Art
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Spaelotis ravida (3 Individuen)
Distanzen: 4
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Graphiphora augur (3 Individuen)
Distanzen: vermutlich 3
Verbreitungsstrategie: vermutlich r-Stratege, 3. Gruppe
Paradiarsia punicea (10 Individuen)
Distanzen: 2; schon 400 m nördlich des Birkets ("Moos 1985") konnte kein Exem-
plar mehr nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Diarsia mendica (76 Individuen)
Distanzen: 2. ; ; ;
Larvalökologie: obwohl die Raupen "niedrigen Pflanzen” leben, ist D. mendica
ziemlich stark habitatgebunden Wald). ie polarisierten Zahlenverhältnisse
WaS>SiN sowie WNw> WaN bzw. > o zeigen, daß schon in 30-100 m Entfer-
nung vom Habitat deutliche Häufigkeitsverluste feststellbar sind.
Verbreitungsstrategie: K-Stratege, 5. Gruppe
125
Diarsia brunnea (204 Individuen)
Distanzen: 2
Larvalökologie: siehe Bemerkungen zu Diarsia mendica
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Diarsia rubi (22 Individuen)
Distanzen: 2-3: an HM nie beobachtet, dagegen war D. rubi 1989 am Franzosen-
hölzl eher im Freien zu finden: Zehn Exemplaren am Waldrand standen neunzehn
in einer Entfern von 40 m gegenüber.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Amathes c-nigrum |
siehe verringerte Fallendistanzen (8.3.) und Versetzexperiment (8.4.)
1460 Individuen 32,9 % 9- Rate
1255 markiert 54 Wiederfänge
Tab. 68: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Amathes c-nıgrum.
»
SEDLUNG WALD HALBTROK- "DA SEDLUNG WALD HALBTROK- "DACH, |
> Garten ! KINRASEN Moos 2 1987 Garten ' KENRASEN MOOS )
1. Gen. sig SIMıSN WaS,WaM WaN HO HM HW Mb 2. Gen. sis SiM | SIN Was | WaM WeaN HO HM HW Mb
Euer, Jar = - ige
N a 11 hg NE Br FE En 1 0 0 0
dd - - = - 1 2 4 - 6 - 13 dd - 46 6 8 3 8 14 13 46 1 1
99 -.- > MED ZUR SR - 3.9 - 34 3 PL E 2 3
Mark. EEE - 1 =! 4 - 7 - 15 Mark. = 99 12 7 22: 20771 3 23
W.f. a Sun. > use - 1 W.f. Sechs ENT NG- ee =
WALD HALBTROK- "DA! W HALBTROK- "DA
1988 Garten Wasserwerk NRASEN MOOS = 1988 Garten Wasserwerk KENRASEN Moos )
1. Gen. sy WaS WaN WNw WNo HO HM HW
Erna ar Tach 2m SE ar, Ba 220, wa 30 198 128 147
Zen am f a AT ee ade 1 = mie - -
dd za BI UI: 959 4.025 VER NEO dd 24 139° ‚97 ‘9 122 87°’52 ma „ee
99 hrs! Brishatsätlatjeisıvatltt 63H 29 58 12 N3_ 50,74 a2.) 20.01 aa
Mark. 13 haadomtal. ar rain: Ana nn 70% Mark. 361260 147 26 164 12 3 sb u
Wit. - 2 Sue ee 2 f. - 50 ri 7
Wiederfang te: ist als niearig
dazwischenlie
3 Tagen und
arten überwiegen sehr stark die Rückfänge nach 1-Tages-Intervallen, aus
I
dem Rahmen fällt lediglich ein 9 nach 4
m
Au We
acht
einzustufen! Nur
See fangfreier bei über 1000
o 1988 nach 2 Tagen (jeweils ein c).
aN WNw WNo HO HM
2 "reguläre"
Wie derkänse (mit
arkierungen: HW 1987 nach
HW Au We
Tagen. Die mittlere Verweilzeit betrug
hier 1988 nur 1,21
Die o-Rate in den
‚gestellten.
Distanzen: 4: in der ersten Generation wohl nur 3-4: In Jahren mit relativ ungün-
stiger Bestandsentwicklung (z.B. 1987) zeigt sich ein Fehlen in der 1. Generation
an suboptimalen Standorten, nämlich Sied ‚ HM und im Dachauer Moos. Die
Distanzen von 1 km HW>HM) und 1,4 km [WaN>WaS) scheinen, zumindest bei
solchen Konstellationen für die Individuen der 1. Generation nicht im Rahmen der
normalen Dispersionsaktivitäten zu Kesen. Das Häufigkeitsmuster HW)HO+
WaN))>HM, Siedlung, Moos und Wald (WaM, WNw) scheint in der 1. Generation
von Jahr zu Jahr konstant zu sein.
In der zweiten Generation kommt es dann zu einem Einflug an solche "subopti-
male” Standorte, besonders deulich war dies 1987 an SiM mitzuverfolgen. Jedoch
werden offenbar nicht alle Standorte gleichermaßen überschwemmt, was die signi-
fikante Häufigkeitsdifferenz zwischen SiM und SiS bei einer Distanz von nur 400
m veranschaulicht. Es werden "Zugstraßen" bevorzugt. Das im Netz der Fangstel-
u use IE Häufigkeitsmuster entspricht dem charakteristischen Wanderfal-
terbıld.
Larvalökologie: die Art findet wohl überall eine Lebensgrundlage
Populationsbiologie: bivoltin; die zum Teil sehr starken Nacht-zu-Nacht-Fluktuatio-
nen deuten auf einen Flug in Trupps oder zumindest auf besondere flugstimulie-
rende Faktoren hin. Diese Faktoren sollten eine gewisse Spezifität aufweisen, da
sich in mehreren Fällen "Häufigkeitstäler" zwischen 2 Aktivitätsmaxima genau in
solchen Nächten befanden, in denen andere Arten recht gut flogen und öfters sehr
gute Lichtfallen-Ausbeuten erzielt wurden.
Jape:
iederfängen entspricht ungefähr der in den Erstfängen fest-
126
Verbreitungsstrategie: r-Stratege, 1. Gruppe; Amathes c-nigrum kann jedoch im
Gegensatz zu manchen anderen Arten aus der Gruppe der typischen Wanderfalter
unseren Winter gut überstehen. Die starken Fluktuationen von Generation zu Ge-
neration sind für eine r-Strategie typisch.
Amathes ditrapezium
UNG WALD HALBTROK- "DA WALD HALBTROK- "DA
1987 m arten ! KENRASEN Moos 2 1988 Garten Wasserwerk KENRASEN Moos L
SiS SMıSN WaSıWaM Wa HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
Z par. e 6 9 16 339 18 6 3 24 132 Z par. 19 63 59 31 41 28 4 4 32 24 294
Dezusupe 002723 6 - 4 7 2 - 24 X zus. - 62 - - - - - - - - 62
dd uU. .Ö 11 - 21 7 4 3 14 88 ‘gs 16 77 34 172230 24 1 4 20 17 240
99 1 - 4 8 3 14 6 4 2 4 46 99 2 26 23 13 10 2 3 - 6 6 9
Mark. 8257210 19 I) &s 23 8 3 16 130 Mark. 17 102 57 29 38 26 4 4 26 23 326
W.f. - - - 1 > 1 - - - - 2 W.f. 1 12 1 1 4 - - - - 1 20
Wiederfang-Quote: a endortsbhängie: Im Wasserwerk relativ hoch, sonst eher nied-
rig. Die 1987 rückgefangenen Tiere waren 2 Jod‘ nach 2 Tagen. 1988 errechnete
sich für die Wiederfänge im Garten eine mittlere Verweildauer von 1,64 Tagen,
wobei es sich bei nur 2 Ausnahmen um Intervalle von | das handelte: 1 c nach
: Tagen as ein 9, an WaS markiert und nach 5 Tagen 30 m entfernt an SiN
estgestellt.
Die ER sind im Garten in den Wiederfängen deutlich überrepräsentiert! ß
Ein Festhalten durch die direkte Lichteinwirkung bei täglichem Fang findet in weit
eringerem Ausmaß statt als bei folgender Art. Die Proportionen Fang/Wieder-
ang/Mehrfachfänge liegen ähnlich wie bei Noctua pronuba, nur etwas AI
‚Die Fluchtdisposition ist deutlich größer als bei der ähnlichen Art A. triangulum
Distanzen: 2-3 (-4?), im Wasserwerk ortstreuer, sonst relativ mobil.
Populationsbiologie:, proterandrisch;
Verbreitungsstrategie: intermediärer Typ, 2. Gruppe
Amathes triangulum
siehe_Fernwiederfänge ae verringerte Fallendistanzen (8.3.) und Rückschlüsse aus
den Ortswiederfängen (8.5.
996 Individuen 24,0 % o9- Rate
919 markiert 122 Wiederfänge
Tab. 70: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Amathes triangulum.
SIEDLUNG WALD HALBTROK- "DA‘ WALD HALBTROK- "DA
1987 ! Garten ! KENRASEN Moos L 1988 Garten Wasserwerk KENRASEN MOSE L
SiS SIMıSN WaSı WaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We
X par. 87312258 31 353 37 5 11 6 174 X par. 57 200 84 42 79 44 21212) 17 9 546
zug? 16 - 8 1a 4 - 45 % zus. - 23 - - - - - - - - 231
[oje] 46 6 33 238 38 5 6 3 141 og 37 313 63 34 656 42 1 9 14 8 567
99 4 4 4 8 1 14 13 - 6 1 54 99 16 97 27 6 17 1 1 2 3 1 170
Mark. sr1010 41 3.62! 50 6 ii 4 194 Mark. 49 408 279736572072 43 2210 17 9 725
TEE a N a ee ee ER Wi A ar 425 en Dar ann
siehe verringerte Fallendistanzen (8.3.)
512 Individuen 29,5 % 9- Rate
456 markiert 22 Wiederfänge
Tab. 69: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Amathes ditrapezium. !
Wiederfang-Quote: durchschnittlich; an HO wurde 1988 1 cd’ nach 4 Tagen rück-
gefangen. Die 99 sind im Gegensatz zur vorhergehenden Art in den Wiederfän-
‚gen unterrepräsentiert und zeigen eine kürzere Verweildauer.
Distanzen: 2-4 |
Populationsbiologie: proterandrisch; 1988 wurde an HO nach der Flugzeit der 99 am
8.7. noch ein Trupp von 18 geflogenen Jo‘ gefangen. An diesem Standort fallen
besonders starke Nacht-zu-Nacht-Fluktuationen auf, die wohl auf eine erhöhte
Dispersionsaktivität hinweisen.
Verbreitungsstrategie: r-Stratege, 2. Gruppe;
Amathes baja (240 Individuen)
form auffiel, wurde 3 Tage später wiedergefangen (in der Falle). Die gering-
Wiederfang-Quote: ein S, das an HO 1987 mit einer "Ua der Falle)“ Flügeiver-
fügige Abnormalität hatte auf das Flugverhalten höchstwa
rscheinlich keinen Einfluß.
127
Distanzen: 2-3; die Distanz von ca. | km von den Flughafenrändern zum Standort
HM (Ofteniand wird nur ausnahmsweise bewältigt, wie der starke Häufigkeits-
abfall HO/HM zeigt.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Amathes sexstrigata
siehe verringerte Fallendistanzen (8.3.)
1122 Individuen 26,5 % o- Rate
603 markiert 18 Wiederfänge
Tab. 71: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Amathes sexstrigata.
WALD HALBTROK- DACH
Wasserwerk KENRASEN M 2
1988 Garten
SN WaS WaN WNw WNo HO HM HW Au We
> para 7 B: 13921624172. Miss: 62% 82 6 - 666
zu en EM - 2 - ao 10
dc ) 10 93 47 94 107 48 60 a MEETS
99 - a "2 Mammea ea 2 18 ie
Mark. a a ee ae 52 77 603
Wf. - 6 ya AN) ae En 18
Wiederfänge am Flughafen erfolgten nach 2,
und 5 Tagen. Im Garten, einem offensichtlich eher ungeeigneten Lebensraum für
diese Art, kam es 1988 zu einem verstärkten Zu- bzw. Durchflug. Dies fand auch
seinen Niederschlag darin, daß sich die Rückfänge ausschließlich nach 1-Tages-In-
tervallen ereigneten. Die Tiere waren also von der direkten a estge-
halten worden. Die 99 sind im Wiederfang deutlich unterrepräsentiert (nur I 9
WaS nach 1 Tag).
Miederiang:Chaute, durchschnittlich; die
Distanzen: 2-3
Eopelnt biologie: deutlich proterandrisch' Im Wasserwerk (WaN) stieg in allen 3
ahren (1987-89) die Populationsdichte zwischen dem 4. und dem 10. August stetig
auf einen Maximalwert an, der einen Fang von 30-50 Individuen pro Nacht be-
wirkte. Relativ pünktlich am 20. August erfolgte dann jeweils ein ziemlich abrup-
ter Zusammenbruch der PORU Alıen: Die Lebensdauer übersteigt offensichtlich in
der Regel einen Wert von 10 Tagen nicht wesentlich. N
Merbreilmganizn ige: intermediärer Typ, 5. Gruppe; diese Art kommt in anderen
Gebieten nur sehr kokal und meist nicht häufig vor. Dies erlaubt der Art wohl
keine r-Strategie. Bei stärkeren Vermehrungen, wie 1987 und 1988 im Untersu-
chungsgebiet kann es jedoch zu Abwanderungen auch von fertilen 99 über Strek-
ken von mindestens 1 kommen.
Amathes xanthographa
1987
Z par.
% zus.
[e 102
9?
Mark.
W.f.
siehe verringerte Fallendistanzen (8.3.)
393 Individuen 24,8 % 9- Rate
315 markiert 8 Wiederfänge
Tab. 72: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Amathes xanthographa.
SIEDLUNG WALD HALBTROK- Dacı
KENRASEN M
HALBTROK- Da
| Garten _! KENRASEN M 2 1988 Garten Wasserwerk
SIS SIMıSN WaSıWaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We
DEsE 2 5 7.40 32...182227 2 141 Z par. 4 10 18 26 1
= a Wr EM ZUR TS - oa ae me Ss, = Set
- Ya | 1 4 24 23. 107218 1 81 dd 2 22 17 27 40 15 14 22 - -
5.71 2 4 3 13 6 5 7/ 1 47 99 1 4 2 6 15 2 1 1 - -
BÄAL5E 5 TE: 29 14 20 2 125 Mark 3 26 18,733 55 171 19023 - -
Er ehe = 2 wi. = 4 en Zu Ser Bade
Wiederfang te: relativ niedrig; die längste nachgewiesene Verweildauer beträgt
pur 2 Tage! 1988 erfolgten alle Wiederfänge im Garten nach Intervallen von 1 Tag.
istanzen:
Populationsbiologie: deutlich proterandrisch, die dd schwerpunktmäßig im August, die
28 im September. erre 3 }
Verbreitungsstrategie: r-Stratege, 3. Gruppe; A. xanthographa ist im Vergleich mit
A. sexstrigata dıe Art mit der größeren Dispersionsaktivität.
Phalaena typica (5 Individuen)
Distanzen: vermutlich 2, bisher keine biotopfremden Tiere festgestellt
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
128
l
L
f
Eurois occulta (4 Individuen)
Distanzen: 2-3 & fe
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Anaplectoides prasina (51 Individuen)
Distanzen: 2-3 2
eralöKalogie oligophag, bevorzugt findet man die Falter jedoch an Stellen, wo
Him- und Brombeeren wachsen. Im reinen Offenland (Flughafen) ist A. prasina
bestimmt nicht podens and . Die beiden HM-Stücke (1986) sind daher vermutlich
aus dem Ruderal (ca. 150-300 m Entfern zugeflogen.
Die Distanzen von 1 km (Abstand von zum nächsten sicheren bodenständi-
en Vorkommen) bzw. 1,3 km, (Wasserwerk>Garten) werden nicht regelmäßig
Bewalker Die 11 WaS-Stücke sind vermutlich zugeflogen (mindestens 50 m
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Cerastis rubricosa
siehe verringerte Fallendistanzen (8.3.)
171 Individuen 4,8 % o- Rate
100 markiert 7 Wiederfänge
Tab. 73: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Cerastis rubricosa.
WALD HALBTROK- se:
198 Garten Wasserwerk KENRASEN M 2
SN WaS WaN WNw WNo HO HM HW Au We
2 par. = 1 38 24 25 Os] 4 S - 103
zus. - 1 Su SP che Ze 1
[0202 = 2 34 24 24 10 1 4 = = 99
99 - — 4 = 1 = - = = = 6
Mark. - 2 37 22 24 10 1 4 - > 100
Wi. Su 2) 4 en, Erg 7
Wiederfang-Quote: hoch, bei langen Verweildauern, die siedcch - zumindest teil-
weise - durch kühlere Witterung bedingt sein dürften. Vielleicht suchen die Ima-
gines ähnlich wie die Arten der Gattung Orthosia nach dem Schlüpfen Nektar-
quellen und werden an Standorten mit blühenden Weiden "seßhaft". Ein "Einflug"
in den Siedlungsbereich und in das Gebiet des Dachauer Mooses kommt jedoch in
nur geringem Maß vor, wodurch im Gegensatz zu den Orthosien ein deutliches
Häufigkeitsgefälle entsteht.
Distanzen: ? >»
Larvalökologie: polyphag an niedrigen Pflanzen
Populationsbiologie: ın allen Jahren tauchten bisher im Juni frische Exemplare auf,
es handelt sich jedoch wohl nicht um eine zweite Generation.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Cerastis leucographa (23 Individuen)
Distanzen: ?; die Distanz von ca. 1 km ins Offenland hinein (HM, auch HW) wird
anscheinend nur selten bewältigt, an den genannten Stellen keine Nachweise
Verbreitungsstrategie: K-Stratege, 6. Gruppe; die gesammelten Daten deuten auf ein
ähnliches Verhalten wie bei C. rubricosa hin, C. leucographa scheint lediglich
etwas stärker habitatgebunden zu sein.
Mesogona oxalina (15 Individuen)
Distanzen: 2, :
Eeralessioge: die Raupe lebt SUBEnEE an verschiedenen Laubgehölzen, v.a. Wei-
den und Pappeln; die HM-Stücke stammen daher sehr wahrscheinlich aus dem
150-300 m entfernten Ruderal. Diese Distanz wird mit erstaunlicher Konstanz
bewältigt, 1 km jedoch so gut wie nie: We>Mo, HM>HO und HM>HW,; an den
letztgenannten Standorten konnte die Art nicht nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
HADENINAE
Discestra trifolii (28 Individuen)
Distanzen: 4 \
Verbreitungsstrategie: r-Stratege, 1. Gruppe; in dieses Bild passen auch die Häufig-
keitsschwankungen von Jahr zu Jahr, das den anderen Wanderfaltern entsprechende
Häufigkeitsmuster innerhalb des Fangstellen-Netzes sowie das gleichzeitige Auf-
treten mit diesen anderen Arten in besonderen "Wanderfalternächten".
129
Polia bombycina
70 Individuen 19,0 % 9 - Rate
62 markiert 2 Wiederfänge
EEE ee: relativ hoch; es handelt sich um zwei dd, einen Ortswieder-
Ians an o nach 3 Tagen und einen Ortswechsler von WaN>WNo (50 m) nach
agen.
Distanzen: 2-3
Larvalökologie: die HM-Stücke könnten zu einem Verbreitungszentrum im Ruderal
mit Weide als bevorzugter Futterpflanze gehören, eine eindeutige Aussage ist
wegen der Oligophagie dieser Art nicht möglich.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Polia nebulosa (38 Individuen)
Distanzen: 2-3
Larvalökologie: etwas mehr an bebuschtes Gelände gebunden als vorige Art, bio-
topfremde Tiere wurden bisher nicht beobachtet.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Pachetra sagittigera
114 Individuen 9,9 % o-Rate
110 markiert 2 Wiederfänge
Tab. 74: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Pachetra sagıttigera.
SIEDLUNG WALD HALBTROK- "DA! WALD HALBTROK- "DA
1987 ' Garten ' KENRASEN Moos 2 1988 Garten Wasserwerk NRASEN MOosı
SIS SIMıSN WaSıWaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We
Ipaı. - - - - - - 6 36 42 - 82 Xpar. -
dd u Pre 49327436 - 72 dd “
KL u ae *= I 2, 4 = 7...%99 2
Mark. - = u - = = 6 34 40 - 79 Mark. -
W.f. - - - = = = - - 2 - 2 WE
Wiederfang-Quote: durchschnittlich, es handelt sich um zwei Ortswiederfänge (do)
an HW nach jeweils 2 Tagen.
Distanzen: im Habitat 3, außerhalb 2
Larvalökologie: pokyplias an niedrigen Pflanzen und Gräsern! Dennoch ist eine
starke Habitatbin (Halbtrockenrasen) im Untersuchungsgebiet festzustellen:
ußerhalb der drei Flughafen-Standorte wurde diese Art bisher nur 1989 an er
20) beobachtet. Schon in einer 30 m tiefen Einbuchtung in den Wald (Ho ist
_ je weise konstant - ein starker Häufigkeitsabfall festzustellen. Im Flughafen-
gebiet ist P. an wohl allgemein verbreitet, in 300-400 m Entfernung (SiS)
war 1987 kein Stück nachzuweisen.
Populationsbiologie:, proterandrisch
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Sideridis albicolon (6 Individuen)
Distanzen: im Habitat 2-3, außerhalb 1-2
Larvalökologie: Auch hier wäre durch die (angebliche) Polyphagie der Raupen die
Lebensgrundlage in einem weitaus größeren Areal gegeben als re be-
setzt wird. $. albicolon ist streng habitatgebunden (Steppehheidechar kun und
war schon an HO nicht mehr nachzuweisen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Heliophobus reticulata (16 Individuen)
Distanzen: 2
Larvalökologie: oligophag an einigen Carophyllaceen, wie die beiden vorigen Arten
strenger habitatgebunden, als dies von den weiter verbreiteten Raupenfutterpflan-
zen her "nötig wäre”.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Mamestra brassicae (63 Individuen)
Distanzen: 3-4
Populationsbiologie: bivoltin
Verbreitungsstrategie: r-Stratege, 1. Gruppe
130
Mamestra persicariae (146 Individuen)
Distanzen: 3-4; die deutliche Häufigkeitsdifferenz zwischen WaN und WNw (nur 100
m voneinander entfernt) weist dennoch auf Barrieren gegen die Verbreitung hin: In
Wäldern ist M. persicariae seltener anzutreffen.
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Mamestra contigua (20 Individuen)
Distanzen: 3
Larvalökologie: M. contigua-Raupen sind relativ polyphag; vermutlich bilden jedoch
für die an HM nachgewiesenen Stücke die eiden des Ruderals (150-300 m
entfernt) die Lebensgrundlage. 1988 befand sich darunter auch ein fertiles 9. In-
teressanterweise konnte in 1 km Entfernung (HO) über 3 Jahre hinweg kein
Exemplar festgestellt werden.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Mamestra w-latinum
43 Individuen 24,4 % o9- Rate
41 markiert 2 Wiederfänge
Wiederfang-Quote: durchschnittlich: ein 9 wurde an WaS 1988 am nächsten Tag
wiedergefangen, war also nur vom Licht festgehalten worden, dazu kommt ein
"echter" Wiederfang 1987 HW nach 2 Tagen ()
Distanzen: 3; unter den im Untersuchungsgebiet festgestellten Mamestren wohl die
Art mit der größten Habitattreue (trockene Wiesen). Die im Garten vereinzelt zu
beobachtenden Stücke sind vielleicht zugeflögen, auch die (Trittstein-)Besiedlung
des Wasserwerks läßt vermuten, daB M. w-latinum-oo9 bisweilen Distanzen von
1 km zurücklegen. }
Populationsbiologie: bivoltin, proterandrisch
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Mamestra thalassina (77 Individuen)
Distanzen: 2-3
Larvalökologie: M. thalassina ist zwar eine polyphage Art, bevorzugte Futterpflan-
zen sind jedoch Laubgehölze und -gebüs N ım reinen Offenland ist diese Art
wohl nicht bodenständig. Das HM-Stück (6 ist vielleicht vom Ruderal her zuge-
flogen (200-300 m).
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Mamestra suasa
371 Individuen 32,2 % o- Rate
93 markiert 3 Wiederfänge
Wiederfang-Quote: sehr niedrig! Alle drei Wiederfänge (dT‘9) erfolgten an WaS
1988 nach 1 Tag und stellen somit keinen Hinweis auf ein natürliches Verbleiben
in der Umgebung dar. Hier waren 31 Individuen markiert worden.
Distanzen: 4 _ h
Populationsbiologie: bivoltin; in der Siedlung wurde die erste Generation von M.
suasa nur sehr vereinzelt beobachtet, es gilt analog das bei Amathes c-nigrum
Gesagte, vor allem für den Fangplatz SiM. Die Weibchen-Rate der 2. Generation
liegt höher als die der ersten.
Au alle ist die besondere Korrelation der Anflugaktivität mit den sogenannten
Wanderfalternächten. Dies ist ein weiterer Hinweis darauf, daß auch einige andere
hochmobile Arten "mitfliegen".
Verbreitungsstrategie: r-Stratege, 2. Gruppe
Mamestra oleracea (88 Individuen)
Distanzen: ad
Larvalökologie: Wenn die Angabe in KOCH (1984) stimmt, daß die Raupen (nur)
Garten und Feldgewächse fressen, müßte das HM-Exemplar (d) 1986 zumindest
vom Gut Hochmutting her zugeflogen sein (ca. 500-600 m). Interessant ist auch
der starke Häufigkeitsuntersched WaN-WNw, der für Barrieren gegen die freie
Beweglichkeit dieser Art spricht.
Verbreitungsstrategie: r-Straiege, 3. Gruppe
Mamestra pisi (4 Individuen)
Distanzen: 3 (-4?)
Larvalökologie: die HM-c’S 1988 entwickelten sich vermutlich 150-300 m entfernt
an den Weiden des Ruderals zum Falter.
Verbreitungsstrategie: r-Stratege, 5. Gruppe
131
Hadena rivularis (10 Individuen)
Distanzen: 3
n die Raupe lebt an verschiedenen Nelkengewächsen, die in der Nä-
he aller Fundorte vorkamen.
Populationsbiologie: bivoltin
Verbreit ae ei r-Stratege, 3. Gruppe; ähnlich wie wohl bei allen Vertretern
dieser Gruppe der "Nelkeneulen” wird auch hier ein vorprogrammiertes Umher-
streifen der 99 zur Aufsuche der nicht immer standorttreuen Futterpflanzen nötig
sein.
Hadena lepida (10 Individuen)
Distanzen: 3
Larvalökologie: wie vorige Art; bei dem frischen J, das 1986 im Garten gefangen
wurde, könnte es sich um einen Nachkommen eines für die Dauer eines Jahres
geglückten Kolonisationsversuches handeln: Seit 1985/1986 wächst im Garten ei
sich von Jahr zu Jahr ausbreitender Bestand von Roten Lichtnelken (Siene dien.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Hadena compta (5 Individuen)
Distanzen: 2-3
Larvalökologie: die Grundlage für die Konstanz des Auftretens im Garten in den
letzten Jahren liegt wohl in den Beständen der Roten Lichtnelke.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe; nach LATTIN (1967) unternahm
H. compta in diesem Jahrhundert Arealausweitungen.
Hadena confusa
Distanzen: vermutlich 2-3
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Hadena bicruris (5 Individuen)
Distanzen: 2-3
Larvalökologie: im Garten ist gleichzeitig mit dem Erscheinen der Bestände der
Roten Lichtnelke seit 1986 auch regelmäßig H. bicruris nachgewiesen worden. Die
allen: erfolgte erstaunlich rasch, wenn man bedenkt, daß vorher nie ein
zugeflogenes) Exemplar festgestellt wurde.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Lasionycta nana (1 Individuum)
Distanzen: vermutlich 2-3 £
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Eriopygodes imbecilla (1 Individuum)
Distanzen: 1-2
Larvalökologie: Die Raupe lebt an "niedrigen Pflanzen und Gräsern". Trotz dieser
breitgefächerten Lebensgrundlage handelt es sich in Südbayern um ein sehr lokal
vorkommendes Glazialrelikt.
Verbreitungsstrategie: K-Stratege, 6, Gruppe; ein neu geschaffenes_(hypothetisches)
Feuchtgebiet im Siedlungsbereich (3,8 km entfernt) wäre in der Zeit der. bisheri-
gen Lichtfallenerhebungen im Garten (ca. 10 Jahre) höchstwahrscheinlich noch
nicht besiedelt worden, auch wenn es noch so naturnah gestaltet worden wäre.
Cerapteryx graminis (1 Individuum)
Distanzen: vermutlich 2-3
Larvalökologie: an Graswurzeln, gern an Sauergräsern, die Futterquelle wäre also
reichlich vorhanden; dennoch ist diese Art in der unteren Hochebene Südbayerns
eine recht lokale Erscheinung.
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Tholera cespitis (1 Individuum)
Distanzen: vermutlich 2-3
Larvalökologie: an Gräsern, vorwiegend an den Wurzeln; dadurch spielen Flächen
wie das Flughafengebiet, das extensiv bewirtschaftet wird (Schafweide), eine be-
Seutende „ER le für diese Art, die wohl durch den Verbiß nicht besonders ge-
stört wird.
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
132
Tholera decimalis
282 Individuen 6,3 % o- Rate
183 markiert 4 Wiederfänge
Tab. 75: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Tholera decimalis, 1988 wurden nur wenige Stücke markiert.
SIEDLUNG WALD HALBTROK- "DA
1987 ' Garten ! KENRASEN Moos L
SiS SIMıSN WaSıWaM WaN HO HM HW Mb
par. - 3 227767 7,5377,667740 1 173
2 zus pr - 1 Se = - 1
dd 3 9 2 8.80 1 164
99 = 0.9 = = 1 23 4 = 10
Mark. Ne 2 3 2 6 53 66 40 1 173
Wit. au ao = = 1 1 Ai = = 4
Wiederfang-Quote: durchschnittlich; es handelt sich um 4 dc, das WaN-Stück
wurde nach 4 Tagen, die drei Flughafen-Exemplare nach je 2 Tagen wiederge-
fangen. Die mittlere Verweilzeit errechnet sich also zu relatıv niedrigen 2,5 Tagen.
Für eine Offenlandart liegen diese Wiederfang-Daten jedoch vergleichsweise hoch.
Distanzen: SS 3-4, 09 2-3
Larvalökologie: siehe Bemerkungen zu, voriger Art; auch die Raupen dieser Art
bevorzugen eher trockene Wiesen, sie wurde beispielsweise 700 m vom Garten
entfernt in einer Wegwarten-Gesellschaft (denken intybi) gefunden. Unter
Umständen ist ‚T. decimalis im eigentlichen Ortsbereich nicht bodenständig.
Populationsbiologie: die schwerfällig wirkenden und fliegenden 99 sind vermutlich
ortstreuer als die dd; dieses verminderte Flugvermögen kann auch für die ge-
ringe o-Rate in der Lichtialle verantwortlich sein.
Die Tatsache, daß im Ort noch nie ein 99 gefunden wurde, mag als weiterer
Hinweis darauf gewertet werden, daß es sich bei den Siedlungs-Stücken nur um
zufliegende cd handelt. n
en intermediärer Typ (nach SPITZER et al., 1984 nahe einer
K-Strategie), 3. Gru Bei die starke Vermehrung 1986 im Flughafengebiet (eine
Fangnacht mit über 180 Exemplaren an HM) war von einem ebenfalls starken
Flug im Garten begleitet, was wohl zumindest teilweise auf abwandernde Indivi-
duen zurückzuführen ist.
Panolis flammea
85 Individuen 16,7 % o- Rate
83 markiert kein Wiederfang
Wiederfang-Quote: sehr niedrig
Distanzen: 4
Larvalökologie: an Nadelhölzer gebunden (v.a. Kiefer), die HM-Stücke sind daher
mit Sicherheit mindestens 1 km von den Flughafenrändern her zugeflogen. Diese
Distanz scheint für P. flammea keinerlei Verbreitungshemmnis darzustellen, sie
wird zwar nicht Tepe ann bisweilen jedoch in größeren Anzahlen und auch von
fertilen 09 (1987 I 9, 1986 war keine Geschlechtsbestimmung durchgeführt wor-
den) geflogen! Die festgestellte Expansion 1986 fällt mit einer besonders guten
Bestandsentwicklung vieler Kiefernarten in diesem Jahr zusammen.
Auch bei kleineren Fallendistanzen (Wasserwerk) sind im 100 m-Bereich keine
Häufigkeitsgradienten festzustellen. .
Derbreisunganiralegie. r-Stratege, 3. Gruppe; im Gegensatz dazu steht die Beobach-
tung SCHWERDTFEGERS (1978) einer relativ langsamen Wiederbesiedlung eines
künstlich "entleerten" Waldabschnitts.
Orthosia cruda
175 Individuen 33,1 % 9 - Rate
173 markiert 2 Wiederfänge
Tab. 76: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Orthosia cruda.
SIEDLUNG WALD HALBTROK- "DA =
KENRASEN Moos 2 KENRASEN Mass
WALD
198 Garten Wasserwerk
1987 ! Garten !
SiS SIMıSIN WaSıWaM WN HO HM HW Mb SIN WaS WeN WNw WNo HO HM HW Au We
Zpa. - 8 14 ER I ee I) = 78 I par. 10 1 Ss er], 2 26
DEzus un A ee REN WE - 5 5 - SE
ds a am BIN Mei ES; Ba - 53 ES re Sa TE ee.
99 2.808 SIRURSMR DM ABIT NE GIER - son. ar Re
Mark - 8 14 30 2 weg 000g - N REN LE REN En
#. = 0. © Se => © c = 1 BR
133
Wiederfang: Oiyote: niedrig! Nur im ern: etwas höher, 1987 wurde ein 9
nach 2 Tagen, 1988 ebenfalls ein 9 nach 9 (!) Tagen wiedergefangen. Die lan-
e Verweildauer sowie die deutliche Überrepräsentierung im iederfangergebnis
Tasten erkennen, daß die o9 im Vergleich zu den d’d etwas ortstreuer sind.
Distanzen: oo 2 (-3?), dd 3-4 ei i
Larvalökologie: an verschiedenen Laubbäumen, die nach HM zugeflogenen Stücke
Yan fertile 99!) stammen mindestens aus dem 150-300 m entfernten Ruderal,
teilweise wohl auch von den Flughafenrändern () I km).
Populationsbiologie: proterandrisch
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Orthosia populi
37 Individuen 14,3 % o- Rate
34 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein; im Moos wurden am Stand-
ort We 1988 31 Individuen markiert, die fehlenden Rückfänge erklären sich durch
den im Frühling an diesem Ort nur wöchentlich betriebenen Lichtfang. Hier könnte
die Art dennoch relativ ortsfest sein.
Distanzen: 2-3 #
Larvalökologie: an Espe und Schwarzpappel, die nächstgelegenen Futterpflanzen
liegen von HM ca. 1 km, vom Garten ca. 500 m entfernt. Diese Distanzen liegen
nicht im normalen Bereich der Dispersionsaktivität von O. populi (siehe Häufig-
keitsdifferenz zu "We”), werden jedoch ohne größere An, me bewältigt. Im Ort
1988 auch ein fertiles 9! Die Distanz von 2 km (We>Au), ausgehend vom Ver-
breitungszentrum konnte 1988 offensichtlich nicht zurückgelegt werden.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Orthosia gracilis
31 Individuen 60,0 % 9 - Rate
30 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein.
Distanzen: 2-3
Larvalökologie: Durch die Raupenfutterpflanzen eher an feuchte ls gebun-
den, nimmt jedoch auch Schafgarbe (Achillea millefolium) und Beifuß (Artemisia
spec.).
Verbreitungsstrategie: intermediärer Typ, 4. Gruppe
Orthosia stabilis
192 Individuen 30,5, % .9;> Rate
187 markiert 4 Wiederfänge
Tab. 77: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Orthosia stabiılis.
SIEDLUNG WALD HALBIROK- DACH _— HALBTROK- "DA
G Dass 5 ENRASEN MOOSE
WALD
1987 „Garten | 1988 Garten Wasserwerk
SIS SIM!SIN WaS!WaMWaN HO HM HW Mb SiN WaS WaN WNw WNo HO HM HW Au We
Zpa. 3 7 322 10113 SIGRSINE- 3 BAER > par A15u12 air, 2 5 ee!
2 An "aaa ELLE. Pur, E Yansz 10: | Van re Fer ea es
ds 1 4 20 a = 54 09 Eiuhi- en EI U 018 En:
99 ai Be u, 3 36
Mk: 4. 2 231 6 7 2
Mark, 37 3 Be We 3 89 we r r SEA Mn 7 62.5
f. ee eh Kalle = 1
VWiederinugrtiunte: durchschnittlich, die mittlere Verweildauer betrug 3,0 Tage; aus
es Rahmen fällt das 9 im Wasserwerk mit einem Rückfang-Intervall von 5
agen.
‚Die 09 sind im Wiederfangergebnis mit 50 % vertreten.
Distanzen: 3-4; die Häufigkeitsdifferenz WaN/WNw spricht dennoch für Hemmnis-
se in der Beweglichkeit dieser Art.
Larvalökologie: unter den von KOCH (1984) aufgezählten Futterpflanzen befindet
sich keine, die am HM-Ruderal vorkäme. Die mit hoher Konstanz zufliegenden
Stücke (auch 99) hatten also mindestens 800-1000 m vom Flughafenrand her zu-
rückgelegt. Das Ruderal wird offensichtlich nur zur Nektaraufnahme der Imagines
aufgesucht. \
Populationsbiologie: proterandrisch
Verbreitungsstrategie: r-Stratege, 2. Gruppe
134
x
Orthosia incerta
269 Individuen 25,1 % o- Rate
265 markiert 8 Wiederfänge
Tab. 78: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Orthosia incerta.
SEDLUNG WALD HALBTROK- "DA WALD HALBTROK- "DA
1987ER NGaztene! KENRASEN MOOS" 2 1988 Garten Wasserwerk KENRASEN Moosr 2%
SiS SIMı SN WaSıWaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We
Z par. 4 29 48 8 6 22 15 8 10 4 153 X par. 5 5 2 1 ORE22 16 1 5 1 15 107
a Re nn an Sa ee mache U & Yale age 1 10% re
[o1°7 4 20 41 12 a 11 6 7 3 122 99 1 = 6 4 8 3 & 2 E 4 28
9 r RU 2 © % a2 > S ! = Mark. 5 5 27 10 21 16 1 5 1 13 104
Mark. 4 29 48 14 5 24 15 8 10 4 161 Wi. = = 3 = 1 z & pi = = a
Wit. See Frag - 0-0 = - 4
DE naz note relativ hoch (vor allem im Wasserwerk), bei einer recht langen
mittleren Verweildauer von 4,25 Tagen! oo-Rate im Wiege fans erschuts USERS:
Beide o-Rückfänge en schon nach einem 2-Tage-Intervall.
Im Wasserwerk 1988 (verringerte Fallendistanzen) betrug die Wiederfang-Quote
sogar 7 % bei einer mittleren Verweildauer von 4 Tagen.
Gemessen am Wiederfangergebnis handelt es sich hier um die ortstreueste der im
‚Gebiet beobachteten Orthosien. __ _ f
Distanzen: 2-3; der deutliche Häufigkeitsgradient WNw>WaN spricht auch für
Barrieren gegen die freie Beweglichkeit dieser Art. '
Larvalökologie: im Vergleich zu den anderen Orthosien relativ Bolyph g, die HM-
Stücke stammen aber wohl zumindest aus dem Ruderal (200- 0 m Diese Di-
stanz scheint auch von 99 ohne Probleme bewältigt zu werden.
Populationsbiologie:, proterandrisch
Verbreitungsstrategie: intermediärer Typ, 4. Gruppe
Orthosia munda
26 Individuen 23,1 % o- Rate
26 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: 2-3
Larvelbkalosis: das 1987 an HM festgestellte J stammte mindestens aus dem Ru-
deral (150-300 m entfernt).
Populationsbiologie: proterandrisch
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Orthosia gothica
siehe verringerte Fallendistanzen (8.3.)
835 Individuen 32,3 % o- Rate
814 markiert 15 Wiederfänge
Tab. 79: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Orhosia gothica.
SIEDLUNG WALD HALBTROK- "DA WALD HALBTROK- "DA
1987 ' Garten ! Moos X 1988 Garten Wasserwerk KENRASEN MOOS ®
—____ Beh) VESmTEN le) ilelmin 2 ln Sn Was TE WENMNWEWNOL HOSEN SEN SRauWe
X par. 30 25 118 37 10 121 SEE 13 421 2 par. 39 37 86 60 7 37 7 16 8 21 381
% zus Simianise 19 Seo - .- - = 32 X zus. au 1 = > - EHE = = 1
00, 200,168 181,62.00.46 5, 92,.00.5128. 4.7, 2120.u1,9.....204 5.4 11.224.130, 15,66% -36,4,47,,4-29] 0668 snas 5,116) 266
99 15 73 8 5 61 94 6 4 143 09 17 ER 300 230 Zar DE ses
Mark. 30 25 116 62° 137 131 a ei 13 445 Mark. 39 35 si 58 69 36 DEN 8 21 369
WDR = NEL Bean SE SE were ISIN ee 0
Wiederfang-Quote: standortabhängig: Im Wasserwerk hoch, sonst recht niedrig. Die
99 sind im Wiederfangergebnis mit 2/15=13,3 % etwas unterrepräsentiert; deren
nenreildauern liegen mit jeweils 2 Tagen auch unter denen der dd (durchschnitt-
ich 5,5 Tage).
135
Im Garten wurde 1988 ein J, das an SiN markiert wurde nach 4 Tagen 30 m
entfernt an WaS wiedergefunden. In diesem Intervall lagen 3 gute Flugnächte für
O. gothica. Bisweilen scheint jedoch kühle Witterung für ein verlängertes Ver-
Bleiheii im Gebiet verantwortlich zu sein.
Distanzen: 3; für die 99 ist vielleicht eine höhere Dispersionsaktivität zu veran-
schlagen.
Larvalökologie: unter den Arten der Gattung Orthosia vergleichsweise polyphag;
jedoch an HM wohl nicht bodenständig, die o9-Rate liegt hier im gleichen Be-
reich wie im Gesamtergebnis.
Populationsbiologie: deutlich proterandrisch
Verbreitungsstrategie: intermediärer Typ, 2. Gruppe; wie auch bei einigen anderen
Orthosien scheint an Standorten mit großem Nektarangebot für die Imagines (blü-
hende Weiden) die Ortstreue erhöht zu sein. An den anderen Stellen (z.B. im
Garten) werden verstärkt solche Individuen erfaßt, die sich auf "Suchflügen"”
befinden.
Die Dispersionsaktivitäten der o9 liegen offensichtlich auf etwas höherem Ni-
veau als bei den dd‘. Da es für die 99 wohl keine Schwierigkeiten bereitet, die
mehr oder weniger ubiquitär verbreiteten nen ten flanzen zur Eiablage zu
suchen, scheint es sich um Suchflüge nach Nektarquellen zu handeln, um eine
optimale Nährstoffversorgung für das Eiablagegeschehen zu gewährleisten; in den
noch etwas kühlen Nächten der Flugzeit er Art dürfte überdies auch der
Wärmeverlust eine bedeutendere Rolle spielen als bei anderen Arten.
Mythimna turca (133 Individuen)
Distanzen: 2; das HM-Stück (4) stammt vielleicht aus dem Ruderal (150-300 m
entfernt), sonst konnten bisher keine biotopfremden Tiere festgestellt werden. Der
Häufigkeitsgradient SiN> WaS (30 a
persionsaktivität der an WaS gefangenen Tiere sprechen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Mythimna conigera (71 Individuen)
Distanzen: 3
Larvalökologie: die Raupe lebt an "Gräsern und niedrigen Pflanzen”, die Art ist, im
Gebiet an trockenere Wiesen gebunden. Die 3 im Garten festgestellten Tiere (das
Stück 1987 war ein d) sind wahrscheinlich von den Verbreitungszentren (Flugha-
fen, Wasserwerk) zugeflogen, haben demnach 1-1,3 km zurückgelegt. Betrachtet
man auch das stark polarisierte Häufigkeitsverhältnis WaN/ WNw. so scheinen
Distanzen von ca. | km schon eher an der Obergrenze der normalen Dispersions-
aktivität zu liegen.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Mythimna ferrago (63 Individuen)
Distanzen: 3 (-4?) _
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Mythimna albipuncta (23 Individuen)
Distanzen: 4
Verbreitungsstrategie: r-Stratege, 1. Gruppe; auch das Haufigkeitsmuster innerhalb '
des betriebenen Fallennetzes entspricht dem der anderen typischen Wanderfal-
terarten.
Mythimna vitellina (1 Individuum)
Distanzen: 4 5
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Mythimna pudorina (5 Individuen)
Distanzen: 2-3 # R
Larvalökologie: die Raupe ist an "Schilf und nach der Überwinterung an Moorgrä-
ser" gebunden. An HM wurden 2 höchstwahrscheinlich aus dem Ruderal (150-300
m entfernt) stammende do‘ gefangen. Das HO-c flog zumindest vom mit Schilf
bestandenen Schloßkanal her zu 1200 m), die Lebensgrundlage der Garten-Exem-
lare (Jo liegt unter Umständen in der Begleitvegetation von Gartenteichen
[mindestens 200 m), das WNo-Stück en entwickelte sich direkt am
orst
angplatz an einem 1 m? großen Schi wenn es nicht vom nächsten
Standort der Futterpflanze (ca. 1 Ki) her zuflog. Der Schilfbestand befand sich -
erst seit 2 Jahren an dieser Stelle, eine Kolonisation über (mindestens) 1 km kann
also im Einzelfall recht schnell erfolgen.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
136
könnte ebenfalls für eine geringe Dis- |
Mythimna impura
siehe verringerte Fallendistanzen (8.3.)
439 Individuen 20,6 % o- Rate
424 Markiert 25 Wiederfänge
Tab. 80: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Mythimna impura.
SIEDLUNG WALD HALBTROK- In WALD HALBTROK- DAS
1987 | Garten ! KENRASEN M 2% 1988 Garten Wasserwerk KENRASEN M
SiS SIM ı SN WaSı WaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We
2 par. SEr2EEE6) U 1a 70 21 6 6 2 136 2 par. 4 1 VER37 98 19 gl 5 3
2a 2. oo 1 zog 89. & = A an —< 17 SER FEN Re =. 00,.°8 =
dd 3 2.8 5 95552 205 8 1 112 dd 3 2i ET el, Ze 18 9 8 3 3
99 Se San 30 21 mEEb ae 1 38 09 1 7.07 19:.,.,06%, Na nel po
Mark. b2=336 STRBI2E73 25 9 6 1 147 Mark. 4 28 75 35 90 19 9 10 4 3
Wif. =. = Ei Doz - 6 wi. - 004 Salem Tach San 00m
Wiederfang-Quote: sehr hoch bei langen Verweildauern, ein x (1987) sogar
erst nach 27 Tagen. Im Garten nur kurze en 1-2 Tage), hier und
vielleicht auch am Flughafen (außerhalb des Habitats) etwas mobiler. Die sind
mit 1/25= 4 % im Wiederfangergebnis deutlich unterrepräsentiert, der einzige
‚9-Wiederfang erfolgte auch WaS 1988 nach 1 Tag, also irregulär.
Distanzen: im Habitat 2, außerhalb 2-3; oo vielleicht 3
Keuslikolegie. Raupenfutterpflanze vermutlich nicht "Gräser" (KOCH, 1984) allge-
mein, sondern mit starker Vorliebe feuchtigkeitsliebende Pflanzen wie Carex spec.
oder Lee Die HM-Ex. wären dann vom Ruderal her (150-300 m
gen, die HW-Stücke vom Würmkanal (ca. 100 m).
Populationsbiologie: deutlich proterandrisch.
(vgl. folgende Art), dies stellt wohl
Verbreitungsstrategie: K-Siratege, 4. Crüppe
eine Anpassung an die Bedürfnisse hinsichtlich der Futterpflanzen dar, welche ja
ewässern oder anderen
nicht gleichmäßig über das Gebiet verbreitet sind, an
feuchten Stellen jedoch über Jahre hinweg stabile Bestände bilden können. Eine
Emigration aus solchen Stellen stellt dann stets eine Gefahr dar, nicht mehr zur
Besip anzuns zu gelangen, bzw. die zur Eiablage optimalen Pflanzen nicht mehr
zu finden. -
zugeflo-
Mythimna pallens
148 Individuen
139 Markiert
Tab. 81: Fangergebnisse,
Mythimna pallens.
31,2 % o- Rate
1 Wiederfang
Geschlechterverteilung und Markierungsergebnisse von
SIEDLUNG WALD HALBTROK- "DA WALD HALBTROK- "DACH.
1987 ' Garten ! KENRASEN MOOS 9 NRASE OOS
SiS SIMıSN WaS,WaM WaN HO HM HW Mb 2 Ei u es = HM ı a We
»z 5 1 3 2 1 1 8 3
a ee nen
[0107 1 1 2 1 1 9 3 6 7 1 32 [oj 07 3 5 8 8 11 7 7, - 1
99 oo 9 °8 = - 3 = — 2 1 fe) 99 - 1 3 3 9 3 See12: = -
Mark. 1 4 [2 1 1 12 <) 6 9 2 41 Mark. 3 6 11 11 20 10 8 28 - 1
Wi. NE Auer, Spaniel = EA WÄE Rt RR TEREIEU SERIEN. >
Wiederfang-Quote: sehr niedrig! Der Wiederfang WaS (c) fand nach 1 Tag statt,
das Tier war also von der direkten Lichtwirkung gefangengehalten worden.
Distanzen: 3-4
Larvalökologie: im Gegensatz zur vorhergehenden Art werden Pflanzen der Familie
Poaceae bevorzugt.
Populationsbiologie: bivoltine Art (M. impura scheint dagegen im Gebiet nur univol-
in zu sein).
Merbreitungsstrategie: r-Stratege, 2. Gruppe; völlig anders als bei der habituell
eigentlich sehr ähnlichen M. impura zeigt die Verbreitung von M. pallene im Ge-
biet ein den Wanderfaltern ähnliches Muster. Die Verbreitungsstraiegie ist korre-
liert mit der ubiquitären Verbreitung der Raupenfutterpflanzen: Die Art kann es
sich "leisten”, den Ort zu wechseln.
Mythimna I-album
Distanzen: 4 B
Verbreitungsstrategie: r-Stratege, 1. Gruppe
137
2
265
17
228
so
277
19
%
102
4
65
34
98
1
Leucania comma
97 Individuen 4,2 % 9- Rate
95 Markiert 3 Wiederfänge
Tab. 82: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Leucania comma.
SIEDLUNG WALD HALBTROK- "DA! WALD HALBTROK- "DA |
1987 ! Garten ! KENRASEN Moos‘ 2 1988 Garten Wasserwerk KENRASEN MOOS 2
SiS SIMıSN WaS;ıWaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We |
3.par.fı 9= 7a - - - 23! 7112 - 36 Zpar. - - - - 1 1: "AB - - 69
& m Me-r EHER ABiHEE nn, DESMetEsta TE 5 € ZHBRE ZA N ENORM. I IF, 22000 Oo |
N N EN NEE: ER, EN PT A a TE ERLES {
9 "ErLan) MaamanT vrniihkt en Serra =0r (, tetler wech Co rs
Mark ee en a 20 Ta TE er TE Mi er re 3
W.f. = = z = = = = = = =
Wiederfang-Quote: relativ hoch, allerdings bei einer kurzen mittleren Verweildauer
von 2 Tagen; es handelt sich um 3 dd. RER $
Distanzen: ?; als Ausnahme kann auch einmal ein Kilometer bewältigt werden, wie
das zugeflogene d im Garten 1983 sowie die dc‘ im Wasserwerk zeigen. Die
letztgenannten Exemplare sind entweder über die Trittsteine im 100-300 m-Ab-
stand zugeflogen oder weisen auf eine sehr kleine Polulation hin, die eine solche
Trittsteinbesiedlung ausgehend von den im Osten liegenden Halbtrockenrasengebie-
ten geschafft hat. } J . . ü
Schon in der 30 m-Ausbuchtung des Habitats an HO zeigt sich ein drastischer
Häufigkeitsabfall, was für niedrige Dispersionsaktivitäten spricht. 4
Populationsbiologie: die Tatsache, daß an HW kein 9 festgestellt wurde, könnte
ahingehend interpretiert werden, daß bei einer höheren Dispersionsaktivität der
dd sogar hier schon, am Rand des Halbtrockenrasengebietes ein höherer Pro-
zentsatz von "eingewanderten Tieren” vorliegt.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
AMPHIPYRINAE
Amphipyra pyramidea
110 Individuen 37,5 % o9- Rate
79 Markiert kein Wiederfang
Wiederfang-Quote: ed auch bei täglichem Fang WaS 1988 von 13 markierten
Exemplaren keines wiedergefangen n.
Distanzen: 4, über biotopfremdes Gebiet nur 2; denkbar wäre auch, daß über bio-
topfremdem Gebiet zwar Dispersion Migration) stattfindet, das Licht jedoch nicht
angeflogen wird. 5 3
Larvalökologie: die Raupe lebt an verschiedenen Laubgehölzen.
Populationsbiologie: proterandrisch
Verbreitungsstrategie: r-Stratege, 3. Gruppe; die Art wird bisweilen als wander-
verdächtig aufgeführt. Im Untersuchungsgebiet entsprach das Häufigkeitsmuster im
Lichtfallennetz weitgehend dem der typischen Wanderfalterarten. Das Auftreten
war, vor allem an HW, oft mit den Wanderfalternächten korreliert.
Amphipyra berbera
Distanzen: 4, vermutlich wie A. pyramidea
Larvalökologie: siehe Bemerkungen zur vorigen Art
Verbreitungsstrategie: r-Stratege, 5. Gruppe; Verhältnisse vermutlich wie bei A.
pyramidea
Amphipyra tragopoginis
190 Individuen 20,0 % 9- Rate
139 Markiert 5 Wiederfänge
Tab. 83: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Amphipyra tragopoginis.
_ MHaurstdad vater bl Sehr Vagina Malen pen 2 Seien nn wald = Wr E ı
HAL - WALD HALBTROK- "DA
1987 ern a KERRASEN DE >= 198 Garten Wasserwerk NRASEN Hass }
SiS SiM | SIN WaS | WaM WaN HO HM HW Mb SN WaS WaN WNw WNo 2 HO HM HW Au We
Z par. ar sBr N! 7 2 9 5 Bigan - 115 I par. 1 8 10 3 3 8 4 22 1 = 6
Z zus. I | 3 - - - - - - 8 % zus. - 7 - & e = = e ® =
dd 7403 6 - 4 4 3 4 - 72 [0102 = 13 7 2 2 4 2.5 10 - - 4
99 zur pe ae a ER ERENTO EIERN TER RZSR SAUERSNESEn EEE ES |
Mark. 47 4 10 - 6 5 6 52 = 94 Mark. = 13 7 2 2 5 211 - — 4
W.f. are - - - - - - - - W.f. — 4 E = - = = 1 = =
138
Wiedertf te: durchschnittlich, drei der WaS-Wiederfänge 1988 erfolgten nach
1 Tag (dc) und sind somit nicht als Hinweis auf Ortstreue zu werten. Auch die
iv: n Verweildauern liegen au we niedrigem Niveau: Ein d nach 3 Tagen
Was) und ein 9 nach 2 Tagen (HW).
Distanzen: 3-4
Larvalökologie: durch die Raupenfutterpflanzen mehr ans Offenland gebunden als die
vorigen Arten. 4
Populationsbiologie: deutlich proterandrisch N
Verbreitungsstrategie: r-Stratege, 3. Gruppe; das Häufigkeitsmuster innerhalb des
Lichtfallennetzes entspricht auch hier den typischen Wanderfaltern, das Auftre-
ten ist oft mit den Wanderfalternächten korreliert, und es waren, vor allem an
HW z.T. starke Nacht-zu-Nacht-Fluktuationen festzustellen, was vielleicht als
Hinweis auf erhöhte Dispersionsaktivitäten gelten mag.
Rusina ferruginea
siehe Fernwiederfänge (8.2.), verringerte Fallendistanzen (8.3.) und Versetzexperiment (8.4.)
559 Individuen 23,3 % 9 - Rate
493 Markiert 21 Wiederfänge
Tab. 84: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Rusina ferruginea.
SIEDLUNG WALD HALBTROK- m WALD HALBTROK- ms
1987 _ ! Garten ! KENRASEN M 2 1988 Garten Wasserwerk KENRASEN M: 0%
SiS SIMıSN WaSıWaM WN HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
Döpar 1a 1) 07 eo a 52 183 per 11, 723), 131, 68, 43) Wesscmenn oyhanaa 233
zus Zeug 207 0-2 7320726: Ku 6 = BI E22 zus, 1-2 7146 - = - ERS EH- - > 46
de 2: 5 20m eine raoltiı: Ehe 25321 Elicsrltce 8 1 BONN 2 EEE 39 LTE alas. 228
99 23 ao 26 1 834099 au 10 Inmitn 4. war 1 .ns6
Markggs13: 211823341167 Krasisi, 1b 10,7 34,.07229,,..Marki 1.917..69,,025 .65,64104438,m, 6 056400) 14 264
wi. Sinne: et a = 1 2 WR. ok ST RE TREE T Se 19
Wiederfang-Quote: relativ niedrig, vor allem im Ort (1988). Hier liegen auch die
Verweildauern auf dem niedrigst möglichen Niveau (1,0 Tage). Ein im Moos 1987
nach 8 Tagen wiedergefangenes JS weist vielleicht auf größere Ortstreue in den
Moorbirkenwäldchen hin; der Fang erfolgte dort zur Flugzeit nur wöchentlich,
sonst wäre dort die Wiederfang-Quote wohl höher ausgefallen.
Die 99 sind im Wiederfangergebnis etwas unterrepräsentiert: 1/21= 4,8 %. Es
handelte sich um einen "Ortswechsler" WaS>SiN (30 m) in 3 Tagen.
Distanzen: 3-4 _ ?
Populationsbiologie: proterandrisch
Verbreitungsstrategie: r-Stratege, 2. Gruppe; es scheinen dennoch Barrieren gegen
die freie Mobilität dieser Art zu existieren: Das polarisierte Häufigkeitsverhältnis
SiN/WanN zeigt beispielsweise, daß R. ferruginea den Schutz von Gebüschen und
Bäumen bevorzust, iotoptreue bedeutet daher nicht zwangsweise Ortstreue!
Hohe Nacht-zu-Nacht-Fluktuationen deuten auch auf hohe Dispersionsaktivitäten
in.
Talpophila matura
21 Individuen 13,3 % 9 - Rate
15 Markiert 1 Wiederfang
Wiederfang- te: hoch, bei einer allerdings kurzen Verweilzeit von 2 Tagen (ein
cd am Standort HW); Stichprobe noch zu klein h
Distanzen: 2; bisher nur an und HW festgestellt, die Distanz zu den nächstge-
legenen anderen Fundorten (1 km) liegt offensichtlich nicht im normalen Bereich
der Dispersionsaktivität. arten
Verbrei strategie: K-Stratege, 6. Gruppe; nach KOCH (1984) treten bei dieser
Art starke Häufigkeitsschwankungen auf, was eigentlich ein Kennzeichen von r-
Strategen ist. Es ist durchaus denkbar, daß diese Art in anderen Gebieten unter
vielleicht anderen Bedingungen auch eine andere Strategie verfolgt.
Euplexia lucipara (41 Individuen)
Distanzen: 2-3
Larvalökologie: das HM-Stück 1986 (cd) stammt al von den Raupenfutterpflan-
zen her beurteilt, vom Ruderal (150-300 m entfernt). Die Distanz Wald> Flugha-
fen-Mitte (1 Em) wird offensichtlich nicht regelmäßig zurückgelegt. Einen weite-
ren Hinweis in dieser Richtung stellt wohl der starke Häufigkeitsgradient zwi-
schen WaN und WNo auf einer Strecke von nur 50 m dar.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
139
Phlogophora meticulosa (15 Individuen)
Distanzen: 4 > alt
Populationsbiologie: bivoltin
Verbrei sstrategie: r-Stratege, 1. Gruppe; die Häufigkeitsschwankungen, die an
einen Schwarm erinnernden 12 Moos-Exemplare in einer Nacht, sowie das den
anderen typischen Wanderfaltern entsprechende Häufigkeitsmuster innerhalb des
Eangnetzes sind weitere Hinweise auf eine Charakteristik dieser Art als hoch-
mobil.
Ipimorpha retusa (18 Individuen)
Distanzen: 2-3
Larvalökologie: oligophag an Weiden, Pappeln und Erle. Im Flughafen-Ruderal be-
findet sich offensichtlich eine relativ stabile Population mit eide als Lebens-
ee die 150-300 m zum Fangplatz HM werden ohne größere Probleme
ewältigt (3d4). .
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Ipimorpha subtusa (1 Individuum)
Distanzen: 1-2
Larvalökologie: die Raupen sind auf Arten der Gattung Populus spezialisiert. Bisher
konnten keine biotopfremden Tiere nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe; im Zusammenhang mit der stärkeren
Futterpflanzenspeziaisierung im Vergleich zu /. retusa scheint diese Art auch eine
etwas andere Strategie zu verfolgen.
Enargia paleacea
Distanzen: vermutlich 2-3
Larvalökologie: oligophag an Birke, Pappelarten und Erle
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Enargia ipsilon (3 Individuen)
Distanzen: vermutlich 2-3
Larvalökologie: die Raupe lebt an Benpelarien und an Bruchweide (Salix fragilis).
Bisher konnten keine biotopfremden Tiere festgestellt werden.
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Cosmia affinis |
Distanzen: 2: der sehr lokalen Verbreitung in Südbayern entspricht das lokale
Vorkommen im Untersuchungsgebiet: Die Art konnte bisher nur im Korbinianiholz
nachgewiesen werden, die Gebiete außerhalb davon liegen wohl auch nicht im
Bereich der normalen Dispersionsaktivität.
Larvalökologie: auf Ulmenarten spezialisiert
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Cosmia trapezina
245 Individuen 24,3 % o- Rate
177 Markiert 7 Wiederfänge
Tab. 85: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Cosmia trapezina.
WALD
SEDLUNG WALD‘ HALBTROK- "DA
KENRASEN MOO x 1988 ‚Garten Wasserwerk
1987 ' Garten ! EENRASEN Moos J
SIS SIM SIN WaS WaM WaN HO HM HW N WaS WaN WNw WNo 2 HO HM HW Au We
2 par. < - 1 30 0) 5 17 - 2 21 84 X par. 6 40 6 6 1 18 - 6 6 ih
X zus. - - 6 5 - - 1 - - 3 14 X zus. - 40 - - - - - - - -
dd 2 - 4 26 2 3 8 - 1 Ai 63 dd 4 47 6 4 10 - 3 1 4
99 1 - 1 4 2 1 8 - - 8 25 99 = 8 - - 2 4 - 2 - 3
Mark. 2 - 6 30 4 4 15 - 1 14 75 Mark. 4 54 65 4 8 14 - 5 1 7
Wi. je E27 Sie ES = 1 wi - 6 808 N -
Wieder Rogue: sehr niedrig! Sämtliche Wiederfänge erfolgten nach Intervallen
von nur 1 Tag und sind somit keine Hinweise auf Ortstreue. Das 1987 im Garten
rückgefangene Tier war ein "Ortswechsler" WaS>SiN (1 Tag). Auch die Wie-
derfang-Quote von 11 % bei täglichem Fang und die Tatsache, daß kein Zweit-
AESET ang stattfand, zeugen von einem schnellen Verschwinden aus der näheren
‚Umgebung.
Dose, Habitat 3 (-4?), außerhalb 1-2
140
reinen Offenland (HM) bisher noch kein Exemplar festgestellt.
Populationsbiologie: deutlich proterandrisch
Verbreitungsstrategie: r-Straiege, 5. Gruppe; auch hier zeigt sich, daß Biotoptreue
und Ortstreue nicht gekoppelt sein müssen.
Larvalökologie: die a lebt polyphag an Laubbäumen, dementsprechend wurde im
Cosmia pyralina (37 Individuen)
Distanzen: Verhältnisse wahrscheinlich wie bei der vorigen Art
Larvalökologie: polyphag an Laubbäumen, auch hier konnte an HM bisher kein
Exemplar festgestellt werden.
VerbreHungsstzatesie: r-Stratege, 5. Gruppe
Auchmis comma (4 Individuen)
Distanzen: 2-3
Larvalökologie: monophag an Berberitze (Berberis Mugeunı); für die Exemplare, die
im Siedlungsgebiet nachgewiesen wurden, dienten die desöfteren in Gärten an-
genlenzten erberitzen als Lebensgrundlage. Es existiert zusammen mit den im
ereich der Kiefern-Eichen-Wälder eingestreuten Büschen ein Futterpflanzennetz
mit Abständen von ca. 100 m.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Actinotia polyodon (4 Individuen)
Distanzen: vermutlich 3
Larvalökologie: die Raupe, lebt an Johanniskraut (Hypericum) und Tragant (Astra-
zaluıs). Das HM-Stück (C) ist also mindestens vom Ruderal her (150-300 m) zu-
geflogen.
Pepulationsbiolegie bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Actinotia hyperici (1 Individuum)
Distanzen: vermutlich 2-3
Larvalökologie: monophag an Hypericum perforatum
Popuiationsbiologie: bivoltin
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe; die sehr lokale
erbreitung in Südbayern und das Auffinden dieser Art nur im typischen Biotop
trockene heiße Stellen) lassen an geringe Dispersionsaktivitäten dieser Art unter
en gegebenen Bedingungen im Untersuchungsgebiet denken. Dies dient dazu, nicht
zufällig in ungeeignete Biotope zu gelangen und somit die Fortpflanzungswahr-
scheinlichkeit drastisch herabzusetzen. Die Gefahr eines solchen Ereignisses ist
bei relativ stenöken Bewohnern seltener Biotoptypen am größten.
An anderen Stellen, vor allem südlich der Alpen, wo geeignete Habitate in wei-
taus größerer Anzahl zur Verfügung stehen wird die Strategie dementsprechend
angepaßt sein.
Apamea monoglypha
70 Individuen 17,6 % 9- Rate
68 Markiert 2 Wiederfänge
Wiederfang-Quote: sehr niedrig! Beide Wiederfänge (47) erfolgten 1988 im Garten
WaS) nach I Tag, sind also auf ein Festhalten durch die direkte Lichtwirkung bei
täglichem Fang zurückzuführen. Es sind auch die vergleichsweise niedrige ie-
derfang-Quote von 9,5 % und die fehlenden Zweitwiederfänge an diesem Standort
‚bemerkenswert.
Distanzen: 4 _
Populationsbiologie: proterandrisch , $
Verbreitungsstrategie: r-Stratege, 1. Gruppe; es handelt sich hier allerdings _ nicht
um einen "klassıschen” Vertreter aus der Gruppe der Wanderfalter, eine Korre-
un ga Auftretens mit den sogenannten anderfalternächten war jedoch zu
eobachten.
Apamea lithoxylea (1 Individuum)
Distanzen: vermutlich 3
Verbreitungsstrategie: vermutlich r-Stratege, 3. Gruppe
141
Apamea sublustris
52 Individuen 10,2 % 9 - Rate
47 Markiert 2 Wiederfänge
Wiederfang te: standortabhängig: am Flughafen niedrig, im Wasserwerk relativ
hoch, die Einzel-Stichproben sind noch zu klein.
Ein Ortswiederfang im Garten 1988 (cd) nach I Tag erklärt sich durch ein Fest-
ehalten-Werden am Licht bei täglichem Fang. Interessanter ist dagegen ein cd‘,
as im Wasserwerk nach 5 Tagen wiedergefunden wurde; es war von w nach
WaN (100 m) geflogen. Im Wasserwerk wurden 1988 insgesamt nur 3 Individuen
markiert! Hier könnte eine erhöhte Ortsfestigkeit vorliegen, die ihren Ursprung in
‚der relativ isolierten Lage des Biotops hat.
Distanzen: 2-3; die im Garten vereinzelt nachzuweisenden Stücke sind wohl zuge-
flogen, die 1988 festgestellte größere Anzahl dagegen könnte auf eine erfolgrei-
che "Brut" zurückzuführen sein, zumal am Licht auch sehr frische Exemplare
auftauchten.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Apamea crenata (17 Individuen)
Distanzen: 3 5
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Apamea characterea (13 Individuen)
Distanzen: 2-3 L
Larvalökologie: die Raupen dieser Art sind nach KOCH (1984) mehr auf Waldgrä-
sern und unter anderem auch auf Schilf zu finden. Die beiden HM-Stücke (do)
stammen daher vielleicht aus dem Ruderal (150-300 m).
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Apamea lateritia (1 Individuum)
Distanzen: vermutlich 4
Verbreitungsstrategie: vermutlich r-Stratege, 3. Gruppe
Apamea remissa (38 Individuen)
Distanzen: 3; die in der ediunn festgestellten 3 Stücke sind wohl von den Ver-
breitungszentren (Flughafen, Wa
zugeflogen, also ca. | km weit.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Apamea unanimis (7 Individuen)
Distanzen: 2-3
Larvalökologie: oligophag an Glanzgras (Phajaris arundinacea) und selten an Schilf
Phragmites "austra ae: Das HM-Stück (4) stammt daher zumindest aus dem
uderal (150-300 ‚ das S am Standort HO vom Schloßkanal, der Falter an HW
vom Würmkanal (ie
die im Garten beobachtet wurden, vom Ort ihrer Entwicklung aus mindestens 200 m
zurückgelegt haben.
Das 1989 im Wasserwerk (WaN) beobachtete d zeugt von einer Flugdistanz (Ko- '
lonisation?) von mindestens 700 m.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Apamea anceps
siehe verringerte Fallendistanzen (8.3.)
244 Individuen 19,3 % 9- Rate
154 Markiert 5 Wiederfänge
sserwerk und ähnliche Trockengrasbiotope) her |
e ca. 200 m), und schließlich mußten auch die 5 Exemplare,
|
Tab. 86: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Apamea anceps; die Art wurde 1987 nicht markıert.
W HALBTROK- "DA
n KENRASEN MOOS ?:
1988 Garten Wasserwerk
SN WaS
eN WNw WNo HO M HW Au We
X par. - 2 72 9037 2 37 1 - 165
dd 2 2 53 er: 1 4 33 1 - 130
99 - - 16 2 7 1 1 4 - - 31
Mark. - 2 66 9 36 2 5 34 1 - 154
W.f. - 1 2 - - - - 2 - - 5
142
Wiederfang-Quote: durchschnittlich, lediglich das Wiederfang-Ergebnis am Standort
HW ist als überdurchschnittlich zu bewerten. Es handelt sich dort um zwei dd,
die nach gereil 4 Tagen rückgefangen wurden. Im Garten (WaS), wo A. anceps
vermutlich nur als Gast auftritt, wurde ein d durch die Lichtwirkung einen Te
lang festgehalten.
Distanzen: 3_ _ ;
Populationsbiologie: proterandrisch
Verbrei stralegie. r-Stratege, 3. Gruppe; das Häufigkeitsmuster im Fangnetz des
Untersuchungsgebietes ähnelt dem der typischen Wanderfalter.
Apamea sordens (84 Individuen)
Distanzen: 3
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Apamea scolopacina {35 Individuen)
Distanzen: 2-3 2 :
Larvalökologie: die Raupe lebt an einer Reihe von Gräsern, die bevorzugt in Wäl-
dern wachsen. Davon leitet sich auch die Ökologische Charakteristik der Imagi-
nes ab. Dementsprechend konnte im reinen Offenland HM) die Art nicht nach-
gewiesen werden, die Distanz von 1 km über biotopfremdes Gebiet scheint nicht
ım Bereich der normalen Dispersionsaktivität zu liegen.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe; im Verlauf dieses Jahrhun-
derts hat offensichtlich eine Besiedlung des südbayerischen Faunengebiets stattge-
funden. Hierbei mußten mindestens 2 km pro Jahr zurückgelegt worden sein,
denkbar wäre jedoch auch ein einmaliger größerer Vorstoß.
Apamea ophiogramma (5 Individuen)
Distanzen: 2-3
Larvalökologie: olig phag an einer Reihe von hygrophilen Pflanzen, v.a. an Schilf.
Das WNw-Stück e mußte ca. 100 m von der en Di her
gelogen sein, interessant ist jedoch vor allem die (wahrscheinlich) erfolgreiche
olonisation des Wasserwerkgeländes schon 2-3 Jahre nach dem ersten Auftau-
chen der Raupenfutterpflanzen über 1 km biotopfremdes Gebiet hinweg.
In der Siedlung bildet die Begleitvegetation der Gartenteiche die Lebensgrundla-
e, die beiden HO-cd' zeigen, daß auch 200 m Distanz durch Waldgebiet hin-
durch ee Seren OÖ) bewältigt werden. Das HW-Stück stammt vom
Würmkanal (ca. 100-150 m
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Oligia strigilis (206 Individuen)
Distanzen: 3
Eeaökologie an Gräsern, aber wie alle Oligien im Moos und im Waldinneren
seltener. Der Einflug über Distanzen von 1-3 km scheint hier relativ ineffizient
zu sein. F
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Oligia versicolor (55 Individuen)
Distanzen: 2-3
Larvalökologie: im Vergleich zu den beiden anderen Oligia-Arten ist O. versicolor
noch am ehesten in der Lage, feuchte und stark bewaldete Biotope zu besie-
deln.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Oligia latruncula
497 Individuen 45,5 % o- Rate
31 Markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe jedoch noch zu klein; die 3l Markierungen
‚erfolgten alle 1988 im Wasserwerk.
Distanzen: 3- . h
Lee sone die Raupe lebt an Gräsern und findet wohl überall eine Lebens-
grundlage. ER i 2
Verbreitungsstrategie: r-Stratege, 3. Gruppe; dies ist ein Beispiel dafür, daß sich
durchaus auch kleine Arten eine r-Strategie zueigen gemacht haben.
143
Miana furuncula (64 Individuen) |
Distanzen: 3; der drastische Häufigkeitsabfall von WaN nach WNw auf einer Strek-
ke von 100 m weist auf Barrieren gegen eine freie Beweglichkeit bei dieser Art
hin. Ein solches Hindernis stellen bei M. furuncula anscheinend feuchte Waldge-
biete bzw. -ränder dar. " 1 4 rs |
Larvalökologie: an verschiedenen Gräsern, die Art scheint lediglich in den etwas
feuchteren Wäldern keine Lebensgrundlage zu finden. |
Verbreitungsstrategie: intermediärer Typ, >. Gruppe |
Mesapamea secalis
63 Individuen 28,3 % 9 - Rate
Distanzen: 4
Larvalökologie: die Raupen dieser und der folgenden Art leben an Gräsern, vor
allem an Getreide; so finden die Mesapamea-Arten so gut wie überall eine Le-
bensgrundlage, lediglich das Waldinnere, insbesondere von feuchteren Wäldern
scheint die Art tendenziell zu meiden.
Populationsbiologie: stark proterandrisch; dies ermöglicht der Art, zumindest in
manchen Jahren eine relativ gute Trennung des Fortpflanzungsgeschehens mit dem
der folgenden Art:
n F
; Er Es ist gut ersichtlich, daß Anfang
M. secalis Im: August 1988 für die secalis-Id
E 3 das Flugmaximum mit dem Zeit-
ai E punkt zusammenfiel, an dem ver-
10 = 2 stärkt 99 emergierten. Für die
£ . Gewährleistung einer möglichst ı
reibungslosen Befruchtung ist es
von Vorteil, wenn schon alle dd
FE vorhanden sind und sozusagen nur
x darauf warten, ein befruchtungsfä-
9 . 5 higes o zu finden.
4
Abb. 44: Anflugdiagramm für Mesapamea secalis 1988.
n Dieser Zeitpunkt lag, wie aus dem
zweiten Flugdiagramm zu entneh-
M. secalella men ist, = esapamea secalel-
12 te la 1988 1-2 Dekaden früher,
nämlich Mitte bis Ende Juli.
10
[07 3
4
4 £ 2, ER
m “€
MER # ze u —
EsivW AT MT ET AG ME E8
Abb. 45: Anflugdiagramm für Mesapamea secalella 1988.
Verbreitungsstrategie: r-Stratege, 3. Gruppe; diese Art unterliegt, wie auch die
folgende, starken Häufigkeitsgeinyen nn was als Hinweis auf starke Disper-
sionsaktivitäten gewertet werden kann. Das Auftreten ist darüber hinaus in einer
besonderen Weise mit den Wanderfalternächten korreliert.
Mesapamea secalella
69 Individuen 25,0 % o- Rate
Distanzen: 4
Larvalökologie: wie M. secalis
Populationsbiologie: siehe vorhergehende Art .
Verbreitungsstrategie: r-Stratege, 3. Gruppe; siehe Hinweise zu M. secalis
144
Photedes minima (25 Individuen)
Distanzen: 1-2; außerhalb der Moorbirkenwäldchen nur in einem Exemplar an HW;
dieses d könnte von den feuchteren Stellen am Würmkanal stammen (an der
kürzesten Stelle 150 m entfernt).
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Photedes extrema (11 Individuen)
Distanzen: 2; die Distanz von 1 km, die bei einem (nicht festgestellten) Zuflug in
den Ort bewältigt werden müßte, Hiest, nicht im Bereich der normalen Disper-
sionsaktivität. Die Kolonisation des asserwerks setzt jedoch Trittsteinsprünge
von mindestens 100-300 m voraus. ;
Larvalökologie: die Raupe lebt monophag an Land-Reitgras (Calamagrostis episer
os), die beiden HM-Stücke stammen daher mit ziemlicher Sicherheit aus dem
uderal, die nächstgelegenen Standorte der Futterpflanze liegen ca. 150 m ent-
fernt.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Photedes fluxa (67 Individuen)
Distanzen: 3, e
Larvalökologie: wie die vorige Art manophag an Land-Reitgras, die Imagines sind
je ungleich weiter verbreitet. Die 6 Exemplare an HM (aus dem Ruderal,
50-300 m) sowie die vereinzelt im, Garten fliegenden Stücke, die aus min-
destens 200 m Entfernung stammen (auch o9), zeigen, daß derartige Distanzen
zur normalen Dispersionsaktivität dieser_Art gehören.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Photedes pygmina
Distanzen: 2
Verbreitungsstrategie: K-Stratege, 6. Gruppe (siehe SPITZER et al., 1984)
Luperina testacea
94 Individuen 17,4 % 9 - Rate
86 markiert 2 Wiederfänge
Wiederfang-Quote: relativ niedrig: 1988 wurde im Garten (WaS) von 13 markierten
Faltern ein d durch die Ta yunz einen Tag lang festgehalten, 1987 erfolgte
‚ein regulärer Wiederfang SiN) eines d nach 2 Tagen.
Distanzen: 3_
Larvalökologie: die Raupe lebt, an Gräsern
Populationsbiologie:, proterandrisch
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Amphipoea oculea (? Individuen)
Distanzen: vermutlich 2-3
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Amphipoea fucosa (180 Individuen)
Distanzen: 3; das stark polarisierte Häufigkeitsverhältniis WaN/WNw auf einer
Strecke von 100 m deutet auf Barrieren gegen eine freie Dispersionsaktivität hin.
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Amphipoea lucens (1 Individuum)
Distanzen: 1-2
Larvalökologie: die Raupe lebt nach KOCH (1984) an "Gräsern, mutmaßlich an
Pfeifengras (Molinia caerulea)". Diese Raupenfutterpflanze kommt im Wasser-
werk am Fundort, WNo vor.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Hydraecia micacea (37 Individuen)
Distanzen: 3
Larvalökologie: die Raupe lebt oligophag an einer Reihe mehr oder weniger feuch-
tigkeitsliebender Pflanzen. Die im Garten festgestellten 6 Exemplare sind offen-
sichtlich zugeflogen. Der nächstliegende Bestand einer der von KOCH (1984)
genannten Futterpflanzen liegt ca. 200 m entfernt. In den letzten beiden Jahren
waren an verschiedenen Gartenteichen der näheren Umgebung erstmals Schwertli-
lien (Iris) festzustellen; dies könnte zu einer Kolonisation geführt haben und
würde das Bi Auftreten 1988 im Garten erklären.
Das HM-Stück 6 stammt wohl aus dem Ruderal (150-300 m entfernt).
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
145
Gortyna flavago (9 Individuen)
Distanzen: 2-3; der starke Häufigkeitsgradient im Wasserwerk könnte auf geringe
Dispersionsaktivitäten dieser Art IchY ten.
Larvalökologie: von den in KOCH 1984) genannten Raupenfutterpflanzen wächst in
der näheren Umgeb des Gartens keine. Das 1986 nachgewiesene J' ist daher
vermutlich vom Rand des Berglwaldes her zugeflogen (mindestens 150-200 m).
Verbreitungsstrategie: intermediarer Typ, 5. Gruppe
Celaena leucostigma (1 Individuum)
Distanzen: vermutlich 2-3; manchmal 4 (EITSCHBERGER & STEINIGER, 1980)
Larvalökologie: die Raupe lebt oligophag an einigen hygrophilen Pflanzen, die alle
nicht am Fundort WaM vorkommen. Das cd ist vermutlich vom 150 m entfernten
Berglbach her zugeflogen. Die Strecke ist bewaldet, der Flug erfolgte nicht
aufgrund der Lichtattraktion, da durch eine hohe Gebüschzeile der direkte Licht-
einfluß erst unmittelbar vor der Falle zum Tragen kam.
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Nonagria typhae (10 Individuen, dazu eine größere Anzahl von Exuvien)
Distanzen: 1-3; im Wasserwerk weist der starke Häufigkeitsgradient auf eine gerin-
ge Mobilität hin. { ;
Larvalökologie: die Raupe frißt Teichkolben (Typha) und Teichsimse (Schoeno-
lectus Tacustrie), Am Standort WNo, wo sich ein kleiner Bestand von Teichkol-
en befindet, ist eine kleine Population von N. typhae bodenständig, wie durch
Exuvienfunde bestätigt wurde. 1988 konnte trotz 10 an WNo festgestellten Ima-
ame: kein Exemplar beobachtet werden, das die Distanzen von 50 bzw. 120 m an
ie beiden anderen Fallen-Standorte im Wasserwerk bewältigt hätte.
Andererseits wurden am Franzosenhölzl 1989 2 Exemplare d0) gangen, die sich ohne
Sichtkontakt zur Lichtquelle 40 m weit von den Teichkolben-Beständen entfernt hatten.
Denkbar sind als Erklärung aber auch zwei unterschiedliche Flugtypen; en
ist die Anziehungskraft des Lichts auf Tiere, die sich auf "Fernflügen” (Dispersion
befinden, geringer als auf solche im trivial movement.
Der Teichkolbenbestand befindet sich erst seit 2-3 Jahren an dieser Stelle. Es
mußte in diesem Zeitraum eine Kolonisation aus über 1 km Entfernung, dem
nächsten Vorkommen der Raupenfutterpflanze, stattgefunden haben. hnlich
schnelle Kolonisationen über vergleichbare Distanzen ergeben sich auch bei der
Auswert der weiteren Standorte, wo Exuvien gefunden wurden Inepaarie
Teiche im Flughafengebiet und am Franzosenhölzl im Dachauer Moos).
open ouelnlEnie: am Standort WNo, wo ca. 500 Typha-Halme stehen, wurden mit
xuvien besetzte Pflanzen ausgezählt: Auf ca 15 Halme war ein besetzter zu
finden (n = ca. 100). Auf den gesamten Typha-Bestand zurückgerechnet ergäben
sich 33 im Jahr 1988 emergierte Falter. Nur ca. 1/3 davon wurde am Licht nach-
gewiesen. Dies ist wohl vor allem durch nicht optimales Anflugverhalten bedingt;
weitere Gründe können rasche Mortalität vor der nächsten Möglichkeit, die ge-
schlüpften Tiere zu erfassen, sowie ein schnelles Abwandern mancher Exemplare sein.
Verbreitungsstrate e: K-Stratege, 6. Gruppe; die Erschließ neuer Habitate, die
recht schnell erfolgen kann, erfolgt durch Individuen mit höherer Dispersionsakti-
vität, die entweder bei einer starken Vermehr eines Bestandes abwandern oder
bei einer Vernichtung der Lebensgrundlage (z.B. einem Trockenfallen eines
Feuchtgebietes oder einer Vernichtung durch Baumaßnahmen) gezwungen sind, den
Standort zu verlassen.
Nonagria nexa (1 Individuum)
Distanzen: 2-3
Larvalökologie: oligophag an einigen hygrophilen Pflanzen, das HO-Stück (d) stammt
vermutlich vom 200 m entfernten Schloßkanal. Die Flugstrecke führt durch be-
waldetes Gelände. .
Verbreitungsstrategie: K-Stratege, 6. Gruppe; die Verhältnisse ähneln vermutlich
denen bei N. typhae. Das nächstgelegene bisher bekannte Vorkommen dieser Art
liegt in den Isarauen ca. 7 km östlich von Oberschleißheim. Da das Untersu-
chungsgebiet um die Jahrhundertwende entomologisch sehr gut durchforscht war, han-
delt es sich ziemlich sicher um eine Kolonisation über die genannte Mindestdistanz.
Rhizedra lutosa (3 Individuen)
Distanzen: 2, .
Larvalökologie: monophag an Schilf (Phragmites "australis"); die vom Standort HM
aus gesehen nächsten Schilfvorkommen liegen im Ruderal ca. 200 m, entfernt.
Diese Distanz wird mit erstaunlicher Konstanz bewältigt (auch ein 9). Jedoch
schon für die Strecke von 1,2 km nach HO konnte kein Flugnachweis erbracht
werden. Das an HW gefundene N stammt mindestens aus einer Entfernung von
150 m (Würmkanal) ohne Sichtkontakt zur Lichtquelle. j 1
erbreitungsstrategie: K-Stratege, 6. Gruppe; die Strategie dürfte der bei N. typhae
besprochenen ähneln.
146
Abb. 45b: Nonagria typhae & (WNo, 28.9.88), ein Vertreter aus der Gruppe der soge-
nannten Schilf- bzw. Röhrichteulen an der Raupenfutterpflanze Typha latifolia.
147
siehe Fernwiederfänge (8.2.) und Versetzexperiment (8.4.)
300 Individuen 7,37%) 0- Rate
290 markiert 65 Wiederfänge
Tab. 87: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Meristis trigrammica.
SIEDLUNG WALD HALBTROK- DACH, WALD HAI.BTROK- ne)
1987 ' Garten ! KENRASEN M 2 1988 Garten Wasserwerk KENRASEN M
SiS SIMıSN WaS;WaM WaN HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
Ipa. - 2 16 6 1, - Soon - Tape 27 30 4 5.0 33 30 mi
2 zus. FIT 31 a - SEE - 4 Zus - 4 > > Er -
a a Se u 1: Ei - 93 de 23 66 a 60.108 30 29° joe
Same A et - 1.09 1 5 Sul 3 ee x
Merk. - 2 180. sS5 1 Segeaieen - 108 Mark. 24 70 2er 33 30 1 Den
Sr 1 1 15 ee - 2 wi. 4 54 1, wa 4 = wre
Wiederfang-Quote: standortabhängig: Im Garten und an HO meist hoch, sonst_eher
niedrig. An HO wurden 1988 drei Jod‘ nach 2 Tagen, eines erst nach 6 Tagen
miederze angen. Die mittlere Verweildauer im Garten 1988 betrug (bei anderer
Methodik) 3,0 Tage, was verglichen mit anderen Arten einen langen Zeitraum
bedeutet.
Distanzen: 2-3
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe; einer gewissen Ortstreue zu-
mindest von Teilen der jeweiligen Populationen in Eichenwäldern steht eine erhöh-
te Beweglichkeit an den anderen Standorten gegenüber. Im Offenland (HM) sind
überdies starke Nacht-zu-Nacht-Fluktuationen ein weiteres Indiz für starke Di-
spersionsaktivitäten: So wurden am 30.5.88 14 Individuen und am 26.5.86 gar 24
xemplare gefangen; in beiden Fällen erbrachten die Fangnächte davor und danach
kein einziges Stück.
Hoplodrina alsines
siehe Fernwiederfänge (8.2.) und Versetzexperiment (8.4.)
706 Individuen 14,7 % 9- Rate
635 markiert 43 Wiederfänge
Tab. 88: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Hoplodrina alsines.
WALD HALBTROK- _—
Garten Wasserwerk KENRASEN M
SN WaS WaN WNw WNo HO HM HW Au We
1987 ' Garten !
SIEDLUNG WALD HALBTROK- DACH,
| KENRASEN M 2 1988
SiS SIMıSN WaS,WaM WaN HO HM HW Mb
Z par. 9 10 20 64 15 83 26 15 251 I par. 24 69 32 19230 15 en 17, 5
7 2 1
zus WwaAS; 48 6 13210210 - 82 3 zus; (227,161 - Sr Sn Ans
dd 7916 79) S1a MebE rag ee 2 242 dd 22 187 ro le Ve BT
92 sale? 26.4 1. 12 Bert 4 - 57 9 1 25 100.2 ) 0. NE
Mark. Zu 108.177 103,167 Dreresaeene 2 289 Mark. 22 21 30, 10227 1a BT Ben
Wwf. er) 3 ver en - 6 wit. 1 30 1 _ 4 1 Eu I r=
Wiederfang-Quote: durchschnittlich, im Wasserwerk 1988 mit 5,9 % Ortswieder-
fängen vergleichsweise hoch. Es handelte sich dort um 4_d’d' mit einer relativ
niedrigen mittleren Verweildauer von 2,8 Tagen. Auch im Garten 1988 lagen (bei
anderer Methodik) die Verweilzeiten bei einem Mittel von 2,2 Tagen in einem
nicht als hoch zu bezeichnenden Bereich. Das Maximum eines nach 9 Tagen
wiedergefangenen J zeigt, daB durchaus einzelne Exemplare der Population orts-
treu sein können. !
Die 99 sind im Wiederfangergebnis mit 1/43=2,3 % deutlich unterrepräsentiert.
Distanzen: 3-4; die Fernwiederfänge, sowie die Tatsache, daß im Versetzexperi-
ment und im Wasserwerk die Distanzen von 120 m mühelos bewältigt wurden,
deuten auf hohe Dispersionsaktivitäten des Großteils der Population hin.
er tenlage. die Art findet wohl überall, wo niedrige Pflanzen wachsen, eine Le-
bensgrund age. .
a onnio ogie: stark proterandrisch (im Gegensatz zu den Angaben in NOWAK,
974); die 52 scheinen an bestimmten Stellen bevorzugt aufzutreten: Die o-Rate
war an WaS stets 2-3mal so hoch wie am 30 m entfernten Standort SiN, ein
ähnliches Ampnemen zeigte sich im Wasserwerk 1988 auf einer Strecke von 100 m
WaN/WNw). Vielleicht erleichtert ein solches Verhalten das Sich-Auffinden der
eschlechtspartner ("mating sites").
Verbreitungsstrategie: r-Stratege, 2. Gruppe
148
L
Hoplodrina blanda (26 Individuen)
Distanzen: 2-3; H. blanda scheint im Untersuchungsgebiet weniger dispersionsaktiv
zu sein als die vorige Art. Hinweise darauf sind der bisher fehlende Nachweis an
HM und das stark polarisierte Le zwischen den Standorten WaN
und WNo auf einer Strecke von nur 50 m.
Verbreitungsstrategie: intermediärer Typ, 1. Gruppe
Hoplodrina ambigua (119 Individuen)
Distanzen: 3-4 { E r $
Larvalökologie: H. ambigua findet wohl überall eine Lebensgrundlage. Im Inneren
der Wälder wurde die Art jedoch bisher noch nie festgestellt.
Populationsbiologie:. bivoltin : n
Verbreitungsstrategie: r-Stratege, 5. Gruppe; die Häufigkeitsschwa en und das
Häufigkeitsmuster innerhalb des Fangstellennetzes, das dem der Wanderfalter
entspricht, können als Hinweise auf hohe Dispersionsaktivitäten verstanden wer-
den. H. ambigua hat im südbayerischen Raum im Lauf dieses Jahrhunderts grö-
Bere Arealausweitungen unternommen. Regelmäßige Mindest-Flugleistungen von
1-2 km/Generation sind hierbei zu postulieren.
Atypha pulmonaris (5 Indviduen)
Distanzen: 2-3
Larvalökologie: die Raupe dieses an feuchtwarme Standorte gebundenen Eulenfal-
ters lebt an Lyngenkraut Eamenarıe) und an Beinwell Symphytu officinale);
das HM-Stück stammt daher vermutlich vom Ruderal (150-30 m). das Exem-
plar im Garten 6) zumindest vom Berglwaldrand (150 m).
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Spodoptera exigua (2 Individuen)
Distanzen: 4
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Caradrina morpheus
503 Individuen 8,9 % o- Rate
396 markiert 19 Wiederfänge
Tab. 89: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Caradrina morpheus.
SIEDLUNG WALD HALBTROK- m WALD HALBTROK- Dr
1987 | Garten KENRASEN M > 198 Garten Wasserwerk KENRASEN M 2
SiS SIM|SN WaS|WaM WıN HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
I pa. 7 20 26 2 6 46 27 3 1 3 EB DENE De Na a ce Me R = .9 8
ad en TE Be Sarnen 300 - GT zus Ste SS Be > © 71
so 5 16 17 320 3e.235 Elise asia 2 170 de 14 9 14 20 36 1.22% Sg
99 sa a a Dr wie 2b = 27.9 2 3 en 21800 SR: 9
Mark. 4 16 21 353 ag 2 1922 Mark. 15 6 Ne 37 MR 7 Pa 208
W.f. ss © = 8 Ss 00. 8 - 1 wi. ss. 8 Sa = ao 18
Es handelte sich um ein cd’, das von SiN nach WaS (30 _m) flog.
Im Wasserwerk wurden 1988 2 dd‘ nach jeweils Tagen, wiedergefangen, was
einer durchschnittlichen Wiederfang-Quote von 2,8 % entspricht. Im Garten 1988
wurden 13. dc nach einem 1-Tages-Intervall und nur 3 do‘ nach 2 Tagen rückge-
fangen; die mittlere Verweilzeit beträgt also nur 1,2 Tage! Zweitwiederfänge
ereigneten sich nicht.
Distanzen: 3, ? .
Larvalökologie: die an HM festgestellten 10 Exemplare (auch ein 2) stammen,
nach den in 1984) gene ten Raupenfutterpflanzen beurteilt, zumindest
vom Ruderal (150-300 m entfernt). Diese Distanzen liegen im normalen Bereich
der Dispersionsaktivität dieser Art.
Populationsbiologie: proterandrisch
Verbrei stra gie: r-Stratege, 2. Gruppe; im Gegensatz zu den Behauptungen
BETTMANNs f 86) handelt es sich im Untersuchungsgebiet um eine recht mobile
nike Nacht-zu-Nacht-Fluktuationen sind vor allem am Flugzeitende zu be-
obachten.
Paradrina clavipalpis
Distanzen: 4
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Wiederfang-Quote: niedrig! 1987 erfolgte der einzige bo-m fang schon nach 1 Tag.
149
Eremodrina gilva (41 Individuen)
Distanzen: 4
Verbreitungsstrategie: r-Stratege, 3. Gruppe; diese ursprünglich alpin verbreitete
Art führt seit ca. 1950 eine nach Norden BEE ce eh Hierbei
müssen zumindest in manchen Jahren Distanzen von über 10 km zurückgelegt
worden sein. Die in den letzten Jahren bekanntgewordenen Funde in Mittel- und
Norddeutschland lassen aber weit höhere Werte vermuten.
Das Häufigkeitsmuster innerhalb des Fallennetzes entspricht interessanterweise
dem der Wanderfalter.
Agrotis venustula (57 Individuen)
Distanzen: 2
Larvalökologie: als Futterpflanzen kommen im Untersuchungsgebiet wohl nur Pfei-
fengras \ olinia) und Frauenmantel (Alchemilla rapie)‘ in Frage. Die an HW
festgestellten Stücke (dd) stammen vermutlich vom Würmkanal (mindestens 150
er dem nächstgelegenen Standort dieser Pflanzen. Es bestand kein Sichtkontakt
zur Lichtquelle. Die Distanz von 1 km (Zuflug nach HM) liegt nicht mehr im
Bereich der Dispersionsaktivität dieser kleinen Art.
Verbreitungsstrategie: K-Stratege, 5. Gruppe
CUCULLIINAE
Cucullia lucifuga (1 Individuum)
Distanzen: vermutlich 2-3
Populationsbiologie: im Untersuchungsgebiet vermutlich bivoltin
Verbreitungsstrategie: vermutlich ıintermediärer Typ, 5. Gruppe; in der unteren
Hochebene Südbayerns ist diese Art nur lokal verbreitet.
Cucullia umbratica (11 Individuen)
Distanzen: 2
Larvalökologie: die Puppe überliegt nach KOCH (1984) "oft 1 bis 2 Jahre”.
Verbreit strategie: K-Stratege, 4. Gruppe; die lange a e 1974)
der Art keine hohe Wachstumsraten der Populationen. GYULAI & VARGA (1974
beschreiben C. umbratica allerdings als Wanderfalter.
Cucullia verbasci (viele Raupenfunde)
Distanzen: 2-3
Larvalökologie: 02 Puppe überliegt nach KOCH (1984) öfters. Die Raupen sind auf
Königskerzen (Verbascum) und Braunwurz (Scrophularia nodosa) spezialisiert.
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe; entsprechend dem relativ un-
steten Auftreten der Raupenfutterpflanzen spiegelten die Raupenfunde hohe Aus-
tauschraten wieder. Im Garten wurden Raupen beispielsweise vor 1981 vereinzelt,
1982, 1984 und 1985 beobachtet.
Cucullia scrophulariae (2 Individuen, dazu einige Raupenfunde)
Distanzen: vermutlich 2-3
Larvalökologie: wie C. verbasci, jedoch vor allem an Mehliger Königskerze (Ver-
bascum Iychnitis) zu finden _
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Calophasia lunula (2 Individuen)
Distanzen: 3-4
Larvalökoiogie: die Raupen sind stark spezialisiert und fressen an Leinkraut (Lina-
ria vulgaris, -repens). Die beiden im Garten festgestellten cd’ sind biotopfremd:
Im Umkreis von mindestens 300 m existieren keine Vorkommen der Futterpilanzen.
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe; C. /unula war um die Jahr-
hundertwende herym im Untersuchungsgebiet noch nicht nachgewiesen worden. Erst
WOLFSBERGER 11950; 1953/1954) erwähnt für Schleißheim ein häufiges Vorkom-
men als zune in den 50er Jahren sowie eine allgemeine »Ausweitung der Wohn-
areale«. Ähnliches berichtet LATTIN (1967). Flugleistungen im oben angegebenen
Rahmen dürften hierzu die Voraussetzung gewesen sein.
Brachionycha sphinx
73 Individuen 5,3 % o-Rate
19 markiert 1 Wiederfang
150
ana Mae: niedrig, Stichprobe noch zu klein. Es konnte lediglich 1988 im
escat aS) ein wegen der Lichtwirkung einen Tag "ortstreu” verbliebenes I
rückgef: en werden.
Larvalökologie: an Tragehiien n Laubgehölzen, das HM-cJ 1987 stammt zumindest
aus dem deral (150-300 m).
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Lithophane socia (11 Individuen)
Distanzen: 2
Larvalökoiogie: an verschiedenen Laubbäumen, bisher konnten keine biotopfremden
Tiere festgestellt menden:
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Lithophane ornitopus (1 Individuum)
Distanzen: vermutlich 2
Larvalökologie: wie L. so
Verbreitungsstrategie: lien K-Stratege, 6. Gruppe
Lithophane furcifera (1 Individuum)
Distanzen: vermutlich 2
Larvalökologie: wie L. socia
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Xylena vetusta (7 Individuen)
Distanzen: 2-3
Earsslökslogie: das 1988 an HM festgestellte cd stammt, nach den Raupenfutter-
pflanzen beurteilt, vermutlich vom Ruderal (150-300 m entfernt).
Verbreitungsstrategie: intiermediärer Typ, 5. Gruppe
Allophyes oxyacanthae
84 Individuen 11,0 % o- Rate
73 markiert 1 Wiederfang
Wiederfang-Quote: niedrig; ein an WaS markiertes cd wurde 1987 nach 2 Tagen 30 m
entfernt an SiN rückgefangen. 1988 konnte bei täglichem Fang am Standort Was
yon) 18; narkierten Faltern keiner mehr ein zweites Mal gefangen werden!
Larvalökoiog ie: die Raupen leben an Schlehe, Apfel, Weißdorn und Pflaume. Für die
drei an HM festgestellten SS kommen nur eine in ungefähr 350-400 m Ent-
fernung verlaufende Weißdornhecke oder ein ca. 100 m entfernier einzelstehen-
der Busch als Herkunft in Frage. Die Distanz von 350-400 m wird also entwe-
der relativ oft zumindest von d’d’ bewältigt, oder sie wurde in der Vergangen-
heit von einem fertilen a zurückgelegt, es kam zu einer Kolonisation des ca. I m?
großen Busches und die Nachkommen wurden dann am Licht nachgewiesen.
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Griposia aprilina (\ Individuum)
Distanzen: vermutlich 2
Larvalökol : vor allem an Eiche, selten einige andere Laubgehölze; bisher konn-
ten keine biotopfremden Stücke festgestellt werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Blepharita satura
21 Individuen 36,8 % o- Rate
19 markiert kein Wiederfang
Wiederfang- Qunte. niedrig, Stichprobe noch zu klein
Distanzen: 2-3
Verbreitungsstrategie: intermediärer Iyp, 5. Gruppe
Blepharita adusta
Distanzen: vermutlich 2-3
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Antitype chi (3 Individuen)
Distanzen: vermutlich 2-3
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
151
Eupsilia transversa
66 Individuen 43,8 % 9- Rate
64 markiert 2 Wiederfänge
Wiederfang-Quote: niedrig, a wurden im Garten (SiN) 1987 bei täg-
een ang 2 dd’ nach 1 bzw. Tagen, was keinen Hinweis auf Ortstreue dar-
stellt.
Distanzen: 3
Larvalökologie: die Raupen fressen an Laubhölzern, die 1986 an HM festgestellten
Exemplare stammen vermutlich aus dem Ruderal (150-300 m).
Populationsbiologie: proterandrisch
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Conistra vaccinii
78 Individuen 53,2:%..0- Rate
77 markiert 4 Wiederfänge
Wiederfang-Quote: die Wiederfang-Quote ist als durchschnittlich einzustufen. Die
einzelnen Rückmeldungen beziehen sich auf ein 9 1987 im Garten, das bei einer
Verweildauer von 6 Tagen (bei täglichem Fang!) viermal die Falle anflog. Ein
wurde 1987 an WaS nach 2 Tagen (und dazwischenliegender fangfreier Nacht
jaedergelangen.
Distanzen: ?2-
Larvalökologie: auch die Raupenfutterpflanzen von C. vaccinii lassen den Schluß zu,
daß das 0 am Standort HM zumindest vom Ruderal her (150-300 m) zugeflogen
sein muß.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Conistra rubiginosa (4 Individuen)
Wiederfang-Quote: 3 Individuen wurden markiert, Wiederfänge waren keine zu
verzeichnen.
Distanzen: vermutlich 2 .
Larvalökologie: die Raupen sind in den ersten Stadien auf Schlehe, Pflaume, Trau-
benkirsche oder Feld-Ahorn angewiesen. Bisher konnten keine biotopfremden
Exemplare nachgewiesen werden.
Verbrei strategie: vermutlich K-Stratege, 6. Gruppe
Agrochola circellaris
15 Individuen 38,5 % o- Rate
13 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: ?2-
Larvalökologie: im Anfangsstadium leben die Raupen an einer Reihe von Laubbäu-
men, biotopfremde Exemplare konnten bisher noch nicht festgestellt werden.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Agrochola macilenta
16 Individuen 16,7 % 9 - Rate
12 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: ?; zwischen WaS und SiN ist auf einer Strecke von nur 30 m ein deut-
licher Häufigkeitsgradient (7:1) festzustellen.
Larvalökologie: wie A. circellaris
Verbreitungsstrategie: K-Stratege, 6. Gruppe; A. macilenta scheint etwas stärker an
bewaldete Strukturen gebunden zu sein als A. circellaris. Dies steht wohl auch
m Zusammenhang mit dem normalerweise lokalerem Vorkommen von A. macilen-
8.
Agrochola nitida (1 Individuum)
Distanzen: vermutlich 2-3
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
152
Agrochola helvola
8 Individuen 40 % o-Rate (Stichprobe zu klein)
5 markiert kein Wiederfang
Wiederfang-Quote: Stichprobe noch zu klein
Distanzen: 2-3
Larvalökologie: wie A. circellaris, bevorzugt jedoch Weide. Das HM-Stück 1986
stammt mit groBer Wahrscheinlichkeit aus dem Ruderal (150-300 m).
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Agrochola litura
19 Individuen 62,5 % o-Rate
16 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein.
Distanzen: 2-3
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Agrochola Iychnidis (4 Individuen)
Wiederfang te: ein am Flügel in charakteristischer Weise leicht deformiertes
Exemplar (cd) flog 1988 an WNo 2 Tage nach dem Erstfang die Falle erneut an.
Distanzen: vermutlich 2-3 i
Larvalökologie: wie A. circellaris, das 1986 HM festgestellte Stück stammte mit
großer Wahrscheinlichkeit aus dem Ruderal (150-300 m).
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Agrochola lota
7 Individuen "0 %" o-Rate (Stichprobe zu klein)
6 markiert kein Wiederfang
Wiederfang-Quote: Stichprobe zu klein
Dissen 2-3 :
84) genannten Raupenfutterpflanzen beurteilt, aus mindestens 200 m Entfer-
zugeflogen. Auch die beiden HW-Stücke stammen wohl vom Würmkanal (150 m
entfernt).
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Parastichtis suspecta
Distanzen: 1-2
Larvalökologie: die Raupen sind in den ersten Stadien an Pappelarten gebunden. Das
im Garten 1983 nachgewiesene Stück e hatte mindestens 300 m vom nächstge-
legenen Standort der Futterpflanze her zurückgelegt. Diese Distanz liegt viel-
leicht schon im oberen Bereich der Dispersionsaktivitäten dieser Art.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Cirrhia aurego (1 Individuum)
Distanzen: vermutlich 2
Larvalökologie: vor allem an Buche, jedoch auch an Eiche, Linde, Pappel und Wei-
de; bisher konnten keine Bonn emden Tiere festgestellt werden.
Verbreitungsstrategie: vermutlic -Stratege, 6. Gruppe
Cirrhia togata
30 Individuen 33,3 % o-Rate
27 markiert 1 Wiederfang
Wiederfang-Quote: hoch; Stichprobe noch zu klein. 1987 wurde im Wasserwerk
(WaN) ein d nach 3 Tagen wiedergefangen.
Distanzen: 1-2
Larvalökologie: in den ersten Larvalstadien an Weidenarten gebunden. Im Wasser-
werk spricht der starke Häufigkeitsgradient schon auf einer Distanz von 50 m für
Barrieren gegen die freie Beweglichkeit dieser Art. Da an .WNo die Falle in
einer Weide poatiert war, an den beiden anderen Standorten jedoch ca. 10-20 m
von der nächstgelegenen entfernt, könnten unter Umständen solch kurze Di-
stanzen bereits nicht mehr zur normalen Dispersionsaktivität dieser Art gehören.
Auch die Tatsache, daß C. togata im Siedlungsbereich noch nie festgestellt wurde,
paßt gut in dieses Bild.
Verbreii strategie: K-Siratege, 6. Gruppe
Leu logie: die 4 im Garten festgestellten Exemplare sind, nach den in KOCH
n
153
Cirrhia icteritia
16 Individuen 54,5 % o9- Rate
11 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: 2-3
Larvalökologie: die Raupe ai in den len Stadien an Sal-Weide (Salix caprea),
Grau-Weide (Salix cinerea) und Espe as tremula) gebunden. Die vier 1987
an HM gefundenen Stücke (auch ein 9), die mit großer Wahrscheinlichkeit aus
dem Ruderal (150-300 m entfernt) stammen, zeigen, daß die Bewältigung solcher
Distanzen für beide Geschlechter kein besonderes Problem darstellt. Auch die bei-
den im Garten nachgewiesenen Exemplare sind aus mindestens 200 m Entfernung
zugeflogen.
erbreitungsstrategie: intermediärer Typ, 5. Gruppe
Cirrhia gilvago (1 Individuum)
Distanzen: vermutlich 2
Larvalökologie: die Jungraupen sind auf Ulmen angewiesen, seltener akzeptieren sie
auch Pappelkätzchen. In unmittelbarer Nähe beider bisheriger Fundorte wachsen
Ulmen.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Cirrhia ocellaris
Distanzen: vermutlich 2
Larvalökologie: anfangs sind die Raupen auf verschiedene Pappelarten angewiesen,
welche in unmittelbarer Nähe (20 m) des Fundortes vorkommen.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Cirrhia citrago
11 Individuen 9,1 % o- Rate
11 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: 2-3
Larralßinlogie: monophag an Linde (Tilia); das HM-Stück (Cd) 1986 stammt also aus
dem Waldgürtel und ist mindestens 1 km weit geflogen. Dies stellt vielleicht
schon die Obergrenze der Reichweite dieser Art dar, die Verteilung der restli-
chen Fundorte laßt jedenfalls eine relativ starke Habitatbindung erkennen.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
MELICLEPTRIINAE
Chloridea viriplaca (? Individuen)
Distanzen: 4
Populationsbiologie: bivoltin
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Chloridea peltigera (2 Individuen)
Distanzen: 4
Populationsbiologie: bivoltin (Einflug und Nachfolgegeneration)
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Pyrrhia umbra (7 Individuen)
Distanzen: vermutlich 2-3
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Panemeria tenebrata (tags 1 Individuum)
Distanzen: 1-2
Larvalökologie: an Hornkraut (Cerastium) und Sternmiere (Stellaria) gebunden. So-
wohl an SıM als auch 1989 im Mallertshofer Holz wurden die tagaktıven Imagines
in unmittelbarer Nähe der Raupenfutterpflanzen beobachtet. Selbst bei Störung
entfernten sie sich höchstens 10-30 m und kehrten teilweise wieder zurück.
erbreitungsstrategie: K-Stratege, 6. Gruppe
154
Axylia putris
243 Individuen 21,6 % o- Rate
125 markiert 5 Wiederfänge
Tab. 9%: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Axylia putris.
WALD HALBTROK- BE:
1988 Garten ‚Wasserwerk KENRASEN M > L
u
SN WaS eN WNw WNo 2 HO HM HW A e
Z par. 3 14 43 6 42 4 3 14 6 3 138
2 zus - 8 cr SRAE ee — Ne 8
os 3 10 28 5 3 4 2 8 5 2 98
99 >..8 OB aa. AL28
Mark 3 15 36 539 4 Saa12 5 3 125
W.f. = 2 2 = 1 > > = = = 5
Wiederfang-Quote: vergleichsweise hoch; im Garten 1988 konnte bei täglichem Fang
ein d nach 1 Tag (kein Hinweis auf Ortstreue wiedergefangen werden, ein anderes
ie: nach Tagen. Im Wasserwerk ergab sich eine Wiederfang- Quote von
3,8 % bei „inet mittleren Verweildauer, die sich mit 4,0 Tagen auf hohem Niveau
befindet. Eines der 3 dort wiedergefangenen Stücke war ein 9, das den Standort
wechselte 5 m Distanz).
tanzen: 2 \-3?
Populationsbiologie: leicht proterandrisch
Verbreitungsstrategie: intermediärer Typ, 4. Gruppe
BRYOPHILINAE
Euthales algae (25 Individuen)
Distanzen: 3 (-4?)
Larvalökologie: auf Laubholzflechten spezialisiert, nach KOCH (1984) vorwiegend an
alten Stämmen. Die beiden nach HM zu eflogenen Stücke stammen also vermut-
lich aus den umliegenden Wäldern (Flugdistanz mindestens 1 km). Am Würmkanal
scheint eine größere Population zu existieren, die 150 m Mindestdistanz nach HW
wurde von 10 Individuen bewältigt, obwohl kein Sichtkontakt zur Lichtquelle be-
stand.
Verbreitungsstrategi ie: inermediäner DulND. = I} ‚Gruppe: rück 0 ELDER: ennt von dieser
Art nur einen Einzelfund aus nnsbru Südbayerische
Funde wurden später von WOLFSBERGER "(1945- 19; x 0,100, km gerät entlicht,
Berücksichtigt man die relativ gute Durchforschung Süd bayern em Anfang dieses
Jahrhunderts, insbesondere des Untersuchungsgebietes, läßt dies die Vermu-
tung zu, daß diese Art Arealausweitungen in großem Stil” durchführte.
Bryoleuca raptricula
Distanzen: vermutlich 2-3
Lazralckologie: die Raupe ist an Steinflechten, Schildflechten und Algen zu finden.
Verbre strategie: vermutlich intermediärer Typ, 5. Gruppe; um, die Jahrhun-
dertwende bis ca. 1925 wurde diese Art interessanterweise in Südbayern nicht
nachgewiesen. Eine Häufigkeitszunahme dieser Art, sicherlich verbunden mit Are-
ala Beitunge en, unchsı OLFSBERGER (1945- 1949; 1950; 1953/1954; 1958 und
1960 "Nach L ATTIN (1967) gehört B. raptricula tatsächlich zu den Arealerweiterern.
APATELINAE
Panthea coenobita (1 Individuum)
Distanzen: vermutlich 2
Larvalökologie: an Nadelbäume, vor allem Fichte gebunden. Bisher konnten keine
biotopfremden Tiere festgestellt werden.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe; nach LATTIN (1967) erwei-
terte P. coenobita in diesem Jahrhundert ihr Areal.
era alpium (1 Individuum)
istanzen: vermutlic h 2 X
arralbenionie die Raupe frißt an verschiedenen Laubbäumen. Biotopfremde Di
konnten ae ıer nicht festgestellt werden. Die Tatsache, daß die Puppe (nach
KOCH, 1984) gelegentlich mehrmals überwintert, verringert die potentielle Wachs-
tumsrate der Populationen dieser Art.
erbreitungsstrategie: vermutlich K-Stratege, 5. Gruppe
155
Colocasia coryli
43 Individuen 0% o9-Rate
25 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu gering; im Wasserwerk wurden 1988
im Versuch der verringerten Fallendistanzen 17 dd‘ markiert.
Distanzen: ?2
te gg an Laubgehölzen. Die Biotopbindung dieser Art scheint relativ stark
zu Bein. iotopfremde Tiere, z.B. an HM, konnten bisher noch nicht beobachtet
werden.
Pogulaianebiologie; im Untersuchungsgebiet mit einer mehr oder weniger starken 2.
eneration u: 2,
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Subacronicta megacephala (16 Individuen)
Distanzen: 2
Larvalökologie: als Futterpflanzen dienen Pappel, Espe und Weide; die vier im Gar-
ten festgestellten Stücken stammen daher aus mindestens 200 m Entfernung.
Durch das von KOCH (1984), erwähnte bisweilen stattfindende UÜberliegen der
Puppen kommt es zu einer Verminderung der potentiellen Populations- Wachs-
tumsrate ("PGR").
Populationsbiologie: bivoltin, die 2. Generation jedoch unvollständig
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Acronicta aceris (18 Individuen)
Distanzen: 2
Larvalökologie: die Raupe lebt an verschiedenen Laubbäumen, biotopfremde Tiere
wurden bisher nicht registriert. Bezüglich der Puppenentwicklung gilt das zur
vorigen Art Gesagte. j }
Populationsbiologie: im Gebiet mit einer unvollständigen 2 Generation
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Acronicta leporina (16 Individuen)
Distanzen: 2
Larvalökologie: die Raupe ist auf Laubbäumen, im eg vor allem auf
Birke zu finden. Biotopfremde Stücke waren bisher nicht zu beobachten.
Verbreitungsstrategie: iniermediärer Typ, 5. Gruppe
Apatele alni (1 Individuum)
Distanzen: 2, ' :
Larvalökoiogie: die Raupen akzeptieren als Futter oligophag einige Laubbaumarten,
biotopfremde Tiere traten bisher nicht auf.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Apatele psi (17 Individuen)
Distanzen: 2
Latraldinlogie- an Laubbäumen, jedoch etwas mehr polyphag als A. al/ni. Das d am
S-Bahnhof mußte mindestens 100 m geflogen sein, sonst konnten bisher keine
buptep re mon Tiere Testzesielit werden. 4 }
Populationsbiologie: abgesehen von den beiden August- Tieren univoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Hyboma strigosa (13 Individuen)
Distanzen: 1-2
Larvalökologie: die Raupe ernährt sich oligophag von einigen Laubhölzern bzw.
-gebüschen, biotopfremde Stücke traten bisher nicht auf. H. strigosa scheint stark
habitatgebunden zu sein, was eine Erklärung für das eher lokale Vorkommen in
Südbayern sein könnte.
Verbrei strategie: K-Stratege, 6. Gruppe
Pharetra auricoma (31 Individuen)
Distanzen: 2-3
Larvalökologie: recht polyphag, im Untersuchungsgebiet be vor allem Wei-
de; die an HM anfliegenden Stücke stammen daher wohl aus dem Ruderal (150-300
m entfernt).
ationsbiologie:, bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
156
Pharetra rumicis (33 Individuen)
Distanzen: 3(-4?)
Larvalökologie: relativ polyphag, die HM-Stücke stammen vermutlich aus dem Ru-
deral (150-300 m).
Populationsbiologie: bivoltin
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Craniophora ligustri
112 Individuen 6,9 % o- Rate
102 markiert 1 Wiederfang
Teb. 91: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Craniophora ligustri.
SIEDLUNG WALD HALBTROK- Da WALD HALBTROK- DACH
[OSTSEE Garten | KENRASEN M L 1988 Garten Wasserwerk KENRASEN M L
SiS SIM |SN WaS|WaM Wan HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
2 par. 2.9 8 2 1 8 8 - 2 40 2 par. A 7 14 12 3 7 S 1 5 = 53
zus Zn 1 N Ge N - SEE 2Tzusye- 10 a I a ne 10
[oje] ee 1 = NT Elan, = 1 40 de Ace een ae
99 SE Se Me Bene = 5 09 re“ Ar re nV 2
Mark. - 3 6 Pa 1 ABER Merk EA oa 1003 ht a sr
Wi. ui er a - wi - - Se EN u -
Wiederfang te: niedrig, vor allem 1988 im Garten (WaS) beim täglich durch-
geführten Fang.
tanzen: 3
Larvalökologie: die Raupe ernährt sich von Esche (Fraxinus excelsior), Liguster (Li-
gustrum ulzare) und Flieder. Das 1987 an HM festgestellte @ war also minde-
stens 1 km weit vom Flughafenrand herbeigeflogen.
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
JASPIDIINAE
Jaspidia deceptoria (22 Individuen + tagaktive Exemplare)
Distanzen: 2,
Larvalökologie: nach KOCH ee) an Wiesengräsern, gern an Picscheee: (Phleum
Dentenee). die Art ist im Untersuchungsgebiet mehr an trockene iesen gebun-
den und wurde außerhalb des Flughafens und des Wasserwerks nur einmal am
Würmkanal gefangen (Au). Die Distanz von 1 km bzw. 1,3 km, die einem Zuflug
in den Garten entspräche, liegt offenbar außerhalb des Bereichs der normalen
Dispersionsaktivität.
Verbreitungsstrategie: intermediärer Ip: 5. Gruppe; nach LATTIN (1967) unternahm
J. deceptoria in diesem Jahrhundert Arealausweitungen.
Jaspidia pygarga (2025 Individuen + tagaktive Exemplare)
Distanzen: 2; das PIEUn ehe Verheltnn SiN/WaS betrug 1988 in den parallel durch-
‚eführten Fängen 22:67. Dieser Gradient läßt Barrieren gegen die freie Bevese
ichkeit dieser Art vermuten; im vorliegenden Fall könnte dies der größere Of-
fenlandcharakter an SiN sein. a
Lergalökolon obwohl sich die Raupe von verschiedenen Gräsern ernährt, ist der
Falter relativ stark an Gebüsch- bzw. Baumstrukturen gebunden. Die 5 an HM
festgestellten Exemplare stammen vermutlich aus dem Ruderal (150-300 m).
ulationsbiologie: je nach Beschaffenheit des Biotops kommt es anscheinend zur
inregulierung einer „upezilischen maximalen Populationsdichte. Jahrweise konstant
bewirkte diese im asserwerk ein Fangergebnis von 50 Individuen, an HO 15
Individuen und im Garten (Was) 5 Individuen, jeweils bezogen auf eine durch-
schnittliche Fangnacht in der Hauptflugzeit. In allen Fällen waren diese Werte
recht konstant, stärkere Nacht-zu-Nacht-Fluktuationen, wie sie für einige hochmo-
bile Arten typisch sind, traten nicht auf.
Verbreitungsstrategie: K-Stratege, 4. Gruppe
Eustrotia uncula
Distanzen: vermutlich 2 SB
Larvalökologie: auf Seggen (Carex) und Zune: ras (et spezialisiert. Am
31.7.83 flogen im Garten bei heißem, windstillem Wetter 2 Exemplare dieses
eigentlich Inpischen Moorbewohners zu. Die minimale Flugdistanz (zum nächst-
gelegenen Futterpflanzen-Vorkommen) beträgt ca. 300 m, ein Moor bzw. ein
naturnahes Feuchtgebiet ähnlicher Prägung existierte zu diesem Zeitpunkt jedoch
in einem Radius von mindestens 3 km nicht.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
157
Eustrotia olivana (27 Individuen + tagaktive Exemplare)
Distanzen: 2a?)
Larvalökologie: die Raupe lebt an verschiedenen Gräsern, im Untersuchungsgebiet
vor allem an Riedgräsern (Carex) und an Land-Reitgras VlCalamagrosfte epige-
jos). Das SiS-Stück stammt wohl aus dem Flughafengebiet und hatte mindestens
00 m zurückgelegt. Die beiden im Garten festgestellten Stücke sind wohl eben-
falls einer Population außerhalb des en zuzuschreiben und dürften
mindestens 500 m, vielleicht sogar 1 km vom Flughafen her zugeflogen sein.
Populationsbiologie: die tagsüber durchgeführten Beobachtungen dieser Art, die vor
allem im Fiughafen-Ruderal und an der Regattastrecke überaus große Popu-
lationsdichten erreicht, lassen auf ähnliche Verhältnisse schließen, wie sie bei J.
pygarga bereits erläutert wurden. Aufgescheuchte Individuen flogen ca. 3-10 m
weit und setzten sich dann wieder. as Zurücklegen von größeren Distanzen
wurde tagsüber nicht beobachtet.
Verbreitungsstrategie: K-Stratege, 6. Gruppe; nach LATTIN (1967) unternahm E.
olivana ın diesem Jahrhundert Arealausweitungen.
NYCTEOLINAE
Nycteola revayana (6 Individuen)
Distanzen: vermutlich ?2
Larvalökologie: monophag an Eiche; an allen bisherigen Fundorten befinden sich in
unmittelbarer Nähe Eichen.
Populationsbiologie: bivoltin
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe; die sehr ähnliche N. asia-
tica KRUL. ist Ko als hochmobile Art, die groBe Distanzen bewältigen kann,
eat siehe ZBANYAI-RESER,1988 und EITSCHBERGER & STEINIGER,
BENINAE
Earias chlorana (9 Individuen)
Distanzen: 2
Larvalökologie: auf Weide (Salix) spezialisiert, bisher konnten keine biotopfremden
Tiere festgestellt werden. Die Raupen verursachen nach KOCH (1984) "gele-
gentlich Kahlfraß in Weidenkulturen".
P mie Curie a im Untersuchungsgebiet im Gegensatz zu den Angaben in KOCH
.c. ] univoltın
Verbreitungsstrategie: K-Stratege, 6. Gruppe; in anderen Gegenden, wo die Art
bivoltin auftritt, können durch die so erhöhte potentielle achstumsrate gele-
entlich stärkere Vermehrungen stattfinden; unter Umständen ist dies an solchen
tandorten mit einer veränderten Strategie verbunden; es könnte sich dann um
r-Strategen handeln.
Bena prasinana (77 individuen)
Distanzen: ?2
ae die Raupe lebt an einer Reihe von Laubbäumen, vor allem an Rot-
Buche (Fagus sylvatica). Biotopfremde Tiere, z.B. an HM konnten bisher noch
nicht festgestellt werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Pseudoips bicolorana (1 Individuum)
Distanzen: 1-2
Larvalökologie: monophag an Eiche, bisher keine biotopfremden Stücke
Verbreitungsstrategie: K-Stratege, 6. Gruppe
PLUSIINAE
Chrysaspidia putnami
Distanzen: vermutlich 2-3
Larvalökologie: oligophag an eine Reihe hygrophiler Pflanzen gebunden, die in ca. 50 m
Entfernung vom Fundort vorkommen.
Populationsbiologie:, bivoltin >
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
158
Autographa gamma
885* Individuen 4,9 % o- Rate
642 markiert 2 Wiederfänge
* dazu tagaktiv zahlreiche weitere Exemplare
Teb. 92: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Autographa gamma.
SEDLUNG WALD HALBTROK- DACH WALD HALBTROK- EDGE
1987 arten KENRASEN M 2 1988 Garten Wasserwerk KENRASEN M
SiS SM |SN WaS|WaM WaN HO HM HW Mb SN WaS WeaN WNw WNo HO HM HW Au We
I par. 7 29 50 53 21 66 66 57 122 2 475 X par. 30 34 28 6923 17 12T AT, 1 11
% zus - 78 28 - 8 S3em13 5 26 171 % zus. - 30 - - - = ei S & z
[oje 2 5 28 90 52 20 56 63 61 80 1 456 [e107 14 37 20 5 21 1677012533 1 -
99 EEE SCENE 1 dar 2 One 720 1 2cthen 26 09 RT ET ER enageenie: SEE
Mark. 5 31 96 65 20 62 63 64 81 1 478 Mark. 15 39 20 6 20 16202122536 1 -
wi. a WEL eRe- Ne San - =. wi. = 1 Sa ame e Re
Wiederfang te: sehr niedrig! 1988 wurde im Garten (WaS) bei täglichem Fang
nur 1 0 (=2,6 %) durch die Lichtwirkung "gefangengehalten”. Der einzige unter
"regulären" Bedi en erfolgte Rückfang ereignete sich bei einem an aN
markierten J, das 2 lage später an WNo (50 m) wiedergefangen wurde. Auch die
sehr kurze mittlere Verweildauer zeigt also, daß A. gamma, die in einer Art
"Nullprobe"” als bekannter Wanderfalter markiert wurde, erwartungsgemäß rea-
giert und die Brauchbarkeit der Methode unterstreicht. BETTMANN (1985a; 1986)
erhielt von A. gamma mehr Wiederfänge zurück, was wohl methodisch zu begrün-
‚den ist al Fang).
en:
rare ivoltin; im Untersuchungsgebiet fällt die nieduns o-Rate auf.
ALICKY (1974 a) hatte in Österreich Werte von nahe 50 %, NOWAK (1974) von
29 % beobachtet. ;
Verbreitungsstrategie: r-Stratege, I. Gruppe; auch die heimischen Populationen sind
hochmobil. Starke Wanderbewegungen (zielgerichteter, rascher Flug) wurden
tagsüber und in der Dämmer vor allem im Moos entlang der Entwässerungs-
graben und entlang des Birket-Randes registriert. Die nächtliche Flugaktivität ist
edoch nicht immer mit den Flugmaxima der anderen typischen migranten Arten
{"Wanderfalternächte") korreliert.
Autographa pulchrina (3 Individuen)
Distanzen: vermutlich 3
Verbreitungsstrategie: vermutlich intermediärer Typ, 3. Gruppe
Autographa bractea (3 Individuen)
Distanzen: 3-4
Verbreitungsstrategie: intermediärer Typ, 1. Gruppe; A. bractea ist eine als Wan-
derfalter bekannte Art, die hauptsächlich alpin verbreitet ist. Von diesem Ver-
breitungszentrum aus unternimmt sie Vorstöße über größere Distanzen hinweg. An
geeigneten Standorten, z.B. im Berglwald bei Oberschleißheim, wird A. bracte
edoch zumindest zeitweilig bodenstandig. EITSCHBERGER & STEINIGER (1980
bezeichnen sie als Arealerweiterer.
Macdunoughia confusa (12 Individuen)
Distanzen: 4
Populationsbiologie: bivoltin : ON
Verbreitungsstrategie: r-Stratege, 1. Gruppe; die starken Häufigkeitsschwankungen
von Jahr zu Jahr sowie von Generation zu Generation sind ein weiterer Hinweis
auf die hohe Mobilität dieser Art.
Plusia chrysitis (58 Individuen)
Distanzen: 3-4
De meh ogie: bivoltin, Flugzeit etwas später als P. tutti (vergleiche REICH-
Verbreitungsstrategie: r-Stratege, 2. Gruppe
Plusia tutti (42 Individuen)
Distanzen: 3-4 3% \
Kup len ivoltin, Flugzeit etwas früher als P. chrysitis (vergleiche
ICHHOLF, 1985).
erbreitungsstrategie: r-Stratege, 2. Gruppe
159
Plusia chryson
Distanzen: vermutlich 2-4
Larvalökologie: die Raupe lebt an Wasserdost (Eupatorium cannabinum) und Kleb-
Salbei (Salvia giutinosa). Die Mindest-Flugdistanz vom nächstgelegenen Standort
der Futterpflanzen zum Fundort beträgt ca. 300 m. KOCH erwähnt, daß die Art
als seltener Irrgast in Gebiete zufliegen kann, die keine eigene Populationen
besitzen, also über viele Kilometer hinweg.
erbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Polychrysia moneta
Distanzen: 2-4
Larvalökologie: die Raupe ist auf Eisenhut- a und Ritterspornarten (Del/-
hinium) sowie auf Trollblume (Trollius europaeus) zu finden. Eine nicht unerheb-
iche Rolle für die Verbreitungsstrategie dieser Art dürften daher Gärten spielen.
Im Garten des Verfassers standen fie Pflanzen zur Verfügung. Die drei (in drei
verschiedenen Jahren beobachteten) Exemplare wurden also ın ihrem typischen
Habitat gefunden.
Populationsbiologie: bivoltin, die 2. Generation ist oft unvollständig und konnte im
ntersuchungsgebiet noch nicht en werden. _
Verbreitungsstrafegie: intermediärer Iyp, >. Cape die Art unternahm im Lauf
dieses Jahrhunderts Arealausweitungen in den Nordwesten Mitteleuropas hinein,
en) z.T. größere Distanzen bewältigt werden mußten (KOCH, 1984; LATTIN,
Chrysoptera c-aureum (3 Individuen)
Distanzen: 2 (-3?)
Darren. die Raupe ist auf Wiesenrautearten (Thalictrum) und Akelei (Aqui-
legia) spezialisiert. Im Untersuchungsgebiet werden offensichtlich auch die im
Garten angepflanzten Akeleisorten angenommen, wie die regelmäßigen Funde der
letzten 3 Jahre vermuten lassen.
Merbreiiungestzairgi: K-Stratege, 6. Gruppe; C. c-aureum wurde somit im Mün-
chener Norden erstmals außerhalb der Isarauen nachgewiesen; ein solcher Koloni-
sationsvorgang hätte im Lauf dieses Jahrhunderts über eine Mindestdistanz von 7
Kilometer erfolgen müssen.
Abrostola triplasia (12 Individuen)
Distanzen: ? (-3?) “
Larvalökologie: monophag an der Großen Brennessel (ancz dioica); diese war in
der unmittelbaren Nähe aller bisherigen Fundorte zu finden.
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Abrostola asclepiadis (12 Individuen)
Distanzen: ?
rer teserr ie monophag am Schwalbenwurz (Cynanchum vincetoxicum), welcher im
Berglwald und im Schweitzerholz an vielen Stellen recht häufig ist. Die im
Garte ger denen Stücke (nur dc) stammen also mindestens vom Berglwald-
rand (20 m), das WaN-d’‘ mußte auch zumindest 150-200 m von der nächstgele-
genen Raupenfutterpflanze her geflogen sein. h i k
Eupulatiomiolage: im Gegensatz zu den beiden anderen im Gebiet nachgewiesenen
rten der Gattung univoltin
Verbreitungsstrategie: K-Stratege, 5. Gruppe; ee der zerstreuten Ver-
breikunn der Raupenfutterpflanze scheint es sich A. asclepiadis nur in Jahren mit
uter Bestandsentwicklung (z.B. 1987 und 1988) erlauben zu können, Vorstöße
er biotopfremdes Gebiet durchzuführen.
Abrostola trigemina (12 Individuen)
Distanzen: ? (-3?)
Larvalökologie: monophag an der Großen Brennessel; das HM-Exemplar stammt
also zumindest aus dem Ruderal (150-300 m). Der Häufigkeitsgradient im Was-
serwerk könnte auf Barrieren gegen die freie Mobilität hinweisen.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
160
CATOCALINAE
Astiodes sponsa (1 Indviduum)
Distanzen: 2-4, aber relativ biotoptreu
Larvalökologie: monophag an Eiche, welche sich auch in unmittelbarer Nähe des
Fundortes befand. PR
Verbreitungsstrategie: intermediärer Typ, 1. Gruppe; A. sponsa ist als Wanderfal-
ter bekannı, dürfte im Untersuchungsgebiet in den älteren Eichenbeständen je-
doch bodenständige Populationen besitzen.
Catocala nupta (4 Individuen)
Distanzen: 2-3
Larvalökologie: an Weiden und Bappein: das an HM gefangene < ist vermutlich aus
dem Ruderal bei einer Distanz von 150-300 m zugeflogen. Aus ähnlichen Minde-
stentfernungen stammen die regelmäßig im Garten festgestellten Stücke.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Callistege mi
Diese tagfliegende Art wurde in der Auswertung unherücksichtigt gelassen, da sie mit
Lichtfallenfängen nicht erfaßbar ist. C. mi ist im Untersuchungsgebiet offensichtlich
univoltin, sie ist wohl als intermediärer Typ der 5. Gruppe einzustufen.
Ectypa glyphica
Wie Callistege mi, es wurde lediglich 1 Exemplar der 2. Generation beobachtet. In-
teressant ist wie bei der vorhergehenden Art der bisher fehlende Nachweis im Garten.
OPHIDERINAE
Scoliopteryx libatrix (15 Individuen)
Distanzen: 2-3
Larvalökologie: die Raupe ernährt sich von Weide und Pappel; das HM-Stück ist
also als Zuflieger aus einer Distanz von mindestens 150-300 m (Ruderal) zu
werten. Auch die vergleichsweise oft im Garten zu beobachtenden Stücke (auch
22) mußten 200-300 m vom nächstgelegenen Standort der Futterpflanzen er
stehende Weiden) geflogen sein.
Populationsbiologie:, bivoltin -
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Lygephila pastinum (38 Individuen)
Distanzen: 2; der siarke Häufigkeitsgradient im Wasserwerk spricht für Barrieren
gegen die freie Beweglichkeit dieser Art.
Larvalökologie: an verschiedenen Schmetterlingsblütlern; im Ort, wo die Vertreter
dieser Pflanzenfamilie nur sehr spärlich auftreten, wurden von L[. pastinum daher
nur vereinzelt (zugeflo ene) Exemplare registriert.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Parascotia fuliginaria (5 Individuen)
Distanzen: 1-2
Larvalökologie: es handelt sich um eine relativ stenöke Art, deren Raupen von
Holzpilzen, Flechten und Algen leben. Das am S-Bahnhof gefundene © mußte
mindestens 200 m vom nächsten möglichen Ort der Larvalentwicklung her ge-
ogen sein.
ulationsbiologie: im Garten (WaS) fällt das regelmäßige Auftreten (dd + 99)
ei sehr geringen Häufigkeitsschwankungen auf. Es handelt sich vermutlich um
eine kleine Population im Gleichgewichtszustand. Ein solches Gleichgewicht auf
niedrigem Niveau dürfte für die in Südbayern nur lokal und selten anzutreffende
P. fuliginaria typisch sein. Schon 30 m entfernt (SiN) konnte bisher kein Stück
nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Phytometra viridaria (3 Individuen + tagaktive Exemplare)
161
Rivula sericealis (219 Individuen)
Distanzen: 2
Larvalökologie: die Raupe ernährt sich yon Gräsern; in den Wäldern ist diese Art
bisweilen recht häufig, im Offenland (HM) war R. sericealis jedoch bisher nicht
zu beobachten, was auf einen Aktionsradius von unter 1 km hinweist.
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ. = FUuNE: die starken Häufigkeitsschwan-
kungen im Garten von Jahr zu Jahr könnten als Indiz dafür gewertet werden, daß
R. sericealis hier verstärkt als zufliegender Gast auftritt.
HYPENINAE
Laspeyria flexula
269 Individuen 15,9 % 9- Rate
43 markiert kein Wiederfang
Wiederfang-Quote: niedrig
Distanzen: 2-3 _
Larvalökologie: die aan ist auf Rindenflechten und -algen vor allem von älteren
Baumbeständen spezialisiert. Dementsprechend sind die beiden an HM registrier-
(D: dd als Gastarten zu charakterisieren, die vermutlich vom Flughafenrand
Distanz: 1 km) stammen. Eines 08 bei ruhigem windstillen Wetter, das andere
e Häufig EIERERRICHE HO/HM 1986 verdeut-
bergrenze der normalen Dis-
bei leichtem Westwind an. Der star
licht jedoch, daß diese Distanz wohl schon die
persionsaktivität von L. flexula darstellt.
Verbreitungsstrategie: intermediärer Typ,, 5. Gruppe
Colobochyla salicalis (1 Individuum + einige tagaktive Exemplare)
Distanzen: 1-2
Larvalökologie: die Raupen sind nach KOCH (1984) auf die zartesten Triebe von
Weide und Pappel spezialisiert. Bisher konnten keine biotopfremden Tiere nach-
gewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe; C. salicalis tritt nicht nur im Unter-
suchungsgebiet sondern auch in Südbayern allgemein nur lokal und einzeln auf.
Herminia barbalis (2 Individuen)
Distanzen: 2
Larvalökologie: die Larvalentwicklung spielt sich an Laubhölzern ab; im Offenland
wurde die Art bisher noch nie, an etwas offener strukturierten Standorten (SiM,
Mo/1985) insgesamt nur in 2 Exemplaren beobachtet. Entfernungen
über 500 m über biotopfremdes Gebiet scheinen eine Barriere gegen die Ver-
breitung darzustellen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Zanclognatha tasipennalis (74 Individuen)
Distanzen: 2-3
Larvalökologie: die Raupen sind nach KOCH (1984) auf "herabgefallene, faule und
modernde Blätter von Gräsern, niedrigen Pflanzen und Laubgehölzen" speziali-
siert. Dies stellt eine interessante Einnischung dar, die Z. tarsipennalis auch von
der folgenden sehr ähnlichen Art, Z. tarsicrinalis unterscheidet. Z. tarsipennalis
ist im Untersuch Eier recht stenök an die Ränder und Gebüschzonen der
etwas trockeneren Wälder gebunden. Das J an HM ist jedoch nicht zwingend als
biotopfremd zu charakterisieren. Im Moos konnte bisher_kein Exemplar nach-
gewiesen werden. Die Distanz von ca. 3 km, die zu einem Zuflug nötig wäre, liegt
außerhalb der normalen Dispersionsaktivität dieser Art.
ala. im Untersuchungsgebiet bivoltin, die 2. Generation ist jedoch un-
vollständig.
Verbrei strategie: intermediärer Typ, 5. Gruppe; OSTHELDER en er-
wähnt für das südbayerische Faunengebiet nur Beuerberg und Herrsching als
Fundort. Ob dies lediglich an Bestimmungschwierigkeiten lag, oder ob tatsächlich
En: on EEE über größere Distanzen stattgefunden hat, muß hier noch
offenbleiben.
162
EEE
Zanclognatha tarsicrinalis (236 Individuen)
Distanzen: 2
Larvalökologie: im Gegensatz zur vorigen Art ernähren sich die Raupen von her-
abgefallenen, trockenen Blättern von Himbeere, Brombeere und Waldrebe (Cle-
matis vitalba). Z. tarsicrinalis ist im Untersuchungsgebiet uy an etwas feuch-
tere Wälder und deren Ränder gebunden. Im Offenland (HM) konnte die Art
bisher noch nicht nachgewiesen werden. ! Be
ationsbiologie: im Gegensatz zu Z. tarsipennalis im Untersuchungsgebiet of-
ensichtlich univoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Zanclognatha grisealis (19 Individuen)
Distanzen: 2
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Trisateles emortualis (32 Individuen)
Distanzen: 2, KR a
Larvalökologie: oligophag an einigen Laubbäumen, vor allem an deren abgefallenen
Blättern. Die Art scheint sehr biotoptreu zu sein: An den Stellen des Vorkommens
befinden sich in unmittelbarer Nähe Eichen oder Buchen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Hypena obsealis
Distanzen: vermutlich 2
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Hypena proboscidalis
171* Individuen 19,7 % 9- Rate
61 markiert 2 Wiederfänge
* dazu viele tagaktive Exemplare
-Quote: sehr niedrig! Im Garten (WaS) wurden 1988 bei täglichem Fang
21 arleerte Tiere freigelassen, von denen nur 2 dd (9,5 r nach jeweils 1_Tag
wiedergefangen wurden. Im Wiederfangergebnis fehlen also Hinweise auf Orts-
treue.
Distanzen: 3° _
Larvalökologie: die 5 an HM festgestellten Exemplare (auch ein 9) stammen, nach
den in KOCH (1984) genannten Raupenfutterpflanzen beurteilt, zumindest aus dem
Ruderal (150-300 m), derartige Distanzen liegen im Bereich der normalen Disper-
sionsaktivität. _
Populationsbiologie: im Untersuchungsgebiet bivoltin; proterandrisch
Verbreitungsstrategie: 1-Stratege, Zuppe- in der 2. Generation war die Flugak-
tivität mit der der typischen Wanderfalter in den Wanderfalternächten korreliert.
rpenz proboscidalis ist die mobilste der im Untersuchungsgebiet festgestellten
ypeninen, ihre Strategie erinnert an die einiger typischer r-Strategen unter den
Tagfaltern, deren Larvalentwicklung ebenfalls hauptsächlich an wer: abläuft,
als Beispiele mögen hier das Landkärtchen (Araschnia levana) oder der Kleine
Fuchs { glais urticae) genügen.
GEOME TRIDAE
ARCHIEARINAE
Da diese tagaktive Art in Lichtfallenfängen nicht zu erfassen ist, wurde sie bei den
ae ausgeklammert. Es handelt sich um einen monophagen Birkenbewohner
nur selten wird Rot-Buche akzeptiert), der vermutlich als K-Stratege der 6. Grup-
e zu charakterisieren ist. Innerhalb des Birkets wurde A. parthenias jedoch bei
Ben bis zu 300 m Distanz beobachtet (von Baumwipfel zu Baumwipfel).
163
OENOCHROMINAE
Alsophila aescularia
1987
I par.
I zus.
Mark.
W.f.
148 Individuen 0 %* o9-Rate
129 markiert 10 Wiederfänge
* die 99 sind flugunfähig, an WaS wurde 1987 ein 9 an einem Baumstamm sitzend
gefunden.
Tab. 93: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Alsophila aescularia.
Ve niedrig! Mit einer Ausnahme erfolgten die Wiederfänge 1987 im
Garten bei täglichem Betrieb der Lichtfalle und sind auf eine "Gefangenschaft"
im Bann der Lichtquelle zurückzuführen! Die mittlere Verweildauer betrug hierbei
niedrige 1,5 Tage bei einem Maximum von 3 Tagen. Verglichen beispielsweise mit
dera ebenfalls ın einer extremen Jahreszeit und nur im männlichen Geschlecht
fliegenden Frostspanner Operophthera orumata sind diese Werte als sehr niedrig
einzustufen.
Ein d wechselte den Ort (WaS>SiN=30 m) in der Zeitspanne von einem Tag.
Distanzen: Sc 2 -3?), 99 1; im Wasserwerk könnte der Häufigkeitsgradient ein
Hinweis darauf sein, daB Barrieren gegen die Mobilität der dd‘ existieren. Der
Standort WNw zeichnet sich dadurch aus, daß hier unter den 3 Wasserwerk-
Beneplätzen die Schneeschmelze am spätesien erfolgt. Dies behindert unter Um-
ständen den Schlüpfvorgang von A. aescularia.
Larvalökologie: an Laubbäumen und -sträuchern; an HM wurde bisher kein Exem-
plar festgestellt, die Distanz von 1 km scheint außerhalb der normalen Disper-
sionsaktivität zu liegen. Im Moos 1989 wurden in Parallelfängen am Waldrand 7
ESCiDp are, 45 m entfernt davon im Offenland nur noch 2 Exemplare festge-
stellt.
Verbreitungsstrategie: K-Stratege, 5. Gruppe (was die dd betrifft); die dd ge-
währleisten durch die vergleichsweise hohe Mobilität eine gute Gendurchmi-
schung. Für eine Verbreitung über besonders "flugfähige” Eironpen wie bei Orgyia
recens gibt es keine Indizien. Es könnte höchstens eine Verdriltung von sich ab-
seilenden Räupchen eine Rolle spielen. Die erwachsenen een NORD ich im
Juni an der Basis der Futterpflanze (CARTER & HARGREAVES, 1967), Sie
scheiden ais Verbreitungsstadium aus. Vielleicht sind auch die mit langen Beinen
versehenen 99 in der Lage, die für die Verbreitungsstrategie der Art notwendigen
Strecken zurückzulegen oder zumindest die Eier auf eine hohe "Startposition” in
den Bäumen zu bringen.
Der Feinddruck durch Singvögel sowie Störungen durch Parasiten spielen bei die-
ser Art aufgrund der extremen jahreszeitlichen Einnischung eine geringere Rolle
als bei den Sommerarten. Das Gleichgewicht einer Population ist dadurch wohl
SIEDLUNG WALD HALBTROK- "DA WALD HALBTROK- "DA!
| Garten | KENRASEN Moos“ 2 1988 Garten Wasserwerk KENRASEN Moos
SiS SIM ISIN WaS |WaM WN HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
2InSUVB IE 2 = = 24 2 pers (8, 42 I el! „a2, 2 Haze
- mar 30 vw See WM 10 - 65 zzus Sg se Aug ARE
2443 a6 8 50 = 76 Mark. 8 7 Ur 2732 2 = 0 a2
aus far mE er =; = - 10 wi. = 0 = = 0 = 0 UBER
weniger störanfällig. Dies ist eine der Voraussetzungen für eine K-Strategie, denn
der Totalausfall einer lokalen Population könnte nur schwer wieder durch koloni-
sierende Individuen wettgemacht werden.
Odezia atrata
Auch diese tagaktive Art wurde bei der Auswertung ausgeklammert, da sie in Licht- |
fallenfängen nicht erfaßt wurue. Es handelt sich vermutlich um eine Art inter-
mediären Strategietyps die in die 5. Gruppe einzuordnen ist.
GEOMETRINAE
Geometra papilionaria (2? Individuen)
Distanzen: ?
ge oligophag an einer Reihe von Laubgehölzen; das an HM 1986 fest-
gestellte Stück stammt zumindest aus dem Ruderal (150-300 m).
Verbreitungsstrategie: K-Stratege, 6. Gruppe
164
a
Comibsena pustulata
Distanzen: 1-2
Larvalökologie: monophag an Eiche. Die vier 1986 gefangenen Exemplare flogen die
an HO postierte Falle an, in deren unmittelbaren Nahe größere Eichenbestände
existieren.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Hemithea aestivaria (30 Individuen)
Distanzen: 2; der naufigkeitssradient zwischen WaN und WNo auf nur 50 m Sitrek-
ke weist vielleicht auf Barrieren gegen die Verbreitung hin.
Larvalökologie: die Raupenfutterpflanzen weisen H. aestivaria als Art der Wälder
und (yor Ilem) der Waldränder aus. Demenisprechend konnte bisher im Offen-
land \HM) kein Exemplar nachgewiesen werden. Die normalerweise im Rahmen
A epersionsaktivität und des trivial movement zurückgelegten Distanzen liegen
wohl unter m
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Thalera fimbrialis (16 Individuen)
Distanzen: 2-3 h
Larvalökologie: die Raupen fressen an einer Reihe von niedrigwachsenden Pflan-
zen, die I. fimbrialis als xerothermophil auszeichnen. Im Flughafengebiet stellt
wohl die Gemeine Schafgarbe (Achillea millefolium) die Haupt Nahrunssnucile
dar. Das an der, Würmau (Au) festgestellte © könnte vom Flughafengebiet her
zugeflogen sein (Mindestdistanz 700 m). Die Gemeine Schafgarbe wächst jedoch
auch hier vereinzelt, Im Siedlungsgebiet wurde die Art noch nie beobachtet. Die
istanzen von | N (Zuflug in den Garten), vielleicht aber auch von 300 und 700 m
> SiS und SiM), werden über biotopfremdes Gebiet offensichtlich nicht bewäl-
tigt.
Verb räirmusetraiegie K-Stratege, 6. Gruppe
Hemistola chrysoprasaria (2 Individuen)
Distanzen: vermutlich 2; dies gilt vielleicht nur für das trivial movement von H.
ar KOCH 1984) erwähnt ein neuerliches Auftreten in Sachsen, wo-
bei sicherlich größere Distanzen zurückgelegt worden sein müssen.
Larvalökologie: die Raupen dieser Art sind auf Waldrebe (Clematis vitalba, -viti-
Ene) spezialisiert, welche im Wasserwerk, dem Fundort dieser Art, vorkommt.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe;
Iodis lactearia (16 Individuen + einige dämmerungsaktive Exemplare)
Distanzen: 1-2
Larvalökologie: die Raupenfutterpflanzen charakterisieren diese Art 1 Bewohner
der etwas feuchteren Wälder und deren Ränder. Im Offenland (HM ‚ aber auch
n baum/buschbestandenen Standorten mit etwas stärkerem Offenlandcharakter
SiM, WaN, HW, Mo/1985) konnte kein Exemplar nachgewiesen werden. Die Dis-
ersionsaktivitäten von J. Jlactearia über biotopfremdes Gebiet scheinen sich in
ereichen von wenigen 100 m abzuspielen, wenn nicht sogar unter 100 m.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
STERRHINAE
Sterrha serpentata
Distanzen: 1-2; tagsüber wurden Flüge über ca. 50 m beobachtet.
Verbreitungsstrategie: K-Siratege, 6. Gruppe
Sterrha muricata (15 Individuen)
Distanzen: 1-2; das im Untersuchungsgebiet wie auch überregional nur lokale Vor-
kommen ist ein erster Hinweis auf vergleichsweise geringe Mobilität. Distanzen
von 1,2 Zuflug in den Garten) und 900 m (Zuflug, Wasserwerk? WaM und
HW>SiS) liegen außerhalb der normalen Dispersionsaktivität.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Sterrha biselata (94 Individuen)
Distanzen: 2; im reinen Offenland (HM) wurde diese vor allem an Waldränder ge-
bundene Art noch nie gefunden. Die im "trivial movement” zurückgelegten Di-
stanzen liegen im Bereich von wenigen 100 m und wohl eher darunter. Ein Kilo-
meter wird so gut wie nie bewältigt.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
165
1-2 SIEDLUNG WALD HALBTROK- "DA!
Sterrha inquinata (1 Individuum)
Distanzen: vermutlich 2
Larvalökologie: die Raupen leben an trockenen Pflanzenresten; 5. inquinata wird wie
die folgende Art vor allem in Sekundärlebensräumen, die vom Menschen geschaf-
fen wurden, angetroffen. Siehe Bemerkungen bei S. seriata.
Populationsbiologie: bivoltin
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Sterrha seriata (3 Individuen)
Distanzen: vermutlich 2
Eee die Raupe frißt "dürre, verwelkte oder modernde Reste von nie-
drigen Pflanzen und Laub, Moos und Flechten" (KOCH, 1984). In Mitteleuropa
scheinen sekundäre Lebensräume in der Nähe menschlicher Behausungen bevor-
zugt zu werden. Vielleicht fand $. seriata auf diese Weise einen stabileren Le-
bensraum als das von Natur aus vorprogrammiert war. Beobachtungen des Verfas-
sers in Südeuropa (Süditalien kennzeichnen die dortigen Populationen dieser Art
eher als stark dynamisch, die ubiquitär anzutreffenden Individuen als mobil, und
die Strategie im r-K-Kontinuum mehr in Richtung r-Ende verschoben.
Populationsbiologie: bivoltin
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Sterrha dimidiata (41 Individuen)
Distanzen: 2, wie Sterrha biselata
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Sterrha emarginata (1 Individuum)
Distanzen: vermutlich 2-3 N
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Sterrha aversata
252 Individuen 10,9 % 9 - Rate
191 markiert 8 Wiederfänge
Tab. 94: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Sterrha aversala.
WALD HALBTROK- "DA
1+2
Garten | KENRASEN MOOS 2 1988 Garten Wasserwerk KENRASEN M ı
SiS SIM |SiN WaS|WaM WN HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
> par 1,031 un, Bl Eor>. SUB 6 68. ,22.pan 22 „37 9,.20 Na. ae
res a2: At na. 43 - oe a ul Sm u ran,
= BouTe RR RE ARE NET. 3 50 de 20 55 8: 16.1057. 200 - Iias RES
a2 DU Hermes == - 609 - 7 SNmaN ia SG SERIE 1; +4
iz 8 19 ARE Va SZ 3 56 Mark. 19 61 Braga Ze Amann
a AN ee - =. WAR. aa\5 er SEE Te
Wiederfang-Quote: in beiden Generationen niedrig! An WaS sind alle 5 Wieder-
& e methodisch zu erklären: Beim täglichen Betrieb der Falle wurden die Stücke
(30) durch die Lichtwirkung einen Tag lang festgehalten. Längere Fang/Rückfang-
intervalle waren hier nicht zu beobachten und es ereignete sich auch kein Zweit-
wiederfang.
Ein & wechselte von einer Nacht zur nächsten den Ort (WaS>SiN) und 2 oc
wurden SiN unter "regulären" Bedingungen (fangfreie Nacht dazwischen) wieder-
‚gefangen. Auch hier betrugen die Verweilzeiten jeweils nur 2 Tage.
Distanzen: ?-3,; 1988 waren an WaS auch starke Nacht-zu-Nacht-Fluktuationen
festzustellen.
Larvalökologie: obwohl S. aversata ihre Raupenfutterpflanzen so gut wie überall
auffinden könnte, ist diese Art im reinen Ofienland (HM) vermutlich nicht boden-
ständig; sie bevorzugt geschütztere Standorte anddeikeg‘ Schutz vor Luft-
feinden), wie dies auch die leichten Häufigkeitsgradienten im Wasserwerk und i
Garten zeigen. Die beiden also offensichtlich nach HM zugeflogenen dd 1987)
wurden in Nächten mit starkem bzw. leichtem Westwind festgestellt.
Populationsbiologie: bivoltin; die 99 sind an offeneren Standorten unterrepräsen-
iert, für sie ist zur Gewährleistung der Fortpflanzung offenbar ein stärkeres
Schutzverhalten entwickelt als bei den dd. h
Die f. remutata L. überwiegt im Untersuchungsgebiet 1986-1988 unabhängig von
SEHEhleehl, Standort, Generation und Jahr mit ca. 80 % der Gesamt-Individuen-
zahl.
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
166
ee a
——— er
Cyclophora albipunctate (20 Individuen + einige dämmerungsaktive Exemplare)
Distanzen: 1-2
Larvalökologie: die Raupe ist auf Birke spezialisiert und akzeptiert nur selten Eiche
oder Erle; biotopfremde Stücke konnten bisher noch nicht nachgewiesen werden.
Der Häufigkeitsgradient zwischen WaN und WNo (50 m) könnte ein Indiz dafür
sein, daß schon die Distanz von ca. 70 m (=Entfernung von den in der Nähe von
WaN stehenden Birken). eine Barriere gegen die Mobilität dieser Art darstellt.
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Cyclophora punctaria
439 Individuen 42,0 % o- Rate
307 markiert 23 Wiederfänge
Tab. 95: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Cyclophora punctaria.
ı-3 SIEDLUNG WALD HALBTROK- "DACH, 1-3 WALD HALBTROK- esse
1987 | Garten | KENRASEN MOOS” % 1988 Garten Wasserwerk NRASEN M ®
SiS SIM|SIN WaS |WaM WN HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
or TE MEN RR) EN lec) 5 en dor ar ae ea. Er
Dzus NZ BURT SEHIN EN PEN - BEesstzus 0 ante UNSERE ER © - 116
dc 1 502 BwezInd- Kg 1) Se2 3 24 de 17 89 aa ans Ta a, u 160
99 Sog Kir Sue) 2 1 19.09 16 56 rerineiätg- Hozah 20. 08
Mark. - - 3 La I OR er er 3 AoyE"Markül, 32) Nasa, 1a ae a 267,
Wit. EHEN T- a er a ae S Wi Sr er een 228
Wiederfang-Quote: relativ niedrig; der einzige unter "normalen" Bedingungen, d.h.
bei dazwischenliegenden fangfreien Nächten wiedergefangene Falter war ein d an
HO nach 6 Tagen.
Im Garten ergab sich 1988 bei täglichem Fang folgendes Bild: Sämtliche 19 Erst-
wiederfänge eriolsien nach einem Intervall von nur I Tag! Nur 3 Tiere wurden
ein weiteres Mal gefangen, zwei davon wieder nach einem 1-Tages-Intervall,
eines, ein Weibchen, nach 3 Tagen, was eine Verweildauer von 4 Tagen ergibt.
Die mittlere Verweildauer beträgt demnach sehr niedrige 1,3 Tage.
Die Wiederfangquote 1988 im Garten betrug in der 1. Generation 4/11=36,4 %,
in der 2. Generation 13,6 %. Vielleicht spielen hierbei unterschiedliche Disper-
sionsaktivitäten eine Rolle.
Die 09 sind im Wiederfangergebnis mit 2/19=10,5 %, unterrepräsentiert, sie
‚scheinen j.gseh längere Verweilzeiten zu aufzuweisen (s.o.).
Distanzen:
Larvalökologie: die Raupe lebt monophag an Eiche und nimmt nur selten Birke an.
An HW trat C. punctaria in beiden Jahren erst in der y Generation auf, hier al-
lerdings nicht selten. Einzelstehende Eichen (2-3 m hoch) befinden sich in ca. 100 m
Entfernung. Dies könnte ein Hinweis darauf sein, daB die Falter der I. Gene-
ration recht ortstreu sind, die der 2. Generation in beiden Geschlechtern Distan-
zen von mindestens 100 m jedoch bioblemies bewältigen.
Die Distanz von 1 km über biotopfremdes Gebiet (Zuflug nach HM) liegt in bei-
den Generationen nicht im Bereich der normalen Dispersionsaktivilät.
Populationsbiologie: bivoltin + eine partielle 3. Generation; in beiden Generationen
Wenie proterandrisch!' Während der Flugzeit werden immer wieder Schübe von
frischen Faltern festgestellt, die auf eine kontinuierliche Emergenz hindeuten.
Vielleicht spielt bei dieser Art die Mortalität eine größere Rolle als bei anderen
Arten. l
Verbreitungsstirategie: K-Stratege, 5. Gruppe
Cyclophora linearia (4 Individuen)
Distanzen: vermutlich wie C. punctaria
Larvalökologie: die Raupe ist vor allem an Rot-Buche, jedoch auch an Eiche, Birke
ung. Heidelbeere zu finden. Bisher konnten keine biotopfremden Tiere festgestellt
werden.
Populationsbiologie: im Untersuchungsgebiet bivoltin
Verbreitungsstrategie: vermutlich K-Stratege, 5. Gruppe
Calothysenis griseata (112 Individuen + tagsüber einige weitere Exemplare)
Distanzen: 3
Larvalökologie: an Ampfer- (Rumex) und Knötericharten (Polygonium, Fallopia) ge-
bunden, die 3 HM-Exemplare 1986 stammen zumindest aus dem Ruderal (150-300 m).
Populationsbiologie: bivoltin
Verbreitungsstrategie: r-Siratege, 3. Gruppe
167
Scopula immorata (66 Individuen + tagsüber einige weitere Exemplare)
Distanzen: ?; für die ung der Distanz von 1 km (z.B. ein Zuflug vom Flug-
hafengebiet in den Garten) konnte noch kein Nachweis erbracht werden,
Larvalökologie: im Elushalenneliel. dürfte unter den in KOCH 1984) enannten
Raupenfutierpflanzen vor allem die Gemeine Schafgarbe (Achillea mille olium) in
Frage kommen. Die Art ist somit in einer besonderen Weise an die Schafbe-
weidung angepaßt, da diese Pflanzen von den Schafen stehen gelassen werden.
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Scopula nigropunctata (70 Individuen)
Distanzen: 1-2
LEEVRICHICRE die Raupen uslszpllanzen charakterisieren S. nigropunciala als eine
an die iesen von äldern und Waldrändern gebundene Art. Damit steht der
bisher fehlende Nachweis im reinen Offenland (HM) im Einklang. In diesem Sinn
sind auch die RISRrEgen a ende an SiM und HW, sowie der Häufigkeits-
radient zwischen WaN und o sowie zwischen SiN und WaS auf nur 50 bzw.
0 m Strecke zu beurteilen.
Verbreitungsstrategie: K-Stratege, 6. Giuppe
Scopula ornata (15 Individuen)
Distanzen: 2, selten 3; das im Garten festgestellte Exemplar ist vermutlich vom
Verbreitungszentrum am Flughafen herbeigeflogen (l km). Diese Distanz stellt je-
doch offensichtlich schon die Obergrenze der Dispersionsaktivität dar und wird
nicht regelmäßig geflogen; in der Fangnacht ging auch ein Gewitter nieder, dessen
böige Winde flugunterstützend gewirkt haben könnten.
Larvalökologie: im Untersuchungsgebiet an die Raupen dieser Art wohl vor al-
lem an Schafgarbe und Thymian (Thymus). Schon in einer Einbuchtung von ca. 30
m in den Wald hinein (HO) war ein deutlicher Häufigkeitsabfall festzustellen.
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Scopula rubiginata (?0 Individuen)
Distanzen: ?
Larvalökologie: in einer ähnlichen eise an trockene Wiesen gebunden wie die
vorige Art. Distanzen von I km (Zuflug in das Siedlungsgebiet) liegen offen-
sichtlich außerhalb der normalen Dispersionsaktivität und des trivial movement.
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Scopula immutata
Distanzen: vermutlich 2;
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Scopula lactata (5 Individuen)
Distanzen: vermutlich 2-3
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
LARENTIINAE
Scotopteryx chenopodiata
siehe verringerte Fallendistanzen (8.3.)
754 Individuen 44,6 % 9- Rate
380 markiert 27 Wiederfänge
Tab. 96: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Scotopteryx chenopodiata.
SIEDLUNG WALD HALBTROK- "DA WALD HALBTROK- "DA!
1987 ' Garten ' KERRAÄSEN Da y 1988 Garten Wasserwerk KENRASEN HOSE
Mb
SiS SIMISIN WaSıWaM Wa HO HM HW SN WaS WaN WNw WNo HO HM HW Au We
> par er 12,143 et; 37 (8) 214 2 par. 3 = 2oreg
zus: Miss. 8 ul en ze DIL = - smart zus. 95 4 T Frag
dd 2 6 - 2 =
29 = 5 r z Rn
_ 3.702 FBaSg» oe a
1 1 = Ze
|
168 |
Wiederfang-Quote: ist als hoch einzustufen (siehe Wasserwerk). Auch die Wie-
derfänge am Flughafen deuten_auf lange Verweildauern hin: Der Wiederfang er-
folgte nach durchschnittlich 4,7 Tagen we 322 b
Distanzen: 1-2; die Strecke vom Ruderal (häufiges Vorkommen von chenonodiata)
zum HM-Fangplatz (ca. 150-300 m) kann in den meisten Jahren zurückgeiegt
werden. Im Normalfall werden die 200 m in das Innere des Moorbirkenwäld-
chens nicht bewältigt; an dessen Rand dagegen war S. chenopodiata regelmäßig
anzutreffen. Die Siedlungs-Stücke sind vermutlich zugeflogen.
ulationsbiologie: die 99 sind ortsbeständiger und haben längere Verweilzeiten
Wasserwerk, Flughafen). Im Ort flogen 1988 dementsprechend nur d’d' zu.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Ansitis praeformata (2 Individuen)
Distanzen: vermutlich 2-3 h Bi
Larvalökologie: auf Hariheu (Hypericum) spezialisiert; im Garten wächst diese Fut-
terpflanze erst seit 1988, die Entwicklung, die sich über den Winter erstreckt,
konnte also nicht im Garten abgelaufen sein, das hier nachgewiesene d kam aus
mindestens 150 m Entfernung (Bereiwaldsan))
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe; es handelt sich um
die ersten Nachweise für den Münchner Norden. Für die offensichtlich stattge-
fundene Kolonisation durch diese mehr montane Art waren Flugleistungen von
durchschnittlich mindestens 1 km/Generation die Voraussetzung.
Anaitis efformata
197 Individuen 15,4 % 9- Rate
26 markiert 3 Wiederfänge
Wiederfang-Quote: in der 1. Generation hoch, in der 2. Generation niedrig, Stich-
probe noch zu gering; diese Feststellungen besitzen einen noch recht hypotheti-
schen Charakter, da sie auf einem Sinzigen mehrfach gefangenen Individuum
basieren: An WaS wurde 1988 in der 1. Generation bei täglichem Betrieb der
Lichtfalle ein & viermal bei Intervallen von 3, 1 und 4 Tagen gefangen, die
Verweildauer betrug also 8 Tage.
In der 2. Generation wurden 15 Individuen markiert und keines rückgefangen.
Distanzen: 3,
Larvalökologie: monophag an Tüpfel-Hartheu (Hypericum perforatum); an vielen der
Fundorte kommt die Raupenfutterpflanze nicht ın der näheren Umgebung vor (z.B.
Garten und HM). Die Häufigkeit an diesen Stellen ist daher bemerkenswert und
deutet auf, relativ hohe Dispersionsaktivitäten hin.
Erpulat onsbiologie: bivoltin, mit starken Fluktuationen von Generation zu Genera-
ion (die 1. Generation ist meist schwächer), aber auch von Jahr zu Jahr.
Verbreitungsstrategie: r-Stratege, 3. Gruppe; das Häufigkeitsmuster innerhalb des
Fallennetzes entspricht interessanterweise dem der typischen Wanderfalter.
Acasis viretata (2 Individuen)
Distanzen: 1-2
Larvalökologie: bisher konnten, nach den in KOCH (1984) genannten Raupenfutter-
pflanzen beurteilt, keine biotopfremden Stücke nachgewiesen werden.
Populationsbiologie: im Gebiet univoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Nothopteryx polycommata (6 Individuen)
Distanzen: 1-2
Larvalökologie: bisher konnten, nach den in KOCH (1984) genannten Raupenfutter-
pflanzen beurteilt, keine biotopfremden Stücke nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Nothopteryx carpinata (9 Individuen)
Distanzen: 1-2 . i j
Larvalökologie: die Raupe ist an Espe, Birke, Sal-Weide und Hainbuche zu finden.
Bisher keine biotopfremden Tiere
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Lobophora halterata (2 Individuen)
Distanzen: vermutlich 2
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
169
Pterapherapteryx sexalata (50 Individuen)
Distanzen: 2-3
Larvalökologie: die Raupe lebt oligophag an Weide und DADBe.: die 150-300 m-
Distanz vom Ruderal zum Standort HM wird in beiden Geschlechtern konstant
und von zahlreichen Stücken bewältigt; in den Garten (die nächsten einzelste-
henden Weiden befinden sich ca. 200 m entfernt) konnten bisher nur 2 zuge-
flogene Stücke nachgewiesen werden. Der Häufigkeitsgradient im Wasserwerk
spricht für Barrieren gegen eine freie Mobilität dieser Art.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Operophthera brumata
228 Individuen 0 %* o-Rate
169 markiert 30 Wiederfänge
* die 99 sind flügellos und werden daher mit Lichtfallenfängen nicht erfaßt.
Tab. 97: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Operophthera brumata 1988; 1987 war ein schlechtes Flugjahr, es wurden nur 3
Individuen markiert.
WALD HALBTROK- —
198 Garten Wasserwerk M ;”
SN WaS WaN WNw WNo HO HM HW Au We
Ipar. 60 64 Bund ou Br A 322.8‘
I zus. - 18 - - - - - - - - 18
Mark. 53 79 Buip Zus = 16. Rs N
Wi. 7100023 Sr er Sl rae =: 30
Wiederfang-Quote: hoch; in der Flugzeit 1988 erfolgte im Garten an beiden Stand-
orten (SiN und WaS) bei zwei Ausnahmen der Lichtfang parallel und täglich.
Das Ergebnis verdeutlicht die Abhängigkeit vom Standort: An SiN konnten pro-
zentual gesehen weniger J’d' rückgefangen werden, als an WaS.
Die mittlere Verweildauer liegt insgesamt mit 3,0 Tagen auf einem für diese
Methodik hohen Niveau. Interessant sind die 3 längsten festgestellten Intervalle
von 8, 11 und 16 Tagen. Die beiden letztgenannten J’d' überdauerten damit eine
einwöchige Kälteperiode mit Temperaturmaxima von -5 Grad Celsius. Die Nacht-
temperaturen betrugen bis zu 10 Grad Minus und es fielen ca. 10 cm Schnee.
Distanzen: Id 2, 2%]
Larvalökologie: die Raupen fressen an aaab ehölzen. Das an HM nachgewiesene J
stammt vermutlich aus dem Ruderal (150-300 m entfernt).
Verhältnismäßig große Nacht-zu-Nacht-Fluktuationen an SiN, dem mehr offenland-
ähnlichen der beiden Garten-Standorte weisen wohl auf einen erhöhten Anteil
Tiere hin (siehe auch "Wiederfang-Quote”). Im gleichen Zeitraum
waren die Fangergebnisse an WaS (30 m e Lfernt) recht konstant.
Populationsbiologie: siehe REICHHOL (1984)
Verbreitungsstrategie: K-Stratege, 5. Gruppe; es handelt sich um keine K-Strategie
im "klassischen’ Dina. da die 99 vergleichsweise viele Eier produzieren Taiche
REICHHOLF, 1.c.); die Strategie ähnelt in manchen Aspekten der von Alsophila
aescularia (siehe dort) Es zeigten sich allerdings deutlich längere Verweildauern
der dd von ©. brumata. Eine (Wind-)Verdriftung von Jungraupen, die sich
einem Faden abseilen, spielt bei dieser Art sicherlich eine Rolle t ICHHOLF, |.c.).
Oporinia dilutata
120 Individuen 18,0 % o- Rate
96 markiert 9 Wiederfänge
Wiederfang-Quote: durchschnittlich; 8 Wiederfänge ey im Garten (67 Mar-
kierungen) bei täglichem Feuß und erklären sich zum Großteil durch ein Festge-
halten-Werden im Bann der Lichtwir . Ein d wurde zum zweiten Mal wieder-
efangen (nach 2 Ein-Tages-Intervallen) und ein anderes J ging viermal in die
ichtfalle, wobei es vom 2. auf den 4. Tag den Ort wechselte (Was> SiN = 30 m).
Sonst lagen zwischen Fang und Wiederfang nur Intervalle von einem Tag.
Im Wasserwerk flog ein © innerhalb von 2 Tagen mindestens 120 m (WNw>
.WNo). Hier waren 1988 10 Individuen markiert worden.
Distanzen: 2, EaRne
Larvalökologie: wie die vorige Art an Laubbäumen, bisher konnte noch kein biotop-
fremdes Stück nachgewiesen werden (z.B. HM). Der Häufigkeitsgradient zwi-
schen WaN und o auf nur 50 m Entfernung könnte für Barrieren gegen die
freie, Beweglichkeit von O. dilutata sprechen.
Verbreitungssirategie: K-Stratege, 6. Gruppe
170
Oporinis autumnata
46 Individuen 10,5 % 9 - Rate
32 markiert 3 Wiederfänge
Wiederfang-Quote: relativ hoch, Stichprobe noch zu klein; es handelt sich, um zwei
dc 1988 am Standort WaS (täglicher Betrieb der Falle). von denen eines nach
einem Intervall von 1 Tag, das andere am 4. und 5. Tag nach der Erstmarkierung
‚wiedergefangen wurden.
tanzen: |- I i \
Larvalökologie: die Raupe wird an Weide, Birke, Ahorn und Lärche gefunden, bio-
topfremde Tiere konnten bisher noch nicht beobachtet werden.
Verbreitungsstrategie: K-Siratege, 6. Gruppe; O. aufumnata scheint im Vergleich
zur vorigen Art lokaler vorzukommen und ortstreuer zu sein, was mit dem weni-
ger breiten Wirtspflanzenspektrum zusammenhängen könnte.
Triphosa dubitate (19 Individuen)
Distanzen: 2. 3 ee
Larvalökologie: der Anflug bzw. die Kolonisation der kleinen gartenähnlichen Fläche
am Sendergebäude muß, nach den in KOCH 1984) Benannten Futterpflanzen
beurteilt, über ca. 350-400 m freies Gelände hinweg erfolgt sein.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Calocalpe cervinalis
110 Individuen 60,4 % 9 - Rate
89 markiert 2 Wiederfänge
Wiederfang-Quote: durchschnittlich; ein d. wechselte 1987 in einem Zeitintervall von
1 Tag den Ort (WaS>SiN = 30 m). Ein 9 konnte im selben Jahr an WaM noch
10 Tage nach der Erstmarkierung nachgewiesen werden! In sich geschlossene Ge-
ländestrukturen scheinen die Verweildauern zu steigern.
tanzen: 2, die oo vielleicht nur 1-2
Larvalökologie: mönophag an Berberitze (Berberis vulgaris); biotopfremde Stücke
konnten bisher noch nicht nachgewiesen werden, lediglich vom Standort HW ist
das nächste Vorkommen der Futterpflanze ca. 150 m entfernt. Dementsprechend
wurde auch nur 1 Individuum nachgewiesen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Philereme vetulata (154 Individuen)
Distanzen: 3
Larvalökologie: oligophag an Kreuzdorn (Rhamnus cathartica) und Faulhaum (Fran-
gula ae), die regelmäßig im Offenland (HM) auftauchenden Stücke (auch ein 9
sind mindestens 800-1000 m geflogen und deuten auf hohe Dispersionsaktivitäten
hin. Auch die zahlreichen HW-Exemplare stammen aus mindestens 150 m Entfer-
nung.
Populationsbiologie: von Generation zu Generation treten z.T. starke Fluktuationen
auf.
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Philereme transversata (19 Individuen)
Distanzen: 1-2; der Häufigkeitsgradient WaS/SiN auf nur 30 m Entfernung deutet
auf geringe Dispersionsaktivitäten i h
| Larvalökologie: Larvalansprüche wie bei P. vetulata, zusätzlich wird noch Schlehe
| akzeptiert. Bisher konnten keine biotopfremden Tiere beobachtet werden.
| Verbreitungsstrategie: K-Stratege, 6. Gruppe
Lygris prunata (36 Individuen)
Distanzen: 1-2; wie P. transversata k
Larvalökologie: die Raupe ernährt sich von Stachelbeere, Johannisbeere, Schlehe,
Weißdorn und Eiche; bisher keine biotopfremden Tiere
Verbreitungsstrategie: K-Stratege, 6. Gruppe
)
Lygris testata (3 Individuen)
Distanzen: vermutlich 2 \ i
| Larvalökologie: die Raupe bevorzugt Heidekraut (Calluna) und Heidelbeere (Vacci-
nium), da diese im ateruchungsgebiet jedoch fast nicht verfügbar sind, weicht
diese Art auf Espe, Weide und Birke aus. Solche Standorte dürften aber wohl als
| suboptimal zu charakterisieren sein. Bisher konnten keine biotopfremden Tiere
festgestellt werden.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
171
ZT — —m— =
Lygris populata
Distanzen: vermutlich 2
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Lygris mellinata (6 Individuen)
Distanzen: 2-4
Larvalökologie: die Raupe ist auf Johannisbeere und Stachelbeere spezialisiert,
bisher keine biotopfremden Stücke
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe; diese Art unter-
nahm in den letzten ca. 50 Jahren eine Arealausweitung quer über ganz Süd-
bayern, wobei zumindest schubweise auch größere Strecken von mehreren Kilome-
tern bewältigt werden mußten.
Lygris pyraliata (116 Individuen)
Distanzen: ?2
Larvalökologie: an Labkraut (Galium) und Bach-Nelkenwurz (Geum rivale); trotz
der weiten Verbreitung im Untersuchungsgebiet konnten an HM keine Stücke
nach eWieacn werden. Die Distanz von 1 km liegt offensichtlich nicht im Bereich
der Dispersionsaktivität und des trivial movement dieser Art.
verbreitungsstrategie: intermediärer Typ, 4. Gruppe
Cidaria fulvata (80 Individuen)
Distanzen: 2(-3)
Larvalökologie: die Raupe ist auf Rosen spezialisiert; im Wasserwerk ist in einer
Entfernung von 100 m von einem Rosenbestand (WaN>WN J ein Häufigkeitsabfall
auf ca. die Hälfte zu beobachten. Das 1986 nach HM (ca. 1 km] zugeflogene
Stück stellt wohl die Obergrenze der normalen Dispersionsaktivität oder vielleicht
schon eine Ausnahme dar.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Plemyria rubiginata (75 Individuen)
Distanzen: 2-3
Larvalökologie: die Raupe lebt an Erle (A/nus); das HM-c' (1988) legte mindestens
800 m vom nächstgelegenen Standort der Raupenfutterpflanze zurück. Die zahl-
reichen im Garten festgestellten Stücke müßten zumindest aus 200-300 m Ent-
fernung gekommen sein, wenn nicht doch zuweilen auch auf andere Futterpflan-
zen ausgewichen wird. ”
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Thera variata (64 Individuen)
Distanzen: 2, s
Larvalökologie: T. variata ist an Nadelbäume gebunden. Der Nachweis für ein
Sich-Entfernen von der Futterpflanze um 50 m wurde für eine Reihe von Stand-
orten erbracht, die Distanz von 1 km (Zuflug nach HM) est jedoch außerhalb
der normalen Dispersionsaktivität, Am Franzosenhölzl konnte 1989 ein o ca. 500 m
vom nächsten Nadelbaum (Fichte) entfernt gefangen werden (2. Generation).
Populationsbiologie:, bivoltin, dazu zwei Exemplare einer 3. Generation; proterandrisch
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Thera obeliscata (113 Individuen)
Distanzen: 2 (-3)
Larvalökologie: die Raupen fressen vor allem an Kiefern, vermutlich aber auch an
Fichte und Wacholder; das an HM 11986) in einer windstillen Nacht festgestellte
Exemplar stammt also aus mindestens 800 m Entfernung (Friedhof Hochmutting).
In 5 100 m Entfernung zum Standort HW stehen einige kleine Kiefern (ca. 2 m
hoch), die als Herkunft für die beiden dort nachgewiesenen Falter in Frage kom-
men.
Populetionsbiologie: eine 2. Generation wird zwar nachgewiesen, sie ist jedoch recht
unvollständig.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe; im Zuge einer günstigen Be-
standsentwicklung kam es 1986 offenbar bei den meisten der an Kiefern gebunde-
nen Arten zu Verbreitungsschüben.
Thera juniperata
53 Individuen 11,8 % o- Rate
34 markiert kein Wiederfang
Wiederfang-Quote: niedrig, Stichprobe noch zu klein
Distanzen: 2, bei Besiedelängsmar sungen auch 3
172
Larvalökologie: nach KOCH (1984) monophag an Wacholder (Juniperus communis),
siehe jedoch die Bemerkungen unter "Verbreitungsstrategie”. Biotopfremde Stük-
ke konnten bisher noch nicht beobachtet werden.
Verbreitungsstrategie: intermediärer Tp: 5. Gruppe; eine Arealausweitung, ge-
tützt auf die in Gärten häufig angepflanzten Zierwacholder, erwähnt MEI CKE
(1984). Solche Arealausweitungen fanden im Laufe dieses Jahrhunderts auch in
üdbayern statt. Da Wacholder in der weiteren Umgebung des Untersuchungs-
ebietes nicht in der Natu: vorkommt, bleibt nur eine Trittsteinbesiedlung über
acholder in Gärten und Friedhöfen. Vermutlich kann die Art jedoch unter sub-
optimalen Bedingungen zumindest kurzzeitig auf andere Nadelhölzer zurückgrei-
fen. Dies wird vor allem bei solchen Besiedelungsprozessen eine Rolle spielen.
Thera firmata
249 Individuen 61,2 % o9- Rate
215 markiert 2 Wiederfänge
Tab. 98: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Thera firmata.
SIEDLUNG WALD HALBTROK- "DACH, WALD HALBTROK- "DA
1987 | Garten | M % 1988 Garten Wasserwerk KENRASEN MOO
sis SIM|SIN Was |WaM WaN HO HM HW Mb SiN WaS WaN WNw WNo HO HM HW Au We
apa 66 2 sms us = 139 Zpa. 1 13 Sm 2! N o.9 le
ZA =, 23 - 5 - > - - A zus: - 7 - - - RS HE - -
dd Fun s6 Ale 8 AR RD - 58 dd 4 7 Sa Zn Po] -
99 a 62 23 SEE Sm _ 108 99 SS SE IB = Aa he
Mark. E75 AS 1 32 Du - 162 Mark. 7) 2.20) 3 or 142.02 = 08
Wf. = 1 Ne Suamie _ 1 wi. = 1 Se 2a Sa... o ne
Wiederfang-Quote: niedrig; 1987 wurde ein 9 nach 3 Tagen, 1988 ein J nach 1 Tag
wiedergefangen.
Distanzen: 1-
Larvalökologie: monophag an Kiefer; im Siedlungsbereich spiegelt sich die Ökologi-
sche Trennung im Fangergebnis der verschiedenen Standorte gut wieder. Auch ım
Wasserwerk weist der Häufigkeitsgradient darauf hin, daß schon Entfernungen von
ca. 100 m ein Hindernis für eine Verbreitung darstellen können.
Die immer wieder (in windigen Nächten) im Öffenland (HM) auftauchenden Exem-
plare - 1987 auch ein fertiles 9 - sind mindestens 800-1000 m geflogen und zeu-
en von weiten Vorsioßen über biotopfremdes Gebirt. Im gleichen Sinn ist das
988 am Würmkanal (Au festgestellte @ zu verstehen; in einer Entfernung von
ca. 200 m existiert eine ca. 10 Jahre alte Kiefernschonung.
Populationsbiologie: proterandrisch
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Chloroclysta siterata (14 Individuen)
Distanzen: 2 Er
Larvalökologie: an Laubhölzern, bisher keine biotopfremden Tiere; für die Überwin-
ter scheinen Häuser, Schuppen, Mauern und dergleichen von Vorteil zu sein.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Dystroma truncata (181 Individuen)
Distanzen: 2
Larvalökologie: recht polyphag, D. truncata ist jedoch eine typische Art der Wäl-
er und deren Ränder. Das HM-Stück stammt mindestens aus dem Ruderal
150-300 m). Im Wasserwerk und im Garten besteht ein recht deutlicher Häu-
igkeitsgradient, der auf normale Flugaktivitäten von unter 200 m außerhalb des
Habitats hinweist.
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Dystroma citrata (38 Individuen)
Distanzen: 2 _ h EN:
Populationsbiologie: im Gegensatz zur vorigen Art univoltin
Verbrei strategie: K-Stratege, 6. Gruppe; sowohl im Untersuchungsgebiet als
auch in der unteren Hochebene Südbayerns lokaler verbreitet als D. truncata.
Xanthorhoe fluctuate (88 Individuen)
Distanzen: ?; die Häufigkeitsgradienten im Wasserwerk und im Garten sowie der
bisher fehlende Nachweis an HM könnten als erste Hinweise dafür verstanden
werden, daß im "trivial movement” die Maximaldistanzen einige 100 m betragen.
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Iyp, 5. Gruppe
Erg sr
173
TE — —
Xanthorhoe montanata (27 Individuen + tagsüber > 500 Exemplare)
Distanzen: 1-2
Larvalökologie: für das lokal so überaus zahlreiche Auftreten im Birket stellt ver-
mutlich die Häufigkeit der Himbeere die Ursache dar.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Xanthorhoe spadicearia (381 Individuen)
Distanzen: 2(-3?); das polarisierte Häufigkeitsverhältns WaN/WNo auf nur 50 m
Distanz deutet vielleicht auf Barrieren gegen die freie Mobilität dieser Art hin. Im
Vergleich zur recht ähnlichen X. ferrugata dominiert X. spadicearia zahlenmäßig
im asserwerk, im Garten sind die Dominanzverhältnisse umgekehrt. Zwischen
diesen beiden Standorten (1,2-1,3 km Distanz) findet vermutlich kein nennens-
werter Austausch statt.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Xanthorhoe ferrugata
siehe Versetzexperiment (8.4.)
1023 Individuen 45,2 % o- Rate
406 markiert 25 Wiederfänge
Tab. 99: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Xanthorhoe ferrugata.
SIEDLUNG WALD HALBTROK- nl WALD HALBTROK- Da
1987 ı Garten | KENRASEN MOOS % 1988 Garten Wasserwerk NRASEN M 2
SiS SIM|ISN WaS|WaM WaN HO HM HW Mb SN WaeS WaN WNw WNo HO HM HW Au We
ZI par. 1 9: 15 63 87 33 46 57241 15 236 Xpar. «47 230 42 1929 29 Zem22 16 4 44
Z zus. - 434 En az 9 u 1 TO zus: ) = 1271 - - - ey, Se u = m
dd 1 1 11 22 6 21 17 3 10 4 96 dd 10 9 9 6 6 7 72 1 2 - 134
99 - 3 #1 16 1 3 8 2 7 - 5199 8 123 3 2 2 1 - - - - 13°
Mark. 1 4 22 38 6 24 25 BE 17 4 146 Mark. 15 208 10 7 8 8 1 1 2 - 26(
Wi. own a er SV - 1 wi 2.20 Da ee en © 7
Wiederfang-Quote: in beiden Generationen niedrig, im Wasserwerk duSeeEn höher;
Fast alle der Wiederfänge erklären sich durch ein Festgehalten-Werden im Bann
des Lichtes: Im Garten erfolgten 21 von 22 Rückfängen nach einem Intervall von
1 Tag, nur 1 S war nach 2 Tagen wiedergefangen worden. Zwei Jd' wechselten
dabei von WaS nach SiN (30 m). Es ereignete sich nur I Zweitwiederfang.
Im Wasserwerk konnten unter "regulären" Bedingungen (dazwischenliegende fang-
freie Nacht) 1987 ein J 3 Tage nach der Markierung BE werden. 1988
wurden zwei den Standort wechselnde JG beobachtet: Es, wurden hierbei die
Strecken, WNo> WaN 50 m) in 2 Tagen und WNw>WaN (100 m) in 10 Tagen
zurückgelegt.
‚Die o-Rate im Wiederfangergebnis entspricht in etwa der der Erstfänge.
Distanzen: in beiden Generationen 2-3; im Offenland wird die Art bevorzugt in
Nächten mit Wind nachgewiesen. j t
Populationsbiologie: bivoltin, in beiden Generationen proterandrisch; der o9-Rate von
9,0 % in der 1. Generation stehen 52,0 % in der 2. Generation gegenüber. Am
Sander WaS war diese Differenz bei einem Verhältnis von 32,2 % / 62,2 % noch
größer.
Verbreitungsstrategie: r-Stratege, 2. Gruppe
Xanthorhoe biriviata (10 Individuen + tagsüber 2 Exemplare)
Distanzen: 2
Larvalökologie: monophag am Echten Springkraut (Impatiens poll fangezei in der
Falle konnten bisher keine biotopfremden Tiere nachgewiesen werden, die beiden
tagsüber im Moos bei prallem Sonnenschein aktiven Exemplare Aeeen jedoch
entlang einer Hecke an einer Stelle, die ca. 100 m von der nächsten Raupenfut-
terpflanze entfernt ist. Langgestreckte Landschaftselemente wie Hecken oder
Bachbegleitfloren können also bei der Verbreitung von relativ spezialisierten
silvicolen Arten eine gewichtige Rolle spielen.
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Xanthorhoe designata (4 Individuen)
Distanzen: vermutlich 2
Populationsbiologie: bivoltin
Verbreitungsstrategie: vermutlich K-Stratege, 5. Gruppe
174
Ochyria quadrifasciata (363 Individuen)
Distanzen: 2; das stark polarisierte Häufigkeitsverhältnis WaS/SiN sowie die Tat-
sache, daß im Offenland (HM ‚nur einmal ein cd’ in einer windigen Nacht gefan-
gen wurde, charakterisieren diese im Vergleich zu den Xanthorhoe-Arten ei-
gentlich flugkräftig erscheinende Art als einen u biotoptreuen Waldbewoh-
ner. Das HM-Stück flog vermutlich aus dem Ruderal (150-300 m) herbei.
Populationsbiologie: im Untersuchungsgebiet abgesehen von 1 Exemplar, das Anfang
eptember gefangen wurde, nur univoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Nycterosea obstipata (1 Individuum)
Distanzen: 4
Verbreitungsstrategie: r-Stratege, 1. Gruppe
Calostigia olivata (14 Individuen)
Distanzen: 2
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Calostigia pectinataria (82 Individuen)
Distanzen: ?2
Larvalökologie: die Raupen fressen an Labkraut, Brennessel und Taubnessel; die
beiden an HM festgestellten Stücke stammen zumindest aus dem Ruderal (150-300 m).
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Lampropteryx ocellata (65 Individuen)
Distanzen: 1-2; die Häufigkeitsgradienten im Wasserwerk (auf 50 m Entfernung) und
im Garten (30 m) könnten Hinweise darauf sein, daß diese Art schon mit der
Bewältigung solch kurzer Distanzen Probleme hat.
Larvalökologie: die Raupen ernähren sich von Labkrautarten. Der fehlende Nach-
weis in der Mitte des Flughafens (HM) deutet auf Dispersionsaktivitäten unter 1 km
hin.
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Lampropteryx suffumata (14 Individuen)
Distanzen: 2.
Larvalökologie: auch diese Art ist auf verschiedene Labkrautarten spezialisiert, die
Habitatbindung scheint stärker zu sein als bei L. ocellata.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Coenotephria berberata (210 Individuen)
Distanzen: 2-3
Larvalökologie: monophag an Berberitze (Berberis vulgaris); dass HM-c won)
mußte vom Ort der Larvalentwicklung aus mindestens 800-1000 m weit geflogen
sein.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Euphyia cuculata (70 Individuen)
Distanzen: 2
Larvalökologie: die Raupe ist an Labkrautarten zu finden, die 3 HM-Stücke stam-
men vermutlich aus dem Ruderal 1150-300 m).
Eepnlationsbinlogie: im Untersuchungsgebiet wurde bisher nur 1 Generation festge-
stellt.
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Euphyia molluginata (4 Individuen)
Distanzen: vermutlich 1-2 h 2
Larvalökologie: wie E. cuculata, bisher konnten keine biotopfremden Stücke be-
obachtet werden.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
175
Euphyia bilinesta (126 Individuen + tagsüber viele weitere Exemplare)
Distanzen: 2-3; das stark polarisierte Häufigkeitsverhältnis im Garten (SiN/WaS)
spricht für Barrieren gegen die freie Mobilität dieser Art. _
Populationsbiologie: E. bilineata fliegt im Untersuchungsgebiet in einer partiellen 2.
eneration
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Diactinia capitata (3 Individuen)
Distanzen: vermutlich 1-2
Larvalökologie: monophag an Echtem Springkraut (/mpatiens noli-tangere); bisher
konnten noch keine biotopfremden Tiere beobachtet werden.
Populationsbiologie: im Untersuchungsgebiet steht der Nachweis einer 2. Generation
noch aus.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Diactinia silaceata (43 Individuen)
Distanzen: 2, >
Larvalökologie: oligophag an Weidenröschen (Epitobium), Echtem Springkraut und
Großem Hexenkraut [ ircaea han) lebend; bisher wurden alle Exemplare in
der Nähe der Raupenfutterpflanzen gefangen.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe; die Dispersionsaktivitäten dieser Art
scheinen im Vergleich zu D. capilata einhergehend mit dem erweiterten Wirts-
pflanzenspektrum auf einem etwas höheren Niveau zu liegen.
Electrophaes corylata (14 Individuen)
Distanzen: 2,
Larvalökologie: oligophag an einigen Laubhölzern, bisher keine biotopfremden Tiere
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Mesoleuca albicillata (30 Individuen + tagsüber viele weitere Exemplare)
Distanzen: 1-2; auch die in der Dämmerung gemachten Beobachtungen deuten auf
geringe Dispersionsaktivitäten hin. Fmmeal 2
Larvalökologie: die Raupen sind auf Him- und Brombeere spezialisiert; bisher wur-
den alle Exemplare in der unmittelbaren Nähe der Futterpflanzen beobachtet
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Melanthia procellata (5 Individuen)
Distanzen: 2 (-4?)
a monophag an Gemeiner Waldrebe (Clematis vitalba); bisher konn-
ten keine biotopfremden Tiere nachgewiesen werden.
Populationsbiologie: im Untersuchungsgebiet bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe; KOCH (1984) berichtet von der Neu-
kolonisatıon Sachsens innerhalb von einigen Jahren; hierbei müssen größere Strek-
ken zurückgelegt worden sein; solch große Distanzen liegen jedoch vermutlich
nicht im Bereich des "trivial movement’ dieser Art.
Epirrhoe tristata
364* Individuen 20 %** o- Rate
10 markiert kein Wiederfang
* tagsüber viele weitere Exemplare ** Stichprobe zu klein
Wiederfang-Quote: Stichprobe zu klein
Distanzen: 1. Generation 1-2; 2. Generation 2-3; im Wasserwerk fällt der starke
ar llagradien! schon auf einer Distanz von nur 50 m auf (WaN/WNo).
Larvalökologie: die Raupen ernähren sich von Labkrautarten; die beiden HM-Stük-
ke stammen vermutlich aus dem Ruderal (150-300 m). Im Garten konnte E. tris-
tata bisher nur in der 2. Generation nachgewiesen werden. Vielleicht sind dafür
zufliegende Individuen mit erhöhter Dispersionsaktivität (im Vergleich zur 1. Ge-
neration) verantwortlich.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
176
Epirrhoe alternata (766 Individuen + tags viele weitere Exemplare)
Distanzen: 3; ein 9 wurde tagsüber bei einem 500 m weiten Flug beobachtet, diese
Distanzen scheinen innerhalb der Grenzen der normalen Dispersionsaktivität zu
jegen.
Larvalökologie: wie E. tristata; im reinen Offenland (HM) ist diese Art häufiger als
die vorige Art anzutreffen. Im Garten erscheint sie schon in der 1. Generation.
Bevorzugter Lebensraum ist der Brennessel-Giersch-Sau Urtico dioicae-Aego-
podietum),, wenn dieser gut mit Klebkraut (Galium aparine) durchmischt ist.
Populationsbiologie: bivoltin
Verbreitungsstrategie: r-Stratege, 2. Gruppe
Perizoma alchemillata (233 Individuen)
Distanzen: 2 (-3?)
Larvalökologie: nach den in KOCH (1984) genannten Raupenfutterpflanzen beurteilt,
handelt es sich bei den beiden im Offenland HM beobachteten Stücken um Gä-
ste, die zumindest aus dem Ruderal stammen (150-300 m
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Perizoma bifaciata (1 Individuum)
Distanzen: vermutlich 2
Larvalökologie; oligophag an Gelbem Zahntrost (Orthanta lutea) und Gemeinem
Augentrost (Eu hrasia officinalis). Letztgenannte Pflanze ist im Flughafengebiet
verbreitet. Ob das Stück von dorther in den Siedlungsbereich eingeflogen ist, läßt
sich, im Moment nicht klären, bodenständig ist die Art jedoch im Garten sicherlich
nicht.
Populationsbiologie: die Bunpe überliegt nach KOCH (1984) meist mehrmals, was die
potentielle Wachstumsrate der Populationen dieser Art drastisch reduziert.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Perizoma blandiata
Distanzen: vermutlich 2
Larvalökologie: monophag an Gemeinem Augentrost (Euphrasia officinalis); siehe
Bemerkungen zu P. bifaciata
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Perizoma flavofasciata (3 Individuen)
Distanzen: 3
Laryalökologie: auf Lichtnelken (Silene) spezialisiert; auf ein Auftreten der Futter-
pflanzen kann bisweilen sehr rasch mit einem Kolonisationsversuch geantwortet
werden, wie dies 1986 schon im ersten Jahr der Verfügbarkeit der Futterquelle
eschah. Gemäß dem unsteten Auftreten der Wirtspflanzen dürften auch die
eobachteten hohen Austauschraten im Untersuchungsgebiet eine Anpassung an
dieses Phänomen ‚darstellen.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Hydriomena furcata (71 Individuen)
Distanzen: 2
Larvalökologie: H. furcata ist an das Vorhandensein von Weiden oder Heidelbee-
ren (Vaccinium myrtillus) gebunden. Die im Garten festgestellten Tiere müssen
also aus mindestens 200 m Entfernung zugeflogen sein, die HW-Stücke aus 150
m, jeweils ohne Sichtkontakt zur Lichtquelle.
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Hydriomena coerulata
9] Individuen 15,4 % o- Rate
26 markiert 1 Wiederfang
Wiederfang-Quote: hoch, Stichprobe noch zu klein. l Wasserwerk konnte 1988 ein
Ortswechsler (WaN>WNo= 50 m) nach 2 Tagen 5) festgestellt werden. a
Distanzen: 1-2; der Häufigkeitsgradient im Wasserwerk auf 50 bzw. 100 m Di-
stanz, sowie der starke a ehrall im Franzosenhölzi 1989 schon 40 m
außerhalb des Wäldchens (2 Individuen gegenüber 15 am Rand) sprechen für ge-
ringe Dispersionsaktivitäten. \ 4 vn f £
Larvalökologie: die Raune ernährt sich von einigen Laubbäumen und Heidelbeere; im
reinen Offenland (H wurde noch kein Nachweis erbracht.
Populationsbiologie: wenig proterandrisch
Verbreitungsstrategie: K-Stratege, 6. Gruppe
177
Anticlea badiata (6 Individuen)
Distanzen: 1-2
EEE EIPSR die Raupen sind auf Rosen spezialisiert; bisher keine biotopfremden
iere
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Pelurga comitata (6 Individuen)
Distanzen: vermutlich 2 37
Populationsbiologie: die pe überwintert nach KOCH (1984) gelegentlich zweimal,
was die potentielle Wachstumsrate der Populationen dieser Art verringert.
Ve eye vermutlich intermediärer Typ, 5. Gruppe; GYULAI & VARGA
(1978 berichten allerdings von gerichteten Bewegungen innerhalb des Areals die-
ser Art.
Hydrelia testaceata (69 Individuen)
Distanzen: 1-2
Larvalökologie: die Raupe ist auf Erle spezialisiert, vielleicht nimmt sie jedoch
auch Birke und Weide an. Das im Garten gefundene Stück könnte somit von ei-
ner zumindest kurzzeiligen Besiedlung der dortigen Birken zeugen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Hydrelia flammeolaria (89 Individuen)
Distanzen: 2
Larvalökologie: oligophag an verschiedenen Laubbäumen; im Offenland (HM) bisher
noch nie gefunden, Dispersionsaktivitäten daher wohl deutlich kleiner als 1 km
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Euchoeca nebulata (131 Individuen)
Distanzen: 2
Larvalökologie: Dleuphaz an Erle und Birke; im Offenland IM) bisher noch nie
gefunden, Dispersionsaktivitäten daher wohl deutlich kleiner als | km
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stiratege, 6. Gruppe
Asthena albulata (10 Individuen)
Distanzen: vermutlich 2
Larvalökologie: oligophag an einigen Laubbäumen, bisher keine biotopfremden_Tiere
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe; wie auch andere Entomo-
logen berichten, ist diese Art wie auch die folgende in Südbayern in den letz-
ten beiden Jahren Baer häufiger geworden. Die Ela eisiünger der Asthena-
Arten können jedoc achstumsrate der Popu-
lationen nicht so groß sein, daß diese Art in so kurzen Zeitabschnitten zu einer
Be er Südbayerns fähig wäre. Vermutlich ist diese ee einer
un gen Konstellation der Futterpflanzenentwicklung unter den gegebenen Klima-
edingungen zuzuschreiben. Vielleicht spielen weitere Faktoren herein, jedoch
beispielsweise eine Verminderung des Feinddruckes durch Parasiten, der zwar art-
bzw. gattungsspezifisch wäre, müßte dann auch synchron auf einer sehr großen
Fläche stattgefunden haben, was recht unglaubhaft ıst.
Ein derartiges jahrweise häufiges Auftreten synchron in größeren Gebietsteilen ist
auch für viele Eupithecia-Arten typisch.
nicht so stark und die potentielle
Asthena anseraria (3 Individuen)
Distanzen: vermutlich 1-2
Larvalökologie: monophag am Blutroten Hartriegel (Cornus sanguinea), welcher im
Wasserwerk in unmittelbarer Nähe der Fundorte vorkommt.
Verbreitungsstrategie: K-Stratege, 6. Gruppe; siehe Bemerkungen zu A. albulata
Eupithecia tenuiata (19 Individuen)
Distanzen: 2,
Larvalökologie: monophag an Sal-Weide (Salix caprea); die 4 im Garten gefunde-
nen Stücke waren mindestens 200 m, die 6 HW-Stücke mindestens 150 m von der
nächstgelegenen Futterpflanze her geflogen. Das an HM 1986 festgestellte Tier
stammt höchstwahrscheinlich aus dem Ruderal (150-300 m). Diese Daten charak-
terisieren E. tenuiata als eine vergleichsweise mobile Eupithecie.
Populationsbiologie: wenig proterandrisch, Se 50,0 %
Verbreitungsstrategie: intermediärer Typ, >. Gruppe
178
Eupithecia inturbata (16 Individuen)
Distanzen: ?; der starke Häufigkeitsgradient im Wasserwerk spricht für Barrieren
gegen die freie Mobilität dieser Art schon auf 50 m Distanz.
Larvalökologie: monophag am Feld-Ahorn (Acer campestre); die im Garten fest-
gestellten Exemplare müssen mindestens 1 m weit geflogen sein.
erbreitungsstrategie: K-Siratege, 6. Gruppe; E. inturbata gehört zu der Gruppe der
eigentlich als selten geltenden Arten, die in den letzten Jahren ihre Bestände
vergrößern konnten IRiche Bemerkungen zu Asthena albulata).
Eupithecia plumbeolata (5 Individuen)
Distanzen: vermutlich 2
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia pini (1 Individuum)
Distanzen: vermutlich 1-2
Larvalökologie: an Nadelbäumen, v.a. Gemeine Fichte (Picea abies) und Kiefer (Pi-
nus); bisher keine biotopfremden Tiere
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia bilunulata
Distanzen: vermutlich 1-2 j STR
Larvalökologie: die Kan sind sehr spezialisiert und leben in den Gallen von
Fichtenläusen an der Gemeinen Fichte; alle 1983 und 1989 nachgewiesenen Tiere
wurden in unmittelbarer Nähe der Wirtspflanzen festgestellt.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Eupithecia linariata (4 Individuen)
Distanzen: vermutlich 2
Vase monoplae, am Gemeinen Leinkraut (Linaria vulgaris); das im Garten
festgestellte, etwas geflogene Stück mußte mindestens 300 m weit geflogen sein.
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Eupithecia exiguata (41 Individuen)
Distanzen: 1-2 n #
Larvalökologie: an verschiedenen Laubhölzern, v.a. an Sträuchern, bisher keine bio-
topfremden Tiere, festgestellt
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Eupithecia valerianata (5 Individuen)
Distanzen: vermutlich 2
Larvalökologie: die Raupe ernährt sich monophag vom Echten Baldrian (Valeriana
officinalis);, diese Pflanze kommt im Radius von ca. 200 m um die Fangplätze im
Garten nicht vor. Das hier beobachtete Stück muß also mindestens so weit geflo-
gen sein.
Populationsbiologie: die Puppe überwintert nach KOCH a manchmal zweimal,
was die potentielle Waschstumsrate der Populationen ("PGR") vermindert.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia venosata (6 Individuen)
|
Distanzen: 1-2 Bisher | abe
Larvalökologie: die Raupe ernährt sich von a (Silene vulgaris), im Gar-
ten jedoch wahrscheinlich von der Roten Lichtnelke (Silene dioica). Bisher konn-
ten keine biotopfremden Tiere festgestellt werden. KEN
Populationsbiologie: die e nn nach KOCH manchmal zwei bis dreimal;
| ies verringert die "PGR" (siehe oben) und kann auch zur Vortäuschung von
Turnover -Ereignissen führen. % h
Verbreitungsstrategie: K-Stratege, 6. Gruppe; das fakultative UÜberliegen der Pup-
Ä pen ist vielleicht eine Möglichkeit der Kompensation von ungünstigen Bestands-
entwicklungen in schlechten Jahren: Wenn einmal eine (apparente) Extinktion
| einer Population eintritt, hat die Art immer noch einige Puppen "auf Vorrat“.
|
| | 179
|
Eupithecia egenaria (3 Individuen)
Distanzen: 1
Larvalökologie: monophag an der Sommerlinde (Titia platyphyllos), das HO-J wur-
de 20 m, das im Garten beobachtete Stück 15 m von der Futterpflanze entfernt
gefunden. Das dritte Exemplar wurde direkt an der Futterpflanze gefangen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Eupithecia extraversaria (14 Individuen)
Distanzen: vermutlich 2
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia centaureata (22 Individuen)
Distanzen: 2-3 Aziı
Larvalökologie: vergleichsweise polyphag an niedrigen Pflanzen; im Garten tritt
diese Art jedoch vermutlich nur als Gast auf.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Eupithecia selinata (7 Individuen)
Distanzen: vermutlich 2
Populatioasbiologie: im Untersuchungsgebiet univoltin
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia trisignaria (6 Individuen)
Distanzen: vermutlich 2
Populationsbiologie: im Untersuchungsgebiet offensichtlich bivoltin, wie in FORSTER
WOHLFAHRT (1981) beschrieben
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia intricata
180 Individuen 21.7 2° or Rale
23* markiert 2* Wiederfänge *FE5-M6 1989
Wiederfang- te: die Art wurde nur in einigen Nächten 1989 an den Standorten
WaS und SiN markiert. Es lagen fast stets fangfreie Nächte dazwischen, so daß
die. Wiederfang-Quote als relativ hoch zu werten ist (Stichprobe jedoch noch zu
klein). Je ein J wurde nach ein bzw. zwei Tagen wiedergefangen.
Distanzen: 1-2; das Häufigkeitsverhältnis SIN/WaS war schon auf einer Strecke von
30 m in allen Jahren deutlich polarisiert.
Larvalökologie: nach KOCH (1984) monophag an Wacholder (Juniperus communis),
An einem solchen als Zierpflanze verwendeten Wacholder im Garten wurden
wiederholt in der Dämmerung 2% bei der Eiablage beobachtet. Dieser Strauch
liegt direkt neben dem Standort SiN. Von WaS, an dem die relative Häufigkeit
der Imagines deutlich höher ist, es jedoch das nächste Futterpflanzen-Vor-
kommen weiter entfernt (20-30 m). Entweder nimmt die Art auch Fichte als
Futter an (siehe Bemerkungen bei Thera juniperata) oder die Falter ziehen sich
nach dem Schlüpfen an geschütztere Standorte zurück, wo die Gefahr einer Ver-
frachtung durch Wind und der Feinddruck (z.B. Fledermäuse) kleiner sind.
Populationsbiologie: wenig proterandrisch j
Verbreitungsstrategie: K-Siratege,. 6. Gruppe; E. intricata gehört zur Gruppe der in
Südbayern als selten geltenden Arten, die in den letzten Jahren häufiger ge-
worden sind (siehe Bemerkungen zu Asthena albulata). Die Aussagen zur Strategie
von Thera juniperata gelten vermutlich auch für diese Art.
Eupithecia satyrata (17 Individuen)
Distanzen: ?2
Larvalökologie: vergleichsweise pays an niedrigen Pflanzen
Verbreitungsstrategie: K-Sitratege, 5. Gruppe
Eupithecia tripunctaria (51 Individuen)
Distanzen: 2(32)
Larvalökologie: E. tripunctaria zeichnet sich durch einen Wirtswechsel aus: die
Raupen der 1. Generation fressen an den Blüten des Holunders (Sambucus nie]
rar; die der 2. Generation an den Blüten von Bärenklau (Heracleum) und Engel-
wurz (Angelica); die Flugzeiten liegen jeweils kurz vor den Blütezeiten der be-
treffenden Pflanzen. Das SiM-Stück muß mindestens 100 m weit geflogen sein. Im
reinen Offenland (HM) konnte bisher noch kein Exemplar nachgewiesen werden.
rn nn
180 |
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe; Durch den Wirtswechsel wird
sicherlich in einigen Fällen ein Ortswechsel nötig. So wurde E. Lripunctaria im
Garten in der 1. Generation nur in 2 Exemplaren gefunden, während die 2. Ge-
neration häufig ist. Dieser Befund steht im Einkla mit der Verbreitung der
Futterpflanzen: Holunder kommt 10 m vom Standort WaS entfernt vor, die Um-
belliferen dagegen in einem Radius von mindestens 100 m nicht.
Eupithecia absinthiata (7 Individuen)
Distanzen: vermutlich 2
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia assimilata (8 Individuen)
Distanzen: vermutlich 1-2 H :
Larvalökologie: nach KOCH. (1984) nn sich die Raupe nur von wildwachsen-
dem Gemeinem en Humulus lupulus d von Schwarzer Johannisbeere (Ri-
bes nigrum). CAR HARG VES (1987) geben darüber hinaus auch die
Rote Johannisbeere (Ribes rubrum) an, die vermutlich die Lebensgrundlage der
Population im Garten darstellt. Bisher konnten keine biotopfremden Tiere festge-
stellt, werden.
Populationsbiologie: bivoltin
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia vulgata (56 Individuen)
Distanzen: 2, }
Larvalökologie: polyphag an niedrigen Pflanzen, im Untersuchungsgebiet ist diese
Art dennoch relativ lokal verbreitet.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Eupithecia castigata (153 Individuen)
Distanzen: 2-3 E
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Eupithecia icterata (46 Individuen)
Distanzen: 2; im Wasserwerk fällt der Häufigkeitsgradient zwischen WaN und WNo
schon auf 50 m Distanz auf.
Larvalökologie: an Gemeiner Schafgarbe (Achillea millefolium) und Gemeinem Rain-
farn ( Tanacetum ulgare), dennoch konnte E. icterata bisher nicht an HM nach-
gewiesen werden.
Verbreitungsstrategie: intermediärer I. 5. Gruppe; im Garten fand 1987 offen-
sichtlich eine Neubesiedelung statt. Vorher konnte diese auffällige Art trotz in-
tensiver Fänge nicht nachgewiesen werden.
Eupithecia succenturiata (21 Individuen)
Distanzen: 2
Larvalökologie: wie E. icterata, zusätzlich nehmen die Raupen auch Gemeinen Bei-
Artemisia vulgaris) an.
Populationsbiologie: im Garten sind starke _Häufigkeitsschwankungen festzustellen.
Verbreitungsstrategie: intermediärer Iyp, 5. Gruppe;
Eupithecia subumbrata (30 Individuen)
Distanzen: 1-2
Larvalökologie: an Umbelliferen und Compositen, im Untersuchungsgebiet relativ
stark an die trockeneren Wiesen gebunden; außerhalb davon, z.B. im Siedlungsge-
biet konnte noch kein Stück nachgewiesen werden, was für Dispersionsaktivitäten
Adnan die normalerweise in einem Bereich von unter 500 m liegen. Die (Tritt-
stein-)Besiedelung des Wasserwerks in den letzten 10 Jahren erforderte jedoch
.
Sprünge von 100-300 m
Verb
reitungsstrategie: K-Stratege, 6. Gruppe
181
Eupithecia millefoliata (4 Individuen)
Distanzen: 2(4); E. millefoliata ist eine in der Ausbreitung begriffene östliche
Steppenart; abgesehen vom Erstnachweis für Südbayern in Paitzkofen bei Straubing
in einer Entfernung von 100 km (WOLFSBERGER, 1974) wurden aus Südbayern
bisher keine Fundorte gemeldet.
Laivalianlöge: monophag an Gemeiner Schafgarbe; bisher konnten keine biotop-
fremden Tiere nachgewiesen werden ;
Verbreit strategie: in einer Arealerweiterung begriffen; wenn die Art an günsti-
en Stellen bodenständig wird, dann handelt es sich um einen K-Strategen der 6.
ruppe.
Eupithecia sinuosaria (4 Individuen)
Distanzen: 3-4; auch diese östliche Art hat in den letzten 30 Jahren seit dem
Erstnachweis in Südbayern ihr Areal stetig nach Südwesten erweitert. Sie kam
hierbei durchschnittlich ca, 387) km pro Jahr voran. Siehe hierzu REZBANYAI-
RESER & WHITEBREAD (1987). j
Verbreitungsstrategie: in einer Arealerweiterung begriffen, sonst vermutlich inter-
mediärer Typ, 5. Gruppe
Eupithecia indigata (12 Individuen)
Distanzen: 1-2
Larvalökologie: auf Wald-Kiefer (Pinus sylvestris) und Gemeine Fichte (Picea_abies)
ge Bisher wurden alle Exemplare an den Standorten der Futterpflanzen
gefangen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Eupithecia pimpinellata
Distanzen: vermutlich 2
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia innotata (4 Individuen)
Distanzen: vermutlich 2-3
Larvalökologie: E. innotata ist - ähnlich E. tripunctaria - durch einen Wirtswechsel
charakterisiert: Die Raupen der 1. Generation leben an einigen Sträuchern und an
Esche (Fraxinus excelsior), die der 2. Generation an Beifuß-Arten Artemiuah
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe; durch den Wirtswechsel wird
sicherlich in einigen Fällen ein Ortswechsel nötig. Die im Garten festgestellten
Stücke stammen aus mindestens 100 m Entfernung.
Eupithecia virgaureata (80 Individuen)
Distanzen: 2 (-3?)
Larvalökologie: Auch diese Art durchläuft einen obligatorischen Wechsel der Wirts-
pflanzen: Von Schlehe (Prunus spinosa) und Weißdorn (Crataegus) ernähren sich
ie Raupen der 1. Generation, die der zweiten dagegen vo chter Goldrute
Solidago virgaurea), Gemeinem Greiskraut (Senecio vul aris) oder Gemeinem
asserdost (Eupatorium na. Da an einer Reihe der Fundorte der Ima-
gines diese Futterpflanzenkombination in einer Entfernung von 100-200 m nicht
vorkommt, ist diese Art als vergleichsweise mobile Eupithecie anzusprechen.
Populationsbiologie: bivoltin; weder Proterandrie noch Protogynie; in der 2. Gene-
ration zeigte sich eine hohe 9-Rate von 76,7 % (1988). >
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe; durch den Wirtswechsel wird
sicherlich in einigen Fällen ein Ortswechsel nötig. E. virgaureata gehört zur
Gruppe der als selten geltenden (und wohl oft nur en Eupithecien, die
in den letzten Jahren häufiger nachgewiesen werden (siehe Bemerkungen zu As-
ihena albulata).
Eupithecia abbreviata
Distanzen: vermutlich 1-2
Larvalökologie: monophag an Eiche, die am Fundort vorkommt
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Eupithecia dodoneata
Distanzen: vermutlich 1-2
Larvalökologie: wie E. abbreviata
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe; die drei 1989 im Garten
Be enen 99 sind die Erstnachweise für das südbayerische Faunengebiet (HAUS-
in Ya E. dodoneata wird wahrscheinlich oft übersehen.
182
Eupithecia sobrinata (1 Individuum)
Distanzen: 1-2 ä
Larvalökologie: monophag am Gemeinen Wacholder; alle Tiere wurden bisher in der
unmittelbaren Nähe der Futterpflanzen gefangen.
Populationsbiologie: die Häufigkeit schwankt im Garten beträchtlich
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Eupithecia lariciata (5 Individuen)
Distanzen: 1-2 \
Larvalökologie: monophag an Europäischer Lärche (Larix decidua), bisher konnten
keine biotopfremden Tiere nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Eupithecia tantillaria (70 Individuen)
Distanzen: 1-2 _
Larvalökologie: die Raupen sind auf Gemeine Fichte spezialisiert, gelegentlich wird
auch Europäische Lärche akzeptiert; die FE ei sera henten im Garten und im
Wasserwerk, die einen starken Häufigkeitsabfall schon in 20-50 m Entfernung zur
nächsten Futterpflanze erkennen lassen, sprechen für Barrieren gegen die freie
eweglichkeit. Im gleichen Sinn ist wohl der fehlende Nachweis im Offenland
HM) zu interpretieren.
ndererseits konnte 1989 im Franzosenhölzl zwei fertile 99 500 m von der näch-
sten Fichtengruppe entfernt gefangen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Eupithecia lanceata (32 Individuen)
Distanzen: 1-2
Larvalökologie: monophag an der Gemeinen Fichte; der deutliche Häufigkeitsgra-
dient im Wasserwerk auf ca. 100 m Distanz spricht für Barrieren, die gegen ei-
ne freie Beweglichkeit gerichtet sind.
Das 1986 an HM nachgewiesene J stammt aus mindestens 800-1000 m Entfer-
nung. Die Bewältigung einer solchen Distanz ist jedoch wohl als absolute Aus-
nahme zu verstehen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Chloroclystis v-ata (165 Individuen)
Distanzen: 2-3
Larvalökologie: nach den in KOCH (1984) genannten Raupenfutterpflanzen beurteilt,
stammt das HM-Exemplar (1987) mindestens aus dem Ruderal, wo in ca. 200-250
m Entfernung die ersten irtspflanzen wachsen. Die Distanz von 1 km (Zuflug
vom Flughafenrand nach HM) scheint jedoch nicht mehr im normalen Dispersions-
geschehen bewältigt zu werden.
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 2. Gruppe; KOCH (1.c.) bezeichnet C. v-
ata als "Arealausbreiter".
Calliclystis chloerata (6 Individuen)
Distanzen: vermutlich 2
Larvalökologie: monophag an. Schlehe (Prunus spinosa); bisher konnten keine bio-
topfremden Tiere, festgestellt werden.
Verbreitungsstrategie: vermutlich K-Stratege, 6. appei der Erstnachweis dieser
Art für Südbayern wurde erst durch WOLFSBERG 1950; 1958) erbracht. Ob
dies auch bei C. chloerata auf Arealerweiterungen zurückzuführen ist, oder ob die
get Auf so lange mit C. rectangulata verwechselt wurde ist derzeit schlecht zu
eurteilen.
Calliclystis rectangulata (111 Individuen)
Distanzen: 2
Larvalökologie: die Raupen sind auf Apfel- und Birnbäume spezialisiert (Malus do-
mestica und Pyrus munie), nach CARTER & HARGREAVES (1987) wird gele-
gentlich auch Schlehe angenommen, was z.B. im Falle der WNo-Stücke als Ent-
wicklungsort der Raupen sehr wahrscheinlich ist. Die beiden ersigenannten Pflan-
zen sind auch von einer Reihe weiterer Fundorte mehrere 100 m entferni. Die
Distanz von 1 km (Zuflug vom Flughafenrand nach HM) liegt nicht im Bereich
des normalen Dispersionsgeschehens von C. rectangulala.
Verbreitungsstrategie: K-Stratege, 4. Gruppe
183
Horisme tersata (16 Individuen)
Distanzen: 1-2
Larvalökologie: die Raupe ernährt sich von _Waldrebe (Clematis) und vpm Pr ouen
Windröschen (Anemone sylvestris), nach CARTER & HARGREAVES (1987 auch
vom Scharfen Hahnenfuß (Ranunculus acris). Biotopfremde Stücke wurden bisher
nicht registriert. Vermutlich akzeptiert die Art im Untersuchungsgebiet die in den
Gärten häufiger BDSEDI RIES Clematis- Ziersträucher.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
BOARMIINAE
Arichanna melanaria (? Individuen)
Distanzen: vermutlich 1-2, in Vorstößen bis 4
Larvalökologie: A. melanaria ist in Südbayern ein in (Hoch-)Mooren sehr (kei ver-
breiteter Spanner, der an das Vorhandensein von Moor-Heidelbeere (Vaccinium
uliginosum), Sumpf-Porst (Ledum palustre) oder Moosbeere (Oxycoccus palu-
stris) gebunden ist. Da keine dieser Pflanzen im Wasserwerk und vermutlich auch
in der weiteren Umgebung vorkommt, handelt es sich bei den beiden in der glei-
chen Nacht gefangenen JT' um ebenso überraschende wie interessante Funde! Die
ER eNIRBTe waren beide stark abgeflogen und stammen vermutlich aus Biotopen in
einer, Entfernung von mindestens 20-30 km.
Verbreitungsstrategie: vermulich K-Stratege, 6. (aivppe: wahrscheinlich handelt es
sich hier um ein Phänomen, dem wir schon bei den Schilfeulen begegnet sind,
nämlich, daß auch orts- und habitatireue Arten bei einer Vernichtung des Le-
bensraumes oft weite Strecken zurücklegen können.
Sehr interessant ist in diesem Zusammenhang eine Publikation HACKERs (1981),
der in Nordbayern bei A. melanaria einmal genau dieselbe Beobachtung machte
und eine zurüc Ser el Distanz von ca. 50 km vermutet.
Auch OSTHELDER (1925-1933) berichtet von einem Stück im (18 km entfernten)
Eichenau, das "offensichtlich verweht" wurde. Auch hier betragt die Entfernung
zum nächstgelegenen von Östhelder genannten Fundort 20 km.
Abraxas grossulariata (1 Individuum)
Distanzen: vermutlich 1-2
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe; in Südbayern tritt diese
Art nur sehr lokal und selten auf.
Calospilos sylvata
siehe Versetzexperiment (8.4.) und Rückschlüsse aus den Ortswiederfängen (8.5.)
1249* Individuen 10,1 % 9- Rate
644** markiert 46** Wiederfänge
* tagsüber viele weitere Stücke
**1989 343 markiert, 53 Wiederfänge
Wiederfang-Quote: sehr hoch; C. sylvata wurde nur 1988 und 1989 markiert, alle
Wiederfänge erfolgten am Fangplatz "We". Hier wurde 1988 im 3- Tage-Rhythmus
ee die Ortswiederfang-Quote von 9,0 % und die mittlere Verweilzeit von
‚8 Tagen kennzeichnen C. sylvata als die ortstreueste aller im Rahmen dieser
Arbeit markierten Arten. Nimmt man die in den Versetzexperimenten rückgefan-
enen Tiere hinzu, ergibt sich mit 4,6 Tagen ebenfalls eine sehr au ttlere
nerweilzeit, Die längsten beobachteten Intervalle waren 3 Exemplare (d’d’9) nach
agen.
Die beiden Geschlechter verhielten sich in den Experimenten ungefähr gleich.
Distanzen: 1-2
Larvalökologie: die Raupe lebt an einer Reihe von Laubbäumen. Im Offenland (HM)
und schon 250 m außerhalb des Birkets (Moos 1985) konnten keine Stücke mehr
nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe; abgesehen von den 1988 im Garten
beobachteten Exemplaren wurden alle außerhalb des Mooses nachgewiesenen
Stücke in maximal 200 m Entfernung zum Schloßkanalsystem gefunden. Diese Ka-
näle könnten unter Umständen als "Leitlinien" einer Verbreitung solch wenig mo-
biler Wald(rand)bewohner förderlich sein.
184
Lomaspilis marginata
357 Individuen 5,9 % 9- Rate
236 markiert 5 Wiederfänge
Tab. 100: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Lomaspilis marginata.
SEDLUNG WALD HALBTROK- en WALD HALBTROK- "DACH.
1987 | Garten | KENRASEN M 2 1988 Garten Wasserwerk KENRASEN MOOS”
SiS SM |SN WaS|WaM WaN HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
Spar, 8,1. 6 =, A038 BARS 30 1020 >epar. a 4 531 31 43 Er
% zus. Tem 2 - 10 1 1 4 1 20 8% zus. - 2 = - > = = u = =
[o107 6 - 3 - 228 7 4 5 17 72 [oj 07 3 2 3600255230 3 2 2 12 36
99 Ale eu. warlam 1 8.09 Slas22- 2 asien: 3
Mark. sem a' =... 8%) TANTE 18 80 Mark. 3 a... er ad €
Wi. une sa. e SEN = - - Wi. - 1 1 =. Sa Me a
Wiederfang-Quote: durchschnittlich; ein Wiederfang (on WaS) ist durch den tägli-
chen Betrieb der Lichtfalle bedingt. Die mittlere Verweildauer der anderen vier
wiedergefangenen Jod’ betrug niedrige 2,3 Tage.
Im Wasserwerk, wo die Wiederfang-Quote mit 3,2 % etwas über dem Durch-
schnitt liegt (bedingt durch die bessere Flächenabdeckung durch 3 Falley), wa-
ren der 3 rückgefangenen Tjere Ortswechsler, der eine über 100 m t Nw>
WaN), der andere über 120 m (whw> WNo)
Distanzen: 3,
Larvalökologie: die Raupen sind an einigen Laubbaumarten zu finden; die regelmä-
Bigen und vergleichsweise zahlreichen Nachweise an HM zeigen, daß der Yuflug
aus dem Ruderal (150-300 m) für diese Art (dd und 99) eine völlig normale
Distanz darstellt.
Populationsbiologie: im Untersuchungsgebiet vermutlich teilweise in 2 Generationen,
ie phänologisch jedoch nicht voneinander abzutrennen sind. Proterandrisch
Verbreitungsstrategie: r-Stratege, 3. Gruppe
Ligdia adustata (74 Individuen)
Distanzen: 2,
Larvalökologie: ImunupaR am Europäischen Pfaffenhütchen (Euonprats europaea); an
einigen Standorten ljegt die nächste Raupenfutterpflanze 100-200 m entfernt. Die
Distanz von 1 km (Zuflug nach HM) liegt nicht im Bereich des trivial move-
ment bzw. der Dispersionsaktivität dieser Art.
Populationsbiologie:, bivoltin
Verbreitungsstraiegie: intermediärer Typ, 5. Gruppe
Bapta bimaculata (49 Individuen)
Distanzen: 1-2; die Häufigkeitsgradienten im Wasserwerk und im Garten könnten
auf Barrieren gegen die freie Beweglichkeit hinweisen.
Larvalökologie: an einigen Laubbaumarten; im Offenland (HM) und an einigen
Standorten mit tendenziellem Offenlandcharakter (SiM, SiN, WaN und HW) konn-
te die Art bisher, nicht nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Bapta temerata (196 Individuen)
Distanzen: 2 (-3?)
Larvalökologie: die Raupe ernährt sich von einer Reihe von Laubbaumarten; das an
HM nachgewiesene Jd' stammt zumindest aus dem Ruderal (150-300 m).
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Cabera pusaria
232 Individuen 21,6 % o- Rate
72* markiert 1 Wiederfang * nur 1988
Wiederfang-Quote: niedrig! Unter "regulären" Bedingungen (fangfreie Nächte zur
Ermöglichung der freien Durchmischung) konnte kein Tier wiedergefangen wer-
den. Lediglich an WaS flog ein JS nach 1 Tag zum zweitenmal die Falle an; die
Wiederfans "Quote liegt hier mit 4,0 % auf einem für die Methodik sehr niedrigen
iveau!
Distanzen: im Habitat 2-3, außerhalb 1-2; der Häufigkeitsgradient zwischen WaN
und WNo (50 m) deutet wohl auf Barrieren gegen eine freie Dispersion hin. _
Larvali rolöpe: die Raupen sind an Weide, Birke, Ulme Erle und Eiche zu finden;
das HM-Stück (c) stammt vermutlich aus dem Ruderal (150-300 m). 5
ulationsbiologie: im Untersuchungsgebiet mit einer partiellen 2. Generation
Verbreitungsstrategie: intermediärer Iyp, 5. Gruppe
185
Da
Cabera exanthemata (273 Individuen)
Distanzen: 3
Larvalökologie: die Raupe ist an einigen Laubbaumarten zu finden; die HM-Stücke
stammen wahrscheinlich aus dem Ruderal (150-300 m). Diese Distanzen liegen im
absolut normalen Bereich der Dispersionsaktivitäten.
Populationsbiologie: bivoltin
Verbreitungsstrategie: r-Stratege, 2. Gruppe
Plagodis dolabraria (26 Individuen)
Distanzen: ?
Larvalökologie: ebenfalls an einigen Laubbaumarten; bisher konnten keine biotop-
fremden Tiere nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Ellopia fasciaria (1 Individuum)
Distanzen: vermutlich 1-2 ?
Larvalökologie: monophag an Kiefer (die Angaben beziehen sich bei dieser und de
folgenden Art auf das Artverständnis wie es in FORSTER & WOHLFAHRT 1981)
niedergelegt ist. Das an HW festgestellte Stück muß aus 150 m Entfernung (dem
nächstgelegenen Standort ca. 2 m hoher Kiefern) ohne Sichtkontakt herbeigeflogen
sein.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Ellopia prasinaria (6 Individuen)
Distanzen: 1-2
Larvalökologie: die Raupen ernähren sich von Fichte, Lärche und Weißtanne; bis-
her wurden alle Stücke in der Nähe der Raupenfutterpflanzen gefangen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Campaea margaritata (27 Individuen)
Distanzen: 1-2
Larvalökologie: die Raupe ist an Een, Laubbaumarten zu finden, biotopfremde
Tiere konnten bisher nicht festgestellt werden. Der Häufigkeitsgradient 1988 im
Garten auf nur 30 m Entfernung hängt vermutlich mit dem an SiN etwas weni-
ger ausgeprägten Waldcharakter zusammen.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Ennomos autumnaria (4 Individuen)
Distanzen: vermutlich 2
Larvalökologie: relativ polyphag an Laubhölzern, bisher keine biotopfremden Tiere
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Deuteronomos alniaria (? Individuen)
Distanzen: vermutlich 2
Latvalöknlogi: an einigen Laubbaumarten, das an HM gefangene 7 stammt vermul-
lich aus dem Ruderal (150-300 mi:
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Deuteronomos fuscantaria (? Individuen)
Distanzen: vermutlich 2
Larvalökologie: die Raupen sind auf Gemeine Esche (Fraxinus excelsior) und Ge-
meinen Liguster (Ligustrum vulgare) spezialisiert. Die in manchen Jahren in den
Garten zufliegenden Exemplare stammen aus mindestens 80 m Entfernung.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Deuteronomos erosaria (13 Individuen)
Distanzen: 2-3
Larvalökologie: Raupenfutterpflanzen sjnd vor allem Eiche, aber auch Birke, Linde
und Rot-Buche. Das HM-Exemplar (1986) stammt also zumindest vom ae
rand (800-1000 m). Dies scheint in Jahren mit günstiger Bestandsentwicklung (z.B.
1986) ungefähr die Obergrenze der normalen Dispersionsaktivität darzustellen. _
Populationsbiologie: im Garten fallen starke Häufigkeitsschwankungen auf, die viel-
eicht ein weiterer Hinweis dafür sein könnten, daß D. erosaria im Vergleich mit
den anderen Arten der Gattung die dynamischste Strategie aufweist.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
186
Selenia bilunaria (47 Individuen)
Distanzen: ?2
Le: ralökslogıe: nach den in KOCH (1984) genannten Raup
stammen die beiden HM-Stücke vom Ruderal (150-300 m
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
ee beurteilt,
Selenia tetralunaria (45 Individuen)
Distanzen: 2
Larvalökologie: nach den in KOCH a gena ten Raupenfutterpflanzen beurteilt,
stammt das HM-Stück vom Ruderal (150-300 a)
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Apeira syringaria (11 Individuen)
Distanzen: 1-2 #
Larvalökologie: A bisher festgestellten Stücke wurden in unmittelbarer Nähe der
in KOCH 11984 genannten Futterpflanzen gefangen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Gonodontis bidentata (31 Individuen)
Distanzen: 2
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Colotois pennaria
89 Individuen 7,1% 9- Rate
28 markiert 6 Wiederfänge
Wiederfang-Quote: durchschnittlic 9 Stichprobe noch zu klein. Alle Wiederfänge
stammen aus dem Garten (WaS) 1988 bei täglichem Betrieb der Lichtfalle. 5 der
6 Rückfänge (dc, darunter zwei, Zweitwieder änge) erfolgten nach einem Intervall
von 1 Tag und sind kein Hinweis auf eine mögliche Ortstreue der Imagines. Ein
cd’ flog die Falle nach einem Intervall von 2 Tagen wieder an.
ie mittlere Verweilzeit liegt mit 1,8 Tagen auf einem relativ niedrigen Niveau
(wie beispielsweise auch beim Wanderfalter Noctua Bromieaı
Distanzen: im Habitat 2-3, außerhalb 1-2; die etwas pump wirkenden 99 viel-
leicht auch nur 1-2; ihre schlechtere Flugtauglichkeit könnte auch in Zusammen-
hang mit einem nicht optimalen Anflugverhalten an das Licht stehen.
Larvalökologie: relativ golyphae an Laubbäumen; das polarisierte Häufigkeitsver-
hältnis im Garten 198 12/2 Individuen in den Parallelfängen) ist wohl als Hin-
weis darauf zu verstehen, daß zunehmender Offenlandcharakter (SiN) schon nach
30 m als Barriere gegen die Verbreitung zu wirken beginnt.
Verbreitungsstrategie: K-Stratege, 5. Gruppe; für die Verbreitung ist das Verhalten
der 99, nicht der dc’ relevant. Eine höhere Mobilität der dd‘ kann jedoch zu ei-
ner besseren Gendurchmischung nützlich sein.
Crocallis elinguaria (104 Individuen)
Distanzen: 2
Larvalökologie: von den in KOCH (1984) m ten Ran I on enzen kommt in
der näheren Umsebung des Fangplatzes M (2 Exemplare 1986) nur der Weiß-
dorn in Frage. Es gilt hierbei analog das bei Allophyes oxyacanthae (Noctuidae,
Cuculliinae, S. 136) Gesagte. Der Häufigkeitsgradient im Garten 1988 ist vermut-
lich wie bei Colotois pennaria zu interpretieren.
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Angerona prunaria (19 Individuen)
Distanzen: ?; 1989 wurde im Mallertshofer Holz (Hochwald) ein 4 in der Abend-
dämmerung bei einem ziemlich geradlinigen Flug über 200 m beobachtet.
Larvalökologie: nach den in KOC (1984 genannten Wirtspflanzen beurteilt, wur-
den im Uni eszuchunses@biet bisher keine biotopfremden Tiere registriert.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
187
Ourapteryx sambucaria (10 Individuen)
Distanzen: 1-2 }
Larvalökologie: nach den in KOCH 11984) genannten Wirtspflanzen beurteilt, wur-
den im Untersuchungsgebiet bisher keine biotopfremden Tiere registriert.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Opisthograptis luteolata (39 Individuen)
Distanzen: 2
Larvalökologie: die Raupe lebt an verschiedenen Laubgehölzen, v.a. an Sträuchern;
die beiden im, Offenland gefundenen Exemplare (9) stammen wahrscheinlich aus
dem Ruderal (150-300 m).
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Epione repandaria (31 Individuen)
Distanzen: 2-3
Larvalökologie: diese Art kann sich an Weide, Espe, Erle, Schlehe und Pappel
entwickeln. Die Distanz von 150-300 m (Ruderai>HM) liegt im Bereich der
normalen Dispersionsaktivität von E. repandaria.
Populationsbiologie:, bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Cepphis advenaria (23 Individuen)
Distanzen: 1-2
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Lozogramma chlorosata (1 Individuum)
Distanzen: vermutlich 1-2
Larvalökologie: die Raupen ernähren sich von Adlerfarn (Pteridium aquilinum), viel-
leicht auch von Gemeinen Wurmfarn (Dryopteris filix-mas). Das nachgewiesene
Eaenpler wurde in der Nähe der Futterpflanzen gefangen.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Macaria notata (39 Individuen)
Distanzen: 2,
Larvalökologie: an Birke, Erle, Sal-Weide und Eiche zu finden; das 1986 im Offen-
land gefundene Stück stammt vermutlich aus dem Ruderal (150-300 m)
Populationsbiologie: die 2. Generation dieser Art ist nur partiell ausgeprägt.
Verbreitungsstrategie: intermediärer Typ, 6. Gruppe
Macaria alternaria
279 Individuen 10,4 % 9- Rate
77 markiert 1 Wiederfang
Wiederfang-Quote: durchschnittlich, an WaN erfolgte 1988 ein Ortswiederfang (C)
nach 2 Tagen.
Distanzen: 2,
Larvalökologie: die Raupe frißt an Sal-Weide, Eiche, Erle, Schlehe und Traubenkir-
sche. Die beiden wahrscheinlich vom Ruderal (150-300 m) her zugeflogenen HM-
Stücke (dd) zeigen, daß eine solche Distanz wohl innerhalb der Grenzen der
normalen Dispersionsaktivität liegt.
Eu oa die 2. Generation dieser Art ist nur partiell ausgeprägt; prote-
randrisc
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Macaria signaria (31 Individuen)
Distanzen: 1-2 i 1
Larvalökologie: die Art ist an das Vorkommen von Gemeiner Fichte oder Heide-
kraut gebunden. Im Untersuchungsgebiet vor allem an Fichte, wie Raupenfunde
bestätigten. Der bisher am weitesten von der Futterpflanze entfernte Nachweis ist
ein d an WNOo (ca. 50 m)
Verbreitungsstrategie: K-Stratege, 6. Gruppe
188
Mecaria liturata
243 Individuen 29,9 % o- Rate
163 markiert 5 Wiederfänge
Tab. 101: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Macaria liturata.
EN ee TE a ES
SIEDLUNG ALD HALBTROK- eE WALD HALBTROK- "DACH.
1987 | Garten KENRASEN M 2 1988 Garten Wasserwerk KENRASEN MOOS’
SiS SIM|SIN WaS |WaM Wan HO HM HW Mb SIN WaS WaN WNw WNo HO HM HW Au We
Ipr.. - 29 17 15 25 Vote - 80 par 5 26 25 28 10 if 1 -
De zusue I =D 11 - 3 10 - 2 - 28 2% zus - 29 = = - = = = =
de = Mm on Aa 9 Meet - 48 dd 25 Bo 6 5 m
9 Ss.) A Snwlr is Zoe 2 - 24 99 3 8 EEE <) I a
Mark. - 2 55 Es ars - 71 Mark. 2033 190722069 6 Er =. 8
Wit. EINEN ie SW esse = =. We. 1 Se Eee Eee EEE
Wiederfang-Quote: niedrig! Alle Rückfänge erfolgten nach einem Intervall von nur
Tag und erklären sich also durch ein Festgehalten-Werden am Licht. Ein o
wechselte den Ort von WaS nach SiN, wo es tags darauf noch einmal gefangen
wurde. Die mittlere Verweildauer liegt mit 1,3 Tagen sehr niedrig. Die o-Rate
im Wiederfangergebnis entspricht ungefähr der der Erstfänge.
Distanzen: 2-3
zu, ee : auf Nadelhölzer spezialisiert; an HM wurden 1986 2 biotopfremde
Stücke (do) nachgewiesen, die mindestens 800-1000 m geflogen waren. Die Häu-
figkeitsgradienten im Wasserwerk und im Garten 1988 sprechen jedoch für Bar-
rieren (O fenlandeharakt,) Sehen die Verbreitung dieser Ärt.
Populationsbiologie: bivoltin, 2. Generation nicht vollständig; proterandrisch
Verbreitungsstrategie: intermediärer Ip 5. Gruppe; im Zusammenhang mit der
günstigen Bestandsentwicklung fast aller an Kieiern lebenden Arten 1986 erfolg-
te auch bei liturata ein "Verbreitungsschub”, der sich in Vorstöße auf das
Offenland hinaus bemerkbar machte. In normalen Jahren liegt dagegen die Ober-
grenze der Dispersionsaktivität über biotopfremdes Gebiet niedriger.
Chiasmia clathrata
siehe verringerte Fallendistanzen (8.3.)
157 Individuen 3,3 % 9- Rate
112 markiert 11 Wiederfänge
Tab. 102: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Chiasmia clathrata.
1987 SIEDLUNG WALD HALBTROK- DACH 19897 SIEDLUNG WALD HALBTROK- "DACH.
!G KENRASEN MOO L KENRASEN MOOS”
| Garten |
1.6 arten 2. Gen
. Gen. sis sim|sin Was|WaM WaN HO HM HW M i SiS SIM|SIN WaS|WaM WaN HO HM HW Mb
Spar - Ay BB A 2 1 A Zpa. I - - ir 18127459 ) 1
% zus. her = - - 3 - - - - su e27zus: Zu - - 1 1 - 2 -
ds - a - 23 dd I er 8 6 ae =
99 =. ayıo Er N = 109 Es Ei en So 1
Mark. = 2 0. Shi A, N aa‘ - 2A Mark I 8 9% BURE-IIENA: 1
W.f. au a ee Sun - 3 wi. ee En (ER EN 2
1988 WALD HALBTROK- "DA! 1988 WALD HALBTROK- "DACH.
Garten Wasserwerk KENRASEN MOO: DB Garten Wasserwerk KENRASEN MOOS”
1. Gen. sy Was WaN WNw WNo HO_ HM HW Au We SIN WaS WaN WNw WNo HO HM HW Au We
I par. - 5 2 19 gr N 3 1 - 36 2% par. - 2 6 SEm15 Ders" >)
& zus. = = > - = = = = - - = 2% zus. = 1 = > S - = = - -
[oje] - - 3 1 16 3 1 2 - - 26 dd - 2 5 3 10 6 - 3 - -
29 z 7 EUREN Se Frelern = =109 = 7 at Zur Den =
Mark. > = 3 1 15 3 1 2 _ - 25 Mark. = 2 5 2 10 6 - 3 -
Wit. - - 4 so 0. _ 5 wi. = TEE 1 Sue. = ©
tags
Wiederfang- te: hoch! Abgesehen von den bereits diskutierten Wiederfängen i
Wasserwerk ereigneten sich 1987 im Berglwald (WaM) zwei Erstwiederfänge (dd
nach 2 bzw. 5 Tagen und ein Zweitwiederfang nach insgesamt 8 Tagen. Die
Verweilzeiten liegen also auch hier sehr hoch.
Die Wiederfa
gut kompartimentierte
zu anderen Standorten
riger als miewde
Es scheinen auch die Geländestrukturen eine Rolle
reale (z.B. WaM, Wasserwer
‚B. H
t
YA
Dr
Quoten und Verweilzeiten der 2. Generation liegen grundsätzlich nied-
r 1. Generation, was vermutlich an einer höheren Mobilität liegt.
i spielen: Abgeschlossene,
begünstigen im Vergleich
und HW) die Ortstreue, was sich in deutlichen
Unterschieden der Wiederfang-Quote niederschlägt.
189
Distanzen: 1. Generation 1-2, 2. Generation 2(-3?); der Häufigkeitsgradient im
Wasserwerk 1988 entsprach den Beobachtungen, die tagsüber gemacht werden
konnten. Die in Lebend-Lichtfallenfängen ermittelten relativen Häufigkeiten spie-
geln also durchaus die tatsächlichen Verhältnisse in einer ausreichenden ankine
mungel: Es scheint also Barrieren gegen die freie Verbreitung von C. clathrata zu
eben.
in weiterer Hinweis in dieser Richtung ist die (am Tag gemachte) Beobachtung,
daß Exemplare, die an Biotopgrenzen gelangen, bevorzugt ein Richtungsände-
rungs-Verhalten zeigen. Hierbei sind Erkennungsmechanismen zu postulieren.
Populationsbiologie: bivoltin
Verbreitungsstrategie: K-Stratege, 4. Gruppe; zur Strategie gehört allerdings auch
die in der 2. Generation etwas erhöhte Verbreitungspotenz. So konnte C. clath-
rata im Garten bisher ausnahmslos erst in der zweiten Generation nachgewiesen
werden (in 7 Tahren!: was offensichtlich auf zufliegende Exemplare zurückzu-
führen ist. Man könnte fast von einem "obligatorischen Turnover"” sprechen, wenn
man die Generationen separat betrachtet.
Itame wauaria (65 Individuen)
Distanzen: 1-2
Larvalökologie: die Faupen sind auf Stachelbeere und Rote Johannisbeere spezia-
lisiert; die beiden an SiS und WNo festgestellten Stücke stammen mindestens aus
50 m Entfernung. Der starke Häufigkeitsgradient im Garten deutet auf geringe
Dispersionsaktivitäten hin (in einer Entfernung von 25 m zu WaS existieren gro-
Bere Teheniabeer Bestände:
Verbreitungsstrategie: K-Stiratege, 6. Gruppe
Itame fulvaria (2 Individuen)
Distanzen: im Untersuchungsgebiet vermutlich 2 i
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe; in anderen Gebieten, wo
die Raupen nach KOCH (1984) in Heidelbeerwäldern gelegentlich KahlfraB erzeu-
gen, verfolgt I. fulvaria unter Umständen eine andere Strategie.
Theria rupicapraria (7 Individuen)
Wiederfang-Quote: hoch, Stichprobe noch zu klein! Von den fünf 1988 im Was-
serwerk markierten Jo’ konnte eines am Fallenstandort WaN nach 2 Tagen wie-
dergefangen werden.
Distanzen: SS 12°). 99 (flugunfähig) 1
Larvalökologie: an Schlehe und Weißdorn; bisher konnten keine biotopfremden Tiere
nachgewiesen werden, die hin und wieder im Garten auftauchenden Stücke stam-
men wahrscheinlich von den ca. 10 m (WaS) bis 30 m (SiN) entfernten Schlehen-
und Weißdornbüschen.
Verbreitungsstrategie: typischer K-Stratege, 6. Gruppe; siehe Bemerkungen zu Al-
sophila aescularıa und Operophthera brumata.
Erannis bajaria (6 Individuen)
Wiederfang-Quote: 1988 wurden im Garten 2 d’d' markiert, eines (WaS) flog am da-
‚rauffolgenden Tag zum zweitenmal in die Falle.
Distanzen: vermutlich 1-2; die stummelflügeligen o9 nur |
Populationsbiologie: diese Art ist in Südbayern wie im Untersuchungsgebiet offen-
sichtlich nur äußerst lokal verbreitet, für Schleißheim lagen aber schon am An-
fang dieses Jahrhunderts Nachweise von E. bajaria vor. Dies spricht für eine sehr
hohe Stabilität der Populationen dieser Art.
Verbreitungsstrategie: typischer K-Stratege, 6. Gruppe; siehe Bemerkungen zu Al-
sophila aescularıa und Operophthera brumata.
Erannis leucophaearia (?4 Individuen)
24 Individuen 0 %* o- Rate
20 markiert kein Wiederfang
* die 99 sind flugunfähig
Wiederfang-Quote: niedrig ?): Stichprobe noch zu klein; an HO, wo 1987 14 Indi-
‚viduen markiert wurden, erfolte der Lichtfang zur Flugzeit nur wöchentlich.
Distanzen: JS 2, die stummelflügeligen 09 nur | f
LAITRLDENISDE: die Raupen ernähren sich v.a. von Eiche, manchmal auch von Espe
oder Obstbäumen; an allen Stellen, wo E. leucophaearia bisher festgestellt wur-
de, befinden sich in der Nähe potentielle RaupenfutterpfInzen. s
Verbreitungsstrategie: K-Stratege, 6. Gruppe; siehe Bemerkungen zu Alsophila
aescularıa und erophthera brumata.
190
Erannis aurantiaria (9 Individuen)
Distanzen: Sc‘ 1-2, die stummelflügeligen Sl nur 1
Larvalökologie: an Laubgehölz, bisher keine biotopfremden Tiere
Verbreitungsstrategie: K-Stratege, 6. Gruppe; siehe Bemerkungen zu Alsophila aes-
cularia und Operophthera brumala.
Erannis marginaria
84 Individuen 0 %* o- Rate
74 markiert 3 Wiederfänge
* die stummelflügeligen 99 sind flugunfähig; 1988 wurden im Garten 2 099 beobach-
tet, eines davon erklomm eine Mauer und gelangte so in unmittelbare Nähe der in
dieser Nacht eingeschalteten UV-Röhre.
Wiederfang-Quote: niedrig; 1987 erfolgten 2 Wiederfänge bei täglichem Betrieb der
Falle nach einem Intevall von je 1 Tag; eines der beiden Tiere wechselte dabei
den Standort (WaS>SiN = 30 m). 1988 wurde im Garten (Was) ein Exemplar nach
2 Tagen rückgefangen. Es ergibt sich eine sehr niedrige mittlere Verweildauer von
2 1
Larvalökologie: an Laubbäumen, bisher keine biptopfremden Tiere
Verbreitungsstrategie: K-Stratege, 6. Gruppe (was die 009 betrifft); die dd sorgen
durch ihre erhöhte Mobilität für eine gute Durchmischung des Erbmaterials. Siehe
Bemerkungen zu Alsophila aescularia und Operophthera brumata.
Erannis defoliaria
54 Individuen 0 %* o- Rate
22 markiert 6 Wiederfänge
* sie stummelflügeligen 99 sind flugunfähig
Wiederfang- te: hoch, Stich robe noch zu klein; 4 Wiederfänge beziehen sich auf
den Garten (SiN, WaS) 1988 bei Intervallen von nur 1 Tag, 2 andere erfolgten
nach einer fangfreien Nacht, also einem 2-Tage-Intervall. Es ereigneten sich
3 Mehrfachwiederfänge, es errechnet sich eine mittlere Verweildauer von 3,3 Ta-
gen, einem vergleichsweise hohen Wert.
Distanzen: dc’ 1-2; 09 1
Larvalökologie: an Laubbäumen, bisher keine biotopfremden Tiere
Verbreitungsstrategie: K-Stratege, 6. Gruppe; siehe Bemerkungen zu Alsophila aes-
cularia und Operophthera brumata.
Phigalia pedaria
45 Individuen 0 %* o- Rate
43 markiert 2 Wiederfänge
* die 99 sind flugunfähig (nur sehr rudimentäre Flügelstummel)
Be eertens rate: hoch, statistisch noch nicht gut abgesichert; zwei 1987 mar-
kierte Falter (SiN, HW) wurden nach je 2 Tagen wiedergefangen.
Distanzen: Sc 2, 00 |
Larvalökologie: an verschiedenen Laubhölzern, bisher keine biotopfremden Tiere
Verbreitungsstrategie: K-Stiratege, 6. Gruppe; siehe Bemerkungen zu Alsophila aes-
cularia und Operophthera brumata.
Apocheima hispidiaria (1 Individuum)
Distanzen: vermutlich 1-2; 92 1
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe; die 99 sind auch bei die-
ser Art wegen der sehr rudimentär ausgebildeten Flügelstummel flugunfähig. Sie-
he Bemerkungen zu Alsophila aescularia und Operophthera brumata.
Lycia hirtaria (52 Individuen)
Distanzen: 2
Larvalökologie: an verschiedenen Laubbäumen, bisher keine biotopfremden Tiere
Verbreitungsstrategie: K-Stratege, 6. Gruppe; die 99 sind bei dieser Art flugfähig.
191
Biston strataria (7 Individuen)
Distanzen: 2-3
LarealDinlanle: an verschiedenen Laubbäumen; die in 2 Jahren im Offenland (HM)
bachteten Exemplare stammen aus mindestens 150-300 m Entfernung (Rude-
in Für B. stratarıa scheint Offenlandcharakter keine so große Barriere gegen die
Vecbr eatang darzustellen wie für viele andere Geometriden.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Biston betularia
107 Individuen 0 %* o- Rate
44 markiert 3 Wiederfänge
*von den 44 markierten Exemplaren. Die 23 wirken - besonders im fertilen Zu-
stand - recht schwerfällig, Bu vermutlich das IAn -)Flugverhalten behindert. Im
Birket 1987 wurden jedoc 3 gelanzen, und es war auch eine Kopula an der
Lichtfalle zu beobachten. Auch 89 flogen wieder mehrere 99 ans Licht.
Wiederfang-Quote: durchschnittlich; zwei schon in der nächsten Nacht rückgefan-
Sr Tiere im Garten 1988 Ds sich als methodisch bedingt (Festgehalten-
erden durch die Lichtwir Eines dieser beiden Wiederfänge war ein Orts-
wechsler (SIN?>WaS=30 m
en. Wasserwerk (WaN) konnte ein d nach 2 Tagen wiedergefangen werden.
istanzen:
Larvalökologie: nach den in KOCH ne Eu tuzen Beurea stam-
en die nach HM zugeflogenen Exemplare mindeste aus de Ruderal
2 300 m). Der starke Häufigkeitsabfali im Wasserwerk WaN> WNo schon in
2 m Entfernung läßt auf Barrieren gegen die freie Mobilität dieser Art schlie-
en.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Peribatodes rhomboidaria
siehe Fernwiederfänge (8.2.) und Versetzexperiment (8.4.)
520 Individuen 9,4 % o- Rate
362 markiert 57 Wiederfänge
Tab. 103: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Peribatodes rhomboidaria;, die Art wurde nur 1988 markiert.
WALD HALBTROK- Moos
198 Garten Wasserwerk KENRASEN L
SN WaS WaN WNw WNo HO HM HW Au
Een aa Et ge ar ee 3508
I zus. - 174 Sa Ve Ser 7.
dd 23 267 m aaa 1 0339
99 5 21 3 3 = - = = = = 32
Mark. 23 288 DB ae are rar 362
Wr. 5 48 Sale? nBpe == 57
leren Verweildauer von 1,8 Tagen (wie beispielsweise Noctua pronuba) kommt das
san ausgeprägte Umherschweifen dieser Art in der näheren Umgebung zum Aus-
ruck.
Im Wasserwerk niet die Wiederfang-Quote (9,1 % bei einer relativ kurzen Ver-
eildauer von 2,3 Tagen auf sehr hohem Niveau. Hier ist es durch die Methodik
eeringeie ern bei einer besseren Flächenabdeckung gelungen, etwas
nachzuweisen, was mit Einzelfallen nicht möglich ist: ein Verbleiben in der nähe-
ren Umgebung, aber außerhalb der Reichweite der Lichtfalle. Zwei der drei Wie-
derfänge waren nämlich Ortswechsler: WaN> WNw = 100 m und WaN> WNo=50 m.
Die 99 an im Wiederfangergebnis deutlich unterre a (siehe 8.4.
Distanzen: 2-3, der Häufigkeitsgradient im Garten auf nur m Distanz spricht für
Barrieren gegen die freie Mobilität dieser Art. Diese herren z.B. Häuserzei-
Biotopstruktur) wurden bereits in den Ergebnissen des Versetzexperimentes dis-
utiert.
Larvalökologie: relativ polyphag
Populationsbiologie: proterandrisch
VOrDEPIENBSHTEN ERIC: intermediärer Typ, 5. Gruppe; nach LATTIN (1967) unter-
Wiederfang-Quote: hoch; in der im {mic 6 vergleichsweise niedrig liegenden mitt-
nahm P. rhomboidaria in diesem Jahrhundert Arealausweitungen in Richtung Nord-
westen. Interessant In in diesem Zusammenhang der Fernwiederfang nach nur ei-
nem Tag Tsiche 8.2
192
Peribatodes secundaria (238 Individuen)
Distanzen: 2, manchmal bis 3 ,
Larvalökologie: an das Vorhandensein von Nadelbäumen gebunden; das an HM 1988
festgestellte Stück stammt aus mindestens 800-1000 m Entfernung (Flughafenrand).
Diese Distanz wird Io nur ausnahmsweise bewältigt.
Im Garten und im Wasserwerk sind entsprechend der Verteilung der Futterpflan-
zen deutliche Pugk ep adienien feststellbar, die für biotopstrukturbedingte
Barrieren gegen die freie Beweglichkeit sprechen.
Verbreitungsstrategie: K-Stratege, 5. Gruppe
Cleora cinctaria (3 Individuen)
Distanzen: vermutlich 2-3
Verbreitungsstrategie: vermutlich intermediärer Typ, 5. Gruppe
Deileptenia ribeata (325 Individuen)
Distanzen: ?
Larvalökologie: an einer Reihe von Nadel- und Laubbaumarten, v.a. an Gemeiner
Fichte; die 3 im Se HM) nachgewiesenen Falter &% hatten sich jedoch
. vermutlich im Ruderal (150-300 m entfernt) an Sal-Weide entwickelt.
Die im Wasserwerk und im Garten erkennbaren deutlichen Häufigkeitsgradienten
entsprechen der Verteilung der "Hauptfutterpflanze" Fichte und deuten auf Bar-
rieren gegen die freie Mobilität hin.
Bopulstionsbiologie: im Garten fallen die starken Häufigkeitsschwankungen von Jahr
zu Jahr auf.
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Alcis repandata
siehe Fernwiederfänge (8.2.), verringerte Fallendistanzen (8.3.) und Versetzexperiment (8.4.)
1371 Individuen 16,0 % o- Rate
1127 markiert 69 Wiederfänge
Tab. 104: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von Al-
cis repandata.
SEDLUNG WALD HALBTROK- DIE WALD HALBTROK- we
1987 | Garten KENRASEN M % 1988 Garten Wasserwerk KENRASEN M
SIS SIM |SN WaS | WaM Wa HO HM HW Mb SN WaS WaN WNw WNo HO HM HW Au We
I par. 7 1 14 39 533 20 - 1 9 139 2 par. 18 310 71 157° 132 59 4 11 9
Dezusuh nn =u82 79 - 8 9 - 1 - 99 X zus. - 361 - - - - - - - _
[o1 07 2 - 10 69 102209 19 - - 3 130 dd 12 541 46 87 94 39 1 4 8 e7.
99 39.2 1 4 2 Rn 1 45 09 2 53 18 41 18 TREE ie
Mk 51232 BD Me 4 165 Mark. 13 590 60 126 108 46 1 3 807,
Wit. SL Ne TE ae RR. 2 2 Wi. 7, Te 3 ae She
Wiederfang-Quote: durchschnittlich, im Wasserwerk relativ hoch, dasselbe Bild zeigt
sich auch bei den mittleren Verweilzeiten.
Die 99 sind im Wiederfangergebnis unterrepräsentiert (siehe 8.4.).
Distanzen: im Habitat 2-3, außerhalb 2; die Häufigkeitsgradienten im Wasserwerk
und im Garten deuten auf Barrieren gegen die freie Mobilität dieser Art hin.
Larvalökologie: vergleichsweise polyphag; das an HM gefangene 4 ist Jedge als
biotopfremd zu bezeichnen und stammt zumindest aus dem Ruderal (150-300 m).
ulationsbiologie: relativ NR proterandrisch;, im Wasserwerk fallen starke Un-
en ebiedt, in den o9-Raten (WNw: 32,0 % - WNo: 16,1 %) auf einer Distanz von
m auf.
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Boarmia roboraria (49 Individuen)
Distanzen: 1-2
arvalökologie: die Raupe kann an einigen Laubbäumen gefunden werden, bisher
konnten keine biotopfremden Tiere nachgewiesen werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Serraca punctinalis (251 Individuen)
Distanzen: 2(-3?); im Wasserwerk und im Garten waren auffällige Häufigkeitsgra-
dienten zu beobachten. ;
Larvalökologie: nach den in KOCH (1984) genannten Rau; ze beurteilt,
stammt das HM-Stück 1987, cd’) zumindest aus dem Ruderal (150-300 m).
t
Verbreitungsstrategie: K-Stratege, 5. Gruppe
193
Ectropis bistortata
340 Individuen 5,3 % 9- Rate
247 markiert 14 Wiederfänge
Tab. 105: Fangergebnisse, Geschlechterverteilung und Markierungsergebnisse von
Ectropis bistortata.
1987 | Garten |
Garten Wasserwerk
SiS SIM|SIN WaS|WaM Wa HO HM HW M j
SN WaS WaN WNw WNo HO HM HW Au We
SIEDLUNG WALD HALBTROK- DACH WALD HALBTROK- DACH
KENRASEN M r 2 1988 KENRASEN M
2 para 420. 37104 28. 124 10 Zune 15 104 par. 13 54 8.0344 ji An 13
I zus ng 33 - - 24 in 5 - 48 8 zus. - 51 - - - u} - - -
de 3 Mn25 38n.10K'r9 3 r= au 10 99 dd ih 79 ro, a B°’73
99 sel 75 1 1 - ee - 8 099 - 1 1 1 1 1 IE 1 =
Mark. 3.0.2428 re 9 Se 10 103 Mark 10 80 TEN 3IO 1a 71, ara
W.t. SE - 1 - En - - 1 wi 1 „ - _ 1 Ba - -
Wiederfang-Quote: durchschnittlich; ähnlich wie bei Calocalpe cervinalis und bei
Chiasmia clathrata könnten hier Geländestrukturen eine Rolle spielen: Am Stand-
ort WaM wurde ein J nach einem relativ langen Intervall von 5 Tagen wieder-
efangen (bei nur 9 Markierungen).
m asserwerk konnte ein Örtswechsler (WNw>WNo=120 m) nach 2 Tagen
nachgewiesen werden.
Im Garten erfolgte in der 1. Generation ein Wiederfang (4) nach zwei Tagen (bei
einer dazwischenliegenden fangfreien Nacht). In der 2. Generation (eben Fang,
WaS) war bei einer Ne IE Ole von 16,7 % eine (medrz e) mittlere Ver-
weildauer von 1,3 Tagen festzustellen. Ein Tier wechselte von WaS nach SiN (30
m). Es fällt das Fehlen von Zweitwiederfängen auf.
Er an Generationen zeigen in den Markierungsexperimenten ungefähr gleiche
rgebnisse.
Distanzen: sn das polarisierte Häufigkeitsmuster im Garten (und vielleicht im
Wasserwerk) deuten auf Barrieren gegen die freie Mobilität dieser Art hin. Diese
Barrieren sind sind in der fehlenden Deckung und im dadurch steigenden Feind-
druck bei zunehmendem Offenlandcharakter zu vermuten.
Larvalökologie: recht polyphag; die beiden 1986 im Offenland (HM) gefangenen cd
Eu jedoch hier nur Gäste und stammen zumindest aus dem Ruderal (150-300 m
entfernt).
Populationsbiologie: bivoltin, sehr partiell sogar eine 3. Generation
Verbreitungsstrategie: intermediärer Typ, 3. Gruppe
Ectropis extersaria (6 Individuen)
Distanzen: vermutlich 1-2
Larvalökologie: die Raupe ernährt sich von einigen Laubbaumarten; bisher konnten
noch keine biotopfremden Tiere nachgewiesen werden.
Verbreitungsstrategie: vermutlich K-Stratege, 6. Gruppe
Aethalura punctulata (20 Individuen)
Distanzen: 1-2 FHInE h j
Larvalökologie: diese Art ist auf Erle und Birke spezialisiert; bisher konnten keine
biotopfremden Tiere festgestellt werden. Am Rand des Franzosenhölzis wurden
1989 an einer Birke 8 Exemplare gefangen, 45 m davon entfernt jedoch keines
mehr.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
Ematurga atomaria (26 Individuen + tagsüber sehr viele weitere Exemplare)
Distanzen: en im Kern des Siedlungsgebietes sowie im Garten wurde diese
sonst recht häufige Art bisher nicht registriert; die Distanz von ca. 1 km (Zuflug
in - Ort) scheint vielleicht nicht im Bereich der normalen Dispersionsaktivität
zu liegen.
Populationsbiologie: bivoltin
Verbreitungsstrategie: intermediärer Typ, 5. Gruppe
Bupalus piniaria
89 Individuen 17,6 % o- Rate
82 markiert 2 Wiederfänge
194
Wiederfang-Quote: etwas überdurchschnittlich; im Garten (SiN) wurde 1987 ein C
nach 3 Tagen, im Wasserwerk 1988 (WNw ein d“ nach 4 Tagen wiedergefangen.
Im Wasserwerk waren alle Fangplätze mindestens 20 m von der nächsten Futter-
flanze entfernt, vielleicht wäre bei einem Fang unmittelbar an den Orten der
Larvalentwicklung eine höhere Wiederfang-Quote zu erwarten.
Distanzen: 1-2, bei Kalamitäten vermutlich auch 3
Larvalökologie: die als Schädling gefürchtete Raupe ernährt sich von Wald-Kiefer,
selten auch von anderen Nadelbaumen. Im reinen Offenland konnten bisher kein
Exemplare beobachtet werden; bei den 4 an HW nachgewiesenen Stücken (090
erscheint es fraglich, ob die Entwicklung an den in der unmittelbaren Nähe wach-
senden kleinen Fichten stattfand, vermutlich waren sie eher von den 3 in ca. 100
m Entfernung stehenden 1-2 m hohen Kiefern oder von den 500 m entfernten
rößeren Kiefernbeständen herbeigeflogen.
m Wasserwerk waren in Entfernungen von 20, 30 und 75 m zur nächsten Kiefer
WNw, WNo und WaN) ein Häufigkeitsabfall von 22 auf 9 und schließlich auf
Individuen festzustellen.
Populationsbiologie: proterandrisch
Verbreitungsstrategie: r-Stratege, 5. Gruppe; in mehrjährigen Rhythmen können
starke Gradationen stattfinden (Odum & Reichholf, 1980). B. piniaria wird dann be-
deutend mobiler sein, als es in den beiden Untersuchungsjahren in Oberschleißheim
zu beobachten war.
Siona lineata (30 Individuen + tagsüber viele weitere Exemplare)
Distanzen: 2; die Distanz von 1 km über biotopfremdes Gebiet wird im Normalfall
ach bewältigt: So konnte $S. lineata im Siedlungsgebiet bisher nicht beobachtet
werden.
Verbreitungsstrategie: K-Stratege, 6. Gruppe
9.3. AUSWERTUNG
9.3.1. r-K-Kontinuum
92 Arten (19 %) sind als r-Stratege, 183 (37 %) als intermediärer Typ, und 220 (44 %)
als K-Stratege zu bezeichnen. Diese Prozentsätze sind als relative Angaben innerhalb
des Artenspektrums zu verstehen (ODUM & REICHHOLF, 1980). Insekten können in-
nerhalb des Tierreiches insgesamt als eher r-selektiert aufgefaßt werden (PIANKA,
1970).
Die Eulenfalter (Noctuidae) sind vorwiegend r-Strategen (27 %) und intermediär (47 %),
während bei den Spannern (Geometridae) die K-Strategen mit 68 % überwiegen.
9.3.2. Flugdistanzen
Aus Abbildung 46 wird ersichtlich, daß bei einem Großteil des Artenspektrums Flugdi-
stanzen von 1 km normalerweise nicht überschritten werden. Die Bemerkung HEYDE-
MANNs (1981), wonach nachtaktive Schmetterlinge "5-10 km große Fremdbiotope” über-
fliegen, "um einen neuen Bestand dieses Biotoptyps aufzusuchen” darf daher nicht pau-
schalisiert verstanden werden. Zumindest in unregelmäßigen Zeitabschnitten wird die
Entfernung von 1 km jedoch von allen Arten ab der 2. Gruppe in Einzelexemplaren
bewältigt.
Es zeigt sich auch, daß die Betrachtung eines einzelnen Lichtfallen-Standortes eine ho-
he Dynamik offenlegen sollte: Da die Wirkung der Falle im Gebiet jenseits eines Ra-
dius‘ von ca. 50 m nur mehr unwesentlich zum Tragen kommt (siehe 8.4.), sind 98 %
des Artenspektrums als Arten gekennzeichnet, bei denen eine Abwanderung aus dem
Einzugsbereich ein normaler Vorgang ist. Ein größerer Teil der "Gruppe 1" sind zudem
Arten, deren 99 flügellos sind, und deren dc‘ ebenfalls aus dem Einzugsbereich abflie-
gen können.
195
100
1 1-2 2 3 3-4 4 Gruppen-Nr.
Abb. 46: Anteile des Artenspektrums an den verschiedenen Gruppen der Flugdistanzen
(nach SCOTT, 1975; Erklärung siehe 9.1.).
Number of species belonging to the different groups of flight distances (SCOTT, 1975).
9.3.3. Ökotypen
Erwartungsgemäß ist unter den Ubiquisten der Anteil der r-Strategen mit 60 % am
höchsten. Da sowohl bei der Einteilung in die verschiedenen Ökotypen als auch bei der
Zuteilung einer Strategie teilweise die Verbreitungsmuster im Untersuchungsgebiet mit-
einflossen ist eine solche Beurteilung jedoch streng genommen nicht zulässig.
Nimmt man die Gruppennummern nach SCOTT (Il.c., siehe 9.1. und 9.3.2.) als arithme-
tische Werte und addiert so die Zahlen für alle Vertreter eines jeden Ökotyps auf, so
ergibt sich nach einer Division durch die Artenzahl n ein Maß für durchschnittlich zu-
rückgelegte Distanzen:
Tab. 106: Gruppenmittel (mittlere Flugdistanzen nach SCOTT, 1975; siehe 9.1.) der
verschiedenen Ökotyp-Vertreter (Bezeichnung siehe 4.3.).
Mean of the group values (flight distances after SCOTT, 1975; see 9.1.) of various
ecotypes (see 4.3.)
Bor Ub mGr Agr Xe (er a nn
GRUPPENMITTEL
mean of group 30° 2,7 32 2,7 2,2 We2,0 772,2 2,37
values
Für die Ubiquisten und die Arten des Ackerlandes ergeben sich hohe Werte, zurückge-
legte Distanzen von einem Kilometer und mehr sind die Regel. Diese Entfernungen
werden dagegen von den Arten der Wälder, der Waldränder, der Gebüsche und der
hygrophilen Fauna normalerweise nicht bewältigt.
Differenziert man noch etwas genauer und betrachtet die als "Ruderalarten” bezeich-
neten Arten separat, so zeigt sich im Gegensatz zu den "Geb"-Arten ein hoher Wert
von 2,75, was mit dem ephemeren Charakter dieses Lebensraumes zusammenhängt: Die
Spezialisierung auf Habitate in frühen Sukzessionsstadien führte bei deren Bewohnern im
Lauf der Evolution zu tendenziell erweiterten Aktionsradien, da für diese Arten ein
196
Aufsuchen neuer Lebensräume öfter nötig wird. Auch GLAZIER (1986) postuliert für
weit umherfliegende Arten, daß sie "öfter in gestörten, ephemeren oder stark saisona-
len Habitaten gefunden werden".
Allgemein betrachtet zeigen sich bei einer Beurteilung durch das Kriterium der poten-
tiellen Flugdistanzen zwei unterschiedliche Typen: Die Offenlandfauna einschließlich
der xerothermophilen sowie der für Ruderalien typischen Arten ist als tendenziell ex-
pansiv einzustufen, während alle anderen Gruppen verstärkt ortstreue Arten beinhalten.
Für einige "charakteristische Heidefalter” veranschlagt auch WARNECKE (1952) eine
Mindest-Flugdistanz (Luftlinie) von 4-5 km ins Stadtgebiet von Hamburg hinein.
9.3.4. Arten extremer Jahreszeiten
Die Arten der Frühlingsmonate (Flugzeitschwerpunkte bis April) sowie die Herbst- und
Spätherbstarten fallen, nach den Flugdistanzen und ihren Strategien beurteilt, nicht
wesentlich aus dem Rahmen. Auffallend ist, v.a. im Spätherbst, die hohe Anzahl an
Arten mit flügellosen Weibchen, was meist mit einer K-Strategie verknüpft ist, obwohl
des öfteren eine gewisse Kompensation dieses Verbreitungshindernisses durch "bewegli-
che Raupenstadien" (Flugfäden) erreicht wird.
Die Arten der Gattungen Orthosia (Frühflieger) und Agrochola (Flugzeiten im Herbst)
zeigen nicht nur Konvergenzerscheinungen bezüglich der äußeren Merkmale und der
Flugzeit unter extremeren Bedingungen, sondern sind auch durch die vergleichsweise
hohe Mobilität innerhalb der Arten gekennzeichnet, deren Raupen auf Bäumen leben.
Zur Deckung des Energiebedarfs sind unter solchen extremen Bedingungen höhere Ak-
tivitäten im Sinne des trivial movement nötig, um zu den oft vereinzelten Nektarquel-
len zu gelangen.
Die Indices der Flugdistanzen liegen bei 2,7 (Orthosia) und 2,4 (Agrochola).
9.3.5. Proterandrie
Ein proterandrisches Erscheinungsbild ist als Antwort auf die Notwendigkeit zu verste-
hen, das Fortpflanzungsgeschehen so effektiv wie möglich zu gestalten, was dann ge-
währleistet ist, wenn zum Zeitpunkt der o9-Emergenz die dd‘ schon vollständig ge-
schlüpft und zur Kopula bereit sind. Dies ist ein bei kurzlebigen Tieren wie den
Schmetterlingen verbreitetes Phänomen (SCHWERDTFEGER, 1963).
Aus den vorliegenden Ergebnissen ergeben sich zwar Hinweise auf erhöhte Flugaktivi-
täten solcher proterandrisch auftretender Arten, da die Aussagen über sexuelle Koinzi-
denz im Untersuchungsgebiet jedoch als unvollständig zu bezeichnen sind, ist ein sol-
cher Zusammenhang noch recht wenig abgesichert.
9.3.6. Bi- und Polyvoltinismus
Unter den bi- und polyvoltinen Arten (siehe 9.2.) ist der Anteil der K-Strategen (23 %)
deutlich niedriger als im Gesamtbild, die r-Strategen (32 %) sind überrepräsentiert. Der
Wert für die nach 9.3.3. berechnete mittlere Flugdistanz liegt mit 2,6 relativ hoch.
Auch SCOTT (1975), GATTER (1981) und MEINEKE (1984) fanden Hinweise darauf,
daß mehrbrütige Arten erhöhte Flugaktivitäten zeigen.
9.3.7. Einflüsse der Witterung auf die Mobilität
"Zwischen dem Ablauf der Wetterlage und der Entwicklung der Falterwelt" besteht ein
enger Zusammenhang (MICHEL, 1961). Das Anflugverhalten ans Licht ist unter anderem
197
durch Lufttemperatur, Windstärke und -richtung, Mondphase, Luftfeuchtigkeit und
Luftdruck bedingt (KURTZE, 1974; GATTER, 1981; MEINECKE, 1984; u.a.)
Günstige Bestandsentwicklungen aufgrund guter Witterung können indirekt über eine
erhöhte Populationsdichte verstärkte Abwanderungen bewirken, wie beispielsweise
1986 bei den Kiefernspezialisten (z.B. Panolis flammea).
Wind kann eine mehr oder weniger passive Verfrachtung von Nachtfaltern außeror-
dentlich begünstigen. Im Offenland (HM) traten 1986-1988 biotopfremde Tiere vor
allem in Wind-Nächten auf (Tabelle 107).
Tab. 107: Abhängigkeit des Zuflugs biotopfremder Tiere (in % pro Fang) von der Wind-
stärke in der Hauptflugzeit 1986-1988 im Offenland (HM); vergleiche 6.4.4..
Dependence of the influx of off site species (in per cent per capture) of wind inten-
sity during the main flight periods of the years of 1986 to 1988 in open habitats
(HM): cf. section 6.4.4..
u aus mindestens 150-300 m aus mindestens 800-1000 m
Wind Nächte ‚sten (X) Individuen (%) Arten (%) Individuen (%)
nights species (%) individuals (X) species (X) individuals (2)
windstill 30 22 16 4 2
no wind
leicht 8 27 19 a 3
light wind
mittel-böig 10 29 20 3 3
moderate wind
or gusts
Eine Begünstigung von Langstrecken-Dispersal durch Wind, vor allem im offenen
Grasland, erwähnen auch SCOTT (1973) und WARNECKE (1952). Für eine Unter-
stützung von Migrationsflügen durch günstige Winde liegen zahlreiche Hinweise vor
(z.B. SCHWERDTFEGER, 1978).
Bezüglich der Temperatur ergaben sich bei den Fremdarten im Offenland keine auf-
fälligen Befunde.
Ein sprunghaftes Ansteigen der Wiederfang-Wahrscheinlichkeit in bzw. nach kalten
Nächten zeigte sich jedoch in vielen Fällen. Die Frühlingsarten im Wasserwerk wur-
den bereits andiskutiert (8.3.1.). Im Garten (WaS, 1988) zeigte sich bei täglichem
Fang in kühleren Nächten fast stets ein höherer Anteil der markierten Falter am
Tagesergebnis, z.B. am 4.8. mit 60 und am 20.8. mit 50 Prozent gegenüber Werten,
die sonst bei ca. 10-20 % lagen. Beim Spanner Operophthera brumata fallen lange
Verweilzeiten von Cd über starke Kälteeinbrüche hinweg auf (siehe auch Meristis
trigrammica, 8.4.2.).
Die Flugaktivität der Weibchen wird in vielen Fällen durch Kälte besonders stark
gehemmt: Lag im Wasserwerk am 2.8.88 (Nachttemperatur durchschnittlich 20 Grad)
die 99-Rate von Scotopteryx chenopodiata noch bei knapp 50 %, so wurden zwei Ta-
ge später (ll Grad) 27 Männchen und kein einziges Weibchen gefangen. Ähnliches
wurde beispielsweise auch bei Ochropleura plecta und Xanthorhoe ferrugata beo-
bachtet. Beim Kälteeinbruch von 19.8. auf den 20.8.88, bei dem die mittleren Nacht-
temperaturen von ca. 20 Grad auf 13 Grad sanken, war im Garten (WaS) bei den
198
Weibchen von Amathes c-nigrum stark vermehrte Wiederfangereignisse zu registrie-
ren, während die Männchen noch rege am Austauschgeschehen beteiligt waren.
- Bekannt ist die zerstörerische Wirkung von Unwettern auf die Nachtfalter. Daher sei
hier nur ein Beispiel angeführt: Ende Juli 1988 lagen im Garten (WaS) die Makro-
lepidopteren-Ausbeuten pro Fang recht konstant bei ca. 200 Individuen, von denen
ungefähr die Hälfte markiert wurde; es ereigneten sich jeweils ca. 15 Wiederfänge.
Am 24. Juli jedoch war mit 144 Individuen und nur 4 Wiederfängen ein deutlich
unterschiedliches Ergebnis festzustellen. Als Erklärung bietet sich das von Sturmböen
und Hagel begleitete Unwetter am Nachmittag des 23.7.88 an: Der Hagel führte zu
einer erhöhten Mortalität, der Wind zu einem stärkeren Austauschgeschehen. Auf die
vorzugsweise an Baumstämmen ruhenden Arten (z.B. "Boarmien") hatte die Witterung
dementsprechend weniger Auswirkungen: Sie waren sogar häufiger als tags zuvor.
10. ERGEBNISSE ZUR BIOLOGIE VON NACHTFALTERPOPULA-
TIONEN
10.1. WANDERFALTER
Die Wanderfalter erwiesen sich als "Nullprobe”" in den durchgeführten Markierungsex-
perimenten als hochmobil. Extrem niedrige Wiederfang-Quoten und Verweilzeiten (steil
abfallende Verlustkurven) waren zu beobachten (z.B. Scotia ipsilon, Noctua pronuba,
Autographa gamma).
In vielen Fällen werden besondere "Straßen" benutzt, was im Sinne LATTINs (1967)
vermutlich auf Konzentrationseffekten an Hindernissen beruht. Dies war z.B. bei Aufo-
grapha gamma im Dachauer Moos zu beobachten: Schon wenige 100 m von diesen
Straßen entfernt (z.B. im Birket, Fangplatz "Mb") ist A. gamma (wie auch die anderen
Wanderfalterarten) auffallend selten oder fehlt ganz. Wälder werden entsprechend den
Beobachtungen GATTERs (1981) bevorzugt um- oder überflogen.
Solche Häufigkeitspeaks, die zwar in gewissem Sinn Barrieren gegen eine freie Ver-
breitung wiederspiegeln, dürfen daher dennoch nicht vorschnell als Hinweis auf Isolie-
rung von Populationen gewertet werden!
Viele andere hochmobile Arten, die nicht zu den Wanderfaltern gehören (z.B. Mame-
stra suasa) fliegen in den "Wanderfalternächten” an den entsprechenden Stellen in ei-
ner auffälligen Weise zusammen mit den migrierenden Arten.
Oft sind hohe Nacht-zu-Nacht-Fluktuationen unabhängig von der Witterung Hinweise
auf hohe Mobilität (z.B. bei Amathes c-nigrum, Amphipyra tragopoginis oder Phlogo-
phora meticulosa), die betreffenden Arten müssen jedoch nicht Wanderfalter sein.
Umgekehrt war beispielsweise bei Jaspidia pygarga eine sehr hohe Konstanz der Abun-
danzen festzustellen.
10.2. DIREKTER EINFLUSS VON LICHTQUELLEN
Das Ausmaß einer positiven Antwort auf Lichtreize ist unter anderem art- und ge-
schlechtsspezifisch. Inwieweit auch konditionelle Unterschiede beispielsweise vor und
während der Eiablage der 99 eine Rolle spielen, muß hier offenbleiben. Oft reagieren
nah verwandte Arten (z.B. Amathes ditrapezium und A. triangulum) sehr verschieden.
Weibchen fliegen Lichtquellen meist weniger stark an als Männchen.
Der direkte Einfluß des Lichts kommt in der Regel erst bei einer Annäherung auf
30-50 m zum Tragen (8.4.). Diese Annäherung muß im Rahmen von trivial movement,
199
Dispersions- und Migrationsaktivitäten erfolgen. Die hohen Lichtfallen-Individuenaus-
beuten zeugen also von einem stark dynamischen Geschehen, da es unwahrscheinlich
ist, daß sich so viele Individuen in einem so kleinen Radius entwickelt haben.
Die Ergebnisse decken sich mit den Aussagen in PLAUT (1971).
10.3. LEBENSDAUER
Die Wiederfangergebnisse zeigen einen starken Individuenverlust in der ersten Woche,
der zum großen Teil auf Abwanderung zurückzuführen ist. Lebensdauern von 5-10 Ta-
gen scheinen die Regel zu sein. Die potentielle Lebenserwartung liegt jedoch meist da-
rüber. Das längste beobachtete Intervall zwischen Erst- und Wiederfang waren 27
Tage bei Mythimna impura. Zu ähnlichen Ergebnissen bezüglich der Lebenserwartung
(von Tagfaltern) gelangt SCOTT (1973).
Überwinternde Arten leben natürlich um ein Vielfaches länger, einige Spinnerweibchen,
die ihren Eivorrat oft sogar noch am Puppenkokon ablegen, dagegen normalerweise nur
1-3 Tage.
Die Ortswiederfang-Quote sinkt bisweilen im Lauf der Flugzeit (z.B. in der 2. Genera-
tion von Chiasmia clathrata); biotopfremde Arten werden bevorzugt am Flugzeitende
registriert (z.B. Arctia caja), hier sind oft auch besonders starke Abundanzschwankun-
gen von Nacht zu Nacht bei konstanter Witterung zu beobachten (z.B. Caradrina mor-
pheus), was als Hinweis auf dynamisches Geschehen zu werten ist.
10.4. WEIBCHENRATE
Die in Lichtfallen ermittelte Weibchenrate liegt bei den meisten Arten mehr oder we-
niger deutlich unter 50 %. SCHRIER et al. (1976) und MALICKY (1974 a) gehen trotz
eines solchen Befundes von einem natürlichen 1:1- Verhältnis aus. WATT et al. (1977)
vermuten bei anderen Tagfalterarten eine höhere Mortalität der Weibchen durch Freß-
feinde (z.B. Krabbenspinnen). Demnach spielen der häufigere Bodenkontakt (Eiablage)
und die aufgrund der größeren Masse längere Aufwärmphase eine Rolle. Die Disper-
sionsaktivität wird so hoch veranschlagt wie die der Männchen.
Die Absolutwerte der Weibchenraten stimmen in den meisten Fällen gut mit dem von
MALICKY (1974 a) und NOVAK (1974) vorgelegten Zahlenmaterial überein. Dasselbe
gilt im wesentlichen bezüglich der sexuellen Koinzidenz für den Vergleich mit den
Angaben in NOVAK (1974).
Ein überhöhter Weibchenanteil im Ortswiederfang-Ergebnis (z.B. Ochropleura plecta,
Amathes ditrapezium) kann in bestimmten Fällen als Hinweis auf eine (relativ) erhöhte
Mobilität der dd verstanden werden (vgl. SCOTT, 1973; SCHWERDTFEGER, 1978).
Dasselbe gilt für niedrigere o9-Raten an biotopfremden Standorten, z.B. bei Leucania
comma oder bei den Spannern Sterrha aversata und Scotopteryx chenopodiala, deren
99 bevorzugt in der Deckung von Gebüschen bleiben.
Es gibt auch Hinweise auf ein umgekehrtes Phänomen: Bei Scotia clavis, $S. exclama-
tionis, Amathes triangulum und A. sexstrigata scheinen die 99 etwas mobiler zu sein.
Manchmal konzentrieren sich die 99 an besonderen Standorten (z.B. Hoplodrina alsi-
nes, Alcis repandata), bei Hepialus hecta scheint die Paarung an bevorzugten Stellen
(Waldränder) zu erfolgen. Solche "mating rendezvous sites" kommen nach SCOTT
(1973; 1975) bei nordamerikanischen Tagfaltern durch Männchen zustande, die sich an
den betreffenden Orten konzentrieren, während die 99 mobiler und mehr oder weniger '
200
gleichmäßig verbreitet sind. Insgesamt betrachtet dürften bei den Nachtfaltern jedoch
die Männchen als mobiler zu charakterisieren sein.
Hinweise auf "geschlechtspolarisierte Schwärme” (vgl. SCHWERDTFEGER, 1978) gibt
es z.B. bei Ochropleura plecta.
10.5. BI- UND POLYVOL TINISMUS
Mehrbrütige Arten sind meist mobiler als einbrütige (9.3.6.). Typische Beispiele hierfür
sind Ochropleura plecta, Amathes c-nigrum und Mamestra suasa. Bivoltinismus muß je-
doch nicht zwangsläufig hohe Dispersionsaktivität bedeuten (siehe z.B. Drepana lacerti-
naria oder Cilix glaucata).
Bei einigen Arten (z.B. Amathes c-nigrum, Cyclophora punctaria, Epirrhoe tristata,
Chiasmia clathrata) scheint die erste Generation ortstreuer zu sein als die zweite.
Biotopfremde Stücke treten dann, wie bei Chiasmia clathrata, vor allem in der zweiten
Generation auf. Zu ähnlichen Ergebnissen kommen auch LOPEZ et al. (1979).
Der relative Weibchenanteil ist in der zweiten Generation meist höher als in der er-
sten (z.B. Ochropleura plecta oder Xanthorhoe ferrugata), was nach MEINEKE (1984)
"als Anzeichen verstärkter Dispersions- und Migrationsaktivitäten gedeutet werden"
kann.
10.6. ORTSTREUE / HABITATTREUE
Ortstreue und Habitattreue sind zwei nicht identische Phänomene: Deutlich wird dies
beispielsweise bei Pachetra sagittigera, Amphipyra pyramidea, Cosmia trapezina, Cyc-
lophora punctaria, Cabera pusaria oder Alcis repandata: Diese durchaus für bestimmte
Habitattypen charakteristische Vertreter können nicht als "ortstreu” bezeichnet werden.
Ein Richtungsänderungs-Verhalten an den Habitatgrenzen wurde bei Chiasmia clathrata
beobachtet, kommt jedoch vermutlich auch bei vielen anderen Arten vor. Hierbei sind
Erkennungsmechanismen zu postulieren. Ein solches "Habitatlernen" zur Reduktion der
Flug- und Dispersionsaktivität erwähnen SCOTT (1975) und KELLER et al. (1966).
10.7. GELÄNDESTRUKTUREN
Es zeigte sich in einigen Fällen eine Abhängigkeit der Mobilität von der Geländestruk-
tur: In sich geschlossene, gut kompartimentierte Strukturen scheinen die Verweildauern
zu steigern (siehe Calocalpe cervinalis, Chiasmia claihrata und Ectropis bistortata).
Unterschiedliche Biotopbeschaffenheiten scheinen auch z.B. bei Diacrisia sannio, Scotia
clavis, Amathes ditrapezium, Rusina ferruginea, Meristis trigrammica und Operophthera
brumata zu verschiedenartigen Ergebnissen bezüglich der jeweiligen Mobilität geführt
zu haben. Außerhalb des typischen Habitats ist diese meist höher.
Langgestreckte Elemente (schmale Wäldchen, lange Waldränder, Waldwege, Hecken)
scheinen nicht nur als Leitlinien für hochmobile Arten zu fungieren (siehe Wanderfal-
ter, 10.1., aber auch z.B. Scotia exclamationis), sondern auch wichtige Verbreitungshil-
fen für weniger expansive Arten der Wälder und Waldränder zu sein (siehe z.B. Xan-
thorhoe biriviata, Calospilos sylvata, Alcis repandata). Für Calospilos sylvata stellt
vielleicht das Schloßkanalsystem eine solche Struktur dar. Derartige Korridore erwäh-
nen auch WATT et al. (1977). MADER (1980) fordert deren Schaffung im Rahmen ei-
ner effektiveren Naturschutzplanung.
201
10.8. POPULA TTIONSDICH TE
Erhöhte Dispersionsaktivitäten bei günstigen Bestandsentwicklungen konnten 1986 bei
vielen an Kiefern lebenden Arten festgestellt werden (z.B. Hyloicus pinastri, Panolis
flammea, Thera obeliscata und Macaria liturata). Hinweise auf ein solches Phänomen
ergaben sich darüber hinaus beispielsweise bei den Arten Amathes sexstrigata, Tholera
decimalis und Nonagria typhae.
10.9. NEKTARQUELLEN
Mobilität zur Deckung des täglichen Energiebedarfs (trivial movement) ist z.B. bei den
im Frühjahr fliegenden Arten der Gattung Orthosia gut mitzuverfolgen, welche z.T.
über größere Strecken hinweg blühende Weiden anfliegen.
Ähnliches mag für viele Waldarten gelten, die einen Ortswechsel an blütenreichere
Stellen (Waldwege, vor allem jedoch Waldrand) unternehmen müssen, um zu Nektar-
quellen zu gelangen.
Gebiete ohne Nektarquellen können Barrieren gegen die Flugaktivität darstellen. Dies
muß jedoch nicht unbedingt der Fall sein, wie SCHRIER et al. (1976) anhand der nord-
amerikanischen Nymphalide Chlosyne palla feststellten. Nach WATT et al. (1977) be-
wirkt ein Ausfall von Nektarressourcen, z.B. durch ungünstige Witterung, nicht disper-
sionsinduzierend.
10.10. WITTERUNG
Wind kann über zufällige Verdriftungen eine positive Rolle für Verbreitungen der we-
niger flugaktiven Arten und insbesondere deren 99 spielen (z.B. Drepana falcataria,
Drepana binaria und Thera firmata im Offenland, siehe auch CE).
Kälte hemmt dagegen die Flugaktivitäten deutlich (siehe 9.3.7.), insbesondere die der
Weibchen. Niederschläge stören das Verbreitungsgeschehen offensichtlich nur, wenn sie
besonders heftig sind.
10.11. DISPERSIONSAKTIVITÄT, TRIVIAL MOVEMENT, FLUGDISTANZEN
Nach LATTIN (1967) muß "zwischen einer potentiellen und einer tatsächlichen Vagilität
unterschieden werden”. So zeigen sich oft artspezifische Unterschiede, z.B. zwischen
Xanthorhoe designata und Nycterosea obstipata, trotz einer ähnlichen physiologischen
Konstitution.
Es wird jedoch aus den vorigen Kapiteln (9.2., 9.3.) ersichtlich, daß sich die Flugakti-
vitäten der Nachtfalter nicht in feste Schemen pressen lassen, sondern daß sie ein von
verschiedenen Faktoren bestimmtes (hoch-)dynamisches Geschehen darstellen. Unter
veränderten Bedingungen reagiert auch ein und dieselbe Art oft völlig unterschiedlich.
So sind bei manchen Arten trotz einer gewöhnlich hohen Dispersionsaktivität und ho-
hem trivial movement deutliche Barrieren gegen die Verbreitung erkennbar (z.B. bei
Orthosia stabilis).
Viele Arten schweifen in der weiteren Umgebung mehr oder weniger ungerichtet um-
her, Hinweise hierfür ergaben sich z.B. bei Peribatodes rhomboidaria.
Lokal vorkommende Arten können durchaus einzelne Vorstöße über größere Entfernun-
gen unternehmen. Paradebeispiel ist hierfür der Spanner Arichanna melanaria, ein
Moorbewohner, für den nicht nur in der vorliegenden Arbeit "Irrflüge” von mindestens
20-30 km nachgewiesen wurden. Ein solches Phänomen kommt bei vielen der sonst
weniger expansiven hygrophilen Arten immer wieder einmal vor.
202
10.12. STRATEGIEN
Das bisweilen kritisierte Konzept des r-K-Kontinuum (z.B. BOYCE, 1984) ist heute ein
vielfach angewandter Weg zur Beurteilung von bionomischen Strategien (vergleiche z.B.
SOUTHWOOD, 1980; WEIDEMANN, 1986 a; SPITZER & LEPS, 1988).
Typische K-Strategen dürften z.B. Cirrhia togata, Theria rupicapraria und Erannis ba-
jaria sein. Eine r-Strategie liegt liegt nicht nur bei den bekannten Wanderfaltern, son-
dern bei einer Vielzahl weiterer Arten vor, darunter auch kleinere Falter wie Oligia
latruncula.
Oft verfolgen nah verwandte Arten völlig verschiedene Strategien wie z.B. die nur
schwierig voneinander unterscheidbaren Mythimna impura und M. pallens. Ähnliche
Paare stellt GLAZIER (1986) gegenüber.
Ubiquisten und Offenlandarten zeichnen sich durch eine größere Expansivität aus als
Wald(rand)bewohner und hygrophile Arten (siehe 9.3.3.).
Eine besondere Strategie verfolgen die Arten, die mit ihrer Flugzeit in den Vorfrühling
und in den Spätherbst ausgewichen sind (z.B. Alsophila aescularia, Operophthera bru-
mata): Der Feinddruck auf die Imagines ist geringer, wodurch es sich die 99 bei
vielen Arten leisten können, auf die Ausbildung der Flügel zu "verzichten". Dadurch
können höhere Eiproduktionen erreicht werden, eigentlich ein Merkmal der r-Strategen,
hier resultieren jedoch Strategien mehr im Bereich des K-Endes des Kontinuums, da
bei einer relativ geringen Wahrscheinlichkeit von Totalausfällen der Populationen in
einer extremen Nische vergleichsweise stabile Populationsverhältnisse vorliegen (ver-
gleiche REICHHOLF, 1982). Eine derartig starke Spezialisierung ist auch nach
SOUTHWOOD (1980) ein auf K-Strategie hinweisendes Indiz.
Interessant ist der Befund, daß relativ fern verwandte Arten miteinander oft durch
starke Konvergenzerscheinungen hinsichtlich der Strategie, die sie verfolgen, verbunden
sind. Ähnliches berichtet SCOTT (1973) von zwei sympatrisch fliegenden Tagfalterar-
ten.
Bei der Verbreitung von Arten mit flugunfähigen 99 spielen oft Verdriftungen der jun-
gen Raupen durch Wind oder Vögel eine wichtige Rolle (z.B. bei Orgyia recens).
Eine Besonderheit stellen auch einige Arten dar, deren Larvalentwicklung sich z.T.
über mehrere Jahre erstreckt (z.B. Cossidae, Cucullia spec., einige Apatelinae, Perizo-
ma bifaciata, Pelurga comitata, Eupithecia valerianata, Eupithecia venosata). Hierdurch
wird die potentielle Wachstumsrate der Populationen ("PGR") verringert, die Arten sind
tendenziell eher am K-Ende des r-K-Kontinuums anzusiedeln.
Eine assynchrone Larvalentwicklung (z.B. bei Cossus cossus) bzw. ein fakultatives
Überliegen der Puppen (z.B. bei Eupithecia venosata) kann als Puffer ungünstige Be-
standsentwicklungen ausgleichen, da jeweils noch Larvalstadien "auf Vorrat” bleiben.
Dies kann die für K-Strategen so typische Stabilität der Populationen noch vergrößern.
Bei diesen Arten kommt es bisweilen auch zu einem Vortäuschen von Turnover-Ereig-
nissen.
Hinweise auf unterschiedliche Strategien in Abhängigkeit von der geographischen Lage
ergaben sich bei Actinotia hyperici, Earias chlorana (einhergehend mit einer Verände-
rung der Generationenzahl) und Sterrha seriata.
203
Abb. 46b: Halbwüchsige Raupe von Orgyia recens. Da die Weibchen dieser Art flug-
unfähig sind, spielen die Jungraupen für die Verbreitung eine besondere Rolle: Diese
wird durch die Möglichkeit eines Verweht-Werdens der langbehaarten Räupchen so-
wie durch Flugfäden erleichtert.
Abb. 46c: Eupithecia venosata 9 (ON, 23.6.83); die Puppenruhe erstreckt sich fakulta-
tiv über einen bis drei Winter hinweg.
204
10.13. TRITTSTEIN-KOLONISATIONEN
Einige Arten besiedelten im Verlauf dieses Jahrhunderts das Untersuchungsgebiet ver-
mutlich von den Isarauen (mindestens 7 km) her: Pelosia muscerda, Gluphisia crenata,
Nonagria nexa und Chrysoptera c-aureum.
Im Wasserwerk ereigneten sich recht schnelle Kolonisationen (1-3 Jahre) von hygro-
philen Faunenelementen über Distanzen von ca. einem Kilometer (Mythimna pudorina,
Apamea unanimis, Apamea ophiogramma und Nonagria typhae). Ähnliches berichtet auch
WARNECKE (1952) von den "Schilfeulen”. Naturnah angelegte Tümpel und Teiche (z.B.
in Gärten) können auch bei sehr kleinen Flächen wichtige Trittsteinfunktionen erfüllen!
Magerrasen-Arten (z.B. Pachetra sagittigera, Mamestra w-latinum, Leucania comma,
Photedes extrema, Eupithecia subumbrata, Eupithecia millefoliata) hatten die beste
Besiedelungsdisposition ausgehend vom Gebiet der Fröttmaninger Heide im Osten (ca. 1
km entfernt), die mit dem vor ca. 10 Jahren neu entstandenen Wasserwerksgelände
über Trittsteine in Abständen von 100-300 m vernetzt ist.
In vielen Fällen werden in Gärten Trittsteinsprünge durch eine künstliche Vernetzung
von Pflanzen, die von Natur aus lokal vorkommen würden (z.B. Juniperus, verschiedene
Caryophyllaceen, Iris, Typha, Clematis u.s.w.) entschieden begünstigt. Davon profitie-
rende Arten sind z.B. die Nelkeneulen (Hadena spec.), Thera juniperata, Eupithecia
intricata, Eupithecia sobrinata (die letzten drei Arten an Wacholder), Horisme tersata
(Clematis) u.s.w..
10.14. WIRTSPFLANZEN-SPEKTREN
Die Abwesenheit der Raupenfutterpflanzen kann eine bedeutende Barriere gegen die
Flugaktivitäten darstellen.
Auch die Strategie der Nachtfalterarten steht in vielen Fällen in enger Beziehung zur
Larvalökologie, v.a. zum Wirtspflanzenspektrum: Arten, die auf Pflanzen mit unstetem
Auftreten leben, z.B. Hypena proboscidalis auf der Brennessel, werden zweckmäßiger-
weise eine r-Strategie verfolgen. Auf Bäume angewiesene Arten (z.B. ein Großteil der
Spanner, Geometridae) sind entsprechend der Konstanz ihrer Umwelt nicht so sehr auf.
Neubesiedelungsprozesse angewiesen und sind oft als K-Strategen zu charakterisieren.
Dies entspricht dem Befund, daß sich Ruderalarten als recht mobil herausstellten
(9.3.3.). Ihr Lebensraum, der sich in einem frühen Sukzessionsstadium befindet, bietet
diesen Arten nicht genügend Stabilität für eine K-Strategie.
Eingeschränktere Wirtspflanzen-Spektren verschieben entsprechend den Ergebnissen von
REJMANEK & SPITZER (1982) den Strategietyp oft in Richtung K-Ende des r-K-Kon-
tinuums (z.B. bei den Artenpaaren Drymonia trimacula/ruficornis, Apoda limacodes/
Heterogenea asella, Mythimna inmra/pallens, Ipimorpha retusa/subtusa und Oporinia
dilutata/autumnata).
ll. ZUSAMMENHANGE ZWISCHEN ARTENSPEKTREN-DYNAMIK
UND ARTENDYNAMIK
11.1. UNTERSUCHUNGSGEBIET
Wie im ersten Teil der Arbeit deutlich wurde, sind die Parameter Konstanz des Auf-
tretens, Fluktuation (gemessen am Variationskoeffizient) und Turnover stark standort-
abhängig. Dies erschwert eine genaue Darlegung von Zusammenhängen.
205
In 6.4.2. und 6.4.3. zeigten sich sowohl für einen Österreichischen Standort als auch
für das Untersuchungsgebiet sehr niedrige Fluktuationen und Artenumsatz-Raten für die
Geometriden-Unterfamilie Boarmiinae in ihren typischen Lebensräumen.
Dieser Befund wird durch die Ergebnisse des zweiten Teils besser durchleuchtet: Die
Boarmiinen sind vorwiegend als K-Strategen (68 %) einzustufen; der Anteil der r-Stra-
tegen liegt hier nur bei 3 %. Der Index der Flugdistanzen (nur 1,8!) verdeutlicht, daß
Entfernungen von einem Kilometer außerhalb der normalen Reichweite der meisten
Arten liegen. Die im Sinne einer K-Strategie konstanten Populationsverhältnisse schla-
gen sich also in einer geringen Artenspektren-Dynamik nieder.
Entsprechend sind die Eulenfalter (Noctuidae), die stärkeren Abundanzschwankungen und
höheren Turnoverraten unterliegen (siehe 6.4.2. und 6.4.3.), vorwiegend r-Strategen
(26 %) und intermediär (45 %) bei einem hohen Flugdistanzen-Index von 2,7.
11.2. FLUKTUATION VON EULENFALTERN IN SÜDBÖHMEN
Die von SPITZER & LEPS (1988) vorgelegten Daten stützen sich auf langjährige Be-
obachtungen von Bestandsentwicklungen dreier Standorte in Südböhmen.
Wenn man einmal den Einfluß der geographischen Entfernung (ca. 200 km) außer Acht
läßt, ergeben sich die unten aufgeführten Zusammenhänge mit den Ergebnissen im Un-
tersuchungsgebiet. Hierzu wurden die von SPITZER & LEPS (l.c.) angegebenen Varia-
tionskoeffizienten der drei Standorte für jede der Arten gemittelt.
Tab. 108: Zusammenhänge zwischen Strategie (im Untersuchungsgebiet) und Fluktuation
(in Südböhmen) bei Eulenfaltern (Noctuidae).
Correlation between strategy (in the study area) and fluctuation (in Southern Bohe-
mia) of some noctuid moths.
STRATEGIE
strategy K-Strategie intermediärer Typ r-Strategie
Mittlerer VARIATIONSKOEFFIZIENT 0,63 0,83 1,03
mean of coefficient of variation
Getestete Artenzahl n 8 26 27
species number n
Tab. 109: Zusammenhänge zwischen Flugdistanzen (Gruppen nach SCOTT, 1975; im Un-
tersuchungsgebiet) und Fluktuation (in Südböhmen) bei Eulenfaltern (Noctuidae).
Correlation between flight distances (groups after SCOTT, 1975; in the study area)
and fluctuation (in Southern Bohemia) of some noctuid moths.
FLUGDISTANZEN
flight distances l 1-2 2 2=3 3 3-4 4
Mittlerer VARIA TIONSKOEFFIZIENT
mean of coefficient of variation 0,41 0,85 0,90 0,78 0,98 1,14
Getestete Artenzahl n 0 1 2 22 14 8 9
species number n
206
Die Tabellen 108 und 109 legen trotz der geographischen Entfernung der beiden Erhe-
bungen deutliche Zusammenhänge offen. Je größer beispielsweise die Distanzen sind,
die normalerweise von den betreffenden Arten bewältigt werden, umso instabilere
Verhältnisse lassen sich in den Häufigkeitsentwicklungen von Jahr zu Jahr erkennen.
In diesem Sinne stellen EITSCHBERGER & STEINIGER (1973; 1980) neben den typi-
schen Wanderfaltern eine Gruppe von wanderverdächtigen Schmetterlingsarten auf, bei
denen häufig starke Populationsschwankungen auftreten.
12. DISKUSSION
Die Flugaktivitäten von Insekten können nach JOHNSON (1969) in zwei Gruppen unter-
teilt werden: "trivial flights" als Antwort auf die täglichen Bedürfnisse und Disper-
sions- bzw. Migrationsflüge zur Kolonisation neuer Lebensräume.
Der erste Typ, den man sensu SOUTHWOOD (1967) auch als "trivial movement” be-
zeichnen kann, dient beispielsweise der Nektaraufnahme, dem Aufsuchen der Ge-
schlechtspartner, dem Eiablagegeschehen oder Fluchtrceaktionen. Ihm sind vermutlich
die im Rahmen des Versuchs mit den verringerten Fallendistanzen im Wasserwerk
festgestellten Austauschprozesse zuzuordnen.
Zum Dispersions- bzw. Migrationsverhalten gehören die nachgewiesenen Kolonisations-
vorgänge, das biotopfremde Auftreten vieler Nachtfalter wie im Falle von Arichanna
melanaria, und die über Strecken von über einen Kilometer geflogenen Exemplare (8.).
Bei den Arten mit flügellosen Weibchen kommt dem Nachtfalterflug (CT) verstärkt die
Bedeutung einer besseren Gendurchmischung zu, eine Verbreitung mittels Flugaktivitä-
ten ist ja hier nicht möglich.
Verschiedene Strategien konnten sich im Zusammenhang mit Stabilität und Verinse-
lungsgrad der Lebensräume sowie der Stetigkeit der Ressourcen (Raupenfutterpflanzen)
entwickeln.
Daher zeigen Standorte in frühen Sukzessionsstadien höhere Artenumsätze und stärkere
Häufigkeits-Fluktuationen der Arten als solche im Klimax-Zustand.
Die Offenlandarten entwickelten im Lauf der Evolution relativ große Aktionsräume. Sie
konnten sich dies auch leisten, denn die Gefahr eines Sich-Verfliegens ist in den meist
großflächigen Lebensräumen vergleichsweise gering. Ausnahmen, z.B. ortstreue Heide-
bewohner, können nach WARNECKE (1952) dadurch zu erklären sein, daß die betref-
fenden Arten "in unseren Breiten erst sekundär auf die trockenen und warmen Heiden
übergegangen sind, so daß keine inneren Beziehungen zwischen ihrem Flugradius und
einem geräumigen Biotop bestehen".
Die im zweiten Teil der Untersuchung festgestellte hohe Dynamik auf dem Artniveau
verdeutlicht, daß bei Flächengrößen von 0,2-1 ha - das entspricht größenordnungsmäßig
dem Einzugsbereich von Lichtfallen - ständig Extinktions- und Wiederbesiedelungspro-
zesse stattfinden (siehe 9.3.2.). Diese finden verstärkt (bzw. obligatorisch) bei den r-
Strategen statt, welche sich durch die "gut entwickelte Fähigkeit, Standorte wiederzu-
besiedeln, die durch einen lokalen Zusammenbruch der Population vakant geworden
sind” (GLAZIER, 1986), auszeichnen. SCHWERDTFEGER (1978) spricht gar von einem
"horror vacui” mancher Populationen.
207
In Lichtfallen-Artenspektren nachweisbare Turnoverraten spiegeln bei adäquater Me-
thodik real stattfindende Prozesse wieder. Eine besondere Rolle spielen hierbei Koloni-
sationsversuche standortfremder Arten (siehe 6.2.; 6.4.4.) sowie Austauschereignisse
biotoptypischer Arten mit geringen Populationsgrößen.
Die für die Arten charakeristischen normalen Flugdistanzen (9.3.2.) verdeutlichen, daß
naturnah gestaltete Lebensräume der verschiedenen Ökotypen mit Abständen von maxi-
mal 500 m miteinander vernetzt sein sollten, um effektive Austauschraten zu gewähr-
leisten. Die Isolation zweier Biotope kann nach WATT et al. (1977) ein Mehrfaches
der Luftlinie zwischen den beiden Standorten betragen, da ein gerader Flug in vielen
Fällen für die Nachtfalter sehr unvorteilhaft wäre. Eine Reduktion des Individuenaus-
tauschs zwischen den Teilpopulationen findet darüber hinaus in kalten Jahren statt
(WATT et al., 1.c.).
Die Offenlandfauna ist als etwas expansiver zu charakterisieren, die hygrophile benö-
tigt geringere Distanzen für wirksame Trittsteinsprünge;, Ausnahmeflüge über große
Entfernungen finden jedoch auch hier statt. Diese Befunde stimmen gut mit den Ergeb-
nissen von GERSTBERGER & STIESY (1987) überein.
Die dortigen Aussagen zu Flächen-Mindestgrößen decken sich ebenfalls mit vielen der
im Untersuchungsgebiet gemachten Beobachtungen. Demnach genügen der xerothermo-
philen Schmetterlingsfauna schon Gebiete von ca. 3 ha (= ungefähr die Größe des
Wasserwerksgeländes). Viele nässeliebende Arten besiedeln selbst große Flächen ("75 ha")
nicht, wenn die Gebiete verinselt sind (GERSTBERGER & STIESY, 1.c.; HEYDEMANN,
1980). Dagegen können für manche Arten (z.B. Nonagria typhae) Kleinstgewässer
wichtige Trittsteinfunktionen übernehmen (siehe 10.13.).
Die Ergebnisse zur Ausbreitungsökologie der Nachtfalter unterstreichen die Forderung
MADERs (1980) nach einer Raumordnungs-Konzeption, in der großflächige Schutzgebie-
te ("200 km?") durch Triitsteine vernetzt und über Korridore verbunden sind.
Die Angabe von "Minimalarealen” sollte zu schaffende Flächen betreffen. "Wegen der
fortschreitenden Parzellierung ... erübrigt es sich, untere Schwellenwerte noch zu dul-
dender Restflächen zu benennen” (MADER, 1980).
ZUSAMMENFASSUNG
Das Gemeindegebiet Oberschleißheim (31 km?) im Münchener Norden war in den Jah- '
ren 1987/1988 Objekt einer Untersuchung von Nachtfalter-Artenspektren und -Flugak-
tivitäten.
In der Methode des Lebend-Lichtfallenfangs wurde hierzu ein Fangstellennetz von 10
Standorten pro Jahr (insgesamt 15 Standorte) betrieben. Es wurde jeweils parallel mit |
mehreren Fallen gleichzeitig gefangen, so daß sich eine Summe von 1438 Fängen
ergibt. Die 49.072 Makroheteroceren-Individuen waren 462 Arten zuzuordnen. Zusam-
men mit Tagbeobachtungen und Meldungen aus anderen Jahren ergeben sich 514 Nacht-
falterarten für das Untersuchungsgebiet.
Die Artenspektren eines definierten Lichtfallen-Einzugsbereiches zeigen von Jahr zu
Jahr einen Artenumsatz (Turnover) von größenordnungsmäßig 35-55 %. Dieser Turnover
ist standortspezifisch, abhängig vom Sukzessionsstadium des Biotops und abhängig von
der gerade betrachteten Artengruppe.
208
Zugeflogene biotopfremde "Gastarten” sind am Austauschgeschehen deutlich stärker be-
teiligt als andere Arten, was als Hinweis darauf zu werten ist, daß der apparente Ar-
tenumsatz real in der Natur stattfindende Prozesse wiederspiegelt und nicht nur einen
Artefakt, bedingt durch methodische Unschärfe in der Artenerfassung, darstellt.
Bei zunehmender Flächengröße verringert sich der Turnover durch die Pufferwirkung
der größeren Habitatdiversität beträchtlich.
Bezüglich der Zusammenhänge zwischen Turnover, Konstanz des Auftretens und Häu-
figkeitsfluktuationen ergibt sich in der vorliegenden Untersuchung ein ähnliches Bild
wie bei den Tagfaltern am unteren Inn (REICHHOLF, 1986) und bei Nachtfaltern im
Gitschtal (WIESER, 1987):
Die Konstanz des Auftretens verteilt sich nicht gleichmäßig, sondern es überwiegen die
ganz regelmäßig sowie die sehr unregelmäßig auftretenden Arten. Konstanz und Fluktu-
ation sind streng negativ miteinander korreliert. Bei der Betrachtung verschiedener
Artengruppen zeigt sich auch eine positive Korrelation zwischen Fluktuation und Turn-
overrate.
Im Offenland zeigte sich, daß sich unter den konstant auftretenden Arten ein Großteil
aus bodenständigen Arten rekrutiert, während die Mehrzahl der wenig regelmäßig er-
scheinenden Arten zugeflogen ist.
Eine Abschätzung der Abhängigkeit der Artenzahl vom Fangrhythmus ergab, daß in ei-
nem Einzeljahr offensichtlich tatsächlich Arten abwesend sind, und daß sich Artenspek-
tren aufgrund von Turnoverereignissen erst im Lauf mehrerer Jahre vervollständigen.
Eine weitere Abschätzung der Zahl der unter der Erfassungsschwelle gebliebenen Ar-
ten mit Hilfe der von PRESTON (1948) angenommenen Normalverteilung von Häufig-
keitsstrukturen ergibt ähnliche Hinweise.
In einigen durchgeführten Experimenten wurden 23.818 Individuen aus 131 Arten mar-
kiert; es ereigneten sich 1347 Wiederfänge, davon 13 über Entfernungen von mindestens
einem Kilometer (11 Noctuiden und 2 relativ flugkräftige Geometriden; nur dd‘).
Bei einer Verringerung der Fallendistanzen auf 50-120 m erhöht sich die Wiederfang-
Wahrscheinlichkeit durch die Miterfassung von Individuen, die in der näheren Umgebung
herumvagabundieren. Eine Auflistung der Arten nach Wiederfang-Quoten und mittleren
Verweildauern ergibt zwei Gradienten. die sich in etwa entsprechen. Die Wanderfalter
zeigen erwartungsgemäß die jeweils niedrigsten Werte. Die Verteilungen dürften in et-
wa dem r-K-Kontinuum der Populationsbiologie entsprechen.
Bei künstlich in Entfernungen von 30-120 m Entfernung versetzten Nachtfaltern ergaben
sich verschiedene artespezifische Muster: Hochmobile Arten zeigten einen starken Ab-
fall der Wiederfang-Wahrscheinlichkeit schon bei 30-60 m; fast alle Wiederfänge
ereignen sich hier nach einer Nacht; ähnliches berichtet PLAUT (1971). Von weniger
flugaktiven Arten erhält man aus Entfernungen von 90-120 m vergleichsweise viele
Individuen zurück (auch nach mehreren Tagen), was auf einem Herumvagabundieren der
Falter in der Umgebung beruht.
Durch ein artspezifisches Ausmaß der direkten Lichtanziehung kommt es bei kontinu-
ierlichem Lebend-Lichtfallenbetrieb zu Häufigkeitsverzerrungen. Eine fangfreie Nacht
genügt zu einer ausreichenden Durchmischung der Bestände.
209
Rückschlüsse aus Ortswiederfängen an einem Einzelstandort können zu sehr verfälsch-
ten Ergebnissen führen, in Verbindung mit den durchgeführten Experimenten als Inter-
pretationshilfen können sie jedoch einen guten informativen Wert zur Beurteilung von
Flugaktivitäten erlangen.
Eine Charakteristik aller nachgewiesenen Arten hinsichtlich ihrer Flugdistanzen und der
erkennbaren Verbreitungsstrategien offenbart eine Dynamik auf hohem Niveau: 98 % des
Artenspektrums sind als Arten gekennzeichnet, bei denen das Abfliegen aus dem Ein-
zugsbereich der Lichtfalle heraus ein normaler Vorgang ist.
Ubiquisten und Offenlandarten einschließlich der xerothermophilen Fauna sind als ex-
pansiver einzustufen als Wald(rand)- und Gebüscharten sowie die hygrophile Fauna.
Ruderalarten fallen entsprechend der Instabilität der Ressourcen durch große Flugdi-
stanzen und präferenzielle r-Strategie auf.
Auch mehrbrütige Arten sind bevorzugt r-Strategen und liegen mit ihren Dispersions-
aktivitäten über dem Durchschnitt. Die zweite Generation ist hierbei meist expansiver.
Kälte hemmt, Wind fördert bisweilen das Verbreitungsgeschehen. Geländestrukturen,
Populationsdichte und Verfügbarkeit von Nektarquellen stellen weitere die Flugaktivität
determinierende Faktoren dar.
Die Verbreitungsstrategien der Nachtfalter sind artspezifisch, oft verhalten sich die
Populationen nah verwandter Arten völlig unterschiedlich, während sich Konvergenzer-
scheinungen relativ fern miteinander verwandter Arten erkennen lassen.
Die Möglichkeit zu Trittsteinsprüngen spielt bei der Verbreitung eine entscheidende
Rolle. In Gärten wird diese durch eine künstliche Vernetzung von Pflanzen, die von
Natur aus nur lokal vorkommen würden, entschieden begünstigt.
Die Strategie steht in vielen Fällen in enger Beziehung zu den Raupenfutterpflanzen:
Instabilität der Ressourcen und breit gefächerte Wirtspflanzenspektren sind oft mit
einer r-Strategie verbunden.
Es zeigte sich, daß K-Strategen sowie Arten mit geringen Dispersionsaktivitäten in
Lichtfallen-Artenspektren tendenziell durch niedrigere Turnoverraten und Fluktuationen
auffallen. Diese stabilen Populationsverhältnisse entsprechen der Definition ihrer Strategie.
Eine Vernetzung von Biotopen sollte - nach den vorliegenden Ergebnissen beurteilt -
in Distanzen von maximal 500 m erfolgen; dieser Wert ist jedoch je nach Biotoptyp
differenziert zu verstehen.
DANK
Mein herzlichster Dank gilt Herrn Prof. Dr. E. J. Fittkau und Herrn Prof. Dr. J.
Reichholf für die freundliche Überlassung des Themas und die Betreuung der Arbeit,
weiterhin Herrn Dr. W. Dierl für viele Ratschläge, Herrn Dr. L. Retzbanyai-Reser für
Literaturhinweise, Herrn W. Kolbeck für die Überlassung einiger wertvoller Daten,
der Regierung von Oberbayern (Höhere Naturschutzbehörde) für die Erteilung der
Fangerlaubnis, Herrn Bürgermeister Schmid, sowie den Herren Hönig und Jänisch
(Wasserwerk Oberschleißheim), Henningsen (Sender Freies Europa), Negele, Dr. Radke
(Ost-Westpreußen-Stiftung) und Riedibauch (Forstamt) für ihre Bemühungen um die
Bereitstellung der Netzanschlüsse. Herr Dr. K. Deuter leistete bei der Überwindung
technischer Schwierigkeiten und EDV-Probleme wertvolle Dienste.
Nicht zuletzt jedoch bin ich zu tiefem Dank meiner Frau Silvia für ihr Verständnis und
meinen Eltern für die organisatorischen und finanziellen Hilfestellungen verpflichtet,
210
insbesondere meinem Vater für den beispielhaften Bau der Lebend-Lichtfallen und die
Vielzahl der Ratschläge und kritischen Anmerkungen. Meine Frau, mein Vater und
meine Schwester Susanne halfen darüber hinaus desöfteren durch die Übernahme der
Schreibarbeiten während der Fangauswertungen.
LITERATUR
BERGMANN, A. (1951-1955): Die Großschmetterlinge Mitteldeutschlands. Verbreitung,
Formen und Lebensgemeinschaften. Urania Verlag, Jena.
BETTMANN, H. (1985a): Über die Ortstreue einiger Nachtfalter im Großstadtbereich
(Lepidoptera). Atalanta, 16, Nr. 1-2: 95-98.
(1985b): Zur Ortstreue einiger Nachtfalter. Ent. Zeitschr. Frankf., 95 (19):
275-283.
- - (1986): Über die Ortstreue einiger Großschmetterlinge. Ent. Zeitschr. Frankf. 96
(4): 45-48.
BLAB, J. (1984): Grundlagen des Biotopschutzes für Tiere, Kilda-Verlag Greven.
BLAB, J. & KUDRNA, O. (1982): Hilfsprogramm für Schmetterlinge, Ökologie und
Schutz von Tagfaltern und Widderchen, Naturschutz aktuell, Kilda-Verlag Greven.
BLAB, J., NOWAK, E., TRAUTMANN, W., SUKOPP, H. (1984): Rote Liste der ge-
fährdeten Tiere und Pflanzen in der Bundesrepublik Deutschland, Naturschutz ak-
tuell, Kilda-Verlag Greven.
BOYCE, M.S. (1984): Restitution of r- and K-selection as a model of density-depen-
dent natural selection. Ann. Rev. Ecol. Syst. 15: 427-447.
CARTER, D. J. & HARGREAVES, B. (1987): Raupen und Schmetterlinge Europas und
ihre Futterpflanzen, Verlag Paul Parey, Hamburg-Berlin.
CHAPPUIS, U. v. (1942): Beiträge zur Biotopkunde der deutschen Groß-Schmetterlinge.
Mitt. Dtsch. Ent. Ges. Berlin 11 (Nr. 1-4): 10-26.
CLEVE, K. (1964): Der Anflug der Schmetterlinge an künstliche Lichtquellen. Mitt.
Disch. Ent. Ges. 23: 66-76.
DANIEL, F. (1952): Praxis des Nachtfangs mit Licht. Nachr.Bl. Ede Entomologen I.
Jrg., Nr. 6/9: 1-9.
DIAMOND, J.M. (1969): Aquifaunal equilibria and species turnover rates on the Chan-
nel Islands of California. Proc. National Academy of Sciences USA 64: 57-63.
- - (1984): "Normal" extinctions of isolated populations. In: Nitecki, H.M. (Hrsg.),
Extinctions. Univ. of Chicago Press, Chicago.
DIAMOND, J.M. & MAY, R.M. (1976): Species Turnover Rates on Islands: Dependence
on Census Interval. Science, Vol. 197: 266-270.
DOWDESWELL, W.H., FISHER, R.A. & FORD, E.B. (1940): The quantitative study of
populations of lepidoptera 1. Polyommatus icarus ROTT.. Annals of Eugenics
(London) 10: 123-136.
- ,- & - (1949): The quantitative study of populations in the lepidoptera 2. Maniola
jurtina C. - edity (Edinburgh u.a.) 3: 67-84.
EHRLICH, P.R. (1961): Intrinsic barriers to dispersal in the checkerspot butterfly Eu-
phydryas editha. Science 134: 108-109.
EHRLICH, P.R. & DAVIDSON, S.E. (1961): Techniques for capture-recapture studies
of Lepidoptera populations. J. Lepid. Soc. 14 (1960): 227-230.
211
EITSCHBERGER, U. & STEINIGER, H. (1973): Aufruf zur internationalen Zusamme-
narbeit an der Erforschung des Wanderphänomens bei den Insekten. Atalanta 4,
133-192.
- & - (1980): Neugruppierung und Einteilung der Wanderfalter für den europäischen
Bereich. Atalanta 11 (1): 254-261.
FORSTER, W. & WOHLFAHRT, T. A. (1955): Die Schmetterlinge Mitteleuropas, Bd.
2., Franckh‘'sche Verlagsbuchhandlung, Stuttgart. =
- - (1960): Die Schmetterlinge Mitteleuropas, Bd. 3., Franckh‘'sche Verlagsbuchhand-
lung, Stuttgart.
- - (1971): Die Schmetterlinge Mitteleuropas, Bd. 4., Franckh'sche Verlagsbuchhand-
lung, Stuttgart.
- - (1981): Die Schmetterlinge Mitteleuropas, Bd. 5., Franckh'sche Verlagsbuchhand-
lung, Stuttgart.
GASTON, K.J. (1988): Patterns in the local and regional dynamics of moth populations.
Oikos 53: 49-57.
GATTER, W. (1981): Insektenwanderungen. Kilda-Verlag, Greven.
GERSTBERGER, M. & STIESY, L. (1983): Schmetterlinge in Berlin-West, Teil I, För-
dererkreis der Naturwissenschaftlichen Museen Berlins e.V. (Hrsg.), Berlin.
- - (1987): Schmetterlinge in Berlin-West, Teil II, Fördererkreis der Naturwissen-
schaftlichen Museen Berlins e.V. (Hrsg.), Berlin.
GLAZIER, D.S. (1986): Temporal variability of abundance and the distribution of spe-
cies. Oikos 47: 309-314. |
GRAHAM, H.M., GLICK, P.A. & HOLLINGSWORTH, J.P. (1961): Effective range of
argon glow lamp survey traps for pink bollworm adults. J. Econ. Entomol. 54 (4):
788-789.
GROTH, K. (1951): Die Wirkung des künstlichen Lichtes auf Nachtfalter. Z. Lepidopt.
1, Heft 2: 95-99.
GYULAI, P. & VARGA, Z. (1974): Wanderfalter-Beobachtungen in den Hochgebirgen
Bulgariens (Lepidoptera). Fol. Ent. Hung. XXVIL.-Suppl.: 205-212.
HACKER, H. (1981): Beitrag zur Lepidopterenfauna des nördlichen Fränkischen Jura,
Teil 2: Geometridae. Atalanta 12 (4): 260-284.
HAUSMANN, A. (1988): Großschmetterlinge im Münchener Norden. Schriftenreihe Ba-
yer. Landesamt für Umweltschutz 83: 61-95.
HAUSMANN, S. (1982): Brutvogel-Bestandsaufnahme im Berglwald Oberschleißheim.
Anz. orn. Ges. Bayern 21: 153-163.
- - (1984): Brutvogel-Bestandsaufnahme im östlichen Dachauer Moos nördlich von
München. Anz. orn. Ges. Bayern 23: 65-87.
- - (1987): Brutvogel-Bestandsaufnahme in zwei naturnahen Waldstücken nördlich von
München. Anz. orn. Ges. Bayern 26: 209-220.
HEYDEMANN, B. (1980): Die Bedeutung von Tier- und Pflanzenarten in Ökosystemen,
ihre Gefährdung und ihr Schutz. Jb. Natursch. Landschaftspfl. (Bonn) 30: 15-87.
- - (1981): Zur Frage der Flächengröße von Biotopbeständen für den Arten- und Öko-
systemschutz. Jb. Natursch. Landschaftspfl. (Bonn) 31: 21-51.
- - (1982): Der Einfluß der Waldwirtschaft auf die Waldökosysteme aus zoologischer
Sicht. Schriftenreihe d. Deutschen Rates für Landschaftspflege 40: 926-944.
JOHNSON, C.G. (1969): Migration and dispersal of insects by flight. London. 763 pp.
|
|
|
|
|
212 |
JOLLY, G.M. (1965): Explicit estimates from capture-recapture data with both death
and immigration - stochastic model. Biometrica 52: 225-247.
JONES, H.L. & DIAMOND, J.M. (1976): Short-time-base studies of turnover in bree-
ding bird populations on the California Channel Islands. Condor 78: 526-549.
KELLER, E.C., MATTONI, R.H.T. & SEIGER, M.S.B. (1966): Preferential return of
artificially displaced butterflies. Anim. Behav. (London), 14: 197-200.
KOCH, M. (1984): Wir bestimmen Schmetterlinge, 1. einbändige Auflage. Verlag ].
Neumann-Neudamm, Leipzig.
KURTZE, W. (1974): Synökologische und experimentelle Untersuchungen zur Nachtak-
tivität von Insekten. Zool. Jb. Systematik 101: 297-344.
LATTIN, G. de (1967): Grundriß der Zoogeogaphie. VEB Gustav Fischer Verlag, Jena.
LERAUT, P. (1980): Liste systematique des lepidopteres de France, Belgique et Corse.
Alexanor Suppl., Paris.
LOPEZ, J.D., HARTSTACK, A.W., WITZ, J.A. & HOLLINGSWORTH, J.P. (1979): Re-
lationship between Bollworm oviposition and moth catches in blacklight traps. En-
viron. Ent. 8: 42-45.
MAC ARTHUR, R.H. & WILSON. E.O. (1967): The Theory of Island Biogeography.
Princeton University press, Princeton, N.J..
MADER, H.-J. (1980): Die Verinselung der Landschaft aus tierökologischer Sicht. Na-
tur und Landschaft, Z. f. Umweltschutz und Landespflege (Bonn) 55 (3): 91-96.
MALICKY, H. (1974 a): Über das Geschlechterverhältnis von Lepidopteren in Lichtfal-
len. Zeitschr. angew. Ent. Hamburg 75, Heft 2: 113-123.
- - (1974 b): Der Einfluß des Standortes einer Lichtfalle auf das Anflugergebnis der
Noctuidae (Lepidoptera). Fol. Ent. Hung. XXVIL.-Suppl.: 113-127.
MAY, R.M. (1980): Theoretische Ökologie. Verlag Chemie, Weinheim - Deerfield Beach,
Florida - Basel.
MEINECKE, T. (1984): Untersuchungen zur Struktur, Dynamik und Phänologie der
Großschmetterlinge (Insecta, Lepidoptera) im südlichen Niedersachsen. Mitt. Fauna
Flora Süd-Niedersachsens 6: 1-453.
MICHEL, J. (1961): Die Auswirkungen der abnormalen Witterung des Jahres 1959 auf
die Falterwelt. Mitt. f. Insektenkunde 5, Heft 1/2: 2-11.
NILSSON, S.G. & NILSSON, I.N. (1983): Are estimated species turnover rates on is-
lands largely sampling errors? Am. Nat. 121: 000-000.
NOVAK, I. (1974): Sexualindex bei Lepidopteren in den Lichtfallen. Fol. Ent. Hung.
XxXVIL.-Suppl.: 143-157.
ODUM, E.P. & REICHHOLF, J. (1980): Ökologie. BLV, München.
OSTHELDER, L. (1925-1933): Die Schmetterlinge Südbayerns und der angrenzenden
nördlichen Kalkalpen, I. Teil Großschmetterlinge. Mitt. München. Ent. Ges. 16,
Beilage.
PARRY, G.D. (1981): The meanings of r- and K-selection. Oecologia 48: 260-264.
PIANKA, E.R. (1970): On r- and K-selection. Am. Nat., 104: 592-597.
PLAUT, H.N. (1971): Distance of Attraction of Moths of Spodoptera littoralis to BL
Radiation, and Recapture of Moths Released at Different Distances of an ESA
Blacklight Standard Trap. J. Econ. Ent. 64, Nr. 6: 1402-1404.
PRESTON, F.W. (1948): The commoness and rarity of species. Ecology 29: 254-283.
213
REICHHOLF, J. (1974): Phänologie, Häufigkeit und Populationsdynamik von Spilosoma
menthastri Esp. und Spilarctia lubricipeda L. (Lepidoptera, Arctiidae) in einem
südostbayerischen Fanggebiet. Nachr.Bl. Bayer. Entomologen 23: 58-64.
- - (1983): Die Bedeutung nicht bewirtschafteter Wiesen für unsere Tagfalter. Natur
und Landschaft 48, Nr. 3: 80-81.
- - (1984): Mein Hobby: Schmetterlinge beobachten. BLV Verlagsgesellschaft, Mün-
chen-Wien-Zürich.
- (1985): Speciation dynamics in the noctuid moth Plusia chrysitis L. (Lepidoptera,
Noctuidae). Spixiana 8, Nr. 1, 75-81.
- (1986): Tagfalter: Indikatoren für Umweltveränderungen, Ber. ANL. 10: 159-169.
REINHARDT, R. & DROBNIEWSKI, D. (1979): Ergebnisse von Markierungsversuchen
1973-1977 mit Tagschmetterlingen (Lep.). Veröff. Mus. Naturk. Karl-Marx-Stadt
10, 61-75.
REJMANEK, M. & SPITZER, K. (1982): Bionomic strategies and long term fluctuations
in abundance of Noctuidae (Lepidoptera). Acta ent. bohemoslov., 79: 81-96.
REZBANYAI-RESER, L. (1974): Quantitative faunistische, ökologische und zönologische
Forschungsmethode mit Lichtfallen und deren Ergebnisse bei den Großschmetter-
lingen. Fol. Ent. Hung. XXVIL.-Suppl.: 183-190.
- - (1981): Wanderfalter in der Schweiz 1979, Fangergebnisse aus 18 Lichtfallen so-
wie weitere Meldungen. Atalanta, 12: 161-259.
- - (1983): Gedanken über die Rolle der Raupenfunde beim Feststellen der Häufigkeit
einer Falterart.
- - (1984): Wanderfalter in der Schweiz 1980: Fangergebnisse aus 19 Lichtfallen so-
wie weitere Meldungen, Vergleichsangaben aus anderen Ländern und Nachträge
1977-79. Atalanta 15 (3/4): 180-305.
(1986): Probleme bei den Untersuchungen über die Ortstreue von Nachtgroßfaltern
und bei Feldbeobachtungen im allgemeinen. Ent. Zeitschr. Frankf. 96, Nr. 7:
81-96.
- (1988): Die Verbreitung von Nycteola asiatica KROULIKOWSKY, 1904, in der
Schweiz. Atalanta 18: 261-265.
RETZBANYAI-RESER, L. & WHITEBREAD, S. (1987): Eupithecia sinuosaria Evers-
mann 1848, neu für die Schweiz (Lep., Geometridae). Mitt. Ent. Ges. Basel, 37:
120-122.
ROFF, D.A. (1973 a): On the accuracy of some marc-recapture estimators. Oecologia
(Berlin), 12: 13-34.
- - (1973b): An examination of some statistical tests used in the analysis of mark-
recapture data. Oecologia (Berlin), 12: 35-54.
SCHACHT, W. & WITT, T. (1986): Warum nachtaktive Insekten künstliche Lichtquel-
len anfliegen (Insecta). Entomofauna, 7, Heft 9: 121-128.
SCHADEWALD, G. (1955): Lichtfang. Nachr.Bl. Bayer. Entomologen 4, Nr. 8: 75-80.
- - (1956): Lichtfang (Fortsetzung). Nachr.Bl. Bayer. Entomologen 5, Nr. 6: 59-62.
SCHEERPELTZ, O. (1968): Irrwege in den Versuchen zur Erfassung von Zoozönosen.
Nachr.Bl. Bayer. Entomologen 17: 86-94.
SCHOENER, A. & SCHOENER, T.W. (1981): The dynamics of the species-area relation
in marine fouling-systems. 1. Biological correlates of changes in the species-
area slope. Am. Nat. 118: 339-360.
214
SCHOENER, T.W. (1983): Rate of species turnover decreases from lower to higher
organisms: a review of the data. Oikos 41, 372-377.
SCHRIER, R.D., CULLENWARD, M.J., EHRLICH P.R. & WHITE R.R. (1976): The
Structure and. Genetics of a Montane Population of the Checkerspot Butterfly
Chlosyne palla. Oecologia (Berlin) 25, 279-289.
SCHWERDTFEGER, F. (1963): Ökologie der Tiere. Bd. 1: Autökologie. Parey-Verlag,
Hamburg. ;
- - (1978): Lehrbuch der Tierökologie. 1. Aufl. 385 S.. Parey-Verlag, Hamburg.
SCOTT, J.A. (1973): Convergence of population biology and adult behaviour in two
sympatric butterflies, Neominois ridingsii (Papilionoidea: Nymphalidae) and Am-
blyscirtes simius (Hesperioidea: Hesperiidae). J. Anim. Ecol. 42: 663-672.
- - (1975): Flight patterns among eleven species of diurnal lepidoptera. Ecology, 56:
1367-1377.
SMOLIS, M. & GERKEN, B. (1986): Zur Frage der Populationsgröße und der intrapo-
pularen Mobilität von tagfliegenden Schmetierlingen, untersucht am Beispiel der
Zygaenidenarten (Lepidoptera: Zygaenidae) eines Halbtrockenrasens. Decheniana
(Bonn) 140: 102-117.
SOUTHWOOD, T.R.E. (1978): Ecological methods. 2. Aufl. 524 S.. Chapman and Hall,
London und New York.
- - (1980): Bionomische Strategien und Populationsparameter. In: May, R.M. (Hrsg.):
Theoretische Ökologie. Verlag Chemie, Weinheim - Deerfield Beach, Florida -
Basel.
SPITZER, K. & LEPS, J. (1988): Determinants of temporal variation in moth abundan-
ce. Oikos 53: 31-36.
SPITZER, K. & REJMANEK, M. & SOLDAN, T. (1984): The fecundity and long term
variability in abundance of noctuid moths (Lepidoptera, Noctuidae). Oecologia
(Berlin) 62: 91-93.
STEWART, P.A., LAM, J.J. & BLYTHE, J.L. (1969): Influence of Distance on Attrac-
tion of Tobacco Hornworm and Corn Earworm Moths to Radiations of a Black-
light Lamp. J. Econ. Ent. 62, Nr. 1: 58-60.
URBAHN, E. (1973): Beobachtungen über den Häufigkeitswechsel bei Schmetterlingen in
Norddeutschland seit 1895. Faun. Abh. Staatl. Mus. Tierk. Dresden 4, Nr. 7:
45-60.
UTSCHICK, H. (1989): Veränderungen in der Nachtfalterfauna im Auenwald der Inn-
staustufe Perach 1976-1988 (Lepidoptera, Macroheterocera). Nachr.Bl. Bayer.
Entomologen 38 (2): 51-62.
VARGA, Z. & HERKOVICH, A. (1974): Die Anwendung der Lichtfallen in der ökolo-
gischen Landschaftsforschung. Fol. Ent. Hung. XXVII.-Suppl.: 159-171.
WARNECKE, G (1952): Zum Problem der Ortsgebundenheit der Schmetterlinge. Ent.
Nachr.Bl. österr. und schw. Ent. Nr. 4, 5, 6: 84-89.
WATT, W.B., CHEW, F.S., SNYDER, C.R.G., WATT, A.G. & ROTHSCHILD D.E.
(1977): Population structure of pierid butterflies I. Numbers and movements of some
Colias species. Oecologia (Berlin) 27: 1-22.
WEIDEMANN, H. J. (1986 a): Tagfalter, Band 1. Verlag J. Neumann-Neudamm, Mel-
sungen.
- - (1986 b): Tagfalter, Band 2. Verlag J. Neumann-Neudamm, Melsungen.
215
WIESER. C. (1987): Die Nachtfalterfauna des Gitschtales, Teil I: Obermöschach. Ca-
rinthia II, 177./97. Jahrg.: 189-203.
WILLIAMS, C.B. (1964): Patterns in the balance of nature. Academic Press, London &
New York.
WOLFSBERGER, J. (1945-1949): Neue und interessante Macrolepidopterenfunde aus
Südbayern und den angrenzenden nördlichen Kalkalpen, Mitt. München. Ent. Ges.
35-39, 308-329.
WOLFSBERGER, J. (1950): Neue und interessante Macrolepidopterenfunde aus Südbay-
ern und den angrenzenden nördlichen Kalkalpen (2. Beitrag), Mitt. München. Ent.
Ges. 40, 207-236.
WOLFSBERGER, J. (1953/1954): Neue und interessante Macrolepidopterenfunde aus
Südbayern und den angrenzenden nördlichen Kalkalpen (3. Beitrag), Nachr.Bl. Bay-
yer. Entomologen 2, 89-92 und 3, 13-21.
WOLFSBERGER, J. (1954/1955): Neue und interessante Macrolepidopterenfunde aus
Südbayern und den angrenzenden nördlichen Kalkalpen (4. Beitrag), Mitt. Mün-
chen. Ent. Ges. 44/45, 300-345.
WOLFSBERGER, J. (1958): Neue und interessante Macrolepidopterenfunde aus Südbay-
ern und den angrenzenden nördlichen Kalkalpen (5. Beitrag), Nachr.Bl. Bayer.
Entomologen 7, 49-62, 65-71.
WOLFSBERGER, J. (1960): Neue und interessante Macrolepidopterenfunde aus Südbay-
ern und den angrenzenden nördlichen Kalkalpen (6. Beitrag), Mitt. München. Ent.
Ges. 50, 35-54.
WOLFSBERGER, J. (1974): Neue und interessante Macrolepidopterenfunde aus Südba-
yern und den angrenzenden nördlichen Kalkalpen (7. Beitrag), Nachr.Bl. Bayer.
Entomologen 23, 33-55.
ZINNERT, K.D. (1966): Quantitative Untersuchungen nach der Lincoln-Index-Methode
an einer Population von Lysandra coridon PODA im zentralen Kaiserstuhl (Lepi-
doptera, Lycaenidae). Mitt. Bad. Landesver. Naturkd. Naturschutz (Karlsruhe) 9,
75283: j
ANHANG: SUMMARY
Species spectrum of moths and their flight activities were investigated 1987/1988 in
the village of Oberschleißheim (31 km?) in the northern periphery of Munich.
For this aim, a net of 10 light-traps per year with a total of 15 locations was opera-
ted. Parallel catches took place with several traps at the same time. The results were
1438 catches. A total of 49.072 individuals and 462 species (Macroheterocera) could
be ascertained. Together with earlier and later recordings and observations in the day-
time 514 species of moths could be recorded in the study area.
The species spectra of a definite sphere of influence covered by one light-trap reveals
a year-to-year turnover of about 35-55%. These changes in the species composition are
specific for location and taxon and depend also on the successional stage of the habi-
tat.
216
The occurence of species changes is prominently biased towards immigrated "guest-
species” that are foreign in this habitat. The other species show lower turnover rates.
This fact indicates, that the apparent turnover reflects real processes occuring in
nature and not a methodical error due to problems with the precision of the method
for recording species.
Turnover decreases with increasing size of the area covered by the traps. This can be
explained by the greater habitat diversity and thus by the presence of more refugial
localities.
As far as the relations concerned that exist between turnover, constancy of occurrence
and abundance fluctuations, the results of the present paper show a very similar
pattern to the butterflies in eastern Bavaria (REICHHOLF, 1986) and the moths in
southeastern Austria (WIESER, 1987):
The constancy distributions do not show an equal level for every class: the main part
of the species was occuring with a very high or a very low degree of constancy.
Constancy and abundance fluctuations are strongly negatively correlated. With regard
to the various systematic groups there was found a positive correlation between fluc-
tuations and turnover rate.
In the open grassland a great part of the species occuring every or almost every year
are to characterize as propagating in site, while the main part of the low-constancy
species are origin off site.
An estimation of the dependence of the species number on the rhythm of catches
shows, that in a single year some species are absent indeed and that species spectra
complete themselves in the run of several years due to changes in the species compo-
sition.
A further estimation of the number of species, that are too rare for having been re-
corded, uses the log-normal abundance distribution postulated by PRESTON (1948). The
results are quite similar.
In some experiments there were 23.818 specimens marked, belonging to 131 species; of
the total of 1347 recaptures, 13 took place over distances of at least one kilometre
(11 Noctuidae and 2 quite robust Geometridae; only males).
When distances between traps are chosen a little bit closer (50-120 m), the probability
of recapture increases by also catching specimens vagabonding in the wider periphery
of the other traps. When species are plotted according to their recapture rates and
their average residence times, these lists show two gradients, that are quite similar to
each other. The migratory species are to find (how it was to expect) on the lower end
of the lists: These distributions seem to correspond to the r-K-continuum of the popu-
lation biology. ;
When moths are transfered in distances of 30-120 m, there result some species-speci-
fic patterns: Species with a high dispersal show a significant decrease of recapture
probability already at 30-60 m; nearly all of the recaptures occured after one night;
similar results are to be found in PLAUT (1971). When species with lower flight acti-
217
vity are tested, from distances of 90-120 m there are recaptured comparably many in-
dividuals (also after intervals of some days). This fact can be explained by a "vaga-
bonding” of the moths in the wider periphery of the traps.
The species specific degree of effective attraction of moths by the light source causes
an overestimate of relative abundances when the trap is operated continuously. A night
without catch is sufficient to guarantee the specimens to mix up with the rest of the
populations on a high level.
Interpretations which base on the probability of recaptures at the same site can lead
to very false results. Together with the experiments made in this study they can gain
a high informative value in the discussion of flight activities.
A characterization of all the species recorded in this study considering the potential
flight distances and their bionomic strategies, reveals dynamics on a high level: 98% of
the species spectrum are characterized as species, for those it seems to be a usual
act to fly out of the sphere of influence of the light-trap.
Ubiquists, species of the open grassland and xerothermophilic species are more expan-
sive than the species typical for woods, shrub-formations and the hygrophilic fauna.
Ruderal species developed (according to the instability of their resources) preferably
a r-strategy combined with great flight distances.
Also the polyvoltine species are mainly r-strategists, their dispersals are situated on a
higher level than the average of the other species is. The second generation is in near-
ly all of the cases more expansive than the first. Cold weather handicaps, wind
sometimes favour dispersal. Topography, population density and presence of specific
nectar sources are further factors determining flight activities.
The bionomic strategies of moths are species specific. Often the reaction of populati-
ons of species closely related to each other are quite different, while there are cases
of convergence to be found investigating comparably unrelated species.
The possibility of jumps using "little habitat islands” is a very important factor for
processes of colonisation over greater distances. In gardens this is favoured very much
by an artificial network of many different food plant species that occur in nature with
a more local distribution.
The strategy is in many cases strongly correlated with the larval food plants: Instabi-
lity of the resources and high degree of polyphagy often coincide with r-strategy.
K-strategists and species with low dispersal show up in species spectra of light-traps
with tendentiously lower turnover rates and lower abundance fluctuations. These po-
pulation dynamics on a low level correspond to the definition of their strategy.
In accordance with the results of this study the linking of habitats should occur in
distances of not more than 500 m; this value has to be modified according to the
habitat type.
218
ANHANG: ARTENREGISTER
aa: ne] 40, 182 pombyein a (Polia) 28, 130
absinthi Eupithecia 39, 181 Braetze Ninerapha) 34, 159
aceris en 33, 156 brassicae Nlographal 28, 130
adusta Aleehani ta) 32, 151 en zuale per thera) 36, 170
adustata I ee 40, 185 brunnea (ofen 27, 126
advenaria (Cepp 41, 188 bucep lag halera) 24, 112
aescularia (Als Bee 35, 164 caja nee 23, 108
aestivaria ithea 35, 165 cameli Lophopt ryx) 24, 112
affinis (Cos 1a) 30, 140 eapitate | (Eophopis 38, 176
albicillata (Mesoleuca) 38, 176 carmelita (Odontosia) 24, 112
albicolon ( KessoN) 28, 130 carpin = othopteryx) 36, 169
en | ythimna) 29, 136 casta (Psy he) 26, 120
albipunctata isjpnnors) 36, 167 castigata (7 ithecia) 39, 181
albulata (Asthena 9, 178 c-aureum Cheysopıe tera 34, 160
alchemillata (Perizoma) 38, 177 centaureata (Eupit 39, 180
algae Eiitales) 837.153 cervinali „Caivcaipe)" Sy]
alni (Apatele) 33, 156 cespitis Me) 29, 132
alniaria (Deuteronomos) 41, 186 a ee 92.,n.152
alpium ae) 33., 153 characterea NE mea) 30, 142
alsines \Hoplodrina 31, 74, 89f, 148 chen podiata Ne) 36, 77ff, 168
alternarıa (Macari 41, 188 ie An 32, lol
te irrhoe 38, 177 chloerata an lystis) 40, 183
ambigua (H plodrina) 31, 149 chlorana ( ZuaE 34, 158
anachoreta t lostera 24, 113 chlorosat „(Lo2 gramma) 41, 188
anceps (Apamen) 30, 77ff, 142 chrysiis P usi 4, 159
anceps (Peridea 24, 110 chryson ( usa] 4, 160
ansetaria, (Asthen ) 39, 178 chrysoprasaria (Hemistola) 35, 165
aprilina (Griposia 323151 chrysorrhoea (Euproctis) 23, 105
aquilina (Euxoa) 27122 cinctaria (Cleora 42, 193
asclepiadıs (Abrastota) 34, 160 citrago (Cirrhia) 33, 154
assimilata (Eupithecia 39, 181 citrata stroma) SU NS
atomari maturga) 42, 194 clathrata, (c Bone), 41, 77ff, 189
atrata (Odezia 35, 164 laueeık sp Zuneıy 3l, 149
augur (Teaphiphora) 2, 125 clavis (Sc ei 7, 74, 82f, 86f, 122
aurago (Cirrhia 32 2158 c-nigrum (Amathes 27, 77ff, 126
aurantiaria Erannis) 41, 191 coenobita (Panthea 33,155
auricoma (P aretra) 33, 156 ln Hydriomena) 38, 177
autumnaria (Ennomos) 41, 186 comes (Noctua 27% 125
autumnata (Opori es) SUN comitata (Pelurga) 38, 178
aversata IStescha)) 36, 166 comma Auchmis) 30, 141
comma (Leucania 29, 138
Ba ale ea) 38, 178 complana (Eilema) 23, 106
baja athes Be N compta adene) 28, 132
Pe Aut rannis) 41, 190 confusa (Hadena ed 189%
barbalis (Herminia) 35, 162 confusa (Macdunnoughia) 34, 159
batis Th atira 25, 116 confusalis Camel 3, 105
berbera (Amphipyra) 29, 138 conigera Namen 29, 136
berberata (bern tephria) 38, 175 contigua amest 28, 131
a iston] 42, 192 convolvuli Hesse) 25, «LA
betulina ( ale 26 corylat (E Electro haes) 38, 176
bicolorana (es euapips) 34, 158 coryli (Coloca 33, 156
bicoloria (Leucodonta 24, 111 cossus (Coss > 26, 121
bicruris (Hadena 28 182 crassiorella (Psy he) 26
bidentata (Gono sa) 41, 187 crenata Ayamca) 30, 142
bifaciata (Perizo 38, 177 crenat e uphisia) 24, 109
bilineata (Eu hyia) 38, 176 cruda (Or 'hosia] 29, 133
bilunaria Te enia 41, 187 nt uphyia) 38, 175
bilunulata mein cia) 39, 179 cuculla ( au: x) 24, 112
bimaculata (Bapt ) 40, 185 cultraria epa öl 25, 118
binaria Ürrenana 23, 111 curtula ( Drepans 4, 113
biriviata (Xanthorhoe) 37.1274 ar
biselata (S Ercha)) 36, 165 deceptoria (as idia) 34, 157
bistortata Een 42, 194 decimalis olera 29,133
blanda (A lodrina 31, 149 defoliaria (Erannis 42, 191
blandiata ee) 38, 177 denotata (Eupithecia) 39, 181
219
depressa
depuncta
designata
dilutata
dimidiata
ditrapeziu
dodoneata
dolabraria
Subitata (1
dubitata
rk aris
ffo
ilema)
ugnorisma
Xanthorhoe
orinia
terrha
Amathes s)
"\Eipithee
Pjkgodis),
Notodonta)
Tripho
Tefhen)‘ 2)
rmata, (Anaitis)
© enaria (
N
ejlephila
Sterrha)
risateles)
elpenor
emarginata
emortualis
ephaltes [6
ephialtes
erosaria
upithecia
rocallis
in,
Burgelfia
euferonomos
exanthemata | abera]
exclamationis tn
exigua (Spodoptera
exiguata
E
extersaria
extraversarıa
extrema
agi (Stau
alcatarıa
ee ( llopıa
ferrago Kantherhoe),
ferrugata antho
[erubsinen 8 74,
filipendula Fa
fim rialis (1 a En
fimbriata (Noctua)
firmata ( NE
en Pano .
upithecia
ctropis
(Eap thecia)
Photedes
!Bren ana)
flammeo u (Hydrelia)
flavago (Go on
flavicornis (P ma)
flavofasciata t erizoma)
flexula (L speyria)
fluctuata Pienen oe)
ee Teth )
fluxa
fucifor (Hemarıe
core | mphipoea ie)
fuliginaria erde
fuliginosa gmatobia)
fulvaria Be)
fulvata (Cidaria)
furcala driomena
furcifera (Lithophane)
furcula )yıa
uU la {v iana
fusca ee)
fuscantari
ıa
euteronomos)
en rapha)
gilva
gilvago {
glaucata
glyphica
220
emo
u
ctypa)
23, 77,106
27, 124
372.199
374.170
36, 166
DT 127
40, 182
40, 186
24, 111
31, +71
25,116
36, 169
39, 180
41,187
23,118
36, 166
33,109
26
24
41, 186
40, 186
27.0831. 123
1,1149
a)
42, 194
39, 180
3l, 145
24.7109
Red N ih
40, 186
29,7°136
32.30:
71kt, 87: 139
24, 113
35, 165
27.125
Sl
A
38, 178
3l, 146
25, vLlZ
38, 177
35, 162
3.15 178
25, 116
3l, 145
25, 116
3l, 145
35, 161
23, 7107
41, 190
314172
38.107
324: 351
23, 109
31, 144
26, 120
41, 186
34, 2139
31.150
33, 154
25, 118
33,.,161
gnoma (Pheosia)
gothica (Orthosıa
gracilis rthosia
graminis en
grisealis (Zanc on
griseata (Caloth a
grossularıata (Abraxas)
halterata (Lobophora)
hecta ( ae nialus]
helvola (Agrochola
hirtaria (Lycia
ap ne = Apee eima)
humuli (deal us
hyperici (Actinotia)
icterata teupilhepia)
icteritia (Cirrhia
imbecilla (Eriopygodes)
immorata |Scopula
immutata (Scopul
impura (Nrihinna
incerta (Orthosia)
indigata (Eupithecia
innotata (Eupitheci
inquinata Senhall
on | Eupithecia
ipsilon (Enargia
ipsilon (Scotia
janthina (Noctua)
jJuniperata (Thera)
lactata (Seopula)
lactearıa (Tod is)
l-album ythimna)
lanceata EapILcein)
lariciata (Eupithecia
lateritia (A smea]
latruncyla (Oligia
lepida (H Henn)
leporina Acronicta)
leucographa (Cerastis
leucophaearia (Erannis)
leucostigma Celacna]
libatrix (Scolioptery
ligustri (Craniophora
ligustri (Sphinx
linariata
linearia phora
lineata ( Dr
lose (Apamea)
litura (Agroc ol)
liturata acaria
lota (Agroc ola)
lubricipeda (Spilarctia)
lucens (Amphipoe J
lucifuga (Cucullia
lucipara |Euplexi
lucipeta yacia
luni Ei ee
lunu lo asi
lurideola Hei
lutarella (Eilema
luteolata (Opisthograptis)
111
Vans 135
lutosa ( u) 31, 146 palaeacea (Enargi 30, 140
lychnidis (Agrochola) 29, a8 pallens (Mythimna 29, 137
palpina ee) 24, 112
macilenta (A Agzechelı)), 320152 papilionaria (Geometra) 35, 164
margaritata (Camp ea) 40, 186 parthenias, ( (Archiearis) 5, 163
nl rannis 42, 191 pastinum (Lyge hila) 35, 161
marginata ne is) 40, 184 pavonia a 5, 118
matura (Talpophila 30, 139 pectinet Fa E 38, 175
megacephala (Subacr nicta) 33, 156 pedaria [e al Da) 2, 191
melanari Arichanna] 40, 184 peltigera (Chloridea 33, 154
eneet ermophila 24 pennaria (Colotois 41, 186
mellinata Lyaris) Sa, 2 persicariae NREHIUR 28, 131
mendica (Djarsia 270125 phoebe (Norodo ta) 24, 111
menchastri en a) 23, 77ff, 108 pigra (Clostera 24, 113
mesomella bosia) 23, 106 pimpinellata [Eupi thecia) 42, 182
nn culosa Phlogop ora) 30, 140 pinastri (Hyloicue) 25, 114
can = 34, 161 pini Beisa., 39, 179
cn ee) 31, 145 pini drolim 26, 120
milhauseri „"rbecampa 24, 109 pinia Bupal 2) 42, 194
millefoliat upithecia 39, 182 pisi (M Momestra) 28, 131
miniata Miltoe T ista) 23, 106 Beats De eura) 27, 74, 77ff, 124
minima otedes 5 umbeolat upithecia ;
hoted ) 31, 145 plumbeol pithecia) 39, 179
et (Euphyi ) 38, 175 plumigera te hora) 4, 112
monacha, (L mania) 23, 105 polycommata (Nothepteryx) 36, 169
moneta Pofr chrysi 34, 160 polyodon (Actinetia) 30, 141
monilifera an) 26, 120 populat ygris) Sn 12
monoglypha (Apamea) 30, 141 populi Laoihoe) 25), all4
De anthorhoe) 37, 174 populi (Orthosia 29, 134
morphe andre) 31, 149 populi (Poecilocampa 26, 118
munda 1 thosia 29,0:133 porcellus WDeile hi 25, 116
muricata ( en 36, 165 potatoria (Philu ori) 26, 120
muscerda (Pelosia 23, 109 praefor dia (Breite 6, 169
prasina aplectoides) 28, 129
nana (Lasionycta) 29, 132 prasinana En 34, 158
nebulata (Euchoeca) 38, 178 prasinaria ler ia) 40, 186
nebulosa (Polia 28, 130 a el 35, 163
neustrja (Malacosoma) 26, 118 procellat (Mei nthia 38, 176
nexa Ro ia) 31, 146 pronuba IN: Ochua) 7, 74, 77ff, 84ff, 125
nigricans 2122 De ( Angerona) 41, 187
nigropunctata ee) 36, 168 prun ta (Lygris) Sr il
'nitida rochola) 32, 152 psi (Apatele ie) 33, 156
er acaria) 41, 188 pudi Ben ya) 23, 105
nupta (Catocala 34, 161 pudorina a mna 29, 136
pulchrina (Autographa) 34, 159
obelisca (Euxoa) 210122 pulmonaris (Atypha) 31, 149
obeliscat (here) TR punctaria (Cyclophora) 36, 167
obsealis in De] 35, 163 punctinalis en) 425198
obstipata Nycı rosea) 38, 175 punctulata (Aethalura) 42, 194
occulta ( (Euröie) 28, 129 punicea \Paradi rsia) als. 3125
ocellaris (Cirrhia) 33, 154 pusaria (C bera) 40, 185
ocellata (Lampropteryx) 38, 05 pustulata (Comi aena) 35, 165
ocellata (Smerint 2 25, 114 putnamj ( hrysaspidia) 34, 158
u Tethea 23, 1m. putris (a ia 33, 155
oculea ( ee), 31, 145 pygarga aspidia) 34, 157
oleracea En amest 28, 131 pygmina (Photedes) 42, 145
olivana KEustrota)" 34, 158 pyraliata eris) Dit INZ
olivata ee) 38, 175 pyralina (Cosmia 30, 141
ophiogram Apamea) 30, 143 pyramidea (A Amphipyra) 29, 138
or (Tethea DS, pyrina (Zeuzera 26, 121
ornata (Scopula) 36, 168 pyritoides (Habrosyne) 25, 116
ornitopus Kappen ne) 32, 151
oxalina Fo) 28, 129 quadra (Lithosia) 23, 106
oxyacantha llephyca) S2 li quadrifasciata (€ chyria 37, SD
221
raptricula nennen) 33453
a en otis 27, 125
recens vi 23, 103
Sur ee 40, 183
remissa (Apamea 30, 142
repandaria (Epio 41, 188
repandata jeis) 42, 74, 77ff, 9YSff, 193
reticulata (Heliop obus »1130
retusa ‚Pi een ‚ 140
a ycteola) 34, 158
rhomboi kön Perib todes) 42, 74, 92ff, 192
ribeata (Deileptenia 42;:1193
rivularis a 26, 132
roboraria (Baarmia) 42, 193
rubi (Biarsa) 27, 126
rubi (Macrot nn, 26, 120
rubiginata \Plem myria) Aa 74
rubiginata (Scopula 36, 168
rubiginosa (Conistra 32; 152
rubricollis (Atolmi 23.2107
rubricosa (Cerastis a8, 7 129
ruficornis (Drymonia 24, 110
rumicis (Pharetra 332157
rupicapraria (Theria 41, 190
sagittigera_(Pachetra) 26, #130
salicalıs tcaisbochyia) 35,1:162
sambucaria (Ourapieryx 41, 188
sannio [Diners Bar 7708
satura Blepharite) 32.151
satyrata (Eupithecia) 39, 180
scolopacina (Apamea 30, 143
scrophularjae (Cucullia) 32, 150
secalella (esannmesi 31, 144
secalis (Mesapamea 31, 144
en Peribatodes) 42, 193
etum (Scotia 2.914122
Be enitica (Dasychira) 23. 105
selinata (Eupithecia) 39, 180
sepium (Bacotia 26, 120
seriata (Sterrha 36, 166
sericealis (Rivula 35elnk62
sexalata (Pterapherapteryx) 36, 170
sexstrigafa (Amat = 27 SUTTRDANZB
signaria (h acaria 41, 188
silaceata (Diactinıa) 38, 176
similis (p chen), 2334105
ren yacia) 27, 124
sinuosari ei 40, 182
siterata (Chlorgelyst 3:14: 1978
sobringta (Eupithecia 40, 183
Le ae = 32, 191
sordens (Apamea) 30, 143
sororcula (Systropha) 23, 107
spadicearia (Xanthorhoe) 37 «174
sponsa etinden] 34, 161
sphinx (Brachionycha) 32, 150
stabilis (Orthosia 29, 134
stellatarum (Maeroglossum) 25, 116
strataria (Biston 42, 192
strigilis amea 30, 143
BlraeDen ybom 334/156
suasa nesitra 28,131
sn Apame 30, 142
subtusa a orpha 30, 140
subumbrata (E hithecia) 9, 181
er some (Er el, 39, 181
suffumata Den ropteryx 38, 175
suspecta (Parastichtis 2, 153
222
sylvata uns ilas)
sylvina | ialus
syringaria Ei peira)
tarsicrinalis anclognatha)
tantillaria (Eupithecia)
tarsipenna = & nclognatha)
temerata
eg, Peiner a)
tenuiata (Eupithecia
tersata (foren),
a perina]
en Ki en)
ET
ee Han
(halaseine | amestra)
tiliae (Mimas)
togata (Cirrhja
Ei (Sn hipyra)
transversa ‚Enge ia)
transvers: (Philereme)
tremula P eosia
triangulum (Amathes) 27,
trifolli [Discestra
trifolii (Pachygastria
trigemina, (A ale
trigrammi Meristis)
ut tn
triplasia (Abrostola)
tripunctata ehe
nl her e)
g: ecia)
tristata [en
tritici Eal-
truncata (Dystroma)
tubulosa (Talaeppria)
turca (My mna A
tutti (Plusia
typhae (Nonagri
typica (Phalaena
yrrhia)
Eueulle
(Apame ja)
Eustrotia
umbra (
umbratica
unanimi
uncula |
vaccinii (Conistra)
valerianata (E Eupithecia)
variata (Thera
v-ata ( pe) A)
venosata (Eupithecia
Agrotis
venustula
verbasci (Cuculli
versicolor lieia)
vetulata (Philereme)
vetusta (Xyle
vinula ( (Cerura)
viretata (Acasis)
virgaureata (Eupithecia)
virıdaria hytometra)
viriplaca (Chloride
vitellina ythimn
vulgata (Eupithecia
wauaria (Itame)
w-latinum (Mamestra)
xanthographa (Amathes)
ziczac (Notodonta)
40,
9;
6
101, 184
121
187
77ff, 128
111
Bisher erschienene Supplementbände der SPıxıana
Supplementband 1: GUSTAV PETERS, 1978
Vergleichende Untersuchung zur Lautgebung einiger Feliden
(Mammalia, Felidae).
206 Seiten und 80 Seiten mit 324 Abbildungen und 20 Tabellen.
Supplementband 2: HERMANN ELLENBERG, 1978
Zur Populationsökologie des Rehes (Capreolus capreolus L., Cervidae)
in Mitteleuropa.
211 Seiten mit 47 Abbildungen und 42 + 6 Tabellen.
Supplementband 3: JENS LEHMANN, 1979
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
(Systematik, Ökologie, Verbreitung und Produktionsbiologie).
Teil I: Kivu-Gebiet, Ostzaire.
144 Seiten mit 252 Abbildungen und 11 Tabellen.
Supplementband 4: KLAUS HORSTMANN, 1980
Revision der europäischen Tersilochinae Il
(Hymenoptera, Ichneumonidae).
76 Seiten mit 150 Abbildungen und 2 Tabellen.
G. VAN ROSSEM, 1980
A revision of some Western Palaearctic Oxytorine genera
(Hymenoptera, Ichneumonidae).
59 Seiten mit 3 Abbildungen und 2 Tafeln.
Supplementband 5: JENSLEHMANN, 1981
Chironomidae (Diptera) aus Fließgewässern Zentralafrikas.
Teil Il: Die Region um Kisangani, Zentralzaire.
85 Seiten mit 3 Abbildungen, 2 Tabellen und 26 Tafeln.
Supplementband 6: MICHAEL VON TSCHIRNHAUS, 1981
Die Halm- und Minierfliegen im Grenzbereich Land-Meer der Nordsee.
(Diptera: Chloropidae et Agromyzidae)
416 Seiten mit 25 Diagr., 89 Tabellen und 11 Tafeln.
Supplementband 7: GERHARD SCHERER (Hrsg.) 1982
First International Alticinae Symposium, Munich, 11-15 August 1980
7 Beiträge, 72 Seiten.
Supplementband 8: OSKAR KUHN, 1982
Goethes Naturforschung.
48 Seiten.
Supplementband 9: ERNST JOSEF FITTKAU (Hrsg.) 1983
Festschrift zu Ehren von Dr. Johann Baptist Ritter von Spix.
30 Beiträge, div. Abbildungen und Tabellen, 441 Seiten.
Supplementband 10: W. ENGELHARDT & E.J. FITTKAU (Hrsg.) 1984
Tropische Regenwälder - eine globale Herausforderung.
14 Beiträge, div. Abbildungen und Tabellen, 160 Seiten.
Supplementband 11: ERNST JOSEF FITTKAU (Hrsg.) 1985
Beiträge zur Systematik der Chironomidae, Diptera.
16 Beiträge, zahlr. Abbildungen, 215 Seiten.
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
45,—
EI, —
36,—
43,50
29,80
20,—
46,—
Supplementband 12: HANS HERMANN SCHLEICH, 1987
Herpetofauna Caboverdiana.
Div. Abbildungen und Tabellen, 75 Seiten.
Supplementband 13: ANNELLE R. SOPONIS, 1989
A Revision of the Holarctic Species of Orthocladius
(Euorthocladius) (Diptera: Chironomidae).
Div. Abbildungen, 68 Seiten.
Supplementband 14: ERNST JOSEF FITTKAU (Hrsg.) 1988
Festschrift zu Ehren von Lars Brundin
28 Beiträge, div. Abbildungen und Tabellen, 259 Seiten
Supplementband 15: WULF GATTER & ULRICH SCHMID, 1990
Wanderungen der Schwebfliegen am Randecker Maar
(Diptera, Syrphidae).
Div. Abbildungen, 100 Seiten.
DM 35,—
DM 35, —
DM 80,—
DM 40,—
Ne
a
ie "
HH m m
7) 7)
ISHLINS, S31UVYAIT LIBRARIES, „SMITHSONIAN
NEN = < Ei
N.DC. > 3 i > E
ISONIAN _INSTITUTION NOILNLILSNI NVINOSHLINS 531 yvvyg
PIE = 2 NN
X er < 3\ N
Ah = x =
2 3 E u
? =) _ [e)
= _ — *,
SHLINS_S31UVYaN LIBRARIES SMITHSONIAN
ER
“) _ =) G
5 = u,
N > 2 = I,
IS m 4 IL:
ER — o =
ISONIAN INSTITUTION NOILNLILSNI _ NVINOSHLINS s314vyyg911
UN z « 2 z
x je F2
)E NN 5 3
2) E RN 68 te
1 E NND 2 E
= = IN > =
12) Da 7 172)
ISHLINS S31YVY4Y917 LIBRARIES SMITHSONIAN
nF
4SONIAN INSTITUTION NOILNLILSNI
LIBRARIES
313v4811
NOILNLILSNI
5314VU9I1_ LIBRARIES
INSTITUTION
m
>
s314Vygıı LIBRARIES
NVINOSHLIWS
INSTITUTION
NOLLNLILSNI
NSTITUTION
INSTT
SMITHSONIAN
m
INSTITUTION _ NOILNLILSNI
INSTITUTION
s3ıy
NVINOSHLIWS
N
IT LIBRARIES SMITHSONIAN
NOILNLILSNI
LIBRARIES
LIBRARIES SMITHSONIAN INSTITUTION
NVINOSHLINS S31UVY4a11 LIBRARIES
5313 v4917
NOILNLILSNI
NVINOSHLINS, S314UVYEAII_LIB
Se, RR z 4 z
NVINOSHLINS S314VYY91I1_LIBRARIES _SMITHSONIAN IN
z 7) z ar u >
.Z S / Pr INN = <
z —_ 2 Sau: x — eat
{a} => Di4 SUN I x
2 SYLT EN 58 u.
: — z
INSTITUTION NOILNLILSNI NVINOSHLIWS S:
= ‘o = o =
©. = X a Re
xy = < = < |
x" = [0 = ©
=. PN = a
[e) = fe) =
zZ = zZ ee
S31IYV4911 LIBRARIES SMITHSONIAN_IN
= = = F =
= ” = G = (
>) | Gr 7 }
= > > i Fe '
N 2 5 z 5
SMITHSONIAN INSTITUTION NOILNLILSNI _ NVINOSHLIWS 5:
z ö 2 EL < =
u: 53 An. Z er
= 5 2723 -
T I IN 3 DW WAL. es or
E IL 2. TER E Zr
0.02 3 =
_NVINOSHLINS S313V49g17 LIBRARIES SMITHSONIAN IN
2 ” z — 7 —
er: amt o 177)
=. x 3 X a
2 N‘ < = < 3
4 x N cz = je Er
o n\ = fe) = ö
z ae z ) zZ
SMITHSONIAN INSTITUTION NOILNLILSNI S!
z c z = 5
= = = ia E
= = In)
m’ > » N > |
5 - 7 - b
= = = a ee
WG ud, v3 en Hi nF Fi BL, we Ns NN La we vv, IR RI se wu.
IE: ETNEUWIEN >
. HH = Sw.DC. > 7 so = N 3
Pr w >
IBRARI ES SMITHSONIAN _ INSTITUTION NOILNLILSNI_ s31uaVyg Iı_
= RT NS: = wu E
©. no x = pe =
<% = < 4 < 4
a 4 [e) I ° 2 [o)
N) 2 an >. Se ai Pr
OILNLILSNI NVINOSHLINS S3IUV4911 LIBRARIES SMITHSONIAN
Kae = ha = Y E =
jee] B Er & —. ; @ —
RE 2 > DERE z
NN N N IS m GH SL 3 \ b
2 N‘ : z 2,0787 2 E
IBRARI ES „SMITHSONIAN INSTITUTION NOILMLILSNI _NVINOSHLINS „S3 IuvV4g9117 Ze B
; = <=. = > En Et
4 z 4 DM: = a) iu
: 2859202 ö a
2 E Zu IE 2 EIRRL
> = N >" = >" =
2 72) nn = (77) = (75)
_NVINOSHLINS _S3 iuvug II_L BRARI ES SMITHSONIAN INSTITUTION ae
z = * >
oO N = 7 MM U: u
NE: = = Gi? =
a NUN: € = < LH = <
R N N & = G %2. G [02
= \ [00] >= = e BR 4
eisen =) Sr fa) ©
z 1 z an = =)
IBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI NVINOSHLINS SI31IUVWYHIN LIB
fe} = = Um zZ m
S, a s m, =) 2
= E) = = = =
ER = 7) = 2 =
z o z on z >
JOILNLILSNI S3I3VYI1I1 LIBRARIES INSTITUTION NOl.
zZ (07) & u (02) z 502. 7)
.< u N = < SS =
. & rg En | RN ur er
2 PIE N NEE
WO = [®) Ey
E = 77 E = E 23
a: Ze 0 ne 5 N
JIBRARIES SMITHSONIAN INSTITUTION NOILNLILSNI LIB
(77) e2 (ip) 3 n 3
= 0 = 7) aA 7
= E - _ = =
= E = S : S
2 =) > ö = =)
Ir fü 2 — 2 I 2
JOILNLILSNI NVINOSHLINS_S31UV4Y911 LIBRARIES INSTITUTION NOl.
a > = 3 = 8
[es] N —; [00] — & =
ee) N = er = „D =
zZ SS E > E 5 =
N 7: : 5 > 5
N = # = & z
IBRARIES, SMITHSONIAN INSTITUTION NOILNLLLSNI „NVINOSHLINS S3 I3V49117 „ei
SR hear) BL ö ; N
2 I = = En 5 T Ga OO
2 8 VIE Se:
| = za = =y. =
—= 2 N N N 5 3 5
VOILNLILSNI_NVINOSHUINS S3IYVWUAII_LIBRARIES SMITHSONIAN INSTITUTION _NOI.
re zZ Bi n EU 2 an win. 2 TONn. Ad +
0 5028
\
26
3 9088 01
er
rn meer
nuentnee
een
nen
ww
een
niurgrgeen
wremeih nun
DELTEN EL LTERLI EU era er era
ulumgruin air
ELTERN TezZ
won
arte
a : vezusen
rege aha
wen
wo.
iugreseierei en
viva urn
New ar une ere rhig rg
wo u wirhür
ven nee
we
u .
mr
nd rar
DEN En VE ONE
Bun anne
KR a EN
DEE Eee
Eee ran
Kremer wre
rn
we...
un
wen
.y
wre
vs ann nee
Dar
wre.
Wann
Aaea nt ame
[9 we
eier
“rare een nnd
vu nraaar
Kara
winwan
wer gun
rs
re
wien
whnuer
werden
DET DEREN
wor
“ann,
warden
wre
LEITETE
rat
ner
wu
men mungen
[DEeEeE Te
ie
“or
rue
aaa
von
rer
wahene
irn
range
“ur wu nen
BLUE
DEI Eee
er
rer
wa
wur
mir
rg age
re
nn ae een
un nen
in
DE
een near en
“euren
ee
Bye ihr
: v Aeen
Viren Ei rpien
ehe ya Here were De dn
a nt ne
Dre rer
reed
er
verjssans
Er
rn
ur arens
ze manaeın
nm
wur
eg
rm e
gran
De ee Bere re
vame ggg
mare
ae en rag
Da EP IP PET
Bert garage
ne ware,
wa wen.
nn Tee
a ee
wien wer ee
Berge
Lac IE 1 Bd de 2 ET
we
IE
a ne ern nn
En ne ne lagen
ET Ir EEE en ren
ne de
ee rn
ee ER
nn Tree
EI TER
wer
veomar
rer
EL ER ER he
rag:
u.
en
rer
reriigee
[EL ILELLE LE Deere
een,
we a
wurewhr
ren
una rg
ngtar ge
gr
ee,
BEIDE EFT
EI RE Dee gr
ihn