geodiversitas fait suite,
avec la même tomaison, au Bulletin du
Muséum national d’Histoire naturelle.
4e série, section C, Sciences de la Terre.
Directeur de la publication :
H. de Lumiey, Directeur du
Muséum national d’Histoire naturelle
Rédacteur en chef :
Hervé Lelièvre
Conseil éditorial :
Annemarie Ohler (Nomenclature)
Assistante de rédaction :
Florence Kerdoncuff
Corrections-relecture :
Hélène Bertini
Comité scientifique :
Jean Broutin (UPMC, Paris)
Bruno David (CNRS, Dijon)
Jean-François Deconinck (USTL, Lille)
Patrick De Wever (MNHN, Paris)
Jean Marcoux (U. Denis Diderot, Paris)
Christian Ravenne (IFP, Paris)
geodiversitas est un trimestriel publié par les Publications Scientifiques du Muséum, Paris
geodiversitas is a quarterly published by Publications Scientifiques du Muséum. Paris
Abonnement pour l’année 1999 (prix HT)
Annual subschption rates 1999 (excluding VAT)
1000 FF (152,45 euros)
Geodiversitas peut être obtenu par voie d’échange. Pour toutes informations s’adresser à :
Geodiversitas may be obtained on an exchange basis. For further information please write to:
Service des périodiques et des échanges de la Bibliothèque centrale
du Muséum national d’Histoire naturelle
38 rue Geoffroy Saint-Hilaire
75005 Paris
Tél. :(33) (0)1 40 79 36 41
Fax : (33) (0)1 40 79 36 56
Les Publications Scientifiques du Muséum publient aussi :
The Publications Scientifiques du Muséum aiso published:
adansonia
Abonnement / Subscription : 500 FF (76,22 euros)
zoosystema
Abonnement / Subscription : 1000 FF (152,45 euros)
Abonnement général / General subscription (adansonia + geodiversitas + zoosystema) : 1800 FF (274 euros)
geodiversitas
Publications Scientifiques du Muséum, Paris
© Publications Scientifiques du Muséum national d’Histoire naturelle, Paris, 1999
Photocopies ;
Les Publications Scientifiques du Muséum adhèrent au Centre
Français d’Exploitation du Droit de Copie (CFC), 20 rue des
Grands Augustins, 75006 Paris. Le CFC est membre de
XInternational Fédération of Reproduction Rights Organisations
(IFRRO). Aux Etats-Unis d’Amérique, contacter le Copyright
Clearance Center, 27 Congress Street, Salem, Massachusetts 01970.
Photocopies:
The Scientific Publications of the Muséum adhéré to the Centre
Français d’Exploitation du Droit de Copie (CFC), 20 rue des Grands
Augustins, 75006 Paris. The CFC is a member of International
Fédération of Reproduction Rights Organisations (IFRRO).
In USA, contact the Copyright Clearance Center, 27 Congress Street,
Salem, Massachusetts 01970.
Bivalves du Trias tariquide de Los Pastores
(Algésiras), Espagne. Leur signification
Suzanne FRENEIX
Laboratoire de Paléontologie, UMR 8569 du CNRS,
Muséum national d’Histoire naturelle,
8 rue de Buffon, F-75231 Paris cedex 05 (France)
Freneix S. 1999. — Bivalves du Trias tariquide de Los Pastores (Algésiras), Espagne. Leur
signification. Geodiversitas (21) 2 : 137-146.
MOTS CLÉS
Bivalves (mollusques).
Trias,
lariquides,
Algésiras,
Espagne,
taxinomie,
paléobiogéügraphie,
biostratigraphic,
paléoécologie.
RÉSUMÉ
La dalle calcaro-dolomitique Fossilifère, découverte dans le roc de Los
Pastores, à Pouest d’Algésiras contient deux lits, plus carbonatés, à faunule de
bivalves. Ceux-ci se présentent en valves dissociées de moules internes a la
surface supérieure de la dalle et de moules externes incomplets, non détermi¬
nables, à la surface inférieure. Sept espèces, en concordance avec les especes
trouvées dans d’autres localités d'Espagne, ont été identifiées : ? Geri>illia
joleandiy Leptochondria albertis ? Posidonia obliqua-, Costatoria {Costatorta)
goldfussiij Lyriornyophoria suhlaevis, Neoschizodus (N.) iaevigatus,
Psetidocorbula gregaria. Après une révision taxinomique, la signification de
cet aSvSemblage est considérée : (1) selon la distribution stratigraphique de ces
espèces, parmi les domaines trîasiques germanique, alpin-téthysien et
d’Espagne, Page suggéré est I.adicn supéricur-Carnien inférieur ; (2) quelques
données de corrélations ressortent du biofaciès précédent souvent cité dans le
Trias des Catainnides et des cordillères bétiques du domaine <• sépharade
Cependant, le biofaciès à Lyriomyophoria stiblaevis prédominante paraît carac¬
téristique de ce gisement méridional d’Andalousie ; (3) cette thanatocénose
reflète un paléoenvironnement marin, peu profond, de haute énergie.
GEODIVERSITAS • 1999 • 21 (2)
137
Freneix S.
ABSTRACT
Bivalves from tbe Taricjuide Trias of Los Pastores (Algesiras), Spahi.
A fossiliteroiis liinestone slab from the 1 riassic (ocalit)' of the Roch of Los
Pastores (Algcsiras W), yieldcd two beds of a bivalve fauniile. The bivalves are
preserved as dissociated valves of internai nioulds on ihc upper sidc of the
slab and as iinidenrifîabic exrcrn.il moiilds on its lower side. Seven spccies,
similar with taxa knowatrom urher localitlcs in Spain bave been Identified:
}GervilHa joleaueit, Leptoihoiulria alberti, ^Posicloma obliqua. Castaioria
{Costatoria) goldjùssii, Lyriomyophoria sublaevist Neoschizodus {N.) laevigatus,
Pseudocarbulugt'egaria. 7 hc signifîcance of ihis assemblage îs considered after
a systemutic siudy: (1) uccording to the stracigrapliiail distiibutioti of these
seven spccies. particularly .imong rhe Germanie, the Alpine-tethyan and the
Spanish Triassic realms. the âge stiggcsted is upper badinian-lower Caniian;
(2) somc corrélations appc.ir with the association: "^.Gervilba joleaudi,
Leptochûudriii aiberti. Neoschizodus laevigaïus. Myophoria goldfussii,
Lyriomyophoria sublaevisx this last speeies is known from sevcral fossüerous
localiries in the Catalanid and Beric Ranges into the ‘^Sephardic” rcalm.
Howcvcr, ihc siudied bivalve assemblage» with the dominant speeies
Lyriomyophoria sublaevis, shows a characicristic biofacics. endémie of this
Southern province of Andalusia; (3) rhe Lyriomyophoria biofacies» with its
condition of préservation, signifies a high energy, shallow, marine palco-
envjronincnt.
INTRODUCTION STRATIGRAPHIQUE ET
STRUCTURALE
La dalle carbonatée ayant livré les bivalves» objet
de ce travail, provient d’un niveau du Trias
appartenant à une succession mésozoïque origi¬
nale qui apparaît dans les rochers de Los
Pastores, à la sortie ouest de la ville d’Algésiras.
Cet affleurement d’un-demi kilomètre carré est
traversé par la route N-34Ü vers Tarifa. Il s'inter¬
cale tectoniquement dans les flyschs crétacés-
paléogènes du Campo de Gibraltar.
Los Pastores, le roc de Gibraltar et le Jebel
Moussa (Rif marocain) sont situés de part et
d’autre du Détroit de Gibraltar. Ils ont été ras¬
semblés (Durand-Delga 1972) dans un même
ensemble tectonique et paléogéographique, les
« Tariquides D’appartenance strucntrale discu¬
tée, cct ensemble se situe près du contact majeur
qui sépare les Aines externes (flyschs allochrones)
des zones internes (Dorsale calcaire), dans Parc
qui unit cordillères bétiques et Rif.
Le Trias de Los Pastores (Baudclot et al. 1993,
fîgs 1, 2) comprend de bas en haut :
1. marnes et gypses clairs (plus de 80 m) ;
2. pélites colorées (20 m) ;
3. grès clairs (20 m) à stratifications obliques ;
4. péliics colorées (30 m) avec quelques interca¬
lations de bancs de dolomies plus ou moins cal-
careuses ;
5. dolomies grises à passées pélitiques sombres
(30 m), que surmontent de puissantes dolomies
(Trias supérieur) et calcaires (Lias inférieur) dans
le rocher de Gibraltar.
Des associations palynologique.s ont été dégagées
des termes 2 et 4 (Carnien inférieur) et du
terme 5 (Carnien moyen). L’horizon grès carbo¬
nate à bivalves couronne une barre (2 m) formée
de bancs calcaro-dolornitiques amalgamés. Elle se
place aux deux tiers supérieurs du terme 4, dans
des pélites lie de vin et verdâtres. Le point fossili¬
fère étudié est à environ 200 m au sud du carre¬
four entre la route N-340 et la voie du Poligono
KEYWORDS
Bivalves,
Triassic,
“Tariauides”,
Algesiras,
Spain.
taxonomy,
pal CO b i ogeogra P h)’,
biosrraiigraphy.
paleoecology.
138
GEODIVERSITAS • 1999 • 21 (2)
Bivalves triasiques d’Andalousie
Industrial. En 1988, avant que la zone ne soit
recouverte de déblais des grandes carrières, au
sud de la route, la barre à bivalves se suivait,
plongeant à l’est en série normale, en conservant
ses caractères.
L’étude paléontologique entreprise est la suite
logique de la publication sur le Trias des
« Tariquides » (Baudelot et al. 1993).
TAPHONOMIE DES BIVALVES
Une dalle calcaro-dolomitique lossilifère, mesu¬
rant 35 cm X 23 cm et 7 cm d’épaisseur, a été
extraite de la l-ormation triasiquc du gisement
précédemment cité par M. Durand-Dclga et
M. Esteras au cours d'une mission géologique
récente. Celte dalle présente, sur chacune de scs
faces horizontales, un lit coquillicr à mollusques
bivalves. A la face supérieure, les coquilles
incluses dans cette assise gisent à ptac la face
convexe orientée vers le haut, en valves dissociées
et en fragments au nombre de quatre-vingts envi¬
ron. Cet assemblage, suppose-t-on, a été déposé
par des courants à la surface du sédiment, les
valves désunies trouvant une position d'équilibre
sur leur face concave. A la surtace inferieure de la
dalle, les bivalves, plus rares, ne sont observables
que par leur face interne dont il ne subsiste que
le contour ou quelques fragments d’empreintes
externes. Ces derniers ne sont pas déteiminables.
Par contre, sept espèces onr été identifiées (dont
deux avec doute) dans l’horizon supérieur, en
concordance morphologique exrerne avec celles
publiées pur les auteurs espagnols, car leur état de
conservation, très incomplet, ne donne pas accès
aux caractères internes.
SYSTÉMATIQUE PALÉONTOLOGIQUE
Pour le matériel examiné, Pétude systématique
comprend une synonymie restreinte, la distribu¬
tion srratigraphique et paléobiogéographique des
espèces, plus particulièrement, leur distribution
connue en Espagne.
Ce matériel est déposé au Laboratoire de
Paléontologie du Muséum national d’Histoire
naturelle de Paris (LPM, MNHN).
Classe BIVALVIA Linné, 1758
Sous-classe PTERIOMORPHIA Beurlen, 1944
Ordre PTERIOIDA Newell, 1965
Sous-ordre PTERJINA. Newell, 1965
Supcrfamille PTl:IU.^CEA Gray, 1847
Famille Bakevui liiDAK KJng, 1850
Genre Genùllia Delrance. 1820
? Gervillùi joleaudi Schm'idu 1935
(Fig. 1 A. B)
Gennilia sp. - Joleaud 1912 : 77, pl. 1.
Gennlleui joleaudi Schmidt, 1935 : 53, pl. 4, figs 17,
18, 20.
Gerviliia joleaudi Schmidt - Lerman 1960 : 34, pl. 3,
figs 14, 15 - Mâiquez-Aliaga, Hirsch & l.opez-
Garfido 1986 : 210, figs 4E, F. - Màrquez-Aliaga &
Momoya 1991 : pl. 2, fig. 3 (3).
MATt-RlF-l.. — Six spécimens de taille réduite
(n'* L]*IVl-R. 62091J, de 15 à 25 mm de diamètre
antéro-posiéneur, de 5 â 7 mm de diamètre timbono-
vcnrral. cerninenienr juvéniles.
DiSTRIBUTlON. — Trias moyen d’Algérie : Anisien-
Ladinicn intérieur d’Isracl. En Espagne : cordillère
Ibérique, Ladinien moyen (Baléares), Ladinien supé¬
rieur d’Hcnarejos (faune de Cuenca), Chelve (faune
de Valence) ; Ladinien supérieur-Carnien de la cor¬
dillère Bérique, Prébérique de Murcie (Cehegin),
Subbérique de Jaén (Hornos Siles)...
Remarques
Leur assignation hypothétique est fondée sur la
forme étroirc légèrement incurvée ventralement,
sur l’nngic de 25” environ du bord dorsal et de
Taxe d'allongement de la coquille et sur les stxies
corn marginales distales en relief de la région pos¬
térieure et sur l'aile po.stérieure obtuse. G. joleau-
di « forma juvenis » Schmidt (1935 : 56, pl. 4,
fig. 19) du Langobardien d’Espejeras est peut-être
proche de nos exemplaires, scs dimensions sont
de 14 mm de longueur et de 4 mm de largeur.
Superfamille PECTINACEA Rafinesque, 1815
Famille AviCULOPECTlNlDAE
Mcek & Hyaden, 1865
Sous-famillc Aviculopectininae
Meek Hayden, 1865
Çimee. Leptochondria^ixxxvex-, 1891
GEODIVERSITAS • 1999 • 21 (2)
139
Freneix S.
Leptochondria alberti (Goldftiss, 1836)
(rig. ic)
Monotis alberti Çio\àï\xi^s, L836 : 138, pi. 120, fig. 6a,
b-
Pecten inaeqiihmatiis Goldfuss - Wurm 1911 : 102,
pl. 6, fîgs 8-10.
Velopecten albenit Goldfuss — Schmidt 1935 : 61,
pl. 4, fïgs 30, 31.
Chlaruys { Velatd) alberti Goldfuss — Virgili 1958 : 464,
pl. 8, Ag. 2.
Peeten alhertii Goldfuss — Lerman I960 : 40> pl. 4,
% 14.
Leptochotulria alberti (Guldfuss) — Marquez-Aliaga,
Hirsch & Lopez Garrido 1986 ; 212, fig. 4G (avec
synonymie). — VUrquez-Aliaga & Montova 1991 :
118, pl. 2, fig. 3 (2b, 2c, 2d).
MatERIRI.. — Un fragmeru d’une valve gauche
(n'’ LPM-R. 62092) de 20 mm environ de hauteur,
présentant des costules radiales de deux ordres ; celles
du second ordre apparaissent par intercalation. Ce
fragment se rapporic sans aucun doute ;l L. alberti^
espèce très commune au \ rias.
Dlstributk'im. — Trias germanique (Buntsandstein à
Lettenhohle) et IVias alpin (Scythien à Carnien).
Anisien-Ladinien inférieur de I ransjordanie, d'I.sraël.
En Espagne : cordillère Ibérique, Ladinien d’Esporlas
(Baléares), terme carbonate supérieur du Muschelkaik,
faune de Teriicl (Royuelâ), de Cucncu (Henurejos) ;
cordillère Bétique, Subbétique de Jaén.
Famille POSIDONIIDAE Frech, 1909
(jcnre Posidonia Bronn, 1828
? Posidonia obliqua Haucr, 1857
(Fig. ID)
Posidonomya obliqua Haucr, 1857 : 152, pl, 2, fig. 9.
- Philipp 1904 ; 94, pL 6, figs 23, 24.-Wurm 1913 :
574, dI. 19. fig. 6.
Posidonia oblictm Hauer - Virgili 1958 : 451, pl. 6,
fig-1‘
Posidonia obliqua Hauer in Philipp — Ichikawa 1958 :
187, pl. 23. fig. 6.
MatëRIEI. — Une valve gauche et trois valves incom¬
plètes (iT LPM-R. 62093).
Distribution. — Trias alpin (Ladinien des Alpes du
Sud). En Espagne : Muschelkaik supérieur des
Catalanides (Composines).
Re.M ARQUES
La valve gauche ovalaire, de 20 mm de longueur
et 13 mm de hauteur, d'indice des diamètres
L/H = 1,5, se rapproche des dimensions données
par V^irgili avec L/H variant de i,4 à 1,5, tonre-
fois de caille plus petite. L'ornementation est
composée de huit ou neuf cordons (ou lamelles)
concentriques assez espacés, épais, irréguliers ; le
bord postérieur est oblique, mais le spécimen a
été déformé par compaccion.
Sous-classe RA1.AEOHETERODONTA
Newell. 1965
Ordre TRIGONK.’)IDA Dali, 1889
Sous-ordre TRIGONIINA Dali, 1889
Superfamille MYOIMIORIACEA Bronn, 1849
Famille MyüFHORIIÜAH Bronn, 1849
(ou Famille CtiSTATORlIDAE
Newell ik Boyd, 1975
= MlNETRicîONitDAF Kobayashi, 1954)
Genre Costatoria Wangen, 1906
Sous-genre Cosxaxoria s.s.
Costatoria (Costatoria) goldfussii
(Alberti /// Zieten, 1830)
(Fig. lE)
Trigonia goldfiessii Aberti in Zieten, 1830 : 94, pl. 71,
fig. 1.
Myoplymit ktliani Schmidt 1935 : 79, pl. 5, figs 31,
32.
Myophoria goldfitssi (Zieten) — Virgili 1958 : 480,
fig. 58 n* 9.
Costarorta (CostatoriaJ goldfitssi (Alberti in
Zieten) — Allasina/ 1966 : 69b, pl. 50, figs 7-10.
Costatoria gûldfusd (Alberti in Zieten) — Cox 1969 :
473, fig. D 6.3, 3a. - Tamura 1972 : 69, pl. 1. figs 17-
20. - Marquez-Aliaga, Hirsch ik I.épcz Garrido
1986 : 216, fig. 4B. C. - Marquez-AHaga ôc Montoya
1991 ; 120, pl. 1, figs 2, 7, pl. 2, fig. 4. - Pérez Lôpez,
Fernandez, Solé de Porta & Aldrquez-Aliaga 1991 :
144, pl. 1, figs 2, 5,7.
MaîTriiU. — Une valve droite, une valve gauche et
un fragment d’empreinte externe (n“ LPM-R, 62094).
Dl.STKItlL 1 It'i.V. — Espèce curasiatique (depuis
l’Europe jusqu*en .Asie). Miischelkalk-Kcuper inlériciir
d’Allemagne ; l.adiuien-Carnien des Alpes du Sud. En
Espagne, l.adinien supérieur-Carnicn inférieur de la
cordillère Ibérique : provinces de Teniel, G.uenca et
Valence, branche Castellane (diverses formations dtiiit
celle de Royuela), cordillère côtière catalane.
140
GEODIVERSITAS • 1999 • 21 (2)
Bivalves triasiques d’Andalousie
Fig. 1. — A. B, ? GervUlia joleaudi Schmidl. deux valves gauches (LPM-Ft 62091) ; C. Lapiochondria alberti (Goldfuss). valve
gauche (LPM-R. 62092) : D. ? Posidonia obliqua Hauer. valve gauche iLPM-R. 62093) : E. Costatoria {Cosîatona) goldfussii (Alberli
in Zieten), valve droite (photo de gauche) et Lynomyophona sublaevis (Schmidt), valve droite (LPM-R. 62094) :
F, G, Lyriomyophoria sublaevis (Schmidt) , F, valve gauche , G deux valves droites (LPM-R. 62095 LPM-R. 62096) ,
H. Neoschizoaus {Neoscmzoous) laevigatus (Goidfussj. valve gauene (LPM-R. 62097) ; I. J, Pseudocorouia gregana (Munster in
Gotdfuss) ; L valve gauche, photographie du haut (LPM-R. 62098) : J. autre valve gauche (photo du bas) avec Lyriomyophoria
sub/aev/s (LPM-R. 620099). Clichés Denis Serrette (LPM, MNHN). Échelles : 1 cm.
GEODIVERSITAS • 1999
Freneix S.
Remarques
La valve droite la mieux conservée, de dimen¬
sions : H = 12 mm, L = 12 mm, est de forme tri-
gono-ovalc avec un crochet prosogyre, de
position antérieure ; le flanc a dix à dou7;e côtes
radiales légèreinent granuleuses que séparent des
intervalles lisses plus larges que les côtes.
Quelques côtes fines apparaissent pre.s de Tumbo
par intercalation. Des costules radiaires peu
apparentes s’observent au bord de t’aréa niai
conservée.
Genre Lyriomyophoria Kobayashi, 1954
Lyriomyophoria snblaevis (Schmidt» 1935)
(Fig. lE, F, K)
Myophorid sublaedis Schmidt, 1935 ï "^8, pi- 5, figs 27-
30. - Virgili 1958 : 478, pl. 11, % 3.
Lyriomyophoria sublaiw (_Schinidt) — Marquez-Aliaga
& Montoya 1991 : 122. pl. 1, fig. 3. - Marquez-
Aliaga & Martine-/ 1996 : 108.
MATÊRiEL. — Onze valves gauches, trois valves droites
assez différentes des formes typiques décrites par
Schmidc d’Espejeras (Alicante) et de Celicgin
(Murcie) du Ladinien supérieur. Elles représentent un
morphotype nouveau de rang infrasubspécifique.
Distribu I ION. — Çette c.spèce est prédominante
parmi la faunule étudiée de Los Pastores ; elle est fré¬
quence dans les cordillères Ibérique ci Bétique, parti-
culièrcnieni abondante dan^ le Ladinien
supérieur-Carnien du Prébétique de Murcie, selon
Marquez-Aliaga & Martine? (1996 : 108, 109).
Descrifuon
La forme rrigone est d’une hauteur moyenne de
15 mm, d’une longuear moyenne de 16,5 pour
un nombre de cinq spécimens, ayant les dimen¬
sions suivantes :H-12;l4;15;17et
L=+10:16;17; 20, La longueur peut être
légèrement inléricure, égale ou un peu supérieure
à la hauteur ; la movetinc de l'indice des para¬
mètres L/H esr proche de 114,8 %. Le galbe esc
peu convexe, les' crochets sont situés aux deux
cinquièmes environ antérieurs de la longueur ,
Fangle umbonal oscille entre 85" et 100“. l.^exrré-
mité anréricurc est o\'alaire en continuité avec le
bord ventral, tandis que le bord postérieur est
légèrement convexe. La carène marginale est
assez saillante (Fig. IF) précédée d'ulie dépres¬
sion antécarénale ; Paréa est étroite, subdivisée
par un sillon médian ; l’écus.son est inobservable.
Le flanc porte trente a irenie-cinq côtes commar-
ginales, régulières, denses dont les intervalles
s'élargissent avec la croissance. Sur des hauteurs
successives par intervalles de 3 mm, i partir du
stade observable le plus juvénile, le nombre de
costules concentriques descend de douze à neuf,
à six, puis i cinq tout en s'épaississant et s'incur¬
vant au niveau du sillon ancccarénal et sur la
carène marginale, avant de sc poursuivre sur
l’aréa. Cette co.stulation est plus dense, plus fine
que celle connue par les illustrations des synty'pes
de Schmidt ou de celles d'autres auteurs (Virgili
1958 ; Marquez-Aliaga bi Montoya 1991), soit
dans le Muschelkalk supérieur de la cordillère
côtière catalane, soit dans le Ladinien supérieur-
Carnien des cordillères béfiques (zone.s externes :
Prébétique et Subbérique).
Les différences entre les spécimens de Los
Pastores et ceux d’autres localités, relatives à la
taille plus petite, Findice de.s dimcn.sions L/H
inférieur, les lignes de costules de croissance plus
fines et régulières, nautori.sciiL pas leur attribu¬
tion à un nouveau .statut subspéciliquc pour ces
variants. Ce sont des morphoty'pes ou morphes
(Simpson 1961 : 178), soir des formes parmi un
extrait de population fossile de faible effectif,
donc de rang infrasubspécifique.
Genre Neoschizodus Giebel, 1855
Sous-genre Neoschizodus s.s.
Neoschizodus (Neoschizodus) laevigatus
(Coldfass, 1837)
(Fig. IH)
l.yrodon laevigaium Goldfuss, 1837 : 197, pi. 135,
fig. 12 a, b.
Myophorid faevi^ata Alberti - Defretin, Durand-Delga
&Lambert i943 : 191, pl. 1, figs 10-12.
Myophoria laevigata Ziethen - V^irgili 1958 : 476,
pl. 1L fig. 9.
Neoschizodus Lievigintis (Goldfu.ss) - tmx 1969 ; 475,
figs D 62, ? . 1 . b. — Newell 6c Boyd 1975 : 74, pl. 12,
figs C. D 141, figs 82 A'D. - Tamura 1981 : 12,
figs 12-18. - Marquez-Aliaga & Montoya 1991 : 121,
pl 1, fig. 1.
142
GEODIVERSITAS • 1999 • 21 (2)
Bivalves triasiques d’Andalousie
Neoschizodus luevigalus (Albcrti) - Farsan 1972 : 178,
pl. 45, fig. 7-3.
Neoschizodus {Neoschizodus) laevigatus (Goldfuss)
- Fleming 1987 ; 18, fig. 7 a, b.
MaiëRIEL. — Deux vaiveü droireü, une valve gauche
(n** LPM-R. 62097)) mctiiles internes de lormc civale-
arrondie de diamètres voisins de 22 mm, à carene pos¬
térieure peu m.uquée et d'aspect lisse, n’ayant
consersT que quelques lignes de croissance commargi-
nalcs.
Distribution. Furasiarique : Puntsandstein supé¬
rieur a Leirenkohle d'Allemagne : VC'frfénien a
Ladinien des Alpes du Sud ; Anisien-Ladinien de
Transjordanie et d Israël : Keuper d’Algérie ; Anisicn-
Norien d’Asie, lin Fspagne, de nombreux gisements
de l’Anisien, Ladinien int»ycn ei supérieur des c<-»r-
dillèrts in Marque/.-AÜaga & Mariinci; 1996 : 105,
Ibérique, 107, Pyrénées catalanes ; 109, Bétique orien¬
tale (Prébérique et Subbérique)...
Sous-classe HETERODONTA Ncuniayr, 1884
Ordre VENEROIL9A
FI. Adams & A. Atlams, 1856
Superfamille CkASSATLI-IAc.I.A l'érussac, 1822
Famille MVOrHOKIFAKDIlOAT
Chavan bi Cox \in Moore cd.], 1969
Genre Pseudocorbida Philippi, 1898
Psettdocorbiila gnegaria
(Münsrer in Goldfuss, 1837)
(Fig. Il,J)
Nucula gregariit Munster in Goldfuss, 1837 : 152,
pl. ! 24, Rg. 12 a, b.
Myophoriopsis gjr^tuia (Münster) - Schmidt 1935 :
84. pl. 5, (ig. 36. '
Psetidocorbulagregaria (Münster) - Farsan 1975 : 132,
pl. 2. figs 9-12.
Pseudocorhiilo gregario (Mün.sier in Goldfuss) — Cox
& Chavan 1969 : N 582, fig. 81, fig. 3a-
d. - Mdrquc/.-Aliaga, Hirsch & L6pc/-Garrido 1986 :
18, fig. 4C (avec synonymie).
MAI TKUa.. — I )eux valves gauches de hauleiir dc 7,5
et 9 mm pour une longueur de 12 er 10 mm (n“ LPM-
R. 62098).
Distribution. — Pseudocorbuln gregtiria est à large
répariiuon eurasiarique : du Mirschelkalk moyen et
supérieur à la Lettenkohlc d’Allemagne, Anisien des
Alpes du Sud, l.adinicn d’Afghanistan central. En
Espagne : Ladinien-Carnien des cordillères Ibériques
(terme carbonate supérieur du Muschelkalk (provinces
de Tcruel, Cucnca, Valence) ; I.adinien .supérieur de
la branche Aragonèse ; Anisien-Ladinien des
Catalanidc.s ; I.adinien de la cordillère Bétique
(Subbétique dc Jaén, de C^adi/.-Algésiras-Boyar) ;
Ladinien-Carnien des Baléares.
Ri:marqui-;vS
Leur forme est suberigone, à carène postérieure
peu élevée, délimitant une aire postérieure étroite
limitée par un bord postérieur rectiligne obliqtie,
puis droit à son extrémité distale. C'es individus
se .superposent, d une pan a la figure-texte don¬
née par Virgili (1958, fig. 59-5) pour l’espèce
gregaria et d autre part à celle de Myophoriopsh
(Pscndocorbula) keuperina (Quenstede 1851 î Vir¬
gili [958, fig. 59-2), espece mise en synonymie
avec la précédente par Marquez-Aliaga et ai
(1986).
SIGNIFICATION DE LA FAUNE DE
BIVALVES ET CONCLUSIONS
A partir de l’assemblage de bi\'al\e.s étudié, pro¬
venant du gisement meme de Los Pastores dc la
série Fariquidc, il est possible d'envisager sa
signification d’ordres biosrrarigraphit]ue, paléo-
biogeographique, palcoécologique.
1. La disiribulion de ces espèces citées dans le.s
divers domaines germanique, alpin-tcthy.sien et,
plus particulièrement, dans celui dc l’Espagne est
portée sur la Tableau 1. Leur association suggère
d’assigner un age Ladinien supéricur-Carnien
inférieur à cette fiitme du rocher de Los Pastores,
sans exclure toutefois le Carnien .seul d’après les
corrélation.^ biogéographit|ues avec le Trias
d’Espagne.
2. Les analyses, entre autres, de Hirsch (1977)
dans le domaine sépharade permettenr de relever,
en eflei, certaine.^ affiniiés avec : (a) le Trias cata¬
lan, en patuculicr le Carnien inférieur à
Costaioria goldfussiP le Langobardien avec
Lyriomyphoria suhlaevis > (b) la faune de Royuela,
région de Tcruel des chaînc.s ibériques, conipte
tenu des especes signalées, Ctervillia joleaadi^
Leptochondria albenP Costatoria goldfttssii,
lyrunnyphoria snhlaevis. Neoschizodus laevigatus^
dont Fage sc .siiLierait a la limite du Ladinien
supérieur et du Carnien inférieur ; (c) la meme
association spécifique précédente des cordillères
GEODIVERSITAS • 1999 • 21 (2)
143
Freneix S.
Tableau 1. — Distribution straligraphique des espèces de bivalves citées du Trias germanique, du Trias alpin-téthysien. du Trias
d'Espagne. Dessin Françoise Pilard (LPM. MNHN).
ESPÈCES
Muschelkalk
Keuper inf.
Anisien
Ladinien inf.
Ladinien sup.
Carnien
Gervillia joleaudi
— - -
Leptochondria alberti
m m
- - -
—
— — _
Posidonia obliqua
MM
Cosîatoria goldfussii
- - -
—
—
Lr_:z
Lyriomyophoria sublaevis
Neoschizodus laevigatus
- - -
- - -
— - _
—
Pseudocorbula gregaria
—
- - -
- - -
Trias germanique : — - Trias Alpin-Téthys : — Trias d’Espagne :
bétiques, zone interne, prébetique de Jaén, récol¬
tée dans une assise carbonatée du Ladinien supé¬
rieur ; (d) le membre somniital de la tormation
de Fuentc Aledo (Murcie) des cordillères
béciques, zone imerne, livrant Costatorui goldftis-
sîi et Gervillia cb jnleuudiy qui serait datée du
Ladinien supérieur ; (e) toutefois, malgré les affi¬
nités relevées avec ces divers domaines paléobio-
géographiques, l’a-ssemblage de bivalves étudié
présente une particularité : la prédominance sur
les autres especes de Lyriomyophoria îubhxevh
définissant un biofacics à Lyriamyophorin du
groupe /-. degiwSy signalé dans plusieurs horizons
triasiques de différeiucs cordillères (Martin-
AJgarra et ai 1993 ; Marqucz-Aliaga craL 1996).
3. Les caractères taphom>mû]ue.s de l’assemblage
indiques préccdemmeiu dont, en particulier, la
désarticulation des valves stabilisées, leur surface
externe convexe tournée vers le haut de la
couche, laissent supposer un certain hydrodyna¬
misme du milieu. Comme aucune direction pré¬
férentielle d’orientation des valves n est obser-
v'able, on peut en déduire qu'il s'agit d’une sim-
migie allochrone. La morphologie fonctionnelle
des espèces, la sédimentologie originelle de leur
milieu de vie supposent des implications. Les
modes de vie tous filtreurs saspensivores se repar-
ti.ssent en deux groupes : épifaunique et infau¬
nique.
L'épifaunc comprend les especes : ? Gervillia
joleandiy !Aptoebondria nlhcrti^ ? Posidorna ohti~
cjun. Lc.s trois genres représentés [Gervillia,
Leptoebondria, Posidonia) sont cpibcnthiqiics,
pscLidoplanctoniqucs. oscillant.s ou pendants,
fixés par des fils de byssus h des algues ou autres
supports flottants ou fixés (Kauflmanii 1969).
Les juvéniles devaient être facilement déraches tic
leur support par l’agitation de.s eaux.
L'endütaune est composée des quatre espèces
libres, louisseuses dans des sédiments meubles :
Costdtorin goldfusiii, Lyriomyophoria sublaevis,
Neosebizodus laevigatus, Pseucorbula gregaria. Les
144
GEODIVERSITAS • 1999 • 21 (2)
Bivalves triasiques d’Andalousie
Myophoriidiie auxquelles s'ajoute le crassarellacê
Peudocorhula .souvetit opportuniste (Marquez-
Aliaga & Garcia-Gil 1991)» sont des fouisseurs
superficiels actifs, en position de vie à la limite
sédiments-eau que leurs zones exhalante cr inha¬
lante dépassent parfois.
En tant qu’ancêtres supposés des Trigoniidae, ils
avaient la capacité, comme Lyriornyophoria
(Stanley 1977 : 896). de s’adapter aux sédiments
instables et aux variations de salinité.
4. Conclusions : la launc de bivalves étudiée,
bien que de faible diversité, a permis de la situer,
au Trias, dans le Carnien du domaine sepharade.
Elle SC caractérise par un biofaciès a Lyrio-
myophoria sublaevis. Son gisement de Los
Pastorcs évoque un paléoenvironnement marin
d'ctagcmenc infra-littoral peu profond, en bordu¬
re d’un escran gréso-carbonatc, pem-ctre peri-
delraïque, car soumis à des fluctuations
d’hydrodynaml-sme (courants, \^gucs, marées),
de salinité, de température, sous climat tropical.
Remerciements
Je remercie vivement M. le Professeur
M. Durand-Delga pour m’avoir confié Tétude de
cet intéressant matériel, ]:iOLir avoir participé à la
rédaction du texte .stradgraphique introductif et
déposé la dalle lossililerc (n'’ ET. 674), enregis¬
trée SOU.S le rT 1993-1, dans les collections du
Laboratoire de Paléontologie du Muséum natio¬
nal d'Histoire naturelle de Paris (LPM,
MNHN). J'exprime ma gratitude, pour leurs
judicieuses critiques, aux rapporteurs ;
Mlle Annie Dhondt, M. Philippe Bouchet.
M. Manuel Esteras, Mme Anne-Marie Ohler.
Mes remerciements s'adressent aussi à M. Denis
Serrette pour les très bonnes photographies, à
Mme Françoise Pilard dessinatrice, pour les illus¬
trations, à Mme Danielle Quinrus pour la saisie
de texte, sans oublier M. Hervé Barrât pour
Taide apportée âu dégagement très difficile du
contour des fossiles.
RÉFÉRENCES
Allasinaz A. 1966. — La faune a Lamellibranchi dello
Julico (Carnico Medio) in IL Trias in Lombardia
(Studi geolugiei e paleontalogici), Rimtn ftûîieind
di baltnntidfigku MUano ~J1 (1): 609 732.
Bauucloi S., Dui'tind-Delga M., Esteras M. &
Freneix S. 1993. - Le Trias des « T.iriquitJc.s (arc
de Cubraltar), indice d’une zone paléobiogéogra-
phique originale à TOiicsi de lu Mcclircnanée.
Conîpte,i rendta de l'Académie des Sciences. Paris,
série IL 317: 1649-1658.
Busnardü R. 1970. — Taiiinilcs du Trias subbetique
(Andalousie), Docutnems des laboratoires de Géologie
de la jhcnlté des Sciences elc fyon 37 : 55-83.
Ciox T. R. es ai 1969. — Family Mycipliorüdae
Brunn, 1849: N. 472-4"6, figs D 62-0 64, in
Moore R. C. (ed.), Trealise on Invcnebrate
Paleoniology, Part N. 1, 2 (of 3) Motlnsca.
6. Bimlvia. Geological Sociery of America, Inc. and
rbe UnivtTsiiy of Kansas.
Defrerin S., nurand-DcIga M. &. Lambert A.
1953. — l'annules du Trias supérieur dans T-
Nord-t'onsrantinois (Algérie). Bulletin de la Société
d'ilistuire Naturelle etc PAfriqae du Nord 44 :
185-195.
Dunker W. 1848. — Ueber der im Kassclcr
Mtischelkalk bis jer/r gcfundciicn Mollu.skcn.
rfogramum der pol)n. Schule zu (’afset vont Jahre
1848/49:21.
Dunind-Dciga M. 1972. — La courbure de Gibraltar,
extrcinitc occldenrale des chaînes alpines, unit
T Europe à l ’Ahique. Hclogae Geologicae Nelvetiae
65: 265-278.
Fleming C. A. 1987. — New Zealand Me.soztiic
Bivalves of tbc superf'amily Trisoniacea. New
Zeufand Geolupcal Sttrvey Paleontological bulletin
53, lü4p.
tioldfiiss G. A. 1833-1840. — Pctrefacta Gennaniue
(2): 1-68, pT 72-96 (1833); 69-140, pT 97-121
(1836): I4l-224c pi. 122-146 (1937); 225-312,
pl. I47-I67 (1840). Düsseldorf.
Hauer T. 1857. — PaUonTolocischc Notizen.
Sitzgshrricbie der Akademie der WissenschafLeft in
Wien, miUbemaiisciMmiurivhsenschafilicl>e Klasse 24:
145-158.
Hirsch F. 1977- - Essai de corrélation biostracigra-
phique des niveaux méso- et néotrusiques de facics
Miischclkaik » du domaine sepharade, Cnadcrnos
de Geologdci Ibéricu 4: 51 ! -526.
Ichikawa K. 1958. — Zur laxionomie und
Phylogénie der triadischen « Picrüdae »
(Lamellibrancii.). Pulaeontogi'aphica, Abreilung A.
Randin,(5-6): 131-212.
Jolcaud L. 1912. — Etude géologique de la chaîne
Numsdiquv et da Monts de Constantine (Algérie).
Thè.sc, Montpellier, 438 p.
Kauffman 8, C. 1969. — Form, functioti, und évolu¬
tion: N 129-N Z05, in Mihito R. C. (cd.), Treatise
on fncenebhitc P/dconeolûg)K Part N, vol. 1 Mollusca
6. Bii>altHa. Geological Sodet)' of America, Inc. and
tbe Universiry of Kansas.
Lerman A. 1960. — Triassic Pelecypoda from
GEODIVERSITAS • 1999 • 21 (2)
145
Freneix S.
Southern Israël and Sinai. Bulletin of the Research
Council of Israël, Section G. Geo-Sneru es (1), 60 p.
Lopez-Gomcz |. & Arche A. 1992. —
Paleogeographtcal signillcance of the Rot (Anisian,
Triassic) Faciès (Marines clay.s, ntiids and maris
Fm.) in rhe Iberian ranges, eastern Spain.
Palaeogeograph v, PaLieotiimacologyy Palaeaecology
91:347-361.
Marquez-/Vliaga A. 1983. — Bivalvos de! l’riasico
Medio ciel Scclur Méridional de la Cordillcra Ibé-
rica y de lus Catalanidcs. Publkatkmes üniversulad
Cornplutense fie Adadn'd, Série Tesis 40: 1- 429.
Marquez-Aliaga A. èc Ciarcia-Gil S. 1991. —
Paleontologia y iimbienfevS del Priasico Medio en el
sccfor norocddemal de la Cordillera Ibérica (Provs.
de Soria v Guada lajara, Fspafia). Estudios ^efdo^icos
47 (]-2):'83-93.
Marquez-Aliaga A., Hirsch 1'. et Lopez-Garrido A.
1986. — Middic Friassic Bivalves tVoni rhe
Hornos-Siles Formation (Sephardic province,
Spain). Neues jahrimeh für Géologie und
Palâontülogie^ Abhandlungen 173 (2): 201-22'^.
Marquez-Aliaga A. ik Moncoya P. 1991. — El
I nasico do Alicante: un efccto Lazaro en los estu¬
dios paleontoidgicos. Reuisia espahola de
Paleontologia n" extra.; 115-123-
Marquez-Aliaga A. &: Martinez V. 1996. —
Asociaciones de Bivalv'os del I ri.i.sici) en Espana.
Revista espaiiola de Paleontologia, n“ extra.: 103-113.
Martin-Algarra Marquez-Aliaga A., Sole de
Porta N., Valenzuela J. M. 1993. — La .sérié triasi-
ca de l,os l'asiorcs (Algecirus). Estudios Geolôgicos
49 (1-2) : 21-39.
Newell N. D. & Boyd D. W. 1975. — Parailei évolu¬
tion in F.arl)' Trigoniacean Bivalves. Bidletin of the
American Muséum of Natural History 154 (2):
55-162.
Perez Lopez A., Fernandez J., Soir de Porta N. &
Marquez-Aliaga A. 1991. -— BioestratigiaFia del
Priasico de la zona Subbética (Cordillera Bética).
Revista espafwla de Paleontologia, n” extra.: 139-151.
Philipp H. 1904. — Palàontologische-geologische
Uîttersuchiingen aus dem Gebiet von Predazzo.
Zeitschrift der Deutschen Geologischen Gesellschaft
56: 1-98.
Quenstecir F. A. 1851. — Hartdbuch der Petrefakten-
kttndr. 792. Tubingen.
Schmidt M. 1935, — Fossilien der spanischen 'J'rias.
Abhandlungen der Heidclberger Akademie der
Wissenschafien, Matheniatisch-Naturwisscnschaftliche
Klassell, 140 p.
Simpson Ci. G. 196E — Principlcs of Animal
J axonomy. Columbia Biologicu! Sériés 24? p.
Stanley S. M. 1977. — Coadaptation in tEe
Trigoniidac, a rcmarkable lamily of burrowing
bivalves. PalaeontologyH) (4): 869-899.
Tamura M. 1972, — Myophurian fo-s-sils di.scovercd
from ihc Koiiose Group, Kumanioto Préfecture,
Japan, vvirli a note on Japaiiese Myophorüds.
Aiemoirs of the Enciii.t)> of Education, Kiimamoto
UnivcTsiiy 21(1) (Nat. Sci.): 66-72.
— 1981. — Friassic Bivalves from the Buko
l.imesione Formatioti. Saltama lEefecturc, Japan.
Mcnioirs of the Faculty of Education , Kumanioto
Hniversit)' 30 (Nat. Sci.): 5-18.
Virgili G. 1958. — Fl Priasico de los Catalanides.
Bolctin del hmituto Geolb^ico y Aiinero de Espâna
69,831p.
Wurni A. 191 1. — Untersuchungen Liber den geolo¬
gischen Bail und die Prias von Aragonien.
Zeitschrift der Deittschen geologischen Gesellschafi 63:
38-174.*
— 1913. — Beirragc zur Kcnntnis der iberisch-baiea-
rischen I riasprovinz. Verhandlungcn des natur-
hisiorlsch-mediziniscbcn Vereines zu Heidelberg,
N. F. 12 (4): 477-599.
— 19)4. -— Beittage zur Kenntnis der Prias von
Katalonicn. Zeitschrift der Deutschen Geologischen
Gesellschafi 7 \ (11): 153-160.
Zieten C. H. 1830-1833. — Die Versteinerungen
Wiirttembergs'. 89-96. Expédition de notre temps,
12, Stuttgart.
Soumis pour publication le W mars 1998 ;
accepté h 26 octobre 1998.
146
GEODIVERSITAS • 1999 • 21 (2)
Un paléoniscoïde (P/sces, Actinopterygii)
de Buxières-les-Mines, témoin des affinités
fauniques entre Massif central et Bohême
au passage Carbonifère-Permien
C. POPLIN
Laboratoire de Paléontologie, UMR 8569 du CNRS, Muséum national d’Histoire naturelle,
8 rue de Buffon, F-75231 Paris cedex 05 (France)
cpoplin@mnhn.fr
Poplin C. 1999. — Un paléoniscoïde {Pisces, Actinopterygii) de Buxières-Ies-Mines, témoin
des affinités fauniques entre Massif central et Bohême au passage Carbonifère-Permien.
Geodiversitas 2^ (2) : 147-155.
RÉSUMÉ
Description d'un paléoniscoïde, Progyrolepis htyleri n. sp.» ti’uprcs neuf maxil¬
laires ec mandibules isoles sur des plaques de .schiste provenant du Permien
inférieur (Aucunien) du bassin de l'Aumance (Massif central). Os pièces, de
six à neuf centimètres de long, portent deux rangées de dents marginales
(petites externes, grandes internes) coniques à chapeau d’acrodine. La plaque
postorbitaire du maxillaire est assez longue, basse et trapézoïdale. L’attribu¬
tion générique de ce poisson se fonde sur la similitude de son ornementation,
très caractéristique, avec celle de P. spcàosus (Carbonifère supérieur de
Bohème). Ceci est une nouvelle indication de ce qu’il n'cxistair pas de barriè¬
re biogéographique entre les bassins Ümniques du Vfassif central et de
Bohême à la fin du Carbonifère et au début du Permien.
ABSTRACT
A paleoniscoid fPisces, Actinopterygiij from Buxières-Ies-Mines, evidence of
faunal relationships between Massif central and Bohemia at the turn over bet-
ween Carhonferous and Pennian.
Description of a paleoniscoid, Pro^rolepis heyleri n. sp., based on nine isolat-
ed niaxillaries and mandibles on shale slabs from the Lower Permian
(Autunian) of the Aiimance basin (Massif central). These specimens, six to
nine centirneters long, bave two row.s of marginal teeth (extcrnal small, inter¬
nai large)» conical with an acrodin cap. The postorbital plate of the maxillary
is rather long, low and trapézoïdal. The generic attribution of rhis fish is
based on the similitude ol its very charactcrisiic ornamentation with that of
P. speciosus (Upper Carboniferous, Bohemia). Fhi.s is a new indication that
rhere was no biogcographicaJ barrier between the basins of the limnic faunas
Massifeentrï Massif central and of Bohemia during the Upper Carboniferous and
Bohemia. Lower Permian.
KEYWORDS
Actinopterygii.
Paleoniscoid,
Autunian»
MOTS CLÉS
Actinopter)'eii»
paléoniscoïde,
Autunicn,
France,
Massif central,
Bohême.
GEODIVERSITAS • 1999 • 21 (2)
147
Poplin C.
INTRODUCTION
Les iictinopccrygicns du Permien inférieur du
bassin houiller de Buxières-les-Mines sont repré¬
sentés le plus souvent par des os isolés. C’esr
pourquoi aucune détermination précise n’a pu
erre donnée jusqu à présent dans les publications
consacrées a la paléoichthyologie de ce bassin
(Heyler 1984 ; Heyler ik Pt^plin 1990) Le maté¬
riel décrit ici est également très partiel car il
consiste en maxillaires et en mandibules isolés.
Mais leurs caractéristiques permettent de mieux
cerner leur appartenance taxinomique : ü s’agit
d’une espèce nouvelle attribuée au genre
Prog)>rolepis. Lincérct de cette étude ne se limite
pas à la systématique, die donne aussi quelques
indications sur les relations paléobiogéo¬
graphiques entre ce bassin et la Bohême aux
confins du Carbonilcre et du Permien.
Provenances GEtxutAPHiQüE et
STRATIGRAPIIIQUE
Les spécimens ont été récoltés dans la dernière
mine de Buxiéres (» Découverte n° III ») encore
exploitée par les Houillères des bassins du Centre
et du Midi dans le bassin de l’Aumance, qui fait
partie des bassins carbonifères et permiens de
l’AlIier (Steyer & Escuillié 1997). Us viennent de
la Formation de Buxières datée du Permien infé¬
rieur et attribuée h l’Ancunien en tant qu’unicé
lithostratigraphique (Steyer et al. en préparation).
Historique
l.es premières fouilles datent des années 1960-
1970 par D. Heyler et par des géologues dont
P. Debriettc qui a découvert le maxillaire choisi
comme holotypc du nouveau taxon décrit ici.
Heyler (1984 : 114) a mentionné cette pièce sans
la décrire Heyler ik Poplin (1990) ont signalé la
présence de pièces i.solées évoquant Progyrolepis
speciosus Fritsch, 187*^ de Bohème. Depuis 1996,
les activirés sur le terrain ont repris grâce à la
détermination des membres de Passociation
« Rhinopolis *> : ce sont eux, dont J.-M. Pouillon,
qui ont mis au jour les autres spécimens étudiés
ici.
Matériel ee fossilisation
Il s’agit de trois maxillaires et six mandibules iso¬
lés sur des plaques de schiste ci visible.s par leur
face latérale ou par leur face mésiale. L'absence de
traces de morsures écarte faction de prédateurs et
favorise pltitôr fidée d’une mort naturelle suivie
d’une décomposition sur place. N’étanr pas uses,
ces éléments ifiont du subir t|u'un transport
faible après leur désaruculadon. Cette h} 7 )Othcse
est soutenue par le fait qu’un ma.yillaii'e droit et
deux mandibules droite et gauche gisent à proxi¬
mité les uns des autres sur une même plaque de
schiste, suggérant qu’ils peuvent provenir du
même individu.
SYSTÉMATIQUE PALÉONTOLOGIQUE
Classe OSTEICH I HYES Huxley, 1880
Sous-Classe ACflNOPTERYGII
Woodward, 1891
Ordre PALAEONISGIFORMES Hay, 1929
Famille PYriOPTr-RinAi-; Aldinger, 1937
Genre Progyrolepis l'ntsch, 1895
Progyrolepis heyleri n. sp.
Holot\'PF. — n” BLIX 86, déposé dans les collections
du Laboratoire de Paléontologie du Muséum national
d Histoire naiiirdlc (Paris). Un maxillaire droit en vue
latérale sans contrepartie. Figuré in Heyler 1997,
% 9 -
LOCALÜ Ê-TVPE. —- Buxières-les-Mines (Allier,
France), Découverte III.
AC!K. — Permien inférieur,
ÉTi'MOl.OcaF. — Espèce dédiée à Daniel Heyler, pre¬
mier paléontologue à avoir étudié l’ichthyofaune de
Buxières-les-Mincs.
Auire MATlIniEE. C^ollecrlon personnelle de J.-M
Pouillon : n" J MP 177, empreinte de la face latérale
d'un maxillaire gauche et vue mcsialc du bord den¬
taire sans contrepartie (figuré in Poplin 195l'7b,
llg. 2} ; 11 “ jMP 194 A et B, extrémité anrérieurc de
mandibule gauche, partie et coturepartie. —
Collection de ! association « Rhinopolis » à Buxières-
les-Mines : n'^ BX 28089 R, grande pliuiue de schiste
(60 cm X 46 mi) sons œntrefxiriie, avec un maxillaire
droit en vue mésiale, une mandibule droite en vue
larérale (figurée in Poplin 1997b. fig. 1 ) et une mandi¬
bule gauche en vue mésiale ; BX O.V)895. une mandi¬
bule gauche en vue latcTde sans contrepartie ; BX M
093 1/2 et 2/2, mandibule partie et contrepartie ; BX
148
GEODIVERSITAS • 1999 • 21 (2)
Paléoniscoïde autunien de Buxières
F»g, 1. — Progyrolepis heyleri n. sp.. Autunien de
Buxières-les-Mines {Massif centrai, France) ; holo-
lype, colL MNHN, BUX 86 : maxillaire droit, face
iatérale. Échelle : 1 cm.
260996 (6), fragment de mandibule gauche en vue
latérale.
11 s'agit de collections privées.
DiAciNOSK. — Pro^‘n/lepis dont les maxillaires et les
mandibules ont 6 à 9 cm de long, ce qui suppose une
longueur totale de ranimai de 60 il 70 cm. Maxillaire :
laque postorbiiairc trapézoïdale, as.sez longue er
asse, plus haute posrérieuiemeni, avec une zone lisse
le long de son bord antérieur et un angle posréro*
inférieur marqué mai.s faible ; orneineiuation de fines
rides et vermiculaiiuns eu le long du bord dentaire, de
tubercules ; bord dentaire se relevaiu en courbe vers
l'avant et formani un bmtrreiet visible sur la face laré-
ralc sur rutile sa longueur. Mandibule : allongée, ma.s-
.sive, relevée vers l avant, .sans processus coronoïde,
ornée de rides irrégulières se résolvant en verrnicula-
tions le long des bords supérieur et inférieur. Dents
ntarginiilc.s cûntques pourvues d'un chapeau d'acro-
dine, à côtes vcrucale.s larges, dispo.sée>s en une rangée
latérale de dents nombreuses et petites et une rangée
médiale de dents moins nombreuses, haïUes (6 à
“ mm) à grande cavité pulpaire.
DF..SCRimON
Bien que les pièces soient isolées, la concordance
(le leurs caractères morphologiques, de leur raille
et de la nature de leur ornementation indique
sans conteste quelles appartiennent au meme
taxon.
Maxillaires {¥\gs 1-3)
I.a longueur des spécimens varie de 6,5 à 7,5 cm
environ (ce qui résulte d’une variabilité indivi¬
duelle et du fait que les extrémités des os ne sont
pas toujours intactes). Ils comportent» comme
chez les paléoniscoïdes» une partie sousorbiraire
basse et une plaque postorbitaire haute. Celle-ci
CSC trapézoïdale avec son bord supérieur plus
court que rintcricur et s'en écartant légèrement
vers Farrièrc de telle manière quelle atteint sa
hauteur maximale au niveau de son quart posté¬
rieur (18 à 22,8 mm) ; son bord postérieur des¬
cend obliquement jusqu’à l'angle postéro-
inférieur qui saille légèrement ver.s le bas. Le bord
demaire, Icgcrcmcnt sinusoïdal, se relève vers son
extrémité antérieure. Les dents sont portées par
l’habituel bourrelet longitudinal de la face interne,
mais qui apparaît aussi sur la face externe en for-
manr le long du bord inférieur un petit surplomb
masquant un peu la base des dents. Le rapport de
la longueur de la plaque postorbicaire sur sa hau¬
teur est 2,1 en moyenne. Le rapport des lon¬
gueurs de la plaque postorbitairc et du processus
sousorbiraire est 2 en moyenne.
L'oincmcntacion est complexe et originale. Sur la
plaque postorbiraircv elle est constituée de nom¬
breuses et fines rides irrégulières qui, grosso woekh
sont parallèles aux bords supérieur et postérieur
de l’os et forment parfois des boucles et de petits
tourbillons (Fig. 3A). Vers le quart antérieur de
la plaque, ces rides s’infléchissent vers le bas en
dessinant une ligne verticale nette (Fig. 3B). En
avant de celle-ci, quelques rides s’incurvent vers
le bas et l’avant et se résolvent en petits tour¬
billons ; le reste de cet espace est lisse jusqu’au
bord antérieur (Fig. 3B). Sur le bourrelet dentaire
rornementalion, longitudinale à l’arrière, se frag¬
mente en tourbillons puis en fines vcrmiciilations
à Favant (Fig. 3C). A proximité des dents, ce
sont de petits tubercules arroudi.s (Figs 3F. E)
ponant des stries rayonnantes à partir de l’apex,
comme chez R spedosus (Fritsch 1895, pl. 131,
fig, 15). À fort grossissement les rides révèlent un
relief « en duvet » comme chez Aloythomasia niti-
da Cross, 1953 (jessen 1968, fig. 3), avec une
fine crête médiane de laquelle partent de courues
crêtes latérales et régulières (Fig. 3E).
GEODIVERSITAS • 1999 • 21 (2)
149
Poplin C.
Fig. 2. — Progyrolepis heyleri n. sp.,
Autunien de Buxières-les-Mines (Massif cen-
tral^ France) ; coll. Rhinopolis BX 28089 ;
maxillaire droit, lace mèsiale. Échelle . 1 cm.
Cette ornementation varie d’un spécimen à
l’autre dans le détail à l’instar des dermato-
glyphes. La zone lisse le long du bord antérieur
de la plaque postorbitaire est rare chez les paléo-
niscoïdes : on peut penser quelle était recouverte
d'os sous- ou inlraorbituires du vivant de Tanimal.
Mandibules (Figs 4-6)
Les mandibules font 6 à 9 cm de long, donc un
peu plus que les maxillaires : cette difïerence est
courante cher les acrinoptér}^giens dont le maxil¬
laire est précédé par les os du museau. Files sont
massives, allongées et sans processus coronoïde.
Deux de CCS pièces ont le bord dentaire courbé
vers le haut et I avant comme sur les maxillaires.
Chez trois autres le bord dentaire semble recti¬
ligne : s’agit-il d une déformation post-mortem ?
La face latérale est consiituéc du dcntalosplcnial
suivi de rangulairc dont la suture est observée sur
Tune des pièces. Sur la face mésialc le dcntalo-
spléuial apparaît vcnrralcmcnt avec, au dessus,
Los de MeckcL Le long du bord dentaire, une
série de coronoïdes est suivie d^un large préatti-
culaire, mais les sutures ne sont pas nertes. Les
deux facettes articulaires, à l’extrémité postérieu¬
re de l’os de Meckel, .sont très apparentes sur les
faces latérale et mcsiale.
La fine ornementation consiste en rides longitu¬
dinales et en vermiculutions le long des bords
supérieur et inférieur.
Dents (Figs 1,2, 4-6)
l.es dents marginales .sont coniques, portent un
chapeau d'acrodinc ci sont lisses avec quelques
côtes verticales larges. Elles sont disposées en
deux rangées longitudinales : rangée externe de
nombreuses petites dents (hauteur moyenne
1,9 mm au maxillaire et 1,6 mm h la mandibule),
et rangée interne d’une dizaine de grandes dents
(hauteur rnoyenue 7 mm au maxillaire et 6 mm à
la mandibule) dont la base est un peu clargic par
une vaste cavité pulpaire, visible sur plusieurs
dents cassées, Sur le maxillaire n” Rhino
Bx.28089B (Fig. 2) les alvéoles des dents, internes
sont contigus, mais il ny a de dent en place que
dans une alvéole sur deux : cette disposition doit
erre liée au remplacement dentaire car les grandes
dents sont semblablement espacées sur les autres
pièces.
Langulaire et les coronoïdes sont couverts de
dents minuscules (Figs 5, 6).
DrscussioN
La présence du chapeau d’acrodinc est particu¬
lière aux actinopterygiens à l’exception de
Cheirolepis 1835 (Patterson 1982 ;
Arratia àc Clourier 1996). La plaque postorbitai-
re haute et longue du maxillaire ne s'observe que
chez les Actinopveri basaux (Gardlncr &
Schaeffer 1989) nommés de manière inhirmelle
« paléoniscoïdes » ou « actinopterygiens primitifs
fossiles ». En effet, ccitc plaque fait partie d’un
ensemble de traits morpho-fonctionnels liés au
suspensorium des mâchoires : bouche et joue
longues, hyomandibulaire et préopcrcule très
incline“s. Il en csrde même pour labscnccde pro¬
cessus coronoïde à la mandibule ; celui-ci, nés
rarement observé chez les palconisco'ides (Poplin
&: Véran 1996), est caracicristiquc des néoptéry-
giens (Gardiner 1984). Enfin la dUposicinn des
dents marginales, grandes médiales et petites
latérales, semble être primitive chez les actinopté-
150
GEODIVERSITAS • 1999 • 21 (2)
Paléoniscoïde autunien de Buxières
F»g. 3. — Progytolepis heylehr\. sp, Autunien de Buxières*les-Mines (Massif central. France) : A, B. colL Pouillon JMP 177. maxil¬
laire gauche, détails de l'empreinte de rornementation sur ta plaque postorbitaire ; A. centre de la plaque , B. ligne verticale anté¬
rieure ; C-F. holûtype, coll. MNHN, BUX 86, maxillaire droit, détails de l'ornementation ; C. partie postérieure du bourrelet dentaire ;
D. tubercules ; E. rides et vermiculations , F. partie antérieure du bourrelet dentaire. Échelles ; A-C, F. 2 mm , D, E, 1 mm
lygicns {Poplin &: IMcylcr P)93). Il ré.siilrc de ce
qui précède que cecce espèce de Buxières esr un
actinopeciygien paléoniscoïde.
Mais scs affinités au sein de ce groupe sont plus
difficiles à établir, force est de porter attention à
des caractères souvent traités comme mineurs :
détails de la süliouctte du maxillaire et de son
ornementation, hauteur comparée et état de sur¬
face des dents. Cette reciierclie n’est guère facile
car les de.scriptions des paléoniscoïdes ne sont pas
toujours poussées à ce point de détails. Mais par
chance fun de ceux-ci, rornementation, est suffi-
GEODIVERSITAS • 1999 • 21 (2)
151
Poplin C.
Fig. 4. — Progyrolepis heyleri n. sp.. Autunien de
Buxières-les-Mines (Massit central, France) ; coll.
Rhinopolis BX 28089 ; mandibule droite, face latéra¬
le Ang, angulaire ; Dsp, dentalosplènial ; f.a.l.. fos¬
sette articulaire latérale Échelle i cm,
samment caraccéristique et précis pour permettre
Tattriburion au genre Progyrolepis. l.a discussion
ci-après est limitée aux trois genres directement
concernés par ccue nouvelle espèce.
1. Heyler (1977i 1997) a étudié une mandibule
isolée du Permien de Lodève dont îl a fait Tbolo-
type du genre et de l'espèce Uscldsichtbys rtulvro-
dem Heyler, 1977. Ce taxtîu est remarquable par
la taille et là morphologie des dents marginales
internes. Ixur hauteur est plus grande que celle
de la mandibule à leur niveau . ceçi résulte du
fait que leur nioitié distale, qui a la forme
conique habituelle avec le chapeau d'acrodine,
esc portée par une base .aussi liante et considéra¬
blement élargie en forme de coupole auiour
d'une cavité pulpaire très vaste. En outre, le bord
dentaire porte de petites dents insérées en bou¬
quet sur des capsules hémisphériques.
Heyler (1997) a fait une première description du
maxillaire défini ici comme riiolotyjoe de
Progyrolepis heyleri. Remarquant sa caille, voisine
de celle de l’espèce de Lodève, ainsi que la hau¬
teur et la forme de ses grandes dents, il a émis
l’hypothèse que ce maxillaire pouvait appartenir
à une forme proche, voire a IJsclastchthys même.
Mais la base dentaire plus petite et l'absence de
petites dents disposées en bouquets lui ont Hit
évoquer également la possibilité qu'il s agisse
d’un « actinopréiy^gicn classique ». Cette dernière
proposition est confirmée par l’observation précise
des autrc.s pièces (Poplin 1997b) : bien qu'clargie,
la cavité pulpaire ne détermine pas de forme en
coupole comme chez ihclasichthys Heyler, 1977
si bien que les dents sont moins hautes que la
mandibule à leur niveau.
2. Nombre paléoniscoïdes ressemblent à l’espèce
Pragyroltpis heyleri par le.s grands traits de leurs
mâchoires : plaque posrorbitaire du maxillaire
trapézoïdale et plus haute posterieurement,
bouche incuivéc vers le haut et l'avant, grandes
dents marginales ayant une vaste cavité pulpaire,
ornementaiion de rides de ganoïnc. Parmi ces
paléoniscoïdes, deux genres se disiingueiu par
plusieurs caractères mineurs qu'ils partagent avec
l'espèce de Buxières : Nemutopiychius et
Progyrolepis.
L’espèce type de Nanahptyduus TTiie\\xm\ 1875,
N. d'raquair, 1S75, provient d’un milieu
estuarien du Carbonifère inférieur d'Ecosse. Ce
poisson, long d'une quarantaine de centimètres,
présente avec celui de Buxières les points com-
mun.s suivants : le rccouvicmenr de lu plaque
postérieure du maxillaire parles os postorbitaires
et la .surface des dents lisse à part quelques côtes
larges sur la face linguale. Mais ellcs'cn distingue
par l'angle posicro-inlcricur du maxillaire très
fort, la silhouette plus gracile de la mandibule et
rornementaiion du maxillaire faite de simples
rides régulièrc.s et de tubercules le long du bord
dentaire ( Jraquair 1877, pl. L figs 9, H ; pl. 26,
fig-s 1,5-7).
Progyrolepis speciasus (Eritsch, 1875), type du
genre Progyrolepis créé par Frirsch (1895 : 118),
vient du Carbonifère supérieur du ba.ssin intra-
montagneux de Kounov (Bohème). Ce poisson
est long de quelques 60 cm scion Scamberg
(1991), comme, probableineiit, l’espèce de
Buxières. il partage avec cette derntère, outre la
forme massive de sa mandibule^ l angle postéro-
inférieur peu marqué du maxillaire et, surtout,
rornemenration des deux mâchoires (rrit.sch
1895 : J19, pl. 131 fig. 12 : Stamberg 1991 : 53,
fig. l4, pl.s 5, 7, 9). En effet P. spedostù a exacte¬
ment la même ornementation, dans son aspect et
152
GEODIVERSITAS • 1999 • 21 (2)
Palconiscoïdc autunien de Buxièrcs
Fig. 5. — Progyrolepis heyleri n. sp., Autunien de
Buxières-les-Mines (Massif central. France) : coH-
Rhinopolis BX 28089 ; mandibule gauche face
mésiale. Cor. coronofdes : Dsp, dentalosplénial ;
t.a.m., fossette articulaire médiale . mk. os de
Meckel : Par, prearticulaire. Échelle : 1cm.
sa disposition, que les spccimens de Buxières. Il
est inhabituel de fonder une attribution géné¬
rique essentiellement sur Taspect des reliefs de
ganoïne des mâchoires ; mais cette ornementa¬
tion est à ce point originale que le lait de la
retrouver idcnritjuc clic/, la foi me de Boliéinc et
celle de Buxière.s me pousse a eu laire une syna-
pomorphie de Progyrolepis. I.e pan âge de ce
caractère, ajouté aux autres cités plus haut,, m’a
décidée à attribuer le poisson de Buxières au
genre Progyrolepis.
La création de l’espèce heyleri se justifie par les
différences qu’elle présente avec l’espèce P. specio-
sus :
- la surface des dents. Chez P spedosus (Fritsch
1895, pl. 1.32, figs 4-6) elle porte de nombrcusc.s
stries verticales entre lesquelles l’email esc couvert
de minuscules tubercules ovoïdes réguliers : ce
sont vraiscinblablemcnc des autapomorphies de
P. spedosus ;
- l’absence sur le maxillaire de P spedosus des
caractères suivants de P htyleri : ligne verticale
d’ornementation de la plaque postorbicaire, et,
en avant de cette ligne, surface lisse de recouvre¬
ment par les os sous- ou infraorbitaircs, enfin
bourrelet longitudinal du bord dentaire apparent
sur la face externe ;
- les proportions un peu différentes de la plaque
püstorbitaire, plus longue chez P. heyleri. Chez
P. spedosus le rapport de la longueur à la hauteur
de la plaque poscorbitairc est de 1,6 en moyenne ;
celui des longueurs de la plaque postorhirairc et
de la partie sousorbiiaire est de 0,9 en moyenne
(Sramherg 1991 ).
Ainsi le genre Progyrolepis comporterait actuelle¬
ment deux espèces ; P. spedosus (Fritsch, 1875) et
P. heyleri (présent travail). Je suis pleinement
d’accord avec Stamberg (1991) sur le fait que
l’espèce P. tricessimaloris Dunkie, 1946 n'appar¬
tient pas à ce genre en raison de leurs différences
ostéologiques, en particulier cclle.s du maxillaire
et du préopcrculc.
Avec un materiel limite aux maxillaires et mandi¬
bules, P he)>leri n’apporte pas d'arguments nou-
veau-K sur les affinités de Progyrolepis, comme sur
la suggestion de Fritsch (1895) selon lequel
Gyrolepis Agassi/., 1833 serait intermédiaire entre
Progyrolepis et Acrolepis Agassiz, 1833. Mais la
comparaison faite plus haut entre P. heyleri et
Nernasopiychins draquair, 1875 est significative :
elle vient h l’appui du groupeinem de ces deux
genres dans la famille des Pygopteridae
(Staniherg 1991).. Le cas de Watsouichehys peai-
nditts (draquaii, 1877) du Carbonifère inferieur
d’Écossc va probablemenr dans le meme sens. En
effet, malgré des différences (plaque postorbitaire
du maxillaire plus longue, mandibule moins
massive, bords dentaires droits), il présente avec
Progyrolepis une forte ressemblance concernant
l’ornementation (Stamberg 1998).
CONCLUSION
Définir aux niveaux du genre et de l’espèce trois
maxillaires et six mandibules isolés d’actinoptéry-
gien paléoniscoïde était une gageure car ces
pièces SC distinguent par des caractères mineurs.
Mais la chance a voulu que l'un de ceux-ci,
l’ornemenlation, ait etc déterminant en étant
retrouvé à Lidentique sur du matériel connu
depuis plus d'un siècle et provenant d’une autre
région et d'un autre étage straiigraphiquc. C est
ainsi que l’on peut résumer comment six pièces
GEODIVERSITAS • 1999 • 21 (2)
153
Poplin C.
Fig. 6. — Progyrolepts heylen n. sp.. Autunien de Buxières-les-
Mines (Massif cenîral, France) ; cûfl- Rhinopolis BX 260996(6) ;
détail de deux grandes dents marginales, vue latérale. Échelle ;
4 mm.
isolées de rAutunien de Buxières sont attribuées
à Progyrolepts heyleri ii. sp., dont le genre a été
décrit pour la première fois dans le Carbonifère
supérieur de Bohême par Fritsch en 1895. De
cette histoire sont tirées une leçon et une conclu¬
sion.
La leçon est que, dans l'étude d’un matériel fos¬
sile, il ne faut négliger aucun spécimen : une
pièce isolée peut donner des informarions utiles.
Il n’est pas mauvais de répéter cerie vérité pre¬
mière à ceux, rares heureuscmcnc, qui ne con.scn-
tent à travailler que sur les spécimens beaux et
complets. Il n’en re.ste pas moins que la mise au
jour à Buxières de tels spécimens en connexion
de Progyrolepts htylert est forcement souhaitée ;
ainsi pourront être précisée son anatomie et
confirmées ses relations phylogéniques avec
l’espèce de Bohême.
La conclusion est paléobiogéographique.
Progyrolepts est une forme d'accinoptétygicn pré¬
sente à Li fois à Buxières et en Bohême au tour¬
nant du Carbonifère et du Permien» comme
Paramhlypicrtts et des aeduclliformes (Sramberg
1985 ; Hcylcr éc Poplin 1990). C'est là un nou¬
veau témoin des fortes affinités fauniques
maintes fois constatées à cette époque entre le.s
bassins Hmniques du Nord du Massif central et
ceux de Bohême (làiplin 1994, 1997a) et une
démonstration de Pabsencc de barrière biogéo¬
graphique entre ces deux tcrriioircs à la limite
Carbonifere/Permien. Cette conclusion sera pro¬
bablement un leitmotiv des travaux en cours sur
les fossiles exhumés par les fouilleurs de l’associa¬
tion Rhinopoli.s à Buxières, en particulier les
acanthodiens, les xénacanthiformes, les autres
acrinopréiygiens et les tétrapodes, sans oublici les
invertébrés dont les insectes.
Remerciements
Je tiens à remercier l’association Rhinopolis et
J.-M. Pouillon pour le prêt des spécimens étudiés
ici, D. Heyler, H. Lelièvre et S. Stamberg pour
de fructueuses discussions, LL I.avina pour la réa¬
lisation de la planche et D. Serrette pour celle des
photographies.
RÉFÉRENCF.S
Anaiia Cî. & Clouticr R. 1996. — Rcassessment of
ihe morphology of Chcirolepis canadensis
(Aciitioprerygii): 165-199. in Schultze H. P. &
(’Uiiuiei R. (ecis), P)eoOHi*in jlsbei and plants of
Migoiiha (fichi'c» Canada- Veviug Dr., [Ticdrich
Pfeil., Müiicheri.
Fritsch A. 1875. — Ôher die Faun.i der Caskohle der
PiLsiier und Kakonii/en. ditzungsberichthe der K.
Piitnisehm (.^seiLvhafî der Wisseuschafien Fd. (.iregr,
l^raha, I I p.
— 189S. ^ Ftutna der Ga^kohle und der Kalbfeine
der Pevmformation Bnhmens. IfL 1. Kd. ('.rêgr,
Pr.ib.t. \Sl p.
(’rardincr R. 1984. — The iclaiiitiishlps «W tlu- palaeo-
niscid tlshes. a review based on new specinieiis of
AIftnta tind A'îüvthornasia froni the* Upper Devonian
of V(''esfern Australia. Bulletin nfthe British Muséum
(Nutural History). 3"^, '1: I7.V428.
Gardiiier B. ik Schaeffci B. (1989). Intcrielation-
ships of lowei actiiiopieiygian fishc.s. Zoological
Journal ajihe / inman Sonet)' 97; 135-187.
Heylci D. 1984. — Faune fossile dti IV-iniicn de
l'Allitt, Rei'Uc Scientifique du Bourbonnais :
103-122.
— 1977, Découvcric.s ichihyologiqiie.s dans le
Permien de l.odève : une nouvelle structure dentai¬
re. Géologie Méditerranéenne, IV. 3 : 189-204.
— 1997. Les veitchrc.s permiens du Bassin de
Lodève (Hérault) : Bilan. Bulletin de !a Soaété
d‘!Ustoirc NiîfttîcHe d'Autun 15"* : 5-28.
Moylcr D. & Poplin C. 1990. — Les Vertèbre^’ autu-
niens de* Buxière.s-lc.s-Mînes (Allier, France).
Bulletin du Muséunt national d'Histoire naturelle,
série 4, L 12 (2) : 225-239.
jevsen fL 1968. — Moythomasia nitida Cross und
M. cl. siriaia Cross, E3evonisclic Palaeoiii.sciden aus
dem oberen Plaitenkaik der Bergisch-Cladbach-
154
GEODIVERSITAS • 1999 • 21 (2)
Paléoniscoïde autunien de Buxières
Paffrarhcr Muide (Rheinisches Schiefergebirge).
Palaeontographica 128: 87-114.
Patterson C. 1982. — Morphology and interrelation-
ships of primitive actinopterygian fishes. American
Zoolo^st22\ 241-259.
Poplin C. 1994. — Montceau-les-Mines, bassin intra-
montagneux carbonifère et permien de France :
reconstitution, comparaison avec d’autres bassins
d’Euramérique: 289-328, in Poplin C. Ôd Heyler
D. (eds), Quand le Aîassif central était sotts l'équa¬
teur : un écosystème carbonifère à Monîceau-les-
Mines. Editions du CTHS, Paris.
— 1997a. — Le premier Haplolépiforme (Pisces^
Actinopterygii) découvert en France (Carbonifère
supérieur au bassin de Blanzy-Montceau, Massif
Central). Comptes Rendus de l' Académie des
Sciences-, Paris 324 II a : 59-66.
— 1997b. — Le « Pscud’U.sclasichthys » de Buxières,
in Pouillon |.-M., Steyer J.-S., Debriette P. &
Rhinopolis (eds), Livret-guide excursion « Paléonto-
lo^e des Fades autuniens de Buxières-les-Mines, 9 nov.
1997», Association des géologues du Permien, ! p.
Poplin C. & Heyler D. 1993. — The marginal teerh
oF the primitive Fossil actinopterygians : systematics
and évolution, in Heidtke U. (Compiler), New
research on Permo-Carboniferous faunas, Pollichia-
Buch^ Bad Dürkheim 29: 113-124.
Poplin C. & Véran M. 1996. — A révision of the
actinopterygian fîsh Coccocephalus wildi from the
Upper Carboniferous of Lancashire. Paleontology,
Spécial l*apers, 52: 7-29.
Stamberg S. 1985. — Poissons permocarbonifères de
Tchccosiovaquic. Bulletin de la Société d'Histoire
Naturelle d'Autun 114 : 99-113.
— 1991. —Actinopterygians of the central bohemian
Carboniferous basins. Sbornik Narodniho Muzea v
Praze (Acta Musei Nationalis Prague') B XL VIL 1 -4:
25-103.
— 1998. — Preliminary results of the study of
Permian actinopterygian fishes from Buxières-les-
Mines (Allier, France). Acta Musei Reginae-
hradecensis 26; 173-178.
Steyer J.-S. & Escuillé F. 1997. — Le chantier de
fouilles paléontologiques dans le Permien inférieur
de Buxicres-Ies-Mines (Allier, France) en août
1996 : compte rendu préliminaire et perspectives.
Revue Scientifique du Bourbonnais 95 : 11-18.
Traquait R. 1877. — The ganoid fishes of rhe Briiish
Carboniferous formations. Part L Palaeoniscidac.
Palaeontograpbical Societyj London: 1-183.
Soumis pour publication le 2 juin 1998 ;
accepté le 5 février 1999.
GEODIVERSITAS • 1999 • 21 (2)
155
Restes de Rhabdodon (dinosaure ornithopode)
de Transylvanie donnés par Nopcsa au
Muséum national d’Histoire naturelle de Paris
Xabier PEREDA SUBERBIOLA
Universidad del Pais Vasco/EuskaI Herriko Unibertsitatea,
Facultad de Ciencias, Laboratorio de Pateontologia,
Apartado 644, E-48080 Bilbao (Espana)
gpbmubej(5)ig. ehu.es
Laboratoire de Paléontologie, Muséum national d’Histoire naturelle,
8 rue de Buffon, F-75231 Paris cedex 05 (France)
Philippe TAQUET
Laboratoire de Paléontologie, Muséum national d'Histoire naturelle,
8 rue de Buffon, F-75231 Paris cedex 05 (France)
taquet@mnhn.fr
Pereda Suberbiola X. & Taquet P. 1999. — Restes de Rhabdodon (dinosaure ornithopode)
de Transylvanie donnés par Nopcsa au Muséum national d’Histoire naturelle de Paris.
Geodiversitas 2^ (2) : 157-166.
MOTS CLÉS
Dinos.îurc,
ornithopode,
Rhahaoelou,
baron Nopcsa,
Crctacc supcncur,
"Transylvanie.
RÉSUMÉ
Des restes de dinosaure provenant du Crétacé supérieur de T ransylvanie ont
été récemment retrouvés dan.s les collections du Muséum national d’Histoire
naturelle de Paris. 11 s’agit d’un dentaire, d’une scapula Fragmentaire et de
deux vertèbres caudales de rornirbopode Rhnhdodott (Igiianodontia). Certe
collection fossile a été donnée au Muséum par le baron Nopcsa en 1923. Elle
vient s'ajouter aux anciennes collections de reptiles fossiles provenant du bas¬
sin de Hapeg (Maastrichtien) qui sont déposées dans les musées de Londres et
de Budapest.
KEYWORDS
Dinosaur.
orniihopod,
Rhabihuioriy
Baron Nopcsa,
Late Cretaceou.s,
Transylvania.
ABSTRACT
Description oj some Rhabdodon remains (Dinosauria, Ornithopoda) frorn
Transylvania, given hy Nopcsa to the Muséum national d*Hisioire naturelle
(Paris).
Dinosaur remains from the Late Cretaceous of Transylvania bave reccnrly
been found in the collections of the Muséum national d’Histoire naturelle of
Paris. TTif matcrial consisrs of a dentary, a fragmentary scapula and c\vo cau¬
dal vertebrae frorn the orniihopod Rhabdodon (Iguanodoniia). This collec¬
tion is a présent of B.iron Nopcsa to ihc Mu.séum made in 1923. It adds to
the old collections of fossi! reptiles Ironi ihc Hatcg Basin (Maastrichtian)
kept at the muséums of London and Budapest.
GEODIVERSITAS • 1999 • 21 (2)
157
Pereda Subcrbiola X. & Taquet P.
INTRODUCTION
Les premiers restes de dinosaures du Crétacé ter¬
minal du bassin de Haçeg (actuel comté de
Hunedoara en Roumanie) ont été mis au jour en
1895. La découverte et l’étude des vertébrés fos¬
siles de Transylvanie sont étroitement liées à la
vie et a l’œuvre de Fercnc Nopesa (Tasnadi-
Kubac.ska 1945 ; Weishampel Ôc Reif 1984 ;
Pereda Subcrbiola 1996). Le baron Nopesa effec¬
tua de nombreu-ses prospections dans la région
de Hateg et entreprit des fouilles systématiques
dans plusieurs gisements maastrichtiens (notam¬
ment Sânpetrii et Valioara). Il réussir h récolter
une importante collection de reptiles fossiles,
principalement des dinosaures, qu’il décrivit dans
une série d’articles (Nopesa 1900, Î902a, 1902b,
1904, 1914, 1915, 1923a, 1925, 1929). La col¬
lection de dinosaures réunie par Nopesa, qui
inclut des restes d’ornitliopodcs {Tebruitosaurus
Nopesa, 1903 ; Rhtibclodon Matheron. 1869),
d’ankylosaures iStruthiosaurus Biin/el, 1870), de
sauropüdes titanosaures (Magyarûsaums Hiiene,
1932) et de theropodes. est l'une des plus impor¬
tantes du Créracé supérieur d'Europe
(WeishampeD^r rf/. 1991).
Le but de ce travail est de décrire quelques osse¬
ments de dinosaure ornitfiopode provenant des
sédiments finicrétacés de Transylvanie, récem¬
ment découverts dans les collections du Muséum
national d’TTstoire naturelle (MNHN) de Paris.
Ces os font partie de l'assemblage dinosaurien
récolté dans le bassin de Hateg et ont été donnés
par Nopesa au MNHN de Paris. Cette descrip¬
tion est l’occasion de faire un bilan du sort des
anciennes collections de reptiles fossiles de
Transylvanie.
PROVENANCE DU MATÉRIEL
Les os proviennent du Crétacé supérieur du bas¬
sin de Hateg, comme Pindiquc une étiquette
écrite en fran*;ais et conservée dans la meme
boîte que les fossiles, où on peut lire : « Crétacé
supérieur de Hongrie. Don de F. Nopesa '>. Le
cahier d'entrées du Muscutn national d'Histoire
naturelle de Paris permet de savoir que ces pièces
ont été données par Nopesa le 21 janvier 1923
pour échange éventuel avec d’autres spécimens.
Elles ont été numérotées par la suite, en 1944.
Nopesa éraii déjà venu en visite à Paris le 21 jan¬
vier 1904 pour étudier les reptiles fossiles de
France présents dans les collections du Muséum
et le 20 et le 21 mars 1905 pour étudier des osse-
menrs de dinosaures de Madagascar. Lorsqu'il fit
ce don et ces visites au Muséum, le protesseur
Marcelin Boule était titulaire de la chaire de
Paléontologie et directeur du laboratoire.
Il convient de rappeler que la Transylvanie
(Siebenbürgcn) Faisait partie de l'Empire austro-
hongrois jusqu'en 1920, date a laquelle elle fut
intégrée à la Routnanie par le traité de ’lrianon.
Nopc.sa étant d'origine hongroise, la faune de
dino-saure.s du bxs.sin de Hateg e.st décrite dans
ses rr.tvaux contmc provenant du Crétacé supé¬
rieur de Hongrie (Nopesa 1923a). Ce detail a
suscité des quiproquos parmi certains auteurs
modernes en ce qui concerne la géographie des
sites. De meme, les principaux gisements de la
région, à .savoir Sânpetru et Valioara (en langue
roumaine) sont décrits dans les articles de
Nopesa avec les noms hongrois de
Szenrpéterfiilva et Valiora respectivement,
l.es formations Sânpetru et Densus-Ciula, qui
ont livré les restes de vertébrés dans le bassin de
Hateg. sont d'âge maastrichtien (Grigorescu
1983 : Weishampel et ai 1991).
DESCRIPTION
Le matériel comprend quatre 05 , à savoir une
branche mandibulainc droite incomplète, deux
vertèbres caudales et une scapiila gauche frag¬
mentaire (Figs 1-3). Ces restes pourraient appar¬
tenir à un ou â plu.sieufs individus. Les fossiles
sont de couleur marron rougeâtre et conserv^ent
par endroits une gangue argileuse de couleur ver¬
dâtre â grisâtre. L'ensemble est inventorié sous le
numéro de collection MNHN 1944.2,
(MNHN 1944.2.1) (Fig. lA-C)
Il s’agit d'un dentaire droit de petite taille (lon¬
gueur conservée égale à 130 mm). 11 est assez gra¬
cile et élancé. Le spécimen est relativement bien
conservé mais ne porte plus aucune dent en
place. L’extrémité antérieure est peu effilée et
158
GEODIVERSITAS • 1999 • 21 (2)
Rhabdodon de Transylvanie du MNHN
Fig. 1. — Rhabdodon sp., collection Nopcsa : A*C, dentaire droit {MNHN 1944.2.1) ; A, vue médiale ; B, vue dorsale ; C, vue laté¬
rale. Échelle : 2 cm.
s'incurve venrromédialemcnt pour former une
courte symphyse mandibulaire. Les bords dorsal
et ventral du dentaire sont à peu près parallèles.
En vue latérale, le bord antérieur est rugueux et
orné de plusieurs foramens nourriciers. Le pré-
denrairc, absent, devait s'articuler avec le dentaire
de telle sorte que son extrémité postérieure soit
située à proximité du premier alvéole Les parois
latérale et médiale de la rangée alvéolaire, com¬
posée de dix alvéoles, ain.si que les parois inter-
alvéolaires ont été partiellement reconstituées
avec du plâtre peint en noir (une pratique jadis
courante). La rangée alvéolaire est légèrement
concave vers l'extérieur mais presque droite en
vue occlusale. Les premier et dixième alvéoles
sont les plus petits, tandis que les sixième et sep¬
tième sont ceux qui ont la plus grande dimen¬
sion. Le processus coronoïde est brisé et seule la
partie basale est conservée. Ce processus est situé
dans le prolongement de la rangée alvéolaire mais
latéralement par rapport à celle-ci. I.e splénial esc
absent, ce qui permet d'obseivcr venrralemcnt le
canal de Meckcl. C!e dernier forme un sillon
étnait en avant qui devient plus large et profond
vers rarnère. Cette partie de la mandibule esc
aussi partiellement reconstituée. La face latérale
du dentaire est très légèrement convexe vers
rcxtéricur et présente deux petits foramens nour¬
riciers â la hauteur des alvéoles sept et huit. Ces
foramens sont alignés en avant pat rapport à un
plateau latéral peu saillant situé au niveau du
processus coronoïde.
GEODIVERSITAS • 1999 • 21 (2)
159
Pereda Suberbiola X. & Taquet P.
Vertebres caudales (MNHN 1944.2.3 et 4)
(Fig. 2A-C)
Deux vertebres sont connues, dont une prove¬
nant de la partie antérieure et l’autre de la partie
médiane de la queue. La première comporte le
centrum et l'extrémiré proximale des processus
transverscs. Le centrum est platycoele à légère¬
ment amphicoelc, avec une surface articulaire
antérieure circulaire et une postérieure ovoïde. La
largeur du centrum (46 mm) esc plus importante
que la hauteur (42 mm) et que la longueur (envi¬
ron 40 mm). Des facettes articulaires en forme
de demi-lune destinées aux chevrons sont pré¬
sences sur la région ventrale. L'articulation avec
les chevrons est intervertébrale. Les facettes pos¬
térieures sont plus développées que les anté¬
rieures. Elles délimitent ventralemenr un sillon
profond de bible dimension. Les faces latérales
du centrum sont concaves. Les processus trans-
verses sont fragmentaires mais semblent disposés
horizontalentcni.
La vertèbre caudale moyenne est relativement
plus complète mais de plus petite taille. Elle reste
partiellement recouverte par du sédiment. Le
centrum cc une partie de l’arc neural, y compris
les postzygapophyscs, sont conservés. Lépine
neurale est brisée. La longueur du centrum
(38 mm) est plus importante que la largeur
(28 mm) ou que la hauteur (27 mm). Les sur¬
faces articulaires sont circulaires à Icgcrcmcnt
ovales. La surface ventrale présente un sillon lon¬
gitudinal peu marqué, délimité en avant et en
arrière par les facetieîf pour les arcs hémaux. Les
posrzygapophyses sont de petite taille et sîtuée.s
sur le bord postérolatéral de l’épine neurale. Elles
ne dépassent guère le niveau de la face postérieure
du centrum. Les processus transverses sont très
peu développés et situés sur la moitié postérieure
du centrum.
5c.z/>«^(MNHN 1944.2.2) (Fig. 3A-B)
Seul un fragment d’une scapiila gauche est
consers'é- l.e spécimen, long de 1SO mm, compor¬
te la région postéroventraie de l'extrémité proxi¬
male (y compris U cavité glcnoïde et une partie
de la surface pour le coracoïde) et le tiers proxi¬
mal de la lame scapulaire. Los présente une lé¬
gère courbure à convexité latérale adaptée à la
forme arrondie de la cage thoracique. La lame
Fte. 2- — Rhabdocton sp., collection Nopesa ; A. B, vertèbre
caudale antérieure (MNHN 1944 2-3) : A. vue postérieure :
B. vue latérale, C, vertèbre caudale moyenne, vue latérale
(MNHN 1944.2.4). Fchelle: 2 cm.
scapulaire, quoique fragmentaire, est mince
(42 mm de largeur mesurée au niveau de la cas¬
sure) et semble s’élargir distalement. Le bord
160
GEODIVERSITAS • 1999 • 21 (2)
Rhabdodon de Transylvanie du MNHN
Fig. 3. — Rhabdodon sp., collection Nopcsa ; A, B, scapula gauche (MNHN 1944.2.2) ; A. vue latérale : B, vue postérieure. Échelle:
2 cm.
antérodorsal de la lame est droit, tandis que le
bord postéroventral est concave. La surface laté-
nde de Textrémité proximale de la scapula pré¬
sente une forte proéminence sur le bord
postéroventral, en aplomb de la cavité glénoïde.
En vue ventrale, la cavité glénoïde est une
dépression plus longue que large, en lorme de
croissant. La surface pour le coracoïde est large et
rugueuse.
DISCUSSION
La matériel décrit est rapporté aux Ornichopoda
d’après sa morphologie générale. Les restes sont
de dimensions plutôt modestes et appartiennent
à un ornithopode de petite taille. L'arc neural et
le centrum d’une des vertèbres caudales sont
fusionnés : il ne s’agit donc pas d'un individu
juvénile.
GEODIVERSITAS • 1999 • 21 (2)
161
Percda Subcrbiola X. & Taquet P.
Le materiel de Hatcg consens à Paris peut être
rapproche des Iguanodontia de part la combinai¬
son de plusieurs caractères, .1 savoir : la présence
d’un dentaire à bords dorsal et ventral parallèles,
d’un processus coronoïde situe latéralement par
rapport a la rangée dentaire, d’un diastème entre
le prédentaire et le premier alvéole, d’alvéoles dis¬
posés sur le bord médial du dentaire, ainsi que la
présence d’un contrefort saillant sur le bord pos¬
térieur de la cavité glcnoïde sur la scapula
(Sereno 1986 ; Norman & Weisliampel 1990).
Le principal caractère diagnostique de Rhab-
dodon est la morphologie de ses dents et, plus
spécialement, rornementation de l'émail dentaire
(Brinkmann 1988 ; Weishampel et ul. 1991).
Léchantillon étudié ne comporte pas de dents
mais, à defaut. la morphologie du dentaire esi
comparable à celle du matériel de Rbabdodon
provenant de Transylvanie déposé a Londres
(Nopesa 1902a, 1925 ; Brinkmann 1988) et à
Budapest (Nopesa 1915). Le dentaire porte dix
alvéoles et possède un petit diastème entre la sur¬
face pour le predenraire et le premier alvéole, des
caractères que Ton retrouve chez Rbabdodon
(Weishampel et al. 1991). Il esc à noter que,
parmi les Iguanodontia, Rbabdodon présente le
plus petit nombre connu de dents mandibulaires.
De plus, la scapula présente une forte proémi¬
nence en forme de crochet sur le bord postérieur,
comme c’est souvent le cas chez Rbabdodon
(Brinkmann 1988). Le bord antérieur est droit
comme chez certains spécimens de Rhabdoçhm
provenant de Transylvanie (Brinkmann 1988) et
chez Tenontosaurus (Lorster 1990). D'autres sca-
pulae de Rbabdodon peuvent montrer un bord
antérieur concave, un caractère commun chez la
plupart des Iguanodontia (Brinkmann 1988 ;
Pincemaille 1997). Ces arguments nous amènent
à rapporter le matériel étudié à Rluihdodon.
Les ornithopodes du bassin de Hatcg incluent au
moins deux genres, riguanodontien primitif
Rbabdodon et l’hadrosauridé Telmatosaiirns
(Weishampel et al. 1991). Rbabdodon peut être
distingué de Telmatoumms par de nombreuses
caractéristiques (Nopesa 190(1, 1902a, 1904,
1915 , 1925 ; Brinkmann 1988 ; Weishampel et
ai 1991) Le matériel conservé au MNHN de
Paris peut être dilTérencic de l'elmatosaurus par le
fait que la mandibule ne montre qu’une ébauche
de batterie dentaire (bien développée chez tous
les hadrosaures) et que les facettes pour rurtitaila-
tion des chevrons sont fusionnées (diviséc.s chez
les hadrosaures).
Rbabdodon est par ailleurs le dinosaure le plus
abondant du Crétacé supérieur de Transylvanie
et d'Europe en général. Depuis Màtheron, qui
créa le genre en 1869 à partir de matériel trouvé
d,ms le Rogn.acien (Maastrichfien) de Pmvencc,
de nombreux restes provenant du Campanieii et
du Maastrichtien de plusieurs contrées euro¬
péennes lui ont été rapportés (voir Brinkmann
1988 pour un inventaire). Rbabdodon pré.senrc
un forte variation individuelle, dont la significa¬
tion n'est pas encore bien appréhendée (l*ereda
Subcrbiola Sanz l'999). Nopesa (1915) évoqua
un dimorphisme sexuel pour expliquer les diffé¬
rences mtjrphologique.s obscrvée.s sur du materiel
transylvain. Néanmoins, certaines d'entre elles
peuvent être imerprétees comme des différences
Lintogénctiqucfi (Brmkmann 1988) Ce dernier
auteur a proposé de rapporter tout le matériel de
Rbabdodon ï une seule espèce, R. priseiis
Marheron, 1869. Néanmoins, d'autres auteurs
estiment que la diversité .spécifique de
Rbabdodon est plus grande que celle envisagée
auparavant et plaident en faveur de la présence
de plu.sieurs espèces (Buffetaut & Le Loeuff
1991). Le matériel provenant de Transylvanie a
ainsi été rapporté a fcspècc R. robusttn Nopesa,
1900 (Pincemaille 1997 ; Weishampel et ai en
préparation). Léchantillon conservé à Paris
semble trop fragmentaire pour pouvoir te.ster
cette interprétation. Il est donc rapporté à
Rbabdodon sp. indci.
Enfin, la position phylogénétique de Rbabdodon
au sein des ornithopodes est discutée. Il a d’abord
été classé parmi les Camptosauridae (Nopesa
1902a, 1904), puis F.ipproché des
Iguanodontidae (Romer 1956). des Dryosauridae
(Milncr & Norman 1984) ou des HypsÜo-
phodonridae (Norman 1984 ; Brinkmann 1988),
avant d’être considéré comme un Igu.modotitia
primitif (Screno 1986). Nornuin ik Weishampel
(1990), puis Weishampel et ai (199J) le cla.ss’ent
provisoirement comme un Iguanodonria imrrtae
sedis. Norman (1998) a défendu l’hypothèse selon
laquelle Rbabdodon pourrait être un hypsilo-
phodontidé qui montrerait des caractères conver-
162
GEODIVERSITAS • 1999 • 21 (2)
Rbabdodon de Transylvanie du MNHN
gents avec les Iguanodontia» tout comme
Tenontosanrus d’Amérique du Nord et
Muttabiirrasmmta d’Australie. Des analyses cladis-
tiqucs réceutes' confirment l’hypothèse de Sereno
(198fi) et suggèrent que Rbabdodon se situe à la
base des Iguanodontia dans une polyroinie non
résolue avec Imontosaurns, Mutaburrasciurus et les
Euiguanodontia de Coria S'algado (1996)
(PinccmaiUc 1997 ; Weishampel étal. 1998).
LES ANCIENNES COLLECTIONS DE
DINOSAURES DE TRANSYLVANIE
Les anciennes collections de reptiles fossiles pro¬
venant du Crétacé terminal de Transylvanie sont
conservées dans les musées de Londres et de
Budapest. Une grande partie de la collection
réunie par le baron Nopesa et sc-S assistants dans
les gisements du bassin de Hapeg fut vendue à
plusieurs reprise.s au Narural History Muséum de
Londre.s (BMNH). La documentation officielle
des Archives du BMNH atteste de l’achat de rep¬
tiles fo.ssiles de la collection Nopesa en 1906,
1923 et 1924 (S. Chapman, comni. pers.). Le.s
deux premiers lots ont été vendus par Nopesa
lui-méme et celui de 1924 eût comme intermé¬
diaire le comte L. S/apary, un ministre hongrois
à Londres. La collection de 1906 inclut des spé¬
cimens provenant de Sànpetru» y compris les
types des ornithopodes Rbabdodon rohmtus
Nopesa, 1900 et Telmatosaurus ti-anssylvanicus
Nopesa, 1900 (Weishampel et ai 199L 1993),
ainsi que des restes de titanosaurc'. Le materiel
contient aussi des restes décrits à l’origine comme
appartenant à des oiseaux (Andrews 1913), mais
qui se sont révélés par la suite être de petits thé-
ropodes (voir un sommaire dans Weishampel &
Jianu 1997)t La collection de 1923. acquise pour
200 livres sterling, comprend des spécimens de
Sànpetru et Valioara, notamment les spécimens
types de l’ankylosaure Struthiosanrus transylim-
1. Nopesa utilisa aussi les noms de Limnûsaurus et
û'Onhomerus pour se rapporter à Telmatosaurus, et celui de
Mochlodon au lieu de Rhabdodon (Brinkmann 1988). Il attribua
les restes de titanosaure au genre Titanosaurus. avant que von
Huene ne propose le nom générique Magyarosaurus en 1932.
2. Il faut signaler à ce propos que Nopesa entretint un lien très
niciis Nopesa, 1929, du titanosaure Magyaro¬
saurus dacus (Nopesa, 1915) et de la tortue cryp¬
todire Kallokibotion bajazidi Nopesa, 1923
(Nopesa 1923b, 1929 ; Huene 1932 ; Gaftney &
Mcylan 1992). Les archives du BMNH conser¬
vent des documents relatifs à cet achat, notam¬
ment une liste détaillée des ossements (environ
deux cent soixante-cinq) et le prix ap|)roximatil
de chaque échantillon. D’autres fossiles, compre¬
nant des restes fragmentaires d’ornithopode, de
titanosaure et de rhéropode, ont été donnes par
Nopesa au BMNH en 1909 et 1922. Une autre
collection fut réunie par Lady Woodward à partir
des gisements de Sànpetru et Nagt'-Csula lors
d’une visite dans les propriétés de la famille
Nopesa en Transylvanie. Celle-ci, qui contient en
outre des restes de Rhabdodon^ Telmatosaurus,
MagyarosauniSy Kallokibation et de petits théro-
podes, fut présentée au BMNH en 1923'. Le
matériel conservé a Londres a été décrit par
Nopesa dans plusieurs articles, dont cinq dans la
série dédiée aux dinosaures de Transylvanie
(Nopesa 1900, 1902a, 1904, 1925. 1929 ; voir
aussi Nopesa 1902b, 1923a). Il est intéressant de
signaler qu’une collection de lames minces de
reptiles fossiles, notamment de dino.saures, fut
présentée par Nopesa au BMNH en 1925.
Certaines de ces lames ont été effectuées à partir
du matériel dinusaurien de Transylvanie (Nopesa
& Hcidsicck 1933).
Les collections de reptiles fossiles de Transylvanie
conservées a Budapest au Magyar Allami
Foldtani Intézei (MAFI) incluent principalement
des restes récoltés par le géologue Ottokar Kadic
dans les environs de V'âlioara pour le
Ungarischen Ceologischen Reich.sânstalt. Les
fouilles furent entreprises en 1914 (d’après les
étiquettes du musée) ou 1915 (selon Kadic
1917). Les principaux spécimens ont été décrits
par Nopesa en 1915. Le matériel de dinosaure
comprend des spécimens des ornithopodes
Rhabdodon robustus et Telmatosaurus transsylva-
fort avec la famille Woodward, comme en témoigne la corres¬
pondance de 1906 à 1933 entre le baron et Sir Arthur Smith
Woodward et le journal de Lady Woodward conservés aux
archives du BMNH. A. S. Woodward était le responsable du
déparîemeni de Géologie du BMNH et pendant ses nombreux
voyages à Londres, Nopesa séjourna souvent chez les
Woodward (S. Chapman, comm. pers.).
GEODIVERSITAS • 1999 • 21 (2)
163
Pereda Suberbiola X. & Taquet P.
nicus, ainsi que du titanosaurc: Miigjtarosaums
dacus. Ixs aiares reptiles représentés sont les croco-
dilicns (avec notamment le spécimen-type
diAllodiipostichus precedvns Nopesa, Î928) et les
tortues. Les fonds du MAPI contiennent aussi
des spécimens fossiles beaucoup plus fragmen¬
taires d'une collection récoltée par Nopesa lui-
même (L. Kordos, coinm. pers.). Ils proviennent
aussi de la localité de Valjora mais ne portent pas
de date de collecte. En plus des restes d'ornirho-
pode et de ritanosaure, l’assemblage comprend
un fragment de crâne d‘un théropode
Arctometatarsalia, récemment reconnu (Jianu &
Weishampel 19*^7), des plaques de la carapace de
Kallokibot'fon et des dents isolées de crocodile.
Enfin, des restes de ptérosaute mis au jour par
Nopesa dans la région de Sânpecni (Nopesa
1914) et longtemps considérés comme perdus,
ont été retrouvés dernièrement dans les collec¬
tions du MAI'l (Jianu et al. 1997a)- D’autres
restes de dinosaure ( TelrnatasaurnS} provenant de
Sânpetru sont conserves au Magyar Ncn/eti
Müzeum (MNM) de Budapest (Weishampel et
ai 1993). Ces pièces proviennent du MAFl et
font probablement partie de la collection amas¬
sée par Kadic en I914'1915 (D. Weishampel,
comm. pers.).
La petite collection Nopesa de dinosaure ornitho-
pode du Muséum national d’HLstoirc naturelle
de Paris vient s*ajouter à celles conservées à
Londres et h. Budapest. Dans une lettre adressée a
son collègue et ami Friedrich von Huene, datée
de 1924, Nopesa mentionnait la présence dans le
musée de Munich de quelques os de titanosaure
provenant de IVansylvanie ( Fasnddi-Kubac.ska
1945). Ces os été soir récupérés par Nopesa
après cette date, soit détruits lors dci bombarde¬
ments de 1944 durant la Seconde Guerre mon¬
diale. Toujours est-il qu’aujourdTiuî, aucun reste
de vertébré du bassin de lïateg iVest déposé au
musée de Munich (P. Wellnhofer, comm. pers.).
11 convient enfin de signaler que certains spéci¬
mens fossiles de la région de Hareg ont été per¬
dus. C'est le cas du matériel du dinosaure
cuirassé Onyrhosaurm bungaricus décrit par
Nopesa en 1902 (Pereda Suberbiola & Galton
1997).
De nouvelles coilecrions de vertébrés des gise¬
ments de Transylvanie ont été constituées plus
récemment grâce aux efforts de plusieurs musées
et institutions roumaines. C7csi ainsi que les
musées de Deva et les universités de Cluj-Napoca
et Bucarest ont pu récolter de nouveaux restes de
dinosaures (notamment des chetopodes et des
œufs d'hadrosaure), de crocodiles et de tortues,
mais au.ssi des poissons osseux, des amphibiens et
des mammifères multituberculés (Grigorcscu
198.3, 1984 ; Gtigorescu et al. 1985, 1994 ;
Weishampel étal. 1991 ; Jianu étal. ]9y7b). Un
siècle après la première decouverte de restes fos¬
siles. le bassin de Hateg est devenu une région
fossilifère classique en Europe et une référence
obligée pour les paléontologues qui s’intéressent
aux faune.s de vertébrés finicrétacés.
CONCLUSION
Une mandibule, deux vertèbres caudales et une
scapula de dinosaure ornithopode provenant du
Crétacé supérieur de Transylvanie font partie de
la collection Nopesa donnée par celui-ci au
Muséum national d'Hi.stoirc naturelle en janvier
1923. Apres étude, cc.s restes sont attribués à
riguanndoncia RlmbdodoUy noiammeni d’après la
présence d’un dentaire à bords dorsal et ventral
parallèles portant uniquement dix alvéoles, ainsi
que d’une scapula k bord antérodorsal droit et
montrant une forte proctnincnce sur le bord
postcrovcncrai. Ce matériel fournit des informa¬
tions historiques complementaires sur le sort des
.uicicnncs collections de dinosaures et autres rep¬
tiles fossiles de Transylvanie.
Remerciements
Nos remerciements à Mr. John Thackray
(ATchivc=:s, The NaturaJ History Muséum) pour
avoir permis au premier auteur de consulter la
conespondaiice du baron Nopesa conservée à
Londres, à Mrs. Sandra Chapman pour I accès à
la collection Nopesa de reptiles fossiles conservée
au BMNH. ainsi que pour ses renseignements
sur le matériel fossile, aux Dts Laszlo Kordos
(Magyar Allami Foldtani Tnré/et, Budapest),
Itsvan Fôzy (T'crmészeciudom;inyi Muzeum,
Budapest), M. Coralia Jianu (Muzcul Civilizatiei
Dacice si Romane, Deva), Vlad Codrea
164
GEODIVERSITAS • 1999 • 21 (2)
Rhabdodon de Transylvanie du MNHN
(Universitacea Babes-Bolyai, Cluj-Napoca),
David B. Weishampel (The Johns Hopkins
University, Baltimore) et Peter Wellnhofcr
(Baycrische Sraatssammliuig für Palaoncologic
und hisrorische Ceologie, Munich) pour les don¬
nées fournies sur les collecrions de vertébrés de
Transylvanie, enfin, au Dr. David R. Norman
(Scdgwick Muséum, Cambridge) et à un rappor¬
teur anonyme pour la relecture critique du
manuscrit. Nous exprimons aussi coure nocre
gratitude à Mme Françoise Pilard pour son aide
et a M. Denis Serrerte pour les photographies des
pièces.
RÉFÉRENCES
Andrews C. W. 1913. — On some bird remains from
ihc Upper Cretaceous of Transylvania. Geological
Magazine "S’. 193-196.
Brinkmann W. 1988, — Zur Fundgeschichte und
Sysiematik der Ornithopoden (Ornithischia,
Reptilja) aus der Ober-Kreide von Europa.
DoatnU'f/fû natrtrae 1-157.
Buffetaut B. & Et- Locufl J. 1991. — Une nouvelle
espèce de Rhahdndon (Dinosaui'ia, Ornithischia) du
Crétacé supérieur de l'HcTanh (Sud de b France).
Comptes Rendus de ^Académie des Sciences, Paris,
série 11. 312 : 934-948.
Forsrci C. A. 1990. — The posicranial skeleron of the
ornifhopod clinosaur Tenontosaurus tilletti. Journal
ofy^erîebrate PideoUiolo^ 10: 273-294.
Caffiuy H. S. & Meylan P. A. 1992. — The
Transylvanian lurtlvv Ka^lûkibotlor^^ a primitive
ciyptodire ol (IreLaceous âge. American Muséum
Novimtes 1-37.
CrigorcNcu D. 1983. — A stratigraphie, taphonomic
and paleoecologic approach co a “forgoitcn land":
the dinosaur-bearing deposits from the Hareg Basin
(Transylvania-Romania). in Kiclan-Jaworowska E.
er al. (eds). Second International Symposium on
Mesozoie rerrcstriiil Bçosystems, jadwisin 198 K
Acta Palueoninfvgicu Polonica 28 (1-2): 103-121.
— 1984. — New teir.ipod gmuus in the
Maa.strichtian of the Hateg Badn: coeluro.saurians
and mulcituberculates: 99-104» /« Reif W.-E. &i
Wcstphal f. (cds). ih'trd International Symposium
on Mesozoîc TeTresirial Hcosystems, Short Papers.
Actcmpio Verlag, l'iibingen.
Grigorescu D., Hanenbcrger J.-I Kadiilescu C.,
Samson P. & Sudre J. 1985. — Découverte de
Mammifères et Dinosaures dans le (Irétacé supé¬
rieur de Piii (Roumanie). Comptes Rendus de
VAcadémie des Sciences, Paris, série II, 301 :
934 - 948 .
Grigorescii D.» Weishampel D. B., Norman D. B.,
Scclamcn M., Kusu M.. Baltres A. &
Tcodorescu V. 1994. — Laa- Maastrichtian dino-
saur eggs from the Hatcg Basin: 75-87f in
Carpenrer K.^ Hirsch K. F. & Horiicr |. R. (eds)^
Dinosaur t'ggs and Babies. Cambridge University
Press.
Huenc F. von 1932. — Die fos.sÜe Reptil-Ordnung
Saurischia, ihre Eniwicklung und Ge.schichte.
Monographie zur Géologie und Palaontoloqie, ser. I,
4: 1-361.
Jianu C.-M. & Weishampel D. B. 1997- —A new
theropod dinosaur from the Hat^ Basin, western
Roniania. in the collection of the Geological Suivev
in Budapest. Saygeùa 17; 239-246
Jianu C.-M.. Weishampel D. B. ife Stiuca F.. 1997- —
Old and new pterosaur remains Irom rhe Hatcg
Basin (l aie Cretaceous) oi w'e.stern Romania. and
conimcnts aboiii pterosaur diversiiy iti the Late
Cretaceous of Europe, in Deuxième Congrès
Européen de Paléontologie des Vertébrés, Résumés.
Espéraxa-QuilLin.
Kadic O. 1917. — Bcrichr über rneine Ausgrabungen
ini lahrc 1915. Jahreshericht der Koniglich
Ungarischen Geologischen Armait, Budapest, 1915:
611-618.
Matheron P. 1869. — Notice .sur les reptiles fossiles
des dépôts nuvio-lacustres crétacés du bassin à
lignites de [ livçâu. Mémoires de l'Académie impé¬
riale des Sciences, Belles-Lettres et Arts^ Marseille :
345-379.
Milner A. R. & Norman D. B. 1984. — The hiogeo-
graphy of adv-anced ornithopod dinosaur.s
(Archosauria: Ornithischia) - a ckdisric-vicariance
mode!: 145-150, in KcifW.-E. & We.stphal F.
(eds), Third Symposium on Mesozoic Terrestrial
Ecosystvrns. Short Papers. Attempto Verlag,
Tübingen.
Nopesa F. 1900. — Dinosaurierreste ans
Siebenbürgen (Scliàdel von Limnosaurus transsylva-
nictii nov. gen. et spec.). Denkschrifien der kônigli-
chen Akademie der Wissenschaftetu Mathernaiiscb-
Naturwissensfbajtliche Kiasse, Wien 68: 555-591.
— 1902a. — Dinosaurierreste aus Sicbcnbürgen U
(Schadeireste von Mochlodm). Mit eincm Anhangc:
Zur Phylogenle der Ürniihopodiden. Defikschnnen
der kiiniglichen Akademie der Wissensebaften.
Maihcmatisch-NfltHrwissenschajHivhe Khnse^ Wien
72; 149-175.
— I9()2b- — F)inosaürierresfe âu.s SiehenbOrgen
{Mochlodon und Onychosaurus). Anzeiger der
Akademie der Wrssenscha/ten. Mathematisrh-
NatnfwissenscbaltUche Klasse^ Wien 39: 42-44.
— 1904. — Dinosaurierreste ans Siebenbürcen 111
( Weirei-e Schadehe.sie vim Mochiodnn), Denkschrif-
ten der koniglicbea Akademie der Wissenschaften,
Maîhemansch'Natucunssenschafiikhe Klasse, Wicn
74 : 229 - 263 .
— 1914. — Die Lebensbedingungen der obercretaci-
GEODIVERSITAS • 1999 • 21 (2)
165
Pereda Suberbiola X. & Taquet P.
schen Dinosaurier Siebenbürgens. Centralblatt fur
Minéralogie, Géologie nnd Paléontologie 1914:
564-574. "
— 1915. — Die Dinosaurier der Siebenbürgischen
Landesteile Ungars. Mitîeilungen aus dem Jahrbuch
der kéni^lich Ungariicben Geologischen Reichsamtalt
23 (1): D24.
— 1923a. — On rhe geological importance of the
primitive reptiJi.in fauna in the uppermost
Cretaceous of Hungary : with a description of a
new ittrtoise {Knllohthotion). Qiiarierly Journal of
the Gt'obgical Society of London 79: 100-116.
— 1923b. — Kaiiokibotiofh a primitive ainphichdy-
dean torcoise from the uppermost Cretaceous of
Ptdeontologiça Hungartca I: 1-34.
— 1925, — Dinosam iei reste aus Sicbenbürgen.
IV. Die Wilbcfsâule von Rhabdodon und Ortho-
merus. Paiaeontologua liungarka 1 (Ul): 273-304.
— 1929. — Dinosauiierreste au.s Sicbenbürgen,
V. Geologiea Hu7igarica A: 1-76.
Nopesa F. Mcidsicck E. 1933. — On the histology
of the ribs in immature and half-grown trachodont
dinosaurs. Proceedings of the Zoological Society of
London 1: 221-226.
Norman D. B. 1984. —■ On the cranial morphology
and évolution ot ornithopod dinosaurs. Symposium
of the Zoological Society of London 52; 521-547.
— 1998. — On Asian orniihopods (Dinosauria.
Ornithischia). 3. A new spccie.s of iguanodontid
dinosaur. Zoological Journal of the Linnean Society
122:291-348.
Norman D. B. & Weishampel D, R. 1990. —
Iguanodoniiduc and lelatcd ornithopods: 510-533,
in Weishampel D. B., Dodson P. & Osmolsk;] H.
(eds), The Dinostiuria. University of California
Press. Berkeley.
Pereda Suberbiola X. 1996. — La contribucion de!
Baron Nopesa al estudio de las faunas de vertebra-
dos continentales del Cretacico final de Europa.
Gain 13: 1-23.
Pereda Suberbiola X. Si Galton P. M. 1997. —
Armoured dinosaurs from the Late Cretaceous of
IVansylvania. Sargeûa 17; 203-217.
Pereda Suberbiola X. ik .Saiiz J. L. 1999. —- The orni-
rhopod dinosaur Rhahdodon from the Upper Creta¬
ceous of Lano (Jberian Peninsula). Estudios delMuseo
de Ciencias Naturales de ALwa 14 (nüm. esp. 1).
Pinccmaille, M. 1997. — Un ornitbopode du Crétacé
supérieur de VitroUes (Bouches-du-Rhône) :
Rhabdodon priscus'. Mémoire de DEA, université
Montpcllier-IL 47 p. (inédit).
Radulescu C. Samson P.-M. 1997, — Late
Cretaceous Multiiuberculata of the Haicg Ra-sin,
Romania. Sargeda 17: 247-255.
Ramer A, S. 1956^ — Oiteology of the Reptiles.
University of Chicago Press, 772 p.
Screno P. C]. 1986. — Phylogeny of the bird-hipped
dinosaurs (Order Orniilnschia). National Géo¬
graphie Society Research 2: 234-256.
Ta.snâdi-Kubacska A. 1945. — Franz Baron Nopesa.
LJngarischen Naturwisscnchaften Muséum,
Budapest, 295 p.
Weishuiiipcl D. B. & [ianu C.-M. 1997. — New the-
ropocl dinosaur material from the Hateg Basin
(Late Cretaceous, we.stcrn Romania). Neues
jahrbuch fiir Géologie und T^alàontolo^e Abhandlimg
200 (3): 387-404.^
Weishampel D. B. 8: Reif W.-F.. 1984. - The work
of l'ran/. Baron Nopesa (1877-1933). Dinosaurs,
évolution and theoretical tectonics. Jahrbuch
Géologie Bundesanstair 127: 187-203.
Weishampel D. B., Grigorc&cu D. & Norman D. B.
1991. — Dinosaur.s of Transylvania: Island
Biogeography in the Late Cretaceous. National
Géographie Research & Exploration 7 (2): 196-21 5.
Weishampel D. B., Jianu C., Csiki Z. iR Norman
D. B. 1998. — Rhabdodorty an unusuàl cuurniiho-
pod dinosaur (rom the Late Cmatcous of we.stern
Romania. Journal uj Veticbrrite Paleontolngy 18
(suppl. to 3); 85A.
Weishampel D. B., Norman D. B. ôc Grigorescu D.
1993. — Teknatosarus transsylvanicus from the Late
Cretaceous of Romania: the most basal hadrosaurid
dinosaur. PuLieontolog^> (2): 361-385.
Soumis pour publication le 25 mars 1998 ;
accepté le 16 novembre 1998.
166
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts (Mammalia) from
the médial Cretaceous (upper Albian or lower
Cenomanian) Mussentuchit local fauna, Cedar
Mountain Formation, Utah, USA
Richard L. CIFELLI
Okiahoma Muséum of Natural History and Department of Zoology, University of Okiahoma.
1335 Asp Ave.. Norman, Okiahoma 73019 (USA)
rlcCa)ou.edu
Scott K. MADSEN
Dinosaur National Monument,
P. O. Box 128, Jensen, Utah. 84035 (USA)
Cifelli R. L. & Madsen S. K. 199S. — Spalacotheriid symmetrodonts (Mammalia) from the
médial Cretaceous (upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar
Mountain Formation. Utah. USA. Geodiversitas 2^ (2) : 167*214.
KEYWORDS
Syiiitnetrodonta,
Spalacotheriidae,
phylogeny,
Cretaceous.
ABSTRACT
Symmetrodont mammals, generally rare and poorly reprcsenred in rhc fossil
record, are exccptionally abundanc in the Mus.sencuchit local fauna of rhe
upper Cedar Mountain l’ormarion (upper Albian or lower Cenomanian).
Enicry County, Utah, USA. Herein we describe three new species of symme¬
trodonts (four or more arc présent in ihc launa); one îs refcrable to
Spalacotheridlums otherw'i.se known from iKc Turonian (Laïc Cretaceous),
and the other wo are referred to a new genus. With rhc possible exception of
Mktodon^ ;ill North American Cretaceous symmetrodonts are rclerable to rhe
Spalacotheriidae. Spalacochcriids are distincrly diflexcnr from more primitive
symmetrodonts .such as Kuchneotherium in jaw structure (e.g., dctachment of
postdencar)' cléments, pre.scnce of pterygoid cresc) and molar morpholog)'
and function (e.g., development of continuons mesial and distal shearing sur¬
faces). To rhis extern, they are more clearly similar to tribosphenic therians
than are archaic symmetrodonts, although they are uniquely speciaÜzed.
Somc featurcs of advaneed spalacothercs, suth as the loss of the coronoid and
meckelian groove, dcvclopcd convcrgcntly in tribosphcnidans and many
other groups, and hence represent iicrarivc thèmes in the évolution of
Mesozoic mammals. Fearures of the molars and deniary suggest chat the
Family Spalacotheriidae is a monophyleric group, with the European
SpaUtcotherium and Chinese Zhnn^heotherium forming successive outgroups
to remaining gênera. Within the family, Norlh American taxa appcar lo
form a monophyleric clade, culminailng in rhc highty specialized
Symmetrodontoidn of lhe Latc Cretaceous; Microdersou, known only by a
single upper molar from the Cretaceous of Morocco, is of ciiigiliatic alTini-
ties. Spalacotheriids were clearly présent in North America by the Aptian-
GEODIVERSITAS • 1999 • 21 (2)
167
Cifelli R. L. & Madsen S. K.
Albian and, assuming chat North American taxa Form an endemic and exclu¬
sive monophyletic group, their présence on the continent cannot be atiribut-
ed to an hypothesized inid-Creraccous interchange with Asia. Instead,
phylogencric data suggest ihcir origin trom western Europe sonietimc in the
Early Crctaccous, siipporring the hypothesis that there was some dcgrce of
faunal continuity at that time between the two landmasses, based initially on
similariries of the dinosaur assemblages.
MOTS CLÉS
Symmetrodonca,
Spalacotheriidac,
phylogénie,
Crétacé.
RÉSUMÉ
Les symmètrodGnies spaincotheriidés (Mammalux) dtt Crétacé (Albien supérieur
ou Cénomunien in férieur) de la faune de Mussenwebit, Formation Cedar
Mountain, IJtah, T/S/l.
Les mammiterciJ symmétrodontes, qui sont généralement rares et mal repré¬
sentés dans le registre fossile, sont exccptionellemcnt abondants dans la faune
locale de Musscntuchit du sommet de la Formation Cedar Mountain »
(Albien supérieur ou Cénomanien inférieur), F.meiy County, Utah, USA.
Nous décrivons ici trois nouvelles espèces de symmétrodontes (il existe au
moins quatre espèces dans la faune de Mussenciiehii) ; une espèce sc rapporte
au genre Spalacotbertdium, connu par ailleurs dans le Turonicn (Crétacé
supérieur), et les deux autres sont attribuées à un nouveau genre. A l’excep¬
tion, peut-être, de Mictodon, lou.s le.s synimétrodonte.s nordaméricaias appar¬
tiennent à la famille des Spalacotheriidac. C^es derniers dillèrent nettement
des symmétrodontes plus primitifs tels que Kuehneotheriurn par la structure
de leur mâchoires (entre autres, le détachement des éléments postdenraires et
la présence d’une crête ptérygoïde) et par la morphologie et la fonction de
leurs mohiircs (eiurc auirc.s, le dcvclt^ppcment de suifaces coupanic.s conti¬
nues mésiales et distales). Sur ce plan, ils ressemblent plus à des thériens tribo-
sphéniques qu’à des symmétrodontes archaïques, bien que présentant des
spécialisations uniques. Quelques caractères de spalacothcres dérivés, tels que
la perte du processus coronoïde et du sillon de niecke! se développent de
façon convergente chez les ïribospbenida et de nombreux autres groupes, et
constituent des thèmes répétitifs dans révolution des mammifères méso¬
zoïques. Les caractères des molaires et du dentaire suggèrent que la famille
des wSpalacotheriidac constitue un groupe monophylétique, le genre européen
Spalacotherium et le genre chinois Zbangheotherium formant les extra-groupes
successifs des autres gcjims. Au sein de la famille, les taxons nordainéricains
sembleni consiiruer un clade monophylétique qui culmine avec les formes
hautement spécialisées comnH' Symwetrodontoides du Oeracé supérieur ; les
alFinitcs de Microdersoru connu par un seule molaire supérieure du Crétacé
du Maroc, restent énigmatiques. Les spalacorheridés étaient clairement pré¬
sent en Amérique du Nord dès l'Albien-Aptien et, si l’on admet que les
taxons nord-américains constituent un groupe monophylétique endémique
et exclusif, leur présence sur le continent ne peut êta- attribuée à un éventuel
échange launique avec l'Asie au milieu du Crétacé. Ln revanche, les données
phylogénétiques suggèrent que l'origine des Spalacotheriidac se situe en
Europe occidentale au Créracé inférieur, renforçant ainsi l'hyporhèse selon
laquelle il existait, â cette époque, une ceaaine continuité faunique entre les
deux continents, hypothèse fondée iniiîalemcnr sur les ressemblances obser¬
vées entre les faunes de dinosaures.
168
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from rhc mid-Cretaceous of Utah
0 10 20 km
I_I_I
INTRODUCTION
Symmetrodonts hâve long been accorded a criti-
cal position in mammalian évolution because the
principal cusps of iipper and lower inolars form
the “reversed triangle’" pattern that is widely
bclieved to be morphologically intermédiare bet-
wecn the serially tricuspid condition of tricono-
donts and the more claboratc molars of
tribosphenic mammals (e.g., Patterson 1956).
Unfortunately, tbeir fbssil record is abysmal, and
chcy are probably the worst representcd of ail
Mesozoic mammal “groups” (in a inorphological,
not taxonomie sense) - ilie receni discovery of an
exceptional spccimen from the IvUtc Jurassic or
Early Cretaceoius of China (Hu et ât. 1997,
1998) notwithstanding. Given the fact that
knowledge of symmetrodont diversity and mor-
phologv’ is poor, it is unsurprising that they are
generally omitted from compréhensive analyses
of mammalian phylogeny (e.g., Rowe 1988;
Wiblc 1991; Wibic ôi Hopson 1993; Rougier
et ai 1996), notable exceptions being the works
of Prothero (1981) and Hu et al, (1997). In
Fig. 1. — Outerop map of the Cedar Mountain For-
k mation, Utah (inset), and field area in Emery County.
Localilies are OMNH sites that produced specimens of
C Spalacotheriidae described in the text (see Cifelli et ai
y 1999, for sections showing stratigraphie positions of
( sites).
North America, symmetrodonts were long
known from the Lafe Jurassic only, as represented
by Tinodofi Marsh, 1879 and the probably syno-
nymous Eurylambda Simpson, 1929 (sec
Simpson 1929; Crompton & jenkins 1967;
Prothero 1981). Latcr discoveries rccordcd the
survival of apparent ‘*acure-angled” spalaco-
theriids, hitherto represented uniy in what wa.s
then considered the Jurassic of Hngland, in the
Early Cretaceous of Texas (Patterson 1955,
1956) and the Lare Cretaceous of Alberta (Fox
1972. 1976, 1985) and Southern Utah (Cifelli &
Madscn 1986; Cifelli 1990). Mictodon Fox,
1984, an apparcntly relictual taxon from the
Campanian of western Canada, represents the
only record of an 'obcuse-angled” symmetrodont
from the Cretaceous of North America (Fox
1984b).
Herein we describe new taxa of intermédiare âge
between these Early and Late Cretaceous records
in North America. One of the taxa, at least, is
represented by an uniisually comprehensive
sériés, affording the opportunity to examine
variation and positional changes in the molar
GEODIVERSiTAS • 1999 • 21 (2)
169
Cifelli R. L. & Madsen S. K.
scries, and prcsenting new information on chc
dentary oF advancfd Spalacothcriidac. Finally vvc
bricfly commciu on rhc stacus and placement of
thc Spalacoihcriidae wirh respect lo other sym-
mctrodonts and to more advanced mammal
groups, and provide an hvpoiliesis of relation-
ships within Spalacotheriidae.
rhc symmctrodont.s described hercin \vere col-
Icctcd hom thc Cedar Mountain Tormation,
Emcry County, Ulah. I his unit was named for a
sériés of terrigenous scdiincnlary rocks lying bet-
ween thc LJppcr jurassic Morrison Formation
and rhc Upper Cretaceous Dakota Formation
(Stokes 1944, 1952), and is broadly exposed in
central and e;isrern Utah {Fig. l). Five units (in
ascending order) of thc formation arc now reco-
gnized: thc Buckhorn Conglomerate, and ihe
Yellow Cat, Poison Strip Sandstonc, Ruby
Ranch, and Musseiuuchit members (Kîrkland
et al. 1997). The symmccrodont spccimen.s
resulted from a conccrtcd collccting effort in a
restricted stratigraphie intervaJ of the uppermost
unit, the Musscntuchit Member. 10-20 m below
thc contact with thc ovcriying Dakota For¬
mation. The spccimens described hetein dérivé
from eight sires (Fig. 1); the vast majority w'crc
collected from OMNH locality V695. Fhc fossil
horizon ac rhis locality ts dircctly oveiTain by a
volcanic ash. Multiplci concordant ‘^^Ar/^’^Ar
decerminâtions on .sanidinc phcnocfyst.s from
this ash, and from rhc samc horizon ncarhy^yield
a date of 98.39 i 0.07 Ma (Cifelli et ai 1997);
hcncc, the fauna is indistinguishabic in age from
the Albian-Cenomanian (Eatly-Latc Cretaceous)
boundary, placcd at 98.5 ± 0.5 Ma hy
Obradovich (1993) and ac 98.9 ± 0.6 Ma by
Gradstein et i?/. (1995)- Strarigraphic sections
showing placement of thc principal fossil locali-
ties arc given in Cüfelli ei al. (in press),
The vertebrate assemblage from the upper part
of the Cedar Mountain Formation, lermed thc
Mussenruchit local fauna, is known by more
than 5000 spccimens representing about 80 taxa
(Cifelli et ai 1999). Of rhe mammap, only the
marsupial or near-marsupiat Kokopellia Cifelli,
1993 (see Cifelli 1993; Cifelli Ôc Murzon 1997),
three triconodontids (Cifelli & Mndsen 1998),
and several multicuberculates (Eaton 6c Nelson
1991) hâve been described thus far.
METHODS
Specimens were recovered using a combination
of standard quarry procedures, through which
mosr of the dentulous jaw fragments and a fcw
of rhe larger isolatcd teeth were reœvered, cou-
pied wirh a largc-scalc underwater scrcenwashmg
operation (Cifelli et ai 1996: Madsen 1996). It
is wortbwhile pointing ont chat most of the iso-
latcd reerh were recovered from rhe fine fraction
of internested screen boxes, in which the corres-
pnnding screen si/.e was 30'mesh; had only wln-
dow screen been einploycd, as is commun
practice for Latc Cretaceous rocks of tlic DS, few
of thèse spccimens (rnost ol which bave a maxi¬
mum dimension of significancly less than I mm)
vvould liavebeen recovered.
Measiirernenis were raken with a Reflex micro¬
scope. which permits non-contact recording of
point coordinates in three dimensions; minimum
standard errors are ivvo microns on the x, y-axes
and five microns on the /.-axis (MacLarnon
1989). Reflex data nre autoniatically rccordcd to
0.001 mm, and rhese data arc reproduced Verba¬
tim here, alvhough we point oui that rhis dues
not lâke into accouni measuremem error (see
Liilcgraven & Bieber 1986).
Measurenients are shown in Figure 2.
Spalacotheriid molars are cxrremely small and
fragile; the luwer molar cingula are particularly
vulnérable to breakage. In order to maximize
sample si/.e foa* lower molars, we took standard
length and wîdth measurcmenrs minus the cin-
guluiu. We rerneUsured spccimens of other rele¬
vant Spalacrjtheriidae using tlie same procedure;
measurcments of Spalacotheroidcs bridwelli
Partersont 1955 are from an epoxy cast, and
those of Synmiet>’odontoidvs canadernh Fox, 1976
are from Fox (1976, fig. 5; 1985, fig. 1). Other
measuremencs were taken by defining points at
thc apiccs of chc primary cusps (pataccmid, pro¬
toconid, mctaconid) and calcuUiing: (1) the dis¬
tances between chem; (2) thc angle (hcrcin cailcd
rrigonid angle) formed her\vccn the points, with
the protooonid at thc apex. l‘hc trigonid angle is
tacher variable, even among teeth of chc sanie
locus. Considération of tooth niorpholog)' sug-
gests that the trigonid angle decreases with wcar:
the mesial and distal faces of the paraconid and
170
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmecrodonts from the mid-Cretaceous of Utah
angle
t
Fig. 2. — Spalacotheriid molars showing measurement conventions; A, right lower molar, occlusal view: B. right lower molar oblique
occlusolingual view; C. left upper molar, occlusal view. Abbreviations: angle, angle lormed by lines connecting apices of paraconid
to protoconid and metaconid to protoconid; ANW, anterior width (greatest width of lower molars); L. mesodistal length; pad-med,
distance from apex of paraconid to apex of metaconid: POW, posterior width; prd-med, distance from apex of protoconid to apex of
metaconid.
metaconid (respeccively) are rather vertical ^ where-
a.s thcir opposing faces slopc downward toward
cach other, so that thc apparent ccnters of the
cusps will migiatc toward cach other as wear pro¬
gresses. Wc also attempted to cake heighr measu-
renients. However, our efforts were frustrared by
our inability to define a repearable plane of réfé¬
rencé, and the fact that wear varies considerably
from one specimen to the next. Hence, réfé¬
rencés to différence in crown heighe arc qualita¬
tive only. For upper molars, we took measure-
ments (Fig. 2) analogous to those employed for
tribosphenic therians (see Lillegraven 1969,
fig. 5). Calculations, descriptive statistics, and
tests were donc vvith Systat version 7; original
data are availablc from the senior author upon
rcquest.
Dental terminology is shown in Figure 3. The
homologies of some of the upper molar cusps of
spalacotheriids and other symmetrodonts - e.g.,
the presence of a metacone (Butler 1939;
Patterson 1956) — are unclear, and the nomen¬
clature is inconsisrent. Most w'orkers hâve refer-
red to the three primary cusps of upper and
lower molars in primitive mammals as A, B, and
C; and a, b, and c, respectively (e.g., Crompton
&c Jenkins 1968; Cassiliano ôc CÎemens 1979;
Jenldns & Crompton 1979). Crompton (1971)
regarded the metacone of tribosphenic Theria as
a neomorph, and referred lo che disiolabial of the
three primary upper molar cusps as cusp we
follow convention in referring to this as cusp C,
in order to avoid confusion with lower molar
cusp c, thoiigh we point out that similar pro-
blems exist with this term, as upper molars of
primitive marsupials and certain other tribo-
GEODIVERSITAS • 1999 • 21 (2)
171
Cifelli R. L. & Madsen S. K.
A
distal stylar cusp
paraconid metaconid
Fig. 3. — Dental terminology employed in this paper ; A. upper molar (M4) of Spalacotherium {modified after Simpson 1928a, fig. 34,
and Patterson 1956. fig. 12): B. upper molar of Spalacolestes', C, lower molar of Spafacolesîes.
sphenic mammals hâve a stylar cusp C (see
Clemens 197*^-. we thank R. C. Fox for poincing
this out to us). Olher auihors (Butler 1939;
Patterson 1956; Kermuck et al. 1968; Prothcro
1981; Fiopson 1997) intcrprct cusp C — which
in spalacorhcriids (where présent) is located on
the postparucrista about niidwuy bctween the
paracone and the disiolabial corner of ihc tooth
- as homologous with the tribosphcnidan meia-
cone. Füllow'ing argunients presented by
Sigogneau-Russell &: Ensom (1998), we believe
this to be probable, but follow Hu er al. (1998)
in retaining the traditional nomenclature forspa-
lacorheriids. Certain spalacotheriids also have an
unusual cusp on the preparacrista, about halfway
between the paracone and the mesolabial corner
of the tüOth, where a second cusp is generally
présent. We follow Patterson (1956) and
Sigogneau-Russell &: Ensom (1998) in regarding
the latter cu.sp as the styloconc (see also
Sigogneau-Rus.sell 1991a), so rhat the cusp lin¬
gual to it (but labial to the pajaconc) is a neo-
morph. The most rcccndy applied term for this
cusp in the middie of the preparacrista is cusp Bj
(Hu et al. 1997), and ihi.s usage is adopted
herein. Symmetrodonc upper molars also com-
monly bcar one or more cusps placcd on chc sty¬
lar shelf, distal to the ectoflexus (if one is
présent). Thac ar the corner of the tooth may be
termed, by convention, the metastyle. The more
mesially placed cusp has been referred to as a
posterior stylar cusp (e.g.. Fox 1985) or, in aiia-
logy with the siniilarly placed cusp of triho-
spheoic therians (e.g.. Simpson 1929; Clemens
1979; Fox 1984a), as stylar cusp D (e.g.,
Sigogneau-Russell 1991b; Sigogneau-Russell &
172
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
Ensom 1998). Unforrunarely, the term “cusp D”
has also becn applicd to the metaîjtylar cusp (Hu
et al. 1997). In ortier to avoid confusion with
this usage or implicd homology with the similar-
ly-posirioned cu.sp of marsupials, placcntals, or
ihcrians of ‘'inetatherian-euthcrian grade," wc
refer to the cusp placed on the stylar shelf, distal
to the médian part of chc tooth but proximal to
the metasrylc (with which it should not bc
confused), as a "distal siylar cusp.”
The médial surface ol the deiitary in mammals
commonly beats a ridge, crcsi, or analogous
structure, gciierally near or ai lhe inferior margin
and located posterior to the mandibular fora¬
men, for attachment of the m. pterygoideus
medialis. We are unabic to find a standard anato-
mical term foi this structure, and various names
hâve been applied to it in the literature. Simpson
(c.g., 1926, 1928a) alternarively referred to this
structure as u "pterygoid crest" or “prerygoid
ridge,” soinecmies using botb ternis in the sarne
Work (e.g., Simpson 1929). Recent authors (e.g.,
Rowe 1988) somenmes refer to it as a "pterygoid
shelf,” and this term has become standard for
multiruberculates (e-g.^ Miao 1988; Gainbarayan
dit Kielan-Jâworowska 1995), in which tlic infe¬
rior margin of the dentarj’ is strongly inflecied
lingually. In order to promote précision in usage
and to avoid confusion in characcer srate or
implied homology (see discussion in Miao
199.5), we refer ro fhe structure in question sim-
ply as a "pterygoid crest," cxccpt wherc il is
obviously devclopcd inco a shelf, as in multi-
tuberculates, or into an inllectcd angle, as in
marsupials and some early Eutiieria (see Sanche/-
Villagra ôc Smith 1997, andbclow). At least, one
of the specics described hcicln is cburactcrizcd by
a pterygoid crest that bcars a hyperttophied,
process-like lingual extension that is unique,
so far as we are awarc. Lacking any standard
term for this feature, we refer to it as a "pterygoid
process.”
AlîBREVIA'nON.S IOR INSI ITUTIONS IN THE
TKXT
BM British Musciim, London, UK;
UK FMNH, Ficld Muséum of Natural
Hisiory, Chicago, Illinois, USA;
(il PST Institute of (ieology. Section ofPalaeonco-
logy and Srrntigraphy, Mongolian
Academy of Sciences, Ulan Bator, Mogo-
lian Peoples' Republic;
MNA Muséum of Northern Arizona, Flagsiaff,
Arizona, UvSA;
OMNII Oklahoma Muséum of Natural History,
Norman, Oklahoma, ILSA;
UALVT Uriivcrsity of Alberta Laboratory for
Vertebrare Pale4)ntology, Edmonton,
Alheria, Canada;
USNM National Muséum of Natural History,
Smiilisonian Institution, Washington,
D.C, USA;
YPM Yale Peabody Muséum, New Haven,
Connecticut, USA.
SYSTEMATIC PALEONTOLC9GY
Order SYMMETRODONTA Simpson, 1925
Cc)MMl.NTs. — rhis group was proposed by Simpson
(1925a) ro include rhen-known taxa (ali thought to be
Jurassic in age) having the three principal molar cusps
arrangecl in a triangular pattern, rherehy disringuLsh'
ing rhem from the serially iriciispid iriconoJonts,
wiih which they liacl heen prcviousiy groupecl {c.g.,
Osborn 1888, 1907). Symnicrrodonta h:ivc long been
conceivcd as u pataphyleric group (sec, c.g., Paitcrson
1956; Cas.siÜano àL Cilernen.s 1979, hg. 7-4), but tins
simple picture becamc increasingly complcx with the
discovery ol geulogicilly oldcr taxa, particularly
Rhacto-Liassic Kuihruvlherimn Kemiack et al., 1968
(sec Kermack e/ ai 1968) and, l.U'cr, Wouiersia
Sigogneau Russell, 1983 (see Sigogneau-Uussell 1983;
Sigogncau-Riissdl & Uahn 1995). Mandihles referrctl
ro Knehricoiherium. ai least, ictain a po.srdciuary
trough and attachment lacets (or ihe postdeiuar)' clé¬
ments seen in cynodonrs and primitive mammals such
as MtirganuviitliiH Külinc, 1949 ind docodonrs
(Kcrmack Musxett 1958; Kermack ci al. 1968;
Kermack er i^/. 1973; I illegravcn & Krusat 1991), and
lack derived features (silch ps a pterygoid crest) fouiid
in other mammals, meluding some iriconodoncs (c.g..
Rowe 1988; Wible 1991; Wible 6i Hopsori 1993).
Hcncc, eiihcr ihc mammalian middic car complcx or
the **revtrsed iriangle" pattern ol upper and lowct
molars evolved independciuly more than once; boih
cavscs bave been argued (sec, c.g., Allin & I lopson
1992; Roiigicr (T 1996). Prornero (1981) rcsoivcd
this probk-m hy excluding Kuchnctithcrium from
Symmetnxionta (sec aUo I lopson 1994), but his ana¬
lysis did noi incIudc non-tncrian groups, and it is
undcar how other. more rcccntly dc.scrihcd rax.i (c.g.,
WotitersiiK Zhitnghcotheriufn Hu et uL^ 1997,
Thereuodoii Sigogneau-RussdL 1989, Shaothcrtuni
Chow & Rich, 1982, Kotatherium Datca, 1981, and a
host of enigmatic taxa from the Campanian Los
GEODIVERSITAS • 1999 • 21 (2)
173
Cifelli R. L. & Madsen S. K.
Alamitos fauna i)f Argcniina: see retcreiices cited
above and Daic.i 1981; Chow & Rich 1982;
SigogneaU'kus.scII 1989: Bonaparte 1990; Sîgogncau-
Russell 1991 b; FVasad & Manhas 1997: Sigogncau'
Russell & linsoiTi 1998) would fit inco this schemc.
The situation is furchcT complicated by the laer that
some molars ot AmphÜcstidae, generally placed in the
Triconodonta (e.g., Üîinpson 1945), bave their princi¬
pal cusps arranged in an obtuse triangle, and a
relationship to SyinincTrodonra lias been suggesicd on
ihis basis (Mills 19"^!; see aUo Icnkins &c Scri;itT 1988;
and discLjsçion in Kieliyn^Iaworowska èc Dashzeeeg
1998). Fox (1985) proposée! a rrif'old classificadon ot
Symmetrodonta. including Tinodoniklac (coniaining
Kuebneothn'ium and scvcral oihcr taxa, as wcll as
Tirjodon). Kuehneathmum has heen shown to be high-
ly siniilai tu Tinodim (e.g.. Crompton ifc Jenklns
1967), but ils platcineut in ihc Tlnudotnidac is pla-
gued by flie sanie ditficulîy as irs referral ro
Symmetrodonta in general: ir rerains an extreniely pri¬
mitive javv structure, whereas in Titiodon the post-
dentary éléments were evidenily detached and a
pterygoid crest is présent (see Fruihero 1981). We qui
offer nothitig new lo solvc this dilemma and ibus hâve
not artcmpicd lo dePinc or dlagno.se Symmerrodonta.
However, there arc some data to uphold integrity ol
the “core" group, Spalacotheriidac. Pending hirther
analysis and, bopelully, nmre data Icum nie tossil
record, wo bnd it uscful ro reinin a iniditional, incln-
sive concept ot '‘synimetrodonrs” (c.g., C^assiliano &
Clemens 3979; Fox 1985). A rmmr. compréhensive
discussion of (lie prohicm in derming Symme-
trodonra. together vvitli a tliorough historical review
of relevant rax;u is given by Sicogneati-Russell &
Fnsom (1998)- McKcnria iU Bell (1997) distiibuted
ihc contents ot ibc Symmetrodonta aniong several
higher gronps within Mammalb, which rhev diagnos-
cd primarjly ou the basis pf derachmenr of acce.vsory
jaw bone.s (posrdeniary complex) trom the cranio-
inandibular joint and their association with the cra-
nium as éléments of the nuditory apparatiis. I his
arrangement implics a rcvcr.sdl for Ktiahneothifrium
which, as noted, cvidcntly retained a fuil complément
of postdentary element.s chat wcic wcll integrated with
the dentary.
Recently, the tenu “ I beria'’ lias been tortnaUy dclnied
as a crown-based raxon restricted to the common ances-
tor of marsupials, placentaU. and ail of iis dcscendant-s
(Rowe 1988). FIcrcin wc follow a more tradiiionaL
informai concept that aiso includes "Theria of meta-
therian-eutherian gradcT peramuruns, eupantotheres^
and symmetrodoncs (e.g., Patterson 1956), in récogni¬
tion of die current instability in phylogenetic interpré¬
tation of the major groups ofmaninials.
Family Sl'Al.ACOTHFRnDAL Marsh, 1887
Type GENUS. — Spalacotherium Owen, 1854.
iNcl.uni I) t,i;Ni:RA, — The type, and SpalacoiheroicUs
l’atterson. 1955; Symmetrodontoides Yox, 1976;
Spalactithcridium Cilcili. 1990; Microderson
Sigogneau'Russcll, 1991; Zhangheothenum Hu ei al.,
1997: and Spalacolates^ n. gen.
DiSTHiBi'riON. — ?Làtc jurassic through Ea-rly
Cretaceous, western Europe (Cleniciis 1963: Clenicns
& Lees 1971; Krebs 1985); Faily through Lare
Crciaceous. Nortb .America (Panctson 1955; Fox
1976); Late Jitravsic or Early C'rccaceous, Asia (Hu
et al. 1997): ?Early Cretaceous, northern Africa
(.Sigogneaii'Russell 1991b). Spalaaitherium was First
descrihed frotn ihc Purbcck beds, iradilionally regard-
cd as Upper liira.ssic (sce di.scu.ssion in (.’lernens ei ai
L979). Récent litetature increasingly refers the
nianimal-beiiriiig part n( the Puii>ct.k ro the Bcrruisian
(l.ower Crciacciujs, sec Allen (k Wimliledon 1991;
Kiclan-Javvofowska & Enaom 1994, Sîgogneau-
Russell & Ensom 1994; Ensom & Sigogncau-Riissell
1998).
Kl-VISEU I ïIAGNO.SI.S. — Sytnrnerrodonvs wiih lower
molars bcaring wcll-dcvelopcd primary cu.sps (para-
conid, protoconid. meraconid) arranged in an acute
angle, a reduced lalonid; fivc lower molars pivsciU in
Ztfanght‘othenuia, incrcasing to six or more, where
known, in orher laxâ. Uniï]ae pattern of inrerlocking
for lower molars, whereby the distal cingular tusp of
one molar is placed labial to the mesial cingnlar cusp
of rhe snccccding tooih. Upper molars piimitivcly
wnh acce.ssory cusp (Bj) on preparacrista beiween
paracone and stylocone.
COMMENTS
A more detailcd diagnosis of Spalacotheriidae
was given by Fox (1985)j bascd on rhen-known
taxa: SpciliiCuthcriuni^ SpuLicothetoide^^ and
SyjNmetwflohtoklt'i. The concept of the lamily is
broaderifd here lu include Zhanglnothcrium,
recently dcscribed from the Uatc Jura.ssicoi\ more
probably, Early Cretaceous of China (Hu ai
1997). By compari.son to icinaining spalaco-
thcMcs, /Jnmghcothmum wmld appcar to bc pri-
micive in some respects, such ,is rhe lower
niimber of mol.irs, ?bck of cotifinuoas mesial
and disral shearing surlacc.s on molars (upon
éruption), and. perhaps, fearures on the mcdial
sidc of the dentary (see below). In other respects,
such as the complété lack of cingula on the lower
molars, Zhangheothenum is strikingly atypical.
Nonethcicss, molar morphology is otherwise
similar to that of Spa'lacütherinmy particularly in
the presumably derived features cired in the dia-
174
GEODIVEflSITAS • 1999 • 21 (2)
Spalacotheriid symmecrodoncs from the mid-Cretaceous of Utah
gnosis. Wc tcntativcly follow Hu et aL (1997) in
rcferring Zhanf^heothcriiim to ihe Sp^laco-
theriidae. Cusp R, is presenr in Spalacotheriuyn
(e.g., Clemens 1963), Spalacatheroides (sec
Patterson 1956), imà Zhangheolbernim (sec Hu
et ûL 1997), rhc geologically oldcsr and, [or rca-
sons detailed below, considered by us to orlier-
wise be thc mosr primitive members ol the
Family. Wc therefore tentarively regard tlie pré¬
sence ot cusp B| to be primitive for (and dia¬
gnostic oF) Spalacotheriidae. Sigogneau-Ru.sscll
&C Ensom (1998) considered ihe loss of
Crompton (1971) s lacet A as characteri/ing
Spalacorheriidae. Ii i-s presenily uncertain as to
whether or noi lacet A is seen in Zhungheo-
theriîim, and this fcatiirc bas accordingly been
omiteed From the diagnosis, pending detailed
description of that taxon.
MierndersoHy rcprcscnced by a sitigle tootb belong-
ing lo ihe type and only spccies, M. lanronssii
Sigogneau-Rtisscll, 1991, From chc Early
Cretaceous of Morocco, vvas initially described as
a spalacotheriid (Sigogncau-Russcll 1991b), but
ils pertinence to tbc fiimilyhas rcccnrlv been cal-
lcd into question (Sigogncau-Russcll ^ Ensom
1998). We tcntativcly ineJude it Itère For thc sakc
of completcness but, bccausc it is poorty known
and of enigmatic aFfmities. inake only pa.ssing
référence to îc in the comparisons beiow.
Given the low known diversiry oF symme-
rrodonts atid their mcager reprcsentacion in rhc
Fossil record, ir contes as so(ncwbat of a surprise
that several species, collectively tepresented by
more thaii 250 spécimens, are presciu in tlic
Mussentuchit local fauna. Most of lhese spéci¬
mens are isolated teeih, ntany oFwhich are worn
or incomplète. I hist couplcd with dte Facts chat
the specicvS arc quitc similar to cach other and to
named taxa Front North America, chat thc rooch
rows include ntany molars (probably seven in the
lowcr sériés and six in the upper sériés) that are
rather simple and vary in only subdc ways front
one position to the nexc, and tliac itt> closciy
similar taxon is known hy anything close to a
complété dentition, inakes identification ol
taxon and toorli position less ihan straight-
Forward (see alsti Mills 1984). Wc gave lirsi consi-
der-ation in our analyses to the lower molar
sériés for several reasons. First, the sample of
lower molars is comparatively large, ihus permic-
ting slalistical ircatment and somc appraisal of
variability. Second, thc most morphologically
informative spccimens, hoth from the Cedar
Mountain formation and eisewhere (e.g., Fox
1976), are dentigerous mandibular fragments. A
final, most compelling rcason for giving primary
consider-ation to the lower molars is that the
holotypes ol ail spalacotheriid symniecrodonts
(excc'pL Microdersnn) include lower molars, and
most spccies arc bascd on lower molar séries or
individual teerh.
rite less numetous upper molars were rhen assi-
gned to lower molar taxa based on size and mor-
pbological considérations, and were .sorted to
locus (see beluw). judged From thc compo.silion
of the Mussetiiuchii local Fauiia (Cifclli et al.
1997, 1999) and coinparison wiih Spataco-
theriunt (see Simpson 1928a), .spalatotheriid pre-
molars are eJearly presenr in tbc existing collec¬
tion. No attempt was made co sort these
according to taxon, however, because of the diffî-
culties posed by assignment to locus; hencc, only
the molar dentition is considered herein.
I.OWTR MOLARS
Foriunarely, one of the taxa from thc Ciedai
Mountain Formation is known by a rclativcly
cnormous sample, several jaws arc included, ïtnd
as a rcsult the lasi four molar loci of rhe mandi¬
bular dentition arc represented by cccth in place.
A deiuary fragment pre.serving the amerior pan
of the molar sériés, including three loci, is known
for the closely similar Sytrnuetrodoaioidcs canU'
demh (see Fox 1972, 1976). Fhcsc spccimens,
togethet with comparison to che complète denti¬
tion pf thc somc-what ntore divergent Spalaco-
therium (see Simpson 1928a; Clemens 1963),
provide the Foundation for evaluating position of
isoiared reeth on thc hasis ol relative crown
height, dillcrcnccs in thc proportions ol thc lin¬
gual cLisps (paraconid, mctaconid), acuteness of
the rrigonid angle, configuration of thc lingual
cingulum, width to Icngch proportions, and
other considérations.
Once the lower molars were sorted to cheir relati¬
ve and approximate positions in the tooth row, it
bccamc apparent chat chrcc diagnosablc spccies,
differing in size (Fig. 4) and morphology, were
GEODIVERSITAS • 1999 • 21 (2)
175
ANW m5 ANW m3 ANW m1
Cifelli R. L. & Madsen S. K.
L m5 L m6
Fig. 4. — Bivariate scatterplots for lower molar length (L) and width (ANW) of Spalacotheriidae from the upper Cedar Mountain
Formation by inferred tooth locus. Symbols: circles, Spalacoîheridium noblein. sp.; squares, Spalacolesîes creîulablatta n. gen.,
n. sp.; triangles, Spalacolestes inconcinnus n. gen., n. sp.; diamond, gen. and sp indet.
présent in rhe sainpie; the well-represeiucd taxon represcnis a fourtli, unidentificd taxon. For the
just meniioned, knovvn by several jaws and near- ,spccic.s rcprç.scnicd by the largosi sample> il was
ly 100 isoFated molarst a .smaller .specie.s, repre- then po.ssiblc to condiici deiailcd comparisons in
sented by about 3^ isolaied teeih; and a larger order to ideinily tooth locus more prcciscly» eVa-
species, for which only thrcc lowcr molars are luace variabiliry ac cach looth position and ditt’e-
known. One problematic specimen evidently rences berween adjacent teeth (in ternis of their
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts trom the mid-Cretaceous of Utah
mea.surcmciusj, and estimatc* tlie niolar couru.
These results wcre thcn uscd for rcfincment of
identifications for thc othcr spccics. Description
of the resuit.s is deferred to thc individuol species
accounts. but some prchitoiy comnients are war-
ranted here becuuse of thc nccd to provide a basis
for comparisoii with prcviously dcscribed species,
and the iniplicalions of thc results prcsented
herein for interprcuuion of toorh position among
spccimens rcferrcd to thosc species.
As rnentioacd, the best-represented spalaco-
theriid of the Mussentuchii local fauna is known
by thc lasc four lowei molars in place, as well as
by a large samplc of isolatcd teeth. Excepi for the
lasr niolar, which is morphologicaJly distinctive,
it is not possible lo ideiuity positions of indivi-
dual posrerior inolars vvîth certainty because of
overlapping ranges of variation between loci.
Nonethcless, thc isolatcd molars fàll imo reco-
gnizable clusters corresponding to known toorh
positions, and wc consider uur identifications to
he probable, with niistaken identiry by more
than onc tooth position being unlikely.
Among the isolaved reerh rcprcscniing anterior
mular loci. one group is consistently and clearly
recogni/able. Based on known rrends in the denti¬
tion of spalacotherjids (e.g.. Simpson 1925b,
1928b; CIcmens 1963; Fox 1976), tliese teeth can
bc confidcntly idencified as ml. I he teeth ihat aie
morphologically intermédiare beiween this first
molar and rhe anreriormosi of ihose in known
cooth positions fall into vwo clusters, recognizablc
on thc basis of both qualiradve and quantitaiivc
chaiacteristics. Again,. huwevcr, because of over¬
lapping ranges of variabiliiy, individual teeth can
be identified wilh probability, not certainty,
according to position. Hence the available data
indicatc that, in rliis species at least, seven lowcr
molars wcrc présent, Rachcr than using quotation
or question marks on thc numerous spccimens
ciced below, wc simply aill attention to tlie facts
chat a complété dentition of a Norrh American
spalacotheriid remains unknown and ihat, in any
case. Identification of isolated molars (except thc
first and last, wliicli are morphologically distinc-
rive) cannor be esrablished unambiguously. even
wirh complète spccimens ac band for comparison.
The identincacions of teeth tu respective loci
should be regarded as tentative.
Of lhe remaining spalacotheriids from the
Mus.scnruchit local fauna, comparison wiili the
taxon jusi mcniioncd indicated that a second
species is represented by iccth recogniz.able as
belonging to thc fir.si six lower molar positions;
rhese will be rcferrcd to as ml-6. h is unclear as
to wheihcr an m7 was lacldiig in this species, or
is not represented in exiscing collections. The
rhird diagnosablc species is known by only three
lowcr molars, each recognizable as ro locus with
thc samc confidence as rhe morphologically simi-
lar, best-represented species.
Among described species of Non h American
Spalacotherüdae, the best known is Symmetro-
dontoidei canadensh, the holotype of which (UA
8588) consisis of an incomplète jaw with three
teeth. rhese werc idcmiticd by Fox (1976) as
probably represcnting m3-5. The basis for tins
ideniîHcation was a referred specimen, UA
12086, a mandibular fragment with a molari-
form looth considered ro be ml - The cooth of
UA 12086 bas a broadly obtuse rrigonid angle
chat, if compared co UA S588, would form a
graded sériés witli the teeth on thc lattcr spcci-
rnen, assuming that an unrepresented tooth posi¬
tion intervened beiween thc two spccimens.
Dentigerous jaws and numerous isolated teeth
similai' CO chat of UA 12086 are known from the
Odar Mountain Formation, and work in pro-
gress by one of us (RFC) indicares tliar tliese are
noi lowcr molars of spalacotheriids. Cairnparison
of UA 8588 to rite extensive sériés meniioncd
above indicates rhar the teeth in this specimen
arc mI-3. fox (1976) aiso referred an isolated
molar, UA I20S7, to Symmeirodontoldes mnit-
demis. As dcmonsirated by Fox. this tooth clearly
represents a more posterlor looth locus.
Considération of the proportional différences
between this specimen and m3 of the holotype,
together widi chc large samplc from the Cédât
Mountain Formation, suggesrs th;U UA 12087
probably is an m5 or, as Fox (1976) suggesied,
m6.
(3cher species are knowli by isolated teeth only,
and identification of looth po.siiion is more pro-
blematic. The first symmeirodont to be des-
cribed from the Crctaccous of Norch America is
Spcdncolheroides bridwelli, from rhe Aprian-
Albian of the Trinity Group, Texas. S. bridwelli
GEODIVERSITAS • 1999 • 21 (2)
177
Cifelli R. L. & Madsen S. K.
was based on a mandibular fragment wiih a
single lower molar (f*anerson 1955); scvcral
upper molars wcre larer referred to the spccies
(Patterson 1956). Patterson ( 1955) suggcstcd
rhat, as wirh Spalacotberhnv-, SpalavoTberoides
probably had seven molars, and rliac the tooth in
the hülotype (FMNH PM 93.5) is tbe ancepcnuP
timatc - i.e., ni5. Pox (1976) indicated rhat this
tooth bcst malchcs rhc second rooth on chc holo-
type of Synuneirodontoide^ catiadensis^ then iden-
tified as m3 or 4 and considered herein to be
ni2. We concur: in rerms of size and overall mor-
phology, we find PMNH PM 933 co bc most
similar to m2 or 3 SymmetrocloHtoides.
However, rite paraconid on PKINH PM 933 is
lacking. lx)r rhU reason, and because tooth locus
cannot be reasonably hypothesized without ocher
specimens belonging to the same species, the
lower dentaion oï SpitLicotheroides hridwelli tnasi
be set asidc kom comp.irisons for the tirne bcîng.
This species is said ro ditfer froni Spalucotherium
(see Patterson 1955) and ail other Spalaco-
theriidae (Fox 19^6) except Zhimgbeoîhermm în
having an incomplète labial cingulum. No otlicr
lower molars are yet known for S. bridwetlf. A
somewhav more obtuse-angled tooth (perhaps
ml), comparable in si/.e and overall gestalt to
FMNH PM 933, is now known from rbe
Cloverlv Formation (RLC, im[>ubli.shed data),
which is approxiniatel) équivalent in .ige ro the
part of* the d'rinity Group that produccd
Spidacotheroidvs (Jacobs et al, 1991). Unfortu-
nately, the labial side of this tooth is damaged,
leaving open tlie question of whether or not the
cingulum was complété,
Three spedes of Spalacotheriidac hâve been des-
cribed from chc Upper Crccaccous of Southern
Utah. SyninieirvdoiHoides foxi Cifelli <5^ Madsen>
1986, from the Wahw'cap Formation (assumed
to be lower Campanian and approximatcly équi¬
valent ro the upper Milk River Formation,
Alberta, which produced S. awadensiî), was
based on presumed m4 (MNA 4589, the holo-
type) and u referred tooth (MNA 4522) a.s.sumed
to rcprescnc m7 (Cifelli ik Madsen 1986). A new
specimen of this species. together with compari-
son to the extensive séries representing a morpho-
logically similar spçcics (rom the Cedar
Mountain Formation, suggests that MNA 4589
is an m2 and char MNA 4522 is m6 (or. less
probablv,. m5)î m4 of 5. fhxi is represented by
OMNFl 20135.
4 hc Smoky Hollow Alcmber of chc Straight
Clifts Formation, lare Furonian in age (Eaton
1991). bas yieldcd nvo spalacothcriids (Cifelli
1990). The présent comparisons, which incliide
new marerials, indicaie that the holorype of
Sjmwctrodontoides ohgodaatfis Cifelli, 1990
(MNA 5789) is probably mh (not m7 as origi-
nally thought), and that the original referred spe¬
cimen (OMNH 20381) represcncs ni4.
Newly-refen'ed specimens include MNA 6047
and 6755, tenrarively identified as m2 and m4,
respecrively: and 29523, a m.mdibular fragment
with m2 The holocype uf che diminative
Spalacothcridtuni mekeatuit Cifelli, 1990 is most
probably m2 (not m4 as originally believed);
newiy-referred OMNFl 29524, MNA 6046, and
OMNFI 29526 arc probably ml, rn4, and cor-
roded m6, rcspectivcly.
UpT'ER MO la un
The upper molars are e\4dently much more fra¬
gile and subject to breakage during the screen-
washing process; the sample from the Cedar
Mountain Formation includes only 54 catalo-
gued upper molars, as opposed to more than
200 lowers. Of tfiese, 45 upper molars pnwed
assignable tu species Iml only 31 were formally
induded in hypodignis becausc ol their greater
completcness; statistical analysis was prccludcd
by insiiffkient sainplcs. With one exception (des-
cribed utuler ?Spvalacotheriidae, indet.), the
upper molars readily fell inro three categories <m
the basis of size, as had been cstablishcd for the
lower molars. Within species, thcrc is variation
chai is cJcaiiy duc co tooth locus. Trends known
for symmerrodonts represented by dentulous
jaw'S (c.g., Spalacoiheriam, /Jkinghi'ojhenum, see
Simpson 1928b; Clemens 1963; Hu et ai 1997),
together with molars (Fox 1985.) of a species
similar ro chose from- the Cedar Mountain
Formation, pnwided rhe liMsis (or esrahlishing
which tceib were more arucriorly placed in the
jaw, and which of thèse represented rhc first
molar. For the most abundani species, ir was
then possible to .sort molars iryo discrète mor-
phological categories, and to document progres-
178
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from thc mid-Cretaceous of Utah
sivc changes chn:>ugh rhe upper .sériés. \Ve reco-
gnize six morphological categories among upper
molars of ihis species, and therefore tentarively
regard the upper molar couni a*s six. This^ accords
with rhe fact chat, in die lowet dentition, where
we believe seven molars are présent, m7 is rediic-
ed and lias a prcvallid (for shearing against rhe
distal face of IV16) but no posrvallid surface. A
differcnrial molar counr berween upper and
lower jaws is not wholly unexpecred, as the
condition îs known to occur in thc primitive spa-
lacoihcnid Zhangheotherium (see Hu et ai
1997). Simpson (1928a) regarded rhe upper den¬
tition of Peralestes (whicli we include in
SpaLicotherittni) as having seven molars. CIcmens
(1963) later showed rhat only six were présent on
one specimen, at leasr; ir is possible that molar
count varied in this taxon.
Identification of upper molars belonging ro the
most abundant spccies then served as rhe basis
for identifying loci among isolatcd teetli referable
to thc Icss abundant raxa from the Cedar
Mountain Formation, and for morphologically
similar species from elsewherc. l*ox (1985) refer-
red two upper molars to thc Aquilan spalaco-
iheriid Symnietrodimloides atnadenm and indicar-
cd that onc probably represents a more posterior
locus than the other. We find this indeed to be
the case, ont compari.son.s suggesting that
UALW 16271 is Ml or 2 and UALVP 16272 Is
M2 or 3 of this species. No upper molars hâve
yet been described foi .symmetrodonts from
Southern Utah. but matcrials in hatid suggest
that thc following arc represented: Symme-
trodontoides foxi, M4 (MNA V4653); S. oti^o-
doutas. Ml' (OMNH 29525), M2 (MNA
V6048. OMNH 29040), and M6 (OMNH
29039); Spalucotheridium njcke7)nal, M5 (MNA
V6756). Other spaka>thcriids for which isolared
upper molars bave heen described are problem-
atic bccausc only single teeth (rather thaa sériés)
are available, and they arc so different from thc
taxa considered here as to bc non-comparable,
Several isolatcd upper molars have been referred
ro Spalacorberoidei bridwM. Of these, FM N H
PM 1235 is relaiivcly long mesiodisrally and pro-
bably represents an ançerior position, as indi-
cated by Patterson (1956, fig. 1). A casr of
FMNH PM 1 133, which is just a fragment of a
tootli, suggest-s that this may have been a more
posterior molar. ’l'hc upper molar sériés is Icnown
for Zhangbeotheriu7n\ bowever. ihe prcliminary
description and available illustration (which
shows the upper molars in an oblique orienta¬
tion, Hu et ai 1997, fig. 2) permit only cursory
comparisons with remaining spalacotheriid.s. The
remaining taxon po.ssibly referable to
Spalacorheriitlae and represented by an isolatcd
upper molar is Mkroderson Ltaroussli. from the
Early Cretaceous of Morocco. As recognized by
Sigogneau-Russell (1991b), thi.s tooth is so dissi-
milar to upper molars of Synimetnukntoides (and,
by implication, to remaining taxa considered
here) rhat wc cannot hazard a guess as to its posi-
lion in the jaw.
SpalacOLESTINAE n. subfam.
Tyve genus. — Spalacolestes. n. gen.
Incluüku f.;hNhR/\. — The type, and SpaUcotberoides
I^arterson, 1955, Symmetrodontoides Fox, 1976, and
Spahicotheridium Cifelli, 1990.
DisrumUTlON. — Crciaccous (Aptian-AIhian ihrough
carlv Canipanian), Norrh America.
DiAGNOSiS. — Distingiiished from primitive spaiaco-
theiiids (Spulacütheriuw, Zhatighcothcrium) in posses-
sing the following derivcd features: molars more
acutely angled; anteriur upper molars with sirong
panistylc; uppet molars wilb preparacri.sta lowci ilian
postparaciista and with distal sndar cusp presenr,
pro.ximal lo the metastyle. Prerygoid cresc and pier)--
goid fossa, where known {Spabicolestes. Spalaeo-
tberoides) exrend anrerodorsally from mandibular fora¬
men roward alvcolar rnargin of dcniai*)'.
CoMMENTS. — As shown by thc comparisons
below, there is goud reason rt) believe that rhe
Norrh American Creraceous spalacothcriids forrn
a monophylecic assemblage with respect co
remaining members of rhe family. We fdrmalize
this rclationship by placing the Nortb American
taxa in rheir own subfamily, named for rhe besr
known genus (described below). Wirhin rhe sub¬
family, poprlv known Spalacothero/des is thc
i.ildesr and appears to retain the gr&.ite.st number
of primitive features. The remaining généra ni
Spalacotheriidae {Spalacotheriurriy Zhangheo-
GEODIVERSITAS • 1999 * 21 {2)
179
Cifelli R. L. & Madsen S. K.
theriurn), not rrcaccd in detail hcrcin, are rele-
gated. by default, co Spalacotheriinae (Marsh
1887), n. rank, which current évidence suggests
may be paraphyletic (sec below).
Spalacolestes n. gen.
Type specihs. — Spalacolestes creUilablatta n. sp.
Included SPECIES. — The type, and 5. mconcinnus
n. sp.
ErYMOlA)GV. — Spulax (Cîreek), mole, and a com-
monly used prefix for gênera oF this Family; lestes
(Cîreek), robber. plunderer, and a commonly used suF-
fix for généra oFsmall and presumably stealthy, preda-
ccous mamnrals.
Distribl 1 ION. — Albian-Ccnomaniun, western
United Srate.s.
DlAGNOStS. — Dibers Froni Spalacothcrium in having
more acutcly anglcd trigonids on posicrior rnolars and
in having lowcr molar paraconid miich lower chan
mciaconid. DiOers from Symmetrofhntoides in having
proportionarcly nairowcr posterior lowcr molar.s witn
more obtusely-anglçd trigonids and lessvr Keiglit ddfe-
rendal bcrw'cen paraconid and meiacxniid; ml diflci's
from ihat t»l Sytnfuetroçlouîoieiçs in Iraving lower, more
coniad paraconid and lowcr puraçristid. Lower rnolars
diftei (rom ihosc tif SpalacotheyifUuiti in Ir.iving a more
pronounced heighr dilïerentia! between paraconid and
metaconid. Upper moUis simibr, whcre known, co
chose oF SynjmenoclûHtoides. excepe chat Ml-2 hâve a
more bulbous-based paraconc witb a gcntly ciirving
(noi tighlly arced or foîdcd) lingual face. Upper
rnolars dllFer From tho.se ot Spalaentheroides and prtmi*
cive taxa in réduction ol rhe stylocone, lack ot cusps
Bj and C, présence of ati extremcly low pa*paracrista
(anterior loci onJy), and pte.sence ot an enkrged distal
scylar cusp. UiFFers From tbe orherwîse similar
Spalacotheridjum in having deeper irigon ba.sins and,
on posterior iippcr rnolars, patasiylc rcduccd.
Spalacolestes cretulablatta n. sp.
(Figs 6-11)
Hoeotype. — OMNH 29600, right denrary with
m4-7.
Hw^DKiM. — ’l be holotype, and the following speci-
niais:
|aws: deinaty witb m4-S, OMNH 2”421; deiuaiv
with m6. OMNH 27557.
Lower rnolars: mt. OVINH 26424, 26425, 26697,
29608. 30621. 33044, 33220; m2. OMNH 27451,
27511, 27541,32947, 33045, 33054, 33226, 33898;
m.3, OMNH 26698. 2:^591, 2763J, 33047, 33217,
33851; m4, OMNH 26419, 26420, 26422, 26704,
26708, 2"471, 27484, 27630, 30627, .30628, 30631,
33055, 33225, 33901; iii5, OMNH 26423, 2669 5,
26703, 26706, 26707. 27462, 29603, 29606, 30619,
30620, 33037, 33042. 33043. 33049, 33050, 33222,
33905; m6. OMNH 27425, 27464. 27569. 29601,
29767., 30622. 30625, 33040, 33046. 33048, 33218,
33228;, m7, OMNH 27463.
Upper muhirs: MT OMNH 26426, 33233; M2,
OMNH 26686, 2%l I, 32897; M3, OMNH 2^512,
33060; M4, OMNH 2668vS, 26693. 3061 I, 30612,
3305T 33231; M5. OMNH 25796; M6, OMNH
26691.30614, 32949.
.ADDITION’AI Kl-H-RItEl) SPECIMENS. — Incomplète
upper molar.s. locus uncerrain: OMNH 25795,
26427, 26430. 27632. 33056. 33058. 33059, 33235,
33237,33906, 33907.
LoC'AIIIIES ANE) HORIZON. — OMNH localities
\^235, V239, V695, V794, and V868 (Fig. !); upper
part ot (ledar Mountain Formation; Albian-
Ctnomanian.
HlVA-iOEOGY. -— Cremla (Latin, dim. ot creîa). chalk;
blatta (Latin), tuckroach. Allusion is lo rhe
C^recaceons age and leniarkablc, roach-like abundance
of the species.
DIAGNOSI.S. — l'hc smaller oFrhe rwo species reFerred
10 tbe genus. DiFFcrs From rhe sliginly smaller
Symntetradonwkles oli^odontos in ch.iraciers noied For
gcncric diagnosis ami in having Icss slender, antero-
po.stcriorly compresscd lowcr molar para- and rnetaco-
nids. Oiffers tiom S. foxi and S. ctwademis in generic
charactefs and in beiitg much smallcT,
COMMEN r.S AND DESCRIPTION
Loiaer malar sériés
Spalûctflestes cretiilahlatta n. gen., n. sp. is the
jTiost abüudanc therian mammal oF the
Musseniuchii local fauna and is represented hy
94 specimens ot the lower molar sériés. OFrhese,
the holotype préserves the lasC tour rnolars in
place, and tsvo other dentnlous jaws bave teeth oF
known position in the posterior part oF the
sériés. Tsolared teeth nor rcterable to these loci
can be sorted invo three groups ba.sed on crown
height, relative heighr and position of the para-
conid,, curvaiurc of the lingual cingulum, and
oiber charactcrisiit-s. Standard ineasuremenis lor
the.se teeth (labié 1) also group iiuo distinct
clusters; as nored above, wc rherefore recognize
seven lower rnolars. The most morphologically
180
GEODIVERSITAS • 19^9 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
Table 1 . — Descriptive statistics for lower molar measurements (mm) of Spalacolestes cretulablatta n. gen., n. sp. See Figure 2 for
measurement abbreviations and conventions.
L
ANW
Pad-med
Prd-med
Angle
ml
N
2
7
2
3
2
Range
0.989-1.016
0.750-0.856
0.730-0.750
0.559-0.716
61.771-68.440
Mean
1.002
0.801
0.740
0.652
65.106
CV
0.019
0.052
0.019
0.126
0.072
m2
N
3
4
4
3
3
Range
0.496-0.529
0.694-0.752
0.431-0.444
0.415-0.480
45.600-50.309
Mean
0.515
0.721
0.437
0.448
48.163
CV
0.033
0.037
0.015
0.073
0.049
m3
N
8
10
8
8
7
Range
0.562-0.705
0.809-0.975
0.369-0.552
0.498-0.663
42.738-48.260
Mean
0.626
0.878
0.473
0.562
45.950
CV
0.083
0.059
0.113
0.099
0.051
m4
N
14
16
11
12
11
Range
0.470-0.675
0.736-0.963
0.359-0.472
0.496-0.598
29.714-40.046
Mean
0.601
0.868
0.413
0.598
35.068
CV
0.106
0.075
0.087
0.086
0.094
m5
N
18
19
12
14
10
Range
0.387-0.612
0.742-0.876
0.362-0.469
0.501-0.610
34.071-40.857
Mean
0.533
0.811
0.406
0.563
37.656
CV
0.107
0.046
0.085
0.055
0.063
m6
N
13
14
9
8
7
Range
0.381-0.555
0.651-0.826
0.288-0.424
0.402-0.630
31-920-37.643
Mean
0.480
0.749
0.347
0.522
34.239
CV
0.101
0.072
0.117
0.134
0.059
m7
N
2
2
0
0
0
Range
0.383-0.410
0.484-0.487
-
-
-
Mean
0.396
0.485
-
-
-
CV
0.048
0.004
—
distinctive molars, identified as mU hâve a low,
anteriorly placed paraconid, somewhat lower
Crown in general, low crown width to length
ratio, and vvide irigonid angle (grcater than 60*^).
rhe second and ihird lower molars are progressi-
vely shorter, wider, and tailcr crowned, wich a
more acute trigonid angle ( làblc 1 ; Figs 4-5) and
bases of paraconid atid inctaconid more closcly
approximated; difletences in mcans for dimen¬
sions of ml and m3 are significant at the p =
0.05 level, whcrea.s that for the trigonid angle is
not (Table 2), These trends are continued
through the fourth molar; the différences in
width and length are not .significaiit between m3
and m4, whercas fhar (or the trigonid angle is:
m4 has a mtich more aciite angle (Tables I, 2),
The fitth lower molar Ls ncarly as tall as m4, but
tooth length and width dccrease past m4, and
the différences berween mcans arc highly signifi-
cant. Values for trigonid angle overlap considera-
GEODIVERSITAS • 1999 • 21 (2)
181
Cifelli R. L. & Madsen S. K.
Fig. 5. — Proportional différences (length, wldth. trigonld angle) according to toolh locus for lower molars of Spalacolestes cretuta-
blatte, n. gen.. n sp. Symbolsicircles, ml; squares^ m2: upward pointing triangles m3; diamonds. m4; downward pointing tri¬
angles. m5: hexagons. rnS (m7 is omitted because il lacks a melaconid and lhe irlgonkj angle cannot be calculated).
bly between m4-6 (see commcnts above), and no
consistent pattern is recognizablc. On posterior
molars, thcrc is a tcndenc)' For the paracristid to
bc slightly longer than tlie protocristid, whcreas
the reverse is rrtie For Syrunietro^/onroides. l he
sixth lower molar is lower crowned and sniallcr
than mS. The last lower molar, m7) is lower
crowned yet and is by lar lhe smallcst in che
sériés. The nietaconid on this toorh is lacking
From OMNH 29600 (the holotype) and from
one isolatcd, rclcrrcd specîmen. We consider it
unlikely rhat présence of rhe ciisp is variable
within the spccies, given the distinctivcness of
m7, although it is curions that so few molars
assignable lo this locus were rccovercd, in view of
rhe large samplcs of more mesial teeth. The lack
of a funcriona! posrvallid surface on m7 suggests
chat, as in Zhangheotberhiw (see Hii et ai 1997),
Spülacolesrcs atiulMima had one fewer molar in
che upper than low^r sériés. Changes in propor¬
tions and trigonid angle ihrtîiigh rhe molar sériés
are summarized in Figure 5, and a composite res-
torarion is shown in Figure 6C, 19.
Ail lower molars are douhic-rooccd. None of the
isolated reeth préserves both roots intact, but
comparison within this sample, together wich
preserved alveoli on the jaw fragments assigned
to Spalacolestes cretidablattay indicates that the
182
GEODIVERSITAS • 1999 • 21 (2)
Spalacothcriid symmetrodonts from the mid-Cretaceous of Utah
Table 2. — Two-sample / test (independent / test) comparing mean measurements for adjacent lower molars. Spalacolestes cretula-
blatta n. gen., n. sp. First and last molars omitted because of insufficienl data (IM for samples are given in Table 1).
Length
Width
Pad-med
Prd-med
Angle
m2 VS. m3
Différence between means
0.111
0.157
0.035
0.114
2.213
Pooled variance /
- 3.514
- 5.664
- 1.111
-3.228
1.371
Degrees of freedom
9
12
9
9
8
Probability
0.007
0.000
0.295
0.005
0.208
m3 VS. m4
Différence between means
0.024
0.011
0.060
0.035
10.882
Pooled variance t
0.911
0.437
2.935
-1.460
7.568
Degrees of freedom
20
24
17
18
16
Probability
0.080
0.061
0.009
0.016
0.000
m4 VS. m5
Différence between means
0.068
0.057
0.007
0.035
2.588
Pooled variance t
3.195
3.238
0.487
2.135
-2.041
Degrees of freedom
30
33
21
24
19
Probability
0.003
0.003
0.631
0.043
0.055
m5 VS. m6
Différence between means
0.053
0.062
0.058
0.041
3.418
Pooled variance /
2.685
3.899
3.554
1.887
3.097
Degrees of freedom
29
31
19
20
15
Probability
0.012
0.000
0.002
0.074
0.007
roots were subequal in size (excepc for m7, in
which rhc distal root is sinaller) and inc.siodLstally
compîressed, witli a charactcristic .subrcctangular
cross section tliat makes edentulous spalaco-
Icstinc inandibles easily recognized us such. l’be
cingulum is complété on ail lower molars and Is
cspecially scrong on tbe lingual side of ml
(Fig. 7A, B,)> where it shows almost no flexurc;
on subséquent molars, il dexes dorsally bctween
che bases of paraconid and meraconid. 1'lie cin*
gulura descends considerably as !t extcnds pasr
the inrerstirial régions ol ihc Looth, so tbal tbe
labial pari of the crown is miich bigher dian the
lingual sidc. Mcsiolingual and distolingual eus-
pilles are présent on the cingulum-, as ibey are in
other Nortb American Spalacotheriidae; lhese arc
variable but are gcnerally salieitï, projecting
somewhat mcsially and distal ly (as well as dorsal-
ly) from the cingulum. The paraconid and meta-
conid of ml (Fig. 7At B) bave conical, well-
separated bases wKen viewed lingually; the mera¬
conid is about tAvo-rhirds the beigfit ol rhe pro¬
coconid, whereas che paraconid is less. Lhaii
one-half the height of that cusp when the tooth
is viewed lingually. On m2 (Fig. 7C, D), the tri-
gonid angle is more acure, and the bases of para¬
conid and mctaconid are mtjrc closely
approximated because the former cusp is more
posteriorly placxd* The paraconid is idacivcly taJ-
ler lhan on ml, but lower rhan un succccding
molars. The meuconid of m2 is more siender,
with H less robust base, chan on ml. The lingual
cingulum dcvelops a pronouneed lingual flcxure
on m3 (l'ig. 7h, F), and this continues on suc-
ceediiig molars. Yhc labial face of ebe protoconId
on this and succceding reerh is less rounded and
more sharply folded than on inl-2; the meta-
conid i.s nearly as rail as the pmtoconid, with the
paraconid being only about half as tall as the
proroconid, viewed lingually. Of the two basal
cuspules, tbe discal fi.c„ calonid) lends lo be tbe
more prominenr and projecting; the succccding
tooth fus ivito ilic concavity of the distal cingu¬
lum lî/nned labial lo ihc distal cingular cusp (sec
Fox 1976). By m4 (Figs 70, FI, 8, 9), the bases
of paraconid and mctaconid arc appressed, wiih
a more slendor, anteroposteriorly compresscd
appearance than on anterior teeth, when viewed
GEODIVERSITAS • 1999 • 21 (2)
183
Cifelli R. L. & Madsen S. K.
Fig. 6. — Composite lower molar sériés in occlusal (A, C, E) and lingual (B, D, F) views; A, B. Spalacoîheridium noblei n. sp.;
C, D, Spalacolestes cretulabtatta n. gen., n. sp.; E, F, Spalacolestes inconcinnus n. gen., n. sp. Tooth sériés scaled to relative size.
184
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
Fig. 7. — Scanning électron micrographs, lower molars of Spalacolestes cretulablatta n. gen., n. sp.; A. C, E, G, I. K, M, lingual
views; B, D, F, H, J, L. N, occlusal views: A, B, left m1 {OMNH 28424); C, D, right m2 (OMNH 33226); E, F, left m3 (OMNH 33851);
G, H, left m4 {OMNH 26422); I, J. right m5 (OMNH 30631); K, L, right m6 (OMNH 27557); M, N, left m7 (OMNH 27463). Jaw frag¬
ments and roots eliminated where needed to improve clarity. Scale bar: 1 mm.
GEODIVERSITAS • 1999 • 21 (2)
185
Cifelli R. L. & Madsen S. K.
lingually. Lovvcr molars 5 an J 6 (Figs 7I-L» 8) are
similar, but progressivcly smallcr, with crown
height dfcreasing aftcr an apparent maximum at
m4'5. The last lower molaj* (Figs 7M. N, 8) is
distinctive in its mueh smailcr sizc; although it is
two-roored like more anterior ceeth. che meta-
conid and protocristid arc lacking, and che distal
cingulum is expanded. The posteriormosr molar
(m7) SpaliU'Oihcnnm is idso quite sinall, but ir
retains a full complément of trigonid cu-sps (see
Clemcns 1963).
The available sériés oi lowcr molars of Spalnco-
lestes cretukihlntta enconipasses a widc variccy oi
wear stages. As wear progresses, ihe V-.shapcd
notches in paracristid and protocristid hecome
rounded and U-shaped. On mf, wear is heaviest
on the protocristid, which develops a facet that
dips distally. The wear tacers on paracristid and
protocristid are rarher oblique tu the occlusal
plane in early wear, progm.ssively hecoming more
parallel lo thar plane. In advanced wear stages
(e,g., OMNH 27569, m6), the crown forms a
continuons, concave, rriangular wear surface that
dips slighrly in a mcsial direction. Obliquely
oriented striations are présent on prevallid and
postvallid faces of worn molars; thèse arc more
pronouneed and recogni/able on m4-(?, whcre rhe
mesial and distal faces of rhe teeth are somewhat
more planar than on more anterior molars. whcre
lhey arc more convex, The rini of ihe cingukun
forms a sharp ridge in unworn teciii, c.spocially
mesially and distally. With wear, small intemitial
lacets de\'clop mesiall}' and distally, and the sharp
mesial and distal rims are bcveled off into rather
fiat, obliquely oriented lacets.
Mandible
Asidc from small fragments, tlie detuary of
Spalacolestt's trciuLibLum is known from n \'0 spé¬
cimens, OMNH 29600 and 27421 (Figs 8, 9).
OMNH 27421 préservés the horizontal ramus
ventral to the level of ml, the posterior alveolus
of iti2, the base of m3, m4-5 intact, and paired
alveoli for m6-7. Most of die ascending ramus
and angular région arc missing. OMNH 29600
(the holot)pe) includes che hori/onwl ramus pos-
terior to m3 and préservés m4-7 in place. The
crown of m4 is hroketi from its b:LSC and is rota-
ted and dispiaced; minor postmortem rotation
and displacemcnl of the other molars fias aiso
occurred. The posterior and inferiur mai'gins of
the angular région arc intact, excepr for the loss of
the condyle. The posterior margin is intact for a
short distance dorsal lo rhe position of rhe condy-
le: rhe coronoid process is broken obliquely and
irs fvill extent cannot bc determined.
The horizontal ramus (Figs 8, 9) bas a veiy gracile
appearauce compared to tfiat of SpciLlcothcrii^m.
The ventral margin of the liori/oniul ramus
appears somewhat bowed in latéral view, owing
to a slightiy greater depth bcneach m4-5 dian
antcriorly or posteriorly. In dorsal view (Figs 8B,
9B), the ramus is relativcly .setaight posterior to
the icvcl ot m3; anterior to rliat tooth position, it
ciirvcs mcdially. The ascending ramus arises
about a molars Icngth posterior to ihe position
ol m7 and angles dorsally at about 45° with res¬
pect to the alveular margin ol the horizontal
ramus. The posterior pan of the jaw is aiso
remarkably gracile in appeârance, the bone beiiig
very rhin in comparison to the far more rohust
(and larger) mandible of Spalacotberium.
Froporcionately, the ascending ramus is much
longer anceroposteriorly ihan it is in Spnlaco-
thenum.
On the latéral sidc u( ihe jaw (Fig.s SC., 9C). the
masseccric foss.i is well marked and, owing to the
fotm of the angular région (sec helow) and latéral
flexurc of the anterior margin of the ascending
ramus, lias the appearunce ol being quite deep.
T here is nn labial mandibiiLir toramen présentât
the apex of the masseteric Ibssa, as thcrc is in a
number of otiier primitive mammals (c.g.,
Dasivzeveg îk Kidan-Jaworowska 1984; Marshall
&: Kiclan-Jaworowska 1992; Cifelli et al. 1998),
although there is an extreincly small nutritive
foramen in one spécimen (OMNH 29600) ai a
point somewhat dorsal tu the apex of the masse¬
teric fossa.
Tfie atuerioi margins ol the ascending ramus and
nias.scfcric lossa l1cx strongly in a lareral direction
as they rlse above rhe alveolat margin ol flic jaw.
.Sirnilarlv. the interior margin of the dciuary in
the angular région ha.s a salieiit latéral dellcction.
1 bis .strongly dcflccted angular région and latéral
flcxure ol rhe anterior margin ot rhe ascending
ramus, rogeihcr with sunilady strong featums pn
the lingual side of the mandible, give the dorsal
186
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
Fig. 8. — Dentary of Spalacolestes creîulablaîta n. gen., n. sp. holotype (OMNH 29600), right dentary with m4-7, in lingual (A):
occlusal (B), and labial (C) views. Scale bar: 2 mm.
GEODIVERSITAS • 1999
PJH
Ir i
f' Æ- i
h J
Fig. 9. — Dentary of Spalacolestes cretulablatta n. gen., n. sp. (OMNH 27421), left deiitary with nr»4'5, in lingual (A), occlusal (B),
and labial (C) views. Scale bar, 2 mm.
(Figs 8B, 9B) and posterior views of the man-
dible in Spalacolestes cretulabLitta an appcarance
thac is unique, so far as we are aware, among
Mesozoic mammals.
On the lingual side ot the jaw (Figs 8A, 9A), a
strong crest, which we interpret as being for die
insertion of the m. pterygoideus mcdialis, des¬
cends posreroinfcriorly froni the junction of the
horizontal and ascending rami, beginning jusc
below the alveolar margin. This crest screngthens
to a shelf as it passes just inferior to the mandi-
bular foramen, which has double openings for
the mandibular canal on one spccimen (Fig. HB).
Fhe mandibular fonurten is comparattvely large
and faces posrerolabially, owing to the great deve¬
lopment of rhe pterygoid crest beiicath, the anre-
rior and posterior margins of the mandibular
foramen are dcvclopcd as lips that projccc lin-
gually as they descend to the pterygoid crest. A
short distance posterior to the mandibular fora¬
men, the pterygoid crest is developed as a sallent
process that thickens into a robtist tip. A deep
188
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Crctaceous of Utah
Table 3. — Measurements (mm) and descriptive statistics for upper molars of Spalacolestes cretulablatta n. gen., n. sp. See
Figure 2 for measurement définitions.
M1
M2
M3
M4
M5
M6
L(N)
_
2
1
4
1
3
L (Range)
-
1.164-1.225
0.747
0.669-0.846
0.684
0.546-0.552
L (Mean)
-
1.195
0.747
0.745
0.684
0.549
L(CV)
-
0.036
1.000
0-103
1.000
0.006
ANW(N)
1
2
1
5
1
3
ANW (Range)
1.084
0-971-0.988
0.949
0.942-1.113
0.745
0.614-0.682
ANW (Mean)
1.084
0.979
0.949
1.034
0.745
0.656
ANW (CV)
1.000
0.012
1.000
0.065
1.000
0.056
POW (N)
-
3
2
5
1
3
POW (Range)
-
1.152-1.168
1.028-1.038
0.871-1.090
0.962
0.757-0.888
POW (Mean)
-
1.160
1.033
0.994
0.962
0.813
POW (CV)
—
0.007
0.007
0-107
1.000
0.083
pocket is enclosed berween rhc pterygoid process
(lingually) and the body of thc dentary (labially).
Where présent, the pterygoid crcst commonly
exrends posteiiorly to thc condylar région in
Mcsozoic mammals (e.g., Triconodontidac,
Tinodontidae, Dryolcsiidae, see Simpson 1928a,
1929): in Spalacolestes cretulablatta, ii terminâtes
at thc posterior margin of thc proccss, ’J'he ptery¬
goid fossa is very broadly developed anterior to
the mandibuUf foramen^ Mnd in this respect dif-
fers from iliat oïZhangheotheriunt.
No meckelian groove or postdentaiy trough are
apparent, nor are scars for the coronoid or other
postdentury boues, as commonly seen in primi¬
tive mammals (Kerniack Ôe Mussett 1958;
Kcrmack et ai. 1968; Dashzeveg 6c Kielan-
Jaworowska 1984; Kielan-Jaworowska &
Dashzeveg 1989; Krebs 1991; Lillcgravcn
Krusat 1991; Nessov et al. 1994). A vestigial
trace of the meckelian groove is présent vinterior-
ly on the dentary Zhaughecftheriuw, but a
postdentary trough is lacicing. The condyle is noi
preserved, but its position is shown by a slight
rhickening of bone just ventral to the- preserved
posterior margin of the ascending ramus in
OMNf] 29600 (Pig. 8A, C). The condyle would
have been situated ac, or sHghtly below, the
alveolar margin of the horizontal ramus, lower
than in Spalacotherium (e.g., BM 47750).
Upper molor sériés
The upper molars (Figs 10, 11) are two-rooted.
They lack a lingual cingulum (although a faint
basal sweiling is variably présent), as seen in
Symmetrodonloides canadensis (sec Fox 1985),
and cusps on che pre- and postparacrista, as seen
on upper molars Spalacotherïiim (see Simpson
1928a), Spalaeothtroides (see Patterson 1956),
and Zhangheotbetiurn (sec Hu et al. 1997).
Acuieness, iransvcrse width. and height of thc
prcparacrista relative to thc posrparacrisia incrctse
trom Mi to M4. wluch is almost completely
symmetrical. The parastylar Jobe and distal stylar
cusp art promineiii on anterior molars (as they
are in Symmetrodotttoides), and decrcase through-
out the sériés. By contrasta che parastylar lobe is
more strongly developed on posterior upper
molars of Spalacotherium (see, e.g., Clcmcns
1963). The paracone is mrjst distally rccumbcnt
on Ml, decreasing in recumbency through M4,
where it is symmetrical arid crect. Past M4,
molars arc progressively smaller fiable 3), narrow-
er labiolingually, and hâve a more posteriorly
placed paracone, A contposite restoratjon i.s
shown in Figure 1 I; many of thc trends évident
in the restored séries are also seen in ihc compo¬
site of Ktiehaeotherium (sec Mills 1984).
The disrolabial parc of Ml (Fig. 10A> B) is not
preserved on available spccimcns. ’Fhe paracone
is strongly recumbent distally; iis mesial face is
rounded, lacking rhe "pinched" appearancc, wich
relatively straighi shearing surface, of more distal
tccth. A weak ridge, which develops heavy wenr
on its occliisal surface, descends almost vcrtically
from the apex of the paracone down its meso-
labial surface; this is équivalent to thc prepara-
GEODIVERSITAS • 1999 • 21 (2)
189
Cifelli R. L. & Madsen S. K.
Fig. 10. — Scanning électron micrographs, upper molars of Spalacolestes cretulablatta n. gen., n. sp.; A, C. E, G, I, K. occlusal
views; B, D. F. H, J. L. meslal views; A. B, left Ml (OMNH 26426); C, D, left M2 (OMNH 26686); E. F. left M3 {OMNH 33060);
G, H, left M4 (OMNH 30611); I, J. left M5 (OMNH 25796); K, L, right M6 (OMNH 26691). Jaw fragments and roots eliminated where
needed to improve clarity. Scale bar: 1 mm.
190
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
Fig. 11. — Composite upper molar sériés in occlusal view. A, Spalacotheridium noblei n. sp.: B, Spalacolestes cretulablatta, n. gen.,
n. sp.; C, Spalacolestes inconcinnus, n. gen., n. sp. Sériés scaled îo relative size.
crista, but a crest as such is noc dcveloped until
rhis surface approaches the parastyle, where its
presence is only faindy suggested. The parastyle
is very low, being placed near ihc base of the
Crown, and is developed as a promincnc, mesially
projecting lobe» A small accessory shclf descends
lingually from the parasrj'lar lobe ncar the labial
terminus ol the preparacrista, terminating ar che
base of the crowai; there is no other htnt of a cin'
guluni, alrhough the enamel is variably swollen
on the lingual base ofthe tooth.
M2 (Hg. lOC, D) is generally similar to thar of
Symmetrodontoides. although the parastyle and
meta.style are Icss dcveloped. It differs from Ml
in havinga flattened mesial (prevallum) shearing
surface, more strongly dcveloped preparacrista,
more acute angulation, less reciimbcticy of the
paracone, and less proniinenc, bulbous parasC)'lc.
1 he postparacrisca descends ar a sreep angle from
the apex of the paracone, forming a V-shaped
norch near the base of rhat cusp. The crest ter¬
minâtes near the distolabial corner of the tooth,
not quite reaching the small metastylar cusp.
From the merastyle, a faint crest descends lin¬
gually for a short distance along the disral ftee of
the tooth, terminating near the base of rhe tooth.
This crest (perhaps a remnant of a cinguliim)
evidently formed the margin of the occlusal sur¬
face of ihc tooth, perhaps serving as a guide for
rhe corresponding IcAvcr molar shearing surfhcc:
ir is oricneed at the same angle as wear striations
lücated higher and more lingually on the same
surface of che molar (c.g., OIVINH 32897:
Fig. lÜC, D). Mesial to atul separate from the
metastylar cusp is a prominent, mesiodistally
elongate, trenchant srylar cusp, as seen in
Symmetrodontoides. This crestlike cusp extends
mesially to rhe ectoflexus, whcrc ic mccts a lower
crest de.scending distally from che région of rhe
stylocone. 'fhe lacrer cusp is noc preserved on
available specimens but, if présent, it was small.
None of the M3s in the sample is complété, but
GEODIVERSITAS • 1999 • 21 (2)
191
Cifelli R. L. & Madsen S. K.
available specîmens show a continuation of
trends estahlished in ihe uppcr molar sériés: die
trigon is more acute and dccply basincd; die
paracone has only slight recunibency; clic prc-
paracrisia is reladvcly liighcr; and rhe stylar cusp
is smaller. One broken specimen (OMNII
33060; Fig. I0E> F) préserves rhe paraconal
crests in prisdne condition; cu.spules arc lacking
froiii rhese.
M4 (Fig. |0G, H) is rhe most traii.svcrsclv deve-
loped, acLiie-angled, nearly syinmeirical cooth ot
rhe sériés; in SpaLneotberium (including
Peralestes), ir is M3 chat appears to bc most near-
ly symmctrical (Butler 1939). The paracone is
mesiodistally compresscd, wich a distinct lingual
fold, and is not recuinbenr. AJI specimens are
almosi pcrfeccly symmetricah esxepr for minor
différences in chc parasryhir and metastylar
régions. The pre- and postparacrisrae are equal in
height, enclüsing a radier deep trigon basin, with
Hat, .strap-like faccts (as dcscribed for Symme-
trodontoideSy sec Fox 1976, 1985) on their occlu-
sal surfaces. I hc labial surface of the tooth bulge.s
adjacent to dic labial terminus of the preparacris-
ta, suggesting the présence ot a small stylocone
(obliteraicd by wcar on availabic specimens).
Mesial to this, the parastyJe is nuich reduced,
forming an incoiispicuous knob at the mcsiola-
bial corner of the tooth. Fhe mera.style is similar-
ly developed; just mesial to it, ihe niesiodistally
elongate stylar cusp is [neseni along the margin
of the stylar shelL This sr>'lar cu.sp is variable in
developnieiu, being largcsc in die figured spéci¬
men (OMNH 30611; Fig. lOG, H), but is much
reduced in conipanson to more anterior niolars,
l'hc cusp descends niesially as a crest rimming
the stylar shelf and enclositig the trigon basin
labially in the région of chc cctoficxus, where
there is variably (C)MNH 26693, 30611) a sniall
cuspule présent.
M5 (Fig. 101, J) is |ess transverse and forms a
more obtuse angle than M4. It i.s sonicwhat
lower crowned as well, although rhe prC' and
postparacristac arc high relative co the apex of
the paracone, and enclose a deep trigon basin.
The paracone is more distally placed than on M4
or preceding molar.s, recalling the condition in
tribosphenlc dicrians, where the protocoiie is
more distally placed on distal molars. The trend
in die molar sériés roward réduction ol tlie para-
st}4e is complété: no trace of it rcmalns. I hcre is
a faint trace of die metasiyle ac die distolabial
corner of rhe tooth. Fhe distal margin ol dic sty-
lar shelf is fonned bv the stylar cusp, which has
rsvinried apices in the single complète specimen
(OMN'H 25796; Fig. lOJ, J). l'iiis specimen is
virtualiy unworn, and shows (again) the lack of
acces.sory cusps on the pre- and postparacrista. It
also shows thaï the stylocone, worn away in most
other specimens availabic, is prc.Sent and i.s deve-
loped as a trcncliant, mesially placed counterpart
to rhe distal sr)'lar cusp.
M6 (Fig. lOK, L) is smaller and less transverse
ihan M5. Parastylc and metastyle are lacking,
and the labial part ot the tooth is insread occu-
pied by ilie stylocone and the distal stylar cusp,
the lattcr not quicc extending to the distolabial
corner ol the tooth. The paracone is more pos-
ceriorlv placed than on M5; the distal face of the
tooth is distinctive in heiiig ciirvcd, with a
rounded distolabial corner thac differs from the
more angular appearance of preceding molars.
Spalacolestes inconcinnus n. sp.
(Figs 6, 11-13)
Hoi.otvte. — Right m4, OMNH 33903.
HvrooiGM. — The holotvpe, and ml. OMNH
33039; m3. 33897; M2, 33034: M4, 3391 1.
Log-mity an'd HOKi/oN. — OMNH localin' V868;
uppcr part of Cedar Mountain iHirmarion; Albian-
Cenomanian.
FiVMOKït.V- — U-atin), awkward, coarse,
în rcferencc to die appearance of tite tcedi wlicn com-
pared to dic daiiiiy, élégant rnorpliology gcncrally
characicri/ing smaller .species of Spalacoihcrüdac.
DlAGNX)Sfs. — J ht* larger of tlic iwo .spccles referred
to the genus; lovvvr tin)lar ciiiguluin better developed
niesiolaliially on tnl lhaii in Spalacolestes crftulublatta^
iVoin which ii also differ.s in liavitig the trigon Ixisin
incompletely enclosed ar the cctotlcxiis ol posrerior
uppcr molars. Larger than Synimetrodotito'tdes frxr,
approximately similar in si/.c to S. catiadcmis^ from
which il dirfer.s in having pioportionately narrower
lower molars and other genenc tharacterisiics.
DesCRIV I ION AND t.'OMMENTS
Teeth of S. inconcinnus n. sp. resemble those of
192
GEODIVERSITAS ■ 1999 • 21 (2)
Spalacotheriid symmetrodoncs from the mid-C'recaceous of Utah
Table 4. — Measurements (mm) of Spalacolestes inconcinnus n. gen., n. sp.; see Figure 2 for measurement abbreviations and
conventions.
Tooth
L
ANW
POW
Pad-med
Prd-med
Angle
ml
_
1.248
_
_
_
_
m3
0.962
1.270
-
0.667
0.739
43.097
m4
1.050
1.314
-
0.660
0.877
39.444
M2
1.861
1.356
1.601
-
-
-
M4
1.033
1.608
1.564
—
—
-
S. cretulûblaïuî in most charactcristics» difFering
chiefly in thcir much grc.iter size (Fig. 4) and in
features probably rclaccd co size (such as ciisp
robusticity). S. inconcinnus is much less common
than cither 5, cretuinblatta or Spabjcotheridiurn
noblei n. sp., bcing represented by only fivc
molars, two from the upper dentition and three
from the lower.
The lower molars arc so similar to those of 5. cre-
tulnblnttii that only a few commerits arc warran-
ted. l'he cinguliim is more strongly dcvelopcd
than in S. cretulablatto, particularly on ml
(Fig, !2A, B). In addition, it appears that, in
.S* iticnncintais^ ihe paraconid is lower relative to
the metaconid at corresponding tooth positions.
Variability cannot bc assesscd with the sample in
hand, however, and this po.ssiblc diftcrcncc has
accordingly been omirted from the diagnosis.
Rg. 12. — Scanning électron micrographs, lower molars of Spalacolestes inconcinnus n. gen., n. sp.; A, C, E, lingual views; B, D, F,
occlusal views: A, B. right ml (OMNH 33039); C. D, left m3 (OMNH 33897); E, F, right m4 (holotype, OMNH 33903). Scale bar:
1 mm.
GEODIVERSITAS • 1999 • 21 (2)
193
Cifclli R. L. & Madscn S. K.
Fig. 13. — Scanning électron micrographs, upper molars of Spalacofestes inconcinnus n. gen.. n. sp.; A, C. occlusal views; B, D,
mesia! views; A. B. left M2 (OMNH 33034); C. D. right M4 (OMNH 33911 ). Scale bar; 1 mm.
The only upper molar of 5. inconcinnus in which more bulbous, with a more pronounced labial
the roots can be seen is OMNH 33034 (M2; bulge, than in S. cretulablatta\ a vveak cresi, bare-
Fig. 13A, B), where cwo are présent. A faint swel- ly hinted at in the latter species, extends lingually
ling on the postparacrista, aboiir two-thirds of into ihe trigon basin Irom the base of the stylar
the distance front paracone to mctasryle, suggests cusp. The présence of a small stylocone can be
the possible présence of a ctisp on rhis crest, but contlrmed on M2 of 5. inconcinnus. On M4
breakage in this région prccliides judgmenl on (Fig. 13C, D), ihc para.slylar région and distal
this point. The crest descending lingually front stylar cusp arc more bulbous than in S. cretiüa-
the metastyle on M2 is stronger but shorter than blanUy so that the ectoflexus is deeper, although
it is in S. cretulahLttta. The distal stylar cusp is the distal stylar cusp of 5. cretulablatta variably
194
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Crciaceous of Utah
projecrs farther labially than in thc single known
M4 of S. inconcinnus. Howcver, thc crcsts des-
cending to the ectoflcxus from the styloconc and
discal stylar cusp arc very weak, so that the trigon
basin is not cnclosed labially, as iï is in S. cretula-
hLittü. OMNH 33911 includes ihe M4 embed-
ded in a hagmcnr ol the maxilla. The labial
margin of the toorh is oricnted at a high angle
with respect to thc latéral sidc of the maxilla (the
parastyle is near tlic latéral margin ot thc maxilla,
whercas the distolabial corner of thc tooth is
some distance from ic), suggesiing chat the ros-
trum flared latcraJly in this cegion (l-îg. 13C).
Genus Spal^icotheridium Cifclli, 1990
Type SPECIES. — spalacotheridium mekennai Cifelli,
1990.
Inci.UDED SPECIES. — The type, and
Spalûcotheridiîim noblei n. sp.
Distribution. — Albian-Ccnoniani.in throiïgh
’l'uronian, Utah.
RrAaSED DIAGNOSIS. — Spalacotheriids differing Irom
other members of the family in rheir small size (maxi¬
mum length and widrh niea.suremeius ol molars gene-
rally Icss lhan 0-75 mm), l.owcr molars differ from
those Spalaauhcrium in being more nearly symme-
trical ana acutely an^led; from Spalavothcroides in
having a complcie Tibial cingiilum; and from
Synmutrodonioiden and Spalacolenes in being lower
crowned, with paraconid and metaconid suhequal in
development and uf approximately équivalent hciglit,
only .slighrly lower than the protoconid, and in having
posterior molars that are proportionately narrower
and hâve mare obtuse rrigoniu angles. Upper molars
distinct from Spiihnorhemda in ihc piescncc of a lar-
ger distally pluted srylar cusp and more promineni
parastylar hook (anrerior loci), the kck of cusps Bj
and C, and thc extremely low placement of the prepa-
racri.sta (anterior loci). Upper molars dilfer Irom those
of Sthdacolcstes in having a .shallower trigon basin, and
in tne présence of a prominent parastyle on M6.
Comme,NES
This genus was originally bascd on a single inolar
of the type and then only specie.s (Cdelli 1990).
The recovery of anorher specics, repnesented by a
much more extensive sample from the Cedar
Mountain Formation, upholds thc morpho-
logical distinctiveness of thèse tiny symme¬
trodonts. Lower molars of Spalacotheridium are
generally similar to Spalacotheroides, except for
the described lack of a labial cingulum in the lai-
ter, but available materials Spalacotheroides do
not permit comparison betwcca thc two. in
concrast, thc upper molars of the two taxa arc
quiie different. By comparison with Spalaco-
therium, Spalacotheridium appears co be primitive
wirh respect to Syfnmetrodiniîoides and Spulacu-
lestts \y\ the features cited in the diagnosis.
Spalacotheridiuin noblei n. sp.
(Figs 6, IL 14-16)
Hourm'E. — OMNH 25828, left m4.
HypoimEiM. — rhe hointype, ond thc tollowing isoJa-
red teerh:
Lower molars: ml, OMNI! 25609. 3.5038, 33205,
33221; m2, OMNfî 30623. .53219; m3, OMNH
27261, 29605, 30630. 32948. 33041.33229, 33900;
m4, OMNH 25794, 26421, 27424, 27441, 27593,
29766. 30626, 30629, 32946. 33215. 33902;
27258. 27629. 29607, 29653, 33052, 33053, 33224,
33899; m6, 29602.
Upper molars; M), OMNH 26429; M2, OMNH
33061; M3, OMNI 1 .50618, 3.5895; M4, OMNH
26689. 26692, 30617. 33232; M5, OMNH 27595.
3.3912; M6, OMNH 27'i61.
ADDITIONAE REEERRED SPECIMENS, — Incomplète
upper molars, locus uneertain: OMNH 26687,
33236.
Dh.alitie.s and HCmiZÜN. — OMNH locaiitics
V235. V239, V240> V695. V696, V80L and V868;
upper part of Cedar Mountain Formation; Albian-
Ceiioinanian.
F.i vMOiûtfV. — For the .Samuel Roberts Noble
Foundation oFArdmore, Oklahoraa, in récognition of
its support for the Okiahoma Muséum of Natural
Historv'.
Diagnosis. — Differs from the most similar species,
S. mekennai, in having smaller (espccially in Icngth)
lower molars, wirh more acurc trigonid angle on ni4.
COMMKNT.S AND DESCRIPTION
S. noblei is rnrher similar to S. mekennai and is
distingnishable bccausc the sample of lower
molars is sufficient to show thaï the few known
spccimens of the latter fall oiitside thc range of
size variation in 5. noblei. The holotype of
5. mekennai (MNA 5792), idcntified as m2, has
GEODIVERSITAS • 1999 • 21 (2)
195
Cifelli R. L. & Madsen S. K.
Table 5. — Descriptive statistics for lower molar measurements (rnm) of Spalacotheridium noblei n. sp. See Figure 2 for measure-
ment abbreviations and conventions.
L
ANW
Pad-med
Prd-med
Angle
m1
N
1
4
0
2
0
Range
0.888
0.692-0.722
-
0.532-0.626
-
Mean
0.888
0.710
-
0.579
-
CV
1.000
0.018
-
0.115
-
m2
N
2
2
2
2
2
Range
0.447-0.482
0.475-0.601
0.359-0.398
0.396-0.441
49.781-54.643
Mean
0.465
0.538
0.379
0.418
52.212
CV
0.053
0.166
0.073
0.076
0.066
m3
N
6
7
5
7
5
Range
0.421-0.539
0.633-0.795
0.340-0.411
0.416-0.511
42.789-47.581
Mean
0.490
0.711
0.393
0.460
45.490
CV
0.087
0.090
0.076
0.072
0.042
m4
N
10
12
8
9
8
Range
0.411-0.559
0.559-0.745
0.318-0.389
0.402-0.562
33.018-41.155
Mean
0.485
0.678
0.358
0.490
38.105
CV
0.080
0.073
0.064
0.093
0.075
m5
N
7
8
2
5
2
Range
0.409-0.465
0.608-0.720
0.348-0.360
0.424-0.492
37.875-39.004
Mean
0.446
0.671
0.354
0.452
38.439
CV
0.043
0.067
0.024
0.055
0.021
m6
N
1
1
1
1
1
0.352
0.537
0.270
0.400
36.642
length and width proportions siniilar to those oF
m3 in S. Noblei, which is considcrably larger, but
the trigonid angle of MNA 5792 is much greater.
When coniparcd to m2 of 5'. nohleU on the other
hand, MNA 5792 differs grcatly in its propor¬
tions, falling near the maximum for width and
the minimum for length (Tables 5, 6), Ail molars
of S. noblei arc sliorter than m4 of S. mckennaly
which has a relatively obtuse trigonid angle, des¬
pire its tooth position.
The lower molars of Spabtanheridium noblei dif-
fer from chose of Spolacolestcs and Symrnelro-
dontoides in being proportionateJy lower crown-
ed, wirh somewhat more obtuse trigonid angles at
corresponding tooth positions. The most ncarly
complété ml is ÜMNH 25609, which lacks only
the tip of the metaconid and parts of the cingu-
lum adjacent to chat cusp (fig. l4A. B). The
paraconid appears to be relatively taller, with a
broader, more robust base than is the case in
Syinmetrodontoides or Spalacolestes^ although it is
Table 6. — Upper molar measurements (mm) of Spalaco-
ttieridium noblei n. sp. See Rgure 2 for définition of measure¬
ments. Where more lhan one spectmen was measureable a
range is given: sample size for each appears in parenthèses.
Tooth
L
ANW
POW
M1
1.175
M2
-
—
0.896
M3
0.646
0.743
0.917-0.957 (2)
M4
0.537-0.551 (3)
0.628-0.827 (2)
0.754-0.838 (3)
M5
0.649
0.795
0.746-0.838 (2)
M6
0.435
0.548
0.441
196
GEODIVERSITAS • 1999 « 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
Fig. 14. — Scanning électron micrographs. anterior lower molars of Spalacotheridium noblei r\. sp.; A. C, E. lingual views: B. D. F.
occlusal views; A, B. left ml (OMNH 28429); C. D, right m2 (OMNH 33219); E. F. left m4 (holotype. OMNH 25828). Scale bar:
1 mm.
still lower than the metaconid. As in ail other
North American Spalacotheriidac, ml is morpho-
logically disiinctivc l>y viriuc of the anicrior pla¬
cement of ihc paraconid. Lengch to width
proporcion.s appcar lo change ihrougli the molars
sériés about as in Spalacolestes crctuLiblaïUi,
known by a much larger santpic; chc teeth arc
lower crowned clian in Symmetrodontoides or
S[fnLu'oleste<. The second niolar (Pig. l4C, D) is
considerably shoncr than the first; absolutc widih
increascs rhrough m4, wirh m5-6 being sequen-
tially shorrer and narrower than m4 (Table 5).
On m2 and succeeding ceeth, the paraconid is
subequal ro the metaconid and both citsps arc tal-
1er relative to the [irotoconid than in SpaLicolestes
or Symmetradontoides. blowcvcr, the paracristid
dips slightly lower in Its médian notch than does
the protocri-stid. I he cingulurn Is complète and,
as in Spalacolestes and Symmetrodontoides, bears
prominent cuspules at the mesio- and disto-
lingLial corners of the tooih. Also as in thosc taxa,
the Crown is much taller labially than lingually,
and as a resuit, dic cingulurn descends noriceably
as it proceeds labially from the inrerstitial régions
of the rooth. On m4 (pig, ]4E, F), the metaconid
is somcwhac more lingtially placcd than the para¬
conid, so ihat the protocristid is slightly longer
chan the paracristid — a condition reminiscent of
what is seen in Syînmctrvdontoidcs^ although riot
so extreme, and the posterior molars never achie-
ve rbe remarkablc transverse expansion seen in
rhat genus. The dental formula cannot he establi-
shed with ceriainty. Identification of OMNH
29602 (Fig. 15C, D) as m6, however, scems
probable bccausc of its .small si/.c. low crown
height, and proportions, fliis specimen appears
to hâve an interstitial weai facet on the distal cin-
gulum, süggcsting the présence of a seventh
molar; we tentativcly regard the lower sériés to
include seven molars.
GEODIVERSITAS • 1999 • 21 (2)
197
Cifelli R. L. &c Madsen S. K.
Fig. 15- — Scanning électron micrographs. posterior lower
molars o! Spalacothêridium noblei n. sp.: A, C. lingual views; B.
D. occlusal views; A. B. left rn5 (OMNH 27629); C. D. left m6
{OMNH 29602). Scale bar. 1 mm.
Wear on molar cu.sps and crcst.s* prcvallid and
posrvallid .surfaces, and cingula is similar ro thaï
seen in SymmcfrodojitoùJes and Spalacolestes (sec
Fox 1976: Cifelli & Madsen 1986; and descrip¬
tion above, see aiso Croinpton tt ai 1994 for
discussion of the relatioaship betwecn apical
wear, shearing surfaces, and enamel microstruc-
ture). Strap-like faccts dcvelop along the dorsal
surfaces of paracrisiid (whcrc it develops earliest
and most strongly: c.g., OMNH 27424) and
prorocristid, joining ar rhe protoconid; as wear
proceeds, these gradually form a triangular,
concave facet with an emarginaced base (cotres-
ponding ro the notch betwecn the bases of para-
conid and metaconid). An unusual variant is
OMNH 33899i a heavÜy worn m5 in which
wear is sironger on the labial than lingual side of
the tooth, with the resuit that the paraconid and
metaconid are taller than the protoconid.
Upper molars (Figs 11> 16) are generally similar
to chose Spitlacolestes vrvtuLxbLitta and will be
dcscribcd only whcrc chcy dilTcr or providc addi-
tional information. Ml (Fig. I6A. B) i.s slightly
worn, but shows that the styloconc was lirtie
dcveloped or ah.sent. The parascylar shelh which
descends lingually from rhe mesolabial corner of
the tooth, bas a more planar surfnce th;in in
Spalacokstes cretulablatta. This may bc rclaced to
differing wear on the available spccimcns: the
parastylar shelf beats a wear ficct that is conti-
guoLis with the prcvallum shearing surlacc, sug-
gesting thar the shcll may hâve sen^ed as a guide
for the occluding lower molar. No complété or
lightly worn spécimens of M2'3 (Fig. I6C) are
available; as far as can be deierinined, they show
the progressive narrowing of ihc paraconc and
réduction of paiastyle and metascylc seen in
5. cmukblam (Fig. 1 i ); the metâ.srylc appears to
be less developed on corresponding teeth than in
that .species. The irigon hasin is not nearly as
deep as in 5. cic'lukbldtta or Syfnntetrüdiy?noides\
this is particularly noiiccableon M4-5 (Fig. I6F-
1), in which ihcrc is littic relief on spécimens that
are only lightly worn (c.g.. OMNH 26692,
27595). As with Spalacolestes and ^yntme-
trodomoi4^s^ M4 is the most transverscly deve¬
loped of the upper molars, and is almost perfect-
ly symmetrical. M6 (Fig. 16J) is impressive by
virtue of its minu.scule .size, probably being -smal-
1er relative to MS than in SpaLtcolestes. Il is simi¬
lar in having a ciirved distal surface and n.mnded
metastylar région, but differs in being less trans¬
verse and in having a more prominent, projec-
ting parastyle.
?Spalacotheriidac gen. & sp. indet.
(Hg. 17)
SiM-CIMKNS. — Anterior lower molar, probably m2,
OMNH 33896 (OMNH localiry V868); posterior
upper molar, perhaps M6, OMNH 29612 (OMNH
localiry V695).
COMMENTS .AND DESCRIPTION
Two specimens (one upper molar and one lower
molar) from the upper Cedar Mountain
Formation cannot bc referred to any of the three
species descrîbed herein, and rhus document the
présence of at least one more species of non-
198
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
Fig. 16. — Scanning électron micrographs, upper molars of Spalacotheridium noblein. sp.; A, C, D, F, H, J, occlusal views; B, E, G,
I. mesial views; A. B, right Ml (OMNH 26429): C. right M2 (OMNH 33061): D, E, right M3 (OMNH 33895): F, G. lefî M4 (OMNH
26692): H. I, left M5 fOMNH 27595): J, left M6 (OMNH 27461 . Scale bar: 1 mm.
tribosphenic Theria in the Mussencuchit local
fauna. If locus is corrcctly interpreted, the teeth
appear to corne from animais of rarhcr differenr
size; henccv rhey cannot be referred to rbe same
species bascd on présent knowledge.
The lower molar (Fig. 17A, B), tcntatively iden-
tificd as ml. is intccmediatc berween ml and m2
oF Spalacoiestes or Spalavatheridium in terms of
length-width proportions and general appearan-
GEODIVERSITAS ■ 1999 • 21 (2)
ce: the paraconid is somewhac displaced anterior-
ly and in this respect is reminiscent of a spalaco-
rhcrîid ml (although ir is not nearly so anteriorly
placed as in ml of ail taxa known from the
North American Crciaccous), yet lliis cusp is
better dcvcloped, the crown is tallcr, and the rri-
gonid angle more acute than is gcnerally seen on
that tooth. The.se features suggest that it i.s m2,
implying that the specimen may represent a
199 I
Cifelli R. L. & Madsen S. K.
mesiodisial brcadth and low heighi of thc para-
cont relative co rhe rest of che crown> and pos¬
sible projecting parastybu région (ihc looth is
brokcn), suggcst that il represciits a posccrior
locus, probâbly thc last (M6, if thc dental formu¬
la was as hypothcsizcd for Spalacolesies). The
metastylar cusp is promtnent, and there is a
second cusp (C) on rhc postparacrisra, about
midway borwcen thc paracone and thc metastylar
cusp, and separated from the latter by a slight
notch. A weak crest extends into thc trigon basin
from thc base of thc paracone. The prcpai'actista
is slightly lowcf chan thc postparacrista, and
bears à cusp (B|) that is somewhat doser co the
stylûconc (which is brokcn) chan thc paracone.
Discal co die scylocone is- a smati but trenchant,
mesiodistally elongate cusp chat rims the labial
margin of the trigon basin. A crest extending dis-
tally from this cu.sp does not quitc rcach the
metastylar casji, leaving thc trigon basin open
distolablully.
The présence ol cusps B, and C’ on ihc pre- and
posiparacri.scae suggests tliar thc tippcr molar (like
thc lowcr) represents a more primitive taxon tivan
naincd spccics ol Spalacotheriidac Ironi thc mcdial
and l.atc C'rccaccous of North America, and are
rescmblanccs to taxa such as Sfhdacotheyoides (sce
Patterson 1956. fig. \)^ Zhangheotberunn (sce llu
et al. 1997^ fig. 2), and Spalacotherium (see
Simpson 1928a, fig. 34): but it dearly düfers Jrom
upper inolars of dicsc as wcll. indecd» ihe presence
of a cresr extending kbially from che paracone is a
siniilarity to dryolestoids. Lacking any rcasonable
basis for comparison, we defer further comment
on rhese puzzling specimens pending recovery of
additionaJ materials.
Fig. 17. — Spaiacotherüdae gen. and sp. rndet, A, B. left m2?
{OMNH 33896) in occlusal (A) and lingual (B) views: C. right
M6? (OMNH 29612) in occlusal view. Scale bar; 1 mm.
more primitive spccics than others known from
the mcdial and Latc Crcraccous of North
America.
The upper molar (OMNH 29612; Fig. 17C) is
strongly dksimilar to chose ed Symmetrodontoides,
Spidacotheridhiniy Jnd Spalacoleste.^. The absence
of a metastylar projection, curvaturc of thc post¬
paracrista and rounding of the metastylar région,
Genus Symmetrodontoides Fox, 1976
Type sSPECIES. — Symmetrodonloides canadensis Fox,
1976.
Inclltded SPECIES. — The type, S. foxi Cifelli &
Madsen, 1986, and S. oligodofitos Q\ic\\\, 1990.
DlSTRinu TION. — Turonian rhrough early
Camp:inian. western North America.
Rl-VI-Sl-J) DI/UINOSls. — Large spalacotheriids differing
from other niembers oF rhc family in having propor-
tionately broad, acutely-angled posterior lower molars
200
GEODIVERSITAS • 1999 ■ 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
(m4-6). Differs from SpaLirotheridhon in hnvini; lin*
gually pbced pdraconid itid hcîghi difïcrcnnaî bel*
ween paraconid and rneiaconid; diffcrs from
SpaLicolrste^ in h.iving more pronouneed heieht diffe-
rential bciwccn paiaconid and nietaconid; difrers from
boih in having i.iller paraconld un ni], with raUer
paracristid. Ml-2 differ from rhose SpaLicolestes znà
SpaLicotheridium in having a paracone with less bul-
bous base and lingual face tightly arced or foldcd» not
genily curving.
COMMKNTS
Syynmetrodontoides is not présent in rhe Cedar
Mountain Formation; its contents and diagnosis
are included lierein only to pruvide a basis for
comparison. More extended diagnoses of
Syjnmetrodontoides wert given by Fox (1976,
1985), based on comparison with SpiiLicothenum
and rhe single lower nudar of Spalacotheroidcs.
The discovery of additional taxa from the
Cretaceous of North Atnerica shows that certain
feaCLires cired in the earlier diagnoses of
SymmeîrodufUotdes, such as the présence of a
labial cingulum and rhe progressive change in
trigonid angle of the lower molars sériés, hâve a
broader distribution rhan previously known.
DISCUSSION
Fragmcntary as they are, new materials from the
Cedar Mountain Formation of Utah add sub-
stantially to knowledge of symmerrodonr diversi-
ty and morphology in the North American
Cretaceous. Bccausc many taxa are based on frag-
menrary, offen non-comparable remains: because
their teeth (upon which most taxa are based) are
of ratber simple construction; and because they
remain poorly known in general, wc do not
believe that existing data arc sufllcicnt for syn-
thetic considération of symmerrodonr pbylogeny
in the context of early mammal radiations.
Accordingly, we restrict our treatmeiit of rela-
tionships to discussion of character distributions
and their possible implications for affinities of
and within the Spalacotheriidae, summarizing
these data in a traditional hypothesis of relation-
ships within the fîmily.
Sigogneau-Russell & Fnsc>m (1998) hâve present-
ed a detailed treatment of molar characteristics
in vSymmeirodonta (induding many enigmatic
taxa not treated herein), and we hâve relied oix
their work in compding the following compan-
sons. Thèse auchors aiso point ont that, in a
numher of respects, molars of spalacotheriid
symnietrodoncs are dilïicult to distinguish froni
chose of certain dryolesioid eupaniotlieres:
indeed, it is po.ssÜïle iliat dryolestoids arc more
closcly related lo s-palacotheriids' than has heen
generally believed (see, e.g., Sigogneau-Russell
1991a). In fulfilling our intent to fotus on
Spalacotheriidae, we cannot attempt coniprelien-
sivc coinparisons hcrcin. We aeknowiedge the
exisieOcc of a nuJiibcr of similaritics in rhe
molars of advaneed spalacothenids and certain
dryolcsdds,. such as the presence of a distal srylar
cusp and U hooklike parascylar lobe, mcsodistal
compression of the crown, and oiher features
cited by Sigogneau-Russell & F.nsom (1998), os
well as the markedly lower placement of lower
molar labial cingulum than lingual cingulum. At
the présent State of knowledge, we believe ihar
referral of ihc taxa considered hercin from the
North American Cretaceous [Spulacotheroide^,
Symmetrodontoideÿy Spalacotheridiuin, Spulaco-
lestes) to .Spalacotheriidae Is more compelling
than to Dryolcstidae, based on features of the
dentary (e.g., peculïar development of the ptery-
goid crest and masseteric flange) and lower den¬
tition (e.g., cxcreme réduction of the calonid and
characteristics of the roots, sec Butler 1939).
Based on size, inorphological appropriateness
and dissimilarity to other known éléments of the
Musscntuchit local fauna, and (cspecially) rcla*
tive abundance and distribution among rhe
known localitics. we believe therc is vam'shingly
little doubt as to the référencé of upper and
lower dentitions to the respective species describ-
cd herein.
Dentary
rhe structure of the dentary and associated post-
dentary" boucs has figiircd promincntly in discus¬
sion of the origin and carly difTcrcntiation of
mammai.s (e.g., Crompton &: jenkins 1979:
Kemp 1983). Mandibics ascribed to Kitehneo'
therium suggest that a full complément of at-
cached postdentary boues was retained (Kermack
et al. 1968), as they were in Morgamicodon (see
GEODIVERSITAS • 1999 • 21 (2)
201
Cifelli R. L. & Madsen S. K.
Kcrmack ^////. 1973), Marsh, 1881 (sec
Kermack & Musscti 1958), and Haldanodon
Kühne & Krusac, 1972 (scc Lillcgraven &
Krusat 1991). In tlie.se taxa, the postcromcdial
face of the dentary beats a prominenc postdenc-
ari'^ trough, overhiing by a ridge, exicndiiig ante-
riorly from the condyle. l lie postdentaiy txougli
housed the articular. prearticular, .surangulat, and
angular; attachmenr lacets for the coronoid and
s'plenial are gcnerally aiso visible, more anteriorly
on the dcniar)' (e.g., Kcrmack et ^4L 1973, Hg. 7;
Lillcgraven ôc Krusat 1991. bg. l4). 3 hc mcckc-
lian groove cxcends anrcriorly from the mundibu*
lar foramen and is connuenr wirh ihc
postdentary trough; in Mor^anucodon ir housed
the anterior part of the prearticular (Kcrmack
et al. 1973), whereas a splenial is associated wirh
(or overlies' part of) the meckelian groove in
Haldanodon (see Lillcgraven ik Krusat 1991).
Sevcral orher poorly understuod or arthaic mam-
mais retain an csseiirially siinilar condition,
although the trough and ridge arc noi as well
devcloped (e.g., Shuotheriam Chow & Rich,
1982; Ansktribosphefun Rich et al. 1997). In
mosr remaining mammals, the meckelian groove
(where présent) is separaied from the mandibular
foramen and the postdentary trough and corres-
ponding ridge arc Iost> suggescing detachment of
the main body of postdentary éléments from the
dentary, although arcachment at thcir anterior
extremit)' evidently persisted in sonu eupanro-
theres, such as Amphilhernim RUinville, 1838
and Peramm Owen, 1871 (see Allin ik: Hopson
1992). The condition may be .similar in rhe Lare
Jurassic or Larly Oetaceous symrnetrodonr
Zhangheotheriarn^ which has a pr4)minent mecke¬
lian groove and scars for the coronoid and splc-
nial (Hu et ai 1997), and, possibly, another
élément in addition co the dentary (R. C. Lox,
pers. comm.). A small coronoid apparent!)' per¬
sisted in numerous rnamnvallan groiips. First
reporled among '‘paruotheres" by Krebs (1969),
facets suggesring pre.sencc of rhe comnoid hâve
been reported in the dr}'olasiaid Henkelotherhim
Krebs, 1991 (see Krebs 1991), varions Iricono-
donis including Phatadatheriitni t3wcn, 1838
(BM 112) and Cjobkonodon 'Woîxxnov^ I9’^8 (see
Jenkins & Schafl 1988), the cutherian
Prokennalestes Kielan-Jaworowska & Dashzeveg,
1989 (sec Kiclan-Jaworowska k Dashzeveg
1989), paulchoffatiid multirubcrculatcs (Hahn
1977), and the spalacotberiid Spalacotherium
(BM 47750). Pcrsistence of rhe meckelian groove
(or a remnant of il), which may hâve housed
rcmnaïus of onc or more postdentary éléments,
is even more widespread (scc discussions in
Benslcy 1902; Simpson 1928b; Kcrmack et ni
1973). Among symirietrodoius, the meckelian
groove is présent in Knehaeaiberium (see
Kennatk ét al 19681, Tinodoa (see Simpson
1929), Zhangheodiernim (sec Hu et al 1997),
Sbiioiberium (scc Chow k Rich 1982), and
SpaliU'othenurn (see Simpson 1928a). 3 he pré¬
sence and form of the meckelian groove hâve
been used in interprering rhe phylogeny of
Mesozoic mammals (Luo 1994; scc also Hu et al
1998). Among the aforementioned ta.xa, the
meckelian groove is redueed anteriorly in ail; in
Zbitngheotberiam^ what remains is subparallel co
ihc axis ol the dentary, whereas in KnehiteO'
tbenum. ilnodoru Spalacotlmimn-, Ttnodon, and
Shuotberium the meckelian groove converges
toward rhe ventral margin of the dentary anre-
riorly. This ktrer State is presumed to be more
derived (Luo 1994), but the signitlcance of this
distribution for symmetmdonts is unclcar. Both
rhe coronoid and meckelian groove are lacking in
Spulacolestrs, and avaÜablc e\'ideïKc suggesLs that
rhe meckelian groove, ac leasc, was lacktng in
Symmetrodantüides. Hence, both of thèse fe-atures
were lost wirhin Spalacotheriidae, assuming
monophyly of rhe family.
In primitive mamm.als such as morganucodon-
tids and Kuebneotheriinn, the ventral margin of
the dentary is emarginated posteriorly (as ic is in
advaneed q'nodonts). w'hcrc the postdentary clé¬
ments arc positioned (sec. e.g., Kermack et tü.
1968, 1973; Gamharayan & Kiclan-Jaworowska
1995). The évolution of an angular regii»n and
procesN on the dentary of more derived mammals
is imcenain becxuise (»f dispiited homologies and
differing criteria on which récognition of these
characrers are based (see excclicni discussion in
Wible 1991). An anteriorly placed process is pré¬
sent in cynodonrs (Sues 1986) and certain primi¬
tive mamjTials, such as Morganucodon (see
Kermack et al 1973), Docodon (scc Kcrmack &
Mussett 1958), and Haldanodon (see Lillcgraven
202
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Crctaceous of Utah
&C Krusar 1091). Rowe (1988) considercd the
loss ot the anteriorly placed process as an ad-
vanccd feature characterizing multitiiberculates
and thcrians. Patterson (1956) disagreed with
identification of rhis feature as a true angular
process, pointing ont the dilfercnce.s in hoth
position and inferred function (see aiso Proihcro
1981). In Dhinctherinm |enkins et ni, 1983 (sec
Jenkins ettil. 1983), this anteriorly placcd pro¬
cess occurs togerher with une ihar is more poste-
riorly placed, near the condyle, snpporring
Patterson (1956)s suggestion that the former is
not homologous witli the angular process found
aniong therian mammals (jenkin.s et ai 1983; sce
aIso Crompton Luc 1993). Sues (1986; see
aIso Gambarayan & Kielan-Jaworowska 1995),
however, suggested that the angular process of
trirylodont therupsids and certain therians is
homologous, indicaiing that rhe continuous ven¬
tral margin ol lhe dentary as seen in taxa such as
symmetrodonts could have been lormed through
fusion of the two proce.sses seen in Dinne-
therium, We can offer nothing in i[»e way ol new
data to résolve this issue. It is worth pointing out,
however, that ail students who have commented
on the macter have observed thaï symmetrodonts
(e.g., Knehneotheriunh Tmodoru Spalacotheriiim,
Zhangheotherium) lack an angular process or, for
that matter, any ventral or postcrovcniral expan¬
sion of the dentary in the angular région (c.g..
Simpson 1928a, 1929; Prothero 1981: l lu et al.
1997); an angular process is aiso lacking in trico-
nodontids and gobiconodontids. This is distinct-
ly different Irom the condition (whcre known)
arnong eupanrotheres and peramurans (e.g.,
Amphitherium^ Pernmtts, Dryolescidac: sce
Prothero 1981) and among tribusphenic mam-
mais. Wc tentativcly recognize the development
of a posteriorly placed angular process as a de-
rived feature characterizing eupanrotheres and
tribosphenldans (Trechnotheria of Prothero
1981 ). This feature is absent in Spalaadestes, as it
is in Spalacotherium and ail other synimc-
trodonts.
A pterygoid crest or pceiygoid shelf (Miao 1988;
Rowe 1988; Gambarayan & Kielan-Jaworowska
1995) on the mcdial surface of the mandiblc
may be related to increased importance of the
pterygoid muscle in mandibuiar adduction,
translation, and rotation (e.g., Oron ôc
Crompton 1985). The pterygoid crest is lacking
in primilive taxa such as Morganticodnn (in
which rhe médial pterygoid muscle i.s inicrprercd
lo have been small, Crompton &l Hylandcr
1986) and Ktichneotherium. Prothero (1981)
cited the présence ofa pterygoid crest as a synapo-
morphy of Symmctiodonia (including
Spalacotheriidac and Amphidontidac), but this
crest enjoys a considerably broader distribution,
being présent in cupantoihercs (c.g., Laole.<tes
Simpson, 1927; Amblotheriiwî Owen, 1871; sce
Simpson 1929: 63, 68), triconodontids
(Simpson 1928b), gobiconodontids (jenkins &:
SchafI 1988), mullituberculates (Miao 1988;
Gambarayan &c Kiclan-Jaworowslu 1995), and
rribo.sphenitl.ins (Kielan-Jaworowska &
I9ashzeveg 1989, fig, 2Ü; Sanchez-Villagra &
Smith 1997). as wcll as symmetrodonts (except
Kiiehneotheriurn). Rowe (1988, 1993)’s Therüo-
morpha includes a pterygoid shelf as a diagnostic
character (see discussion in Miao 1993).
Allhough the pterygoid crest (and its continua¬
tion onto the angle, whcre présent, ol the therian
dentary) may be developed as a médial shclt
(e.g., multitubercLilates, Marsh 1880;
Gambarayan Kielan-Jaworowska 1995) or
inturned process (c.g., somc Crctaceous
Eulheria, Kielan-Jaworowska et al. 1979), the
condition among marsiipials (commonly termed
an inflccted angle) has been suggested to be a
derived characrer unique to the group (Sânehez-
Villagra & Smith 1997). However, usîng the
définition these authors provide (‘‘a medially
inficcted angular process may be defined as onc
that projects inward (lingually) at about
90 degrces with respect to the dorsoventral plane
of the mandibuiar ramus,” Sanchez-Villagra &
Smiili 1997; 120), we observe an inflected angle
ro be présent iu Prokenmilestes (e.g., GI PST 10-
5C. 10-6).
In Spalacotherium., the pterygoid crest originates
just below the mandibuiar foramen. The crest is
incompletely preserv'cd in available specimens, so
that its full extern cannot be detennined.
However, it was greatly expanded and, perhaps,
developed a medial process in chc région of the
mandibuiar foramen, an unusual feature among
early mammals. This clearly was the case with
GEODIVERSITAS • 1999 • 21 (2)
203
Cifelli R. L. & Madscn S. K.
Spalacolcste^^. Here the preryj;oid crest begins jusr
bclovv thc aivcolat niargin at ilie juncribn of horb
zonral and ascending ramij dcsccndlng postcro-
ventrally ro ihc rcgton of rhc mandibular
foramen» whcre it is dcveloped as a large, cuiving
proccss that encloses a small pocket. The strong
developmein ofihc pterygoîd cresi inro a process
near the mandibular foramen is unusual among
early mammals; it is lacking in oïlicr symmetro-
donts such as Tinodon and '/Juingheatherium.
'rhe condition in Spulacolesfesy in vvbicb thcre
cicarly is a largCs reflcctcd proccss and the picry-
goid crest cominues amerodorsally» is undoub-
rcdly unusual and apomorphic. An edcntulous
dencary tliar we mfcr to Spakicotherofdcs bridwelli
(FMNH PM 1025) préservés sorne limited
information on the médial side oi thc jaw in dus
species. The prerygoid crest clearly originared
just below thc alvcolar margin and exrenJcd
posterovcntrally, as iit Spalacolcstes, The spécimen
is considerably abraded in the vicinity of the
mandibular foramen, and ir is unclear whether
the pterygoid crest was developed into a proccss,
as in the taxon from Urali. To our knowledge,
the only other Meso/oic mammal wltli a prery-
goid crest that extends antcrodorsally and nearly
reaches thc alvcolar margin ol thc dentary is
Prokeiinalestes (sec Kiclan-Jaworowska 6c
Dashzeveg 1989, t'ig. 20).
A related and noieworrhy feature on the médial
side of tlie dentary in Spalacolestts is the grcat size
of the pterygoid fossa (we arc indebted to Z. Luo
for suggesting tliis co us). In most Mesozoie
mammals, such as triconodonfids (sec Simpson
1928a) and gobiconodonrids (scc jenkins &
Schaff 1988), the pterygoid fossa extends ante-
riorly ro about the levcl of rhe mandibular fora¬
men; in Sptllacoltsies^ thc pterygoid fossa extends
well anterior to the mandibular foramen. Among
spalacotheriids, the presumed primitive condi¬
tion (pterygoid fossa terminâtes anteriorly adja¬
cent to the mandibular foramen) is présent in
Spalacothcrium (sce Sirnpson 1928a) and
Zhangheotheriuïn (sec Hu e7 al. 1997), whcreas
the pterygoid fossa extends farther anteriorly in
SpalacotherouUi (1 MNH PM 1025). I he pos-
terior part uf the dcncary is not known in other
taxa; noiicthelcss, this distribution suggests thc
possibility that the derived condition may repre-
sent a shared, derived feature of North American
Spalacolheriidae.
1 hc ventral margin of the dentary in the angular
région of Spalacotherjum is reflcctcd latérally into
a ‘‘widc. eiflected, flange-like massctcric crest," as
vSimps'on (1928a: 102) noied. flie same is rrue,
to a gieatct degree, in SpaLtcolfstes. Alrhough the
posteroventral margin of ihe dentary ha.s some
laier.il reflection in certain rriconodonts (l iopson
1994) and gohiconodontids (Jenkins & Schaff
1988), it is not significantly developed in other
symmerrodoius or other Meso/.oie mammals,
and the degree of reflection seen in SpaLuo-
ilmium and (espccially) SpaLnolvues is unitsual.
The massecer muscle tnserts along the vcnrial
and lacerai side of the denrant' in rhts région, and
the unusual condition in spalacotherüds is likely
related to the dcs^elopmcnt or configuration of
this muscle (thc mas.seieric fossa is aiso railver
deep in Spalat oihcrhim and Spalacolestcs).
Lacking ihe skuli. functional interprctaiion is
limited. However, rhe mandibular symphysis was
probably unfused, as suggested by RM 47748,
referred to Spalacotheriam. The mandibic of
Zbaagheotherhim was aIso unfused (sec Ilu et al.
1997), as is thc case wirh most early mammals
(CTompton Hylander 1986). It is likely that
mastication in spalacothciiids involvcd signlfi-
cant componenrs of mandibular rotation and
latéral translation: tlte massctei serves to invert
thc dorsal border ol thc hcmimandiblc on which
it inserts, and thc pterygoid serves to evcrc it
(Oron C’rompton 1985; Ciompcon 1995).
Kcncc, ihere is reason to believe that thc unusual
condition ol thc pterygoid crest and thc latéral
reflection of the posteroventral margin of thc
dentary in spalacorhcrlids arc fimctionally related
features, and that they may intlicate .some un-
usiwl aspect (perliaps strong development) of
latéral translation or rotational movement in the
masticaiory cycle of chose mammals, as suggested
by considération of their shearing surfaces (see
aiso Patterson 1956: 57; Crompton 1971;
Sigogneau-Russell & Lusotn 1998). As has been
described for lower molars of Nortti Anïeiican
Spalacotfieriidac (Fox 1976; Cifelli & Madsen
1986), upper molars o'f SpaLuotheridiuTn and
Sptdacalestes bear obliquely oriented wear stria¬
tions on both prevallum and postvallum surfaces
204
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
Fig. 18. — Microwear structures in Spalacolesies cretulablatta
n. gen., n. sp.; bottom, mesial view showing prevallum shearing
surface on left M4 (OMNH 30611); box indicates location of
enlarged photo, above Scale bars; top, 0.1 mm; bottom.
1 mm.
(Fig. 18). The relative contributions of latéral
translation and rotation of the mandible în the
masticarory cycle caniior be determined, although
il is likely that both played signifîcant rôles.
Lowf.r MOLARS
We bclieve it highly probable that the lower
tooth séries of Spalacolesies (and> tcniatively,
Spalacotheridium) included seven molars, as in
Spalacotheriuni (see Simpson 1928a; Clemens
1963); four itre présent in Tinodon (see Simpson
1929), six in Zhangheatheriuvi (the described
specimen is a juvénile and it is possible that not
ail molars were erupted, sec Fiu et ai 1997), and
three lo six in Kiiehnenthcriiim. Bascd on siudy o(
edentuloas jaws, the lower part of ihis range wa.s
thought to bc most probable for Knehneotherium
(sec Kcrmack et ai 1968). Study of isolatcd teeth
suggests that as maiiy os six molars rnay have
been présent in somr individuak (Mills
the most complète alvcolar row known for the
genus shows that at least fivc were présent on this
specimen (Gill 19^4). As noccd by Patterson
(1956), rhe molar cotint in symmetrodonts is
correlated with angulation between principal
cusps: “acute-angled” symmetrodonts arc charac-
terized by a high number of molars. On this
basis, rcmaining ntxa from ihc North American
Cretaccous (SpaLtcotheroides^ Symrnetrodontoides)
probabl}^ aiso had a higli number of lower molars,
seven being rhe Jikdy number. judged by compa-
rison to Knelmeatherimn and orher outgroup taxa,
the aciite aitgulation and higli molar count of spa-
lacothcriids represenrs thederived condition.
Individual molar charactetistics aJ.so set North
American Cretaceous taxa and SpalacoTherium
apart Irom Kuebricocherium, Thiodon, and certain
other symmcirodoiit-s. In Ktiehncotherium (and
probably Wotttersia. as well), as in morganuco-
dontids, précisé occlusion is dépendent on deve¬
lopment of extensive wear facets on corres-
ponding upper and lower molars. In spalaco-
rheriids, however, matching molar surfaces fit
more precisely (Crompton ^ l lylandcr 1986;
Crompton 1995), as they do in rribosphenic the-
rians. In Hnodoriy as in Kuebneotberium. separate
wear lacets devekïp on occluding surface.s of the
principal cusps^ whcreas iii spalacoihcrtids,
strong crescs are developed between chc piotoco-
nid and lingual cusps, and these form continuous
prevallid and postvallici shearing surfaces
(Crompton üsC Jenldns 1967; Crompton 1971).
The condition in Zbanghmberiiim is tincertain,
but it bas been described as differing from other
spalacorheriids in having roundedt cortical cusps
that lack connecting cresrs (Hu et ai 1997)>
strongly suggesring that ir is similar to Tlrwdon
or Kuelnieotherium in lacking continuous shear¬
ing surfaces.
GEODIVERSITAS • 1999 • 2l (2)
205
Cifclli R. L. &c Madscn S. K.
The cingulum and cingular cusps alsn are
variable among .symnierrodonts. In Kuviutea-
therhim and Tinudon, oïdy a lingual eingulum is
présent on rhe lower molars, the distolingual
(talonid) cusp Ls moderatelywell developed, and
two mesial cingular cusp.s are (>resen! (Crompron
Jenkiiis 1967). A eingulum is laeking Ironi
lower molars of /.luxnght'Othatum (see Hu t't /?/.
1997); it is incomplète labially, at Icast, in mosc
othcr primitive mammals, sucli as Woutersia (scc
Sigogncau-Russell & Hahn 1995). Morgauo-
codon (sec Kcrmack er al, 1973). and Amphi-
dontidae (sec Simpson 1929; Trofimov 1980). lu
spalacothcriids, a .single mcsial cusp is présent
and the talonid is soniewhat snullcr than it is in
Tiuodon and Kitehneorheyinni (Crompion ik
jenkins 1967). In addition, ail spalacoiheriid.s -
with the exception ot Zhangheotheriuni and the
apparent exception of Spaliicotheivides (sec above)
- have a complète labial eingulum on the lower
molars. In vill of thèse Ratures, Spalacotheriidae
appear to he derived wirli respect to remaining
symmernulonrs (see Sigognc.tu-Kiissell & Ensom
1998 for di.scus.sion ot the di.strihuiion and varia-
bilir>' in lhe development ol the lower molar cin-
guhim among .svmmcfrodoius).
Spalacf>theriidae also nppear to he utuisual
among Meso/oic mammals in the nianncr in
which rheir lower molars interlock (we are grate-
ful to Z. l uo for poiïtiing this ont to us). In
morganiicodoniids and docodonts, the distal-
most molar cusp, cusp d, fit.s bcivvccn cusps h
and e ot the succccding lootfi (sce, c.g.,
Crompton ^ jenkins 1968); prcsutnably modi-
fied arrangemenrs are présent in othcr taxa, siich
as Kiiehneothcrlum. gobicoiiodoiuids-, and crito-
nodoniid.s (see Luo 1994; Kielan-Jaworowska &
Dashzeveg 1998). In spakicotheriids, rhe distal
cingiilar cusp (which appears to bc homologous
with cusp d) is placed lingual ro the mcsial cin-
gular cusp (which uccupies j similar position to
cusp c and may bc honiologous with it) of the
füllowing tooch, and the mcsial cingular cusp fies
into an embayment of the eingulum char is labial
ro cusp d of chc preceding tuuth.
Within Spalacotheriidae, taxa from the North
American Crccaccous appear to bc advaneed with
respect to Spalacotherium in having more acurely
angled, higher crowned lower molar trigonids;
SpiiluLoîhcridium is rhe lea.se extreme in this
regard (rhe condition is unclear in Spalaco'
theroides, but it is prohably safe to say lhat its
lower molars are more acutely angled than are
chose of Spulacotheriunt). In spccic.s of Spalaco-
and Symnmyodontoidts^ the pafact)nid and
paracristid are di.siiiictly lower than the nieta-
conid and inetacrisfid on ail lower molaf-S (except
m7, which in Spalucalvsit's at lca.st. lacks a meta-
conid); in spccics of ^ymmctrodontoidcs^ the
height différenciai is accentuaied. The cusps are
subequally developed in Spalacathcridium,
Spidacotherium (sec Simpson 1928a), and Ihw'
dtny except on ml, whcrc the paraconid is shglit-
ly smallcr (c.g.. USNM 2131). In Woutersia (see
Sigogiieau-Russcll & Hahn 1995 ), hy coiurxst,
the paraconid is the laller of the two; in
Kitelnieotberium (sce Kcrmack et ai 1968; Mills
1984), the condition is variable and chc cusps
should bc consideivd subcqual in development.
VV'e concur with Sigogneau-Russell & Knsom
( 1998 ) in helieving that paraconid and meta-
coniil were primitively sul)equal In SpahiLa)-
theriidae (as thoy arc, for example, in /hangheo-
theriurn),, and concludc that the condition in
Spaincolestes and Sytametrodontoides is derived.
Both of the last-nieiuioned genera arc characte-
ri/.cd hy tlie présence of posterior lower molars
th.'ir are labiolingually exp.iiided, ow'irig to a rcla-
tively clongalc paracristid and lingually placed
paraconid,
Vm n MOI AHs
As with the lower molars, chc upper molars of
Spalacotheriidae are more acute-anglcd than
tliose of primitive taxa such as Kuehneotherhm
(sce Kcrmack et al. 1968) and Tinodon (.lec
Simpson 1929). Up(»er molars of
Synnnetrodontoides, and Spahiaithcridium, at
least, arc more acutc-anglcd (assumed ro repre-
sent rhe dertved condition) than rh(»se of
Spalacotherium oi Zhangheorherium. The single
upper molar of Spiilacotheroides ilhisrrared by
Patterson (1956, fig. 1) prohably represents one
of the mesial loci; other specimens (e.g., I*MNH
PM 1133. 1236) are distinerly more acute.
Mitroderson (sce Sigogneau-Russcll 1991b),
which resemblcs North American taxa in several
other respects, is also rather acurely angled. The
206
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
paracone on upper molari of SpaLicotherium and
Zhangheotheriiinu like chat of North American
Spalacotheriidae, is extremely tall relative to the
condition seen in most outgroup taxa (e.g.,
Tinodon, Kuebncolherhmi). We suspect chat para¬
cone height will prove to bc a useful charuccer foi-
or within vSpalacothcriidac whcn ics distribution
becomes better kiu)wn.
Récent studies (e.g., Hu et td. 1997; Sigogncau-
Russell & F.nsom 1998) hâve followcd I^actcrson
(1956) in idcntdying the inesiolabial cusp on
upper molars oi SpulaiothcrHiifi (lacking at
mesial loci, see Butler 19.^9) as the .stylocone, or
cusp B; hence, the more linguaJly* placcd cusp on
the preparacrista is a necnnorph by comparison
lo outgroup taxa such a.s Kuehneotherhim. This
cusp (ccrmed B, by Hu et ai 1997) is aiso pré¬
sent in Zhangheotheriurn and Spalacothernides
(cxcept the mesial molar, FMNH PM 1235,
figurcd by Patterson 1956): is ic primitive for
Spalacoihcriidac, or a derived feature characceri-
zing these threc general Üther fcacures, such as
the présence of fc\vcr than .six upper molars and
the ?lack of continuons shearing surfaces, suggesr
chat Zhanghvotherlum rcpresencs the sister-taxon
to rcmaining Spalacocheriiclae, in curn providiug
somc tentative cvidcpce tliar the presence of rhis
cusp may be primitive for the Kimily. Under this
interprétation, rhe absence of cusp B, in North
American Spalacotheriidae (cxccpt Spalaca-
theroides) would represenr a loss. Piîttcrson
(1956) alsü suggested that the mesialmost srylar
cusp of SpaliKotheroides, which lies mesial to the
preparacrista, is a neW cusp not présent in
Spalacotherhini, and tluu it represerus one of
several, Independenr acquisitions of a parasiylar
cusp in therian mammai.s. Interprétation of this
fearure is probletnatic. A parastylar cusp is lack¬
ing in Zhangheoihenurn (sec Hu et al. 1997). The
single knovvn upper molar of Tuwdon (YPM
13637) lacks the parasttHar région of the roodi,
airhough Crompton (1971) restored [inudvti
with a parastylar cusp. A cusp in this position is
présent in Kuehfieotheriuyft (sec Kcrmack cl al.
1968). Regardless, rbe prominenr,. hookÜke para-
srylar région seen on anrerior rnolar.s ut
Symmetrodontoides (see Fox 1985), Spalaco-
theridiuitti and Spalacolestes would appear to be
an advanced condition by comparison to remain-
ing taxa (.sec Sigogneau-Russell & tnsom 1998).
Of ihe remaining upper molar cusps, cusp C is
well niarked in outgroup taxa such as
Kiichricotherium and Tinodon, and is présent in
/.hangheotheriuniy Spalavatheriurn^ MterodersoHy
and Spalaeotheroides. This suggests that the
absence of cusp C in taxa from tlie médial and
Lare Crecaccous of North America represents an
advanced condition. As described by Patterson
(1956), Spalacoïbcriddcs has rwo discolabially
placed styiar cusps (a metasryle and orie thaï is
more mesially placed at the margin of rhe styiar
shelf), whereas only one is présent in Spalaco-
therium (see Clemens 1963: 376). A single disro-
labial cusp (merasryle) ix seen in KtielmeotherJuni
(see Kermack et al. 1968), Microderson (sce
Sigogneau-Russcll 1991b), ànd Zbangheolherhwi
(cusp "D” ol flu et ûL 1997). Posiiional cvidence
favors homology of che distalmosr cusp (meta-
style; see above) on upper molars of these taxa,
suggesting that the more mesial cusp of
Spalacotheroide.< is a neomorph. Taxa (rom the
médial and Late Cretaceous of North America
hâve rhe disrolahially placed metastylar cusp and,
more mesially, a mesiodistally expanded cusp al
the margin of tlie srylar shelf. Wc tentacively
regard the latter as hornoJogous with the mesial
ol ihc cwo discal stx'lar cusps in Spalucothewides
(which wc interpret to bc scylat cusp “D" of
Sigogneau-Russell & Ensom 1998), and its pré¬
sence as an advanced fearure char.aeteri/.ing
North American Spalacotheriidae. The condition
in Spalacnlestesj Spalacotheridium, and
Syrnmetrodontoïdes^ in which the mesial of the
two cusps is strongly dcvclopcd on mesial
molars, represents a more derived condition. A
strongly dcvclopcd distal srylar cusp is also pré¬
sent in the cnigmade Thereuodon from the F^arly
Cretaceous of Morocco and England, which is
othcrwisc so different as to be non-comparable
(see Sigogiieau-RusscÜ 1989, Sigogneau-Russell
&: Ensoni 1998).
In Spalncoibcroides, as in remainiag North
American Spalacotheriidae, the preparacrista is
markedly lower than the postparacrisia, particu-
larlv on mesial molars. judged by comparison
with linodon and Ktiehneotberumi, this appears
to bc a derived condition, but the distribution of
the character is difFicult to déterminé from avail-
GEODIVERSITAS • 1999 • 21 (2)
207
Cifelli R. L. & Madsen S. K.
able litcracurc. The preparacrista is cicarly lower
than the poscparacrista in MurodersoHy whcreas
the crests appear ço be subeqüal in iie\'eIopment
in Spalacotherium (sec Simpson 1928a, fig. 34)
and Zhaugheorherium (scc Hu ej al. 1997, fig. 2).
As notcd bv box (1985), the styloconc is so small
in Syninmrodoutoides that il is indistingnishable
in tecth that hâve bcen subject to even niodcratc
wcar. i'he stylocone is also siTtalI in Spalacolestes
aiid SpalacotherUiuw. ComparLson wich remam-
ing Spalacothcriidac {SpnlacatheriKm, Spalaco-
rheroideSy ZhangheorhiriimAy as we!l as Kuehneo-
iherium. Wouterslay and Tmadon (in which the
stvlocone is prominent), indicaccs that the stylo-
cône has probabty iindergone réduction in the
taxa from the médial and Lare Creraccous of
North America (see also Sigogneau-Russell &
Ensom 1998).
Comparison of upper molar shape and propor¬
tions in Spalacotheriidae ïs probleniatic because
sériés are kiii)\vn for so fcw taxa and because, as
shown above, coronal profile and degree of sym-
metry varies according to tooth position. Ml/l
Spalacothcriron h cons'idcrably smaller than
succceding molats. whereas in SpaUcotheridiinv
and Spabfüleitei. Ml/l is rcbtively much larger
(e.g., Figs 6. Il, compare with Burler 1939,
fig. 7). Insufficienr bas'is for comparison leavcs us
uneertain as to the significance and pobrity of
this fcaturc. Spalucolheridium, Symmetro-
dontoides, atid SpaLicolesies have an M4 that is
rcmarkably symmctrical. Pasc this tooth position,
molar size decrcases, and rhe lasr molar is signifi-
cantly smaller than its prcdccessor. Comparison
to Spalacotherium suggests char thèse inay be
advanced conditions, hi Spalacotherium^ poste-
rior molars seqiicnrially develop a [urascylur lobe
that, on the last tooth, prujeas sirongly. A small
parastylar lobe is présent on posrerior molars of
Spalacothcndium but lacking in Spalacolestes and
Symmetrodoutaidei, suggesting réduction in rhe
larter t\vo rnx;t. Ail ihree Norrh Américain généra
differ from Spalacotherium in having the para-
cône progtessively placed more disially on posie-
rior molars (vagucly recalling a similar shKi in
rhe protocone of (josterior upper molars in iribo-
sphenic mammals). In terms of crown relief.
Spalacolestes and Symmetrodontoides differ from
Spalacotheridium in having a relatively deeper tri-
gon basin. Microdersoti also appears to hâve a
deep trigon basin, but this appearance is due to
the fact that the paracone is extremel)' lall in this
taxon. In remaining Spalacothcriidac, the crigon
i.s much shallower rhan in Spalacolestes and
Symmetrodouioidesy so we interpret a shallow tri¬
gon basis as niost probably representing the pri¬
mitive condition.
ReLATIONSHII'S and CONClUniNt; REMAJCKS
Ib sumniarize» rhe limited data in hand süggcst
that reccntly described Zhatigheotherinw is primi¬
tive in .several respects, and represenrs rhe ÿisrer-
taxon to remainmg Spalacotheriidae (Fig. 19).
Spalacotherium^ in turn, evidenfly is the sister-
taxon ro Norrh American Spalacotheriidae. (We
have omitted MkrodersoUy known by a single
upper molar, from our phylogeny. As notcd
above, this Moroccan taxon resembles one or
anorher of the North .American spalacorheriids rn
-several respects, bui ilie signiiicance ol ihese
resernhlancc.s caiinot bc evaluated with data in
hand; sec discussion in .Sigogncau-Ru.ssell
1991b.) Of ihc Norili American spalacothcriids,
tiic geologically oldesr, Spnlacotheroides hridfoelli
from rhe Aprian-Albian, appears to retain the
mosT number of primitive fearures, sucli as the
présence of ciisps B| and C on ilie upper molars
(assuming that the presence of these cusps is pri¬
mitive for Spalacotheriidae). 5. hridweUi is un-
usual wichin the familv in that rhe labial
cingulum of lower molars is apparently incom¬
plète (see Fox I9'^6). If this contÜtion is correctly
interpreted and not simplv a matter of préserva¬
tion (the holorype, FMNll PM 933* includes
the only known lower molar of rhis species, and
ir iiiriy be abraded). dien we belteve 5. briduelli
CO be auiapomorphic in this respect. Of temai-
ning généra, neirher Spalacotheridium nor
Spalacolestes (nvo specics each) is characterized by
known synapomorphies, uniess theslight élonga¬
tion of rite paracristid on lower molars of
Spalacolestes cretulahlatra and S. incoucinnus
represenrs a shared dci îved character. Symmelro-
dontoides (ihrce spccie.s} is the geologically
youngcsi and most advanced member of the
faniily, characterized by labioHngually expanded
posterior lower molars.
Some members of rhe Musscntuchit local fauna,
208
GEODIVERSITAS • 1999 • 21 (2)
Spalacorheriid symmetrodonts from the mid-Cretaceous of Urah
Fig. 19. — Hypothesis of relationships among Spalacotheriidae: Kuehneotherium included as outgroup, Microderson omitted becau-
se of insufficient data; additional North American species {Symmeîrodontoides oligodonîos, Spalacoîheridium mckennai,
Spalacolestes inconcinnus) nol included lhey are poody Known and, based on présent knowledge, add no detail to the phy •
logeny presented. Characters at nodes isee discussion in tekt): 1. (Spalacotheriidae) molars acutelv angied; ?gain extra cusp (6l of
Hu e! al 1997) on upper motars? single mesial otngular cusp on rower molars rgduce distal cingular cusp (talonid) on low&r molars;
unique lower molar interiocking mechanisrn. whereby ihe distal dngular cusp ol one molar is placed labial lo (he medal cingular
cusp of lhe suoceeding tooth: 2. six ot more uppsr and lower molars présent; ?pterygoiil crest sirongiy developed m région ot mand»
bular foramen (known only for Spalacothenom and Spalacol^stos). continuous prevallum and postvalium shearing surfaces on
molars; '?po5ti3rointerior border çi dentary efnected (known only for Spalacothaduoi and $pala<^oleski$). ?labial ciogulum complété
on lower molars (lacKing in Spalacotherpides). 3. (Spalacofestifiay) meckelian groovo lost; pterygo'd crest extends anterodqrsally (o
near occlusal margin of dentary, witti plerygoid fossa exfendinq well anlerior to mandibular foramen (known only for
Spalacotheroidffs. Spa>acole6fef(\: niolars hiaher crowoed, more aculely angled; upper molars wtth parastyle isee Patterson 1956),
distal slylar cusp. ano preparacnsta fower tfian poslporacnsla (antenor loci): 4, upper molars wlih reduced stylocone. distal styiar
cusp eniarged sîronç hooklike parastyie (arrterior loa}, M4 stroogly symmetricâl, C cusp lost: MG reduced. with paracone posierioriy
placed (condilioo uncedam in Spalacoïhero*de6, Symmelrodontofdes), 5. ?cororioid facel lost (condition ynknpwn in
Spalacotheroides. Spalacoîheridium. SyirtmeUodonloidesY, upper molars with deep trigon basin, reduced parastyle (distal looi; condn
lion unknown in Spatacoineroides): lowor molars with paraconld and paracristid lower than metaconid and protocristid, respectively:
paraconid of distal lower molars linguaily placed. with paracristid dislinctiy longer ihan protocrisiid; upper molars willi cingulum com«
plete linguaily; 6. height differential between paraconid and metaconid on posterior lower molars pronounced; posterior lower molars
broadened; ml with taller paraconid and paracristid; M1-2 more acutely-angled, with less bulbous paracone base and more tightiy
arced or folded lingual face to paracone.
norably several groups of dinosaiirs, appear to
rcpresenr éléments of a mid-Cretaceons immigra¬
tion event frotn Asia (Cafelli et itl. 1997). Origin
of other taxa is more problcmaric. North
American Cretaccous triconodontids. for
example, appear to rcpreseni a monophylctic
group, but their origin within the known Jurassic
diversity of the family (both New and Old
World) is uncertain (see CifelÜ et al 1998)^ If
North American Spalacotheriidae are mono¬
phylctic, as wc SLiggest, then their biogcographic
tics antedate ihc hypothesized mid-Crctaceous
interchange, xs they would icpresent a group rhat
wa.s c.stahlished on the continent by rhe Aptian-
Albian, at least. Preliminary studics of somewhat
older (Barremian) dinosaurs from Utah
GEODIVERSITAS • 1999 • 21 (2)
209
Cifelli R. L. & Madsen S. K.
(Kirkiand et ai 1997) and ciscwhcre in North
America (Norman 1998) suggcsi a link with chc
pcnecontemporancous or slightly oldcr Wealdcn
assemblage of western F.urope. SpaLicotheriunh
rhe suggested sister-taKon to North American
spalacotheriids, occurs in rhe Late Jurassic or
earliest Creracci)us (Purbeck> sec Clcmcns et al
1979; Allen & Wimbledon 1991) ro Early
Crctaceoüs (Wealden) of England (Clemcns &
Lees 1971) and Spain (Krebs I9S5)> providing
corroborative support for rhe suggestion of
faunal continuity beween North America and
Europe prior to the Aptian-Albian (see, c.g.»
Norman 1998).
The Mussenruchit locil fauna includes the mOvSt
diverse assemblage of symmetrodonts ktiown
from North America, with at lea.st four species
présent, ’l here is no clear temporal irend in
North American spalacorheriid diversity: one
species is knovvn from rhe Apiian-Albi.in
(Patterson 1955, l‘‘*56), one From the
Cenomanian (). G. Eaton, pers. comm.), two
from the ’îlironian (Cifelli 1990), and one each
from two local launas of the early ("ampanian
(Fox 1976; Cifelli Ôi Madsen 1986). In view of
ihc tiny she of most knpwn species, part of diis
may wcll be due to collecting biascs, but ir is
notable that spalàcoiheriids ure not only diverse
but extremely abundaiu in the Mus.sentuchit
local faunu, whcre they vastly outnumber ail
orher mammals except muliituberculates: evi-
dently they were a nithcr successFul group in the
mid-Cretaceous of central Utah. Tnterestingly,
the distribution of species is decldedly nûn-
random in the upper part of the Cedar
Mountain Formation. Of the tliirty-two sites
sampled extensively for microvertebrates, only
eight (Fig. I) yielded remains of Spalaco-
theriidae. The overwhelming majotity of .spéci¬
mens rcfcrablc to Spalacolestes creiulablnita was
recovered from a single, heavily-sampled site,
with fewer numbers from three other sites.
Spalacotheridium tiohlei, though less abundant, is
far more extensive in distribution: it is known
from seven sites, and is quitc rare at ihc major
locality thaï produccd such a wcalih of .spcci-
mens rcfcrablc to S. cyclithihltttut. S. incomirtmis,
on the other hand, is a rare species known from a
single, poorly sampled locality - it is not présent
at the most lieavily sampled site or, for dtat mai-
ter, anywhcrc cIsc. Given chc face char ail sires are
locared in a narrow stratigraphie intcrval and are
belîeved to he essenrially isochronous (Cifelli
et ûL 1997, 1999), we considrr it uniikely that
rhese différences are temporal in nature. Ail of
the sires occur in fluvial overbank dcposics.
Although ihc dcpositional sccting appears to he
raihcr similar berween sites, wc attribute ihc dis¬
tribution of Spalacothcriidac in rhe upper part of
ihc Cedar Mountain Formation as being duc to
différences in habitat preference among species,
with Spnlitcolcstes cretulablana and, particularly,
5, inconcmfiUS’. being characterized by a far gneater
degree of habitat specificin^ than was evidently
ihe case for Spalacotheridium noblei.
Acknowledgements
We acknowledge with hearrfelt thanks the numer-
ous individuals wbo generously suppÜed us with
iinpublishcd information, access ro spécimens,
advice, commenis on un earller version a( ihis
manuscript, or olher help: W. A. Clcniens, Jr.,
Bob Hmry, Susan Evans, Richard C. Fox. Jacques
Gauthier, Jerry Hooker. Jim Flopson. Zofia
Kiel.in-jaworowska, Jay Lillegraven. Zhcxi Luo,
Bill Turnbull, and, most especiully. Denise
Sigogneau-Russell, who pruvided much help in
ail of the categories listcd. h is a plcasure to
thank the Judd fumily of Castic Dale, Utah. for
their cuntinuing and unfailing help to field par¬
ties rhrough the years; to Beth Larson, Raiidy
Nydam. Nick C/.aplewski, and Kent Smith for
their heJp in field work; and to Tom Rasmussen
and rhe Bureau of l.and Management for their
coiitinuing coopération. Scanning électron
micrographs were doue by Cindy Gordon at the
Samuel Roberts Noble Electron Microscopy
Eaboratory, University of Okiahoma, and Randy
Nydam hciped with digital inrivtge processing.
Figures 2, 3, (k and 1 I were drafted by Nick
C/aplewski; Figures 8, 9 were prepared by Glenii
Traughber; and Figure I was drafted by Coral
McCaljistcr. Comparative study and critical
iiucrcaciion with collcagues was greatly facili-
taicd by a Professeur Associe appointnicni for
R. L. Cifelli at ihc Laboratoire de Ralêoniologic,
Muséum national d’Flisroirc naturelle, Pans, and
the support of Drs Philippe Faquet, Philippe
210
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonts from the mid-Cretaceous of Utah
Janvier, and Christian de Muizon is acknowled-
ged wiih hearcfeli thanks. This rcscarch was
conducted under the folltjwing grants to RLC:
National Géographie Society 5021 92 and
National Science Foündaiion BSR 8906992,
DEB 9401094, and DEB-9870173.
REFERENCES
Allen P. èc Wimblcdon W. A. 1991. - — Corrélation
of NW l’Airopcan Piirbcck-Wcaklcn fnomnarine
Power Crciaceons) as seen hom the Hnglish rype-
areas. Crefiimm /^escriirh 12: 511-526.
Allin K. F. 6c 1 îopson j. A. 1992, — F.voludon of the
audicor)' sy.scem in Synapsida (“manimal-like rep¬
tiles" and primitive nia/mnals) as seen in the fossil
record: 587-614, hi Wehsfer O. B., l'.iy R. R &
Popper A. N. (ejs), T/k’ EvoluiioUtny Biolngy of
Hearifig. Springer-Verlag. Inc., New York.
Bensley B. A. 1902. — CEi the klentihcation oF the
Meckelian and mvlohvoid groovc.s in the jaws of
Meso/oic and rccciu in.uninals. Lhtiversity of
Toronto S/WrA iti Hiolagy 3: 75-82.
Butler P. M. ÏV09. — The teeth ul the Jurassic niam-
nials. ProcecrihigsofthcZoologicftlSoifriy oj London
109:329-356.
C'a.ssiliano M. L. Üe Clemens W. A. Jr. 1979. —
Symmerrodoiua: 150-161, in l.illegravcn J. A.,
Kielan-Jaworowslta Z. & Clcnicns W. A., Jr. (eds),
Mesozoic Mnmuutls — the Tirst i wo-thirds of
Manmmlinn Hhstory. Unîvcrsity of Calilornia Press,
Berkeley'.
Chow M. &: Rich 'F. H. 1982. — Shwtherium dongi^
n. gcn. and sp., a thciian svith pseudo-tribosphenic
molars Frt)m the Jurassic of Sicliuan. China.
Anstralimi Mmnntdlogy 5: 127-142.
Citelli R. !.. 1990. — Creraceoits manmtals of South¬
ern Utah. TTl. Thcfian m.immals from the
Turonian (early Latc Cretaceousl. fournai of
Venehrate l\ileontolog\’ 10: 332-345.
— 1993. — F^arly tPrclaccou-S m.mimal from North
America and the évolution of marsupial dental cha-
racters, Proeeedingy oj ifn' Naiionof Acuderny of
Sciences USA 90; 9413-9416.
Cifelli R. L, Kirkland J. F, WAil A., Deino A. F. &
Rûwallis R. J. 1997. — Fligh prccision
geochronoingy and rhe advent of North America's
Fate Crctaceous terrescrial fiuma. Proceedings of the
National Aaidemy of Sciones USA 94; 1 1 163-
11167.
Cifelli R. F. iSi Madscn S. K. 1986. — An Upper
Cretaceous symmecrodunt (Mammalia) from
Southern Utah. fonrnal ofVertehrdte Pakontolog}’ 6:
258-263.
— 1998. — Triconodont mammals from the médial
Cretaceous oF Utah. Journal of Vertebrate
Paleontology 18: 403-41 F
C'ifclh R. F., Madseu S. K. & Farsen F. M. 1996. —
Scrcenwashing and a.ssociarcd techniques for the
rccovcry of microvertebrate Fossils. Oklahoma
(kologicalSnrvey, Spécial Publication 96-4: 1-24.
Cifelli R. F. Mui/on C., de 1997. — Dentition and
jaw o( KohopeUio juddi, a primitive marsupial oi
near marsupial from rhe media! Cnviaceous of
Utah. journal of Mamnialhin Evolution 4: 24 ! -258.
Cifelli R. F.. Nydani R. F., Weii A., Cardiier J. F).,
Kirkland J. !.. ivaton J. G. ik .Vlatl.sen S. k. 1999. —
Vcilc’braïc laiin.i of the* uppei Ciedar Mountain
Formation (C!iccaceous; Albian-Ctnomanian),
Cmeiy Counry: the Mussentuchir local fauiia: 219-
242 irt Gillette Ü. D. (chJ.), Vertebrate Pakontolugy
in Utah. Fhah Gcological Stu'vcy^ Sait Tako City.
CifVlli R. I,., Wible J. R. & Jenkins F. A. Jr. 1998. —
Tiicotiodoni mammah from the Cloverly Form.i-
lion (Power (’retaceous), Montana and Wyoming.
Jotirufil (f Vertebrate Paleoymlo^ 1 S; 237-241 ,
Clemens W. A. Jr. 1963. — l.ate Jiirassie manamalian
fossils* in rhe SeJgwick Muséum. Cambridge.
Palaeontolojgy 6 : M\M1.
— 1979. - Marsupialia: 192-220, in Fillegravcn
J. A-, Kielan-jawurowska Z. Sc C]lemen.s W. A. Jr.
(cds), Mesozoic Mammah — The h'irsi lwo-thirds of
Mammuiian Hisiory. IJnivcrsiry of California Press,
Berkeley.
Clemens \V. A. Jr. tk I.tes P. M. 1971. — A res'iew of
English Farly Crciaccou.s maintnaLs, /// Kcrniack D.
M. (k Kctmack K. A. (ctLs), Early MammaFs,
Zoologi val Journal ofthe I.innean Society: 117-130.
Clcmcini W. A. ]r., Fillegravcn J. A., Lindsay F. H. tk
Simp.'^on tj. t.F 1979. - Wlierc, when, and whar
a suivey of known Meso/.oic maininal distribution:
7-58, in Lillegravcn ). A., Kielan-|aworowska /. di
Clemens W. A. Jr. (edvs), Meso-z-oic Mafnntah - The
First Tuui-thirds of Mammalian hfhtory. Univcr.sity
of California Press, Berkeley.
Crompton A. W. 197 F — The origin of the rribo-
sphenic molar, in Kermack D. M. & Kerm.ick K.
A. (cd.sF Fairly Mainmals. ZMologu a! Journal of the
Linnean Soaety: 65-87.
— 1995. — Masricatorv' function in nonmainmallan
c\(iodnnu and early mammafs: 55-75, in
l'homason J. J. (ed.), Funciional Morphology in
Vertebrate Paleontology. CJarnbridge Univer.sity
Pre.ss, C'ambridgt.
Crompton A. W. & ilylander W. F. 1986. —
Ciianges in mandibular function f'oilowing tbc
acqui.siiion ol a demaiy-.squamo.sal joint: 263-282,
in Hotcon N.^ UF MacFcan P. [)., Roth J. J. îk
Rotli F. G. (edv), J'be Lcology and Btology oJ
Matnntal-lrkç Reptiles. Smithsunian Institution
Press, Washington, D. CF
(’romptoii A, W. k (enkins F. A. jr. 1967. —
American Jurassic symmetrodonts and Rhaetie
“pHntoihcrc.s'". 155: 1006-1009.
— 1968. — Molat occlusion in Fate Tiiassic mam-
mals. BiologicalReviews A?)\ 427-458.
GEODIVERSITAS • 1999 • 21 (2)
211
Cif-elli R. L. & Madsen S. K.
— 1979. — Origin of maminaU: ^9-73, in
Lillegraven J. A., KÜelan-jawoJowKka Z. & Clemcns
W. A. )r. (cJs). Mesozoïc Matnmals - The First
Tivo-thirrh of Manimalntn IJistory. L'nîversity of
Californie Press. Bcrkclev.
Oompeon A. W. 6i Luo Z. 1993. Rclation.ships of
the Liassic nraminait. Shiuojnodon^ Morganitcodori,
and Dinncthrnuni: 3<t-44, in S/ylay 1*. -S., Novueek
M. 1- & McKcoiia M (.1. (edsK ManinhilPhyb^en%
Volume 2 - Mesozaif Differrnriution, Afitlti-
tîibercuLitfs, Alonorrefnes. Farly l'herians, and
Marsupiah. Springer-Verlag, Inc., Mew York.
Crompton A. W.. Wood C. B. & Sreni D. N.
1994. — DilIcTtnnal vvc«if of cn.imch a mcchanism
for mainiaining sliarp iniiLing edges. Advanves ht
Comparative and F.nvironincntal Fh'rsiolo^ 18:
321-346.
Dashzeveg 13. Kielan-jaworowska Z. 1984. —T he
lowcr jaw ot un aegialodontîd mammal from the
Early Civtaccous ni VlojïgoÜa. /uoloj^iralJournal oj
the Limtean Society 82; 217'227.
Eaton |. G. 1991. — Bio.stinrigraphiL framework for
the Uppti Creiiiccotis rocks of ilie Kaiparowits
Plateau, Southern Utah. Geologtcal Society of
America^ Spécial Paper 260: 47-63.
Eaton J. G. Ik Nelson M. E. 1991. —Muiti-
tuhercidatc ina/nnniK front tlie Luwer Crecaceous
Cedar Mouniain r»iruiaiio!i, S,in Rafud Swell,
Utah. Chitiiri/jutiofiS lo Ceoloiiy, University ol
Wyoming29; 1-12.
Ensom 1\ C. & Sigogneati-Russell D. 1998. — New
dryolestoid inammjls ffoin ihe ha.sJ.1 Creraceous
Purbcck l.iincstoiie groiip of Southern England.
Palaeontoh^ 41: 35-55.
Pox R. C. 1972. — An Üpper Creraceous symnie-
trodont from Alhena. Canada. Nature 239: 170,
171.
— 1976. — Additions co the manimalian local fauna
from the iippcr Milk River l•o^Ination (Upper
Cretaceou.s), Alhcrta. Canadian Journal of Earth
Sciences 13: 11(}5-1 i 18.
— 1984a. - Puranycioides tnaleficus (new spccics), an
early eutherian mammal from the Crctaceous of
Alberta. Carnefte Muséum of Naturul History^
Spécial Puhiiearlun 9: 9-20.
— 1984b. — A primitive, ''obtuse-aitgled” symme-
trodom (Manimalîa) from du- Upper Crecaceous of
Alberta, C2uiada. Canadian Journal ofEarih Sciences
21: 1204-1207-
— 1985. — Upper molar struciurc in the Late
Creraceous symmeirodoni Symrne.trodontoides l’ox,
and a classification of die Symmetrodonta. Journal
uf Paleontolv^ 59: 2 ! -26.
Gambaray,tu P. P. & Kielan-Jaworowska Z. 1995, —
Masricatnry mirsciilaiure ttf Asian laeniolabidid
muliitubercnl.iie mammaU. Acta Palaeontologica
Polonica 'tO: 05-108.
Gill P. G. 1974. —- Résorption of preniolars in the
early mammal Kuehneotherium praecursoris.
Archives oJ Oral Bitdogy 19; 327-328.
Gradstein K. \T., Agicrberg V. P., Ogg J. G.,
Hardcnbol J., Van Veen P., 1 hierry |_ ik Huang Z.
1995. — A Trias.sic, jurassic and Oetaceous tïme
seule: 95-126, in Berggren W, A., Kent D. V.,
Atibrey M.-P. i&-l-larde.rilîol J. fetls), Geochronology,
Eime 'icales and Global Stratigraphie Corrélation.
SEPM (Society for Sedimencaiy Geology) Spécial
Pi(l>!'Catit*n, Tulsa.
Hahn G. 1977. — Das Cau'onoid der r^auklioHaiüdae
(Mulriruherculara; Ober-Jura). Palâoniohfnche
51: 2à6d53.
Hopson J. .A. !994. — Synapsid cvohirinn and rhe
radiation of non-eutherian mammaU: 190-219, in
Spencer R. S. (cd.) Major Eeaiurei of Vertebrate
Evolution. The Palcontologicil Soeieo'. Knoxvitic
— 199’". — Is cusp C ol ihe iippci inolars of
Kuelmcotkcnmn homologou.s with rhe mcraconc of
Peramus and tnbosphenic nf
Vvrtebrate Palcontology* 17: 53A.
Hii V., Warig Y-, Li C. & Zhexi I.. 1998. —
Morphoiogy oi dentition and forelinib of
Z ha n tfeo i hc n u m. Ven eb ra la Pal A s ia tic a 3 6 :
102-125.
ilu Y., Wang Y., Luo Z. ik Li C. 1997. ~ A new
synimecrodanc mammal from C!hina and its impli¬
cations for mammalian évolution. Nature 390:
13~-*142.
Jacobs t. 1 -, Winkler L3. A, Miirry P. A. 1991. ■—
On îhc .ige and correlaiion of rhe Trinity matn-
naals. Earlv Creraceous ofTe\,is, USA. Neutsletters
on Snatigraphy .H: 35-^3.
Jenkins L. A. Jr. ik Crompton A. W. 19"9. —
Triconodonia: 74-90, /// l-itlegraven J. A.,
Kiclan-lavvorowska Z. k C’.lemcn.s W A. Jr. (cds),
Mesozoic Mammals - The First Two-thirds of
AEintmalinn Hhtoty. Universit}' ol California IVexs,
Berkeley.
Jenkins 1'. A. Jr.. Crompton A. W. k Downs W. R.
1983. — Mc.so/.üic mammaLs front Arizona; new
evidenee on matnmultan cvoluiton. Science 222:
1233-1 m
jenkins F. A. Ji. k Schallf C. R. 1988. — fhe Iv.irly
Cretaceou.s mammal Çohiconodon (Mammalia,
Tricojiodonta) from che Cloverly Eormation in
WoniMXA. Jonrntd ofVerlebrate Paleonlology 8: 1 -24.
Kemp r. S. 1983. — Plie relationships of mammals.
Eofflfj^ical lournat of the Lhtuean Sodety 77:
353-384.
Kermack D. M., Kerm.ick K. A. k Mu.sscrr F.
1968. — rhe Weish pjntothere Kuehneotherium
praecursoris. Journal of the linnean Soctety (/.oolinty)
47: 407-423.
Kefrnatk K. A. & Mussett F. 1958. — l'he jaw arri-
ctikuion of (hc Docodoiua and the dassificafioit nf
Mesozoic mammal,s. Proceedtngs of the Royal Society,
[.ondon 149:204-215-
Keimack K. zV, Mussett F. k Rigncy H. W. 1973. —
The iower jaw of Morganucodon. Jourtial oj the
212
GEODIVERSITAS • 1999 • 21 (2)
Spalacotheriid symmetrodonrs from rhe mid-Crctaceous of Utah
Urinean Soricty (Züolo^) 53' 87-17'^.
Kielan-Jaworowskd Z., Bown T. M. Lülegraven
J. A. 197^. —- F.üthcria: 221-2^8, ni I.illcgravcn
J. A., Kielaii Jaworowska Clcnicns W. A. Jr.
(eds). Mesozok Mnnmuth - l'bc Fini Two-thirds of
Mitimyiofuni lii:>iory. Univcrsiry Califurnia Press,
Berkeley.
Kiclan-juworowska Z. & Dash/eveg D. 1989. —
Furherian müininals frotu rhe Farly Crctaceoiis of
Vïongolia. Zooln^iai Scriptti 18: .^47-355.
1998. —New Farly Crcraccous amphilcsiid (“rri-
conodont") mammals from Mongolia. Acta
Falaenntolngica Folonica 43: 413-438.
Kiclan-Jawoiowska /.. & hriNorn P. C. 1994. — 1 iny
plagiaulacoid inâinm.iLs From the Purbcck
I.imestoiie Formuiio/i of Dorsci, England.
Palueantolif^ 37: 17-31.
Kirkland |. F. Briet B., Burge H. L., Carpenier K. C7,
Ciiclli R. 1 DcCourccn 1.» Masiotis-S. l.awton
T. 1997. ^ I.owlt fo middie Cict.iceoui» tliiiosaiir
faunas of ihe ceniral (Ailorado Plateau: a key to
utiderstanding 53 miilioti year^ of teetnnies, sedi-
mentology, évolution and hiogcography. Brijfhnm
Youug Uni venir)* Geolag^’ SnicHrsAl: (i9-103.
Krebs B. 1969. — N.ichwcis eine.s riidinicniaren
Coronoids im Unterkiefer der l’jniotheria
(Manimalia). Paliiontologhcfn'Zeitschrift 43: 57-63.
— 1985. -- 'l'heru (Mammalia) aus der Dntcrkreidc
von Galv iProvinz IVrucl, Spanien). Berlincr
Geowissemihiiftln'hc/XbhfUuPungnt A 6(1: 29-48.
— 1991. — Da.s Skelctr vtui HcnhcUnhcnnm gniffutro-
/i/egen. et sp MOV. (Fupaniotiieria, Mammalia) ans
dem (3beren Jura von l’ortugal. Berlincr
Geowtssenschaftliche AhhiWfiluu^'n 133: 1-1 10.
I.illcgravcn J. A. 1969. — l.aicst ( vrctuceoii.s mammals
ol upper part o\ Edmonton Forniarion of Albcria,
Canada, and rcvtew ol inarsupial-placeural dicho-
loniy in nianitnjÜan évolution. Paleontalogical
Contributions, Universitycd Kansas 50: 1-122.
Lillegraven j. A. & Bieber S. !.. 1986. —
Repeatabilify ol mcasuremeius ul snvall niainnialian
fossils wiih an industrial nieasuiing micToscope.
Journal of Vertébrale Paleontolng^ 6: 96-100.
Lillegraven J. A. & Krusat C. 1991. — Oanio-man-
dibular an.uomy of HaleJanoffon exspcctatus
(I )ocodoma; Mammalia) from rhe l.aïc Jiirassic of
Portugal and its implications ro rhe évolution of
maminulijn Lharaefers. Conttibuuons to (îvology,
Universit)' ol Wyoming 28: 39-138.
Luo Z. 1994. — Sister-group rdationsliips ol mam¬
mals and nanslormaiions ul diagnostic mammalian
characrers: 98-128 in Fiascr N. C. 6c Sucs H.-O.
(eds), !n the Shndow of the ninostiurs - Farly
Mesozoii Tetrapads. C^ambridge Université' Prcs.s,
Cambridge.
MacLurnon A, M, 1989. — Applications ol the
Reflex instruments in quaniituiivc murphology.
Folia PrirnatoLogiea 53: 3.5-49.
Madsen S. K. 1996. — Some techniques and proce¬
dure.s h>r microvertehrate préparation. Oklahoma
Geological Stmuy, Spécial Publication 96-4: 25-36.
Marsh (3. C. 1880. — Notice oi jurassic mammals
representing two new orders. American Journal of
Science li)\ 235-239.
Marshall !.. C. Klclan Jaworowska Z. 1992. —
Rclarionship.s of rhe dt>g-like marsupials, dclta-
theroidans and early crlbo.sphenic mammals.
Lethain 25: 361-374.
McKenna M. C. 6l Bell S. K. 1997. — CLtssiJication
oj Mammals Abnov the Spei'ics l ei'cl. Columbia
University l'ress, New V'oik, 631 p.
Miao 13, 1988. — Skull morphology of Lambdopsalh
huila (Mammalia, Mulcituoeiculata). ContrihutiorH
to Geology, University of Wyoming, Spécial Paper 4;
1-104. '
— 1993. — Cninial morphology and multituber-
cLilate iclutionships: 63-74, /;/ .S/.alay F. S..
Nôcavek M. J. ik McKenna M. Cl (eds), Mammai
Phylogeny, \\)lLinie 1: Mtsozoic DilJerentidtion,
Multitubcrculfites, Moniuremes, F.ady Fherians, and
Mimnphtîs. Springet-Verl.ig, .New York.
Mills |. R. F. 19'’1. — The dentition Morga-
nucodon, in Kermack O M. &i Kermack K. A,
(eds), turly Mamni.iK, ZoolngicalJournal <ffbe
Linnean Soeiet)<‘. 29-63-
— 1984. — l'he molar denrition of a Welsh panto-
tlicTC. Zoolo^ical Journal af the l innean Society 82:
189-205.
Nessov !.. A., Sigogneau Russell D. 6c Ricssell D. F..
1994. — A Mirvey ol Creraceous rrihosphcnic
manimafs from middie A.sia (Uzbekistan,
K.i/.akhsmn and l ajikistan), ol iheir geologtcal sei-
cing, age and faunal environment. Palaeowriehrata
23: 51-92.
Norman [). B. 1998. — C3n Asian ornithopods
(nino.saurla; C3inithischia). 3. A new sficcics of
iguanodonrid dinosaur. Zonlogiad Journal of ibv
lànnenn Society 122: 291-347.
Obradovich ]. 1993, A CJreiaceous tiinc scalc:
379-396, in Caldwcll W. C. E. Kauftman F. Cl
(edsj, Fvolution of the Western Interior Basin.
Genliigic,d ‘Vssociurion of Canada, Ottawa.
Oron U. & Caompton A. W. 1985. — A cineradio-
graphic and elecrroniyographk study of mastica¬
tion in Tenree ecaudatus. lournnl of Morphology 185:
I55-I82.
Osboni 11. F. 1888. — C3n die structure and classifi¬
cation ol the Mesozoic Mammalia. Journal of the
Atademy of Natural Sciences oJ' Philadelphia 9:
186-26Y
— 1907. — Fvolution of Mammalian Molar Feeth.
The MacMill.in Company. New York, 250 p.
Patterson B. 1955. — A symmetrodonr mammai
from ihc Larly Crcraccous of northern Texas.
Fieldiana: Zoology 37: 689 •693.
— 1956. — Farly C.retiiccous mammals and the évo¬
lution ol mammalian molar teeth. Fieldiana:
Geology 13: 1-105.
GEODtVERSITAS • 1999 • 21 (2)
213
Cifelli R. L. &C Madsc-n S. K.
Prothero D. R. 1981. — New Jurassic nummals from
Como Bluff, Wyoming^ and die inrerrelationships
of non-ti ibosphenic Theria. Bulletin of the
American Muséum of Natural Htstory 167: 277-326.
Rich T. H., Vickcr.s-Rich P., Cvon.scantine A.,
Flannery T. F., Kool !.. van Klaveren N.
1997. — A tribosplicnic niannnal frtim ihc
Mcsowiic of Australia^ lV/vW/h'278; 14.38-1442.
Roiigier C.. W., WibR-J, R. & Hnpson ]. A. 1996. —
Basicranial anarnmy of Priacorion fruitaensis
(Triconodoncidac, Âlammalia) from rbe Late
Jurassic of Colorado, and a reappr.iisal of mamnia-
liaform inttrrclatioTiships. A}nerican Muséum
Novitaies MVfy. 1-38.
Rowe T. B. 1988. — Dcdliiition. diagnusis, and ori-
gin of Maninialia.y-'>z//7w/ ofVenehriUe Baleontolo^
8:241-264.
— 1993- — Phylogenetic sysiematics and rhe early
histoi'y id iiiammaLs: 129-113, in Szalay F. S.,
Novacok M. 1- 6i. McKenna M. (eds), Mufmnal
Pbyh^cny^ V^ilume 2 — Mesozoic Différentiation,
MidtUuhereuliites, Monotreme^. Early Therians, and
Marsupuils. Springer-Verlag, lue.. Ncav York.
Sânchcz-N'illagra M. R. & Smirh K. K. 1997. —
Divcrsiry and évolution ot the marsupial mandibu-
lar angular proccss, Journal oj Mammalian
hvoiution 4\ 119-144,
Sigogneau-Russell D. 1983. — A new rherian niam-
mal from ihc Rhaeiie locality of Saini-Nicolas-dc-
Pon (Fr:incc‘). /.ooloffcal Journal of fhc Linnean
Soàety^'6\ 1/3-186.
— 1989. — Dccouvcnc du premier .Synimcrrndontc
(Mammalia) du eoininent africain. Cumptia Rrndu<
de PAiodthnie des Sdent'es, Paris 309 ; 921-926.
— 1991;!. — F.dtly Ciet.Hcous Morocc.m Theria
(Mammalia) - considérai ions on therian dental
évolution. 61-62. in Kielan-jaworovvska Z., ficint/
N. & Nakreni H. A. (eds). Eifth Syntposium on
Mesozoic Terrestrial h.cosystems and Biota.
Paleoniological Muséum, l.lniversiiy of f^slo, Oslo.
— 19911). — Nouveau.v Mammifères tlicriens du
Crétacé Inférieur du M.iroc. Comptes Rendus de
PAcaddnie des Svienevs. Paris 313 ; 279-283.
Sigogncan-Riisscll D Fnstini P. C. 1994. —
Découverte, dans le Croupe de Piirbcck
(Berriasian, Aiiglttent'), de plu.s ancien témoinage
de rcxistciicc de manimifère.s tribosphéniques.
Comptes Rendus de VAcadémie des Seiencesy Paris
319: 833'H38.
— 1998. l'hereuodon (Theria, Symnictrodonta)
from (he Lower (Tetaceous of Nortli Alriea and
Europe., and a brief review of symmeirodonts.
Cretacenus Research 19; 1-26.
Sigogneau-Russell D. & Hahn R. 1993. —
Reasses.smcnt of the Late Triassic symmerrodont
mammal Woutersia, Acta PaLieontolodra Polonica
40; 243-260.
SimpvSon C, C. 1925a. — Mesozoic Mammalia.
3 Preliminary comparison of Jurassic mammals
cxcept mulcituberculatcs. American Journal of
Science 10: 339-569.
— 1923b. — Mc.so/.oic Mamnialia. U. Tinodori and
ns allies. American Journal <f Science 10: 431 -470.
— 1926. Meso/.oic Mammalia. IV'. l’he multi-
tuberculates as Itving aninials, Atneriiwt Journal of
II 228-230.
— 1928a. — A Catalogue ofthe Mesozoic Mammalia
in the Geological Department of the British Muséum.
î rustce.s ofthe Briiish Muscum. London, 213 p.
— 19281). — Mesozoic Mammalia. XII. Fhc internai
mandil)iilar groove of Jurassic niamm;ils. American
Journal ofSeietue I3: 461-470.
— 1929. — American Vlcso/oîc Mammalia. Memoirs
of the Peahody Muséum 3: 1 -233.
—- 1943. — The printiples of classification and aclas-
sifkution oi inamrmds. BuHetin of the American
Muscum tf Natural Hisiory 83: 1-330.
Siokes NX''. L. 1944. - Morrison l'ornvation and rela-
ted deposits in and adiaeenr to ilie Colorado
PLucau. Bulletin ofthe CeoloCtca! Society of America
33:931-932.
— 1932. — Lower C'retaccinis in Colorado Plateau.
Ihditîin of ih^ American Association of Petroleum
(ieologists *36: 1766-1776.
Sues I l.-F). 1986. — The skull and dentition of two
irirylodonrid synapsids from rhe Lower Jurassic of
western Norrh America. Bulletin of the Muséum of
C'omparativc 7.oology 131; 217-268.
Trofimov B. A. 1980. — Muftitubcrculata and
Symmetrodonta from the Lower Creraceous of
Mongolia. Dokladyi Akademia Nauk SSSR 251:
209-212.
Wihlc |. R. 1991. — Origin of Mammalia: the cra-
niodeinal évidence reexamined. Journal of
Verrehrate Paleontolog\> 11 ; 1 -28.
NXOble J. R. ièc Hopson J. A. 1993. — Basicranial évi¬
dence for early mammal phylogeiiy: 43-62, in
Szalay F. S., Novacck M, J. & McKcniut M. C.
(eds)t Mammatphylogcnys\’o\i\mc 1 - Mesozoic dif
ferentiuikm. ntnhituhcrculatcs, numotremes, early the¬
rians. and marsnpials. Springer-Verlag, !nc., New
York.
SubmittedJhrpublication on 20 Jnly 1998;
accepted on 19 November 1998.
214
GEODIVERSITAS • 1999 • 21 (2)
Composition en acides aminés d’os de
mammifères fossiles de deux sites du
Plio-Pléistocène d’Angola. Comparaison
avec la conservation de la phase minérale
Hélène DAVID
Laboratoire de Paléontologie, Université Paris-XI, Bât. 504, F-91405 Orsay cedex (France)
Laboratoire d’Anthropologie, Université Bordeaux-I,
avenue des Facultés, F-33405 Talence cedex (France)
Yannicke Dauphin & Pascale GAUTRET
Laboratoire de Paléontologie, EP 1748 du CNRS, Université Paris-XI.
Bât. 504, F-91405 Orsay cedex (France)
Martin PICKFORD
Laboratoire de Paléontologie, UMR 8569 du CNRS, Muséum national d Histoire naturelle.
8 rue de Buffon, F-75231 Paris cedex 05 (France)
Chaire de Paléoanthropologie et de Préhistoire, Collège de France,
11 place Marcelin-Berthelot, F-75005 Paris (France)
Brigitte SENUT
Laboratoire de Paléontologie, UMR 8569 du CNRS, Muséum national d’Histoire naturelle,
8 rue de Buffon, F-75231 Paris cedex 05 (France)
David H-, Dauphin Y., Gautret P.. Pickford M. & Senuî B. 1999. — Composition en acides
aminés d'os de mammifères fossiles de deux sites du Plio-Pléistocène d’Angola.
Comparaison avec la conservation de la phase minérale. Geodiversitas (21) 2 :215-227.
MOTS CLÉS
Plio-Pléistocènc,
Angola,
Theroùithecus^
os,
FTIR,
acides aminés.
RÉSUMÉ
La comparaison des paramètres microsiructuraux et de composition (phases
organique et minérale) d'os de mammifères actuels et fo.ssilcs (Plio-
Plcisiocènc d’Angola) montre le caractère diltérentiel de la diagenèse. Malgré
une conservation microsrructiiralc globalement bonne, les compositions chi¬
miques des phases minérales sont modifiées (enrichissement en Ca, appau¬
vrissement en Mg). Très peu de matrice organique e.st conservée. Les phases
organiques solubles er insolubles sont également diversement uliérécs, la
composition en acides aminés de la phase .soluble semblant mieux conservée
que celle de la phase insoluble.
GEODIVERSITAS « 1999 • 21 {2}
215
David H., Dauphin Y., Gautrer P., Pickford M. &c Senut B.
KEYWORDS
Plio-Pleist(Xcnc.
Angola.
Theropiîhci'us^
Bas,
IxMK-,
l-l'lR,
amino-acids.
ASBTRACT
Composition in amino-acids offossil rnammalian bones f'rorn two Plio-
Pleistocene Angolan sites. Comparison with thepréservation uj the minerai phase.
Compariscm of the microstructural paranicters and composition (organic and
minerai phases) of rntpclern and lossil mammal bones (Plio-Pieiscocenc of
Angola) sliow ihe dilfercntial characier of diagcncsis. [>cspiic cxcellcnl pré¬
servation ni the nncrostrucrurc, rhe chcmical composition of ihe minerai
(ihases has hccn modihed (enriehed in Ca, rcdiiction of Mg). The amount of
preser\'ed organic matrix is greaily roduccd. fhc amino-acid composition of
the sttlubif organic phase appears to be better presctvcd lhan that of rhe-in¬
soluble phase.
INfRODUCTION
L’abondance des phases organiques dans l’os
actuel semble un facteur favorable à leur conser¬
vation chez les fossiles, et les données relatives à
leur composition devraient être très abondantes.
Cependant, de telles informations demeurent
ponctuelles cat, malgré cette circonstance appa¬
remment favorable à des analyses extensives, les
techniques analytiques de la phase organique
nécessitent la déminéralisation de To.s. Or, ceci
implique la destruction du seul paramètre géné¬
ralement étudié par le paléontii>loglste, et consi¬
déré encore uctuellejncni comme le plus, sinon le
seul, réellement important et inlormatif : la mor¬
phologie. Second point qui limite considérable¬
ment la portée des données sur les os fossiles : les
études sont très spécialisées, soit par la technique
utilisée (diffraction X, immunologie...), soit par
le composant choisi (phase odnérale, composi¬
tion de rostéocalciiic...). Bieti que Pos soit un
matériau complexe, rares sont les travaux prenant
simultanément en compte les p.iramètres de la
phase minérale et de la phase organique. Enfin, à
cause de la spécialisation de plus en plus poussée
des laboratoires et de la complexité croissante des
techniques analytiques, la comparaison de la dia-
genèse des phases organique.s et de celle de la
phase minérale demeure un problème rarement
abordé. Les données sur les phases organiques
fossiles sont donc encore réduites, malgré leur
potentiel informatif très vaste (apport à la recons¬
titution de la phylogénie, du paléoenvironne¬
ment, histoire de la fossilisation, compréhension
des processus de formation des sires...). La diver¬
sité des âges et de la géologie des sites fossilifères
est telle que des « lois » régis.vanr la fossilisation et
tous les phénonèmes connexes ne pourront être
établies qu’à partir de très nombreuses données.
Une étude préalable ayant mis en évidence la
présence de sucres dans un asiragale de bovidé
récolté dans un site angolais plio-pléistocène
(David e/ al, 1996), l’analyse de ce spécimen a
été poursuivie afin d’obtenir des données sur la
diagenese comparée des phases minérales et orga¬
nique.s. Lin .site fossilifère voisin, de même âge
mais de scdimencologic différente, a fourni des os
de primates, susceptibles tic fournir des informa¬
tions supplémentaires sur la fossilisation et la dia-
genèse.
TRAVAUX ANTÉRIEURS
I.c.s travaux sur la structure, la minéralogie et la
composition de fus actuel sont trop nombreux
pour être cités. Ires rapitlemcnt, les auteurs ont
abandonné les analyses globales au profit d’une
caractérisation des com|>osant.s protéiques i.solés,
pour en déterminer la composition ou le séquen¬
çage. Paniii les paramètres caractéristiques des
phases organiques, les acides amines semblent
av(jir été parmi les premiers étudiés, notamment
h cause dos particularités de composition du col¬
lagène. Or, cc dernier constitue environ 9(» % de
la phase protéique de l’os. Toutefois, dès 1965,
Glimcher &C Katz mettaient en évidence les pro-
216
GEODIVERSITAS • 1999 • 21 (2)
Composition en acides aminés d’os de mammifères du Plio-Pléistocène angolais
blcmes poses par la solubilisation plus ou moins
grande du collagène dans divers solvants et
acides.
Chez les fossiles, les premières analyses détaillées
semblent dues à Abelson sur du matériel
dévonien. La comparaison de la composition en
acides aminés de spécimens appartenant k des
taxons variés, et venant de sire^s d âges différents,
montre une grande variabilité (Armstrong &C
Halsiead Larlo 1966 ; Dungwortli çt ai 1974 ;
Wyckoff & Davidson 1976 ; Davidson et ai
1978 : v*on Rndr & Orrner 1982 ; Cohcn-Solal
et al. 1987). En réalité, cette variabilité doit être
supérieure a ce qui ressort de rexamen de la littc-
rarure. car seuls les résultats w po.sitils », c'est-à-
dire les analyses dans lesquelles les acides aminés
ont pu être identifiés, sont généralement publiés.
Or, certains sites fossiles fournissent des os conre-
nant encore de la pha.se organique, mais les
spectres d’acides aminés ne sont pas roiijours
ititerprétables (Monigelard et ai 1997 ; Dauphin
1998). De plus, dati.s la plupart de.s cts, seule la
phase organique insoluble (assimilée au collagène
malgré les variations pouvant être dues au pro¬
duit utilisé pour la déminéralisation de l’os), est
prise en compte. Outre le collagène, l’albumine
et rostéocalcine sont les protéines le plus Souvent
identifiées chez les fossiles ou sublossiles (Tuross'
étal. 1980 ; Lowenstein 1981 ; Huqef/y/. 1985 ;
Montgclard 1992). Il s'agir en lait des protéines
les mieux caractérisées dans l’os actuel car il y
aurait au moin.s deux cents protéines non colla-
geniques (ou NCP) (Delmas et ni 1984). L’acide
y-carboxyglutamique, longtemps considéré
comme caractéristique de l'ostcocalcine, a été
recherché chez les fossiles, ibutclois. les huerpre-
tations qui découlent de Sa présence ou de son
absence quant h la « bonne conservation de Los
doivent être pondérées. D'une parc, l’ostéocalci-
ne est parfois en quantité négligeable, comme
dans l'os humain. D’autre part, dams l’os adulte,
routes les protéines non coUageniques sont déjà
fortement dégradées ( Ibrminc 1988), ce qui res¬
treint forcement la probabilité de sa conservation
chez les fossiles. Enfin, Tacidc y-carboxygluta¬
mique a été extrait et identifié dans les squelettes
de coraux, et est probablement également présent
dans les tests de mollusques (Hamilton & Zerner
1983).
MATÉRIEL ET MÉTHODES
Matérif.l
Les spécimens actuels de références sont consti¬
tués par un tibia de bœuf (congelé et sec), un
humérus de Pftpnf anubis (Cercopithecoidea
d’Ouganda, ayant séjourné en forêt pendant une
durée indérerminée) et du collagène commercial
de type I (Sigma).
Les deux sites fossdileres, situés sur le plateau
d'I lumpata (sud de l'Angola) sont datés du Plio'
Pléi.stocènc. Le fragment d’astragale de bovidé
provient des découvertes effectuées lors d'une
campagne de FAngola Palacontology Expédition
(Picklord et.nl. 1992, 1994). Il a été récolté dans
des remplissages de fissures de la carrière de
Cangalongue 111, composées de brèches gros¬
sières, contenant de nombreux fragments de sta-
lagmires recimenrés par des travertins. Les
fragments de cotes et de vertèbres de
lUeroInthecm (primates Cercopirhocoidea) vien¬
nent du gi-semeru de Tchiua, dont les remplis¬
sages sont formés de brèches à grains très fins.
C]ctre fonnarion a été interprétée comme du
guano calcifié de chauve-souris.
Il convient de signaler que la diversité des os ne
peut guère provoquer de biais majeurs dans la
comparaison, compte tenu du niveau d’observa¬
tion utilisé dan.s ces analyses.
MiThodf.S
Microstructures
Des cassures brutes et traitées ont été observées
au microscope électronique à balayage. Les os
actuels ont été soumis a des protcolyscs enzyma¬
tiques, afin d'éliminer partiellement l’abondante
matrice organique qui tend à masquer les struc¬
tures. De la trypsine et de l'alcaluse ont été utili¬
sées car elles sont peu spécifiques. Les surfaces
polies dex os fossiles ont etc li%èremcnt décalci¬
fiées à l'acidc formique.
Cornpoùîton globale
La composition minéralogique et la présence de
phases organiquex ont etc dcicrminccs par spec¬
trométrie infrarouge à transformée de Fourier
(FTIR). Après déconramination des polluants
organiques à Lhypochloritc de sodium, les os
sont rincés à l’eau Milli-Q et séchés à température
GEODIVERSITAS • 1999 • 21 (2)
217
David H., Dauphin Y., Gautret P., PickFord M. & Senut B.
ordinaire. Ils sont en.suite finement broyés. Les
poudres d'os nn^langees à du KBr ont été analy¬
sées sur un spectromccre FLIR Bcrkin
Elmer 1600, équipe d’un accessoire à réflexion
diffuse (DRIFT). Le nombre de balayages est de
soixantc-quane (soit un remps d'analyse supé¬
rieur à quatre minutes par spectre), dan.s une
gamme de longueurs d'onde allanr de 450
à 4000 cm ' (Dauphin 1993). l e système
est maintenu sous uimosplièrc d'a>:oie afin de
réduire les bandes dues aux CO, et H^O atmo¬
sphériques.
Analyse chimirjue élémentaire
La composition chimique a été déterminée par
microanalyse localisée (spectrométrie dispersive
en énergie ou EDS). Le système utilisé, Link An
10000 couplé è un microscope électronique
Philips (SFM 505) (Université Paris-XI-Orsay),
possède un programme .spécialement conçu pour
l'analyse dex surfaces rugucascs. Par une prépara¬
tion adaprée des spécimens, il esc aisé d'identifier
les divers composants d'un fossile (tissu, sédi¬
ment). La prépararion des échantillons, les
conditions d’analyse et le traitement statistique
sont similaires i ceux précedemmenr décrits
(Dauphin 1997). Dans les spécimens actuels, les
teneurs de ccrntiirs éléments chimiques sont infé¬
rieures à la limite de dereenon de la microsonde
(Fe ou Mn p,ir exemple). Toutefoi.s, les valeurs
obtenues sont indiquées, car ces élçmcms sont de
bons indicateurs de la diagenèse, leurs teneurs
dans les fossiles étant souvent supérieures à la
limite de détection de la microsonde.
Compositiofi en acides aminés
Les os ont été décoiitaminés i l’iiypochlurite de
sodium, puis nettoyés pendant quelques minutes
aux ultrasons afin de décoller les particules et
débris divers qui pouvaJent subsister, notamment
sur les fossiles. Apres rinçage à l’eau Milii-Q, ils
ont été séchés à température ambiance.
Les poudres résultant du broyage ont été décalci¬
fiées à l’acide acétique sous un pH constant de 4.
Les phases solubles (MOS) et insolubles (MOI)
ont été séparées pat celUrifugation. La pha.se
soluble a etc de.ssaloc pat ultrafiltration avec de
Peau Milli-Q sur une membrane dont le seuil de
coupure esr de 3 kDa. La phase insoluble a été
dessalée p.u centrifugations successives dans de
Peau Milli-Q. Les phases soluble et insoluble ont
été lyophili.sécs.
Apres hydrolyse dans une solution FfCl 6N pen¬
dant vingt-quatre heures à 1 10 "C sous atmo¬
sphère d\izote, la dérivation PPPC a etc eUcctiiéc
car elle permet la détection des amines secon¬
daires. La composition en acides amines a été
obtenue par chromatographie HPl.C en phase
inverse, sur une colonne Nucleosyl Cl H, avec un
élucni d’acide orthophosphorique et NaOH à
pFI 6,4 et un gradient d'acéionirrile. Le détecteur
est réglé à 254 nm. Rappelons que Phydrolyse
utilisée detruir Jes acides aminés soufrés (cystéine
et méthionine), ainsi que le tryptoplmne. Kaeide
Y carboxygluramique, qui nécessite une hydrolyse
particulière de type alcalin, n'a pas' été recherché,
les matrices organiques exiraires des os fossiles
étant en très faibles quantités.
Points isoclectriqncs
À partir des compositions en acides aminés, on
peut calculer le point Isoélecrrique moyen (pl)
d'une phase organique (Sillero Üc Ribeiro 1989),
ce qui permet d’estimer son degré d’.tcidité, Dans
la formule utilisée par ces auteurs, les acides
aspartique- glutamique, la cysréine libre, la ryro-
sine, Phisridinc, la lysine et Parginine sont pris en
compte. Cerre rnethiule indirecte présente l'avan¬
tage de pouvoir erre appliquée sur le.s matrices
soluble et insoluble, ce qui n'est p;is le cas des
métho<les directes chromaiographique (chromato-
foenssing) ou électropliorétiquc (isoelnrric foms-
sing). plu.s précises car elles fournissent
Pcnsemble des points isoélectriqucs de.s divers
composés. De plus, le calcul à pariir de.s pour¬
centages d’acides aminés permet de connaître le
pl des phases solubles même lorsque les quantités
recueillies sont minimes.
RÉSUUI’ATS
CON'l RO\ ni-, l’flAT DK CONSERVATION
t.l-NEKAI K DLS OS
L’observation de la microsiructure est une pre¬
mière étape dans le contrôle de Pétat de conser¬
vation d’un fossile. Elle est récemment devenue
cruciale, car certains champignons contiennent
218
GEODIVERSITAS • 1999 • 21 (2)
Composition en acides aminés d’os de mammifères du Plio-Pléistocène angolais
Fig. 1 — A, Surface e)(lerne altérée dans une cassure ancienne de l’astragale du bovidé fossile de Cangalongue. Échantillon non
traité : B. vue d un fragment de vertèbre de Theropithtscus, Cercopithécûidea (Tchiua), après un nettoyage insuffisant pour détruire
un éventuel sédiment présent dans les cavités (acide formique 5 %. 15 s) : C, surface altérée d’un fragment de côte de
Theropithecus. Cercopithécoidea montrant l’os spongieux après disparition du périoste : cassure traitée à l acide formique 5 %,
15 s ; D, coupe oblique montrant la pâroi des trabecules darrs l’os spongieux d'un fragment de côte de Theropithecus : même spéci¬
men que Fig. 3 : E, détail de la précédente : F. lamelles osseuses dans une coupe oblique d'un fragment de côte de Theropithecus :
cassure traitée à l'acide formique 5 %, 15 s. Échelle ; A, 160 pm ; B, 3 mm ; C, 90 pm ; D, F. 100 pm ; E, 10 pm.
GEODIVERSITAS • 1999 • 21 (2)
219
David H., Dauphin Y., Gautret P., Pickford M. & Senut B.
Fig. 2. — Spectres infrarouges des os actuels {Bos et Papio, Cercopithecoidea) et fossiles (bovidé et Theropithecus) montrant que
les os fossiles sont conservés en apatile, et la diminution de leur quantité de matière organique.
des acides aminés jiisqu^ici considérés comme
caractéristiques du collagène (hydroxyproline et
hydroxylysine) (Celcrin.e’/1995).
Les sections diversement oricnrcc.s réalisées dans
l’os de bœuf actuel observé au microscope élec¬
tronique iî balayage apres une protéolyse enzyma¬
tique montrent la structure lamellaircj le système
haversicn ci les z.onc.s en « contreplaqué >>• (David
et ai 1996). Macroscopiquemeni ahéré (Fig. lA),
le fragment d'astragale de bovidé de Canga-
longue ne comporte pas de remplissage secon¬
daire dans les cavités naturelles de l’os, ni de trace
indiquant l'aciiviic de micro-organismes (David
étal. 1996). Les risques de contamination en
matrice organique d'origine exogène apparaissent
ainsi réduits. Les cavités des vertèbres de
Theropithecus ne sont pas comblées (Fig. 1 B). .Sur
les fragments de cotes, les alterations de l’os péri-
ostique (Fig. 1 C) permettent d’observer l’os
spongieux .sous-jacent, ainsi que des' structures
lamellaires dans les zones plus internes. Des
lacunc-S ostcocytiques sont parfois présentes. La
disposition des fibres de collagène minéralisées
est conservée sur les parois des trabécules
220
GEODIVERSITAS • 1999 • 21 (2)
Composition en acides amines d’os de mammifères du Plio-Pléistocène angolais
Na Mg Al S Cl K Mn Fe Sr
SÉDIMENT
40
Cangalongue Tchiua
Na Mg Al S Cl K Mn Fe Sr
Fig. 3. — Teneurs en éléments majeurs : P et Ca, des os Fig. 4. — Teneurs en éléments mineurs des os actuels et fos-
actuels et fossiles, et du sédiment encaissant. siles, et du sédiment encaissant.
(Fig. ID, E). La structure en lamelles est égale¬
ment visible (Fig. IF).
Composition olobai.e ei hémen iaire
Les .spectre.s infrarouges montrent que dans les
deux siles, les os sont en apatite. avec des modifi¬
cations modérées (Fig. 2). Termine ÔC Posner
(1966) ont rnis au point un mode de cilcul de la
crisrallinitc (sp/hnng fiactioii) de Tos à [ïarrir des
intensités relatives des bandes du doublet v4 PO.j.
Le taux moyen de cristaHinirc de l'os atteint 0,10
pour le bœuf actuel et 0,11 pour Pdph ; celui du
bovidé fossile est supérieur à 0,1 4 tandis que chez
Theropithecus il est égal à 0,08. Les variations du
taux de cristallinitc des os actuels dépendent de
l’âge de l'animal : faible chez l'animal jeune, il
sera plus élevé chez un animal âgé. Chez les fos¬
siles, ces variations originelles sont généralement
masquées par les modifications diagénétjqucs.
Que la cristallinité augmente ou diminue, la
aiusc de CCS v-ari-itions reste la plupart du temps
indéterminée : disparition de l’os amorphe, aug¬
mentation de la phase crisralline aux dépens de la
phase amorphe, ou augmentation de la cnstallini-
ré de la phase initialement déjà cristalline.
Slutman et al. (1965) ont montré que la position
et rintensiié des bandes vl, v3 et v4 dépendaient
du type d apatite : hyJroxyapatitc, chloroapatitc
et fluoroapatite. Si F est normalement en quantité
insuffisante dans l’os actuel pour altérer les fré-
GEODIVERSITAS • 19&9 • 21 (2)
221
David H., Dauphin Y., Ciautrer P., Pickford M. & Senut B.
Fig. 5. — Composition en acides aminés (%) des phases insolubles (en haut) et solubles (en bas) des os actuels et fossiles de
Cangalongue et de Tchiua. Les compositions du collagène et des protéines non collagéniques (NCP d'après von Endt & Ortner 1982)
sont figurées.
quences de ces bandes, il est généralement admis
quil est en quantité importante dans tous les os
fossiles. Toutefois, d’après ces critères, les os fos¬
siles ne sont pas enrichis en R
Les différences de composition des sédiments
(l’un calcaire, l’autre phosphaté), n’apparaissent
pas dans les spectres, ce qui confirme l’absence
d’un remplissage important des cavités osseuses.
La phase organique, encore présente chez les fos¬
siles (amides A, I et II), y est modifiée en quan-
222
GEODIVERSITAS • 1999 • 21 (2)
Composition en acides aminés d’os de mammifères du Plio-Pléistocène angolais
NCP Bos Theropithecus
Collagène 1 Bovidé
Fig. 6. — Points isoélectrlques moyens calculés d'après les
compositions en acides aminés par la méthode de Sillero &
Ribeiro 1989.
tiré (bandes moins intenses) et en qualité (absen¬
ce de certaines bandes).
Les os fossiles sont tous deux enrichis en Ca
(Fig. 3). Iheropithecus étant en outre plus riche
en P que le bf)vidc. Le rapport en poids Ca/P de
l'os de bœul actuel esc voisin de 1,9b, celui de
Papio atteint 2.02. Chez les fossiles, ces rapports
sont supérieurs : 2.08 pour Theropithecus et 2,30
pour le bovidé. Les teneurs en éléments mineurs
ne montrent pas de ntodifications importantes.
Malgré la grande différence de quantité en Fc des
deux sédiments (Fig. 4), cette disparité aest pas
transcrire dans les fossiles puisque les teneurs des
os sont similaiccs dans les dcttx sites (Fig, 4). Le
sédiment de Cangalongue est calcaire, et plus
riche en Mg et AJ que Tchiua (Figs 3, 4).
Composition pn acides aminés
Phase organique insoluble (Fig. 5)
La composition de la inarricc insoluble extraite
de Fos de bœuf esc identique à celle du collagène
commercial de référence (type 1), La matrice
insoluble du bovidé fossile est très différente de
celle de Fos actuel, mais la plupart des pics a été
identifiée. Les teneurs en glycine, hydroxy-
proline, prolinc et alanine sont plus faibles que
dans Factuel, les teneurs en tyrosine, valinc et
isoleucine sont plus élevées. Deux pics non iden¬
tifiés sont présents. La composition de la matrice
insoluble de Theropithecus est beaucoup moins
claire : de nombreux pics ne sont pas identi¬
fiables avec ceititude et le spectre n’est pas repré¬
senté dans la Figure 5. Dans la zone correspon¬
dant à la succession thréonine, alanine, histidine
et proline, on rrouv'e seulement un large dôme.
Les deux piçs non identifiés chez le bovidé exis¬
tent également.
Phase organique soluble (Fig. 5)
À titre de comparaison, la composition des pro¬
téines non collagéniques (NCP) est figurée (Von
Endt & Orrner 1982). Peu abondantes (10 % de
la matrice organique de l’os : Hauschka 6c Wians
1989). CCS protéines non collagéniques sont
cependant tres variées. Nombre d'entre clics ne
sont pas encore identifiées, et certaines sont
connues seulement particllcmcnr. La composi¬
tion de la phase srduble extraite de l’os de bœuf
actuel est relativement similaire ,a celle de la
phase insoluble ; cette similitude est partielle¬
ment due a la mise en solution partielle du coILt-
gène (Weiner Ôc Bar-Yo.sef 1990). Par rapport à
la composition des protéines non collagéniques
(NCP), la matrice .soluble du bœuf est trop riche
en hydroxyprolinc et en glycine, trop pauvre en
Icucine et valinc.
La matrice soluble du bovidé fossile se caractérise
par une très forte teneur en phenylalanine et une
baisse sensible des quantités de glycine cc
d’hydro.xyprolinc. Pratiquement tous les pics
sont identifiables. La matrice de Iheropithecus est
également riche en phenylalanine, glycine, alani¬
ne et proline, sans atteindre toutefois des valeurs
comparables à celle du bovidé. Les teneurs en
hydroxyprolinc sont nullcs. En outre, le spectre
est très clair et tous les pics sont identifiables.
POINTS iSOF.UCl RIt.?aKS (pl) MOYENS DES
MAI’KICES
Les matrices organiques de Los. collagènes et
NCP sont acides (Fig. 5). Il en esc de même pour
les matrices extraites de Los de bœuf actuel. Si le
pl moyen de la phase soluble de l'os de bœuf est
.similaire à celui de.s NCP. le pl de la phase inso¬
luble du bœuf est légèrement plus acide que celui
du collagène de type L l.a phase sotublc du bovi¬
dé fossile est devenue un peu plus acide que
Fin.soIuble. Quant à U phase soluble du
Theropithecus, elle atteint un pl supérieur à 6
(Fig, 6).
GEODIVERSITAS • 1999 • 21 (2)
223
David H., Dauphin Y., (.îautret P., Pickford M. & Senut B.
DISCUSSION
Ces deux exemples sont bien évidemment insuf¬
fisants pour en tirer des conclusions définitives
sur les processus de fossilisation des os. D'une
part seuls deux sires sont pris en considération,
d'autre pan les paramètres analysés sont trop peu
nombreux. Cependant, ptnir cliaque composant,
ils sont sulfisanrs pour révéler cenains points
communs et ccrtainc.s dilférenccs, avec les études
publiées.
Composi tion globale
La composition globale des os fossiles des deux
sites de Cangalongue et de Tchitia montre que
les os y sont conservés en apatitc. dbutelois, la
diagenèse rfesi [vas absente [îuisque des para¬
mètres tels que les teneurs en C:i, en R la crisralli-
nité et le.s teneurs globales en matrices
organiques sont altérés, fia composition des
phases organitjues est également altérée. Inès peu
de matrice organique a (>u être extraite des os fos¬
siles des deux sites. Ainsi que le fait remarquer
Glimcher (1993) the uriginiil volume occu~
pied by the ornante nuUtix rnusi hâve heeit repLued
hy new inorganic rmiterinl (aystuts Ufid possihly
(imorpi)ou^ udid phthcs) formed during the pe}'iud
of fossilizutioh iifid ujter the deuth of the tVÙHhd
[...] it ivems unteasorntble to ussume that ihe atom
and ion conttiiuents ifi the minerai phase of the ske-
leton and tooih risuns ofthe fossil specimen ave
those which werc présent ai the timc ofthe animais
death. » L'utilisation abusive des paramètre.s geo-
chimiques pour la reconstitution des paléo-
environnements doit une fois encore être signa¬
lée, que ces paramètres dérivent de la phase
minérale ou de la phase organique. Lune des ten¬
dances actuelles en cc domaine consiste a « rem¬
placer » les données issues de l’analyvSc de la phase
minérale par celle de la phase organique, qui
serait moins sensible à la diagenèse. Or, dans la
plupart des cas, cette matrice organique est très
altérée en qualité et en quantité. Et lorsque sa
quantité semble voisine de celle des os actuels,
elle est au moins partiellement exogène
(Montgclard et al. 1990 Dauphin 1998). Dans
le cas des fossiles d’Angola, seules les analyses de
la composition en acides aminés et les données
qui en découlent (pi moyens) ont été étudiées.
Les interprétations sont donc limitées, car de
nombreux paramètres restent inconnus : masses
moléculaires, composition en acides aminés et pi
de chaque composant par exemple. En fait, si a
priori l’abondance naturelle des phases orga¬
niques dans Tos semble être un facteur favorable
â leur conservation, elle est surtout un des fac¬
teurs principaux de leur destruction. D\ine part,
les cellules contiennent de nombreuses protéases
qui sont libérées à la mort de I animal, contri¬
buant ainsi à la dégradation rapide et à la des¬
truction de la |)hase organique. [3’autrc part, les
bactéries, renconrram un milieu nutritif riche,
sont très actives.
Cl'lNSEKVATlON niTFF.RENT'lELLK DES PHASES
organiques
Dans les spécimens angolais, d’après leurs com¬
positions en acides aminés, les phases organiques
ilisolubic.s sont plus altérées que les phases
solubles. Paradoxalement, les compositions en
acides aminés des phases solubles du bovidé fos¬
sile et du l'hcropithecus sont plus proches de celle
du collagène que Ic.s phases insolubles des nicmcs
spécimens, l-a comparaison avec les données de
la littérature nesi pas [mmedune, notamment à
cause de la diversité des techniques d’an.ilyses
disponibles pour les acides aminés. Il est en cflFcc
pratiqut-nicnt impossible d'obtenir, avec une
icule hydrolyse et une seule dérivatii>n, un
speertv contenvinr tous les acides aminés.
Toutefois, une telle similitude a déjà été signalée
dans des os suhiossilcs (Hedges et al. 1980).
D.ins cctic élude cependant, les amines secon¬
daires' (dont fhvdroxvproline, l'un des cléments
les plus caractéristiques du collagène) ne sont pas
mentionnées, fl est prolvible qu’au cours de la
divtgenèse, les fibres de collagène se fragmentent.
Ce phénomène peur être comparé aux procé¬
dures expérimentales permettant tle couper les
longues fibres en peptides, couramment prati¬
quées sur le collagène de type l. C'es techniques
ont pour but de rendre possible rutilisaiioti des
nicthodo.s classiques d'analyse des phases solubles
(chromarogtaphic liquide* et électropboièse
noîanuncnc) sur une pliasc initiale insoluble
(Rossi et al. 1996).
224
GEODIVERSITAS • 1999 • 21 (2)
Composition en acides aminés d’os de mammifères du Plio-PIéisrocène angolais
On peut noter la similitude entre les bovidés
actuel et fossile, qui tous deux, présentent une
phase soluble très riche en acides aminés caracté¬
ristiques du collagène. Le collagène .solubilisé par
les processus de décalcilication apparaît donc
moins sensible aux altérations diagénétiques que
le collagène mni solubiü.sé. Ces diflérences de
comportemcm pourraient êta- ducs à son degré
d'association avec la phase minérale. On peut
rapprocher ces observations de celle de Masters
(1987), qui avait déjà reconnu la conservation
diiférenrielle des composants de l’os, les NCP
étant les mieux conservées.
RÙlii nu .SÉDIMENT
L^c nombreux làcccurs interviennent pendant la
fossilisation des restes squelettiques ; en outre, les
processus diagénétiques sont permanents encre le
stade de l'enfouissement et la découverte du fos¬
sile. Parmi ces facteurs, la taille des os est ^ consi¬
dérer, Rien qiie les études sur le sujet demeurent
limitées, la composition chimique éicmciuaire de
la zone externe d’un os de grand mammifère est
plus modifiée que ses zones internes (Williams âc
Marlow 1*187 ; Williams &C Potts 1988).
Uinfluence de la composition du sédiment est
dans ce cas évidente, puisque le périmètre externe
des os est enrichi en éléments chimiques très
abondants dans le sédiment environnant.
Toutefois, l’influence du sédiment est variable
selon les sites car bien que le sédiment de
Cangalongiic soit beaucoup [dus riche en Pc que
celui de î'chîua, les os ont à peu près les mêmes
teneurs en Fc. Une étude détailIcc de l’évolution
des teneurs en Fe de l'extérieur vers l’intérieur
des os n a pas été faire. L’évenruel remplissage de
la cavité médullaire pcLir*augmcnrcr les mtjdifiai-
rions diagénétiques.
Enfin, en dépit d’un sédiment dont la composi¬
tion est plus proche de celle de l’os à Tchiua quà
Cangalonguc. le.s phases organiques du Thero-
pithecus %ox\x. plies modifiées que celles du bovidé.
Tl faut noter que les dimensions de.s fragments de
vertèbres et de cÉiles du Theropitbtxu^i éXMwt net¬
tement inféiicures à celles du fragment de bovi¬
dé. L’absence de données détaillées sur les
sédiments et le contexte géologique des deux sites
ne permet pas de faire des comparaisons
détaillées.
Il convient donc de noter que, en dépit d'une
microstrucrufc et d'une minéralogie conservées,
la diagenèse est présente dans ces os fossiles. Il
semble important d'insister sur le fait que les
composés minéraux et organiques d’une pan, et
les phases organiques solubles et insolubles
d'autre parc, ont dc.s réactions différentes aux
processus diagénétiques. Ainsi, dans le cas des
fossiles d’Angola, les données peuvent apparaître
contradictoires : la composition en acides aminés
indique une diagenèse plutôt modérée dans le cas
du bovidé, alors que resdmation de la quantité
de sa phase organique montre une forte diagenè¬
se. Il appâtait donc de plus en plus que l’état de
conservation des phases minérales ou organiques
ne peut être établi à partir de l'analyse d'un seul
type de composé. Et ce d’autant plus que, rappe¬
lons le, certains produits considérés comme
caraCTérisriques de l’os (collagène et acide y-car-
boxyglutamique par exemple) sont maintenanr
connus tl.ms des taxons variés.
La connai.s.sance de la suite d’événements qui
préside à la formation d’un gi.scmcnt de fossiles,
ainsi que la compréhension des altérations diagé-
nétiques, ne pourra erre atteinte que par des
série,s d’analyses progressives, allant des caractères
les plus généraux (composition minéralogique»
présence de phases org,iniques) jusqu’aux plus
détaillés (composition en acides aminés ou en
monosaccharides de chaque protéine par
exemple), Le problème majeur de telles études
est que les fraciittnncmeius successifs nécessaires
à une telle idcntincation impliquent que ces
phases organiques soient conservées en quantité
suffisante dans les os.
Remercjcrnenrs
Les auteurs tiennent à remercier les nombreuses
personnes, en France (Prof. Y. Coppens et
P. Taquet) cc en Angola (Dr S. Aço, Mission
française de coopération à Luanda ; Instituto
Nacional do Patrimonio Cultural ; Museu
Régional de Huila., l.ubango) qui ont permis la
réalisation de la campagne de terrain en Angola
en 1990. Les commentaires détaillés du Prof M.
J. Glimcher (The Childrcn’s Hospitaf Boston)
ainsi que ceux de deux autres rapporteurs ano¬
nymes ont été très utiles pour Pamélioration de
ce manuscrit.
GEODIVERSITAS • 1999 • 21 (2)
225
David H., Dauphin Y.. Gautret P.. Pickford M. &C Senut B.
RÉFÉRENCES
Abclson P. H. 1956. — Palcobiochemistry. Scientific
American 19: 83-92.
Armstrong W. G. & Halstc^d Tarlo L. B. 1966. —
Amino-acid tomponents in Fos.sil calcified rissucs.
5035: 4HI-4S2.
Cclcrin M.» Puy A., Castic |. & Laudcnbach D. E.
1995. — A glyt.uSyladon pulteni rlul îs unique ro
fimbriae froni iJie Mi(obotryales, Caiiadinn
Jotmi(tl oj 41. 452-460.
(’ohen-.SnlaJ L., t-îlinKlier M., Kos>tva 1^. & Ricqlès
de A. 19S7. - Oonntécs prélimin;ii»vs sur Piinalysc
paléobiocbimique de qiie!qLte.s ossements mamma-
liens de l.i Canne de l'Arago à Taïuavel. Annales de
Paléontologie (Vert, liivcrr.) 73. 3:21 7-234.
Dauphin Y. 1993. — Poicntial oF dic diffuse rcflec-
tancc lafrarcd l ourier rtanshum (DR! Fl') mcihod
in paleciiirtdiïgieaL sttidies of bones. Afiplied
Spectrnscnpy ^^7, I: 52-55.
— 1997. — (Àmiparaison de la composition chi¬
mique de la dentine ci de l'émaiJ des dents de
Reptiles cr de M.iiTimilcrcs actuels. Annales des
Sciences Naturelles^ Zoologie, 13*^ série, IS, 1 :
29-40.
— 1998. - C.oinparai.son de Pciat de conservation
des phases minérales cr organiques d’o.s fo.ssilc.s
“ implications pour les reconstitutions palcocnvi-
ronncnicntalcs et pbyk'rique.s. Annales de paléonto¬
logie M (2) : 213-239.
David H., Dauphin Y., Pickford M. Scium B.
1996. — Conservation de sucres dans les phases
organiques d'os de bovidés fbssdes. Bulletin du
Muséum nattonal d'Htstoire naturelle, Pari.s. série 4.
19C(2-3); 4Ü3-415.
Davidson F. D., lychm.in j. 1*.. Taquet P. Ôc WyckoEF
R. W. Ci. 1978. — Analyse des protéines de
Vertébrés h.>ssjles déTOiiiens et crétacés du Sahara.
Comptes Rendus de l'Académie des Sciences, Paris,
série D, 287: 919-922.
Delmas P. D., IVac^ R. P.. Riggs B. l - ik Mann K. G.
1984. •— Identincarion of tne noncollagenous pro¬
teins of bovine bone by cwo-dimensionaJ electrupho-
rcsis. Calcified 7 issue International 5(y. 508-316.
Dungworrh G., Vlncken J. Schwartz A. W.
1974. — Conipositioiis of fossîl collagen.s: analysis
by gas-liquid chroinatography. Comparative
Biochemdtry Pfiv>tohgÿ 47H; 391-399
Endt D. W. von &: Orrher D J. 1982. — Aniino acid
analysis of bone from a possible case of prehistoric
iroii dcficiency aricmia from rhe American
Southwest. American Journal of Physical
Anthfopoli/gy 59: 377-385.
Glimcher M. |. 1993. — Chemical composition, struc¬
ture and physko-cbemiatl reactivity of tbe inorganic
crystals ofctildpcd ttssucs and tbeir relationsbip îo
organic niatrN compontnts: implications for duigene-
sis. Second Oxtord Workshop, 12-14 July 1993,
abstract.
Cdimchcr M. J. tk fC.ir/. F.. P. 1965. — Plie organiza-
clon ol collagcn in bone: the rôle of noncovalent
bond.s in the rclaiivc in.solubiliiy t)f bone collagen.
Journal ofUbrastructurc Research 12: 705-729.
H.imilton S. F.. /.cinet- B. 198.5, — Omiparative
stiidies of calcification.* its définition in marine
invertebrates. Proceedings of the Inaugural Great
Harrier Recf Conférence, Aug. 28-Scpt. 2: 311-316.
Flauschka P. V. tk Wians F. H. jr. 1989. —
Osteocalcin-hydroxyapatite interaction in theextra-
tcllulai organic matrix of bone. The Anatomical
Record224. 2: 180-188.
Iledges R. F. M. tV Wallace G. ]. A. 1980. The
siirvivul of proiein in bone: .55-40, in 1 lare P. H.,
Hoeiing T. C. ik King I . K, |r (eds), Hiugeo-
chvmistry of Am hio Acids. |. Wiley & Sons. New
York and Cdiichestcr.
IJiKi N. L., Kambaud S. M.. I eh \ .-C., Davies A. D.,
McCullücli B., ’J rotier M. M. ÔC Chapman G. E.
1985. Iminunochctnical détection and eliaracte-
rization of osteocalcin from Moa bone. Biochcrnical
and Biophysical Research Communicittions 129:
714-720.
Lowensrein J. M. 1981. — lmmuni»logical réactions
from fo.s.sil material. Philosoph/ctd fransactiom of
tbe Royal Society of London B 292: 143-149.
Masters 17 M. I987. — Prefercniial préservation of
noncollagenous prorein diiring bone diogenesis:
implicarions for chronometrii and .stable isotopic
mea.sutc*mems. (fcochimica Cosmochimica Acta 51:
3209-3214.
Momgeliird C. 1992. — Albumiu preserv.uion in fos-
sil bones and systemiUÎcs o[' Malpaisomys insularis
(Mufidae, Rodentia). an e'trini rodent of the
Ganary Lslands. Uistorical /hVVyfj'6; 293-.M)2.
Moritgclard C.. Buthy M. C., Gauirct 17 &
Dauphin Y. T)97. — BiogcoGhernical characicriza-
(jnii of ici]thy»jsaur boues from Holzmaden
(Gei nuny» Lias). Bulletin de ht Société géologique de
P'rant'e 168, 6 : 759-766.
Pickford M., Mein 17 & Senut P. 1992. — Primate
beariiig Plio-IMeîstucene caw deposics of 1 luiripata,
.Southern Angola. Human Pvohnion 7, F. 17-33.
— 1994 — Fossiliférou.s Neogcnc karst flllings in
Angola, Bostwana and Namibia. South Ajrican
Journal of Science 90: 227-230.
IFos.si A., V'iicllaro Zuccarcllo L., Zanaboni G.,
Mon/ani F.., Dyne K. M.. CcMia G. & lenni R.
1996. — Fype I collagcn C.NBr peptides: .spccics
and behavioi in solution. Biochemistry 35:
6048-6057.
Sillero A. tk Ribeiro F M. 1989. - Isoclectric points
of prorcins: titcorical détermination. Analytical
Biochemistry 179: 3)9-325.
Stiitman |. M.. l'crmint J. D. &: Postier A. S.
1965. — Vibr:uional speerra and snticTiire of the
phospli.nt ion in sonie calcium phosphates.
Transuclims oj' the New York Academy of Sciences,
sériés II, 27, 6: 669-675.
226
GEODIVERSITAS • 1999 • 21 (2)
Composition en acides aminés d’os de mammifères du Plio-Pléistocène angolais
Termine J. D. 1988. — Non-collagen proteins in
bone: 178-190, in Cell and molecular biolog)' ofver-
tebrate hard tissues, Ciba Foundation Symposium
136. J. Wiley & Sons, New York and Chichester.
Termine J. D. Posner A. S. 1966. — Infrared déter¬
mination of the pcrcentage of crystallinity in apatitic
calcium phosphates. Nattire2\ 1, 5046: 268-270.
Tuross N., Eyre D. R., Holtrop M. E., Glimcher
M. J. & Hare P. E. 1980. — Collagen in fossil
bones: 53-64, in Hare P. E., Hoering T. C. &
King L. K. }r., Biogeochernistry of Amino Acids.
J. Wiley & Sons, New York and Chichester.
Weiner S. & Bar-Yossef O. 1990. — States of préser¬
vation of bones from prehistoric sites in the near
East: a survey. Journal of Archeological Science 17:
187-196.
Williams C. T. & Marlow C. A. 1987. — Uranium
and thorium distribution in fossil bones from
Olduvai Gorge, Tanzania and Kanam, Kenya.
Journal ofArchaeological Science 14: 297-309.
Williams C. T. & Potts P. J. 1988. — Elément distri¬
bution maps in fossil bones. Archaeometry 30, 2:
237-247.
Wyckoff R. W. G. & Davidson F. D. 1976. — Gel
filtered fossil and fresh gelatins. Comparative
Biochemistry and Physiology 54B: 201-203.
Soumis pour publication le 10 mars 1998 ;
accepté le 15 septembre 1998.
GEODIVERSITAS • 1999 • 21 (2)
227
New stem giraffoid ruminants from the early and
middie Miocene of Namibia
Jorge MORALES
Departamento de Paleobiologia, Museo Nacional de Ciencias Naturales,
CSIC, José Gutierrez Abascal 2.
E-28006, Madrid (Spain)
Dolores SORIA
Departamento de Paleobiologia, Museo Nacional de Ciencias Naturales,
CSIC. José Gutierrez Abascal 2,
E-28006, Madrid (Spain)
Martin PICKFORD
Chaire de Paléoanthropologie et de Préhistoire, Collège de France.
11 place Marcelin-Berthelot. F-75005. Paris (France)
Laboratoire de Paléontologie, UMR 8569 du CNRS, Muséum national d’Histoire naturelle
8 rue de Buffon, F-75231 Paris cedex 05 (France)
Morales J.. Soria D. & Pickford M. 1999. — New stem giraffoid ruminants from the early
and middie Miocene of Namibia. Geodiversitas (21)2; 229-253.
KEYWORDS
Ruminantia,
Giraffbidea,
Cl i inacoceratidac,
Miocene,
Namibia.
ABSTRACT
Al rhc early and middie Miocène localitie^ of the Sperrgebiee, Namibia, new
material of climacocerand ruminants bave been collected reccntly. From
Elisabethfeld we describe new material belonging to Propalaeorys austroafri-
canus Stromer, 1926, togeiber with a new genus and species of cHmacocera-
tid Sperrgi'hiciomvryx ivardi n. gen., n. sp., a species witbout frontal
appendages close to Propalaeoryx and ro primitive early Miocene European
ruminants sucb as Andegtvneryx. From the locality of Arrisdrift, wc dcfinc
another new genus and species of climacoccradd witb frontal appendages,
Oraugemeryxhendey n. gcn.. n. sp., characterized by iis compic.x tincd frontal
apophyses. Comparison of the dentition and posrcranial skclecon of ebis
genus and ihose of Spnrgebietoyneiyx suggests a close phylogeneric relation-
ships beiween them.
GEODIVERSITAS • 1999 • 21 (2)
229
Morales J., Soria D. & Pickford M.
MOTS CLÉS
Ruminantia,
Giraftbidea,
Climacoceraiidac,
Miocène,
Namibie.
RÉSUMÉ
Nouveaux ruminants girajfoïdes du Miocène ancien et moyen de Namibie.
Dans les localités du Miocène inférieur et moyen de la Sperrgebier en
Namibie, de nouveaux restes de ruminants C'iimacoceraridae ont été récem¬
ment récoltés. Un nouveau matériel provenant d’EIisabethfeld appartenant à
Propalaeoryx austroafritanus Stromer» 1926 est décrit, ainsi qu'un nouveau
genre et une nouvelle espèce du Climacoceraridae, Sperrgelfietomer)>x wardi
n. gen., n. sp,, espèce ne possédant pas d’appendices froniaux* proche de
Propalaeoryx et des ruminants primitifs du Miocène inférieur européen,
comme Andegameryx, A Arrisdrift, nous décrivons un autre genre et une
autre espece de Cliniacoceratidae avec des appendices frontaux, Orangemeryx
hendeyiy qui sc caractérise par ses apophyses frontales complexes. Les compa¬
raisons entre la dentition et le squelette postcrânien de ce genre et de ceux de
Sperrgehietomeryx suggèrent une proche parenté phylogénétique entre les
deux.
INTRODUCTION
This is rhe second report on the ruminants of the
early and niiddle Miocene of Namibia collected
by the Namibia Palacontology Expédition. The
lirst paper dealt with the small bovid
Namibiomeryx seriuti Morales et ai, 1995. In this
article we describe the giraffoids from the samc
région.
Iwo new gênera of giraffoids rccovcred from the
sites of Elisabethfeld and Arrisdrift in Southern
Namibia (Fig. 1) rcvcal a grcat deal about the
origins of this superfamily of ruminants. The
new climacoceraiid giraffoids [ack frontal apo¬
physes, and occur in ihe early Miocene deposits
at Elisabctbtcld and oiher sites in the northern
part of the Sperrgebict. Sperrgebietumeryx is clo-
sely relatcd lo primitive latc Oligocène European
ruminanr.s such as Andegit}7îeryx Ginsburg et al.y
1994, and lies close to the root of the group
which subscquently dcvelopcd apophyses, the
Giraffoidea. Sperrgebietomeryx occtirs in the same
strata as another sperrgebietomerycine, the genus
Propalaeoryx Stromer> 1926.
Basal middie Miocene deposits at Arrisdrift hâve
yielded abundant remains of a new genus of cli-
macoceratid, OrangemeryXy a climacoceratine
Fig. 1. — Geographica! location of Arrisdrift (early mIddIe
Miocene) and Langental and Elisabethfeld (early Miocene) in
the Sperrgebiet, Southern Namibia.
230
GEODIVERSITAS • 1999 • 21 (2)
Miocene giraftoids from Namibia
with tincd apophyses. Exannination of the skull
and postcranial skclcron oi this genus and diose
of Sperrgebielonicryx suggests chat chc Arrisdrift
species may wcll bc the descendant of the
Elisabcthfëld onc.
l'hc transition from primitive pecoians to climaco-
ccratids with apophyses rhus appears to hâve
occurred in Africa subséquent to colonisation of
this continent by pecorans frorn F.urasia.
GEOLOGICAL SETTING
Ei.isahkthfeld
The early Mioccnc site of Elisabethfeld (Stromer
1926) occupiez onc of a séries of prc-Miocenc
vallcys which osed to drain into chc Atlantic
Océan from the région of the present-day Namib
Sand vSca. As a resuit of a worldwide risc in sea-
levcl during the early Miocene the transient sédi¬
ments in the vallcys stopped moving, and hirther
sédimentation occurred in the drowned valleys.
Ar Elisabethfeld» f]ne-grained red limey silts
accumulatcd in a plain that lay between the
Grillental and one of ics Southern nibutanes
which had eut thiough Proterozoie rocks, l'hcse
red silts, which arc often overprinted with pedo-
génie featurcs, were inciscd and then buried by
green silts, sands and conglomérâtes. These Hu-
viatile beds are ovcriain by a fine-grained palaeo-
dune sequence (Greenman 1966, 1970; Corbetc
1989). Unconlormably overlying the early
Miocene sédiments is a two métré ihick traverti-
ne which Iras invaded the upper portion ol the
aeolianite. Fragments of thi.s travertine hâve been
incorporated into a yoiinger set of aeolianites
which crop ont exrensively m the area, often
filling palaeo-valleys eut into ihc early Miocene
sédiments.
At the base ol onc of the green, pebbly-sand
channci infillings cropping ont as a low diff and
immcdiatcly overlying chc basal red limey silts,
the partial skclcron ol^ a ruminant was observed
by Drs J. Ward and I. Corbett in June, 1993.
The specimen was phorographed and leh />/ situ
for later excavation. In Augusi, 1993, Drs
M. PicDord and B. Senut visited the site with
J. Ward and excavated the skeleton. It was évi¬
dent that at least 1 cm of sédiment had been
removed, principally by sand-blasting, since the
photugraphs had been taken rwo months pre-
viously. A mandibic with the cheektecth in place
in June had eroded so diac only the ventral mar-
gin of the jaw Was lefr in Augusi.
The associated fauna indicatc-s that the
Elisabethfeld skeleton is i>f early Miocene âge.
The sire corrélâtes broadly with the localities of
Songhor and Koru. Kenya, and is thus interpret-
ed to be about 20-21 Ma old (Faunal Set I of
Pickford 1981).
Arrisdrift
The site oi Arrisdrift occurs in a latéral channel
of the Proto-Orange located about 1 km east of
the presem-day channel of the river. Fossiliferous
sédiments lie at an altitude of about 4l m above
mean seadevcl, infilHng a low channci carved
into the Gariep Group of I,ate Protero/oic âge.
Fhe cb.ajinel is filled with a coniplcx cut-and-fill
sequence of sédiments raiiging in grain si/c trom
conglomerares ro clays, the latter representing
clay-drapes deposited during periods when the
Arrisdrift channci was eut off from the main
river. During periods of high water, the channel
would be active, so that numerous scour and ftll
épisodes occurred, and can be seen in superposi¬
tion in the excavation.
During periods of low water Icvel, the channel
was effectively isolated from the main srream and
would bave been a quiet pool of water. ’Fhis
channel lay close to sca-lcvel, as indîcated hy the
présence of serpulid worm tubes in abundancc,
even to the extent of forming serpulid reefs.
Ibday thèse invertebrates livc in brackish water
in estuarine settings. I here can be little doubt
that al the beginning of the Middlc Mioccnc,
somc 17-3-17 Ma ago, sca-lcvel was somc 41 m
above présent day Icvcis.
The site of Arrisdrift, like the carlier ones in the
norchern Sperrgebier, owes its formation to the
world-vvide risc in sea-level that occurred at the
end of the early Miocene, which caused rhe
back-ponding of sédiments widiin ihe Proto-
Orange valley. The difïcrcncc in âges of chc tossÜ
sires in ihc northetn and Southern Sperrgebict
indicate that chc rise in sea-lcvcl was relarively
slow, the highest stand being reached some 2-
3 Ma later than the onset of rising sea-lcvcls.
GEODIVERSITAS • 1999 • 21 (2)
231
Morales J., Soria D. & Pickford M.
Fig. 2. — Atlas of Spengebietomeryx wardin. gen., n. sp. (EF 37'92); A, dorsal view: B. ventral view. Scale bar: 20 mm.
This scénario is confirmée! by the discovery of
early Miocene manimals ar Aucha.s, another
Proto-Orange deposit, in sédiments 32-37 m
above present-day mean sca-level, or .some lU m
lower rhan the deposiis ai Arrî.sdrift.
By the rime that sea-lcvels droppcd again later in
the middlc Mioccnc> the Proto-Orange river had
abandoncd some of ils mcander loops and was
following a Icss sinaons course rowards the coast.
When incision occnrred lollowing lowering ai
base-levcls, the early and niiddie Miocene sédi¬
ments deposiied in many of the abandoned loops
were left high and dry.
rhe fauna associated with Oningemeryx is early
rniddle Miocene in âge, correlaring closcly with
Ruropean zone MN4 (De Rruijn et ûl. 1992)
and with rhe sites of Ruiuk and Maboko in
Kenya, assigned to Raunal Set PIII (Pickford
1981). It is probably about 17.5-17 Ma
(Pickford 1994).
SYSTEMATIC PALEONTOLOGY
Suborder RUMINAN'RIA Scopoii, 1777
Superfamily ClRAl-l’OIDKA Simpson, 1931
Family CUMACOCER/Vl IDAH Hamilcon, 1978
(= ClimacOCERIDAE Hamilton, 1978)
DiagN(')S1S. — Ruminants of medium to large size
charactcriscd by rhe rendency — in relation ro orher
runiinanrs of the saine age - for élongation of (he
hccIn (incliiding ihf atlas) and limbs. Distal epiphysis
nf ihe nieiar.ifsal wirh open gnUy. Dentition wiili a
clear hypsodont tendency. Palaeomery’x fold in lower
molars moderatc or suppressed. hypoconid i.soiated
and lobe ol md simple.
SpERRGEEIETOMKRYCINAE n. subfam.
Type genus. — Spengebietomeryx n. gen.
DlAüNtrsis, — Clîniacoccratidac without crânial pro-
fiihcrancev Cranîum wiih wide fronials, sagiu-il crest
and niichals strongly dcfmed, Dcniirion moderarely
hvpsodont. Premolar sériés elongate. l-o\ver molars
wiih strong styhds and rnodcr.ne paleomeryx fold.
Upper molars with very strong stvIüs and laie union of
the internai lobes with the outer wall.
Sperrgebïetomeryx n. gen,
T^TE SPECIES. — Sperrgebietomeryx mardi n. sp.
Diagnosis. — The same as for the type species.
Sperrgebietomeryx tvardi n. sp.
cf. Strogulognathus sansaniensis V\\\\o\ (Scromer 1926).
232
GEODIVERSITAS • 1999 • 21 (2)
Miocene giraffoids from Namibia
Fig. 3. — Occlusal view of the lower dentition of fossil ruminants trom the Sperrgebiet. Southern Namibia: A, right m3-p2 of
Sperrgebieîomeryx wardir\. gen., n. sp. tEF 37'93) from Elisabethfeld; B, right m3-p2and alveolusof pi, Propalaeoryxaustroafrica-
nus Stromer (EF 3’93). from Elisabethfeld; C, left m3-p2 ol Orangemeryx hendey) (AD 1521). tram Arrisdrift; D. left m2-p3 of
Orangemeryx hendeyi n. gen.. n. sp. (AD 654'94-), (rom Arrisdrift- Scale bar' 20 mm.
Hoi.OT\’PE. — EF 37’93, skull, manclibic and associa-
ted arias, with parts ol ihe verccbral culuinn and hind
limbs (Figs 2, 3A, 4, 5» IDF-H), honsed in the
Muséum of the Gcological Survey of Namibia,
Wiiidhoek.
T\TE EOCALITY AND AC.E. — Elisabethfeld, Namibia.
F'arly Miocene.
ErVMOinGY. — Sperrgi'biets German name for ihc
"foibiddcn teiriton'* on accoiint of rhLs nanie.applicd
to tlie niaimmd Area of .Southern Namibia; rntryx,
Grcck for deer. The specics name lionours geologisi
Dr John Ward who found ihe holotypc.
OlAGNOSI.s, — Medium-sued giraffoids, premoJar
séries long and gracile. Lower p4 wirh simple meta-
conid, directed posteriorly, anlerior wing wiihoiu bifur¬
cation. P2 and p2 iicarly ihe .vainc .si7.c a.s P3 and p3.
Dibt-trtl N'TlvM ijiA(;nosi.s. - Spi^ngehittomeryx
from Propalaeoryx an.'droafricanus'hy iis smaller sîzc,
by the more primitive niorphology of the p4 and P4,
and the loss of p 1 . It differs from Walangania africana
{Whitworth 1958) by irs larger .size, the more gracile
premolars and the more primitive construction ol the
p4 and IM. Ir difTers from Prolibyîherhtm
1961, Giraffîdae and Climacoccratinae by the absence
of craniaJ protubérances which arc présent in the laiter
three groups.
Desckiim ion
The skull (Figs 3-4) is wcll preserved, although
eroded on dic anterior part of chc lefr sidc, and
slighily crushed dor.sovcnrrally. In ventral view
the skull présents a cicarly primitive morpholog}^
comparable u> thaï of Dremolberium (Sigogneau
1968). The auditor)' région is of primitive tj^pe,
with ihe siyloid process locaccd berween the mas-
toid process and the cympanic huila, the larter
boing modctarcly inflaced, while the exrernal
auditoty^ meatus is prominenr and almosr circular.
d'he basioccipiral i.s relarively wide, with .strong
poaterior and anterior tubcrclcs lor muscle inser¬
tions. The width of the insertion zone for the
GEODIVERSITAS • 1999 • 21 (2)
233
Morales J., Soria D. & Pickford M.
Fig. 4. — Sperrgebietomeryx wardi, n. gen., n. sp., holotype skull, Elisabethfeld green sands, northern Sperrgebiet, Namibia, early
Miocene; A. dorsal view; B, ventral view; C, right latéral view. Scale bar: 20 mm.
234
GEODIVËRSITAS ■ 1999 • 21 (2)
Miocene girafFoids from Namibia
Table 1 . — Measurements (lenglh. width, in mm) of the upper dentition ol Sperrgebietomeryx wardi n. gen., n. sp. from Elisabethfeld
(EF 37’93), Propalaeoryx austroafncanus from Elisabethfeld (EF 4‘93) and Orangemeryx hendeyi n- gen., n. sp. from Arrisdrift
S. wardi
r EF37’93 1
EF 4 93
P. austroafncanus
EF200‘93 EF20r93
AD273
O. hendeyi
AD283'94
AD334’95
LMM-PP
68.0
_
LMM
39.5
38.2
41.5
63.0
LPP
31.0
-
-
LM3
13.5
13.0
14.0
21.6
WM3
12.8
12.3
-
18.2
LM2
13.6
13.5
15.1
21.4
WM2
15.5
15.2
-
21.9
LM1
13.5
12.2
13.0
21.0
WM1
13.0
12.2
-
20.0
LP4
10.0
9.5
10.5
11.4
13.1
WP4
10.0
10.5
-
10.3
15.9
LP3
10.0
10.7
11.5
WP3
9.5
9.2
13.2
LP2
10.4
-
12.5
14.1
LP2
8.9
-
-
11.8
masseter muscles is remarkable, and reveals their
strength. In dorsal view, the width of the frontals,
the strength and heighr of rhe sagittal crest and of
the ntichal crest arc ail notable features of the
skiill. The zygomatic process of the Iromal is very
prominent. The frontals arc relatively widc,
although they appcar wider on account of the
dorsoventral compre.ssion ihat affects the skull.
There is no lacrimal f'ossa, and cherc may hâve
been an ethmoidal fenestra although the préser¬
vation of this part does not allow of certainty in
this matrer. The external occipital protubérance is
very strong and projeers posceriorly. The supra-
occipital has a wcll-marked crest.
Upper Jentîtmi (Ttbie 1, hig. 4B)
Molars with strong parasrylcs and mesostyles; in
the M3 the metastyle is also strong. The internai
Table 2. — Measurements (length. width, in mm) of the lower dentition of Sperrgebietomeryx wardi n. gen., n. sp. from Elisabethfeld
(EF 37'93), cf. Strogulognathus (Stromer 1926): Propalaeoryx austroafricanus Irom Elisabethfeld (EF 3'93) and Langental
(1926-507, holûtype), cf. Strogulognathus sansaniensis from Langental (Stromer 1926) and Orangemeryx hendeyi n, gen . n. sp.
from Arrisdrift.
S. wardi
EF 37’93
cf.Strogulog.
I
P. austroafncanus
EF3’93 1926-507
N
O. hendeyi
OR
M
LMM-PP
75.0
82.0
90.6
9
95,0-109.0
100.6
LMM
44.0
48,2
52.8
12
58.0-65.5
62.1
LPP
32.0
34.9
37.0
13
34.6-45.5
38.6
Lm3
18.5
18.0
21.5
21.2
14
24,2-29,0
26.7
Wm3
8.0
8.0
8.5
9.0
13
9.5-11.5
10.6
Lm2
13.6
13.0
13.0
15.5
17
17.0-21,5
20.2
Wm2
8.9
9.0
7.9
9.4
17
10.2-13.0
11.9
Lm1
12.5
12.5
14.8
16
15.2-20.5
16.7
Wm1
7.9
7.0
8.8
16
9.3-12.0
10.5
Lp4
12.2
12.5
13.0
18
12.5-15.5
14.5
Wp4
5.7
7.7
6.5
18
8.0-10.0
8.9
Lp3
10.9
12.0
12.4
13
11.3-15.1
14.1
Wp3
5.5
6.5
-
13
6.0-8.2
7.3
Lp2
9.5
10.2
10.5
8
9.0-12.5
9.9
Wp2
4.1
5.0
4.3
8
4.0-5.7
4.8
Lp1
5.0
6.0
GEODIVERSITAS • 1999 • 21 (2)
235
Morales J., Soria D. & Pickford M.
Fig. 5. — A D. Sperrgebieîomeryx wardi n. gen., n. sp., Etisabethfeld green sands, northern Sperrgebiet, Namibia. early Miocene;
A. holotype skull in left latéral view; B-D, right mandible; B. occlusal view of cheek dentition: C, lingual view; D. buccal view;
E-G, Propalaeoryx austroafricanus, Stromer, Elisabethfeld red silts, northern Sperrgebiet, Namibia, early Miocene, right mandible;
E, buccal view: F. lingual view: G, occlusal view. Scale bars: 20 mm.
GEODIVERSITAS • 1999
Mioccne giraffoids from Namibia
lobes fiise late with each oiher, the incerlobular
column is sioall. M2 is largcr than tlic othcr rwo
molars, which arc approxinlaicly the same size.
The prcmolârs arc long, including fhe which
posscsscs a scrong anterior sryle with cinguliim
round the protocone. P3 and P2 aLso possess a
strong anterior style and a well-defined anterior
lobe [close morphologicaily to the prcmolârs of
Bosclaphini (Bovidac)].
ÎAnver denthwii ( Table 2, Fig, 5B-D)
'The stage of wear prevents rïiuch being obseiwed,
es[>ccia]ly in the mulars. The third lobe of m3 is
relativcly small. T hc prcmolârs arc long and gra¬
cile. 1 hc close morphologiçal similariry berween
the premolars is notable, cspccially between p3
and p4. Both prcmolârs bave simple metaconids
dircctcd posreriorly and the anterior wing wirhout
bifurcation, while the exrernal incision is modcratc.
Discussion
d1ïe existence of two ruminant spccies in the
early Mioccne of the northern pan of the
Spcrrgebict was noted bv Stromer (I926) on the
basis of fossils from Langcnial and Elisaberhfeld
assigned by him lo cf. Strogidognathm samanien-
sis Filhol, IS70 and Propal^wryx nustroafiiavius
Stromer, I926, respectively. The dentitions assign¬
ed to Strogidognathiis vvere slighily smuilcr ihan
those assigned ro Propnlneoryx austroalriccttnts^
biir were otherwise similar to ihem, which is why
they hâve subseqiienrly been pooled with those
of P. atdstroafriawus (Hamilton Van Couvering
1976).
Genus Propalaeoryx Snomtu 1926
Tyi'K Sl’HCiHS. — Propalacoryx austroafricamis Stromer,
1926.
Holcti ypi:. — 1926-507, mandiblc.
Type ixicali py, — Elisabcthfcld, Namibia.
New CO) na riOKS^ — FJisabcthtdd, Namibia: EF
3’93, riglu inandibic (Table 2, Fig. 5E-G); EF 4’94,
fragment ol right maxilla with damaged P4-M3; EF'
200^93 righi P4; EF 200r93 lefi P2 ( l'able 1).
Description
The mandiblc has lost the ascending ramus and
the symphyscal portion. The horizontal ramus is
robusr and préservés the alveolus for pi which is
iiniradiciilate The lower molars possess a mode-
rate paieomeryx fold, most marked in the mF
The metastylid is sirong and isolatcd. ’Fhc pos-
terior wing of tire hypoconid i.s wcll scparaicd
from the encoconid. d'Iie basal pillar is of mode-
rare size. The hypoconuhd of the m3 is simple
and of moderate size. 1*he p4 présents a bifurcate
anterior wing and complex metaconid positioned
in front of the protocomd and fbrming an inci-
pient internai wall. There is a deep vernc.il inci¬
sion in the poscerior part of the external wall.
The p3 is much sirnpier. It also has a biFtircate
anterior wing, but tlie metaconid Ls a simple crest
directed backwards. 'Fhe p2 is smallcr than p3
with a simple anterior wing. The dimensions (in
mrn) of the spccimcn arc as follows: molar séries
48.2; premolar séries (without ihc pl) 34.9: m3
2F5x:8.5;m2 13x7.9; ml 12.5 x 7; p4 12.5 x
7.7; p3 12 X 6.5; p2 ! 0 2 x 5; p I (alveolus) 5x2,
The maxilla fragment is hadiy abraded so tirât
rhe internai lobes of the fi.uir teeth P4-M3 hâve
been parriy desrroyed, so tliat only the external
lengrh of rhe recrli can bc measured, as lollows
(in mm) : M3 14; M2 154: Ml 13; P4 10.5. In
the ihree molars rlic parastylc and mcso.stylc arc
well-dcvelopcd and cxtcmally wclFdcfincd. In
the M3 tlierc is, in addition, a strong merasryle
which is also wcll defined cxternally and which is
Linitcd by a basal cingiilum to the other styles.
The P4 is elongated with strong parastyle and
metastyle.
The isol.ned P4 (11.4 x 10.3 mm) has an exter-
nal wall similar to rhat in rhe specimen described
above. The protocone is surrounded by a rclaii-
vely strong cingulum.
The isolatcd P2 (Icngth 12.5 mm) is missing its
protocone. Fhe parastyle is large and globular.
The paracone is well marked exrernally and i.s
joined to the parastyle by a smooih cingulum
which continues to the posterior margin.
D1SCU.SSION
The Elisaberhfeld Propidaeoryx mandible differs
from that of Sperrgebîetomeryx by its larger size,
the presence of a well-developed pl and premo-
lars which are more robust and complex. The
p4s are particularly different, those of
GEODIVERSITAS • 1999 • 21 (2)
237
Morales J., Soria D. & Pickford M.
Propalaeoryx Stromer, U)26, pos.scsMtïg ;i hifur-
cate anrerior vving, a strong meraconid vvhich
forms an incipieni lingual walK and a deep exter-
nal incision. In ail these characters this specimen
is close to the holotypç mandiblc of Propalaeoryx
austroiffiicantis, although tlic latrcr is slighrly
larger and ha.s a simplcr mctaconid in its p4. The
new jaw f'rom Klisabethfcid has hypsodont
molars and, as in the hoJorvpe, rhe palaeomeryx
fold is weak, being strongesf in ihe m 1.
Table 3. — Measurements (in mm) of the postcranial skeleton of Sperrgebietorneryx wardi n. gen., n. sp. Irom Eiisabethfeld and
Propalaeoryx austroafricanus from Eiisabethfeld and Langental (Stromer 1926). Abbreviations: APO. antero-poslerior diameter;
TD, transversal diameter; c.c., corpus calcanei; t.c.. tuber calcanei: m., maleolus: s., sustentaculum.
S. wardi
Stromer, 1926
P. austroafricanus
RADIUS
EF2r94
EF 23’94
EF24’94
8
EF41’94
Length
214.0
Proximal APD
15.9
16.0
17.7
Proximal TD
Distal APD
27.9
19.4
28.0
31.5
Distal TD
25.6
25.1
S, wardi
P. austroafricanus
S. wardi
Stromer, 1926
HUMERUS
EF 36'94
EF 22’93
SCAPHOID
EF 23’94
10a
lop
lOy
Distal APD
28.0
30.0
Antehor Height
13.1
13.0
12.5
14.8
Distal TD
28.6
34.1
APD
17.2
18.5
19.0
20.5
S. wardi
Stromer, 1926
S. wardi
Stromer, 1926
SEMILUNAR
EF 23*94
9
FEMUR
EF 37’93
15
Anterior Height
12.4
12.0
Proximal TD
50.0
52.0
Proximal APD
16.3
Head APD
22.1
20.0
Proximal TD
13.5
14.5
Head TD
28.1
27.0
S. wardi
S. wardi
Stromer, 1926
METACARPAL
EF35'93 EF23’94
EF24’94
TALUS
EF 37’93
18a
18b-p
Length
207.2
205.0
Latéral Length
31.4
31.0
35.5
Proximal APD
17.3
17.8
Médial Length
29-9
Proximal TD
21.4 22.1
Latéral APD
18.3
Distal TD
23.8
Distal TD
20.2
19.0
21.2
S. wardi
P. austroafricanus
S. wardi
Stromer,1926
CALCANEUM
EF 37-93
EF 36’93
TIBIA
EF 37'93
16a
16P
Length
70.9
Length
257.0
c.c. Length
49.0
50.3
Proximal APD
46.0
t.c. APD
18.4
20.2
Midshatt APD
17-8
t.c. TD
17.8
18.4
MidshaftTD
20.7
c.c. APD
18.9
18.3
Distal APD
23.5
24.0
c.c. TD
8.6
9.9
Distal TD
29,0
31.0
30.0
m. APD
25.9
s. TD
21.3
238
GEODIVERSITAS • 1999 • 21 (2)
Mioccne giralToids from Namibia
S.wardi P.austroafricanus Stromer, 1926
1PHALANX
EF 24’94
EF 27’94
EF 28'94
13a
Length
34.7
39.8
43.5
42.0
Proximal APD
13.7
15.2
16.2
Proximal TD
12.2
14.3
13.9
13.0
Distal APD
9.4
9.5
9.9
Distal TD
10.1
12.1
11.5
S.wardi
Stromer, 1926
Il PHALANX
EF 24'94
13p
Length
20.4
21.5-25.0
Proximal APD
12.0
Proximal TD
10.2
Distal APD
10.7
Distal TD
7.9
7.5-9.0
The upper dentiiion of Propalaeofyx austroûfi'ica-
nus was hitherto unknown, and thc attribution
of the new Elisabcthfeld üpccimcn to this species
is based on its discoverv locus, its size (largcr
than Sperrgebietomeryx) and its more robusc pre-
molars.
POSTCRANIAL SKELETON OF Sperrgebietomeryx
AND Propaheoryx
Vertébral column
Articiilatcd wilh thc holotype skull of Sperrge¬
bietomeryx wardi therc was thc atlas (Fig. 2) and
rhrec cervical vertebrae (the axis, V3 and V4).
The arias is notable for irs élongation, being
almost as long as it is wide, and in this respect
resemblcs the atlas ol scvcral antclopes such as
Gazella dama Fallas, 1766. 'l‘he margtns oi the
wings are virtually parallcl and srraight. The axis
and the other vertebrae are poorly preserved,
only V3 being complété and revealing that it too
was elongated.
Lirnb bones
Elisabethtcld has yieldcd some thirty ruminant
limb bone-s, in addition ro the partial skeleton
found wilh the holotype skull and mandiblc of
Sperrgebietomeryx wardi. Many of the specimens
liavc been sand^blastcd and some arc broken, so
JC is often difficult to assign rhem raxonomicully.
Bccausc of thc uncertainty in idcntifying to
which species the bones belong we describe the
S.wardi
III PHALANX EF 24’94 EF 34’94
Plantar Length 22.3
Dorsocaudal D 17.4
Dorsoptantar D 13.7
specimens together. but .suspect that the larger
specimens belong to Propalaeoryx austroajricanus
Stromer, 1926, wTile the others probably repre-
sent S. Witrdi (Table 3).
Specimens £E 22’93, a distal humérus
(Fig. lOE), EF 4r94, a proximal radio-ulna,
EF 36’93, thc body of a calcanéum, and
EF 28^94, a firsr phalanx, atc assigned provision-
ally to P ûtistroafrimnus.
The following specimens are assigned to
S. wardi'. EF 36’94 and EF 22’94, dist;jl humerai
epiphyses; EF 21 94, a complété radius;
EF 23'94, arriculared juvénile radial epiphysis,
carpus and proximal end of mctacaipal;
EF 24^94, articuluted radius, mctacaipal and
phalanges: EF 35’93, complété metacarpal;
EF 37’93. proximal half of a fémur, tibia, talus,
calcanéum found with the holotype skull, man-
dible and atlas; EF 27 94, First phalanx;
EF 34*94, third phalanx.
Humérus
S. wardi has the radial fossa limitcd by a tubero-
sity which rcaches the latéral épicondyle, and is
very large because the capitulum has a moderate
vertical development and proximally dues not
ascend grcatly, w'hile disrally it stays ai ihe same
level as the trochlear groove. Fhe humérus of
P. austroafricaniis is similar but il is sligbtiytvider,
bas a médial condyle which is less well-developed
proximodistally, and has very strong relief in the
médial épicondyle
GEODIVERSITAS « 1999 • 21 (2)
239
Morales J., Soria D. & Pickford M.
Fig. 6. — Orangemeryx hendeyi n. gen., n. sp., frontal apophyses from Arrisdrift, Southern Sperrgebiet, Namibia, base of the middie
Miocene; A-C, holotype frontal with base of left apophysis (AD 595'94); A. médial view: B, frontal view; C. latéral view; D, E, lower
part of apophysis latéral views (AD 130); F, mid-part of apophysis with base of bifurcation towards top of frame (AD 131). Scale bars:
20 mm.
GEODIVERSITAS • 1999
Miocene giraffoids from Namibia
Radius
The proximal epiphysis is the samc in the two
species, but in P. austroafiicanus it is slightly big-
ger and ihe latéral tuberosiry is scronger. The dia-
physis in EF 2r94 (Fig. lOG) Ls gracile, and the
articulai' Faccts of ihe distal epiphysis in ail the
spécimens bave ihe t}'pical morphology of early
Miocene ruminants: thac of rhe pyramidal is
small and horizontal, whereas thaï for ihe sca-
phoid is largcr and more elevated than rhar of
the semilunar and tlierc us a platform for the ulna
contact.
Carpus
d'he matcrial is articulated making it difficult to
observe ail the morphological détails (Fig. lOF).
The semilunar is subquadrangiilar and the distal
lacerai facer is miich widcr than rhe médial one,
aiso irs morphology and measurements are iden-
tical to those of cf. Strngulogruiihm saHsantensis
Filhol, 1870, cited bv Stromer (1926, pl. 40,
fig.4).
Metacarpal
This bonc is long and gracile (Fig. lOH), the dia-
physis having a flat posterior surface, and the
proximal extrernity being narrow with respect to
the anrero'posierior diameter. l'hc facct for the
magnotrapezoid is very large compared to that
for the unciform. The distal pulleys bave wcll-
devcloped keels posterioily.
Femur
The proximal half is preserved but both trochan¬
ters arc broken. On the posterior surface, below
the Icsser trochanter, thcrc is a roughencd triangu-
lar area dclimiccd by two crests which continue
parallel to the length of the diaphysis as in the
extant giraffid species Okapia johnstoni (Sclater
1901).^
Tibia
This bone is also long, gracile and straight. The
tibial crest is long, rcaching to mid-shaft of the
diaphysis. On che posterior surface next to the
popliteal line there is another line parallel to it
and somewhat shorter, also as in Okapia. The
médial distal groove is wide and shallow. In distal
view the anterior and posterior margins of the
epiphysis are markcdly concave and the wall
which séparâtes the trochlear facets is short antero-
posreriorly.
Astrapdus
Corresporiding lo the morphology of the distal
tibia, lhe dépréssion hciwecn the two condylcs ol
the proximal end Ls deep and Ls also asymmetri¬
cal. In the médial condyle thcrc is a strong postc-
rior process, and on the anterior surface on both
sides of the fossa there are well-developed stop
facets. On the distal end, the latéral condyle Ls
more extensive than the médial one.
Calcanéum
The calcmeum Spengtdmtorneryy; wardi has a
symmetrical tuber with a wide but short and
deep postL'riiir fossa. Its hody is straight, the dis¬
tal latéral groove is smooth and tlic distal facct
for the astragalus îs oblique. In the calcanéum ol
P. austtoafricitnus the tuber is asymmetric and
more strongly dcvelopcd, both transversely and
antero-posteriorly. The rtigose postero-medial
area is also more dcvelopcd.
Metatarsal
rhe only spccimcn in the collection is a distal
juvénile fragment (EF 25'94) that shows an open
anterior groove. Its attribution to Sperrge-
bietorneryx wardi is hased on its size.
Subfamily Ci.IMAcXjCHRaTINAF. Hamilton, 1978
Diag.MO.SIn. — Glimacoceracidae with frontal protu¬
bérances of apophyseal nature (Buhenik 1990).
Dentition hypsodont. Premolar row shortened. Lower
molars without palaeomctyx lold. Upper molars with
external fusion ol the lingual and buccal lobes.
Orangerneryx n. gen.
Type srntaES. — Orangerneryx hendeyi n. sp.
Diac.NOSLS. — As for the type species.
Orangerneryx hendeyi n. sp.
Clhnacoceras sp. — i Icndey 1978.
Holotype. — AD 595’94, left frontal fragment with
GEODIVERSITAS • 1999 • 21 (2)
241
Morales J., Soria D. & Pickford M,
Fig. 7. — Orangemeryx hendeyi n. gen.. n. sp., frontal apophyses from Arrisdrift, Southern Sperrgebiet, Namibia, base of the middie
Miocene; A, apophyseal point (AD 1798); B, apophyseal point (AD 1177); C-F, apophysis with trifurcate tip (AD 594’94);
C*E, various views; F, dorsal view; G, H, bifurcate apophyseal tip, latéral views (AD 649 + 763). Scale bars: 20 mm.
GEODIVERSITAS • 1999 • 21 (2)
Miocene giraffoids from Namibia
apophysis, housed ar the Geological Survey of
Namibia, Windhoek (Fig. 6A-C').
LocALITV and AGE. — Arrisdrift (southern
Sperrgebiet, Namibia), early middle Miocene,
approTcimately équivalent co rnainmal zone MN4 of
ibc Fairopean scnle (De Bniiin et ul. 19^2). fickford
( 1994) csrimaies ihe age of tlie siic lo be ca 17A Ma.
EtyMv>EOGY. — For the Orange River vvhicli is rhe
border berween Namibia and Soinh Africa and nunyx
rhe Oreek word for deci. The ppccies i.s dcdicaied to
palaeontologist Dr Q. B. Uendey.
DlAG.Mfisis. — Climacoceratinae wrth elongated
slightly compressed rruncate conical supraorbital apo¬
physes, ornaniented at the base svith rounded
tubcrcles with bifurcated or trifurcaied upper Lermina-
rion (cwo or rhree poinrs).
Du FERENTIAI. DIAGNOSJS. - diffcrs
markedly From rhe ocher two généra of cÜmacocera-
tines by the niorpKology of tts apophyses, which are
short with u widc base which diniinishe.s towards the
apex, giving the apophysi.s an elongated. slightly conv
pressed truncated conical aspect, different from the
cylindrical form thaï occurs in Nyanz(tmetyx Thom^LS.
1984 and Clim/tcoceras Médîmes, 1936.
Description
Holotype; The frontal bone is very thick and
strongly vasculariscd but not enougli to be called
pneumatised. The supraorbical loramen is well-
defined and externally continues to the apophy-
sis following a smooih canal, d'he postcornual
fo.ssa is deep and continues postcriorly as a wîde
but not very deep, wcll-demarcatcd groove. The
apophysis is in the forn) of an elongated com¬
pressed conc, with rhe base wide and dlmin-
ishing in section towards rhe apex, while the base
is compressed transversally (anteroposterujr dia-
merer = 44.5 mm, transversal diameter =
29.0 mm), whereas towards the apex the section
is almost circulât. There is a smooth anrerior
keel, accompanied by a small protubérance, rhe
posterior margin is rounded with a weaker but
more extensive proiuberance. The apex is bro-
ken, so char it is possible lo observe chat ihe wall
of dic apophysis is thick and the central part vas-
cularised (Fig. 8H).
Orher specimens such as AD 130 (Fig. 6D-E),
AD 250, AD 483, AD 596 94 (Fig. 8A-E) and
AD 132 (Fig. 8F'C), are similar to the holotype,
even though thcrc is a certain amouni of variabi-
liry in che shape and size of ihe protubérances uf
the apophyses. At the base of the aptïphysi.s in
AD 596 94 (Eig. 6A-E), there are shallow
siniious canals indicating die courses followed by
blood Vcssels. which suggest diat the apophyses
were covered in skin. AD 131 (Fig. 6F) is the
apical and mediul pan of an ajiopliy.sis which
possesses a latéral protubérance similar lo those
menrioncd above. l'his spccimen indicates rbai
the apophysis bifurcates towards the apex, also
evideneed by the surface ornamentation in the
form of a Y. Other specimens indicaie a more
complcx apex than this fossil, one of which
AD 648+763 (Tig. 7G), illusirated by Hendey
(1978) shows a rip wuh two different si/.ed
points, while atiother AD 594 94 {Fig. 7C-F) is
crifurcâie with ihree approximately .similar si/.ed
points. Fragments uf apophyses such as AD 129
(figured by Hendev 1978) or AD 1798 (Fig. 7A),
AD 1177 (Fig. ■"B), AD 658'94 and AD 659'94,
are probably best interprétée! as poinrs at rhe apex
of rhe apophysis.
A specimen of skull (AD 652'94, Fig. 9B-D)
comprises the famcal with the base of the apo¬
physis and part of the pariétal back to the union
of the temporal lincs, wliere they begin to form
the sagittal crest. T hcrc is a scrong, abrupt change
in slope bccwccn the pariétal and the frontal,
whiie berween and anterior to ihc apophyses
chcre is a deep, rounded dépression. In rhe base
of the right apophysis thcrc is a deep. strong
postcornual fossa similar to that obsci*vcd in the
holotype, which continues disrally as a canal ro
connecl with the temporal line. The temporal
lincs arc wcll-markcd, swclling towards the hase
of the apophyses, and postcriorly the)' unité to
form a visible thickcriitig, which fn the broken
surface has a subrriangular section. There was
probably a strong development of rhe nuclial
cresr. T he Iromals arc very thick atid the bone is
wcll A^ascularised, in particular the large supraor-
bitaJ foramen which e\pand.s into the roof ol tlic
orbit. The bases of the apophyses are not pneu-
matized, and in rhe right onc the long widc volu-
minous base can be observed, while in chc Icft
one, which is more broken, the subrriangular
transversal section can be seen to be similar
to that in AD 596’94. This cranial fragment is
GEODIVERSITAS • 1999 • 21 (2)
243
Morales J., Soria D. & Pickford M.
Fig. 8. — Orangemeryx hendeyi n. gen., n. sp., frontal apophyses from Arrisdrift, Southern Sperrgebiet, Namibia, base of the middie
Miocene: A-E. left apophysis (AD 596’94); A, médial view; B, posterior view; C, latéral view; D, anterior view; E, transversal cross
section: F, G. base of apophysis, two views (AD 132). Scale bars: 20 mm.
GEODIVERSITAS • 1999 • 21 (2)
Miocene giraffoids from Namibia
Fig. 9. — Orangemeryx hendeyi n. gen.. n. sp.. Arrisdrift. Southern Sperrgebiet, Namibia, base of the middie Miocene; A, left D4-M1
in occlusal view (AD 624); B-D. cranial fragment (AD 652'94); B, dorsal view; C, ventral vtew; D, right latéral view; E, F, left P4-M3
{AD-273); E. occlusal view; F, buccal view. Scale bars: 20 mm.
GEODIVERSITAS • 1999
Morales J., Soria D. & Pickford M.
Fig. 10. — A D. Orangemeryx hendeyi r) gen., n. sp.. Arrisdnft, Southern Sperrgebiet. Namibia. base of the middie Miocene;
A. B. axis (AD 1549): cervical vertebra V3 {AD 1447); A, latéral view B dorsal view; C, letî radius, anierior view (AD 00 95): D, left
meîatarsal. anterior view (AD 5'93)‘, E. Propalaeoryx austroafrica^us. Slromer, Elisabethfeid red silîs. northern Sperrgebiet, Namibia,
early Miocene. left distal humérus, antehor view (EF 22'g3)i F-H. Spengebietomeryx wardio. gen., n. sp., Elisabethfeid green sands,
northern Sperrgebiet, Namibia. early Miocene; F, left juvénile distal radius, carpus. and proximal metacarpal (In analomical connec¬
tion), antehor view (EF 23'94); G, right radius, antehor view (EF 21'94); H, left metacarpal, posiehor view (EF 35’93). Scale bars:
20 mm.
I 246
GEODIVERSITAS • 1999 • 21 ( 2 )
Miocene girafFoids from Namibia
usefui in providing cvidence as co rhc correct
orientation of rhc apophyses in OrangemeryXy
especially rhe holoiype AD 595'94, in which it
was inclined slightiy laterally and torwards.
Dentition
rhe cheek lecth are relatively hypsodont, being
similar in many rcsj^cccs lo thc dentition of other
climacoceratids. Lower inolars (Table 2, Fig. 3C)
possess strong metascylids which project laterally.
The protoconid and hypoconid are flattened. The
hypoconid and protoconid are separated, only
unking when wear is adranced. The hypoconulid
of m3 is simple ;Uîd unicuspidate. The prcniolars
are short. The |>4 is variable, alvvays with rhe ante-
rior wing bifurcaie and a sirong labial groove, the
metaconid varies from being isolaccd to forming a
Wall which unités wiih the metastylid. Incisiform
tecth are wcll represented in the collection» none
of which are bilobcd. Upper molars (Table I.
Fig. 9A, E. F) ha\Te internai lobes separated from
cach other. ’Fhc styles are strong, particnlarly the
parastyle and metasryle. The entosryle is weak.
Upper preniolars are short and wide.
Vertébral column
Numerous vcriebrae of Ürangerneryx hendeyi are
preserved, somc of them in articulation, Ail in ail
they possess morphological fearures typical of
modem ruminants. Aniong rhe cer\'ical vcrcebrae
there is an axis (AD 1549, Fig. lOA-R) which is
relatively complété. It is notahly elongated and
thc spinous process is distinerly high and well-
dcvclopcd, whtch suggests thc existence of strong
musculature relaied to mcwenieius of ihe head. A
furrher wcl!-prescrved cervical veriebia
(AD 1447. Fig. lOA. B), like thc previous spéci¬
men, is elongated.
Limh bones
The sample of limb bones assigned to Orange-
meryx hendeyi is very compréhensive, bones of
this spccics being rhc most common mammal
rcmains at the site (over 220 specimens). In the
sample are complété examples of most limb élé¬
ments, but some of them bave been deformed by
compaction and several hâve bêen damaged by
gypsum crystal growth (Table 4, Fig. lOC, D).
The morphology of the limbs is quite generalized,
excepr for their élongation, indicating that
O. hendeyi was not greatly speciaÜzed, retaining
much of rhc aspect of what we consider to be the
basal girartdid condition. Many of the postcranial
éléments of thèse ruminants possess a rarher
constant morphological pattern, whereas others
présent major variabilicy and appcar to be more
closely implicated in the processes of adaptarion
and évolution, even though it is difflcult to déter¬
mine rheir evolutionary signifîcjnce. The exis¬
tence of great wiriability in rhe hone size is aiso
noriceable, wliich should probably be interpreted
as a dtmorphic pattern. The aim ol ihi.s section is
not to provide a detailed study of each postcranial
élément, but to provide remarks on rhe salient
fearures of thc limb skeleion of O. hendeyi.
Humérus
In rhe proximal epiphysis (Fig. IlA), the greater
and lesser tuberosities arc low and there is no
intermediaie ruberclc équivalent to the condition
in more modem giraffes. The distal epiphysis is
comparable to that of Sperrgebietorneryx mardi
described ahove, but ihe radial fossa is more
reduced duc to the grcai proximo-distnl develop¬
ment of the capitulum and the mcdial condylc of
the trochlea, a condition which also differentiates
il from CUmacoceras gentryi and Palaeotragus prT
maevtiSy the humeri of which possess a more
'*giraffid”-likc morphology with rhe médial
condyle low proximally.
liadwulna
The proximal epiphysis of the radius accords
Vv'ith rhe morpholog)' of the distal humérus, and
this bone thus differs in the samc way from its
counterpart in P. primü€vus\ the lacerai facet is
higher and the mcdial one mote inclined in
O. hendeyi. The distal radial epiphysis is similar
to that described in 5. mardis the diaphysis is
quite straight and is antcro-posteriorly compres-
sed. The uina (Fig. 1IB-C’) is not fused to the
radius. les tuber olecrani possesses high latéral
and médial crests, between which is a deep valley,
similar to a specimen of Climavoceras gentryi
Hamilron, 1978, from Ngorora. Kenya.
Carpus
The scaphoid retains the distal posterior facet
GEODIVERSITAS • 1999 • 21 (2)
247
Morales J., Soria D. & Pickford M,
Fig. 11. — Orangemeryx hendeyi n. gen.. n. sp.. Arrisdrift, Southern Sperrgebiet, Namibia, base of the middie Miocene; A. left proxi¬
mal humérus, proximal view (AD 3380); B-C. righl proximal uina (AD 00’95); B. anterior view; C. latéral view: D.right distal humérus,
anterior view (AD 1915) ; E. right calcanéum, anterior view (AO 747); F. right talus, anterior view (AD 613'94); G, right navicular
cuboid, posterior view (AD 317’95); H, I Phalanx, anterior view (AD 501); I, Il Phalanx, anterior view (AD 469); J. III Phalanx, latéral
view (AD 896). Scale bars; 20 mm.
GEODIVERSITAS • 1999 • 21 (2)
Miocene girafFoids from Namibia
Table 4. — Measurements (in mm) of the postcranial skeleton of Orangemeryx hendeyi n. gen., n. sp. from Arrisdrift. Abbreviations:
APD, antero-posterior diameter; TD. transversal diameter; c.c., corpus calcanei; t.c., tuber calcanei: m., maleolus: s., sustenta-
culum.
N
OR
M
N
OR
M
Humérus
t.c. TD
8
20.1-23.2
21.6
Length
1
209.5
m. APD
6
32.0-39.5
36.2
Proximal APD
3
64.0-71.2
68.0
s. TD
6
26.6-30.2
28.2
Proximal TD
1
54.8
Distal APD
6
41.8-48.6
45.2
Navicuiar-cuboid
Distal TD
6
44.6-51.8
47.5
Anterior Height
8
19.4-25.5
21.7
Posterior Height
5
25.1-29.0
27.2
Radius
Maximal APD
7
34.2-40.0
36.2
Lenglh
9
254.0-287.0
268.0
Maximal TD
8
31.4-36.6
33.6
Proximal APD
10
20.4-26.8
23.8
Proximal TD
10
37 0-46-8
42.1
Metatarsai
Midshafl APD
9
14.1-22.3
18.1
Lenglh
6
252.0-280.0
266.0
Midshaft TD
9
23.0-33.4
28.2
Proximal APD
18
29.0-40.0
32.1
Distal APD
12
23.7-32,9
28.6
Proximal TD
18
26.2-33.0
28.7
Distal TD
13
34.0-46.5
39.5
Distal APD
10
19.2-25.3
22.0
^jlng
Distal TD
10
29.1-37.5
33.2
Olecranon Length
4
49.7-61.0
54.6
1
Tuber o. APD
4
30.1-37.4
33.6
Length
13
46.5-57.4
51.6
Tuber o. TD
1
15.2
Proximal APD
12
18.9-22.6
21.0
Pro. anc. APD
6
32.6-45.6
39.0
Proximal TD
13
15.1-19.3
17.3
Proc. anc. TD
9
11.3-14.4
12.7
Distal APD
14
10.5-15.0
13.3
Distal TD
15
12.5-15.8
14.5
Scaphoid
1
Anterior Height
6
17.4-21.6
19.5
1 Phfll;4nv
APD
6
24.3-28.5
26.3
Length
8
26.5-30.5
28.4
Anterior TD
5
12.3-14.6
13.8
Proximal APD
8
17.1-21.0
19.5
Proximal TD
g
13.0-16.0
14.5
Semilunar
Distal APD
9
14.3-17.6
16.4
Maximal Height
6
16.1-20.3
18.6
Distal TD
9
10.2-14.4
12.0
APD
5
24.0-27.9
25.7
Proximal TD
5
14.4-18.6
16.1
ni Phalanx
Plantar Length
8
30.1-36.6
33.6
Unciform
Dorsocaudal D
5
22.7-28.0
24.8
Maximal Height
4
12.2-15.2
14.2
Maximal TD
9
11.7-14.8
12.9
APD
4
20.0-24.0
22.3
Proximal TD
4
13.0-17.2
14.9
Metacarpal
Length
7
242.0-275.0
263.0
Magnotrapezoid
AD501’95 PQAD2574
AD609’94
Proximal APD
9
21.0-27.4
23.2
Proximal TD
10
29.4-38.0
32.5
Anterior Height
14.8
14.6
Distal APD
8
21.6-26.4
24.1
APD
23.8
21.8
19.3
Distal TD
10
32.0-39.3
35.8
Anterior TD
19.2
16.8
15.0
Posterior TD
18.5
15.3
16.3
Talus
Latéral Length
9
38.5-46.3
42.3
Médial Length
9
36.2-44.0
40.7
Latéral APD
10
19.7-27.5
23.0
Médial APD
8
21.5-25.0
24.1
Tibia PQAD2292
PQAD1100
PQAD42
Distal TD
9
22.5-28.8
25.8
_
Lenglh
360.0
350.0
317.0
Calcanéum
Proximal APD
71.1
Length
7
94.0-106.0
100.2
Proximal TD
64.5
59.2
c.c. Length
9
61.0-75.4
67.9
Distal APD
32.1
29.4
27.2
t.c. APD
8
23.1-27.7
25.9
Distal TD
39.1
35.6
34.8
GEODIVERSITAS • 1999 • 21 (2)
249
Morales J., Soria D. & Pickford M.
which is losr in somc fossil giralTids such a.s
Palaeotragui mlcrodon (Koken, 188S). Sarno-
therium s'inerisis (Schlosser. 1903)i Deccenn-
therium püchecai Crusakme-Pairo. 1952, and
Sivatherium hvndeyi Harris, I976, but which is
still présent in rhe tvvo extant giraM'ids {Gmijfn
camelopanialu Linneaus, I738 and Okiipht jolm-
stoni). In the scmilunar, the distal latéral faccl is
somewhat wider than the rnedial one. The
magnotrapezoid, which is similar to thac ol
Palaeoîragus primaevns Churchcr. 1970, has a
concave posterior margin and begins to develop a
posrerior keel berween the facets for the semiluiur
and the scaphoid. Iii the unciform. the sernilunar
facet Is parcicularly clongated in a posterior sense,
characiers which it shares with uihet glrafïîds.
Tarsus (V\^. IIE-G)
The astragalus is picsiomorphic. It is similar to
that of P pwnaeina but has a weakly expressed
posterior process in the medial proximal condylc.
There is no strong development of the proximal
latéral condyle as occurs in (2imacfH'erm gentiyis
and the distal trochlea has more or less symmetri-
cal condylcs, In posterior view, the navicular
cuboid shows a very srrong medial cresi disrally
which diminishes tu nothing at the proximal zone.
It has a fossa in a very lacerai position, unlike in
Pprimaevusy (Praffa and ükapia.
Metatamd
The proximal epiphysis of rhe metatarsal has
similar morphology lo that cP Andeganmyx ande-
gaviensis Ginsburg et ///., 1994, and the anterior
groove is open distal ly.
The meiacarpal, pelvis, tibia and calcanéum ail
hâve a generalized morphology similar to that of
P primaevus. Ilowcvcr. the scapula of O. hendeyi
has a IcsS'developcd supraglcnoid tubcrclc ihan
that of PdlûeomtgtLs primanms whcrcas its cora-
coid apophysis' Ls more reduccd than it is in the
latter species.
Discussion
Orangemeryx shares wirh other climacoccradnes
the same morphological pattern of rhe dentition
and the possession of coniplex supraorbiral apo¬
physes, In Nyanziitneryxpkkfbrdi 1984,
and Orangemeryx the frontal apophyses are orna-
meneed ac ihcir bases wnth rounded protubé¬
rances w'hich do not projcct far cnough to hirm
latéral points. In contrast, in Climacocerds ajiica-
n/zt Maclnncs, 1936, and cspcdally in C. gentryi
Hamilton, 1978, rhe points are considerably
elongared, imparting a deer-like morphology to
the apophyses. The morphology of the apo¬
physes permits us to separate the various spccies
intü twü gfoups : oiie comjrrising the two species
of C/imacoieras plus Nyanzatneryx ’l’homas,
1984, the other consisting of Orangemeryx.
PH\TOGENETIC RELAddONS
The relationships betsveen these two groups, now
con.sidcred to be subfamilies of the Family
Cliinacoceraiidae (- Cli macoceridae of
Hamilton, 1978), is based on the faet that they
share tlie same morphtjlogical pattern of the den¬
tition and the incipient élongation of the ncck
and the limbs. The presence of elongared cervical
vertebrae, including the atlas, ^^’as aiready nored
in Olbnacacernî gentryi \>y Hamihon (1978), the
atlas of W'hich is pa'>pornonally longer th,in it is
in Palaeotragus prtmaevits and Saniorhvrlum dfrP
canm Churcherr 1970. Even though no atlas of
Orangemeryx hendeyi has been found, compari-
son between rhe axes of rhjs species and that des-
cribed by Chiircher (1970) for Palaeotragus
priniuevHS is suggestive in this respect, and ir»di-
care.s to us that tins new' genus als{) possesscd a
long ncck.
TTic new' fossil material dc.scribcd herc tends to
confirm this rclationship bccausc Sperrgebieto-
meryx^ and Cltmacoceras (C. gentryi)
share elongated cervical vertebrae, including the
atlas, a chariicter which indicates a notable spe-
ciali/ation towards feeding froni high Food
sources. In ihc forms ol which the postcranial
skcleton is known, it is possible to confirm that
the cxcrcjnitics arc clcaiiy elongated.. 7‘hc clado-
gnini (Eig. 12) summarizes chc phylogencuc rcla-
tionships between the dcscribcd forms,
considering Andegamer^fx Ginsburg et al., 1994,
to be the oucgroup.
The Family Climacoceratidac has previously been
placcd close lo the giralfe^ on ihe hasts ol rhe
presence of a bilobed lower canine in Climaco-
250
GEODIVERSITAS • 1999 • 21 (2)
Miocene giraffoids from Namibia
Fig. 12 . — Phytogenelic relationships of Spcrrgebietomeryx
n. gen. Propalaeoryy Sfrom 0 r and Orangemeryx n. gen (o other
giraffoids. Nodes: 1, (primitive characters) dentition moderately
hypsodont: upper and lower premolar senes long: premolars
elongated and thus gracile; lower molars with strong stylids;
third lobe of m3 simple; hypoconid isolated. a conséquence oî
its dear séparation trom the entoconid and me anterior lobe; the
p4 has a simple metaconid. directeo posleriorly. anterior wing
simple, Its mpfpholtDgy differing Utile trom thaï ol the p3: lhe pi
fe présent wilh Iwo slrong roots: upper piemolars long. P2 and
P3 with well-defined anterior lobes, upper molars with strong
slyles and laie union of the iniernal lobes to The ectoloph:
appendicular skeleton gracile, with a lendency to élongation of
the etemenîs; 2. cervical vnnebrae. including the atlas^ elonga-
led; 3. loss o( p1 ; 4 hypBodoi'l denlitioo, The p4 wiili metaconid
disposée! more transvemally, with a tendency to turn anteriorly,
anterior wmg blIurcMtfi (and thus very different trom p3). tenden-
cy towards flatltning of lhe iniernal wall of Lhe lower molars;
5, presence of supraorbitnl apophyse:; wrth protubérant orna-
mentaiiüns ât Ihn hasA. with a hilufcate lerminatlon loss of pi,
6, apophyses wilh elongated slighlly <;o»npreiiised itionical mor-
phology below the bifurcation; 7, apophyses elongated and
cylindrical; 8, apophyses with well-defined points perpendloular
to the long axis of the apophysis (C. afticanus): apophyses com-
plex, ramified as in some cervids {C. gentryi).
ceras gentryi from Fort Ternan (Hamilton 1^)78),
but the présence of this character is not certain,
as was noced by Churcher (1990), At Arrisdrift,
there are at least sixreen lower incisiform teeth
attributed to Orangemeryx, none of which is bîlo-
bed. 11^ fossil canines and Indsors are preserved in
the saint* ratio thaï occurred in life, chen at least
four canines should be présent in the Arrisdrift
sample, in which case the lower canine in
Orangemeryx consisted of a single lobe. Other
authors hâve advocated ihis relaiionship
employing for the most part dental charactêrs
(Gentry 1994; Gentry & Hooker 1988; Janis &
Scott 1987) or hâve inerely considered ir as
incertae sedts within rhe Giraffoidea (Geraads
1986).
Apparently, the precucious spécialisation of the
postcranial skcicton séparâtes the Climacocerati'
dae from the GirafFidac. Neverrheless, primitive
giraffes, such as Zaraja zeheni Hamilton, 1973,
of the early middle Miocene ot Gebel ZeltcUt
Libya. ai.so po.ssessed an elongated atlas.
However, a deeper study of the postcranial skele-
ton of the forms iitvoivcd in this radiation of the
Giraffoidea is rcquired hefore we can confirm
that this speciaJization is a character rhat permits
the inclusion of the Girafiidae and the
Climacoceratidae in a monophyletic group.
These new ruminant fossils support rhe idea
expre.ssed by Ginsburg et ai (1994) rhat prior ro
rhe appearance of pecorans with frontal protubé¬
rances rhe group would hâve been srrongly diver-
sified, à diversification which afïccted not only
lhe dentition, but aiso the postcranial skeleton.
We can now détermine with somc précision the
relationships of most of the pccoran fornis lack-
ing cranial protubérances which are related at the
level of sister gtoups to pecoran familles which
do pü.ssess such protubérances. Morales et al.
(1995) described a horniess bovid from
F.lisabethfeld, a cliscovery which corroborâtes this
view of ruminant évolution. Fhcsc findings
strongly .support the hypothesis that chc appea-
rancc of cranial protubérances -w'as a biological
phenomenon which occurred virtually synchro-
nously {ca. lS-17.5 Ma) but indepcndcnily in
varioas lineages of pecorans (comprising at least
lhe Cervidae, Falacomciycidae, GiraBoidca and
Rovidae). Ir corroborate.s the hypothesis of
Morales et al. (1993) in which the appearance of
cranial appendagt's is considered to liavc been an
organic response ro global scale environmental
cliangcs which occurred towards the end of the
early Miocene.
GEODIVERSITAS • 1999 • 21 (2)
251
Morales J., Soria D. & Pickford M.
Acknowledgenieiils
We thank NAMDEB (M. Lain, J. D. Ward,
B. Biirrell) tor acccss to thc Sperrgebiet,
Namibia, and h)r funding and logistical support.
Support was also providcd by rhe Mission for
Coopération and Cultural Alfairs, Windboek
(Y. Maire, N. Weil), ihc Collège de France
(Y. Coppens), the Muséum national d’Hisioire
naturelle, Paris (P. Taquet), the Museo Nacional
de Ciencias Naturales, Madrid (proyectos
PB/95/0n3 and PB/95/01 14)> the Geological
Survey of Namibia (B. Hoal) and the Spanish
Agcncy for International Coopération (AECI).
Wc thank Drs B. Senut, P Mein,. D. Gommer}',
A.-M. Bacon and Ward l'or help in dtc ficld.
Rescarcli Permission was approved by the
National Monuments Council, Namibia
(G. Hoveka, A. Vi>gi). Wc thank Dr D. Cicraads
and an anonymous reviewer for their comments
on the manuscript.
REFERENCES
Arambourg C. 1961. — Prolibytherium magnieri^ un
Velléricorne nouveau du Burdigalien de Libye.
Comptas nndm sommutre des séioices de la Société
géologique de France 3:61 -63.
Bubenik A. B. 1990. Epigenctical, Morphological,
Physiolügical and Behavioral Aspects ol the
Evolution of llorns, Prongliorns, and Antlcrs ;
3-113, in Bufonik CL &: Buhenik A. H. (eds),
Morris^ FronghvTns and Anthrs. New York,
Springer-Verlag.
Churcher C. S. 1970. — Two nevv upper Miocène
girablds from Fort Ternaii, Kenya. East Africa.
Fossil Veriebraies of Africa 2: 1 - ! 05.
— 1990. — Cranial uppendages uf Giraffoidea;
180-194, in BuJiopik CL A., ^ Buhenik A. H.
(eds), Jhrns, Prongjmrm and Antiers. New York,
Springer-Verlag.
CJorbett I. 1989. — Fhr sedimentolog^ of diamondiferous
déflation deposits within the Sperrgebict, Namibia.
PhD Thémis, Lînivmitv of Ctpe 1 own, 430 p.
Crusafont-Piiiro M. 1952. — 1 os Jirafidos de F.spana.
Memvnas v CornHuicaewnes — Imiituio Geologicao
(Barcebna) 8: 1-239.
L3e Bruijn 11., Daanis R., I3axner-I lock G.,
Fahlhusch V,. Cunsburg I Mcin [\ & Morales J.
1992. — Rcfiort of ihc working group on fossil
mamnials, Rei.sensburg 1990. Neivsleiters in
Stiatigrapby 26: 65-118.
Gentry A. W. 1994. — The Miocene différentiation
(T C3|d World Pccoia (Mjmmalia). Histoncal
Biology 7: 115-158.
Gentry A. W. èe Hooker |. j. 1988. — The phylogc-
ny of ihc Artiod.ictyla: 235-272. in Bcinon M. J.
(ed. ), The Phylogeny and CLissipeation of the
Feirapods. Uxford University Piess, Oxford.
Geraads D. 1986, — Reinarquês sur la sysférnatique
v‘t lu pliyiogênle des GiruOldue (Ariiodaci)la,
Mamm.ilia). Geohkn 19 ; 465-477-
(iinshurg L., Moi.^le.s tk Sori.a D. 1994. — The
lowcï Miocene ruminants From C’etina de Aragon.
Pnteeedings of the Koninhlijke Nederlandsc Akademie
van Weiemehappen ^y?'. 141-181.
Cireenman !.. 1966. - The gvoing)> of Area 26I5C,
l.nderiîz. South West Afriva. MScThesis. University
of CLipe 1 own. 117 p.
I970. — i he Rli/.;iherh Bay Formation, Lüderitz,
and its hcariiie i)n the genesis uf dolu-mttc.
Irumactions of wc Ceoloçical Society of South Africa
73: ! I5-I2I.
I lamilton W. R. 1973. — Fhc lower Miocene
Kiiminants of (iehel Zeiren, Libya. Bulletin of the
liritish Muséum iNatural lUstory) Geolo^y 21:
75-150.
— 1978. -- Fossil giraffes from the Miocene of Africa
and a révision of the phylogeny of rhe Giraffoidea.
Philosophictd i fansaclions of the Royal Society of
Lôndunl^y 165-229.
Hamilton W. R. tk V'an (fouvering J. A. 1977. —
l.ower Miocene manimal.s of South Wc.M Africa.
Namibia Bulletin (Supplemettt 2. Transvaal
Mmeum BuHetmh 9-11.
I lendey Q. B. 1978. — Preliminar}' report on the
Miocene vcriehrates from Arrisdnft, South West
Africa. Anna/s of the South AJrican Muséum ^6:
I 41.
Jani.s CL M. tic Scort K. M, 1987. — Fhe inierrela-
lionships of liigher Ruminant Fumilics with
Spécial Fmph.isis on ihe Mcmhcrs of ihc
C .ervoidca. Americitn Muséum Novitatr^ 2893: 1*85.
Kokcri F,. 1885. — Cher fossile Suugcthicrc aus
China, nach den Sammlungen des Ileirn
1 erdinaïul rtcilictrn von Richtlmfen hearheitet.
Geolfjgùche und PaLUmtologische Abhandelun^en 3:
3M13.
Maclnnc.s D. G. |9}6. — A new genu.*. of fo.s.sil deer
from the Miocene oi Mtxca. Journal of the l.inman
Society (Zoology) 39: 521-530.
Morales J.. Picklord M. ik Soria 19. 1993- —
Pachyo.stosis in a lower Miocene Giraffid from
Spain, Loraniametyx pachyostoticus nov. gen.,
nov. x(>. and ils lieuring ou the évolution of bony
uppendages in uiiiodaciyls- Geohios 26 : 207-236.
Morales J., Soria f9 k Pickford M. 1995. — .Sur le.s
origine.s de la famille dc.s Bovidae (Arriodactyla,
Mammalia). Comptes Rendus de l'Académie des
Setenees» Paris 321 : 1211 1217.
Pickford M, 1981. Preliminary Miocene
Mammalian biostratigraphy for Western Kenya.
252
GEODIVERSITAS • 1999 • 21 (2)
Miocene girafifoids from Namibia
Journal ofHummi Evolution 10: 73-97.
— 1994. — New suids from the early Middie
Miocene ol Arrisdrift, Namibia: Namachoerus
(gen. nov.) moruorotiy and Nguruwe kijivium.
Comptes Rendus de l'Académie des Sciences, Paris
320 : 319-326.
Schlosser M. 1903. — Die fossilcn Saugethiere
Chinas. Ahha}idlungen der Koniglich Bayerischen
Akademie der Wissenschafieri 2: 22.
Sclater P. L. 1901. — On an apparently new species
of zébra from the Semliki forest, Proceedings of the
zoologicalSociety of London 85: 1-350.
Sigogneau D. 1968. — Le genre Dremotherium
(Cervoidea) : anatomie du crâne, denture et moula¬
ge endocranien. Annales de Paléontologie 54 :
39-100.
Stromer E. 1926. — Reste Land- und Süsswasser-
bewohnender Wirbeltiere aus den Diamantfeldern
Deutsch-Südwestafrikas: 107-153 in Kaiser E.
(ed.), Die Diamantenwiiste Südwest-Afi'ikas, Vol. 2.
Reimer, Berlin.
Thomas H. 1984. — Les Giraffoidea et les Bovidae
miocènes de la formation Nyakach (Rift Nyanza,
Kenya). Palaeontographka 183 : 64-89.
Whitworth T. 1958. — Miocene Ruminants of East
Africa. Fossil Mammals of Africa 15: 1-50.
Submitted for publication on 10 March 1998;
accepted on 1 December 1998.
GEODIVERSITAS • 1999 • 21 (2)
253
Snout proportions in some Eurasian hipparions
(Mammalia, Equidae): taxonomie and functional
implications
Ann FORSTEN
Finnish Muséum of Natural History,
PB 17, FIN-00014 Flelsinki (Finland)
ann.forsten@helsinki.fi
Forsîen A. 1999. — Snout proportions in some Eurasian hipparions (Mammalia, Equidae):
taxonomie and functional implications. Geodiversitas 21 (2) : 255-278.
KEY WORDS
hipparions,
snour proportions,
phylogeny,
Kinction,
ABSTRACT
In the hipparions, length and breadth of the snout and depth of the nasal
opening are noc well correlated with one another, nor with the shape and
placement of the preorbital fossa, recently considered taxonomically impor¬
tant in these equids. These characters are distribuied in a mosaic-like fashion
among specics, making species différentiation and phylogenedc reconstruc¬
tion difRcult.
MOTS CLÉS
hipparions,
proportions du museau,
phylogénie,
implications fonctionnelles.
RÉSUMÉ
Les proportions du museau chez quelques hipparions (Mammalia, Equidae)
dEurasie : implications taxonomiques et jonctionnelles.
Chez les hipparions, la longueur et la largeur du museau ainsi que la profon¬
deur de la fosse préorbitairc ne sont pas clairement corrclées entre elles, ni
meme avec la forme et la position de cette fosse. Pourtant la valeur de ces
mesures a été récemmeitt considérée comme ayant une signification taxono¬
mique importante chez ces équidés. Ces caractères suivent une distribution
en mosaïque, au sein des différentes espèces considérées, et leur utilité tant
pour la différenciation spécifque des hipparions que pour leur analyse phylo¬
génétique est restreinte.
GEODIVERSITAS • 1999 • 21 (2)
255
Forsrcn A.
INTRODUCnON
While tlic preorbital fossa of the cheek has
recently becn given great weight in hipparion
raxonomy> even used for delimiring “supraspeci-
fie grüii[)s”- rhe proportions and structure of tbe
snout and rbe nasal opening bave largely been
ignored. Complété skulls of Hipparion de
Christol, 1832, are rare. Mosc often che snout
and/or dic cranium aie broken oft^ leaving rhe
middie part of rhe skull wich the cheeks, tooth
rows and orbics prescivcd. f'hus ihere îs much
Icss data on rhe snour of Hipparion than on the
preorbital fossa of the chcck.
l'he function of the fossa in Hipparion is still
unsolved, airhougb chere are several alrernarive
hypothèses (see discussion in Setve 1V27: 67-78).
In recent equids the shallow fossae serve as
attachmcni areas (or Icvator muscles of the upper
lip (Ellenberger &: Baum 1943; Zhcgallo 1978);
the very nitibik lips foncriofi together with the
incisors in g.uhering fotïd. "l’he extension of ihe
nasal opening in Hipparion may refiect the deve¬
lopment of the nasal diverticulae, in receni
equids siiuated within the nasal opening
(Ellenberger Bauni 1943; but sce Gregory
1920).
The shapc of the snout in fossil and extant herbi¬
vores has rccendy been debated (e.g. Bunnell &
Gillingham 1985; Solounias &: Moellekcn 1993;
Dompierre & Churchcr 1996; Eisenmann 1998)
and there hâve been atrempts to interprète it eco-
logically. The shape o( rhe snout is believed to be
dictated by chc mode ol fccdlng. A broad, antc-
riorly flatrcncd snour is interpreted as indicaring
grazing or chc unselectivc gathering of fotjd near
ihc ground. A narrow snout, with tlie incisors in
a sharp arc, is interpreted as indicating hrowsing
or the sélective gathering of tood at different
heights (for the illustration of equid snours of
different breadth, see Eisenmann 1998, fig. 5: I-
10 ).
In an carlier paper, l (Forsten 1983) discusscd
the variation in the placeinent and shape ot the
preorbital fossa in somc Old World Hipparion,
In the présent paper I will desetibe, compare and
discLiss the snout and the nasal opening. Old
World hipparions group into broad- and narrow-
snouted taxa, but with many intermediates.
rhere is vvcak coircspondence with groups dell-
miccd on the basis of the preorbital fossa. AIso
snout proportions and nasal opening extension
are only weakiy correlated. How sbould rhese
characters be evaluaced and weighted taxonomi-
cally and pltylogenctically?
METHODS
In the upper jaw>. snout Icngrh was measured as
the distance from the prosihion (Il-II) to rhe
middie of a line uniring the anterior tips of P2
(Gromova 1952, table I, sktill measure 18);
snout widrit wavS measured as rhe ourer distance
beliind 13-13 (GromovaV measure 40). l’Ite nasal
opening is tbe distance anicriorly Irom berw'cen
tbe premaxillac (not including tbe upper sym-
physis) postcrioi’ly to whcrc the nasals and pre-
maxillac/maxilhtc mect (Gromova's measure 28).
Skull Icngth, since seldoin measuieable, was here
substiiuLcd hy the distance P2-anterior rim of
orbii (Gromovas measure 11), which is roiighly
correlated with basal lengtli.
lu the lower jaw snout breadth was measured as
tlie oiiter distance behind i3'i3 (Gromova 1952:
table IV, measure 14) and syinphysial length
anteriorly from betwéen il-il posteriorly to ihe
symphysial noicb (Gromovas measure 11).
Relative .snout width is expressed in scarter dia-
grarns, ploiting maxillar snout width ro snout
Icngth and mandibular snout width to symphy-
sial lêngih. rcsptxtivcly. Snout Icngth îs rckted to
skull length by plotting ir lo tbe disiancc 1*2-
orbit. Nasal opening Icngth is cxpte.ssed boch as
an absolutc mevisure and in relation to the tooth
row. l’he preorbieal fo.ssa is discussed in terms as
in l'orsien (1983). 1 calculatcd 95% cquiprobabi-
lity ellipses on the data of H. schlosseri-rlietrichi
from .Sainns Q1 and Samos without more exact
locâIit^■ data and of H. nioldaincmn Cjromova,
1952 from Taraldia and Novoelizavetovka, using
metrical dara, rben used rhe ellipses as modeis in
che diagrams. I did not plot the spécimens ased
for calculacing the ellipses, but type specimens
are ploiied in bold leitcr abbreviations.
The maierials used and the institures in which
are kept the macerials seen are listed in the
Appendix.
256
GEODIVERSITAS • 1999 • 21 (2)
Snout proportions in some F.urasian hipparions
Fig. 1. — Upper snout breadth plolted to snout length in European hipparion skulls: measurements In mm; 95% equiprobabiTity
ellipses calculated and drawn on the data of Hipparion schlosseri-dietrichi (Samos Q1 -Andriano and Samos withoul exact locality)
and H. mofdavicum (Tarakliya and Novoelizavetovka). Ptotted are specimens from the localities: Cer. Cherevichnoe; Ch. Chimislia;
K. Karaslari; M. Maragheh; ML. Mt. Luberon; MoL Molayan: Sq. Salonikî (coll. Arambourg & Puyhaubert); T. Tchobruchi; Tu.
Tudorovo; UD, Umen Dol. Bold type abbreviatlons in figure depict type specimens: Ch, H. pregiganteum {Chisnau 4040/84); Mc.
H. campbefli iUn'w, California Riverside No. 13/1342); Mg. H. gettyi (Wien No. 840); Sd, H. dietrichi (Münsier S 1/7); Ssch, H. schlos-
seri (Wien 1911 V 114}: Ta. H. moldavicum (Moscow PIN 1256-3639); Tu, H. tudorovense (OGUM 1780). Observations in paren¬
thèses approximafive.
DESCRIPTION
Europe anu ti ie Near East
Hippariom loith a short andJor broad snout
Hipparion prostylum Gervais, 1849 [localities:
Mt. l.uberon, France; Saloniki, Grcccc; Karaslari
and Umen Dol, Macedonia (former Yugoslavia);
possibly Maragheh, Iran], H. schlosseri'dietrichi
Antonius, 1919'(Wehrli, 1941) fSamos without
exact localitv (Sondaar 1971, pl. Il: a); Samos
Ql, Q4. Q6 (Sondaar 1971, pl. Il: b);
Vathylakkos, Prochoma-1, Ravin des Zouaves
(Koufos 1987. fig. 3), Greece; Basiboz (Forsten
& Garevski 1989, photos 3. 4), Macedonia; and
Maragheh] hâve a short and broad snout (Fig. 1 :
upper ellipse). The snout is short also in relation
GEODIVERSITAS • 1999 • 21 (2)
257
Forsten A.
130 140 150 160 170
Fjg. 2. — Upper snout length plotted to P2‘Orbit distance in Européen hipparion skulls; measurements in mm; 95% equiprobability
ellipses calcuiated and drawn on the data of Hippanon schlosseri-diêtriahi (Samos Ql-Andriano and Samos wtthoul exact locatity)
and H. moWsWcümtTarakliyaand Novoelizavelovka). PIoHed are specimens from: Cer, Cerevichnoe: Ch. Cbimislia: M, Maragheh;
ML, Mt. Luberon: Mol, Molayan; Sq, Saloniki; T, Tchobrucht. Bold type abbreviations in figure depict type specimens: Ch. H pregi-
ganteum: Mc, H. campbelfi: Mg, H. gettyr, Sd, H. dietrichi, Ta. H moldavicum-.Tu. H fudofovense, Observations in paren(he5es are
approximative.
to skull lengtfi (Fig. 2: lowcr ellipse) and in thc
lower jaw ihe snout is broad in relation to the
length of rhe symphysis (Fig. 3: upper ellipse).
The single preorbital fossa of the skull is placed
rather far in front of the orbit. It may be faintly
delimited and shallow or well-defined, in citber
case more or less pocketed. There is no clcar dif¬
férence in skull morphology berween rhe smalter
specimens (e.g. H. prostylum and the holotype of
H. dietrichi^ Münster SI/7) and thc larger ones
258
GEODIVERSITAS • 1999 • 21 (2)
Snout proportions in some Eurasian hipparions
50 60 70 80
Fig. 3. — Lower snout breadth plotted to symphysial length in European hipparion jaws; measurements in mm; 95% equiprobability
ellipses calculated and drawn on lhe data of Hipparion schlosseri^dietrichi {Samos Q1-Andriano and Samos without exact locality)
and H. moldavicum (Tarakilya and Novoelizavetovka). Plotted are specimens from: Ch. Chimislia; M. Maragheh; ML, Mt. Luberon;
RZO, Ravin des Zouaves; T, Tchobruchi; Tu, Tudorovo.
(c.g. Wicn 1911 V 114, thc holotypc of
H. schlosseri, and Budapest No. 274) (Figs 1, 2:
ML, and in bold; Sd, Ssch). The schlossen
and dietrichî were given the same species;
although Antonius’ name “jrA/owr/” is older,
thcrc is some uneertainry as to its validicy (inadé¬
quate description and illustration of the type).
Until the question as to the correct name is sol-
ved, I use both united by a hyphen: H. schlosseri-
dietrichi.
In this group aiso belongs H. molayanense
Zouhri, 1992 described from Molayan,
Afghanistan (Zouhri 1992). In thc two skulls
seen, the snout is short, but not as broad as in
the former group (Zouhri 1996, pl. 59) (Figs 1,
2: Mol). The preorbital fossa resembles that of
the former group in being shallow, oval-egg-
shaped, and situated far in front of the orbit.
d'he above mentioned short- and broad-snouted
hipparions, H. prostylum^ H. schlosseri-dietrichi^
and H. moLiydnense^ also hâve a short nasal open-
ing, anteriorly cither blunt or softiy pointed,
ending at a level wcll in Iront of P2. The nasal
openiug is short also compared with snout and
slcull length, excepe in Paris Mol. 040 from
Molayan.
Among the skulls with a short-broad snout fall
the type and the referred specimen of H. garedzi-
cum Gabuniya, 1959 from LJdabno, Georgia
(Fig. 4: U, in bold). The nasal opening is short,
ending at a Icvel in front of P2 buuthe preorbital
fossa is well-defined and deep (see Gabuniya
1959, pl VI: 1). On the other hand, among
skulls with a shallow preorbital fossa situated far
from the orbit can be mentioned the specimen
B-50 from Bazaleti, Georgia, referred to as
GEODIVERSITAS • 1999 • 21 (2)
259
Forsten A.
Fig. 4. — Upper snout breadth plotted to snout lenglh in European hipparion skulls; measurements in mm; 95% equiprobability
ellipses calcutated and drawn on the data ot Htpparion schbss&n-dietrichi (Samos Ql-Andriano and Samos wilbout exact locaJity)
and H. moldavicum (Tarakliya and Novoelizavetovka). Plotted are specimens of H. matthewt (scatter to ttie left) from. B. Boluska;
Dyt, Dytiko (data Koutos 1983. table 1), Q5. Samos Q5: S, Samos withoui exact focaliiy. Ploiied also liippanons în the H primige-
nium group (scaMer lo rtie righl) trom; B. fieluska: VC. Vila de Caballs; Gr. Greboniki: N. Nesebr: OH. Oued el Hammam;
Pi. Pikermi: 04. Samos 04: S. Samos without exact tocality: U. Udabno: W. Inzersdort Dold type abbreviations In figure depict type
specimens- Gr, H. giganteum (OGUM lOtS), Hos. H catalstunicum (BMNH 16397): Sm, H. màtfhewi (Bud&pesi Ob/5S7);
U. H. ga^ecI^icum (Tb*lisi No 156/13)-
H. garedzicum by Melad/e (1967, table VIII) and
as H. moLiyanense by Zouhri {1992^ 1996), but
which dificrs iront both in the snout being long
and narrow (Fig. 5; Bz to the far right in dia-
gram). The type skull of H. tudorovense
Gabuniya, 1959 (OGUM I7H0; Gabuniya
1959, pl. V: 2) irom Tudorovo, Moldova, aiso
bas a shallow prcorbiral fo.ssa siruaied rclatively
far in front of tbc orbii, but a narrow snout
(Figs 1, 2: Fu, in bold). The nasal opening in B-
50 from Bazaleti and OGUM 1780 from
Tudorovo ends Icvel with F2, A very Iragmentary
skull (Inst, üf Paleobiology, d'bilisi No. 148/I91t
Gabuniya 1959, pl. VI: 3) from Kiourteviouf
50 km north of bake Urmia, Iran, the holorype
ol H. urmiense Gabuniya, 1959 bas a shallow
and faim (ossa and a nasal opening exrending
level with P2'r3. Since the snout is lacking and
the orbits are not visible, the placement of the
preorbital fbssa in relation to the orbic and tbc
snout proportions are unknown.
A rclatively broad snout is characterisric of the
skull ot H. mattheiv! Abel, 1926 [localitics:
Samos Q5 (Sondaar 197T Fl. Ia*b) and Samos
without exact locality data {H. nicosi Bernor
Tobien, 1989), Ravin de la Pluie, Vathylakkos,
and Prochoma-l {H. mncednnicum Koulos,
1984; Kouios 1987, fig. 8), Dytiko (//. matthe-
un and /•/. peridffivtiuii}u Villalta 6c Ctusafont,
1957; Koiiios 1987), Salonîki, Grcccc (coll.
Arambüurg 6i Puyhauberr); ?Umcn Dol and
Beluska, Maccdonia; and Ploski Blagoevradsko
{H. murvtaton Nikulov, 1971), Bulgaria] but the
relative breadth is les.s rluiii in rhe //. prostylmnl-
scblosscri-dietrichi group (Figs 4, 6: scaticr to the
lefi in diagrani). In the lower jaw the snout is
medium broad relative ro symphysial lengch
(Fig. 7: scacrer ro the Icft in diagram). The pre-
utbitul fossa in mauhewt varies from well-defined
to almosi absent; în somc specimens front Q5 it
is double, consisting of a posterior fossa proper
and an anterior, smaller subnasal fossa (Forsten
260
GEODIVERSITAS • 1999 • 21 (2)
Snout proportions in some Eurasian hipparions
Fig. 5. — Upper snoul breadttt plotted to snout lenglh in European hipparions; measuremenls in mm; 95% equiprobability ellipses
calculated and drawn on the data of Hippanon schlosseri-dietrichi (Samos Qi -Andriano and Samos wiîhout exact locality data) and
H. moldavicum (Tarakliya and Novoelizavetov/ka) Plotted are specimens ot: Hipparion verae (Gr. Grebeniki: K, Karaslarl ); H. medi-
terraneum [Bz. Bazaleti (specimen B-51 to lhe left in diagram); Dyt, Dytiko (data Koufos 1988. table 1); Pi. Pikermi (data partiy
Koufos 1987, table i)); Hipparion sp. with a double fossa (Q1 and ?Q5. Samos quarries); Hipparion sp. (P. Piera). Plotted are aiso
skulls ûl H. proboscideum (scatter to lhe right in diagram) from; Cer. Cherevichnoe: RZO, Ravin des Zouaves; Spr, SI and Q1.
Samos quarries. The skull B‘50 Irom Bazaleti with a weak fossa falls in among the specimens of H. proboscideum. Bold type abbre-
viation in figure depicts type. Gr, H. \/erae (OGUM 1016).
1983). l he opcnlng in H. marthewu Hke
snout lengtli, varies froni short to long or irom a
levcl 1 cm in front of P2 to Icvel with P3 para-
style. The fragineniary nasal opening in
München 1899 Vil 31h (H. nicost holotypc)
from Samos exleruls level with P2 and is vhus
comparable lo the holoiype ol manhewi
(Budape.st OK/357), aIso from Samos. In the
rather long-snoutcd specimens with a double
fossa from Samos Q5, the nasal opetiing is long.
The skulls of IL matthewi irom QS re.semhie
some larger skulls with a double fossa tound
from Samos QI-Andriano (see Porsten 1983,
fig. 3), pos.sibly aiso from Samos Q5 and
Gülpinar, Turkey (Higs 5, 8: Ql, QSj; they arc
hcre referred co as H. sp. (with a double fossa).
Thcy bave a relatively short-broad snout and the
nasal opening ends level with P2, but both the
snout and the nasaJ opening arc longer in rela¬
tion to .skuli and snout Icngth, rc.spcctively, than
in H. schlosseri-dietnchi of similar size and from
the same localiries. 1 lii.s untiamed trtxon scems to
be rclaccd to the hipparions in rhe H. jnediterm-
Tinmr {Koxh îk Wagner, 1853) group. in which
the fossa is situated close to the orhii, but is rare-
ly double. The proportions of the snout and chc
depeh of chc nasal opening in thèse specimens
from Samos are like in H. m{'dite}ri7}n'un/ from
pikermi, Grcece, but relatively bruader and deep-
er, respectively, than in the varions local forms of
H. moldavicum Gromova, 1952 from Moldova
and Ukraine, belonging in the same species
group.
Hipparions ivith a long snout andlor nasal opening
Extrême for ics long and narrow snout among
GEODIVERSITAS • 1999 • 21 (2)
261
Forsten A.
Fig. 6. — Upper snout length plotted to P2-orbit distance in European hipparion skulls; measurements in mm; 95% equiprobability
ellipses calculated and drawn on the data of Hipparion schlos$en<iietrichi (Samos QVAndnano and Samos wiihout exact localfty)
and H. moldavicum (Tarakliya and Novoelizavetovka), Plotted are specimens ot H. matthewi (scatter to the leti in diagram) Irom:
B. Belushka, Q5 and S. Samos quarries. Plotted are aiso spécimens of the H. primigenium group (scatter to Ihe right) from;
B. Beluska: Gr. Grebeniki: Hos. Hostalels; Hw HÔwenegg; N. Nesebr OH, Oued el Hammam: Pi. Pikermi; Q4 and S, Samos quar-
ries; U, Udabrio: VC. Vila de Caballs: W, Inzersdorf. Bold type abbreviations In figure depict type specimens: Gr H. giganîeunr,
Hos. H. catalaunicunr. Sm H maithewi: U. H garedzicum.
the European hipparions is the specimen B-50
from Ba/aleri with a shallow fossa (Meladze
1967, table VllI) (Figs 5, 8: B/, ro the far right
and top centre in diagram). Specimen B-51 from
the same locality, but with a maximaliy dcvelop-
ed, double preorbital fossa, has a medium long
snout similar in ics breadth: length proportions
to that in H. moldavicum (Meladze 1967,
table Vil) (Figs 5, 8: Bz in centre of diagram). (n
borh specimens the snout is longer than in
H. mediterraneum^ and in the lowcr jaw (Meladze
1967, table IX) the symphysis is longer and the
262
GEODIVERSITAS • 1999 • 21 (2)
Snout proportions in some Eurasian hipparions
Fig. 7. — Lower snout bnsadih plotted lû symphysiat langth în European hippaflon jaws; measufemef>îs In mm; 95% equiprobability
ellipses calculated and drawn on lhe data ol Hipparion schlossen^d/etrichi (Samos OvAndnano and Samos wiihou! enacl locality)
and R moldavtcum (Tarakiiya and Novoalizavotovha)- Plotted are specirrrens of H /Tî(?ffnevvriscaner to the lefi) Irom; B, BelusKa:
Dyl. DytîKo (data Koutos T988. table 2): Q5 and S. Samos quarries; RPI, Ravtn de fa Pluie; Sq Saloniki. Plotted are also (scattor lo
the nghi in diagramj not separable specimens of hipparions ot ihe H primigemum group and R probosctdeum from- Ad S, Ol and
Q5. Samos quarries; B. Befüska; CL, Can Llobatores; E. Eppe‘sne*m: Gr. Grebeniki: K, Kafaslari: Kf, Kalta; M Maraghch:
N. Nesebr. OH. Oued el Hammam. Pi. Pikermi; RPf, Ravin de la Pluie V, Vozarii W Inzersdorf and Wienerberg Bold type abbre-
viations in figure depicî type specimens: Sm, R matthewi. Observations in parentneses are approximative.
snout narrowcr (Fig. 9: Bz). Compared for their
nasal opcning dcpch, that in B-50 is absolutely
shorter rhan in B-SI, but in boch .specimens ihc
nasal opcning rcachcs Icvel with V2.
Hîppnrion sp. Front Fiera, Spain, has a wcll-
dcfincd, pockctcd, pcar-shapcd to roundcd rrian-
gulaj* prcorbital lossa and a long snout in relation
to skull lengdt (Forsten 1968, pl. 2) (Figs 5, 8;
P). For its brcadrh, the snout reseniblcs iltai in
H. mediterraneurn and //. venie Cjabuniya, 1959
(Fig. 5: P. Pi. Gr). The nasal opcning is short,
ending front a level 2 ont in front of P2 to Icvel
with P2 paraconc; il is short also in relation to
snout and skull lengch.
Hippiirion proboscidtum Sixxdttu 1911 llocalities:
Samos Ql and SaniOsS without exact locality data
(Sruder 1911, figs 1, 4a; Sondaar 1971»
pl. Illa-d), Ravin des Zouaves (Koufos 1987,
fig. 3), Grccce; Vozarzi and Karaslarl, Maccdonia
(Forsten & Garevski 1989, photos 1, 2); Valea
Sarii, Roinania (Forsten 1980); Kavakdere,
Turkey; and Chcrevichnoc, Ukraine, {H. sp. cf
proboscidcitm Forsten Krakhmalnaya, 1997,
fig. 7)1, with an arrangement of the double
prcorbital fbssa similar to that jn specimen B-5l>
has a narrow snoui similar lo rhat in B-50, but
the snout is not long in relation to skull Icngth
(Figs S, 8: 8pr, SI, Ql, RZO, Ccr). The nasal
opening is long and deep. extending from level
with P2 parastyde to P3 mosostylç. In its snout
proportions H, proboscideun) rçsembles the
second large species from Samos Ql-Andriano
and Q4, called II cf. probosckkuni and IL pri~
migcniiiui (v. Meyer, 1829) (Sondaar 1971,
pl. 111: c; Forsten 1983, in Appendix referred to
as H. aft. brachypus Hcnscl), in which the single
prcorbital fossa and nasal opcning arc as deep as
in the former, but in which the snout is longer in
relation to skull lengch and broader than in
H. proboscideum (Figs 4, 6: S, Q4). This taxon,
GEODIVERSITAS • 1999 • 21 (2)
263
Forsten A.
Fig. 8. — Upper snout length plotted to P2-orbit distance in European hipparion skulls; measurements in mm; 95% equiprobability
ellipses calculafed and drawn on îhe data of Hipparion schfosseri-dieirichi (Samos Ql-Andriano and Samos wilhout exact locality)
and H. moldavicum (Tarakiiya and Novoelizavetovka). Plotted are specimens of H. rnediterraneum [Bz, Bazaleti (specimen B-51 in
centre of diagram); Pi. Pikermil. H. varae fGr. Grebenikl); Hipparion sp with a double tossa (Q1, Samos 01): and Hipparion sp.
(P. Piera). Plotted are also spécimens ol H proboscideum (scalter to ihe right) from: Bz. Bazaleti (specimen B-50 in top-centre of
diagram); Cer, Cherevichnoe; 01. SI and Spr. Samos quarries, RZO, Ravin de Zouaves. Bold type abbreviation in figure depicts
type; Gr. H. varae.
similar to ihc large one front Pikermi (H. bmehy-
pus Henscl, 1862, .scc Koufos 1987: pl. Ill)
(Figs 4, 6: Pi), leads over to liipparions wirh a
mostly long snout, comprLsing the H. mediterra-
neiim and the H. pr 'tmigenium species groups.
Hipparioiis with a ynedium long and narrow snout
A medium long and narrow snout characterizes
the local samples of H. moldavicum [locaUtics:
'larakiiya, Novoelizaverovka, Tudorovo,
Chimishiia, Cherevichnoe, and Chiobruchi,
Ukraine and Moldova, possibly Maragheh, Iran)
{Gromova 1952, tables l-III; Gabuniya 1959,
pis III: 2, 3> IV: 1, 2; Watabe ^ Nakaya 1991;
Forsten & Krakhmalnaya 1997, fig. 6) (Figs 1, 2:
lower and upper ellipse, respectively)]. The nasal
opening extends from a level 1 cm in front of P2
ro P2 mesosryle; ir is short in relarion ro snout
and skull length. în the lower jaw the snout is
narrow in relation to symphysial length (Fig. 3:
lower ellip.se). Hipparion moldavicum lias a well-
defined, single preorhital fo.ssa placed close to rhe
orbit, a character which it shares with H. medi-
lerranenm from Pikermi, but has a narrower
snout and shorter nasal opening even taking into
account îts smaller skull size. Similar narrow
snout proportions are found in skulls from
Maragheh. dcscribed as //. getiyi Bernor, 1985
and H. campbelli Bernor, 1985 (Bernor 1985), in
OGIJM 1780 (iy[)e o( H. tudnrovense) from
Fudorovo, and in the type skull (Kishinev
4040/84) of H, praegiganteurn Tarabukin, 1967
from Chimishiia, Moldova (Figs 1, 2: "lit, Mg,
Mc, Ch, in bold). The single preorbital fossa of
264
GEODIVERSiTAS • 1999 • 21 (2)
Snout proportions in somc Eurasian hipparions
50 60 70 80 90
Fig. 9. — Lower snout breadth plotted to symphysial length In European hipparion jaws; measurements in mm; 95% equiprobability
ellipses calculated and drawn for Hipparion mediterraneum from Pikermi and H. verae from Grebeniki. Axes aiso drawn on the data
of H. schlosseri-dietrichi (Samos Ql-Andriano and Samos without exact locality) and H. moldavicum (Tarakiiya and
Novoelizavetovka)- Plotted is single specimen B-54 jaw from Bz, Bazaleti.
these skulls is roiinded rriangular tü oval, shallow
or witli a posterior pocket, and situated niodcra-
tely far from the orhil. I hc nasal opening ends
level with P2; it is particularly long in relation to
snout and skull lenglh in the type skulls (Wien,
No. 8401 and BMNH 44574/cast of Univ.
California Riverside No. 13/1.342) of H. gettyi
and H. campbelli from Maraghch. Hipparion get¬
tyi may l^e a yuunger synonym of//. tudorovettse^
with which it shares similar snout proportions
and proportions between the orbil-fossa: P2-
orbit distances, and similar extension of the nasal
opening. Hipparion campbelli may be a younger
synonym of H. urmiense^ with which it shares a
similar long tooth row and the extension of the
nasal opening (see Watabe &: Nakaya 1991 ).
Hipparions with a medium long and broad snout
Althüugh similar in the shapc and placement of
the preorbital fossa, H. mediterraneum (Pikermi
and Dytiko, Grcecc, Koufos 1987, pis 1, 11;
Kûufos 1988, pis 1, 2; possibly Maraghch, Iran,
and Bazaicii, Georgia) has a broader snout than
H. moldavictitm although ovcriapping the lattcr
in snout proportions (Pigs 5, 8: Pi, l)yt). l'hc
nasal opening is deeper, rcaching Icvcl with P2,
even with P2-P3.
Hipparion verae from Grebeniki, Moldova, has
GEODIVERSITAS • 1999 • 21 (2)
265
Forsten A.
Fig. 10. — Upper snout breadth plotted to snout length in Asiatic hipparions; measurements in mm. For comparison the axes are
drawn on the data of Hipparion schlosseri-dietrichi (Samos Ql-Andriano and Samos without exact (ocality) and H. moldavicum
(Tarakiiya and Novoeli^avetOv/Ka). Abbreviatfons. CGC Chang Chia Chuang and 2 miles W of Chang Chia Cliuang CMK Ch'eng
Chia Mao Kou. Hd. Htpparior} dermatorhinum: HKP. Hsiao Ku Po; HK$. Hstao Kou Shan: Hl. H licenti: HL. Hsi Liang; HLK, Huang
Lu Kou; Hr, Pfobosdcfippancn roanantis {vaxious locations). KN Kfiirgis Nuf Kp Kalmakpai tant. Lanlian. LKL Lu Kao üng;
LT, Ling Tou: LWK. bao Wang Kou NH Nan Ho' NHH. Nan Hao Hsia; PNP. Po Niu Po; Pp. P 'pater. Ps. P stnense PTT. Pai
Tao Tsun: Sor, Sof. Sw Siwaliks; YM. Young Mu Kou: 30. Loc. 30; 43, Loc. 43: 44 Loc 44; 49. Loc. 49: 70. Loc. 70:73, Loc- 73;
109. Loc. 109, Bold type abbrevtations in ligure depict the lyprs. 49, H. plocodus Sofve *927 (Uppsala No 3824), 30 H tossatom
Sefve, 1927 (Uppsala No. 3821). Lant. H. weihoanse llu Ü èt Zhai, 1978 (IVPP V 3113 1); Ps, Probosadipparion smense Sefs^e
(Uppsala No. 3925 & 3926).
snout proportions rcscmbling those of H. medi-
terraneum (Gabuniva 1959, pis II: 1, 3, III: 1,
VIII: 2) (Figs 5, 8:'c:r. Pi). In thu lower jaw t)f
both forms the snout is broad in rclaiion lo chc
length of the symphysis (Fig. 9: Gr, Pi), evcn
rcsernbling the jaws ol (he H. prostyluni/schlosseri-
dietrichi coaiplcx. Ifippctruw vertlv has a diffe-
rcnrly shaped and placcd preorbital (ossa and tlie
nasal opening is shallower than in //. meditena-
neum^ reaching (rom a level 2-1 cm in Iront of
P2 to P2 nicsosryle. Like in the lutter, the preor-
bital fossa is occasionally double,
in skulls frem Basibo/, ümen Dol and Karaslari
(Macedonia, former Yugoslavia), referred to as
H. verae in Forsten Garevski (1989, photos 5-
7), the prcorbital fossa spills into the fossa bucci-
nacor. in sonie cases forining an isolaied, anterior
subnasal fossa Icvcl widi P2. In thèse spccimeus
chc placement, shapc and depth of the prcorbital
fossa varies, as does tlie depth ol the nasal ope¬
ning (ending from 1 cm in Iront ol P2 to level
wirh P2 paracone). The snout is medium broad
in t\vo measureable spccimens (PMM Kar 86/73
and IGir 203/73), belonging cither to this species
or to //. prostyhindschlüsst'rî-dietrkhi (Fig. 5: K).
Hipparimis lacking a pmjrhital jossii
The earliest known Hipparion in Europe lacking
266
GEODIVERSITAS • 1999 • 21 (2)
Snout proportions in some Eurasian hipparions
Fig. 11. — Upper snout lengtti plotted to P2'Orbit distance in Asiatic hipparions; measurements in mm. For comparison are drawn
the axes calculated on the data of Hipparion schlosseri-dietrichi {Samos Ql-Andriano and Samos without exact locality) and H. mol-
davicum (Tarakiiya and NovoeÜzaveïovka)- For abbrevialions ses Figure 10 Bold type abbreviaiions in figure depict types:
Hd, H. dermatorhinum {Uppsaïa No. 3872): Lant, Hipparion weihoensis: Ps. Proboscidipparion sinense: 30. H. fossatum.
a preorbital fossa is H, p/atygertys Gmmovay, 1952
from the Meotian of Tarakiiya (Gromova 1952,
table IV). Its upper snout is unknovvii, but in
three lower snouts the symphysis is lonj; and the
snout medium broad in the mcasincablc spéci¬
mens. Gromova (1952) reterred lhe .spccimen
PIN 1256-.3634 to H. sp. or H. plaiygtnys.
HipparionpliZtygmys may bc a junior synonym ot
H. hippidiodus Sefve, 1927 trom China (see
below).
From the Pliocène is known Probtneidippurion
rocinanth (Hernandcz-Pacheco) from Vlllaroya,
Spain, and Kvabcbi, Geur^ia, lacking or with a
faintly defincd preorbltal l^ossa. This specie.s
represents the dentally advaneed caballoid hippa¬
rions, refcrabic to a genus of their own:
Proboscidipparion SefVc, 1927 (Forsten 1997).
The snout of ihe skull and jaws from Villaroya i.s
long and medium broad; thaï of the skull from
Kvabebi (Vckua 1972, Ris. 27-28. tables XVllI,
XIX) i.s short and broad. The nasal opening is
short, ending in front of or Icvcl with P2> rcspcc-
tively. Proboscidipparion rocinautis is aiso found
m China and Mongolia, where spécimens tend
to hâve a narrow snout (see below).
Phe Hipparion primigenium
Among the early (Vallesian) forms of rhis group
represented by skulls with siiouts are the hippa¬
rions from Vila de CabalLs and Hostalet.s, Spain
[H. catalannicum Pirlot, 1956; Pirlot 1956,
pl. V); Hôwcncgg, Gcrmany; Jnzcrsdorf, Ausiria;
Ne.scbr, Bulgaria {H. prestdaitnm Nikolov, 1971
and H. nesebricum Bakalov & Nikolov, 1962;
Nikolov 1971, table I: 1, la); Kalfa and Braila,
Moldova (//. sarmalicum Lungu, 1973; Lungu
1973, Ris. 1, cable 1); and Oued cl Hammam,
Algcria {H. africanurn Arambourg, 1959); latci
(Turolian) forms are found at Lklabno, Georgia
(H. gartdzicîirn Gabuniyu, 1959, pl. VI: 1);
vSamos Ql-Andriano and Q4 (H. cf. proboscu
Sondaar 1971, pl. lllc; hcrc H, aff. brachy-
pus), Pikermi (H. brachypas Koufos, 1987,
pl. 111), and Grcbeniki (H. giganieum Gromova,
1952, table XII), cvidenily aIso ai Rcluska,
Karaslari, and Vozar/i, Macedonia. While the
early forms hâve a iriangular or oval fossa, in the
lacer fbrnis the fossa is pear-shaped. The snout is
long and broad (Figs 4, 6), but the Icngth of the
nasal opening varies considerably between the
local samples. It is very shallow in the specimens
GEODIVERSITAS • 1999 • 21 (2)
267
Forsten A.
Fig. 12. — Lower snout breadth plotted to symphysial length in Asiatic hipparion jaws; measurements in mm. Abbreviations as in
Figure 10, in addition to Htc, Hipparion tchicoicunr, Ts. Tan Tsun: 12, Loc. 12: 52, Loc. 52; 71, Loc. 71; 110, Loc. 110. Bold type
abbreviations in figure depict types: Ps. Proboscidipparion sinense: 30. Hipparion fossatum.
from Hostalets (ending 3 cm in front of P2),
Inzersdort (3-2 cm). Kalia (2-1 cm), Howenegg
(3-1 cm), Utlahno and Grebcniki (from 1-2 cm
in front ol P2 to P2 anterior lip); medium deep
from Vila de Caballs (level widi P2 anterior lip),
Oued cl Hammam (ju.si in front of P2 to P2
paracone), and Nesebr (J^2 mcso.style); and deep
in ihe skulls from Pikermi (P2 mc.so:>iyIc-P3
paraconc) and Samos Ql-Andriano (lovcl with
P3). Hipparion garedzicum from Udabno (see
above) differs from rhe rest of tbe group in
having a short snoui relative to skiill length
(Figs 4, 6: U> in hold).
In rhe lowcr jaw ihe snout is broad in two
(MNHN 8^>, 143)» narrow in a third (MNHN
98) of the jaws from Oued el Hammam; il is also
broad in ihc jaw (Univ. Thessaloniki, RPl-1)
from Ravin de la Pluie, Grecce, referred to as
H. prirnigcnium (Koufos 1986), and from Can
Llobateres (Fig. 7: OH, RPI, CL). In die other
local saniples in ihis group rhe lowcr snout tends
to be narrow and tbe .symphysis long, particular-
ly in che large forms from Pikermi, Samos, and
Grebeniki.
Asia
Hippariims with et short and broad snout
1 here are few hipparions in Asia with as pro-
nouncedly short and broad a snout as rhe mem-
liers of the H. prost)4um/st'hlosseri~dietrichi group.
Most A.siatic hipparions, e.g. ail the Chine.se spe-
cies kepi in Uppsala described by Sefve (1927)
and ihc majoriiy of rhe specimens in the
AtVINH, hâve a narrow snout (Figs 10, 12). As
for snout length in relation to rhe distance P2-
orbit, ihere are borh long and short-snoiiicd
forms (Fig. 11). The conformation of rhe nasal
opening and the nasals show great variation
among the finds, as dues the preorbital fo.ssa.
A skull (New York. AMNH I976I) from
0.5 mile souib-wcst of Dhok Paüian, Paki.stan,
callcd H., antelopimtm Falconer ik Cauilcy, 1847
(Matthew 1929), has a medium long but broad
snout (Figs 10, 11: Svv) and a small, although
posteriorly dcep> preorbital fo.ssa placed far in
front of ihe orbit. i’hc nasal opening cnd.s at a
level 1 cm in front of P2 and is short also in rela¬
tion lo snout and skull length. ’Fhe species repre-
sented by this skull seems to be a vicar of the
268
GEODIVERSITAS • 1999 • 21 (2)
Snout proportions in some Eurasian hipparions
Huropcan-Ncar Kastcin H, prouylumhcblosseri-
dietrichî groiip mencioncd abovc.
From Chang Chia Chuang, vShanxi, China, thcre
arc rwo skulls (AMNII 44-B 421 juv. and 44--B
427) in which the snout is quire broad (Fig. 10:
CGC). The prcorbical fossa, situared tar from the
orbit, is small and oval-pcarshaped; the nasal
opening appears .short. From 2 miles west of
Chang Chia Chuang, there are iwo skulls
(AMNH 21-B 38 and 25-B 49), the one with a
broad, the odicr with a narruw snout (Fig. 10:
CGC); ihe snoui is aiso short in relation to skull
length (F'ig. I I; CGC). Fhe nasal opening is
anteriorly pointed and deep, cxtcndiiig levcl with
P2 metaconc-F3 mcsostylc. 1 hc deep iossa is
situared close lo the orbit. Of these skulls,
AiMNH 21-B 38 with a nasal opening extending
levcl with V3 mcsostylc, rcscmbles the pcculiar
Chinese //. liechti Qiu, Huang & Guo, 1987
(Qiu et al. 1987, pis IX. XII) (Bcijing, IVPP
4 HP 20764. 2076", 20769 juv. and London,
BMNH 44377/casi of F-.AM 125708), charactc-
rized by its scrongly rciractcd nasal opening,
rcaching Icvel with Ml mesostyle, but cvidcntly
unrcduccd iiasals. l'he snout in H. Ikenti is
known only in BMNH 44577 and is lathcr long
and medium broad (Figs 10, 1 1: Hl). ’l hc pre-
orbiral fossa is double, the posterior one situared
close to the orbit (Qiu et al. 1987, fig. 20).
A skull from Nan Hao Hsia (AMNH 35*B 255)
has a medium long and broad upper snout, but
the snout of the jaw of the samc spécimen is nar-
row (Figs 10-12: NHH). The nasal opening is
very short, ending 2 cm in front of P2; the
preorbital fossa is pear-shaped. A skull from
Hsiao Kii Po (AMNH 53-B 641) resembles the
previüus one it; havmg a broad snout (Fig. 10:
HKP), very short nasal opening, and a pear-
shaped preurhital fossa.
Hippariori ùlegUfis Csxoxnovx^ 1952 from Pavlodar,
Kazakhstan, resembles some //. maithewl in
having a relaüvely broad upper snout (Fig. 10:
Pv), as well as in rhe placement and shapc of the
single preorbital fossa (Cromova 1952, cable V;
Forsten 1983, Rg. 4). The nasal opening scems
short, extending from 1 cm in front, to ihc antc-
rior tip, of P2. The fivc* mcasurcabic lowcr iavvs
correspond ro those of some H. matthewi in the
snout being narrow (Fig. 12: Pv). This species is
Rg. 13. — A, upper snout of H. dermatorhinum, showing deep
nasal opemng and long, low snoul: holotype, üppsala No. 3872,
subadull (aller Sotve 1927, table 1:1); B. upper snout of H. mot
davtcum. showing medium deep nasal opening and snout; hoio-
type, PIN 1256.^3639 (after Gromova 1952, table I 3). C. upper
snout of H. giganteum. showing very short nasal opening: holo¬
type. OGU 1015 (after Gromova 1952. taole 12: 2). Drawings
not to scale
an Asiatic vicar of rhe dwarf H. mattlmvi, from
which it differs in the morphology of its teerh
and in the proportions of its limb bones.
Hipparions with a narrow snout
Extrême among the Asiatic hipparions with a
GEODIVERSITAS • 1999 • 21 (2)
269
Forsten A.
long and narrow snour is H. tchicokum Ivaniev,
1966 (Qiu étal 1987, pL XIII); the snout is nar¬
row also in the lower jaw and thc symphysis long
(Fig. 12: Htc). The nasal opening is vcry short,
ending at a Icvcl almosç 2 cm in front of P2; it is
short also in relation to snout lengch. The large
prcorbital fosvsa is evidently situated close to the
orbit (orbit not visible).
Hipparion dermaiorhlnum Sefve, 1927 from
China has a long snout in relation to skull length,
and the snout is low and narrow (Sefve 1927,
table 1: 1-3; Qiu et ai 1987, pis XLl, XLli)
(Figs 10, 11: Hd). In thc lower jaw thc snout is
similarly narrow and ihe symphy.si.s long
(Fig. 12: Hd). The nasal opening is retracted,
rcaching Icvel with P3, it is long also in relation
to snout and skull length; the nasals are unreduc-
ed. The prcorbital fossa is well-defined but shah
low.
An upper snout (rom Sor, I*ad/hikistan, shows
the pre.sencc ol a double preorbiiaJ fossa
(Zhegallo 1978, Ris. 73). The narrow snout
(Fig. 10: Sor). thc nasal opening extension, and
the double fossa closely resemble those in the
specimen R-5I from Bazaleti.
Hipparions lavking a preorhitu! fossa
A skull (PIN 2433-360) from Kalmakpai,
Kazakhstan, referred lo as H. Inppidiodus because
it lacks a preorbital fos.sa (Zhegallo 1978,
Ris. 61), lus a long, narrow snout but may he
laterally cruslicd, since a second specimen
(PIN 2433-460) from thc saine loculiry has a
medium broad .snout (Figs 10, II: Kp). In boch
specimens the nasal opening ends Icvcl with the
meracone oF P2. Originally //. hippidiodas was
described from Loc. 115, Kingyang, China
(Sefve 1927; f'orsten 1968, pl. .3; Qiu et ai
1987, pl. XXXVIIl); irs snout is unknown.
Skulls from Khirgis Nur-2. Mongolia, called
//. mogoicani Zhegallo (Zhegallo I97S)> also lack
a fossa. The snout in rhe mcasureable specimen
is medium broad like in PIN 2433-460 from
Kalmakpai, but sliorcer (Fig. lOi KN). The nasal
opening rcaches level with P2 mesostyle.
Chinese hipparions belonging in rhe species or
specics groLip Prolwscidipparioa rocinantis-houfe-
nense (HernarideZ'Paclieco)-(’Icilhard & Young,
1931) with advanced, caballoid cheek teeth and
lackinga preorbital fossa (sec above), bave a long
snout in relation to skull length and the snout is
narrow (Qiu et al. 1987, pis VI. VU; Forsten
1997, fig. 7) (Figs 10> 11: Hr); also the snout of
the lower jaw i.s narrow (Fig. 12: Hr). The nasal
opening is short, extending From 0.5 cm in Front
oFP2, to level wirh P2 paracone.
There are four skulls oF rhe rwo (?) species oF
cypical Proboscidipparkaiy P, sinense Sefve (Sefve
H)27, table VI: 22-24, V[l) and
Marsumoto, 1927 (Qiu e( al 1987, pis l-IV).
l'he snout is rather shori in relation to skull
lengch and narrow (Figs H). Il: Pp, Ps and Ps in
bold). Also thc symphysis is short, taking imo
account the size of rhe jaw, and thc snout is nar¬
row (Fig. 12; Ps and Ps in bold). The nasal ope¬
ning is enormou.sly retracted, extending from
level with Ml rnctacone to M2 mesostvlc. and
the nasals arc rcdiiced and foreshortened. There
i.s no fossa.
DISCUSSION
Phylogenetic and functional
c:ONSrDERATIONS
l'here arc différences berween local forms (spe-
cie.s, suKspecie.s, local populations) of hipparions
for the proporiions of thc snout and chc exten-
.sion of the nasal opening, but vviihin a local
form chese characters arc quitc stable. Characters
of rhe snout and nasal opening occur in combi¬
nation with different shapes and placement, even
absence, of chc preorbital fossa. Snout breadih:
length proportions are nor corrdated with rhe
extension of rhe nasal opening. Flow to deliniit
species and .supraspeciffe groiips when characters
of the snout, nasal opening and nasals, and
preorbital fossa arc di.stributed mosaic-likc, a.s are
characters of thc teeth ,and linib-bone size and
proportions? Whai do rhese characters and the
différences berween forms signifÿ^ Do they bave
phylogenetic and functional significance? Which
characters should be given more, which less
weight when phylogénies are discu.ssed and
reconstructed? How lo déterminé which charac-
ters are primitive, which derived, i.e. rnorpho-
clinc polaritics?
The hipparions {Hipparion, Prohoscidipparion
270
GEODIVERSITAS • 1999 • 21 (2)
Snout proportions in some Eurasian hipparions
Sefve, 1927, Neohipparion Gidlcy, 1903,
Narmippus Mauhcw, 1926, and Ihcudhipparion
Ameghino, 1904) can be disdnguished froni the
ancestral merychippincs on tlic basis ol the chcck
tecth in the lower jaw, particulaily ihc lowcr
molars. 1 he lowcr molars oï the mcrychippines
retain a primitive, low double knot with litllc
differentiated and rounded mecaconid and
metastylid loops, while in the hipparions rhe
loops of the molar double knor are well difleren-
tiated, rhus advanced, Ail Fiirasian and African
hipparions are truc hipparions, with welhdiffe-
rcnciatcd loops ol the double knot of ihe lower
molars, indicating dispersai to the Old World at
a stage when ihe dental pattern already had be-
comc moderni/cd.
In the hipparions, a short snout and shorr nasal
opening could be cotisidered primitive, since
rhey characrcrize the merychippine ancestors,
c.g. ^Neohipparion coloradense' (originally of
Osborn, 1918) froni the early Barstovian ol
Boulder (^uarry, Nebraska, and Lue Barstovian ol
NE Colorado (MacEadden 1984, figs 52, 54, 58.
59). and Cnrnwhippiirwn' goorisi MacEadden &
Skinner, 1981 (rom the laie Barstovian of IVinity
River Fit 1, Texas (MacEadtlcn 1984, figs 121,
123). On the other hand, if a shon-broad snout
in a hipparion is an adaptation to gra/dng, it
sbould be considered a late, advanced character,
since gra/ing evolved wiih rhe spread ol c4
grasses about 7-5 Ma ago (C-erling et ni 1993).
Sonic merychippincs, alihough dentally primi¬
tive, already had a rachcr long snout, e,g.
"'Eoequits" wiboni Quinn. 1955 (Quinn 1955,
pis 10: 1-3, 11: l'3, 12, 13 ), which although
large!' is prohably closely related to '’dïippnrion'
shirleyi MacFadtlen, 1984 (boih are froin Texas
and Barstovian in age; MacEadden 1984, figs 28,
29). On the other hand, sonie North American
hipparions or near-hipparions, although dentally
advanced, retained a short snout and nasal open-
ing, c.g. Ncohippntion nfjinc" (originally of
l.eidy, 1869) froni che late Clarendonian of
Upper Miller Quarry, Nebraska (Machadden
1984, fig. 63). ^'Gnnwhippnrhnr sphenodus (ori¬
ginally of C^ope, 1885) from the Valentinian of
Railway/llailroad Quarry, Nebraska (MacFaddcn
1984, figs 124, 126), and ^Cornujhipparion"
occideritale (originally of Leidy, 1856) from the
late Clarendonian of Gidiey Horse Quarry, Texas
(MacEadden 1984, figs 133, 136). The breadth
of the snout in relation to snout length is not
given in thèse hotscs.
'Elle nasal opening *m che North American hippa-
nons does not extend posteriorly beyond rhe
Icvel of P2, but otren ends ar a level 1-4 cm in
front of P2 (MacEadden 1984, table 1).
Ahbougb in the Eurasian hipparions the nasal
opening may bc cqually short, c.g. In early
H, prirnigeniurn^ the snout is gencraJly longer in
relation to skull length. In the H. prostyluni/
schlosscri-dietrichi groiip bot h rhe nasal opening
and snout are short. In the Eurasian hipparions a
deep nasal opening, posteriorly extending to a
level beyond P2, bas evolved several rimes and in
combination with diftercnrly shaped, even
absent, prcorbiral fo.ss.ie, e.g. in the large
Hipparion from Samos Ql-Andriano and
Pikermi, in il. prohoscidcurrn H. licenti, H. der-
rnatorbiniim, and Probosddippnrion smeme. The
deep nasal opening in somc hipparions has given
risc io hypothèses that thèse horses had a tupir-
like pruboscis (Sefve 1927; Solounias &
Dawson-Saunders 1988). In extant mammals
with a lengthencd nosc, e.g. tapirs, dépliants,
saiga and dik diks, rhe nasal bones arc forcshortc-
ned, thus allowing mobility of the nosc
(Macdonald 1984). In most of rhe known hippa-
rions vvith an cxccptionally deep nasal opening,
the nasals arc nornially long. Only in some
Proboscidipparion (sintnse and ^^pater') arc the
nasals reduccd in length, the nasal opening bet'
ween che premaxillas is narrowly slit-like, and the
upper symphysis long. Sole among the hippa-
rion.s tfie .snout in these Proboscidipparion ducs
resemble thaï in a tapir (Sefve 1927). However,
the deep nas'al opening and foreshortened nasal
bones in these Proboscidipparion also resemble
those in a nioose, Àlccs alces (Linnaeus, 1*^58),
wliich has no probu.scis but a large overlianging
upper lip. Extant horses, which bave a modera-
rcly deep nasal opening and long nasals, hâve
very mobile bps. 'l'he hipparions may, to a
varying dcgrce, also bave had mobile bps usefui
for gathering grass or browse.
In tlie extant horses rhe diverciculae nasi form
hliiid sacks in cotinectioti with the nostrils and
occupy the nasal opening (Ellenberger & Baum
GEODIVERSITAS • 1999 • 21 (2)
271
Forsten A.
1943; bue see Gregorv 1920). The longer and
wider the nasal üpening> the more room for che
diverriculae. According to Gregory (1920) the
diverticulae in exranc Equiis (Linnacus. 1758)
partly occupy the shallow subnasal {= preorbiral)
fossa. In rhe liipparions nasal opening extension
and dcvelopnicni oF che fossa are not correlated.
Well-develoj'îcd and posteriorlv deep in the large
hipparions from Samos Ql-Adriano and
Pikermi, rhe fossa is small and situared far from
rhe nosrrils in // hcefitty and is absent in
Probosàdippnrhm sittense and 'épater'. The diver-
ticulae comprise rhe vomeronasal organ wirh sen-
sory pachways ro rhe hypothalamus. The
vomeronasal organ is believed to he involved
wirh rhe "f1ehmen’\ Fr olfacrorial tïistmg of fero-
mones (Estes 1972), and wiih cerrain low vocali-
zations.
The gencraLly narrow snoui in Old Woild hippa¬
rions may hav^e to do wirh thèse horscs having
been chiefly browsers or mixcd-fccdcrs (Hayek ei
al. 1991). Candidates for che gr.r/.ing niche
woLild bc the broad-snoLited founs in the
H. prostyluw/schlosseri-dietrichi cornplcx and
H. antelopinum. Eiscnmajin (1998) rccently
plotted Icasr diastemal breadrh to symphysial
lengrh in josvs of Old World hipparions. She dif-
ferentiated specimens wirh a broad and those
wirh a narrow jaw (F.isenmann 1998, figs 3, 4)
and discusscd jaw (>roportions and incisor mor-
phology in relation to mode of feeding (whether
grazing or brovvsing). Wirh a few exceptions hcr
diagrams correspond ro mine» plorting lowcr
snour widih tu symphysial length. The excep-
rions are specinieris probably wrongly identified,
e.g. in her ligure 3 Ntn 7, 8 are evidenriy
H. verae not gip^aiitcuyn , and No. 9 is not
H. medhmaneuni.
TAXONOMU' CONSlDhR/VnONS
In hipparion taxonomy and phylogeny» the
preorbital fossa is ofeen given more weighr than
orher characters» sometimes even ac che near
exclusion of orher characters (si;e Eisenmann et
ai 1987). .Solely on the alleged re^iemblance of
the fossa» the narrow-snouted IL getty} ( =
H. tudoroveine^.) and H. campbtdlï {-
H. timnensd) witb a long nasal opening arc said
to be the ancestor and descendant, respectively,
of the short and broad-snoured H. prostyltim
with a short nasal opening (Hernor et ai 1996).
The member.s in ihe H. prostylum/scldosseri-
dietnchi group arc helieved to hâve given i ise to
hipparions lacking a preorbiral fossa, although
tliere are no signs rhac the fossa did disappear in
rliis group. Hipparioa hippidiodudplatygenys from
Tarakiiya, ihe carliesr known hipparion lacking a
fossa, has a medium broad .snout and is of the
samc âge as rhe members in che former group,
while rhe hipparions from Khiigis Nur-2 aiid
Kalmakpai, also lacking a fossa, may bc younger.
Thcir nasal opening is' deep and long. On the
supposcd similariry of che fossa the long-snou-
red, lai^c hipparion from Samos Ql-Andnano,
wirh a deep and long nasal opening, is teferred to
as H. gignyitemn (Bernor et ai 1996), the type
form of which has a very short nasal opening.
On the oihcr hand, H. macedoakuni is helieved
to represent a .spccies different Irom H. rnntthewi
(Koufo.s 1986; Bernor et ai 1996), although
Identical to ihat species in skull and jaw rnorpho-
logy, meiapodial si/.e and proportions, and in
protoconal length and pUcaiioti coiint of its
lecth. Sonic of thc.se conilicting idcnliflcaitons
seem lo hâve been dictated by the presumed
stratigraphie position ol che fmd, rather chan by
les morphology. However, stratigraphie position
is nor a taxonomie character.
HK-I-AKKiN Mt'i.niM.t niSr-ERSAL?
Old World Hipparion has been thought ro repre-
seni multiple dispersais from North America,
rfits idea was also based on preorbital fossa mor-
pholog)'*. ignuring the morpholog}' of the cheek
reeth and snout, and the faunal evidence against
multiple equid dispersai. In rhe Miocène the
Notvh American equid fauna was diverse, com-
prising anclhtheriines, para-merythippines, plio-
hippines, and hipparions, often sevcral généra of
each group in the same faunas (Forsten 1989).
Of the anchilheriines only Anehitherium
y. Meyer, 1834 dispersed to the Old World, iiojic
of the parwmerychippines or pliohippines made
ir, and there is no evidence thar more than one
hipparion successfuily crossed the Bering intcr-
coiuincnial connection. None of the lypical
North American hipparionid (,sub)gcncra
Pseudhipparion^ Neohipparion, or Nannippiis has
272
GEODIVERSITAS ■ 1999 • 21 (2)
Snouc proportions in some Eurasian hipparions
ever been found in the Old World. Ncithcr bas
any of the scveral Eurasian hipparions with a
deep nasal opening ever been found in Norrh
America.
CONCLUSIONS
It is dangerous to base hipparion taxonomy, sys-
tematics and phylogeny, and hypothèses about
intercontiiieniul dispersai, on single charactcrs,
e.g. on the preorbital fossa alone’ (F.iseninann et
ai 1987). Skulls are rare, mosi fos.sil samples
consist of isolated teerh and lîmb bones, which
in mulrispecies samples may be difficült/impos-
sible to übjettivel) couple with the skulls or
idencify to spccies. The more character.s thaï arc
taken into account, the more düficult is the déli¬
mitation of speties and lineages, l)ecausc ol ihe
mosaic combination of charactcrs (sec also
Hiscnmann 1998). I bclicvc that gcncra of equids
should bc characterizcd on their check teeth. par-
ticularly on the cheek tecth of the lowcr jaw.
Wirhin a genu.s occur subgroup.s (.spccies groups,
in some cases worthy of subgcncric .séparation),
which sometimes can be circumscribcd on .seve-
ral charactcrs m common, e.g. plicaiton count of
the upper check tecth, proportions of the limbs,
preorbital fossa nu)^pholog)^ and snout propor¬
tions. Many tlnd.s cannot bc placed wiihin a
single subgroup, as ihcy .share charactcrs with
-several. 'l'here is no reason why the preorbital
fossa should hâve priority in determining sub-
groiip membership, but neither has any other
character Référencé to spccies or species group
should be based> îf possible, on the holomorph
of the find.
Stratigraphie provenance is nor a taxonomie cha-
racter. Stratigraphie schemes, using species of
fossil horses as markers, stiould be regarded with
suspicion. More often than not they arc idcalized
and do not truly reflect the time range of the fos-
sil spccies, whïch olten occur at an earlicr date
and/or survive for a longer timc than presuppo-
sed by the schemes. Subjecrive ^‘morphologieal
trends’’, often eonsciously or uneonsciousiy
constructed to fil and/or to support allegcd strati¬
graphie successions, are cqually suspicîous.
Fossil cquids should not bc forced to fit a strati-
graphy, but should bc objectivcly interpreted
against the background of stratigraphy.
Acknowledgements
My sincère ihanks arc duc the curators and carc-
takers of the fossil collections studied for this
paper (sec Appendix). I also thank Dr. V.
Eisenmann and an anonymous reviewer for usc-
ful comments on the manuscripi.
REFERENCES
Bernor R. L. 1985. — Systematics and evolutionary
relatlnnship.s of the hipparionine horses from
Maragheh, Iran date Mîoeene, Furolian âge).
Pidavoverrehrata 15 (4): P3-269.
Bernor R. L., Koiifos G. D., Woodburnc M. O.
Foi’teÜus M. 1990. — The Evoliuionary Hi.siory
and Biochronology ol Huropean and Southwest
Asiafi Latc Miocène and Pliüccnc 1 lipparionine
Hoises: 307-338, iw Beinor R. 1 ., Fahlhusch V.
Mirrnian H.-W. (eds). The Evolution of Western
Eurusian Neogenc Alutnmal Edunas. Columbia
Univctsiiy Press, New York, 487 p-
Biinnelt F. l.. tk Ciillingham M. P. 1985. — Foraging
hchavioui'; Dynamics of Dining (3ui: 53-79, in
I liuLon R. |. Üv Whirc R. G. (eds), fiicmiei'getia of
WiUi Herbivores. C.RC. Press Inc., Boca Raton,
Florida, .M4 (».
C'.erling ’rii. E.. Wang Y. ik Quade J. 1993. — Global
écologie change in the late Miocene: expansion ol
Ca etosystems. Nature 344-345.
Donipicrrc H. k Churchcr C. S. 1996. —
Preirt.ixillary sliapc an indicator of ihe diet of
scA'en extinct Late Cenozoic New World camels.
JournalofVmehrdte Enleontology 16 (I); 141-148.
Eisenmann \'. 1998. — FoJivorcs ci tondeurs
d’herbe : forme de la .symphyse mandibulaire des
équidé.s et des tapiridés (Peris.sodacryla.
Mamnialia). Gtvhios M ;113-123.
Eisenmann V.vSondaar P., Albcrdî M.-l'. & De Giuli
C. 1987. — Is hoTse phylogeny becuming a play-
ficld in [he game ol incoreiical évolution? Journal
of Vertehrmr Paleonwlogyl (2): 224-229.
Ellenberger W. & Baum El. 1943. — Hamlbmh drr
veYgleiehrnden Aniilomtt der Haussliugtiere. Aull. 18.
Berlin.
Estes R. D. 1972. — *1 he rôle of the vonieronasal
organ in mammaliaii reproduction. Mammalia 36;
315^341.
f*orsten A. 1980. — Hipparion proboseideum Suider
Iroin Romania. Annales Zoolo^ici Eennici 17:
159-160.
— 1983. — The preorbital fossa as a taxonomie cha-
GEODIVERSITAS • 1999 • 21 (2)
273
Forsten A.
racrer in Old World Uipparion, Journal of
Paleontolo^* 5d (4): 686-704.
— 1989. - Hor.sc divcr.siiy ihrougli the âges.
Biologiad Reinavs 64; 279-304.
— 1997. — Cahalloid liipparions (l^erissodactyla,
Equidae) in rhc (3ld World. Acta Zoolo^ica Fennica
205: 27-51.
Forsten A. & Garevski R. 1989. — Hipparions/
Mamnialia. Perissodacryla/froni Macedonia/
Yugoslavia. Geologica nuicedonka ^ (2): 159-206.
Forsten A. & Krnkhmalnaya T. 1997. The hippa¬
rions (Maminalia. hqiiidae) fVom the late Miocene
oF Cherevîchnoc on ihc northern Black Sea toast,
Ukraina. Ncue^ Jnhrbuch für Géologie und
Paldontologïc Mvnatshefie 8: 489-499.
Gabuniya L. K. 1959. — Histoire rt'K^c//rcF3ipparîon.
Transi. Ironi Russian by (. de Saint-Aubin and
J. Roger, Bureau de Recherches Géologiques et
Minières. ITad. n"2696, 515 p.
Gregory W. K. 1920. — Srudies in comparative myo-
logy and osceology, V. On »he anaromy of the
prcorbital fossae of Equidae and othei ungtilates.
Bulletin of the AmeritYin Aîuscnrn ofNafural Hblory
XLII: 265-284.
Gromova V, 1. 1952. — Gippariony (Rod.
Hipparinn). Trudy PairoHfologicheskogv ImTituta,
AkademiiNauhSJiSR 475 p. (in Russian]-
Hayek L.-A. Bernor R. 1., Solounias K. &
Steigcnvald 1\ 1991. — Prcliminary srudies of hip-
parioninc horsc dici us moasured by tooih micro-
wear. Annales Zoologici Fennici 28 (3-4): 187-200.
Koufüs Ci. D. 1986. Study of rhe Vallcsian hippa¬
rions ol^ tlic l-ower Axios valley (Macedonia,
Greece). Geohios 19; 61-79.
— 1987a. — Study of the Turolian hipparions of the
Lower Axit)s Valley (M.icedonia, Cireece). 1.
Localitv "Ravin des Zouave.s-5’’ (RZO). Geohios
20 : 293-312.
— 1987b. — Study ot the Pikerrni hipp;uions, Pan 1-
II. Bulletin du Muséum national d'Histoire natitrelle,
Paris, sérié 4, C 9 (2-3) : 19"-252, 32':^-363.
— 1988. — Study of the *l urulian hipparions of rhe
Lower Avios Valley (Macedonia, Greece). 4.
Localities of Dytiko. Pcildeooertchrata 18 (4):
187-239.
Macdonald D. (ed.) 1984. — fhe Eneyclopedia nf
Mammals. 2. Fquinox LiJ., Oxford.
MacFaddcn B. J. 1984. — Sysrcmatics and phylogeny
of Hipparion, Neohipparion. Nannippus^ and
Conno-bipparion (Matnnialia. Equidae) from the
Miocene and Pliocène* ol the New World. Bulletin
oj the American Muséum oj Natural ÎUstory 179 (1),
195 p.
Matihew W. D. 1929. — Critical observations vtpon
StwaJik mammafs. Bulletin of the American Muséum
oJ'Natural History I.VI: 427-460.
Meladze G. K. 1967. — Gtpparionoimya fauna
Arhivti i Bazaieti. Izdar. ‘‘Metsnicreva*’, Tbdisi,
159 p. [in Russian].
Nikolov* I. 1971. — Neue Vertrcicr der CSaitung
Hipparion In Bulgaricn. Bttlleiin of the Gcological
!nstmt 1 e^ Bulgarian Academy of Sciences, Scr.
Paleonrol., 20; 107-122 [in Bulgarian, wich
tierman summary].
Qiu Z., Iluang W. & Guo Z. 1987. — The Chinese
hipparioninc Idssils. Palaeontologla Sinica, N..S. C,
25: 250 p. |in Chinesc, with English summaiy].
(.^uinn J. H. 1955. — Miocene Equidae of the Texas
Cmlf CÜoa.sral Plain. University of lexas Publications
5510:102 p.
Scfv'c T- 1927, — Die Hipparionen Nord-CÜhinas.
Palaeontologia Sinka, Ser. C, IV (2): 91 p.
Solounias N. & Dawson-Saunders B. 1988. —
Dictar) adapiîJtions and paleoccology nf rhe late
Miocene ruminants from Pikerrni and Samos in
Circccc. Palaeogeography, Palacoclimatology,
Palaeoecology 65; 149-172.
Solounias N. tk Moelleken S. .M. G. 1993. — I )ictiuy
adaptation ol some extinct ruminants dercrmincd
by pieniaxillarv shape. fouîna! of Mammalogy 74
(4): 1059-107 L
Sondaar P. Y. 1971. The Samos Hipparion.
Proccedings Kùninklijhc Nedoiandsc Ahtaemk van
Wetensehappoi, Scr. B, ^4 (4): 4D'-44l.
Watabc M. & Nakaya M. 1991. — Gr.anial skelcrons
o( Hipparion (IVrissodactyla, Mammalia) from
Maragneh (ruiolian, l aie Miocene), Northwest
Iran. Memoirs ofthe Facultx tf Sciences, Kyoto
University, Ser, Gcology & Mineralogy, LVI (2):
55-125.
Zhegallo V. l. 1978. — Gippariony Tsciurainoi A/ii.
Sovmesrnaya Soveisko-Mongolshaya Ekspediisiya,
Trudy vyp. 7; 1-152 [in Russkn].
Zouhri S. 1992. — Hipparion molayanense n.sp.
(Perissodactyla, Equidae) du Turolien de Molayan
(Afghanistan) et un nouvelle typologie des
Flipparions turoliens de l’Ancien Monde. Comptes
Rendus de l'Academie des Sciences, l'aris, série II,
315 ; 1555-1560.
— 1996. — Un nouvel equidé, Hipparion molaya-
Hcnse nov.sp., dan.s le gisement lurolien Je
Mulaj^n en Afghanistan. Geohios (4) : 437-454.
Submitted for publication on 2 April 1998;
accepted on 31 Jnly 1998.
274
GEODIVERSITAS • 1999 • 21 (2)
Snout proportions in some Eurasian hipparions
APPENDIX
List of hipparion specimens used in this paper.
Listed are only specimens, which hâve yielded
measurements on the upper and/or lowcr snout.
Listed are not specimens lacking or vvith frag-
mentary snout, although represcnting the same
Hipparion sp.
(wiili double preorbiiai fossa), not named.
LocAiJTY. — Sanios Ql (and Q5?) and Samos
wiihouc exact localiiy data.
Ace. — Turolian.
Matekiais. — Samos; (AMNH 20628. probably
205V9, 22908, 94905 & no No., ail Ql) iWc skulLs,
(AMNH 94906 Ôf no No., Ql) skull and jaw, possi-
hly aiso (AMNH 207S6 22912. Q5): (SMI- no
No. and possibly no No.)- two jaws; Geologieal
Muséum, Lausanne (No. 15 K 61 (J, 843, Andriano)
thiec juws; Garncgic Muséum, Pittsburgh (No. 2 I 26)
a jaw.
//. maubvîvi or H. sp (with a double lossa): Sainus
(AMNH 22928, Q5) jaw; (SMI* no No.) two jaws;
(MNilN 1955-1 7.^)ajaw.
H. sp. (wiil> double lossa) or H, ichlosseri-dietrichr.
Samos (AMNH 20651, 20721 & no No.. Ql; No.
10733) Tour jaws, Geol. Mus., Lausanne (Nos. 78 &:
1031, Andriano) two jaws; Nat. Hist. Mus., Vienna
(1911 V 135)ajaw'.
Hipparion sp.
not named, not H. mediterraneum.
L(x:alit\'. — Piera, Spain.
Ac.E. — Turolian.
Mai'HRIALS. — Institut Paléontologie Dr.
M. Crusafont, Sabaddl (IPS.P 6359, 6360, 6365,
6372, and two specimens withouc a readablc number)
skulls.
Hipparion afiicanum Arambourg, 1959
Type LOCALITY. — Oued el Hammam, Algeria.
Ac;e. — Vallesian.
Materials. — (MNHN 141 & no visible No.) two
skulls, (MNHN 89, 98, 143) three jaws.
Hipparion antelopinum Falconer (^utley, 1847
Type EOCALI TY. — Porwar Plateau, Siwaliks, Pakistan.
Ace. — Turolian.
Material. — (AMNH 19761) a skull.
spccies, from the same localities, and présent in
the same collections. When studied in the
1960-ties, most collections were still inadequate-
ly filed, as reflected by the frequent lack of col¬
lection numbers.
Hipparioyi brachypus Hensel, 1862
Type I OCAUTA'. — pikermi, Greece.
Age. — Turolian.
Materials, — Pikermi: British Muséum of Natural
History, London (BMNH unreadable No.) skull,
(BMNH 11211, 1 1213 & 11217) three jaws;
(MNHN no No.) skull, (MNHN 31 & rhiee .speci¬
mens withoiit a number) four jaws; Geologieal
Insncucc, Gorungen (no No.) skull; Swedish Muséum
of Naiural Hi.siory, Stockholm (no No.) jaw;
Humholdt Muséum, Berlin (no No.) skull; Yale
IVabody Muscutti ol Natural History (No. 11768)
skull with jaw,
In -addition; Natural Hisior)' Muséum, Bascl (PK 89)
a jaw of ciiber H. hnnhypus or H mrdUrrtancum.
H, alf hrttchypHi' Samos; (AMNH 22838, Q4) a
skull, pos.sih!y (AMNH 22912 & 22922, Q5); (SMF
4707) a skull, (SMF no No.) a jaw; Geol. Inst.,
Budapest (ÜK 425) a jaw; Nat. Hisi. Mus., Vienna
(No. 1911 V 1 18) a skull: (jCoI. In.st., Lausanne (No.
73 Ôc 148, Andriano) skull jaw, (No. |75,
Andriano) a jaw; Hessisches Landesmuseum.
Darmstadt (Ss 45) a jaw. — Beluska, Macedunia (lor-
mer Yugoslavia): Prirodnjacki Mu/cj, Beograd (PM
2791) jaw. karaslari. Macedonia: (PMM 193/73)
jaw. — Maraghch, Iran: (MNHN 561) a jaw.
H. aft. hniibypns or H. prnlmcideimr. Samos: (AMNH
20640, Ql) a jaw; Inst, of’CJcoL &c PaleoncoL,
MünsitT (Sl/no No.) a jaw.
Hipparion cataiaunîcum Pirlot, 1956
Type \ vX:AIJTY. — Hostalets de Pierola, Spain.
Age. — Vallesian.
Materials. — (BMNH 16397, type //. catalan-
nicum) a skull.
Hipparion dennatorhinum Sefve, 1927
Twf. LOCAlTTY'. — Loc. 30, Bao De, Sbanxi, China.
Age. — Turolian.
Matekiai5. — Loc. 30: Paleontol, Inst., Uppsala (M
3872, type) skull. — Huang Lu Kou, China (AMNH
41-L 310) skull and jaw. — Bao De, Sbanxi, China:
(IVPP no No.) skull and jaw, (IVPP 8243?) skull and
jaw, (IVPP no No.) jaw.
GEODIVERSITAS • 1999 • 21 (2)
275
Forsten A.
HippaHon elegans Gromova, 1952
Typk LOCAI.ri Y. — Pavlodar, Kazakhstan.
Age. — l’umlian.
Mat erials. — (PIN no visible No.) a skull, (PIN
2346-2479. -2516, -4883, 2413-2847, -2864) five
jaws.
Hipparioft garedzicum Gabuniya, 1959
IVpe UîCAl.l'i'Y. — Udabno, Georgia.
Age. — I.ate Vallesian-Early Turolian.
Materials. — Musei Grusii, Tbilisi (156/13 type
H. garedztmm 270/34} c\vo skulls.
Hippainon pgnntettm Gromova, 1952
Ty]‘E LOCALITV. — Grcbeniki. Moldova.
Age. — Early Meotian/Late Vallesian/liarlv l urolian.
Materiajs. — (OGU 1012/2, 1015 type & 1017)
rhree skiilU, (GGll 10 18) skull and ja\v, (OGU
unreadable No.) a jaw.
In addition OGU 908, a skull, is intermédiare bet-
ween H. verae and H. giganteum.
Hipparion bippidiodiis 1927
Type lo(L\Lity. — Loc. 115, King Yang Hsien,
Gansu, China.
Age. — ?'l urolian.
Materials. — Kalmakpai, Kazakhstan: (PIN 2433-
340, -360.-340) ihrcc skulls.
Hipparion licentiQjw^ Huang & Guo, 1987
I’YPK Lt)c:ALITY. — Sianiiotsun, JYliaiigkou, Yushe,
Shanxi, China.
Age. — Ruscinian.
Material. — (BMNH 44577, cast F:AM 125708)
skull.
Hipparion matthewî Abel. 1926
Type locaI ri V. — Sarnos w'irhour exact locality data.
Age. — Laie Vallesinn to and including l urolian.
Materials. — Samos. Greece; (AMNll 22907 &
22936, Q5) two skulls. (/VJVINH no No., Q5) a jaw;
(SMF 4/10 & no No.J two skulls. (SMF no No.) u
jaw; Nat. 1 list. Mus., Vienna (no No.) a skull: British
Muséum oF Naiiiral Hisiory, l.ondon (BMNH
14071, casi of type) skull tfc jaw; Geol. Inst.,
Budapest (t'ïK 557, type oF //. manl^rwi) skull and
jaw. — Itaviii de Pluiéi Circece; Univer.slty of
Thessaloniki {RPi-21 type H. macedonicum Koufos &
RPl'36) two jaws. — Beluska, Macedonia (former
Yugoslavia): Prirodnjacki Muzej, Beograde (PM
2659/197 & 2751 ) two jaws.
Hippariot! inediten'aneinn (Roth & Wagner, 1855)
Type i [»C-Ai rn. — Pikermi, Greece.
Age. — Turolian.
Materiai.S. — Pikermi (BMNH 11215) jaw;
(VINHN no No.) skull and jaw. (MNIIN 514-31 &
no No.) two jaws; Nat. Hisi. Mus., Vienna (no No.) a
skull, (no No.) a subaduir jaw; Universiry of
Caldornia Muséum, Berkeley (LIf'M 63422) a jaw;
US National Museutn, Washington, D.C. (No. 267)
a jaw; Swtdish MuseioTi ul Natural I^istory,
Stocldinlni (ncr Nod two j.i\v.s; Cie<ilogit:al lustitule of
rhe Universiry, Gôtringen (no No.) a jaw; Naruial
FTsrory Muséum, Stuttgart (no No.) jaw to skull.
H, cf. medhenvncunn Bazalcii, Georgia: Insiiiute of
Paleobiology, I blJisi (B-51) skull, (B-54) a jaw. —
Manigheh, Iran: (MNIIN no No.) a jaw; Nat. Hist.
MuseLKiL Vienna (no No., Ketchawa) jaw; National
Muséum, Praha (no No.) jaw.
Hipparion ntogoia/m /hrgallo, 1978
Type, I.üCALTTA^. — Khirgis Nur, Mongolia.
Agi*. — Turolian.
Materials. — Khirgis Nur: (PIN 3222-193 type &
no No.) two skulls.
Hipparion 7nolayanefise7^o\x\\x\, 1992
Type LOCAILIT. — Molayan, Afghanistan.
Age. — Turolian.
Matkriaia. — (MNHN Mo 040 & 1758) two skulls.
Hipparion moldavicum Gromova, 1952
Type IOCAI I T Y. — Parakliva, Moldova.
Age. — Meorian/Turolian.
Materiai.S. — Tarakliya: Palcomological Institute &
Muséum, Vloscow (PIN 1256-2922, -3639 type,
-3647, -3648 Sc no No.) ihe skulls, (PIN 1256-3619,
-3620, -3638. -.3641, -3642, -3643- -3'’00, -4189,
-4191, -6605,.-6944, -7027 A; four withour a mun-
hcr) jaws, — Novocli/jvetovka, Ukraine: (OCî-U
1233, 1.306, 1307, 1313, 1314, 1459,. 3369. 3371)
.skulk (OGU 1394^95, 1401, 1403, 1404) j-aws. —
Cdieicvichnoc, Ukraine: Dcpi. Paleonrol. &
Pnleomoi. Mus.. Kiev: (No. 45-2(i65, -3849. -3925)
rhree .skulls. - Tchobrudii. Moldova: (OGU 3081)
skull. (OGU 30781 two jaw.s; Mus CdrdvonikitÎAe,
Moscow (No. 2080 & no No.) two jaws, (No. 2026
ik 2081) ,1 .s-kull and ja'v m.iy be Liiher from
Tchobruchi or Grcbeniki.
H. aff moldavicum: Novaya Emefovka-2, Ukraine:
276
GEODIVERSITAS • 1999 • 21 (2)
Snout proportions in somc Eurasian hipparions
Depr. Paleontoi. Paleonrol. Mus., Kiev (No. 25-
2439, '2923, -3005, *3200, -3310) skull.s. -
Chimishlia, Moldova; In.sricute of Geology àc
Paleontology, Uiiiv. Bucharest (No. 66/(378), 378a
&: no Nu.) thrce skulls, (no Nu.) jaw: Kegianal
Muséum, Cliisiiiui (No. 44040/79 & -/8I) jaws. ^
Maragheh, Iran: (RMNH 3924) skiill; (MNHN thrce
specimens vviihoLii No3 chree jaws-, Nai. Hi-tc. Mus.
Vienna (no Nt)., Kopran Si Kerchiiwa) two faws.
Hipparion platygcnys 1952
(?younger synonym ol H. hippïdiodii'^ .SefÀ'e 1927).
Tvpl- LOCAUTY. — Tarakiiya, Moldova.
Age. — Meotian/Turolian.
Materials. — (PIN 1256-2942, -3634 & no No.)
ihrcc jaws.
Hipparion praegigantctim farabukin, 1967
TvT'I', — Chimishlia, Moldova.
Age. — Mcotian/l'urolian.
Mai ekials. — Kcgionul Muséum, Chisnau (No.
4040/84, type) skull, (No. 4040/83) jaw.
Hippario7t pHmigetiium (v, Meyer, 1829)
Type l-OCAi.rrY. — Eppelsheim, Germany.
Age. — Vallesian.
Materials. - F.ppelsheimî Geol. Inst., Budape.sr
(OK 22) a jiiw. -- 1 lowenegg, CJermany: llumboldt
Muséum, Berlin (no No., casr) skull and jaw;
Hcssisehcs 1 .nndc.sinnscutn, Darrnsiadi (Ho 58/VI)
skull and jaw, (Ho. 54B) a faw. — V'Üa de Caballs,
Spain: (IPvS no No.) skull and jaw. — (]an Uobateres,
vSpaln: (IPS no No.) jaw. — In/.ersdoi4, Austria:
Natural Htstory Muséum, Vienna (SK 1346 Sc no
No.) tw<3 skulls, (No. 1875 V^I 5) a jinv. —
Wienerberg, Austria: Nar. Hî.sc. Muséum, Vienna
(1842 LVIl 11) a jaw. — J’rottes, Austriar Gcologital
Instiiutc, Univ. oT Vienna (No. 958) a jaw. —
Balravar, Hungary: Geol. In.st., Budapesr (No. 90) a
jaw; Nacural Hiscor>' Muséum, Budapest (No. 319b,
390, 391) chree jaws. — Nc.sebr, Bulgaria: Geological
In.sritute, Univ. Sofia (No. 130) skull, (No. 40, 133 &
no No.) three jaws.
Hipparion proboscideum Siudcr, 1911
'rwv, l.oCAi.n V. — Samos vviihoiit exact localirv data.
Age. — 'f'urolïan.
Materials. — Samos: (AAINH 20771, QI. AMNH
20772, QIs) two skulls; (SMP 4706, 4708, 4709)
three skulls; (SI/4) a skull, (possibly SI/208) a jaw;
(possibly BMNH 4359) a jaw. — Ravin des Zouaves:
Univ. Thessaloniki (RZO-60) skull.
H. sp. (cf. proboscideum):. Chcrevichnoe, Ukraine:
Depr. Paleonrol. Paleonrological Muséum, Kiev
(No. 45-2664, -4282) two skulls.
II. proboscideum or II. sp. (widi double fossa), Samos:
(Sl/277) a juw.
Hipparion prostylum Gervais, 1849
d’VPE LGGAI.M Y. — Mr. J.ébéron, France.
Age. — d'urolian.
Materials. — Faculté des Sciences, Lyon (no No.) a
skull with jaw; l’acuité des Sciences, Montpellier (no
No.) a lower snoui.
Hipparion prostylum!H scblosseri-dietidchi
an entily nut well defined, resembliiig both species.
Type LOC AII IY. — None, but présent in Southern
Macedoniu (lormer Yugoslavia) and nurthern Greece,
possibl) also in Maragbeh, Iran,
Age. — Turoiian.
M.ATERTALS. - Salonikk Greece: (Coll. Arambourg Si
Puvhaubcrt) Miisétim National d’Hisroire Nacurdle.
Paris (MNHN 1919-8) rwn skulk (MNHN 1911-
23) a jaw. Ravin des Zouave.s, Greece: Univer.siry
of Thessaloniki ïRZO-76, -105, -145. -154) Four
jaws. — Karaslari, Maccdonia (fonner Yugoslavia):
Prirodonaueen Muzej na Makedonija, Skopje (PMM
86/73, 93/73 subadulr Si 203/73) skulls, (l’MM
410/73) a jaw.
in addition: Llnien Doi, Macedoni. 1 , (PMM 99/60) a
.skull of elther H. mauhcwi or H. prostylum!H.
scblosscri-dietricbi. — Maragheh. Iran: (MNHN three
specimcivs without No.) three skulls.
Hipparum saMnatiewn L ungu, 1973
Type LOCAI ri y. — Kalfii, Moldova.
Age. — Middie Sannarian/Vallesian.
MaJERIAIS. — KalFa: Tiraspol Pedinstitut, formerly
Tiraspok now Cdiisnau (no No.) fivc jaws. — Brada,
Moldova: (PIN 646-12) a skull.
Hipparion schlosseri'dietrichi
AnconiiLs, l919'(Wehrli, 1941)
Both trames were given evidenrly the same species;
Anrontus’ nanir is oldcr. but possibly nor valid (des¬
cription Incomplète, type not figured). Wchrli used
the genus namc Hemihipparion.
4'ype I.OGAl.rn . — Samos without exact localicy' data.
Age. — Turoiian.
Materials. — Samos, Greece: American Muséum of
Natural History, New York (AMNH 20596, 20598,
20608, 20692, 20997 & two without number, ail
Samos Ql) seven skulls, (AMNH 20603, 20650,
GEODIVERSITAS • 1999 • 21 (2)
277
Forsten A.
20655, 20667, 22787, ail Ql) five jaws, (AMNH
22860, Q4 6c no No., ?Q4) cwo skulls, {AMNH
22990, Q6) skull; Senckcnber^ Muscum, l'rankfuit
(SMF no No,) thret jaws; Nutiiral I üstoty Miiscum,
Vienna (No. 191 ! V 114, type H. schlossert); possibly
Geological Jnstirute, Budapest (No. 274) skull;
ïnstitiite of Geology & I^aleontology, Milnster (Sl/7,
type HernUnpparum dietrichi 6c Sl/28) iwo skulls, pos-
sibly (Sl/236) a jaw; Teylers Muscuni, Haarlem (No.
15470 & no No.) nvo skulls; Geological Muséum,
Lausanne (No. 132) skulls (No. 6c 195 Irom
Samos, Andriano) rvvo jaw.s; University of Texas-
Ausiin, Bur. Econ. Geol. (No. 40275 cast of CMNH
P. 12868) skull. — Maragheh, Iran: Nat, Hist. Mus.
Vienna (no No., Kopran) jaw.
Hipparion tchicoiewn Ivanjev, 1966
Type LOCAI I TY. — Beregovaya, Russia.
Age. — Vilkifranthian.
Materials. — Shamar, Mongolia: (PIN 3381-53)
jaw. — Peihaitsun, Maesegou, Yushe, China: (IVPP
THP 19009 & 19013) skull and jaw. —Yid-
jouantsun, Yushe, China (IVPP THP 10302) jaw.
Hipparion hulorovense Gàhnn\yd.s 1959
Type LOCALi n'. —Tudorovo, Moldova.
Age. — Meorian/Turoban.
Materials. — (OGU 1780 type //. tudorovensé) a
skull, (OGU 906, 1783 & no No.) three jaws.
Hipparion t>^#ï^Gabuniya, 1979
(originally H. ^romovae Gab. 1959, preoccupied by
H. ViTlalta & Crusafont, 1957)
Type i üCAI h y. — Grebcniki, Moldova.
Age. — Early Meotian/Late Valle.dan/Larly '1 urolïan.
Materials. — Grebcniki; University of Odessa
Muséum, Odessa (OGU 916, 917, 1012/1 & 1016
type) four skulls, {OGU 889, 897, 898, 905, 1016,
1462 & no No.) seven jaws; Department of
Paleontolog)' & Palcontological \luseum, Kiev (No.
408-47 6c 408-114) two jaws; Muséum Ordjo¬
nikidze, Mosçow (Nos. 2027, 2051, 2079 6c no No.)
lour jaws, (No. 2061) a skull, said to bc from
Tchobruchi, resembics H. vetetc.
H. aff. vèrae\ Bekuskà, Macedonia (former Yugoslavia):
fPM 2660/196) skull, (PM 2743/195) jaw.
Proboscidipparion Matsumoto, 1927
Type locali iy, — unknown.
Age, — Ruscinian-Villafranchian.
Materials. — Nihersun, Yushe, China: (IVPP THP
20763) skull, (IVPP THP 30756) jaw. — Loc. 26,
Pcihait.sun, V'ushe, China (IVPP THP 14312 lecto-
rype) skull and jaw.
Proboscidipparion rocinantis
(Hcmandcz-Pacbeco, 1921)
Type IOCAI ITy. — Puebla de Almoradier, Spain.
Age. — Villafranchian.
Ma ITRIALS. — Villaroya, Spain: (IPS 2085) a skull,
(IPS V 196, unreadabie No. & no No.) three jaws. —
Kvabebi, Georgia: Inst. Paleobiol., Tbilisi (K-48) a
skull. — ühamar. Mongolia: (PIN 970/2086) a
jaw. — Peihaitsun, Matsekou, Yushe, Shanxt, Cliina:
Institutc of Verrebrate Paleontology & Paleo-
anihropology, Beijing (IVPP THP 10331 6c 10508)
skull, skull and jaw, (IVPP THP ]0()97) a jaw. —
Yinkiangtsun, Yushe, China (IV'PP l'ill* 10733)
skull and jaw. — Hsi Chwang/Hsiao Chuang, Shanxi,
China (AA4NH 96-B 1031) skull and jaw, (AMNH
64-B 815) skull.
Proboscidipparion sinense Sefve, 1927
Tvpl. l.OCAl I LY. — Mien Chili Hsien, Lankou,
Henan, China.
Age. — Villafnuichian.
Materials. — Mien Chili Hsien: Palcontological
Institute, Univ. Uppsala (M 3925 & 3926 type) skull
and jaw. — Yushe, Shanxi, China: Beijing Natural
History Muséum (no No.) skull and jaw.
278
GEODIVERSITAS • 1999 • 21 (2)
Instructions aux auteurs
La ligne éditoriale
Elle prendra eu coinpie divers aspects de la
recherche en Sciences de la 1'errc, en particulier
rhistoire et le coniporcemcm des bassins sedimen-
Tuires, la palcobiodivcrsirc ci les paléoenvironne¬
ments. ün numéro de Gcodwersitas par an pourra
être consacré, exceptKjniielleineru, au débat contra¬
dictoire sur un sujet d’acrualitc, ou sur un thème
donné et sous la responsabilité d’cdiccur(s) invtré(s).
l.es manuscrits, dont le nombre de pages n'est pas
limité a priari, devront suivre rigoureusement les
recommandations aux auteurs (voir ci-dessous) et
seront adressés à la revue :
Service des Publications Scienriht]ucs du Muséum,
G eodi versitas,
37 rue Cuvier,
P-73231 Paris cedex 03
Tel: (33)01 40 79 34 38
Fax: (33) 01 40 79 38 58
c. mail ; bulletin(®mnhn.Fr
Les chapitres de systématique devront.se conformer
aux règles du Code hnermtional de Nomenclature
Zoologique et du Code International de Nomen-
cUuure Botanique.
'Fout manuscrit non conforme à ces instructions
sera retourné pour mise au point. Chaque manus-
crir c.sr évalué par deux rapporteurs, ou plus.
Informations générales
Soumettre un article pour publication dans
Geodiversîtas suppose que celui-ci ou tout article
proche dans la meme langue ou une autre langue,
n'ait pas été .soumis dans une autre revue, meme
dans l’actcnic dé son acceptation. Les droits de
reproduction de rariiclc, y compris des illiistra-
rions, .sont réservés ii la revue. La reproduction de
tout ou partie de l’article doit faire robjei d'une
demande écrite préalable adressée à la rédaction.
Chaque manuscrit soumis (y ccmipris les illustra¬
tions) doit être présenté en trois exemplaires (un
original et deux copies) au format A4, avec un
double interligne et des marges d'au moins 3 cm ;
chaque page sera numérotée. Les illustrations origi¬
nales seront jointes au manuscrit définitif, ainsi
qu’une disquette 3.5*' de format Apple Macintosh
ou compatible IBM (traitement de texte Word de
préférence), qui devra conrenir également les
tableaux (Word. Flxcel. I)eneba Canvas, Adobe
llkisrraror) er éventuellement les illustrations
(Adobe lllustrator, Photoshop, format .EPS,
300 ppp maximum, iï la dimension de la revue et
en police Hclverica, corps 8 ou 10).
Le format
l.es manuscrits, écrits en français ou en anglais, doi¬
vent être structurés comme suit :
— rirre si possible bref ; un titre courant doit être
proposé ;
— traduction exacte du rirre en anglais ;
— nonds) et prcnom(.s) de(s) auceur(s) suivis de
leur(s) adresse(s) professionrielle(.s), en indiquant si
possible le numéro de télécopie et l’adresse électro¬
nique ;
— résumés écrits en français et en anglais (800
signes au maximum chacun), suivis des mots clés et
« key words » ;
— dans le texte courant, utiliser les italiques pour
tous les noms en latin : taxons de rangs générique
et spécifique (ex : Cellaria Ellis d^Solander, 1786)
et ai ;
— dans le texte courant, les réferences atLX auteurs
seront en minuscules, ex. Dupont (2001), Dupont
(2001, 2002), (Dupont 2001 ; Durand 2002),
(Dupont & Durand 2003, 2005) Dupont (2001 .*
1), Dupom (2001, fig. 2).
— dans le texte courant, les réferences aux illustra¬
tions et aux rableaux de l’article seront présentées
ainsi : (Fig. 1), (Fig. 2A, D), (Fig. 2A-C), (Figs 3,
6), (Figs 3-5), Crableau 1) ;
— les remerciements seront placés à lu fin du texte,
avant les réferences bibliographiques ; ils mention¬
neront les rapporreur.s ;
— les références bibliographiques doivent suivre les
exemples donné.s ci-dessous ;
— indiquer dans la marge l'emplacement des illus¬
trations dans le texte définitif ;
— donner les légendes des figures sur une feuille
séparée.
Les illustrations
Une attention particulière sera portée à la qualité et
la pertinence de rillustration.
Les illustrations au trait doivent être réalisées à
fencre de Chine ou être fournies en impression
laser. Les photographies, bien contrastées, seront
GEODIVERSITAS • 1999 • 21 (2)
279
Instructions aux auteurs
sur fond noir ou blanc. Elles pourront être regrou¬
pées, et dans ce cas, identifiées par une ictrre en
capitales (A, B, C...), Les planches photogra¬
phiques, placées dans le corps de Earricle er non
regroupées à la fin de celui-ci, doivent être crairées et
numérotées comme des figures. Les illustrations
pourronc être assemblées sur une largeur de colonne
(70 X 190 mm) ou sur toute- la largeur de la justifi¬
cation (BW X 190 mm). La rédaction encourage la
présentarion de photographies avec tout ou patrie
de leur interprétation pm un ou des des.sins au trait.
Aucune légende, ni lettrage ne sera placé .sur les ori¬
ginaux. Ils figureront sur un calque joinr avec
chaque figure, la rcdaciîon sc chargeant de les pla-
cer. Chaque figure doit comporter une échelle
métrique, sans aucun coefficient multiplicaicur. Les
tableaux et graphiques, à inclure dans le manuscrit,
doivent nécessairement pouvoir être imprimes sur
une page et rester li.sible.s aprè.s réduction éventuel¬
le. Des planches en couleur pourront erre publiées
moyennant une participation financière de ou des
auteurs.
Références bibliographiques
Denison R. H. 197H. — Placodermi, in .Schulr/,e
H. P. (cd.), Handbook of PaUfiichthyology^
Volunte 2, Gustav Fischer, Stutigarr, 128 p.
Marshall C. R. 1987. — Lungfish: phylogeny and
parsimony, in Bemis W. H., Burggren W. W.
&: Kemp N. E. (eds), The Biology and
Evolution of Lungfishes, of Morphology
1: 151-162.
Schultze H. P. & Arsenauk M. 1985. — The pan-
derichrhyid fi.sh Hlpmosiegr. a close relative to
tetrapods? Paleautolagy 293-309.
Schultze H. P. 1977a. — l'he origin of the rctra-
pod limb within the rhipidîsrian fishes:
541-544. in Mecht AE K., Coody I’. (E &
Hcchi B. C. (cd-s), Mnjar Piuterm in Vertebrate
Evolution. Plénum Press, New York and
London.
Épreuves et tirés à part
Les épreuves seront .idrcssées à Fauteur ou au pre¬
mier auteur (sauf indication contraire) et devront
être retournées corrigées sous huitaine. Les correc¬
tions, autres que celles imputables à la rédaction ou
à rimprimeur, seront h la charge des auteurs. Le(s)
autcur(s) recevront gracieusement vingt-cinq tirés à
part, les rires à part suppiérnentairevS seront à com¬
mander sur un formulaire joint aux épreuves.
Scope of the Journal
puhlishcs papers which concern varied
aspects of Larih Sciences and particularly hisrory of
sedimentan' basins, palacobiodiversity and paleoen-
vironmenr. A complété issue of Geodiversitas may
be devored ro .scveral papcis on a single lopic under
elle resf'onsability^ of guest editofis). Papers wîlh a
sysicmatic content should follow the înti'rnational
i.OfU oj y.oologiçal Notnençlaiutf and the Interna¬
tional Cofle of fiotanlcal Nowriu'httmr, Manusci ipts,
wirhoijt limitation pl the nuniber ol pages, must
conform striccly with the in.strucrions to authors,
and will be sent to the Ediior:
Service des Publications Scientifiques du Muséum,
Geodiversitas,
57 rue Cu\'icr,
F-7523! Paris Cedex 05
Tel : (33) 0! 40 79 54 38
Fax: (33) 01 40^9 38 58
e. mail : bullerin(rf'innhn.fr
General information
Fhe submission of a mamiscript to Geodiversitas
implics that the paper, or a simüar one, i.s not heing
offered For publication elscwliere. Copyrighr of
publislicd papcT, including the illustrations,
becomes the property ot the journal. Reque.sis to
reproduce materia! from Geodioersitas should be
addressed to lheeditor.
M;uiubcripis. with illustrations, must be submirred in
rriplicatc (one original and two copies) in A4 format,
double spaced, with margins of at lea.st 3 cm and ail
pages numbered. lhe original figures should be .sent
with the revi.scd manu.scripr, a.t wd! as a .3.5" diskette
Apple Macintosh or IBM-compatible (Word) for-
m.tt, which will aiso contain iahle.s (Word, Excel,
Dcncba Canva.s, Adobe Iliuslratür) and possibly
figures (Adobe Illustrator, Phoroshop, .EP.S format,
300 dpi maximum, in the page size of the journal
and with Hclvctica font in 8- or 10-point body).
Fonnat
Papers are to be wrirten in simple and concise
Frcnch or Enghsh. They should be organized as fol-
lovvs:
- a brief ride in English;
- a tille in French (exact rranslation);
- a sugge.sted running head;
- nâmc(s) ot âüthor(s), iullowed by their full pro-
féssional address(cs) and, il possible. Fax number
and e.mail;
- abstracts (in English and French) not exceeding
800 signs cach, with key words and “mots clés”;
280
GEODIVERSITAS • 1999 - 21 (2)
Instructions aux auteurs
— text with italicized words for Latin: taxa of gene-
ric and speciUc ranks (e.g. Cellarîa Ellis &
Solander, 1786) etaL\
— référencés to authors in main text should be pre-
sented, in lowcr case, as follows: Smith (2001),
Smith (2001, 2002), (Smith 2001), (Smith 2001;
Carv 2002), (Smith & Cary 2003, 2005), Smith
(2001: !), Smith (2001, fig. 2);
— références to illustrations and tables should bc
indicated as iollows: (Fig. 1), (Fig. 2A, D), (Fig.
2A-C), (Figs 3, 6), (Figs 3-5), (Table 1);
— keep acknowlcdgcments short and place them at
the end of the text before refcrences; please do not
forger the revisers;
— give captions to illustrations on a separate sheet
and indicate their place in the margin.
Illustrations
The éditorial board will pay spécial attention to the
qualit)' and relevance of illustration.
Line drawings must be in Indian ink or high quali-
ty laser printouts; high contrast photographs, pla-
ccd on white or black backgrounds, arc required.
Thèse can be grouped into figures and identified
by letters A, B, C ... Plates arc not placed at the
end of the article: they will be considered ;is figures
and numbered as siich. Arrange ligures lo fit one or
two columns (70 x 190 mm or 144 x 190 mm).
Associate interprétation of photograph with line
drawing. No diagram or table is to exceed one
page. Letters, numbers, etc., for each figure, arc to
bc indicated on an accompanying overlay, not on
the original figure (line eut or half-tone). A scale
bar is needed for each figure (without magnifica-
tion factor).
Refcrences
Denison R. H. 1978. — Placodermi, in Schultze
H. P. (ed.), Handbook of Paleoichthyology,
Volume 2. Gustav Fischer, Stuttgart, 128 p.
Marshall C. R. 1987. — Lungfish: phylogeny and
parsimony, in Bemis W. F., Burggren W. W.
& Kemp N. F. (eds), The Biology and
Evolution of Lungfishes,/o//r;W of Morphology
1: 151-162.
Schultze H. P. ^ Arsenault M. 1985. — The pan-
derichihyid fish Elpistostege: a close relative to
tetrapods? Paleontology 28: 293-309.
Schultze H. P. 1977a. — The origin of the retra-
pod limb within the rhipidistian fishes:
541-544, in Hecht M. K., Coody P. C. &
Hecht B. C. (eds). Major Patterns in Vertebrate
Evolution. Plénum Press, New York and London.
Proofi and reprints
Proofs will be sent to the first author for correction
and must be returned within eight days by express
mai!. Authors will receive twenty-five offprints free
of charge; further offprints can be ordered on a
form supplied with the proofs.
GEODIVERSITAS • 1999 • 21 (2)
281
Mise en page
Noémie de la Selle
Packaging Editorial
Achevé d’imprimer
sur les presses de l’Imprimerie Durand
28600 Luisant (France)
Dépôt légal n'* 11149
Printed on acid-free paper
Imprimé sur papier non acide
Date de distribution du fascicule 1, 1999 : 31 mars 1999
Couverture : Alternances marnes-calcaires du Lias du Bassin Lombard (Alpes Méridionales)
Coupe des gorges de la Breggia (Suisse)
Photographie J. F. Deconinck (Université de Lille I)
geodiversitas
1999 • 21 ( 2 )
^useüm^^wA
Jn’ationalWaI
‘D H]5T.SATjA«,
Publication trimestrielle, juin 1999. ISSN : 1280-9659
Vente en France
Muséum national d'Histoire naturelle
Diffusion Delphine Henry
57 rue Cuvier, 75005 Paris,
France
Tél. : 33-01 40 79 37 00
Fax: 33-01 40 79 38 40
e mail: dhenry@mnhn.fr
Sales Office (France excluded)
Universal Book Services
Dr. W. Backhuys
P.O. Box 321 2300 AH Leiden
The Netherlands
Tel. : 31 - 71 -517 02 08
Fax: 31 -71-517 18 56
e-mail : backhuys@backhuys.com
137
147
157
167
215
229
255
Indexed in
CeoRef (Online Database for Bibliography and Index of
Ceology), Blological Abstracts, ASFA (Aquatic Sciences and
Fisheries Abstract), Pascal, Zoological Record
Conception Graphique : Isabel Gautray
Morales J., Soria D. & Pickford M.
New stem giraffoid ruminants from the early and middie Miocene of Namibia
Forsten A.
Snout proportions in some Eurasian hipparions (Mammalia, Equidae): taxonomie and functional
implications
Cifelli R. L. & Madsen S. K.
Spalacotheriid symmetrodonts (Mammalia) from the médial Cretaceous (upper Albian or lower
Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA
Freneix $.
Bivalves du Trias tariquide de Los Pastores (Algésiras), Espagne. Leur signification
Poplin C.
Un paléoniscoïde (Pisces, Actinopterygii) de Buxières-les-Mines, témoin des affinités fauniques entre
Massif central et Bohême au passage Carbonifère-Permien
Pereda Suberbiola X. & Taquet P.
Restes de Rhabdodon (dinosaure omithopode) de Transylvanie donnés par Nopesa au Muséum
national d'Histoire naturelle de Paris
David H., Dauphin Y., Gautret P., Pickford M. & Senut B.
Composition en acides aminés d'os de mammifères fossiles de deux sites du Plio-Pléistocène
d'Angola. Comparaison avec la conservation de la phase minérale